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Abstract

Learning in the model space (LiMS) aims to represent each complex data subject such

as sparse and/or noisy time series with an appropriate model, or a full posterior distri-

bution over models. LiMS approaches include mechanistic information on how the data

is generated in the machine learning model-building stage. Hence, it can improve the

interpretability of chosen machine learning tools. This thesis proposes a new topographic

mapping approach as well as a time series classification application in the model space.

Both of them are demonstrated on a real-world data set of measurements taken on sub-

jects in an adrenal steroid hormone study.

Topographic visualisation methods such as self-organisation maps are important tools in

data mining. In order to cluster and visualise sparse and/or noisy time series data, a

novel self-organising map directly formulated in the model space termed as SOMiMS is

proposed, together with an extension of generative topographic mapping (GTM) to the

model space. Both maps are demonstrated on the adrenal steroid hormone data set with

a good degree of separation of conditions. Compared to classic approaches in the sig-

nal space, they take the mechanistic information into account by providing interpretable

readily data visualisations and parameter plots in the form of heat maps.

In biomedical settings, time series classification is one of the most important techniques to

improve the accuracy of disease diagnosis. The time series classification in the model space

is developed not only to improve the diagnosis accuracy but also to provide mechanistic



and biomedical model interpretability. It is applied to the adrenal steroid hormone data

set showing satisfying classification performance in both signal and model space. Two

classifier models, support vector machine (SVM) and logistic regression are employed.

In addition, a hybrid model which significantly improves the accuracy is also created.

Through feature selection, important time periods (signal space) and model parameters

(model space) are extracted, which are crucial and valuable information from the biomed-

ical point of view. In the data preprocessing stage, the missing value and initial value

problems, which are two common problems of biomedical data are solved by using the

univariate Gaussian process and adjoint method. Analyses and evaluations are concluded

along with mechanistic and biomedical knowledge and case studies of some additional

subjects.
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Chapter 1 Introduction

The research topic of this doctoral research is machine learning in the model space for

metabolomics time series data applied to a real data set of adrenal steroid hormones. Each

steroid hormone subject is a multivariate time series that is noisy and sparsely sampled.

In order to handle such complex data, machine learning in the model space (LiMS) frame-

work is proposed. In LiMS, each time series is represented by a model. Then, the learning

is formulated in the space of models. In this adrenal steroid hormone study, a parametric

inferential mechanistic model is provided, which is flexible enough to represent the variety

of data items. Compared to traditional machine learning approaches working in the signal

space, LiMS approaches are not only capable of dealing with sparse and/or noisy time

series data with comparable performance, but are also able to provide biomedical insights

and interpretations. Combining with the mechanistic model, time series clustering and

classification methodologies are developed.

This chapter first gives a brief research background introduction. Then, research motiva-

tions and objectives are given, following with the outline of the thesis at the end of this

chapter.

1



1.1. RESEARCH BACKGROUND AND MOTIVATIONS

1.1 Research background and motivations

Time series is a very common type of data, containing a sequence of data whose measure-

ments are taken over time (usually at regular time intervals), which are called observations.

When the observed space is multidimensional, the time series becomes multivariate, other-

wise it is univariate. Time series data are widely available in different fields, for example

finance, science, healthcare, etc. due to the development of the internet, technology,

and digital healthcare. Thus, the importance of time series analysis is expected to grow

significantly in the coming years [1].

1.1.1 Time series clustering and classification

Usually, time series analysis tasks involve classification, clustering, regression, and fore-

casting. However, the time series analysis is facing unique challenges. In real-life settings,

time series measurements obtained are noisy and/or sparse. A time series is said to be

sparsely sampled when the intervals between successive observations are long. Such time

series data arise when sampling processes are difficult and complex especially in domains

including medicine, biology, astronomy [2][3][4]. Also, some of them may contain sub-

stantial observational gaps [5]. Hence, it is not feasible to use existing machine learning

algorithms for example support vector machine, random forest, logistic regression, etc.

on such raw time series directly. This thesis focuses on time series clustering and classifi-

cation.

Clustering is a unsupervised data mining technique which places similar data into ho-
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1.1. RESEARCH BACKGROUND AND MOTIVATIONS

mogeneous groups without knowing the groups’ definitions. Time series clustering is a

special type of clustering [6]. Essentially, a time series is treated as dynamic data because

value(s) of each point of a time series is/are one or more observations that are made

chronologically. Although each time series contains a large number of data points, it can

also been treated as a single object. It is advantageous to cluster such complex data

because it leads to discovery of interesting patterns in time series datasets [7]. According

to [6], there are four main reasons to develop time series clustering. Firstly, time series

datasets involve valuable information, which can be obtained through pattern discovery

and clustering is the most common way to uncover these patterns on time series datasets.

Secondly, most time series datasets are too large and complex to be handled well by human

inspectors. Therefore, users prefer to deal with structured datasets rather than original

larger datasets. As a result, clustering is helpful to generate such structured datasets as

a set of groups of similar time series by aggregation of data in non-overlapping clusters.

Thirdly, time series clustering is useful for exploratory data analysis or as a pre-processing

step for other data mining tasks. Finally, the visualization of time series data based on

clustering is able to help users to understand the structure of data quickly.

Consider a dataset with n time series data D = {X1, X2, ..., Xn}. Time series clustering

refers to the unsupervised process to partition D into C = {C1, C2, ..., Ck}, in such a way

that homogeneous time series are grouped together based on a certain similarity measure.

Ci indicates a cluster, where D = ∪k
i=1Ci and Ci ∩ Cj = ∅ for i ̸= j.

However, time series clustering is challenging because firstly, time series data are nor-

3



1.1. RESEARCH BACKGROUND AND MOTIVATIONS

mally high dimensional, which makes handling these data difficult for many clustering

algorithms and also slows down the process of clustering [8][9]. Secondly, the similarity

measure that are used to make the clusters is a major challenge, especially for whole

sequence matching where whole lengths of time series are considered during distance cal-

culation because time series data are naturally noisy and include outliers and shifts, at

the other hand the length of time series varies [6][10].

Time series classification involves building predictive models that output a target label

from inputs of sequential observations across some time period [5][11]. In time series clas-

sification, an instance is a pair {x, y} with j observations (x1, x2, ..., xj) and y is the dis-

crete class variable with i possible values. A time series dataset contains n such instances

D = [{x1, y1}, {x2, y2}, ..., {xn, yn}]. Hundreds of time series classification algorithms

have been proposed in recent years [12] and they can be divided into two camps: deep-

learning models and non-deep-learning models [11]. Deep-learning approaches such as

Convolutional Neural Networks (CNNs) and Deep Neural Networks (DNNs) have shown

many successful applications recently [12], while they also have challenges in training,

hyperparameter tuning, model complexity decisions, etc. Compared to deep learning ap-

proaches, non-deep-learning methods are generally easier to train, optimise and deploy

[11]. This thesis is going to focus on non-deep-learning classification approaches.

Typically, the time series classification has three main steps, which are signal transfor-

mation or preprocessing, modelling, and classification (Fig. 1.1). The first step normally

involves missing value imputation, normalization, adjustments, etc. In the second step,

4



1.1. RESEARCH BACKGROUND AND MOTIVATIONS

different types of algorithms are developed and they can be summarised into feature

engineering and selection, statistical modeling, distance-based, index development, and

shape-based methods. In the third step, the classifier model is first selected, then the

hyperparameter tuning, model training, and validation can be done.

Figure 1.1: Time series classification steps

In the first step, filtering is the most common preprocessing method for noise reduction

and artifact removal. Methods such as smoothing, segmentation, and re-sampling are also

used depending on different research tasks. Besides, other common methods are using

Fourier transform for signal decomposition[13], feature extraction, using wavelet trans-

5



1.1. RESEARCH BACKGROUND AND MOTIVATIONS

form to decompose the original signal into different frequency bands [14], etc.

In the second step of time series classification modelling, the feature engineering approach

is most widely used. A vector of common feature engineering techniques is summarised

in Table 1.1. After using certain feature engineering techniques, new features extracted

from the time series data are used in the following step as representatives of the original

data.

Ensemble approaches are the combination of multiple models. Typically, the final predic-

tion is made by the majority vote of ensembles. These methods may or may not require

an additional feature engineering step. Distance-based models simply calculate the dif-

ferences in time series data based on different similarity measures. Shape-based models

are characterised by mining or comparing shapes or patterns in a time series or sequence

vector. State-space models refer to the construction of a probability model. In addition,

other models for example using statistical modelling and designing a composite index or

metric based on data-driven metrics or domain knowledge, are also proposed.

6
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Table 1.1: Different types of feature engineering techniques

Feature type Description

Amplitude Amplitude features refer to how distant a

signal’s values from 0

Frequency Frequency features describe the properties

of the Fourier transform

Stationarity Stationarity represents the consistency of signal

properties over time, such as mean and variance

Entropy Entropy measures the number of states of a system or the

ability to probabilistically determine the next state of system

Variability Variability measures how similar in value each of

the measurements in a signal are

Linearity Linearity features quantity how much a system

changes with a constant rate

Correlation Correlation features describe how dependent a

signal is on previous state

Plot-based Features related to properties of a certain graph

1.1.2 Time series in biomedical applications

With the development of the technology (wearable devices like smart watches) and the

digitisation of healthcare systems, there has been an emerging increase of biomedical

time series data sets and researches using those data, including accelerometry for ac-

tivity recognition, polysomnography (PSG) for sleep tracking [15], electroencephalogram

7



1.1. RESEARCH BACKGROUND AND MOTIVATIONS

(EEG) for brainwave tracking [16], electrocardiogram (ECG) for cardiovascular dysfunc-

tion screening [17], etc. As a result, there is a desperate need to develop some data

mining or classification approaches in order to extract or detect useful information from

those biomedical time series data. This will lead to the development of more reliable

and accurate methods for diagnosing, monitoring and screening and provide significant

benefits to the healthcare system, which not only could save money and time, but also

more importantly could save lives.

Compared to time series data in other fields, biomedical time series data collected from

human subjects have some unique obstacles, which leverage time series modeling tech-

niques. One of the biggest challenges is the small data set size. Usually, biomedical data

sets contain just a small number of human subjects because of the effort and resources

required for the data collection. This makes it even more difficult for using deep learning

models because most of them are data-hungry [11]. Thus, non-deep learning models are

more suitable for small-size biomedical time series data sets. Another challenge is the

individual differences among human subjects, meaning that models perform well on some

individuals may have negative outcomes for others.

Moreover, model interpretability is an important aspect that has to be taken into account,

especially for biomedical applications. Accurate and validated interpretation of models

could explain potential insights from the biomedical point of view [11]. Some models with

a methodology of interpretation built in and information based on domain knowledge are

able to provide reasonable model interpretability. However, it is still a challenge for most
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models, even if they have great performance.

1.1.3 Learning in the model space for noisy or/and sparse time

series

Under the learning in the model space framework, each data item (e.g. time series) is

represented by a model that “explains ”it. Then, learning is formulated in the space of

models. In order to involve the certain domain knowledge and provide appropriate model

interpretability, the model here refers to inferential mechanistic model, which is corre-

sponding to the input time series dataset. Usually, such inferential mechanistic model

with free parameters is flexible to represent variety of data items and is also sufficiently

constrained to avoid overfitting.

This research demonstrates the learning in the model space approach on the adrenal

steroid hormone dataset. This dataset contains three possible clusters, which are Control,

Cushing’s and Primary Aldosteronism (PrimAldo). Each time series in the dataset is

multivariate and has four metabolites in the data feature space – CCS, Aldo, Cortisol and

Cortisone. Examples of time series trajectories in three conditions are given in Figure 1.2.

The length of each time series may vary because of missing values at random time points.

The inferential biomedical model corresponding to this dataset is provided by medical

experts with thirteen free parameters and in the form of coupled ordinary differential

equations (ODEs).
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(a) Control (b) Cushing’s (c) PrimAldo

Figure 1.2: Trajectories of Control 1.2a, Cushing’s1.2b and PrimAldo 1.2c

Leaning in the model space is not only able to take the model interpretability into account,

but is capable of dealing with challenges of time series analysis mentioned in section 1.1.1.

In this thesis, the adrenal steroid hormones time series are sparse and noisy. Compared to

other time series data which have observations every second, for example financial data,

adrenal steroid hormones time series have observations every twenty minutes, which is

a very long interval compared to every second. Also, most medical data are with high

noise and small sample sizes because of the complex sampling procedure (e.g. collecting

blood samples or body fluid) [2]. In this research, learning in the model space approaches

estimate the noise level from the data using Gaussian Process. Moreover, each adrenal

steroid hormones time series contains random missing values, which leads to the length of

each time series is different. To deal with challenges discussed above, learning in the model

space approaches transfer each multivariate time series into model parameters, which is

a thirteen parameter vector. It is easier and faster to handle model parameters because

they are normally lower dimensional than time series signals. Also, the calculation of the

similarity among model parameter vectors is more straightforward because they have the

same length.
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1.1.4 Research motivations

An accurate diagnosis is critical to prevent wasting precious time on the wrong course of

treatment. Machine learning especially the classification has the potential to help improve

the diagnosis results, while it is still in the early stages of implementation. Moreover, most

existing machine learning approaches diagnose diseases only based on patients’ symptoms.

They are unable to explain the symptoms by determining the causes of certain diseases

[18]. To solve this problem, the model interpretability has to be taken into account when

a machine learning model is built. However, most common machine learning models are

not capable of providing appropriate model interpretability [19]. Thus, this research de-

velops a LiMS approach, which not only can provide significant performance but also can

take mechanistic and biomedical knowledge into account.

Real-life biomedical data are usually sparse and/or noisy time series data. It is imprac-

tical to simply apply machine learning algorithms such as logistic regression or support

vector machine to such raw time series data. Hence, this research introduces a feature

generation approach in the model space. Each time series is transferred to a suitable

model, represented by a vector of model parameters.

Besides, data visualisation, which is a special approach of clustering is useful and im-

portant. It is helpful to discover some underlying facts, trends and patterns quickly [6].

Self organising maps and generative topographic mapping are two common methods used

for visualisation and exploratory data analysis of high dimensional datasets. However,

classic self organising map and generative topographic mapping can only be applied to
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data with same length [20] [21]. Thus, this research proposes both self organising map

and generative topographic mapping in the model space to handle noisy or/and sparse

time series with different length. Also, both of them offer parameter plots, which can

provide underlying biomedical insights for medical people.

1.2 Research objectives and contributions

1.2.1 Research objectives

The research objectives are to:

• Accomplish the data preprocessing for the adrenal steroid hormone data set in

particular dealing with substantial missingness in the data and transform them into

the model space by representing each subject using the inferential mechanistic model

(Chapter 5)

• Develop a self-organisation mapping algorithm in the model space for model based

clustering and visualisation of sparse and/or noisy time series data (Chapter 4)

• Extend the generative topographic mapping into the model space and compare it

with the self-organisation mapping algorithm in the model space (Chapter 4)

• Apply the time series classification in the model space approach to the adrenal

steroid hormone data set and design an appropriate experiment methodology for it.

(Chapter 5)
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1.2.2 Research contributions

Figure 1.3: Research contributions Filtered data set contains 140 data subjects in good
condition with only few missing values. Unfiltered data set involves 270 data subjects and
some of them have substantial observation gaps.

A flowchart of research contributions has been provided in Fig.1.3 and details are also

described as:

• The adrenal steroid hormone data set has been cleaned and each data subject has

been transferred to a model parameter vector (representative of a certain inferential

mechanistic model) using maximum likelihood estimation (MLE) framework with
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constraints.

• Self-organisation map (SOM) has been formulated directly in the model space named

SOM in the model space (SOMiMS). People can visualize complex data such as

sparse and/or noisy time series in a two-dimensional map using SOMiMS. It has

been demonstrated on the adrenal steroid hormone data set.

• Generative topographic mapping (GTM) has been extended to the model space.

It can also visualise a set of sparse time series. Mapping results of SOMiMS and

extended GTM have been compared on the same data set.

• Parameter plots of SOMiMS and extended GTM, which can help readily interpret

the topographic mappings from the mechanistic and biomedical points of view have

been provided.

• The univariate Gaussian process has been used to impute missing values in the

filtered adrenal steroid hormone data set.

• The gradient based optimisation algorithm is adopted to obtain the corresponding

model parameter vector for each time series data by maximising the likelihood.

The adjoint method has been applied to efficiently calculate the total derivative of

likelihood, which is required by the The gradient based optimiser.

• The adrenal steroid hormone dataset is class-imbalance with more health control

subjects than two other conditions. The repeated undersampling with replacement

and classifier ensembles have been used to solve the class imbalance problem.

• An importance-based feature selection algorithm has been developed based on clas-
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sifier ensembles with accuracy greater than 95%. It is a robust way to do feature

selection.

• An experiment methodology for the time series classification model has been de-

signed. It is based on the 3 degrees of design freedom (signal versus model space;

full versus partial mechanistic model; full versus subset feature space).

• Based on the experimental design, a hybrid classification model has been developed.

It combines classification models in the signal and model space for the filtered data

set (both classification models in the model space for the unfiltered data set) and

classification performance has been improved. Also, it has been verified by a set of

new data, which are not used in previous training and testing.

• The interpretation of classification and feature selection results combined with the

biomedical information has been presented.

• Conference paper: Chen, Xinyue, et al. “SOMiMS-Topographic Mapping in the

Model Space.”International Conference on Intelligent Data Engineering and Auto-

mated Learning. Springer, Cham, 2021.

• Other papers: written up together with medical collaborators.

1.3 Outline

Chapter 2 is a literature review of the research. Both time series classification and

clustering approaches are reviewed. Time series clustering algorithms are discussed and

compared, especially the self-organising map and its extensions such as generative to-
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pographic mapping. Machine learning applications in multivariate steroid data are also

reviewed.

Chapter 3 demonstrates the clinical and biomedical background of this research. Adrenal

glands, adrenal steroid synthesis pathways, and their related hormones are introduced.

Three types of disorders, together with their causes and symptoms are discussed.

Chapter 4 proposes a self-organizing mapping formulated directly in the model space

and extends the generative topographic mapping to the model space to deal with noisy

and/or sparsely sampled time series. Results are demonstrated on a real data set of

adrenal steroid hormones. Parameter plots where values learnt for each mechanistic

model parameter across the grid are shown as heat maps. K-nearest neighbor (KNN)

classification is applied to map projections to quantify the degree of the separation on

mappings. Interpretations of topographic mappings and parameter plots are given from

the mechanistic point of view.

Chapter 5 applies time series classification in the model space approach to the adrenal

steroid hormone data set. The univariate Gaussian process used to impute missing values

is explained. The class imbalance problem in the classification is solved through repeated

undersampling and classifier ensembles. Importance plots are created for the feature selec-

tion. A novel experiment methodology is proposed based on 3 degrees of design freedom.

A hybrid model is developed by combining models in both signal and model space. Clas-

sification and feature selection results are demonstrated on both filtered and unfiltered
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data sets, together with interpretations bonding with clinical and biomedical knowledge.

Chapter 6 is a conclusion of the thesis. The outcomes and key findings of the research

are listed, together with its limitations. At last, the possible future work is discussed.
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Chapter 2 Literature review

2.1 Introduction

This chapter presents a literature review of the relevant subjects of the research. Firstly,

different approaches of time series classification are reviewed, compared, and discussed.

Secondly, time series clustering is described together with existing clustering algorithms

for time series. Two topographic visualization tools, self-organisation maps, and gen-

erative topographic mapping are presented. Finally, a brief review of machine learning

applications on multivariate steroid data is provided.

2.2 Time series classification

Major approaches for time series classification can be divided into three categories, feature-

based, distanced-based, and model-based approaches [22].

2.2.1 Feature-based and distance-based approaches

Feature-based approaches aim to transfer a time series into vector features and apply con-

ventional classification methods. These features can be local patterns for example short

sequence segments [23] or global ones based on time-frequency and wavelet decomposition

method [24].
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Distance-based approaches do classification through measuring the distance between time

series pairs. Once a distance measurement is applied, some existing classification ap-

proaches, for example, the K-nearest neighbor classifier (KNN) can be used. The choice

of distance function is significant to the classification performance. Euclidean distance

is widely used for simple time series classification [22]. However, Euclidean distance is

not applicable for time series with variable lengths. Then dynamic time warping distance

(DTW) is developed to deal with this problem. In DTW two time series are aligned based

on some criteria so that the distance of two time series can be calculated [25].

2.2.2 Model-based approaches

Feature-based and distance-based approaches mentioned above are not capable of dealing

with time series that are noisy and/or sampled sparsely because they are not able to take

observational noise into account, which makes the models prone to overfitting very easily

[26] and because there can be substantial uncertainty about the underlying temporal pro-

cesses due to the sparsity of observations [2]. Also, they are not able to integrate experts’

knowledge about the underlying processes with classifiers. Alternatively, model-based

methods are adopted to classify time series, for example, Hidden Markov Model (HMM),

which is used in biological sequences [27] and speech recognition [28]. Whereas those

model-based methods assume time series in one class are generated by a single underlying

model M. Once a class of time series is given, M models the probability distribution of

time series in this class. Normally, the probability distributions are described by some

parameters. Those parameters are learnt through training. Then a new time series will

be assigned to the class with the highest likelihood or the highest posterior probability if
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class priors are available.

However, one single model might not be sufficient to represent each time series in the

according class because there are infinitely many models which can fit the time series well

when the time series is very noisy and sparse[26]. To overcome this problem, it is nec-

essary to represent each time series by individual models [29]. In this case, the classifier

works on individual models, which correspond to individual time series. This approach is

called LiMS.

Most LiMS time series classification approaches represent each time series as point es-

timates of model parameters. Point estimates could be treated as feature vectors and

any vector-based classification can be used here. For instance, in [30], long time series

data with variable lengths are transferred into a high dimensional dynamical feature space

through reservoir computation models. Then each time series is represented by the cor-

responding read-out mappings of the generic fixed dynamical reservoir. In this task, for

all time series, the underlying dynamic reservoir will be the same, while the read-out

models can capture the differences in each time series. Then, the read-out parameters are

treated as feature vectors, which are used for time series classification. Also, Brodersen et

al. use a dynamic causal model (DCM) to replace high dimensional functional magnetic

resonance imaging (fMRI) data. Each fMRI data is represented by a low dimensional

vector of parameter estimates, which are used to classify DCMs. Both approaches above

are LiMS methods using point estimates to do classification for time series.
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In addition, other LiMS methods employ model distances directly in the parameter space,

which is the geodesic on the model manifold. In these approaches, the parameter space

is treated as a non-linear metric and the metric is learned on the underlying manifold

[29]. The intrinsic nature of the underlying processes or the constraints imposed on the

models could generate a non-linear structure. To get geodesic distances, the underlying

metric tensor field in the parameter space can be reconstructed first. A general framework

based on pullback metric is presented to learn discriminative metric tensors in the space

of Linear Dynamical Systems (LDS) and HMM respectively. The manifold structure in

the parameter space is induced by stability constraints on the LDS parameters or by nor-

malisation constraints on the HMM parameters [31][32].

Moreover, another type of LiMS approach is generated in the framework of kernel ma-

chines. The adopted kernels can illustrate the underlying non-linear structure in the model

space via useful distance functions, although they do not recover the whole underlying

metric tensor field [29]. Generally, employed kernels have been developed to operate on

the probability distributions. In [33], kernels derived from the symmetric Kullback-Leibler

(KL) divergence between two distributions are proposed to classify multimedia objects.

Also, a probabilistic kernel based on the KL divergence is developed to do the classifi-

cation of visual processes, which are modeled with spatiotemporal autoregressive models

[34]. In addition, the probability product kernel (PPK) is proposed [35]. In PPK, a gen-

eral inner product is calculated as the integral of the dot product of pairs of probability

distributions. The PPK can evaluate all exponential family models like Gaussians and

multinomials. The PPK is also computable for latent distributions such as HMM, linear
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dynamical systems, and mixture models [35]. Bhattacharyya kernels are a special version

of PPK, which is related to Hellinger’s distance between distributions. However, generally,

KL and PPK kernels’ computation is very expensive and they are only computable for

simple classes of dynamical systems because they can include infinite-dimensional integral

over all possible state trajectories [29]. In contrast to PPK kernels, Binet-Cauchy kernels

based on the Binet-Cauchy theorem are defined as a dot product in the trajectory space

[36]. Taking the initial conditions of the dynamical systems into account is an advantage

of Binet-Cauchy kernels.

Finally, there are two well-known kernels, the fisher kernel, and the autoregressive (AR)

kernel, although they are outside the LiMS framework because no individual model is

corresponding to the individual data object. The fisher kernel uses one fixed model and

then each time series is represented by a tangent vector in the tangent space of that model

[37]. AR kernel is developed based on the vector autoregressive (VAR) model. Each time

series is described by the feature, which is the likelihood of parameters in the VAR model

given that time series object. To compare two time series, the product of their likelihood

features, which is weighted by a prior distribution over the VAR parameters is employed

[38].

2.3 Time series clustering

Clustering belongs to unsupervised learning and is a technique to place similar data into

homogeneous clusters without knowing the label information of the data [39]. Time series

clustering is a special case of clustering as time series are complex and usually real-world
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time series data are high dimensional and multivariate [6], which causes a speed decrease

in the clustering process. Besides, the similarity measures are the key challenge for the

time series clustering because most real-world time series data are noisy and with different

lengths [6][10].

2.3.1 Time series clustering algorithms

The choice of certain clustering algorithms is dependent on the research objectives, which

can be pattern discovery, prediction, visualisation, etc. Time series clustering algorithms

are classified into five broad groups, which are demonstrated in Fig.2.1.

Figure 2.1: Groups of clustering algorithms

The partitioning clustering approach makes a set of subjects assigned into k groups and

each group has at least one subject. K-means [40] is one of the most typical partition-

ing clustering algorithms by minimising the total distance from a certain cluster center

between all subjects in this cluster. Usually, the cluster center in k-Means is defined as

a mean vector of subjects in the cluster. Another algorithm in the partitioning group is

the k-Medoids (PAM) algorithm [41], which uses one of the nearest objects to the cluster
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center as the prototype. Both k-Means and k-Medoids require the number of clusters k

to be pre-assigned. However, it is not practical for many applications and also for time

series data [42]. Time series are very large or high dimensional so it is hard to check and

tune the cluster number k. Nonetheless, k-Means and k-Medoids are very fast compared

to other clustering algorithms for example hierarchical clustering. It makes them still

widely used in many time series applications [10][43][44].

Partitioning clustering approaches can be built in ‘hard’or ‘fuzzy ’manner. Fuzzy c-Means

and fuzzy c-Medoids are algorithms based on soft clusters, where each subject has a degree

of membership in each cluster [45][46]. There are various time series clustering applica-

tions using fuzzy partitioning methods. A fuzzy variant is used to cluster subject motions

in a collection of videos by adopting an EM-based optimization algorithm and a HMMs

mixture of time series [47]. Both [48] and [49] used fuzzy c-Means for MRI data and

speaker verification respectively.

To sum up, the definition of cluster centers together with their updating method is crucial

thing for partitioning approaches. Thus, they are more suitable for time series with the

same length whose similarity to each other is more straightforward to be measured.

Hierarchy clustering method [41] creates a hierarchy of clusters using agglomerative or

divisive algorithms. Compared to partitioning clustering, hierarchy clustering has several

advantages. Firstly, it does not need the number cluster pre-defined. In addition, it can

be used to cluster time series with different lengths by employing Dynamic Time Warping
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(DTW) as the similarity measure [50]. However, due to its quadratic computational com-

plexity, hierarchy clustering is not suitable for large time series data set [19]. Furthermore,

the quality of hierarchy clustering is not competitive as the clusters cannot be adjusted

after splitting. Thus, hierarchy clustering is normally combined with other algorithms to

address this issue [6].

In grid-based clustering approaches, the data space is quantised into a finite number of

grid cells and the clustering is developed in this grid. The main advantage of these ap-

proaches is their fast process time because they are dependent on the number of cells

in each dimension rather than the number of data subjects. However, according to [6],

related work of grid-based time series clustering is rare in the literature.

In density-based clustering, clusters refer to a contiguous region with high point density,

separated from subjects with low density (considered as noise or outliers). Density-based

spatial clustering of applications with noise (DBSCAN) [51] is the most famous density-

based clustering approach. DBSCAN has two parameters, eps (the neighbourhood) and

minPts (a minimum number). For each cluster, the neighbourhood has to have a mini-

mum number of points. Based on eps and minPt, the core and border points are assigned

to a certain cluster. However, the main issue of DBSCAN is that it cannot treat clusters

with various densities. Accordingly, Ordering Points To Identify the Clustering Structure

(OPTICS) is developed to address this problem [52]. It is an advantage of density-based

clustering to be able to distinguish noisy data. However, it is not widely used for time

series because of its high complexity.
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In most model-based clustering approaches, each cluster is presented by a model and data

are fitted to that model. However, one single model may not be enough to well represent

each time series (especially sparse and/or noise time series). Then a LiMS approach can

be employed here by representing each time series with an individual model. Typically,

people use SOM [20] to deal with the time series clustering problem [6]. SOM is a spe-

cial type of neural network that is used for model-based clustering. It is also a useful

tool for data analysis and visualization for high-dimensional data [53]. Classic SOM is

not suitable for time series data with unequal length because SOM needs to define the

dimension of the weight vector. Additionally, few researches use model-based clustering

of time series that are composed of Gaussian mixed models [54], polynomial models [55],

HMM [56] etc. Generally, there are two drawbacks of model-based clustering. Firstly,

model parameters are required and the selection of models is subjective which may lead

to bad data fitting. As a result, the clustering result would be biased or even inaccurate.

Secondly, it is time-consuming on a large data set.

Some algorithms discussed above are constrained by the unequal length of time series.

Generally, this is a similarity measure problem, which can be addressed by transferring

time series into feature or model vectors before doing clustering. For example, LiMS

can represent each time series by a set of model parameters, even if time series are very

sparse and/or noisy. In addition, most clustering algorithms are not able to visualize data

especially when input data are high dimensional, except SOM. Thus, the combination of

LiMS and SOM would be a good and novel concept for the clustering and visualisation
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of sparse and/or noisy time series.

2.3.2 Self-organisation map and its extensions

SOM [20] is a valuable technique for the visualisation and analysis of multivariate data.

It has become an inspiration of numerous extensions. SOM is a type of neural network

and able to project a high dimensional data space to a projection space with a lower di-

mension. The projection space is a grid of nodes/neurons related to a weight vector and

normally the space is two-dimensional for visualisation purposes. To form the final map,

all nodes in the grid compete and cooperate with each other. The first step is calculating

the responses of all nodes to input data and the certain node with the greatest response is

the winner node. In classic SOM, the response is measured using the Euclidean distance.

Then, the winner node is updated towards the input data based on a learning rate in order

to have better responses in future iterations. In addition, the neighbourhood (decided by

a neighbourhood function) of the winner node is also updated according to the distance

from the winner. Both neighbourhood and learning will decay after each iteration. Al-

though SOM is a powerful algorithm and has achieved various successful applications in

practice, it also has certain limitations, for instance, it has no proper cost function or any

general proof of convergence. There is no theoretical support for choosing neighbourhood

function parameters and learning rate parameters.

Accordingly, the generative topographic map (GTM) [21] has been proposed as a prob-

abilistic reformulation of SOM. The GTM believes that in reality the high dimensional

data only live on a ‘noisy ’lower-dimensional manifold. Thus, it is appropriate to model a
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given data set by optimising model parameters to match the model-generated data in the

low-dimensional manifold in the distribution sense. GTM uses a Gaussian mixture model

constrained by the lower dimensional manifold and model parameters can be optimised by

Expectation-Maximization (EM) algorithm. GTM is a form of a nonlinear latent variable

model. It maps the latent space to the data space and then the mapping is inverted to a

posterior distribution in the latent space for visualisation purposes.

In addition, there is an increasing interest to extend SOM/GTM into the model space.

Compared to classic SOM/GTM, which are mainly designed to operate in a vectorial

data space, formulating SOM/GTM in the model space will be helpful to handle data

with complex structures, e.g. [57][58][59]. In [57] the authors introduce the SOMAR (

Self-Organising mixture autoregressive) model. In SOMAR, AR models that are utilised

to model foreign exchange (FX) rates are employed here as the components in the con-

struction of the topological mixture model. By using a constrained mixture of discrete

HMM, [58] extends GTM to the model space. For visualization of tree-structured data,

the work in [58] is extended again by [59] to the space of Hidden Tree Models. Besides

clustering, SOM/GTM and their extensions are widely used for data visualisation. Par-

ticularly, their extensions in the model space are capable to handle data with complex

structures.

2.4 Machine learning applications on steroid data

Artificial intelligence especially machine learning applications are becoming more widely

recognised in biology and medicine. In [60], the author has demonstrated that machine
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learning algorithms (random forest (RF), weighted-subspace random forest (WSRF), and

extreme gradient boosted tree (XGBT)) in a data-driven manner can provide high per-

formance for predicting abnormal urine steroid profiles with implications for clinical ap-

plications. The authors of [61] show the identification and classification of primary aldos-

teronism combined with machine learning techniques using steroid profiles. Four different

machine learning algorithms are used to identify specific steroid combinations that can

provide optimal segregation of patients with and without primary aldosteronism. Also,

the random forest algorithms are trained to provide automatic detection of recurrent

adrenocortical carcinoma on 19 steroid markers measured by GC-MS in a given 24-hour

urine [62]. Usually, steroid data are multivariate and multidimensional. Despite the ad-

vantages of multidimensional analyses such as providing more data information, they still

face challenges including redundancy in information across different feature dimensions

[63]. Accordingly, feature selection is a way to select significant and relevant features from

multidimensional data. It can be applied before or together with machine learning algo-

rithms to improve machine learning performance. However, there have been few steroid

profiling studies that have appropriately implemented machine learning strategies due to

limitations of sample size or clinical study design.
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Chapter 3 Clinical and biomedical

background

3.1 Introduction

This chapter provides an overall introduction of the clinical and biomedical background

related to the adrenal steroid hormone study, which is helpful to understand the whole

project. An explanation of the adrenal glands, together with their related adrenal steroid

synthesis pathways and some important hormones is provided. In addition, this chapter

explains adrenal gland disorders and presents two common types of disorders, together

with their corresponding hormones, symptoms, causes, etc.

3.2 Adrenal steroid synthesis pathways and hormones

Clinically, the adrenal glands (Fig.3.1) are two small triangular-shaped glands located on

the top of both kidneys. They produce different types of hormones to help regulate peo-

ple’s immune system, blood pressure, metabolism, and other essential functions. Thus,

adrenal glands play an important role in steroid and catecholamine synthesis. Adrenal

glands have two distinct parts, an outer adrenal cortex, and an inner adrenal medulla

[64], which are responsible for producing different hormones. This chapter focuses on the

adrenal cortex, which is related to the mechanistic model and real data set used later.
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Figure 3.1: Adrenal glands

The adrenal cortex outer region is the largest part of an adrenal gland. It can be di-

vided into three separate zones, which are the outer layer zona glomerulosa, the middle

layer zona fasciculata, and the inner layer zona reticularis. Each zone is in charge of

producing distinct hormones [65]. Each layer produces steroid hormones from the precur-

sor cholesterol. Mineralocorticoids, glucocorticoids, and sex steroids (mostly DHEA with

some androstenedione) are produced in the zona glomerulosa, zona fasciculata , and zona

reticularis respectively.

The mineralocorticoids (the red pathway in Fig. 3.2) include deoxycorticosterone, cor-
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ticosterone, and aldosterone, which are crucial in controlling blood pressure and certain

electrolytes e.g. sodium and potassium. In particular, aldosterone is important in the

whole process because it can act on the kidney to absorb more sodium into the blood-

stream and excrete potassium into the urine. Thus, it helps to regulate the pH of the

blood via controlling the levels of electrolytes in the blood [66]. Deoxycorticosterone and

corticosterone also have mineralocorticoid effects but are much weaker than aldosterone.

Figure 3.2: Adrenal steroid synthesis pathways
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Cortisol, the major glucocorticoid (the green pathway in Fig. 3.2), plays several impor-

tant roles in the body. It helps control the body’s use of carbohydrates, proteins, and

fats. It can also reduce inflammation, raise blood sugar, and regulate blood pressure. In

addition, cortisol also controls the sleep/wake cycle and helps boost energy levels during

times of stress [66].

Then, it is necessary to understand how this crucial hormone, cortisol is produced by

adrenal glands. Generally, adrenal glands are responsible for producing hormones based

on signals that are sent by the brain from the pituitary gland. It is the reaction triggered

by the signals from the hypothalamus, which is also located in the brain. The whole

process is called the hypothalamic pituitary adrenal axis. When it comes to producing

cortisol, firstly, the hypothalamus secretes a hormone known as corticotropin-releasing

hormone (CRH), which helps stimulate the pituitary gland to produce a hormone known

as adrenocorticotropic hormone (ACTH). Then, the production and release of cortisol

from the adrenal glands are stimulated by ACTH. Usually, the pituitary and the hy-

pothalamus gland are able to sense if there is enough cortisol to meet the needs of the

body. If there is an excess or deficiency of cortisol, both glands will alter the amount

of the CRH and ACTH released. This situation is denoted as a negative feedback loop.

There could be a variety of causes of the excess production of cortisol, such as tumors in

the pituitary gland or nodules in the adrenal gland [65].

Cortisone is also a hormone secreted by the adrenal glands. It is a precursor of cortisol.

However, cortisone is inactive in glucocorticoid activities [67]. Cortisol and cortisone can
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interconvert with each other based on a certain ratio. Cortisol with the reaction of the

11bHSD-2 enzyme produces cortisone. Also, cortisone can be reactivated back to cortisol

through the enzyme 11bHSD. Cortisone can cause blood pressure to rise in stressful sit-

uations as same as cortisol. It can also be used to treat adrenal insufficiency.

3.3 Adrenal gland disorders

Usually, hormonal imbalances can cause various health problems. The adrenal glands may

produce too much or too little of certain hormones if some diseases exist in the adrenal

glands or pituitary gland. There are many types of adrenal gland disorders depending

on different hormones. Three disorders (Primary Aldosteronism, Cushing’s syndrome,

and adrenal insufficiency) are introduced in detail including their causes, symptoms, and

diagnoses, etc.

3.3.1 Primary Aldosteronism

A condition known as Primary Aldosteronism occurs when the adrenal glands produce

too much of the aldosterone [64]. It is discussed in the previous section that aldosterone

is the main hormone to regulate blood pressure by balancing the levels of potassium and

sodium in the body. Thus, the excess of aldosterone might cause high blood pressure and

low potassium levels. The most straightforward way to diagnose Primary Aldosteronism

is to test the aldosterone levels in the blood or urine, which help to determine the cause

and confirm the diagnosis.
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3.3. ADRENAL GLAND DISORDERS

Primary Aldosteronism can be caused by the overactivity of both the adrenal glands [68].

A benign tumor on one of the adrenal glands is another cause of the condition. The

overactivity of adrenal glands is caused by the overgrowth of adrenal tissue, which has

effects on both adrenal glands and makes them generate too much aldosterone. It is not

known why this overactivity occurs, but it accounts for around 60% to 70% of all cases of

this disorder. Then, another 30% to 40% of people with Primary Aldosteronism have a

benign tumor on one of their adrenal glands. In some rare cases, Primary Aldosteronism

may occur as part of an inherited disorder.

One of the most common symptoms of Primary Aldosteronism is high blood pressure

(even after taking blood pressure medicines). People who have this symptom may have

adrenal glands issues, which causes the aldosterone excess. Then, the salt and water are

retained by the body and raise the blood pressure. Another symptom is low potassium

levels, while not all people with Primary Aldosteronism have it, but they might have

fatigue, muscle cramps, and muscle weakness instead.

3.3.2 Cushing’s Syndrome

Cushing’s syndrome happens when there is too much cortisol in the body [69]. Clinically,

a syndrome means that a group of symptoms and signs happen together. Cushing’s syn-

drome is fairly rare and adults between 20 and 50 years old are affected mostly.

Cuhsing’s syndrome can happen due to cortisol excess produced by the body itself (adrenal

glands, pituitary gland, and hypothalamus control cortisol levels in the body). The un-
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derlying causes of high levels of cortisol are listed below [65]:

• Adrenal cortical tumors. A tumor that grows on the adrenal gland can produce too

much cortisol. Usually, it is benign. However, it can also be a rare adrenal cortical

carcinoma.

• Pituitary tumors. Overproduction of ACTH caused by pituitary tumors, tells the

adrenal glands to make cortisol. It leads to 8 out of every 10 cases of Cushing’s

syndrome. This type of Cushing’s syndrome is known as Cushing’s disease.

• Lung, pancreas, thyroid, and thymus tumors. Tumors outside of the pituitary gland

can also produce ACTH. Usually, these tumors are malignant, for example, small

cell cancer, which is the most common type.

Also, another main cause of Cushing’s syndrome is the side effects of taking certain med-

ications for a long time to treat some chronic diseases such as asthma.

Cortisol is an important hormone, which has a vector of effects on the body. Thus,

Cushing’s syndrome may have various symptoms. Some of these symptoms are unique to

Cushing’s syndrome but some could be related to other syndromes. Also, different people

could have distinct symptoms. Thus, Cushing’s syndrome is sometimes very hard to

diagnose and mistaken for polycystic ovary syndrome or metabolic syndrome. In general,

Cushing’s syndrome can have symptoms of a red, round face, ‘moon face ’, ‘buffalo hump’,

high blood pressure, excessive hair growth, diabetes, etc.
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3.4 Summary

In conclusion, adrenal glands and their steroid pathways activities have great impacts

on people’s health. There are different hormones produced in each pathway. Cortisol

and aldosterone are the two most important hormones that are glucocorticoid and min-

eralocorticoid respectively. If the cortisol and/or aldosterone are unbalanced in the body,

people will have adrenal gland disorders, for example, Primary Aldosteronism, Cushing’s

syndrome, etc. All those disorders have to be treated in time, otherwise, serious symptoms

like stroke, coma, etc. may occur.
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Chapter 4 Unsupervised leaning -

Self-organising maps in

the model space

4.1 Introduction

In order to deal with and visualise sparsely sampled and noisy time series data, a novel

SOM approach in the model space termed as SOM in the model space (SOMiMS) is pro-

vided, together with an extension of GTM to the model space. Those two are both LiMS

approaches, which represent each time series by a model (point estimate) or a posterior

distribution over models.

The SOMiMS is directly formulated in the model space by the probabilistic model for-

mulation of the inferential mechanistic model, which keeps the classic SOM theory of

retaining control over the neighbourhood-shrinking rate. The extended GTM has a clean

formulation, but it is not able to manipulate the dynamic neighborhood size directly.

Those two approaches are demonstrated on a real data set of measurements taken on

subjects in an adrenal steroid hormone study.

The rest of the chapter is organised as: Section 4.2 proposes SOMiMS and extended GTM
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models. Section 4.3 introduces the inferential mechanistic model and adrenal steroid hor-

mone data set used by SOMiMS and extended GTM. Section 4.4 presents the experiment

details and results. Then, this chapter is concluded in Section 4.5.

4.2 Methodologies

4.2.1 Topographic Mapping of time series in the model space

Consider an input data set of time series Y = {Y1, Y2, ..., YN}, n = 1, ..., N . The n-th time

series will be denoted by Yn = {Y t
n}t=1,...,Tn , where Tn is the length of n-th time series. The

length of each time series can be different, but observations of time series are permitted

to be taken in a unique time grid.

In the LiMS approach, the model space refers to the inferential mechanistic model space.

Each time series can be seen as the partial observations of some inferential mechanistic

models parameterised by θ⃗ ∈ Rd [29]. The parametric mechanistic model is a system of

multivariate ordinary differential equations (ODEs) mathematically.

Usually, once a vectorial data set is given, the topographic mapping is generated by a

nonlinear mapping, which projects each data in the original space to a low-dimensional

topographic mapping space [53][70]. Normally, such topographic mapping space is two-

dimensional (for visualisation purposes). Topographic mappings that this research is

interested in are going to work in the model space rather than the original signal space.

Each node of the topographic mapping in the model space refers to an instance from the
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underlying model class. Then, each time series is represented as an individual projection

on the topographic mapping.

SOM in the model space - SOMiMS

Consider a SOM structured with k × k nodes. Each node notated as i is assigned by a

parameter vector θ⃗i, which is representative of an inferential model. Given the n-th time

series Yn in the data set, the log-likelihood of i-th node is:

L(Yn|θ⃗i,Σ) = ln
Tn∏
t=1

p(Y t
n |θ⃗i,Σ) =

Tn∑
t=1

ln p(Y t
n |θ⃗i,Σ), (4.1)

where Σ is a collection of parameters of the observational noise. As mentioned above the

length of each time series may vary, so the log-likelihood in Eq. 4.1 is not comparable

between time series. Thus, in order to have one log likelihood per observation, the log-

likelihood is divided by the length of each time series Tn denoted by Q:

Q(Yn|θ⃗i,Σ) =
1

Tn

L(Yn|θ⃗i,Σ) =
1

Tn

Tn∑
t=1

ln p(Y t
n |θ⃗i,Σ). (4.2)

Then, given a time series Yn, the Q termed as “quality measure ”of the i-th node is

generated by renormalising through all nodes:

Q(Yn|θ⃗i,Σ) =
Q(Yn|θ⃗i,Σ)∑
a Q(Yn|θ⃗a,Σ)

=
−Q(Yn|θ⃗i,Σ)∑
a −Q(Yn|θ⃗a,Σ)

. (4.3)

The −Q(Yn|θ⃗i,Σ) refers to the information (per observation) that the i-th node on the

mapping contains about the given time series Yn. Thus, the quality measure Q renormal-

ized across all nodes is the normalised information the node i has on Yn.
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The Gaussian observational model is employed. The formulation is given by:

p(Y t
n |θ⃗i,Σ) =

1

(2π)
D
2 |Σ| 12

{
exp(−1

2
(Y t

n −X t
i )

TΣ−1(Y t
n −X t

i )

}
, (4.4)

where X t
i refers to the vector of free noise observations at time t derived from the inferen-

tial model represented by θ⃗i. Here assume a homoscedastic process with a fixed covariance

Σ, which is a collection of observational noise. Each data has an observational noise level

estimated through Gaussian Process. The observational noise used in this homoscedastic

process is obtained by averaging observational noise of all data.

In the training phase, a time series Yn is randomly chosen from the data set Y with

replacement in each iteration. Rather than updating the node with the maximum quality

Q, called winner node and its neighborhood like what classic topographic mapping does,

every node is updated and its neighborhood based on Q(Yn|θ⃗i,Σ), the normalised quality

measure. This is necessary as the data this research is interested in are sparsely observed

and very noisy time series and one time series might be represented by a number of

prototypical node models. The final topographic mapping result would be biased if the

time series is only committed to a single winner node. Hence, each node should be

considered in turn. Considering node i, its neighborhood nodes c will be updated as:

θ⃗c(l + 1) = θ⃗c(l) + Q(Yn|θ⃗i,Σ) · h(c,i)(l) · η(l) · ∇θ⃗c
Q(Yn|θ⃗c(l)), (4.5)

in which h(c,i)(l) indicates the neighborhood function and η(l) is the learning rate. Both
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of them monotonically decrease during time steps l and are given by:

η(l) = η(0) · exp
(
− l

τ

)
, (4.6)

h(c,i)(l) = exp

{
−||c− i||2

2(α(l))2

}
, (4.7)

α(l) = α(0) · exp
(
− l

τ

)
. (4.8)

.

The τ in Eq. 4.8 is a time scale parameter and l is the index of the current iteration.

η(0) and α(0) are the initial learning rate in the power series learning rate function and

the initial neighborhood size respectively.

To sum up, there are two significant aspects of the SOMiMS approach:

1. For each time series Yn, a double update is conducted through the grid nodes

• The outer update: through the pivotal nodes θ⃗i

• the inner update: through their neighborhood θ⃗c

2. the updates of nodes are taken place in the model space through the gradient based

algorithm learning in the directions (∇θ⃗c
Q(Yn|θ⃗c) of improving the node likelihoods

once a time series Yn is given.

In the end, it is important to make the SOMiMS able to be visualized in a two-dimensional

map. Thus, the k× k node grid is embedded in a square of [−1, 1]2. Then, the embedded

grid made up of points {gi}Ji=1, gi ∈ [−1, 1]2 is obtained. After that, the Yn is visualized
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in the [−1, 1]2 square as the mean of the posterior distribution over the grid points [21]

[58]:

Proj(Yn) =
J∑

i=1

P (gi|Yn, θ⃗i,Σ) · gi, (4.9)

P (gi|Yn, θ⃗i,Σ) =
p(Yn|θ⃗i,Σ)∑J
j=1 p(Yn|θ⃗j,Σ)

, (4.10)

in which a uniform prior distribution over the grid is applied.

Generative Topographic Mapping in the model space

In the same lines with [59] and [58], the GTM [21] is also extended to the model space

as an alternative to SOMiMS. Assume there is a two dimensional latent space H =

[−1, 1]2,which is covered by the regular grid {gi}Ji=1 containing J points (gi ∈ H). The

objective is to represent each time series using the latent space H through imposing a

uniform prior over the grid. The latent space is mapped into the model space via a

function ℓ(g;W ) parametrised by W :

ℓ(g;W ) = Wϕ(g), (4.11)

in which W is a matrix in the shape of d×M that governs the mapping ℓ(g;W ) and ϕ(g)

are fixed basis functions ϕm(g),m = 1, ...,M : H → R. Compared to SOMiMS, now the

ℓ(gi;W ) plays the role of the θ⃗i, the i-th prototypical model representative.

Considering the n-th time series Yn with the length Tn from the data set Y , the likelihood

of Yn in the i-th parameter ℓ(gi;W ) of the inferential forward ODE model is given by:
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p(Yn|gi,W,Σ) =
Tn∏
t=1

p(Y t
n |ℓ(gi : W ),Σ), (4.12)

where Σ is the collection of observational noise model parameters.

The data log-likelihood can be formed by:

L =
N∑

n=1

ln

{
1

J

J∑
i=1

p(Yn|gi,W,Σ)

}
, (4.13)

as GTM is a flat mixture model of the latent grid. Then, the Expectation Maximization

(EM) algorithm is employed to get parameter W by maximizing L. Given time series Yn,

the Rin refers to the ‘responsibilities ’of grid points gi, i = 1, ..., J are formulated in the

E-step as:

Rin = p(gi|Yn,W,Σ) =
p(Yn|gi,W,Σ)∑
j p(Yn|gj,W,Σ)

. (4.14)

Then, the expected complete-data log-likelihood is given by:

⟨Lcomp⟩ =
N∑

n=1

J∑
j=1

Rin ln{p(Yn|gi,W,Σ)}. (4.15)

In the end, M-step is used to maximise ⟨Lcomp⟩ respecting to W .

To sum up, there are four main steps of the GTM in the model space approach:

1. Map the latent space H into the model space via ℓ(g;W ) parametrised by W

2. The probability distribution over the model space constrained by the latent space

H is obtained by p(Yn|W,Σ)
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3. The data log-likelihood is formed by L in Eq. 4.13

4. Use Expectation Maximization algorithm to get parameter W by maximizing L.

Once the training finishes and optimal W is obtained, each time series can be visualised

in the latent space H as Yn will be transferred to the mean of the posterior distribution

over grid points in the latent space [21] [58]:

Proj(Yn) =
J∑

i=1

Rin · gi. (4.16)

4.3 Inferential biomedical model

Both SOMiMS and the extension of GTM are demonstrated on the real-world adrenal

steroid hormone data set. Major adrenal steroid hormones are produced by different areas

of the adrenal cortex: glucocorticoids, mineralocorticoids, and sex steroids [71]. In this

study, glucocorticoids and mineralocorticoids are focused on particularly. An exploration

of these pathways helps to understand the different forms of congenital adrenal hyperpla-

sia (CAH) and isolated hypoaldos-teronism characterised by defects in the functionality

of enzymes involved in adrenal steroid hormone synthesis [72].

In this chapter, an inferential mechanistic ODE model subjecting to upstream circa-

dian regulation is used. The model contains four hormones (Corticosterone, Aldosterone,

Cortisol, and Cortisone), which are representatives of both the glucocorticoid and miner-

alocorticoid pathways (Fig.4.1).
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Figure 4.1: Adrenal Steroid Biosynthesis Pathway. Left branch: glucocorticoid pathway.
Right branch: mineralocorticoid pathway. Modelled hormones are circled in red.

The system of coupled ODEs is given by:

d

dt
C = KCφc(t)−KAC − γCC, (4.17)

d

dt
A = KACφu(t)− γAA, (4.18)

d

dt
F = KFφc(t)−KEF +KbE − γFF, (4.19)
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d

dt
E = KEF −KbE − γEE, (4.20)

where C, A, E, and F corresponds to Corticosterone, Aldosterone, Cortisol, and Cortisone,

and φc(t) and φu(t) are periodic circadian and ultradian drives specified by:

φc(t) = αc sin(2π(t+ T c
s ) + σ sin(2π(t+ T c

s ))) + β,

φu(t) = 1 + αu sin(2π(t+ T u
s )np).

Typically, CAFE hormones are circadian rhythmic so the asymmetrical circadian drive is

modelled by φu(t). The φu(t) only acts on Aldosterone synthesis.

In total, there are sixteen parameters used in mechanistic models, whose descriptions

are listed in Table 4.1. After consultation with our biomedical collaborators, three drive

parameters αc = 1, αu = 1, T u
s = 0.5 are fixed, leaving thirteen free parameters.

The real data set used in this chapter corresponding to the inferential mechanistic ODE

models described above includes three conditions: Healthy control, Cushing’s, and Pri-

mary Aldosteronism (PrimAldo). Usually, the excessive production of Cortisol results in

the Cushing’s. The Aldosterone excess is the cause of PrimAldo. The data contains 60

subject-specific multivariate time series of Corticosterone, Aldosterone, Cortisol, and Cor-

tisone. Those 60 subjects covering the three conditions include 30 Control, 15 Cushing’s,

and 15 PrimAldo. Each time series is sampled every twenty minutes within twenty-four

hours. However, the length of each sampled time series may vary because there are some

missing values due to operational issues.
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Table 4.1: Model parameters for clustering

Parameter Description Parameter Description

KC Corticosterone synthesis rate KA Aldosterone synthesis rate

KF Cortisol synthesis rate KE Cortisone synthesis rate

Kb Cortisone to Cortisol conversion rate γC Corticosterone degradation

γA Aldosterone degradation rate γF Cortisol degradation rate

γE Cortisone degradation rate αc Amplitude of circadian drive

T c
s Phase shift of circadian drive σ Asymmetry of circadian drive

β Offset of circadian drive αu Amplitude of ultradian drive

T u
s Phase shift of ultradian drive np Number of ultradian pulses

4.4 Experiments and results

This section delivers the experiment details and results of SOMiMS and the extension of

GTM methodologies applied to the real adrenal steroid dataset.

To initialise both SOMiMS and extended GTM, a 10× 10 grid is adopted and the models

are initialized based on the classic SOM in the signal space trained on all 60 subjects.

Note that in the signal space, each time series may have a different length because of

missing values. The univariate Gaussian process (GP) model [73] is used to impute the

missing values. Once the training is completed, most grid points of the classic SOM are

assigned one or more time series. Also, there might be some grid points with no time se-

ries assigned. Under these circumstances, time series assigned to their closest neighbours
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are used to represent them. In the end, each grid point has its corresponding time series.

Then, those grid points are transferred to the model space by calculating the maximum

likelihood estimations on parameters given the time series assign to each of them. Con-

sequently, the 10 × 10 classic SOM map is transferred to a map in the model space, in

which each grid point refers to a set of a vector containing thirteen parameters.

The classic SOM in the signal space, which is the initialization for SOMiMS and extended

GTM is trained for 300 epochs. The initial learning rate and initial neighbourhood size

for the classic SOM are set as 0.2 and 6. As the classic SOM already captured the rough

initial topographical organisation structure, the SOMiMS initialized by classic SOM is

trained just for 200 epochs with the initial learning rate and initial neighbourhood size of

0.1 and 2 respectively. In the extension of GTM, M=16 (4 × 4) basis functions ϕm and

one additional constant basis function as the bias term are used. The Gaussian functions

were employed for basis functions with the same width of σ = 1. After running 80-100

E-M cycles, the likelihood stepped up.

Finally, topographic maps generated by SOMiMS and extended GTM are illustrated in

Fig 4.4. Both methodologies are trained in an unsupervised manner, which means labels

of the data projections corresponding to their conditions were not used during the whole

training process. As a whole, both topographic maps in the model space constructed by

SOMiMS and extended GTM reveal a good degree of separation of Control (blue circle),

Cushing’s (red square), and PrimAldo (green triangle), especially this is a noisy and sparse

data set measured on real subjects and containing missing values. In addition, both maps
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show the sub-grouping structure of Cushing’s cohort into at least sub-populations. Two

plots (each contains four subplots) on both sides of the SOMiMS map (Fig.4.3) are tra-

jectories of steroid time series corresponding to two selected subjects in the SOMiMS map.

Figure 4.2: Topographic visualization of the data obtained by Classic SOM Initialisation
of SOMiMS and Extended GTM

Figure 4.3: Topographic visualization of the data obtained by SOMiMS
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Figure 4.4: Topographic visualization of the data obtained by Extended GTM

(a) (b)

(c) (d)

Figure 4.5: Parameter heat maps of γF (a) , γE (b), Kf (c) and Kb (d) for the SOMiMS
model.

One of the dominating advantages of our topographic mapping methodologies in the

model space is the chance to promptly interpret the topographic structure and data or-

ganisation from the mechanistic point of view of the underlying processes that how data

are generated. The underlying mechanistic information can be obtained by generating

the parameter plots, which are heat maps and show the values learnt of each individual
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parameter in the mechanistic model across the prototypes on the 10 × 10 grid. In Fig.

4.5, there are two parameter plots for Cortisol and Cortisone degradation rates (γF and

γE). Clearly, both heat maps have low values of γF and γE in the areas of SOMiMS to-

pographic map which contain Cushing’s projections (in the lower right corner). It is the

case that Cushing’s condition is related to the Cortisol excess, which is partially caused

by the low degradation rate of Cortisol. Cortisone is positively coupled with Cortisol by

Kb so the low value of γE can also lead to Cortisol excess. The Kf and Kb heat maps

have similar interpretations. The parameter plot for every individual model parameter

can be plotted.

Table 4.2: SOMiMS KNN confusion matrix

SOMiMS True Control True Cushing’s True PrimAldo

Predicted Control 0.80 0.10 0.10

Predicted Cushing’s 0.13 0.67 0.20

Predicted PrimAldo 0.21 0.29 0.50

Sensitivity 0.70 0.63 0.65

Accuracy 0.82 0.76 0.73
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Table 4.3: Extended GTM KNN confusion matrix

SOMiMS True Control True Cushing’s True PrimAldo

Predicted Control 0.68 0.27 0.05

Predicted Cushing’s 0.13 0.80 0.07

Predicted PrimAldo 0.14 0.22 0.64

Sensitivity 0.72 0.62 0.66

Accuracy 0.80 0.82 0.84

In addition, the KNN [74] is performed in order to qualify the degree of separation of

these three conditions on the topographic mapping (visualisation plot). K = 3 is picked

after the cross-validated hyperparameter tuning. Table 4.2 and 4.3 are KNN confusion

matrices of SOMiMS and extended GTM respectively. In general, the topographic map-

ping organisation is not directly related to the classification performance. The projection

structure is more spread of SOMiMS than the extension of GTM, which is better for visu-

alisation. This might benefit from the possibility of explicit control over the topographic

map formation offered by SOMiMS (remembering the neighbourhood function and its

shrinkage of SOMiMS ). Also, the methodologies presented in this chapter are under the

unsupervised learning scenario, in which the full formation of a topographic map may

disrupt cases of multiple projections in a very close neighbourhood of the visualisation

space. However, a scenario that could yield good distance-based classifications are not

preferable from the visualisation point of view.
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4.5 Summary

In this chapter, a new SOM approach, SOMiMS has been proposed, which is formulated

directly in the model space. An extended GTM formulation has also been generated in

the model space. Both two approaches are able to visualize sets of sparse and/or noisy

time series on a two-dimensional map. These two methodologies have been demonstrated

on a real data set of measurements on subjects with different steroid hormone biosynthe-

sis conditions (Control, Cushing’ and PrimAldo). In addition, a mechanistic inferential

model has been formulated with thirteen free parameters in the format of coupled ordi-

nary differential equations. How the topographic maps could be formed in the space of

these coupled models given the data had been introduced. Parameter plots (heat maps)

based on topographic maps to interpret the topographic structure from the mechanistic

point of view have also been provided.

Consequently, compared to classic SOM and GTM, our SOMiMS and extended GTM are

not only able to deal with sparse and/or noisy time series with missing values but also

can create interpretable readily data visualisations and take the mechanistic information

into account.
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Chapter 5 Supervised learning -

Classification in the

model space

5.1 Introduction

In this chapter, the time series classification in the model space applied to the adrenal

steroid hormone data set is presented. Compared to the signal space, classification in

the model space is not only naturally able to handle sparse and/or noisy time series data

with significant performance but is also capable of taking mechanistic and biomedical

knowledge into account. It can help to understand what mechanistic parameters should

be focused on. Besides the classification in the model space, the classification in the sig-

nal space is also included as a benchmark. Additionally, a hybrid classification model

combining the classification models in the signal and model space is developed with sat-

isfactory performance. Classification and feature selection results, together with point

estimations plots of important parameters are presented and interpreted from the mech-

anistic and biomedical points of view. Moreover, the classification in the model space is

also demonstrated on an unfiltered data set, which contains more data subjects and larger

observational gaps.
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The rest of the chapter is organised as follows: Section 5.2 is the explanation of the data

form in both signal and model space, along with the Gaussian process used to impute

missing values and the inferential biomedical model. Section 5.3 introduces two classifi-

cation models (SVM and logistic regression) used in this task, following with the solution

to the class imbalance problem. It also includes an explanation of the feature selection

based on importance plots. Section 5.4 is the experimental methodology including the

experiment design based on 3 degrees of design freedom and some hyperparameter tun-

ing, training, and validation details. Results and discussion of the filtered data set are

presented in Section 5.5. Section 5.6 involves some additional work for the unfiltered data

set and its corresponding results. Then, this chapter is concluded in Section 5.7.

5.2 The data and inferential biomedical model de-

scription

5.2.1 Data in the signal space

The adrenal steroid hormone data set with 140 subjects contains three conditions: Con-

trol, Cushing’s, and PrimAldo. Those three classes are imbalanced with 100 Control,

22 Cushing’s, and 18 PrimAldo. Each individual data is a multivariate time series with

four metabolites: Corticosterone (C), Aldosterone (A), Cortisol (F), and Cortisone (E).

All time series are observed every 20 minutes for a 24-hour period with different starting

times. However, each metabolite has missing values at random time points so the length

of the data can vary. In order to conduct classification in the signal space, all time series

have to have the same length. For example, the K-nearest neighbor classifier (KNN) re-
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quires the distance measure between time series pairs. Euclidean distance is widely used

for time series classification [20]. However, Euclidean distance is not applicable for time

series with variable lengths. Hence, the univariate Gaussian process (discussed in the next

section) is adopted to impute those missing values. Then, all time series can be considered

as feature vectors for classification. However, the starting time of each measurement pro-

cess varies across the data items. This misalignment of measurement times could hamper

classification results because the metabolites’ level is time-dependent. More importantly,

the times are treated as unique feature variables and their importance is evaluated with

respect to the classification performance. Thus, all time series data were pre-processed

so that the first measurement is taken at 5 pm and the last one is taken at 10 am the

next morning. Figs 5.1, 5.2 and 5.3 show trajectories of three data subjects (Control

137, Cushing’s 487, and PrimAldo 479), including their raw trajectory, trajectories after

the alignment (5 pm - 10 am) and with the imputation of missing values. The 0 in the

horizontal axis refers to midnight.

(a) raw trajectory (b) after alignment (c) with imputation

Figure 5.1: Trajectories of raw data 5.1a, after alignment5.1b and with imputation5.1c of
Control 137
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(a) raw trajectory (b) after alignment (c) with imputation

Figure 5.2: Trajectories of raw data 5.2a, after alignment5.2b and with imputation5.2c of
Cushing’s 487

(a) raw trajectory (b) after alignment (c) with imputation

Figure 5.3: Trajectories of raw data 5.3a, after alignment5.3b and with imputation5.3c of
PrimAldo 479

5.2.2 Univariate Gaussian Process to fill in missing value

Supervised learning such as classification for discrete outputs and regression for contin-

uous outputs is a crucial constituent of machine learning and statistics, either for data

analysis or as a subgoal of a complex problem. Normally, parametric models are used for

this purpose because they are easy to interpret. However, such simple parametric models

lack expressive power for complex data [75]. Additionally, it is not easy to work with

their complex structures in practice for example feed-forward neural networks. Hence,

flexible models such as Gaussian processes (GP) that are practical to work with have

been developed.
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A stochastic process contains a collection of random variables indexed by the input vector

t [76]. There are infinite random variables in the collection, while only some of them are

observed finitely t1, ..., tn, which are training data points. The process is specified by

defining the joint probability density that any finite number of random variables follows.

Hence, a GP is a stochastic process in which every joint density function is Gaussian so

it is fully specified by its mean and covariance [73]. Compared to multivariate Gaussian

distribution, GP is over functions rather than vectors. In the univariate GP, random

variables are related to a single process denoted as f . It can be written as:

f ∼ GP(m, k), (5.1)

meaning that the function f is assumed to follow a GP with mean function m and

covariance/kernel function k. For simplicity, GP is assumed to have zero means in practice.

Then, all required to be defined is the covariance between two points ti and tj denoted

as k(ti, tj). Normally, the covariance function is specified by the squared exponential

function as:

k(ti, tj) = σ2 exp

(
− 1

2l2
(ti − tj)

2

)
+ δijσ

2
noise, (5.2)

where σ2 > 0 is a scaling factor, which determines the variation of the GP from their

mean. A small σ2 means that the process stays close to its mean value and large σ2 al-

lows more variation. l > 0 is the lengthscale and it determines the smoothness of the GP.

The square exponential term captures the concept that if ti and tj are close in the input

space, their corresponding outputs have to be highly correlated. Moreover, σ2
noise is the
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noise variance, which is applied only when i = j. The noise variance is not a formal part

of the covariance function. It is used by the GP to allow certain noise in the training data.

The GP defined above is prior to Bayesian inference so it just specifies some properties

of the functions and is not related to any training data. The goal of the GP model

is to make a prediction once a test point comes. Consider a training data set D =

(t1, x1), ..., (tn, xn), n = 1, ..., N , where xn is a sample from a random variable f(tn).

Consider a new test input t∗, and then f ∗ is required to be predicted by computing the

conditional distribution p(f ∗|f1,..., fN). This distribution is Gaussian determined by its

mean and variance because the model used here is a GP, and there are standard formulae

to calculate these values for a Gaussian distribution. Then K+, the covariance matrix of

(f1, f2, ..., fN , f
∗) can be partitioned into:

K+ =

K k

kT k∗

 , (5.3)

where K is the covariance matrix of the training data, k∗ denotes the variance of t∗ and

k (N × 1) is the covariance between the training data and t∗. Thus, the predicted mean

and covariance of the test data t∗ are given by:

E[f ∗] = kTK−1x, (5.4)

var[f ∗] = k∗ − kTK−1k. (5.5)

Therefore, it is quite straightforward to make predictions on new test points once a co-

variance function is fixed. However, it is not realistic that there is enough information
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about the parameters of a covariance function. An obvious approach is to adapt all pa-

rameters to model a training data set. Usually, this can be done by optimisation using

the maximum likelihood framework. In order to do this, the log marginal likelihood of

the training data given the hyperparameters should be computed. Then, a point estimate

of all these hyperparameters is computed using gradient-based optimization.

After the GP model parameters are learned, the fitted model can be used to predict the

f ∗ at index t∗, where the missing value x∗ is a sample from the random variable f ∗. In

practice, the missing value x∗ is filled by the mean of f ∗. Note that each metabolite time

series is normalized to zero-mean and unit variance before feeding it to model training

and re-scale back all missing values computed during the prediction phase. In practice,

this makes the training process rather robust when training GP models from a large set

of time series data.

5.2.3 Inferential biomedical model

The joint inferential mechanistic ODE model below still represents the biosynthesis of

adrenal steroid hormones subject to upstream circadian regulation. Four hormones, Cor-

ticosterone(C), Aldosterone(A), Cortisol(F), and Cortisone(E) are modelled in the first

instance. They are representatives of both the glucocorticoid (F&E) and mineralocorti-

coid (C&A) pathways. Compared to the model in Chapter 4, the model here is updated

by adding κc and κf , which are coefficients of convex combinations in Corticosterone and

Cortisol respectively for interpretation purposes (in particular for Cushing’s condition)

after consultation with biomedical collaborators. The model is given by:
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dC

dt
= KC · φC

c (t)− γC · C, (5.6)

dA

dt
= KA · C · φu(t)− γA · A, (5.7)

dF

dt
= KF · φF

c (t) +Kb · E − γF · F, (5.8)

dE

dt
= KE · F −Kb · E, (5.9)

where φC
c (t) and φF

c (t) are convex combinations of circadian drives and constant in-flow

terms. The coefficients of the convex combinations are κc, 1 − κc, κc ∈ (0, 1) and κf ,

1− κf , κf ∈ (0, 1), for C and F, respectively:

φC
c (t) = κc ·

1

2
· (sin(2π(t+ T c

s ) + σ · sin(2π(t+ T c
s ))) + 1) + 1− κc, (5.10)

φF
c (t) = κf ·

1

2
· (sin(2π(t+ T c

s ) + σ · sin(2π(t+ T c
s ))) + 1) + 1− κf , (5.11)

The parameters κc, κf ∈ (0, 1) are parametrized through logistic function:

κc =
1

1 + e−ac
, (5.12)

κf =
1

1 + e−af
, (5.13)

using unconstrained real-valued parameters ac, af .

The ultradian drive φu(t) only applied to Aldosterone(A) is captured through:

φu(t) = 1 + sin(2π(t+ T u
s ) · np). (5.14)
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All fourteen parameters used in our models and their descriptions are listed in Table 5.2.

After discussing with medical and modelling collaborators, the phase shift of ultradian

drive T u
s is fixed to 0.5, leaving thirteen free parameters.

5.2.4 Data representation in the model space

Leaning in the model space is different from the signal space, in which input data are

vectors of model parameters. In sub-section 5.2.3, the inferential biomedical model has a

set of free parameters denoted as θ⃗. Consider a time series xi represented by θ⃗i ∈ Rd,

where d is the dimensionality of parameters. The θ⃗i is obtained by running constrained

maximum likelihood estimation [77] on the inferential mechanistic model.

Imaging the i-th time series xi = {xt
i}t=1,...,Ti

, the principle of maximum likelihood esti-

mation yields a choice of the estimator θ⃗i as the set of model parameters that make xi

most probable. The log-likelihood is formulated as:

L(xi|θ⃗,Σ) = ln

Ti∏
t=1

p(xt
i|θ⃗,Σ) =

Ti∑
t=1

ln p(xt
i|θ⃗,Σ), (5.15)

where Σ collects parameters of the observational noise. However, each individual param-

eter has to have a boundary to ensure they are biologically meaningful. After discussion

with biomedical collaborators, the restrained parameter space is denoted as Ω. The ranges

of parameters are listed in Table 5.2. Then, the maximum likelihood estimator is obtained

through:

θ⃗i = argmax
θ⃗

L(xi|θ⃗,Σ), ∀ θ⃗i ∈ Ω, (5.16)
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The gradient-based optimization is used here to get the maximum likelihood estimator θ⃗i.

Initial values θ⃗0 are given in Table 5.1. These initial values of parameters are obtained

by fitting to rolling window averages of all 140 data subjects.

KC KA γC γA KF KE Kb γF aC aF σ T c
s np

6000 1.22 100 7.47 17.78 9.78 2.34 10 0 0 1.09 0.43 4

Table 5.1: Initial values of model parameters

The step size used for gradient updating is 0.001. Other step values (0.1, 0.01, and 0.0001)

are also tried. The optimisation is iterated 2500 times. Then constrained MLE is applied

to each xi and the input data set in the model space is obtained.

The constrained MLE is applied to both imputed data and raw data (with missing values).

Both results will be presented. Thus, the classification in the model space is able to handle

data sets with missing values compared to the signal space, in which every time series has

to have the same length (with no missing values) and the same starting time. Moreover,

the mechanistic model which is coupled ODEs described in section 5.2.3 is required to be

solved to compute the log-likelihood. Values at the time point where four metabolises all

have measurements are used as the initial values to solve ODEs.
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Table 5.2: Model parameters for classification

Parameter Description Boundary

KC Corticosterone synthesis rate 1000 - 100000

KA Aldosterone synthesis rate 0.02 - 20

KF Cortisol synthesis rate 5 - 500

KE Cortisone synthesis rate 1 - 100

Kb Cortisone to Cortisol conversion rate 0.3 - 30

γC Corticosterone degradation 10 - 1000

γA Aldosterone degradation rate 0.8 - 80

γF Cortisol degradation rate 1 - 100

T c
s Phase shift of circadian drive 0.01 - 0.9

σ Asymmetry of circadian drive 0.01- 5

κc Coefficient of the convex 0 - 1

combinations in Corticosterone

κf Coefficients of the convex 0 - 1

combinations in Cortisol

aC Logistic function parameter -4 - 4

aF Logistic function parameters -4 - 4

T u
s Phase shift of ultradian drive 0.5

np Number of ultradian pulses 2 - 8
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5.3 Classifier description

Although the adrenal steroid hormone data set contains three conditions, binary classifiers

are used here for Control versus Cushing’s and Control versus PrimAldo. Clinically it is

more important to distinguish disease conditions (Cushing’s or PrimAldo) from Control

rather than classify disease conditions. In addition, repeated undersampling and classifier

ensembles are adopted to address the class imbalance issue in three conditions. Moreover,

a robust selection of important features is developed based on the coefficients of classifier

models.

5.3.1 Classification models

Two classification models are employed to ensure consistent outcomes. They are linear

SVM and logistic regression. There are two reasons why we choose these two classifiers.

Firstly, these two models are based on different principles. Comparing two models under

a same principle is not able to ensure consistent results. Secondly, they both have the

coefficient vector w, which plays an significant role in the feature selection algorithm

introduced in section 5.3.3.

Support Vector Machine

SVM is a well-known learning method for binary classification. The general idea of SVM

is to find a hyperplane that can separate the d-dimensional data into two classes by solv-

ing a constrained quadratic optimization problem [78][79]. However, for data that are not

linearly separable, different kernel functions can be included in the model. It casts data
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into a higher space where the data are separable[80] [79]. Here, the linear SVM is utilised

because the data are linearly separable.

Consider l training examples {xi, yi}, i = 1, ..., l are given, where xi ∈ Rd and yi ∈

{−1, 1}. The input xi can have d dimensions and yi is the label. Then the aim is

to construct a separating hyperplane (decision boundary) to separate positive subjects

from negative ones with a maximum margin. It can be formulated as the constrained

optimisation problem below:

min
1

2
||w||2 + C

l∑
i=1

ξi, (5.17)

s. t. yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , l, (5.18)

where ||w|| refers to the Euclidean norm of w. C is a hyperparameter and it is greater

than 0. The ξi are non-negative slack variables, which are used to ease the constraints

and allow some misclassification. According to Karush-Kuhn-Tucker (KKT) Conditions

[81], this optimization problem is normally transformed into its dual problem:

max
α

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjx
T
i xj, (5.19)

s. t.

l∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . , l.

Once optimal α are obtained, the decision function for a new input vector x∗ is formulated

as:

F (x∗) = sign

(
l∑

i=1

αiyix
T
i x∗ + b

)
, (5.20)
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where w =
∑l

i=1 αiyixi.

Logistic regression

The logistic regression model is a type of statistical regression analysis technology. Ac-

cording to the number of values of the dependent variable, the logistic regression model

can be categorised into binomial and multinominal regression[82]. Binary logistic regres-

sion is used in this work so the dependent variable y is normally coded as “0” and “1”

representing two classes. Given the training data {xi, yi}, i = 1, ..., l, where xi ∈ Rd and

yi ∈ {0, 1}, the logistic regression takes the following form:

log[
p(yi = 1|xi)

1− p(yi = 1|xi)
] = w · xi + b, (5.21)

where w is a vector of coefficients of corresponding xi, which represents the statistical

significance level and b is a scalar. Eq. 5.21 can be transformed to:

p(yi = 1|xi) =
exp(w·xi+b)

1 + exp(w·xi+b)
, (5.22)

where p(yi = 1|xi) is the probability that xi belongs to class 1. The parameters of logistic

regression are estimated using maximum likelihood:

max
w,b

L(x|w, b) =
l∏

i=1

[yi · p(yi = 1|xi) + (1− yi) · (1− p(yi = 1|xi)]. (5.23)

Once optimal parameters are obtained, the prediction model for a new x∗ is given by:

p(y∗ = 1|x∗) =
1

1 + exp−(w·x∗+b)
, (5.24)
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and p(y∗ = 0|x∗) = 1− p(y∗ = 1|x∗). By setting the cutoff value as 0.5, if p(y∗ = 1|x∗) >

0.5, the subject x∗ is inferred as class 1. Otherwise, it is classified as class 0.

5.3.2 Dealing with class imbalance through classifier ensembles

Ensemble learning is a machine learning technique that trains a set of weak classifiers

and combines their predictions to produce one optimal predictive model [83]. Traditional

ensemble learning methods could be divided into two categories: parallel and sequential

training. Bagging and Random Forest are classical parallel approaches [84]. They train

classifiers in advance, then combine predictions of these weak classifiers by majority voting

or weighted average. While sequential approaches improve the performance gradually by

correcting misclassified instances previous classifiers have. In this work, parallel ensemble

learning is adopted and the majority voting is used to generate the final result (Fig.5.4).

Traditional ensemble methods work efficiently when the input training data set is bal-

anced. However, in many real-world problems, data sets are typically imbalanced, which

has a serious impact on the performance of classifiers. Classifier algorithms that do not

consider class imbalance tend to be overwhelmed by the majority class and ignore the mi-

nority class [85]. Here, the size of the training set is altered by randomly undersampling

a smaller majority training set. Undersampling is adopted rather rather oversampling

because we aim to obtain n diverse traning subsets. It makes the final prediction of our

ensemble model robust after applying the majority voting. Also, ensemble classifiers play

an important role in the feature selection algorithm introduced in section 5.3.3. On the

other hand, ovesampling has some drawbacks, which make it not suitable for our prob-
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lem. Normally, oversamping can be performed by increasing the amount minority class

instances through repeating or producing synthetic data [86]. However, repeating existing

data makes overfitting likely especially for small-size dataset [86]. Also, medical collabo-

rators state that mixing synthetic data with real data together could destroy the cohort

structure.

Then, the majority class is undersampled until it ends up with the same number of points

as the minority class. n binary classification, there are two classes, c ∈ {+1,−1}. The

training data set is denoted as:

Xtrn =
⋃

c∈{+1,−1}

Xtrn,c, (5.25)

and sc = |Xtrn,c| is the size of training data of class c. After doing random undersampling

n times, the balanced training data sets Si
trn, i = 1, 2, ..., n are obtained by:

Si
trn = Si

trn,+1 ∪ Si
trn,−1. (5.26)

Suppose c = −1 is the minority class. The size of the minority class is denoted as s−1 and

Si
trn,−1 = Xtrn,−1, which means the full training set of the minority class is taken. Each

random undersampling of the majority class has the size s−1. The S
i
trn,+1 is generated by

random sampling with replacement s−1 elements from Xtrn,+1.

|Si
trn,−1| = |Si

trn,+1| = s−1. (5.27)
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Ci is the classification model estimated using Si
trn, i = 1, ..., n. Once a new data xtest is

given, it will be tested by:

yi(xtest) ∈ {+1,−1}, (5.28)

and the final prediction is obtained via majority voting:

y(xtest) = Sign

(
n∑

i=1

yi(xtest)

)
. (5.29)

All steps are listed in the pseudocode and illustrated in Fig 5.4 below:

· Training data set Xtrn =
⋃

c∈{+1,−1}Xtrn,c, where s+1 < s−1

· Randomly undersample n times from Xtrn to obtain balanced training data sets
Si
trn, i = 1, 2, ..., n, where |Si

trn,−1| = |Si
trn,+1| = s−1

· For i in n:

· Train classifier Ci on Si
trn

· For Ci in C = {C1, ..., Cn}:
· A new data xtest is tested by yi(xtest) ∈ {+1,−1}

· Final result is obtained via majority voting y(xtest) = Sign (
∑n

i=1 y
i(xtest))

Figure 5.4: Ensemble and majority voting
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5.3.3 The robust selection of important features

The importance plot is created based on the coefficients of SVM and logistic regression

classifier models. In the signal space, features refer to time points. Whereas in the model

space, features are model parameters, which are obtained through constrained MLE.

According to equations 5.18 and 5.21, w already corresponds to the importance value be-

cause of the function formation of w in classification models. Then, q significant classifiers

with training accuracy over 85% from original n weak classifiers are picked. Considering

the dimensionality of features is m, there is a set of importance values represented as:

W =
⋃
i,j

{wi
j} = {w1

1, ..., w
1
m, w

2
1, ..., w

2
m, ..., w

q
1, ..., w

q
m, }, (5.30)

where i = 1, ..., q and j = 1, ...,m. Denote by Λp the p-percent quantile of values in W .

For every feature j = 1, 2, ...,m, an indicator variable Zi
j = 1 is introduced, if wi

j ≥ Λp,

Zi
j = 0 otherwise. The p = 0.8 is used. Then:

Nj =

q∑
i=1

Zi
j, (5.31)

which is the number of times feature j makes it into the set of important features (≥ Λp).

The Nj is turned into normalised counts:

Ñj =
Nj

q
. (5.32)

In the end, the feature is considered as important feature if Ñj ≥ β, where 0 ≤ β ≤ 1.
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The β is nominally set to 0.4, although other values such as 0.6 are explored as well (see

Appendix B).

5.4 Experimental methodology

According to Fig 5.5, all classification experiments are based on the three degrees of design

freedom. In the first place, the classification is conducted in the signal space and model

space respectively. Besides the full set of features, classifiers also work on the subset of

features which is obtained by the robust selection of important features in section 5.3.3

in both learning spaces. In addition, classifiers are developed with both full and partial

adrenal steroid pathway models.

5.4.1 Experiment design

Full set vs subset of features

In the signal space, features refer to measurements of metabolites at observational times.

Imagining the time series xi, there are Ti features in total. The classification on the full set

of features means that the classifier works on all Ti features. In order to reduce the data

redundancy and explore discriminative features (observational times), a robust selection

of important features is employed here (explained in section 5.3.3). Important features

obtained by the feature selection are the subset of features. Then, classifiers are applied

to that subset of features to compare with the results of the full set. The expectation is

that the classification results of the subset would be similar to or at least not too much

73



5.4. EXPERIMENTAL METHODOLOGY

Figure 5.5: Three degrees of design freedom

worse than the results of the full set. The results of the subset would be even better

than the full set if redundancy exists in the data. Information of the subset (important

time points) is clinically meaningful because it helps to understand what time should be

focused on. Hence, it can provide deep insights of certain conditions and assistance in

diagnosis. It could also help to simplify the data sampling procedure by only obtaining

samples in certain important time periods rather than sampling all 24 hours.

Features in the model space are model parameters of the inferential mechanistic model

rather than values of metabolites in the signal space. The number of features is the

dimensionality d of the parameter vector θ⃗ introduced in section 5.2.4. Classification
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on the full set of features means that all d parameters are used in the classification.

Just like the signal space, the feature selection based on importance plots in the model

space is also conducted and then the classification with the subset of features (important

parameters) is created. The expectation is that results of full set and subset features would

be similar because biomedically only certain important time periods or model parameters

can discriminate coresponding condition from control and it is not necessary to include

all features. We also expect each disease condition (Cushing’s or PrimAldo) could be

dominated by their corresponding model parameters based on biomedical facts, which

have been explained in Chapter 3.

Full vs partial steroid pathway model

In the signal space, classification using the full adrenal steroid pathway model means that

all measurements of four metabolites Corticosterone(C), Aldosterone(A) Cortisol(F), and

Cortisone(E) corresponding to Eqs. 5.6, 5.7, 5.8 and 5.9 are used. However, the partial

model is different depending on different conditions. In the binary classification of Con-

trol versus Cushing’s, the partial model refers to ODEs of Cortisol(F) and Cortisone(E)

in Eqs. 5.8 and 5.9. Thus, only measurements of Cortisol and Cortisone from the Glu-

cocorticoid pathway are used in the classification. In the classification of Control versus

PrimAldo, the partial model is ODEs of Corticosterone(C), and Aldosterone(A) from the

Mineralocorticoid pathway in Eqs. 5.6, 5.7. Hence, solely measurements of Corticos-

terone, Aldosterone are applied to the classifier.

In the model space, the classification with the full adrenal steroid pathway model means

that all parameters in Eqs. 5.6, 5.7, 5.8 and 5.9 are used. The classification with partial
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steroid pathway model for Control versus Cushing’s employs model parameters in the

Glucocorticoid pathway (Eqs. 5.8 and 5.9). For Control versus PrimAldo, model param-

eters in the Mineralocorticoid pathway (Eqs. 5.6 and 5.7) are used.

By doing classification using both full and partial models and comparing their classifi-

cation performance, it will be clear if the partial pathway model is enough to separate

disease conditions (Cushing’s or PrimAldo) from Control or if the full pathway model is

required.

5.4.2 Further experimental details

Before doing the classification, hyperparameter tuning for both classifier models SVM and

logistic regression is conducted. Then, cross-validation is performed on the training set.

All steps are listed in the pseudocode below.

· Randomly separate the data into training and testing set 100 times to have 100
splits

· Each ith (i = 1, . . . , 100) contains training set X i
trn and testing set X i

test

· Define a set of hyper-parameter C

· Randomly divide each X i
trn in 100 training sets into training set for hyper-parameter

tuning X i
trn−hyper and testing set X i

test−hyper

· For parameter C in C:

· For X i
trn−hyper in 100 splits:

· Generate balanced hyperparameter training set Si,j
trn−hyper, j = 1, . . . , 100

· Train model on Si,j
trn−hyper

· Evaluate model performance on X i
test−hyper

· Calculate average performance for parameter C

· Obtain the hyperparameter Cbest that yields best average performance

· For X i
trn in 100 splits:

· Generate balanced training set Si,j
trn using method in section 5.3.2
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· Train model on Si,j
trn with Cbest

· Evaluate model performance on X i
test

· Calculate average performance over 100 splits

In the first instance, the data set is split into training and testing set 100 times. Each

testing set contains 5 Controls and 5 Conditions (Cushing’s or PrimAldo). The remaining

95 Control, 17 Cushing’s, and 13 PrimAldo are the training set X i
trn, i = 1, ..., 100. For

each X i
trn, three data subjects of each class are separated as the testing set X i

test−hyper.

Then, the remaining of X i
trn are undersampled to generate the balanced training set

Si,j
trn−hyper, j = 1, ..., 100 using the method in section 5.3.2 for hyperparameter tuning.

Once the best hyperparameter is obtained, the model is trained with Cbest on Si,j
trn. S

i,j
trn is

the balanced training set generated from X i
trn. The training set X i

trn is imbalanced with

95 Control, 17 Cushing’s, and 13 PrimAldo. Then the repeated undersampling and clas-

sifier ensembles approach discussed in section 5.3.2 is applied to solve the class imbalance

problem. In the end, each weak classifier has the training set with 34 data subjects (17

Control, 17 Cushing’s) for Control versus Cushing’s and 26 data subject (13 Control, 13

PrimAldo) for Control versus PrimAldo. The performance is evaluated on X i
test.

Both SVM and logistic regression are trained in Python using scikit-learn. In SVM, the

linear model is used and the hyperparameter C is set as 1 for Cushing’s, and 100 for

PrimAldo. In logistic regression, the solver ‘liblinear’ is adopted and hyperparameter C is

set as 10 for Cushing’s, and 100 for PrimAldo. Values of hyperparameter C are generated

through the hyperparameter tuning explained above.
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5.5 Results and discussion

All results presented in this section are based on the data set with 140 subjects (100

Control, 22 Cushing’s, and 18 PrimAldo). The structure of this section follows the ex-

periment design (three degrees of design freedom) in section 5.4.1. Results in both signal

space and model space are demonstrated. Each space has classification models using full

versus partial pathway model and in full set versus subset feature space. In the signal

space, input data are measurements of four metabolises after the missing value imputa-

tion and starting time alignment. Input data in the model space are vectors of model

parameters estimated from raw time series data (with missing values). Results obtained

using model parameters estimated from imputed data are also shown in Appendix A.

Confusion tables are used for classification performance analyses and evaluations. For the

binary classification, the scheme of the confusion table is shown in Table 5.3. The robust

selection of important features is illustrated using importance plots.

Table 5.3: Confusion table scheme

True Control True Cushing’s

Predicted Control True Negative (TN) False Negative (FN)

Predicted Cushing’s False Positive (FP) True Positive (TP)
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5.5.1 Signal space

Signal space full steroid pathway model

Feature space - full set

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.88 +- 0.11 0.12 +- 0.11

Predicted Cushing’s 0.07 +- 0.1 0.93 +- 0.1

Sensitivity 0.89

Accuracy 0.91

LR Cushing’s True Control True Cushing’s

Predicted Control 0.85 +- 0.14 0.15 +- 0.14

Predicted Cushing’s 0.07 +- 0.12 0.93 +- 0.12

Sensitivity 0.86

Accuracy 0.89

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.87 +- 0.14 0.13 +- 0.14

Predicted PrimAldo 0.17 +- 0.13 0.83 +- 0.13

Sensitivity 0.86

Accuracy 0.85
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LR PrimAldo True Control True PrimAldo

Predicted Control 0.88 +- 0.15 0.12 +- 0.15

Predicted PrimAldo 0.18 +- 0.18 0.82 +- 0.18

Sensitivity 0.87

Accuracy 0.85

Feature space - subset

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.92 +- 0.09 0.08 +- 0.09

Predicted Cushing’s 0.05 +- 0.09 0.95 +- 0.09

Sensitivity 0.92

Accuracy 0.94

LR Cushing’s True Control True Cushing’s

Predicted Control 0.89 +- 0.11 0.11 +- 0.11

Predicted Cushing’s 0.07 +- 0.1 0.93 +- 0.1

Sensitivity 0.89

Accuracy 0.91
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SVM PrimAldo True Control True PrimAldo

Predicted Control 0.90 +- 0.12 0.10 +- 0.12

Predicted PrimAldo 0.17 +- 0.13 0.83 +- 0.13

Sensitivity 0.89

Accuracy 0.87

LR PrimAldo True Control True PrimAldo

Predicted Control 0.83 +- 0.18 0.17 +- 0.18

Predicted PrimAldo 0.21 +- 0.17 0.79 +- 0.17

Sensitivity 0.82

Accuracy 0.81
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(a) svm signal Cushing’s full (b) lr signal Cushing’s full

(c) svm signal PrimAldo full (d) lr signal PrimAldo full

Figure 5.6: Importance plots in the signal space with full adrenal steroid pathway model

Confusion tables and importance plots in the signal space using the full adrenal steroid

pathway model are illustrated above. Both full set and subset feature spaces have four

confusion tables. Two of them are SVM and logistic regression for Control versus Cuhs-

ing’s and the other two are for Control versus PrimAldo. Classification in the full set

feature space adopts all measurements from 5 pm to 10 am, while in the subset feature

space, only selected important time points are included. Those important features are

generated using the robust selection approach described in section 5.3.3 demonstrated on

importance plots in Fig.5.6. The horizontal axis of each subplot in Fig. 5.6 refers to times.

-7, 0, and 10 correspond to 5 pm, midnight, and 10 am respectively. The vertical axis

from 0 to 1 corresponds to the importance values (normalised frequencies) of time points.
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The threshold of 0.4 is picked and it means that features with normalised frequencies

greater than 0.4 are considered as important features.

Generally, the classification performance of Control versus Cushing’s is better than Con-

trol versus PrimAldo. This is the fact in medical settings that the trajectories of PrimAldo

are much more similar to Control than Cushing’s. Thus, it is understandable that the

separation between Control and Cushing’s is better than Control and PrimAldo. Further,

classification results and importance plots of SVM and logistic regression are consistent

in both full set and subset feature space.

(a) Trajectories of CCS after imputation (b) Trajectories of Aldo after imputation

(c) Trajectories of Cortisol after imputa-
tion

(d) Trajectories of Cortisone after impu-
tation

Figure 5.7: Trajectories of four metabolises after imputation
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The SVM performance of Control versus PrimAldo in the full set and subset feature

space is similar, while logistic regression is better in the full set feature space. It means

that full features might be required to classify Control and PrimAldo. In addition, Fig.

5.6c and 5.6d show that important features of PrimAldo are mainly in Corticosterone

(CCS) and Aldosterone (Aldo), which is exactly what the inferential biomedical model

illustrates. PrimAldo is mainly caused by the excess of Aldo, which is correlated with

CCS. Compared to the full feature space, the performance of Control versus Cushing’s in

the subset feature space is slightly better. Especially, accuracy rates of SVM in the subset

feature space are very impressive with true negative 0.92 and true positive 0.95. This can

be explained as some noisy features with importance values less than 0.4 are discarded.

According to the importance plots in Fig. 5.6, important time points selected to separate

Control and Cushing’s are mainly CCS in the morning roughly from 7 am to 10 am, and

Cortisol from 10 pm to 4 am (Fig.5.6a and 5.6b). It is surprising that Cushing’s could be

affected by CCS, which is in the mineralocorticoid pathway of the inferential biomedical

model mainly constrains PirmAldo subjects. Hence, it is necessary to check the time

series trajectories.

Trajectories shown in Fig.5.7 are time series of Control (blue) and Cushing’s (red) after

the univariate Gaussian process imputation. A log transformation is applied to measure-

ments of all four metabolises to make them roughly under the same scale (Fig.5.8). The

log transformation is used rather than standardisation rescale because it can keep the

trajectories of the time series, which is the key for the classification in the signal space.

And the boxplots of data after log transformation at each time point are listed in Fig.
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5.9. From those plots, it is clear that there is a good degree of separation of Control and

Cushing’s in Cortisol from about 8 pm to 4 am, which fits the finding of the importance

plot of Cortisol. Cortisone is correlated to Cortisol so the situation is the same. It is not

surprising to see that there is also a difference between Control and Cushing’s in CCS

during the early morning. Fig.5.9a shows that Control has a surge in CCS while Cushing’s

does not. This is also what the importance plot of CCS has exploded above. To sum up,

apart from Cortisol and Cortisone, measurements of CCS in the early morning are also

helpful to separate Control and Cushing’s.

(a) Trajectories of CCS after imputation
and log transformation

(b) Trajectories of Aldo after imputation
and log transformation

(c) Trajectories of Cortisol after imputa-
tion and log transformation

(d) Trajectories of Cortisone after impu-
tation and log transformation

Figure 5.8: Trajectories of four metabolises after imputation and log transformation
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(a) Boxplot of CCS after imputation and
log transformation

(b) Boxplot of Aldo after imputation and
log transformation

(c) Boxplot of Cortisol after imputation
and log transformation

(d) Boxplot of Cortisone after imputation
and log transformation

Figure 5.9: Boxplot of four metabolises after imputation and log transformation

Feature space - peaks

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.91 +- 0.1 0.09 +- 0.1

Predicted Cushing’s 0.05 +- 0.08 0.95 +- 0.08

Sensitivity 0.91

Accuracy 0.93
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LR Cushing’s True Control True Cushing’s

Predicted Control 0.89 +- 0.11 0.11 +- 0.11

Predicted Cushing’s 0.05 +- 0.1 0.95 +- 0.1

Sensitivity 0.90

Accuracy 0.92

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.89 +- 0.12 0.11 +- 0.12

Predicted PrimAldo 0.17 +- 0.12 0.83 +- 0.12

Sensitivity 0.88

Accuracy 0.86

LR PrimAldo True Control True PrimAldo

Predicted Control 0.83 +- 0.16 0.17 +- 0.16

Predicted PrimAldo 0.20 +- 0.18 0.80 +- 0.18

Sensitivity 0.82

Accuracy 0.82
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(a) svm Cushing’s full on peaks (b) lr Cushing’s full on peaks

(c) svm PrimAldo full on peaks (d) lr PrimAldo full on peaks

Figure 5.10: Importance plots in the signal space with partial steroid pathway model on
selected peaks

Furthermore, peak features (highlighted in read in Fig. 5.10) are picked on the basis of

the subset of features (features with normalised frequencies greater than 0.4). Due to the

nature of biomedical data sampling, measurements around are correlated with each other

so it is possible that an important peak feature could represent a chunk of time points

around it. Therefore, it is worth training classifiers only with those few peak features.

The classification performance of peak features shown in the confusion tables above is

surprisingly good, especially for Cushing’s with an accuracy rate of true positive 0.95.

Consequently, peak features not only already have enough discriminative power, but also

can provide information about what important time points should be focused on.
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Signal space partial steroid pathway model

Feature space - full set

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.85 +- 0.11 0.15 +- 0.11

Predicted Cushing’s 0.05 +- 0.09 0.95 +- 0.09

Sensitivity 0.86

Accuracy 0.90

LR Cushing’s True Control True Cushing’s

Predicted Control 0.77 +- 0.18 0.23 +- 0.18

Predicted Cushing’s 0.06 +- 0.12 0.94 +- 0.12

Sensitivity 0.80

Accuracy 0.86

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.91 +- 0.12 0.09 +- 0.12

Predicted PrimAldo 0.21 +- 0.13 0.79 +- 0.13

Sensitivity 0.90

Accuracy 0.85
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LR PrimAldo True Control True PrimAldo

Predicted Control 0.90 +- 0.12 0.10 +- 0.12

Predicted PrimAldo 0.22 +- 0.17 0.78 +- 0.17

Sensitivity 0.89

Accuracy 0.84

Feature space - subset

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.87 +- 0.11 0.13 +- 0.11

Predicted Cushing’s 0.05 +- 0.08 0.95 +- 0.08

Sensitivity 0.88

Accuracy 0.91

LR Cushing’s True Control True Cushing’s

Predicted Control 0.84 +- 0.16 0.16 +- 0.16

Predicted Cushing’s 0.06 +- 0.11 0.94 +- 0.11

Sensitivity 0.85

Accuracy 0.89
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SVM PrimAldo True Control True PrimAldo

Predicted Control 0.85 +- 0.11 0.15 +- 0.11

Predicted PrimAldo 0.16 +- 0.13 0.84 +- 0.13

Sensitivity 0.85

Accuracy 0.85

LR PrimAldo True Control True PrimAldo

Predicted Control 0.82 +- 0.16 0.18 +- 0.16

Predicted PrimAldo 0.21 +- 0.17 0.79 +- 0.17

Sensitivity 0.81

Accuracy 0.81
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(a) svm signal Cushing’s partial (b) lr signal Cushing’s partial

(c) svm signal PrimAldo partial (d) lr signal PrimAldo partial

Figure 5.11: Importance plots in the signal space with partial adrenal steroid pathway
model

This section discusses the classification performance in the signal space using a partial

adrenal steroid pathway model (left model with Cortisol and Cortisone for Cushing’s;

right model with CCS and Aldo for PrimAldo).

In the case of Cushing’s, accuracy rates of true positive are 0.95 and 0.94, which are as

good as accuracy rates in the full pathway model section, while rates of true negative are

slightly worse. This can be explained as the classification here on Control versus Cush-

ing’s is constrained by the left pathway (with no CCS), while CCS is helpful to separate

Control and Cushing’s (discussed in the previous section). Instead of CCS, features of
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Cortisol and Cortisone roughly from 6 am to 9 am/10 am are picked as important fea-

tures in Fig. 5.11a and 5.11b, which are not selected in the full pathway model setting.

However, the performance is not as good as using CCS in the early morning because it

is clear that trajectory plots show measurements of CCS during the early morning can

separate Control and Cushing’s better than measurements of Cortisol or Cortisone from

the same time period. PrimAldo is mainly dominated by CCS and Aldo (right pathway)

so the performance of PrimAldo using the partial pathway model is very similar to the

performance using the full pathway model. However, the accuracy rates in the subset

feature space are slightly worse than in the full set feature space. It confirms that full

features are needed to classify Control and PrimAldo.

Feature space - peaks

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.83 +- 0.13 0.17 +- 0.13

Predicted Cushing’s 0.03 +- 0.12 0.97 +- 0.12

Sensitivity 0.85

Accuracy 0.90

LR Cushing’s True Control True Cushing’s

Predicted Control 0.84 +- 0.14 0.16 +- 0.14

Predicted Cushing’s 0.05 +- 0.08 0.95 +- 0.08

Sensitivity 0.86

Accuracy 0.90
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SVM PrimAldo True Control True PrimAldo

Predicted Control 0.86 +- 0.13 0.14 +- 0.13

Predicted PrimAldo 0.17 +- 0.14 0.83 +- 0.14

Sensitivity 0.86

Accuracy 0.85

LR PrimAldo True Control True PrimAldo

Predicted Control 0.85 +- 0.13 0.15 +- 0.13

Predicted PrimAldo 0.21 +- 0.17 0.79 +- 0.17

Sensitivity 0.84

Accuracy 0.82
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(a) svm Cushing’s partial on peaks (b) lr Cushing’s partial on peaks

(c) svm PrimAldo partial on peaks (d) lr PrimAldo partial on peaks

Figure 5.12: Importance plots in the signal space with partial steroid pathway model on
selected peaks

Results on peak features using the partial pathway model are even more surprising with

very high accuracy rates of true positive (SVM 0.97, logistic Regression 0.95) for Cush-

ing’s. Also, the classification performance of PrimAldo is impressive because it is trained

only on four time points see Fig. 5.12c and 5.12d.

After comparing and evaluating all confusion tables and importance plots in the signal

space, key findings are listed below:

· In general, the performance of SVM and logistic regression is consistent, not only

classification results showed in confusion tables but also feature selection results de-
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rived from the importance plots. These two classification models based on different

principles share similar performance, which illustrates that the results are robust

and reliable.

· Binary classifiers work better on Control versus Cushing’s than Control versus

PrimAldo. This is confirmed by medical collaborators because PrimAldo is more

similar with Control in trajectories than Cushing’s.

· CCS is crucial to separate Control and Cushing’s so the partial pathway model (left

model without CCS) is not enough to classify Control and Cushing’s. This is a

surprising finding because biomedically Cushing’s is mainly caused by the excess of

Cortisol and Cortisone, while CCS is related to PrimAldo. However, results reveal

that CCS can also affect Cushing’s especially during the early morning.

· Classification of Control versus Cushing’s in the subset feature space performs better

than the full feature space, which means there might be redundancy in the data.

· Classification of Control versus PrimAldo requires full features because it is harder

to separate these two with similar trajectories.

· Classification using peak features (only a few time points) can still have reasonable

and comparable results. This is meaningful for future sampling. Medical people can

only measure some important time points rather than 24 hours.
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5.5.2 Model space

Model space full steroid pathway model

Feature space - full set

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.83 +- 0.12 0.17 +- 0.12

Predicted Cushing’s 0.08 +- 0.11 0.92 +- 0.11

Sensitivity 0.84

Accuracy 0.88

LR Cushing’s True Control True Cushing’s

Predicted Control 0.80 +- 0.13 0.20 +- 0.13

Predicted Cushing’s 0.10 +- 0.13 0.90 +- 0.13

Sensitivity 0.82

Accuracy 0.85

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.79 +- 0.14 0.21 +- 0.14

Predicted PrimAldo 0.19 +- 0.16 0.81 +- 0.16

Sensitivity 0.77

Accuracy 0.80
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LR PrimAldo True Control True PrimAldo

Predicted Control 0.78 +- 0.15 0.22 +- 0.15

Predicted PrimAldo 0.19 +- 0.15 0.81 +- 0.15

Sensitivity 0.79

Accuracy 0.80

Feature space - subset

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.81 +- 0.12 0.19 +- 0.12

Predicted Cushing’s 0.01 +- 0.05 0.99 +- 0.05

Sensitivity 0.84

Accuracy 0.90

LR Cushing’s True Control True Cushing’s

Predicted Control 0.80 +- 0.12 0.20 +- 0.12

Predicted Cushing’s 0.02 +- 0.06 0.98 +- 0.06

Sensitivity 0.83

Accuracy 0.89
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SVM PrimAldo True Control True PrimAldo

Predicted Control 0.75 +- 0.16 0.25 +- 0.16

Predicted PrimAldo 0.23 +- 0.15 0.77 +- 0.15

Sensitivity 0.75

Accuracy 0.76

LR PrimAldo True Control True PrimAldo

Predicted Control 0.70 +- 0.13 0.30 +- 0.13

Predicted PrimAldo 0.22 +- 0.18 0.78 +- 0.18

Sensitivity 0.72

Accuracy 0.74
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(a) svm model Cushing’s full (b) lr model Cushing’s full

(c) svm model PrimAldo full (d) lr model PrimAldo full

Figure 5.13: Importance plots in the model space with full steroid pathway model

In the model space, input data are model parameter vectors of the inferential mechanistic

model, which has thirteen free parameters. Features in the model space refer to these

model parameters. The full feature space of full adrenal steroid models contains all

thirteen parameters. Cushing’s subset feature space of full adrenal steroid models in

SVM involves three parameters Kb, Gammaf , and Kappaf (Fig. 5.13a), while the subset

feature space of of full adrenal steroid models in logistic regression has two parameters

Gammaf and Kappaf (Fig. 5.13b). The subset feature space of PrimAldo includes two

parameters Ka and Kappac (both SVM and logistic regression). The subset feature space

is generated by the feature selection. Parameters with importance values greater than

0.4 are considered as important parameters (features) and compose the subset feature
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space. Compared to the signal space, the performance in the model space of Control

versus Cushing’s in the full feature space is slightly worse both in true positive and true

negative. However, true positive accuracy rates (Cushing’s) in the subset feature space

are very impressive, which are 0.99 in SVM and 0.98 in logistic regression. PrimAldo

has better performance in the full feature space rather than the subset feature space. It

means that the subset feature space with only Ka and Kappac is not enough to classify

Control and PrimAldo.

Model space partial steroid pathway model

Feature space - full set

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.82 +- 0.11 0.18 +- 0.11

Predicted Cushing’s 0.02 +- 0.06 0.98 +- 0.06

Sensitivity 0.84

Accuracy 0.90

LR Cushing’s True Control True Cushing’s

Predicted Control 0.80 +- 0.11 0.20 +- 0.11

Predicted Cushing’s 0.02 +- 0.05 0.98 +- 0.05

Sensitivity 0.83

Accuracy 0.89
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SVM PrimAldo True Control True PrimAldo

Predicted Control 0.80 +- 0.15 0.20 +- 0.15

Predicted PrimAldo 0.19 +- 0.16 0.81 +- 0.16

Sensitivity 0.80

Accuracy 0.81

LR PrimAldo True Control True PrimAldo

Predicted Control 0.81 +- 0.15 0.19 +- 0.15

Predicted PrimAldo 0.20 +- 0.15 0.80 +- 0.15

Sensitivity 0.81

Accuracy 0.81

Feature space - subset

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.80 +- 0.11 0.20 +- 0.11

Predicted Cushing’s 0.02 +- 0.07 0.98 +- 0.07

Sensitivity 0.83

Accuracy 0.89
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LR Cushing’s True Control True Cushing’s

Predicted Control 0.82 +- 0.12 0.18 +- 0.12

Predicted Cushing’s 0.02 +- 0.05 0.98 +- 0.05

Sensitivity 0.84

Accuracy 0.90

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.70 +- 0.11 0.30 +- 0.11

Predicted PrimAldo 0.23 +- 0.18 0.77 +- 0.18

Sensitivity 0.72

Accuracy 0.74

LR PrimAldo True Control True PrimAldo

Predicted Control 0.69 +- 0.14 0.31 +- 0.14

Predicted PrimAldo 0.25 +- 0.18 0.75 +- 0.18

Sensitivity 0.71

Accuracy 0.72
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(a) svm model Cushing’s partial (b) lr model Cushing’s partial

(c) svm model PrimAldo partial (d) lr model PrimAldo partial

Figure 5.14: Importance plots in the model space with partial steroid pathway model

The partial adrenal steroid pathway model of Cushing’s refers to the left model containing

only Cortisol and Cortisone. The partial model of PrimAldo is the right model including

CCS and Aldo. There are seven model parameters in the left model and eight parameters

in the right model. The greatest discovery in this section with the partial adrenal steroid

pathway model is the performance in the subset feature space of Cushing’s. The accuracy

rate of 0.98 of true positive is very impressive and referring to Fig.5.14a and Fig.5.14b,

this result is based on just one parameter Kappaf , although the accuracy rate of true

negative is just around 0.8. Then, a hybrid model is proposed for Cushing’s to improve

the true negative accuracy. The hybrid classifier combines the classification model on

Kappaf in the model space and another model in the signal space, which has to have a
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high accuracy rate in the true negative. Details and confusion tables of the hybrid model

are shown in the next section.

Kappaf is the coefficient of the convex combination of circadian drive in Cortisol. Gen-

erally, Control should have a higher Kappaf value than Cushing’s because it has an

oscillation in Cortisol during the early morning. Thus, Kappaf is the most important pa-

rameter to separate Control and Cushing’s. However, Cushing’s is complex with several

subgroups and some of them could not be detected using Kappaf only.

Hybrid model

The hybrid model (only for Cushing’s) is a combination of two base classifiers. Those

two base classifiers picked have to have good classification performance and have to be

complementary. After comparing a number of classifiers, the first classifier adopted is

from the model space, which is only trained on Kappaf . It is discussed above with a

true positive accuracy rate of 0.98 in both SVM and logistic regression. Another classifier

picked is from the signal space using the full adrenal steroid pathway model in the subset

feature space because it has comparatively high true negative accuracy rates (SVM 0.92;

logistic Regression 0.89). Once a test subject comes to the hybrid model, if the model

space confirms it is a Cushing’s then it is labeled as Cushing’s. Otherwise, we take the

result of the signal space.

Although the true positive accuracy rate in Table 5.4 slightly decreases to 0.97 (SVM) and

0.94 (logistic regression) respectively, the true negative accuracy increases to 0.98 (SVM)

and 0.97 (logistic regression), which is much more meaningful in the medical point of
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view. A higher true negative rate associated with a lower false positive rate means less

misdiagnosis of Cushing’s patients.

Table 5.4: Hybrid model combining the model space with the signal space

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.98 +- 0.06 0.02 +- 0.06

Predicted Cushing’s 0.03 +- 0.06 0.97 +- 0.06

Sensitivity 0.98

Accuracy 0.98

LR Cushing’s True Control True Cushing’s

Predicted Control 0.97 +- 0.07 0.03 +- 0.07

Predicted Cushing’s 0.06 +- 0.1 0.94 +- 0.1

Sensitivity 0.97

Accuracy 0.96
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Table 5.5: Testing results of new Cushing’s in SVM

SID Model space Kappaf Signal space full model subspace Hybrid

211 0 1 1

486 1 1 1

493 0 1 1

579 1 0 1

605 1 1 1

626 1 1 1

722 1 1 1

726 1 1 1

However, the testing accuracy of the hybrid model is based on test subjects used by two

base classifiers. Therefore, it is necessary to use another 8 additional Cushing’s subjects

for verification. Those additional Cushing’s subjects do not appear in previous classifiers’

training and testing. Testing results of SVM (results of logistic regression are similar) are

shown in Table 5.5 (0 refers to Control and 1 refers to Cushing’s). They are tested using

the hybrid model with a 100% accuracy rate. The classification model only with Kappaf

wrongly classifies 211 and 493 as Control. Those two Cushing’s subjects have large values

of Kappaf indeed (surge in the early morning in Cortisol in Fig.5.15a and 5.15b) but they

might belong to a subtype of Cushing’s, whose rhythm is very similar to Control. Thus,

only using Kappaf is not adequate to separate those Cushing’s subjects from Controls.
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(a) Cushing’s 211 (b) Cushing’s 493

Figure 5.15: Plots of wrongly predicted subjects. Blues lines in 5.15a, 5.15b are trajecto-
ries of original data. Original lines are trajectories solved by parameter estimations

Point estimations in the model space

Point estimates of parameters are directly related to the classification performance in

the model space. The point estimation map (Fig. 5.16a) and box plot (Fig. 5.17c) of

Kappaf reveal that Kappaf is significant to distinguish between Control and Cushing’s

subjects. According to the box plot, most Control subjects have larger values of Kappaf

than Cushing’s. There are also some Cushing’s subjects that have high Kappaf values.

They might belong to a subtype of Cushing’s. The Kc and Kf are Corticosterone and

Cortisol synthesis rates respectively. Kc×Kappac and Kf ×Kappaf control the effects of

circadian drives on CCS and Cortisol after taking synthesis rates into account. Values of

them control the overall amplitudes of oscillations. Normally Control subjects have high

values of Kc ×Kappac and Kf ×Kappaf than Cushing’s (see Fig. 5.16b). However, the

degree of separation in the point estimation maps of PrimAldo is not as good as Cush-

ing’s, which agrees with the confusion tables discussed above.
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(a) kappac and kappaf (b) kc · kappac and kf · kappaf

(c) ka and kb (d) ka and kappac

Figure 5.16: Maps of point estimations of parameters
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(a) kappac (b) kc · kappac

(c) kappaf (d) kf · kappaf

Figure 5.17: Box plots of important parameters

Key findings of classification results in the model space and the comparison between signal

space and model space classification are listed below:

· Kappaf the coefficient of the convex combination of circadian drive in Cortisol is

an important parameter to separate Control and Cushing’s.

· A hybrid classifier is developed for Control versus Cushing’s to improve the overall

classification performance by combining classifiers in the model space and signal

space.

· All parameters are required to classify Control and PrimAldo because it is much

harder to separate PrimAldo from Control than Cushing’s.
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· Generally, the classification performance in the model space is similar with the

signal space in Control versus Cushing’s and the model space is a little worse than

signal space. However, learning in the model space directly works on raw data

without missing value imputation, which is a clear advantage than learning in the

signal space. Also, learning in the model space includes domain knowledge in the

classification model, which is an expected requirement from medical experts.

5.6 Unfiltered data set contains large observational

gaps

5.6.1 Unfiltered data set information

In previous experiments, the real data set used contains 140 subjects with 100 Control,

22 Cushing’s, and 18 PrimAldo. It is a filtered data set containing data subjects with

only a few missing values such as subjects in Fig 5.18, which the uni-variate Gaussian

process can work well on. Our medical collaborators also provide some data subjects

containing large observation gaps for example subjects with one or even two metabolises

missing (see Fig 5.19 and 5.20). From the biomedical point of view, it is more desirable

to include those subjects containing substantial missing values. Thus, the unfiltered data

set with 270 subjects (217 Controls, 31 Cushing’s, 22 PrimAldo) is used. It includes all

data that have been collected except five subjects with both Corticosterone and Aldos-

terone missing (Fig 5.20). Corticosterone and Aldosterone are correlated to each other so

it would be even harder to estimate their values or model parameters if both of them are

missing. After discussing with medical collaborators, those five subjects are discarded.
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In biomedical terms, a missing data rate of 5% or less is inconsequential [87]. Thus, it is

acceptable to remove those five subjects because 5 out of 275 is much less than 5%.

However, the univariate Gaussian process is not able to impute the whole missing metabo-

lite. It means that getting the accurate imputation for the whole missing metabolise is

very difficult so doing classification directly in the signal space with the unfiltered data

set is hard. Fortunately, this can be done in the model space. Also, initial values of four

metabolites are treated as free parameters rather than assigned by first measurements

of all four metabolites because time series with whole metabolite missing has no mea-

surements of the missing metabolite. Also, it is more accurate and reasonable to treat

them as free parameters. Then, the adjoint method is employed to compute the gra-

dient of the log-likelihood constrained by the initial-value ODEs. The adjont method is

much more efficient than sensitivity equation approach, which we used for filtered dataset.

In the unfiltered data set, the periodic boundary condition is applied to align the data

rather than removing measurements of certain time periods. The periodic boundary condi-

tion is typical where something is repeated many times but the optimisation or simulation

only needs to take place over one cycle of that sequence. An example of a repeating pro-

cess is the body’s natural circadian rhythm. Therefore, time series are shifted to ensure

the starting time of each time series is 0 (midnight).
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(a) SID 250 Control (b) SID 901 Control

Figure 5.18: Subjects with few observations missing

(a) SID 617 Control (b) SID 628 Control

Figure 5.19: Subjects with one metabolise missing

(a) SID 376 Control (b) SID 431 Control

Figure 5.20: Subjects with more than one metabolises missing

113



5.6. UNFILTERED DATA SET CONTAINS LARGE OBSERVATIONAL GAPS

5.6.2 The adjoint method

The adjoint method is useful to obtain the gradient of a function constrained by an initial-

value ODE. In our case, the mechanistic model is ODEs with unknown initial conditions

and 13 other unknown parameters. The adjoint method is employed here to obtain and

optimize the initial values of four metabolises together with the other 13 free parameters,

which are required to run the forward model (inferential mechanistic model) with the

ODE solver.

Consider the problem:

min
p

∫ T

0

f(x, p) dt ≡ F (x, p), (5.33)

s.t. h(x,
.
x, p, t) = 0, (5.34)

x(0) = x0(p), (5.35)

where p is a vector of the free parameter of the underlying model. x is the state variable

and it is a function of time. h(x,
.
x, p, t) = 0 is an ODE in implicit form. x(0) is the initial

condition and x(0) = x0(p) shows that x(0) is a function of the free parameters p. For

the data fitting application, the objective can be:

1

2

∫ T

0

(x(t)− xdata(t))
T(x(t)− xdata(t)) dt, (5.36)

where xdata is obtained via solving the forward model (ODE) using the ODE solver.

A gradient-based optimization algorithm requires the calculation of the total deriva-
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tive/gradient:

dpF (x, p) =

∫ T

0

∂xfdpx+ ∂pf dt, (5.37)

where ∂x and ∂p denote a partial derivative with respect to x and p respectively and dp

is a total derivative. It is difficult to calculate dpx unless x is available in closed form. If

x is not, there are two common approaches aiming to evade having to calculate it. The

first approach is simply to approximate the gradient dpF (x, p) by finite differences over

p. The second approach that the adjoint method uses, is to develop a second ODE [88].

The first step of the adjoint method is to develop the Lagrangian corresponding to the

optimization problem:

L ≡
∫ T

0

f(x, p)− λTh(x,
.
x, p, t)dt− µT(x(0)− x0(p)). (5.38)

Because h(x,
.
x, p, t) = 0 and x(0)− x0(p) = 0, dpL ≡ dpF . The total derivative is:

dpL =

∫ T

0

∂xfdpx+ ∂pf − λT(∂xhdpx+ ∂ .
xhdp

.
x+∂ph) dt− µT(1− 1). (5.39)

As the derivative of the term containing µ is zero, it is not used. The integrand in the

total derivative contains terms dpx and dp
.
x. Then, the next step is to integrate by parts

to get rid of the second one:

115



5.6. UNFILTERED DATA SET CONTAINS LARGE OBSERVATIONAL GAPS

∫ T

0

λT∂ .
xhdp

.
x dt =

∫ T

0

λTdt(∂ .
xhdpx) dt (5.40)

= λT∂ .
xhdpx|T0 −

∫ T

0

.

λ
T
∂ .
xhdpx dt. (5.41)

Substitute the result into Eq. 5.39 and rearrange it by collecting terms in dpx:

dpL =

∫ T

0

(∂xf − λT∂xh+
.

λ
T
∂ .
xh)dpx+ fp − λT∂ph dt− λT∂ .

xhdpx|T0 . (5.42)

Then set λ(T ) = 0 to make the entire term zero because dpx(T ) is difficult to calculate.

The dpx(0) is easy to calculate because x0(p) is known and it is just ∂px0(p). Also, set

∂xf − λT∂xh+
.

λ
T
∂ .
xh = 0 to avoid dpx.

The algorithm is stated as follows:

· Integrate h(x,
.
x, p, t) = 0 for x0 to xT with initial condition x(0) = x0(p).

· Integrate ∂xf − λT∂xh+
.

λ
T
∂ .
xh = 0 for λT to λ0 with initial condition λ(T ) = 0.

· dpF =
∫ T

0
fp − λT∂ph dt+ λT∂ .

xhdpx|0.
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5.7 Results and discussion of unfiltered data set

Classification results of both SVM and logistic regression models in the model space are

also presented on the unfiltered data set following the experiment design discussed in

section 5.4.1. Classifiers are trained using both full and partial adrenal steroid pathway

models. Also, important features obtained by the robust feature selection approach are

demonstrated via importance plots.

5.7.1 Model space

Model space full steroid pathway model

Feature space - full set

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.90 +- 0.12 0.10 +- 0.12

Predicted Cushing’s 0.06 +- 0.12 0.94 +- 0.12

Sensitivity 0.90

Accuracy 0.92

LR Cushing’s True Control True Cushing’s

Predicted Control 0.88 +- 0.12 0.22 +- 0.12

Predicted Cushing’s 0.07 +- 0.11 0.93 +- 0.11

Sensitivity 0.81

Accuracy 0.91
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SVM PrimAldo True Control True PrimAldo

Predicted Control 0.80 +- 0.14 0.20 +- 0.14

Predicted PrimAldo 0.19 +- 0.14 0.81 +- 0.14

Sensitivity 0.80

Accuracy 0.81

LR PrimAldo True Control True PrimAldo

Predicted Control 0.77 +- 0.16 0.23 +- 0.16

Predicted PrimAldo 0.20 +- 0.15 0.80 +- 0.15

Sensitivity 0.78

Accuracy 0.79

Feature space - subset

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.88 +- 0.12 0.12 +- 0.12

Predicted Cushing’s 0.09 +- 0.11 0.91 +- 0.11

Sensitivity 0.88

Accuracy 0.90
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LR Cushing’s True Control True Cushing’s

Predicted Control 0.87 +- 0.11 0.13 +- 0.11

Predicted Cushing’s 0.06 +- 0.09 0.94 +- 0.09

Sensitivity 0.88

Accuracy 0.91

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.75 +- 0.16 0.25 +- 0.16

Predicted PrimAldo 0.23 +- 0.15 0.77 +- 0.15

Sensitivity 0.75

Accuracy 0.76

LR PrimAldo True Control True PrimAldo

Predicted Control 0.72 +- 0.16 0.28 +- 0.16

Predicted PrimAldo 0.22 +- 0.14 0.78 +- 0.14

Sensitivity 0.74

Accuracy 0.75
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(a) svm model Cushing’s full (b) lr model Cushing’s full

(c) svm model PrimAldo full (d) lr model PrimAldo full

Figure 5.21: Importance plots in the model space with full adrenal steroid pathway model

This section is about the classification performance in the model space using the full

adrenal steroid pathway model. The full set feature space here refers to all thirteen

model parameters and the subset feature space is made up of important features with fre-

quency values greater than 0.4 in Fig. 5.21. Then, it shows that the subset feature space

of Cushing’s has three important parameters (Ke, Kappac and Kappaf ) and PrimAldo

has 2 parameters (Ka and Gammaa) in both SVM and logistic regression.

The performance in the subset feature space is similar to the full feature space, which

is remarkable because it is only based on three or two parameters, while the full space

contains thirteen parameters. In addition, the performance of SVM and logistic regression
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is still consistent not just in confusion tables but also in importance plots (Fig. 5.21),

from which both of them picked the same important features for both Cushing’s and

PrimAldo.

Model space partial steroid pathway model

Feature space - full set

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.87 +- 0.12 0.13 +- 0.12

Predicted Cushing’s 0.04 +- 0.10 0.92 +- 0.10

Sensitivity 0.88

Accuracy 0.90

LR Cushing’s True Control True Cushing’s

Predicted Control 0.89 +- 0.12 0.11 +- 0.12

Predicted Cushing’s 0.10 +- 0.11 0.90 +- 0.11

Sensitivity 0.89

Accuracy 0.90

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.72 +- 0.13 0.28 +- 0.13

Predicted PrimAldo 0.28 +- 0.12 0.72 +- 0.12

Sensitivity 0.72

Accuracy 0.72

121



5.7. RESULTS AND DISCUSSION OF UNFILTERED DATA SET

LR PrimAldo True Control True PrimAldo

Predicted Control 0.70 +- 0.15 0.30 +- 0.15

Predicted PrimAldo 0.29 +- 0.12 0.71 +- 0.12

Sensitivity 0.70

Accuracy 0.71

Feature space - subset

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.80 +- 0.10 0.20 +- 0.10

Predicted Cushing’s 0.04 +- 0.10 0.96 +- 0.10

Sensitivity 0.83

Accuracy 0.88

LR Cushing’s True Control True Cushing’s

Predicted Control 0.78 +- 0.12 0.22 +- 0.12

Predicted Cushing’s 0.07 +- 0.12 0.93 +- 0.12

Sensitivity 0.81

Accuracy 0.86
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SVM PrimAldo True Control True PrimAldo

Predicted Control 0.75 +- 0.16 0.25 +- 0.16

Predicted PrimAldo 0.23 +- 0.15 0.77 +- 0.15

Sensitivity 0.75

Accuracy 0.76

LR PrimAldo True Control True PrimAldo

Predicted Control 0.72 +- 0.16 0.28 +- 0.16

Predicted PrimAldo 0.22 +- 0.14 0.78 +- 0.14

Sensitivity 0.74

Accuracy 0.75

123



5.7. RESULTS AND DISCUSSION OF UNFILTERED DATA SET

(a) svm model crushing’s partial (b) lr model cushing’s partial

(c) svm model primaldo partial (d) lr model primaldo partial

Figure 5.22: Importance plots in the model space with partial adrenal steroid pathway
model

In general, the results of the partial adrenal steroid pathway model are not as good as the

full model for both Cushing’s and PrimAldo. However, it is worth pointing out that the

true positive accuracy rates of Cushing’s in the subset feature space are quite high (SVM

0.96 and logistic regression 0.93). Also, it is surprising such high accuracy rates are just

based on one parameter Kappaf . Therefore, a hybrid model is created by combining the

classifier on Kappaf and another classifier on all thirteen parameters, which has a high

accuracy rate of true negative (details in next section). The results of the feature selection

of PrimAldo in full and partial pathway models are the same. Both have 2 important

parameters which are Ke and Gammaa. Thus, confusion tables are also the same.
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Hybrid model of unfiltered data set

There is no classifier model developed in the signal space for the unfiltered data set because

of large observational gaps. Hence, the hybrid model developed here is a combination of

two classifiers both in the model space. They are classifiers on Kappaf and on all thirteen

parameters respectively. The classifier on Kappaf has impressive accuracy rates of true

positive (SVM 0.96 and logistic regression 0.93). The classifier on all thirteen parameters

has true negative accuracy rates of 0.91 (SVM) and 0.88 (logistic regression). The con-

fusion tables of hybrid classifiers of both SVM and logistic regression in Table 5.6 show

that the accuracy rates of true negative are improved and this is the initial intention of

developing the hybrid model.

Table 5.6: Hybrid model combining the model space with signal space

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.91 +- 0.07 0.09 +- 0.07

Predicted Cushing’s 0.05 +- 0.11 0.95 +- 0.11

Sensitivity 0.91

Accuracy 0.93

LR Cushing’s True Control True Cushing’s

Predicted Control 0.90 +- 0.09 0.10 +- 0.09

Predicted Cushing’s 0.09 +- 0.10 0.91 +- 0.10

Sensitivity 0.90

Accuracy 0.91
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Moreover, there are eight Cushing’s subjects not included in the training phase that are

used for case studies to evaluate the performance of the hybrid model. SVM results of

case studies can be seen in Table 5.7 (results of logistic regression are similar). The hy-

brid classifier, together with classifiers on Kappaf and thirteen parameters all misclassify

Cushing’s 211 to Control. Medical collaborators confirm that Cushing’s 211 is an outlier

that has a highKappaf value and a similar trajectory as Control. The classifier ofKappaf

also labels Cushing’s 722 as Control (in Fig.5.23). It can also be explained because there

is a surge in Cortisol around early morning, which corresponds to a large value of Kappaf .

However, the figure of Cushing’s 722 illustrates that there is a gap between measurements

around 3 pm (15 in the horizontal axis). This is the drawback of the periodic condition,

which may also cause misclassification.

Table 5.7: Unfiltered dataset: Testing results of new Cushing’s in SVM

SID Model space Kappaf Model space 13 parameters Hybrid

211 0 0 0

486 1 1 1

493 1 1 1

579 1 1 1

605 1 1 1

626 1 1 1

722 0 1 1

726 1 1 1

126



5.7. RESULTS AND DISCUSSION OF UNFILTERED DATA SET

Figure 5.23: SID 722 Cushing’s

(a) kappac and kappaf (b) kc · kappac and kf · kappaf

(c) ka and kb (d) ka and gammaa

Figure 5.24: Maps of point estimations of parameters
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Point estimations in the model space

This section illustrates maps of point estimations and box plots of some consequential

parameters, which can help to interpret classification results by taking the mechanistic

information into account.

Subplots 5.24a and 5.24b are maps corresponding to Cushing’s subjects. The eight Cush-

ing’s for testing are marked as the red squares in plots 5.24a and 5.24b. Both plots

reveal a good degree of separation of Cushing’s from Control subjects. It is consistent

with the feature selection of Cushing’s, which shows parameters Kappac and Kappaf are

important. There are some Cushing’s subjects mixed with Controls on the right side of

both plots. Trajectories of two of them with SID 211 and 235 are plotted in Fig. 5.25.

Blue lines are original trajectories and orange lines are trajectories generated using point

estimations of parameters. It is obvious that there are oscillations in the morning in both

CCS and Cortisol (211 and 235), which look more like Control than Cushing’s. Clinical

experts also verified that Control 211 is the patient with a diagnosis of adrenal Cushing’s

(a subtype of Cushing’s). Their rhythms are very similar to Control and the abnormalities

are subtle. Then, it is not surprising that they are mixed with Controls.

In addition, the degree of separation would also be good if only Kappac is used to train

the classifier according to Fig.5.24a. Confusion tables are in Table 5.8. The accuracy

rates of true positive of both SVM and logistic regression are as good as the classifiers

based on Kappaf . The box plots in Fig. 5.26 draw the same conclusion. Blue boxes and

red boxes refer to Control and Cushing’s respectively. Clearly, Control subjects have high
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values of Kappac and Kappaf than Cushing’s.

The results of PirmAldo are not as good as Cushing’s. The degree of separation in the

point estimation maps is not distinct. Confusion tables of Control versus PrimAldo have

come to the same conclusion.

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.83 +- 0.12 0.17 +- 0.12

Predicted Cushing’s 0.05 +- 0.09 0.95 +- 0.09

Sensitivity 0.85

Accuracy 0.89

LR Cushing’s True Control True Cushing’s

Predicted Control 0.84 +- 0.11 0.16 +- 0.11

Predicted Cushing’s 0.06 +- 0.10 0.94 +- 0.10

Sensitivity 0.85

Accuracy 0.89

Table 5.8: Confusion tables on parameter Kappac
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(a) SID:211 Cushing’s (b) SID:235 Cushing’s

Figure 5.25: Trajectories of Cushing’s subjects 211 and 235

(a) kappac (b) kc · kappac

(c) kappaf (d) kf · kappaf

Figure 5.26: Box plots of important parameters
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5.8 Summary

In this chapter, a time series classification approach in the model space has been pro-

posed and has been compared with the classification method in the signal space. Both

time series classifications in the model space and signal space have been demonstrated

on a filtered real-world data set with 140 subjects in three steroid hormone biosynthesis

conditions. Each subject is a multivariate time series with missing values and different

starting times. During the data processing stage, the univariate Gaussian process has

been used to impute missing values. Starting time issue has been solved by taking the

first measurements at 5 pm and the last measurements at 10 am. In order to extract

important features, a robust feature selection approach has been developed. Additionally,

a detailed experiment methodology has been designed based on three degrees of design

freedom. Then, two classifier models SVM and logistic regression have been trained in

both model and signal space, with the full set and subset of features, using full and partial

adrenal steroid pathway models respectively. Also, repeated undersampling and classifier

ensembles have been used to deal with the class imbalance problem. Confusion tables

and feature selection results of different classifiers have been analysed and evaluated. In

the end, a hybrid model, which is a combination of classifiers in the model and signal

space has been proposed to improve the overall classification performance. It has also

been tested by eight additional Cushing’s subjects with a 100% accuracy rate.

Moreover, the classification approach in the model space has also been demonstrated on

an unfiltered data set, which contains 270 subjects in total. The classification in the
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signal space has not been used because some subjects in this unfiltered data set involve

large observational gaps, which the univariate Gaussian process is not able to impute.

Fortunately, handling missing values is one of the advantages of the learning in the model

space approach. Then, the adjoint method has been employed to handle the initial value

problem for the ODE solver. All experiments have been conducted with the same design

as before. A hybrid model has been proposed by combining two classifiers both in the

model space. It has also been evaluated by those eight additional Cushing’s subjects.

To conclude, classification in the model space not only can have comparable performance

but also can handle complex data sets (time series with substantial missing values), com-

pared to classic classification in signal space. In addition, learning in the model space

approach can provide explanations and interpretations for important results and key find-

ings by taking biomedical or mechanistic information into account.
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Chapter 6 Conclusion and future

work

6.1 Conclusion

Time series is a very common type of data existing everywhere in the real world. Some

examples involve temperature values across some time periods, stock market prices and

biomedical measurements, etc. With the development of the digital healthcare system

and digital clinical measures, biomedical time series data are widely available in recent

years. Hence, there is an increasing demand of the development of data mining and clas-

sification approaches in order to discern and discover some useful biomedical information

for more accurate diagnosis, screening, and monitoring. This will be highly advantageous

for healthcare as a whole. However, biomedical time series have some particular chal-

lenges than time series in other fields. First of all, most biomedical time series data sets

just contain a very small number of subjects because the data collection requires plenty of

time, resources, and effort. Undoubtedly, most deep learning models that are data hungry

are not suitable for such data sets with a small size. Secondly, measurements of biomed-

ical data obtained in real-life settings are normally quite noisy and/or sparse and with

missing values. It is not feasible to simply apply classic machine learning algorithms such

as logistic regression and support vector machines on raw time series data. In addition, in

order to improve the diagnosis using machine learning models, the model interpretation,
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which is the ability to explain results from a biomedical point of view and discover some

potential biomedical insights has to be involved during model building. However, it is still

a challenge for most existing machine learning models. Therefore, a LiMS approach has

been proposed in this research. LiMS does all learning in the model space so it can handle

sparse and noisy time series data and also provide appropriate mechanistic and biomedical

model interpretations. LiMS approaches have been demonstrated on an adrenal steroid

hormones data set, who has sparse and noisy measurements and a small number of sub-

jects. In Chapter 1, a background introduction, research motivations, objectives, and

contributions have been presented.

Time series data mining is a useful tool to discover hidden knowledge or information

from either original or transformed time series data. Classification and clustering are two

commonly used approaches in time series data mining. Chapter 2 has reviewed relevant

research on time series classification and clustering in the literature, providing the neces-

sary knowledge and an overall picture for the following chapters. Common approaches of

both time series classification and clustering have been discussed and reviewed, particu-

larly self-organising maps and its probabilistic version generative topographic mapping.

Some existing machine learning applications on multivariate steroid data have been dis-

cussed to have an overall deep understanding of machine learning in steroid data.

Chapter 3 has thoroughly discussed the adrenal steroid system to provide a general

understanding of the adrenal steroid hormone data set that LiMS approaches have been

demonstrated on. Key components (adrenal glands and the brain) and three main path-
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ways together with their corresponding hormones (particularly cortisol, cortisone, aldos-

terone, and corticosterone) of the adrenal steroid system have been introduced in detail.

Also, three adrenal disorders caused by the excess or insufficiency of certain hormones

have been presented together with their causes and symptoms, etc.

Clustering is the most common method for time series pattern discovery. It can also help

to visualize time series via some topographic techniques such as SOM and GTM, which is a

probabilistic formulation of SOM. Chapter 4 has presented a novel learning approach for

SOM formulated in the model space called SOMiMS, following with an extension of GTM

in the model space for clustering and visualizing sparse and noisy time series data. Both

SOMiMS and extended GTM have been demonstrated on the adrenal steroid hormone

data set. A parametric mechanistic inferential model has been formulated in the form of

ordinary differential equations. Then, each time series data has been transformed into a

vector of model parameters, which is the representative of the corresponding mechanistic

model. Given transformed data, topographic maps have been generated in the space of

those mechanistic models, providing the chance to readily interpret the topographic data

organisation from the mechanistic point of view. In addition, parameter plots of topo-

graphic maps have been provided as heat maps showing values learnt of each individual

mechanistic model parameter across nodes on the mapping. A KNN classification has

also been used to evaluate and quantify the degree of separation of different conditions

on the mapping plot. Compared to other classic approaches working in the signal space,

SOMiMS and extended GTM of sparse and noisy time series data have shown the good

performance of separation of different conditions. It has also taken mechanistic informa-
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tion into account and created interpretable readily time series visualisations.

Besides topographic mapping, this thesis has also developed a classification approach

in the model space applied on the filtered adrenal steroid data set. In the preprocessing

stage, Chapter 5 has employed the univariate Gaussian process to impute missing values

for raw time series data set. In the feature generation step, raw data have been transferred

into model space using MLE with constraints. Also, the adjoint method has been included

to solve the initial value problem of the ODEs. Moreover, it has been found that the data

set has a class imbalance problem, together with a small data set size issue. Repeated

undersampling and classifier ensembles have been combined to handle these problems

in the classification training stage. Apart from the classification in the model space,

classification in the signal space of imputed time series data has also been provided as a

benchmark. Hence, the feature selection has taken place in both the signal and model

space. Features refer to time points in the signal space, while model parameters are in the

model space. Important features have been selected based on importance plots associated

with the coefficients of ensemble classifiers. All experiments have been designed based

on the 3 degrees of freedom, which has been explained in Chapter 5. Both classifier

models SVM and logistic regression have been applied to this task. In the end, a hybrid

model, which is a combination of classification models in signal and model space has been

proposed. It has also been demonstrated on the adrenal steroid data set with an impressive

performance. Generally, although classification performance in the model space is similar

to the signal space, classifiers and feature selection in the model space have been able

to provide various mechanistic/biomedical insights and interpretations. Some surprising
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biomedical phenomena have been highlighted inChapter 5.For example, Cushing’s which

is caused by the excess of Cortisol can also be affected by CCS especially during the

morning. Also, the classifier based solely on parameter Kappaf can predict Cushing’s

with a very high accuracy. In addition, classification of Control versus Cushing’s in the

subset feature space performs better than the full feature space, while classification of

Control versus PrimAldo requires full features. Furthermore, the classification in the

model space has also been demonstrated on the unfiltered adrenal steroid hormone data

set, which contains large numbers of missing values with impressive performance.

6.2 Future work

Some possible future work has been summarized as follows:

· In chapter 4, SOMiMS and extended GTM have been demonstrated on the data

set with three conditions: Control, Cushing’s, and PrimAldo. Apart from the sep-

aration of three conditions, both maps have shown a tendency of sub-grouping the

Cuhsing’s cohort into sub-populations. Hence, applying SOMiMS and extended

GTM to Cushing’s profiles only would be helpful to the discovery of Cushing’s sub-

type structure. Moreover, the data set used in chapter 4 is filtered with 60 steroid

profiles in total. It would be interesting to see topographic maps trained on the

unfiltered data set.

· In this thesis, each time series has been transferred into a vector of model parameters

of a suitable underlying mechanistic model. However, there might be more than one

model that could well represent this data because the time series is very sparse and
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noisy. As a result, it would be worth trying to represent each individual using all

possible models, for example using posterior distribution over models in the future.

· Missing values of most biomedical time series data sets are unfortunately unavoid-

able because of some obstacles and difficulties faced during data collection. Missing

value imputation is the most common way to deal with those missing values. The

univariate Gaussian process has been used to impute missing values for the filtered

data set in this research. However, it cannot be used to fill subjects with large

observational gaps (e.g. whole metabolise missing). Then, it would be worth trying

some other imputation techniques such as the multi-output Gaussian process.

· Instead of combining the two models (signal space and model space), it would be

worth developing a model where both kind of features are concatenated or a model

using features in the model space together with features representing the errors of

the model in the signal space.
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Appendix A Appendix

A.1 Filtered data set in the model space with missing

value imputation

A.1.1 Model space full steroid pathway model

Feature space - full space

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.80 +- 0.12 0.20 +- 0.12

Predicted Cushing’s 0.07 +- 0.07 0.93 +- 0.07

Sensitivity 0.82

Accuracy 0.87

LR Cushing’s True Control True Cushing’s

Predicted Control 0.78 +- 0.17 0.22 +- 0.17

Predicted Cushing’s 0.13 +- 0.15 0.87 +- 0.15

Sensitivity 0.80

Accuracy 0.83
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IMPUTATION

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.80 +- 0.14 0.20 +- 0.14

Predicted PrimAldo 0.19 +- 0.14 0.81 +- 0.14

Sensitivity 0.80

Accuracy 0.81

LR PrimAldo True Control True PrimAldo

Predicted Control 0.78 +- 0.17 0.22 +- 0.17

Predicted PrimAldo 0.17 +- 0.16 0.83 +- 0.16

Sensitivity 0.79

Accuracy 0.81

Feature space - subspace

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.83 +- 0.1 0.17 +- 0.1

Predicted Cushing’s 0.03 +- 0.06 0.97 +- 0.06

Sensitivity 0.85

Accuracy 0.90
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LR Cushing’s True Control True Cushing’s

Predicted Control 0.83 +- 0.16 0.17 +- 0.16

Predicted Cushing’s 0.09 +- 0.12 0.91 +- 0.12

Sensitivity 0.84

Accuracy 0.87

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.79 +- 0.14 0.21 +- 0.14

Predicted PrimAldo 0.19 +- 0.14 0.81 +- 0.14

Sensitivity 0.79

Accuracy 0.80

LR PrimAldo True Control True PrimAldo

Predicted Control 0.80 +- 0.15 0.20 +- 0.15

Predicted PrimAldo 0.17 +- 0.16 0.83 +- 0.16

Sensitivity 0.81

Accuracy 0.82
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(a) svm model Cushing’s full (b) lr model Cushing’s full

(c) svm model PrimAldo full (d) lr model PrimAldo full

Figure A.1: Importance plots in the model space with full steroid pathway model

A.1.2 Model space partial steroid pathway model

Feature space - full space

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.82 +- 0.12 0.18 +- 0.12

Predicted Cushing’s 0.05 +- 0.1 0.95 +- 0.1

Sensitivity 0.84

Accuracy 0.89
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LR Cushing’s True Control True Cushing’s

Predicted Control 0.73 +- 0.18 0.27 +- 0.18

Predicted Cushing’s 0.05 +- 0.09 0.95 +- 0.09

Sensitivity 0.78

Accuracy 0.84

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.72 +- 0.13 0.28 +- 0.13

Predicted PrimAldo 0.28 +- 0.13 0.72 +- 0.13

Sensitivity 0.72

Accuracy 0.72

LR PrimAldo True Control True PrimAldo

Predicted Control 0.70 +- 0.18 0.30 +- 0.18

Predicted PrimAldo 0.24 +- 0.19 0.76 +- 0.19

Sensitivity 0.72

Accuracy 0.73
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Feature space - subspace

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.81 +- 0.1 0.19 +- 0.1

Predicted Cushing’s 0.02 +- 0.06 0.98 +- 0.06

Sensitivity 0.84

Accuracy 0.90

LR Cushing’s True Control True Cushing’s

Predicted Control 0.77 +- 0.17 0.23 +- 0.17

Predicted Cushing’s 0.01 +- 0.04 0.99 +- 0.04

Sensitivity 0.76

Accuracy 0.88

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.80 +- 0.16 0.20 +- 0.16

Predicted PrimAldo 0.23 +- 0.15 0.77 +- 0.15

Sensitivity 0.79

Accuracy 0.79
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LR PrimAldo True Control True PrimAldo

Predicted Control 0.43 +- 0.18 0.57 +- 0.18

Predicted PrimAldo 0.24 +- 0.17 0.76 +- 0.17

Sensitivity 0.57

Accuracy 0.60

(a) svm model Cushing’s partial (b) lr model Cushing’s partial

(c) svm model PrimAldo partial (d) lr model PrimAldo partial

Figure A.2: Importance plots in the model space with partial steroid pathway model
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IMPUTATION

Hybrid

The hybrid model is developed by combining two base classifiers from the model space

and signal space respectively. The classifier used from the model space is the one trained

only on kappaf . The classifier picked from the signal space is the one trained using full

adrenal steroid pathway model in the subset feature space.

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.97 +- 0.07 0.03 +- 0.07

Predicted Cushing’s 0.09 +- 0.11 0.91 +- 0.11

Sensitivity 0.97

Accuracy 0.94

LR Cushing’s True Control True Cushing’s

Predicted Control 0.97 +- 0.07 0.03 +- 0.07

Predicted Cushing’s 0.07 +- 0.1 0.93 +- 0.1

Sensitivity 0.97

Accuracy 0.95
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A.1. FILTERED DATA SET IN THE MODEL SPACE WITH MISSING VALUE
IMPUTATION

A.1.3 Point estimates in the model space

(a) kappac (b) kc · kappac

(c) kappaf (d) kf · kappaf

Figure A.3: Box plots of important parameters (with imputation)
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A.1. FILTERED DATA SET IN THE MODEL SPACE WITH MISSING VALUE
IMPUTATION

(a) kappac and kappaf (b) kc · kappac and kf · kappaf

(c) ka and kb (d) ka and kappac

Figure A.4: Maps of point estimates (with imputation)
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Appendix B Appendix

B.1 Classification results with threshold 0.6

B.1.1 Signal space

Signal space full adrenal steroid pathway model

Feature space - subspace

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.92 +- 0.1 0.08 +- 0.1

Predicted Cushing’s 0.07 +- 0.07 0.93 +- 0.07

Sensitivity 0.92

Accuracy 0.93

LR Cushing’s True Control True Cushing’s

Predicted Control 0.87 +- 0.14 0.13 +- 0.14

Predicted Cushing’s 0.07 +- 0.09 0.93 +- 0.09

Sensitivity 0.88

Accuracy 0.90
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B.1. CLASSIFICATION RESULTS WITH THRESHOLD 0.6

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.91 +- 0.12 0.09 +- 0.12

Predicted PrimAldo 0.18 +- 0.13 0.82 +- 0.13

Sensitivity 0.90

Accuracy 0.87

LR PrimAldo True Control True PrimAldo

Predicted Control 0.82 +- 0.15 0.18 +- 0.15

Predicted PrimAldo 0.23 +- 0.19 0.77 +- 0.19

Sensitivity 0.81

Accuracy 0.80
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B.1. CLASSIFICATION RESULTS WITH THRESHOLD 0.6

(a) svm signal Cushing’s full (b) lr signal Cushing’s full

(c) svm signal PrimAldo full (d) lr signal PrimAldo full

Figure B.1: Importance plots in the signal space with full adrenal steroid pathway model
using threshold 0.6
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B.1. CLASSIFICATION RESULTS WITH THRESHOLD 0.6

Feature space - peaks

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.89 +- 0.11 0.11 +- 0.11

Predicted Cushing’s 0.05 +- 0.07 0.95 +- 0.07

Sensitivity 0.90

Accuracy 0.92

LR Cushing’s True Control True Cushing’s

Predicted Control 0.88 +- 0.13 0.12 +- 0.13

Predicted Cushing’s 0.06 +- 0.09 0.94 +- 0.09

Sensitivity 0.89

Accuracy 0.91

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.82 +- 0.13 0.18 +- 0.13

Predicted PrimAldo 0.16 +- 0.14 0.84 +- 0.14

Sensitivity 0.82

Accuracy 0.83
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B.1. CLASSIFICATION RESULTS WITH THRESHOLD 0.6

LR PrimAldo True Control True PrimAldo

Predicted Control 0.83 +- 0.18 0.17 +- 0.18

Predicted PrimAldo 0.21 +- 0.17 0.79 +- 0.17

Sensitivity 0.82

Accuracy 0.81

(a) svm signal Cushing’s full on selected
peaks (b) lr signal Cushing’s full on selected peaks

(c) svm signal PrimAldo full on selected
peaks (d) lr signal PrimAldo full on selected peaks

Figure B.2: Importance plots in the signal space with full adrenal steroid pathway model
on selected peaks using threshold 0.6
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B.1. CLASSIFICATION RESULTS WITH THRESHOLD 0.6

Signal space partial adrenal steroid pathway model

Feature space - subspace

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.77 +- 0.12 0.23 +- 0.12

Predicted Cushing’s 0.08 +- 0.12 0.92 +- 0.12

Sensitivity 0.80

Accuracy 0.85

LR Cushing’s True Control True Cushing’s

Predicted Control 0.86 +- 0.14 0.14 +- 0.14

Predicted Cushing’s 0.07 +- 0.12 0.93 +- 0.12

Sensitivity 0.87

Accuracy 0.90

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.72 +- 0.12 0.28 +- 0.12

Predicted PrimAldo 0.16 +- 0.16 0.84 +- 0.16

Sensitivity 0.75

Accuracy 0.78
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B.1. CLASSIFICATION RESULTS WITH THRESHOLD 0.6

LR PrimAldo True Control True PrimAldo

Predicted Control 0.75 +- 0.18 0.25 +- 0.18

Predicted PrimAldo 0.19 +- 0.17 0.81 +- 0.17

Sensitivity 0.76

Accuracy 0.78

(a) svm signal Cushing’s partial (b) lr signal Cushing’s partial

(c) svm signal PrimAldo partial (d) lr signal PrimAldo partial

Figure B.3: Importance plots in the signal space with partial adrenal steroid pathway
model using threshold 0.6
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B.1. CLASSIFICATION RESULTS WITH THRESHOLD 0.6

Feature space - peaks

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.75 +- 0.11 0.25 +- 0.11

Predicted Cushing’s 0.08 +- 0.12 0.92 +- 0.12

Sensitivity 0.79

Accuracy 0.84

LR Cushing’s True Control True Cushing’s

Predicted Control 0.83 +- 0.14 0.17 +- 0.14

Predicted Cushing’s 0.05 +- 0.08 0.95 +- 0.08

Sensitivity 0.85

Accuracy 0.89

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.72 +- 0.12 0.28 +- 0.12

Predicted PrimAldo 0.18 +- 0.16 0.82 +- 0.16

Sensitivity 0.75

Accuracy 0.77
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B.1. CLASSIFICATION RESULTS WITH THRESHOLD 0.6

LR PrimAldo True Control True PrimAldo

Predicted Control 0.71 +- 0.21 0.29 +- 0.21

Predicted PrimAldo 0.20 +- 0.17 0.80 +- 0.17

Sensitivity 0.73

Accuracy 0.76

(a) svm signal Cushing’s partial on selected
peaks

(b) lr signal Cushing’s partial on selected
peaks

(c) svm signal PrimAldo partial on selected
peaks

(d) lr signal PrimAldo partial on selected
peaks

Figure B.4: Importance plots in the signal space with partial adrenal steroid pathway
model on selected peaks using threshold 0.6
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B.1. CLASSIFICATION RESULTS WITH THRESHOLD 0.6

B.1.2 Model space

Model space full adrenal steroid pathway model

Feature space - subspace

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.81 +- 0.1 0.19 +- 0.1

Predicted Cushing’s 0.02 +- 0.06 0.98 +- 0.06

Sensitivity 0.84

Accuracy 0.90

LR Cushing’s True Control True Cushing’s

Predicted Control 0.86 +- 0.16 0.14 +- 0.16

Predicted Cushing’s 0.09 +- 0.13 0.91 +- 0.13

Sensitivity 0.87

Accuracy 0.89

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.79 +- 0.13 0.21 +- 0.13

Predicted PrimAldo 0.20 +- 0.14 0.80 +- 0.14

Sensitivity 0.79

Accuracy 0.89
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B.1. CLASSIFICATION RESULTS WITH THRESHOLD 0.6

LR PrimAldo True Control True PrimAldo

Predicted Control 0.70 +- 0.19 0.30 +- 0.19

Predicted PrimAldo 0.22 +- 0.2 0.78 +- 0.2

Sensitivity 0.72

Accuracy 0.74

(a) svm model Cushing’s full (b) lr model Cushing’s full

(c) svm model PrimAldo full (d) lr model PrimAldo full

Figure B.5: Importance plots in the model space with full adrenal steroid pathway model
using threshold 0.6
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B.1. CLASSIFICATION RESULTS WITH THRESHOLD 0.6

Model space partial adrenal steroid pathway model

Feature space - subspace

SVM Cushing’s True Control True Cushing’s

Predicted Control 0.81 +- 0.1 0.19 +- 0.1

Predicted Cushing’s 0.02 +- 0.06 0.98 +- 0.06

Sensitivity 0.84

Accuracy 0.90

LR Cushing’s True Control True Cushing’s

Predicted Control 0.77 +- 0.17 0.23 +- 0.17

Predicted Cushing’s 0.01 +- 0.04 0.99 +- 0.04

Sensitivity 0.81

Accuracy 0.88

SVM PrimAldo True Control True PrimAldo

Predicted Control 0.58 +- 0.1 0.42 +- 0.1

Predicted PrimAldo 0.25 +- 0.15 0.75 +- 0.15

Sensitivity 0.64

Accuracy 0.67
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B.1. CLASSIFICATION RESULTS WITH THRESHOLD 0.6

LR PrimAldo True Control True PrimAldo

Predicted Control 0.43 +- 0.18 0.57 +- 0.18

Predicted PrimAldo 0.24 +- 0.17 0.76 +- 0.17

Sensitivity 0.57

Accuracy 0.60

(a) svm model Cushing’s partial (b) lr model Cushing’s partial

(c) svm model PrimAldo partial (d) lr model PrimAldo partial

Figure B.6: Importance plots in the model space with partial adrenal steroid pathway
model using threshold 0.6
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