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Abstract 

 

Osteoarthritis (OA) is a painful joint condition and a leading cause of disability 

worldwide. Unfortunately, there is currently no cure for the disease, and there are 

limited treatment options available. Importantly, despite historically being seen as a 

“wear and tear” disease of the cartilage there is now increasing evidence that 

inflammation of the synovial joint lining (synovitis) plays a key role in the disease 

pathology. Synovitis is pronounced in obese OA patients, with elevated levels of pro-

inflammatory cytokines in the synovial fluid 

The aim of this study was therefore to characterise the metabolic profile of synovial 

joint fluid and synovial fibroblasts under both basal and inflammatory conditions in a 

cohort of obese and normal-weight OA patients. Furthermore, we sought to ascertain 

whether modulation of a metabolic pathway in OA synovial fibroblasts could alter 

their inflammatory activity. 

1H NMR Metabolomics analysis of synovial fluid and synovial fibroblast conditioned 

media showed altered metabolism in obese OA patients compared to normal weight 

patients with increased enrichment of glycolytic metabolites. This was confirmed in 

vitro using metabolic flux analysis of isolated synovial fibroblasts. Obese OA synovial 

fibroblasts exhibited increased basal lactate secretion and glycolysis, compared to 

normal weight fibroblasts and could further increase oxidative phosphorylation upon 

inflammatory challenge.  

Furthermore, metabolomic analysis of OA synovial fluid revealed enrichment of 

glutamine-glutamate metabolism in obese OA patients. Modulation of glutamine-

glutamate metabolism through inhibition of glutaminase 1 (GLS1) reduced the 
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expression and secretion of inflammatory cytokine IL6. Therefore, the synovial joint 

inflammation observed in obese OA patients is potentially underpinned by 

therapeutically targetable metabolic pathways. These differences in OA pathology 

suggest that lean and obese OA patients might benefit from different treatment 

strategies 
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1.1 Osteoarthritis 

 

Osteoarthritis (OA) is a progressive degenerative joint disease that is known to affect 

specific joints including knee, hips, spine and hand. OA is typified by changes to 

multiple tissues within the joint including the characteristic degradation of articular 

cartilage, subchondral bone remodelling, and synovial inflammation, which ultimately 

leads to loss of joint function and severe pain. As one of the leading causes of pain 

and disability worldwide, OA has had a significant detrimental impact to quality of life 

in those dealing with this condition (Kawano et al., 2015). OA is the most common 

joint disease worldwide and is estimated to affect 18% of women and 10% of men 

over the age of 60 (Glyn-Jones et al., 2015). Around 8.5 million people in the U.K 

have OA with an estimated one third of people aged 45 and over have sought 

treatment for OA based on Global Burden of Disease Study 2019 (Institute for Health 

Metrics and (IHME), 2019). It is projected that by 2025, the prevalence of knee OA 

will increase by 40% as a result of an ageing population (Kawano et al., 2015). 

People with OA have a low perception of their quality of life in areas such as 

functional capacity  and pain (Kawano et al., 2015). Likewise, the economic impact 

of arthritis joint disease in the UK is substantial, with treatment of OA and rheumatoid 

arthritis (RA) costing the economy £10.2 billion, which is projected to increase to 

over £118 billion over the next decade (York Health Economics, 2017). 

Although OA is a major burden in patients, there are unfortunately no approved 

therapeutic drugs which can alter the disease course. Therefore, the National 

Institute for Health and Care Excellence (NICE) guidelines have recommended 

therapeutics aimed at providing symptomatic pain relief through prescriptions of non-

steroidal anti-inflammatory drugs (NSAIDs) (NICE, 2020). Due to the heterogeneity 
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of OA, locating the source of the pain in the OA joint is particularly difficult and 

therefore NSAIDs are mostly ineffective, particularly for patients with advanced 

disease (Creamer, 2000). Alternative treatments such as intra-articular injections of 

glucocorticoids are listed in NICE guidelines as a secondary treatment option, 

however this line of treatment has so far been unsuccessful in altering disease 

course in patients suffering with OA (NICE, 2020). Therefore, exploring a new line of 

treatment may provide the insights required to generate disease-modifying OA drugs 

(DMOADs). 

Without DMOADs, severe cases of OA  are treated using total joint replacement 

surgery. Although total joint replacement surgeries are generally successful, a 

significant proportion of patients who undergo joint replacement surgeries have 

complications related to long-term pain. A systematic review found 7% to 23% of 

patients who underwent hip replacement surgery reported unfavourable long-term 

pain outcomes and this figure was 10% to 34% following knee replacement surgery 

(Beswick et al., 2012). Likewise, 9.7% of patients who underwent total hip 

arthroplasty and 10.5% of patients who underwent total knee arthroplasty reported 

being unsatisfied with the surgery outcome, which alongside the brief lifespan of joint 

implants (10-14 years) is not a sustainable system of healthcare for OA patients 

(Heath et al., 2021).  



32 | P a g e  
 

1.2 Osteoarthritis Pathology 

Previously thought to be a “wear and tear” disease, recent research has classified 

OA as a multi-factorial whole joint disease whose progression is affected by a 

number of factors. OA is a highly heterogeneous disease state and consists of 

several different phenotypes as a result of different driving factors (figure 1.1) 

(Mobasheri et al., 2019). As a result of these phenotypic changes, a number of 

cellular components at the joint are affected by OA including articular chondrocytes, 

synovial fibroblast, osteoclasts, myoblast, adipocytes, synovial macrophages and 

lymphocytes. 

 

Figure 1.1: Osteoarthritis is driven by different factors which can be 

classified into different phenotypes  
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Ageing is major risk factor for developing OA, with the majority of OA patients being 

over the age of 65 (Chen et al., 2017). Ageing has a large impact on joint tissues 

including the cartilage, synovium, subchondral bone and muscle. Ageing articular 

chondrocytes display elevated levels of oxidative stress, which promotes cellular 

senescence (Chen et al., 2017). Likewise, chondrocytes show decreased repair 

response to damage, which is partly a result of altered receptor expression patterns. 

For example, chondrocytes derived from aged and OA cartilage express more ALK1-

ALK5 receptor, which results in a downregulation of the TGF-β pathway and a switch 

from anabolic matrix synthesis to increased catabolic matrix metalloproteinase 

(MMP) expression (Davidson et al., 2009). During ageing, there is accumulation of 

epigenetic changes, such as DNA methylation, which is believed to contribute to  

age-associated pathologies (Salameh, Bejaoui and El Hajj, 2020). Recent research 

has also shown that DNA methylation of cartilage from OA knee and hip joint is used 

to maintain cartilage integrity in adulthood (Den Hollander et al., 2014). Genome-

wide sequencing of OA chondrocytes show a 50% increase in differentially 

hydroxymethylated regions in OA chondrocytes implicated in OA pathology including 

MMP3, LRP5, GDF5, and COL11A1 (Taylor et al., 2015). Another aspect of ageing 

is the presence and accumulation of senescent cells. Senescent cells are cells which 

exist in a permanent state of growth arrest, however these cells remain metabolically 

active and are known to secrete bioactive molecules such as chemokines, cytokines, 

proteases and growth factors collectively termed senescence associated secretory 

phenotype (SASP) (Coryell, Diekman and Loeser, 2020). Like other organs, joint 

tissues are also affected by the presence of senescent cells (Diekman et al., 2018; 

Manuel J Del Rey et al., 2019). Joint injury can accelerate senescence in 

chondrocytes and contribute to joint degradation (Jeon et al., 2017). Alongside 
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chondrocytes, other resident cells of joint tissue such as osteocytes and synovial 

fibroblasts can become senescent and contribute to the inflammation at the joint 

through SASP (Farr et al., 2016; Manuel J. Del Rey et al., 2019). 

Another phenotype observed in OA is as a result of traumatic injury, with knee 

injuries a key secondary cause of OA observed amongst younger adults. Recent 

findings show 51% of women who sustained anterior cruciate ligament injury (ACL) 

(mean age 31) had OA radiographical changes in the joint after 12 years and 41% of 

men (mean age 36) had OA after 14 years (Roos, 2005). Deconditioning of the 

musculoskeletal system alongside damage to bone, cartilage and ligaments is 

observed after joint injury in young adults, which results in increased joint loading 

and altered biomechanical dynamics of the joint thereby increasing the risk of 

developing knee OA.  

Another driver of OA pathology is inflammation. Inflammation observed in the OA 

joint is classified as chronic low grade localised inflammation. Localised inflammation 

is understood to begin in early stages of the disease and is strongly correlated with 

tibiofemoral cartilage breakdown (Ayral et al., 2005; Felson, 2006). IL-1β and TNF-α 

are the central cytokines associated with the inflammatory milieu observed in OA, 

with both elevated in the synovial fluid and synovial membrane of OA patients. 

Additionally, IL-1 receptor type 1 (IL-1R1) and TNF receptor 1 (p55) are both highly 

expressed in OA synovial fibroblast compared to non-OA controls (Kapoor et al., 

2011). IL-1β and TNF-α is also produced by a number of neighbouring mesenchymal 

stromal cells, such as chondrocytes, osteoblast and synovial macrophages, 

implicating both of these cytokines as the principal drivers of OA. When applied to a 

rabbit knee joint, IL-1β and TNF-α work in a synergistic fashion, causing more 

articular cartilage damage than when injected alone (Henderson and Pettipher, 
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1989). However, attributing IL-1β as simply a pro or anti-inflammatory cytokine is 

inappropriate as one study confirms IL-1β-/- and ICE-/- (IL-1β converting enzyme) 

knockout mice resulted in accelerated development of OA lesions, suggesting IL-1β 

has a more nuanced role in the inflammatory response and cartilage homeostasis 

(Clements et al., 2003). IL-1β and TNF-α are responsible for inducing the expression 

and production of other pro-inflammatory cytokines through various signalling 

pathways. 

IL-6 is amongst the most abundant cytokines present in OA sera and synovium 

compared to healthy serum (Sohn et al., 2012). The role of IL6 in OA is multifaceted 

and nuanced. Early research shows ablation of IL6 using monoclonal antibody 15A7, 

which neutralizes the murine IL-6 receptor alpha chain, in collagen-induced arthritis 

(CIA) in DBA/1J mice and the inflammatory polyarthritis of TNF-α transgenic mice 

resulted in opposite effects (Alonzi et al., 1998). However, the severity of 

inflammatory arthritis in the TNF-α transgenic mouse model , (Alonzi et al., 1998) is 

not significantly reduced when these mice are  crossed with transgenic TIL-6−/− mice, 

suggesting IL6 does not play a pathogenic role in the onset and development TNF-

α–dependent arthritis (Alonzi et al., 1998). 

On the other hand, IL-6-/-  DBA/1J mice were completely protected from CIA induced 

arthritis, alongside a reduced antibody response to type II collagen, the absence of 

inflammatory cells and tissue damage in knee joints (Alonzi et al., 1998). This may 

be due to a differentiated involvement of the immune system in the two murine 

models. As previous research has shown, TNF-α transgenic mice bearing a RAG 

null mutation develop arthritis even in the absence of functional lymphocytes (Douni 

et al., 1995). Furthermore, it has previously been shown the majority of TNF-α 
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activity in this model is mediated through its ability to induce and synergize with IL-1β 

(Probert et al., 1995).  

In a zymosan induced arthritis (ZIA) murine model, IL-6-/-  mice showed increased 

depletion of cartilage proteoglycan levels in the early phase of arthritis compared to 

wild type mice whereas joint inflammation was similar suggesting IL6 does not play a 

role in the onset of inflammation in the ZIA murine model (Van de Loo et al., 1997). 

However, at later time points of arthritis, joint inflammation was lower in the IL-6-/-  

mice compared to wild type control suggesting IL6 is involved in the chronic phase of 

inflammation (Van de Loo et al., 1997). 

This highlights the dichotomic role IL-6 plays in the inflammatory response, acting as 

a defensive mechanism in the acute phase and a pro-inflammatory factor in the 

chronic phase. In acute response, inducible IL- 6 reduces the production of pro-

inflammatory cytokines while not affecting the levels of circulating anti-inflammatory 

cytokines, shifting away from the inflammatory response (Xing et al., 1998). IL-6 is 

partially responsible from the switch to chronic inflammation from acute 

inflammation, assisting in leucocyte recruitment and infiltration to the synovial joint. 

In murine models, IL-6 and soluble IL-6 receptor (sIL-6Ra), stimulates stromal cells 

to express IL-8 and MCP-1 as well as adhesion proteins (Romano et al., 1997). 
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1.3 Synovial Inflammation 

 

Although inflammation during OA progression is present in many joint tissues such 

as the cartilage and subchondral bone, a major site for inflammation observed in OA 

is at the synovial membrane. The synovial membrane (synovium) is a specialized 

connective membrane, which is present at diarthrodial joints. The synovium provides 

a barrier between the synovial fluid and cavity from neighbouring tissues and is 

responsible for the maintenance of synovial fluid volume as well as its production of 

lubricant and hyaluronic acid (Mathiessen and Conaghan, 2017).  It is two to three 

cell layers thick and contains two synoviocyte populations: synovial fibroblasts and 

resident synovial macrophages. Biopsies obtained from OA knee joints have shown 

three main differences in synovium taken from early-stage OA to advanced OA; 

namely synovial lining hyperplasia, inflammatory cell infiltration and stromal 

vascularisation (Prieto-Potin et al., 2015). Myers et al, 1990 have shown, amongst 

29 people with knee pain and arthroscopic evidence of OA but no or minimal 

radiographic changes in OA, over 50% have histologically observed synovitis with 

increased mononuclear cell infiltration and synoviocyte proliferation suggesting 

synovial membrane inflammation is amongst the early pathophysiological changes in 

OA (Myers et al., 1990). The infiltration of inflammatory immune cells such as 

activated B and T cells as well as high levels of pro-inflammatory cytokines has been 

observed in both early and late OA patients (Benito et al., 2005). Furthermore, IL-1 

and TNF are elevated in both early and late OA synovial membranes, however there 

are particularly higher levels of both pro-inflammatory cytokine in moderate and 

severe OA as a result of increased percentage of synoviocytes (Benito et al., 2005). 
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Inflammation at the synovial membrane results in the recruitment of immune cells to 

the inflammatory site through the increased production of chemokines. However, the 

role immune cells have in OA pathology and their respective subsets has not been 

well characterised. A systematic review on this subject by de Lange-Brokaar et al, 

2012 attempted to collate the information already present in the literature on the 

presence of immune cell infiltration at synovial tissue. However, the study has only 

established that synovial tissue inflammation is common in OA patients and has not 

been able to provide precise and conclusive characterisation of immune cell 

populations present in OA synovial tissue based on the literature (de Lange-Brokaar 

et al., 2012). Previous studies have reported that macrophages and T cells are 

amongst the most abundant immune cell type present in OA synovial tissue and 

although the percentage population of inflammatory cells is lower in OA patients 

compared to those with rheumatoid arthritis, they are higher than those observed in 

healthy controls (Lindblad and Hedfors, 1987; Revell et al., 1988; Ponchel et al., 

2015). Early research examining leukocyte populations in peripheral blood could not 

distinguish statistical differences between RA and OA patients and therefore 

postulated whether abnormalities in T cell populations and its sub-sets may provide 

insight into the pathogenesis of OA thereby setting up an environment of chronic 

inflammation at the synovial joint (Leheita et al., 2005). Conversely, OA serum and 

synovial fluid had lower levels of the soluble form of the leukocyte surface antigen 

CD4 (sCD4) compared to RA. However, OA levels were higher compared to age-

matched healthy controls (Symons et al., 1991). Later research found that though 

the percentage population of CD4+ and CD8+ T cells in the peripheral blood of OA 

patients compared to healthy controls did not differ, the percentage of T cells in the 

synovial fluid was significantly higher compared to peripheral blood with greater 



39 | P a g e  
 

expression of HLA class II, signifying increased activation of T cell population 

(Haynes, Hume and Smith, 2002; Hussein et al., 2008). This same study also 

reported a similar percentage of CD4+ and CD8+ T lymphocytes at the OA synovial 

fluid as that of RA (Hussein et al., 2008). Immunohistochemistry of the synovium 

from OA patients compared to normal controls revealed CD4+ and CD8+ T 

lymphocytes represent a large percentage of leukocytes present and that a greater 

proportion of the lymphocytes where CD4+ compared to CD8+ (Haynes, Hume and 

Smith, 2002). Likewise, CD8+ T cells where predominantly located at the periphery of 

the OA synovium whereas CD4+ T cells where predominantly located at the sub 

lining layer of the OA synovium when compared to normal subjects (Ishii et al., 

2002). Though a conclusive characterisation of the immune cell populations present 

in OA patients has yet to be conducted, several studies have highlighted the 

increased presence of T lymphocytes at the synovium. Their function and impact in 

OA pathogenesis has not yet been established and further research is required to 

provide insight and clarity into the impact of the adaptive immune system in OA. 

The infiltration of inflammatory cells to the OA joint also includes the presence of the 

first responders to injury and insult, neutrophils. Neutrophils have been shown to 

make up 8% of the immune cells present in knee synovium in OA patients and 

26.1% of immune cells in OA synovial fluid (Hsueh et al., 2021). Neutrophils are 

known to express several classes of proteases including matrix metalloproteinases 

MMPs 8-9, cysteine proteases (caspases and calpain) and serine proteases such as 

neutrophil elastase (NE). NE is primarily found in azurophilic granules of 

polymorphonuclear leukocytes, is released following cell degranulation and is 

involved in a number of roles including cellular extravasation (Pham, 2006). NE itself 

has been shown to directly degrade proteoglycans and is a potent activator of a key 
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collagenase in OA pathology, MMP13 (Mcdonnell et al., 1993; Wilkinson et al., 

2022). NE has been detected in synovial fluid and, interestingly, is absent in samples 

without synovitis but is present in those with synovitis (Wilkinson et al., 2022). In 

non-OA cartilage, NE inhibitor, alpha-1 antitrypsin expression (SERPINA1) is highly 

expressed and its expression is markedly downregulated in OA cartilage (Wilkinson 

et al., 2022). Likewise, systemic administration of human plasma alpha-1 antitrypsin 

has been shown to reduce arthritis scores and joint destruction in a pre-clinical 

murine collagen-induced arthritis model (Grimstein et al., 2011). Furthermore, in a 

KBxN serum-transfer and NE arthritis model, alpha-1 antitrypsin treatment reversed 

cartilage destruction and reduced synovitis scores (Kaneva et al., 2021). In vitro, NE 

has been shown to reduce chondrocyte proliferation, induce apoptosis and prevent 

cell migration (Wang et al., 2021). Finally, synovial fluid derived elastase is a strong 

predictor of knee OA progression, suggesting NE could be used to identify patients 

at risk of rapid OA disease progression (Hsueh et al., 2021). Neutrophils also secrete 

other serine proteases like cathepsin G which has been shown to degrade ECM 

components in vitro and in vivo (Mcdonnell et al., 2009). Likewise, neutrophils 

contribute to the cytokines and chemokines found in OA synovial fluid including 

interleukin (IL)-1β, IL-6, IL-21, IL-22, IL-23, tumour necrosis factor (TNF)-α, and 

transforming growth factor (TGF)-β  (Hsueh et al., 2021). This wide array of cytokine 

secretion which includes classically pro- and anti-inflammatory activities suggest the 

low-grade inflammation observed in synovitis is complex and nuanced which reflects 

the catabolic-anabolic dynamic processes in chondrocytes within the cartilage.  

Another class of immune cells intricately involved in maintaining normal joint tissue 

and in OA pathology are macrophages. Macrophages are the second population of 

resident cells present within the synovium and make up 53% of the immune cells in 
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synovium and 37% of those within the synovial fluid (Hsueh et al., 2021). 

Macrophages within the joint primarily come from both bone-marrow derived 

monocyte lineage and monocyte independent lineage with distinctive transcriptomic 

profiles (Culemann et al., 2019). These macrophages were identified using the 

marker CX3CR1. CX3CR1-expressing macrophages form an internal immunological 

barrier similar to a thin protective membrane which physically separates the 

synovium from the synovial fluid (Culemann et al., 2019). In a pre-clinical arthritic 

murine model, this barrier underwent active remodelling which loosened the 

interactions between these macrophages and the fibroblasts (Culemann et al., 

2019). In OA, macrophages are thought to be activated by the sensing of cytokines 

and cartilage fragments which are recognised as damage-associated molecular 

patterns (DAMPs) (Chen et al., 2020). Upon activation of pattern recognition 

receptors (PRRs), different intra-cellular signalling pathways are activated including 

NF-κB pathway, which results in further production of inflammatory cytokines and 

chemokines (Amos et al., 2006; Chen et al., 2020). Likewise, cartilage fragments 

also increase the expression of catabolic enzyme MMP-9 alongside TNF-α and IL-6 

in bone marrow–derived macrophages (Hamasaki et al., 2021). Additionally, co-

culture systems with activated macrophages and OA chondrocytes resulted in 

significantly higher levels of MMP-1, MMP-3, MMP-9, MMP-13, IL-1β, TNF-α, IL-6, 

IL-8, and IFN-γ in OA chondrocytes suggesting proinflammatory macrophages may 

intensify the abnormal matrix degradation and cytokine secretion already observed in 

OA chondrocytes (Samavedi et al., 2017).  

Synovial macrophage M1 polarisation has also been shown to exacerbate OA 

progression, promote cartilage degeneration and osteophyte formation in a 

collagenase-induced murine OA model through R-spondin-2 (Zhang et al., 2018). On 
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the other hand, M2 macrophages immunomodulated by squid type II collagen (SCII) 

inhibited chondrocyte apoptosis and hypertrophy suggesting macrophages are 

involved in chondrogenesis with varying roles depending on their different polarized 

phenotypes (Zhang, Cai and Bai, 2020).  

Macrophages are known to secrete several of the aforementioned cytokines and 

chemokines involved in OA pathology and macrophage associated TGF-β has been 

reported to be a strong predictor of OA progression in a cohort of knee OA patients 

(Hsueh et al., 2021). TGF-β is responsible for stimulating bone formation and the 

production of proteoglycan, type II collagen and chondrogenesis (Zhang, Cai and 

Bai, 2020). Furthermore, SPECT-CT (single-photon emission computed tomography) 

of OA knees using etarfolatide, identified 76% of patients have evidence of 

recruitment of activated macrophages and this was associated with symptoms of OA 

including knee pain, joint space narrowing, and osteophytes (Kraus et al., 2016). 

Additionally, levels of the macrophage marker CD14 in the synovial fluid (SF) is 

positively associated with the severity of joint space narrowing and osteophytes and 

SF CD14 and plasma derived CD14 are positively associated with self-reported pain 

severity (Daghestani, Pieper and Kraus, 2015). Furthermore, SF CD14 and SF 

CD163 are positively associated with osteophyte progression providing further 

evidence to support the central role of macrophage in OA pathological changes 

(Daghestani, Pieper and Kraus, 2015). The association between pain perception and 

CD14+ macrophages is possibly due to increased nerve growth factor (NGF) levels 

which is produced by CD14+ macrophages upon stimulation with pro-inflammatory 

cytokines (Takano et al., 2017).  

In summary, immune cells at the synovial joint are known to contribute to the 

maintenance of tissue homeostasis through regulation of resident and infiltrating 
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cells at the joint and in OA and other arthritic conditions are known to contribute to 

the pathological changes whether through secretion of inflammatory factors or 

through the secretion of degradative and catabolic enzymes.  

Cartilage degradation 

Articular cartilage is a highly specialised and hydrated connective tissue present at 

diarthrodial joints which is devoid of neurones, blood and lymphatic vessels (Sophia 

Fox, Bedi and Rodeo, 2009). The primary function of articular cartilage is to provide 

a smooth lubricated surface which permits articulation (Sophia Fox, Bedi and Rodeo, 

2009). It is approximately 2-4mm in width and is primarily composed of ECM 

components that are synthesised by quiescent chondrocytes. Chondrocytes produce 

and secrete collagen proteins (II, IV, IX and XI) and proteoglycans (aggrecans) 

which are primary components of ECM. However, during the development of OA 

these chondrocytes become activated resulting in a phenotypic shift towards 

fibrillation and degradation of ECM through upregulation of cartilage degrading 

enzymes such as the aforementioned matrix metalloproteinases (MMPs) and A 

Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) (Akkiraju 

and Nohe, 2015). This degradation of the articular cartilage by chondrocytes results 

in reduced joint space width, a key symptom of arthritis. As previously mentioned, 

inflammatory cytokines released by resident and infiltrating immune cells stimulate 

the production of these degradative MMPs such as MMP2, 3 and 9. Pro-

inflammatory cytokines IL1β and TNFα secreted by macrophages, synovial fibroblast 

and chondrocytes are capable of activating MMP-1, 3, 9 and 13 (Mehana, Khafaga 

and El-Blehi, 2019). MMP 1 and 13 have a predominant role in OA as these are the 

rate-limiting enzymes in collagen degradation (Mehana, Khafaga and El-Blehi, 

2019). MMP1 is predominantly secreted by synovial cells however MMP13 is 
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primarily released by chondrocytes (Mehana, Khafaga and El-Blehi, 2019). 

Furthermore, MMP13 is capable of breaking down aggrecan, a major component of 

cartilage, alongside collagen proteins. Knockout of endogenous MMP13 in a 

Col2CreER;Mmp13fx/fx  murine model which underwent meniscal-ligamentous injury 

(MLI), found reduced cartilage degeneration at 8, 12 and 16 weeks post-surgery 

compared to Cre-negative mice (Wang et al., 2013). Furthermore, there was reduced 

chondrocyte apoptosis compared to control mice and a small molecule inhibitor of 

MMP13, CL82198, reduced MLI-induced OA progression, increased type II collagen 

and proteoglycan levels as well as inhibiting chondrocyte apoptosis providing further 

evidence MMP13 is critical for OA progression and pharmacological inhibition may 

provide a means of decelerating OA progression (Wang et al., 2013).  

Another degradative enzyme critical for OA cartilage degradation is ADAMTS-5. 

ADAMTS-5 has received particular attention for its role in aggrecan degradation 

which is thought to proceed irreversible collagen loss. siRNA knockdown MMP13 

and ADAMTS5 have both been shown to reduce cartilage degradation in rodent 

models, however these enzymes also have homeostatic roles in processes such as 

wound healing, muscle regeneration, angiogenesis and cell migration and therefore 

in addition to off-target effects, MMP inhibitors can have on-target effects at sites 

outside of the joint (McClurg, Tinson and Troeberg, 2021). Another possible means 

of targeting these degradative enzymes is through endogenous inhibitors, such as 

tissue inhibitors of metalloproteinases (TIMPs). TIMP3 is the most effective TIMP 

inhibitor of both MMPs and ADAMTS and is reduced within OA cartilage suggesting 

promoting TIMP3 expression in OA cartilage early in disease course may ameliorate 

OA progression (Morris, Cs-Szabo and Cole, 2010). Another alternative approach is 

to promote cartilage repair through autologous mesenchymal stem cell therapies or 
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through the use of anabolic growth factors such as FGF18, which are capable of 

increasing chondrocyte proliferation and proteoglycan production in vitro (McClurg, 

Tinson and Troeberg, 2021). Attempts have been made to promote anabolic repair 

pathways using methods such as platelet-rich plasma (PRP) therapy, which works 

by platelet activation releasing cytoplasmic components which include TGF-β1, 

platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), and FGF2 

which have been shown to promote aggrecan and collagen synthesis, while reducing 

expression and activity of catabolic metalloproteases (Everts et al., 2020). However, 

clinical trials of PRP therapies have produced mixed results, with some studies 

showing reduced Western Ontario and McMaster Universities Osteoarthritis Index 

(WOMAC) scores compared to hyaluronan for up to 6 months whereas others have 

shown PRP to be no more effective than hyaluronan at improving several patient-

reported outcome measures at 2, 6, and 12 months (Cerza et al., 2012; Filardo et al., 

2012). This can possibly be due to differences in PRP preparation such as double 

filtration compared to centrifugation with the former more likely to exclude 

leukocytes. Standardisation of PRP preparation across RCTs may provide a clearer 

picture on their use as a disease modifying OA drug (DMOAD).  

In summary, cartilage degradation is a major symptom of OA and alongside 

pathological changes in joint tissues such as bone and synovium, is a major target of 

new therapies. Promoting anabolic repair pathways and ameliorating catabolic 

changes in chondrocytes remains the principal means of altering OA disease course.  

 

 



46 | P a g e  
 

1.4 Obesity and Osteoarthritis 

 

Obesity is a well-recognised global epidemic, with the number of obese people 

worldwide doubling over the past 30 years and is currently predicted at 200 million 

men and 300 million women by World Health Organisation (WHO) (World Health 

Organisation, 2016). The Health Survey for England 2019 estimates that 28% of 

adults (≤16) in England are obese and 36.2% are overweight and obesity increased 

across age groups up to 75 years old (NHS Digital, 2019).In a survey conducted by 

Sports England in November 2020, 62.8% of adults (≤18) in England were 

overweight or obese (Sports England, 2020). This obesity epidemic also affects 

those with musculoskeletal conditions. Data collected and analysed from the 

Netherlands Working Conditions Survey (n = 44,793) found workers (15–64 years 

age group) with a high body mass index (BMI) had increased 12 month prevalence 

of self-reported musculoskeletal symptoms based on Dutch Musculoskeletal 

Questionnaire (Hildebrandt et al., 2010; Viester et al., 2013). Odd ratio (OR) adjusted 

for age and gender found significant association between these musculoskeletal 

symptoms in overweight workers (BMI 25.0-29.9 kg/m2) (OR 1.13, 95% CI: 1.08-

1.19) and obese workers (BMI ≥ 30 kg/m2) (OR 1.28, 95% CI: 1.19-1.39) (Viester et 

al., 2013). 

Obesity has major implications for the musculoskeletal system, including the risk of 

developing OA. Indeed, OA patients that have a BMI greater than 30 kg/m2 have a 

significantly increased risk of developing knee OA compared to those of normal 

weight (Coggon et al., 2001). A systematic review and meta-analysis of risk factors 

for OA found pooled OR for developing OA was 2.63 (95% CI 2.28-3.05) for obese 

subjects compared to normal-weight controls (Blagojevic et al., 2010). Obese adults 
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who have knee OA report reduced quality of life, affecting daily living activities which 

impacts leisure, social life, sleep quality and results in losses in labour relations 

(Sutbeyaz et al., 2007).  

Recent meta-analyses by Jiang et al, 2011 and 2012 reported a positive correlation 

between BMI and the risk of developing both knee and hip OA (clinical and 

radiographical) (Jiang et al., 2011, 2012). They found a 5-unit increase in BMI was 

associated with a 35% increased risk of knee OA (RR: 1.35; 95% CI: 1.21-1.51) and 

an 11% increased risk of hip OA (RR: 1.11; 95% CI: 1.07-1.16) (Jiang et al., 2011). 

Notably, the relationship between BMI and development of knee OA was greater in 

women compared to men however this significance was abolished with hip OA 

(Jiang et al., 2011). A case control study found that those who became overweight 

earlier on in adulthood were at an increased risk of developing knee and hip OA 

providing further evidence of increased risk in developing obesity associated OA in 

patients whose BMI is greater than 30 kg/m2 (Bliddal, Leeds and Christensen, 2014). 

The pathophysiology of obesity associated OA is likely due to a number of factors 

including structural damage and increased weight loading on joints, decreased 

muscle strength and altered biomechanics of the joint (King, March and 

Anandacoomarasamy, 2013). Another major aspect of obesity associated OA is the 

alterations in metabolic state of cellular components of the joint. Obesity has been 

well described in the literature as perpetuating a chronic low grade inflammatory 

state which is thought to contribute to synovial inflammation observed in OA. This is 

particularly observed in obese patients with increased risk of developing OA in non-

weight bearing joints such as the hand (Oliveria et al., 1999). Obese OA patients 

also exhibit elevated levels of pro-inflammatory cytokine TNF-α, IL6 and IL8 in the 

synovial fluid compared to normal weight OA patients (Pearson et al., 2017). In 
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particular synovial fibroblasts from obese OA patients were found to secrete higher 

amounts of IL-6 compared to normal weight OA synovial fibroblast indicating obese 

OA synovial fibroblast are imprinted with a more inflammatory phenotype compared 

to normal weight OA synovial fibroblast ( Pearson et al., 2017). 

 

1.6 Fibroblasts metabolism and inflammation 

 

Introduction to fibroblast biology 

 

Fibroblast are spindle-shaped mesenchymal stromal cells found in a wide variety of 

parenchymal tissues and are responsible for maintaining the structural architecture 

of these tissues through maintenance of the ECM (Farah et al., 2020). Fibroblasts 

are chemotactic and therefore migrate in response to chemical signals such as 

chemokines, cytokines, and growth factors to participate in wound healing and tissue 

repair and remodelling. Dysregulation of these processes is associated with several 

disease pathologies such as fibrosis, cancer, and inflammation.  

Research on fibroblasts is made particularly difficult due to their heterogeneity and 

therefore identifying fibroblasts is a challenge. There are several mesenchymal 

markers which are used to identify fibroblasts (table 1.1) however none are unique to 

fibroblasts and therefore another means of distinguishing fibroblasts is using 

epithelial, endothelial and leukocyte markers as negative/exclusion markers. Primary 

fibroblasts originate from the primary mesenchyme during gastrulation (LeBleu and 

Neilson, 2020). After the development of the mesoderm into the true mesenchyme, 

mature fibroblast develop alongside connective tissue, bone, cartilage and blood and 
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lymphatic circulatory systems (LeBleu and Neilson, 2020). Mesenchyme derived 

fibroblast from post-embryonic resident fibroblast in tissues maintain quiescent 

phenotype until they are stimulated in injury, cancer or other inflammatory conditions 

(LeBleu and Neilson, 2020). The mesoderm also contributes to several cell types 

such as mesenchymal stem cells, epithelial and endothelial cells, adipocytes and 

fibrocytes. These cells with common embryonic lineages can become fibroblasts 

upon de-differentiation (figure 1.2). Epithelial cells undergo epithelial-to-

mesenchymal transition (EMT) in cancer and adipocytes will lose their lipid storage, 

migrate to wounds, and become fibroblasts in wound healing (figure 1.2). Fibroblast 

plasticity is highest in embryonic and early development and lowest during ageing 

(LeBleu and Neilson, 2020).  
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Figure 1.2: Schematic diagram showing the cell types and mechanisms from 

which fibroblast may be derived from. 
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Table 1.1: Common markers used to identify fibroblasts 

Mesenchymal markers Cell location 

Podoplanin (PDPN) Cell Surface 

Thy-1 Cell Surface 

FAPα Cell Surface 

Vimentin Intracellular 

PDGFRα Cell Surface 

alpha-Smooth Muscle 

Actin (SMA) 

Intracellular 

1B10 Cell Surface 

TE-7 Cell Surface 

Aminopeptidase N/CD13 Cell Surface 

DLK1 Cell Surface 

DPPIV/CD26 Cell Surface 

FSP1 (S100A4) Cell Surface 

Integrin beta 1/CD29 Cell Surface 

MAS516 Cell Surface 
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Collagen Secreted 

Elastin Secreted 

Fibronectin Secreted 

Laminin Secreted 

 

Fibroblast metabolism in inflammation and fibrosis 

 

In inflammatory microenvironments, fibroblasts adopt a more active, invasive and 

inflammatory phenotype (Farah et al., 2020) . As a results, fibroblasts have been 

identified as central contributors to disease pathology in several chronic 

inflammatory diseases such as fibrosis and inflammatory joint diseases (Farah et al., 

2020). In tumorous environment, fibroblasts undergo a switch to an activated state 

and are labelled cancer associated fibroblasts (CAFs). CAFs promote tumour growth 

and invasion through remodelling of the ECM through production of type I and II 

collagen as well as fibronectin (Clarke et al., 2016; Erdogan et al., 2017). CAFs also 

promote angiogenesis and secrete pro-inflammatory cytokines and chemokines 

thereby contributing to the inflammatory microenvironment (Farah et al., 2020).  

This switch in cellular phenotype is accompanied by concomitant changes in the 

metabolic state of the cell to provide energy and generate biosynthetic materials to 

fuel and sustain these adoptive phenotypic states. As a results of the Warburg effect, 

CAFs upregulate glycolytic enzymes such as hexokinase 2 (HK2) and 

phosphofructokinase (PFKL) (Avagliano et al., 2018). This increased glycolytic flux 
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means increased glucose is required and so therefore alongside other metabolites 

lactate is used to generate this glucose and is imported using monocarboxylate 

transporters such as MCT4 (Whitaker-Menezes et al., 2011). In fact, MCTs are key 

therapeutic targets for disrupting CAF cancer metabolic symbiosis with genetic 

ablation of MCT4 expression overcoming adaptive resistance of cancer drug 

therapies (Pisarsky et al., 2016). On the other hand, CAFs metabolic reprogramming 

results in the downregulation of TCA cycle metabolites, with reduced levels of 

isocitrate dehydrogenase 3a (IDH3α) observed in transforming growth factor beta 1 

(TGFβ1)-induced differentiation of CAFs (Zhang et al., 2015). Alongside this, 

knockdown of IDH3α in fibroblasts increases glucose uptake and lactate production 

with concomitant reduction in oxygen consumption alternatively overexpression of 

IDH3α results in the opposite effect (Zhang et al., 2015). Another key aspect of CAFs 

metabolism is the secretion of glutamine and ketone bodies which are thought to be 

internalised by cancer cells which cannot generate further glutamine internally and 

so therefore are dependent on exogenous glutamine (Farah et al., 2020). 
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Figure 1.3: Schematic diagram showing the metabolic pathways altered in 

fibroblasts in different disease pathologies (Farah et al., 2020). 
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Another example of the intricate relationship between fibroblasts phenotype and its 

metabolism is in fibrosis. Fibroblast-mediated ECM remodelling is essential for 

normal tissue structural integrity however trauma and inflammation negatively affect 

ECM homeostasis (Farah et al., 2020). In chronically inflamed tissues, cytokines 

such as TNFα, IFNy and TGF-β regulate the expression of ECM proteins through 

changes in fibroblast phenotype (Sorokin, 2010). Genome wide transcriptomic data 

of human skin fibrosis post radiation therapy compared to age-matched healthy 

controls displayed reduced oxidative phosphorylation, fatty acid oxidation and TCA 

cycle activity alongside increased glycolytic processes (Zhao et al., 2019; Farah et 

al., 2020). Induction of peroxisome proliferator-activated receptor (PPAR) signalling 

using caffeic acid in primary dermal fibroblasts reduced production of profibrotic 

proteins and blocking glycolysis using hexokinase inhibitor 2-deoxy-D-glucose (2DG) 

downregulated ECM protein levels (Zhao et al., 2019; Farah et al., 2020). Renal 

fibrosis has been identified as a cause of chronic kidney disease. Activated 

fibroblasts are the key culprit in renal interstitial fibrosis, producing large amount of 

ECM components (Fujigaki et al., 2005; Farah et al., 2020). Recent research have 

shown activated renal interstitial fibroblast stimulated with TGF-β increased aerobic 

glycolysis and expression of glycolytic enzymes HK1/2 and pyruvate kinase M2 

(PKM2) as well as reduced mitochondrial respiration (Farah et al., 2020). Likewise, 

analysis of a unilateral ureteral obstruction mouse model of renal interstitial fibrosis, 

showed increased expression of increased glycolytic enzymes HK and PKM2 and 

overexpression of PKM2 induced renal interstitial fibrosis (Yin et al., 2018; Farah et 

al., 2020).  

In pulmonary fibrosis, lung fibroblasts undergo a major transformation and exhibit 

increased proliferation and an activated phenotype. These fibroblasts have been 
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termed myofibroblasts and are often characterised by presence of increased alpha 

smooth muscle actin (α-SMA) (table 1.1). Myofibroblasts also display altered 

metabolic state with a shift towards increased aerobic glycolysis such as the 

increased expression of glycolytic enzyme 6-Phosphofructo-2-Kinase/Fructose-2,6-

Biphosphatase 3 (PFKFB3) (table 1.2) (Xie et al., 2015; Farah et al., 2020). Blocking 

PFKFB3 using metabolic inhibitor 3PO, attenuates the differentiation of lung 

fibroblasts and reduces their pro-fibrotic phenotype in patients with idiopathic 

pulmonary fibrosis (Xie et al., 2015; Farah et al., 2020). Likewise, myofibroblasts 

exhibit significantly augmented glutaminolysis alongside increased expression of 

glutaminase 1 (GLS1) (table 1.2). siRNA knockdown of GLS1 and pharmacological 

using small molecule inhibitors BPTES and CB-839, reduced expression of 

collagens I and III but did not affect fibronectin, elastin, or α-SMA expression (Ge et 

al., 2018). Glutaminolysis enhanced collagen translation and stability through mTOR 

complex 1 (mTORC1) activation and collagen proline hydroxylation (Ge et al., 2018). 

This suggests glutamine metabolism is intricately involved in regulating the pro-

fibrotic phenotype of lung myofibroblasts. Finally excessive collagen deposition in 

lung fibrosis has been linked to altered serine, glycine synthesis. TGF-β stimulation 

which promotes excessive collagen production also induces the expression of de 

novo serine synthesis enzymes phosphoglycerate dehydrogenase (PHGDH), 

phosphoserine aminotransferase 1 (PSAT1) and phosphoserine phosphatase 

(PSPH), alongside the expression of the de novo glycine synthesis enzyme serine 

hydroxy methyltransferase 2 (SHMT2) in primary lung fibroblasts (Nigdelioglu et al., 

2016).  

Synovial fibroblasts are one of the two resident cell types found at the synovial 

membrane (synovium) in synovial joints. These cells are responsible for maintaining 
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cartilage integrity and the lubrication of the synovial joint by secreting ECM 

components into the synovial fluid (Farah et al., 2020). In inflammatory joint 

conditions like rheumatoid arthritis (RA), synovial fibroblasts adopt an inflammatory 

and invasive phenotype becoming hyperplastic and proliferating rapidly to create 

formation of pannus-like structures as they lose contact inhibition (Farah et al., 

2020), RA synovial fibroblasts increase the expression of degradative enzymes such 

as matrix metalloproteases (MMPs) and aggrecanases including ADAMTS4/5 which 

promotes cartilage degradation (Farah et al., 2020). In OA, a lower grade of chronic 

inflammation has been observed in OA synovial fibroblasts compared to non-OA 

controls with an increase in pro-inflammatory stimuli such as IL6 and CXCL8 ( Nanus 

et al., 2020).  
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Metabolic pathways 

Aerobic glycolysis Oxidative 
phosphorylation 

Pentose 
phosphate 
pathway 

Glutamine metabolism 

CAFs Upregulation of HK2 and 
PFKL 

IDH3α is reduced in CAFs 
resulting in increased 
glycolysis and decreased 
oxidative phosphorylation 

 
Inhibiting glutamine synthetase 
in stroma and glutaminase in 
cancer cells reduces tumour 
weight, nodules and metastasis 

Activated Synovial 
Fibroblasts 

High levels of PGK1 present 
in blood and synovial tissue 
of RA patients and silencing 
of PGK1 in RA synovial 
fibroblasts reduced the 
secretion of IL‐1β and IFN‐γ 

Hypoxia in RA synovial 
fibroblasts results in 
reduced oxidative 
phosphorylation and 
increased glycolysis 

GC/TOF‐MS‐based 
metabolomic 
profiling of RA 
synovial fibroblasts 
shows upregulation 
of the pentose 
phosphate pathway 

RA synovial fibroblasts show 
increased expression of GLS1 

Myofibroblasts Myofibroblasts show 
increased expression of the 
glycolytic enzyme PFKFB3 
and inhibiting glycolysis 
using the PFKFB3 inhibitor 
3PO reduced the 
differentiation of lung 
fibroblasts into activated 
myofibroblasts 

Dermal fibrotic skin and 
lung fibroblasts stimulated 

with TGF‐β results in a 
switch from mitochondrial 
respiration to aerobic 
glycolysis 

 
Lung myofibroblasts show 
significantly augmented 
glutaminolysis, which is 
mediated by elevated Gls1 and 
inhibition of glutaminolysis 
using glutaminase 1 inhibitor 
(BPTES), reduced the 
expression of ECM components 

Senescent 
fibroblasts 

Senescent fibroblasts show 
increased expression of 
glycolytic enzymes PDK2, 
PDK3, PDK4 

Metabolomic profiling of 
intracellular senescent 
fibroblasts metabolome 
shows reduced TCA cycle 
metabolites such as citrate, 
indicative of a decline in 
mitochondrial metabolisms 

GC/TOF‐MS‐based 
metabolomic 
profiling of 
senescent 
fibroblasts 
conditioned media 
show reduced TCA 
activity and shift 
energy production 
towards glycolysis, 
gluconeogenesis, 
and the pentose 
phosphate pathway 

Metabolomics analysis shows 
glutamate levels increase in 
senescent fibroblasts 

 

Table 1.2: Dysregulated metabolic pathways in stromal fibroblasts 

(Farah et al., 2020).  
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Like in other inflammatory microenvironments, synovial fibroblast metabolism is 

altered relying on increased aerobic glycolysis to maintain their active phenotype 

(Farah et al., 2020). In RA, high levels of glycolytic enzyme phosphoglycerate kinase 

1 (PGK1) where observed in blood and synovial tissue of RA patients and inhibiting 

PGK1 using siRNA knockdown in RA synovial fibroblasts reduced the secretion of 

pro-inflammatory cytokines IL-1β and TNFα (Zhao et al., 2016). Likewise, blocking 

PFKFB3 using 3PO reduced fructose-2,6-bisphosphate and lactate levels as well as 

reducing the secretion of pro-inflammatory cytokines in RA synovial fibroblasts (M 

Biniecka et al., 2016). RA synovial fibroblasts are also reliant on glutamine 

metabolism and exhibit increased expression of GLS1 (table 1.2) (Takahashi et al., 

2017). Blocking glutamine metabolism using GLS1 inhibitor compound 968 (5-(3 

bromo-4-(dimethylamino) phenyl)-2,2-dimethyl-2,3,5,6-tetrahydrobenzo[a] 

phenanthridin-4(1H)-one) reduced RA synovial fibroblasts proliferation (Takahashi et 

al., 2017).  

Although there has been much research establishing the link between the RA 

synovial fibroblast inflammatory phenotype and its metabolism there has been very 

little investigation on the role metabolism plays in the inflammatory phenotype of OA 

synovial fibroblasts. Furthermore, recent research by our  group has shown that 

obesity affects OA synovial fibroblast phenotype, increasing their rate of proliferation 

and exacerbating the inflammatory phenotype of these cells ( Nanus et al., 2020). 

OA synovial fibroblasts from obese patients show increased expression of 

inflammatory cytokines and chemokines such as IL6, IL-1β, CXCL8, CXCL5 and 

CCL2 alongside an altered transcriptome which exhibits upregulation of inflammatory 

pathways such as cytokine-cytokine interactions, toll-like receptor signalling and 

chemokine signalling pathways ( Nanus et al., 2020).  
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Therefore, investigating the metabolic phenotype (metabotype) of these obese OA 

synovial fibroblasts might yield insights into which metabolic pathways are required 

to maintain this inflammatory phenotype observed in these synovial fibroblasts and 

whether modulating these metabolic pathways through metabolic inhibitors might 

ameliorate their inflammatory profile. 
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1.7 Thesis Hypothesis 

Given the relationship between the metabolic and inflammatory state of the cell, 

obese OA synovial fibroblast are more metabolically active compared to normal 

weight OA synovial fibroblast and therefore release more pro-inflammatory cytokines 

resulting in a more inflammatory microenvironment at the synovial membrane of 

obese OA patients. 
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1.8 Thesis Aims 

The aim of this thesis is to determine the relationship between cellular metabolic 

phenotype (metabotype) and inflammatory phenotype of synovial fibroblasts from 

patients with OA. 

This thesis will use primary human OA synovial fibroblasts from patients with 

different BMIs ranging from normal weight to obese to determine whether: 

1. OA synovial fibroblasts from obese patients exhibit distinct metabotypes 

compared to normal weight controls 

2. Changes in OA synovial fibroblast metabotype from obese patients drives 

changes in inflammatory phenotypes compared to normal weight controls 

3. Does modulating altered metabotype of OA synovial fibroblasts from obese 

patients ameliorate inflammation observed within the OA synovial joint 

 

 

 

 

 

 

 

 

 



63 | P a g e  
 

 

 

 

 

 

CHAPTER 2. MATERIALS AND 

METHODS 

 

 

 

 

 

 

 

 

 



64 | P a g e  
 

Materials 

Table 2.1 Cell culture general reagents 

Reagent or Resource  Source Identifier 

RPMI-1640 Medium With 

L-glutamine and sodium 

bicarbonate, liquid, 

sterile-filtered, suitable 

for cell culture 

Sigma Aldrich R8758 

RPMI-1640 Medium With 

sodium 

Bicarbonate and 

without L-glutamine and  

liquid, sterile-filtered, 

suitable for cell culture 

Sigma Aldrich R0883 

 

Gibco™ Fetal Bovine 

Serum, qualified, heat 

inactivated, E.U.-

approved, South 

America Origin 

Gibco 

(ThermoFisher) 

11550356 

Penicillin-Streptomycin 

(10,000 U/mL) 

Gibco 

(ThermoFisher) 

15140122 

L-Glutamine (200 mM) ThermoFisher 25030024 

MEM Non-Essential 

Amino Acids Solution 

(100X) 

Gibco 

(ThermoFisher) 

11140050 

Sodium Pyruvate (100 

mM) 

Gibco 

(ThermoFisher) 

11360070 

Phosphate buffered 

saline (PBS) tablets 

1 tablet per 500ml 

distilled water 

Gibco 

(ThermoFisher) 

18912014 
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Trypsin-EDTA solution 

(10x) 

Sigma Aldrich T4174 

Cell Dissociation 

Solution Non-enzymatic 

1x phosphate buffered 

saline without calcium 

and magnesium 

Sigma Aldrich C5914 

 

Table 2.2 Cell culture plasticware 

 

Reagent or Resource  Source Identifier 

Corning Multiple Well 

Cell Culture Plates 

(12-well, 24-well, 48-

well, 96-well) 

Corning BC011, BC012, BC014, 

BC015 

Corning TC Flask 

75cm2 canted neck 

vented cap (100) 

Corning BC301 

TC Dishes 100mm (20-

sleeve) 

Corning BC153 
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Table 2.3 Recombinant proteins, stains, and inhibitors 

 

Reagent or Resource  Source Identifier 

Recombinant Tumour 

Necrosis Factor-α  

Sigma Aldrich T6674 

 

MitoTracker™ Green FM Invitrogen (ThermoFisher) M7514 

6-NBDG (6-(N-(7-

Nitrobenz-2-oxa-1,3-

diazol-4-yl)amino)-6-

Deoxyglucose) 

Invitrogen (ThermoFisher) N23106 

Bis-2-(5-

phenylacetamido-1,3,4-

thiadiazol-2-yl)ethyl 

sulfide (BPTES) 

Sigma Aldrich SML0601 

Dimethyl sulfoxide Sigma Aldrich D2650 

 

Table 2.4 Assay kits and Reagents  

 

Reagent or Resource  Source Identifier 

DCFDA / H2DCFDA - 

Cellular ROS Assay Kit 

Abcam ab113851 

BrdU Cell Proliferation 

ELISA Kit (colorimetric) 

Abcam ab126556 

iTaq™ Universal 

SYBR® Green One-Step 

Kit 

Bio-Rad #1725151 

Lactate Assay Kit Sigma Aldrich MAK064 

Bradford assay Bio-Rad #5000002 
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Pierce™ BCA Protein 

Assay 

ThermoFisher 23225 

Human IL-6 DuoSet 

ELISA 

R & D Systems  DY206 

Seahorse XFe96 

FluxPak mini 

Agilent 102601-100 

TRIzol™ Reagent Invitrogen (ThermoFisher) 15596018 

Chloroform Sigma Aldrich 366927 

2-Propanol Sigma Aldrich I9516 

GlycoBlue™ 

Coprecipitant 

Invitrogen (ThermoFisher) AM9516 

Nuclease-free water Promega P1193 

 

Table 2.5 Seahorse Metabolic Flux Assay  

 

Reagent or Resource  Source Identifier 

Seahorse XF RPMI medium, pH 7.4, 

500 mL 

Agilent 103576-100 

D-(+)-Glucose Sigma-Aldrich G7021 

2-Deoxy-D-Glucose Sigma-Aldrich D8375 

Oligomycin Sigma-Aldrich O4876 

Carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone 

(FCCP) 

Sigma-Aldrich C2920 

2-Deoxy-D-glucose Sigma-Aldrich D8375 

Rotenone Sigma-Aldrich R8875 

Antimycin A Sigma-Aldrich A8674 
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Table 2.6 Western blotting reagents  

 

Reagent or Resource  Source Identifier 

Protease Inhibitor Cocktail Sigma-Aldrich P8340 

Phosphatase Inhibitor Cocktail 3 Sigma-Aldrich P0044 

Amersham ECL Prime GE Healthcare RPN2232 

Immun-Blot® PVDF Membrane Bio-Rad 1620177 

 

Table 2.7 Western blotting antibodies  

 

 

 

 

Reagent or 

Resource  

Source Identifier Dilution 

HRP-linked anti-

rabbit IgG 

secondary antibody 

GE Healthcare NA931 1:2000 

HRP-linked anti-

mouse IgG 

secondary antibody 

GE Healthcare NA934  1:10,000 

monoclonal anti-

GLS1 Primary 

antibody 

Abcam ab156876 1:1000 

Anti-MCT1 primary 

antibody 

Abcam ab85021 1:1000 

monoclonal anti-

beta-actin antibody 

Sigma-Aldrich SAB1305546 1:5000 
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Table 2.8 siRNA knockdown reagents 

 

Reagent or Resource  Source Identifier 

siGENOME non-

targeting siRNA 

Pool #1, 5 nmol 

Dharmacon D-001206-13-05 

siGENOME Human GLS 

(2744) 

siRNA - Set of 4, 5 nmol 

Dharmacon MQ-004548-01- 

0005 

Opti-MEM™ Reduced 

Serum Medium 

ThermoFisher Scientific 11058021 

Lipofectamine 3000 Invitrogen L3000001 
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Table 2.9 RT-qPCR Primers 

 

 

 

 

 

 

 

Gene Symbol Forward Sequence  

(5’-3’) 

 Reverse Sequence  

(5’-3’) 

Melting 

Temperature 

(Tm) 

G-C 

content 

(GC%) 

18s GTAACCCGTTGAACCCCCATT  CCATCCAATCGGTAGTAGCG F: 60.55 

R: 57.93 
F: 52.38 

R: 

55.00 

IL6 GCGCAGCTTTAAGGAGTTCCT  CCATGCTACATTTGCCGAAGA F: 60.95 

R: 58.98 

F: 52.38 

R: 

47.62 

MCT1/SLC16A1 GAAATCTGGAGGATAGCGTTACACT  CAAAATGCAGGTCAAATCCAAA F: 60.45 

R: 56.31  

F: 44 

R: 36 

MCT2/SLC16A7 TGCTGGCTGTTATGTACGCAGG  GCCAACACCATTCCAAGACAGC F: 63.18 

R: 62.54  

F: 54 

R: 54 

MCT4/SLC16A3 CAGTTCGAGGTGCTCATGG  ATGTAGACGTGGGTCGCATC F: 64.7 

R: 65.0 

F: 57 

R: 55 

GLUT3/SLC2A3 TTCGTCTCTAGCCTGCACTG  ACACAACTTCTCCGGGTGAC F: 59.47  

R: 59.89 

F: 55 

R:55 
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Methods 

 

2.1 Ethical approval and subject recruitment  

 

Ethical approval was granted by the UK National Research Ethics Committee 

(NRES16/SS/0172) to collect OA joint tissue from consenting patients following 

elective total joint replacement. Patients were recruited to the study at the Royal 

Orthopaedic Hospital, Birmingham (United Kingdom) or at Russell’s Hall Hospital, 

Dudley (United Kingdom). Synovial joint tissue was collected peri-operatively and 

used to isolate primary synovial fibroblasts. Patients were classified as either normal-

weight (18-25) or obese (>30) based on their BMI.   

 

2.2 Primary synovial fibroblast isolation and culture 

 

For the isolation of synovial fibroblasts, synovial tissue was dissected using a scalpel 

into 1mm3 pieces, placed into a tissue culture flask and incubated at 37oC, 5% CO2 

in complete fibroblast growth media RPMI-1640 media (Sigma-Aldrich, R8758) 

supplemented with 10% foetal calf serum (Sigma-Aldrich, F7524), 1% non-essential 

amino acids (Sigma-Aldrich, M7145), 1% sodium orthopyruvate (Sigma-Aldrich, 

S8636), 2mM L-glutamine (ThermoFisher Scientific, 25030024), 1% penicillin and 

streptomycin (100U/ml penicillin and 100µg/ml streptomycin) (Sigma-Aldrich, 

P4333). Fibroblasts were characterised by FACS analysis by confirmation of GP38+ 

CD31-,CD235a- and CD45- cell surface expression markers (data not shown). 
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Growth media was replaced every 3-4 days, and cells passaged upon reaching 70% 

confluency. Passaged fibroblasts from P2 to P4 were harvested at 70-80% 

confluence for downstream experiments. Fibroblast conditioned media was collected 

after 24 hours of conditioning. 

 

2.3 Confirmation of the maintenance of synovial fibroblast 

phenotype during in vitro culture 

 

One area of research that required establishment was whether OA synovial 

fibroblasts maintained their phenotype in vitro following cell culture. Previous 

research by others have shown synovial fibroblasts maintain their phenotype up to 5 

passages and our research has shown synovial fibroblast from obese patients with 

hip OA are imprinted with a greater inflammatory phenotype (Neumann et al., 2010; 

Pearson et al., 2017). This was further confirmed by research conducted within this 

group by showing cultured OA synovial fibroblast (passage 2-5) are positive for 

fibroblast markers podoplanin (GP38+) and negative for endothelial cell marker 

(CD31-), red blood cell marker (CD235a-) and leukocyte, monocyte and macrophage 

haematopoietic marker (CD45-)  (Supplementary figure S2) (Farah et al., 2022).  

 

2.4 Isolation of RNA from primary human OA synovial fibroblasts 

 

To isolate RNA from OA synovial fibroblasts, cells were seeded and incubated 

(37oC, 5% CO2) in 48 well tissue culture plates at 40,000 cells/well. At the 
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appropriate timepoint, cells were lysed using 1ml of TRIzol® reagent (Life 

technologies, Paisley, UK) per well. Plates containing cell lysates were then either 

frozen at -80oC, or RNA was extracted immediately by following the manufacturer’s 

protocol. In brief, TRIzol reagent was transferred to 1.5ml microcentrifuge tube and 

chloroform added (200µl) and then centrifuged at 12,000xG for 30 minutes at 4oC to 

cause phase separation. The top aqueous phase (containing RNA) was suspended 

in isopropanol and GlycoBlue™ co-precipitant dye (Thermo Fischer Scientific, 

Loughborough, UK) before being centrifuged at 10,000xG for 10 minutes at 4oC. 

RNA samples are then washed with 75% ethanol and centrifuged at 8000xG for 5 

minutes at 4oC before being dried (vacuum desiccator) and suspended in 20µl of 

Nuclease free H2O. RNA concentrations were quantified using a Nanodrop 2000 

spectrophotometer (Life technologies, Paisley, UK). 

 

2.5 Isolation of total protein from primary human OA synovial 

fibroblasts 

  

OA synovial fibroblasts grown in 12 well plates (120,000 cells/well) were lysed with 

100μl of RIPA buffer 4oC (Thermo Fisher Scientific, MA, USA), containing 

phosphatase inhibitor cocktail 3 (1:100) (Sigma-Aldrich, Dorset, UK) and protease 

inhibitor cocktail (1:100) (Sigma-Aldrich, Dorset, UK).  Following lysis, cells lysates 

were collected from well and transferred to a 1.5ml microcentrifuge tube. Total 

protein was quantified using a BCA assay (Thermo Fisher Scientific, MA, USA) in a 

clear 96-well plate as described by the manufacture’s protocol. Samples were 

measured in duplicate and optical density was measured at 550nm using BioTek 
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EL808 spectrophotometer (Biotek, Swindon, UK). Following measurement of 

absorbance, a standard curve was generated, and protein concentrations were 

calculated (μg/μl). 

 

2.6 Reverse transcription Polymerase Chain Reaction 

 

Forward and reverse primers were designed using Primer Express (Primer Express 

Software v3.0.1 License Thermo Fisher Scientific, UK) for RT-qPCR using SYBR 

Green detection (Bio-Rad, Hertfordshire, UK) and are detailed in Table 2. RNA 

isolated from OA synovial fibroblasts from different cohorts were diluted to 5ng/μl in 

nuclease free water (Thermo Fischer Scientific, Loughborough, UK). Quantitative 

real time PCR was performed on a Bio-Rad CFX384 Touch™ Real-Time PCR 

Detection System (Bio-Rad, Hertfordshire, UK) using a one-step SYBR Green kit 

(Bio-Rad, Hertfordshire, UK), with each well containing SYBR Green Master Mix 

(2.5μl), 1.5nM of forward and reverse primers (0.1μl), Taq reverse transcriptase 

(0.06μl), 5ng/μl of template RNA (1μl) and RNase free water (1.24μl). A one-step 

amplification protocol was used with 40 cycles; reverse transcription at 55oC for 10 

minutes, enzyme activation at 95oC for 5 minutes, denaturation at 95oC for 10 

seconds and data collection at 60oC for 30 seconds. Ribosomal 18s was used as an 

internal housekeeping control. Relative gene expression was calculated using the 

ΔCt method. Each sample was run in duplicate with four biological replicates per 

group and data was analysed using Prism9 software (GraphPad, CA, USA).  
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2.7 siRNA Transfection 

 

OA synovial fibroblasts were seeded overnight in 48-well plates at a concentration of 

40,000 cells per well. Cells were cultured in RPMI-1640 (Sigma-Aldrich, R8758) in 

1% FCS (Sigma-Aldrich, Dorset, UK, F7524), sodium orthopyruvate (1%) (Sigma-

Aldrich, S8636), non-essential amino acids (1%) (Sigma-Aldrich, Dorset, UK, 

M7145). Cells were then transfected with either a non-targeting control (NTC) siRNA 

(Dharmacon, D-001206-13) or a GLS1 siRNA (Dharmacon, MQ-004548-01-0005) at 

concentrations of either 5 nM or 100 nM. Following 24 hours, the supernatants were 

collected for cytokine analysis by enzyme-linked immunosorbent assay (ELISA) (IL-6 

DuoSet kit, R&D Systems, DY206), and cells were lysed with TRIzol reagent (Life 

technologies, Paisley, UK, 15596026) for RNA extraction. 

2.8 SDS polyacrylamide gel electrophoresis and immunoblotting 

 

Protein lysates were diluted to the desired concentration in loading buffer containing 

2-mercaptoethanol (Sigma-Aldrich, Dorset, UK), 4x Laemmli Sample (Bio-Rad, 

Hertfordshire, UK) and ddH2O. Samples were then loaded into a 5% SDS-

polyacrylamide stacking gel and separated using 10-12% SDS-PAGE with respect to 

protein of interest, cast in Novex 1.0 mm Cassettes (Life technologies, Paisley, UK). 

SDS PAGE was performed using the Invitrogen Novex mini-cell (Thermo Fisher 

Scientific, MA, USA), containing 1X running buffer using ultrapure 10X 

tris/glycine/SDS (Geneflow, Staffordshire, UK ) and ddH20, and  run at 150 V and 50 

mA using Novex x-cell sure lock (Thermo Fisher Scientific, USA) through a Omnipac 

CS-300 V power supply (Cleaver Scientific, Rugby, UK). Following SDS PAGE, 
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proteins were transferred onto methanol-activated PVDF membrane (Bio-Rad, 

Hertfordshire, UK) using a Trans Turboblot™ transfer system (Bio-Rad, 

Hertfordshire, UK). This membrane was then rinsed using ddH2O and washed using 

1X tris buffered saline with 0.1% Tween®20 (Sigma-Aldrich, Dorset, UK) (TBS-T) for 

15 minutes, on a shaker at room temperature. Following this, membranes were 

blocked using TBS-T with 5% bovine serum albumin (BSA) for 1 hour on a shaker at 

room temperature. Membranes were then immunoprobed with the primary antibody 

of interest overnight on a shaker at 4oC. The next day, the membranes were washed 

with 1X TBS-T (three times for 15 minutes) and subsequently immune probed with 

the corresponding secondary antibody in TBS-T for 2 hours on a shaker at room 

temperature. This antibody was removed, and the membranes were washed with 1X 

TBS-T (three times for 15 minutes) before the addition of Amersham ECL Western 

Blotting Detection Reagent (GE Healthcare, Buckinghamshire, UK). Proteins were 

visualised using the ChemiDoc™ MP System (Bio-Rad, Hertfordshire, UK) and 

protein expression was quantified using image J software. 

2.9 Mitotracker Green Staining 

 

Mitochondrial mass was measured using Mitotracker Green staining (Invitrogen). 

Synovial fibroblasts (15,000 cells/well) were plated into 96 well black flat bottom 

microplates (Scientific Laboratory Supplies, Nottingham, UK) and left to adhere for 

24 hours in a cell culture incubator (37°C and 5% CO2). Following adherence, 

synovial fibroblasts were stimulated with TNFα (10ng/ml) for 24 hours. Cells were 

then washed twice with PBS and stained with green fluorescent Mito Tracker dye 

(Invitrogen) for 45 minutes. Following staining the cells were washed twice with PBS 
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and measured using Synergy 2 plate reader (Biotek, Swindon, UK) at 

excitation/emission maxima of 490/516nm. 

 

2.10 Fluorescence Glucose Uptake 

 

Glucose uptake was measured using a fluorescent glucose analog 6-NBDG (6-(N-(7-

Nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-6-Deoxyglucose) (Thermo Fischer 

Scientific, Loughborough, UK). OA synovial fibroblasts (30,000 cells/well) were 

plated into 96 well black flat bottom microplates (Scientific Laboratory Supplies, 

Nottingham, UK) and left to adhere for 24 hours in a cell culture incubator (37°C and 

5% CO2). Following adherence, cells were stimulated with TNFα (10ng/ml) for 24 

hours, and then washed twice with PBS and incubated in glucose-free RPMI-1640 

media (Sigma-Aldrich, Dorset, UK) for one hour (Thermo Fischer Scientific, 

Loughborough, UK). The cells were then treated with glucose analog 6NBDG 

(200µM) and left for 30 minutes. Following this incubation period, RPMI-1640 media 

was removed, and cells were washed twice with PBS and measured using Synergy 

2 plate reader (Biotek, Swindon, UK) at excitation/emission maxima of 465/540 nm. 

 

2.11 ROS production assay 

 

Reactive oxygen species production was measured using the cell-permeable 

reagent 2′,7′-dichlorofluorescein (DCFDA) (catalog no. ab113851; Abcam, 

Cambridge, MA). OA synovial fibroblast (30,000 cells/well) were plated into 96 well 
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black flat bottom microplates (Scientific Laboratory Supplies, Nottingham, UK) and 

left to adhere for 24 hours in a cell culture incubator (37°C and 5% CO2). Following 

adherence, cells were incubated in low glutamine RPMI-1640 media (2mM) or high 

glutamine RPMI-1640 media (20mM) alongside TNFα (10ng/ml) stimulation for 24 

hours or with BPTES (20µM) for 1 hour. Following this, cells were washed using a 

commercial buffer provided and stained in the dark (37°C and 5% CO2) for 45 

minutes with diluted DFCDA solution according to the manufacturer's instructions. 

Finally, fluorescence was measured using Synergy 2 plate reader (Biotek, Swindon, 

UK) at excitation/emission maxima of 465/540 nm. 

 

2.12 MTS Assay 

 

As a measure of the number of viable cells, quantification of NAD(P)H-dependant 

oxidoreductase activity was conducted using MTS [3-(4,5-dimethylthiazol-2-yl)- 5-(3-

carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] Cell Titer 96 

AQueous One Solution Reagent (Promega, USA). Cells were treated with MTS to 

monitor NADH and NADPH activity, which are reducing agents that reduce MTS into 

soluble formazan dye as previously described (Dunigan, Waters and Owen, 1995). 

Absorbance of this dye was measured at 490nm using BioTek EL808 microtiter plate 

reader (BioTek, Swindon, UK).   
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2.13 ELISA 

 

Quantification of IL-6 production was determined using a commercially available 

ELISA (IL-6 DuoSet kit, R&D Systems, DY206). Cell supernatants were diluted 1:200 

with assay buffer. First, the capture antibody was diluted in PBS (pH7.2) as specified 

by the manufacturer and pipetted into nunc-Immuno ELISA plate (Thermo Fisher 

Scientific, MA, USA) overnight at RT. Following this, the wells were washed three 

times with 300μl wash buffer (PBS pH 7.2, containing 0.05% Tween®20) and were 

then blocked with reagent diluent (1% BSA in PBS) for an hour. Plates were then 

aspirated and washed three times with 300μl wash buffer. Following this the protein 

standards were pipetted into the well in duplicate (100μl) following manufacturer 

instructions and samples were also pipetted into wells in duplicate and incubated for 

2 hours at RT. Next, the wells were aspirated and washed three times and the 

detection antibody was diluted in PBS (pH7.2) as specified by the manufacturer and 

pipetted into the wells and incubated for 2 hours at RT. Plates were then aspirated 

and washed three times with 300μl wash buffer. Following this, 100 μL of the 

working dilution of Streptavidin-HRP was added to each well and incubated in the 

dark for 20 minutes at RT. Plates were then aspirated and washed three times with 

300μl wash buffer. Then, 100 μL of Substrate Solution was added to each well and 

incubated in the dark for 20 minutes at RT. Finally, reactions were stopped by the 

addition of stop solution (2N H2SO4) and optical density immediately measured at 

450 nm using a  BioTek EL808 microtiter plate reader (BioTek, Swindon, UK). 

Optical imperfections in the plate were limited by correcting with absorbance 

measured at 570 nm. The average absorbance for each standard was used to 

generate a standard curve using GraphPad Prism 9 statistical package. Samples 
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were quantified using standard curve from 600-9.38 pg/ml. The lower limit of 

detection for this assay is 9.38pg/ml, all samples were above this concentration.  

 

2.14 Cellular proliferation assays 

 

Proliferation rates of synovial fibroblasts was conducted using Bromodeoxyuridine 

(BrdU) cell proliferation ELISA colorimetric kit (Abcam, ab126556, Cambridge, UK 

following the manufacturer’s instructions). Synovial fibroblasts were seeded at 

20,000 cells/well in 96 well plate. Then 20μL BrdU label was added to each well and 

incubated for 24 hours. Following this, the synovial fibroblasts were fixed using 200 

μL/well fixing solution for 30 minutes. After fixing the cells, the fixing solution was 

aspirated, and cell were incubated with a pre-diluted anti-BrdU monoclonal antibody. 

This was subsequently washed and aspirated and before the addition of secondary 

peroxidase goat anti-mouse IgG conjugated to HRP for 30 minutes and given TMB 

substrate. Absorbance was measured at 450/540 nm BioTek EL808 microtiter plate 

reader (BioTek, Swindon, UK). 

 

2.14 Annexin V-PI apoptosis flow assay  

 

Fibroblast apoptosis was quantified using Annexin-V and Propidium Iodide (PI) 

staining. BJ human dermal fibroblast cell line (foreskin) were treated with varying 

concentration of GLS1 inhibitor BPTES (5-5000nM) for one hour alongside a 0.5% 

DMSO vehicle control. Following treatment, fibroblasts were harvested using cell 
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dissociation solution non-enzymatic (1x) (Sigma-Aldrich, Dorset, UK) and washed 

with 1x PBS solution. Cells were then centrifuged at 300xG for 10 minutes before 

being resuspended on ice in 100μL Annexin V binding buffer (0.01M HEPES, 0.14M 

NaCl, 2.5mM CaCl2). Cells were incubated in the dark with 2μl Annexin V-FITC 

antibody for 10 minutes. Propidium iodide (0.001 mg/ml) (PI) stain was added 

immediately prior to the running of the cells on BD FACSVia™ Flow Cytometry 

System (BD Biosciences, UK). Gating strategy is described in figure 4.1 and 4.2, 

flow cytometry data was compensated through use of unstained, single stained and 

dual stained conditions. The condition chosen for the purpose of generating a 

compensation matrix was 1:1 heat killed and live, unstimulated cells. Data was 

analysed using BD Accuri C6+. Live and dead cells were counted prior to the 

experiment using Invitrogen Trypan blue staining (0.4%) (Thermo Fisher Scientific, 

MA, USA) and quantified using Countess™ Automated Cell Counter. 

 

2.15 Lactate Assay 

 

The lactate concentration in cultured OA synovial fibroblasts was quantified using a 

commercially available lactate assay (MAK064-1KT Sigma-Aldrich, UK). In brief, 

culture supernatants were centrifuged at 12,000g for 10 minutes in 10kDa molecular 

weight cut-off spin columns (Abcam, UK) to remove proteins including lactate 

dehydrogenase (LDH). Absorbance was measured at 570nm (A570) on a microplate 

and lactate concentration was obtained from the standard curve.   
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2.16 Seahorse metabolic analysis of OA synovial fibroblasts  

 

The Seahorse XFe96 Analyzer (Agilent, California, USA) was used to measure 

oxidative phosphorylation and glycolysis through the oxygen consumption rate 

(OCR) and extracellular acidification rate (ECAR) respectively in cultured OA 

synovial fibroblasts. Synovial fibroblasts were seeded at 30,000 cells/well 24 hours 

prior to the assay. Cells were washed with Seahorse XF RPMI-1640 medium 

(Agilent, California, USA) and the microplate was warmed for 60 minutes in a CO2-

free incubator before a mitochondrial and glycolytic stress test was initiated. The 

seahorse assay was conducted according to standard protocol with the injection of 

10mM Glucose, 2µM Oligomycin (ATP-synthase inhibitor), 5µM cyanide-4-

(trifluoromethoxy) phenylhydrazone/FCCP (oxidative phosphorylation uncoupler), 

50mM 2-Deoxy-D-glucose/2-DG (non-metabolisable glucose analog), 3µM Rotenone 

(complex I inhibitor) and 3µM Antimycin A (complex III inhibitor). OCR and ECAR 

were measured five times at baseline and four times after each drug was added, with 

the average taken for multiple measurements. 

 

2.17 NMR Spectroscopy 

 

Synovial fluids were treated with Hyaluronidase (1000 units/mL) for 15 min at 37oC in 

order to decrease viscosity of samples. For the NMR analysis of synovial fibroblasts, 

conditioned media were collected from cells seeded at 40,000 cells per well following 

24 hours either unstimulated or stimulated with TNFα at a concentration of 10 ng/mL. 

Samples were prepared for NMR analyses by centrifuging at 15,000xG for 5 min at 
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4oC before being placed into 3 kDa Molecular weight cut-off (MWCO) filters (Pall 

Nanosep). Samples were then centrifuged at 10,000xG for 15 min at 4oC. The filtrate 

was mixed 1:3 with NMR buffer (provided by Dr. Stephen Young) (containing 400 

mM phosphate, 1.6 mM DFTMP, 40% D2O, 0.4% azide, DSS (2 mM) at pH 7.0) and 

an aliquot (50 µL) added to a 1.7 mm OD NMR tube and capped. NMR spectra were 

acquired using a 600 MHz 4-channel Bruker AVANCE III spectrometer equipped with 

a Samplejet refrigerated autosampler (Bruker BioSpin, Billerica, MA, USA). For each 

sample, one-dimensional (1D) 1H-NMR NOSEY spectra were acquired. NMR 

spectra were automatically phased, and baseline corrected, and the chemical shifts 

were internally referenced to DSS at 0.00 ppm using Metabolab (Ludwig and 

Günther, 2011). Spectral regions containing only noise and the residual water peak 

were excluded. Metabolites were identified and labelled using the metabolite 

discovery software Chenomx (Chenomx, Edmonton, AB, Canada), using the in-

house library of metabolite spectra. Multivariate analysis was undertaken using 

SIMCA 16 (Umetrics). 

 

2.18 RNA Sequencing Analysis 

 

Total RNA was extracted from synovial fibroblasts isolated from hand, hip, knee and 

foot OA samples from n = 6 patients each using RNeasy Mini Kit (Qiagen) and 

DNase treated (Qiagen DNase kit). RNA integrity was assayed using Agilent 

Bioanalyser. Library preparation and RNA-sequencing was performed by Genomics 

Facility at University of Birmingham using QuantSeq 3’ kit (Lexogen) and sequenced 

on Illumina's NextSeq 500. The sequenced reads were mapped to the hg38 
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reference human genome using Star Aligner and differential gene expression 

analysis and log2 fold changes were computed using DESeq2. RNA Sequencing 

sample preparation and primary data analysis was performed by Dr. Susanne 

Wijesinghe (unpublished data, S. Wijesinghe et al, 2022) 

2.19 Bioinformatic Pathway Analysis 

 

Differentially expressed genes (DEGs) from hand, hip, knee and foot OA synovial 

fibroblasts from normal weight and obese patients were analysed using Ingenuity 

Pathway Analysis (IPA) (www.ingenuity.com) (Qiagen, Germantown, MD, USA) 

software. Core functional analysis was performed to identify the canonical pathways 

most significantly associated with the DEGs within each analysis. The significance of 

the association of a given canonical pathway with the genes within a given subset 

was measured in two ways. Firstly, by the ratio of the number of differentially 

expressed genes in the dataset that mapped to the canonical pathway divided by the 

total number of genes that map to the canonical pathway. Secondly, Fisher's exact 

test was used to calculate a p- value of the association between the genes and the 

network/canonical pathway. Canonical pathways were filtered to only include 

metabolic pathways when analysing the data. The right tailed Fisher’s Exact tests 

indicates the probability of association of transcripts from the dataset canonical 

pathway by random chance alone resulting in a p value of overlap. This was set at a 

score cut-off of -log p value of 1.3 and canonical pathways were filtered to only 

include those pathways associated with metabolism. Using z-score, those pathways 

which are orange indicate predicted pathway activation, those which are blue 

indicate predicted pathway inhibition and those which remain grey are those which 
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no prediction can be made due to insufficient evidence within IPA’s knowledge base 

for confident activity predictions across the datasets. 

Multi-omics analysis was conducted using MetaboAnalyst 5.0 

(www.metaboanalyst.ca) (Pang et al., 2021). For the data analysis, transcriptomics 

data utilised for this analysis was RNASeq data from obese hip OA synovial 

fibroblast (n = 3 patients) compared to normal weight hip OA synovial fibroblast (n = 

3 patients). The metabolomics data was obtained from obese hip OA synovial 

fibroblast conditioned media (n = 5 patients) compared to normal weight hip OA 

synovial fibroblast conditioned media (n = 4 patients). Patient samples were not 

matched for this analysis. An exclusion criterion was placed on both the 

transcriptomic data and metabolomics data of differentially expression genes or 

compounds with a log2 fold change of equal to or greater than 0.48 or equal to or 

less than -0.48. Metabolic pathways were mapped using KEGG global metabolic 

map (map01100) with enrichment analysis using Fisher’s exact test. Tight integration 

was conducted on the datasets, pooling all the genes and metabolites into a single 

query and performing enrichment analysis on this combined dataset. Topological 

analysis was conducted on the datasets which focused on degree centrality 

(measures the number of links/edges that connect to a node (compound or DEGs)). 

A raw p value for each metabolic pathway with a group of functionally associated 

metabolites and genes were calculated. False discovery rate (FDR) (0.05) was used 

to control for false positives (Shen et al., 2021). A pathway impact score was 

calculated as the sum of the importance measures of identified metabolites divided 

by the total sum of the importance measure of all identified/unidentified metabolites 

within a pathway (Shen et al., 2021). The importance of a given pathway relative to 
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the global metabolic network was estimated by its pathway impact score, with an 

impact score >0.1 considered to be important pathways (Shen et al., 2021).   

 

2.20 Data handling and statistical analysis 

 

Data were analysed using GraphPad Prism 9 software (GraphPad Software, San 

Diego, CA, USA) or SPSS Version 27 (Armonk, NY: IBM Corp). Statistical test and 

corrections are indicated within figure legend or footnotes. * p<0.05; ** p<0.01; *** 

p<0.001; **** p<0.0001 

Chapter 3: 

Data were analysed using GraphPad Prism 9 software (GraphPad Software, San 

Diego, CA, USA). For analysis of metabolite concentrations in OA patient synovial 

fluids, normal distribution was checked by Shapiro–Wilk normality tests. Gaussian 

distributions were not assumed and Mann–Whitney tests were used to examine 

differences between obese and normal weight values. Groups were compared using 

one-way analysis of variance (ANOVA) with Dunnett’s test for multiple comparisons. 

Data are presented as the mean ± SEM, with p-values < 0.05 defining statistically 

significant differences. 

 

Chapter 4: 

Data were analysed using GraphPad Prism 9 software (GraphPad Software, San 

Diego, CA, USA). Distribution of data was analysed using Shapiro–Wilk normality 

tests. Groups were compared using one-way analysis of variance (ANOVA) with 
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post-hoc test corrected for multiple comparisons. Data are presented as the mean ± 

SD, with P values < 0.05 defining statistically significant differences. 

 

Chapter 6: 

 

Data were analysed using GraphPad Prism 9 software (GraphPad Software, San 

Diego, CA, USA). Distribution of data was analysed using Shapiro–Wilk normality 

tests. Groups were compared using one-way analysis of variance (ANOVA) with 

Dunnett's test for multiple comparisons or 2-way ANOVA with Tukey’s HSD post hoc 

test following Levene’s Test of Equality of Error Variances (to test the null  

hypothesis which is error variance of the dependant variable is equal across groups) 

depending on the number of independent variables within analysis using SPSS 

Version 27 (Armonk, NY: IBM Corp). Data are presented as the mean ± SEM, with P 

values < 0.05 defining statistically significant differences. 
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3.1 Introduction 

3.1.1 Metabolomics  

 

Metabolomics is amongst the latest “omics” techniques following genomics, 

proteomics and transcriptomics, which utilize high throughput analytical methods to 

generate large scale datasets that are examined using bioinformatics, to provide a 

comprehensive and extensive outlook on cellular processes. These methodologies, 

including genomics and transcriptomics, are amongst the earliest changes observed 

prior to changes in cellular phenotype and thus provide insight into both the cellular 

and molecular pathways that mediate changes to cell phenotype.  

The use of the term “metabolome” was first introduced in 1998 and was adopted by 

the field to match with existing terminology used to describe the complete set of 

genes (genome), the complete set of proteins (proteome) and the complete set of 

transcripts (transcriptome). Thus, the term “metabolome” was coined, to describe the 

complete set of metabolites. Metabolites are small molecules identified within 

biological samples which have a molecular weight below 1500 Da and are not 

proteins or RNA/DNA.  

Metabolomics analysis can be separated into two categories: Untargeted and 

targeted analysis. Untargeted metabolomics is a comprehensive analysis of all 

measurable compounds in a sample. However, due to its extensive datasets, 

multivariate analysis must be performed. Targeted metabolomics, however, is a 

measurement of specific groups such as biochemically annotated metabolites, using 

an internal standard (for example Sodium trimethylsilylpropanesulfonate (DSS) or 

Tetramethylsilane (TMS)). 



90 | P a g e  
 

By identifying changes in the metabolome of various biological fluids between, for 

example healthy controls and disease, we can gain insight into the metabolic 

phenotype or “metabotype” of particular diseased cells or tissues and the potential to 

identify particular biomarkers of a diseased condition, or a biomarker to stratify 

patient cohorts, or a biomarker to indicate response to a therapeutic treatment. 

 An advantage of metabolomics is the capacity to thoroughly analyse potential 

metabolic biomarkers through non-invasive or easily accessible biofluids such as 

urine and saliva, allowing for the ability to stratify and investigate pathological 

perturbations in patients when compared to healthy or normal patients. The 

technique also has the potential to observe ongoing changes in metabolic features 

and biomarkers upon receival of therapeutic treatment, providing insight into 

progression or regression of disease pathology within patients. This is especially 

useful when the metabolic biomarkers are involved in disease pathology which is 

often observed in metabolic disorders such as metabolic syndrome, diabetes and 

obesity (Joseph, Ayeleso and Mukwevho, 2017; Molepo et al., 2018; Mosana et al., 

2020).  Metabolomics has also been applied to other chronic disease conditions and 

has been proposed as a means to allow for the early disease diagnosis in 

inflammatory joint disorders such as rheumatoid arthritis and osteoarthritis (Dudka et 

al., 2021) (Carlson et al., 2018), in cardiovascular diseases (X. S. Li et al., 2018), 

neurodegenerative diseases such as Alzheimer’s Disease (AD) (Yilmaz et al., 2017) 

and in cancer (Shang, Zheng and Tong, 2020). 

Unlike the other omics methodologies, metabolomics is relatively new and therefore 

the ability to identify all or most of the metabolites using metabolomics technologies 

is limited. This is due to several reasons including but not limited to incomplete 

metabolite identification libraries and limitations in sensitivity of metabolomic 
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techniques. However, development within the field of metabolomics and widespread 

adoption of the techniques is increasing as research costs decrease and access to 

instruments increase.  

Metabolomics can be conducted using a number of technologies however two have 

arisen as the primary technologies to conduct metabolomics experiments, namely 

NMR spectroscopy and mass spectroscopy. Each technology has its unique 

advantages and disadvantages which have been described in table 3.1. Although 

these technologies have primarily been used separately for analysing biological 

material, they are not mutually exclusive and the use of hyphenated techniques 

including chromatography (liquid chromatography (LC)/gas chromatography (GC)) 

alongside mass spectrometry (MS) and NMR spectroscopy allow for high-throughput 

profiling of hundreds of metabolites simultaneously within biological fluid (Ussher et 

al., 2016).  
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Table 3.1: Advantages and Disadvantages of using NMR 

Spectroscopy compared to Mass Spectroscopy (Emwas, 2015; 

Aderemi et al., 2021) 

 NMR Mass Spectrometry 

Sample Preparation Sample filtration (3kDa 

molecular weight cut-off) and 

dilution in NMR buffer 

containing chemical shift 

standard 

Metabolite extraction is 

required and optimisation of 

ionisation techniques 

Time  Shorter time for sample 

analysis 

Requires longer periods of time 

per sample 

Database Few comprehensive metabolite 

database 

More comprehensive 

metabolite database 

Sample Recovery Non-destructive; multiple runs 

can be taken from the sample 

Destructive; Due to 

hyphenated techniques (HPLC, 

LC) samples 

chromatographically separated 

Solid phase analysis Possible using magic angle 

spinning NMR spectroscopy  

Requires tissue extraction 

Sensitivity Can identify and measure a 

smaller number of metabolites 

and detect at micromolar 

concentrations 

Can identify and measure 

larger number of metabolites 

and detect at nanomolar 

concentrations 
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3.1.2 Metabolomics in Inflammation and Obesity 

 

3.1.2.1 Metabolomics in Cardiovascular Disease 

Cardiovascular diseases (CVD) are the leading causes of premature death and 

disability in humans and the incidence rate is increasing worldwide (Flora and 

Nayak, 2019). The underlying pathogenesis of CVDs is predominantly of 

atherosclerotic origin which then develops into coronary artery diseases (CAD), 

venous thromboembolism and peripheral vascular disease, which subsequently lead 

to myocardial infarction, cardiac arrhythmias and stroke (Flora and Nayak, 2019). 

CVD is associated with several markers of systemic inflammation such as C reactive 

protein (CRP) and proteins within the coagulation cascade (Berg and Scherer, 

2005). These proteins are also elevated with obesity, diabetes mellitus and other 

metabolic diseases, which are often comorbidities associated with CVD. 

Metabolomics within a CVD context has become particularly popular, likely due to 

the strong association between CVD and metabolic diseases.  

Ischemic heart disease (IHD) is the most common cause of CVD and remains the 

single largest cause of death in countries of all income groups (Nowbar et al., 2019). 

IHD occurs as a result of inadequate perfusion of the myocardium and includes 

stable and unstable anginas. One aspect of IHD metabolism is the restriction of 

oxygen and nutrient supply to the myocardium and therefore, like other oxygen 

restricted tissues, there is reduction in oxidative metabolism and reliance on 

glycolysis to produce ATP. This was observed in LC/MS blood-based metabolomic 

profiling in 36 individuals who displayed myocardial ischemia, which found a reduced 

number of Krebs cycle metabolites(Sabatine et al., 2005). 
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Another aspect of IHD metabolism is the reduction in fatty acid oxidation, again as a 

result of poor oxygen delivery to ischemic sites (Ussher et al., 2016). Furthermore, 

LC/MS/MS metabolomic profiling of serum from age and sex matched CAD patients, 

compared to healthy individuals, show elevated Branched Chain Amino Acid (BCAA) 

levels (Yang et al., 2015). It should be noted, patients with CVD will often have 

associated comorbidities like obesity and type 2 diabetes (T2D), which have the 

potential to independently or synergistically alter the metabolomic profile of these 

patients, thus adding further complexity to any analysis performed in such patient 

cohorts. For instance, metabolomic analysis has revealed BCAA and aromatic amino 

acids are currently emerging as predictors of future T2D, which could suggest 

contribution of T2D to aberrant BCAA metabolism in CAD patients (Shah and 

Newgard, 2015). Using samples unique to CVD such as sampling arterial blood and 

the coronary sinus for the heart, could provide more information on the local 

metabolic changes observed within CVD patients. Likewise, the application of 

metabolomics techniques to large scale population-based epidemiological cohorts 

allows for robust statistical analysis which will adjust for potential cofounding factors 

such as comorbidities (Ussher et al., 2016). 

3.1.2.2 Metabolomics in Neurological Disease 

Another application of metabolomic technology which has developed recently, is the 

study of neurological and neurodegenerative diseases. Central nervous system 

(CNS) disorders are linked to aberrant neurotransmitter signalling, fatty acids such 

as arachidonic acid-cascade, oxidative stress and mitochondrial function (Quinones 

and Kaddurah-Daouk, 2009). High performance liquid chromatography coupled with 

electrochemical coulometric array detection profiling of plasma from 66 Parkinson’s 

disease (PD) patients compared to 25 controls found elevated markers of oxidative 
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damage (8-OHdG) and the antioxidant metabolite glutathione (Bogdanov et al., 

2008). Clinical samples from Huntington’s disease (HD) patients and a transgenic 

mouse model of HD were analysed using GC-MS. Metabolic differences were 

identified between HD patients and controls including aberrant amino acid 

metabolism and the accumulation of ethylene glycol and its oxidation product, 

oxalate (Underwood et al., 2006). Metabolites such as malonate and 2-amino-n-

butyrate, were elevated in both PD and HD, which could be indicative of generic 

neurodegenerative markers (Underwood et al., 2006). Depression is a disorder 

associated with increased inflammatory activation of the immune system, affecting 

both the periphery and the central nervous system. GC-MS analysis of blood plasma 

found several fatty acids, glycerol and gamma-aminobutyric acid (GABA) were 

altered in depressed patients compared to never-depressed older adults (Paige et 

al., 2007). Metabolomics analysis of cerebrospinal fluid of patients with multiple 

sclerosis (MS) found increased levels of glutamate and 3-hydroxybutyrate when 

compared to healthy controls (Porter et al., 2020).  

CNS disorders are likely due to dynamic dysregulations of multiple gene regulatory 

networks and metabolic alterations and therefore there is an increasing need to 

further investigate CNS pathology through omics technologies.  

3.1.2.3 Metabolomics in Metabolic Disorders 

The prevalence of T2D is increasing at an alarming rate due to an ongoing obesity 

epidemic and an ageing population (Paneni et al., 2013; Hu, Satija and Manson, 

2015). T2D, like other metabolic diseases, increases the risk of developing severe 

conditions such as CVD, liver and pancreatic cancers (Rahman, Athar and Islam, 

2021). The use of high throughput metabolomic techniques has generated quite a lot 

of interest within the field, with potential for gaining insight into novel modifiable 
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disease pathways and the possibility of identifying biomarkers predictive of incident 

T2D.  

It is well known that plasma hexose sugars are positively associated with T2D and 

are responsible for elevations in glucose (Gonzalez-Franquesa et al., 2016). 

Likewise, intracellular metabolite perturbations have been observed within several 

tissues, one such example being glucose-stimulated insulin secretion (GSIS) 

requiring increased late glycolytic and early TCA cycle metabolites (Spégel et al., 

2011).  

A longitudinal study which followed 2422 normoglycemic individuals for 12 years, 

found 201 developed diabetes (Wang et al., 2011). Metabolomic profiling of blood 

samples from these subjects found five branched-chain and aromatic amino acids 

that had highly significant associations with the development of future diabetes, 

namely isoleucine, leucine, valine, tyrosine and phenylalanine (Wang et al., 2011). A 

similar study in a young cohort of normoglycemic adults found branched-chain and 

aromatic amino acids are markers of development of insulin resistance, particularly 

within men (Wurtz et al., 2013). Another aspect of metabolomics is lipidomics 

analysis. Novel lipids have been identified as plasma biomarkers and contributors of 

T2D pathophysiology, including free fatty acids (C14:0, C16:1, C16:0, C18:1, C20:4) 

which are increased in obesity (Gonzalez-Franquesa et al., 2016). Non-targeted 

metabolomics identified elevation of long chain lipids (adrenate and arachidonate, 

C22:4 and C20:4) in impaired fasting glucose (Menni et al., 2013). 

In summary, metabolomics analysis of biological fluids have been critical in 

investigating the pathogenesis of T2D and related risk factors. Research within this 

area has highlighted perturbations in amino acid and lipid profiles within T2D 
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samples and murine models, which could suggest impaired amino acid and fatty acid 

metabolism contributes to reduced anaplerotic flux and complete oxidative 

metabolism and therefore contributes to decreased cellular energetics in insulin 

resistance and T2D (Gonzalez-Franquesa et al., 2016). 

Obesity is widely recognised as a worldwide public health crisis, an ongoing 

epidemic and is significantly associated with development of several metabolic 

disorders including cancer, T2D, cardiovascular disease, and dyslipidaemia (Bagheri 

et al., 2018). 

Like T2D, metabolomics analysis has also been applied to obese subjects in order to 

understand systemic changes associated with obesity and relevance to distal tissues 

and associated disorders. In a Japanese cohort, subjects with high visceral fat area 

had elevated levels of amino acids alanine, glycine, glutamate, tryptophan and 

tyrosine as wells as BCAA (Yamakado et al., 2012). Tissue specific metabolomics 

also provides further insight into altered metabolite profiles in obesity. Ultra-high 

performance LC-MS-MS of subcutaneous abdominal white adipose tissue from 52 

obese women compared to 29 non-obese controls showed 6 polar metabolites were 

significantly altered including glutamine (Petrus, et al., 2020). Further stratification of 

obese patients into those who are considered “metabolically healthy” (reduced blood 

pressure, lipid profiles and insulin resistance and elevated high-density lipoprotein 

cholesterol (HDL-C)) and those who are “metabolically unhealthy”, has led to some 

interesting developments within the field of obesity. LC-MS targeted metabolomics 

shows BCAA, tyrosine, glutamate, diacyl-phosphatidylcholines C32:1 and C38:3 

were directly associated with “metabolically healthy” phenotype and acyl-carnitine 

C18:2, acyl-lysophosphatidylcholines C18:1 and C18:2, and alkyl-
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lysophosphatidylcholines C18.0 were inversely associated with this “metabolically 

healthy” phenotype (Bagheri et al., 2018).  

Metabolomics within animal models also provides direct insight into metabolic 

changes within tissues in vivo. TCA cycle intermediates are reduced in liver and 

skeletal muscle within obese murine model and glycolytic metabolites are increased 

within muscle (Giesbertz et al., 2015). High fat diet (HFD) fed mice have reduced 

TCA intermediates derived from labelled glucose within skeletal muscle (Kowalski et 

al., 2015). Analysis of biological fluids from animal models also offers insight into 

systemic changes associated with obesity. NMR spectroscopy of urinary samples 

from a diabetic mouse model identified elevated glucose, lactate and other TCA 

cycle intermediates (Connor et al., 2010). Additionally, plasma amino acids such as 

glutamine-glutamate, aspartate-asparagine and alanine are also elevated within an 

obese HFD rodent model (Gonzalez-Franquesa et al., 2016). Increases in circulating 

amino acid levels including BCAA, are particularly interesting and may be explained 

by low expression of LAT1 transporter in obese subjects, which is responsible for the 

transport of large natural amino acids within cells (Payab et al., 2021). 

By shifting towards a multi-omics analysis including both transcriptomics and 

metabolomics, further understanding of what underpins the altered metabolism 

within obesity, may result in improved therapeutic interventions, which could prove to 

be particularly useful in combatting this obesity epidemic. 
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3.1.3 Multivariate Analysis using Soft Independent Modelling by 

Class Analogy (SIMCA) 

 

A key step within the metabolomics pipeline, is multivariate analysis. Due to the large 

quantity of data collected from hundreds of metabolites and multiple variables to 

compare, the best method of analysis involves looking for the greatest contributing 

variables or components within the dataset and plotting the data using models. 

Principal component analysis (PCA) models the correlation structure of a dataset 

and observations are represented as scores. Using this method, large quantities of 

data are refined to a handful of plots. From this data, 2 or 3 score vectors are 

calculated and then plotted against each other resulting in t/t plots, giving a holistic 

overview of process behaviour over time and a strong model of variation within the 

data (SIMCA, 2020). Scores are sorted in descending order of importance (i.e., t1> 

t2>t3). From these t/t plots, trends/patterns in data can be observed. 

Score plots alongside loading plots, are an indicator of responsible variables for 

deviation from normal operation. From PCA plots it is possible to derive residuals 

(deviations from data), through which one can generate DModX plots (distance to 

model), which shows distance to the model plane for each observation (SIMCA, 

2020). If the DModX are greater than the DCrit, then this is regarded as an outlier. 

DModX plots are a detection tool which are used to identify moderate outliers within 

data (SIMCA, 2020). However, Hotelling’s T2 distribution (multivariate generalisation 

of Student’s t-distribution), is used to identify clear outliers in data (<95% confidence 

interval).  
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PCA plots can also be diagnosed using R2 values and Q2 values for each component 

within the model. R2 values estimate the “goodness” of the fit and Q2 values estimate 

the “goodness” of prediction (SIMCA, 2020). It is common practice to keep modelling 

the data to increase the fit (R2 values) until the Q2 values decreases, which would 

reduce prediction and result in an overfitted model. Overfitting the model is a 

tendency to describe too much variation within the data, thereby including non-

informative variation and results in lower quality of prediction (SIMCA, 2020). The 

higher the R2 and Q2 values the better the model. Q2 values of approximately 0.5 are 

an indicator of a good model and those around 0.9 suggest an excellent model, 

which is often observed in calibration (SIMCA, 2020).  

Another method used in multivariate analysis is the Partial Least Squares 

Projections to Latent Structures (PLS). When trying to analyse large datasets that 

have multiple input/process variables (X) which are responsible for alterations in 

output/results variables (Y), identifying the relationships between these variables 

using multivariate regression is fraught with issues (including correlated variables) 

(SIMCA, 2020). In this scenario, regression analysis provides an output for every 

result variable (Ym) separately and can therefore result in hundreds of different 

regression analysis for one dataset. One solution to this issue is the use of a 

different classification method, namely PLS analysis. PLS analysis requires the 

specification of which variables are predictors (X) and which are dependant (Y) and 

will then identify the relationship between the 2 groups of variables. Orthogonal 

Partial Least Squares (OPLS) analysis is an extension of PLS and is a regression 

and prediction method. Regression in this instance refers to (i) how things vary as a 

whole (covariance) and (ii) a prediction being how well the known information is 

predicted (SIMCA, 2020). OPLS splits systemic variation in X into two components, 
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with the one being the correlated (predictive) to Y and the other being components 

unique in X but uncorrelated (orthogonal) to Y, giving better model interpretability 

(Sthle and Wold, 1990). When referring to predictive variation within data, this is 

correlated variation between X and Y variables. Orthogonal variation refers to 

uncorrelated variation between X and Y variables. Random variation is not included 

in OPLS analysis and is left within residuals. OPLS is a supervised method of 

multivariate analysis, which finds information in the X data that is related to known 

information in the Y data (SIMCA, 2020). The multivariate analysis undertaken in this 

study deals with discrete or categorical variables and is therefore OPLS-discriminant 

analysis (OPLS-DA). Although OPLS-DA is easiest to interpret with two classes 

(e.g., normal weight vs obese), the analysis can be extended and used in cases of 

multiple classes. Amongst the benefits of using OPLS-DA is the ability to identify 

which particular variables are responsible for class discrimination and is often used 

in identifying biomarkers in metabolomics experiments (SIMCA, 2020). Also, OPLS-

DA model can handle unwanted variation within datasets which is critical when 

analysing samples with large variation like biological samples. 

 

 

 

 



102 | P a g e  
 

Table 3.2: Terminology of Cross-Validated (CV) ANOVA explained 

(adapted from SIMCA (Umetrics, Germany)) and (Sthle and Wold, 1990; 

Eriksson, Trygg and Wold, 2008)). 

 

 

 

Vector Type Description 

SS (Sum of 
Squares) 

Total corr (Total 
corrected) 

SS of the Y of the workset corrected for 
the mean. 

Regression Fraction of Total Corrected SS accounted 
for by the model, estimated via the cross-
validation principle. 

Residual Difference between Total Corrected and 
Regression SS, i.e., the fraction of Total 
Corrected unaccounted for by the model. 

DF (Degrees of 
freedom) 

Total corr, Regression, 
residual 

The number of degrees of freedom (DF). 
This is an approximate number based on 
the experience that PLS needs half the 
components to reach the same 
explanation of Y as principal components 
regression. 

MS (Mean 
Squares) 

Total corr, Regression, 
residual 

By dividing each SS by the respective DF, 
the corresponding mean squares (MS), or 
variances, are obtained. 

p 
 

The p-value indicates the probability level 
where a model with this F-value may be 
the result of just chance. The common 
practice is to interpret a p-value lower 
than 0.05 as pointing to a significant 
model. 

SD (Standard 
Deviation) 

Standard deviation. Square root of MS. 
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Metabolomics has been used as an effective tool to investigate the systemic and 

local effects of altered cell metabolism in disease conditions and as such would be 

ideally placed to investigate and interpret the role obesity and inflammation plays in 

the inflammatory joint condition, osteoarthritis.   

 

3.2 Hypothesis 

 

We hypothesised that 

• OA synovial fluid from normal weight and obese patients have distinct 

metabolomic profiles 

• The metabolome of OA synovial fibroblast from normal weight and obese 

OA patients would reflect the differences observed in OA synovial fluid 

• The metabolic differences between stimulated and unstimulated OA 

synovial fibroblasts would contribute to their activated state and 

inflammatory microenvironment 
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3.3 Methods 

 

3.3.1 Patient Characteristics and Anthropometric Data  

  

Table 3.3: Patient characteristics from OA synovial fluid from obese 

( n = 5) and normal weight (n = 6) patients 

  Obese   Normal weight  P-value  

Age (years)  63 ± 4  72 ± 2.0  0.05  

Female:Male  5:3  5:3    

BMI (kg/m2)  33.6 ± 1.2  22.9 ± 0.7  <0.0001  

Waist circumference (cm)  106.5 ± 5.1  86.6 ± 3.2  <0.01  

Hip circumference, (cm)  116.4 ± 3.6  94.4 ± 2.1  <0.001  

Waist:Hip ratio  0.91 ± 0.03  0.92 ± 0.03  0.93  

KL Grade  Median (IQR)  4 (3-4)  3.5 (3-4)    

KL3 (%)  37.5  37.5    

KL4 (%)  62.5  62.5    

Joint Space (mm)  1.4 ± 0.7  1.8 ± 0.3  0.60  
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Table 3.4: Patient Characteristics from OA synovial fibroblast 

conditioned media from obese ( n = 6) and normal weight (n = 5) 

patients 

  
Obese   Normal 

weight  

P-value  

Age (years)  68 ± 4.5   70 ± 5.2  0.79  

Female:Male  6:1   4:1    

BMI (kg/m2)  34.8 ± 2.6   22.9 ± 0.7  0.003  

Waist circumference 

(cm)  

101.6 ± 4.6   81.2 ± 4.9  0.01  

Hip circumference, (cm)  115.3 ± 2.4   95.7 ± 4.0  0.005  

Waist:Hip ratio  0.88 ± 0.04   0.86 ± 0.07  0.78  

KL 

Grade  

Median (IQR)  4 (3-4)   4 (3-4)    

KL3 (%)  20   25    

KL4 (%)  80   75    

Joint Space (mm)  2.1 ± 1.1   2.5 ± 1.1  0.60  

  

 

 

 

 

 



106 | P a g e  
 

 

 

Grade Definition 

0 Definite absence of x-ray changes of osteoarthritis 

1 Doubtful joint space narrowing and possible osteophytic lipping 

2 Definite osteophytes and possible joint space narrowing 

3 moderate multiple osteophytes, definite narrowing of joint space and some sclerosis and possible 

deformity of bone ends 

4 Large osteophytes, marked narrowing of joint space, severe sclerosis and definite deformity of bone 

ends 

 

Table 3.5: Kellgren and Lawrence system for classification of 

osteoarthritis (KELLGREN and LAWRENCE, 1957) 
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3.4 Results 

 

3.4.1 Univariate Metabolite Analysis from OA synovial fluid and OA 

Synovial Fibroblast Conditioned Media 

 

Following NMR spectroscopy analysis of OA synovial fluid and synovial fibroblast 

conditioned media, 8 metabolites from synovial fluid were significantly increased 

when comparing obese OA patients to normal weight OA patients and no 

metabolites were decreased in the same comparison. From those metabolites which 

had the highest fold change was 1,3-Dimethylurate which increased by 46-fold (p = 

0.024) when comparing obese and normal weight OA synovial fluid (Figure 3.1) 

(table 3.6). Metabolites associated with energy metabolism were also increased 

including Glucose (3-fold, p = 0.043), Pyruvate (3-fold, p = 0.018), Lactate (3-fold, p 

= 0.016) and Succinate (3.8-fold, p = 0.013) (Figure 3.1) (table 3.6). Amino acids 

were also found to be significantly increased in obese OA synovial fluid compared to 

normal weight OA synovial fluid including Tyrosine (3-fold, p = 0.025) and Glycine (2-

fold, p = 0.019) (Figure 3.1) (table 3.6).  
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1 Statistical analysis using two tailed unpaired Student T test using Prism 9.0 (GraphPad). 

Figure 3.1: Boxplot of significantly increased metabolites in obese OA synovial fluid (n 

= 5) compared to normal weight (n = 6) OA synovial fluid (Farah et al., 2022)1 

.  
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Table 3.6: Full list of detected metabolite concentrations from 

normal weight (NW) (n = 5) and obese (OB) (n = 6) OA synovial 

fluid. (n.d: not detectable) 

Metabolite NW (µM) OB (µM) Fold-

Change 

P-Value 

Succinate 4.6 17.4 3.8 0.013 

Lactate 899 2819 3.1 0.016 

N-Nitrosodimethylamine 39.8 276 6.9 0.016 

Pyruvate 28.5 93.1 3.3 0.018 

Glycine 73.7 205 2.8 0.019 

1,3-Dimethylurate 2.8 128 46.4 0.024 

Tyrosine 19.2 59.2 3.1 0.025 

Glucose 1440 4253 3.0 0.043 

Phenylalanine 15.9 42.0 2.6 0.050 

Valine 69.5 227 3.3 0.064 

Urea 1392 3584 2.6 0.067 

Acetoacetate n.d 24.8 >100 0.067 

Guanidoacetate 33.1 89.6 2.7 0.069 

Methanol 34.2 n.d >100 0.085 

sn-Glycero-3-phosphocholine 7.9 172 21.7 0.093 

Creatine phosphate 50.7 249.4 4.9 0.093 

1,3-Dihydroxyacetone n.d 10.0 >100 0.104 

Glycylproline n.d 176 >100 0.104 

2-Hydroxyisocaproate n.d 10.8 >100 0.104 

N,N-Dimethylglycine 0.3 139 554.2 0.105 

Pantothenate 3.8 436 116.2 0.107 

Alloisoleucine n.d 180 >100 0.108 
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Metabolite NW (µM) OB (µM) Fold-

Change 

P-Value 

Glycolate 52.3 208 4.0 0.110 

Threonate n.d 17.0 >100 0.110 

Caprate n.d 38.2 >100 0.111 

Lysine n.d 117 >100 0.116 

Cadaverine n.d 57.4 >100 0.122 

2-Hydroxyvalerate n.d 18.8 >100 0.123 

Malonate 566 n.d >100 0.125 

Formate 71.8 184 2.6 0.126 

5-Aminolevulinate 3.4 159 47.1 0.138 

O-Phosphocholine n.d 45.4 >100 0.153 

Glutamate 47.5 563 11.8 0.154 

Galactarate 22.5 192 8.5 0.162 

Succinylacetone 2.8 227 82.5 0.174 

Ethylene glycol 1671 n.d >100 0.189 

Alanine 65.3 192 2.9 0.194 

N-Methylhydantoin 0.5 2.8 6.2 0.201 

Oxypurinol n.d 138 >100 0.206 

Galactonate 30.4 n.d >100 0.207 

Hypoxanthine 1.5 7.9 5.5 0.221 

3-Hydroxyisovalerate 11.7 26.8 2.3 0.230 

Hydroxyacetone 7.3 n.d >100 0.235 

Riboflavin n.d 10.0 >100 0.251 

Trimethylamine N-oxide 24.2 n.d >100 0.283 

1,7-Dimethylxanthine 0.5 83.7 173.2 0.294 

N-Acetylglucosamine 1.5 463 312.0 0.295 

2-Oxoisocaproate n.d 4.9 >100 0.297 

Caprylate n.d 5.5 >100 0.297 

Butanone n.d 81.9 >100 0.297 
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Metabolite NW (µM) OB (µM) Fold-

Change 

P-Value 

Thymidine n.d 0.8 >100 0.297 

3,5-Dibromotyrosine n.d 1.2 >100 0.297 

Methylamine n.d 1.7 >100 0.297 

UDP-N-Acetylglucosamine n.d 2.6 >100 0.297 

Nα-Acetyllysine n.d 2.6 >100 0.297 

N-Acetylaspartate n.d 2.8 >100 0.297 

Propylene glycol n.d 3.3 >100 0.297 

N-Acetylcysteine n.d 3.5 >100 0.297 

N-Acetylglutamate n.d 4.7 >100 0.297 

Choline n.d 8.9 >100 0.297 

ADP n.d 9.2 >100 0.297 

Isoleucine n.d 10.5 >100 0.297 

Methionine n.d 15.0 >100 0.297 

Histidine n.d 15.3 >100 0.297 

Aspartate n.d 16.1 >100 0.297 

Galactose n.d 16.5 >100 0.297 

Valerate n.d 17.0 >100 0.297 

Isobutyrate n.d 21.3 >100 0.297 

N-Acetyltyrosine n.d 24.6 >100 0.297 

Lactulose n.d 40.5 >100 0.297 

Ascorbate n.d 45.2 >100 0.297 

myo-Inositol n.d 107 >100 0.297 

Isocitrate n.d 165 >100 0.297 

Glucitol n.d 170 >100 0.297 

N-Acetylglycine n.d 182 >100 0.297 

Glycerate n.d 465 >100 0.297 

Lactose n.d 662 >100 0.297 

Arabinose n.d 709 >100 0.297 
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Metabolite NW (µM) OB (µM) Fold-

Change 

P-Value 

Acetone 21.0 3.7 -5.6 0.305 

Threonine 12.8 720 56.4 0.305 

3-Hydroxybutyrate 126.8 262 2.1 0.316 

3-Methylxanthine 8.4 25.0 3.0 0.332 

Anserine 41.1 116 2.8 0.345 

Glutamine 294.6 481 1.6 0.347 

4-Hydroxy-3-methoxymandelate 6.4 0.9 -6.8 0.372 

5-Hydroxyindole-3-acetate 0.6 n.d >100 0.389 

2-Hydroxyisovalerate 0.7 n.d >100 0.389 

N-Acetylserotonin 0.7 n.d >100 0.389 

Dimethylamine 1.0 n.d >100 0.389 

N-Acetylornithine 1.3 n.d >100 0.389 

Theophylline 2.4 n.d >100 0.389 

Carnosine 2.5 n.d >100 0.389 

Isopropanol 3.0 n.d >100 0.389 

N-Acetylglutamine 7.1 n.d >100 0.389 

Sebacate 8.1 n.d >100 0.389 

Ethanol 11.3 n.d >100 0.389 

Homovanillate 12.7 n.d >100 0.389 

Dimethyl sulfone 19.8 n.d >100 0.389 

Leucine 23.5 n.d >100 0.389 

Carnitine 25.4 n.d >100 0.389 

Isoeugenol 34.8 n.d >100 0.389 

cis-Aconitate 67.1 n.d >100 0.389 

2-Phosphoglycerate 302 n.d >100 0.389 

Xylose 672 n.d >100 0.389 

2-Hydroxyisobutyrate 108.0 2.0 -55.1 0.395 

Acetate 38.8 66.3 1.7 0.427 
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Metabolite NW (µM) OB (µM) Fold-

Change 

P-Value 

Pyridoxine 1.9 7.9 4.2 0.438 

Galactitol 8.9 37.2 4.2 0.439 

N-Isovaleroylglycine 1.7 6.3 3.8 0.459 

4-Pyridoxate 8.0 19.2 2.4 0.467 

Xanthine 12.1 2.1 -5.7 0.479 

Acetamide 0.9 2.9 3.2 0.499 

3-Methylhistidine 9.6 19.7 2.0 0.508 

Creatine 13.9 32.2 2.3 0.566 

N,N-Dimethylformamide 10.6 4.0 -2.6 0.605 

1-Methylhistidine 76.9 115 1.5 0.658 

Syringate 0.3 0.5 1.8 0.684 

Histamine 14.4 8.0 -1.8 0.706 

Thymine 1.8 3.0 1.6 0.719 

O-Acetylcarnitine 5.0 7.2 1.4 0.733 

Trimethylamine 4.2 2.6 -1.6 0.738 

3-Methyl-2-oxovalerate 24.5 14.4 -1.7 0.745 

Imidazole 8.9 6.4 -1.4 0.749 

Creatinine 22.3 27.7 1.2 0.757 

O-Acetylcholine 15.0 20.8 1.4 0.782 

3,4-Dihydroxymandelate 1.7 1.2 -1.4 0.821 

Methylguanidine 1.3 0.9 -1.4 0.842 

Sarcosine 9.9 7.5 -1.3 0.842 

Betaine 209 165 -1.3 0.844 

Caffeine 13.5 14.2 1.1 0.972 

Glutaric acid monomethyl ester 33.0 34.5 1.0 0.975 

2-Hydroxybutyrate 18.8 19.2 1.0 0.982 
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Having identified these metabolites as significantly altered in OA synovial fluid in 

obesity, the next step was to look at whether these same metabolites were altered in 

OA synovial fibroblasts, and therefore NMR spectroscopy of conditioned media 

following stimulation with TNFα (10ng/ml for 24 hrs) was analysed. However, these 

same 8 metabolites were not significantly increased or decreased in any of the 

groups (figure 3.2). 

When analysing the NMR spectroscopy data from OA synovial fibroblast conditioned 

media, some metabolites were significantly altered following stimulation with TNFα 

(10ng/ml for 24 hrs) in both normal weight and obese patients. 4 metabolites were 

significantly increased in normal weight OA synovial fibroblast secretomes following 

TNFα (10ng/ml for 24 hrs) stimulation, including Formate (p = 0.0258), 1,7-

dimethylxanthine (p = 0.047), N-Acetlyglycine (p = 0.035) and Galacterate (p = 

0.0206) (figure 3.3) (table 3.7). Likewise, 3 metabolites were significantly altered in 

obese OA synovial fibroblast conditioned media following TNFα (10ng/ml for 24 hrs) 

stimulation, including Phenylalanine which was significantly decreased (p = 0.0097), 

Imadizole (p = 0.0347) and Glycolate (p = 0.0404) which were significantly increased 

(figure 3.4) (table 3.8). 
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1 Statistical analysis using one-way ANOVA with Tukey Post Hoc test using Prism 9.0 

(GraphPad).  
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Figure 3.2: Boxplot of metabolites in OA synovial fibroblast conditioned 

media unstimulated and stimulated (10ng/ml TNFα for 24hrs) from obese (OB) 

(n = 6) and normal weight (NW) (n = 5) patients which were identified to be 

altered in OA synovial fluid1.  
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1 Statistical analysis using one tailed paired student T test (following confirmation of 

normal distribution using Shapiro-Wilk test) using Prism 9.0 (GraphPad). 
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Figure 3.3: Boxplot of significantly increased metabolites in OA synovial fibroblast 

conditioned media unstimulated and stimulated (10ng/ml TNFα for 24hrs) from 

normal weight (NW) patients (n= 5).  
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Metabolite NW Basal 

(µM) 

NW TNFα 

(µM) 

Fold-

Change 

P Value 

Galactarate 23.4 41.275 1.763888889 0.010304 

Formate 112.38 137.42 1.222815448 0.025816 

N-Acetylglycine 35.98 44.95 1.24930517 0.034956 

1,7-Dimethylxanthine 5.08 24.9 4.901574803 0.047012 

Guanidoacetate 128.8 156.52 1.215217391 0.054043 

myo-Inositol 577.85 680.2 1.177122091 0.054781 

Galactitol 148.2 51.05 0.344466937 0.095484 

cis-Aconitate 14.36 20.775 1.446727019 0.099316 

Valine 160.3333333 176.6 1.101455301 0.102816 

Allantoin 42.475 86.125 2.027663331 0.122794 

Hydroxyacetone 76.12 48.26 0.633998949 0.12609 

Dimethyl sulfone 5.08 6.26 1.232283465 0.153295 

Galactonate 109.88 103.35 0.940571533 0.174515 

Lactate 1812.66 2006.06 1.10669403 0.188281 

Succinylacetone 328.9666667 12.96666667 0.039416354 0.196237 

Creatine phosphate 43.74 35.275 0.80647005 0.203442 

Pyridoxine 2.48 37.9 15.28225806 0.209667 

Ethanol 4441.95 4144.86 0.933117212 0.210188 

Citraconate 119.525 117.4 0.982221293 0.217474 

N-Nitrosodimethylamine 62.66 40.58 0.647622087 0.222194 
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Table 3.7: Top 20 detected metabolite concentrations from normal 

weight (NW) Basal and normal weight TNFα (10ng/ml for 24hrs) 

synovial fibroblast conditioned media. Statistical analysis using 

one tailed paired Student T test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Statistical analysis using one tailed paired student T test (following confirmation of 

normal distribution using Shapiro-Wilk test) using Prism 9.0 (GraphPad). 
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Figure 3.4: Boxplot of significantly increased metabolites in OA synovial fibroblast 

conditioned media unstimulated and stimulated (10ng/ml TNFα for 24hrs) from 

obese (OB) patients (n= 6)1.  
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Table 3.8: Top 20 detected metabolite concentrations from obese 

(OB) Basal and obese TNFα (10ng/ml for 24hrs) synovial fibroblast 

conditioned media. Statistical analysis using one tailed paired 

Student T test. 

 

 

Metabolite OB Basal 

(µM) 

OB TNFα 

(µM) 

Fold-Change P Value 

Phenylalanine 72.4 76.4 1.055248619 0.009714 

Imidazole 43.1 53.44 1.239907193 0.034718 

Glycolate 71.1 82.12 1.154992968 0.040425 

Valine 151.32 163.8 1.082474227 0.050744 

Glutamine 2265.46 2531.14 1.117274196 0.056332 

O-Acetylcholine 66.18 45.7 0.690540949 0.066172 

Lactate 1624.64 1811.98 1.1153117 0.067555 

Galactitol 40.03333333 256 6.394671107 0.069623 

Ethanol 6282.32 7412.7 1.179930344 0.075327 

Galactarate 16.26666667 43.2 2.655737705 0.108067 

Arginine 865.62 969.76 1.120306832 0.108659 

N-Methylhydantoin 17.92 37.55 2.095424107 0.111307 

1,7-

Dimethylxanthine 

9.225 11 1.192411924 0.115127 

myo-Inositol 541.85 544.96 1.005739596 0.118535 

Creatine 32.08 42.35 1.320137157 0.121315 

Threonine 192.575 551.775 2.865247306 0.129632 

Cadaverine 110.725 105.7 0.954617295 0.130205 

3-

Hydroxyisovalerate 

25 31.48 1.2592 0.133033 

Tyrosine 106.56 112.78 1.058370871 0.149017 

Allantoin 25.46666667 29.225 1.147578534 0.149372 
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3.4.2 Linear Regression Analysis of Significantly Altered 

Metabolites in OA Synovial Fluid  

 

Having identified 10 metabolites from the NMR spectroscopy analysis with 

significantly different concentrations between synovial fluid from obese and normal-

weight OA patients, we further examined these metabolites by subjecting them to 

simple linear regression models to determine their relationship to adiposity/body 

composition parameters. These parameters included body mass index , waist 

circumference, hip circumference and waist to hip ratio. 

When analysing the relationships between metabolite concentrations and body mass 

index, 4 of the 10 metabolites showed a significant linear relationship. Glycine 

showed a strong positive correlation with body mass index, with those patients with 

the highest body mass index having significantly higher synovial fluid glycine 

concentrations (P= 0.006, r2 = 0.58) (table 3.9, Figure 3.7 A). Likewise, Lactate (P= 

0.046, r2 = 0.41) (table 3.9, Figure 3.8 A), succinate (P= 0.015, r2 = 0.5) (table 3.9, 

Figure 3.12 A) and tyrosine (P= 0.046, r2 = 0.39) (table 3.9, Figure 3.13 A) also 

showed positive correlation with body mass index. Amongst these metabolites 

Glucose (P= 0.052, r2 = 0.36) (table 3.9, Figure 2.2 A), Pyruvate (P= 0.07, r2 = 0.32) 

(table3.9, Figure 2.6 A), and N-Nitrosodimethylamine (P= 0.051, r2 = 0.36) (table 3.9, 

Figure 2.5 A) displayed a positive trend with body mass index however this was not 

statistically significant. 

Following BMI analysis, the next adiposity parametric was to determine whether 

there was a linear relationship with waist circumference. From the 10 metabolites, 5 

were found to have a statistically significant linear relationship to waist 
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circumference. Glycine again showed a strong positive correlation with waist 

circumference (P= 0.009, r2 = 0.6) (table 3.9, Figure 3.7 C). Likewise, Lactate (P= 

0.02, r2 = 0.56) (table 3.9, Figure 3.8 C), N-Nitrosodimethylamine (P= 0.02, r2 = 0.51) 

(table 3.9, Figure 3.10 C), succinate (P= 0.01, r2 = 0.57) (table 3.9, Figure 3.12 C) 

and Glutamine:Glutamate (P= 0.036, r2 = 0.55) (table 3.9, Figure 3.16 C) all showed 

strong positive correlation with waist circumference. Tyrosine displayed a positive 

trend with waist circumference however this was not statistically significant (P= 0.06, 

r2 = 0.37) (table 3.9, Figure 3.13 C). 

Linear regression analysis between metabolite concentrations and hip circumference 

showed only one metabolite with a statistically significant relationship, which was 

succinate (P= 0.04, r2 = 0.42) (table 3.9, Figure 3.12 D). Additionally, Glycine (P= 

0.05, r2 = 0.39) (table 3.9, Figure 3.7 D), N-Nitrosodimethylamine (P= 0.08, r2 = 0.34) 

(table 3.9, Figure 3.10 D) and the Glutamine:Glutamate ratio (P= 0.051, r2 = 0.49) 

(table 3.9, Figure 3.16 D) all displayed a positive trend with hip circumference, 

however this was not statistically significant. 

 

Finally, when comparing metabolite concentrations with waist to hip ratio, of the 10 

significantly altered metabolites, 5 showed a significant linear relationship. Glycine 

showed a strong positive correlation with waist to hip ratio (P= 0.004, r2 = 0.66) 

(table 3.9, Figure 3.7 B). Lactate (P= 0.0001, r2 = 0.9) (table 3.9, Figure 3.8 B), N-

Nitrosodimethylamine (P= 0.02, r2 = 0.51) (table 3.9, Figure 3.10 B), succinate (P= 

0.019, r2 = 0.52) (table 3.9, Figure 3.12 B) and Tyrosine (P= 0.019, r2 = 0.52) (table 

3.9, Figure 3.13 B) all showed a strong positive correlation with waist to hip ratio. 

Pyruvate (P= 0.059, r2 = 0.38) (table 3.9, Figure 3.11 B) and Glutamate (P= 0.07, r2 



122 | P a g e  
 

= 0.45) (table 3.9, Figure 3.15 B) both displayed a positive trend with waist to hip 

ratio, however this was not statistically significant. 

Table 3.9: Regression analysis of synovial fluid metabolite 

concentrations with parameters of OA patient adiposity/body 

composition (n = 15 patients)1.  

 

  BMI WC (cm) HC (cm) WHR 

  R
2
 Slope p-value R

2
 Slope p-value R

2
 Slope p-value R

2
 Slope p-value 

1,3 Dimethylurate 0.28 9.0 ± 4.8 0.09 0.13 2.0 ± 1.8 0.30 0.13 2.9 ± 2.7 0.31 0.10 390 ± 415 0.38 

Glucose 0.36 249 ± 110 0.052 0.22 60 ± 40 0.17 0.13 67 ± 62 0.31 0.30 15700 ± 
8400 

0.1 

Glycine 0.58 13.2 ± 3.7 0.006** 0.60 4.0 ± 1.1 0.009** 0.39 4.7 ± 2.1 0.05 0.66 935 ± 236 0.004** 

Lactate 0.41 145 ± 61 0.046* 0.56 50 ± 17 0.02* 0.26 51 ± 33  0.16 0.90 14500 ± 
1900 

0.0001*** 

N-Nitrosodimethylamine 0.36 18.4 ± 8.2 0.051 0.51 7.0 ± 2.4 0.02* 0.34 8.4 ± 4.1 0.08 0.51 1560 ± 542 0.02* 

Pyruvate 0.32 4.8 ± 2.3 0.07 0.25 1.3 ± 0.8 0.15 0.13 1.4 ± 1.3 0.31 0.38 355 ± 161 0.059 

Succinate 0.50 1.1 ± 0.4 0.015* 0.57 0.38 ± 0.11 0.01* 0.42 0.47 ± 0.2 0.04* 0.52 80 ± 28 0.019* 

Tyrosine 0.39 3.4 ± 1.4 0.046* 0.37 1.0 ± 0.47 0.06 0.20 1.1 ± 0.8 0.20 0.52 267 ± 92 0.019* 

Glutamine 0.11 -12.3 ± 14.4 0.43 0.03 -2.1 ± 4.7 0.17 0.04 -3.5 ± 6.6 0.61 0.02 -379 ± 1161 0.75 

Glutamate 0.04 22.0 ± 43.7 0.63 0.29 18.4 ± 11.7 0.17 0.13 17.4 ± 18.3 0.38 0.45 5586 ± 
2542 

0.07 

Glutamine:Glutamate 0.36 -0.20 ± 0.11 0.11 0.55 -0.08 ± 0.03 0.036* 0.49 -0.10 ± 0.04 0.051 0.38 -15.4 ± 8.0 0.111 

 

 

 

 
1 Statistical analysis of these general linear models was conducted on SPSS Statistics (version 27)  (Farah et al., 
2022). 
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Figure 3.5: Regression analysis of the relationship between the synovial fluid concentration 

of 1,3-Dimethylurate and (A). BMI, (B) W:H (C) WC  and (D) HC. (n = 15 patients). 

2 0 2 5 3 0 3 5 4 0

0

1 0 0

2 0 0

3 0 0

4 0 0

BMI

1
,3

 D
im

e
th

y
lu

ra
te

 (
μ

M
)

R2= 0.28
p = 0.09

A.

0.7 0.8 0.9 1.0 1.1

0

100

200

300

400

W:H

1
,3

 D
im

e
th

y
lu

ra
te

 (
μ

M
)

R2= 0.10
p = 0.38

B.

80 100 120 140

-100

0

100

200

300

400

Waist Circumference (cm)

1
,3

 D
im

e
th

y
lu

ra
te

 (
μ

M
)

R2= 0.13
p = 0.30

C.

80 90 100 110 120 130 140

0

100

200

300

400

Hip Circumference (cm)

1
,3

 D
im

e
th

y
lu

ra
te

 (
μ

M
)

R2= 0.13
p = 0.31

D.



124 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Regression analysis of the relationship between the synovial fluid 

concentration of Glucose and (A). BMI, (B) W:H (C) WC  and (D) HC. (n = 15 

patients). 
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Figure 3.7: Regression analysis of the relationship between the synovial fluid 

concentration of Glycine and (A). BMI, (B) W:H (C) WC  and (D) HC. (n = 15 

patients). 
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Figure 3.8: Regression analysis of the relationship between the synovial fluid 

concentration of Lactate and (A). BMI, (B) W:H (C) WC  and (D) HC. (n = 15 

patients). 
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Figure 3.10: Regression analysis of the relationship between the synovial fluid 

concentration of N-Nitrosodimethylamine and (A). BMI, (B) W:H (C) WC  and (D) 

HC. (n = 15 patients). 
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Figure 3.11: Regression analysis of the relationship between the synovial fluid 

concentration of Pyruvate and (A). BMI, (B) W:H (C) WC  and (D) HC. (n = 15 

patients). 
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Figure 3.12: Regression analysis of the relationship between the synovial fluid 

concentration of Succinate and (A). BMI, (B) W:H (C) WC  and (D) HC. (n = 15 

patients). 
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Figure 3.13: Regression analysis of the relationship between the synovial fluid 

concentration of Tyrosine and (A). BMI, (B) W:H (C) WC  and (D) HC. (n = 15 

patients). 
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Figure 3.14: Regression analysis of the relationship between the synovial fluid 

concentration of Glutamine and (A). BMI, (B) W:H (C) WC  and (D) HC. (n = 15 

patients). 
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Figure 3.15: Regression analysis of the relationship between the synovial fluid 

concentration of Glutamate and (A). BMI, (B) W:H (C) WC  and (D) HC. (n = 15 

patients). 
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Figure 3.16: Regression analysis of the relationship between the synovial fluid 

concentration of Glutamine:Glutamate and (A). BMI, (B) W:H (C) WC  and (D) HC. 

(n = 15 patients). 
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3.4.3 Metabolomic multivariate analysis of obese OA synovial fluid 

compared to normal weight OA synovial fluid 

 

Having identified and annotated metabolite peaks detected by Chemonx (Edmonton, 

Canada), concentrations of each metabolite were assorted into a matrix and 

imported into SIMCA (Umetrics, Germany). OA synovial fluid from normal weight and 

obese patients (table 3.3) underwent multivariate analysis. PCA was used to plot the 

data (figure 3.17), and from this initial analysis no obvious clustering was observed, 

however all patients fell within Hoteling’s T2 range (displays a measure of how far 

each observation is from the model centre) suggesting no clear outliers within 

dataset. Model diagnostics of the PCA analysis (figure 3.18) show a low R2 and Q2, 

suggesting further multivariate analysis was required. 
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Figure 3.17: Scores plot of 1D 1H NMR spectra of normal weight (NW) and 

obese (OB) OA synovial fluid subjected to PCA-X plot.  

The values on the axis labels indicate the proportion of the variance captured by each 

principal component. 
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OPLS-DA was used as a classification model providing supervised regression. This 

model (figure 3.19) showed no obvious outliers using Hotelling T2 range, with further 

clustering of normal weight and obese patients and lower inter group variability with 

an increase of variation within the group. However, model diagnostics of the OPLS-

DA model (figure 3.20) showed a low predictive ability and low fit. Statistical analysis 

of this OPLS-DA model using CV-ANOVA (Table 3.10) shows a p value of 0.6 and 

therefore cannot be concluded that the observed effect isn’t due to random variations 

within the data.  

A possible explanation for this low fit and predictive ability of the model might be the 

inclusion of metabolites which do not contribute to the response. One method of 

altering this is by introducing a cut-off score to remove metabolites which contribute 

the least to the model. These metabolites are ranked based on their variable 

influence of projection (VIP), which displays the overall importance of each variable 

(x or metabolites) on all responses (Y) cumulatively over all components. Therefore, 

metabolites with a VIP score <1 were excluded from the analysis (figure 3.21).  
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Figure 3.18: Summary of fit of 1D 1H NMR spectra of normal weight and obese OA 

synovial fluid subjected to PCA-X plot.  

The R
2 

and Q
2 

values for both components are 0.37 and -0.1 and 0.59 and -0.21 respectively 
suggesting a bad fit and poor predictive ability for this model. 
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Table 3.10: Cross Validation Analysis of Variance (CV-ANOVA) performed on 

OPLS-DA model of normal weight and obese OA synovial fluid (Terminology 

can be found in Table 3.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M4 SS DF MS F p SD 

Total corr. 14 14 1     1 

Regression 3.04482 4 0.761206 0.694837 0.612449 0.872471 

Residual 10.9552 10 1.09552     1.04667 
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Figure 3.19: Scores plot of 1D 1H NMR spectra of normal weight (NW) and obese (OB) 

OA synovial fluid subjected to OPLS-DA plot.  

The values on the axis labels indicate the predictive component (between group variation) and 

orthogonal component (within group variation). The separation of classes is maximized along the 

predictive component, while there is some intra-class variability within orthogonal component. 
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Figure 3.20: Summary of fit of 1D 1H NMR spectra of normal weight and 

obese OA synovial fluid subjected to subjected to OPLS-DA plot. 

The R
2 

and Q
2 

values for both components are 0.34 and 0.03 and 0.31 and 0.05 
respectively suggesting a poor fit and poor prediction for this model. 
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Figure 3.21: VIP scores for metabolites derived from 1H NMR spectra of normal weight 

and obese OA synovial fluid subjected to OPLS-DA plot.  
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Following this exclusion criteria using VIP cut-off of ≥1, a new OPLS-DA model was 

generated (figure 3.22). This OPLS-DA model shows a reduced intra-class variation 

within the normal weight OA synovial fluid but a similar between group variation. 

Model diagnostics of this OPLS-DA model show an increased fit and predictive 

ability of the data (figure 3.22) and statistical analysis using CV-ANOVA (table 3.11) 

show a p value of 0.06. Further analysis was not performed on the data so as not to 

overfit the model. Those metabolites which had a VIP score of ≥1 (figure 3.24) where 

included in metabolite set enrichment analysis (MSEA) using MetaboAnalyst 5 

(Montreal, Canada).  
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Figure 3.22: Scores plot of  1H NMR spectra of normal weight and obese OA 

synovial fluid subjected to OPLS-DA plot with a VIP cut-off of ≥ 1.  

The values on the axis labels indicate the predictive component (between group variation) and 

orthogonal component (within group variation). The separation of classes is maximized along 

the predictive component, while there is some intra-class variability within orthogonal 

component. 
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Figure 3.23: Summary of fit of 1H NMR spectra of normal weight and obese OA 

synovial fluid subjected to OPLS-DA plot with a VIP cut-off of ≥ 1.  

The R
2 

and Q
2 

values for both components are 0.41 and 0.35 and 0.47 and 0.38 respectively 
suggesting a good fit and good prediction for this model. 
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Table 3.11: Cross Validation Analysis of Variance (CV-ANOVA) 

performed on OPLS-DA model of normal weight and obese OA 

synovial fluid with a VIP cut-off of ≥ 1 (Terminology can be found in 

Table 3.2) 

 

 

 

 

 

 

 

 

 

 

 

 

M5 SS DF MS F p SD 

Total corr. 14 14 1     1 

Regression 9.91833 6 1.65305 3.23996 0.0639622 1.28571 

Residual 4.08167 8 0.510209     0.714289 
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Figure 3.24: VIP scores for metabolites derived from 1H NMR spectra of normal weight 

and obese OA synovial fluid subjected to OPLS-DA plot with a VIP cut-off of ≥ 1.   
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3.4.4 Metabolic Pathway Analysis of OA synovial fluid and synovial 

fibroblast conditioned media from obese patients compared to 

normal weight patients 

 

3.4.4.1 OA Synovial Fluid 

3.4.4.2  

Following multivariate analysis of OA synovial fluid and OA synovial fibroblast 

conditioned media from obese and normal weight patients, metabolic pathway 

analysis was conducted using the KEGG database on MetaboAnalyst 5.0. A number 

of metabolic pathways were altered in obese OA synovial fluid compared to normal 

weight OA synovial fluid, including Alanine, Aspartate and Glutamate metabolism, 

Caffeine metabolism, Valine, Leucine and Isoleucine metabolism and Histidine 

metabolism (figure 3.25).  

Metabolite set enrichment analysis was also conducted using the KEGG database 

on MetaboAnalyst 5.0. The top 5 significantly enriched metabolites (table 3.12) were 

metabolites involved in Glutamine and Glutamate metabolism (p = 5.34x 10-6), 

Glyoxylate and Dicarboxylate Metabolism (p = 1.06x 10-4), Glycine, Serine and 

Threonine metabolism (p = 1.27x 10-4), Aminoacyl-tRNA biosynthesis (p = 1.42 x 

10-4), and Alanine, Aspartate and Glutamate Metabolism (p = 5.42x 10-4). Likewise, 

MSEA also identified significantly enriched pyruvate metabolism and glycolysis. 
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Figure 3.25: Pathway analysis of the most altered metabolic pathways in obese OA synovial 

fluid (n = 5) compared to normal weight OA synovial fluid (n = 6) patients.  

Metabolic pathways are arranged by p values on Y-axis and pathway impact values (from pathway 

topology analysis) on X-axis. The node colour is based on p values and the node radius is based 

on pathway impact values 
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Table 3.12: Metabolomics pathway analysis of normal weight and 

obese OA synovial fluid using KEGG metabolomics library on 

MetaboAnalyst 5.0.  

 

 Metabolite Set Total Hits Expect P value Holm P FDR 

 
D-Glutamine and 
D-glutamate 
metabolism 

6 4 0.154 
5.34E-

06 
4.48E-

04 
4.48E-

04 

 
Glyoxylate and 
dicarboxylate 
metabolism 

32 6 0.82 
1.06E-

04 
0.00879 0.00298 

 
Glycine, serine 
and threonine 
metabolism 

33 6 0.846 
1.27E-

04 
0.0104 0.00298 

 
Aminoacyl-tRNA 
biosynthesis 

48 7 1.23 
1.42E-

04 
0.0115 0.00298 

 

Alanine, 
aspartate and 
glutamate 
metabolism 

28 5 0.717 
5.42E-

04 
0.0434 0.00911 

 
Arginine and 
proline 
metabolism 

38 5 0.974 0.00229 0.181 0.0321 

 

Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 

4 2 0.102 0.00372 0.29 0.0446 

 
Arginine 
biosynthesis 

14 3 0.359 0.00466 0.359 0.0489 

 
Nitrogen 
metabolism 

6 2 0.154 0.009 0.684 0.084 

 
Pyruvate 
metabolism 

22 3 0.564 0.0171 1 0.144 

 
Phenylalanine 
metabolism 

10 2 0.256 0.0253 1 0.188 

 
Glycolysis / 
Gluconeogenesis 

26 3 0.666 0.0269 1 0.188 

 



150 | P a g e  
 

3.4.4.2 OA Synovial Fibroblast Secretomes 

 

Following multivariate analysis OA synovial fibroblast conditioned media from obese 

and normal weight patients stimulated with and without TNFα (10ng/ml for 24 hrs), 

metabolic pathway analysis was conducted using the KEGG database on 

MetaboAnalyst 5.0. Several metabolic pathways were altered in the secretomes of 

normal weight stimulated compared to unstimulated OA synovial fibroblasts including 

Alanine, Aspartate and Glutamate metabolism, Phenylalanine, Tyrosine and 

Tryptophan biosynthesis, Glycine, Serine and Threonine metabolism and Glycolysis 

(figure 3.26).   

Metabolite set enrichment analysis shows Aminoacyl-tRNA biosynthesis (p = 2.62 x 

10-6), Glycine, Serine and Threonine metabolism (p = 8.82x 10-5), Glyoxylate and 

Dicarboxylate metabolism (p =6.04x 10-4), Arginine Biosynthesis (p = 1.01 x 10-3), 

Valine, Leucine and Isoleucine Biosynthesis (p = 1.97x 10-3) as the top 5 most 

significantly enriched metabolites (table 3.13). Likewise, Metabolite set enrichment 

analysis also identified significantly enriched pyruvate metabolism (p = 0.0385), and 

Glycolysis (p =0.0111) and Glutamine and Glutamate metabolism (p = 0.0163) (table 

3.13). 
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Figure 3.26: Pathway analysis of OA synovial fibroblast conditioned media with 

the  most altered metabolic pathways in normal weight TNFα stimulated synovial 

fibroblasts secretomes compared to unstimulated synovial fibroblasts (n = 5). 

Metabolic pathways are arranged by p values on Y-axis and pathway impact values 

(from pathway topology analysis) on X-axis. The node colour is based on p values and 

the node radius is based on pathway impact values 

 

 

 



152 | P a g e  
 

Table 3.13: Metabolomics pathway analysis of normal weight basal 

synovial fibroblast conditioned media compared to normal weight 

TNFα (10ng/ml for 24hrs) synovial fibroblast conditioned media. 

 

 Metabolite Set Total Hits Expect P value Holm P FDR 

 
Aminoacyl-tRNA 
biosynthesis 

48 10 1.67 
2.62E-

06 
2.20E-

04 
2.20E-

04 

 
Glycine, serine and 
threonine 
metabolism 

33 7 1.15 
8.82E-

05 
0.00732 0.00371 

 
Glyoxylate and 
dicarboxylate 
metabolism 

32 6 1.11 
6.04E-

04 
0.0496 0.0169 

 
Arginine 
biosynthesis 

14 4 0.488 0.00101 0.0821 0.0213 

 
Valine, leucine and 
isoleucine 
biosynthesis 

8 3 0.279 0.00197 0.158 0.0316 

 
Alanine, aspartate 
and glutamate 
metabolism 

28 5 0.975 0.00226 0.179 0.0316 

 

Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 

4 2 0.139 0.00683 0.533 0.0819 

 
Arginine and proline 
metabolism 

38 5 1.32 0.00886 0.682 0.093 

 
Glycolysis / 
Gluconeogenesis 

26 4 0.905 0.0111 0.843 0.104 

 
D-Glutamine and D-
glutamate 
metabolism 

6 2 0.209 0.0163 1 0.137 

 
Citrate cycle (TCA 
cycle) 

20 3 0.696 0.0299 1 0.228 

 
Vitamin B6 
metabolism 

9 2 0.313 0.0366 1 0.249 

 
Pyruvate 
metabolism 

22 3 0.766 0.0385 1 0.249 

 Caffeine metabolism 10 2 0.348 0.0448 1 0.251 

 
Phenylalanine 
metabolism 

10 2 0.348 0.0448 1 0.251 
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Metabolic pathway analysis of OA synovial fibroblast conditioned media from obese 

patients stimulated with and without TNFα (10ng/ml for 24 hrs) was also conducted 

using the KEGG database on MetaboAnalyst 5.0. Amongst the altered metabolic 

pathway in obese TNFα secretomes compared to unstimulated secretomes are 

Alanine, Aspartate and Glutamate metabolism, Phenylalanine, Tyrosine and 

Tryptophan biosynthesis, Glycine, Serine and Threonine metabolism and Arginine 

Biosynthesis (figure 3.27).   

Metabolite set enrichment analysis (table 3.14) shows Aminoacyl-tRNA biosynthesis 

(p = 8.92 x 10-8), Glycine, Serine and Threonine metabolism (p = 4.55x 10-5), 

Histidine metabolism (p = 0.0012), Glyoxylate and dicarboxylate metabolism (p = 

0.00268) and Phenylalanine, Tyrosine and Tryptophan biosynthesis (p = 0.00561). 

Likewise, metabolite set enrichment analysis also identified significantly enriched 

pyruvate metabolism (p = 0.0298), and Glycolysis (p = 0.00782) and Glutamine and 

Glutamate metabolism (p = 0.0135).   
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Figure 3.26: Pathway analysis of OA synovial fibroblast conditioned media 

with the  most altered metabolic pathways in obese TNFα stimulated 

synovial fibroblasts secretomes compared to unstimulated synovial 

fibroblasts (n = 6). 

Metabolic pathways are arranged by p values on Y-axis and pathway impact 

values (from pathway topology analysis) on X-axis. The node colour is based on p 

values and the node radius is based on pathway impact values 
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Table 3.14: Metabolomics pathway analysis of obese basal synovial 

fibroblast conditioned media compared to obese TNFα (10ng/ml for 

24hrs) synovial fibroblast conditioned media. 

 

 
Metabolite Set Total Hits Expect P value Holm P FDR 

 
Aminoacyl-tRNA 
biosynthesis 

48 11 1.51 
8.92E-

08 
7.50E-

06 
7.50E-

06 

 
Glycine, serine 
and threonine 
metabolism 

33 7 1.04 
4.55E-

05 
0.00378 0.00191 

 
Histidine 
metabolism 

16 4 0.505 0.0012 0.0985 0.0336 

 
Glyoxylate and 
dicarboxylate 
metabolism 

32 5 1.01 0.00268 0.217 0.0562 

 

Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 

4 2 0.126 0.00561 0.449 0.0943 

 
Glycolysis / 
Gluconeogenesis 

26 4 0.82 0.00782 0.618 0.101 

 
Arginine 
biosynthesis 

14 3 0.442 0.0084 0.655 0.101 

 

Alanine, 
aspartate and 
glutamate 
metabolism 

28 4 0.883 0.0102 0.787 0.107 

 
D-Glutamine and 
D-glutamate 
metabolism 

6 2 0.189 0.0135 1 0.126 

 
Valine, leucine 
and isoleucine 
biosynthesis 

8 2 0.252 0.0242 1 0.203 

 
Arginine and 
proline 
metabolism 

38 4 1.2 0.0292 1 0.208 

 
Pyruvate 
metabolism 

22 3 0.694 0.0298 1 0.208 

 
Phenylalanine 
metabolism 

10 2 0.315 0.0373 1 0.241 

 
Galactose 
metabolism 

27 3 0.852 0.0506 1 0.304 
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3.5 Discussion 

 

3.5.1 The impact of obesity on the metabolome of synovial joint 

fluid and synovial joint tissue in hip osteoarthritis patients 

 

3.5.1.1 Metabolomics of biological fluids in OA patients and animal models 

Since OA is generally a localised inflammatory joint disorder, the synovial fluid, 

which surrounds the joints, represents an appropriate biological fluid to identify any 

changes in joint pathology and inflammatory state. In contrast, other joint disorders 

such as rheumatoid arthritis, involve systemic inflammatory changes and can 

therefore be identified using circulating blood (plasma/serum). However, with the 

inflammation in osteoarthritis largely being localised to the specific diseased joint, 

determinants of circulating markers are deemed less relevant to the diseased joint 

pathology. A few previous studies have examined changes in the metabolome of 

synovial fluid in either OA patients or in OA preclinical animal models, and these are 

discussed below in the context of the present dataset 

 

3.5.1.2 Preclinical animal model data 

 

Synovial fluid was collected in an ovine model of OA joint damage induced, following 

anterior cruciate ligament (ACL) surgery, and analysed using NMR spectroscopy 

(Mickiewicz, Heard, et al., 2015). 24 metabolites were increased with ACL OA and 

Sham surgery including alanine, lysine, tyrosine, threonine, arginine, phenylalanine, 
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serine, leucine, isoleucine, valine, hypoxanthine, methionine, hydroxyproline, proline, 

aspartate, asparagine, glutamate, 2- hydroxybutyrate, choline, lactate, succinate, 

formate, tryptophan and acetate) (Mickiewicz, Heard, et al., 2015) (table 3.6). Six 

metabolites were decreased compared to non-operated sheep including 2-

oxovalerate, 2-oxoglutarate, ethanol, glucose, pyruvate and 3- hydroxybutyrate 

(Mickiewicz et al., 2015) (table 3.6). Metabolic pathway analysis was conducted and 

those samples which were impaired in early degenerative joint diseases were 

Glycine, serine, and threonine metabolism, Aminoacyl-tRNA biosynthesis, Arginine 

and proline metabolism, Alanine, aspartate and glutamate metabolism. NMR 

spectroscopy conducted in this study comparing obese OA synovial fluid to normal 

weight to obese OA synovial fluid, also had significant enrichment on all these 

pathways (Mickiewiczet al., 2015) (table 3.12). 

Following on from the preclinical ovine study, the same group then collected synovial 

fluid samples from symptomatic chronic knee OA patients and normal human 

cadaveric knee joints and conducted 1H NMR spectroscopy and GC-MS on the 

samples (Mickiewicz et al., 2015). Following multivariate analysis of OA vs non-OA 

controls, 11 metabolites were found to be the most significantly discriminant 

metabolites. Those highlighted were also found to be increased or decreased 

respectively within the modelling of OA synovial fluid samples of this study. There 

was an increase in fructose and citrate and a decrease in O-acetylcarnitine, N-

phenylacetylglycine, methionine, ethanol, creatine, malate, ethanolamine, 3-

hydroxybutyrate and hexanoylcarnitine (Mickiewicz et al., 2015) (table 3.6).  

In other metabolomics study by the same group looking into the protective role of 

integrin α1β1 role and the inhibitory role of epidermal growth factor receptor (EGFR) 

in OA, serum was collected from wild type and integrin α1-null mice that underwent 
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surgical destabilization of the medial meniscus (DMM), a post traumatic osteoarthritis 

(PTOA) model (Mickiewicz et al., 2016). NMR spectroscopy conducted showed, an 

increase in the concentration of dimethyl sulfone (DMSO) and glutamine regardless 

of sex and a reduction in concentration of serotonin, 3-hydroxyisovalerate, 

phenylalanine in both α1-null female and male groups when compared to wild type 

mice (Mickiewicz et al., 2016) (table 3.6). Likewise amongst the pathways that where 

most disturbed in α1-null compared to wild type mice include alanine, aspartate and 

glutamate metabolism, arginine and proline metabolism, tryptophan metabolism, 

valine, leucine and isoleucine degradation, phenylalanine metabolism, 

phenylalanine, tyrosine and tryptophan biosynthesis, glycine, serine, alanine 

and threonine metabolism (Mickiewicz et al., 2016) (table 3.12). 

Interestingly, HR-NMR spectroscopy of synovial fluid collected from canine model of 

OA using ACL surgery compared to normal joint SF showed an increase in Alanine, 

isoleucine, lactate, lipoprotein associated fatty acid, ketone bodies (3-D-

hydroxyisobutyrate and 3-D-hydroxybutyrate), pyruvate, acetate, glycerol and N 

acetyl-glycoproteins and a decrease in glucose concentration (Damyanovich et al., 

1999) (table 3.6). 
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3.5.1.3 Clinical patient data 

 

A previous study comparing the serum metabolome of knee OA patients to non-OA 

controls using electrospray ionisation tandem MS found 14 metabolite ratios were 

significantly associated with knee OA, including the ratios of Valine: Histidine and 

Leucine: Histidine (Zhai et al., 2010). These ratios remained after adjustment for age 

and BMI and are a potential clinical OA biomarker. These metabolites are associated 

with BCAA and cannot be synthesised within the body. This increase in BCAA levels 

could suggest an increased rate of protein breakdown or an indirect effect 

associated with collagen breakdown. BCAA are known to increase the production of 

cytokines such as IFN, TNF, IL1 and IL2 (Bassit et al., 2000) and therefore this could 

suggest a link between metabolite levels, collagen degradation and inflammation 

associated with knee OA.  

Other metabolomics studies, such as high-resolution magnetic angle spinning 

(HRMAS) of human knee cartilage from end stage OA compared to gender matched 

cadaveric cartilage show a decrease in alanine concentration (a marker of 

degradation of collagen framework) and N-Acetyl levels (a marker of total 

proteoglycan content) (Shet et al., 2012; Tufts et al., 2015). N-Acetyl levels (including 

N-Acetylglucosamine, N-Acetylaspartate, N-Acetylglutamate and N-Acetyltyrosine) 

were increased, although not significantly, in OA synovial fluid in obese patients 

compared to normal weight patients suggesting higher degradation of collagen and 

proteoglycan content in OA joints in obese patients compared to normal weight 

patients (table 3.6). 
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The use of MS and its hyphenated techniques have also been employed in 

inflammatory joint disease metabolomics. One study used HPLC-MS for global 

metabolomic profiling of healthy (n = 5), OA (n = 5) and RA (n=3) synovial fluid and 

found distinct clustering between OA/RA synovial fluid samples compared to controls 

in PCA model of metabolite intensities (Carlson et al., 2018). Pathway analysis of OA 

vs healthy synovial fluid showed altered arginine and proline metabolism, 

chondroitin sulfate degradation, amino oxidase reactions, COX reactions, and 

creatine biosynthesis (Carlson et al., 2018). UPLC/MS performed on plasma of 

human knee OA patients (n = 64) compared to non-OA controls (n = 45) showed a 

65% decreased plasma concentration of arginine compared to the healthy controls 

(Zhang et al., 2016).  

In conclusion, research within OA and other inflammatory joint disorders in both 

preclinical animal models and clinical samples show distinct differences in the 

metabolome of healthy compared to inflammatory joint disease patients within serum 

and synovial fluid. Many of these altered metabolic pathways were also enriched 

within the OA synovial fluid of obese OA patients within this study. These differences 

may be indicative of an altered metabolic status observed in the resident and 

infiltrating cells within the tissues of the OA synovial joint in obese individuals. 

3.5.1.4 Metabolomics of OA synovial fibroblast conditioned media 

 

Another aspect of this study was to analyse the metabolome of OA synovial 

fibroblast from obese and normal weight patients following stimulation with and 

without (TNFα at 10ng/ml for 24hrs) as a model of inflammatory cells.  
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3.5.1.5 Formate Metabolism 

 

Amongst the changes in metabolite concentrations observed in normal weight OA 

synovial fibroblast secretomes upon stimulation was an increase in Formate levels 

(p= 0.0258) (figure 3.3). Formate levels however remained constant within stimulated 

obese OA synovial fibroblast secretomes compared to unstimulated obese OA 

synovial fibroblast. Formate is an intermediate metabolite in one carbon metabolism 

and is a mediator between mammalian organisms, the diet, and the gut microbiome 

as formate is a by-product of anaerobic fermentation of some enteric bacterial 

species (Pietzke, Meiser and Vazquez, 2020).  

Formate has been shown to contribute towards the one carbon metabolite demands 

of purine and thymidylate synthesis in proliferating cells which require purine for the 

synthesis of RNA, DNA and the free ATP pool (Ducker et al., 2016). Formate is 

known to have different fates depending on the metabolic needs of the cell and so 

the exact role formate plays in the OA synovial fibroblast metabolism is unknown 

however this would be an interesting metabolite to investigate further, possibly 

through carbon labelling mass spectroscopy, to follow its fate throughout one carbon 

metabolism.  

3.5.1.6 Galactose Metabolism 

 

The most significantly altered metabolite within unstimulated normal weight OA 

synovial fibroblast compared to stimulated OA synovial fibroblast secretomes was 

Galactarate. Galactarate is a metabolite within the galactose metabolic pathway. 

Galactose can be metabolised to form glucose-1-phosphate which can then be 

converted into glucose-6-phosphate, and therefore could be a metabolite which is 
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utilised by cells to generate glucose for glycolysis (Elsas Ii and Lai, 1998). Several 

studies have been conducted on the disorders of galactose metabolism and 

alterations in Leloir metabolism and although interesting, metabolite set enrichment 

analyses of OA synovial fibroblast secretomes shows galactose metabolism has 

consistently low false discovery rate suggesting this is not the most significantly 

enriched metabolic pathway within the secretomes of OA synovial fibroblasts and 

therefore does not warrant further investigation.   

3.5.1.7 Caffeine Metabolism  

 

From the key metabolites altered in normal weight OA synovial fibroblast secretomes 

upon stimulation was 1,7 dimethylxanthine or paraxanthine which is a caffeine 

derivative that is generated through liver biotransformation of caffeine and amounts 

to 80% of caffeine derivatives produced by caffeine in humans (Lelo et al., 1986). 

Paraxanthine has similar sympathomimetic and ergogenic effects to caffeine and has 

been shown to suppress neutrophil and monocyte chemotaxis (Horrigan, Kelly and 

Connor, 2006) and reduce the production of TNFα from human blood (Horrigan, 

Kelly and Connor, 2004). Caffeine was also identified amongst the key metabolites 

with high VIP scores (≥1). Caffeine has been shown to reduce human lymphocyte 

function through decreased T cell proliferation and reduced production of T helper 

(Th) cell cytokines from Th1 (IL2 and IFN-y), Th2 (IL4, IL5) and Th3 (IL-10) cells 

(Horrigan, Kelly and Connor, 2006). Likewise, metabolite set enrichment analysis of 

stimulated normal weight OA synovial fibroblasts secretomes show caffeine 

metabolism was significantly enriched (p = 0.00448) (table 3.13). This suggests the 

presence of caffeine derivatives may be a negative feedback mechanism, released 
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by the normal OA synovial fibroblast challenged with TNFα, as a means of reducing 

the inflammatory microenvironment through its anti-inflammatory properties.   

3.5.1.8 N-Acetylglycine 

 

Amongst the changes observed in normal weight OA synovial fibroblast secretomes 

upon stimulation was increased N-Acetylglycine levels (p = 0.035) (figure 3.3). N-

Acetylglycine is a N-terminal capped form of the alpha amino acid glycine and an 

amino acid derivative. N-terminal protein acetylation is one of 2 distinct mechanism 

of protein acetylation. Acetylation of proteins is a form of post-translational 

modification of proteins were an acetyl group  (CH3CO) is added to a molecule. This 

acetylation maybe a mechanism of post-translational modification, providing acetyl 

groups for neighbouring cells or could simply be a transitional step within glycine 

metabolism. Glycine was also significantly increased in obesity within OA synovial 

fluid, possibly suggesting glycine metabolism is increased due to inflammatory 

challenge in the OA synovial joint.  

Interestingly several studies have shown alterations within glucose metabolism can 

regulate histone acetylation and there are key molecular links between cellular 

metabolism and histone acetylation (Cai et al., 2011; Lu and Thompson, 2012; 

Evertts et al., 2013). Notably, OA synovial fibroblast that have been isolated from OA 

synovial membrane and cultured for a few passages, retain their metabolic and 

inflammatory phenotype in vitro. A possible explanation for this phenomenon could 

be epigenetic changes. Although not decisive proof, this preliminary data could 

suggest any epigenetic changes within OA synovial fibroblast from obese patients 
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could be maintained via protein acetylation, however further research would be 

required to substantiate this hypothesis.  

3.5.1.9 Imidazole 

 

Another metabolite which was significantly increased in obese OA synovial fibroblast 

secretomes upon inflammatory challenge was Imidazole. Imidazole is an aromatic 

heterocycle species which contains a ring structure (heterocycle) that is incorporated 

into several metabolites such as histidine and the hormone histamine. Metabolite set 

enrichment analysis of obese OA synovial fibroblast secretomes upon inflammatory 

stimulation, shows increased enrichment of Histidine metabolism (p = 0.0012) (table 

3.14). This suggests imidazole may be a biological building block for the generation 

of the amino acid histidine. Histamine is a well-known mediator of inflammation and 

its enzyme, histidine decarboxylase is induced at inflammatory sites in late and 

chronic phases of non-allergic and allergic inflammation (Hirasawa, 2019). 

3.5.1.10 Phenylalanine 

 

Amongst the metabolites which were significantly different in metabolome of obese 

OA synovial fibroblast upon inflammatory challenge was phenylalanine, which was 

significantly decreased (p = 0.009, table 3.8). Phenylalanine metabolism is altered in 

both inflammatory conditions like inflammatory bowel diseases and in ageing (Julià 

et al., 2016). Phenylalanine metabolism is dysregulated in the serum of elderly 

persons suggesting systemic changes in phenylalanine metabolism is a an indicator 

of ageing (Capuron et al., 2011). Serum inflammatory markers IL6 and CRP were 

found to be associated with increased phenylalanine levels (Capuron et al., 2011). 
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Phenylalanine metabolism is also altered in obesity. Obese patients who have 

hyperglycemia, hypertension and dyslipidemia have altered serum phenylalanine 

metabolism compared to obese patients without these conditions, suggesting in 

intimate link between “metabolically abnormal” obesity and phenylalanine 

metabolism (Chen et al., 2015). Pathway analysis of the metabolome of these 

“metabolically abnormal” obese patients also showed significant enrichment of 

phenylalanine metabolism which was also observed in the metabolome of obese OA 

synovial fibroblast secretomes upon inflammatory challenge (p = 0.037, table 3.14) 

(Chen et al., 2015). 

Another aspect of this study was to see whether the OA synovial fluid metabolome 

and metabolites was similar to the metabolites identified in OA synovial fibroblast 

secretomes in normal weight and obese patients. Univariate analysis of OA synovial 

fibroblast secretomes show that those metabolites significantly altered in OA 

synovial fluid are not significantly altered in OA synovial fibroblast secretomes from 

normal weight or obese patients (figure 3.2). There are a few possible explanations 

for this divergence in metabolomes from these samples. OA synovial fluid is a 

biological fluid which encompasses the entire synovial joint and therefore is in 

contact with several cell types and tissues including articular cartilage, which 

contributes to the metabolome of the synovial fluid. In contrast, the synovial 

fibroblast conditioned media metabolome comes from one source i.e., cultured 

synovial fibroblast cells. Furthermore, OA is a chronic inflammatory condition, with 

the synovial fluid representing metabolites that have accumulated over time and in 

some cases may have developed an equilibrium homeostatic state. In contrast,  the 

synovial fibroblast conditioned media was collected over a 24-hour period and may 

therefore not be fully representative of the chronic state of OA. Additionally, OA 
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synovial fibroblast conditioned media was collected using RPMI-1640 cell culture 

media, which although underwent normalisation, will still result in a different 

metabolome to OA synovial fluid. Another difference is the number of cells within 

tissue which contribute to OA synovial fluid which is exponentially higher than the 

40,000 cells which were used to generate the conditioned media from OA synovial 

fibroblast.   

3.5.2 Metabolomics Studies in OA 

 

Following collection of metabolite concentrations from OA synovial fluid, multivariate 

analysis was undertaken using PCA which allows for identification of any anomalous 

metabolites or samples. Following PCA analysis, further modelling was conducted 

using OPLS-DA, which was used to identify whether there was clustering of samples 

and which metabolites contributed the most to the variability between obese and 

normal weight OA synovial fluid. This was obtained by looking at VIP scores (figure 

3.24).  

The metabolite with the highest VIP score, 5-aminolevulinic acid (5ALA) is a 

precursor to heme in humans (Gardner and Cox, 1988). It is synthesised using 

glycine and succinyl-CoA using the Shemin pathway at the mitochondria (Gardner 

and Cox, 1988). 5ALA has been shown to increase ATP levels in murine model 

through increased aerobic energy metabolism via COX signalling, which could 

suggest a possible role for 5ALA in energy metabolism within obese OA synovial 

fluid compared to normal weight synovial fluid (Ogura et al., 2011). Notably, 

metabolites such as glycolate, N-Nitrosodimethylamine, formate, lactate, pyruvate, 

glucose and galactarate amongst others all appeared to have a high VIP score and 
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were also found to be significantly different upon univariate analysis between OA 

synovial fluid and within OA synovial fibroblast secretomes.  

Another aspect of this study was to investigate the contribution OA synovial 

fibroblast to the metabolome at the synovial joint. A key question was whether there 

were clear differences between the metabolome of OA synovial fibroblast cultured 

from the synovium of normal weight patients compared to obese patients. To further 

model the inflammatory microenvironment observed in synovial inflammation during 

OA, these same synovial fibroblasts were treated with TNFα for 24hrs at 10ng/ml. 

Following collection of conditioned media from synovial fibroblasts, NMR spectra 

were obtained and underwent analysis.  

Clear clustering of samples within the same group/class was observed upon 

modelling of OA synovial fibroblast secretomes comparing unstimulated with 

stimulated OA synovial fibroblast (data not shown), however upon statistical analysis 

of these OPLS-DA models using CV-ANOVA (data not shown), none of these 

models came up as statistically significant  due to overfitting the model as a result of 

low sample number (n=5 patients per group) and therefore requires further samples 

to be inputted into the model to see whether the variation observed between 

samples of different groups is consistent with what was observed in the first data 

analysis.  

On the other hand, this study did provide data for further power analyses to be 

conducted and to work out the potential number of samples required to run a second 

study which would provide more robust results (data not shown).  
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3.5.3 Pathway analysis  

3.5.3.1 Aminoacyl-tRNA Biosynthesis 

 

Amongst the most significantly altered metabolic pathways identified using 

metabolite set enrichment analysis, comparing normal weight and obese OA 

synovial fibroblast secretomes and OA synovial fluid was amino acyl-tRNA 

biosynthesis. Aminoacylation of transfer RNAs (tRNAs) is generated by enzymes 

called aminoacyl-tRNA synthetases (AARS), which implement the correct 

assignment of amino acids to their corresponding codons and therefore are an 

essential link in establishing the genetic code. Consequently, by linking tRNA 

molecules to their amino acids, they are critical for protein synthesis. Although much 

has been discovered regarding AARS, their involvement in novel functions and 

pathological processes has yet to be fully determined.  

Because the enrichment of amino acyl-tRNA biosynthesis was present across all 

analysis in the OA synovial fibroblast conditioned media samples and was observed 

within the OA synovial fluid analysis, this could suggest that dysregulation of this 

metabolic pathway within the OA joint is potentially driven by the metabolic 

phenotype of the OA synovial fibroblast. However, confirmation of this would require 

further metabolomics analysis to be conducted on the other resident cells within the 

synovial joint. 

One possible and simple suggestion for the enrichment of amino acyl-tRNA 

biosynthesis could be to support the proliferation and adhesion of OA synovial 

fibroblast in vitro. Aminoacyl-tRNA synthetase-associated factor, p43 has been 

shown to induce cell-cell adhesion through PI3 kinase-ERK and p38 MAP kinase 
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dependant upregulation of ICAM-1 (Park et al., 2002), however this does not explain 

the enrichment of this metabolic pathway in OA synovial fluid.  

Recent research has shown a relationship between enrichment of amino acyl-tRNA 

biosynthesis and OA. A recent study by (Xiao Z et al., 2021) (preprint), collected 

serum from a rabbit knee OA model and conducted LC-MS/MS metabolomics 

analysis, identified aminoacyl-tRNA biosynthesis as being increased alongside the 

biosynthesis of amino acids when compared to normal controls (Xiao Z et al., 2021). 

One possible reason for the enrichment of aminoacyl-tRNA biosynthesis, is the 

production of tRNA derived fragments (tRFs). These tRFs regulate gene expression 

through several means including but not limited to ribosome biogenesis, apoptosis, 

transcription, translation and cell proliferation (Zacharjasz et al., 2021). tRFs act in 

an Argonaute dependant manner and are therefore involved in the formation of RNA-

induced silencing complex (RISC) to silence mRNA. tRNA is cleaved by the dicer 

enzyme in similar fashion that pre-miRNA’s are cleaved. These tRFs are then 

incorporated into the RISC complex and regulate gene expression (Zacharjasz et al., 

2021). Aberrant expression of tRFs is implicated in a number of pathologies such as 

neurodegenerative diseases and multiple types of cancers (Zacharjasz et al., 2021).  

tRF’s have also been implicated in age-associated OA (Sacitharan and Vincent, 

2016). In an equine model of knee OA, there were 81 differentially expressed tRFs 

when comparing aged chondrocytes to young chondrocytes with 44 increased and 

37 decreased in aged chondrocytes (Balaskas et al., 2020). In addition to this, when 

comparing high grade OA degradation of cartilage to low grade, 8 tRFs were induced 

and 3 tRFs were reduced (Zacharjasz et al., 2021). Additionally, in a model of 

inflammatory OA, human chondrocytes stimulated with IL-1β showed an increase in 
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the expression of 14 tRFs and a reduction in 4 tRFs (Green et al., 2020). This study 

showed the most upregulated 3’-tRF, which originates from tRNA-Cys-GCA, post-

transcriptionally regulates Janus kinase 3 (JAK3) expression via AGO/RISC 

formation (Green et al., 2020). The JAK-STAT kinase signalling pathway is known to 

regulate the expression of several pro-inflammatory cytokines such as IL6, which 

plays a major role in the inflammatory environment observed in synovitis and in OA. 

JAK3 inhibition through this tRFs (tRF-3003a) resulted in decreased IL6 expression 

and this tRF has been shown to be decreased in OA cartilage compared to normal 

cartilage, providing further evidence of tRFs involvement in inflammation observed 

within OA (Green et al., 2020).  

In summary, tRNAs and their corresponding tRFs have been shown to play a role in 

OA and inflammation, however despite these recent revelations, the understanding 

regarding tRNA and tRFs function in osteoarthritis still requires further research.  

Whether the synthesis of aminoacyl-tRNAs is a possible pathological process 

identified in OA synovial fibroblast or simply an inherent observation of cellular 

function being undertaken by these fibroblasts such as ribosome biogenesis and 

cellular proliferation is unknown, though its role in OA and inflammation suggest 

further investigation could be worthwhile. 

3.5.3.2 Glutamine-Glutamate Metabolism 

 

Amongst the key metabolite changes observed in amino acid metabolism within OA 

synovial fibroblast secretomes and in OA synovial fluid, was changes in the 

glutamine-glutamate metabolic pathway. Glutamine is intricately involved in many 

biosynthetic and metabolic processes such as the generation of nucleotides, 
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maintaining intracellular redox homeostasis, epigenetic regulation and is involved in 

generation of extracellular matrix proteins  (Pallett  et al, 2021)  

Metabolomics studies of OA synovial fluid have shown altered glutamine-glutamate 

metabolism. Glutamate concentrations were found to be increased in the synovial 

fluid of arthritic patients with synovitis compared to healthy patients suggesting 

glutamine-glutamate metabolism may be involved in synovial inflammation at the 

arthritic joint (McNearney et al., 2000). Global metabolomics analysis of OA synovial 

fluid showed glutamine was strongly associated with OA (Zheng et al., 2017).  

Glutamine is also involved in inflammation and has been shown to supress the 

expression of inflammatory cytokines through activation of MKP-1 and through 

inhibition of NF-κB and MAPK pathways (Kim et al., 2015).  

Another cell type which utilises glutamine within the synovial joint are chondrocytes 

which are resident cells within the articular cartilage. These cells use glutamine as a 

precursor of glucosamine and therefore increasing glutamine levels may contribute 

to synthesis of glucosamine. Glucosamine has already been shown to decrease 

cartilage destruction and increase the biosynthetic activity of chondrocytes 

(Varghese et al., 2007; Jerosch, 2011).  

Furthermore, glutamine is also involved in reductive oxidative species (ROS) 

homeostasis through glutathione. Exogenous glutamine supplementation has been 

shown to increase glutathione levels during stress loading thereby protecting cells 

from injury (Unneberg et al., 1997) (Rodas et al., 2012). Oxidative stress is known to 

play a role in OA pathology and analysis of knee OA synovial fluid shows altered 

activity of antioxidant enzymes (superoxide dismutase, both isoenzymes zinc-copper 

superoxide dismutase and manganese superoxide dismutase) and glutathione 
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transformation enzymes (glutathione peroxidase, glutathione reductase and 

glutathione-S-transferase) (Ostalowska et al., 2006). 

Glutamine levels also influence infiltrating and circulating cells. Extracellular 

glutamine is essential for activation of T cells and its absence impairs cytokine 

secretion and reduces proliferation (Carr et al., 2010), suggesting another possible 

role for glutamine in supporting immune cell function in an inflammatory 

microenvironment. Additionally, glutaminolysis generates α-ketoglutarate, Krebs 

cycle intermediates and acetyl-CoA, which in turn influence epigenetic landscape of 

the cell and the metabolic flux within the cell (Wong, Qian and Yu, 2017). 

This data collected within this thesis has shown alterations in metabolites associated 

with glutamine-glutamate metabolism when challenged with pro-inflammatory 

cytokine TNFα and therefore warrants enough evidence to investigate this pathway 

further in vitro. 
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3.5.3.3 Glycine, serine and threonine metabolism 

 

Glycine, serine and threonine metabolism was amongst the most enriched metabolic 

pathways identified in obesity and upon inflammatory challenge in OA synovial fluid 

and synovial fibroblast secretomes respectively.  

This metabolic pathway is particularly interesting for its role in fibrosis. Collagen is 

the main structural protein in the extracellular space and is produced in excess in 

fibrotic diseases. One third of collagen is made up of glycine and it is the most 

abundant amino acid in collagen. The high glycine content stabilises the structural 

confirmation of collagen’s helices through the formation of stabilising hydrogen 

bonds. Glycine is the smallest amino acid and is a non-essential amino acid. Glycine 

is produced from Serine via the serine biosynthetic pathway. There are two enzymes 

involved serine to glycine synthesis, namely SHMT1 (cytoplasmic isozyme) and 

SHMT2 (mitochondrial isoenzyme). Human lung fibroblasts when stimulated with 

TGF-β differentiate into activated myofibroblasts and increase the expression of 

activated marker, α-smooth muscle actin (α-SMA). These same fibroblasts when in 

an activated state, increase glycolysis and collagen-1 levels (Nigdelioglu et al., 

2016). Blocking glycolysis was shown to reduce collagen 1 production (COL1A1 

expression) and α-SMA expression (Nigdelioglu et al., 2016). TGF-β-induced up-

regulation of the enzymes of de novo serine synthesis pathway is SMAD3 dependent 

and de novo serine synthesis pathway is required for TGF-β-induced collagen 

protein production (Nigdelioglu et al., 2016). 

Recent research has also shown the master metabolic regulator mTORC1 is 

implicated in fibrosis, through upregulation of the de novo serine-glycine pathway 



174 | P a g e  
 

(Selvarajah et al., 2019; O’Leary et al., 2020). RNA sequencing analysis was 

performed on human lung fibroblasts exposed to TGF-β1 and mTOR inhibitor 

rapamycin as well as the highly selective ATP-competitive mTOR inhibitor, AZD8055 

(Selvarajah et al., 2019). Pathway analysis shows the most enriched pathway as 

serine-glycine biosynthesis pathway (Selvarajah et al., 2019). Enzymes involved in 

the serine-glycine pathway increased following TGF-β1 stimulation including PSAT1, 

PHGDH, PSPH and SHMT2 (Selvarajah et al., 2019). This increase was inhibited by 

AZD8055 treatment, whereas rapamycin had no effect (Selvarajah et al., 2019). 

TGF-β1 stimulation of lung fibroblast increases SMAD3 and mTOR signalling which 

increases ATF4 transcription factor expression and protein levels which increases 

the expression of PSAT1, PHGDH, PSPH and SHMT2 (Selvarajah et al., 2019). 

Furthermore, increased glycine is incorporated into collagen (Selvarajah et al., 

2019). 

This association between glycine-serine metabolism, activated fibroblasts and 

increased cellular metabolism through glycolysis is particularly interesting as the 

latter two observations have been identified within these OA synovial fibroblast, 

however further research on the glycine-serine metabolic pathway would be required 

before postulating a hypothesis. 

 

3.5.3 Limitations 

 

This metabolomic and analytical methods follow on from well-established protocols 

which aided in streamlining workflow and critically analysing the data generated from 

NMR spectroscopy. This study is the first to examine differences in the metabolome 
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of OA patient synovial fluid and synovial fibroblast secretomes with respect to 

obesity. However, there were limitations to the work generated within this study. One 

such limitation was the reduced number of patient samples that could be run on 

NMR spectrometer, due to budget, the impact of Covid19 on patient recruitment and 

the subsequent time limitations. Increasing patient numbers would have provided 

additional data to input into the model, thus increasing its reliability and reducing the 

variation within the classes.  

Another limitation within this study was the missing data values in the NMR 

spectroscopy analysis. This could be due to several possibilities including but not 

limited to (i) the metabolite was not present within the sample, (ii) the metabolite was 

present but was below the concentration required for detection, (iii) the metabolite 

was not recorded, or (iv) the metabolite was present and within range of detection 

however due to incorrect peak annotation the metabolite was not labelled. Although 

large percentages of missing values do have negative impact on statistical analyses, 

exclusion criteria with low sample size reduce the power of the test that is used for 

statistical analysis. One way to overcome this limitation is by imputing missing values 

within the dataset. This can be conducted by a number of approaches including K-

nearest neighbours (KNN), small value replacement and Random Forest. There are 

multivariate statistical test which have been developed and modified to handle data 

which contains large percentage of missing values such as Support Vector 

Machines, Random Forest, probabilistic PCA and Bayesian PCA. In regard to this 

study, missing values were replaced by 1/5 of minimum positive values of their 

corresponding variables and samples with more than 50% missing values were 

excluded from data analysis. 
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The samples collected from this study only included OA synovial fluid from end stage 

OA patients undergoing total hip replacement surgery. This study was limited to 

samples from end stage OA synovial fluid as in early OA, the volume of synovial fluid 

in the patient precludes collection of an adequate volume for analysis. Also, the use 

of normal controls such as synovial fluid samples from neck of femur fracture 

patients might have provided insight into the metabolic changes associated with long 

term chronic inflammatory microenvironment compared to acute inflammation 

observed at the synovial joint.  

Another aspect of this study was the focus on hip OA synovial fluid. From 

observations on the metabolic state of OA synovial fibroblast in different joints, at the 

hand knee and hip, there are clear cut differences in the metabolism or metabotypes 

of these cells. Therefore, not including these samples does limit the scope of the 

study, however due to limitations in which patient samples were available for 

analyses, it seemed in the best interest to increase patient numbers of hip OA 

synovial fluid samples, thereby giving the study stronger weight and more power. 

Furthermore, the majority of data collected within this study used OA synovial 

fibroblast cultured from hip OA patients and therefore by matching the samples for 

this metabolomics chapter, allows for the possibility for comparison of other datasets 

which utilised hip OA synovial fibroblast including transcriptomics analyses.  

Another limitation was the differences in mean ages of the normal weight and obese 

OA patients. On average, the normal weight OA patients were older than the obese 

OA patients, and although this study did try to control for age and other possible 

confounding factors, limitations in patient sample numbers meant that these samples 

could not be excluded without reducing the power of the statistical tests. 
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3.5.4 Summary 

 

In this study we demonstrated that there are distinct differences in the metabolome 

of OA synovial fluid from obese and normal weight patients and have highlighted the 

metabolic pathways which have been enriched within obese OA patients compared 

to normal weight OA patients. This was also observed in OA synovial fibroblast from 

normal weight and obese patients when challenged with inflammatory cytokine 

TNFα. Although a shared common dysregulated metabolite(s) could not be found 

following metabolomic analysis of both datasets, there were common/shared 

enriched metabolic pathways such as Aminoacyl-tRNA biosynthesis, Glycine, serine 

and threonine metabolism, pyruvate metabolism and finally glutamine and glutamate 

metabolism. These metabolically enriched pathways were shared in obesity and 

following inflammatory challenge suggesting their importance in synovitis and in 

obesity associated OA. Further in vitro work was conducted on one of these key 

metabolic pathways, namely glutamine and glutamate metabolism, to see what role 

glutamine-glutamate metabolism plays in obesity and in inflammation within an OA 

context. 
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4.1 Introduction  

 

Glutamine is a neutral α-amino acid which is used within several biosynthetic and 

metabolic pathways that are fundamental for cell function. These pathways include 

synthesis of nucleotides/hexosamines and other non-essential amino acids, 

maintaining redox balance through glutathione production, glycosylation and 

epigenetic regulation( Pallett et al, 2021)  . It is the most abundant circulating amino 

acid (~500μM), contributing to 40% of the amino acid pool in muscle and 20% in 

blood (Altman, Stine and Dang, 2016). Glutamine is regarded as a conditionally 

essential amino acid, which is synthesised endogenously from glutamate and 

ammonia by glutamine synthetase (GLUL), but during catabolic stressed conditions 

(e.g., postoperative period, injury and sepsis), glutamine requirements exceed the 

individual’s ability to endogenously produce sufficient amounts (Lacey and Wilmore, 

1990). Glutamine dependence in cells is such that deprivation of glutamine results in 

cell death for a number of cell types, including fibroblasts, and induces apoptosis in 

cancerous cells (Eagle et al., 1956; Altman, Stine and Dang, 2016). Circulating 

glutamine levels are maintained at high levels within the blood as ready supply of 

carbon and nitrogen. It is transported into cells through protein transporters such as 

SLC1A5 (ASCT2) and exported out of cells in exchange with other amino acids by 

antiporters such as L-type amino acid transporter 1 (LAT1) or SLC7A11 (Nicklin et 

al., 2009; Howden et al., 2019). Glutamate is a well-known neurotransmitter and 

signals through several receptors including metabotropic/GPCRs (mGluR1-8) and 

ionotropic receptors (NMDA, Kainate and AMPA). These receptors are highly 

expressed in neuronal tissues however have relatively low expression in connective 



180 | P a g e  
 

and soft tissues (Sjöstedt et al., 2020). Interestingly, introducing expression of 

neuronal isoforms of GRIK2/GluR6 into fibroblasts resulted in immediate cessation of 

cell proliferation and induced a state of senescence (Zhawar, Kandpal and Athwal, 

2020). Activated myofibroblasts have recently been shown to primarily utilise 

glutamate for collagen production and not energy metabolism, with cytoplasmic 

enzymes phosphoserine aminotransferase (PSAT1) and Δ1-pyrroline-5-carboxylate 

synthetase (P5CS) producing amino acids serine, glycine and proline thereby 

contributing to fibrosis (O’Leary et al., 2020). This was validated in a mouse model of 

pulmonary fibrosis, which showed increased expression of key glutamine metabolic 

enzyme glutaminase 1 (GLS1), which converts glutamine to glutamate 

(glutaminolysis), and inhibition of this enzyme reduced both bleomycin and 

transforming growth factor-β1–induced pulmonary fibrosis (Cui et al., 2019).  

Furthermore glutamine-glutamate metabolism is well known to play a role in other 

pathophysiological conditions including obesity and immune-mediated inflammation. 

White adipose tissue from obese individuals have reduced glutamine levels and 

reduced expression of the enzyme glutamine synthetase (GLUL), which synthesis 

glutamine from glutamate and ammonia (Petrus et al., 2020). In an obesity murine 

model in which mice were fed a high fat diet and supplemented with glutamine, there 

was a reduction in markers of inflammation (IL6 and IL1β) and macrophage markers 

(CD68) in white adipose tissue compared to a high fat diet control (Petrus et al., 

2020). Adipocytes incubated with high (10mM) glutamine show reduced expression 

and secretion of pro-inflammatory markers such as IL6, IL1β and CCL2 due to 

reduced glycolysis and through post-transcriptional regulation of these markers (via 

protein O-GlcNAcylation) (Petrus et al., 2020). This suggests glutamine is an 

immunometabolic regulator in white adipose tissue which links obesity to 
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inflammation. Likewise, metabolomics analysis of the serum of RA patients shows 

TNF-inhibitor therapy with etanercept increases glutamine levels, suggesting 

glutamine plays a role in inflammatory arthritis (Priori et al, 2015). The use of 

glutamine supplementation to manage disease course in clinical trials or as a drug 

intervention for patients has had mixed effect. Plasma glutamine levels have been 

shown to decrease markedly following major surgery and is significantly correlated 

with the production of IL6 (Parry-Billings et al., 1992). Patient with low admission 

illness severity who underwent major abdominal surgery and were given parental L-

alanyl-L-glutamine supplementation showed a reduction in plasma IL6 levels (Lin et 

al., 2005). However, in inflammatory bowel disease, glutamine supplementation in 

clinical trials was shown to have no effect on disease course, disease activity, 

biochemical parameters, oxidative stress and inflammation markers (CRP) in 

patients (Soares Severo et al., 2021). Four studies within this meta-analysis however 

reported no change in plasma glutamine concentrations and the majority of these 

studies were short term (4 weeks) suggesting further research on long term 

glutamine supplementation maybe appropriate to validate these findings (Soares 

Severo et al., 2021).  

Glutaminolysis is catalysed in mammalian tissues by the aforementioned GLS. There 

are two glutaminase enzymes, GLS which is broadly expressed in normal tissues 

whereas GLS2/LGA expression is limited to liver, brain, pituitary gland and pancreas 

(Altman, Stine and Dang, 2016). Although there is high degree of similarities in their 

amino acid sequences, GLS and GLS2 are products of different genes (Curthoys 

and Watford, 1995). Furthermore, there is alternative splicing of GLS pre-mRNA into 

either glutaminase C (GAC) or kidney-type glutaminase (KGA) isoforms (Altman, 

Stine and Dang, 2016). These proteins are regulated differently. GLS isoforms KGA 
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and GAC as well as GLS2 are activated by inorganic phosphate (Altman, Stine and 

Dang, 2016). GLS is inhibited by glutamate in a negative feedback loop whereas 

GLS2 isn’t and GLS2 alone is activated by ammonia in vitro (Krebs, 1935). GLS2 is 

increased during starvation, diabetes and consumption of high-protein diet whereas 

GLS is involved in maintenance of acid-base homeostasis and is increased in the 

kidney in response to metabolic acidosis (Curthoys and Watford, 1995). In neurones, 

loss of function mutations of GLS and its counteracting enzyme GLUL causes a 

disturbance in maintaining homeostasis of neurotransmitter glutamate and results in 

severe neonatal encephalopathy (Rumping et al., 2019). As a key enzyme within the 

glutamine-glutamate metabolic pathway, GLS is the ideal target for disrupting normal 

function of this pathway. It can be inhibited pharmacologically by cell permeable, 

selective and non-competitive allosteric inhibitors Bis-2-(5-phenylacetamido-1,3,4-

thiadiazol-2-yl)ethyl sulphide (C24H24N6O2S3) (BPTES), which induces an inactive 

GLS1 tetrameric conformation, and Telaglenastat (C26H24F3N7O3S) (CB-839), with 

the latter currently being tested in phase II clinical trials primarily for cancerous 

conditions such as clear cell and advanced renal cell carcinoma, triple negative 

breast cancer and metastatic prostate cancer (Ferreira et al., 2013; Ramachandran 

et al., 2016).  
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4.2 Hypothesis 

 

We hypothesised that: 

• Inhibition of the glutamine-glutamate metabolic pathway would reduce the 

inflammatory phenotype of OA synovial fibroblasts and impact on their 

proliferative capacity and viability 
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4.4 Results 

 

Metabolomics analysis of OA synovial fluid in obese patients compared to normal 

weight patients identified glutamine-glutamate metabolism as the most significantly 

enriched metabolic pathway (chapter 3). Following this analysis, modulation of 

glutamine-glutamate metabolism in OA synovial fibroblasts was undertaken to 

observe changes in the inflammatory phenotype of OA synovial fibroblasts.  

Genes involved in glutamine-glutamate metabolism were identified and analysed to 

determine differential gene expression in hip OA synovial fibroblasts using bulk RNA 

sequencing data characterised further in the following chapter (chapter 5). Glutamine 

receptors were not highly expressed in OA synovial fibroblasts (figure 4.1), however 

glutamine transporters and enzymes, including the neutral amino acid transporter 

SLC1A5 and glutaminase (GLS), were highly expressed in OA synovial fibroblasts 

(figure 4.2 and 4.3). 
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Figure 4.1: Glutamine receptors expression is not altered in obese and 

normal weight OA synovial fibroblasts 

Fibroblasts are from normal weight (NW) (yellow) and obese (OB) (pink) (n = 

3 patients per BMI category) hip OA patients. Differential gene expression 

analysis taken from normalised counts of bulk RNA sequencing data. 
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Figure 4.2: OA synovial fibroblasts express primary glutamine 

transporter expression in obese and normal weight patients 

Fibroblasts are from normal weight (NW) (yellow) and obese (OB) (pink) (n = 

3 patients per BMI category) hip OA patients. Differential gene expression 

analysis taken from normalised counts of bulk RNA sequencing data. 
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Figure 4.3: OA synovial fibroblasts express key glutamine enzyme GLS  

Fibroblasts are from normal weight (NW) (yellow) and obese (OB) (pink) (n = 3 

patients per BMI category) hip OA patients. Differential gene expression 

analysis taken from normalised counts of bulk RNA sequencing data. 
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As previously mentioned, GLS1, as a critical enzyme within this pathway, was 

targeted in vitro using a non-competitive pharmacological inhibitor, Bis-2-(5-

phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES), which blocks the 

conversion of glutamine to glutamate (Farah et al., 2022).  

OA synovial fibroblasts were cultured for 24 hours either in normal growth media, or 

stimulated with TNFα (10 ng/mL) or TNFα (10 ng/mL) in combination with BPTES 

(20 μM) (Farah et al., 2022). GLS1 inhibition significantly attenuated TNFα mediated 

IL6 protein secretion in normal weight OA synovial fibroblasts and on average 

reduced IL-6 protein secretion in obese OA fibroblasts, albeit this did not reach 

statistical significance (figure 4.4a). To validate this effect, a loss of function study 

was conducted using siRNA directed against GLS1. siRNA knockdown using GLS1 

siRNA for 24 hours at 5 nM and 100 nM significantly reduced GLS expression by 

65% and 35%, respectively, compared to transfection using a non-targeting control 

(NTC) siRNA (figure 4.4b) (Farah et al., 2022). Immunoblotting of OA synovial 

fibroblasts lysates following siRNA transfection showed a reduction in GLS1 protein 

expression at both 24 and 48 hour timepoint (figure 4.4c) (Farah et al., 2022). 

Furthermore, fibroblasts treated with GLS1 targeting siRNA exhibited significantly 

reduced IL-6 expression by between 40–65%, supporting the role of GLS1 in 

mediating IL-6 production and the inflammatory response in OA synovial fibroblasts 

(figure 4.4d) (Farah et al., 2022). 
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Figure 4.4: Inhibition of GLS1 attenuates IL6 inflammatory response in OA synovial fibroblasts  

(A) GLS1 inhibitor, BPTES (20 µM), attenuates TNFα induced IL-6 secretion in synovial fibroblasts 

from normal weight and obese hip OA patients (n = 3 patients). Bars represent mean IL-6 secretion 

(pg/mL). (B) % knockdown of GLS1 expression in OA synovial fibroblasts after 24 hours post-

transfection with a GLS1 targeting siRNA (5 nM or 100 nM), compared to a non-targeting control 

(NTC) siRNA (n = 4 patients). (C) Confirmation of siRNA-mediated GLS1 protein knockdown at 24 

hours and 48 hours post-transfection using 100 nM siRNA. (D) Effect of sRNA-mediated knockdown of 

GLS1 on IL-6 expression in OA synovial fibroblasts at 24 hours post-transfection (n = 4 patients). Data 

are presented as mean ± SEM. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. (Farah et al., 2022). 
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Having identified an association between IL6 mediated inflammation and glutamine-

glutamate metabolism in OA synovial fibroblasts, further investigation into the role 

GLS1 and glutamine-glutamate metabolism plays in OA synovial fibroblast function 

and phenotype was conducted.  

In an attempt to understand how reliant these synovial fibroblasts were on glutamine-

glutamate metabolism, a long-term culture experiment was conducted using 

fibroblasts from normal weight and obese patients cultured in the presence of either 

low glutamine (2mM), high glutamine (20mM) or high glutamine supplemented with 

the GLS1 inhibition (BPTES 20µM) and their morphology, proliferation and viability 

determined.  

Within 24 hours, cells exposed to the GLS1 inhibitor BPTES exhibited increased cell 

death (based on phase-contrast microscopy analysis of membrane blebbing and 

appearance of apoptotic bodies) (figure 4.6), and after 2-4 days of GLS1 inhibition 

the vast majority of fibroblasts were dying whether from normal weight or obese 

patients, compared to cells exposed to vehicle control (DMSO 0.5%) (figure 4.7 and 

4.8). 

Having investigated cell morphology, we next measured cell proliferation using BrdU 

labelling ELISA. Fibroblasts incubated with high glutamine (20mM) showed 

significantly increased proliferation, which was diminished by GLS1 inhibition (figure 

4.9). 
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Figure 4.5: Inhibition of GLS1 in OA synovial fibroblasts alters cellular morphology 

Representative images of fibroblasts from normal weight and obese patients treated with 

GLS1 inhibitor, BPTES (20 µM), across time (6 hours - 4 days) show altered cell morphology 

possibly due to increased cell death. Fibroblasts were treated with (A and D) low glutamine 

(2mM), (B and E), high glutamine (20mM) and (C and F) BPTES (20µM). Normal weight (n= 

2 patients) and obese ( n = 3 patients) used for this experiment.  
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Figure 4.6: 1-day inhibition of GLS1 in OA synovial fibroblasts alters fibroblast morphology 

Representative images of fibroblasts from normal weight and obese patients treated with GLS1 

inhibitor, BPTES (20 µM), across time (6 hours - 4 days) show altered cell morphology possibly due 

to increased cell death. Fibroblasts were treated with (A and D) low glutamine (2mM), (B and E), 

high glutamine (20mM) and (C and F) BPTES (20µM). Normal weight (n= 2 patients) and obese ( n 

= 3 patients) used for this experiment.  

 



193 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: 2-day inhibition of GLS1 in OA synovial fibroblasts alters fibroblast 

morphology 

Representative images of fibroblasts from normal weight and obese patients treated with 

GLS1 inhibitor, BPTES (20 µM), across time (6 hours - 4 days) show altered cell 

morphology possibly due to increased cell death. Fibroblasts were treated with (A and D) 

low glutamine (2mM), (B and E), high glutamine (20mM) and (C and F) BPTES (20µM). 

Normal weight (n= 2 patients) and obese ( n = 3 patients) used for this experiment.  
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Figure 4.8: 4-day inhibition of GLS1 in OA synovial fibroblasts alters fibroblast 

morphology 

Representative images of fibroblasts from normal weight and obese patients treated with 

GLS1 inhibitor, BPTES (20 µM), across time (6 hours - 4 days) show altered cell 

morphology possibly due to increased cell death. Fibroblasts were treated with (A and D) 

low glutamine (2mM), (B and E), high glutamine (20mM) and (C and F) BPTES (20µM). (G) 

DMSO vehicle control (0.5%). Normal weight (n= 2 patients) and obese ( n = 3 patients) 

used for this experiment.  
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Figure 4.9: Synovial fibroblast proliferation increases with glutamine treatment 

and decreases with GLS1 inhibition  

OA synovial fibroblasts were treated glutamine (2mM) and TNFα (10ng/ml for 24 hrs) 

stimulation show increased cell proliferation compared to fibroblasts treated with GLS1 

inhibitor BPTES (20µM for 24 hours) (n= 5 biological replicates). Repeated measures 

ANOVA with Tukey’s multiple comparisons test. All data presented as mean ± SD. 
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Following this investigation into the long-term effects of GLS1 inhibition in vitro on 

cell phenotype, short term inhibition of GLS1 in OA synovial fibroblasts was 

examined. Long term inhibition of GLS1 affected cell proliferation and most probably 

cell death. However, a quantifiable approach was required to measure cell death 

following short term GLS1 inhibition in fibroblasts. Annexin V was used as signal for 

detecting apoptosis and propidium iodide (PI) was used to detect necrotic/late 

apoptotic cells due to increased permeability of plasma and nuclear membranes as 

previously described (figure 4.10) (Rieger et al., 2011). OA synovial fibroblasts were 

treated with varying concentrations of GLS1 inhibitor BPTES (5-5000nM) and 

spanned the IC50 of BPTES (60nM). Short term inhibition of GLS1 (1 hour) did not 

increase apoptosis or necrosis in dose-dependent manner (figure 4.12). 

Furthermore, GLS1 inhibition did not decrease cell proliferation in normal weight and 

obese OA synovial fibroblasts in dose-dependent manner (figure 4.14), however it 

did significantly reduce IL6 secretion in both normal weight and obese OA synovial 

fibroblasts in a dose-dependent manner (figure 4.15). Glucose uptake was 

significantly altered in OA synovial fibroblasts treated with BPTES (20µM for 1 hour) 

however there was no effect on mitochondrial mass (figure 4.16) 

Finally, short term GLS1 inhibition did increase NAD(P)H-dependant oxidoreductase 

activity in dose-dependent manner as measured by MTS assay, however there was 

no significant change in ROS production following GLS1 inhibition (figure 4.17). 
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Figure 4.10: Unstained cells displayed in gating strategy used for annexin V:Pi staining 

as measure of apoptosis in fibroblasts  

Live: Dead stain was achieved using Annexin V and Propidium iodide (n =2 repeats). 

Fibroblasts in this figure were not stained and live cells shown were mixed with heat killed cells 

in 1:1 ratio as a positive control for apoptosis. Flow cytometry conducted using FACSvia™. 

(Primary data analysis conducted by Joshua Price). 

A.  

B.  C.  

D.  E.  
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Figure 4.11: Gating strategy used for Annexin V:Pi staining as measure of apoptosis in 

fibroblasts  

Live: Dead stain was achieved using Annexin V and Propidium iodide (n =2 repeats). Gating 

strategy shown was used to identify fibroblasts on cell size, removing doublets and 

determining apoptosis by staining cells which are Annexin V+ (FITC) and Pi+. Live cells shown 

were mixed with heat killed cells in 1:1 ratio as a positive control for apoptosis. In panel C 

fibroblasts in lower left quadrant were labelled live, fibroblasts in lower right quadrant were 

labelled early apoptotic, fibroblasts in upper right quadrant were labelled late apoptotic and 

fibroblast in upper left quadrant were labelled necrotic. Flow cytometry conducted using 

FACSvia™. (Primary data analysis conducted by Joshua Price). 

A.  

B.  C.  

D.  E.  
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Figure 4.12: Short term GLS1 inhibition does not increase apoptosis  

Fibroblasts incubated with GLS1 inhibitor BPTES (5-5000nM) for 1 hour 

do not show significant relationship between cell death and BPTES 

concentration (n = 2 repeats). Cell death was measured using annexin 

V:Pi staining on FACSvia™ as described in figure 4.10. (primary data 

analysis performed by Joshua Price).  
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Figure 4.13: Short term GLS1 inhibition does not increase cell death  

Fibroblasts incubated with GLS1 inhibitor BPTES (5-5000nM) for 1 hour 

do not show significant relationship between cell death and BPTES 

concentration (n = 2 repeats). Cell death was measured using trypan blue 

stain and calculated using Countess™ 3 automated cell counter.  
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Figure 4.14: Short term GLS1 inhibition does not alter cell proliferation  

Fibroblasts from normal weight (A) and obese (B) patients were incubated with GLS1 

inhibitor BPTES (2.5-20µM) for 1 hour do not show significant relationship between cell 

proliferation and BPTES concentration (n = 4 biological replicates). Cell proliferation was 

measured using BrdU ELISA and absorbance was measured and normalised at 450-

550nm. All data presented as mean ± SD. 



202 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 4 8 1 6 3 2

0

5 0

1 0 0

1 5 0

2 0 0

Log2[BPTES] (μM)

IL
6
 C

o
n

c
e

n
tr

a
ti

o
n

 (
p

g
/m

l)

R
2
: 0.8680

p: <0.0001

A. 

B

. 

1 2 4 8 1 6 3 2

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

Log2[BPTES] (μM)

IL
6
 C

o
n

c
e

n
tr

a
ti

o
n

 (
p

g
/m

l)

R
2
: 0.9079

p: <0.0001

Figure 4.15: Short term GLS1 inhibition attenuates IL6 mediated inflammation in dose-dependent 

manner  

Fibroblasts from normal weight (A) and obese (B) patients were incubated with GLS1 inhibitor BPTES 

(2.5-20µM) for 1 hour show significant decrease in IL6 secretion (n = 4 biological replicates). IL6 

secretion was measured using ELISA and absorbance was measured and normalised. All data presented 

as mean ± SD. 
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Figure 4.16: Short term GLS1 inhibition increases NAD(P)H-dependent oxidoreductase 

activity in dose-dependent manner but does not increase ROS generation 

Fibroblasts from normal weight (A) and obese (B) patients were incubated with GLS1 inhibitor 

BPTES (2.5-20µM) for 1 hour show significant decrease in IL6 secretion (n = 4 biological replicates). 

IL6 secretion was measured using ELISA and absorbance was measured and normalised. All data 

presented as mean ± SD. 
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Figure 4.17: Glutamine supplementation and GLS1 inhibition increases glucose uptake but not 

mitochondrial mass  

Fibroblasts were incubated low glutamine (2mM) or high glutamine (20mM) for 24 hours and stimulated 

with TNFα (10ng/ml for 24 hours) or with GLS1 inhibitor BPTES (20µM for 1 hour) (n = 4 biological 

replicates). A. Glucose uptake was measured using fluorescent glucose analog 6NBDG and B. 

mitochondria were stained using Mitotracker Green. Fluorescence was measured and normalised using 

vehicle control and background. All data presented as mean ± SD. 
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4.5 Discussion 

Having identified glutamine-glutamate metabolism as the most significantly enriched 

metabolic pathway in obese OA patients following metabolomics analysis of OA 

synovial fluid, further investigation was undertaken to see whether this metabolic 

pathway influences the inflammatory profile of OA synovial fibroblasts as previously 

described in other cell types (Petrus et al., 2020)  

GLS1, a mitochondrial enzyme, has received much attention as a critical enzyme 

within the glutamine-glutamate metabolic pathway and therefore was the ideal target 

for inhibition of this pathway. Inhibiting GLS1 pharmacologically using BPTES in OA 

synovial fibroblasts reduced TNFα mediated IL6 secretion in normal weight OA 

synovial fibroblasts but not in obese OA synovial fibroblasts. This was an interesting 

development and a result which was concurrent with other experiments within this 

thesis (discussed further in chapters 5 and 6). This could be due to the inherent 

nature of the OA synovial fibroblasts in obese patients to be less responsive to TNFα 

stimulation. This reduced responsiveness could be a consequence of overstimulation 

as a result of the chronic low grade inflammation observed in obese state with the 

associated increased localised inflammation in obese OA joint, compared to normal 

weight OA joint (Dominika E. Nanus et al., 2020). This link between glutamine-

glutamate metabolism and IL6 mediated inflammation was confirmed with siRNA 

knockdown of GLS, indicating that the BPTES mediated amelioration of IL6 was not 

because of off-target effects but was indeed due to GLS inhibition. Another 

interesting development following short-term BPTES inhibition was an increase in 

NAD(P)H-dependent oxidoreductase activity (measured via MTS assay) after 1 hour. 

This link between NAD(P)H-dependent oxidoreductase activity and BPTES inhibition 
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might suggest changes in oxidation and reduction activity due to changes in 

NAD(P)H levels within OA synovial fibroblasts as a consequence of increased 

glycolysis. However, this would require further investigation before confirming this as 

the mechanism through increased NAD(P)H-dependent oxidoreductase activity. 

Investigation into possible off-target effects of BPTES was investigated with 

experiments on cell proliferation and apoptosis. Long-term GLS1 inhibition resulted 

in cell death. However, short-term inhibition of GLS1 (1 hour) did not result in 

increased cell death or cell proliferation but did decrease IL6 levels in dose 

dependant manner in both obese and normal weight OA synovial fibroblasts. Breast 

cancer cell lines which underwent glutamine deprivation for 4 days have been 

reported to show increased oxidative stress, aberrant mitochondrial membrane 

potential and apoptosis induction (Gwangwa, Joubert and Visagie, 2019). This could 

also explain why altered cell morphology (membrane blebbing and apoptotic bodies) 

following 4 days GLS1 inhibition increased in the synovial fibroblasts in this thesis. 

Likewise, confirmation of recent work on the inhibition of glutaminolysis via BPTES 

and the increase in glucose consumption suggested BPTES inhibition of GLS1 was 

similar to that observed in other cell types and disease models (Elgogary et al., 

2016).  

4.5.1 Limitations 

As with the majority of studies, the design of the current study is subject to 

limitations. Amongst the limitations of this study is the quantification of cell death with 

long term inhibition of GLS1 visualised using phase contrast microscopy. Labelling 

with an antibody such as annexin V as a marker of apoptosis or staining with a 

marker of cell death like propidium iodide would have allowed for the quantification of 

cell death. However, as the fibroblasts are adherent cells, upon cell death there is 
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detachment which would not allow for cell staining. Likewise, due to low cell numbers 

a fourth condition of low glutamine and BPTES inhibition in the long-term culture 

experiment was not included.   

Another limitation would be the low patient numbers used within this study and the 

use of fibroblasts cell line for the apoptosis flow cytometry. However, as the principal 

hypothesis for these experiments in vitro was mechanistic in nature and observing 

whether the treatment had an effect on the cells, the adoption of biological replicates 

was logical.  

4.5.2 Future Studies 

Having completed this study, there were areas of interest which were not pursued 

which could yield interesting insights into glutamine-glutamate metabolism and 

inflammation in OA synovial fibroblasts. Namely looking into the mechanism of how 

GLS1 inhibition drives changes in IL6 production and whether it effects the 

production of other cytokines and chemokines. This could be achieved by conducting 

a Luminex or multiplex based assay which would reveal any changes in cytokines 

and chemokines levels, thereby giving some information on non-IL6 mediated 

inflammation. Likewise, siRNA knockdown of GLS1 in myofibroblasts has been 

shown to reduce collagen 1 production (O’Leary et al., 2020). Another potential area 

of investigation would be to look into markers of fibroblast function in OA synovial 

fibroblast such as collagen levels/ECM production following GLS1 inhibition or 

knockdown to see whether there is a similar effect.  
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5.1 Introduction 

 

Osteoarthritis (OA) has historically been considered a “wear and tear” disease with 

degradation of articular cartilage being attributed to increased chronic biomechanical 

loading of the joint. On the other hand, rheumatoid arthritis (RA) is viewed primarily 

as a disease driven by synovial inflammation. Although OA does result in destruction 

of articular cartilage, a number of additional pathological changes that are associated 

with the development of OA have been overlooked, including the deleterious effects 

of chronic local inflammation of the synovial membrane (synovitis) (Tonge, Pearson 

and Jones, 2014; Mathiessen and Conaghan, 2017). This historically narrow view of 

OA as a non-inflammatory condition has likely hindered the development of disease-

modifying OA drugs (DMOADs), with studies having predominantly focused on 

catabolic and anabolic pathways of cartilage tissue to limited success.  

Recently, particular focus has been placed on understanding the molecular biology 

of OA, and there has been a change in perspective from degradation of cartilage as 

the only cause of disease towards investigation of causes from different tissues 

within the joint. One technique to deconvolute the molecular changes observed 

within the tissues of the OA joint is to use transcriptomics, i.e analysis of  the 

complete set of RNA transcripts using next-generation sequencing techniques, such 

as RNA sequencing (RNAseq). For example, transcriptomic analysis of articular 

knee OA cartilage has been performed to better understand the heterogeneity of OA,  

identifying four distinct  clusters (Yuan et al., 2020). These 4 clusters were 

developed into a classification model that was correlated with OA symptoms, 

resulting in four distinct OA subtypes; glycosaminoglycan metabolism disorder, 
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collagen metabolism disorder, activated sensory neurons and inflammation (Yuan et 

al., 2020). This suggests transcriptomic analysis, when paired with patient 

characteristics data, can yield insights into the pathways and molecular mechanisms 

that drive OA pathology and provide potential stratification of knee OA patients, 

which will facilitate the development of DMOADs. 

Transcriptomic analysis has been applied to primary human OA chondrocytes cells 

(Ji et al., 2019). To define cell populations and identify genome-wide gene 

expression patterns, 1,464 chondrocytes were sequenced at single cell resolution 

and were compared with clinical outcome using severity index (Ji et al., 2019). 

Different subsets of chondrocytes were identified, including “proliferative 

chondrocytes”, “pre-hypertrophic chondrocytes” (pre-HTCs), “hypertrophic 

chondrocytes” (HTCs) and three novel populations; “effector chondrocytes” (ECs), 

“regulatory chondrocytes” (RegCs) and “homeostatic chondrocytes” (HomCs) (Ji et 

al., 2019). Gene set enrichment analysis (GSEA) found an increase in metabolic 

pathways such as steroid biosynthesis, fatty acid metabolism, mTOR signalling and 

chemokine signalling in EC’s compared to RegCs (Ji et al., 2019). The RegC 

population of cells showed enrichment of cell signalling pathway regulation such as 

Toll-like receptor, mTOR, TGF-β, p53, JAK/STAT, WNT and chemokine signalling (Ji 

et al., 2019). Finally, HomCs enriched mainly with process relating to maintaining 

cellular homeostasis through regulation of the cell cycle, development, RNA 

metabolism and biosynthesis (Ji et al., 2019). The relationship between these OA 

chondrocytes disease severity was determined using a combination of Hospital for 

Special Surgery (HSS) knee scoring system and the scoring of cartilage using 

Osteoarthritis Research Society International (OARSI) and International Cartilage 

Regeneration and Joint Preservation Society (ICRS) grading system. In total, 336 
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predictive genes were identified and classified into those associated with favourable 

outcomes (199) and unfavourable outcomes (137) (Ji et al., 2019). Favourable 

genes were found mainly expressed in ECs, RegCs and HomCs cell populations, 

whereas unfavourable genes were expressed in a large proportion of ProCs, pre-

HTCs and fibrocartilage chondrocytes (Ji et al., 2019). By creating a cell atlas of 

cartilage OA chondrocytes, with their respective transcriptional programmes and 

their relationship to disease severity, we are improving our understanding of the 

disease pathology and this may provide the rationale for new personalised 

therapeutic strategies. 

Alongside transcriptomic analysis of OA chondrocytes, synovial fibroblasts isolated 

from the synovium of OA patients have also been subjected to similar high-

throughput sequencing. Obese patients have been shown to have higher levels of 

pro-inflammatory cytokines in OA synovial fluid and to exhibit synovial fibroblasts 

with a more inflammatory phenotype (Pearson et al., 2017). Bulk RNA sequencing of 

OA synovial fibroblast from obese patients (BMI ≥30) compared to normal weight 

patients (BMI 18-24.9) found inflammatory pathways were the most upregulated 

canonical pathways in obese OA patient’s fibroblasts which included cytokine–

cytokine interactions, nucleotide-binding oligomerization domain–like receptor 

signalling, Toll- like receptor signalling, and chemokine signalling pathways (Nanus 

et al., 2020). When comparing normal weight and obese hip OA patients synovial 

fibroblasts, 19 differentially expressed long-non coding (lnc) RNAs were identified, 9 

upregulated long intergenic non-coding RNAs (lincRNAs) and 6 downregulated 

lincRNAs with MALAT1 demonstrating the largest absolute increase in expression 

(Nanus et al., 2020). MALAT1 was the most responsive lincRNA to pro-inflammatory 

challenge and was transiently increased suggesting it may play a role in regulating 
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synovial fibroblast inflammation. Indeed, depletion of MALAT1 reduced proliferative 

capacity of synovial fibroblast as well as CCL8 expression indicating that targeted 

inhibition of MALAT1 in the synovial joint could both reduce synovial inflammation 

and hyperplasia (Nanus et al., 2020). However, this study was only in hip OA 

patients, and further characterisation of the transcriptome of OA fibroblasts from 

different joints including non-load bearing joints could reveal globally altered OA 

signalling pathways or lncRNAs common to obesity.  

Animal models are widely used to study joint biology and allow the opportunity to 

study early stages of OA. Such studies are difficult in humans, where access to joint 

tissues are largely limited to patients undergoing arthroscopy and/or total joint 

replacement in patients with late-stage disease. RNA sequencing has been used in 

murine models to investigate post-traumatic osteoarthritis (PTOA) (Sebastian et al., 

2018). Three different mouse strains with varying susceptibility to OA, STR/ort 

(highly susceptible), C57BL/6J (moderately susceptible), and MRL/MpJ (not 

susceptible), underwent a non-invasive tibial compression (TC) injury model which 

represents anterior cruciate ligament (ACL) rupture in humans (Sebastian et al., 

2018). In the highly susceptible STR/ort model, 497 genes were upregulated 

compared to the moderately susceptible C57BL/6J and not susceptible MRL/MpJ 

mice (Sebastian et al., 2018). GO analysis found that 33 of those genes were 

associated with inflammatory responses and 78 genes were associated with 

apoptotic processes (Sebastian et al., 2018). Several members of the Wnt signalling 

pathway, which are intricately associated with skeletal development and bone 

metabolism, were upregulated in all strains at weeks 1 and 2 post-injury (Sebastian 

et al., 2018). Previous research has shown inflammatory programs following joint 

injury may be a key factor in the progression of PTOA (Sokolove and Lepus, 2013). 
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This study shows that pre-injury STR/ort joints expressed elevated inflammatory 

markers (IL1β, IL6, CCL2, and CXCL1) and post-injury these same inflammatory 

markers were further amplified suggesting persistent inflammation could be a major 

factor in PTOA (Sebastian et al., 2018).  

High-throughput single cell RNA sequencing (scRNA-seq) has also been performed 

on primary chondrocytes from the ACL injury murine OA model compared to healthy 

controls in order to identify and stratify chondrocyte subtypes within OA (Sebastian 

et al., 2021). Although cartilage appeared histologically normal at 3 days post injury, 

scRNA-seq analysis identified several significant injury-induced transcriptional 

changes in chondrocyte subpopulations (Sebastian et al., 2021). Transcripts 

encoding for enzymes involved in oxidative phosphorylation pathways were 

significantly enriched 3 days post injury suggesting early metabolic changes in these 

cells are upregulated post injury and could suggest reactive oxygen species (ROS) 

produced by OXPHOS could contribute to cellular stress and reduced chondrocyte 

viability early in OA development (Sebastian et al., 2021). During the analysis, 9 

transcriptionally distinct chondrocyte subpopulations were identified and in an 

attempt to evaluate the extent of cross-species translatability, the murine 

chondrocyte subtypes were compared to human chondrocytes isolated from OA 

cartilage resulting in 6 mouse chondrocyte subtypes, which had highly molecular 

fidelity to the human subtypes (Sebastian et al., 2021). The next steps in in vivo 

testing of these ACL mice would involve identifying which of these 6 subtypes are 

actively involved in cartilage degradation and knocking out key genes which are 

highly involved in these chondrocyte subtypes to discover whether this may 

ameliorate or reverse the disease course early on in OA development.  
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In summary, transcriptomic analysis of OA joint tissues, including single cell RNA 

sequencing, is yielding novel insights into resident cell populations and the changes 

these cells undergo during disease pathology. By targeting these altered pathologic 

cell populations, through future therapeutic treatments, there could be opportunities 

to ameliorate the disease course observed in OA, intervening at an early stage to 

avoid the progression and requirement for the invasive joint replacement surgery.  

5.1.2 Biomechanical loading of joint 

 

Although much of the data within OA points towards a multi-faceted pathology in OA, 

there is no doubt biomechanical loading does play a role in shaping the 

transcriptome of joint resident cell types. Previous research has focused on the role 

chemical stimuli, adhesion signals, transcription factors and how their co-regulators 

control transcriptional regulation however the use of chemical signalling alone does 

not provide spatiotemporal control of transcriptional activities within tissues and 

organs. Cells will sense mechanical cues such as physical forces (tension, 

compression or shear stress), extracellular matrix mechanics and alterations in cell 

morphology and will modulate transcriptional activities to respond to these changes 

in environment (Mammoto, Mammoto and Ingber, 2012). Mechanosensitive 

transcriptional control mechanisms are known to contribute to the maintenance of 

pluripotency, determination of cell fate, pattern formation and organogenesis as well 

as controlling cellular function throughout embryogenesis and in adulthood 

(Mammoto, Mammoto and Ingber, 2012). The human joint undergoes several distinct 

types of mechanical loads throughout the lifetime- including tension, compression, 

fluid shear, and/or torsional shear stresses, all of which chronically may induce 

cartilage damage resulting in OA. Researching the effect of these mechanical cues 
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on resident cells of the joint, such as fibroblasts and chondrocytes, would elucidate 

the pathological changes which occur due to repeated load through physical forces 

on the joint such as through biomechanical loading and those which are due to other 

contributing factors to OA pathology.  

Another determinant of fibroblast transcriptional diversity is based on anatomical 

position within tissues and organs. Fibroblasts have site-specific variations in gene 

expression that are associated with their positional/geometric identities in three 

dimensional axis; namely anterior-posterior, proximal-distal, and dermal versus non-

dermal (Rinn et al., 2006). Likewise, these adult fibroblasts are known to maintain 

key features of HOX gene expression patterns, which are established during 

embryogenesis (Chang et al., 2002; Rinn et al., 2006). Fibroblasts isolated from 

human vocal folds (VFF) are exposed to high inertial stresses and are therefore are 

ideal for comparison to fibroblast isolated from tissues which remain absent of such 

mechanical trauma (Titze et al., 2004). Transcriptomic analysis of VFFs have 

upregulation of several functional themes, which varied across transcription factors 

for signalling pathways regulating pluripotency of stem cells, ECM components of 

cell signalling, migration, proliferation, and differentiation potential when compared to 

fibroblast isolated from neighbouring tissues with shared developmental origins but 

which do not normally undergo similar high inertial stresses (Foote et al., 2019). 

Murine synovial fibroblasts from knee (lineage descending from mesoderm) and 

temporomandibular joint (TMJ) (lineage descending from ectoderm) treated in vitro 

with experimental dynamic stretching assay as a model of mechanical stress, 

underwent gene expression profiling via RT-qPCR (Nazet et al., 2021). Gene 

expression profiles due to different dynamic stretching protocols are strongly 

dependant on the origin of synovial fibroblast, with those derived from TMJ having a 
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reduced Rankl/Opg gene expression ratio after moderate and mixed dynamic 

stretching (Nazet et al., 2021). Notably, knee-derived synovial fibroblasts which 

underwent moderate stretching exhibited increased Ptgs2 and IL1-Ra gene 

expression which was not observed in TMJ derived synovial fibroblast. 

Demonstrating that mechanical forces can have a differential effect on the 

inflammatory profile of fibroblasts derived from different joints (Nazet et al., 2021). 

Murine synovial fibroblasts maintain distinct HOX gene expression, which 

corresponds to anatomical origin suggesting HOX gene expression may influence 

inflammation via NF-κB pathway while tissue specific expression patterns of 

inflammation and cell-cell interactions are aggravated by mechanical stress (Frank-

Bertoncelj et al., 2017; Nazet et al., 2021).   

Animal models of mechanical stress have also been applied to other cell types within 

the joint. Mechanical stress applied to IL-1β-induced rodent chondrocytes using a 

four-point bending device were subjected to RNA sequencing analysis (B. Xu et al., 

2019; Zhang et al., 2022). Transcriptomal analysis found 5,022 differentially 

expressed mRNAs, 88 differentially expressed micro RNAs, 1,259 differentially 

expressed lncRNAs and 393 differentially expressed circRNAs (Zhang et al., 2022). 

KEGG enrichment analysis of lncRNAs found enrichment of cAMP signalling 

pathway, insulin signalling, PPAR signalling, glycine, serine and threonine 

metabolism and apoptosis suggesting a link between mechanical stress and cellular 

metabolism (Zhang et al., 2022). Chondrocytes are known to be involved in the 

immune response by altering T cell proliferation and indirectly inhibiting monocyte 

differentiation (Pereira et al., 2016) however this study demonstrated involvement in 

immune pathways in chondrocytes undergoing mechanical stress which could 
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possibly underlie immune-relevant mechanism of chondrocytes in OA pathogenesis 

(Zhang et al., 2022) 

5.1.3 The use of integrative Multi-Omics in Inflammatory Joint 

Diseases 

 

In recent years, due to the availability and economic feasibility of the technologies, 

there has been an exponential increase in studies featuring multi-omics, which has 

been greatly facilitated by analytical tools for data integration. Within the OA field, a 

recent study by Steinberg et al, employed the use of epigenomic, transcriptomic and 

proteomic analysis on primary chondrocytes isolated from knee and hip OA articular 

cartilage from degraded (high OARSI grade score) compared to “normal” (low 

OARSI grade score) cartilage (Steinberg et al., 2017). DNA methylation and 

RNASeq were utilised to identify differentially methylated regions (DMRs) and DEGs, 

which, with a cut-off at a false discovery rate (FDR) of 5%, resulted in 271 DMRs and 

349 DEGs respectively (Steinberg et al., 2017). Proteomics on these same samples 

found 209 proteins, with evidence of differential abundance and subsequent GO 

annotation of these proteins found 31 proteins that were also differentially expressed 

at the RNA level (Steinberg et al., 2017). Five of these genes were overexpressed in 

the degraded tissue including COL4A2, CXCL12, FGF10, HTRA3 and WNT5B 

(Steinberg et al., 2017). Pathway analysis using KEGG libraries and Reactome 

found extracellular matrix organisation, collagen catabolism and angiogenesis as 

biological pathways significantly associated with disease progression (Steinberg et 

al., 2017). Having identified these regions and pathways of interest, they next sought 

to identify existing therapeutics as candidates for repurposing. Of the 49 genes that 

were differentially regulated, 10 drug agents with investigational or established 
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actions on 9 of the dysregulated proteins (which are already FDA approved) were 

identified including NSAIDs against prostacyclin synthase, which is already 

authorised for symptomatic treatment of OA, phylloquinone (vitamin K1) and 

Periostin (Vitamin K dependant protein induces cartilage degradation) (Steinberg et 

al., 2017). This study shows the integrative functional genomics approach when 

applied to disease relevant tissue and cells may provide potential therapeutic targets 

and highlight existing therapies that may have clinical efficacy in OA (Steinberg et 

al., 2017). 

As a result of its common comparison to RA, the focus on identifying systemic 

factors which contribute to OA disease development and progression hasn’t been as 

popular. However, when compared to healthy controls, there are several systemic 

changes to circulating metabolites which are associated with OA (Huang et al., 

2020). However, identifying systemic changes in OA patients and then finding the 

connection between these alterations and
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local changes at the OA joint tissues has been particularly challenging. Multi-omics 

data analysis using plasma untargeted metabolomics data from 12 OA patients 

compared to 20 healthy controls and synovial tissue transcriptomic dataset 

(GSE55235) of 10 OA patients and 10 healthy controls underwent limited integrative 

analysis and found 58 differential metabolites and the 726 DEGs (Huang et al., 

2020). Subsequent analysis using MetaboAnalyst, found enrichment of pathways 

including T cell receptor signalling pathway, c epsilon RI (FcεRI) signalling pathway 

and thermogenesis (Huang et al., 2020). Pathways associated with inflammation, 

joint destruction and energy metabolism were also identified which provides 

confirmation of the pathophysiological changes observed in other OA related studies 

(Huang et al., 2020). When investigating potential metabolic pathways, three 

metabolites including succinic acid, xanthurenic acid and L-tryptophan were altered 

in OA, which could potentially be diagnostic biomarkers in OA patients (Huang et al., 

2020). However, an issue with this study was the lack of integrative analysis which 

could be performed on these datasets, with the conclusions drawn using conceptual 

integration only and an increase in patient numbers would be required before 

labelling these metabolites as circulating biomarkers of OA.  

Although OA is the most common chronic condition associated with ageing, obesity 

and progressive joint dysfunction, it does not have approved disease-modifying 

drugs, emphasizing a clear unmet need. To meet this need, likely requires a 

paradigm shift in our understand of OA, including identifying the pathological 

changes to cells within the joint that contribute to tissue dysfunction and disease 

progression. The shift towards employment of these high-throughput techniques to 

map out and understand OA pathology has begun to yield interesting insights into 
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OA pathology, and through these means, potential therapeutic interventions may 

arise.  

The approach conducted within this thesis used bulk RNA sequencing of OA patient 

synovial fibroblasts isolated from OA at different joint sites and in both lean and 

obese OA patients to identify the role obesity, load-bearing and anatomical site plays 

in the altered OA synovial fibroblast cellular phenotype. 

 

5.2 Hypothesis 

 

We hypothesised that 

• Transcriptomics analysis of hip OA synovial fibroblast from normal weight 

and obese patients would reveal differentially expressed genes within 

enriched metabolic pathways identified in OA synovial fibroblast 

conditioned media from normal weight and obese patients  

• Transcriptomics analysis of normal weight and obese OA synovial 

fibroblast from different joints would reveal common altered metabolic 

pathways 

• Joint pathway analysis using transcriptomics and metabolomics data from 

normal weight and obese hip OA synovial fibroblasts will reveal 

significantly enriched metabolic pathways 

 

 

 

 



221 | P a g e  
 

5.3 Methods 

 

5.3.1 Patient Characteristics and Anthropometric Data  

Table 5.1 Patient Characteristics Data 

1.  Normal 

Weight 

(N = 11) 

Obese 

(N = 

12) 

 P Value  Load 

Bearing 

(n = 18) 

Non-

loadbearing 

(n =6) 

P Value  

Age (years) 65.8 ± 

9.26 

63.92 ± 

8 

0.606 66.67 ± 

8.34 

58.17 ± 4.96 0.025 

Female:Male 8:3 8:4 
 

12:6 4:2 
 

BMI (kg/m2) 22.95 ± 

1.56 

33.77 ± 

1.96 

<0.000001 28.63 ± 

5.81 

28.14 ± 5.78 0.810 

Weight (kg) 60.37 ± 

5.55 

92.78 ± 

12.1 

<0.000001 78. 08 ± 

19.69 

77.03 ± 17.36 0.974 

Height (cm) 162.2 ± 

8.03 

164.47 

± 10.36 

0.575 163.77 ± 

9.73 

165.65 ± 

11.28 

0.986 

 

1. Shapiro-Wilk and Kolmogorov-Smirnov Normality test computed to test for normal 

distribution of data. Multiple unpaired t test with Welch correction performed for 

normal weight vs obese comparison. Multiple Mann-Whitney t test performed for 

loadbearing vs non-loadbearing comparison 
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5.4 Results 

 

Transcriptomics analysis was conducted on primary human OA synovial fibroblasts 

from normal weight (BMI 18.5 to 24.9) and obese (BMI ≥30) patients undergoing joint 

replacement surgery for the hip, knee, foot and hand. Following Bulk RNA 

sequencing of these OA synovial fibroblasts, differential expression analysis and log2 

fold change data was computed using DESeq2 R package (Love, Huber and Anders, 

2014). Data was visualised using Venn diagram comparing differentially expressed 

genes identified in OA synovial fibroblast within obesity to those found in loadbearing 

joints (hip, knee and foot) compared to non-loadbearing joints (hand) (figure 5.1). 

726 genes were found to be differentially expressed in obesity within OA synovial 

fibroblasts and 819 genes were differentially expressed in loadbearing joints when 

compared to non-loadbearing joints within OA synovial fibroblasts (figure 5.1). 

Amongst those genes were 19 DEGs were shared across obesity and loadbearing 

comparison (figure 5.1). 
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Figure 5.1: Venn Diagram of differentially expressed genes in obesity 

and loadbearing OA synovial fibroblasts 

Fibroblasts from obese vs normal weight (n = 18) compared to load bearing 

vs non-load bearing (n= 6) with log2 fold change ≥0.48 or ≤-0.48 and with p 

value >0.05 (Heberle et al., 2015). 
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Table 5.2: Shared differentially expressed genes in obesity (OB) 

and loadbearing (LB) comparison 

 

GENE ID LOG2FC 
OB 

P 
VALUE 

LOG2FC 
LB 

P 
VALUE 

DAVID GENE NAME 

AC005410.
2 

2.32 0.03 -6.37 0.05 N/A 

AC015712.
2 

-3.06 0.01 -4.88 0.03 N/A 

AC025164.
1 

4.29 0 -5.72 0.01 N/A 

ADAM12 -1.09 0.05 -1.49 0 ADAM metallopeptidase 
domain 12 

ANKRD40 0.77 0.05 0.81 0.02 ankyrin repeat domain 40 

DNAJC10 -0.35 0.05 -0.41 0.02 DnaJ heat shock protein 
family (Hsp40) member 
C10 

EFHD1 1.85 0.04 6.98 0 .003 EF-hand domain family 
member D1 

IL32 0.97 0.04 -1.03 0.05 interleukin 32 

LRRC8C -2.78 0.05 -4.37 0.01 leucine rich repeat 
containing 8 VRAC 
subunit C 

MAP3K11 3.34 0.01 -3.19 0.01 mitogen-activated protein 
kinase 11 

MASTL -3.58 0.01 -4.17 0 microtubule associated 
serine/threonine kinase 
like 

NAB1 -1.59 0.03 -0.91 0.01 NGFI-A binding protein 1 

PCF11 -0.99 0.04 -1.05 0.01 PCF11 cleavage and 
polyadenylation factor 
subunit 

PIGA 2.79 0.04 -7.03 0 phosphatidylinositol 
glycan anchor 
biosynthesis class A 

PSMA5 1.44 0.03 -1.1 0.03 proteasome 20S subunit 
alpha 5 

SLC13A3 -2.65 0.02 -6.59 0.01 solute carrier family 13 
member 3 

SNAPC4 -2.71 0.02 -2.81 0.02 small nuclear RNA 
activating complex 
polypeptide 4 

TAOK1 0.35 0.04 -0.4 0.04 TAO kinase 1 

TFEB -2.11 0.04 -5.59 0.01 transcription factor EB 
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Likewise, a more in-depth analysis of the data was conducted to examine whether 

there were any DEGs shared across different joints in obese compared to normal 

weight OA synovial fibroblasts (figure 5.2). From the analysis, 547 genes were found 

to be differentially expressed in hip OA, 631 genes were found to be differentially 

expressed within knee OA, 620 genes were found to be differentially expressed in 

foot OA and 661 genes were found to be differentially expressed in hand OA (figure 

5.2). There were no shared DEGs found in all 4 comparisons across the different 

joints with respect to obesity.  
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Figure 5.2: Venn diagram of differentially expressed genes (DEGs) in 

OA synovial fibroblasts from different joints  

Analysis of fibroblasts from obese compared to normal weight in hip (n= 6), 

knee (n= 6), foot (n= 6) and hand (n= 6) with log2 fold change ≥0.48 or ≤-0.48 

and with p value >0.05 (Heberle et al., 2015). 
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5.4.1 Heatmaps of metabolic pathways identified within 

metabolomics data of OA synovial fibroblast 

 

Following general analysis of the RNA sequencing data, one question which arose 

from metabolomics analysis of this data (as mentioned previously within Chapter 1) 

was whether the proteins and enzymes involved in the enriched metabolic pathways 

for obese and normal weight OA synovial fibroblast secretomes following TNFα 

stimulation, were also differentially expressed. To that end, the gene names for 

these proteins and enzymes were manually filtered and verified using PANTHER 

functional classification gene list analysis. This pathway analysis was not restricted 

only to OA synovial fibroblast hip patients but included other OA synovial fibroblasts 

from different joints to determine whether any obesity associated changes were 

globally dysregulated or specific to particular anatomical joint sites. The first 

metabolic pathway investigated was the glycolysis/gluconeogenesis KEGG pathway 

(map00010) as shown in heatmap form (figure 5.3). Hierarchical clustering analysis 

of different genes within this pathway did not reveal any clearcut underlying 

differences in gene expression of OA synovial fibroblast from normal weight and 

obese patients or within different joints however there was a high expression of 

alpha enolase (ENO1), lactate dehydrogenase (LDHA) and pyruvate kinase (PKM) 

across all comparisons relative to expression of other genes within pathway and a 

slight increase in ALDH2 expression in obese hip compared to normal weight hip OA 

synovial fibroblast. On the other hand, there was low expression of ALDH7 and 

ALDH3B2 expression across all comparisons relative to expression of other genes 

within pathway (figure 5.3).  
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Another pathway which was highly enriched within the metabolome of OA synovial 

fibroblast conditioned media (for both obese and normal weight patients) was the 

Aminoacyl tRNA biosynthesis KEGG pathway (map00970). Hierarchical clustering 

analysis of this pathway identified a set of highly expressed aminoacyl tRNA 

synthetase compared to other genes within pathway, which include Threonyl-tRNA 

synthetase (TARS), Tryptophanyl-tRNA synthetase (WARS), Asparaginyl-tRNA 

synthetase (NARS) and Leucyl-tRNA synthetase (LARS).,However, there were no 

clear-cut differences in obesity of OA synovial fibroblasts from different joints (figure 

5.4).  

Another common pathway altered in hip OA synovial fibroblast metabolome was 

serine, glycine, and threonine metabolism (map00260). Similar hierarchical 

clustering analysis was applied to this KEGG pathway and found relatively high 

expression of Phosphoserine Aminotransferase 1 (PSAT1) which is  increased in 

obese knee OA synovial fibroblasts compared to normal weight samples and Serine 

hydroxymethyltransferase 2 (SHMT2) (figure 5.5).  

The final pathway which was significantly enriched within OA synovial fibroblast 

metabolome of hip patients was alanine, aspartate and glutamate metabolism 

(map00250). Hierarchical clustering analysis of this metabolic pathway found 

relatively higher expression of Glutaminase (GLS) in obese hip and knee samples 

and increased expression of Glutamine synthetase (GLUL), however there was a 

decrease in expression of Glutamate dehydrogenase 2 (GLUD2) and Glutamate 

decarboxylase 2 (GAD2) enzymes (figure 5.6).  
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Figure 5.3: Differential Gene Expression of Glycolysis/Gluconeogenesis 

KEGG pathway 

Normalised counts from bulk RNA sequencing data of OA synovial fibroblasts from 
hip (n = 6) (orange), knee (n = 6) (purple), hand (n = 6) (yellow) and foot (n = 6) 
(cyan) and different BMI’s (normal weight (NW) as pink and obese (OB) in green). 

Hierarchical Clustering analysis conducted using dendrogram for row clusters 
using the ward method and cluster distance set as Euclidean. Log2 transformation 
of data was utilised to aid interpretation due to large differences in expression 
levels (counts) of different genes.  
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Figure 5.4: Differential Gene Expression of Aminoacyl-tRNA Biosynthesis KEGG pathway 

Normalised counts from bulk RNA sequencing data of OA synovial fibroblasts from hip (n = 6) 
(orange), knee (n = 6) (purple), hand (n = 6) (yellow) and foot (n = 6) (cyan) and different BMI’s 

(normal weight (NW) as pink and obese (OB) in green). Hierarchical Clustering analysis conducted 
using dendrogram for row clusters using the ward method and cluster distance set as Euclidean. 
Log2 transformation of data was utilised to aid interpretation due to large differences in expression 
levels (counts) of different genes.  
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Figure 5.5: Differential Gene Expression of Serine, Glycine and Threonine metabolism KEGG 

pathway 

Normalised counts from bulk RNA sequencing data of OA synovial fibroblasts from hip (n = 6) (orange), 
knee (n = 6) (purple), hand (n = 6) (yellow) and foot (n = 6) (cyan) and different BMI’s (normal weight (NW) 

as pink and obese (OB) in green). Hierarchical Clustering analysis conducted using dendrogram for row 
clusters using the ward method and cluster distance set as Euclidean. Log2 transformation of data was 
utilised to aid interpretation due to large differences in expression levels (counts) of different genes.  
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Figure 5.6: Differential Gene Expression of Alanine, Aspartate and Glutamate metabolism 

KEGG pathway 

Normalised counts from bulk RNA sequencing data of OA synovial fibroblasts from hip (n = 6) 
(orange), knee (n = 6) (purple), hand (n = 6) (yellow) and foot (n = 6) (cyan) and different BMI’s 

(normal weight (NW) as pink and obese (OB) in green). Hierarchical clustering analysis 
conducted using dendrogram for row clusters using the ward method and cluster distance set 
as Euclidean. Log2 transformation of data was utilised to aid interpretation due to large 
differences in expression levels (counts) of different genes.  
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5.4.2 Ingenuity Pathway Analysis (IPA) of obese and normal weight 

OA synovial fibroblast from different joints 

 

Having investigated the metabolic pathways identified in metabolomics data, the next 

step was to look for significantly altered metabolic pathways based only on the 

transcriptomics data from OA synovial fibroblasts. In the stacked bar chart option, 

the number of transcripts which are upregulated are shown in red, those which are 

downregulated are in green and those in white are transcripts which didn’t pass the 

cut-offs when put through the core analysis of each canonical pathway.  

Having been limited in the metabolomics data to only OA synovial fibroblast from hip 

patients, RNA sequencing data was applied to synovial fibroblasts isolated from the 

synovium of patients following total joint replacement surgery at the hip, knee and 

foot as well as hand synovium following arthroscopy. Ingenuity pathway analysis 

(IPA) was undertaken using canonical pathway analysis which displays the most 

significant canonical pathways across the entire dataset. These samples were 

grouped either by obesity (grouping all the joint samples together with the 

discriminating factor being BMI) or based on biomechanical loading of joint (grouping 

samples together with the discriminating factor being anatomical location of the 

joint).  

The first analysis undertaken was the later, with loadbearing joints including OA 

synovial fibroblasts from hip, knee and foot compared to non-loadbearing hand OA 

synovial fibroblasts (table 5.1). This was to discriminate the transcriptomics 

differences observed within metabolic pathways in obesity which arise due to 

increased biomechanical loading of the joint.  
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Figure 5.7: Canonical Pathway Analysis of loadbearing (n = 18) compared to non-loadbearing (n =6) OA synovial 

fibroblast. 

Blue pathways indicate predicted inhibition and orange pathways indicate predicted activation. White bars are those which either 

indicate a pathway with a z-score close to zero or are ineligible for analysis due to >4 analysis ready transcripts within the dataset 

associated with the pathway. 
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The top metabolic pathway identified within this comparison included salvage 

pathways associated with pyrimidine deoxyribonucleotides and ribonucleotides and 

pyridoxal 5’ phosphate (figure 5.7). 

Among the DEGs altered within these OA synovial fibroblasts from loadbearing joints 

and obesity was thymidine kinase and deoxycytidine deaminase which were 

identified within the salvage pathways of pyrimidine deoxyribonucleotides.  The 

DEGs within these pathways were downregulated however z score from this analysis 

didn’t suggest a predicted inhibition or activation of this pathway.   
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Figure 5.8: Salvage Pathway of Pyrimidine Ribonucleotides highlighted in canonical pathway analysis of loadbearing compared to non-

loadbearing OA synovial fibroblast 
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Figure 5.9: Salvage Pathway of Pyrimidine Deoxyribonucleotides highlighted 

in canonical pathway analysis of loadbearing compared to non-loadbearing 

OA synovial fibroblast 
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Figure 5.10: Canonical pathway analysis of obese (n = 12) compared to normal weight (n = 11) OA synovial fibroblast  

Blue pathways indicate predicted inhibition and orange pathways indicate predicted activation. White bars are those which either indicate a pathway 

with a z-score close to zero or are ineligible for analysis due to >4 analysis ready transcripts within the dataset associated with the pathway. 
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The top altered metabolic pathway in OA synovial fibroblast when investigating 

obesity is NADH repair although none of the canonical pathways in obesity were 

highlighted as activated or inhibited (figure 5.10). Another pathway associated with 

NAD/NADH metabolism, NAD biosynthesis from tryptophan was also significantly 

altered in obese hand OA synovial fibroblast compared to normal weight hand OA 

synovial fibroblasts and was predicted to be inhibited based on its z score (figure 

5.20).  

Likewise, another significantly altered pathway that was commonly identified within 

canonical pathway analysis of obese compared to normal weight OA synovial 

fibroblasts was cysteine degradation and biosynthesis, homocysteine degradation 

and super pathway of methionine degradation.  However, the software was not able 

to make a prediction on its activity status in the overall obesity analysis (figure 5.10). 

There was predicted activation of the super pathway of methionine degradation in 

the obese hip and foot OA synovial fibroblasts compared to normal weight OA 

synovial fibroblasts (figure 5.15 and 5.19). 
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Figure 5.11: NADH repair pathway highlighted in metabolic pathway 

analysis of obese synovial fibroblast compared to normal weight synovial 

fibroblast  
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Figure 5.13: Salvage pathway of pyrimidine deoxyribonucleotides pathway 

highlighted in canonical pathway analysis of obese synovial fibroblasts 

compared to normal weight synovial fibroblast 
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 Figure 5.14: Percentage upregulated and downregulated DEGs within metabolic canonical pathway analysis of obese (n = 3) 

compared to normal weight (n = 3) hip OA synovial fibroblast 
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Figure 5.15: Metabolic canonical pathway activity of obese (n = 3) compared to normal weight hip (n = 3) OA synovial fibroblast 
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Figure 5.16: Metabolic canonical pathway analysis of obese (n = 3) knee OA synovial fibroblast compared to normal 

weight (n = 3)  knee OA synovial fibroblast 

Blue pathways indicate predicted inhibition and orange pathways indicate predicted activation. White bars are those which either indicate a 

pathway with a z-score close to zero or are ineligible for analysis due to >4 analysis ready transcripts within the dataset associated with the 

pathway. 
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Figure 5.17: Branched chain α ketoacid dehydrogenase complex highlighted in metabolic canonical pathway of obese compared to 

normal weight knee OA synovial fibroblast 
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 Figure 5.18: Percentage upregulated and downregulated DEGs within metabolic canonical pathway analysis of obese (n = 3) compared to 

normal weight (n = 3) foot OA synovial fibroblast 
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Figure 5.19: Metabolic canonical pathway analysis of obese (n = 3) compared to normal weight  (n = 3) foot OA synovial fibroblast  

Blue pathways indicate predicted inhibition and orange pathways indicate predicted activation. White bars are those which either indicate a pathway with a z-

score close to zero or are ineligible for analysis due to >4 analysis ready transcripts within the dataset associated with the pathway. 
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Figure 5.20: Metabolic canonical pathway analysis of obese  (n = 3)  compared to normal weight  (n = 3)  hand OA synovial fibroblast  

Blue pathways indicate predicted inhibition and orange pathways indicate predicted activation. White bars are those which either indicate a pathway with a 

z-score close to zero or are ineligible for analysis due to >4 analysis ready transcripts within the dataset associated with the pathway. 



249 | P a g e  
 

5.4.3 Joint Pathway Analysis 

 

Having obtained metabolomics data of obese hip OA synovial fibroblast compared to 

normal weight hip OA synovial fibroblast conditioned media using 1H NMR 

spectroscopy (described in previous chapter), this data was integrated with 

transcriptomics RNA sequencing data from obese OA synovial fibroblast compared 

to normal weight OA synovial fibroblast. This data was restricted to only OA synovial 

fibroblasts isolated from the synovium of patients who underwent total hip 

replacement surgery, and the cells were not patient matched but were from the same 

study patient cohort. This data was then inputted into MetaboAnalyst 5.0 (Pang et 

al., 2021) joint pathway analysis software to identify significantly enriched metabolic 

pathways from the transcriptome and secretome of obese OA synovial fibroblasts 

(figure 5.21).  

The top significantly enriched metabolic pathways (based on raw p values) within 

this joint pathway analysis was Phosphonate and phosphinate metabolism (p = 

0.001), Histidine metabolism (p = 0.005), Phosphatidylinositol signalling system ( p = 

0.005), Inositol phosphate metabolism ( p = 0.016), Glycerolipid metabolism ( p = 

0.039) and Glycolysis or Gluconeogenesis (p = 0.04) (table 5.3). These same 

pathways however did not reach significance using the more stringent Holm adjusted 

p value or FDR. Phosphonate and phosphinate metabolism (impact =0.66667), 

Histidine metabolism  (impact =0.3871) and TCA cycle (impact =0.41463) all had the 

highest pathway impact (table 5.3) suggesting these metabolic pathways have the 

highest topological impact within the integrated dataset. Although pathway impact 

scores were computed, identifying whether these pathways were predicted to be 

activated or inhibited based on z-score was not possible due to software limitations.  
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However, the actual DEGs and metabolites within these pathways were highlighted 

as either upregulated or downregulated, giving an indication of how these pathways 

are altered (figures 5.22-5.26). 
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Figure 5.21: Joint pathway analysis using transcriptomics and metabolomics data 

from obese OA synovial fibroblast compared to normal weight OA synovial 

fibroblast 

Transcriptomics data was collected using RNAseq ( n = 6) and metabolomics data was 

collected using NMR spectroscopy (n = 12). Metabolic pathways are arranged by p values 

on Y-axis and pathway impact values (from pathway topology analysis) on X-axis. The 

node colour is based on p values and the node radius is based on pathway impact values 
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Table 5.3: Multi-omics pathway analysis of obese OA synovial 

fibroblasts compared to normal weight OA synovial fibroblasts  

 

 

 

 

 

 

Pathway Total Expected Hits Raw p -Log(p) Holm 
adjust 

FDR Impact 

Phosphonate and 
phosphinate 
metabolism 

10 0.22 3 0.001 2.98 0.088 0.088 0.67 

Histidine 
metabolism 

32 0.70 4 0.0046 2.34 0.38 0.13 0.39 

Phosphatidylinositol 
signalling system 

74 1.61 6 0.0047 2.33 0.39 0.13 0.27 

Inositol phosphate 
metabolism 

69 1.50 5 0.016 1.81 1 0.33 0.24 

Glycerolipid 
metabolism 

35 0.76 3 0.039 1.41 1 0.58 0.21 

Glycolysis or 
Gluconeogenesis 

61 1.33 4 0.042 1.38 1 0.58 0.32 

Glycine, serine and 
threonine 
metabolism 

68 1.48 4 0.058 1.24 1 0.64 0.12 

Citrate cycle (TCA 
cycle) 

42 0.91 3 0.061 1.21 1 0.64 0.42 

Pyruvate 
metabolism 

45 0.98 3 0.072 1.14 1 0.68 0.30 
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Figure 5.22: Phosphonate and phosphinate metabolism highlighted 

in multi-omics pathway analysis  of obese compared to normal OA 

synovial fibroblast.  

Green is a negative log2 fold change showing decreased expression or 

levels and red is a positive log2 fold change showing increased 

expression. Symbols in squares refers to genes for enzymes within 

pathway and circles refers to compounds within pathway.  
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Figure 5.23: Histidine metabolism highlighted in multi-omics pathway 

analysis of obese compared to normal weight hip OA synovial fibroblast. 

 Green is a negative log2 fold change showing decreased expression or levels 

and red is a positive log2 fold change showing increased expression. Symbols in 

squares refers to genes for enzymes within pathway and circles refers to 

compounds within pathway.  
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Figure 5.24: Phoshotidylinositol signalling system highlighted in multi-omics 

pathway analysis of obese compared to normal weight hip OA synovial 

fibroblast.  

Green is a negative log2 fold change showing decreased expression or levels and 

red is a positive log2 fold change showing increased expression. Symbols in 

squares refers to genes for enzymes within pathway and circles refers to 

compounds within pathway.  
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Figure 5.25: Inositol phosphate metabolism highlighted in multi-omics 

pathway analysis of obese compared to normal weight hip OA synovial 

fibroblast.  

Green is a negative log2 fold change showing decreased expression or 

levels and red is a positive log2 fold change showing increased expression. 

Symbols in squares refers to genes for enzymes within pathway and circles 

refers to compounds within pathway.  
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Figure 5.26: Glycolysis highlighted in multi-omics pathway analysis of 

obese compared to normal weight hip OA synovial fibroblast.  

Green is a negative log2 fold change showing decreased expression/levels and 

red is a positive log2 fold change showing increased expression. Symbols in 

squares refers to genes for enzymes within pathway and circles refers to 

compounds within pathway.  
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5.5 Discussion 

5.5.1 Shared metabolic gene expression across loadbearing and 

obesity 

Of the 19 shared DEGs in the obesity and loadbearing comparison of OA synovial 

fibroblasts, Phosphatidylinositol N-Acetylglucosaminyltransferase Subunit A (PIGA) 

and Solute Carrier Family 13 (Sodium-Dependent Dicarboxylate Transporter), 

Member 3 (SLC13A3) were highlighted as genes involved in metabolic pathways.  

PIGA is involved in synthesis of N-acetylglucosaminyl phosphatidylinositol (GlcNAc-

PI), which is the 1st intermediate within the biosynthetic pathway of 

glycophosphatidylinositol anchor (Bateman et al., 2021). It is the catalytic subunit in 

glycosylphosphatidylinositol-N-acetylglucosaminyltransferase (GPI-GnT) complex 

which transfers N-acetylglucosamine from UDP-N-acetylglucosamine onto 

phosphatidylinositol (Bateman et al., 2021). N-acetylglucosamine and UDP-N-

acetylglucosamine were amongst the metabolites increased (p = 0.295 and 0.297) in 

the synovial fluid of obese OA patients, compared to normal weight OA synovial fluid 

synovial fibroblasts. The increase in intermediates and altered PIGA expression 

within obesity (Log2FC 2.78, p 0.04) could suggest an increase in GPI-anchoring of 

proteins within cell membranes of obese OA synovial fibroblasts. Amongst the 

proteins that are known to utilise this post-translational modification is fibroblasts 

marker Thy-1 (CD90). Thy-1 is glycosyl phosphatidylinositol-anchored glycoprotein 

and is expressed in a range of cell types including T lymphocytes, thymocytes, 

neurons and fibroblasts (Shan et al., 2010; Saalbach and Anderegg, 2019). In 

synovium its expression is mainly limited to the perivascular zone of the sub-lining 

area and its expression is increased within the inflamed synovium (Adam P Croft et 
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al., 2019). Gene expression data from this study showed no significant change in 

THY1 expression in obesity, however bulk RNA sequencing would not be the 

appropriate method of detecting changes in THY1 expression in obese OA synovial 

fibroblasts. To confirm this theory of altered Thy-1 expression in obese OA synovial 

fibroblasts and synovium, single cell RNA sequencing of both obese and normal 

weight OA synovial fibroblasts would need to be conducted and analysis of the sub-

lining layer fibroblasts as well as immunofluorescent labelling of THY-1 in obese OA 

synovium. Likewise, a broader insight into changes in GPI-anchored proteins within 

these OA synovial fibroblasts might yield insights into the metabolically altered state 

of these cells . 

The second gene which has significantly altered expression in both obesity and 

loadbearing OA synovial fibroblasts was the protein transporter SLC13A3. SLC13A3 

is a mammalian sodium-dicarboxylate cotransporter which is involved in the 

transport succinate, alpha ketoglutarate and other TCA cycle intermediates 

(Bateman et al., 2021). Interestingly, its expression is decreased in both obese 

(Log2FC -2.64, p 0.0157) and loadbearing (Log2FC -6.59, p 0.011). Likewise, TCA 

cycle is among the enriched metabolic pathway observed within obese OA synovial 

fibroblast although this did not come up as statistically significant in multi-omics 

analysis. This reduced expression of this transporter and the inference of reduced 

transport of these TCA cycle metabolites could suggest an increased metabolic need 

of the cells to accumulate TCA cycle intermediates for its own metabolic needs, 

through increased mitochondrial respiration. However, further investigation would be 

needed to corroborate this hypothesis, as data on directional transport of these 

intermediates and which intermediates are being transported would be required. 

Likewise, inference of protein transporter function within cells though RNA driven 
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data is not the best method, as protein transporters have numerous methods of 

regulation, through post-translational modifications, altered protein expression and 

internalisation through translocation from the plasma membrane.  

5.5.2 Heatmaps of metabolomic pathways highlight differentially 

expressed genes in obesity 

When examining the KEGG glycolysis/gluconeogenesis pathway within the 

transcriptome of OA synovial fibroblast, alpha enolase (ENO1) and pyruvate kinase 

(PKM) were largely increased relative to other genes within this pathway. The 

increase in PKM expression is particularly notable, since it catalyses the final rate-

limiting step of glycolysis through the transfer of a phosphoryl group from 

phosphoenolpyruvate (PEP) to ADP thereby generating ATP. PKM has been widely 

characterised and the ratio between its highly active tetrameric form and inactive 

dimeric form governs whether carbons from glucose are funnelled into biosynthetic 

processes or for energy metabolism thereby generating ATP (Vander Heiden et al., 

2010). Increased expression of PKM2 and LDHA have been observed in RA synovial 

fibroblasts providing not only the energy to sustain the increased cellular proliferation 

observed in RA synovial fibroblasts but can also modulate transcription through 

PKM2 nuclear translocation and interaction with NFκB/STAT3 and lactate’s ability to 

activate metalloproteinases and thereby stimulated ECM degradation and 

angiogenesis via VEGF and HIF1α (D. Xu et al., 2019). This increase in expression 

of these glycolytic enzymes and LDHA could be simply a mechanism to cope with 

increased rates of glycolysis. Interestingly, glycolysis/gluconeogenesis metabolic 

pathway was significantly enriched during joint multi-omics pathway analysis of hip 

obese compared to hip normal weight OA synovial fibroblasts suggesting glycolysis 
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is the primary metabolic pathway altered in obesity within hip OA synovial fibroblasts, 

however confirmation of this requires in vitro real time metabolic flux analysis. 

The next significantly enriched metabolic pathway identified in the metabolome of 

OA synovial fibroblasts from hip patients was the amino acyl tRNA biosynthesis 

pathway. This pathway involves the aminoacylation of transfer RNAs and is 

synthesised by aminoacyl-tRNA synthetases (AARS). Aminoacylation was found to 

be significantly enriched in metabolite-gene interactions within a cross-sectional late-

stage knee OA cohort (Rockel et al., 2022). AARS have been associated with 

inflammation and amino acid sensing. For example, KARS acts as a pro-

inflammatory cytokines in macrophages (Sang et al., 2005). AARS and their 

associated protein complexes have been shown to modulate inflammation, apoptosis 

and gene expression (Pang, Poruri and Martinis, 2014). This pathway is also an 

essential pathway for protein synthesis through their active role as amino acid 

sensors (Yu, Han and Kim, 2021). Aminoacyl-tRNA synthetase-interacting 

multifunctional protein 1 (AIMP1) downregulation in chondrocytes is involved in 

promoting anabolic cell activity through regulation of TGFβ signalling (Ahn et al., 

2016). LARS has recently been identified as a leucine sensor within mammalian 

target of rapamycin complex 1 (mTORC1) pathway and has been shown to respond 

to glucose starvation via phosphorylation of Unc-51 like autophagy activating kinase 

1 (ULK1) at its leucine binding site, thereby prohibiting protein synthesis and 

providing leucine for catabolic pathway energy generation (Kim et al., 2017; Yoon et 

al., 2020). Notably, amino-acyl tRNA biosynthesis was also identified as significant 

within IPA analysis obese hip OA synovial fibroblasts, compared to normal weight 

hip OA synovial fibroblasts, and had a predicted inhibition based on its z-score 

(figure 5.15). Significantly altered transcriptomic metabolic pathways associated with 
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amino acid metabolism have also been identified within other comparisons including 

Arginine and Methionine degradation in obese hip OA synovial fibroblasts (figure 

5.15), L-Cysteine degradation and biosynthesis in obesity within all OA synovial 

fibroblasts (figure 5.10) and branched chain α-keto acid dehydrogenase complex 

within obese knee OA synovial fibroblast (figure 5.16). This could suggest amino 

acid metabolism plays an essential role in obesity within OA synovial fibroblasts from 

different joints.  However, multi-omics pathway analysis of hip OA synovial 

fibroblasts did not highlight this as significantly enriched.   

Another pathway that was significantly enriched within OA synovial fibroblasts 

metabolome was serine, glycine and threonine metabolism. Hierarchical clustering 

analysis highlighted relatively higher expression of genes involved in serine-glycine 

synthesis and degradation including SHMT2, which catalyses the conversion of 

serine to glycine within the mitochondria and PSAT1, which catalyses the reversible 

conversion of 3-phosphohydroxypyruvate to phosphoserine using glutamate and 

producing the α-keto acid, α-ketoglutarate. Multi-omics analysis of hip OA synovial 

fibroblasts found serine, glycine and threonine metabolism was not significantly 

enriched suggesting gene expression data from the transcriptomics dataset doesn’t 

support those differences identified within the metabolomics data. This discrepancy 

in data integration suggests serine, glycine and threonine metabolism may not be as 

important to distinguish differences in metabolic phenotype of obese OA synovial 

fibroblasts as previously thought.  

Alanine, aspartate and glutamate metabolism was the final significantly enriched 

metabolic pathway identified in metabolomics data analysis of hip OA synovial 

fibroblasts. Hierarchical clustering analysis of the transcriptomics data showed a 

cluster of relatively highly expressed transcripts including glutaminase 1 (GLS) and 
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glutamine synthetase (GLUL) as well as lower relative expression of Glutamate 

dehydrogenase 2 (GLUD2) and Glutamate decarboxylase 2 (GAD2) enzymes. GLS 

and GLUL enzymes catalyse the glutamine catabolism and synthesis pathway by 

converting glutamine to glutamate and its opposite reaction respectively. These 

enzymes have generated much interest due to their clinical significance within the 

tumour microenvironment and their critical role in cellular senescence making them 

an attractive target for cancer senolytic therapies (Chen and Cui, 2015; Johmura et 

al., 2021). Glutamine metabolism and GLS has already been shown to be critical in 

the function and cellular phenotype of RA synovial fibroblast and has been shown to 

be critical to the inflammatory response within OA synovial fibroblast which was 

discussed in the previous chapter of this thesis (Takahashi et al., 2017; Farah et al., 

2022).  

5.5.3 IPA analysis of the transcriptome of OA synovial fibroblast 

highlights distinctively altered metabolic pathways in the context of 

obesity  

Having undertaken a metabolomics driven analysis of the transcriptomics data in an 

attempt to yield conceptual insights into OA synovial fibroblasts metabolism, 

independent analysis of the transcriptomics data from these cells found unique 

differences in their metabolism. Amongst the top metabolic canonical pathways 

significantly altered within load-bearing joints and within obesity was the salvage 

pathway of deoxyribonucleotides, with a reduction in thymidine kinase and 

deoxycytidine deaminase expression.  This could suggest a reduced capacity for 

recycling of these deoxyribonucleotides, which would need further investigation, 

possibly examining changes in DNA synthesis and replication.  
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Another altered metabolic pathway within obese OA synovial fibroblasts was NADH 

repair, with NAD biosynthesis predicted as inhibited in hand OA synovial fibroblasts. 

Nicotinamide adenine dinucleotide (NAD+) is a critical coenzyme used for redox 

reactions, which is intricately involved in energy metabolism including glycolysis, 

TCA cycle and fatty acid oxidation (Covarrubias et al., 2021). NAD+/NADH ratio 

depends on the cellular redox state, rates of NAD+ synthesis and NAD+ consumption 

(Xu et al., 2016). Although NAD is well studied within age related diseases, its role 

within OA is still not well understood. It can be generated de novo through the 

kynurenine pathway at the liver and can also be generated using nicotinamide 

(NAM) through the NAD+ salvage pathway within peripheral cells (Xu et al., 2016). 

The critical rate-limiting enzyme within this pathway is nicotinamide phosphoribosyl-

transferase (NAMPT) and converts NAM into nicotinamide mononucleotide (NMN) 

(Covarrubias et al., 2021).   

Extracellular NAMPT/Visfatin is a highly conserved, globally expressed enzyme 

which is secreted from visceral adipose tissue. It has multiple potential roles, 

alongside its catalytic role in converting nicotinamide into NMN, including 

immunomodulation through activation of human leukocytes and induces pro-

inflammatory cytokine production (IL6, TNFα and IL1β) (Moschen et al., 2007). 

Visfatin has garnered much attention within the field due to its increased expression 

within age-related diseases, including diabetes and obesity (Philp et al., 2021). 

However, not much research has been conducted on its role within OA. Previous 

research within this group has shown visfatin is expressed locally by joint tissues 

including within synovium and synovial fluid of hip OA patients and it is elevated in 

the synovial fluid of obese patients (Philp et al., 2021). NAMPT expression is 

significantly upregulated in obese hip OA synovial fibroblasts compared to normal 
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weight OA synovial fibroblasts (Q value =  0.0039) (Nanus et al., 2020). This data 

supports the previous research within this group, on the importance of visfatin and 

NAD metabolism in hip OA.  

Another commonly altered metabolic pathway in OA synovial fibroblasts in the 

context of obesity was cysteine biosynthesis and degradation, homocysteine 

degradation and super pathway of methionine degradation. Cysteine, homocysteine 

and methionine are all sulphur containing amino acids with homocysteine being 

formed during the conversion of methionine to cysteine in the transsulfuration 

pathway (Rehman et al., 2020). Cysteine is a proteinogenic amino acid which 

catalyses several important metabolic reactions including its involvement in lipid 

biosynthesis, iron-sulphur biosynthesis and is a source for taurine, glutathione and 

coenzyme A (Rehman et al., 2020). It plays a crucial role in the synthesis of 

essential fatty acids and therefore is critical for cell membrane formation. It is also 

involved in DNA methylation, as S-adenosylmethionine (SAM), the activated form of 

methionine, serves as the most important methyl donor and therefore could be 

involved in supplying methyl groups for epigenetic modifications of genes (Yang et 

al., 2018). OA synovial fluid from obese patients had increased methionine levels 

compared to normal weight OA synovial fluid (p 0.297). However, cysteine and 

homocysteine were not altered within OA synovial fluid or fibroblasts secretomes, 

suggesting cysteine, homocysteine metabolism is only altered intracellularly. The 

role cysteine, homocysteine and methionine metabolism plays within obesity and OA 

is unknown and warrants further research and investigation.   
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5.5.4 Joint pathway analysis of hip OA synovial fibroblasts  

Having obtained both metabolomics and transcriptomics data from the hip OA 

synovial fibroblasts, data integration through statistical analysis was conducted using 

joint pathway analysis software, MetaboAnalyst. Several significantly enriched 

metabolic pathways were identified in obese hip OA synovial fibroblasts including 

phosphatidylinositol signalling system and inositol phosphate metabolism. 

Phosphatidylinositol are a class of short-lived membrane phospholipids composed of 

an inositol ring and two fatty acid chains linked through a glycerol backbone which 

secures the molecule to the internal surface of cell membrane (Marat and Haucke, 

2016). These molecules are phosphorylated at different hydroxyl positions at the 

inositol ring by a family of lipid kinases producing the signalling molecules which 

mediates different aspects of cell function including gating of ions channels, 

autophagy, cytoskeletal regulation and motility and even regulating vesicular traffic 

(Balla, 2013; Lystad and Simonsen, 2016). Amongst those pathways most studied 

that involve phosphatidylinositol’s is the receptor tyrosine kinase induced Akt 

signalling pathway, which is activated upon the synthesis of PI(3,4,5)P3 from 

PI(4,5)P2 by class I PI3K and is dephosphorylated by PTEN (Lystad and Simonsen, 

2016). This results in recruitment of phosphoinositide-dependent protein kinase 1 

(PDPK1) to the plasma membrane and PDPK1-mediated phosphorylation of 

membrane-bound AKT serine/threonine kinase 1 (AKT) (Lystad and Simonsen, 

2016).  This metabolic pathway which results in the recruitment and activation of the 

metabolic mTORC1 pathway has been well studied and is involved in regulation of 

cell growth and metabolism (Takahara et al., 2020). Notably, independent analysis of 

transcriptomics data from obese hip OA synovial fibroblasts using IPA canonical 

pathway analysis also highlighted 3-phosphoinositide biosynthesis/degradation and 
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super pathway of inositol phosphate metabolism, as significantly activated metabolic 

pathways found in obesity within hip OA synovial fibroblasts. Upon analysing the 

metabolomic data from these hip OA synovial fibroblasts and synovial fluid, myo-

inositol was amongst the metabolites detected. Myo-inositol was increased in obese 

OA synovial fluid (p 0.297) and with TNFα stimulation in the secretomes of obese (p 

0.12) and normal weight (p 0.05) OA synovial fibroblasts, suggesting this pathway is 

modulated with both obesity and inflammation, making this an interesting area for 

further investigation.  

Furthermore, another significantly enriched metabolic pathway identified in joint 

pathway analysis was glycolysis. This pathway was also significantly enriched in the 

metabolomics data, and when integrated with the transcriptomics dataset, suggests 

a confirmation of the results identified within the first chapter of this thesis. Given this 

finding, the role of this metabolic pathway in OA synovial fibroblasts was investigated 

further using real-time metabolic flux analysis within the subsequent chapter. 

5.5.5 Limitations  

 

Amongst the limitations associated with this study is the use of a single cell type, 

namely the synovial fibroblast. The synovial membrane is known to consist of 

different cell populations including resident and infiltrating immune cells. This study 

focused specifically on the synovial fibroblast and so might have missed out on some 

differences in metabolism observed due to cell-cell interactions. In vitro, this could 

have been achieve in-part through the use of co-culture assays, to mimic the 

interaction between resident fibroblasts and infiltrating immune cells within the 

synovial membrane. Such analyses was originally intended to be part of the thesis. 
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However, due to Covid and the subsequent limitations on laboratory access and 

sample availability this was omitted. 

This study only focused only on mRNA transcripts of coding genes (for metabolic 

proteins). This omits the non-coding transcriptomics aspect, which makes up the 

majority of the transcripts within RNA sequencing. Many of these non-coding RNA 

sequences will regulate transcriptomes and therefore, omitting them will leave out 

much information of the regulation of metabolic pathways. One issue here is the lack 

of research on the role these non-coding mRNAs and therefore identifying which role 

these non-coding RNAs play in metabolic regulation or reprogramming is particularly 

difficult. 

RNAseq only focuses on mRNA transcripts whereas as metabolism involves a 

number of regulatory mechanisms such as post translational modifications of 

proteins/enzymes and changes in these proteins/enzymes are observed using other 

omics techniques such as proteomics. However, by utilising multi-omics analysis, 

such as metabolomics, one can relate changes upstream in cellular phenotype 

observed in transcriptomics data to those downstream, like metabolite changes, 

giving further confidence, that those changes observed within transcriptome are a 

valid reflection of cellular phenotype, which is attempted within this study. 

One issue with the metabolomics analysis using transcriptomics dataset was the 

inability to recognise certain genes using official gene names. Although attempts 

were made to correct this issue using bioinformatics tools such as PANTHER (Mi et 

al., 2021), some genes were not recognised and were therefore omitted from the 

analysis. However, this was not an issue for the metabolomics datasets, as the 
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known compounds (utilising HMDB database) were already named/labelled when 

conducting targeted metabolomics.  

Multi-omics analysis utilised within this study also contained limitations, as matched 

samples were not used for the RNA extraction and conditioned cell media. Likewise, 

cell numbers were not matched as the metabolomics conditioned media was from 

40,000 cells/sample, however RNAseq of OA synovial fibroblast was from 250,000 

cells per replicate. However, batch effects were not an issue for the samples as 

samples from both omics datasets were conducted in successive and continuous 

manner. One way to overcome this issue in future experiments maybe to collect the 

conditioned media and extract the RNA from the same cells and patients thereby 

avoiding these potential obstacles when analysing the data.  

This study only focused on bulk RNA sequencing, whereas many changes observed 

within cells, particularly in pathological processes, have altered epigenomic changes, 

such as DNA methylation and acetylation. As passaged synovial fibroblast where 

analysed, understanding why these OA synovial fibroblast maintain their cellular 

phenotype in vitro is an important question, which could be answered by using 

epigenomic analysis. However, the inclusion of epigenomic analysis, is outside of the 

scope of this study and although interesting would require much analysis and 

research time 
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5.5.6 Future Directions  

 

Research by Croft et al, 2019 has shown there are distinct subsets of synovial 

fibroblast within the synovial membrane based upon lineage markers FAPα, THY1 

and PDPN ( Croft et al., 2019). Those synovial fibroblasts within the lining layer of 

the synovial membrane are distinct in their phenotype to those within the sub lining 

layer of the synovial membrane. These cells may also have a different metabolic 

phenotype alongside the previously classified differences in their phenotype. 

Perhaps by conducting bioinformatic metabolic pathway analysis on these cells, one 

could divulge differences in their metabolism. 

Another possible area of future research would be to understand the metabolism of 

other cells within the synovial joint. As previously mentioned, OA is now regarded as 

a disease of the whole joint, with pathological changes observed in different tissues 

within the joint including subchondral bone, synovial membrane, articular cartilage, 

adipose tissue. By conducting metabolic analysis on the resident and infiltrating cells 

within these tissues using single cell RNA sequencing alongside integration with 

established datasets of cell metabolism from metabolomics data for each cell type, 

one could establish a cell atlas of metabolic and phenotypic changes observed in the 

OA joint that could be extended to other inflammatory joint diseases, giving us a 

perspective on shared mechanism and aetiologies. 
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CHAPTER 6 

METABOLIC FLUX ANALYSIS OF 
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6.1 Introduction  

 

Recently an increasing number of studies have shown that synovial fibroblast 

activation and the associated joint damage is accompanied by altered fibroblast 

metabolism (de Oliveira et al., 2019; Farah et al., 2020). Inflammation and the 

following cellular activation of synovial fibroblasts is known to alter the metabolism of 

four major groups of macromolecules associated with cellular metabolism 

(carbohydrates, proteins, lipids, and nucleic acids) (de Oliveira et al., 2019). This 

chapter is focused on the first class of macromolecules, namely the breakdown of 

glucose via glycolysis and the subsequent activation of mitochondrial respiration to 

generate energy through ATP and NADH. Metabolomic and multi-omic analysis of 

OA synovial fibroblasts conducted within this study, as shown in previous chapters, 

highlighted an enrichment in enzymes and metabolites involved in glycolysis and the 

TCA cycle. Consequently, the next logical steps having obtained this data was to 

investigate the metabolic state of these cells with a particular focus on their 

glycolysis and oxidative phosphorylation metabolic activity. This chapter is therefore 

an in-depth profile of synovial OA fibroblasts and their metabolic state (both basal 

and activated), to elucidate how these cells adapt to their inflammatory 

microenvironment.  
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6.1.1. Glycolysis  

 

Glycolysis is the first step of the canonical and universal pathway for energy 

metabolism within cells and is in essence the breakdown of glucose into either 

pyruvate under aerobic conditions (equation below) or lactate under anaerobic 

conditions, resulting in the generation of potential energy in the form of ATP and 

NADH (shown below). Glycolysis is a tightly regulated mechanism to maintain 

constant levels of ATP and the generation of glycolytic intermediates, which are also 

involved in biosynthetic roles themselves. The rate of flux of glycolysis is maintained 

and controlled by ATP consumption rates, NADH regeneration and the allosteric 

regulation of key rate limiting glycolytic enzymes (hexokinase, PFK-1 and pyruvate 

kinase) as well as the dynamic changes in concentration of glycolytic substrates 

which mirror the dynamic balance between ATP generation and consumption 

(Nelson  1942-, 2005). On a longer macro scale, glycolysis is regulated by hormonal 

changes through hormones insulin, glucagon adrenaline and by changes in gene 

expression of the rate limiting enzymes.  

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 2𝑁𝐴𝐷+  + 2𝑃𝑖  → 2 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 2𝑁𝐴𝐷𝐻 + 2𝐻+  + 2𝐴𝑇𝑃 + 2𝐻2𝑂  

The use of glycolysis as the primary means of rapid energy generation in 

inflammatory and activated cells has been well characterised. Synovial fibroblasts 

are amongst those cell types that upon inflammatory challenge will increase 

glycolysis, and this is the case in the microenvironment of inflammatory joint 

diseases such as rheumatoid arthritis. Inhibition of glycolysis not only alters their 

aggressive cellular phenotype but also reduces the secretion of pro-inflammatory 

cytokines including IL6, IL8 and chemokines MCP-1, CXCL5 and GRO-α (Biniecka 
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et al., 2016). This suggests that not only is glycolysis used to generate increased 

energy metabolism of synovial fibroblasts, but that it also plays a role in maintaining 

this inflammatory profile.   

Hexokinase 2 (HK2), a key enzyme in glycolysis, which catalyses the 

phosphorylation of glucose to glucose-6-phosphate, is increased in synovial 

fibroblasts and its ablation decreased invasive phenotype and reduced bone and 

cartilage damage in a murine model of inflammatory arthritis (de Oliveira et al., 

2019). Another glycolytic enzyme altered in the inflammatory synovium is 

phosphoglycerate kinase 1 (PGK1), which catalyses the transfer of a phosphate 

group of 1,3-bisphosphoglycerate to ADP, thereby generating ATP and 3-

phosphoglycerate (Nelson  1942-, 2005). In a collagen-induced arthritis (CIA) rodent 

model, PGK1, alpha enolase (ENO1) and HK2 were upregulated and PCK1 and 

PDK4 were downregulated in synovial tissue (Zhao et al., 2016). High PGK1 levels 

were found in the blood of RA patients and siRNA knockdowns of PGK1 in synovial 

fibroblasts resulted in a reduction in cell proliferation, migration as well as 

inflammatory cytokines IL-1β and IFN-γ (Zhao et al., 2016). This suggest that PGK1 

is intricately involved in maintaining synovial fibroblast phenotype in inflammatory 

joint diseases. Another enzyme involved in glycolysis is 6‐phosphofructo‐2‐

kinase/fructose‐2,6‐bisphosphatase 3 (PFKFB3), which is increased in the synovium 

and synovial fibroblast in RA.  PFKFB3 inhibition reduced fibroblast cell migration, 

proliferation and invasion as well as decreased the expression of inflammatory 

cytokines and chemokines including IL6, IL8, CCL2, CXCL10 (Zou et al., 2017). 

Likewise, inhibition of PFKFB3 supressed TNF‐α‐induced activation of NF‐κB and 

p38, JNK and ERK/MAPK signals in synovial fibroblasts and reduced the severity of 

arthritis in a CIA murine model (Zou et al., 2017). This suggest that not only is 
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glycolysis crucial for maintaining the inflammatory status of synovial fibroblasts 

through rapid energy generation, but glycolytic enzymes also control inflammatory 

status of these cells through regulation of downstream signalling pathways via 

transcription factors.  

Another means of glycolysis regulation is through controlling rates of glucose uptake 

through glucose transporters (SLC2A/GLUT). The facilitative glucose transporters 

transport glucose across the plasma membrane through facilitated diffusion. The 

GLUT family of transporters are made up of 14 protein transporters, classified into 3 

classes based on sequence similarity and substrate specificity; class one (GLUTs 1-

4 and 14), class two (GLUTs 5, 7, 9 and 11) and class three (GLUTs 6, 8, 10, 12 and 

HMIT) (Zezina et al., 2020). When examining patterns of tissue distribution, GLUT1 

and GLUT3 transporters were initially reported to be expressed ubiquitously and 

within the brain (neuronal) and testis (sperm) respectively (Nelson  1942-, 2005). 

Amongst all the transporters, GLUT1’s role in inflammation has been the primary 

focus in the context of immune cells and fibroblasts (Bustamante et al., 2017; 

Rhoads, Major and Rathmell, 2017). Inflammatory stimuli through TNFα or platelet 

derived growth factor (PDGF) treatment has been shown to increase both glucose 

metabolism and GLUT1 expression in synovial fibroblasts suggesting this is the main 

glucose transporter involved in the inflammatory response (Garcia-Carbonell et al., 

2016). Alongside this, GLUT1 expression has also been shown to correlate with 

synovial fibroblast phenotype (cell migration/MMP expression) suggesting a reliance 

of synovial fibroblasts on glucose metabolism (Garcia-Carbonell et al., 2016). In the 

arthritic synovium of K/BxN murine model, GLUT1 expression was upregulated as a 

result of joint hypoxia and inflammation, which could support the glycolytic 

environment within inflammatory joint diseases (Garcia-Carbonell et al., 2016). 
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Although there has been much investigation into the role of glycolysis in RA synovial 

fibroblasts, its role in OA synovial fibroblasts has yet to be explored. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Diagram of metabolic changes observed in synovial fibroblasts in 

inflammatory joint diseases. 

Fibroblast upon activation via inflammatory stimuli increase energy metabolism via 

glycolysis and upregulate key glycolytic enzymes to maintain their inflammatory and 

invasive phenotype (Farah et al., 2020) 
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6.1.2 Mitochondrial Respiration 

Following glycolysis, pyruvate feeds into another critical metabolic pathway- namely 

the citric acid cycle (TCA) at the mitochondrial matrix, where pyruvate is oxidised to 

form an acetyl group (i.e. generating acetyl-co-enzyme A), and then further oxidised 

into CO2 within the TCA cycle (Nelson  1942-, 2005). The energy released during 

these oxidation steps are conserved in the reduced electron carriers and coenzymes 

nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2). 

The cycle is visualised in figure 1 and consist of eight steps of a cycle of reduction 

and oxidation reactions, eventually resulting in the formation of the final metabolite 

within the cycle, oxaloacetate. 

Following the TCA cycle, these reduced electron carriers will themselves release 

their electrons and hydrogen ions, which are transferred to the terminal electron 

acceptor O2, through a chain of electron carriers made up of protein complexes 

(Complex 1-5) located on the mitochondrial inner membrane (IMM) (Nelson  1942-, 

2005). This process fuels the proton (H+) translocation in order to generate a proton 

gradient, which creates a proton motive force consisting of chemical potential energy 

(difference in concentration of H+ across membrane) and electrical potential energy 

(results from separation of charge following H+ movement across membrane without 

counter ion) (Nelson  1942-, 2005). This proton motive force drives the synthesis of 

ATP from ADP and inorganic phosphate when protons move across the IMM through 

the proton pore of ATP synthase. This entire molecular process is called oxidative 

phosphorylation (OXPHOS) and is the primary means of energy generation within 

synovial fibroblasts. 

Metabolites involved in the TCA cycle, whilst originally believed to remain within this 

cycle in a closed loop fashion, are now known to be contribute as metabolic 
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precursors to intermediary metabolites involved in cellular growth, nucleotide 

synthesis, fatty acid synthesis and storage pathways. Metabolites within this cycle 

are utilised for anabolic processes and replenished through degradative pathways 

and is tightly regulated and maintained to ensure a constant supply of metabolites for 

energy transfer (Nelson  1942-, 2005). 

These TCA cycle metabolites have also been shown to alter the inflammatory status 

of cells. Dimethyl fumarate (DMF) for example is an immunomodulatory and anti-

oxidative drug which is used for the symptomatic treatment of autoimmune disorders 

including multiple sclerosis and psoriasis (Tastan et al., 2021). It has been shown to 

reduce LPS and ATP-induced NLRP3 inflammasome activation through reduced 

levels of IL-1β, IL-18, caspase-1, reactive oxygen species formation and damage, 

and inhibiting pyroptotic cell death in N9 murine microglia via Nrf2/NF-κB pathways 

(Tastan et al., 2021). Succinate, another TCA cycle metabolite, has been shown to 

enhance IL-1β production in murine macrophages and deficiency of succinate 

receptor GPR91 attenuates the severity of arthritis in Sucnr1–/– mice (Tannahill et al., 

2013; Saraiva et al., 2018). Accumulation of succinate alongside lactate and 

glutamine has been shown to induce synovial fibroblast invasive phenotype and in a 

CIA rodent model of arthritis, succinate increased VEGF production and induced 

angiogenesis in the arthritic synovium ( Biniecka et al., 2016; Li et al., 2018). 

Interestingly, succinate was amongst the most elevated metabolites in OA synovial 

fluid from obese patients compared to normal weight patients (Farah et al., 2022). 

This could suggest succinate is not only involved in supplying TCA cycle metabolites 

to residential and infiltrating cells at the inflamed synovium but could also be 

exacerbating the inflammatory profile of these cells thereby exacerbating the 
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inflammation at the arthritic joint, however this would require further investigation 

before establishing its role outside of energy metabolism. 
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6.2 Hypothesis 

We hypothesise that  

 

• OA synovial fibroblasts from obese patients are metabolically altered 

compared to fibroblasts from normal weight OA patients  

• Differences in metabolic phenotype between obese and normal-weight 

fibroblasts is not simply as a result of biomechanical loading of the joint but is 

also due to the non-load bearing effect of obesity  

• Obese OA synovial fibroblasts would have a greater capacity to maintain their 

inflammatory state compared to normal weight OA synovial fibroblast through 

increased metabolic flux upon inflammatory stimulus 
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6.3 Methods 

6.3.3 Seahorse metabolic analysis explained 

Term Definition 

Glycolysis Glycolysis is measured as the ECAR rate reached by a given cell after the 

addition of saturating amounts of glucose. 

Maximum rate before oligomycin injection – last rate before glucose injection 

Glycolytic 

Capacity 

This measurement is the maximum ECAR rate reached by a cell following the addition 

of oligomycin, effectively shutting down oxidative phosphorylation and driving the cell to 

use glycolysis to its maximum capacity. 

Maximum rate before FCCP injection- last rate before glucose injection 

Glycolytic 

Reserve 

This measure indicates the capability of a cell to respond to an energetic demand as 

well as how close the glycolytic function is to the cell’s theoretical maximum. 

Glycolytic capacity - Glycolysis 

Non glycolytic 

acidification 

This measures other sources of extracellular acidification that are not attributed to 

glycolysis 

Last rate before glucose injection 

 

Table 6.1: Definition and calculations of terms used within the 

Glycolysis stress test (adapted from Agilent User Guide) 
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Term Definition 

Basal 

Respiration 

Oxygen consumption used to meet cellular ATP demand resulting from mitochondrial proton 

leak. Shows energetic demand of the cell under baseline conditions. 

Last measurement before oligomycin – non-mitochondrial oxygen consumption 

Maximal 

Respiration 

The maximal OCR attained by adding the uncoupler FCCP. FCCP mimics a physiological 

“energy demand” by stimulating the respiratory chain to operate at maximum capacity, which 

causes rapid oxidation of substrates (sugars, fats, and amino acids) to meet this metabolic 

challenge. Shows the maximum rate of respiration that the cell can achieve. 

Maximal respiration rate - non-mitochondrial oxygen consumption 

Proton 

Leakage 

Remaining basal respiration not coupled to ATP production. Proton leak can be a sign of 

mitochondrial damage or can be used as a mechanism to regulate the mitochondrial ATP 

production. 

Minimum rate after oligomycin injection - non-mitochondrial oxygen consumption 

ATP 

Production 

The decrease in OCR upon injection of the ATP synthase inhibitor oligomycin represents the 

portion of basal respiration that was being used to drive ATP production. Shows ATP produced 

by the mitochondria that contributes to meeting the energetic needs of the cell. 

Basal respiration rate – proton leak 

 

Table 6.2: Definition and calculations of terms used within the 

Mitochondrial stress test (adapted from Agilent User Guide) 
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6.4 Results 

6.4.1 Patient characteristics  

OA synovial fibroblasts were collected from different joints following total joint 

replacement for OA in the hip or knee and following arthroscopy in patients with 

hand OA. These synovial fibroblasts underwent Seahorse metabolic flux analysis to 

investigate glycolysis and oxidative phosphorylation of these cells. Cells were 

grouped into obese and normal weight based on their BMI regardless of joint of 

origin or grouped into non-loadbearing (hand OA) and loadbearing (hip and knee 

OA) regardless of BMI. Analysis of patient data showed no significant differences in 

age, height or waist: hip ratio (W:H) (Table 6.3). There was however a significant 

difference in BMI, weight, waist and hip circumference between normal weight and 

obese patients (Table 6.3). 
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2 Normal 

Weight (n 

= 9) 

Obese (n = 11)  p 

value  

Load Bearing (n 

= 16) 

Non-loadbearing 

(n = 4) 

p value  

Age (years) 63 ± 9.8 67.91 ± 10.98 0.31 68.13 ± 10.24 56 ± 4.2 0.0526 

Female:Male 8:1 9:2 
 

14:2 3:1 
 

BMI (kg/m
2
) 23.12 ± 

1.5 

32.35 ± 1.6 <0.0001 28.25 ± 4.67 28.01 ± 6.79 >0.9999 

Weight (kg) 59.38 ± 

5.28 

87.29 ± 11.38 <0.0001 76.06 ± 18.18 73.4 ± 11.65 0.8652 

Height (cm) 160.4 ± 

10.49 

164 ± 9.41 0.4305 162.2 ± 10.01 163.3 ± 10.37 0.8498 

Waist 

Circumference 

(cm) 

84.7 ± 

8.06 

105.3 ± 10.55 <0.0001 96.15 ± 13.95 95.5 ± 16.38 0.9368 

Hip Circumference 

(cm) 

93.75 ± 

6.05 

117.9 ± 8.2 <0.0001 106 ± 13.86 111 ± 17.32 0.5485 

W:H 0.91 ± 

0.11 

0.89 ± 0.07 0.7347 0.9 ± 0.1 0.86 ± 0.05 0.3395 

Table 6.3: Patient Characteristics 

 

 
1. 2 Shapiro-Wilk and Kolmogorov-Smirnov Normality test computed to test for normal distribution of data. 

Student unpaired two-tailed t test performed for comparisons. Groups with non-parametric distribution 

were analysed using Mann-Whitney t test.2 
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6.4.2 Comparative analysis of metabolic flux in OA synovial 

fibroblasts isolated from lean and obese patients 

Seahorse analysis of grouped normal weight compared to obese OA synovial 

fibroblasts found, on average, an increase in basal glycolysis and an increase in 

glycolytic capacity in obese OA synovial fibroblasts upon TNFα stimulation, as well 

as maximal respiration and ATP production.  However, this did not reach statistical 

significance (Figure 6.2 and 6.3).  
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Figure 6.2: Glycolysis stress test of OA synovial fibroblasts from normal weight and obese 

patients either basal or following TNFα stimulation. 

Fibroblasts from n=9 normal-weight (NW) and n=11 obese (OB) patients were either unstimulated 

(basal) or stimulated for 24 h with TNFα (10 ng/ml). Glycolysis stress test data is represented as 

(A) Glycolysis. (B) Non-glycolytic acidification. (C) Glycolytic Capacity and (D) Glycolytic reserve. 

Data was analysed by 2-way ANOVA and is presented as mean ± SD. * = p < 0.05, ** = p ≤ 0.01. 
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Figure 6.3: Mitochondrial stress test of OA synovial fibroblasts from normal weight and obese 

patients either basal or following TNFα stimulation. 

Fibroblasts from n=9 normal-weight (NW) and n=11 obese (OB) patients were either unstimulated (basal) 

or stimulated for 24 h with TNFα (10 ng/ml). Mitochondrial stress test data is represented as (A) Basal 

Respiration, (B) Maximal respiration, (C) Proton leakage and (D) ATP production. Data was analysed by 2-

way ANOVA and is presented as mean ± SD. * = p < 0.05, ** = p ≤ 0.01 
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6.4.3 Comparative analysis of metabolic flux in OA synovial 

fibroblasts isolated from loadbearing and non-loadbearing joints 

 

As there were no differences in the metabolism of OA synovial fibroblast from 

different joints grouped by BMI, cells were then grouped based on their anatomical 

location, with non-loadbearing synovial fibroblasts from hand OA patients compared 

to loadbearing synovial fibroblasts from hip and knee OA (Table 6.3).  

Interestingly, although joint loadbearing did not affect glycolysis, there was a 

significant increase in glycolytic reserve in loadbearing OA synovial fibroblast 

compared to non-loadbearing hand OA synovial fibroblasts (figure 6.4). Furthermore, 

there was also a significant increase in basal respiration, proton leakage and ATP 

production in in loadbearing OA synovial fibroblast compared to non-loadbearing OA 

synovial fibroblasts (figure 6.5). 
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Figure 6.4: Glycolysis stress test of OA synovial fibroblasts from loadbearing and 

non-loadbearing joints either basal or following TNFα stimulation. 

Fibroblasts from n=16 loadbearing (LB) and n=4 non-loadbearing (NLB) joints were either 

unstimulated (basal) or stimulated for 24 h with TNFα (10 ng/ml). Glycolysis stress test data 

is represented as (A) Glycolysis, (B) Non-glycolytic acidification, (C) Glycolytic capacity and 

(D) Glycolytic reserve. Data was analysed by 2-way ANOVA and is presented as mean ± 

SD. * = p < 0.05, ** = p ≤ 0.01 
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Figure 6.5: Mitochondrial stress test of OA synovial fibroblasts from loadbearing and non-

loadbearing joints either basal or following TNFα stimulation. 

Fibroblasts from n=16 loadbearing (LB) and n=4 non-loadbearing (NLB) joints were either unstimulated 

(basal) or stimulated for 24 h with TNFα (10 ng/ml). Mitochondrial stress test data is represented as (A) 

Basal Respiration, (B) Maximal respiration, (C) Proton leakage and (D) ATP production. Data was 
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In an attempt to discern the metabolic changes associated with loadbearing and 

obesity regardless of joint type, the next step was to investigate metabolic flux of OA 

synovial fibroblasts from different joints without grouping these samples. A clear 

difference observed in these OA synovial fibroblasts was an elevation in glycolysis in 

hip OA synovial fibroblasts compared to either knee or hand OA synovial fibroblasts 

(figure 6.6). 
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Figure 6.6: Metabolic rates of OA synovial fibroblasts from different joints either 

basal or following TNFα stimulation. 

Representative data displayed with OCR as measure of oxidative phosphorylation in (A) 

and (C) and ECAR as a measure of glycolysis in (B) and (D). All data presented as mean ± 

SEM. 
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Metabolic flux analysis using Seahorse glycolysis stress test revealed a significant 

increase in glycolysis in hip OA synovial fibroblasts when stimulated with TNFα 

(figure 6.7). Glycolytic capacity increased in hip OA synovial fibroblasts but not 

significantly and did not increase for knee or hand OA synovial fibroblast (figure 6.7). 

Glycolytic reserve was higher in hip OA synovial fibroblasts compared to both knee 

and hand OA synovial fibroblast but did not increase with TNFα stimulation (figure 

6.7). Mitochondrial stress test revealed a higher basal respiration, proton leakage 

and ATP production in hip OA synovial fibroblasts compared to both knee and hand 

OA synovial fibroblast (figure 6.8). There was also a significant increase in basal 

respiration and ATP production in hip OA synovial fibroblasts when stimulated with 

TNFα but this did not reach significance in maximal respiration (figure 6.8).  
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Figure 6.7: Glycolysis stress test of OA synovial fibroblasts from hip, knee, and hand 

joints either basal or following TNFα stimulation. 

Fibroblasts from n=11 hip, n=5 knee and n = 4 hand joints were either unstimulated (basal) or 

stimulated for 24 h with TNFα (10 ng/ml). Glycolytic stress test data is represented as (A) 

Glycolysis, (B) Glycolytic capacity and (C) Glycolytic reserve. . Data was analysed by 2-way 

ANOVA and is presented as mean ± SD. * = p < 0.05, ** = p ≤ 0.01 
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Figure 6.8: Mitochondrial stress test of OA synovial fibroblasts from hip, knee, and hand joints 

either basal or following TNFα stimulation. 

Fibroblasts from n=11 hip, n=5 knee and n = 4 hand joints were either unstimulated (basal) or 

stimulated for 24 h with TNFα (10 ng/ml). Mitochondrial stress test data is represented as (A) Basal 

Respiration, (B) Proton leakage (C) Maximal respiration and (D) ATP production. Data was analysed 

by 2-way ANOVA and is presented as mean ± SD. * = p < 0.05, ** = p ≤ 0.01, *** = p  ≤ 0.001.   
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6.4.4 Obese hip OA synovial fibroblasts show altered metabolic 

phenotype  

  

Following data analysis of OA synovial fibroblasts from different joints, it was found 

that hip OA synovial fibroblasts were the most responsive to TNFα stimulation 

compared to knee and hand OA synovial fibroblast. Following this observation, hip 

OA synovial fibroblasts from normal weight and obese patients were treated with 

TNFα (10ng/ml) and IL-6 mRNA expression was measured using RT-qPCR (figure 

6.9). IL6 expression increased in normal weight OA synovial fibroblasts after 4 and 

24 hours however obese OA synovial fibroblast were not as responsive (figure 6.9). 

This was also mirrored in lactate secretion of these OA synovial fibroblasts, as TNFα 

stimulation (10ng/ml) increased lactate production in normal weight OA synovial 

fibroblasts but not in obese OA synovial fibroblasts which already had high basal 

level of lactate secretion within their conditioned media (figure 6.9).  
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Figure 6.9: Lactate secretion is greater in obese OA synovial fibroblasts 

and is induced during the inflammatory response.  

The effect of TNF (10 ng/mL) stimulation of synovial fibroblasts from normal-

weight (NW) or obese OA patients (n = 3) on (A) the expression of IL-6 and (B) 

secretion of lactate after 4 h and 24 h stimulation. Data expressed as mean ± 

SEM. ** = p < 0.01, *** = p < 0.001, significantly different from time 0. ‡ = p < 

0.01, significantly different between synovial fibroblasts from patients with 

different BMI. (Farah et al, 2022) 
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Following this observation, RT-qPCR was conducted to determine the expression of 

key lactate transporters (namely, MCT1, MCT2 and MCT4) within hip OA synovial 

fibroblasts in obese and normal weight patients following stimulation with TNFα 

stimulation (10ng/ml for 24 hrs) (figure 6.10). Both MCT2 and MCT4 lactate 

transporter expression increased following TNFα stimulation (10ng/ml for 24 hrs) in 

both normal weight and obese hip OA patients however MCT1 did not respond to 

TNFα stimulation for either group (figure 6.10). Therefore, protein expression of this 

lactate transporter was further investigated using immunoblotting of normal weight 

and obese hip OA synovial fibroblast lysates (figure 6.11). Although there was an 

increase in protein expression following TNFα stimulation (10ng/ml for 24 hrs), this 

did not reach statistical significance (figure 6.11). 
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Figure 6.10: Gene expression of transporter proteins in hip OA synovial fibroblasts from 

normal weight and obese patients either basal or following TNFα stimulation. 

Fibroblasts from n=4 normal weight (NW) hip and n = 5 obese (OB) hip were either unstimulated 

(basal) or stimulated for 24 h with TNFα (10 ng/ml). Gene expression was quantified using RT-

qPCR for lactate transporters (A) MCT1, (B) MCT2, (C) MCT4 and glucose transporter (D) GLUT3. 

Statistical analysis was calculated using student t test. All data presented as mean ± SD. * = p < 

0.05, ** = p < 0.01 
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Figure 6.11: Protein expression of MCT1 lactate transporter in hip OA synovial fibroblast from 

normal weight and obese patients either basal or following TNFα stimulation. 

Fibroblasts from n = 4 normal weight (NW) and n = 4 obese (OB) patients were either unstimulated (basal) 

or stimulated for 24 h with TNFα (10 ng/ml). Protein expression was quantified using Western blot. 

Statistical analysis was calculated using paired student t test. All data presented as mean ± SD. 
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Another area of interest within these hip OA synovial fibroblast was glucose uptake. 

mRNA expression of the GLUT3 transporter was increased following TNFα 

stimulation (10ng/ml for 24 hrs) in normal weight OA synovial fibroblasts however 

this did not reach statistical significance (figure 6.10). Notably, another highly 

expressed glucose transporter in OA synovial fibroblasts is GLUT1 which was 

significantly increased in obese hip OA synovial fibroblasts compared to normal 

weight OA synovial fibroblasts and therefore this does not rule out a changes in 

glucose transporter levels within these cells (table 6.4). Glucose uptake was 

increased in normal weight OA synovial fibroblasts following TNFα stimulation 

(10ng/ml for 24 hrs) however this again did not reach statistical significance (figure 

6.12). 

 

Table 6.4: Expression of glucose transporters from OA synovial 

fibroblasts in normal weight compared to obese OA patients (Nanus 

et al., 2020) 

 

 

 

 

 

 

 

Gene Normal Weight 

(FPKM) 

Obese 

(FPKM) 

log2(fold 

change) 

P value Q value 

GLUT1 17.3494 43.4279 1.32374 0.0001 0.00711927 

GLUT2 0 0 0 1 1 

GLUT3 7.63856 13.665 0.839111 0.002 0.0682198 

GLUT4 0.0270409 0.0404998 0.582771 1 1 

HIF1A 108.743 203.669 0.905296 0.00425 0.114713 
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Figure 6.12: Glucose uptake of hip OA synovial fibroblasts from normal 

weight and obese patients either basal or following TNFα stimulation. 

Fibroblasts from n=3 normal weight (NW) hip and n = 3 obese (OB) hip were 

either unstimulated (basal) or stimulated for 24 h with TNFα (10 ng/ml). 

Glucose uptake was measured using fluorescent uptake of glucose analog 

6NBDG. Statistical analysis was calculated using student t test. All data 

presented as mean ± SD. 
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Following this examination into glucose and lactate metabolism, we next conducted 

seahorse glycolysis and mitochondrial stress tests in normal weight and obese hip 

OA synovial fibroblasts following TNFα stimulation (10ng/ml for 24 hrs) (figure 6.13 

and 6.14). Glycolysis and glycolytic reserve were found to be higher in obese OA 

synovial fibroblasts, compared to normal weight OA synovial fibroblasts without 

stimulation (basally) (figure 6.13). There was also a significant increase in glycolytic 

capacity of normal weight OA synovial fibroblasts following TNFα stimulation 

(10ng/ml for 24 hrs) (figure 6.13).  
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Figure 6.13. Obese and normal-weight OA synovial fibroblasts exhibit differential glycolytic 

metabolism.  

 
(A–C) OA synovial fibroblasts from obese patients (n = 6 patients) stimulated with TNFα at 10 ng/mL 

for 24 h show elevated aerobic glycolysis, compared to stimulated and unstimulated OA synovial 

fibroblasts from normal weight (n = 6 patients, with 5 biological replicates per patient). (D) Glycolysis 

levels are significantly increased in obese OA synovial fibroblasts when stimulated with TNFα at 10 

ng/mL for 24 h. (E) Glycolytic capacity of normal weight OA synovial fibroblasts is elevated when 

challenged with TNFα at 10 ng/mL for 24 h. (F) Glycolytic reserve is increased in unstimulated obese 

OA synovial fibroblasts, compared to unstimulated normal weight OA synovial fibroblasts. All data 

presented as mean ± SEM. * = p < 0.05. (Farah et al, 2022) 
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There was also an increase in basal, maximal respiration and ATP production in 

obese OA synovial fibroblasts following TNFα stimulation (10ng/ml for 24 hrs) but not 

in normal weight OA synovial fibroblasts (figure 6.14). Using Mito tracker green 

staining of obese OA synovial fibroblasts, mitochondrial mass was inferred, with an 

increase in mitochondria staining in obese OA synovial fibroblasts following TNFα 

stimulation (10ng/ml for 24 hrs) however normal weight OA synovial fibroblasts were 

not stained nor was data collected on mitochondrial size and number (figure 6.15). 
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Figure 6.14. Obese and normal-weight OA synovial fibroblasts exhibit differential 

mitochondrial respiration.  

 

(A–C) OA synovial fibroblasts from obese patients (n = 6 patients, with 5 biological replicates per 

patient) stimulated with TNFα at 10 ng/mL for 24 h show increased mitochondrial respiration, 

compared to fibroblasts from normal weight patients. (D) Non-mitochondrial oxygen consumption 

does not increase in OA synovial fibroblasts from obese or normal weight patients with TNFα 

stimulation. (E) basal respiration; (F) maximal respiration; and (G) ATP production from mitochondrial 

respiration significantly increase in obese OA synovial fibroblasts when stimulated with TNFα at 10 

ng/mL for 24 h. All data presented as mean ± SEM. * = p < 0.05, ** = p < 0.01. (Farah et al, 2022) 
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Figure 6.15: Mitochondrial mass of obese hip OA synovial fibroblasts either 

basal or following TNFα stimulation. 

Fibroblasts from n=1 obese (OB) hip (n = 5 biological replicates) were either 

unstimulated (basal) or stimulated for 24 h with TNFα (10 ng/ml). Mitochondrial mass 

was measured using Mitotracker Green staining. Statistical analysis was calculated 

using student t test. All data presented as mean ± SD. * = p < 0.05, ** = p ≤ 0.01 
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6.5 Discussion 

In the previous chapter, metabolic pathway analysis was conducted using RNA 

sequencing of OA synovial fibroblasts from different joints and from this analysis, 

differences in metabolic pathways were identified in both loadbearing and obesity 

comparison. Following on from this, metabolic flux analysis of OA synovial fibroblasts 

from different joints was conducted to examine if there were any differences in 

glycolysis and oxidative phosphorylation. 

Notably, despite no significant differences observed in glycolysis and oxidative 

phosphorylation when grouping based on BMI, there was a significant increase in 

glycolytic reserve, basal respiration, proton leakage and ATP production in 

loadbearing OA synovial fibroblasts compared to non-loadbearing OA synovial 

fibroblasts. This observation is most likely driven by the hip OA synovial fibroblast 

than the knee OA synovial fibroblasts. Since the hip OA synovial fibroblasts when 

analysed separately show a significant increase in these parameters (baring 

glycolytic reserve) indicative of being more metabolically active both basally and 

being more responsive to inflammatory stimulus.  

Based on increased Mitotracker staining, one possible explanation to the greater 

metabolic activity of hip OA synovial fibroblasts could be their ability to increase 

mitochondria upon stimulation. However, confirmation of this hypothesis would 

require further investigation before establishing this as the means of increased 

oxidative phosphorylation within these cells. We have previously shown these obese 

hip OA synovial fibroblasts proliferate more than normal weight hip OA synovial 

fibroblasts (Nanus et al., 2020). This increase in cell number does not however 

account for the differences observed in glycolysis or oxidative phosphorylation as 
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doubling the cell number to 60,000 cells/well did not result in an increase in either 

OCR or ECAR, possibly due to the limit of surface area per well and the numbers of 

cells which can adhere to the bottom of these wells (data not shown). 

The data in this chapter shows changes in oxidative phosphorylation in obese hip 

OA synovial fibroblasts following TNFα stimulation and this could be partially 

explained by an increase in mitochondria based on mitotracker green staining 

however no data was collected on mitochondrial number or size which could be a 

good metric to determine whether mitotracker green staining is an accurate measure 

of mitochondrial number. Similarly, another issue which would require addressing is 

the functionality and quality of these mitochondria. There was an increase (although 

not statistically significant) in proton leakage within obese OA synovial fibroblasts 

following TNFα stimulation (data not shown) which suggests these mitochondria are 

not all entirely functional. One way to investigate this would be to conduct a 

mitochondrial function assay, looking into mitochondrial membrane potentials using 

commercially available fluorescent Mito probe which can be used to can be used to 

determine healthy versus depolarized mitochondria (based on changes in active 

mitochondria staining vs mitochondria with low membrane potential signal ratio) or 

electron microscopic imaging of these cells with a particular focus on the 

mitochondrial morphology to establish how many of these mitochondria are 

functional. 

Likewise, stimulation using another pro-inflammatory cytokine (IL1β) did not elicit a 

similar response to TNFα (data not shown) suggesting this change in glycolysis and 

oxidative phosphorylation might be a specific TNFα dependant mechanism. Previous 

research has shown similar results in RA synovial fibroblasts when stimulated with 

TNFα, resulting in increased glycolysis and oxidative phosphorylation (Koedderitzsch 
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et al., 2021). In this study, TNFα stimulation did not result in an increase in total 

protein content but did result in an increased expression of HIF1α and GLUT1 as 

well as HIF1α target genes (Koedderitzsch et al., 2021). This change in metabolic 

state was driven by NF-κB activation and blocking NF-κB through TAK1 inhibitor 

reduced this TNF-induced glycolysis, glycolytic capacity, and glycolytic reserve in 

synovial fibroblasts (Koedderitzsch et al., 2021). Similarly, there was a reduction in 

GLUT1, HIF1α and its target genes as well as a reduction in pro-inflammatory 

chemokines and matrix metalloproteases, IL-6 and MMP-3, after TNF stimulation 

(Koedderitzsch et al., 2021). This effect was similar to the positive control, an 

approved anti-TNF antibody, Adalimumab, suggesting the mechanism through which 

TNF induces increased glycolysis is through TNF/TAK1/HIF1A/glycolysis signalling 

axis (Koedderitzsch et al., 2021). RNA sequencing analysis of obese hip OA synovial 

fibroblast showed a significant increase HIF1A expression compared to normal 

weight OA synovial fibroblasts (table 4) and although IPA canonical pathway 

analysis did not show a high z score or p value for HIF1A signalling (z score 1.1, log 

(p value) 1.24), RNA sequencing of TNFα stimulated hip OA synovial fibroblasts 

might provide a clear link, possibly similar to that observed in RA synovial fibroblasts.  

Another area of particular interest is the role lactate plays in the inflammatory 

microenvironment of OA. It has recently been established that lactate accumulates in 

tissue environments of chronic inflammatory diseases, and is likely a key factor in 

driving immune-mediated inflammation through CD4+ T cells and the adoption of 

their effector phenotype and retention within inflamed tissues (Certo et al., 2020; 

Khatib-Massalha et al., 2020; Farah et al., 2022). Lactate levels in the synovial joint 

in inflammatory arthritis are particularly high, reaching 20mM in the rheumatoid joint, 

and even higher in the tumour microenvironment (Haas et al., 2015). Lactate 
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secretion was increased in obese hip OA synovial fibroblasts compared to normal 

weight OA synovial fibroblast and OA synovial fibroblast increase expression of 

lactate transporters MCT2 and MCT4 upon TNFα stimulation. This increased export 

of lactate, particularly by obese OA synovial fibroblasts, could be utilised by immune 

cells in inflammatory joint to fuel their energy needs alongside polarising these 

infiltrating immune cells in order to adopt a more inflammatory phenotype. Although 

early data confirming the presence of infiltrating CD3+ T lymphocytes at obese OA 

hip synovium has been collected, this theory would require further investigation in 

order to corroborate these findings, possibly through co-culture assays.  

Notably, hip OA synovial fibroblasts from obese patients not only show increased 

basal lactate production but also exhibit greater mitochondrial respiration and 

glycolytic reserve. However, these obese OA synovial fibroblasts upon stimulation 

with TNFα could not secrete more lactate, unlike the more metabolically plastic 

normal weight OA synovial fibroblasts. This high constitutively active metabolic 

phenotype of obese OA synovial fibroblasts may be required to maintain the 

increased basal inflammatory phenotype of these cells, and therefore therapeutically 

targeting these metabolic pathways might reduce their metabolic capacity and 

ameliorate this deleterious phenotype and possibly reduce the synovitis within the 

OA joint. 
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6.5.1 Limitations 

As with the majority of studies the design of the current study is subject to limitations. 

The first being the experiments conducted using fluorescence-based plate reader. 

Mitotracker green staining and glucose uptake assay was done using plate reader 

assay. It is well established that this method of detection is less sensitive than 

microscope or flow cytometers and therefore degrees of change in fluorescence may 

not be as accurate as using other technologies. Whilst visualisation of Mitotracker 

green staining using confocal microscope might yield some insights into 

mitochondrial number. Likewise, flow cytometry would also be an interesting method 

of detection, giving cell number as well as staining fibroblasts. 

Another issue is the variability within the glucose uptake assay. This assay although 

useful would require further patient numbers to possibly see an effect and by only 

measuring the uptake after an hour, some of the information regarding glucose 

uptake maybe lost from earlier timepoint. Another future experiment which could be 

conducted would be to observe glucose uptake across a shorter time period, to see 

early effects.  

The final limitation associated with this study would be the limited work conducted on 

lactate transporter protein expression. Data was shown only on the protein 

expression of one lactate transporter (MCT1). Whilst several attempts were made to 

purify and immunolabel these other lactate transporters, a consistent result could not 

be achieved. This may be due to lower protein expression or issues with the 

antibody utilised. Therefore, further optimisation of immunoblotting would be required 

to obtain accurate readings before establishing changes in protein transporter 

expression. Likewise, these transporters will also transport other short-chain 

monocarboxylates such as ketone bodies for MCT4 and pyruvate/ketone bodies for 
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MCT1 (Song et al., 2020). This means although the relationship between transporter 

expression and lactate transport is inferred, it is not necessarily the only molecules 

being transported within these cells.  

Along the same line, transporter expression was measured only after 24 hours of 

TNFα stimulation. Early research on quiescent fibroblasts, revealed increased 

transcription of GLUT1 after 15 minutes exposure to TNFα (Cornelius et al., 1990). 

Similarly, prolonged exposure to TNFα (16hrs) resulted in two fold increase in 

glucose transporter content of both plasma and inner membrane compartments 

(Cornelius et al., 1990). The amount of glucose being transported was also greater 

than the increased level of plasma membrane transporter expression, suggesting 

TNFα treatment alters the intrinsic activity of these glucose transporters (Cornelius et 

al., 1990). This suggests stimulation of these fibroblasts with TNFα across different 

time points would possibly yield interesting insight into changes with transporter 

expression. Preliminary experiments were conducted on mRNA expression of these 

lactate transporters at earlier time points (4 hours) and with IL1β stimulation 

(1ng/ml), however due to low patient numbers and reduced effect size at earlier 

timepoints, the study then focused on 24 hours stimulation using TNFα, as a good 

model of chronic inflammation of synovitis.  

6.5.2 Future Studies 

Although this is the first study of its kind, looking into the effect of obesity and 

loadbearing in OA synovial fibroblast metabolism, much of the data within this study 

could be expanded upon. Some future areas of research could be to look into the 

directionality of lactate transport, as previously mentioned within the limitations 

section. This could be conducted using radiolabelled L-[C14]lactate, which could be 

incubated with cells and measured at various time points and, following cell lysis, 
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radioactivity could be measured using scintillation counter as described in (Hahn, E, 

Halestrap, A. Gamelli, 2000). This could give insight into the activity of these 

transporters. This is particularly interesting as increased protein expression is not 

always directly correlated with increased activity of these transporters as mentioned 

in (Cornelius et al., 1990).  

Likewise, some preliminary assays were conducted looking into lactate stimulation 

however statistically significant changes were not observed in pro-inflammatory gene 

expression (IL6) and therefore these experiments were omitted. However, another 

area of interest in lactate metabolism would be to look into lactate dehydrogenase 

(LDH) expression and activity within these obese OA synovial fibroblasts compared 

to normal weight OA synovial fibroblasts. A number of genes previously mentioned, 

interact and regulate lactate dehydrogenase, including HIF1-1/2α which binds to 

LDHA under hypoxic conditions (Cui et al., 2017). 

Finally, although stimulation with TNFα did yield some promising insights into 

inflammatory and activated fibroblasts metabolism, another set of metabolic flux 

experiments of OA synovial fibroblasts cultured with adipose conditioned media from 

normal weight and obese patients might provide interesting information on fibroblast 

metabolism when in close contact with adipose tissue and would also provide a more 

representative model of inflammatory behaviour of fibroblasts due to obesity 

associated low grade inflammation.  
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7.1 Discussion of main findings  

Obesity is a major risk factor for developing OA and is believed to contribute to 

disease progression through multiple factors, including increased biomechanical 

loading of the joint and chronic low-grade inflammation. As OA is now increasingly 

considered a disease of the whole joint, it is of principal importance to understand 

the pathophysiological changes that occur at the different tissues within the joint 

such as articular cartilage, muscle tissue, subchondral bone and adipose tissues. 

One tissue that has received much attention in inflammatory joint diseases is the 

synovial membrane (synovium). Within the synovium, cellular and molecular 

changes occur, including synovial fibroblast hyperplasia and the infiltration of 

immune cells, which promote the inflammatory microenvironment that contributes to 

the degeneration of cartilage tissue. Resident cells of this tissue, including the 

resident synovial fibroblasts, have therefore become the target of these studies to 

better understand the cellular and molecular mechanisms that mediate OA joint 

inflammation.  

Recent research conducted within our group within the Institute of Inflammation and 

Ageing have discovered a number of changes in the OA synovial fibroblast 

phenotype which are particularly significant. For example, obesity has been shown to 

influence the phenotype of the synovial fibroblast in OA, with synovial fibroblasts 

from obese patients exhibiting increased secretion (IL6 and CXCL8) and expression 

of pro-inflammatory cytokines and chemokines (IL6, CXCL8, CXCL5, IL1β and 

CCL2), cell proliferation and altered transcriptomic profile which displayed a shift 

towards increased inflammatory gene pathways including cytokine-cytokine 

interactions and chemokine signalling pathways ( Nanus et al., 2020). Furthermore, 

interestingly there was also an increase in the levels of soluble IL-6 receptor (sIL-6R) 
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in the synovial fluid of obese OA patients compared to normal weight OA patients ( 

Pearson et al., 2017). This is particularly noteworthy as synovial fibroblasts do not 

express membrane bound IL6 receptor, however they depend on incorporation of 

sIL-6R bound to IL6 and its interaction to form a signalling complex with membrane 

bound gp130 (Hashizume, Hayakawa and Mihara, 2008). Likewise, IL6 is also 

involved in cellular cross-talk with cartilage resident chondrocytes in vitro. IL6 from 

chondrocytes conditioned media increases IL6 levels in synovial fibroblasts 

suggesting this cytokine is intricately involved in inflammation within OA joint 

(Pearson et al., 2017). IL6 therefore plays a significant role in the pathology of the 

OA joint for obese patients. 

However, understanding whether this difference was due to biomechanical loading of 

the joint or as a result of increased adipose-driven chronic low-grade inflammation, 

which results in metabolic imprinting of OA synovial fibroblast, was not established.  

Therefore, a primary the aim of this thesis was to understand whether there were 

differences in the metabolic phenotype of obese OA synovial fibroblasts compared to 

the normal-weight OA synovial fibroblasts, and whether this potential metabolic 

imprinting was affecting or driving the inflammatory profile of obese OA synovial 

fibroblasts. 

To that end, metabolomic profiling was conducted on synovial fluid and synovial 

fibroblast conditioned media, as well as transcriptomic profiling on synovial 

fibroblasts obtained from patients with OA who were either obese or normal weight 

(chapter 1 and 3). Metabolite set enrichment analysis found a significant enrichment 

of metabolic pathways involved in glycolysis, TCA cycle metabolites and glutamine 

and glutamate metabolism (Farah et al., 2022). An independent analysis of changes 
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in metabolic pathways within transcriptomic profiling showed significant changes in 

NADH metabolism, cysteine/homocysteine metabolism and amino acyl tRNA 

biosynthesis. Furthermore, integration of both metabolic and transcriptomic datasets 

using joint pathway analysis revealed enrichment of metabolic pathways such as 

glycolysis and TCA cycle, which warranted further investigation in vitro.   

Consequently, metabolic flux analysis was conducted to examine whether there 

were differences in the glycolytic activity or mitochondrial respiration activity of these 

obese OA synovial fibroblasts. Interestingly, hip OA synovial fibroblasts were 

considerably more metabolically active compared to fibroblasts from patients with 

either knee or hand OA, with significantly increased glycolytic reserve and basal 

respiration, proton leakage and ATP production. The reason for this is not known but 

could be related to the fact that the hip is anatomically closer to larger masses of 

adipose tissue, including abdominal adipose tissue, and therefore may be more 

metabolically primed than anatomically distant joints such as the knee and hand. 

Following on from this, particular focus was given to hip OA synovial fibroblasts and 

further investigation was conducted into whether there were any differences in 

metabolism in obese and normal weight samples and furthermore whether 

inflammatory stimulation would reveal any discrepancies in metabolic phenotype.  

Metabolic flux analysis revealed an increased basal rate of glycolysis and glycolytic 

reserve in obese OA synovial fibroblasts, compared to normal weight OA synovial 

fibroblasts. Likewise, inflammatory stimulation of obese OA synovial fibroblasts, but 

not normal-weight fibroblasts, increased both basal and maximal respiration, as well 

as ATP production. This suggests that obese OA synovial fibroblasts have increased 

reliance on glycolysis basally, but that they can also adopt greater mitochondrial 

respiration to meet the greater energy demands of  the inflammatory state.    
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Finally, having investigated changes in glycolysis and mitochondrial respiration 

another metabolic pathway that was investigated was glutamine-glutamate 

metabolism. This was a particularly interesting pathway as it was the most 

significantly enriched metabolic pathway in obese OA synovial fluid, compared to 

normal weight OA synovial fluid and was significantly enriched in normal weight and 

obese OA synovial fibroblast conditioned media upon inflammatory stimulation 

(TNFα). Furthermore, this particular pathway has received much attention in 

inflammatory pathologies and has even been identified as an altered metabolic 

pathway utilised by RA synovial fibroblasts (Farah et al., 2020). Therefore, this 

warranted further investigation with the premise being to identify if there was a 

relationship between the activity of the glutamine-glutamate pathway and the 

inflammatory profile of   OA synovial fibroblasts. To investigate this, the activity of 

glutamine-glutamate pathway was modulated in OA synovial fibroblasts by targeting 

the enzyme GLS1, which coverts glutamine to glutamate, either using a 

pharmacological small molecule inhibitor or using siRNA. Inhibition of GLS1 was 

found to reduce IL6 expression and IL-6 protein secretion but  did not alter the rates 

of cellular proliferation or cellular apoptosis. One area of future research could be to 

examine whether this pathway is altered in vivo within murine models of obesity and 

OA, and whether targeting this pathway in vivo ameliorates obesity-driven OA and 

synovial inflammation.  

Taken together, the findings of this thesis provide support for the notion that the 

metabolic differences underpin the inflammatory phenotype of the OA synovial 

fibroblast and further suggest that not only is the metabolic phenotype of obese OA 

synovial fibroblasts different from normal weight OA synovial fibroblasts, but that 

these differences will be exacerbated in states of inflammatory challenge. These 
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findings therefore support the rationale for the therapeutic targeting of metabolic 

pathways to reduce the pathological effects of joint inflammation of obese patients 

with OA. 

7.2 Future directions 

7.2.1 Rationale for the therapeutic targeting of metabolism in stromal synovial 

fibroblast pathotypes in inflammatory joint disease  

Immunometabolism is an emerging field which investigates the links between 

intracellular metabolic pathways and the effects these changes have on cellular 

function (Mobasheri et al., 2017) Metabolic reprogramming of immune cells 

accompanies the pathological and progressive changes in chronic inflammatory 

diseases making this area of research critical to understanding how disease 

development occurs and how immune cells acquire and sometimes support these 

pathological changes. Likewise, due to the intricate relationship between these 

metabolic pathways and immune cell function, targeting and modulating these 

pathways alters cellular responses and can sometimes reverse cell states to a pre-

disease state (Schruf et al., 2019; O’Leary et al., 2020).  

Although much effort has been expended on investigating these associations in 

immune cells there has not been the same amount of effort put into understanding 

the role of metabolism in stromal cells. 

In the field of cancer biology, a paradigm shift has occurred in switching from a sole 

focus on understanding how genetic changes and mutations drive and support 

cancerous phenotype in cancer cells to now looking at the wider picture of the 

tumour microenvironment, particularly at the cells that are resident at these sites, 

which phenotypically change to support the cancer cells during their development. 



321 | P a g e  
 

These cells are known as cancer associated fibroblasts (CAFs). CAFs have received 

much attention as of late due to their ability to support these cancer cells, through 

moulding and shaping the tumour environment. In carcinoma, the expansion of CAFs 

precedes conversion to malignancy and circumscribe pre-malignant lesions and 

interact with immune cells that seek to locate and destroy these aberrant cells (Sahai 

et al., 2020). The expansion of these CAFs has been termed stromagenesis and it 

proceeds alongside and is associated with tumorigenesis (Sahai et al., 2020).  

However, beyond their role of moulding and shaping the tumour environment is the 

metabolic support they provide which is vital for cancer cell survival. Cancer cells in 

their need to expand rapidly are widely known to undergo metabolic changes, often 

referred to as the Warburg effect, which is the switch from oxidative phosphorylation 

as the primary source of energy to aerobic glycolysis due to the rapid energy 

requirements and eventually as a result of their expansion, the reduced oxygen 

supply. Cancer cells will then utilise other metabolites to generate energy, including 

lactate, which can be converted into pyruvate. CAFs increase the rate of aerobic 

glycolysis to generate more lactate, which is secreted and then taken up by cancer 

cells, a phenomenon termed the ”Reverse Warburg Effect” (Sanford-Crane, Abrego 

and Sherman, 2019). Furthermore, cancer cells also use up a key amino acid, 

glutamine which cannot be further synthesised and so CAF’s utilise the carbons and 

nitrogen from aspartate, asparagine, and lactate in order to synthesise glutamine 

which can be exported and taken up by cancer cells (Sanford-Crane, Abrego and 

Sherman, 2019). This is one of many examples of the major role fibroblasts and 

mesenchymal stromal cells in general play in disease pathology, often altering their 

metabolic state to support their own pathological changes or tailoring their 

metabolism to support dysfunctional cells. 
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A similar change in perspective is required for other disease states, particularly 

conditions like arthritis. In these disease states, cells will undergo pathological 

changes such as increased inflammatory profile, which is supported and 

underpinned by their metabolic state. Without the changes in metabolic pathways 

which provide energy and the biosynthetic materials to support their “activated” 

status, these cells remain in their quiescent and non-activated phenotype.  

7.2.2 Metabolism and Inflammation are Intricately Connected in Synovial 

Fibroblasts and Present Potential Targetable Pathways to Modulate 

Inflammation  

In inflammatory joint diseases, synovial fibroblasts undergo pathological changes, 

which result in a switch from quiescent state to inflammatory and invasive state. In 

RA, synovial fibroblasts will increase the rates of proliferation and become 

hyperplastic, resulting in the formation of pannus-like structures upon loss of contact 

inhibition (Farah et al., 2020). In OA, synovial fibroblasts have been shown to 

increase secretion of pro-inflammatory cytokines and chemokines, such as IL6 and 

CXCL8 (Nanus et al., 2020).  

These alterations in synovial fibroblast phenotype are accompanied by concomitant 

changes in their metabolic status often to support the adopted inflammatory 

phenotype.  

Targeting the metabolic state of these cells is a means to modulate and possibly 

return these cells to their original, quiescent state. In RA, synovial fibroblasts 

upregulate glycolysis and glucose starvation and hexokinase inhibition (using 2DG) 

reduces proliferation and migration of these cells alongside reduced secretion of IL6 

and degradative enzyme MMP3 (Garcia‐Carbonell et al., 2016). Inhibition of 
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glycolytic enzymes, such as PFKFB3 and PGK1, reduces the secretion of pro-

inflammatory cytokines TNFα, IL-1β and IFN-γ (M Biniecka et al., 2016; Zhao et al., 

2016). Likewise, silencing of TNFα with RNAi treatment reduced the expression of 

GLUT1 and glyceraldehyde 3 phosphate (G3P), providing further evidence of the link 

between aerobic glycolysis and inflammation in synovial fibroblasts (Farah et al., 

2020). 

Furthermore, amino acid metabolism is also altered with synovial fibroblasts, with RA 

synovial fibroblasts showing increased dependency on glutamine metabolism and 

increased expression of GLS1 (Takahashi et al., 2017). Pharmacological inhibition of 

GLS1 in a SKG mouse model ameliorated autoimmune arthritis and reduced the 

number of synoviocytes (Takahashi et al., 2017).  
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PRINCIPLE EXPLANATION EXAMPLE 

SPECIFICITY Due to the universal nature of metabolic pathway 

utilisation by different cell types, treatments involving 

inhibition of pathways shared by multiple cell types 

would need to be specific to targeted cell.  

Antibody-conjugated anti-

sense oligonucleotide 

therapy 

PREDICTION Cells use multiple isoforms of enzymes and different 

protein transporters to transport metabolites into and 

out of cell. Understanding therapeutics effect on 

different isoforms critical for efficacy.  

Cell specific isoform 

screening prior to 

treatment 

PLASTICITY Metabolic pathways flux depending on nutrient 

availability and therefore depletion of nutrient of 

choice for cell results in a shift in metabolic 

programme which in turn effects cell function (to the 

desired response) 

Computational model of 

metabolic pathways 

altered by treatment 

(based on omics 

integration) 

REDUCTIVISM Unlike other pathways such as kinase inhibition of 

signalling cascades, metabolic pathways are tightly 

regulated and therefore sensitive to modulation. 

Reduced inhibition results in large scale effects 

Reduced dosage of 

therapeutic  

TIME MANAGMENT A major principle of therapeutic treatment of metabolic 

pathways would be adverse effects and therefore 

short-term treatment to favour certain cell responses 

would be ideal 

Acute and Episodic 

treatment 

Table 7.1: Considerations prior to development of potential 

metabolic therapeutic treatments  (adapted from Rhoads, Major and 

Rathmell, 2017)  
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Figure 7.1: Altered metabolic pathways in synovial fibroblast can be targeted 

through multiple therapeutics to ameliorate inflammatory phenotype (adapted from 

Farah et al., 2020) 
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These metabolic pathways can be activated or inhibited using small molecule 

inhibitors which often target rate-limiting enzymes that have already been shown to 

be upregulated in synovial fibroblasts. In glycolysis, there are a few small molecule 

inhibitors that can target rate limiting enzymes such as dipyridinyl-propenone (3PO) 

which selectively inhibits PFKFB3 (figure 7.1). Likewise, it’s also possible to use 

selective hexokinase inhibitors 2DG and 3-bromopyruvate (figure 7.1). Lactate 

dehydrogenase is another enzyme increased in RA synovial fibroblasts and can be 

selectively inhibited using 3-dihydroxy-6-methyl-7-(phenylmethyl)-4-

propylnaphthalene-1-carboxylic acid (FX11) (figure 7.1).  

Furthermore, other metabolic pathways which are upregulated in synovial fibroblasts 

including glutamine-glutamate metabolism can be targeted using the previously 

mentioned pharmacological inhibitor of GLS1, BPTES and CB-839 (figure 7.1).  

In this thesis, glutamine and glutamate metabolism was increased in obese OA 

synovial fluid compared to normal weight synovial fluid. Therefore, to reduce the 

inflammatory profile of these fibroblasts, a key enzyme in this pathway was targeted, 

namely glutaminase 1, which converts glutamine to glutamate. This was done using 

small molecule inhibitor BPTES and through siRNA knockdown. Inhibition of GLS1 

resulted in reduced IL6 expression and protein secretion, showing synovial fibroblast 

require glutamine-glutamate metabolism to support their inflammatory status. This 

study provides proof of principle in targeting altered metabolic pathways in synovial 

fibroblasts may yield potential therapeutic effects in ameliorating the inflammation 

observed in OA. 
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7.2.3 Pre-clinical animal models  

The next step following the data collected within this thesis would be to modulate 

these metabolic pathways in vivo. In order to model obesity associated OA in an 

animal model, the ideal comparison would be an obese animal model induced by 

high fat diet, alongside a classic inflammatory arthritis model like CIA model. In this 

comparison there would be ideally 4 groups, chow diet sham surgery (vehicle 

control), high fat diet sham surgery, chow diet CIA treatment and high fat diet CIA 

treatment. In this experiment the high fat diet CIA model would be the closest 

comparison to obesity associated OA. However, this would require statistical 

modelling to separate the effects of inflammation due to CIA treatment and the low-

grade inflammation observed in obesity. In this experiment in vivo, treatment with the 

metabolic inhibitors for glycolysis or glutamine-glutamate metabolism (mentioned in 

figure 7.1) would be used to observe whether inhibition of these pathways resulted in 

changes in disease course (i.e., reduced synovitis, articular cartilage degradation 

etc). Likewise, looking into secondary endpoints such as behavioural outcomes of 

these animal models (i.e., gait changes, weight-bearing on joints, burrowing 

behaviour and activity status) might also provide important information on other 

areas of interest in personalised medicine, the equivalent aspects being lifestyle and 

quality of life (figure 7.2).  
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7.2.4 Precision and Personalised Medicine: Treating Obese Osteoarthritis 

Patients 

Personalised medicine (PM) is a method of treatment which is premised on the 

patient individual characteristics influencing their susceptibility and development of 

disease and their response to treatment. 

Personalised medicine is not a new approach to treatment and was mentioned by 

Hippocrates, were he stated “different drugs to different patients, for the sweet ones 

do not benefit everyone, nor do the astringent ones, nor are all the patients able to 

drink the same things” (Sykiotis, Kalliolias and Papavassiliou, 2005; Strianese et al., 

2020). 

Personalised and precision medicine subvert the trial-and-error approach in 

conventional medicine which is based on providing treatment using the most 

effective treatment available based on general population data and does not 

consider the inherent differences in populations and thereby can result in non-

effective treatments in certain patient groups. This approach leads to poorer 

outcomes for patients and patient dissatisfaction alongside misdiagnosis and wrong 

treatment which also results in increasing healthcare costs (Mathur and Sutton, 

2017). 

By integrating different aspects of patient characteristics including clinical data, 

environmental factors and molecular characterisation, personalised medicine can 

provide a more targeted approach to successfully treat patients based on the primary 

drivers of their disease (figure 7.2) 

An example of this approach is in breast cancer treatment where patients who have 

high expression of HER2 receptor are given monoclonal antibody based therapeutic 
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Herceptin, whereas some patients who have mutations in the HER2 gene are 

inherently resistant to Herceptin treatment and so therefore would not benefit from 

this treatment (Mathur and Sutton, 2017). 

Likewise, immunotherapy in prostate cancer treatment is based on highly PM centric 

approach. Sipuleucel (Provenge) treatment which uses patient derived dendritic cells 

that are incubated in the presence of prostatic acid phosphatase (which is expressed 

in 95% of prostate cancer cells) are re-introduced into the patient’s immune system 

thereby training the immune system to target and destroy prostate cancer cells 

(Mathur and Sutton, 2017). 

In osteoarthritis, diagnosis is often late in the disease course with pain and loss of 

function being the primary clinical features which are used to diagnose the disease 

(Bijlsma, Berenbaum and Lafeber, 2011). This results in late treatment within 

disease course and therefore reduces the opportunity for disease modifying 

therapeutics to provide effective treatment for patients and so a new approach is 

required to improve patient outcomes. 

Personalised medicine might provide a unique opportunity for treating patients with 

osteoarthritis by developing and collating data on markers of disease (such as 

biochemical markers or MRI and radiological imaging) and by using computational 

tools and statistical analysis. Importantly there is a significant potential to understand 

disease processes and provide methods of stratifying patients into subtypes based 

on these parameters.  

Randomised control trials of disease modifying drugs in OA patients have largely 

failed to show significant changes in pain relief and structural outcomes due to 

issues such as heterogeneity of disease, study cohort selection (inclusion and 
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exclusion criteria) and duration of studies (Siaton, Hogans and Hochberg, 2020). 

When trying to design clinical trials in OA the main issue that often arises is the 

complexity in accurately defining which particular patient population will demonstrate 

the strongest outcomes to treatment (Siaton, Hogans and Hochberg, 2020). 

By using personalised medicine, patient groups can be stratified into those which 

display strongest shift towards certain molecular endotypes. These molecular 

endotypes are a means of delineating different phenotypes of osteoarthritis and are 

based on clinical features and molecular characterisation of OA patients (as 

previously mentioned in figure 1.1). 

In this thesis high throughput technologies like, metabolomics and transcriptomics 

alongside inflammatory profiling have been used to differentiate between patient 

groups with different BMI’s in obesity-driven OA.  
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Key features that have been established from these obese OA patients compared to 

non-obese OA patients are differences in metabolic and inflammatory profile of OA 

synovial fibroblasts. By therapeutically targeting these metabolic changes in synovial 

fibroblasts in obese OA patients using criteria established in table 7.1, obese OA 

patients could benefit from the reduced inflammation and potentially partially reduced 

pain at the synovial joint. 

Personalised medicine however is not only about developing new therapeutics but 

repurposing therapeutics currently available and approved for use by governmental 

medical authorities like the FDA or EMA. An example of potential therapeutics which 

Figure 7.2: Personalised medicine (PM) can be derived from the amalgamation of three 

patient characteristics which include clinical features, environmental factors, and 

molecular characterisation 
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could be repurposed to target the obesity driven inflammatory changes observed in 

obese OA synovial fibroblast is Methotrexate. 

Low-dose methotrexate therapy is currently the gold standard in RA treatment. 

Methotrexate works by multiple modes of action including inhibition of 

aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase (ATIC) 

(which results in increased adenosine release and binding of its cell-surface 

receptors reducing immune responses and inflammation) and inhibition dihydrofolate 

reductase resulting in reduced dihydrobiopterin to tetrahydrobiopterin and nitric oxide 

synthase uncoupling and a shift towards T cell apoptosis (Cronstein and Aune, 

2020).  

Another key mode of action is its inhibition of one-carbon metabolism which could 

have important implications in obese OA synovial fibroblasts which show enrichment 

of one carbon metabolic pathways such as glycine, serine, and threonine 

metabolism and altered salvage pathways of deoxyribonucleotide synthesis.  

Methotrexate has already undergone phase III clinical trials in knee OA patients and 

has been shown to successfully reduce knee OA pain at 6 months and WOMAC 

stiffness and function (Kingsbury et al., 2015, 2019). However, while methotrexate 

treatment for erosive hand OA significantly reduced progression of joint damage 

compared to placebo, it did not demonstrate superior efficacy over placebo on pain 

and function evolution at 3 and 12 months (Ferrero et al., 2021). This lends more 

weight to the previous principle of stratifying patients further and using different 

treatment strategies for patients with primary OA of different joints. 
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