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Abstract 

 

With the increased population in large cities, the demand for urban passenger transport 

increases every year. Because of their high speed, high capacity and low energy 

consumption characteristics, urban metro systems are considered to play an essential role 

in urban transportation. Generally, unpredictable fluctuating passenger flow usually 

exists in urban metro operations, so traditional predetermined metro timetables cannot 

always meet the variation of real-time passenger flow, and the service quality of the metro 

system can be impacted profoundly. Nowadays, many researchers make efforts to 

propose suitable metro operation strategies to satisfy the constantly changing passenger 

demands and ensure the system’s service quality. 

In this situation, the author of this thesis deals with the dynamic metro scheduling problem 

and proposes a real-time metro operation method according to the variation of passenger 

flow. An innovative methodology has been proposed to model and solve the dynamic 

passenger flow oriented metro scheduling and real-time optimisation problem, and 

derived to propose passenger flow-based real-time operation strategies based on real-life 

operation without predetermined timetables. 

First, a formal mathematical model, the Passenger Flow-Oriented Scheduling Model 

(POSM) has been proposed, based on nonlinear integer programming to minimise the 

service quality index (SQI) and also optimise the scheduling strategy with real-time 

passenger flow variation. An innovative algorithm GA_POSM, based on a genetic 

algorithm and integrated macroscopic metro and passenger flow simulator, has been 

designed to solve the scheduling and real-time optimisation problems formulated by 

POSM. 
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Then, the performance of GA_POSM has been evaluated based on the system data of 

Beijing Metro Line 19 with typical passenger flow distribution scenarios and Poisson 

distribution scenarios. The results show that, compared with traditional periodic 

timetables, the SQI can be significantly reduced by the scheduling method based on 

POSM; with real-time passenger flow variation, POSM can also optimise generated 

scheduling method flexibly. 

Based on a field study in the London Underground Bakerloo Line Operation Department, 

the author also extended the proposed mathematical model to deal with different 

objectives in real-life operation, and integrated GA_POSM with a decision tree algorithm 

to improve its calculation speed for real-time application. Based on these extensions, a 

real-time passenger flow-oriented metro operation method without timetables, RPOM, 

has been proposed, and the system architecture and infrastructure requirements have been 

introduced. Compared to traditional timetable-based metro operation, the method can 

significantly improve the metro operation flexibility and the service quality according to 

further case studies. 

Keywords: Metro scheduling, passenger flow-oriented, genetic algorithm, real-time 

operation. 
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Chapter 1. Introduction 

1.1 Research Background and Problem Statement 

1.1.1 Background 

Nowadays, urban metro systems are considered to play an essential role in public 

transportation. Because of their high speed, high capacity and low energy consumption 

characteristics, urban metro systems are regarded as the most popular type of urban 

transportation, especially in large cities with many inhabitants, such as London, Tokyo, 

Beijing and Hong Kong (Ding and Xu 2017; Broere 2018; Lin et al. 2021; Lin et al. 2022). 

With the increased population, passenger demand keeps changing, impacting urban metro 

systems’ service quality and energy consumption. In many situations, changes in 

passenger flow have a significant effect on a metro system’s scheduling plan, and plenty 

of effort is devoted to optimising the timetable, saving energy and improving the service 

quality of metro systems. 

 

Figure 1-1 Time-variant passenger demands between two stations of the Yizhuang metro 

line through a single day(Wang et al. 2021) 
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On urban metro railways, the variations of passenger flow are dramatic. Depending on 

the time of day, season changes and even various urban events, passenger demand keeps 

changing. A typical variation of passenger flow, which shows the fluctuation of 

passengers in one day between two specific metro stations from the Yizhuang metro line, 

Beijing, is shown in Figure 1-1. The fluctuation shown above is ubiquitous in almost all 

urban metro systems, especially in developed cities with high population mobility; a well-

known example is the London Underground which handles up to five million passenger 

journeys a day (Transport for London 2021). 

Different with a mainline railway system that sells tickets according to the number of 

seats on the trains and limits the number of passengers boarding, and for which passengers 

need to plan their journey before boarding, most metro systems do not restrict the number 

of passengers by ticket, and most passengers usually board the first train arriving at the 

platform (Kang and Zhu 2016; Zhu et al. 2017). Another difference is that there are 

established timetables for mainline railway systems, which guide train operation and 

support passengers in arranging their journey at an early stage. By contrast, most urban 

metro systems are operated to achieve a periodic timetable with a particular departure 

interval, e.g. 5 minutes, rather than to obey a specific planned timetable. However, 

because of the dramatic changes in passenger flow and metro systems’ specific operation 

processes, these periodic urban metro scheduling strategies cannot always satisfy the 

variation of passenger demands.  

The variation of passenger flow can be catalogued into two main kinds: regular variation 

and irregular variation. Regular variation occurs when some predictable changes in 

external conditions happen, such as the rush hours, summer holidays, significant events, 

etc. These regular variations can be forecast in the early stage based on historical 



3 

 

experience, and metro operators have enough time to design specialised timetables for 

them.  

By comparison with regular variation, irregular variations happen in real time, and they 

are unpredictable in the early stage; for example, because of a sudden change of weather, 

many tourists choose to travel by the metro instead of walking to a scenery spot. Generally, 

these irregular variations will invalidate well-designed running strategies, which can 

cause oversaturation of passengers and deterioration of service quality. As more 

passengers are stranded in the stations, the dispatching of trains will also be impacted. 

This problem of irregular variations in real-time passenger flow associated with a metro 

system can be appreciated if it is assumed that in a specific time horizon, all the trains in 

the system are running based on a pre-defined timetable according to the statistical 

passenger flow data as shown in Figure 1-1. In this scenario, a small variation of real-

time passenger flow may cause the pre-defined running strategy to fail. Any big variation 

of real-time passenger flow can result in poor service quality of the metro system. 

1.1.2 Problem Statement 

A typical example of a metro train scheduling problem is shown in Figure 1-2. 

Dispatchers need to consider the departure interval between each train according to 

different system infrastructure, operation requirements and safety constraints. Normally, 

in a specific time horizon, dispatchers try to fix the interval for each train. In Figure 1-2, 

the interval between two trains in peak hours has been set to δ; in off-peak hours the 

interval is 2δ. This strategy tries to avoid passengers being stranded in stations in peak 

hours, at the same time reducing the number of trains in off-peak hours to save energy. 
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Considering all the passengers in the stations in a specific time horizon, the scheduling 

problem also needs to decide the dwelling time for trains in different stations. Generally, 

dispatchers will also schedule different dwelling times for trains in different time horizons. 

In Figure 1-2, trains in peak hours are stopping based on a dwelling time 2δ, to carry more 

passengers. Conversely, in off-peak hours, the dwelling time is set to δ. Both departure 

interval and dwelling time are periodical. 

 

Figure 1-2 Example of train scheduling 

The conventional train scheduling approaches mentioned above depend heavily on the 

dispatcher’s experience; in real operation the variation of passenger flow is unstable, and 

cannot be simply divided into peak and off-peak hours. Sometimes, even in one time 

horizon, passenger flow changes significantly. As a result, in the last decade, dynamic 

scheduling strategy research has become very popular; the scheduling process can be 

represented by optimisation based on a special decision tree with optional intervals and 

dwelling times for each train according to statistical  passenger flow data. As shown in 
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Figure 1-3, the optional intervals and dwell times constitute branches of the whole tree. 

Each branch of the tree denotes an interval and a dwelling time for a train in the journey, 

and all the trains in the same time horizon will have a unique decision tree. Based on the 

decision tree, the space–time representation of each train, which aims to sketch the train 

diagram and integrate the physical transportation network with vehicle time-dependent 

movements for each trains, can be proposed. 

 

Figure 1-3 Space–time representation of train scheduling process with a special decision 

tree 

But in real operation, the flexibility of both a conventional periodical train scheduling 

timetable and dynamic scheduling strategy is not enough, because no matter how 

accurately passenger flow statistical data are recorded, there will always be irregular 

variations in the real-time operation, so the prepared timetable cannot consistently satisfy 

real-time passenger demands, sometimes these irregular variations seriously impact the 

service quality. As a result, to guarantee the quality of scheduling strategies they not only 

need to be based on dynamic passenger flow, but also must be able to be optimised in real 

 Train 1 

optional 

headway

s 

Station 1 

optional 

dwells  

Station n 

optional 

dwells  

Space–time representation for Train 1  
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time according to real-time passenger flow variation. Because in real time some trains 

have already been operated based on the old timetable, which means some operation 

strategies have already been determined and implemented, this process will change the 

problem to a dynamic optimisation problem with an unfixed number of variables, and the 

modifiable strategies of each train will be different. The associated service quality 

function may be expressed as passenger waiting time, the average number of passengers 

stranded in a station, or the average usage of trains or the number of trains in one time 

horizon, as well as other particular definitions of passenger satisfaction and train 

efficiency. 

Because of the unpredictability of real-time irregular variations in passenger demand, it 

is essential to optimise the scheduling strategies in a short time, so that the quality of 

services will not be impacted by variations in passenger flow. Therefore, the optimising 

method must be fast and flexible enough; any such adjustments must be taken in time, 

and looking ahead as far as possible, thus making sure to meet the demand of passengers. 

1.2 Objectives and Contributions of the Thesis 

The author focuses on solving the real-time train scheduling and optimisation problem 

based on dynamic passenger flow with irregular variation in real-time passenger demands. 

With regard to the proposed real-time passenger flow-oriented operation problems, the 

overall objective is to establish a systematic methodology for real-time operation strategy 

for an urban metro line to replace fixed timetables, including a scheduling strategy based 

on  statistical passenger flow data and a real-time optimisation strategy based on irregular 



7 

 

variations of real-time passenger flow, which is applied to improve the service quality 

and efficiency of the metro system. This mainly includes the following objectives: 

a) To formulate train scheduling optimisation problems which aim to minimise the 

Service Quality Index (SQI) defined in this research based on dynamic passenger 

flow demands for a metro line. 

b) To extend a train scheduling optimisation mathematical model to solve real-time 

scheduling and optimisation problems.  

c) To develop and integrate rapid algorithms with simulation programs to solve the 

proposed problems. 

d) To extend the mathematical model to propose optimised scheduling strategies to 

different objectives based on passenger demand and operational requirements 

based on a real-life field study. 

e) To extend the proposed methodology and present an integrated system 

architecture of a real-time passenger flow-oriented operation method without 

timetable for an urban metro line. 

f) To evaluate the proposed model and methodology using case studies. 

As for the objectives above, this thesis mainly contributes as follows: 

(1) A formulated model ‘passenger flow-oriented scheduling model (POSM)’ based 

on nonlinear integer programming for train scheduling optimisation is proposed, 

dealing with train scheduling based on dynamic passenger flow and real-time 

scheduling optimisation. 

(2) An extension of the proposed mathematical model and for solving real-time 

passenger flow-oriented metro operation without a timetable problem based on 

requirements from real-life studies. 

(3) An algorithm, GA_POSM, based on a genetic algorithm is introduced for solving 

the POSM problems proposed in this thesis. The algorithm GA_POSM integrates 

a generic genetic algorithm and roulette algorithm with modification rules based 
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on constraint conditions and real-time operation, to be an efficient algorithm for 

solving POSM problems. 

(4) A macroscopic metro simulation program integrated with GA_POSM based on 

space–time representation has been designed and programmed in Java language, 

to provide support for solving the model and evaluating results. 

(5) An extension of the proposed algorithm and simulation program based on a 

decision tree algorithm for solving the extended no timetable real-time scheduling 

problem. 

(6) An integrated system architecture of the passenger flow-oriented real-time metro 

operation method without a timetable. The benefits and shortcomings of the 

system are discussed. 

1.3 Outline of the Thesis 

This thesis is structured into six main chapters, as shown in Figure 1-4. 

 

 

 

 

 

 

 

 

Figure 1-4 Thesis Structure 
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The overall research motivations and background are introduced in Chapter 1; in 

particular, the train scheduling problems and real-time optimisation problems to be dealt 

with in this thesis are presented. 

Chapter 2 gives a general introduction and review of related research which has been 

done all over the world. The research review is divided into three aspects, traditional 

urban metro railway scheduling, rescheduling and real-time scheduling. 

Chapter 3 formulates the dynamic passenger flow demand-oriented scheduling problems 

and real-time scheduling optimisation problems for urban metro systems. A passenger 

flow-oriented scheduling model (POSM) based on nonlinear integer programming is 

proposed. And extends the proposed mathematical modelling with different objectives 

based on the requirements from real-life field study in London Underground. 

Chapter 4 introduces an innovative algorithm GA_POSM based on a generic genetic 

algorithm and integrated with a metro system simulation program. The algorithm 

GA_POSM is evaluated using data from Beijing Metro Line 19, and the results are 

compared with the periodic departure interval running strategy in real life. And the 

methodology of are extended with a decision tree algorithm to improve its speed to solve 

the passenger flow-oriented real-time metro operation problem in complex systems. 

Chapter 5 describe the process of passenger flow-oriented real-time metro operation 

method without timetable, RPOM with a large case study. And an integrated system 

architecture of the urban metro which can be applied for implementation of the proposed 

passenger flow-oriented real-time metro operation methodology are proposed in this 

thesis. 

Conclusions and future work are presented in Chapter 6. 
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Chapter 2. Research Review of Rail Traffic 

Scheduling and Optimisation 

Railway scheduling is a complex process of designing and optimising timetables for trains 

according to different system objectives, In general, metro traffic scheduling and 

optimisation refers to three types of objectives: (1) increasing timetable robustness to 

avoid operating incident (Lusby et al. 2018; Ochiai et al. 2019; Restel and Haladyn 2022), 

such as  adding more margin time into a timetable to improve the stability of the timetable 

(Corman et al. 2012; Corman and Quaglietta 2015; Higgins et al. 1996); (2) increasing 

operation efficiency to reduce fuel consumption costs (Ning et al. 2015; Zhao et al. 2017; 

Yang et al. 2022), such as adjusting the running time and acceleration curve (or the 

number of trains) (Yang et al. 2015); (3) improving the quality of services to satisfy 

passenger demand (Yang et al. 2019; Pan et al. 2022; He et al. 2022), such as modifying 

the headway and dwelling time to decrease passengers’ waiting and journey time(Zhou 

and Zhong 2005). With the increased urban population, complicating the fundamental 

process of metro system operations, more and more attention has been paid to efficient 

urban metro traffic scheduling and optimisation, especially passenger-oriented methods. 

Because of the complexity of urban metro systems, systematic methods need to be 

proposed for timetable scheduling and optimisation. These approaches mainly focus on 

two aspects: timetable scheduling and rescheduling; some recent studies have also 

proposed the real-time concept. The objective of this chapter is to present the state of art 

of the research on urban metro traffic scheduling and optimisation across the world. 
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Figure 2-1 Train graph(Yang et al. 2009) 

Scheduling is a fundamental process of constructing metro timetables (or in normal 

operation, it is engaged to propose periodic operation strategies) for trains in the system 

within a specific time horizon; this process needs to schedule departure intervals and 

dwelling times (sometimes also the running times) of trains in different stations based on 

infrastructure and safety requirements. After scheduling, a typical train graph will be 

generated as shown in Figure 2-1; this graph presents information regarding the running 

of trains based on a time–distance format. Based on the two processes above, the time of 

different trains passing and stopping at a specific point on the metro line can be presented, 

including the arrival and departure time in different stations, allowing systematic 

timetables to be generated. Also, to ensure the system is safe and can deal with unexpected 

system variations, margin or recovery times need to be applied to make the timetable 

robust. However, in real-time operation, with various impacts such as weather, system 

disturbance and disruption being inevitable, and the normal scheduling process not being 

able to handle the operation problems in some specific parts of the system, such as 
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junction areas and terminuses, a targeted scheduling or rescheduling process can be 

proposed to modified these specific operational problems. The aim of this chapter is to 

review various approaches to urban metro traffic scheduling and optimisation based on 

scheduling and rescheduling processes. 

2.1 Scheduling 

2.1.1 Periodic Scheduling 

Generally, urban metro scheduling proposes running strategies for trains to carry 

passengers across the metro network; For periodic scheduling, trains are scheduled at a 

specific frequency, and timetables keep repeating in a time horizon. This periodic 

scheduling method is easy to formulate and optimise based on regular passenger flow 

variations and periodic events, and because of its periodicity, the system’s stability and 

robustness is increased. Thus, most metro systems in real life apply the periodic method 

as the operation strategy. 

Carey and Crawford (2007) presented a periodic scheduling method that schedules trains 

at a single train station to avoid conflicts between a large number of trains moving at 

different speeds between multi-platform stations on conflicting lines, and extended this 

method to handle a series of complex stations linked by multiple one-way lines in each 

direction, traversed by trains of differing types and speeds. The calculation time and the 

solved conflict are two important performance characteristics in this research. They 

modelled the problem as a nonlinear programming problem, applying heuristic 

algorithms to schedule the trains. They tested the algorithms based on some draft 
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timetables constructed with a lot of conflicts, showing that the approach has good 

performance based on the computation time and the resolved conflicts. 

Cordone and Redaelli (2011) studied the reciprocal influence between the quality of the 

timetable and the amount of transport demand captured by the railway. They proposed 

the advantages of regular timetables for both passengers and service management, 

modelling the problem as a mixed-integer nonlinear model with non-convex continuous 

relaxation and solving it based on a piecewise-linear overestimate of the objective 

function and a heuristic algorithm. The algorithm was tested by both random instances 

and a real-world regional network located in north-western Italy. For this research, high 

demands of passengers is the most important performance characteristics defined. 

Li and Lo (2014) considered a scheduling and speed control method to improve a metro 

rail system’s energy efficiency based on a periodical timetable. In this research, they tried 

to synchronise the accelerating and braking action of trains to maximise the utilisation of 

regenerative energy based on a periodic timetable constraint. The problem was presented 

by an integrated energy-efficient operation model which optimises the timetable and 

trains’ speed profile, and a genetic algorithm was applied to solve the model. The 

system’s energy efficiency was considered as the most important characteristics and need 

to be improved. They evaluated the computational results on a real-world metro system 

from the Beijing Metro Yizhuang Line in China. 

The examples above show that periodic scheduling makes the timetable easy to formulate 

and robust, especially for some complex parts of a metro system; with a periodic timetable, 

incidents and disruptions hardly occur. But periodic scheduling also makes the timetable 

inflexible, which means it is hard to meet variations in demand. 
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2.1.2 Dynamic Scheduling 

Besides periodic scheduling, with the development of passenger counting systems and 

automatic fare collection systems, more passenger flow data can be analysed (Though in 

some countries, the passenger counting system may face some legal challenges because 

of the implemented camera, privacy concerns, discrimination, lack of regulation, system 

bias and data security, this system can highly improve the accuracy of the recorded 

passenger flow OD data. Also, in some big cities, the passenger number counting system 

has already been implemented, such as the Beijing Metro and Shanghai Metro); in recent 

years, instead of considering periodic timetables, more research has focused on a dynamic 

scheduling approach based on different demands. This scheduling method converts the 

traditional scheduling problem to a dynamic optimisation problem with flexible 

environmental parameters which change over time. 

Niu et al. focused on optimising a passenger train timetable in a heavily congested urban 

rail corridor under time-dependent demand. Based on the origin-to-destination trip 

records from the automatic fare collection system, the dynamic demands of passenger 

flow could be collected. Based on the objectives to decrease passenger loading time and 

waiting time, a nonlinear optimisation model was developed, using a genetic algorithm 

to find the optimal timetables. The effectiveness of the model and algorithm were 

evaluated by the real data from the No. 8 subway line in Guangzhou, China. With time-

varying origin-to-destination passenger demand matrices, they also developed a train 

scheduling method to minimise the total passenger waiting time based on skip-stop 

running patterns of trains, transforming the passenger flow data from the automatic fare 

collection system into origin–destination (OD) pairs. A set of quadratic and quasi-

quadratic objective functions based on quadratic integer programming with linear 
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constraints was proposed, which synchronise effective passenger loading time windows 

and train arrival and departure times at each station. Finally, the problem was formulated 

as a nonlinear mixed-integer problem, and solved by general purpose high-level 

optimisation solvers. The train dwelling time in each station was considered to be an 

important variable (Niu and Zhou 2013; Niu et al. 2015). 

Halim et al. (2016) proposed a passenger-perspective metro timetable optimisation 

approach based on simulation models and incomplete passenger flow data which aimed 

to minimise passenger waiting times and avoid high passenger loads inside the trains. 

They proposed a linear programming model, solved by an iterative algorithm integrated 

with a simulation program. The result was simulated and evaluated based on real-world 

data from the Cairo metro system. 

Similar with periodic scheduling, besides passenger demand, some dynamic scheduling 

also concentrates on energy efficiency. Yin et al. (2016) considered a bi-directional train 

scheduling approach with dynamic passenger demand, intended to minimise passenger 

waiting time and energy consumption. They proposed two linear optimisation models, 

one an integer programming model with the objective to minimise passenger waiting time 

and energy consumption, the other a mixed-integer programming model to consider the 

utilisation of regenerative braking energy. They developed a heuristic algorithm based on 

a Lagrangian relaxation method to solve the models, using a small-scale case study and a 

real-world instance based on Beijing metro data to evaluate the approach. 

Mo et al. (2019) proposed a flexible metro train scheduling approach based on 

inhomogeneous passenger demand, which aimed to minimise energy cost and passenger 

waiting time. They proposed a nonlinear integer programming model and integrated a 
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modified tabu search algorithm with prior enumeration methods to find the approximately 

optimal solution, applying a case study based on the Beijing Metro Yizhuang Line to 

evaluate the result. 

The examples above show that, as an important time-varying objective function control 

parameter, dynamic passenger demand is a focus of dynamic scheduling research. Thus, 

for this approach the synchronisation and interaction between the passenger flow and the 

metro system become much more significant. 

Generally, there are three main techniques for a scheduling modelling approach: linear 

programming, nonlinear programming and graph theory. Caprara et al. (2002) proposed 

a graph theoretic formulation modelling approach for train departures and arrivals at a 

certain station and extracted a linear programming model to determine a periodic 

timetable for a set of trains that does not violate track and satisfies operational constraints 

based on a single, one-way track linking two major stations. The result was solved by 

integrating Lagrange relaxation with a heuristic algorithm and evaluated based on a real-

world instance from Ferrovie dello Stato SpA in Italy. 

Brännlund et al. (1998) proposed a novel optimisation approach for the timetabling 

problem of different types of services to obtain a profit-maximising timetable that does 

not violate track capacity constraints. They modelled the problem as a very large integer 

programming problem, and a Lagrange relaxation solution approach was applied for track 

capacity constraints, with their testing work based on an example suggested by the 

Swedish National Railway Administration which is a single-track railway with 18 

passenger trains, 8 freight trains and 17 stations. The result shows the good performance 

of the approach in terms of computation times and optimality of the obtained timetable. 
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Sun et al. (2015) proposed a method for optimising train scheduling for metro lines with 

a train dwell time model according to passenger demand. They formulated this problem 

based on a nonlinear objective function with some linear equality constraints about 

headway, passenger and train dwell time. The aim of the optimisation problem was to 

minimise passenger waiting time and train operation cost. Lagrangian duality theory was 

adopted to solve the problem with high dimensionality. The result was tested using data 

from Line 8 of the Beijing metro network. 

Wong et al. (2008) presented a mixed-integer programming optimisation model for the 

schedule synchronisation problem for non-periodic timetables that minimises the 

interchange waiting times of all passengers and studied the passenger interchanges 

between different lines in urban transit railways. The optimisation was based on adjusting 

trains’ run times and station dwell times during trips, dispatch times, turnaround times 

and headway, using an optimisation-based heuristic for the model. The algorithm testing 

was undertaken on the mass transit railway system in Hong Kong. 

Based on graph theory, D’Ariano et al. (2007) adopted a detailed alternative graph model 

for the train dispatching problem, which aimed to detect the conflicts between different 

trains, ascertain whether a safe distance headway between trains is respected and provide 

acceptable speed profiles for each train over an intended time horizon. The final conflict-

free scheduling timetable could be generated after a finite number of iterations. A 

computational study based on an hourly cyclical timetable of the Schiphol railway 

network was carried out. 

2.1.3 Solution Approach 
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Three typical solution methodologies are applied to scheduling problems: commercial 

software optimisation solvers, heuristic algorithms and simulation approaches. 

Li et al. (2013) proposed a green train scheduling model and fuzzy multi-objective 

optimisation algorithm; this multi-objective scheduling model could minimise the energy, 

carbon emission cost and total passenger-time at the same time. They applied a fuzzy 

multi-objective optimisation algorithm to solve the model based on the nonlinear 

optimisation software LINGO and obtain a non-dominated timetable. The approach was 

illustrated and evaluated by two numerical examples based on the Wuhan–Guangzhou 

high-speed railway. 

Normally, heuristic algorithms applied to scheduling problems include evolutionary 

algorithms (Chen et al. 2015), genetic algorithms (Takagi et al. 2006), greedy algorithms 

(Krasemann 2010), tabu search (Corman et al. 2010) and simulated annealing (Tomii et 

al. 2005). As shown by some examples in sections above, due to their good computation 

time performance, heuristic algorithms have been widely used for dynamic scheduling 

research in the last decade. 

Sun et al. (2019) developed a bi-objective timetable optimisation model to minimise the 

total passenger waiting time and pure energy consumption based on nonlinear 

programming. The objective function was solved by a modified genetic algorithm. 

Numerical examples based on the real-world data from the Beijing Metro Yizhuang Line 

were used. The results indicate that the approach can improve passenger service and 

reduce energy consumption efficiently. 

Simulation is also an excellent tool for solving railway traffic scheduling problems. 

Simulation methods have the capability of showing the dynamic characteristics of the 
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metro system and the performance of passenger flow. Simulation analysis methods are 

suitable for a system with strong interactions and they also have good extensibility (Halim 

et al. 2016); they are also a useful tool for validating scheduling strategies. 

Xu et al. (2019) proposed a simulation-based optimisation approach for simultaneous 

locomotive assignment and train scheduling on a single-track railway line. Two mixed-

integer programming models were formulated to integrate the final optimisation model. 

They designed an efficient optimisation approach on the basis of assignment rules and 

train movement simulation to solve this problem, testing the result on a hypothetical 

railway system. 

Mu and Dessouky (2013) proposed a switchable dispatching policy for a double-track 

segment, which enables a fast train to pass a slow train by using the track travelled on by 

trains in the opposite direction if the track is empty. This method is hard to test based on 

a real-life railway system, thus they tested the results based on an Arena simulation model. 

2.2 Rescheduling 

Despite there being different scheduling strategies for operational optimisation, in real 

life, with various impacts such as weather, operational incidents are inevitable (Wang and 

Zhang 2019) and some incidents will lead to train delays or passengers being stranded, 

which will decrease the service quality of the system and even cause a system-level failure. 

Thus, rescheduling processes which mainly focus on modifying train operation when 

incidents happen are essential. Generally, rescheduling has two objectives, adjusting train 

operation to deal with unpredictable variations before a problem occur and engaging to 

modify the timetable back to normal after it has been distributed. 
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2.2.1 Traditional Rescheduling Strategies 

In general, traditional rescheduling strategies can be divided into five categories (Fu et al. 

2003): holding, zone rescheduling, short turning, deadheading and skipping. 

Holding is applied when some unpredictable variations occur in the pre-defined headways. 

This method will modify the headway between trains by holding the early-departing train. 

Eberlein et al. (2001) formulated the holding problem as a deterministic quadratic 

program in a rolling horizon scheme, in order to minimise passenger waiting time in the 

situation of large passenger flow. They solved the problem using a heuristic algorithm 

and tested the result based on the headway data collected from the automated system of 

MBTA’s Green Line in Boston. 

A short turning strategy, mainly used in bus operation, divides the rail trips into short-

turn and full-length trips; short-turn trips serve a specific zone, while full-length trips run 

the whole line. This strategy can always be applied when there is high passenger demand 

within a zone in the line or when there is a big system-level error which leads to serious 

disruption of the timetable. Delle Site and Filippi (1998) designed an optimisation 

framework which includes short-turn strategies for intermediate-level planning of bus 

operations. 

The zone rescheduling method is a complex version of the short turning method which 

divides the whole line into different zones, and undeparted trains are also divided into 

different groups. Each train will only stop at all the stations within a single zone, then 

departs without stopping to the terminal station. This method is useful for both scheduling 

and rescheduling processes, especially when a large passenger flow leads to piling up in 

a few specific stations. Ghoneim and Wirasinghe (1986) proposed an optimum zone 
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structure for urban rail lines to deal with the large passenger flow in peak periods. They 

designed a dynamic programming model to determine the number of zones, the stations 

that belong to each zone, the headway between trains in the same zone and the fleet size. 

The applicability of this model was demonstrated through a numerical example using 

field data. 

The deadheading strategy makes some trains skip and run empty through a few stations 

at the beginning of their trips, which can reduce the headway between all the trains in the 

system. This method is suitable for dealing with a serious delay situation or when there 

is high passenger demand in the last stations. Eberlein et al. (1998) proposed a 

deadheading problem to determine which vehicles to deadhead and how may stations to 

skip, in order to minimise the total passenger cost in the system. The stop-skipping 

strategy is an enhanced version of the deadheading strategy, which allows trains that are 

delayed to skip a number of low-demand stations and increase the running speed. In real 

life, because of the impact to passengers getting off, stop-skipping is seldom used. 

From the Emergency Plan file of the Hefei Urban Rail Transit in real life, most strategies 

above have been applied (Hefei Urban Rail Transit Co. Ltd. 2021). 

2.2.2 Disturbance Rescheduling 

Based on the seriousness of the incident, rescheduling research can also be divided into 

two directions, disturbance management and disruption management. Disturbance 

management deals with a series of small-scale incidents, such as a short delay. In this 

situation, the dispatch strategy needs to be modified to reduce the influence on the 

timetable in the future. 
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Hou et al. (2019) designed an energy-saving metro train timetable rescheduling model 

based on ATO profiles and dynamic passenger flow. A mixed-integer programming 

model was proposed to optimise the total train delay, the number of stranded passengers 

and the energy consumption of trains. They adopted the commercial optimisation 

software CPLEX to solve the proposed model; the result could be generated in a short 

time. Three numerical experiments based on real-world operational data were carried out 

to verify the effectiveness. 

To avoid and modify disturbance, Meng and Zhou (2014) proposed an innovative integer 

programming model for the problem of train dispatching on an N-track network by means 

of simultaneously rerouting and rescheduling trains. They decomposed the complex 

rerouting and rescheduling problem into a sequence of single-train optimisation 

subproblems and applied a standard label-correcting algorithm to find the time-dependent 

least-cost time–space path. The results were evaluated based on a set of numerical 

experiments which indicated the benefits of simultaneous rerouting and rescheduling. 

Yang et al. (2014) designed a credibility-based rescheduling model according to a fuzzy 

optimisation framework in order to reschedule trains in a double-track railway network 

when capacity was reduced by a low-probability incident. The problem was formulated 

as a credibilistic two-stage fuzzy 0-1 integer optimisation model to find a reliable 

operational plan for emergency response guidance. They solved the problem by using the 

GAMS optimisation software; with numerical experiments, the effectiveness and 

efficiency of the method was evaluated. 
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2.2.3 Disruption Rescheduling 

Disruption rescheduling research mainly focuses on events which cause a much longer 

time delay than does disturbance. In this situation, not only modification of the dispatch 

strategy is needed; other measures such as cancellation of trains, the addition of trains or 

skipping stops also need to be considered. 

Gao et al. (2016) considered a disruption situation in which the planned timetable cannot 

be operated and a large number of passengers are left stranded in the stations. Considering 

overcrowding and time-dependent passenger flow, they proposed an optimisation model 

to reschedule a metro line, in which some stations may be skipped in the recovery period. 

An iterative algorithm was proposed to solve the model and the result was evaluated based 

on numerical experiments with data from the Beijing metro. 

Louwerse and Huisman (2014) focused on adjusting the timetable of a passenger railway 

operator in case of major disruptions. Given a disrupted infrastructure situation and a 

forecast of the characteristic of the disruption, they determined a disposition timetable, 

specified which trains will still be operated during the disruption and determined the 

timetable of these trains. An integer programming formulation model was proposed with 

the main objective to maximise the service offered to the passengers. The result was 

evaluated based on the Netherlands Railways. 

2.2.4 Passenger demand oriented rescheduling 

Also, there are some studies that considered passenger demand in rescheduling, most of 

this research considered about decreasing the impact which caused by the system’s 

disruptions or disturbance on passenger flow. 
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Wang et al. (2020) propose the collaborative optimisation for train rescheduling 

combined with passenger flow demand after a metro disruption. They established a train 

rescheduling model and a passenger flow model, tested the impacts on passenger’s travel 

time and numbers of stranded passengers from rescheduling strategies including short-

turnings, fully cancellation and partial cancellation after a metro disruption. They found 

the short-turning strategy can effectively mitigate the stranded passengers’ numbers in 

disruption, but also increases trains’ delays and passenger travel time. Cancelling strategy 

can reduce passenger travel time but may cause more serious trains’ delays. Thus, 

reasonable number of short-turning and cancellations should be in a combination after a 

metro disruption. 

Zhu and Goverde (2020) integrated timetable rescheduling and passenger reassignment 

in railway disruptions. They proposed a novel passenger-oriented timetable rescheduling 

model based on a Mixed Integer Linear Programming to minimise generalized travel 

times. The model applies re-timing, re-ordering, cancelling, flexible stopping and  

flexible short-tuning strategies after disruptions, and solved by an Adapted Fix-and-

Optimise algorithm. The proposed methodology has been evaluated based on the data 

from a part of the Dutch railways, and the generalized travel times can be significantly 

shorten in disruption. 

Hong et al. (2021) focused on a train rescheduling problem with large disruptions, where 

passenger reassignment have to be considered. They proposed a novel mixed-integer 

linear programming formulation which consider train retiming, reordering, rerouting and 

reservicing in a large disruption and delt with constraints based on limited seat capacity 

and track capacity. The objective function is optimised by a weighted-sum method to 

maximise the number of disrupted passengers reaching their destination stations and 
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minimise the total train delay for all non-cancelled trains. The proposed method is 

evaluated based on the data from Beijing-Shanghai high-speed railway line. With the 

optimal reassignment plan, the railway’s real-time efficiency can be achieved in 

disruptions. 

2.2.5 Real-Time Operation Research 

With the development of AFC (automated fare collection) ticket systems, passenger 

counting systems and the proposal of digital twins, real-time metro operation research has 

become more and more popular in recent decades. In general, real-time operation research 

includes dynamic scheduling research with statistical real-time passenger flow data and 

real-time rescheduling research based on a specific situation in a metro system. 

Wang (2013) proposed a real-time scheduling problem for urban rail transit systems with 

the aim of minimising the total passenger travel time. A real-time scheduling model was 

formulated based on the operation of trains and passenger demand characteristics; with 

the minimum headway constraints, this problem was transmitted into a nonlinear non-

convex programming problem. They solved this problem by sequential quadratic 

programming. A case study based on the real-time statistical passenger flow data of the 

Beijing Yizhuang Line was used to demonstrate the performance of the proposed 

approach. 

Chen (2012) modelled and solved real-time train rescheduling problems in railway 

bottleneck sections to increase the throughput of the sections. Based on the rescheduling 

problems, a mixed-integer programming model was presented, and solved by an 

innovation improved algorithm, DE_JRM. The model and algorithm were validated with 

a case study using Monte Carlo methodology, which demonstrated that the proposed 
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algorithm can reduce the weighted average delay and satisfy the requirements of real-

time traffic control applications. 

Zhan et al. (2015) focused on a real-time rescheduling problem of railway traffic on a 

high-speed railway line in the case of a complete blockage of the railway infrastructure. 

They considered the situation that trains are blocked by the disruption and wait inside the 

stations. A mixed-integer programming model was formulated to minimise the total 

weighted train delay and the number of cancelled trains, while adhering to headway and 

station capacity constraints. They proposed a two-stage optimisation approach to improve 

the computation efficiency and tested the model based on the data of the Beijing–

Shanghai high-speed railway line. 

Flamini and Pacciarelli (2007) proposed a scheduling problem arising in the real-time 

management of a metro rail terminus which routes incoming trains through the station 

and schedules their departures. The problem was modelled as a bicriterion job shop 

scheduling problem with additional constraints and solved by heuristic algorithm. They 

tested the result based on the rail traffic data at an Italian metro rail terminus. 

From the above, there are three main shortages of current real-time research:  

1. For scheduling research, instead of proposing a continuous real-time operation 

methodology, most real-time scheduling research just focus on modifying scheduling 

method with some specific objectives according to the recorded data of the passenger 

flow.  

2. Most rescheduling research focuses on proposing solutions for some specific situations, 

such as train delays, crossing junctions. Instead of keeping proposing real-time strategies, 

this research tries to recover disrupted timetables to the original. 
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3. Most research has fixed objectives without flexibility. 

2.3 Conclusions 

In this chapter, the main research on rail traffic scheduling and optimisation, including 

scheduling research, rescheduling research and real-time research, has been reviewed. In 

scheduling research, two main aspects, periodical scheduling and dynamic scheduling, 

have been introduced. Different modelling approaches with a variety of objectives and 

different solution approaches have also been reviewed. Then the traditional rescheduling 

method and rescheduling approaches based on different incidents have been reviewed, 

some passenger flow oriented rescheduling research has been analysed. Finally, some 

real-time railway research for both scheduling and rescheduling has also been introduced. 

As is apparent from the above review, most metro systems in real life still apply a 

periodical timetable to meet the demand of regular passenger flow variations and periodic 

events. Most of the existing scheduling research, including real-time scheduling research, 

focuses on generating fixed optimised timetables based on recorded real-time or 

hypothetical passenger OD data, which helps deal with the dynamic variations in 

passenger flow or deal with a specific operation circumstance. Most real-time 

rescheduling research concentrates on modifying timetables to normal only after some 

incident happens. And most of the passenger flow oriented rescheduling researches are 

also based on the situation which the system has already been suffered from disruption or 

disturbance and aim to decrease these impacts to the passenger flow, instead of changing 

dispatch strategies initiatively based on the real-time passenger flow variation. However, 

in real life, with irregular variations in passenger flow always occurring in real time, the 
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metro operation strategies also needs to be optimised swiftly even before the disruption 

or disturbance occurs. We considers transforming scheduling into a real-time 

optimisation process and modifying the traditional scheduling problem to a dynamic 

optimisation problem with a variable number of solutions and combining heuristic 

algorithms with a simulation method to increase the flexibility of the objective function, 

putting forward a new scheduling method which keeps generating and optimising 

operational  strategies according to passenger flow in real time. 

The main innovations of this research are: 

(1) To propose an innovative concept of real-time scheduling optimisation. Instead of 

only optimising the timetable based on statistical or predicted passenger flow data before 

operation as in traditional research, this research keeps modifying dispatching strategies 

whole trains in the operational time horizon according to real-time passenger flow 

variation to ensure the metro system’s real-time performance and flexibility. 

(2) To be independent of established timetables. Unlike most traditional scheduling and 

rescheduling research, which focuses on proposing optimising strategies based on old 

timetables before operation, this research generates and modifies dispatching strategies 

for both dispatched trains and non-dispatched trains in real time without an established 

timetable. 

(3) To design an innovative algorithm to solve the proposed problem, which increases the 

flexibility of the objective function and improve the computation time.  
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Chapter 3. Formulation and Extension of Dynamic 

Passenger Flow-Oriented Metro Scheduling and 

Real-Time Optimisation Problems 

In the previous chapters, the problems of dynamic passenger flow-oriented real-time 

metro scheduling and optimisation have been described; the defects in the early research 

and the innovation of this research have also been proposed. The main objective of this 

research is to provide a method which can generate metro scheduling strategies based on 

dynamic passenger demands and optimise the strategies in real time based on passenger 

flow variations. 

In this chapter, a mathematical train scheduling model for dynamic passenger flow 

scheduling and real-time optimisation, which is named passenger flow-oriented 

scheduling model (POSM), is presented to formulate the proposed scheduling problems 

by nonlinear programming (NLP) based on dynamic optimisation. In the first section, the 

general concepts of mathematical programming and dynamic optimisation are introduced. 

Then the formulation of POSM using NLP and the concept of dynamic optimisation is 

described in detail with a case explanation. 

3.1 Introduction to Mathematical Programming 

3.1.1 General Definitions of Mathematical Programming 

The earliest application of mathematical programming can be traced back to the Second 

World War; at that time, there was an urgent need to allocate scarce resources to various 

military units. From 1947, when the American mathematician George Dantzig proposed 
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the simplex method for numerically solving linear programming problems (Dantzig 1948), 

to the genetic algorithm proposed by John Holland in the 1970s and the CPLEX 

Optimisation Studios developed by IBM in 1988, the development of mathematical 

programming has been rapid. Nowadays, mathematical programming is widely used in 

the manufacturing industry, finance, military, transportation, etc. 

Generally, mathematical programming is used to determine several variables which can 

lead to a maximum or a minimum result in an objective function; these determinations 

have to satisfy a number of constraints based on the system’s infrastructure. The 

mathematical form of a mathematical programming can be described as an optimisation 

problem with different constraints as shown in Equation 3-1. 

{
 
 

 
 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑓(𝑥)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

𝑎1𝑖(𝑥) ≤ 𝑏1    𝑖 = 1,… ,𝑚

𝑎2𝑗(𝑥) > 𝑏2    𝑗 = 1,… , 𝑛

𝑎3𝑘(𝑥) = 𝑏3     𝑘 = 1,… , 𝑜
𝑥 ∈ 𝑆 ∈ ℝ𝑛

                                                                    𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟏 

The function 𝑓(𝑥) is the objective function which determines the objective to match the 

desired result of the optimisation. Generally, these objectives include maximising and 

minimising the objective function. 𝑎1𝑖(𝑥) ≤ 𝑏1    𝑖 = 1,… ,𝑚 , 𝑎2𝑗(𝑥) > 𝑏2    𝑗 =

1, … , 𝑛 and 𝑎3𝑘(𝑥) = 𝑏3     𝑘 = 1, … , 𝑜 are sets of  constraints based on the optimised 

system which include equality constraints and inequality constraints. 

ℝ𝑛  represents the Euclidean space with 𝑛  dimensions of this problem, 𝑆  is a smaller 

mathematical set contained in the Euclidean space and 𝑥 is the vector variable or a set of 

variables, such as {𝑥1, 𝑥2, … , 𝑥𝑛}, which need to be calculated and lead to an optimised 
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result. Thus 𝑥 ∈ 𝑆 ∈ ℝ𝑛  defines the value range of the variables in the optimisation 

problem. 

For the set 𝑆 of a mathematical program, if and only if Equation 3-2 can be satisfied, the 

set 𝑆 can be considered as convex. 

{
 
 

 
 
𝜆𝑥1 + (1 − 𝜆)𝑥2 ∈ 𝑆

𝑓𝑜𝑟 𝑎𝑙𝑙:

∀𝑥1 ∈ 𝑆
∀𝑥2 ∈ 𝑆
∀𝜆 ∈ [0, 1]

                                                                                      𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟐 

The graphical representation of a convex set and a non-convex set is shown in Figure 3-

1. Convex optimisation problems can be solved quickly and reliably up to a very large 

size, as they only have global optimum solutions. Contrarily, with different local optimum 

solutions, the solving processes are more complicate for non-convex problems. 

 

 

 

 

Figure 3-1 Graphical representation of a convex set and a non-convex set 

The maximisation optimisation problem can be easily converted to a minimisation 

problem by converting the symbol of the objective function. The objective function is 

given by 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑓(𝑥) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑓′(𝑥) = −𝑓(𝑥). 

For the mathematical programming in Equation 3-1, if a set of variables 𝑥 in the value 

range satisfies the constraints 𝑎1𝑖(𝑥) ≤ 𝑏1    𝑖 = 1,… ,𝑚 , 𝑎2𝑗(𝑥) > 𝑏2    𝑗 = 1,… , 𝑛 , 

𝑥1 
𝑥2 𝑥1 𝑥2 

Convex Non-convex 
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𝑎3𝑘(𝑥) = 𝑏3     𝑘 = 1, … , 𝑜 , this variable vector 𝑥  can be called a solution of the 

objective function. If a solution in the value range can maximise the objective 𝑓(𝑥), this 

solution is a global optimal solution. 

However, if a variable vector 𝑥0  can only maximise the problem within its 

neighbourhood 𝑁(𝑥0), this vector is a global optimum of the problem in a smaller range 

as shown in Equation 3-3. For the original problem, this vector is a local optimum solution. 

Generally, most mathematical problems aim to find the global optimum solution instead 

of the local optimum solution. Examples of a global optimum solution and local optimum 

solution are shown in Figure 3-2. 

{
  
 

  
 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑓(𝑥)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

𝑎1𝑖(𝑥) ≤ 𝑏1    𝑖 = 1,… ,𝑚

𝑎2𝑗(𝑥) > 𝑏2    𝑗 = 1,… , 𝑛

𝑎3𝑘(𝑥) = 𝑏3     𝑘 = 1,… , 𝑜

𝑥 ∈ 𝑁(𝑥0) ∈ ℝ𝑛

                                                                    𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟑 

 

Figure 3-2 Examples of global and local optimum solutions 

Generally, it is more difficult to calculate the solution for a mathematical problem with a 

non-convex set, as the global optimal solution is hard to characterise (Chen 2012; Jeter 

2018; Hillier 2021) .  

𝑓(𝑥) 

𝑥 

Global optimum solution 

Local optimum solution 
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3.1.2 Classification of Problems in Mathematical Programming 

Generally, mathematical programming problems can be classified into different types 

according to the characteristics of the different properties which include the objective 

function, the constraint functions and the definition of the value range. The main 

classifications are listed below: 

1. Based on the linearity of the objective function and the constraint function, 

problems can be classified as linear programming or nonlinear programming. 

2. Based on the convexity of the solutions’ value range, problems can be classified 

as convex programming or non-convex programming. 

3. Based on the continuity of the solutions’ value range, problems can be classified 

as continuous programming or non-continuous programming. 

4. Some mathematical programming problems do not have a constraint function; 

based on whether the constraint function is contained in the problem, the problem 

can be classified as unconstrained programming or constrained programming. 

5. The solutions of some mathematical programming problems can only be integral 

values; these problems can be regarded as integer programming. 

There are also different classifications based on other properties of mathematical 

programming problems, such as quadratic programming, conic programming, 

deterministic programming, stochastic programming, etc. 

Most mathematical programming problems have two or more properties, for example the 

constraint function of a mathematical programming problem is nonlinear and the value 

range of the problem is an integer. Thus, the problem can be called nonlinear integer 
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programming. Classification of the main types of mathematical programming problems 

is shown in Table 3-1. 

Classification Objective 

Function 

Constraint 

Function 

Value Range 

Continuous 

Programming 

N/A N/A 𝑆 ∈ ℝ𝑛 

Continuous 

Integrated 

Programming 

N/A N/A 𝑆 ∈ ℤ𝑛 

Discrete 

Linear 

Programming 

Linear Linear 𝑆 ∈ ℝ𝑛 

 

 

Nonlinear 

Programming 

At least one function should be nonlinear 𝑆 ∈ ℝ𝑛 

 

Unconstrained 

Programming 

N/A No 𝑆 ∈ ℝ𝑛 

 

Constrained 

Programming 

N/A Yes 𝑆 ∈ ℝ𝑛 

 

Convex 

Programming 

Convex Convex 𝑆 ∈ ℝ𝑛 

Convex 

Table 3-1 Main types of mathematical programming problems 

3.1.3 Linear Programming 

As the earliest mathematical programming method, the research on linear programming 

can be dated back to 1827 (Schrijver 2011); at that time Fourier published a 

method(known as Fourier-Motzkin elimination) to solve it (Sierksma and Zwols 2015). 

During 1946 and 1947, George B. Dantzig independently developed the simplex method 

(Dantzig 1948), which can tackle most linear programming problems. Since the Second 

World War, more and more research and applications based on linear programming have 

been implemented. The main feature of linear programming is that both the objective 

function and constraint function need to be linear. Thus, a linear programming problem 

can be presented as Equation 3-4: 
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{
 
 
 
 

 
 
 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒  𝑐𝑇𝑥
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

𝑎𝑖
𝑇𝑥 ≤ 𝑏𝑖 𝑖 = 1,… ,𝑚

𝑎𝑗
𝑇𝑥 ≤ 𝑏𝑗  𝑗 = 1,… , 𝑛

…
𝑥 ∈ 𝑆 ∈ ℝ𝑛

𝑐, 𝑎𝑖, 𝑎𝑗 , … ∈ ℝ𝑛

𝑏𝑖, 𝑏𝑗 , … ∈ ℝ𝑛 

                                                                                      𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟒 

By adding slack variables (additional introduced variables to transform inequality 

constraints to equality constraints), all the ‘less-than’ equations can be transformed to 

‘equal’ equations. Thus, the linear programming problem in Equation 3-4 can be 

transformed into a standard form as shown in Equation 3-5. 

{

𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑧 = 𝑐𝑇𝑥
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:
𝐴𝑥 = 𝑏
𝑥 ≥ 0

                                                                                 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟓 

where𝑧  is the objective to be maximised, 𝑥  is the variables, 𝑐  is the vector of cost 

coefficients, 𝐴  is a real 𝑚× 𝑛  matrix, 𝑏 = (𝑏1, … , 𝑏𝑚)
𝑇  is the right-hand-side vector, 

and 𝑚 and 𝑛 are the number of constraints and variables, respectively. Generally, most 

linear programming problems will be transformed into the standard form before being 

solved. 

The simplex method has been applied to solve linear programming problems from early 

on. A specific introduction and explanation of the simplex method can be found in the 

work of Minoux (2004). In 1984, a new interior point method (Adler et al. 1989) was 

proposed to solve the linear programming problem by Narendra Karmarkar, and this 

method can also be applied to solve nonlinear convex programming problems. 

3.1.4 Nonlinear Programming 
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In contrast to linear programming, if there is at least one nonlinear function in a problem 

(including the objective function and constraint function), it can be considered as 

nonlinear programming. 

Compared with linear programming, nonlinear programming is hard to solve. Thus, for 

different nonlinear programming problems, the solution method is different. There are 

two main types of nonlinear programming, unconstrained and constrained, which will be 

introduced separately. 

3.1.4.1  Unconstrained Nonlinear Programming 

The mathematical definition of an unconstrained nonlinear programming problem can be 

shown by Equation 3-6. As there is no constraint function, the objective function 𝑓(𝑥) 

must be nonlinear. 

{
𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑓(𝑥)

𝑥 ∈ ℝ𝑛
                                                                                                 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟔 

Most of the methods for solving an unconstrained nonlinear programming problem aim 

to find a starting point 𝑥0 , then try to find the optimal solution 𝑥∗  by iteration. The 

performance of the solving process, such as the calculation speed and quality of the result, 

will be significantly impacted by the starting point 𝑥0. Generally, the steepest decent 

method, Newton’s method, quasi-Newton’s method and some other methods without the 

calculation of derivatives are applied (Powell 1964). 

Sometimes, the objective function of some unconstrained nonlinear programming 

problems is concave or convex; however it may not be everywhere differentiable. This 

specific kind of unconstrained nonlinear programming problem can be dealt with by the 

decomposition methods (Tai and Espedal 1998). 
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3.1.4.2  Constrained Nonlinear Programming 

The mathematical definition of constrained nonlinear programming is shown in Equation 

3-7. It is similar to constrained linear programming, but has at least one nonlinear function. 

Optimisation problems that have constraints in practice are normally represented by 

constrained nonlinear programming. 

{
 
 

 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑓(𝑥)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

𝑎1𝑖(𝑥) ≤ 𝑏1    𝑖 = 1,… ,𝑚

𝑎2𝑗(𝑥) = 𝑏1    𝑗 = 1,… ,𝑚

𝑥 ∈ 𝑆 ∈ ℝ𝑛

                                                                             𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟕 

The necessary conditions to solve a nonlinear programming problem are the Karush–

Kuhn–Tucker conditions (Kuhn–Tucker or KKT conditions) which were proposed by 

William Karush in his Master’s thesis in 1939 as the necessary conditions for solving 

constrained nonlinear programming problems and originally named after Harold W. 

Kuhn and Albert W. Tucker in 1951. 

Generally, two big categories of methods are usually applied to solve constrained 

nonlinear programming problems, direct methods and methods based on the concept of 

duality. 

The normal direct methods include the method of changing the variables, method of 

feasible directions, the reduced gradient method, Newton’s method, etc. (Schenk 1998). 

Firstly, these methods will generate a number of solutions which can satisfy the constraint 

function, then choose the optimum solutions step by step. 

In contrast, methods based on the concept of duality will convert the proposed constrained 

nonlinear programming problem into am unconstrained nonlinear programming problem 

first, and then solve this problem based on the methods for unconstrained nonlinear 
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programming. These methods mainly include penalty function methods and classical 

Lagrange methods. 

With the computation time requirements for the iterative process of direct methods, and 

due to time limits in real-life operation, in general, direct methods can only generate a 

suboptimal solution instead of the optimal solution. Contrary to direct methods, methods 

using the concept of duality are more robust and obtain global convergence more easily, 

but their operating process is much more complicated. 

3.1.5 Integer Programming 

An integer programming problem is a mathematical programming problem with some or 

all of the variables restricted to being integers. Based on this restriction, problems can be 

divided into pure integer programming and mixed-integer programming problems. All 

the variables need to be taken as integer values for a pure integer programming problem. 

In contrast, in a mixed-integer programming problem, only some of the variables are 

constrained to be integers while other variables are allowed to be non-integers, which 

means this type of problem can also include some continuous variables. There is a special 

type of integer programming called 0-1 programming or binary integer programming 

which only takes values of 0 or 1 for its variables. In recent years, because of its 

accessibility, integer programming has been widely applied in different areas, such as 

production planning, scheduling, territorial partitioning and telecommunications 

networks. The mathematical definition of a pure integer programming problem can be 

expressed as in Equation 3-8: 
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{
 
 

 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑓(𝑥)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑎1𝑖(𝑥) ≤ 𝑏1    𝑖 = 1,… ,𝑚

𝑎2𝑗(𝑥) = 𝑏1    𝑗 = 1,… ,𝑚

𝑥 ≥ 0
𝑥 ∈ 𝑆 ∈ ℤ𝑛

                                                                             𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟖 

Compared with normal linear or nonlinear programming problems, the values of a pure 

integer programming problem are restricted to being integers which are larger or equal to 

zero. Generally, there are three main types of method for solving an integer programming 

problem, branch and bound methods, cutting-plane methods and meta-heuristic methods. 

Branch and bound methods 

The branch and bound method (BB, or BnB) was firstly proposed by Ailsa Land and 

Alison Doig whilst carrying out research at the London School of Economics sponsored 

by British Petroleum in 1960; it has become the most commonly used tool for solving 

integer programming and has been improved by many authors (Land and Doig 1960) . 

Generally, branch and bound methods mainly include these steps: 

Branching: In the branching process, the whole value range 𝑺 of the variables will be 

divided into some smaller value set {𝑆1, 𝑆2, … , 𝑆𝑘}, ∪1
𝑘 𝑆𝑖 = 𝑺. A tree structure with the 

subset 𝑆𝑖 as its nodes can be defined. 

Pruning: In this process, based on the objective, for example, maximise the value of 𝑓(𝑥), 

the upper and lower bounds will be calculated for each subset 𝑆𝑖. If the upper bound of a 

subset 𝑆𝑘  is smaller than the lower bound of a subset 𝑆𝑗 , then the subset 𝑆𝑘  will be 

discarded. This process is similar to cutting the bad branches from a tree. 
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These branching and pruning steps will continue to discard the bad values of 𝑓(𝑥) until 

the set 𝑺 is reduced to a single set which can maximise the value of the objective function 

𝑓(𝑥). 

The calculation time of the branch and bound method is impacted by the selection of 

criteria for branching, bounding and pruning, and the stopping criteria; in the worst case, 

these may lead to exponential time complexities. In practice, the branch and bound 

method is a systematic method for solving programming problems, especially for integer 

programming (Clausen 2003). 

Cutting-plane methods 

Cutting-plane methods are a class of methods that iteratively refine (cut) the objective 

function by means of linear inequalities; they were introduced by Ralph E. Gomory in the 

1950s and are commonly used to find integer solutions for mixed-integer linear 

programming problems (Gilmore and Gomory 1961; Marchand et al. 2002). 

Generally, cutting-plane methods will relax the integer restriction of variables for the 

mathematical programming problem first, and solve the relaxed problems to generate a 

basic feasible solution; the solution is considered to be a vertex of the convex polytope in 

geometry that consists of all the feasible points. If the vertex is an integer, the solution of 

the original problem has been found; otherwise, we need to find a hyperplane with the 

vertex and all feasible integer points on each side and add it as an additional constraint to 

create a modified linear programming problem, then solve the new problem and keep 

iterating the process until the integer solution can be found. Cutting-plane methods can 

also be extended to solving nonlinear programming problems (Konno et al. 2003). 

Meta-heuristic methods 
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Most mathematical programming problems in real life are hard to solve using traditional 

methods. As the size of the problem grows, the value range may be larger, and also the 

number of variables will be increased. These practical problems will highly impact the 

computation time of a traditional method. 

With the development of computer science, meta-heuristic methods have become popular 

in recent years. A meta-heuristic is a higher-level procedure or heuristic designed to find, 

generate, or select a heuristic that may provide a sufficiently good solution to a 

mathematical programming problem, especially with incomplete or imperfect 

information or limited computation capacity. The meta-heuristic method was proposed in 

the 1950s and is widely used for solving integer programming problems; it was defined 

as “an iterative generation process which guides a subordinate heuristic by combining 

intelligently different concepts for exploring and exploiting the search space, learning 

strategies are used to structure information in order to find efficiently near-optimal 

solutions” by Osman and Laporte in 1996 (Osman and Laporte 1996). 

Generally, meta-heuristic methods implement some form of stochastic optimisation and 

deal with the optimisation problem with a discrete value space, the solution being 

dependent on the set of random variables generated. Thus, most meta-heuristic methods 

do not guarantee that a globally optimal solution can be found. The commonly used meta-

heuristic methods include: the tabu search algorithm (Glover 1986) which uses a local or 

neighbourhood search procedure to iteratively move from one potential solution to an 

improved solution; the simulated annealing algorithm (Kirkpatrick et al. 1983) which is 

based on the notion of slow cooling, the temperature progressively decreasing from an 

initial positive value to zero – the algorithm randomly selects a solution in each time step, 

measures its quality, and moves to it according to the temperature-dependent probabilities 
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of selecting better or worse solutions; the genetic algorithm (Holland 2010) which is 

inspired by the process of natural selection – a population of candidate solution will be 

generated randomly and evolved toward better solutions based on the objective; the 

solutions of genetic algorithms are generally represented in binary as strings of 0s and 1s, 

thus this method is extremely suitable for 0-1 programming or binary integer 

programming problems. The other widely used meta-heuristic methods include scatter 

search (Glover 1977), colony optimisation (Dorigo 1992), particle swarm optimisation 

(Kennedy 1995) and differential evolution (Storn and Price 1997). 

3.1.6 Dynamic Programming 

Many real-world optimisation problems are dynamic. The field of dynamic optimisation 

deals with such problems where the search space or the parameters of objective function 

change over time. Generally, an unconstrained single-objective DOP (dynamic 

optimisation problem) can be defined by Equation 3-9: 

{
𝑓(𝑥,⃗⃗⃗  𝑎 (𝑡))

𝑥 ∈  ℝ𝑛
                                                                                                           𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟗  

where 𝑓 is the objective function, 𝑥 ⃗⃗⃗   is a solution in the search space, 𝑎 ⃗⃗⃗   is a vector of 

time-varying objective function control parameters and t is the time index. In the real 

world, 𝑎 ⃗⃗⃗   could be a series of environmental parameters which change over time; as a 

specific example, in a metro system, it can be the passenger flow entry rate which keeps 

changing with time. It can also include other time-variant environmental parameters like 

the domain of variables, number of variables and the interactions between variables. 

Most existing DOP research considers that parameter changes only happen in a discrete 

time interval. For example, 𝑡 ∈ {1, 2, … , 𝑇}, the series of the objective functions, is: 
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⟨𝑓(𝑥,⃗⃗⃗  𝑎 (1))|𝑓(𝑥,⃗⃗⃗  𝑎 (2))|… |𝑓(𝑥,⃗⃗⃗  𝑎 (𝑇))⟩                                                              𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧𝟑 − 𝟏𝟎 

In normal research, the change of parameters between successive functions is small, i.e., 

keeping the passenger flow entry rate the same for a specific time interval, all the 

functions in the series can be presented by one equation. In cases where the control 

parameter changes are unstable, especially where there are connections between 

parameters, i.e., passenger flow entry rate keeps changing with time, and it will impact 

the number of passengers who can board or alight from a specific train, each objective 

needs to be considered independent and accumulate the objective function in each time 

point to the final objective function, as shown in Equation 3-11 (Yazdani et al. 2021). 

{
 
 

 
 
𝐹(𝑥 ⃗⃗⃗  ) = ∑𝑓(𝑥,⃗⃗⃗  𝑎 (𝑡))

𝑇

𝑡=1

𝑡 ∈ {1, 2, … , 𝑇}

𝑥 ∈  𝑅𝑛

                                                                                  𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟏𝟏 

3.2 Formulation of Passenger Flow-Oriented Scheduling 

Model (POSM) Based on Nonlinear Integer 

Programming 

In order to get a better understanding and solve passenger flow-oriented scheduling and 

real-time optimisation problems, the problems need to be formulated into mathematical 

models. A Passenger Flow-Oriented Scheduling Model (POSM) is proposed in this 

section. 

Based on other rail scheduling research (Wang et al. 2013; Chen et al. 2015), the 

objectives for the scheduling optimisation must be given first. According to a random 

passenger interview from the Wuhan Metro system, most passengers are concerned about 
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their waiting time in the station to judge the service quality. Also, from the field study on 

London Underground, operators consider passenger waiting time the most crucial index 

to satisfy passengers. Passenger waiting time directly impacts the overall passenger 

experience and satisfaction. Long waiting times can lead to frustration and inconvenience, 

potentially causing passengers to seek alternative transportation. Additionally, it can 

affect the operational efficiency of the metro system, as passengers may become 

overcrowded at stations. By reducing waiting times, metro operators can improve the 

reliability and overall convenience of the service, making it a more attractive option for 

passengers. 

And according to the discussion with the China Academy of Transportation Science. The 

full load rate, also known as the "train load factor" or “train capacity occupation ratio” is 

considered an essential index in metro service because it measures the utilisation of the 

available capacity on each train. The full load rate indicates how effectively the metro 

system is utilising its resources, such as rolling stock, and how well it is meeting the 

demand for transportation. A high full load rate indicates that the metro service operates 

at maximum efficiency. In contrast, a low full load rate may indicate the underutilisation 

of resources, which can result in higher operational costs and reduced revenues. In order 

to optimise their operations, metro operators need to regularly monitor the full load rate 

and make adjustments as needed to ensure that their resources are being used effectively 

and efficiently.  

Thus, in this research, a definition of SQI is used which integrates passenger waiting times 

and train capacity occupation ratio. The objective is to find the minimum passenger 

waiting time and maximum train capacity occupation ratio. The mathematical 

representation of the objective function is shown in Equation 3-12. 
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min SQI = 𝜔1∑ 𝑤𝑖,𝑠
𝑖,𝑠

+ 𝜔2∑
1

𝑐𝑟𝑖,𝑠
 

𝑖,𝑠
                                                 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧𝟑 − 𝟏𝟐  

where 𝜔1 denotes the weighting of passenger waiting time in the operation, while 𝜔2 

denotes the weighting of capacity occupation ratio. The detailed ratios of weightings are 

determined based on different optimisation requirements. Generally, in peak time, to 

satisfy high passenger demand, passenger waiting time will be assigned a bigger 

weighting value; in off-peak time, to increase occupation ratio, passenger waiting time 

will be assigned a smaller value. 𝑤𝑖,𝑠 is the waiting time for different trains in each station. 

𝑐𝑟𝑖,𝑠 is each train’s capacity occupation ratio after it departs from different stations. 

In this objective function, the aim is to increase train capacity occupation ratio, while 

passenger waiting time should decrease. In this situation, the reciprocal value of capacity 

occupation ratio is applied as shown in Equation 3-12, which modifies the objective 

function to a standard form and unifies the objectives to minimise. 

Let 𝑆  be the set of stations in the system, 𝑇  be the discrete operation time horizon 

considered and 𝐼 be the set of trains scheduled in the considered time horizon. The index 

𝑠 is associated with a specific station, 𝑡 denotes a specific time in operation time horizon 

and 𝑖 represents a specific train number in the system. 

𝑠 ∈ 𝑆 = {0, 1, … , |𝑆|}                                                                                       𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟏𝟑 

𝑡 ∈ 𝑇 = {0, 1, … , |𝑇|}                                                                                       𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟏𝟒 

𝑖 ∈ 𝐼 = {0, 1, … , |𝐼|}                                                                                         𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟏𝟓 

Let 𝐻 be the set of optional departure time intervals between two trains and 𝐸 be the set 

of optional dwelling times in stations for each train. 𝑙𝑑𝑖,𝑖−1  represents the choice of 



46 

 

departure time interval between train 𝑖 and train 𝑖 − 1 from the optional set, while 𝑙𝑒𝑖,𝑠 

represents the choice of dwelling time for train 𝑖 at station 𝑠 from the optional set. ℎ𝑑𝑖,𝑖−1 

denotes the departure time interval between train 𝑖 and train 𝑖 − 1 at the first station; this 

time interval should be included in the collection of optional intervals. And 𝑒𝑖,𝑠 denotes 

the dwelling time for train 𝑖 at station 𝑠; dwelling time should also be chosen from the 

optional dwelling time set. 

ℎ𝑑𝑖,𝑖−1 ∈ 𝐻(𝑙𝑑𝑖,𝑖−1)                                                                                         𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟏𝟔 

𝑒𝑖,𝑠 ∈ 𝐸(𝑙𝑒𝑖,𝑠)                                                                                                     𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟏𝟕 

Let ℎ𝑖,𝑖−1,𝑠 denote the time interval (departure time of the first train minus arrival time of 

the next train) between train 𝑖 and train 𝑖 − 1 at station 𝑠. 

ℎ𝑖,𝑖−1,0 = ℎ𝑑𝑖,𝑖−1                                                                                               𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟏𝟖 

For systematic operational safety, the minimum headway ℎ𝑚𝑖𝑛 should be provided. 

ℎ𝑖,𝑖−1,𝑠 ≥ ℎ𝑚𝑖𝑛                                                                                                   𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟏𝟗 

Generally, in a metro system, the scheduling process mainly focuses on five parameters: 

arrival times, departure times, running times, dwelling times and departure time intervals. 

For this research, the dwelling times and departure intervals are defined as the decision 

variables; the relationship between these and other parameters should be provided. 

The arrival time 𝑎0,0 for the first train at the first station is set to a constant value. The 

arrival time 𝑎𝑖,0 of train 𝑖 at the first station equals the departure time 𝑑𝑖−1,0 of train 𝑖 − 1 

plus the departure time interval from the optional set. 

𝑎𝑖,0 = 𝑑𝑖−1,0 + ℎ𝑑𝑖,𝑖−1                                                                                     𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟐𝟎 
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The departure time 𝑑𝑖,𝑠 of train 𝑖 at station 𝑠 is equal to the sum of the arrival time 𝑎𝑖,𝑠 

and the dwell time 𝑒𝑖,𝑠. 

𝑑𝑖,𝑠 = 𝑎𝑖,s + 𝑒𝑖,𝑠                                                                                                 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟐𝟏 

For train 𝑖, planned running time 𝑟′𝑖,(𝑠−1,𝑠) added to the departure time 𝑑𝑖,s−1 equals its 

planned arrival time 𝑎′𝑖,𝑠; if 𝑎
′
𝑖,𝑠 minus the last train’s departure time 𝑑𝑖−1,𝑠 is larger than 

the minimum headway, its running time 𝑟𝑖,(𝑠−1,𝑠) is equal to the planned running time, 

else its running time is equal to the minimum headway added to last train’s departure time 

in station 𝑠 minus the departure time in station 𝑠 − 1 for train 𝑖. 

𝑎′𝑖,𝑠 = 𝑟
′
𝑖,(𝑠−1,𝑠) + 𝑑𝑖,s−1                                                                                𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟐𝟐 

𝑟𝑖,(𝑠−1,𝑠) = {
𝑟′𝑖,(𝑠−1,𝑠)      𝑎

′
𝑖,𝑠 − 𝑑𝑖−1,𝑠 ≥ ℎ𝑚𝑖𝑛

ℎ𝑚𝑖𝑛 − 𝑑𝑖,s−1 + 𝑑𝑖−1,𝑠      𝑎
′
𝑖,𝑠 − 𝑑𝑖−1,𝑠 < ℎ𝑚𝑖𝑛

                 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟐𝟑 

The arrival time is equal to the last train’s departure time added to the running time. 

𝑎𝑖,s = 𝑑𝑖,s−1 + 𝑟𝑖,(𝑠−1,𝑠)    𝑠 > 0                                                                     𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟐𝟒 

As for passenger flow, the number of passengers 𝑝𝑖,𝑠
𝑤𝑎𝑖𝑡at station 𝑠 waiting for train 𝑖 can 

be represented by the passengers 𝑝𝑖−1,𝑠
𝑙𝑒𝑓𝑡

 who were left by train 𝑖 − 1 and newly arrived 

passengers based on the time-dependent arrival rate 𝜆𝑠(𝑡) between the departure times of 

train 𝑖 − 1 and train 𝑖. 

𝑝𝑖,𝑠
𝑤𝑎𝑖𝑡 = 𝑝𝑖−1,𝑠

𝑙𝑒𝑓𝑡
+∑ 𝜆𝑠(𝑡)

𝑑𝑖,𝑠

𝑑𝑖−1,𝑠+1
                                                                 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟐𝟓 

The number of passengers 𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛 on train 𝑖 before it arrives at station 𝑠 must be smaller 

than or equal to its maximum capacity 𝑐𝑖,𝑚𝑎𝑥. The remaining capacity 𝑐𝑖,𝑠 of train 𝑖 at 
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station 𝑠 after passengers alight equals the train’s maximum capacity minus 𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛 plus 

the spare capacity 𝑝𝑖,𝑠
𝑎𝑙𝑖𝑔ℎ𝑡

 because of passengers alighting. With more and more metro 

systems have been implemented with platform screen doors and safety officers on the 

platform, the impacts from passenger alighting and boarding to journey have been 

reduced. Thus, this research does not consider the alighting and boarding impacts.  

𝑐𝑖,𝑠 = 𝑐𝑖,𝑚𝑎𝑥 − 𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛 + 𝑝𝑖,𝑠

𝑎𝑙𝑖𝑔ℎ𝑡
                                                                     𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟐𝟔 

The number of passengers 𝑝𝑖,𝑠
𝑏𝑜𝑎𝑟𝑑 who can board train 𝑖 at station 𝑠 cannot be larger than 

the remaining train capacity. 

𝑝𝑖,𝑠
𝑏𝑜𝑎𝑟𝑑 = min (𝑐𝑖,𝑠, 𝑝𝑖,𝑠

𝑤𝑎𝑖𝑡)                                                                              𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟐𝟕 

If a train’s capacity is enough, all passengers can board the train. Otherwise, some 

passengers will be left. The number of passengers 𝑝𝑖,𝑠
𝑙𝑒𝑓𝑡

 left by train 𝑖 at station 𝑠 is given 

by: 

𝑝𝑖,𝑠
𝑙𝑒𝑓𝑡

= max (𝑝𝑖,𝑠
𝑤𝑎𝑖𝑡 − 𝑐𝑖,𝑠, 0)                                                                         𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟐𝟖 

The number of passengers on train 𝑖 after station 𝑠 is equal to the number of passengers 

on the train before it arrives minus alighting passengers plus boarding passengers. 

𝑝𝑖,𝑠+1
𝑡𝑟𝑎𝑖𝑛 = 𝑝𝑖,𝑠

𝑡𝑟𝑎𝑖𝑛 − 𝑝𝑖,𝑠
𝑎𝑙𝑖𝑔ℎ𝑡

+ 𝑝𝑖,𝑠
𝑏𝑜𝑎𝑟𝑑                                                             𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟐𝟗 

Thus the passenger waiting time part 𝑤𝑖,𝑠 in the objective function Equation 3-14 can be 

transformed into the form of Equation 3-30. 

𝑤𝑖,𝑠 = 𝑝𝑖,𝑠
𝑙𝑒𝑓𝑡

(𝑑𝑖,𝑠 − 𝑑𝑖−1,𝑠) + ∑ 𝜆𝑠(𝑡)(𝑑𝑖,𝑠 − 𝑡 + 1)

𝑑𝑖,𝑠

𝑡 = 𝑑𝑖−1,𝑠+1

                 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟑𝟎 
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The trains’ full load rate 𝑐𝑟𝑖,𝑠 can be transformed into the form of Equation 3-31. 

𝑐𝑟𝑖,𝑠 = 
𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛

𝑐𝑖,𝑚𝑎𝑥
                                                                                                    𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟑𝟏 

The objective function presented in this thesis is to minimise the SQI shown in Equation 

3-12. For the POSM, the detailed form of Equation 3-14 can be transformed into Equation 

3-32. 

SQI = 𝜔1 ∗∑∑[𝑝𝑖−1,𝑠
𝑙𝑒𝑓𝑡

(𝑑𝑖,𝑠 − 𝑑𝑖−1,𝑠) + ∑ 𝜆𝑠(𝑡)(𝑑𝑖,𝑠 − 𝑡 + 1)

𝑑𝑖,𝑠

𝑡 = 𝑑𝑖−1,𝑠+1

]

𝑆−1

𝑠=0

𝐼

𝑖=0

+ 

                  𝜔2 ∗∑∑[
𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛

𝑐𝑖,𝑚𝑎𝑥
]

𝑆

𝑠=1

𝐼

𝑖=0

 

∀𝑑−1,𝑠 = 0; ∀𝑙−1,𝑠 = 0                                                                                  𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧𝟑 − 𝟑𝟐 

where 𝜔1 and 𝜔2 are the weightings of passenger waiting time and capacity occupation 

ratio in the operation, the values of which are based on service quality requirements. 

𝑝𝑖−1,𝑠
𝑙𝑒𝑓𝑡

 is the number of passengers left by the last train 𝑖 − 1; 𝑑𝑖,𝑠  and 𝑑𝑖−1,𝑠  are the 

departure times of train 𝑖 and train 𝑖 − 1 in station 𝑠. 𝑡 represents a specific time in the 

operation time horizon; 𝜆𝑠(𝑡) is the dynamic passenger flow arrival rate based on time 

variation. 𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛 is the number of passengers on train 𝑖 when it arrives in station 𝑠; 𝑐𝑖,𝑚𝑎𝑥 

is the maximum capacity of train 𝑖. 

The aim of passenger flow-oriented scheduling is to find the optimal departure time 𝑑𝑖,𝑠 

for each train to minimise the SQI presented in Equation 3-12. With Equations 3-20 to 3-

24, a train’s departure time 𝑑𝑖,𝑠 can be represented by departure time interval ℎ𝑑𝑖,𝑖−1 and 

dwelling time 𝑒𝑖,𝑠, as in Equation 3-33. 
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𝑑𝑖,𝑠 = ∑[𝑟𝑖,(𝑠−1,𝑠) + 𝑒𝑖,𝑠] +∑(𝑒𝑖−1,0 + ℎ𝑑𝑖,𝑖−1)

𝑖

𝑖=1

+ 𝑎0,0 + 𝑒𝑖,0

𝑠

1

          𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟑𝟑 

Thus, the problem presented above is a nonlinear integer programming problem; the 

variables that need to be optimised are: ℎ𝑑𝑖,𝑖−1 and 𝑒𝑖,𝑠 . For this research, we do not 

modify planned running time actively. The values of all the other variables are given or 

can be calculated in operations. The constraint conditions shown in the equation above 

are the system constraints based on safe operation and infrastructure which need to be 

observed in practical metro operations. In some specific operation situations, more 

constraints should be added to the POSM, based on actual operational and safety 

requirements. 

As presented above, the proposed problem of train scheduling based on dynamic 

passenger demand can be formulated with nonlinear integer programming as follows: 

Objective: 

Minimise 

SQI = 𝜔1∑∑[𝑝𝑖−1,𝑠
𝑙𝑒𝑓𝑡

(𝑑𝑖,𝑠 − 𝑑𝑖−1,𝑠) + ∑ 𝜆𝑠(𝑡)(𝑑𝑖,𝑠 − 𝑡 + 1)

𝑑𝑖,𝑠

𝑡 = 𝑑𝑖−1,𝑠+1

]

𝑆−1

𝑠=0

𝐼

𝑖=0

+ 𝜔2∑∑[
𝑐𝑖,𝑚𝑎𝑥

𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛

]

𝑆

𝑠=1

𝐼

𝑖=0

 

Subject to: 

∀𝑑−1,𝑠 = 0; ∀𝑙−1,𝑠 = 0                                                                                   

𝑑𝑖,𝑠 = ∑[𝑟𝑖,(𝑠−1,𝑠) + 𝑒𝑖,𝑠] +∑(𝑒𝑖−1,0 + ℎ𝑑𝑖,𝑖−1)

𝑖

𝑖=1

+ 𝑎0,0 + 𝑒𝑖,0 

𝑠

1

 ℎ𝑑𝑖,𝑖−1 ∈ 𝐻; 𝑒𝑖,𝑠 ∈ 𝐸    
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ℎ𝑖,𝑖−1,0 = ℎ𝑑𝑖,𝑖−1   ℎ𝑑𝑖,𝑖−1 ∈ 𝐻                                                                                               

ℎ𝑖,𝑖−1,𝑠 ≥ ℎ𝑚𝑖𝑛                                                                                                    

and 

𝑝𝑖,𝑠
𝑤𝑎𝑖𝑡 = 𝑝𝑖−1,𝑠

𝑙𝑒𝑓𝑡
+∑ 𝜆𝑠(𝑡)

𝑑𝑖,𝑠

𝑑𝑖−1,𝑠+1
 

𝑐𝑖,𝑠 = 𝑐𝑖,𝑚𝑎𝑥 − 𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛 + 𝑝𝑖,𝑠

𝑎𝑙𝑖𝑔ℎ𝑡
                                                                      

𝑝𝑖,𝑠
𝑏𝑜𝑎𝑟𝑑 = 𝑚𝑖𝑛 (𝑐𝑖,𝑠, 𝑝𝑖,𝑠

𝑤𝑎𝑖𝑡)                                                                               

𝑝𝑖,𝑠
𝑙𝑒𝑓𝑡

= 𝑚𝑎x(𝑝𝑖,𝑠
𝑤𝑎𝑖𝑡 − 𝑐𝑖,𝑠, 0) 

𝑝𝑖,𝑠+1
𝑡𝑟𝑎𝑖𝑛 = 𝑝𝑖,𝑠

𝑡𝑟𝑎𝑖𝑛 − 𝑝𝑖,𝑠
𝑎𝑙𝑖𝑔ℎ𝑡

+ 𝑝𝑖,𝑠
𝑏𝑜𝑎𝑟𝑑                                                              

As passenger waiting time is hard to be calculated by statistics in operation and this model 

is difficult to be tested in real life, we can analyse the parameters in the objective function 

to validate the correction of this model. 𝑝𝑖−1,𝑠
𝑙𝑒𝑓𝑡

 defines the left passenger in the station after 

departing, the waiting time of this passenger will directly be impacted by the departure 

time between two trains, which is  (𝑑𝑖,𝑠 − 𝑑𝑖−1,𝑠), thus the left passenger waiting time is 

represented by 𝑝𝑖−1,𝑠
𝑙𝑒𝑓𝑡

(𝑑𝑖,𝑠 − 𝑑𝑖−1,𝑠). New passenger waiting time is directly impacted by 

the passenger arrival time which is defined in the passenger arrival rate 𝜆𝑠(𝑡), and the 

difference between the arrival time and the next train’s departure time 𝜆𝑠(𝑡)(𝑑𝑖,𝑠 − 𝑡 + 1). 

For the train full load rate, we compare the passenger number on the train after train 

departing from each station 𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛  with the train’s maximum capacity 𝑐𝑖,𝑚𝑎𝑥  We also 

implemented the macroscopic passenger and metro simulator, which was proposed in 
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Chapter 4 to validate our model by calculation, the results from simulation can correspond 

with the calculating results from the mathematical model. 

The presented nonlinear integer programming problem is engaged to find the optimal 

departure interval ℎ𝑑𝑖,𝑖−1 between two trains and the dwell time 𝑒𝑖,𝑠 for each train at each 

station with dynamic passenger flow parameter 𝜆𝑠(𝑡) which keeps changing with time. 

3.3 Derived POSM for Real-Time Optimisation Model 

Based on the POSM shown above, a metro timetable can be optimised according to 

collected time-varying passenger flow data. However, in actual operation, because of 

irregular variations, passenger flow data will keep changing in real time. With the 

development of passenger counting systems, these irregular data can be detected and 

predicted in real time. Thus, the timetable generated by POSM also needs to be optimised 

in real time. However, it is impossible to adjust the entire timetable of a service which 

has been dispatched and is running in the network. Thus, to optimise the timetable based 

on detected variations in real time, the departure time generated 𝑑𝑖,𝑠
𝑜𝑙𝑑 should be compared 

with the detection time of the variation 𝑡𝐷. If 𝑑𝑖,𝑠
𝑜𝑙𝑑 is earlier than or equal to the time at 

which the variation detected, it cannot be optimised and these departure times will be 

regarded as parameters in the objective function in future optimisation, else it is still a 

variable 𝑑𝑖,𝑠
𝑛𝑒𝑤 which can be optimised in real time: 

𝑑𝑖,𝑠
𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 = {

𝑑𝑖,𝑠
𝑓𝑖𝑥𝑒𝑑

    𝑡𝐷 ≤  𝑑𝑖,𝑠
𝑜𝑙𝑑

𝑑𝑖,𝑠
𝑛𝑒𝑤      𝑡𝐷 > 𝑑𝑖,𝑠

𝑜𝑙𝑑
                                                                 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟑𝟒 

Based on the new equation proposed above, this problem turns into a DOP with a flexible 

number of variables. The number of variables in real-time scheduling optimisation will 
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keep varying with the detecting time. Thus the POSM with real-time optimisation can be 

modified as follows: 

Objective: 

Minimise 

SQI = 𝜔1∑∑[𝑝𝑖−1,𝑠
𝑙𝑒𝑓𝑡

(𝑑𝑖,𝑠
𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 − 𝑑𝑖−1,𝑠

𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒)

𝑆−1

𝑠=0

𝐼

𝑖=0

+ ∑ 𝜆𝑠(𝑡)(𝑑𝑖,𝑠
𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 − 𝑡 + 1)

𝑑𝑖,𝑠
𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒

𝑡=𝑑𝑖−1,𝑠
𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒+1

] + 𝜔2∑∑[
𝑐𝑖,𝑚𝑎𝑥

𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛

]

𝑆

𝑠=1

𝐼

𝑖=0

 

Subject to: 

∀𝑑−1,𝑠 = 0; ∀𝑙−1,𝑠 = 0                                                                                   

𝑑𝑖,𝑠 = ∑[𝑟𝑖,(𝑠−1,𝑠) + 𝑒𝑖,𝑠] +∑(𝑒𝑖−1,0 + ℎ𝑑𝑖,𝑖−1)

𝑖

𝑖=1

+ 𝑎0,0 + 𝑒𝑖,0 

𝑠

1

 ℎ𝑑𝑖,𝑖−1 ∈ 𝐻; 𝑒𝑖,𝑠 ∈ 𝐸    

ℎ𝑖,𝑖−1,0 = ℎ𝑑𝑖,𝑖−1   ℎ𝑑𝑖,𝑖−1 ∈ 𝐻                                                                                               

ℎ𝑖,𝑖−1,𝑠 ≥ ℎ𝑚𝑖𝑛                                                                                                    

and 

𝑝𝑖,𝑠
𝑤𝑎𝑖𝑡 = 𝑝𝑖−1,𝑠

𝑙𝑒𝑓𝑡
+∑ 𝜆𝑠(𝑡)

𝑑𝑖,𝑠

𝑑𝑖−1,𝑠+1
 

𝑐𝑖,𝑠 = 𝑐𝑖,𝑚𝑎𝑥 − 𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛 + 𝑝𝑖,𝑠

𝑎𝑙𝑖𝑔ℎ𝑡
                                                                      

𝑝𝑖,𝑠
𝑏𝑜𝑎𝑟𝑑 = 𝑚𝑖𝑛 (𝑐𝑖,𝑠, 𝑝𝑖,𝑠

𝑤𝑎𝑖𝑡)                                                                               
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𝑝𝑖,𝑠
𝑙𝑒𝑓𝑡

= 𝑚𝑎x(𝑝𝑖,𝑠
𝑤𝑎𝑖𝑡 − 𝑐𝑖,𝑠, 0) 

𝑝𝑖,𝑠+1
𝑡𝑟𝑎𝑖𝑛 = 𝑝𝑖,𝑠

𝑡𝑟𝑎𝑖𝑛 − 𝑝𝑖,𝑠
𝑎𝑙𝑖𝑔ℎ𝑡

+ 𝑝𝑖,𝑠
𝑏𝑜𝑎𝑟𝑑 

and 

𝑑𝑖,𝑠
𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 = {

𝑑𝑖,𝑠
𝑓𝑖𝑥𝑒𝑑

    𝑡𝐷 ≤  𝑑𝑖,𝑠
𝑜𝑙𝑑

𝑑𝑖,𝑠
𝑛𝑒𝑤    𝑡𝐷 > 𝑑𝑖,𝑠

𝑜𝑙𝑑
  

3.4 Explanation of POSM With a Typical Case 

In the last section, the formulation of POSM and real-time optimisation is presented based 

on integer programming; in this section, the model is explained in detail with a typical 

case. 

Figure 3-3 shows the layout of a typical single-line metro system, where the trains depart 

from the original station to their destination based on a given departure time interval and 

dwelling time at each station. 

Figure 3-3 Layout of a typical single-line metro system 

It is assumed that there are five trains in a five-station single-line system in the research 

time horizon. Here the stations and trains are assigned with a unique number as shown in 

Equations 3-35 and 3-36. 

 

0 1 2 3 4 

Depot 
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𝑠 ∈ 𝑆 = {0, 1, … , |𝑆|}, |𝑆| = 𝟒                                                                       𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟑𝟓 

𝑖 ∈ 𝐼 = {0, 1, … , |𝐼|}, |𝐼| = 𝟒                                                                          𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟑𝟔 

Three optional departure time intervals and two dwelling time choices are used in the 

system, as shown in Equations 3-37 and 3-38: 

𝐻 = {3, 5}                                                                                                         𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟑𝟕 

𝐸 = {1, 2}                                                                                                          𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟑𝟖 

Because train 0 is the first train operating in the research time horizon, the departure time 

interval of train 0 does not need to be considered, and as the final station, station 4, will 

not impact the operation result, the dwelling times at station 4 also do not need to be 

considered. Thus, possible departure and dwelling strategy choices are shown as follows; 

the solution of departure interval and dwelling time based on the choices are listed in 

Tables 3-2 and 3-3: 

 𝑙𝑑𝑖,𝑖−1 = {0,1,1,0}                                                                                          𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟑𝟗 

𝑖 1 2 3 4 

ℎ𝑑𝑖,𝑖−1 3 5 5 3 

Table 3-2 Departure interval choices 

𝑙𝑒𝑖,𝑠 =

[
 
 
 
 
𝟎 𝟎 𝟎 𝟏
𝟏 𝟎 𝟏 𝟎
𝟏 𝟏 𝟎 𝟎
𝟎 𝟏 𝟏 𝟏
𝟎 𝟎 𝟎 𝟎]

 
 
 
 

        𝑠 <  4                                                                𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟒𝟎 
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              s 

i 

0 1 2 3 

 0 1 1 1 2 

𝑒𝑖,𝑠 1 2 1 2 1 

 2 2 2 1 1 

 3 1 2 2 2 

 4 1 1 1 1 

Table 3-3 Dwelling time choices 

The planned running time 𝑟′𝑖,(𝑠−1,𝑠) between different stations can be assumed to be the 

following: 

𝑟′𝑖,(𝑠−1,𝑠) = {2, 3, 2}    0 < 𝑠 < 4                                                          𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟒𝟏 

Based on Equations 3-37 to 3-43, the arrival time 𝑎𝑖,𝑠 and departure time 𝑑𝑖,𝑠 of different 

trains at different stations can be calculated; the results are listed in Tables 3-4 and 3-5. 

         s      

i  

0 1 2 3 

 0 0 3 7 10 

𝑎𝑖,𝑠 1 4 8 12 16 

 2 11 15 20 22 

 3 18 21 26 30 

 4 22 25 29 32 

Table 3-4 Arrival time 𝒂𝒊,𝒔 
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         s      

i  

0 1 2 3 

 0 1 4 8 12 

𝑑𝑖,𝑠 1 6 9 14 17 

 2 13 17 21 23 

 3 19 23 28 32 

 4 23 26 30 33 

Table 3-5 Departure time 𝒅𝒊,𝒔 

Setting the minimum headway between two trains ℎ𝑚𝑖𝑛 = 2, based on Equations 3-24 

and 3-25, the arrival time in the green box of Table 3-4 needs to be modified to ensure 

operational safety. Thus, the arrival and departure times after modification are shown in 

Tables 3-6 and 3-7. 

         s      

i  

0 1 2 3 

 0 0 3 7 10 

𝑎𝑖,𝑠 1 4 8 12 16 

 2 11 15 20 22 

 3 18 21 26 30 

 4 22 25 30 34 

Table 3-6 Arrival time 𝒂𝒊,𝒔 after safety modification 
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         s      

i  

0 1 2 3 

 0 1 4 8 12 

𝑑𝑖,𝑠 1 6 9 14 17 

 2 13 17 21 23 

 3 19 23 28 32 

 4 23 26 31 35 

Table 3-7 Departure time 𝒅𝒊,𝒔 after safety modification 

Assuming the time-dependent arrival rate 𝜆𝑠(𝑡) based on passenger-flow arrival rate, OD 

matrices are shown in Tables 3-8 and 3-9. At 20 minutes, there is a variation to the arrival 

rate. For now, these research passenger flow data need to be assumed, modified and 

forecasted based on the metro system’s historical statistics, but with the development of 

passenger counting systems and AFC systems, more accurate passenger flow data can be 

collected and analysed in future. 

       Destination station 

Origin station 

0 1 2 3 𝜆𝑠(𝑡) 

0 x 2 3 2 7 

1 x x 4 3 7 

2 x x x 5 5 

3 x x x x 0 

Table 3-8 Passenger arrival rate OD matrix and time-dependent arrival rate 𝝀𝒔(𝒕) 

between 0 and 20 minutes 
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       Destination station 

Origin station 

0 1 2 3 𝜆𝑠(𝑡) 

0 x 5 3 5 13 

1 x x 6 6 12 

2 x x x 2 2 

3 x x x x 0 

Table 3-9 Passenger arrival rate OD matrix and time-dependent arrival rate 𝝀𝒔(𝒕) after 20 

minutes 

The capacity of trains 𝑐𝑖,𝑚𝑎𝑥 is a given value based on the vehicle in the system. With the 

𝜆𝑠(𝑡) data from the table above and 𝑐𝑖,𝑚𝑎𝑥, according to Equations 3-27 to Equation 3-

31, the passenger flow parameters required in the objective function can be calculated. 

Regarding the presented example, in the research time horizon, there are five trains 

running in the system with two optional dwelling time in four stations, and four trains 

departing with two optional departure time intervals (the arrival time of the first train at 

the first station is predetermined). The number of possible dwelling and departing strategy 

decisions is 24 × (24)5 = 224 = 16777216. Because of the huge number of decisions, a 

special decision array can be determined to generate the decision tree (Table 3-10). 

𝑙𝑒0,0 𝑙𝑒0,1 𝑙𝑒0,2 𝑙𝑒0,3 𝑙𝑑1,0 𝑙𝑒1,0 𝑙𝑒1,1 𝑙𝑒1,2 𝑙𝑒1,3 𝑙𝑑2,1 𝑙𝑒2,0 𝑙𝑒2,1 𝑙𝑒2,2 𝑙𝑒2,3 

0 0 0 1 0 1 0 1 0 1 1 1 0 0 

𝑙𝑑3,2 𝑙𝑒3,0 𝑙𝑒3,1 𝑙𝑒3,2 𝑙𝑒3,3 𝑙𝑑4,3 𝑙𝑒4,0 𝑙𝑒4,1 𝑙𝑒4,2 𝑙𝑒4,3     

1 0 1 1 1 0 0 0 0 0     

Table 3-10 Example of decision array table 

Green cells in the decision array table indicate the departure interval choice between two 

trains, while yellow cells indicate the dwelling time choice in each station for each train. 
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In the presented example above, the decision array is set to 

[0,0,0,1,0,1,0,1,0,1,1,1,0,0,1,0,1,1,1,0,0,0,0,0]. 

The dispatching process for the five trains in the five-station system can be represented 

by the decision tree shown in Figure 3-4. 

Figure 3-4 Decision tree representing the scheduling process 

Thus, in decision tree representation, the object is to find the best decision branch to 

satisfy dynamic passenger demand. Besides that, in a real-time optimisation process, 

based on Equation 3-36, the detection time of the real-time variation needs to be compared 

with the generated timetable to indicate whether the scheduled strategy is adjustable. In 

this example, the variation is assumed to be detected at time 20. As listed in Tables 3-11 

and 3-12, the arrival and departure times in the red cells are fixed, because the detection 

 

Dwelling choice 

Departure time interval choice 
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time is later than them. Trains have already been dispatched following the old timetable 

earlier than the detection time. 

         s      

i  

0 1 2 3 

 0 0 3 7 10 

𝑎𝑖,𝑠 1 4 8 12 16 

 2 11 15 20 22 

 3 18 21 26 30 

 4 22 25 29 32 

Table 3-11 Fixed and adjustable arrival times in real-time optimisation 

         s      

i  

0 1 2 3 

 0 1 4 8 12 

𝑑𝑖,𝑠 1 6 9 14 17 

 2 13 17 21 23 

 3 19 23 28 32 

 4 23 26 30 33 

Table 3-12 Fixed and adjustable departure times in real-time optimisation 

Conversely, the scheduled arrival and departure times in the blue cells are later than the 

detection time which means the trains still have not been dispatched based on the 

scheduled time, so these arrival and departure times are adjustable. Corresponding these 

times to the decision array, as shown in Table 3-13, only the dwelling time and departure 

time choices in the cells outlined in blue can be adjusted. 
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𝑙𝑒0,0 𝑙𝑒0,1 𝑙𝑒0,2 𝑙𝑒0,3 𝑙𝑑1,0 𝑙𝑒1,0 𝑙𝑒1,1 𝑙𝑒1,2 𝑙𝑒1,3 𝑙𝑑2,1 𝑙𝑒2,0 𝑙𝑒2,1 𝑙𝑒2,2 𝑙𝑒2,3 

0 0 0 1 0 1 0 1 0 1 1 1 0 0 

𝑙𝑑3,2 𝑙𝑒3,0 𝑙𝑒3,1 𝑙𝑒3,2 𝑙𝑒3,3 𝑙𝑑4,3 𝑙𝑒4,0 𝑙𝑒4,1 𝑙𝑒4,2 𝑙𝑒4,3     

1 0 1 1 1 0 0 0 0 0     

Table 3-13 Adjustable dwelling and departure time choices 

For the decision tree in this example, only the dwelling time branches of train 2 at stations 

2 and 3, train 3 at stations 1, 2 and 3, and the departure time interval branch and all the 

dwelling time branches of train 4 can be modified. Also, for the objective function, the 

number of decision variables is changed from 24 to 10; all the fixed choices are turned 

from variables into parameters in real-time optimisation. 

From the example above, we find that for dynamic passenger demand scheduling, as the 

number of trains in a time horizon increases, the number of possible dwelling and 

departure decisions will rise sharply. Even a small example with five trains and five 

stations has a huge decision tree. This leads the POSM problem to be an NP-hard problem, 

which means it is quite hard to find an optimal solution in polynomial time. In addition, 

for real-time scheduling optimisation, the number of decision variables keeps changing 

based on the time at which passenger flow variation is detected, which leads to it being a 

DOP with an uncertain number of variables. Efficient algorithms for solving POSM for 

both passenger demand scheduling and real-time optimisation are required. 

3.5 Filed Study for Application Requirements for Real life 

Metro Operation  
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In the previous sections, the formulation of dynamic passenger flow-oriented scheduling 

and real-time optimisation problems was presented, For the real-life metro application, 

we conducted field studies in the London Underground Bakerloo Line Operation 

Department to investigate the essential requirements for real-time metro operation to 

enhance our methodology for the real life application as shown in Figure 3-5. After the 

field studies, the following requirements have been proposed. 

1. Real-time dynamic operation is not necessary for all-day metro operation; the 

operation strategy is more suitable for a time horizon with dramatic passenger 

flow variations, or when some unpredictable passenger flow variations occur, 

such as the time between peak hours and off-peak hours. In a normal situation, a 

periodic operation strategy should be applied to improve the system’s robustness. 

2. Generally, modifying the number of trains in a specific operation time horizon 

will severely affect the economic operation of the metro system and lead to more 

operational problems, such as staff redeployment. Thus, for real-time operation, 

the number of trains should be confirmed before the operation starts. 

3. In different operation time horizons, different objectives may be proposed, such 

as improving trains’ loading factor for off-peak hours and decreasing passenger 

waiting time for peak hours. 

4. The computation time must be fast enough to ensure metro operators have enough 

time to modify the operation strategies. 

 

 



64 

 

 

 

 

 

 

 

 

Figure 3-5 Field study in London Underground Bakerloo Line Operation Department 

Based on these requirements, a modified comprehensive objective function which 

integrates multiple objectives will be introduced. 

3.6 Passenger Flow-Oriented Comprehensive Objectives 

Function 

During the field studies in the London Underground Bakerloo Line Operation Department, 

after introducing the base level POSM scheduling method, the metro operators of the 

London Underground mainly proposed three requirements for the operational strategies 

based on three typical different operational scenarios. 

(1) An operational strategy to balance passenger waiting time and passenger 

travelling time in peak hours 

For a metro system, the peak hours are always in the weekday mornings and evenings, 

with a large number of passengers on the way to work and home. In these time horizons, 
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because of the huge passenger flow, satisfying passenger requirements becomes the most 

important objective. In peak hours, passengers intend to wait a short time in the stations 

and arrive at their destinations as early as possible; compared with the other situation, 

more trains will be dispatched in these periods. In general, with a longer dwelling time in 

a station, the passenger waiting time in a specific station will be decreased; however, the 

passenger waiting time in the other stations and the boarded passenger travelling time 

will be increased, and the arrival time of the next train will also be impacted. Thus, an 

operation strategy which balances the waiting time and travelling time for all passengers 

in this time horizon is necessary. 

(2) An operation strategy to balance passenger waiting time and train full load 

rate in off-peak hours 

Based on the field study, at weekends or in off-peak hours, such as weekday afternoons, 

the number of passengers is significantly less than the peak hour passenger flow. In real-

life operation, we can always observe the scenario that only a few passengers are waiting 

at stations and most cars of a train are still empty, but the trains still depart at short 

intervals. Normally, passengers in these off-peak hours are more casual about the waiting 

and travelling time. With the original short dwelling time and departure interval, though, 

the passengers’ waiting time and travelling time can be decreased; the trains’ full load 

rate will also be decreased which impacts the system’s efficiency. In this situation, an 

operation strategy is needed which balances passenger waiting time and train full load 

rate, to satisfy passenger demand and metro system efficiency at the same time. 

(3) A faster operation strategy to take all passengers to their destination in the 

time horizon before the closing time 
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A faster operation strategy which can take all passengers to their destination is helpful 

near to the closing time of the metro system. Based on our field study, for the London 

Underground, sometimes because only a few passengers arrive before the closing time, 

trains will run with empty cars and still keep fixed dwelling times at empty stations, which 

significantly impacts the system efficiency. Thus, an operation strategy which can take 

all passengers in the system’s closing time horizon to their destination in the shortest time 

is helpful. 

Besides the three requirements above, in real-life operation, the number of trains in the 

operation time horizon is normally fixed. Modifying the number of trains will cause 

invalid scheduling, staff redeployment and other operational problems. Based on the 

experience of the operators from the London Bakerloo Line, they will only change the 

number of trains in extreme circumstances. Thus, as introduced above, in this research, 

the number of trains will not be modified in the real-time operation. 

According to the objectives proposed above in three different scenarios, in the research 

time horizon, the modified objective function can be divided into four parts and described 

by the proposed notations in the beginning of this chapter: 

Passenger waiting time (PWT): An evaluation object needs to be minimised based on 

requirements 1, 2 and 3. PWT includes the waiting time of newly arrived passengers and 

that of passengers left by the last train, as shown in Equation 3-42. 

𝐏𝐖𝐓 =∑∑[𝑝𝑖,𝑠
𝑙𝑒𝑓𝑡

(𝑑𝑖,𝑠 − 𝑑𝑖−1,𝑠) + ∑ 𝜆𝑠(𝑡)(𝑑𝑖,𝑠 − 𝑡 + 1)

𝑑𝑖,𝑠

𝑡 = 𝑑𝑖−1,𝑠+1

]

𝑆−1

𝑠=0

𝐼

𝑖=0

  𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟒𝟐 
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Passenger travelling time (PTT): An evaluation object needs to be minimised based on 

requirement 1. PTT includes the dwelling time and running time for all the passengers on 

the trains as shown in Equation 3-43. 

𝐏𝐓𝐓 =∑∑[(𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛 − 𝑝𝑖,𝑠

𝑎𝑙𝑖𝑔ℎ𝑡
)(𝑑𝑖,𝑠 − 𝑎𝑖,𝑠) + 𝑝𝑖,𝑠+1

𝑡𝑟𝑎𝑖𝑛(𝑎𝑖,𝑠+1 − 𝑑𝑖,𝑠)]

𝑆−1

𝑠=0

𝐼

𝑖=0

  𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟒𝟑 

Train full load rate (TLR): An evaluation object needs to be maximised based on 

requirement 2. As introduced in the previous sections, TLR is the ratio between the 

passengers on the train and the train’s maximum capacity, as shown in Equation 3-44. 

𝐓𝐋𝐑 =∑∑[
𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛

𝑐𝑖,𝑚𝑎𝑥
]

𝑆

𝑠=1

𝐼

𝑖=0

                                                                                   𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟒𝟒 

End left passengers (ELP): A punishment factor needs to be minimised based on 

requirements 1 and 2, and a constraint factor needs to equal zero based on requirement 3. 

ELP is the number of passengers left by the system at the end of the research time horizon. 

In a normal situation, passengers will keep entering the stations, thus some passengers 

will always be left at the end of a research time horizon except the system’s ending time 

horizon. These passengers left behind are usually regarded as a punishment factor as it 

will be allocated to next time horizon as the increment of passenger entry rate. However, 

at the ending time, the system needs to take all passengers to their destination, so it is 

regarded as a constraint. ELP is equal to the number of passengers left by the last train 

and the passengers arriving after the last train departs in the specific time horizon, as 

shown in Equation 3-45. 

𝐄𝐋𝐏 = 𝑝𝐼,𝑠
𝑙𝑒𝑓𝑡

+ ∑ 𝜆𝑠(𝑡)(𝑇 − 𝑡 + 1)

𝑇

𝑡 = 𝑑𝐼,𝑠+1

                                                  𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟒𝟓 



68 

 

As for the number of trains, the modification is done with strict limitations and the 

optimisation can only be processed based on historical data before real-time operation. 

Integrating the four parts together, a comprehensive objectives function which engages 

to improve the service quality according to the three different requirements can be 

proposed, as shown in Equation 3-46. 

𝐂𝐒𝐐𝐈 = 𝒘𝒕𝟏𝐏𝐖𝐓 +𝒘𝒕𝟐𝒓𝟏(𝐭)𝐏𝐓𝐓 + 𝒘𝒕𝟑𝒓𝟐(𝐭)
𝟏

𝐓𝐋𝐑

+ 𝒘𝒕𝟒𝒓𝟑(𝐭)𝐄𝐋𝐏                                                                      𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟒𝟔 

where 𝐂𝐒𝐐𝐈  is the comprehensive service quality index which integrates the three 

requirements at different times proposed above; as it needs to be minimised in the 

operation, we use the reciprocal of TLR. 𝒘𝒕𝟏  to 𝒘𝒕𝟒  are the weighting parameters of 

different requirements; please note, these weightings are designed based on specific cases. 

According to different generalised journey times and system norms, the weighting factor 

could be different. In real-life operation, operators can choose suitable weightings based 

on different system requirements.. 

Only PWT is the essential object in the three requirements. Three switching functions 

𝒓𝟏(𝐭) to 𝒓𝟑(𝐭) have been added to the other objects; these functions can be presented as 

Equations 3-47 to 3-49. 

𝒓𝟏(𝐭) = {
0    t ∉ peak hours 
1   t ∈ peak hours

                                                                        𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟒𝟕 

𝒓𝟐(𝐭) = {
0    t ∉ off peak hours 
1   t ∈ off peak hours

                                                                  𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟒𝟖 

𝒓𝟑(𝐭) = {
1    t ∉ system ending time 
+∞   t ∈ system ending time

                                                     𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟒𝟗 
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where 𝐭 is the time in the research time horizon. As the multiple objective function aims 

to minimise CSQI, 𝒓𝟏(𝐭) and 𝒓𝟐(𝐭) only switch to 1 when PWT and TLR need to be 

counted, which is based on the operation situations in real life. 𝒓𝟑(𝐭) equals 1 in the 

normal situation which adds the passengers left behind to the final result as a punishment, 

but at the system ending time, because all passengers need to be taken, 𝒓𝟑(𝐭) equals +∞; 

if there are passengers left, the result of the objective function will be invalid. In addition, 

all the constraints for the real-time operation in previous section should also be met. 

3.7 Conclusions 

It is important to build an applicable mathematical model to better understand passenger 

flow-oriented metro scheduling and real-time optimisation problems. In this chapter, first, 

the concepts and theory of mathematical programming were introduced. Then, the author 

explained the formulation of train scheduling problems with dynamic passenger demand 

based on mathematical programming technologies; a nonlinear mathematical model 

named POSM was proposed, and this model was also derived to solve a real-time 

scheduling optimisation problem based on the variation of dynamic passenger demand. 

The example of metro scheduling and real-time optimisation based on dynamic passenger 

flow demonstrates the application of the POSM model. At last, we also extended the 

POSM to a comprehensive model based on the requirements from the field study in 

London Underground. 

In the next chapter, the method for solving POSM is proposed. An innovative algorithm 

based on a genetic algorithm, named GA_POSM, is introduced and a macroscopic metro 

simulator is presented. Before being implemented to real-time passenger flow oriented 
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operation, the validity of POSM and, the performance of the algorithm and simulator is 

evaluated based on some small case studies. After these case studies, we also improve the 

solving method with decision tree algorithm. 
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Chapter 4. An Innovative Algorithm, GA_POSM, 

for Solving POSM Problems 

From the mathematical model of POSM proposed in detail in the previous chapter, we 

can see that the POSM problem is a nonlinear integer dynamic programming problem, 

which has dwelling and departure interval time as decision variables. Before we 

implement the comprehensive model to the system-level application, we need to validate 

the basic POSM first. If we consider the real-time optimisation function of POSM, it 

changes to a dynamic programming problem with uncertain variables. It is challenging to 

find an efficient algorithm to solve the proposed POSM problems. Thus, in this chapter, 

an innovative algorithm named GA_POSM is presented. GA_POSM is derived from a 

general genetic algorithm, and modified to be an effective tool for solving the POSM 

problem for both passenger flow-oriented scheduling and real-time scheduling 

optimisation. In this chapter, the general concepts and definition of genetic algorithms are 

introduced. Then a macroscopic metro simulator will be introduced and integrated with 

the modified genetic algorithm, and the modifications and improvements of GA_POSM 

are described in detail. To validate the efficiency of the proposed model and algorithm, 

the performance of GA_POSM is evaluated with a case study based on the Beijing Metro 

Line 19; also, the evaluation results are analysed. At last, based on the requirements from 

the real life field study, we also derive the proposed method with decision tree algorithm 

for boarder application according to different system’s infrastructures. 

4.1 Innovative Algorithm GA_POSM and Metro Simulator 
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4.1.1 New Algorithm Requirement Consideration 

The basic POSM models presented in the previous chapter can be divided into two 

problems. For dynamic passenger flow-oriented scheduling, the problem is a nonlinear 

integer programming problem with a time-varying dynamic parameter 𝜆𝑠(𝑡); for real-

time scheduling optimisation, the problem is also a nonlinear integer programming 

problem with dynamic parameters but because of the variation of detection time 𝑡𝐷, the 

number of decision variables in the objective function is uncertain. Both of these 

problems optimise the dwelling time and departure time interval according to passenger 

flow for each train in the research time horizon. 

For the first problem, generally, all of the possibilities of the dwelling time and departure 

time interval setting decisions must be enumerated. In terms of every possible dwelling 

𝑒𝑖,𝑠 and departure decision ℎ𝑑𝑖,𝑖−1, the results from the objective function are compared 

to find the best decision. For the second problem, the objective function is modified 

whenever the number of decision variables changes; all the unmodifiable variables are 

replaced with fixed parameters and all the parameters changing before the variation 

happens are recorded; then decisions are enumerated for the remaining variables. 

Obviously, neither of the methods mentioned above can solve the problems easily. First, 

the computational time will increase exponentially with the size of the problem. It is not 

possible to apply this method to real-time operation, such as real-time scheduling and 

optimisation. Second, there is a time-varying dynamic parameter 𝜆𝑠(𝑡) in the objective 

function which will keep changing with time. Third, in a real-time optimisation problem, 

the number of decision variables is uncertain, and it is difficult to always keep generating 

new objective functions. 

As seen from the POSM, the problem has the following features: 
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1. The search space of variables is large and increases significantly when the size of 

the problem increases. 

2. In the objective function, a parameter keeps varying with time with increases the 

difficulty of solving. 

3. In real-time optimisation, the number of decision variables changes with different 

detection times; it is hard for traditional heuristic algorithms to deal with unfixed 

decision variables. 

4. As the problem refers to real-time optimisation applications, the objective 

function must be solved in a short time limit. 

5.  Nearly optimised solutions are acceptable. 

Considering the features mentioned above, the author compares advantages and 

disadvantages of some general algorithms, as shown in Table 4-1. 

Algorithm Advantage Disadvantage 

Exhaustive algorithm • It is simple to be 

understanded and 

implemented 

• It is the most straight 

forward approach to find a 

solution for optimisation 

• It can guarantee the correct 

optimised solution will be 

found 

• It is computationally 

intensive and has 

exponential time 

complexity 

• It can consume significant 

resources 

• It is not suitable for 

dynamic problems, since it 

requires a complete re-run 

each time that problem 

changes 

Gradient Descent 

algorithm 

• It is simple to be 

implemented 

• It can handle large-scale 

convex problem 

• It is computationally 

efficient 

• It can get stuck in local 

optimisation 

• It can converge slowly for 

problems with high 

dimensional parameters 

• It is sensitive to the 

initialisation of the 

parameters 

Greedy algorithm • It is fast, since it does not 

require searching the entire 

solution space 

• It may only find a locally 

optimal solution 
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• It is simple to be 

implemented and does not 

require complex 

mathematical algorithm 

• It generates good 

approximate solutions 

• It is not suitable for 

problems that require 

backtracking and changing 

previous decisions, since it 

makes decisions based on 

the current state only 

• It does not guarantee an 

optimal solution in some 

situations 

Genetic algorithm • It can handle large and 

complex problems, as non-

linear and multi-modal 

problems. 

• It can handle noise, 

uncertainty, and irrelevant 

information in the data 

• It’s 0-1 code is appropriate 

to represent the dwelling 

and departure choice in this 

problem  

• It can record the optimised 

result from each generation. 

• It may converge 

prematurely to a sub-

optimal solution 

• It’s performance can be 

impacted by the choice of 

hyperparameters 

• It requires a good 

understanding of the 

problem domain and the 

properties of the solution 

space 

Simulated annealing • It is capable to find the 

global optimisation 

• It is a robust algorithm 

which can avoid getting 

stuck in local optimisation 

• It can provide good 

approximate solutions 

• It can converge slowly for 

problems with large 

numbers of variables 

• It requires the setting of 

hyperparameters which can 

impact the quality of 

solutions 

• It is computationally 

intensive 

Table 4-1 Advantages and disadvantages of considered algorithm 

Compared above algorithms, the exhaustive algorithm is not appropriate for this problem 

since it has exponential time complexity; as the size of the problem increase, the 

exhaustive algorithm will quickly become infeasible. Also, compared with discrete 

problems, the gradient descent algorithm works better with well-behaved objective 

functions with continuous variables and requires additional techniques to handle 

constraints. Compared with the genetic algorithm, the greedy algorithm is easier to get 

stuck in local optimisation, and constraints and penalties are more difficult to be defined 

by the greedy algorithm; moreover, as this problem needs backtracking and changing 

previous decisions, the greedy algorithm is also not appropriate. In this problem, 

compared to simulated annealing, the gene sequence in the genetic algorithm is more 
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suitable to represent the dwelling and departure interval choices for a metro system, 

especially when it is based on peak and off-peak strategy, and with time constraints the 

gene sequence is also easier to be recorded and modified to update the real-time operation. 

Thus, the author proposes an innovation algorithm named GA_POSM which is based on 

a genetic algorithm (GA) and integrated with a macroscopic passenger–metro interaction 

simulator to solve POSM problems. In the next section, the general genetic algorithm is 

introduced, the details of the modification for the algorithm GA_POSM are described and 

the algorithms to simulate passengers and metro systems in the simulator are expressed. 

GA_POSM will also be evaluated based on the Beijing Metro Line 19 at the end of this 

chapter. 

4.1.2 Introduction to Genetic Algorithms 

Direct search methods are widely used for solving optimisation problems that do not 

require information about the objective function’s gradient. Unlike most traditional 

optimisation methods which search for an optimal point based on gradient, direct search 

methods search optimal solution points around the current point and look for a better 

value of the objective function than the value at the current point. Based on this feature, 

a direct search method can be applied to nonlinear, non-differential or even discontinuous 

objective functions. The general principle of direct search methods is to generate 

variations of the solution vectors and select better solutions from the variations. Some 

selection methods, such as greedy criteria, make the algorithms converge sufficiently fast; 

however, this can lead to the algorithms being trapped in a local optimum. Thus some 

other methods apply probabilities to solutions for the selection process to forbid a local 

optimum. 
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Genetic algorithms are a family of direct search methods which mimic the natural 

evolutionary process, so they are also classified as evolutionary algorithms. This type of 

algorithm was proposed as early as 1954 based on computer simulation of the evolution 

research of Nils Aall Barricelli. As computer evolution simulation became more popular, 

the genetic algorithm was described in detail by Fraser and Burnell in the 1970s; Fraser’s 

simulations included all the essential elements of the modern genetic algorithm. This 

method has been applied to solve complex engineering problems and became a widely 

recognised optimisation method from Ingo Rechenberg’s research in the 1970s. 

As an evolutionary algorithm, a genetic algorithm also includes three critical operations: 

selection, crossover and mutation. Consider the problem presented in Equation 3-14, that 

is a typical nonlinear programming problem. Generally, for a genetic algorithm we use 

binary numbers to encode the decision variables in the objective function, which means 

the decision variables will be transformed from decimal form to binary form (also called 

gene fragments) as shown in Equation 4-1; this encoding method makes genetic 

algorithms suitable for dealing with discrete integer programming problems. After 

transformation, the number of the binary decision variables may be increased. We assume 

the number of decision variables for this problem is T, and the number of binary decision 

variables after encoding is D. 

{𝑥ℎ|ℎ = 1,2,3, … , 𝑇} → {𝑏𝑘|𝑘 = 1,2,3, … , 𝐷}                                               Equation 4-1 

We can use a D-dimensional parameter 𝐵 = (𝑏1, 𝑏2, . . . , 𝑏𝐷)  (also known as a gene 

sequence) to represent the vector of the binary decision variables. The optimisation 

problem is to adjust this parameter to maximise or minimise the objective function and 

meet the constraint conditions at the same time. 
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As an evolutionary algorithm, we also need to define the maximum generation G, and the 

population size PS in every generation. Each population represents an individual D-

dimensional parameter for the vector of decision variables. Thus the D-dimensional 

parameters contained in each generation can be written as Equation 4-2: 

{𝐁𝑙,𝑔|𝑙 = 1,2,3, . . . , 𝑃𝑆    𝑔 ∈ 𝐺}                                                                     Equation 4-2 

Normally, an initial population will be chosen randomly if there is no specific requirement 

for the problem. In some research, because the decision variables for most problems have 

an upper and lower bound, to forbid a local optimum, the initial population is generated 

based on a uniform distribution or normal distribution between the upper and lower 

bounds, in order to maximise the variety of the decision variables’ vectors in the searching 

spaces. After the initial population, the genetic algorithm will keep choosing better 

decision vectors and generating a new population based on chosen decisions for the next 

generation; this process will only be stopped when satisfactory solutions have been found 

or the maximum number of generations has been counted. The general flow chart of the 

genetic algorithm method is shown in Figure 4-1, Selection, crossover and mutation are 

three important steps of genetic algorithms. 
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Figure 4-1 Flow chart of classic genetic algorithm method 

(1) Selection 

A genetic algorithm is a large loop process; after the initial population is input, the 

selection processing will begin. In this operation, all the trial decision vectors from 𝐁𝑙,𝑔 

will be evaluated and the decision vectors 𝐵 𝑝 leading to better solutions will be selected 

(which indicates the survival of the fittest in biological evolution) to generate parent 

vectors to construct a new D-dimensional parameter 𝐏𝑙,𝑔+1 as shown in Equation 4-3. The 

best decision variable and solution for this generation will be recorded. 

𝐏𝑙,𝑔+1  = {𝐵𝑝1 , 𝐵𝑝2 , . . . , 𝐵𝑝𝑙}                                                                         Equation 4-3 

(2) Crossover 

As with biological evolution, after better parent decision vectors are selected, they will 

cross over and change a part of their vectors 𝐵𝑝1 = (𝑏1,𝑝1 , 𝑏2,𝑝1 , . . . , 𝑏𝐷,𝑝1) , 𝐵𝑝2 =

(𝑏1,𝑝2 , 𝑏2,𝑝2 , . . . , 𝑏𝐷,𝑝2) to generate two child decision vectors 𝐵𝑐1 =
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(𝑏1,𝑐1 , 𝑏2,𝑐1 , . . . , 𝑏𝐷,𝑐1) and 𝐵𝑐2 = (𝑏1,𝑐2 , 𝑏2,𝑐2 , . . . , 𝑏𝐷,𝑐2) for the next generation. As the 

decision variables have already been binary-encoded, this process can be shown as 

Equation 4-4: 

𝑏𝑘,𝑐1 = {   
𝑏𝑘,𝑝1     0 < 𝑘 < 𝑟

𝑏𝑘,𝑝2     𝑟 ≤ 𝑘 ≤ 𝐷
    &    𝑏𝑘,𝑐2 = {   

𝑏𝑘,𝑝1        𝑟 ≤ 𝑘 ≤ 𝐷

𝑏𝑘,𝑝2        0 < 𝑘 < 𝑟
            Equation 4-4 

where r is a random number between 0 and the vector length D; after crossover, the first 

child 𝐵𝑐1 is inherited from the first parts of the first parent 𝐵𝑝1 until the variable 𝑏𝑟,𝑐1; the 

remaining parts after r are inherited from the second parent 𝐵𝑝2. Contrarily, the second 

child 𝐵𝑐1 inherits the opposite parts. This process emulates the gene exchange in genetics. 

After crossover, the same number of child decision vectors with population vectors can 

be generated. A new D-dimensional parameter 𝐂𝑙,𝑔+1 is shown in Equation 4-5. 

𝐂𝑙,𝑔+1  = {𝐵𝑐1 , 𝐵𝑐2 , . . . , 𝐵𝑐𝑙}                                                                            Equation 4-5 

(3) Mutation 

Finally, all the decision vectors in the child D-dimensional parameter 𝐂𝑙,𝑔+1 will mutate 

to generate decision vectors for the next generation by using the strategy shown in 

Equation 4-6. 

 𝑏𝑘,𝑔+1  =  {
1 − 𝑏𝑘,𝑐    𝑚1 ≤ 𝑘 ≤ 𝑚2

𝑏𝑘,𝑐    𝑘 < 𝑚1, 𝑘 > 𝑚2
   𝑚𝑟 = 1  

𝑏𝑘,𝑔+1  =  𝑏𝑘,𝑐    𝑚𝑟 = 0                                                                                 Equation 4-6 

where 𝑚1  and 𝑚2  are two mutation length indices which indicate the mutated binary 

decision variables (the mutated gene fragments in a gene sequence); normally, these two 

indices are generated according to a given mutation length. 𝑚𝑟 is a mutation index equals 
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to  0 or 1 based on a given mutation rate; mutation only happens when the mutation index 

is equal to 1. Because binary decision variables are used in a GA, when mutation happens, 

we can use 1 minus the original variable to mutate it to the opposite value. After the 

mutation process, the next generation’s collection of D-dimensional parameters 𝐁𝑙,𝑔+1 

can be generated. 

The genetic algorithm will continue the selection, crossover and mutation loop until the 

maximum generation. The best decision variables in each generation will be recorded and 

compared; finally it will evaluate the best result 𝐵𝑏𝑒𝑠𝑡 and transform the result to decimal 

form to output. 

4.1.3 Introduction to Macroscopic Metro Simulators 

The previous section introduced the basic concepts and operation process of a genetic 

algorithm. However, because of the features of POSM presented in Chapter 3.2, the 

classic genetic algorithm introduced in the previous section cannot be operated directly 

for solving the POSM problem. First, as the decision variables of our objective function 

are the choices of the dwelling time 𝑙𝑒𝑖,𝑠 at each station and the choices of departure time 

𝑙𝑑𝑖,𝑖−1 between two trains, we need to consider the transformation between these choices 

and binary decision variables and train timetables. Second, we need to consider how to 

represent the dynamic parameter 𝜆𝑠(𝑡) which represents passenger flow rate based on a 

time-variant OD matrix. Third, we need to integrate decreasing passenger waiting times 

and increasing train capacities in the object; the evaluation and selection processes in the 

genetic algorithm also need to be modified with the objective function. Last but not least, 

in real-time operation, the number of decision variables keeps changing with the detection 

time, which means the parameters related to passenger flow in the objective function and 
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the length of binary decision variable vectors (gene sequences) 𝐵 also need to be modified 

according to the detection time. With comprehensive consideration, a multifunctional 

macroscopic metro simulator has been designed. 

The structure of the macroscopic simulator is shown in Figure 4-2. There are four sections 

in the simulator: the metro infrastructure section, passenger flow section, timetable 

section and passenger–train interaction section, which are introduced separately below. 

Based on this simulator, network passenger flow distribution can be tracked at any 

specific time in the operation time horizon. 

 

Figure 4-2 Structure of macroscopic metro simulator 

(1) Metro infrastructure and passenger flow sections 

These sections mainly focus on data input and a description of passenger flow and the 

metro system. For passenger flow, the most critical data set is the entry rate OD matrix 

which describes passenger journeys between specific stations; these matrices will 

simulate the dynamic passenger arrival rate 𝜆𝑠(𝑡) in the objective function. For metro 

infrastructure, the input data mainly focus on the constraint conditions based on the 
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mathematical model POSM, the planned running time 𝑟′𝑖,(𝑠−1,𝑠) , optional departure 

interval time 𝐻, optional dwelling time 𝐸 and maximum train capacity 𝑐𝑖,𝑚𝑎𝑥. 

(2) Timetable section 

Based on different optional departure intervals and dwell times settled in the metro system 

section, there are many combinations for the choices of interval and dwell time. The 

timetable section generates the arrival times and departure times for all trains by 

assembling the combinations from different trains. To ensure the safety constraints, i.e. 

the minimum headway, some of the arrival times and departure times need to be modified 

according to the system constraints shown in Chapter 3. After modification, an extensive 

timetable for the system can be established. The algorithm for the timetable section is 

shown below: 

Algorithm 1: Timetable generator 

Input: Departure interval 𝑙𝑑𝑖,𝑖−1 and dwell choice 𝑙𝑒𝑖,𝑠 for trains in the time horizon 

Output: Arrival and departure time based on departure interval and dwell 

1 for train i ∈  𝑠𝑒𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑠 𝐼 do 

2     for station 𝑠 ∈  𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑆 do 

3         if 𝑖 = 0 and 𝑠 = 0 

4             𝑎𝑖,𝑠 = 0 

5             𝑑𝑖,𝑠 = 𝑎𝑖,𝑠 + 𝐸(𝑙𝑒𝑖,𝑠) 

6         else if 𝑖 = 0 and 𝑠 != 0 

7             𝑎𝑖,𝑠 = 𝑑𝑖,𝑠−1 + 𝑟
′
𝑖,(𝑠−1,𝑠) 

8             𝑑𝑖,𝑠 = 𝑎𝑖,𝑠 + 𝐸(𝑙𝑒𝑖,𝑠) 

9         else if 𝑖 != 0 and 𝑠 = 0 

10             𝑎𝑖,𝑠 = 𝑑𝑖−1,𝑠 + 𝐻(𝑙𝑑𝑖,𝑖−1) 

11             𝑑𝑖,𝑠 = 𝑎𝑖,𝑠 + 𝐸(𝑙𝑒𝑖,𝑠) 

12         else if 𝑑𝑖−1,𝑠 − 𝑑𝑖,𝑠−1 − 𝑟
′
𝑖,(𝑠−1,𝑠) ≥ ℎ𝑚𝑖𝑛 

13             𝑎𝑖,𝑠 = 𝑑𝑖,𝑠−1 + 𝑟
′
𝑖,(𝑠−1,𝑠)  

14             𝑑𝑖,𝑠 = 𝑎𝑖,𝑠 + 𝐸(𝑙𝑒𝑖,𝑠) 

15         else 

16             𝑎𝑖,𝑠 = 𝑑𝑖,𝑠−1 + ℎ𝑚𝑖𝑛 

17             𝑑𝑖,𝑠 = 𝑎𝑖,𝑠 + 𝐸(𝑙𝑒𝑖,𝑠) 

18             return 𝑎𝑖,𝑠, 𝑑𝑖,𝑠 

19          end if 
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20     end for 

21 end for 

 

(3) Passenger–train interaction section 

This part mainly concentrates on the interaction between the metro system and passenger 

flow based on the objective function, thus this section should calculate the waiting time 

𝜔𝑡 of all passengers and the train full loading rate 𝑐𝑟𝑖,𝑠. Trains are dispatched based on 

the timetables generated in the timetable section, and passengers arrive at each station 

according to the passenger flow entry rate OD matrix generated by the passenger flow 

section. With trains departing and stopping based on the chosen departure interval and 

dwell time, passengers get off firstly to make more space for passengers preparing to 

board. The maximum train capacity 𝑐𝑖,𝑚𝑎𝑥 should be defined by the metro infrastructure 

section; to be fair, if there is enough room on the train, passengers will board in sequence 

according to different destinations until the train reaches maximum capacity. Based on 

Equations 3-28 to 3-32, the remaining passengers will keep waiting for the next train in 

the station. With the implementation of platform screen doors and safety personnel on 

platforms, we do not need to consider impacts of alighting and boarding for the journey, 

and assume the dwelling time is enough for passengers to fill an empty train. The 

algorithm for the passenger–train interaction simulator is shown below: 

Algorithm 2: Passenger–train interaction simulator 

Input: Passenger data from passenger flow section, system data from metro 

infrastructure section, departure and arrival time from timetable section 

Output: Total passenger waiting time WAT and total reciprocal CPR of train capacity 

occupation ratio 𝑐𝑟𝑖,𝑠 at each station 

1 WAT = 0 

 CPR = 0 

2 for time t ≤ operation time T do, t++ 

3     for station 𝑠 ∈ set of stations S do 
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4         𝜔𝑡 = 𝜔𝑡 + the waiting passengers 𝑝𝑖,𝑠
𝑠𝑡𝑎𝑡𝑖𝑜𝑛 

5     end for 

6     for train i ∈  𝑠𝑒𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑠 𝐼 do 

7         for station 𝑠 ∈ set of stations S do 

8             if arrival time 𝑎𝑖,𝑠 = t 

9                 for alighting passengers 𝑝𝑖,𝑠
𝑎𝑙𝑖𝑔ℎ𝑡

 > 0 do 

10                     passengers on the train 𝑝𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛-- 

11                     train’s remaining capacity ci,s++ 

12                 end for 

13              end if 

14              if departure time di,s = t 

15                  left passengers 𝑝𝑖,𝑠
𝑙𝑒𝑓𝑡

 = waiting passengers 𝑝𝑖,𝑠
𝑤𝑎𝑖𝑡 

16                  for waiting passengers 𝑝𝑖,𝑠
𝑤𝑎𝑖𝑡 > 0 && train′s capacity 𝑐𝑖,𝑠 > 0  do 

17                       passengers on the train 𝑝𝑖,𝑠+1
𝑡𝑟𝑎𝑖𝑛++ 

18                       left passengers 𝑝𝑖,𝑠
𝑙𝑒𝑓𝑡

-- 

19                       train’s capacity 𝑐𝑖,𝑠-- 

20                  end for 

21                  CPR = CPR + train’s maximum capacity 𝑐𝑚𝑎𝑥 /passengers on the train 

𝑝𝑖,𝑠+1
𝑡𝑟𝑎𝑖𝑛 

22             else 

23                 continue 

24             end if 

25         end for 

26      end for 

27 end for 

28 return WAT CPR 

 

From the above introduction, the simulator can simulate macroscopic passenger 

behaviour and metro system operation in the research time horizon; the distribution of 

passenger flow can be observed at each specific time point. With this simulator, the 

generated timetable can even be evaluated by different objective. 

4.1.4 Improved Genetic Algorithm GA_POSM for Solving POSM 

Problems 

The macroscopic metro simulator introduced in the last section can be integrated with a 

classic genetic algorithm to solve the problems in dynamic passenger flow-oriented 
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scheduling problem and the real-time scheduling optimisation proposed above. In this 

section, by integration with the simulator, improvement of the genetic algorithm will be 

explained from following perspectives: transformation between binary decision vectors 

from the genetic algorithm and available timetables, representation of dynamic passenger 

flow arrival rate, real-time binary decision vector length modification and avoiding local 

optimisation. 

(1) Transformation between binary decision vectors and available timetables 

Because of the complexity of metro systems and special features of genetic algorithm, the 

binary decision vectors must be transformed to available timetables to be evaluated. Thus, 

before the selection step of the genetic algorithm, the timetable section of the simulator 

is operated; the binary decision vector (gene sequences) for each train can be transformed 

to the choices of departure interval and dwelling time, and the choices will be modified 

by the timetable algorithm presented above based on the constraints from the objective 

function, and generates the available timetable. The detailed process is shown in Figure 

4-3. 

 

Figure 4-3 Approach to generating available timetable by GA_POSM 

(2) Dynamic passenger flow rate representation 
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As a DOP, a time-varied parameter for passenger arrival rate 𝜆𝑠(𝑡) is in the objective 

function, which leads to a complicated evaluation process. However, by integrating it 

with the simulator, the result can be evaluated directly by the passenger–train interaction 

section. Based on the passenger flow section, the dynamic parameter 𝜆𝑠(𝑡)  will be 

simulated by time-varied OD matrices of passenger flow entry rate. The passenger–train 

interaction section simulates the interaction between the dynamic passenger flow rate OD 

matrices and the metro system directly, and generates the evaluation result for the 

objective function based on the simulation. The approach is shown in Figure 4-4. 

 

Figure 4-4 Approach to simulating dynamic parameter 𝝀𝒔(𝒕) in the objective function 

(3) Real-time modification of binary decision vector length 

For a traditional genetic algorithm, the length of the binary decision vector (or gene 

sequence) is rigid. However, for real-time scheduling optimisation research, with a 

different detection time of irregular passenger flow variation, some trains have already 

departed before the detection time; thus the number of operational dwelling times and 

departure time intervals keeps varying, which leads the length of the binary decision 

vector to keep changing in real-time optimisation. By integrating the macroscopic 

simulator with a genetic algorithm, these irregular variations can be recorded in the 

passenger flow section and the non-optimised timetable can be recorded in the metro 

infrastructure section. The non-optimised timetable will be compared with the detecting 
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time and, based on this comparison, a process to modify the length of binary decision 

vectors can be applied in the genetic algorithm for real-time scheduling research. Then 

the genetic algorithm will generate new decision vectors and process as normal; the only 

difference is that, in the selection step, after a new binary decision vector is generated, it 

will be relinked with the unmodifiable part of old decisions to generate a completed 

timetable. This process is shown in Figure 4-5. 

 

 

 

 

 

 

 

Figure 4-5 Approach to modifying binary decision vectors in real-time optimisation 

(4) Approach to avoid local optimisation 

Though for this research the nearly optimised solutions are acceptable, and in the real-

time optimisation, instead of the best timetable, a new timetable better than the old one is 

adequate, we still engage to avoid local optimisation caused by modifying operation of 

the genetic algorithm. A roulette wheel selection algorithm (also known as a fitness 

proportionate section algorithm) is a method for selecting potentially good solutions to 

avoid local optimisation (Lipowski and Lipowska 2012). 
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In a roulette wheel selection algorithm, instead of just selecting the binary decisions with 

better evaluated results, we assign a score 𝑠𝑑 to each possible decision vector 𝑑 according 

to its evaluated result, then the total score ∑ 𝑠𝑑
𝐷
𝑑=1  will be added and a random number 𝑅 

between 0 and the total score will be generated. Each decision vector’s score will 

contribute a range in the total score; if the random number 𝑅 is in the range, the decision 

vector will be selected. Thus, the possibility 𝑝𝑑 of a decision vector being selected is 

𝑝𝑑 =
𝑠𝑑

∑ 𝑠𝑑
𝐷
𝑑=1

                                                                                                       𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒 − 𝟕 

This process can be imagined as a roulette wheel where the whole wheel is the total score, 

each decision vector is distributed on a different part of the wheel according to its score 

and the random number 𝑅 is the indicator on the wheel. When the wheel spins, a binary 

decision vector with a higher score has a higher possibility of being selected, but it still 

can be eliminated because the possibility is less than 1; contrarily, a decision vector with 

a lower score also has a chance of being selected, as shown in Figure 4-6. In a genetic 

algorithm, some characteristics of the weak decision vectors could prove useful after 

further crossover or mutation; by applying a roulette wheel selection algorithm, these 

weak decision vectors also get a chance to be selected, which helps to avoid local 

optimisation. 

  

 

 

 

Figure 4-6 Explanation of roulette wheel selection algorithm 
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After the above steps, the interface between the genetic algorithm and the simulator can 

be shown by Figure 4-7. 

 

Figure 4-7 Interfaces between GA_POSM and simulator 

4.2 Performance Evaluation of GA_POSM 

4.2.1 Systematic Approach 

In the previous section, the basic concept of the genetic algorithm was introduced, and a 

modified genetic algorithm, GA_POSM, which is integrated with a macroscopic metro 

simulator was presented in detail to solve passenger flow-oriented scheduling and real-

time optimisation problems. In this section, the performance of GA_POSM is evaluated 

by a systematic approach described in the following sections. The overview of the 

systematic approach for this problem is shown in Figure 4-8. 
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Figure 4-8 Systematic approach for evaluation of GA_POSM 

From the figure above, it can be seen that this systematic approach indicates the data 

inputs and outputs for different parts of the simulator, and presents the interaction 

between the algorithm and simulator. There are six main parts of this system architecture: 

(1) The metro infrastructure section, storing basic metro infrastructure and rolling 

stock data, including the number of stations, running time between stations, trains’ 

maximum capacity, safety constraints, optional dwelling time and departure 

interval, and the repository of generated timetables. 
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(2) The passenger flow section, holding the dynamic passenger flow entry speed OD 

data for scheduling, real-time passenger variation detection time and varying entry 

speed of passenger flow. 

(3) The timetable section, interacting with the genetic algorithm and metro 

infrastructure section, transforming the binary decision variables to operational 

timetables, modifying the length of decision vectors based on the detection time. 

(4) The scheduling repository section, storing different scheduling strategies 

including GA_POSM and other strategies (such as traditional periodical 

timetables). 

(5) The passenger–train interaction section, simulating the metro operation based on 

different dispatching strategies, outputting the evaluation result for the strategies 

based on the objective function. 

(6) The comparing section, collecting and comparing the results of different 

scheduling strategies. 

All of the parts were programmed in the Java programming language and established as 

Java files. The data flow between different parts is also shown in Figure 4-8. The main 

function of the metro infrastructure section and passenger flow section is to prove the 

infrastructure data of metro system and passenger flow. Different binary decision 

variables generated in the scheduling simulation section are based on different scheduling 

strategies. The timetable section generates timetables based on binary variables and inputs 

the generated timetables to the passenger–train interaction section to simulate and 

evaluate them; it also modifies the length of binary variables for real-time time 

optimisation. For GA_POSM, the results from the passenger–train interaction section also 
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become an input to select the binary vectors for the next generation. Finally, the results 

of different scheduling strategies are collected and compared in the comparing section. 

4.2.2 Case Study 

The Beijing Metro Line 19 is used to evaluate the performance of the proposed approach. 

Though this metro line is still under construction when writing this thesis, new 5G 

network communication and passenger counting technology from Beijing Infrastructure 

Investment Co Ltd will be allocated to this metro line. Before passengers enter the 

platforms, they need to choose their origin and destination from a ticket machine. When 

they pass the platform gates, the AFC system can collect and generate real-time OD data 

and EUHT communication units will be set up in all stations to transfer the OD data; this 

collection process is shown in Figure 4-9. Based on the EUHT-5G technology shown in 

Figure 4-10, the passenger flow data in stations and trains can be transferred to the metro 

control centre in real time, which enables analysis of passenger volume for both 

scheduling and real-time optimisation. 

                 

 

 

Figure 4-9 Passenger OD data collection process 

Ticket information OD data 
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Figure 4-10 EUHT-5G communication technology 

The total length of Beijing Metro Line 19 is 22.4 km, with 10 stations which are fully 

underground; four stations are still under construction. This metro line begins at 

Mudanyuan station in Haidian District and ends at Xingong station in Fengtai District. 

As its stations are located through most busy areas in Beijing, it is envisioned to relieve 

overcrowding and link the Beijing Financial Street commercial area. A geographic map 

of the metro line is shown in Figure 4-11. 

Antenna 
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Figure 4-11 Geographic map of Beijing Metro Line 19 

This metro line uses eight-car type A rolling stock CCD5034/SFM80 designed by CRRC 

Changchun and CRRC Qingdao Sifang. The basic characteristics and an image of 

CCD5034/SFM80 train sets are shown in Table 4-2 and Figure 4-12. Based on the data 

currently available, the first train will depart at 05:30 and the last train will depart at 23:25 

in one day. Based on a periodical scheduling strategy, two departure time intervals are 

operated, 6 minutes in peak time and 8 minutes in off-peak time. Normally, the dwelling 

time will be 1 minute at each station; shielded gates and alarms will be used in platforms 

to avoid operational disturbance caused by rushing passengers. The planned running 

times between different station are shown in Figure 4-13. 
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Model CCD5034/SFM80 

Power Collection 1500 V DC 

Vehicle Formulation 6M2T 

（Tc+Mp+M+Mp+M+M+Mp+Tc） 

Total Length 185.68 m 

Tc – 23.58 m 

Mp, M – 21.88 m 

Rated Capacity 2520 passengers 

Traction Output 6000 kW 

Max Speed 100 km/h 

Table 4-2 Configuration of CCD5034/SFM80 trainsets 

 

Figure 4-12 CCD5034 trainset at Mudanyuan station 

 

 

 

 

Figure 4-13 Planned running time between stations 

2 min 2.5 min 2 min 2 min 2 min 2 min 2 min 2 min 2 min 
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4.2.3 Preparation for Case Study 

Because the Beijing Metro Line 19 is still under construction, we need to assume and 

modify some data for both the metro system and passengers. For this case study, a single-

direction line from Mudanyuan to Xingong is demonstrated and tested, the 10 stations in 

the system marked by S0 to S9. In macroscopic terms, the passenger flow variation in 

every second is hard to detect. And based on our field observation study in the London 

Euston metro station, generally, a person needs at least 3 seconds to pass through the 

platform’s gate. Thus, for the macroscopic metro operation simulation, we set 30 seconds 

as a basic time-unit. To ensure the system’s safety, the minimum headway between two 

trains arriving at the same station should be larger than 4 time-units (2 minutes). Based 

on the data from the last section, the optional departure time intervals between trains are 

set to 12 time-units (6 minutes) and 16 time-units (8 minutes); the optional dwelling time 

is set to 1 time-unit (0.5 minutes) and 3 time-units (1.5 minutes). Nowadays, most metro 

systems in China applied with shield gates (platform screen doors) and safety personnel 

to ensure passengers and other disturbances will not impact trains’ operation, passengers 

have enough time to embark and disembark by order; compared with old metro systems, 

the dwelling time and headway can be highly decreased, shown in Figure 4-14. However, 

the 0.5 minute dwelling time is still very tight in real life, but as a case study based on the 

simulation environment, we engage in using some extreme situations to implement a 

better evaluation of the proposed methodology to ensure the validity of the methodology 

with extreme situations, these extreme situations may not suitable for a real-life operation. 

Seven trains are applied for this case study; according to the departure, dwelling and 

running data, the time horizon to cover a seven-train case study is 210 time-units (105 

minutes). The modified infrastructure data are shown in Table 4-3. 
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Figure 4-14 Shield gates (platform screen doors) and a safety personnel 

Parameter Data 

Basic time-unit 30 seconds 

Minimum headway 4 time-units 

Number of stations 10 stations (S0 to S9) 

Research time horizon 210 time-units (105 minutes) 

Train capacity 2520 passengers 

Number of trains 7 

Optional dwelling time 1 time-units, 3 time-units 

Optional departure interval 12 time-units, 16 time-units 

Table 4-3 Configuration of CCD5034/SFM80 trainsets 

The passenger data in the case studies were mocked up based on early-stage desk research 

of the metro operator and the pre-designed capacity target of this line considering its 

connections with other commuting systems. Also, the passenger flow data from the other 

four typical Beijing metro stations, as shown in Figure 4-15, are also an important 

reference for the mocked-up passenger flow data; these data can represent the typical 
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passenger flow distribution in busy and unbusy stations. At busy stations, such as the 

stations around the starting point, the entry speed of passenger flow is set around 25 

persons/minute in peak time and 8 persons/minute in off-peak time. At unbusy stations, 

such as the stations around the finishing point, the entry speed of passenger flow is set 

around 8 persons/minute in peak time and 3 persons/minute in off-peak time. 

 

Figure 4-15 Passenger flow data from four typical Beijing metro stations 

Based on early-stage research and estimation of the distribution of passengers getting off 

at different stations, combined with the passenger flow data above, different OD data of 

passenger flow entry speed data can be generated. Normally, it takes 15 minutes to 

calculate and transfer the average passenger flow data, thus for dynamic passenger flow 

research, the dynamic OD speed matrix will keep refreshing in every 15 minutes, this 

time limitation is mainly linked to the measurement and transmission technologies 

applied nowadays, and the calculation time is also an important limitation for the data 

updating resolution since the increase of resolution may lead to more computation time. 

Without these technical limitations, the passenger flow rate record data could be updated 
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with a higher frequency (such as per second), but at this stage, enough time is necessary 

for calculating and proposing a new strategy. Also, because the future is unpredictable, 

for this research, we combine the statistical data to generate the passenger distribution in 

the whole research time horizon and use the real-time data to keep refreshing the 

statistical data; the passenger flow data leads to an extremely large number of OD 

matrices, an example of which is shown in Table 4-4. The first column represents the 

original stations, while the first row represents the destinations; each number represents 

the entry speed of passengers with units of persons/time-unit, in this case study, we only 

consider a single-direction operation. 

     D 

O 

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 

S0 X 1 3 2 1 2 2 3 1 1 

S1 X X 1 2 3 1 2 2 2 3 

S2 X X X 2 1 2 2 1 0 3 

S3 X X X X 1 2 3 3 2 1 

S4 X X X X X 2 1 2 2 2 

S5 X X X X X X 2 1 1 2 

S6 X X X X X X X 4 3 2 

S7 X X X X X X X X 3 5 

S8 X X X X X X X X X 4 

S9 X X X X X X X X X X 

Table 4-4 Example of passenger flow entry speed OD matrix 

According to the basic POSM, if dynamic passenger-oriented scheduling were to be 

considered in this 10-station Beijing Metro Line 19 scenario, with seven trains with two 

optional dwelling times and departure time intervals, the number of possible dwelling and 

departure times will be 29 × 210
6
 =  5.902958104 × 1020 . In the computing and 

simulation environment programmed by the author (CPU Intel Core i5 2.5 GHz, 12 G of 

RAM, programming software: Java 11, Eclipse 2021), for every scheduling decision, it 
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takes on average about 0.2 ms to calculate the result. That means if we use an exhaustive 

algorithm to enumerate all the possible dwelling and departure decisions, it will take 

about 3.3 × 1013 hours to get the optimal solution. Though with operation, the number 

of optional decisions will decrease, this calculation time is still unacceptable. As nearly 

optimised solutions are acceptable in this problem (we only need to get a timetable better 

than the previous one), an exhaustive algorithm is also unsuitable to be applied. 

With the presented Beijing Metro Line 19 scenario as a case study, the performance of 

GA_POSM is evaluated in terms of both objective solution and computational time. Two 

original periodic scheduling strategies (with 6-minute departure intervals and 0.5-minute 

dwelling, 8-minute departure intervals and 1.5-minute dwelling time) are also tested to 

compare the results between dynamic scheduling and traditional periodic scheduling. 

4.2.4 Scheduling Evaluation with Typical Passenger Flow Scenarios 

To evaluate the scheduling performance of GA_POSM with typical passenger flow 

scenarios, 10 typical dynamic passenger flow distribution scenarios shown in Appendix 

B were chosen, including a large passenger flow distribution in peak time, normal 

passenger flow distribution in off-peak time, a large variation of distribution in the 

different times of the research time horizon, etc. For each distribution scenario, the 

GA_POSM algorithm is applied to generate scheduling strategies and the SQI based on 

the objective function of the system is calculated; meanwhile, the SQI calculated by the 

two original periodic strategies is also calculated. Then the results of the three different 

strategies are compared. 

The basic parameters for the GA_POSM algorithm and the objective function are listed 

below: 
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➢ The ratio of weight 𝜔1 is set to 0.01 and 𝜔2 is set to 107. 

➢ The number of populations in GA_POSM is set to 200. 

➢ Mutation factors are set to 0.2. 

➢ Crossover factor CR is set to 4. 

After considering the weightings choices in Generalised Journey Time (Wheat and 

Wardman, 2017), we engage in defending relatively balanced weightings 𝜔1 and 𝜔2, and 

let the choice a little bit biased to the service quality. As the results shown in Figure 4-16, 

a test is implemented to compare the contribution in percentage according to different 

weightings from both objectives to the final result based on the average value of these 

typical cases. Base on this result and also for the convenience of observation, 𝜔1 is set to 

0.01 and 𝜔2 is set to 107. 

  

Figure 4-16 Percentage of contributions based on different weightings 

One of the typical convergence graphs is shown in Figure 4-17. Based on the hardware 

and programming environment used by the author (CPU Intel Core i5 2.5 GHz, 12 G of 
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RAM, programming software: Java 11, Eclipse 2021), the average computational time is 

around 20 to 25 seconds which can satisfy the time restriction for real-time metro 

scheduling operation. As the periodic scheduling method generates decisions directly 

based on a predetermined departure interval and dwelling time without searching 

processes for optimisation, the computational time of these two traditional periodic 

scheduling strategies can be ignored. 

 

Figure 4-17 Convergence graph of GA_POSM 

Table 4-5 shows the GA_POSM strategy scheduling decisions for the 10 typical 

evaluation scenarios; the numbers after AT and DT represent the specific arrival time and 

departure time based on the scheduling strategies. Please note, some dwelling time is tight 

in the table above, these strategies may not suitable for real-life application and can only 

be implemented in simulation environment for the extreme evaluation. 

 

0 
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AT/DT 

57/60 64/67 71/74 78/81 85/88 92/95 99/102 106/107 112/115 

Train 5 

AT/DT 

76/79 83/86 90/93 97/100 104/107 111/114 118/121 125/126 131/132 
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Train 6 

AT/DT 

95/98 102/105 109/112 116/119 123/126 130/133 137/140 144/147 152/155 

Train 7 

AT/DT 

114/117 121/124 128/131 135/138 142/145 149/152 156/159 163/166 171/174 

SN 10 Station

0 

Station

1 

Station

2 

Station

3 

Station

4 

Station

5 

Station

6 

Station

7 

Station

8 

Train 1 

AT/DT 

0/1 5/6 10/11 15/16 20/21 25/26 30/31 35/36 41/42 

Train 2 

AT/DT 

13/14 18/19 23/24 28/29 33/34 28/29 43/46 50/51 56/67 

Train 3 

AT/DT 

26/27 31/32 36/37 41/42 46/49 53/56 60/61 65/66 71/72 

Train 4 

AT/DT 

39/40 44/45 49/50 54/57 61/62 66/69 73/74 78/79 84/87 

Train 5 

AT/DT 

52/53 57/58 62/63 67/68 72/73 77/80 84/85 89/90 95/98 

Train 6 

AT/DT 

65/66 70/71 75/76 80/81 85/86 90/91 95/98 102/103 108/111 

Train 7 

AT/DT 

78/79 83/84 88/89 93/94 98/99 103/104 108/111 115/116 121/124 

Abbreviation: SN + number: different scenarios; AT/DT: arrival/departure time in each station. 

Table 4-5 GA_POSM scheduling results for ten typical scenarios 

Table 4-6 shows the SQI values of the ten typical scenarios based on the scheduling 

strategies of GA_POSM and the original two periodic strategies. Each scenario’s 

GA_POSM computational time is also listed in the table. 
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Scenario 

ID 

GA_POSM Periodic scheduling 1 Periodic scheduling 2 

SQI Time (s) SQI SQI 

1 3015 19 3294 3557 

2 1248 20 2764 1323 

3 2114 22 2724 2131 

4 4132 21 4308 4721 

5 3594 21 3609 4099 

6 1124 20 1432 3815 

7 2558 20 2952 2606 

8 2419 19 2956 2420 

9 2933 19 3090 2942 

10 4012 20 4013 4710 

Table 4-6 SQIs of different scheduling strategies for ten typical scenarios 

 

Figure 4-18 Comparison of SQIs between GA_POSM and periodic timetables 
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Figure 4-18 shows the comparison of GA_POSM with two periodic timetables. As we 

can see, for different passenger distribution scenarios, such as a large amount of 

passengers in peak times, a small amount of passengers in off-peak times, a large variation 

in passenger flow, etc., GA_POSM improves the service quality significantly compared 

with the normal periodical scheduling strategies in terms of the definition of SQI in this 

thesis, especially with dramatic variations in passenger flow. 

Based on the result, periodic timetables with a shorter departure time interval and 

dwelling time perform better than the long-interval periodic timetables in peak hours; 

with a huge amount of passenger flow, the system urgently decreases passenger waiting 

time. Contrarily, in off-peak hours, the trains’ capacity occupation ratio needs to be 

increased to save energy, thus periodic timetables with a long departure time interval are 

more suitable. However, the dynamic scheduling strategies generated by GA_POSM are 

more flexible and can satisfy the two objectives at the same time; trains’ departure interval 

and dwelling time can be modified based on the variation of passenger flow automatically. 

4.2.5 Real-Time Optimisation Evaluation with Typical Irregular Variation 

of Passenger Flow 

In this section, the real-time optimisation function of GA_POSM will be evaluated based 

on the three original passenger flow scenarios from the last section with nine typical 

irregular variations, such as a dramatic increase or decrease of passenger flow, or some 

gradual variations of passenger flow; these variations are distributed at different times in 

the research time horizon. With the passenger counting cameras which are built outside 

the stations and the EUHT communication units of Beijing Metro Line 19, normally, these 

variations can be detected and transferred to the control centre 15 minutes (30 time-units) 

before these irregular passengers enter the platform, so dispatchers have enough time to 
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estimate the trend of the further OD matrix after the variations and reschedule the 

timetable based on the estimation. 

In this situation, the GA_POSM algorithm will compare the old scheduling strategies 

generated in last section with the detection time, to determine the modifiable dwelling 

time and departure time interval firstly. Then, GA_POSM will generate optimised 

scheduling strategies for the modifiable parts of the original strategies based on the SQI. 

Finally, the optimised scheduling strategies will be connected with the unmodifiable parts 

of the original strategies. Nine irregular passenger flow variations scenarios for this case 

study are shown in Appendix C. 

Table 4-7 shows GA_POSM’s real-time modified scheduling decisions for the evaluation 

scenarios; the decisions in yellow cells are the modified scheduling decisions. Please note, 

some dwelling time is tight in the table above, these strategies may not suitable for real-

life application and can only be implemented in simulation environment for the extreme 

evaluation. 

SN 1 

DV: 30 

Station

0 

Station

1 

Station

2 

Station

3 

Station

4 

Station

5 

Station

6 

Station

7 

Station

8 

Train 1 

AT/DT 

0/1 5/6 10/11 15/16 20/21 25/26 30/31 35/36 41/42 

Train 2 

AT/DT 

13/14 18/21 25/26 30/33 37/38 42/43 47/48 52/53 58/61 

Train 3 

AT/DT 

26/27 31/34 38/39 43/46 50/51 55/56 60/63 67/68 73/76 

Train 4 

AT/DT 

39/40 44/45 49/52 56/59 63/64 68/69 73/74 78/81 86/87 

Train 5 52/53 57/58 62/65 69/70 74/75 79/80 84/87 91/94 99/100 
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AT/DT 

Train 6 

AT/DT 

65/66 70/71 75/76 80/81 85/86 90/91 95/98 102/103 108/109 

Train 7 

AT/DT 

78/79 83/84 88/89 93/94 98/99 103/104 108/109 113/114 119/120 

SN 1 

DV: 60 

Station

0 

Station

1 

Station

2 

Station

3 

Station

4 

Station

5 

Station

6 

Station

7 

Station

8 

Train 1 

AT/DT 

0/1 5/6 10/11 15/16 20/21 25/26 30/31 35/36 41/42 

Train 2 

AT/DT 

13/14 18/21 25/26 30/33 37/38 42/43 47/48 52/53 58/61 

Train 3 

AT/DT 

26/27 31/34 38/41 45/48 52/53 57/58 62/63 67/68 73/74 

Train 4 

AT/DT 

39/40 44/47 51/54 58/61 65/66 70/71 75/76 80/81 86/87 

Train 5 

AT/DT 

52/53 57/58 62/63 67/70 74/75 79/82 86/87 91/92 97/98 

Train 6 

AT/DT 

65/66 70/71 75/76 80/81 85/86 90/91 95/96 100/101 106/109 

Train 7 

AT/DT 

78/79 83/84 88/89 93/94 98/99 103/104 108/109 113/114 119/120 

SN 1 

DV: 90 

Station

0 

Station

1 

Station

2 

Station

3 

Station

4 

Station

5 

Station

6 

Station

7 

Station

8 

Train 1 

AT/DT 

0/1 5/6 10/11 15/16 20/21 25/26 30/31 35/36 41/42 

Train 2 

AT/DT 

13/14 18/21 25/26 30/33 37/38 42/43 47/48 52/53 58/61 

Train 3 26/27 31/34 38/41 45/48 52/53 57/58 62/63 67/68 73/74 
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AT/DT 

Train 4 

AT/DT 

39/40 44/47 51/54 58/61 65/66 70/71 75/76 80/81 86/87 

Train 5 

AT/DT 

52/53 57/58 62/65 69/72 76/79 83/86 90/93 97/98 103/104 

Train 6 

AT/DT 

65/66 70/71 75/76 80/83 87/90 94/95 99/100 104/105 110/111 

Train 7 

AT/DT 

78/79 83/84 88/89 93/94 98/99 103/104 108/109 113/114 119/120 

SN 1 

IV: 30 

Station

0 

Station

1 

Station

2 

Station

3 

Station

4 

Station

5 

Station

6 

Station

7 

Station

8 

Train 1 

AT/DT 

0/1 5/6 10/11 15/16 20/21 25/26 30/31 35/36 41/42 

Train 2 

AT/DT 

13/14 18/21 25/26 30/33 37/38 42/45 49/50 54/55 60/63 

Train 3 

AT/DT 

26/27 31/34 38/41 45/48 52/55 59/62 66/69 73/74 79/80 

Train 4 

AT/DT 

43/46 50/53 57/60 64/67 71/72 76/79 83/86 90/93 98/99 

Train 5 

AT/DT 

62/65 69/72 76/79 83/86 90/93 97/98 102/103 107/110 115/116 

Train 6 

AT/DT 

81/84 88/91 95/98 102/105 109/110 114/115 119/122 126/129 134/137 

Train 7 

AT/DT 

100/103 107/110 114/117 121/124 128/131 135/138 142/145 149/152 157/160 

SN 1 

IV: 60 

Station

0 

Station

1 

Station

2 

Station

3 

Station

4 

Station

5 

Station

6 

Station

7 

Station

8 

Train 1 0/1 5/6 10/11 15/16 20/21 25/26 30/31 35/36 41/42 
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AT/DT 

Train 2 

AT/DT 

13/14 18/19 25/26 30/33 37/38 42/43 47/48 52/53 58/61 

Train 3 

AT/DT 

26/27 31/34 38/41 45/48 52/53 57/58 62/65 69/70 75/76 

Train 4 

AT/DT 

39/40 44/47 51/54 58/61 65/66 70/71 75/76 80/81 86/87 

Train 5 

AT/DT 

52/53 57/58 62/65 69/72 76/77 81/82 86/87 91/92 97/98 

Train 6 

AT/DT 

65/66 70/71 75/76 80/83 87/88 92/93 97/98 102/103 108/109 

Train 7 

AT/DT 

78/79 83/84 88/89 93/94 98/99 103/104 108/109 113/114 119/120 

SN 1 

IV: 90 

Station

0 

Station

1 

Station

2 

Station

3 

Station

4 

Station

5 

Station

6 

Station

7 

Station

8 

Train 1 

AT/DT 

0/1 5/6 10/11 15/16 20/21 25/26 30/31 35/36 41/42 

Train 2 

AT/DT 

13/14 18/21 25/26 30/33 37/38 42/43 47/48 52/53 58/61 

Train 3 

AT/DT 

26/27 31/34 38/41 45/48 52/53 57/58 62/63 67/68 73/76 

Train 4 

AT/DT 

39/40 44/47 51/54 58/61 65/66 70/73 77/78 82/85 90/93 

Train 5 

AT/DT 

52/53 57/58 62/65 69/72 76/79 83/86 90/93 97/98 103/104 

Train 6 

AT/DT 

65/66 70/71 75/76 80/83 87/90 94/95 99/100 104/105 110/111 

Train 7 78/79 83/84 88/89 93/94 98/99 103/104 108/109 113/114 119/120 
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AT/DT 

SN 2 

IV: 30 

Station

0 

Station

1 

Station

2 

Station

3 

Station

4 

Station

5 

Station

6 

Station

7 

Station

8 

Train 1 

AT/DT 

0/1 5/8 12/115 19/22 26/29 33/36 40/41 45/46 51/54 

Train 2 

AT/DT 

13/14 18/21 25/28 32/35 39/42 46/47 51/54 58/61 66/69 

Train 3 

AT/DT 

26/27 31/34 38/41 45/48 52/55 59/62 66/69 73/76 81/84 

Train 4 

AT/DT 

43/46 50/53 57/60 64/67 71/72 76/79 83/86 90/93 98/101 

Train 5 

AT/DT 

62/65 69/72 76/77 81/84 88/91 95/98 102/105 109/112 117/120 

Train 6 

AT/DT 

81/84 88/91 95/98 102/103 107/110 114/117 121/124 128/131 136/139 

Train 7 

AT/DT 

100/103 107/110 114/117 121/124 128/131 135/138 142/145 149/152 157/160 

SN 2 

IV: 180 

Station

0 

Station

1 

Station

2 

Station

3 

Station

4 

Station

5 

Station

6 

Station

7 

Station

8 

Train 1 

AT/DT 

0/1 5/8 12/15 19/22 26/29 33/36 40/41 45/46 51/52 

Train 2 

AT/DT 

13/14 18/21 25/28 32/35 39/40 44/47 51/52 56/59 64/67 

Train 3 

AT/DT 

26/27 31/34 38/41 45/48 52/53 57/58 62/65 69/72 77/78 

Train 4 

AT/DT 

39/40 44/47 51/52 56/59 63/64 68/69 73/76 80/81 86/89 

Train 5 52/53 57/58 62/63 67/70 74/75 79/82 86/87 91/92 97/100 
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AT/DT 

Train 6 

AT/DT 

65/66 70/71 75/76 80/81 85/86 90/91 95/96 100/103 108/111 

Train 7 

AT/DT 

78/79 83/84 88/89 93/94 98/99 103/104 108/109 113/114 119/120 

SN 3  

DV: 30 

Station

0 

Station

1 

Station

2 

Station

3 

Station

4 

Station

5 

Station

6 

Station

7 

Station

8 

Train 1 

AT/DT 

0/3 7/8 12/13 17/18 22/23 27/28 32/33 37/38 43/44 

Train 2 

AT/DT 

19/22 26/27 31/32 36/37 41/42 46/47 51/52 56/67 62/65 

Train 3 

AT/DT 

34/35 39/40 44/45 49/50 54/57 61/62 66/67 71/72 77/78 

Train 4 

AT/DT 

47/48 52/53 57/58 62/63 67/70 74/75 79/80 84/85 90/91 

Train 5 

AT/DT 

60/61 65/66 70/73 77/78 82/85 89/90 94/95 99/102 107/110 

Train 6 

AT/DT 

73/76 80/83 87/90 94/97 101/102 106/109 113/114 118/121 126/127 

Train 7 

AT/DT 

92/93 97/100 104/107 110/114 118/121 125/126 130/131 135/136 141/144 

Abbreviation: SN + number: different scenarios; IV/DV + number: increasing/decreasing variations of 

passenger flow + the detection time-units of variations; AT/DT: arrival/departure time in each station. 

Table 4-7 Real-time optimisation results for nine typical scenarios 

Table 4-8 records the SQI values after the scenarios with real-time irregular passenger 

flow variations, according to the real-time optimisation strategies and the original 
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scheduling strategies based on GA_POSM. The computational time of real-time 

optimisation is also listed in the table. 

Scenario 

ID 

GA_POSM 

Real-time optimisation 

GA_POSM 

Original 

SQI Time (s) SQI 

1 2246 19 2294 

2 2722 19 2760 

3 3015 19 3015 

4 2648 20 2984 

5 3075 19 3120 

6 3014 20 3014 

7 2726 20 2916 

8 1248 20 1248 

9 4280 20 4327 

Table 4-8 SQIs after nine real-time modifications 

 

Figure 4-19 Comparison of SQIs after modifications and original scheduling 
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Figure 4-19 shows the comparison of SQI results for the irregular passenger flow 

variation, after GA_POSM’s real-time optimisation and original dynamic scheduling 

strategies. As can be seen, after the detection time, the scheduling strategies have been 

changed to satisfy the irregular passenger flow variation using the real-time optimisation 

strategies. With a sudden increase of passenger flow in some specific stations, most trains 

are modified to a shorter departure time interval and dwelling time in other stations to 

take the large amount of passengers in these specific stations. By Contraries, with an 

unexpected decrease in passengers, most trains will be modified with a long departure 

interval and dwelling time to increase the trains’ capacity occupation ratio. According to 

the modifications in Table 4-7 and the SQI result from Table 4-8, we find that the earlier 

the irregular variation is detected, the better the modified result. Thus, updating passenger 

flow data in time is an essential process for real-time scheduling optimisation. The 

limitation is, in some situation when the variation was detected late, the improvement is 

minor, but this method can increase the overall flexibility of the system. 

4.2.6 Poisson Distribution Evaluation 

Because of the randomicity of passenger flow variation, the selected 10 entry rates of the 

passenger flow distribution scenarios are too few to cover all the typical distribution 

scenarios for evaluation. It is impossible to test all the passenger flow entry rate 

distribution scenarios and it is also very difficult to evaluate the operation strategy in real 

life. Thus, in order to further evaluate the performance of the GA_POSM algorithm, in 

this section, a statistical evaluation process based on passenger flow rate Poisson 

distribution has been carried out to evaluate the performance of GA_POSM, in terms of 

an average SQI. 
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Poisson distribution is a probability distribution that models scenarios that have a default 

behaviour and cumulative possible deviations from that behaviour. It is a discrete 

probability distribution that expresses the probability of a given number of events which 

are independent of the time since the last event occurring in a fixed time interval. Poisson 

distribution is suitable to be applied to a system with a large number of possible events 

during a fixed time interval, such as the passenger flow distribution and variation in the 

research time horizon. The probability mass function of a Poisson distribution is shown 

in Equation 5-1. This function calculates the possibility of occurrence 𝑘 happening in the 

research time interval. 

𝑃𝑟(𝑋 = 𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!
                                                                                         Equation 4-8 

where 𝜆 is the expected rate of occurrences, 𝑘  is the number of occurrences and 𝑒 is 

Euler’s number. 

For this research, Poisson distribution is used to generate more passenger flow rate data 

based on typical situations to update a passenger flow rate with more randomness in every 

detecting period for more case studies. The passenger flow rate from four typical Beijing 

metro stations shown in Figure 4-15 is implemented as the data bound for the Poisson 

distribution since they can represent the typical passenger flow rate distribution in daily 

life.  

Based on the passenger flow data from the previous section, the entry rate of passenger 

flow in each station is assumed to be between [3, 17], where in the Poisson distribution, 

the parameter 𝜆  is set to 10. The probability mass function diagram and cumulative 

distribution function diagram are shown in Figures 4-20 and 4-21. 
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Figure 4-20 Probability mass function diagram of passenger entry rate 

  

Figure 4-21 Cumulative distribution function diagram of passenger entry rate 

The aim of applying the Poisson distribution in this research is to generate a large amount 

of passenger flow rate OD data which can simulate different passenger distribution 

scenarios in different stations. For each passenger distribution scenario, the dynamic 

scheduling method of GA_POSM and the two traditional periodic timetables are applied 

to the simulator to calculate the SQI results. With the large numbers of passenger 

distribution scenarios, for evaluation and comparison of different scheduling methods, 

the statistical average value of SQI is calculated. A lower statistical SQI value shows 

better performance of the scheduling strategies based on the objectives’ solutions. Besides 
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that, to evaluate the real-time optimisation function of GA_POSM, irregular passenger 

flow variations based on the Poisson distribution are also generated; the comparison of 

SQI based on different scheduling strategies after the variations is also calculated. The 

procedure of the evaluation is shown in Figure 4-22. 

 

Figure 4-22 Statistical evaluation procedure 

For each scheduling strategy, 100 simulation passenger distribution scenarios have been 

generated and applied for evaluation. The statistical SQI results of GA_POSM, short 

periodic timetable and long periodic timetable are listed in Table 4-9. 

          Scheduling strategy 

 

Result 

GA_POSM 

scheduling 

GA_POSM 

Real-time 

optimisation 

Short 

periodic 

timetable 

Long 

periodic 

timetable 

Average SQI results of 

scheduling  

2080  2867 2799 

Average SQI results of real-

time optimisation 

2872 2715   

Table 4-9 Average SQIs for different scheduling strategies under passenger flow Poisson 

distribution evaluation 

Poisson distribution model 

Passenger distribution 

scenarios 

Irregular 

variation 

Macroscopical simulator GA_POSM Periodic 

timetable 

Statistical average SQI 



122 

 

From the table above, it can be seen that compared with the periodic scheduling timetables, 

GA_POSM can improve the service quality on average by 30% based on the SQI 

determined in this article. For the real-time optimisation function, compared with the 

original dynamic scheduling strategies, the service quality can be improved by around 7% 

after real-time modification. 

4.3 A Faster Real-Time Metro Operation Method Without 

Timetable Based on GA_POSM and Decision Tree 

Algorithm 

Based on the above case study, we validated GA_POSM in dynamic passenger flow-

based scheduling and real-time scheduling optimisation. For the 10-station metro system, 

Beijing Metro Line 19, because of the integrated modified genetic algorithm and 

macroscopic metro simulator, GA_POSM can propose the optimisation of operation 

strategies in a short time. 

However, different to other optimisation problems, for different metro systems, there are 

dramatic variations in the number of stations. For example, the Tunnel metro system in 

Istanbul, Turkey has only two stations, while the New York City Subway has 472 stations. 

The number of trains needing to be optimised is also variable according to different 

requirements. Some operators only need an optimised strategy for the trains in peak hours; 

however, some systems may need an optimised strategy for the whole day. In different 

metro systems, the number of optional dwelling times and departure time intervals is also 

different. Moreover, for this problem, we may need to satisfy different number of 

objectives in different time horizon (as the comprehensive objective function). Thus, 
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compared with other optimisation problems, the total number of solutions for this 

research is fluctuating, which will lead to variation of the gene sequence length in the 

genetic algorithm. Table 4-10 shows the variation of the number of solutions and gene 

sequence length according to different numbers of stations, trains and optional stop 

strategies. 

Number of 

stations 

considered 

Number of 

trains 

considered 

Optional 

dwelling and 

departure 

level 

Number of 

solutions 

Length of 

gene 

sequence 

2 5 2 210 10 

4 6 2 224 24 

8 7 2 256 56 

10 8 4 2160 160 

20 9 4 2360 360 

30 10 4 2600 600 

Table 4-10 Number of solutions and variation of gene sequence length based on different 

infrastructure 

Generally, the efficiency of a genetic algorithm-based optimising method is seriously 

impacted by the number of variables: more variables will lead to more solutions and a 

longer gene sequence, larger population and more iterations in the optimising process. 

Because of the increase of iterations, a longer calculation time is inevitable. As a real-

time operation method need to be applied for most metro systems, operational strategies 

should be proposed in a short time without being impacted by the infrastructures of 

different systems. Thus, we aim to integrate the proposed GA_POSM with the decision 
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tree learning method, in order to provide operation strategies more faster without the 

impacts of different infrastructures. 

4.3.1 Introduction to Decision Tree Learning 

As a non-parametric supervised machine learning method, decision tree learning is 

always considered to be the most straightforward algorithm in machine learning. Other 

supervised, unsupervised and reinforcement machine learning approaches could also be 

considered. However, as a problem with proposed mathematical model and implemented 

optimising algorithm, instead of applying with other complicated learning algorithms, the 

decision tree algorithm has better interpretability and computational efficiency. Moreover, 

the decision tree learning only requires little data preparation and also has good 

performance with large datasets. Duo to its various advantages, this method has been 

commonly used in various application scenarios for decades. 

A decision tree algorithm generates the results by splitting the training data set based on 

different training features; the training data can be formed as in Equation 4-9, where the 

vector 𝒙 is the set of different training features and 𝑌 is the target variables based on the 

training data. A decision tree mainly contains three types of node, the root node, which is 

the original tree node; the internal nodes, which contain the evaluation of variables; and 

the leaf nodes, which are the last nodes in the decision tree and will help to make decisions 

when new data is inputted. Based on a recursive partitioning process, a tree model as 

shown in Figure 4-23 can be built. 

(𝒙, 𝑌) = (𝑥1, 𝑥2, 𝑥3, … , 𝑦)                                                                                  𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒 − 𝟗 
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Figure 4-23 Tree model of the decision tree learning process 

Normally, decision tree learning is a method commonly used in data mining, which 

engages to generate a tree model that predicts the value of a target variable based on 

several input variables. For example, Crosby et al. (2016) introduced a novel approach 

based on decision tree learning to predict UK-wide daily traffic counts on all roads in 

England and Wales. Liu et al. (2017) utilised a machine-learning algorithm based on 

decision tree to predict future copper prices. 

In decision analysis, decision tree learning can be used for decision making, especially 

with discrete decision values. In this situation, the tree model is called a classification tree; 

the leaves in the classification tree represent the class labels of the decisions and the 

branches represent conjunctions of features that lead to those decisions. For example, Su 

and Shiue (2003) developed an intelligent scheduling controller to support a shop floor 

control system to make real-time decisions based on decision tree learning. Bian and 

Wang (2021) studied a new school enterprise cooperation mechanism based on an 

improved decision tree algorithm. 

𝑥1 

𝑥2 𝑥2′ 

𝑦
1
 𝑦

2
 

Root node 

Leaf nodes 

Evaluation 1 Evaluation 2 
Internal nodes 



126 

 

For the real-time metro operation problem in this research which can accept suboptimal 

discrete solutions, compared with continual optimisation of the system in real time, 

building a decision tree for each train at different stations according to the optimised 

dwelling time levels and departure time intervals based on a large number of results can 

help the operator make decisions faster in real-time operation and avoid the impacts from 

the infrastructures in different systems. For this research, the internal nodes of the 

decision tree can be labelled with system parameters and requirements based on the 

objective function, such as passenger arrival rate at different stations and the operation 

time. The branches of the decision tree represent the different inputs of the parameters 

which will lead to different results. The last leaves represent the decisions for the level of 

dwelling time and departure time interval based on different situations; as all the learning 

inputs for the decision tree have already been optimised, these decisions can be applied 

to the system directly. 

4.3.2 Decision Tree Learning Features for the Real-Time Train Operation 

Problem 

As the important elements which severely impact the learning process and the decision 

result, appropriate learning features of the decision tree should be selected meticulously. 

For the real-time train operation problem, we aim to build dwelling time-level decision 

trees to make the dwelling time decision for each train at different stations and also build 

the departure time interval decision trees to decide a suitable departure time interval 

between two trains; the target is to minimise the CSQI in the comprehensive objective 

function. Because the optimisation process is based on proposed multiple objective 

function, the learning features should also be based on the function’s parameters; selected 

essential learning features and statements are given as follows: 
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The time of making decisions: As an important parameter in the objective function, in 

the research time horizon, the passenger flow entry rate, the adjustable dwelling times 

and departure intervals and the choice of objectives are closely connected with the time 

of making decisions. 

Passenger flow entry rate: The rate with which passengers enter different stations is also 

an essential parameter in the objective function. Based on the optimised results in Chapter 

4, this feature will impact trains’ dwelling time choices at different stations. Normally, 

trains will stop for longer at stations with a high passenger entry rate. 

The passengers left at each station: The number of passengers left at each station is also 

an important learning feature. In the operation process, the entry rate of passengers in 

some stations may be slow, but the number of left passengers could be large; in this 

situation, a train also needs to stop for longer. 

Based on the learning features listed above, a sample learning table for a train’s dwelling 

operation strategies for the second station in a three-station system can be shown as in 

Table 4-11. 
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Station Number: 2 Train Number: 2 

Time 

horizon 

Entry rate of passengers in 

different stations 

(persons/minute) 

Passengers left at different 

stations 

Dwelling 

decision 

 1 2 3 1 2 3  

1 2 2 1 0 0 0 Long 

1 1 10 2 0 0 0 Long 

1 2 3 8 1 0 0 Short 

2 1 3 3 0 0 10 Short 

2 3 1 3 2 8 1 Long 

3 4 3 3 0 0 0 Long 

3 8 2 7 0 1 5 Short 

3 1 8 1 1 2 2 Long 

Table 4-11 Sample learning table for a train in a three-station system 

4.3.3 Explanation of the Learning Process of Decision Trees 

To build a decision tree, a method is needed to split the learning samples; in this research, 

we used Gini impurity as the splitting index. A Gini impurity is a number between 0 and 

0.5 which can help to classify random data based on a specific feature from a dataset. The 

formula of Gini impurity is given by Equation 4-10: 

𝐺𝑖𝑛𝑖 = 1 −∑𝑃(
𝑖

𝑁
)
2

𝑗

𝑖=0

                                                                                   𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒 − 𝟏𝟎 

where 𝑁 represents the number of datasets, 𝑖 represents the number of data in a specific 

label or decision, and 𝑃 represents the ratio of a decision. In the process, we aim to choose 

suitable features to decrease the Gini impurity to make decisions. For example, a decision 
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tree based on the sample learning data in Table 4-11 is shown in Figure 4-24; ES 

represents the passenger entry rate while LP is the number of passengers left in different 

stations. 

 

Figure 4-24 Decision tree based on the sample data 

To build this decision tree, at first the Gini impurity based on all the data needs to be 

calculated. The elements in each step are explained as follows. 

 

Figure 4-25 Root node of the decision tree example 

Samples = 8 means that all eight decisions are left at this point in the decision process as 

this is the root node. 
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Value = [3, 5] means three of the decisions are operated based on the short dwelling 

strategy and five with the long strategy. 

Gini = 0.469 the calculation of Gini impurity for this node can be given as: 1 − (
3

8
)
2

−

(
5

8
)
2

=  0.469. 

LP3 ≤ 3.5 means the number of passengers left in station 3 is the feature to decrease the 

Gini impurity in this step; the node should follow this rule to split. 

 

Figure 4-26 First splitting process of the decision tree 

Based on the splitting rule above, two decisions are classified as ‘False’, and follow the 

right-hand route; as both of these decisions are operated with short dwelling strategy, the 

Gini impurity is decreased to zero. Six decisions are classified as ‘True’ and follow the 

left-hand route. 

Samples = 6 means that all six decisions are left at this point in the decision process as 

their number of passengers left in station 3 is less than 3.5. 

Value = [1, 5] means one of the decisions is operated based on the short dwelling strategy 

and five with the long strategy. 
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Gini = 0.278 the calculation of Gini impurity for this node can be given as:1 − (
1

6
)
2

−

(
5

6
)
2

=  0.278. 

ES3 ≤ 5.5 means the passenger entry rate at station 3 is the feature to decrease the Gini 

impurity in this step; the node should follow this rule to split. 

 

Figure 4-27 Second splitting process of the decision tree 

Based on the rule above, the data with a passenger flow entry rate less than 5.5 have been 

divided to a new left node; the others are directed to the right node. As the data in both 

final nodes have the same decisions, all the Gini impurities of this decision tree have been 

decreased to zero. 

The example above introduces the basic generation process of a decision tree. 

Theoretically, with appropriate learning features, the decision tree’s Gini impurity can 

always be decreased to zero. Otherwise, some learning features may not have any 

connection with the decision result or there are not enough input learning data. As an 

algorithm based on a large number of optimising results, in some situations, compared 

with using the genetic algorithm directly, the decisions generated based on a decision tree 
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may not be the best, but the calculation time based on a decision tree is negligible, which 

makes this method suitable for macroscopic real-time operation. 

4.4 Conclusions 

In first part of this chapter, an innovative algorithm GA_POSM has been proposed for 

solving the passenger flow-oriented scheduling and real-time optimisation problems 

formulated with POSM. Based on a macroscopic metro simulator, the binary arrays in the 

traditional genetic algorithms can be converted into operational strategies directly, and an 

innovation operation ‘gene length modification’ has been derived for real-time 

optimisation. The addition of the gene length modification operation makes GA_POSM 

an efficient tool to optimise trains’ operation strategies in real time. Some performance 

evaluations based on typical passenger flow from the Beijing metro system were 

presented to evaluate the performance of GA_POSM for both scheduling and real-time 

optimisation, the basic POSM model has been validated. Also, a stochastic performance 

evaluation based on Poisson distribution has been applied. Two periodic timetables based 

on a real-life metro system’s data were compared. As the performance evaluation results 

show, under different passenger flow distributions, compared with the periodic operation, 

the scheduling method can decrease the SQI defined in this article and improve the service 

quality significantly. Furthermore, the real-time optimisation can modify the operation 

strategies in real time to satisfy the variations of passenger flow, which significantly 

improves the flexibility of metro operation. Based on the test, earlier detection leads to a 

better optimised result. 
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In the second part of this chapter, we considered the complex requirements of real life 

metro systems and the comprehensive model based on our field study. Then, we 

introduced and integrated a decision tree algorithm with proposed methodology to 

improve its applicability for different systems and objectives.  The system architecture 

and operation process of the integrated methodology will be introduced in next chapter. 
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Chapter 5. Methodology Application to Real life 

Metro Operation 

In the previous chapters, the formulation of dynamic passenger flow-oriented scheduling 

and real-time optimisation problems was presented, a comprehensive model based on 

field study for real-time operation was extended. the modified genetic algorithm 

GA_POSM was designed. Different evaluation results can prove the good performance 

of GA_POSM in decreasing passenger flow waiting time and improving service quality 

compared with the traditional periodic metro operation. And a faster real-time metro 

operation method without timetable with higher applicability based on the proposed 

GA_POSM integrated with a decision tree algorithm has been presented. In this chapter, 

an integrated system architecture is introduced for real-time metro operation, to integrate 

the proposed operation method with traffic management and train control systems in a 

real-life metro system. And a macroscopic case study for the real-time metro operation 

method without timetable will be demonstrated. 

5.1 Integrated System Architecture for Real-Time Metro 

Operation Without Timetable 

In the previous chapters, the methodology GA_POSM for scheduling metro trains based 

on dynamic passenger flow was presented and validated, and it was also derived with a 

decision tree algorithm to provide real-time operation decisions for the metro system 

without a prepared timetable. To implement the proposed methodology with real metro 

systems, an integrated system architecture must be proposed, as two important 
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components for real-time operation, the requirements and structures of the real-time 

passenger flow data collection system and the passenger flow-based operation strategy 

system need to be considered. In this part, based on the passenger monitoring system 

applied in the Chinese metro system and the proposed real-time passenger flow-based 

decision methodology, the operational processes of these components will be introduced 

and integrated. The objective is to deliver an integrated metro control process which can 

provide operational strategies in real time without a timetable. 

5.1.1 Structure of the Real-Time Data Collection System 

Based on the requirement of proposed methodology, the real-time data collection system 

mainly contains three modules, which will be introduced separately as follows: 

(1) Data collection module 

This module mainly collects the passenger flow data, station data and metro network data; 

the following units should be included in this system: 

❖ Ticket data collection unit: connect with the AFC system in stations, collect the 

data of passenger flow and tickets which include the entry station and the 

destinations. 

❖ Passenger number data collection unit: connect with the monitoring system in 

each station, collect data including the number of passengers and the entry rate of 

passengers in each station and platform. 

❖ Station and metro network data collection unit: collect the infrastructure data of 

the metro system based on the metro’s Geographic Information System. 

(2) Data processing module 
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This module receives and processes the passenger flow data collected by the data 

collection module; the following units should be included in this system: 

❖ Passenger OD matrix unit: integrate each ticket’s entry and destination data from 

the ticket data collection unit with the passenger flow entry rate data from the 

passenger number data collection unit and generate a real-time passenger entry 

rate OD matrix. 

❖ Operation data unit: generate operation data including the running time between 

stations, optional dwelling time and departure time intervals for the metro system 

based on the station and network data. 

❖ Passenger data recording unit: record the passenger entry rate OD matrix 

generated. The recorded historical data can be used to pre-optimise the scheduling 

before daily operation. 

(3)  Data transmission interface module 

This module analyses and transfers the processed passenger flow and metro system data 

for the proposed methodology to the operation decision system to generate operational 

strategies. Based on existing metro data collection and transmission systems (such as the 

EUHT-5G technology introduced in the Chapter 4), this process takes 15 minutes in a 

normal situation. Thus, the average real-time passenger flow data will continue to be kept 

updated and transmitted in a specified period. 

The flow chart of the whole real-time data collection system is shown in Figure 5-1. 
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Figure 5-1 Flow chart of real-time data collection system 

5.1.2 Structure of the Real-Time Passenger Flow-Oriented Operation 

Decision System 

Based on the passenger flow data updated by the real-time data collection system, the 

real-time passenger flow-oriented operation method (RPOM) should propose appropriate 

operational decisions according to the proposed approaches, including the algorithm 

GA_POSM and the decision tree algorithm. 

Before the operation starts, as there will not be big modifications of the number of trains 

in real-life operation, the algorithm GA_POSM is able to test and propose a optimised 

scheduling strategy based on the historical  passenger flow data for the system with 

different numbers of trains, and the optimisation results will become the learning data for 

the decision tree algorithm. The flow chart of this pre-operational process is shown in 

Figure 5-2. After the operation starts, the number of trains is fixed; the flow chart of 

GA_POSM in real-time application is shown in Figure 5-3. 
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Figure 5-2 Flow chart of GA_POSM in pre-operational process 
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Figure 5-3 Flow chart of GA_POSM in real-time operation 

No

No 

Yes 

Yes 

No 

System parameters and 

passenger flow record data 

input 

Modify the gene sequence 

length based on the detection 

time 

Generate new population 

Transform the generated gene sequences to valid operation strategies 

Simulate 

Evaluation and selection 

Crossover and mutation 

Record the best gene sequence 

Termination condition satisfied? 

Output strategy 

Start 

Update passenger flow entry 

rate 

Propose operation strategy 

Dynamic operation time horizon end? 

End 

New detection period? 

Yes 

No

 



140 

 

In RPOM, all the decisions generated by the algorithm GA_POSM will be regarded as 

the learning data and inputted to the decision tree algorithm. In real-time operation, the 

operation decisions will be made by the decision tree algorithm directly to save time. The 

whole system structure including the interfaces between different systems, operation 

process and data flow is shown in Figure 5-4. 

The specific application process can be summarised by the following steps: 

1. Based on the passenger OD data and entry rate data from the AFC ticket system 

and passenger counting system, record and collect dynamic passenger flow entry 

rate OD data for the operation time horizon. 

2. Based on the infrastructure data from the GIS system, generate the operation 

constraint data for the operation algorithm. 

3. Based on the historical passenger flow OD data stored in the data collection 

system, propose different dynamic passenger flow-oriented metro scheduling 

plans according to a specific object in the operation time horizon. Test different 

numbers of trains, optimise the departure intervals and dwelling times with the 

GA_POSM algorithm and input all the optimised plans to the decision tree 

algorithm as the learning data. 

4. Based on the real-time update frequency of the AFC ticket system and passenger 

number counting system, keep calculating and updating the real-time detected 

passenger flow entry rate OD data. Based on the real-time data, keep proposing 

new operation decisions according to the decision tree generated. The GA_POSM 

algorithm will also keep proposing optimising strategies and input these strategies 

to the decision tree algorithm as learning data in real time. 
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Figure 5-4 Real-time metro operation process and data flow 
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5.2 Real-Time Passenger Flow-Oriented Metro Operation 

Without Timetables Case Study 

In the previous section, we introduced the concept of the innovative real-time passenger 

flow-oriented metro operation method without timetable. In this section, a large-scale 

real-time passenger flow-oriented metro operation case study will be carried out and the 

result of RPOM will be evaluated. 

As described in the previous chapter, Beijing Metro Line 19, which will be allocated with 

new 5G network communication and passenger counting technology from Beijing 

Infrastructure Investment Co Ltd, is still used to demonstrate the real time passenger flow-

oriented metro operation method and evaluate its performance. Generally, the detection 

and transfer process will take 15 minutes with existing EUHT communication units. Thus, 

15 minutes is regarded as the detection period, as introduced earlier, this limitation is 

mainly related to the measurement and transmission technologies applied now. With the 

application of the decision tree algorithm, the real-time calculation time for the 

macroscopic system will be highly reduced. This case study applied with a double-

direction line from Xingong station to Mudanyuan station. For the optimisation process, 

this double-direction line system can be transformed to a single-direction system with 

twice the number of stations, including a disembark-only station and an embark-only 

station. As the depot of Beijing Metro Line 19 is beside Xingong station, we can transform 

the system as shown in Figure 5-5. 
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Figure 5-5 Transformation of a double-direction system to a single-direction system 

The infrastructure data of this case study are shown in Table 5-1. The research time 

horizon is divided into three shorter time horizons to simulate variation of objectives in 

real-life operation, which are the peak hour horizon from 0 to 60 minutes with huge 

passenger flow, the off-peak hour horizon from 61 to 120 minutes with normal passenger 

flow and the system-ending hour horizon from 120 to 180 minutes with fewer passengers. 

This 10-station double-direction system will be considered as a 20-station single-direction 

system. For each train, there are two optional dwelling strategies and two optional 

departure strategies. 

  

S1 S2 S3 Sn Depot 

Depot 

S1 S2 Sn Sn+1(Sn

) 

Reverse 

Reverse 
S2n(S1) 

Disembark-only Embark-only 
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Table 5-1 Infrastructure parameters of the case study 

Before the real-time operation, the GA_POSM method will schedule and calculate 

optimised scheduling for a 28- to 30-train system based on the assumed historical 

passenger flow entry rate data as shown in Figure 5-6. Generally, passengers can only 

enter the system later than the system start and stop entering earlier before the system 

close. The test results are shown in Table 5-2. 

Number of vehicles in system CSQI 

28 N/A (cannot take all passengers) 

29 16887 

30 14348 

Table 5-2 Test result for different number of vehicles in a system 

From above results based on historical data, a 30-train system will be chosen for the real-

time operation. Before the operation starts, 30 different historical passenger flow data will 

be optimised by GA_POSM; the results will be the learning input for the decision tree 

algorithm. 

In the real-time operation, passenger flow entry rate will be updated and transferred every 

15 minutes. Different to the optimisation based on GA_POSM, the decision tree 

Parameter Data 

Passengers entering research time horizon 180 minutes 

Objectives 

Balance the passenger waiting time and the 

passenger travelling time from 0 to 60 minutes; 

Balance the passenger waiting time and the train 

full load rate from 60 to 120 minutes; 

Take all passengers to their destination with the 

shortest waiting time from 120 to 180 minutes. 

Number of stations 10 stations for double-direction 

Number of test trains 28 trains, 29 trains, 30 trains  

Minimum headway 2 minutes 

Capacity of each train 2520 people 

Optional dwelling time 
Short dwelling: 0.5 minutes, 

Long dwelling: 1.5 minutes 

Optional departure interval  
Short interval: 4 minutes, 

Long interval: 5 minutes 

Real-time passenger flow entry rate updating period 15 minutes 

Reverse time 4 minutes 
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algorithm in RPOM can rapidly make operational strategy decisions according to the 

latest updated passenger flow entry rate data without the impacts from infrastructures. 

The assumed real-time variation of passenger flow entry rate data is shown in Figure 5-

7. 

Compared with the historical passenger flow data, real-time passenger flow varies slightly 

from 15 to 60 minutes. From 60 to 90 minutes, passenger flow increases and decreases 

dramatically; it stays the same as the historical data from 105 to 150 minutes then 

increases again from 135 to 150 minutes. 
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Figure 5-6 Assumed historical passenger flow entry rate OD data 
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Figure 5-7 Assumed real-time passenger flow entry rate OD data 
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Because of the large number of results, the operation strategies based on RPOM and the 

comparison of the CSQI from this method and periodic timetables are shown in Appendix 

D. 

From the table, the RPOM method-based GA_POSM data and decision tree algorithm 

can optimise and modify any later operation strategy for both dispatched trains and 

follow-up trains after every detection period, and the calculation time is negligible. In the 

180-minute research time horizon, the operation strategy optimisation process has been 

implemented 7 times and 183 operation strategies have been modified and rescheduled. 

Typically, these modifications were implemented after noticeable passenger flow 

variations happened, especially when a sudden massive passenger flow occurred. In most 

cases, these modifications are better than the old operation strategies. However, because 

the decision tree algorithm has been applied, we cannot ensure the modification is always 

better, such as the situation at 45 and 90 minutes, where the CSQI of the modified 

operation strategy is a slightly larger than the old strategy but compared with worse results 

of periodic strategies these flaws can be accepted. Furthermore, unlike periodic strategies, 

RPOM keeps modifying its operation strategies in real time, increasing the system’s 

flexibility. With a high degree of flexibility, in most situations, the performance of RPOM 

is much better than the periodic timetables which can be reflected by the value of CSQI. 

Also, RPOM can always improve the efficiency of the trains; by using a short time 

periodic strategy, the system needs at least 40 trains to cover the research time horizon. 

Moreover, as there are always passenger flow variations in real-life operation, a flexible 

operation method is more valuable than a perfectly prepared fixed timetable. 

In the view of metro operators, with a fixed number of trains, compared with periodic 

strategies like ST and LT, there is no significant increase in train running costs with 
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RPOM, and it is easy to apply in practice. Of course, extra operational training for the 

metro operators and drivers is necessary. However, compared with the experience-based 

operation method, more accurate indicators can be provided to the operators and drivers 

by RPOM. 
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Chapter 6. Conclusions and Future Work 

6.1 Conclusions 

In this research, a systematic methodology has been proposed for modelling and 

optimising metro systems’ scheduling strategies based on dynamic passenger flow 

demands. The methodology has also been derived to generate real-time passenger flow-

oriented operation decisions without timetables. The modelling process, innovative 

solution algorithms, performance evaluation, derivation process and macroscopic case 

studies have been presented in this paper. The aim of this research is to propose a more 

flexible method to help metro operators make decisions to satisfy objectives based on 

real-time passenger flow. 

First, to better understand the metro scheduling problems based on dynamic passenger 

flow, a nonlinear integer programming mathematical model, passenger flow-oriented 

scheduling model (POSM) is proposed. 

To translate the proposed methodology into real-life implementation, a field study was 

carried out in the London Underground Bakerloo Line Operation Department. Based on 

the field study, we investigated the essential requirements for real-time metro operation, 

collected the main objectives of daily operation and modified the objective function 

according to the CSQI to meet different objectives in different operational times. 

To solve the dynamic passenger flow-oriented scheduling problem, firstly, a macroscopic 

metro-passenger simulator has been built based on the objective function to simulate and 

record the interaction between passengers and metro systems. Then, an innovative 
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algorithm GA_POSM, based on genetic algorithms has been proposed for solving the 

dynamic passenger flow demand scheduling problem; by integration with the simulator, 

GA_POSM can solve the dynamic passenger flow-oriented scheduling problem 

efficiently and even optimise the scheduling strategies for trains that have already been 

dispatched in real time. 

In addition, a systematic approach to evaluate the performance of GA_POSM has been 

introduced; two typical scenarios based on data from Beijing Metro Line 19 and a 

stochastic scenario based on Poisson distribution have been evaluated for both the 

dynamic passenger flow oriented scheduling function and the real-time optimisation 

function of GA_POSM, and the results have been compared with two typical periodic 

scheduling strategies. Based on the objective function in our mathematical model, 

compared with traditional periodic scheduling strategies, for all the cases, the SQI can be 

significantly reduced by GA_POSM. And for real-time variation of passenger flow, the 

real-time optimisation function of GA_POSM can modify scheduling strategies rapidly. 

In this case study, the average computation time of the GA_POSM algorithm is around 

20 to 25 seconds, making it possible to support metro operators to make operational 

strategies in real time. 

Based on the field study, in real-time operation, the computation time requirement is very 

strict; for different systems, there will be huge variations in the number of variables, 

which will highly impact the computation time of GA_POSM as it is based on a genetic 

algorithm. Thus, a decision tree algorithm which can propose decisions rapidly has also 

been introduced and integrated with GA_POSM. A real-time passenger flow-oriented 

operation method without timetable, RPOM, has been proposed. 



152 

 

Finally, the system architecture and infrastructure requirements have been introduced to 

integrate all the proposed methodologies together and demonstrate the data flow in the 

system. A macroscopic case study which can show implementation of the proposed 

methodology in real-time passenger flow-oriented metro operation without timetables has 

also been presented. 

6.2 Limitations and Future Work 

At this stage, the author has focused on modelling and solving the passenger flow-

oriented scheduling and real-time optimisation without timetable for metro systems, there 

are still some limitations which can be optimised in the future work. To extend this 

research, further tasks are suggested: 

(1) Further evaluation of the RPOM operation method for more scenarios will be 

useful before implementation. Other optimisation algorithms are worth comparing 

with the algorithm. 

(2) As the Beijing Metro Line 19 is still under construction, a limitation of this 

research is that non-real-life passenger flow data were collected for the test from 

the metro line. It will be worth collecting passenger flow data after the Beijing 

Metro Line 19 is completely open to the public and designing more test instances 

for the proposed method. 

(3) The methodology presented in this thesis has been demonstrated in a laboratory 

environment with a programming simulator. With the limitations of mathematical 

modelling and software simulating, there are still some requirements from metro 

operators in real life that have not been considered and modelled. A practical test 



153 

 

of the methodology could be necessary, and the methodology proposed in this 

thesis should be able to guide metro operators to modify operation strategies in 

real metro systems in future. 

(4) More optional dwelling time and departure interval choices can by considered for 

further research. 

(5) Future uncertainty in the operation can be considered, some discount factors may 

be applied. 

(6) Other machine learning method, including supervised learning, unsupervised 

learning and reinforcement learning could be considered and compared for real 

time operation to improve the service quality. 

(7) Further research based on different passenger flow data updating resolution 

without technical limitations will be useful to investigate its impacts to the results. 

(8) Instead of using real-time data to refresh the statistical passenger flow data in 

operation, some prediction methods for passenger flow are worth to be considered.   
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Appendix B. Passenger Flow Scenarios for Scheduling 

Evaluation
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Appendix C. Passenger Flow Irregular Variation 

Scenarios for Real-Time Optimisation Evaluation 
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Appendix D. Operation strategies generated by RPOM 

Detection time 0 minutes 

Strategy RPOM ST LT 

CSQI 14348 N/A 17419 

 DI DW1 to DW20 

T1 X LLLSLLSSLSSLSSLSLLSL 

T2 L LSLLLLSSLSSLSLLLLSLL  

T3 L LLLSLSLLLSSSLLSSLLLL 

T4 L LLLLLLLLSLLLLLLLLLSL 

T5 L LLLLLLLLLLLLLSLLLSLL 

T6 L LLLLLLLLLLLLLLLLLLLL 

T7 L LLLSLLLLLLLLLLLLLLLL 

T8 L LLLLLLLLLLLLSLLLLLLL 

T9 L LLLLLLLLLLLSLLLLLLLL 

T10 L LLLLLLLLLLLLLLLLLLSL 

T11 L LLLLLLLLLLLLLLLLLLLL 

T12 L LLLLLLLLLLLLLLLSLLLL 

T13 L LLLLSLLLLLLSLSLLLLLL 

T14 L LLLLLLLLLSSLLLSLLLLL 

T15 L LSLLLLLLLLLLLSLLLLLL 

T16 L LLLSLLLLLLSSLLLLSLSL 

T17 L LLLSLLLLLLLLLLLLLLSL 

T18 L LLLLLLLLLLLLLLSLLLSL 
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T19 L LLLSLLSLLSLLLLLLLLLL 

T20 S LLLLSLSSLSSLLSSLSLLL 

T21 S LLLLLLLLSLSLLLLLLLLL 

T22 S LLLLLLLLLLLLLLLSLLLL 

T23 L SSLLLLSLLLLLLSLSLLLL 

T24 L LLLLSSSLLLLLSLLLLLLL 

T25 L LLLLSSLLLLLLLLLLLLLL 

T26 L LLSLLSLLLSSLLLSLLSLL 

T27 L LLLSLLLLLSLLLLLLLSLL 

T28 S LLSLLLLLSLSSLSLSLSLL 

T29 L LLLLLSSSLLLSSLLLLSLL 

T30 L LLLLLLSLSLSLLLLSSLLL 

Detection time 15 minutes 

Strategy RPOM Last RPOM ST LT 

CSQI 14234 14472 N/A 17547 

 DI DW1 to DW20 

T1 X LLLSLSLSLLLSSLSSSSSL 

T2 L LSLSLLSLLLSSSSSSLSLL 

T3 L LSLLSLSLSSSLSSLLLSSL 

T4 L LSSSSSLLSSLSSSLLLLSL 

T5 L SLLSLLLSSLLSSLSSLSSL 

T6 L LLLLSLSLSSLLSLLSLLSL 

T7 S LLSLSSLLLLSSLLLSLLLL 
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T8 L LSLLSLSSSLSLSSSLLLLL 

T9 S SLSSSLLLSSLSLLSLSLLL 

T10 L LLLLLLLLSSLLSSLLLLLL 

T11 S LLLLLLLLSSLLLLLSSSLL 

T12 L LLLLLLSLLLSSSLSLLLLL 

T13 L LLLLLSSSLLSLLSLSSSSL 

T14 L LLSSLLLLLSLLLSSSSLLL 

T15 L LLSLSSSLSLSSSSSLSLSL 

T16 S LSSLLSSSLSLLSLSSSSLL 

T17 L LLSLLSSLSLSSSLSLSLSL 

T18 L LLLLSLSSSLLSLSLLLLLL 

T19 L LSSLSLLSSSLSLSLLLSSL 

T20 S LLLSLLLSLSSLLSLSSLLL 

T21 L LLSSSLSLLLLLLSSSSLLL 

T22 L LSLSLLSSSLSLLSSLSLSL 

T23 L LLLSLSLSSLSSLSLSLLLL 

T24 L LSSSSLSSLSSLSSSLSLSL 

T25 L LLSSSSSLLSSSSSLLLSLL 

T26 L LSSLSSSLLLLSLLLLLLLL 

T27 L LLSSLSSLSSSLLLLSSLSL 

T28 L LSLSSSLLLSLLLLLSSLSL 

T29 L LSSLSSLSSLLLSLSSLLLL 

T30 L LSSLLLLSLSSLSLLSSLSL 
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Detection time 30 minutes 

Strategy RPOM Last RPOM ST LT 

CSQI 13309 13922 N/A 16352 

 DI DW1 to DW20 

T1 X LLLSLSLSLLSLSSSLLSSL 

T2 L LSLSLLSLLSLSSSLSSSSL 

T3 L LSLLSLLSSSLSSSLSLLSL 

T4 L LSSSLLSSLLLLSLSSLSLL 

T5 L SLLLSLSSSLSLSLSLSLLL 

T6 L LSLLSSLSSLLLSLLSLLLL 

T7 L LLSSLLSLLSLSLLLSSSLL 

T8 L LLLLSLSSLSSLLSSSLLLL 

T9 L SLSSLLSLLSSSLLLLLSLL 

T1S L LLSLSLLLLSLLLSSSLSLL 

T11 L LSSLLLSLSLSLLLLLLLSL 

T12 L LLLSLLLSLSSLSSSSLLLL 

T13 L SSSLLSSLLLSLLSLLSSSL 

T14 L LSSSLSLSLLSLLSSLLLSL 

T15 L LLLSLSSLSLSLLLSLSLSL 

T16 L SLLLLLSSSSLLSLLLLSLL 

T17 L LSSSLSSSLLLSSLSLSLLL 

T18 L LSLSSSSLLLSSLSSSLSSL 

T19 S SLSSSSSLSLSLSLLSLSLL 
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T2S L SLLSSLSSLLLLLLSLSSLL 

T21 L LLSSLSSSSLLSLSSLSLSL 

T22 L LLSLSSLLLSSLLSLLSSLL 

T23 S LLLLSLSSLLSLLSLLLLSL 

T24 L LSSSLSLLLLLSSLLLSSSL 

T25 L SSLLSSLLLLLLLSLLSSLL 

T26 L LLSLSSLLSLLLLLSLLSSL 

T27 L LLLSSSLLSSLSSLLLLLLL 

T28 L LSLLLLSSLSLSLLSSLLSL 

T29 L LLSLLLLSSSSSLLLSLSLL 

T30 L LLLSLLSLLSSLLLSLLLSL 

Detection time 45 minutes 

Strategy RPOM Last RPOM ST LT 

CSQI 13668 13271 N/A 16529 

 DI DW1 to DW2S 

T1 X LLLSLSLSLLSLSSLSLSSL 

T2 L LSLSLLSLLSLSLLSSLSSL 

T3 L LSLLSLLSSSSSSLLSLLSL 

T4 L LSSSLLSSLLLSLLLLLLLL 

T5 L SLLLSLSSLLLSSLLLLSLL 

T6 L LSLLSLLLSSLLSSLLLLLL 

T7 L LLSSSSLSLLSSLSSLSSSL 

T8 L LLLSSSLLLLLSSSSSLSSL 
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T9 L LSLLSLSSLSSSSLSSLLSL 

T1S L LLLLSSSSLSLLLLLSSLLL 

T11 L LSLSLSLLSLLSLLLSLSLL 

T12 L LSSSLSSLLSLLSSSLSLLL 

T13 L LLSSSLLSLSSSLSLSLLSL 

T14 L SSLLLSLSSLSSSLLLSLSL 

T15 L LLSLSSLSSLSSSLSSLLLL 

T16 L LLSSLLSLLLSSSSLSSSLL 

T17 L LLLSSLSSSLLLLLLSSSLL 

T18 L LSLLLSSLLSSSSSSSLLLL 

T19 L LSSSLLLLLLLSLSLSSLLL 

T20 S LSSLLLSLSLLSLLSSSLLL 

T21 L SSSSSLLLSLSLLLSLSLSL 

T22 L LSSSSSLLSLSSLSLSSSLL 

T23 L LLLSLSSSSSLSSSSLSLSL 

T24 S LSSLSLSLSSSSLSSSSSSL 

T25 L LLLLLSLLSLSLLLSSSSLL 

T26 L LLSSLLSLSLSLSSLLSSLL 

T27 S LLLSSLSLLLSSSLLLSSSL 

T28 L LLLSSLLLLSSSLSSSSLLL 

T29 L LSSSSSLSSSLSLSLSLLSL 

T30 L LSLSSSSLLLLLSLLSSSSL 

Detection time 60 minutes 
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Strategy RPOM Last RPOM ST LT 

CSQI 13006 13054 N/A 16059 

 DI DW1 to DW2S 

T1 X LLLSLSLSLLSLSSLSLSSL 

T2 L LSLSLLSLLSLSLLSSLLSL 

T3 L LSLLSLLSSSSSSLLLLLLL 

T4 L LSSSLLSSLLLSLLSSLSLL 

T5 L SLLLSLSSLLLLLLLSLSLL 

T6 L LSLLSLLLSSLLLSSLSLSL 

T7 L LLSSSSLSSLSSSLSSLLSL 

T8 L LLLSSSSSLSSSSLSSSLSL 

T9 L LSLLSLLSSSSSLSLLLLLL 

T1S L LLLLLSLLSLLSSLSSLLLL 

T11 L LLLLSSSSSLLSLLSLSSSL 

T12 L SLSSLSSSLLLLSSLSLSSL 

T13 L LLLSLLLSSSSSLSSLLLSL 

T14 L LSSLSLSSLLLSLSSSLSLL 

T15 L LSLLSLLSSSLSLLSSSLLL 

T16 L LLSLSLSLSSSLSLSLLSLL 

T17 L LSLLLSSLSSLLSSSSLLLL 

T18 L LLSLSLSSLSLLSSSSLLSL 

T19 L LSLLLSSLSSLLLSLLLLLL 

T2S S LLLLSLSLSLLLSLLLLLSL 



181 

 

T21 L LLLSLLLSSSLSLSSLLSSL 

T22 L LSSSSLSLLLLSLLLSSSLL 

T23 L LLLSSSLLSSSLSLLLLSLL 

T24 L LLLSSSSLLSSLSLLSSLSL 

T25 L LSSLLSLLLSLLSSSSLSLL 

T26 L LSSSLSLSSSLSSSLSSLSL 

T27 L LSLLSLSLLSSSLLSLSLSL 

T28 L SSLSSLLLLLLSLSSLSLSL 

T29 L LLSSSSLSSLLSSSLLLSSL 

T30 S LSLLSSLLLSSLSLSLLSSL 

Detection time 75 minutes 

Strategy RPOM Last RPOM ST LT 

CSQI 13371 13383 N/A 16059 

 DI DW1 to DW2S 

T1 X LLLSLSLSLLSLSSLSLSSL 

T2 L LSLSLLSLLSLSLLSSLLSL 

T3 L LSLLSLLSSSSSSLLLLLLL 

T4 L LSSSLLSSLLLSLLSSLSSL 

T5 L SLLLSLSSLLLLLLLSSLSL 

T6 L LSLLSLLLSSLLLSSLLSLL 

T7 L LLSSSSLSSLSSLSSLLLSL 

T8 L LLLSSSSSLSLSLLLSSLSL 

T9 L LSLLSLLSLLLSLLSLLLLL 
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T1S L LLLLLSLSLLLSSSLLLSLL 

T11 L LLLLSLLSLSLSSLSLLSLL 

T12 L SLLLSSLLLLSLSLSLLLLL 

T13 L LLLSSLLLLSSSLLSSSLLL 

T14 L LLLLSSLSSLSSLLLLSLLL 

T15 S SLLLSLLLLSSLLLLSSSSL 

T16 L LLLLSLLLSLSSLLLSLLLL 

T17 L LLLSLSSSSSLLSLSSLLLL 

T18 S LSSSSSLLLSSLLSLLLSSL 

T19 L SSSLSLSSLLLSSSLSSLLL 

T2S L LSSSSLSSSLSSLSSSLSSL 

T21 L LSLSSSLLSLSSSLLLLSLL 

T22 L LSLLSLLSLSSSSLSSLLLL 

T23 S LSLLSLSSLSLLSSSLSSLL 

T24 L LLSSLSLLSLLLSLSLLLSL 

T25 L LSLSSLLLSLSSLLLLLLSL 

T26 S LLLSSSLLLLSLSSLSLSSL 

T27 S LSLSLLSLSLLLLSSLSLSL 

T28 L LSLSLLLSLSSLLLLSSSSL 

T29 L SLLLLLSSLLSLLSLSLLLL 

T30 L LSLSLLSLSLLSSSSSLSSL 

Detection time 90 minutes 

Strategy RPOM Last RPOM ST LT 
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CSQI 13156 13135 N/A 17480 

 DI DW1 to DW2S 

T1 X LLLSLSLSLLSLSSLSLSSL 

T2 L LSLSLLSLLSLSLLSSLLSL 

T3 L LSLLSLLSSSSSSLLLLLLL 

T4 L LSSSLLSSLLLSLLSSLSSL 

T5 L SLLLSLSSLLLLLLLSSLSL 

T6 L LSLLSLLLSSLLLSSLLSLL 

T7 L LLSSSSLSSLSSLSSLLLLL 

T8 L LLLSSSSSLSLSLLLSSSSL 

T9 L LSLLSLLSLLLSSSLSLLLL 

T1S L LLLLLSLSLLLSSSSLSLSL 

T11 L LLLLSLLSLSSLLLSSSLSL 

T12 L SLLLSSLSLSSSSSLLSSLL 

T13 L LLLSSLSLSLLLSSSSSSLL 

T14 L LLLLSSLSSLSSLLLSSSLL 

T15 S SLLSLLSLLLSSSLSLSSLL 

T16 L LSSLLLSLLSSLSLSSSSSL 

T17 L LSLSSLSSSSSLSSSLSLSL 

T18 L LSLSSLLSSLLLSSSLSSSL 

T19 S LSSLLLSSSLLLSSSSLSSL 

T2S L SLSLSSSSLSLSSLSSSLSL 

T21 L LLSLLSSLSLLLLSLSLSLL 
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T22 L LLSSLSSSSLSLLLLSSSSL 

T23 L LSSLLLSSLSLSLSSLSSSL 

T24 L LSSSSLSLSLSLLLLLSSLL 

T25 L LSLLSSSLSLSSLLSSLLSL 

T26 L LSSSLLLSLLLSLLSLLLSL 

T27 L LLLLSSSLLLLSLSSSLSLL 

T28 L LSLLLSSSLLLSLSSLLLSL 

T29 L LLLSLLSLSLSSLLSLLSSL 

T30 L LSSLLLLLSLSSSLLSSSLL 

Detection time 150 minutes 

Strategy RPOM Last RPOM ST LT 

CSQI 13791 13862 N/A 16828 

 DI DW1 to DW2S 

T1 X LLLSLSLSLLSLSSLSLSSL 

T2 L LSLSLLSLLSLSLLSSLLSL 

T3 L LSLLSLLSSSSSSLLLLLLL 

T4 L LSSSLLSSLLLSLLSSLSSL 

T5 L SLLLSLSSLLLLLLLSSLSL 

T6 L LSLLSLLLSSLLLSSLLSLL 

T7 L LLSSSSLSSLSSLSSLLLLL 

T8 L LLLSSSSSLSLSLLLSSSSL 

T9 L LSLLSLLSLLLSSSLSLLLL 

T1S L LLLLLSLSLLLSSSSLSLSL 
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T11 L LLLLSLLSLSSLLLSSSLSL 

T12 L SLLLSSLSLSSSSSLLSSLL 

T13 L LLLSSLSLSLLLSSSSSSLL 

T14 L LLLLSSLSSLSSLLLSSSLL 

T15 S SLLSLLSLLLSSSLSLSSLL 

T16 L LSSLLLSLLSSLSLSSSSSL 

T17 L LSLSSLSSSSSLSSSLSLSL 

T18 L LSLSSLLSSLLLSSLSLLSL 

T19 S LSSLLLSSSLLLSSSLLSLL 

T2S L SLSLSSSSLSLLSSSSSLLL 

T21 L LLSLLSSLSSLSSSSLLLSL 

T22 L LLSSLSSSSSSSLLSLLSSL 

T23 L LSSLLSSLLLSSSSLSSLSL 

T24 L LSSLLSSSSLSLLLSSLSSL 

T25 L LSSSLSLSLSSSSLLLLSLL 

T26 L SLLSSLLSSLSLSLLLSLSL 

T27 S LLLLSLLSLSLLSLSLSLSL 

T28 L LSSLSSLSLLLSSSSSLSLL 

T29 L SSSLLSSLSSSSLLSLSSSL 

T30 L SSLSLSLSLLLSSSLLLSSL 

Abbreviations: DW + number: dwelling time + station number; DI: departure interval; T + number: train 

number; S: short time strategy; L: long time strategy; ST: short periodic timetable; LT: long periodic 

timetable. 
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