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Abstract 

Thermal treatment is the most common method used by industry to ensure food is safe 

for consumption and to increase storage life. To ensure safety, food is often over 

processed, which can significantly affect its nutritional value as well as taste and 

flavour attributes. In this study a candidate sterilisation time-temperature integrator 

(TTI) from the hyperthermophilic Pyrococcus furiosus α-amylase is investigated. 

Reliability and accuracy of the TTIs was determined by exposure to various 

isothermal and non-isothermal industrially relevant temperature profiles. The 

integrated temperature history obtained by the TTIs correlated generally well with the 

data obtained from thermocouples installed, although the error increased with hold 

time of heat treatment. The work showed that the TTIs can be used reliably over a 

range (3-25 minutes at 121°C) which is relevant for conditions of thermal 

sterilisation. This was measured by developing a new assay technique for assaying the 

activity of hyperthermophilic α-amylase within the food industry. The assay was 

calibrated against more laboratory relevant assays and computational models. 

The kinetics and mechanism of thermal denaturation of Pyrococcus furiosus α-

amylase was determined through FT-IR, DSC and CD techniques. It was found that 

through thermal denaturation after the melting temperature (Tm), the enzyme unfolded 

by first order kinetics from a α-helical structure, through β-sheet structure to 

aggregation of the enzyme. 
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Nomenclature 
 
Ainitial / Afinal    Ratio of the enzyme activities before and after heat 
treatment 
aw    Water activity 
c    Amylase concentration (mg/ml) 
Cp    Heat capacity (Jkg-1K-1) 
d    Depth of RED plate 
D    Diffusion rate (m2s-1) 
Dn    Dilution rate (ls-1) 
DT    Decimal Reduction Time (min) 
Ea    Activation Energy (Jmol-1) 
F    Sterilisation value (min) 
G    Gibbs Free Energy (Jmol-1) 
H    Enthalpy (J) 
I    Inactive form of protein 
k    Rate constant (s-1) 
N    Natured form of protein 
N initial and N final  Initial and final number of micro organism 
P    Pasteurisation value (min) 
r    Halo radius (mm) 
R    Well radius (mm) 
R2    Coefficient of determination 
S    Entropy (Jkg-1K-1) 
t    Duration of the heat treatment (min) 
Tm    Melting temperature (°C) 
Topt    Optimal activity/growth temperature 
T(t)    Product temperature (°C) 
Tref    Reference temperature (°C) 
U  Reversible form of protein 
z z value (number of degrees Celsius to bring about a ten-

fold change in Decimal reduction time) (°C) 

 

Greek symbols 
μ    Dynamic viscosity (Pa.s) 
μm    Maximum growth rate 
ρ     Density (kgm-3).  
μapp    Apparent viscosity (Pa s) 
‹&     Shear rate (s-1) 
μ0 and μ∞    Viscosities at shear rate (γ& ) = 0 and γ& = ∞ respectively 

 

Abbreviations 
3-D    Three dimensional 



ASW    Artificial Sea Water 
BAA    Bacillus amyloliquefaciens α-amylase  
BLA     Bacillus licheniformis α-amylase 
CCFRA    Campden and Chorleywood Food Research Association 
CD    Circular Dichroism 
CSTR    Continuous StirredTank Reactor 
DCW    Dry Cell Weight 
DNS    Dinitrosalicilic acid 
DSC    Differential Scanning Calorimetry 
EDTA    ethylenediaminetetraacetic acid 
FDP    Freeze-Dried Protein 
FT-IR    Fourier Transform Infrared Spectroscopy 
HACCP   Hazard Analysis Critical Control Point 
HPLC    High Performance Liquid Chromatography 
HT    High Tension 
PCR     Polymerase Chain Reaction 
PFA    Pyrococcys furiosus �-amylase 
RED    Radial Enzymatic Diffusion 
SDS-PAGE Sodiumdodecylsulphate polyacrylamide gel 

electropheresis 
SEM    Scanning Electron Microscopy 
SSE    Sum of Squares 
TEM    Transmission Scanning Microscopy 
TTI    Time Temperature Integrators 
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Chapter 1 

Introduction 
 

Sterilisation and preservation procedures have been known from ancient times. It is likely that 

pre-historic and early man discovered preserving foods by drying the meat, fish and fruits they 

hunted and gathered. Foods that had been exposed to salt solutions as well as high sugar 

solutions (such as honey) were also discovered to putrefy at a slower rate than foods that were 

not treated (Hugo, 1995). These early preservation methods are now known to work by reducing 

the water activity of the product to a low level. Bacterial growth at low ambient temperatures 

was well known to be slowed by placing foods in environments where the ambient 

environmental temperatures were low and the stability of perishable foods in cold conditions 

would have been recognised. For example ice houses to chill food were dug deep into the ground 

and constructed with ice transported from the mountains which could then be used to chill the 

food. 

Direct chemical methods have also been used to preserve food; e.g. smoking of meats. In about 

450 BC the Persians knew that water stored in earthenware containers became foul (Hugo, 1995) 

but if it was placed in copper or silver containers then the water remained ‘sweet’ for longer. 

However the beginnings of true sterilisation techniques came when Aristotle recommended the 

ancient Greek army boil their drinking water before they consume it. In 1809 the French 

government offered a prize for a method of preserving food for long sea voyages for the navy. 

The application of heat as a preservative was at the forefront of the entries. Nicholas Appert’s 
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method of sealing vegetables and fruit in glass jars and then heating them by boiling the jars in 

water won the prize. 50 years later, Pasteur found that, with the spoilage of wine, micro-

organisms other than yeast were present in the sour wine and deduced they were responsible for 

the spoilage, and he recommended that new wine be heated at 55°C in the absence of air (Hugo, 

1995).   

Pasteur and Appert both gave their names to the two types of heating process which are 

commonly applied to destroy micro-organisms in food: pasteurisation and appertisation. The 

main difference between pasteurisation and appertisation (sterilisation) is the temperature for 

thermal treatment. Pasteurisation uses temperatures applied at 60-80°C for the elimination of key 

pathogens (Salmonella) and spoilage organisms. Appertisation is used to eliminate micro-

organisms to achieve ‘commercial sterility’ by applying temperatures of greater than 100°C.  

Observations involving the use of heat by Tyndall (1897) found that while vegetative micro-

organisms were destroyed by boiling, the spores produced by some species were resistant. If 

these spores were allowed to germinate, micro-organisms would be killed by a repeat of the 

heating process. Successive thermal treatments over 3-5 days were commonplace for sterilisation 

before the invention of the autoclave. The autoclave allowed higher temperatures and pressures 

for sterilisation and could remove the spores of micro-organisms in a single step. 

According to the temperature of the thermal treatment, the effect on the destruction of the micro 

organism will be different. Table 1-1 shows the impact of the various temperatures on the food 

product. 
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Table 1‐1Common heat processes applied to foods (Moss, 2000) 

Heat process Temperature Objective 

Cooking 
   Baking 
   Boiling 
   Frying 
   Grilling 

≤ 100°C 
Improvement of digestibility 
Improvement of flavour 
Destruction of pathogenic micro-organisms 

Blanching <100°C 
Expulsion of oxygen from tissues 
Inactivation of enzymes 

Drying/Concentration <100°C Removal of water to enhance keeping quality 

Pasteurisation 60-80°C Elimination of key pathogens and spoilage organisms 

Appertisation, 
Sterilisation >100°C Elimination of micro-organisms to achieve 

‘commercial sterility’ 

Manufacturers are legally responsible for the food they produce and so have to supply safe food 

for the consumer. As such, thermal treatment of food is the normal practice within industry to 

eliminate micro-organisms and spores from the product (DoH, 1994; FDA, 2005). 

Thermal treatments are generally directly applied to foods, so as to cook and thermally treat the 

product at the same time in order to preserve it. This stage needs accurate monitoring as too little 

thermal processing makes the food unsafe to the consumer, whereas if the thermal processing is 

too high the product may be safe at the expense of food quality with a possible decrease in 

flavour and consumer acceptance. An option for monitoring and assessing the time-temperature 

history of an applied thermal process, which has been used in this study, is the use of enzymatic 

time-temperature integrators (TTIs). Enzymatic TTIs are based on the quantification of activity 

of an enzyme before and after thermal processing, providing evidence for the thermal processing 

they have received expressed in terms of D and z values. These are properly defined in Chapter 

5. 
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For use in sterilisation TTIs, i.e. for validating processes in the range 110-140°C, a highly 

thermostable enzyme is needed, showing measurable residual activity at 121°C, so the TTI could 

assess the relative time-temperature history of a sterilisation process. The work reported here 

concerns an enzyme (Pyrococcus furiosus α-amylase referred to as PFA: PF0478) extracted 

from cultures of a native strain of Pyrococcus furiosus.  

In general (especially in the UK) the food industry regards any ‘genetically modified’ products 

as undesirable and they are not used due to the conservative nature of the customer and thus of 

the industry. This restricts the creation of a TTI by the obvious route of overproduction of 

thermostable enzymes in Escherichia coli and yeasts. 

Here the accuracy of PFA TTIs has been assessed using isothermal and non-isothermal heating 

profiles, with the results compared to values measured using more traditional methods of time-

temperature history profiles i.e. thermocouples and data-loggers. The time-temperature profiles 

were also altered by changing the specific heat capacities of the food-stuff measured. The PFA 

TTIs have been applied to pilot scale canning retorts with real foods and the results have then 

been compared to the responses of fixed thermocouple time-temperature profiles. 

Enzymatic TTIs work on the basis of denaturation of the enzyme due to heat, and show lower 

residual activity after sterilisation compared to the enzyme in its non-thermal processed state. For 

its effective use as a TTI, the mechanism of denaturation of Pyrococcus furiosus α-amylase 

should be known, and this has been examined in a thermal processing context. The effects of a 

range of temperatures (20-130°C) on the stability and folding characteristics of the α-amylase 

were studied, and related to how heat affects the activity of the enzyme. 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

  
Page 5   

   

The overall aim of the study was to identify engineering conditions where sterilisation TTIs can 

be used in confidence within an industrial, commercial setting. 

1.1 Aims and objectives 

The aims and objectives of this investigation can be summarised as 

• Cultivation of Pyrococcus furiosus and extraction of α-amylase for use within 

sterilisation TTIs (Chapter 3). 

• The development and use of a quick and reliable assay, which is industrially applicable, 

for the highly thermostable α-amylases (Chapter 4). 

• Determining the accuracy of TTIs over a range of sterilisation time-temperature profiles, 

and the evaluation of TTIs within the sterilisation based canning industry as compared to 

traditional monitoring techniques for thermal processing (Chapter 5). 

• Assess the mechanisms of unfolding of Pyrococcus furiosus α-amylase, investigating the 

stages of denaturation, and the kinetics of each step (Chapter 6). 

1.2 Thesis plan 

Beyond this chapter, chapter 2 gives a review of the published literature in the field and provides 

an overview of thermal treatment methods. These methods of food preservation and the theory 

behind sterilisation include descriptions of traditional monitoring techniques. The use of TTIs 

within the food industry and their applicability for pasteurisation treatments are also reviewed. 
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The second part of the chapter then focuses on thermostable enzymes, their sources and their 

possible inclusion as a thermally liable substance inside a candidate TTI. 

Chapter 3 details the cultivation and purification techniques for batch and continuous 

fermentation of Pyrococcus furiosus for α-amylase for the maximum yield of α-amylase. 

Chapter 4 details the development of a new industry-relevant method for analysing highly 

thermostable α-amylases. This assay uses radial diffusion behaviour of the enzyme as an 

indicator of activity; a process which can be implemented at factory floor level. The assay has 

been modelled and then calibrated against more accurate laboratory assays. 

Chapter 5 then details the validation work performed on TTIs to investigate their accuracy and 

reliability for evaluating thermal treatments.  Their reliability is assessed in terms of the likely 

ranges of operation for sterilisation processes and a process engineering context through 

isothermal and non-isothermal processing. The study will include results from pilot scale 

canning trials with the sterilisation TTIs. 

Finally in chapter 6 the mechanisms for the denaturing of Pyrococcus furiosus α-amylase were 

examined using FT-IR, CD and DSC analysis. This indicated the fate of the enzyme when 

thermally processed, and hence may be used to improve its use as a candidate sterilisation time-

temperature integrator 

The main findings and recommendations for future work are summarised in chapter 7. 
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Chapter 2 

Literature review 

 

In the food industry, preservation of foods is commonly achieved by thermal processing i.e. 

pasteurisation and sterilisation. These processes would seem easy to evaluate, but industrial 

canning is done on a massive scale and rate, with food sterilised in large sterilisation vessels 

known as retorts. In retort processing, the food to be sterilised is first filled and hermetically 

sealed in rigid or flexible enclosures, such as metal cans, glass jars, or retortable pouches. The 

retort is then filled with containers stacked either randomly or in trays. Once the retorts are full 

of containers, the retort doors are closed tightly and the air is replaced by steam under pressure to 

achieve temperatures above the atmospheric boiling point of water. The common retort 

temperature for sterilising canned foods is 121oC, at one atmosphere of internal over pressure. 

After the containers have been exposed to the sterilising temperature for sufficient time to 

achieve the desired level of sterilization, the steam is shut off and cooling water is introduced to 

cool the containers and controllably reduce the pressure, thus ending the process. This is known 

as a batch retort operation which can become very labour-intensive for large scale production.  

Modern food canning plants that produce large volumes of canned foods operate with great 

efficiency by using continuous retort systems. In continuous rotary retort systems, filled and 

sealed containers travel in single file along automated conveying tracks into a series of 
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continuous retorts operating at different temperatures. They enter through a rotating pressure-seal 

valve to maintain the steam pressure inside the retort while introducing container after container 

from the outside atmosphere at speeds approaching 500 units per minute. Once inside the 

continuous retort, the containers travel slowly along a rotating helical path  until they exit the 

opposite end of the retort through a similar rotating pressure-seal valve directly from the high 

pressure steam retort into a cooling retort which is filled with cooling water instead of hot steam 

to accomplish the cool-down portion of the process. 

Within these processes it is very hard to evaluate the temperature profile inside the retort and 

whether each can has received the minimum safe cook. Moreover if excessive thermal 

processing is given in batch retorts to ensure the central cans are safe from harmful 

contaminants, the cans towards the edge of the retort may suffer quality degradation in nutrients 

or colour loss (Adams and Moss, 2000). Too little thermal processing is disastrous for the food 

industry; it is likely that the outside cans will still be safe from micro-organisms but the central, 

inside cans will not have received enough thermal processing to ensure sterility. This must be 

avoided, to ensure that consumers are not endangered. Such limits of undercook, cook and 

overcook are complicated by the can contents which can be solid, liquid, or a mixture of 

particulates in liquor, with all forms showing different heating profiles (Tucker et al., 2007).  

The following section will detail the current state of work on determination of heat treatment 

efficiency and the applications of extremophiles, and the apparent relevance for use within 

sterilisation TTIs of Pyrococcus furiosus α-amylase.  
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2.1 Methods of food safety and preservation 

2.1.1 Existing techniques 

Micro-organism growth in food can make it unfit for consumption. Listeria monocytogenes 

(milk, vegetables and poultry), Staphylococcus aureus (meat, poultry and eggs) and Clostridium 

botulinum (any non-low acidic foods) are three pathogenic micro-organisms which can all 

become a public heath concern when in foods (Frazier and Westhoff, 1978). Clostridium 

botulinum especially can be a problem in canning as it grows in anaerobic conditions and has 

highly heat resistant spores. Enzyme production due to micro-organism growth may not be 

pathogenic for the consumer but does cause unwanted changes in the foodstuff attributes by 

degrading lipids, proteins and low molecular weight organosulphur compounds (Adams and 

Moss, 2000).  

Micro-organisms can grow rapidly in most foodstuffs as there is sufficient moisture, suitable pH 

and temperature levels and the food is also high in nutrients. Elimination of one or a combination 

of these elements without causing excess degradation to the product is the basis for food 

preservation techniques, and reduction of the ability of micro-organisms to grow. Eliminating 

pathogenic micro-organisms which could be present remains the preserve of thermal treatments. 

2.1.1.1 Non Thermal Treatments 

Biological fermentation. One of the oldest methods of food preservation is to increase the 

population of desirable micro-organisms which causes competitive inhibition and disappearance 

of micro-organisms which are non-desirable (Goff, 1999). This can be seen within brewing 
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where the desirable micro-organism is brewers yeast (Saccharomyces cerevisiae), and which 

provides storable water by producing alcohol as a by-product. Within minced meat Lactobacillus 

sake Lb706 can be used (Schillinger et al., 1991) as competitive inhibition of harmful organisms 

forming products. Other biological fermentation treatments include Lactobacillus and 

Aspergillus oryzae which are used to make foods such as sauerkraut and miso.  

Chemical preservation. As mentioned in chapter 1, chemicals such as salt and high sugar 

concentrations (jams and preservatives) reduce the water activity (Hugo, 1995).  Acid such as 

vinegar, in the case of pickling, decrease the pH, limiting the growth of the micro-organism 

(Goff, 1999). Smoking is also a common method of preserving foods, especially meats. Smoking 

reduces water activity and impregnates the tissue with chemical preservatives such as 

formaldehyde and phenols which inhibit bacterial growth. 

Low temperature storage. Low temperature methods of preservation are commonplace in the 

home; these include refrigeration and freezing. At low temperatures micro-organism growth is 

not eradicated, only retarded. The lower the storage temperature is from the optimal growth 

temperature of the organism the greater the retardation of growth.  For example Griffiths et al. 

(1987) studied storage of raw milk with an initial preservation temperature of 2°C rather than 

6°C and saw preservation greatly increased. 

Active packaging. Also known as ‘smart packaging’, active packaging uses the container of the 

food stuff to control and prolong the shelf life of the product. Active packaging interacts with the 

product or the headspace between the package and food, to obtain a desired outcome (Labuza 

and Breene, 1989; Rooney, 1995). Packaging may be termed ‘active’ when it performs some role 
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in food preservation other than providing an inert barrier to external conditions (Hutton, 2003). 

Packaging may take the form of oxygen scavengers, carbon dioxide scavengers and emitters, 

moisture control agents, or anti-microbial agents (Kerry et al., 2006). In recent studies 

compounds that are active against Gram-negative bacteria (nisin or lysozyme) have been 

combined with chelating agents (EDTA) to target E.coli (Padgett et al., 2000) and Salmonella 

typhimurium (Natrajan and Sheldon, 2000). 

Irradiation. Appertisation can be achieved by using electromagnetic radiation where X-rays, β-

rays, or γ-radiation are used. Irradiation damages the microbial DNA and causes potentially 

lethal DNA lesions to the bacteria. Within foods Fuld et al. (1957) demonstrated irradiation 

sterilisation of E.coli, B.subtilis and B.thermoacidurans in milk, pea puree and tomato juice. 

Sterilisation by irradiation is an effective method; but applications in the food industry are 

limited due to public concerns (Hendrickx et al., 1998). 

Pulsed electric field. In this process short duration (1-100µs) high electric field pulses (10-50kV 

cm-1) are applied to food between two electrodes.  The structure of the membrane of the micro 

organism is generally damaged during the exposure at high voltage field. This technique can 

only be applied to liquid foods such as orange juice and liquid eggs (Manas and Pagan, 2005; 

Stewart, 2004; Devlieghere et al., 2004; De Haan et al., 2002; Lado and Yousef, 2002). The 

effectiveness of pulsed electric fields on enzyme inactivation has been considered debatable 

(Hendrickx et al., 1995). 

High pressure. Damage to the micro-organism cell membrane and protein denaturation is caused 

by high pressure processing, in which pressures of 100-1000 MPa are applied to the food. High 
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pressure processing can cause minimal effects on sensory qualities (Arroyo et al., 1999) while a 

number of studies including ones on orange juice (Bull et al., 2005) found a significant increase 

in shelf-life of the product.  

2.1.1.2 Heat treatment techniques 

Despite the emergence of promising ‘non-thermal’ technologies (§2.1.1.1), thermal processes 

remain by far the most used techniques to preserve food-stuffs between the moment of 

production and the moment of consumption (Guiavarc’h et al., 2004). Heat treatment techniques 

are commonly used by food manufactures applying high temperatures to foods to reduce the 

number of micro-organisms and spores present (Fryer et al., 1997). 

Pasteurisation applies heat to destroy all or most of those organisms in a vegetative state which 

would produce illnesses, or produce spoilage in certain foods (Gaze, 2006). Pasteurisation 

commonly involves heating the food to temperatures between 70°C and 90°C for 3 to 30 

minutes. This does not sterilise the material; pasteurisation only reduces the number of micro-

organisms. It is considered a mild treatment and the food product must be kept refrigerated to 

retard the re-growth of any surviving micro-organism or spores. It also inactivates most of the 

enzymes which, as shown in Table 2-1, cause degradation of the food product upon storage. 

Sterilisation processes such as canning are still widespread; for example, H.J. Heinz Company 

Limited sells 300 million cans of soup per year in the UK (www.heinzsoup.co.uk). Sterilisation 

is a high temperature treatment using temperatures in the range 115-125°C to destroy pathogenic 

micro-organisms and their spores (Lopez, 1987). As such the sterilised products can be stored at 

ambient conditions for years. A heat resistant pathogen that might survive the thermal processing 
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of low-acid foods (pH > 4.5) enabling growth in anaerobic packaged and canned foods is the 

anaerobic spore-forming micro-organism Clostridium botulinum (Valentas et al., 1997). 

Sterilisation treatments are based on the probable destruction of C.botulinum, and the elimination 

of this micro-organism and its spores is the industry’s standard reference to ensure safety in the 

products (Tucker et al., 2006).  Thus a commercialised food sterilisation process must reduce the 

probability of a single C.botulinum spore surviving in a low-acid product to one in 1012. This is 

called a ‘botulinum cook’, and the standard process to achieve this level of spore reduction is 

equivalent to holding the food at a minimum of 3 minutes at 121.1°C (DoH, 1994; FDA, 2005).  

Table 2‐1 Enzyme activity and quality of foods (Adams and Moss, 2000) 

Quality attribute 
changed 

Enzyme  Reaction catalysed  Perceived quality change 

Flavour 
Lipase / 

phospholipase 
Lipid hydrolysis  Soapy/rancid (dairy products) 

  Sulphydryl oxidase  Thiol oxidation 
Elimination of cooked flavours 

(milk) 

Colouring  Polyphenol oxidase  Phenol oxidation  Browning (fruit, vegetables) 

  Lipoxygenase 
Pigment co‐
oxidation 

Decolourisation (bread, 
vegetables) 

Texture  Amylase  Starch hydrolysis  Viscosity reduction 

  Protease  Protein hydrolysis  Softening (meat, cheese) 
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2.1.2 Quantification of thermal processes 

Quantification of the impact of any thermal process on the relative safety and quality attributes 

of food products is indispensible in design, evaluation, control and optimisation and in obtaining 

a safe food with maximal quality retention (Guiavarc’h et al., 2004). The kinetics of thermal 

death of the micro-organisms is the basis for all rational design of sterilisation equipment. There 

are two methods commonly used for this quantification of thermal processing: 

• In situ method 

• Physical-mathematical approach 

The in situ method is widely applied and uses judgement of nutritional quality of the food after 

sterilization such as taste, colour, texture etc to measure the amount of thermal processing.  The 

advantage of the in situ method is that the impact of the thermal process on the parameters of 

interest can be directly and accurately known (Van Loey et al., 1996b). The disadvantages of the 

in situ method as expressed by Hendrickx et al., (1995) is that it is time consuming and hence 

expensive. 

The physical mathematical approach (Bigelow, 1921; Esty and Meyer, 1922; Lund, 1975; Ball 

and Olsen, 1957) uses a combination of knowledge of the temperature history imposed on the 

food combined with knowledge of the kinetic parameters of the safety or quality attributes to 

calculate the impact of treatment. This can either be constructed theoretically or empirically from 

knowledge of characteristics of the food physical heating (Van Loey et al., 1996a; Holdsworth, 

1985). The downside to this method is that it is often impossible to obtain, by direct recording / 
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heat transfer simulations, the necessary time-temperature data of the product during the process, 

such as cold spots, which will invariably happen due to incomplete mixing of the material 

(Hendrickx et al., 1995). 

The classical thermo-bacteriological/ thermal death time (TDT) approach was deduced by 

Bigelow (1921) and Ball and Olsen (1957). Assuming a first order process, at a constant 

temperature T, the death of the micro-organism is given by: 

                                      (2.1) 

where Ninitial and Nfinal are the initial and final numbers of micro-organisms, t is the heat 

treatment duration, and D is the decimal reduction time, i.e. the time needed to reduce the 

number of micro-organisms by 1 log cycle (90%) at temperature, T. This is shown in Figure 2-1; 

the D value varies with organism and also with temperature (Valentas et al., 1997). 

 

Figure 2‐1 The survivor curve showing the decimal reduction time, and the effect of increasing temperature 

Incubation 
Temperature 
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Thermal processes can be compared even though the temperature of thermal processing may be 

different, the time for a given process can be expressed as a parameter of D. Thus, rearranging 

equation (2.1) ensures that it can be compared with the in situ method by using the equation: 

                                         (2.2) 

where F or P are the process values, expressed as time (commonly written as F for sterilisation 

and P for pasteurisation) and with the units of time.  In order to calculate the process value, the 

organism should follow the thermal death time model (Bigelow, 1921; Guiavarc'h et al., 2005).  

The F or P value can also be calculated from the time-temperature history of the product upon 

which the heat treatment is applied.  The product time-temperature history of a particular thermal 

process can be translated into an equivalent time at a chosen reference temperature i.e. the time 

that the material would have to be held at the reference temperature to generate the same effect 

as the process (Ball and Olson, 1957; Hendrickx et al., 1995; Holdsworth, 1985).  This allows 

the comparison between different thermal processes using the physical-mathematical approach. 

Thus for sterilisation:   

                                                                                        (2.3) 

where T(t) is the product temperature (°C), Tref is the reference temperature at which the D value 

(°C) is calculated, t is the process time (min) while z is the temperature change needed to bring about a 1 

log cycle (90%) change in decimal reduction time (Figure 2-2).  The z value represents the temperature 

sensitivity of the system; the whole approach is a local linearization of the Arrhenius expression 
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for decimal kinetics, but works because of the relatively small temperature differences found in 

food processing. 

 

Figure 2‐2 The thermal resistance curve showing the method for calculation of thermal sensitivity 

The z value is important as it represents the temperature sensitivity of the system and for a TTI 

should be ideally the same or very close to the targeted micro-organism (Hendrickx et al., 1995; 

Richardson, 2001). Clostridium botulinum the target micro-organism in the canning industry has 

a z value of approximately 10°C (Hendrickx et al., 1995; Richardson, 2001), meaning there is a 

90% increase in the rate of destruction of C.botulinum spores every 10°C increase in 

temperature. This also depends on the food stuff, and so it has also been variably measured as 

8.3°C in puree peas (Stumbo et al., 1950) and 9.8°C in vegetables (Perkin et al., 1975). 
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The F value is a measure of the thermal processing received by the food at a reference 

temperature, which allows different thermal processes to be compared against each other. To 

obtain the F value in an industrial context, thermocouples and data-loggers are commonly used, 

which then supply temperature history data into the physical-mathematical method of Ball and 

Olson (1957) (Equation 2.3) to integrate the time-temperature history. Validation is straight 

forward and data analysis is relatively fast so that the calculation of F can take place whilst the 

process is acquiring. However thermocouples and data-loggers are not always convenient for 

every thermal process. It is generally not possible to use thermocouples in rotating retorts as they 

are impractical, or when the product is semi-convective (solid particulates in a liquid) i.e. the 

fluid in the can is able to move. Also Hendrickx et al, (1995) and Weng et al, (1991) found 

thermocouples impractical for agitated vessels where surface scraped heat exchangers were used 

because the thermocouple would become damaged. In continuous sterilisation processes, where 

the liquid is processed before packaging, it is often impossible to infer the correct time-

temperature history of the bulk fluid as thermocouples are static devices in a complex flowing 

fluid. In addition the size (may take up most of the content space) and density (sink to the bottom 

of the can) of data-loggers is an issue (Hendrickx et al., 1995; Marra and Romano, 2003), 

interfering with the movement of the fluid and it may be either impossible to put them at the 

coldest point of a container or they maybe placed inadvertently in a local ‘hot’ or ‘cold spot’ 

(Hendrickx et al., 1995; Marra and Romano, 2003). 

Therefore there needs to be an alternative to the approach of thermocouples, data-loggers and the 

in situ method, for a more comprehensive analysis of the thermal destruction of micro-organisms 
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within heat preservation. One technique, the use of time-temperature integrators, will be 

explored in this study. 

2.2 Time-Temperature Integrators 
 

TTIs can be defined as small, inexpensive, wireless sensors, placed in the product before heating 

and recovered from the product after heating, that shows a precisely, easily and correctly, 

measurable and irreversible change that allows the quantification of that target attribute 

undergoing the same variable temperature exposure, without the need for information on the 

actual time-temperature history in the product during the heating process (Decordt et al., 1994; 

Taoukis and Labuza, 1989b; Taoukis and Labuza, 1989a; Weng et al., 1991; Fu and Labuza, 

1995; Guiavarc'h et al., 2004). The kinetics of a TTI should be describable by an equation 

analogous to that of the target organism, i.e 

                              (2.4) 

where FTTI is the process value derived from the TTI (min), Dref is the decimal reduction time at a 

reference temperature, Tref (min), Ainitial is the initial level of the target attribute, Afinal is the level 

of the attribute after thermal processing. It should be noted that for this equation to be correct, 

and the use of a decimal reduction time be acceptable, the rate of loss of activity both of the TTI 

and the corresponding target should follow a first-order reaction. For further discussion see 

chapter 6. 
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By definition all TTI’s are post factum indicators of the impact of the thermal process (Van Loey 

et al., 1996a) because the calculations are based on the change in the TTI after thermal treatment 

compared to their initial status and are thus in situ measurement devices. 

The criteria set by Van Loey et al., (1996a) are that TTIs should be: 

• Inexpensive, quickly and easily prepared, easy to recover, accurate and a have user 

friendly readout. 

• Can be incorporated into food without disturbing heat transfer and therefore experience 

the same time-temperature profile as the food and not change it, whilst as mentioned 

previously this is not done by thermocouples and data-loggers. 

• Have an equivalent temperature sensitivity of the rate constants (z values) of the TTIs and 

the target attributes i.e. ca. 10°C for the target of C.botulinum. 

Thus TTIs can quantify the integrated temperature impact on the target attribute without the need 

to know the actual temperature history of the system; this is the TTIs major advantage over the in 

situ and physical mathematical methods. 

TTIs can be made neutrally buoyant using materials with the same thermal conductivity as the 

food. They do not interfere with the fluid motion in the product. Analysis can be fast and 

relatively simple (Guiavarc’h et al., 2005); Van Loey et al., 1996b).  
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2.2.1 Types of TTI 

TTIs are generalised and classified in terms shown in Figure 2-3, using the approach of 

Hendrickx et al., (1993) in terms of working principle, response, origin, application and location. 

The factors shown in Figure 2-3 are discussed in this section. 

 

Figure 2‐3 General classification of TTIs examining the factors of suitability for a thermal process (Hendrickx et al., 1993) 

Intrinsic TTIs are naturally present in food and the efficiency can be evaluated and quantified 

before and after thermal processing. Intrinsic TTIs are homogeneously dispersed in the food; for 

example Claeys et al, (2002) used the proteins naturally occurring in milk as the TTI to study the 

heat treatment the milk has received.  



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
22 

 
   

Extrinsic TTIs are artificial to the food and are added before the thermal process (Claeys et al., 

2002). As shown in Figure 2-3 extrinsic TTIs can be sub-divided further into 3 groups 

(Hendrickx et al., 1995; Van Loey et al., 1996a). 

• Dispersed TTIs are added and mixed into the food directly, and have direct contact with 

the food. This gives an accurate time-temperature profile but it is difficult to recover a 

known concentration to measure after processing. 

• Permeable TTIs are located in separate units with a permeable barrier to allow exchange 

of heat between food and the TTIs. 

• Isolated TTIs are located in separate units with non-permeable barriers and so do not 

allow exchange with food materials. Isolated TTIs have a slightly different time-

temperature profile to the food, because of the need to conduct heat into the TTI, but are 

easily recovered and uniform in concentration and used in this study. 

Chemical TTIs detect a change in concentration of a chemical extrinsically added to the food. 

These are analytically accurate and fast, but cannot be used for food safety monitoring due to the 

possibility of contamination into the food (Adams and Langley, 1998). Their use is rare and 

specialised as most micro organisms, vegetative cells and spores have a z value ranging from 5˚C 

to 12˚C while the z value for the destruction of thermal labile chemical substances start from 

25˚C to 30˚C (Adams and Langley, 1998).  The destruction of nutrients is less temperature 

sensitive than the destruction of micro organisms. 
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Physical TTIs generally use a diffusion method of a coloured compound in a paper wick. 

Physical TTIs have limited applications (Hendrickx et al., 1995) as the system is activated by 

steam so no other heating system can be used. Physical TTIs are however easy to calibrate, fast 

to analyse and easy to recover from the product.  

Biological TTIs are by far the most widely used and researched area in TTI development. These 

TTIs are advantageous but the targeted attribute must be sensitive to heat in the same 

temperature range as the process i.e. a measurable output can be identified after the process. 

Biological TTIs can be divided, not only by their response to the time-temperature profile, but by 

whether they use whole micro-organisms or just the biological components e.g. enzymes they 

produce to predict this impact, so the biological TTIs can be divided to microbiological TTIs and 

enzymatic TTIs. These can be either intrinsic or extrinsic. 

Microbiological TTIs such as spore beads are the most popular type of TTI within industry and 

have two types of response. The impact of the process can either be quantified by (i) the number 

of micro-organisms that survive the process or (ii) showing if there is growth or no growth of the 

organism depending on the organism and / or the temperature of treatment. For example TTIs 

containing Bacillus stearothermophilus spores have been used in pasteurisation processes 

(Hendrickx et al., 1995). The disadvantage of microbiological TTIs is the length of the assay, of 

hours or days, as long incubation times between the process and readouts do not allow for rapid 

intervention. There is also inherent variability of organisms (Hendrickx et al., 1995; Van Loey et 

al., 1996a) which affects the linearity of response, which is non-desirable. 

Enzyme TTIs form the majority of those used in practice, and are reviewed in detail below. 
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2.2.2 Enzymatic TTIs 

Enzymatic TTIs are used by quantifying the activity of a thermally labile enzyme that retains 

some activity after heat treatment. The residual activity can be related to the amount of thermal 

processing. The advantage of using TTIs with enzymes which are thermostable has been 

described by Van Loey et al, (1997) in that they are small, cheap and easy to prepare, can be 

used at relatively high temperatures, heat inactivation kinetics can be manipulated to the desired 

values while the response properties of activation and enthalpy can be measured accurately and 

rapidly (Haentjens et al., 1998). The isothermal inactivation of the enzymes must however 

follow known order kinetics to calibrate the TTIs F value with processing time (Welt et al., 

2003). Since capsules containing the TTI enzyme are commonly very small, such as the 10mm 

length of 3mm tubing used by Mehauden et al., (2006), TTIs can be difficult to retrieve after 

processing. A typical enzymatic TTI used by Mehauden et al., (2006) can be seen in Figure 2-4. 

Another limitation of TTIs is the need to know accurately the D and z values in order to process 

the data. Preliminary experiments are needed before it is possible to use them and each batch of 

enzyme has to be calibrated because there can be significant batch-to-batch variation (Maesmans 

et al., 2005; Van Loey et al., 1996a; b). 
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Figure 2‐4 Capsule enzymatic TTIs (10mm length, 3mm tubing) 

A z value of 10°C is the minimal process requirement for low acid foods which is the z value for 

Clostridium botulinum spore destruction so the enzyme used should have a z value close to 10°C 

to be used as a food safety tool e.g. amylases (Van Loey et al., 1996). 

Studies on candidate enzymatic TTIs have been undertaken using various enzymes. Tomato and 

cucumber pectinmethylesterase (Guiavarc’h et al., 2003), peroxidase (Hendrickx et al., 1992), 

and carrot and potato peroxidase, polygalacturonase and lipoxygenase (Anthon and Barrett, 

2002) have all had the kinetic parameters of thermal inactivation studied and were not applicable 

for pasteurisation or sterilisation TTIs because the z values did not match those of Clostridium 

botulinum. The effects of not matching the TTI z value with the target organism z value can be 

seen in chapter 5. 

A novel TTI based on an amperometric glucose oxidase biosensor (Reyes De Corcuers et al., 

2005) was used for the fast assessment for the effects of pasteurisation on Salmonella and 

Listeria monocytogenes. The glucose oxidase enzyme was trapped within a poly-o-

phenylenediamine film coating the interior wall of the can. The TTI could be rapidly analysed by 
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an amperometer to measure the thickness of the film, although this has not been developed for 

higher pasteurisation or sterilisation temperatures where the target organism is Clostridium 

botulinum.  

Most studies into TTIs have been focused on the use of α-amylase from Bacillus spp., which has 

a z value close to that of Clostridium botulinum and its denaturation follows first order kinetics 

(Van Loey et al., 1996; Tucker et al., 2002). Several studies have been undertaken in which 

amylases from different micro-organisms have been used (Guiavarc’h et al., 2004a and b; 

Haentjens et al., 1998; Van Loey et al., 1996). Guiavarc’h et al. (2003) showed that the Dref and 

z could be changed by immobilising the enzyme, or changing the enzyme environment (pH, 

[NaCl], etc.). 

Pasteurisation Enzymatic TTIs have been developed successfully using α-amylase from Bacillus 

spp. (Decordt et al., 1992; Maesmans et al., 1994; Van Loey et al., 1996a; b; Mehauden et al., 

2006). This previous work and that of Van Loey et al. (1997) and Mehauden et al. (2006; 2007) 

show that amylases can display kinetic parameters that make them applicable for estimating 

microbial thermal death treatment. TTIs were used to quantify effective thermal processing in 

comparing ohmic columns and a tubular heat exchanger for the pasteurisation of fruit as 

thermocouples could not be used (Tucker et al., 2002) (Table 2-2). TTIs have also been used to 

measure pasteurisation on mushroom quiches (Tucker et al., 2005a) to analyse the thermal kill of 

Salmonella and Listeria monocytogens. Tucker et al. (2005a) made pasteurisation TTIs from a 

Bacillus amyloliquefaciens α-amylase. By using multiple TTIs in a single pack, TTIs could 

distinguish and find the cold spots in the centre of quiches. Pasteurisation TTIs were shown to 
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work well in comparison to thermocouple data (Mehauden et al., 2006; 2007) and are now not 

just a novel technique for measurement of process parameters, but a reliable process tool. 

Sterilisation Enzymatic TTIs have mainly been seen as a progression of pasteurisation TTIs. 

Several studies have been published on sterilisation TTIs made from the α-amylase from  

Bacillus subtilis and Bacillus licheniformis which have been at the forefront of pasteurisation 

enzymatic TTIs (De Cordt et al., 1994; Van Loey et al., 1997; Guiavarc'h et al., 2003).  This α-

amylase was used at reduced water content and was immobilised on glass beads.  Under 

isothermal conditions, these TTIs were thermally stable at temperatures ranging from 100 to 

132°C. TTIs (z value of 9.4°C) that were equilibrated at aw = 4.8 could monitor process values at 

121.1°C in the range of 0-30 min under non isothermal conditions.  Although difficult to 

measure the results nevertheless showed that this TTI can be used to determine the heat 

treatment efficiency of sterilisation processes (De Cordt et al., 1994; Van Loey et al., 1997; 

Guiavarc'h et al., 2003). The method used a Differential Scanning Calorimeter (DSC) to measure 

the change in enthalpy resulting from processing of dried amylases. Using this approach canned 

ravioli was processed with TTIs (Guiavarc’h et al., 2005) (Table 2-2). The z values of both 

enzymes were seen to be significantly higher to that which was measured previously (13.9°C and 

16.4°C respectively). The study showed that measuring the temperature in the sauce 

overestimated the effect of the process by 30%. This overestimation is a problem for the safety 

of the food as it has not received as much thermal processing as it is believed. 

The drawback to this technique for sterilisation TTIs is the complicated preparation and the need 

for technical skills to analyse the TTIs. Tucker and Wolf (2003) found issues in sealing the DSC 

pans from moisture ingress within industrial trials, and the high pan density prevents this method 
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from being used for liquid flowing systems This made the approach commercially impractical. 

Therefore a different method for sterilisation TTIs was required.  

Investigations have been undertaken on the reliability of pasteurisation TTIs under non 

isothermal conditions (Taoukis and Labuza, 1989).  Non isothermal experiments of two types 

were performed: the first experiment was performed using high temperature for a long time 

followed by storage at low temperature to investigate the ‘history effect’ and the second 

experiment was done by storage at controlled sinusoidally varying temperatures.  The results of 

this research shows that there is a direct correlation between the TTIs’ responses and the quality 

of the food under variable time temperature profiles.  Guiavarc'h et al. (2002b) used TTIs to 

monitor thermal impact inside a solid/liquid model food and showed that incorrect conclusions 

could be drawn using F values for solid pieces obtained just by using temperatures recorded at 

the centre of the solid at the tip of a thermocouple.  Nevertheless, these results show the potential 

of TTIs in the evaluation of the thermal process efficiency.  Yet, currently published literature on 

their use is limited.  In general, there is a lack of knowledge on their accuracy and efficiency.  

Errors in the measurement arise from a number of factors, including variability in the 

manufacture of the TTIs, errors in determining the final and initial value of activity, as well as 

non-linearities and variations in the kinetics of the enzyme (Mehauden et al., 2007).  Some 

understanding of the inherent accuracy of the devices is needed in order to develop TTIs as 

effective process probes.  TTIs have been used for various industrial applications as described in 

Table 2-2.  

 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
29 

 
   

Table 2‐2 Examples of applications for TTIs 

 Study 1 Study 2 Study 3 

Application P-values for fruits processed 
in a tubular heat exchanger 

F values for Raviolis inside 
cans processed in a spiral 

retort (Sterilmatic, Belgium) 

P values in a stirred vessel 
(250l) – 200l batch of 5% 

Colflo 67 starch  

Number of TTIs 
used 

70 7 cans with 10 TTIs in each 50 

Mean P value or 
F value 

P85°C~ 60 min F121.1°C~ 18.8 min P85°C~ 3.9 min 

Variability P85°C vary from 33 min to 
109 min  

F121.1°C vary from 10 min to 
29.1 min 

P85°C vary from 1.2 min to 
11.3 min 

Reference Tucker et al., 2002 Guiavarc’h et al., 2005 Lambourne et Tucker, 2001 

Previous work with amylases (Van Loey et al., 1997a; b) found their thermal stabilities (z) to be 

in the range 9 to 10°C, ideal for bacterial spore destruction. The next target was to find an 

amylase heat stable enough at sterilisation temperatures to work as an enzymatic time-

temperature integrator.  

Tucker et al, (2005b; 2007) determined that the hyperthermophile Pyrococcus furiosus (§ 2.3) 

produced thermostable α-amylase which was possibly suitable for use in sterilisation TTIs, as 

the enzyme had a decimal reduction time (D) high enough for residual amylase activity to be 

measured following a typical full commercial sterilisation process (24 minutes), but also a z 

value close to 10°C (9.9°C). Theoretically F=3 minutes is acceptable for food sterilisation 

processes (DoH, 1994; FDA, 2005), but in practice food industrially is thermally processed for 

F=24-30 minutes and sometimes more. 

Tucker et al., (2005b) used the same TTI casing as that of pasteurization TTI’s to give a high 

physical robustness, where silicon tube capped with a silicon elastomeric compound was used to 

encapsulate the α-amylase solution. In this case the TTI was close to neutral density in water and 
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had heat transfer characteristics the same as water content in foods. It was capable of surviving 

sterilisation temperatures of 115-135°C and up to 4 bar with rapid pressure changes. The TTI 

casing is defined in chapter 4. 

The hyperthermophile α-amylase sterilisation TTI seems to be a better alternative to using 

pasteurisation TTIs and making them more thermostable by changing their water content. 

Preparation and use of the sterilisation TTI might be similar to pasteurisation TTIs which now 

have a relatively long history of successful industrial use such as Mehauden et al. (2006). 

However, the previous trials by Tucker et al, (2005b; 2007) were limited due to the small amount 

of Pyrococcus furiosus α-amylase available and were able to establish that the method might be 

feasible. 

2.3 Extremophilic organisms and enzymes for TTIs development 

In §2.2.2 are reasons for use of hyperthermophilic enzymes for use in a sterilisation time-

temperature integrator. This section will briefly outline the research on hyperthermophiles, 

hyperthermophilic enzymes, and culturing techniques, especially those associated with 

Pyrococcus furiosus and the product / extraction of its extracellular α-amylase.  

2.3.1 Extremophiles and Extremozymes 

Extremozymes are enzymes found in micro-organisms that, in comparison to the majority of 

species, are capable of surviving in extreme conditions. These micro-organisms are termed 

extremophiles. Extremophiles can be hyperthermophilic, where the growth environmental 

temperatures routinely exceed 70°C. Halophiles are micro-organisms which survive and grow in 
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conditions of high salt concentrations of up to 20% NaCl (Schiraldi and De Rosa, 2002), and 

alkophiles have adapted to grow in high alkalinity conditions, plus other microbes may grow in 

areas of high pressure and / or acidity or low aw. 

Studies of extremophiles have helped to redraw the evolutionary tree of life by Woese et al. 

(1990) and shown in Figure 2-5; because of their adaptation to extreme environments for 

primitive life and study for the last common ancestor. 

 

Figure 2‐5 Evolutionary phylogenic tree (hyperthermophiles within the phylogenetic tree are in bold) (Woese et al., 1990) 

Most extremophiles belong to the group known as Archaebacterium. For example, more than 70 

species, 29 genera, 10 orders of hyperthermophiles have been discovered (Vieille and Zeikus, 

2001), while only two, Thermotogales and Aquificales are true bacteria based 

hyperthermophiles. 
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Archaea morphologically resemble true bacteria in many ways (e.g. no nuclear envelope) but a 

large quantity of archaea genes appear to be unique, for example archaea (unlike bacteria), have 

no peptidloglycan in their cell walls, and archaea also have some unusual lipids in their cell 

membranes in comparison to bacteria (Madigan and Marrs, 1997). 

As inferred by Figure 2-5, hyperthermophiles appear to be the most primitive organisms still 

existing but work on extremophiles is relatively new, with the first thermophilic extremophile 

being found approximately only 30 years ago in Yellowstone National Park, Wyoming. 

Sulfolobus acidocaldarius was found living at 85°C in a hot spring (Brock, 1978). Since then 

there has been limited work on the exploration of extremophiles due to the difficulty in 

cultivating them. 

2.3.2 Hyperthermophiles and their Enzymes 

Thermophilic and hyperthermophilic enzymes, as a result of the growth conditions of the micro-

organism they come from, for example Solfataric fields which consist of solids, mud holes and 

surface waters heated by volcanic exhaustion to 90°C from magma chambers below, have to be 

intrinsically stable and active at high temperatures. Their advantages in industrial processes over 

mesophilic counterparts are discussed by Vieille and Zeikus, (2001) and Krahe et al., (1996); 

• Expressed in mesophilic hosts they are easier to purify by heat treatment (personal 

communications with Prof. R.Kelly (NCSU) on P.furiosus β-galactosidase expressed in 

E.coli) because the mesophilic host will be destroyed by the high temperatures leaving 

the unaffected thermophilic enzyme in one purification step. 
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• Thermostability is associated with a higher resistance to chemical denaturants and so can 

be used in more industrial processes, without being denatured chemically than their 

mesophilic counterparts 

• Reactions at a higher temperature allows higher substrate concentrations due to higher 

solubility, lower viscosity, fewer risks of microbial contaminations and often higher 

reaction rates (Q10 rule). 

Thermophilic enzymes have been used in the bioconversion of n-alkanes and wax degradation in 

the oil industry, and for hydrogen production from Thermoanaerobacterium 

thermosaccharolyticum fermentation (Liu et al., 2008). Novel thermophilic transaminase and 

dehalogenase enzymes from Sulfolobus spp. are used in applications for industrial biocatalysis. 

(Littlechild, 2002). Not many publications have been produced describing the applications of 

thermophilic and hyperthermophilic enzymes. 

Typically above 110°C molecules such as amino acids and metabolites become highly unstable 

(ATP spontaneously hydrolyses in aqueous solution at temperatures above 140°C) and 

hydrophobic interactions weaken significantly so the upper level in which any life can be 

sustained is likely to be around 110°C (Jaenicke, 1998). Indeed a central question that remains 

amongst extremophilic biologists is how these organisms actually manage to grow. 

The thermostability exhibited by these enzymes is maintained without any components unique to 

thermophiles (Vieille and Zeikus, 2001), suggesting that the increase in molecular stability is 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
34 

 
   

accomplished through some stereochemical interactions which are not found in their mesophilic 

counterparts. 

2.3.2.1 Ecological Basis of Hyperthermophilic Growth 

Baross and Holden, (1996) found hyperthermophiles employ original strategies to enable protein 

stability, such as thermostable histone-like proteins, DNA super-coiling and tetra-ether 

membranes, for stabilizing nucleic acids and macromolecules within their environment. Through 

the Q10 rule, where the reaction rate doubles with each 10°C increase in temperature, one would 

expect that a hyperthermophilic enzyme would have a specific activity of 50-100 times higher 

than that of a mesophilic enzyme. Some observations, including those done by Zhao and Arnold 

(1999) showed that both hyperthermophilic and mesophilic enzymes have approximately the 

same reaction rates and efficiencies. This was believed to be due to the absence of selection 

pressure and so not being catalytically optimised (Vieille and Zeikus, 2001). 

Due to the low concentration of organic matter in submarine environments, energy and a carbon 

source are obtained from complex mixtures of peptides obtained from decomposition of primary 

producers, while a few hyperthermophiles (including P.furiosus) are capable of exploiting 

avaliable polysaccharides (starch, pectin, glycogen etc.). 

2.3.2.2 Hyperthermophilic Fermentation 

Hyperthemophiles are primary producers and decomposers of organic matter in their 

communities. All hyperthermophilic primary producers are chemolithoautotrophs (Fischer et al., 

1983) i.e. they are sulphur oxidisers, reducers or methanogens and so do not use oxygen as a 

terminal electron acceptor. Chemolithoautotrophs are either facultative or obligate depending on 
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whether the organism is aerobic or anaerobic respectively. Facultative organisms oxidise the 

sulphur to produce sulphuric acid, whereas obligate (anaerobic) organisms reduce the sulphur to 

produce hydrogen sulphide. Pyrococcus furiosus reduces sulphur to produce hydrogen sulphide. 

Thermophilic and hyperthermophilic fermentations have many advantages over mesophilic 

fermentations within industry. The advantages in the applications of hyperthermophiles are 

shown below (adapted from Sharp and Munster (1987)), i.e. in comparision to a fermentation at 

37°C, one at 98°C has the advantage that; 

1. Costs of cooling large scale thermophilic fermentations are reduced; 

2. Reduced viscosity of media increases efficiency of mixing and harvesting rate; 

3. Increases in solubility of reactants allows higher concentrations of less soluble 

components to be used; 

4. Volatile and inhibitory products may be removed through a mild vacuum;  

5. Reactor operation at elevated temperatures greatly reduces contamination by 

mesophilic micro-organisms; 

6. Decreased solubility of oxygen aids cultivation of anaerobic organisms; 

7. Thermophilic enzymes are more resistant to detergents or solvents; 

8. Higher enzyme recoveries are possible due to enhanced protein stability; 
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Points 2 and 3 result from the increased mass transfer between the micro-organism and the 

fermentation broth. 

The disadvantage of archaebacterial fermentations is however the typical low biomass yields 

associated with them (0.1 – 1g/l wet weight) compared to a typical eubacterial fermentation (> 

30g/l wet weight) (Cowan, 1992). 

One of the most studied hyperthermophilic archaebacterium is Pyrococcus furiosus which is 

studied here because of the reported heat stability of the organisms proteins. 

2.4 Pyrococcus furiosus 

P.furiosus was isolated by Fiala and Stetter (1986) in marine, shallow hydrothermal solfataric 

fields off Volcano Island, Italy, where the environmental conditions and hence the evolved 

optimal growth conditions are 100°C, pH 6 and 2% NaCl. Although Malik et al. (1989) found 

growth in the laboratory between pH 5-9 and 70-103°C with optimal conditions of pH 7 and 98-

100°C. P.furiosus has a doubling time of 37 minutes (Fiala and Stetter, 1986). 

P.furiosus is an obligate heterotrophic anaerobe which grows on peptides or carbohydrates with 

elemental sulphur (So) stimulating growth (Fiala and Stetter, 1986). With S° P.furiosus 

synthesises several new proteins that are different from those produced in sulphur free media 

(Kelly and Deming, 1988) indicating that there may be several membrane-associated proteins 

that are involved in the metabolism of S°, so there are inducible responses to the environment. 

Hydrogen ions are seen to inhibit growth of P.furiosus (Fiala and Stetter, 1986; Rudiger et al., 

1992). Therefore S° added to the fermentation broths is then utilised to remove the inhibitory 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
37 

 
   

hydrogen and produce hydrogen sulphide. Stripping / gassing has been used to remove rapidly 

the hydrogen with an inert gas (Krahe et al., 1996). Complete oxidation was never observed, 

even in the presence of So, with acetate being the predominate end product (Schicho et al., 1993) 

so there was always slight inhibition to growth by hydrogen. 

Holst et al. (1997) stated that as the hydrogen sulphide is produced, which is reasonably soluble 

in water (especially at high temperatures), it will react with transition metals present that are 

freely available in natural or artificial seawater, forming insoluble sulphides. These sulphides 

will precipitate and are believed to inhibit growth of P.furiosus (Holst et al., 1997). The 

inhibition is thought to be due to the toxicity of the metal sulphides and / or the reduced metal 

ion concentration in the media for cell growth. This forms a complex environment in which the 

Pyrococcus furiosus grows, and will be discussed in chapter 3. For all the reasons stated above, it 

has been noted by a number of workers that extremophiles are notoriously difficult to grow 

(Raven et al., 1992; Scott, 2003; J. Chong, University of York personal communications). 

 2.4.1 Morphology of Pyrococcus furiosus 

P.furiosus morphology was characterised by Fiala and Stetter (1986) and can be seen in Figure 

2-6. The typical morphology is slight irregular cocci, 0.8-2.5 μm diameter which can often be 

found in pairs, the cocci are surrounded by an envelope 50 nm thick. Each coccus has about 50 

monopolar polytrichous flagella, each of 7 nm width and 7 μm length (Figure 2-6). 
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Figure 2‐6 Morphology of Pyrococcus furiosus (commtechlab.msu.edu, 2005; microbeworld.org, 2005) 

 

2.4.2 Cultivation of Pyrococcus furiosus 

Techniques for growth of hyperthermophile micro-organisms range from glass serum and 

Wheaten bottles, to larger scale continuous fermentations (2-70 l operational volume) (Holst et 

al., 1997) and dialysis membrane reactors (Markl et al., 1990). Hyperthermophiles have even 

had genes of interest expressed in a mesophilic host such as E.coli (Adams and Kelly, 1998; 

Laderman et al., 1993), B.subtilis and yeasts (Ito, 1997; Niehaus et al., 1999; Lim et al., 2001). 

However to obtain a sufficient amount of recombinant enzyme, E.coli is recommended (Schiraldi 

et al., 2001; Schiraldi et al., 2000) because this host is easily grown and the vectors are well 

characterised. This though can not be done for enzymatic TTIs in this project as the application 

of the work is in food processing and ‘E.coli’ and ‘gene expression’ are terms that can not be 

readily associated with the UK food industry! This remains a central tenet throughout this work. 

Some of the general challenges associated with the cultivation of extremophiles are that they are 

notoriously difficult to pre-culture and grow, plus only liquid media can usually be used with 

hyperthermophile organisms due to the high temperatures melting the solid media (Robb, 1995). 
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High temperatures may also cause the nutrients in the media to react, as Maillard reactions, with 

amino acids and sugars which can inhibit growth (Krahe et al., 1996) reducing availability for 

growth as well as toxic products from reactions possibly being formed. Thus the majority of 

basic microbiological preparative steps either hae to be changed or not used at all. 

2.4.2.1 Batch Cultivation of Pyrococcus furiosus 

Batch cultivation is generally the preferred method for cultivation of Pyrococcus furiosus. 

P.furiosus was firstly, and is still, grown on a small batch scale either in serum bottles (Fiala and 

Stetter, 1986) or Wheaton bottles (Brown et al., 1990) on complex medium. The advantages of 

using batch cultivation over continuous are first the ease at which the experiment can be run as 

all nutrients are in place at the start and then the organism can be allowed to grow until a limiting 

substrate has stopped growth and batch extraction is used. Another advantage to running batch 

cultivation, especially for an anaerobe such as P.furiosus, is that with continuous cultivation it is 

more difficult to maintain an anaerobic environment as fresh substrates have to be added 

continuously and an anaerobic barrier maintained. However, a problem with batch cultivation is 

in pre-culture and start up. If a large amount of P.furiosus was required then this would mean a 

large batch volume or lots of small batches with all the associated problems in start up and pre-

culture associated with it. Examples of fermentations of Pyrococcus furiosus are summarised in 

Table 2-3. 

In the case of Fiala and Stetter (1986), without elemental sulphur present, a cell density of up to 

3x108 cells/ml in Wheaton bottles was achieved. In the presence of sulphur Bonchosmolovskaya 

and Stetter (1991) found cell densities more than doubled to 7.8 x 108 cells ml-1. This is 

comparable and even better than cell densities obtained in fermenters which are poorly gassed 
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and mixed gently with a magnetic stirrer (1 x 108 cells ml-1 (Schafer and Schonheit, 1992) and 2 

x 108 cells ml-1 (Snowden et al., 1992)). As previously stated in this section, the hydrogen 

sulphide being produced limits the hydrogen ions and thus growth of cells. 

Table 2‐3 Examples of fermentations of Pyrococcus furiosus 

 

2.4.2.2 Continuous Cultivation of Pyrococcus furiosus 

The aim of continuous culture is to grow organisms to produce the highest amount per volume 

time, and in effect produce high cell density cultures based on maintaining a maximal growth 

rate (Riesenberg and Guthke, 1999). The best way for this is continuous cultivation in smaller 

vessels. Continuous cultivation of P.furiosus is problematic as mentioned above but as there is 

no growth limiting substrate associated with the process then much higher cell densities can be 

obtained per unit time than in batch fermentations.  Growth of microbial organisms often takes 

place in continuously stirred tank reactors (CSTR) due to their ease of use.  

Batch
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Brown and Kelly (1989) like Pysz et al. (2001) grew their culture in a batch phase until the 

culture reached a late-log phase, and then moved into continuous fermentation, in a 2 litre 

fermenter for 1 litre of broth. Brown and Kelly (1989) saw an increase in cell densities as the 

dilution rate was increased up to 0.8 hr-1 where it then decreased. This was concluded to be due 

to either incomplete mixing occurring or a manifestation of some metabolic change. Although it 

is believed by this author the decrease was due to washout of the organism. 

Rudiger et al. (1992) used inert gas (N2/CO2 95:05) at 0.2vvm and found a 30% increase in 

growth rate and a 3.5 fold increase in cell density over non-gassed cultures. This was because the 

hydrogen was being gassed out by the N2/CO2 gas. This gas also kept the pressure higher than 

the external environment and helped keep an anaerobic environment inside the growth area. The 

maximal cell densities were found to increase proportionally with increased stirrer speed. 

Rudiger et al. (1992) reached a maximal cell density of 3 x 109 cell ml-1 when a stirrer speed of 

1800rpm was used. This showed that product inhibition of P.furiosus can be reduced by gassing 

and agitation. Growth was however negatively influenced approaching 2400rpm; where cell 

density and amylase activity diminished probably due to the shear stress of the mixing acting on 

the cells. This apparent critical value of the hydrodynamic stress for the cells of P.furiosus, 

suggests a maximal growth rate that can be achieved from a commercial standpoint given a set 

volume of fermentation vessel. 

Once grown, cells could be separated from the culture broth in continuous culture, ideally with 

cells being returned to the medium to maintain long term, steady state operation. Conversely 

removing both the cells and the broth keeps the remaining cells in a continuous log-phase, and as 

such can increase the amount of cells produced over a given time period which has implications 
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for removal of first and second degree metabolites (extracellular α-amylase). Krahe et al. (1996) 

reported cell densities of 3.5 x 109 cells ml-1 corresponding to 2.6 gl-1 dry cell weight (DCW) 

thus represents a 100-fold increase when compared to fermentations performed in static serum 

bottles. Rudiger et al. (1992) found an over-production of extracellular α-amylase of 5.2-fold 

(2500-13000 U/l) when using dialysis fermentation for the removal of inhibitory substrates in the 

growth chamber. 

The Raven et al. (1992) method has become an attractive method for growth of 

hyperthermophiles when using a gas-lift bioreactor. The influence of several inert gases and flow 

rates was measured during a continuous fermentation of P.furiosus, finding nitrogen at a flow 

rate of 0.5 vvm to achieve a cell density of 3 x 109 cells ml-1 under chemostatic conditions. 

Above 0.5 vvm the flowrate of gas caused excessive foaming from the extracellular proteins, 

implying that the proteins are denatured before they can be removed and purified. A greatly 

reduced surface area is, therefore, available for gas transfer which reduces the capacity for 

hydrogen removal. For Thermococcus hydrothermalis gassing rates > 0.3 vvm caused severe 

build up of surface foam (Postec et al., 2005). 

2.4.3 Pyrococcus furiosus growth media 

Raven and Sharp (1997) established a defined medium for the cultivation of P.furiosus, and 

replaced complex nutrients with defined amino acids and vitamins and could achieve a 5-10 fold 

increase in cell density to 3x109 cells ml-1 in fermentation in comparison to Fiala and Stetter 

(1986). 
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Koch et al. (1990) found a maximal cell density of 6.2 x 109 cells ml-1 producing 200 U/l of α-

amylase after 8 hours, on a modified medium with soluble starch and elemental sulphur. The 

conditions were 98°C, pH 6.6 and an anaerobic atmosphere of 80:20 H2/CO2. Rapid growth of 

high cell density P.furiosus gave a significant production of α-amylase if grown correctly and 

reducing proteases present in the media.  

2.4.4 Pyrococcus furiosus α-amylase 

α-amylase cleaves α-1, 4-glycosidic linkages in polysaccharides (Figure 2-7) in a random 

fashion to form branched oligosaccharides. α-amylase does not posses de-branching activity and, 

therefore, is not able to hydrolyse α-1, 6-linkages in branched polysaccharides such as 

amylopectin and glycogen. 

 

Figure 2‐7 Points where the starch molecules are broken down by α‐amylase (as indicated by the arrows) 

Thermophilic and hyperthermophilic anaerobic bacteria and archaea have developed efficient 

enzyme systems to produce absorbable sugars from branched polysaccharides; as free maltose is 

scarce in the natural environment. In most cases of extracellular enzymes, enzymes production 
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parallels first degree metabolite product and reaches its maximum at the end of the logarithmic 

growth period (Antranikian, 1990). 

α-amylase is an important industrial enzyme, demonstrated by Shaw et al. (1995), as an additive 

in detergents, the removal of starch sizing from textiles, liquefaction of starch or in the formation 

of dextrin in baking, to name a few uses. The most widely used α-amylase in industry is from the 

“relatively” thermostable microbe B.licheniformis, but as mentioned in §2.2.2 B.licheniformis is 

still not thermostable enough for use in sterilisation processes at 121°C. 

Thermophiles have shown themselves to be a source of heat stable α-amylase and have been 

successfully produced from various micro organisms including Thermotoga maritime (Leuschner 

and Antranikian, 1995), Clostridium thermohydrosulfuricum (Melasniemi, 1987), 

Desulfurcoccus fermentans (Perevalova et al., 2005), Geobacillus thermolevorans (Rao and 

Satyanarayana, 2004) and Sofolobus solfataficus (Worthington et al., 2003), but most of 

literature has been produced on Pyrococcus furiosus amylases, therefore this is used as a logical 

starting point. 

The ability of the thermostable amylase from P.furiosus to degrade native starch efficiently at 

100°C in the absence of metal ions makes this enzyme of great interest for the industrial 

applications mentioned above. The P.furiosus α-amylase has a molecular mass of 129kDa 

(Laderman et al., 1993). It has been reported that α-amylase from P.furiosus is active between 40 

and 140°C at a range of pH 3.5-8 (Brown et al., 1990; Koch et al., 1991; Laderman et al., 1993). 

Whereas the optimal temperature for activity is generally agreed to be approximately 100°C; but 

the pH is more subjective. Koch et al. (1990) found an optimum pH of 5, and Brown et al. 
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(1990) a pH optimal of 5.6, and Laderman et al. (1993) discovered a pH optimal in the range 6.5-

7.5. In this study it was found to replicate the findings of  Koch et al., (1990) and Brown et al., 

(1990).  

While reviewing the thermal stability of α-amylase from P.furiosus, Koch et al. (1990) found 

that after 6 hours of incubation at various temperatures (90-120°C), the enzyme was extremely 

thermostable  with no loss of activity at 90°C, 20% loss at 100°C and 90% loss at 120°C after 6 

hours incubation. Also Laderman et al. (1993) found the amylase to have a half life of 2 hours at 

120°C which makes it potentially ideal for food industry applications to withstand a typical 

process of 30 minutes at 121 °C. Koch et al. (1990) also showed that the α-amylase from 

P.furiosus is primarily extracellular (approximately 80%) which was also verified by Tucker et 

al. (2005). 

Calcium (Ca2+) ions were found to stabilize the α-amylase enzyme (Laderman et al., 1993). 

Co2+, Ni2+, Fe2+ were seen though to give a slight inhibition and the addition of 2 mM of Cr3+, 

Zn2+ or Cu2+ gave almost complete inhibition to the enzymatic activity of the α-amylase, most of 

these ions though are present in defined media. Within the cultivation media many metal ions are 

available for stabilisation of the extracellular α-amylase at high environmental temperatures and 

are needed in the defined media.  

2.5 Conclusion 

TTIs, although not as accurate as data-loggers or thermocouples, are the best way of validating 

thermal treatments where data-loggers and thermocouples are impractical for use, such as within 

the food sterilisation and canning industries. α-amylases from Bacillus sp. have been used for 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
46 

 
   

pasteurisation processes with great effect, and now an integral tool in the measurement of food 

safety.  Some work has been focused on using the moderately thermophilic Bacillus sp. α-

amylase for sterilisation TTIs, but limited work has been focused on using native 

hyperthermophilic enzymes for use in sterilisation TTIs. It is therefore essential to understand the 

enzyme’s thermal degradation kinetics and particularly the unfolding characteristics, as well as 

the parameters associated with TTI use at sterilisation temperatures.  

This work will begin by examining the growth conditions of Pyrococcus furiosus and 

purification techniques for the greatest yield of extracellular α-amylase. Then the effects of iso- 

and non-isothermal processing on amylase will be explored along with the variability of TTIs.  

To complete this work, the kinetics and mechanism of unfolding due to thermal processing will 

be examined.  

The constraints of this work are that the enzyme should come from a non-GMO source, because 

it could be used within the food industry. This should then be GRAS approved (generally 

recognised as safe). The z value should match that of Clostridium botulinum spores and have a 

measurable D value in the operational range of food sterilisation processes. 
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Chapter 3 

Cultivation and Purification Pyrococcus furiosus α-amylase 

 

3.1 Introduction 

For use within TTIs, enzymes have to have properties that match or are similar to the micro-

organism the thermal process is targeting to reduce. This makes enzymatic TTIs very specific to 

the process, temperature and targeted organism in which the TTI is required to work. Figure 3-1 

shows the specificity of the enzymes in TTIs depending on the process temperature. 

 

Figure 3‐8 Temperature specificity and applications of enzymes for TTIs – showing relative ranges of temperatures and target 
organisms 

 

As noted in chapter 2, the organism Pyrococcus furiosus is of great interest in the development 

of sterilisation TTIs (Tucker, et al., 2007) due to the reported heat stability of its amylases (Koch 
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et al., 1990). Activity of Pyrococcus furiosus α-amylase has been measured over broad 

temperatures (40-140°C), with an optimal activity, variously reported, of 100°C (Brown et al., 

1990; Koch et al., 1990). This persistent activity is maintained over 121°C and so makes 

Pyrococcus furiosus α-amylase a promising candidate for use in a sterilisation TTI (Tucker, et 

al., 2007 ). P.furiosus α-amylase has a thermal resistance (z-value) close to those of Clostridium 

botulinum spores (10°C) which are one of the low-acid micro-organisms targeted by sterilisation 

in the canning industry.  

There are many ways in which to produce Pyrococcus furiosus α-amylase for use within 

sterilisation time-temperature integrators. These would include producing extracellular α-

amylase: 

• From the native, genetically unmodified Pyrococcus furiosus.  

• By genetically modifying/mutating the Pyrococcus furiosus to produce more α-

amylase. This is not a preferred option in the conservative food industry.  

• Using a recombinant α-amylase within the sterilisation TTIs, which again may fall 

foul of conservative parts of the food industry.   

Genes for several enzymes from extremophiles have been cloned in various mesophilic hosts, 

including E.coli, B.subtilis and in yeasts (Ito, 1997; Niehaus et al., 1999; Lim et al., 2001). To 

obtain a sufficient amount of recombinant enzyme E.coli is recommended (Schiraldi et al., 2001; 

Schiraldi et al., 2000) because this host is easily grown and the vectors are well characterised. 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
49 

 
   

Yeast though is better for industrial applications as a host and is for food industry applications 

classified as “safe” over E.coli. In these systems recombinant growth media could then be 

pasteurised to remove the E.coli or yeast cells without affecting the recombinant thermostable α-

amylase. Still recombinant enzymes have a stigma involved with safety for the consumer 

especially when involved within the food process and so are not truly viable options. This means 

the first option of growing the native form of Pyrococcus furiosus to produce α-amylase is the 

most viable for use within an enzymatic sterilisation TTI. 

Pyrococcus furiosus was shown by Brown et al, (1990) to grow in the presence of starch and 

other carbohydrates; suggesting that a variety of amylotic enzymes (α-amylase) may be 

important in metabolism with P.furiosus utilizing maltose, cellabiose or pyruvate as simple 

substrates for carbon and energy (Huber and Stetter, 1998). Monomeric sugars were shown not 

to be able to be utilised for growth but maltose and cellabiose are split intercellularly to form 

glucose.  

The optimal conditions for an organism are in general the exact environment in which they 

would grow and replicate in. In a laboratory environment, artificial seawater is used to replicate 

the marine environment which P.furiosus comes from, with the addition of a complex media 

optimised by Brown et al, (1990) with elemental sulphur addition to stimulate the environment 

of sulphurous fields of Volcano Islands, Italy.  

As previously stated in §2.2, P.furiosus is an anaerobe and as such, oxygen free conditions 

within the media need to be applied. This is achieved by either sparging with an inert gas, or by 
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the addition of reducing agents, although headspace gases must be still be purged with 

pressurised inert gas to drive out any oxygen.  

Some of the general problems associated with the cultivation of extremophiles are that they are 

notoriously difficult to pre-culture and grow (Scott, 2003) and that liquid media is the only way 

to grow hyperthermophile organisms due to high temperatures melting any solid media used. 

High temperatures may cause the nutrients in the media to react (in Maillard reactions), with 

amino acids and sugars which can inhibit growth (Krahe et al., 1996) both by reducing feed for 

growth as well by the formation of  toxic products from reactions. 

Particular interest, noted in chapter 2, has focused on the cultivation of anaerobic 

hyperthermophiles but because of their sensitivity to oxygen and need for extreme temperatures 

this provides a major obstacle to cultivation techniques.  

For Pyrococcus furiosus it is generally very difficult to get any biological reproducibility and 

plating out colonies to have a cell-bank is difficult as at the temperatures required for growth the 

media is still liquid. In practice some of the archaea grown in the fermenter are generally used as 

inoculums for the next time. In this case a constant volume fed batch operation for growth of 

cells was used to produce a new cell bank for future fermentations to minimise mutations so no 

batch to batch variation of cells occured. 

To use Pyrococcus furiosus α-amylase in sterilisation TTIs it must be possible to produce native 

α-amylase routinely. To produce high yields of this native hyperthermostable α-amylase, 

cultivation and purification must be explored.  
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This chapter records work done towards successful cultivation and purification of Pyrococcus 

furiosus α-amylase. It was necessary to develop reliable experimental methods for the culturing 

of Pyrococcus furiosus. This was done in a lengthy series of experiments in the following 

sequence; firstly Pyrococcus furiosus was cultured from sample in Balch tubes and Wheaton 

bottles (5-40ml). Through this the effects of the addition of elemental sulphur was explored 

(§3.3.2). The cultivation of Pyrococcus furiosus was then scaled up to 1 litre batch fermentation 

with an agitator running at 1200 rpm to remove the inhibitory hydrogen instead of elemental 

sulphur. This method was used to investigate the effects of carbon source on growth rate and α-

amylase production (§3.3.3). Under constant volume fed batch fermentation, the effects of 

growth rate on the amylase production is explored in §3.3.4 and the purification techniques are 

reviewed in §3.3.5. 

3.2. Materials and Method 

3.2.1 Cultivation of Pyrococcus furiosus 

P.furiosus was grown on a rich medium containing tryptone, yeast extract and casamino acids 

(1% wt/vol) as a carbon source (Adams et al., 2001; Robb et al., 1995). Artificial seawater 

(ASW) as modified by Robb (1995), containing a basic salt solution, a trace element solution and 

vitamin solution was prepared as separate stock solutions and stored at 4°C. Due to the area 

where the Pyrococcus furiosus organism is found, the complexity of the ASW replicating the 

P.furiosus natural environment is because of the minerals found in the shallow waters from the 

volcanoes and thermal springs. 
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Basic salts solution- ASW 

(salt g/l) 

Trace elements solution 

(trace element g/l) 

Vitamin Solution 

(vitamin mg/l) 

NaCl 15.0 Nitrilotriacetic 
acid 

1.5 Biotin 2.0 

MgCl2.6H2O 1.0 MnSO4.H2O 0.5 Folic acid 2.0 

Na2SO4 1.0 FeSO4.7H2O 1.4 Pyridoxine-HCl 10.0 

CaCl2.2H2O 0.15 NiCl2.6H2O 0.2 Thiamine-HCl 5.0 

KCl 0.35 CoSO4 0.1 Riboflavin 5.0 

K2HPO4 0.14 ZnSO4.7H2O 0.1 Nicotinic acid 5.0 

NaBr 0.05 CuSO4.5H2O 0.01 DL-Ca-
pantothenate 

5.0 

H3BO3 0.02 NaMoO4.2H2O 0.01 Vitamin B12 0.1 

KI 0.02 Na2WO4.2H2O 0.3 p-Aminobenzoic 
acid 

5.0 

SrCl2.6H2O 0.01   Lipoic acid 5.0 

The trace elements and vitamin solutions were added at 10ml/litre basic stock solution when 

used and filter sterilised. 

Once the ASW, trace element and vitamin solutions were produced they were added as follows: 

Per litre of artificial seawater 

Trace Elements solution 10ml 

Vitamins solution 10ml 

Yeast Extract (Difco 0127-01-7) 1g 

Tryptone 1g 
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0.1% Resazurin solution (0.001g final concentration) 

(as an oxygen indicator and reducing agent ) 

1ml 

ASW was supplemented with a carbon source – casamino acids/maltose/starch (1% wt/vol.). 

Anaerobic conditions were maintained throughout. Anaerobicity was obtained by sparging with 

N2 and any traces of oxygen were removed by adding 2.5g/litre cystine-HCl as a reducing agent. 

Sparging was through butyl septum-type stoppers allowing nitrogen in while a needle allowed 

oxygen out, degassing for 20 minutes. Resazurin was used as an oxygen indicator. When the 

oxygen concentration is reduced the rezazurin turns from a purple through pink and when no 

oxygen is present then the media becomes clear. This stage is especially important as Pyrococcus 

furiosus is extremely sensitive to oxygen. Oxygen will attach to almost any surface so the 

oxygen must be purged with nitrogen if entering the anaerobic environment. All equipment 

(syringes, bottles, tubes) used were purged with nitrogen for at least 2 minutes to remove the 

oxygen.  

The media was transferred to Balch tubes (18 x 150mm; Bellco Glass 2047) with 5ml volume or 

Wheaton “400” clear serum bottles (VWR Scientific 16171-341) with 50ml volume. 5g/litre 

sterile elemental sulphur (S°) was added to half the tubes and bottles. The bottles or tubes were 

capped with gas-impermeable black butyl septum-type stoppers (Bellco Glass 2048-11800) 

secured with aluminium crimp seals (Markson Science 026 series or Bellco Glass 2048-11020) 

using a crimper (Bellco Glass 2048-10020). Vials were preheated to 98°C, sparged with N2 and 

cystine-HCl added to 0.25% to remove any oxygen. Bottles were then sealed with butyl rubber 

stoppers and secured with aluminium crimp seals. Once clear (anaerobic) the medium was 

inoculated from a storage culture with 1% vol/vol inoculate (0.15mg/ml DCW) (DSMZ, 
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Germany). To inoculate the syringe was gassed with nitrogen for 2 minutes to remove any 

oxygen attached. Once the syringe was anaerobic the needle was added and the syringe was 

pushed shut so the nitrogen goes through the needle and the inoculum was taken up and into the 

media as quickly as possible. 

The culture was grown in batch cultivation as stated above until late log phase, to inoculate a 

1000ml working volume constant volume fed batch culture fermentation. The medium in the 

flask was likewise pre-heated to 98°C, sparged with N2, and made anaerobic. The agitation was 

1000<1500rpm (Raven and Sharp., 1996). Constant volume fed batch operation was started 

during late log phase determined by dry cell weight and optical density measurements over time. 

3.2.2 Purification of extracellular Pyrococcus furiosus α-amylase 

Cells were removed from the extracellular fraction by centrifugation at 10000 x g for 10 minutes 

at 4°C. To the supernatant, a total of 561g ammonium sulphate (80%) was added slowly over a 

period of 2 hours with gentle agitation. The ammonium sulphate precipitates out the extracellular 

protein from the crude fermentation broth. The solution was centrifuged at 10000xg for 10 

minutes at 4°C and the precipitate was collected. Purification was carried out at 4°C so there 

would be no effects of protein thermal denaturation or contamination with other enzymes.The 

precipitated ammonium sulphate pellets were resuspended in an equivalent volume of 50mM 

ammonium bicarbonate buffer. This was dialysed against the same 50mM ammonium 

bicarbonate buffer to remove the residual ammonium sulphate. The dialysate was freeze-dried to 

give a freeze-dried powder (FDP) for storage. 
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Preparative polyacrylamide gel electrophoresis was performed in 1.5mm thick polyacrylamide 

gels (homogeneous, 12%w/v) at a constant voltage of 400V for 8 hours at 4°C. The protein 

bands were visualised by silver staining and 0.1% SDS was used and carried out under constant 

current of 40mA/gel. Commercially available molecular weight markers were used to calibrate 

the gel. 

3.3 Results 

3.3.1 Characterisation of Pyrococcus furiosus 

Confirmatory scanning electron microscopy (SEM) of a cellular pellet harvested (Figure 3-2) 

shows organisms with a slight irregular coccoid shape found predominantly in pairs with an 

approximate diameter of 1.5-2.5μm; this is similar to that characterised by Fiala and Stetter 

(1986) for the morphology of Pyrococcus furiosus.  The figure in the top right shows the 

splitting of some cells after replication. The organisms do have flagelle, but during processing 

for SEM, these appear to have separated from the main cocci body, which may explain the 

fibrous strands seen in the SEM pictures of Figure 3-2.  
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Figure 3‐2 SEM scans of Pyrococcus furiosus 

Transmission electron microscopy (TEM) of the cellular pellet (Figure 3-3) revealed the cocci 

surrounded by an envelope about 50nm thick, the same as found by Fiala and Stetter (1986). 

Figure 3-3 also shows dense circular regions shown in all the TEM scans inside the archaeal cell; 

these could be starch granules, inclusion bodies (because the cells were harvested in the 

stationary phase of growth), or the granum-like body up to 1�m width noted by Fiala and Stetter 

(1986). 

Due to the extreme growth conditions of Pyrococcus furiosus (anaerobic, 98°C), the probability 

of micro-organism contamination and competitive inhibition is extremely low and so it remains 

highly likely that the scans are showing Pyrococcus furiosus cells. 
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Figure 3‐3 TEM scans of Pyrococcus furiosus (cells are 2μm diameter) 

3.3.2 Sulphur effects on batch cultivation 

Pyrococcus furiosus was initially cultured in 40ml of media in Wheaton bottles, as described in 

§3.2, using elemental sulphur. The elemental sulphur reacted with the inhibitory growth by-

product, hydrogen, to produce hydrogen sulphide. 

S° + H2 → H2S 

As previously discussed in chapter 2, elemental sulphur is needed in small batch fermentation 

because there is no agitation to remove the hydrogen. The sulphur is needed to produce hydrogen 

sulphide. Typical growth curves for the batch fermentation are shown in Figure 3-4. The growth 

of Pyrococcus furiosus after the lag phase can be seen to increase considerably when elemental 

sulphur is added to the Wheaton bottles in the media. Results in Figure 3-4 demonstrate the 
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behaviour seen by Fiala and Stetter (1986), Rudiger et al., (1992) and Krahe et al., (1996). Holst 

et al, (1997) state that the hydrogen sulphide  produced, which is reasonably soluble in water 

(especially at the high temperatures involved), will react with any transition metals present 

forming insoluble sulphides. These sulphides will precipitate (which can be seen as a black 

precipitate) and this is believed to inhibit growth of Pyrococcus furiosus. The metal sulphide 

precipitate produced can be used as an indication of growth as the sulphur reacts with the 

hydrogen by-product of growth. Fiala and Stetter, (1986) expected this precipitation not to affect 

cell growth significantly and so moderate cell densities should still be expected. Inhibition is 

thought to be due to the toxicity of the metal sulphides and / or the reduced metal ion 

concentration in the media for cell growth. This produces a complex environment in which it can 

be difficult for the Pyrococcus furiosus cells to grow.   

 

Figure 3‐4 Batch cultivation in Wheaton bottles, with sulphur added at t=0 [─]; and without sulphur added [─]; the data was 
normalised against (i) pure media with added sulphur plot; (ii) pure media plot. The data shown is the mean of 3 replicates. 
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It is difficult, in the experiment shown in Figure 3-4, to estimate the amount of cellular growth to 

be measured accurately because DCW will include sulphur particles and metal sulphide 

particulates as well as cells. In the larger fermentations of 1 and 2 litres in this study, elemental 

sulphur was not added, as the high agitation removes the inhibitory hydrogen product and 

sulphur particulates will not affect the measurements of cellular growth. 

3.3.3 Effects of carbon source on cultivation 

Prior to investigating constant volume fed batch operation, 1 litre batch fermentations as 

discussed in section 3.2 with agitation were carried out with 2 different carbon sources (peptides 

and starch). Due to the low amount of organic matter in submarine environments, energy and a 

carbon source are obtained from a complex mixture of peptides from decomposition of primary 

producers, while a few hyperthermophiles can also use polysaccharides (starch, pectin, glycogen 

etc.) (Vieille and Zeikus, 2001). 

Figure 3-5 shows typical data of growth curves (from 4 fermentations) of Pyrococcus furiosus 

using both starch and peptides as a carbon source. The length of time from the end of the lag 

phase to the start of the stationary phase (the exponential growth phase), was seen to be 14-20 

hours, which is typical for Pyrococcus furiosus (Schicho et al.,1993 ). Using starch as a carbon 

source, it can be seen there is a shorter lag time (although this can be shortened by increasing the 

concentration of cells in the inocula), but it has a lower maximal cellular growth (0.23 mg/ml 

DCW) than using a peptide carbon source (0.3 mg/ml DCW). One of the disadvantages of 

archaebacterial fermentations is the extremely low biomass yields associated with them (0.1-1 
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mg/ml wet weight) compared to eubacterial fermentations (>30 mg/ml wet weight) (Cowan, 

1992).  

 

Figure 3‐5 Batch growth curves of Pyrococcus furiosus growth under starch [●] and peptide [●] carbon sources 

Using peptides as a carbon source can be seen in Figure 3-5 to give a steeper exponential phase 

giving a higher maximal growth rate, μm (0.33 h-1). This is an important finding for constant 

volume fed batch cultivation to produce the maximal amount of biomass per unit time, and at 

this point (�m) batch operation changes to constant volume fed batch fermentation. 

Lee et al. (2006) used DNA microarray analysis to show that Pyrococcus furiosus α-amylase 

(PF0478) is not expressed to any significant extent when starch or maltose are used as a carbon 

source, suggesting that the amylase is not involved in starch metabolism. In fact α-amylase is 
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dramatically up-regulated when the organism is grown on peptides. Peptides were thus used in 

this study as the carbon source. 

3.3.4 Growth rate effects on amylase cultivation 

The dilution rate during constant volume fed batch cultivation needs to be calculated from the 

growth rate at which cells are being harvested. Cultivation of cells should ideally be carried out 

at the maximal growth rate (0.33h-1) when the dilution rate (D) of fresh media needs to be equal 

to that of the maximal growth rate.  By changing the dilution rates (the amount of media pumped 

in and out of the fermenter) then different growth rates can be seen (Figure 3-6a). At a flow rate 

in and out of the fermenter of 0.5 l/h the growth rate is maximal. When this is changed to 0.11 l/h 

the growth rate is ~25% the maximal growth rate, and if the flow rate is increased then to 0.25 

l/h there is steady growth of the cells and the growth rate is 0.5�m.  
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Figure 3‐6 Growth rate effects on amylase production  (a) growth curve with the growth rate at  [a] 0.33h‐1  [b] 0.066h‐1  [c] 
0.165h‐1; (b) amylase activity as a factor of growth rate (activity measured by DNS assay, defined in chapter 4) 

Figure 3-6b shows that the amount of extracellular α-amylase activity is proportional to the 

amount of Pyrococcus furiosus cellular growth, and so the amount of cellular growth needs to be 

maximised in fermentation to produce the greatest amount of extracellular thermostable α-

amylase from Pyrococcus furiosus for use within sterilisation TTIs. 

Once the optimal parameters for constant volume fed batch fermentation were found (peptides as 

a carbon source, 15 hours before switching to constant volume fed batch fermentation, D = μm = 

0.33 h-1), continuous volume fed batch fermentation was set up as in §3.2. A growth curve 

measuring DCW for constant volume fed batch fermentation was compared to batch 

fermentation (Figure 3-7). For the 10 hours of constant volume fed batch fermentation found an 

increase in DCW (0.8g), and would increase further if the operation was rum for longer periods. 
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Figure 3‐7 Growth curves for batch [●─] and constant volume fed batch fermentation [○─] under anaerobic 98°C conditions 
and agitation at 1200rpm  for  (a) DCW and  (b)  cumulative DCW  for  the 1.5litre  fermentation. Constant volume  fed batch 
fermentation operation applied at 15 hours. The plots are the mean of 3 replicates. 

Constant volume fed batch operation was started at 15 hours and run for 10 hours and produced 

1.7g/l of freeze-dried amylase powder compared to 0.9g/l freeze dried amylase powder from 

batch operation for the same overall operational time of 25 hours. This produces amylase for use 

in a large amount of TTIs and so constant volume fed batch operation was stopped after this 

time. Also purification caused a bottleneck effect on the production of purified freeze-dried �-

amylase; so long periods of continuous operation were not efficient or required. 

A constant volume fed batch approach is applicable for the uses in this study. Batch fermentation 

is also applicable for the amount of FDP required, although if α-amylase sterilisation TTIs 

become common use in the canning industry and a greater quantity of FDP is required, constant 

volume fed batch fermentations can be easily run as a continuous fermentation. As stated in 

chapter 2, Heinz produces 300 million cans of soup in the UK every year, if 0.05% of cans are 
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measured with 10 TTIs, then using the TTI preparation method in chapter 5 approximately 

500mg FDP needs to be produced every year. 

3.3.5 Purification of α-amylase 

The molecular mass and subunit composition of the purified enzyme was determined by size 

exclusion chromatography and SDS-PAGE analysis. A example of the SDS-PAGE analysis can 

be seen in Figure 3-8.  

In Figure 3-8 the first columns (a) and (b) run a Pyrococcus furiosus amylopullanase sample 

(supplied by NCSU). The amylopullanase (PF1935) is a recombinant enzyme over-expressed in 

E.coli. The cells were then lysed with Bugbuster®. The broth was then thermally treated at 80°C 

for 10 minutes to deactive E.coli enzymes and products. The concentration of amylopullanase 

was 18.62 mg/ml and the activity measured at 5.9 nmol reducing sugar/min. This sample was 

supplied by I. Odezmir and R. Kelly at North Carolina State University (NCSU). 
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Figure 3‐8 SDS‐PAGE gel of Pf amylopullanase (a,b) unprocessed Pf amylase (c,d) thermally processed Pf amylase (e) 

Amylopullanase from Pyrococcus furiosus was also reviewed as it also cleaves α-1, 4 glycosidic 

bonds in starch (Dong et al., 1997) producing malto-oligosaccharides. Both Pyrococcus furiosus 

α-amylase and amylopullanase (PF0478 and PF1935) are extracellular and have putative signal 

peptides (Lee et al., 2006). PF1935 has been cloned and characterised (Dong et al., 1997) with 

the catalytic residues indentified (Kang et al., 2005). The amylopullanase supplied is from a 

recombinant source and as such could not be used in food sterilisation TTIs. 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
66 

 
   

One �-amylase (PF0478) which is extracellular has been cloned and over-expressed in E.coli 

and B.subtilis (Jorgensen et al., 1997) and Laderman et al. (1993) stated that this Pyrococcus 

furiosus α-amylase enzyme is a homodimer with a sub-unit molecular mass of 66 kDa. This can 

be seen in Figure 3-8 column (e). This is after high thermal processing (140°C, 5 minutes) of the 

α-amylase. Without thermal denaturation (columns (c) and (d)), SDS-PAGE shows an apparent 

molecular weight of 130 kDa of α-amylase. This suggests that the α-amylase is a homogeneous 

dimer which is disassociated due to high thermal processing. That α-amylase is disassociated 

due to high thermal processing is important to consider for TTIs as thermal denaturation is an 

important factor and described in chapter 6. Figure 3-8 column (e) shows P.furiosus α-amylase 

can be a candidate sterilisation TTI. 

3.3.6 Extracellular and intracellular α-amylase 

As previously stated, different amylases are produced by the Pyrococcus furiosus cells; an 

intracellular α-amylase (PF0477) and an extracellular (PF0478) α-amylase used for metabolism. 

It has been described by Fiala and Stetter (1986) that the extracellular α-amylase constitutes 

approximately 80% of the total α-amylase. This was investigated in Figure 3-9 using the assay 

described in detail in chapter 4. Cells were removed from the broth for one set of data leaving 

only the extracellular amylase, and ultrasonicated cells in the other leaving both the intra- and 

extracellular amylase in the broth. This sees the contribution of the intracellular α-amylase on 

activity. Figure 3-9 shows that with the intracellular contribution, there is a 21.5% increase in α-

amylase compared to the cell free broth α-amylase activity. This coincides with the results 

described by Fiala and Stetter (1986). 
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Figure 3‐9 RED assay (chapter 4) on ultrasonicated broth (inc. cells) [─] and cell free broth [─]. Error bars show measurement 
error 

For industrial use it would be more efficient to purify the supernatant as a cell free broth rather 

than ultrasonicate the cellular broth and then purify and extract the α-amylase for just an extra 

20% α-amylase.  Ultrasonicating the cellular broth may also release proteases and other 

unwanted proteins and enzymes which may affect the amylase activity. 

3.4 Conclusion 

Bacterial and fungal α-amylases, and in particular the enzymes from the Bacillus species, are of 

special interest for large-scale biotechnology processes due to their remarkable thermostability 

and because efficient expression systems are available for these enzymes (Fitter, 2005). Bacillus 

sp. α-amylases though are not applicable for a liable enzyme for sterilisation TTIs.  
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α-amylases, according to the very different habitats in which the organisms thrive, the 

temperature range where the native structure is present can vary significantly.  In particular, 

thermophilic and hyperthermophilic organisms are important sources of proteins which can be 

used as prototypes in comparative investigations to study the determinants of structural stability 

under extreme conditions. This means hyperthermophiles are not usually cultured continuously 

as most hyperthermophilic enzymes explored and used on any scale are recombinant and so 

small Wheaton bottle size batches of the native strain satisfy most academic and industrial needs.  

 

It might expected obligate aerophily not to be a predominant metabolic mode of 

hyperthermophiles, considering that oxygen solubility is extremely low at high temperatures, 

and, so far, this has been found to be true. Hence, the majority of known organisms that thrives 

near or above 100°C seems to be obligate anaerobes of which Pyrococcus furiosus is one. There 

are, however, many potential difficulties in expressing proteins derived from hyperthermophilic 

organisms, and so it is also important to consider more traditional routes to enzyme discovery 

(Adams and Kelly., 1998). Those who have experience in the difficult task of producing 

significant quantities of hyperthermophilic biomass appreciate the value of recombinant 

techniques in the pursuit of particular enzymes, although this is not the case in this study and as 

such the difficulties with the culture conditions of high temperatures and keeping anaerobic 

conditions were explored in sections 3.2 and 3.3. 

Culture conditions for the growth of Pyrococcus furiosus were optimised to obtain high biomass 

yields. The constant volume fed batch fermentation of Pyrococcus furiosus cells did not need 

elemental sulphur adding to the media due to the high agitator speeds (1200 rpm) removing the 
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hydrogen quickly from the fermentation broth. It must be noted that although increased stirrer 

speeds increase the hydrogen removal, the shear rate may damage cells at very high (>2000rpm) 

agitation speeds (Raven and Sharp, 1996). Cells were cultured continuously in a 1.5 litre vessel 

with a dilution rate of 0.33 h-1 and therefore a feed rate of 0.5 l fresh media/hour. Pyrococcus 

furiosus cells were cultivated using peptides as a carbon source producing the greatest amount of 

biomass, although starch could also be used. Monomeric sugars could not be used (Kengen and 

Stams, 1994). Keeping the cells at a maximal growth rate produced the greatest amount of 

extracellular α-amylase, indicating that extracellular α-amylase is produced continuously or in 

the exponential growth phase and not at some certain point in growth such as the stationary 

phase or death phase. 

Peptides as a carbon source producing the greater amount of biomass over starch. Accordingly, 

Lee et al., (2006) showed that Pyrococcus furiosus extracellular α-amylase is not expressed to 

any significant extent when starch, maltose, or any other of the six sugars is used as a carbon 

source. The function of the α-amylase is therefore not clear at present, although it does not 

appear to be involved in starch metabolism. In fact, its expression is dramatically up-regulated 

when cells are grown on peptides, a result that presumably correlates with the amylase activity 

measured in peptide-grown cells. Although the significance of these remains to be elucidated, 

one possibility is that when polysaccharides become available during peptide-dependent growth, 

the �-amylase generates oligosaccharides, which then induce the corresponding pathways to 

convert the oligosaccharides to glucose. This is the major reason Peptides were used as a carbon 

source for growth of Pyrococcus furiosus. 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
70 

 
   

Evaluation of apparent molecular mass, utilising size exclusion SDS-PAGE, yielded results of 

approximately 130kDa and upon thermal denaturation a molecular mass of 66kDa indicating a 

diametric quaternary structure. The rigorous means necessary to disrupt the quaternary structure 

of the protein shows an inherent stability of the molecule. 

All α-amylase 3D structures appear rather homologous; various proposals on the stabilizing role 

of structural features have been reported for the individual α-amylases. In several studies 

specific locations in the protein structures have been identified which are relevant for 

thermostability. Comparative studies on various mutants of Bacillus licheniformis α-amylase, of 

Bacillus amyloliquefaciens α-amylase and of Pyrococcus furiosus α-amylase have demonstrated 

that mutation of individual residues either increases or decreases overall thermostability. A 

detailed overview about these features was also given by Nielsen et al. (2000). More general 

stabilisation features, such as oligomeric state, number of disulphide bridges, number of bound 

divalent ions, or the number and volume of cavities (compactness), do not show a correlation 

with thermostability throughout the set of homologous α-amylases. Most α-amylases need 

calcium ions for thermal stability which is why all defined media has excess calcium ions. 

This chapter demonstrates that α-amylase could be purified and freeze-dried to a powder to be 

used in future studies. 
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Chapter 4 

Assaying and modelling Pyrococcus furiosus α-amylase kinetics  
 

4.1 Introduction 

Thermal treatment is the most common method used by industry to ensure food is safe for 

consumption and to increase its storage life.  To ensure safety, food is often over processed, 

which can significantly affect its nutritional value as well as taste and flavour attributes.  

As discussed in chapter 2, enzymatic Time Temperature Integrators (TTIs) have been used to 

determine the heat treatment efficiency.  TTIs are small free measurement devices which contain 

a thermally labile enzyme: determination of the degree of degradation of the enzyme at the end 

of the thermal process enables the integrated temperature history to be obtained.  TTIs can be 

used for process validation, particularly when the processing environment is inaccessible for 

fixed devices such as thermocouples (Guiavarc’h et al., 2004; Mehauden et al., 2007; Tucker et 

al., 2007) 

A number of applications for TTIs have been proposed. Most of these have been designed to 

work at pasteurisation temperatures (50°C-85°C) (Mehauden et al., 2007), using enzymes or 

reactive species that thermally labile over the time-temperature combinations that define the 

relevant processes. For example Mehauden et al, (2007) used �-amylase from Bacillus 

licheniformis and Bacillus amyloliquefaciens for pasteurisation TTIs. 
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TTIs for high temperature sterilisation processes are difficult to obtain. However, one set of 

candidates are from hyperthermophilic archaea which grow and replicate at above 70°C, and 

these contain enzymes which can be used as the basis of sterilisation TTIs. 

As discussed in previous chapters, the organism Pyrococcus furiosus is of great interest in the 

development of sterilisation TTIs (Tucker, et al., 2007) due to the reported heat stability of its 

amylases (Koch et al., 1990). The activity of Pyrococcus furiosus α-amylase has been measured 

over broad temperatures (40-140°C), with an optimal activity, variously reported of 100°C 

(Koch et al., 1990). This persistent activity is maintained at temperatures above 121°C and so 

makes Pyrococcus furiosus α-amylase a promising candidate for use in a sterilisation TTI 

(Tucker, et al., 2007). P.furiosus α-amylase has a thermal resistance (z value) close to those of 

Clostridium botulinum spores (10°C) which is the critical low-acid micro-organisms targeted by 

sterilisation in the canning industry. 

However, one problem is measuring the activity of the enzyme to quantify sterilisation 

behaviour. Due to the high thermostability of Pyrococcus furiosus the usual methods for 

measurements of amylase activity, which take place below 40°C, will only give limited activity 

with P.furiosus α-amylase. 

A number of chemical methods are routinely used to determine activity of amylase in mesophilic 

animal and plant extracts. Some of the more usual are those of Bernfeld (1955) and Somogy-

Nelson, described by Robyt and Whelan (1968) where the assay would show a 

• Decrease in viscosity 
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• Increase in reducing power 

• Change in iodine colour reaction 

• Change in optical rotary power 

• Decrease in turbidity of glycogen solution 

The most common methods for detecting �-amylase activities on starch 

• Release of reducing sugars from a starch substrate is measured 

• Decrease in a specific reaction between iodine and residual starch is measured (Bird and 

Hopkins, 1954) 

• A chromogenic group is attached to the substrate and release of this substrate into the 

soluble fraction is monitored by a change in optical density (Babson et al., 1970; Leisola 

et al., 1980) 

The novel method developed in this section is based on the reaction between iodine and residual 

starch. This method is the most widely used for α-amylase measurement and is the most 

industrially relevant for ease of use, preparation and measurement. When α-amylase is added to 

starch, the starch polymer has the internal α-1,4-glucosidic bonds broken to smaller 

oligosaccharides and a blue/black colour of the complex becomes clear. 
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Methods of radial diffusion in agar gels are commonly used in immunological applications for 

the rapid determination of specific protein levels in large number of samples (Jongsma et al., 

1993). In this method the targeted enzyme is initially placed into a well of an agar gel: as it 

diffuses out into the agar gel, a substrate such as starch reacts with the enzyme causing a colour 

change in the agar. This allows a visual representation of the activity of the enzyme to be shown 

by the ‘halo’ region it has created in the agar gel (Figure 4-1). If there is any inhibition of the 

enzyme, for example, the halo will be smaller than that for a non-inhibited enzyme under the 

same conditions. 

 

Figure  4­9  Residual  amylase  activity  revealed  using  the  RED  assay.  The  smaller  the  halo  the more  thermal 
processing the amylase has received (100mm plate diameter) 

Control of enzymatic assay conditions poses problems at high temperatures (>75°C) (Daniel and 

Danson, 2001), especially control of temperature and pH, since at temperatures of greater than 

100°C most biological substrates have undergone a phase change. Daniel and Danson (2001) 
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suggested that assaying could be carried out at slightly lower temperatures (60-70°C) especially 

if assays could be compared to those run at higher temperatures. 

Koch et al, (1991) used the method devised by Bergmeyer et al, (1983) for the measurement of 

α-amylase activity. 100μl enzyme solution is added to 250μl of sodium acetate buffer (1% 

starch) so there is an acid hydrolysis of starch producing amylose, pullulan and maltose. These 

substrates are then identified by HPLC using a HP x 42A column at 85°C. For extracellular 

enzymes Savchenko et al, (2001) devised a technique for purification and testing, for which α-

amylase could be permitted, although the route for purification seems overly complicated.  

In previous work Randox tests of P.furiosus α-amylase were undertaken at 40-50°C with limited 

success due to the low temperatures and at 90°C the substrate precipitated from solution making 

it impossible to use (Tucker et al., 2006). Other tests proposed by Laderman et al. (1993) use a 

discontinuous assay. Laderman et al, (1993) and Tucker et al. (2006) used the method of 

Manning and Campbell (1961) of taking a 20μl sample of α-amylase solution with 1% sodium 

starch solution added, and 100mM sodium phosphate. This is then incubated at pH7 and 92°C 

for 10 minutes and 15μl iodine solution is added for colour (4% KI, 1.25% iodine) to a 

measurable range of 600nm wavelength for optical density measurements. This method however 

is not applicable for industrial trials due to the complexity of the process, and the time for the 

assay to be completed. The assay also uses a relatively large volume of amylase due to the 

amount of data points and hence a large number of individual samples would be needed for each 

trial. In addition most processing plants would not own the equipment needed for the Laderman 

et al. (1993) assay. 
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The aim of the this chapter is to propose and demonstrate a low effort, industrially applicable and 

quick method for both qualitative and quantitative assessment of activity of hyperthermostable 

amylases, in this case from the archaea Pyrococcus furiosus.  It is based on the hydrolysis of a 

starch as a substrate for the enzyme. The gel is solid to above 70°C, and hence works within the 

temperature range over which Pyrococcus furiosus α-amylase will have significant activity. This 

method is proposed for the rapid evaluation of the amount of thermal processing a target has 

received, specifically to study thermal distributions in mixing equipment, and sterilisation 

treatments for the use of Time-Temperature Indicators (TTIs) (Tucker et al., 2006; De Cordt et 

al., 1994; Guiavarc’h et al., 2003; Van Loey et al., 1997). 

This Radial Enzymatic Diffusion (RED) assay is then compared and calibrated against more 

established methods of hyperthermostable α-amylase detection and quantification. Chapter 5 will 

describe industrial uses of these methods. 

4.2 Materials and Method 
 

4.2.1 Production of P.furiosus α−amylase 

Pyrococcus furiosus was cultivated and α-amylase purified as defined in Chapter 3. 

4.2.2 Preparation of the starch-gel plates 

An 8g/l Gelrite® (Sigma Aldrich, Poole, UK) solution was heated to >70°C to melt, and mixed 

with 10g soluble starch (Sigma Aldrich, Poole, UK)/l distilled water. Iodine was added to a level 

of 5ml/litre Gelrite®–starch solution to form a starch-iodine complex to produce the familiar 

blue/black staining. After mixing, 20ml was poured into sterile 10cm diameter Petri dishes and 
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allowed to cool creating a plate ca.1mm depth. Once solidified the plates were stored at 4-8°C. 

Wells of 4mm diameter were punched in the centre of the plates with a cork borer, and for all 

experiments fresh plates were used.   

4.2.3 The radial enzymatic diffusion (RED) assay  

The freeze-dried P.furiosus �-amylase powder (FDP) was prepared in distilled water (100g 

FDP/l 0.1M Sodium phosphate buffer pH7) and diluted as required for the preliminary assays. 

The wells were filled with 20μl of amylase solution of various concentrations and incubated at 

for various times 70°C (above 70°C the iodine does not stain uniformly and the plates are not 

solidified). The system was thermally stable at 70°C: incubation for long periods (< 2hrs) at 

70°C showed negligible impact of thermal processing on the amylase with no measurable change 

in activity, due to its high thermo-stability. This is unlike the Laderman et al., (1993) 

discontinuous method shown by Tucker et al., (2006), which were assayed at higher 

temperatures (92°C) where the higher assaying temperatures could increase the amount of 

thermal processing the amylase has already received thus giving a higher processing value than it 

actually received.  

Any colourless zone (halo) created by the α-amylase hydrolysing the starch 1-4 glycosidic 

linkages was measured using callipers and digital imaging. The halo may not be exactly circular 

but is assumed to be circular, so the diameter is taken as an average of 3 measurements around 

the halo. The influence of substrate concentration on gel plates was evaluated using  

(i) different concentrations of starch in the gel (1-8g/l),  



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
78 

 
   

(ii) different amounts of enzyme in the test solution, and  

(iii)The influence of time and temperature in the development of the halo created.  

This was to establish both the type of correlation and more suitable conditions to develop the 

assay further for industrial use. 

4.2.4 Dinitrosalicylic acid (DNS) assay for detection of reducing sugars due to amylase 
activity 
 

The DNS assay (Miller, 1959) was used as an alternative assay to measure the amount of activity 

of the Pyrococcus furiosus α-amylase so that the RED plate assay could be calibrated and 

validated.  

The DNS assay uses 0.5ml of 1% starch which is added to 0.5ml 0.1M sodium acetate buffer (pH 

5.5), and 50μl of enzymatic solution (100 g/l buffer). The mixture was then incubated at 90°C for 

60 minutes and the reaction stopped by cooling on ice. The amount of reducing sugar was then 

determined by dinitrosalicylic acid (DNS), an aromatic compound that reacts with reducing 

sugars to form 3, 5-nitrosalicylic acid which absorbs light strongly at 540nm. This shows the 

amount of reducing sugars that have been created due to the hydrolysis of starch by the 

Pyrococcus furiosus α-amylase. 1ml DNS reagent, 1% (10g DNS, 0.5g Sodium sulphate, 10g 

Sodium hydroxide / l water) added to the sample solution and incubated at 90°C for 10 minutes 

to develop the red-brown colour. 0.3ml potassium sodium tartrate, 40%, solution is added to 

stabilise the colour and absorbance read at 540nm. The greater the absorbance the more reducing 
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sugars are present and therefore a greater amylase activity.  A calibration curve was produced 

(Figure 4-2) and the residual activity was calculated by Eq. 4-6. 

 

Figure 4‐10 Absorbance as a function of amylase concentration for DNS assay. The  data is  the mean of 3 replicates. 

4.2.5 Modeling the behavior of the radial assay 

A model was built in MATLAB® to attempt to reproduce features of the experimental 

measurements of halo formation.  A one-dimensional radial model was used. At the start of the 

experiment, amylase is placed in a small circle with radius R (mm) and then slowly amylase 

diffuses and reacts with starch in the gel resulting in a change of colour. The assumptions used in 

developing the model were as follows  

(i) amylase diffuses only in the radial direction;  



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
80 

 
   

(ii) the starch gel is stationary and semi-infinite;   

(iii)  plates are homogeneous; 

(iv)  hydrolysis is much faster than diffusion (El-Saied et al., 1978), so the reaction can be 

considered as instantaneous and hence no reaction term is required in the diffusion 

equation.  

The equation solved is then: 

⎥⎦
⎤⎡ ∂∂∂ cc 1

⎢⎣ ∂∂
−=

∂ r
r

rr
D

t
                                                                       (4-1) 

Where c is the amylase concentration and D the effective diffusivity. The concentration is a 

function of time and radial position. The initial amount of amylase is added in a small well of 

diameter R =4 mm.  Initial conditions are:  

When t=0; c=c(t=o) at r=R and  c=0 at r>R                                 (4-2) 

Throughout:     c=0 at r=∞                                                          (4-3) 

As time progresses, the concentration in the central well (c0) will decrease. The variation of co is 

given by mass balance as: 

Rrr
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dt
dR
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⎜
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−= ..2ππ o cdc ⎞⎛ ∂2                                                                       (4-4) 
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Where d is the depth of the plate and R the well radius; simplifying gives 

Rr=

o cdcR ⎞⎛ ∂
r

D
dt

⎟
⎠

⎜
⎝ ∂

−=
2

              for r> R         and c = c0  r≤R    (4-5) 

Equations (4-1) and (4-5) were solved using a MATLAB® function to give the amylase 

concentration as a function of time and radial position. It is assumed that there is some critical 

concentration of α-amylase needed to decolourise the iodine and thus for the halo to appear. The 

critical concentration was set at 1% of the original concentration of the well, ~0.05 mg/ml within 

the model. The model was then fitted to the experimental results using a MATLAB® 

optimization function to obtain effective diffusivity, D (m2s-1). 

4.3 Identification of Optimal Assay Conditions 

Radial enzymatic diffusion plates give a visual representation as the �-amylase cleaves 

randomly the α-1, 4-glucosidic linkages to change the blue/black starch-iodine complex to a 

clear colour when the starch is hydrolyzed to oligosaccharides. This can be seen in Figure 4-1 

where the plates and α-amylase are shown for different amounts of residual activity. For the 

assay to be used industrially the optimal assay conditions have to be selected.  

4.3.1 Selection of assay conditions 

4.3.1.1 Variation of starch substrate concentration 

Experiments were carried out to investigate the effect of starch concentration on the halo 

produced for a given amount of enzyme activity. Results are shown in Figure 4-3 for 
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experiments using a constant incubation temperature of 70°C, incubation time of 4 hours, and 

enzyme concentration of 5mg enzyme/ml buffer. The relationship between halo diameter and 

starch concentration show a linear correlation over the experimental range tested. The variation 

of the halo diameter between experiments, using homogeneous plates from the same batch, at the 

same temperature, is much smaller than the variation between diameters for different process 

conditions. 
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Figure 4‐11 Halo diameters as a function of starch concentration  in the gel for experiments at constant concentration of 5 
mg/ml α‐amylase and 4 hours incubation time at 70°C. Error bars show average of 3 halos. 

 

The results shown in Figure 4-3 are for an average of 3 replicates. The lower the starch 

concentration, the larger the halo diameter for the same conditions and thus the more accurate the 

measurement. However gels containing a low amount of starch (~0.5%) did not always solidify 
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uniformly, so a concentration of 1% starch was selected for all other work, as this was the lowest 

concentration which gave a homogeneous gel plate while ensuring the largest size halo.  

 

4.3.1.2 Variation of incubation time 

A set of experiments were carried out for various incubation times and starch concentrations 

plates, a 5mg/ml enzyme concentration, and 70°C incubation temperature to investigate the 

effect of the incubation time of the plates on the assay. Data is shown in Figure 4-4 for the 

change in halo diameter with time for a single experiment. In the first 30 minutes there is a 

comparatively sharp increase in halo diameter from the 4mm of the starting conditions. Beyond 

this time the diameter of the halo increases to a lesser extent. Assays were performed using 

different starch concentrations of 1%, 2%, 5% and 8%, as shown in Figure 4-4. As the halo 

diameter increases, the actual absolute error stays constant (1 mm) and the percentage error of 

measurement decreases.  
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Figure 4‐12 Halo radius as a function of RED plate  incubation time at 70°C with a 5 mg/ml α‐amylase concentration for 1% 
(�), 2% (�), 5% (▼), and 8% (Δ) starch plates. Lines are the theoretical model associated with each starch concentration plate. 

Figure 4-4 shows that the change in halo radius is easiest to measure at the lowest starch 

concentration, confirming the results of 4.3.1.1. Four hour incubation times were chosen as the 

halo diameter is the largest shown.  

 

4.3.1.3 Variation of enzyme concentration 

The next experiments were carried out using the 1% starch gel, a constant incubation 

temperature of 70°C and 4 hours incubation time, to measure the influence of the initial 

concentration of enzyme on the diffusion area. Results are shown in Figure 4-5. The halo 

diameter measured on the plate increases as the concentration of α-amylase initially in the well 

increases.  
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Figure  4‐13  Halo  diameters  as  a  function  of  amylase  concentration  (1%  starch  gel  plate,  4  hours  incubation  at  70°C). 
Experimental data (�) was shown against the assay model fit (—), and double linear fit (—). 

 

Figure 4-5 shows that the data can be fitted to two straight lines which intersect at 2.5 mg/ml. At 

about this amount of amylase the rate of expansion of the halo area with increasing concentration 

decreases. Similar behaviour was found by Fernandez et al., (2001) for aquaculture and fish 

amylases.  

4.3.1.4 Variation of incubation temperature 

The influence of temperature of incubation of the plates can be seen in Figure 4-6, over different 

incubation times. Not surprisingly for a hyperthermophilic enzyme, as the temperature increases 

the activity increases (the mechanism will be explored in §6). For a set incubation time of 4 

hours, Figure 4-6(a) shows the effects of temperature on the activity of the amylase which can 

visually be shown as Figure 4-6(b). Up until the optimal temperature (Topt) of Pyrococcus 
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furiosus α-amylase this plot (Figure 4-6(b)) will increase, then after this point (if the assay was 

viable and the plates stayed solid) it would be expected that there would then be a conflict 

between an increase in diffusion and rate kinetics due to the temperature, and the denaturing of 

the enzyme reducing the residual activity. Figure 4-6(c) shows the RED assay plates at two 

different temperatures for the same incubation time. 

 

Figure 4‐6 Halo diameter as a  function of  incubation  temperature of  the RED plates  (a) at 37°C(�) 50°C(�) 55°C(�) 60°C(�) 
65°C(�) 70°C(�) 80°C(�) (b) over an incubation time of 4 hours (c) RED assay plates at 37°C and 75°C (plate 100mm diameter) 

 
4.3.1.5 Optimal Assay Conditions 
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The optimal conditions found for developing the assays were 1% starch, 4 hours plate incubation 

at 70°C, and 5 mg/ml amylase concentration. RED plates were then used to evaluate the residual 

amylase activity after various isothermal processing profiles. 

The detection limits of the assay using optimal conditions above were assessed for using calipers 

with an absolute error of measurement of ± 0.5 mm.  

4.3.2 Modeling of Radial Enzymatic Diffusion (RED) assay behavior 

The program was first run to generate concentration profiles for the assay. Representative data is 

shown in Figures 4-7a and 4-7b; Figure 4-7a shows diffusion for the case where c0 stays 

essentially constant, whilst Figure 4-7b shows the case where c0 is depleted, leading to lower 

diffusion rates. 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
88 

 
   

 

Figure 4‐7 Theoretical model describing  (a) diffusion of amylase  from  the well where c0  remains constant  (b) diffusion of 
amylase from the well where c0 is depleted at time 0 min (—), 20 min (—), 60 min (—), 120 min (—) and 240 min (—). 

Figure 4-4 shows data for the halo radius and the model, assuming that the threshold for 

decolourisation occurs at c = 0.05mg/ml and assuming constant diffusivity. The diffusivities of 

the different concentrations of starch in the assay plates used in the model can be seen in Table 

4-1.  

Table 4‐2 Diffusion Co‐efficient of the RED starch plates calculated from the model 
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Finally Figure 4-5 shows the data for the halo radius as a function of amylase concentration for 

the conditions of 1% starch gel plate and 4 hours incubation time at 70°C together with the 

corresponding model curve. Curve fitting analysis was undertaken for the best way to describe 

the experimental data for a standard curve (Table 4-2).  

Table 4‐3 Curve fitting analysis for halo radius as a function of amylase concentration 

 

As seen in Figure 4-5 the model overestimated the halo radius at low concentrations of amylase 

in the well, while at higher concentration of amylase, the model tended to underestimate the halo 

diameter and keep doing so as the concentration is increased past the experimental boundaries set 

in this study. This suggests that the phenomenon is not accurately described by Fickian diffusion; 

the process is one of diffusion-reaction rather than diffusion alone. A linear relationship could be 

used for a standard calibration curve for calculation of residual activities as it showed a 

reasonable fit (R2=0.94) to the data, a double linear fit was found to be best with the point of 

inflection, where the two straight plots meet, at c = 2.25mg/ml (R2=0.95). 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
90 

 
   

4.4 Determination of α−amylase kinetic parameters 

The previous sections have demonstrated the accuracy of the assay. To validate the assay as a 

tool for possible industrial use, z values of Pyrococcus furiosus α-amylase were calculated using 

both the RED and DNS assays and the data compared to the results of Tucker et al., (2007). If 

the data of all three assays compare favourably then it is reasonable to assume the assay is 

validated. 

Samples of amylase were taken and divided; some were processed through defined time-

temperature profiles and some were left unprocessed. Using the RED assay, samples were then 

assayed at the optimal conditions and the halo diameters measured. Data from the plates was 

converted into residual activities from the following equation, first by using the double linear fit 

calibration in Figure 4-5 to calculate the concentrations of amylase, and then calculating residual 

activity as 

%100x
c

Activity
initial

⎟⎟
⎠

⎜⎜
⎝

=
cprocessed ⎞⎛

                  (4-6) 

A series of experiments were carried out in which �-amylase was exposed to temperatures of 

115°C, 117°C, 121°C and 125°C, for 0, 3, 6, 9, 15, 20 and 25 minutes respectively. The 

experiments used FDP at 5 mg/ml enzyme concentration in solution. The enzyme was enclosed 

in 15 mm lengths of 3 mm diameter silicone tubing that was immersed in a well mixed glycerol 

bath and cooled by quenching in ice (the method described by Mehauden et al., 2007). 

Combination of processing temperature and time decreased the residual activity which is 
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reflected in a decrease in halo diameter in the RED plates (Figure 4-1). The log of residual 

activity is plotted as a function of the incubation time in Figure 4-8a. 

 

Figure 4‐8 Effects of isothermal processing on residual activity of Pyrococcus furiosus α‐amylase using the (a) RED assay and 
(b) the DNS assay; expressed as the logarithm of residual activity for 115°C (�), 117°C (�), 121°C (▼) and 125°C (Δ). For the 
RED assay the curve co‐efficient (k)  for 115°C is ‐0.003x, 117°C is ‐0.006x, 121°C is ‐0.040x and 125°C is ‐0.067x. For the DNS 
assay the curve equation for 117°C is ‐0.01x+1.997, 121°C is ‐0.031x+1.978 and 125°C is  ‐0.062x+1.98. 

Similarly, experiments were carried out in which samples of the α-amylase were exposed to 

isothermal time-temperature profiles of 117°C, 121°C and 125°C for 0, 3, 6, 9 and 12 minutes. 

These were then processed by the DNS assay: data could then be compared with the RED plates. 

The residual activity curve can be seen in Figure 4-8b, and the α-amylase shows a log-linear loss 

of activity.  
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For both assays, the decimal reduction time, D, for each temperature was calculated from the 

curve co-efficient (slope), k, of the lines in Figure 4-8 where; 

k
D =

1                                              (4-7) 

D values for the two assays are given in Table 4-3.  

Table 4‐4 z values for the thermal inactivation of Pyrococcus furiosus α‐amylase based on different assay methods. 

 

Figure 4-9 plots the logarithm of the D value against temperature for the different methods. In 

both cases, there is a linear relationship between log D values and temperature which allows the 

z value to be calculated (Tucker et al., 2007).  The z value describes the temperature sensitivity 

of the rate of inactivation of P. furiosus α-amylase. For the different assays that are presented in 

this study to be comparable the z value determined should be independent of the assay applied to 

determine the residual activity.  
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Figure 4‐9 The z value curve using  the RED assay  (�). Fitting curve equation y=‐0.0909x+12.49  (—) and  the DNS assay  (�). 
Fitting curve equation y=‐0.099x +13.55 (‐‐‐‐). Fitting curve equation for RED and DNS assays y=‐0.09015+12.43 (•••••). 

z values for both the RED plates and the DNS assay along with those reported by Tucker et al. 

(2007) are shown in Table 4-3.  Tucker et al. (2007) and Laderman et al. (1993) used a 

discontinuous spectrophotometer assay at 92°C which took longer and was more difficult to 

assay than the RED assay shown in this paper. 

4.5 Conclusion 

The use of high-temperature-stable amylases has been shown in Chapter 2 and section 3.1 as an 

attractive route for the development of a sterilisation TTI. The problem is finding an efficient 

assay that is simple and efficient to use so that the TTI can be used in an industrial environment. 
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The Radial Enzymatic Diffusion (RED) assay has been developed and tested here as a possible 

assay.  

The RED assay works by placing amylase in the centre of a plate made from starch-containing 

agar stained with iodine. The amylase diffuses out into the gel and reacts with the starch, 

resulting in decolourisation of the iodine, forming a round halo. The best conditions for the assay 

were identified as: 1% starch, incubation temperature of 70°C for a time of 4hours. The accuracy 

of the assay is such that radii can be measured to ±0.5 mm.  

A low concentration of starch in the plates decreases the assay time by increasing the diffusion 

co-efficient of the gel, and hence 1% starch concentration was chosen. The effect of temperature 

was also reviewed. The effect of temperature showed that using the maximum temperature for 

processing decreases the assay time substantially because the activity of the �-amylase is 

increased as well as decreasing the diffusion co-efficient of the gel plate. The temperature could 

be increased past 70°C with more than 8g/l Gelrite® added to the plate, although this would have 

a detrimental effect on the diffusion co-efficient and hence there is a comparative study between 

increasing the activity of the �-amylase and increasing the diffusion co-efficient of the RED 

plate gel. 4 hours incubation time was chosen for this study as it gives a high halo diameter for 

the α-amylase concentration used, and this lowering the potential percentage error in reading the 

gel plates. 

To validate the RED assay as a tool for possible industrial use, z values of Pyrococcus furiosus 

α-amylase were calculated using both the RED and DNS assays and the data compared to the 

results of Tucker et al., (2007). If the data of all three assays compare favourably then it could be 
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reasonable to assume the assay is validated against these more used assay techniques. Thermal 

kinetic parameters measured from the RED plate assay compare favorably both with those 

reported by Tucker et al. (2007) and with the DNS assay.  The D value matches the value stated 

by Tucker et al. (2007) of 24-25 minutes. The z values for all assays are similar; with the RED 

plate assay z value the least temperature sensitive at 13.1°C. This though is still comparable to 

the other assays. 

The RED plate assay was modeled against Fickian diffusion to view how the concentration of α-

amylase diffuses across the gel plate and how the experimental results compared to the 

theoretical model of Fickian diffusion. The assumptions applied in the model in section 3.2.5 

hold up as the model is a good fit for halo radius as a function of RED plate incubation time, for 

different starch concentrations.  

The model fits the data well using diffusivity as an adjustable parameter; fitted diffusivities for 

the different concentrations of starch in the assay plates used in the model. A simple diffusion 

model is not correct as the process involves diffusion and reaction; this can be seen as the 

‘diffusivity’ is a function of concentration. However the fit to the data suggests that the 

assumption of constant c0 is appropriate. The computational model follows the shape of the halo 

diameter as a function of enzyme concentration curve but is only a reasonable fit to the data, 

showing that a more detailed model is needed. A linear relationship could be used for a standard 

calibration curve for calculation of residual activities as it showed good fit (R2=0.94) to the data, 

but a double linear fir was found to be best with the point of inflection, where the two straight 

plots meet, at c=2.25mg/ml (R2=0.95). 
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The advantage of the RED plate assay may be in an industrial setting because of the ease of the 

experiment, and the limited equipment needed. Spectrophotometer or titrimetric assays (such as 

the DNS and assay used by Tucker et al, 2007) are suitable for highly accurate determination, 

although these methods are time consuming. RED plates offer a cheap, rapid and sensitive 

method for the assessment of highly thermostable α-amylase. The method would require a series 

of preprepared plates and reagents. The plate assay would make it very clear if materials had 

been underprocessed; full sterilization would give a low halo radius whilst an unprocessed 

sample would have a high radius. The method could thus be used rapidly to identify safe 

production. 
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Chapter 5 

TTI Validation Study and Industrial Trial 

5.1 Introduction 

TTIs have the potential to be used in place of thermocouples and data loggers as a monitoring 

technique for food safety in industry. As discussed in previous chapters, the use of TTIs for 

process validation is a relatively new technique for pasteurisation and has not been successfully 

developed for sterilisation processes. Enzymatic TTIs have been shown to be successful within a 

variety of pasteurisation processes (Hendrickx et al., 1995; Maesmans et al., 1994; De Cordt et 

al., 1994; Van Loey et al., 1996; Mehauden et al., 2007; 2008). The reliability of TTIs under 

non-isothermal conditions for pasteurisation has shown a direct correlation between TTI 

response and food quality (Taoukis et al., 1989). The z value (temperature sensitivity) of the 

enzyme should ideally be the same or very close to that of the target micro-organism (Hendrickx 

et al., 1995; Richardson, 2001). Work by Tucker et al. (2007) and Van Loey et al. (1997) have 

shown that z values of different α-amylases are suitable for the target of C.botulinum as α-

amylases can be manipulated to have a z value of around 10°C. 

Pasteurisation TTIs have mostly concentrated on α-amylase from B.subtillis, B.licheniformis and 

B.amyloliquefaciens (Mehauden et al., 2007), while De Cordt et al. (1994), Guiavarc’h et al. 

(2004) and Van Loey et al, (1994) have demonstrated the use of these enzymes within a 

sterilisation TTI. The amylase was entrapped on glass beads, and although this lowered the 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
98 

 
   

aggregation of amylase and so worked well at very low F values, the denaturation occurred 

quickly as the F value increased slowly, so it was not ideal for sterilisation TTIs. 

Previous chapters have described the preparation of α-amylase which is highly thermostable at 

sterilisation temperatures and can partially survive processing at 121°C for an industrially 

applicable period (F121°C = 3-30 minutes). Pyrococcus furiosus has previously been studied 

briefly for use in sterilisation TTIs (Tucker et al., 2007) because of the reported heat sensitivity 

that it possesses (Koch et al., 1990), and Tucker et al. (2007) found an initial z value of 9.9°C, 

which is very close to the ideal target pathogen C.botulinum spore z value of 10°C. This makes 

Pyrococcus furiosus α-amylase a strong candidate for sterilisation TTIs and to be investigated 

properly. 

An extensive validation process for the sterilisation TTIs is required before they can be used in 

industry for monitoring heat treatment efficiency of foods. It is essential to know the accuracy 

and reliability of any sterilisation TTI. 

This chapter will describe the TTI validation tests performed.  First the kinetic parameters were 

determined, and then the TTI accuracy and reliability over process duration was studied. A set of 

time-temperature profiles, in which free flowing TTIs were placed in various fluids was studied 

to analyse heating rate effects on amylase activity. In addition, once the physical parameters of 

the TTI were established then an industrially relevant trial was undertaken using real foods 

sterilised in cans within model sterilisation retorts. 
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5.2 TTI validation study 

This section describes the methods used to determine the efficiency of TTIs for food sterilisation 

conditions. Most of the work described was performed on Pyrococcus furiosus α-amylase from a 

native strain of the micro-organism but some work was also performed on amylopullanase from 

Pyrococcus furiosus. The use of amylopullanase as a test system for sterilisation TTIs has been 

described in chapter 3.  

5.2.1 Production of Pyrococcus furiosus α-amylase 

Pyrococcus furiosus was cultivated and purified as described in §3.2. The freeze-dried powder 

was resuspended at 5mg/ml 100mM sodium acetate buffer pH6. The solution was prepared 

freshly for each batch of TTIs. 

5.2.2 Preparation of TTIs 

TTI tubes were made from silicone tubing of 2.5 mm bore and 0.5 mm wall (Altec; Alton, 

Hampshire) cut into 10-15 mm lengths. One end was sealed by dipping it into uncured Sylgard 

170 elastomer (VWR International Ltd) and allowing capillary action to draw 2–3 mm of liquid 

up the tube and left to solidify. A minimum of 25 μl of the FDP solution was injected into each 

plugged tube and uncured Sylgard 170 was drawn into the other end of the tube to form another 

2–3 mm plug. Care was required to prevent drying of the solution or thermal damage to the 

amylase. Once the FDP solution was encapsulated the TTI tubes were ready for use. Filled TTI 

tubes were stored in frozen distilled water at -18°C until ready for use. 
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5.2.3 The radial enzymatic diffusion assay (RED) 

Measurements of the residual activity of the processed Pyrococcus furiosus α-amylase used the 

radial enzymatic diffusion assay developed and validated in chapter 4. The radial enzymatic 

diffusion assay was carried out under optimal conditions using 1% starch gel plates and 4hrs 

incubation time at 70°C incubation temperature.  

5.2.4 Determination of the sterilisation value 

Sterilisation values (F values) numerically describe the impact of heat processing from an 

applied time-temperature profile. F is defined as the equivalent amount of time at a reference 

temperature of 121°C; a target would have to have to receive the same amount of thermal 

processing. The time-temperature profile may change but the F value could stay the same. 

Measurements of the thermal processing using thermocouples and data-loggers can be calculated 

using the equation: 

 

(5-1)

This equation needs prior knowledge either of the target micro-organisms or of the enzyme’s 

thermal resistance in terms of the z value.  



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
101 

 
   

When the inactivation is a first order reaction, the F value measured by the TTIs can be 

calculated using the equation: 

 
(5-2)

Where Ainitial / Afinal , is the ratio of the enzyme activities before and after heat treatment 

measured by the RED assay. This equation needs prior knowledge of the enzyme D value to be 

able to calculate the thermal processing imposed on it. Combining equations (1) and (2) gives: 

                                                                         (5-3) 

where,  

F is the sterilisation value calculated at the reference temperature (Tref), minutes 

Afinal is the final activity 

Ainitial is the initial activity 

D is the decimal reduction time at the reference temperature (Tref), minutes 

Tref is the reference temperature (for sterilization 121°C) 

t is the process time, minutes 

z is the temperature change required to effect a ten-fold change in the DT value (°C) 
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5.3 Isothermal experiments 

Determination of the enzyme kinetic parameters is important as it determines the D value used in 

subsequent F value calculations. A first set of experiments was carried out to study the behaviour 

of the enzyme under conditions where it was held at constant raised temperature for a series of 

times. The experimental design and time-temperature profiles used for the determination of the z 

and D value were chosen around the sterilisation reference temperature of 121°C. 

5.3.1 Evaluations of D and z-values under isothermal conditions 

Kinetic data was determined from a series of isothermal experiments. The evaluation of D and z 

values under isothermal conditions has been described in chapter 4 and shown in Table 4-3. The 

D and z values were calculated as 25 minutes and 11.3°C respectively at 121°C, and these were 

used for all future experimental calculations. These are within the range applicable to the 

botulinum cook. To monitor safety of sterilisation processes, spores of proteolytic strains of 

Clostridium botulinum, characterized by a z value of 10°C, are generally accepted as target 

microorganisms (Van Loey et al., 1997). Pyrococcus furiosus α-amylase is therefore ideal for 

measurement of bacterial spore destruction.  

5.3.2 Thermocouple error effects on F value 

Thermocouples used are accurate to +0.5°C. The effect of this error is transferred into an 

associated error in the F value. This effect of the absolute error of the thermocouple reading on 

the error in F value calculations using the mathematical model can be seen in Figure 5-1. The 

error in F value resulting in the error in temperature can be seen as Eq 5-4. 
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                                                                                                                                       (5-4) 

 

 

Figure 5‐14 F value error from thermocouple accuracy 

The error in F value increased linearly as the amount of thermal processing is increased. So at 

small F values there is a small corresponding error. The error resulting from the thermocouples 

accuracy corresponds to an approximate 10% error in calculated F value. This inbuilt error in the 

thermocouple is much smaller than that of the error involved in TTIs and the assays described in 

chapter 4. 

5.3.3 Effects of heat treatment 

One of the drawbacks of TTIs compared with thermocouples and data-loggers is that TTIs are 

measuring the thermal denaturation of an enzyme. When the enzyme is denatured further 

measurement of the thermal process is not possible. Therefore TTIs have a maximum effective 

life within the process: after some point the enzyme will have denatured to the point where it is 
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no longer possible to use it.  According to the type of α-amylase chosen and hence its kinetic 

parameters of D and z, the length of time in which the enzyme can work will vary.  The 

following experiment checked the maximum time that the TTIs made Pyrococcus furiosus α-

amylase could be used.  

Tucker et al., (2002) and Mehauden (2008, PhD thesis) showed that amylase activity could be 

measured accurately for 2 log reductions of activity for pasteurisation TTIs of Bacillus 

licheniformis and Bacillus amyloliquefaciens using the Randox method and therefore, TTIs could 

be used for durations equal to 2 × D values at 85˚C. This assumption was then tested for 

sterilisation temperatures at 121°C using Pyrococcus furiosus α-amylase. Isothermal treatments 

were applied using a glycerol bath and the heat treatment duration at 121°C for the enzyme was 

converted into F values for the various thermal processes. 

Pyrococcus furiosus α-amylase was subjected at hold times up to 40 minutes at 121°C (~2 × 

D121°C). As the industrial safety standard is F121°C = 3 minutes this was thought to be in the right 

range. Figure 5-2 shows the F values measured from the TTIs for the isothermal experiments 

plotted against the process time (time that the TTIs stayed in the glycerol bath at 121°C).  The y 

= x curve plotted on Figure 5-2 represents the ideal relationship between TTIs and process time 

at 121°C.  Fitting the data gives R2 values of 0.82 over 40 minutes, but if the process time is 

shortened the R2 increases to 0.89 at 30 minutes and 0.94 at 15 minutes hence showing better 

agreement. At 15 minutes the residual activity is 30% and at 30 minutes it is 10% (see Figure 5-

5), so the assay becomes less sensitive. The data suggests that if the α-amylase is processed more 

than 15 minutes it loses accuracy and this occurs increasingly rapidly after 30 minutes. In this 

instance the maximal heat treatment duration is possibly 2 × D values at 121°C.  
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Figure 5‐15 Process time at 121°C verses TTIs F121°C value Ideal relationship Y=X [―] 

 

5.3.4 Temperature effects on sterilisation TTIs 

The effect of hold temperature on a Pyrococcus furiosus α-amylase TTI was examined using 

isothermal processing. Keeping the F value constant and varying the temperatures also means a 

difference in the process hold time. Here α-amylase TTIs were held at a variety of temperatures 

and times to establish the range over which they could be accurately used. A common F0 of 6 

minutes was used. This corresponds to;  

• 4536 seconds at 110°C 

• 1434 seconds at 115°C 

• 360 seconds at 121°C 
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• 144 seconds at 125°C 

The temperature dependence of the process time is very large as illustrated in Figure 5-3. 

 

Figure 5‐16 Hold time length at different temperatures to give F0=6 minutes for z=11.3°C 

The TTIs were immersed in a glycerol bath at constant temperature and at the end of the 

experiment cooled rapidly in ice as referred to in chapter 4.  

The results, shown in Figure 5-4, show the effects of hold time and temperature on the thermal 

processing on the Pyrococcus furiosus α-amylase in the sterilisation TTIs. Figure 5-4 shows that 

using a lower temperature (110°C) and a high processing time (4536 seconds) appears to have 

less effect on the α-amylase denaturation than using a high temperature (125°C) for a short 

amount of time (144 seconds). These isothermal profiles can be seen in Figure 5-3. This can be 
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seen in Figure 5-4 as a best fit straight line that shows ~0.5 minutes change in F value over the 

change in processing hold time and temperature. However, the scatter in the data is + 0.5 minutes 

in each case. It is clear that the TTI is able to measure an F value of 6 + 0.5 minutes over the 

temperature range 110-125°C. The next stage, described below, is to study how changes in 

temperature during the process affect the measured F value. Both time and temperature can not 

be individually explored because both contribute to the F value and as such have to be taken as 1 

variable. 

 

Figure 5‐17 Effects of hold temperature and time on F value; mean average of TTIs [•]; data fitting of mean average [―]; 
thermocouple F value [―] 

5.3.5 Calibration of F value and residual amylase activity 

TTIs were exposed to time-temperature profiles that correspond to F121°C values of 0-37 minutes 

and the residual activity compared to that of the amylase which had been exposed to no thermal 

processing was analysed (Figure 5-5). The function of the plot is y = 100e-0.0812x. The exponential 

thermal decay of P.furiosus α-amylase at 121°C shows measurable activity past F121°C = 37 

minutes which is 2 x D value decay. At constant temperature, first order behaviour is known to 
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give rise to an exponential decay of activity and as such very good correlation to the data is 

shown. Having exponential decay in a measurable range up to F121°C = 25 min shows P.furiosus 

α-amylase is a strong candidate for a sterilisation TTI, as most sterilisation processes occur only 

up to F121°C = 30 minutes. 

 

Figure 5‐18 Residual activity of α‐amylase after thermal processing 

Isothermal processing of foodstuffs does not occur. The data of Figure 5-5 relates the level of 

thermal processing the TTIs receive to the measured activity. If the process is not isothermal, 

then Figure 5-5 can be used to find the equivalent processing the material had received, which 

can then be correlated to the F values calculated from the thermocouple data. This is calculated 

using the residual activity (%) of the amylase after the process described in chapter 4. 
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5.4 Non-isothermal heat treatment experiments 

A series of experiments were carried out in an autoclave using different carrier fluids; TTIs were 

immersed in different fluids: 

• Water 

• Ethylene glycol 

• Tomato soup (5% starch concentration) 

Different fluids were chosen because they had different heat capacities and viscosities so heating 

rates would differ. 

These experiments were to investigate non-isothermal processing of TTIs. Mehauden et al. 

(2006) used a Peltier stage to investigate various temperature profiles. The Peltier stage for 

pasteurisation TTIs worked effectively to change the heating and cooling rates from 1°C/min to 

30°C/min. For sterilisation temperatures it is impossible to use the Peltier stage because the TTIs 

burst as a result of a pressure gradient formed as the temperature increased, between the inside of 

the TTI and the atmospheric conditions outside of the TTI. This causes the TTI to break open, 

and is a major disadvantage of TTIs for use in open or dry sterilisation processes outside of the 

food industry, for example in medical apparatus sterilisation. Using an autoclave, and suspending 

the TTIs in liquid, minimises pressure differential and eliminates bursting. 
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Mehauden et al. (2006) also used polymerase chain reaction (PCR) technology for accurate 

measurements of various time temperature profiles but again this was not suitable for 

sterilisation TTIs as the maximal temperature to use is 100°C. 

To look at non-isothermal processing of TTIs, the external thermal profile was kept consistent 

for each thermal process; the time-temperature profile of the autoclave measured can be seen in 

Figure 5-6. The time-temperature profile was measured for the autoclave using a data logger 

within an open can, to simulate the position the data-logger would be for the rest of the non-

isothermal experiments. 

 

Figure 5‐19 Time‐temperature profile of the autoclave 

The experiments were carried out by placing a sealed glass bottle containing a data logger 

(Ellab) and some (usually nine) free floating TTIs using one of the three liquids. The autoclave 

was then run through the same cycle, which, because of the different properties of the liquids, 

gave rise to different time-temperature profiles as shown in Figure 5-8. 
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The viscosities (Table 5-1) and specific heat capacities, Cp, of the fluids (Table 5-2) which the 

TTIs are immersed resulted in different time-temperature profiles. Data for water and ethylene 

glycol is known (Table 5-2) but it was necessary to measure the soup viscosity.  Tomato soup is 

essentially a starch-based system: apparent viscosities both of starch mixtures close to the 

consistency of soup, and the tomato soup were determined using an AR1000 rheometer from TA 

instruments (Newcastle, Delaware, USA) equipped with a 0.06 m diameter 2o cone and plate 

geometry. An upward shear stress sweep was performed for applied stresses, τ of 0.01 < τ < 100 

Pa and each experiment was repeated twice.  The apparent viscosity μapp was calculated at each 

applied shear rate,γ& , as μapp = τ/ γ& .  The starch mixtures and the soup exhibited shear thinning 

behaviour (Figure 5-7). 
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Figure 5‐20 Viscosity curve of Starch 4% and 5% and Tomato Soup 
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The Carreau model was selected as the most appropriate model to fit all the data (Eq. 5-5), 

(Holdsworth, 1993). 

-1 -  mμ μ 2 2

0
1 (  )

-  
Kγ

μ μ
∞

∞

⎡ ⎤= +⎣ ⎦&     (5-5) 

Where K and m are constants with dimensions of time and μ0 and μ∞ are the viscosities at shear 

rate ( γ& ) = 0 and γ&  = ∞ respectively. Values of the model parameters for the fluids are given in 

Table 5-1.   

Table 5‐5 Values of the Carreau model parameters 

  

 

 

 

 

Table 5‐6 Specific heat capacities of processed fluids 

 

 

The three fluids differ in thermal and flow properties. The time-temperature profiles caused by 

the difference in thermal and flow properties of the fluid when thermally processed within the 

 Tomato soup 

μ∞ 0.119 

μ0 8360 

K 6640 

m 1.92 

R2 0.854 

At shear rate 10s-1 430-550 mPa.s 

Fluid  Viscosity  at room temperature 
(Pa.s) 

Specific Heat 
(kJ kg‐1 K‐1) 

Ethylene Glycol  0.016  2.512 
Tomato Soup  0.119  4.04 
Water  0.001  4.186 
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autoclave can be seen in Figure 5-8. Ethylene glycol had the fastest heating rate but within the 

shoulders of the range (when the TTI values increase more dramatically, >90°C) it still received 

enough thermal treatment to overcome the minimal amount due to the thermal lag and sensitivity 

of the TTIs. Tomato soup had the slowest cooling rate increasing the F value; even though the 

maximum temperature it reached during the autoclave cycle was not close to that which the 

water received. 

 

Figure 5‐21 Time‐temperature profiles of fluids  in an autoclave. The water time‐temperature profile [―]; the tomato soup 
time‐temperature profile [―]; the ethylene glycol time‐temperature profile [―] 

This experiment attempted to represent industrially relevant time-temperature profiles in which 

heating and cooling rates are not constant.  Inside the fluid the TTIs were allowed to float; 

ideally they should be neutrally buoyant, otherwise the TTIs would sink or float to the top of the 

can which might give different results to that of the bulk fluid which the data-logger was 

recording. The sedimentation times of the TTIs were measured for the different fluids used and 
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are given in Table 5-3.  To calculate the sedimentation times, a TTI was dropped to the surface 

of the fluid and the time it took for the TTI to drop 10 cm was recorded for each fluid. 

Table 5‐7 Sedimentation rate of TTIs (at room temperature) 

Fluids used Water Ethylene Glycol Tomato soup 

Sedimentation time 0.0082 ms-1 0.0075 ms-1 Neutrally buoyant 

The time-temperature profiles inside the system were recorded by a data-logger (Ellab), and the 

F values were obtained by integration of the temperatures from the data-logger values to 

compare with TTIs. TTIs were also attached to the tip of the data-logger to receive in effect the 

exact same time-temperature profile that the data-logger encountered. The F values  for the TTIs 

were inferred from the curve fit in Figure 5-5. 

F values from calibrated thermocouple data were estimated using Eq. 5-3 where D and z were 

equal to 25 minutes and 11.3°C respectively for Pyrococcus furiosus α-amylase calculated from 

chapter 4. In Figure 5-9, F values calculated from thermocouple data are plotted against F values 

measured from the TTIs for non-isothermal conditions. The mean relationship between the F 

values obtained from thermocouples and TTIs is plotted on Figure 5-9. In addition, a y = x curve 

which represents the ideal relationship between TTIs and thermocouples has been plotted on the 

same graph (Figure 5-9). 
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Figure 5‐22 Non‐isothermal comparison between TTIs and thermocouples in tomato soup [+]; ethylene glycol [+]; water [+]; 
mean TTI F value [•]; TTI attached to the data logger [∆]; Y=X ideal relationship [―] 

The average of the TTIs for each process in ethylene glycol, tomato soup and water, all fit to 

within F = 0.8 minutes of the ideal relationship with this average moving further away from the 

ideal y = x relationship as the F values increase. The data-logger was placed approximately in 

the centre of the processed substance and the TTIs free mixed into the processed substance. Each 

TTI will have seen an individual process time-temperature profile which will not resemble 

exactly the same time-temperature profile of the data-logger and so give a different F value. 

With enough TTIs in the process this can be averaged out to give an overall process F value 

which will be close to the data-logger if the data-logger records typical temperatures. In Figure 

5-9 it shows that at lower F values, the TTI tends to overestimate the F value; and with large F 

values most of the TTIs underestimate the F values calculated by the thermocouples and data-

loggers. This can also be seen in the industrial trial.  
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5.5 Industrial trial in sterilisation retort 

The previous work has shown that the combination of the α-amylase TTI and the radial assay 

can measure F to +0.5 minutes for F < 15 minutes. The next series of trials were carried out at 

CCFRA (now Campden BRI) on an industrial plant. The process used a pilot scale steam heated 

reel and spiral cooker-cooler at CCFRA with cylindrical metal cans. Two cans (75 mm diameter, 

110 mm height) were used for each run. Inside each two temperature sensors were used, one near 

the top and one near the bottom of each metal can. In all cases, two TTIs were attached to the tip 

of the probe. Two calibrated thermocouple (type K) data loggers (accuracy +0.5°C) were used 

for the temperature measurements (Figure 5-10).  

 

Figure 5‐23 Setup of industrial trial thermocouples and TTIs 

A common measuring position was assured by only having a few millimetres between each 

matching pair of TTIs and thermocouple. The materials would thus have the same time-

temperature profile. All processes were carried out at up to 124°C maximum retort temperature; 

different profiles can be seen in Table 5-4.  
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Table 5‐8 Run profiles of industrial trial 

 

Figure 5-11 shows the time-temperature profiles measured for these products. The different runs/ 

time-temperature profiles given by the thermocouple data give a range of F values (5-23 

minutes) over which the TTIs can be compared to the thermocouples. Water in the cans (Figure 

5-11a,c) is used as a process reference. The processes time-temperature profiles show for water a 

very high heating rate and there is no hold time in Run 1 (Figure 5-11a), whereas in Run 2 

(Figure 5-11c) there is a hold time to increase the F value. Mango chutney, although high in 

acidity and hence not susceptible to Clostridium botulinum growth, is also sterilised by 

conduction heat processes. The time-temperature profiles for mango chutney trials can be seen in 

Figure 5-11b and Figure 5-11d. The mango chutney having a higher specific heat capacity, Cp, 

has a slower heating rate than water and, and takes a longer time to get to sterilisation 

temperatures. This in turn gives a higher F value. 
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Figure 5‐24 Time‐temperature profiles for industrial trial (a) run 1 (b) run 2 (c) run 3 (d) run 4. Note that the horizontal scales 
are different. 

The parameters of mango chutney were established for this industrial non-isothermal trial. 

Mango chutney has a specific heat capacity different to that of water and soup. Through 

differential scanning calorimetry (DSC) the specific heat capacity was calculated as 3.0 kJ kg-1 

K-1. The viscosity was calculated as in §5.4 and the Carreau model was chosen as the best fit also 

as with §5.4. This can be seen in Figure 5-12. Values of the model parameters for the fluid are 

given in Table 5-5. 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
119 

 
   

 

Figure 5‐25 Viscosity curve of mango chutney; Carreau model fit [―]; Carreau model fit parameters [―] 

Table 5‐9 Model parameters of Carreau model for mango chutney 

 

 

 

 

TTIs were subjected to the 4 separate time-temperature profiles shown in Figure 5-11. 

Thermocouple data was integrated using Eq.5-3 using the experimentally derived z value of 

11.3°C. Figure 5-13 plots the F-values calculated from thermocouple data against the F value 

measured from the TTIs for the non-isothermal experiments. The two sets of F value data were 

plotted against one another for the relationship between them. Figure 5-13 demonstrates the ideal 

relationship between TTIs and the process measured by thermocouples and hence demonstrates 

TTI accuracy. Regression analysis showed that the TTIs correlate well with the thermocouple 

 Mango Chutney 

μ∞ 1.385 

μ0 80460 

K 26440 

m 0.7914 
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data with the R2 for the ideal equation y = x being 0.8. Therefore the data adequately fits the 

equation y = x and the TTIs responses correlate with the data from thermocouples responses. 

This data suggests that there is an upper limit where the accuracy compared with the 

thermocouple decreases rapidly and this occurs at around F121°C = 15 minutes. If a trend line is 

taken of the first six points of Figure 5-13 then it will intercept the F value axis at around F121°C = 

15. Figure 5-13 suggests that this is also the case with the accuracy compared to thermocouple 

measurements.  

 

Figure  5‐26  Scatter  of  the  thermocouples  F‐values  verses  the  TTIs  F‐values  calculated  for  isothermal  time‐temperature 
profiles for; Run 1 (●), Run 2 (○), Run 3 (▼), Run 4 (Δ). 

At low F values (F121°C<15 min) the correlation of the TTI and thermocouple is high with an 

R2=0.96. This is encouraging as for sterilization “botulinum cook” is F121°C = 3 min. At low F 
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values, with the isothermal results, large changes in the residual activity will only give small 

changes in the F value so accuracy is reasonably good when compared to thermocouple data, as 

the residual activity data can fall within a large range for a known F value. After F121°C = 15 min 

there is a decline in accuracy as there is a move away from the y = x ideal curve. Using water 

inside the can showed a marked improvement in the accuracy of the TTI compared to the viscous 

mango chutney, but this may be due to the higher F values the mango chutney was exposed to, 

and not mixing and thermal convection inside the can. The decrease in accuracy of the TTIs 

compared to the thermocouples within mango chutney could be down to the slower heating and 

cooling rates the TTIs are exposed to, but this is not investigated in this study. At very high 

thermocouple F values, the TTI values are considerably lower which could also be down to a 

fouling over the TTI by the mango chutney. 

5.6 Conclusions 

One major advantage of a liquid TTI compared with a TTI in powder form is the option of 

encapsulation within silicone TTI tubes. These provide a TTI of neutral density in water with 

heat transfer characteristics, e.g. thermal conductivity and diffusivity suitable for representing 

foods. The study shows that the TTI’s responses to thermal processing within industrial 

applications and substrates for a range of non-isothermal processes correlate well with the 

integrated data from thermocouples responses. 

In general, prior to this study, there was a lack of knowledge on sterilisation TTIs accuracy and 

efficiency and especially using hyperthermophilic enzymes as sterilisation TTIs. Errors in 

measurement were found to arise from a number of factors, including variability in the 
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manufacture of the TTIs, errors in determining the final and initial value of activity, as well as 

non-linearity’s and variations in the kinetics of the enzyme (which will be explored in chapter 6).   

At 15 minutes of iso-thermal processing at 121°C the residual activity is 30% and at 30 minutes 

it is 10%. This suggests that if the α-amylase is processed more than 15 minutes it loses accuracy 

and this occurs increasingly rapidly after 30 minutes. In this instance the maximal heat treatment 

duration is possibly 2 × D values at 121°C. This corresponds to the non-isothermal processing of 

the mango chutney trails. The maximal heat treatment duration compares to that described by 

Tucker et al. (2007). 

The effects of hold time and temperature on the thermal processing on the Pyrococcus furiosus 

α-amylase in the sterilisation TTIs showed that using a lower temperature and a high processing 

time appears to have less effect on the α-amylase denaturation than using a high temperature for 

a short amount of time. However, the scatter in the data is + 0.5 minutes in each case. It is clear 

that the TTI is able to measure an F value of 6 + 0.5 minutes over the temperature range 110-

125°C. Both time and temperature can not be individually explored because both contribute to 

the F value and as such have to be taken as 1 variable. 

The average of the TTIs for each process in non-isothermal processing all fit to within F = 0.8 

minutes of the ideal relationship with this average moving further away from the ideal y = x 

relationship as the F values increase. With enough TTIs in the process this can be averaged out 

to give an overall process F value which will be close to the data-logger if the data-logger 

records typical temperatures. At lower F values, the TTI tends to overestimate the F value; and 
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with large F values most of the TTIs underestimate the F values calculated by the thermocouples 

and data-loggers. This can also be seen in the industrial trial. 

Mehauden et al. (2007) commented on the accuracy of TTIs being constrained by the lower limit 

of thermal processing, where there is sufficient thermal lag between TTIs and the process, so the 

TTI was not correct for very low values of F (<2minutes). This is not the case for the industrial 

study as the TTIs were attached to the thermocouple. For real industrial trials use though there 

will be free TTIs in cans. There is also a higher limit of F value, where the enzymatic percentage 

activity is low enough that there is not as sensitive to change in F value. The data suggests that 

for a higher limit this occurs at around F121°C = 15 minutes. Below this is the operational window 

in which measurements can be taken with greater accuracy. This data suggests that the inherent 

accuracy of the TTI is of the order of ±20% over a wide range of F values and a lot less for low 

F values. With an increased number of TTIs per can then this accuracy can be increased 

significantly. This will be acceptable for a food process where it is not possible to obtain 

thermocouple data. 

In practice, the accuracy of the TTIs will be constrained by 

• A lower limit of F, where there is sufficient thermal lag between the TTIs and the 

process, so that the TTI value is not correct 

• A higher limit of F, where the value of the residual enzymatic activity is so low that it is 

not sensitive to the change in F anymore. 
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In between is the operational window where measurements can be taken with sufficient accuracy 

which is approximately F121°C= 2-30 minutes at 121°C and optimally working at F121°C= 4-15 

minutes.  

Similar work done was by Guiavarc’h et al. (2005) using Bacillus licheniformis α-amylase 

encapsulated on alginate beads for the processing of ravioli in a spiral retort. The Guiavarc’h et 

al. (2005) study showed a much greater variation in TTI F-values calculated than that shown 

within this study on mango chutney. The Guiavarc’h et al. (2005) study also showed that 

measuring the temperature in the sauce overestimated the effect of the process by 30%. This may 

be the case with using a thermophilic enzyme in the study rather than the hyperthermophilic 

enzyme which is more optimized to the process temperatures involved in sterilisation within this 

thesis. No industrial trials using a hyperthermophilic enzymatic TTI has been recorded.  
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Chapter 6 

Effects of thermal processing on the thermostability of Pyrococcus 

furiosus α-amylase 

6.1 Introduction 

The previous chapters have described the development of an assay for the α-amylase of 

P.furiosus, and tests on the accuracy and repeatability of the assay. This chapter describes studies 

of the thermostability of the amylase. The data in the previous chapters have suggested that the 

rate of loss of activity is first order. Here the stability of the enzyme is studied using calorimetry 

and spectroscopy.  

Thermodynamic protein stability is of interest from an applied perspective for sterilisation TTIs 

and biocatalysts. Increasing the thermodynamic thermostability is the main issue when the α-

amylase is used under denaturing conditions (sterilisation temperatures). If the mechanism and 

thermodynamic stability can be understood, then the α-amylase can be engineered to be more or 

less thermally stable. By controlling the thermostability the z value can then be increased or 

decreased to match the target micro-organism in the foodstuff. The implications of varying z can 

be seen in chapter 4. Long-term storage stability can also be improved by knowing the 

mechanisms of protein unfolding at lower temperatures for Pyrococcus furiosus α-amylase. 

Native and functional protein structures are held together by a subtle balance of non-covalent 

forces or interactions; H-bonds, ion pairs, hydrophobic interactions, and van der Waals 
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interactions. At elevated temperature (or in the presence of a denaturant) these non-covalent 

interactions are too weak or become counterbalanced by other interactions and the protein 

unfolds. Protein unfolding can be observed by many different techniques, including differential 

scanning calorimetery (DSC), circular dichroism (CD) and Fourier transform infrared (FT-IR) all 

of which will be used in this chapter to explore the denaturation characteristics of Pyrococcus 

furiosus α-amylase. 

Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference 

in the amount of heat required to increase the temperature of a sample as compared to a reference 

is measured as a function of temperature. Both sample and reference are closely maintained at 

the same temperature throughout the experiment. Generally, the temperature program for a DSC 

analysis is designed so that the sample holder temperature increases linearly with time.  

The main application of DSC is in studying phase transitions, such as melting, glass transitions, 

or exothermic decompositions. These transitions involve energy changes or heat capacity 

changes that can be detected by DSC with great sensitivity. As the temperature increases the 

sample eventually reaches its melting temperature (Tm). The melting process results in an 

endothermic peak in the DSC curve as the protein unfolds. This is important for looking at the 

thermostability of enzymes and to assay where the irreversible denaturation occurs by viewing a 

glass transition in the heat capacity curves.  

Circular dichroism (CD) spectroscopy measures differences in the absorption of left-handed 

polarized light versus right-handed polarized light which arise due to structural asymmetry. The 

http://en.wikipedia.org/wiki/Thermal_analysis
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absence of regular structure results in zero CD intensity, while an ordered structure results in a 

spectrum which can contain both positive and negative signals.  

Circular dichroism spectroscopy is particularly good for determining whether a protein is folded, 

and if so characterizing its secondary structure, tertiary structure, and the structural family to 

which it belongs by studying the conformational stability of a protein under stress and hence, 

looking at thermal stability, pH stability, and stability to denaturants  

Secondary structure can be determined by CD spectroscopy in the far-UV spectral region (190-

250 nm). At these wavelengths the chromophore is the peptide bond, and a signal arises when it 

is located in a regular, folded environment.  

α-helix, β-sheet, and random coil structures each give rise to a characteristic shape and 

magnitude of CD spectrum. This is illustrated in Figure 6-1, which shows three different 

conformations.  
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Figure 6‐27 CD spectrum in the far‐UV spectrum with three different conformations 
(http://www.ap‐lab.com/circular_dichroism.htm) 

Fourier transform infrared (FT-IR) spectroscopy is a measurement technique for collecting 

infrared spectra. Instead of recording the amount of energy absorbed when the frequency of the 

infra-red light is varied by a monochromator, the IR light is guided through an interferometer. 

After passing through the sample, the measured signal is the interferogram. Performing a 

mathematical Fourier transform on this signal results in a spectrum identical to that from 

conventional (dispersive) infrared spectroscopy. The infrared spectrum of a sample is collected 

by passing a beam of infrared light through the sample. Examination of the transmitted light 

reveals how much energy was absorbed at each wavelength. From this, a transmittance or 

absorbance spectrum can be produced, showing at which IR wavelengths the sample absorbs. 

Analysis of these absorption characteristics reveals details about the molecular structure of the 

sample. 
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Under extreme conditions of temperature, pH and pressure, amino acids can be damaged 

irreversibly by processes such as deamidation, β-elimination, hydrolysis, Maillard reactions, 

oxidation, and disulphide interchange (Daniel et al., 1996; Jaenicke, 1998). The hydrolysis of 

peptide bonds sets theoretical limits to protein stability (Jaenicke and Böhm, 1998). A number of 

enzymes from hyperthermophiles are stable and active at temperatures exceeding the upper 

growth limit of the producing organism. α-amylase from Pyrococcus woesi (identical to the 

extracellular α-amylase from Pyrococcus furiosus , Linden et al., 2003) has been reported to be 

resistant to thermal inactivation above the organisms maximal growth temperature (Koch et al., 

1991). Rubredoxin from Pyrococcus furiosus is the most thermostable protein characterised, 

with an extrapolated Tm value of almost 200°C (Hiller et al., 1997; Cavagnero et al., 1998). 

6.1.1 Mesophilic and hyperthermophilic differences 

Hyperthermophilic enzymes are often barely active at room temperature (Figure 4-6b), but are as 

active as their mesophilic counterparts at their corresponding physiological temperature 

(Jaenicke, 1991).  

It has been postulated that the low activity at low temperatures is due to the high rigidity, which 

is relieved at elevated temperatures at which hyperthermophilic enzymes work in vivo (Jaenicke, 

2000). This can be seen by work on hyperthermophilic enzymes in which denaturants (Kujo and 

Oshima, 1998), or detergents (Rugiger et al., 1995) are added, and where the hyperthermophilic 

enzyme is often activated by these substances at sub-optimal temperatures. This activation then 

tends to disappear as the temperature gets closer to the enzymes optimal temperature, Topt.  
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Danson and Hough (1998) focused on the structures and stabilities of archaeal enzymes. 

Comparison of the three-dimensional structure of hyperthermophilic, thermophilic and 

mesophilic citrate synthase revealed many similarities but differences associated with the 

increasing thermostability were apparent. Thermophilicity was characterised by a more compact 

structure arising from shorter surface loops, fewer internal cavaties, improved internal packing, 

and ion pairing, which were found to be more prevalent in the hyperthermophilic enzyme than in 

only the moderately thermophilic enzyme. 

6.1.2 Stabilising Ions 

Early studies on Pyrococcus furiosus α-amylase at room temperature demonstrated that Ca2+ 

ions are not required for stability (Jorgenson et al., 1997) but at elevated temperatures >75°C 

Ca2+ ions are required for thermostability (Savchenko et al., 2002). The role of other ions for 

structural stabilisation appears less important but it is assumed Zn2+ ions at least participate in 

the thermostabilisation of Pyrococcus furiosus α-amylase. 

6.1.3 Inactivation Models 

A common inactivation model for an enzyme involves the unfolding, or denaturation of the 

polypeptides tertiary structure and occurs as a two step process according to the proposed model 

by Lumry and Eyring (1954): 

                                                                                                                                 (6.1)  

Where N is the native active enzyme, U is the reversibly unfolded enzyme and I, the irreversibly 

inactive enzyme. 
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The folding stability of an enzyme describes the  equilibrium and can be denoted by the Tm 

value (temperature at which the protein is 50% unfolded). Cooling on ice allows the reversibly 

unfolded form, U, to fold into the native form, N (Tanford, 1968). 

Often the inactivation of N follows a first-order exponential decay with rate constant k ; 

                                                    

(6.2) 

Where At and A0 represents the activities at time t, and time 0 respectively and k is the first-order 

rate constant.  If this were the case here it would help the application of Pyrococcus furiosus α-

amylase in sterilisation TTIs.  

With a first-order rate constant, one can calculate a true half-life, t1/2 = (0.693 / k), as a measure 

of stability at various temperatures. Investigations into thermally unfolded states are complicated 

by the rapid and irreversible aggregation of the chains, leading to flocculation and precipitation 

(Sharma and Bigelow, 1974). 

Arrhenius plots for hyperthermophilic and mesophilic enzymes have been typically linear (Bauer 

et al., 1999; Bock et al., 1999) suggesting that mesophilic and hyperthermophilic enzyme 

functional conformations remain unchanged throughout their respective temperature ranges 

(Vielle and Zeikus, 2001). 
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6.2 Materials and Methods 

6.2.1 Circular Dichroism (CD) 

Circular dichroism experiments were carried out using a Jasco J-810 spectropolarimeter (Jasco 

UK, Great Dunmow, UK). Samples of the same concentration (100μl sample / 990μl water – 

100mg FDP / ml sodium acetate buffer 100mM pH5.5) were used and loaded into a 1-mm path-

length quartz cuvette (Starna Optiglass Ltd.). The buffer scans were subtracted from the enzyme 

scans. The wavelength range recorded was 300–190 nm with a data pitch of 0.2 nm, a bandwidth 

of 1 nm, a scanning speed of 100 nm.min− 1 and a response time of 1 second. All measurements 

were carried out at various temperatures 25°C-110°C (temperature controlled by Peltier stage). 

Circular dichroism data were analysed by averaging the data points from 300 to 190 nm 

(inclusive) for each of the 4 spectra repeats scans per sample. 

Fixing the wavelength at 220nm, data was taken every 0.2°C. 220nm was chosen as it is the 

point at which there is a change is secondary structure in a α- and β-sheet shape (Figure 6-1). 

Full wavelength scans were undertaken every 5°C from 50-110°C. 110°C being the upper 

limiting temperature of the Peltier stage in the Jasco J-810 spectropolarimeter. 

6.2.2 Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry experiments were carried out using a Perkin Elmer DSC 7 

calorimeter (Perkin Elmer UK). Temperature control was preformed by a Perkin Elmer 

Intracooler 3 for cooling of samples to -50°C for exploring cold denaturation, and heating up to 

130°C for exploring heat denaturation. Samples of dry FDP and also samples of the same 
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concentration (100mg FDP / ml sodium acetate buffer 100mM pH5.5) were used and loaded into 

a 40mg pans. Buffer scans were subtracted from the enzyme scans. The temperature ramp for 

each sample was set at 1°C / min so as to allow for equilibrium and no thermal lag for the 

enzyme. This has been shown on an average thermophilic α-amylase by Nielsen et al, (2003). 

When the heating rate decreases, the heat absorption peaks of denaturation shift towards lower 

temperatures (Grinberg et al., 2000). Molar excess heat capacities (Cp) were obtained by 

normalising with the Pyrococcus furiosus α-amylase concentration and the volume of the 

calorimeter cell. Apparent denaturation temperatures (Tm) values were determined as the 

temperature corresponding to maximum Cp.The thermodynamic parameters of unfolding were 

calculated using the relations shown in the following equations; 

 

 

 

                                                         (6.3) 

The temperature dependence that can be seen in equation 6.3 for  allow deeper insights into 

the mechanisms of how thermostability is achieved. Enthalpic contributions are often related to 

the structural stability of a protein, and the entropic contributions have been shown to play a role 

in reaching high thermostabilities (Fitter, 2005). 
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6.2.3 Fourier Transform Infrared Spectroscopy (FT-IR)  

A Nicolet 380 Fourier Transform Infrared instrument (Thermo Electron Company, USA) was 

used. The machine used a diamond crystal to measure absorbencies from 30000cm-1-200cm-1, 

although this study only studied the mid-infrared region of 4000cm-1-1000cm-1 where the 

structural bonds appear. Each result was an average of 32 scans. A subtraction from a pure water 

standard was made for all scans. 

6.3 Results 

The effects of thermal denaturation on Pyrococcus furiosus α-amylase have been explored in 

chapters 4 and 5 but in the results shown in this chapter describe the irreversible thermal 

inactivation of Pyrococcus furiosus α-amylase.  

6.3.1 Kinetic study of the irreversible thermal denaturation 

The deactivation of the α-amylase at various temperatures (117°C to 125°C) and times (0 - 40 

minutes) was preformed and the specific activity measured using the RED assay (chapter 4). The 

initial effects of thermal processing can be seen in Figure 6-2(a) over various temperatures.  

Chapter 4 describes the loss of activity of the enzyme under various process conditions. A plot of 

the natural logarithm of residual activity versus incubation time is shown in Figure 6-2(b). The 

data in Figure 6-2(b) is linear over the short incubation times of up to 9 minutes at the three 

temperatures. Note that this is the same as Figure 4-8, and reproduced for clarity. This implies 

that  under these conditions the denaturation of Pyrococcus furiosus α-amylase is a one step 
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denaturation process and can be described as a single first-order exponential decay as described 

previously by equation 6.2. 

 

Figure 6‐28 Effects of  isothermal processing on residual activity of PFA (a) expressed as % and (b) expressed as the natural 
logarithm of residual activity for 117°C (●), 121°C (○) and 125°C (▼). Points are an average of 3 experiments 

When the incubation time is increased up to 40 minutes as shown in Figure 6-3(a) (a repeat of 

Figure 5-5) the plot of natural logarithm of residual activity at 121°C shown in Figure 6-3(b) is 

slightly biphasic after an F value of 20 minutes. This has been previously described for potato 

acid phosphate (Gianfreda et al., 1984), guinea-pig liver transglutaminase (Nury and Meunier, 

1989) and most relevant for Pyrococcus furiosus α-amylase is the data for the moderately 

thermophilic α-amylase from Bacillus licheniformis (Violet and Meunier, 1989) for use in 

pasteurisation TTIs described in chapter 2. Figure 6-3 (b) includes a straight line fitted to the first 

6 points, i.e. for F<15 minutes. The data diverges from this line at F~20 minutes. This should be 

compared with the F> 15 minutes for which the data of chapter 5, Figure 5-13, suggests the 
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enzyme can no longer differentiate different F values accurately. Figure 6-3(b) suggests that the 

plots are biphasic as the two step process according to the proposed model by Lumry and Eyring 

(1954) for F > 20 minutes. It is postulated here that the mechanism of denaturation is not 

biphasic but that aggregation of the protein occurs leading to flocculation and precipitation. This 

is a special case of the Lumry and Eyring (1954) model in equation 6.1 where k2>>k-1, so that 

most of the reversibly unfolded molecules, U, will be converted to the irreversibly inactive, I, 

molecules as an alternative to refolding back into the native state. The folded state, U, is a 

transient form and the process might be described by equation 6.4. In this case, the denaturation 

process can be regarded as one-step process following the first order kinetics, so can be 

described as shown in equation 6.4.  

                                                        (6.4) 

This analysis extends that of chapter 4 to suggest first order behaviour over the full range of 

applications of the enzyme at 121°C 
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Figure 6‐29 Effect of isothermal processing at 121°C on residual activity of PFA (a) expressed as % and (b) expressed as the 
natural logarithm of residual activity and trend lines [—]. 

To test the exact mechanism further DSC, FT-IR and CD experimentation was carried out on the 

Pyrococcus furiosus α-amylase. 

The deactivation rate constants (k) and hence the half-life (t1/2) were calculated for each 

temperature (117°C, 121°C, 125°C) and are presented in Table 6-1. The deactivation rate 

constant (k) followed the Arrhenius law (Figure 6-4), where the activation energy (Ea) 

determined through linear-regression analysis was found to be 316 kJ / mol.  
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Table 6‐10 Effects of temperature on rate constant and half life 

 

 

Figure 6‐30 Arrhenius plot for Pyrococcus furiosus α‐amylase. 

6.3.2 Thermal processing effects on thermostability 

The thermal stability of Pyrococcus furiosus α-amylase was investigated using differential 

scanning calorimetry (DSC). Cold denaturation was initially studied to look how the storage 

temperature of the enzyme effects the denaturation and hence the activity when at its optimal 

conditions. Figure 6-5 shows the effect of cooling of the freeze-dried α-amylase powder down 
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from 30°C to -50°C at a cooling rate of 1°C / minute. Figure 6-5 shows no cold denaturation of 

the α-amylase as there is no change in heat capacity over the range studied that shows a change 

in state or glass transition. This is contrary to Laderman et al. (1993) who stated the theoretical 

mathematical cold denaturation point being -3°C. This means that storage of Pyrococcus furiosus 

α-amylase is not affected by the minimum temperature and as such it can be stored at 

temperatures below its minimum activity temperature (~35°C Figure 4-6b). Pyrococcus furiosus 

α-amylase was stored at 4°C for times up to 7 days, and at -18°C for times up to a year. There 

was no discernable loss of activity of the amylase. 

 

Figure 6‐31 Thermal cooling of α‐amylase cooled from 30 to ‐50°C at a rate of 1°C /min 

To identify any Tm, α-amylase was heated from 90°C to 130°C. α-amylase freeze dried powder 

(FDP) was used without the addition of 0.1M sodium acetate buffer, as with previous 

experiments. FDP was used to avoid any effects of water boiling in the DSC. Figure 6-6a shows 

a DSC curve for a scan rate of 1°C / min; there is a denaturation linearly and at 106-107°C there 
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is a denaturation peak for an apparent transition, Tm where U→I. This is consistent with the Tm 

described in a previous study where the Tm was found to be ~110°C, but the scan rate was not 

given in this work (Jorgenson et al., 1997). For Bacillus halmapalus α-amylase, decreasing the 

scan rate from 1.5 to 0.5°C/min resulted in a 6°C lower apparent Tm value, and it was noted that 

scan rate dependence was a typical hallmark of kinetically controlled processes (Nielsen et al., 

2003). The sample was then cooled back to 90°C, and then rerun from 90-130°C (Figure 6-6b) 

giving the curve shown with no change in Cp, indicating that the amylase had gone through 

irreversible transition induced in the first DSC scan up to 130°C.  

 

Figure 6‐32 DSC thermogram of FDP showing  (a) denaturation peak  (b) complete thermogram for FDP  (—) and re‐run FDP 
(∙∙∙∙∙∙∙). Heating from 90°C to 130°C at 1°C/min. 

In order to further examine the reversibility of the Pyrococcus furiosus α-amylase 

denaturation process, scans were preformed before the Tm value and scans after the Tm value. 

From the resulting thermograms (Figure 6-7) it can be seen that the process is almost completely 

reversibe up to a temperature beyond the Topt of 98°C. It can be seen that the process does lose 

some enzyme to the irreversible inactive state, but most is reversible. Both Figure 6-6 and Figure 
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6-7 show that past a certain amount of thermal processing the denaturation is irreversible. Up to 

the Tm value the protein was almost completely reversible in accordance with previous studies 

(Tanford, 1973) so (i) at temperatures below the Tm value the model for denaturation of PFA is in 

accordance with Eq. 1, and (ii) above the Tm value the special case of the Lumry and Eyring 

model where k2>>k-1 and hence k3 applies. This is important for sterilisation TTIs because it 

implies there must be a minimum amount of thermal processing / temperature required for the 

Pyrococcus furiosus α-amylase to reach the irreversibly inactive state and hence work as a TTI, 

where there is a measurement between the native and irreversibly inactive states. Although the F 

value increases very slowly in thermal processes before 105°C, these results suggest that 

processing below this temperature does not result in irreversible denaturation of the α-amylase 

and this should be taken into account in the calculations of F value made by the TTI. This only 

highlights both the specificity of TTIs and the importance of choosing the correct enzymatic TTI 

for the process. 
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Figure 6‐33 DSC thermogram rerun amylase under Tm from 85‐100°C at 1°C/min 

The DSC was then used to view the amount of thermal treatment incurred during processing. Dry 

FDP was not used as thermal processing would affect the amylase differently if the enzyme was 

not in solution to if it was in sodium acetate buffer. The protein was in solution at a 

concentration of 100mg FDP / ml buffer, and a scanning rate of 1°C / min. The thermograms 

were plotted for a previously isothermally processed F value at 121°C of 0 and 12 minutes. The 

thermograms are plotted in Figure 6-8. The peaks for Tm were shown at 106.5 and 103°C 

respectively. The ΔH values for the peaks were 99 J/g and 11 J/g. This method shows a decisive 

decrease in enthalpy due to the thermal processing and with enthalpic contributions often related 

to the structural stability of a protein, it shows that the structure of the α-amylase is denatured. 

This is not match with the isothermal processing seen in Figure 6-3(a), where the residual 

activity is 30-40% the initial activity for an F121°C = 12, the ΔH is only 11% the initial from 

F121°C = 0 to F121°C = 12. 
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Figure 6‐34 DSC thermogram of amylase in sodium acetate buffer with thermal processing from 85‐130°C at 1°C/min 

The stability of proteins is primarily characterised by their thermodynamic stability, which in the 

most general case is determined by the difference in the free energy between the folded native 

state, N, and the irreversibly inactive state, I. The Gibbs free energies were calculated using the 

Gibbs-Helmholtz equation (equation 6.3) and can be seen in Figure 6-9. The temperature 

dependence of ΔG allows deeper insights into the mechanisms of how thermostability is 

achieved. The plot in Figure 6-9 is a skewed parabola and if extrapolated, theoretically intersects 

the x-axis twice indicating that unfolding occurs both at high and low temperatures this is due 

because protein unfolding is known to be accompanied by a non-zero ΔCp, and so the plots are 

distinctly non-linear. By definition the melting temperatures (Tm) are given as the points where 

ΔG = 0. A negative ΔG and the α-amylase are thermodynamically favourable to unfold. 
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Figure 6‐35 Gibbs free energy; Gibbs‐Helmholtz plot 

 

6.3.3 Thermal processing effects on structure (CD) 

Circular dichroism (CD), illustrates the disruption of secondary structural elements upon 

increasing the thermal processing of the Pyrococcus furiosus α-amylase. The effects of 

temperature, processing time and F value were observed on the structural integrity of the 

Pyrococcus furiosus α-amylase. 

CD was first undertaken at room temperature, 22°C (Figure 6-10), to explore if the buffer 

absorbed light in the 190-320nm wavelength range and hence change in the actual reading given 

by the scan. 
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Figure 6‐36 Buffer effects on CD for room temperature 

From Figure 6-10 it is evident that the buffer does not affect the shape or intensity of the sample. 

The sample FDP showed a α-helical structure, as characterised in Figure 6-10. The inset is the 

plot of high tension (HT) voltage verses wavelength. If the HT is under ~700V and does not 

spike then the data is valid. This is because if the HT voltage is above ~700V then the detector is 

saturated. The amplitude of the spectrum will then oscillate wildly. 

Pyrococcus furiosus amylopullanase supplied by North Carolina State University (NCSU) was 

also explored as a second hyperthermophilic Pyrococcus furiosus enzyme with a α-helical 

secondary or tertiary structure. The amylopullanase became less rigid and more folded as the 

temperature increased from 20°C to 90°C (Figure 6-11). Amylopullanase can be compared to the 
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α-amylase in Figure 6-10 in having the α-helical secondary structure but the rest of the 

wavelength scan shows decidedly different shape. The amylopullanase in Figure 6-11 could not 

be processed to 110°C in this case as the buffer evaporated therefore a pressure cell was used to 

be able to increase the temperature for further plots. 

 

Figure 6‐37 Temperature effects on amylopullanase structure 

Figure 6-12(a), Figure 6-12(b), and Figure 6-13 show the effects of increasing temperature on the 

structure of the α-amylase and the α-helical secondary structure in particular from 50°C to 

100°C at 5°C intervals.  

The denature pattern becomes clearer when the temperature was increased but the wavelength is 

fixed at 220nm (Figure 6-12(b)). Both plots show an increase in folded structure and a decrease 

in rigidity as temperature increases as there is a smaller peak. In the main plot the maximum 
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temperature the equipment could only reach 110°C and the α-amylase still showed structure and 

so is believed not to be completely denatured. The plot in Figure 6-12b is non-linear and so it is 

thought that the α-amylase is reaching its denatuation temperature. This can also be seen in 

Figure 6-12(a) where the distances between the temperature peaks correspond to the temperature 

dependence assaying results in chapter 4 (Figure 4-6b). 
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Figure 6‐38 Temperature effect on α‐amylase structure (a) full wavelength scans (b) at 220nm and a linear trend line for the 
initial temperatures [—]. 
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Figure 6-13 gives a 3-dimensional representation of Figure 6-12 (a) and Figure 6-12(b). Further 

investigations either in increased temperature or using excess EDTA to increase denaturation at 

lower temperatures would be needed to see full denaturation of PFA using CD techniques. 
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Figure 6‐39 3‐dimensional CD plot examining temperature effects on α‐amylase structure 

The effect of thermal processing was investigated by holding the α-amylase solution 

isothermally at 105°C for up to 25 minutes (Figure 6-14). The processing time-temperature 

profile only gave an F value of 0.6 minutes (36 seconds), giving no real change in the peak 

intensity which as Figure 6-14 and Figure 6-3(a) and chapter 4 shows, the thermal processing 

applied does not affect significantly the denaturation of the α-amylase. 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
150 

 
   

 

Figure 6‐40 The effect of different hold times at 105°C on the CD spectrum of a‐amylase, showing effects on structure 

Figure 6-15 shows experiments in which the CD spectrum of α-amylase which was previously 

isothermally processed at 121°C and then at the temperature where the α-helix has previously 

been seen as structured, 90°C (Figure 6-12(a)), processed through circular dichroism. The 

intensity of the CD spectrum decreases implying the α-helical structure and folded state 

decreases considerably as the F value was increased to a high level (30 minutes at 121°C). 
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Figure 6‐41 CD scan of thermal processing effects on α‐amylase secondary structure for; 0 minutes [—], 3 minutes [—] and 

30 minutes [—] processing isothermally at 121°C 

6.3.4 Thermal processing effects on structure using FT-IR 

In the mid-infrared range there are 9 absorptions associated with peptide bonds shown in Table 

6-2. 

Table 6‐11 Absorbances associated with peptide bonds 
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Figure 6-16 shows the regions in the mid-infrared range for Pyrococcus furiosus α-amylase for 3 

different amounts of thermal processing. The amide 1 band (1600-1690cm-1) is generally used 

for the structural analysis of proteins, and consists of two main contributions, a C=O stretch 

accounting for 80% of the absorbance, and C-C-N deformation and C-N stretch making up the 

other 20% absorption. The data collected was normalised against a water standard. Figure 6-16 

implies that as the α-amylase was initially processed and the thermal processing increases the 

concentration increases as the buffer (water and sulphate) is evaporated and the peaks become 

shallower in the region of 3200-3400cm-1.  

 

Figure 6‐42 FT‐IR mid‐infrared range and regions of absorbance for no thermal processing [−], 15 minutes thermal processing 

[−], and 30 minutes thermal processing [−] at 121°C 

Proteins are complex, not structurally homogeneous and contain a variety of secondary and 

tertiary structure types, therefore the amide 1 region appears as a single, broad, unsymmetrical 
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band which is a composite of all the overlapping bands (from each type of secondary structure). 

The secondary structure types are shown in Figure 6-17 and how they appear in the FT-IR plots. 

The secondary structure types described by Arrondo et al., (1993) and their wavelengths are 

shown in Table 6-3. 

Table 6‐12 Secondary structure types 

 

 

Figure 6‐43 Amide 1 region and structural absorbencies of α‐amylase after 15 minutes  isothermal processing at 121°C and 
hence not completely denatured  

The moderately thermophilic Bacillus licheniformis α-amylase was initially used as a standard 

because apart from being moderately thermophilic, Bacillus licheniformis α-amylase is also used 
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in pasteurisation TTIs. Figure 6-18 shows the FT-IR scan of BLA in the mid-infrared region. 

Figure 6-18 shows a decrease in the signal in the amide region suggesting as the amount of 

thermal processing is increased gradually from P85°C = 0 up to P85°C = 60 minutes then the 

absorbance of the FT-IR plot decreases over this processing range. This FT-IR scan of the 

thermophilic α-amylase from Bacillus licheniformis is comparable to that of the α-amylase from 

the hyperthermophilic Pyrococcus furiosus in Figure 6-16 where there is a water region and an 

amide region showing secondary structure. In both of these plots there is a region/ peak around 

the frequency of 2350cm-1 which is unaccounted for. 

 

Figure 6‐44 Thermal Processing on BLA standard which has been processed for 0 [−], 6 [−], 15 [−], 30 [−] and 60 [−] minutes 
at 85°C 

Figure 6-19  shows a larger mid-infrared region (1000-1800cm-1) of the spectrum showing the 

effects of thermal processing outside of just the amide 1 region for BLA. With no heat treatment 

there is a peak at ~1750cm-1 which is not present after 15 and 30 minutes of isothermal treatment 
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at 85°C respectively. This is typically the absorbance range for lipids, and is seen to disappear as 

the thermal treatment was increased. 

 

Figure 6‐45 Effects of thermal processing of BLA on the mid‐infrared region for 0 minutes [−], 15 minutes [−] and 30 minutes 

[−] thermal processing at 85°C 

Figure 6-20 and Figure 6-21 compare the effect of unfolding of the Pyrococcus furiosus α-

amylase through thermal processing isothermally at 121°C. Figure 6-20 shows the initial effect 

of thermal processing, between 0 and 15 minutes at 121°C. With no thermal treatment, the 

spectrum suggests significant α-helical shape of the Pyrococcus furiosus α-amylase, but as 

thermal denaturation occurs the spectrum, and thus the structure changes significantly. The α-

helical structure decreases and the spectrum shows a significant increase in β-sheet structure and 

more aggregation, suggesting that thermal denaturation unfolds this secondary structure to 

aggregation.  
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Figure 6‐46 FT‐IR scan with thermal processing effects on amide 1 region; no thermal processing [—]; 15minutes at 121°C 

[—] 

Figure 6-21 suggests that this unfolding continues in this manner; with the α-helical structure 

unfolding through a β-sheet structure until unfolding and aggregation has occurred. In Figure 6-

21, after 30minutes thermal processing there is much more β-sheet and aggregation that at 15 

minutes processing at 121°C. This suggests that in Figure 6-3(b) the mechanism for unfolding 

and denaturation is exponential first-order decay, with aggregation making the plots seem 

biphasic. 
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Figure 6‐47 The effects of significant thermal processing on the amide 1 region of α‐amylase: 15 minutes at 121°C [−], and 30 
minutes processing isothermally at 121°C [−] 

 

6.4 Conclusion 

In recent years an increasing number of studies on thermophilic and hyperthermophilic proteins 

aiming to elucidate determinants of protein thermostability have yielded valuable insights about 

the relevant mechanisms. In particular, comparison of homologous enzymes with different 

thermostabilities (isolated from psychrophilic, mesophilic, thermophilic and hyperthermophilic 

organisms) offers a unique opportunity to determine the strategies of thermal adaptation. In this 

respect, the medium-sized amylolytic enzyme α-amylase is a well-established representative. 

Various studies on a-amylases with very different thermostabilities (melting temperature Tm = 40 

–110°C) report structural and dynamical features as well as thermodynamical properties which 

are supposed to play key roles in thermal adaptation. 
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Native and functional protein structures are held together by a subtle balance of non-covalent 

forces or interactions, such as H bonds, ion pairs, and hydrophobic and van der Waals 

interactions. At elevated temperatures these non-covalent interactions are too weak or become 

counterbalanced by other interactions, and proteins start to unfold. Protein unfolding can be 

observed by many different techniques, including differential scanning calorimetry (DSC), 

fluorescence, circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR). 

A kinetic and mechanistic study of the thermal denaturation of Pyrococcus furiosus α-amylase is 

presented. DSC, CD and FT-IR are shown, along with kinetic data. The Arrhenius plot gave a 

straight line correlation with activation energy of 316 kJ/mol at 121°C. The FT-IR data indicated 

that the mechanism of unfolding is to aggregate after 15 minutes thermal processing at 121°C 

and is supported by the kinetic data (Figure 6-3b) which shows a biphasic distribution after 

approximately 15 minutes. This suggests that the denaturation is first-order decay at the high 

temperatures encountered in sterilisation. The biphasic nature of the denaturation of α-amylase 

might also be described by the processes of aggregation as the protein denatures. This shows that 

the mechanism of denaturation is a special case of the Lumry-Eyring model (equation 6-1) where 

k2>>k1 and so k3 as N→I (Eq. 6-4). The rates of inactivation are shown in Table 6-1 for 

sterilisation temperatures i.e. for 121°C the rate of inactivation N→I is 1.9x10-3 s-1. The rate 

constants were also increased as temperature is raised. 

The effect of temperature on denaturation of α-amylase was explored by examining the α-helical 

content changes during increasing temperature up to the experimental limits of 110°C. This 

showed that the amylase became less rigid with temperature as shown by the data in Figure 6-12,  
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and the FT-IR and CD spectroscopy data concurrently suggested a decrease in α-helical structure 

as the isothermal processing time at 121°C increased. 

Such observations were re-enforced by the melting temperature (Tm) data of the α-amylase 

which was found to be in the region of 106-107°C. Above this temperature the protein becomes 

denatured in to an irreversible inactive state (Figure 6-6b), but below this temperature the protein 

is in a reversible intermediate stage. This has significant implications for industrial use of PFA in 

an industrial context as it suggests there is a temperature above which irreversible thermal 

inactivation of the α-amylase occurs. Such data strengthens the use of PFA for sterilisation data 

as the correlation between process time and residual enzyme activity will not include material 

reformed via the k-1 kinetic route. Knowledge of how the Pyrococcus furiosus α-amylase 

denatures may be useful to manipulating the unfolding kinetics for use in many industrial 

applications, such as different applications of TTIs. Conditions of incubation reinforce findings 

as any change to primary or secondary structures will almost certainly cause denaturation due to 

temperature. 
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Chapter 7 

Conclusions and Future Work 

This thesis describes an experimental study in using a native hyperthermophilic enzyme as a 

candidate sterilisation time-temperature integrator for use in thermal treatment of foods. The 

work has been focused on the following objectives. 

• Produce a reliable and consistent supply of native extracellular Pyrococcus furiosus α-

amylase (PF0478); 

• Produce an industrially relevant prototype assay for rapid quantifying  the activity of the 

highly thermostable α-amylase; 

• Validation of statistical reliabilities of the candidate sterilisation TTIs and application of 

the TTI techniques in pilot scale trials; 

• Determine the kinetics and mechanism of unfolding on Pyrococcus furiosus α-amylase 

due to thermal processing. 

7.1 Production of Pyrococcus furiosus α-amylase 

The ability to cultivate Pyrococcus furiosus and purify the extracellular α-amylase was reviewed 

in chapter 3. Growth curves and activity tests showed that α-amylase was produced consistently 

through the growth phase, and to maximise the yield of α-amylase the maximum growth rate 
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needed to be achieved. It was seen that 80% of α-amylase activity was found from the 

extracellular fraction, PF0478. In batch cultures, in the presence of elemental sulphur (S°) the 

growth of Pyrococcus furiosus was greatly increased. In continuous fermentation a high agitator 

speed removed the inhibitory hydrogen product, as growth increased with increased agitation 

speed. Through purification  a highly purified extracellular α-amylase was produced with 

enough activity to be used within TTIs. Only a short fermentation time was needed to provide 

enough amylase to produce enough TTIs to enable a large number of experiments. 

7.2 Industrially relevant hyperthermostable amylase assay 

For the extracellular Pyrococcus furiosus α-amylase to be measured accurately a radial 

enzymatic diffusion assay was developed. The optimal conditions for the assay were found to be; 

1% starch plate, 4 hours incubation time, and 70°C incubation temperature and 2.5mg/ml 

amylase concentration. It was found that the effect of concentration on the halo diameter was a 

double linear fit, which could then be used to determine the D and z values of the α-amylase. 

The assay compared very well with more established methods, but may have better industrial 

relevance due to its ease of use and measurements, the time it takes for measurements to be taken 

and the cost of the assay. To reduce the variability that TTIs produce, many TTIs would be used 

in industry, and with this assay many samples can be run at the same time. Also for use within 

the food industry the assay has to have no harmful substances which could impact the consumer 

if there is contamination to foods. The model associated with the assay correlates well with the 

experimental data. 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
162 

 
   

7.3 Validation of sterilisation TTIs and trials 

The ability of TTIs to evaluate the thermal efficiency of thermal treatment was investigated using 

a range of time-temperature profiles. The study shows that there is a good correlation between 

the responses of TTIs and thermocouples for a range of non-isothermal processes. It was found 

that the variability of the responses of the TTIs increase when the F value is increased. 

In practice the accuracy of TTIs are constrained by 

• The lower limit of F, where there is sufficient thermal lag between the TTIs and the 

process, so that the TTI value is not correct. 

• The higher limit of F, where the value of the enzyme activity is so low that it is not 

sensitive enough to show a change in F. 

In between the constraints is the operational window in which measurements can be taken with 

accuracy, which is approximately 3 to 25 minutes at 121°C for the Pyrococcus furiosus α-

amylase. The TTIs were found a good substitute for measurements of sterilisation thermal 

efficiency when data-loggers and thermocouples are not practical for use. 

7.4 Effects of thermal processing on Pyrococcus furiosus α-amylase denaturation 

It was found that the melting temperature (Tm) of Pyrococcus furiosus α-amylase is in the region 

of 105°C to 107°C. This is important to thermal processes as it can be seen that using the Lumry-

Eyring model, that up to this temperature the denaturation is reversible, so the F value 

calculations are not quite accurate. The thermal denaturation showed a shift from an α-helical 
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structure, through β-sheet structure to aggregation in a first-order exponential decay model. 

Through circular dichroism experimentation, the effects of temperature were explored on the 

Pyrococcus furiosus α-amylase structure and found that at room temperature the protein is 

unfolded but increasing the temperature to its optimal temperature (Topt) the enzyme shows an 

increased structure which is characteristic to hyperthermophilic organisms. 

7.5 Future work  

Based on the findings from this work, some further work could be undertaken in the following 

areas: 

• The growth of the native hyperthermophilic organism Pyrococcus furiosus was 

investigated to produce the α-amylase PF0478. For sterilisation processes other than in 

the food industry, recombinant forms of this enzyme, in yeasts or E.coli, could be 

explored for high production of the enzyme. Purification would have to include a 

pasteurisation step to denature any host cells and host enzymes associated with growth. 

Also different hyperthermophilic enzymes can be explored, looking at different D and z 

values for different target organisms in sterilisation, or for the same z value and target 

organism but changing the operational window depending on the F value needed. 

• The variability of the TTI itself was investigated in this work under controlled conditions 

by the author. In industry, it is most probable that the analysis of TTIs would be 

performed by several people, which introduces uncertainty. It would be interesting to 
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understand the variability in the results obtained from the analysis performed by various 

individuals. 

• Due to the high temperatures involved in sterilisation it was difficult to create and 

measure various time-temperature profiles. If it is possible using a specially built Peltier 

system or another temperature profiling system, such as a PCR then these profiles could 

be created. It would be interesting to see the effects of heating rates, cooling rates and 

non-isothermal profiles on the enzymatic TTIs measurements where the physical 

mathematical model using thermocouple data shows the F values as the same value. 

• An investigation of using Pyrococcus furiosus α-amylase TTIs in a full scale industrial 

sterilisation trial would be needed before these sterilisation TTIs could be used with any 

certainty in industry. This trial could be continued straight from the work shown in this 

thesis. This would include using a statistically viable amount of free TTIs in a range of 

cans (centre and edge of the sterilisation retort) and using a variety of foods in the cans, 

including pure liquids and liquid/particulate systems in the cans, symbolising different 

varieties for instance of soups.  

• The circular dichroism data was impaired by the constraints of the equipment involved. 

The circular dichroism equipment temperature only went up to 110°C and so nowhere 

near the 121°C of sterilisation temperatures. If this could be rectified it would be 

increasingly interesting for not just sterilisation TTIs and Pyrococcus furiosus α-amylase 

but for use on hyperthermophilic organisms and proteins in general.  
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Appendix A 

Matlab codes 

A. Calculation diffusion co-efficents 

function [t x u] = amylase(Deff) 

  

H=20/1000; 

  

global Deff 

  

% H is the maximum radious Deff effective diffusivity 

m = 1; 

x = linspace(0,H,50); 

t = linspace(0,100*60,60); 

sol = pdepe(m,@mucus,@mucus_ic,@mucus_bc,x,t); 

u = sol(:,:,1); 

  

% figure; 

% surf(x,t,u); 

% title('Numerical solution computed with 41 mesh points.'); 

% xlabel('Distance x'); 

% ylabel('Time t'); 

  

conc = zeros(1,length(t)); 

flux = zeros(1,length(t)); 

iok = 2:length(t); 

for j = iok 
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  % At time t(j), compute Du/Dx at x = 0. 

  [conc(j),flux(j)] = pdeval(m,x,u(j,:),0); 

end 

clear global 

   

%  figure; 

%  plot(t(iok),conc(iok)); 

  

function [c,f,s] = mucus(x,t,u,DuDx) 

global Deff 

c = 1; 

f = Deff*DuDx; 

s = 0; 

  

function u0 = mucus_ic(x) 

if x<=2/1000 

    u0 =5E-6; 

else 

    u0 = 0; 

end 

  

function [pl,ql,pr,qr] = mucus_bc(xl,ul,xr,ur,t) 

pl = 0; 

ql = 1; 

pr = ur; 

qr = 0; 

 



  Pyrococcus furiosus amylase as a Candidate Sterilisation Time­Temperature 
Integrator 

 

   Page 
182 

 
   

B. Calculation diffusion fit 

 
function ssq=amylase_min(Deff1) 

  

[t x u]=amylase(Deff1); 

mytimes=load('mytimes.txt'); 

rexp=mytimes(:,2); 

texp=mytimes(:,1); 

c_crit=0.05E-6; 

  

    for k=1:length(mytimes) 

        c(k,:) = interp1(t,u,texp(k));  

        temp=find(c(k,:)>=c_crit); 

        r(k)=interp1(c(k,temp(end):temp(end)+1),... 

            x(temp(end):temp(end)+1),c_crit); 

        clear temp; 

end 

  

ssq=sum(abs(rexp-r'*1000)) 

  

  

end 

 
 
 
C. Plot halo radius vs. time 
 
Deff1=2.42e-8 

[t x u]=amylase(Deff1); 

mytimes=load('mytimes.txt'); 
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rexp=mytimes(:,2); 

texp=mytimes(:,1); 

tplot=linspace(0,texp(end),150); 

c_crit=0.05E-6; 

  

%loop to find the hallo radious 

    for k=1:length(tplot) 

        c(k,:) = interp1(t,u,tplot(k));  

        temp=find(c(k,:)>=c_crit); 

        r(k)=interp1(c(k,temp(end):temp(end)+1),... 

            x(temp(end):temp(end)+1),c_crit); 

        clear temp; 

    end 

  

  

    plot(tplot,r*1000);hold on; 

    plot(texp,rexp,'o');hold off 
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