
Finding and exploiting faults
in hardware and software

By

Kit Murdock

A thesis submitted to
the University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences

University of Birmingham
November 2022



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



ABSTRACT

Computers are constantly being enhanced to improve their speed, size, security, and en-

ergy consumption. Dynamic Voltage and Frequency Scaling (DVFS) improves energy effi-

ciency by enabling a procesor to upscale its power as needed, thus using little energy when

idle. And, more recently, hardware-based trusted execution environments such as Software

Guard Extensions (SGX) have been created with the promise of securely executing sensitive

processes—thus protecting the data and running computations from a root adversary.

In the first part of this thesis, we show how the attempt to make computers more efficient by

dynamically responding to their energy needs has created a new attack surface. Specifically,

we are able to retrieve keys from both an AES and a RSA cryptographic process running

inside an SGX enclave by lowering the operating voltage. We further investigate the under-

volting effect and are able to improve the attack to create an out-of-bounds under/overflow.

Meanwhile, fault injection attacks (such as our software undervolting one) represent a major

threat to Internet-of-Things and embedded devices. As of today, evaluating to what extent a

device is susceptible to fault injection is a mostly manual process, requiring significant expert

knowledge and often expensive, complex lab equipment. In addition, even if a fault can be

induced, it is often unclear which effect caused the incorrect output. In the second part of

this thesis, we address this difficulty by designing and building a performant, exhaustive fault

injection tool. We compare our software with three others and demonstrate it out-performs

on features and speed.

i



Events During my PhD

• 3 September 2018: I start my PhD.

• 25 November 2018: After more than 18 months of negotiations, EU leaders endorse

the UK Brexit withdrawal agreement.

• 31 March 2019: The e-petition calling on the UK Government to revoke Article 50

reaches 6,000,000 signatures.

• 24 May 2019: Prime Minister Theresa May announces her resignation as Conservative

Party leader.

• 23 July 2019: Boris Johnson is elected Conservative leader and becomes prime minister.

He prorogues Parliament (which the Supreme Court later ruled unlawful). After failing

to win parliamentary support for his Northern Ireland Protocol, he calls a snap election.

• 22 October 2019: Abortion is decriminalised and same-sex marriage is legalised in

Northern Ireland.

• 12 December 2019: Johnson leads the Conservative Party to a general election victory

with 43.6 per cent of the vote.

• 31 December 2019: WHO is informed of a cluster of cases of pneumonia of unknown

cause detected in Wuhan City, China.

• 21 January 2020: The USA reports its first confirmed case of the novel Coronavirus.

• 29 January 2020: The UK’s first two patients test positive for Coronavirus.

• 23 March 2020: The UK Government announces the first nationwide lockdown.

• 25 May 25 2020: Derek Chauvin murders George Floyd, a 46-year-old black man.

Chauvin kneels on Floyd’s neck for over nine minutes.

ii



• 14 September 2020: Indoor and outdoor social gatherings in England are limited to

six people.

• 31 October 2020: The Prime Minister announces a second lockdown in England to

prevent a ‘medical and moral disaster’ for the NHS.

• 6 January 2021: England enters its third national lockdown.

• 6 January 2021: Following Donald Trump’s defeat in the 2020 presidential election, a

mob of his supporters attack the Capitol Building in Washington.

• 3 March 2021: 33-year-old Sarah Everard is kidnapped in South London. Metropolitan

Police officer Wayne Couzens tells Everard that he is arresting her for having breached

COVID-19 regulations. He rapes and strangles her, then burns her body and disposes

of her remains in a nearby pond.

• 8 March 2021: England begins a phased exit from lockdown.

• 19 July 2021: In England, legal limits on social contact are removed.

• 1 October 2021: Scotland Yard chief Cressida Dick tells women to ‘wave a bus down’

if they don’t trust a male officer.

• 24 February 2022: Russia invades Ukraine. The invasion causes Europe’s largest

refugee crisis since World War 2 and causes global food shortages.

• 11 May 2022: My dad falls at home and is taken to hospital by paramedics. They wait

ten hours in the back of an ambulance because no beds are available. He remains there

for six weeks.

• 24 June 2022: The US Supreme Court overturns Roe v Wade, the landmark 1973

Supreme Court decision that affirmed the constitutional right to abortion.

• 7 July 2022: Boris Johnson resigns as party leader following a series of scandals and

controversies.

iii



• 20 July 2022: Britain’s temperatures break the 40◦C barrier for first time ever.

• 28 July 2022: Birmingham hosts the Commonwealth Games.

• 6 September 2022: Liz Truss becomes the Prime Minister of the United Kingdom.

• 8 September 2022: Queen Elizabeth II, the UK’s longest-serving monarch, dies at

Balmoral aged 96, after reigning for 70 years.

• 16 September 2022: A 22-year-old Iranian, Mahsa Amini, is arrested by the Iranian

morality police for not wearing a hijab correctly. She dies later in hospital due to

having been severely beaten by the police.

• 7 October 2022: My dad has another fall and returns to hospital.

• 16 October 2022: Louise Casey’s report into how Scotland Yard deals with officers

accused of sexual misconduct and domestic abuse is released. The report uncovers

systemic failings including the shocking statistic that: more than half of the Met

officers found guilty of sexual misconduct from 2016 to 2020 kept their jobs.

• 20 October 2022: Liz Truss resigns as Prime Minister of the United Kingdom

• 25 October 2022: Rushi Sunak becomes Prime Minister immediately reversing most of

Liz Truss’s policies.

• 27 October 2022: The UN environment agency releases a report which states there

is ‘no credible pathway to 1.5C in place’, and the failure to reduce carbon emissions

means the world is facing ‘irreversible’ climate breakdown.

• 2 November 2022: I submit my PhD.

iv



ACKNOWLEDGMENTS

A grateful thanks to the sponsors of this degree, I hope to repay the debt in my future work.

My research would not have been possible without the phenomenal, David Oswald—an

outstanding person who is empathetic, technical and humorous. These traits rarely appear

in one person. Huge thanks to Flavio Garcia for giving me this opportunity, your ability to

sprinkle magic into dull academic papers is inspirational.

Thank you to Chris A and Steve H for their unique nudges every month, you left me looking

at my research with new eyes.

My experience at the University was immeasurably richer for the following people: Richard

Thomas, Tom Chothia, Jesse Spielman, Jo van den Herrewegen and Chris McMahon-Stone.

Incredible thanks to Andreea-Ina Radu for being the other-woman! Thank you for letting me

moan and rant... and being the female PhD role model I needed. I wouldn’t have returned

to do a PhD if I hadn’t seen you doing it first.

And where would I be without late night conversations about quirky C programs with Mike

Stimpson! No one knows more about C than you and it’s endearing and annoying in equal

measure.

And finally, eternal thanks to my Mum, Sue Murdock and my Dad, Tony Murdock. Neither

of you went to university, but you both showed me that I was just as entitled to aspire as

anyone else. And when a 10 year-old girl wanted a Commodore 64 for Christmas... you said

’yes’.

v



Contents

Page

Acronyms xv

1 Introduction 2

1.1 Faults, Fault Injection and Fault Attacks . . . . . . . . . . . . . . . . . . . . 2

1.2 Trusted Execution Environments . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Energy Management Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 What Just Happened? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Dissertation Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Published Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Conference Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Plundervolt 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Related Work on Software-based Fault Attacks . . . . . . . . . . . . . 12

2.1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Responsible Disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Attacker Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Voltage Scaling on Intel Core Processors . . . . . . . . . . . . . . . . 15

2.2.3 Configuring Voltage and Frequency . . . . . . . . . . . . . . . . . . . 17

vi



CONTENTS

2.2.4 Undervolting Decline Micro-benchmark . . . . . . . . . . . . . . . . . 18

2.2.5 Tested Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.6 Ambient Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.7 Implications for Older Processors . . . . . . . . . . . . . . . . . . . . 20

2.3 Faulting In-Enclave Multiplications . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Analysis of Undervolting Effects on Multiplications . . . . . . . . . . 22

2.3.2 Differences between CPUs with Same Model Number . . . . . . . . . 25

2.3.3 Temperature Dependencies . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4 Overvolting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 From Faults to Enclave Key Extraction . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Corrupting OpenSSL Signatures . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Full Key Extraction from RSA-CRT Decryption/Signature in SGX

using IPP Crypto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Differential Fault Analysis of AES-NI in SGX . . . . . . . . . . . . . 28

2.4.4 Faulting Other Intel IPP Crypto Primitives in SGX . . . . . . . . . . 31

2.5 Memory Safety Violations due to Faults . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Faulting Array Index Addresses . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Faulting Memory Allocation Sizes . . . . . . . . . . . . . . . . . . . . 33

2.6 Discussion and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7.1 Hardware-Level and Microcode-Level Countermeasures . . . . . . . . 38

2.7.2 Software-Level Hardening . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7.3 Intel’s Mitigation Plan . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 VoltPillager 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



CONTENTS

3.2 Undervolting Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 New Undervolting Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Practical Exploitation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Faultfinder 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 The Contribution of this Work . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Design and Implementation of Faultfinder . . . . . . . . . . . . . . . . . . . 57

4.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Process Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 Why Unicorn Engine? . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.4 Integration with Unicorn . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.5 Golden Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.6 Fault Models and Injection . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.7 Fault Injection Campaign . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.8 Result Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Optimisation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Registers/Instruction Bitmap . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Checkpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.3 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.4 Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Performance Impact of Optimisations . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 Checkpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.3 Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

viii



CONTENTS

4.5 Multi-architectural Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.2 ARM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.3 RISC-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.4 Tricore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.5 x86_64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Comparison to Existing Fault Simulation Tools . . . . . . . . . . . . . . . . 77

4.6.1 Comparison with ARCHIE . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.2 Comparison with FiSim . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6.3 Comparison with ARMory . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7 Faultfinder Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Leaky Throttling 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Energy MSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 ENERGY_STATUS MSRs . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Energy Usage Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Square Root of Scalar Double . . . . . . . . . . . . . . . . . . . . . . 91

5.3.2 Multiplication - imul . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.3 Array Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Throttling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.1 Setting Power Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.2 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Non-continuing work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ix



5.6 Subsequent work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Conclusions 104

A Appendix for Plundervolt 107

A.1 Script for Configuring CPU Frequency . . . . . . . . . . . . . . . . . . . . . 107

A.2 Example Fault for RSA-CRT . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.3 Further Examples for AES-NI AES Encryption Faults . . . . . . . . . . . . . 109

A.4 Running DFA against AES-NI . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.5 Reference Launch Enclave Implementation . . . . . . . . . . . . . . . . . . . 110

B Appendix for Voltpillager 114

B.1 Example Results for Faults during Memory Accesses . . . . . . . . . . . . . 114

C Appendix for Faultfinder 116

C.1 Setup Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.1.1 Example Binary Configuration File . . . . . . . . . . . . . . . . . . . 116

C.1.2 Example Fault Rules File . . . . . . . . . . . . . . . . . . . . . . . . 117

C.1.3 Example Campaign File . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.2 Fault Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.2.1 ARCHIE Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.2.2 Faultfinder Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . 119

D Appendix for Leaking Throttling 121

D.1 Covert Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

D.2 Reading MSR Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

References 129

x



List of Figures

2.1 Layout of the undocumented MSR 0x150 (for set voltage) . . . . . . . . . . 15

2.2 Layout of the undocumented MSR 0x150 (for undervolting) . . . . . . . . . 15

2.3 Layout of the documented MSR 0x198 - reading core voltage . . . . . . . . . 16

2.4 Voltage decline over time for Intel i3-7100U-C, repeating a -100mV under-

volting seven times and measuring actual voltage in MSR 0x198. . . . . . . . 18

2.5 Base voltage (blue) and voltage for first fault (orange) vs. CPU frequency for

the i3-7100U-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Base voltage (blue) and voltage for first fault (orange) vs. CPU frequency for

the i7-8650U-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 State of array[] after normal execution of Listing 3.3 and out-of-bounds

under/overflow when undervolted. Faulty values in red bold font. . . . . . . 49

4.1 Addresses required by Faultfinder for the golden run. . . . . . . . . . . . . . 61

4.2 Configuration files required to run a fault injection campaign. . . . . . . . . 63

4.3 Time of runs within a 200000 instruction program with 10 checkpoints. . . . 70

4.4 Ghidra code snippet from tinyAES compiled for ARM. . . . . . . . . . . . . 73

4.5 Ghidra code snippet from tinyAES compiled for RISC-V. . . . . . . . . . . . 74

4.6 Ghidra code snippet from tinyAES compiled for Tricore. . . . . . . . . . . . 75

4.7 Ghidra code snippet from tinyAES compiled for x86_64. . . . . . . . . . . . 76

5.1 Layout of the power domains with MSRs availability . . . . . . . . . . . . . 89

xi



5.2 Layout of MSRs 0x611, 0x619, 0x639, 0x641 ENERGY_STATUS for PKG, DRAM,

PP0, PP1 respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Layout of MSR 0x606 MSR_RAPL_POWER_UNIT . . . . . . . . . . . . . . . . . 90

5.4 Covert channel running sqrtsd with MSR outputs from Package Energy,

DRAM Energy and Core Voltage on an i7-7700HQ-XPS at 3.2GHz, using

a rolling average of 15 points. Readings taken every 2ms. . . . . . . . . . . 93

5.5 MSR outputs from Package Energy, DRAM Energy and Core Voltage on i7-

7700HQ-XPS at 1.1GHz, using a rolling average of 15 points. Readings taken

every 2ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 MSR outputs from Package Energy, DRAM Energy and Core Voltage on i7-

7700HQ-XPS at 3.2GHz, using a rolling average of 10 points. Readings taken

every 2ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 MSR outputs from Package Energy, DRAM Energy and Core Voltage on i7-

7700HQ-XPS at 1.1GHz, using a rolling average of 10 points. . . . . . . . . 97

5.8 MSR outputs from Package Energy i7-7700HQ-XPS at 3.2GHz, no rolling

average. Readings taken every 2ms. . . . . . . . . . . . . . . . . . . . . . . 98

5.9 Layout of the documented MSR 0x610 - MSR_PKG_POWER_LIMIT . . . . . . 100

5.10 Layout of MSRs 0x613/0x61B/0x63B PERF_STATUS for PKG/DRAM/PP0 . . . . 100

5.11 MSR outputs from Package Throttling i7-7700HQ-XPS at 2.4GHz with a

power limit of 7.875 Watts and a window of 0.9765ms no rolling average.

MSR readings taken every 4ms. Covert functions running inside SGX. . . . . 102

5.12 MSR outputs from Package Throttling i7-7700HQ-XPS at 3GHz with a power

limit of 16 Watts and a window of 0.9765ms no rolling average. MSR readings

taken every 4ms. Covert functions running inside SGX. . . . . . . . . . . . . 102

xii



List of Tables

2.1 Processors used for the experiments in this chapter. When multiple CPUs

with the same model number were tested, we append uppercase letters (-A,

-B etc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Examples of faulted multiplications on i3-7100U-B at 2GHz . . . . . . . . . 24

2.3 Number of iterations until a fault occurs for the multiplication (0xae0000 *

0x18) vs. necessary undervolting on i3-7100U-B at 2GHz. . . . . . . . . . . 24

4.1 Time to inject 625,550 faults in x86 tinyAES binary with 200,000 instructions,

running on an 8-core Intel i7 @ 2.6GHz (no checkpoints used). . . . . . . . . 69

4.2 Runtime to inject 625,550 faults into an x86 tinyAES binary with 200,000

instructions, running on an Intel i7 @ 2.6GHz with 8 threads. . . . . . . . . 69

4.3 Comparison of runtimes injecting different faults in an x86 tinyAES binary

with equivalences turned on/off on an Intel i7 @ 2.6GHz with 8 threads. . . 71

4.4 Comparison of runtimes injecting identical faults in an x86 tinyAES binary

with equivalences turned on/off on an Intel i7 @ 2.6GHz with 8 threads. . . 71

4.5 Outputs from running Faultfinder to flip each bit in r1 at instruction 3864 in

an ARM compiled tinyAES binary . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Outputs from running Faultfinder to flip each bit in X18 at instruction 4375

in an RISC-V compiled tinyAES binary . . . . . . . . . . . . . . . . . . . . . 74

4.7 Outputs from running Faultfinder to flip each bit in A5 at instruction 5069 in

a Tricore compiled tinyAES binary . . . . . . . . . . . . . . . . . . . . . . . 75

xiii



4.8 Outputs from running Faultfinder to flip each bit in rsi at instruction 3977 in

a x86_64 compiled tinyAES binary . . . . . . . . . . . . . . . . . . . . . . . 76

4.9 Runtime comparison between Faultfinder and ARCHIE when injecting 8278

faults into an ARM-compiled tinyAES binary (no checkpoints used for Fault-

finder). All CPUs are Intel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.10 Runtime comparison between Faultfinder and FiSim when injecting 22,000

faults into FiSim’s demonstration bootloader ARM binary (no checkpoints

used for Faultfinder). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 Breakdown of non-matching faults between Faultfinder and ARMory for an

AES implementation on ARM . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.12 Faultfinder’s lifespan configuration to correspond to ARMory’s fault categories 84

4.13 Pseudo runtime comparison between Faultfinder and ARMory, 42000 faults

were injected into an ARM AES implementation binary (no optimisations used). 85

4.14 Comparison of currently available fault injection simulation tools . . . . . . . 86

5.1 RAPL MSRs (each is prefixed with MSR_) . . . . . . . . . . . . . . . . . . . . 90

5.2 Average increase in package energy usage for covert operations across 100

experiments, frequency 2.7GHz. . . . . . . . . . . . . . . . . . . . . . . . . 99

xiv



Abbreviations and Acronyms

AVX Advanced Vector Extensions.

DEP Data Execution Protection.

DRAM Dynamic Random Access Memory.

DVFS Dynamic Voltage and Frequency Scaling.

IR Intermediate Representation.

MEE Memory Encryption Engine.

MMU Memory Management Unit.

MSR Model Specific Register.

OCD On-Chip Debug.

PHI Power Hungry Instructions.

PoC Proof-of-Concept.

RAPL Running Average Power Limit.

SGX Software Guard Extension.

xv



Abbreviations and Acronyms

SIMD Single Instruction, Multiple Data.

SMBus System Management Bus.

SMT Simultaneous Multithreading.

SVID Serial Voltage Identification.

TCB Trusted Compute Base.

TEE Trusted Execution Environments.

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description Language.

VHF Very High Frequency.

VLF Very Low Frequency.

VR Voltage Regulator.

WLAN Wireless Local Area Network.

XOR Exclusive OR.

xvi



Abbreviations and Acronyms

1



Chapter 1

Introduction

From pacemakers to phones and doorbells to cuddly toys, we are increasingly putting em-

bedded processors at the centre of our lives. Statista has predicted that there will be over

30 billion connected devices by 2025 [195]. It is our growing reliance upon these devices that

increases their need to be secure, reliable and trustworthy. Many devices are considered safe

because of mathematically secure cryptographic algorithms. However these algorithms can

only be relied upon under correct operating conditions—when something goes wrong the

mathematical properties may no longer hold and the device may leak sensitive information.

1.1 Faults, Fault Injection and Fault Attacks

The something goes wrong is known as a fault and can be produced by anything from ageing

components to power-cuts, from design deficiencies to unexpected inputs. One small fault

can propagate through a system to create an incorrect state or output: the fault has then

created an error. In 1982, software engineers at Digital Equipment Corporation (DEC) [191]

coined the term fault injection—its purpose, as originally conceived, was to test whether

2



Chapter 1 Introduction

a system could withstand faults that occurred during runtime. Initially, these faults were

simulated hardware failures that corrupted data or prevented normal operations.

In 1997, Boneh et al. evolved the concept of fault injection by producing one of the first

ever fault attacks (Bellcore), against a CRT-RSA signature [21]. By faulting a single cal-

culation they were able to retrieve the entire private key. And, in 2011, a single byte fault

was shown to be sufficient to extract the key from an AES encryption[203]. As a result

of these initial results, a profusion of attack vectors sprung up. Researchers attempted

to fault the computations of a device by directly modifying its environment or hardware.

Typically, such fault-inducing environmental changes are at the border of (or beyond) the

specified operational range of the target device. The research into fault injection has been

surprisingly creative: Optical fault attacks [194], clock glitches [9, 193], voltage glitches [225],

electromagnetic pulses [42], electromagnetic fault attacks [41], focused photon injection us-

ing laser beams [40, 178] and extreme temperatures [87]. The aim of a fault attack has

also expanded, it now includes: retrieving cryptographic keys, privilege escalation [186, 69,

217, 211], bypassing firmware security mechanism [210] and reading otherwise inaccessible

memory locations [122].

But not all fault attacks require physical intervention, in 2015, Rowhammer [111], created

the first purely software-based fault attack against x86-based systems. Rowhammer was able

to cause bit flips in DRAM memory by constantly writing to a target row of memory. Nearby

rows (that were not accessed) were affected because the memory cells interact electrically

by leaking their charges. Several authors [172, 68, 122] furthered the work with new appli-

cations, variations, and improvements of the original attack, including the successful bypass

of countermeasures in recent DDR4 DRAM chips [58]. Google’s Project Zero created two

privilege escalation attacks against the x86-64 architecture [186], demonstrating the severity

of the attack. Because Rowhammer could flip bits from software only, the mitigations needed

to be profound. Consequently, the scientific community and industry have put significant

3



Chapter 1 Introduction

effort in developing Rowhammer mitigations [111, 100, 80, 10, 70, 163, 33, 221, 36, 211, 69,

25]. Interestingly, Rowhammer (and software-based fault attacks generally) now cause the

threat model to shift from a local attacker (with physical access to the target device) to a,

potentially, remote attacker with only local code execution. There is little doubt that if an

attacker does not need direct access, the risks are raised.

1.2 Trusted Execution Environments

Before continuing, we need to take a quick pit-stop to look at how computer chip manufac-

turers have attempted to manage the ever-growing need for trust with our devices.

As far back as 1985, the term Trusted Compute Base (TCB) was coined [179] to refer to

the small quantity of software and hardware that security replies upon e.g., in the event of a

kernel driver coding error the system security could be fully compromised. And, in the last

three decades, software security has increasingly been directed toward security functions in

both software and hardware. An operating system has to manage multiple applications and

resources and, to ensure safety from potentially malicious applications, modern operating

systems employ a number of protection mechanisms. For example, vendors have introduced

the NX bit to enforce Data Execution Protection (DEP). Similarly, protections rings were

introduced employing hierarchical levels of privilege (usually hardware enforced). Ring 0

(Kernel) is the level with the most privileges and has access to control the physical hardware

such as the CPU and memory. Ring 3 is usually referred to as userspace and applications

that running in userspace will need to request services from the kernel.

Additionally, memory isolation is managed by a dedicated Memory Management Unit (MMU)

which is responsible for mapping physical memory addresses to virtual addresses by consult-

ing a page-table tree structure. The MMU is configured and managed by the Operating

4



Chapter 1 Introduction

System. Memory isolation ensures that processes running in userspace cannot access the

physical memory assigned to a different process and provides the foundations for software

security. Theoretically, one process cannot access the memory of another.

In the last thirty years, large amounts of research have pushed the security of operating

systems, mostly through micro-kernels [113]. But, as the features and environments grew,

so did the attacks. Computers and mobile devices became feature-rich leading to more and

more attack surfaces.

The complexities of creating operating system security and memory security grabbed indus-

try and academia’s attention and, as mobile phones turned into smart-phones, the desire for

hardware security grew. From this, a large line of work [155, 222, 139, 4, 106, 5], lead to the

creation of hardware-based Trusted Execution Environmentss (TEEs). A TEE is an area on

the main processor of a device with minimal TCB and separate from the operating system.

Data is stored, processed, and protected in this secure environment. They provide protection

by enabling an isolated area with end-to-end security—which includes executing code. The

memory is encrypted with integrity protection i.e., an injected bit-flip would be trapped and

reported. Additionally, TEEs use attestation to demonstrate that the software is properly

instantiated on a platform, this is usually done with the aid of an attestation primitive to

cryptographically verify that a specific enclave has been loaded on a genuine TEE processor.

At a human level, TEEs were created out of the need to protect our private and valuable

data from other, possibly malicious, applications and even the operating system itself.

For these reasons, Intel processors (from 2015 onward) include Software Guard Extension

(SGX) (a TEE) which allows an application to self-quarantine sensitive data and functions

in an enclave using dedicated CPU instructions. These enclaves represent a secure vault or

fortress in the processor, which cannot be read or modified by any other software, including

the privileged operating system. Intel SGX was purposely designed to protect against the most

5



Chapter 1 Introduction

advanced types of adversaries who have unrestricted physical access to the host machine,

e.g., untrusted cloud providers under the jurisdiction of foreign nation states. SGX therefore

includes state-of-the-art memory encryption technology [74] that protects the confidentiality,

integrity and freshness of all enclave memory while it resides in untrusted off-chip DRAM.

Indeed Intel’s own threat model considers main memory as an untrusted storage facility

and fully encrypts and authenticates all memory within the Intel SGX enclave security

architecture [74].

Meanwhile, in 2004, ARM proposed a system-wide hardware isolation execution environ-

ment [4], marketed as TrustZone Technology as its Trusted Execution Environment. This

has since become widespread in Android mobile devices mostly used for: (i) Storing keys

(ii) Cryptographic operations (iii) Trusted boot (iv) Digital signatures.

Although this thesis is focused on fault injection, as we will see, protecting a TEE against a

privileged adversary opens up a whole new set of challenges.

1.3 Energy Management Systems

In order to continue, we need to take a moment to examine Energy Management Systems—in

later chapters we will combine all of these knowledge areas.

Hardware is being aggressively optimised to meet the growing need for fast response times.

The aim: to maximise performance and energy savings whilst keeping functional correctness.

Modern processors cannot continuously run at maximum clock frequency—they would simply

get too hot. And in mobile devices the battery would drain too quickly. In an electrical

circuit, voltage and frequency can be thought of as two sides of the same coin: higher clock

frequencies require higher voltages for electrical signals to arrive in time, and, likewise, lower

6



Chapter 1 Introduction

voltages require the processor and memory to operate at a slower rate. Power management

jargon therefore specifies optimal ‘frequency/voltage pairs’ for different use cases. Because

of this relationship, modern processors keep the clock frequency and supply voltage as low as

possible—only scaling up when necessary. Higher frequencies require higher voltages for the

processor to function correctly, so they should not be changed independently. Additionally,

there are other types of power consumption that influence the best choice of a frequency/

voltage pair for specific situations.

Modern computers have, therefore, introduced the energy management architectural mech-

anism: Dynamic Voltage and Frequency Scaling (DVFS) to reactively control the physical

operating conditions of the underlying hardware. At the time of writing, DVFS was available

on ARM, AMD and Intel CPUs. DVFS can be used to offer high performance for intensive

mathematical calculations—dubbed Power Hungry Instructions (PHI). But DVFS is not just

for performance, it is also a safety feature to protect the physical board: when thermal me-

ters warn of approaching unsafe values, the processor will quickly and temporarily reduce

the power and/or frequency: this is known as throttling.

Memory mapped registers were introduced by Intel to support these dynamic hardware

changes. Starting with the Pentium processor, Intel created a pair of instructions (RDMSR

and WRMSR) to access current and future Model Specific Register (MSR), as well as the CPUID

instruction to determine which features are present on a particular model. Simply put: a

model-specific register is an x86 instruction control register used for debugging, program

execution tracing, computer performance monitoring, and enabling/disabling CPU features.

As we saw in the previous section, the TCB is the set of components critical to the security

of the system, it is vital therefore that these software interfaces cannot be used maliciously.

In 2017, Tang et al. [198] created a fault attack against ARM’s TEE to create a new class

of software-based fault attack—those using the energy management systems. They demon-

7



Chapter 1 Introduction

strated that ARM processors allow configuration of the dynamic frequency scaling feature,

i.e., overclocking, by system software. Using this, Tang et al. showed that overclocking fea-

tures can be abused to jeopardise the integrity of computations for privileged adversaries

in a TEE. Based on this observation, they were able to attack cryptographic code running

in TrustZone. They used their attack to extract cryptographic keys from a custom AES

software implementation and to overcome RSA signature checks and subsequently execute

their own program in the TrustZone of the System-on-Chip (SoC) on a Nexus 6 device.

1.4 What Just Happened?

Given the wide range of faults attacks, it is not surprising that the research in this field

shows no sign of waning. However, despite extensive research, carrying out practical attacks

and thus evaluation of countermeasures remains challenging. Firstly, the parameter space

for fault injection is usually large—the physical parameters of the fault must be carefully

chosen, e.g., regarding fault intensity, duration, trigger point, and so on.

Then, even when a faulty output or program behaviour has been discovered, it often remains

unclear how the fault was produced (i.e., which fault model affected which instruction in the

executed program code). Second, we must have a thorough knowledge of the architectures,

memory and executables being used. This can take hours of painstaking and time-consuming

examination into the particular device and software. And, throughout all this, we run the

risk of breaking the device under test.

As of today, evaluating to what extent a device is susceptible to fault injection is mostly

a manual process requiring significant expert knowledge and often expensive, complex lab

equipment. In addition, even if a fault can be induced, it is often unclear which effect caused

the incorrect output. The evaluator only observes a faulty output and faces the Herculean

8



Chapter 1 Introduction

task of working out What just happened?

One approach explored in the research community to address this problem is the use of formal

methods (like symbolic execution) to model the behaviour of software programs [167, 65] or

hardware circuits [174] under fault injection. An alternative approach is to simulate the

injection of various fault types into every target instruction using an emulator for the target

CPU architecture. While the approach of fault simulation has disadvantages compared to

formal methods (e.g., that the results depend on the concrete input values), it also offers

benefits: it covers various CPU architectures as long as a basic emulator is available and

readily applies to arbitrary firmware binaries. In this thesis, we thus focus on the latter

approach and in particular improve on the performance compared to earlier tools for fault

simulation, inspired by ideas from the related area of fuzzing.

1.5 Dissertation Scope

In Chapter 2 we begin by continuing the work introduced by CLKscrew [198] and use Intel’s

energy management systems to create a novel software fault injection attack against SGX—

this work was presented at S&P in 2020 [149] and also in IEEE Security and Privacy, 2020

[150]. We further investigate its faults using the more refined hardware undervolting in

Chapter 3, this work was published as part of Voltpillager at USENIX in 2021 [32]. We then

attempt to address the previously identified question: What just happened? by designing,

implementing and testing a performant application called Faultfinder which is detailed in

Chapter 4. And finally, we investigate leakage from Intel’s power management interfaces in

Chapter 5.

9



Chapter 1 Introduction

1.6 Published Papers

• Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss. "Plun-

dervolt: Software-based Fault Injection Attacks against Intel SGX". Proceedings of the

41st IEEE Symposium on Security and Privacy (S&P). 2020. [149]

• Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Frank Piessens, and

Daniel Gruss. "Plundervolt: How a Little Bit of Undervolting Can Create a Lot of

Trouble". IEEE Security and Privacy, special hardware edition. 2020. [150]

• Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and Flavio

D. Garcia. "VoltPillager: Hardware-based fault injection attacks against Intel SGX

Enclaves using the SVID voltage scaling interface" . 30th USENIX Security Symposium

(USENIX Security 21). [32]

1.7 Conference Presentations

• "Plundervolt: Flipping Bits from Software without Rowhammer" [71] at 36th CCC.

December 2019.

• "Plundervolt: Pillaging and plundering SGX with Software-based Fault Injection At-

tacks" [147] at Redhat. January 2020.

• "Plundervolt: Software-Based Fault Injection Attacks against Intel SGX" [148] online

presentation at S&P. March 2020

• "Plundervolt: How a Little Bit of Undervolting Can Create a Lot of Trouble" [72] at

Blackhat. August 2020.

10



Chapter 2

Plundervolt

2.1 Introduction

This chapter is based on the author’s published work at S&P 2020 [149] and in IEEE Security

and Privacy, 2020 [150].

Energy management systems in computers efficiently control operating voltages and frequen-

cies, scaling up for high short bursts of intense activity, then returning to lower values to

protect hardware components. Aggressive energy optimisations have resulted in the stable

voltage margins shrinking. The actual voltage margin is strongly influenced by imperfec-

tions in the manufacturing process and also the specific system setup, including the voltage

regulator on the main board.

In this chapter, we investigate Intel’s energy management systems and the memory mapped

registers used to control the dynamic voltage and frequency scaling from software. Al-

though, we introduced this concept in Chapter 1, we did not highlight that these features are

often undocumented. What is more, they are only exposed to privileged system software—

11



Chapter 2 Plundervolt

consequently they have been scarcely studied from a security perspective. In this chapter we

focus on one specific memory mapped register: MSR_OC_MAILBOX (0x150) which allows core

voltage to be modified—both up and down—and even to the point of full kernel panic and

crash. We also saw in Section 1.2 that Intel’s SGX enclaves are considered immune to fault

attacks. In particular, Rowhammer, the only software-based fault attack known to work on

x86 processors, simply causes the integrity check of the Memory Encryption Engine (MEE)

to fail [68, 102], halting the entire system.

2.1.1 Related Work on Software-based Fault Attacks

Whilst CLKscrew [198] was able to exploit these energy management systems on an ARM

processor, it is unclear whether similar effects exist on x86-based computers and, if so,

whether they are exploitable or not. It is unknown if SGX has has protections against this

type of attack, e.g., machine-check errors on the system level, or SGX enclave data integrity.

Furthermore, CLKscrew is based on changing the frequency, we focus on manipulating the

voltage, because, as we will see, the granularity is finer on Intel-based machines. Finally, the

question arises: are faults limited to software implementations of cryptographic algorithms

(as in CLKscrew), or can the faults also be used to exploit hardware implementations (like

AES-NI) or generic (non-cryptographic) code.

2.1.2 Our Contribution

Here we present Plundervolt, a novel attack against Intel SGX to reliably corrupt enclave

computations by abusing privileged dynamic voltage scaling interfaces. Our work builds on

reverse engineering efforts that revealed which Model-Specific Registers (MSRs) are used to

control the dynamic voltage scaling from software [197, 175, 144]. The respective MSRs exist

12



Chapter 2 Plundervolt

on all Intel Core processors. Using this interface to very briefly decrease the CPU voltage

during a computation in a victim SGX enclave, we show that a privileged adversary is able to

inject faults into protected enclave computations. Crucially, since the faults happen within

the processor package, i.e., before the results are committed to memory, Intel SGX’s memory

integrity protection fails to defend against our attacks. To the best of our knowledge, we are

the first to practically showcase an attack that directly breaches SGX’s integrity guarantees.

In summary, our main contributions are:

• We present Plundervolt, a novel software-based fault attack on Intel Core x86 pro-

cessors. For the first time, we bypass Intel SGX’s integrity guarantees by directly

injecting faults within the processor package. We provide a thorough analysis of the

fault characteristics on recent Intel processors.

• We demonstrate the effectiveness of our attacks by injecting faults into Intel’s RSA-

CRT and AES-NI implementations running in an SGX enclave, and we reconstruct full

cryptographic keys with negligible computational efforts.

• In both cases, we recover the full key with a single successful fault injection and neg-

ligible computational efforts. We are able to recover the full 128-bit AES key within a

couple of minutes.

• We explore the use of Plundervolt to induce memory safety errors into bug-free enclave

code. Through various case studies, we show how in-enclave pointers can be redirected

into untrusted memory and how Plundervolt may cause heap overflows in widespread

SGX runtimes.

• Finally, we discuss countermeasures and why fully mitigating Plundervolt may be

challenging in practice.

13



Chapter 2 Plundervolt

2.1.3 Responsible Disclosure

We responsibly disclosed our findings to Intel on June 7, 2019. Intel reproduced and con-

firmed the vulnerabilities which they are tracked under CVE-2019-11157. Intel’s mitigation

is provided in Section 2.7.3.

Our current results indicate that the Plundervolt attack affects all SGX-enabled Intel Core

processors from Skylake onward. We have also experimentally confirmed the existence of

the undervolting interface on pre-SGX Intel Core processors. However, for such non-SGX

processors, Plundervolt does not currently represent a security threat in our assessment,

because the interface is exclusively available to privileged users. Furthermore, in virtualised

environments, hypervisors should never allow untrusted guest VMs to read from or write to

undocumented MSRs.

The PoC attack code is available at: https://github.com/KitMurdock/plundervolt.

2.2 Experimental Setup

2.2.1 Attacker Model

We assume the standard Intel SGX adversary model where the attacker has full control

over all software running outside the enclave (including privileged system software such as

operating system and BIOS). Crucial for our attacks is the ability for a root adversary to

read/write MSRs, e.g., through a malicious ring 0 kernel module or an attack framework

like SGX-Step [208]. Since we only exploit software-accessible interfaces, our attacks can

be mounted by remote adversaries who gained arbitrary kernel code execution, but without

physical access to the target machine. At the hardware level, we assume a recent Intel Core

14

https://github.com/KitMurdock/plundervolt


Chapter 2 Plundervolt

processor with (i) Intel SGX enclave technology, and (ii) dynamic voltage scaling technology.

In practice, we found these requirements to be fulfilled by all Intel Core processors we tested

from Skylake onward (cf. Table 2.1).

2.2.2 Voltage Scaling on Intel Core Processors

We build on the reverse engineering efforts of [197, 144, 175] that revealed the existence

of an undocumented MSR to adjust operating voltage on Intel Core CPUs. To ensure

reproducibility of our findings, we document this concealed interface in detail. All results

were experimentally confirmed on our test platforms (cf. Table 2.1).

1 plane
idx target voltage

63

1

42 36 19 8203240

r/w1

read/write0 = CPU Core 
1 = GPU
2 = cache (core)
3 = uncore
4 = analog I/O

Figure 2.1: Layout of the undocumented MSR 0x150 (for set voltage)

1 plane
idx voltage offset

63

0

42 36 31 21 203240

r/w1

0 = CPU Core 
1 = GPU
2 = cache (core)
3 = uncore
4 = analog I/O

read/write

Figure 2.2: Layout of the undocumented MSR 0x150 (for undervolting)

Figures 2.1 and 2.2 show how the 64-bit MSR value can be decomposed into a plane index

(idx) and a voltage offset or target voltage. Firstly, by specifying a valid plane index, system

software can select to which CPU components the voltage change should be applied. The

CPU core and cache share the same voltage plane on all machines we tested and the higher

15



Chapter 2 Plundervolt

P-state core Voltage
(Read Only)

3247

Figure 2.3: Layout of the documented MSR 0x198 - reading core voltage

voltage of both will be applied to the shared plane. We focused our efforts on undervolting

always starting with small steps to help ensure the stability of the device under test. Secondly,

the requested voltage scaling offset is encoded as an 11-bit signed integer relative to the core’s

base operating voltage. This value is expressed in units of 1/1024V (about 1mV), thus allowing

a maximum voltage offset of ±1V.

After software has successfully submitted a voltage scaling request, it takes some time be-

fore the actual voltage transition is physically applied. The current operating voltage can

be queried from the documented MSR 0x198 (IA32_PERF_STATUS), (Figure 2.3) using the

calculation below.

V oltage(volts) =
IA32_PERF_STATUS[47 : 32]

213

We experimentally verified that all physical CPUs share the same voltage plane (i.e., scaling

voltage on one core also adjusts all the other physical CPU cores).

From Skylake onwards, the voltage regulator is external to the CPU as a separate chip on

the main board. The CPU requests a supply voltage change, which is then transferred to

and executed by the regulator chip. In Intel systems, this is implemented as follows (based

on datasheets for respective voltage regulator chips [90] and older, public Intel documenta-

tion [98]).

16



Chapter 2 Plundervolt

2.2.3 Configuring Voltage and Frequency

In order to reliably find a faulty frequency/voltage pair, we configured the CPU to run at a

fixed frequency. This step can be easily executed using documented Intel frequency scaling

interfaces, e.g., through the script given in Appendix A.1.

The undervolting is applied by writing to MSR 0x150 (e.g., using the msr Linux kernel

module) just before entering the victim enclave through an ECALL in the untrusted host

program. After returning from the enclave, the host program immediately reverts to a

stable operating voltage. Note that, apart from the msr kernel module, attackers can also

rely on more precise methods to control undervolting, e.g., if configuration latency should

be minimised.

One challenge for a successful Plundervolt attack is to establish the correct undervolting

parameter such that the processor produces incorrect results for certain instructions, while

still allowing the remaining code base to function normally. That is, undervolting too far

leads to system crashes and freezes, while undervolting too little does not produce any faults.

Finding the right undervolting value therefore requires some experimentation by carefully

reducing the core voltage in small decrements (e.g., by 1mV per step) until a fault occurs,

but before the system crashes.

In practice, we found that it suffices to undervolt for short periods of time by −100 to

−260mV, depending on the specific CPU, frequency and temperature (see Section 2.3.1 for

a more precise analysis).

17



Chapter 2 Plundervolt

2.2.4 Undervolting Decline Micro-benchmark

To study how quickly writes to MSR 0x150 manifest in actual changes to the core voltage,

we performed a micro-benchmark where we continuously read the reported current CPU

voltage from MSR 0x198 (IA32_PERF_STATUS). We executed the micro-benchmark code by

means of a privileged x86 interrupt gate that first applies -100mV undervolting and then

immediately executes a tight loop of 300 iterations to collect pairs of measurements of the

current processor voltage and the associated Time Stamp Counter (TSC) value.

Figure 2.4: Voltage decline over time for Intel i3-7100U-C, repeating a -100mV undervolting seven
times and measuring actual voltage in MSR 0x198.

The measurement results for seven repetitions of a -100mV drop are displayed in Figure 2.4.

It is immediately evident that there is a substantial delay (between 500k and 1M TSC ticks)

between the MSR change and the actual undervolting being applied. While some of this delay

might be due to the software-based measurement via MSR 0x198, our benchmark primarily

18



Chapter 2 Plundervolt

reveals that voltage changes incur a non-negligible overhead. We will come back to this

point in Section 2.7 when devising countermeasures because this delay means returning to

normal voltage when entering enclave mode may incur substantial overhead. Furthermore,

when comparing the repetitions, it becomes apparent that voltage scaling behaves non-

deterministically, i.e., the actual voltage drop occurs at different times after writing to MSR

0x150. However, from an attacker’s perspective, our micro-benchmark also shows that it is

possible to precisely delay entry into a victim enclave by continuously measuring current

operating voltage until the desired threshold is reached.

2.2.5 Tested Processors

For our experiments, we used different SGX-enabled processors from Skylake onwards, cf.

Table 2.1. We also had access to multiple CPUs with the same model numbers in some cases.

Because we found that different chips with the same model number can behave differently

when undervolted (cf. Section 2.3.1), we list those separately and refer to them with a

letter appended to the model number, e.g., i3-7100U-A, i3-7100U-B, etc. We carried out

all experiments using Ubuntu 16.04 or 18.04 with stock Linux v4.15 and v4.18 kernels. We

attempted to undervolt a Xeon processor (Broadwell-EP E5-1630V4), however, found that

in this case the MSR 0x150 does not seem to affect the core voltage.

2.2.6 Ambient Temperature

All experiments were conducted in a university office environment with a typical UK room

temperature.

19



Chapter 2 Plundervolt

Code name Model no. Microcode Frequency Vulnerable SGX

Broadwell E5-1630V4 0xb000036 N/A ✗ ✗

Skylake i7-6700K 0xcc 2GHz ✓ ✓

Kaby Lake i7-7700HQ 0x48 2.0GHz ✓ ✓

i3-7100U-A 0xb4 1.0GHz ✓ ✓

i3-7100U-B 0xb4 2.0GHz ✓ ✓

i3-7100U-C 0xb4 2.0 GHz ✓ ✓

Kaby Lake-R i7-8650U-A 0xb4 1.9GHz ✓ ✓

i7-8650U-B 0xb4 1.9GHz ✓ ✓

i7-8550U 0x96 2.6GHz ✓ ✓

Coffee Lake-R i9-9900U 0xa0 3.6GHz ✓ ✓

Table 2.1: Processors used for the experiments in this chapter. When multiple CPUs with the same
model number were tested, we append uppercase letters (-A, -B etc).

2.2.7 Implications for Older Processors

We verified that software-controlled undervolting is possible on older CPUs, e.g., on the

Haswell i5-4590, Haswell i7-4790 and the Core 2 Duo T9550. In fact, it has been possi-

ble for system software to undervolt the processor from the first generation of Intel Core

processors [156]. However, to the best of our understanding, this has no direct impact on

security because SGX is not available and the attacker requires root permissions to write to

the MSRs. The attack might nevertheless be relevant in a hypervisor or cloud setting, where

an untrusted virtual machine can undervolt the CPU just before a hypercall and/or context

switch to another VM. This attack scenario would require the hypervisor to be configured

to allow the untrusted virtual machine to directly access undocumented MSRs (e.g., 0x15

0) and we did not find this in any real-world configurations. Consequently, for the lack of

plausible attack targets, we did not extensively study the possibility of fault induction on

these processors. Our initial undervolting testing yielded a voltage-dependent segmentation

fault on the Haswell i5-4590 and Haswell i7-4790 for the simple test program described in

Section 2.3.1.

20



Chapter 2 Plundervolt

2.3 Faulting In-Enclave Multiplications

As a first step towards practical fault injection into SGX enclaves, we analysed a number

of x86 assembly instructions in isolation. While we could not fault simple arithmetic (like

addition and subtraction) or bit-wise instructions (like shifts and OR/XOR/AND), we found

that multiplications can be faulted. This might be explained by the fact that, on the one

hand, multipliers typically have a longer critical path compared to adders or other simple

operations, and, on the other hand, that multiplications are likely to be most aggressively

optimised due to their prevalence in real-world code. This conjecture is supported by the

fact that we also observed faults for other instructions with presumably complex circuitry

behind them, in particular the AES-NI extensions (cf. Section 2.4.3).

Consider the following proof-of-concept implementation, which runs a simple multiplication

(the given code compiles to assembly with imul instructions) in a loop inside an ECALL

handler:

uint64_t multiplier = 0x1122334455667788;
uint64_t var = 0xdeadbeef * multiplier;

while (var == 0xdeadbeef * multiplier)
{

var = 0xdeadbeef;
var *= multiplier;

}
var ^= 0xdeadbeef * multiplier;

Clearly, this program should not terminate. However, our experiments show that under-

volting the CPU just before switching to the enclave leads to a bit-flip in var, typically in

byte 3 (counting from the least-significant byte as byte 0). This allows the enclave program

to terminate. The output is the XOR with the desired value, to highlight only the faulty

bit(s). We observe that in this specific configuration the output is always 0x04 00 00 00.

21



Chapter 2 Plundervolt

2.3.1 Analysis of Undervolting Effects on Multiplications

Using MSR 0x198 (MSR_PERF_STATUS), we were able to read the voltage in normal operat-

ing mode and also record the voltage when a faulty result was computed. While we are

aware that the measurements in this register might not be precise in absolute terms, they

reflect the relative undervolting precisely. Figure 2.5 and Figure 2.6 show the measured re-

lation between frequency, normal voltage (blue), and the necessary undervolting to trigger a

faulty multiplication inside an SGX enclave (orange) for the i3-7100U-A and an i7-8650U-A,

respectively.

We conducted further investigations from normal (non-SGX) code, as we found that these

faults were identical to those inside the SGX enclave. We wrote the following code to enable

the first operand (start_value) and the second operand (multiplier) to be tested:

/* drop voltage */

do {
i++;
var = start_value * multiplier;

} while (var == correct && i < iterations);

/* return voltage */

We then performed a search over different values for both operands. The faulty results (see

Table 2.2 for selected examples) generally fell into the following categories:

• One to five (contiguous) bits flip, or

• all most-significant bits flip.

Additionally, we also rarely observed faulty states in between, cf. the last entry in Table 2.2

and the fault used in Section 2.5.1. From those results, we noted:

• The smallest first operand to fault was 0x89af;

22



Chapter 2 Plundervolt

Figure 2.5: Base voltage (blue) and voltage for first fault (orange) vs. CPU frequency for the i3-
7100U-A

Figure 2.6: Base voltage (blue) and voltage for first fault (orange) vs. CPU frequency for the i7-
8650U-A

• the smallest second operand to fault was 0x1;

23



Chapter 2 Plundervolt

• the smallest faulted product was 0x80000 * 0x4, resulting in 0x200000; and

• the order of the operands is important when attempting to produce a fault: For ex-

ample, 0x4 * 0x80000 never faulted in our experiments.

Start value Multiplier Faulty result Flipped bits

0x080004 0x0008 0xfffffffff0400020 0xfffffffff0000000
0xa7fccc 0x0335 0x000000020abdba3c 0x0000000010000000
0x9fff4f 0x00b2 0x000000004f3f84ee 0x0000000020000000
0xacff13 0x00ee 0x000000009ed523aa 0x000000003e000000
0x2bffc0 0x0008 0x00000000005ffe00 0x0000000001000000
0x2bffc0 0x0008 0xfffffffff15ffe00 0xfffffffff0000000
0x2bffc0 0x0008 0x00000100115ffe00 0x0000010010000000

Table 2.2: Examples of faulted multiplications on i3-7100U-B at 2 GHz

We also investigated the iterations and undervolting required to produce faults (cf. Table 2.3)

on the i3-7100U-B at 2GHz. A higher number of iterations will fault with less undervolting,

i.e., the probability of a fault is lower with less undervolting. For a small number of iterations,

it is very difficult to induce a fault, as the undervolting required caused the CPU to freeze

before a fault was observed. For the experiments in Figure 2.5 and Figure 2.6, we used

a large number of 100,000,000 iterations, so faults occur with relatively low undervolting

already.

Iterations Undervolting

1,000,000,000 -130mV
100,000,000 -131mV
10,000,000 -132mV
1,000,000 -141mV

500,000 -146mV
100,000 crash at -161mV

Table 2.3: Number of iterations until a fault occurs for the multiplication (0xae0000 * 0x18) vs.
necessary undervolting on i3-7100U-B at 2 GHz.

24



Chapter 2 Plundervolt

2.3.2 Differences between CPUs with Same Model Number

Another interesting observation is that the amount of undervolting can differ between CPUs

with the same model number. We observed that the i3-7100U in an Intel NUC7i3BNH:

i3-7100U-A had a base voltage of 0.78V at 1GHz, and we observed the first fault at 0.68V

(over 100 000 000 iterations). In contrast, two other (presumably slightly newer) CPUs i3-

7100U-B and i3-7100U-C had a base voltage of approximately 0.69V at the same frequency

and began to fault at 0.6V.

However, the processor with the higher base voltage tolerated more undervolting overall: the

system was stable undervolting up to approximately -250mV, while the other CPUs crashed

at around -160mV. This indicates that for certain CPUs, a higher base voltage is configured

(potentially in the factory based on internal testing).

2.3.3 Temperature Dependencies

Finally, we observed that the required undervolting to reach a faulty state depends (as ex-

pected) on the CPU temperature. For example, while the i3-7100U-A reliably faulted at

approximately -250mV with a CPU temperature of 47◦ C, an undervolting of -270mV was

required to obtain the same fault at 39◦ C. While we have not investigated this behaviour in

detail, we noted that on very hot UK Summer days, putting the machines into a refrigera-

tor or air vent decreased the likelihood that the computer would crash before producing a

fault. Differences in “stability” depending upon the temperature of the fault warrant further

investigation. However, all our attacks were performed at room temperature and caused no

impediments.

25



Chapter 2 Plundervolt

2.3.4 Overvolting

The VID interface specification limits the maximum voltage to 1.52V. According to the

CPU datasheets [91], this voltage is within the normal operating region. We experimentally

confirmed that we could not increase the voltage beyond 1.516V (even with a higher value

in the MSR), and we did not observe any faults at 1.516V at any frequency on i3-7100U-A.

2.4 From Faults to Enclave Key Extraction

Having demonstrated the feasibility of fault injection into SGX enclaves in Section 2.3.1,

we apply the undervolting techniques to cryptographic libraries used in real-world enclaves.

To this end, we showcase practical fault attacks on minimalist benchmark enclaves using

off-the-shelf cryptographic libraries.

2.4.1 Corrupting OpenSSL Signatures

We first developed a simple proof-of-concept application using OpenSSL in userspace. This

application runs the multiplication loop from Section 2.3.1 until the first fault occurs (to

make sure the system is in a semi-stable state) and then invokes OpenSSL as follows:

openssl dgst -sha256 -sign private.pem test.c | openssl base64 >> log.txt

Running at the standard voltage, this proof-of-concept outputs a constant signature. Run-

ning with undervolting (on the i3-7100U-A at 1 GHz, -230mV was sufficient), this generated

incorrect, apparently randomly changing signatures. While we have not exploited this fault

to factor the RSA key, this motivating example shows that undervolting can successfully

26



Chapter 2 Plundervolt

inject faults into complex cryptographic computations, without affecting overall system sta-

bility.

2.4.2 Full Key Extraction from RSA-CRT Decryption/Signature in

SGX using IPP Crypto

The tcrypto API of the Intel SGX-SDK only exposes a limited number of cryptographic

primitives. However, the developer can also directly call IPP Crypto functions when addi-

tional functionality is needed. One function that is available through this API is decryption

or signature generation using RSA with the frequently used Chinese Remainder Theorem

(CRT) optimization. In the terminology of IPP Crypto, this is referred to as “type 2” keys ini-

tialized through ippsRSA_InitPrivateKeyType2(). We developed a proof-of-concept enclave

based on Intel example code [92].

Given an RSA public key (n, e), the corresponding private key (d, p q) and the encrypted

value x, RSA-CRT can speedup the decryption computation of y = xd (mod n) by a factor

of around four. Internally, RSA-CRT makes use of two sub-exponentiations, which are

recombined as:

y = [q · cp] · xdp
p + [p · cq] · xdq

q (mod n)

where dp = d (mod p− 1), dq = d (mod q− 1), xp = x (mod p), xq = x (mod q), and cp, cq

are pre-computed constants.

RSA-CRT private key operations (decryption and signature) are well-known to be vulnerable

to the Bellcore and Lenstra fault-injection attacks [21], which simply require a fault in exactly

one of the two exponentiations of the core RSA operation without further requirements to

27



Chapter 2 Plundervolt

the nature or location of the fault. Assuming that a fault only affects one of the two sub-

exponentiations x
dp
p (mod p) and given the respective faulty output y′, one can factor the

modulus n using the Bellcore attack as:

q = gcd (y − y′, n) , p = n/q

The Lenstra method removes the necessity to obtain both correct and faulty output for the

same input x by computing q = gcd ((x′)e − y, n) instead.

As a first step to practically demonstrate this attack for SGX, we successfully injected faults

into the ippsRSA_Decrypt() function running within an SGX enclave on the i3-7100U-A,

undervolting by -225mV for the whole duration of the RSA operation. However, this resulted

in non-exploitable faults, presumably since both sub-exponentiations had been faulted. We

therefore introduced a second thread (in the untrusted code) that resets the voltage to

a stable value after one third of the overall duration of the targeted ECALL. With this

approach, the obtained faults could be used to factor the 2048-bit RSA modulus using the

Lenstra and Bellcore attacks, and hence to recover the full key with a single faulty decryption

or signature and negligible computational effort. An example for faulty RSA-CRT inputs

and outputs is given in Appendix A.2.

2.4.3 Differential Fault Analysis of AES-NI in SGX

Having demonstrated the feasibility of enclave key-extraction attacks for RSA-CRT, we turn

our attention to Intel AES New Instructions (AES-NI). This set of processor instructions

provide very efficient hardware implementations for AES key schedule and round computa-

tion. For instance, on the Skylake architecture, an AES round instruction has a latency of

28



Chapter 2 Plundervolt

only four clock cycles and a throughput of one cycle per instruction1. AES-NI is widely used

in cryptographic libraries, including SGX’s tcrypto API, which exposes functions for AES in

Galois Counter Mode (GCM), normal counter mode, and in the CMAC construction. These

crypto primitives are then used throughout the Intel SGX-SDK, including crucial operations

like sealing and unsealing of enclave data. Other SGX crypto libraries (e.g., mbedtls in

Microsoft OpenEnclave) also make use of the AES-NI instructions.

Our experiments show that the AES-NI encryption round instruction (v)aesenc is vulnerable

to Plundervolt attacks: we observed faults on the i7-8650U-A with -195 mV undervolting and

on the i3-7100U-A with -232mV undervolting.

The faults were always a single bit-flip on the leftmost two bytes of the round function’s
output. Such single bit-flip faults are ideally suited for Differential Fault Analysis (DFA).
Examples of correct and faulty output are:

[Enclave] plaintext: 697 DBA24B0885D4E120FFCAB82DDEC25
[Enclave] round key: F8BD0C43844E4B4F28A6D3539F3A73E5
[Enclave] ciphertext1: C9210B59333A07A922DE59788D7AA1A7
[Enclave] ciphertext2: C9230B59333A07A922DE59788D7AA1A7
[Enclave] plaintext: 4C96DD4E44B4278E6F49FCFC8FCFF5C9
[Enclave] round key: BE7ED6DB9171EBBF9EA51569425D6DDE
[Enclave] ciphertext1: 0D42753 C23026D11884385F373EAC66C
[Enclave] ciphertext2: 0D40753 C23026D11884385F373EAC66C

Next, we use these single-round faults to build an enclave key-recovery attack against the

full AES. We took a canonical AES implementation using AES-NI instructions2 and ran it

in an enclave with undervolting as before. Unsurprisingly, the probability of a fault hitting

a particular round instruction is approximately 1/10, which suggests a uniform distribution

over each of the ten AES rounds. By repeating the operation often enough (5 times on

average) we get a fault in round 8. An example output for this (using the key 0x0001020304

05060708090a0b0c0d0e0f) is the following:

1https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=233&text=_mm_aesenc_
si128

2https://gist.github.com/acapola/d5b940da024080dfaf5f

29

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=233&text=_mm_aesenc_si128
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=233&text=_mm_aesenc_si128
https://gist.github.com/acapola/d5b940da024080dfaf5f


Chapter 2 Plundervolt

[Enclave] plaintext: 5ABB97CCFE5081A4598A90E1CEF1BC39
[Enclave] CT1: DE49E9284A625F72DB87B4A559E814C4 <- faulty
[Enclave] CT2: BDFADCE3333976AD53BB1D718DFC4D5A <- correct

input to round 10:
[Enclave] 1: CD58F457 A9F61565 2880132E 14C32401
[Enclave] 2: AEEBC19C D0AD3CBA A0BCBAFA C0D77D9F

input to round 9:
[Enclave] 1: 6F6356F9 26F8071F 9D90C6B2 E6884534
[Enclave] 2: 6F6356C7 26F8D01F 9DF7C6B2 A4884534

input to round 8:
[Enclave] 1: 1C274B5B 2DFD8544 1D8AEAC0 643E70A1
[Enclave] 2: 1C274B5B 2DFD8544 1D8AEAC0 646670A1

In order to understand the fault (the following profiling is not part of the actual attack and

only needs to be done once), we took both correct and faulty ciphertexts and decrypted

them round-by-round while comparing the intermediate states. The result can be seen in

the above output: Observe that byte one (counting from the left in the rightmost word) in

round 8 has changed from 0x66 to 0x3E. This faulty byte is actually caused by an XOR with

0x02 (i.e., a single-bit flip) for state byte one after SubBytes in round 8. We established this

by simulating the AES invocation and trying different fault masks. Equipped with this fault

in round 8, we were able to apply the differential fault analysis technique by Tunstall et al.

[203] as implemented by Jovanovic3:

Given a pair of correct and faulty ciphertext on the same plaintext, this attack is able

to recover the full 128-bit AES key with a computational complexity of only 232 + 256

encryptions on average. We have run this attack in practice and it only took a couple of

minutes to extract the full AES key from the enclave, including both fault injection and key

computation phases. The steps to reproduce this attack with the above pair of correct and

faulty ciphertexts are given in Appendix A.4.
3https://github.com/Daeinar/dfa-aes

30

https://github.com/Daeinar/dfa-aes


Chapter 2 Plundervolt

2.4.4 Faulting Other Intel IPP Crypto Primitives in SGX

In addition to the above key extractions from RSA-CRT and AES-NI, we applied the un-

dervolting technique to a number of enclaves using other tcrypto APIs. We successfully

injected faults into the following primitives among others:

AES-GCM In certain cases, faults in sgx_rijndael128GCM_encrypt() only affect the MAC,

aside from our results on AES-NI in Section 2.4.3. Note that DFA is not directly

applicable to AES in GCM mode, since it is not possible (if used correctly) to get two

encryptions with the same nonce and plaintext.

Elliptic Curves We also observed faults in elliptic curve signatures (sgx_ecdsa_sign())

and key exchange (sgx_ecc256_compute_shared_dhkey()).

This list of cryptographic fault targets is certainly not exhaustive. We leave the examination

of fault targets for Plundervolt, as well as the evaluation of their practical exploitability

for future work, which requires pinpointing the fault location and debugging IPP crypto

implementations. There is a large body of work regarding the use of faults for key recovery

that could be applicable once the effect of the fault for each implementation has been precisely

understood. Fan et al. [51] provide an overview of fault attacks against elliptic curves, while

other researchers [59, 44] discuss faults in nonce-based encryption modes like AES-GCM.

2.5 Memory Safety Violations due to Faults

In addition to the extraction of cryptographic keys, we show that Plundervolt can also cause

memory safety misbehaviour in certain situations. The key idea is to abuse the fact that

compilers often rely on correct multiplication results for pointer arithmetic and memory

31



Chapter 2 Plundervolt

allocation sizes. One example for this would be indexing into an array a of type elem_

t: according to the C standard, accessing element a[i] requires calculating the address at

offset i * sizeof(elem_t). Clearly, out-of-bounds accesses arise if an attacker can fault such

multiplications to produce address offsets that are larger or smaller than the architecturally

defined result (cf. Section 2.3.1). Note that Plundervolt ultimately breaks the processor’s

ISA-level guarantees, i.e., we assume perfectly secure code that has been guarded against

both traditional buffer overflows [50] as well as state-of-the-art Spectre-style [114] transient

execution attacks.

In this section, we explore two distinct scenarios where faulty multiplications impair memory

safety guarantees in seemingly secure code. First, we fault imul instructions transparently

emitted by the compiler to reliably produce out-of-bounds array accesses. Next, we analyse

trusted SGX runtime libraries and locate several sensitive multiplications in allocation size

computations that could lead to heap corruption by allocating insufficient memory.

2.5.1 Faulting Array Index Addresses

We first focus on the case where a multiplication is used for computing the effective memory

address of an array element as follows: &a[i] = &a[0] + i * sizeof(elem_t). However, we found

that, in most cases, when the respective type has a size that is a power of two, compilers

will use left bitshifts instead of explicit imul instructions. Furthermore, as concluded from

the micro-benchmark analysis presented in Section 2.3.1, we found it difficult (though not

impossible) to consistently produce multiplication faults where both operands are ≤ 0xFFF

F without crashing the CPU (cf. Section 2.5.2). Hence, here we only consider cases in this

section where sizeof(elem_t) ̸= 2x and i > 216.

32



Chapter 2 Plundervolt

2.5.2 Faulting Memory Allocation Sizes

Apart from array indices, we identified size computations for dynamic memory allocations

as another common programming pattern that relies on correct multiplication results. We

showed in Section 2.3.1 that imul can also be faulted to produce results that are smaller than

the correct value. Clearly, heap corruption may arise when such a faulty multiplication result

is used to allocate a contiguous chunk of heap memory that is smaller than the expected size.

Since Plundervolt corrupts multiplications silently, i.e., without failing the respective mallo

c() library call, the client code has no means of determining the actual size of the allocated

buffer and will subsequently read or write out-of-bounds.

edger8r-generated Code To ease secure enclave development, the official Intel SGX-

SDK comes with a dedicated edger8r tool that generates trusted proxy bridge code to

transparently copy user arguments to and from enclave private heap memory [93, 206]. The

tool automatically generates C code based on the ECALL function’s prototype and explicit

programmer annotations that specify pointer directions and sizes. Consider the following

(simplified) example enclave code, where the [in,count] attributes are used to specify that

arr is an input array with cnt elements:

void vuln_ecall ([in , count=cnt] struct_foo_t *arr ,
size_t cnt , size_t offset)

{
if (offset >= cnt) return;

arr[offset ].foo1 = 0xdeadbeef;
}

The edger8r tool will generate the following (simplified) trusted wrapper code for parameter

checking and marshalling:

...
size_t _tmp_cnt = ms->ms_cnt;

33



Chapter 2 Plundervolt

size_t _len_arr = _tmp_cnt * sizeof(struct_foo_t);
...
_in_arr = (struct_foo_t *) malloc(_len_arr);
...
vuln_ecall(_in_arr , _tmp_cnt);

The above code first computes the expected size _len_arr of the input array, allocates

sufficient space on the enclave heap, and finally copies the input array into the enclave before

invoking the programmer’s vuln_ecall() function. Crucially, if a multiplication fault occurs

during calculation of the _len_arr variable, a potentially smaller buffer will be allocated and

passed on to the actual ECALL function. Any subsequent writes or reads to the allocated

buffer may cause inadvertent enclave heap corruption or disclosure. For example, the above

vuln_ecall() implementation is safeguarded against overflows in a classical sense, but can

trigger a heap overflow when the above multiplication is faulted and arr is smaller than

expected.

For the type used in this example, we have sizeof(struct_foo_t) = 0x64. We performed ini-

tial testing based on our micro-benchmark from Section 2.3.1, established a predictable fault

for this parameter, and verified that the enclave indeed corrupts trusted heap memory when

computing on a buffer with the faulty size. Specifically, we found that the multiplication 0

x08b864 * 0x64 = 0x3680710 reliably faults to a smaller result 0x1680710 with an undervolting

of -250mV on our i3-7100U-A system.

For convenience during exploit development, we artificially injected the same fault at compile

time by changing the generated edger8r code from the Makefile

calloc() in SGX Runtime Libraries Another possible target for fault injection is the

hidden multiplication involved in calls to the prevalent calloc() function in the standard C

library. This function is commonly used to allocate memory for an array where the number

34



Chapter 2 Plundervolt

of elements and the size of each element are provided as separate arguments. According to

the calloc() specification, the resulting buffer will have a total size equal to the product of

both arguments if the allocation succeeds. Note that optimizations of power-of-two sizes to

shifts are not applicable in this case, since the multiplication happens with generic function

parameters.

Consider the following calloc() implementation from musl-libc, an integral part of the

SGX-LKL [168] library OS for running unmodified C applications inside enclaves4:

void *calloc(size_t m, size_t n)
{

if (n && m > (size_t) -1/n) {
errno = ENOMEM;
return 0;

}
n *= m;
void *p = malloc(n);
...

}

In this case, if the product n *= m can be faulted to produce a smaller result, subsequent code

may trigger a heap overflow, eventually leading to memory leakage, corruption, or possibly

even control flow redirection when neighbouring heap chunks contain function pointers e.g.,

in a vtable. Based on practical experiments with the i3-7100U-A, we artificially injected a

realistic fault for the product 0x2bffc0 * 0x8 = 0x15ffe00 via code rewriting in SGX-LKL’s mu

sl-libc to cause an insufficient allocation of 0x5ffe00 bytes and a subsequent heap overflow

in a test enclave.

We also investigated calloc() implementations in Intel’s SGX SDK [93] and Microsoft’s

OpenEnclave [143], but interestingly found that their implementations are hardened against

(traditional) integer overflows as follows:
4https://github.com/lsds/sgx-lkl-musl/blob/db8c09/src/malloc/malloc.c#L352

35

https://github.com/lsds/sgx-lkl-musl/blob/db8c09/src/malloc/malloc.c#L352


Chapter 2 Plundervolt

if (n_elements != 0) {
req = n_elements * elem_size;
if ((( n_elements | elem_size) & ~( size_t)0xffff)

&& (req / n_elements != elem_size))
req = MAX_SIZE_T; /* force downstream failure on overflow */

}

Note how the above code triggers a division (that would detect the faulty product) if at

least one of n_elements and elem_size is larger than 0xFFFF. Producing faults where both

operands are ≤ 0xFFFF (cf. Section 2.3.1) is possible, e.g., we got a fault for 0x97b5 * 0x40

on the i3-7100U-A. However, in the majority of attempts, this leads to a crash because the

CPU has to be undervolted to the point of becoming unstable. The above check (without

the restriction on only being active for at least operand being > 0xFFFF) serves as an example

of possible software hardening countermeasures, as discussed in Section 2.7.

2.6 Discussion and Related Work

Compared to widely studied fault injection attacks in cryptographic algorithms, memory

safety implications of faulty instruction results have received comparatively little attention.

In the context of physically injected faults, Govindavajhala et al. [66] demonstrated how a

single-bit memory error can be exploited to achieve code execution in the Java/.NET VM,

using a lightbulb to overheat the memory chip. Barbu et al. [12] used laser fault injection to

bypass a type check on a Javacard and load a malicious applet afterwards. In the context of

software-based Rowhammer attacks, on the other hand, Seaborn and Dullien [186] showed

how to flip operand bits in x86 instruction streams to escape a Native Client sandbox, and

more recently Gruss et al. [68] flipped opcode bits to bypass authentication checks in a

privileged victim binary. While flipping bits in instruction opcodes enables the application

control flow to be illegally redirected, none of these approaches directly produce incorrect

computation results. Furthermore, Rowhammer attacks originate outside the CPU package

36



Chapter 2 Plundervolt

and are hence fully mitigated through SGX’s memory integrity protection [74], which reliably

halts the system if an integrity check fails [68, 102].

To the best of our knowledge, we are the first to explore the memory safety implications of

faulty multiplications in compiler-generated code. Compared to prior work [198] that demon-

strated frequency scaling fault injection attacks against ARM TrustZone cryptographic im-

plementations, we show that undervolting is not exclusively a concern for cryptographic algo-

rithms. As explored in the following Section 2.7, this observation has profound consequences

for reasoning about secure enclave code, i.e., merely relying on fault-resistant cryptographic

primitives is insufficient to protect against Plundervolt adversaries at the software level.

While there is a long line of work on dismantling SGX’s confidentiality guarantees [204,

30, 126, 209, 146, 75, 207] as well as exploiting classical memory safety vulnerabilities in

enclaves [125, 19, 206], Plundervolt represents the first attack that directly violates SGX’s

integrity guarantees for functionally correct enclave software. By directly breaking ISA-level

processor semantics, Plundervolt ultimately undermines even relaxed “transparent enclaved

execution” paradigms [201] that solely require integrity of enclave computations while as-

suming unbounded side-channel leakage.

The differences and ramifications of violating integrity vs. confidentiality guarantees for

enclaved computations can often be rather subtle. For instance, the authors of the Fore-

shadow [204] attack extracted enclave private sealing keys (confidentiality breach), which

subsequently allowed an active man-in-the-middle position to be established - enabling all

traffic to be read and modified from an enclave (integrity breach). Likewise, we showed that

faulty multiplications or encryptions can lead to unintended disclosure of enclave secrets.

Our Launch Enclave application scenario of Section 2.5.1 is another instance of the tension

between confidentiality and integrity. That is, the aforementioned Foreshadow attack showed

how to bypass enclave launch control by extracting the platform’s “launch key” needed to

37



Chapter 2 Plundervolt

authenticate launch tokens, whereas our attack intervened much more directly with the in-

tegrity of the enclaved execution by faulting pointer arithmetics and redirecting the trusted

white list into attacker-controlled memory.

2.7 Countermeasures

In Intel SGX’s threat model, the operating system is considered untrusted. However, we

showed that while an enclave is running, privileged adversaries can manipulate MSR 0x150

and reliably fault in-enclave computations. Hence, countermeasures cannot be implemented

at the level of the untrusted OS or in the untrusted runtime components. Instead, two

possible approaches to mitigating Plundervolt are possible: preventing unsafe undervolting

directly at the level of the CPU hardware and microcode, or hardening the trusted in-enclave

code itself against faults. Respective methods can be used separately or—to increase the level

of protection—in combination, as is common practice for high-security embedded devices like

smartcards.

In the following, we first overview potential approaches to mitigate Plundervolt attacks at

the hardware and software levels. Next, we conclude this section by summarising the specific

mitigation strategy adopted by Intel.

2.7.1 Hardware-Level and Microcode-Level Countermeasures

Disabling MSR Interface Given the impact of our findings, we recommend initiating

SGX trusted computing base recovery by applying microcode updates that completely dis-

able the software voltage scaling interface exposed via MSR 0x150. However, given the

apparent complexity of dynamic voltage and frequency scaling functionality in modern In-

38



Chapter 2 Plundervolt

tel x86 processors, we are concerned that this proposed solution is still rather ad-hoc and

does not cover the root cause for Plundervolt. That is, other yet undiscovered vectors for

software-based fault injection through power and clock management features might exist and

would need to be disabled in a similar manner.

Ultimately, even if all software-accessible interfaces have been disabled, adversaries with

physical access to the CPU are also within Intel SGX’s threat model. Especially disturbing

in this respect is that the SerialVID bus between the CPU and voltage regulator appear to be

unauthenticated [90, 98]. Hence adversaries might be able to physically connect to this bus

and overwrite the requested voltage directly at the hardware level. Alternatively, advanced

adversaries could even replace the voltage regulator completely with a dedicated voltage

glitcher (although this may be technically non-trivial given the required large currents).

Scaling Back Voltage during Enclave Operation Plundervoltrelies on the property

that CPU voltage changes outside of enclave mode persist during enclave execution. A

straw man defense strategy could be to automatically scale back any applied undervolting

when the processor enters enclave mode. Interestingly, we noticed that Intel seems to have

already followed this path for its (considerably older) TXT trusted computing extensions. In

particular, the documentation of the according SENTER instruction mentions that [96, pp. 6–

21]:

“Before loading and authentication of the target code module is performed, the processor also checks

that the current voltage and bus ratio encodings correspond to known good values supportable by

the processor. [. . . ] the SENTER function will attempt to change the voltage and bus ratio select

controls in a processor-specific manner.”

However, we make the crucial observation that this defence strategy does not suffice to fully

safeguard Intel SGX enclaves. That is, in contrast to Intel TXT which transfers control

39



Chapter 2 Plundervolt

to a measured trusted environment, SGX features a more dynamic design where attacker

code and trusted enclaves are interfaced at runtime. Hence, while one core is in enclave

mode, another physical core could attempt to trigger the undervolting for the shared voltage

plane in parallel after entering the victim enclave. Therefore, such checks would need to

be continuously enforced every time any core is in enclave mode. This defence strategy is

further complicated by the observation that the time between a write to MSR 0x150 and the

actual voltage change manifesting is relatively large (order of magnitude of 500k TSC cycles,

cf. Figure 2.4). Therefore, removing and restoring undervolting on each enclave entry and

exit would likely add a substantial overhead.

Limiting to Known Good Values Even slightly undervolting the CPU creates signif-

icant power and heat reductions; properties that are highly desirable in data centres, for

mobile computing and for other end user applications like gaming. Completely removing

this feature might incur substantial limitations in practice. As an alternative solution, the

exposed software interface could be adjusted to limit the amount of permitted undervolting

to known “safe” values white-listed by the processor. However, this mitigation strategy is

further complicated by our observations that safe voltage levels depend on the current op-

erating frequency and temperature and may even differ between CPUs of the same model

(cf. Section 2.3.1). Hence, establishing such safe values would require a substantial amount

of additional per-chip testing at each frequency. Even then, circuit-aging effects can affect

safe values as the processor gets older [108].

Multi-variant Enclave Execution A perpendicular approach, instead of trying to pre-

vent undervolting faults directly, would be to modify processors to reliably detect faulty

computation results. Such a defense may, for instance, leverage ideas from multi-variant ex-

ecution [85, 212, 118] software hardening techniques. Specifically: processors could execute

40



Chapter 2 Plundervolt

enclaved computations twice in parallel on two different cores and halt once the executions

diverge. To limit the performance penalty of such an approach, we propose leveraging com-

modity HyperThreading [96] features in Intel CPUs and turn them from a security concern

into a security feature for fault resistancy. After a long list of SGX attacks [204, 181, 184,

146] demonstrated how enclave secrets can be reconstructed from a sibling CPU core, Intel

officially recommended disabling hyperthreading when using SGX enclaves [97]. However,

this also imposes a significant performance impact on any non-SGX workloads.

A well known solution to fault injection attacks is redundancy [78], either in hardware, by

duplicating potentially targeted circuits, or in software by duplicating potentially targeted

parts of the instruction stream, and frequently checking for mismatches in both cases. For

instance, Oh et al. [160] and later Reis et al. [173] proposed duplicating the instruction

stream to produce software that is tolerant against hardware-induced faults. In the case of

SGX, such a solution might also be applied at the microarchitectural level. The processor

would simply run the duplicated instructions in parallel on the two hyperthreads of a core.

Faults would be reliably detected if the probability that the attacker induced the exact same

fault in two immediately subsequent executions of the same instructions is significantly lower

than the probability of observing a single fault at some point in time.

2.7.2 Software-Level Hardening

Fault-Resistant Cryptographic Primitives There is a large body of work regarding

fault injection countermeasures for cryptographic algorithms, including (generic) temporal

and/or spatial redundancy [78] and algorithm-specific approaches such as performing the

inverse operation or more advanced techniques like ineffective computation [62].

For the example of RSA-CRT signature/decryption (cf. Section 2.4.2), the result could be

41



Chapter 2 Plundervolt

verified before outputting by performing a (in the case of RSA with small public exponent)

cheap signature verification/encryption operation. Indeed, such a check is present by default

in some cryptographic libraries, e.g., mbedtls. However, for the Intel SGX-SDK this might

require changes to the API specification of tcrypto, as the public key is currently not supplied

as a parameter to private key operations.

For AES-NI (cf. Section 2.4.3), an encryption operation could be followed by a decryp-

tion to verify that the plaintext remains unchanged. However, this would incur substantial

performance overhead, doubling the runtime of an encryption. Trade-offs like storing the in-

termediate state after k rounds and then only performing 10−k inverse rounds (for AES-128)

can defeat DFA but might still be susceptible to statistical attacks [59].

Application and Compiler Hardening It is important to note that SGX supports

general-purpose, non-cryptographic code that can also be successfully exploited with Plun-

dervolt, as demonstrated in Section 2.5. To further complicate matters, typical enclave

runtime libraries contain numerous, potentially exploitable mul and imul instructions. For

instance, we found that the trusted runtime code for a minimalistic enclave using the Intel

SGX-SDK [93] contains 23 multiplications, with many in standard library functions like f

ree(). For comparison, the trusted runtime part of Microsoft’s OpenEnclave SDK [143]

contains 203 multiplications, while Graphene-SGX’s [202] libpal-Linux-SGX.so features 71

mul/imul instructions.

Certain standard library functions like calloc() could be hardened manually by inserting

checks for the correctness of a multiplication, e.g., through a subsequent division, as already

implemented in the Intel SGX-SDK (see Section 2.5.2). However, in functions where many

“faultable” multiplications are being used (e.g., public-key cryptography, signal processing,

or machine learning algorithms), this would incur significant overhead. Furthermore, each

case of a problematic instruction needs to be analyzed separately, often at the assembly level

42



Chapter 2 Plundervolt

to understand the exact consequences of a successful fault injection. Finally, it should be

noted that while we have focused on multiplications in our analysis, defences should also

take into account the possibility of faulting other high-latency instructions.

Traditional Memory Safety Hardening As a final consideration, we recommend ap-

plying more general countermeasures known from traditional memory safety application

hardening [50] in an enclave setting. One approach to hinder Plundervolt-induced memory

safety exploitation would be to randomise the enclave memory layout using systems like

SGX-Shield [187]. Yet, it is important to note that these techniques can only raise the bar

for actual exploitation, without removing the actual root cause of the attack.

2.7.3 Intel’s Mitigation Plan

Following the responsible disclosure, Intel’s Product Security Incident Response Team in-

formed us of their mitigation plans with the following statement:

“After carefully reviewing the CPU voltage setting modification, Intel is mitigating the issue in two

parts, a BIOS patch to disable the overclocking mailbox interface configuration. Secondly, a mi-

crocode update will be released that reflects the mailbox enablement status as part of SGX TCB

[Trusted Computing Base] attestation. The Intel Attestation Service (IAS) and the Platform Cer-

tificate Retrieval Service will be updated with new keys in due course. The IAS users will receive a

‘CONFIGURATION_NEEDED’ message from platforms that do not disable the overclocking mail-

box interface.”

We note that Intel’s strategy to disable MSR 0x150 (i.e., said “mailbox interface”) corre-

sponds to our recommended mitigation outlined in Section 2.7.1. However, this strategy

may not cover the root cause for Plundervolt. Other, yet undiscovered, avenues for fault

43



Chapter 2 Plundervolt

injection through power and clock management features might exist (and would have to be

disabled in a similar manner). Finally, we want to stress that, similiar to previous high-profile

SGX attacks like Foreshadow [204], Intel’s mitigation plan for Plundervoltrequires trusted

computing base recovery [5, 39]. That is, after the microcode update, different sealing and

attestation keys will be derived depending on whether or not the undervolting interface at

MSR 0x150 has been disabled at boot time. This allows remote verifiers to re-establish trust

after resealing all existing enclave secrets with the new key material.

2.8 Conclusion

In this chapter have identified a new, powerful attack surface of Intel SGX. We have shown

how voltage scaling can be reliably abused by privileged adversaries to corrupt both integrity

and confidentiality of SGX enclaved computations.

We have proven that this attack vector is realistic and practical with full key recovery PoC

attacks against RSA-CRT and AES-NI. We have shown that Plundervolt attacks are not

limited to cryptographic primitives, but also enable more subtle memory safety violations.

We have exploited multiplication faults in fundamental programming constructs such as

array indexing, and shown their relevance for widespread memory allocation functionality in

Intel SGX-SDK edger8r-generated code and in the SGX-LKL runtime.

44



Chapter 3

VoltPillager

3.1 Introduction

The work included in this section represents the author’s main contribution to the publica-

tion, "VoltPillager: Hardware-based fault injection attacks against Intel SGX Enclaves using

the SVID voltage scaling interface" by Chen et al. at USENIX 2021 [32].

Intel addressed the vulnerability disclosed in Chapter 2 by providing features to disable

software undervolting through MSR 0x150. Because SGX was compromised, Intel initiated

Trusted Computing Base recovery and modified remote attestation to verify that software-

based undervolting is disabled. This requires microcode and BIOS updates. However, hard-

ware fault injection considers a different adversarial model where the adversary has physical

access to the device under attack. When targeting an SGX enclave running on a fully

patched system (with the latest microcode and BIOS updates), software-based fault attacks

have been fully mitigated and that is where hardware-based attacks become relevant.

45



Chapter 3 VoltPillager

Fault attacks induce a computation fault in the target processor, such as skipping an instruc-

tion, by changing the physical operating environment of the chip, e.g., the supply voltage.

They do not rely on the presence of a software vulnerability or any code execution privileges.

Voltage fault injection (aka, glitching) in particular has the advantage of being very powerful

whilst not requiring expensive lab equipment.

Colleagues at Birmingham University (Zitai Chen et al.[32]) analysed the voltage scaling

feature of the x86 system at the hardware level. They found that a three-wire bus, Serial

Voltage Identification (SVID), is used to send the currently required voltage to an external

Voltage Regulator (VR) chip on the motherboard. The VR then adjusts the voltage supplied

to the CPU. They reverse-engineered the communication protocol of SVID and developed

a small microcontroller-based board that can be connected to the SVID bus. As there is

no cryptographic authentication of the SVID packets, they were able to inject their own

commands to control the CPU voltage. With this, they reproduced the Plundervolt Chap-

ter 2 attacks, including against code running inside an SGX enclave. Because the software

interface MSR 0x150 is not used, Intel’s countermeasures do not prevent this attack. They

were the first to practically showcase a hardware-based attack that directly breaches SGX’s

integrity guarantees. They demonstrated this practically with end-to-end secret-key recov-

ery attacks against mbed TLS and the unmodified file-encryptor sample enclave from

Microsoft Open Enclave.

3.2 Undervolting Controls

One of the advantages of controlling the SVID externally is that we can change the timing

of undervolting with a finer granularity. We discovered a number of new faults that we had

not been able to create with software-only undervolting. We tested a range of new scenarios

46



Chapter 3 VoltPillager

and discovered some new fault-injections, these are detailed in the next sections.

3.3 New Undervolting Attacks

Consider the code in Listing 3.1 (operand1 and operand2 were originally set to identical

random values).

1 do {
2 if(operand1 != operand2) {
3 faulty = 1;
4 }
5 operand1 ++;
6 operand1 --;
7 i++;
8 } while (faulty == 0 && i < iterations);

Listing 3.1: Modified C code used for demonstrating fault injection into memory accesses

Throughout the running of this code both operands should be equal and constant. However,

fault injection occasionally led to operand1 being only decremented, with the increment

on Line 5 seemingly ignored. Conversely, when swapping the order and first decrementing

followed by incrementing, operand1 took the value operand2 + 1 when undervolted i.e.,

the decrement had not taken effect.

We disassembled lines 5 and 6 in Listing 3.1 as shown in Listing 3.2. From these observations,

we conjecture that the most likely explanation for the observed faults is that recent memory

(cache) writes are delayed and thus ignored in adjacent reads of the modified location. This

suggests that the fault affects the load-store queue logic of the cpu, causing writes to be

delayed for a few cycles while the execution of dependent instructions progresses with old

values.

83 45 dc 01 add DWORD PTR [rbp -0x24],0x1
83 6d dc 01 sub DWORD PTR [rbp -0x24],0x1

Listing 3.2: Assembly code for lines 5-6 from Listing 3.1

47



Chapter 3 VoltPillager

1 uint32_t array [8] = { 0 };
2 // Attacker -supplied out -of-bounds size
3 int copy_size = 7;
4
5 // Ensure we stay within bounds
6 if(copy_size >= 5)
7 copy_size = 4;
8
9 // overwrite elements 4, 3, 2, 1

10 while(copy_size >= 1) {
11 array[copy_size] = 0xabababab;
12 copy_size --;
13 }

Listing 3.3: Proof-of-concept to demonstrate out-of-bounds memory accesses due to
undervolting

For example, for the (undervolted) assembly code sequence add DWORD PTR [rbp-0x24],0x1;

sub DWORD PTR [rbp-0x24],0x1 the sub operates on the previous value, ignoring the up-

date through the preceding increment.

3.4 Practical Exploitation Scenario

We now consider a realistic scenario to exploit these effects. The experiments described in

this subsection were all performed inside an SGX enclave. We show how a delayed-write

fault can be used to trigger out-of-bounds accesses in memory-safe code. To this end, the

Proof-of-Concept (PoC) code shown in Listing 3.3 initialises elements of an array to a fixed

value. We then use the following code to write 0xabababab to elements 4 to 1.

In Listing 3.3, array[] holds eight uint32_t elements all initially set to zero. The code first

ensures that the (potentially adversary-controlled) upper bound copy_size is ≤ 4, using

a code pattern that effectively implements min(4, copy_size). It then proceeds to write

0xABABABAB to array elements 4 to 1, leaving the other elements at their initial value of zero.

48



Chapter 3 VoltPillager

We are intentionally only writing to part of the eight-element array in this PoC to avoid

triggering actual stack corruptions (and hence crashes). However, note that all experiments

also apply to a real scenario, where the attacker would write beyond array bounds and corrupt

the enclave stack, thus gaining control over the program counter and applying traditional

exploitation techniques afterwards [125].

We undervolted the CPU whilst executing the above code in a loop within an ecall han-

dler. The experiments were run on i7-7700HQ-XPSat a frequency of 2GHz, undervolting

by -170 mV. The core temperature reported by the CPU varied between 44◦ C and 49◦ C.

We observed two distinct effects induced by the fault (cf. Appendix B.1), as illustrated in

Figure 3.1: (i) in addition to elements 4 to 1, element 0 was also overwritten (i.e., an un-

derflow) and (ii) the upper bound was not limited to 4 but stayed at 7, i.e., an overflow

into elements 5 . . . 7 occurred. In both cases, out-of-bounds accesses take place, leading to

00... AB... AB... AB... AB... 00... 00... 00...

AB... AB... AB... AB... AB... 00... 00... 00...

00... AB... AB... AB... AB... AB... AB... AB...

Normal	execution:

Fault	1	causing	out-of-bounds	underflow:

Fault	2	causing	out-of-bounds	overflow:

Figure 3.1: State of array[] after normal execution of Listing 3.3 and out-of-bounds under/overflow
when undervolted. Faulty values in red bold font.

potential memory corruption and enabling further exploitation with traditional techniques,

e.g., through stack overflows. We describe the two observed fault types in the following.

Case 1: Out-of-Bounds Underflow As shown in Figure 3.1, undervolting caused array[0]

to be incorrectly overwritten. Our analysis showed that this is due to a fault affecting the

code responsible for decrementing and directly afterwards comparing the loop counter on

49



Chapter 3 VoltPillager

Lines 12 and 10 in Listing 3.3, which translates to the assembly code shown in Listing 3.4.

1 // check for copy_size >= 1
2 copy_loop: cmpq $0x0 ,-0x28(%rbp)
3 jle exit_loop
4 // move copy_size into rax
5 mov -0x28(%rbp),%rax
6 // move 0xabababab into array[copy_size]
7 movl $0xabababab ,-0x20(%rbp ,%rax ,4)
8 // copy_size --
9 subq $0x1 ,-0x28(%rbp)

10 jmp copy_loop
11 exit_loop: // ...

Listing 3.4: Assembly affected by underflow

When undervolting, we observed the decrement of the loop counter on Line 9 in Listing 3.4

had not been committed by the time the comparison on Line 2 occurs. Thus, the loop

performs one additional iteration for copy_size = 0. We found that the decrement does

come into effect on the subsequent read into %rax on Line 5, which is the index into the

array, hence overwriting array[0].

Case 2: Out-of-Bounds Overflow In the second observed fault, elements 5–7 are in-

correctly overwritten. In this case, we concluded that the fault affects the initialisation of

the upper limit on Lines 6 and 7 in Listing 3.3. The respective assembly snippet is shown

in Listing 3.5.

1 movq $0x7 ,-0x28(%rbp)
2 cmpq $0x4 ,-0x28(%rbp)
3 // jump if copy_size less than or equal to 4
4 // THIS JUMP SHOULD NEVER BE TAKEN
5 jle cont
6 // set copy_size = 4
7 movq $0x4 ,-0x28(%rbp)
8 cont: // ...

Listing 3.5: Assembly affected by overflow

As with the previous fault, we conclude that the operation copy_size = 7 on Line 1 has

50



Chapter 3 VoltPillager

not completed by the time the compare statement on Line 2 is reached. Consequently,

copy_size is not limited to 4 but remains at the higher value of 7, triggering writes beyond

the upper limit of 4. Note that in this example the initial value 7 is loaded as a constant,

but it could equivalently be loaded from an attacker-controlled parameter, e.g., an untrusted

length field passed to an ecall.

3.5 Conclusion

Taking control of the SVID enabled undervolting to be more finely controlled, this allowed us

to refine our understanding of the injected faults. Through this investigation we discovered

potentially more powerful attacks creating buffer overflow and underflow exploits. Again,

using undervolting, this work successfully recovered RSA keys from an enclaved application.

51



Chapter 4

Faultfinder

4.1 Introduction

As we saw in Chapter 1, researchers in both industry and academia use fault injection

to evaluate the reliability and resilience of systems and applications. Faults can be in-

jected intentionally (maliciously, for example) or unintentionally (environmental factors, for

example)—both fault-reasons need to be protected against.

Fault injection can help evaluate the reliability of an application—simulating different fault

scenarios can help pin-point weak spots in code. However, where a binary is needed to behave

correctly under all possible conditions, formal methods are often used [167, 65]. Formal logic

can provide a guarantee of correctness—this approach is highly effective in identifying errors

but can be time-consuming and expensive to implement. Consequently, formal methods are

well-suited for testing small, critical parts of a binary that require a high level of confidence

in their correctness and reliability, such as those used in aviation or medical applications.

Alternatively, exhaustive fault injection simulation, involves systematically injecting faults

52



Chapter 4 Faultfinder

into a binary. This approach can be automated and may identify vulnerabilities that will be

missed by other testing methods. Simulation scales well and can be used to test large and

complex systems, making it suited for those that require a more comprehensive and practical

approach.

And finally, manual fault injection, using a highly skilled and knowledgeable person is incred-

ibly slow. Firstly, the parameter space is huge, even with the source code available (which

it often is not). Historically, identifying a good fault-target in a binary can take weeks:

analysing the binary, finding potential promising targets and then prioritising them. And

even if a target injection site is not found, that does not mean it does not exist. Exhaustive

fault-injection enables millions of faults to be injected and inspected without any need for a

human to initially suggest a ‘potential target site’.

In the last two decades many attempts have been made to fill the much needed gap-in-

the-research-area hole. We discuss these in the next section and then proceed to provide a

solution which is fast and works across a plethora of processors.

4.1.1 Related Work

To simulate fault injection on different architectures, most fault simulation tools are based

on generic emulators: In 2012, QEmu Fault Injection (QEFI) [34] was presented as one of

the first fault simulation frameworks. It is based on QEMU, an open-source emulator and

uses the GNU Debugger (GDB) for the fault injection. QEFI allows fault to be injected into

registers and memory, in addition to faults on storage devicess and network interterfaces.

QEFI focuses on the ARM architecture and uses a Python-based script API as the main user

interface. QEFI implements its fault injection using QEMU’S TCG (Tiny Code Generator)

plugin, and the authors note that this negatively impacts the performance.

53



Chapter 4 Faultfinder

At the same time as QEFI, XEMU was published [16]. XEMU is a framework for mutation-

based testing of binaries. The authors also extended QEMU with the TCG to inject faults at

runtime. The fault injections are based on a mutation table generated from the Control Flow

Graph (CFG) of the disassembled code. The authors of XEMU also limited their efforts to

ARM binaries, specifically ones for vehicle engine management. XEMU uses a golden run

(i.e., an execution trace with no faults) and compares each mutated run to the golden run.

If the mutated run writes a single character differently to the golden run, execution stops to

save unnecessary overhead. The output of XEMU is a report detailing instruction coverage,

mutation coverage, and how many mutants were discovered.

In 2015, Ferraretto et al. [53] presented fault injection simulation using QEMU, considering

three different types of faults: stuck-at, transition, and bit flip. They demonstrated their

tool with three benchmark binaries: btrees, mandelbrot and dhrystone. They reported

the results as one of four effects: loop, safe, error, and crash.

ARMory [84] bucked the QEMU-trend by presenting a a fault simulation tool for the ARM-

M architecture based on the “M-ulator” emulator—which the authors wrote themselves.

ARMory is security-focused in its design approach and includes an exploitability model, i.e.,

the conditions under which the fault would pose a security issue. ARMory is of particular

interest to us because the authors used Unicorn for runtime comparisons. ARMory also

demonstrated that implementing countermeasures for one specific fault can in turn make

another fault more likely to occur. The authors argue that individual faults viewed in

isolation should not be used as the basis for countermeasures—instead, a holistic approach

has to be taken.

FiSim is an open-source deterministic fault attack simulator prototype for exploring the

effects of fault injection attacks [177]. It is built using the Unicorn Engine [153] and the

Capstone disassembler [152]. FiSim is a tool built by Riscure [176] that originally supported

54



Chapter 4 Faultfinder

their ‘Designing Secure Bootloaders’ course, the application is focused on modern bootloader

attacks and their countermeasures. Whilst this software has been released under the GNU

General Public License, Riscure also have a newer application, TrueCode, however the ap-

plication is proprietary and not available for testing or comparison. According to Riscure,

TrueCode is the only solution completely focused on embedded software security. They

state that TrueCode uses blackbox dynamic checks by using fault injection simulation on

the target architecture.

And, in 2022, the most recent addition to the exhaustive fault simulation body-of-work

is ARCHIE [79]. ARCHIE is another QEMU-based tool (also using the TCG plugin) to

simulate transient and permanent instruction and data faults in RAM, flash and processor

registers. In Section 4.6 we attempt to reproduce the work from FiSim, ARCHIE and

ARMory using Faultfinder.

Related to the area of simulating fault injection into binaries is the software testing tech-

nique of fuzzing, where a binary is presented with many (cleverly chosen) inputs to uncover

vulnerabilities in the code. Fuzzing has received very substantial attention from the re-

search community (e.g., https://wcventure.github.io/FuzzingPaper/) for an overview), and

been implemented in advanced open-source tools like AFL++ [54]. Unlike fuzzing, where

the binary remains constant and the inputs are muted, in fault simulation, the binary is

mutated while the inputs are kept constant. Still, ideas from fuzzing can be applied to fault

simulation, e.g., the work of Xu et al. that uses snapshots (or “checkpoints”) to optimise the

performance of individual program runs [218].

55

https://wcventure.github.io/FuzzingPaper/


Chapter 4 Faultfinder

4.1.2 The Contribution of this Work

In this chapter we present Faultfinder, a fast, fault injection simulation tool. Faultfinder

supports exhaustive, easy-to-create fault models which can be applied to any firmware binary,

from bootloaders to cryptographic implementations. Our main contributions are:

• An optimised tool to simulate millions of faults injected into an arbitrary binary.

• Built upon the Unicorn CPU emulator framework [153], Faultfinder supports ARM,

AArch64, M68K, MIPS, SPARC, PowerPC, RISC-V, S390x, and x86 architectures.

• We have tested Faultfinder on ARM, x86_64, RISC-V, Tricore and included code

for MIPS and PowerPC. To date, we have not seen any such software for Tricore

architectures.

• Faultfinder provides a highly configurable and easy-to-use fault model, written in a

plain text file. Changing fault models requires no code compilation.

• Faultfinder can fault up to 128 different registers (depending upon the architecture) -

all other tools only permit faulting R0-R15.

• We employ three optimisations: register-instruction bitmaps, equivalent states and the

use of checkpoints, to heavily optimise the simulation process. Compared to state-of-

the-art tools like ARCHIE [79] and FiSim [177], we obtain speed-ups of one or several

orders of magnitude.

• Faultfinder is available at https://github.com/KitMurdock/faultfinder_public

56

https://github.com/KitMurdock/faultfinder_public


Chapter 4 Faultfinder

4.2 Design and Implementation of Faultfinder

In this section, we first address the design rationale behind Faultfinder and then explain

specific implementation choices.

4.2.1 Terminology

In this chapter we use the following terms:

• The golden run is the full execution of the binary-under-test without faults injected.

• A fault is the injection of single change in the state of a program e.g., a bit flip.

• A fault model is the definition of multiple different faults that we wish to inject.

• A campaign takes a number of fault models and simulates them, usually with a specific

goal (e.g., whether if a specific code section is vulnerable to certain fault models).

4.2.2 Process Overview

The high-level end-to-end process for successfully faulting a binary is given as:

• Examine binary : The analyst will need to find and define the relevant start and end

addresses along with the location for output analysis e.g., register, memory location.

• Create binary details file: Using the information obtained in the previous step the

analyst will create a JSON-formatted binary details file.

• Complete a golden run: Faultfinder uses the binary details file to complete a golden

run—this should confirm that all address locations and outputs are correctly defined.

57



Chapter 4 Faultfinder

• Define fault model : The analyst now needs to decide which types of fault she wishes

to inject (e.g., register bit flips, instruction skips, flag sets)—these are configured in a

text file.

• Define campaign: the newly defined fault model and binary are now brought together

to define the campaign.

• Run the campaign: All the information has been prepared to now run the exhaustive

fault injection campaign. The campaign run can be optimised to the specific host

machine by, for example, using all cores available.

• Analyse Results : Whilst this is not specifically part of Faultfinder, we provide a Python

script to convert our plaintext output files into an SQL database file for ease of result

evaluation.

4.2.3 Why Unicorn Engine?

The Unicorn emulator [153] is based on QEMU 5 and is built for performance with many

optimisations (including being thread-safe). The authors have stripped out any subsystems

that do not involved CPU emulation, consequently, Unicorn is ten times smaller in size and

memory consumption than QEMU.

One feature that is important is that Unicorn is a CPU emulator that is architecture aware,

i.e., if a fault injects incorrect code or attempts to write outside of the mapped memory then

the error will be raised.

58



Chapter 4 Faultfinder

4.2.4 Integration with Unicorn

Faultfinder uses unicorn hooks to control the fault injection—a hook is created for the start

and end fault address and counting takes place in between these. Because an instruction

may be called multiple times within the faulting range, a counter is used to identify the

specific instruction.

An additional unicorn hook is created at the faulting address. When the instruction count

reaches the specified instruction, the fault hook injects the fault and the program runs

to completion (if possible). Injecting a fault may create an infinite loop or a read from

an accessible memory location—in these instances the binary-under-test will fault and not

complete a run. Faultfinder records the result status of each run. Possible end run statuses

are:

• faulted and reached end address

• faulted and error produced

• reached hard stop address

• maximum instructions reached

We found the two most common ‘faulted and error produced’ reasons were reading or writing

to unmapped memory and invalid opcodes. In these instances the code ends with the error

written to output. However, this behaviour is undefined and might produce different outputs

on different machines. The ‘maximum instructions reached’ status was most frequently seen

when an injected fault produced an infinite loop.

59



Chapter 4 Faultfinder

4.2.5 Golden Run

Faultfinder creates fault simulations at the binary level, we simulate faults on the machine

code that would be flashed onto a microprocessor. Inevitably we needed to do some manual

analysis prior to being able to emulate the code. A variety of address locations need to be

identified in order to emulate the code (Figure 4.1). We categorise the concept of a golden

run (Listing 4.1) as the perfect execution without faults—this can be used during the setup

phase to ensure that all input and outputs are correctly determined. Memory locations can

be overwritten to test other values but it is not required.

---- Running the program to display all instructions in faulting range -------
00000001 hit :0001. 0x00402417 e8 ad fd ff ff : call 0xdb2
00000002 hit :0001. 0x004021c9 f3 0f 1e fa : endbr64
00000003 hit :0001. 0x004021cd e9 63 fb ff ff : jmp 0xb68
00000004 hit :0001. 0x00401d35 31 c0 : xor eax , eax
00000005 hit :0001. 0x00401d37 8a 14 06 : mov dl, byte ptr [rsi + rax]
00000006 hit :0001. 0x00401d3a 88 14 07 : mov byte ptr [rdi + rax], dl
00000007 hit :0001. 0x00401d3d 8a 54 06 01 : mov dl, byte ptr [rsi + rax + 1]
00000008 hit :0001. 0x00401d41 88 54 07 01 : mov byte ptr [rdi + rax + 1], dl
00000009 hit :0001. 0x00401d45 8a 54 06 02 : mov dl, byte ptr [rsi + rax + 2]
00000010 hit :0001. 0x00401d49 88 54 07 02 : mov byte ptr [rdi + rax + 2], dl
00000011 hit :0001. 0x00401d4d 8a 54 06 03 : mov dl, byte ptr [rsi + rax + 3]
00000012 hit :0001. 0x00401d51 88 54 07 03 : mov byte ptr [rdi + rax + 3], dl
00000013 hit :0001. 0x00401d55 48 83 c0 04 : add rax , 4
00000014 hit :0001. 0x00401d59 48 83 f8 10 : cmp rax , 0x10

Listing 4.1: Example output from golden run.

4.2.6 Fault Models and Injection

We use the instruction count (at runtime) as our index, this enables us to identify individ-

ual instructions. This is important because a single instruction at a specific address, may

be called multiple times—the golden run helpfully provides a hit counter for each address

(particularly useful when searching for the 8th round in a cryptographic implementation of

AES, for example). Faultfinder can exhaustively inject faults based upon an easy-to-define

fault model. The fault can be applied to every possible position in a register or instruction.

60



Chapter 4 Faultfinder

Start run

End run Fault range

Replace with 
test key

Replace with 
test plain text

Final Result
(e.g. cipher text)

{

Figure 4.1: Addresses required by Faultfinder for the golden run.

Faults can be created using any of the following binary operations: XOR (bit flips), AND (clear

bits), OR (set bits). Additionally, SET can be used to fully replace the target with a new

value. Fault injection mostly commonly results in a bit flip and so we included a shorthand

for bit shifts. Mask: 3<0<4 translates to: start with the mask 3 (0x11) and shift it left 0-3

times. The full mask list would become:

• 0b11, 0b110, 0b1100, 0b11000; or in hex:

• 0x3, 0x6, 0xc, 0x18

The lifespan configuration enables faults to be transient or persistent. Where the lifespan is

transient, it can be configured to be reverted after any number of instructions. An example

of a fault model is shown in Listing 4.2.

61



Chapter 4 Faultfinder

# Faulting S-box access. 0x800101a -0 x8001032
Instructions: 4937 -4942

Instruction:
Op_codes: ALL

Lifespan: 2, revert
Operations: OR

Masks:0x4 ,0x400
Registers: 2,3

Op_codes: imul
Lifespan: 0

Operations: XOR
Masks :1<0<16

Listing 4.2: Fault model example in Faultfinder.

4.2.7 Fault Injection Campaign

A campaign consists of simulating multiple faults with the purpose of finding a usable fault

e.g., avoiding bootloader protections or mathematical faults enabling cryptographic keys to

be leaked. Faultfinder can automatically run a campaign if provided with three input files

Figure 4.2. The binary details and fault model were introduced in Section 4.2.6, and finally

we have the JSON-formatted campaign details file. The campaign details brings together

the binary and the fault models. The campaign also enables optimisations to be enabled

tailoring the run to the specifications of the underlying machines. Some prior work attempts

to categorise outputs for each campaign however we have left the output-data-processing

as a post-campaign exercise. This has the advantage of not unnecessarily impacting the

pure fault injection runtime. In addition we have included hard-stop addresses for scenarios

where we regard a “success” as having redirected the flow of a program to an ordinarily

non-reachable address. For example, when attempting to circumvent a secure bootloader,

any execution with a fault that reaches the bootloader address without having supplied the

correct hash would be considered ‘success’ and would be configured as a hard-stop address.

Examples of each of the required campaign files are given in Appendix C.1.

62



Chapter 4 Faultfinder

Campaign Details

Binary details 
Fault details 
Output directory/stdout 
Number of threads 
Optimisations to use

Binary File Details

Binary file 
Architecture and mode 
Memory and stack details 
Code start and end addresses
Fault start and end addresses 
Preset memory/registers 
Output memory/registers 
Hard-stop addresses 
Skip addresses

Faulting Details

Instructions to fault 
What to fault: flags/code/registers 
Opcode filter 
Lifespan 
Revert/Repeat (for lifespan > 0) 
Operation  
  (AND, XOR, NOT, SET, CLEAR)
Mask

Figure 4.2: Configuration files required to run a fault injection campaign.

4.2.8 Result Format

To create as little overhead as possible, the outputs are written to a text file. Afterwards, we

developed a program to import the results into a database for easy analysis (also available

in the repository). Given the campaign details, Faultfinder exhaustively simulates the faults

supplied from the fault models. Each new fault to be injected begins with a header-line for

ease of searching. Each individual fault is also logged. An example of a single faulted run is

shown in Listing 4.3. While we considered processing the output, we decided that the raw

data is more useful since it can be analysed for a variety of purposes later on. Capstone

was used to disassemble the instructions, and can be disabled to speed up performance if

required.

63



Chapter 4 Faultfinder

*** Starting new run. Address: 0x800106a. Hit: 8. Lifespan: 2, revert.
Instruction: 00004406. Faulting Target: Instruction.
Mask: 0x000000000000d600. Operation: OR. ***

>> Writing input #0 directly to address: 0x0000000020000000:
2b7e151628aed2a6abf7158809cf4 ...6 abf7158809cf4f3c00127a0000127a00

>> Original instruction : 8b 42 : cmp r3 , r1
>> Mask : 0xd600
>> Updated instruction : 8b d6 : bvs #0xf1a
>> Lifespan countdown: 2. (0 x800106c)
>> Lifespan countdown: 1. (0 x8001142)
>> Reverting instruction : 8b 42
>> Run result: reached end address after faulting.
>>> Output from address (0 x20000000): ed20342c0f4ee201c69d712b3596c2f2

Listing 4.3: Output example for a faulted instruction.

4.3 Optimisation Techniques

Faultfinder initially runs the binary twice to gather information. The first golden run counts

the number of instructions executed within the faulting range. The second state-saving

run stores the registers used at each instruction as a bitmap. Faults are only injected into

registers if the register is referenced by that instruction. This prevents repeating unnecessary

duplicated faults. Additionally, if the checkpoint optimisation is used, a full state snapshot

at that instruction is stored.

4.3.1 Registers/Instruction Bitmap

The register/instruction bitmap stores up to 128 different registers (other software tested

only supports 16 registers). When faulting, if a register is not referenced at the line—the

fault is not injected, this prevents unnecessarily repeating faults that will have no distinct

effect. We use the Capstone disassembler[152] to check if a register is referenced. This

happens only once: in the Golden Run.

64



Chapter 4 Faultfinder

However, we encountered a problem when using Faultfinder with the Tricore architecture—

Capstone does not support Tricore. If Faultfinder is not provided with a Capstone ar-

chitecture and mode, the register/instruction bitmap is filled with ‘1’s and provides no

optimisation or register checking.

It is also worth noting that if a user specifies that they wish to fault the register ax this will

fault all lines containing ‘ax’—hence, the fault will also be injected at rax and eax. However

the reverse is not true, if the user specified they wish to fault the register rax, it will not

fault lines only containing ax. We consider this to be the correct and acceptable way of

working.

Additionally, if a user wants the register to be faulted, even though it is not referenced at

that instruction - they can choose to override it by using the Registers—force code in the

fault model file.

4.3.2 Checkpoints

When a program is long, a significant amount of time is spent running the program to reach

the fault instruction. To reduce runtime, we use checkpoints (or snapshots), inspired by Xu

et al. [218]. In the second state-saving run, Faultfinder saves the full state of the program,

i.e., the context (registers, flags and stack) and all memory regions. Each instruction is then

associated with its nearest checkpoint. To fault a specific instruction, Faultfinder can thus

directly jump to the nearest checkpoint and continue the run from there.

We determined that weighting the number of checkpoints (to include more checkpoints to-

wards the end of the execution) using the following (empirically selected) function yields

good performance results:

y = 1− ((1− x)1.25)

65



Chapter 4 Faultfinder

Where x is the percentage through the program (for a four checkpoints this would be: 0.2,

0.4, 0.6, 0.8) and y is the new percentage (0.24, 0.47, 0.46, 0.87) this ensures the checkpoints

are created where the most time savings can be made. To give a concrete example: if a

user requests 8 checkpoints for a 100 instruction program, then the checkpoints would be

at instructions 14, 27, 40, 52, 64, 75, 85, and 94. The main advantage of having more

checkpoints towards the end of the program is as follows: at the beginning, the cost of

taking and restoring checkpoints outweighs the cost to simply emulate the program to that

point, while at the end, this situation is inverted.

Additionally, we ensure that Faultfinder does not create unnecessary checkpoints—if the

campaign file requests 100 checkpoints but is only faulting 50 instructions—then only 50

checkpoints will be created. We further evaluate the use of checkpoints in Section 4.4.2.

4.3.3 Multithreading

Unicorn, as the foundation for Faultfinder, is thread-safe by design. Faultfinder automatically

employs all available threads set in the campaign details by splitting the work over individual

instructions. Each thread has access to the checkpoints from the state-saving run. Each

thread consumes the next instruction and injects faults according to the model specifications.

4.3.4 Equivalences

Creating an exhaustive application has the disadvantage of generating a large number of

outputs. Furthermore, many will be identical states. To counteract the issue of hundreds

of results we have created the concept of an equivalence. After each fault has been injected

(and before moving onto the next instruction) Faultfinder creates a hash from every byte of

registers, flags, stack and memory locations. This hash is compared with all others for that

66



Chapter 4 Faultfinder

specific instruction count. If there is a match, we can suggest with a high degree of certainly

that we have a fault that creates an identical program state. In this scenario, the run is

terminated and the new fault added to the list. Faultfinder displays the equivalences when

all the faults for the instruction are complete (Listing 4.4). Hashing is necessary because the

total amount of memory for a binary could be huge. Comparing each byte of memory (and

storing them) for multiple states would cause the host computer to run out of memory (and

possibly crash!)

While we have placed equivalences in the optimisation section, as we see, this cannot cleanly

be defined as a performance optimisation. Turning equivalences on may have deleterious

effect on the speed of Faultfinder, yet, reduces the number of outputs to simplify interpre-

tation of the results. On the other hand, runtime reductions can be achieved where many

identical states occur.

****** Equivalence faults for instruction: 4371 ******
= Equivalence =

=== Instruction: 00004371. Faulting: Register. Reg#: r1. Mask: 0xeb. Operation: OR.
=== Instruction: 00004371. Faulting: Register. Reg#: r1. Mask: 0xec. Operation: OR.
=== Instruction: 00004371. Faulting: Register. Reg#: r1. Mask: 0xed. Operation: OR.
=== Instruction: 00004371. Faulting: Register. Reg#: r1. Mask: 0xee. Operation: OR.
=== Instruction: 00004371. Faulting: Register. Reg#: r1. Mask: 0xef. Operation: OR.
=== Instruction: 00004371. Faulting: Register. Reg#: r1. Mask: 0xa0. Operation: XOR.

= Equivalence =
=== Instruction: 00004371. Faulting: Register. Reg#: r1. Mask: 0xfb. Operation: OR.
=== Instruction: 00004371. Faulting: Register. Reg#: r1. Mask: 0xfc. Operation: OR.
=== Instruction: 00004371. Faulting: Register. Reg#: r1. Mask: 0xfd. Operation: OR.
=== Instruction: 00004371. Faulting: Register. Reg#: r1. Mask: 0xfe. Operation: OR.
=== Instruction: 00004371. Faulting: Register. Reg#: r1. Mask: 0xff. Operation: OR.
=== Instruction: 00004371. Faulting: Register. Reg#: r1. Mask: 0xb0. Operation: XOR.

Listing 4.4: Example output for found equivalences.

This is particularly useful because the aim of Faultfinder is to help identify exactly what

fault was injected. This ensures that any output can be mapped back to one of a number of

potential individual faults, thus saving the analyst a substantial amount of time and manual

work. In order to pinpoint the fault more accurately, it would be possible to run Faultfinder

with different inputs and look for faults common to both runs. Output from a run with

equivalences is shown in Listing 4.5—note the additional line displaying the state hash. As

67



Chapter 4 Faultfinder

##### Starting new run. Address: 0x8001024. Hit: 128. Lifespan: 0.
Instruction: 00004371. Faulting Target: Register. Reg#: r1.
Mask: 0x000000000000005f. Operation: OR. ###

>> Writing input #0 directly to address: 0x0000000020000000: 2
b7e151628aed2a6abf7158809cf4f3c2b7e151628aed2a6abf7158809cf4f3c00127a0000127a00
>> Original register : 0x000000000000004f
>> Mask : 0x000000000000005f
>> Updated : 0x000000000000005f
>> State hash : 55 dff839e50b52302cbff229d596d1d9
>> Run result: Run ended early - equivalence found.

Listing 4.5: Example output with equivalence hashes.

far as we are aware, Faultfinder is the first fault injection tool to highlight identically injected

faults. We further evaluate the use of checkpoints in Section 4.4.3.

4.4 Performance Impact of Optimisations

In this section, we evaluate how the described optimisations impact the performance of

Faultfinder. The experiments were performed on an Intel i7 8-core laptop running at 2.6GHz.

We used tinyAES [116] as the binary-under-test, compiled for x86_64.

4.4.1 Multithreading

As would be expected, using as many threads as cores creates the optimum conditions. Ta-

ble 4.1 demonstrates that the performance Faultfinder scales proportionally with the number

of threads (until the number of CPU cores is reached).

4.4.2 Checkpoints

Substantial overhead is due to running the program from the beginning each time. Check-

points are most useful for programs with many instructions. However, there is a trade-off:

68



Chapter 4 Faultfinder

Number of Threads Runtime

0 87m 50s
2 45m 13s
4 29m 19s
8 21m 41s
16 21m 46s

Table 4.1: Time to inject 625,550 faults in x86 tinyAES binary with 200,000 instructions, running
on an 8-core Intel i7 @ 2.6 GHz (no checkpoints used).

the saving and restoring creates additional time-overheads, which will vary depending upon

the size of the memory regions created. In reality we were surprised to see that very few

checkpoints were required to create significant time savings. 50 checkpoints were sufficient

to halve the total campaign time (Table 4.2). More checkpoints require more memory, and

the time to create and store the checkpoints seems to have a negative time impact beyond

50.

The run times of 625,000 faults with 10 checkpoints is shown in Figure 4.3—the checkpoints

are visible in the sudden steps of decrease in run time. It is interesting to note the wide range

of timings for each instruction address. This graph clearly substantiates that checkpoints

can significantly reduce runtime in programs with a large number of instructions.

# Checkpoints Memory used Runtime

0 0 MB 21m 41s
10 26.54 MB 12m 37s
25 41.59 MB 12m 29s
50 66.69 MB 11m 50s

100 116.89 MB 12m 00s
1000 1020.40 MB 12m 16s

Table 4.2: Runtime to inject 625,550 faults into an x86 tinyAES binary with 200,000 instructions,
running on an Intel i7 @ 2.6 GHz with 8 threads.

69



Chapter 4 Faultfinder

Figure 4.3: Time of runs within a 200000 instruction program with 10 checkpoints.

4.4.3 Equivalences

We do not consider equivalences to be a runtime optimisation, nevertheless, we verified

their impact. We used a 200,000 instruction tinyAES program and faulted a set of 10,000

instructions in the centre of the run. This was to ensure the timings wold not be impacted

by the position of the faulting. We were also aware that the timing impact will be lessened

if many equivalences are found. Thus we ran the experiments twice: once with different

faults and once with identical faults (cf. Table 4.3 and Table 4.4). It should be noted that

when we used different faults (Table 4.3), we did occasionally accidentally create a small

amount of equivalent states due to the properties of the binary-under-test. We were, again,

surprised by the results—the time-overhead of checking the state against all others for that

instruction was much lower than expected. As expected, where there were many identical

states, a runtime-saving was observed (cf. Table 4.4).

70



Chapter 4 Faultfinder

# Faults per instr. Total faults With equivalences Without equivalences

4 23,880 1m 10s 1m 10s
8 47,760 2m 39s 2m 41s
16 95,520 5m 16s 5m 24s
32 191,040 10m 16s 9m 59s
64 382,080 21m 30s 22m 21s
128 764,160 43m 43s 43m 27s

Table 4.3: Comparison of runtimes injecting different faults in an x86 tinyAES binary with equiva-
lences turned on/off on an Intel i7 @ 2.6 GHz with 8 threads.

# Faults per instr. Total faults With equivalences Without equivalences

4 23,880 1m 18s 1m 10s
8 47,760 2m 16s 2m 41s
16 95,520 4m 31s 5m 24s
32 191,040 8m 52s 9m 59s
64 382,080 17m 48s 22m 21s
128 764,160 35m 03s 43m 27s

Table 4.4: Comparison of runtimes injecting identical faults in an x86 tinyAES binary with equiv-
alences turned on/off on an Intel i7 @ 2.6GHz with 8 threads.

4.5 Multi-architectural Validation

We wanted to ensure that Faultfinder was producing identical results for different architec-

tures, so we compiled a tinyAES [116] implementations for: ARM, RISC-V, Tricore and

x86_64. We analysed the different binaries using Ghidra to find the Round Key being re-

trieved. Each architecture used different registers and slightly different methods for loading

the data. After this analysis we crafted a fault model for each that would inject identical

faults.

71



Chapter 4 Faultfinder

4.5.1 Method

The process for each architecture was similar, specifically:

• Open the binary in Ghidra

• Search for the function AddRoundKey

• Identify the exact line that loads the data into a register

– Note the register

– Note the address immediately after i.e., the address to be faulted

• Complete a golden run - and search for the faulted address

– For simplicity of comparing results we decided to fault only one occurrence of this

address (arbitrarily chosen as the 128th)

• Create a fault model using this instruction number and the previously noted register.

An example fault model is show in Listing 4.6.

• Record the total number of unique outputs and their counts

Instructions: 4375 -4375
Registers -force: X10

Op_codes: ALL
Lifespan: 0

Operations: XOR
Masks :1<0<32

Listing 4.6: Example fault model for Tricore flipping bits in register X10 at instruction 4375

72



Chapter 4 Faultfinder

4.5.2 ARM

We analysed Figure 4.4 and concluded that line ldrb r5,[r4],#0x01 retrieves the Round

Key data and therefore the address to fault is: 0x0000846c (the one directly after it) and

the register to fault is: r5.

Figure 4.4: Ghidra code snippet from tinyAES compiled for ARM.

Output from Faultfinder Count of output

Output from address (0x00080f20) in register (r1): 3ad77bb40d7a3660a89ecaf32466ef97 24
Output from address (0x00080f20) in register (r1): 2c45ea42d60971c93149eb4250e0c821 1
Output from address (0x00080f20) in register (r1): 2eee3a41b0a6b0f734468e0ddd823ad3 1
Output from address (0x00080f20) in register (r1): 333c88dd35d593ba7ba369531c80cbdc 1
Output from address (0x00080f20) in register (r1): 4d3b20152f1718a5fc2eeca51eb27886 1
Output from address (0x00080f20) in register (r1): 65d2181dd9ff076b30feff3c9910da1f 1
Output from address (0x00080f20) in register (r1): 88789c84b26fd72833b10bd36fbe1340 1
Output from address (0x00080f20) in register (r1): c1c29e2068fe1b52d764e522bac1b842 1
Output from address (0x00080f20) in register (r1): fd7c33ade091744c44940e9f0077aeac 1

Table 4.5: Outputs from running Faultfinder to flip each bit in r1 at instruction 3864 in an ARM
compiled tinyAES binary

73



Chapter 4 Faultfinder

4.5.3 RISC-V

We analysed Figure 4.5 and concluded that line lbu a0,0x0(a0) retrieves the Round Key

data and therefore the address to fault is: 0x0080ffb8 (the one directly after it) and the

register to fault is: X18.

Figure 4.5: Ghidra code snippet from tinyAES compiled for RISC-V.

Output from Faultfinder Count of output

Output from address (0x0080ffb8) in register (X18): 3ad77bb40d7a3660a89ecaf32466ef97 24
Output from address (0x0080ffb8) in register (X18): 2c45ea42d60971c93149eb4250e0c821 1
Output from address (0x0080ffb8) in register (X18): 2eee3a41b0a6b0f734468e0ddd823ad3 1
Output from address (0x0080ffb8) in register (X18): 333c88dd35d593ba7ba369531c80cbdc 1
Output from address (0x0080ffb8) in register (X18): 4d3b20152f1718a5fc2eeca51eb27886 1
Output from address (0x0080ffb8) in register (X18): 65d2181dd9ff076b30feff3c9910da1f 1
Output from address (0x0080ffb8) in register (X18): 88789c84b26fd72833b10bd36fbe1340 1
Output from address (0x0080ffb8) in register (X18): c1c29e2068fe1b52d764e522bac1b842 1
Output from address (0x0080ffb8) in register (X18): fd7c33ade091744c44940e9f0077aeac 1

Table 4.6: Outputs from running Faultfinder to flip each bit in X18 at instruction 4375 in an RISC-
V compiled tinyAES binary

74



Chapter 4 Faultfinder

4.5.4 Tricore

We analysed Figure 4.5 and concluded that line ld.bu d2,[a12] retrieves the Round Key

data and therefore the address to fault is: 0x70008f30 (the one directly after it) and the

register to fault is: A5.

Figure 4.6: Ghidra code snippet from tinyAES compiled for Tricore.

Output from Faultfinder Count of output

Output from address (0x70008f30) in register (A5): 3ad77bb40d7a3660a89ecaf32466ef97 24
Output from address (0x70008f30) in register (A5): 2c45ea42d60971c93149eb4250e0c821 1
Output from address (0x70008f30) in register (A5): 2eee3a41b0a6b0f734468e0ddd823ad3 1
Output from address (0x70008f30) in register (A5): 333c88dd35d593ba7ba369531c80cbdc 1
Output from address (0x70008f30) in register (A5): 4d3b20152f1718a5fc2eeca51eb27886 1
Output from address (0x70008f30) in register (A5): 65d2181dd9ff076b30feff3c9910da1f 1
Output from address (0x70008f30) in register (A5): 88789c84b26fd72833b10bd36fbe1340 1
Output from address (0x70008f30) in register (A5): c1c29e2068fe1b52d764e522bac1b842 1
Output from address (0x70008f30) in register (A5): fd7c33ade091744c44940e9f0077aeac 1

Table 4.7: Outputs from running Faultfinder to flip each bit in A5 at instruction 5069 in a Tricore
compiled tinyAES binary

75



Chapter 4 Faultfinder

4.5.5 x86_64

We analysed Figure 4.5 and concluded that line mov r8B, byte ptr [rdx + rax*0x1] re-

trieves the Round Key data and therefore the address to fault is: 0x08000fd0 (the one

directly after it) and the register to fault is: rsi.

Figure 4.7: Ghidra code snippet from tinyAES compiled for x86_64.

Output from Faultfinder Count of output

Output from address (0x08000fd0) in register (rsi): 3ad77bb40d7a3660a89ecaf32466ef97 24
Output from address (0x08000fd0) in register (rsi): 2c45ea42d60971c93149eb4250e0c821 1
Output from address (0x08000fd0) in register (rsi): 2eee3a41b0a6b0f734468e0ddd823ad3 1
Output from address (0x08000fd0) in register (rsi): 333c88dd35d593ba7ba369531c80cbdc 1
Output from address (0x08000fd0) in register (rsi): 4d3b20152f1718a5fc2eeca51eb27886 1
Output from address (0x08000fd0) in register (rsi): 65d2181dd9ff076b30feff3c9910da1f 1
Output from address (0x08000fd0) in register (rsi): 88789c84b26fd72833b10bd36fbe1340 1
Output from address (0x08000fd0) in register (rsi): c1c29e2068fe1b52d764e522bac1b842 1
Output from address (0x08000fd0) in register (rsi): fd7c33ade091744c44940e9f0077aeac 1

Table 4.8: Outputs from running Faultfinder to flip each bit in rsi at instruction 3977 in a x86_64
compiled tinyAES binary

76



Chapter 4 Faultfinder

4.5.6 Summary

Analysing four binaries compiled for different architectures was educational, each architec-

tures has subtle differences e.g., Tricore produced the most instructions (6457) and ARM,

the least: (5233). Ultimately, the cryptographic outputs were identical and we were able

to demonstrate that faultfinder works smoothly across three different Unicorn supported

architectures.

4.6 Comparison to Existing Fault Simulation Tools

In order to confirm the accuracy and performance of Faultfinder we picked three of the

more recent tools in the research area. We chose ARCHIE [79] because of its excellent

documentation and well-sourced example repository [200]. ARCHIE faults are injected into

a cryptographic algorithm (tinyAES) and the outputs stored in an HDF5 files. Secondly, we

selected FiSim [177] for its focus on a non-cryptographic secure boot application. Thirdly, we

used ARMory [84] because it also had a well documented repository injecting faults into an

AES implementation. It is evident that these scenarios are relevant to the real-life application

of fault attacks and, additionally, are well-known research scenarios. ARCHIE and ARMory

use a linux command-line interface, ARCHIE is built upon QEMU and ARMory upon M-

ulator (which the authors also wrote). FiSim runs on Windows only, using a compiled

version of the Unicorn engine. We believe that these projects represent a good reference

to compare against. Our approach when reproducing prior work was to leave the binaries-

under-test untouched and to adjust as few parameters as possible within the tools. We built

a set of Python programs to import code into a database from: (i) ARCHIE’s HDF5 files

(ii) Faultfinder’s output directory (iii) FiSim’s raw output window. (iv) ARMory’s raw

output to screen This enabled us to precisely evaluate the results. However, we did have to

77



Chapter 4 Faultfinder

modify the code from ARMory to be able to create a usable output (see Section 4.6.3).

4.6.1 Comparison with ARCHIE

Differential Fault Analysis (DFA) is a well known attack against an AES cipher. In 2009,

Saha et al. demonstrated that the entire key can be leaked from AES if a fault can be injected

into one of the four diagonals of the state matrix in the 8th round [180]. To demonstrate

this, the ARCHIE fault model was configured to inject faults into the S-box and to log the

resulting ciphertexts.

Fault model ARCHIE’s fault model differs from Faultfinder by using a trigger address

with a trigger counter. We can see the advantage of this—it enables the analyst to focus on

a specific address and only fault on its xth call. For example, one of their faults triggers is

shown below:

"fault_address" : [134221926 , 134221932 , 1],
"trigger_address" : [-1],
"trigger_counter" : [8, 10, 1]

Listing 4.7: ARCHIE fault model snippet.

The first fault in this model is: trigger and fault addresses: 0x8001066, 8th occurrence.

To replicate this in Faultfinder we use the golden run to find the instruction count on its

eighth occurrence. From the output snippet in Listing 4.8, we can see that Faultfinder would

reference this instruction using the instruction counter 4404.

ARCHIE can fault any address from any trigger address. Faultfinder does not have this

feature. Faultfinder only faults the current instruction prior to execution, i.e., effectively

faulting the instruction fetch register or the memory bus. The fault models for ARCHIE

and Faultfinder are given in Appendix C.2.1 and Appendix C.2.2 respectively.

78



Chapter 4 Faultfinder

00004400 hit :0008. 0x0800105e 82 70 : strb r2 , [r0, #2]
00004401 hit :0008. 0x08001060 c5 70 : strb r5 , [r0, #3]
00004402 hit :0008. 0x08001062 c1 72 : strb r1 , [r0, #0xb]
00004403 hit :0008. 0x08001064 c3 71 : strb r3 , [r0, #7]
00004404 hit :0008. 0x08001066 03 9b : ldr r3 , [sp , #0xc]
00004405 hit :0008. 0x08001068 01 99 : ldr r1 , [sp , #4]

Listing 4.8: Faultfinder golden run snippet with hitcount

Reproducibility Of the 8278 faults injected, 8258 faults were identical with only 20 faulty

outputs differing. Faultfinder reports the outputs as unmapped memory write or unmapped

memory read. When we compared the individual faulted instruction they were identical,

hence, it is likely that the faults might differ depending upon how the CPU (emulator)

manages such unmapped memory read/writes.

Timings The AES implementation used for the ARCHIE test only injects 8278 faults into

a ≈20000 instruction program—due to the fairly low number of instructions, we did not use

any checkpoints for our timings when running the comparisons. Had there been more faults

to inject, we would have turned on checkpoints and achieved even larger runtime savings (cf.

the results in Section 4.3.2). As shown in Table 4.9, Faultfinder consistently outperforms

ARCHIE by factors between 70 and 281, depending on the specific machine.

Machine Freq.
(GHz) Cores Threads ARCHIE Faultfinder Speed

increase

i7-4510U 2.00 4 4 25m 27s 22s 70x
i7-7700HQ 2.80 8 8 34m 59s 9s 233x
E-2244G 3.80 8 8 15m 58s 6s 160x
i9-10900K 3.70 20 20 4m 41s 1s 281x

Table 4.9: Runtime comparison between Faultfinder and ARCHIE when injecting 8278 faults into
an ARM-compiled tinyAES binary (no checkpoints used for Faultfinder). All CPUs are Intel.

79



Chapter 4 Faultfinder

Discussion ARCHIE and Faultfinder represent fault models in a similar manner. However,

while ARCHIE includes the ability to fault any address at any time, we do not consider this

very specific fault model. Instead, we focus on data-in-use at any instruction, i.e., registers

and instructions. Additionally, ARCHIE makes use of an single HDF5 file for its outputs. We

note that it took around 5 s to open the file and a further 10 s to view any single experiment.

4.6.2 Comparison with FiSim

FiSim’s sample code replicates an embedded system attempting to employ a secure boot.

The device loads the image, calculates the hash, and if it is correct, continues to boot to the

next stage. For the Internet of Things (IoT), this is a common scenario—developers want

to ensure that only their own firmware can be loaded onto their devices.

In this particular fault injection we are not looking for faulty output, but rather imagining an

attacker who wants to skip or trick the verification process so that she can execute arbitrary

code on the device (e.g., read private data). The results of FiSim were difficult to reproduce:

the demo application runs on Windows only and has the fault models hardcoded into the

sources. We thus dual-booted Windows and Linux to compare the tools on the same CPU.

Additionally, FiSim’s software fully emulates the one-time programmable memory read that

is performed when loading the image. Faultfinder was not able to reproduce this (and it

is not designed to); therefore, we were not fully able to replicate every fault. With the

FiSim sample code representing a bootloader, “success” is represented as reaching a specific

location in the binary: boot_next_stage. For this, we made use of hard-stop addresses. If

the program flow arrives at this function, the simulation stops and the result is recorded.

80



Chapter 4 Faultfinder

Instructions: 1 -1299
Instruction Pointer:

Op_codes: ALL
Lifespan: 0

Operation: SKIP
Instruction:

Op_codes: ALL
Lifespan: 1, revert

Operations: XOR
Masks: 1<0<32

Listing 4.9: Faultfinder’s fault model used to reproduce FiSim.

Reproducibility Initially we intended to detail every single fault for comparison. How-

ever, FiSim outputs a single line per address where a fault has successfully resulted in

side-stepping the security—we therefore decided to compare those addresses that each tool

considers vulnerable. FiSim reports a total of 94 different vulnerable addresses, of these

Faultfinder reports 72. Additionally, Faultfinder reported an extra 6 addresses as vulnerable

that were not noted by FiSim.

Fault models In FiSim’s demo, only two fault types are enabled:

• A Transient Nop Instruction replaces the instruction with a NOP but only once. The

next time that instruction is called it will execute as normal.

• A Transient Single Bit Flip Instruction flips a bit in the instruction prior to execution,

but does not persist.

Following our own rule of not modifying anything, we replicated these two faults only, and

our fault model is show in Listing 4.9.

Timings The bootloader code used for the FiSim test is only 1200 instructions long there-

fore, we did not use checkpoints in Faultfinder. As evident from Table 4.10, Faultfinder

outperforms FiSim by a factor of eight on the same machine. We did not compare the

81



Chapter 4 Faultfinder

performance on other machines, as it would require dual-booting because FiSim runs on

Windows only.

Machine Frequency Cores Threads FiSim Faultfinder Speed
increase

Intel i7-4510U 2.00GHz 4 1 9m 17s 1m 6s 8x

Table 4.10: Runtime comparison between Faultfinder and FiSim when injecting 22,000 faults into
FiSim’s demonstration bootloader ARM binary (no checkpoints used for Faultfinder).

Discussion When comparing the results we note that FiSim reports 22 additional ad-

dresses where a fault can be injected to bypass the bootloader. However we also note that

Faultfinder produced 6 additional locations. We considered investigating further, however,

FiSim has not been updated in two years and is running an older version of Unicorn. Ad-

ditionally, FiSim is a teaching tool and does not make any claims about accuracy, in fact,

they state that quick feedback is preferred for their purposes.

4.6.3 Comparison with ARMory

ARMory provides two case studies, along with the underlying code: (i) DFA on AES (ii) A

secure bootloader. We choose to reproduce the AES implementation, because it has more

runtime lines of code. The first problem is that ARMory does not output all results—only

those that meet its exploitability model. This model is coded in C++ and only displays the

fault, not the final cryptographic output. For the AES case study, an exploitable fault is

coded as any cryptographic output with a single modified byte from the 8th to 10th rounds.

Reproducibility To be able to reproduce the work, we modified and recompiled the ex-

ploitability code to display the output, which we then had to reassembly with ARMory’s

fault outputs. We used this combined-information to create a Faultfinder fault model file.

82



Chapter 4 Faultfinder

Faulted instruction: ldrb r6 , [r4], #0x21
Cryptographic Output: 46388397 e4e4d50364af54 24 0802922c
ARMory Description: Transient Instruction Bit -Flip position =21 time =5316

Listing 4.10: Faulted output from ARMory for instruction time: 5316

This is not an ideal solution, as our file ended up being 30,000 lines long. However, we

wanted to compare identical faults against an identical binary.

Issue Count
Faulting XPSR register 2837
Error: Unable to disassemble instruction 68
Error: Reading from unmapped memory 55
Faulted and reached end address with no errors 775

Total faults producing different outputs 3715

Table 4.11: Breakdown of non-matching faults between Faultfinder and ARMory for an AES im-
plementation on ARM

Of the 42,000 faults, Faultfinder matched 38,285 identical outputs. With 3715 different

outputs—we break these down in Table 4.11. The XPSR (Special-purpose program status

registers) did not reproduce identical outputs. The XPSR is constructed from three registers:

Application PSR, Interrupt PSR and Execution PSR. Faultfinder reports different values for

this register, we can only conclude that M-ulator and Unicorn are handling this register

differently.

There are 775 different outputs where Faultfinder reports that the binary successfully faulted

and reached the end address with no errors. An example of one such fault is shown in

Listing 4.11. We see that the fault has produced an identical new instruction with both

ARMory and Faultfinder. When we traced Faultfinder’s data and code we could find no

problems or inaccuracies. However, the output would match ARMory’s exploitability model

(one byte error). Currently, we are unable to explain these 775 different outputs.

83



Chapter 4 Faultfinder

Instruction: 5316
Address: 0x808c
Fault injected: XOR
Fault Mask: 0x200000
Original instruction: ldrb r6, [r4], #1
Faulted new instruction: ldrb r6 , [r4], #0x21
Faultfinder Result: Reached end address after faulting
Cryptographic Output: 46388397 e4e4d50364af54 a0 0802922c

Listing 4.11: Faulted output from Faultfinder for instruction time: 5316

Fault models ARMory supports five different categories of fault:

• Instruction faults : permanent (injected at the beginning of simulation and never re-

verted) or transient (active for a single instruction).

• Register faults : permanent (injected on all writes), until-overwrite (injects the fault

once, and it remains until the register is overwritten), and transient (removes the fault

after a single instruction).

With Faultfinder’s plain text fault model file we are able to replicate each of these faults

using the lifespan count. ‘0’ creates a permanent instruction fault and an active until over-

write register fault. Meanwhile a “revert” lifespan of ‘1’ replicates a transient fault for both

instructions and registers. A “repeat” lifespan would correspond to the permanent register

fault; however, in the case study we replicated, no faults of this type were reported. ARMory

uses a time value which corresponds directly to Faultfinder’s instruction number.

ARmory fault Faultfinder
Lifespan mode Lifespan count

Instruction Permanent — 0
Instruction Transient revert 1
Register Permanent repeat 999
Register Transient revert 1
Register Until-overwrite — 0

Table 4.12: Faultfinder’s lifespan configuration to correspond to ARMory’s fault categories

84



Chapter 4 Faultfinder

Timings We only reproduced ARMory’s exploitable faults, so the timing results are not

like-for-like. Because the binary-under-test was very short, we did not use the checkpoint

optimisation.

Machine Frequency #Cores #Threads ARMory Faultfinder Speed
increase

Intel i7-7700HQ 2.80GHz 8 8 7 secs 19 secs 2.7x slower

Table 4.13: Pseudo runtime comparison between Faultfinder and ARMory, 42000 faults were injected
into an ARM AES implementation binary (no optimisations used).

Discussion We found it very time-consuming to reproduce ARMory, because code mod-

ification and compilation was required. However, we acknowledge that ARMory’s authors

achieve excellent performance for ARM emulation. Due to the short number of lines in the

binary we did not use the checkpoint optimisation as it creates no improvement.

4.7 Faultfinder Summary

In this chapter, we presented Faultfinder, a fast, easy-to-use tool for exhaustive fault injec-

tion simulation. Faultfinder is built on the Unicorn engine with efficiency at the heart of its

design. Two novel optimisations, checkpoints and equivalences, help Faultfinder to improve

performance and usability compared to prior work. Checkpoints heavily reduce redundant

computation during simulation and equivalences reduce the analysis work required after fin-

ishing the experimental phase. Compared to state-of-the-art tools like ARCHIE, FiSim and

ARMory, we show Faultfinder gives performance improvements of one or several orders of

magnitude, both for cryptographic code and more generic applications like secure bootload-

ers. Faultfinder is available as an open-source project and we hope that our work can be

built upon by academia and industry to further advance the simulation of fault injection.

85



Chapter 4 Faultfinder

Faultfinder ARMory ARCHIE FiSim

Built
using

Unicorn
(QEMU) M-ulator QEMU

with TCG
Unicorn
(QEMU)

Tested
architectures

ARM
Tricore
x86_64
RISC-V

ARM ARM
RISC-V ARM

Speed v Faultfinder — 2x faster
(ARM only) 70x slower 8x slower

Fault model Text file Hardcoded Text file Hardcoded

Faultable registers 128 16 16 16

OS Linux Linux Linux Windows

Last updated Jul 2022 Nov 2021 Mar 2022 Nov 2020

Table 4.14: Comparison of currently available fault injection simulation tools

86



Chapter 5

Leaky Throttling

5.1 Introduction

This chapter contains so-far unpublished results achieved between 2020 and 2021. Later,

several papers, on this topic by other researchers have been published [129, 214]. This work

was done independently of those.

As we previously detailed in Chapter 1, modern processors use DVFS and throttling to

protect the physical CPU from damage. In addition to these mechanisms, Intel provides

software access to a huge range of live sensor readings and event counters, to support im-

proved performance, system reliability [82] and efficient power consumption [171, 35]. From

Sandy Bridge architectures onwards, Intel introduced Running Average Power Limit (RAPL)

instrumentation. These became available via MSRs (detailed in Section 5.2) and through

the sysfs interface which enables the values to be read from a public file. And, to reiter-

ate, the emergence of cloud computing and shared infrastructures underscores the need for

strong hardware security. Multi-tenanted systems should ensure that processes cannot leak

87



Chapter 5 Leaky Throttling

information between them.

In 2019 Paiva [162] used the Dynamic Random Access Memory (DRAM) energy telemetry to

create a covert channel to transmit messages by modulating the DRAM power consumption.

In 2017, Fusi [60] demonstrated that the Intel’s RAPL energy telemetry interface leaks

information. Lipp et al. in 2021 [127], used this RAPL interface to expose a low-resolution

side channel attack which they dubbed: PLATYPUS.

We know that some instructions use more power (known as PHI)—it is no surprise that a

256-bit fused multiply-add (FMA256) uses more energy than a 32-bit register move (mov) [77].

More commonly used instructions would include Intel’s Advanced Vector Extensions (AVX)

which were introduced in 2008, these, again increase energy consumption [101]. A process

is able to switch between a standard instruction and a PHI in only a few clock cycles.

And, as we saw in Chapter 2, modifying the voltage takes a substantial amount of time

(between 500k and 1 million clock cycles), to manage this huge imbalance (≈5 vs. 500,000

clock cycles!), throttling can be employed to give the DVFS management systems time to

address the power issues. In this chapter we create a covert process and arbitrarily run three

different operations, square root, multiply and array lookup. We demonstrate that the energy

consumption of each individual operands can be identified by their energy consumption at

different frequencies. We then show that the much less granular power throttling also enables

operand recognition.

88



Chapter 5 Leaky Throttling

5.2 Energy MSRs

Intel provides MSRs for four energy domains [37] as shown in Figure 5.1

• Package (PKG): domain measures the energy consumption of the entire socket. It

includes the consumption of all the cores, integrated graphics and also the uncore

components

• DRAM: measures the energy consumption of random access memory (RAM) attached

to the integrated memory controller.

• Power Plane 0 (PP0): measures the energy consumption of all processor cores on the

socket.

• Power Plane 1 (PP1): measures the energy consumption of processor graphics (only

available on desktop models).

It should be noted that: PP0 + PP1 <= PKG while DRAM is independent of the other

three domains.

M
em

or
y 

D
IM

M
 0

M
em

or
y 

D
IM

M
 1

M
em

or
y 

D
IM

M
 2

M
em

or
y 

D
IM

M
 3 Core 0 Core 1

Core 2 Core 3

Graphics

DRAM

PP1

Package

PP0

Figure 5.1: Layout of the power domains with MSRs availability

89



Chapter 5 Leaky Throttling

Intel allows a privileged user to set: power limits and domain policies and read energy usage,

voltage and power limits. These MSRs are listed in Table 5.1. An additional MSR that we

already used in Chapter 2 is MSR_PERF_STATUS - 0x198 which reports Core Voltage.

Domain Power Limit
RW

Energy Status
RO

Policy
RW

Perf Status
RO

Power Info
RO

PKG PKG_POWER_LIMIT
0x610

PKG_ENERGY_STATUS
0x611 — PKG_PERF_STATUS

0x613
PKG_POWER_INFO

0x614

DRAM DRAM_POWER_LIMIT
0x618

DRAM_ENERGY_STATUS
0x619 — DRAM_PERF_STATUS

0x61B
DRAM_POWER_INFO

0x61B

PP0 PP0_POWER_LIMIT
0x638

PP0_ENERGY_STATUS
0x639

PP0_POLICY
0x63A

PP0_PERF_STATUS
0x63B —

PP1 PP1_POWER_LIMIT
0x640

PP1_ENERGY_STATUS
0x641

PP1_POLICY
0x642 — —

Table 5.1: RAPL MSRs (each is prefixed with MSR_)

5.2.1 ENERGY_STATUS MSRs

The ENERGY_STATUS MSRs represent the accumulated energy consumed for each domain as

shown in Figure 5.2. The units are specified in MSR_RAPL_POWER_UNIT, Figure 5.3.

63

Total energy consumed for PKG/DRAM/PP0/PP1 
(Units specified in: MSR_RAPL_POWER_UNIT) 

031

Figure 5.2: Layout of MSRs 0x611, 0x619, 0x639, 0x641 ENERGY_STATUS for PKG, DRAM, PP0,
PP1 respectively

63

PU

16 01219

TU

Energy Status
Units

Time  
Units

Power
Units

ESU

8 3

Figure 5.3: Layout of MSR 0x606 MSR_RAPL_POWER_UNIT

90



Chapter 5 Leaky Throttling

Actual Power Units (Watts) = 2PU

Actual Energy Units (Joules) = 2ESU

Actual T ime Units (Seconds) = 2TU

5.3 Energy Usage Experiments

In this work, we further investigate Intel’s documented telemetries in search of information

leakage, including operand differentiation. We focused our efforts on power and energy.

All experiments were performed with an Intel i7-7700HQ-XPS laptop. All graphs exclude

readings outside of the 98 per cent quantile.

We began by creating a covert process with an ‘off’ mode where the process would sleep

(represented by 0). And an ‘on’ mode where we test different functions and analyse the

telemetry results. Intel reports that the MSRs update every 1ms, we therefore read the

following MSRs every 2ms.

• Core voltage

• Package energy usage

• DRAM energy usage

We review the graphical results in the following subsections.

5.3.1 Square Root of Scalar Double

We began by testing the sqrtsd (Square Root of Scalar Double) function in a tight loop

(Listing 5.1) for our covert channel’s ‘on’ mode. We arbitrarily gave this function the value of

‘10’ in our covert process. We record the telemetries in their raw state, as we were initially

91



Chapter 5 Leaky Throttling

focused on correlation. We tested for two frequencies: 3.2GHz and 1.1GHz—CPU power

consumption rises as the square of the core voltage with clock frequency rising in proportion

to voltage. Consequently the energy readings will be significantly different. We did not

change the loop iterations, and therefore, at a clock frequency of 1GHz, the time taken to

complete is longer and more readings are taken. It is worth noting that, in this section, the

y-axis (MSR readings) were calculated automatically and are not showing absolute values.

We report the absolute values in the next section.

void asm_sqrtsd ()
{

double a = rand();
double b = 0;
for(int i = 0; i < ITERATIONS_SQRT; i++)
{

asm volatile(
"movq %1, %%xmm0 \n"
"sqrtsd %%xmm0 , %%xmm1 \n"
"movq %%xmm1 , %0 \n"
: "=r"(b)
: "g"(a)
: "xmm0", "xmm1", "memory"

);
}

}

Listing 5.1: Code for tight square root of scalar double loop for covert channel

From the graphs (Figures 5.4 and 5.5) it is clear that voltage and package energy correlate

directly with the active operation sqrtsd. Interestingly, when the clock frequency is running

at 3.2GHz, DRAM energy reduces when the sqrtsd of a scalar double is running. Running

a mathematical calculation in a tight loop will not require access DRAM and it would be

expected to see lower energy use. However at 1.1GHz the correlation cannot be clearly

observed—indeed it the regularity of the rise and fall suggest another process is regularly

accessing something in memory.

92



Chapter 5 Leaky Throttling

Covert Channel

Covert Channel

Covert Channel

Figure 5.4: Covert channel running sqrtsd with MSR outputs from Package Energy, DRAM Energy
and Core Voltage on an i7-7700HQ-XPS at 3.2GHz, using a rolling average of 15 points. Readings
taken every 2ms.

93



Chapter 5 Leaky Throttling

DRAM energy MSR

Package energy MSR

Voltage MSR

sqrsdsqrsdsqrsdsqrsdsqrsdsqrsdsqrsdsqrsdsqrsd

Clock: 1.1GHz

Clock: 1.1GHz

Clock: 1.1GHz

Figure 5.5: MSR outputs from Package Energy, DRAM Energy and Core Voltage on i7-7700HQ-
XPS at 1.1GHz, using a rolling average of 15 points. Readings taken every 2ms.

94



Chapter 5 Leaky Throttling

5.3.2 Multiplication - imul

We now extend our covert channel to include the imul operation and assigned this the

arbitrary value of ‘9’ (Listing 5.2). For these sets of experiments we additionally include

absolute values for greater comparison between different clock frequencies. As can be seen in

Figure 5.6 at 3.2GHz, the imul uses more energy (≈ 4mJ) than the sqrtsd and the voltage

is lower by ≈ 3mV . Meanwhile at 1.1GHz (Figure 5.7) the voltage readings are lower for the

imul by < 1mV , it is immediately possible to determine which operation was running based

on the package energy readings. However, it is clear that higher frequencies produce greater

differences in energy readings and the change in operation becomes obvious as a result.

void asm_imul ()
{

int input_val = rand();
int output_val = rand();
for (int i = 0; i < ITERATIONS_IMUL; i++)
{

asm volatile(
"imul %1, %0 \n"
: "+r"(output_val)
: "rm"(input_val));

}
}

Listing 5.2: Code for tight multiplication loop for covert channel

5.3.3 Array Lookup

And finally, we add in a third operation, an SBOX array lookup (Listing 5.3) which we

assign the operation value ‘8’. We focus on package energy MSR readings because these

were demonstrated to be the most reliable across clock frequencies. In Figure 5.8, we can

clearly differentiate each of the covert operations. The sqrtsd consumes ≈ 27mJ , imul

≈ 34mJ and array lookup ≈ 26mJ .

95



Chapter 5 Leaky Throttling

Clock: 3.2GHz

sqrtsdsqrtsd sqrtsd sqrtsd sqrtsd

imulimulimulimul

Figure 5.6: MSR outputs from Package Energy, DRAM Energy and Core Voltage on i7-7700HQ-
XPS at 3.2GHz, using a rolling average of 10 points. Readings taken every 2ms.

96



Chapter 5 Leaky Throttling

Clock: 1.1GHz

imulimulimulimul

Figure 5.7: MSR outputs from Package Energy, DRAM Energy and Core Voltage on i7-7700HQ-
XPS at 1.1GHz, using a rolling average of 10 points.

97



Chapter 5 Leaky Throttling

uint64_t run_array_memory_lookup ()
{

uint64_t v = rand() % 512;
for (int i = 0; i < ITERATIONS_ARRAY_LOOKUP; i++)
{

asm volatile("mfence");
v = SBOX[v];
asm volatile("mfence");

}
return v;

}

Listing 5.3: Code running repeated array lookups covert channel

array lookuparray lookuparray lookup
imulimul

sqrtsdsqrtsdsqrtsd

Figure 5.8: MSR outputs from Package Energy i7-7700HQ-XPS at 3.2GHz, no rolling average.
Readings taken every 2ms.

We ran the covert operation 100 times, on i7-7700HQ-XPS at 2.7GHz with no other user

processes running. We noted that the energy usage when sleeping fell into two distinct

categories: 9.5-9.7mJ and 25.5-25.5mJ. The higher energy usage value is likely to be a kernel

process running that was not visible to the user. We recorded the range in package energy

increase from sleep in table Table 5.2. The range in package energy usage for each operation

is surprisingly small and clearly identifiable.

98



Chapter 5 Leaky Throttling

Sleeping Energy Usage
(9.6 ± 0.1 mJ) 26 ± 0.5 mJ)

Operation Increase in package energy usage

imul 90.4% ± 0.028 26.4% ± 0.002
sbox lookup 69.1% ± 0.014 19.5% ± 0.009
sqrtsd 62.0% ± 0.020 17.1% ± 0.008

Table 5.2: Average increase in package energy usage for covert operations across 100 experiments,
frequency 2.7GHz.

5.4 Throttling

Previous research had investigated the leaking of information via DRAM energy teleme-

try[162] and package and pp0 energy [127, 73]. We therefore build upon our earlier tests to

investigate leakage using power-limits and throttlings, which, at the time, had no substantial

published research.

5.4.1 Setting Power Limits

RAPL also enables power consumption to be limited, such that: when the configured power

limit is exceeded, the CPU will be throttled i.e., forced to run at a lower frequency to max-

imise chip protection. Intel currently provides package-level power limits (PL1, PL2, PL3)

and, from 10th generation onwards platform-level power limits (Psys). Users or applications

at ring 0 can configure the running average time window τ and the power limit of each

capability through the POWER_LIMIT MSRs as shown in Figure 5.9.

The formula for the time window (from Intel documentation [37]) is as below:

Time window (secs) = 2window y +
(
1 +

windowf

4

)
∗ Actual T ime Units (5.1)

99



Chapter 5 Leaky Throttling

PKG  
power limit 2

63 53 48 324649

Limit time  
window f 2

Clamping limit 
enabled 2

MSR lock

5455

Limit time 
window y 2

47

PKG  
power limit

21 16 014172223 15

Power limit  
enabled 2

Limit time  
window f

Clamping limit 
enabled

Limit time  
window y

Power limit  
enabled

Figure 5.9: Layout of the documented MSR 0x610 - MSR_PKG_POWER_LIMIT

The PERF_STATUS MSRs represent the accumulated time the domain has been throttled as

shown in Figure 5.10.

63

Accumulated PKG/DRAM/PP0 throttled time
(Units specified in: MSR_RAPL_POWER_UNIT) 

031

Figure 5.10: Layout of MSRs 0x613/0x61B/0x63B PERF_STATUS for PKG/DRAM/PP0

5.4.2 Threat model

The PLATYPUS attack read the RAPL values as both a privileged and unprivileged attacker.

Unprivileged access was possible because, on Linux, the power capping framework powercap

exposed the MSRs as files located in: /sys/devices/virtual/powercap to ring 3 users.

However, in November 2020, a security update revoked this access and an unprivileged

attacker can no longer read these power measurements.

Ring 3 Attacker

A Ring 3 attacker would have no access to modify any electrical or thermal limits. However,

they might be able to effectively simulate those limits by using carefully tested stressor code.

This was not an area that we investigated, but would be open for further research.

100



Chapter 5 Leaky Throttling

Privileged Attacker

Being able to modify the energy limits and time windows requires a privileged attacker,

e.g., a kernel process. In this scenario, the victim process would be running inside SGX.

As we saw in Section 2.2.1, SGX assumes that only the CPU package and application code

are trustworthy. An adversary may, however, compromise other components including the

operating system and other privileged system interfaces. For this reason we moved our covert

processes inside an SGX enclave for the following tests.

5.4.3 Experiments

In the earlier experiments we observed greater granularity in changes at the higher fre-

quencies, Therefore, for these experiments we picked two frequencies at the higher end

of those available: 3GHz and 2.4GHz. We reduced the window to the smallest possible

value and modified the power limits using MSR_PKG_POWER_LIMIT, on the test machine,

MSR_PP0_POWER_LIMIT was not available.

5.4.4 Observations

In section 5.3 we recorded that package energy usage was highest for: imul and lowest

for array lookups. Figures 5.11 and 5.12 align with the expectation that the operands

consuming the greatest energy are those that will be throttled the most. We observed that

the operand imul causes the throttling to kick-in quickly and continuously for both clock

frequencies (3GHz and 2.4GHz). Meanwhile the throttling was not deployed for the array

lookup when the clock frequency was set to 3GHz and only very briefly at 2.4GHz.

Furthermore, we witness that the enclave offers no protection from leaking information via

101



Chapter 5 Leaky Throttling

Figure 5.11: MSR outputs from Package Throttling i7-7700HQ-XPS at 2.4GHz with a power limit
of 7.875 Watts and a window of 0.9765ms no rolling average. MSR readings taken every 4ms. Covert
functions running inside SGX.

sqrsd sqrsdsqrsdsqrsd

imulimul
array
lookup

array
lookup

array
lookup

array
lookup

array
lookup

array
lookup

imulimul

Figure 5.12: MSR outputs from Package Throttling i7-7700HQ-XPS at 3GHz with a power limit
of 16 Watts and a window of 0.9765ms no rolling average. MSR readings taken every 4ms. Covert
functions running inside SGX.

the power and energy readings. This is because the frequency and voltage regulators are

oblivious to processes running inside an enclave, they serve the whole processor regardless

of any secure code that may be running.

102



Chapter 5 Leaky Throttling

5.5 Non-continuing work

Our work clearly demonstrates that, if the power limits can be modified (or manipulated by

other stressor code), there is leakage from the throttling telemetries, However, modifying

the power limits requires a privileged access to the server—which only fits the SGX threat

model. We felt that the work was going to be another paper attacking SGX, given the huge

quantity of research published in this arena we did not continue the work.

5.6 Subsequent work

Having decided not to continue the research, three papers were subsequently published relat-

ing to throttling! In 2021, Haj-Yahya et al. [76] were the first to demonstrate that multi-level

throttling side-effects can open up covert channels. In 2022, Intel [129] and Wan et al. [214]

both demonstrated that forcing a machine to throttle changes the runtime of processes,

including cryptographic constant runtime implementations. Their work demonstrated that

current industry guidelines for how to write constant-time code are not sufficient to guar-

antee the execution time is actually constant—demonstrating the incredible complexity of

writing secure cryptographic algorithms.

103



Chapter 6

Conclusions

The vast majority of the population unthinkingly put their private and personal information

into physical devices and thus the need for trust is clear. TEEs such as Intel’s SGX are

promising concepts i.e., isolated software components in the processor such that the un-

derlying operating system does not need to be trusted. However SGX does not exist in a

vacuum—it (at time of writing) lives on the same physical hardware and is bound by the

same power management systems. Building a fortress on weak foundations does not make

a good stronghold. SGX is built upon the dynamic execution x86 architecture—it was the

out-of-order feature which lead directly to the infamous Foreshadow attack [204].

With Plundervolt we presented the first practical attack that directly breached the integrity

guarantees in the Intel SGX security architecture. We were able retrieve keys by lowering

the operating voltage but, interestingly, we also noted that the ambient temperature affected

how much undervolting we were required to implement. Our work provided evidence that

the enclaved execution promise of outsourcing sensitive computations to untrusted remote

platforms creates new and unexpected attack surfaces. Consequently future additions to the

Trusted Computing Base must also consider a enclave’s: underlying architecture, system

104



Chapter 6 Conclusions

resources, physical dependencies and environment—a non-trivial ask!

Meanwhile, Voltpillager, was the first hardware-based fault injection attack against SGX

that side-stepped the Plundervolt mitigations. However, when the issue was reported to Intel

their response was, "... opening the case and tampering of internal hardware to compromise

SGX is out of scope for SGX threat model. Patches for CVE-2019-11157 (Plundervolt) were

not designed to protect against hardware-based attacks as per the threat model". Intel has

created a secure vault, designed with the specific purpose of securely holding and processing

private information e.g., passwords and authentication keys. Denying that hardware attacks

are within scope was a surprising response, particularly because a number of cloud providers

Azure [142], Enarx [48] and Fortanix [55] all consider the host as untrusted in their threat

model.

Several prominent companies are using SGX: Microsoft has integrated SGX into its Azure

confidential computing platform [142] to provide secure environments for its customers and

Alibaba has used SGX to secure its cloud-based blockchain platform [27]. Many other com-

panies are likely using SGX but have not made public announcements due to confidentiality

or security concerns.

In 2020 Nilsson et al. reviewed 24 attacks against SGX [154] and separated the attacks

into seven different categories: (i) Controlled Channel Attack (ii) Cache-attack (iii) Branch

Prediction Attacks (iv) Speculative Execution Attack (v) Rogue Data Cache Loads (vi) Mi-

croarchitectural Data Sampling (vii) Software-based Fault Injection Attacks. Additionally,

when we searched google scholar for articles with the words ‘SGX attack’ it returned 7710

results. It is clear that the challenges to build a fully secure Trusted Execution Environment

are immense—the enclave has to defend against everything, always and an attacker only has

to get lucky once.

As with SGX, there has been extensive research into fault-injection attacks, this work has

105



Chapter 6 Conclusions

exploded with the proliferation of embedded devices. These devices have smaller amounts

of memory and thus: older, less security-aware (but more efficient) programming languages

are in the resurgence. Buffer overflows were partially documented fifty years ago [6] and

out-of-bounds write was the number one most dangerous software weakness according

to the Common Weakness Enumeration website [49]. Embedded security researchers have

amassed a huge collective knowledge on fault injection attacks. However the journey to a

deep understanding is long and only travelled by a few. When we consider that the number of

embedded devices is growing rapidly then there has never been a greater need for automated

tools. Such applications could (and should) test the weaknesses of binaries prior to being

loaded onto the hardware. One of Faultfinder’s strengths is its ability to run on any pro-

cessor supported by QEMU, currently: ARM, ARM64 (ARMv8), M68K, MIPS, PowerPC,

RISCV, SPARC, S390X, TriCore and X86 (16, 32, 64-bit). When submitting Faultfinder to

conferences we received mostly excited feedback, a number of reviewers stated they would be

keen to use the software and could see its benefit. However, even the enthusiastic reviewers

viewed the tool as just™ useful to support fault-injection research. ARMory, [84] one of the

tools for which we did a direct comparison, demonstrated that adding in a countermeasure to

protect against one single type of fault can increase the binary’s vulnerability to a different

fault model. Researching hardware fault-injection during lockdown was challenging and we

hope that in future work, we can build upon the preliminary examples in this thesis and

colaborate with the embedded security community to demonstrate Faultfinder’s strengths

and versatility. The challenge of protecting binaries from fault injection attacks will continue

for many, many years to come.

106



Appendix A

Appendix for Plundervolt

This appendix is from the author’s work published in S&P 2020 [149] and IEEE 2020 [150]

A.1 Script for Configuring CPU Frequency

#!/bin/bash

if [ $# -ne 1 ] ; then
echo "Incorrect number of arguments" >&2
echo "Usage $0 <frequency >" >&2
echo "Example $0 1.6 GHz" >&2
exit

fi

sudo cpupower -c all frequency -set -u $1
sudo cpupower -c all frequency -set -d $1

A.2 Example Fault for RSA-CRT

The following 2048-bit RSA key was taken from the Intel example code:

107



Chapter A Appendix for Plundervolt

n = 0xBBF82F090682CE9C2338AC2B9DA871F7368D07EED41043A440D6B6F07454F51FB8DFBAAF035C

02AB61EA48CEEB6FCD4876ED520D60E1EC4619719D8A5B8B807FAFB8E0A3DFC737723EE6B4B7D93A258

4EE6A649D060953748834B2454598394EE0AAB12D7B61A51F527A9A41F6C1687FE2537298CA2A8F5946

F8E5FD091DBDCB

e = 0x11

d = 0xA5DAFC5341FAF289C4B988DB30C1CDF83F31251E0668B42784813801579641B29410B3C7998D6

BC465745E5C392669D6870DA2C082A939E37FDCB82EC93EDAC97FF3AD5950ACCFBC111C76F1A9529444

E56AAF68C56C092CD38DC3BEF5D20A939926ED4F74A13EDDFBE1A1CECC4894AF9428C2B7B8883FE4463

A4BC85B1CB3C1

The following ciphertext x decrypts to y = xd (mod n):

x = 0x1253E04DC0A5397BB44A7AB87E9BF2A039A33D1E996FC82A94CCD30074C95DF763722017069E

5268DA5D1C0B4F872CF653C11DF82314A67968DFEAE28DEF04BB6D84B1C31D654A1970E5783BD6EB96A

024C2CA2F4A90FE9F2EF5C9C140E5BB48DA9536AD8700C84FC9130ADEA74E558D51A74DDF85D8B50DE9

6838D6063E0955

y = 0xEB7A19ACE9E3006350E329504B45E2CA82310B26DCD87D5C68F1EEA8F55267C31B2E8BB4251F8

4D7E0B2C04626F5AFF93EDCFB25C9C2B3FF8AE10E839A2DDB4CDCFE4FF47728B4A1B7C1362BAAD29AB4

8D2869D5024121435811591BE392F982FB3E87D095AEB40448DB972F3AC14F7BC275195281CE32D2F1B

76D4D353E2D

Injecting a fault during the first half of the RSA-CRT computation on the i3-7100U-Aat

1GHz with -225mV undervolting, the following faulty y′ was obtained in one of our experi-

ments:

y′ = 0xAA105EAFB6BDD9E5A15443729670B70F042889103E023428F37B1CEFFAECC91292772652E201

6AA5955DFDA6FD5B685AE062A32DEA9C9E99F516370BE2ED4EF48A3C3513E4026E5DE3647267A83C9C2

108



Chapter A Appendix for Plundervolt

45A72EA9F4D8C2B373A8CE70047C922A108807197A6BC15A1DF31E06FCD5521AA00ECC0B3A2A5BCDDE5

A8B7B5AAD3015F

A.3 Further Examples for AES-NI AES Encryption Faults

[Enclave] plaintext: 4C96DD4E44B4278E6F49FCFC8FCFF5C9
[Enclave] round key: BE7ED6DB9171EBBF9EA51569425D6DDE
[Enclave] ciphertext1: 0D42753C23026D11884385F373EAC66C
[Enclave] ciphertext2: 0D40753C23026D11884385F373EAC66C

[Enclave] plaintext: 2A89F789FAE690774FB2FC04DC8EB7BE
[Enclave] round key: E420AFB5B6ECE976B7A55812705DC2A7
[Enclave] ciphertext1: A2A556F8BBE848CA125E110507DC2E0E
[Enclave] ciphertext2: A2A756F8BBE848CA125E110507DC2E0E

[Enclave] plaintext: D15DBCAA47A8D62B281FFCF9CEF49F5D
[Enclave] round key: FF27B41E3A0F2D9215F4AF61F394C3E8
[Enclave] ciphertext1: 2203 E7B64DEE0F3133FBE61E451F43FD
[Enclave] ciphertext2: 2201 E7B64DEE0F3133FBE61E451F43FD

[Enclave] plaintext: A67DBE59F885B1AD4F20FE212A2F1767
[Enclave] round key: A4A28B5577F4D771C19B20A90B0CFA98
[Enclave] ciphertext1: 70 E2C1040C009C78D64952B4F5B2777A
[Enclave] ciphertext2: 70 E0C1040C009C78D64952B4F5B2777A

[Enclave] plaintext: 7815 CBC04D8FB2A3B464946A9E9B5596
[Enclave] round key: 596 FA60CC6496FD3E9E2B41DF701BA3D
[Enclave] ciphertext1: 19 C386B99889F93DC16C0D8E3FE3804A
[Enclave] ciphertext2: 1DC386B99889F93DC16C0D8E3FE3804A

A.4 Running DFA against AES-NI

Based on the fault described in Section 2.4.3, the input file fault.txt to the DFA imple-

mentation from https://github.com/Daeinar/dfa-aes should contain the following line:

BDFADCE3333976AD53BB1D718DFC4D5A DE49E9284A625F72DB87B4A559E814C4

This fault was obtained on the i7-8650U-Awith -195mV undervolting at 1.9GHz.

109

https://github.com/Daeinar/dfa-aes


Chapter A Appendix for Plundervolt

We ran the DFA implementation on four cores, knowing that the fault is in byte one as

follows:

./dfa 4 1 fault.txt

This yields 595 key candidates for this particular example, including the correct secret key

value 0x000102030405060708090a0b0c0d0e0f.

A.5 Reference Launch Enclave Implementation

In this appendix, we provide the full C source code and compiled assembly for the mini-

malist launch enclave application scenario presented in section 2.5.1. We loosely based our

implementation on the open-source reference launch enclave code (psw/ae/ref_le) provided

by Intel as part of its SGX SDK [93]. Our custom launch enclave enforces a simple launch

control policy by only returning valid launch tokens for known enclave authors. Specifically,

the enclave maintains a global fixed-length array of known enclave authors (identified by the

respective MRSIGNER values) plus whether or not they are allowed access to the long-term

platform provisioning key. After the global white list has been initialised to all zeroes, our

implementation should never return 1.

/* Minimal example implementation based on <https :// github.com/intel/linux
-sgx/blob/master/psw/ae/ref_le/ref_le.cpp#L47 > */

typedef struct _ref_le_white_list_entry_t
{

sgx_measurement_t mr_signer;
uint8_t provision_key;

} ref_le_white_list_entry_t;

#define REF_LE_WL_SIZE 0x8D1EE

ref_le_white_list_entry_t g_ref_le_white_list_cache[REF_LE_WL_SIZE] = { 0
};

void init_wl(void)

110



Chapter A Appendix for Plundervolt

{
memset(g_ref_le_white_list_cache , 0x00 , sizeof(
ref_le_white_list_entry_t) * REF_LE_WL_SIZE);

}

int check_wl_entry(size_t idx , sgx_measurement_t *mrsigner , int provision)
{

/*
* XXX the following array index compiles to a
* multiplication that can be faulted ..
*/

ref_le_white_list_entry_t *current_entry = &g_ref_le_white_list_cache[
idx];

/*
* Our exemplary launch policy requires that the

111



Chapter A Appendix for Plundervolt

* enclave author is white listed , plus is optionally
* allowed access to the platform provisioning key.
*/

if (memcmp (&( current_entry ->mr_signer), mrsigner , sizeof(
sgx_measurement_t)) == 0)
{

return (provision ? current_entry ->provision_key
: 1);

}

return 0;
}

int get_launch_token(size_t *it, sgx_measurement_t mrsigner , int provision
)

{
for (size_t i = 0; i < REF_LE_WL_SIZE; i++)
{

if (check_wl_entry(i, &mrsigner , provision))
{

return 1;
}

/* NOTE: we explicitly leak the loop iteration
* here for simplicity; real -world adversaries
* could use a #PF side -channel or count
* instructions w precise single -stepping
*/

*it = i;
}

/* For simplicity , we only return true or false and do not compute the
actual launch token. */
return 0;

}

For completeness, we also provide a disassembled version of the relevant check_wl_entry

function, as compiled with gcc v7.4.0 (optimization level -Os):

check_wl_entry:
imul $0x21 ,%rdi ,%rdi
push %rbp
push %rbx
lea g_ref_le_white_list_cache (%rip),%rbx
mov %edx ,%ebp
mov $0x20 ,%edx
sub $0x8 ,%rsp
add %rdi ,%rbx
mov %rbx ,%rdi

112



Chapter A Appendix for Plundervolt

callq memcmp
xor %edx ,%edx
test %eax ,%eax
jne 1f
test %ebp ,%ebp
mov $0x1 ,%edx
je 1f
movzbl 0x20(%rbx),%edx

1:
mov %edx ,%eax
pop %rdx
pop %rbx
pop %rbp
retq

113



Appendix B

Appendix for Voltpillager

B.1 Example Results for Faults during Memory Accesses

This appendix is based upon the author’s contribution to the published work in USENIX

2021 [32].

The following out-of-bounds overflow fault happened at iteration 769170 with -172mV un-

dervolting and the CPU running at 2GHz on i7-7700HQ-XPSduring computation inside

SGX.

[Enclave] FAULT: array [00]: 0x00000000
[Enclave] FAULT: array [01]: 0xabababab
[Enclave] FAULT: array [02]: 0xabababab
[Enclave] FAULT: array [03]: 0xabababab
[Enclave] FAULT: array [04]: 0xabababab
[Enclave] FAULT: array [05]: 0xabababab
[Enclave] FAULT: array [06]: 0xabababab
[Enclave] FAULT: array [07]: 0xabababab

Listing B.1: Overflow on i7-7700HQ-XPS

114



Chapter B Appendix for Voltpillager

The following out-of-bounds underflow happened at iteration 210612 with -175mV under-

volting on the same system during computation inside SGX.

[Enclave] FAULT: array [00]: 0xabababab
[Enclave] FAULT: array [01]: 0xabababab
[Enclave] FAULT: array [02]: 0xabababab
[Enclave] FAULT: array [03]: 0xabababab
[Enclave] FAULT: array [04]: 0xabababab
[Enclave] FAULT: array [05]: 0x00000000
[Enclave] FAULT: array [06]: 0x00000000
[Enclave] FAULT: array [07]: 0x00000000

Listing B.2: Underflow on i7-7700HQ-XPS

115



Appendix C

Appendix for Faultfinder

C.1 Setup Files

C.1.1 Example Binary Configuration File

{
"comment" : "Everything in the comment is not used -
other than by the humans",
"binary filename" : "experiments/archie/bins/example -aes -archie.
elf",
"unicorn arch" : "arm",
"unicorn mode" : "thumb",
"cpu" : "CORTEX_M7",
"capstone arch" : "arm",
"capstone mode" : "thumb",
"memory address" : "0x08000000",
"memory size" : "0x80000",
"other memory" :
[

{
"address" : "0x20000000",
"size" : "0x4000"

}
],
"code offset" : "0x10000",
"stack address" : "0x82000000",
"stack size" : "0x00001000",
"code start" : "0x00dd",
"code end" : "0x0122",

116



Chapter C Appendix for Faultfinder

"fault start" : "0x106",
"fault end" : "0x122",
"set memory" :
[{

"type" : "address",
"format" : "hex",
"byte_array" : "2b7e151628aed2 ...00127 a0000127a00",
"address" : "0x20000000"

}],
"set registers" :
[
],
"outputs" :
[{

"comment" : "sbox data",
"location" : "fixed address",
"address" : "0x20000000",
"register" : "",
"length" : "16",
"offset" : "not used"

}],
"skips":
[{

"address" : "0xfe",
"bytes" : "4",
"comment" : "gpio_set"

},
{

"address" : "0x110",
"bytes" : "4",
"comment" : "gpio_clear"

}],
"hard stops":
[{

"address" : "0x124c"
}],
"time out":"500000"

}

C.1.2 Example Fault Rules File

#Faulting sbox access. 0x800101a -0 x8001032
Instructions: 4937 -4942
Instruction:
Op_codes: ALL
Lifespan: 2, revert
Operations: OR
Masks:0x4 ,0x400

117



Chapter C Appendix for Faultfinder

C.1.3 Example Campaign File

{
"binary json filename" : "experiments/archie/jsons/binary -details.
json",
"mode" : "fault",
"output directory name" : "experiments/archie/outputs/morphius /0
_checkpoints",
"threads" : "8",
"fault model filename" : "experiments/archie/faultmodels/
replicating_archie_arm.txt",
"checkpoints" : "no",
"number of checkpoints" : "0",
"equivalents" : "no",
"timeit" : "no",
"max instructions" : "300000",
"display disassembly" : "yes"

}

C.2 Fault Models

C.2.1 ARCHIE Fault Model

[{ "comment1" : "Sbox data fault in register r1",
"fault_address" : [1],
"fault_type" : "register",
"fault_model" : "set1",
"fault_livespan" : [4],
"fault_mask" : [1, 256, 1],
"comment2" : "Fault injected after values loaded from sbox 0
x8001024 , rounds 8 - 10",
"trigger_address" : [134221860] ,
"trigger_counter" : [128, 160, 1]

}],
[{ "comment1" : "Fault instructions of sbox access. 0x800101a

(134221850) - 0x8001032 (134221874)",
"fault_address" : [134221850 , 134221874 , 2],
"fault_type" : "instruction",
"fault_model" : "set1",
"fault_livespan" : [2],
"fault_mask" : [4],
"trigger_address" : [-1],
"trigger_counter" : [141]

118



Chapter C Appendix for Faultfinder

}],
[{

"comment1": "Fault last round check: 0x8001066 (134221926) - 0x800106c
(0 x800106c)",
"fault_address" : [134221926 , 134221932 , 2],
"fault_type" : "instruction",
"fault_model" : "set1",
"fault_livespan" : [2],
"fault_mask" : { "type" : "shift" , "range" : [3, 0, 14]},
"trigger_address" : [-1],
"trigger_counter" : [8, 10, 1]

}]

C.2.2 Faultfinder Fault Model

Instructions: 4371 -4371 ,4851 -4851 ,4857 -4857 ,4863 -4863 ,4869 -4869 ,4880 -4880 ,
4886 -4886 ,4892 -4892 ,4898 -4898 ,4909 -4909 ,4915 -4915 ,4921 -4921 ,4927 -4927 ,
4938 -4938 ,4944 -4944 ,4950 -4950 ,4956 -4956 ,5436 -5436 ,5442 -5442 ,5448 -5448 ,
5454 -5454 ,5465 -5465 ,5471 -5471 ,5477 -5477 ,5483 -5483 ,5494 -5494 ,5500 -5500 ,
5506 -5506 ,5512 -5512 ,5523 -5523 ,5529 -5529 ,5535 -5535

Registers: 1
Op_codes: ALL
Lifespan: 4,revert
Operations: OR
Masks:0x1 ,0x2 ,0x3 ,0x4 ,0x5 ,0x6 ,0x7 ,0x8 ,0x9 ,0xa ,0xb ,0xc ,0xd ,0xe ,0xf,
0x10 ,0x11 ,0x12 ,0x13 ,0x14 ,0x15 ,0x16 ,0x17 ,0x18 ,0x19 ,0x1a ,0x1b ,0x1c ,
0x1d ,0x1e ,0x1f ,0x20 ,0x21 ,0x22 ,0x23 ,0x24 ,0x25 ,0x26 ,0x27 ,0x28 ,0x29 ,
0x2a ,0x2b ,0x2c ,0x2d ,0x2e ,0x2f ,0x30 ,0x31 ,0x32 ,0x33 ,0x34 ,0x35 ,0x36 ,
0x37 ,0x38 ,0x39 ,0x3a ,0x3b ,0x3c ,0x3d ,0x3e ,0x3f ,0x40 ,0x41 ,0x42 ,0x43 ,
0x44 ,0x45 ,0x46 ,0x47 ,0x48 ,0x49 ,0x4a ,0x4b ,0x4c ,0x4d ,0x4e ,0x4f ,0x50 ,
0x51 ,0x52 ,0x53 ,0x54 ,0x55 ,0x56 ,0x57 ,0x58 ,0x59 ,0x5a ,0x5b ,0x5c ,0x5d ,
0x5e ,0x5f ,0x60 ,0x61 ,0x62 ,0x63 ,0x64 ,0x65 ,0x66 ,0x67 ,0x68 ,0x69 ,0x6a ,
0x6b ,0x6c ,0x6d ,0x6e ,0x6f ,0x70 ,0x71 ,0x72 ,0x73 ,0x74 ,0x75 ,0x76 ,0x77 ,
0x78 ,0x79 ,0x7a ,0x7b ,0x7c ,0x7d ,0x7e ,0x7f ,0x80 ,0x81 ,0x82 ,0x83 ,0x84 ,
0x85 ,0x86 ,0x87 ,0x88 ,0x89 ,0x8a ,0x8b ,0x8c ,0x8d ,0x8e ,0x8f ,0x90 ,0x91 ,
0x92 ,0x93 ,0x94 ,0x95 ,0x96 ,0x97 ,0x98 ,0x99 ,0x9a ,0x9b ,0x9c ,0x9d ,0x9e ,
0x9f ,0xa0 ,0xa1 ,0xa2 ,0xa3 ,0xa4 ,0xa5 ,0xa6 ,0xa7 ,0xa8 ,0xa9 ,0xaa ,0xab ,
0xac ,0xad ,0xae ,0xaf ,0xb0 ,0xb1 ,0xb2 ,0xb3 ,0xb4 ,0xb5 ,0xb6 ,0xb7 ,0xb8 ,
0xb9 ,0xba ,0xbb ,0xbc ,0xbd ,0xbe ,0xbf ,0xc0 ,0xc1 ,0xc2 ,0xc3 ,0xc4 ,0xc5 ,
0xc6 ,0xc7 ,0xc8 ,0xc9 ,0xca ,0xcb ,0xcc ,0xcd ,0xce ,0xcf ,0xd0 ,0xd1 ,0xd2 ,
0xd3 ,0xd4 ,0xd5 ,0xd6 ,0xd7 ,0xd8 ,0xd9 ,0xda ,0xdb ,0xdc ,0xdd ,0xde ,0xdf ,
0xe0 ,0xe1 ,0xe2 ,0xe3 ,0xe4 ,0xe5 ,0xe6 ,0xe7 ,0xe8 ,0xe9 ,0xea ,0xeb ,0xec ,
0xed ,0xee ,0xef ,0xf0 ,0xf1 ,0xf2 ,0f3 ,0xf4 ,0xf5 ,0xf6 ,0xf7 ,0xf8 ,0xf9 ,
0xfa ,0xfb ,0xfc ,0xfd ,0xfe ,0xff

Instructions :937 -4942
Instruction:

Op_codes: ALL
Lifespan: 2,revert

119



Chapter C Appendix for Faultfinder

Operations: OR
Masks:0x4

Instructions: 4404 -4406 ,4989 -4991
Instruction:

Op_codes: ALL
Lifespan: 2,revert

Operations: OR
Masks:0x3 <0<14

120



Appendix D

Appendix for Leaking Throttling

D.1 Covert Code

#include <emmintrin.h>
#include <x86intrin.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <math.h>
#include <time.h>
#include <pthread.h>
#include <sys/mman.h>
#include <sys/ioctl.h>

#define myprintf (...) printf("Covert > " __VA_ARGS__)

// bigger iterations for throttling
#define ITERATIONS_SQRT 20000000 ul // covert = 10 (sqrtsd)
#define ITERATIONS_IMUL 60000000 ul // covert = 9 (multply)
#define ITERATIONS_ARRAY_LOOKUP 5000000 ul // covert = 8 (array lookup)

static uint64_t SBOX [512] = {
0x63 , 0x7c , 0x77 , 0x7b , 0xf2 , 0x6b , 0x6f , 0xc5 , 0x30 , 0x01 , 0x67 ,
.
.
.
0x142 , 0x168 , 0x141 , 0x199 , 0x12d , 0x10f , 0x1b0 , 0x154 , 0x1bb , 0x116};

121



Chapter D Appendix for Leaking Throttling

typedef struct data_arrays_t
{

uint64_t tsc;
int mode;

} data_arrays;

uint64_t rdtsc ()
{

uint64_t a, d;
asm volatile("mfence");
asm volatile("rdtsc"

: "=a"(a), "=d"(d));

a = (d << 32) | a ;

asm volatile("mfence");
return a;

}

void save_to_file(FILE *fptr , data_arrays *da, uint64_t counter)
{

for (uint64_t i = 0; i < counter; i++)
{

fprintf(fptr , "%li ,%i\n", da[i].tsc , da[i].mode);
}

}

uint64_t run_array_memory_lookup ()
{

uint64_t v = rand() % 512;
for (int i = 0; i < ITERATIONS_ARRAY_LOOKUP; i++)
{

asm volatile("mfence");
v = SBOX[v];
asm volatile("mfence");

}
return v;

}

void asm_imul ()
{

int input_val = rand();
int output_val = rand();

for (int i = 0; i < ITERATIONS_IMUL; i++)
{

asm volatile(
"imul %1, %0 \n"
: "+r"(output_val)
: "rm"(input_val)

122



Chapter D Appendix for Leaking Throttling

);
}

}

void asm_sqrt ()
{

double a = rand();
double b = 0;
for(int i = 0; i < ITERATIONS_SQRT; i++)
{

asm volatile(
"movq %1, %%xmm0 \n"
"sqrtsd %%xmm0 , %%xmm1 \n"
"movq %%xmm1 , %0 \n"
: "=r"(b)
: "g"(a)
: "xmm0", "xmm1", "memory"

);
}

}

void read_sending_details( int number_array [50])
{

FILE *myFile;
myFile = fopen("covert_sender_details.txt", "r");

if (myFile == NULL){
printf("Error Reading File\n");
exit (0);

}

int i=0;
int value =0;

do
{

fscanf(myFile , "%d,", &value );
number_array[i]= value;
i++;

} while (value != -99);

fclose(myFile);
}

int main(int argc , const char **argv)
{

/* Intializes random number generator */
time_t t;
srand(( unsigned) time(&t));

if (argc != 2 && argc != 3)
{

123



Chapter D Appendix for Leaking Throttling

myprintf("Usage: %s sleep between measurements (uS] [print to
screen 1 or 0]\n", argv [0]);

exit(-1);
}

uint64_t period_us;
period_us = strtol(argv[1], NULL , 10);

int print_to_screen = 0;
if (argc == 3)

print_to_screen = atoi(argv [2]);

char *filename = "data_covert.csv";
FILE *fptr = fopen(filename , "w");

myprintf("Starting %s.\n", argv [0]);
myprintf("Period (uS) %li.\n", period_us);
uint64_t return_val_sbox =0;

int mode;
int sending_it [100]={};
read_sending_details(sending_it);

int* send_it = sending_it;
while (* send_it != -99)
{

mode = *send_it;
send_it ++;

// start the timers
fprintf(fptr , "%ld ,%i\n", rdtsc (), mode);
if (print_to_screen)
{

printf("%ld ,%i\n", rdtsc (), mode);
}
switch (mode)
{
case 10:

asm_sqrt ();
break;

case 9:
asm_imul ();
break;

case 8:
return_val_sbox = run_array_memory_lookup ();
break;

default:
usleep(period_us);
break;

}
// end the timers
fprintf(fptr , "%ld ,%i\n", rdtsc (), mode);
if (print_to_screen)

124



Chapter D Appendix for Leaking Throttling

{
printf("%ld ,%i\n", rdtsc (), mode);

}
}
myprintf("Finished %s.\n", argv [0]);
fclose(fptr);
return 0;

}

D.2 Reading MSR Code

#include <emmintrin.h>
#include <x86intrin.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <math.h>
#include <time.h>
#include <pthread.h>

#define myprintf (...) printf("throttling_msr_read > " __VA_ARGS__)

FILE* fptr;
char* filename = "data_msr_read.csv";

typedef struct data_management_t
{

int loop_counter;
uint64_t sleep_u_secs;
uint64_t max_loop_iterations;

} data_management;

typedef struct data_arrays_t
{

uint64_t tsc_dram;
uint64_t dram_throttle_val;
uint64_t dram_energy_val;
uint64_t tsc_pkg;
uint64_t pkg_throttle_val;
uint64_t pkg_energy_val;
uint64_t tsc_voltage;
uint64_t voltage;

} data_arrays;

125



Chapter D Appendix for Leaking Throttling

data_management dm;
data_arrays* da;

uint64_t rdtsc ()
{

uint64_t a, d;
asm volatile ("mfence");
asm volatile ("rdtsc" : "=a" (a), "=d" (d));
a = (d << 32) | a ;
asm volatile ("mfence");
return a;

}

uint64_t read_msr(int fd , int msr)
{

uint64_t val;
pread(fd , &val , sizeof(val), msr);
return (uint64_t)val;

}
/*** DRAM ***/
uint64_t read_accumulated_dram_energy(int fd)
{

return read_msr(fd ,0x619);
}
uint64_t read_accumulated_dram_throttled_time(int fd)
{

return read_msr(fd ,0x61b); // dram_perf_status
}

/*** pkg ***/
uint64_t read_accumulated_pkg_energy(int fd)
{

return read_msr(fd ,0x611); // pkg_energy_status
}

uint64_t read_accumulated_pkg_throttled_time(int fd)
{

return read_msr(fd ,0x613); // pkg_perf_status
}

uint64_t read_voltage(int fd)
{

return read_msr(fd ,0x198);
}

int max(int num1 , int num2)
{

return (num1 > num2 ) ? num1 : num2;
}

126



Chapter D Appendix for Leaking Throttling

int main(int argc , const char **argv)
{

if ( argc != 3 )
{

myprintf("Usage: %s loop_count sleep_usecs\n", argv [0]);
exit (-1);

}
// Open the msr
int fd = open("/dev/cpu /0/ msr", O_RDWR);
if(fd == -1)
{

myprintf("\nCould not open /dev/cpu/0/msr. \nDid you forget to use
’sudo’ ?\n\n");

exit (-1);
}
dm.max_loop_iterations=strtol(argv[1],NULL ,10);
dm.sleep_u_secs=strtol(argv[2],NULL ,10);

FILE *fptr;
char* filename = "data_msr_read.csv";
fptr = fopen(filename ,"w");

myprintf ("Starting %s.\n",argv [0]);
myprintf ("Running with max_loop_iterations of: %li \n",dm.
max_loop_iterations);
data_arrays da = {};
uint64_t i;

for (i=0;i<dm.max_loop_iterations;i++)
{

da.tsc_dram=rdtsc();
da.dram_energy_val = read_accumulated_dram_energy(fd);
da.dram_throttle_val = read_accumulated_dram_throttled_time(fd);
da.tsc_pkg=rdtsc();
da.pkg_energy_val = read_accumulated_pkg_energy(fd);
da.pkg_throttle_val = read_accumulated_pkg_throttled_time(fd);
da.tsc_voltage=rdtsc();
da.voltage = read_voltage(fd);

fprintf (fptr ,"%li ,%li ,%li ,%li ,%li ,%li ,%li ,%li\n",
da.tsc_dram ,
da.dram_throttle_val ,
da.dram_energy_val ,
da.tsc_pkg ,
da.pkg_throttle_val ,
da.pkg_energy_val ,
da.tsc_voltage ,
da.voltage
);

usleep (dm.sleep_u_secs);
}
myprintf ("Finished %s.\n",argv [0]);

127



Chapter D Appendix for Leaking Throttling

return 0;
}

128



References

[1] Eltayeb S. Abuelyaman and Balasubramanian Devadoss. “Differential Fault Analysis

Automation”. In: International Conference on Internet Computing (2005), pp. 1–18.

[2] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and Assia Tria.

“When Clocks Fail: On Critical Paths and Clock Faults”. In: Smart Card Research

and Advanced Application. Ed. by Dieter Gollmann, Jean-Louis Lanet, and Julien

Iguchi-Cartigny. Springer Berlin Heidelberg, 2010, pp. 182–193.

[3] Murugappan Alagappan, Jeyavijayan Rajendran, Miloš Doroslovački, and Guru Venkatara-

mani. “DFS covert channels on multi-core platforms”. In: 2017 IFIP/IEEE Interna-

tional Conference on Very Large Scale Integration (VLSI-SoC). 2017, pp. 1–6. doi:

10.1109/VLSI-SoC.2017.8203469.

[4] Tiago Alves. “Trustzone: Integrated hardware and software security”. In: White paper

(2004).

[5] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. “Innovative technol-

ogy for CPU based attestation and sealing”. In: Proceedings of the 2nd international

workshop on hardware and architectural support for security and privacy. Vol. 13.

ACM New York, NY, USA. 2013.

[6] James P Anderson. Computer Security Technology Planning Study. Tech. rep. Fort

Washington PA, 1972.

129

https://doi.org/10.1109/VLSI-SoC.2017.8203469


REFERENCES

[7] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L. Still-

well, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and Christof

Fetzer. “SCONE: Secure Linux Containers with Intel SGX”. In: Usenix OSDI ’16.

Savannah, GA: USENIX Association, Nov. 2016, pp. 689–703.

[8] Anjali Arora and Saibal Kumar Pal. “A Survey of Cryptanalytic Attacks on Lightweight

Block Ciphers”. In: IRACST -International Journal of Computer Science and Infor-

mation Technology & Security 2.2 (2012), pp. 2249–9555.

[9] Christian Aumueller, Peter Bier, Wieland Fischer, Peter Hofreiter, and Jean-Pierre

Seifert. “Fault Attacks on RSA with CRT: Concrete Results and Practical Counter-

measures”. In: CHES. 2002.

[10] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das, Matthew

Hicks, Yossi Oren, and Todd Austin. “ANVIL: Software-based protection against next-

generation Rowhammer attacks”. In: ACM SIGPLAN Notices (2016).

[11] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. “An in-depth and black-

box characterization of the effects of clock glitches on 8-bit MCUs”. In: Proceedings

- 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2011

(2011), pp. 105–114.

[12] Guillaume Barbu, Hugues Thiebeauld, and Vincent Guerin. “Attacks on Java Card 3.0

– Combining Fault and Logical Attacks”. In: CARDIS ’10. Ed. by Dieter Gollmann,

Jean-Louis Lanet, and Julien Iguchi-Cartigny. Berlin, Heidelberg: Springer, 2010,

pp. 148–163.

[13] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. “Fault

Injection Attacks on Cryptographic Devices: Theory, Practice, and Countermeasures”.

In: Proceedings of the IEEE 100.11 (2012), pp. 3056–3076. doi: 10.1109/JPROC.2012.

2188769.

130

https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1109/JPROC.2012.2188769


REFERENCES

[14] Thierno Barry, Damien Couroussé, and Bruno Robisson. “Compilation of a Counter-

measure Against Instruction-Skip Fault Attacks”. In: CS2 ’16. ACM, 2016, pp. 1–6.

doi: 10.1145/2858930.2858931.

[15] Andrew Baumann, Marcus Peinado, and Galen Hunt. “Shielding Applications from

an Untrusted Cloud with Haven”. In: Usenix OSDI ’14. Broomfield, CO: USENIX

Association, Oct. 2014, pp. 267–283.

[16] Markus Becker, Daniel Baldin, Christoph Kuznik, Mabel Mary Joy, Tao Xie, and

Wolfgang Mueller. “XEMU: An Efficient QEMU Based Binary Mutation Testing

Framework for Embedded Software”. In: EMSOFT ’12. New York, NY, USA: ACM,

2012, pp. 33–42. doi: 10.1145/2380356.2380368.

[17] Sarani Bhattacharya and Debdeep Mukhopadhyay. “Curious Case of Rowhammer:

Flipping Secret Exponent Bits Using Timing Analysis”. In: CHES. 2016.

[18] Eli Biham and Adi Shamir. “Differential Fault Analysis of Secret Key Cryptosystems”.

In: Proceedings of the 17th Annual International Cryptology Conference on Advances

in Cryptology – CRYPTO’97. 1997, pp. 513–525.

[19] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza

Sadeghi. “The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel SGX”.

In: 27th USENIX Security Symposium (USENIX) Security 18). Baltimore, MD: USENIX

Association, 2018, pp. 1213–1227.

[20] Dan Boneh. “On the Importance of Eliminating Errors in Cryptographic Computa-

tions”. In: Journal of Cryptology (2001). doi: 10.1007/S001450010016.

[21] Dan Boneh, RA Demillo, and RJ Lipton. “On the Importance of Checking Compu-

tations”. In: July 1997 (1996), pp. 1–11.

131

https://doi.org/10.1145/2858930.2858931
https://doi.org/10.1145/2380356.2380368
https://doi.org/10.1007/S001450010016


REFERENCES

[22] Pradip Bose and Saibal Mukhopadhyay. “Energy-Secure System Architectures (ESSA):

A Workshop Report”. In: IEEE Micro 39.4 (2019), pp. 27–34. doi: 10.1109/mm.2019.

2921508.

[23] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. “Dedup Est Machina:

Memory Deduplication as an Advanced Exploitation Vector”. In: S&P. 2016.

[24] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. “Shaping the Glitch:

Optimizing Voltage Fault Injection Attacks”. In: IACR Transactions on Cryptographic

Hardware and Embedded Systems 2019.2 (Feb. 2019), pp. 199–224.

[25] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-Reza

Sadeghi. “CAn’t Touch This: Software-Only Mitigation against Rowhammer Attacks

Targeting Kernel Memory”. In: SEC’17. Vancouver, BC, Canada: USENIX Associa-

tion, 2017, pp. 117–130.

[26] Jakub Breier, Xiaolu Hou, and Yang Liu. “Fault Attacks Made Easy: Differential Fault

Analysis Automation on Assembly Code”. In: IACR Transactions on Cryptographic

Hardware and Embedded Systems 2018.2 (May 2018), pp. 96–122. doi: 10.13154/tches.

v2018.i2.96-122. url: https://tches.iacr.org/index.php/TCHES/article/view/876.

[27] Build an SGX encrypted computing environment. url: https://www.alibabacloud.

com/help/en/elastic- compute- service/latest/build-an-sgx-encrypted-computing-

environment.

[28] Edward Burton, Gerhard Schrom, Fabrice Paillet, Jonathan Douglas, William Lam-

bert, Kaladhar Radhakrishnan, and Michael Hill. “FIVR — Fully integrated volt-

age regulators on 4th generation Intel Core SoCs”. In: IEEE APEC ’14. Mar. 2014,

pp. 432–439. doi: 10.1109/APEC.2014.6803344.

[29] Rafael Boix Carpi, Stjepan Picek, Lejla Batina, Federico Menarini, Domagoj Jakobovic,

and Marin Golub. “Glitch It If You Can: Parameter Search Strategies for Successful

132

https://doi.org/10.1109/mm.2019.2921508
https://doi.org/10.1109/mm.2019.2921508
https://doi.org/10.13154/tches.v2018.i2.96-122
https://doi.org/10.13154/tches.v2018.i2.96-122
https://tches.iacr.org/index.php/TCHES/article/view/876
https://www.alibabacloud.com/help/en/elastic-compute-service/latest/build-an-sgx-encrypted-computing-environment
https://www.alibabacloud.com/help/en/elastic-compute-service/latest/build-an-sgx-encrypted-computing-environment
https://www.alibabacloud.com/help/en/elastic-compute-service/latest/build-an-sgx-encrypted-computing-environment
https://doi.org/10.1109/APEC.2014.6803344


REFERENCES

Fault Injection”. In: Smart Card Research and Advanced Applications - 12th Interna-

tional Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised

Selected Papers. 2013, pp. 236–252.

[30] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H

Lai. “SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Speculative Execution”.

In: 2019 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE.

2019, pp. 142–157.

[31] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yinqian Zhang, Xi-

aoFeng Wang, Ten-Hwang Lai, and Dongdai Lin. “Racing in hyperspace: Closing

hyper-threading side channels on SGX with contrived data races”. In: 2018 IEEE

Symposium on Security and Privacy (S&P). IEEE. 2018, pp. 178–194.

[32] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and Flavio

D. Garcia. “VoltPillager: Hardware-based fault injection attacks against Intel SGX

Enclaves using the SVID voltage scaling interface”. In: 30th USENIX Security Sym-

posium (USENIX Security 21). Vancouver, B.C.: USENIX Association, Aug. 2021.

[33] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detection of cache-

based side-channel attacks using Hardware Performance Counters. ePrint 2015/1034.

2015.

[34] Sławomir Chyłek and Marcin Goliszewski. “QEMU-based fault injection framework”.

In: Studia Informatica 33.4 (2012), pp. 25–42.

[35] Maxime Colmant, Pascal Felber, Romain Rouvoy, and Lionel Seinturier. “WattsKit:

Software-Defined Power Monitoring of Distributed Systems”. In: 2017 17th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGRID). 2017,

pp. 514–523. doi: 10.1109/CCGRID.2017.27.

133

https://doi.org/10.1109/CCGRID.2017.27


REFERENCES

[36] Jonathan Corbet. Defending against Rowhammer in the Kernel. Nov. 2016. url:

https://lwn.net/Articles/704920/. [Accessed: 1st August 2019].

[37] Intel Corporation. “Intel® 64 and IA-32 Architectures, System Programming Guide”.

In: System 3B (2016).

[38] Intel Corporation. “Volume 2”. In: System 3.253665 (2011). doi: 10.1109/MAHC.

2010.22.

[39] Victor Costan and Srinivas Devadas. “Intel SGX explained”. In: (2016).

[40] Franck Courbon, Philippe Loubet-Moundi, Jacques J. A. Fournier, and Assia Tria.

“Adjusting Laser Injections for Fully Controlled Faults”. In: Constructive Side-Channel

Analysis and Secure Design - 5th International Workshop, COSADE 2014, Paris,

France, April 13-15, 2014. Revised Selected Papers. Ed. by Emmanuel Prouff. Vol. 8622.

Lecture Notes in Computer Science. Springer, 2014, pp. 229–242. doi: 10.1007/978-

3-319-10175-0_16.

[41] Ang Cui and Rick Housley. “BADFET: Defeating Modern Secure Boot Using Second-

Order Pulsed Electromagnetic Fault Injection”. In: Usenix WOOT ’17. Vancouver,

BC: USENIX Association, Aug. 2017.

[42] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. “Electromag-

netic Transient Faults Injection on a Hardware and a Software Implementations of

AES”. In: 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography. 2012,

pp. 7–15. doi: 10.1109/FDTC.2012.15.

[43] Dell. Support for XPS 15 9560. url: https://www.dell.com/support/home/uk/en/

ukbsdt1/product-support/servicetag/djf1ph2/drivers. [Accessed: 4th July 2020].

[44] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné, and Flo-

rian Mendel. “Statistical Fault Attacks on Nonce-Based Authenticated Encryption

134

https://lwn.net/Articles/704920/
https://doi.org/10.1109/MAHC.2010.22
https://doi.org/10.1109/MAHC.2010.22
https://doi.org/10.1007/978-3-319-10175-0_16
https://doi.org/10.1007/978-3-319-10175-0_16
https://doi.org/10.1109/FDTC.2012.15
https://www.dell.com/support/home/uk/en/ukbsdt1/product-support/servicetag/djf1ph2/drivers
https://www.dell.com/support/home/uk/en/ukbsdt1/product-support/servicetag/djf1ph2/drivers


REFERENCES

Schemes”. In: ASIACRYPT 2016. Ed. by Jung Hee Cheon and Tsuyoshi Takagi.

Berlin, Heidelberg: Springer, 2016, pp. 369–395.

[45] Christopher Domas. “Breaking the x86 ISA”. In: Black Hat (2017).

[46] Jack Doweck, Wen Fu Kao, Allen Kuan Yu Lu, Julius Mandelblat, Anirudha Ra-

hatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and Adi Yoaz. “Inside 6th-

Generation Intel Core: New Microarchitecture Code-Named Skylake”. In: IEEE Micro

(2017). doi: 10.1109/MM.2017.38.

[47] João A. Durães and Henrique S. Madeira. “Emulation of software faults: A field data

study and a practical approach”. In: IEEE Transactions on Software Engineering

(2006). doi: 10.1109/TSE.2006.113.

[48] Enarx. Threat model. url: https://github.com/enarx/enarx/wiki/Threat-Model.

[Accessed: 17 June 2020, revision 678e2c2].

[49] Common Weakness Enumeration. 2022 CWE Top 25 Most Dangerous Software Weak-

nesses. url: https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html.

[Accessed: 1st November 2022].

[50] Úlfar Erlingsson, Yves Younan, and Frank Piessens. “Low-level software security by

example”. In: Handbook of Information and Communication Security. Springer, 2010,

pp. 633–658.

[51] Junfeng Fan and Ingrid Verbauwhede. “An Updated Survey on Secure ECC Imple-

mentations: Attacks, Countermeasures and Cost”. In: Cryptography and Security:

From Theory to Applications: Essays Dedicated to Jean-Jacques Quisquater on the

Occasion of His 65th Birthday. Ed. by David Naccache. Berlin, Heidelberg: Springer,

2012, pp. 265–282. doi: 10.1007/978-3-642-28368-0_18.

135

https://doi.org/10.1109/MM.2017.38
https://doi.org/10.1109/TSE.2006.113
https://github.com/enarx/enarx/wiki/Threat-Model
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://doi.org/10.1007/978-3-642-28368-0_18


REFERENCES

[52] Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng Xie. “Security vulnerabilities

of SGX and countermeasures: A survey”. In: ACM Computing Surveys (CSUR) 54.6

(2021), pp. 1–36.

[53] Davide Ferraretto and Graziano Pravadelli. “Efficient fault injection in QEMU”. In:

2015 16th Latin-American Test Symposium (LATS). 2015, pp. 1–6. doi: 10.1109/

LATW.2015.7102401.

[54] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. “AFL++ : Com-

bining Incremental Steps of Fuzzing Research”. In: Usenix WOOT. Aug. 2020.

[55] Fortanix. Intel SGX FAQ. url: https://fortanix.com/intel-sgx/. [Accessed: 2 June

2020].

[56] Fortanix. intel-oc-mbox. url: https://github.com/fortanix/intel-oc-mbox/tree/jb/

initial. [Accessed: 21 September 2020].

[57] Apostolos P. Fournaris, Lidia Pocero Fraile, and Odysseas Koufopavlou. “Exploit-

ing hardware vulnerabilities to attack embedded system devices: A survey of potent

microarchitectural attacks”. In: Electronics (Switzerland) 6.3 (2017). doi: 10.3390/

electronics6030052.

[58] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu,

Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. “TRRespass: Exploiting the

Many Sides of Target Row Refresh”. In: S&P. May 2020. doi: 10.48550/ARXIV.

2004.01807.

[59] T Fuhr, E Jaulmes, V Lomné, and A Thillard. “Fault Attacks on AES with Faulty

Ciphertexts Only”. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptog-

raphy. Aug. 2013, pp. 108–118. doi: 10.1109/FDTC.2013.18.

[60] Matteo Fusi. “Information-leakage analysis based on hardware performance counters”.

MA thesis. 2017.

136

https://doi.org/10.1109/LATW.2015.7102401
https://doi.org/10.1109/LATW.2015.7102401
https://fortanix.com/intel-sgx/
https://github.com/fortanix/intel-oc-mbox/tree/jb/initial
https://github.com/fortanix/intel-oc-mbox/tree/jb/initial
https://doi.org/10.3390/electronics6030052
https://doi.org/10.3390/electronics6030052
https://doi.org/10.48550/ARXIV.2004.01807
https://doi.org/10.48550/ARXIV.2004.01807
https://doi.org/10.1109/FDTC.2013.18


REFERENCES

[61] Ruchi Gaba, Er Shobhit, Gupta Pg, and India Kurukshetra. Fault Injection and Its

Techniques. Tech. rep. 4. 2014, p. 2277. url: www.ijarcsse.com.

[62] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. “Infective Computa-

tion and Dummy Rounds: Fault Protection for Block Ciphers without Check-before-

Output”. In: LATINCRYPT ’12. Ed. by Alejandro Hevia and Gregory Neven. Berlin,

Heidelberg: Springer, 2012, pp. 305–321.

[63] Github. intel-undervolt issue 43. url: https://github.com/kitsunyan/intel-undervolt/

issues/43%5C#issuecomment-619373836. [Accessed: 18 June 2020].

[64] Github. Plundervolt. url: https://github.com/KitMurdock/plundervolt. [Accessed:

18 June 2020].

[65] Thomas Given-Wilson, Nisrine Jafri, and Axel Legay. “The State of Fault Injection

Vulnerability Detection”. In: VECoS ’18. Ed. by Mohamed Faouzi Atig, Saddek Ben-

salem, Simon Bliudze, and Bruno Monsuez. Springer, 2018, pp. 3–21.

[66] S. Govindavajhala and A.W. Appel. “Using memory errors to attack a virtual ma-

chine”. In: 2003 Symposium on Security and Privacy (S&P). 2003, pp. 154–165.

[67] Daniel Gruss. “Software-based Microarchitectural Attacks”. PhD thesis. Graz Univer-

sity of Technology, June 2017.

[68] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli

O’Connell, Wolfgang Schoechl, and Yuval Yarom. “Another Flip in the Wall of Rowham-

mer Defenses”. In: Proceedings - IEEE Symposium on Security and Privacy (S&P).

2018.

[69] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. “Rowhammer.js: A remote

software-induced fault attack in JavaScript”. In: Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

137

www.ijarcsse.com
https://github.com/kitsunyan/intel-undervolt/issues/43%5C#issuecomment-619373836
https://github.com/kitsunyan/intel-undervolt/issues/43%5C#issuecomment-619373836
https://github.com/KitMurdock/plundervolt


REFERENCES

in Bioinformatics). Vol. 9721. 2016. doi: 10.1007/978-3-319-40667-1_15. eprint:

1507.06955.

[70] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. “Flush+Flush:

A Fast and Stealthy Cache Attack”. In: DIMVA. 2016.

[71] Daniel Gruss and Kit Murdock. “Plundervolt: Flipping Bits from Software without

Rowhammer”. In: Chaos Communication Congress (CCC). url: https://media.ccc.

de/v/36c3-10883-plundervolt_flipping_bits_from_software_without_rowhammer.

Presented on: 27th December 2019.

[72] Daniel Gruss, David Oswald, and Kit Murdock. “Plundervolt: Flipping Bits from

Software without Rowhammer”. In: Blackhat. url: https : / /www .youtube . com/

watch?v=zKIliM-pHFs. Presented online on: 5th August 2020.

[73] Amina Guermouche and Anne-Cécile Orgerie. Experimental analysis of vectorized

instructions impact on energy and power consumption under thermal design power

constraints. Research Report 2. Télécom Sud Paris, 2019.

[74] Shay Gueron. A Memory Encryption Engine Suitable for General Purpose Processors.

ePrint 2016/204. 2016.

[75] Jago Gyselinck, Jo Van Bulck, Frank Piessens, and Raoul Strackx. “Off-limits: Abus-

ing legacy x86 memory segmentation to spy on enclaved execution”. In: ESSoS. 2018.

[76] J. Haj-Yahya, L. Orosa, J. S. Kim, J. Gomez Luna, A. Yaglikci, M. Alser, I. Puddu,

and O. Mutlu. “IChannels: Exploiting Current Management Mechanisms to Create

Covert Channels in Modern Processors”. In: 2021 ACM/IEEE 48th Annual Interna-

tional Symposium on Computer Architecture (ISCA). Los Alamitos, CA, USA: IEEE

Computer Society, June 2021, pp. 985–998. doi: 10.1109/ISCA52012.2021.00081.

138

https://doi.org/10.1007/978-3-319-40667-1_15
1507.06955
https://media.ccc.de/v/36c3-10883-plundervolt_flipping_bits_from_software_without_rowhammer
https://media.ccc.de/v/36c3-10883-plundervolt_flipping_bits_from_software_without_rowhammer
https://www.youtube.com/watch?v=zKIliM-pHFs
https://www.youtube.com/watch?v=zKIliM-pHFs
https://doi.org/10.1109/ISCA52012.2021.00081


REFERENCES

[77] Jawad Haj-Yihia, Yosi Ben Asher, Efraim Rotem, Ahmad Yasin, and Ran Ginosar.

“Compiler-Directed Power Management for Superscalars”. In: ACM Trans. Archit.

Code Optim. 11.4 (Jan. 2015). doi: 10.1145/2685393.

[78] Hagai Bar-El Hamid, Hamid Choukri, David Naccache, Michael Tunstall, and Claire

Whelan. “The Sorcerer’s Apprentice Guide to Fault Attacks”. In: Proceedings of the

IEEE. Vol. 94. 2006. doi: 10.1109/JPROC.2005.862424.

[79] Florian Hauschild, Kathrin Garb, Lukas Auer, Bodo Selmke, and Johannes Ober-

maier. “ARCHIE: A QEMU-Based Framework for Architecture-Independent Evalua-

tion of Faults”. In: 2021 Workshop on Fault Detection and Tolerance in Cryptography

(FDTC). 2021, pp. 20–30. doi: 10.1109/FDTC53659.2021.00013.

[80] Nishad Herath and Anders Fogh. “These are Not Your Grand Daddys CPU Perfor-

mance Counters – CPU Hardware Performance Counters for Security”. In: Black Hat

Briefings. 2015.

[81] Mikael Hirki, Zhonghong Ou, Kashif Nizam Khan, Jukka K. Nurminen, and Tapio

Niemi. “Empirical Study of the Power Consumption of the x86-64 Instruction De-

coder”. In: USENIX Workshop on Cool Topics on Sustainable Data Centers (CoolDC

16). Santa Clara, CA: USENIX Association, Mar. 2016.

[82] Peter H. Hochschild, Paul Jack Turner, Jeffrey C. Mogul, Rama Krishna Govindaraju,

Parthasarathy Ranganathan, David E Culler, and Amin Vahdat. “Cores that don’t

count”. In: Proceedings 18th Workshop on Hot Topics in Operating Systems (HotOS

2021). 2021.

[83] Matthew E. Hoekstra. Intel® SGX for Dummies, Part 3.

[84] Max Hoffmann, Falk Schellenberg, and Christof Paar. “ARMORY: Fully Automated

and Exhaustive Fault Simulation on ARM-M Binaries”. In: IEEE Transactions on

Information Forensics and Security 16 (2021).

139

https://doi.org/10.1145/2685393
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/FDTC53659.2021.00013


REFERENCES

[85] Petr Hosek and Cristian Cadar. “Varan the unbelievable: An efficient n-version ex-

ecution framework”. In: ACM SIGPLAN Notices. Vol. 50. 4. ACM. 2015, pp. 339–

353.

[86] Xiaolu Hou, Jakub Breier, Fuyuan Zhang, and Yang Liu. “Fully Automated Dif-

ferential Fault Analysis on Software Implementations of Block Ciphers”. In: IACR

Transactions on Cryptographic Hardware and Embedded Systems 2019.3 (May 2019),

pp. 1–29. doi: 10.13154/tches.v2019.i3.1-29.

[87] Michael Hutter and Jörn-Marc Schmidt. “The temperature side channel and heating

fault attacks”. In: Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2014. doi: 10.

1007/978-3-319-08302-5_15.

[88] Aa Hwang, Ia Stefanovici, and Bianca Schroeder. “Cosmic rays don’t strike twice:

understanding the nature of DRAM errors and the implications for system design”. In:

ACM SIGARCH Computer 40.1 (2012), pp. 111–122. doi: 10.1145/2189750.2150989.

[89] Infineon. Integrity Guard. 2018. url: https ://www. infineon .com/dgdl/Infineon-

Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_

06.18-WP-v01_01-EN.pdf ?fileId=5546d46255dd933d0155e31c46fa03fb. [Accessed:

5th April 2020].

[90] Infineon. OptiMOS IPOL DC-DC converter single-input voltage, 30 A buck regulators

with SVID. 2019. url: https://www.infineon.com/cms/de/product/power/dc-dc-

converter/integrated-dc-dc-pol-converters/ir38163m/. [Accessed: 29th July 2019].

[91] Intel. 7th Generation Intel Processor Families for U/Y Platforms and 8th Generation

Intel Processor Family for U Quad-Core and Y Dual Core Platforms. Datasheet,

Volume 1 of 2, revision 006. Jan. 2019.

140

https://doi.org/10.13154/tches.v2019.i3.1-29
https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1145/2189750.2150989
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/cms/de/product/power/dc-dc-converter/integrated-dc-dc-pol-converters/ir38163m/
https://www.infineon.com/cms/de/product/power/dc-dc-converter/integrated-dc-dc-pol-converters/ir38163m/


REFERENCES

[92] Intel. Developer Reference for Intel Integrated Performance Primitives Cryptography

– Example of Using RSA Primitive Functions. 2019. url: https ://software . intel .

com/en-us/ipp- crypto- reference- 2019- example- of-using- rsa-primitive- functions.

[Accessed: 29 July 2019].

[93] Intel. Get Started with the SDK. 2019. url: https://software.intel.com/en-us/sgx/

sdk. [Accessed: 10 May 2019].

[94] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-

Specific Registers. May 2019.

[95] Intel. Intel SGX Technical Details for INTEL-SA-00289 and INTEL-SA-00334. url:

https://cdrdv2.intel.com/v1/dl/getContent/619320. [Accessed: 5 June 2020].

[96] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual; Volume 2 (2A,

2B, 2C & 2D). 325383-070US. May 2019.

[97] Intel. L1 Terminal Fault SA-00161. Aug. 2018. url: https://www.intel.com/content/

www/us/en/security-center/advisory/intel- sa-00161.html. [Accessed: 28 October

2022].

[98] Intel. Voltage Regulator-Down 11.1: Processor Power Delivery Design Guide. 2009.

url: https://www.intel.com/content/www/us/en/power-management/voltage-

regulator-down-11-1-processor-power-delivery-guidelines.html. [Accessed: 29th July

2019].

[99] Introducing Rainbow: Donjon’s side-channel analysis simulation tool. 2019. url: https:

//github.com/Ledger-Donjon/rainbow. [Accessed: 20th February 2022].

[100] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. MASCAT: Stopping Microar-

chitectural Attacks Before Execution. ePrint 2016/1196. 2016.

141

https://software.intel.com/en-us/ipp-crypto-reference-2019-example-of-using-rsa-primitive-functions
https://software.intel.com/en-us/ipp-crypto-reference-2019-example-of-using-rsa-primitive-functions
https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk
https://cdrdv2.intel.com/v1/dl/getContent/619320
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/power-management/voltage-regulator-down-11-1-processor-power-delivery-guidelines.html
https://www.intel.com/content/www/us/en/power-management/voltage-regulator-down-11-1-processor-power-delivery-guidelines.html
https://github.com/Ledger-Donjon/rainbow
https://github.com/Ledger-Donjon/rainbow


REFERENCES

[101] Thomas Jakobs and Gudula Rünger. “On the Energy Consumption of Load/Store

AVX Instructions”. In: 2018 Federated Conference on Computer Science and Infor-

mation Systems (FedCSIS). 2018, pp. 319–327.

[102] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. “SGX-Bomb: Locking

Down the Processor via Rowhammer Attack”. In: SysTEX. 2017.

[103] Simon Johnson. An update on 3rd Party Attestation. Dec. 2018. url: https://software.

intel.com/en-us/blogs/2018/12/09/an-update-on-3rd-party-attestation. [Accessed:

30 July 2020].

[104] M. Joye, P. Manet, and J. B. Rigaud. “Strengthening hardware AES implementations

against fault attacks”. In: IET Information Security 1.3 (2007), pp. 106–110. doi:

10.1049/iet-ifs:20060163.

[105] Marc Joye and Michael Tunstall, eds. Fault Analysis in Cryptography. Information

Security and Cryptography. Springer, 2012. doi: 10.1007/978-3-642-29656-7.

[106] David Kaplan, Jeremy Powell, and Tom Woller. “AMD memory encryption”. In: White

paper (2016).

[107] Duško Karaklajić, Jörn-Marc Schmidt, and Ingrid Verbauwhede. “Hardware Designer’s

Guide to Fault Attacks”. In: IEEE Transactions on Very Large Scale Integration

(VLSI) Systems 21.12 (2013), pp. 2295–2306.

[108] Naghmeh Karimi, Arun Karthik Kanuparthi, Xueyang Wang, Ozgur Sinanoglu, and

Ramesh Karri. “MAGIC: Malicious aging in circuits/cores”. In: ACM Transactions

on Architecture and Code Optimization (TACO) 12.1 (2015).

[109] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and Ahmad-Reza Sadeghi.

“V0LTpwn: Attacking x86 Processor Integrity from Software”. In: USENIX Security

’20. Boston: USENIX Association, Aug. 2020.

142

https://software.intel.com/en-us/blogs/2018/12/09/an-update-on-3rd-party-attestation
https://software.intel.com/en-us/blogs/2018/12/09/an-update-on-3rd-party-attestation
https://doi.org/10.1049/iet-ifs:20060163
https://doi.org/10.1007/978-3-642-29656-7


REFERENCES

[110] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen, and Zhonghong

Ou. “RAPL in Action: Experiences in Using RAPL for Power Measurements”. In:

ToMPECS (2018).

[111] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris

Wilkerson, Konrad Lai, and Onur Mutlu. “Flipping bits in memory without accessing

them: An experimental study of DRAM disturbance errors”. In: ISCA. 2014.

[112] James C. King. “Symbolic Execution and Program Testing”. In: Commun. ACM 19.7

(July 1976), pp. 385–394. doi: 10.1145/360248.360252.

[113] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip

Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas

Sewell, Harvey Tuch, and Simon Winwood. “seL4: Formal Verification of an OS Ker-

nel”. In: ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES. ACM,

2009, pp. 207–220.

[114] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. “Spectre Attacks: Exploiting Speculative Execution”. In: 2019

IEEE Symposium on Security and Privacy (S&P). 2019.

[115] Andreas Kogler, Daniel Gruss, and Michael Schwarz. “Minefield: A Software-only Pro-

tection for SGX Enclaves against DVFS Attacks”. In: USENIX Security Symposium.

2022.

[116] Kokke. Tiny AES in c. 2017. url: https://github.com/kokke/tiny-AES-c. [Accessed:

2022-02-24].

[117] Oliver Kömmerling and Markus G. Kuhn. “Design Principles for Tamper-Resistant

Smartcard Processors”. In: Smartcard ’99. 1999.

143

https://doi.org/10.1145/360248.360252
https://github.com/kokke/tiny-AES-c


REFERENCES

[118] Koen Koning, Herbert Bos, and Cristiano Giuffrida. “Secure and efficient multi-

variant execution using hardware-assisted process virtualization”. In: 2016 46th An-

nual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

IEEE. 2016, pp. 431–442.

[119] Maha Kooli and Giorgio Di Natale. “A survey on simulation-based fault injection tools

for complex systems”. In: Proceedings - 2014 9th IEEE International Conference on

Design and Technology of Integrated Systems in Nanoscale Era, DTIS 2014. 2014.

[120] Thomas Korak and Michael Hoefler. “On the effects of clock and power supply tam-

pering on two microcontroller platforms”. In: Proceedings - 2014 Workshop on Fault

Diagnosis and Tolerance in Cryptography, FDTC 2014 (2014), pp. 8–17. doi: 10 .

1109/FDTC.2014.11.

[121] Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei Arnautov, Pramod Bhatotia, and

Christof Fetzer. TensorSCONE: A Secure TensorFlow Framework using Intel SGX.

arXiv 1902.04413. 2019.

[122] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. “RAMBleed: Read-

ing Bits in Memory Without Accessing Them”. In: 41st IEEE Symposium on Security

and Privacy (S&P). 2020.

[123] Butler W Lampson. “A note on the confinement problem”. In: Communications of the

ACM 16.10 (1973), pp. 613–615.

[124] Michael Le, Andrew Gallagher, and Yuval Tamir. “Challenges and Opportunities

with Fault Injection in Virtualized Systems”. In: First International Workshop on

Virtualization Performance: Analysis, Characterization, and Tools (2008).

[125] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado, and

B. Byunghoon Kang. “Hacking in darkness: Return-oriented programming against

secure enclaves”. In: USENIX Security ’17. 2017, pp. 523–539.

144

https://doi.org/10.1109/FDTC.2014.11
https://doi.org/10.1109/FDTC.2014.11


REFERENCES

[126] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Mar-

cus Peinado. “Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch

Shadowing”. In: USENIX Security Symposium. 2017.

[127] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,

Claudio Canella, and Daniel Gruss. “PLATYPUS: Software-based Power Side-Channel

Attacks on x86”. In: 2021 IEEE Symposium on Security and Privacy (S&P). IEEE.

2021.

[128] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, An-

ders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,

and Mike Hamburg. “Meltdown: Reading Kernel Memory from User Space”. In: 27th

USENIX Security Symposium (USENIX Security 18) (2018). eprint: 1801.01207.

[129] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel. Frequency Throt-

tling Side-Channel Attack. 2022. doi: 10.48550/ARXIV.2206.07012.

[130] Chen Liu, Monodeep Kar, Xueyang Wang, Nikhil Chawla, Neer Roggel, Bilgiday

Yuce, and Jason M. Fung. “Methodology of Assessing Information Leakage through

Software-Accessible Telemetries”. In: 2021 IEEE International Symposium on Hard-

ware Oriented Security and Trust (HOST). 2021, pp. 259–269. doi: 10.1109/HOST49136.

2021.9702271.

[131] Yifan Lu. “Attacking hardware AES with DFA”. In: arXiv preprint arXiv:1902.08693

(2019).

[132] Yifan Lu. “Injecting Software Vulnerabilities with Voltage Glitching”. In: CoRR abs/1903.08102

(2019). doi: 10.48550/ARXIV.1903.08102.

[133] Jonas Maebe, Ronald De Keulenaer, Bjorn De Sutter, and Koen De Bosschere. “Mit-

igating Smart Card Fault Injection with Link-Time Code Rewriting: A Feasibility

Study”. In: Financial Cryptography. 2013.

145

1801.01207
https://doi.org/10.48550/ARXIV.2206.07012
https://doi.org/10.1109/HOST49136.2021.9702271
https://doi.org/10.1109/HOST49136.2021.9702271
https://doi.org/10.48550/ARXIV.1903.08102


REFERENCES

[134] Manjaro. Undervolt intel CPU. url: https://wiki.manjaro.org/index.php?title=

Undervolt_intel_CPU. [Accessed: 30th September 2019].

[135] A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison Pearce, Peter G.

Neumann, Simon W. Moore, and Robert N. M. Watson. “Thunderclap: Exploring Vul-

nerabilities in Operating System IOMMU Protection via DMA from Untrustworthy

Peripherals”. In: NDSS ’19. San Diego, CA, USA, 2019.

[136] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian Müller, Lothar

Thiele, Srdjan Čapkun, and E T H Zürich. “Thermal Covert Channels on Multi-core

Platforms This paper is included in the Proceedings of the”. In: 24th USENIX Security

Symposium (USENIX Security 15) (2015).

[137] Norm Matloff. “Below C Level: An Introduction to Computer Systems”. In: (May

2012). url: https://www.cs.ucdavis.edu/~matloff/matloff/public_html/50/PLN/

CompSystsBookS2011.pdf. [Accessed: 20th September 2021].

[138] Abdelhafid Mazouz, Alexandre Laurent, Benoît Pradelle, and William Jalby. “Eval-

uation of CPU frequency transition latency”. In: Computer Science - Research and

Development 29.3-4 (2014), pp. 187–195. doi: 10.1007/s00450-013-0240-x.

[139] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi

Isozaki. “Flicker: An Execution Infrastructure for Tcb Minimization”. In: SIGOPS

Oper. Syst. Rev. 42.4 (Apr. 2008), pp. 315–328. doi: 10.1145/1357010.1352625.

[140] Francis X McKeen, Carlos V Rozas, Uday R Savagaonkar, Simon P Johnson, Vincent

Scarlata, Michael A Goldsmith, Ernie Brickell, Jiang Tao Li, Howard C Herbert,

Prashant Dewan, et al. Method and apparatus to provide secure application execution.

2015.

[141] Milosch Meriac. Heart of Darkness - exploring the uncharted backwaters of HID

iCLASS security. Tech. rep. Bitmanufaktur GmbH, 2010.

146

https://wiki.manjaro.org/index.php?title=Undervolt_intel_CPU
https://wiki.manjaro.org/index.php?title=Undervolt_intel_CPU
https://www.cs.ucdavis.edu/~matloff/matloff/public_html/50/PLN/CompSystsBookS2011.pdf
https://www.cs.ucdavis.edu/~matloff/matloff/public_html/50/PLN/CompSystsBookS2011.pdf
https://doi.org/10.1007/s00450-013-0240-x
https://doi.org/10.1145/1357010.1352625


REFERENCES

[142] Microsoft. Azure confidential computing. Retrieved from archive.org. url: https://

web.archive.org/web/20191206233429/https://azure.microsoft.com/en-gb/solutions/

confidential-compute/. [Accessed: 6th December 2019].

[143] Microsoft. Open Enclave SDK. url: https://github.com/openenclave/openenclave.

[Accessed: 23 September 2020].

[144] Miha Eleršič. Guide to Linux undervolting for Haswell and never Intel CPUs. 2019.

url: https://github.com/mihic/linux-intel-undervolt. [Accessed: 29 July 2019].

[145] Charlie Miller. “Battery Firmware Hacking”. In: Black Hat USA (2011), pp. 3–4.

[146] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. “MemJam: A false depen-

dency attack against constant-time crypto implementations in SGX”. In: CT-RSA.

2018.

[147] Kit Murdock. “Plundervolt: Pillaging and plundering SGX with Software-based Fault

Injection Attacks”. In: Redhat Research Day. url: https://www.youtube.com/watch?

v=Czfs8i2EA_0. Presented on: 24rd January 2020.

[148] Kit Murdock. “Plundervolt: Software-Based Fault Injection Attacks against Intel

SGX”. In: S&P. url: https://www.youtube.com/watch?v=5Mr1FCZ7VBQ. Pre-

sented online on: 19th March 2020.

[149] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and

Frank Piessens. “Plundervolt: Software-based Fault Injection Attacks against Intel

SGX”. In: Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P).

2020.

[150] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Frank Piessens, and

Daniel Gruss. “Plundervolt: How a Little Bit of Undervolting Can Create a Lot of

Trouble”. In: IEEE Security and Privacy 18.5 (Sept. 2020), pp. 28–37. issn: 1540-

7993. doi: 10.1109/MSEC.2020.2990495.

147

https://web.archive.org/web/20191206233429/https://azure.microsoft.com/en-gb/solutions/confidential-compute/
https://web.archive.org/web/20191206233429/https://azure.microsoft.com/en-gb/solutions/confidential-compute/
https://web.archive.org/web/20191206233429/https://azure.microsoft.com/en-gb/solutions/confidential-compute/
https://github.com/openenclave/openenclave
https://github.com/mihic/linux-intel-undervolt
https://www.youtube.com/watch?v=Czfs8i2EA_0
https://www.youtube.com/watch?v=Czfs8i2EA_0
https://www.youtube.com/watch?v=5Mr1FCZ7VBQ
https://doi.org/10.1109/MSEC.2020.2990495


REFERENCES

[151] Onur Mutlu. “The RowHammer problem and other issues we may face as memory

becomes denser”. In: Proceedings of the 2017 Design, Automation and Test in Europe,

DATE 2017. 2017. doi: 10.23919/DATE.2017.7927156. arXiv: 1703.00626.

[152] Anh Quynh Nguyen. Capstone Disassembler. url: www.capstone-engine.org. [Ac-

cessed: 20 April 2022].

[153] Anh Quynh Nguyen and Hoang Dang. Unicorn Engine. url: https://github.com/

unicorn-engine/unicorn. [Accessed: 24 February 2022].

[154] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. “A Survey of Pub-

lished Attacks on Intel SGX”. In: arXiv preprint arXiv:2006.13598 (2020). doi: 10.

48550/ARXIV.2006.13598.

[155] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Her-

rewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank Piessens.

“Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-software

Trusted Computing Base”. In: 22nd USENIX Security Symposium (USENIX Security

13). Washington, D.C.: USENIX Association, Aug. 2013, pp. 479–498.

[156] NotebookReview. The ThrottleStop Guide. 2019. url: http://forum.notebookreview.

com/threads/the-throttlestop-guide. [Accessed: 29th July 2019].

[157] Colin O’Flynn and Zhizhang (David) Chen. “ChipWhisperer: An Open-Source Plat-

form for Hardware Embedded Security Research”. In: COSADE 2014. 2014, pp. 243–

260. doi: 10.48550/ARXIV.2006.13598.

[158] O’Keeffe, Dan and Muthukumaran, Divya and Aublin, Pierre-Louis and Kelbert,

Florian and Priebe, Christian and Lind, Josh and Zhu, Huanzhou and Pietzuch,

Peter. Spectre attack against SGX enclave. Jan. 2018.

[159] Johannes Obermaier and Stefan Tatschner. “Shedding too much Light on a Micro-

controller’s Firmware Protection”. In: Usenix WOOT ’17. 2017.

148

https://doi.org/10.23919/DATE.2017.7927156
https://arxiv.org/abs/1703.00626
www.capstone-engine.org
https://github.com/unicorn-engine/unicorn
https://github.com/unicorn-engine/unicorn
https://doi.org/10.48550/ARXIV.2006.13598
https://doi.org/10.48550/ARXIV.2006.13598
http://forum.notebookreview.com/threads/the-throttlestop-guide
http://forum.notebookreview.com/threads/the-throttlestop-guide
https://doi.org/10.48550/ARXIV.2006.13598


REFERENCES

[160] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. “Error detection by du-

plicated instructions in super-scalar processors”. In: IEEE Transactions on Reliability

51.1 (2002), pp. 63–75.

[161] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Sebastian Nowozin, Kapil Vaswani,

Manuel Costa, and Aastha Mehta. “SGX-Enabled Oblivious Machine Learning”. In:

Usec (2016).

[162] Thales Paiva, Javier Navaridas, and Routo Terada. “Robust Covert Channels Based

on DRAM Power Consumption”. In: Sept. 2019, pp. 319–338. doi: 10.1007/978-3-

030-30215-3_16.

[163] Matthias Payer. “HexPADS: a platform to detect “stealth” attacks”. In: ESSoS. 2016.

[164] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Man-

gard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX

Security Symposium. 2016.

[165] Stjepan Picek, Lejla Batina, Domagoj Jakobovic, and Rafael Boix Carpi. “Evolving

Genetic Algorithms for Fault Injection Attacks”. In: 37th International Convention

on Information and Communication Technology, Electronics and Microelectronics,

MIPRO 2014, Opatija, Croatia, May 26-30, 2014. 2014, pp. 1106–1111. doi: 10 .

1109/MIPRO.2014.6859734.

[166] Roberta Piscitelli, Shivam Bhasin, and Francesco Regazzoni. “Fault attacks, injection

techniques and tools for simulation”. In: Hardware Security and Trust: Design and

Deployment of Integrated Circuits in a Threatened Environment. 2017, pp. 27–47.

doi: 10.1007/978-3-319-44318-8_2.

[167] Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil. “Lazart: A

Symbolic Approach for Evaluation the Robustness of Secured Codes against Control

Flow Injections”. In: ICST ’14. 2014, pp. 213–222. doi: 10.1109/ICST.2014.34.

149

https://doi.org/10.1007/978-3-030-30215-3_16
https://doi.org/10.1007/978-3-030-30215-3_16
https://doi.org/10.1109/MIPRO.2014.6859734
https://doi.org/10.1109/MIPRO.2014.6859734
https://doi.org/10.1007/978-3-319-44318-8_2
https://doi.org/10.1109/ICST.2014.34


REFERENCES

[168] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie Cui,

Vasily A Sartakov, and Peter Pietzuch. “SGX-LKL: Securing the Host OS Interface

for Trusted Execution”. In: arXiv preprint arXiv:1908.11143 (2019).

[169] Rui Qiao and Mark Seaborn. “A new approach for rowhammer attacks”. In: Proceed-

ings of the 2016 IEEE International Symposium on Hardware Oriented Security and

Trust, HOST 2016. 2016. doi: 10.1109/HST.2016.7495576.

[170] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. “VoltJockey: Breaching

TrustZone by Software-Controlled Voltage Manipulation over Multi-core Frequencies”.

In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-

cations Security. CCS ’19. London, United Kingdom: ACM, 2019, pp. 195–209. doi:

10.1145/3319535.3354201.

[171] André Quadt. “Smart Watts”. In: E-Energy. Ed. by Arnold Picot and Karl-Heinz

Neumann. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 85–93.

[172] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and Her-

bert Bos. “Flip Feng Shui: Hammering a Needle in the Software Stack”. In: USENIX

Security ’16. Austin: USENIX Association, Aug. 2016, pp. 1–18.

[173] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I Au-

gust. “SWIFT: Software implemented fault tolerance”. In: Proceedings of the inter-

national symposium on Code generation and optimization. IEEE Computer Society.

2005, pp. 243–254.

[174] Jan Richter-Brockmann, Aein Rezaei Shahmirzadi, Pascal Sasdrich, Amir Moradi,

and Tim Güneysu. “FIVER – Robust Verification of Countermeasures against Fault

Injections”. In: TCHES 2021.4 (Aug. 2021), pp. 447–473. doi: 10.46586/tches.v2021.

i4.447-473.

150

https://doi.org/10.1109/HST.2016.7495576
https://doi.org/10.1145/3319535.3354201
https://doi.org/10.46586/tches.v2021.i4.447-473
https://doi.org/10.46586/tches.v2021.i4.447-473


REFERENCES

[175] RightMark Gathering. Throttlestop, RMClock Utility. url: http://cpu.rightmark.

org/products/rmclock.shtml. [Accessed: 29 July 2019].

[176] Riscure. url: https://www.riscure.com/. [Accessed: 01 November 2022].

[177] Riscure. FiSim. url: https://github.com/Riscure/FiSim. [Accessed: 24 February

2022].

[178] Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and Assia Tria. “Fault

Model Analysis of Laser-Induced Faults in SRAM Memory Cells”. In: 2013 Work-

shop on Fault Diagnosis and Tolerance in Cryptography. 2013, pp. 89–98. doi: 10.

1109/FDTC.2013.17.

[179] J. M. Rushby. “Design and Verification of Secure Systems”. In: Proceedings of the

Eighth ACM Symposium on Operating Systems Principles. SOSP ’81. Pacific Grove,

California, USA: Association for Computing Machinery, 1981, pp. 12–21. doi: 10.

1145/800216.806586.

[180] Dhiman Saha, Debdeep Mukhopadhyay, and Dipanwita Roy Chowdhury. “A Diagonal

Fault Attack on the Advanced Encryption Standard”. In: IACR Cryptology ePrint

Archive 2009 (Jan. 2009), p. 581.

[181] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi Maisuradze,

Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. “RIDL: Rogue In-Flight Data

Load”. In: 2019 IEEE Symposium on Security and Privacy (S&P). 2019, pp. 88–105.

[182] André Schaller, Wenjie Xiong, Nikolaos Athanasios Anagnostopoulos, Muhammad

Umair Saleem, Sebastian Gabmeyer, Stefan Katzenbeisser, and Jakub Szefer. “In-

trinsic Rowhammer PUFs: Leveraging the Rowhammer effect for improved security”.

In: Proceedings of the 2017 IEEE International Symposium on Hardware Oriented

Security and Trust, (HOST). 2017.

151

http://cpu.rightmark.org/products/rmclock.shtml
http://cpu.rightmark.org/products/rmclock.shtml
https://www.riscure.com/
https://github.com/Riscure/FiSim
https://doi.org/10.1109/FDTC.2013.17
https://doi.org/10.1109/FDTC.2013.17
https://doi.org/10.1145/800216.806586
https://doi.org/10.1145/800216.806586


REFERENCES

[183] Horst Benjamin Schirmeier. “Efficient fault-injection-based assessment of software-

implemented hardware fault tolerance”. PhD thesis. Dortmund University of Tech-

nology, 2016.

[184] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,

Thomas Prescher, and Daniel Gruss. “ZombieLoad: Cross-Privilege-Boundary Data

Sampling”. In: CCS. 2019.

[185] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Man-

gard. “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: CoRR

abs/1702.08719 (2017).

[186] Mark Seaborn and Thomas Dullien. “Exploiting the DRAM rowhammer bug to gain

kernel privileges”. In: Black Hat Briefings. Mar. 2015.

[187] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin, Dongsu

Han, and Taesoo Kim. “SGX-Shield: Enabling Address Space Layout Randomization

for SGX Programs”. In: NDSS. 2017.

[188] Kristoffer Myrseth Severinsen. “Secure Programming with Intel SGX and Novel Ap-

plications”. MA thesis. 2017. url: https://www.duo.uio.no/handle/10852/60352.

[189] Hovav Shacham. “The Geometry of Innocent Flesh on the Bone: Return-into-Libc

without Function Calls (on the X86)”. In: Proceedings of the 14th ACM Conference

on Computer and Communications Security. CCS ’07. New York, NY, USA: ACM,

2007, pp. 552–561. doi: 10.1145/1315245.1315313.

[190] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,

Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Krügel, and

Giovanni Vigna. “SOK: (State of) The Art of War: Offensive Techniques in Binary

Analysis”. In: IEEE Symposium on Security and Privacy (S&P). 2016, pp. 138–157.

152

https://www.duo.uio.no/handle/10852/60352
https://doi.org/10.1145/1315245.1315313


REFERENCES

[191] Daniel P Siewiorek and Robert S Swarz. The theory and practice of reliable system

design. Digital press, 1982.

[192] Sergei Skorobogatov. “Fault attacks on secure chips”. In: Design and Security of Cryp-

tographic Algorithms and Devices (2011).

[193] Sergei P. Skorobogatov. Copy Protection in Modern Microcontrollers. url: https :

//www.cl.cam.ac.uk/~sps32/mcu_lock.html. [Accessed: 29 July 2019].

[194] Sergei P. Skorobogatov and Ross J. Anderson. “Optical Fault Induction Attacks”.

In: Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International

Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers. 2002,

pp. 2–12.

[195] statista. Internet of Things (IoT) and non-IoT active device connections worldwide

from 2010 to 2025. url: https://www.statista.com/statistics/1101442/iot-number-

of-connected-devices-worldwide. [Accessed: 24th February 2022].

[196] Daehyun Strobel, David Oswald, Bastian Richter, Falk Schellenberg, and Christof

Paar. “Microcontrollers as (In)Security Devices for Pervasive Computing Applica-

tions”. In: Proceedings of the IEEE 102.8 (2014), pp. 1157–1173. doi: 10 . 1109 /

JPROC.2014.2325397.

[197] Adrian Tang. “Security Engineering of Hardware-Software Interface”. PhD thesis.

Columbia University, 2018.

[198] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “CLKSCREW: Expos-

ing the Perils of Security-Oblivious Energy Management”. In: USENIX Security ’17.

Vancouver, BC: USENIX Association, Aug. 2017, pp. 1057–1074.

[199] “The art of fault injection”. In: Control Engineering and Applied Informatics 13.4

(2011), pp. 9–18.

153

https://www.cl.cam.ac.uk/~sps32/mcu_lock.html
https://www.cl.cam.ac.uk/~sps32/mcu_lock.html
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide
https://doi.org/10.1109/JPROC.2014.2325397
https://doi.org/10.1109/JPROC.2014.2325397


REFERENCES

[200] tibersam. ARCHIE AES Example. 2021. url: https://github.com/tibersam/archie-

aes-example. [Accessed: 24 February 2022].

[201] Florian Tramer, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine

Shi. “Sealed-glass proofs: Using transparent enclaves to prove and sell knowledge”. In:

2017 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE. 2017,

pp. 19–34.

[202] Chia-che Tsai, Donald E. Porter, and Mona Vij. “Graphene-SGX: A Practical Library

OS for Unmodified Applications on SGX”. In: USENIX ATC ’17. Santa Clara, CA:

USENIX Association, July 2017, pp. 645–658.

[203] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. “Differential Fault Anal-

ysis of the Advanced Encryption Standard Using a Single Fault”. In: Information

Security Theory and Practice. Security and Privacy of Mobile Devices in Wireless

Communication. Ed. by Claudio A. Ardagna and Jianying Zhou. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011, pp. 224–233.

[204] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

“Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-

Order Execution”. In: USENIX Security Symposium. 2018.

[205] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel

Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. “LVI: Hijacking

Transient Execution through Microarchitectural Load Value Injection”. In: 41th IEEE

Symposium on Security and Privacy (S&P). 2020.

[206] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio Garcia, and

Frank Piessens. “A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shield-

ing Runtimes”. In: Proceedings of the 26th ACM Conference on Computer and Com-

munications Security (CCS’19). ACM, Nov. 2019.

154

https://github.com/tibersam/archie-aes-example
https://github.com/tibersam/archie-aes-example


REFERENCES

[207] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “Nemesis: Studying Microarchi-

tectural Timing Leaks in Rudimentary CPU Interrupt Logic”. In: Proceedings of the

25th ACM Conference on Computer and Communications Security (CCS’18). ACM,

Oct. 2018.

[208] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “SGX-Step: A practical attack

framework for precise enclave execution control”. In: Proceedings of the 2nd Workshop

on System Software for Trusted Execution. ACM. 2017, p. 4. url: https://github.

com/jovanbulck/sgx-step.

[209] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx.

“Telling your secrets without page faults: Stealthy page table-based attacks on en-

claved execution”. In: Proceedings of the 26th USENIX Security Symposium. USENIX

Association, Aug. 2017.

[210] Jan Van den Herrewegen, David Oswald, Flavio D. Garcia, and Qais Temeiza. “Fill

your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary

Analysis”. In: IACR Transactions on Cryptographic Hardware and Embedded Systems

2021.1 (Dec. 2020), pp. 56–81.

[211] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clémen-

tine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.

“Drammer: Deterministic Rowhammer Attacks on Mobile Platforms”. In: CCS. 2016.

[212] Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu, Per Larsen,

Bjorn De Sutter, and Michael Franz. “Secure and efficient application monitoring and

replication”. In: 2016 USENIX Annual Technical Conference (ATC16). 2016, pp. 167–

179.

[213] Nicholas J. Wang, Aqeel Mahesri, and Sanjay J. Patel. “Examining ACE analysis

reliability estimates using fault-injection”. In: Proceedings - International Symposium

on Computer Architecture. 2007.

155

https://github.com/jovanbulck/sgx-step
https://github.com/jovanbulck/sgx-step


REFERENCES

[214] Yingchen Wang, Riccardo Paccagnella, Elizabeth He, Hovav Shacham, Christopher

W. Fletcher, and David Kohlbrenner. “Hertzbleed: Turning Power Side-Channel At-

tacks Into Remote Timing Attacks on x86”. In: Proceedings of the USENIX Security

Symposium (USENIX). 2022.

[215] Zhenghong Wang and Ruby B. Lee. “Covert and Side Channels Due to Processor

Architecture”. In: 22nd Annual Computer Security Applications Conference (AC-

SAC’06). 2006, pp. 473–482. doi: 10.1109/ACSAC.2006.20.

[216] Zhenyu Wu, Mengjun Xie, and Haining Wang. “Energy Attack on Server Systems”.

In: USENIX Workshop on Offensive Technologies (WOOT) (2011).

[217] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. “One Bit Flips,

One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation”. In:

USENIX Security Symposium. 2016.

[218] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. “Designing New Op-

erating Primitives to Improve Fuzzing Performance”. In: ACM CCS ’17. ACM, 2017,

pp. 2313–2328. doi: 10.1145/3133956.3134046.

[219] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. “Fault Attacks on Secure

Embedded Software: Threats, Design, and Evaluation”. In: Hardware and Systems

Security 2.2 (2018), pp. 111–130. doi: 10.1007/s41635-018-0038-1.

[220] Fan Zhang, Shize Guo, Xinjie Zhao, Tao Wang, Jian Yang, Francois Xavier Stan-

daert, and Dawu Gu. “A Framework for the Analysis and Evaluation of Algebraic

Fault Attacks on Lightweight Block Ciphers”. In: IEEE Transactions on Information

Forensics and Security (2016). doi: 10.1109/TIFS.2016.2516905.

[221] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. “CloudRadar: A Real-Time Side-

Channel Attack Detection System in Clouds”. In: RAID. 2016.

156

https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1007/s41635-018-0038-1
https://doi.org/10.1109/TIFS.2016.2516905


REFERENCES

[222] Siqi Zhao and Xuhua Ding. “FIMCE: A Fully Isolated Micro-Computing Environment

for Multicore Systems”. In: ACM Trans. Priv. Secur. 21.3 (May 2018). doi: 10.1145/

3195181.

[223] Igor Zhirkov. Low-level programming: C, assembly, and program execution on Intel®

64 architecture. 2017. doi: 10.1007/978-1-4842-2403-8.

[224] Haissam Ziade, Rafic Ayoubi, and Raoul Velazco. “A survey on fault injection tech-

niques”. In: The International Arab Journal of Information Technology 1.2 (2004),

pp. 171–186.

[225] Loïc Zussa, Jean-Max Dutertre, Jessy Clédière, and Assia Tria. “Power supply glitch

induced faults on FPGA: An in-depth analysis of the injection mechanism”. In: 2013

IEEE 19th International On-Line Testing Symposium (IOLTS). 2013, pp. 110–115.

157

https://doi.org/10.1145/3195181
https://doi.org/10.1145/3195181
https://doi.org/10.1007/978-1-4842-2403-8

	UoB_research_archive_copyright_notice_A4size.pdf
	Murdock2023PhD_submitted.pdf
	Title Page
	Abstract
	Acronyms
	1 Introduction
	1.1 Faults, Fault Injection and Fault Attacks
	1.2 Trusted Execution Environments
	1.3 Energy Management Systems
	1.4 What Just Happened?
	1.5 Dissertation Scope
	1.6 Published Papers
	1.7 Conference Presentations

	2 Plundervolt
	2.1 Introduction
	2.1.1 Related Work on Software-based Fault Attacks
	2.1.2 Our Contribution
	2.1.3 Responsible Disclosure

	2.2 Experimental Setup
	2.2.1 Attacker Model
	2.2.2 Voltage Scaling on Intel Core Processors
	2.2.3 Configuring Voltage and Frequency
	2.2.4 Undervolting Decline Micro-benchmark
	2.2.5 Tested Processors
	2.2.6 Ambient Temperature
	2.2.7 Implications for Older Processors

	2.3 Faulting In-Enclave Multiplications
	2.3.1 Analysis of Undervolting Effects on Multiplications
	2.3.2 Differences between CPUs with Same Model Number
	2.3.3 Temperature Dependencies
	2.3.4 Overvolting

	2.4 From Faults to Enclave Key Extraction
	2.4.1 Corrupting OpenSSL Signatures
	2.4.2 Full Key Extraction from RSA-CRT Decryption/Signature in SGX using IPP Crypto
	2.4.3 Differential Fault Analysis of AES-NI in SGX
	2.4.4 Faulting Other Intel IPP Crypto Primitives in SGX

	2.5 Memory Safety Violations due to Faults
	2.5.1 Faulting Array Index Addresses
	2.5.2 Faulting Memory Allocation Sizes

	2.6 Discussion and Related Work
	2.7 Countermeasures
	2.7.1 Hardware-Level and Microcode-Level Countermeasures
	2.7.2 Software-Level Hardening
	2.7.3 Intel's Mitigation Plan

	2.8 Conclusion

	3 VoltPillager
	3.1 Introduction
	3.2 Undervolting Controls
	3.3 New Undervolting Attacks
	3.4 Practical Exploitation Scenario
	3.5 Conclusion

	4 Faultfinder
	4.1 Introduction
	4.1.1 Related Work
	4.1.2 The Contribution of this Work

	4.2 Design and Implementation of Faultfinder
	4.2.1 Terminology
	4.2.2 Process Overview
	4.2.3 Why Unicorn Engine?
	4.2.4 Integration with Unicorn
	4.2.5 Golden Run
	4.2.6 Fault Models and Injection
	4.2.7 Fault Injection Campaign
	4.2.8 Result Format

	4.3 Optimisation Techniques
	4.3.1 Registers/Instruction Bitmap
	4.3.2 Checkpoints
	4.3.3 Multithreading
	4.3.4 Equivalences

	4.4 Performance Impact of Optimisations
	4.4.1 Multithreading
	4.4.2 Checkpoints
	4.4.3 Equivalences

	4.5 Multi-architectural Validation
	4.5.1 Method
	4.5.2 ARM
	4.5.3 RISC-V
	4.5.4 Tricore
	4.5.5 x86_64
	4.5.6 Summary

	4.6 Comparison to Existing Fault Simulation Tools
	4.6.1 Comparison with ARCHIE
	4.6.2 Comparison with FiSim
	4.6.3 Comparison with ARMory

	4.7 Faultfinder Summary

	5 Leaky Throttling
	5.1 Introduction
	5.2 Energy MSRs
	5.2.1 ENERGY_STATUS MSRs

	5.3 Energy Usage Experiments
	5.3.1 Square Root of Scalar Double
	5.3.2 Multiplication - imul
	5.3.3 Array Lookup

	5.4 Throttling
	5.4.1 Setting Power Limits
	5.4.2 Threat model
	5.4.3 Experiments
	5.4.4 Observations

	5.5 Non-continuing work
	5.6 Subsequent work

	6 Conclusions
	A Appendix for Plundervolt
	A.1 Script for Configuring CPU Frequency
	A.2 Example Fault for RSA-CRT
	A.3 Further Examples for AES-NI AES Encryption Faults
	A.4 Running DFA against AES-NI
	A.5 Reference Launch Enclave Implementation

	B Appendix for Voltpillager
	B.1 Example Results for Faults during Memory Accesses

	C Appendix for Faultfinder
	C.1 Setup Files
	C.1.1 Example Binary Configuration File
	C.1.2 Example Fault Rules File
	C.1.3 Example Campaign File

	C.2 Fault Models
	C.2.1 ARCHIE Fault Model
	C.2.2 Faultfinder Fault Model


	D Appendix for Leaking Throttling
	D.1 Covert Code
	D.2 Reading MSR Code

	References




