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Abstract 

Rail networks are key national infrastructure assets, providing mass transport capability for 

both goods and passengers. The reliability of these networks is therefore critical to avoid 

widescale disruption. To ensure reliability, they must be effectively monitored and maintained. 

The monitoring of the structural health of the Rail network is challenging with rolling stock of 

different weights and speeds travelling on the same lines. Current structural health monitoring 

techniques are unable to effectively monitor in real time defects forming on the rail. Therefore, 

to ensure continued reliability of the rail network new monitoring methods must be found.  

This work investigates the use and advancement of acoustic emission techniques in monitoring 

the real time structural health of critical rail infrastructure. This work will focus on the 

monitoring of R220 and R260 grade steels used for plain track and cast manganese steel used 

for rail crossings. 

Acoustic emission is already used across a wide number of industries for the detection of crack 

growth. This work initially looks at the feasibility of a commercially avaible system, procured 

from Physical Acoustics for the monitoring of fatigue crack growth in rail steels. Three key 

acoustic parameters were focussed on, Energy, Duration and Counts. A good correlation was 

found between increasing crack growth and these parameters with increasing crack severity for 

both the R220 and R260 steels, and to a lesser extent with the cast manganese steel. This 

correlation shows the potential for applying these techniques to the monitoring of fatigue crack 

growth in the rail environment. 

It is proposed that these commercial systems are limited in their accuracy and capacity for real-

time monitoring as the acoustic data is packaged into hits removing much of the avaible data. 



 

An alternative approach is therefore proposed using a customised acoustic emission monitoring 

system that captures and analysis the complete acoustic waveform.  

The volume of data generated using the custom system necessitated the use of automated 

analysis techniques. Machine learning techniques were therefore developed in this work to 

analyse and classify the acoustic emission data generated during fatigue testing under 

laboratory conditions. Three signal processing techniques where tested; FFT, RMS and CWT 

with both shallow and deep neural networks developed for the FFT and RMS processing routes. 

High prediction accuracy was achieved using the custom system with the FFT shallow neural 

network achieving an accuracy of 87.8%. 
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Chapter 1 

Introduction 

 

1.1 Challenges facing the rail industry  

Rail networks provide an effective mass transport method for both goods and passengers with 

minimal environmental impact when compared with other transport modes (Asplund, 2016, 

Ekberg and Kabo, 2005, Hendy, 2015). In the year to March 2022 a total of 16.87bn tonne km 

of freight was moved a rise of 11.3% since 2021 and 1.8% from 2019 (Office of Rail, 2022). 

According to the Department for Transport Freight strategy, the transport of freight by rail 

emits 76% less CO2 per tonne·km when compared with road transport. As recent events have 

shown, delays in supply chains can have far-reaching consequences across a large range of 

industries and everyday life activities. As a critical part of these supply chains and a key 

passenger transport mode, the reliability of the rail network must be optimized to ensure 

minimum disruption. This is becoming increasingly urgent as passengers and goods volumes 

continue to climb and are predicted to continue this growth until at least 2030 (H. Gunel et al., 

2017, Yilmazer 2012, Vallely, 2015).  

At just over two hundred years old, the UK rail network is one of the oldest networks in the 

world (Freeman and Shaw, 2000). It is also one of the busiest in Europe, operating at close to 

its maximum capacity (Hendy, 2015, Yilmazer, 2012). Ageing networks require maintenance 

and renewal, which is expensive costing Network Rail £4.645bn in the period 2019-20, or 

approximately 42% of its total budget for that year (NetworkRail, 2021).  With the UK moving 

towards 24-hour rail network operations and with increasing axle loads, speeds and use of 

capacity, the already ageing network is under greater pressure with greater levels of wear and 
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reduced overnight downtime for routine maintenance. This with time will inevitably lead to 

greater failure rates, leading to increased costs to Network Rail in the form of fines and 

maintenance costs, economic impact due to delayed passengers and freight, and potentially 

could result in casualties and environmental damage. Any disruption due to failure in such a 

congested network will have knock on effects in the operations across the entire network, for 

example in 2015, 81,137 minutes in delays were caused on the London Northwestern south 

line due to the failure of rail crossings (Huang, 2017). Rail failure has also led to serious 

accidents such as the Hadfield rail accident in 2000 which led to the deaths of 4 people, the 

injury of over 70 others and an estimated economic cost of £1 billion due to the failure of rail 

infrastructure (Magel, 2011). 

It is critical that solutions are found to increase capacity on the network whilst maintaining the 

reliability and safety of this transport mode. In reality two approaches must be pursued in 

parallel to meet the increasing rate in demand; firstly, the expansion of the physical 

infrastructure, for which work is already underway in the form of major infrastructure projects 

such as Crossrail and High Speed 2 (HS2). The second approach is to upgrade and enhance the 

existing infrastructure to maximise its capacity, for example with the introduction of the 

European Rail Traffic Management System (ERTMS) allowing more trains to run closer 

together and the upgrade and electrification of lines to increase speeds, for example the Great 

Western electrification programme.  

Even with these two approaches, railway networks are still susceptible to failure of critical 

infrastructure. It is therefore vital that effective structural health monitoring, ideally in real 

time, is in place for evaluating key structural components. The monitoring of rail infrastructure 

has two key requirements; firstly, the accurate detection and location of faults before they 

become critical, and secondly to do so with minimal or no impact on the normal operation of 

said asset. This second requirement is becoming increasingly more important as rail networks 
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become more and more congested. Traditionally a period of downtime had been planned over 

night to allow access for monitoring and maintenance. This downtime is being steadily reduced 

in order to increase network capacity. With the time available for inspection and routine 

maintenance becoming gradually less and less, effective monitoring methods and maintenance 

schedules must be optimized to minimise the network access time required for inspection and 

maintenance activities.  

1.2 Rail Defects 

To monitor and effectively maintain the rail network the defects and failure mechanisms 

affecting the different structural components of the network must be known and understood.  

Rails experience high impact loads of up to 1200Nm-2 (Bonnett, 2005) and with increases in 

rolling stock axle loads this will lead to even greater wear rates of rails. The way in which these 

forces are applied to the rail depends on the section of the rail. In the case of straight track 

sections, the wheelsets have little to no lateral movement meaning that the force applied to the 

rail is primarily through rolling contact. Corners and crossings in the rail change the direction 

of the train leading to lateral forces being applied as well as impact forces particularly in the 

case of rail crossings in the area of the crossing nose.  

Undetected cracks can lead to rail failure whilst wear can change the optimum railhead 

geometry. Whilst changes in geometry of the railhead may not necessarily lead to crack growth, 

they are not less serious since they can lead to derailment of rolling stock due to poor adhesion 

at the wheel-rail interface. They can also result in excessive loads being applied to both rails 

and wheels resulting in higher levels and rates of rolling contact fatigue damage (RCF).   

Higher loads applied on the rail can result in accelerated damage evolution due to defects that 

may have already initiated or having been present due to manufacturing and installation 

processes. The problem of manufacturing defects used to be a more serious problem in old rail 
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steel grades due to lower manufacturing and control capabilities. However, improvements in 

the modern rail steelmaking coupled with stringent quality control, have almost entirely 

removed the occurrence of any manufacturing defects ensuring rails entering service are of 

much higher quality than in the past (Aglan & Fateh, 2007; Ph Papaelias et al., 2008). Nonetheless, 

modern rails entering service can be affected by a decarburised surface layer and the presence 

of MnS inclusions both of which will impact on the performance of the rail once in service 

(Fegredo et al., 1988; Garnham et al., 2010). This can be avoided through further improvements 

in the production of rail steel grades. 

Following the improvements in manufacturing quality, many of the defects traditionally found 

in plain rails, such as hydrogen cracking, have become less common whilst the hardness of the 

steel has increased. However, this change in hardness has resulted in certain other types of 

defects becoming more commonplace, such as RCF cracking. RCF is now the primary failure 

mechanism detected on the rail network. The study of Perez-Unsueta and Beynon found that 

the introduction of harder rail steels is partially responsible for the predominance of RCF 

(Perez-Unzueta & Beynon, 1993). Harder rails were developed to reduce wear however this means 

that cracks forming at the surface of the rail are not removed due to natural wear and are 

therefore able to grow up to the point where they will lead to failure. 

RCF is not associated with a single failure mechanism. It instead describes several different 

failure mechanisms, all associated with high cyclic loading of the surface of the rail and the 

wheel-rail interface leading to crack growth at the surface or below the surface of the rail 

(Grassie & Kalousek, 1997). Figure 1.1 shows examples of lipping, squats, gauge corner cracking 

(GCC) and shelling all of which are caused by RCF. 
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Figure 1.1 Examples of defects formed due to RCF on plain track rail heads showing; (a) 

lipping (b) squats (c) GCC and (d) shelling (Magel, 2011; NSWRailcop, 2019). 

 

Whilst these defects are the visible damage to the surface of the rail, it is difficult to evaluate 

the severity of damage below the surface. This subsurface crack growth is particularly 

dangerous as it is challenging to detect using conventional structural health monitoring (SHM) 

techniques, which means cracks are potentially able to grow to failure with little or no 

indication on the surface of the rail. Figure 1.2 clearly illustrates this; a large subsurface crack 

has grown and yet there is only a very small surface breaking defect that can be observed. 

  

(a) (b) 

(c) (d) 
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Figure 1.2 Image of subsurface crack growth caused by RCF running parallel to the running 

surface of the rail head. The subsurface crack is significantly larger than the small surface 

breaking defect that would be observable on the rail head (NSWRailcop, 2019). 

 

In contrast to the plain rail steels cast manganese steel crossings are still highly susceptible to 

manufacturing defects which can eventually lead to structural failure due to accelerated damage 

initiation and propagation (Peters, 2005). These manufacturing defects are generally in the 

form of carbides and inclusions, such as MnS, acting as crack initiation sites below the rail 

surface (Alyaz, 2003; Smith & Mackay, 2003).  

In its as cast state, cast manganese steel does not have the required hardness to withstand the 

high impact loads it undergoes. This problem can be rapidly overcome through the use of 

explosive hardening which rapidly work hardens the surface of the material. This reduces the 

wear damage to the head of these crossings. If explosive hardening is not applied lipping will 

occur until sufficient work hardening is achieved. This change in geometry requires subsequent 

corrective grinding. Even following explosive hardening, the high impact loads experienced 

by rail crossings lead to wear and changes in track geometry, an example of this can be seen in 

Figure 1.3. 

Surface breaking 

defect 
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Figure 1.3 Image showing wear damage to a cast manganese crossing clearly showing a 

change in rail head geometry. 

 

As with plain track rail steels, sub-surface cracks are able to grow in the cast manganese 

crossings. These cracks initiate at subsurface carbides. Once initiated they run parallel to the 

running surface as shown in Figure 1.4. Due to the high impact loads experienced by these 

components undetected cracks are of particular concern as they are able to grow rapidly and 

may lead to sudden failure. Although partial failure of plain rails can be tolerated, breaks in 

crossings can lead to serious rail accidents as they are critical to guiding the rolling stock 

wheelsets to change direction and thus, can result in derailment. 
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Figure 1.4 Subsurface crack (b)  in a section of cast manages steel taken from the head of a 

rail crossing. A large crack has grown parallel to the running surface with only a small surface 

breaking section visible (Lv et al., 2012). 

 

The defects discussed herewith, give a short overview of the defects found in rails. It is 

important to understand these defects in order to develop effective monitoring and maintenance 

schedules ensuring a safe and reliable rail network. Defects can be broadly categorized in one 

of the following three categories (Ph Papaelias et al., 2008): 1. Manufacturing defects 2. 

Defects due to fatigue or corrosion of the rail 3. Improper usage. Many years of work by the 

steel manufacturing industry has led to a reduction in manufacturing defects entering service. 

Improper use and handling particularly during installation is arguably the hardest to monitor, 

however proper training should minimize the risk of this occurring. The focus for rail SHM is 

therefore on the defects caused by fatigue and corrosion in service.  
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1.3 Current structural health monitoring techniques 

As with all critical infrastructure, rail infrastructure must be effectively monitored to maintain 

reliability and safety. There are many components encompassed within rail infrastructure each 

with different SHM techniques in use. In this section a brief overview of the current SHM 

techniques used on plain track and cast manganese crossings is given.  

Traditional models of mechanical failure assume a relatively predictable loading cycle. In the 

case of rails and crossings this is not the case.  Rails and crossings are stochastically loaded by 

a large variety of rolling stock operating in different lines. This leads to difficulties in predicting 

wear rates as traditional models are likely to overestimate the useful lifespan of the rails (Ding 

et al., 2016; Ringsberg & Bergkvist, 2003). This has meant that it is not uncommon for rails to fail 

before their predicted life span has been achieved (Zhu & Olofsson, 2014). That is not to say that 

models cannot be used to predict the current structural health and remaining useful life (RUL) 

of a component. Models must be developed that are adaptable with data of the real time 

structural health fed back into the model, updating it for example in the form of a digital twin. 

To achieve this effective SHM techniques must be developed that are able to accurately monitor 

infrastructure in real time.  

Current track monitoring techniques can broadly be divided into three categories: 1. Track 

mounted 2. Rolling stock mounted 3. Mobile manual methods. As no single technique is yet 

able to effectively detect all rail defects and combination of techniques is deployed (Amini, 

2016; Shi et al., 2017). 
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1.3.1 Track mounted SHM techniques 

Track-mounted systems are widely used for the monitoring of critical rolling stock 

components, such as hotboxes for monitoring axle bearings. For this application wayside 

monitoring is ideal as a single hotbox is able to monitor the axle bearings of all the trains as 

they pass. Effective SHM, however becomes more challenging when rail track monitoring is 

required. As the track and the wayside monitoring units are fixed in place, each unit can cover 

a finite monitoring area. Therefore, a large number of units is required to cover the entire 

railway network.  

The geometry of the rail and rolling stock wheel tread also presents a challenge for wayside 

monitoring. Any device mounted directly on to the rail or close to it must not interfere with 

any structure hanging from the rolling stock, this gives limits to the size and geometry of any 

attached device. Whilst plain track rail is relatively simple in geometry rail crossings are more 

complex with each one having a unique geometry. A further challenge to rail mounted systems 

is the type of rolling stock power units employed on the network. In some areas electrification 

is provided through rail. Therefore, any universal mounted system must be designed to operate 

on these powered rails without interference. 

The impact of wheels on the rail, the deflection of rails under load, and the load applied to a 

rail can be directly monitored using contact strain gauges attached on the rail web. Rail 

mounted mechanical methods can also be used to detect rail wear. A simple pressure plate can 

be used to indicate a drop in wheel height relative to the rail foot indicating rail wear (Figure 

1.5). This technique is however severely limited in the distance over which it can monitor, 

more advanced techniques using laser suggested by Barke and Chiu may have the capability to 

partially overcome this limitation (Barke & Chiu, 2005). 
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Figure 1.5 Schematic diagram of a pressure plate to monitor the relative distance between the 

head and foot of the rail using a passing wheel (Barke & Chiu, 2005). 

 

The main advantage of these track-mounted techniques is that once installed they can operate 

continuously without impacting on the running of the rail network. If a track-mounted 

technique can be developed that can effectively monitor the structural health of rails and 

crossings, then this would result in minimum impact on the rail network operation. Currently 

however, there is not an effective universal monitoring method of this type avaible so other 

monitoring methods are required for effective SHM. 

1.3.2 Rolling stock mounted SHM techniques  

Track-mounted sensors are limited to a particular area requiring a large quantity of sensors to 

monitor the entire network. One solution to this is mounting the sensors directly on to rolling 

stock. This allows a single sensor array to monitor a larger section of the network. As discussed 

in section 1.2 the primary damage mechanism to rail failure currently is RCF caused by rolling 

stock. It is therefore reasonable to assume that the structural health of the rail can be ascertained 

by monitoring crack growth only when rolling stock is passing over a particular area. If this is 

the case continuous monitoring of a rail section when no rolling stock is passing over is not 

required making the sensors on areas of the network where rolling stock is not currently passing 

at any given time effectively redundant. It may therefore be more cost effective to install 
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sensors directly onto rolling stock. However, this method does have drawbacks, since, for these 

methods to be effective they must have the capability to operate at high speeds and effectively 

monitor all defects.  In some cases, rolling stock mounted SHM techniques require specialized 

trains to operate from. These reduce the capacity of the network for freight and passenger 

rolling stock.  

In section 1.3.1 it is mentioned that the geometry and location of the sensors was important 

from track-mounted sensors to ensure no interaction or collision with the passing rolling stock. 

The same principle applies to rolling stock mounted SHM systems. The running surface of the 

rail head should be uniform allowing sensors to potentially run along this surface and non-

contact systems such as cameras can be mounted above this surface with to interaction issues. 

However, sensors that require access to the side of the rail are heavily limited. Cables bolts, 

fish plates and other rail infrastructure are commonly attached the side of the web of the rail 

causing interaction issues for any sensors running long side the rail. Side-monitoring systems 

would be further complicated when passing over crossing as the rail is no longer a uniform 

surface. Rolling stock-mounted sensors are not able to monitor the foot of the rail unless they 

can do so from the head of the rail.  

Due to these challenges rolling stock SHM systems have been limited to those monitoring the 

head of the rail as well as monitoring changes in track orientation, although ultra-sonic testing 

(UT) systems can provide information about defects in the rail web and rail foot, not however 

100% in the case of the latter.  

Sensors arrays have been deployed on a range of rolling stock, both freight and passenger, the 

flagship of rolling stock mounted SHM techniques used in the UK is Network Rail’s new 

measurement train (NMT) shown in Figure 1.6. As an adapted intercity high-speed train, the 

NMT is able to operate on high-speed networks with minimal impact on the operational 
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capacity by maintaining the network speed. This is a limitation of many rolling stock-mounted 

sensors, which require low speed operation showing a marked reduction in resolution and 

capability with increasing speed. 

 

Figure 1.6 Image of the flagship new measurement train used by Network rail to monitor the 

structural health of the rail network (New Measurement Train (NMT) - Network Rail, 2022). 

 

Figure 1.7 shows the effect of increasing speed on the resolution of a multi-sensory array 

developed by Aharoni et al (Aharoni et al., 2002). Figure 1.7 clearly shows the drop in 

monitoring resolution with increasing speed. Even where rolling stock-mounted systems 

require lower speeds than the normal operational speed of a line, they still have a use in the 

multi-approach method currently used for SHM. Where a high-speed system such as the NMT 

have detected a fault, a lower speed and higher resolution system can subsequently be deployed 

to confirm this.  
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Figure 1.7 Plot of the pixel size (resolution) vs the operational speed of multisensory array 

system mounted on either a rail surface slide array or a wheel monitoring array (Aharoni et 

al., 2002). 

 

Where a severe fault has been identified an emergency speed restriction (ESR) is likely to be 

applied to the section requiring monitoring and therefore the slower speed of these arrays will 

have minimal impact on the operational speed. In addition to this a slow speed monitoring asset 

will still cause less disruption than the track closure required for manual inspection of the rail 

which would otherwise be required. These manual methods and their impacts are discussed in 

section 1.3.3. 

The NMT is able operate at higher speeds than the arrayed system to which Figure 1.7 refers 

to, due the choice of systems it operates. The NMT’s primary focus is the detection of rail twist, 

changes in the rail head causing the wheel to bounce and the gauge of the rail. These faults are 

of relatively large and easy to detect using accelerometers measuring the rolling stock response 

to passing over the fault. Laser and image analysis are also used to detect damaged or missing 

assets. Whilst this system provides a good overview and detection of many faults it is limited 

in the detection of cracks and the subsequent classification of their severity. For example, a 
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RCF crack growing parallel to the running surface may become very severe before changes in 

the overlaying track geometry become detectable.  

Rolling stock mounted monitoring systems clearly have a place in rapidly monitoring large 

areas of track and for multi-asset monitoring of these areas, the NMT alone covers 115,000 

miles every year. These systems are however limited in their detection resolution and the types 

of failure they can detect. Greater resolution can be achieved by operating at lower speed to 

allow techniques such as ultrasonic arrays to be deployed. This however presents issues 

particularly on high-speed lines. The primary use of these systems is therefore for initial 

detection of faults, but they must still be used in conjunction with other SHM techniques to 

detect all critical faults. 
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1.3.3 Mobile manual SHM techniques 

Mobile manual techniques in this study refer to those techniques which are not permanently 

mounted on to rail assets and instead require maintenance personal to apply and operate them. 

This work is normally carried out on temporarily closed sections of a network to ensure the 

safety of the operatives, therefore these techniques have a large impact on the operation of the 

network when operating. Despite this clear disadvantage in comparison with line or rolling 

stock-mounted SHM techniques these methods are widely used. As many of the constraints 

that apply to permanent SHM assets do not apply. It is therefore possible to use a wider variety 

of SHM techniques, many of which are highly accurate, as they will not be limited in size and 

operational speed. Within the rail industry these techniques are therefore called in to confirm 

and classify a defect detected via other methods. 

As has been discussed the growth of subsurface cracks is of concern and challenging to monitor 

as they are able to grow with no clear surface indication of the severity. These subsurface cracks 

are by no means impossible to monitor with techniques such as ultrasonics, magnetic flux 

leakage, x-rays and eddy current testing used widely across a number of industries to monitor 

subsurface crack growth. Both ultrasonic testing (Figure 1.8), eddy current testing and 

magnetic flux leakage are currently used in the rail industry to confirm and classify rail defects 

(Magel, 2011). Table 1.1 shows a more complete list of techniques applied by Network Rail to 

the monitoring of the UK network. There are however certain situations where these methods 

are not suitable, and it is these which present particular risk to reliable rail monitoring as they 

are usually also challenging for other monitoring methods.  
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Figure 1.8 Track maintenance operative investigating the structural health of a rail section 

using ultra sonic techniques (Ultrasonic Rail Testing - Pandrol, 2022). 

 

Table 1.1 Table listing a number of manual non-destructive techniques used by network rail to 

monitor the structural health of the UK rail network, and the advantages and disadvantages of 

each technique. 

Technique Advantages Disadvantages 

Dye penetration inspection - Highly sensitive to 

small surface defects 

- Not material limited. 

- Usable on complex 

and large 

geometries. 

- Cheap. 

- Surface preparation 

required. 

- Requires direct 

access. 

- Only surface 

breaking defects 

detectable. 

- Sensitive to surface 

finish. 

Magnetic Flux leakage - Does not require 

surface cleaning. 

- Affective for 

corrosion detection. 

- Material must be 

ferromagnetic. 

- Probe distance must 

remain constant. 

- Detection speed 

fixed. 

- Cannot detect 

gradual changes 

Magnetic particle inspection - Detects surface and 

near-surface defects. 

- Under certain 

conditions can be 

detected visually. 

- May require surface 

preparation. 

- Only applicable to 

ferrous materials. 

- Direct access 

required. 
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Radiography - Not limited by 

material type 

- Can inspect 

assembled parts. 

- Subsurface and 

surface defects 

detectable. 

- Permanent record 

provided. 

- Minimal surface 

preparation required. 

- Requires access to 

both sides of 

component. 

- Time consuming. 

- Safe handling of 

radiation required. 

- Sensitive to applied 

direction. 

- Expert user 

required. 

- Expensive. 

Visual Inspection - Easy to carry out. 

- Cheap (no 

specialised 

equipment). 

- Expert required. 

- Influenced by 

environmental 

factors. 

- Direct access 

required. 

- Subjective. 

- Clean surface 

required 

Ultrasonic testing - Can detect non 

surface breaking 

defects. 

- Can be guided along 

structures. 

- Requires direct 

access. 

- Absorption limits 

penetration depth. 

- Changes in material 

will affect 

propagation. 

Automated computer vision 

inspection 
- Less subjective than 

visual inspection. 

- Easy to carry out. 

- Can be operated at 

higher speeds than 

visual inspection. 

- No expert operator 

required. 

- Sensitive to novel 

defects. 

- Direct access 

required. 

- Clean surface 

required. 

 

An example of this is ultrasonic testing. Ultrasonic testing can be both rolling stock-mounted 

and deployed manually. The advantage of deploying the system manually is that a specific area 

can be inspected in detail and high resolution is feasible. The probe can be handled in different 

orientations as required, which is one of the advantages of manual techniques. Many of these 

techniques are highly orientation-dependent meaning that crack in certain orientations may be 

missed if only rolling stock methods are used.  



19 
 

1.4 Acoustic emission (AE) monitoring 

No single current monitoring system is available to rail SHM personnel that is capable of 

detecting all defects effectively (Amini, 2016) and with no impact of the operational speed and 

capacity of the network, of particular concern are cast manganese crossings for which many 

current non-destructive testing (NDT) techniques cannot be applied due to its non-magnetic 

properties (Huang, 2016). To address this an array of NDT systems is deployed. To allow the 

rail network to achieve 24-hour operation without delays and cancellations due to monitoring 

and unexpected failure effective real time SHM techniques must be developed.  

AE monitoring has been widely used across different industries to monitor cracks within 

structures and interest has been growing in the use of this technique to monitor crack growth 

in real time in a variety of settings including the rail industry (Amini, 2016; Bhuiyan, n.d.; Roberts 

& Talebzadeh, 2003; Yu et al., 2011; X. Zhang et al., 2014, 2015). 

1.4.1 AE monitoring principles 

AE monitoring is the monitoring of changes in a material by detection and analysis of elastic 

strain waves traveling through a material generated by the rapid release of strain energy within 

the material (Bruzelius & Mba, 2004).   

AE monitoring is by no means a new technique with the underlying concept being understood 

since antiquity, that is that acoustic waves propagating through a material, historically detected 

as audible sound, indicate the presence of a crack growing within the material. Whilst in this 

form it is not possible to quantify the level of damage it is possible to guess at the severity of 

crack growth events by the amplitude (volume) of the audible sound. This principle still applies 

today with crack growth visible on AE waveforms as high amplitude spikes (Sikorski, 2013). 

Dunegan et al found that high-frequency low amplitude AE signals indicated a healthy system 
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whereas high amplitude spikes indicated a damaged sample and were detected just before 

failure on a unflawed sample (Dunegan et al., 1968). 

AE differs from other NDT techniques as it utilises data generated directly by the source 

allowing continuous real time monitoring of the structural health of an asset and without the 

need to have prior knowledge of the location of a defect as the location can be ascertained 

directly through the analysis of these signals (Swindlehurst, 1973). The scale of the sources of 

AE signals can vary from the monitoring of earthquakes down to micron level crack growth, 

the crystallisation of polymers and changes in microstructure during manufacture such a 

twinning (Bassim et al., 1994; Han et al., 2014; Yu et al., 2011). During fatigue crack growth 

in rail steel Shi et al reported detection of crack growth rates as small as 2.5X10-6mm/cycle 

(Shi et al., 201804). This accuracy ensures that models based on the AE data are highly accurate 

and are capable of detecting not just the presence of crack growing but also provide information 

of changes in crack growth due to the presence of defects. This level of detail allows that any 

models utilising this technique can go beyond simple crack growth dynamics but also adjust 

for the presence of inclusions which may affect the total life of the rail asset. 

To detect the AE signals at the surface of the material piezoelectric sensors are commonly used, 

although other methods such as fibre optic sensors can also be used (Willberry et al., 2020). 

Piezoelectric signals can either be wideband or resonant sensors differing in their frequency 

response to a signal this difference is shown in Figure 1.9. Wideband filters show a flat response 

across all frequencies to which they respond giving no distortion of the signal. In contrast 

resonant sensors give a higher response to signals as particular frequencies. Resonant sensors 

in this way distort the signal. Whilst on the face of it this seems counter-productive a correctly 

selected resonant frequency allows key frequencies to be amplified differentiating them from 

the background noise.  
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Figure 1.9 Frequency responses of (a) a wideband piezoelectric sensor (F50a - 200-800 KHz High-

Sensitivity Flat Frequency Response AE Sensor, by Physical Acoustics, n.d.) (b) a resonant 

piezoelectric sensor, showing the difference in the frequency response to an AE signal (PAC, 

2005). 

 

Piezoelectric sensors are mounted directly onto the surface on the material being monitored 

and convert the AE waves reaching the surface of the material into electric signals. These 

signals have a low amplitude and so must be amplified. This amplification is done using a pre-

amplifier and an amplifier. This ensures the complete AE signal is recorded with minimal loss. 

The generated electric signals are passed through a digital acquisition (DAQ) recorder to 

convert the analogue signals to a digital signal before being recorded by a monitoring computer. 

This set up is shown in Figure 1.10. By using two or more sensors the location of the source of 

the defect can be ascertained by comparing the time difference between the signal arriving at 

each sensor (Culwick, 2019). Recent work by Strantza et al and Zhang et al has sort to 

(a) 

(b) 
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overcome the need for more than one sensor in locating the source of the AE signal (Strantza 

et al., 2017; J. Zhang et al., 2016).  

 

Figure 1.10 Schematic diagram of AE monitoring equipment (adapted from animation by 

Physical acoustics (PAC, 2022)).  

 

Unlike conventional NDT techniques, which monitor the size and geometry of defects, AE is 

able to directly measure the stress intensity factor (Dunegan et al., 1968). This opens the 

potential for highly accurate models of the structural health of an asset through the development 

of a digital twin of that asset which is updated using the AE data giving a prediction for the 

remaining useful life of an asset (Roberts & Talebzadeh, 2003). Several authors have proposed 

that this may be possible without continuous monitoring instead using short bursts of AE signal 

(Ennaceur et al., 2006; Roberts & Talebzadeh, 2003). This work is focussed on the development of 

a continuous real time monitoring system that gives real time data to infrastructure managers. 

This ability of the technique to work with only short periods of data does however add 

redundancy to the system by ensuring the prediction model isn’t negatively impacted should 

there be a failure in the system leading to a loss in data. 
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1.4.2 AE analysis 

The way in which the AE signal is analysed depends on the way in which it is recorded. AE 

data can either be recorded as hit driven data (HDD) or time driven data (TDD), which in this 

case can also be referred to as parametric data and complete waveform data respectively. The 

difference in these approaches is shown in Figure 1.11.  

 

 

Figure 1.11 Representative examples of (a) the HDD from the commercial system, (b) and the 

TDD from the customised system. 

 

 

 

 

(a) 

(b) 
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HDD acquisition is both threshold and time controlled. A series of thresholds is set which the 

signal must be within for it to be recorded once these thresholds are met the signal is then time 

limited in terms of the signal acquisition time. This leads to a series of packaged data hits. 

Within these hits parameters can be recorded, commonly amplitude, counts, energy, duration 

and rise time. Figure 1.12 shows how AE amplitude, counts, energy and duration are calculated 

from an AE waveform using HDD acquisition. The most commonly used parameters are AE 

energy, Counts and Duration (Roberts & Talebzadeh, 2003). 

 

Figure 1.12 Schematic showing how the AE amplitude, counts, energy and duration are 

calculated from an AE waveform using an HDD approach (Uddin A.K.M, 2002). 

 

The thresholds for use in HDD must be carefully selected to ensure that the AE parameters are 

representative of the received AE signal and capable of detecting all crack growth events 

(Gagar et al., 2015), whilst excluding any excess data. These parameters will be different for 

each material and in some cases sample geometry (Yu et al., 2011).  

This approach has the advantage that it reduces the overall data recorded excluding large parts 

of the AE signal (Swindlehurst, 1973). These parameters are easily compared to crack growth 

and require little analysis to show the presence of a crack within a structure. Primarily, trend 

analysis is used for HDD and in many situations this is sufficient, to this end most commercially 
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available AE system make use of this approach (Sikorski, 2013). Current applications of AE 

use a HDD approach either continuously monitoring a system and triggering and alarm if there 

is an increase in any of the parameters, or where continuous monitoring is not utilized 

recordings are taken at intervals and compared to look for changes in the acoustic parameters 

which may indicate a change in material behaviour. These methods are in many applications 

effective and indicating the presence of a crack but not any indication of the nature of the crack. 

Further investigation would therefore be required using other monitoring methods to determine 

the structural health of the component. 

The HDD approach is however limiting in that only a small part of the potential data received 

is utilised this has made the analysis of crack growth stages in steel has proved challenging 

with a multi parameter approach required (Ould Amer et al., 2013). 

To set the frequency threshold the required frequencies must first be known. As with all 

thresholding the aim of frequency thresholding is to remove background noise whilst 

maintaining the relevant AE signal. The frequencies corresponding to crack growth differ 

between materials, with the frequency range for each material ascertained through the use finite 

element analysis (FEA) or through experimental data. Table 1.2 shows the AE frequency 

ranges obtained from studies into a range of materials. It can be observed in Table 1.2 that even 

for the same material the frequency ranges are not set with each report differing slightly in the 

range selected. It is generally agreed that the AE frequency band associated with defect growth 

is 20 kHz-1200 kHz (Vallen, 2002). Some studies have further refined this to identify specific 

frequency ranges associated with different crack behaviours. For example, under real world 

conditions Li et al found that AE signals generated during crack propagation had a frequency 

range of 400-650 kHz, whereas those generated during crack closure were in a lower frequency 

range of 100-350 kHz (D. Li et al., 2017).  
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Table 1.2 Frequency ranges reported in previous studies for a range of materials. 

Material/Application Min 

(kHz) 

Max 

(kHz) 

Other info Source 

Aluminium: Al-2024 

T3 test tokens 

250 400 Crack surface 

interaction: 30-100 kHz 

centre frequency 350 

kHz frequencies 

associated with all 

sources up to 600 kHz 

(Bhuiyan et 

al., 2018) 

General 100 500 Can range 20 kHzto1 

MHz changes in 

frequency 20-30kHz dur 

to changes in lubricant 

20to 100 will  

(Amini, 2016) 

General 100 300  (Swindlehurst, 

1973) 

General 20 1 MHz  (Ono, 2011) 

rail 20 1MHz Most applications100-

500 

(Gunel et al., 

2017) 

Ferritic steel 50 

200 

200 

200 

250 

500 

-Sample deformation 

-Brittle crack growth 

-Transgranula cleavage 

of ferrite 

(Kostryzhev et 

al., 2013) 

Wheel defects 140 

140 

300 

220 

280 

650 

- Noise 

- Defects 

- Distinct defects 

(X. Zhang et 

al., 2015) 

 20 1MHz  (Bruzelius & 
Mba, 2004) 

 100 150  (J. Zhang et 

al., 2016) 

Axle bearings 150 250 Wayside detection (Amini et al., 

2016) 

6061-T6 15%SiC 

particulates 

125 250  (Shan & Nayeb-
Hashemi, 1999) 

Cast manganese 100 700  (Shi et al., 

2017) 

Rail steel 100 1000  (X. Zhang et 

al., 2014) 

Rail steel 20 1000  (D. Li et al., 

2017) 

R260   Filtering 100-1000 and 

200-1000 in a nosier 

environment 

(Shi et al., 

201804) 

316 stainless 250 500 Applied as a filter (Moorthy et 

al., 19941101) 

Switch rail 100 150  (J. Zhang et 

al., 2016) 

Full pearlitic 50 

200 

200 

250 

- deformation 

- brittle fracture 

(Kostryzhev et 

al., 2013) 
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0 50 - ductile fracture 

Fully ferritic 0 50  (Kostryzhev et 

al., 2013) 

Dual phase 0-100, 

150 

550 

 

100 

175 

600 

 

120 

- Deformation 

- Brittle crack 

growth 

- Ductile fracture 

(Kostryzhev et 

al., 2013) 

Roller bearings 50 450 - 175 key 

frequency for 

failure amplitude 

increases as the 

crack grows 

(Eftekharnejad 

et al., 2011) 

 

Relying on frequency thresholding alone to reduce background noise is only suitable where the 

background noise is constant. This is not the case under actual world conditions therefore, other 

approaches are required to remove background noise (Sikorski, 2013). TDD is only time 

controlled, although in reality some thresholds are applied such as minimum amplitude and 

frequency bands to remove back-ground noise, the TDD approach therefore records the 

complete AE waveform rather than AE parameters. By capturing the complete waveform less 

of the AE data is filtered out, thereby providing more data from which to ascertain the structural 

health of a material. More complex analysis is required for TDD compared to HDD requiring 

large data computational capability. This present study for example will utilise machine 

learning for the analysis of the TDD waveforms. 

All methods used to analyse the acoustic waveform seek to extract key features that are 

indicative of the current structural health of the material and the crack growth behaviour. An 

important challenge to this is the extraction of those features only related to the behaviour being 

is monitored and not those associated with background noise. The way in which this is done 

various depending on the setting in which the data was collected. In a laboratory setting the 

loading conditions can be tightly controlled and background limited. When applied to in field 

operation in rail environment this is not possible with loading being stochastic and source of 

background noise uncontrollable and of varying amplitude.  
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Mathematical approaches are predominantly used to extract signal features. Spectral kurtosis 

is a widely studied mathematical approach. using the principle that AE signal are short bursts 

of energy spectral kurtosis has been successfully used to extract the AE signals from 

background noise under laboratory conditions (Amini et al., 2016; Antoni & Randall, 2006; B. Chen 

et al., 2014; Eftekharnejad et al., 2011; Sawalhi & Randall, 2004). The extracted signals can then be 

further analysed to predict the structural health condition. An alternative approach is to analyse 

the complete waveform and decompose that signal before extracting key features. Examples of 

this approach are to apply Fast Fourier transform (FFT), Route mean Square (RMS) or 

Continuous wavelet transform (CWT) to the complete signal and then analyse the resulting 

data to extract features (Amini, 2016; Vallely, 2015). These approaches have successfully been 

used to extract indicative features particularly in detecting the presence of defects (Papaelias 

et al., 2018).  

All these mathematical approaches extract key signal features however require further analysis. 

These features still represent a large volume of data which must be analysed Siddique et al and 

Jayaswal et al both proposed the use of machine learning approaches to analyse these signals 

(Jayaswal et al., 2011; Siddique et al., 2003). Recent work has looked into this with both 

Suwansin and Phasukkit, and Chen et al developing machine learning methods for use in the 

rail industry (S.-X. Chen et al., 2021; Suwansin & Phasukkit, 2021). There has been a lot of interest 

in the use of these approaches for the analysis of failure in composites. These studies have 

successfully classified different failure methods in these materials (Muir et al., 2021). Some 

success has already been achieved in classifying crack growth in steel with Barile et al able to 

use AE to distinguish between three states; crack initiation, stable crack growth and unstable 

crack growth (Barile et al., 2015). Shan et al and Mohammad et al also separated the different 

stages of crack growth by applying Weibull based models to look at the distribution of signals 

at the different stages (Mohammad et al., 2014; Shan & Nayeb-Hashemi, 1999). 
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The prediction of the structural health of a material using AE monitoring relies on the elastic 

strain waves reaching the AE sensor being indicative of the signal generated at the source. Rails 

are ideally suited this with the elastic stress waves able to travel long distances with very little 

attenuation (J. Zhang et al., 2016). There will always however be some attenuation of the AE 

signal limiting the maximum distance a sensor can be from an AE source (Moore et al., 2005). 

Attenuation of the AE signal within a structure is caused by changes in geometry, dispersion 

of the signal, scattering and diffraction, and energy loss (Moore et al., 2005).  

1.4.3 AE Structural health monitoring in the rail industry 

With the growing interest in AE for SHM research has relatively recently turned to the 

application of this technique to the rail industry. In 2004, Bruzelius and Mba found no 

publication of the application the AE to rail defect detection although monitoring of crack 

growth in steels was reported by Bassim in 1984 (Bassim et al., 1994). Since then, the body of 

work has evolved with many aspects of this application now being explored (Bruzelius & Mba, 

2004).  

The testing and development of monitoring systems within the live rail environment is 

challenging. Firstly, access to the rail is tightly controlled due to safety concerns. Secondly the 

ability to control the conditions under which testing is carried out is limited. For monitoring 

systems to be effective especially those based off pattern recognition all crack growth 

conditions must be monitored. However, predicting where a failure may initiate is not possible. 

Therefore, short of continuously monitoring the entire network and then forensically assessing 

any failure it is not possible to train and test a system at least initially on a live system. This 

has led to most studies to date focussing on studying AE for rail assets under laboratory 

conditions.  

In comparison with the actual rail environment, laboratory opens the opportunity for carefully 

controlled conditions, artificially induced defects, and effective control on the AE acquisition. 
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Lindley et al and Li et al. both utilised these control methods to separate the acquisition of 

signals during crack propagation and crack closure during fatigue crack growth allowing them 

to study the AE signals linked to these behaviours (D. Li et al., 2017; Lindley et al., 1978).  

Lindley et al. achieved this separation by the use of voltage gates recording AE signals only 

during crack propagation.  

Only recording AE signals during crack propagation has been explored by a number of authors. 

Even with voltage gates defining when there is crack propagation as opposed to just loading of 

the sample is challenging. To address this, several studies have been carried out, as when the 

sample is in the top 20% of its loading cycle (Rabiei & Modarres, 2013; Roberts & Talebzadeh, 

2003; Yu et al., 2011).  

Li et al took a different approach (D. Li et al., 2017), to make the analysis capable of future 

practical implementation they used a wavelet power index to separate the crack propagation 

and crack closure signals and is defined as: 

 

Equation 1.1 Wavelet power index equation used by Li et al to sperate crack propagation and 

crack closure signals. Where B1 and B2 are the frequency bands 100-350 kHz and 400-650 kHz 

respectively. With the former relating both the crack propagation and closure, the later related 

to just crack closure AE events (D. Li et al., 2017). 

 

Once separated they developed a crack length classification method based on crack closure AE 

waves finding a positive correlation between the AE count rate and the crack length. Of 

significance to the development of a robust SHM system this method was found to be effective 

without prior knowledge of the structural health of the material. Li et al. also closed the window 
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of crack growth to the top 10% of loading and crack closure to the bottom 10%, this contrasts 

with 20% defined by the other studies discussed. 

Despite advances in laboratory experimentation in the field of AE monitoring very few field 

trials have been carried out to verify the effectiveness of these approaches under real world 

conditions. It is clear that those that rely on voltage gates and prior knowledge of the structural 

health of the material are limited in their application. These studies do however provide data 

which is useful in understanding and development of practical systems. Recently studies have 

begun testing the use of AE systems on live networks including work by the author.  

Both Huang and Grosse et al. tried to overcome attenuation limitations by characterising 

frequency patterns associated with defect growth (Grosse et al., 2004; Huang, 2016). By 

analysis using spectral coherence between pre-characterized patterns and the signals detecting 

the variation in the signal can be ascertained. This method proved effective under actual 

operational conditions proving that despite the increase in noise level when compared with the 

laboratory and greater distances between the source and the sensor AE monitoring can still be 

effective. 

Vallely tested the effectiveness of AE system to detect crack growth in rail wheelsets and cast 

manganese crossings (Vallely, 2015). By making use of rail sidings, they were able to induce 

artificial defects into rolling stock wheels and bearings. An AE system was then able to detect 

the presence of these defects using waveform analysis. Instead of artificially inducing defects 

into cast manganese crossings a target approach was used to select crossings near the end of 

their life. Using this approach Vallely successfully classified the crossings as either healthy or 

damaged.  

These advances in the use of AE on live rail combined with the laboratory experimentation 

have proven AE has the potential to be the basis for a real time structural heath monitoring 
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system. For implementation on a network work is still required, the system must go beyond the 

detection of a crack, the basis for current field trials, and classify the length and therefore 

severity of a defect. This has been successful under specific laboratory conditions, but these 

studies have struggled to make the step required to practical use. Work is particularly needed 

in the automation of the AE analysis removing the need for each signal to be analysed by an 

expert user. Machine learning approaches are providing the backbone, for example the work 

of Chen et al who used transfer learning to analyse AE waveforms for rail condition monitoring 

(S.-X. Chen et al., 2021). 
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1.5 Aims and Objectives 

This study aims to further the development of a real-time structural health monitoring system 

for use on rail infrastructure, using Acoustic Emission (AE) techniques. To achieve this, this 

study will use two different AE monitoring systems. Firstly, a commercially avaible AE system 

procured from Physical Acoustics and secondly a custom system developed at the University 

of Birmingham. 

The commercial system will be used to assess the overall capability of AE as a monitoring 

technique for three steels used for the rails, R220 and R260 used for plain track and cast 

manganese used for rail crossings. The custom AE system will then be used to record the 

complete AE waveform as opposed the packaged acoustic data recorded by the commercial 

system. Analysis and classification methods will then be investigated leading to the 

development of a machine learning algorithm capable of classifying the severity of a crack 

during fatigue crack growth. Finally, field tests will be completed to confirm the effectiveness 

of this system under real world conditions. 
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Chapter 2 

Experiments 

This work uses several different approaches for analysing the AE data generated during fatigue 

testing under laboratory conditions. In all cases, the same data collection methods and 

equipment were used. Two primary data collection systems were used, a commercial system 

provided by Physical Acoustics (PAC – now Mistras) and a custom system developed jointly 

by Krestos Limited and The University of Birmingham. Laboratory testing was completed at 

The University of Birmingham. Whilst there is greater background noise on the live rail 

network the AE signals generated from crack growth in both scenarios is expected to be the 

same allowing transfer of knowledge. Initial work on testing the system under real world 

conditions was carried out, the methods used for this are also described in this section. 

2.1 Steel composition and properties 

Understanding the properties and microstructure of the steels being investigated is important 

as the AE signals generated by each material will be different, as the features and defects which 

a growing fatigue crack will interact with are dependent on the microstructure of the material 

being monitored. As this work seeks to develop a system that can monitor crack growth and 

crack growth behaviour, the expected microstructure and defects must be understood. Whilst 

by no means exhaustive, particularly in the case of the cast manganese steel, below is detailed 

the composition, properties and commonly encountered defects in the steels investigated in this 

study, this is in addition to those defects more generally found in rails detailed in section 1.2. 

Three different steel grades which are widely used across the UK rail network have been 

investigated in this study; cast manganese steel, used in manufacturing rail crossings, and R220 
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and R260 steel grades commonly used for plain track rails. Samples of cast manganese steel 

were taken from a hot-rolled 10 mm-thick plate procured from West Yorkshire Steel. For both 

R220 and R260 steels samples were cut from the web of rails removed from service and 

provided by Network Rail. The compositions of these steels are provided in Table 2.1. 

Table 2.1 Table showing the composition in weight percentage of three steels used in this study. 

These values are defined by EN13411 for the R220 and R260 steels and ASTM A128 for the 

cast manganese steel (ASTM international, 2017; BritishSteel, 2018). 

 Al C Cr Mn N P S Si V 

R220 ≤0.03 0.5-0.6 ≤0.15 1-1.25 
Not 

specified 
≤0.025 

0.008-

0.035 
0.2-0.6 ≤0.03 

R260 <0.004 0.6-0.82 <0.15 
0.65-

1.25 
<0.008 <0.15 

0.008-

0.030 
0.13-0.6 <0.030 

Cast 

Manganese 

Not 

specified 

1.05-

1.35 

Not 

specified 
≥11 

Not 

specified 
≤0.07 

Not 

specified 
≤1 

Not 

specified 

 

2.1.1 Cast manganese steel Crossings 

In its hot-rolled plate form, cast manganese steel is soft and ductile but rapidly becomes work-

hardened when loaded (Bal, 2018; Smith & Mackay, 2003). This leads to its superior hardness 

values when compared with plain track steels such as R220 and R260, giving the material high 

impact and wear resistance (Schilke et al., 2010). For this reason cast manganese steel is widely 

used across a range of industries for critical components. In the case of the rail industry, it is 

used for the construction of rail crossings as shown in Figure 2.1 (Rommelaere & Maujean, 2013) 

which are subject to high impact loads regularly. These impact loads can be up to 5 times that 

encountered in plain track rails, making the use of a high hardness material necessary (Guo et 

al., 20130730). 
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Figure 2.1 In service cast manganese crossing showing high levels of wear 

 

The high Mn content in cast manganese steel leads to a predominantly austenitic microstructure 

as shown in Figure 2.2. This is due to the fact that Mn is austenite stabiliser all the way to room 

temperature. Depending on the installation process and operating conditions a wide range of 

mechanical properties can be achieved, examples of which are summarised in Table 2.2. Most 

notably is the high hardness value that can be achieved with hardness values up to 589 HV 

recorded (Alyaz, 2003). 

 

Figure 2.2 Micrograph of the microstructure of cast manganese steel used in this study showing 

the fully austenitic microstructure (Kongpuang et al., 2021). 
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Table 2.2 Cast manganese steel displays a variety of mechanical properties depending on the manufacturing, pre-processing and loading 

conditions. This table summarises a range of these properties reported in the literature. As many of these studies have investigated work hardening 

primarily, a key mechanical property of this steel, they have only reported hardness values (Culwick, 2019). 

Source Surface 

Hardness 

 

Yield 

strength 

(MPa) 

Elastic 

Modulus 

(MPa) 

Tensile 

strength 

(MPa) 

Fatigue 

limit 

(MPa) 

Elongation 

(%) 

Toughens Work 

hardening 

range yield to 

ultimate tensile 

(%) 

Notes 

(Eck et al., 2014) 400 HV 384 201x103 724 141 0.07   Obtained from static 

and strain-

controlled cyclic 

stress-strain curves 

at room temperature 

(Peters, 2005) 370-385 

HB 

345-414 186x103 965 265 35-40 - 200 Hardness following 

explosive depth 

hardening on the 

network. All other 

properties are as 

manufactured  

(Havel, 2017) 500 HB 303.37-

393 

- 551.58-

999.74 

- 15-40 - - Hardness maximum 

they were able to 

achieve. All other 

properties as 

manufactured given 

as an average from 

several sources. 

(Chen et al., 2018) 471 HV 409 - 861 - 37.6 - - Results following 

work hardening 
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(Hadfield, 1914) 550 HB - - - - 30-50 - - Maximum hardness 

reported at that time 

all other properties 

in paper are as cast 

(Rommelaere, 2013) >352 HB - - - - - - - Explosive hardened  

(Guo et al., 2013) 510 HV 1000 - - - - - - All properties in 

service following 

work hardening 

(Harzallah et al., 2010) Max 600-

800 HV 

400 - 1000 - - - - Hardness following 

work hardening all 

other properties as 

manufactured 

(Lv et al., 2012) Max 620 

HV 

- - - - - - - In service 

(Smith and Mackay, 

2003) 

350-400 

HB 

500 HB 

can be 

achieved 

- - - - - 296-357 - Hardness taken 

from explosive 

hardening in service 

(Zhang et al., 2010) 395 HB 660 - - - - 62 Jcm-2 - Gives varying range 

of hardness 

depending on the 

number of explosive 

shocks applied 

value given her is 

after three shocks. 

All other values 

given after 

hardening 

(Zhang et al., 2012) 39 HRC - - - - - - - Hardness given 

following explosive 

hardening 
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(Zhang et al., 2008) 220 HB 

pre 

hardening 

390 HB 

achievable 

with 

hardening 

Normally 

360 HB 

- - - - - - - - 

(Alyaz, 2003) 550 HB 

found 

after 

service to 

be 495-

535 HB 

345-393 - 690-

1000 

- 30-65 - - Hardness as in 

service all other 

values given as 

manufactured 

(Norberg, 2010) 275-366 

HV  

- - 755-859 - - - - All values following 

explosion hardening 

(Shewmon and Zackay, 

1961) 

580 HV 1199.69 1544.43 - - 19 - - Shock wave given 

by impact with a 

copper driver plate 

(WestYorkshireSteel) 200 HB 

can be 

work 

hardened 

to 500 HB 

320 - 880 - 40 - - As cast conditions 

(So and Nagahiro, 

1986) 

>250HB - - - - - - - Patent for explosive 

hardening in 

crushing 

applications 
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The large variation in mechanical properties of the cast manganese steel shown in table 2.2 

point the sensitivity of this steel to the conditions under which it is manufactured and installed, 

and the final use of the material. This inconsistency in properties is a benefit of this steel and 

is can be tailored to each use case, but also a problem in that the properties are easily changed 

and therefore is components manufactured from this steel are susceptible to sub optimum 

mechanical properties. The large variation in mechanical properties is mainly due to the rapid 

work hardening behaviour of this steel. 

The exact mechanisms behind this rapid work hardening behaviour are not yet fully understood 

(Kang et al., 2014). However, a wealth of previous studies have shown that this is likely 

achieved through a combination of stacking fault formation, dislocation slip and twinning 

(Alyaz, 2003; Bal, 2018; Gumus et al., 2016; Karaman et al., 2000; Wen et al., 2014). It is 

important that the work-hardening behaviour is understood when developing a novel NDT 

method to monitor the structural health of rail crossings in real time, as it will have a direct 

effect on the materials fatigue crack growth mechanisms and wear resistance. 

Kang et al. studied the effect of work-hardening on fatigue crack growth for cast manganese 

steel under fatigue loading (Kang et al., 2014). By showing the presence of dislocations on the 

fatigue fracture surface during both high and low cycle fatigue (LCF and HCF respectively), 

they found that crack growth was predominantly arising by plastic strain and dominated by the 

build-up of short-term stress fields around C-Mn clusters. This creates internal stress due to the 

interaction of dislocations with the C-Mn cluster resulting in a high density of tangled 

dislocations (Culwick, 2019). This in turn leads to rapid crack growth. Kang et al. further 

highlighted the observations of other studies such as that by Schilke et al. that cast manganese 

steel does not show normal work-hardening behaviour under cyclic loading. It instead initially 

hardens before softening to fracture (Schilke et al., 2010). This behaviour creates a challenge 

when attempting to model fatigue crack growth behaviour using traditional models. 
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Work-hardening of rail crossings can occur during service or through pre-loading methods such 

as explosive hardening, due to the rapid work-hardening capability of cast manganese steel 

(Rommelaere & Maujean, 2013). Pre-loading is often used in the case of rail crossings as the as 

cast manganese steel would wear at a greater than expected rate, due to its soft ductile 

properties, leading to a lower operational lifetime and potentially to premature failure of the 

crossing and increased maintenance requirements. There is also a significant financial burden 

linked to the failure of rail crossings with each crossing custom built to each location and 

costing up to £30k excluding installation costs which can run into the several hundred thousand 

pounds (Huang, 2017).  

During the casting the cast manganese steel can interact with the mould reducing the Mn 

content at the surface. This both reduces the wear resistance and work-hardening capability of 

the affected surface region on the steel (Smith & Mackay, 2003). This initial wear leads to changes 

in geometry and lipping, Figure 2.3, requiring grinding of the crossings within the first month 

of service, correcting the geometry of the crossings and exposing the hardened steel below 

(Harzallah et al., 2010). Grinding is typically carried out according to the total tonnage passing 

over the crossing and whether the crossing has been explosive hardened prior to use 

(Rommelaere & Maujean, 2013). Pre-hardening the crossing reduces the corrective grinding 

required however does not remove the requirement as the Mn poor surface will not harden 

sufficiently. 
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Figure 2.3 Example of tongue lipping on the contact surface of the rail head. The approximate 

original geometry is shown by the dashed line (Schilke, 2013). 

 

Unlike most steels cast manganese steel is non-magnetic since it is austenitic (Hadfield, 1914). 

This presents a challenge in detecting defects both before and during service and is further 

compounded by their complex geometries. Magnetic flux leakage (MFL) is commonly used to 

monitor internal crack growth. However, being non-magnetic this is not possible for cast 

manganese crossings. As noted previously whilst imaging can be used to detect surface 

breaking cracks, it is not able to give information on how far the crack propagates through the 

rail and clearly is unable to detect non surface breaking cracks. In cast manganese crossing 

cracks typically initiate internally running parallel to the load surface, this is shown in figure 

2.4 (Lv et al., 2012). Without the effective monitoring of these internal defects, large and 

potentially critical cracks may occur without prior warning, leading to unexpected failure of 

the crossing (Lv et al., 2012). According to Peters the failure of these crossings is mainly due 

to manufacturing defects in the form of non-metallic inclusions and carbides at grain 

boundaries which act as initiation sites for crack growth (Alyaz, 2003; Peters, 2005; Smith & 

Mackay, 2003).The design life for crossings is typically 20 years. However, as quality control 

after installation and monitoring is limited during service, some crossings have been found to 
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fail in as little as 3 years from installation, possibly due to the presence of wet beds in the area 

of installation (Huang, 2017).  

 

Figure 2.4 Micrograph of a subsurface crack growing parallel to the loading surface of a cast 

manganese crossing nose due to RCF. Compared to the overall length of this crack only a 

small portion is visible on the surface making conventional monitoring challenging (Lv et al., 

2012). 

Crossings allow trains to switch between lines and therefore, form bottlenecks on the network. 

Failure of a crossing has a significant impact on regular operations, resulting in high levels of 

disruption. Therefore, cast manganese crossing condition has wider reaching effects when 

failure occurs than in the case of normal plain rails. This combined with their high cost and no 

effective NDT method avaible makes the development of a novel real time monitoring method 

highly desirable.  
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2.1.2 R220 and R260 plain track 

R220 and R260 grade steel are both used widely and interchangeably used for manufacturing 

plain track rails. These two steels have a very similar composition Table 2.1 and microstructure, 

primarily pearlitic with very fine lamella spacing (Yilmazer, 2013). According to the work by 

Perez-Unzueta and Beynon this fine lamella spacing is the key contributor to the wear 

resistance of rails manufactured from R220 and R260 steel (Perez-Unzueta & Beynon, 1993). 

They do however differ slightly in their mechanical properties as shown in Table 2.3.  

Table 2.3 Table giving the mechanical properties of the R220 and R260 steels as defined by 

EN14811   (BritishSteel, 2018) 

 

 

 

 

As with the cast manganese steel grade, these steels are used for their work-hardening during 

service helping to increase their wear resistance, resulting in an increased service lifetime 

(Eden et al., 2005; Magel, 2011). The mechanisms of work-hardening in these materials is 

better understood than that of cast manganese steel. In these steels it is primarily due to the 

distortion of the pearlitic lamellae as shown by the work of Eden et al in Figure 2.5 (Eden et 

al., 2005).  

 

 Vickers 

Hardness 

Tensile strength (MPa) Elongation 

(%) 

R220 222-260 ≥770 ≥12 

R260 260-303 ≥880 ≥10 
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Figure 2.5 SEM micrographs of an R220 steel sample, showing the typical pearlitic lamella 

microstructure of both R220 and R260 steel before service loading (a) and following distortion 

of the lamella structure under service loading (b) indicated by the red arrow (Eden et al., 2005). 

 

Much like the cast manganese steel these steels suffer from sub-optimal properties at the start 

of service leading to rapid wear, and it is due to a similar manufacturing fault that this occurs. 

During manufacture the outer layer of the steel interacts with the surrounding environment 

leading to decarburisation and therefore the formation of ferrite at the surface. This ferritic 

layer is softer than the expected pearlitic microstructure and leads to a lower-than-expected 

wear resistance. The ferritic layer is removed during routine grinding of the rail, used to correct 

geometry defects. It is possible to grind the rails before they enter service. However, this is not 

considered economically beneficial and is therefore not used routinely (Cannon & Pradier, 1996; 

Magel, 2011). Grinding must be carefully tailored to correct any defects whilst maintaining the 

work hardened surface layer which the work Garnham et al found to be to a depth of 5 mm 

(Garnham et al., 2010). As the samples used in this study were taken from the central part of 

the rail web this decarburised layer is not present and therefore the conclusions reached are 

based on that of a rail in service that has undergone routine grinding. 

As discussed in section 1.2 a wealth of work has been carried out to reduce the presence of 

defects in rail steel. Despite this work defects remain present and lead to premature failure of 

the rail. In R220 and R260 steel the presence of MnS inclusions, shown in Figure 2.6, have 

been found by both Fegredo et al and Garnham et al to lead to the formation of cracks within 

the rail (Fegredo et al., 1988; Garnham et al., 2010). MnS inclusions are soft and ductile in 

comparison with the surrounding pearlitic microstructure and are elongated in the 

manufacturing rolling direction. This elongation is observed in the samples used in this study 

as shown in Figure 2.6. Like the pearlitic microstructure these inclusions become distorted 



46 
 

during service loading, leading to flattening and elongation of these inclusions along the 

loading direction and shown in Figure 2.7.  

 

Figure 2.6 SEM micrograph showing the MnS inclusions in a pearlitic rail sample that have 

been elongated in manufacturing rolling direction. 

 

 

Figure 2.7 SEM micrograph of elongated MnS inclusions near the rail head surface taken 

from an in-service rail (Garnham et al., 2010). 

As already highlighted one of the main issues for the NDT of cast manages steel is the lack of 

magnetic properties which makes many conventional NDT methods redundant. R220 and R260 

are magnetic and therefore do not present this challenge. As discussed in section 1.3 there are 

many techniques currently used to inspect plain line rail however, these all have their own 

challenges making no one technique suitable. The directionality and non-continuous nature of 

MnS 

MnS 
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these techniques proves particularly challenging in the case of cracks propagating along MnS 

inclusions. These cracks are highly directional and propagate rapidly below the surface 

reducing the effectiveness of inspection systems such as the new measurement train (NMT). 

Novel NDT methods are therefore needed which can detect this crack growth effectively and 

in real time to reduce the incidents of unexpected rail failure. 

2.2 Laboratory investigation 

Under laboratory conditions, bending samples made from all three steels were subjected to the 

same testing regime and conditions. All samples were machined to dimensions 120x10x20 mm 

and spark wire eroded using a 0.1 mm diameter wire, to form a V-notch at their midpoint to a 

depth of 2 mm as shown in Figure 2.8. 

 

Figure 2.8 Schematic representation of the sample geometry used for all steels under 

laboratory fatigue testing. Each sample has a geometry of 120x10x20 mm with a v-notch of 

depth 2 mm. 
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2.2.1 Pre-cracking 

To ensure the presence of crack to monitor all samples are pre-cracked using an Amsler 20 kN 

vibraphone. During this process a force of 0.85-8.5 kN was applied to the R220 and R260 steel 

samples, and a force of 0.65-6.5 kN was applied to the cast manganese samples both at a 

resonant frequency and under three-point bending conditions. The presence of an initiated 

crack is confirmed using replicas of the sample surface being observed at regular intervals. As 

soon as a crack has been detected this process is stopped.  

Once complete, this initial crack length was measured optically from both sides of the sample 

with the final initial crack length taken as an average of these measurements. The initial crack 

length in this study is defined as the distance from the surface of the sample to the tip of the 

crack as observed from the surface as shown in Figure 2.9. 

 

Figure 2.9 Micrograph taken at a magnification of 100x showing the spark wire eroded V notch 

and the pre-crack. The initial crack length is taken as the distance from the surface of the 

sample to the pre-crack tip (Culwick, 2019). 
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2.2.2 Fatigue testing 

To simulate loading conditions experienced by in service rails samples were fatigue tested 

under three-point bending conditions. A force of 0.65-6.5 kN was applied under a loading 

frequency of 1 Hz for the R220 and R260 samples and a force of 0.45-4.5 kN at a loading 

frequency of 5 Hz for the Cast manganese steel samples, using a DARTEC 50 kN servo-

hydraulic universal testing machine. Crack growth was monitored using Direct Current 

Potential drop (DCPD), with the actual crack length calculated using Johnson’s Formula, 

Equation 2.1 (Johnson, 1965). All samples were taken to failure before being overloaded to 

expose the crack surface. The experimental set up is shown in Figure 2.10 complete with the 

AE monitoring system described in section 2.2.3. 
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Equation 2.1 Rearrangement of Johnson’s formula (Johnson, 1965) giving the crack length a 

where; W is the width of the sample, y is the half sensor distance, V is the voltage, V0 is the 

initial voltage and a0 is the initial crack length. 

 

Figure 2.10 Laboratory set up of fatigue test samples showing the arrangement of DCPD 

monitoring equipment and AE monitoring sensors. 
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2.2.3 Acoustic emission monitoring 

The AE signals generated during fatigue testing were detected and converted to an electrical 

signal by two R50α Piezoelectric sensors procured from Physical acoustics. These were 

surface-mounted and acoustically coupled to the sample using Araldite® ensuring no air 

bubbles were present between the sample surface and the sensors. The electrical signals 

generated by these sensors were passed through a pre-amp and amplifier set to 40 dB and 6dB 

respectively with a 28 V phantom voltage applied. This system was connected to the logging 

computer using an AGILANT 2541A USB DAQ. As already detailed, a custom and a 

commercial system are used to log the recorded AE signals. A set of universal filtering 

parameters was used for both systems and are detailed in Table 2.4. 

Table 2.4 AE parameters set for both the custom and commercial processing systems. 

 

 

 

 

 

 

 

The commercial system uses a hit driven data (HDD) approach recording three key AE 

parameters; counts, energy, and duration. The custom system uses Time driven data (TDD) 

approach capturing the complete waveform recorded after the parameters detailed in Table d, 

have been applied. The custom system acquisition is time limited to 5 s.  

  

Limiting Parameters Setting 

Hit definition time 1000 µs 

Hit lockout time 2000 µs 

Max duration of the 

signal 

25 µs 

Peak definition time 600 µs 

Resonance Filter 100 kHz 

Sampling rate 5 MS/s 

Threshold 40 dB 
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2.3 Field Studies 

Field studies were used to collect data from a live rail environment to confirm the effectiveness 

of equipment and techniques developed during this project. Of particular interest are the levels 

of background noise recorded in the real-world environment, these are expected to be greater 

than that in the control laboratory-based experiments. Field trails took place at Bescot Yard 

depot. 

2.3.1 Field trail equipment set up 

The custom AE system used in the laboratory environment described in section 2.2 was used 

in the field trails. The R50α AE were attached to the web of the rail using Araldite® with the 

cables running between the sleepers to the pre-amplifies, amplifies, DAQ and finally the 

computer used to record the AE signals in the same set up as the laboratory environment 

described in section 2.2. The same settings were used as those described in Table 2.4. Figure 

2.11 and Figure 2.12 show the field trial set up. 
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Figure 2.11 Images of the AE acquisition equipment used during field trails. (a) R50α AE 

sensors attached to rail web (b) pre-amplifier in rail bed (c) Amplifiers (d) Recording 

computer. 

 

 

Figure 2.12 Image of the AE sensors, pre-amplifiers, and amplifiers in situ. 

(a) 

(b) 

(c) 

(d) 
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2.4 Summary 

This chapter has covered the experimental set up of both the laboratory-based fatigue testing 

and the field trails completed at Bescot yard. Both a commercial AE system and a custom-built 

acquisition system were used in the Laboratory based experiments whilst only the custom AE 

system was used in the field trails.  

This study will primarily focus on the data acquired from the laboratory-based experiments for 

both the parametric analysis, for the data from the commercial system, and machine leaning 

analysis of custom system data. Field trails were used to test the custom-built system under real 

world conditions. 
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Chapter 3 

Commercial system: Initial 

comparison of key AE 

parameters 

Commercially available systems for AE monitoring in general use a Hit Driven Data (HDD) 

approach for recording the received AE signals. The system procured from PAC (now 

MISTRAS) and used in this study is thus, no exception. Whilst it is possible to record a range 

of acoustic-related parameters using this approach, the most widely employed are typically AE 

signal amplitude, energy, duration, and counts (Roberts & Talebzadeh, 2003).  It is these 

parameters which will be explored in this chapter.  

As already discussed, the aim of the present study has been to explore the development of a 

real-time structural health monitoring system using AE monitoring techniques, focussing 

particularly on the quantitative evaluation of fatigue crack growth in critical railway 

components, such as rails and cast manganese crossings. To explore the initial feasibility of 

using AE monitoring in this way a relatively simplistic and computationally cheap approach 

was initially used. This initial approach compared the growth per fatigue cycle and each of the 

three chosen parameters per cycle against the stress intensity factor (ΔK). If one of these 

parameters is shown to follow a similar trend to the crack growth rate it may be possible to 

rapidly draw a comparison. It is worth noting that analysis of this data to quantitatively monitor 

the structural health of a material is complex.  

For both the R220 and R260 steels, it is expected that they will follow the Paris-Erdogan law 

during fatigue crack growth . Therefore, the confirmation of a close correlation between these 
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parameters and the Paris-Erdogan law plot for these materials would allow the development of 

a fatigue model based on the Paris law plot which could be updated in real time using the AE 

data recorded. For this model to be effective it is vital that the AE data very closely follow the 

crack growth trend. This has been achieved previously by Hamel et al. who developed 

equations to link AE with Paris law in 1981 (Hamel et al., 1981). Even earlier than this Morton 

et al. quantitatively correlated AE with the crack growth rate and stress intensity factor (Morton 

et al., 1973). In the study carried out by Bassim et al. in 1984, it was possible to create an 

automated system for the calculation of ΔK from the AE using the Paris law (Bassim et al., 

1994).  Dunegan et al.  found that the AE counts measured in tensile fatigue tests carried out 

on aluminium and beryllium samples were proportional to the fourth power of the stress 

intensity factor obtained from a sharp crack (Dunegan et al., 1968). They did however note that 

this is dependent on the geometry of the sample. This observation gets to the heart of the 

limitation of trying to apply generalized models to all materials and applications as it is also 

well understood that different materials will have a different response. Therefore, equations 

and trends seen in one material or application will not necessarily apply to another. For 

example, the correlation of AE data to crack growth for cast manganese steels is more complex 

than that of the R220 and R260 steels due to the strong effect of plasticity at the tip of the crack 

in the generation of AE signals during crack propagation. As shown in the work by Kang et al. 

these steels do not display typical fatigue crack growth behaviour and therefore, will not follow 

a typical Paris law plot making a comparative modelling approach more challenging. 

Nonetheless, this issue does not necessarily render this approach redundant. Instead, this 

approach may act as a feasibility study or as part of a wider multi-parameter approach.  
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3.1 Commercial system data 

In the following data, the crack growth and AE parameters are grouped in data points of the 

average of that parameter per cycle between each ΔK value recorded. Whilst this allows for 

overall trends to be observed, much of the detail that is potentially retrievable from the AE data 

will be lost. 

Figures 3.2-3.11 show the AE energy, duration and counts responses for each steel. The crack 

growth behaviour for both the R220 and R260 steels (Figures 3.2, 3.3, 3.6, 3.7, 3.9, 3.10) follow 

the expected Paris law trend, allowing for a comparison to be made between the AE data and 

the Paris Law. It is noted that some samples show some deviation from this plot, with spikes 

in crack growth. This indicates that the crack growth behaviour is not stable. The crack growth 

behaviour for the cast manganese steel samples (Figures 3.4, 3.8, 3.11) also in general follows 

the trend of increasing crack growth with ΔK as it would be expected. However, a greater level 

of variation in crack growth is observed when compared with the R220 and R260 steels. This 

is made clearer where samples are plotted individually as in Figure 3.1. Herewith, it can be 

observed that the R220 and R260 follow a relatively linear crack growth compared with that 

for cast manganese samples. 

   

Figure 3.1 Plots of the crack growth per cycle (da/dn) against ΔK for the R220 (a), R260 (b) 

and cast manganese steels (c). Each plot represents a single sample as opposed the grouping 

of samples shown in Figures 3.2-3.11. By showing individually the greater variation in crack 

growth displayed by the cast manganese can be observed compared to the more linear 

behaviour shown by the R220 and R260 samples. These Plots also show the R220 steel failing 

at a stress intensity factor significantly lower than that of the R260 and cast manganese steels. 

 

(a) (b) (c) 
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3.1.1 AE Energy 

The acoustic emission energy is the enveloped area under the AE signal as shown in Figure 

1.12. As the ΔK increases during fatigue crack growth the crack becomes more unstable. This 

leads to an increase in the crack growth per cycle. As the AE signals detected are the elastic 

stress waves generated as the result of the strain energy released from the crack tip as the fatigue 

crack grows. It follows that an increased crack growth as the crack growth accelerates, and the 

cracks gets nearer to the point of instability will lead to a greater release of AE energy. It could 

therefore be expected that the AE energy plots will follow a smooth close correlation with the 

crack growth rate. This however is not expected to be the case, as discussed in Chapter 1 the 

microstructure of these steels is not homogenous with defects and inclusions present which will 

affect the crack growth rate locally and therefore, the energy released. It is hence, expected that 

for the R220 and R260 steels the general trend will be that as the ΔK increases so will the 

energy however there will be variation in this energy. The cast manganese steel is expected to 

show greater energy variation with crack growth due to its fatigue crack growth behaviour.  

3.1.1.1 R220 AE Energy 

In Figure 3.2 it is observed that as the crack growth per cycle increase with increasing ΔK the 

Energy per cycle also shows an increasing trend with most of the samples following to the 

approximated trend line (black line). The similarity in the AE energy and da/dn plot is expected 

with an increasing stress intensity factor with increasing crack growth leading to an increase in 

the energy released. The obvious exception to this is sample 9 which sits as an outlier. Ideally 

for the creation of a monitoring based exclusively on this comparison all samples would fit the 

general trend observed. In reality, however, this would not be likely to occur, with many factors 

effecting the energy released and recorded.  

As discussed in Chapter 2 R220 steel contains defects such as Iron carbide and MnS inclusions. 

These inclusions will affect the local crack growth behaviour leading to a change in the energy 
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released. It is well understood that changes in material lead to different AE responses (Yu et 

al., 2011). Thus, it follows that the presence of defects within a material will also have an effect 

on the AE behaviour. These changes in crack growth behaviour are not observed in the crack 

growth plot. This hints towards the sensitivity of AE monitoring and its potential use to give a 

highly accurate in depth understanding of real time crack growth behaviour. 
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Figure 3.2 AE energy per cycle (E/dn) and the crack growth per cycle (da/dn) plotted against 

ΔK for the R220 steel samples. The trend lines for E/dn and da/dn are shown as black and red 

lines respectively. The red and black arrows indicate the axis to which the data is plotted with 

the E/dn data being the data clustered at the top of the plot and the da/dn the data at the bottom. 
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Considered on its own, it is not possible to determine whether this increase in AE energy per 

cycle is due to an increase in the number of AE signals per cycle, or a similar number of signals 

but with a greater energy. Hence, other AE parameters must be considered in conjunction with 

the AE energy for this material to gain a complete picture of the crack behaviour and structural 

health of the component being monitored. 

3.1.1.2 R260 AE Energy 

The AE signals generated during crack growth are expected to be different for each material, 

even in the case of R220 and R260 which are very similar in composition and somewhat limited 

variations in the mechanical properties are observed. Figure 3.3 shows the AE energy recorded 

for the R260 steel. As with the AE energy response observed for the R220 steel in Figure 3.2 

the da/dn plot follows the expected increase with increasing ΔK. The trend is however, not so 

clear with the E/dn plot. in Figure 3.3 a trend line has been added to fit all the AE energy ample 

results. This trend line does follow a similar trend to that shown on the da/dn but it is clear that 

the data is well spread around this trend line. Any model based solely on this data would thus 

lead to a high level of error.  
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Figure 3.3 AE energy per cycle (E/dn) and the crack growth per cycle (da/dn) plotted against 

ΔK for the R260 steel samples. The trend lines for E/dn and da/dn are shown as black and red 

lines respectively. The red and black arrows indicate the axis to which the data is plotted with 

the E/dn data being the data clustered at the top of the plot and the da/dn the data at the bottom. 

 

Whilst on its own, this approach is not useful in the construction of a structural health 

monitoring model, it can be argued that there is an overall trend towards increasing AE energy 

with increasing ΔK although with relatively low confidence of individual results following this 

trend. This overall upward trend in AE data does however, pave the way to look at other AE 
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data approaches to develop a system for monitoring crack growth, these approaches will be 

explored in greater detail in later chapters of this thesis. In principle they are able to create a 

more accurate model by exploiting the wealth of data that is recorded by AE monitoring and 

does not lose this detail through the grouping of the data which has been used in this case. 

3.1.1.3 Cast Manganese steel AE Energy 

In Figures 3.2 and 3.3 a trend line was added to the AE energy data with Figure 3.2 for the 

R220 steel showing a greater correlation than the R260 data shown in Figure 3.3 which presents 

a much greater spread. No trend line has been added to the AE energy in Figure 3.4 which 

shows the AE energy recorded for the cast manganese steel samples. It can be clearly seen in 

Figure 3.4 that the AE energy data does not show a clear trend to which it would be appropriate 

to add a trend line to. The da/dn data does nonetheless, follow a trend in the same way as that 

shown in Figures 3.2 and 3.3.  
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Figure 3.4 AE energy per cycle (E/dn) and the crack growth per cycle (da/dn) plotted against 

ΔK for the cast manganese steel samples. A red trend line is shown for the crack growth per 

cycle however, due to the clear spread in data no trend line is added to the AE energy response. 

The red and black arrows indicate the axis to which the data is plotted with the E/dn data being 

the data clustered at the top of the plot and the da/dn the data at the bottom. 

 

As discussed earlier, previous work has found that cast manganese steel do not follow the 

normal fatigue crack growth behaviour displayed by other steels. Instead, they initially become 

work-hardened before finally softening to failure. Therefore, if the AE energy is indicative of 

the crack growth behaviour it would be expected that the AE energy recorded would not show 
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the same behaviour as that of the R220 and R260 steel. Looking at Figure 3.4 this is certainly 

the case, there is a large spread of AE energy data throughout the crack growth cycle.  

Looking at the AE data grouped as a whole, as in Figure 3.4, the establishment of a pattern or 

trend in the data is not simplistic. If each sample is plotted separately a pattern does start to 

emerge. This can be observed in Figure 3.5. Towards the start of the fatigue crack growth cycle 

there is a high level of AE energy activity recorded this then drops to only a small before rising 

again before final failure. This trough like behaviour of the AE energy has been in other studies 

such as the work by Kongpuang et al. and Kang et al. (Kang et al., 2014; Kongpuang et al., 

2021). A single sample was shown here in Figure Y as a representative sample with a similar 

behaviour observed across all the samples in this dataset. 
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Figure 3.5 A plot of the AE energy per cycle (E/dn) and crack growth per cycle (da/dn) against 

the stress intensity factor (ΔK) for a single sample of cast manganese steel. Plotted as a single 

sample it is possible to observe the grouping of the AE energy at the start and end of the fatigue 

crack growth period monitored. This has previously been described as a trough like behaviour 

and attributed to the work hardening and softening behaviour displayed by cast manganese 

steel during fatigue loading. 

 

The trough-like nature of the AE energy observed in the cast manganese steel means that a 

direct comparison with the stress intensity factor is not possible with a more complex analysis 

approach required. Used in isolation this data could be used to develop a system that is not able 

to always provide the current structural health of the steel but could instead provide an early 

warning system of a crack being present and a warning prior to final failure. This system would 

not perform adequately satisfactorily and would be susceptible to loss of or missing signals, 
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since without continuous monitoring it would not be possible to distinguish between the initial 

signals generated in the early stages of crack growth and the subsequent AE energy data points 

prior to final failure. 

3.1.1.4 AE Energy Discussion 

As it has been discussed, ideally for a simple comparison to be made between an AE parameter 

and the Paris law plot the AE parameter of choice should follow the same trend as the Paris 

Law plot. This has not been the case for all the steels investigated here and shown in Figures 

3.2, 3.3 and 3.4. The AE energy plot for the R220 steel (Figure 3.2) followed the da/dn plot 

more closely with most of the data falling along a similar trend to the da/dn plot. There are 

outliers to this trend, but this is to be expected, since the microstructure of these steels is not 

homogenous with defects known to be present. Any variation from the base microstructure will 

lead to variation in the AE energy released.  

Even more variation from a clear trend in the AE energy data is observed for the R260 steel 

(Figure 3.3) with a large spread of data, although a trend line fitted to the entire data set for all 

samples does follow a similar trend to the da/dn plot. As with the R220 data, some variation is 

expected. However, the greater spread of the AE data in this case would make a direct 

comparison model difficult to develop.  

The cast manganese steel was not expected to show exactly the same trend as that of the R220 

and R260 steels and this is certainly the case with now a clear trend shown in Figure 3.4. 

Nonetheless, as discussed earlier when the data is looked at a sample level (Figure 3.5) a trough 

like pattern emerges. It is suggested that this could be used to develop a system that provides a 

warning of failure rather than a real time structural health monitoring system. A system of this 

sort may be useful to the rail industry and the monitoring of crack growth in cast manganese 

steels.  It is a particular challenge, however, to convince the industry that a system is viable to 
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implement since it would likely need to be more reliable and accurate than a system based on 

this approach alone could achieve. 

It is clear from looking at the AE energy for these three steels that more information is needed 

to develop a system that can monitor in real time their structural health under fatigue loading. 

Used in isolation and with the data grouped as it is in this case it is not possible to tell the nature 

of the AE signals. That is whether for example there are a small number of high energy signals 

or many lower energy peaks. These scenarios would indicate very different crack growth 

behaviour which cannot be identified by the analysis of the plots shown in Figures 3.2, 3.3 and 

3.4. Therefore, it is important to look at other AE parameters which will be able to differentiate 

between these scenarios.  

3.1.2 AE Duration 

The AE duration is the length of time from a detected signal first passing any threshold value 

set to the detect signal to it dropping back below this threshold value as shown in Figure 1.12. 

The duration gives an indication on the nature of the AE signal detected in terms of whether 

they are short burst signals or longer period signals. This may give an indication of the nature 

of a crack growth event as well as the crack severity. 

When the AE duration is used in conjunction with the AE energy, a more detailed picture of 

the nature of the received AE signals can be determined. For example, in the case of AE energy 

the value recorded gives an indication of the overall energy released but not the source of the 

energy released. A high energy value could be due to short-duration high amplitude signal or 

due to a more long-duration but lower amplitude signal. By using these parameters in 

conjunction, a more detailed picture of the crack growth mechanisms may be gained. The 

energy also gives a greater understanding of the signal compared to just the duration being used 

as the duration gives little indication of the amplitude of the AE signal, it simply gives the 

length of time over which the signals are above a threshold.  
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3.1.2.1 R220 AE Duration 

The comparison of the AE energy per cycle, Figure 3.2, showed an overall increase in the 

energy per cycle with increasing ΔK. It was however noted that there was a spread in this data 

making a direct comparison between the AE response and the current crack growth. Figure 3.6 

shows for the same set of samples the change in duration per cycle (D/dn) compared to the 

crack growth per cycle (da/dn) as in Figure 3.2. As with the E/dn plot increasing ΔK leads to 

an increase in the duration of the AE signal per fatigue sample. Unlike Figure 3.2, Figure 3.6 

shows significantly less spread in the AE data around the plotted trend line. This stronger fit to 

the ΔK vs da/dn plot may indicate that the AE duration could more effectively be used to create 

a monitoring system for fatigue growth by simply comparing the duration of the AE signals 

received with a dataset which includes the ΔK vs da/dn plot giving a value for the structural 

component being monitored.  
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Figure 3.6 AE duration per cycle (D/dn) and the crack growth per cycle (da/dn) plotted against 

ΔK for the R220 steel samples. The trend lines for D/dn and da/dn are shown as black and red 

lines respectively. The red and black arrows indicate the axis to which the data is plotted with 

the D/dn data being the data clustered at the top of the plot and the da/dn the data at the 

bottom. 

 

The trend of increasing AE duration with increasing ΔK is not unexpected. As the length by 

which the crack grows increases, the time taken for this to occur would also increase unless the 

nature of the crack growth was changing. For example, rapid brittle fracture may lead to a 

sudden increase in crack with only a short-duration burst AE signal.   
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3.1.2.2 R260 AE Duration 

As with the change in energy per cycle shown in Figure 3.3 for the R260 steel the plot showing 

the change in duration per cycle, Figure 3.7, the overall trend in the AE data displays an upward 

trend similar to that of the change in crack growth per cycle. Figure 3.7 also shows the same 

spread in this data as in Figure 3.3. The spread in E/dn data in Figure 3.3 is uniform across the 

plot, in contrast the D/dn plot in Figure 3.7 which initially shows a wider spread in data for all 

sample plots which then coalesce to a more uniform evolution in the late stages of crack growth. 

The overall upward trend in D/dn which follows that of the overall increase in E/dn in Figure 

3.3 implies that the increase in energy is due at least in part to an increase in duration of the 

signal rather than an increase in amplitude of the AE signal. 
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Figure 3.7 AE duration per cycle (D/dn) and the crack growth per cycle (da/dn) plotted against 

ΔK for the R260 steel samples. The trend lines for D/dn and da/dn are shown as black and red 

lines respectively.  The red and black arrows indicate the axis to which the data is plotted with 

the D/dn data being the data clustered at the top of the plot and the da/dn the data at the 

bottom. 

 

As with the E/dn plot for this steel the spread in data in the D/dn plot limits the ability to create 

an effective model from this data. However, the trend seen in the case of Figure 3.7 may offer 

an insight into the crack growth behaviour. In the early stages of crack growth, the wide spread 
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of data is a challenge to interpret. It is possible this wide spread of data is due to the presence 

of defects within the microstructure leading to variation in the AE response. If this is the case, 

then another factor must become dominant in later stages of crack growth that lead to a 

consolidation of the data. One possibility of this is that in the early stages of crack growth, 

when the stress intensity factor is low the presence of defects has a greater effect on the crack 

growth behaviour and hence, the AE response, than when the crack becomes more unstable in 

the later stage of the fatigue crack growth cycle. Whilst this would render the effective 

modelling of current structural health challenging if using just this approach, it does indicate 

that AE monitoring may be able to provide an insight into the current crack growth behaviour 

and the presence of defects in the crack growth path. This could be built into a multi-factorial 

modelling system that is able to not only monitor the current crack growth rate or length but 

also the current crack growth behaviour and the presence of defects that may affect the fatigue 

life of the asset.  

3.1.2.3 Cast Manganese steel AE Duration 

Both R220 and R260 showed a change in the AE response when the plotted parameter was 

changed from E/dn to D/dn. Beyond a slight shifting in value the D/dn plot for cast manganese 

steel shown in Figure 3.8 largely follows the same pattern shown in the E/dn plot (Figure Q). 

That is displaying a trough like pattern in the AE plot. This implies that any model developed 

using the E/dn plot could also be adapted to use D/dn plot. 
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Figure 3.8 AE duration per cycle (D/dn) and the crack growth per cycle (da/dn) plotted against 

ΔK for the cast manganese steel samples. A red trend line is shown for the crack growth per 

cycle however, due to the clear spread in data no trend line is added to the AE duration 

response. The red and black arrows indicate the axis to which the data is plotted with the D/dn 

data being the data clustered at the top of the plot and the da/dn the data at the bottom. 

 

As with the plots for R220 and R260 the similar pattern shown by the D/dn plot compared with 

the E/dn plot implies that the increase in energy is at least in part due to the increase in duration 

of the signal rather than the presence of higher amplitude signals. 
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3.1.2.4 AE Duration Discussion 

Both the R220 and R260 steels showed less variation in the AE duration data in comparison 

with the AE energy, which may potentially make it a more useful AE parameter in the 

development of a monitoring system. In contrast the cast manganese steel showed very little 

variation between the E/dn plot and the D/dn plot implying that both parameters would be of 

similar use.  

The similar increase in AE duration in comparison with the AE energy in both R220 and R260 

steels implies that the increase in the AE energy is at least partially attributable to increasing 

signal duration rather than an increase in amplitude of the signal. Whilst showing a different 

pattern in the AE response to that of R220 and R260 steels, the cast manganese steel does show 

a similar trend in that the E/dn plot and D/dn plot follow the same trend. As with the other 

steels this would imply that for the cast manganese steel the changes in AE energy are, at least 

in part, due to the increase in duration of the signal.  

3.1.3 AE Counts 

The AE counts are the number of peaks recorded from when the set threshold value is exceeded 

to the signal dropping below the threshold value as shown in Figure 1.12. The number of counts 

may indicate a number of crack growth scenarios. A small number of counts may indicate a 

short burst signal for example a single high amplitude peak, however, it could alternatively 

indicate a very low amplitude signal where only a limited number of the peaks are over the 

threshold value. This and the wide variety of circumstances which could lead to changes in the 

number of AE counts could make the use of AE counts challenging as an indicative parameter 

of the current structural health.  

Through the use of correctly selected threshold values the number of different scenarios leading 

to the same AE counts can be restricted. With these thresholds in place, it is expected that as 

the crack grows and becomes more unstable, and therefore more rapid crack growth, the 
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number of AE counts recorded per hit will increase. This trend is expected because as the crack 

growth per cycle increases the strain energy released will increase. Assuming that the threshold 

parameters are correctly selected to exclude background noise but maintain the AE signal 

corresponding the fatigue crack growth, it follows that this would lead to a greater number of 

peaks detected. It is clear however that even with correct threshold values set there is lightly to 

be a lot of variation in this AE parameter. This variation may in itself prove useful in the 

classification of the crack growth behaviour, particularly when used in conjunction with other 

parameters and monitoring methods which may be able to detect the crack length but not 

provide detailed information on the crack growth behaviour which may be determined from 

the AE counts.  

3.1.3.1 R220 AE Counts 

Continuing the trend observed in both the AE energy and duration (Figures 3.2 and 3.6 

respectively) for the R220 steel the AE counts, shown in Figure 3.9, follow a clear increase in 

counts per cycle (c/dn) with increasing ΔK. In particular, the c/dn plot in Figure 3.9 follows a 

very similar trend to the D/dn plot in Figure 3.6, that is a clear upwards trend with very little 

spread in contrast to the E/dn plot in Figure 3.2 where outliers in the results were clearly 

observed. 
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Figure 3.9 AE counts per cycle (c/dn) and the crack growth per cycle (da/dn) plotted against 

ΔK for the R220 steel samples. The trend lines for c/dn and da/dn are shown as black and red 

lines respectively. The red and black arrows indicate the axis to which the data is plotted with 

the c/dn data being the data clustered at the top of the plot and the da/dn the data at the bottom. 

 

The similarity between the AE counts and duration is expected as a greater time length 

(duration) over which the AE hit is recorded the more AE peaks are likely to occur. Any 

variation in the AE counts in comparison to the AE duration would imply changes in the 

frequency of the AE signal recorded. The fact that very little difference is seen in these datasets 
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is expected as the data are filtered by a set of frequency bands which limits the frequency that 

will be recorded as peaks and hence, the AE counts. If no filtering was applied, it would be 

expected that there would be more variation between the results obtained. The nature of this 

data analysis approach averaging out the results at each point to give a counts per cycle single 

data point means that detail of local changes in frequency will be lost.  

3.1.3.2 R260 AE Counts 

The AE counts for the R260 steel samples, shown in Figure 3.10, show a similar result in 

comparison to the AE energy and duration as displayed by the R220 steel samples.  Like the 

AE duration plot in Figure 3.7 the c/dn plot in Figure 3.10 shows a relatively wider spread at 

the start of the data set before coalescing at higher values of ΔK. In the case of the AE duration 

data this was suggested to be due to the presence of defects in the microstructure, if this was 

the case then the presence of defects would have a similar effect on the AE counts. As with the 

other AE parameters studied here this wide variation in data would make the development of a 

model using this approach challenging. 
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Figure 3.10 AE counts per cycle (c/dn) and the crack growth per cycle (da/dn) plotted against 

ΔK for the R260 steel samples. The trend lines for c/dn and da/dn are shown as black and red 

lines respectively. The red and black arrows indicate the axis to which the data is plotted with 

the c/dn data being the data clustered at the top of the plot and the da/dn the data at the bottom. 
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3.1.3.3 Cast Manganese steel AE Counts 

Following the same pattern observed for both R220 and R260 steels the cast manganese steel 

shows a similar pattern in the AE counts plot (Figure 3.11) compared to the AE duration plot 

(Figure 3.8). As discussed with the R220 and R260 steels it is expected that the AE counts does 

follow the AE duration data. As with the other AE parameters studied here the AE counts for 

the cast manganese steel does not follow a similar trend to the da/dn plot, instead forming a 

trough shaped plot. 
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Figure 3.11 AE counts per cycle (c/dn) and the crack growth per cycle (da/dn) plotted against 

ΔK for the cast manganese steel samples. A red trend line is shown for the crack growth per 

cycle however, due to the clear spread in data no trend line is added to the AE count response. 

The red and black arrows indicate the axis to which the data is plotted with the c/dn data being 

the data clustered at the top of the plot and the da/dn the data at the bottom. 
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3.1.3.4 AE Counts Discussion 

For all three steels investigated here the AE counts plots (Figures 3.9, 3.10, 3.11) follow very 

closely the trend of the plots of the AE duration (Figures 3.6, 3.7, 3.8). The close relationship 

of the trend between the AE counts and AE duration plots is not unexpected. Frequency 

filtering is applied to all of the datasets, thus, restricting the number of different frequencies 

recorded to a finite set. Due to this filtering combined with the averaging of the data, which is 

carried out to create individual data points in these plots, very little variation of the frequencies 

recorded is expected. The uniformity in the frequency of the AE signals recorded means that if 

the duration increases more peaks and AE counts will be recorded.  

The AE counts for the R220 steels does show a similar trend to that shown by the da/dn plot, 

compared to the greater spread and less clear trends displayed by the R260 and cast manganese 

steels. This close trend displayed by the R220 steels may allow for a model to be developed 

using this AE parameter through simple comparison with the da/dn plot. A simple model of 

this nature would not be possible with the R260 and cast manganese steels and they do not have 

such a strong trend in the AE counts data. 
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3.2 Conclusions 

The cast manganese steel shows a similar pattern in data across all the AE parameters 

investigated herewith (Figures 3.4, 3.8, 3.11) with all displaying a trough like pattern, i.e. that 

is an initial rise in the AE parameters followed by a drop before rising to final failure. This 

trough-like behaviour is likely due to the properties of this steel under fatigue loading, initially 

work hardening before softening to failure (Kang et al., 2014). In terms of the development of 

a system based on the comparison between the AE signal received and the Δk vs da/dn plot 

this trough-like behaviour is a problem with no easy comparison possible. A system could be 

developed that provides an alarm system of failure, initially indicating the presence of a crack 

from the initial rise in AE signals and then a final failure alarm when the data starts to rise 

again. This approach would, however, be highly susceptible to failure as it would be very 

dependent on no loss in data during monitoring. If there was a drop in data it would not be 

possible using only this approach to tell the difference between a rise in data due to the start of 

a fatigue crack or a rise due to the approach of failure.  

In contrast to the cast manganese steel the R220 and R260 steels showed an upward trend in 

all AE parameters with increasing ΔK (Figures 3.2, 3.6, 3.9 and 3.3, 3.7, 3.10 respectively). 

This is particularly true in the case of R220 steels were the AE data closely follows the trend 

of the ΔK vs da/dn plot, although the AE energy plot (Figure 3.2) does show some variation in 

the data. Whilst an overall trend is observed in all the R260 steel AE parameters there is a much 

larger spread in data making a direct comparison with the ΔK vs da/dn plot challenging.  

One of the limiting factors in this approach to using the AE data collected is loss in detail 

caused by the way the data is combined to form these plots. AE data points are created for each 

point on the ΔK vs da/dn plot to allow a direct comparison. Overall, there are far more AE hits 

than there are ΔK vs da/dn points. Therefore, the AE data between these points is averaged to 

form an average AE data point per cycle. Whilst this still allows any overall trends to be 
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observed, it is clear that a lot of detail that could be used to develop an effective monitoring 

system is lost, limiting the use and accuracy of any system developed using this approach alone. 

This approach does however act as an effective feasibility study. Trends have been identified 

with all steels and AE parameters investigated in this study, these trends differ between the 

steels but this is expected as the AE response is unique to each material.  

To develop an effective real-time monitoring system it is clear that more detail and information 

is needed and that entirety of the AE signals recorded must be exploited to avoid any loss in 

data. As the AE data will vary for each material it is expected that the AE data should be able 

to identify the presence of defects in the crack growth path. This is not born out in the approach 

used in the chapter except for potentially being the cause of some the variation in AE data, 

further analysis of the AE data is needed to confirm this. Even using a relatively simplistic and 

generalised approach used in this chapter patterns and trends in the data have been identified. 

The subsequent chapters in the present thesis will seek to build on this by further exploiting the 

AE data obtained using the same approach as that in the present chapter as well as looking at 

other novel techniques to exploit the AE signals generated during fatigue crack growth. 
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3.3 Summary 

This chapter has investigated the use of a commercially available AE monitoring system to 

monitor fatigue crack growth in three steels, R220, R260 grade and cast manganese steel. Three 

parameters were investigated: acoustic counts, energy and duration. An upward trend in all 

three parameters was shown by both R220 and R260 grade steel in line with increasing crack 

severity. From this trend it may be possible to assess the structural health of an asset using this 

commercial system. The data was more complex for the cast manganese steel due to a non 

continuous trend making any comparison challenging.  

It is noted that the data is processed into packages or hits of data by the commercial AE system. 

This packaging of data simplifies the output data potentially reducing the accuracy of the 

system. It is proposed instead to use the complete AE waveform captured using a custom AE 

system. The remained of this work will focus on the development of a custom AE system for 

this purpose. 
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Chapter 4 

AE Waveform Analysis 

Until relatively recently, research on AE condition monitoring has primarily focused on the use 

of key parameters taken from the data recorded. For example, parameters which are considered 

to be more useful include AE energy, signal duration and counts and have been studied 

herewith. Whilst the use of these parameters has proven to be successful for many applications, 

it does not necessarily capture all the information related to the size and severity of the 

propagating crack. Analysis of the complete AE waveform would instead allow for the 

development of a highly accurate and sensitive SHM system.  

The problem facing the development of these systems is a big data problem (Malekzadeh et 

al., 2015). Even using key parameters, as this study has done so far, large volumes of data can 

be recorded and are required to create an accurate picture of the current structural health of an 

asset. Adding in more parameters to address the shortcomings of these key parameters does not 

solve the problem and results in even larger and more complex datasets. Until recently this has 

limited the development of SHM systems using AE techniques, as the computational power 

required to process the data was not readily available or low cost.  

The recent development and availability of high-performance computers at much lower cost 

and hardware size to researchers has meant that the processing of data is no longer limited to 

small datasets or simplistic signal processing techniques (Bacioiu, 2019). In recent years there 

has been a boom in the use of high-performance computing in the development of novel data 

processing techniques, in particular machine learning capabilities, to rapidly process big data 

sets (J. J. Lee et al., 2005).  
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For AE monitoring this removes the limitation of traditional signal processing methods and 

approaches to this problem in handling large datasets. In Chapter 3 this work argued that the 

complete AE waveform could be used to develop a highly accurate automated SHM system 

overcoming the limitation of using the key acoustic parameters investigated so far in the thesis. 

This would of course generate a large quantity of data which it would not be possible to analyse 

in an effective way in real time using manual methods.  

Therefore, the present study has looked into the use of machine learning techniques for 

analysing these complete waveforms and developing an automated SHM system. The present 

chapter covers the principles behind machine learning techniques for signal pattern recognition 

and the use of signal processing to extract key features for AE waveforms in the time, frequency 

and time-frequency domains. 

4.1 Machine learning 

4.1.1 Machine learning approach 

Machine learning techniques sit within the umbrella of artificial intelligence (AI), which covers 

a wide range of high-performance computing applications including computer vision and 

natural language processing (Bacioiu, 2019). El Naqa and Murphy describe machine learning 

techniques as “computational algorithms that are designed to emulate human intelligence by 

learning from the surrounding environment” (el Naqa & Murphy, 2015). These machine learning 

techniques allow a computer to gain experience of a task and progressively improve its 

execution of this task using the acquired experience. The way in which these algorithms learn 

from data can be split into many subdivisions defining a wide range of possible algorithmic 

approaches. Each combination of machine learning approaches used will be tailored 

specifically to the problem being solved by optimisation to a particular dataset or the level of 

pre-existing knowledge about the data being studied.  
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The machine learning algorithm selected has a large impact on the accuracy of the data analysis 

and the computing capability required to run it. The selection of the correct algorithm and the 

parameters that define its architecture is not necessarily a tick box exercise instead it could 

more closely be described as informed trial and error to reach optimization.  

To optimise the selection of the parameters and to reduce the number of times the algorithm 

must be run on the training data. In order to find the optimal solution cross-validation can be 

used to test multiple parameters and compare the accuracy of the resulting algorithms. Cross-

validation works by training several modals on separate subsets of the training data which are 

then validated on other subsets of the training data. The outputs from each modal are compared 

allowing the effect of each parameter to be compared increasing accuracy and for overfitting 

of the modal to the detected and reduced. 

In all cases, the available data to which the machine learning technique is applied to should be 

split into a training and a test dataset. Ideally, the bulk of the data should be used to train the 

system with a small representative batch of data set aside to act as an unseen dataset to confirm 

the accuracy of what the system has learnt. This is necessary because of the way in which 

machine learning operates. In machine learning computers simulate learning by applying a 

series of statistical operations to a dataset until some distinct characteristic is found, so that 

when it is applied to the data, it maximises the number of times the system can correctly 

characterise the data of that sort. Whilst this is a powerful way of extracting features from large 

datasets that would otherwise be impossible to find it does present some limitations.  

When data is inputted into a machine learning algorithm that algorithm is programmed to 

continue applying to the data until a solution is found or a limiting factor is reached (these will 

be discussed later in the present study). Therefore, even if there is not a definite feature to 

extract it is possible that the algorithm will find a solution. This is described in Watanabe’s 
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ugly duckling theorem which finds that a similarity can be found between any two objects 

unless some control bias is added (Watanabe, 1985). These cases can often be identified as low 

levels of accuracy on both the known and unknown data. In other cases, a high level of accuracy 

can be achieved overall however the features extracted are not those relevant to the current 

task, for example classifying animals by their colour rather than by animal species (Muir et al., 

2021). It is also possible to reach a high level of accuracy on the training data set yet when this 

is tested on the unknown set the accuracy of the system drops dramatically, this is known as 

overfitting (Bacioiu, 2019). This can be caused by many factors but is a particular problem 

where the training data set is either two small or not representative. Accuracy, in this case, can 

be increased by increasing the data available and ensuring that the data is effectively 

randomised between the test and training sets. 

Whilst machine learning techniques are powerful tools for the extraction of features from data 

and the subsequent application of these learnt features to classify unknown data they are limited 

in their inherent rigid analysis of that data. That is, they are unable to adapt to scenarios that 

they have not seen before. As an example, if a machine learning algorithm that has been trained 

to classify apples and oranges is presented instead with a banana it will not be able to classify 

it as that as it has not seen a banana before and therefore it will classify it as the nearest known 

category. In any case, the error would be obvious to an operator monitoring the system as they 

would be able to identify the difference. Now apply this to the scenario studied in this project. 

If a machine learning algorithm is monitoring crack growth and the crack growth behaviour 

differs from that which it has been trained on the algorithm will classify the data however this 

will not be representative of the actual scenario present. Therefore it is important that the 

training data used to train a machine learning algorithm realistically and accurately represents 

all scenarios it is expected to encounter (Chang et al., 2000). Where this is not possible novel 

analysis should be applied to all received signals identifying those that differ from any 
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previously seen signal. These signals can then either be rejected as outliers or passed to an 

expert user to be analysed rather than passed through the classifier which would mis-classify 

these signals.  

4.1.2 Supervised vs unsupervised learning 

When selecting a machine learning algorithm first one must consider how much information 

and knowledge exists in the data being investigated. There are two main scenarios to which 

machine learning is applied in data. Firstly, the dataset is a labelled dataset, that is the input 

data has a known output. In this case, the machine learning is applied to train algorithms that 

can classify data or predict outcomes from a data input. The second scenario is used where the 

training data to which the algorithm is applied is unlabelled. That is the output of a particular 

input data is not known. This approach is used to find data groupings and hidden patterns in 

data. It is of course, possible to use a combination of both approaches which is useful in 

scenarios, where only a limited proportion of the data is labelled. Whilst these approaches differ 

in the data to which they are applied, the same underlying algorithms can be applied in all three 

scenarios, for instance, the use of neural networks.  

In this study, the AE waveform data collected using the custom system is time-stamped when 

it is recorded. This timestamp can be compared with the DCPD plot that is recorded in parallel 

during fatigue loading to give the length of the fatigue crack when the AE data are correlated. 

This comparison of the AE data and the crack length allows the data to be labelled. Therefore, 

these data lend themselves towards the use of supervised learning characterising the data with 

respect to the crack length. Thus, correctly applied machine learning algorithms should then be 

able to identify key features in training data corresponding to crack length. By doing so it could 

then be applied to unknown data to indicate the current crack length also.  

In Chapter 3 it was discussed that it would be beneficial for an SHM system to be able to detect 

defects within a structure where a crack is propagating, as this would change the crack growth 
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behaviour and therefore affect the remaining useful life of the material.  For the development 

of this system supervised learning could again be used with signals attributed to a defect where 

they are recorded in the same location. Another approach would be to use either unsupervised 

or a combination of both techniques to extract features from the signal that otherwise may be 

missed by labelling data on only observed defects. 

4.1.3 Neural networks 

Neural networks (NN) are a form of machine learning that seek to emulate the way in which a 

brain operates through a series of interconnected neurons to achieve human-like problem 

solving performance (Bishop, 1995; Lippmann, 1987). Whilst the recent advances in computer 

technology have driven the extensive use of NN, they have been proposed for use as far back 

as in the 1940s in the pioneering work of McCulloch and Pitts (Mcculloch & Pitts, 1990). The 

neurons which they proposed are still used as logic circuits today (J. A. (James A. Anderson & 

Rosenfeld, 1988). These neurons work by each neuron performing logic functions with a set 

threshold. If that threshold is exceeded the neuron fires. Logic functions of these sort can form 

simple task, such as deciding if something is on or off. In their work Hebb (Hebb, 1949) 

presented the first network that was able to learn. This was achieved through adapting the 

strength of the connection between two neurons if they were activated at the same time. The 

increased connection strength between two neurons that are inactive has since been added 

(Fausett, 1994). These have led to the subsequent development of computer simulations 

(Rochester et al., 1956). 

A big step in the development of the NN that resemble those now used today was the 

development of Perceptron’s by Rosenblatt (Rosenblatt, 1958) and subsequently by others. 

These are made up of input neurons (the input layer) connected by fixed waited connections to 

other neurons. The weights of these connections can then be adjusted iteratively to allow them 

to adapt. This was further improved by Widrow and Hoff (Widrow & Hoff, 1960). In their 
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proposed model, the connection weights are adapted when the incorrect classification is made 

to output the lowest mean squared error. By doing so the NN produced using this learning 

function can adapt the data that is not identical to the training data. This makes them of more 

practical use in real-world applications, where they may encounter non ‘clean’ data. It must be 

recognised that while these networks show great potential through the use of iterative learning, 

they are not suitable for all situations as there is a limit to what they can learn. These limitations 

were studied mathematically in 1969 by Minsky and Papert (Minsky & Papert, 1988). 

Modern NNs use backpropagation to increase the accuracy by feeding back through the hidden 

layers of the NN information regarding errors in the output layer. The weights of the 

connections can then be adjusted and the data run back through. By continuing this back and 

forward of information, the NN is able to reach higher levels of accuracy. This method was 

developed independently by Bryson and Ho (Bryson & Ho, 1969), Werbos (Werbos, 1974), 

Parker (Parker, 1985) and LeCun (le Cun, 1986) 

Due to the wide range of potential parameters sizes and layers that can be added to define the 

architecture of a neural network there are a huge number of different NNs that have been 

described in the literature with a wide range of uses (Masters, 1994). Whilst the selection of 

the NN has an impact on the resulting accuracy there is often more than one acceptable solution. 

The use of transfer learning has proven an effective way of utilising previously developed NN 

and adapting them to a new problem without the need for the development of an entirely new 

network and the resulting volume of accurate data that would otherwise be required. 

4.1.3.1 Neural network architecture 

NNs vary in complexity from the McCulloch-Pitts neuron to the complex multilayer NN in use 

today to the ultimate goal of complete replication of the complex NNs that are our brains (J. A. 

(James A. Anderson & Rosenfeld, 1988). In its simplest form a NN consists of an input and a 

neuron which carries out a mathematical operation on this input and produces a scaler as an 
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output using an activation function (sometimes referred to as a transfer functions)(Hagan, 

1996) this can be seen in Figure 4.1.  

 

Figure 4.1 Diagram single input Neuron showing the flow of data from the input node through 

the neuron to the output node. Within the Neuron ∑ is the mathematical operation applied to 

the input data and ft is the activation function which produces the scaler output to the output 

node. 

 

The single node neuron shown in Figure 4.1 is the building block of a NN that completes highly 

complex tasks. However, on its own is only capable of yes/no solutions to a simple task in a 

similar way a single biological neuron cannot solve a problem or learn but combined with many 

others, hugely complex tasks can be solved. As the tasks become more complex so does the 

NN required to solve them with a NN usually consisting of multiple inputs connected to 

multiple neurons. NNs generally have several neurons working in parallel. These parallel 

working neurons are said to be in a layer (Figure 4.2).  
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Figure 4.2 Schematic diagram of single layer NN. As these neurons are all working in parallel 

they are referred to as being in a layer. 

 

Single layer NNs, often referred to as perceptron’s from the work of Rosenblatt (Rosenblatt, 

1958), are able to effectively find a solution if the data being analysed is linearly separable as 

described by the perceptron convergence theorem, a simple proof of which can be seen in the 

work of Bishop (Bishop, 1995). Where data is non-linearly separable further layers are required 

to achieve a solution, the limitations of perception were extensively studied mathematically in 

the work of Minsky and Papert (Minsky & Papert, 1988) early on in the study of these networks. 

This need not however, lead to a large increase in the number of layers. In fact, due to the 

increased complexity and hence computing requirement linked to increasing the number of 
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layers a network should be designed with the minimum number of layers capable of reaching 

and acceptable approximation of the solution.  

There are many studies looking to prove the minimum number of layers required for a given 

problem. For example the addition of one more layer, forming a two-layer NN, providing the 

number of hidden units is large enough, can arbitrarily well map from one finite-dimensional 

space to another (Bishop, 1995). Adding a third layer adds an advance on this and is able to 

achieve arbitrary accuracy for any smooth mapping (Lapedes & Farber, 1988)  and represent any 

arbitrary decision boundary to this level of accuracy (Bishop, 1995).  

With accuracy achievable with only a few layers the adding of further layers to form deep-

learning networks in comparison with these shallow networks often becomes unnecessary and 

computationally expensive. They are thus, rarely used in practice (Hagan, 1996).  

Having introduced multilayer NNs it is worth adding in some further definitions. Up until this 

point the neurons used to classify data have been referred to as layers. However, these can be 

further refined. The final layer in the network providing the network output is referred to as the 

output layer. Hidden layers output into all layers other than the final layer (the output layer). 

So a two-layer network would have a single hidden layer and one output layer as shown in 

Figure 4.3.  



93 
 

 

Figure 4.3 Schematic diagram of a two-layer neural network showing the difference between 

the hidden layer and output layer. 

 

Figures 4.1-4.3 show a simplistic representation of the overall architecture of a NN. Whilst 

these representations are useful in understanding the overall connected nature of a NN the real 

workings of the NN are found in the algorithms, weights and biases that make up the neurons 

and connections of the NN. The selection of these is determined by the problem being solved. 

In the case of the AE data studied herewith, the aim is to categorize each input into set severity 

levels using the NN techniques to find the characteristic pattern for each severity level. If the 

AE signals can be characterised in this way, then this approach will produce high levels of 

accuracy. In terms of NN computational complexity, pattern recognition networks are 
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relatively simple (Fausett, 1994). Some of the earliest NNs were used for pattern classification. 

For example, the work of Specht, which analysed electrocardiogram data using NNs to detect 

heart abnormalities (Specht, 1967).  

4.1.3.2 Pattern recognition Neural Networks 

Pattern recognition NNs seek to characterise data according to characteristic patterns in the 

data. Pattern recognition NNs are widely used across a range of applications with great success. 

NNs are powerful tools in the extraction of these features often finding patterns that would not 

be identifiable by a human operator. The use of these approaches must however be carefully 

controlled and understood to ensure the desired classification is achieved. NNs can be 

described as black boxes in terms of how they identify these patterns. That is, it is challenging 

and often impossible to establish exactly what features the NN has learnt (Lin et al., 2017).  

This has proven to be the case in several studies that have developed machine learning 

algorithms using unsupervised learning techniques. These studies have been able to separate 

clusters of AE data into groups, however what these groupings represent is not understood. 

Whilst this is promising for the AE machine learning field as a whole on that the data is 

separable, for an end user this does not produce a usable model. In an attempt to effectively 

classify these groupings several studies have investigated the corresponding fracture surface 

using this information to label the learnt groupings. 

In some cases, misclassification would be clear to an operator. For example, a pattern 

recognition NN designed to classify types of transport may instead classify them by colour. 

This misclassification would become clear during through testing of the network and the 

hyperparameters adjusted accordingly. In cases like this the problem would be largely solved 

by using supervised learning rather than unsupervised. However, in more complex cases such 

as waveform analysis this does present a problem.  
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This problem is the NN is identifying patterns that even an expert user may not be able to 

identify, thus, making it also challenging to identify when the data has been misclassified. This 

is often solved through thorough testing of the network using representative test data. 

Researchers have sort ways to analyse the features that a NN extracts. Erhan et al sort to 

visualise each hidden layer by generating synthetic signals that maximised the output from 

each hidden neuron therefore identifying the features or features identified by it (Erhan et al., 

2009). Using this method, Lin et al found that hierarchical features are learned layer by layer 

(Lin et al., 2017). Despite these challenges, pattern recognition networks are widely used with 

great success. To ensure their success, a certain level of understanding is required with 

reference to the data being analysed so as to select the correct learning algorithms and 

hyperparameters. 

There are several different approaches to the way in which pattern recognition NNs learn. 

However, they are all based around the use of statistical operations applied to a dataset, 

essentially learning by finding features that are statistically more likely to be present in each 

classification. Traditionally, AE researchers have used the K-means algorithm to classify AE 

waveforms (de Oliveira & Marques, 2008; Godin et al., 2004; L. Li et al., 2014; Ramirez-Jimenez et al., 

2004). Whilst these have proved effective at classifying several damage states there has been 

limited evaluation of the accuracy of the characterisation of AE data using this method (Muir 

et al., 2021).  

The classification of damage is not a one size fits all model. That is for each material studied 

the classification network used must be adjusted. Many of the studies that have looked to 

develop pattern recognition and machine learning techniques for AE have focused on their 

application to composite structures. The studies on K-means algorithms are an example of this. 

This is partially due to the failure modes of interest in these materials lending themselves to 

classification. These studies have looked at the classification of failure methods, such as fibre 
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debonding and fibre pull-out. These failure modes are distinct but also give an indication of the 

damage level in the material being monitored. This distinct nature of these categories has led 

to the successes of grouping algorithms such as the K-means algorithm.  

In this study, the author seeks to classify the severity of damage in steels with the categories 

defined by the length of a fatigue crack. This classification system has less well-defined 

boundaries as it is not defined by failure mode. Therefore, the clustering of data is less distinct 

with overlap between the boundaries. Therefore, other pattern recognition approaches are 

needed. Pattern recognition NNs lend themselves to this less easily definable data finding 

complex underlying patterns within the data that can accurately predict these arbitrary severity 

categories.  

Pattern recognition systems have been applied to other aspects of AE analysis beyond the 

classification of severity studied in this study. Suwansin and Phasukkit used these techniques 

to identify, whether the AE source originated in the head, web or foot of the rail (Suwansin & 

Phasukkit, 2021). Traditional location methods using multiple sensors have been able to 

accurately locate AE sources already. However, this work used machine learning techniques 

to improve on this by requiring only a single sensor to locate the AE source. Ebrahimkhanlou 

and Salamone, also sought to use machine learning techniques to improve the accuracy of AE 

source location (Ebrahimkhanlou & Salamone, 2018). They utilised the pattern recognition 

capability of machine learning techniques to identify the characteristics of signals that are 

caused by reflection and other interference to the AE signal to reduce the number of false 

positive AE events detected. Like Suwansin and Phasukkit, Ebrahimkhanlou and Salamone, 

sought to accurately locate an AE source using a single sensor. Both studies used a 

convolutional neural network approach. 
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4.2 Signal Processing 

4.2.1 Background noise removal 

In the development of an effective AE monitoring technique we are presented with two 

problems in terms of the waveform analysis; firstly the removal of background noise (Moore 

et al., 2005) and secondly the extraction of key indicator features from the waveform. The 

removal of background noise is considered key to the effective evaluation of AE signals in that 

it removes any unwanted signals leaving only the proportion of the data which is useful to the 

classification of the structural health of an asset.  

Background noise can however refer to much more than environmental or external noise. AE 

signals are generated from a variety of sources such as elastic deformation of the material by 

temperature or load which would not be an indicator of defect growth but would be detected as 

an AE signal (ISUNDE-ed, 2022). It is clear therefore that filtering alone cannot be used to isolate 

the key AE parameters for damage detection and other analysis techniques are required to 

extract these. 

Filtering is commonly used to remove background noise from the raw AE signal. Filtering of 

the signal is simply applying upper and/or lower limits to the signal that will be recorded. In 

Chapter 1 of this thesis the different capturing methods HDD and TDD were discussed, these 

are forms of filtering. In the case of the complete waveform captured in this study a TDD 

approach was used. This sets a limited time over which a signal is captured. Whilst this will 

not remove background noise from the captured signal, the volume of data captured is limited 

to a finite quantity.  

If the frequency range of the AE signals is known all frequency outside of this range can be 

removed. The frequency ranges used to filter AE signals have been widely studied across a 

range of materials.  
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Most approaches to removal of background noise have been based on data with randomly 

artificially-induced noise and/or noise that follows a particular distribution. Under real world 

conditions, this is often not the case with background noise being randomised. As the 

traditional mathematical approaches for removing background noise have been based on 

predictable data and are effective at this, they fail when applied to unusual noise distributions. 

NNs on the other hand are able to cope with this variation in background noise distribution 

quite successfully still extracting the relevant key data for classification (Masters, 1994). 
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4.2.2 Waveform analysis 

Before being passed through a pattern recognition network, the recorded AE waveform must 

first be analysed to consistently extract key features from the waveform under all conditions. 

There are a variety of techniques used for this operating in the time, time-frequency, and 

frequency domains with no one approach yet used predominantly. This study will investigate 

the effectiveness of a selected technique from each of these domains and compare their 

effectiveness when applied to a custom-built machine learning algorithm. 

4.2.2.1 Time domain analysis 

Historically research has focused on the analysis and classification of damage by using specific 

AE parameters in the time domain as in Chapter 3 of this report (Barré & Benzeggagh, 1994; de 

Groot et al., 1995; Morscher, 1999), focussing on AE energy, counts and duration. Broad trends 

in the data can be determined, however the potential highly dimensional data of the complete 

waveform is lost (Muir et al., 2021). Moving beyond these parameters was, until relatively 

recently, limited by both recording equipment and data storage and computational power. 

Several of the parameters analysed are also known to be susceptible to interference from 

experimental factors and the AE propagation pathway (Muir et al., 2021). In addition, the use 

of FEA and other simulations have cast doubt on the repeatability of the models developed 

from these parameters outside closely controlled environments (Muir et al., 2021). The work 

of Ould et al found that these parameter-based techniques were not sufficient to discriminate 

between fatigue crack growth stages (Ould Amer et al., 2013). Despite these doubts researchers 

have successfully proven a link between many of these parameters and crack growth events 

and severity (Mohammad et al., 2014; Papaelias et al., 2014, 2018; Sikorski, 2013).  

It is possible to analysis the signal in the time domain without the need to focus on these 

parameters, thereby utilising the entire recorded AE waveform. Statistical parameters including 

Crest Factor, Skewness, Kurtosis and root-mean-square (RMS) have been used to do this 
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(Amini, 2016; Vallely, 2015). In this study RMS analysis will be applied to the recorded RMS 

data and the results fed to the custom machine learning algorithm. 

Figure 4.4 shows an example of a recorded AE waveform showing several strong signal peaks. 

A solution to analysing these waveforms could be to look for these peaks in the time domain 

and categorize the signal for example by peak-peak amplitude analysis. This technique has a 

strong draw back in that it does not consider the energy contained within the signal. It is 

possible that a peak may appear strong and therefore significant but contain no energy. Peaks 

of this nature are associated with background noise and therefore, would generate error in any 

subsequent analysis of the signal.   

 

Figure 4.4 A typical AE signal recorded during fatigue testing of a cracked steel sample. 

 

  



101 
 

To overcome this the energy contained within a signal can be analysed using RMS. The RMS 

is calculated using Equation 4.1.  

𝑅𝑀𝑆 = √
1

𝑁
∑𝑥𝑛2
𝑁

𝑛=1

 

Equation 4.1 Equation used to calculate the RMS of a signal (Lebold et al., 1985) 

 

The moving RMS extends this principle allowing the energy of a complete signal to be analysed 

by dividing the signals into windows of a set length and the RMS calculated across them. The  

length of the window used in this approach is important. However, there is no standard on 

window length selection, so trial and error must be used to find the optimum window length. 

The optimum window length ensures that excessive background noise is filtered out whilst 

maintaining all the data required for accurate analysis. Figure 4.5 shows the moving RMS plot 

of the waveform shown in Figure 4.4. To obtain this a window of size 100 and a sigmoidal 

correction factor are used. This window slides through the data calculating the RMS of the data 

enclosed by the window at each data point. 
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Figure 4.5 The moving RMS plot calculated from the AE waveform shown in Figure 4.4 

 

By extracting the high energy signals from the waveform much of the background noise can 

be removed and the energy of the signal can be analysed. RMS however, becomes limited 

where the background noise signals also contain high energy level peaks which would then not 

be filtered out. RMS has proved effective at detecting the presence of crack growth events 

which are indicated by the high energy signals detected (Vallely, 2015). 

4.2.2.2 Frequency domain analysis 

Interest in the frequency domain is born out of the great depth of analysis that can be applied, 

extracting indications of the severity of damage as opposed to just the presence of a crack. 

Frequency domain analysis is widely used for reciprocating or rotating machinery such a gear 

boxes and bearings (Amini, 2016).  

As is the case with much of the research into AE frequency and time-frequency analysis 

techniques have only recently been made feasible by the improvement in equipment storage 
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capability and processing power. Despite these previous processing limitations a wide range of 

studies have looked at the use of frequency domain analysis to extract features from an AE 

waveform for example Fourier transforms, Spectral Kurtosis, Moving Cepstrum, high and low 

Frequency resonance. This study will focus on the most widely used and simplest of these the 

Fast Fourier Transform (FFT), which is an implementation of the Discrete Fourier Transfrom 

(DFT) that reduces the number of computations required therefore speeding up the processing 

of the signal. The DFT is shown in Equation 4.2. 

𝑌(𝑘) =  ∑𝑋(𝑗)𝑊𝑛
(𝑗−1)(𝑘−1)

𝑛

𝑗=1

 

 

Where 

𝑊𝑛 = 𝑒
(−2𝜋𝑖)
𝑛  

Equation 4.2 Equation used to calculate the FFT of a signal. Where x is the input signal in the 

time domain and n is the signal length. 

 

The FFT breaks down a signal representing it as the frequencies that make up the signal and 

their corresponding amplitudes (NationalInstruments, n.d.). That is taking the signal from the 

time domain to the frequency domain this is shown in Figure 4.6 which is the FFT plot of the 

AE waveform shown in Figure 4.4.  
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Figure 4.6 The FFT plot of the AE waveform shown in Figure 4.4 with a Hann filter applied. 

 

The FFT approach assumes that the signal covers a complete period of a repeating periodic 

signal. In an experimental setting it is possible to control the signal acquisition so that signals 

are recorded for a complete cycle of the fatigue testing sequence. However, this does not 

necessarily match the corresponding AE signal meaning that the signal recorded is not periodic 

in nature. This is exasperated in real world conditions where the fatigue loading is stochastic 

and therefore challenging to precisely tailor the AE acquisition to ensure a periodic signal. 

Where the signals being analysed using FFT are non-periodic spectra, leakage occurs with high 

frequency’s displayed that are not part of the original signal (NationalInstruments, n.d.).  

To overcome this, windowing is used to smooth the start and end of the signal to create a 

periodic signal. There are a range of different windowing functions that can be applied to a 

signal each of a slightly different shape (NationalInstruments, n.d.). In this study a Hann 

window function is used. A Hann window shown in Figure 4.7 has a sinusoidal shape which 
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starts and ends at zero thereby artificially creating a periodic signal by suppressing the edges 

of the recording so that the start and end of the signal are at the same origin. As the signals 

recorded in this thesis are taken at random time intervals the signal is unlikely to start and end 

and the same amplitude and therefore not periodic. It is therefore important that a window is 

applied to the signal to ensure that when the FFT is calculated edge effects are not observed. 

 

Figure 4.7 Graphical representation of the Hann window used to create a periodic signal to 

reduce spectral leakage when FFT is applied. 

 

The constituent frequencies of the AE signal can now be analysed and changes in frequencies 

can be compared to crack growth and severity. The frequency of the AE signal released during 

fatigue crack growth is expected to change with different crack growth events, for example the 

presence of inclusions, as well as the severity of the crack. Analysis in the frequency domain 

should therefore allow for the severity classification of a signal and the development of an 

automated classification system. 

As with all analysis technique there are limitations to this technique and frequency domain 

analysis. Frequency domain techniques are often based on the assumption that the signal is 

stationary or repeating as in the case of gear sets. In the situation of rail defects this is not the 

case. 
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4.2.2.3 Time frequency analysis 

To overcome this, researchers have investigated time-frequency analysis techniques that are 

able to analyse nonstationary signals. Wavelet transform methods have been investigated to 

overcome the need for a stationary signal, this makes it potentially more useful for use in the 

case investigated in this study. Whilst FFT and RMS are relatively simple to implement, 

wavelet transforms are more complex to both calculate and interpret.  

The Continuous Wavelet Transform (CWT) can be used for non-stationary signals where the 

signal is non-repeating, that is not a repeating sigmoidal signal. The CWT equation is given in 

Equation 4.3 where; a is the scale parameter corresponding to the pseudo-frequency, b a 

translation parameter and 𝜑∗ is the conjugate of the complex-valued function 𝜑.(Muir et al., 

2021). 

𝐶𝑊𝑇(𝑎, 𝑏) =  
1

√𝑎
∫ 𝑥(𝑡)𝜑∗ (

𝑡 − 𝑏

𝑎
)𝑑𝑡

∞

−∞

 

Equation 4.3 Definition of the CWT where a is the scale parameter corresponding to the 

pseudo-frequency, b a translation parameter and 𝜑∗ is the conjugate of the complex-valued 

function 𝜑.(Muir et al., 2021) 

 

This technique has been successfully used to characterise AE signals across a number of 

applications from the detection of drilling burr formations (S. H. Lee & Lee, 2008)  to the detection 

of leaks in water pipes (Ahadi & Bakhtiar, 2010). This technique has advanced the way in which 

AE signals are analysed, for example traditionally multiple sensors were needed to locate the 

source of the AE signal, however this technique has allowed signal locations to be classified 

for example the work of Hanstad et al who qualitatively located AE sources using wavelet 

transforms (Hamstad et al., 2002). One of the main advantages of this technique is that the time 

data is not lost from the analysed data allowing changes in the signal frequency to be used to 

classify the AE signal. 
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4.3 Summary 

This chapter gives a brief overview of the principles and algorithms that will form the basis of 

the machine learning technique developed in the following chapter. An overview is given of 

machine learning techniques and their development followed by a focus on Neural Networks 

used for their powerful processing capability achieved by emulating the way in which a 

biological brain functions. 

For use in any machine learning technique pre-processing must be applied to the raw AE data 

to remove background noise and extract key features. This chapter discusses both steps and 

techniques that are commonly used.  The different processing domains (time, frequency, and 

time-frequency) are discussed with the techniques that will be used to pre-process that data in 

each domain later in this thesis highlighted. They are RMS, FFT and CWT. 
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Chapter 5 

Machine learning: 

Development and Results 

The development of the machine learning algorithm considered in this study seeks firstly to 

build and train a neural network using labelled acoustic data. Secondly, it aims to deploy this 

trained network to analyse unknown acoustic data generated by the propagation of a crack and 

characterise it according to its severity. The code is written in MATLAB®, making use of the 

available signal processing and machine learning toolboxes built in already. The present 

chapter will describe the general development of the algorithm presented herewith as well as 

the results produced. The relative benefits of the different algorithms selected will be discussed. 

The code developed in the present study, generates a neural network which is trained, tested 

and then can be applied to unknown AE data. It was noted in chapter 4 that neural networks 

are a subset of machine learning therefore these terms will be used interchangeably to describe 

the code developed here.   

5.1 Raw data processing 

Before a neural network can be designed and implemented the data that it will analyse must be 

processed to allow representative features to be extracted. The processing techniques that can 

be applied to the raw acoustic data are detailed in chapter 4. In this study three algorithms have 

been explored; Fast Fourier Transform (FFT), Root Mean Square (RMS) and Continuous 

Wavelet Transform (CWT). These three techniques cover three processing domains, including 

time, frequency, and time-frequency, and are discussed in detail in chapter 4. Whilst these three 

techniques are different in the way they are used to process the data and the outputs they 
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generate; the overall processing route can be summarised simplistically by the pseudo code 

shown in Figure 5.1.  

 

Figure 5.1 Pseudo code for the raw waveform processing prior to analysis by the machine 

learning algorithm. Represented visually here it shows the steps required for all three of the 

analysis techniques used in this study. 

 

Analysis of a single signal using the selected signal processing techniques is relatively simple 

requiring only a few lines of code to be written in order to import the raw data, process it, and 

then output it numerically of visually. For example, the code shown in Figure 5.2, which applies 

FFT to a raw data signal, outputs both a numerical and visual representation of that data.  

 

 
 

Figure 5.2 MATLAB code required to take a numerical raw data signal, apply FFT and output 

the result both numerically and visually. 
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This code, however, only represents part of step 3 of the sudo code in Figure 5.1. Steps 1-3 

must be completed before the data can be passed to the machine learning algorithm. That is the 

data must be loaded from the recording system, the required data must be extracted, the data 

processed using signal processing and finally saved in a form usable by the machine learning 

algorithm. Due to the large volume of data required of machine learning, as described in 

Chapter 4, this process must be automated for the processing of the training and test data. To 

manually load, process and save the data would take a prohibitively long time to be practical 

even with the relatively small dataset used in the present study. 

Even using automated processing of the data the present study has made use of the Blue BEAR 

high performance computing (HPC) facility at the University of Birmingham to carry out this 

initial processing. In the present study, only a relatively small dataset is used in comparison 

with that which will be required for the training of a complete system. Any processing system 

developed must also be adaptable such that it can be later applied to a single data recording for 

implementation as a real time monitoring system. It also must be capable to complete this 

process without the need for supercomputing capability. For practical use, it is envisaged that 

this process will also be automated. It is this approach that has been built into the code in the 

present study. To automate the process, a loop system is utilised, which both process the AE 

data and labels the data.  

Whilst three different signal processing techniques are used to analyse the data, they all have 

processing steps in common. In all cases a frequency bandpass filter is applied to the raw 

dataset. This frequency bandpass filter filters out all frequencies outside of the range of 250-

400 kHz. The remaining frequencies are those that correspond to acoustic emission signals 

recorded.  
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5.1.1 RMS processing 

There are several parameters that can be adjusted to optimise the RMS processing to specific 

datasets. In the system developed herewith, the three parameters that are user-definable are the 

window size, the dimension along which the RMS is completed and a correction factor. Several 

window sizes were considered with a window size of 100 points being selected from these 

trials. This value gave the best results in removing the background noise, whilst maintaining 

the peaks of interest. Due to the differences in frequency response of different materials it is 

likely that this would need to be tailored to each application. 

The RMS was run along the time dimension. It is not envisaged that there would be any 

circumstances where this would be adjusted by a user for the application that this algorithm is 

applied to. A correction factor of 1 is applied to the RMS.  

Once the RMS processing has been applied a findpeaks function is used to select the 

characteristic peaks. The number of peaks is set by a user. The more peaks the greater the data 

the machine learning algorithm must work with. It is, however, not a case of just selecting the 

highest number of peaks that is expected. As each signal differs in the number of AE peaks 

detected the number of peaks selected must be as high as possible, whilst ensuring that the 

quietest signal still has more peaks that can be selected. This is because the input size of the 

data must be the same for all samples in order of the machine learning algorithm to analyse it. 

Once the peaks have been selected the amplitude of these peaks is recorded. In this study 

114,600 peaks were selected from each dataset. 

For the training and test dataset this amplitude data is added to a matrix where each sample is 

represented by a row. In the real-world test data, the sample data is recorded as a single row 

vector. 
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5.1.2 FFT processing 

Fourier transforms are used to find the constituent frequencies making up a signal. There are 

several implementations of this transform, as discussed in Chapter 4 this study uses the FFT 

with a Hann filter applied.  

The same extraction of key features is used as that of the RMS processing, peak analysis. As 

with the RMS, the number of peaks selected is taken from analysis of the output data to find 

the highest number of peaks selectable from the dataset. In this case 740,000 peaks were 

selected. 

In terms of implementation through coding, this method is the simplest of the three techniques 

used in the present study. Whereas the other two techniques have parameters that are adjusted 

to achieve the best results, for FFT only the number of peaks selected from the output can be 

adjusted.  

5.1.3 CWT processing 

The pre-processing for the data differs from that of the FFT and RMS generating a spectrogram. 

This is treated as an image. Hence, an image recognition network is applied as opposed to the 

pattern recognition network used in the other two cases. The same bandpass filter is applied to 

the raw data. The output from this is then analysed using a wavelet transform with the outputted 

spectrogram converted to a RGB image. The generated images are saved as an image datastore.  
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5.2 Data labelling 

Two different labelling methods are required as the data from the RMS and FFT data are 

numerical, and the CWT data are treated as an image. For the machine learning networks 

developed and discussed, this difference in data requires variation in the way the labels and 

data are presented to these networks. 

This study has used a classification system informed by the empirical and qualitative 

classification system currently used for crack severity in RCF scenarios by Network Rail 

(Network Rail, 2018). This classification system is shown in Table 5.1. In the subsequent 

coding the label given to each data set is taken from the file name of that dataset, which 

corresponds to the crack severity as listed in Table 5.1 at the time that the AE data was recorded. 

Whilst this requires prior knowledge of the severity state the final trained algorithm outputs the 

predicted severity label requiring no prior knowledge of the severity state. 

Table 5.1 Table of the severity classifications used in this study. It lists three different 

classifications; 1. The crack length range 2. A descriptive label 3. A numerical classification 

label (Network Rail, 2018). Severity classifications of crack length and the descriptive label 

are based off  

Crack 

length 

Descriptive 

label 

Numerical 

classification 

0<0.1 mm Healthy 1 

0.1≤1.5 mm Light 2 

1.6≤3 mm Moderate 3 

3.1≤4 mm Heavy 4 

4.1≤4.9 mm Severe 5 

>5 mm Very Severe 6 

 

5.2.1 RMS and FFT Data labelling 

The machine learning algorithm developed here requires the training and the test data to be 

labelled using a numerical classification system. When the trained network is applied to real 

world data these numerical outputs can be outputted to an operator in a more user-friendly 

format such as colour coding or descriptive.  
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To label each data set with the corresponding numerical classification the code reads each file 

name, which contains a descriptive label. It then assigns the appropriate numerical 

classification and subsequently saves this in a column vector, where the row number containing 

the classification represents the AE data sample.  An example of this is shown in Figure 5.3. 

This column vector will not be required for any data subsequently analysed using a trained 

network as this is the purpose of the network. 

 

Figure 5.3 Example of the column vector created containing the numerical classification for 

each data sample in either the training or test data set. 

 

5.2.2 CWT data labelling 

For the RMS and FFT data a separate column vector of labels is generated. The images from 

the CWT processing are instead labelled by the folder in which they are saved within the image 

data store. For example, all images that correspond to a severity level of 3 (Moderate) will be 

saved in the folder named 3. As with the loading and labelling of the RMS and FFT data this  

process is coded to be completed as a loop running through all the files available.  
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5.3 Machine learning development 

Now that the data is labelled and processed, an algorithm must be applied that can link the 

labels to the data and then extract representative features from the processed data for each 

classification. As has been discussed this is done using machine learning techniques. As the 

outputs from the processing using RMS and FFT are similar the same machine learning 

approach can be used from both. The CWT outputs differ and therefore a different analysis 

method is required. 

5.3.1 Shallow Pattern recognition neural network 

For both the RMS and FFT data a pattern recognition network is utilised, in this case a patternet. 

The patternet algorithm is a feed-forward network with a single hidden layer. The size of this 

hidden layer, the training function and the performance function can all be adjusted to the 

application. Due to having a single hidden layer this is a shallow network. The effectiveness of 

a deep learning variation is also tested on both the RMS and FFT data. 

The same network structure was applied to both the RMS and FFT data set. A single hidden 

layer neural network was used with 28 neurons in the hidden layer, creating a 2-layer NN. The 

number of neurons in the hidden layer can be adjusted to achieve optimum results. As with 

many of the parameters used to define the machine learning algorithm, the optimisation of the 

number of these neurons is found through experimentation of different values. In this study 28 

neurons were found to give the best results.  

5.3.1.1 Training function 

The training function is the part of the machine learning process that learns features from the 

dataset. That is, it seeks to find the optimum weights and biases to reduce the loss. The loss is 

how different the prediction is from the truth. If the loss is 0 then the weights and biases are 

ideal from there the higher the loss the worse the prediction.  
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There are different ways to analyse this loss and for the algorithm to decide what adjustments 

should be made to reduce that loss. In the present study, the scaled conjugate gradient (SCG) 

approach is used. This approach analyses the loss gradient, whether the loss is increasing or 

decreasing with the change in weights, with the aim to find a minimum value. An idealised loss 

curve is shown in Figure 5.4. In this case the minimum loss can be clearly identified. 

 

Figure 5.4 Schematic plot of the performance function with the minimum loss point easily 

identified as the lowest value of the loss plot. 

 

In reality, the loss function is more complex than this and it is possible for localised minimum 

in the loss function to be identified, as is shown in Figure 5.5. The scaled conjugate gradient 

approach combines a Levenberg-Marquardt algorithm and the conjugate gradient method to 

create a training function that changes the learning rate with each iteration to avoid a local 

minimum being selected. 
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Figure 5.5 Schematic plot of a loss function where a localised loss minimum has been identified. 

The identified local minimum has a greater loss than the actual minimum identified as the 

lowest point of the loss plot.  

 

5.3.1.2 Activation function 

The activation function takes the weighted sum of the inputs and converts them into an output 

to the next layer. There are different activation functions depending on the data being analysed. 

If the data is not linearly separable a non-linear approach is required. In the present study, a 

sigmoidal activation is used. This function is given in Equation 5.1. This scales the weighted 

inputs to between 0 and 1 using the sigmoidal function plotted in Figure 5.6. 

 

𝑆(𝑥) =
1

1 + 𝑒−𝑥
 

Equation 5.1 Sigmoidal activation function this function is plotted in Figure 5.6. Where x is the 

data input. 
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Figure 5.6 Illustration of the Sigmoidal function. This function scales all inputs (x) to values 

(y) between 0 and 1 using the Sigmoidal function plotted here. 

 

5.3.1.3 Output function 

The output function takes the output from the final hidden layer and assigns that dataset to a 

class. This study made use of a SoftMax function. This function finds the probability that the 

outputted data belongs to a particular class. It does this by calculating the probabilities of the 

exponentials of the input data. This function works on the assumption that a particular dataset 

can only correspond to one class therefore the data is assigned to the class to which it has the 

highest probability of being part of. As this is the case for the problem in this study this is an 

appropriate output function. The SoftMax layer has the same number of neurons as the output 

layer. 

5.3.1.4 Performance function 

In section 5.3.1.1 it was discussed that the training function seeks to minimise the loss and 

therefore produce the nearest approximation to the correct result. Once this has been applied 

and the network trained, the effectiveness of the network as a whole must be checked. This is 

done using a performance function. These functions compare the classifications produced by a 

network with the correct classification. The training and performance functions are very similar 
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in that they are assessing loss, however, differ in the loss they are assessing. The training 

function looks to minimise how far from the correct answer the network is and then updates 

the hidden layer weights to get a closer result. The performance function instead assesses how 

often the result is correct rather than how far from the truth it is. 

In the machine learning technique developed and described herewith, cross-entropy loss is used 

to as the performance function.  This method is used in a situation, where the output is a 

probability between 0 and 1. The cross-entropy loss function calculates how far from the 

ground truth this probability is, the further it is the worse the result. The perfect output from 

this would be 0. By using this performance function the overall performance of the network 

can be monitored. 

The performance of the network can also be represented visually as a confusion matrix which 

compares the predicted class with the actual class showing the overall performance. These will 

be used in the present study to present the results of the effectiveness of the developed machine 

learning algorithm. 

5.3.1.5 Training stops 

At some point the training of the NN must stop. This is ideally when the lowest loss is achieved. 

However, there is a balance to be met between time, processing requirements and accuracy. In 

many cases, a close approximation to the answer will achieve the desired result. Therefore, 

there is little point in extending training beyond this point. It is not always possible to achieve 

100% accuracy of a network, whether that is because the network architecture is not suitable 

or there is too much overlap between categories. In these cases, should training be left to 

achieve a required minimum loss, the training may continue uninterrupted with little to no 

change in accuracy as the loss ranges around the ideal.  
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To control the training stop points are defined. Once one or more of these stops are met, 

depending on the settings, the training of the NN will stop with the last iteration of the network 

being outputted. The user can then analyse the result to ensure that it is of a desirable accuracy 

and that it has not overfitted to the data. If the NN has not achieved the desired accuracy running 

the training function again may achieve a different result as the resulting NN will be different 

from the original.  

The training stops used in this study are shown in Table 5.2. The number of validation checks 

applied to a network and the maximum error can both be controlled by the user depending on 

the performance requirements. When the desired performance has been achieved, the network 

is deemed validated and training is concluded. As this may not be achieved in all cases, the 

maximum number of epochs is also set to ensure the training will time out if it is not converging 

to a satisfactory loss. 

Table 5.2 Table giving the user defined training stops used for the neural networks trained 

using the RMS and FFT data. The maximum Epochs is the maximum runs through the network 

during training. The target loss is the target for the loss function. The minimum performance 

is the minimum gradient of the performance function and the validation checks is the number 

of performance checks that must be passed.  

Maximum Epochs 1000 

Target loss 0 

Minimum Performance 

Gradient 

1e-6 

Validation checks 6 

 

5.3.2 Deep learning pattern recognition neural network 

Adding more hidden layers to a neural network creates a deep learning neural network. The 

extra hidden layers add the potential for more dimensions to be analysed by the neural network 

and therefore more features to be extracted. It is however a trade-off with processing time and 

computational requirements. In the present study, the effect of adding further hidden layers to 

the pattern recognition network applied to the RMS and FFT data was tested.  The network 
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developed had the same properties as the shallow network described previously, with the main 

difference being only in the number of hidden layers applied. 

5.3.3 Image recognition neural network 

The networks described so far in this chapter have dealt with the AE data as numerical data. 

The FFT and RMS data can be plotted as a 2D graph as shown in Figures 4.5 and 4.6 in chapter 

4. The CWT data is three dimensional. Therefore, the machine learning method described 

above is not applicable as data cannot be extracted from defined peaks that represent the overall 

dataset. The data from the CWT analysis is instead outputted as a spectrogram. 

Instead of using a patternet NN, an image recognition NN was developed. As the spectrogram 

is essentially an image with a mixture of colour intensity and location indicating key features 

this is an appropriate approach ensuring that the extra dimensionality of this data can be 

analysed. 

The image recognition NN developed here can be described as a deep learning NN as more 

than one hidden layer is used. For this application there is a clear case for the use of deep 

learning NN as opposed to a shallow network due to the extra dimensionality of the data. In 

the image recognition NN the hidden layers are not all the same, instead using a number of 

different layers which simplify and classify the data in different ways.  

In the NN developed in the present study, the NN is made up of 8 different types of layers with 

several repeating leading to a 15 layer NN. The 8 Layers include, an image input layer, 

convolution 2D Layers, max pooling 2D layers, ReLU layers, average pooling 2D layer, fully 

connected layers, SoftMax layers and a classification layer. The order of these is shown in 

Figure 5.7. The maximum number of epochs for this network was set to 10. 
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1. Image Input Layer 

2. Convolution 2D Layer 

3. Max Pooling Layer 

4. ReLU Layer 

5. Convolution 2D Layer 

6. ReLU Layer 

7. Average Pooling 2D Layer 

8. Convolution 2D Layer 

9. ReLU Layer 

10. Average Pooling 2D Layer 

11. Convolution 2D Layer 

12. ReLU Layer 

13. Fully Connected Layer 

14. SoftMax Layer 

15. Classification Layer 

Figure 5.7 Ordered list of the layers used to define the architecture of the image recognition 

neural network developed for analysing the CWT analysed data. 

 

The image input layer takes the input image, which is the spectrogram, and inputs it into the 

NN defining its size as the number of colour channels used in the image, in this particular case 

3 as it is an RGB image. 

The Convolution 2D Layers apply a sliding convolution filter to the input. These are filters of 

a defined size and move through the input horizontally and vertically calculating the dot 

product of the weights and the input as well as adding a bias factor. To avoid the interactions 

of these filters with the edge of the image thereby losing data, padding is added around the 

image.  

The max pooling 2D layer down samples the input from the previous layer by dividing it into 

rectangle pooling regions and computing the maximum value in each region. This is not applied 

to each value but strides through the data by a user set amount. 
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The ReLU layer or a rectified linear unit layer. This layer removes all negative values from the 

inputted data by defaulting these values to 0. This is applied to every element of the data. This 

is similar to the application of the sigmoidal function used for the RMS and FFT neural 

networks. The equation used is given in Equation 5.2, and the plot of this function is shown in 

Figure 5.8. 

𝑓(𝑥) = max (0, 𝑥) 

Equation 5.2 ReLU equation used to remove negative values from the input dataset. 

 

Figure 5.8 Illustration of the ReLU function applied in the ReLU Layer. This function defaults 

all negative values to 0.  

 

The average pooling 2D layer is similar to the max pooling 2D layer described above. It differs 

in that it calculates the average value of each region rather than the maximum value that is 

calculated when using the max pooling 2D layer. 

The layers described so far are in essence ways of simplifying the data inputted to the network, 

so only the most prominent or unique features are left within that data. The final layers are used 

to bring together this simplification to categorize the data. The first of these, the fully connected 

layer, multiplies the input by a weight matrix and then adds a bias vector in a similar way to 

the weights and biases used in the NN developed for the RMS and FFT data. 
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The SoftMax layer is used to normalise the output of the network to a probability distribution 

over all predicted classes. It takes all the values in the inputted vector and outputs them as a 

probability distribution, where all the values add up to one. This is the same approach used to 

classify the data in the RMS and FFT NN. As with these networks the final classification step 

uses cross-entropy loss. 

5.4 Results 

The data processed to develop the machine learning techniques below is split into a training 

and test dataset. The training dataset will act as the known/seen data and the test data as a 

labelled unseen dataset. The same dataset is used for all the machine learning techniques 

developed here. The split of the data into these datasets is shown in Table 5.3 and is 

approximately a 80/20 training to test data split. 

Table 5.3 Table showing the data split between the training a test dataset for each class of 

severity. The data is split to approximately 80/20 training to test data split. 

Descriptive 

label 

Class Training Test 

Moderate 3 175 43 

Heavy 4 807 201 

Severe 5 736 183 

Very Severe 6 490 122 

Total - 2208 549 

 

 

It is not expected that the networks developed here will reach 100% accuracy. This is due to 

the way in which the data is classified. As has been discussed the data has been grouped into 

categories. Whilst these are based off a classification system currently in use on the network, 

they are arbitrary in nature. Each length category is of a set length and there is no overlap. 

Crack growth does not follow this precise categorization instead growing gradually.  

This presents a problem when applying classification into categories as is developed here. 

Those crack lengths which lie in the middle of the category are easily distinguishable from the 
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next category as they will be significantly different in length, and therefore if they can be 

classified by their AE signal this too should be significantly different. The problem lies at the 

boundary of these categories. At these boundaries the crack length and therefore corresponding 

AE signal will not be significantly different and therefore confusion may arise. This is the 

primary reason 100% accuracy is not expected. Other source of accuracy loss may be due to 

background noise of novel AE signals caused by untrained scenarios. 

The performance of the developed NN are plotted using confusion matrixes for example figure 

5.9. These present visually the difference between the predicted and actual class. Using this 

comparison, the overall accuracy of the network is shown.  The confusion matrix also gives an 

idea of which classes the NN are confusing and struggling to classify.  
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Figure 5.9 Example of a confusion matrix used to display the performance of the NNs. 

The confusion matrix is arranged with each row being an output class and each column being 

the target or ground truth class for that data. Each outputted data set is therefore placed into the 

cell corresponding to the output and target class for that data set. Where these are the same and 

the network has therefore classified correctly the cells are coloured green. When this is not the 

case the cells are coloured red. In each cell the number of data sets in that cell are represented 
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by the first number in bold and the percentage of the overall data set which that represents is 

the percentage below this in the cell. The cells containing coloured text represent the percentage 

of correct (green text) and incorrect (red text) is each output and target class. The overall 

accuracy is represented in the bottom right-hand cell. 

For all confusion matrixes displayed here classes 1 and 2 are displayed however with no results. 

This is because there was no available data for these classes. They are still displayed as the 

ability to process them has been programmed into the machine learning algorithm to future 

proof them for further data, as well as avoiding confusion when comparing to the classes 

defined in Table 5.1. 

In this thesis it has been stated that the NN accuracy can change when the same dataset and 

network architecture are used and therefore to achieve the highest performance/accuracy a NN 

architecture should be trained multiple times until the highest or desired accuracy is achieved. 

In the results presented here only the highest accuracy results from training the NN developed 

are given. In all cases multiple runs of the same architecture and data yielded little difference 

in accuracy as the networks had already been tailored for use on the datasets used in this study. 

5.4.1 RMS 

5.4.1.1 RMS Shallow Neural Network 

The first NN developed in this study for the analysis for the RMS processed data was a shallow 

Neural Network. Figure 5.10 shows the confusion matrix of the accuracy of the RMS Shallow 

Neural Network developed in this study following training and testing of the network on 

known/seen data. 
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Figure 5.10 Confusion matrix representing showing the performance of classifying known data 

(the training set) by the shallow NN trained using the RMS processed data. An overall accuracy 

of 40.4% is achieved, shown as the green percentage in the bottom right of the confusion 

matrix. 

 

The overall accuracy of the network, measured as a percentage of the time the network correctly 

classifies data in the correct class, is given as the percentage in green in the bottom right-hand 

cell of the confusion matrix in Figure 5.10. In this case the accuracy of the RMS shallow neural 

network is 40.4%.  

This is a low result in terms of accuracy. For use under real world conditions this network work 

would not be suitable for working alone to monitor a network. This is particularly true as this 

is the accuracy on known data that the network has been specifically trained to. On unknown 

data this accuracy will drop further. Within the confusion matrix, there are some results that 

stand out as being particularly high in comparison to the other results. For example, where a 

dataset has a target class of 4 the network correctly classifies this data in 82.8% of cases. This 

is, however, contrasted with target class 3, where none of this class were correctly classified.  
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Within this confusion matrix, there is a clear indication of overfitting. This is particularly clear 

for class 4. In this case as already discussed 82.8% of datasets that had a target class of 4 were 

correctly classified as this. However, of those classed by the NN as class 4, only 41.2% should 

have been categorised in this category. In fact, 73.3% of the total dataset was classed as class 

4, if the NN was correctly trained this value should have been 36.5%. The overfitting of the 

NN to this class may be caused by the larger number of samples avaible to train the network 

from in this class compared with the other possible classes. 

Figure 5.10 showed the results of the trained network on known data. This should give high 

levels of accuracy should the network have been trained affectively. The trained data must then 

be tested on an unknown dataset to confirm that it has not been overtrained to the training 

dataset. From the results of the trained data (Figure 5.10) it is expected that the accuracy of the 

network on unknown data will be low and have a bias to classifying data sets as class 4.  

The results from the test data are given in the confusion matrix in Figure 5.11. 
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Figure 5.11 Confusion matrix representing the performance of the shallow NN trained using 

the RMS processed data when applied to an unseen data set (the test data set). The accuracy 

of the network is shown as 37.2% this is represented as the green percentage in the bottom 

right of the confusion matrix. 
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The confusion Matrix in Figure 5.11 confirms the expected result that the accuracy of the NN 

on a test dataset on an unknown dataset (37.2%) will be lower than when test on a known 

dataset (40.2%). Figure 5.11 also confirms the overfitting of the NN to the class 4 category 

with 73.6% of those with a target class of 4 categorised correctly. However, of those datasets 

classed as class 4 only 39.1% were correctly classified. The trend for the other data classes is 

also repeated, with no class 3 datasets accurately classified. Classes 5 and 6 were classified 

correctly, in 23.5% and 10.7% respectively, in comparison with 24.9% and 8.2% correctly 

classified in the known dataset. 

The higher number of samples avaible to train the NN on in class 4 in comparison with the 

other classes will have some effect on the overall accuracy of the NN. The overall low accuracy 

of the NN trained on the RMS data implies that there is another factor influencing the accuracy 

of this classifier. The structure and hyperparameters controlling the training of the NN have a 

large impact on the way in which the NN is taught and therefore its overall accuracy on a given 

dataset. Many of these parameters are set primarily though trial and error to achieve the highest 

possible accuracy. The author has conducted trials to optimise the accuracy of the given dataset. 

The results presented herewith show the highest accuracy level that was achieved. That is not 

to say that there is not a NN architecture that cannot achieve better results, but rather that the 

structures and parameters used in this study to create a shallow NN were unable to give a better 

result.  

5.4.1.2 RMS Deep Neural Network 

It may be that the shallow NN does not have enough dimensionality to classify the RMS data. 

A potential approach in combating this is to use a Deep NN. By adding further hidden layers 

more complex data can be analysed and indicative features extracted. In this section, the ability 

of a Deep NN to combat the shortfalls of the shallow network is discussed. As it has been 
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previously described, the Deep NN developed herewith, has the same structure as the shallow 

network. However, the number of hidden layers is increased. 

The accuracy of the Deep NN developed for the RMS data when trained on known data is 

shown in Figure 5.12. As with the confusion matrix shown for the shallow NN, the accuracy 

of the trained network is shown as the green percentage in the bottom right of the matrix. For 

this NN on trained data the accuracy of the network is 44.1%. Whilst this is higher than the 

40.4% accuracy of the shallow NN in Figure 5.10, considering this NN has been trained on the 

data that is classified to produce Figure 5.12 the accuracy is still very low for this data 

processing method. 
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Figure 5.12 Confusion matrix representing showing the performance of classifying known data 

(the training set) by the deep NN trained using the RMS processed data. An overall accuracy 

of 44.1% is achieved, shown as the green percentage in the bottom right of the confusion 

matrix. 
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Figure 5.12 also shows that the deep NN has not solved the issue of overfitting of the network 

to class 4 as it was seen with the shallow NN. As with the shallow NN, the deep NN showed 

the greatest accuracy in classifying this class of data, with those datasets with a target class of 

4 being correctly classified in 71.5% of cases. For the shallow NN, it was noted that 73.3% of 

the total available data were classified as class 4, when in fact, this class only makes up 36.5% 

of the total dataset. From Figure 5.12 it can be calculated that for this network 58.19% of the 

data is classed as class 4 with the data used the same as that used for the shallow NN. From 

this, it can be seen that the Deep NN has begun to address the overfitting of the NN to the class 

4 data.  

As with the shallow NN, it is expected from the Deep NN, that the overall accuracy of the 

network will be lower when tested on an unknown dataset. The results of testing on the known 

dataset is shown in Figure 5.13. 
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Figure 5.13 Confusion matrix representing the performance of the deep NN trained using the 

RMS processed data when applied to an unseen data set (the test data set). The accuracy of the 

network is shown as 40.8%, this is represented as the green percentage in the bottom right of 

the confusion matrix. 
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From Figure 5.13 it is seen that, as expected, the accuracy of the NN, when tested on unseen 

RMS data is lower than that on known data as was shown in Figure 5.12. For the unseen test 

dataset from Figure 5.13 the overall accuracy of the trained deep NN is 40.8%.  

Overall, the test dataset shows a similar response to the training dataset in terms of bias towards 

class 4 data, although, as expected this is lower than for the known trained dataset showing an 

accuracy for classification of this class of 63.7% compared with 71.5% of the known data. 

Interestingly, the accuracy of the classification of target class 6 data increases from 20% in the 

training dataset to 33.6% in the test dataset.  

As with the shallow dataset the class 3 target class data is never classified correctly. As in 

training this class is never classified correctly it will not be possible for the NN to identify this 

class from an unknown dataset as it will not have learnt any features associated with it.  

The inaccuracy of the class 3 dataset may be due to having a smaller dataset to work from in 

comparison with the other classes of data, or no unique features are extractable from the data 

using the RMS processing route. It may be that the signals associated with early crack growth 

are not distinct from the background noise, therefore the classifier is unable to isolate these 

signals. 

5.4.2 FFT 

5.4.2.1 FFT Shallow Neural Network 

As with the RMS results the first results obtained from the FFT shallow NN are the 

effectiveness of that network on the known training data. This result is displayed as a confusion 

matrix in Figure 5.14. It can be seen that the overall effectiveness of the NN on known data, 

the green percentage in the bottom right of the confusion matrix, is 96.1%. This is a very high 

level of accuracy particularly considering the problems already discussed with respect the 

broad classification bands used.  



133 
 

 

O
u

tp
u

t 
cl

a
ss

 

1 0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

NaN% 

NaN% 

2 0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

NaN% 

NaN% 

3 0 

0.0% 

0 

0.0% 

152 

6.9% 

7 

0.3% 

3 

0.1% 

2 

0.1% 

92.7% 

7.3% 

4 0 

0.0% 

0 

0.0% 

22 

1.0% 

783 

35.5% 

23 

1.0% 

1 

0.0% 

94.5% 

5.5% 

5 0 

0.0% 

0 

0.0% 

0 

0.0% 

17 

0.8% 

704 

31.9% 

4 

0.2% 

97.1% 

2.9% 

6 0 

0.0% 

0 

0.0% 

1 

0.0% 

0 

0.0% 

6 

0.3% 

483 

21.9% 

98.6% 

1.4% 

NaN% 

NaN% 

NaN% 

NaN% 

86.9% 

13.1% 

97.0% 

3.0% 

95.7% 

4.3% 

98.6% 

1.4% 

96.1% 

3.9% 

1 2 3 4 5 6  

Target class 

 

Figure 5.14 Confusion matrix representing showing the performance of classifying known data 

(the training set) by the shallow NN trained using the FFT processed data. An overall accuracy 

of 96.1% is achieved, shown as the green percentage in the bottom right of the confusion 

matrix. 

 

High accuracy is observed across all the classes with NN most accurate is classifying class 6, 

98.6% and least for class 3, 86.9%. The lower accuracy seen for class 3 may be partially 

affected but the number of samples used to train this class. At 175 samples this is significantly 

lower than the 490-807 used for samples 4-6. Even with this lower number of classes, at 86.9% 

accuracy this still indicates an effective classification system. 

It can be seen from Figure 5.14 that 86 data point (3.9% of the training dataset) were 

inaccurately classified in the final trained network. 53.49% of these inaccurate results were 

classed inaccurately as class 4. With the majority of these classed as either of the adjacent 

severity classifications. It was expected that there would be a level of confusion between the 

severity classes adjacent to each other due to the arbitrary nature of the classes. The fact that 

the primary confusion is between the adjacent categories would suggest that this is a leading 
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factor in the inaccuracy of the network. As class 4 is the largest class of data it may be that the 

network is overfitting to this class leading to over classification to this class.  

As already discussed, class 3 achieved the lowest accuracy at 86.9%, as with misclassification 

of class 4 this was primarily to an adjacent class of severity. The same trend is seen to a lesser 

effect, in that fewer data points were misclassed, in all the other categories.  

With such a high level of accuracy achieved on the known training dataset, even with the 

expected overlap of results between adjacent categories of data, the network must be tested 

using a labelled but unseen dataset. This will ensure that the training of the network on the 

training dataset has not led to overfitting to the training dataset. To evaluate this, the trained 

network was trialled using the test dataset. The confusion matrix showing the result of this test 

dataset is shown in Figure 5.15.  
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Figure 5.15 Confusion matrix representing the performance of the shallow NN trained using 

the FFT processed data when applied to an unseen data set (the test data set). The accuracy of 

the network is shown as 87.8%, this is represented as the green percentage in the bottom right 

of the confusion matrix.  
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From Figure 5.15, it can be observed that whilst the overall accuracy has dropped from the 

96.1% seen on the training data set to 87.8% for the test dataset. This drop in data is not 

unexpected as the NN is trained and tailored to the training dataset. Therefore, some loss in 

performance is expected when applied to an unknown dataset. This is partially due to the 

rigidity of machine learning techniques which are unable to adapt to novelty. The high 

performance on the test data does indicate that the NN has not overfitted to the training data 

set and is therefore capable of identifying the crack length from unknown dataset. 

The same trend is observed in Figure 5.15 as in Figure 5.13, in that where the NN misclassifies 

the data it is primarily to an adjacent category or severity. In the case of the test dataset, shown 

in Figure 5.15, 67 datasets were misclassified making up 12.2% of the dataset. It would follow 

that the data classes that were most often misclassed in the training dataset would also be 

misclassed in testing. This is the case with target class 3 achieving the lowest accuracy at 51.2% 

and class 6 achieving the highest at 95.9% accuracy. Whilst the overall accuracy for the test 

data is high, at 51.2% accuracy the classification of class 3 is very low and is unlikely to be 

deemed acceptable for network use. As with the training data set the number of samples 

available for training in this category is low. A lower number of representative samples to train 

from will lead to lower accuracy for the network. It may therefore, be possible to increase this 

accuracy by increasing the number of samples in this class.  

In contrast to this the class with the highest number of data samples, class 4 has the highest 

number of datasets misclassed as this class. It was noted when discussing the training data that 

as this is the largest class, it may be skewing the training to overfit to this class. As this pattern 

of misclassification is repeated in the test data, this may partially be the cause.  
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5.4.2.2 FFT Deep Neural Network 

Through the application of a deep NN to the FFT dataset, it may be possible to further increase 

the accuracy of the network due to the extra dimensionality of these networks. It is worth noting 

that a high level of accuracy has already been achieved for the shallow NN as discussed in 

section 5.4.2.1.  Therefore, it is noted that 100% accuracy is not achievable due to the 

constraints of the class boundaries, and it is expected that any increase in accuracy will be 

marginal. 

The accuracy of the deep NN when applied to the known training dataset for the FFT processed 

data is shown in Figure 5.16. The overall accuracy of the deep NN is displayed in Figure 5.16 

is 91.1%. 

O
u

tp
u

t 
cl

a
ss

 

1 0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

NaN% 

NaN% 

2 0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

NaN% 

NaN% 

3 0 

0.0% 

0 

0.0% 

141 

6.4% 

5 

0.2% 

1 

0.0% 

1 

0.0% 

95.3% 

4.7% 

4 0 

0.0% 

0 

0.0% 

30 

1.4% 

735 

33.3% 

59 

2.7% 

1 

0.0% 

89.1% 

10.9% 

5 0 

0.0% 

0 

0.0% 

1 

0.0% 

66 

3.0% 

661 

29.9% 

14 

0.6% 

89.1% 

10.9% 

6 0 

0.0% 

0 

0.0% 

3 

0.1% 

1 

0.0% 

15 

0.7% 

474 

21.5 

96.1% 

3.9% 

NaN% 

NaN% 

NaN% 

NaN% 

80.6% 

19.4% 

91.1% 

8.9% 

89.8% 

10.2% 

96.7% 

3.3% 

91.1% 

8.9% 

1 2 3 4 5 6  

Target class 

 

Figure 5.16 Confusion matrix representing showing the performance of classifying known data 

(the training set) by the deep NN trained using the FFT processed data. An overall accuracy 

of 91.1% is achieved, shown as the green percentage in the bottom right of the confusion 

matrix. 

 

Whilst the accuracy is lower than that for the shallow network, which achieved 96.1% accuracy 

of the training dataset, it is still a high. As with the shallow NN the accuracy of classification 

was highest with class 6 at 96.7% accuracy. The lowest accuracy of classification was the 
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classification of data to target class 3 at 80.6%. As it has been discussed already, this is the 

smallest data class. Therefore, the network may be negatively biased in respect to this class. 

Whilst the classification of the class 3 data to the correct class is low, where data is classed by 

the deep NN as class 3 the accuracy of this result is high showing an accuracy of 95.3%. This 

is second only to the when data is classified as class 6, which has an accuracy of 96.1%. 

Therefore, from these results a user could have high confidence that should a sample be 

classified as class 3 that it is likely to be correct.  

With the high accuracy shown for the training dataset there is a risk that the NN is overfitting 

to the training data. Therefore, it is not suitable for use on unknown data. The result of testing 

the FFT deep NN is shown in Figure 5.17. 
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Figure 5.17 Confusion matrix representing the performance of the deep NN trained using the 

FFT processed data when applied to an unseen data set (the test data set). The accuracy of the 

network is shown as 41.7% this is represented as the green percentage in the bottom right of 

the confusion matrix. 

 

From Figure 5.17 the accuracy of the deep NN tested on the unseen test data set is 41.7%. This 

is significantly lower than the 91.1% accuracy of the network on the training dataset. This 
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strongly implies that the NN has overfitted to the training dataset. Therefore, it is not able to 

accurately analyse unseen data. As such, a dramatic shift in accuracy was not seen between the 

training and test data for the FFT shallow NN shown in Figures 5.14 and 5.15 respectively. 

This difference between the shallow and deep NN, where the only difference in the architecture 

is the number of hidden layers, implies that the extra dimensionality of the NN provided by the 

deep neural network is not leading to greater understanding of the data class feature but rather 

overfitting to a particular set of data. 

What is particularly interesting about the test data results in Figure 5.17 are the classes that are 

the least accurate in classifying. For the training dataset in Figure 5.16 and the FFT shallow 

network class 6 showed the highest level of accuracy in terms of this target class being correctly 

classified. For the test data displayed in Figure 5.17 this is one of the least accurate target 

classes at 27.9% accuracy second only to class 3 which shows 0% accuracy for this target class 

whereas on the training dataset it showed a level of accuracy of 80.6%. The complete loss of 

accuracy for this target class and that no data was classified as this class even inaccurately, 

strongly suggests that the deep NN as overfitted to the training dataset as when using the 

training dataset, it can very accurately classify this class but when given unseen data of the 

same class is unable to classify it.  

5.4.3 CWT 

In the development of the CWT NN a major problem was encountered. The processing of the 

data and subsequent training of both the shallow and deep NN for the RMS and FFT approaches 

required the use of high-performance computing capability and parallel processing within this. 

With this capability these methods were able to process and train data relatively rapidly.  

The CWT processing of the data is relatively computationally expensive in comparison with 

the FFT and RMS methods. The use of images as the input to the NN is also more 

computationally expensive than that of the pattern recognition networks used in the FFT and 
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RMS approaches as is the image recognition network required to process them. Even with the 

high-performance computational capability available to the author, it was not possible to 

effectively analyse the data using CWT at scale and subsequently train a NN. To give an idea 

of the time difference between the time required for the RMS and FFT processing routes in 

comparison to CWT, in testing the time required to process the entire training dataset for RMS 

or FFT only a single CWT data sample was processed.  

Given enough time and higher processing levels it would be possible to process the data and 

train a network using this data. Whilst this would produce a trained network capable of 

analysing data in this way the high levels of computational processing power required would 

render this method unusable on the large datasets that would be generated under real world 

conditions. Image recognition NNs are widely used for applications of low processing systems 

such as face recognition of mobile phones. It is therefore, the mass processing and handling of 

the data using CWT methods that are a challenge to the use of this method. If a way can be 

found to reduce the computational load capability required to process the data using CWT this 

processing method is expected to lead to high levels of accuracy and the creation of a more 

robust classification system than that of FFT and RMS. 
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5.5 Discussion 

The same training and test dataset were used for all the machine learning approaches presented 

herewith. Therefore, the accuracy of these networks can be directly compared and the optimal 

approach from those studied can be determined. Overall, there was a large range of accuracies 

displayed from 37.2% for the RMS shallow NN (Figure 5.11), to 87.8% accuracy for the FFT 

shallow NN (Figure 5.15) whilst the CWT approach was found to be to computationally very 

expensive.  

Beyond the overall accuracy of each network the individual accuracies of each class are also 

of interest as they give an idea of how the NN are learning. That is whether it is overfitting and 

whether certain classes are harder for the network to identify. Overfitting is mostly clearly seen 

where the network shows a high level of accuracy on the training/known dataset but shows a 

very low accuracy in the test dataset. If across all networks and training and test datasets the 

networks are performing poorly for a particular class of data, it may suggest that that dataset is 

particularly difficult to differentiate either from the other datasets or in the case of the data used 

in this study from the background noise. 

The clearest indication of overfitting in these results was the FFT deep NN (Figures 5.16 and 

5.17). For this network the training data produced an overall accuracy of 91.1% in comparison 

with this the test data showed an accuracy of 41.7%. This is a large drop in accuracy of the data 

from a very high level to a potentially unusable level of accuracy on unseen data. The shallow 

FFT NN developed shows a similarly high accuracy on known data at 96.1% (Figure 5.14). 

However, unlike the deep network the overall accuracy does not show such a dramatic drop in 

accuracy, only decreasing to 87.8% (Figure 5.15). This indicates that the decrease in accuracy 

from the training to the test dataset is not inherent to the data and therefore the data processing 

method, but rather the network architecture. By increasing the complexity of the network to a 

deep neural network the features that can be identified are also increased. The risk of this is 
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that features that are indicative of only a small subset of examples not to the global examples 

of data are learnt. The overfitting in only the deep NN in this case implies that this is what has 

led to the overfitting to the training dataset.  

Within the FFT deep NN class 3 data was particularly affected by this drop in accuracy falling 

from 80.6% target class accuracy for the training data (Figure 5.16) to 0% target class accuracy 

for the test data (Figure 5.17). Both the RMS dataset (Figures 5.10-5.13) struggled to classify 

accurately this target class with both NNs unable to classify this data either for the training and 

test dataset. This would imply that there was something inherent in that data class that meant 

that the NNs were unable to identify unique indicative feature for this class. This may be due 

to the smaller dataset in comparison with the other classes of data or potentially difficulties in 

extracting background noise for the quieter earlier crack growth. From the results in chapter 3, 

it is known that as crack growth accelerates, the energy of the AE signal increases. It is 

therefore easier to differentiate useful AE signals from the background noise. From this it is 

not unexpected that the NN may have difficulty in classifying earlier crack growth stages in 

comparison to latter stages. 

In contrast to the other NN presented herewith, the FFT shallow network (Figures 5.14 and 

5.15) did successfully classify the target class 3 data. Nonetheless, there is a significant drop 

in accuracy from the training set at 86.9% target class accuracy to the test set at 51.2% target 

class accuracy. The fact that this NN is able to classify the data more often than not even on 

unseen data implies that it is possible to separate this class using indicative features from the 

background noise. 

It is worth noting that whilst the percentage accuracy implies a success in differentiating this 

class, when the number of datasets classified is looked at it can be seen that there is a low 

number of samples available for the NN to be tested on. Therefore, whilst 51.2% accuracy 
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seems potentially promising the difference between correctly and incorrectly classed data for 

this target class is 1, with 22 correctly classed and 21 incorrectly. This points towards one of 

the potential challenges already discussed for this dataset the small number of samples for this 

class particularly in comparison with the other classes of data. It was discussed in chapter 4 

that for a NN to be accurately trained it must be trained on a large quantity of data covering all 

possible scenarios. The limited data avaible for training the NN in this study are therefore likely 

to have an impact on the accuracy of these networks and their ability to classify data, in 

particular those data classes that are potentially challenging to classify. 

The impacts of the number of data sets in each class and the potentially higher signal to noise 

ratio of the higher severity classes will have two different effects of the hierarchy of accuracy 

of each class. For the increasing severity the accuracy would simply increase in order of 

increasing severity. The number of datasets for each data class are shown in Table 5.3. From 

the number of data sets in each class, assuming that a higher number of samples would lead to 

a greater accuracy, the class should be ranked from least to most accurate as; class 3, class 6, 

class 5, class 4.  

Both challenges indicate that class 3 should be the most difficult class to classify and hence, 

the least accurate. As discussed already, this is the case across all the NN tested. It is thus, 

difficult to ascertain, which of these challenges is having the greater effect on the NN for this 

class. It does lend an explanation of why all the NNs struggled in particular to classify this data.  

For the other data classes the difference in the number of samples and the increase in signal to 

noise ratio run in opposite direction. It would therefore be expected that there may be some 

levelling out giving overall good accuracy across all these classes. For the FFT shallow NN 

(Figures 5.14 and 5.15) this is true to an extent with a variation of 6.8% between the target 

class accuracy of class 4-6. In all other NNs developed here Class 4 showed a significantly 
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higher accuracy in comparison to target classes 5 and 6. As this class also has the highest 

number of data samples it implies that these networks are heavily influenced by the number of 

samples available.  

As a NN implemented into a real-world application should have been trained with a very large 

dataset the effect of this challenge should be reduced. It may therefore be that those NNs that 

have a bias towards the accuracy of class 4 may become more accurate with an increase in the 

number of data sets available. That said if these networks are being heavily influenced by the 

number amount of data available, great care would need to be applied to ensure that this effect 

is mitigated. Should this not be achieved, the future use of this NN would be limited and the 

results treated with extreme caution.  

One of the aspects investigated in this chapter was whether the use of a deep NN would increase 

the accuracy of classifying the data by adding extra dimensionality. For the RMS processed 

data an increase in accuracy was seen from 37.2% for the shallow network (Figure 5.11) to 

40.8% for the deep network (Figure 5.13). In this case, the extra hidden layers have allowed 

the NN to learn the differences more accurately between the different categories. However, 

even for the deep NN the accuracy remains low being wrong more than it is correct.  

In contrast to the RMS processed data, the FFT processed data shows a dramatic decrease in 

the accuracy of the NN when using a deep NN in comparison with the shallow NN. The shallow 

NN had an overall accuracy of 87.8% (Figure 5.15) in comparison with 41.7% accuracy for the 

deep network (Figure 5.17). For the FFT processed data, the shallow NN has a very high 

accuracy, which is likely to be deemed acceptable especially when considering the shortfalls 

of the classification system. The accuracy of the deep NN is however, much lower. At below 

50% accuracy, it is unlikely to be acceptable for use on a live rail network. 
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When considering the use of a deep NN over that of a shallow NN it is important to ascertain 

if there is a benefit provided by using this deeper network, bearing in mind that there will be 

extra processing requirements as a result. Real world applications of the monitoring system 

being developed in this study will not have access to HPC technology and therefore will be 

limited in the NN they can support. In most cases a shallow network is capable of separating a 

data set into categories, therefore only very complex problems are likely to need deep NNs and 

their use are not guaranteed to increase accuracy in comparison to a shallow network. 

The FFT processed data shows the potential downside of using a deep NN where despite the 

increased processing requirements a loss in accuracy is observed. As has been discussed this 

drop in accuracy is likely due to the NN overfitting to the training data. The RMS data on the 

other hand does show an increase in accuracy with the extra dimensionality offered by the deep 

NN. As has already been noted this increase in accuracy is low. Therefore, a decision must be 

made as to whether the increase in accuracy is sufficient to justify the increased processing 

requirement.  

The development of an approach using CWT was proposed to overcome some of the issues 

faced by the other processing method. For example, the greater dimensional information 

provided may overcome the issues of signal to noise ratio faced by the other approaches. A big 

challenge facing the implementation of machine learning techniques into field operations is the 

computational processing requirement of these approaches. As already discussed, a balance 

must be met with these techniques between the accuracy and the processing power required. In 

the RMS data for example a greater accuracy was achieved using a deep NN in comparison to 

a shallow NN. However, greater processing power is required to achieve this. Thus, a decision 

must be made as to whether this increase in accuracy is worth the extra processing capability 

requirements.  
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For the CWT processing method, the processing requirements available to the author were 

found to be too high with the available hardware. It therefore poses a serious question, whether 

this method is suitable for use in this application. Whilst it does have advantages over the other 

two processing methods as discussed in chapter 4, if the processing requirements are higher 

than those avaible to the author through a HPC facility, it is unlikely that sufficient system 

could be implemented across a rail network with a considerable number of sensors and 

therefore datasets to process. 

In this thesis the data from all of the samples was combined and then split randomly into and 

training and testing dataset. Whilst this does create a dataset of known data and unseen data 

there is a risk with this approach that the test dataset is not entirely novel. As the training dataset 

contains data from every sample there are no samples in the test dataset that the algorithm has 

not seen. Therefore, ideally the data should be split by sample into a samples used for training 

and those used for testing. In this case the data was randomised and combined to try and combat 

the limitations in the data set size and the none even spread of data for each class for each 

sample. That is each sample did not have the same number of data samples for each 

classification of damage.  

Separating out samples to give independent datasets would give more robust results in terms 

of accuracy of performance and ensuring the modal has not overfitted. It is however not 

expected in this case that it would lead to a large change in the accuracy of the results given 

here. As other limitations on the data set such as its overall size and the idealised samples of 

conditions are lightly to have a greater effect on the results. 
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5.6 Conclusion 

For a machine learning approach to AE monitoring of assets to be implemented in the field, 

the accuracy of this technique must be high to ensure safety and to overcome the challenges 

faced by current monitoring methods. It was anticipated from the start of the present study, that 

the investigation into the machine learning approach presented herewith, will not achieve 100% 

accuracy, due to the limitations of the arbitrary classification classes. That having been 

mentioned, it would be expected that even with this limitation a viable machine learning 

approach would be able to classify the data to a high degree of accuracy.  

Three different processing methods were investigated including, RMS, FFT and CWT. Of the 

three processing methods considered, the CWT method was found to be to computationally 

heavy whilst both deep and shallow NN were developed and tested on the RMS and FFT 

dataset. 

For the RMS processing route the highest accuracy was achieved when using the deep NN with 

an overall accuracy of 40.8% compared to 37.2% for the shallow NN. Despite the increased 

accuracy achieved for the RMS data when using a deep NN it still achieves a lower accuracy 

NN than that trained for use on FFT processed data. The FFT data achieved 87.8% accuracy 

when using the shallow NN but did fall short when using the deep NN falling to 41.7% 

accuracy.  

Whilst the RMS data is more accurately classified using a deep NN, the accuracy of this result 

is still low and at less than 50% accuracy this is unlikely to be acceptable for real world use. 

The FFT processing route does achieve a high level of accuracy. This is also achieved through 

the less computationally heavy route of the shallow NN. 

The processing requirements for both these techniques were found to be comparable under 

testing. This would suggest that for this data type and application using the NN developed 
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herewith, that the FFT processing route would be most appropriate. Within this approach the 

shallow NN showed the highest accuracy. Therefore, from the NN tested in this study the FFT 

shallow NN would be most appropriate for the development of a real time structural health 

monitoring system using AE data. 

5.7 Summary 

This chapter has presented the routes to the development and the subsequent testing of machine 

learning and signal processing techniques for the analysis of AE signals generated during the 

growth of a fatigue crack growth. Three signal processing routes were explored, including, 

RMS, FFT and CWT. The severity of the fatigue crack for each AE signal was categorised into 

4 categories with 2 further categorise defined for future use.  

For the RMS and FFT processed data both shallow and deep NN were developed and tested 

using pattern recognition NN. An image recognition NN was also developed and tested for the 

analysis of the CWT processed data. However, the computational requirements of this route 

proved to be too high for the available equipment.  

The FFT shallow NN achieved the highest accuracy of all the networks tested achieving an 

accuracy of 87.8% when tested against an unseen test dataset. A dramatic drop in accuracy was 

observed when a deep NN was applied. The RMS NN achieved low accuracy results for both 

the RMS shallow and deep NN achieving 37.2% and 40.8% accuracy respectively. Unlike the 

FFT networks the RMS deep network achieved a greater accuracy than that of the RMS shallow 

network although the increase is marginal, and the overall accuracy remains low. 

It is concluded from these results that of the approaches tested the FFT shallow NN is the most 

suitable for further testing as it surpasses all the other networks in accuracy. 
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Chapter 6 

Conclusions and future work 

6.1 Conclusions 

This work aimed to further the development of a real-time structural health monitoring system 

for use on rail infrastructure, using Acoustic Emission (AE) techniques. Two main approaches 

were used: a conventional AE commercial system and a custom-built monitoring system.  

The commercial AE system used a Hit Driven Data (HDD) approach focusing on the key AE 

parameters, Counts, Energy and Duration. The effectiveness of these parameters in monitoring 

fatigue crack growth in three steels, R220, R260 and cast manganese, was investigated with 

the aim of rapidly assessing the capability of AE monitoring techniques.  

The quantitative accuracy of this system was found to vary with the material being monitored. 

It was not possible to find a close corelation between any of the AE parameters and the crack 

growth behaviour of the cast manganese steel. This was not unexpected due to the work 

hardening behaviour of cast manganese steels that has been reported previously. It would 

however, present a challenge in the development of an AE monitoring system based on this 

comparison. It is suggested that a system could be developed that is able to provide a warning 

of imminent failure based on the trough shaped drop and then rise in AE activity associated 

with the final stages of fatigue crack growth for this steel.  

For both the R220 and R260 steels a correlation was found for all the AE parameters 

investigated and the fatigue crack growth behaviour of these steels with all parameters showing 

an upward trend broadly in line with the ΔK cs da/dn plot. This trend was clearer for the R220 

steels. From this trend it may be possible to develop a system that is able predict the current 
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structural health of these steel under fatigue loading using these AE parameters. There is 

however a large amount of variation in the AE data for both of these steels making any model 

based on these plots limited in terms of its accuracy.  

Whilst the commercial AE system does show that there is a connection between the key AE 

parameters investigated here, the development of an AE monitoring system based on this 

approach would be of limited accuracy due to the variability in the AE data in comparison with 

the crack growth behaviour.  Also, the requirement for continuous monitoring to ensure an 

accurate comparison can be made leads to a loss of redundance in the system. Despite its 

limitations the commercial system investigated here has shown that there is connection 

between the AE signals recorded and the corresponding fatigue crack growth behaviour. It also 

highlights that each steel grade will result in a different AE response to fatigue crack growth 

and therefore any system developed must ensure that the data acquisition parameters are 

tailored to the material AE response generated during damage initiation and evolution. This is 

likely to involve better understanding of the behaviour of dislocations and the events occurring 

at the crack tip from a microstructural perspective. 

The second approach to be investigated in this work was the use of a custom AE monitoring 

system which records the complete AE waveform and uses signal processing to analyse this. 

Due to the large quantity of data generated using waveform-based acquisition appropriate 

machine learning approaches where investigated. This system was developed for the R260 rail 

steel only due to time limitations. 

Three different signal processing methods were investigated, including, Route mean square 

(RMS), Fast Fourier transformation (FFT) and Continuous wavelet transform (CWT). Deep 

and shallow Pattern recognition Neural networks (NN) were developed and tested for the RMS 

and FFT processing routes. An image recognition network was developed for the analysis of 



150 
 

the CWT processed data. However, this proved to be to computationally expensive for 

implementation with the hardware available to the author. 

It was not expected that 100% accuracy would be achieved for any of the networks developed 

in this work due to limitations in the classification system. Nonetheless high levels of accuracy 

were achieved still. The highest accuracy was achieved by analysing the FFT processed data 

using a shallow NN, achieving an accuracy of 87.8% on unseen test data. No benefit was found 

in using a deep learning method for the analysis of the FFT data. Overall, the RMS processing 

route led to a lower level of accuracy compared with the FFT processing route with a maximum 

accuracy of 40.8% achieved. In contrast to the FFT data the higher level of accuracy was 

achieved using a deep NN, although the increase was marginal. 

Despite the limitations of the arbitrary classifications used to train the NN in this work a system 

has been developed using a combination of a custom-built AE recording system and machine 

learning techniques capable of accurately predicting the structural health of a material under 

fatigue loading. 

6.2 Future Work 

The NN developed in this study was trained on a relatively small data set generated under 

laboratory conditions for one type of steel. Further work is therefore, needed to build on this 

work to achieve the full potential of AE monitoring systems. 

Machine learning techniques are reliant on the data they are trained on, being unable to adapt 

themselves for scenarios they are not trained on. The development of a novelty analysis 

algorithm for use alongside the NN developed here could be used to indicate when such events 

occur. 

A larger data set would increase the reliability of the NN on unknown data, ideally going 

forward this data would be generated under real world conditions. This would not require a 
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complete re-working of the NN developed here but rather further training of the NN using 

operational data. The early stages of this work have begun by both the author and others at the 

University of Birmingham alongside Network Rail, however a large amount of data across a 

range of conditions will be required before full implementation of the system on the Rail 

network. The methods used for this work are described in section 2.3 of chapter 2.  

The development of the machine learning approaches focussed on the R260 rail steel. However, 

as noted from the analysis and evaluation of the commercial system data each material will 

have a different AE response to fatigue crack growth. Further work is therefore required to 

train the NN for use on all materials to be monitored. As with moving to real world data this 

would not necessarily require a complete redevelopment of the network. Transfer learning 

approaches could instead be used. 

It was noted when analysing the commercial system data that changes in the microstructure of 

the material, such as the presence of inclusions, led to changes in the AE signals recorded and 

this corresponded to changes in crack growth behaviour. Given a large enough dataset 

encompassing all the defects expected to be found in the materials to be analysed it may be 

possible to detect when these changes in crack growth behaviour have occurred. This would 

provide a greater understanding of the structural health of an asset being monitored. This in 

turn may lead to the potential development of a digital twin to an asset allowing accurate 

prediction and monitoring of that asset. This combination of real time monitoring and digital 

twin analysis is suggested as the ideal system to be developed for the greatest benefit of 

structural health monitoring of critical rail infrastructure. 

  



152 
 

References 

Aglan, H., & Fateh, M. (2007). Fracture and fatigue crack growth analysis of rail steels. Journal of 

Mechanics of Materials and Structures, 2(2), 335–346. 

https://doi.org/10.2140/jomms.2007.2.335 

Ahadi, M., & Bakhtiar, M. S. (2010). Leak detection in water-filled plastic pipes through the application 

of tuned wavelet transforms to Acoustic Emission signals. Applied Acoustics, 71(7), 634–639. 

https://doi.org/10.1016/j.apacoust.2010.02.006 

Aharoni, R., Glikman, E., & Krug, G. (2002). A novel high-speed rail inspection system. Journal of 

Nondestructive Testing, 7(10), 9. 

Alyaz, S. (2003). Effects of heat treatment and chemical composition on microstructure and mechanical 

properties of hadfield steels. Middle East Technical University. 

Amini, A. (2016). Online condition monitoring of railway wheelsets / by Arash Amini. Thesis (PhD)--

University of Birmingham, College of Engineering and Physical Sciences, 2016. 

Amini, A., Entezami, M., Huang, Z., Rowshandel, H., & Papaelias, M. (2016). Wayside detection of faults 

in railway axle bearings using time spectral kurtosis analysis on high-frequency acoustic emission 

signals. Advances in Mechanical Engineering, 8(11), 1687814016676000. 

https://doi.org/10.1177/1687814016676000 

Anderson, J. A. (James A., & Rosenfeld, E. (1988). Neurocomputing : foundations of research / edited 

by James A. Anderson and Edward Rosenfeld. Cambridge, Mass. 

Antoni, J., & Randall, R. B. (2006). The spectral kurtosis: application to the vibratory surveillance and 

diagnostics of rotating machines. Mechanical Systems and Signal Processing, 20(2), 308–331. 

https://doi.org/10.1016/j.ymssp.2004.09.002 

ASTM international. (2017). A128 Standard specification for steel castings, Austenitic Manganese. 

ASTM. 

Bacioiu, D. (2019). Vision-based Monitoring System for High Quality TIG Welding. 

Bal, B. (2018). A Study of Different Microstructural Effects on the Strain Hardening Behaviour of 

Hadfield Steel. International Journal of Steel Structures, 18(1), 13–23. 

https://doi.org/10.1007/s13296-018-0302-9 

Barile, C., Casavola, C., Pappalettera, G., & Pappalettere, C. (2015). Analysis of crack propagation in 

stainless steel by comparing acoustic emissions and infrared thermography data. Engineering 

Failure Analysis, 69, 35–42. https://doi.org/10.1016/j.engfailanal.2016.02.022 

Barke, D., & Chiu, W. K. (2005). Structural Health Monitoring in the Railway Industry: A Review. In 

Structural Health Monitoring (Vol. 4, Issue 1, pp. 81–93). 

https://doi.org/10.1177/1475921705049764 



153 
 

Barré, S., & Benzeggagh, M. L. (1994). On the use of acoustic emission to investigate damage 

mechanisms in glass-fibre-reinforced polypropylene. Composites Science and Technology, 52(3), 

369–376. https://doi.org/10.1016/0266-3538(94)90171-6 

Bassim, M. N., Lawrence, S. S., & Liu, C. D. (1994). Detection of the onset of fatigue crack growth in rail 

steels using acoustic emission. Engineering Fracture Mechanics, 47(2), 207–214. 

https://doi.org/10.1016/0013-7944(94)90221-6 

Bhuiyan, M. Y. (n.d.). Acoustic emission sensor effect and waveform evolution during fatigue crack 

growth in thin metallic plate. Journal of Intelligent Material Systems & Structures, 29(7), 1275–

1285. https://doi.org/10.1177/1045389X17730930 

Bhuiyan, M. Y., Bao, J., Poddar, B., & Giurgiutiu, V. (2018). Toward identifying crack-length-related 

resonances in acoustic emission waveforms for structural health monitoring applications. 

Structural Health Monitoring, 17(3), 577–585. https://doi.org/10.1177/1475921717707356 

Bishop, C. M. (1995). Neural networks for pattern recognition / Christopher M. Bishop. Clarendon 

Press. 

Bonnett, C. F. (2005). Practical railway engineering / Clifford F. Bonnett. (2nd ed.). London : Imperial 

College Press. 

BritishSteel. (2018). Steel Grade Dimensions and Properties. British Steel. 

https://britishsteel.co.uk/media/40810/steel-grade-dimensions-and-properties.pdf 

Bruzelius, K., & Mba, D. (2004). An initial investigation on the potential applicability of Acoustic 

Emission to rail track fault detection. NDT and E International, 37(7), 507–516. 

https://doi.org/10.1016/j.ndteint.2004.02.001 

Bryson, A. E., & Ho, Y.-C. (1969). Applied optimal control : optimization, estimation and control (Y.-C. 

Ho, Ed.; Revised (ed.).). Washington, D.C. 

Cannon, D. F., & Pradier, H. (1996). Rail rolling contact fatigue Research by the European Rail Research 

Institute. Wear, 191(1–2), 1–13. https://doi.org/10.1016/0043-1648(95)06650-0 

Chang, C. C., Chang, T. Y. P., Xu, Y. G., & Wang, M. L. (2000). Structural damage detection using an 

iterative neural network. Journal of Intelligent Material Systems and Structures, 11(1), 32–42. 

https://doi.org/10.1106/XU88-UW1T-A6AM-X7EA 

Chen, B., Yan, Z., & Chen, W. (2014). Defect Detection for Wheel-Bearings with Time-Spectral Kurtosis 

and Entropy. Entropy, 16(1), 607–626. https://doi.org/10.3390/e16010607 

Chen, S.-X., Zhou, L., Ni, Y.-Q., & Liu, X.-Z. (2021). An acoustic-homologous transfer learning approach 

for acoustic emission–based rail condition evaluation. Structural Health Monitoring, 20(4), 2161–

2181. https://doi.org/10.1177/1475921720976941 

Culwick, R. (2019). Remote conditioning monitoring of railway assets (p. 89). 

de Groot, P. J., Wijnen, P. A. M., & Janssen, R. B. F. (1995). Real-time frequency determination of 

acoustic emission for different fracture mechanisms in carbon/epoxy composites. Composites 

Science and Technology, 55(4), 405–412. https://doi.org/10.1016/0266-3538(95)00121-2 



154 
 

de Oliveira, R., & Marques, A. T. (2008). Health monitoring of FRP using acoustic emission and artificial 

neural networks. Computers & Structures, 86(3), 367–373. 

https://doi.org/https://doi.org/10.1016/j.compstruc.2007.02.015 

Ding, H. H., He, C. G., Ma, L., Guo, J., Liu, Q. Y., & Wang, W. J. (2016). Wear mapping and transitions in 

wheel and rail materials under different contact pressure and sliding velocity conditions. Wear, 

352–353, 1–8. https://doi.org/10.1016/j.wear.2016.01.017 

Dunegan, H. L., Harris, D. O., & Tatro, C. A. (1968). Fracture analysis by use of acoustic emission. 

Engineering Fracture Mechanics, 1(1), 105, 110–111, 122, IN23, IN24. 

https://doi.org/10.1016/0013-7944(68)90018-0 

Ebrahimkhanlou, A., & Salamone, S. (2018). Single-sensor acoustic emission source localization in 

plate-like structures using deep learning. Aerospace, 5(2), 50. 

https://doi.org/10.3390/aerospace5020050 

Eden, H. C., Garnham, J. E., & Davis, C. L. (2005). Influential microstructural changes on rolling contact 

fatigue crack initiation in pearlitic rail steels. Materials Science and Technology, 21(6), 623–629. 

https://doi.org/10.1179/174328405X43207 

Eftekharnejad, B., Carrasco, M. R., Charnley, B., & Mba, D. (2011). The application of spectral kurtosis 

on Acoustic Emission and vibrations from a defective bearing. Mechanical Systems and Signal 

Processing, 25(1), 266–284. https://doi.org/10.1016/J.YMSSP.2010.06.010 

el Naqa, I., & Murphy, M. J. (2015). What Is Machine Learning? Machine Learning in Radiation 

Oncology, 3–11. https://doi.org/10.1007/978-3-319-18305-3_1 

Ennaceur, C., Laksimi, A., Hervé, C., & Cherfaoui, M. (2006). Monitoring crack growth in pressure vessel 

steels by the acoustic emission technique and the method of potential difference. International 

Journal of Pressure Vessels and Piping, 83(3), 197–204. 

https://doi.org/10.1016/j.ijpvp.2005.12.004 

Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing Higher-Layer Features of a Deep 

Network Visualizing Higher-Layer Features of a Deep Network. 

https://www.researchgate.net/publication/265022827 

F50a - 200-800 kHz High-Sensitivity Flat Frequency Response AE Sensor, by Physical Acoustics. (n.d.). 

Retrieved March 15, 2022, from https://www.physicalacoustics.com/by-product/sensors/F50a-

200-800-kHz-High-Sensitivity-Flat-Frequency-Response-AE-Sensor 

Fausett, L. v. (1994). Fundamentals of neural networks : architectures, algorithms and applications / 

Laurene V. Fausett. Prentice-Hall International. 

Fegredo, D. M., Shehata, M. T., Palmer, A., & Kalousek, J. (1988). The effect of sulphide and oxide 

inclusions on the wear rates of a standard C-Mn and a Cr-Mo alloy rail steel. Wear, 126(3), 285–

306. https://doi.org/10.1016/0043-1648(88)90171-8 

Gagar, D., Foote, P., & Irving, P. E. (2015). Effects of loading and sample geometry on acoustic emission 

generation during fatigue crack growth: Implications for structural health monitoring. 

International Journal of Fatigue, 81, 117–127. https://doi.org/10.1016/j.ijfatigue.2015.07.024 

Garnham, J. E., Ding, R.-G., & Davis, C. L. (2010). Ductile inclusions in rail, subject to compressive 

rolling–sliding contact. Wear, 269(11), 733–746. https://doi.org/10.1016/j.wear.2010.07.010 



155 
 

Godin, N., Huguet, S., Gaertner, R., & Salmon, L. (2004). Clustering of acoustic emission signals 

collected during tensile tests on unidirectional glass/polyester composite using supervised and 

unsupervised classifiers. NDT & E International : Independent Nondestructive Testing and 

Evaluation, 37(4), 253–264. https://doi.org/10.1016/j.ndteint.2003.09.010 

Grassie, S. K., & Kalousek, J. (1997). Rolling contact fatigue of rails: characteristics, causes and 

treatments. 6th International Heavy Haul Conference, 38–404. 

Grosse, C. U., Finck, F., Kurz, J. H., & Reinhardt, H. W. (2004). Improvements of AE technique using 

wavelet algorithms, coherence functions and automatic data analysis. Construction and Building 

Materials, 18(3), 203–213. https://doi.org/10.1016/j.conbuildmat.2003.10.010 

Gumus, B., Bal, B., Gerstein, G., Canadinc, D., & Maier, H. J. (2016). Twinning activity in high-

manganese austenitic steels under high velocity loading. Materials Science and Technology, 

32(5), 463–465. https://doi.org/10.1179/1743284715Y.0000000111 

Gunel, E., Yilmazer, P., Bicer, U., Altintas, B., Amini, A., Vallely, P., Huang, Z., García Márquez, F. P., 

Kaewunruen, S., & Papaelias, M. (2017). Increasing the Reliability, Availability, Maintainability 

and Safety of Railway Network Operations through effective Remote Condition Monitoring. 

Guo, S. L., Sun, D. Y., Zhang, F. C., Feng, X. Y., & Qian, L. H. (20130730). Damage of a Hadfield steel 

crossing due to wheel rolling impact passages. Wear, 305(1–2), 267–273. 

https://doi.org/10.1016/j.wear.2013.01.019 

Hadfield, R. A. (Robert A. (1914). The magnetic and mechanical properties of manganese steel / by Sir 

R.A. Hadfield and B. Hopkinson. (B. (Bertram) Hopkinson, I. and S. Institute, & M. Society, Eds.). 

London : Iron and Steel Institute. 

Hagan, M. T. (1996). Neural network design / Martin T. Hagan, Howard B. Demuth, Mark Beale. PWS 

Pub. 

Hamel, F., Bailon, J. P., & Bassim, M. N. (1981). Acoustic emission mechanisms during high-cycle 

fatigue. Engineering Fracture Mechanics, 14(4), 853–860. https://doi.org/10.1016/0013-

7944(81)90097-7 

Hamstad, M. A., O’gallagher, A., & Gary, J. (2002). A WAVELET TRANSFORM APPLIED TO ACOUSTIC 

EMISSION SIGNALS: PART 1: SOURCE IDENTIFICATION #. In J. Acoustic Emission (Vol. 20). 

Han, Z., Luo, H., Sun, C., Li, J., Papaelias, M., & Davis, C. (2014). Acoustic emission study of fatigue crack 

propagation in extruded AZ31 magnesium alloy. Materials Science and Engineering A, 597, 270–

278. https://doi.org/10.1016/j.msea.2013.12.083 

Harzallah, R., Mouftiez, A., Felder, E., Hariri, S., & Maujean, J.-P. (2010). Rolling contact fatigue of 

Hadfield steel X120Mn12. Wear, 269(9–10), 647–654. 

https://doi.org/10.1016/j.wear.2010.07.001 

Hebb, D. O. (Donald O. (1949). The organization of behavior : a neuropsychological theory. New York : 

Wiley. 

Huang, Z. (2016). Integrated railway remote condition monitoring / by Zheng Huang. (U. of 

Birmingham. C. of E. and P. Sciences, Ed.). Thesis (Ph.D.)--University of Birmingham, College of 

Engineering and Physical Sciences, 2017. 

Huang, Z. (2017). Integrated railway remote condition monitoring. 



156 
 

ISUNDE-ed. (2022). Nondestructive Evaluation Techniques : Acoustic Emission Testing. 

https://www.nde-ed.org/NDETechniques/AcousticEmission/AE_Theory-Wave.xhtml 

Jayaswal, P., Verma, S., & Wadhwani, A. (2011). Development of EBP-Artificial neural network expert 

system for rolling element bearing fault diagnosis. Journal of Vibration and Control, 17(8), 1131–

1148. https://doi.org/10.1177/1077546310361858 

Johnson, H. H. (1965). Calibrating the Electric Potential Method for Studying Slow Crack Growth. 

Defense Technical Information Center. 

Kang, J., Zhang, F. C., Long, X. Y., & Lv, B. (2014). Cyclic deformation and fatigue behaviors of Hadfield 

manganese steel. Materials Science & Engineering A, 591, 59–68. 

https://doi.org/10.1016/j.msea.2013.10.072 

Karaman, I., Sehitoglu, H., Gall, K., Chumlyakov, Y. I., & Maier, H. J. (2000). Deformation of single crystal 

Hadfield steel by twinning and slip. Acta Materialia, 48(6), 1345–1359. 

https://doi.org/10.1016/S1359-6454(99)00383-3 

Kongpuang, M., & Culwick, R. (n.d.). Quantitative analysis of the structural health of railway turnout 

using acoustic emission technique. 

Kongpuang, M., Culwick, R., Cheputeh, N.-A., Marsh, A., Jantara Junior, V. luiz, Vallely, P., Kaewunruen, 

S., & Papaelias, M. (2021, June 18). Quantitative Analysis of the Structural Health of Railway 

Turnout Using Acoustic Emission Technique. The Seventeenth International Conference on 

Condition Monitoring and Asset Management. 

Kostryzhev, A. G., Davis, C. L., & Roberts, C. (2013). Detection of crack growth in rail steel using acoustic 

emission. Ironmaking & Steelmaking, 40(2), 98–102. 

https://doi.org/10.1179/1743281212Y.0000000051 

Lapedes, A., & Farber, R. (1988). How neural nets work. In D. Z. Anderson (Ed.), Neural Information 

Processing Systems (pp. 442–456). American Institute of Physics. 

le Cun, Y. (1986). Learning Process in an Asymmetric Threshold Network. Disordered Systems and 

Biological Organization. 

Lebold, M., Mcclintic, K., Campbell, R., Byington, C., & Maynard, K. (1985). Review of Vibration Analysis 

Methods for Gearbox Diagnostics and Prognostics. 623–634. 

Lee, J. J., Lee, J. W., Yi, J. H., Yun, C. B., & Jung, H. Y. (2005). Neural networks-based damage detection 

for bridges considering errors in baseline finite element models. Journal of Sound and Vibration, 

280(3–5), 555–578. https://doi.org/10.1016/j.jsv.2004.01.003 

Lee, S. H., & Lee, D. (2008). International Journal of Production Research In-process monitoring of 

drilling burr formation using acoustic emission and a wavelet-based artificial neural network In-

process monitoring of drilling burr formation using acoustic emission and a wavelet-based 

artificial neural network. International Journal of Production Research, 46(17), 4871–4888. 

https://doi.org/10.1080/00207540601152040 

Li, D., Kuang, K. S. C., & Koh, C. G. (2017). Fatigue crack sizing in rail steel using crack closure-induced 

acoustic emission waves. Measurement Science and Technology, 28(6), 065601. 

https://doi.org/10.1088/1361-6501/aa670d 



157 
 

Li, L., Lomov, S. v, Yan, X., & Carvelli, V. (2014). Cluster analysis of acoustic emission signals for 2D and 

3D woven glass/epoxy composites. Composite Structures, 116(1), 286–299. 

https://doi.org/10.1016/j.compstruct.2014.05.023 

Lin, Y., Nie, Z., & Ma, H. (2017). Structural Damage Detection with Automatic Feature-Extraction 

through Deep Learning. Computer-Aided Civil and Infrastructure Engineering, 32(12), 1025–1046. 

https://doi.org/10.1111/mice.12313 

Lindley, T. C., Palmer, I. G., & Richards, C. E. (1978). Acoustic emission monitoring of fatigue crack 

growth. Materials Science and Engineering, 32(1), 1–15. https://doi.org/10.1016/0025-

5416(78)90206-9 

Lippmann, R. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4(2), 4–22. 

Lv, B., Zhang, M., Zhang, F. C., Zheng, C. L., Feng, X. Y., Qian, L. H., & Qin, X. B. (2012). Micro-mechanism 

of rolling contact fatigue in Hadfield steel crossing. International Journal of Fatigue, 44, 273–278. 

https://doi.org/10.1016/j.ijfatigue.2012.04.010 

Magel, E. E. (2011). Rolling contact fatigue: a comprehensive review. 

https://doi.org/https://doi.org/10.4224/23000318 

Malekzadeh, M., Atia, G., & Catbas, F. N. (2015). Performance-based structural health monitoring 

through an innovative hybrid data interpretation framework. Journal of Civil Structural Health 

Monitoring, 5(3), 287–305. https://doi.org/10.1007/s13349-015-0118-7 

Masters, T. (1994). Signal and image processing with neural networks : a C [plus plus] sourcebook / 

Timothy Masters. New York. 

Mcculloch, W. S., & Pitts, W. (1990). A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS 

ACTIVITY* n. Bulletin of Mothemnticnl Biology, 52(2), 99–115. 

Minsky, M. L., & Papert, S. A. (1988). Perceptrons: Expanded Edition. MIT Press. 

Mohammad, M., Abdullah, S., Jamaludin, N., & Innayatullah, O. (2014). Predicting the fatigue life of 

the SAE 1045 steel using an empirical Weibull-based model associated to acoustic emission 

parameters. Materials & Design, 54, 1039–1048. https://doi.org/10.1016/j.matdes.2013.09.021 

Moore, P. O., Miller, R. K., & Hill, E. v. K. (Eds.). (2005). Nondestructive testing handbook: Acoustic 

Emission Testing (3rd ed., Vol. 6). American Society of Nondestructive Testing. 

Moorthy, V., Jayakumar, T., & Raj, B. (19941101). Acoustic emission behavior during stage II fatigue 

crack growth in an AISI type 316 austenitic stainless steel. Bull. Mater. Sci. (India), 17(6), 699–

715. https://doi.org/10.1007/BF02757552 

Morscher, G. N. (1999). Modal acoustic emission of damage accumulation in a woven SiC/SiC 

composite. Composites Science and Technology, 59(5), 687–697. https://doi.org/10.1016/S0266-

3538(98)00121-3 

Morton, T. M., Harrington, R. M., & Bjeletich, J. G. (1973). Acoustic emissions of fatigue crack growth. 

Engineering Fracture Mechanics, 5(3), 691, 692–693, 697, IN17, IN18. 

https://doi.org/10.1016/0013-7944(73)90047-7 

Muir, C., Swaminathan, B., Almansour, A. S., Sevener, K., Smith, C., Presby, M., Kiser, J. D., Pollock, T. 

M., & Daly, S. (2021). Damage mechanism identification in composites via machine learning and 



158 
 

acoustic emission. Npj Computational Materials, 7(1), 95. https://doi.org/10.1038/s41524-021-

00565-x 

NationalInstruments. (n.d.). Understanding FFTs and Windowing. 

Network Rail. (2018). Module 07 Management of rail defects. 

NetworkRail. (2021). Annual expenditure 2019-20. https://www.networkrail.co.uk/who-we-

are/transparency-and-ethics/transparency/our-information-and-data 

New Measurement Train (NMT) - Network Rail. (2022). https://www.networkrail.co.uk/running-the-

railway/looking-after-the-railway/our-fleet-machines-and-vehicles/new-measurement-train-

nmt/ 

Office of Rail. (2022). Freight rail usage and performance January to March 2022. 

Ono, K. (2011). ACOUSTIC EMISSION IN MATERIALS RESEARCH-A REVIEW Ancient metals View project 

ACOUSTIC EMISSION IN MATERIALS RESEARCH-A REVIEW. In J. Acoustic Emission (Vol. 29). 

http://www.physik.uni-augsburg.de/ 

Ould Amer, A., Gloanec, A. L., Courtin, S., & Touze, C. (2013). Characterization of fatigue damage in 

304L steel by an acoustic emission method. Procedia Engineering, 66, 651–660. 

https://doi.org/10.1016/j.proeng.2013.12.117 

PAC. (2005). R50α General Purpose, 500 kHz Resonant Frequency Acoustic Emission Sensor (Patent No. 

135–04). PAC. 

PAC. (2022). Physical Acoustics AE Technology - Overview of Acoustic Emission NDT Technology. 

https://www.physicalacoustics.com/ae-technology/ 

Papaelias, M., Amini, A., Culwick, R., Heesom, J., Huang, Z., Jantara Junior, V. L., Kaenwunruen, S., 

Kerkyras, S., Kongpuang, M., Garcia Marquez, F. P., Shi, S., Upton, A., & Vallely, P. (2018). 

Advanced remote condition monitoring of railway infrastrucutre and rolling stock. 1st 

International Conference on Welding & NDT, of HSNT and WGI. 

Papaelias, M., Huang, Z., Amini, A., Ayorkinos Papaelias, M., Vallely, P., Day, N., Sharma, R., Kerkyras, 

Y., & Kerkyras, S. (2014). Advanced wayside condition monitoring of rolling stock wheelsets Real-

time monitoring of welding quality View project EC FP7-NIMO View project Advanced wayside 

condition monitoring of rolling stock wheelsets. 

https://www.researchgate.net/publication/275040232 

Parker, D. (1985). Learning Logic Technical Report TR-87. 

Perez-Unzueta, A. J., & Beynon, J. H. (1993). Microstructure and wear resistance of pearlitic rail steels. 

Wear, 162–164(Part A), 173–182. https://doi.org/10.1016/0043-1648(93)90498-B 

Peters, N. W. (2005). THE PERFORMANCE OF HADFIELD’S MANGANESE STEEL AS IT RELATES TO 

MANUFACTURE. 

Ph Papaelias, M., Roberts, C., & Davis, C. L. (2008). A review on non-destructive evaluation of rails: 

State-of-the-art and future development. Proceedings of the Institution of Mechanical Engineers, 

Part F: Journal of Rail and Rapid Transit, 222(4), 367–384. 

https://doi.org/10.1243/09544097JRRT209 



159 
 

Rabiei, M., & Modarres, M. (2013). Quantitative methods for structural health management using in 

situ acoustic emission monitoring. International Journal of Fatigue, 49, 81–89. 

https://doi.org/10.1016/j.ijfatigue.2012.12.001 

Ramirez-Jimenez, C. R., Papadakis, N., Reynolds, N., Gan, T. H., Purnell, P., & Pharaoh, M. (2004). 

Identification of failure modes in glass/polypropylene composites by means of the primary 

frequency content of the acoustic emission event. Composites Science and Technology, 64(12), 

1819–1827. https://doi.org/10.1016/j.compscitech.2004.01.008 

Ringsberg, J. W., & Bergkvist, A. (2003). On propagation of short rolling contact fatigue cracks. Fatigue 

& Fracture of Engineering Materials & Structures, 26(10), 969–983. 

https://doi.org/10.1046/j.1460-2695.2003.00657.x 

Roberts, T. M., & Talebzadeh, M. (2003). Acoustic emission monitoring of fatigue crack propagation. 

Journal of Constructional Steel Research, 59(6), 695–712. https://doi.org/10.1016/S0143-

974X(02)00064-0 

Rochester, N., Holland, J., Haibt, L., & Duda, W. (1956). Tests on a cell assembly theory of the action 

of the brain, using a large digital computer. I.R.E. Transactions on Information Theory, 2(3), 80–

93. https://doi.org/10.1109/TIT.1956.1056810 

Rommelaere, M., & Maujean, J.-P. (2013). Pre-hardened cossings cut life-cycle costs. Railway Gazette 

International, 169(2), 48–50. 

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization 

in the brain. Psychological Review, 65(6), 386–408. 

Sawalhi, N., & Randall, R. B. (2004). The application of spectral kurtosis to bearing diagnostics. 

Proceedings of the 2004 AAS Meeting, 1. 

Schilke, M. (2013). Degradation of railway rails from a materials point of view [Doctor of Philosophy]. 

Chalmers University of Technology. 

Schilke, M., Ahlström, J., & Karlsson, B. (2010). Low cycle fatigue and deformation behaviour of 

austenitic manganese steel in rolled and in as-cast conditions. Procedia Engineering, 2(1), 623–

628. https://doi.org/https://doi.org/10.1016/j.proeng.2010.03.067 

Shan, D., & Nayeb-Hashemi, H. (1999). Fatigue-life prediction of SiC aluminum composite using a 

Weibull model. NDT and E International, 32(5), 265–274. https://doi.org/10.1016/S0963-

8695(98)00053-X 

Shi, S., Han, Z., Liu, Z., Vallely, P., Soua, S., Kaewunruen, S., & Papaelias, M. (201804). Quantitative 

monitoring of brittle fatigue crack growth in railway steel using acoustic emission. Proceedings 

of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(4), 1211–

1224. https://doi.org/10.1177/0954409717711292 

Shi, S., Soua, S., & Papaelias, M. (2017). Remote Condition monitoring of rails and corssings using 

acoustic emission. NSIRC Annual Conference. 

Siddique, A., Yadava, G. s, & Singh, B. (2003). Applications of artificial intelligence techniques for 

induction machine stator fault diagnostics: review. 

https://doi.org/10.1109/DEMPED.2003.1234543 



160 
 

Sikorski, R. U. E.-W. (2013). Hit Detection and Determination in AE Bursts. In Acoustic Emission (p. Ch. 

1). IntechOpen. https://doi.org/10.5772/54754 

Smith, R. W., & Mackay, W. B. F. (2003). AUSTENITIC MANGANESE STEELS - DEVELOPMENTS FOR 

HEAVY HAUL RAIL TRANSPORTATION. Canadian Metallurgical Quarterly, 42(3), 333–342. 

https://doi.org/10.1179/cmq.2003.42.3.333 

Specht, D. F. (1967). Vectorcardiographic Diagnosis Using the Polynomial Discriminant Method of 

Pattern Recognition. IEEE Transactions on Biomedical Engineering, BME-14(2), 90–95. 

https://doi.org/10.1109/TBME.1967.4502476 

Strantza, M., van Hemelrijck, D., Guillaume, P., & Aggelis, D. G. (2017). Acoustic emission monitoring 

of crack propagation in additively manufactured and conventional titanium components. 

Mechanics Research Communications, 84, 8–13. 

https://doi.org/10.1016/j.mechrescom.2017.05.009 

Suwansin, W., & Phasukkit, P. (2021). Deep Learning-Based Acoustic Emission Scheme for 

Nondestructive Localization of Cracks in Train Rails under a Load. Sensors, 21(1). 

https://doi.org/10.3390/s21010272 

Swindlehurst, W. (1973). Acoustic emission - 1 Introduction. Non-Destructive Testing, 6(3), 152–158. 

https://doi.org/10.1016/0029-1021(73)90017-0 

NSWRailcop. (2019). TMC 226 Rail Defects Handbook. In Engineering Manual Track (Issue 1.2). 

NSWRailcorp. 

Uddin A.K.M, F. (2002). Application of AE to Fracture Toughness and Crack Analysis by BEM in 

Concrete. NDT, 7(9). https://www.ndt.net/article/v07n09/01/01.htm 

Ultrasonic Rail Testing - Pandrol. (2022). https://www.pandrol.com/product/ultrasonic-rail-testing/ 

Vallely, P. (2015). A Holistic Approach to Remote Condition Monitoring for the Accurate Evaluation of 

Railway Infrastructure and Rolling Stock. 

Vallen, H. (2002). AE Testing Fundamentals, Equipment, Applications. Journal of Nondestructive 

Testing (Germany), 7(9), 1–30. 

Watanabe, S. (1985). Pattern Recognition: Human and Mechanical. John Wiley and Sons. 

Wen, Y. H., Peng, H. B., Si, H. T., Xiong, R. L., & Raabe, D. (2014). A novel high manganese austenitic 

steel with higher work hardening capacity and much lower impact deformation than Hadfield 

manganese steel. Materials in Engineering, 55, 798–804. 

https://doi.org/10.1016/j.matdes.2013.09.057 

Werbos, P. (1974). Beyond regression : new tools for prediction and analysis in the behavioral sciences 

/. 

Widrow, B., & Hoff, M. (1960). Adaptive Switching Circuits. 1960 IRE WESCON Convention Record, 96–

104. 

Willberry, J., Papaelias, M., & Fernando, G. (2020). Structural Health Monitoring Using Fibre Optic 

Acoustic Emission Sensors. Sensors, 20, 6369. https://doi.org/10.3390/s20216369 

Yilmazer, P. (2013). Structural health condition monitoring of rails using acoustic emission techniques. 



161 
 

Yu, J., Ziehl, P., Zárate, B., & Caicedo, J. (2011). Prediction of fatigue crack growth in steel bridge 

components using acoustic emission. Journal of Constructional Steel Research, 67(8), 1254–1260. 

https://doi.org/10.1016/j.jcsr.2011.03.005 

Zhang, J., Ma, H., Yan, W., & Li, Z. (2016). Defect detection and location in switch rails by acoustic 

emission and Lamb wave analysis: A feasibility study. Applied Acoustics, 105, 67–74. 

https://doi.org/10.1016/j.apacoust.2015.11.018 

Zhang, X., Feng, N., Wang, Y., & Shen, Y. (2014). An analysis of the simulated acoustic emission sources 

with different propagation distances, types and depths for rail defect detection. Applied 

Acoustics, 86, 80–88. https://doi.org/10.1016/j.apacoust.2014.06.004 

Zhang, X., Feng, N., Wang, Y., & Shen, Y. (2015). Acoustic emission detection of rail defect based on 

wavelet transform and Shannon entropy. Journal of Sound and Vibration, 339, 419–432. 

https://doi.org/10.1016/j.jsv.2014.11.021 

Zhu, Y., & Olofsson, U. (2014). An adhesion model for wheel–rail contact at the micro level using 

measured 3d surfaces. Wear, 314(1–2), 162–170. https://doi.org/10.1016/j.wear.2013.11.031 

  

 


