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Abstract

In this thesis, we make progress on three problems in extremal combinatorics,

particularly in relation to finding large spanning subgraphs, and removing induced

subgraphs.

First, we prove a generalisation of a result of Komlós, Sárközy and Szemerédi and

show that for n sufficiently large, any n-vertex digraph with minimum semidegree

at least n/2 + o(n) contains a copy of every n-vertex oriented tree with underlying

maximum degree at most O(n/ log n).

For our second result, we prove that when k is an even integer and n is sufficiently

large, if G is a k-partite graph with vertex classes V1, . . . , Vk each of size n and

δ(G[Vi, Vi+1]) ≥ (1 + 1/k)n/2, then G contains a transversal Ck-factor, that is, a

Ck-factor in which each copy of Ck contains exactly one vertex from each vertex

class. In the case when k is odd, we reduce the problem to proving that when G

is close to a specific extremal structure, it contains a transversal Ck-factor. This

resolves a conjecture of Fischer for even k.

Our third result falls into the theory of edit distances. Let Ct
h be the t-th power

of a cycle of length h, that is, a cycle of length h with additional edges between

vertices at distance at most t on the cycle. Let Forb(Ct
h) be the class of graphs

with no induced copy of Ct
h. For p ∈ [0, 1], what is the minimum proportion of

edges which must be added to or removed from a graph of density p to eliminate all

induced copies of Ct
h? The maximum of this quantity over all graphs of density p is

measured by the edit distance function, edForb(Ct
h

)(p), a function which provides a

natural metric between graphs and hereditary properties. For our third result, we

determine edForb(Ct
h

)(p) for all p ≥ p0 in the case when (t+1) | h, where p0 = Θ(1/h2),

thus improving on earlier work of Berikkyzy, Martin and Peck.



DECLARATION

Chapter 2 is joint work with Richard Montgomery and appears in the Journal of

Combinatorial Theory Series B [38]. Chapter 3 and Chapter 4 are joint work with

Richard Mycroft and the manuscripts are in preparation for submission.



ACKNOWLEDGEMENTS

I would like to thank my supervisor Richard Mycroft. Thank you for your patience,

guidance and unwavering support throughout my PhD. I have enjoyed all of our

discussions over the past four years, be they mathematical or about trains, and I

hope we will have many more.

Thanks also to Richard Montgomery for taking over as my supervisor for a while,

and suggesting such a lovely problem to work on and of course for all the cups of tea!

Of course, the past four years would not have been possible without my family,

friends and colleagues. It has been an immense pleasure to work alongside such a

diverse and intelligent group of people, whether it be playing board games or quizzing

over Zoom through the pandemic. Thanks in particular to my parents and Vincent.

I am incredibly grateful for all the years of your unquestioned belief in me, often

when I needed it the most.

Special thanks go to the School of Mathematics at the University of Birmingham,

which I have had the immense pleasure of being a part of for the past eight years,

and which introduced me to the world of combinatorics. Special thanks also go to

the mathematics department at Chelmsford County High School, which helped to

nurture my love of mathematics from an early stage of my education.

I would also like to acknowledge the generous funding provided by the Engineering

and Physical Sciences Research Council.



CONTENTS

1 Introduction 1

1.1 Spanning structures in graphs and digraphs . . . . . . . . . . . . . . 2

1.1.1 Spanning trees . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Further directions . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The edit distance function . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Further directions . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Spanning trees in dense digraphs 14

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Proof sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Probabilistic tools . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.4 Structural lemmas . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.5 Matchings between random sets . . . . . . . . . . . . . . . . . 28

2.2 Almost-spanning trees . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Embedding constant-sized trees as stars . . . . . . . . . . . . 31

2.2.2 Embedding constant-sized trees as paths . . . . . . . . . . . . 40

2.2.3 Proof of Theorem 2.1.2 . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Absorption from switching . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Transversal cycle factors 49



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Robust expanders . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.3 Fractional tilings . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 The extremal case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Proof of Lemma 3.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Finding a perfect fractional Ck-tiling . . . . . . . . . . . . . . . . . . 77

3.5.1 The robust expander case . . . . . . . . . . . . . . . . . . . . 81

3.5.2 No robust expanders . . . . . . . . . . . . . . . . . . . . . . . 112

3.5.3 Proof of Theorem 3.1.4 . . . . . . . . . . . . . . . . . . . . . . 115

4 Removing induced powers of cycles from a graph 132

4.1 Coloured regularity graphs . . . . . . . . . . . . . . . . . . . . . . . . 132

4.1.1 Measuring the edits defined by a CRG . . . . . . . . . . . . . 134

4.1.2 The p-core CRGs and symmetrisation . . . . . . . . . . . . . . 137

4.2 Determining edForb(Ct
h

)(p) . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2.2 Existence of long cycles . . . . . . . . . . . . . . . . . . . . . . 145

4.2.3 Using long cycles to find shorter cycles . . . . . . . . . . . . . 150

4.2.4 Proof of main result . . . . . . . . . . . . . . . . . . . . . . . 152

Bibliography 157



CHAPTER 1

INTRODUCTION

In 1736, the problem of the seven bridges of Königsberg was resolved by Euler [25],

and this is now widely regarded as the origin of graph theory. This theory is founded

on separating the notion of physical positions of objects from their relative positions

or relationships. In order to do this, we represent the objects we are dealing with as

vertices in our graph, and the connections between them as edges.

While there are many other puzzles which can be solved using graph theory, there

are also numerous real-world applications of this theory. Perhaps most present-day

applications lie in computer science where graphs can be used to represent the flow of

information through complex networks, such as social networks or even the internet

itself. For example, the PageRank algorithm [17] used by Google uses graph theory

to evaluate the importance of webpages. Another extremely topical application is

within the area of epidemiology, where dynamics on graphs can be used to model

interactions between people, and the spread of disease. In general any field which

involves the study of relationships between substructures will naturally lead to an

application for graph theory.

While graphs are a useful modelling tool, it is equally important and interesting

to study these structures in their own right. Since its conception, graph theory has

greatly developed, and now the term encompasses a much wider variety of structures,

such as directed graphs, where edges can have a direction, or hypergraphs, where
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edges can contain more than two vertices. There has also been a steady evolution of

the tools and techniques being used in this area. A notable example of this change

is the Four Colour Theorem in planar graph theory which was proved by Appel

and Haken through a series of papers (see for example [4] and [5]) with the aid

of computers. Later, a significantly simplified version of this proof was found by

Robertson, Sanders, Seymour and Thomas [65] who still used similar ideas as Appel

and Haken, together with a computer-based approach.

In this thesis we will be focusing on problems in extremal graph theory. This

area is concerned with determining how large or small some parameter of a graph

needs to be in order to guarantee the existence of a given substructure. In particular,

the problems we study will fall under two broad categories, namely finding spanning

structures in graphs and digraphs (which we discuss further in Section 1.1), and

removing induced subgraphs from graphs (discussed in Section 1.2).

1.1 Spanning structures in graphs and digraphs

Given two graphs H and G, when may we expect to find a copy of H in G? In

general, this decision problem is NP-complete (for instance see [40] for H-factors),

and therefore we seek simple conditions on G which imply it contains a copy of

H. An important early result is Dirac’s theorem [23] from 1952 which says that,

when n ≥ 3, any n-vertex graph with minimum degree at least n/2 contains a cycle

through every vertex, that is, a Hamilton cycle. This is a particular instance of the

following meta-question, which has seen much subsequent study. Given an n-vertex

graph H, what is the lowest minimum degree condition on an n-vertex graph G

which guarantees it contains a copy of H? As such a copy of H would contain every

vertex in G, we say it is a spanning copy of H.

This question has been studied for many different graphs H, for example when

H is the k-th power of a Hamilton cycle for any k ≥ 2 [42] and when H has bounded
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chromatic number and maximum degree, and sublinear bandwith [16]. For more

details on these results, and those for other graphs, see the survey by Kühn and

Osthus [47].

In this thesis, we concentrate on the cases when H is a spanning tree and when

H is a K-factor, for a small fixed graph K. We now give a more detailed background

of the first of these in Section 1.1.1 and of the second of these in Section 1.1.2. In

Section 1.1.3, we discuss some further directions in which this work can be extended.

1.1.1 Spanning trees

Komlós, Sárközy and Szemerédi [41] proved in 1995 that, for each α,∆ > 0, there is

some n0 such that, if n ≥ n0, then every n-vertex graph with minimum degree at

least (1/2 +α)n contains a copy of every n-vertex tree with maximum degree at most

∆, thus confirming a conjecture of Bollobás [12]. This result is furthermore notable

as one of the earliest applications of the blow-up lemma. In 2001, Komlós, Sárközy

and Szemerédi [43] relaxed the maximum degree condition, showing that, for each

α > 0, there is some c > 0 and n0 such that, if n ≥ n0, then every n-vertex graph

with minimum degree at least (1/2 + α)n contains a copy of every n-vertex tree

with maximum degree at most cn/ log n. This is tight up to the constant c. In 2010,

Csaba, Levitt, Nagy-György and Szemerédi [20] showed that, in the other direction,

the degree bound in the graph can be reduced for trees with constant maximum

degree. That is, they showed that, for each ∆ > 0, there is some C = C(∆) such that

every n-vertex graph with minimum degree at least n/2 + C log n contains a copy of

every n-vertex tree with maximum degree at most ∆. This is tight up the constant

C, and, moreover, unlike the previous results, did not use Szemerédi’s regularity

lemma.

In this thesis, we will prove the corresponding version of the result of Komlós,

Sárközy and Szemerédi [43] from 2001 for directed graphs (digraphs) instead of graphs.

The minimum semidegree of a digraph D, denoted by δ0(D), is the smallest in- or
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out-degree over the vertices in D, that is, δ0(D) = minv∈V (D),⋄∈{+,−} d
⋄(v). Ghouila-

Houri [28] solved the minimum semidegree problem for the directed Hamilton cycle,

showing that, if an n-vertex digraph D has δ0(D) ≥ n/2, then it contains a directed

Hamilton cycle. That is, an n-vertex cycle with the edges oriented in the same

direction. DeBiasio, Kühn, Molla, Osthus and Taylor [21] showed that, when n is

sufficiently large, this holds in fact for any n-vertex cycle with any orientations on its

edges, except for when the edges change direction at every vertex around the cycle.

This latter cycle, known as the anti-directed Hamilton cycle, is only guaranteed to

appear if δ0(D) ≥ n/2 + 1, as shown by DeBiasio and Molla [22].

Recently, Mycroft and Naia [61, 62] gave the first bound on the minimum

semidegree required for the appearance of different spanning trees. Here, H is an

oriented n-vertex tree, with some bound on the degree of its underlying (undirected)

tree. Mycroft and Naia [61, 62] proved that, for each α,∆ > 0, there is some n0

such that, if n ≥ n0, then every n-vertex digraph with minimum semidegree at

least (1/2 + α)n contains a copy of every oriented n-vertex tree T with ∆±(T ) ≤ ∆.

Moreover, their result holds for a slightly wider class of trees, allowing them to show

that, for each α > 0, almost every oriented n-vertex tree appears in every n-vertex

digraph with minimum semidegree at least (1/2 + α)n.

In this thesis, we introduce new methods to embed oriented trees in digraphs,

relaxing the maximum degree condition to give a full directed version of Komlós,

Sárközy and Szemerédi’s result, as follows.

Theorem 1.1.1. For each α > 0, there exists c > 0 and n0 ∈ N such that the

following holds for every n ≥ n0. Any n-vertex digraph D with δ0(D) ≥ (1/2 + α)n

contains a copy of every oriented n-vertex tree T with ∆±(T ) ≤ cn/ log n.

This result appears in [38]. The proof of this result will be given in Chapter 2.
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1.1.2 Tilings

The problem of finding a perfect H-tiling, also known as an H-factor in a graph

G has been widely studied. Clearly, a requirement is that |H| divides |G|, so we

assume this. In 1970, Hajnal and Szemerédi [30] proved what is now a fundamental

theorem in extremal graph theory, showing that whenever G is an n-vertex graph

with δ(G) ≥ (1 − 1/r)n then G contains a Kr-factor. This was an improvement

on an earlier work of Corrádi and Hajnal [19] who showed this for triangle-factors.

Another generalisation of Corrádi and Hajnal’s result was to cycles of length ℓ, and

a special case of a result of Abbasi [1] confirmed a conjecture of El-Zahar, showing

that in an n-vertex graph G, a minimum degree of at least n/2 guarantees a Cℓ-

factor when ℓ is even, and δ(G) ≥ (ℓ+ 1)n/2ℓ guarantees a Cℓ-factor when ℓ is odd.

More generally, Kühn and Osthus [50] determined, up to an additive constant, the

minimum degree which ensures that G contains an H-factor for general H, showing

that this depends on either the chromatic number of H, or the critical chromatic

number of H, depending on the structure of H. As this is a technical result, we do

not state this formally here.

In 1999, Fischer [27] conjectured a multipartite version of Hajnal and Szemerédi’s

result. We give some basic definitions in order to state this. Let G be a k-partite

graph with vertex classes V1, . . . , Vk. For a graph F with vertex set {1, . . . , k}, define

δ∗
F (G) = minij∈E(F ) δ(G[Vi, Vj ]) (where we omit the graph in the subscript when it is

clear from context). We say a copy of F in G is transverse if it contains one vertex

from each vertex class; a transversal F -tiling in G is a collection of vertex-disjoint

transverse copies of F in G, and is a transversal F -factor in G if it covers every

vertex of G (note that a necessary condition for this is that all vertex classes have

the same size).

Fischer [27] conjectured that if G is an r-partite graph, with vertex classes

V1, . . . , Vr each of size n and δ∗
Kr

(G) ≥ (1 − 1/r)n, then G contains a transversal
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Kr-factor. In the same paper, Fischer showed that when r = 3, 4, such a graph

G contains a transversal Kr-tiling of size n − Mr for a large constant Mr. The

conjecture was proved asymptotically by Johannson [36] in the case when r = 3, and

later, Lo and Markström [51], and independently, Keevash and Mycroft [39] proved

the conjecture asymptotically for all r ≥ 4.

Fischer [27] also conjectured that δ∗
Ck

(G) ≥ (1 + 1/k)n/2 is enough to guarantee a

transversal Ck-factor. A similar conjecture by Häggkvist with an additional +1 term

in δ∗
Ck

(G) also appeared in [36]. Our main result is the following theorem, which

resolves this conjecture completely in the case when k is even.

Theorem 1.1.2. For every even integer k ≥ 4 there exists n0 such that if G is a

k-partite graph whose vertex classes each have size n ≥ n0 with δ∗
Ck

(G) ≥ (1 + 1
k
)n

2 ,

then G contains a transversal Ck-factor.

For even k, this improves on an earlier asymptotic version by Ergemlidze and

Molla [24], and uses significantly different methods to this earlier work. We remark

that in the case when k is odd, the class of extremal graphs is wider. So to get the

analogous result for odd k, it only remains to show that any graph which is ‘close to’

being extremal does in fact contain a transversal Ck-factor. We aim to return to this

problem. The proof of Theorem 1.1.2 will be given in Chapter 3.

1.1.3 Further directions

Extending results from graphs into hypergraphs is widely studied. For example, Rödl,

Ruciński and Szemerédi [66] generalised Dirac’s theorem into the hypergraph setting,

showing that any k-uniform hypergraph on n vertices with minimum codegree at

least n/2 + o(n) contains a Hamilton cycle. Here, the minimum codegree is the

minimum number of k-edges that any set of k− 1 vertices must be contained in, and

is only one of many notions of degree in hypergraphs. Another such notion is the

minimum (or maximum) 1-degree, which is the minimum (or maximum) number of
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k-edges that any vertex is contained in. The result of Rödl, Ruciński and Szemerédi

is also notable for introducing the method of absorption, which is now a key tool

in proofs within extremal graph theory, and indeed is a tool we use in the proof

of Theorem 1.1.1.

Therefore, it is just as natural to ask whether we can find an analogue of

Theorem 1.1.1 for hypergraphs. However, not only are there varying notions of

degree in hypergraphs, but there are also multiple definitions of a tree, and therefore

the first difficulty is deciding which to use. Pavez–Signé, Sanhueza–Matamala and

Stein [63] showed that in a k-uniform hypergraph on n vertices, a minimum codegree

of n/2 + o(n) guarantees any spanning tight k-tree of bounded maximum 1-degree.

Here, a tight k-tree is a tree which can be created by starting with a k-edge and then

at each stage adding a new vertex and a new edge that contains this vertex and k− 1

vertices from another edge. This generalises the original result of Komlós, Sárközy

and Szemerédi [41], and the result of Mycroft and Naia [62] into the hypergraph

setting. With these notions of minimum degree and of trees, a full generalisation

to hypergraphs of the latter result of Komlós, Sárközy and Szemerédi [43] and of

Theorem 1.1.1 would require us to show that any k-graph with minimum codegree

n/2 + o(n) contains a copy of any tight k-tree with maximum 1-degree O(n/ log n).

If this is true, the work of [63] confirms that this would be best possible. Indeed, the

authors adapt the extremal example given by Komlós, Sárközy and Szemerédi and

show that it is possible to find a k-tree which has maximum 1-degree Θ(n/ log n)

but asymptotically almost surely (a.a.s), that is, with probability tending to 1, is not

contained in the binomial random k-graph with edge probability p = 0.9. Therefore,

it would be interesting to explore this further.

Another interesting direction to take this work is into the randomly perturbed

setting. Randomly perturbed graphs were introduced by Bohman, Frieze and Martin

[11] in order to formalise the problem of how many random edges must be added to

a graph with given minimum degree in order for it to satisfy some property a.a.s.
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For an n-vertex graph G and p ∈ [0, 1], we generally consider G ∪ G(n, p) to be

the randomly perturbed graph model. In this model, there is a trade-off between

δ and p, and therefore we are particularly interested in results where we can start

with a lower minimum degree and also a value of p significantly below the threshold

at which the structure would appear in a purely random model. In [11], Bohman,

Frieze and Martin translate Dirac’s theorem to the randomly perturbed setting.

These structures have been studied for a large variety of spanning subgraphs (see for

example [9], [15], [14], [32]) and the theory has also been extended into digraphs and

hypergraphs (see for example [18], [33], [58]).

In the spanning tree setting, Krivelevich, Kwan and Sudakov [45] showed that for

any α,∆, there exists some constant c such that if an n-vertex graph G has minimum

degree at least αn, then the graph G ∪ G(n, c/n) contains a copy of any n-vertex

tree with maximum degree at most ∆, and Joos and Kim [37] made further progress

by extending this to trees with maximum degree at most O(n/ log n). However, the

result of Joos and Kim requires the trees to have maximum degree at least no(1), which

leaves a gap to the bounded degree case. Krivelevich, Kwan and Sudakov [46] also

introduced a notion of randomly perturbing digraphs and hypergraphs. Therefore,

finding a full analogue of Theorem 1.1.1 into the randomly perturbed digraphs setting

is still open and an interesting question.

For the tilings in multipartite graphs, there are plenty of interesting problems

which arise. The first is a conjecture of Ergemlidze and Molla [24] who suggest that

in Theorem 1.1.2, it might be possible to allow minimum degrees between classes to

vary, provided that their average still satisfies the bound in Theorem 1.1.2. More

precisely, they conjecture that if G is a k-partite graph with parts V1, . . . , Vk each of

size n, and there exist δ1, . . . , δk ≥ n/2 such that δ(G[Vi, Vi+1]) ≥ δi for each i ∈ [k]

(indices taken modulo k), and furthermore if ∑i∈[k] δi/k ≥ (1 + 1/k + ε)n/2, then G

contains a transversal Ck-factor. In the same work, Ergemlidze and Molla prove this

in the case when k = 3. Determining whether this conjecture holds, or whether an
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exact version of this conjecture holds would be interesting. More generally, it is of

interest to develop the theory of tilings in multipartite graphs further, by determining

the minimum degree threshold δ∗
H(G) for general small fixed graphs H, and obtaining

a generalisation of the result of Kühn and Osthus [50] into the multipartite setting.

1.2 The edit distance function

The notion of the edit distance was first conceived by Alon and Stav [2] to study

problems on property testing, and independently by Axenovich, Kezdy and Martin [6]

for its applications in evolutionary biology. At its heart is the following question.

Given a graph G and a class of graphs H, how ‘far’ is G from belonging to H? The

edit distance is a way to quantify this distance, and measures how many edges we

must add to or remove from G in order for it to belong to the class H. While this

question is valid for all classes of graphs, it is most natural to consider this in the

case of hereditary graph properties, that is, a class of graphs H which is closed under

isomorphism and taking induced subgraphs. Indeed, Alon and Stav suggest it is

most interesting to study these since many of the classes of graphs which appear

within both graph theoretical research and within wider applications in the sciences

fall into this category.

Formally, we define the edit distance between two graphs G and G′ on the same

vertex set to be the size of the symmetric difference between their edge sets normalised

by the total number of possible edges, that is, if |G| = |G′| = n, then

dist(G,G′) = |E(G)∆E(G′)|(
n
2

) .

Forb(H) represents the class of all graphs G which do not have H as an induced

subgraph. A reason why it is intuitive to study hereditary properties is that these

can be classified in terms of their forbidden subgraphs, that is, for any hereditary
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property H, there is a family F(H) of forbidden graphs, that is,

H =
⋂

H∈F(H)
Forb(H).

We say a hereditary property H is trivial if there is an n0 ∈ N such that for all

n ≥ n0, there is no n-vertex graph contained in H. In other words, a class is trivial if

and only if it is finite. Otherwise, we say H is non-trivial. For instance, an example

of a non-trivial hereditary property is Forb(Ch), the class of graphs with no Ch as an

induced subgraph. We can extend the notion of distance between graphs to define

the distance between a graph G and a hereditary property H, which we define to be

the minimum distance from G to some graph G′ in H on the same vertex set, that is,

dist(G,H) = min {dist(G,G′) : G′ ∈ H, V (G) = V (G′)} .

Study in this area was initiated by the problem of determining, for any hereditary

property H, which graph is furthest from belonging to H. This question was motivated

by problems in theoretical computer science, and indeed, Alon and Stav [2] showed

that for any property H, there is some p∗ = p∗
H ∈ [0, 1] such that asymptotically,

G(n, p∗) is the furthest graph from belonging to H. It was this which led to the

conception of the edit distance function by Balogh and Martin [8]. For any p ∈ [0, 1],

we define

edH(p) = lim
n→∞

max
{

dist(G,H) : |G| = n, |E(G)| =
⌊
p

(
n

2

)⌋}
, (1.2.1)

if this limit exists. Note that the normalisation is implicit in the definition of

dist(G,H) and so if this limit exists, it takes values in [0, 1]. So in other words, for

any p, the edit distance function for a hereditary property H tells us the furthest

distance a graph of density p can be from belonging to H. Balogh and Martin [8]

later generalised the result of Alon and Stav to show that the limit in (1.2.1) does
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exist for all non-trivial hereditary properties H. In addition to this, they showed the

following result.

Theorem 1.2.1 (Balogh-Martin [8]).

edH(p) = lim
n→∞

E [dist(G(n, p),H)] .

That is, asymptotically, for any p and hereditary property H, we can use the

random graph G(n, p) to estimate the edit distance function. Balogh and Martin [8]

also showed that the edit distance function is continuous and concave down. Methods

to determine the edit distance function edH(p) make implicit use of these properties,

as well as Theorem 1.2.1, as we will see in Chapter 4. It is worth remarking that

the proof of Balogh and Martin is not constructive, and does not indicate how to

determine the dist(G(n, p),H) for a given H, for example.

The edit distance function has been studied for a range of hereditary properties

of the form H = Forb(H) for a fixed graph H. In the case when H = Kr, this was

completely determined by Martin [53]. The function was also calculated for some

small fixed graphs by Marchant and Thomason [52] and Martin [54]. More recently,

Martin and Riasanovsky [57] also considered the case when H = G(n0, p0), where n0

and p0 are fixed in terms of n and p.

In this thesis, we study the edit distance function when H = Forb(Ct
h) for some

h, t ∈ N. Here, Ch is a cycle on h vertices and Ct
h is defined to be the graph on the

same vertex set as Ch such that there is an edge between two vertices of Ct
h if and

only if these vertices were at distance at most t in Ch. In particular, when t = 1,

this is just the cycle on h vertices. Thus, we aim to determine edForb(Ct
h

)(p), where

Forb(Ct
h) is the class of graphs which contain no Ct

h as an induced subgraph. This is

a very natural property to consider, and the question has received a lot of interest

in the past. Marchant and Thomason [52] determined edForb(Ch)(p) for all p ∈ [0, 1]

when h = 4. Martin [53] extended this and explicitly determined edForb(Ch)(p) for

11



h ∈ {3, . . . , 9}. Peck [64] gave the first general version of this result, determining the

edit distance function from Forb(Ch) for all p when h is odd, and for sufficiently large

p for even h. Berikkyzy, Martin and Peck [10] generalised this result by determining

edForb(Ct
h

)(p) for all p when (t + 1) ∤ h and for sufficiently large p when (t + 1) | h.

More precisely, they proved the following.

Theorem 1.2.2 (Berikkyzy, Martin and Peck [10]). Let t ≥ 1 and h ≥ 2t(t+ 1) + 1

be integers, and let H = Forb(Ct
h).

(i) If (t+ 1) ̸ | h, then for all p ∈ [0, 1], we have

edForb(Ct
h

)(p) = min
 p

t+ 1 , min
r∈{0,1,...,t}

 p(1 − p)
r +

(⌈
h

2t+1

⌉
− r − 1

)
p


 .

(ii) If (t+ 1) | h, then for all p ∈ [1/ ⌈h/(2t+ 1)⌉ , 1], we have

edForb(Ct
h

)(p) = min
r∈{0,1,...,t}

 p(1 − p)
r +

(⌈
h

2t+1

⌉
− r − 1

)
p

 .

However, this result leaves a gap for small p in the case when (t+1) | h. While this

is explained in more detail in Chapter 4, we briefly discuss the case when t = 1, that

is for cycles. In this case, intuitively, the gap in Theorem 1.2.2 comes from certain

constructions which can be used to eliminate all cycles of length h from G(n, p). In

the case when h is odd, there are three such constructions which are candidates. For

the first construction, we partition G(n, p) into two equal sized parts, and remove all

edges that lie within any of the parts. Then in expectation, we remove 2p ·
(

n/2
2

)
edges

in total, and this corresponds to the first term in the minimum of Theorem 1.2.2

when h is odd. Furthermore, the resulting graph is bipartite and therefore contains

no cycles of odd length. Similarly, there are two more constructions, each of which

correspond to the other terms in the minimum. However, in the case when h is even,

the first construction described no longer works, since the resulting bipartite graph

could indeed contain even length cycles. We extend on Theorem 1.2.2 for small p in
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the case when (t+ 1) | h to show the following.

Theorem 1.2.1. Let t ≥ 1 and h ≥ 4t(2t + 1) be integers, with (t + 1) | h. Let

c0 = ⌊(⌊h/t⌋ + 1)/3⌋, ℓ0 = ⌈h/(2t+ 1)⌉, and let p0 = t/(c0ℓ0 − c0 − ℓ0 + t+ 1). Then

for all p ∈ [p0, 1/ ⌈h/(2t+ 1)⌉], we have that

edForb(Ct
h

)(p) = p(1 − p)
t+

(⌈
h

2t+1

⌉
− t− 1

)
p
.

We also prove that for all t and h satisfying Theorem 1.1.2, the range of values

[p0, 1/ ⌈h/(2t+ 1)⌉] is non-empty (observe, in particular, that p0 = Θ(1/h2)), and

therefore Theorem 1.1.2 strictly extends on the work of Berikkyzy, Martin and Peck

[10].

1.2.1 Further directions

Another natural hereditary property of interest is Forb(Ks,t), the class of graphs

with no Ks,t as an induced subgraph. In this case, Marchant and Thomason [52]

determined this partially for K3,3. Martin and McKay [56] also gave some results for

K2,t, giving complete results when t = 3, 4 and partial results for larger t. It would

be interesting to know more about the edit distance function for this class of graphs.

In [55], Martin suggests that a starting point could be to determine the edit distance

function when H = Forb(Ks,s).

More generally, there are plenty of developments which could be made to the

theory. For instance, Axenovich and Martin [7] also extended this theory into edge-

coloured graphs and directed graphs, and an interesting open question raised by

Martin [55] is whether this notion of the edit distance function can be extended into

the setting of hypergraphs. A starting point for this may be to find a generalisation

of the result of Alon and Stav [2] into this setting.
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CHAPTER 2

SPANNING TREES IN DENSE DIGRAPHS

The aim of this chapter is to prove Theorem 1.1.1 which appears in [38], and which

we recall here.

Theorem 1.1.1. For each α > 0, there exists c > 0 and n0 ∈ N such that the

following holds for every n ≥ n0. Any n-vertex digraph D with δ0(D) ≥ (1/2 + α)n

contains a copy of every oriented n-vertex tree T with ∆±(T ) ≤ cn/ log n.

We begin by noting that the undirected version follows immediately from The-

orem 1.1.1. Indeed, given any n-vertex tree T and an n-vertex graph G, we can

apply Theorem 1.1.1 to a copy of T with each edge oriented arbitrarily and a digraph

formed from G by replacing each edge uv with an edge from u to v and an edge from

v to u. This demonstrates that, as with Komlós, Sárközy and Szemerédi’s result,

Theorem 1.1.1 is tight up to the constant c. Furthermore, through Theorem 1.1.1

we give a new proof of the undirected result without using Szemerédi’s regularity

lemma, in contrast to the work of both Komlós, Sárközy and Szemerédi [41], and

Mycroft and Naia [61, 62], adding to the non-regularity proof for trees with constant

maximum degree by Csaba, Levitt, Nagy-György and Szemerédi [20] described above.

Key to our result is to use a random embedding of part of the tree using ‘guide sets’

and embedding many leaves (and small subtrees) of the tree using ‘guide graphs’.

This replaces the regularity methods of [41, 61, 62], and is sketched in Section 2.1,

where we also outline the rest of this proof.
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2.1 Preliminaries

2.1.1 Notation

Let D be a digraph. We denote by V (D) and E(D) the vertex set and edge set

of D, respectively, where every element of the edge set of D is an ordered pair of

vertices. We let |D| = |V (D)|, which we call the size of D, and let e(D) = |E(D)|.

Letting u, v ∈ V (D), if uv ∈ E(D), then we say that u is an in-neighbour of v and

v is an out-neighbour of u. Denote by N−
D(v) and N+

D(v), respectively, the set of

all in- and out-neighbours of v. We let d−
D(v) =

∣∣∣N−
D (v)

∣∣∣ and d+
D(v) =

∣∣∣N+
D (v)

∣∣∣, and

we refer to these as the in- and out-degree of v, respectively. For each ⋄ ∈ {+,−},

we let δ⋄(D) and ∆⋄(D) be, respectively, the minimum and maximum ⋄-degree of

D. For any A,B ⊆ V (D), and each ⋄ ∈ {+,−}, let N⋄
D(A,B) = ⋃

a∈A(N⋄
D(a) ∩B),

and let d⋄
D(A,B) = |N⋄

D(A,B)|. We omit the subscript when the graph is clear from

context. Note that, for simplicity of notation, we use ‘−’ and ‘in’ interchangeably,

and, similarly, we use ‘+’ and ‘out’ interchangeably. We use ‘±’ to represent that a

property holds for both ‘−’ and ‘+’.

Suppose that A and B are disjoint subsets of V (D). We write D[A] to mean D

induced on the set A, that is, the graph obtained from D by deleting all vertices

which are not in A. For each ⋄ ∈ {+,−}, a ⋄-matching from A into B is a set of

vertex-disjoint edges such that every edge in the set has one endpoint in A and one

endpoint in B, and the endpoint in B is a ⋄-neighbour of the endpoint in A, that is,

every edge is a ⋄-edge from A into B. We say this matching covers A if every vertex

of A belongs to some edge in the matching, and we call this a perfect ⋄-matching if it

covers both A and B. A bare path of length m in a tree is a path with m edges such

that each of the internal vertices have degree 2 in the tree. When P is a path in D,

we let D − P denote the subgraph of D obtained by removing the internal vertices

of P .
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For any n ∈ N, we let [n] := {1, . . . , n}. In order to simplify notation, we use

hierarchies to state our results. That is, for a, b ∈ (0, 1], whenever we write that a

statement holds for a ≪ b (or b ≫ a), we mean that there exists a non-decreasing

function f : (0, 1] → (0, 1] such that the statement holds whenever a ≤ f(b). We

define similar expressions with multiple variables analogously. We say a random

event occurs with high probability if the probability of the event occurring tends to 1

as n tends to infinity. In our proofs, when we have shown that a property holds with

high probability, we will implicitly assume that this property holds from that point

onwards. For simplicity, we ignore floors and ceilings wherever this does not affect

the argument.

2.1.2 Proof sketch

When 1/n ≪ c ≪ α, we will embed any oriented n-vertex tree T with ∆±(T ) ≤

cn/ log n into any n-vertex digraph D with δ0(D) ≥ (1/2 + α)n. We embed T using

the absorption method, an approach first introduced in general by Rödl, Ruciński

and Szemerédi [66] which has been effective on a range of embedding problems for

spanning graphs and digraphs (see, for example, the survey [13]). We first partially

embed a subtree T ′′ of T into a set A such that, given any subset B ⊂ V (D) with

A ⊂ B and |B| = |T ′′|, we can complete this embedding of T ′′ into D[B] (see

Theorem 2.1.1).

We then use an almost-spanning embedding to embed the vertices in V (T )\V (T ′′)

to extend the partial embedding of T ′′ (see Theorem 2.1.2). We will have chosen

T ′′ so that in this stage a tree, called T ′, is attached to an embedded vertex of T ′′.

Using the property of the partial embedding of T ′′, we then complete the embedding

of T ′′ with the unused vertices in D. The decomposition of T that we need follows

from a simple proposition (Proposition 2.1.3).

In Section 2.1.2.1, we state these three results, Theorem 2.1.1, Theorem 2.1.2

and Proposition 2.1.3, before deducing Theorem 1.1.1 from them. In Section 2.1.2.2,
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we then discuss in detail the proof of Theorem 2.1.2, which is the major challenge

overcome by this proof.

In the rest of Section 2.1, we restate the probabilistic tools we will use, and give

a basic structural decomposition of trees and some simple results on matchings. In

Section 2.2, we prove Theorem 2.1.2. In Section 2.3, we prove Theorem 2.1.1.

2.1.2.1 Main tools and deduction of Theorem 1.1.1

For Theorem 1.1.1, we will first find a suitable subtree T ′′ ⊂ T and a set A ⊂ V (D)

with slightly fewer than |T ′′| vertices, so that, given any set B of |T ′′| vertices

containing A, we can embed T ′′ in D[B]. Furthermore, we will ensure that some

pre-specified vertex t ∈ V (T ′′) is always embedded to some fixed vertex v ∈ A, as

follows.

Theorem 2.1.1. Let 1/n ≪ c ≪ ε ≪ µ ≪ α. Let D be an n-vertex digraph with

minimum semidegree at least (1/2 + α)n. Let T be an oriented tree with µn vertices

and ∆±(T ) ≤ cn/ log n, and let t ∈ V (T ).

Then, V (D) contains a vertex set A with size (µ− ε)n containing a vertex v ∈ A

such that the following holds. For any set B ⊂ V (D) with A ⊂ B and |B| = µn,

D[B] contains a copy of T in which t is copied to v.

Theorem 2.1.1 is proved in Section 2.3 by randomly embedding most of T and

taking A to be the image of this embedding. We then show that the partial embedding

of T can be extended using any new vertex in y ∈ V (D) \ A by switching y into

the partial embedding in place of some vertex in A that can instead be used to

embed a new vertex of T . Repeatedly doing this will allow the embedding of T to

be completed using any set of |T | − |A| new vertices in V (D) \ A. This is sketched

in more detail at the start of Section 2.3, before Theorem 2.1.1 is proved.

We will embed the majority of the tree for Theorem 1.1.1, using the following

almost-spanning embedding.
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Theorem 2.1.2. Let 1/n ≪ c ≪ ε, α. Let D be an n-vertex digraph with minimum

semidegree at least (1/2 + α)n and let v ∈ V (D). Let T be an oriented tree with at

most (1 − ε)n vertices and ∆±(T ) ≤ cn/ log n, and let t ∈ V (T ).

Then, D contains a copy of T in which t is copied to v.

Using in addition the following simple proposition (see, for example, [59, Proposi-

tion 3.22]), we can now deduce Theorem 1.1.1.

Proposition 2.1.3. Let n,m ∈ N satisfy 1 ≤ m ≤ n/3. Given any n-vertex

tree T and a vertex t ∈ V (T ), there are two edge-disjoint trees T1, T2 ⊂ T such that

E(T1) ∪ E(T2) = E(T ), t ∈ V (T1) ∩ V (T2) and m ≤ |T2| ≤ 3m.

Proof of Theorem 1.1.1 from Theorems 2.1.1 and 2.1.2. Let ε, µ > 0 be such that

c ≪ ε ≪ µ ≪ α. Let D be an n-vertex digraph with δ0(D) ≥ (1/2 + α)n. Let T be

an oriented n-vertex tree with ∆±(T ) ≤ cn/ log n.

Using Proposition 2.1.3 with m = µn, find edge-disjoint trees T ′, T ′′ ⊂ T such

that E(T ′) ∪ E(T ′′) = E(T ) and µn ≤ |T ′′| ≤ 3µn. Let t be the vertex which is in

both T ′ and T ′′. By Theorem 2.1.1 applied with µ′ = |T ′′|/n, there is a set A ⊂ V (D)

such that |A| = |T ′′| − εn, and a vertex v ∈ A such that, for any set B ⊂ V (D) with

A ⊂ B and |B| = |T ′′|, D[B] contains a copy of T ′′ in which t is copied to v.

Let D′ = D− (A\{v}). Let n′ = |D′|, so that (1−3µ)n ≤ n′ ≤ n. Let α′ be such

that D′ has minimum semidegree (1/2+α′)n′. Note that (1/2+α′)n ≥ (1/2+α′)n′ ≥

(1/2 + α− 3µ)n, so that α′ ≥ α/2. Furthermore, n′ = n− |T ′′| + εn+ 1 = |T ′| + εn,

and therefore
|T ′|
n′ = |T ′|

|T ′| + εn
≤ |T ′|

|T ′|(1 + ε) ≤ 1 − ε/2.

Thus, by Theorem 2.1.2 with ε ≪ µ, we can find a copy, S ′ say, of T ′ in D′ in which

t is copied to v. By applying the property of A from Theorem 2.1.1, we can then

find a copy of T ′′ in D− (V (S ′) \ {v}) in which t is copied to v. Together, these give

us a copy of T .
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2.1.2.2 Proof Sketch of Theorem 2.1.2

We will embed a (1 − ε)n-vertex tree T for Theorem 2.1.2 by dividing most of T

into a small core forest T0 ⊂ T and a collection of constant-sized subtrees, which are

either attached to T0 by a single edge or by two short paths. It is the trees attached

to T0 by a single edge that will be the most challenging to embed, and so we dedicate

most of our attention in the proof sketch to this.

More precisely, we will find a tree T ′ ⊂ T , containing a core forest T0 ⊂ T ′ and

vertex-disjoint trees S1, . . . , Sℓ ⊂ T ′ − V (T0), for some ℓ ∈ N, such that T ′ is formed

from T0 by, for each i ∈ [ℓ],

(1) either attaching Si to T0 using two bare paths with length 2,

(2) or attaching Si to T0 with a single edge.

Furthermore, for some µ > 0 and K ∈ N, with 1/n ≪ 1/K, µ ≪ α, ε, we will have

that

• |T0| ≤ µn (i.e., T0 is small),

• |T ′| ≥ |T | − µn (i.e., T ′ is most of T ),

• there are at most µn trees Si which are in Case (1), and

• each tree Si has at most K vertices.

In Case (1), we say Si is added to T0 as a path, and in Case (2) we say Si is

added to T0 as a leaf. The crux of our method is to embed T0 along with the trees

Si in Case (2) connected to the embedding of T0 by the appropriate edge. This is

encapsulated in the following lemma, which is proved in Section 2.2.1.

Lemma 2.1.4. Let 1/n ≪ c ≪ µ ≪ α, ε, let c ≪ 1/K and let ℓ ∈ N. Suppose D is

an n-vertex digraph with δ0(D) ≥ (1/2 + α)n and v ∈ V (D).

Suppose that T is an oriented tree with |T | ≤ (1 − ε)n and ∆±(T ) ≤ cn/ log n.

Suppose that T ′, S1, . . . Sℓ ⊂ T are vertex-disjoint subtrees with |T ′| ≤ µn, and

19



|Si| ≤ K for each i ∈ [ℓ]. Suppose further that T is formed from T ′ by attaching each

Si, i ∈ [ℓ], to T ′ by an edge, and let t ∈ V (T ′).

Then, D contains a copy of T in which t is copied to v.

We will now briefly sketch how Theorem 2.1.2 can be proved from Lemma 2.1.4.

Let m be the total number of vertices that appear in the trees Si in Case (1)

above. To embed these trees, we use the fact that two random sets in D of the

same (linear) size are likely to have a perfect matching from one to the other (see

Proposition 2.1.12). Taking p ≫ 1/n and Kp ≤ 1, we can, with high probability,

find pn copies of an oriented tree with K vertices in a random set of Kpn vertices

in D by taking randomly K disjoint subsets within this set of size pn and finding

appropriate matchings between them (see Section 2.1.5). Collecting isomorphic trees

Si together, and applying this to each of the constantly many (depending on K)

isomorphism classes, allows us to embed the trees Si in Case (1) with high probability

in a random set with size m+ εn/4. Here, the extra εn/4 vertices allow us to find a

linear number of trees in each isomorphism class by finding some additional trees if

required.

Thus, in a partition of V (D) into sets V1 ∪ V2 ∪ V3 ∪ V4 chosen uniformly at

random so that |V1| = n − m − 3εn/4, |V2| = m + εn/4, |V3| = |V4| = εn/4, with

high probability, the following occur.

• δ±(D[V1]) ≥ (1/2 + α/2)|V1|, so that, applying Lemma 2.1.4, we can embed T0

along with the trees Si in Case (2) connected to the embedding of T0 by the

appropriate edge.

• We can embed the trees Si in Case (1) in D[V2].

• Then, using that there are at most µn trees in Case (1), we can greedily attach

them to the embedding of T0 using two paths with length 2 whose interior

vertex is an unused vertex in V3 (see Section 2.2.2).
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• Finally, as |T | − |T ′| ≤ µn, we can greedily extend the resulting embedding

of T ′ to one of T , by adding a sequence of leaves using vertices in V4 (see

Section 2.2.3).

Here, the last two steps are (with high probability) possible using the semi-degree

condition of D. Note that, as µ ≪ ε, we only embed a small proportion of vertices

into V3 and V4.

We will now give a detailed proof sketch of Lemma 2.1.4.

Proof sketch of Lemma 2.1.4

To simplify our discussion, let us assume that each tree Si in Lemma 2.1.4 consists

of only a single vertex, which is an out-neighbour in the tree T of a vertex of T0, and

that every vertex in T0 is attached to exactly one such tree. That is, T consists of

T0 with an out-matching attached. Our embedding of T0 is randomised, which will

allow the methods described to be used to find matchings attached from different

subsets of the image of the embedding of T0 to different random sets. This will allow

the embedding below for T0 to be used for the general case.

Let us detail the example situation precisely. Suppose we have a µn-vertex

tree T0 and choose two disjoint random sets V0, V1 ⊂ V (D) with size p0n and p1n

respectively, where p0 ≫ µ and p1 = (1 + o(1))µ. We will randomly embed T0 into

V0, so that there is an out-matching from the vertex set of the embedding of T0 into

V1. More generally, we may have to attach matchings into several different sets from

T0, so we can only use a small proportion of spare vertices in D (and so p1 is only a

little larger than µ). On the other hand, as these matchings will be all attached to

the same small tree, T0, we can use many spare vertices when embedding T0 (and so

we take p0 ≫ µ).

We will embed T0 vertex-by-vertex, say in order t1, . . . , tℓ, so that each new vertex

is embedded as an in- or out-leaf of the previously embedded subtree. Having chosen

the random sets V0, V1, and before beginning the embedding, we will find guide
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sets Av,⋄ ⊂ N⋄
D(v, V0), v ∈ V0 and ⋄ ∈ {+,−}, which we use to guide the random

embedding. We then start the random embedding, under the rule that if, for some

v ∈ V0 and ⋄ ∈ {+,−}, we are attaching a ⋄-edge as a leaf to v, then we choose this

leaf uniformly at random from the unused vertices in Av,⋄.

The guide sets ensure that, with high probability, there will be a matching from

the embedding of T0 into V1. These guide sets are found using Lemma 2.2.5, and they

exist (with high probability for the choice of V0, V1) due to the semi-degree condition in

D. Essentially, for some constants β, γ, we find, for each v ∈ V (D) and ⋄ ∈ {+,−},

a set Av,⋄ ⊂ N⋄
D(v, V0) with size βn and bipartite digraphs H◦

v,⋄ ⊂ D◦[Av,⋄, V1],

◦ ∈ {+,−}, so that in H◦
v,⋄ each vertex in Av,⋄ has around γp1n ◦-neighbours in

V1, and each vertex in V1 has around γβn ◦-edges leading into it. That is, H◦
v,⋄ is

approximately regular on each side with edge density approximately γ.

We use the guide graphs H+
v,⋄ to find the matching from the embedding of T0 by

constructing an auxiliary bipartite digraph Q with vertex classes {s1, . . . , sℓ} and Vℓ.

In this example situation, Q is a subgraph of D, and a matching in Q corresponds

exactly to a matching from the image of V (T0) to V1. In the more general case

we attach multiple different matchings simultaneously and Q has vertices from the

image of V (T0) copied different numbers of times (see Section 2.2). The digraph Q

does not contain all the edges in D from {s1, . . . , sℓ} to Vℓ. Instead, we add edges

using the guide graphs so that when we have constructed Q it will be, with high

probability, approximately regular, so that we can find our required matching via

Hall’s matching criterion.

When a vertex ti is embedded using a guide set Avi,⋄i
, to some vertex si say, we

add only the edges in H+
vi,⋄i

adjacent to si to Q – note that approximately γp1n

edges are added next to si. Note further that, as most of the vertices in Avi,⋄i
will

be unused, each w ∈ V1 will have an edge added from si to w with probability

approximately
d−

H+
vi,⋄i

(w)

|Avi,⋄i
|

≈ γβn

βn
= γ. (2.1.1)
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When this is complete, Q is a bipartite digraph with vertex classes {s1, . . . , sℓ}

and V1. Each vertex si will have out-degree approximately γp1n, and, due to the

randomness of the embedding and (2.1.1), each vertex in V1 will have in-degree which

is approximately γℓ = γ|T0| ≈ γp1n.

Thus, Q will be a bipartite graph with the in-degrees in one vertex class approx-

imately equal to the out-degrees in the other. Via Hall’s matching criterion, an

out-matching will exist from {s1, . . . , sℓ} to V1 which covers most of the vertices in

{s1, . . . , sℓ}. By ensuring that V1 is likely to be a little larger than ℓ, we in fact will

get with high probability that such an out-matching can cover {s1, . . . , sℓ}.

Note that, in the sketch above, we do not use the graph H−
v,⋄. However, in practice,

we find such guide sets and guide graphs with V1 = V (D) \ V0 (see Lemma 2.2.3),

before taking random subsets of V1. We will find out-matchings into some of these

random sets, and in-matchings into some others. Therefore, it is important to have

both guide graphs H−
v,⋄ and H+

v,⋄, and, furthermore, that the same set Av,⋄ is used

for both graphs.

Finally, let us note where the condition ∆±(T ) ≤ cn/ log n is used in our proof

of Lemma 2.1.4. In the sketch above the set V1 will always have size which is linear

in n, but we may need to attach the trees in Lemma 2.1.4 to few vertices in T .

The maximum in- or out-degree condition on T ensures, that, if the trees Si in

Lemma 2.1.4 together comprise linearly (in n) many vertices in T , then they are

attached to at least C log n different vertices, for some large constant C, which gives

us sufficient probability concentration when these vertices are randomly embedded for

the corresponding versions of Hall’s criterion to hold (see the proof of Claim 2.2.7).

2.1.3 Probabilistic tools

Let n,m, k ∈ N be such that max{m, k} ≤ n. Let A be a set of size n, and B ⊆ A

be such that |B| = m. Let A′ be a uniformly random subset of A of size k. Then

the random variable X = |A′ ∩B| is said to have hypergeometric distribution with
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parameters n,m and k, which we denote by X ∼ Hyp(n,m, k). We will use the

following Chernoff-type bound.

Lemma 2.1.5 (see, for example, [35]). Suppose X ∼ Hyp(n,m, k). Then for any

0 < α < 3/2, we have

P [|X − E[X]| ≥ αE[X]] ≤ 2 exp
(
−α2E[X]/3

)
.

A sequence of random variables (Xi)i≥0 is a martingale if E[Xi] < ∞ and

E[Xi+1 | X0, . . . , Xi] = Xi for each i ≥ 0. We will use the following Azuma-type

bound for martingales.

Lemma 2.1.6 (see, for example, [29]). Let (Xi)i≥0 be a martingale and let ci > 0

for each i ≥ 1. If |Xi −Xi−1| < ci for each i ≥ 1, then, for each n ≥ 1,

P[|Xn −X0| ≥ t] ≤ 2 exp
(

− t2

2 ·∑n
i=1 c

2
i

)
.

We will use this bound for supermartingales and submartingales. A sequence of

random variables (Xi)i≥0 is a supermartingale if E[Xi+1 | X0, . . . , Xi] ≤ Xi for each

i ≥ 0, and a submartingale if E[Xi+1 | X0, . . . , Xi] ≥ Xi for each i ≥ 0. The bound

on the upper tail in Lemma 2.1.6 holds for supermartingales, while the bound on

the lower tail holds for submartingales. We will always use this to bound the sum of

random variables using the following simple corollary.

Corollary 2.1.7. Let (Zi)n
i=1 be a sequence of random variables. For each i ∈ [n],

let ai, ci ∈ R be constants such that |Zi − ai| ≤ ci.

(i) If E[Zi | Z1, . . . , Zi−1] ≤ ai, then for each t > 0,

P
[

n∑
i=1

Zi ≥
n∑

i=1
ai + t

]
≤ 2 exp

(
− t2

2 ·∑n
i=1 c

2
i

)
.
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(ii) If E[Zi | Z1, . . . , Zi−1] ≥ ai, then for each t > 0,

P
[

n∑
i=1

Zi ≤
n∑

i=1
ai − t

]
≤ 2 exp

(
− t2

2 ·∑n
i=1 c

2
i

)
.

Proof. We prove (i), and note that (ii) follows by applying (i) to the sequence

(−Zi)n
i=1. Let Y0 = 0 and, for each i ∈ [n], let Yi = ∑

i′∈[i](Zi′ − ai′). Then,

E[Yi+1 | Y1, . . . , Yi] = E[Zi+1 − ai+1 + Yi | Y1, . . . , Yi] ≤ Yi. Furthermore, for each

i ∈ [n], |Yi − Yi−1| = |Zi − ai| ≤ ci. Therefore, we can apply Lemma 2.1.6 for

supermartingales to show that

P
[

n∑
i=1

Zi ≥
n∑

i=1
ai + t

]
= P [Yi − Y0 ≥ t] ≤ 2 exp

(
− t2

2 ·∑n
i=1 c

2
i

)
.

2.1.4 Structural lemmas

In this section we decompose undirected trees. Note that we will later apply this

to directed trees as the edge directions do not affect the decompositions. We will

use the following simple but useful lemma (see [60, Lemma 4.1]) which tells us that

either a tree has many leaves, or it has many bare paths.

Lemma 2.1.8. Let t, s ≥ 2, and suppose that T is a tree with at most t leaves. Then

there is some m and some vertex-disjoint bare paths Pi, i ∈ [m], in T with length s

so that |T − P1 − · · · − Pm| ≤ 6st+ 2 |T | /(s+ 1).

We can now prove the following key lemma, in which we decompose a tree for

our embedding.

Lemma 2.1.9. Let 0 ≪ 1/n ≪ 1/K ≪ 1/k ≪ η. Let T be a tree on n vertices with

t ∈ V (T ). Then, T contains induced subgraphs T0 ⊂ T1 ⊂ T2 ⊂ T3 = T , such that T2

is a tree, and the following hold.
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P1 |T0| ≤ ηn and t ∈ V (T0).

P2 T1 is formed from T0 by the vertex-disjoint addition of trees, Sv, v ∈ V (T0), so

that, for each v ∈ V (T0), Sv − v is a forest consisting of trees of size at most

K.

P3 T2 is formed from T1 by the addition of trees with size at least k and at most

K attached to T1 with exactly two bare paths of length 2.

P4 |T3| − |T2| ≤ ηn.

Proof. Take ε and k′ such that 1/K ≪ ε ≪ 1/k′ ≪ 1/k. We start by finding a

subtree T ′ of T which includes t and has few leaves, and is such that T − V (T ′) is

a forest of components with size at most K. We do this by including in T ′ every

vertex which appears on the path in T from t to many other vertices. That is, for

each v ∈ V (T ), let w(v) be the number of vertices u ∈ V (T ) whose path from t to u

includes v (in particular, v is such a vertex). Let T ′ be the subgraph of T induced

on all the vertices v ∈ V (T ) with w(v) ≥ K + 1.

For each v ∈ V (T ′), let Sv be the tree containing v in T − (V (T ′) \ {v}). Note

that Sv − v is a forest which consists of trees with at most K vertices. Indeed,

suppose T ′′ is a tree in Sv − v, and let v′ be the neighbour of v in T ′′. Since every

path from a vertex u ∈ V (T ′′) to t in T goes through v′ (and then v), we have

that K ≥ w(v′) ≥ |T ′′| (and, in fact, the final inequality is an equality). Here, the

first inequality holds because v′ /∈ V (T ′). Observe further that, for any leaf v of T ′,

|Sv − v| = w(v) − 1 ≥ K, and, therefore, T ′ can have at most n/K ≤ εn leaves.

Thus, by Lemma 2.1.8, for some m ≤ n/(k′ + 1), T ′ contains vertex disjoint bare

paths P1, . . . , Pm with length k′ such that t /∈ V (Pi) for each i ∈ [m] and

|T ′ − P1 − · · · − Pm| ≤ 6k′ · εn+ 2n/(k′ + 1) + k′ + 1 ≤ ηn/4. (2.1.2)

For each i ∈ [m], if possible, find within Pi a path P ′
i with length at least k′ − 2η3k′,
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such that, labelling its endvertices xi and yi, the following hold:

(i) for each xi and yi, |Sxi
− xi| ≤ ηk′/4 and |Syi

− yi| ≤ ηk′/4, and

(ii) letting Qi be the component of T − {xi, yi} containing P ′
i − {xi, yi}, we have

|Qi| ≤ K.

Say, with relabelling, these paths are P ′
1, . . . , P

′
m′ . We will show that m′ ≥

m− ηn/2k′. Note first that the number of i ∈ [m] with no vertices xi and yi ∈ V (Pi)

respectively within η3k′ of the two endvertices of Pi, such that each of xi and yi had

a forest with at most ηk′/4 vertices deleted from them, is at most n/(η3k′ · ηk′/4) ≤

ηn/4k′. Note further that the number of i ∈ [m] with at least K vertices in V (Qi) is

at most n/K ≤ ηn/4k′. Therefore, we can find such a path P ′
i for all but at most

ηn/2k′ values of i ∈ [m], so that m′ ≥ m− ηn/2k′.

Let T0 = T [V (T ′) \ (⋃i∈[m′] V (P ′
i ))]. We will show that |T0| ≤ ηn. Note that, for

each i ∈ [m′], |V (Pi) \ V (P ′
i )| ≤ 2η3k′. Therefore, as m ≤ n/k′,

|T0| ≤ |T ′ − P ′
1 − · · · − P ′

m′| ≤ |T ′ −P1 − · · · −Pm| + k′ · ηn/2k′ +m · 2η3k′
(2.1.2)

≤ ηn.

Furthermore, clearly t ∈ V (T0), and thus P1 holds.

Let T1 = T [V (T0) ∪ (⋃v∈V (T0) V (Sv))]. Recall that for each v ∈ V (T ′), Sv − v is

a forest which consists of trees with at most K vertices. Therefore, P2 holds.

Let T2 = T [V (T1) ∪ (⋃i∈[m′]({xi, yi} ∪ V (Qi)))], and let T3 = T . Here, we obtain

T2 by attaching the trees Qi to vertices of T1 by two bare paths of length 2, which

have middle vertices given by the vertices xi and yi. Since Qi contains the path P ′
i

for every i ∈ [m′], each of these trees contain at least k′ − 2η3k′ − 2 ≥ k vertices. On

the other hand, by (ii), |Qi| ≤ K for each i ∈ [m′] and so each such tree has size at

most K. Therefore, P3 holds. Furthermore, the only missing vertices from T are

those in Sv − v for each v ∈ {xi, yi : i ∈ [m′]}, and thus T2 is a tree. For each such v,

|Sv| ≤ ηk′/4 by (i). Therefore, |T3| − |T2| ≤ (n/k′) · (2ηk′/4) ≤ ηn, and hence P4

holds.
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2.1.5 Matchings between random sets

With high probability, any random subset of vertices in the digraph in Theorem 1.1.1

satisfies a similar minimum semidegree condition, as follows.

Lemma 2.1.10. Let 1/n ≪ c, α, and suppose D is an n-vertex digraph with δ0(D) ≥

(1/2 +α)n. Let A ⊆ V (D) be chosen uniformly at random subject to |A| = cn. Then,

with high probability, for every vertex v ∈ V (D), we have
∣∣∣N±

D (v,A)
∣∣∣ ≥ (1/2+α/2) |A|.

Proof. Let v be an arbitrary vertex of D and let A ⊆ V (D) be a uniformly random

subset with |A| = cn. For ⋄ ∈ {+,−}, we let Z⋄
v be the random variable which

measures |N⋄(v) ∩ A|. Then Z⋄
v has hypergeometric distribution with expectation

E[Z⋄
v ] = |N⋄(v)| |A|

n
≥
(1

2 + α
)
cn.

Therefore, by Lemma 2.1.5, we have

P
[
|Z⋄

v − E[Z⋄
x]| > α/2

1/2 + α
(1/2 + α)cn

]
≤ 2 exp

−
(

α/2
1/2 + α

)2 (1/2 + α)cn
3


= 2 exp

(
−α2cn

6 + 12α

)
.

Then, applying a union bound, with probability at least

1 − 2n exp
(
−α2cn/(6 + 12α)

)
= 1 − o(1),

we have that Z⋄
v ≥ (1/2 + α/2) |A| for each ⋄ ∈ {+,−} and v ∈ V (D).

The following digraph version of Hall’s matching criterion implies a matching

exists, as follows directly from the same result for undirected graphs.

Lemma 2.1.11. Let D be a bipartite digraph with vertex classes A and B, and

let ⋄ ∈ {+,−}. Suppose that for every S ⊂ A, |N⋄
D(S,B)| ≥ |S|. Then there is a

⋄-matching from A into B which covers A.
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We will refer to the condition in Lemma 2.1.11 as Hall’s criterion. In combination

with Lemma 2.1.10, Lemma 2.1.11 shows that with high probability there is a perfect

matching between a large random pair of disjoint equal-sized vertex subsets in the

digraph, as follows.

Proposition 2.1.12. Let 1/n ≪ p, α, and p ≤ 1/2, and suppose D is an n-vertex

digraph with δ0(D) ≥ (1/2 + α)n. Let A,B be chosen uniformly at random from all

disjoint pairs of subsets of V (D), each with size pn, and let ⋄ ∈ {+,−}. Then, with

high probability, there is a perfect ⋄-matching from A into B.

Proof. By Lemma 2.1.10, with high probability we can assume the following. For

all v ∈ A, we have |N±(v,B)| ≥ (1/2 + α/2) |B|, and, for all v ∈ B, we have

|N±(v,A)| ≥ (1/2 + α/2) |A|. We will now show that Hall’s criterion holds.

Let S ⊆ A, such that S ̸= ∅ and |S| ≤ (1/2 + α/2)pn, and let x ∈ S. Then,

|N⋄(S,B)| ≥ |N⋄(x,B)| ≥ (1/2 + α/2)pn ≥ |S|, so Hall’s condition is trivially

satisfied. Now take S ⊆ A, |S| > (1/2 +α/2)pn, and assume for a contradiction that

|N⋄(S,B)| < |S|. Then in particular, B \N⋄(S,B) ̸= ∅. Take b ∈ B \N⋄(S,B), and

let ◦ ∈ {+,−} be such that ◦ ≠ ⋄. We have |N◦(b, A)| ≥ (1/2 + α/2)pn. However,

since b ̸∈ N⋄(S,B), we have N◦(b, A) ∩ S = ∅. So,

pn = |A| ≥ |N◦(b, A)| + |S| ≥ (1/2 + α/2)pn+ (1/2 + α/2)pn = (1 + α)pn > pn,

giving a contradiction. Thus, Hall’s criterion is satisfied for all S ⊆ A and so, since

|A| = |B|, by Lemma 2.1.11, there is a perfect ⋄-matching from A into B.

We use Proposition 2.1.12 to embed many vertex disjoint small trees, via the

following two lemmas. In Lemma 2.1.13, we embed linearly many copies of a given

constant-sized tree into specified subsets of our digraph. In Lemma 2.1.14, we embed

a forest of constant-sized trees covering almost all the vertices in our digraph.

Lemma 2.1.13. Let 1/n ≪ 1/K, p, α with pK ≤ 1. Suppose T is an oriented

K-vertex tree containing t ∈ V (T ). Let D be an n-vertex digraph with δ0(D) ≥
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(1/2 +α)n. Let V1, V2 be vertex disjoint subsets of V (D) chosen uniformly at random

subject to |V1| = pn and |V2| = (K − 1)pn.

Then, with high probability, D[V1 ∪ V2] contains pn vertex disjoint copies of T , in

which t is copied into V1 in each copy of T .

Proof. Let V1 = U1, and let U2 ∪ · · · ∪ UK be a partition of V2 chosen uniformly at

random so that |Ui| = pn for each i ∈ {2, . . . , K}. Note that the distribution of any

pair of sets Ui, Uj with 1 ≤ i < j ≤ K is that of two disjoint vertex sets with size pn

in V (D), drawn uniformly at random from all such pairs.

Label the vertices of T by t1, . . . , tK so that t1 = t and T [{t1, . . . , ti}] is a tree for

each i ∈ {1, . . . , K}. For each i ∈ {2, . . . , K}, let ji ∈ {1, . . . , i− 1} be such that tji

is the in- or out-neighbour in T [{t1, . . . , ti−1}] of the vertex ti, and let ⋄i ∈ {+,−}

be such that ti ∈ N⋄i
T (tji

).

Now by Proposition 2.1.12, for each i ∈ {2, . . . , K}, with high probability, we

can find a ⋄i-matching from Uji
into Ui. By applying a union bound, we see that,

with high probability, for every i ∈ {2, . . . , K}, there is a ⋄i-matching, Mi say, from

Uji
into Ui.

Note that the union of these matchings, ⋃2≤i≤K Mi ⊂ D[V1 ∪ V2] is the disjoint

union of pn copies of T , in which, for each i ∈ [K], the copy of ti is in Vi. Thus, in

each of these pn copies of T , t = t1 is copied into V1 = U1, as required.

Lemma 2.1.14. Let 1/n ≪ 1/K, ε, α and suppose F is a digraph with at most

(1 − ε)n vertices which is the disjoint union of trees with size at most K. Let D be an

n-vertex digraph with δ0(D) ≥ (1/2 + α)n. Then, with high probability, D contains a

copy of F .

Proof. Arrange the components of F into isomorphism classes of trees R1, . . . ,Rℓ,

noting that we may take ℓ ≤ (2K)K−1. For each i ∈ [ℓ], let ti = |Ri| and let si be the

size of each component in Ri. Uniformly at random, take, in V (D), disjoint subsets

Vi,1 and Vi,2, i ∈ [ℓ], with |Vi,1| = pin and |Vi,2| = (si − 1)pin, where pi = ti/n+ ε/ℓsi,
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for each i ∈ [ℓ]. Note that this is possible, since

ℓ∑
i=1

sipin =
ℓ∑

i=1

(
siti + εn

ℓ

)
≤ n.

For each i ∈ [ℓ], we can apply Lemma 2.1.13 to show that, with high probability,

there are pin copies of the underlying tree of Ri in Di = D[Vi,1 ∪ Vi,2]. Since pin ≥ ti,

this implies that with high probability, we can find a copy of Ri in Di for each

i ∈ [ℓ]. By applying a union bound and using that 1/n ≪ 1/ℓ, we have, with high

probability, that there is a copy of F in D.

2.2 Almost-spanning trees

The key aim of this section is to prove Theorem 2.1.2, that is, to prove we can

embed an almost-spanning tree T in our digraph. By Lemma 2.1.9, we can find

T0 ⊂ T1 ⊂ T2 ⊂ T3 = T , satisfying P1 to P4. In Section 2.2.1, we show that we can

embed T1. In Section 2.2.2, we show that we can embed T2 \ T1, and T3 \ T2. We

conclude in Section 2.2.3 by combining this to obtain an embedding of T .

2.2.1 Embedding constant-sized trees as stars

As sketched in Section 2.1.2, we will embed T0 randomly, leaf by leaf, using a guide

set to embed each new vertex. Each guide set has an accompanying guide graph,

which we later use to find a matching. The property of the guide graph that we use

to find the matching is that it is skew-bounded, as follows.

Definition 2.2.1. A digraph D with vertex sets A,B ⊂ V (D) is (a, b, ⋄)-skew-

bounded on (A,B) if d⋄
D(v,B) ≥ a for each v ∈ A and d◦

D(v, A) ≤ b for each v ∈ B,

where ◦ ∈ {+,−} and ◦ ≠ ⋄.

This property can imply a matching exists via Hall’s criterion, as follows.
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Proposition 2.2.2. Let a ≥ b and ⋄ ∈ {+,−}. Suppose D is a digraph containing

disjoint vertex sets A,B ⊂ V (D), such that D is (a, b, ⋄)-skew-bounded on (A,B).

Then, there is a ⋄-matching from A into B in D which covers A.

Proof. Let U ⊂ A. As D is (a, b, ⋄)-skew-bounded on (A,B), there are at least

a |U | and at most b |N⋄
D(U,B)| ⋄-edges from U to N⋄

D(U,B). Thus, |N⋄
D(U,B)| ≥

a |U | /b ≥ |U |. Therefore, by Lemma 2.1.11, there is a ⋄-matching from A into B

which covers A.

In the following lemmas, we find our guide sets and guide graphs. We start by

finding in D, for each v ∈ V (D) and ⋄ ∈ {+,−}, a guide set A and guide graphs

which are skew-bounded on (A, V (D)).

Lemma 2.2.3. Let 1/n ≪ ε ≪ α, η ≤ 1 and 1/n ≪ µ ≤ α2/2. Let D be an n-vertex

digraph with δ0(D) ≥ (1/2 + α)n, let v ∈ V (D) and let ⋄ ∈ {+,−}.

Then, there is a set A ⊂ N⋄
D(v) with size µn and digraphs H+, H− ⊂ D such

that, for each ◦ ∈ {+,−}, H◦ is (εn, (1 + η)µεn, ◦)-skew-bounded on (A, V (D)).

Proof. We start by showing that we can label the vertices of V (D) as V (D) =

{x1, . . . , xn} = {y1, . . . , yn} so that, for each i ∈ [n],

|N−
D (xi) ∩N⋄

D(v) ∩N+
D (yi)| ≥ α2n. (2.2.1)

To do this, create an auxiliary graph, as follows. For each w ∈ V (D), create

distinct new vertices w− and w+, and let V + = {w+ : w ∈ V (D)} and V − = {w− :

w ∈ V (D)}. Consider the auxiliary bipartite graph H with vertex set V + ∪ V −,

where for each x, y ∈ V (D), there is an edge between x+ and y− if and only if∣∣∣N−
D (x) ∩N⋄

D(v) ∩N+
D (y)

∣∣∣ ≥ α2n.

Claim 2.2.4. δ(H) ≥ (1/2 + α/2)n.

Proof of Claim 2.2.4. Let x ∈ V (D). We have |N−
D (x) ∩N⋄

D(v)| ≥ n− (n−d−
D(x)) −

(n− d⋄
D(v)) ≥ 2αn. Let B = N−

D(x) ∩N⋄
D(v) and Y = {y ∈ V (D) : |N+

D(y) ∩ B| ≥
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α2n}, and note that dH(x+) = |Y |.

For each u ∈ B, we have |N−
D(u)| ≥ (1/2 + α)n, and thus eD(V (D), B) ≥

(1/2 +α)|B|n. By the choice of Y , we have eD(V (D), B) ≤ |Y ||B| +α2n2. Therefore,

as, in addition, 2αn ≤ |B|, we have

(1/2 + α)|B|n ≤ |Y ||B| + α2n2 ≤ |Y ||B| + α|B|n/2.

Thus, (1/2 + α/2)|B|n ≤ |Y ||B|, so that |Y | ≥ (1/2 + α/2)n. Therefore, dH(x+) =

|Y | ≥ (1/2 + α/2)n.

A similar argument, with the signs reversed, shows that dH(y−) ≥ (1/2 + α/2)n

for each y ∈ V (D), completing the proof of the claim.

As in the proof of Proposition 2.1.12, Claim 2.2.4 easily implies that Hall’s

criterion is satisfied, so that there is a matching from V + to V − in H. That is, we

can label the vertices of V (D) as V (D) = {x1, . . . , xn} = {y1, . . . , yn} so that, for

each i ∈ [n], (2.2.1) holds.

We will now show by induction that, for each 0 ≤ i ≤ µn, there is a set

Ai ⊂ N⋄
D(v) with size i and graphs H+

i , H
−
i ⊂ D such that, for each ◦ ∈ {+,−},

H◦
i is (εn, (1 + η)µεn, ◦)-skew-bounded on (Ai, V (D)), e(H◦

i ) = iεn, and, for each

j ∈ [n], d−
H+

i

(xj) = d+
H−

i

(yj).

Note that if A0 = ∅ and if H+
0 , H−

0 have no edges and vertex set V (D), then

the conditions hold, so assume that 0 ≤ i < µn and we have Ai ⊂ N⋄
D(v) and

H+
i , H

−
i ⊂ D as described.

Let Ji ⊂ [n] be the set of j ∈ [n] for which d−
H+

i

(xj) = d+
H−

i

(yj) ≤ (1 + η/2)µεn.

Note that, as e(H+
i ) = e(H−

i ) = iεn < µεn2, we have

(n− |Ji|)(1 + η/2)µεn ≤ µεn2.

Thus, as η ≤ 1, (n− |Ji|) ≤ n/(1 + η/2) ≤ n(1 − η/4), so that |Ji| ≥ ηn/4.

33



For each j ∈ Ji, let Wi,j = (N−
D(xj) ∩ N⋄

D(v) ∩ N+
D(yj)) \ Ai, noting that, by

(2.2.1), |Wi,j| ≥ α2n− i > α2n−µn ≥ α2n/2. By averaging, choose some wi ∈ V (D)

such that

|{j ∈ Ji : wi ∈ Wi,j}| ≥
∑

j∈Ji
|Wi,j|
n

≥ ηn/4 · α2n/2
n

≥ εn,

using that α, η ≫ ε. Choose a set J ′
i ⊂ {j ∈ Ji : wi ∈ Wi,j} with size εn. Let

Ai+1 = Ai ∪ {wi}. Let H+
i+1 be the digraph H+

i with edges wixj , j ∈ J ′
i , added. Note

that, as d−
H+

i

(xj) ≤ (1 + η/2)µεn for each j ∈ J ′
i , H+

i+1 is (εn, (1 + η)µεn,+)-skew-

bounded on (Ai+1, V (D)). Furthermore, by the definition of Wi,j, the edges added

to H+
i are in D, and therefore H+

i+1 ⊂ D.

Let H−
i+1 be the digraph H−

i with the edges yjwi, j ∈ J ′
i , added. Note that,

similarly, H−
i+1 is (εn, (1 + η)µεn,−)-skew-bounded on (Ai+1, V (D)). Finally, noting

that Ai+1 has size i+1, that e(H+
i+1) = e(H−

i+1) = (i+1)εn and that, for each j ∈ [n],

d−
H+

i+1
(xj) = d+

H−
i+1

(yj), completes the inductive step, and hence the proof.

We now show that the guide sets and guide graphs found by Lemma 2.2.3 have a

similar skew-bounded property when restricted to random vertex subsets, as follows.

Lemma 2.2.5. Let 1/n ≪ ε ≪ α, η ≤ 1 and 1/n ≪ 1/k, p0, p1, . . . , pk ≤ 1.

Let µ = α2p0/4. Let D be an n-vertex digraph with δ0(D) ≥ (1/2 + α)n. Let

V0, V1, . . . , Vk ⊂ V (D) be disjoint random sets chosen uniformly at random subject

to |Vi| = pin for each i ∈ {0, . . . , k}.

Then, with high probability, for each v ∈ V (D) and ⋄ ∈ {+,−}, there is a set

Av,⋄ ⊂ N⋄
D(v) ∩ V0 with size µn and digraphs H◦

v,⋄ ⊂ D, ◦ ∈ {+,−}, such that, for

each ◦ ∈ {+,−} and i ∈ [k], H◦
v,⋄ is (εpin, (1 + η)εµn, ◦)-skew-bounded on (Av,⋄, Vi).

Proof. By Lemma 2.2.3, applied with ε′ = (1 + η/4)ε, η′ = η/4 and µ′ = (1 +

η/4)α2/4, for each v ∈ V (D) and ⋄ ∈ {+,−}, there is a set Āv,⋄ ⊂ N⋄
D(v) with size

(1 + η/4)α2n/4 and digraphs H+
v,⋄, H

−
v,⋄ ⊂ D such that, for each ◦ ∈ {+,−}, H◦

v,⋄ is

((1 + η/4)εn, (1 + η/4)3εα2n/4, ◦)-skew-bounded on (Āv,⋄, V (D)).
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Select V0, V1, . . . , Vk ⊂ V (D) according to the distribution in the statement of the

lemma. Using Lemma 2.1.5, and a union bound, we have that, with high probability,

the following hold.

Q1 For each v ∈ V (D) and ⋄ ∈ {+,−}, |Āv,⋄ ∩ V0| ≥ α2p0n/4 = µn.

Q2 For each v ∈ V (D), ⋄, ◦ ∈ {+,−}, and w ∈ Āv,⋄, |N◦
H◦

v,⋄
(w, Vi)| ≥ εpin.

Q3 For each v ∈ V (D), ⋄, ◦ ∈ {+,−}, and w ∈ V (D), |N ◦̄
H◦

v,⋄
(w, Āv,⋄) ∩ V0)| ≤

(1 + η)εα2p0n/4 = (1 + η)εµn, where ◦̄ ∈ {+,−} is such that ◦̄ ≠ ◦.

Indeed, by Lemma 2.1.5, as ε, η, α, p0, p1, . . . , pk ≫ 1/n, for any instance of

v ∈ V (D), ⋄, ◦ ∈ {+,−}, and w ∈ V (D), the property Q1 above holds with

probability 1 − exp(−Ω(n)), and the same is true for Q2 and Q3. Therefore, by a

union bound, with high probability, the properties Q1, Q2 and Q3 hold.

Now, for each v ∈ V (D) and ⋄ ∈ {+,−}, using Q1, choose Av,⋄ ⊂ Āv,⋄ ∩ V0 with

|Av,⋄| = µn. By Q2 and Q3, we have, for each ◦ ∈ {+,−} and i ∈ [k], that H◦
v,⋄ is

(εpin, (1 + η)εµn, ◦)-skew-bounded on (Av,⋄, Vi), as required.

We will now use the guide sets produced by Lemma 2.2.5 to randomly embed T0,

the small core of the original tree, and then use the guide graphs to find matchings

from certain subsets of the image of the embedding to other random sets, as follows.

Lemma 2.2.6. Let 1/n ≪ c ≪ β ≪ η, q, α ≤ 1 and 1/n ≪ c ≪ p ≪ 1/m. Let D

be an n-vertex digraph with δ0(D) ≥ (1/2 + α)n.

Let T be an oriented tree with ∆±(T ) ≤ cn/ log n consisting of a subtree T0 ⊂ T

with |T0| ≤ βn, such that every vertex in V (T ) \ V (T0) is attached as a leaf to T0.

Let t ∈ V (T0). Let U0 = V (T0) and let U1 ∪ . . . ∪ Um be a partition of V (T ) \ V (T0)

such that, for each i ∈ [m], either eT (V (T0), Ui) = 0 or eT (Ui, V (T0)) = 0. Let

V0, V1, . . . , Vm ⊂ V (D) be disjoint random sets chosen uniformly at random subject

to |V0| = qn, and, for each i ∈ [m], |Vi| = ⌊(1 + η)|Ui|⌋ + pn.1

1Note that this gives an implicit bound on |T |.
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Then, with high probability, for each s ∈ V0, there is an embedding of T into D

such that t is embedded to s, and, for each i ∈ {0, 1, . . . ,m}, Ui is embedded into Vi.

Proof. Choose ε such that β ≪ ε ≪ η, q, α. For each j ∈ [m], let pj = (⌊(1 +

η)|Uj|⌋/n) + p. Choose V0, V1, . . . , Vm according to the distribution in the lemma.

By Lemma 2.2.5 applied with η′ = η/2 and p0 = q, with high probability, for each

v ∈ V (D) and ⋄ ∈ {+,−}, there is

R1 a set Av,⋄ ⊂ N⋄
D(v) ∩ V0 with size qα2n/4, and

R2 digraphs H◦
v,⋄ ⊂ D, ◦ ∈ {+,−}, such that, for each j ∈ [m], H◦

v,⋄ is (εpjn, (1 +

η/2)εqα2n/4, ◦)-skew-bounded on (Av,⋄, Vj).

We will now show that, given only R1 and R2, we can embed T as required

in the lemma for each s ∈ V0. Let then s ∈ V0. We will randomly embed T0 into

D[V0], as follows, before showing that, with high probability, it can be extended

into the required copy of T . Let ℓ = |T0| and label V (T0) = {t1, . . . , tℓ}, so that

t1 = t and T0[{t1, . . . , ti}] is a tree for each i ∈ [ℓ]. Let s1 = s and embed t1 to s1.

For each i ∈ {2, . . . , ℓ} in turn, let ji ∈ {1, . . . , i − 1} be such that tji
is the in- or

out-neighbour of ti in T0[{t1, . . . , ti}] and let ⋄i ∈ {+,−} be such ti ∈ N⋄i
T0(tji

), and

embed ti to si ∈ Asji
,⋄i

\ {s1, . . . , si−1} uniformly at random. Such an embedding is

possible since, for every v ∈ V (D) and ⋄ ∈ {+,−}, |Av,⋄| is much larger than |T0| as

β ≪ q, α.

Claim 2.2.7. For each j ∈ [m], with high probability, the embedding of T0 can be

extended to an embedding of T [V (T0) ∪ Uj] by embedding Uj into Vj.

As p ≫ 1/n, and m ≤ 1/p, we can take a union bound over all j ∈ [m], to show

that, with high probability, for each j ∈ [m], the embedding of T0 can be extended to

T [V (T0) ∪ Uj] by embedding Uj into Vj, and hence T can be embedded as required

in the lemma. Therefore, there is some choice of the embedding of T0 for which this

can be done. It is left then to prove Claim 2.2.7.
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Proof of Claim 2.2.7. Let j ∈ [m] and let ◦j ∈ {+,−} be such that all the edges

from V (T0) to Uj in T are ◦j-edges. For each i ∈ [ℓ], let dj,i = |N◦j

T (ti, Uj)|. For

each i ∈ [ℓ], take dj,i new vertices from Vj and call them wj,i,i′ , i′ ∈ [dj,i]. Let

Wj = {wj,i,i′ : i ∈ [ℓ], i′ ∈ [dj,i]}. Let Kj be the directed graph with vertex set

Wj ∪Vj , containing only ◦j-edges from Wj to Vj , and where, for each i ∈ [ℓ], i′ ∈ [dj,i]

and v ∈ Vj, there is a ◦j-edge from wj,i,i′ to v in Kj if, and only if, siv ∈ E(H◦j
sji

,⋄i).

We will show that, with high probability, Kj is (εpjn, εpjn, ◦j)-skew-bounded

on (Wj, Vj). This is enough to prove the claim, as, by Proposition 2.2.2, there is a

◦j-matching from Wj into Vj in Kj which covers Wj. Thus, we can label distinct

vertices v′
j,i,i′ , i ∈ [ℓ], i′ ∈ [dj,i] in Vj so that wj,i,i′v′

j,i,i′ , i ∈ [ℓ] and i′ ∈ [dj,i], is a

matching in Kj. For each i ∈ [ℓ], use the vertices v′
j,i,i′ , i′ ∈ [dj,i], to embed the dj,i

◦j-neighbours of ti in Uj into Vj. This is possible as, by the definition of Kj and

H
◦j
sji

,⋄i , siv
′
j,i,i′ is a ◦j-edge in D. Therefore, this extends the embedding of T0 to an

embedding of T0 ∪ T [Uj] with Uj embedded into Vj, as required.

Thus, it is sufficient to prove that, with high probability, Kj is (εpjn, εpjn, ◦j)-

skew-bounded on (Wj, Vj). Now, for each i ∈ [ℓ], si ∈ Aji,⋄i
, and therefore si has

at least εpjn ◦j-neighbours in Vj in H
◦j
sji

,⋄i by R2. Therefore, for each i ∈ [ℓ] and

i′ ∈ [dj,i], wj,i,i′ has at least εpjn ◦j-neighbours in Kj. That is, each v ∈ Wj has at

least εpjn ◦j-neighbours in Kj . Thus, letting ◦̄j ∈ {+,−} with ◦̄j ̸= ◦j , it is sufficient

to prove that, for each v ∈ Vj, with probability 1 − o(n−1), d◦̄j

Kj
(v,Wj) ≤ εpjn.

Let then v ∈ Vj. For each i ∈ [ℓ], let

Xj,v
i =


dj,i if siv ∈ E(H◦j

sji
,⋄i)

0 otherwise,

so that d◦̄j

Kj
(v,Wj) = ∑

i∈[ℓ] X
j,v
i . Note that, when si ∈ Asji

,⋄i
\{s1, . . . , si−1} is chosen

uniformly at random, by R1 and R2, and as β ≪ η, α, q and i ≤ ℓ ≤ βn, if di,j > 0,

37



then Xj,v
i = dj,i with probability at most

d
H

◦j
sji

,⋄i

(v)

|Asji
,⋄i

\ {s1, . . . , si−1}|
≤ (1 + η/2)εqα2n/4

qα2n/4 − (i− 1) ≤ (1 + η)ε.

Let γ = (1 + η)ε. Then, for each i ∈ [ℓ], E[Xj,v
i |Xj,v

1 , . . . , Xj,v
i−1] ≤ γ · dj,i. Note that

the inequality

a2 + b2 ≤ (a− 1)2 + (b+ 1)2 (2.2.2)

holds whenever 1 ≤ a ≤ b. Repeated application of this inequality shows that∑
i∈[ℓ] d

2
j,i is maximised when as many of the dj,i are maximised as possible. Therefore,

as dj,i ≤ cn/ log n for each i ∈ [ℓ], and ∑
i∈[ℓ] dj,i ≤ |Uj| ≤ n, we have ∑i∈[ℓ] d

2
j,i ≤

(n/(cn/ log n))(cn/ log n)2 = cn2/ log n. Using this and the fact that |Xj,v
i −γ ·dj,i| ≤

dj,i for each i ∈ [ℓ] and c ≪ p, we can apply Corollary 2.1.7 (i) with ai = γ · dj,i,

ci = dj,i and t = pn/3 to get

P

∑
i∈[ℓ]

Xj,v
i ≥ γ ·

∑
i∈[ℓ]

dj,i

+ pn/3
 ≤ 2 exp

(
−(pn/3)2

2 ·∑i∈[ℓ] d
2
j,i

)

≤ 2 exp
(

−p2 log n
18c

)
≤ o(n−1).

Thus, with probability 1 − o(n−1), we have

d
◦̄j

Kj
(v,Wj) =

∑
i∈[ℓ]

Xj,v
i < γ ·

∑
i∈[ℓ]

dj,i

+ pn/3 < γ|Uj| + pn/3 ≤ γpjn/(1 + η)

= (1 + η)εpjn/(1 + η) = εpjn,

completing the proof of the claim.

Thus, this concludes the proof of the lemma.

Finally, by combining Lemma 2.2.6 and Lemma 2.1.13, we can prove Lemma 2.1.4.

Proof of Lemma 2.1.4. Let p satisfy 1/n ≪ c ≪ p ≪ ε, 1/K. For each j ∈ [ℓ], let sj
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be the vertex of Sj with an in- or out-neighbour in V (T ′) in T . Let R be a maximal

set of pairs (R, r) for which R is a directed tree with at most K edges and r ∈ V (R),

such that the pairs (R, r) are unique up to isomorphism. Let m = |R| and enumerate

R as (R1, r1), . . . , (Rm, rm). Note that p ≪ 1/m since m is a function of K.

Let T ′′ = T [V (T ′) ∪N+
T (V (T ′)) ∪N−

T (V (T ′))]. For each i ∈ [m] and ⋄ ∈ {+,−},

let Ui,⋄ ⊂ V (T ′′) be the set of vertices sj, j ∈ [ℓ], for which (Sj, sj) is isomorphic to

(Ri, ri) and the edge from V (T ′) to sj in T is a ⋄-edge.

In V (D), take disjoint random sets V0 and Vi,⋄,j, i ∈ [m], ⋄ ∈ {+,−} and

j ∈ {1, 2}, uniformly at random subject to the following.

• |V0| = εn/2.

• For each i ∈ [m] and ⋄ ∈ {+,−}, we have that |Vi,⋄,1| = ⌊(1 + ε/6)|Ui,⋄|⌋ + pn

and |Vi,⋄,2| = (⌊(1 + ε/6)|Ui,⋄|⌋ + pn)(|Ri| − 1).

Note that this is possible, as

|V0| +
∑

i∈[m],⋄∈{+,−}
(|Vi,⋄,1| + |Vi,⋄,2|) = |V0| +

∑
i∈[m],⋄∈{+,−}

(⌊(1 + ε/6)|Ui,⋄|⌋ + pn)|Ri|

≤ εn/2 + (1 + ε/6)
∑
j∈[ℓ]

|Sj| +
∑

i∈[m]
2pn · |Ri|

≤ εn/2 + (1 + ε/6)|T | + (2pn) ·m · (K + 1)

≤ n.

Now, with probability ε/2, v ∈ V0. By Lemma 2.2.6, with high probability, if

v ∈ V0, then there is an embedding of T ′′ into D such that t is embedded to v,

V (T ′) ⊂ V0, and, for each i ∈ [m] and ⋄ ∈ {+,−}, Ui,⋄ is embedded into Vi,⋄,1. By

Lemma 2.1.13, for each i ∈ [m] and ⋄ ∈ {+,−}, D[Vi,⋄,1 ∪Vi,⋄,2] contains |Vi,⋄,1| vertex

disjoint copies of Ri, in which ri is copied into Vi,⋄,1. For each i ∈ [m] and ⋄ ∈ {+,−},

add each copy of Ri containing an embedded vertex of Ui,⋄ to the embedding of T ′′.

Note that this results in a copy of T .
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2.2.2 Embedding constant-sized trees as paths

Given our decomposition T0 ⊂ T1 ⊂ T2 ⊂ T3 = T , we have now embedded T1. We

now embed the vertices from V (T2) \ V (T1), recalling that we obtain T2 from T1 by

adding constant-sized trees, where each tree is attached to T1 by exactly two bare

paths of length 2. In the following lemma, we embed T2 \ T1 so that the vertices in

V (T2) ∩ V (T1) are embedded to preselected vertices (labelled ai, bi, i ∈ [ℓ]). This

allows us to extend our embedding of T1 to one of T2.

Lemma 2.2.8. Let 1/n ≪ 1/K ≤ 1/k ≪ α, ε. Suppose T is a forest formed of

vertex-disjoint oriented trees Ti, i ∈ [ℓ], with at most (1 − ε)n vertices in total, and

so that k ≤ |Ti| ≤ K, for each i ∈ [ℓ], and each tree Ti contains distinct vertices ri

and si which are leaves in Ti whose neighbour has total in- and out-degree 2.

Suppose D is an n-vertex digraph with δ0(D) ≥ (1/2+α)n, containing the distinct

vertices ai, bi, i ∈ [ℓ]. Then, D contains a copy of T in which, for each i ∈ [ℓ], ri is

embedded to ai and si is embedded to bi.

Proof. Let β be such that 1/k ≪ β ≪ α, ε. For each i ∈ [ℓ], let r′
i and s′

i be the

neighbours in Ti of ri and si, respectively, and let T ′
i = Ti − {ri, r

′
i, si, s

′
i}. Let T ′ be

the forest composed of connected components T ′
i , i ∈ [ℓ], so that |T ′

i | ≤ (1 − ε)n. Let

A = {ai, bi : i ∈ [ℓ]}. Then |A| = 2ℓ ≤ 2n/k. Let B ⊂ V (D) \A be a random subset

of vertices with |B| = βn.

Let D′ = D − A − B. As 1/k, β ≪ α, ε, we have |D′| ≥ (1 − ε/4)n and

δ0(D′) ≥ (1/2 + α/2) |D′|. Since

|T ′| ≤ (1 − ε)n ≤ (1 − ε)
(1 − ε/4) |D′| ≤ (1 − ε/2) |D′| ,

by Lemma 2.1.14, we can find a copy, S ′ say, of T ′ inside D′ with high probability.

Let r′′
i and s′′

i be the neighbours in T ′ of r′
i and s′

i, respectively, for each i ∈ [ℓ],

and let a′′
i and b′′

i be the copy of r′′
i and s′′

i in S ′, respectively.
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Claim 2.2.9. The following holds with high probability. For any pair of vertices

u, v ∈ V (D) and ⋄, ◦ ∈ {+,−}, we have that |N⋄(u) ∩N◦(v) ∩B| ≥ αβn.

Proof of Claim 2.2.9. Let u, v ∈ V (D) and ⋄, ◦ ∈ {+,−}. Note that, by the semi-

degree condition on D, |N⋄(u) ∩N◦(v)| ≥ 2αn, and hence |N⋄(u) ∩N◦(v) ∩B| has

a hypergeometric distribution with E |N⋄(u) ∩N◦(v) ∩B| ≥ 2αβn. By Lemma 2.1.5,

and a union bound over all pairs u, v ∈ D and ⋄, ◦ ∈ {+,−}, the statement in the

claim thus holds with probability 1 − o(1).

Thus, with high probability, we can assume the property in the claim holds. Now,

for each i ∈ [ℓ], embed ri and si to ai and bi, respectively. Let ⋄i, ◦i, ⋄′
i, ◦′

i ∈ {+,−} be

such that r′
i ∈ N⋄i(ri) ∩N◦i(r′′

i ), and s′
i ∈ N⋄′

i(si) ∩N◦′
i(s′′

i ). Greedily and disjointly,

for each i ∈ [ℓ], embed r′
i to a vertex in N⋄i(ai) ∩ N◦i(a′′

i ) ∩ B and embed s′
i to a

vertex in N⋄′
i(bi) ∩N◦′

i(b′′
i ) ∩B. Note that this is possible, since, from the property

in the claim we have, for each i ∈ [ℓ]

|N⋄i(ai) ∩N◦i(a′′
i ) ∩B| ,

∣∣∣N⋄′
i(bi) ∩N◦′

i(b′′
i ) ∩B

∣∣∣ ≥ αβn ≥ 2n
k

≥ 2ℓ.

This completes the embedding of T with the property required in the lemma.

2.2.3 Proof of Theorem 2.1.2

We now combine Lemma 2.1.4 and Lemma 2.2.8 to find a copy of any almost-spanning

tree.

Proof of Theorem 2.1.2. Take K, k and η so that c ≪ 1/K ≪ 1/k ≪ η ≪ ε, α. Let

D be an n-vertex graph with δ0(D) ≥ (1/2 + α)n. Let T be an oriented tree on at

most (1 − ε)n vertices with ∆±(T ) ≤ cn/ log n. By Lemma 2.1.9, we can find forests

T0 ⊂ T1 ⊂ T2 ⊂ T3 = T satisfying P1 to P4. Randomly partition V (D) into three

parts, V (D) = V1 ∪ V2 ∪ V3 so that |V1| = |T1| + εn/3, |V2| = |T2| − |T1| + εn/3, and

|V3| = |T | − |T2| + εn/3. Note that, with probability at least ε/3, we have v ∈ V1.
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By applying Lemma 2.1.10 with A = V1, we have δ0(D[V1]) ≥ (1/2 + α/2) |V1|

with high probability. Thus, by P1 and P2, we can apply Lemma 2.1.4 to D = D[V1]

and T = T1 and find a copy of T1 in V1 in which t is copied to v. By P3, for some

ℓ ∈ N, T2 is formed from T1 by the addition of trees Fi, i ∈ [ℓ], where k ≤ |Fi| ≤ K,

which are each attached to T1 by exactly two bare paths of length 2, Pi and Qi

say. For each i ∈ [ℓ], let pi and qi be the endpoint of Pi and Qi, respectively, which

belongs to T1. Let ai and bi be the embedding in V1 of pi and qi, respectively, and

let A = {ai, bi : i ∈ [ℓ]}.

By Lemma 2.1.10 again, we have, with high probability, δ0(D[A ∪ V2]) ≥ (1/2 +

α/2) |A ∪ V2|. Applying Lemma 2.2.8 to D[A ∪ V2] with Ti = Fi ∪ Pi ∪Qi, ri = pi,

and si = qi, for each i ∈ [ℓ], we can find a copy of T2 in D[V1 ∪ V2]. Now since T2

is a tree, any vertex in T3 \ T2 can have at most one neighbour in T2. Note that,

by Lemma 2.1.10, we know that with high probability every vertex in D has at

least (1/2 + α/2) |V3| ≥ ηn in-neighbours in V3 and at least (1/2 + α/2) |V3| ≥ ηn

out-neighbours in V3. Let j = |T3| − |T2| ≤ ηn (where the inequality holds by P4

and order the vertices of T3 \ T2 as u1, . . . , uj, so that T [V (T2) ∪ {u1, . . . , ui}] is a

tree for each i ∈ [j]. Embed the vertices u1, . . . , uj greedily into V3, to complete the

copy of T in D. Noting that this embedding was successful with probability at least

ε/3 − o(1) > 0, there must always be such a copy of T .

2.3 Absorption from switching

The aim of this section is to prove Theorem 2.1.1. The main idea is as follows. Given

a small tree T , we split it into two trees T ′ and T ′′ and randomly embed T ′ vertex

by vertex. With positive probability, the resulting tree is such that, given the right

number of other vertices in the graph, we can embed T ′′ to extend this into a copy

of T while making some small modifications to the copy of T ′. Essentially, we show

that, for each vertex y, there are many vertices in the embedding of T ′ which we can
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switch with y and still get a copy of T . We then embed T ′′ vertex-by-vertex, at each

step switching an unused vertex into the copy of T ′ in place of a vertex which we

can instead use to extend the (partial) embedding of T ′′.

Proof of Theorem 2.1.1. Take λ such that ε ≪ λ ≪ µ. Using Proposition 2.1.3, let

T = T ′ ∪ T ′′, where t ∈ V (T ′) and εn < |T ′′| ≤ 3εn. Let ℓ = |T ′|, and label V (T ′)

as t1, . . . , tℓ so that t1 = t, T ′[t1, . . . , ti] is a tree for each i ∈ [ℓ], and the leaves of T ′

appear last in this order (except possibly for t) and in any bare path of length 6 the

middle 3 vertices appear consecutively. For each i ∈ [ℓ], let Ti = T ′[{t1, . . . , ti}], so

ti is a leaf of Ti.

Pick an arbitrary vertex v ∈ V (D), and let R1 be the graph with only the vertex

v. For each i = 2, . . . , ℓ, do the following. Let ⋄i ∈ {+,−} be such that N⋄i
Ti

(ti) is

non-empty (and thus contains exactly one vertex). Let ◦i ∈ {+,−} with ◦i ̸= ⋄i.

Take Ri−1, which is a copy of Ti−1, and let wi be the copy of the sole vertex in N⋄i
Ti

(ti)

in Ri−1. Pick a vertex vi independently at random from N◦i
D (wi) \ V (Ri−1). Embed

ti to vi to get Ri, a copy of Ti.

Note that this process always ends with a copy of T ′, as N◦i
D (wi) \V (Ri−1) always

has size at least d◦i
D(wi) − |T ′| ≥ d◦i

D(wi) − |T | ≥ (1/2 + α)n − µn and µ ≪ α. Let

R = Rℓ, so that R is a copy of T ′. We will show that, with positive probability the

following property holds.

S For each distinct x, y ∈ V (D) and ⋄ ∈ {+,−},

|{i ∈ [ℓ] : vi ∈ N⋄
D(x) and N±

R (vi) ⊂ N±
D (y)}| ≥ λn.

Noting |R| = |T ′| ≤ |T | − |T ′′| + 1 ≤ (µ − ε)n, let A ⊂ V (D) contain V (R) so

that |A| = (µ− ε)n, and let v be the copy of t. We will show in two claims that, with

positive probability S holds, and that, if S holds, then A and v satisfy the property

in the theorem. Thus, the theorem follows from these two claims.

Claim 2.3.1. With positive probability, S holds.
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Proof of Claim 2.3.1. Fix x, y ∈ V (D) and ⋄ ∈ {+,−} with x ̸= y. We will show

that S holds for x, y and ⋄ with probability at least 1 − 1/4n2, so that the result

follows by a union bound.

For convenience, let us take two cases. Either T ′ has 2µ2n leaves (Case I) or µ2n

vertex-disjoint bare paths with length 6 (Case II). One of these cases must hold, as,

suppose that Case I does not hold and thus T ′ has fewer than 2µ2n leaves. Then, by

Lemma 2.1.8, we know that there is some s and some vertex-disjoint bare paths Pi,

i ∈ [s], in T ′ of length 6 so that |T ′ − P1 − · · · − Ps| ≤ 72µ2n+ 2ℓ/7. Removing the

internal vertices of each path Pi, i ∈ [s], from T ′ removes 5 vertices, and |T ′| = ℓ, so

that ℓ− 5s ≤ 72µ2n+ 2ℓ/7, and therefore

s ≥ (ℓ− 2ℓ/7)/5 − 72µ2n/5 ≥ ℓ/7 − 15µ2n ≥ (µ− 3ε)n/7 − 15µ2n ≥ µ2n,

where the final inequality holds since ε ≪ µ.

Case I. Assume that at least µ2n leaves of T ′ are out-leaves, where the proof

whenever T ′ has at least µ2n in-leaves follows similarly. Let ℓ′ be the smallest integer

such that, for each i > ℓ′, ti is a leaf of T ′ which is at distance at least 2 from t in

T ′. We will analyse the embedding of T ′ in two stages. First, for the embedding of

t1, . . . , tℓ′ , we show that with high probability there will be plenty of these vertices

which are adjacent to out-leaves in tℓ′+1, . . . , tℓ that are embedded to in-neighbours

of y. Then, we will analyse the embedding of tℓ′+1, . . . , tℓ, and show that plenty of

these vertices whose in-neighbour in t1, . . . , tℓ′ was embedded to an in-neighbour of

y are themselves embedded to a ⋄-neighbour of x. Here, we require that the leaves

we consider are at distance at least 2 from t in T ′. Let µ′ = µ/2. By the degree

condition, at least (µ′)2n of these out-leaves are at distance at least 2 from t.

For each i ∈ [ℓ′], let ci be the number of out-leaves of ti in T ′. For each i ∈ [ℓ′],

let Xi be the random variable which takes value ci if vi ∈ N−
D(y), and 0 otherwise.

Note that, for each i ∈ [ℓ], if ci > 0, then, when the process selects vi, having chosen
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v1, . . . , vi−1, Xi = ci with probability at least

|(N◦i
D (wi) \ V (Ri)) ∩N−

D (y)|
n

≥ |(N◦i
D (wi)) ∩N−

D (y)| − |Ri|
n

≥ 2αn− µn

n
≥ α,

(2.3.1)

as α ≫ µ and since Ri is a copy of the tree Ti, which has at most µn vertices. Thus,

for each i ∈ [ℓ], E[Xi | X1, . . . Xi−1] ≥ αci.

Note that ∑i∈[ℓ′] ci is the number of out-leaves of T ′, so that ∑i∈[ℓ′] ci ≥ (µ′)2n.

On the other hand, clearly ∑i∈[ℓ′] ci ≤ n, and for every i ∈ [ℓ′], ci ≤ ∆(T ) ≤ cn/ log n.

Thus, as before by repeated application of (2.2.2), we have ∑i∈[ℓ′] c
2
i ≤ cn2/ log n.

Note that |Xi − αci| ≤ ci for each i ∈ [ℓ′]. Therefore, we can apply Corollary 2.1.7 (ii)

with q = α(µ′)2n/2 to get

P

∑
i∈[ℓ′]

Xi ≤
∑

i∈[ℓ′]
αci − q

 ≤ 2 exp
(

−q2

2 ·∑i∈[ℓ′] c
2
i

)
≤ 2 exp

(
−q2 log n

2cn2

)
≤ 1

8n2 .

(2.3.2)

Here, the final inequality holds because c ≪ µ, α. Therefore, with probability at

least 1 − 1/8n2, we have ∑i∈[ℓ′] Xi ≥ ∑
i∈[ℓ′] αci − α(µ′)2n/2 ≥ α(µ′)2n/2.

Let m = ∑
i∈[ℓ′] Xi ≥ α(µ′)2n/2. Consider now the embedding of tℓ′+1, . . . , tℓ. Let

j1, . . . , jm ∈ {ℓ′+1, . . . , ℓ} be such that tji
is an out-leaf of T ′ and the image of N−

T ′(tji
)

is an in-neighbour of y for each i ∈ [m]. For each i ∈ [m], let Yi be the random

variable which takes value 1 if vji
is in N⋄

D(x), and 0 otherwise. Note that, similarly

to the calculation in (2.3.1), E[Yi | Y1, . . . Yi−1] ≥ α for each i ∈ [m]. As before, since

|Yi − α| ≤ 1 − α for each i ∈ [m] as α ≤ 1, we can apply Corollary 2.1.7 (ii) with

t = αm/2 to get

P

 ∑
i∈[m]

Yi < αm− t

 ≤ 2 exp
(

−t2

2(1 − α)2m

)
≤ 1

8n2 , (2.3.3)

where the final inequality holds because 1/n ≪ µ, α. Hence, with probability at least
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1 − 1/8n2, we have ∑i∈[m] Yi ≥ αm/2. Note that

∣∣∣{i ∈ [ℓ] : vi ∈ N⋄
D(x) and N±

R (vi) ⊂ N±
D (y)}

∣∣∣ ≥
∑

i

Yi.

Thus, by taking a simple union bound over the events in (2.3.2) and (2.3.3) and

using λ ≪ α, µ, we see that in total, with probability at least 1 − 1/4n2,

∣∣∣{i ∈ [ℓ] : vi ∈ N⋄
D(x) and N±

R (vi) ⊂ N±
D (y)}

∣∣∣ ≥ αm/2 ≥ λn.

Taking a union bound over all possible x, y ∈ V (D) and ⋄ ∈ {+,−}, we see that in

this case S holds with probability at least 1/2.

Case II. Let m = µ2n. Let P1, . . . , Pm be vertex disjoint paths of length 6 in T ,

such that tji
is the middle vertex of Pi for each i ∈ [m], and the vertices tji

appear

in order of increasing i in the sequence t1, . . . , tℓ.

For each i ∈ [m], let Xi be the random variable taking value 1 if

vji
∈ N⋄

D(x) and N±
R (vji

) ⊂ N±
D (y) (2.3.4)

and 0 otherwise. Note that, by virtue of the labelling of t1, . . . , tℓ, the vertices

that appear in N±
R (vji

) are exactly the vertices vji−1 and vji+1. When we choose

each of vji−1, vji
, vji+1, the probability that all three satisfy the condition in (2.3.4)

(however the previous vertices vi′ are chosen) is at least α, in a calculation similar

to (2.3.1). Therefore, we have, for each i ∈ [m], that E[Xi | X1, . . . Xi−1] ≥ α3.

Since |Xi − α3| ≤ 1 for each i ∈ [m] as α ≤ 1, we can apply Corollary 2.1.7 (ii) with

t = α3m/2 to get

P

 ∑
i∈[m]

Xi ≤ α3m− t

 ≤ 2 exp
(

−t2

2m

)
= 2 exp

(
−α6m

8

)
≤ 1

4n2 ,
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as 1/n ≪ α, µ. Therefore, with probability at least 1 − 1/4n2, as λ ≪ µ, α,

∣∣∣{i ∈ [ℓ] : vi ∈ N⋄
D(x) and N±

R (vi) ⊂ N±
D (y)}

∣∣∣
≥
∣∣∣{i ∈ [m] : vji

∈ N⋄
D(x) and N±

R (vji
) ⊂ N±

D (y)}
∣∣∣

=
∑

i∈[m]
Xi ≥ α3m/2 ≥ λn.

Taking a union bound over all possible x, y ∈ V (D) and ⋄ ∈ {+,−}, we see that in

this case S holds with probability at least 1/2.

Claim 2.3.2. If S holds then A and v satisfy the property in the theorem. That is,

for any set B ⊆ V (D) with A ⊂ B and |B| = µn, then D[B] contains a copy of T

in which t is copied to v.

Proof of Claim 2.3.2. Let B ⊂ V (D) with A ⊂ B and |B| = µn. Let k = |T ′′| − 1 ≤

3εn and label the vertices of V (T ′′) \ V (T ′) as s1, . . . , sk, so that, for each i ∈ [k],

T ′
i := T ′ ∪ T ′′[{s1, . . . , si}] is a tree. Note that |B \ V (R)| = k and label the vertices

of B \ V (R) as y1, . . . , yk.

Let S0 = R. Now, for each i = 1, . . . , k in turn, do the following. Let xi ∈ V (Si−1)

and ⋄i ∈ {+,−} be such that we need to add a ⋄i-neighbour to xi as a leaf to get a

copy of T ′
i . If possible, choose some j′

i ∈ [ℓ] \ {1, j′
1, . . . , j

′
i−1} such that

vj′
i

∈ N⋄i
D (xi) and N±

Si−1
(vj′

i
) ⊂ N±

D (yi) and d+
Si−1

(vj′
i
) + d−

Si−1
(vj′

i
) ≤ 4/λ.

Replace vj′
i

with yi in Si−1 and add vj′
i

as a ⋄i-neighbour of xi to get Si, a copy of T ′
i

with vertex sets V (Si−1) ∪ {yi}.

We need only show that there is such a vertex vj′
i

in each case, since if this

process finds Sk, then we have a copy of T ′
k = T . Fix then i ∈ [k]. By S, we

know there are at least λn choices of i′ ∈ [ℓ] such that vi′ ∈ N⋄i
D (xi) and N±

R (vi′) ⊂

N±
D (yi). By the construction of Si−1, there are at most (4/λ) · 3εn ≤ λn/4 vertices

adjacent to the vertices vj′
1
, . . . , vj′

i−1
in Si−1, and so at most λn/4 vertices of R
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can be adjacent to the vertices vj′
1
, . . . , vj′

i−1
in Si−1. Therefore for all but at most

λn/4 values of i′ ∈ [ℓ], we have N+
R (vi′) = N+

Si−1
(vi′) and N−

R (vi′) = N−
Si−1

(vi′).

Furthermore, as ∑i′∈[ℓ](d+
T (ti′) + d−

T (ti′)) ≤ 2n, at most λn/2 values of i ∈ [k] can

have d+
Si−1

(vj′
i
) + d−

Si−1
(vj′

i
) > 4/λ. Indeed, suppose that I ′ is the set of all such

i ∈ [k]. Then ∑
i′∈I′ d+

Si−1
(vj′

i
) + d−

Si−1
(vj′

i
) ≥ (λn/2)(4/λ) > 2n, but since Si is

a copy of T ′
i , this is a contradiction. Thus, we know that there will be at least

λn−nλn/4 −λn/2 ≥ λn/4 choices for j′
i, and so such a j′

i will always exist by S.

Thus we have proved the claim and therefore the lemma.
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CHAPTER 3

TRANSVERSAL CYCLE FACTORS

The aim of this section is to prove Theorem 1.1.2, which we recall below.

Theorem 1.1.2. For every even integer k ≥ 4 there exists n0 such that if G is a

k-partite graph whose vertex classes each have size n ≥ n0 with δ∗
Ck

(G) ≥ (1 + 1
k
)n

2 ,

then G contains a transversal Ck-factor.

3.1 Introduction

The degree condition of Theorem 1.1.2 is best possible, as shown by the following

extremal example (see Figure 3.1), which works for any k, both even and odd.

For each i ∈ [k] let Xi and Yi be sets each of size ⌈(1
2 + 1

2k
)n⌉ − 1 such that

Vi := |Xi ∪ Yi| = n and so that the sets Vi are pairwise vertex-disjoint. Form a graph

G with vertex classes V1, . . . , Vk in which G[Xi, Xi+1] and G[Yi, Yi+1] are complete for

each i ∈ [k − 1], and G[X1, Yk] and G[Y1, Xk] are also complete, but G has no edges

other than those in this complete subgraphs. We then have δ∗
G(G) ≥ ⌈(1

2 + 1
2k

)n⌉ − 1

since every vertex in Vi is adjacent to all vertices in either Xi+1 or Yi+1, and to all

vertices in either Xi−1 or Yi−1 (with addition on indices taken modulo k). Note,

however, that every copy of Ck in G must contain a vertex from Xi ∩ Yi for some
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i ∈ [k]. Since |Xi| = |Yi| < (1
2 + 1

2k
)n, we have

∑
i∈[k]

|Xi ∩ Yi| =
∑
i∈[k]

|Xi| + |Yi| − |Vi| < k
(

2
(1

2 + 1
2k

)
n− n

)
= n,

so every transversal Ck-tiling in G contains fewer than n copies of Ck and therefore

is not a transversal Ck-factor.

It is worth noting that when k is odd, there is a wider class of extremal examples.

For example suppose n is divisible by 2k and, for each i ∈ [k] \ {1}, let Xi and

Yi be sets of size (k − 1)n/2k, and Zi a set of size n/k. Let X1 be a set of size

(k− 1)n/2k− 1, let Y1 be a set of size (k− 1)n/2k+ 1, and let Z1 be a set of size n/k.

Now suppose that for each i ∈ [k], Vi = Xi ∪ Yi ∪ Zi, and let G be a k-partite graph

with vertex classes V1, . . . , Vk. Note that each class has exactly n vertices. Add edges

of G as follows. For each i ∈ [k] (where [k] = {1, . . . , k} and indices are taken modulo

k), suppose that each vertex in Zi sees every vertex in Xi−1 ∪Yi−1 and every vertex in

Xi+1 ∪ Yi+1. For each i ∈ [k− 1], suppose G[Xi ∪Xi+1], G[Yi ∪ Yi+1], G[X1 ∪ Yk] and

G[Y1 ∪Xk] are each complete bipartite graphs. In this case, δ∗(G) ≥ (1+1/k)n/2−1.

Any Ck from this graph must contain a vertex from Zi for some i ∈ [k]. We say

a path is partition-respecting if it contains at most one vertex from each vertex class,

and if each edge of the path is between Vi and Vi+1 for some i ∈ [k]. Since there are

exactly n copies of Ck in any Ck-factor and there are exactly n vertices in ⋃i∈[k] Zi,

there must in fact be exactly one vertex from Zi in each copy of Ck. This implies

that G[⋃i∈[k] Xi ∪ Yi] must have a partition-respecting Pk−2-factor, where for any j,

Pj is a path with j + 1 vertices and j edges.

However, when k is odd, each partition-respecting path of length k − 2 contains

k− 1 vertices. Now let A = ⋃
i∈[(k−1)/2](X2i−1 ∪Xk ∪Y2i) and B = ⋃

i∈[(k−1)/2](Y2i−1 ∪

Yk ∪X2i). Any partition-respecting path of length k − 2 has exactly k − 1 vertices,

and since k is odd, k− 1 must be even. Also, any partition-respecting path of length

k − 2 must alternate between vertices of A and B. Therefore, each such path must
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X1 X2 X3 X4 X5 X1

Y1 Y2 Y3 Y4 Y5 Y1

⌈
3n
5

⌉
− 1 vertices

⌈
3n
5

⌉
− 1 vertices

Figure 3.1: An extremal example when k = 5

hit A as many times as it hits B. However, A contains two fewer vertices than B

since |X1| = |Y1| − 2. Therefore, there cannot be a partition-respecting Pk−2-factor

in G[⋃i∈[k] Xi ∪ Yi], and so G contains no transversal Ck-factor. Intuitively the same

example does not work in the case when k is even, since k − 1 would be odd, and

therefore a Pk−2 would either contain one more vertex from A or from B, and so

in any case, the same argument cannot be made. In fact we will see at the end of

Section 3.5 that when k is even, this structure does indeed contain a perfect fractional

Ck-tiling.

At the top level, our proof of Theorem 1.1.2 splits into two cases, according to

whether the graph G is ‘close’ to the extremal example described above. The next

definition specifies precisely what we mean by this; to compare this to the extremal

example, note that when k is even, the sets Ai and Bi take the roles of the sets Xi \Yi

and Yi \Xi respectively, and when k is odd, we have a slightly broader definition to

reflect the family of examples described in the previous paragraph.

Definition 3.1.1. Let G be a k-partite graph with vertex classes V1, . . . , Vk each of

size n. We say that G is ε-extremal if there exist sets Ai, Bi and Zi for each i ∈ [k]

such that

• Ai, Bi, Zi partition Vi for each i ∈ [k],

• |Ai| = |Bi| = (k − 1)n/2k and |Zi| = n/k.
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• d(Ai, Ai+1), d(Bi, Bi+1) ≥ 1 − ε for every i ∈ [k − 1],

• d(Ak, B1), d(Bk, A1) ≥ 1 − ε,

• If k is even, then d(Zi, Ai+1), d(Zi+1, Ai), d(Zi, Bi+1), d(Zi+1, Bi) ≥ 1 − ε for

every i ∈ [k − 1], and also d(Z1, Ak), d(Zk, A1), d(Z1, Bk), d(Zk, B1) ≥ 1 − ε.

• If k is odd, then for each i ∈ [k − 1], there exist X, Y ∈ {A,B} with X ≠ Y

such that d(Xi, Zi+1), d(Yi+1, Zi) ≥ 1 − ε, and also there exists X ∈ {A,B}

such that d(Xk, Z1), d(X1, Zk) ≥ 1 − ε.

In the case where G is close to the extremal example, we use ad hoc methods to

obtain the following lemma, stating that the exact degree condition of Theorem 1.1.2

suffices to ensure the existence of a transversal Ck-factor in the case when k is even;

the proof of this lemma is presented in Section 3.3.

Lemma 3.1.2. Suppose that 1/n ≪ ψ ≪ 1/k and that k is even, and let G be a

balanced k-partite graph whose vertex classes each have size n. If δ∗(G) ≥ (1
2 + 1

2k
)n

and G is ψ-extremal, then G contains a transversal Ck-factor.

To prove the analoge of Theorem 1.1.2 in the case when k is odd, it only remains

to prove an analogous version of Lemma 3.1.2 and this will give a full proof of

Fischer’s conjecture. Most of the work in proving Theorem 1.1.2 is concerned with

the other case, where G is not close to the extremal example. For this case our

goal is the following lemma, which says that in this case a slightly weaker degree

condition is sufficient to ensure a transversal Ck-factor.

Lemma 3.1.3. Suppose that 1/n ≪ γ ≪ ψ, 1/k, and let G be a balanced k-partite

graph whose vertex classes each have size n. If δ∗(G) ≥ (1
2 + 1

2k
)n− γn, then either

G contains a transversal Ck-factor or G is ψ-extremal.

Observe that Lemma 3.1.3 and Lemma 3.1.2, taken together, immediately prove

Theorem 1.1.2. In fact, the principal novel contribution involved in the proof of
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Lemma 3.1.3 is to prove our next result, a fractional version of the lemma. A perfect

fractional Ck-tiling in a graph G is an assignment of a weight wC ∈ [0, 1] to each copy

C of Ck in G so that for every v ∈ V (G) we have ∑C:v∈V (C) wC = 1 (so a perfect

Ck-tiling can be viewed as the special case in which wC ∈ {0, 1} for every copy C of

Ck in G).

Theorem 3.1.4. Suppose that 1/n ≪ γ ≪ ψ, 1/k, and let G be a balanced k-partite

graph whose vertex classes each have size n. If δ∗(G) ≥ (1
2 + 1

2k
)n− γn, then either

G contains a perfect fractional Ck-tiling or G is ψ-extremal.

The proof of Theorem 3.1.4 is presented in Section 3.5. In Section 3.4 we derive

Lemma 3.1.3 from Theorem 3.1.4 by a standard approach using the Szemerédi

regularity lemma [67] along with the following absorbing lemma due to Ergemlidze

and Molla [24].

Lemma 3.1.5 (The Absorbing Lemma [24]). Let 1/n ≪ σ ≪ γ, 1/k. Let G be a

k-partite graph whose vertex classes each have size n. If δ∗(G) ≥ n/2 + γn, then

for some z ≤ σn there is a set A ⊆ V (G), which we call the absorbing set, with

|A ∩ Vi| = z for each i ∈ [k], such that if G−A has a transversal Ck-tiling of size at

least n− z − σ2n, then G contains a transversal Ck-factor.

3.2 Preliminaries

3.2.1 Notation

For a graph G, we say V (G) is the set of vertices of G and E(G) is the set of edges

of G. We define |G| = |V (G)| and e(G) = |E(G)|. Let A,B ⊂ V (G). Then the

set E(A,B) is the set of all edges with one endpoint in A and the other in B, and

e(A,B) = |E(A,B)|. E(A) is defined as the set of all edges with both endpoints in

A. The graph G[A] is the induced subgraph of G with vertex set A and edge set

E(A), and the graph G−A is defined as G[(V (G) \A)]. Similarly, for any subgraph
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H ⊆ G, G−H := G[V (G) \ V (H)]. We say that the length of a path or cycle is the

number of edges it contains. We may refer to a path or cycle of length k as Pk or

Ck, respectively.

In order to simplify notation, we use hierarchies to state our results. That is,

for a, b ∈ (0, 1], whenever we write that a statement holds for a ≪ b (or b ≫ a),

we mean that there exists a non-decreasing function f : (0, 1] → (0, 1] such that the

statement holds whenever a ≤ f(b). We define similar expressions with multiple

variables analogously. Whenever 1/n appears in this hierarchy, we assume n is an

integer. For simplicity, we ignore floors and ceilings wherever this does not affect the

argument.

3.2.1.1 Multipartite graphs

Throughout the paper, we will be considering k-partite graphs G with vertex classes

V1, . . . , Vk. Here we give some specific notation that we will be using within these

structures. We describe vertex classes Vi and Vi+1 as consecutive vertex classes for

each i ∈ [k] (indices taken modulo k). Unless otherwise specified, any cycles we

consider throughout this paper will be transversal cycles, that is, cycles containing

exactly one vertex from each vertex class Vi with each edge of the cycle lying between

consecutive vertex classes. Any path we consider will be a partition-respecting path,

that is, containing at most one vertex from each vertex class Vi and such that each

edge of the path lies between consecutive vertex classes. Furthermore, for a path P

and vertices u ∈ Vi and v ∈ Vj for some i, j ∈ [k], we say that u is the initial vertex

of P if u is an endvertex of P , and the edge containing u in P lies in G[Vi, Vi+1].

Similarly, we say that v is the final vertex of P if v is an endvertex of P , and if the

edge containing v in P lies in G[Vj, Vj−1].

For any integer m, let [m] = {1, . . . ,m}. We will often wish to iterate over

the vertex classes in a certain order, and in order to do this, we also define the

following. For integers a, b ∈ [k] with a ̸= b, we let {a ↑ b} = {a, a+ 1, . . . , b− 1, b},
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{a ↓ b} = {a, a − 1, . . . , b + 1, b}, and {a ↑ a} = {a ↓ a} = {a}. We remark that

{a ↑ b} = {b ↑ a}. Let [a ↑ b] be the list (a, a+ 1, . . . , b− 1, b) and [a ↓ b] be the list

(a, a − 1, . . . , b + 1, b) (with entries taken modulo k in each case) and we say that

[a ↑ a] = [a ↓ a] = (a). When we say we do something for each i ∈ [a ↑ b], we mean

we iterate over the values in [a ↑ b] in the order in which they appear in the list (and

analogously for [a ↓ b]).

3.2.2 Robust expanders

Robust expanders are a key tool we use in the paper. These were first introduced in

directed graphs in the form of robust outexpanders by Kühn, Osthus and Treglown,

and were used notably in the proof of Kelly’s conjecture for large tournaments by

Kühn and Osthus [48]. Later, the same authors introduced an undirected version

of robust expanders in [49], and used this to prove an approximate version of a

conjecture of Nash-Williams. Many of the results in this subsection will be standard

and appear through the literature, though we provide proofs for completeness.

We will be considering the following bipartite notion of robust expansion. Let

G be a bipartite graph with parts A and B, such that |A| = |B| = n, and let ν, τ

be constants. For a set S ⊆ V (G), the ν-robust neighbourhood of S, denoted by

RNν,G(S), is the set of vertices of G with at least νn neighbours in S. We say that

G is a robust (ν, τ )-expander if |RNν,G(S)| ≥ |S| + νn whenever τn ≤ |S| ≤ (1 − τ)n

with either S ⊆ A or S ⊆ B. For a pair of sets U, V ⊆ G, we say that (U, V ) is

a (ν, τ)-robust pair if G[U, V ] is a robust (ν, τ)-expander. Otherwise, we say that

(U, V ) is a non-(ν, τ)-robust pair.

As discussed, many of the graphs in this paper will be multipartite graphs.

Suppose G is a k-partite graph with vertex classes V1, . . . , Vk each of size n. Let

• Nν,τ (G) = {i ∈ [k] : G[Vi, Vi+1] is a robust (ν, τ)-expander},

• Lν,τ (G) = {i ∈ [k] : G[Vi, Vi+1] is not a robust (ν, τ)-expander},
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• Rν,τ (G) = {i ∈ [k] : G[Vi−1, Vi] is not a robust (ν, τ)-expander}, and

• Bν,τ (G) = Lν,τ (G) ∩ Rν,τ (G).

Note that in each of the definitions above, we may omit the ν and τ when they are

clear from context. It may be helpful to observe that in the definitions above, L

coresponds to the part being the ‘left’ part of a robust pair, R corresponds to it

being the ‘right’ part, B corresponds to it being both and N corresponds to it being

neither. We now prove some useful properties of robust expanders.

Lemma 3.2.1. Let 1/n ≪ ν ′ ≤ ν ≪ τ ≤ τ ′. Let G = (A,B) with |A| = |B| = n. If

G is a robust (ν, τ)-expander, then it is also a robust (ν ′, τ ′)-expander.

Proof. Suppose G is a robust (ν, τ )-expander. Let S ⊆ A with τ ′n ≤ |S| ≤ (1 − τ ′)n.

We will prove that |RNν′(S)| ≥ |S| + ν ′n. The equivalent statement when S ⊆ B

holds by symmetry. Since τ ′ ≥ τ , we have τn ≤ |S| ≤ (1 − τ)n. Therefore,

|RNν(S)| ≥ |S| + νn. Since ν ′ ≤ ν, we know that RNν(S) ⊆ RNν′(S). So,

|RNν′(S)| ≥ |RNν(S)| ≥ |S| + νn ≥ |S| + ν ′n,

as required.

We would like to show that a robust expander contains a perfect matching. In

order to prove this, we first state Hall’s condition [31].

Lemma 3.2.2 (Hall’s condition). Let G be a bipartite graph with vertex classes

A and B. Suppose that for every S ⊆ A, |NG(S,B)| ≥ |S|. Then G contains a

matching which covers A.

Lemma 3.2.3. Let 1/n ≪ ε ≪ ν ≪ τ ≪ 1/2. Let G be a bipartite graph with vertex

classes A and B, such that |A| = |B| = n. Suppose that δ(G) ≥ (1/2 − ε)n and that

G is a robust (ν, τ)-expander. Then G contains a perfect matching.
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Proof. Let S ⊆ A. We would like to show that Hall’s criterion is satisfied. Suppose

first that |S| ≤ (1/2 − ε)n. Then by the minimum degree condition, |N(S)| ≥

(1/2 − ε)n ≥ τn ≥ |S|. On the other hand, suppose |S| > (1/2 + ε)n. In this case,

N(S) = B. Indeed, suppose for a contradiction there is some vertex v ∈ B which

is not contained in N(S). Then |N(v) ∩ S| = 0, and so n = |A| ≥ |N(v)| + |S| >

(1/2 − ε)n + (1/2 + ε)n = n, a contradiction. Therefore, n = |N(S)| ≥ |S|,

and once again, Hall’s criterion is satisfied. It only remains to consider the case

when (1/2 − ε)n ≤ |S| ≤ (1/2 + ε)n. In this case, since ε ≪ τ ≪ 1/2, we have

that τn ≤ |S| ≤ (1 − τ)n. Therefore, since RNν(S) ⊆ N(S) we have |N(S)| ≥

|RNν(S)| ≥ |S| + νn, and so in each case, Hall’s criterion is satisfied, and G contains

a matching covering A. Since |A| = |B|, this is a perfect matching.

The following lemma says that if a balanced bipartite graph with parts of size n

has minimum degree close to n/2, then either G is a robust expander or it is ‘close

to’ the union of two almost complete bipartite graphs. In order to state this, we first

need the following definition.

Definition 3.2.4. Let α, β > 0 and for n ∈ N, let G = (A,B) be a bipartite graph

with vertex classes of size n. Then an (α, β)-bipartition of G is a partition of A into

sets A1 ∪ A2 and B into sets B1 ∪B2 so that the following hold for each i ∈ {1, 2}.

(i) (1/2 − β)n ≤ |Ai| , |Bi| ≤ (1/2 + β)n.

(ii) All but at most βn vertices in Ai have at least (1 − α) |Bi| neighbours in Bi.

(iii) All but at most βn vertices in Bi have at least (1 − α) |Ai| neighbours in Ai.

We say this is a high-degree (α, β)-bipartition if every vertex in Ai has at least

(1−α) |Bi| neighbours in Bi and every vertex in Bi has at least (1−α) |Ai| neighbours

in Ai.

Lemma 3.2.5. Let 1/n ≪ ε ≪ ν ≪ τ , and let ν ≪ β ≪ α ≤ 1. Let G = (A,B) be

a bipartite graph with |A| = |B| = n, and suppose that δ(G) ≥ n/2 − εn. Suppose

that G is not a robust (ν, τ)-expander. Then G has an (α, β)-bipartition.
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Proof. Let µ satisfy ν ≪ µ ≪ β.

Since G is not a robust (ν, τ)-expander, there is some set X1 ⊂ A such that

τn ≤ |X1| ≤ (1 − τ)n and |RN(X1)| < |X1| + νn. Let Y1 = RN(X1), Y2 = B \ Y1

and X2 = A\X1. We claim that ((X1, X2), (Y1, Y2)) is an (α, β)-bipartition of (A,B).

First we would like to determine the sizes of each of Xi and Yi for i ∈ [2]. We begin

by counting the edges between X1 and Y1 in two ways to obtain lower bounds on

|X1| and |Y1|. Since every vertex in Y2 can have at most νn neighbours in X1, we

know that e(X1, Y2) ≤ νn |Y2|. Therefore,

e(X1, Y1) = e(X1, B) − e(X1, Y2) ≥ (1/2 − ε)n |X1| − νn |Y2|

≥ (1/2 − ε)n |X1| − νn2 ≥ (1/2 − ε)n |X1| − νn |X1| /τ

= (1/2 − ε− ν/τ)n |X1| . (3.2.1)

On the other hand, we also have that e(X1, Y1) ≤ |X1| |Y1|. Therefore, combining

these, we get that |Y1| ≥ (1/2 − ε− ν/τ)n. Recall that |Y1| ≤ |X1| + νn, therefore

we get that |X1| ≥ (1/2 − ε− ν/τ + ν)n.

Now we will count the edges between X2 and Y2 in two ways to obtain upper

bounds on |X1| and |Y1|. First,

e(X2, Y2) = e(A, Y2) − e(X1, Y2) ≥ (1/2 − ε)n |Y2| − νn |Y2| = (1/2 − ε− ν)n |Y2| .

(3.2.2)

On the other hand, e(X2, Y2) ≤ |X2| |Y2|. Therefore, we get that |X2| ≥ (1/2−ε−ν)n.

Therefore, |X1| ≤ (1/2 + ε + ν)n. This also implies that |Y1| ≤ |X1| + νn ≤

(1/2 + ε+ 2ν)n.

Since ν ≪ τ, µ we have ν/τ <
√
ν < µ/3. Using this combined with the fact that

|A| = |B| = n, we get that (1/2 − β)n ≤ (1/2 − µ)n ≤ |Xi| , |Yi| ≤ (1/2 + µ)n ≤

(1/2 + β)n for each i ∈ [2]. Now we want to show that ‘almost all’ vertices in Xi see

‘almost everything’ in Yi and vice versa, for i ∈ [2]. First, by (3.2.1) and by the fact
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that ν ≪ τ, µ, we have

e(X1, Y1)
|X1| |Y1|

≥ (1/2 − ε− ν/τ)n |X1|
|X1| |Y1|

≥ (1/2 − µ)n
(1/2 + µ)n ≥ 1 − 4µ.

Now let S = {v ∈ X1 : dY1(v) ≤ (1 − α) |Y1|}. Then e(X1, Y1) ≤ (1 − α) |Y1| |S| +

(|X1| − |S|) |Y1|. Therefore, combining these inequalities gives

(1 − 4µ) |X1| |Y1| ≤ (1 − α) |Y1| |S| + (|X1| − |S|) |Y1|

⇐⇒ α |S| ≤ 4µ |X1|

⇐⇒ |S| ≤ 4µ
α

|X1| .

Therefore, since µ ≪ α, we get that |S| ≤ √
µ |X1|. Therefore, we know that at least

(1 − √
µ) |X1| ≥ (1 −β) |X1| vertices in X1 have at least (1 −α) |Y1| neighbours in Y1.

By symmetry, we know there must be at least (1 − √
µ) |Y1| ≥ (1 − β) |Y1| vertices

in Y1 which have at least (1 − α) |X1| neighbours in X1.

Observe also that by (3.2.2),

e(X2, Y2)
|X2| |Y2|

≥ (1/2 − ε− ν)n |Y2|
|X1| |Y1|

≥ (1/2 − µ)n
(1/2 + µ)n ≥ 1 − 4µ.

Therefore, we can use the same argument as before to show that at least (1 −
√
µ) |X2| ≥ (1 − β) |X2| vertices in X2 have at least (1 −α) |Y2| neighbours in Y2. By

symmetry, we know there must be at least (1 − √
µ) |Y2| ≥ (1 − β) |Y2| vertices in Y2

which have at least (1 − α) |X2| neighbours in X2, and this concludes the proof.

Lemma 3.2.6. Let 1/n ≪ ε ≪ ν ≪ τ ≪ 1. Let G = (A,B) be a robust (ν, τ)-

expander, with |A| = |B| = n. Let A′ ⊂ A and B′ ⊆ B with |A′| = |B′| ≥ (1 − ε)n.

Then G′ = G[A′, B′] is a robust (ν − ε, τ)-expander.

Proof. Let G′ be as above, let n′ = |A′| = |B′| ≥ (1 − ε)n and take S ⊂ A′ satisfying

τn′ ≤ |S| ≤ (1−τ)n′. There are two cases to consider. Suppose first that τn ≤ |S| ≤

(1 − τ)n′ ≤ (1 − τ)n. Then as G is a robust (ν, τ)-expander, |RNν,G(S)| ≥ |S| + νn.
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In particular, each vertex in RNν,G(S) has at least νn ≥ (ν − ε)n′ neighbours in S.

Then RNν−ε,G′(S) ≥ |S| + νn− εn ≥ |S| + (ν − ε)n′.

Now suppose that τn′ ≤ |S| < τn. Then let S ′ = S ∪ (A \ A′). Then τn ≤

τn′ +n−n′ ≤ |S ′| < (τ +ε)n ≤ (1−τ)n. Therefore, we have |RNν,G(S ′)| ≥ |S ′|+νn.

Again, this is the set of vertices in B with at least νn neighbours in S ′. Each of

these vertices must have at least (ν − ε)n ≥ (ν − ε)n′ neighbours in S. Therefore,

|RNν−ε,G′(S)| ≥ |S ′| + νn− εn ≥ |S| + (ν − ε)n′.

3.2.3 Fractional tilings

A key tool we will be using is fractional tilings. Recall that a fractional H-tiling in a

graph G is a function f which assigns a weight in [0, 1] to each copy of H in G such

that the sum of weights of copies of H adjacent to any vertex is at most 1. We say

this is perfect if ∑T a copy of H,v∈T f(T ) = 1 for every vertex v ∈ G. Note that we can

describe an H-tiling to be a function g which assigns a weight in {0, 1} to each copy

of H in G so that the weight at any vertex is at most 1, and we say this is a perfect

H-tiling if the weight at each vertex is exactly 1. Therefore, the problem of finding

a perfect fractional H-tiling can be thought of as an LP-relaxation of the problem of

finding an H-tiling.

Let G be a graph on n vertices. Then for any S ⊆ V (G), we say that the

characteristic vector χ(S) is the vector in {0, 1}n which has 1 in the coordinates

corresponding to vertices in S, and 0 elsewhere. For vectors x1, . . . ,xr ∈ Rn, we define

the positive cone of these vectors to be PC({x1, . . . ,xr}) = {∑j∈[r] λjxj : λ1, . . . , λr ≥

0}. Then a perfect fractional H-tiling is just an assignment of weights wT to each

copy T of H in G such that ∑T a copy of H wT · χ(V (T )) = 1, where 1 is the all 1s

vector. Therefore, we can state the following fact.

Fact 3.2.7. G has a perfect fractional H-tiling if and only if

1 ∈ PC(χ(V (T )) : T is a copy of H in G).
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This is crucial to our proof, since the following lemma gives us a concrete way to

use this fact.

Lemma 3.2.8 (Farkas’ Lemma [26]). Suppose x ∈ Rn \ PC(Y ) for some finite

Y ⊆ Rn. Then there is some vector a ∈ Rn such that a · y ≥ 0 for each y ∈ Y , and

a · x < 0.

In our context, this lemma implies that G has no perfect fractional H-tiling if

and only if there is some vector a ∈ Rn such that a · χ(T ) ≥ 0 for each copy T of H

in G, while a · 1 < 0. In the proof, we will use this to find a contradiction, therefore

implying the existence of a perfect H-tiling.

3.3 The extremal case

Our goal in this section is to prove that if G is close to extremal and meets our exact

minimum degree condition, then G contains a transversal Ck-factor. We assume

throughout that k ≥ 4 is even. Our aim in this section is then to prove Lemma 3.1.2.

The key structural feature of near-extremal graphs is that the sets

A1, . . . , Ak, B1, . . . , Bk, in that order, induce a subgraph of G which is close to a

blow-up of C2k, in the sense that there is a high density of edges between each

consecutive pair of sets. Since for much of the time we will work with this feature,

we frequently relabel the sets Ai and Bi as X1, . . . , X2k, where Xi = Ai for i ∈ [k]

and Xi = Bi−k for i ∈ {k + 1, . . . 2k}, with arithmetic on the indices of the sets

Xi always taken modulo 2k. For i ∈ Z we also define c(i) to be the unique integer

in [k] which is congruent to i modulo k, so in particular for each i ∈ [2k] we have

Xi ⊆ Vc(i). Note that the density conditions in the definition of ψ-extremal can then

be restated as saying that d(Xi, Xi+1), d(Xi, Zc(i+1)), d(Xi, Zc(i−1)) are all at least

1 − ψ for each i ∈ [2k]. The above is encapsulated in the following formal setup, to

which we frequently refer.
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Setup 3.3.1. Let G be a k-partite graph with vertex classes V1, V2, . . . , Vk each of

size n. For each i ∈ [k] let Ai, Bi and Zi be disjoint sets with Ai ∪ Bi ∪ Zi = Vi.

Define sets X1, . . . , X2k by setting Xi = Ai for each i ∈ [k] and Xi = Bi−k for each

i ∈ {k + 1, . . . , 2k}. Arithmetic on the indices of the sets Xi should always be taken

modulo 2k.

Our definition of extremal graphs only establishes density conditions between the

sets Xi and Zi rather than describing the neighbourhoods of individual vertices. The

following simple proposition allows us to deduce that across high-density pairs most

vertices have large neighbourhoods.

Proposition 3.3.2. Let G be a bipartite graph with vertex classes A and B. If

d(A,B) ≥ 1 − ψ, then there are at most
√
ψ|A| vertices x ∈ A with fewer than

(1 −
√
ψ)|B| neighbours in B.

Proof. If, on the contrary, more than
√
ψ|A| vertices x ∈ A have fewer than (1 −

√
ψ)|B| neighbours in B, then we find that

(1 − ψ)|A||B| ≤ d(A,B)|A||B| = e(A,B)

< (1 −
√
ψ)|A| · |B| +

√
ψ|A| · (1 −

√
ψ) · |B|

= (1 − ψ)|A||B|,

a contradiction.

Proposition 3.3.2 ensures that if G is ψ-extremal for small ψ, then almost all

vertices in Xi have few non-neighbours in Xi+1. However there remains the possibility

that some vertices have atypical neighbourhoods, and indeed there may be vertices

in Xi with no neighbours at all in Xi+1. The first step in the proof of Lemma 3.1.2

is to edit the partition witnessing that G is ψ-extremal to ensure that this is not the

case. For this we make the following definitions. Let a graph G, vertex classes Vi

and sets Ai, Bi, Zi and Xi be as in Setup 3.3.1. Then we describe vertices as follows.
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1. For i ∈ [2k] we say that x ∈ Xi is α-suitable if |N(x) ∩Xi+1| ≥ α|Xi+1|.

2. For i ∈ [k] we say that x ∈ Zi is α-good if |N(x) ∩Xj| ≥ (1 − α)|Xj| for each

j ∈ {i− 1, i+ 1, i− k + 1, i+ k − 1}.

3. For i ∈ [2k] we say that x ∈ Xi is α-good if |N(x) ∩Xj| ≥ (1 −α)|Xj| for each

j ∈ {i− 1, i+ 1} and |N(x) ∩Zj| ≥ (1 −α)|Zj| for each j ∈ {c(i− 1), c(i+ 1)}.

Note that whether a vertex is suitable or good depends on which set it is contained

in, but this will always be clear from the context. The next proposition encapsulates

how we will edit the partition to ensure that all vertices in the sets Xi are suitable.

Proposition 3.3.3. Suppose that k ≥ 4 is even, that 1/n ≪ ψ ≪ α ≪ 1/k, and

that n is divisible by 2k. Let G be a balanced k-partite graph whose vertex classes

V1, . . . , Vk each have size n with δ∗(G) ≥ (k + 1)n/2k, and let m := ⌈4
√
ψn⌉. If G

is ψ-extremal, then there exist sets Ai, Bi, Zi for i ∈ [k] and Xi for i ∈ [2k] meeting

the conditions of Setup 3.3.1, and integers di for i ∈ [k], with the properties that

• |Ai| = (k − 1)n/2k + di +m,

• |Bi| = (k − 1)n/2k − di +m,

• |Zi| = n/k − 2m,

• for each i ∈ [2k], every vertex in Xi is 1/3-suitable, and

• for each i ∈ [k] at most 3m vertices in Vi are not α-good.

Proof. For each i ∈ [k] let A′
i, B

′
i, Z

′
i ⊆ Vi be pairwise disjoint sets witnessing that G

is ψ-extremal, in the sense that the conditions of Definition 3.1.1 are satisfied with

A′
i, B

′
i and Z ′

i in place of Ai, Bi and Zi respectively. Write X ′
i := A′

i for i ∈ [k] and

X ′
i := B′

i−k for i ∈ {k + 1, . . . , 2k}. In particular we then have |X ′
i| = (k − 1)n/2k

for each i ∈ [2k] and |Z ′
i| = n/k for each i ∈ [k]. Moreover, the density conditions

together with Proposition 3.3.2 imply the following.
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1. For each i ∈ [k], all but at most 4
√
ψ|Z ′

i| vertices of Z ′
i have at least (1 −

√
ψ)(k − 1)n/2k neighbours in each of X ′

i−1, X
′
i+1, X

′
i+k−1 and X ′

i+k+1; we call

these vertices provisionally good, and those which do not satisfy this condition

bad.

2. For each i ∈ [2k] all but at most 4
√
ψ|X ′

i| vertices of X ′
i have at least

(1 −
√
ψ)(k − 1)n/2k neighbours in each of X ′

i−1 and X ′
i+1 and at least

(1 −
√
ψ)n/k neighbours in each of Z ′

c(i−1) and Z ′
c(i−1). Again we call these

vertices provisionally good, and those which do not satisfy this condition bad.

Since δ∗(G) ≥ (k + 1)n/2k we also know that for each i ∈ [2k], each vertex x ∈ Vi

either has at least |X ′
i+1|/2 neighbours in |X ′

i+1| or at least |X ′
i+k+1|/2 neighbours in

X ′
i+k+1; we say that vertices satisfying the former condition are A-suitable, whilst

those satisfying the latter but not the former are B-suitable (so that every vertex

is either A-suitable or B-suitable, but not both). Observe moreover that for each

i ∈ [k], all provisionally good vertices in A′
i = X ′

i are A-suitable, and all provisionally

good vertices in B′
i = X ′

i+k are B-suitable.

Observe also that for each i ∈ [k] the number of bad vertices in Vi is at most

4
√
ψ(|Z ′

i| + |X ′
i| + |X ′

i+k|) = 4
√
ψn ≤ m. So we may choose for each i ∈ [k] a set

ZAi of m vertices of Z ′
i which includes all bad vertices of Z ′

i which are A-suitable,

and a set ZBi of m vertices of Z ′
i which includes all bad vertices of Z ′

i which are

B-suitable, in such a way that ZAi and ZBi are disjoint (note that ZAi ∪ZBi must

then include all bad vertices in Z ′
i). Let ABi consist of all vertices of A′

i which are

not A-suitable (and so are B-suitable), and let BAi consist of all vertices of B′
i which

are not B-suitable (and so are A-suitable). Now for each i ∈ [k] define

Ai := (A′
i \ ABi) ∪BAi ∪ ZAi,

Bi := (B′
i \BAi) ∪ ABi ∪ ZBi,

Zi := Z ′
i \ (ZAi ∪ ZBi).
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For each i ∈ [k] let Xi = Ai, and for i ∈ {k+ 1, . . . , 2k} let Xi = Bi−k. Also, for each

i ∈ [k] let di := |BAi| − |ABi|. Observe that the graph G, the vertex classes Vi and

the sets Ai, Bi, Zi and Xi then meet the requirements of Setup 3.3.1, and furthermore

that the size conditions follow from the sizes of the sets A′
i, B

′
i, Z

′
i, ABi, BAi, ZAi

and ZBi. So it remains only to check the final two conditions.

Observe that for each i ∈ [2k] we have |X ′
i△Xi| ≤ 3m and |Z ′

c(i)△Zc(i)| ≤ 2m.

For each i ∈ [k], by choice of the sets ABi, BAi, ZAi and ZBi, every vertex of

Ai = Xi is A-suitable (in the sense defined above) so has at least |X ′
i+1|/2 − 3m ≥

(|Xi+1| − 3m)/2 − 3m ≥ |Xi+1|/3 neighbours in Xi+1, and likewise every vertex of

Bi = Xi+k is B-suitable so has at least |X ′
i+k+1|/2 − 3m ≥ |Xi+k+1|/3 neighbours

in Xi+k+1. We conclude that for each i ∈ [2k] every vertex in Xi is 1/3-suitable

(with respect to the graph G and the sets Xi). Similar calculations show that for

each i ∈ [k] every vertex of Vi \ (ZAi ∪ ZBi) which is provisionally good (as defined

above) is in fact α-good (with respect to the graph G and the sets Xi). Since

|ZAi| = |ZBi| = m and at most m vertices of Vi are not provisionally good, this

completes the proof.

Proposition 3.3.4. Fix ℓ ≥ 3, let Y1, . . . , Yℓ be pairwise-disjoint sets of vertices,

and for each i ∈ [ℓ] let di ≥ 0 be an integer. Also let G be a graph with vertex set⋃
i∈[ℓ] Yi, and let Q ⊆ V (G) have |Z ∩ Yi| < |Yi| − (di−1 + di + di+1) for each i ∈ [ℓ]

(indices taken modulo ℓ). If every vertex in Yi has at least di neighbours in Yi+1, then

there exists a family (M1, . . . ,Mℓ) of matchings in G such that for each i ∈ [ℓ] the

matching Mi is a matching in G[Yi \Q, Yi+1] with |Mi| = di, and the matchings Mi

are pairwise vertex-disjoint.

We note that for each i ∈ [ℓ] a matching of size di in G[Yi \Q, Yi+1] can be chosen

by arbitrarily choosing di vertices of Yi \ Q and then greedily selecting a distinct

neighbour for each; the difficulty is to ensure that the chosen matchings have no

vertices in common.

65



Proof. Let M be the set of all families (M1, . . . ,Mℓ) of matchings in G such that for

each i ∈ [ℓ] the matching Mi is a matching in G[Yi \Q, Yi+1] with |Mi| ≤ di, and the

matchings Mi are pairwise vertex-disjoint. Choose a family M = (M1, . . . ,Mℓ) ∈ M

for which ∑i∈[ℓ] |Mi| is maximal among all elements of M; we will write V (M) for⋃
i∈[ℓ] V (Mi).

Suppose for a contradiction that ∑i∈[ℓ] |Mi| <
∑

i∈[ℓ] di. This implies that we

may fix i ∈ [ℓ] with |Mi| < di, whereupon every vertex x ∈ Yi \ Q has at least

one neighbour in Yi+1 \ V (Mi). If there exists a vertex x ∈ Yi \ (V (M) ∪ Q) with

a neighbour y ∈ Yi+1 \ V (M) then we can add the edge xy to Mi to obtain a

contradiction. So we may assume that every vertex x ∈ Yi \ (V (M) ∪ Q) has a

neighbour in Yi+1 ∩Mi+1. Since |Yi \ (V (M) ∩Q)| > |Yi| −di −di−1 − |Q∩Yi| > di+1,

by the pigeonhole principle we may choose distinct vertices xi, x
′
i ∈ Yi \ (V (M) ∪Q)

which share the same neighbour yi ∈ Yi+1 ∩ V (Mi+1). Let zi ∈ Yi+2 be the neighbour

of yi in Mi+1.

We now proceed iteratively as follows for each j ∈ [ℓ−1] in turn: arbitrarily choose

a vertex xi+j ∈ Yi+j \(V (M)∪Q) and a neighbour yi+j ∈ Yi+j+1\(V (Mi+j)\{zi+j−1})

of xi+j ; this is possible since |Mi+j| ≤ di+j and zi+j−1 ∈ V (Mi+j) so there will be

at least one neighbour available to choose. If yi+j /∈ V (Mi+j+1) then by adding the

edge xiyi to Mi and, for each j′ ∈ [j], replacing the edge yi+j′−1zi+j′−1 by the edge

xi+j′yi+j′ in Mi+j , we obtain a family which contradicts the maximality of M . So we

may assume that yi+j ∈ V (Mi+j+1); let zi+j be the neighbour of yi+j in Mi+j+1.

If yℓ−1 ̸= xi, then by adding the edge xiyi to Mi and, for each j ∈ [ℓ − 1],

replacing the edge yi+j−1zi+j−1 by the edge xi+jyi+j in Mi+j, we obtain a family

which contradicts the maximality of M . On the other hand, if yℓ−1 = xi then the

same is true with x′
i in place of xi. In either case we conclude from the contradiction

that actually we must have ∑i∈[ℓ] |Mi| = ∑
i∈[ℓ] di, and so our chosen M satisfies the

conditions of the proposition.

Corollary 3.3.5. Fix k ≥ 4 and α ≪ 1/k, and suppose that 2k divides n. Let a
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graph G, vertex classes Vi for i ∈ [k] and sets Ai, Bi, Zi and Xi be as in Setup 3.3.1.

Suppose also that δ∗(G) ≥ (k + 1)n/2k, and that for each i ∈ [2k], taking di :=

|Xi| − (k − 1)n/2k, we have 0 ≤ di ≤ αn. Finally let Q be a set of at most αn

vertices of G. Then there exists a matching Mi in G[Xi+k−1 \ Q,Xi] of size di for

each i ∈ [2k] such that the matchings Mi are pairwise vertex-disjoint.

Proof. Observe first that each vertex v ∈ Xi+k−1 has at least δ∗(G)−(|Vi|−|Xi|) ≥ di

neighbours in Xi, and also note that the condition that α ≪ 1/k ensures that

|Q ∩Xi| < |Xi| − 3 maxi∈[2k] di for each i ∈ [2k]. This is because

|Q ∩Xi| = 1/2(|Q| + |Xi| − |Q \Xi| − |Xi \Q|)

≤ αn ≤ (k − 1)n/8k ≤ (k − 1)n/2k − 3αn

≤ |Xi| − 3αn ≤ |Xi| − 3 max
i∈[2k]

di.

If k is even, set Yi = X(k+1)i for each i ∈ [2k], and note that since k + 1 and 2k are

coprime, the sets Y1, . . . , Y2k are then precisely the sets X1, . . . , X2k, just labelled

differently but maintaining the same order. Our initial observation above then implies

that each x ∈ Yi has at least di neighbours in Yi+1, so we may apply Proposition 3.3.4

to find a family of pairwise vertex-disjoint matchings M ′
i for i ∈ [2k] such that M ′

i

is a matching of size di in G[Yi \Q, Yi+1]; relabelling by taking Mi := M ′
(k+1)i then

gives the required matchings.

If k is odd, set Y 0
i = X(k+1)i and Y 1

i = X1+(k+1)i for each i ∈ [k], and note that

since gcd(k + 1, 2k) = 2, the sets Y a
i for a ∈ {0, 1} and i ∈ [k] are again precisely

the sets X1, . . . , X2k, just labelled differently. For each i ∈ [k] let a(i) = i(k + 1)

and b(i) = 1 + i(k + 1); our initial observation then implies that each x ∈ Y 0
i has

at least da(i) neighbours in Y 0
i+1, and each x ∈ Y 1

i has at least db(i) neighbours in

Y 1
i+1. So applying Proposition 3.3.4 twice, first to the sets Y 0

i for i ∈ [k], then to the

sets Y 1
i for i ∈ [k], yields families M0

i and M1
i of pairwise-disjoint matchings such

that M0
i is a matching of size da(i) in G[Y 0

i \ Q, Y 0
i+1], whilst M1

i is a matching of
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size db(i) in G[Y 1
i \Q, Y 1

i+1]. Relabelling by taking Mi := M ′
(2k+1)(i−1) if i is odd and

Mi = M ′
(2k+1)i if i is even then gives the required matchings.

Under the structure of Setup 3.3.1, a canonical cycle of index i is a copy of Ck

with vertices in Zc(i), Xi+1, Xi+2, . . . , Xi+k−1.

Proposition 3.3.6. Let 1/n ≪ α ≪ β ≪ 1/k. Let a graph G, vertex classes Vi for

i ∈ [k] and sets Ai, Bi, Zi and Xi be as in Setup 3.3.1, and let Q be a set of at most

βn ‘forbidden’ vertices of G, where in particular Q contains all vertices of G which

are not α-good. Then the following statements hold.

(i) For each i ∈ [2k] there is a canonical cycle in G of index i which does not

include any vertex of Q.

(ii) Let i ∈ [2k] and let x ∈ Xi be an α-suitable vertex. Then there is a canonical

cycle in G with index either i−1 or i−2 which contains x and does not include

any vertex of Q other than x.

(iii) Let i ∈ [2k] and let xy be an edge of G for which y ∈ Xi is α-suitable and x

is a good vertex in Xi+k−1. Then there exists a cycle of length k in G which

includes the edge xy and has vertices in Xi, Xi+1, . . . , Xi+k−1 where all vertices

except perhaps x and y are not in Q.

Proof. For (i) we can form such a cycle greedily. Choose a good vertex x1 ∈ Xi+1 \Q,

and then for each j ∈ {2, . . . , k − 1} in turn choose a good vertex xj ∈ (Xi+j ∩

N(xj−1)) \ Q; in each case this is possible since xj−1 is α-good so has at least

(1 − α)|Xi+j| > βn ≥ |Q| neighbours in Xi+j. To complete the cycle choose a

vertex y ∈ (Zc(i) ∩ N(xk−1) ∩ N(x1)) \ Q; this is possible since xk−1 and x1 are

both α-good so each has at least (1 − α)|Zc(i)| neighbours in Zi−1, and it follows

that |Zc(i) ∩ N(xk−1) ∩ X1| ≥ |Zc(i)| − αn ≥ |Q|. We then have the desired cycle

x1x2 . . . xk−1y.
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For (ii) we proceed similarly, except first we choose the neighbour of x in Vc(i−1).

Observe that either x has at least βn neighbours in Xi−1 or at least βn neighbours in

Zc(i−1). In the former case we form a canonical cycle with index i− 2 which contains

x, and in the latter case we form a canonical cycle with index i− 1 which contains x.

The argument for (iii) is again similar: we greedily choose the vertices of the

cycle in Xi+1, . . . , Xi+k−2 in turn.

Proposition 3.3.7. Let a graph G, vertex classes Vi for i ∈ [k] and sets Ai, Bi, Zi

and Xi be as in Setup 3.3.1. Suppose that 2k divides n, that |Ai| = |Bi| = (k−1)n/2k

for each i ∈ [2k] and |Zi| = n/k for each i ∈ [k]. Suppose also that every vertex is
1

4k
-good. Then G contains a transversal Ck-factor.

Proof. For each i ∈ [k] arbitrarily partition Zi into two parts Z ′
i and Z ′

i+k of equal

size n/2k. Likewise, for each i ∈ [2k] let X1
i , . . . , X

k−1
i be an arbitrary partition

of Xi into k − 1 parts of equal size n/2k. Each bipartite graph G[Xj
i , X

j+1
i+1 ] then

has minimum degree at least n/4k, and so admits a perfect matching. Taking the

union of these perfect matchings, we obtain for each i ∈ [2k] a perfect Pk−2-tiling

Pi in G[X1
i+1, X

2
i+2, . . . , X

k−1
i+k−1]. Let Bi be the bipartite graph whose vertex classes

are Z ′
i and Pi, where v ∈ Z ′

i and P ∈ Pi are adjacent in Bi if v is a neighbour

of both endvertices of P , that is, if v together with the vertices of P forms a

copy of Ck in G. Bi then has minimum degree at least n/4k, and so admits a

perfect matching. The corresponding copies of Ck then form a perfect Ck-tiling in

G[Z ′
i, X

1
i+1, X

2
i+2, . . . , X

k−1
i+k−1], and combining these tilings for every i ∈ [2k] gives a

transversal Ck-factor in G, as required.

Finally we combine all of the previous results to prove Lemma 3.1.2.

Proof of Lemma 3.1.2. Choose constants α and β such that ψ ≪ α ≪ β ≪ 1/k.

Let m =
⌈
4
√
ψn
⌉
. By Proposition 3.3.3 there exist sets Ai, Bi, Zi and Xi for i ∈ [k]

meeting the conditions of Setup 3.3.1, and integers di with |di| ≤ m for i ∈ [k], with

the properties that
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• |Ai| = (k − 1)n/2k + di +m,

• |Bi| = (k − 1)n/2k − di +m,

• |Zi| = n/k − 2m,

• for each i ∈ [2k], every vertex in Xi is α-suitable, and

• at most αn vertices are not α-good.

Here, the fourth conclusion holds because of the observation that a vertex being

α-suitable implies that it is α′-suitable for each α′ ≤ α. This follows directly from the

definition. For each i ∈ [2k] let ci := |Xi|−(k−1)n/2k, so that 0 ≤ ci ≤ 2m. Also let

B consist of all vertices in G which are not α-good, so |B| ≤ αn. By Corollary 3.3.5

there exists a matching M which, for each i ∈ [2k], contains precisely ci edges with

one vertex in Xi+k−1 \Q and the other in Xi (and no edges other than these). Let

Mi denote the edges for each i. Here, we can apply Corollary 3.3.5 because α ≪ 1/k.

Apply Proposition 3.3.6 (iii) iteratively to choose, for each i ∈ [2k] and each

edge e ∈ Mi, a copy C of Ck in G which includes the edge e and has vertices in

Xi, Xi+1, . . . , Xi+k−1. In each of these applications of Proposition 3.3.6 we take the

forbidden set Q to consist of all vertices in B, in M or in any previously-chosen

cycles. Therefore, we can apply Proposition 3.3.6 since we have |Q| ≤ |B| +k · |M | ≤

αn+ 4k2m ≤ βn. In this way we ensure that all of the ∑i∈[2k] ci chosen cycles are

pairwise vertex-disjoint. Let C1 be the collection of cycles chosen in this step. Note

that |V (C1)| ≤ k |M | ≤ 4k2m.

For each i ∈ [2k] let Bi := (B ∩Xi) \ V (C1), and write bi := |Bi|. We next apply

Proposition 3.3.6 (ii) iteratively to choose, for each i ∈ [2k] and each vertex x ∈ Bi,

a canonical cycle in G with index either i − 1 or i − 2 which contains x. In each

of these applications of Proposition 3.3.6 we take the forbidden set Q to consist of

all vertices in B or in V (C1), or in any previously-chosen cycles. Therefore, we can

apply Proposition 3.3.6 again because |Q| ≤ k · |B| + |C1| ≤ kαn+ 4k2m ≤ βn. This
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ensures that all of the ∑i∈[2k] bi chosen cycles are pairwise vertex-disjoint. Let C2 be

the collection of cycles chosen in this step. Note that |V (C2)| ≤ kαn.

For each i ∈ [2k] we now apply Proposition 3.3.6 (i) iteratively to choose, for

each i ∈ [2k], a total of (∑j∈[2k](cj + bj)) − ci − bi canonical cycles in G of index

i. In each of these applications of Proposition 3.3.6 we take the set Q to consist

of all vertices in V (C1) ∪ V (C2) or in any previously-chosen cycles. Once again, we

can apply Proposition 3.3.6 because Q ≤ kαn+ 4k2m+ 8k2m+ 4k2αn ≤ βn. This

ensures that all of the chosen cycles are pairwise vertex-disjoint. Let C3 be the

collection of cycles chosen in this step.

Let C := C1 ∪ C2 ∪ C3 be the set of all cycles we have chosen, and write t := |C|

and n∗ := n − t. Note that t = k(∑j∈[2k](cj + bj)). Let X∗
i := Xi \ V (C) and

Z∗
i := Zi \ V (C) for each i. For each i we then have

|X∗
i | = |Xi| − (k − 1)t/k − ci = (k − 1)n∗/2k,

and |Z∗
i | = n∗ − |X∗

i | − |X∗
i+k| = n∗/k. Moreover, since all vertices which were not

good were covered by C, all remaining vertices are 2α-good. By Proposition 3.3.7

then gives us a perfect Ck-tiling C ′ in G∗ := G \ C, whereupon C ∪ C ′ is a perfect

Ck-tiling in G.

3.4 Proof of Lemma 3.1.3

We now state the Regularity Lemma of Szemerédi [67]. Though this was originally

conceived to solve a problem relating to arithmetic progressions in the integers, it has

since seen numerous applications in results relating to embedding large subgraphs

into graphs. Notably, an early application in the area of graph tilings is the proof by

Komlós, Sárközy and Szemerédi [44] of a conjecture of Alon and Yuster [3], showing

that for any graph F , there is some constant C = C(F ) such that for any n which is

divisible by |F |, any n-vertex graph with minimum degree at least (1 − χ(F ))n+ C
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contains an F -factor. This was improved on by Kühn and Osthus [50] who showed

that χ(F ) could be replaced by a new quantity χ∗(F ). Here, depending on some

properties of the graph F , the quantity χ∗(F ) is either equal to the critical chromatic

number χcr(F ), or the chromatic number χ(F ). For brevity, we do not define these

notions here. For more examples of applications of the regularity lemma to graph

embedding results, see [47].

For a graph G and disjoint vertex sets X, Y ⊆ V (G), we write G[X, Y ] for the

bipartite subgraph of G with vertex classes X and Y comprising all edges of G

containing both a vertex of X and a vertex of Y , and write dG(X, Y ) for the density

of this subgraph, that is, dG(X, Y ) := e(G[X,Y ])
|X||Y | (we omit the subscript G when it is

clear from the context). Now let G be a bipartite graph with vertex classes A and B.

We say that G is (d, ε)-regular if d(X, Y ) = d± ε for all sets X ⊆ A and Y ⊆ B with

|X| ≥ ε|A| and |Y | ≥ ε|B|. Sometimes we do not wish to specify the density exactly,

in which case we say that G is ε-regular if there exists some d ∈ [0, 1] for which G

is (d, ε)-regular, and we say that G is (≥ d, ε) regular if there exists d′ ∈ [d, 1] for

which G is (d′, ε)-regular.

Lemma 3.4.1 (Regularity Lemma [67]). Suppose that 1/n ≪ 1/T ≪ 1/t, ε, 1/k.

Let G be a k-partite graph whose vertex classes V1, . . . , Vk each have size n. Then

there exist integers ℓ and m and a partition of Vi into parts X i
0, X

i
1, . . . X

i
ℓ for each

i ∈ [k] such that

(i) t ≤ ℓ ≤ T ,

(ii) |X i
0| ≤ εn for each i ∈ [k],

(iii) |X i
j| = m for every i ∈ [k] and j ∈ [ℓ],

(iv) for each i, i′ ∈ [k] with i ̸= i′ and each j ∈ [ℓ] there are at most εℓ elements

j′ ∈ [ℓ] for which G[X i
j, X

i′
j′ ] is not ε-regular.

Observe that we then have n − εn ≤ mℓ ≤ n. We will commonly refer to the

sets X i
j for i ∈ [k] and j ∈ [ℓ] obtained from the regularity lemma as clusters. For
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a given density parameter d > 0, once we have applied the regularity lemma to

a graph G in the given form, we may form a d-reduced graph R whose vertices

are the clusters X i
j for i ∈ [k] and j ∈ [ℓ] and which has an edge between X i

j

and X i′
j′ if the subgraph G[X i

j, X
i′
j′ ] is (≥ d, ε)-regular; the edges of R then indicate

where we can usefully work with regularity. Observe that the reduced graph R is

naturally k-partite with vertex classes Ui = {X i
j : j ∈ [ℓ]}. Moreover, with respect

to these vertex classes R inherits a degree condition from G; more precisely we

have δ∗(R) ≥ ℓ
n

· δ∗(G) − (d + 3ε)ℓ. Indeed, for any cluster X i
j in Ui there are

at least mδ∗(G) edges of G between X i
j and Vi+1. At most εn · m of these edges

include a vertex of X i+1
0 , at most εℓm2 ≤ εnm are contained in pairs G[X i

j, X
i+1
j′ ]

which are not ε-regular, and at most (d+ ε)m2ℓ ≤ (d+ ε)nm are contained in pairs

G[X i
j, X

i+1
j′ ] with d(X i

j, X
i+1
j′ ) ≤ (d+ ε) (which is an upper bound for the density of

a pair which is ε-regular but not (≥ d, ε)-regular). We conclude that the number

of edges between X i
j and Vi+1 which are contained in pairs G[X i

j, X
i+1
j′ ] which are

(≥ d, ε)-regular is at least mδ∗(G) − 2εnm− (d+ ε)nm = mn(δ∗(G)/n− (d+ 3ε)).

Since each pair contains at most m2 ≤ mn/ℓ edges we conclude that X i
j has at least

mn(δ∗(G)/n−(d+3ε))/(mn/ℓ) = ℓ
n
δ∗(G)−(d+3ε)ℓ neighbours in Ui+1; an identical

argument with i− 1 in place of i+ 1 shows that X i
j has at least ℓ

n
δ∗(G) − (d+ 3ε)ℓ

neighbours in Ui−1 as well, giving the claimed degree condition.

The key properties of regularity for our purposes are expressed by the next two

lemmas; both are standard results but we include short proofs for completeness. The

first, often called the slicing lemma, states that regularity is inherited (with weaker

parameters) by subgraphs induced by not-too-small subsets of each cluster.

Lemma 3.4.2 (Slicing Lemma). Fix d, ε, α ∈ [0, 1], and let G be a (d, ε)-regular

bipartite graph with vertex classes A and B. For all sets X ⊆ A and Y ⊆ B with

|X| ≥ α|A| and |Y | ≥ α|B| the induced subgraph G[X, Y ] is (d, ε/α)-regular.

Proof. For all sets X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ (ε/α)|X| and |Y ′| ≥ (ε/α)|Y | we

have |X ′| ≥ ε|A| and |Y ′| ≥ ε|B|. By regularity of G it follows that d(X ′, Y ′) = d±ε,
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so d(X ′, Y ′) = d± ε/α, as required.

The second lemma states that if we have k clusters arranged in cyclical fashion,

and each consecutive pair of clusters forms a dense regular pair, then we can find a

copy of Ck with one vertex in each cluster. This is a vastly simplified form of the

Counting Lemma, with allows us to estimate the number of partition-respecting

copies of any small k-partite subgraph in G, but it suffices for our purposes.

Lemma 3.4.3. Let G be a k-partite graph with vertex classes X1, . . . , Xk in which

G[Xi, Xi+1] is (≥ d, ε)-regular for every i ∈ [k] (with addition on the indices taken

modulo k). If 2ε < d ≤ 1, then G contains a transverse copy of Ck.

Proof. Observe that the regularity condition implies that for each i ∈ [k] fewer than

ε|Xi| vertices in Xi have at most ε|Xi+1| neighbours in Xi+1, and fewer than ε|Xi+1|

vertices in Xi+1 have at most ε|Xi| neighbours in Xi. So we may choose a vertex

x1 ∈ X1 with |N(x1) ∩ X2| > ε|X2| and |N(x1) ∩ Xk| > ε|Xk|. Similarly, for each

2 ≤ j ≤ k−2 in turn we may choose xj ∈ Xj ∩N(xj−1) with |N(xj)∩Xj+1| > ε|Xj+1|.

Now write S := N(x1) ∩Xk. Since |S| ≥ ε|Xk|, the regularity condition ensures that

fewer than ε|Xk−1| vertices in Xk−1 have at most ε|S| neighbours in S. So we may

choose xk−1 ∈ N(xk−2) ∩Xk−1 with |N(xk−1) ∩ S| ≥ ε|S| > 0, and then take xk to

be any neighbour of xk−1 in S, to obtain the desired cycle x1x2 . . . xkx1.

We now prove Lemma 3.1.3 given Theorem 3.1.4 and Lemma 3.1.5. Haxell and

Rödl [34] showed that for any H for sufficiently large n, whenever an n-vertex graph

contains a perfect fractional H-factor, it also contains an ‘almost perfect’ H-tiling.

We derive an an analogous result for transversal H-factors in multipartite graphs

using similar methods.

Proof of Lemma 3.1.3. Introduce new constants with 1/n ≪ 1/T ≪ 1/t, ε ≪ d ≪

σ ≪ γ ≪ ψ′ ≪ ψ, 1/k. Let G be a balanced k-partite graph whose vertex classes

V1, . . . , Vk each have size n and which satisfies δ∗(G) ≥ (1
2 + 1

2k
− γ)n. Apply
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Lemma 3.1.5 to obtain an integer z ≤ σn and an absorbing set A ⊆ V (G) with

|A ∩ Vi| = z for each i ∈ [k] such that if G− A has a transversal Ck-tiling of size at

least n− z − σ2n, then G contains a transversal Ck-factor.

Apply the regularity lemma (Lemma 3.4.1) to G− A (with vertex classes Vi \ A

for each i ∈ [k]) to obtain integers ℓ and m and, for each i ∈ [k], a partition of Vi \A

into parts X i
0, X

1
1 , . . . X

i
ℓ, such that

1. t ≤ ℓ ≤ T ,

2. |X i
0| ≤ ε(n− z) ≤ εn for each i ∈ [k],

3. |X i
j| = m for every i ∈ [k] and j ∈ [ℓ],

4. for each i, i′ ∈ [k] with i ̸= i′ and each j ∈ [ℓ] there are at most εℓ elements

j′ ∈ [ℓ] for which G[X i
j, X

i′
j′ ] is not ε-regular.

For each i ∈ [k] define Ui := {X i
j : j ∈ [ℓ]}, and let R be the d-reduced

graph of G, as defined shortly after Lemma 3.4.1, so X i
jX

i′
j′ is an edge of R if

G[X i
j, X

i′
j′ ] is (≥ d, ε)-regular. As noted there, the reduced graph R is then k-partite

with vertex classes U1, . . . , Uk, each of which has size ℓ, and moreover we have

δ∗(R) ≥ ℓ
n−z

· δ∗(G−A) − (d+ 3ε)ℓ ≥ (1
2 + 1

2k
− γ− σ)ℓ− (d+ 3ε)ℓ ≥ (1

2 + 1
2k

− 2γ)ℓ.

We may therefore apply Theorem 3.1.4 to deduce that R either contains a perfect

fractional Ck-tiling or is ψ′-extremal.

Suppose first that R contains a perfect fractional transversal Ck-tiling. Let

C(R) denote the set of transverse copies of Ck in R, and for each C ∈ C(R) let

wC ∈ [0, 1] be the weight of C in this tiling. Also for each X ∈ V (R) let C(X) :=

{C ∈ C(R) : X ∈ V (C)}, so by the definition of a perfect fractional tiling we have∑
C∈C(X) wC = 1 for each X ∈ V (R). We now greedily choose, for each C ∈ C(R)

in turn, a collection of ⌊(1 − d)wCm⌋ transverse copies of Ck in G, each with one

vertex in each cluster in C. Moreover we do this so that the chosen copies of Ck in

G are pairwise vertex-disjoint, meaning that they form a transversal Ck-tiling C in
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G − A. We write V (C) := ⋃
C∈C V (C). To see that it is possible to form C in this

way, observe that for each X ∈ V (R) we have

|V (C) ∩X| =
∑

C∈C(X)
⌊(1 − d)wCm⌋ ≤ (1 − d)m

∑
C∈C(X)

wC = (1 − d)m.

This means that every time we come to choose a copy of Ck in G, with one vertex

in each cluster in some cycle C ∈ C(R), we know that at least dm vertices of each

cluster of C have not been used by previously-chosen cycles. So if we let Y1, . . . , Yk

be the clusters of C (with Yi ∈ Ui for each i ∈ [k]), and for each i ∈ [k] let Y ′
i be the

set of as-yet-unused vertices in Yi, then G[Yi, Yi+1] is (≥ d, ε)-regular by definition

of R, so G[Y ′
i , Y

′
i+1] is (≥ d, ε/d)-regular by Lemma 3.4.2. We may therefore use

Lemma 3.4.3 to choose a transverse copy of Ck in G with one vertex in each set Y ′
i ,

as required. Using the fact that |C(R)| ≤ ℓk, we find that C has size at least

|C| =
∑

C∈C(R)
⌊(1 − d)wCm⌋ ≥

 ∑
C∈C(R)

(1 − d)wCm

− ℓk

≥ (1 − d)ℓm− ℓk ≥ (1 − d)(1 − ε)(n− z) − σ2n/2 ≥ n− z − σ2n,

where in the third inequality we used the properties of our application of the regularity

lemma which imply that ℓm ≥ (1 − ε)(n− z) and ℓ ≤ T , and our assumption that

1/n ≪ 1/T . By choice of A and the existence of C we conclude that G contains a

transversal Ck-factor.

Now suppose instead that R is ψ′-extremal. This means that there exist disjoint

subsets A′
i, B

′
i ⊆ Ui with |A′

i| = |B′
i| = ⌊(1

2 − 1
2k

)ℓ⌋ for each i ∈ [k] such that

dR(A′
1, A

′
k) ≤ ψ′, dR(B′

1, B
′
k) ≤ ψ′, and for each i ∈ [k−1] we have dR(A′

i, B
′
i+1) ≤ ψ′

and dR(B′
i, A

′
i+1) ≤ ψ′. Observe that for each i ∈ [k] we have

∣∣∣∣∣∣
⋃

X∈A′
i

X

∣∣∣∣∣∣ = m|A′
i| = m

⌊(1
2 − 1

2k

)
ℓ
⌋

≤
⌊(1

2 − 1
2k

)
mℓ
⌋

≤
⌊(1

2 − 1
2k

)
n
⌋
,
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and likewise we have |⋃X∈B′
i
X| ≤ ⌊(1

2 − 1
2k

)n⌋, so we may choose subsets Ai, Bi ⊆ Vi

with |Ai| = |Bi| = ⌊(1
2 − 1

2k
)n⌋ such that ⋃X∈A′

i
X ⊆ Ai and ⋃X∈B′

i
X ⊆ Bi. Moreover,

for each i ∈ [k] we have

∣∣∣∣∣∣
⋃

X∈A′
i

X

∣∣∣∣∣∣ = m
⌊(1

2 − 1
2k

)
ℓ
⌋

≥
(1

2 − 1
2k

)
ℓm−m ≥

(1
2 − 1

2k

)
(1−ε)(n−z)−n

t
≥
(1

2 − 1
2k

)
n−2σn,

so |Ai \ ⋃X∈A′
i
X| ≤ 2σn, and likewise we have |Bi \ ⋃X∈B′

i
X| ≤ 2σn. So taking

a crude bound, the number of edges between A1 and Ak is at most ψ′ℓ2m2 + (d +

ε)ℓ2m2 + εℓ2m2 + 4σn2 ≤ ψ|A1||Ak|, so dG(A1, Ak) ≤ ψ. Similar calculations show

that dG(B1, Bk) ≤ ψ, and that for each i ∈ [k − 1] we have dG(Ai, Bi+1) ≤ ψ and

dG(Bi, Ai+1) ≤ ψ, so the sets Ai and Bi witness that G is ψ-extremal.

3.5 Finding a perfect fractional Ck-tiling

The aim of this section is to prove Theorem 3.1.4, which we recall below.

Theorem 3.1.4. Suppose that 1/n ≪ γ ≪ ψ, 1/k, and let G be a balanced k-partite

graph whose vertex classes each have size n. If δ∗(G) ≥ (1
2 + 1

2k
)n− γn, then either

G contains a perfect fractional Ck-tiling or G is ψ-extremal.

Recall that a copy of Ck in a k-partite graph G is transverse if it contains exactly

one vertex from each vertex-class of G. For a graph H on at most k vertices, we say

that a copy of H is partition-respecting in a k-partite graph G if it contains at most

one vertex from each vertex class. Thus, in some sense this generalises the notion of

being transverse to graphs with fewer than k vertices. Unless otherwise specified,

all cycles we consider in this section will be transversal cycles, and all paths will be

partition-respecting. Furthermore, whenever the vertex set of a cycle is indexed by

[k], we assume that the vertices indexed by i and i+ 1 are adjacent on the cycle, for

each i ∈ [k]. Similarly whenever the vertex set of a path is indexed by [ℓ], we assume

that the vertices indexed by 1 and ℓ are the endvertices and for each i ∈ [ℓ− 1], the
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vertices indexed by i and i+ 1 are adjacent on the path.

In order to illustrate the proof method, we first state and give a brief outline of

the proof of the following theorem, which has a slightly weaker degree condition, and

which can be used to give an alternative proof of the result of Ergemlidze and Molla

[24].

Lemma 3.5.1. Let 1/n ≪ γ ≪ 1/k ≪ 1. Let G be a k-partite graph with vertex

classes V1, . . . , Vk, each of size n, and δ∗(G) ≥ (1
2 + 1

2k
+ γ)n. Then G contains a

perfect fractional Ck-tiling.

Proof outline of Lemma 3.5.1. LetG be as above and suppose thatG contains no per-

fect fractional Ck-tiling. Then by Fact 3.2.7, 1 /∈ PC(χ(T ) : T is a copy of Ck in G).

Therefore, by Lemma 3.2.8 (Farkas’ lemma), there is a vector a ∈ Rkn such that for

each copy T of Ck in G, a ·χ(T ) ≥ 0, but a ·1 < 0. For each i ∈ [k], label the vertices

of Vi by vi,1, . . . , vi,n such that a ·χ(vi,j) ≤ a ·χ(vi,j′) for each j ≤ j′. Partition Vi into

two parts Vi,T and Vi,B, where Vi,T = {vi,1, . . . , vi, k−1
k

n} and Vi,B = {vi, k−1
k

n+1 . . . vi,n}.

Let GT = G[⋃i∈[k] Vi,T ] and let nT = (k−1)n
k

. Then δ∗(GT ) ≥ (1
2 +γ)nT . Therefore,

for each i ∈ [k], Hall’s condition implies that we can find a perfect matching between

Vi,T and Vi+1,T . This implies the existence of a perfect fractional Pk−2-tiling in GT , in

which each copy of Pk−2 has weight 0 or 1/(k−1). We prove this later in Lemma 3.5.3.

More importantly, let P be the collection of paths assigned a non-zero weight in this

fractional path tiling. Note that each such path intersects with exactly k − 1 vertex

classes. Split the collection P into k classes P1, . . . ,Pk such that Pi contains all

paths in P which do not intersect with Vi. There are (k− 1)n/k paths in Pi for each

i ∈ [k]. Split this into n/k equal parts Pi,1, . . . ,Pi,n/k each of size k − 1, and label

the paths in Pi,j by Pi,j,ℓ for ℓ ∈ [k − 1]. Now for each i ∈ [k], j ∈ [n/k], ℓ ∈ [k − 1],

let Ti,j,ℓ be the set of vertices in Pi,j,ℓ together with the vertex vi,(k−1)n/k+j. If T is

the collection of all these sets Ti,j,ℓ, then observe that each vertex in V (G) appears

in k − 1 paths in P and therefore in k − 1 sets in T . Therefore, χ(T ) = (k − 1) · 1.

Also, for each Ti,j,ℓ ∈ T , there is a cycle Ci,j,ℓ in G such that a · χ(Ci,j,ℓ) ≤
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a · χ(Ti,j,ℓ). This is because the endvertices of the path Pi,j,ℓ have at least n/k+ 2γn

common neighbours in Vi, and therefore, there is at least one such common neighbour

with smaller index than vi,(k−1)n/k+j. Therefore,

0 ≤
∑

i∈[k],j∈[n/k],ℓ∈[k−1]
a · χ(Ci,j,ℓ) ≤

∑
i∈[k],j∈[n/k],ℓ∈[k−1]

a · χ(Ti,j,ℓ)· = (k − 1) · a · 1 < 0,

a contradiction. Therefore, G contains a perfect fractional Ck-tiling.

Our proof works similarly to the proof outlined above, where we begin by assuming

there is no perfect fractional Ck-tiling and thus applying Farkas’ lemma to find an

ordering of the vertices. However, there are two major difficulties which arise when

adapting the proof outlined above to our setting which has a weaker degree condition.

The first difficulty is finding a perfect fractional Pk−2-tiling in GT . In the proof

of Lemma 3.5.1, Hall’s condition and the minimum degree immediately imply the

existence of a perfect matching between Vi,T and Vi+1,T for each i ∈ [k], and this

immediately allows us to find a perfect fractional Pk−2-tiling in GT . This is no longer

the case with the degree condition in Theorem 3.1.4. A significant portion of this

section is dedicated to determining when exactly we can find a perfect fractional

path tiling in GT . We make a distinction in cases depending on whether or not there

is a robust pair of vertex classes in GT . In particular we prove that if there is a

robust pair (Vi,T , Vi+1,T ) in GT , then GT contains a perfect fractional Pk−2-tiling,

namely, we prove the following.

Lemma 3.5.2. Let 1/n ≪ γ ≪ ν ≪ τ ≪ 1/k. Let G be a k-partite graph with

vertex classes V1, . . . , Vk, each of size n, and δ∗(G) ≥ (1
2 − γ)n. Suppose there is

some i∗ ∈ [k] such that G[Vi∗ , Vi∗+1] is a robust (ν, τ)-expander. Then G contains a

perfect fractional Pk−2-tiling.

When there is no such robust pair, Lemma 3.2.5 gives us a partition of (Vi,T , Vi+1,T )

into two graphs which are ‘close to’ complete bipartite graphs. In particular, each

vertex class Vi,T is partitioned twice. This time, we the case distinction we make is
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depending on how well aligned these two partitions are. Informally, we say these

partitions are well aligned if there is some labelling of the partitions A1 ∪ A2 and

B1 ∪ B2 such that Ai and Bi differ only in a small number of vertices. Otherwise,

we say they are not well aligned. It turns out that when there is some i∗ such that

the two partitions of Vi∗,T are not well aligned, we can find a perfect fractional path

tiling in GT . On the other hand, if these partitions are ‘aligned’ for each i ∈ [k],

then we show that either GT contains a perfect fractional path tiling, or the original

graph G is ψ-extremal.

The other key component of the proof of Lemma 3.5.1 which is difficult to adapt

to our setting is the step in which we use the path tiling we have found in order

to find a collection T of sets that cover the vertex set of G equally, and that each

dominate a cycle in G. In the proof of Lemma 3.5.1, we can do this directly by pairing

each path P with a vertex from Vi,B such that P ∩ Vi = ∅ to obtain each set T . As

long as we do this in a balanced way (i.e. covering each vertex equally), this suffices

in Lemma 3.5.1 since the degree condition ensures that the endvertices of P have a

common neighbour in Vi,T , so there is a cycle C which satisfies a · χ(C) ≤ a · χ(T ).

For Theorem 3.1.4 however, the degree condition only guarantees that the endvertices

of P have at least n/k− 2γn common neighbours in Vi. Therefore, we can only cover

(k − 1)(n/k − 2γn) vertices in each part Vi,T and n/k − 2γn vertices in each Vi,B in

this way.

In order to overcome this, we first need to find 2kγn cycles of length k which

use no vertices from VB. Again, by considering various cases depending on the

structure of GT , we show that these cycles can always be found unless G is close to

extremal. Then for each part Vi, we choose 2γn of these cycles which have not yet

been chosen and match each one with a vertex from {vi,n/k+1, . . . , vi,n/k+2γn} to get

sets T ′. Obtain T from T ′ by deleting the vertex which lies in Vi,T ∩ T ′. These sets

each dominate one of the cycles we have just found. Furthermore, if G′ is the graph

obtained by deleting these, if we can then find a perfect fractional Pk−2-tiling in
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VT ∩ V (G′), this allows us to proceed as before to find a perfect fractional Ck-tiling

in G.

The rest of the section is organised as follows. In Section 3.5.2, we prove

Lemma 3.5.2. Then in Section 3.5.2, we discuss what happens when there is no robust

pair. Finally in Section 3.5.3, we combine all the results to prove Theorem 3.1.4.

3.5.1 The robust expander case

The aim of this subsection is to prove Lemma 3.5.2. We begin by proving the

following lemma which tells us that a perfect matching between each pair Vi,T and

Vi+1,T gives a perfect fractional Pk−2-tiling.

Lemma 3.5.3. Let k ≥ 3, and n ∈ N. Let G be a k-partite graph with vertex classes

V1, . . . , Vk, each of size n. If there is a perfect matching between Vi and Vi+1 for

every i ∈ [k] (with indices taken modulo k), then G contains a perfect fractional

partition-respecting Pk−2-tiling, in which each partition-respecting copy of Pk−2 has

weight 0 or 1/(k − 1).

Proof. We prove this directly. Find a perfect matching between Vi and Vi+1 for each

i ∈ [k]. Let H be the subgraph of G which contains only edges from this matching.

Let P be the collection of all partition-respecting copies of Pk−2 in G. We define the

fractional Pk−2-tiling to be the function f : P → [0, 1] such that f(P ) = 1/(k− 1) for

each P ∈ P such that P lies in H, and f(P ) = 0 otherwise. Clearly, f is well defined

and each path is assigned a weight in [0, 1]. Note that each vertex v of G is contained

in exactly k − 1 paths in P which also lie in H, (that is, one path containing v

in each possible position along the path). Therefore, ∑P ∈P,v∈P f(P ) = 1, for each

vertex v ∈ V (G), as required.

In order to prove Lemma 3.5.2, it would therefore be enough to find a perfect

matching between Vi and Vi+1 for each i ∈ [k]. However, this might not always

be possible. For example, G[Vi, Vi+1] could be the union of two almost complete

81



biparitite graphs which have parts of unequal size, and therefore, there is no perfect

matching between these parts. However, what we can do instead is to first remove a

set of paths which, in some sense, balance the parts of G. That is, whenever there is

a pair (Vi, Vi+1) which is close to the union of two almost complete bipartite graphs

with imbalance in the part sizes, we remove a collection of paths which correct the

imbalance in this pair while not affecting imbalance in any other pair. Therefore,

once we have done this for each i ∈ [k], this leaves us to find a perfect matching

in the remaining graph and then apply Lemma 3.5.3. We now prove some lemmas

which allow us to correct these imbalances.

3.5.1.1 Correcting imbalances

We begin by stating the following useful proposition.

Proposition 3.5.4. Let 0 ≤ β ≤ 1/2 and n ∈ N. Let S be a set of size n. Suppose

A1 ∪A2 and B1 ∪B2 are two partitions of S, and (1/2−β)n ≤ |Ai| , |Bi| ≤ (1/2+β)n

for each i ∈ [2]. Then ||Ai ∩Bj| − |Ai′ ∩Bj′|| ≤ 2βn for each i, i′, j, j′ ∈ [2] with

i ̸= i′ and j ̸= j′.

Furthermore, if n is even, then for any i, i′, j, j′ ∈ [2] with i ̸= i′ and j ̸= j′, we

have that ||Ai ∩Bj| − |Ai′ ∩Bj′ || is odd if and only if ||Ai′ ∩Bj| − |Ai ∩Bj′ || is odd.

Proof. Observe that |Ai ∩Bj| + |Ai ∩Bj′ | = |Ai| and |Ai ∩Bj| + |Ai′ ∩Bj| = |Bj|

for each i, i′, j, j′ ∈ [2] with i ̸= i′ and j ̸= j′. Then

||Ai ∩Bj| − |Ai′ ∩Bj′|| = ||Ai ∩Bj| + |Ai ∩Bj′| − |Ai ∩Bj′| − |Ai′ ∩Bj′ ||

=
∣∣∣|Ai| −

∣∣∣B′
j

∣∣∣∣∣∣ ≤ 2βn,

as required.

Furthermore, suppose ||Ai ∩Bj| − |Ai′ ∩Bj′|| is odd, but ||Ai′ ∩Bj| − |Ai ∩Bj′||

is even. Then ||Ai ∩Bj| − |Ai′ ∩Bj′ | + |Ai′ ∩Bj| − |Ai ∩Bj′ || must be odd, and this

is equal to ||Bj| − |Bj′||. Therefore, one of Bj and Bj′ must have odd size, and
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the other must have even size. This implies that |Bj| + |Bj′ | = n must be odd, a

contradiction.

The following lemma says that if G[Vi, Vi+1] is a robust pair, then we can use this

to show that any vertex which is not in Vi or Vi+1 is contained in plenty of cycles of

length k.

Lemma 3.5.5. Let 1/n ≪ γ ≪ ν ≪ τ ≪ 1/k. Let G be a k-partite graph with parts

V1, . . . , Vk each of size n and δ∗(G) ≥ (1
2 − γ)n. Suppose there is some i ∈ [k] such

that G[Vi, Vi+1] is a robust (ν, τ)-expander. Then for every j ∈ [k] with j ̸= i, i+ 1,

any vertex v in Vj is contained in at least (ν− 2γ)n transversal cycles which intersect

only at the vertex v.

Proof. By relabelling if necessary, suppose that G[V1, V2] is a robust (ν, τ)-expander.

Let v ∈ Vj for some j ∈ {3, . . . , k}. Let Wj−1 = N(v) ∩ Vj−1 and (unless j − 1 = 2)

for each i ∈ [j − 2 ↓ 2], define Wi = N(Wi+1) ∩ Vi. Similarly, let Wj+1 = N(v) ∩ Vj+1

and (unless j + 2 = 1) for each i ∈ [j + 2 ↑ k], let Wi = N(Wi−1) ∩ Vi. We

now define W1 = N(Wk) ∩RN(W2, V1) ∩ V1. Note that |Wi| ≥ (1/2 − γ)n for each

i ∈ {2, . . . , j−2, j+2, . . . , k}, and therefore, |W1| ≥ (1/2−γ)n+(1/2+ν−γ)n−1 =

(ν−2γ)n. Therefore, we can greedily choose cycles which begin at v and pass through

each Wi, for i ∈ {1, . . . , j − 1, j + 1, . . . , k}.

In the next lemma, we show that for any small set of vertices in G, we can find

a collection of partition-respecting paths of length k − 2 which cover this set and

which hit each vertex class equally.

Lemma 3.5.6. Let 1/n ≪ γ, α ≪ 1/k. Let G be a k-partite graph with parts

V1, . . . , Vk each of size n and δ∗(G) ≥ (1
2 − γ)n. Let X be any set of αn vertices

in Vi∗ for some i∗ ∈ [k]. Then we can find a collection of vertex-disjoint partition-

respecting paths of length k − 2 which covers X and contains exactly (k − 1) |X|

vertices in each class.
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Proof. Take X to be as above. By the degree condition, each vertex in X has at

least (1/2 − γ)n neighbours in Vi∗+1, and each of these neighbours have at least

(1/2 − γ)n neighbours in Vi∗+2 and so on. So, greedily, we find |X| vertex-disjoint

paths of length k− 2 which have initial vertex in X. Now for each i ∈ [i∗ + 1 ↑ i∗ − 1]

in turn, take a set Xi ⊆ Vi with |Xi| = |X| which does not intersect any previously

found paths. Then similarly, greedily find a collection of vertex-disjoint paths of

length k− 2 which have initial vertex in Xi and do not intersect any previously found

paths. We can always make this greedy choice since we use at most k |X| ≤ kαn

vertices from each set Vi and therefore there are always at least (1/2 − γ − kα)n

choices available for the next vertex. Furthermore, each path with initial vertex in

Xi intersects every class other than Vi−1. Therefore, when this process is finished,

there are (k − 1) |X| paths which intersect Vi for each i ∈ [k].

The next lemma says that we can find plenty of vertex-disjoint paths of length

k − 2 in G which remain in prescribed sets, provided these prescribed sets satisfy

certain properties. Since the statement is fairly technical, we first describe the

statement more informally. When we think of the bipartite graphs given by G[Vi, Vj ],

either this pair is a robust (ν, τ )-expander, or it is not. In this lemma, we will assume

that any time this is not a robust pair, it gives rise to a high-degree (α, β)-bipartition.

Recall from Definition 3.2.4 that this is a partition of the vertex class Vi into Vi,L1

and Vi,L2 and a partition of the vertex class Vi+1 into Vi+1,R1 and Vi+1,R2 , such that

each of these subparts has size around n/2, and for each j ∈ [2], there is a high

minimum degree in G[Vi,Lj
, Vi+1,Rj

]. The ‘L’ and ‘R’ in the subscript here represent

whether it is the ‘left’ or ‘right’ part of the partition. Indeed, for each i ∈ [k], if

the pair (Vi, Vi+1) is a non-(ν, τ)-robust pair, then we say Vi is the left part in a

non-robust pair, and Vi+1 is the right part in a non-robust pair. Recall that Lν,τ (G)

is the set of all indices i such that Vi is the left part in a non-(ν, τ)-robust pair, and

Rν,τ (G) is the analogous set for right parts. In general it need not be the case that a

non-robust pair has a high-degree (α, β)-bipartition. However, we will see later that

84



we can obtain this by moving vertices between parts and perhaps removing some

paths and cycles. Therefore, for the sake of this lemma, assume this is the case.

Whenever a part is both the left part of a non-robust pair, and also the right

part of a non-robust pair, we say it is both parts in a non-robust pair, and recall

that the set of all such parts is Bν,τ (G). When a part lies in Bν,τ (G), it will have

two different high-degree (α, β)-bipartitions. These partitions can be well-aligned or

not well-aligned. However, we will later see that by removing a collection of cycles

and paths of length k − 2, we can arrive at a situation where either these partitions

are perfectly well-aligned or they differ in at least linearly many vertices. Thus, we

restrict to this situation in the following lemma. Thus, depending on the number of

non-robust pairs that a part Vi belongs to, it will be partitioned into between 0 and

4 subparts, where each subpart has at least linear size, ηn.

Then the lemma says that for any such subpart U1, there is some sequence of

subparts U2, U3, . . . , Uk such that for each s ∈ [k], there are plenty of vertex-disjoint

partition-respecting paths of length k − 2 which have their j-th vertex in Us+j−1 for

each j ∈ [k − 1]. In other words, if we restrict to G[U1, . . . , Uk], then within this

graph for each s ∈ [k], there are at least ηn vertex-disjoint partition-respecting paths

of length k− 2 with initial vertex in Us (such that these are also partition-respecting

paths in G). More formally, we have the following statement.

Lemma 3.5.7. Let 1/n ≪ γ ≪ β ≪ η ≪ α ≪ ν ≪ τ ≪ 1/k. Let G be a

k-partite graph with parts V1, . . . , Vk each of size n and δ∗(G) ≥ (1
2 − γ)n. For each

i ∈ Lν,τ (G), let ((Vi,L1 , Vi,L2), (Vi+1,R1 , Vi+1,R2)) be a high-degree (α, β)-bipartition of

(Vi, Vi+1). For each i ∈ Bν,τ (G), for j, ℓ ∈ [2], let Vi,Lj ,Rℓ
= Vi,Lj

∩ Vi,Rℓ
and suppose

that for each j′, ℓ′ ∈ [2] with j ̸= j′ and ℓ ̸= ℓ′, either
∣∣∣Vi,Lj ,Rℓ

∣∣∣ =
∣∣∣Vi,Lj′ ,Rℓ′

∣∣∣ = 0, or∣∣∣Vi,Lj ,Rℓ

∣∣∣ , ∣∣∣Vi,Lj′ ,Rℓ′

∣∣∣ ≥ ηn. For each i ∈ Lν,τ (G) \ Bν,τ (G), for j, j′ ∈ [2] with j ̸= j′,

let Vi,Lj ,Rj
= Vi,Lj

and let Vi,Lj ,Rj′ = ∅. For each i ∈ Rν,τ (G) \ Bν,τ (G), for ℓ, ℓ′ ∈ [2]

with ℓ ̸= ℓ′, let Vi,Lℓ,Rℓ
= Vi,Rℓ

and let Vi,Lℓ,Rℓ′ = ∅.

Let r ∈ Lν,τ (G) ∪ Rν,τ (G), and let ⋄, ◦ ∈ [2] be such that Vi,L⋄,R◦ ̸= ∅. Let
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U = {U1, . . . , Uk} be a collection of sets satisfying the following.

(i) Ur = Vi,L⋄,R◦.

(ii) For each i ∈ Lν,τ (G) ∪ Rν,τ (G), Ui = Vi,Lj ,Rℓ
for some j, ℓ ∈ [2].

(iii) For each i ∈ [k] \ (Lν,τ (G) ∪ Rν,τ (G)), Ui = Vi.

(iv) For each i ∈ Lν,τ (G), each vertex in Ui has at most αn non-neighbours in Ui+1

and each vertex in Ui+1 has at most αn non-neighbours in Ui.

(v) For each i /∈ Lν,τ (G), |RNν(Ui) ∩ Ui+1| ≥ (ν − 2β)n and |RNν(Ui+1) ∩ Ui| ≥

(ν − 2β)n.

(vi) For each i ∈ Bν,τ (G) \ {r}, |Ui| ≥ n/8. If r ∈ Bν,τ (G) then |Ur| ≥ ηn.

Then for any s ∈ [k], we can find at least ηn vertex-disjoint paths of length k − 2

with initial vertex in Us and which lie entirely in Ui for i ∈ [s ↑ s− 2].

Proof. To prove this, we first find subsets W (s)
i ⊆ Ui which satisfy some useful

properties. We then use these to find the paths that we need. Fix s ∈ [k] as above.

For the remainder of the the proof, we will omit the superscript, and simply write

Wi to mean W (s)
i . There are two cases to consider, where the approach is almost the

same in both cases, with a distinction depending on whether or not we require paths

passing through Ur. We will also drop the subscripts ν, τ whenever they are clear

from context.

Case 1: s ̸= r + 1.

Let Wr = Ur. For each i ∈ [r − 1 ↓ s], suppose we have found Wi+1, and define Wi

as follows. If i ∈ L(G), let Wi = Ui. Else, define Wi = RNν(Wi+1) ∩ Ui. Similarly,

for each i ∈ [r + 1 ↑ s − 2], suppose we have found Wi−1. Define Wi as follows. If

i ∈ R(G), then let Wi = Ui. Otherwise let Wi = RNν(Wi−1) ∩ Ui. In the next series

of claims, we will prove certain properties satisfied by these sets Wi which will help
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us find the paths we need. In the first of these, we will show that the sizes of these

sets Wi are sufficiently large. Note that in each of the claims in this proof, we are

split into two cases depending on whether i ∈ {s ↑ r − 1} or i ∈ {r ↑ s − 2}. We

will usually only discuss the first of these, and the second will follow by the same

method after making the necessary changes, namely by replacing “i+ 1” by “i− 1”

and swapping the terms L(G) and R(G). In this case, we say that the second case

follows by symmetry.

Claim 3.5.8. The following hold:

(A) |Wr| ≥ ηn. Furthermore, if r /∈ B(G), then |Wr| ≥ (1/2 − β)n.

(B) For each i ∈ {s ↑ r − 1}:

(i) if i ∈ B(G), then |Wi| ≥ n/8,

(ii) if i ∈ L(G) \ B(G), then |Wi| ≥ (1/2 − β)n,

(iii) if i ∈ R(G) \ B(G), then |Wi| ≥ (ν − 2β)n,

(iv) if i ∈ [k] \ (L(G) ∪ R(G)), then |Wi| ≥ (1/2 + ν − β)n.

(C) For each i ∈ {r + 1 ↑ s− 2}:

(i) if i ∈ B(G), then |Wi| ≥ n/8,

(ii) if i ∈ R(G) \ B(G), then |Wi| ≥ (1/2 − β)n,

(iii) if i ∈ L(G) \ B(G), then |Wi| ≥ (ν − 2β)n,

(iv) if i ∈ [k] \ (L(G) ∪ R(G)), then |Wi| ≥ (1/2 + ν − β)n.

Proof of Claim 3.5.8. First, note that Wr = Ur = Vr,Lj ,Rℓ
for some j, ℓ ∈ {1, 2}.

Therefore, |Wi| ≥ ηn by the hypotheses of the lemma. Furthermore, if r /∈ B(G),

then Wr = Ur = Vr,Lj ,Rj
for some j ∈ {1, 2}, and

∣∣∣Vr,Lj ,Rj

∣∣∣ ≥ (1/2 − β)n. Thus, this

proves (A).

We now prove (B) by induction. For each i ∈ [r − 1 ↓ s], suppose the claim holds

for each i′ ∈ {r ↓ i + 1}. First, if i ∈ B(G), then Wi = Ui = Vi,Lj1 ,Rℓ1
for some
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j1, ℓ1 ∈ {1, 2}, where for j2, ℓ2 ∈ {1, 2}, Wi+1 = Vi,Lj2 ,Rj1
and

∣∣∣Vi,Lj1 ,Rℓ1

∣∣∣ ≥
∣∣∣Vi,Lj1 ,Rℓ2

∣∣∣.
In particular, as

∣∣∣Vi,Lj1 ,Rℓ1

∣∣∣+ ∣∣∣Vi,Lj1 ,Rℓ2

∣∣∣ ≥ (1/2−β)n, we know |Wi| ≥ (1/2−β)n/2 ≥

n/8, proving (B) (i).

If i ∈ L(G) \ B(G), then Wi = Ui = Vi,Lj1 ,Rj1
for some j1 ∈ [2]. Furthermore,

since i /∈ B(G), we know that Vi,Lj1 ,Rj2
= Vi,Lj2 ,Rj1

= ∅ for j2 ∈ [2] with j2 ̸= j1.

Therefore, |Wi| ≥ (1/2 − β)n, proving (B) (ii).

If i ∈ R(G)\B(G), then as before, |Ui| ≥ (1/2−β)n. Also, i+1 ∈ (L(G)\B(G))∪

([k] \ (L(G) ∪ R(G))). Thus by the induction hypothesis, |Wi+1| ≥ (1/2 − β)n. Since

G[Vi, Vi+1] is a robust (ν, τ )-expander, |RNν(Wi+1) ∩ Vi| ≥ |Wi+1| + νn ≥ (1/2 − β +

ν)n. Therefore, |Wi| = |RNν(Wi+1) ∩ Ui| ≥ (1/2−β+ν)n+(1/2−β)n−n = (ν−2β)n,

proving (B) (iii).

Finally, if i ∈ [k] \ (L(G) ∪ R(G)), note first that Ui = Vi. Furthermore,

i + 1 ∈ (L(G) \ B(G)) ∪ ([k] \ (L(G) ∪ R(G))), so by the same argument as in

(B) (iii), |Wi| = |RNν(Wi+1) ∩ Ui| = |RNν(Wi+1) ∩ Vi| ≥ (1/2 − β + ν)n, which

proves (B) (iv), and therefore concludes the proof of (B).

The proof for (C) follows similarly to the proof for (B) by symmetry.

Generally speaking, in the following two claims, we show that each set Wi satisfies

one of two properties, involving sending a small matching into a neighbouring set.

More precisely, focusing on i ∈ {s ↑ r − 1}, in the first claim, we show that some

of these sets Wi satisfy the property that any subset of Wi of the appropriate size

‘sends a perfect matching’ into its neighbouring set Wi+1. In the second claim, we

show that the remaining sets Wi satisfy the property that if we take two subsets

of the appropriate size of Wi and Wi+1 respectively, then we can find a matching

between these which covers one of these subsets. We now formalise this.

Claim 3.5.9. The following holds.

(A) For each i ∈ {s ↑ r − 1}, if i /∈ L(G), then for any set X ⊆ Wi with |X| ≤
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(ν − 2β)n, there is a set Y ⊆ Wi+1 with |Y | = |X| such that there is a perfect

matching between X and Y .

(B) For each i ∈ {r + 1 ↑ s − 2}, if i /∈ R(G), then for any set X ⊆ Wi with

|X| ≤ (ν − 2β)n, there is a set Y ⊆ Wi−1 with |Y | = |X| such that there is a

perfect matching between X and Y .

Proof of Claim 3.5.9. First, fix some i ∈ {s ↑ r − 1} such that i /∈ L(G), and let

X ⊆ Wi with |X| ≤ (ν − 2β)n. Then Wi ⊆ RNν(Wi+1), so in particular, each vertex

in Wi has at least νn neighbours in Wi+1. So, fix an arbitrary ordering of the vertices

of X. Then in turn for each v ∈ X, choose a uv ∈ N(v)∩Wi+1 which has not yet been

chosen, and take Y = ⋃
v∈X{uv}. We can always do this since by Claim 3.5.8 (A) and

(B), for each i ∈ {s ↑ r − 1}, whenever i /∈ L(G), |Wi+1| ≥ (1/2 − β)n ≥ (ν − 2β)n.

This proves Claim 3.5.9 (A). The proof of Claim 3.5.9 (B) follows by symmetry.

Claim 3.5.10. The following holds.

(A) For any i ∈ {s ↑ r − 1} such that i ∈ L(G), for any set X ⊆ Wi and Y ⊆ Wi+1

such that |X| ≥ |Y | + αn, there is a matching between X and Y which covers

Y .

(B) For any i ∈ {r + 1 ↑ s − 2} such that i ∈ R(G), for any set X ⊆ Wi and

Y ⊆ Wi−1 such that |X| ≥ |Y | + αn, there is a matching between X and Y

which covers Y .

Proof of Claim 3.5.10. Fix some i ∈ {s ↑ r−1} such that i ∈ L(G). Let X ⊆ Wi and

Y ⊆ Wi+1 with |X| ≥ |Y | +αn. Recall that Wi = Ui = Vi,Lj1 ,Rℓ1
and Wi+1 ⊆ Ui+1 =

Vi+1,Lj2 ,Rj1
for j1, j2, ℓ1 ∈ {1, 2}. Each vertex of Wi+1 has at most α

∣∣∣Vi,Lj1

∣∣∣ ≤ αn

non-neighbours in Vi,Lj1
, and therefore also at most αn non-neighbours in any subset

of Vi,Lj1
, in particular, X. Thus we fix an arbitrary ordering of the vertices in Y .

Then for each vertex v ∈ Y in turn, greedily select an unchosen vertex uv ∈ N(v)∩X

to find a matching between X and Y which covers Y . It only remains to check
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that we can always choose X and Y as suggested. Indeed we can do this since by

Claim 3.5.8, we know that |Wi| ≥ αn for each i ∈ {s ↑ r − 1}, and this proves (A).

The proof of (B) follows by symmetry.

Thus, we have shown that each set Wi satisfies one of two properties, each of

which involve finding matchings from fixed subsets of Wi. In the next claim, we show

that we can tie these matchings together and start building paths. Before stating

the next claim, we require the following definitions. We say that i ∈ [k] is a turning

point if either i ∈ {s ↑ r − 1} and i ∈ R(G), or i ∈ {r + 1 ↑ s − 2}, and i ∈ L(G).

We say that i and i′ are consecutive turning points if i, i′ are both turning points,

and

- either: i, i′ ∈ {s ↑ r − 1}, and i appears before i′ in the ordering given by

[s ↑ r − 1], and for each i′′ ∈ {i ↑ i′} \ {i, i′}, i′′ is not a turning point,

- or: i, i′ ∈ {r + 1 ↑ s − 2}, and i appears before i′ in the ordering given by

[s− 2 ↓ r + 1], and for each i′′ ∈ {i ↓ i′} \ {i, i′}, i′′ is not a turning point.

Claim 3.5.11. The following holds.

(A) If t and t′ are consecutive turning points in {s ↑ r − 1}, then between any

set Xt ⊆ Wt and Xt′ ⊆ Wt′ with αn ≤ |Xt| = |Xt′| ≤ (ν − 2β)n, we can

find |Xt| − αn vertex-disjoint partition-respecting paths which remain in Wi for

i ∈ {t ↑ t′}.

(B) If t and t′ are consecutive turning points in {s − 2 ↓ r + 1}, then between

any set Xt ⊆ Wt and Xt′ ⊆ Wt′ with αn ≤ |Xt| = |Xt′ | ≤ (ν − 2β)n, we can

find |Xt| − αn vertex-disjoint partition-respecting paths which remain in Wi for

i ∈ {t ↑ t′}.

Proof of Claim 3.5.11. Let t and t′ be consecutive turning points in {s ↑ r − 1}.

Then t, t′ ∈ R(G), but for each i ∈ {t ↑ t′} \ {t, t′}, i /∈ R(G). Take a set Xt ⊆ Wt
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and a set Xt′ ⊆ Wt′ with αn ≤ |Xt| = |Xt′| ≤ (ν − 2β)n. This is possible since by

Claim 3.5.8, |Wi| ≥ (ν − 2β)n for each i ∈ {s ↑ r − 1}.

First, assume t′ > t + 1. Now for each i ∈ [t + 1 ↑ t′ − 1] in turn, we find sets

Xi ⊆ Wi such that there is a perfect matching between Xi−1 and Xi as follows.

Suppose we have found Xi−1. Since t and t′ are consecutive turning points, we know

that i /∈ R(G). Therefore, it follows that i− 1 /∈ L(G). So by Claim 3.5.9, we can

find a set Xi ⊆ Wi with |Xi| = |Xi−1| such that there is a perfect matching between

Xi−1 and Xi. Again, this is possible since |Wi| ≥ (ν − 2β)n for each i ∈ {s ↑ r − 1}.

By repeating this, we find a set Xt′−1 such that by combining the matchings we

have found, we find |Xt| vertex-disjoint paths between Xt and Xt−1. Now, since

t′ ∈ R(G), t′ − 1 ∈ L(G). Let X ′
t′ ⊆ Xt′ be such that |X ′

t′ | = |Xt| − αn. Then

by Claim 3.5.10, we can find a matching between Xt′−1 and X ′
t′ which covers X ′

t′ .

Indeed, by combining the matchings once again, we obtain |Xt| − αn vertex-disjoint

paths between Xt and Xt−1 which remain in Wi for i ∈ {t ↑ t′}.

Now assume t′ = t + 1. Let X ′
t′ ⊆ Xt′ with |X ′

t′| = |Xt| − αn. Since t′ ∈ R(G),

we know that t ∈ L(G). So by Claim 3.5.10, there is a matching between Xt and X ′
t′

which covers X ′
t′ . In other words, there are |Xt| − αn vertex-disjoint paths between

Xt and Xt′ which remain in Wi for i ∈ {t ↑ t′}. This proves (A). The proof of (B),

follows by symmetry.

It only remains now to combine the claims above to prove Case 1. We actually

show that there are at least ηn vertex-disjoint paths with initial vertex in Ws and

which remain in Wi for i ∈ [k] \ {s − 1}. This suffices since Wi ⊆ Ui for each

i ∈ [k] \ {s − 1}. Broadly speaking, the approach is to tie together the paths we

found in Claim 3.5.11 and then finish these off if necessary by using Claim 3.5.9 and

Claim 3.5.10. More precisely, in (I), for each i ∈ [s ↑ r− 1] in turn, we want to find a

set Xi ⊆ Wi such that there is a large matching between Xi−1 and Xi. Then in (II),

for each i ∈ [s− 2 ↓ r + 1], we want to find a set Xi ⊆ Wi such that there is a large
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matching between Xi and Xi+1. Then finally in (III) we want to tie these together by

finding a set Xr ⊆ Wr such that there is a large matching between Xr and Xr−1, and

also a large matching between Xr and Xr+1. By tying all these matchings together

we obtain many vertex-disjoint partition-respecting paths of length k− 2 which have

initial vertex in Ws.

(I) If s = r, then proceed to (II). Otherwise, let Xs ⊆ Ws such that |Xs| = (ν−2β)n.

This is possible by Claim 3.5.8. If s = r − 1, proceed to (II). Otherwise, let ℓ1

be the number of turning points in {s + 1 ↑ r − 1}, and suppose first ℓ1 = 0.

Therefore, for each i ∈ {s+ 1 ↑ r− 1}, i /∈ R(G), and so i− 1 /∈ L(G). For each

i ∈ [s+ 1 ↑ r− 1], suppose we have found Xi−1 ⊆ Wi−1 of size (ν − 2β)n. Then

by Claim 3.5.9, we can find a set Xi ⊆ Wi such that |Xi| = |Xi−1| = (ν − 2β)n

and there is a perfect matching between Xi−1 and Xi, and by following these

matchings along, we find (ν − 2β)n vertex-disjoint paths between Xs and Xr−1.

On the other hand, suppose ℓ1 ≥ 1. Let T = (t1, . . . , tℓ1) be the list of these

turning points such that each turning point in {s + 1 ↑ r − 1} appears in T

exactly once, and such that for each i′ ∈ [ℓ1 − 1], ti′ and ti′+1 are consecutive

turning points in {s+ 1 ↑ r − 1}.

Then if s+1 = t1, take a subset Xt1 ⊆ Wt1 of size (ν−2β−α)n. Since s+1 = t1,

we know s ∈ L(G). So by Claim 3.5.10 we can find a matching between Xs and

Xt1 which covers Xt1 . Else, if s + 1 ̸= t1, then for each i ∈ {s + 1 ↑ t1 − 1},

i /∈ R(G), and so i − 1 /∈ L(G). So suppose for each i ∈ [s + 1 ↑ t1 − 1], we

have found Xi−1 of size (ν − 2β)n. Then by Claim 3.5.9, we find a set Xi ⊆ Wi

of size (ν − 2β)n such that there is a perfect matching between Xi−1 and Xi.

Then as t1 ∈ R(G), we know t1 − 1 ∈ L(G). So, by Claim 3.5.10, we can find

a set Xt1 ⊆ Wt1 of size (ν − 2β − α)n such that there is a matching between

Xt1−1 and Xt1 which covers Xt1 .

If ℓ1 = 1, then we now have (ν − 2β − α)n vertex-disjoint paths between Xs
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and Xtℓ1
. Otherwise, for each i ∈ [2 ↑ ℓ1], suppose we have found Xti−1 with∣∣∣Xti−1

∣∣∣ = (ν − 2β − (i − 1)α)n, and take a subset Xti
⊆ Wti

with |Xt1| =

(ν−2β− iα)n. Then by Claim 3.5.11, we can find (ν−2β− iα)n vertex-disjoint

partition-respecting paths between Xti−1 and Xti
which remain in Wj . Thus, for

any value of ℓ1, we have found (ν−2β−ℓ1α)n vertex-disjoint partition-respecting

paths between Xs and Xtℓ1
.

Then finally, if tℓ1 = r−1, proceed to (II). Otherwise, for each i ∈ {tℓ1 +1 ↑ r−1},

note that i /∈ R(G), and so i−1 /∈ L(G). Therefore, for each i ∈ [tℓ1 +1 ↑ r−1],

suppose we have found Xi−1 ⊆ Wi of size (ν − 2β − ℓ1α)n. By Claim 3.5.9,

we find Xi ⊆ Wi of size (ν − 2β − ℓ1α)n such that there is a perfect matching

between Xi−1 and Xi. By following this along, we find a set Xr−1 ⊆ Wr−1 of size

(ν − 2β− ℓ1α)n ≥ (ν − kα)n such that there are (ν − 2β− ℓ1α)n vertex-disjoint

paths between Xs and Xr−1 which remain in Wi for i ∈ {s ↑ r − 1}.

(II) If s− 2 = r, then we proceed to (III). Otherwise, by symmetry, this step will

follow similarly to (I), and we can find (ν − kα)n vertex-disjoint paths between

Xs−2 and Xr+1 which remain in Wi for i ∈ {s− 2 ↓ r + 1}.

(III) Now to finish off, suppose first r = s. If r ∈ L(G), take a subset Xr ⊆ Wr with

|Xr| = ηn. Then as |Xr| ≤ |Xr+1| − αn, we can apply Claim 3.5.10 to find a

matching between Xr and Xr+1 which covers Xr. Instead, if r /∈ L(G), then

we can apply Claim 3.5.9 to find a set Xr ⊆ Wr such that there is a perfect

matching between Xr and Xr+1. On each occasion, we have found at least ηn

vertex-disjoint paths between Xr and Xs−2 which lie in Wi for i ∈ {r ↑ s− 2}.

The case when r = s− 2 is symmetrical, and we find at least ηn vertex-disjoint

partition-respecting paths between Xs and Xr which lie in Wi for i ∈ {s ↑ r}.

Now suppose r ̸= s and r ̸= s−2. We know that r ∈ L(G)∪R(G). If r ∈ B(G),

take a set Xr ⊆ Wr such that |Xr| = ηn. Then as r ∈ R(G), r − 1 ∈ L(G). So

by Claim 3.5.10, as |Xr| ≤ |Xr−1| − αn, we can find a matching between Xr−1

and Xr which covers Xr. Also, as r ∈ L(G), r + 1 ∈ R(G), and so again by
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Claim 3.5.10, as |Xr| ≤ |Xr+1| − αn, we can find a matching between Xr and

Xr+1 which covers Xr. By combining these, we find ηn vertex-disjoint paths

between Xs and Xs−2 which lie in Wi for i ∈ {s ↑ s− 2}.

Instead, if r ∈ L(G) \ B(G), then r − 1 /∈ L(G). So, by Claim 3.5.9, there is a

set X ′
r ⊆ Wr with |X ′

r| = |Xr−1| such that there is a perfect matching between

X ′
r and Xr−1. Then take Xr ⊆ X ′

r with |Xr| = ηn (this is possible as r /∈ B(G),

and so |Wr| ≥ (1/2 − β)n by Claim 3.5.8). As |Xr| ≤ |Xr+1| − 1, and since

r + 1 ∈ R(G), by Claim 3.5.10, we can find a matching between Xr and Xr+1

which covers Xr. Thus, we obtain ηn vertex-disjoint paths between Xs and

Xs−2 which lie in Wi for i ∈ {s ↑ s − 2}. The case when r ∈ R(G) \ B(G), is

symmetrical and this concludes the proof of Case 1.

Case 2: s = r + 1.

The proof in this case is similar to the proof of Case 1, but a little easier. The slight

difference is in how we find the sets Wi. These sets will then satisfy exactly the same

properties as in Claims 3.5.8, 3.5.9 and 3.5.10, and we can use these properties to

find paths exactly as in Case 1. Due to the similarities, we omit the latter part of

the proof, and simply highlight how we find the sets W (s)
i (we omit the superscript

for ease of notation).

Begin by letting Ws = Us. Then for each i ∈ [s + 1 ↑ s − 2], suppose we have

found Wi−1. If i ∈ L(G), let Wi = Ui. Otherwise, let Wi = RNν(Wi−1) ∩ Ui.

Thus, in each case, we find collection of at least ηn vertex-disjoint paths of length

k − 2 with initial vertex in Ws which lie in Wi for i ∈ {s ↑ s− 2}, which concludes

the proof of the lemma.

Before stating and proving the next lemma, we give the following definition.

Definition 3.5.12. Let G be a k-partite graph with vertex-classes V1, . . . , Vk, each

of size n. For i ∈ [k], suppose that V L
i = Vi,L1 ∪ Vi,L2 and V R

i = Vi,R1 ∪ Vi,R2 are two
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partitions of the vertex class Vi. Then we define the joint partition J(V L
i , V

R
i ) to be

the partition with vertex classes Vi,Lj ,Rℓ
:= Vi,Lj

∩ Vi,Rℓ
for each j, ℓ ∈ [2]. For each

j, j′, ℓ, ℓ′ ∈ [2] with j ̸= j′ and ℓ ̸= ℓ′, define the following.

(i) Say that Vi,L1 and Vi,L2 are opposite subparts of V L
i . Similarly, say that Vi,R1

and Vi,R2 are opposite subparts of V R
i .

(ii) Say that Vi,Lj ,Rℓ
and Vi,Lj′ ,Rℓ′ are diagonal subparts of J(V L

i , V
R

i ).

(iii) Define diffG
i,L := ||Vi,L1| − |Vi,L2 || and diffG

i,R := ||Vi,R1| − |Vi,R2||.

(iv) Define diffG
i,j,ℓ :=

∣∣∣∣∣∣Vi,Lj ,Rℓ

∣∣∣− ∣∣∣Vi,Lj′ ,Rℓ′

∣∣∣∣∣∣.
(v) Define diffG

i (J(V L
i , V

R
i )) = max{diffG

i,j,ℓ, diffG
i,j′,ℓ}.

Recall that Nν,τ (G) is the set of all indices i ∈ [k] such that (Vi, Vi+1) is a (ν, τ)-

robust pair in G and Bν,τ is the set of indices i ∈ [k] such that neither (Vi, Vi+1) nor

(Vi−1, Vi) is a (ν, τ)-robust pair in G. Lemma 3.2.5 tells us that whenever a pair

(Vi, Vi+1) is not a (ν, τ )-robust pair, we can find an (α, β)-bipartition of it. We will see

later that we can modify this slightly so that this is a high-degree (α, β)-bipartition,

and furthermore, whenever a part is partitioned twice by this, the resulting joint

partition contains at least linear sized subparts.

Given these assumptions, the next lemma tells us that if there is some r ∈

L(G) ∪ R(G) such that

• if r ∈ B(G) and the difference in size between some pair of diagonal subparts

in Vr is at least 2, or

• if r /∈ B(G) and the difference in size between opposite subparts of Vr is at

least 2,

then we can find a constant sized collection of paths of length k − 2 such that if we

remove this collection, then within the resulting graph the aforementioned difference

in size is reduced by exactly 2. Meanwhile, for every other pair of opposite or diagonal
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subparts, the difference in size in the original graph is the same as the difference in

size in the new graph. Thus, the next lemma says that we can reduce the imbalance

in r by 2 while maintaining the imbalance elsewhere.

Lemma 3.5.13. Let 1/n ≪ γ ≪ β ≪ η ≪ α ≪ ν ≪ τ ≪ 1/k. Let G be a k-partite

graph with parts V1, . . . , Vk each of size n and δ∗(G) ≥ (1/2 − γ)n. Let i∗ ∈ [k] be

such that i∗ ∈ Nν,τ (G). For each i /∈ Nν,τ (G), let ((Vi,L1 , Vi,L2), (Vi+1,R1 , Vi+1,R2)) be

a high-degree (α, β)-bipartition of (Vi, Vi+1). For each i ∈ B(G), for j, ℓ ∈ [2], let

Vi,Lj ,Rℓ
= Vi,Lj

∩ Vi,Rℓ
and suppose that for each j′, ℓ′ ∈ [2] with j ̸= j′ and ℓ ̸= ℓ′,

either
∣∣∣Vi,Lj ,Rℓ

∣∣∣ =
∣∣∣Vi,Lj′ ,Rℓ′

∣∣∣ = 0, or
∣∣∣Vi,Lj ,Rℓ

∣∣∣ , ∣∣∣Vi,Lj′ ,Rℓ′

∣∣∣ ≥ ηn. For each i ∈ L(G), let

diffG
i,L and diffG

i+1,R be as in Definition 3.5.12. For each i ∈ B(G) and j, ℓ ∈ [2], let

diffG
i,j,ℓ be as in Definition 3.5.12.

Suppose there exist r ∈ [k] and ⋄, ⋄′, ◦, ◦′ ∈ {1, 2} with ⋄ ≠ ⋄′ and ◦ ≠ ◦′ such that

diffG
r,⋄,◦ ≥ 2. Then we can find a collection Q of vertex-disjoint partition-respecting

paths of length k − 2 in G such that |Vi ∩ V (Q)| = 2k − 2 for each i ∈ [k], and if

G′ = G− Q, then

(i) diffG′

r,⋄,◦ = diffG
r,⋄,◦ − 2 = diffG

r,⋄′,◦′ − 2 = diffG′

r,⋄′,◦′,

(ii) for each i, j, ℓ ∈ (B(G)×[2]×[2])\{(r, ⋄, ◦), (r, ⋄′, ◦′)}, we have diffG′

i,j,ℓ = diffG
i,j,ℓ,

(iii) for each i ∈ L(G) \ B(G), diffG′

i,L = diffG
i,L, and

(iv) for each i ∈ R(G) \ B(G), diffG′

i,R = diffG
i,R.

Proof. For each i ∈ L(G) \ B(G), for j, j′ ∈ [2] with j ̸= j′, let Vi,Lj ,Rj
= Vi,Lj

and let

Vi,Lj ,Rj′ = ∅. For each i ∈ R(G) \ B(G), for ℓ, ℓ′ ∈ [2] with ℓ ̸= ℓ′, let Vi,Lℓ,Rℓ
= Vi,Rℓ

and let Vi,Lℓ,Rℓ′ = ∅. Let i∗, r, ⋄, ⋄′, ◦, ◦′ be as in the lemma statement. The proof will

proceed as follows. We begin by finding some sets Ui,j which satisfy the conditions

in Lemma 3.5.7 to find many paths of length k − 2 within these sets Ui,j. We then

choose some paths to satisfy the desired properties. We are choosing a constant

96



number of paths among linearly many, so we can do this greedily. We begin by

defining the sets Ui,j.

If |Vr,L⋄,R◦ | −
∣∣∣Vr,L⋄′ ,R◦′

∣∣∣ > 0, let Ur,1 = Vr,L⋄,R◦ and Ur,2 = Vr,L⋄′ ,R◦′ . Else, let

Ur,1 = Vr,L⋄′ ,R◦′ and Ur,2 = Vr,L⋄,R◦ . Essentially, Ur,1 is the larger of the subparts in

question, and Ur,2 is the smaller one. Note that |Ur,1| ≥ |Ur,2| + 2. Now we find sets

Ui,j for each i ∈ [k] and j ∈ [2], which will guide the paths we eventually find. We

define these iteratively as follows.

Unless r = i∗ + 1, for each i ∈ [r − 1 ↓ i∗ + 1], suppose we have found Ui+1,j for

j ∈ {1, 2}. If i + 1 ∈ L(G) ∪ R(G) then assume that Ui+1,1 = Vi+1,Lj1 ,Rℓ1
for some

j1, ℓ1 ∈ [2], and assume that Ui+1,2 = Vi+1,Lj2 ,Rℓ2
for j2, ℓ2 ∈ [2] with j1 ̸= j2 and

ℓ1 ̸= ℓ2. Else, if i + 1 ∈ [k] \ (L(G) ∪ R(G)), then assume Ui+1,j = Vi+1 for each

j ∈ {1, 2}. Then find Ui,j as follows.

• If i ∈ L(G), then let Ui,1 = Vi,Lℓ1 ,Rℓ3
where ℓ3 ∈ {1, 2} satisfies that for ℓ4 ∈ [2]

with ℓ3 ̸= ℓ4,
∣∣∣Vi,Lℓ1 ,Rℓ3

∣∣∣ ≥
∣∣∣Vi,Lℓ1 ,Rℓ4

∣∣∣. Then set Ui,2 = Vi,Lℓ2 ,Rℓ4
. Thus in this

case, Ui,j and Ui+1,j have a high minimum degree between them for each j ∈ [2].

• If i ∈ R(G) \ B(G), then take Ui,1 = Vi,Lj3 ,Rj3
where j3 ∈ {1, 2}. Then set

Ui,2 = Vi,Lj4 ,Rj4
with j4 ∈ {1, 2} so that j3 ̸= j4. In particular, Ui,1, Ui,2 ̸= ∅.

• If i ∈ [k] \ (L(G) ∪ R(G)), then take Ui,1 = Ui,2 = Vi.

Thus we obtain Ui,j for each i ∈ {i∗ +1 ↑ r} and each j ∈ [2]. Similarly, unless r = i∗,

we find Ui,j for each i ∈ [r + 1 ↑ i∗] and j ∈ [2] as follows. Suppose we have found

Ui−1,j for j ∈ {1, 2}. If i− 1 ∈ L(G) ∪ R(G) then assume that Ui−1,1 = Vi−1,Lj1 ,Rℓ1

for some j1, ℓ1 ∈ [2], and assume that Ui−1,2 = Vi−1,Lj2 ,Rℓ2
for j2, ℓ2 ∈ [2] with j1 ̸= j2

and ℓ1 ≠ ℓ2. Else, if i− 1 ∈ [k] \ (L(G) ∪ R(G)), then assume Ui−1,j = Vi−1 for each

j ∈ {1, 2}. Then find Ui,j as follows.

• If i ∈ R(G), then let Ui,1 = Vi,Lj3 ,Rj1
, where j3 ∈ [2] is such that for j4 ∈ [2]

with j3 ̸= j4,
∣∣∣Vi,Lj3 ,Rj1

∣∣∣ ≥
∣∣∣Vi,Lj4 ,Rj1

∣∣∣. Then set Ui,2 = Vi,Lj4 ,Rj2
.
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• If i ∈ L(G) \ B(G), then let Ui,1 = Vi,Lj3 ,Rj3
for j3 ∈ [2] and let Ui,2 = Vi,j4,j4

for j4 ∈ [2] with j3 ̸= j4.

• If i ∈ [k] \ (L(G) ∪ R(G)), then let Ui,1 = Ui,2 = Vi.

Thus, we have found Ui,j for each i ∈ [k], j ∈ [2]. Let Uj = {U1,j, . . . , Uk,j}. Note

that each Ui,j is some subpart in the partition of Vi. Furthermore, for each j ∈ [2]

the collection Uj satisfies the conditions of Lemma 3.5.7, and so for any s ∈ [k], we

can find a collection Qs,j of ηn vertex-disjoint paths of length k− 2 which have initial

vertex in Us,j and which remain in the sets Ui,j for i ∈ {s ↑ s− 2}.

In the remainder of the proof, we begin by choosing one special path, and then

using the paths in Qi,j to choose a collection of vertex-disjoint paths which satisfy

the conclusions of the lemma. The first step is to find a path of length k − 2 which

has initial vertex in Ui∗,1 and each other vertex lies in Ui,2 for i ∈ {i∗ + 1 ↑ i∗ − 2}.

We do this in a similar way to how we found the paths in Lemma 3.5.7. We first find

sets W ′
i which will guide where this path lies. First, if r = i∗ − 1, then let W ′

1 = Ui∗,1.

For each i ∈ [i∗ + 1 ↑ i∗ − 2], suppose we have found W ′
i−1. If i ∈ R(G), let W ′

i = Ui,2.

Otherwise, let W ′
i = RNν(W ′

i−1) ∩ Ui,2. If instead r ̸= i∗ − 1, then let W ′
r = Ur,2.

Then unless r = i∗ + 1, for each i ∈ [r − 1 ↓ i∗ + 1], let W ′
i = Ui,2 if i ∈ L(G), and

let W ′
i = RNν(W ′

i+1) ∩Ui,2 if i /∈ L(G). Similarly, for each i ∈ [r− 1 ↑ i∗ − 2], unless

r = i∗ − 2, let W ′
i = Ui,2 if i ∈ R(G), and let W ′

i = RNν(Wi−1) ∩ Ui,2 if i /∈ R(G).

Then let W ′
1 = RNν(W2) ∩ U1,1. We then show that we can find a path of length

k − 2 which lies in W ′
i for i ∈ [k − 1], that is, the following claim holds.

Claim 3.5.14. We can find a path of length k− 2 with initial vertex in W ′
1 such that

each vertex of this path lies in W ′
i for i ∈ {1 ↑ k − 1}.

We omit the proof of this claim, but note that this follows in exactly the same

way as the proof of Lemma 3.5.7.

Let P ∗ be the path found in Claim 3.5.14, and add P ∗ to the collection Q. Now

we choose vertex-disjoint paths, to form the rest of the collection Q, and show that
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this satisfies the conclusions of the lemma. We say that a path in Q hits Ui,j if there is

a vertex of the path which belongs to Ui,j . Since these paths are partition-respecting,

each path in Q can only hit Ui,j at most once. For each i ∈ [k] and j ∈ [2], let H(i, j)

be a function counting the number of paths in Q which hit Ui,j.

Claim 3.5.15. In order to show that removing Q only reduces the difference between

parts by 2 in Vr and leaves the difference unchanged elsewhere, it suffices to show

that H(r, 1) = H(r, 2) + 2 and for each i ∈ [k] \ {r}, H(i, 1) = H(i, 2).

Proof of Claim 3.5.15. Let G′ = G − Q, and for each i ∈ [k] and j ∈ [2], let

U ′
i,j = Ui,j ∩ V (G′). Suppose H(r, 1) = H(r, 2) + 2 and for each i ∈ [k] \ {r},

H(i, 1) = H(i, 2). For any i ∈ [k] and j, j′, ℓ, ℓ′ ∈ [2] such that j ≠ j′ and ℓ ̸= ℓ′,

if there is no s ∈ [2] such that Ui,s = Vi,j,ℓ, then there is no s′ ∈ [2] such that

Ui,s′ = Vi,j′,ℓ′ . Therefore, diffG′

i,j,ℓ = diffG
i,j,ℓ, since the paths in Q are only chosen from

sets Ui′,t for i′ ∈ [k] and t ∈ [2].

On the other hand for any i ∈ [k], j, j′, ℓ, ℓ′ ∈ [2] with j ̸= j′ and ℓ ̸= ℓ′, such

that Vi,j.ℓ = Ui,s and Vi,j′,ℓ′ = Ui,s′ for some s, s′ ∈ [2] with s ̸= s′, we have

diffG′

i,j,ℓ = ||Vi,j,ℓ ∩ V (G′)| − |Vi,j′,ℓ′ ∩ V (G′)|| = ||Ui,1 ∩ V (G′)| − |Ui,2 ∩ V (G′)||

= |(|Ui,1| −H(i, 1)) − (|Ui,2| −H(i, 2))| = diffG
i,j,ℓ − (H(i, 1) −H(i, 2)).

Therefore, diffG′

r,⋄,◦ = diffG
r,⋄,◦ − (H(r, 1) − H(r, 2)) = diffG

r,⋄,◦ − 2. Meanwhile for

i ∈ [k] \ {r}, j, j′, ℓ, ℓ′ ∈ [2] with j ̸= j′ and ℓ ̸= ℓ′, such that Vi,j,ℓ = Ui,s and

Vi,j′,ℓ′ = Ui,s′ for some s, s′ ∈ [2] with s ̸= s′, we have diffG′

i,j,ℓ = diffG
i,j,ℓ, as required.

We now find the collection Q and show that indeed, H(r, 1) = H(r, 2) + 2 and

for each i ∈ [k] \ {r}, H(i, 1) = H(i, 2), which will conclude the proof. Recall that

P ∗ ∈ Q. We add 2k − 3 more paths to Q in total, one at a time, each time making

sure that we choose only paths whose vertices are unused, and so that the resulting

collection Q is a collection of vertex-disjoint paths. Note that we can do this since
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we will choose paths from Qi,j for some i ∈ [k] and j ∈ [2], and each such collection

satisfies |Qi,j| ≥ ηn ≥ 2k2. For technical reasons, we split this into three cases to

consider, but the ideas in each are essentially the same. In each case below, we

assume that any new paths chosen are vertex-disjoint from any paths already in the

collection Q.

Case A: r = i∗ For each i ∈ [i∗ + 1 ↑ i∗ − 1], for each j ∈ [1 ↑ 2] choose a path

Qi,j ∈ Qi,j and add this to Q. Then add a path Qi∗,1 ∈ Qi∗,1 to Q. Now consider

H(i∗, 1). We note that for i ∈ [k] \ {i∗ + 1}, the path Qi,1 hits Ui∗,1. Also, P ∗ hits

Ui∗,1. As these are the only paths to hit Ui∗,1, we know H(i∗, 1) = k. Meanwhile,

for each i ∈ [k] \ {i∗, i∗ + 1}, the path Qi,2 hits Ui∗,2, and these are the only paths

in Q which hit Ui∗,2, so H(i∗, 2) = k − 2. Now for any i ∈ [k] \ {i∗}, for each

s ∈ [k] \ {i+ 1}, the path Qs,1 hits Ui,1 and these are the only paths to hit Ui,1, so

H(i, 1) = k− 1. On the other hand, for any i ∈ [k] \ {1}, for each s ∈ [k] \ {1, i+ 1},

the path Qs,1 hits Ui,2 and so does the path P ∗, and these are the only paths to hit

Ui,2. So, H(i, 2) = k − 1. Thus, H(i∗, 1) = H(i∗, 2) + 2, and H(i, 1) = H(i, j) for

each i ∈ [k] \ {i∗}, so by Claim 3.5.15, we are done.

Case B: r = i∗ − 1 Choose two distinct paths Qi∗+1,1 and Q∗
i∗+1,1 in Qi∗+1,1 and

add these to Q. Then for each i ∈ [k] \ {i∗, i∗ + 1} choose a previously unchosen

path Qi,1 in Qi,1 and add this to Q. For each i ∈ [k] \ {i∗ + 1}, choose a path Qi,2 in

Qi,2 and add this to Q.

Then H(i∗ − 1, 1) = k and H(i∗ − 1, 2) = k− 2. Indeed, this is because the paths

hitting Ui∗−1,1 are the paths Qi,1 for i ∈ [k] \ {i∗}, together with the path Q∗
i∗+1,1. On

the other hand, the paths hitting Ui∗−1,2 are the paths Qi,2 for i ∈ [k] \ {i∗, i∗ + 1}.

Meanwhile, for each i ∈ [k] \ {i∗ − 1}, H(i, 1) = H(i, 2) = k − 1. Indeed, the

paths hitting Ui∗,1 are the paths Qi,1 for i ∈ [k] \ {i∗, i∗ + 1} together with the path

P ∗. The paths hitting Ui∗,2 are the paths Qi,2 for i ∈ [k] \ {i∗ + 1}. This proves

H(i∗, 1) = H(i∗, 2) = k − 1.

100



For i ∈ [k] \ {i∗ − 1, i∗}, the paths hitting Ui,1 are the paths Qi′,1 for i′ ∈

[k] \ {i, i∗ − 1} together with the path Q∗
i∗,1. On the other hand, the paths hitting

Ui,2 are the paths Qi′,2 for i′ ∈ [k] \ {i∗, i} together with the path P ∗. Therefore,

H(i, 1) = H(i, 2) = k − 1.

Case C: r /∈ {i∗ − 1, i∗} Choose two distinct paths Qi∗+1,1 and Q∗
i∗+1,1 in Qi∗+1,1

and add these to Q. Also, choose two distinct paths Qr+1,2 and Q∗
r+1,2 and add these

to Q. Then for each i ∈ [k] \ {i∗ + 1, r + 1}, choose an unselected path Qi,1 in Qi,1

and add this to Q. Then for each i ∈ [k] \ {i∗, i∗ + 1, r + 1}, choose an unselected

path Qi,2 in Qi,2 and add this to Q.

Then H(r, 1) = k, while H(r, 2) = k− 2. This is because for each i ∈ [k] \ {r+ 1},

the paths Qi,1 hit Ur,1, and so does the path Q∗
i∗+1,1. Meanwhile, for i ∈ [k] \ {i∗, i∗ +

1, r + 1}, the paths Qi,2 hit Ur,2, and so does the path P ∗, a total of k − 2 paths.

Meanwhile, H(i, 1) = H(i, 2) = k − 1 for each i ∈ [k] \ {r}. For Hi∗,1, the paths that

hit Ui∗,1 are the paths Qi′,1 for i′ ∈ [k] \ {i∗ + 1, r + 1}, together with the path P ∗.

For H(i∗, 2), the paths hitting U1,2 are the paths Qi,2 for i ∈ [k] \ {i∗, i∗ + 1} together

with the path Q∗
r+1,2.

For each i ∈ [k] \ {i∗, r}, the paths that hit Ui,1 are the paths Qi′,1 for i′ ∈

[k] \ {i+ 1, r+ 1}, together with the path Q∗
i∗+1,1. Meanwhile, the paths that hit Ui,2

are the paths Qi′,2 for i′ ∈ [k] \ {i∗, i∗ + 1, i + 1}, together with the paths P ∗ and

Q∗
r+1,2. Therefore, H(i, 1) = H(i, 2) = k − 1, concluding the proof.

In the next lemma, we now apply Lemma 3.5.13 repeatedly, and remove a

collection of paths of length k − 2 such that in the resulting graph G′, each pair of

classes which was robust in G is still robust in G′ (albeit with different constants),

and each pair of classes which was not robust in G now has a bipartition into two

almost-complete balanced bipartite graphs.

Lemma 3.5.16. Let 1/n ≪ γ ≪ β ≪ η ≪ α ≪ ν ≪ τ ≪ 1/k. Let G be a k-partite

graph with parts V1, . . . , Vk each of size n and δ∗(G) ≥ (1/2 − γ)n. Let i∗ ∈ [k]
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be such that G[Vi∗ ∪ Vi∗+1] is a robust (ν, τ)-expander. For each i /∈ Nν,τ (G), let

((Vi,L1 , Vi,L2), (Vi+1,R1 , Vi+1,R2)) be a high-degree (α, β)-bipartition of (Vi, Vi+1). For

each i ∈ Bν,τ (G), for each j, ℓ ∈ [2], let
∣∣∣Vi,Lj

∩ Vi,Rℓ

∣∣∣ ≥ ηn.

Then we can find a collection Q of vertex-disjoint paths of length k − 2 and

cycles of length k in G such that if H = G− Q, then H[(Vi∗ ∪ Vi∗+1) ∩ V (H)] is a

robust (ν/2, τ)-expander, and for each i /∈ Nν/2,τ (H), there is an (2α, 0)-bipartition

of (Vi ∩ V (H), Vi+1 ∩ V (H)).

Proof. Let G be as above. By relabelling if necessary, assume 1 ∈ N (G), so G[V1, V2]

is a robust (ν, τ)-expander. Now for each i ∈ Bν,τ (G), for each j, j′, ℓ, ℓ′ ∈ [2] with

j ̸= j′ and ℓ ̸= ℓ′, let Vi,Lj ,Rℓ
= Vi,Lj

∩ Vi,Rℓ
. For i ∈ L(G) \ B(G) and j, j′ ∈ [2]

with j ̸= j′, let Vi,Lj ,Rj
= Vi,Lj

and Vi,Lj ,Rj′ = ∅. For i ∈ R(G) \ B(G), for ℓ, ℓ′ ∈ [2],

let Vi,Lℓ,Rℓ
= Vi,Rℓ

and let Vi,Lℓ,Rℓ′ = ∅. Now, for each i ∈ L(G), let diffG
i,L be as in

Definition 3.5.12. For each i ∈ R(G), let diffG
i,R be as in Definition 3.5.12. For each

i ∈ L(G) ∪ R(G), for j, j′, ℓ, ℓ′ ∈ [2] with j ̸= j′ and ℓ ̸= ℓ′, we let diffG
i,j,ℓ be as in

Definition 3.5.12. In each case, we omit the graph from the superscript when it is

clear from context.

We would like to remove paths and cycles to obtain a graph where the difference

between the sizes of opposite subparts is zero everywhere. We claim that it suffices to

make sure that the difference between the sizes of each pair of diagonal subparts is zero.

Indeed, if this is the case, then for each i ∈ L(G), and each j, j′, ℓ, ℓ′ ∈ [2] with j ̸= j′

and ℓ ̸= ℓ′, we have that
∣∣∣Vi,Lj ,Rℓ

∣∣∣ =
∣∣∣Vi,Lj′ ,Rℓ′

∣∣∣. Then |Vi,L1| = |Vi,L1,R1| + |Vi,L1,R2| =

|Vi,L2,R2 | + |Vi,L2,R1| = |Vi,L2 |, so diffi,L = 0. Similarly, we can show that for i ∈ R(G),

if diffi,j,ℓ = 0 for each j, ℓ ∈ [2], then diffi,R = 0. Therefore, in this proof, we will be

working towards making diffi,j,ℓ = 0 for all i, j, ℓ for which the quantity is defined.

If n is not even, then let C0 be a cycle of length k in G, which exists by Lemma 3.5.5

and add this to the collection Q. Remove this cycle from G to get G′, so G′ = G−C0.

Then let n′ := |Vi ∩ V (G′)| = n− 1, and so n′ is even. Furthermore, we can choose

constants γ′, α′, β′, η′, ν ′ such that γ ≪ γ′ ≪ β ≪ β′ ≪ η′ ≪ η ≪ α ≪ α′ ≪ ν ′ ≪ ν
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and G′ satisfies the hypotheses of the lemma with these constants. If n is even, then

let G′ = G and again, n′ is even and G′ satisfies all the hypotheses of the lemma

with the constants above. For ease of notation, we assume n is even.

Now we want to make sure the difference in size between diagonal subparts is even

for each part, since we have Lemma 3.5.13 which reduces the difference by 2 for a

single part. Notice that as n is even, we know that for each i ∈ (L(G)∪R(G))\B(G),

diffi,j,ℓ is even for each j, ℓ ∈ [2]. This is because when n is even, then if we split any

set of size n into two subsets of sizes a and b respectively, then either both a and b

are even or they are both odd, and in either case, |a− b| is even.

Thus, the only case when a pair of diagonal subparts could have odd difference

is when i ∈ B(G). By Proposition 3.5.4, diffi,j,ℓ is odd if and only if diffi,j,ℓ′ is

also odd for j, ℓ, ℓ′ ∈ [2] with ℓ ̸= ℓ′. Let Odd(G) := {i ∈ [k] : there exist j, ℓ ∈

[2] such that diffi,j,ℓ is odd.}. Suppose |Odd(G)| = b and label the elements of

Odd(G) = {i1, . . . , ib}. For each s ∈ [b], we will find vertex-disjoint cycles of

length k Cs,1 and Cs,2 and a sequence of subgraphs G0 = G ⊃ G1 ⊃ . . . ⊃ Gb

so that Odd(Gb) = ∅. Choose constants γi, βi, ηi, αi, νi for each i ∈ [b] such that

γ ≪ γ1 ≪ . . . ≪ γb ≪ β ≪ β1 ≪ . . . ≪ βb ≪ ηb ≪ . . . ≪ η1 ≪ η, α ≪ α1 ≪ . . . ≪

αb ≪ νb ≪ . . . ≪ ν1 ≪ ν. Suppose for some s ∈ [b], that we have found Gs−1 and

that Gs−1 with ns−1 := |Vi ∩ V (Gs−1)| = n − 2(s − 1), and that Gs−1 satisfies the

hypotheses in the lemma statement with parameters γs−1, βs−1, ηs−1, αs−1, νs−1, τ .

Suppose further that Odd(Gs−1) ⊂ Odd(G) and i1, . . . , is−1 /∈ Odd(Gs−1).

Then let V s−1
i,Lj ,Rℓ

= Vi,Lj ,Rℓ
∩Gs−1. Again for simplicity of notation, we omit the

s− 1 in the superscript below. Define Uis,1 = Vis,L1,R1 and Uis,2 = Vis,L2,R1 . Then for

each i ∈ [is − 1 ↓ 2], suppose we have found Ui+1,1, and that if i+ 1 ∈ L(G) ∪ R(G),

let Ui+1,1 = Vi+1,Lj1 ,Rℓ1
for j1, ℓ1 ∈ [2]. Else, let Ui+1,1 = Vi. Then

• if i ∈ L(G), then let Ui,1 = Vi,Lℓ1 ,Rℓ2
where ℓ2 ∈ [2] is such that for ℓ3 ∈ [2]

with ℓ2 ̸= ℓ3,
∣∣∣Vi,Lℓ1 ,Rℓ2

∣∣∣ ≥
∣∣∣Vi,Lℓ1 ,Rℓ3

∣∣∣,
• if i ∈ R(G) \ B(G), let Ui,1 = Vi,Lj2 ,Rj2

for any j2 ∈ [2],
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• if i ∈ [k] \ (L(G) ∪ R(G)), let Ui,1 = Vi.

Similarly, for each i ∈ [is + 1 ↑ 1], suppose we have found Ui−1,1 and that if

i− 1 ∈ L(G) ∪ R(G), let Ui−1,1 = Vi−1,Lj1 ,Rℓ1
for j1, ℓ1 ∈ [2]. Else, let Ui−1,1 = Vi−1.

Then

• if i ∈ R(G), then let Ui,1 = Vi,Lj2 ,Rj1
where j2 ∈ [2] is such that for j3 ∈ [2]

with j2 ̸= j3,
∣∣∣Vi,Lj2 ,Rj1

∣∣∣ ≥
∣∣∣Vi,Lj3 ,Rj1

∣∣∣,
• if i ∈ L(G) \ B(G), let Ui,1 = Vi,Lℓ2 ,Rℓ2

for any ℓ2 ∈ [2],

• if i ∈ [k] \ (L(G) ∪ R(G)), let Ui,1 = Vi.

Then define Ui,2 to be the diagonal part to Ui,1 for each i ∈ [k] \ {is}. Then by

Lemma 3.5.7 we know there is a collection R of (νs−1 − 2αs−1)ns−1 vertex-disjoint

paths between Uis+1,1 and Uis−1,1 which lie in Ui,1 for i ∈ [is + 1 ↑ is − 1]. Let

Xi = Ui,1 ∩ R. Then any vertex v ∈ Uis,1 has at most αs−1ns−1 non-neighbours in

Xis−1 and at most αs−1ns−1 non-neighbours in Xis+1, and therefore we can certainly

find (ν − 4α)n cycles containing v. We can do the same thing for any w ∈ Uis,2, and

so in particular, we can find two vertex-disjoint cycles Cs,1 and Cs,2 such that for each

j ∈ [2], Cs,j lies entirely in Ui,j for i ∈ [k]. Furthermore, let Gs = Gs−1 − Cs,1 − Cs,2.

Then diffGs
is,1,1 = diffGs−1

is,1,1 − 1 and diffGs
is,1,2 = diffGs−1

is,1,2 − 1, so as both of these quantities

were odd, they are now even, and so in particular, is /∈ Odd(G). Furthermore,

for each i ∈ [k] \ {is}, if j, ℓ ∈ [2] are such that Vi,Lj ,Rℓ
= Ui,1 and Vi,Lj ,Rℓ

= Ui,2,

then diffGs
i,j,ℓ = diffGs−1

i,j,ℓ − 2. If j, j′, ℓ, ℓ′ ∈ [2] with j ̸= j′ and ℓ ̸= ℓ′ are such that

Vi,Lj ,Rℓ
= Ui,1 and Vi,Lj′ ,Rℓ′ = Ui,2, then diffGs

i,j,ℓ = diffGs−1
i,j,ℓ and for each other j, ℓ ∈ [2],

diffGs
i,j,ℓ = diffGs−1

i,j,ℓ . Therefore, the parity of the difference between the diagonal parts

becomes even for is, and the difference remains unchanged for each other i ∈ [k].

Therefore, Odd(Gs) = Odd(Gs−1) \ {is}. Furthermore, Gs satisfies the conditions in

the lemma with constants γs, βs, ηs, αs, νs, τ .

Let Q(1) = ⋃
i∈[b](Ci,1 ∪ Ci,2). Let H = Gb. Then H = G − Q(1). Now we know

that the difference between each pair of diagonal parts has even parity. We will now
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repeatedly apply Lemma 3.5.13 to reduce this to 0 for each pair of diagonal parts.

In particular, we find a sequence of subgraphs H0 = H ⊃ H1 ⊃ . . . ⊃ Hk as follows.

Again, choose constants such that γb ≪ γ′
1 ≪ . . . ≪ γ′

k ≪ βb ≪ β′
1 ≪ . . . ≪ β′

k ≪

η′
k ≪ . . . ≪ η′

1 ≪ ηb ≪ αb ≪ α′
1 ≪ . . . ≪ α′

k ≪ ν ′
k ≪ . . . ≪ ν ′

1 ≪ νb.

For each i ∈ [k], if i /∈ L(G) ∪ R(G), then let Hi = Hi−1. If diffHi−1
i,j,ℓ = 0 for

each j, ℓ ∈ [2], then let Hi = Hi−1. Otherwise, if there is some j, ℓ ∈ [2] such

that diffHi−1
i,j,ℓ > 0, then in particular we know diffHi−1

i,j,ℓ ≥ 2 as the parity is even.

Then for each such j, ℓ, apply Lemma 3.5.13 diffHi−1
i,j,ℓ /2 times to find a collection of

vertex-disjoint paths Pi such that if Hi = Hi−1 − Pi, then Hi satisfies the conditions

in the lemma with constants γ′
i, β

′
i, η

′
i, α

′
i, ν

′
i, τ . Furthermore, for each j, j′, ℓ, ℓ′ ∈ [2]

with j ̸= j′, diffHi
i,j,ℓ = 0 = diffHi

i,j′,ℓ, while diffHi
i′,j′′,ℓ′′ = k

Hi−1
i′,j′′,ℓ′′ for each i′ ∈ [k] \ {i},

j′′, ℓ′′ ∈ [2].

Let Q be the collection of all paths and cycles found during this process. Note that

during this process, we remove the same number of vertices from Vi for each i ∈ [k],

and in particular at most β′
kn vertices. Therefore by Lemma 3.2.6, the resulting

graph H satisfies that any pair which was in Nν,τ (G) is now in Nν/2,τ (H) and for

each i /∈ Nν/2,τ (H), there is an (2α, 0)-bipartition of (V H
i , V H

i+1), as required.

The next lemma now allows us to take any graph in which each pair is either

(ν, τ)-robust or it has an (α, 0)-bipartition and use this to find a perfect fractional

Pk−2-tiling.

Lemma 3.5.17. Let 1/n ≪ γ ≪ α ≪ ν ≪ τ ≪ 1/k. Let G be k-partite graph

with parts V1, . . . , Vk each of size n and δ∗(G) ≥ (1/2 − γ)n. Let i∗ ∈ [k] be such

that (Vi∗ , Vi∗+1) is a robust (ν, τ)-expander. For each i ∈ [k] with i /∈ Nν,τ (G), let

((Vi,L1 , Vi,L2), (Vi+1,R1 , Vi+1,R2)) be an (α, 0)-bipartition of (Vi, Vi+1). Then G contains

a perfect fractional Pk−2-tiling in which each copy of Pk−2 has weight 0 or 1/(k − 1).

Proof. For each i ∈ [k], we do the following. If (Vi, Vi+1) is a robust (ν, τ)-expander,

then use Lemma 3.2.3 to find a perfect matching between Vi and Vi+1. Otherwise,
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we know there is an (α, 0)-bipartition ((Vi,L1 , Vi,L2), (Vi+1,R1 , Vi+1,R2)) of (Vi, Vi+1).

By definition, this means that the partition of Vi into Vi,L1 ∪ Vi,L2 and of Vi+1 into

Vi+1,R1 ∪ Vi+1,R2 is such that

(i)
∣∣∣Vi,Lj

∣∣∣ = |Vi+1,Rℓ
| = n/2 for each j, ℓ ∈ [2], and

(ii) for each j ∈ [2], every vertex in Vi,Lj
has at least (1 − α)n/2 neighbours in

Vi+1,Rj
and vice versa.

We can verify that Hall’s condition is satisfied and find a perfect matching between

Vi,Lj
and Vi+1,Rj

for each j ∈ [2], and therefore we can find a perfect matching

between Vi and Vi+1. Thus we find perfect matchings between Vi and Vi+1 for each

i ∈ [k]. Therefore, we can apply Lemma 3.5.3 to find a perfect fractional Pk−2-tiling

in G in which each copy of Pk−2 has weight 0 or 1/(k − 1).

3.5.1.2 Proof of Lemma 3.5.2

We can now apply the results we have seen to prove Lemma 3.5.2. Recall that we

want to show that, given that there is some pair of parts (Vi∗ , Vi∗+1) in G which is

a (ν, τ)-robust pair, we can find a perfect fractional Pk−2-tiling in G. The proof of

this result proceeds as follows. First for each pair (Vi, Vi+1) which is not robust, we

find an (α, β)-bipartition as given by Lemma 3.2.5, that is, a split of (Vi, Vi+1) into

two subgraphs A and B, each of which are close to being complete bipartite graphs,

though there may be some vertices with low degree in A and B, and similarly there

may be some slight imbalances in the part sizes. The first step is to find paths which

hit each Vi evenly and which cover any of the vertices which have low degree where

they should see almost everything. We can do this by applying Lemma 3.5.6. This

will leave only vertices which see almost everything where they should.

Now suppose that there are some i such that both (Vi−1, Vi) and (Vi, Vi+1) are non-

robust pairs. In this case, Vi will be partitioned twice, into 4 subparts. The second

step is to cover any subparts which have small size. We do this by finding paths of
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length k − 2 which cover this. Again, this can be done by applying Lemma 3.5.6.

This will now leave only vertices which see almost everything where they should, and

only large subparts. Furthermore, by doing this carefully, we can ensure that the

difference in size between any pair of diagonal subparts is small compared to the

sizes of these parts.

Then we are in a position to apply Lemma 3.5.16 which gives a collection of

paths of length k− 2 and cycles of length k that we can remove in order to make the

graph ‘balanced’, that is, to make it so that whenever there is a pair (Vi, Vi+1) which

is not a (ν ′, τ)-robust pair, there is an (α′, 0)-bipartition of this pair. In particular,

the guaranteed robust pair is used for ‘balancing’ in Lemma 3.5.16. To the resulting

graph, we then apply Lemma 3.5.17 to find a perfect fractional Pk−2-tiling in the

remaining graph. The final step is to combine all the paths and cycles we have found

in previous steps to obtain a fractional Pk−2 tiling of the graph itself. We formalise

this below.

Proof of Lemma 3.5.2. Let G be as above. Choose constants γ ≪ ν1 ≪ β1 ≪ α1 ≪

ν2 ≪ . . . ≪ νk ≪ βk ≪ αk ≪ νk+1 = ν. By Lemma 3.2.1, we know that if any

graph H is a robust (νj, τ)-expander, then it is a robust (νj−1, τ)-expander for all

j ∈ {2, . . . , k + 1}. By the Pigeonhole principle, there must be some j ∈ [k] such

that Nνj ,τ (G) = Nνj+1,τ (G). Let ν ′ := νj, ν := νj+1, α := αj and β := βj. We know

by the hypothesis of the theorem that |N (G)| ≥ 1, since in particular, i∗ ∈ N (G).

By relabelling if necessary, suppose that 1 ∈ N (G). We have two cases to consider.

First, assume that N (G) = [k]. Then by Lemma 3.5.17, since each part has the

same size and (Vi, Vi+1) is a (ν, τ)-robust pair for each i ∈ [k], there is a perfect

fractional Pk−2-tiling. Therefore, we may assume that there is at least one i ∈ [k]

such that i /∈ N (G), that is, (Vi, Vi+1) is not a (ν, τ)-robust pair.

For each i /∈ N (G), we let ((Vi,L1 , Vi,L2), (Vi+1,R1 , Vi+1,R2)) be an (α, β)-bipartition

of (Vi, Vi+1). Indeed, this exists by Lemma 3.2.5 since (Vi, Vi+1) is not a (ν ′, τ)-robust

pair. Let s ∈ [k] be such that (Vs, Vs+1) is a non-(ν ′, τ)-robust pair in G. Then for
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(i,X), (i′, X ′) ∈ {(s, L), (s + 1, R)} with (i,X) ̸= (i′, X ′) and j ∈ {1, 2}, we say a

vertex v ∈ Vi,Xj
is σ-partition-respecting if

∣∣∣N(v) ∩ Vi′,X′
j

∣∣∣ ≥ (1−σ)
∣∣∣Vi′,X′

j

∣∣∣. Otherwise,

we say v is σ-non-partition-respecting. By the definition of an (α, β)-bipartition,

for any i ∈ [k], there can be at most 4βn vertices in Vi which are α-non-partition-

respecting. This is because each Vi can belong to at most two non-(ν ′, τ)-robust pairs,

and each such pair can create up to 2βn vertices which are α-non-partition-respecting.

For each i ∈ [k], let Bi be the set of α-non-partition-respecting vertices in Vi.

We will first find a collection Q(1) of vertex-disjoint transversal paths of length

k − 2 such that G′ := G[V (G) \ V (Q(1))] contains no σ′-non-partition-respecting

vertices, for some σ′. Set G0 := G. We will find a sequence of graphs G0 ⊃ G1 ⊃

. . . ⊃ Gk = G′ as follows. For each i ∈ [1 ↑ k], suppose we have found Gi−1, and let

V
(i−1)

j = Vj ∩ V (Gi−1) for each j ∈ [k]. Let ni−1 =
∣∣∣V (i−1)

j

∣∣∣ = n− 4(k − 1)β(i− 1)n

for each j ∈ [k]. Also suppose

δ∗(Gi−1) ≥
(1

2 − γ − 4(k − 1)β(i− 1)
)
n ≥

(1
2 − γ − 4(k − 1)β(i− 1)

)
ni−1.

Now let Xi ⊆ Vi be such that (Bi ∩ V (Gi−1)) ⊆ Xi and |Xi| = 4βn. Then by

Lemma 3.5.6, we can find a collection Q(1)
i of transversal paths of length k− 2 which

cover Xi and which collectively contain exactly (k − 1) |Xi| = 4(k − 1)βn vertices

from V
(i−1)

j for each j ∈ [k].

Let Gi = Gi−1[V (Gi−1) \ V (Qi)], and let V (i)
j = Vj ∩ V (Gi) for j ∈ [k]. Then

ni =
∣∣∣V (i)

j

∣∣∣ = ni−1 − 4(k − 1)βn = n− 4(k − 1)βin. Furthermore,

δ∗(Gi) ≥ δ∗(Gi−1) − 4(k − 1)βn ≥
(1

2 − γ − 4(k − 1)βi
)
n

≥
(1

2 − γ − 4(k − 1)βi
)
ni.

When this process has finished, let G′ := Gk, and for each j ∈ [k], let V ′
j := V

(k)
j .

Choose constants γ′ and β′ such that β ≪ γ′ ≪ β′ ≪ α. Then n′ := nk =

(1 − 4(k − 1)kβ)n, and δ∗(G′) ≥ (1/2 − γ − 4(k − 1)kβ)n ≥ (1/2 − γ′)n′. Let
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Q(1) = ⋃
i∈[k] Q(1)

i .

We have removed at most γ′n vertices from each part. So, for each i ∈ Nν,τ (G),

we know by Lemma 3.2.6 that i ∈ Nν−γ′,τ (G′). Now for each i /∈ Nν−γ′,τ (G′),

we know i /∈ Nν,τ (G). Therefore, for any i /∈ Nν−γ′,τ (G′), for each j ∈ [2], let

V ′
i,Lj

= Vi,Lj
∩ V (G′), and let V ′

i+1,Rj
= Vi+1,Rj

∩ V (G′). Then

(1
2 − β′

)
n′ ≤

(1
2 − β − 4(k − 1)kβ

)
n ≤

∣∣∣V ′
i,Lj

∣∣∣ , ∣∣∣V ′
i+1,Rj

∣∣∣ ≤
(1

2 + β
)
n

≤
(1

2 + β′
)
n′.

Furthermore, for any v ∈ V ′
i,Lj

, we know that
∣∣∣NG(v, Vi+1,Rj

)
∣∣∣ ≥ (1 − α)

∣∣∣Vi+1,Rj

∣∣∣.
Therefore,

∣∣∣NG′(v, V ′
i+1,Rj

)
∣∣∣ ≥ (1 − α)

∣∣∣Vi+1,Rj

∣∣∣− 4(k − 1)kβn ≥ (1 − 2α)
∣∣∣V ′

i+1,Rj

∣∣∣ ,
and the reverse holds for each vertex in V ′

i+1,Rj
by symmetry. Therefore in par-

ticular, for each i /∈ Nν−γ′,τ (G′), (Vi, Vi+1) has a high-degree (2α, β′)-bipartition

((V ′
i,L1 , V

′
i,L2), (V ′

i+1,R1 , V
′

i+1,R2)).

Now for each i ∈ Bν−γ′,τ (G′), for each j, ℓ ∈ [2], let V ′
i,Lj ,Rℓ

= V ′
i,Lj

∩ V ′
i,Rℓ

. For

each i ∈ Lν−γ′,τ (G′) \ Bν−γ′,τ (G′), for j, j′ ∈ [2] with j ̸= j′, let V ′
i,Lj ,Rj

= V ′
i,Lj

and

let V ′
i,Lj ,Rj′ = ∅. For each i ∈ Rν−γ′,τ (G′) \ Bν−γ′,τ (G′), for each ℓ, ℓ′ ∈ [2] with

ℓ ̸= ℓ′, let V ′
i,Lℓ,Rℓ

= V ′
i,Rℓ

and let V ′
i,Lℓ,Rℓ′ = ∅. For each i ∈ L(G) ∪ R(G), for each

j, j′, ℓ, ℓ′ ∈ [2] with j ≠ j′ and ℓ ̸= ℓ′, we say V ′
i,Lj ,Rℓ

and V ′
i,Lj′ ,Rℓ′ are diagonal parts.

By Proposition 3.5.4, we know that the difference between the size of two diagonal

parts can be at most 2β′n′.

We now want to remove any subparts which are small in size together with the

parts which are diagonal to these. We first do the following. Let β′ ≪ η1 ≪ η2 ≪

. . . ≪ η2k+2 ≪ α. As there can be at most four subparts in each part, at most two

of these can be ‘small’ and the difference between the size of diagonal parts must

also be ‘small’, by the Pigeonhole principle there is some r ∈ [2k + 1] such that for
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each i ∈ Lν,τ (G) and each j, j′, ℓ, ℓ′ ∈ [2] such that j ̸= j′ and ℓ ̸= ℓ′,

• either
∣∣∣V ′

i,Lj ,Rℓ

∣∣∣ , ∣∣∣V ′
i,Lj′ ,Rℓ′

∣∣∣ ≤ ηrn
′,

• or
∣∣∣V ′

i,Lj ,Rℓ

∣∣∣ , ∣∣∣V ′
i,Lj′ ,Rℓ′

∣∣∣ ≥ ηr+1n
′.

Let η := ηr and η′ := ηr+1. Let Jη(G′) = {i ∈ [k] : there exist j, ℓ ∈ [2] such that 0 <∣∣∣Vi,Lj ,Rℓ

∣∣∣ ≤ ηn′}, and suppose |Jη(G′)| = ℓ∗. Let Jη(G′) = {i1, . . . , iℓ∗}. We will find

a collection of cycles Q(2) such that if H = G′ − Q, then Jη′/2(H) = ∅. That is, in

the resulting graph, every subpart has size at least ηn′.

Indeed, let H0 = G′. We find a sequence of graphs H0 ⊃ H1 ⊃ . . . ⊃ Hℓ∗ induc-

tively as follows. Let s ∈ [l∗] and suppose we have found Hs−1. Let js,1, js,2, ℓs,1, ℓs,2 ∈

[2] be such that js,1 ≠ js,2 and ℓs,1 ̸= ℓs,2, and 0 <
∣∣∣V ′

is,js,1,ℓs,1

∣∣∣ , ∣∣∣V ′
is,js,2,ℓs,2

∣∣∣ ≤ ηn′.

That is, choose a subpart which has size smaller than ηn′. Let Yis ⊆ Vis be

such that (V ′
is,js,1,ℓs,1 ∪ V ′

is,js,2,ℓs,2) ⊆ Yis and |Yis| = 2ηn′. That is, Yis is a col-

lection of vertices which covers both the subpart we chose and also the subpart

which is diagonally opposite from this part. Then by Lemma 3.5.6, we can find a

collection Q(2)
s of transversal paths of length k − 2 which cover Yis and which

collectively hit Vj ∩ V (Hs−1) exactly k − 1 times for each j ∈ [k]. Then let

Hs = Hs−1[V (Hs−1) \ V (Q(2)
s )]. Then ms := |Vi ∩ V (Hs)| = (1 − 2(k − 1)sη)n′

and δ∗(H) ≥ (1/2 − γ′ − 2(k− 1)sη)n′. Note that we can apply Lemma 3.5.6 at each

stage here, because ms−1 = V ′
i ∩ V (Hs−1) = (1 − 2(k − 1)(s− 1)η)n′ ≥ (1 − 2k2η)n′

and δ∗(Hs−1) ≥ (1/2 − γ′ − 2(k − 1)(s− 1)η)n′ ≥ (1/2 − η′)ms−1 for η′ ≫ η, γ′.

When this process is complete, let Q(2) = ⋃
i∈[ℓ∗] Q(2)

i . Let H := Hℓ∗ and m := mℓ∗ .

Choose constants γ′′ and β′′ such that η ≪ γ′′ ≪ β′′ ≪ η′. Then m = (1 − 2(k −

1)ℓ∗η)n′ ≥ (1 − γ′′)n′ and

δ∗(H) ≥
(1

2 − γ′ − 2(k − 1)ℓ∗η
)
n′ ≥

(1
2 − γ′′

)
m.

As we have removed at most γ′′n′ vertices from each part, then by Lemma 3.2.6,

for each i ∈ Nν−γ′,τ (G′), we know that i ∈ Nν−2γ′′,τ (H). For each i /∈ Nν−2γ′′,τ (H),
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we know i /∈ Nν−γ′,τ (G′). So for each i /∈ Nν−2γ′′,τ (H), for each j ∈ [2], let V H
i,Lj

=

Vi,Lj
∩ V (H), and V H

i+1,Rj
= Vi+1,Rj

∩ V (H). Then

(1
2 − β′′

)
m ≤

(1
2 − β′

)
n′ − γ′′n′ ≤

∣∣∣V H
i,Lj

∣∣∣ , ∣∣∣V H
i+1,Rj

∣∣∣ ≤
(1

2 + β′
)
n′ ≤

(1
2 + β′′

)
m.

Furthermore, for any v ∈ V H
i,Lj

, we know that
∣∣∣NG′(v) ∩ V ′

i+1,Rj

∣∣∣ ≥ (1 − 2α)
∣∣∣V ′

i+1,Rj

∣∣∣.
Therefore,

∣∣∣NH(v) ∩ V H
i+1,Rj

∣∣∣ ≥ (1 − 2α)
∣∣∣V ′

i+1,Rj

∣∣∣− γ′′n′ ≥ (1 − 3α)
∣∣∣V H

i+1,Rj

∣∣∣ ,
and the reverse holds for each vertex in V H

i+1,Rj
by symmetry. Therefore, each

i /∈ Nν−2γ′′,τ (H), (V H
i , V H

i+1) has a high-degree (3α, β′′)-bipartition

((V H
i,L1 , V

H
i,L2), (V H

i+1,R1 , V
H

i+1,R2)). Furthermore, for any i ∈ Bν−γ′′,τ (H), for each

j, j′, ℓ, ℓ′ ∈ [2] with j ̸= j′ and ℓ ̸= ℓ′, if V H
i,Lj ,Rℓ

̸= ∅ then
∣∣∣V ′

i,Lj ,Rℓ

∣∣∣ ≥ η′n′, and

so
∣∣∣V H

i,Lj ,Rℓ

∣∣∣ ≥ (η′ − γ′′)n′ ≥ η′m/2.

Therefore, as η′ ≫ β′′, we can apply Lemma 3.5.16 to find a collection of vertex-

disjoint transversal paths Q(3) such that if H ′ := H[V (H) \ V (Q(3))], then there is

some i ∈ [k] such that H ′[V H′
i ∪ V H′

i+1] is a robust ((ν − 2γ′′)/2, τ)-expander and for

each i′ ∈ [k] such that H ′[V H′
i′ ∪V H′

i′+1] is not a robust ((ν−2γ′′)/2, τ)-expander, there

is a balanced (6α, 0)-bipartition of (V H′
i′ , V H′

i′+1). Thus, we can apply Lemma 3.5.17

to find a perfect fractional path tiling in H ′. In other words, there is a function

f which assigns a weight in [0, 1] to each path of length k − 2 in H ′ such that the

weight at any vertex of H ′ is exactly 1. It now remains to find a perfect fractional

path tiling in G. Indeed let P be the set of all paths of length k − 2 in G. We define
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the function g : P → [0, 1] as follows.

g(P ) =



1, if P ∈ Q(i) for some i ∈ [3]

1/(k − 1), if P is contained in some cycle C ∈ Q(i) for some i ∈ [3]

f(P ), if V (P ) ⊆ V (H ′)

0 otherwise.

Then clearly the function is well defined since each path in P has been assigned

some weight in [0, 1]. To prove that this is a perfect fractional path tiling, we need

to check that the weight at each vertex is exactly 1. Indeed, for any v ∈ V (H ′),

clearly v /∈ Q(i) for any i ∈ [3]. Therefore, since f is a perfect fractional path tiling

of V (H ′), we know that the weight at v must be 1. Now for any v /∈ V (H ′), we

know that v must belong to some path in Q(i) for some i ∈ [3]. As this is a collection

of vertex-disjoint paths and cycles of length k, we know if v belongs to a path in

Q(1) ∪ Q(2) ∪ Q(3), then it can only belong to one such path and therefore the weight

at vertex v is exactly 1. On the other hand, if v belongs to a cycle in Q(1) ∪Q(2) ∪Q(3),

then it must belong to exactly k − 1 paths, and so the weight at v is exactly 1 yet

again, concluding the proof.

3.5.2 No robust expanders

In the following lemma, we show that if G is a k-partitite graph with parts V1, . . . , Vk

each of size n and δ∗(G) ≥ (1/2 − γ)n, and if G is close to the almost-complete blow

up of the union of 2 Cks with parts of slightly unbalanced size, then G contains a

perfect fractional Pk−2-tiling. We also show that if G is close to the almost-complete

blow-up of C2k with parts of slightly unbalanced size and k is even, then G also

contains a perfect fractional Pk−2-tiling.

Lemma 3.5.18. Let k be an even integer. Let 1/n ≪ γ ≪ β ≪ α ≪ 1/k. Let G

be a k-partite graph with parts V1, . . . , Vk, each of size n, and δ∗(G) ≥ (1/2 − γ)n.
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For each i ∈ [k], suppose (Ai, Bi) is a partition of Vi such that for each i ∈ [k − 1],

((Ai, Bi), (Ai+1, Bi+1)) is a high-degree (α, β)-bipartition of (Vi, Vi+1). Suppose one

of the following holds.

(i) ((Ak, Bk), (A1, B1)) is a high-degree (α, β)-bipartition of (Vk, V1).

(ii) ((Ak, Bk), (B1, A1)) is a high-degree (α, β)-bipartition of (Vk, V1) and k is even,

and ||Ai| − |Bi|| is even for each i ∈ [k].

Then G contains a perfect fractional Pk−2-tiling.

Proof. Let G be as above. Suppose first that (i) holds. Let c(A) = mini∈[k] |Ai|

and let c(B) = mini∈[k] |Bi|. For each i ∈ [k], let f(i, A) = |Ai| − c(A), and let

f(i, B) = |Bi|−c(B). Let f(A) = ∑
i∈[k] f(i, A) and f(B) = ∑

i∈[k] f(i, B). Since each

Ai and Bi belongs to an (α, β)-bipartition, we know that f(A), f(B) ≤ 2kβn. Note

that by the density condition, we can ensure that for each i ∈ [k] and X ∈ {A,B},

there are plenty of vertex-disjoint paths of length k − 2 which have initial vertex in

Xi and which remain in Xi′ for i′ ∈ [i ↑ i− 2].

For each i ∈ [k], for each X ∈ {A,B}, we do the following. For each r ∈ [f(i,X)]

and j ∈ [k] \ {i + 1}, choose a path of length k − 2 which has initial vertex in

Xj which is disjoint from any other path chosen, and add this to the collection

Q(1)
i,X . Note that the collection Q(1)

i,X hits Xi exactly (k − 1)f(i,X) times and hits

Xi′ exactly (k− 2)f(i,X) times for each i′ ∈ [k] \ {i}. Let Q(1) = ⋃
i∈[k],X∈{A,B} Q(1)

i,X .

Let G′ = G− Q(1), and for each i ∈ k] and X ∈ {A,B}, let X ′
i = Xi ∩ V (G′). Then

|X ′
i| = |Xi| −

∣∣∣V (Q(1) ∩ V (Xi)
∣∣∣

= c(X) + f(i,X) − (k − 1)f(i,X) −
∑

i′∈[k]\{i}
(k − 2)f(i′, X)

= c(X) − (k − 2)f(X).

Therefore, |X ′
i| =

∣∣∣X ′
i+1

∣∣∣ ≥ (1/2 − 2k2β)n for each i ∈ [k] and X ∈ {A,B}. Further-

more, let α′ be such that α ≪ α′ ≪ 1. Each vertex in X ′
i has at least (1 − α′)

∣∣∣X ′
i+1

∣∣∣
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neighbours in X ′
i+1, and vice versa. Therefore, by Hall’s condition, we can find a

perfect matching between X ′
i and X ′

i+1. Therefore, by Lemma 3.5.3, there is a perfect

fractional path tiling in G′. To obtain a perfect fractional path tiling in G, we give

each path which lies in G′ the weight given by the perfect fractional path tiling of

G′. If P lies in Q(1), we give it a weight of 1. Otherwise, we give it a weight of 0.

This is a perfect fractional Pk−2-tiling of G.

Now suppose that (i) does not hold but (ii) does hold. In this case, let g(i) =

|Ai| − |Bi|. Since n is even. |g(i)| is always even. For each i ∈ [k] in turn, we do

the following. If g(i) = 0, then we proceed to i+ 1. Otherwise, let X, Y ∈ {A,B}

with X ̸= Y be such that |Xi| ≤ |Yi|. then relabel the parts of G as D1, . . . , D2k so

that Dj := Xi+j−1 for each j ∈ [k] and Dj := Yi+j−k−1 for each j ∈ {k + 1, . . . , 2k}.

Note that for any j ∈ [2k] (with indices taken modulo 2k) each vertex in Dj has

at least α |Dj+1| neighbours in Dj+1. Therefore, in particular, we can find plenty

of vertex-disjoint paths of length k − 2 which have initial vertex in Dj and which

pass through the sets Dj′ for j′ ∈ {j, . . . , j + k − 2}. We will find a collection

Q(2)
i of vertex-disjoint paths of length k − 2 which hits D1 exactly (k − 2) · g(i)

times, Dk+1 exactly k · g(i) times and hits Dj exactly (k − 1) · g(i) times for each

j ∈ [2k] \ {1, k + 1}. Taking Q(2) = ⋃
i∈[k] Q(2)

i , the net effect of removing Q(2) from

G will be that |Ai| = |Bi| for each i ∈ [k], and also that |Ai| = |Ai+1| for each i ∈ [k]

(indices taken modulo k). Then the remainder of the graph will contain a perfect

matching between Ai and Ai+1 for each i ∈ [k], and in particular, also contain a

perfect fractional Pk−2-tiling, and then combining this with the paths in Q(1) as

before, we find a perfect fractional Pk−2-tiling in G. Thus, it suffices to find the

collection of paths Q(2). We do this as follows, at each stage making sure we choose

paths that are vertex-disjoint from any previously chosen paths.

For j ∈ {2, k+ 2}, let Q(2)
i,j be a collection of g(i) vertex disjoint paths with initial

vertex in Dj and add this to Q(2)
i . Now for each j ∈ [k/2], choose a collection of 2g(i)

vertex-disjoint paths Q(2)
i,1+2j with initial vertex in D1+2j and add these to Q(2)

i . Also,
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for each j ∈ [k/2 − 1], choose 2g(i) vertex-disjoint paths Q(2)
i,k+2+2j with initial vertex

in Dk+2+2j and add these to Q(2)
i . Now we examine how many times Dj is hit by

the collection Q(2)
i for each j ∈ [2k]. We note that if j is odd then for 3 ≤ j ≤ k + 1,

and if j is even then for k + 3 ≤ j ≤ 2k, there are 2g(i) paths in Q(2)
i with initial

vertex in Dj.

Now consider D1. This is hit by any paths with initial vertex in Dk+3, . . . , D2k, D1.

Note that between k + 3 and 2k, there are exactly k/2 − 1 odd integers. Therefore,

D1 is hit exactly 2(k/2 − 1)g(i) = (k − 2)g(i) times. On the other hand, any paths

with initial vertex in D3, . . . , Dk+1 will hit Dk+1, and there are exactly k/2 odd

integers between 3 and k + 1, so Dk+1 is hit k · g(i) times. Meanwhile, for any

j ∈ [2k] \ {1, k + 1}, Dj is hit by any path in Q(2)
i with initial vertex in Dj+1−ℓ for

ℓ ∈ [k − 1], and indices taken modulo 2k. Let H(j) = {j + 1 − ℓ : ℓ ∈ [k − 1]}. Then

for any j ∈ [2k] \ {1, k + 1}, H(j) contains exactly k/2 − 1 indices j′ such that there

are 2g(i) paths in Q(2)
i with initial vertex in Dj′ , and exactly 1 index j′ such that

there is one path in Q(2)
i with initial vertex in Dj′ . Therefore, Dj is hit exactly

(2(k/2 − 1) + 1) · g(i) = (k − 1)g(i) times for each j ∈ [k] \ {1, k + 1}, as required,

proving the lemma.

3.5.3 Proof of Theorem 3.1.4

It only remains to use the lemmas in this section to prove Theorem 3.1.4, that is,

the following.

Theorem 3.1.4. Suppose that 1/n ≪ γ ≪ ψ, 1/k, and let G be a balanced k-partite

graph whose vertex classes each have size n. If δ∗(G) ≥ (1
2 + 1

2k
)n− γn, then either

G contains a perfect fractional Ck-tiling or G is ψ-extremal.

We begin by outlining the proof. The overall technique relies on Farkas’ lemma,

as we have seen in the proof outline of Lemma 3.5.1 at the beginning of this section.

Therefore, we begin by applying Farkas’ lemma to find a vector a which gives a
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weight to each vertex. We label the vertices in each part so that the ‘lighter’ vertices

have smaller index and are at the ‘top’, and ‘heavier’ vertices have larger index and

are at the ‘bottom’. Rather than explicitly finding a perfect fractional Ck-tiling, the

problem is now reduced to finding a collection of sets of size k such that each of

these sets ‘dominate’ a cycle in the graph (that is, for each set, there is a cycle in

the graph which is lighter than the set) and such that collectively, these k-sets cover

each vertex the same number of times.

We then separate the lightest (k − 1)n/k vertices in each part Vi as the set Vi,T ,

and the heaviest n/k vertices in each Vi as Vi,B. The degree condition implies that if

GT := G[⋃i∈[k] Vi,T ] and nT = (k − 1)n/k, then δ∗(GT ) ≥ (1/2 − γ)nT . Furthermore,

for each i ∈ [k], if we choose any vertex from Vi and any vertex from Vi+2, they have

at least n/k−2γn neighbours in Vi+1, and therefore, they have at least one neighbour

which is lighter than any vertex in Vi+1,B other than the lightest 2γn vertices of

Vi+1,B. The proof splits into multiple cases now depending on the behaviour of GT .

The first case we consider in Claim 3.5.19 is the case when there is some i ∈ [k]

such that the graph of GT [Vi, Vi+1] is a (ν, τ)-robust expander. In this case, we first

show we can find 2kγn cycles which are dominated by a collection of sets covering

the lightest 2kγn vertices in Vi,B. Then we apply Lemma 3.5.2 to find a perfect

fractional Pk−2-tiling in GT . Then we use this to find a collection of sets in G which

each dominate a cycle, thus giving a contradiction and therefore proving the existence

of a perfect fractional Ck-tiling in G.

The remainder of the proof is dedicated to the case when there is no i ∈ [k] such

that GT [Vi, Vi+1] is a (ν, τ)-robust expander. Lemma 3.2.5 tells us that each pair

GT [Vi, Vi+1] must therefore be ‘close to’ two almost complete bipartite graphs, where

the size of each part in this bipartition is around n/2. Note that each vertex class

Vi,T receives two different bipartitions by Lemma 3.2.5. In Claim 3.5.20 we consider

what happens when there is some i∗ such that the two different bipartitions of Vi∗,T

do not ‘nearly line up’. That is, suppose A1 ∪A2 and B1 ∪B2 are two bipartitions of
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Vi∗,T . In Claim 3.5.20, we show that if |Aj ∩Bℓ| ≥ β′n for each j, ℓ ∈ [2], then we

find a perfect fractional Pk−2 tiling in GT . As before, this implies the existence of a

perfect fractional Ck-tiling in G.

Finally, we assume that the two different bipartitions ‘nearly line up’ in each

part Vi,T . In this case, we show that if we cannot find β′n cycles in GT , then G is

certainly ψ-extremal. If we can find at least β′n cycles in G, then if k is even, we can

find a perfect fractional Ck-tiling in G. If k is odd, then this is no longer guaranteed,

but we show that either G contains a perfect fractional Ck-tiling, or it is ψ-extremal.

We now formalise this below.

Proof of Theorem 3.1.4. Choose constants ν, τ such that γ ≪ ν ≪ τ ≪ ψ, 1/k.

Suppose G contains no perfect fractional transversal Ck-tiling. From now on,

assume that all cycles of length k are transverse and all paths are partition-respecting.

By Fact 3.2.7, we know that 1 ̸∈ PC(χ(C) : C ∈ C). Thus, by Farkas’ lemma, there

is some a ∈ Rkn such that a · 1 < 0 but a · χ(C) ≥ 0 for each C ∈ C.

For each i ∈ [k], label the vertices of Vi by vi,1, . . . , vi,n, and let ai,1, . . . , ai,n be

the corresponding coordinates of a, where labels are chosen so that ai,1 ≤ . . . ≤ ai,n.

We say that a set S = {vi1,j1 , . . . , vit,jt} dominates a set S ′ = {vi1,ℓ1 , . . . , vit,ℓt} if

js ≥ ℓs for each s ∈ [t] (that is, if the corresponding indices are larger). The general

idea of the proof is to show that if the graph contains certain structure, X, say, then

we can find a collection T of sets such that each set T ∈ T dominates some cycle

CT ∈ C and such that ∑T ∈T χ(T ) = b · 1 for some b > 0. If we can do this, then

0 ≤
∑
T ∈T

a · χ(CT ) ≤
∑
T ∈T

a · χ(T ) = b · (a · 1) < 0, (3.5.1)

which is a contradiction. Therefore, we use this to conclude the graph cannot have

structure X. We do this for the first time in Claim 3.5.19. We then repeatedly

do this to gain more and more information about the structure of the graph, and

finally, use this to conclude that if we cannot find a contradiction to the existence of
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a perfect fractional Ck-tiling, the resulting graph must be close to extremal.

To begin, for each i ∈ [k], partition Vi into two sets Vi,T and Vi,B, where Vi,T =

{vi,1, . . . , vi, k−1
k

n} and Vi,B = {vi, k−1
k

n+1 . . . vi,n}. Here, T and B represent ‘top’ and

‘bottom’, respectively, since if the vertices are represented graphically with indices in

increasing order from top to bottom, then Vi,T contains the ‘top’ (k − 1)n/k vertices

of Vi, and Vi,B contains the bottom (k − 1)n/k vertices of Vi. To provide intuition

through the proof, we will often use the words ‘top’ and ‘bottom’ for this graphical

representation. Let VT = ⋃
i∈[k] Vi,T and VB = ⋃

i∈[k] Vi,B. Let nT = (k − 1)n/k and

nB = n/k.

Claim 3.5.19. Suppose that there is some i∗ ∈ [k] such that G[Vi∗,T , Vi∗+1,T ] is a

robust (ν, τ)-expander. Then G contains a perfect fractional Ck-tiling.

Proof of Claim 3.5.19. We know that for each i ∈ [k], δ(G[Vi,T , Vi+1,T ]) ≥ (1/2−γ)n.

Furthermore, any pair of vertices v ∈ Vi and w ∈ Vi+2 have at least n/k−2γn common

neighbours in Vi+1.

We begin by finding 2kγn vertex-disjoint transversal cycles of length 5 in G[VT ].

We can do this by selecting 2kγn vertices in Vi∗+2,T . By applying Lemma 3.5.5, since

the pair (Vi∗,T , Vi∗+1,T ) is a (ν, τ)-robust pair in G[VT ], each chosen vertex in Vi∗+2,T

is contained in at least (ν − 2γ)n cycles of length k in G[VT ] which intersect only at

the chosen vertex. Thus, for each chosen vertex, we can greedily choose a cycle of

length k such that all cycles chosen are vertex-disjoint. Let F be the collection of

cycles found in this step. These cycles will be used to cover the top 2γn vertices of

Vi,B.

Partition F into k parts of equal size, F1, . . . ,Fk. For each i ∈ [k], label the

cycles in Fi by Fi,1, . . . , Fi,2γn. For each cycle Fi,j , we construct a new set Ti,j , where

Ti,j contains each vertex of Fi,j which does not belong to Vi together with the vertex

vi, k−1
k

n+j. In particular, Ti,j dominates Fi,j for each i ∈ [k] and j ∈ [2γn].

Let T = ⋃
i∈[k],j∈[2γn] Ti,j . Let G′ = G[V (G)\T ]. Let V ′

T = VT \T and V ′
B = VB \T .

Let V ′
i,T = Vi,T \ T and Vi,B = Vi,B \ T for each i ∈ [k]. Then for each i ∈ [k], we
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have removed exactly 2k−1
k
γn vertices from Vi,T to obtain V ′

i,T . So, for each i ∈ [k],

n′
T :=

∣∣∣V ′
i,T

∣∣∣ = k − 1
k

n− 2(k − 1)
k

γn = (1 − 2γ)(k − 1)
k

n.

For any vertex v ∈ Vi,T , we have removed at most 4(k − 1)γn/k vertices from its

neighbourhood in Vi+1,T ∪ Vi−1,T . Therefore,

δ(G[V ′
i,T , V

′
i+1,T ]) ≥

(1
2 − γ

)
nT − 4 · k − 1

k
γn =

(1
2 − γ

)
nT − 4γnT

=
(1

2 − 5γ
)
nT .

Furthermore, G[Vi∗,T , Vi∗+1,T ] was a robust (ν, τ)-expander. As, for each i ∈ [k], we

have removed 2(k− 1)γn/k = 2γ |Vi,T | vertices from Vi,T to obtain V ′
i,T , Lemma 3.2.6

implies that G′[V ′
i∗,T , V

′
i∗+1,T ] is a robust (ν − 2γ, τ)-expander. Therefore, we can

apply Lemma 3.5.2 to find a perfect fractional partition-respecting Pk−2-tiling in

G′[V ′
T ]. By definition, this means we find a function f which assigns a weight in

[0, 1] to each partition-respecting path of length k − 2 in G′[V ′
T ] in such a way that

if P ′ is the collection of partition-respecting paths in G′[V ′
T ], then for each vertex

v ∈ V ′
T , ∑P ∈P ′ : v∈V (P ) f(P ) = 1. Let P be the collection of paths which are assigned

a non-zero weight by f . Note that ∑P ∈P f(P ) = |VT |′ /(k − 1), since each path

contributes towards the weight of (k − 1) vertices of V ′
T and since the weight at each

vertex is 1.

Now partition P into k parts P1, . . . ,Pk, so that Pi = {P ∈ P : P ∩ V ′
i,T = ∅},

that is, P is the collection of paths in P which do not intersect V ′
i,T . This does indeed

partition P, since each path in P is partition-respecting and has length k − 2, and

so there is exactly one class V ′
i,T with which this path does not intersect. Label the
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paths in Pi by Pi,1, . . . , Pi,ℓi
, where ℓi = |Pi|. Then for any i ∈ [k],

∣∣∣V ′
i,T

∣∣∣ =
∑

v∈V ′
i,T

∑
P ∈P : v∈P

f(P ) =
∑
P ∈P

f(P ) −
∑

P ∈Pi

f(P ).

=⇒
∑

P ∈Pi

f(P ) = |V ′
T |

k − 1 −
∣∣∣V ′

i,T

∣∣∣ = k(1 − 2γ)(k − 1)n
k(k − 1) − (1 − 2γ)(k − 1)n

k

= (1 − 2γ)n
k

.

For each i ∈ [k] and j ∈ [ℓi], say U(Pi,j) is the set of common neighbours of

the endvertices of Pi,j in Vi. Note that this is now in the original graph G. Then

|U(Pi,j)| ≥ (1 − 2γ)n/k. Let u(Pi,j) ∈ U(Pi,j) be such that a · χ(u(Pi,j)) ≤ a · χ(v)

for each v ∈ U(Pi,j), that is, u(Pi,j) is the vertex in U(Pi,j) which is assigned the

lowest weight by a. Let Qi,j be the cycle formed by taking V (Pi,j) together with

u(Pi,j). Let Qi = {Qi,j : j ∈ [ℓi]}. Let Q = ⋃
i∈[k] Qi.

Now for each Pi,j , we construct (1 − 2γ)n/k sets of vertices Si,j,1, . . . , Si,j,(1−2γ)n/k

such that for each r ∈ [(1 − 2γ)n/k], Si,j,r = V (Pi,j) ∪ {vi, k−1
k

n+2γn+r}. Essentially,

we construct the sets Si,j,r by assigning a collection of paths Pi,j to each vertex

in V ′
i,B. Note that Si,j,r dominates Qi,j for each r ∈ [(1 − 2γ)n/k]. For each

i ∈ [k], j ∈ [ℓi], r ∈ [(1 − 2γ)n/k], let

• g(Si,j,r) = f(Pi,j)/((1 − 2γ)(n/k)),

• Si,j = {Si,j,r′ : r′ ∈ [(1 − 2γ)n/k]}

• Si = ⋃
j′∈[ℓi] Si,j′ , and

• S = ⋃
i′∈[k] Si.

Then for each v ∈ V ′
i,T ,

∑
S∈S : v∈S

g(S) =
∑

P ∈P : v∈P

(1 − 2γ)(n/k)f(P )
(1 − 2γ)(n/k) =

∑
P ∈P : v∈P

f(P ) = 1.
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On the other hand, for each v ∈ V ′
i,B,

∑
S∈S : v∈S

g(S) =
∑

S∈S,P ∈Pi : V (Pi)⊆S

g(S) =
∑

P ∈Pi

f(P )
(1 − 2γ)(n/k) = 1

Here, the first equality holds because for each vertex in V ′
i,B, the sets Si,j,r are formed

by taking this vertex together with some path in Pi, and each of the paths in Pi

form a set S with exactly one vertex in V ′
i,B. Now,

a ·

∑
i∈[k]

∑
j∈[ℓi]

∑
r∈[(1−2γ)n/k]

g(Si,j,r) · χ(Si,j,r)
+

∑
i∈[k]

∑
j∈[2γn]

χ(Ti,j)


≥

∑
i∈[k]

∑
j∈[ℓi]

a · χ(Qi,j)
∑

r∈[(1−2γ)n/k]
g(Si,j,r)

+
∑

i∈[k]

∑
j∈[2γn]

a · χ(Fi,j)


≥

∑
i∈[k]

∑
j∈[ℓi]

a · χ(Qi,j)f(Pi,j)
+

∑
i∈[k]

∑
j∈[2γn]

a · χ(Fi,j)
 ≥ 0.

Here, a · χ(Qi,j),a · χ(Fi,j) ≥ 0 by the definition of a and since each Qi,j and Fi,j is

a transversal cycle, and f(Pi,j) > 0 because these paths Pi,j were chosen to be the

paths which were assigned a non-zero value by f . On the other hand,

a ·

∑
i∈[k]

∑
j∈[ℓi]

∑
r∈[(1−2γ)n/k]

g(Si,j,r) · χ(Si,j,r)
+

∑
i∈[k]

∑
j∈[2γn]

χ(Ti,j)


≤ a ·

∑
i∈[k]

∑
j∈[ℓi]

∑
r∈[(1−2γ)n/k]

g(Si,j,r) ·

 ∑
v∈Si,j,r

χ(v)
+

∑
i∈[k]

∑
j∈[2γn]

∑
v∈Ti,j

χ(v)


≤ a ·

 ∑
S∈S,v∈S

g(S) · χ(v) +
∑

T ∈T ,v∈T

χ(v)


≤ a · (χ(V ′
T ) + χ (V ′

B) + χ(VT \ V ′
T ) + χ(VB \ V ′

B)) = a · 1 < 0.

This is a contradiction, which proves the claim.

Therefore, when there exists an i∗ ∈ [k] such that G[Vi∗,T , Vi∗+1,T ] is a robust

(ν, τ)-expander, then there is a perfect fractional transversal Ck-tiling. So, we may

assume there is no such i∗.
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Choose constants α, β, β′ such that ν ≪ β ≪ α ≪ τ and β ≪ β′ ≪ ψ, 1/k.

Apply Lemma 3.2.5 to find an (α, β)-bipartition ((Vi,L1 , Vi,L2), (Vi+1,R1 , Vi+1,R2)) of

(Vi,T , Vi+1,T ) for each i ∈ [k]. For each i ∈ [k] and j, j′, ℓ, ℓ′ ∈ [2] with j ̸= j′ and

ℓ ̸= ℓ′, let Vi,Lj ,Rℓ
= Vi,Lj

∩ Vi,Rℓ
and let diffG

i,j,ℓ be as in Definition 3.5.12. Then note

that diffG
i,j,ℓ ≤ 2βnT for each i ∈ [k] where nT = |Vi,T |.

Claim 3.5.20. Suppose there is some s ∈ [k] such that
∣∣∣Vs,Lj ,Rℓ

∣∣∣ ≥ β′nT for each

j, ℓ ∈ [2]. Then G contains a perfect fractional Ck-tiling.

Proof of Claim 3.5.20. Take Us+1,1 = Vs+1,Lj ,Rℓ
with j, ℓ ∈ [2], where each set is

chosen so that
∣∣∣Vs+1,Lj ,Rℓ

∣∣∣ ≥ nT/8. Then for j′, ℓ′ ∈ [2] with j ̸= j′ and ℓ ̸= ℓ′, let

Us+1,2 = Vs+1,Lj′ ,Rℓ′ . Then for each i ∈ [s+ 2 ↑ s− 1], if Ui−1,1 = Vi−1,Lj1 ,Rℓ1
, then set

Ui,1 = Vi,Lj2 ,Rj1
for j2 ∈ [2] such that

∣∣∣Vi,Lj2 ,Rj1

∣∣∣ ≥ nT/8. Then for j3, ℓ2 ∈ [2] such

that j2 ≠ j3 and j1 ̸= ℓ2, we let Ui,2 = Vi,Lj3 ,Rℓ2
. It remains to find Us,1 and Us,2. For

each i ∈ {s+ 1, s− 1} and r ∈ [2], suppose that Ui,r = Vi,Lji
,Rℓi

for ji, ℓi ∈ [2]. Then

set Us,r = Vs,Lj2 ,Rℓk
.

Note that for each i ∈ [k] and r ∈ [2], any vertex in Ui,r has at most αnT

non-neighbours in Ui+1,r and at most αnT non-neighbours in Ui−1,r. If we take any

set of nT/8 − αnT vertices in Us+1,r, we can greedily find a matching between Us+1,r

and Us+2,r of size nT/8 − αnT . Repeat this for each i ∈ [k] to find a collection of

nT/8 − αnT vertex-disjoint paths of length k − 2 which have initial vertex in Us+1,r

and which remain in Ui,r for i ∈ [k] \ {s}. Let Wi,r be the vertices of these paths

which intersect with Ui,r. Now Us,r has size at least β′nT . Consider any vertex in

Us,r. We know this has at most αnT non-neighbours in Ws+1,r and at most αnT

non-neighbours in Ws−1,r. Therefore for each r ∈ [2], greedily, we can find a collection

Q(1)
r of β′nT vertex-disjoint cycles of length k which remain in Ui,r for i ∈ [k]. The

point of these cycles is the same as the 2kγn cycles we found in Claim 3.5.19. In

other words, these cycles will be dominated by sets which cover the top 2γn vertices

of Vi,B for each i ∈ [k]. We will also possibly use one of these cycles to make sure

that the number of vertices in each class is even. We then use these to fix imbalances
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between sizes of subparts in the bipartitions, so that in the resulting graph we can

find perfect matchings between each pair of vertex classes. These perfect matchings

will then give us a perfect fractional Pk−2-tiling in VT , which we can use to find

a perfect fractional Ck-tiling in G. Therefore in order to do this, we require this

collection of cycles to be sufficiently large, and in particular, this works because

β ≪ β′ ≪ 1/k.

Now do the following. For each r ∈ [2], take kγn cycles of length k in Q(1)
r , and

let this be the set Q(2)
r . Partition this into k parts of size γn (note that we assume

that γn ∈ N), and label the parts Q(2)
i,r for i ∈ [k], and label the elements of this by

Q
(2)
i,r,1, . . . , Q

(2)
i,r,γn. Then for each i ∈ [k], let T (1)

i,r,j be the set of vertices of Q(2)
i,r,j which

do not intersect Vi, together with the vertex vi,(k−1)n/k+j. Let T (1) be the collection

of all these sets T (1)
i,r,j. Also, if nT is odd, then let T (2) be a cycle in Q(1) which has

not yet been chosen.

Let G′ = G − V (T (1) ∪ T (2)). Let V ′
i = Vi ∩ V (G′), V ′

i,B = Vi,B ∩ V (G′) and

V ′
i,T = Vi,T ∩ V (G′) for each i ∈ [k]. Let n′ = |V ′

i | and let n′
T =

∣∣∣V ′
i,T

∣∣∣. Note that n′
T

is even.

Now for each i ∈ [k] in turn, do the following. Suppose diffG′

i,1,1 is odd, then by

Proposition 3.5.4, we know that diffG′

i,1,2 is also odd. Let T (3)
i,1 be a set containing

exactly one vertex from the larger of V ′
i,L1,R1 and V ′

i,L2,R2 , together with exactly

one previously unchosen vertex from V ′
i′,B for each i′ ∈ [k] \ {i}. Let T (3)

i,2 be a set

containing exactly one vertex from the larger of V ′
i,L1,R2 and V ′

i,L2,R1 , together with

exactly one previously unchosen vertex from V ′
i′,B for each i′ ∈ [k] \ {i}. Choose a

previously unchosen cycle from Q(1)
1 and let T (3)

i,3 be the set containing each vertex

from this cycle which does not intersect with V ′
i,T , together with a previously unchosen

vertex from V ′
i,B. Similarly, choose a previously unchosen cycle from Q(1)

2 and let T (3)
i,4

be the set containing each vertex from this cycle which does not intersect with V ′
i,T ,

together with a previously unchosen vertex from V ′
i,B. Note that for each r ∈ [4],

there is a cycle C(3)
i,r in G such that a · χ(C(3)

i,r ) ≤ a · χ(T (3)
i,r ). For r = 1 and r = 2,
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this is by the minimum degree condition. For r = 3 and r = 4, these are the cycles

we found in Q(1).

Let T (3) be the collection of sets T (3)
i,j for each i ∈ [k] and j ∈ [4]. Then let

H = G′ − V (T (3)). As before, let V H
i = Vi ∩ V (H), V H

i,B = Vi,B ∩ V (H) and

V H
i,T = Vi,T ∩ V (H) for each i ∈ [k]. Let m =

∣∣∣V H
i

∣∣∣ and let mT =
∣∣∣V H

i,T

∣∣∣. Note mT is

still even since the collection T (3) intersects V ′
i,T an even number of times for each

i ∈ [k]. Furthermore, diffH
i,j,ℓ is even for each i ∈ [k] and j, ℓ ∈ [2].

Now do the following for each i ∈ [k] in turn. If diffH
i,1,1 = 0, then let T (4)

i,1 = ∅. Else,

if diffH
i,1,1 ≥ 2, then let j1, j2 ∈ [2] with j1 ̸= j2 be such that

∣∣∣V H
i,Lj1 ,Rj1

∣∣∣ ≥
∣∣∣V H

i,Lj2 ,Rj2

∣∣∣.
For each j ∈ [diffH

i,1,1], let T (4)
i,j be the set containing one previously unchosen vertex

in V H
i,Lj1 ,Rj1

together with exactly one previously unchosen vertex in V H
i′,B for each

i′ ∈ [k] \ {i}, and let T (4)
i,1 be the collection of all these sets T (4)

i,j . Next, if diffH
i,1,2 = 0,

then let T (4)
i,2 = ∅. Else, if diffH

i,1,2 ≥ 2, then let j3, j4 ∈ [2] with j3 ̸= j4 be such that∣∣∣V H
i,Lj3 ,Rj4

∣∣∣ ≥
∣∣∣V H

i,Lj4 ,Rj3

∣∣∣. For each j ∈ [diffH
i,1,2], let T (4)

i,j be the set containing one

previously unchosen vertex in V H
i,Lj3 ,Rj4

together with exactly one previously unchosen

vertex in V H
i′,B for each i′ ∈ [k] \ {i}, and let T (4)

i,2 be the collection of all these sets

T
(4)
i,j . Let T (4) = ⋃

i∈[k],j∈[2] T (4)
i,j . Note that for each T ∈ T (4), there is some cycle CT

of length k in G which satisfies a · χ(CT ) ≤ a · χ(T ) by the degree condition.

Now if both diffH
i,1,1 = 0 and diffH

i,1,2 = 0, then let T (5)
i = ∅. Otherwise, observe

that (diffH
i,1,1+diffH

i,1,2)/2 is an integer, since both terms in the sum are even. Therefore,

for each r ∈ [2], for each s ∈ [(diffH
i,1,1 + diffH

i,1,2)/2], choose a previously unchosen

cycle from Q(1)
r and let T (5)

i,r,s be the set containing each vertex from this cycle which

does not intersect with V H
i , together with a previously unchosen vertex in V H

i,B. Let

T (5)
i,r be the collection of all these cycles over all s ∈ [(diffH

i,1,1 + diffH
i,1,2)/2]. Let

T (5) = ⋃
i∈[k],r∈[2] T (5)

i,r . Again, for each T ∈ T (4), there is some cycle CT of length

k in G which satisfies a · χ(CT ) ≤ a · χ(T ), namely the cycle from Q(1)
r which was

chosen when forming the set T .

Now letH ′ = H−T (4)−T (5). In particular, H ′ = G−T (1)−T (2)−T (3)−T (4)−T (5).
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For any fixed i ∈ [k], the following holds.

•
∣∣∣Vi,T ∩ V (T (1))

∣∣∣ = 2(k − 1)γn,

•
∣∣∣Vi,T ∩ V (T (2))

∣∣∣ = 1 if nT is odd,

•
∣∣∣Vi,T ∩ V (T (2))

∣∣∣ = 0 if nT is even,

•
∣∣∣Vi,T ∩ V (T (3))

∣∣∣ = 2ℓ∗ ≤ 2k, where ℓ∗ is the number of parts in which there are

two differences which are odd,

•
∣∣∣Vi,T ∩ V (T (4))

∣∣∣ = diffi,1,1 + diffi,1,2 ≤ 4βn,

•
∣∣∣Vi,T ∩ V (T (5))

∣∣∣ = ∑
i′∈[k]\{i} diffi′,1,1 + diffi′,1,2 ≤ 4(k − 1)βn.

Thus overall, for each i, i′ ∈ [k],
∣∣∣V H′

i,T

∣∣∣ =
∣∣∣V H′

i′,T

∣∣∣ ≥ (k − 1)n/k − 2αn, and so in

particular, each vertex in V H′
i,Lj ,Rℓ

has at most 2αn non-neighbours in Vi+1,Lj′ ,Rj
, and

vice versa for each i ∈ [k] and j, j′, ℓ ∈ [2]. We can check the same quantities for

V H′
B . Indeed, for any i ∈ [k], the following holds.

•
∣∣∣Vi,B ∩ V (T (1))

∣∣∣ = 2γn,

•
∣∣∣Vi,B ∩ V (T (2))

∣∣∣ = 0,

•
∣∣∣Vi,B ∩ V (T (3))

∣∣∣ = 2ℓ∗ ≤ 2k, where ℓ∗ is the number of parts in which there are

two differences which are odd,

•
∣∣∣Vi,B ∩ V (T (4))

∣∣∣ = ∑
i′∈[k]\{i} diffi′,1,1 + diffi′,1,2 ≤ 4(k − 1)βn,

•
∣∣∣Vi,B ∩ V (T (5))

∣∣∣ = diffi,1,1 + diffi,1,2 ≤ 4βn.

Therefore, similarly, for each i, i′ ∈ [k],
∣∣∣V H′

i,B

∣∣∣ =
∣∣∣V H′

i′,T

∣∣∣ ≥ n/k − 2αn. More precisely,
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we consider two cases. First, in the case when nT is even,

(k − 1)
∣∣∣V H′

i,B

∣∣∣ = (k − 1)
n
k

− 2γn− 2ℓ∗ −
∑

i′∈[k]
diffi′,1,1 + diffi′,L1,R2


=
∣∣∣V H′

i,T

∣∣∣− (k − 2)
2γn− 2ℓ∗ −

∑
i′∈[k]

diffi′,1,1 + diffi′,1,2


≤
∣∣∣V H′

i,T

∣∣∣− 7βn.

Hence, we choose (k− 2)(2γn− 2ℓ∗ −∑
i′∈[k] diffi′,1,1 + diffi′,1,2)/2 previously unchosen

cycles from Q(1)
r for each r ∈ [2], and take the collection of these cycles to be T (6).

Indeed, we can do this because each term is even and because γn ∈ N. Furthermore,

for each i ∈ [k], j, ℓ ∈ [2], we have diffH′

i,j,ℓ = 0. If H ′′ is the graph H ′ − T (6), then

for each i ∈ [k], j, ℓ ∈ [2], we have diffH′′

i,j,ℓ = 0. So, we can find a perfect fractional

Pk−2-tiling in H ′′[VT ]. The proof then proceeds similarly to the proof of Claim 3.5.19.

We omit the details here, but the point is that the various collections of cycles found

dominate sets of vertices in the graph, such that each vertex v ∈ V (G) is contained

in these sets with equal weight. In this way, as in the proof of Claim 3.5.19, we can

find a contradiction to Fact 3.2.7, and therefore, show that G must contain a perfect

fractional Ck-tiling.

On the other hand if nT is odd, the proof proceeds almost identically to the

previous case, other than that we additionally choose ⌊(k − 2)/2⌋ more previously

unchosen cycles from Q(1)
r for each r ∈ [2] to add to T (6). If k − 2 is odd, we

add an additional previously unchosen cycle from Q(1)
1 to add to T (6). Then take

H ′′ = H ′ − T (6). Then if k− 2 is even, the argument follows in exactly the same way

as for the case when nT is even, as for each i ∈ [k], j, ℓ ∈ [2], we have diffH′′

i,j,ℓ = 0.

On the other hand, if k − 2 is odd, then for each i ∈ [k], there exists j, j′, ℓ, ℓ′ ∈ [2]

with j ̸= j′ and ℓ ̸= ℓ′ such that diffH′′

i,j,ℓ = 0 but diffH′′

i,j′,ℓ′ = 1. More precisely, if∣∣∣V H′′
i,Lj ,Rℓ′

∣∣∣ =
∣∣∣V H′′

i,Lj′ ,Rℓ

∣∣∣ − 1, then
∣∣∣V H′′

i+1,Lj′′ ,Rj

∣∣∣ =
∣∣∣Vi+1,Lℓ′′ ,Rj′

∣∣∣ − 1 for ℓ′′, j′′ ∈ [2] with

ℓ′′ ̸= j′′. Meanwhile,
∣∣∣V H′′

i,Lj ,Rℓ

∣∣∣ =
∣∣∣V H′′

i,Lj′ ,Rℓ′

∣∣∣. This implies that if
∣∣∣V H′′

i,Lj

∣∣∣ =
∣∣∣Vi,Rj

∣∣∣ for
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each i ∈ [k], j ∈ [2] (this quantity is either ⌊m′′/2⌋ or ⌊m′′/2⌋ + 1). Thus, by the

degree condition, we can still find a perfect matching between V H′′
i,T and V H′′

i+1,T for

each i ∈ [k], and therefore we can proceed as in the case when nT is even. Thus, we

find a perfect fractional Ck-tiling in G, proving the claim.

This claim showed that whenever we have a part Vs,T which is partitioned twice

in such a way that in the joint partition, each part is ‘sufficiently large’, then this

provides enough flexibility for us to fix the imbalances between parts, and allow us to

find a perfect fractional Ck-tiling. Thus, we deduce that for each i ∈ [k], when Vi,T

is partitioned twice, these partitions are ‘well-aligned’. Intuitively, this suggests that

G[VT ] resembles either the union of two blow-ups of Ck (Case 1), or the blow-up

of a C2k (Case 2). In the first case, we show that G contains a Ck-factor. In the

second case, we show that G is close to extremal. We now formalise this below.

For each i ∈ [k], there exist j1, j2, ℓ1, ℓ2 ∈ [2] with j1 ̸= j2 and ℓ1 ̸= ℓ2 such

that
∣∣∣Vi,Lj1 ,Rℓ1

∣∣∣ , ∣∣∣Vi,Lj2 ,Rℓ2

∣∣∣ ≤ β′nT and
∣∣∣Vi,Lj1 ,Rℓ2

∣∣∣ , ∣∣∣Vi,Lj2 ,Rℓ1

∣∣∣ ≥ (1/2 −β−β′)nT . Let

U1,1 = V1,Lj ,Rℓ
where j, ℓ ∈ [2] are such that

∣∣∣V2,Lj ,Rℓ

∣∣∣ ≥ (1/2 − β − β′)nT . Then

let U1,2 = V1,Lj′ ,Rℓ′ where j′, ℓ′ ∈ [2] are such that j ̸= j′ and ℓ ̸= ℓ′. Then for

each i ∈ [2 ↑ k], for each r ∈ [2], suppose Ui−1,r = Vi−1,Lj ,Rℓ
for some j, ℓ ∈ [2].

Let Ui,r = Vi,Lj′ ,Rj
for j′ ∈ [2] such that

∣∣∣Vi,Lj′ ,Rj

∣∣∣ ≥ (1/2 − β − β′)n. Suppose

that j1, j2, ℓ1, ℓ2 ∈ [2] are such that j1 ̸= j2 and ℓ1 ̸= ℓ2, and Uk,1 = Vk,Lj1 ,Rℓ1
, and

Uk,2 = Vk,Lj2 ,Rℓ2
. Let U ′

1,1 = V1,Lj3 ,Rj1
and U ′

1,2 = V1,Lj4 ,Rj2
where j3, j4 ∈ [2] with

j3 ̸= j4 and
∣∣∣U ′

1,1

∣∣∣ , ∣∣∣U ′
1,2

∣∣∣ ≥ (1/2 − β − β′)nT . Now we have two cases to consider.

Case 1: U ′
1,j = U1,j for each j ∈ [2]. In this case, we first find 2kγn cycles of

length k in G[VT ]. To do this, we use the property that each vertex in Ui,1 has at

most αnT non-neighbours in Ui+1,1. Let R be the set of these cycles. Partition this

into k parts of size γn, and label the parts Ri for i ∈ [k], and label the elements

of this by Ri,1, . . . , Ri,γn. Then for each i ∈ [k], let Ti,j be the set of vertices of

Ri,j which do not intersect Vi, together with the vertex vi,(k−1)n/k+j. Let T be the
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collection of all these sets Ti,r,j. Then in particular, for each T ∈ T , there is a cycle

CT in G which satisfies a · χ(CT ) ≤ a · χ(T ).

Let G′ = G − T , and let n′ = n − 2kγn. Then apply Lemma 3.5.18 to find a

perfect fractional Pk−2-tiling in G′
T . Then using the same methods as in Claim 3.5.19

and Claim 3.5.20, we can use this to find a perfect fractional Ck-tiling in G′, and

combining this with the sets T , we can find a perfect fractional Ck-tiling in G.

Case 2: U ′
1,1 = U1,2 and U ′

1,2 = U1,1. We want to show that either G is ψ-

extremal or we can find a collection of 2kγn cycles, together with a perfect fractional

path tiling in G. We do the following. For each i ∈ [k], let Ai ∪Bi ∪Zi be a partition

of Vi so that |Ai| , |Bi| = (k − 1)n/2k and |Zi| = n/k, and furthermore such that

|Ai ∩ Ui,1| ≥ (1/2−2β′)(k−1)n/k, |Bi ∩ Ui,2| ≥ (1/2−2β′)(k−1)n/k and Zi = Vi,B.

Let α ≪ α′ ≪ ψ. First, observe that for each i ∈ [k − 1],

d(Ai, Ai+1) = (1 − α′) |Ai| · (1 − α′) · (1 − α′) |Ai+1|
|Ai| |Ai+1|

≥ 1 − ψ.

Similarly, d(Bi, Bi+1), d(Ak, B1), d(Bk, A1) ≥ 1 − ψ. Suppose d(As, Bs+1) ≤ β′ and

d(Bs, As+1) ≤ β′ for each s ∈ [k − 1] and also d(Ak, A1) ≤ β′ and d(Bk, B1) ≤ β′.

Then the first four criteria in Definition 3.1.1 are immediately satisfied. Now suppose

that k is even. Then in order to check that the graph is ψ-close to extremal, it

remains only to check that d(Zi, Ai+1), d(Ai, Zi+1), d(Zi, Bi+1), d(Bi, Zi+1) ≥ 1 − ψ

for each i ∈ [k]. Indeed, for i ∈ [k − 1], note that d(Ai, Vi+1) < β′. That is,

|E(Ai, Bi+1)|
|Ai| |Bi+1|

< β′.

Meanwhile, by the minimum degree condition, |E(Ai, Vi+1)| ≥ |Ai| (k + 1)n/2k.

128



Therefore,

|E(Ai, Zi+1)| = |E(Ai, Vi+1)| − |E(Ai, Ai+1)| − |E(Ai, Bi+1)|

≥ |Ai|
(k + 1)n

2k − |Ai| |Ai+1| − β′ |Ai| |Bi+1|

= |Ai|
(
n

k
− β′ · (k − 1)

2k

)
≥ |Ai| |Zi+1| (1 − ψ).

Here, the final inequality holds since ψ ≫ β′. This implies that d(Ai, Zi+1) ≥ 1 − ψ.

By repeating this argument for each of d(Zi, Ai+1), d(Zi, Bi+1) and d(Bi, Zi+1), we

get that the fifth criterion in Definition 3.1.1 holds, and therefore, when k is even, G

is ψ-close to extremal. The same argument can be used to prove the sixth criterion

in Definition 3.1.1 when k is odd, and therefore prove that G is ψ-close to extremal.

Thus, it remains only to consider the case when there is some s ∈ [k − 1]

such that d(As, Bs+1) ≥ β′, or the case when there is some s ∈ [k − 1] such that

d(Bs, As+1) ≥ β′. By symmetry, it suffices only to check the first of these. That

is, we consider the case when there are at least β′ |As| |Bs+1| edges between As

and Bs+1. Then in particular, this implies that we can find a matching of size

β′(k − 1)n/2k between As and Bs+1. Using the fact that for each i ∈ [k − 1]

there is a high density of edges between Bi and Bi+1, between Ai and Ai+1 and

between Bk and A1, we can find at least β′n cycles which pass through the sets

A1, . . . , As, Bs+1, . . . , Bk. First remove 2kγn cycles from this, to cover up the top

vertices of VB, as before. Let G′ be the graph obtained after removing the necessary

vertices. So, V ′
i,T = Vi,T ∩V (G′), and n′

T =
∣∣∣V ′

i,T

∣∣∣ for any i ∈ [k]. Also for each i ∈ [k]

and j, ℓ ∈ [2], define V ′
i,Lj

= Vi,Lj
∩ V (G′) V ′

i,Rj
= Vi,Rj

∩ V (G′) Note that in G′,

|Vi,T | ≥ (1/2 − β)nT − 2(k − 1)γn ≥ (1/2 − 2β)n′
T . Now the proof splits into two

cases, depending on whether or not k is even.

Claim 3.5.21. If k is even and d(As, Bs+1) ≥ β′, then G contains a perfect fractional

Ck-tiling.
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Proof of Claim 3.5.21. Suppose first that k is even. We show that we can find a

perfect fractional Pk−2-tiling in G. As we have done before, for each i ∈ [k − 1], let

Xi be the set of vertices in V ′
i,Lj

which have fewer than (1 − 2α)
∣∣∣V ′

i+1,Rj

∣∣∣ neighbours

in V ′
i+1,Rj

, together with the vertices in V ′
i,Rj

which have fewer than (1 − 2α)
∣∣∣V ′

i−1,Lj

∣∣∣
neighbours in V ′

i−1,Lj
for each j ∈ [2]. Also, for each i ∈ [k], let Yi be the set of

vertices in Vi,Lj ,Rℓ
∪ Vi,Lj′ ,Rℓ′ , where j, j′, ℓ, ℓ′ ∈ [2] are such that j ̸= j′ and ℓ ̸= ℓ′,

and
∣∣∣Vi,Lj ,Rℓ

∣∣∣ ≤ β′nT . Now for each i ∈ [k], we take a set of vertices Z ′
i ⊆ V ′

i,T such

that Xi ∪ Yi ⊆ Z ′
i, and such that |Z ′

i| = 10β′nT . Then apply Lemma 3.5.6 to find a

collection Q(1)
i of paths which cover Z ′

i and which intersect each vertex class exactly

(k − 1) |Zi| times. Remove this and repeat for i+ 1. If H is the graph obtained at

the end of this process, then let V H
T = V ′

T ∩ V (H) and similarly label Vi ∩ V (H) as

V H
i . Note that V H

i,T =
∣∣∣V H

i′,T

∣∣∣ for each i, i′ ∈ [k]. So, let |Vi,T | = m. If m is not even,

first find an additional cycle which only remains in V H
T and then in the remainder of

H, apply Lemma 3.5.18 to find a perfect fractional Pk−2-tiling in H[V H
T ]. Combined

with the paths in Q(1) this gives a perfect fractional Pk−2-tiling of G′[V ′
T ]. Therefore,

as before, we can complete this to a perfect fractional Ck-tiling of G.

Claim 3.5.22. If k is odd, and both d(As, Bs+1) ≥ β′ and d(Bs, As+1) ≥ β′, then G

contains a perfecct fractional Ck-tiling.

We omit the full details in proving Claim 3.5.22, but the idea is as follows. The

claim implies that both d(Us,1, Us+1,2) ≥ β′/2 and d(Us,2, Us+1,1) ≥ β′/2. In this case,

we can find at least β′n/2 cycles which pass through U1,1, . . . , Us,1, Us+1,2, . . . , Uk,2,

and also β′n/2 cycles which pass through U1,2, . . . , Us,2, Us+1,1, . . . , Uk,1. We can then

as before remove the smaller subparts and non-partition-respecting vertices in each

Vi and then find a perfect fractional Pk−2-tiling in the remainder of the graph by

balancing using similar methods as Lemma 3.5.18.

Therefore, we may assume that if k is odd, then for each i ∈ [k − 1], when-

ever d(Ai, Bi+1) ≥ β′, we have d(Bi, Ai+1) ≤ β′. Therefore, by the degree con-
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dition, this implies that for each i ∈ [k], there exists X, Y ∈ {A,B} such that

d(Xi, Zi+1), d(Yi, Zi−1) ≥ 1 − ψ, and therefore G satisfies Definition 3.1.1 in the case

when k is odd, and so G is ψ-extremal. Note that we can do something similar when

there exists s ∈ [k − 1] such that d(Bs, As+1) ≥ β′, or when there exists X ∈ {A,B}

such that d(Xk, X1) ≥ β′.

Therefore, this concludes the proof of the result.
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CHAPTER 4

REMOVING INDUCED POWERS OF CYCLES
FROM A GRAPH

The aim of this chapter is to prove Theorem 1.2.1, which we recall.

Theorem 1.2.1. Let t ≥ 1 and h ≥ 4t(2t + 1) be integers, with (t + 1) | h. Let

c0 = ⌊(⌊h/t⌋ + 1)/3⌋, ℓ0 = ⌈h/(2t+ 1)⌉, and let p0 = t/(c0ℓ0 − c0 − ℓ0 + t+ 1). Then

for all p ∈ [p0, 1/ ⌈h/(2t+ 1)⌉], we have that

edForb(Ct
h

)(p) = p(1 − p)
t+

(⌈
h

2t+1

⌉
− t− 1

)
p
.

This chapter is set out as follows. In Section 4.1, we describe some general

constructions which can be used to calculate dist(G(n, p),H). We then use these

constructions to prove the main result in Section 4.2.

4.1 Coloured regularity graphs

In this section, we describe a structure which defines a set of rules for editing a graph

to make it satisfy some hereditary property.

A coloured regularity graph (CRG) is a complete graph K on k vertices, in which

each vertex is coloured either black or white, and each edge is coloured black, white

or grey. Formally, we say that we can partition the vertex set V (K) into two sets

VB(K) and VW(K), of black and white vertices respectively, and we can partition
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the edge set E(K) into EB(K), EW(K), and EG(K) of black, white, and grey edges

respectively. For ease of notation, when the CRG K is clear from context, we write

VB to mean VB(K), and analogously for VW, EB, EW, and EG. We say a CRG

K ′ is a sub-CRG of a CRG K if K ′ can be obtained by deleting vertices of K.

We say a graph H embeds in a CRG K, and we write H 7→ K, if there exists

some function ϕ : V (H) −→ V (K) which, for all u, v ∈ V (K), satisfies the following

conditions.

(i) If uv ∈ E(H), we have either ϕ(u) = ϕ(v) ∈ VB, or ϕ(u)ϕ(v) ∈ EB ∪ EG.

(ii) If uv ̸∈ E(H), we have either ϕ(u) = ϕ(v) ∈ VW, or ϕ(u)ϕ(v) ∈ EW ∪ EG.

For our purposes, due to a key property of CRGs, it is most interesting to consider

all those CRGs into which H does not embed. Specifically, suppose we find a CRG K

into which a graph H does not embed. Then any graph H ′ which contains H as an

induced subgraph will also not embed in K. So, if there is a graph G which embeds

into K, then crucially, G cannot contain H as an induced subgraph, implying that

G ∈ Forb(H). Thus we find a very clear relationship between the class of CRGs into

which a graph H does not embed, and the family Forb(H).

Recall that F(H) is the family of all forbidden subgraphs of H. Then for any

hereditary property H, we let

K(H) = {K : H ̸7→ K for all H ∈ F(H)} .

Let K ∈ K(H) for some H, and suppose G does not belong to H. We can view K

as a set of rules by which to edit G, in order for it to belong to H. We begin by

partitioning V (G) into k parts V1, . . . , Vk such that each part Vi corresponds to a

distinct vertex vi of K. The optimal sizes of these parts are to be determined, but for

the purpose of understanding the method, we may assume that these are all equal.

Then we edit (that is, we add or remove edges) according the following rules.

(i) If vi ∈ VB, we add all edges with both endpoints in Vi.
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(ii) If vi ∈ VW, we remove all edges with both endpoints in Vi.

(iii) If vivj ∈ EB, we add all edges with one endpoint in Vi and the other in Vj.

(iv) If vivj ∈ EW, we remove all edges with one endpoint in Vi and the other in Vj .

Let G′ be the graph obtained from G by carrying out these edits. Then G′ embeds

into K, and so as we have observed, G′ ∈ H. We will see that there will be some

such CRG such that the edit distance can be determined by applying these rules

to edit the graph G(n, p) and then counting the expected number of edge changes

which would be required.

4.1.1 Measuring the edits defined by a CRG

Suppose we are given a CRG K ∈ K(H), and we would like to count the expected

proportion of edges of G(n, p) which would be changed with respect to these rules,

for some fixed p. We will define a quadratic program gK(p) which counts exactly

this quantity. In order to define gK(p), we first define the matrix MK(p). We label

the vertices of K by v1, . . . , vk, and let MK(p) be a k × k matrix whose entries are

given by

[MK(p)]ij =



p if either i = j and vi ∈ VW, or i ̸= j and vivj ∈ EW,

1 − p if either i = j and vi ∈ VB, or i ̸= j and vivj ∈ EB,

0 if i ̸= j and vivj ∈ EG.

Then we define the quadratic program

gK(p) =



min xT MK(p)x

s.t. x · 1 = 1

x ≥ 0.

(4.1.1)
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Note that the vector x which has exactly one entry equal to 1 and all other entries

equal to 0 is a feasible solution to this program. Thus, there is some optimal vector

x∗ which attains the minimum in the program above, and so gK(p) has a solution

for every CRG K. Furthermore, for any given CRG K, we can easily find the value

of gK(p) using the method of Lagrange multipliers.

The vector x∗ depends on the matrix MK(p), which captures information about

the adjacencies in K. Recall that every CRG K defines a partition of the random

graph G(n, p), where the vertices of K represent parts in this partition. The vector x

assigns a weight to every vertex of K. In particular, for any v ∈ K, the weight x(v)

corresponds to the proportion of vertices of G(n, p) which lie in the part corresponding

to v, and the optimal weight vector x∗ gives the assignment of vertices of G(n, p) to

parts in a way which minimises the expected proportion of edge changes required.

Thus, the function gK(p) measures exactly the expected proportion of edge changes

of G(n, p) which the CRG K defines.

The following result of Alon and Stav [2] suggests that for any hereditary property

H, we can use the function gK(p) to determine the edit distance function.

Theorem 4.1.1 (Alon and Stav [2]). Let H be a hereditary property. Then for all

p ∈ [0, 1],

edH(p) = inf
K∈K(H)

gK(p).

Marchant and Thomason [52] later showed that there is in fact a CRG which

attains the infimum in Theorem 4.1.1, that is, they showed the following.

Theorem 4.1.2 (Marchant and Thomason [52]). Let H be a hereditary property.

Then for all p ∈ [0, 1],

edH(p) = min
K∈K(H)

gK(p).

This is a key result in this area, since for any hereditary property H, the problem

of determining the edit distance function is reduced to instead finding the CRG

K ∈ K(H) which attains the minimum in Theorem 4.1.2.
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An implication of Theorem 4.1.2 is that for any K ∈ K(H), the function gK(p)

provides an upper bound to the edit distance function. Thus, rather than examining

all CRGs in K(H), we begin by only examining those CRGs which have all grey

edges, and use these to obtain an upper bound to edH(p).

We denote by K(r, s) the CRG on r + s vertices, which has r white vertices, s

black vertices, and all its edges are grey. For any hereditary property H, we define

the clique spectrum to be

Γ(H) =
{

(r, s) ∈ Z2
≥0 : H ̸7→ K(r, s) for all H ∈ F(H)

}
.

The important property of Γ(H) which we will be using is its monotonicity. That is, if

(r, s) ∈ Γ(H), then for all 0 ≤ r′ ≤ r, 0 ≤ s′ ≤ s, we have (r′, s′) ∈ Γ(H). This follows

immediately from the definition, and gives rise to important elements of Γ(H) known

as extreme points, which are pairs (r, s) ∈ Γ(H) such that (r+ 1, s), (r, s+ 1) ̸∈ Γ(H).

We denote by Γ∗(H) the set of extreme points of Γ(H).

We state the following useful lemma, which allows us to observe another useful

property of these grey edge CRGs. Let K be a CRG. We say a sub-CRG K ′ of K

is a component if every edge leaving K ′ is grey, that is, if for all v ∈ V (K ′) and all

w ∈ V (K \K ′), we have that vw ∈ EG(K). So, every CRG has a ‘decomposition’

into components, that is, a partition of the vertex set such that all edges leaving

the sub-CRG induced on any part in this partition are grey. Then we can state the

following lemma, a result of work by Martin [53].

Lemma 4.1.3 (Martin [53]). Let K be a CRG with components K(1), . . . , K(ℓ). Then

(gK(p))−1 =
ℓ∑

i=1
(gK(i)(p))−1.

We can now state the following useful result, which suggests that for any grey-

edge CRG K(r, s), it is sufficient to know r and s in order to calculate the value of

gK(r,s)(p).
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Lemma 4.1.4 (Martin [53]).

gK(r,s)(p) = p(1 − p)
r(1 − p) + sp

.

For any pair (r, s) ∈ Γ∗(H), we have K(r, s) ∈ K(H). By minimising over all the

grey edge CRGs in K(H), we obtain an upper bound for edH(p). Formally, we define

γH(p) = min
{
gK(r,s)(p) : (r, s) ∈ Γ(H)

}
= min

{
p(1 − p)

r(1 − p) + sp
: (r, s) ∈ Γ(H)

}
.

Then γH(p) ≥ edH(p). Furthermore, suppose that (r, s) ∈ Γ∗(H). Then for all

0 ≤ r′ ≤ r, 0 ≤ s′ ≤ s we have gK(r,s)(p) ≤ gK(r′,s′)(p). Thus when calculating γH(p),

it suffices to consider only those pairs (r, s) which are extreme points of the clique

spectrum.

The advantage of this is that the value of γH(p) is determinable for any hereditary

property, and thus this upper bound is easier to calculate than directly minimising

the function gK(p) over all K ∈ K(H). Through the course of this paper, we may

refer to the CRG which ‘attains γH(p)’ or ‘attains edH(p)’ for some value of p, by

which we mean the CRG K for which gK(p) = γH(p), or gK(p) = edH(p), respectively.

We will also define the following special type of CRG. This was originally introduced

by Peck [64].

Definition 4.1.5. For a hereditary property H, we say that a CRG K is a candidate

CRG for H if K ∈ K(H) and gK(p) < γH(p).

If the hereditary property H is clear from context, we omit the phrase ‘for H’

from Definition 4.1.5.

4.1.2 The p-core CRGs and symmetrisation

As we have seen previously, the edit distance function edH(p) can be determined by

finding the CRG K ∈ K(H) which minimises gK(p). We say a CRG K is p-core if
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gK(p) < gK′(p) for any sub-CRG K ′ of K. It is clear from the definition of these

structures that any CRG which minimises gK(p) must be p-core. Marchant and

Thomason [52] identified the following useful classification of these structures.

Theorem 4.1.6 (Marchant-Thomason [52]). Let K be a p-core CRG. Then the

following holds.

(i) If p = 1/2, then all edges of K are grey.

(ii) If p < 1/2, then EB = ∅ and there are no white edges incident to white vertices.

(iii) If p > 1/2, then EW = ∅ and there are no black edges incident to black vertices.

We consider again the quadratic program gK(p) defined in (4.1.1). Recall that

x∗ is the vector which attains the optimum. For ease of notation, we will omit the ∗

and assume that x is the optimal vector. Marchant and Thomason [52] showed that

if K is a p-core CRG, then this optimal vector which solves the quadratic program

in (4.1.1) is in fact unique, and moreover that this optimal vector x contains no zero

entries.

Now the vector x assigns to each vertex v ∈ V (K) a weight x(v). We let dB(v)

(dW (v), dG(v) respectively) denote the sum of weights of vertices in the neighbourhood

of v which are adjacent to v via a black (white, grey respectively) edge. Martin [53]

found the following bounds on the quantity dG(v) using symmetrisation techniques.

Lemma 4.1.7 (Martin [53]). Let p ∈ (0, 1/2] and let K be a p-core CRG with

optimal weight function x. Then x(v) = gK(p)/p for all v ∈ VW(K). Moreover, for

all v ∈ VB(K), we have

dG(v) = p− gK(p)
p

+ 1 − 2p
p

x(v).

Lemma 4.1.7 can be thought of as a symmetrisation lemma, and tells us that

the weight is distributed evenly among all vertices in VW(K) by the vector x. This
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gives a way of determining the value of x at any vertex. We can use this to state the

following useful lemma.

Lemma 4.1.8 (Martin [53]). Let p ∈ (0, 1/2] and let K be a p-core CRG with

optimal weight function x. Then for all v ∈ VB(K), we have x(v) ≤ gK(p)/(1 − p).

4.2 Determining edForb(Ct
h)(p)

In this section we aim to determine edForb(Ct
h

)(p). Recall that Berikkyzy, Martin

and Peck [10] determined this for all p in the case when (t + 1) ∤ h and for p ∈

[1/ ⌈h/(2t+ 1)⌉ , 1] in the case when (t + 1) | h. Therefore, we will be focusing on

determining this function for 0 ≤ p ≤ 1/ ⌈h/(2t+ 1)⌉ in the case when (t+ 1) | h.

For the remainder of this section, we let H = Forb(Ct
h), for integers h and t.

4.2.1 Preliminaries

We begin by stating the value of γH(p), which was determined by Berikkyzy, Martin

and Peck [10].

Lemma 4.2.1 (Berikkyzy, Martin and Peck [10]). Let t ≥ 1 and h ≥ max{t(t+1), 4}

be integers. Then for all p ∈ [0, 1], the following holds.

(i) If (t+ 1) ̸ | h, then

γH(p) = min
r∈{0,1,...,t}

min
 p

t+ 1 ,
p(1 − p)

r(1 − p) +
(⌈

h
t+r+1

⌉
− 1

)
p


 .

(ii) If (t+ 1) | h then

γH(p) = min
r∈{0,1,...,t}

 p(1 − p)
r(1 − p) +

(⌈
h

t+r+1

⌉
− 1

)
p

 .

In Fig. 4.1, we see the structures which correspond to Γ∗(Forb(Ch)) and by

applying Lemma 4.1.4, we obtain the values of gK(p) for each of these CRGs K.
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⌈h/3⌉ − 1 black vertices ⌈h/2⌉ − 1 black vertices

K(2, 0) (for odd h) K(1, ⌈h/3⌉ − 1) K(0, ⌈h/2⌉ − 1)

Figure 4.1: The structures which correspond to Γ∗(Forb(Ch)).

This gives γForb(Ch)(p), which is exactly equal to Lemma 4.2.1 in the case t = 1. We

recall the notion of a candidate CRG as in Definition 4.1.5, that is, consider a CRG

K ∈ K(H) such that gK(p) < γH(p) for some p. By Theorem 1.2.2, we know that in

order for such a CRG to exist, we must have (t+ 1) | h and p ≤ 1/ ⌈h/(2t+ 1)⌉. We

will determine some characteristics for such a candidate CRG.

By taking sub-CRGs, we may assume that K is p-core. Thus, in particular by

Theorem 4.1.6, in the case when p ≤ 1/ ⌈h/(2t+ 1)⌉, we may assume that all edges

of K are grey or white, and that there are no white edges incident to white vertices.

Here, we are assuming that 1/ ⌈h/(2t+ 1)⌉ ≤ 1/2, which is true provided that

h ≥ 2(2t+ 1).

So, in particular, we have this lower bound on h throughout. Recall that VW is the

set of white vertices of K, and VB is the set of black vertices of K. Let KB = K[VB].

The following lemma gives some structural conditions on K.

Lemma 4.2.2 (Berikkyzy, Martin and Peck [10]). Let p ∈ (0, 1/2] and let t ≥ 1 and

h ≥ 2t+ 2 be integers. Let K ∈ K(H) be p-core with r white vertices.

(i) If r ∈ {0, . . . , t− 1} and h ≥ t(t− 1), then KB contains no grey cycle of length

in
{⌈

h
t+r+1

⌉
, . . . ,

⌊
h
t

⌋}
.
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(ii) If r = t, then |V (KB)| ≤
⌈

h
2t+1

⌉
− 1.

(iii) If r ≥ t+ 1, then (t+ 1) ∤ h and V (KB) = ∅.

We will determine further characteristics of such a candidate CRG in the case

that (t+ 1) | h and p < 1/ ⌈h/(2t+ 1)⌉, with the aim of finding a contradiction and

thus disproving its existence. We begin by determining the value of γH(p) for small

p.

Lemma 4.2.3. Let t ≥ 1 and h ≥ t(2t + 1) be integers with (t + 1) | h. Then for

p ≤ 1/ ⌈h/(2t+ 1)⌉, we have

γH(p) = p(1 − p)

t(1 − p) +
(⌈

h

2t+ 1

⌉
− 1

)
p

.

Proof. We would like to show that when p ≤ 1/ ⌈h/(2t+ 1)⌉, for every r ∈ {0, . . . , t−

1}, we have

p(1 − p)
r(1 − p) +

(⌈
h

t+r+1

⌉
− 1

)
p

≥ p(1 − p)
t(1 − p) +

(⌈
h

2t+1

⌉
− 1

)
p
,

that is, the minimum in Lemma 4.2.1 (ii) is attained when r = t. By rearranging,

we get that the inequality above is equivalent to showing

t− r +
(⌈

h

2t+ 1

⌉
−
⌈

h

t+ r + 1

⌉
− t+ r

)
p ≥ 0. (4.2.1)

Now, note that

⌈
h

2t+ 1

⌉
−
⌈

h

t+ r + 1

⌉
− t+ r ≤ h

2t+ 1 + 1 − h

t+ r + 1 − t+ r

= −h(t− r)
(2t+ 1)(t+ r + 1) − (t− r − 1) < 0.

Therefore, this function is decreasing, and so the function in (4.2.1) is minimised at

the upper bound on p, that is, when p = 1/ ⌈h/(2t+ 1)⌉. Combined with the fact
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that r ≤ t − 1 and by applying the crude upper and lower bounds on the ceiling

function, we have

t− r +
(⌈

h

2t+ 1

⌉
−
⌈

h

t+ r + 1

⌉
− t+ r

)
p ≥ t− r + 1 −

⌈
h

t+r+1

⌉
⌈

h
2t+1

⌉ − t− r⌈
h

2t+1

⌉
≥ t− r + 1 − h(2t+ 1) − (2t+ 1)(t+ r + 1)(t− r − 1)

h(t+ r + 1) (4.2.2)

We require (4.2.2) to be at least 0 in order for (4.2.1) to hold. In other words, by

rearranging (4.2.2), we show that we require

h ≥ (t+ r + 1)(t− r − 1)(2t+ 1)
(t+ r)(t− r) (4.2.3)

Note that since 0 ≤ r ≤ t− 1,

(t+ r + 1)(t− r − 1)(2t+ 1)
(t+ r)(t− r) ≤ (2t+ 1)2(t− 1)

2t− 1 .

On the other hand, h ≥ t(2t+ 1) and therefore, since

t(2t+ 1) − (2t+ 1)2(t− 1)
2t− 1 = (2t2 + t)(2t− 1) − (2t+ 1)2(t− 1)

2t− 1

= 4t3 + 2t2 − 2t2 − t− (4t3 + 4t2 + t− 4t2 − 4t− 1)
2t− 1

= 2t+ 1
2t− 1 > 0,

whenever t ≥ 1. Therefore, whenever h ≥ t(2t+1), (4.2.2) is at least 0, and therefore,

(4.2.1) holds, and thus the lemma holds.

Recall that for any pair of vertices v, w ∈ V (K), x(v) is the weight assigned to

vertex v by optimal vector x found by the quadratic program gK(p), dG(v) is the

sum of the weights of all vertices incident to v via a grey edge, and degG(v) is the

number of vertices adjacent to V via a grey edge. We define dW
G (v) be the sum of

the weights of white vertices adjacent to v via a grey edge, and let dB
G(v) be the
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analogous quantity for black vertices. Additionally, let degB
G(v) be the number of

black vertices adjacent to v via a grey edge. We further define dG(v, w) to be the

weight of the common grey neighbourhood of v and w, and extend the definitions

given above to common neighbourhoods. Recall also that for a set of vertices S, x(S)

is the sum of weights of vertices in that set. In the following proposition, we state

some important properties which the vertices of any candidate CRG K must satisfy.

Proposition 4.2.4. Let t ≥ 1 and h ≥ t(2t+ 1) be integers with (t+ 1) | h. Let K

be a p-core candidate CRG, for p ≤ 1/ ⌈h/(2t+ 1)⌉ with gK(p) = γH(p) − ε for some

ε > 0. Suppose that K has r white vertices, for r ∈ {0, . . . , t − 1}. Then for any

v ∈ VB(K), the following hold.

(i) dG(v) =
t− 1 +

(⌈
h

2t+1

⌉
− t

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

+ ε

p
+ 1 − 2p

p
x(v).

(ii) dB
G(v) =

t− r − 1 +
(⌈

h
2t+1

⌉
− t+ r

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

+ (r + 1)ε
p

+ 1 − 2p
p

x(v).

(iii) x(v) ≤ p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

− ε

1 − p
.

(iv) degB
G(v) >

(⌈
h

2t+1

⌉
− 1

)
(t− r).

Proof. Let v ∈ VB(K). To prove (i), we apply Lemma 4.1.7 to get that

dG(v) = p− gK(p)
p

+ 1 − 2p
p

x(v) = 1 − γH(p) − ε

p
+ 1 − 2p

p
x(v)

= 1 − 1 − p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

+ ε

p
+ 1 − 2p

p
x(v)

=
t− 1 +

(⌈
h

2t+1

⌉
− t

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

+ ε

p
+ 1 − 2p

p
x(v).

Here, the third equality holds by applying Lemma 4.2.3, since h ≥ t(2t + 1) and

p ≤ 1/ ⌈h/(2t+ 1)⌉.

To prove (ii), we note that since K is p-core for p ≤ 1/2, every edge incident to a

white vertex in K is grey by Theorem 4.1.6. Furthermore, by Lemma 4.1.7, for any
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white vertex u ∈ VW(K), we have

x(u) = gK(p)
p

= 1 − p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

− ε

p
. (4.2.4)

Here again the second equality holds by an application of Lemma 4.2.3. Then

dB
G(v) = dG(v) − dW

G (v) = dG(v) − x(VW), and we obtain the result by observing

that x(VW) is r times the bound given in (4.2.4), and subtracting this from the

bound on dG(v) given in (i).

To prove (iii), we note that x(VB) ≥ x(v) + dB
G(v). On the other hand, we also

have x(VB) = 1 − x(VW). Thus, combining these gives

x(v) ≤ 1 − x(VW) − dB
G(v)

= 1 − r(1 − p)
t+

(⌈
h

2t+1

⌉
− t− 1

)
p

+ rε

p
−
t− r − 1 +

(⌈
h

2t+1

⌉
− t+ r

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

− (r + 1)ε
p

− 1 − 2p
p

x(v)

= 1 − p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

− ε

p
− 1 − 2p

p
x(v).

Rearranging and solving for x(v) gives the result.

Finally, to prove (iv), we have

degB
G(v) ≥

⌈
dB

G(v)
maxu∈VB x(u)

⌉
>
t− r − 1 +

(⌈
h

2t+1

⌉
− t+ r

)
p

p

≥
(⌈

h

2t+ 1

⌉
− 1

)
(t− r) ,

where the final inequality holds because p ≤ 1/ ⌈h/(2t+ 1)⌉.

Note that when applying this result, we will usually ignore the exact value of ε

and rely only on the fact that gK(p) < γH(p). Finally, we state the following fact,

which follows immediately from Cases 2 and 3 in the proof of Theorem 3 in the work
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of Berikkyzy, Martin, and Peck [10]. This allows us to now restrict to the case when

the candidate

Fact 4.2.5. Let p ∈ (0, 1/2] and let t ≥ 1 and h ≥ 2t(t + 1) + 1. If K is a p-core

CRG with gK(p) < γH(p), that is, a candidate CRG, then K has exactly t− 1 white

vertices.

4.2.2 Existence of long cycles

Before stating and proving the key lemmas in this section, we define some useful

notation relating to paths and cycles. We will define these in terms of labelled paths,

and remark that the corresponding definitions also apply for cycles. We say the

length of a path P is the number of edges in P , and we denote this by |P |. If P

is a labelled path, say P = v1 . . . vℓ, then the successor of a vertex vi on P is the

vertex vi+1. The predecessor of vi on P is the vertex vi−1. For indices 1 ≤ i < j ≤ ℓ,

the subpath vi P vj is the path vi vi+1 . . . vj−1 vj, that is, the path which has initial

vertex vi and final vertex vj and follows the labelling of P . The path vj P
−1 vi is

the path which has initial vertex vj, final vertex vi and follows the reverse of the

labelling of P . We also recall that for a set S ⊆ V (K), the value x(S) denotes the

sum of weights of vertices in that set, that is, x(S) = ∑
v∈S x(v). We now prove a

lemma which shows that for sufficiently small values of p, any p-core candidate CRG

which has t− 1 white vertices contains a grey cycle of length at least ⌈h/2t⌉ in the

subgraph induced on the black vertices. Recall that KB = K[VB].

Lemma 4.2.6. Let t ≥ 1, and h ≥ 4t(2t+ 1)} be integers with (t+ 1) | h. Let K be

a p-core candidate CRG for some p ≤ 1/ ⌈h/(2t+ 1)⌉, and suppose that K contains

t− 1 white vertices. Then KB contains a grey cycle of length at least ⌈h/2t⌉.

Proof. We would like to find a grey cycle of length at least ⌈h/2t+ 1⌉. Recall that

all edges of KB are either grey or white. Assume for a contradiction that the longest

grey cycle in KB has length at most ⌈h/2t⌉ − 1. By Proposition 4.2.4 (ii), for any
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vertex v ∈ VB, we have that

dB
G(v) >

(⌈
h

2t+1

⌉
− 1

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

+ 1 − 2p
p

x(v). (4.2.5)

Let P be a longest grey path in KB. Let P = v1 . . . vℓ so that v1 and vℓ are the

endvertices of P and vivi+1 are edges of P for each i ∈ [ℓ − 1]. Note that by the

maximality of P , each grey neighbour of v in VB must lie on P . Let Q = {v2, . . . , vm}

where m is the largest index in [ℓ] such that m ≤ ⌈h/2t⌉ (so Q ∪ {v1} is the set of

the first m+ 1 vertices of P ). The aim is to show that v1 must have a grey neighbour

in VB which lies outside Q, and this will give us a cycle of length at least ⌈h/2t⌉.

So we assume that |Q| = ⌈h/2t⌉ − 2, that is Q = {v2, . . . , v⌈h/2t⌉−1}.

Consider b ∈ {2, . . . , ⌈h/2t⌉ − 1} such that v1vb is an edge. Then by applying a

rotation, we can find a grey path Pb = vb−1P
−1v1vbPvℓ which has initial vertex vb−1

and has the same length as P . By the maximality of P , the path Pb must also be

a longest grey path in KB and so the grey neighbourhood in VB of vb−1 must also

lie entirely on Pb. Furthermore, note that the set of vertices Q ∪ {v1} are still the

first ⌈h/2t⌉ − 1 vertices of the path Pb. Therefore, if vb−1 had a grey neighbour on P

outside Q ∪ {v1}, we would find a cycle of length at least ⌈h/2t⌉, as required. So,

we may assume that the grey neighbourhood of vb−1 in VB lies entirely in the set

Q ∪ {v1}. In particular, the set of the first ⌈h/(2t)⌉ − 1 vertices of P is the same as

the set of the first ⌈h/2t⌉ − 1 vertices of P ′, albeit that they have been rearranged.

We know by Proposition 4.2.4 (iv) that v1 has at least ⌈h/(2t+ 1)⌉ grey neighbours

in VB. Say v1 has exactly ⌈h/(2t+ 1)⌉ + y grey neighbours in VB for some y ∈

{0, . . . , ⌈h/2t⌉ − ⌈h/(2t+ 1)⌉ − 2}. Let Q′ be the set of vertices in Q which are

predecessors in P of grey neighbours of v1, that is, the set of vertices vj ∈ V (P )

and v1vj+1 is a grey edge and j ∈ Q. Then |Q′| = ⌈h/(2t+ 1)⌉ + y − 1 (since v1

itself is a predecessor of v2 on P , but v1 does not lie in Q). Let Q′′ = Q \Q′. Then

|Q′′| = ⌈h/2t⌉ − ⌈h/(2t+ 1)⌉ − y − 1. Now by the upper bound on the weight of a
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black vertex given in Proposition 4.2.4 (iii), we obtain that

x(Q) ≤

(⌈
h
2t

⌉
− 2

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p
. (4.2.6)

On the other hand, since x(Q) ≥ dB
G(v1), we have

x(Q) >

(⌈
h

2t+1

⌉
− 1

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

+ 1 − 2p
p

x(v1). (4.2.7)

Furthermore, again by the upper bound on the weight of a black vertex, we have

x(Q′′) ≤

(⌈
h
2t

⌉
−
⌈

h
2t+1

⌉
− y − 1

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

. (4.2.8)

Therefore, since x(Q′) = x(Q) − x(Q′′), we have

x(Q′) >

(
2
⌈

h
2t+1

⌉
−
⌈

h
2t

⌉
+ y

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

+ 1 − 2p
p

x(v1). (4.2.9)

Therefore, by averaging over the weights of all vertices in Q′, there exists some vertex

u ∈ Q′ such that

x(u) >

(
2
⌈

h
2t+1

⌉
−
⌈

h
2t

⌉
+ y

)
p(⌈

h
2t+1

⌉
+ y − 1

) (
t+

(⌈
h

2t+1

⌉
− t− 1

)
p
) + 1 − 2p(⌈

h
2t+1

⌉
+ y − 1

)
p

x(v1).

(4.2.10)

When h ≥ 4t(2t+ 1), we have that

x(u) >

(
2
⌈

h
2t+1

⌉
−
⌈

h
2t

⌉)
p(⌈

h
2t+1

⌉
− 1

) (
t+

(⌈
h

2t+1

⌉
− t− 1

)
p
) + 1 − 2p(⌈

h
2t

⌉
− 3

)
p

x(v1). (4.2.11)

This bound holds because for (x+ y)/(x′ + y) ≥ x/x′ whenever x′ ≥ x. So, if we let

x = 2 ⌈h/(2t+ 1)⌉−⌈h/2t⌉ and x′ = ⌈h/(2t+ 1)⌉− 1, then it suffices to have x ≤ x′,
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and in order for this to be true, it suffices to have h ≥ 4t(2t+ 1). Now note that

x(Q ∪ {v1}) ≤

(⌈
h
2t

⌉
− 2

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

+ x(v1). (4.2.12)

On the other hand, since u ∈ Q′, it is the predecessor on P to some grey neighbour

of v1 and so as we have seen already, the entire grey neighbourhood of u in KB must

lie in Q ∪ {v1}. Therefore,

x(Q ∪ {v1}) >

(⌈
h

2t+1

⌉
− 1

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

+ 1 − p

p
x(v)

>

(⌈
h

2t+1

⌉
− 1

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

+

(
2
⌈

h
2t+1

⌉
−
⌈

h
2t

⌉)
(1 − p)(⌈

h
2t+1

⌉
− 1

) (
t+

(⌈
h

2t+1

⌉
− t− 1

)
p
)

+ (1 − 2p)(1 − p)(⌈
h
2t

⌉
− 3

)
p2

x(v1)

=
2
⌈

h
2t+1

⌉
−
⌈

h
2t

⌉
+
(⌈

h
2t+1

⌉2
− 4

⌈
h

2t+1

⌉
+
⌈

h
2t

⌉
+ 1

)
p(⌈

h
2t+1

⌉
− 1

) (
t+

(⌈
h

2t+1

⌉
− t− 1

)
p
) + (1 − 2p)(1 − p)(⌈

h
2t

⌉
− 3

)
p2

x(v1).

(4.2.13)

Now we prove the following claim.

Claim 4.2.7. If t ≥ 1, h ≥ 4(2t+ 1) and p ≤ 1/ ⌈h/(2t+ 1)⌉, we have

(1 − 2p)(1 − p)(⌈
h
2t

⌉
− 3

)
p2

≥ 1.

Proof of Claim 4.2.7. We would like to show that when p ≤ 1/ ⌈h/(2t+ 1)⌉, we have

(1 − 2p)(1 − p)/p2 ≥ ⌈h/2t⌉ − 3. It suffices to show that whenever p ≤ (2t + 1)/h,

we have
1 − 3p
p2 ≥ h

2t − 2.

Since the left side of the equation above is decreasing in p in the interval (0, 2/3), it
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suffices to show that this holds for the upper bound on p, that is, it suffices to show

1 − 3
(2t+ 1

h

)
≥
(2t+ 1

h

)2 ( h
2t − 2

)
. (4.2.14)

Now suppose that h = k(2t+ 1) for some k > 0. Then in order for the inequality in

(4.2.14) to hold, we need

1 − 3
k

≥ 1
k2

(
k(2t+ 1)

2t − 2
)
.

or equivalently, we need k2 −k(4 + 1/2t) + 2 ≥ 0. In particular, since t ≥ 1, it suffices

to have k2 − 4.5k+ 2 ≥ 0. The left side of this inequality is a positive quadratic with

roots at k = 0.5 and k = 4, so in particular, this holds whenever k ≥ 4. Therefore,

in particular, it suffices to have h ≥ 4(2t+ 1).

Note that we have h ≥ 4t(2t+ 1) ≥ 4(2t+ 1) and p ≤ 1/ ⌈h/(2t+ 1)⌉. Therefore,

by applying Claim 4.2.7 to (4.2.13), we get

x(Q∪ {v1}) >
2
⌈

h
2t+1

⌉
−
⌈

h
2t

⌉
+
(⌈

h
2t+1

⌉2
− 4

⌈
h

2t+1

⌉
+
⌈

h
2t

⌉
+ 1

)
p(⌈

h
2t+1

⌉
− 1

) (
t+

(⌈
h

2t+1

⌉
− t− 1

)
p
) + x(v1). (4.2.15)

Combining this with the upper bound on x(Q ∪ {v1}) given in (4.2.12), and rear-

ranging, we get that

p >
2
⌈

h
2t+1

⌉
−
⌈

h
2t

⌉
⌈

h
2t

⌉ ⌈
h

2t+1

⌉
−
⌈

h
2t+1

⌉2
− 2

⌈
h
2t

⌉
+ 2

⌈
h

2t+1

⌉
+ 1

.

However, when h ≥ 4t(2t+ 1), the inequality above contradicts the assumption that

p ≤ 1/ ⌈h/(2t+ 1)⌉. For t ≥ 2, we can show this by the fact that m ≤ ⌈m⌉ ≤ m+ 1.

To show this for t = 1, this crude upper and lower bound is not quite good enough

and we can instead show this by splitting into 3 cases depending on the value of h

mod 3. Therefore, the black-vertex subgraph KB must contain a grey cycle of length
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at least ⌈h/2t⌉.

4.2.3 Using long cycles to find shorter cycles

In this section, we prove two key lemmas. First, we show that given a graph satisfying

a particular condition on the degree, we can use ‘long’ cycles to find shorter cycles

in the graph.

Lemma 4.2.8. Let G be a graph, m ≥ 5 a positive integer. Suppose that in any

set of ⌊m/3⌋ vertices of G, there are some two which have a common neighbour.

If G contains a cycle of length at least m, then it also contains a cycle of length

between ⌈m/2⌉ and m− 1.

Proof. Let G be as above, and let C be a shortest cycle in G of length at least m.

The idea of the proof is as follows. We carefully choose a set of ⌊m/3⌋ vertices of

C. Then the hypothesis suggests that these have a common neighbour. We use this

common neighbour to find a new cycle C ′ which has length strictly shorter than C

which is still bounded below by ⌈m/2⌉. By minimality of C, we must have that C ′

has length at most m− 1, thus proving the result. It remains only to choose the set

of vertices, and show that we can always find a new cycle C ′.

We begin by labelling the vertices of C by u1, . . . , uℓ, so that uiui+1 is an edge for

each i ∈ [ℓ] (indices taken with addition modulo ℓ). Let M be the subset of vertices

of C given by

M =
{
u3i−2 : i ∈

{
1, . . . ,

⌊
m

3

⌋}}
.

Since M contains exactly ⌊m/3⌋ vertices, we know by hypothesis that there exist two

distinct vertices ui, uj ∈ M which have a common neighbour v in G. Without loss

of generality, we may assume i < j. By choice of M , the paths ui C uj and uj C ui

have length at least 3. Hence, the path ui v uj requires at least one edge which does

not belong to the cycle C.
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We have two cases to consider. Recall that in each case, we aim to find a new

cycle C ′ such that ⌈m/2⌉ ≤ |C ′| ≤ |C| − 1.

Case 1: v lies outside the cycle C. Now note that 3 ≤ j − i ≤ m − 3. If

j − i ≥ ⌈m/2⌉ − 2 then let C ′ = ui C uj v ui. Then |C ′| = (j − i) + 2. Hence,

⌈
m

2

⌉
=
⌈
m

2

⌉
− 2 + 2 ≤ |C ′| ≤ |C| − 3 + 2 = |C| − 1,

as required. On the other hand, if j − i ≤ ⌈m/2⌉ − 2, then let C ′ = ui v uj C ui.

Then |C ′| = |C| − (j − i) + 2 and

⌈
m

2

⌉
≤ m−

⌈
m

2

⌉
+ 2 + 2 ≤ |C ′| ≤ |C| − 1,

as required. Thus, if the common neighbour lies outside C we are done.

Case 2: v lies on the cycle C. Since both the paths ui C uj and uj C ui have

length at least 3, and the vertex v must lie on one of these paths, we may assume

without loss of generality that both of the paths P1 = ui C v and P2 = v C ui have

length at length at least 2. In particular, the edge ui v is a chord on C. Thus, either

P1 or P2 have length at least ⌈|C| /2⌉, say this is P1 without loss of generality, and

let C ′ = P1 ui. Then ⌈
m

2

⌉
≤ |C|

2 + 1 ≤ |C ′| ≤ |C| − 1,

as required. Thus, if the common neighbour lies on the cycle, then we are done once

again.

The following lemma gives a condition on the common neighbourhoods of vertices

in a weighted graph. For any vertex v ∈ V (K), let NG(v) be the set of grey neighbours

of v in V (K), that is,

NG(v) = {u ∈ V (K) : uv ∈ EG}.
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Lemma 4.2.9. Let K be a CRG with all black vertices and all edges grey or white.

Let m ≥ 2 be an integer. If dG(v) > 1/m for all v ∈ V (K), then in any subset

M ⊆ V (K) of size at least m, there exist at least 2 vertices which have a common

neighbour in their grey neighbourhood.

Proof. Consider a set M ⊆ V (K) with |M | ≥ m. Suppose that every pair of vertices

in M have a disjoint neighbourhood. Then

1 ≥
∣∣∣∣∣ ⋃
v∈M

NG(v)
∣∣∣∣∣ =

∑
v∈M

|NG(v)| =
∑

v∈M

dG(v) > 1,

a contradiction. Here, the first inequality holds since the sum of weights of all vertices

in K is exactly 1, the second equality holds by the assumption that every pair of

vertices have a disjoint neighbourhood and the final inequality holds because each

term of the sum has size at least 1/m by assumption.

4.2.4 Proof of main result

It remains only to combine the lemmas we have seen in this section to prove the

main result.

Proof of Theorem 1.1.2. Let t ≥ 1 and h ≥ 4t(2t+ 1). Recall c0 = ⌊(⌊h/t⌋ + 1)/3⌋,

ℓ0 = ⌈h/(2t+ 1)⌉, and p0 = t/(c0ℓ0 − c0 − ℓ0 + t+ 1), with p ∈ [p0, 1/ ⌈h/(2t+ 1)⌉].

Assume for a contradiction that there exists a p-core candidate CRG K. Suppose

that K has r white vertices. By Fact 4.2.5, we r = t− 1. By Lemma 4.2.6, we know

that KB contains a grey cycle of length at least ⌈h/(2t)⌉. By Lemma 4.2.2, KB

cannot contain a grey cycle of length ℓ for any ℓ ∈ {⌈h/(2t)⌉ , . . . , ⌊h/t⌋}. Combining

these facts together, we may assume that KB contains a grey cycle of length at least

⌊h/t⌋ + 1.

Now clearly, x(VB) ≤ 1. Furthermore, by Proposition 4.2.4 (ii) as there are
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exactly t− 1 white vertices, we know that for any vertex v ∈ VB,

dB
G(v) ≥

(⌈
h

2t+1

⌉
− 1

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p

+ 1 − 2p
p

x(v). (4.2.16)

Claim 4.2.10. When p ≥ p0, we have that dB
G(v) > 1/c0.

Proof of Claim 4.2.10. It suffices to show that when p ≥ p0,

(⌈
h

2t+1

⌉
− 1

)
p

t+
(⌈

h
2t+1

⌉
− t− 1

)
p
>

1
c0
,

as by (4.2.16), this implies the claim. This is equivalent to showing

((⌈
h

2t+ 1

⌉
− 1

)
c0 −

⌈
h

2t+ 1

⌉
+ t+ 1

)
p > t. (4.2.17)

Now note that

(⌈
h

2t+ 1

⌉
− 1

)
⌊

h
t

⌋
+ 1

3

−
⌈

h

2t+ 1

⌉
+ t+ 1

≥
(

h

2t+ 1 − 1
)(

h

3t − 1
)

− h

2t+ 1 − 1 + t+ 1

= h2

3t(2t+ 1) − h

3t − h

2t+ 1 + 1 + t

= h2 − h(5t+ 1) + 3t(t+ 1)(2t+ 1)
3t(2t+ 1) .

This is positive whenever h2 − h(5t + 1) + 3t(t + 1)(2t + 1) ≥ 0. Indeed, this has

roots at

t±0 =
(5t+ 1) ±

√
(5t− 1)2 − 12t(t+ 1)(2t+ 1)

2 .

For t ≥ 4, the quantity (5t − 1)2 − 12t(t + 1)(2t + 1) is negative, and so this is a

positive quadratic with no roots, and so is always positive. On the other hand, for

t = 1, this is a positive quadratic with larger root between 5 and 5.5, and so for

h ≥ 4t(2t+ 1) ≥ 6, the equation is positive. For t = 2, this has larger root between
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8 and 8.5 and so for h ≥ 4t(2t+ 1) ≥ 8, the equation is positive. Finally, for t = 3,

this has larger root at 9, and therefore, for h ≥ 4t(2t+ 1) ≥ 9, the equation is always

positive.

In particular, when t ≥ 1 and h ≥ 4t(2t+ 1), the inequality h2 −h(5t+ 1) + 3t(t+

1)(2t+ 1) ≥ 0 holds. Therefore, we can rearrange (4.2.17) and get that

p ≥ t(⌈
h

2t+1

⌉
− 1

) ⌊⌊h
t ⌋+1

3

⌋
−
⌈

h
2t+1

⌉
+ t+ 1

= p0. (4.2.18)

So by Claim 4.2.10, since p ≥ p0, any vertex v ∈ VB(K) satisfies dB
G(v) >

x(VB)/ ⌈(⌈h/t⌉ + 1)/3⌉. Therefore by Lemma 4.2.9, in any set of
⌈

⌊h/t⌋+1
3

⌉
vertices

of KB, there are some two which have a common grey neighbour in KB. Thus,

we can apply Lemma 4.2.8 to show that KB must contain a grey cycle of length

ℓ for some ℓ ∈ {⌈(⌊h/t⌋ + 1)/2⌉ , . . . , ⌊h/t⌋}. Note that ⌈(⌊h/t⌋ + 1)/2⌉ ≥ ⌈h/(2t)⌉.

Indeed, if h = x+ yt for x ∈ {0, . . . , t− 1}, then


⌊

h
t

⌋
+ 1

2

−
⌈
h

2t

⌉
=

⌊

x+yt
t

⌋
+ 1

2

−
⌈
x+ yt

2t

⌉
=
⌈
y

2 + 1
2

⌉
−
⌈
y

2 + x

2t

⌉
≥ 0.

Here, the second equality holds because of the definition of the floor function and the

final inequality holds because x/t < 1. Thus, we have found a cycle of length in the

range forbidden by Lemma 4.2.2, giving a contradiction to the assumption that such

a K exists, and therefore, edForb(Ct
h

)(p) = γForb(Ct
h

)(p) for p ∈ [p0, 1/ ⌈h/(2t+ 1)⌉],

concluding the proof.

Therefore, we have proved that when p ≥ p0, Theorem 1.1.2 does indeed hold.

In the next lemma, we check that p0 < 1/ ⌈h/2t+ 1⌉ for all h ≥ 4t(2t + 1), and

therefore the result does indeed extend on the range given in the work of Berikkyzy,

Martin and Peck [10].
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Lemma 4.2.11. Let t ≥ 1 and h ≥ 4t(2t+ 1). Then p0 ≤ 1/ ⌈h/(2t+ 1)⌉, that is,

t(⌈
h

2t+1

⌉
− 1

) ⌊⌊h
t ⌋+1

3

⌋
−
⌈

h
2t+1

⌉
+ t+ 1

<
1⌈
h

2t+1

⌉ .

Proof. Let t and h be as in the lemma. It suffices to show that

⌈
h

2t+ 1

⌉ 
⌊

h
t

⌋
+ 1

3

−


⌊

h
t

⌋
+ 1

3

− (t+ 1)
⌈

h

2t+ 1

⌉
+ t+ 1 > 0. (4.2.19)

Note that

⌈
h

2t+ 1

⌉ 
⌊

h
t

⌋
+ 1

3

−


⌊

h
t

⌋
+ 1

3

− (t+ 1)
⌈

h

2t+ 1

⌉
+ t+ 1

≥ h

2t+ 1

(
h
t

3 − 1
)

−
h
t

+ 1
3 − (t+ 1)

(
h

2t+ 1 + 1
)

+ (t+ 1)

= h2

3t(2t+ 1) = h

2t+ 1 = h+ 1
3t − (t+ 1)h

2t+ 1

= h2 − h(3t2 + 8t+ 1) − (2t+ 1)
3t(2t+ 1) .

As the denominator is always positive, this is positive when the numerator is positive.

The numerator is a positive quadratic, and so is always positive when h is at least

the larger root. So, if we can show that the larger root is at most 4t(2t+ 1), then we

are done. Indeed, the larger root is at

h0 =
3t2 + 8t+ 1 +

√
(3t2 + 8t+ 1)2 + 4(2t+ 1)

2

= 3t2 + 8t+ 1 +
√

9t4 + 48t3 + 70t2 + 24t+ 5
2 .

For t ≥ 2, we have

3t2 + 8t+ 1 +
√

9t4 + 48t3 + 70t2 + 24t+ 5
2 <

3t2 + 8t+ 1 +
√

(13t2 − 1)2

2
= 4t(2t+ 1).
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Therefore, the lemma holds for each t ≥ 2. Meanwhile, for t = 1, we can directly

calculate this. Indeed, note that if we substitute t = 1 into the left hand side (4.2.19),

we get

⌈
h

3

⌉ ⌊
h+ 1

3

⌋
−
⌊
h+ 1

3

⌋
− 2

⌈
h

3

⌉
+ 2 ≥ h

3

(
h+ 1

3 − 1
)

− h+ 1
3 − 2

(
h

3 + 1
)

+ 2

= h2 + h− 3
9 .

The numerator is a positive quadratic and is positive whenever h is at least the largest

root. In particular, we need h ≥ −1/2 +
√

13/2. Since we have h ≥ 4t(2t+ 1) = 12 =

−1/2 +
√

252/2 > −1/2 +
√

13/2, the equation is positive for all h ≥ 12. Therefore,

for each t ≥ 1, for each h ≥ 4t(2t+ 1), we have that (4.2.19) holds, concluding the

proof.
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