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Abstract

With the development of machine learning techniques, the prediction power of

classical regression methods has been challenged. This thesis applies decision tree

learning to design new algorithms for regression analysis. The objective of this thesis

was to improve the prediction power of regression models by adding interaction

terms that were generated by decision trees. More specifically, we designed new

algorithms that allowed multi decision trees to be created and applied in constructing

a regression model. These new algorithms were applied to analyse data from three

different research fields.

Since the CART algorithm was developed in 1984 (Breiman et al., 2017), deci-

sion trees have become widely applied in both classification analysis and regression

analysis. An early hybrid tree-logit regression method was designed by Stainberg

et al. (1998), followed by other attempts to design hybrid tree-regression methods.

In Chapter 1, we introduced both decision trees and existing hybrid tree-regression

methods. We also introduced the overall research plan and the datasets applied in

the study.

In Chapter 2, we applied hybrid tree-regression methods in meta-regression anal-

ysis and compared them with linear meta-regression. The results from model com-

parison demonstrate the capability of decision trees in optimising prediction perfor-

mances of regression models, when all independent variables are binary. Random-

effects meta-regression and weighted least squares (WLS) meta-regression are utilised

in comparison. From both an analysis of the results of the distinct models and the

results of previous studies, we have concluded that trade openness is beneficial for

economic growth.

In Chapter 3, we applied linear and hybrid regression methods to analyse factors
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that affect fundraising performances of crowdfunding projects. A new hybrid tree-

regression method, called hybrid forest-linear regression (HFLR), is found to have

much higher prediction power than other models applied in the study. By analysing

both Monte-Carlo simulations and the crowdfunding data, it is proven that the

HFLR method, which only applies categorical variables to construct decision trees,

is able to deal with datasets that include both continuous and binary variables.

From the results of the models, we discovered various factors that are influential to

crowdfunding success.

In Chapter 4, we applied linear and hybrid regression methods to analyse a

survey data about people’s willingness to pay (WTP) to an environmental project.

The HFLR method is proven to be capable with discovering joint effects between

not only binary variables, but also non-binary ordinal variables. Meanwhile, a multi

bounded model for the contingent valuation (CV) method is designed and compared

with the single bounded model. From the results of the models, we estimated the

scale of the starting-point bias of the CV method, as well as the median WTP.

Chapters 2, 3, and 4 contain summaries of their target studies, respectively.

Chapter 5 presents the overall summary and discusses ideas for possible future de-

velopments of hybrid tree-regression methods.
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Chapter 1

Introduction to the Application of

Decision Trees in Regression Models

1.1 Introduction

Machine learning techniques, such as decision trees, have become increasingly

popular in various areas. Generally speaking, machine learning methods are able to

deal with problems that do not satisfy the assumptions of classical statistical meth-

ods, and they often have superior prediction power. However, classical statistical

methods have the advantage of more easily explainable results. As both machine

learning methods and classical statistical methods have their own advantages in

modelling, researchers have designed various hybrid methods in order to combine

these advantages.

1



1.2. Classification and Regression Trees

In this thesis, we have designed new hybrid methods between machine learning

methods, in relation to decision tree learning, and certain classical regression meth-

ods. Compared to existing hybrid tree-regression methods, these new methods allow

for the generation of interaction terms from multi decision trees. This enables their

inclusion within the regression model. By applying various hybrid tree-regression

methods in three specific problems, we are able to compare their prediction accu-

racies with existing statistical methods, including classic regression methods and

previously designed hybrid tree-regression methods.

1.2 Classification and Regression Trees

1.2.1 Classification Trees

Decision tree is a machine learning method originally designed for classification

analysis. A classification tree is a binary tree that predicts the value of a categorical

dependent variable based on the values of independent variables.

Compared to classical classification methods such as logistic regression, mini-

mum distance classifier (Cormack, 1971), and Fisher’s linear discriminant analysis,

classification trees apply broken lines instead of straight lines as the borders be-

tween different categories. As a result, although each split point of a decision tree

is a linear classifier, it can be applied in cases where the categories are not linearly

separable.

An example of a classification tree is shown in Figure 1.1, where X1 is a contin-
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1.2. Classification and Regression Trees

uous variable and X2 is a binomial variable. According to this classification tree,

if the independent variable X1 < 0.1, we check the value of X2; if X2 = 1, we

check the value of X1 again; if X1 < −1.1, the observation is classified in the first

category. If the values of the independent variables do not satisfy some of these

conditions, the observation is classified into another leaf node and likely another

category.

|X1< −0.1

X2>=0.5

X1< −1.1

X1< 0.9

X2< 0.5

X1>=0.5
1 2

2

1 2

3

2

Figure 1.1: A Classification Tree

A brief concept of constructing classification trees is shown in Algorithm 1. Var-

ious algorithms with different splitting criteria were designed to build classification

trees. For example, the splitting criterion of C4.5 (Quinlan, 2014) algorithm is en-

tropy, whereas that of CART algorithm for classification trees (Breiman et al., 2017)

3



1.2. Classification and Regression Trees

is the Gini index defined as

Gini(D) = 1−
m∑
i=1

P 2
i ,

where Pi is the probability of class i. The Gini index is a generalisation of binomial

variances.

Algorithm 1 Constructing a Decision Tree

Build a root node N containing all the observations used to build the model.
repeat
D = N.
if a stopping criterion is reached, then
D is returned as a leaf.

else
Minimise a splitting criterion to split the observations in D into two categories
D1 and D2.
Build two new regression trees for N1 = D1 and N2 = D2.

end if
until all leafs of the tree is returned.

1.2.2 Regression Trees

When applying decision trees in regression analysis, the dependent variable be-

comes continuous instead of discrete. The CART algorithm for regression trees

(Breiman et al., 2017) applies the sum of squared deviations as the splitting crite-

rion. While splitting a note into two categories, the splitting criteria is SS(D) −

(SS(D1) + SS(D2)), where SS(D) =
∑

D(y − ȳD)2. The CART algorithm can be

applied using the ”rpart” package (Therneau et al., 1997) in R.

An example of a regression tree is shown in Figure 1.2, where X1 is a continuous

variable and X2 is a binomial variable. According to this regression tree, if the

4



1.2. Classification and Regression Trees

independent variable X1 < −0.1, we check the value of X2; if X2 = 0, we check

the value of X1 again; if X1 < −1.1, the dependent variable is estimated to be

around -1.137. If the values of the independent variables do not satisfy some of

these conditions, the observation is classified into another leaf node and the predicted

value of the dependent variable may change.

|X1< −0.1

X2>=0.5

X1< −1.1 X1>=−0.9

X2< 0.5

−1.137 −0.4933 −0.6 0.2538

0.1419 0.95

Figure 1.2: A Regression Tree

A complete decision tree constructed by Algorithm 1 classifies is often large and

complex, while its prediction power is often limited due to overfitting. The way to

solve these problems is pruning the decision tree after constructing it. A pruning

criterion is used to decide if each subtree of the decision tree should be pruned. In the

5



1.2. Classification and Regression Trees

CART algorithm, the pruning method is minimising the cost complexity functions

Rα(T ) = R(T ) + α|T |,

where R(T ) is the residual sum of squares, |T | is the number of terminal nodes in

the decision tree, and α is a given positive constant.

A regression tree is always equivalent to a regression equation in the form of

Equation 1.1:

y =
∑

βiNODEi + ε, (1.1)

where NODEi is a binomial variable representing the i-th leaf node of the decision

tree, and βi is the relevant coefficient, and ε is an error term. Notably, as each

observation belongs to only one leaf node, βi is also the predicted value of y for

all observations in NODEi. The regression tree in Figure 1.2 is equivalent to the

regression equation

Y =β1 × (X1 < −0.1)×X2× (X1 < −1.1)+

β2 × (X1 < −0.1)×X2× (X1 ≥ −1.1)+

β3 × (X1 < −0.1)× (1−X2)× (X1 ≥ 0.9)+

β4 × (X1 < −0.1)× (1−X2)× (X1 < 0.9)+

β5 × (X1 ≥ −0.1)× (1−X2) + β6 × (X1 ≥ −0.1)×X2 + ε.

Rearranging Equation 1.1, a regression tree is also equivalent to a regression
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equation in the form of Equation 1.2:

y = β̃0 +
∑

β̃iSPLITi + ε, (1.2)

where SPLITi is a binomial variable representing the i-th splitting point of the

decision tree, and β̃i is the relevant coefficient, and ε is an error term. For example,

the regression tree in Figure 1.2 is equivalent to the regression equation

Y =β̃0 + β̃1 × (X1 < −0.1) + β̃2 × (X1 < −0.1)×X2+

β̃3 × (X1 ≥ −0.1)×X2 + β̃4 × (X1 < −0.1)×X2× (X1 ≥ −1.1)+

β̃5 × (X1 < −0.1)× (1−X2)× (X1 ≥ 0.9) + ε,

where β̃0 = β5, β̃1 = β4 − β5, β̃2 = β2 − β4, β̃3 = β6 − β5, β̃4 = β1 − β2, and

β̃5 = β3 − β4.

Theorem 1.1. Equation 1.1 is equivalent to Equation 1.2.

Proof. Consider the case when there is only one splitting point in the regression tree.

In this case, there are two leaf nodes LEAF1 to the left and LEAF2 to the right,

with coefficients β1 and β2. Defining SPLIT1 to be the condition of categorising an

observation to the LEAF1, we have SPLIT1 = LEAF1

y =β1LEAF1 + β2LEAF2 + ε

=β2 + (β1 − β2)LEAF1 + ε

=β̃0 + β̃1SPLIT1 + ε,

where β̃0 = β2 and β̃1 = β1 − β2. Thus, Theorem 1.1 is true when there is only one
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splitting point in the regression tree.

Assuming that Theorem 1.1 is true for all regression trees with K splitting points.

For a regression tree with K + 1 splitting points, it can be considered as adding a

splitting point on the K+1-th leaf node of a regression tree with K splitting points.

Defining LEAF ′K+1 and LEAF ′K+2 to be the new two leafs with coefficients β′K+1

and β′K+2, we have LEAFK+1 = LEAF ′K+1 +LEAF ′K+2. Defining SPLITK+1 to be

the new splitting point, we have

SPLITK+1 = LEAF ′K+1 − LEAFK+1 = −LEAF ′K+2,

and

y =
K∑
k=1

βkLEAFk + β′K+1LEAF
′
K+1 + β′K+2LEAF

′
K+2 + ε

=
K∑
k=1

βkLEAFk + β′K+1(SPLITK+1 + LEAFK+1)− β′K+2SPLITK+1 + ε

=
K∑
k=1

βkLEAFk + β′K+1LEAFK+1 + (β′K+1 − β′K+2)SPLITK+1 + ε.

Since Equation 1.1 is equivalent to Equation 1.2 for all regression trees with K

splitting points, there must exist β̃k, k = 0, · · · , K such that

K∑
k=1

βiLEAFi + β′K+1LEAFK+1 = β̃0 +
K∑
k=1

β̃kSPLITk.

8
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Thus, we have

y =
K∑
k=1

βkLEAFk + β′K+1LEAF
′
K+1 + β′K+2LEAF

′
K+2 + ε

=
K∑
k=1

βkLEAFk + β′K+1LEAFK+1 + (β′K+1 − β′K+2)SPLITK+1 + ε

=β̃0 +
K∑
k=1

β̃k + (β′K+1 − β′K+2)SPLITK+1 + ε

=β̃0 +
K+1∑
k=1

β̃kSPLITk + ε,

where β̃K+1 = β′K+1 − β′K+2. Therefore, Theorem 1 is true for all regression trees

with K + 1 splitting points.

Conclusively, as Theorem 1.1 is true for all regression trees with one splitting

point, and it is true for all regression trees with K + 1 splitting point if it is true for

all regression trees with K splitting point, it is true for all regression trees.

Terms in Equation 1.2 are shorter products than those in Equation 1.1. As a

result, in practical statistical researches, coefficients in Equation 1.2 often have with

clearer meanings. In Chapters 2 to 4, we always use splitting points of decision trees

as added terms in regression models.
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1.3 Hybrid Tree-regression Methods

1.3.1 Motivation

Hybrid tree-regression methods are algorithms based on both decision trees and

regression models; they are developed in order to combine the strengths of both

models and avoid their weaknesses.

Decision trees are capable of detecting high-order nonlinear relationships without

prior assumptions and their results are less sensitive to outliers. Predictions made

by a decision tree, however, are discontinuous, which raises the issue that a small

change in a continuous independent variable may result in a dramatic change in the

predicted dependent variable.

In comparison, classic regression models, such as linear regression, logistic re-

gression, and probit regression, handle linear relations between variables very well.

Without manual adjustments, however, they are not able to detect interaction ef-

fects between variables. Although interaction terms could be added manually, it

is often difficult to decide which ones should be added. The model could become

computationally infeasible if all of them were added. As an example, if thirty cat-

egorical variables were discussed in the regression model, 435 interaction terms of

two variables and 4060 interaction terms of three variables can be created, which

means even if the data contained 4000 observations and only interaction terms up

to three-order are considered, the full model is still computationally infeasible.
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1.3.2 Hybrid Tree-logit Method

Stainberg et al. (1998) designed a hybrid algorithm based on classification trees

and logistic regression. The model generated by the algorithm is written as

logit(p) =
∑

αiXi +
∑

βiNODEi + ε, (1.3)

where logit(p) = ln(
p

1− p
), p = P (y = 1), Xi is a linear independent variable with

coefficient αi, and NODEi, αi, and ε have the same definitions as in Equation 1.1.

From the discussions in Section 1.2, Equation 1.3 is equivalent to

logit(p) = β̃0 +
∑

αiXi +
∑

β̃iSPLITi + ε. (1.4)

The hybrid tree-logit method was applied in classification analysis in various top-

ics. Zhu et al. (2011) applied the hybrid tree-logit method to analyse stock ranking,

and it offered enhanced performance compared to decision trees, logistic regression,

and random forest. Lapczynsky (2014) applied the same algorithm in churn anal-

ysis, where it performed better than logistic regression, but was outperformed by

decision tree.

1.3.3 Further Developments of Hybrid Tree-regression Methods

Similar to the hybrid tree-logit method in classification analysis, Kim et al.

(2017) applied a hybrid tree-regression method in regression analysis to combine

the benefit of both models. The method is given in Algorithm 2.
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Algorithm 2 Hybrid Tree-Regression Method by Kim et al. (2017)

1) Run a decision tree between the dependent variable y and all categorical inde-
pendent variables.
2) Define yreg = y− ˆytree, where ˆytree is the predicted y given by the decision tree
in step 1.
3) Run a distance-based regression model with yreg as the dependent variable.
4) Calculate the final estimate ŷ = ˆyreg + ˆytree.

The resulting regression model is written as

y = yreg + ytree + ε =
∑

αiXi +
∑

βiNODEi + ε, (1.5)

which is equivalent to

y = β̃0 +
∑

αiXi +
∑

β̃iSPLITi + ε. (1.6)

The study applied ten mixed datasets to compare five distance-based regression

models (OLS, ridge, lasso, k-NN regression, and SVR) and their hybrid counterparts.

The results showed that hybrid methods provide smaller MSEs than their linear

counterparts. The model is also interpretable, and the given algorithm is faster

than previous ones such as M5.

Dumitrescu et al. (2018) is the first attempt, to our knowledge, to incorporate

results of multi decision trees into one regression model. The resulting algorithm,

referred to as penalized logit-tree regression (PLTR), is a divide-and-conquer algo-

rithm which applies a decision tree for each continuous regressor. The PLTR method

is given in Algorithm 3.

The resulting regression model is equivalent to Equations 1.3 and 1.4. Based on
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Algorithm 3 Penalized Logit-tree Regression (PLTR) by Dumitrescu et al. (2018)

1.1) Run a decision tree between the dependent variable and each continuous
independent variable.
1.2) Run a decision tree between the dependent variable and each pair of two
continuous independent variables.
2) Define categorical variables based on all leaf nodes of all created decision trees
in Step 1.
3) Build a regression model between the dependent variable and all independent
variables including categorical variables defined in Step 2.
4) Apply lasso to select variables included in the regression model.

simulated and real datasets, PLTR models have much higher prediction accuracy

than both linear and quadric logistic models. Although the prediction accuracy of

PLTR models is slightly lower than that of random forests, they are much more

explainable.

The benefit of PLTR models compared to linear and quadric logistic models is

that PLTR allows for the existence of discontinuities in the relationship between

the dependent variable and a continuous regressor. In comparison =, joint effects

between different variables are also considered in the decision trees built in Step 1.2

of Algorithm 3.

1.3.4 New Methods in this Thesis

In this thesis, two new hybrid tree-regression algorithms were designed to improve

the prediction accuracy of regression models. Both of them allow results from multi

decision trees to be included in one regression model.

Compared to methods which only include results from one decision tree, those
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that include results from multi decision trees allow more diversity of the form of

terms. As an example, consider a simple function

f(X) = β1X1X2 + β2X1X3 + β3X2X3, (1.7)

where all independent variables are binomial. In order to apply only one decision

tree to describe the relationship in Equation 1.7, it has to be rewritten as

f(X) =X1fl(X2, X3) + (1−X1)fr(X2, X3)

=X1(β1X2 + β2X3 + β3X2X3) + (1−X1)(β3X2X3)

=X1X2fll(X3) +X1(1−X2)flr(X3) + β3(1−X1)X2X3

=X1X2(β1 + (β2 + β3)X3) +X1(1−X2)β2X3 + β3(1−X1)X2X3

=β1X1X2 + (β2 + β3)X1X2X3 + β2X1(1−X2)X3 + 0 · (1−X1)X2+

β3(1−X1)X2X3,

(1.8)

which is in the form of Equation 1.4 and is equivalent to the result of a decision tree.

On the other hand, theoretically, Equation 1.7 can keep its original form when it is

represented by the results of three decision trees.

Compared to Equation 1.7, Equation 1.8 have five parameters (or four parameters

if a model selection process is applied to delete the zero term) instead of three.

Meanwhile, although Equations 1.7 and 1.8 are mathematically equivalent, when

the independent variables has practical meanings, the terms in Equation 1.7 is much

more interpretable than those in Equation 1.8.

One of the new methods developed in this thesis, called hybrid groupwise tree-

linear regression (HGTLR), is a divide-and-conquer algorithm. Compared to PLTR,
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instead of applying a decision tree for each regressor, HGTLR applied a decision tree

for each pre-defined subset of the dataset.

The other new method is a loop algorithm, called hybrid forest-linear regression

(HFLR). Instead of applying a fixed amount of decision trees, the HFLR algorithm

generated and added new decision trees continuously until a given loop ending con-

dition is satisfied. The loop ending condition refers to a comparison between the

model before and after a cycle.

1.4 Research Plan and Data

The objective of this thesis is to test the prediction accuracy of hybrid tree-

regression methods, especially the new methods developed throughout the thesis.

For each dataset, we compare the prediction results of a classic regression method, an

existing hybrid tree-regression method which only include results from one decision

tree, and a new hybrid tree-regression method which include results from multiple

decision trees. To compare the prediction efficiencies of the methods in various cases,

the dependent variable of each model can be applied to make meaningful predictions,

while other aspects of the datasets are different to one other. Basic information on

the datasets and models are listed in Table 1.1.

Chapter 2 applies meta-data collected from academic papers about the impact

of trade openness to economic growth. The meta-data applied in the modelling

process include 452 models gathered from sixty-five papers published between 1995

and 2016.
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Table 1.1: Differences between Datasets applied in Chapters 2-4

Chapter number 2 3 4

Data source Academic
papers

Online
platforms

Face-to-face
survey

Dependent variable Continuous Continuous Categorical

Independent variables Categorical Continuous and
categorical

Continuous and
categorical

Variables to generate
decision trees

Categorical,
binary

Categorical,
binary

Categorical,
binary and
non-binary

ordinal

Classic method Random effects,
linear WLS

Linear OLS Probit

The dependent variable, called partial correlation coefficient (pcc), is applied

to predict if an econometric model has positive significant, negative significant, or

insignificant result. All independent variables are designed to be binary variables,

and they are all applied to construct decision trees. Hybrid versions of random effects

meta-regression and weighted least squares (WLS) meta-regression are constructed

and compared with their linear counterparts.

The raw database included 295 papers that contained at least one of the keywords

”trade”, ”openness” and ”growth” in their titles. However, some studies were not

applicable in the study due to various reasons. Firstly, some papers had not reported

sufficient statistical results for calculating their effect sizes. Secondly, instead of

considering the relationship between growth and openness, some studies discussed

growth and openness separately, while some others only discussed one of the topics.

Thirdly, plenty of different variables are applied in different studies as indicators of
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growth and openness, which means that their results are not comparable.

To achieve higher comparability of the studies as well as a lower rate of missing

data, the data was rearranged to select studies that satisfied three conditions: GDP,

GDP per capita, or GDP per unit of labour was applied as the indicator of economic

growth; the trade openness index was applied as the indicator of openness; and

sufficient reported information to calculate the t-statistic and its degrees of freedom.

Chapter 3 applies a dataset collected from online crowdfunding platforms about

fundraising performances of crowdfunding projects. By searching projects using the

keywords ”social enterprise” and ”social entrepreneurship” and removing projects

with extreme values, we obtained 236 projects completed between 2016 and 2018.

Among these projects, fifty-two were successful and 184 were unsuccessful.

The dependent variable, which is the proportion of financing, is applied to predict

if a crowdfunding project is successful or not. Independent variables are designed

to be a mixture of continuous variables and categorical variables, and all categorical

variables are binary. They include topics of social entrepreneurship projects, infor-

mation about the founders, types of rewards for sponsors, and subjects of pictures

displayed on the websites. Only categorical independent variables are applied to

construct decision trees. Linear OLS regression and its hybrid tree-regression ver-

sions are constructed and their prediction performances are compared. Compared

to Chapter 2, this chapter tested the performance of hybrid tree-regression methods

with the existence of continuous regressors.

Chapter 4 applies data collected from a face-to-face survey in four Chinese cities.

During the survey, participants were asked about their willingness to pay to a geo-
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engineering project as well as their income, political and social views, and other

personal characters. 1044 samples were collected in the survey and 778 were applied

in the modelling process.

Probit regression and its hybrid tree-regression versions are applied to predict

the yes or no response of a participant to a given bid, which indicates if the given

bid is higher or lower than the willingness to pay (WTP) of a participant. Indepen-

dent variables are designed to be a mixture of continuous variables and categorical

variables, and categorical variables include both binary variables and non-binary

ordinal ones. All categorical independent variables are applied to construct deci-

sion trees. Compared to Chapter 3, this chapter tested the performance of hybrid

tree-regression methods when non-binary ordinal variables are applied to construct

decision trees.

1.5 Chapter Summary

Decision tree is a machine learning method applied in both classification analy-

sis and regression analysis. Hybrid methods of decision tree and classical regression

models were applied in various studies to combine the strengths of both models.

From the results of those studies, the hybrid algorithm outperformed classical re-

gression models including linear regression and logistic regression. Therefore, the ap-

plication and development of hybrid tree-regression algorithms will help researchers

to build regression models with higher prediction accuracy and find out key inter-

action effects of independent variables to a dependent variable.
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In this thesis, new hybrid tree-regression algorithms were designed. In the fol-

lowing chapters, they are applied in various datasets and are compared with linear

regression and existing hybrid tree-regression algorithms. Chapter 2 applies HGTLR

algorithm in a meta-regression analysis which discuss the effect of trade openness to

economic growth. Chapter 3 compares HFLR with existing algorithms in simulated

data as well as the crowdfunding data. Chapter 4 applies HFLR in probit regression

models about environmental willingness to pay. Chapter 5 concludes the thesis and

discusses future research plans.
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Chapter 2

Exploring Trade Openness and

Economic Growth – An Application of

Hybrid Tree-regression Methods in

Meta-Analysis

2.1 Introduction

The relationship between trade openness and economic growth is an important

topic in development economics. It has been widely discussed in empirical studies.

In recent years, with the growing trends of trade protection and trade conflicts

around the world, the issue has held an even stronger practical significance than in

previous years.
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Several studies showed that the relationship between openness and growth of a

country depends upon the stock and increment of its income. Based on data from

seventy-nine countries over the period 1970-1998, Wang et al. (2004) discussed the

relationship between economic growth and three openness-related variables: trade

openness, foreign direct investment (FDI) and black market premium (BMP). The

study concluded that different country groups benefit from different types of open-

ness: FDI is more beneficial for high-income countries, while trade openness is more

beneficial for developing countries.

Discussing both long-term and short-term effects, Dufrenot et al. (2010) analysed

annual data for 1980-2006 from seventy-five developing countries. The results of

these models show that among developing countries, trade openness has a higher

positive effect on economic growth in low-growth countries than in high-growth

countries. Ramanayake and Lee (2015) built OLS, fixed-effect and GMM regression

models to various openness variables: trade openness, FDI, export diversification,

and export growth. The impact of openness to economic growth is positive in

most models, while the scale of this impact is larger in developing countries than in

developed countries.

Based on the data over the period 1960-2007 from sixty-three countries, Kim et

al (2012) discussed the interrelationship between economic growth, trade openness

and financial development by building simultaneous equations models. The models

have been run in various country groups, which are defined by the income levels,

inflation rates and industrial structures of the countries. The study concluded that

trade openness is beneficial for economic growth in high-income, low-inflation and

non-agricultural countries. However, for countries with opposite characteristics, the
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impact of trade openness on economic growth is negative.

In a relatively significant study on 169 countries from around the world, Huchet-

Bourdon et al. (2018) analysed data from 1988-2014 to examine trade-growth re-

lationship. They found the effect of openness on growth to be conditional of the

quality and variety of export goods. Using GMM to study an endogenous growth

model, these authors found that countries that export higher quality goods and

newer varieties tend to grow faster. A non-linear pattern was also detected between

the export ratio and the quality of the export basket, suggesting that trade open-

ness may impact negatively on economic growth for countries that specialise in the

production of low-quality products.

Rather than examining the non-linearity of trade growth relationship with re-

spect to quality and variety of goods in trade, several researchers have analysed the

relation in terms of the overall level of trade. Zahonogo (2016) used a dynamic

growth model in a study of forty-two sub-Saharan African countries showing that

greater trade is beneficial for growth up to a fairly high openness ratio of 134%.

Purnama and Yao (2019) used Pedroni’s panel cointegration method in the case of

countries in the ASEAN region, and indicate that there is a pairwise bidirectional

causality among trade, FDI and growth.

To numerically summarise the wide variety of findings in the literature on trade

and growth, we analysed the relationship using meta-regression analysis in this study.

Because of the differences in the size of the results and in degrees of their significance,

a meta study can help to find out systematic variation between the effect size (partial

correlation, pcc) and various regressors.
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Meta-analysis has been used extensively in medical sciences (Itani et al, 2017;

Lim et al, 2019; Hemilä et al, 2020) and social sciences (Benos et al, 2014; Cho

et al, 2014; Abdullah et al, 2015) studies. It collects results of various individual

studies to systematically synthesise results quantitatively. Meta-regression is one

of the widely-used approach in modelling meta-analysis data where the observed

effect sizes of interested topic is regression on relevant characteristics from individual

studies. These characteristics include data source, publication date and key variables

which are treated as regressors in the meta-regression models. While many of the

regressors are represented by using dummy (binary) variables and its interaction

terms in meta-regression models, there are limited discussions on how to accurately

choose interaction terms in the meta-regression models.

We built a linear meta-regression model for the effect size and certain indepen-

dent variables. We also proposed some new methods of using a decision tree in

order to account for non-linear relationships between the effect size and the inde-

pendent variables. These tree-based regression algorithms are developed to combine

the strengths of decision trees and linear regression models. Explanatory prediction

powers of hybrid tree-regression methods are compared with linear models.

The structure of the remainder of Chapter 2 is as follows. In Section 2.2, the

process of rearranging the database is described, and variables in meta-regression

models are chosen. In Section 2.3, both linear and tree-based meta-regression models

are introduced. In Section 2.4, the results of these models are given and discussed.

Section 2.5 comes to the conclusions about the study, and possible further works are

also discussed.
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2.2 Data

2.2.1 Data Collection

The data for this study was collected based on a raw database which included 295

papers. The titles of these papers contained at least one of the keywords: ”trade”,

”openness” or ”growth”. To achieve higher comparability of the studies as well as a

lower rate of missing data, the data was rearranged to select studies that satisfied

three conditions:

(1) the dependent variable of the model was a univariate function of GDP, GDP

per capita or GDP per unit of labour;

(2) a function of the trade openness index, Trade, was included in the model as

an independent variable; and

(3) the t-statistic of Trade and its degrees of freedom was either reported or being

able to be calculated from reported information.

The resulting meta-data included 452 models gathered from sixty-five papers

published between 1995 and 2016. At the significance level of 0.05, there are 194

positive significant estimates and forty-eight negative significant estimates.
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2.2.2 Indicator of Effect Sizes

The indicator of effect sizes is the partial correlation coefficient of trade openness,

which is calculated by the formula

pcci =
ti√

t2i + dfi
,

where t is the t-value of the indicator of trade openness, and df is the degrees of

freedom of the regression model. The variance of pcc is given by

var(pcci) =
1− pcc2i
dfi

.

When analysing the effect of trade openness, some econometric studies applied

the term for its long-run effect TRADE, and others applied the term for its short-

run effect ∆TRADE. When both terms are included in an econometric model, we

calculate the effect size with the t-values of the long-run effect. If different lags of

TRADE are included as independent variables in an econometric model, we then

calculate the effect size with the pcc of the term with the least lag.

Figure 2.1 shows the distribution of pcc in the whole meta-data as well as in

certain subgroups. The weighted mean of pcc is 0.1572 with standard error 0.0028,

where the weight of pcci is its reverse standard error 1/SE.

From Figure 2.1(a), it is determined that effect sizes are more likely to have

a larger value in econometric models that focus on one continent, especially those

that focus on only one country. Specifically, among those studies that focus on one
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Figure 2.1: Distribution of Effect Sizes in Different Subgroups

continent, we noticed from Figure 2.1(b) that studies focusing on African countries

are more likely to have larger effect sizes. Applying 1/SE as weights, the weighted

mean of pcc for models focusing on Asia, Europe, and Africa are 0.1002, 0.1494, and

0.4052, respectively.

Apart from countries and continents included in econometric models, we also

considered the relationship between publication years and effect sizes. From Figure

2.1(c), we can see that compared to publications before 2015, publications between

2015 and 2016 are more likely to have smaller estimates of the effect of trade openness

to economic growth. The weighted mean of pcc for models published in 1995-2009,

2010-2014, and 2015-2016 are 0.1900, 0.1699, and 0.1096, respectively.
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2.2.3 Independent Variables

Our meta-regression models included thirty independent variables. One of them

was the standard deviation SE =
√
var(pcc). The other twenty-nine independent

variables were all categorical variables and are classified into four categories.

First, we had seven variables to show the differences among data: whether the

model only applied data from one country (UCTRY ); whether the model only

applied data from one continent (UCONT ); and whether the focused continent is

Asia (AS), Europe (EU), Africa (AF ), or others.

Second, we used two variables to distinguish the publication year of the studies:

whether it was published in the period 1995-2009, 2010-2014 (Y A10), or 2015-2016

(Y A15).

Third, we used two variables to distinguish different definitions of the dependent

and independent variables considered in our sample papers: whether the effect size

was calculated by short-run effects of trade openness (SHOEF ); and whether the

study used GDP or GDP per capita as the dependent variable (PCPT ).

It was determined from previous literature that the effect of trade openness on

growth is different for various country groups. In this study, we have used eighteen

variables to show whether the following variables or groups of variables were con-

trolled: country effects and time effects (CETE); initial GDP (IGDP ); openness

variables other than trade openness index, including FDI (FDI), BMP (BMP ),

and others (OOPEN); external economic factors (EXT ); investment (INV ); infla-

tion (INF ); infrastructure (INFR); credit or financial depth (CRED); economic
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policy, including government spending (GOV ) and others (OECOP ); political fac-

tors (POLI); social factors, including population (POP ), life expectancy (LIFE),

education (EDU), and others (OSOC); natural geographic factors (NGEO).

Definitions and descriptive statistics of all independent variables are listed in

Table 1. Among all econometric models included in the meta-data, 42.92% only

applied data from one continent, and 21.90% only applied data from one country.

The most focused upon continent is Asia (19.47%), followed by Africa (11.28%).

Publications before 2010, between 2010 and 2014, and between 2015 and 2016 pro-

vided 35.18%, 37.17% and 27.65% of all considered models. Most considered models

analysed long-run effects (89.16%) of trade openness to GDP per capita (89.38%).

The most frequently applied in the observations are initial GDP (67.70%) and ed-

ucation (65.04%), followed by investment (56.64%), country effects and time effects

(45.58%), and government spending (44.91%).

Table 2.1: Independent variables in the meta-regression model

X Meaning of X = 1 Mean (SD)

UCTRY The model only applied data from one country. 0.2190 (0.4140)

UCONT The model only applied data from one continent. 0.4292 (0.4955)

AS The model only applied data from Asia. 0.1947 (0.3964)

EU The model only applied data from Europe. 0.0730 (0.2604)

AF The model only applied data from Africa. 0.1128 (0.3167)

Y A10 The paper is published between 2010 and 2014. 0.3717 (0.4838)

Y A15 The paper is published between 2015 and 2016. 0.2765 (0.4478)
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Table 2.1: Independent variables in the meta-regression model (continued)

X Meaning of X = 1 Mean (SD)

SHOEF Short-run effect of trade openness is applied to cal-

culate the effect size.

0.1084 (0.3112)

PCPT The indicator of economic growth in the model is

GDP per capita or GDP per labour.

0.8938 (0.3084)

CETE The model is controlled for country effects and

time effects.

0.4558 (0.4986)

IGDP The model is controlled for initial GDP. 0.6770 (0.4681)

FDI The model is controlled for FDI. 0.2854 (0.4521)

BMP The model is controlled for BMP. 0.1637 (0.3704)

OOPEN The model is controlled for other openness vari-

ables including export, regional trade agreements,

years of openness, etc.

0.1681 (0.3744)

EXT The model is controlled for external economic fac-

tors.

0.1084 (0.3112)

INV The model is controlled for investment rate. 0.5664 (0.4961)

INF The model is controlled for inflation rate. 0.3783 (0.4855)

INFR The model is controlled for variables referring to

infrastructure including telephone, railway, etc.

0.0774 (0.2676)

30



2.2. Data

Table 2.1: Independent variables in the meta-regression model (continued)

X Meaning of X = 1 Mean (SD)

CRED The model is controlled for variables referring to

credit including bank credit, private credit, finan-

cial depth, etc.

0.1836 (0.3876)

GOV The model is controlled for government spending. 0.4491 (0.4980)

OECOP The model is controlled for other variables refer-

ring to economic policy including monetary policy,

capital control, state owned firms, etc.

0.2080 (0.4063)

POLI The model is controlled for political factors includ-

ing democracy, rule of law, corruption, etc.

0.2920 (0.4552)

POP The model is controlled for variables referring to

population.

0.3562 (0.4794)

LIFE The model is controlled for life expectancy. 0.1173 (0.3221)

EDU The model is controlled for variables referring to

education.

0.6504 (0.4774)

OSOC The model is controlled for other social factors in-

cluding civil liberty, ethnic diversity, religions, etc.

0.1217 (0.3273)

NGEO The model is controlled for natural geographic fac-

tors including latitude, distance from sea, etc.

0.0708 (0.2568)
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2.3 Modelling considerations

2.3.1 Linear Meta-regression Models

Using the independent variables listed above, our aim was to explain the het-

erogeneity in existing estimates of t-statistics by constructing a regression model.

While constructing meta-regression models, one usually applies a random-effects

(RE) model which is written as:

pcci = pcc0 + β0SE +
K∑
k=1

βkxik + νi + εi, (2.1)

where pcc0 is the intercept term, SE is the standard error of pcc, x1, · · · , xJ are in-

dependent variables with regression coefficients β1, · · · , βK , ν is the vector of study-

level random effects, and ε is the error term.

However, by applying multi groups of simulated data, Stanley et al. (2017)

concluded that prediction results of WLS meta-regression have higher prediction

efficiency compared to random-effects meta-regression, especially with the presence

of publication selection, small sample biases, etc. The WLS meta-regression model

is written as:

pcci = pcc0 + β0SEi +
K∑
k=1

βkzik + ε′i, (2.2)

where pcc0 is the intercept term, SE is the standard error of pcc, x1, · · · , xJ are

independent variables with regression coefficients β1, · · · , βK , and ε′ ∼ N(0, V ) is
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the error term where

V =



σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 · · · σ2
I


.

The WLS estimates of the coefficients are given as

β̂ = (XTV −1X)XTV −1y.

In this study, we applied both RE and WLS approaches to estimate the linear

meta-regression model. Backward stepwise regression is applied in both approaches

for variable selection, while in WLS meta-regression, the weights are estimated twice:

once when estimating the model with all independent variables, and once after the

stepwise regression procedure.

2.3.2 Hybrid Tree-linear Meta-regression Models

The linear model has the limitation that it does not detect interaction effects

between variables. Meanwhile, decision trees handle interaction effects between

categorical variables very well. Based on the idea of the hybrid tree-logit model

given by Stainberg & Cardell (1998), a hybrid tree-linear regression (HTLR) model

can be formed by Algorithm 4.

The decision tree built for the HTLR model is shown in Figure 2.2. The categor-
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Algorithm 4 Hybrid Tree-linear Regression (HTLR) Model

1) Build a regression tree model between the dependent variable and all categorical
independent variables.
2) Create new categorical variables for splitting points in the regression tree.
3) Run a linear regression model between the dependent variable and all inde-
pendent variables as well as categorical variables created in the previous step.

4) Apply stepwise regression to select variables included in the regression model.

ical variables created for the splitting points are Y A15×PCPT , Y A15×PCPT ×

IGDP , (1− Y A15)× AF , (1− Y A15)× (1− AF )× Y A10, etc. According to the

definition of variables, some interaction terms can be simplified. As an example,

(1− Y A15)× (1− AF )× Y A10 is equivalent to Y A10× (1− AF ).

From Figure 2.2, we noted that both Y A15 and Y A10 are key variables in the

decision tree built for the HTLR model. All interaction terms derived by the decision

tree can be written as either Y A15× f(X), (1− Y A15)× f(X), Y A10× f(X), or

(1−Y A10−Y A15)×f(X). Noting that Y A15 = 1, Y A10 = 1, and Y A10+Y A15 =

0 represent econometric models published in three different time periods, we built

three different decision trees for these subgroups, which are shown in Figure 2.3.

The categorical variables derived from these decision trees were in the form of

products of a categorical variable representing the subsets (Y A15, Y A10, and 1 −

Y A10− Y A15) and a categorical variable representing a splitting point in the tree

(PCPT , PCPT × IGDP , AF , AF × INF , etc). It was easy to identify that some

variables derived from these three decision trees were equivalent to those derived

from the decision tree in Figure 2.2, such as Y A15 × PCPT , Y A15 × PCPT ×

IGDP , etc. Applying all variables derived from decision trees in Figure 2.2, a

hybrid groupwise tree-linear regression (HGTLR) model is given by Algorithm 5.
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|
YA15>=0.5

PCPT>=0.5

IGDP< 0.5

AF< 0.5

YA10>=0.5

INV< 0.5

POP>=0.5

NGEO>=0.5

INF>=0.5

INV>=0.5

OECOP>=0.5 POP< 0.5

INF>=0.5

−0.18 0.032

0.33

−0.31

−0.26

−0.052 0.25

0.15

−0.092 0.16 0.19 0.38

0.18 0.56

Figure 2.2: Decision Tree Built in HTLR Model
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|PCPT>=0.5

IGDP< 0.5

OSOC>=0.5

EDU< 0.5

OECOP< 0.5

UCTRY>=0.5

−0.18

−0.071

−0.0089

0.044

0.035 0.21

0.33

(a) 2015 ∼ 2016

|AF< 0.5

INV< 0.5

POP>=0.5

NGEO>=0.5

INF>=0.5

BMP>=0.5

SHOEF>=0.5

INF>=0.5

−0.31

−0.26

−0.052 0.25

0.075

0.11 0.24

0.18 0.61

(b) 2010 ∼ 2014
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|INV>=0.5

OECOP>=0.5

UCTRY< 0.5

POP< 0.5

CETE>=0.5

CRED>=0.5 OECOP>=0.5

LIFE>=0.5
−0.092

0.13 0.27

0.072 0.23 0.14 0.29

0.19 0.44

(c) 1995 ∼ 2009

Figure 2.3: Decision Tree Built for Three Subsets

Algorithm 5 Hybrid Groupwise Tree-linear Regression (HGTLR) Model

1) Split the data into a few meaningful subsets.
2) For each subset, build a regression tree model between the dependent variable
and all categorical independent variables.
3) Create new categorical variables for splitting points in the regression trees.
4) Run a linear regression model between the dependent variable and all inde-
pendent variables as well as categorical variables created in the previous step.

5) Apply stepwise regression to select variables included in the regression model.

Both HTLR and HGTLR models can be written as:

pcci = pcc0 + β0SE + f(Xi) + ε′i, (2.3)

where X = {x1, · · · , xJ} and f(X) is a non-linear function. The model is estimated
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by both RE and WLS approaches, where in random-effects meta-regression, ε′ =

ν + ε. Backward stepwise regression is applied for variable selection.

Tree-based regression algorithms were developed because both decision trees and

linear regression models have their strengths and weaknesses. Decision trees have

the strength of detecting nonlinear relationships without prior assumptions of the

underlying distribution of the data. However, all terms included in a decision tree

are interaction terms between the variable on the root node and other variables,

which may result in the missing of some key variables.

In comparison, linear regression models do not detect interaction effects between

variables. If interaction terms are added manually, the estimation of the model

could become highly computationally inefficient, or in extreme cases, infeasible. As

an example, with twenty-three categorical variables discussed in the meta-regression

model, 253 interaction terms of two variables and 1771 interaction terms of three

variable can be created. If all these interaction terms were added in a linear regres-

sion model, there would be many more parameters than observations, which makes

the construction of the model computationally infeasible.

2.4 Results and Discussion

2.4.1 Results of Meta-regression Models

Table 2.2 summarises the results of our RE meta-regression models, and Table

2.3 summarises the results of our WLS meta-regression models.
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Table 2.2: Results of RE meta-regression models

Method RE-LR RE-HTLR RE-HGTLR

Intercept 0.3682***

(0.0779)

0.5782***

(0.0667)

0.5082***

(0.0871)

SE -4.9335***

(0.1843)

-4.8584***

(0.1813)

-4.8112***

(0.1830)

UCTRY 0.3091***

(0.0481)

0.2634***

(0.0531)

0.2618***

(0.0535)

UCONT 0.1587***

(0.0467)

0.1887

(0.0362)

0.1951***

(0.0363)

AS 0.0996 .

(0.0577)

AF -0.2327***

(0.0540)

-0.2453***

(0.0476)

YA10 0.1442 .

(0.0798)

0.1274

(0.0777)

SHOEF -0.0876***

(0.0151)

-0.0910***

(0.0150)

PCPT 0.0869 .

(0.0516)

0.1041 .

(0.0571)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 2.2: Results of the models (continued)

Method RE-LR RE-HTLR RE-HGTLR

IGDP 0.0475 .

(0.0288)

0.0736

(0.0454)

FDI -0.0771***

(0.0188)

-0.0742***

(0.0189)

-0.0705***

(0.0190)

BMP 0.4118***

(0.1064)

OOPEN 0.0446**

(0.0160)

0.0407*

(0.0159)

0.0400*

(0.0159)

EXT -0.1101***

(0.0332)

-0.1054

(0.0329)

-0.1039**

(0.0328)

INV 0.0596*

(0.0281)

INFR -0.1736***

(0.0383)

-0.2385***

(0.0438)

-0.2107***

(0.0440)

GOV -0.0452**

(0.0143)

OECOP -0.0445*

(0.0223)

-0.0366

(0.0224)

-0.0579*

(0.0256)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 2.2: Results of the models (continued)

Method RE-LR RE-HTLR RE-HGTLR

POLI 0.0371

(0.0238)

0.0487*

(0.0241)

0.0461 .

(0.0251)

POP 0.1200***

(0.0187)

LIFE -0.1104

(0.0762)

EDU -0.0589***

(0.0173)

-0.0849**

(0.0264)

OSOC 0.0331 .

(0.0175)

Y A15× PCPT -0.2759*

(0.1315)

Y A15× PCPT × IGDP 0.1118***

(0.0316)

-0.7229**

(0.2310)

Y A15×PCPT×IGDP×OSOC 0.1061***

(0.0271)

Y A15× PCPT × IGDP×

(1−OSOC)× EDU

0.7573**

(0.2304)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 2.2: Results of the models (continued)

Method RE-LR RE-HTLR RE-HGTLR

Y A15× PCPT × IGDP×

(1−OSOC)× EDU ×OECOP

0.0764

(0.0520)

Y A15× PCPT × IGDP×

(1−OSOC)× EDU×

OECOP × UCTRY

-0.6935**

(0.2338)

(1− Y A15)× AF -0.2382***

(0.0484)

(1− Y A15)× AF × INF -0.5944***

(0.1524)

Y A10× AF × INF -0.6078***

(0.1462)

Y A10× (1− AF )× INV -0.1876

(0.1165)

-0.2366*

(0.1112)

Y A10× (1− AF )× INV×

(1−BMP )× SHOEF

-0.0963*

(0.0156)

Y A10× (1−AF )× (1− INV )×

POP

-1.2193***

(0.3467)

-1.2327***

(0.3264)

Y A10× (1−AF )× (1− INV )×

(1− POP )×NGEO

-0.8097*

(0.3466)

-0.8350**

(0.3229)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.

42



2.4. Results and Discussion

Table 2.2: Results of the models (continued)

Method RE-LR RE-HTLR RE-HGTLR

Y A10× (1−AF )× (1− INV )×

(1−POP )× (1−NGEO)×INF

-0.4094***

(0.1182)

-0.4011***

(0.1112)

(1− Y A10− Y A15)×

(1− AF )× INV ×OECOP

-0.5471***

(0.1156)

(1− Y A10− Y A15)×

(1− AF )× (1− INV )× POP

0.3157

(0.2038)

(1− Y A10− Y A15)× INV×

OECOP

-0.5051***

(0.1275)

(1− Y A10− Y A15)× INV×

(1−OECOP )× UCTRY

-0.4942

(0.3197)

(1− Y A10− Y A15)×

(1− INV )× POP × LIFE

0.1560

(0.1001)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.

Table 2.3: Results of WLS meta-regression models

Method WLS-LR WLS-HTLR WLS-

HGTLR

Intercept 0.1790***

(0.0379)

0.1965***

(0.0277)

0.2410***

(0.0361)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 2.3: Results of the models (continued)

Method WLS-LR WLS-HTLR WLS-

HGTLR

SE -0.3471

(0.2198)

UCTRY 0.1029*

(0.0412)

UCONT 0.1862***

(0.0416)

AS -0.2107***

(0.0479)

EU -0.3620***

(0.0753)

AF 0.2386***

(0.0487)

-0.2128**

(0.0702)

YA10 -0.0973**

(0.0348)

0.1121*

(0.0523)

YA15 -0.2462***

(0.0382)

0.2522***

(0.0738)

CETE -0.1178***

(0.0298)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 2.3: Results of the models (continued)

Method WLS-LR WLS-HTLR WLS-

HGTLR

IGDP 0.1175**

(0.0385)

0.0622*

(0.0308)

0.1245***

(0.0308)

INV 0.0471

(0.0328)

0.1470**

(0.0452)

INF -0.0615 .

(0.0359)

INFR 0.0873

(0.0543)

CRED -0.1007*

(0.0433)

GOV 0.0760*

(0.0296)

POP 0.0553 .

(0.0295)

0.1146***

(0.0333)

LIFE -0.0739

(0.0456)

-0.1408***

(0.0389)

-0.1564***

(0.0451)

EDU -0.0965**

(0.0344)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 2.3: Results of the models (continued)

Method WLS-LR WLS-HTLR WLS-

HGTLR

OSOC -0.1646***

(0.0419)

-0.1189**

(0.0387)

-0.1060*

(0.0417)

NGEO -0.1517**

(0.0560)

Y A15× PCPT -0.3353***

(0.0750)

-0.5321***

(0.0550)

Y A15× PCPT × IGDP×

(1−OSOC)× EDU

0.1099 .

(0.0617)

Y A15× PCPT × IGDP×

(1−OSOC)× EDU ×OECOP

0.1957*

(0.0812)

Y A15× PCPT × IGDP×

(1−OSOC)× EDU×

OECOP × UCTRY

-0.3072**

(0.1152)

(1− Y A15)× AF 0.5110***

(0.0876)

(1− Y A15)× AF × INF -0.3925***

(0.0887)

Y A10× AF × INF -0.3995***

(0.0953)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 2.3: Results of the models (continued)

Method WLS-LR WLS-HTLR WLS-

HGTLR

Y A10× (1− AF )× INV -0.1233*

(0.0550)

-0.2332***

(0.0528)

Y A10× (1−AF )× INV ×BMP -0.2802***

(0.0586)

Y A10× (1− AF )× INV×

(1−BMP )× SHOEF

-0.1241 .

(0.0722)

Y A10× (1− AF )×

(1− INV )× POP

-0.6167***

(0.1177)

-0.6928***

(0.1094)

Y A10× (1−AF )× (1− INV )×

(1− POP )×NGEO

-0.4532***

(0.1204)

-0.6624***

(0.1053)

Y A10× (1−AF )× (1− INV )×

(1−POP )× (1−NGEO)×INF

-0.2972***

(0.0752)

0.3504***

(0.0590)

(1− Y A10− Y A15)×

(1− AF )× INV ×OECOP

-0.2422**

(0.0801)

(1− Y A10− Y A15)×

(1− AF )× (1− INV )× POP

0.2088***

(0.0458)

(1− Y A10− Y A15)× INV -0.3170***

(0.0608)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 2.3: Results of the models (continued)

Method WLS-LR WLS-HTLR WLS-

HGTLR

(1− Y A10− Y A15)× INV×

OECOP

-0.1938*

(0.0859)

(1− Y A10− Y A15)× INV×

(1−OECOP )× UCTRY

0.2297*

(0.1137)

(1−Y A10−Y A15)×(1−INV )×

(1− POP )× CETE

-0.0881

(0.0546)

(1−Y A10−Y A15)×(1−INV )×

(1− POP )× CETE × CRED

-0.1891**

(0.0715)

(1−Y A10−Y A15)×(1−INV )×

(1− POP )× (1− CETE)×

OECOP

-0.2542**

(0.0805)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.

2.4.2 Comparison between Meta-regression Models

Table 2.4 shows summary statistics and values of certain model selection criteria

of meta-regression models applied in the study. The prediction accuracy is calculated

based on three categories: positive significant, negative significant, and insignificant

at the significance level of 0.05.
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Table 2.4: Comparison between meta-regression models

Method RE-LR RE-
HTLR

RE-
HGTLR

WLS-
LR

WLS-
HTLR

WLS-
HGTLR

Amount of trees 0 1 3 0 1 3

Amount of
parameters

21 23 32 15 17 28

AIC 2301.8 2236.8 2221.6 113.7 -41.5 -48.1*

BIC 2388.2 2331.4 2353.2 179.6 32.6* 71.2

MSE (cross
validation)

0.0882 0.0659 0.0724 0.0759 0.0611 0.0602*

Prediction
accuracy

51.77% 65.49% 59.51% 53.54% 67.26%* 66.59%

* represents the selected model from each model selection criteria.

According to the values of both AIC and BIC, all WLS meta-regression models

have much higher explanation powers than any RE meta-regression models, and

tree-based meta-regression estimates are better than their linear counterparts. The

estimates with the highest explanation power is either the WLS-HGTLR estimate

seleted by AIC, or the WLS-HTLR estimate selected by BIC. Meanwhile, the WLS-

HGTLR also has the smallest MSE in 10-fold cross validation, followed by the WLS-

HTLR model, which means that there is no sign of overfitting in both methods.

The prediction powers of all meta-regression models are similar when only the

sign of the effect sizes are predicted. However, when both the sign and the sig-

nificance of the effect sizes are considered, the prediction powers of WLS-HTLR

and WLS-HGTLR estimates are dominant over other meta-regression models. As

WLS-HTLR and WLS-HGTLR estimates are better than other estimates in both

explanation and prediction powers, we are only applying their results in the following
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discussions.

2.4.3 Economic Discussions

According to the WLS-HTLR estimate, compared to studies that considered data

from multi continents, studies that focused on one continent other than Africa do

not have significantly different results. However, if an econometric model focused on

Africa, it is estimated that trade-growth partial correlation would either increase by

about 0.30, if it is published before 2015, or decrease by about 0.21, if it is published

after 2015.

On the other hand, according to the WLS-HGTLR estimate, compared to studies

that considered data from multi continents, studies that focused on one continent

had either higher or lower estimates of trade-growth partial correlation depending on

the focused continent. If the focused continent is Asia or Europe then the estimated

partial correlation would be expected to decrease by 0.02 or 0.18. However, the

estimated partial correlation would be expected to increase by 0.19 if the focused

continent is neither Asia nor Europe.

According to the WLS-HGTLR estimate, we also concluded that econometric

models that focused on one country have higher estimates of trade-growth partial

correlation than those that considered multi countries on a continent. Generally

speaking, these results are consistent to the patterns discovered from Figure 2.1(a)

and 2.1(b).

Based on both WLS-HTLR and WLS-HGTLR estimates, the relationship be-
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tween estimated trade-growth partial correlation of an econometric model and its

publication time depend on various characters of the model, including the data

source, the indicator of economic growth, and the control variables applied.

Table 2.5 presents the fitted partial correlation coefficients for openness-growth

econometric models in the time periods 1995-2009, 2010-2014, and 2015-2016. The

fitted values are calculated based on the prediction when SE is set to be its me-

dian, the indicator of economic growth is GDP per capita, and three control vari-

able groups: CV G1 = {IGDP, INV,EDU} only include control variables ap-

plied in more than 50% of observations in the meta-data, CV G2 = CV G1 ∪

{CETE,GOV, POP} include control variables applied in more than 40% of ob-

servations, and CV G3 = CV G2 ∪ {INF, POLI} include control variables applied

in more than 30% of observations.

According to the estimates in Table 2.5, under all circumstances, estimates of

trade-growth partial correlation in publications in the period 2015-2016 were always

lower than those in publications before 2015. Meanwhile, the difference between

estimates in publications in the periods 1995-2009 and 2010-2014 depend upon the

estimation method and the data source.

According to both WLS-HTLR and WLS-HGTLR estimates of the meta-regression

model, the difference between long-run and short-run trade openness did not have a

significant influence to the estimate of their effects on economic growth. According

to both estimates, however, in publications in the period 2015-2016, econometric

models that applied GDP per capita as the indicator of economic growth had much

less positive estimates of the trade-growth partial correlation, compared to those

51



2.4. Results and Discussion

Table 2.5: Predictions made by meta-regression models

Method WLS-
HTLR

WLS-
HTLR

WLS-
HTLR

WLS-
HGTLR

WLS-
HGTLR

WLS-
HGTLR

Publication time 1995-
2009

2010-
2014

2015-
2016

1995-
2009

2010-
2014

2015-
2016

Multi continent,
CV G1

0.2588 0.2476 0.1757 0.1674 0.2512 0.0621

Multi continent,
CV G2

0.1410 0.1298 0.0579 0.2820 0.3658 0.1767

Multi continent,
CV G3

0.1410 0.1298 0.0579 0.2820 0.3658 0.1767

Asia, CV G1 0.2588 0.2476 0.1757 0.1429 0.2267 0.0376

Asia, CV G2 0.1410 0.1298 0.0579 0.2575 0.3413 0.1522

Asia, CV G3 0.1410 0.1298 0.0579 0.2575 0.3413 0.1522

Europe, CV G1 0.2588 0.2476 0.1757 -0.0085 0.0753 -0.1137

Europe, CV G2 0.1410 0.1298 0.0579 0.1062 0.1900 0.0009

Europe, CV G3 0.1410 0.1298 0.0579 0.1062 0.1900 0.0009

Africa, CV G1 0.5570 0.6691 -0.0371 0.3535 0.6705 0.2482

Africa, CV G2 0.4392 0.5513 -0.1549 0.4681 0.7851 0.3629

Africa, CV G3 0.0466 0.1588 -0.1549 0.4681 0.3857 0.3629

that applied GDP.

Both WLS-HTLR and WLS-HGTLR estimates of the meta-regression model

showed that the use of certain control variables have significant influences on the ef-

fect size of openness-growth econometric models. Variables that are included in both

estimates as linear terms include IGDP with positive signs, and LIFE and OSOC

with negative signs. In comparison, the variables CETE, INV , INF , OECOP ,

POP , EDU , and NGEO are included in both estimates in either linear or inter-
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action terms. These results showed that estimates of the trade-growth relationship

varied across countries and time periods, and its estimates depend upon control

variables included in econometric models such as initial GDP; investment; inflation;

economic policy; social factors such as population, life expectancy, education; and

natural geographic factors. Notably, some of those factors, such as life expectancy

and natural geographic factors, are rarely applied as control variables in econometric

studies included in the meta-data.

According to the estimates in Table 2.5, trade openness is estimated to be ben-

eficial for economic growth in most cases, even in publications since 2015. No-

tably, according to the WLS-HTLR estimates, the trade-growth partial correlation

in Asia-focused econometric models published since 2015 is estimated to be negative,

regardless of the control variables applied in econometric models.

2.5 Conclusion

In this study, we investigated the relationship between trade openness and eco-

nomic growth by building linear and tree-based meta-regression models. We found

strong evidence that trade openness has positive effects on economic growth.

Specifically, models published before 2015 which focus on specific continents,

especially Asia and Africa, tend to have more significantly positive effects. We also

found that control variables such as initial GDP, investment, inflation, economic

policy, social factors, and natural geographic factors were influential to the estimates

of the trade-growth partial correlation in econometric models.
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More importantly, when we considered the relationship between regressors in

the meta-regression model and the effect sizes, the effects of different regressors are

often dependent to the values of each other. We found clear evidence that tree-

based meta-regression models are superior compared to linear models in terms of

both explanatory power and predictive power. This attribute is evident in tree-

based meta-regression models which stand out in all terms of model comparison

measures including AIC, BIC, cross-validated MSE, and average prediction accuracy.

Additionally, we also found evidence that WLS meta-regression models are superior

to RE meta-regression models.
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Chapter 3

What are the Key Factors that Affect

the Fundraising Performance of

Crowdfunding? Evidence from Hybrid

Tree-regression Models

3.1 Introduction

Social entrepreneurial ventures alleviate social problems through market-based

instruments. They bring positive externalities (Dees et al., 2004), increase social

trust and social capital, and reduce the transaction costs and resource constraints

of start-ups (Roundy et al., 2017). They have, to some extent, addressed market

failures (Alter, 2007), alleviated poverty (Mail et al, 2009), reduced unemployment
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(Catford, 1998), and pursued development opportunities for women and underrep-

resented groups (Nicholls, 2008).

In recent years, crowdfunding has garnered increasing attention as an emerging

financing channel. The number of crowdfunding platforms worldwide is growing

rapidly in a linear trend and their influence is only increasing. On large reward-

based crowdfunding platforms such as Kickstarter and Indiegogo, dedicated sections

for social or philanthropic entrepreneurship have emerged. Improving the success

rate of crowdfunding financing is therefore very important for social entrepreneurial

ventures.

Many factors affect crowdfunding project performance, including individual in-

vestor characteristics, crowdfunding platforms, crowdfunding projects and reward

factors, and visualisation tools such as videos and charts. This paper aims to bring

more attention to social entrepreneurship, defined as profitable marketing activities

targeting the relief of socially disadvantaged groups (Leadbeater, 1997), and im-

prove the performance of social entrepreneurship enterprises in raising funds through

crowdfunding platforms, thereby creating greater social value. We collected data on

social entrepreneurship porjects on Kickstarter and Indiegogo and explored the im-

pact of various factors on crowdfunding performance.

We built a linear regression model for fundraising performance, measured by the

proportion of financing, and certain independent variables and proposed new meth-

ods of using decision trees to account for non-linear relationships between fundraising

performance and the independent variables; these tree-based regression algorithms

combine the strengths of decision trees and linear regression models. By comparing
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tree-based models with linear models, we found that tree-based models have higher

explanatory and predictive power.

The structure of the remainder of Chapter 3 is as follows. Section 3.2 provides

the background behind developing tree-based regression models; in Section 3.3, we

describe the data collection process and choose variables in regression models; in

Section 3.4, we introduce both linear and tree-based regression models applied in

the study; Section 3.5 gives and discusses the results of these models; in Section 3.6

we draw our conclusions from the study, and discuss possible further research.

3.2 Background

In recent years, crowdfunding has quickly gained attentions from researchers. A

systemic review by Bockel et al. (2021) pointed out that the number of publications

related to crowdfunding increased from less than five per year at the beginning of

2010s to thirty-two in 2018, and quantitative research has gained dominance over

time. In these studies, it was proven that crowdfunding has been helpful in various

business sectors and social aspects, such as the arts and creative sector (Chiesa et

al., 2021), and academic achievements of school children (Zhou et al, 2021).

Moritz et al. (2016) provided a systemic literature review on 127 articles which

are categorised according to their research priorities among three crowdfunding fac-

tors: capital seekers, capital providers, and intermediaries. Among variables related

to capital seekers, determining factors for crowdfunding success include non-profit

oriented background, funding amount and duration, social network, product-related
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videos, and geographical proximity to capital providers. On the other hand, capital

providers have heterogeneous motivations including social reputation and intrinsic

motives, and they are impacted by peer behaviour. However, it is also worth noting

that as intermediaries, crowdfunding platforms offer benefits for both capital seekers

and providers by reducing information asymmetries and building trust.

Another systemic review by Kaartemo (2017) analysed fifty-one studies published

between 2011 and 2016. It was noted that thirty-seven studies only applied data

from one crowdfunding platform, among which the most popular data source is Kick-

starter (applied by nineteen studies), followed by Indiegogo (applied by five studies).

In the systemic review, the factors that are considered by previous studies to affect

crowdfunding performances are listed in four categories: (1) campaign-related fac-

tors, such as the fundraising target, various types of rewards, and application of

visualisation tools; (2) crowdfunder-related factors, such as types of crowdfunders;

(3) crowdfunding platform-related factors, such as platform design; and (4) fund-

seeker-related factors, such as various types of social capitals.

Hossain et al. (2017) discussed the definitions of common terms in crowdfunding-

related studies and concluded that there are four important elements in crowdfund-

ing: (1) the role of internet and social media, including personal social network,

the judgment of other backers, individual groups representing special interests, and

platform recommendations based on users’ behaviors and preferences; (2) visual com-

munication, including videos, technical drawings, photographs, and interactive chat

forums; (3) motivation of founders and sponsors; and (4) trust and transparency,

which is a key component in various stages of a project and a real-time feedback

process.
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Sauermann et al. (2019) analysed data from over 700 research-related crowd-

funding campaigns before 2015. Variables related to creator characteristics, project

characteristics, and campaign characteristics were applied to explain both the suc-

cess and the size of funding. The results of linear and logistic regression both show

that various factors, especially the position and gender of project creators, are sig-

nificantly influential to the results of crowdfunding.

Huang et al. (2021) applied a dataset with sixty-two projects from 2013 to 2015

to analyse the influences on crowdfunding success of both project quality and experi-

ences of entrepreneurs. Based on the results of qualitative comparative analysis, the

study concluded that both groups of factors are influential on crowdfunding success.

Based on 167 responses of an online questionnaire, Moysidou et al. (2020) anal-

ysed the trust-building procedure of crowdfunding and concluded that crowdfunding

platforms play the most important role in the procedure. Schraven et al. (2020) col-

lected data of predictions made by a group of participants to success of crowdfunding

campaigns and analysed their accuracy. It is concluded that negative information

are more quickly recognised by participants.

Applying a panel data of 450 crowdfunding projects on a Chinese platform, Chen

et al. (2020) built a regression model which showed that both static variables (social

capital, descriptive information, and funding goal) and dynamic variables (project

popularity) have significant relationships with the proportion of financing. Following

this categorisation, Popescul et al. (2020) provided a systemic review which added

more variables in both categories. Static variables, including reward-related vari-

ables, experiences of entrepreneurs, fundraiser related variables (gender, location,
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and team size), risks, qualities of project plans, and platforms, are also considered

to be influential to fundraising performances. In comparison, dynamic variables,

such as previous crowdfunding performance, frequencies and qualities of updates,

and other decisions made by entrepreneurs during the crowdfunding process, are

also decisive to crowdfunding performances.

In previous studies, it was determined that the performances of crowdfunding

projects are influenced by many factors. However, most studies are based on the

assumption that the influences of these factors to crowdfunding performances are

independent. By applying hybrid models of decision trees and linear regression, we

discover joint effects between multi regressors to crowdfunding performances.

3.3 Data

3.3.1 Data Collection

The data of this paper was collected from two leading international crowdfunding

websites: Kickstarter and Indiegogo. We began by using the keywords ”social enter-

prise” and ”social entrepreneurship” in our search for projects that were completed

from 2016 to 2018. Then, we cleaned up the original data by removing projects with

extreme values of variables such as funding ratio, funding target, and number of

followers. In the end, 236 social entrepreneurship projects were obtained, of which

fifty-two were from Kickstarter and 184 were from Indiegogo.
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3.3.2 Indicator of Fundraising Performances

In previous studies, the fundraising performances of crowdfunding projects was

measured with three variables: the success of financing, the size of financing, and

the proportion of financing. The success of financing is a categorical variable that

ignores the differences among unsuccessful projects, of which the proportion of fi-

nancing could vary from 0 to 90.6%, based on the data. When considering the size of

financing, we found that it did not directly show the success of financing. The pro-

portion of financing, however, defined as the ratio between the size of fundraising

and the fundraising target, is a continuous variable that measures different levels

of success. Thus, we selected the proportion of financing (LPF) as a metric for

fundraising performances.

Among 236 observations in this study, there were fifty-two successful and 184

unsuccessful social entrepreneurship projects. Among the unsuccessful projects, the

proportion of financing was between 10% and 100% for 73 observations, between 1%

and 10% for 56 observations, and less than 1% for 55 observations.

3.3.3 Independent Variables

Our regression models included thirty independent variables; two of which were

continuous variables representing the fundraising target (LTARG) and the number

of pictures displayed on the web page of the project (LPICS ). We took natural logs

of all continuous variables in the model.
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We used one variable to represent the website where projects are published

(KICKS ), and three variables to show the topics of social entrepreneurship projects:

(i) community activities (COMACT ); (ii) design and technology (DESTECH ); and

(iii) food and craft (FOODCR). We used one variable to show if the project involved

products (PROD).

Another eight variables held information about the founders of the crowdfunding

project: whether they were individual persons (PERSON ); their gender (MALE );

whether a profile picture was displayed (PROFL) and if it was a picture of the

founder (SELF ); whether the founders have supported other projects (SPT ); if they

have prior experience in starting a business (BUSIN ); and whether a job description

(JOBDES ), or a degree (DEG) is displayed on the crowdfunding website.

We used a further ten variables to describe the types of rewards for sponsors of the

crowdfunding project: products produced by or related to the projects (RWPROD);

experiences and techniques (RWEXP); VIP memberships (RWVIP); honor certifi-

cates (RWHONOR), letters of thanks (RWLETTER), or photos (RWPHOTO);

chances to visit the project site (RWVISIT ), join annual meetings (RWANMET ),

or be interviewed (RWINT ); and the status of decision makers or shareholders

(RWDESH ).

Finally, we used five variables for subjects of pictures displayed on the project’s

crowdfunding website, namely pictures of: providers of the project (PTPROV ),

receivers of the project (PTREC ), products produced by or related to the projects

(PTPROD), the production procedure or the production environment (PTPROC ),

and project slogans, logos, missions, and plans (PTSLMP).
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Definitions and descriptive statistics of all variables are listed in Table 3.1. The

fundraising target of the observations varies from $120 to $631,000, and the num-

ber of displayed pictures varies from zero to sixty-six. The most popular category

was community activities which contributed 42.37% of crowdfunding projects in the

data. Common types of rewards included products of the project (71.19%), honor

certificates (44.07%), and letters of thanks (41.95%). Common themes of pictures

include providers (45.76%), receivers (38.14%), products (47.88%), production pro-

cedure or environment (42.37%), and project slogans, logos, missions, and plans

(52.12%).

Table 3.1: Variables in the models

Variable Meaning of variable Mean (SD) (Min,Max)

LPF Natural logarithm of the ratio between

the result and target of the crowdfund-

ing project.

-2.8303

(3.1725)

(-17.0344,

0.7969)

LTARG Natural logarithm of the fundraising

target.

9.4078

(1.5014)

(4.7875,

13.3551)

LPICS Natural logarithm of the number of

pictures displayed on the webpage of

the project. The amount is added by

one.

1.5177

(1.1606)

(0,4.1897)

KICKS Dummy variable, 1 indicates the

project is published on Kickstarter, 0

otherwise.

0.2203

(0.4154)

(0,1)
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Table 3.1: Variables in the models (continued)

Variable Meaning of variable Mean (SD) (Min,Max)

COMACT Dummy variable, 1 indicates the topic

of the project is community activities,

0 otherwise.

0.4237

(0.4952)

(0,1)

DESTECH Dummy variable, 1 indicates the topic

of the project design and technology,

0 otherwise.

0.1653

(0.3722)

(0,1)

FOODCR Dummy variable, 1 indicates the topic

of the project is food and craft, 0 oth-

erwise.

0.1568

(0.3644)

(0,1)

PROD Dummy variable, 1 indicates the

project involves products, 0 otherwise.

0.3517

(0.4785)

(0,1)

PERSON Dummy variable, 1 indicates the

founder of the project is an individual

person, 0 otherwise.

0.8263

(0.3797)

(0,1)

MALE Dummy variable, 1 indicates the

founder of the project is male, 0 oth-

erwise.

0.4025

(0.4915)

(0,1)

PROFL Dummy variable, 1 indicates a profile

picture is displayed, 0 otherwise.

0.7415

(0.4387)

(0,1)
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Table 3.1: Variables in the models (continued)

Variable Meaning of variable Mean (SD) (Min,Max)

SELF Dummy variable, 1 indicates the pro-

file picture is a picture of the founder,

0 otherwise.

0.4788

(0.5006)

(0,1)

SPT Dummy variable, 1 indicates the

founder has supported other projects,

0 otherwise.

0.4407

(0.4975)

(0,1)

BUSIN Dummy variable, 1 indicates the

founder has experiences in starting a

business, 0 otherwise.

0.1441

(0.3519)

(0,1)

JOBDES Dummy variable, 1 indicates a job de-

scription of the founder is displayed

on the crowdfunding website, 0 oth-

erwise.

0.3432

(0.4758)

(0,1)

DEG Dummy variable, 1 indicates a de-

gree of the founder is displayed on the

crowdfunding website, 0 otherwise.

0.2797

(0.4498)

(0,1)

RWPROD Dummy variable, 1 indicates sponsors

of the project receive products pro-

duced by or related to the project, 0

otherwise.

0.7119

(0.4539)

(0,1)
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Table 3.1: Variables in the models (continued)

Variable Meaning of variable Mean (SD) (Min,Max)

RWEXP Dummy variable, 1 indicates sponsors

of the project receive experiences and

techniques, 0 otherwise.

0.0763

(0.2660)

(0,1)

RWV IP Dummy variable, 1 indicates sponsors

of the project receive VIP member-

ships of the project, 0 otherwise.

0.0763

(0.2660)

(0,1)

RWHONOR Dummy variable, 1 indicates sponsors

of the project receive honor certifi-

cates, 0 otherwise.

0.4407

(0.4975)

(0,1)

RWLET Dummy variable, 1 indicates sponsors

of the project receive letters of thanks,

0 otherwise.

0.4195

(0.4945)

(0,1)

RWPHOTO Dummy variable, 1 indicates sponsors

of the project receive photos, 0 other-

wise.

0.0975

(0.2972)

(0,1)

RWV ISIT Dummy variable, 1 indicates sponsors

of the project have chances to visit the

project site, 0 otherwise.

0.2246

(0.4182)

(0,1)

RWANM Dummy variable, 1 indicates sponsors

of the project have chances to join an-

nual meetings, 0 otherwise.

0.1568

(0.3644)

(0,1)
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Table 3.1: Variables in the models (continued)

Variable Meaning of variable Mean (SD) (Min,Max)

RWINT Dummy variable, 1 indicates sponsors

of the project have chances to be in-

terviewed, 0 otherwise.

0.0847

(0.2791)

(0,1)

RWDESH Dummy variable, 1 indicates sponsors

of the project become decision makers

or shareholders, 0 otherwise.

0.0254

(0.1577)

(0,1)

PTPROV Dummy variable, 1 indicates a picture

about the providers of the project is

displayed, 0 otherwise.

0.4576

(0.4993)

(0,1)

PTREC Dummy variable, 1 indicates a picture

about the receivers of the project is

displayed, 0 otherwise.

0.3814

(0.4868)

(0,1)

PTPROD Dummy variable, 1 indicates a picture

of products produced by or related to

the project is displayed, 0 otherwise.

0.4788

(0.5006)

(0,1)

PTPROC Dummy variable, 1 indicates a picture

about the production procedure or

production environment is displayed,

0 otherwise.

0.4237

(0.4952)

(0,1)
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Table 3.1: Variables in the models (continued)

Variable Meaning of variable Mean (SD) (Min,Max)

PTSLMP Dummy variable, 1 indicates the slo-

gan, logo, mission, or plan of the

project is displayed, 0 otherwise.

0.5212

(0.5006)

(0,1)

3.4 Methodology

3.4.1 Linear Regression

Using the independent variables listed above, our aim was to explain the hetero-

geneity in existing estimates of t-statistics by constructing a regression model. A

linear regression model with both continuous and categorical independent variables

can be written as:

yi = β0 +
J∑
j=1

δjzij +
K∑
k=1

βkxik + εi, (3.1)

where β0 is the intercept term, z1, · · · , zJ are categorical independent variables with

regression coefficients δ1, · · · , δJ , x1, · · · , xK are continuous independent variables

with regression coefficients β1, · · · , βK , and ε is the error term.
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3.4.2 Hybrid Tree-linear Regression

Applying a similar idea to the hybrid models given by Kim et al. (2017), a hybrid

tree-linear model (HFLR) can be formed by Algorithm 4 in Chapter 2. The HTLR

model can be written as:

yi = β0 + f(Zi) +
K∑
k=1

βjxik + εi, (3.2)

where Z = {z1, · · · , zJ} and f(Z) is a non-linear function.

Instead of variables that refer to leaf nodes of decision trees, we applied variables

that are associated to splitting points in decision trees as new independent variables

in the regression model. Although the two ways of generating new variables are

mathematically equivalent, variables generated by splitting points are products of

fewer original variables, and are therefore easier to interpret. The decision tree built

in the HTLR model is shown in Figure 3.1. The categorical variables created for

the splitting points are SPT × PTREC, (1 − SPT ) × RWPROD, (1 − SPT ) ×

RWPROD ×MALE, etc.

The HTLR method only allows results of one decision tree to be added, which

means that all interaction terms included in the model are related to each other by

sharing the same root node. However, in real data sets, there is often a wide range

of nonlinear relationships that do not frequently share a common variable. To allow

multiple interaction terms that do not share a common root variable to enter the

tree-based regression model, we have to include the results of multiple decision trees.
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|SPT< 0.5

RWPROD< 0.5

COMACT< 0.5

RWLET< 0.5

MALE>=0.5

KICKS>=0.5 PTPROC< 0.5

PTREC< 0.5

−7

−4.9 −2.6 −6.2 −3.3 −2.9 −1.5

−2.5 −1.3

Figure 3.1: Decision Tree Built in HTLR Model

3.4.3 Hybrid Forest-linear Regression

Applying a loop algorithm, the hybrid forest-linear model (HFLR) given by Al-

gorithm 6 generates a group of decision trees which can all be included in the same

regression model. The results of HFLR models can also be written in the form of

Equation 3.2.
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Algorithm 6 Hybrid Forest-linear Regression (HFLR)

1.1) Create the set of categorical independent variables Z0 = {z1, · · · , zJ} the
set of all independent variables X0 = {z1, · · · , zJ , x1, · · · , xK}. Create the set of
active categorical variables Za

1 = Z0.
1.2) Run a linear regression model between y and all variables in X0.
1.3) Apply stepwise regression to select variables included in the regression model.
Calculate the BIC of the model.
repeat

2.1) Build a regression tree model between y and variables in Zai. Set the
variable on the root node as ri.
2.2) Create a set of new categorical variables Zi based on splitting points in the
decision tree build in 2.1.
2.3) Set Xi = Xi−1 ∪ Zi, Za

i+1 = Za
i \ {ri}.

2.4) Run a linear regression model between y and all variables in Xi.
2.4) Apply an ANOVA test between the regression model build with Xi and
Xi−1.
2.5) Apply stepwise regression to select variables included in the regression
model in 2.4. Calculate the BIC of the model.

until the model build in 2.4 with Xi is not significantly better than the model
build with Xi−1.
3) Select the model with the smallest BIC in the algorithm as the final result.

3.4.4 Monte-Carlo Simulations

We generated twelve simulated prediction problems to evaluate the performance

of the linear regression (LR), hybrid tree-linear regression (HTLR), hybrid forest-

linear regression (HFLR) which was applied in the crowdfunding analysis, and hybrid

linear-forest regression (HLFR) which was applied in the meta-regression analysis.

The twelve simulated examples are all in the form of the following equation:

Yij = Yi0 + εj, (3.3)

where where i = 1, 2, 3, 4, j = 1, 2, 3, Yi0 are generated by independent variables,
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and εj are error terms. The formula of Yi0 are given by the Equation 3.4:

Y10 =10 +X1 +X4 + 5D11 + 3D51 + 2D71,

Y20 =10 +X1 +X2 +X5 + 5D12 + 6D52D72 − 9D52D54D72 + 12D52D54D72D74,

Y30 =10 +X3 +X6 + 5D13 + 6D53D73 − 9D55D75D95,

Y40 =10 +X4 + 5D14 + 6D52D72 − 9D52D54D72 + 6D53D73 − 9D55D75D95.

(3.4)

Meanwhile, the error terms satisfies εj ∼ N(0, σ2
i ) where σ1 = 2, σ2 = 4, and σ3 = 6.

These twelve examples were obtained from linear and nonlinear models. Non-

linear relationships between Y20, Y30, and Y40 and categorical independent variables

can be theoretically modeled as one, two, and three decision trees. Linear inde-

pendent variables Xi, i = 1, · · · , 6 are uniformly distributed in the interval [0,10].

On the other hand, distributions of categorical variables are Dij ∼ B(Pi, 1), where

i ∈ {1, 3, 5, 7, 9}, j ∈ {1, · · · , 6}, and Pi = i/10. The number of coefficients was set

to six, eight, six, or seven, and the sample size was set to 300.

Table 3.2 shows proportions of sources of variances of Yij. For example, when

analysing the variance of Y31, by calculating the sample variances, we have

var(X3 +X6 + 5D13)

var(Y31)
= 0.389,

var(6D53D73 − 9D55D75D95)

var(Y31)
= 0.528,

var(ε1)

var(Y31)
= 0.082,

which are the proportions of variances of Y31 from linear terms, interaction terms,
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and the error term, respectively.

Table 3.2: Theoretical Proportions of Sources of Variances of Yij

Yij Linear terms Interaction
terms

Error term

Y11 0.846 0.000 0.154

Y12 0.579 0.000 0.421

Y13 0.379 0.000 0.621

Y21 0.325 0.607 0.069

Y22 0.269 0.503 0.228

Y23 0.210 0.392 0.399

Y31 0.389 0.528 0.082

Y32 0.312 0.424 0.264

Y33 0.235 0.319 0.447

Y41 0.176 0.757 0.067

Y42 0.147 0.631 0.222

Y43 0.115 0.494 0.391

Each example was divided into a training set and a test set. The training set con-

sisted of 200 observations, while the remainder was assigned to the test set. Our per-

formance comparisons considered the standardised mean square errors (MSE/σ2
j )

of both the training set and the test set.

Table 3.3 shows the standardised MSE values within the training set for LR,

HTLR, and HFLR models. For example, when running LR, HTLR, and HFLR

models for Y11, the MSE values within the training set are 1.246, 1.035, and 1.035,

respectively.

From the results in Table 3.3, we concluded that hybrid tree-regression models

performed consistently better than LR, while the differences between the standard-
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Table 3.3: Standardised MSE of the Models within the Training Set

Method LR HTLR HFLR

Y11 1.246 1.035 * 1.035 *

Y12 1.060 1.000 0.899 *

Y13 0.947 0.891 * 0.891 *

Y21 2.595 1.336 * 1.336 *

Y22 1.494 1.061 * 1.061 *

Y23 1.281 0.962 0.810 *

Y31 2.990 1.304 * 1.304 *

Y32 1.411 1.124 * 1.124 *

Y33 1.134 0.977 0.924 *

Y41 4.608 2.480 1.389 *

Y42 1.781 1.662 1.280 *

Y43 1.327 0.975 * 0.975 *

Average 1.823 1.234 1.086 *

For each Yij , * represents the method with the smallest MSE.

ised MSE values are larger when interaction terms were the major sources of vari-

ances of Yij. Furthermore, in all cases considered, HFLR was superior or equal to

HTLR.

Table 3.4 shows the standardised MSE values within the test set for LR, HTLR,

and HFLR models. For example, when running LR, HTLR, and HFLR models for

Y41, the MSE values within the training set are 4.700, 3.458, and 2.029, respectively.

From the results in Table 3.4, LR was the best model for Y11 and Y13 when only

linear relationships existed between the dependent variable and the independent

variables, and the differences between standardised MSEs are not large. HTLR

was the best model for Y2j, j = 1, 2, 3. where nonlinear relationships between the
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Table 3.4: Standardised MSE of the Models within the Test Set

Method LR HTLR HFLR

Y11 1.236 * 1.552 1.552

Y12 1.008 0.999 * 1.056

Y13 1.022 * 1.072 1.072

Y21 2.606 1.369 * 1.369 *

Y22 1.540 1.043 * 1.043 *

Y23 1.111 0.973 * 1.260

Y31 3.531 1.660 * 1.660 *

Y32 1.711 1.204 * 1.204 *

Y33 1.338 1.111 1.105 *

Y41 4.700 3.458 2.029 *

Y42 2.258 2.336 1.924 *

Y43 2.212 1.525 * 1.525 *

Average 2.023 1.525 1.400 *

For each Yij , * represents the method with the smallest MSE.

dependent variable and the independent variables could be modeled in one single

decision tree. HFLR was the best model for Y3j and Y4j, j = 1, 2, 3, where nonlinear

relationships were more complex. Additionally, for Y21 and Y22, HFLR gave the

same models as HTLR which were the best models.

To access the effects of various parameters on standardised MSE in a more accu-

rate manner, we applied two-way ANOVA to the experimental data given in Table

3.4. The experimental setting for each approach can be regarded as a full facto-

rial design. The factors for the proposed approach included the prediction method

(denoted by M with three levels of LR, HTLR, and HFLR), true number of trees

(denoted by T with four levels of zero, one, two, and three), and standard deviations

of the error term (denoted by S with three levels of two, four, and six).
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Table 3.5 shows the ANOVA table for the test set. The three-way interaction

effect (M × T × S) was assumed to be negligible. The main effects M , T , and S

as well as for the interaction effect M × S were significant at 0.05 level, and the

interaction effect M × T were significant at 0.1 level.

Table 3.5: ANOVA Table for Standardised MSE within the Test Set

Df Sum Sq Mean Sq F p-value

M 2 2.605 1.3024 10.010 0.0028

T 3 8.391 2.7969 21.497 4.07× 10−5

S 2 6.171 3.0855 23.715 6.78× 10−5

M × T 6 1.890 0.3150 2.421 0.0908

M × S 4 1.764 0.4410 3.390 0.0448

T × S 6 1.384 0.2307 1.774 0.1875

Error 12 1.561 0.1301

Since all main effects were involved in the interaction effects, the effects of M , T ,

and S on standardised MSE should be assessed using their interaction plots. Figure

3.2 shows the interaction plots. The red real line, the green dashed line, and the

blue dotted line represent the average standardised MSE for LR, HTLR and HFLR.

According to the results, the performances of the all methods become worse as T

increases and S decreases. HFLR was more robust than the other methods as T

and S changes. Tree based models were superior to LR regardless of S.
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Figure 3.2: Interaction Plots
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3.5 Results and Discussion

3.5.1 Results of Regression Models

Table 3.6 summarises the results of our regression models. The HFLR model

includes results from four decision trees which are displayed in Figures 3.1 and 3.3.

Table 3.6: Results of the models

Variable LR HTLR HFLR

Intercept 5.482*** (1.097) 2.187* (1.058) 1.355 (0.933)

LTARG -1.100*** (0.112) -1.055*** (0.099) -0.843*** (0.084)

KICKS -1.236** (0.414)

PROD 1.174** (0.361) 0.796* (0.314)

MALE -1.021** (0.327)

SPT 1.340*** (0.321) 4.834*** (0.578) 2.366*** (0.584)

RWPROD 1.641*** (0.365) 2.653*** (0.640)

RWINT 1.657** (0.573) 1.551** (0.535) 1.098* (0.428)

RWDESH -1.888* (0.778)

PTREC 0.783* (0.312)

PTPROV 0.780** (0.256)

PTPROC 0.956** (0.337)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 3.6: Results of the models (continued)

Variable LR HTLR HFLR

PTSLMP 0.656* (0.255)

(1− SPT )×RWPROD 4.245*** (0.609) 1.709* (0.659)

(1−SPT )×RWPROD×

MALE ×KICKS

-3.791*** (0.901) -3.487*** (0.731)

(1−SPT )×RWPROD×

(1−MALE)× PTPROC

1.409** (0.519)

(1− SPT )× (1−

RWPROD)× COMACT

3.789*** (0.731) 2.401*** (0.594)

(1−RWPROD)×

PTPROD

2.568*** (0.722)

(1−RWPROD)× (1−

PTPROD)×

RWHONOR

3.395*** (0.689)

(1−RWPROD)× (1−

PTPROD)×

RWHONOR×PTPROV

-3.062*** (0.824)

(1−RWPROD)× (1−

PTPROD)× (1−

RWHONOR)×

JOBDES

1.773* (0.730)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 3.6: Results of the models (continued)

Variable LR HTLR HFLR

(1− PROD)×RWLET -0.865** (0.285)

(1− PROD)× (1−

RWLET )×MALE

-4.751*** (0.609)

(1− PROD)× (1−

RWLET )×MALE ×

PTPROD

4.480*** (0.755)

(1− PROD)× (1−

RWLET )×MALE× (1−

PTPROD)× JOBDES

2.765** (0.852)

(1− PROD)× (1−

RWLET )× (1−

MALE)× (1−

RWV ISIT )× PTSLMP

-2.243*** (0.501)

PTPROD ×

COMACT ×MALE

-1.809*** (0.454)

PTPROD × (1−

COMACT )× (1−

RWLET )×RWANM

-2.321*** (0.688)

(1− PTPROD)× (1−

RWANM)×KICKS

-2.381*** (0.524)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 3.6: Results of the models (continued)

Variable LR HTLR HFLR

(1− PTPROD)× (1−

RWANM)× (1−

KICKS)× (1−

PROFL)× PTSLMP

-2.480*** (0.716)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.

The fundraising target had a significantly negative impact on the proportion of

financing. The variable LTARG is negative significant in all models. In all mod-

els, its coefficients are significantly less than 0, which means that holding all other

variables constant, the proportion of financing decreases as the fundraising target

rises. According to t-tests, in LR and HTLR models the coefficients of LTARG are

not significantly different from -1. However, in the HFLR model, the result of t-test

show that the coefficients of LTARG is significantly larger than -1 at the signifi-

cance level 0.1, suggesting that the fundraising target have a positive impact on the

size of financing. The variable LPICS is not included in any models, which means

that the number of pictures does not have a significant impact on the proportion of

financing.

All models show that certain types of rewards, such as products and interviews,

had positive significant influences on the proportion of financing, although the ef-

fect is not necessarily linear. According to the results of all models, the coefficient

of RWINT is positive significant and the value of the coefficient is between 1.098
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Figure 3.3: Decision Trees Generated in the HFLR Algorithm
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and 1.657, which means that a chance to be interviewed can boost the proportion

of financing by between 3.0 and 5.2 times. In LR and HFLR models, the vari-

able RWPROD is included, while in HTLR and HFLR models, the interaction

term (1−SPT )×RWPROD is included. All of these terms are positive significant,

which means that the product produced by the project is also helpful for crowdfund-

ing projects to achieve higher proportions of funding, especially when the founder

has not supported other projects. Notably, the coefficients of SPT are positive sig-

nificant in all models, and those coefficients of HTLR and HFLR models are much

larger than that of the LR model. The interaction term suggests that, although a

founder that has supported other projects and a reward that is a product are both

useful factors for raising more money, their joint effects are smaller than the sum of

their individual effects.

The results of the effects of visualisation tools differ between models. In the LR

model, the variable PTPROC is positive significant, suggesting that pictures of the

production process or production environment had a positive effect on the proportion

of funding. In the HTLR model, the positive significant variable about visualisation

tools is PTREC, which are related to pictures of receivers of the product. In the

HFLR model, both PTPROV and PTSLMP are positive significant, which means

that visualisation tools about providers of the product and those about slogans,

logos, missions, and plans are persuasive to the supporters to be more generous.

In the HFLR model, some interaction terms have very clear meanings. For

example, the term (1−RWPROD)×PTPROD has a positive significant coefficient,

suggesting that when there are no products as rewards for supporters of a project,

pictures of products related to the project become persuasive to the supporters. In
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comparison, the term (1 − RWPROD) × (1 − PTPROD) × RWHONOR is also

positive significant, suggesting that when products related to the project are neither

given as rewards nor presented on the website, supporters of the projects may be

more generous if they receive honor certificates as rewards.

3.5.2 Comparison between Regression Models

Table 3.7 shows summary statistics and certain model selection criteria of models

built in our study; the prediction accuracy is based on predictions for a given project

being successful or not. Figure 3.3 shows the change of BIC, cross validated MSE,

and prediction accuracy during the HFLR algorithm until the loop terminates.

Table 3.7: Comparison of the Models

Method LR HTLR HFLR

Amount of trees 0 1 4

Amount of
parameters

9 10 24

R2 0.4377 0.5220 0.7252

R̄2 0.4179 0.5030 0.6954

BIC 457.23 424.36 370.21*

Cross-validated
MSE

6.08 5.29 3.71*

Prediction
accuracy

78.81% 80.51% 81.36%*

* represents the selected model from each model selection criteria.

The explanation powers of all tree-based models were much higher than those
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Figure 3.4: Change of Model Efficiency during the HFLR Algorithm

of the linear model. According to the values of BIC, the model with the highest

explanation power was the HFLR model, which also has the smallest MSE in 10-

fold cross validation. According to the Figures 3.3(a) and 3.3(b), during the process

of the HFLR algorithm, both BIC and cross validated MSE consistently decrease

when significant variables from the first four decision trees are added. In addition,

the HFLR model was the best model in terms of prediction powers. According to

Figure 3.3(c), the HFLR model with four decision trees was the model with the

highest prediction accuracy during the HFLR algorithm. In conclusion, the HFLR

model is the best model according to all model selection criteria applied in our study;

more precisely, the HFLR model is more powerful than the HTLR model, and the

HTLR model is more powerful than the linear regression model.
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Notably, as the best model selected in our study, the HFLR model included

twenty-one interaction terms and only two linear terms (LTARG and SPT ). This

result suggests that the relationship between the proportions of funding for crowd-

funding projects and the factors considered in our study is often nonlinear.

Nonlinear terms in tree-based regression models can be divided into at least two

categories: interpretable nonlinear terms and sparse nonlinear terms. Interpretable

nonlinear terms, such as (1− SPT )×RWPROD, (1−RWPROD)× PTPROD,

and (1−RWPROD)× (1−PTPROD)×RWHONOR which are discussed above,

can be easily interpreted in the real background. They are included in the model

to deduce the joint effects of independent variables on the fundraising performance.

Notably, these variables were discovered because we applied splitting points instead

of leaf nodes in decision trees to generate new independent variables.

On the other hand, sparse nonlinear terms are interaction terms which are

nonzero for only a small proportion of observations. In the HFLR (ANOVA) model

which has twenty-four coefficients in total, ten terms are only nonzero for no more

than 10% (23/236) of observations. Five terms, including (1−SPT )×RWPROD×

MALE×KICKS, (1−RWPROD)×(1−PTPROD)×RWHONOR×PTPROV ,

(1−PROD)×(1−RWLET )×MALE×(1−PTPROD)×JOBDES, PTPROD×

(1 − COMACT ) × (1 − RWLET ) × RWANM , and (1 − PTPROD) × (1 −

RWANM)× (1−KICKS)× (1−PROFL)×PTSLMP , are only nonzero for no

more than 5% (11/236) of observations.

Although the meaning of these sparse nonlinear terms is often difficult to inter-

pret, they play significant roles in tree-based regression models. For example, when
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the five sparsest terms are deleted from the HLFR (ANOVA) model, the R2 drops

from 0.7249 to 0.6374, and a few other terms become insignificant. Stainberg &

Cardell (1998) suggested that predictions made by decision trees are less sensitive

to outliers. Outliers can be put in specific branches in decision trees, and therefore

can be discussed separately. When these branches are included as nonlinear terms

in tree-based regression models, the regression models also become less sensitive to

related outliers.

3.6 Conclusion

In this paper, we applied regression models to explore the factors influencing the

proportion of financing for crowdfunding projects. We demonstrated that various

types of rewards, including the chance to be interviewed and to receive products,

are helpful for crowdfunding projects to achieve higher proportions of financing. We

also noted that the fundraising target does not have a significant effect on the size

of financing.

Since decision tree learning algorithms were first developed, some papers have

suggested that hybrid methods between classic regression models and decision trees

are able to combine the strengths of both models to achieve higher explanation and

prediction powers. This paper introduces two tree-based regression models: the

HTLR model and the HFLR model. By comparing various statistical criteria, we

observed that these tree-based regression models are better than the linear regression

model in both explanation and prediction.
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The reason for tree-based regression models outperforming the linear regression

model is related to the inclusion of nonlinear terms: some of these terms clearly

demonstrate the joint effects of various factors. As an example, in linear models,

the effects of different types of rewards on fundraising performance are considered

independently and are accumulative; but in reality, when various rewards are offered,

their joint effect is often smaller than the sum of individual effects.

Meanwhile, some other nonlinear terms are likely associated with the effects of

a specific group of outliers. When these terms are included, the models become less

sensitive to outliers, and the effects of other factors are more accurately estimated.

We also noted that when applying an appropriate loop termination condition,

the HFLR model has higher explanation and prediction powers than HTLR models.

This is because, by applying a circular algorithm, HFLR models are able to combine

results of multi decision trees. As a result, HFLR models are more inclusive to factor

referring to joint effects.
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Chapter 4

Predicting Environmental Willingness

to Pay with Hybrid Tree-Regression

Techniques

4.1 Introduction

Values of environmental projects, such as the treatment of air pollution, the

control of water quality, and the protection of urban green spaces, are often unable

to be estimated from market processes. Instead, they are commonly estimated by

preferences stated in responses to survey questions. A target of this chapter is the

application of the contingent valuation (CV) method to analyse people’s willingness

to pay (WTP) of income tax to fund an environmental geo-engineering project.
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Tietenberg et al. (2018) indicated that the CV method is the only direct tech-

nique for measuring values from stated preferences. In CV surveys, participants are

either asked directly for their maximum amount of WTP, or whether they would

pay a possible bid value for the project. One of the major concerns of applying the

CV method is the starting-point bias: the range of designed bids may affect the

resulting estimate of WTP. In order to deal with the starting-point bias, we applied

a new multi bounded model and it was compared with the single bounded model.

We built single bounded and multi bounded models for people’s WTP and cer-

tain independent variables with linear regression (LR), hybrid tree-linear regression

(HTLR), and hybrid forest-linear regression (HFLR) methods which were introduced

in Chapter 3. By comparing performances of these methods, we are verifying the

assumption that HFLR method have higher explanatory and prediction powers than

LR and HTLR.

The structure of the remainder of Chapter 4 is as follows. In Section 4.2, the

data collection process is briefly described, and variables in single bounded and

multi bounded regression models are chosen. In Section 4.3, both single bounded

and multi bounded regression models are introduced. In Section 4.4, the results of

these models are given and discussed. In Section 4.5, we summarise the conclusions

about the study.
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4.2 Data

4.2.1 Data Collection

A WTP question contains two pieces of information: one is the setting of the

beneficial scenario which, in our case, is our geo-engineering project which could

allow people to live in a safer environment; the other is the description of the risk,

which is the increase of their income tax. The question in our survey is given as

follows:

”Currently, China is facing serious environmental problems which affect

people’s life quality, including air pollution, water pollution, and the lack

of green spaces. China has set up a special project to improve people’s

living environment, called ’geo-engineering’. The establishment of this

project can greatly improve your living environment through compre-

hensively treating air pollution sources, controlling the quality of living

water, and constructing green spaces. Would you be willing to increase

your income tax by every year in exchange for this project, which

will greatly improve your life quality by making you live in a pollution-

free environment?”

The bid is chosen from eight random levels: 5, 19, 57, 95, 285, 476, 952, and 1904.

Each participant who replied ”YES” to the WTP question were given the bid to

the next higher level. For those who replied ”NO” were given the bid to the next

lower level. This process was repeated until the answer of the participant changed,
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and the last bid before the change of answer would be recorded.

1044 samples were collected from four Chinese cities (Zhengzhou, Harbin, Chang-

sha, and Zhuhai) by nine trained interviewers. The raw database contained certain

types of errors including typos, missing values, and logical mistakes. After correct-

ing these errors and removing samples with missing values on thirty-two selected

variables, 768 observations were used in the modelling process.

4.2.2 Variables in the Models

We applied two different models to analyse the data which are discussed in

Section 4.4. In the single bounded model, the independent variable (BID1) is the

first bid given to the participant, and the dependent variable (Y ES1) is the yes or

no response given by a participant in the first round, which is defined by

Y ES1 = WTP ≥ BID1.

In the multi bounded model, each participant is considered as eight observations

with eight different bids BID = 5, 19, 57, 95, 285, 476, 952, 1904. Thus, the multi

bounded model had 6144 observations. The dependent variable Y ES is the response

of the participant to BID, which is defined by

Y ES = WTP ≥ BID.

Additionally, LBID1 = ln(BID1) is also included as an independent variable in the
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multi bounded model.

The distributions of replies of participants to the first given bid and those of all

participant-bid combinations are shown in Figure 4.1. According to the results of

the first round, the bid which is the closest to the median of WTP is 476: about

48.72% of participants who were given the bid 476 replied ”yes”. However, according

to the final results, the bid which is the closest to the median of WTP is 285: the

WTP of 49.74% of participants were larger than 285.

Both regression models include thirty-two control variables; one of which is a

continuous variables the family income (LFINC ) of participants. We took natural

logs of all continuous variables in the model.

We used six variables to represent the attitude of participants about statements

related to scientific studies, global warming, and geo-engineering projects: if sci-

entists are biased (STBIAS ), if more studies must be done before being relied on

(STMOR), if global warming brings serious risks (GWRISK ), if it is important to act

against global warming (GWACT ), if global warming is caused by human activities

(GWMANMD), and if the geo-engineering project is beneficial (BENEFIT ).

Another ten variables hold information relating to the attitude of the participants

to the following social and political statements: individual rights should not depend

on the attitude of others (RIGHT ), a fairness revolution is needed (FAIREV ), the

best way of life is to do what is told (TOLD); people who do not obey authority

cause problems (AUTH ); life is largely determined by forces that are not controlled

(NOCONT ), people should be protected from hurting themselves by laws (PROT-

LAW ), protecting people from hurting themselves is not a government business
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0
1

(a) Distributions of Replies of Participants to the First Given Bid
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Y
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(b) Distributions of Replies of all Participant-bid Combinations

Figure 4.1: Distribution of Replies of Participants to All Given Bids
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(PROTNG), government should do more for social goals (GOVGOAL), there is too

much push for equality (TMEQL), and the society has become too soft (SOFSOC ).

We used a further nine variables to the risks that the participants are concerned

with: chemical additives in food (RCHEMA), increased immigration (RIMIG), law-

suits against reporters and news media for libel (RLMED), speeches inciting racial

hatred (RRACHAT ), genetically modified food (RGMFOOD), illegal drug traffick-

ing (RDRUG), government regulations of businesses (RGOVREG), childhood vac-

cinations (RVAC ), and government budget deficits (RGOVBUD).

Finally, we used six variables for basic information and recent medical treatments

of the participants: their age group (AGE ), gender (GEND), interest in news and

public affairs (NEWS ), if they have seen a doctor (DOCT ) or been hospitalised

(HOSP) in the past six months, and their frequency of taking anti-aging drugs

(ANTIAGE ).

Definitions and descriptive statistics of all variables are listed in Table 4.1.

Table 4.1: Variables in the models

Variable Meaning of variable Mean (SD) (Min,Max)

Y ES1 Response of a participant to the first

given bid.

0.7747

(0.4180)

(0,1)

LBID1 Natural logarithm of the bid given to

the participant in the first round.

4.1117

(1.8547)

(1.6094,

7.5517)
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Table 4.1: Variables in the models (continued)

Variable Meaning of variable Mean (SD) (Min,Max)

Y ES Response of a participant to BID =

eLBID based on the result of the final

round.

0.5337

(0.4990)

(0,1)

LBID Natural logarithm of an imaginative

bid given to the participant.

4.9224

(1.8888)

(1.6094,

7.5517)

LFINC Natural logarithm of family income of

the participant.

12.0370

(1.5235)

(9.2103,

16.1181)

STBIAS Agreement on ”Scientists who did the

study were biased”, 1-6 scale.

3.2526

(1.1549)

(1,6)

STMOR Agreement on ”More studies must be

done before policymakers rely on find-

ings”, 1-6 scale.

5.2461

(1.0164)

(1,6)

GWRISK Agreement on ”Global warming brings

serious environmental risks”, 1-6 scale.

5.2161

(1.0033)

(1,6)

GWACT Agreement on ”It is important to take

actions to reduce global warming”, 1-6

scale.

5.3607

(0.9100)

(1,6)

GWMANMD Agreement on ”Human activity caus-

ing global temperatures to rise”, 1-6

scale.

4.7448

(1.1222)

(1,6)
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Table 4.1: Variables in the models (continued)

Variable Meaning of variable Mean (SD) (Min,Max)

BENEFIT Agreement on ”This geo-engineering

project will benefit us”, 1-6 scale.

4.7044

(1.0122)

(1,6)

RIGHT Agreement on ”Right of individual

should not depend on how much oth-

ers are willing to pay to avoid dam-

age”, 1-6 scale.

4.4167

(1.3446)

(1,6)

FRIREV Agreement on ”Need a fairness revolu-

tion”, 1-7 scale.

5.3294

(1.2805)

(1,7)

TOLD Agreement on ”Best way to get ahead

in life is to do what told to do”, 1-7

scale.

3.2448

(1.6601)

(1,7)

AUTH Agreement on ”Society in trouble be-

cause people do not obey authorities”,

1-7 scale.

3.3867

(1.5234)

(1,7)

NOCONT Agreement on ”Course of lives largely

determined by forces beyond our con-

trol”, 1-7 scale.

4.1732

(1.6236)

(1,7)

PROTLAW Agreement on ”Government needs to

make laws that keep people from hurt-

ing themselves”, 1-6 scale.

4.0052

(1.2539)

(1,6)
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Table 4.1: Variables in the models (continued)

Variable Meaning of variable Mean (SD) (Min,Max)

PROTNG Agreement on ”Not governments busi-

ness to protect people from them-

selves”, 1-6 scale.

2.6563

(1.3516)

(1,6)

GOV GOAL Agreement on ”Government should do

more to advance society’s goals, even

if limiting freedom”, 1-6 scale.

2.9505

(1.4307)

(1,6)

TMEQL Agreement on ”Gone too far in push-

ing equal rights in this country”, 1-6

scale.

2.8203

(1.1851)

(1,6)

SOFSOC Agreement on ”Society has become

too soft and feminine”, 1-6 scale.

3.3151

(1.3422)

(1,6)

RCHEMA Agreement on ”Chemical additives in

food is a risk”, 0-10 scale.

7.4297

(2.3373)

(0,10)

RIMIG Agreement on ”Increased immigration

is a risk”, 0-10 scale.

5.5286

(2.7851)

(0,10)

RLMED Agreement on ”Lawsuits against re-

porters and news media for libel is a

risk”, 0-10 scale.

6.2956

(2.7945)

(0,10)

RRACHAT Agreement on ”Speeches inciting

racial hatred is a risk”, 0-10 scale.

8.0104

(2.3075)

(0,10)
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Table 4.1: Variables in the models (continued)

Variable Meaning of variable Mean (SD) (Min,Max)

RGMFOOD Agreement on ”Genetically modified

foods is a risk”, 0-10 scale.

6.0260

(2.7884)

(0,10)

RDRUG Agreement on ”Illegal drug trafficking

is a risk”, 0-10 scale.

9.0729

(1.7792)

(0,10)

RGOV REG Agreement on ”Government regula-

tions of businesses is a risk”, 0-10

scale.

6.5651

(3.4207)

(0,10)

RV AC Agreement on ”Childhood vaccina-

tions is a risk”, 0-10 scale.

5.6719

(3.5215)

(0,10)

RGOV BUD Agreement on ”Government budget

deficits is a risk”, 0-10 scale.

6.8164

(2.6717)

(0,10)

AGE Age group of the participant, 1 if 0-

17, 2 if 18-24, 3 if 25-29, 4 if 30-34, 5

if 35-39, 6 if 40-49, 7 if above 50.

3.9844

(1.4861)

(1,7)

GEND Gender of the participant, 0 if male, 1

if female.

0.5130

(0.5002)

(0,1)

NEWS Interest of the participant in news and

public affairs, 1-4 scale.

1.9167

(0.8656)

(1,4)

DOCT Response on ”Have you seen a doctor

in the past 6 months”, 1 if yes.

0.2604

(0.4391)

(0,1)

102



4.3. Methodology

Table 4.1: Variables in the models (continued)

Variable Meaning of variable Mean (SD) (Min,Max)

HOSP Response on ”Have you been hospi-

talised in the past 6 months”, 1 if yes.

0.0299

(0.1706)

(0,1)

ANTIAGE Response on ”How often do you take

anti-aging drug or use related produc-

tion”, 0 if rarely or never, 1 if once per

month, 2 if 2-3 times per month, 3 if

once per week, 4 if 2-3 times per week,

5 if everyday or more.

0.3008

(1.0184)

(0,5)

4.3 Methodology

4.3.1 Underlying WTP Function

The WTP models in this study are based on the WTP function given by the

contingent valuation model of Cameron et al. (1987):

WTP = exp{Xβ + ε}, (4.1)

where X is the explanatory variables matrix, β is the vector of coefficients, and

ε ∼ N(0, σ) is the vector of random errors.
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Since WTP values cannot be directly calculated from the results of the survey,

in our WTP models, the binomial variables Y ES1 and Y ES defined in Section 4.2

are applied to observe ranges of true values of WTP. The variable Y ES1 is applied

in the single bounded model, and the variable Y ES is applied in the multi bounded

model.

4.3.2 Single Bounded Model

According to the definition of Y ES1, the single bounded model is derived from

P{Y ES1 = 1} = P{WTP ≥ BID1} = 1− Φ(
BID1−Xβ

σ
). (4.2)

Rearranging Equation 4.2, we have

Φ−1(P{Y ES1i = 1}) = β0 + αLBID1i +
∑

βjxij + εi, (4.3)

which can be estimated by a probit model. Linear regression (LR), hybrid tree-

linear regression (HTLR) given by Algorithm 4 in Chapter 2, and hybrid forest-

linear regression (HFLR) methods given by Algorithm 6 in Chapter 3, are applied

to estimate Equation 4.3.

Instead of the mean WTP, we estimated the median WTP in this study because

it is more robust especially with the presence of outliers. Substituting P{Y ES =

1} = 1
2

in the estimation of Equation 4.3, we have

0 = Φ−1(
1

2
) = β̂0 + α̂Q̂ 1

2
(lnWTP ) +

∑
β̂jxij. (4.4)
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Rearranging Equation 4.4, given a certain set of xij, the estimated median WTP

is calculated by

Q̂ 1
2
(WTP ) = exp{− 1

α̂
(β̂0 +

∑
β̂jxij)}. (4.5)

From Equation 5, when a control variable xj is increased by 1, the median of WTP

is estimated to change by the proportion exp{− β̂j
α̂1
}.

In the single bounded model, since there is only one bid in the equation, two

different effects of the bid are combined in one single coefficient α. One of them is

when the bid becomes higher, it is more likely to be greater than the WTP of the

participant. The other is the starting-point bias, which means that when partici-

pants are given a higher bid, their WTP may become higher because of psychological

suggestions. In comparison, single bounded models only applies the results of the

first round, while from the collected data, we were able to compare the WTP of each

participant with eight given bids.

4.3.3 Multi Bounded Model

Hanemann et al. (1991) pointed out that the double bounded model is more

statistically efficient compared to the single bounded model. The double bounded

model applies the responses of participants to bids given in the first and second

rounds of the survey.

In our study, according to the bids given to 764 participants that joined the
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second round of the survey, we have

cor(LBID1, LBID2) = 0.9219,

cor(LBID1,∆LBID) = −0.7129,

where LBID2 is the natural logarithm of the bid given to the participant in the

second round and ∆LBID = LBID2−LBID1. If both LBID1 and LBID2 were

included in a regression model, no matter if we applied LBID2 directly or ∆LBID,

estimates of the model would become less robust due to collinearity. Although the

double bounded model applies more information from the survey data compared to

the single bounded model, the information from the third and further rounds of the

survey is still unused.

Consider a bid chosen from the set {5, 19, 57, 95, 285, 476, 952, 1904}. For each

participant, the bid is either given to the participant, smaller than a bid that the

response of the participant is ”yes”, or larger than a bid that the response of the

participant is ”no”. Thus, for each participant-bid combination, we can always know

the response of the participant to the bid. To sufficiently apply information from

the collected data, we consider each participant-bid combination as an observation

to build a multi-bounded model.

According to the definition of Y ES in Section 4.2, the multi bounded model is

derived from

P{Y ES = 1} = P{WTP ≥ BID} = 1− Φ(
BID −Xβ

σ
). (4.6)

Notably, in the multi bounded model, the variable LBID1 is also in the set of
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explanatory variables. Rearranging Equation 4.6, we have

Φ−1(P{Y ESi = 1}) = β0 + α1LBIDi + α2LBID1i +
∑

βjxij + εi, (4.7)

where α1 and α2 represent the two effects which are combined in Equation 1 as α.

As we have

|cor(LBID,LBID1)| < 0.0001,

the multi bounded model does not suffer from the problem of collinearity.

Equation 4.4 is also estimated by LR, HTLR, and HFLR methods. Substituting

P{Y ES = 1} = 1
2

in the estimation, we have

0 = β̂0 + α̂1Q̂ 1
2
(lnWTPi) + α̂2LBID1i +

∑
β̂jxij. (4.8)

Rearranging Equation 4.8, we calculate the estimated median of WTP by Equa-

tion 9:

Q̂ 1
2
(WTPi) = f(BID1i) = exp{− 1

α̂1

(β̂0 +
∑

β̂jxij)} ×BID1
− α̂2
α̂1

i , (4.9)

where BID1 = exp{LBID1}. From Equation 4.9, we conclude that the when BID1

is doubled, the median of WTP is estimated to increase by the proportion (2
− α̂2
α̂1 −1).

The influences of control variables to the estimated median of WTP is similar to

those in Equation 4.3.

In Equation 4.6, the estimated median of WTP is a function of BID1. The fixed
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point of the function can be given by

exp{− 1

α̂1 + α̂2

(β̂0 +
∑

β̂jxij)}.

The meaning of the fixed point is, if the value was given as a bid in the first round,

the estimated median of WTP would be the same as the bid. The fixed point

contains information about the participants’ WTP which are uninterrupted by the

bids given to them.

4.4 Results and Discussion

4.4.1 Results of the Single Bounded Model

The estimated single bounded model by three estimation methods are given in

Table 4.2. Definitions of interaction terms generated by decision trees are given in

Table 4.3.

Table 4.2: Estimates of the single bounded model

Variable LR HTLR HFLR

Intercept 1.316** (0.448) 1.558*** (0.396) 0.379 (0.700)

LBID1 -0.486*** (0.040) -0.467*** (0.042) -0.466*** (0.044)

LFINC 0.136** (0.048)

STMOR 0.186** (0.058) 0.230*** (0.061) 0.325*** (0.070)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 4.2: Estimates of the single bounded model (continued)

Variable LR HTLR HFLR

BENEFIT 0.319*** (0.062)

RIGHT -0.170*** (0.049)

NOCONT 0.110* (0.040)

PROTLAW 0.148** (0.052)

TMEQL -0.198*** (0.053)

M1T1V 3 -1.702*** (0.263) -1.705*** (0.287)

M1T1V 6 -1.497*** (0.242) -1.418*** (0.267)

M1T1V 10 -1.404** (0.446)

M1T1V 11 -1.992*** (0.567) -2.043** (0.663)

M1T1V 12 2.991*** (0.771) 2.686*** (0.752)

M1T1V 14 -1.909** (0.666)

M1T2V 7 -0.573*** (0.174)

M1T2V 11 -0.685** (0.255)

M1T2V 15 -0.990** (0.350)

M1T3V 2 -1.451*** (0.331)

M1T3V 11 -1.853*** (0.427)

M1T4V 12 -0.999** (0.340)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 4.2: Estimates of the single bounded model (continued)

Variable LR HTLR HFLR

M1T5V 4 -1.707*** (0.370)

M1T5V 12 -2.363*** (0.607)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.

Table 4.3: Variables generated by the decision trees in the single bounded model

Variable V Condition for V = 1 Mean (SD)

M1T1V 3 (BENEFIT ≤ 3) ∨ (RIMIG ≥ 5) ∨

(TOLD ≥ 2)

0.0521 (0.2223)

M1T1V 6 (BENEFIT ≥ 4) ∨ (TMEQL ≥ 4) ∨

(GWMANMD ≤ 5) ∨ (RRACHAT ≥

10)

0.0508 (0.2197)

M1T1V 10 (BENEFIT ≥ 4) ∨ (TMEQL ≤ 3) ∨

(RDRUG ≤ 4) ∨ (NOCONT ≥ 3)

0.0156 (0.1241)

M1T1V 11 (BENEFIT ≥ 4) ∨ (TMEQL ≤ 3) ∨

(RDRUG ≥ 5) ∨ (RLMED ≤ 2)

0.0690 (0.2536)

M1T1V 12 (M1T1V 13 = 1) ∨ (RCHEMA ≤ 9) 0.0586 (0.2350)

M1T1V 14 (M1T1V 14 = 1) ∨ (GOV GOAL ≤ 2) ∨

(PROTLAW ≤ 4)

0.0169 (0.1291)

M1T2V 7 (STMOR ≥ 5) ∨ (RIGHT ≥ 6) 0.2331 (0.4231)

110



4.4. Results and Discussion

Table 4.3: Variables generated by the decision trees in the single bounded model
(continued)

Variable Formula Mean (SD)

M1T2V 11 (STMOR ≥ 5) ∨ (RIGHT ≥ 5) ∨

(RIMIG ≤ 3) ∨ (GOV GOAL ≤ 2)

0.0833 (0.2766)

M1T2V 15 (STMOR ≥ 5) ∨ (RIGHT ≥ 5) ∨

(RIMIG ≤ 3) ∨ (GOV GOAL ≥ 3) ∨

(TOLD ≥ 5) ∨ (RRACHAT ≥ 6)

0.0404 (0.1969)

M1T3V 2 (RGMFOOD ≥ 10)∨(RCHEMA ≤ 8) 0.0378 (0.1907)

M1T3V 11 (RGMFOOD ≤ 9) ∨ (RDRUG ≤ 9) ∨

(STBIAS ≥ 3) ∨ (RGOV BUD ≥ 4) ∨

(NEWS ≥ 3) ∨ (PROTNG ≥ 3)

0.0260 (0.1594)

M1T4V 12 (GOV GOAL ≥ 4) ∨ (RLMED ≤ 2) ∨

(RIMIG ≥ 3)

0.0469 (0.2115)

M1T5V 4 (RDRUG ≥ 10) ∨ (2 ≥ RGOV BUD ≥

6) ∨ (STBIAS ≤ 2)

0.0326 (0.1776)

M1T5V 12 (RDRUG ≥ 10) ∨ (AGE ≥ 5) ∨

(AUTH ≤ 1) ∨ (SOFSOC ≥ 4) ∨

(RIMIG ≤ 6)

0.0156 (0.1241)

Substituting the means of all control variables, the estimated median of WTP

given by LR, HTLR, and HFLR single bounded models are 552.78, 535.77, and

693.90. The closest given bid to these estimates is 476, which is consistent with the
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pattern discovered in Figure 4.1(a).

4.4.2 Economic Discussion based on the Single Bounded Model

From the results in Table 4.2, the values of α̂ are always negative, which is

consistent with the fact that when the given bid has a larger value, it is more likely

to be larger than the WTP of a participant. However, the single bounded model

cannot figure out the psychological effect of the given bid to the participant.

The control variable STMOR appears in all estimates as positive significant

linear terms, suggesting that participants have higher WTP values when they believe

that more studies should be done before their findings are relied by policymakers. In

the HFLR estimate, an interaction term (STMOR ≥ 5)∨(RIGHT ≥ 6) is negative

significant, suggesting that this relationship may be smaller for participants who

have strong belief in the independence of individual rights.

Similarly, the control variable BENEFIT is a positive significant linear term

in the LR estimate, while in HTLR and HFLR estimates, it is replaced by a few

interaction terms generated by decision trees. This means that in general, partici-

pants have higher WTP values when they believe that the geo-engineering project

is beneficial; however, this effect depends upon the participants’ opinions on other

topics, such as immigration and equal rights.

Table 4.4 features summary statistics and the values of certain model selection

criteria of estimated single bounded models, and Figure 4.2 shows the change of

model efficiency during the HFLR algorithm. According to these results, the HFLR
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estimate had both the smallest BIC and the highest prediction accuracy. Further-

more, the changes of both BIC and prediction accuracy show that the estimate of

the model is optimised gradually when more trees are added in the HFLR algorithm.

Table 4.4: Comparison between different estimates of the single bounded model

Method LR HTLR HFLR

Amount of trees 0 1 8

Amount of parameters 7 9 22

BIC 601.34 568.00 489.21*

Prediction accuracy
(comparison with BID1)

86.25% 84.96% 89.20%*

* represents the selected model by each model selection criteria.

As the HFLR estimate is better than other estimates in both explanation and

prediction powers, we only applied its results in further discussions. Notably, there is

no linear terms except LBID1 in the HFLR estimate. The 95% confidence interval

of α1 is (-0.665,-0.449), which means that when the given bid in the is doubled, the

value of Φ−1(P{Y ES1 = 1}) is decreased by between 0.31 and 0.46.

It is observed from Figure 4.2(a) that the first and third decision trees bring

the largest decrease of BIC during the HFLR algorithm, and the second and fifth

decision trees bring the largest increase of prediction accuracy. These decision trees

are displayed in Figure 4.3. Apart from STMOR and BENEFIT which were

discussed above, GWRISK and RDRUG are also variables on root nodes of key

decision trees, which means that the opinions of participants to the risks of global

warming and drugs also have strong effects on their WTP values, although these

relationships are dependent to their opinions on other topics.
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Figure 4.3: Key Decision Trees Generated in the HFLR Algorithm
(Single Bounded Model)
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4.4.3 Results of the Multi Bounded Model

The estimated multi bounded model by three estimation methods are given in

Table 4.5. Definitions of interaction terms generated by decision trees are given in

Table 4.6.

Table 4.5: Estimates of the multi bounded model

Variable LR HTLR HFLR

Intercept 0.873** (0.306) 1.174*** (0.292) 1.975*** (0.270)

LBID -0.571*** (0.013) -0.580*** (0.014) -0.613*** (0.014)

LBID1 0.066*** (0.011) 0.067*** (0.011) 0.072*** (0.012)

LFINC 0.069*** (0.013) 0.064*** (0.013) 0.076*** (0.014)

STBIAS -0.065*** (0.018)

STMOR 0.088*** (0.022) 0.101*** (0.021)

GWACT 0.102*** (0.024)

BENEFIT 0.221*** (0.022) 0.224*** (0.021) 0.195*** (0.024)

RIGHT -0.074*** (0.016) -0.072*** (0.016) -0.058*** (0.016)

FAIREV -0.051** (0.017) -0.059*** (0.017) 0.079*** (0.017)

TOLD -0.044*** (0.013) -0.046*** (0.013)

AUTH 0.083*** (0.015) 0.088*** (0.015) 0.062*** (0.016)

NOCONT 0.056*** (0.014)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 4.5: Estimates of the multi bounded model (continued)

Variable LR HTLR HFLR

PROTLAW 0.125*** (0.018) 0.131*** (0.018)

PROTNG -0.062*** (0.017) -0.146*** (0.022)

TMEQL -0.108*** (0.019) -0.109*** (0.019)

SOFSOC -0.079*** (0.015) -0.084*** (0.015)

RCHEMA -0.059*** (0.009) -0.045*** (0.010) -0.041*** (0.010)

RLMED -0.031*** (0.008) -0.031*** (0.008)

RDRUG 0.068*** (0.012) 0.073*** (0.012)

NEWS -0.086*** (0.024) -0.080*** (0.024) -0.082*** (0.025)

DOCT 0.209*** (0.047) 0.246*** (0.047)

ANTIAGE -0.066*** (0.020) -0.067*** (0.020)

M2T1V 2 1.037*** (0.159) 0.484** (0.162)

M2T1V 3 -1.007*** (0.163) -0.858*** (0.168)

M2T1V 4 0.558*** (0.076) 0.493*** (0.079)

M2T1V 5 -0.368*** (0.095) -0.352*** (0.102)

M2T2V 6 -1.034*** (0.211)

M2T2V 7 1.450*** (0.213)

M2T2V 8 -0.567*** (0.107)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.
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Table 4.5: Estimates of the multi bounded model (continued)

Variable LR HTLR HFLR

M2T3V 1 -0.607*** (0.081)

M2T3V 2 0.635*** (0.102)

M2T4V 1 -0.577*** (0.083)

M2T4V 2 0.857*** (0.114)

M2T4V 3 -1.303*** (0.140)

M2T4V 4 0.556*** (0.126)

M2T4V 7 -0.499*** (0.075)

M2T4V 9 0.354*** (0.073)

M2T5V 2 -0.505*** (0.087)

M2T6V 1 0.343*** (0.073)

M2T6V 3 -0.431*** (0.062)

Significance level: ”.”: 0.1; ”*”: 0.05; ”**”: 0.01; ”***”: 0.001.

Table 4.6: Variables generated by the decision trees in the multi bounded model

Variable V Condition for V = 1 Mean (SD)

M2T1V 2 (PROTNG ≥ 3) ∨ (GWACT ≥ 5) 0.3854 (0.4870)

M2T1V 3 (M2T1V 2 = 1) ∨ (RCHEMA ≥ 4) 0.3646 (0.4816)

M2T1V 4 (M2T1V 3 = 1) ∨ (GWRISK ≥ 6) 0.1966 (0.3977)
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Table 4.6: Variables generated by the decision trees in the multi bounded model
(continued)

Variable V Condition for V = 1 Mean (SD)

M2T1V 5 (M2T1V 4 = 1) ∨ (STBIAS ≥ 4) 0.0716 (0.2580)

M2T2V 6 (BENEFIT ≥ 5) ∨ (FAIREV ≥ 4) ∨

(RCHEMA ≥ 4)∨(PROTLAW ≥ 3)∨

(SOFSOC ≥ 4)

0.2031 (0.4026)

M2T2V 7 (M2T2V 6 = 1) ∨ (RDRUG ≥ 7) 0.1901 (0.3926)

M2T2V 8 (M2T2V 7 = 1) ∨ (STBIAS ≥ 4) 0.0651 (0.2469)

M2T3V 1 STMOR ≤ 4 0.1771 (0.3820)

M2T3V 2 (M2T3V 1 = 1) ∨ (RDRUG ≥ 10) 0.0885 (0.2843)

M2T4V 1 GOV GOAL ≥ 4 0.3177 (0.4659)

M2T4V 2 (M2T4V 1 = 1) ∨ (GWACT ≥ 6) 0.1797 (0.3842)

M2T4V 3 (M2T4V 2 = 1) ∨ (TMEQL ≥ 3) 0.1276 (0.3339)

M2T4V 4 (M2T4V 4 = 1) ∨ (GWMANMD ≥ 5) 0.0859 (0.2805)

M2T4V 7 (GOV GOAL ≤ 3)∨(RCHEMA ≥ 4)∨

(DOCT = 0)

0.4518 (0.4980)

M2T4V 8 (M2T4V 7 = 1) ∨ (PROTLAW ≥ 4) 0.3151 (0.4649)

M2T4V 9 (M2T4V 8 = 1) ∨ (AUTH ≤ 1) 0.0326 (0.1776)

M2T5V 2 (GWACT ≤ 4) ∨ (RIMIG ≥ 6) 0.0938 (0.2917)

M2T6V 1 PROTLAW ≥ 3 0.8789 (0.3264)
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Table 4.6: Variables generated by the decision trees in the multi bounded model
(continued)

Variable V Condition for V = 1 Mean (SD)

M2T6V 3 (M2T6V 1 = 1) ∨ (SOFSOC ≥ 4) ∨

(RLMED ≥ 5)

0.2865 (0.4524)

Substituting the log average family income ln( ¯exp{LFINC}) and the means of

all other control variables, the estimated medians of WTP given by LR, HTLR, and

HFLR models are shown in Equations 4.10, 4.11, and 4.12:

Q̂ 1
2
(WTP ) = 137.73×BID10.1153, (4.10)

Q̂ 1
2
(WTP ) = 134.11×BID10.1163, (4.11)

Q̂ 1
2
(WTP ) = 136.46×BID10.1182. (4.12)

Substituting the log average first bid ln(BID1), the respective estimated medians

of WTP given by LR, HTLR, and HFLR multi bounded model are 261.38, 255.60,

and 263.72. Comparatively, the fixed points of the equations are 261.73, 255.96, and

263.12. The closest given bid to all of these estimates is 285, which is consistent

with the pattern discovered in Figure 4.1(b). Notably, compared to the change of

estimated medians of WTP in the single bounded model, the estimates of the multi

bounded model were much more consistent.
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4.4.4 Economic Discussion based on the Multi Bounded Model

From the results in Table 4.5, the signs of α̂1 are always negative, which is

consistent with the fact that when the given bid has a larger value, it is more likely

to be larger than the WTP of a participant. Meanwhile, the signs of α̂2 is always

positive, which suggest that an increase in the bid given to a participant would

lead to an increase in the reported WTP of the participant. The reason of this

phenomenon is probably because of positive psychological suggestions.

Notably, estimates of (α1 + α2) given by LR, HTLR, and HFLR methods of

the multi bounded model are -0.505, -0.513, and -0.541. Compared to α̂1, they

are closer to α̂ given by the single bounded model (-0.486, -0.467, and -0.466). This

phenomenon shows that both effects of BID and BID1 to WTP values are combined

in one term in the single bounded model. Based on these results, we concluded that

the independence between median of WTP values and the given bid, which is a basic

assumption of the single bounded model, is probably unreal.

Table 4.7 shows summary statistics and values of certain model selection crite-

ria of estimated multi bounded models, and Figure 4.4 shows the change of model

efficiency during the HFLR algorithm. Three different definitions of prediction accu-

racy are applied in Table 4.4: the average prediction accuracy for comparing WTP

with a given bid; the probability that the predicted interval of WTP is accurately

the real one; and the probability that the predicted interval of WTP is the real one

or a neighbour of the real one. In Figure 4.4(b), the first definition of prediction

accuracy is applied.
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(Multi Bounded Model)
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Figure 4.5: Key Decision Trees Generated in the HFLR Algorithm
(Multi Bounded Model)
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Table 4.7: Comparison between different estimates of the multi bounded model

Method LR HTLR HFLR

Amount of trees 0 1 6

Amount of parameters 22 24 30

BIC 5480.3 5413.3 5200.4*

Prediction accuracy
(comparison with BID)

80.68% 80.97% 82.17%*

Prediction accuracy
(accurate interval)

34.11%* 34.11%* 33.72%

Prediction accuracy
(neighbouring intervals)

58.20% 56.38% 58.72%*

* represents the selected model by each model selection criteria.

According to the results in Table 4.7, the HFLR estimate has both the smallest

BIC and the highest prediction accuracy, according to two out of three definitions

of prediction accuracy. Furthermore, according to Figure 4.4, the changes of both

BIC and prediction accuracy show that the estimate of the multi bounded model is

also optimised gradually when more trees are added in the HFLR algorithm. As the

HFLR estimate is better than other estimates in both explanation and prediction

powers, we are only utilising its results in further discussions.

From the estimated power of BID1 in Equation 4.12, we could estimate that

when BID1 is doubled, the estimated median of WTP is increased by around 5.1%.

From the results in Table 4.5, we could also calculate that according to the HFLR

estimate, when family incomes of participants are doubled, the estimated median

of WTP is increased by only around 5.4%. Notably, the coefficient of LBID1 is

significantly larger than that of LFINC, suggesting that the first given bid is almost
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as influential as family income to the WTP of participants.

The linear terms BENEFIT , FAIREV , AUTH, and NOCONT are positive

significant in the HFLR estimates. From these results, we concluded that people

tended to have larger WTP values if they were in favour of a fairness revolution and

obeying authorities, and if they believe that the geo-engineering project is beneficial

and courses of lives are determined by factors beyond their control. On the other

hand, the linear terms RIGHT , RCHEMA, and NEWS are negative significant.

From these results, we concluded that people tended to have smaller WTP values if

they agreed that individual rights are independent on opinions of others and chemical

additives in food are risky. Participants who are more interested in news and public

affairs also tended to have smaller WTP values.

Out of thirty terms included in the HFLR estimate, eighteen are generated from

six decision trees. It is observed from Figure 4.4 that the first, second, and fourth

decision trees bring the largest decreases of BIC and the largest increases of pre-

diction accuracy during the HFLR algorithm. These decision trees are displayed in

Figure 4.5. The root node of these decision trees are PROTNG, BENEFIT , and

GOV GOAL. This means that the influences to WTP of the participants’ attitude

towards protections provided by governments, the benefit of the geo-engineering

project, and social goals of government, highly depend on other factors.

4.4.5 Comparison between the Models

To compare the prediction power of the multi model and the single bounded

model, we calculated the prediction accuracy for estimates of the single bounded
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model. All three indicators of prediction accuracy as defined in Table 4.7 are applied.

The results are given in Table 4.8.

Table 4.8: Prediction accuracy criteria of estimates of the single bounded model

Method LR HTLR HFLR

Prediction accuracy
(comparison with BID)

78.61% 78.30% 79.88%

Prediction accuracy
(accurate interval)

34.11% 33.33% 33.46%

Prediction accuracy
(neighbouring intervals)

55.08% 56.90% 58.20%

Based on the results in Tables 4.7 and 4.8, we concluded that regardless of

estimation methods and definitions of prediction accuracy, the multi bounded model

always had higher prediction efficiency than the single bounded model. When the

HFLR estimation method is applied, the gap between prediction efficiency between

the multi bounded model and the single bounded model is larger. Based on the first

and definition of prediction accuracy, the gap is estimated to be 2%-3%.

4.5 Conclusion

In this study, we applied single bounded and multi bounded probit regression

models to explore the factors influencing the people’s WTP to a geo-engineering

project. By comparing their prediction accuracy, information utilisation, and eco-

nomic meaning, we concluded that the multi bounded model is better than the single

bounded model.
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From results of the multi bounded model, we demonstrated that the first bids

given to participants had strong influences upon their final WTP value in the survey.

We also detected the relationship between WTP of participants and their family

income, political and social views, and other personal characters. Notably, many of

these relationships are nonlinear.

Since decision tree learning algorithms were first developed, researchers suggested

that hybrid methods between classic regression models and decision trees were able

to combine the strengths of both models to achieve higher explanation and prediction

powers. This paper applied the HFLR algorithm developed in Chapter 3 to multi-

level categorical variables. By comparing various statistical criteria, we observed

that HFLR estimates of both single bounded and multi bounded models had higher

explanatory and prediction powers than their LR and HTLR counterparts.

Similar to Chapter 3, the reason for HFLR estimates outperforming LR and

HTLR estimates is related to the inclusion of nonlinear terms. Some of these terms

have clear meanings in the WTP model. As an example, in the LR multi bounded

model, the effect of recent visits to doctors is considered always positive to the

participants’ WTP, whereas in HFLR multi bounded model, it is discovered that

recent visits to doctors may have either positive or negative effects, depending on

the participants’ political and social views.
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Chapter 5

Conclusions and Further Research

5.1 Chapter Summaries

Following the hybrid classification method of logistic regression and decision

trees given by Stainberg et al. (1998), various hybrid tree-regression methods were

designed to combine the ability of classic regression models in dealing with con-

tinuous relationship and the strength of decision trees in figuring joint effects and

dealing with outliers. This thesis introduced two new approaches of hybrid tree-

regression methods: hybrid groupwise tree-linear regression (HGTLR), and hybrid

forest-linear regression (HFLR). These new approaches were compared with linear

regression (LR) and hybrid tree-linear regression (HTLR) which followed the ap-

proach of Stainberg et al. (1998). This research applied data from three different

research fields, which were analysed in Chapters 2, 3, and 4.
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Chapter 2 showed the ability of hybrid tree-regression methods in improving

prediction power of regression models where all independent variables are binary.

Based on 452 models gathered from sixty-five papers about the relationship be-

tween trade openness and economic growth, we applied LR, HTLR, and HGTLR

to build random-effects and weighted least squares (WLS) meta-regression models.

All applied model comparison criteria, including AIC, BIC, cross-validated MSE,

and prediction accuracy, suggested that tree-based regression models (HTLR and

HGTLR) have higher explanation and prediction powers than their linear counter-

parts. However, it is debatable where HGTLR is better than HTLR. Additionally,

we verified the conclusion of Stanley et al. (2017) that WLS meta-regression models

have higher prediction power than random-effects meta-regression models. From the

predictions of both WLS-HTLR and WLS-HGTLR models, although the effect sizes

of trade openness to economic growth are influenced by publication time, focused

continent, and control variables of econometric studies, it is positive in most cases.

Chapter 3 showed that hybrid tree-regression methods, especially the newly de-

veloped HFLR method, improve prediction powers of regression models with both

binary and continuous variables, although continuous variables were not applied to

construct decision trees. We applied LR, HTLR, and HFLR to analyse factor that

influences fundraising performances of reward-based crowdfunding projects based

on 236 projects collected from Kickstarter and Indiegogo. By comparing BIC, cross-

validated MSE, and prediction accuracy of their results, it was verified not only that

the HTLR method is more powerful than LR in explanation and prediction, but

also that the HFLR method is more powerful than HTLR in these aspects. These

statements were also verified by applying those algorithms to 12 simulated predic-

tion problems. By analysing the included interaction terms in hybrid tree-regression
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models, they are more efficient because of their ability of discussing joint effects

and dealing with outliers by adding interaction terms. From the result of the HFLR

model, it is clear than variables such as fundraising target, rewards, and visualisation

tools, have linear and joint influences on the fundraising performances.

Chapter 4 showed that the ability of decision trees of dealing with not only binary

variables, but also non-binary ordinal variables. We applied LR, HTLR, and HFLR

to predict the range of WTP of 778 participants from China to a geo-engineering

project. Both single bounded and multi bounded models were built during the mod-

elling process. Hybrid tree-regression methods showed their abilities of modelling

with multi level categorical variables. In both models, HFLR estimates have smaller

BIC and larger prediction accuracy than LR and HTLR estimates. Meanwhile, all

estimates of the multi bounded model make better predictions compared to any es-

timates of the single bounded model. The probable reason of the better prediction

performance of the multi bounded model is that it applied more information from

the data. From the result of the multi bounded HFLR model, it is concluded that

the given bid to participants has strong influences upon their resulting WTP. Mean-

while, WTP of participants are also influenced by their family income, political and

social views, and other personal characters. The median WTP is estimated to be

slightly lower than 285 which is one of the given bids.

5.2 Further Research

The results of this thesis have showed that hybrid tree-regression methods, es-

pecially the newly designed HFLR method, enable stronger prediction power than
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classic regression models. Compared to LR, HTLR, and HGTLR methods, the

HFLR method applies multi decision trees with different root nodes to the whole

dataset, which allows for the consideration of various interaction terms without a

common variable on the root node.

However, existing hybrid tree-regression methods have their limits. Firstly, meth-

ods applied in this thesis applied decision trees to categorical regressors only. Sec-

ondly, the meanings of some terms generated by decision trees are relatively hard

to explain. Thirdly, as the method with the highest prediction power in this thesis,

the HFLR algorithm has a relatively low time efficiency. These limits of existing hy-

brid tree-regression methods suggest several future research topics of applying multi

decision trees to optimise prediction performances of regression models.

In this thesis, decision trees built during HTLR, HGTLR, and HFLR algorithms

were only applying categorical variables. In future research, following the attempt

of Dumitrescu et al. (2018), the application of decision trees in regression modelling

can be broadened by building regression trees with not only categorical regressors,

but also continuous regressors.

Additionaly, as discussed further within Chapter 3, some interaction terms added

to regression models are explainable, while the meanings of some other terms are

relatively unclear. In future research, instead of building decision trees based on

groups of observations such as the HGTLR method, we could also build decision

trees based on groups of variables in order to figure out more explainable joint

effects.

Another inspiration of future research comes from machine learning methods such
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as random forest and lasso. Although the HFLR method make better predictions

than LR and HTLR, constructing a HFLR model takes much more time. The low

time efficiently of the HFLR algorithm is due to two reasons.

Firstly, the HFLR algorithm is a serial algorithm instead of a parallel algorithm:

the generation of each new decision tree is based on the results of previous decision

trees. Random forest is a parallel algorithm that construct multi decision trees

simultaneously. With inspiration from the random forest algorithm, hybrid tree-

regression algorithms could be designed to be more time efficient.

Secondly, in the end of each cycle of the HFLR algorithm, stepwise regression is

applied to select variables included in the resulting model of the cycle. Meanwhile,

machine learning methods such as lasso offers more time efficient ways of the variable

selection process. With inspiration taken from these methods, the time efficiency of

hybrid tree-regression algorithms could also be improved.
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Appendix A

Key R codes

A.1 Chapter 2

A.1.1 RE-LR

# READ DATA AND DEFINE INDEPENDENT VARIABLES

trade=read.csv(”M:\\TradeGrowth.csv”,header=T)

ctry=trade[,3]

time=trade[,7]

UCTRY=(ctry==1)*1

UTIME=(time==1)*1

......

NGEO=(trade[,36]!=””)*1

NUM=as.factor(trade[,1])
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# DEFINE THE DEPENDENT VARIABLE

tsta=trade[,40]

sig=(tsta>qt(0.975,DF))-(tsta+qt(0.975,DF)<0)

pcc=tsta/sqrt(tstaˆ2+DF) # partial correlation coefficient

vpcc=(1-pccˆ2)ˆ2/DF

SE=sqrt(vpcc)

# SETUP THE DATAFRAME

MAV=cbind(pcc,vpcc,SE,UCTRY,UTIME,UCONT,AS,EU,AF,YA10,YA15,

SHOEF,PCPT,CETE,IGDP,FDI,BMP,OOPEN,EXT,INV,INF,INFR,CRED,

GOV,OECOP,POLI,POP,LIFE,EDU,OSOC,NGEO,NUM)

MAV=as.data.frame(MAV)

# RUN THE MODEL

library(mixmeta)

mamix=mixmeta(pcc∼.-vpcc-NUM,S=vpcc,data=MAV,random= 1|NUM,

method=”ml”)

mamixa=step(mamix)

summary(mamixa)

# CROSS VALIDATION

cv.lm(data=MAV,mamixa$call,m=10)
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mamixapr=cv.lm(data=MAV,mamixa$call,m=10,printit=FALSE)$cvpred

mamixapt=mamixapr*sqrt(DF/(1-mamixaprˆ2))

mamixapsig=(mamixapt>qt(0.975,DF))-(mamixapt+qt(0.975,DF)<0)

mean(sig==mamixapsig)

A.1.2 WLS-LR

# RUN THE MODEL

maols=lm(pcc∼.-vpcc-NUM,data=MAV)

maolse=abs(resid(maols))

maolsp=predict(maols)

maolsep=predict(lm(maolse∼maolsp))

wmaols=maolsepˆ(-2)

wmaols[wmaols>quantile(wmaols,0.75)]=quantile(wmaols,0.75)

mawls=lm(pcc∼.-vpcc-NUM,weights=wmaols,data=MAV)

maolsa=step(mawls)

maolsae=abs(resid(maolsa))

maolsap=predict(maolsa)

maolsaep=predict(lm(maolsae∼maolsap))

wmaolsa=maolsaepˆ(-2)

wmaolsa[wmaolsa>quantile(wmaolsa,0.75)]=quantile(wmaolsa,0.75)

mawlsa=lm(maolsa$call,weights=wmaolsa,data=MAV)

summary(mawlsa)
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# CROSS VALIDATION

library(DAAG)

cv.lm(data=MAV,mawlsa$call,m=10)

mawlsapr=cv.lm(data=MAV,mawlsa$call,m=10,printit=FALSE)$cvpred

mawlsapt=mawlsapr*sqrt(DF/(1-mawlsaprˆ2))

mawlsapsig=(mawlsapt>qt(0.975,DF))-(mawlsapt+qt(0.975,DF)<0)

mean(sig==mawlsapsig)

A.1.3 RE-HTLR

# CONSTRUCT THE DECISION TREE

library(rpart)

mat1=rpart(pcc∼.-vpcc-SE-NUM,data=MAV,method=”anova”)

par(mar=c(0.5,0.5,0.5,0.5))

plot(mat1,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(mat1,use.n=F,fancy=F,cex=0.8,digits=2,col=”blue”)

# DEFINE VARIABLES BASED ON THE DECISION TREE

mat1v1=YA15*PCPT

mat1v2=YA15*PCPT*IGDP

......

mat1v11=(1-YA15)*(1-AF)*(1-YA10)*INV*OECOP

mat1v12=(1-YA15)*(1-AF)*(1-YA10)*(1-INV)*POP
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MAV1=cbind(MAV,mat1v1,mat1v2,mat1v3,mat1v4,mat1v5,mat1v6,mat1v7,

mat1v8,mat1v9,mat1v10,mat1v11,mat1v12)

# RUN THE MODEL

mamix1=mixmeta(pcc∼.-vpcc-NUM,S=vpcc,data=MAV1,random= 1|NUM,

method=”ml”)

mamix1a=step(mamix1)

summary(mamix1a)

# CROSS VALIDATION

cv.lm(data=MAV1,mamix1a$call,m=10)

mamix1apr=cv.lm(data=MAV1,mamix1a$call,m=10,printit=FALSE)$cvpred

mamix1apt=mamix1apr*sqrt(DF/(1-mamix1aprˆ2))

mamix1apsig=(mamix1apt>qt(0.975,DF))-(mamix1apt+qt(0.975,DF)<0)

mean(sig==mamix1apsig)

A.1.4 WLS-HTLR

# RUN THE MODEL

maols1=lm(pcc∼.-vpcc-NUM,data=MAV1)

maols1e=abs(resid(maols1))

maols1p=predict(maols1)

maols1ep=predict(lm(maols1e∼maols1p))

wmaols1=maols1epˆ(-2)
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wmaols1[wmaols1>quantile(wmaols1,0.75)]=quantile(wmaols1,0.75)

mawls1=lm(pcc∼.-vpcc-NUM,weights=wmaols1,data=MAV1)

maols1a=step(mawls1)

maols1ae=abs(resid(maols1a))

maols1ap=predict(maols1a)

maols1aep=predict(lm(maols1ae∼maols1ap))

wmaols1a=maols1aepˆ(-2)

wmaols1a[wmaols1a>quantile(wmaols1a,0.75)]=quantile(wmaols1a,0.75)

mawls1a=lm(maols1a$call,weights=wmaols1a,data=MAV1)

summary(mawls1a)

# CROSS VALIDATION

cv.lm(data=MAV1,mawls1a$call,m=10)

mawls1apr=cv.lm(data=MAV1,mawls1a$call,m=10,printit=FALSE)$cvpred

mawls1apt=mawls1apr*sqrt(DF/(1-mawls1aprˆ2))

mawls1apsig=(mawls1apt>qt(0.975,DF))-(mawls1apt+qt(0.975,DF)<0)

mean(sig==mawls1apsig)

A.1.5 RE-HGTLR

# CONSTRUCT THE DECISION TREES

magt1=rpart(pcc∼.-vpcc-SE-NUM,data=MAV,subset=(YA10+YA15==0),method=”anova”)

par(mar=c(0.5,0.5,0.5,0.5))
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plot(magt1,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(magt1,use.n=F,fancy=F,cex=1.2,digits=2,col=”blue”)

magt2=rpart(pcc∼.-vpcc-SE-NUM,data=MAV,subset=(YA10==1),method=”anova”)

par(mar=c(0.5,0.5,0.5,0.5))

plot(magt2,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(magt2,use.n=F,fancy=F,cex=1.2,digits=2,col=”blue”)

magt3=rpart(pcc∼.-vpcc-SE-NUM,data=MAV,subset=(YA15==1),method=”anova”)

par(mar=c(0.5,0.5,0.5,0.5))

plot(magt3,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(magt3,use.n=F,fancy=F,cex=1.2,digits=2,col=”blue”)

# DEFINE VARIABLES BASED ON THE DECISION TREE

magt1v1=(1-YA10-YA15)*INV

......

magt1v8=(1-YA10-YA15)*(1-INV)*(1-POP)*(1-CETE)*OECOP

magt2v1=YA10*AF

......

magt2v8=YA10*(1-AF)*(1-INV)*(1-POP)*(1-NGEO)*INF

magt3v1=YA15*PCPT

......

magt3v6=YA15*PCPT*IGDP*(1-OSOC)*EDU*OECOP*UCTRY

MAGV1=cbind(MAV,magt1v1,magt1v2,magt1v3,magt1v4,magt1v5,magt1v6,

magt1v7,magt1v8,magt2v1,magt2v2,magt2v3,magt2v4,magt2v5,magt2v6,

magt2v7,magt2v8,magt3v1,magt3v2,magt3v3,magt3v4,magt3v5,magt3v6)
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# RUN THE MODEL

mamixg1=mixmeta(pcc∼.-vpcc-NUM,S=vpcc,data=MAGV1,random= 1|NUM,

method=”ml”)

mamixg1a=step(mamixg1)

summary(mamixg1a)

# CROSS VALIDATION

cv.lm(data=MAGV1,mamixg1a$call,m=10)

mamixg1apr=cv.lm(data=MAGV1,mamixg1a$call,m=10,printit=FALSE)$cvpred

mamixg1apt=mamixg1apr*sqrt(DF/(1-mamixg1aprˆ2))

mamixg1apsig=(mamixg1apt>qt(0.975,DF))-(mamixg1apt+qt(0.975,DF)<0)

mean(sig==mamixg1apsig)

A.1.6 WLS-HGTLR

# RUN THE MODEL

magols1=lm(pcc∼.-vpcc-NUM,data=MAGV1)

magols1e=abs(resid(magols1))

magols1p=predict(magols1)

magols1ep=predict(lm(magols1e∼magols1p))

wmagols1=magols1epˆ(-2)

wmagols1[wmagols1>quantile(wmagols1,0.75)]=quantile(wmagols1,0.75)

magwls1=lm(pcc∼.-vpcc-NUM,weights=wmagols1,data=MAGV1)
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magols1a=step(magwls1)

magols1ae=abs(resid(magols1a))

magols1ap=predict(magols1a)

magols1aep=predict(lm(magols1ae∼magols1ap))

wmagols1a=magols1aepˆ(-2)

wmagols1a[wmagols1a>quantile(wmagols1a,0.75)]=quantile(wmagols1a,0.75)

magwls1a=lm(magols1a$call,weights=wmagols1a,data=MAGV1)

summary(magwls1a)

# CROSS VALIDATION

cv.lm(data=MAGV1,magwls1a$call,m=10)

magwls1apr=cv.lm(data=MAGV1,magwls1a$call,m=10,printit=FALSE)$cvpred

magwls1apt=magwls1apr*sqrt(DF/(1-magwls1aprˆ2))

magwls1apsig=(magwls1apt>qt(0.975,DF))-(magwls1apt+qt(0.975,DF)<0)

mean(sig==magwls1apsig)

A.2 Chapter 3

A.2.1 LR

# READ DATA AND DEFINE VARIABLES

crowdfund=read.csv(”M:\\HLL.csv”,header=T)
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crowdfund[is.na(crowdfund)]<-0

target=crowdfund[,13]

result=crowdfund[,14]+0.01

lrt=log(result/target) # proportion of funding

LTARG=log(target)

LPICS=log(crowdfund[,58]+1)

KICKS=(crowdfund[,3]==1)*1

......

PTPROD=(crowdfund[,62]+crowdfund[,66]>0)*1

PTPROC=(crowdfund[,63]+crowdfund[,64]>0)*1

PTSLMP=(crowdfund[,68]+crowdfund[,69]+crowdfund[,70]+crowdfund[,71]+

crowdfund[,72]>0)*1

hlvar0=cbind(lrt,LTARG,LPICS,KICKS,COMACT,DESTECH,FOODCR,PROD,

PERSON,MALE,PROFL,SELF,SPT,BUSIN,JOBDES,DEG,RWPROD,

RWEXP,RWVIP,RWHONOR,RWLET,RWPHOTO,RWVISIT,RWANM,

RWINT,RWDESH,PTPROV,PTREC,PTPROD,PTPROC,PTSLMP)

hlvar0=as.data.frame(hlvar0)

# RUN THE MODEL

hllr=lm(lrt∼.,data=hlvar0)

hllrb=step(hllr,k=log(236))

summary(hllrb)

# CROSS VALIDATION
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library(DAAG)

cv.lm(hlvar0,hllrb$call,m=10)

hllrbp=cv.lm(hlvar0,hllrb$call,m=10,printit=FALSE)$cvpred

mean(hllrbp*lrt>0)

A.2.2 HTLR

# RUN THE FIRST TREE AND DEFINE NEW VARIABLES

library(rpart)

hldvar=hlvar0[,c(1,4:31)]

hlt1=rpart(lrt∼.,data=hldvar,method=”anova”)

par(mar=c(0.5,0.5,0.5,0.5))

plot(hlt1,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(hlt1,use.n=F,fancy=F,cex=1.2,digits=2,col=”blue”)

hlt1v1=SPT*PTREC

hlt1v2=(1-SPT)*RWPROD

......

hlt1v6=(1-SPT)*(1-RWPROD)*COMACT

hlt1v7=(1-SPT)*(1-RWPROD)*COMACT*RWLET

hlvar1=cbind(hlvar0,hlt1v1,hlt1v2,hlt1v3,hlt1v4,hlt1v5,hlt1v6,hlt1v7)

# RUN THE MODEL

hlhtlr=lm(lrt∼.,data=hlvar1)
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anova(hllr,hlhtlr)

hlhtlrb=step(hlhtlr,k=log(236))

summary(hlhtlrb)

# CROSS VALIDATION

cv.lm(hlvar1,hlhtlrb$call,m=10)

hltlbp=cv.lm(hlvar1,hlhtlr$
¯
call,m=10,printit=FALSE)$cvpred

mean(hltlbp*lrt>0)

A.2.3 HFLR

# RUN THE SECOND TREE AND DEFINE NEW VARIABLES

hlt2=rpart(lrt∼.-SPT,data=hldvar,method=”anova”)

par(mar=c(0.5,0.5,0.5,0.5))

plot(hlt2,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(hlt2,use.n=F,fancy=F,cex=0.8,digits=2,col=”blue”)

hlt2v1=RWPROD*PROD

......

hlt2v10=(1-RWPROD)*(1-PTPROD)*(1-RWHONOR)*JOBDES

hlvar2=cbind(hlvar1,hlt2v1,hlt2v2,hlt2v3,hlt2v4,hlt2v5,hlt2v6,hlt2v7,hlt2v8,

hlt2v9,hlt2v10)

# RUN THE MODEL WITH TWO TREES
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hlhflr2=lm(lrt∼.,data=hlvar2)

anova(hlhtlr,hlhflr2) # Check the loop ending condition

hlhflr2b=step(hlhflr2,k=log(236))

summary(hlhflr2b)

# RUN THE THIRD TREE AND DEFINE NEW VARIABLES

hlt3=rpart(lrt∼.-SPT-RWPROD,data=hldvar,method=”anova”)

par(mar=c(0.5,0.5,0.5,0.5))

plot(hlt3,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(hlt3,use.n=F,fancy=F,cex=0.8,digits=2,col=”blue”)

hlt3v1=(1-PROD)*RWLET

......

hlt3v8=(1-PROD)*(1-RWLET)*(1-MALE)*(1-RWVISIT)*PTSLMP

hlvar3=cbind(hlvar2,hlt3v1,hlt3v2,hlt3v3,hlt3v4,hlt3v5,hlt3v6,hlt3v7,hlt3v8)

# RUN THE MODEL WITH THREE TREES

hlhflr3=lm(lrt∼.,data=hlvar3)

anova(hlhflr2,hlhflr3)

hlhflr3b=step(hlhflr3,k=log(236))

summary(hlhflr3b)

# RUN THE FOURTH TREE AND DEFINE NEW VARIABLES

hlt4=rpart(lrt∼.-SPT-RWPROD-PROD,data=hldvar,method=”anova”)
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par(mar=c(0.5,0.5,0.5,0.5))

plot(hlt4,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(hlt4,use.n=F,fancy=F,cex=0.8,digits=2,col=”blue”)

hlt4v1=PTPROD*COMACT

......

hlt4v12=(1-PTPROD)*(1-RWANM)*(1-KICKS)*(1-PROFL)*PTSLMP

hlvar4=cbind(hlvar3,hlt4v1,hlt4v2,hlt4v3,hlt4v4,hlt4v5,hlt4v6,hlt4v7,hlt4v8,

hlt4v9,hlt4v10,hlt4v11,hlt4v12)

# RUN THE MODEL WITH FOUR TREES

hlhflr4=lm(lrt∼.,data=hlvar4)

anova(hlhflr3,hlhflr4)

hlhflr4b=step(hlhflr4,k=log(236))

summary(hlhflr4b)

# RUN THE FIFTH TREE AND DEFINE NEW VARIABLES

hlt5=rpart(lrt∼.-SPT-RWPROD-PROD-PTPROD,data=hldvar,method=”anova”)

par(mar=c(0.5,0.5,0.5,0.5))

plot(hlt5,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(hlt5,use.n=F,fancy=F,cex=0.8,digits=2,col=”blue”)

hlt5v1=PTREC*PTSLMP

......

hlt5v8=(1-PTREC)*(1-FOODCR)*(1-KICKS)*(1-RWANM)*MALE*PTPROC

hlvar5=cbind(hlvar4,hlt5v1,hlt5v2,hlt5v3,hlt5v4,hlt5v5,hlt5v6,hlt5v7,hlt5v8)
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# RUN THE MODEL WITH FIVE TREES

hlhflr4=lm(lrt∼.,data=hlvar4)

anova(hlhflr3,hlhflr4) # The loop ending condition is satisfied

# CHOOSE THE REULSTING MODEL FROM THE HFLR PROCESS

extractAIC(hlhtlrb,k=log(236))

extractAIC(hlhflr2b,k=log(236))

extractAIC(hlhflr3b,k=log(236))

extractAIC(hlhflr4b,k=log(236)) # The selected model

# CROSS VALIDATION

cv.lm(hlvar4,hlhflr4b$call,m=10)

hlfl4bp=cv.lm(hlvar4,hlhflr4b$call,m=10,printit=FALSE)$cvpred

mean(hlfl4bp*lrt>0)

A.3 Chapter 4

A.3.1 Data Preparation

# READ DATA AND DEFINE VARIABLES

yxdata0=read.csv(”M:\\yxproject.csv”,header=T) lwtp=log(yxdata0[,1])

lbid1=log(yxdata0[,2])
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yes1=(lwtp>lbid1)*1

lfinc=log(yxdata0[,6])

......

antiage=yxdata0$antiage*yxdata0$tantiage

antiage=(antiage==1)+2*(antiage==2)+3*(antiage==4)+4*(antiage==10)+

5*(antiage==30)

# DATA PREPARATION FOR SINGLE BOUNDED MODEL

sbmdata0=cbind(lwtp,yes1,lbid1,lfinc,stbias,stmor,gwrisk,gwact,gwmanmd,

benefit,right,fairev,told,auth,nocont,protlaw,protng,govgoal,tmeql,sofsoc,

rchema,rimig,rlmed,rrachat,rgmfood,rdrug,rgovreg,rvac,rgovbud,age,gend,

news,doct,hosp,antiage)

sbmdata=na.omit(sbmdata0)

sbmdata=as.data.frame(sbmdata)

LWTP=sbmdata$lwtp

YES1=sbmdata$yes1

LBID1=sbmdata$lbid1

......

DOCT=sbmdata$doct

HOSP=sbmdata$hosp

ANTIAGE=sbmdata$antiage

SBMDATA=cbind(YES1,LBID1,LFINC,STBIAS,STMOR,GWRISK,GWACT,

GWMANMD,BENEFIT,RIGHT,FAIREV,TOLD,AUTH,NOCONT,

PROTLAW,PROTNG,GOVGOAL,TMEQL,SOFSOC,RCHEMA,RIMIG,

RLMED,RRACHAT,RGMFOOD,RDRUG,RGOVREG,RVAC,RGOVBUD,
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AGE,GEND,NEWS,DOCT,HOSP,ANTIAGE)

SBMDATA=as.data.frame(SBMDATA)

# DATA PREPARATION FOR MULTI BOUNDED MODEL

YES5=LWTP>log(5)

YES19=LWTP>log(19)

......

YES952=LWTP>log(952)

YES1904=LWTP>log(1904)

FMDATA5=cbind(YES5,rep(log(5),778),LBID1,LFINC,STBIAS,STMOR,

GWRISK,GWACT,GWMANMD,BENEFIT,RIGHT,FAIREV,TOLD,AUTH,

NOCONT,PROTLAW,PROTNG,GOVGOAL,TMEQL,SOFSOC,RCHEMA,

RIMIG,RLMED,RRACHAT,RGMFOOD,RDRUG,RGOVREG,RVAC,RGOVBUD,

AGE,GEND,NEWS,DOCT,HOSP,ANTIAGE)

......

FMDATA1904=cbind(YES1904,rep(log(1904),778),LBID1,LFINC,STBIAS,STMOR,

GWRISK,GWACT,GWMANMD,BENEFIT,RIGHT,FAIREV,TOLD,AUTH,

NOCONT,PROTLAW,PROTNG,GOVGOAL,TMEQL,SOFSOC,RCHEMA,

RIMIG,RLMED,RRACHAT,RGMFOOD,RDRUG,RGOVREG,RVAC,RGOVBUD,

AGE,GEND,NEWS,DOCT,HOSP,ANTIAGE)

FMDATA=as.data.frame(FMDATA)
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A.3.2 Single Bounded Model

# LR

sbmlr=glm(YES1∼.,data=SBMDATA,family=”binomial”(link=”probit”))

sbmlrb=step(sbmlr,k=log(778))

summary(sbmlrb)

# HTLR

library(rpart)

sbmt1=rpart(YES1∼.,data=SBMDVAR,method=”class”)

par(mar=c(0.5,0.5,0.5,0.5))

plot(sbmt1,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(sbmt1,use.n=F,fancy=F,cex=0.8,col=”blue”)

sbmt1v1=(BENEFIT<3.5)*1

sbmt1v2=(BENEFIT<3.5)*(RIMIG>4.5)

......

sbmt1v13=(BENEFIT>3.5)*(TMEQL<3.5)*(RDRUG>4.5)*(RLMED<2.5)*

(RCHEMA<9.5)*(GOVGOAL<2.5)

sbmt1v14=(BENEFIT>3.5)*(TMEQL<3.5)*(RDRUG>4.5)*(RLMED<2.5)*

(RCHEMA<9.5)*(GOVGOAL<2.5)*(PROTLAW<4.5)

SBMDATA1=cbind(SBMDATA,sbmt1v1,sbmt1v2,sbmt1v3,sbmt1v4,sbmt1v5,

sbmt1v6,sbmt1v7,sbmt1v8,sbmt1v9,sbmt1v10,sbmt1v11,sbmt1v12,sbmt1v13,

sbmt1v14)

sbmhtlr=glm(YES1∼.,data=SBMDATA1,family=”binomial”(link=”probit”))

anova(sbmlr,sbmhtlr,test=”Chisq”)

155



A.3. Chapter 4

sbmhtlrb=step(sbmhtlr,k=log(768))

summary(sbmhtlrb)

sbmhtlrbs=update(sbmhtlrb,.∼.-sbmt1v7)

# Delete a variable from a highly correlated pair of variables

summary(sbmhtlrbs)

# HFLR - THE SECOND TREE

sbmt2=rpart(YES1∼.-BENEFIT,data=SBMDVAR,method=”class”)

par(mar=c(0.5,0.5,0.5,0.5))

plot(sbmt2,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(sbmt2,use.n=F,fancy=F,cex=0.7,col=”blue”)

sbmt2v1=(STMOR<4.5)*1

......

sbmt2v17=(STMOR>4.5)*(RIGHT<5.5)*(RIMIG>3.5)*(GOVGOAL>3.5)*

(TOLD>4.5)*(RRACHAT>5.5)*(RCHEMA>7.5)*(RGOVBUD>7.5)

SBMDATA2=cbind(SBMDATA1s,sbmt2v1,sbmt2v2,sbmt2v3,sbmt2v4,sbmt2v5,

sbmt2v6,sbmt2v7,sbmt2v8,sbmt2v9,sbmt2v10,sbmt2v11,sbmt2v12,sbmt2v13,

sbmt2v14,sbmt2v15,sbmt2v16,sbmt2v17)

sbmhflr2=glm(YES1∼.,data=SBMDATA2,family=”binomial”(link=”probit”))

anova(sbmhtlrs,sbmhflr2,test=”Chisq”)

sbmhflr2b=step(sbmhflr2,k=log(768))

summary(sbmhflr2b)

# HFLR - THE THIRD TO SIXTH TREE

156



A.3. Chapter 4

......

# HFLR - THE SEVENTH TREE

sbmt7=rpart(YES1∼.-BENEFIT-STMOR-RGMFOOD-GOVGOAL-

RDRUG-TMEQL,data=SBMDVAR,method=”class”)

par(mar=c(0.5,0.5,0.5,0.5))

plot(sbmt7,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(sbmt7,use.n=F,fancy=F,cex=0.7,col=”blue”)

sbmt7v1=(GWACT<3.5)*1

......

sbmt7v7=(GWACT>3.5)*(NEWS>2.5)*(RIGHT>2.5)*(AGE>3.5)*

(GWRISK>5.5)

SBMDATA10=cbind(SBMDATA6s,sbmt7v1,sbmt7v2,sbmt7v3,sbmt7v4,

sbmt7v5,sbmt7v6,sbmt7v7)

sbmhflr7=glm(YES1∼.,data=SBMDATA7,family=”binomial”(link=”probit”))

anova(sbmhflr6s,sbmhflr7,test=”Chisq”) # The loop ending condition is satisfied

# HFLR - MODEL SELECTION

extractAIC(sbmhtlrbs,k=log(768))

extractAIC(sbmhflr2b,k=log(768))

......

extractAIC(sbmhflr5b,k=log(768))

extractAIC(sbmhflr6b,k=log(768)) # The selected model
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# CROSS VALIDATIONS

library(DAAG)

sbmp0=cv.lm(SBMDATA,sbmlrb$call,m=10,printit=FALSE)$cvpred

mean((sbmp0>0.5)==YES1)

sbmp1=cv.lm(SBMDATA1,sbmhtlrbs$call,m=10,printit=FALSE)$cvpred

mean((sbmp1>0.5)==YES1)

sbmp7=cv.lm(SBMDATA7,sbmhflr7b$call,m=10,printit=FALSE)$cvpred

mean((sbmp9>0.5)==YES1)

A.3.3 Multi Bounded Model

# LR

fmlr=glm(YES∼.,data=FMDATA,family=”binomial”(link=”probit”))

fmlrb=step(fmlr,k=log(6144))

summary(fmlrb)

# HTLR

fmt1=rpart(YES∼.,data=FMDVAR,method=”class”)

par(mar=c(0.5,0.5,0.5,0.5))

plot(fmt1,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(fmt1,use.n=F,fancy=F,cex=0.8,col=”blue”)

fmt1v1=(PROTNG>2.5)*1

......
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fmt1v5=(PROTNG>2.5)*(GWACT>4.5)*(RCHEMA>3.5)*(GWRISK>5.5)*

(STBIAS>3.5)

FMDATA1=cbind(FMDATA,fmt1v1,fmt1v2,fmt1v3,fmt1v4,fmt1v5)

fmhtlr=glm(YES∼.,data=FMDATA1,family=”binomial”(link=”probit”))

anova(fmlr,fmhtlr,test=”Chisq”)

fmhtlrb=step(fmhtlr,k=log(6144))

summary(fmhtlrb)

# HFLR - THE SECOND TREE

FMDATA1s=cbind(FMDATA,fmt1v2,fmt1v3,fmt1v4,fmt1v5)

fmhtlrs=glm(YES∼.,data=FMDATA1s,family=”binomial”(link=”probit”))

fmt2=rpart(YES∼.-PROTNG,data=FMDVAR,method=”class”)

par(mar=c(0.5,0.5,0.5,0.5))

plot(fmt2,uniform=T,branch=0.5,margin=0,minbranch=0.5)

text(fmt2,use.n=F,fancy=F,cex=0.8,col=”blue”)

fmt2v1=(BENEFIT>3.5)*1

......

fmt2v8=(BENEFIT>4.5)*(FAIREV>3.5)*(RCHEMA>3.5)*(PROTLAW>2.5)*

(SOFSOC>3.5)*(RDRUG>6.5)*(STBIAS>3.5)

FMDATA2=cbind(FMDATA1s,fmt2v1,fmt2v2,fmt2v3,fmt2v4,fmt2v5,fmt2v6,

fmt2v7,fmt2v8)

fmhflr2=glm(YES∼.,data=FMDATA2,family=”binomial”(link=”probit”))

anova(fmhtlrs,fmhflr2,test=”Chisq”)

fmhflr2b=step(fmhflr2,k=log(6144))

summary(fmhflr2b)
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# HFLR - THE THIRD TO SIXTH TREE

......

# HFLR - THE SEVENTH TREE

FMDATA6s=cbind(FMDATA14s,fmt15v1)

fmhflr6s=glm(YES∼.,data=FMDATA15s,family=”binomial”(link=”probit”))

fmt7=rpart(YES∼.-PROTNG-BENEFIT-STMOR-GOVGOAL-GWACT-PROTLAW,

data=FMDVAR,method=”class”)

par(mar=c(0.5,0.5,0.5,0.5))

plot(fmt7,uniform=T,branch=0,margin=0)

text(fmt7,use.n=F,fancy=F,cex=0.8,col=”blue”)

fmt7v1=(STBIAS<4.5)*1

fmt7v2=(STBIAS<4.5)*(RIMIG>5.5)

fmt7v3=(STBIAS<4.5)*(RIMIG>5.5)*(GWRISK<5.5)

FMDATA7=cbind(FMDATA6s,fmt7v1,fmt7v2,fmt7v3)

fmhflr7=glm(YES∼.,data=FMDATA16,family=”binomial”(link=”probit”))

anova(fmhflr15s,fmhflr16,test=”Chisq”) fmhflr7b=step(fmhflr7,k=log(6144)) summary(fmhflr7b)

# The loop ending condition is satisfied

# HFLR - MODEL SELECTION

extractAIC(fmhtlrb,k=log(6144))

extractAIC(fmhflr2b,k=log(6144))
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......

extractAIC(fmhflr7b,k=log(6144)) # The selected model

# CROSS VALIDATION - LR

fmp0=cv.lm(FMDATA,fmlrb$call,m=10,printit=FALSE)$cvpred

fmc0=((fmp0>0.5)==YES)

mean(fmc0)

fmclv0=fmc0[8*1:768-7]+fmc0[8*1:768-6]+fmc0[8*1:768-5]+fmc0[8*1:768-4]+

fmc0[8*1:768-3]+fmc0[8*1:768-2]+fmc0[8*1:768-1]+fmc0[8*1:768]

mean(fmclv0==8)

mean(fmclv0>=7)

# CROSS VALIDATION - HTLR

fmp1=cv.lm(FMDATA1,fmhtlrb$call,m=10,printit=FALSE)$cvpred

fmc1=((fmp1>0.5)==YES)

mean(fmc1)

fmclv1=fmc1[8*1:768-7]+fmc1[8*1:768-6]+fmc1[8*1:768-5]+fmc1[8*1:768-4]+

fmc1[8*1:768-3]+fmc1[8*1:768-2]+fmc1[8*1:768-1]+fmc1[8*1:768]

mean(fmclv1==8)

mean(fmclv1>=7)

# CROSS VALIDATION - HFLR

fmp6=cv.lm(FMDATA6,fmhflr6b$call,m=10,printit=FALSE)$cvpred
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fmc6=((fmp6>0.5)==YES)

mean(fmc6)

fmclv6=fmc6[8*1:768-7]+fmc6[8*1:768-6]+fmc6[8*1:768-5]+fmc6[8*1:768-4]+

fmc6[8*1:768-3]+fmc6[8*1:768-2]+fmc6[8*1:768-1]+fmc6[8*1:768]

mean(fmclv6==8)

mean(fmclv6>=7)
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