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ABSTRACT 

This thesis assesses seasonal hydrological prediction in Great Britain. Firstly, the study 

evaluates river flow prediction using climate model output to drive a rainfall-runoff model in 

the Dyfi basin, Wales. Results show that climate model precipitation can not skilfully 

simulate Dyfi discharge. When a downscaling process is employed to generate precipitation 

time series, river flow forecast skill improves, but historical river flows still provide superior 

forecasts. Secondly, large-scale climatic control on British precipitation/discharge and 

European precipitation is investigated by correlation analysis. Results show spatiotemporal 

hydroclimatological variation, with western regions generally having stronger empirical 

relationships. River flow has weaker associations because of basin controls and 

evapotranspiration. The dynamic nature of precipitation/discharge generating mechanisms is 

not captured by the North Atlantic Oscillation Index. Thirdly, seasonal climate model 

forecast skill is evaluated. Limited skill exists over land and over all extratropical regions for 

forecasts beyond month-1; precipitation has lower skill than 2-metre air temperature and 

mean sea level pressure. Seasonal climate models exhibit higher idealised predictive skill 

indicating potential for future increases in actual predictive skill. In conclusion, seasonal 

hydrological prediction using a climate-to-river modelling chain could be improved through 

consideration of the uncovered spatiotemporal hydroclimatological variability and through 

seasonal climate modelling improvements. 

 

 

 



‘If any of you lacks wisdom, he should ask God, who gives generously to all without finding 

fault, and it will be given to him.’ James 1:5 (New International Version) 

 

 

‘Difficulties mastered are opportunities won.’ Winston Churchill 
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1. INTRODUCTION 

1.1 Background and rationale 

Hydrological extremes, or floods and droughts, have adverse socio-economic effects that 

threaten human and animal life, cause property damage and insurance losses, and disrupt 

agricultural production and water supply. These recurrent hydrological hazards affect both 

the developed and less-developed world and are a natural part of hydroclimatological 

variability. In Great Britain over the last decade, flood (e.g. January 2003 (Marsh, 2004) and 

summer 2007 (Marsh, 2008)) and drought (such as 2004–06 (Marsh et al., 2007)) events 

have been prominent and thus of great public concern. As flooding and drought events are 

expected to become more commonplace in a changing climate (Kundzewicz et al., 2007), the 

need to improve understanding of the hydroclimatological process chain across Great Britain 

and the capability to skilfully predict hydrological extremes months in advance has been 

brought into sharp focus. 

Seasonal climate forecasting (defined here as up to six months lead time) is undertaken with 

two main approaches (Troccoli, 2010). First, statistical modelling uses historical observations 

to develop predictive relationships between a predictor variable (e.g. sea surface temperature 

SST) and a predictand (e.g. precipitation). Second, dynamical modelling uses coupled 

General Circulation Models (GCMs) of the atmosphere-land-ocean (ALO) system (Palmer et 

al., 2004) to integrate in to the future a truncated set of partial differential equations (that 

describe the ALO system processes) to predict future climate. Many meteorological forecast 

centres now produce their seasonal climate forecasts using dynamical modelling and these 

include the European Centre for Medium-Range Weather Forecasts (ECMWF) and UK 

Meteorological Office (UKMO). Seasonal climate forecasts have potential socio-economic 

benefits across many sectors, including energy, agriculture, health, and water resource 
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management (Barnston et al., 2005). In the field of water resources, reliable forecasts of 

precipitation and river flow at seasonal time scales can help mitigate the detrimental effects 

of hydrological extremes by increasing human preparedness for future anomalous conditions 

(Wedgbrow et al., 2002), and informing the decision making process for land and water 

resources management (Kirono et al., 2010). For example, seasonal hydrological forecasts 

can inform more appropriate allocation of water for hydroelectric power generation (Cardoso 

and Silva Dias, 2006, Coelho et al., 2006). Improved water management, in turn, has 

potential to reduce economic losses associated with floods and droughts (Wood and 

Lettenmaier, 2006).  

This thesis focuses on seasonal hydrological prediction in Great Britain because of the (1) 

paucity of studies undertaken for this region, (2) situation of Great Britain, with respect to the 

westerly atmospheric circulation that travels over the North Atlantic Ocean heat and moisture 

source, which holds potential for strong climate-hydrology connections and (3) great 

economic damage that hydrological extremes cause to the high population of Great Britain. 

Furthermore, with the recent success of the 2005–06 UKMO seasonal winter climate forecast 

for Britain/Europe (Graham et al., 2006), it is timely to undertake a study that attempts to 

assess and improve the state-of-the-art of seasonal hydrological prediction.  

1.2 Research gaps and objectives 

The literature review of seasonal climate and river flow prediction in Chapter 2 identifies 

three research gaps for investigation as follows:  

1) GCMs have been shown to be useful tools for river flow simulation in certain parts of the 

World, but the use of an end-to-end physically realistic modelling system using a rainfall-

runoff model forced with GCM data has not been tested in Great Britain.  
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2) There is a lack of knowledge on the spatiotemporal variability of hydroclimatological 

relationships across Great Britain.  

3) There are few published studies that assess global-scale seasonal climate model 

predictive skill.  

In view of these research gaps, the overarching aim of this thesis is to evaluate the potential 

for seasonal hydrological prediction in Great Britain. To address each of the recognised gaps, 

the objectives of this thesis are: 

1) To evaluate river flow predictive skill using a rainfall-runoff model forced with GCM 

data in a test British river basin (Chapter 4). 

2) To identify and quantify spatiotemporal variability in hydroclimatological relationships 

across Great Britain and Europe (Chapters 5 and 6, respectively). 

3) To assess at the global scale the current level of seasonal climate model predictive skill 

(specifically 2-metre temperature, precipitation and mean sea level pressure) for potential 

applications in sectors such as hydrology (Chapter 7). 

1.3 Thesis structure 

The thesis layout is discussed below and an illustration of the thesis structure together with 

the inter-relationships between the chapters is shown in Figure 1.1. Chapter 2 provides the 

literature review and teases out the research gaps aforementioned in section 1.2. The research 

design and an overview of the data and methods used in the thesis are presented in Chapter 3. 

Chapter 4 evaluates river flow forecasting using a rainfall-runoff model forced with GCM 

data. Chapters 5 and 6 investigate the nature and dynamics of hydroclimatological 

relationships across Great Britain and Europe respectively. An assessment of the current level 
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of seasonal climate model predictive skill for applications is undertaken in Chapter 7. 

Chapter 8 synthesises findings and draws conclusions on the research undertaken, and ends 

with suggestions for future research. 

 

Figure 1.1: Schematic diagram of the thesis. The arrows show the inter-relationships between 

chapters. 

1.4 Chapter summary 

This chapter has provided a background and rationale to conduct research on seasonal 

hydrological prediction and hydroclimatological variability in Great Britain and Europe. The 

research gaps and the objectives to address have been listed, and an outline of the thesis has 

been given. Chapter 2 undertakes the literature review, which provides the research context 

for the thesis and identifies research gaps for investigation in subsequent chapters. 

Introduction

Literature Review / Research Gaps

Research Design, Data and Methods

Chapter 1

Chapter 2

Chapter 3

River flow 

prediction using 

GCM output

Chapter 4
Objective 1

(Basin Scale)
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Hydroclimatological

linkages across 

Europe

Chapter 6
Objective 2

(Continental Scale)

Seasonal climate 

model predictive 

skill

Chapter 7
Objective 3

(Global Scale)

Conclusions and Future work Chapter 8



Chapter 1 Introduction 

 

5 

 

Elements of this thesis have been published in peer-reviewed journals. Research from 

Chapter 4 was presented in a CLIVAR Newsletter. A Hydrological Processes paper 

(Appendix II) addresses a research question on the spatiotemporal variability of climatic 

control on Dyfi basin precipitation/discharge that arose in Chapter 4. The research in Chapter 

5 on hydroclimatological linkages across Great Britain was published in the Journal of 

Hydrology (Appendix III). Work in Chapter 7 on seasonal climate model forecast skill was 

published in Geophysical Research Letters (Appendix IV).  Research in Chapters 4, 6 and 7 

have also been presented at workshops and conferences. 
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2. LITERATURE REVIEW AND RESEARCH OBJECTIVES 

2.1 Introduction 

This chapter undertakes a literature review to identify research gaps for investigation. The 

review is split into three parts. Firstly, a summary is given on the premise for seasonal 

climate prediction. Secondly, hydroclimatological relationships across Great Britain are 

reviewed. Thirdly, seasonal hydrological prediction around the world is discussed. The 

chapter ends by presenting the research gaps identified and the corresponding objectives to 

be addressed in the thesis. 

2.2 Definition of a Forecast versus a Prediction 

In hydrology there is a subtle difference between a forecast and a prediction. The estimation 

of future conditions at a specific time or during a specific time interval is known as a 

forecast, while a prediction is the estimation of future conditions without referring to a 

specific time (Lettenmaier and Wood, 1993). Despite the distinction made between a forecast 

and a prediction these definitions are not strictly adhered to throughout this thesis, and herein 

the terms prediction or predictive are occasionally used as synonyms for forecast (for both 

climate and hydrological purposes). 

The aim of a prediction is to foretell a target variable (predictand) by means of applying a 

technique or function f to one or more predictor variables (2.1). 

                                                     �������	
� � �
����������                                       
2.1� 

The function f employed can be either (1) a statistical or empirical approach or (2) a 

dynamical approach. Statistical techniques use historical observations to build a predictive 

model between a predictor variable and a predictand, whereas a dynamical method uses a 
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General Circulation Model (GCM) to integrate in time the physical equations that describe 

the ALO system processes to determine future states of the system. For hydrological 

prediction the GCM output is used to drive a hydrological model.  

2.3 Seasonal climate prediction 

This section only provides an overview of seasonal climate prediction, as many previous 

papers have given comprehensive reviews of the topic. For these reviews, see Palmer and 

Anderson (1994), Carson (1998), Goddard et al. (2001), Harrison (2005) and Troccoli 

(2010). 

The atmosphere is an example of a chaotic system – that is if a small perturbation is imparted 

on the initial atmospheric state, the atmosphere will evolve into a different state than the 

realisation without a perturbation (Harrison, 2005). In the ALO system, the atmosphere, if 

uncoupled from the lower boundary of the land and oceans will display fluctuations on the 

fastest time scales. Conversely, the land surface (soil moisture and snow cover) and most 

notably the oceans (SST and sea-ice cover) have greater persistence and evolve on a slower 

time scale than that of the atmosphere (Toth et al., 2007). Slowly evolving anomalies of the 

lower boundary conditions (especially SST) are the basic premise for seasonal climate 

predictability because they can influence atmospheric development and predestine the future 

state of the climate (Palmer and Anderson, 1994, Kumar and Hoerling, 1995).  

The El Niño Southern Oscillation (ENSO) is the key to seasonal prediction (Troccoli, 2010). 

Gradual development of ocean temperature anomalies in the tropical Pacific redistribute the 

surface heating, the low level wind fields and hence the tropical convection in the 

atmosphere. This in turn alters the atmospheric heating that drives the global atmospheric 

circulation (Goddard et al., 2001). In general, high (low) seasonal climate predictability is 
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found in the tropics (extratropics) because of the relatively weak (high) internal chaotic 

variability there (Palmer and Anderson, 1994). Although much of the extratropical forecast 

skill is derived from anomalies in the ENSO-related tropical SST (Barnston et al., 1994), this 

tropical SST influence can be reduced by the high variability of the extratropical atmosphere 

(Anderson et al., 1999). Therefore, the potential climate predictability is the degree to which 

the boundary-forced signal outweighs the essentially unpredictable climate noise (Kumar and 

Hoerling, 1995). Note that the extratropical climate depends to a greater extent on tropical 

SSTs when strongly anomalous tropical SST conditions exist (Anderson et al., 1999). 

Two approaches have been employed for seasonal climate prediction (as alluded to in section 

2.2) and these are statistical and dynamical approaches. In the dynamical technique the 

equations that describe the ALO system are solved on a coarse GCM grid of approximately 

2° × 2° (Goddard et al., 2001) at different heights throughout the atmosphere. The coarse 

GCM resolution means that the ALO processes at the sub-grid scale are unresolved, and 

instead approximated by parameterisations (Holton, 1992). Hereafter, the dynamical 

approach to seasonal climate prediction is the focus of this part of the review as it is thought 

to provide greater scope for describing future climate patterns (Troccoli, 2010). 

Climate predictions from GCMs predominately suffer from two sources of error: (1) 

uncertainties in the initial conditions, and (2) model error due to the inability of GCMs to 

resolve every process in the climate system (Hagedorn et al., 2005, Doblas-Reyes et al., 

2009). To assess the sensitivity of the atmosphere to uncertainties in the initial conditions, an 

ensemble of GCM forecasts is generated (all with slight perturbations to their atmospheric 

and ocean initial conditions) and integrated into the future to obtain a range of forecast values 

(Palmer et al., 2004, Harrison, 2005). To consider model error, a pragmatic approach is to 

use a multi-model ensemble consisting of GCMs from different meteorological institutes 
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(Palmer et al., 2004). This approach incorporates GCMs with varying parameterisations and 

model physics, and thus includes different representations of the processes. The Development 

of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction 

(DEMETER) addressed this issue by producing a multi-model ensemble dataset containing 

seven GCMs each with nine different ensemble members (see section 3.6; Palmer et al., 

2004).  

As GCMs are unable to resolve sub-grid scale processes, their usefulness for local 

applications is restricted (Wilby et al., 2002). It is therefore necessary to translate the coarse 

GCM output to local or regional-scale climate in a process called downscaling (Palmer et al., 

2004, Coelho et al., 2006). For a good introduction to climate downscaling see Hewitson and 

Crane (1996). Two categories of downscaling techniques have emerged, and these are 

statistical and dynamical methods. Statistical approaches rely on quality historical data to 

build an empirical model with which to link GCM output and a local predictand such as 

temperature or precipitation. Dynamical techniques nest a fine resolution Regional Climate 

Model (RCM) within a coarser resolution GCM (Wilby et al., 2002) to more accurately 

capture regional atmospheric processes. Palmer et al. (2004) expound that dynamical 

downscaling has the potential to outperform statistical methods in capturing extreme events 

because of the lack of historical data (of extreme events) to train statistical models. 
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The literature review of seasonal climate prediction found that although the general pattern of 

seasonal climate predictability is known (i.e. high predictability in tropics and low 

predictability in extratropics), no studies have explicitly assessed the ability to which GCMs 

can realise this monthly or seasonal climate predictability; this fact is also corroborated by 

Weigel et al. (2008). It is however essential to evaluate seasonal climate model predictive 

skill at different lead times and locations to determine if the predictions can be used to inform 

decision-making in the climate and hydrology sectors.  

2.4 Concurrent hydroclimatological relationships across Great Britain 

Studies investigating relationships between large-scale climatic circulation and precipitation 

and river flow most frequently use atmospheric indices, as such indices summarise the main 

modes of atmospheric variability over a particular region, and many index time-series are 

freely-downloadable over the internet for research purposes. At seasonal to inter-annual time 

scales, ENSO is the most pervasive mode of climate variability (Goddard et al., 2001). ENSO 

is an atmospheric-oceanic phenomenon that occurs in the equatorial Pacific Ocean, with El 

Niño (La Niña) events having warm (cold) SST anomalies in the eastern and central 

equatorial Pacific. The Southern Oscillation index (SOI), which is the normalised 

atmospheric pressure difference between the eastern (Tahiti) and western Pacific (Darwin, 

Australia), is an indicator of the atmospheric conditions associated with the El Niño and La 

Niña periods of the equatorial Pacific Ocean. The SOI is significantly correlated with river 

flow in Australia, the Americas and Europe (Dettinger and Diaz, 2000). The influence of 

ENSO on global river flows is developed further in section 2.5.1.  

The North Atlantic Oscillation (NAO), which refers to the redistribution of atmospheric mass 

between the subtropical Atlantic and the Arctic (Hurrell et al., 2003), is the leading mode of 
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atmospheric variability in the Atlantic basin (Marshall et al., 2001). The NAO has been 

shown to be linked with droughts and water availability in Europe (Hurrell et al., 2003). 

Changes in the NAO phase, as characterised by the NAO index (NAOI), are associated with 

variations in the frequency and strength of the surface westerly winds over Europe, thus 

influencing the transport and convergence of atmospheric moisture and hence, regional 

precipitation occurrence (Marshall et al., 2001). Precipitation in the northern British Isles has 

shown a significant positive correlation with the NAOI during winter (Wilby et al., 1997, 

Murphy and Washington, 2001, Fowler and Kilsby, 2002); conversely, there is a weaker link 

between precipitation in northern Britain and the NAOI in summer (Fowler and Kilsby, 

2002). In southern Britain weak links are found between the NAOI and precipitation 

throughout the year (Wilby et al., 1997). In general, the NAOI has a stronger link with winter 

precipitation in coastal European countries, such as Great Britain (Bouwer et al., 2008), 

compared to regions more remote from the Atlantic Ocean (Wibig, 1999). Previous research 

has therefore shown that the influence of the large-scale climatic circulation on precipitation, 

in terms of the NAOI, varies spatially and temporally in Britain. 

Most previous analyses have focused on the winter season because the atmosphere is most 

dynamically active during winter (Folland et al., 2009). In turn, less attention has been given 

to summer large-scale climatic control on European climate (Zveryaev, 2004). In summer, 

there is a leading pattern of climatic variability with different characteristics to the traditional 

NAO atmospheric pattern that has been recognised as the summer North Atlantic Oscillation 

(SNAO) pattern (Barnston and Livezey, 1987, Zveryaev, 2004). The SNAO is spatially 

smaller and located further north than the well-known NAO. In a positive SNAO phase, high 

pressure is present over Northwest Europe and low pressure is present over Greenland and 

the Mediterranean (Zveryaev, 2004). Under this circulation pattern, warm and dry conditions 
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occur over Northwest Europe (e.g. British Isles) and cool wet conditions occur over southern 

Europe and the Mediterranean. As such, precipitation has significant negative (positive) 

correlation with the SNAO in Northwest (southern) Europe (Folland et al., 2009). 

River flow variability is affected by regional climate and basin physiography as first and 

second order controls respectively (Bower et al., 2004). Positive relationships generally exist 

between the NAOI and river flow in Northwest Europe (Kingston et al., 2006a), as shown for 

northern and western British basins, where high flow indices have positive correlation with 

the NAOI (Hannaford and Marsh, 2008). This may reflect the gradient in precipitation receipt 

in Britain in which western and northern districts receive the highest totals due to the effect 

of upland areas (Smith, 1972) and their closeness to the westerly airflow. For example, 

significant concurrent positive correlation is found between the NAOI and River Ewe 

discharge in Northwest Britain with strongest relationships in winter; however, for the River 

Itchen in southern Britain, river flow shows limited significant correlation with the NAOI 

(Phillips et al., 2003). This geographical variation in the hydroclimatological links may be 

due to either the difference in the rainfall-runoff transformation (basin characteristics, and in 

particular the Itchen basin’s permeable geology that attenuates the climate-precipitation-

discharge signal), or to the difference in the regional climate that affects the basins; the River 

Itchen in Southeast Britain is more sheltered from the westerly airflows and has lower 

precipitation than the River Ewe.  

The literature reviewed indicates that the relationships between the large-scale climatic 

circulation and British river basin precipitation/discharge have spatiotemporal variability, but 

no studies have evaluated this hydroclimatological variation in a systematic way. 
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2.5 Seasonal hydrological prediction  

Seasonal hydrological prediction is a growing research area possibly because of the societal 

benefits it could spawn. Skilful predictions can affect decision making for land and water 

resources management (Kirono et al., 2010) and provide more appropriate assignment of 

water for hydroelectric power generation (Cardoso and Silva Dias, 2006, Coelho et al., 2006) 

and irrigation (Dutta et al., 2006). In turn, there is potential to reduce economic losses 

associated with floods and droughts (Wood and Lettenmaier, 2006) and increase human 

preparedness for extreme conditions (Wedgbrow et al., 2002). As with seasonal climate 

prediction, statistical and dynamical methodologies have been used to predict seasonal river 

flow. Studies that have used statistical prediction approaches are firstly reviewed followed 

secondly by dynamical prediction approaches. 

2.5.1 Seasonal hydrological prediction with statistical approaches  

Statistical models exploit empirical (typically lagged) relationships between a target variable 

of interest (predictand, e.g. precipitation or river flow) and one or more predictor variable 

(e.g. SST). They are developed from historical data, and such models depend on the 

availability, quantity and quality of the historical oceanic, atmospheric and hydrological data 

(Anderson et al., 1999). Statistical models are usually less costly to develop and run than 

dynamical models, and can be seen as setting a benchmark skill level against which the more 

computationally intensive dynamical models can be compared (Barnston et al., 1994). Table 

2.1 lists and summarises papers that have used a statistical approach for river flow prediction; 

linear regression and correlation analyses are shown to be amongst the most commonly 

implemented techniques. In the western US, a regression of seasonal river flow volume on 

predictor variables is the dominant operational approach for seasonal river flow prediction 

(Wood and Lettenmaier, 2006). 
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Table 2.1: Summary of studies using statistical methods for seasonal river flow prediction. 

Note that linear regression refers to methods that used one or more predictor variables. 

Studies marked with * denote the use of an ENSO predictor. 

Authors Geographical Region Method Used 

(Eldaw et al., 2003) Africa (Nile) Correlation/linear regression 

(Wang and Eltahir, 1999) Africa (Nile) Bayesian theorem * 

(Barlow and Tippett, 2008) Asia Correlation/CCA 

(Chiew et al., 1998, Chiew 

et al., 2003) 

Australia Serial streamflow/ENSO-

streamflow correlation * 

(Chowdhury and Sharma, 

2009) 

Australia Combination of three 

statistical models * 

(Kiem and Franks, 2001) Australia Classification approach * 

(Ruiz et al., 2007) Australia Linear regression * 

(Kirono et al., 2010) Australia Correlation * 

(Wang et al., 2009) Australia Bayesian approach * 

(Whitaker et al., 2001) Bangladesh/India 

(Ganges) 

Linear regression * 

(Bierkens and Van Beek, 

2009) 

Europe Lagged SVD NAO forecast 

(Rodwell and Folland, 2002) 

(Gámiz-Fortis et al., 2008, 

Gámiz-Fortis et al., 2010) 

Europe (Douro – Iberia) ARMA/linear regression 

(Ionita et al., 2008) Europe (River Elbe) Correlation * 

(Mckerchar et al., 1998) New Zealand Classification approach * 

(Purdie and Bardsley, 2010) New Zealand Linear regression * 

(Archer and Fowler, 2008) Pakistan Linear regression 

(Cardoso and Silva Dias, 

2006) 

South America (Paraná 

basin) 

Linear regression * 

(Gutiérrez and Dracup, 

2001) 

South America 

(Colombia) 

Correlation * 

(Hastenrath, 1990) South America Correlation/linear regression 

* 

(Chandimala and Zubair, 

2007) 

Sri Lanka Principal component 

regression scheme * 

(Zubair, 2003) Sri Lanka Correlation * 

(Kuo et al., 2010) Taiwan Wavelet-based ANN-GM 

model 

(Wedgbrow et al., 2002) UK Correlation 

(Wedgbrow et al., 2005) UK Expert systems 

(Wilby, 2001, Wilby et al., 

2004, Svensson and 

Prudhomme, 2005) 

UK Linear regression 

(Devineni et al., 2008) USA (Eastern) Regression approach 

(Grantz et al., 2005, Opitz-

Stapleton et al., 2007, 

Bracken et al., 2010) 

USA (Western) K-nearest neighbour (KNN) 

locally weighted polynomial 

(LWP) regression 
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River flow variability in many parts of the world is affected by ENSO, with Kahya and 

Dracup (1994) suggesting the seasonal SOI as a useful predictor of stream flow. In general, 

El Niño events are correlated with low stream flows in South America (Gutiérrez and 

Dracup, 2001, Tootle et al., 2008), tropical Central America, in north-western and 

easternmost North America, in the Nile basin and Australia; conversely, during El Niño high 

stream flows are found in south-western North America (Barlow et al., 2001), in subtropical 

South America, and in Europe (Dettinger and Diaz, 2000). During La Niña years opposite 

geographical patterns of high and low flow generally occur (Dettinger and Diaz, 2000). Due 

to the ENSO-river flow relationships throughout the world, many studies have used a 

measure of ENSO typically in correlation or regression to attempt seasonal river flow 

prediction. In Table 2.1 over half of the studies (17 out of 33) have used a measure of ENSO 

as a predictor variable (these were mainly located in the low latitudes).  

There are many indices available to classify the state of ENSO. Kiem and Franks (2001) used 

different measures of ENSO in a classification approach and found that the Multivariate 

Index (MEI), an index based on six variables over the tropical Pacific Ocean (sea-level 

pressure, SST, zonal and meridional components of the surface wind, surface air temperature 

and total cloudiness fraction of the sky), outperformed other indices that only consider one 

variable (e.g. NINO3 SST, SOI). They argued that the single variable based indices are 

inferior because they are more susceptible to non-ENSO related variability. Using correlation 

analysis, Gutiérrez and Dracup (2001) uncovered strong correlations between discharge in 

Columbia and ENSO indicators for lags of between four and six months demonstrating the 

feasibility of long-range river flow prediction. Wang and Eltahir (1999) used a discriminant 

approach and showed that at time scales longer than the hydrological response time (2 – 3 

months), ENSO information is most important for prediction of the Nile flood. A recent 
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approach has been to use locally weighted polynomial (LWP) regression to link predictors 

and discharge instead of fitting a linear (regression) relationship to all data values. In the 

western USA, LWP has been implemented with some success by relating large-scale climate 

and snow-water equivalent predictors with discharge (Grantz et al., 2005, Bracken et al., 

2010). 

In Great Britain five studies were found to have attempted statistical seasonal hydrological 

prediction (Table 2.1), with linear regression being the most common technique 

implemented. Wilby (2001) developed a lagged NAOI-river flow regression relationship that 

explained up to 40% of the variance of August river flow in three English rivers by using the 

January-February NAOI. Research by Wilby et al. (2004) used stepwise regression to build a 

predictive model between winter predictor variables (SST, sea-ice and atmospheric 

circulation patterns) and River Thames discharge in summer. Their seasonal models had 

greater skill than using climatology, with between 13 and 79 % explained variance. Svensson 

and Prudhomme (2005) used linear regression to skilfully predict British regional river flows 

in summer using previous winter predictors, with 55% and 61% explained variance of river 

flows in northwest and southeast regions respectively. Correlation was used by Wedgbrow et 

al. (2002) to link summer/autumn river flow anomalies in Northwest, Southwest and 

Southeast England with preceding winter values of the Polar-Eurasian (POL) teleconnection, 

North Atlantic SST anomalies and the NAOI. In particular, in 64 to 93% of summers, below-

average flows were found after negative NAO winter phases. It was suggested that in 

England and Wales the seasonal prediction of river flow anomalies requires flow regimes 

with an intermediate hydrological memory so that lagged climate responses may be 

manifested in the groundwater component of river flow (Wedgbrow et al., 2002). Finally, 

expert systems (ES) were used by Wedgbrow et al. (2005) to create a set of rules for 
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prediction of a predictand in the form of a decision tree comprising ‘IF…THEN’ statements. 

The predictor which explains the most variance in river flow (predictand) forms the basis for 

the first rule of the set. Using this approach River Thames flow anomalies in august were 

correctly forecasted up to 77% of the time, and the models successfully forecasted the below-

average flows for numerous British droughts (e.g. 1976, 1984 and 1995). 

Most empirical techniques in Table 2.1 simply have a statistical predictive relationship built 

on historical observations. However, two recent studies have used a more “process-oriented” 

or hybrid approach that used both a statistical model and a hydrological model. The work of 

Bierkens and Van Beek (2009) firstly forecast the NAOI based on lagged singular value 

decomposition (SVD) method between May North Atlantic SST and average December, 

January and February (DJF) 500 hPa geopotential height (Rodwell and Folland, 2002). Note 

that the first component of the geopotential field is similar to a positive NAO phase. 

Secondly, daily ERA-40 fields of precipitation, evaporation and temperature are taken from 

the three historical years with NAO indices closest to the NAOI forecast (analogue method); 

subsequently the three years of ERA-40 data are run through a global hydrological model. 

The average discharge from the three runs then forms the seasonal discharge prediction. 

Results suggest that the predictive skill in Europe can be reasonably large, but this is 

primarily due to having correct initial hydrological system conditions and not because of the 

NAO seasonal forecast (Bierkens and Van Beek, 2009). The second study by Kuo et al. 

(2010) used a wavelet-based Artificial Neural Network (calibrated by Genetic Algorithm; 

ANN-GM) model to predict seasonal rainfall based on SST predictors. The seasonal rainfall 

was disaggregated to a finer temporal scale and then run through a rainfall-runoff model. The 

authors concluded that the resultant discharge predictions would be useful for water resources 

management. 
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As the literature review showed that statistical seasonal hydrological prediction has 

previously been undertaken in Great Britain, this thesis does not conduct another statistical 

hydrological prediction study. 

2.5.2 Seasonal hydrological prediction with dynamical approaches 

A dynamical approach entails using seasonal climate model (or GCM) predictions as the 

basis for seasonal hydrological prediction, and by comparing Tables 2.1 and 2.2 it is 

noticeable that fewer studies have used a dynamical method for prediction. To use these 

GCM predictions for hydrological purposes, however, they have to be corrected or 

downscaled (see section 2.3) so that they are relevant to local or regional scale 

climate/hydrology. Both statistical and dynamical downscaling methods have been 

implemented; studies that have used statistical downscaling techniques are first reviewed, 

followed by studies that used dynamical techniques.  

One statistical downscaling approach is the perfect-prognosis technique (Wilks, 2006). This 

entails developing a simultaneous statistical relationship (based on observations) between a 

predictor (e.g. mean sea level pressure MSLP) and a predictand (e.g. river flow) and then 

substituting in a GCM prediction of the predictor (e.g. MSLP) into the statistical equation to 

provide a future river flow prediction. Landman et al. (2001) used (bias-corrected) GCM 

predictions in a canonical correlation analysis (CCA) model to predict South African river 

flow in 12 basins. Skilful categorical prediction potential was discovered for five out of 12 

basins. Another approach has been to use a Bayesian downscaling technique (Coelho et al., 

2006, Luo et al., 2007, Luo and Wood, 2008). The Bayesian approach merges the observed 

climatology (e.g. precipitation or river flow) with seasonal climate predictions from multiple 

GCMs to form the best prediction at a more appropriate scale for hydrological applications. 

Luo and Wood (2008) ran Bayesian-downscaled multi-model forecasts of CFS and 
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DEMETER (see section 3.6) precipitation and temperature through the Variable Infiltration 

Capacity (VIC) hydrologic model and found that it performed significantly better for the first 

two months of the forecast than the traditional Extended Streamflow Prediction (EPS) 

methodology. Although Coelho et al. (2006) had some success in their research, they 

produced less skilful predictions for river flow than rainfall, which was in part due to river 

flow being affected by human practices (reservoir management). In conclusion, a Bayesian 

approach has been found to improve seasonal river flow predictive skill over using 

climatology. 

As already mentioned in section 2.3, GCM output can be dynamically downscaled using a 

RCM. However, few studies have attempted a GCM-RCM-hydrologic model dynamical 

prediction system (Leung et al., 1999, Block et al., 2009). Leung et al. (1999) used a RCM to 

downscale the National Centers for Environmental Prediction (NCEP) Medium-Range 

Forecast (MRF) model to in turn drive the VIC hydrologic model to simulate river flow in the 

Columbia River basin, western North America. They showed that the RCM performed better 

than the GCM in modelling regional climate and found that simulated Columbia basin river 

flow from downscaled climate fields resembled the simulations driven by observed climate, 

thus indicating the potential for reliable seasonal predictions. Wood et al. (2002, 2005) 

conducted seasonal hydrological prediction for the eastern and western United States by bias 

correcting and downscaling (spatially and temporally) NCEP Global Spectral Model (GSM) 

ensemble climate predictions for input into the VIC hydrologic model. Wood et al. (2002) 

found that the initial hydrologic conditions need to be accurately determined, so that the 

influence of the land surface can be captured in the prediction. Also, Li et al. (2009) 

concluded that obtaining the appropriate initial conditions is one of the most crucial and 

difficult tasks in forecast system development. 
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Table 2.2: Summary of the dynamical approaches used for seasonal river flow prediction. 

Authors Geographical 

Region 

GCM Downscaling 

Approach 

(Céron et al., 2010) France DEMETER Two-step method 

(Regimbeau et 

al., 2007) 

(Nakaegawa et al., 

2007) 

Global (P – E) Japan Met. Agency 

(JMA) Global 

Spectral Model 

(GSM) 

None used 

(Sankarasubramanian 

et al., 2008, 

Sankarasubramanian 

et al., 2009) 

Philippines European 

Centre/Hamburg 

Model (ECHAM4.5) 

Principal 

components 

regression (PCR) 

(Landman et al., 

2001) 

South Africa Centre for Ocean-

Land-Atmosphere 

(COLA) Studies T30 

CCA-based 

perfect prognosis 

approach 

(Block et al., 2009) South America 

(Brazil) 

ECHAM4.5/NCEP 

Medium-Range 

Forecast (MRF) 9 

RCM 

(Coelho et al., 2006) South America 

(Paraná/Tocantins 

basins) 

DEMETER 

(ECMWF, UKMO 

and Météo-France) 

Bayesian 

approach 

(Kim et al., 2000) USA (California) University of 

California, Los 

Angeles (UCLA) 

GCM 

Regional Climate 

System Model 

(RCSM) 

(Leung et al., 1999) USA (Northwest/ 

Columbia basin)  

NCEP MRF model 

T40 

Pacific Northwest 

National 

Laboratory RCM 

(Luo et al., 2007, 

Luo and Wood, 

2008) 

USA (Eastern/Ohio 

basin) 

CFS/DEMETER Bayesian 

approach 

(Wood et al., 2002) USA (Eastern) NCEP GSM Bias correction 

and statistical 

downscaling 

(Wood et al., 2005) USA (Western) NCEP GSM Bias correction 

and statistical 

downscaling 

(Wood and 

Lettenmaier, 2006) 

USA ‘West-wide 

system’  

NASA NSIPP and 

NOAA/NCEP 

Bias correction 

and statistical 

downscaling 
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The review has found that no study in Great Britain has used seasonal climate model output 

to drive a rainfall-runoff model for seasonal hydrological prediction. It is important to 

undertake such a study to ascertain the current level of achievable predictive skill using an 

“end-to-end” cascade of dynamical models.   

2.6 Summary of key research gaps 

The literature review has identified three research gaps for investigation. These gaps were 

first introduced in section 1.2 and are summarised below again. 

2.6.1 River flow prediction using seasonal climate models and a rainfall-runoff model  

No published literature was found (as of October 2010) that attempted to use seasonal climate 

model output to force a rainfall-runoff model for seasonal river flow prediction in Great 

Britain. This gap is important because it will show how feasible it is to directly use GCM 

precipitation predictions (near a river basin) for river flow simulation without undertaking 

exploratory data analyses to find climatic-oceanic predictors of precipitation/river flow.  

2.6.2 Hydroclimatological relationships across Great Britain 

No studies have undertaken a systematic analysis of the spatiotemporal variability of 

hydroclimatological relationships across Great Britain implying that the linkages between the 

large-scale climatic circulation and British precipitation and river flow are not completely 

known. 

2.6.3 Seasonal climate model predictive skill 

The literature review of seasonal climate prediction found that there is a paucity of published 

papers that have assessed monthly or seasonal climate model predictive skill; this fact is also 

corroborated by Weigel et al. (2008). It is essential to evaluate seasonal climate model 
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predictive skill at different lead times and locations to determine if the predictions can be 

incorporated into the decision-making processes for users. 

2.7 Research objectives 

This thesis focuses on three research objectives designed to address the identified knowledge 

gaps (sections 1.2 and 2.6). A conceptual model of the relationships and feedbacks in the 

ALO system is shown to highlight what factors the research addresses (Figure 2.1). 

 

Figure 2.1: Conceptual model showing the links between different components of the ALO 

system. The direction of the arrows show which parts of the ALO system affect other parts of 

the system and the blue boxes highlight the factors considered in this research. 

2.7.1 Assessment of river flow predictive skill using a chain of dynamical models in 

Great Britain 

The first objective of this thesis is to attempt seasonal hydrological prediction in Great 

Britain with climate model data and a rainfall-runoff model to uncover the realisable level of 

river flow predictive skill using a cascade of dynamical models. The use of GCM 

precipitation and downscaled GCM precipitation will show the improvement in predictive 
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skill when using downscaled precipitation time series. This research objective considers all 

the blue boxes in Figure 2.1 and is presented in Chapter 4. 

2.7.2 Identification of hydroclimatological relationships across Great Britain 

The second objective of this research is to identify the “hot spots” of climatic control on 

British river basin precipitation/discharge (by using a systematic approach for multiple river 

basins) and on European precipitation. This work uses large-scale gridded atmospheric fields 

to uncover the detailed spatiotemporal variability of climatic drivers of basin 

precipitation/discharge. 

This objective investigates the connections in Figure 2.1 between the atmosphere and river 

basin precipitation/discharge. As well as improving hydroclimatological process 

understanding, the identification and quantification of statistical relationships between the 

atmosphere and basin precipitation/discharge can inform the development of downscaling 

models and could be used in a “perfect-prognosis” approach with seasonal climate model 

output for seasonal precipitation/river flow prediction. This research is presented in     

Chapter 5. 

2.7.3 Assessment of seasonal climate model predictive skill across the World 

The third objective of this thesis is to undertake an assessment of the predictive skill of 2-

metre temperature, precipitation and mean sea level pressure (MSLP) in the DEMETER and 

CFS climate models for applications. In this research a users’ statistic evaluates predictive 

skill, so that the results are understandable to potential forecast users (pers. com., John 

Schaake, NOAA). Further justification for the use of a users’ statistic is given in a study by 

Steinemann (2006), which found that water managers encountered difficulties understanding, 

applying, evaluating, and trusting the climate predictions, thus precluding them from using 
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such predictions in their decision making. The predictive skill assessment of MSLP will also 

show if large-scale atmospheric circulation variables can be skilfully predicted by seasonal 

climate models for use in the empirical hydroclimatological relationships uncovered in 

Chapter 5. This research is presented in Chapter 7.  

2.8 Chapter summary 

This chapter has performed a literature review of the previous research undertaken on 

seasonal climate prediction, the space-time variation of hydroclimatological relationships 

across Great Britain and seasonal hydrological prediction. The identified knowledge gaps and 

the objectives of this thesis to address these research gaps have been documented. The next 

chapter presents the research design and describes the data and overarching methods used in 

the thesis. 

 

 

 

 

 



Chapter 3 Research Design, Data and Methods 

 

25 

 

3. RESEARCH DESIGN, DATA AND METHODS 

3.1 Introduction 

This chapter (1) details the research design of the thesis by showing how all aspects of the 

research fit together, (2) describes the data employed in the analyses, and (3) introduces the 

generic statistical methods used. Each research chapter gives further information on specific 

methods used.   

3.2 Research design 

The research undertaken primarily constitutes four chapters of the thesis. Chapter 4 evaluates 

the skill of seasonal hydrological prediction in the River Dyfi Great Britain (local-scale 

analysis) when using climate model output to force a rainfall-runoff model, thus addressing 

one of the identified research gaps (section 2.6.1). Following this work, Chapter 5 identifies 

the geographical areas with strongest climatic control (“hot spots”) on river basin 

precipitation/discharge across Britain (regional/national scale analysis). This was conducted 

to (1) improve hydroclimatological process understanding across Great Britain, hence 

addressing a knowledge gap (section 2.6.2), and (2) determine whether the most appropriate 

GCM grid point was used in the precipitation downscaling process in Chapter 4. In Chapter 6 

the associations between large-scale mean sea level pressure (MSLP) and European 

precipitation (continental scale analysis) are investigated to further the research of Chapter 5. 

Chapter 7 assesses the level of predictive skill of 2-metre air temperature, precipitation and 

MSLP in seasonal climate models, thus addressing the final knowledge gap in section 2.6.3 

(global scale analysis). The thesis is concluded in Chapter 8 by drawing the main conclusions 

of the research and suggesting pertinent areas for further work. 
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3.3 Study areas 

Research is conducted at a number of scales throughout the thesis from local-to-regional-to-

continental-to-global scales i.e. from basin-scale to Great Britain to Europe to the World. 

The focus area for local and regional scales is Great Britain, which is the main island in the 

British Isles located between 50°N and 60°N and 6°W and 2°E on the western edge of the 

European continental land mass. Many different air masses travel over Great Britain 

including arctic, polar and tropical types and depending on the source of the air mass and 

hence the route taken to reach Britain, the air mass can be either humid (maritime route) or 

dry (continental route). Westerly winds, which are the most common in Britain (Mayes and 

Wheeler, 1997), bring moisture-laden air off the North Atlantic Ocean creating an east-to-

west and south-to-north precipitation gradient across Britain. The western and northern 

districts receive more precipitation due to their closeness to the westerly airflow and the 

effect of upland areas (Smith, 1972).  

Hydrological response depends on a combination of precipitation, evapotranspiration, basin 

permeability and basin steepness. In western Britain precipitation is dominant in the balance 

between precipitation and evapotranspiration throughout the year, which together with basin 

impermeability and steepness create a rapid hydrological response to precipitation. In 

southern and eastern Britain precipitation and evapotranspiration are in closer balance, with 

the evapotranspiration demand generally exceeding precipitation receipt in the summer. This 

greater evapotranspiration demand in this region together with generally higher basin 

permeability and shallower basin slopes cause a slower hydrological response to 

precipitation. Land use and human activity also affect basin hydrology, but this thesis only 

uses near-natural basins where human influences are limited. 
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The focus for the regional scale is the European continent. The length of the north-western 

edge of the European continent (e.g. Northwest Scotland to Scandinavia) is influenced by 

moisture-laden westerly winds (especially in winter) that travel over the North Atlantic 

Ocean, while the more continental European areas are less affected by westerly winds 

(Wibig, 1999) and hence they have a more continental climate (Berg et al., 2009). 

Consequently, high winter precipitation is found over western Britain and Western Europe. In 

summer convective precipitation events are more prevalent (Berg et al., 2009), with high 

intensity precipitation found over Central and southern Europe. Hydrological response of 

course also varies across Europe, but this is not analysed in this thesis.  

Finally, the global scale is used in Chapter 7 for the assessment of seasonal climate model 

predictive skill to determine whether seasonal climate predictions can be incorporated into 

the decision making process for users’ applications. 

3.4 River basin data 

3.4.1 Criteria for river basin selection 

River basins were chosen to investigate the spatiotemporal variability of hydroclimatological 

relationships in Britain and to assess the feasibility of seasonal river flow prediction. The 

basins have a wide geographic coverage, hence capturing most of the different precipitation 

and river flow drivers across Britain. Basins were selected according to the following five 

criteria: 

1. The river basin must be on the benchmark list of natural catchments of the National River 

Flow Archive (NRFA). Benchmark catchments are near-natural, and thus have relatively 

small human influences (Bradford and Marsh, 2003). 
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2. If available, a low-medium grade of Artificial Influence (AI) on low flows from the 

NRFA. Grades span from 1 to 8, and a grade ≤ 4 was recommended for a basin to be 

included in selection. For the Scottish catchments the AI was not available, but, generally 

it is possible to assume that the benchmark catchments in Scotland have small artificial 

influences (pers. com., Jamie Hannaford, NRFA).       

3. The basins should cover a large geographic coverage across Britain to capture the east-to-

west and south-to-north precipitation gradient (as shown by the Standard Annual Average 

Rainfall (SAAR) in Table 3.1). The SAAR represents the average annual rainfall over a 

basin from 1961-90 and allows inference on the different water balance characteristics in 

Britain. 

4. A wide range of values of basin ‘average altitude’ against ‘area’, and basin ‘Base Flow 

Index (BFI)’ against ‘SAAR’. The BFI is associated with the basin geology and indicates 

the amount of river discharge derived from stored sources (Gustard et al., 1992). High 

(low) BFI denotes a high (low) groundwater component and is seen in permeable 

(impermeable) basins (Svensson and Prudhomme, 2005). 

5. A continuous and long as possible record of river flows for the identification of stable 

statistical hydroclimatological relationships. 

After imposing the basin selection criteria, there were only a limited number of basins 

available for study and the 10 basins chosen are shown in Figure 3.1. Their characteristics 

and monthly descriptive statistics are given in Tables 3.1 and 3.2 respectively, which show a 

broad range of basin areas, altitudes, annual rainfalls and BFIs. The common data period is 

January 1976 to December 2001. The main research undertaken on these basins is presented 

in Chapter 5. 
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Figure 3.1: Map of Great Britain with the 10 selected river basins. 
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Table 3.1: The 10 selected river basins (Key: NA means that an AI value was not available). 

 

Station Name Latitude Longitude Area 
(km2) 

Average  
Altitude  
(m) 

SAAR 
(mm/year) 

BFI AI Min. 
Rain 
Gauges 

Max. 
Rain 
Gauges 

Basin description 

Avon at 
Delnashaugh 

57.40°N 3.35°W 542.8  525 1111 0.56 NA 3 14 Gneisses and metamorphosed limestones 
with some igneous, some sandstones. 
Mountain catchment draining N side of 
highest Cairngorm peaks with moorland and 
rough grazing; a little arable farming in 
valley bottom. 

Coquet at 
Morwick 

55.33°N  1.63°W 569.8 225 850 0.44 1 10 21 Predominantly upland catchment draining 
from Cheviots. Largely Carboniferous 
Limestone and low permeability Devonian 
Igneous series, with 60% superficial 
deposits. 50% grassland, some upland 
afforestation and arable in low-lying areas 

Dun at 
Hungerford 

51.41°N 1.54°W 101.3 157 786 0.95 1 3 7 A mainly pervious (Chalk) catchment but 
with appreciable Clay-with-Flints cover in 
the northern part of the catchment. Rural 
character (chiefly agricultural but the Dun 
drains part of Savernake Forest). 

Dyfi at Dyfi 
Bridge 

52.60°N 3.85°W 471.3 281 1834 0.39 1 6 19 Geology: impermeable Silurian formations, 
minor Boulder Clay and alluvium deposits. 
Catchment is 60% grassland and 30% 
forested, with patches of upland heath 

Ellen at Bullgill 54.73°N 3.40°W 102.6 165 1110 0.50 3 1 8 Steep headwaters drain Uldale Fells and 
flow westward. Lower reaches follow the E-
W trend of the Coal Measures with 
Carboniferous Limestone to the south. 
Extensively overlain by Boulder Clay with 
alluvium within the main river valley. 

Ewe at Poolewe 57.76°N 5.60°W 441.0 311 2273 0.64 NA 4 9 Very wet, mountainous catchment 
developed largely on ancient metamorphic 
formations (Lewisian Gneiss and 
Torridonian Sandstone). Impermeable 
bedrock catchment with about a third 
overlain by superficial deposits. Rough 
pasture and moorland; some forestry. 

Falloch at Glen 
Falloch 

56.34°N 4.72°W 80.3 447 2842 0.16 NA 1 9 Very wet, mountainous, catchment draining 
southern slopes of Benn Oss and northern 
slopes of Beinn a Chroin and Beinn 
Chabair. Developed on ancient 
metamorphic formations with isolated 
outcrops of igneous intrusions 
(impermeable). Small lochans in some 
headwaters, but have little affect on flows. 
Land use mainly moorland and rough 
grazing with small amounts of forestry. 

Great Stour at 
Horton 

51.25°N 1.00°E 341.9 84 747 0.70 2 3 26 The east and west branches of the Stour 
flow over Weald Clay; below the confluence 
(at Ashford - the only significant urban 
area). Geology: Chalk dominates - but with 
appreciable Drift cover. A rural catchment 
with mixed land use. 

Harpers Brook 
at Old Mill 
Bridge 

52.40°N 0.55°W 74.3 90 623 0.49 1 1 5 Low-lying impervious catchment, >70% 
cover of Boulder Clay. predominantly 
agricultural, with 20% forest. Some 
ironstone mines working until early 1980s. 

Tiddy at 
Tideford 

50.41°N 4.32°W 37.2 109 1277 0.61 1 1 6 Elongated, linear, natural catchment. 
Headwaters rise from southernmost outcrop 
of Bodmin granite. Great bulk of the 
catchment on Devonian shales and slates 
interspersed with tuffs and lavas. Moderate 
relief. Land use: agricultural, dairy and 
mixed farming rough grazing. Some forestry 
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Table 3.2: The monthly hydrological descriptive statistics of the 10 basins. 

Station Name Missing Daily  

Flows (%) 

Mean Flow Max Flow Min Flow Standard. deviation 

of river flow 

Avon at Delnashaugh 0.011 14.489 42.203 2.867 6.927 

Coquet at Morwick 0.042 8.652 35.753 0.800 6.991 

Dun at Hungerford 0 0.722 2.330 0.202 0.413 

Dyfi at Dyfi Bridge 0 23.754 79.226 0.663 17.441 

Ellen at Bullgill 0.168 2.310 7.584 0.194 1.737 

Ewe at Poolewe 0 30.301 97.871 3.735 19.015 

Falloch at Glen Falloch 0.695 6.193 21.397 0.133 4.415 

Great Stour at Horton 0.295 3.157 15.399 0.826 2.186 

Harpers Brook at Old Mill Bridge 1.042 0.456 2.473 0.049 0.448 

Tiddy at Tideford 0 0.969 3.639 0.078 0.792 

3.4.2 River basin precipitation, potential evapotranspiration (PE) and discharge 

River basin precipitation, potential evapotranspiration (PE) and river discharge were all 

obtained from the NRFA. Basin-averaged precipitation was estimated by the triangle method 

(Jones, 1983) from daily rain gauge records. This entails creating a mesh of points across the 

basin, and for each mesh point producing a triangle in which to search for local rain gauges. 

The rain gauges are then weighted according to the inverse-square distance method and the 

average precipitation calculated for each day. Monthly basin-scale PE data were calculated 

with the UK Meteorological Office Rainfall and Evaporation Calculation System (MORECS) 

(Hough and Jones, 1997). Mean daily river flows (m
3
s

-1
) were recorded at the gauging 

stations named in Table 3.2. Six basins had missing river flow data of up to 1% (Table 3.2). 

The missing river flow values were infilled as follows: 

1. Interpolation: add a trend or straight line to the missing data. This was only done for up to 

two days of missing data. This method was used by the author for the Avon. 
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2. Inference: similar to adding a “hand-drawn line” to the data series. This was only done 

for up to 7 days if there was a good comparative site. This method was used for the 

Coquet by the NRFA. 

3. Equi-percentile method: firstly, locate a nearby closely related surrogate river basin. On 

the days when there are missing values in the selected basin, take the percentile flow of 

the surrogate basin and use this percentile on the flow duration curve of the selected basin 

to find the estimated flow on that day. This was applied for a period of missing values of 

more than 7 days, or when there were more than two periods of missing data. The equi-

percentile method was undertaken by the NRFA on the author’s behalf for the Ellen, 

Falloch, Great Stour and the Harpers Brook. 

River Dyfi basin-scale precipitation, PE and discharge were used in Chapter 4 for river flow 

simulation and prediction, and Chapter 5 used all 10 river basins’ data to investigate the 

space-time variability of hydroclimatological relationships across Great Britain.   

3.5 Gridded Precipitation Datasets  

Two different gridded precipitation products were used: 

• Gridded (E-OBS) gauge-based precipitation over Europe (Haylock et al., 2008) from the 

ENSEMBLES project (Hewitt and Griggs, 2004). This dataset was selected because of its 

long daily record that overlapped with the ECMWF ERA-40 re-analysis (section 3.6) 

time coverage of September 1957 to August 2002, and because of its relatively fine 

latitude/longitude resolution of 0.5° × 0.5°. The density of precipitation gauges used in 

the E-OBS dataset varies across Europe, with the UK, Netherlands and Switzerland 

having the highest station densities. Uncertainties in daily estimates are shown to be 

dependent on the number of available observations and the season (Haylock et al., 2008). 
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Also, note that in general, rain gauge locations are biased towards urban areas and areas 

of low relief. This E-OBS product was used in the assessment of large-scale climatic 

control on European precipitation (Chapter 6). The geographical domain used in the 

analysis was 36.25°N–74.25°N and 10.25°W–24.75°E; note that North African 

precipitation time series in this spatial domain were not used as some series were 

incomplete.  

• Gridded precipitation from the Global Precipitation Climatology Centre (GPCC; Rudolf 

et al. (2005)). GPCC was selected because of its global land coverage and long monthly 

record from January 1901 to December 2007. Only observed precipitation from in-situ 

gauges is used in the GPCC dataset, which means that certain areas, such as Central 

Africa, have few observations that contribute to the product resulting in increased 

uncertainty. GPCC is available at a 1.0° × 1.0° latitude/longitude resolution and was used 

as the reference for verification of monthly DEMETER and Climate Forecast System 

(CFS; section 3.6) seasonal precipitation forecasts over global land masses (Chapter 7). 

The GPCC precipitation was regridded by box-averaging to 2.5° resolution to match the 

DEMETER and CFS climate models’ resolution.  

3.6 Atmospheric Data 

Atmospheric data were required (1) for the prediction of river flows with GCM output 

(Chapter 4), (2) for the identification of hydroclimatological linkages in Britain and Europe 

(Chapters 5 and 6 respectively) and (3) for the assessment of seasonal climate model 

predictive skill (Chapter 7). 

• Re-analysis datasets are currently the source of the best estimates of the real atmosphere. 

By assimilating historical observations of the atmospheric state into short-range re-
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forecasts of the atmosphere in a process called data assimilation, an atmospheric re-

analysis is produced. The ECMWF ERA-40 re-analysis was the source of the 

atmospheric data (Uppala et al., 2005) and covers the period September 1957 to August 

2002 (45 years). Data at a 2.5° × 2.5° grid resolution were retrieved. In Chapter 5 the 

domain 15°N–70°N and 75°W–35°E was chosen to encompass the atmospheric areas 

where the Azores High / Icelandic Low pressure systems are usually situated. In Chapter 

6, a half-hemispheric area 0°N–90°N and 90°W–90°E was chosen to detect the influences 

of the Azores High / Icelandic Low / Siberian High pressure systems on European 

precipitation. A pool of 11 atmospheric variables (Table 3.3) was chosen for exploratory 

data analysis to uncover the large-scale climatic circulation linkages with precipitation 

and river flow in the selected British river basins (Chapter 5). The rationale behind the 

final selection of atmospheric variables is given in Chapter 5. ERA-40 was also used in 

Chapter 7 as a reference in the assessment of seasonal climate model predictive skill of 2-

metre air temperature and MSLP.  

Table 3.3: The pool of ERA-40 variables used in the analyses. 

Climate Variable Level Units 

Geopotential, Z850 850 hPa m2s-2 

Geopotential, Z500 500 hPa m2s-2 

MSLP Surface hPa 

Specific Humidity, q850 850 hPa kg kg-1 

Specific Humidity, q500 500 hPa kg kg-1 

Temperature, T850 850 hPa K 

Temperature, T500 500 hPa K 

Zonal Wind, U850 850 hPa ms-1 

Zonal Wind, U500 500 hPa ms-1 

Meridional Wind, V850 850 hPa ms-1 

Meridional Wind, V500 500 hPa ms-1 

 



Chapter 3 Research Design, Data and Methods 

 

35 

 

• The NAOI summarises the atmospheric patterns affecting the Euro-Atlantic region and 

the NAO has been considered the most significant mode of climate variability in the 

North Atlantic region (Marshall et al., 2001, Murphy and Washington, 2001). It was used 

to test if the gridded ERA-40 atmospheric data could yield stronger empirical 

relationships with British river basin precipitation/discharge and European precipitation 

than an atmospheric index (Chapters 5 and 6 respectively). NAOI time series were 

obtained from the University of East Anglia’s (UEA) Climatic Research Unit (CRU) 

website (http://www.cru.uea.ac.uk/cru/data/nao/; accessed January 2009) and represents 

the monthly normalised pressure difference between Gibraltar and Southwest Iceland 

(Jones et al., 1997).  

• DEMETER was a European Union (EU) funded project that generated a multiple 

seasonal climate model ensemble re-forecast (hindcast) dataset with seven models each 

containing nine ensemble members. The models are from climate centres around Europe 

and their acronyms are: CERFACS, ECMWF, INGV, LODYC, METEO-FRANCE, MPI, 

and UKMO. The DEMETER models were initialised on 1
st
 February, 1

st
 May, 1

st
 August 

and 1
st
 November to assess the seasonal dependence of the hindcasts, and integrated for 

180 days (Palmer et al., 2004). DEMETER models were available on a 2.5° × 2.5° grid 

resolution over the common period of 1980–2001 (22 years) and were used in Chapters 4 

and 7 for driving the Probability-Distributed Model (PDM) rainfall-runoff model and for 

the assessment of seasonal climate model predictive skill respectively. Chapter 4 used a 

single model grid point (52.5°N 2.5°W) and Chapter 7 used all grid points over the globe 

to undertake a comprehensive assessment for applications in all parts of the globe. 

DEMETER was used as opposed to the ENSEMBLES project (Weisheimer et al., 2009) 

because ENSEMBLES data was not available until too late in the PhD project.  
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• The CFS has 15 nine-month hindcasts initialised during each calendar month (Saha et al., 

2006). CFS was available on a 2.5° × 2.5° grid resolution over the period 1981-2001 (21 

years) and was used in Chapter 7 for the assessment of seasonal climate model predictive 

skill (all grid points over the globe were used). 

3.7 Overview of statistical methods 

This section introduces the format of a statistical (or hypothesis) test, and then serves as a 

background to the statistical methods used herein. Further details of the methodologies used 

in this research are given in each of the chapters. 

3.7.1 Introduction to statistical testing 

The framework for conducting a statistical test follows that of Reimann et al. (2008). When 

conducting a statistical test, it is first necessary to formulate a hypothesis about the behaviour 

of the system under study. This hypothesis statement contains two parts, a null hypothesis 

(H0) that describes what is supposed to be true about the system, and an alternative 

hypothesis (H1) that describes the contrary situation (i.e. if the null hypothesis is unlikely). 

The second step is to choose a significance level α for the statistical test, which identifies the 

probability that H0 is erroneously rejected (α = 0.05 is used herein). At this stage, the choice 

between a parametric or nonparametric (distribution-free) statistical test is made. A 

parametric test, which uses parameters that summarise the data distribution (e.g. mean and 

standard deviation), usually assumes that the underlying data distribution is normal (Helsel 

and Hirsch, 1992). If the statistical assumptions in a parametric test are violated, incorrect 

conclusions may be drawn; hence, the use of a nonparametric test would be more suitable. 

Once the appropriate test statistic has been calculated, a p-value, or probability, is determined 

which relates to the chosen test. If the p-value is less than the significance level α (p < α), H0 
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can be rejected, H1 can be accepted, and the statistic is said to be statistically significant at the 

significance level α. If p > α, then H0 is not rejected as the data does not provide statistical 

evidence to reject H0. At the end of the test, the physical reasoning behind any uncovered 

significant statistical result needs to be explained.  

3.7.2 Shapiro-Wilk test 

The Shapiro-Wilk test is used in testing for univariate normality, as it is recognised as being 

one of the most powerful tests for detecting non-normality (Helsel and Hirsch, 1992). It is 

based on computing the linear Pearson correlation coefficient (r) between the data and the 

normal quantiles on a probability plot. The null H0 and alternative H1 hypotheses are: 

H0: the data has a normal distribution. 

H1: the data does not have a normal distribution. 

The Shapiro-Wilk test was used in Chapters 5 and 6 to determine the normality of 

atmospheric, precipitation and river discharge data. 

3.7.3 Pearson linear correlation coefficient r 

The Pearson correlation coefficient r is a parametric measure of linear correlation between 

two variables. The null H0 and alternative H1 hypotheses are: 

H0: no correlation exists between the two variables (r = 0). 

H1: the two variables are correlated with one another (r ≠ 0). 

The Pearson correlation was used in the assessment of seasonal climate model predictive skill 

in the DEMETER and CFS models in Chapter 7. The rationale behind forecast quality 

assessment using the Pearson correlation is also given in Chapter 7. 
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3.7.4 Spearman’s rank correlation ρ 

Spearman’s rank correlation ρ is a nonparametric measure of correlation between two 

variables (Spearman, 1904). It is calculated as the Pearson correlation coefficient on the 

ranks of the data. The null H0 and alternative H1 hypotheses are: 

H0: no correlation exists between the two variables (ρ = 0). 

H1: the two variables are correlated with one another (ρ ≠ 0). 

In Chapter 4 Spearman rank correlation was used to determine the association between 

monthly observed and forecasted river flows. In Chapter 5 it was used to identify 

hydroclimatological relationships between atmospheric data and precipitation and river 

discharge across Britain, and Chapter 6 used the Spearman rank correlation in the analysis of 

large-scale atmospheric control on European precipitation.   

3.7.5 Mann-Kendall trend test 

The nonparametric Mann-Kendall trend test is used in testing for the existence of linear 

trends in a time series (e.g. Helsel and Hirsch (1992)). The null H0 and alternative H1 

hypotheses are: 

H0: there is no trend in the data. 

H1: there is a trend in the data. 

The Mann-Kendall test was used in Chapter 6 to determine whether trends existed in 

atmospheric data and European precipitation. 
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3.7.6 Bootstrapping 

Bootstrapping is a procedure to re-sample data. This method involves sampling the original 

data series with replacement to yield a new series with the same number of values as the 

original series. The generated series may contain certain values multiple times, while other 

values may not appear at all. An advantage is that the generated series comes from the same 

distribution as the observed (empirical) distribution of the original data (Kundzewicz and 

Robson, 2004). Bootstrapping was used in Chapters 5 and 6 to determine whether trends had 

an impact on the significance of the correlation between atmospheric data and precipitation 

and river discharge. 

3.8 Probability-Distributed Model (PDM) 

The PDM is a lumped rainfall-runoff model (based on probability distributed moisture stores) 

that transforms precipitation and PE to river flow at the basin outlet (Moore, 2007). PDM 

was used in Chapter 4 for the River Dyfi basin, West Wales, to evaluate the river flow 

predictive skill using GCM data. Daily basin-averaged precipitation, monthly basin-averaged 

PE and daily river flow data were used to calibrate the PDM (calibrated for 01/05/1980–

30/04/1990, and evaluated for 01/05/1991–30/04/2001). For further details of the PDM see 

Moore (2007). 

3.9 Chapter summary 

This chapter has presented the research design of the project, which showed how the chapters 

fit together. The study area of the thesis together with the hydrology and predominant climate 

that affects Great Britain is discussed; the wider European precipitation climatology is then 

briefly covered. The data employed in the analyses and the generic statistical methods used 



Chapter 3 Research Design, Data and Methods 

 

40 

 

are also introduced and described. The next chapter evaluates seasonal hydrological 

prediction in the River Dyfi West Wales, thus addressing the first research objective.  
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4. RIVER FLOW PREDICTION USING A HYDROLOGICAL MODEL AND 

CLIMATE MODEL OUTPUT 

Chapter Objective: To uncover the realisable level of river flow predictive skill using climate 

model output to force a rainfall-runoff model. 

4.1 Introduction 

Hydrological extremes (floods and droughts) are expected to become more commonplace 

under changing climatic conditions (Kundzewicz et al., 2007). The harmful socioeconomic 

effects of these extremes could potentially be mitigated through the advanced warning 

provided by skilful seasonal hydrological predictions. These predictions could aid water 

management decision making and increase human preparedness for extreme conditions. The 

need for research on seasonal river flow prediction has been brought to the fore in Great 

Britain after recent extreme hydrological conditions (e.g. 2004–06 drought (Marsh et al., 

2007) and the summer 2007 floods (Marsh, 2008)).  

A literature review of seasonal hydrological prediction found (as of October 2010) that no 

published study had tested its feasibility in Great Britain using GCM output to force a 

rainfall-runoff model. Therefore, previous investigations have not explored how appropriate 

seasonal climate predictions are for generating river flows. Research is needed to show 

whether GCM precipitation can be used for river flow prediction, or if a downscaling process 

is required for skilful precipitation generation and hence river flow prediction. Also of 

particular interest is if the sub-monthly temporal structure of simulated river flows matches 

that of observed river flows. 

The aim of this chapter is to drive a hydrological model using (1) precipitation and 

downscaled precipitation from the ERA-40 re-analysis (as re-analysis data are currently the 
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best GCM data due to the assimilated observations), and (2) precipitation and downscaled 

precipitation predictions from the DEMETER multiple seasonal climate model dataset. The 

generated discharge will be analysed to assess the river flow predictive skill. The work 

addresses one research gap found in the literature review (section 2.6.1). 

4.2 Data 

The River Dyfi at Dyfi Bridge in West Wales, Great Britain (Figure 4.1; see Tables 3.1 and 

3.2 for the basin characteristics), was chosen for the study as it is near-natural, and hence the 

climate-flow signal should be clear. The Dyfi river flows were simulated using the PDM, 

which is a lumped rainfall-runoff model that converts rainfall and PE to river flow at the 

basin outlet (Moore, 2007). Daily basin-averaged precipitation (Jones, 1983) and MORECS 

PE (Hough and Jones, 1997) and daily river flow data were used to calibrate (01/05/1980 to 

30/04/1990) and evaluate (01/05/1991 to 30/04/2001) the PDM.  

The climate model output used to drive the PDM hydrological model came from two sources: 

(1) the ECMWF ERA-40 re-analysis of meteorological observations (Uppala et al., (2005); 

section 3.6) and (2) the DEMETER seasonal climate model dataset, which consists of seven 

GCMs (CERFACS, ECMWF, INGV, LODYC, METEO-FRANCE, MPI, and UKMO) each 

with nine ensemble members i.e. total of 63 members (Palmer et al., (2004); section 3.6). The 

ensemble of nine members per model represents the uncertainty in the initial GCM 

conditions, while the multiple climate models take into account the error due to the model 

setup (Hagedorn et al., 2005, Doblas-Reyes et al., 2009). ERA-40 and DEMETER were 

available at a 2.5° × 2.5° grid resolution and model output at the closest land-based grid point 

to the River Dyfi basin (52.5°N 2.5°W) were used. DEMETER models cover a six month 

hindcast period and were available from 1
st
 February, 1

st
 May, 1

st
 August and 1

st
 November 
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initial conditions. Most results are presented for 01/05/1980–30/04/2001, as this period is 

common to ERA-40 and the DEMETER models.  

 

Figure 4.1: A map of the River Dyfi at Dyfi Bridge basin. 

4.3 Methods: river flow generation 

4.3.1 Direct input from GCMs 

The ERA-40 stratiform precipitation, convective precipitation and snowfall were summed 

daily at 52.5°N 2.5°W to produce a total precipitation time series. This precipitation time 

series together with the MORECS PE data were run through the PDM to forecast river flow. 

In this work simulated PE is not used because river flow in Wales is first conditioned by 
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precipitation and this study in part wants to determine if only considering the major climate 

factor (precipitation) is sufficient.  

For DEMETER models precipitation, each model ensemble member (i.e. 63 members) from 

the four initial conditions (February, May, August and November) in each year was split into 

the first three (0–3) and last three (4–6) months. The 0–3 and 4–6 months split hindcasts from 

each start date were then concatenated to produce two continuous time series, one series 

consisting of the first three (0–3) months lead time and the other series consisting of the 

second three (4–6) months lead time (Figure 4.2). These concatenated time series of daily 

precipitation and the monthly MORECS PE were used to drive the PDM to forecast river 

flow.  

 

Figure 4.2: Schematic of the generation of the 0–3 and 4–6 months DEMETER models’ time 

series from (a) the original hindcasts to (b) the continuous DEMETER time series. 
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4.3.2 Downscaled input from GCMs 

Because of the coarser resolution of the ERA-40 and DEMETER data compared with the 

spatial scale of the Dyfi river basin (471.3 km
2
), the Statistical Downscaling Model SDSM 

(Wilby et al., 2002) Version 4.1 was utilised to evaluate if by using atmospheric variables as 

a proxy of precipitation more reliable precipitation time series could be obtained. This is 

because precipitation generating mechanisms are very complex and perhaps not well resolved 

in the GCMs, while large-scale atmospheric flow might be better simulated at the GCM grid 

scale. SDSM uses multiple linear regression models to link large-scale atmospheric (ERA-

40) predictors with observed basin-scale precipitation, and a stochastic weather generator to 

produce downscaled daily precipitation series based on the regression equations. The 

regression models were built for each month to allow for different precipitation generating 

mechanisms to be considered throughout the year. The predictors in the regression equations 

were carefully selected by analysing the correlation matrix of ERA-40 atmospheric variables 

and Dyfi basin precipitation. Three predictors best explained the basin-scale precipitation: 

zonal wind (U) at 500 hPa, meridional wind (V) at 850 hPa and geopotential (Z) at 500 hPa. 

The SDSM regression equations were built and calibrated from 01/05/1976 to 30/04/1991 

and validated from 01/05/1991–30/04/2001; the regression equations are given in Table 1 in 

Appendix I. For the downscaling of the ERA-40 data, 10 precipitation time series were 

generated over the 1991–2001 validation period (downscaled ERA-40 precipitation series 

were not generated over 1980–2001 as artificial skill would be added because the SDSM was 

built using ERA-40 data over 1976–1991). For the DEMETER concatenated predictor time 

series (over 01/05/1980–30/04/2001), each original ensemble member was used to generate 

10 downscaled precipitation time series over the period 01/05/1980–30/04/2001 (90 members 

per model; total of 630 members). The 10 downscaled ERA-40 time series (over 1991–2001) 
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and the 630 downscaled DEMETER (over 1980–2001) time series of daily precipitation and 

the MORECS PE were used to drive the PDM. 

In this analysis the “observed” river flow is the PDM simulated flow from observed 

precipitation and the “forecast” river flow is the river flow forecasted by ERA-40 and 

DEMETER data. This means that both observed and forecasted river flows contain PDM 

model errors, which are assumed to be of the same magnitude. Comparison of these two time 

series provides information on the property of the input data to reproduce realistic flow 

characteristics. 

4.4 Evaluation Methodology 

In weather forecasting, the benefit of using the ensemble mean is that it tends to average out 

differences between ensemble members, while highlighting characteristics that are shared by 

the forecast ensemble members (Wilks, 2006). Following this same reasoning, the assessment 

of river flow predictive skill herein uses the ensemble mean river flow prediction generated 

from an ensemble of precipitation predictions. 

The river flow driven by the ERA-40 precipitation and the ensemble mean river flow 

generated by the 10 downscaled ERA-40 precipitation time series were used in the 

assessment. For DEMETER the ensemble mean river flow prediction from each of the 

DEMETER models, and the equal-weighted (averaged) multi-model ensemble mean river 

flow prediction using all DEMETER models’ members were calculated. For individual 

DEMETER models precipitation (downscaled precipitation) this is the ensemble mean river 

flow prediction of nine (90) members, and for the DEMETER multi-model precipitation 

(downscaled precipitation) this is the ensemble mean river flow prediction of 63 (630) 

members.  
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River flow predictions were assessed using the Nash-Sutcliffe coefficient (NS; Nash and 

Sutcliffe, 1970) on daily (NS-1) and 30 day moving averaged (NS-30) flows (4.1). NS values 

range from -∞ to 1 (1 is a perfect forecast), with positive (negative) values indicating a 

prediction better (worse) than that obtained using a reference river flow.                                                                                                          

�� � 1 � ∑ �	
 � 	�
�


∑ �	
 � 	����,
��



           �4.1� 

where 	 is the observed flow, 	�  is the forecast and 	���� is the reference forecast. 

Two reference flows 	���� were used in the NS calculation: (1) the mean annual river flow 

over the period studied (grey horizontal lines in Figure 4.3), which is the conventional NS 

calculation, and (2) the daily mean historical river flows (red lines in Figure 4.3). By using 

the daily mean historical river flow as a reference, the seasonality of the Dyfi river flow is 

considered. For a given day, this daily mean flow could be a forecast, which is the equivalent 

to using the climatology for precipitation forecasts.  
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Figure 4.3: Historical River Dyfi flows for (a) daily flows and (b) 30 day moving average 

flows over 01/05/1980 to 30/04/2001. The grey background is the envelope of observed 

flows and the red line is the mean daily observed river flow. 

On a monthly basis from May 1980 to April 2001 two further statistics were employed. 

Firstly, Spearman rank correlation ρ was used to show the association between monthly 

observed and predicted river flows. Secondly the mean relative bias in percent (4.2) was 

calculated to discern whether the predicted river flows overestimated or underestimated the 

observed flows. 

���� � 100 � 1���	�
 � 	
	
 �
 


!"
                          �4.2� 

where n is the number of pairs of forecasts and observations. 

Two extreme hydrological events in the River Dyfi basin, a low flow period (01/07/1984–

31/08/1984) and a high flow period (01/10/2000–30/11/2000), were chosen to assess how the 

forecasted river flow driven by the downscaled 0–3 months precipitation series captured 
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extreme events. Forecast skill during these events was evaluated with contingency tables 

(Mason, 2003), which showed the number of days when forecasted and observed daily river 

flow were above or below the median observed river flow over the analysed period. An 

example contingency table is shown in Table 4.1. From the contingency table the percent 

correct rate (4.3) can be calculated, which highlights the forecast performance. 

Table 4.1: An example of a contingency table. The green boxes A and D show the 

occurrences when the river flow forecast and observed river flow lie simultaneously above or 

below the set threshold (correct forecasts). Conversely, the light red boxes B and C show the 

occurrences when the river flow forecast and observed river flow lie on opposite sides of the 

set threshold (incorrect forecasts). 

  Forecasts % 

 Model >med <med Totals 

O
bs

er
ve

d >med A B A+B 

<med C D C+D 

 Totals A+C B+D A+B+C+D 
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* + - + . + ,� � 100             �4.3� 

 

4.5 Results 

4.5.1 River flow forecasting with ERA-40 and downscaled ERA-40 precipitation 

The forecasted river flows driven by ERA-40 precipitation are less skilful than using the 

mean annual flow as a forecast of observed flows, as shown by the negative NS values    

(NS-1=-0.196 and NS-30=-0.670). When using the daily historical mean flow as a reference, 

NS-1HIST and NS-30HIST decrease to -0.567 and -2.14 respectively. This poor estimation of 
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river flow with ERA-40 precipitation is to be linked with the incorrect daily precipitation 

intensity by the ERA-40 GCM assimilating model. When precipitation was downscaled (with 

SDSM) prior to its input in the PDM, a marked improvement in river flow forecast skill was 

found over 01/05/1991–30/04/2001 (NS-1=0.520 and NS-30=0.683; NS-1HIST=0.373 and 

NS-30HIST=0.468). Note that it was not possible to produce river flow with downscaled ERA-

40 over 1980–2001, as the SDSM models were built using ERA-40 over 1976–1991, which 

would have added artificial skill to the river flow forecasts. 

4.5.2 River flow forecasting with DEMETER and downscaled DEMETER precipitation 

The forecasted river flows using the DEMETER models’ precipitation are poor (Table 4.2). 

The ensemble mean river flow driven by the METEO FRANCE model 0–3 months 

precipitation produces the best forecasts, but the negative NS values imply that these 

forecasts are not as skilful as using the mean annual flow or the daily historical mean river 

flow as a forecast (NS-1=-0.122 and NS-30=-0.282 when the mean annual flow is the 

reference). For the 4–6 months precipitation series, the METEO FRANCE model also 

produces the most skilful forecast (NS-1=-0.090 and NS-30=-0.199 for mean annual flow 

reference; Table 4.3). As all of the precipitation forecasts from the DEMETER models 

generate river flow forecasts worse than the mean annual flow (negative NS values; Tables 

4.2 and 4.3), the results obtained from direct GCM precipitation inputs are not discussed in 

detail hereafter.  
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Table 4.2: Nash-Sutcliffe values for the 0–3 months series of DEMETER models’ ensemble 

mean of daily and 30 day moving average river flow forecasts. The first NS value in each box 

uses the mean annual flow as a reference, while values in brackets use the historical mean 

daily and mean daily 30 day moving average river flow as a reference. Bold values are the 

forecasts with the highest skill in each category. 

Model 0–3 months precipitation 0–3 months downscaled precipitation 

NS-1 NS-30 NS-1 NS-30 

CERFACS -0.143 (-0.499) -0.323 (-1.491) 0.062 (-0.229) 0.232 (-0.446) 

ECMWF -0.286 (-0.686) -0.645 (-2.098) 0.024 (-0.280) 0.186 (-0.533) 

INGV -0.335 (-0.749) -0.727 (-2.253) 0.029 (-0.273) 0.218 (-0.472) 

LODYC -0.295 (-0.697) -0.660 (-2.126) 0.068 (-0.221) 0.252 (-0.408) 

METEO FRANCE -0.122 (-0.471) -0.282 (-1.414) 0.046 (-0.250) 0.177 (-0.549) 

MPI -0.264 (-0.657) -0.592 (-1.997) 0.068 (-0.221) 0.193 (-0.520) 

UKMO -0.303 (-0.707) -0.679 (-2.161) 0.052 (-0.242) 0.216 (-0.476) 

DEMETER -0.238 (-0.623) -0.542 (-1.903) 0.128 (-0.143) 0.289 (-0.339) 

 

 

Table 4.3: Nash-Sutcliffe values for the 4–6 months series of DEMETER models’ ensemble 

mean of daily and 30 day moving average river flow forecasts (Key as Table 4.2). 

Model 4–6 months’ precipitation 4–6 months’ downscaled precipitation 

NS-1 NS-30 NS-1 NS-30 

CERFACS -0.109 (-0.454) -0.250 (-1.354) 0.061 (-0.230) 0.174 (-0.556) 

ECMWF -0.271 (-0.665) -0.600 (-2.014) 0.063 (-0.228) 0.196 (-0.514) 

INGV -0.321 (-0.731) -0.722 (-2.242) 0.121 (-0.152) 0.283 (-0.349) 

LODYC -0.295 (-0.697) -0.654 (-2.115) 0.056 (-0.237) 0.190 (-0.526) 

METEO FRANCE -0.090 (-0.429) -0.199 (-1.258) 0.021 (-0.284) 0.105 (-0.685) 

MPI -0.239 (-0.624) -0.527 (-1.875) 0.070 (-0.219) 0.212 (-0.484) 

UKMO -0.311 (-0.719) -0.702 (-2.206) 0.062 (-0.229) 0.194 (-0.517) 

DEMETER -0.223 (-0.603) -0.504 (-1.833) 0.111 (-0.166) 0.248 (-0.417) 
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River flow forecast skill improves when downscaled precipitation is used to force the PDM 

rainfall-runoff model, as shown by the positive NS values obtained when the mean annual 

river flow is used as a reference (Tables 4.2 and 4.3). The ensemble mean river flow from the 

downscaled DEMETER multi-model precipitation (0–3 months series) has the highest 

forecast skill, with positive NS values indicating that this river flow forecast is more skilful 

than using the mean annual river flow as a forecast (NS-1=0.128 and NS-30=0.289 

respectively). Positive NS values are also found for the ensemble mean of each DEMETER 

model (0–3 months series). For the downscaled 4–6 month series, the forecast remains better 

than that obtained from the mean annual river flow (Table 4.3), with the INGV model 

associated with the highest forecast skill for the 4–6 months series. This means that there is 

not a large degradation in forecast skill when using the 4–6 months downscaled time series. 

It must be noted that the forecast skill in terms of the NS are not very good, and in general 

NS values greater than 0.6 would be required to consider a model fit as acceptable. However, 

the downscaled precipitation series do produce improved flow forecasts compared to using 

direct GCM precipitation. 

The bias and Spearman rank correlation ρ values for the mean monthly flow forecasts from 

the downscaled DEMETER 0–3 months and 4–6 months multi-model ensemble are shown in 

Table 4.4 (Table 2 in Appendix I shows the bias and correlation results for the DEMETER 0–

3 months and 4–6 months multi-model ensemble precipitation). The monthly mean bias has 

negative and positive values indicating that the forecast river flows both underestimate and 

overestimate the observed flows. Note that for DEMETER 0–3 and 4–6 months precipitation 

all bias values are negative indicating that the flow forecasts always underestimate the 

observed river flow (see Table 2 in Appendix I). The correlation results are generally poor, 

with only the downscaled 0–3 months series having two months with significant correlation 
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at α=0.05 level (ρ=0.47 and ρ=0.71 for June and August respectively). This suggests that 

there is not strong association between forecasted and observed hydrological events. 

Table 4.4: Bias and Spearman rank correlation for the mean monthly river flow forecasts 

driven by the downscaled DEMETER 0–3 months and 4–6 months multi-model ensemble 

over May 1980 to April 2001 (n=21). Bold values indicate significant Spearman rank 

correlation at α=0.05 level. 

DEMETER  

Multi-Model 

0–3 months downscaled precipitation 4–6 months downscaled precipitation 

Bias Correlation Bias Correlation 

January 42.85 0.06 43.27 -0.04 

February 17.77 0.42 33.19 0.04 

March 9.44 -0.05 -0.31 -0.08 

April -2.27 0.10 -9.26 0.13 

May -19.49 0.27 -19.91 0.24 

June -65.28 0.47 -61.55 0.08 

July -55.26 -0.10 -53.33 -0.01 

August -69.71 0.71 -62.63 0.28 

September -40.53 -0.31 -49.07 -0.03 

October -29.64 -0.05 -37.60 -0.28 

November 8.62 0.28 18.99 0.27 

December 3.67 -0.21 6.97 0.12 

 

The improvement of the river flow forecasts obtained from downscaled precipitation as 

compared with direct precipitation is further shown by plotting Flow Duration Curves (FDC). 

An FDC represents the river flow cumulative frequency as a function of the percentage of 

time that the river flow is exceeded (Hisdal et al., 2004). On an FDC the percent exceedance 

flow (QN) can be determined; for example the Q5 value is the river flow which is equalled or 

exceeded 5 % of the time (high flow index), and the Q95 value is the river flow which is 

equalled or exceeded 95 % of the time (low flow index). For the daily and 30 day moving 

average forecasted river flows on the FDCs in Figure 4.4, it is shown that the ensemble mean 

river flow forecast from the DEMETER multi-model (0–3 months) precipitation ensemble 
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(dashed black line) substantially underestimates the observed river flow (red line) throughout 

the flow regime and especially for high flows (e.g. Q5). The FDC of the ensemble mean river 

flow driven by the downscaled DEMETER multi-model precipitation (solid black line) is 

closer to the observed river flow in all parts of the Dyfi flow regime highlighting the 

improvement obtained by the downscaling process. However, the FDCs show that the high 

river flows are still not well simulated with the downscaled precipitation and this is especially 

noticeable for the daily river flow forecasts (Figure 4.4a). 

 

Figure 4.4: Flow duration curves for the River Dyfi at Dyfi Bridge for (a) daily river flows 

and (b) 30 day moving average river flows over 01/05/1980–30/04/2001. The red line is the 

observed flow, the solid black line is the ensemble mean river flow forecast from the 

downscaled DEMETER multi-model precipitation (0–3 months series), and the dashed black 

line is the ensemble mean river flow forecast from DEMETER multi-model precipitation (0–

3 months series).  
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The NS statistics calculated with the historical mean daily and historical mean daily 30 day 

moving average river flow as a reference are all negative (Tables 4.2 and 4.3). The 

downscaled precipitation yields higher river flow forecast skill than directly using 

DEMETER models’ precipitation, with the ensemble mean river flow from downscaled 

DEMETER (0–3 months) multi-model precipitation having the highest NS value              

(NS-1HIST=-0.143). As the NS values calculated using the historical flows have no positive 

values even with the downscaled precipitation as the driving data, it implies that these river 

flow forecasts are currently not as skilful as those possible from the historical river flow 

‘climatology’. 

Interestingly for the river flows driven by downscaled DEMETER models, the application of 

the moving average has a different effect on the NS statistic depending on what reference 

river flow is used. When using the mean annual flow as a reference, the 30 day moving 

average river flow forecast has higher skill compared to the daily flow forecast                   

(cf. NS-1=0.128 and NS-30=0.289 for 0–3 months DEMETER multi-model ensemble mean 

flow; Table 4.2). Conversely, when the daily historical mean river flow is used as a reference 

the moving average leads to a decrease in skill. The hydrographs in Figure 4.5 help to explain 

the reasoning behind this observation. In Figure 4.5b the 30 day moving average of the 

observed river flow (red line) smoothes out the large daily flow fluctuations (shown in Figure 

4.5a) bringing the observed flow closer to the moving average (0–3 months) DEMETER 

multi-model ensemble mean river flow (black line; Figure 4.5b), in turn leading to smaller 

errors compared with the reference mean annual flow (straight blue line) and thus a larger 

NS-30 value compared to NS-1. When the daily historical mean flow is used as the reference, 

the application of the moving average produces the opposite effect. In this case the observed 

and historical moving average river flows tend to be more closely aligned than with the (0–3 
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months) DEMETER multi-model ensemble mean river flow leading to lower NS-30 values 

compared to NS-1 (Figure 4.5d). 

 

Figure 4.5: Observed river flows (red line), downscaled 0–3 months DEMETER multi-model 

ensemble mean river flows (black line), and historical river flows (blue line) over 01/05/1980 

to 30/04/1981. In (a) the daily flows and (b) the 30 day moving average flows are shown with 

the mean annual flow as a reference; in (c) the daily river flows and (d) the 30 day moving 

average river flows are shown with the historical river flows as a reference. 
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4.5.3 River flow forecasts during two extreme hydrological events 

Hydrographs for two extreme hydrological events in the Dyfi basin, a low flow period 

(01/07/1984–31/08/1984) and a high flow period (01/10/2000–30/11/2000), are shown in 

Figure 4.6. The hydrographs show the daily ensemble mean river flow driven by the 

downscaled 0–3 months DEMETER models precipitation series. The percent correct rate of 

the forecasts (Table 4.5) highlights the information contained in the contingency tables (see 

Tables 3 and 4 in Appendix I). Note that as the downscaled 0–3 months DEMETER multi-

model ensemble mean river flow forecast had the highest NS values over 1980–2001 (cf. 

Tables 4.2 and 4.3), only river flow forecasts of the extreme events forced with 0–3 months 

downscaled precipitation are shown and discussed. 

 

Figure 4.6: Hydrographs of the downscaled (0–3 months series) DEMETER models daily 

ensemble mean river flows for (a) July and August 1984 and (b) October and November 

2000. The model forecasts and their colours are: CERFACS (orange), ECMWF (blue), INGV 

(pink), LODYC (yellow), METEO FRANCE (light blue), MPI (cyan), UKMO (light green), 

DEMETER multi-model (black), and observed (red) river flows. The grey horizontal line is 

the median observed flow over each period. 
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For the low flow event in 1984, the best percent correct rate was 50% which was obtained by 

all models except LODYC (Table 4.5). Generally the forecasts can not reproduce the low 

observed flows, which can be seen in Figure 4.6a. The CERFACS and METEO FRANCE 

forecasts are closely aligned with the observed river flows in July 1984, but these models 

could not capture the higher flows in August 1984. For the high flow event in 2000, no model 

could forecast the extremely high flow (> 200 m
3
s

-1
) at the end of October 2000. The UKMO 

ensemble mean flow forecast had the best percent correct rate of 57 % during this high flow 

period (Table 4.5) and all other river flow forecasts forced by DEMETER models had a 50 % 

correct rate. These results imply that poor sub-monthly forecast skill exists in these river flow 

forecasts.  

Table 4.5: The percent correct rate % for the low (01/07/1984–31/08/1984) and high 

(01/10/2000–30/11/2000) river flow events using the ensemble mean river flow forecast from 

each DEMETER model and the DEMETER multi-model (0–3 months series). 

Model Percent Correct Rate (%)  

July-August 1984 October-November 2000 

CERFACS 50 50 

ECMWF 50 50 

INGV 50 50 

LODYC 35 50 

METEO FRANCE 50 50 

MPI 50 50 

UKMO 50 57 

DEMETER 50 50 

 

4.6 Conclusions 

The aim of this chapter was to drive a rainfall-runoff model using (1) GCM and downscaled 

GCM (ERA-40 re-analysis) precipitation, and using (2) precipitation and downscaled 

precipitation forecasts from seasonal climate models (DEMETER) to assess the skill of river 
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flow forecasting. Results highlight that ERA-40 GCM precipitation, which has observed 

precipitation assimilated into it, can not skilfully simulate river flow in the PDM rainfall-

runoff model. DEMETER seasonal precipitation forecasts are also unable to reliably force 

the rainfall-runoff model for the Dyfi basin. The GCM precipitation (ERA-40 and 

DEMETER) used to drive the PDM rainfall-runoff model generate river flow forecasts that 

underestimate the observed river flows. This is likely to be due to the inability of the ERA-40 

assimilating model and DEMETER seasonal climate models to resolve basin-scale (or GCM 

sub-grid scale) atmospheric processes such as orographic enhancement of precipitation over 

the Welsh Mountains, thus precluding a direct operational use of current GCM precipitation 

output.  

With the aid of the SDSM statistical downscaling technique, river flow forecast skill was 

improved. The river flows simulated using downscaled ERA-40 data generated the highest 

NS values (for both mean annual and daily historical mean reference flows), which is thought 

to be due to the fact that ERA-40 atmospheric predictors (close to observations) were used to 

produce the downscaled precipitation and because the river flow forecasts were only verified 

over a 10 year period (1991–2001). The downscaled DEMETER driven ensemble mean river 

flow forecasts were more skilful than using the mean annual river flow. However, when the 

ensemble mean river flow forecasts generated by downscaled DEMETER precipitation were 

compared with the daily historical mean river flow (or “climatology”), the flow forecasts 

were less skilful than the historical flow. Considering that the use of the ERA-40 predictors 

in the downscaling process over 1991–2001 produced skilful river flow forecasts, the 

relatively poor downscaled DEMETER driven river flow forecasts may result from 

inaccurate forecasts of the large-scale climatic circulation in the DEMETER models. A 

promising result to note is that the downscaled DEMETER driven river flow forecasts only 
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had a small degradation in skill when using the 4–6 months downscaled precipitation time 

series compared to the 0–3 months time series, potentially indicating that this type of forecast 

could be utilised at this longer lead time.  

There are a few reasons why the methodology used could have had lower forecast skill 

compared to the historical river flows. Firstly, only precipitation and atmospheric 

downscaling predictors at the closest GCM grid cell to the River Dyfi basin (52.5°N 2.5°W) 

were used. This may not have been the most appropriate as the atmospheric predictors with 

the strongest relationship with Dyfi basin precipitation may be located at some distance from 

the basin. Research in Chapter 5 investigates and identifies the geographical locations where 

the large-scale atmospheric predictors have the strongest control on British river basin 

precipitation and discharge in part to determine whether the ideal predictor regions were 

selected in this chapter. Secondly, the direct use of GCM precipitation might not have been 

suitable if the seasonal climate model predictive skill of precipitation is low. Furthermore, the 

predictive skill of DEMETER atmospheric predictors may also be poor. These research 

questions are addressed in Chapter 7. Finally, it is possible that insufficient historical climate 

data (atmospheric circulation and basin precipitation) were available to train the multiple 

linear regression SDSM downscaling models; this will only be rectified with the availability 

of longer historical time series. 

4.7 Chapter summary 

This chapter has evaluated a physically realistic end-to-end seasonal river flow forecast 

system for the River Dyfi in West Wales (Great Britain) and found that GCM precipitation is 

unable to skilfully force the PDM rainfall-runoff model. Precipitation downscaled from 

DEMETER seasonal climate model predictors performs better in forcing the rainfall-runoff 
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model, but is not as accurate as using daily historical mean river flows as a forecast. Reasons 

for the lower river flow forecast skill (compared to daily historical river flows) are considered 

to be the use of an inappropriate GCM grid point for the atmospheric downscaling predictors, 

and the seasonal climate model predictive skill of precipitation and downscaling predictors. 

These factors form the research in Chapters 5 and 7 respectively. 
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5. LARGE-SCALE CLIMATE, PRECIPITATION AND BRITISH RIVER FLOWS: 

IDENTIFYING HYDROCLIMATOLOGICAL CONNECTIONS AND DYNAMICS  

Chapter Objective: to characterise the spatiotemporal variability of hydroclimatological 

relationships across Great Britain. 

5.1 Introduction 

Identifying relationships between large-scale climatic circulation, and river basin-scale 

precipitation and discharge provides insight into understanding the hydroclimatological 

process chain (Kingston et al., 2009). Statistically significant empirical climate linkages 

could be exploited for predicting precipitation and river flow anomalies at seasonal time-

scales, if combined with accurate seasonal predictions of the driving large-scale climatic 

circulation. Such long-term hydrological predictions are important to help improve advanced 

planning of water resources and increase human preparedness for hydrological extremes, 

including floods and droughts (Wedgbrow et al., 2002). This is an important challenge 

because hydrological extremes are expected to become more commonplace in a changing 

climate (Kundzewicz et al., 2007).   

Indices that summarise the main modes of atmospheric variability over a particular region are 

most frequently used for investigating relationships between the large-scale climatic 

circulation and precipitation and river flow. Over the Euro-Atlantic region different phases of 

the NAO, as measured by the NAOI, are known to be associated with variations in the 

surface westerly winds and precipitation occurrence over Europe (Uvo, 2003). At the 

regional scale across Great Britain, previous research suggests that relationships between the 

NAOI and precipitation and river flow exhibit spatiotemporal variation (for more details see 

section 2.4). 
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Through consideration of atmospheric dynamics, a physical process informed approach can 

be adopted to select explanatory climate variables that control precipitation and river flow. 

For extratropical synoptic-scale weather systems, horizontal wind velocities are 

approximately geostrophic (or quasi-geostrophic), which means that the horizontal pressure 

gradient and Coriolis force balance, producing a constant horizontal wind parallel to the 

isobars or contours. Using quasi-geostrophic theory, the omega equation can be formulated 

that provides a method of diagnosing the vertical velocity of air from a distribution of 

geopotential (Holton, 1992). Sapiano et al. (2006) used the quasi-geostrophic theory to 

determine the primary factors affecting extratropical large-scale precipitation. In particular, 

they identified that low MSLP and the meridional temperature gradient affects extratropical 

precipitation amount. MSLP is collocated with vertical velocity in the midtroposphere, and is 

thus indicative of cyclonic development and precipitation. A strong meridional temperature 

gradient in the extratropics is related to vertical zonal wind shear by the thermal wind 

relation, and through further manipulation the zonal (west-east) wind can be written in terms 

of the meridional gradient of MSLP (or geopotential) (Sapiano et al., 2006). A strong 

westerly wind increases moisture transport across the Atlantic, and leads to above average 

precipitation and river flow in Northwest Europe (Kingston et al., 2006b). Based on our 

extension of quasi-geostrophic theory to hydrological variables, MSLP and zonal wind 

variables are included in this study, along with the NAOI, to determine their relation with 

precipitation and river flow in Britain. 

The aim of this chapter is to investigate how the hydroclimatological relationships between 

large-scale climatic circulation and precipitation and river flow vary in time and space for ten 

near-natural river basins across Great Britain. In addressing this aim, the following three 

hypotheses are tested: (H1) the hydroclimatological relationships across Britain vary spatially 
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and seasonally reflecting climatic gradients that are influenced by topography (i.e. 

mountains), and proximity to the moisture-laden westerly flow from the North Atlantic; (H2) 

the use of gridded atmospheric data uncovers the detailed spatial and temporal variability of 

atmospheric control on precipitation/river flow, and leads to an improvement in statistical 

associations and process understanding over using an index, such as the NAOI; and (H3) the 

rainfall-to-runoff transformation varies in space and time because different river basin 

properties, such as permeability of geologies, attenuate the climatic signal on river flow to 

varying degrees.   

5.2 Data and Methods 

Ten near-natural basins (Tables 3.1 and 3.2) were selected from the UK NRFA’s benchmark 

catchment list (Bradford and Marsh, 2003), as these basins are not significantly impacted by 

human activity. This means that climate-precipitation-flow links are not modified strongly by 

water management. The geographic coverage of the 10 catchments across Britain (Figure 3.1) 

captures the east-to-west and south-to-north precipitation gradient (as shown by SAAR in 

Table 3.1). The catchments were selected to sample a range of hydrological response times, 

as measured by the BFI. The BFI is indicative of the proportion of river flow derived from 

longer residence time water sources (e.g. groundwater, lakes, wetlands, snow, and ice). 

Typically, high (low) BFI denotes a high (low) storage component; basins with high BFI tend 

to have a longer ‘hydrological memory’ and greater buffering of climatic inputs (Fleig et al., 

in press). 

The river basin precipitation and discharge were provided by the UK NRFA, which ensured a 

strict quality control of all the data. Daily river basin precipitation time series were calculated 

by averaging across all available rain gauges in the river basin (number of gauges used in 
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Table 3.1), and daily river flow was measured at the gauging stations in Table 3.1. Six basins 

had some missing river flow values, but data gaps were very limited at most being 1 % of 

daily river flows for the Great Stour. For periods of missing flows larger than seven days, the 

equi-percentile method was used to infill missing values (Hannaford, 2004). Daily 

precipitation and river flow from January 1976 to December 2001 (26 year period) were 

aggregated to monthly values for the analyses herein. 

Five atmospheric variables (on a 2.5° × 2.5° grid from 15°N–70°N and 75°W–35°E; 1035 

points) were extracted  from the ECMWF ERA-40 reanalysis dataset (Uppala et al., 2005) 

from January 1976 to December 2001. Following the quasi-geostrophic theory (Sapiano et 

al., 2006), MSLP and the Zonal Wind U are included (by convention U is positive when 

there is a westerly wind). In addition to U, the
 
Meridional Wind (V) was chosen to determine 

the influence of north-south airflow on precipitation and discharge occurrence (V is positive 

when there is a southerly wind). Two atmospheric levels (500 and 850 hPa) were also 

considered to determine if correlation strength varied significantly with height in the 

troposphere, and to identify the level containing the most useful information for 

understanding precipitation and river flow generation dynamics. The spatial disparity 

between the basins’ areas (ranging from 0.1° to 0.25°) and the 2.5° atmospheric grid is not an 

issue because of the relatively smooth change in space of the selected atmospheric variables. 

Moreover, as this study is concerned with the effect of large-scale atmospheric control on 

basin hydrology, it is necessary to analyse atmospheric variables on the coarser 2.5° grid. 

As the NAOI has been widely used in previous research (section 2.4), it was used in this 

study as a benchmark against which to compare the links with gridded variables. NAOI time 

series were obtained from the UEA CRU website (http://www.cru.uea.ac.uk/cru/data/nao/; 
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accessed January 2009) and represents the monthly normalised pressure difference between 

Gibraltar and Southwest Iceland (Jones et al., 1997).  

Normality of the atmospheric variables, precipitation and river flow was tested with the 

Shapiro-Wilks test (Reimann et al., 2008), and as normality could not be accepted, the 

Spearman rank correlation coefficient (ρ) was used as a measure of links between concurrent 

monthly time-series of atmospheric variables and precipitation/river flow. To investigate 

seasonal variability in detail, correlation analysis was undertaken on a monthly basis (i.e. 

analysing time-series of each month individually) between the gridded ERA-40 atmospheric 

data and NAOI, and basin precipitation and river flow data over the period 1976 –2001. 

Note that correlation on daily data was also tested for a hydrologically-responsive sample 

basin (i.e. Ewe); but daily analysis yielded lower absolute correlation values than monthly 

analysis. This could be due to noise in the data at a daily timescale, but could also reflect the 

complex mechanisms of precipitation generation. Although low pressure systems are often 

associated with precipitation occurrence because of the large-scale lifting, precipitation is not 

consistent throughout a low pressure system. This means that there is a disconnection in 

space and time at the daily level between the large-scale atmosphere and precipitation receipt 

(i.e. it might or might not rain when MSLP is low) resulting in correlations lower at the daily 

timescale than at the monthly timescale.  No daily correlation analyses are reported in this 

chapter. 

Monthly field significance was examined using Monte Carlo simulations for the ERA-40 

variables against precipitation and discharge in each river basin to assess if the observed 

significant correlation areas were greater than those expected by chance alone. Here, 200 

simulations were used as suggested by Livezey and Chen (1983) and Phillips and McGregor 
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(2002), so that the probability density function of the number of significant grid points 

observed in each simulation could be estimated accurately. For each simulation, a series of 26 

values (i.e. same length as the monthly time series over 1976–2001) was generated randomly 

from the empirical distribution of the precipitation or discharge time series, and then 

correlated with the 1035 grid points of each ERA-40 atmospheric variable field. The number 

of grid points with significant ranked correlation at the 0.05 level in each simulation was 

recorded. The 200 simulations provided an associated empirical probability distribution. A 

correlation pattern is considered field significant (at the 0.05 level) if the area of observed 

significant correlation is larger than that expected by chance, as given by the 95% percentile 

of the constructed empirical probability distribution. Correlation patterns that are field 

significant will be considered as possible centres (‘hot spots’) of atmospheric circulation 

related to precipitation and river flow.  

The estimation of the correlation between time-series of precipitation (and discharge) and 

atmospheric variables could be affected by the presence of linear trends in any of these 

variables; this was tested using a bootstrap procedure (Efron and Tibshirani, 1998). The 

atmospheric data and precipitation / discharge time-series were re-sampled with replacement 

B=200 times (keeping the concurrent pairs of the variables of interest), obtaining B samples 

of the same size as the observed series (n=26). For each bootstrap sample, Spearman’s ρ was 

computed giving its bootstrap empirical distribution. This procedure was repeated in each 

basin for each month and variable at all 1035 grid points in the domain for precipitation and 

discharge. Results suggest that the presence of possible linear trends in these variables has 

negligible influence on the correlation results, and hence data were not de-trended. 
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5.3 Results and Discussion 

As an organisational framework, the field significance results are presented followed by a 

discussion and interpretation of the large-scale circulation correlation results: firstly for 

precipitation and secondly for river flow.  

5.3.1 Field significance of large-scale circulation and precipitation / river flow  

Two observations emerge from the monthly field significance analysis of the correlation 

patterns for precipitation and discharge (Figure 5.1). First, field significant correlation 

patterns are found generally in more months for precipitation than river flow, as particularly 

highlighted for the Dun (Figure 5.1h). The weaker patterns for river flow are probably due to 

the role the catchment plays in transforming the climate signal into discharge. For the Dun 

(BFI=0.95), such differences are likely to result from the large groundwater component of 

river flow where the geology acts as a buffer between precipitation and river flow, thus 

reducing the direct influence of climate on river flow. The differences are less marked for 

more responsive catchments (lower BFI), such as the Dyfi (BFI=0.39; Figure 5.1g). Although 

the Ewe has a moderate-high BFI of 0.64, field significance results for precipitation and 

discharge are almost identical because this basin has sub-monthly water storage (water 

storage in the Ewe basin is discussed further in section 5.3.3).  

Second, basins located in western Britain (and not associated with major aquifers) tend to 

have more months with field significant results (both for precipitation and river flow; e.g. 

Falloch basin, Figure 5.1c), which may reflect a stronger connection between large-scale 

climatic circulation and precipitation and river flow due to exposure to westerly winds and 

moisture fluxes in the west. The mountains of Scotland and Wales and the English Pennines 

act as a barrier to the westerly winds resulting in fewer significant patterns in the east. In 
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general, Figure 5.1 shows that variables at 850 hPa have more field significant months than at 

500 hPa, implying that the lower level (850 hPa) has a larger control on the basin 

precipitation and discharge. Owing to this fact, only the months with field significant 

correlations at 850 hPa (and MSLP) are the focus of discussion hereafter.  

 

Figure 5.1: Number of field significant months (at the 0.05 level) for ERA-40 atmospheric 

variables against precipitation (black) and river flow (grey) for each basin.  
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Figure 5.2 (a-t): Spearman rank correlation between basin precipitation and MSLP for all 

basins for January (left plots) and July (right plots) over 1976–2001. Solid (dashed) contour 

lines at a 0.2 interval show negative (positive) correlation, with blue (red) colour signifying 

significant negative (positive) correlation (significance level α = 0.05). 
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5.3.2 Correlation between large-scale circulation and precipitation 

Significant rank correlation between large-scale climatic circulation and river basin 

precipitation show gradients in strengths and patterns primarily reflecting the location of the 

basin and its position relative to the topography of Britain. In western Britain (Dyfi, Ellen, 

Ewe and Falloch), precipitation is connected with a strong MSLP correlation dipole pattern 

particularly in winter. A correlation dipole is characterised by significant positive and 

negative correlations in two different geographical regions. For these catchments, positive 

(negative) correlation is located across the southern (northern) part of the study domain 

(Figure 5.2a, 5.2e, 5.2i and 5.2m for January). These centres of correlation are located to the 

south/ southwest (Azores High) and north/ northwest of Britain (Icelandic Low), which are 

located near the reference measures of the NAOI. The season of the strongest pattern is 

winter, when the temperature gradient between the Equator and the North Pole is largest. The 

significant correlation pattern suggests that when MSLP falls in the Icelandic Low region and 

increases in the Azores High region, precipitation occurs over the four basins. The situation 

corresponds to a MSLP field associated with westerly winds over Britain, bringing 

extratropical weather systems and precipitation. Strong westerly winds increase precipitation 

receipt, as also reflected by the significant positive U correlation at 850 hPa (ρ > 0.8) (Figure 

5.3a, 5.3e, 5.3i and 5.3m). The area of strongest positive U correlation is situated on the 

southern edge of the strongest negative MSLP correlation (Figure 5.2a, 5.2e, 5.2i and 5.2m), 

as a result of the anti-clockwise circulation that occurs around low pressure systems in the 

Northern Hemisphere. This is consistent with links between high winter precipitation over 

northern Europe and a more frequent western atmospheric flow, as highlighted by Bouwer et 

al. (2006), and such circulation patterns can be related to the Westerly weather type of the 

Lamb Classification (Lamb, 1972). The relationship of the westerly flow with precipitation is 
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further corroborated by the positive NAOI correlation with basin precipitation during the 

winter half-year (Table 5.1). The Dyfi and Ellen only have significant positive NAOI 

correlation during the winter half-year, whereas the Ewe and Falloch have positive NAOI 

correlations that are, for the most part, significant throughout the year (highest value of 0.87 

in February for the Falloch) possibly because of orographic enhancement of precipitation by 

the western Scottish mountains. V correlation at 850 hPa for these four western basins show a 

great deal of variability, although in general negative (positive) V correlation is noticeable to 

the west (east) of Britain, which relates to the northerly (southerly) wind (Figure 5.4a, 5.4e, 

5.4i and 5.4m) in the anti-clockwise circulation around a low pressure system. 

Table 5.1: Monthly NAOI-precipitation correlations (correlation significant at the 0.05 level 

is in bold). 

 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Avon 0.33 0.17 0.04 -0.06 0.06 -0.20 0.06 0.19 -0.22 -0.14 -0.13 0.37 

Coquet 0.01 0.03 -0.47 0.06 0.09 -0.27 0.26 -0.27 -0.26 -0.25 -0.11 0.00 

Dun 0.44 0.32 -0.18 0.14 -0.14 -0.34 0.13 -0.06 -0.32 0.13 0.23 0.06 

Dyfi 0.68 0.56 0.21 0.48 0.08 -0.15 0.05 0.27 0.12 0.41 0.55 0.71 

Ellen 0.64 0.75 0.19 0.47 0.15 0.07 0.17 0.22 0.34 0.54 0.65 0.79 

Ewe 0.83 0.81 0.67 0.57 0.54 0.60 0.27 0.39 0.78 0.70 0.66 0.73 

Falloch 0.84 0.87 0.83 0.66 0.33 0.52 0.30 0.29 0.89 0.75 0.73 0.82 

Great Stour 0.19 0.13 -0.30 0.08 -0.14 -0.16 -0.11 -0.18 -0.55 0.03 0.19 0.17 

Harpers Brook 0.30 0.16 -0.20 -0.02 0.22 -0.29 0.26 -0.25 -0.41 -0.13 -0.05 0.07 

Tiddy 0.42 0.36 -0.13 0.31 -0.23 -0.20 0.11 0.03 -0.30 0.21 0.17 0.43 
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Figure 5.3 (a-t): Spearman rank correlation between basin precipitation and U at 850 hPa for 

all basins for January (left plots) and July (right plots) over 1976–2001 [Key as Figure 5.2]. 
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Figure 5.4 (a-t): Spearman rank correlation between basin precipitation and V at 850 hPa for 

all basins for January (left plots) and July (right plots) over 1976–2001 [Key as Figure 5.2]. 
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Figure 5.5 (a-l): Spearman rank correlation between Ewe basin precipitation and MSLP for 

all calendar months for 1976–2001 [Key as Figure 5.2]. 
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Toward summer, the Equator-North Pole temperature gradient lessens, weakening the 

westerly air flow and reducing the occurrence of the Westerly weather type (Lamb, 1972). 

From late spring to early summer, the frequency of Westerly weather types is the lowest of 

the year (Roy, 1997), resulting in lower precipitation amounts and lower correlation between 

precipitation and MSLP over the Northern Atlantic for April, May and June (Ewe basin; 

Figures 5.5d, 5.5e, 5.5f); the areas of positive correlation shrink in size and disappear in the 

summer (Ewe basin; Figure 5.5g and 5.5h). Summer precipitation in the western basins is 

linked typically with negative MSLP correlation situated across, and north of, Britain (Figure 

5.2c, 5.2g, 5.2k and 5.2o for July). The negative correlation areas shift southwards during 

summer, with their spatial extent also reaching a minimum at this time (Ewe basin; Figure 

5.5). This suggests that summer precipitation producing systems are associated with a 

Cyclonic weather type for which depressions usually stagnate or pass over Britain. 

Convective storms, particularly prevalent in the summer, have a shorter lifespan than the 

baroclinic waves that produce the extratropical depressions (Wallace and Hobbs, 2006) and 

contribute to precipitation receipt in the summer (Berg et al., 2009). Such small-scale 

weather systems and associated precipitation are masked by the monthly analysis, thus such 

linkages are not identified here. 

In the south and southeast of Britain, the Dun, Great Stour, Harpers Brook and Tiddy basins 

have similar climate-precipitation relationships. Correlation analysis suggests winter 

precipitation is produced predominately by low pressure situated over central Britain, which 

is typical of a Cyclonic weather type (Lamb, 1972). Significant negative correlation exhibits 

latitudinal variation shifting southwards during summer. Only January has a MSLP 

correlation dipole with precipitation, exhibiting positive values over the Azores and negative 

values over Britain (Figure 5.2j, 5.2n, 5.2q and 5.2r), thus not exactly over the NAOI 
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reference points. The extent of this positive correlation area is smaller than that observed in 

the western catchments (Figure 5.2). This indicates a weaker influence of westerly weather 

types on precipitation occurrence in southern Britain. In turn, NAOI correlations are 

generally not significant for these basins (Table 5.1); this may be because the basins are 

located in the rain shadow of western mountain chains. Tiddy precipitation has low 

correlation with the NAOI, despite its western location, which may suggest that the macro-

scale NAOI can not resolve the local-scale Tiddy precipitation (basin area is 37.2 km
2
; 

McGregor and Phillips, 2004). Zonal wind U has significant positive correlation in all 

months to the south of the British Isles as shown for 850 hPa (Figure 5.3 for January and 

July). These westerly winds are to the south of the low MSLP centre (negative correlation; 

see Figure 5.2) reflecting the anti-clockwise circulation around a low pressure system. 

Meridional wind V patterns exhibit variability between the four basins, but dominant 

structures relate to clockwise (anti-clockwise) circulations around high (low) pressure areas 

(Figure 5.4). 

Precipitation in the Coquet basin (Northeast England) is associated with low pressure over 

Britain, as given by significant negative MSLP correlation, and is characterised by a 

Cyclonic weather type (Figure 5.2f and 5.2h). However, there is a subtle difference from the 

patterns for the four southern basins, and this is that the location of the low pressure system 

would cause an onshore flow (easterly wind or retrograde motion) off the North Sea, thus 

bringing precipitation to the Coquet. This result corroborates previous research (Wheeler, 

1997). NAOI correlations are predominantly not significant, except for March (ρ=-0.47). 

There is an absence of positive MSLP correlation with Coquet precipitation, and hence 

westerly weather types have weak influence, possibly due to the Pennines mountain chain in 

England. 
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Precipitation in the Avon in northern Scotland has significant negative MSLP correlation to 

the east of Britain (Figure 5.2b and 5.2d). This indicates that low pressure to the east (and 

sometimes high pressure to the west) of Britain generates precipitation, as north-westerly 

winds bring moisture and troughs of low pressure. Similarly to the Coquet, previous research 

has shown that precipitation may be associated with slow moving depressions (Cyclonic 

weather type) to the south of the basin that lead to easterly winds on the northern edge of the 

depression (Roy, 1997); this is supported by the U and V patterns in Figures 5.3b and 5.4b 

respectively. As the Avon is located to the east of the Western Scottish Highlands, the 

influence of a westerly weather type on the basin is small, as most of the atmospheric 

moisture is precipitated-out over these mountains before reaching the basin. This is also 

shown by the non-significant NAOI correlations throughout the year.  

5.3.3 Correlation between large-scale circulation and river flow 

The Dyfi, Ellen, Ewe and Falloch basins in western Britain have similar precipitation and 

discharge correlation patterns (cf. Figure 5.6 with Figure 5.2 for MSLP). This is consistent 

with the responsiveness of the basins as summarised by the BFI, as they all have low BFI 

(except the Ewe), implying more ‘flashy’ (rapid) runoff response to precipitation. Spearman 

rank correlation of 0.79 and 0.81 between the NAOI and Ewe river flow in January and 

February (Table 5.2) are similar to the Pearson correlations of 0.70 and 0.82 found by 

Phillips et al. (2003), and only marginally different to the correlations of NAOI against Ewe 

precipitation of 0.83 and 0.81 found here. On top of the underlying impermeable rock in the 

Ewe catchment, Loch Maree acts as a reservoir and attenuates storm flows at short time-

scales (days), resulting in a moderate-high BFI. However, sub-monthly loch storage time 

means that the climate-discharge connection is not significantly buffered at a monthly time 

step. Although precipitation may fall as snow in the northerly Ewe and Falloch basins, the 
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relatively rapid response of river flow to precipitation suggests snow storage and meltwater 

release are not temporally disconnected over extended (i.e. multi-month) periods. This is 

confirmed by analysis of the mean monthly river flow over 1976–2001, where the Ewe and 

Falloch basins show peak monthly river flow in January when precipitation is highest and 

evapotranspiration is lowest. This suggests no significant snow storage that would delay the 

monthly precipitation-runoff relationships. 

Table 5.2: Monthly NAOI-river flow correlations (Key as for Table 5.1). 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Avon 0.22 0.35 0.36 0.05 0.08 -0.05 0.00 0.08 -0.22 -0.13 0.12 0.09 

Coquet -0.26 -0.17 -0.42 0.09 0.02 -0.13 0.11 -0.27 -0.20 -0.14 0.07 0.14 

Dun 0.13 -0.14 -0.01 -0.19 0.08 0.04 -0.06 -0.33 0.52 -0.12 0.37 0.34 

Dyfi 0.65 0.43 0.21 0.48 0.20 -0.14 -0.16 0.29 0.28 0.38 0.58 0.69 

Ellen 0.59 0.68 0.26 0.42 0.04 0.19 -0.12 0.04 0.44 0.35 0.62 0.80 

Ewe 0.79 0.81 0.53 0.37 0.37 0.51 0.29 0.46 0.74 0.37 0.61 0.74 

Falloch 0.70 0.88 0.66 0.60 0.33 0.62 0.15 0.39 0.86 0.78 0.70 0.75 

Great Stour -0.04 -0.15 -0.23 -0.10 0.09 -0.04 -0.36 -0.41 0.04 -0.02 0.39 0.24 

Harpers 

Brook 

-0.01 -0.31 -0.39 -0.14 0.17 -0.16 -0.04 -0.06 -0.10 -0.12 0.21 0.17 

Tiddy 0.27 0.03 0.00 0.28 0.03 0.09 0.05 0.15 -0.06 -0.19 0.32 0.39 
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Figure 5.6 (a-t): Spearman rank correlation between basin discharge and MSLP for all basins 

for January (left plots) and July (right plots) over 1976–2001 [Key as Figure 5.2]. 
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The Dun in southern Britain is underlain predominately by a major chalk aquifer (Marsh and 

Hannaford, 2008) resulting in long hydrological residence times and very marked basin 

buffering or hydrological memory, as characterised by a high BFI of 0.95. The role of the 

river basin in transforming the climate inputs is clearly illustrated by the lack of concurrent 

correlation between large-scale circulation and river flow (Figure 5.6n and 5.6p), despite 

existence of significant climate–precipitation associations (Figure 5.2n and 5.2p). The 

Harpers Brook and Great Stour basins also have weaker climate-discharge relationships than 

climate-precipitation links suggesting a possible lagged river flow response to the large-scale 

circulation and precipitation (cf. Figure 5.6 with Figure 5.2 for MSLP). The NAOI has weak 

insignificant correlations with discharge in Southern Britain (Table 5.2), suggesting that 

westerly airflows have reduced influence on river flows here; the weak and small centres of 

positive MSLP correlation in January (Figure 5.6) also testify to the lack of westerly airflow 

influences. Winter correlation patterns between Tiddy discharge and MSLP have similar 

structure to those for precipitation (Figure 5.2q and Figure 5.6q for January), with a North 

Atlantic correlation dipole from November to January. As with precipitation, the Tiddy basin 

has low NAOI-discharge correlation possibly suggesting that the macro-scale NAOI can not 

resolve this small basin’s discharge (basin area is 37.2 km
2
). 

The Avon has little significant climate-discharge correlation in winter (Figure 5.6b for 

MSLP) and lacks significant NAOI-discharge correlations (Table 5.2). Due to its relatively 

northerly location in the Scottish mountains (with average altitude of 525 m), winter 

precipitation is likely to fall as snow and may be stored before being released as discharge in 

spring (Kingston et al., 2007). This seasonal storage weakens the direct large-scale climatic 

impact on flow. Further evidence of snowfall in the Avon’s river flow regime is found 

through analysis of mean monthly river flow over 1976–2001. Peak monthly mean Avon 
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river flow occurs in April suggesting that warmer spring air temperatures cause snow to melt 

and, thus the highest river flows to occur then. A reason for snow storage in the Avon in 

eastern Scotland as compared to low snow storage in the Ewe and Falloch in western 

Scotland is because the relatively mild westerly air flows that travel over the heat source of 

the North Atlantic Ocean are blocked from the Avon by the western Scottish mountains. The 

correlation between Coquet discharge and MSLP is similar, although weaker, to precipitation 

(cf. Figure 5.6f and 5.6h with Figure 5.2f and 5.2h). As the Coquet has small catchment 

storage (BFI=0.44), little attenuation of the climatic signal is seen by the basin properties. As 

for precipitation, NAOI correlations are not significant, except for March (ρ=-0.42; Table 

5.2). This negative correlation implies that an easterly air stream may cause an onshore flow 

off the North Sea, generating river flow. 

The large-scale climatic circulation against river flow correlation is weaker in summer for all 

study catchments, even for those with a low BFI. This is possibly because in the summer 

(especially for the basins in southern and eastern Britain) evapotranspiration has a large role 

to play in the balance between precipitation and evapotranspiration. This would result in 

greater evaporation loss in summer than in winter and weaker climate-river flow associations.  

For all basins, correlations between precipitation and river flow, and the NAOI are 

systematically lower than for gridded climate variables. For example, MSLP against Tiddy 

and Great Stour precipitation (Figure 5.2q and 5.2r respectively) yield correlation >|0.8| in 

January, compared with 0.42 and 0.19 for the NAOI, respectively (Table 5.1). As with the 

gridded atmospheric data, the NAOI relationship with discharge is weaker than for 

precipitation (cf. Table 5.1 and Table 5.2), which can be attributed to basin controls.  
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5.4 Conclusions 

The aim of this chapter was to investigate in a systematic manner how the 

hydroclimatological relationships between large-scale climatic circulation and precipitation 

and river flow varied in time and space for 10 near-natural river basins across Great Britain. 

To achieve this aim, this study used quasi-geostrophic theory to choose appropriate 

explanatory atmospheric variables, and used correlation analysis to investigate the 

hydroclimatological links. The methodological approach based on gridded ERA-40 climate 

data shows that the areas of high climate-precipitation and climate-discharge correlation shift 

and vary in strength seasonally for all catchments, and these ‘hot spots’ of high correlation 

indicate that different weather patterns generate precipitation and, in turn, river flow across 

Britain.  

The location of strongest significant correlation between large-scale climatic circulation and 

precipitation and discharge varies between the basins and from month-to-month, which 

validates hypothesis H1. From winter to summer, a southward latitudinal shift is found for 

MSLP and U, and the significant correlation regions simultaneously shrink in size. 

Correlation analysis with the NAOI hides these monthly large-scale climatic circulation 

movements and the NAOI correlations are systematically weaker than with gridded ERA-40 

atmospheric data (and in particular the comparable MSLP), which upholds hypothesis H2. 

This finding means that an index with pre-defined measurement locations is likely to be a 

less powerful predictor of hydroclimatological response than gridded atmospheric data 

because of the transient nature of the atmospheric processes, particularly centres of action. 

Correlation patterns of MSLP, U and V allow inference of the large-scale climatic 

relationship with precipitation and discharge, and thus aid understanding of the 

hydroclimatological process chain. Analysis has shown that U and V at 500 hPa had the 



Chapter 5 Variation in Hydroclimatological Relationships across Great Britain 

 

84 

 

weakest correlation of the variables studied, indicating that the lower 850 hPa level has the 

greatest influence on precipitation and river flow. At the monthly temporal average used 

herein, the results suggest that the gridded MSLP is sufficient as a proxy for the large-scale 

atmospheric circulation control on British river basin precipitation and discharge. 

The climate-river flow correlation maps have similar structure, although, weaker correlation 

strengths compared with climate-precipitation maps. Hydrological response depends on a 

combination of precipitation, evapotranspiration, basin permeability and basin steepness. In 

western Britain precipitation is dominant in the balance between precipitation and 

evapotranspiration throughout the year, which together with basin impermeability (low BFI) 

and steepness create a rapid hydrological response to precipitation and thus strong climate-

river flow relationships. In southern and eastern Britain precipitation and evapotranspiration 

are in closer balance, with the evapotranspiration demand generally exceeding precipitation 

receipt in the summer. This greater evapotranspiration demand in this region together with 

higher basin permeability (high BFI) and shallower basin slopes contribute to the weaker 

climate-river flow relationships uncovered.  Our results illustrate clearly that basins with 

permeable geologies (and other water basin storages) situated in the south and east of Britain 

have weaker climate-river flow associations than in western regions which confirms 

hypothesis H3.  

Precipitation correlation patterns show inter-basin similarity, as identified for the basins 

situated in western and southern Britain. Climate-discharge relationships are much harder to 

generalise than climate-precipitation relationships because of the additional influence of 

basin water storage, release and transfer processes. Some exceptions can be found, when 

considering catchments located in similar topographical regions with similar basin properties, 
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as shown for the four western catchments studied herein. For more permeable basins, lagged 

correlation could be used to unpick climate-discharge associations by taking hydrological 

memory into account as suggested by Wilby (2001). 

The results found and conclusions drawn on winter precipitation could be applicable across a 

larger area of Europe because of the large-scale circulation generating winter precipitation in 

Northwest Europe. However, the precipitation results are likely to be less transferable to 

other regions of Europe in summer, as this research has shown smaller-scale circulation 

patterns relate to precipitation in this season. Conclusions for river flow are more basin 

dependent, as all basins attenuate the rainfall-runoff signal by varying degrees. Consequently, 

it is likely that the climate-discharge relationships herein will have less transferability to 

other European regions than for precipitation.  

This study has advanced knowledge of the spatially variable hydroclimatological process 

chain that determines precipitation and river discharge across Britain. These linkages may be 

used to test the potential skill of precipitation and river flow predictions. Further insight on 

the rainfall-runoff transformation in the river basins studied may be gained by undertaking 

hydrological modelling. Also, lagged large-scale climate against discharge correlation 

analyses are recommended to determine whether stronger statistical relationships could be 

obtained by exploiting hydrological system memory that occurs in certain basins.  

5.5 Chapter summary 

This chapter has investigated and quantified the spatiotemporal variability of the 

relationships between the large-scale climatic circulation and 10 river basins’ precipitation 

and discharge across Great Britain. In conclusion, the most appropriate GCM grid point was 
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not used in the downscaling in Chapter 4, and these results suggest that future downscaling 

studies must consider this spatiotemporal variability to attain the highest levels of 

precipitation or river flow predictive skill. As spatial and temporal hydroclimatological 

variability have been found across Great Britain, Chapter 6 takes the research further by 

undertaking a continental-scale analysis of the MSLP control on precipitation across Europe. 
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6. EUROPEAN PRECIPITATION CONNECTIONS WITH LARGE-SCALE MEAN 

SEA LEVEL PRESSURE (MSLP) FIELDS  

Chapter Objective: to characterise the spatiotemporal variability of large-scale MSLP control 

on precipitation across Europe. 

6.1 Introduction 

European precipitation receipt is dynamic seasonally and spatially (Zveryaev, 2004). This 

variability in precipitation can lead to floods or droughts, which have major socio-economic 

impacts over Europe (Lorenzo et al., 2008, Zveryaev and Allan, 2010). Agriculture, water 

resources management and other sectors are reliant on timely and sufficient precipitation 

supply, with extreme variability potentially causing water shortages and crop failures, or 

flood inundation in both urban and rural areas. Identification of hydroclimatological 

relationships between large-scale climatic circulation and precipitation occurrence helps in 

understanding the climate drivers of precipitation, which may lead to an improvement in skill 

of climate prediction (Zveryaev and Allan, 2010). With skilful climate prediction, it would be 

possible to anticipate precipitation and associated hydrological anomalies, which would help 

mitigate negative impacts and provide societal benefits. 

The atmosphere is an example of a chaotic system, that is if a small perturbation is imparted 

on the initial atmospheric state, the atmosphere will evolve into a different state than the 

realisation without a perturbation (Harrison, 2005). Predictability of the atmosphere is a 

property of the climate system that varies in different regions of the world, with the tropics 

(extratropics) possessing generally higher (lower) predictability due to weak (high) internal 

chaotic variability there (Palmer and Anderson, 1994). Actual predictive skill is the 

proportion of this predictability that can be realised; the current climate prediction models 
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have low actual precipitation predictive skill in the extratropics over Europe (Lavers et al., 

2009). This low actual predictive skill may be due to either the random nature of precipitation 

generation over Europe or because of the inability of the climate models to resolve the 

extratropical atmospheric dynamics.  

The average pole-to-equator temperature gradient in the Northern Hemisphere is larger in 

winter than summer. According to the thermal wind relationship, a horizontal temperature 

gradient causes vertical zonal (west-east) wind shear resulting in a region of maximum zonal 

wind near the tropopause that is called the ‘jet stream’ (Holton, 1992). As the largest 

temperature gradient occurs in winter, jet streams are also strongest in winter. Over the North 

Atlantic, they occur just east of North America between 30°N and 35°N in winter and 

between 40°N and 45°N in summer. Weather systems develop typically in these jet stream 

regions and travel eastward along storm tracks towards Europe (Holton, 1992). In winter, 

synoptic weather systems pick up moisture from the North Atlantic and transport the warm 

moist air and precipitation over Europe. Regions on the western edge of the European 

continent (e.g. British Isles and Scandinavia) are most affected by these weather systems, 

while inland areas (e.g. Central Europe) are less affected by systems from the Atlantic Ocean 

(Wibig, 1999) and so experience a continental climate (Berg et al., 2009). In turn, high winter 

precipitation is found over Western Europe which is intensified by coastal mountains that 

force the moisture-laden Atlantic air to rise (i.e. orographic enhancement). In contrast, low 

winter precipitation occurs over Eastern Europe and Russia. High (low) winter precipitation 

variability tends to occur in regions of maximum (minimum) precipitation (Zveryaev, 2004). 

In summer (warm-season), local-scale processes are thought to play a key role in 

precipitation receipt, in part because European precipitation has a significant statistical 

relationship with European land surface evaporation (Zveryaev and Allan, 2010). Convective 
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precipitation events are more prevalent in summer (Berg et al., 2009), with precipitation 

generally being larger over the central continental parts of Europe and lower near the 

continental extremities (Zveryaev, 2004). Interestingly summer evaporation from the North 

Atlantic is not found to relate to European precipitation, which is in stark contrast to the 

winter (Zveryaev and Allan, 2010). This suggests that the strong winter jet stream and 

associated synoptic-scale weather systems subside in summer (because of the weaker pole-to-

equator temperature gradient), thus limiting this mode of conveyance of North Atlantic 

moisture and precipitation over Europe.  

Climate system diagnostics and indices that describe the state of the large-scale atmospheric 

circulation (such as the NAOI) have been used previously by several researchers to quantify 

the connection between the large-scale atmosphere and precipitation. Winter Scandinavian 

and Baltic precipitation increases with westerly winds, and hence with a positive NAO phase 

(Hurrell, 1995, Uvo, 2003, Jaagus et al., 2010). Precipitation in northern Britain has also 

shown a significant positive correlation with the NAO in winter (Wilby et al., 1997, Fowler 

and Kilsby, 2002). Conversely, over the Iberian Peninsula, winter precipitation is negatively 

correlated with the NAO (Hurrell, 1995, Lorenzo et al., 2008). In the European Alps, 

precipitation has shown little relation with the NAO, possibly due to the complex terrain 

(Bartolini et al., 2009). In general, the NAO has a stronger link with winter precipitation in 

coastal European countries, such as Greece, Spain, parts of Scandinavia and the UK (Bouwer 

et al., 2008), and a weaker link with winter precipitation in European regions more remote 

from the Atlantic Ocean (Wibig, 1999). This suggests that precipitation occurrence at the 

monthly to seasonal time scale in Europe is not random as the large-scale climatic circulation 

shows linkages with European precipitation in winter. 
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As the atmosphere is most dynamically active during winter, most previous analyses have 

focused on the winter season (Folland et al., 2009) and the NAO, with far less attention given 

to investigating summer (Zveryaev, 2004, Zveryaev and Allan, 2010). In summer, there is a 

leading pattern of climatic variability known as the SNAO pattern. In a positive SNAO 

phase, high pressure occurs over Northwest Europe and low pressure resides over Greenland 

and the Mediterranean (Zveryaev, 2004). This circulation pattern is associated with warm and 

dry conditions over Northwest Europe (e.g. British Isles) and cool wet conditions over 

southern Europe and the Mediterranean, which means that precipitation has significant 

negative (positive) correlation with the SNAO in Northwest (southern) Europe (Folland et 

al., 2009). Historical observations have shown there to be significant statistical relationships 

between the large-scale circulation and precipitation, but only for some European locations 

and seasons. Few studies have investigated systematically the important large-scale 

atmospheric influence on summer precipitation variation by month at the continental scale. 

The availability of gridded observed precipitation and gridded atmospheric re-analysis MSLP 

data has made it possible to undertake, for the first time, a consistent and systematic 

spatiotemporal analysis of the large-scale climatic control on European precipitation. The aim 

of this chapter is to evaluate the spatiotemporal variability of European precipitation by 

quantifying the changing connections with large-scale MSLP fields. This will reveal where 

and when the hydroclimatological links are strongest, and give insight into the different 

precipitation-generating atmospheric circulations across Europe and precipitation 

predictability throughout the year (predictability can be inferred if precipitation variability is 

shown not to be random, i.e. precipitation variation can be linked to another explanatory 

variable). 
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6.2 Data and Methodology 

Two gridded datasets were used: (1) daily observed precipitation (E-OBS dataset) produced 

by the ENSEMBLES project (Hewitt and Griggs, 2004; Haylock et al., 2008) at a 0.5°×0.5° 

resolution across central and western Europe (36.25°N–74.25°N and 10.25°W–24.75°E) 

[North African precipitation time series in the study domain were not used as some series 

were incomplete]; and (2) daily MSLP from the ECMWF ERA-40 reanalysis dataset (Uppala 

et al., 2005) on a 2.5°×2.5° grid over half of the Northern Hemisphere (0°N–90°N and 

90°W–90°E). MSLP is used as an explanatory variable of European precipitation, as MSLP 

is collocated with vertical velocity in the mid-troposphere and, therefore, indicative of 

cyclonic development and precipitation. Monthly precipitation and MSLP time series were 

derived for the common data period of September 1957 – August 2002. Monthly data were 

used in our analysis because daily data have been found to be too noisy to detect the 

fundamental climatic controls on precipitation (see section 5.2). The NAOI from the UEA 

CRU (http://www.cru.uea.ac.uk/cru/data/nao/nao.dat) acted as a benchmark against which to 

compare the links with gridded MSLP.   

The univariate normality of the MSLP and precipitation time series was tested using the 

Shapiro-Wilk test (significance level α = 0.05) as it is one of the most powerful tests for 

detecting non-normality (Helsel and Hirsch, 1992). Results suggested that some time series 

were not normally distributed; therefore, the non-parametric Spearman rank correlation 

method (ρ) was used herein (significance level α = 0.05). Correlation analysis was carried out 

between MSLP at each grid in the atmospheric domain and each grid of observed 

precipitation by month (n=45) to assess the detailed spatial variation of MSLP control on 

European monthly precipitation.  
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Monthly field significance of the observed MSLP correlation fields (at each precipitation 

grid) was examined using Monte Carlo simulations to determine whether the observed 

significant MSLP correlation areas were greater than those expected by chance alone 

(Livezey and Chen, 1983, Phillips and McGregor, 2002). Livezey and Chen (1983) suggest 

using 200 simulations to estimate accurately the probability density function of the number of 

significant MSLP-precipitation correlations observed in each simulation. For each 

simulation, a series of 45 values (i.e. same as the length of the monthly time series over the 

period 1957–2002) was generated randomly from the empirical distribution of the 

precipitation time series, and then correlated with the MSLP time series at each of the 2701 

grid points in the MSLP field. The number of MSLP grid points with significant ranked 

correlation at the 0.05 level was recorded. An observed correlation pattern is considered field 

significant at the 0.05 level, if the area of observed significant correlation is larger than that 

expected by chance, as given by the 95% percentile of the empirical probability distribution 

constructed from the 200 Monte Carlo simulations. Correlation patterns that are field 

significant are to be considered as possible centres of atmospheric circulation related to 

precipitation.  

The Mann-Kendall trend test (significance level α = 0.05) was used to determine if trends 

were present in the monthly MSLP and precipitation time series (e.g. Helsel and Hirsch, 

1992) and to assess if spurious MSLP-precipitation correlations could result as a result of any 

trends. For each month, precipitation time series that had increasing or decreasing linear 

trends (at α = 0.05) underwent a bootstrap procedure to determine if the presence of the trend 

affected the significance of the correlations with MSLP (following Efron and Tibshirani 

(1998)).  
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Note that the bootstrapping process destroys any temporal trends in both the MSLP and 

precipitation time series. The following bootstrap process was repeated B=1000 times. For 

each bootstrap sample B, monthly precipitation (at a particular grid) and MSLP (at all 2701 

grid points) were re-sampled with replacement keeping the concurrent pairs to generate time 

series of the same size as the observed series (n=45). At each MSLP grid cell, Spearman’s 

correlation ρ between re-sampled precipitation (at a particular grid) and MSLP time series 

was computed, providing an empirical bootstrap distribution of 1000 ρ values for each MSLP 

grid point. If 95% of the constructed empirical bootstrap distribution has a correlation ρ > 0 

or ρ < 0, the trend has no impact on the significance of the correlation at the 0.05 significance 

level. This significance threshold was used for all MSLP grid points for the relevant 

precipitation grids. Using this approach, it was possible to assess if the correlations obtained 

for the observed time series were significant despite a possible presence of trends in these 

time series. 

A spatially nested research design is adopted to facilitate clear presentation of results for 

different spatial scales and locations. Initially six precipitation grid locations were chosen a 

priori to test the hypothesis that precipitation dynamics are different across the broad climatic 

zones of Europe. These locations are: (1) western Scotland (57.25°N 5.25°W), (2) Norway 

(65.25°N 13.75°E), (3) southern Spain (37.75°N 3.75°W), (4) central France (47.25°N 

3.25°E), (5) Czech Republic (49.75°N 15.25°E), and (6) the Balkans (42.75°N 20.25°E). 

Scaling-up from individual grids, results are then presented for all precipitation grids across 

the British Isles and, at a larger scale still, for all precipitation grids across Europe. The latter 

provides a novel wider perspective on connections between MSLP and precipitation in 

Europe.  
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6.3 Precipitation variability, field significance testing and trend analysis  

6.3.1 European precipitation variability and the NAOI 

Figure 6.1 shows the standardised January precipitation anomalies with the NAOI for the six 

locations selected across Europe [NAOI-precipitation correlation analyses are the focus of 

section 6.5]. In general, precipitation anomalies (black lines in Figure 6.1) are in phase with 

the NAOI (grey shading in Figure 6.1) in northern Europe (western Scotland and Norway; 

Figure 6.1a and 6.1b respectively) and out of phase with the NAOI in southern Europe 

(southern Spain and the Balkans; Figure 6.1c and 6.1f respectively), which is consistent with 

the known regional precipitation linkages with the large-scale climatic circulation (Hurrell, 

1995). There is less inter-regional agreement between the precipitation time series in July 

(Figure 6.2), possibly indicating more local-scale convective precipitation generating 

processes in summer (Berg et al., 2009); an exception is some noticeable co-variability 

between precipitation time series in western Scotland (Figure 6.2a) and Norway (Figure 

6.2b). The lack of precipitation variability in southern Spain (Figure 6.2c) reflects the high 

number of years with no July rainfall, a climatic feature shared amongst a large area 

surrounding the Mediterranean. 
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Figure 6.1: Monthly standardised time series of January precipitation anomalies in six grid 

locations across Europe and the NAOI (1958–2002). The areas shown are: a) western 

Scotland (57.25°N 5.25°W), b) Norway (65.25°N 13.75°E), c) southern Spain (37.75°N 

3.75°W), d) central France (47.25°N 3.25°E), e) Czech Republic (49.75°N 15.25°E), and f) 

Balkans (42.75°N 20.25°E). The NAOI-precipitation Spearman rank correlations are given 

for each of the six precipitation grids with the significance level α (NA implies the correlation 

is not significant at the 0.05 level). The precipitation time series are solid black lines and the 

NAOI time series are shaded solid grey. 
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Figure 6.2: Monthly standardised time series of July precipitation anomalies in six grid 

locations across Europe and the NAOI (1958–2002) [Key as Figure 6.1].  
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Figure 6.3: Number of field significant months for MSLP for (a) winter (DJF), (b) Spring 

(MAM), (c) summer (JJA) and (d) autumn (SON) (period of study is September 1957 – 

August 2002). 

6.3.2 Field significance  

Field significance was assessed to determine if the area (number of MSLP grid points) with 

observed significant monthly correlation between MSLP and precipitation was larger than 

what would be expected by chance alone. If this is the case, the correlation pattern associated 

with this month was described as ‘field significant’. The number of months in each season 
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with field-significant correlations between precipitation and MSLP is shown in Figure 6.3. In 

winter (December, January and February; DJF) in Figure 6.3a, coastal European regions 

(except France) have the largest number of field-significant correlation patterns (e.g. Balkans, 

Iberian Peninsula and western Scandinavia) suggesting that large-scale atmospheric patterns 

have a significant influence on coastal European precipitation in winter; this corroborates the 

findings of Wibig (1999). With increasing distance from the Atlantic Ocean and in the lee of 

mountain ranges (central and East Sweden, central Britain and in the lee of the European 

Alps), the number of field significant months decreases because of weaker connection 

between precipitation and the large-scale atmosphere (Figure 6.3a). In spring (March, April 

and May; MAM) and autumn (September, October and November; SON) in Northwest 

Britain and western Scandinavia, the many months with field significant precipitation grids 

may indicate that the winter atmospheric circulation exists for a longer duration (Figure 6.3b 

and 6.3d respectively). Fewer field significant precipitation grids are found in summer 

(Figure 6.3c) suggesting that more local-scale weather systems produce the precipitation in 

summer because the observed significant MSLP-precipitation correlation areas exist across 

smaller geographical regions. The field significant months over the Low Countries (e.g. 

Netherlands) and Italy/Balkans in July (Figure 6.3c) indicates a relationship with the SNAO 

pattern. 

6.3.3 Influence of trends on the correlation analyses  

The precipitation and MSLP time series were tested for trends, which may affect the 

significance of the correlations. Results of the Mann-Kendall test suggest that trends in 

precipitation time series occur predominantly in winter (January to March). In Scandinavia 

(Spain), precipitation has an increasing (a decreasing) trend over 1958–2002. Around 45°N 

(i.e. the Alps) is the transition zone between increasing and decreasing trends. During winter, 
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significant increasing (decreasing) MSLP trends are found near the Azores (Iceland), 

indicating a tightening of the pressure gradient over the North Atlantic and a stronger zonal 

(westerly) flow, coincident with a stronger positive phase of the NAO. This is consistent with 

Hurrell and Van Loon (1997); they found that the NAO was often in a positive phase from 

1980 until the late 1990s. An increasingly stronger positive NAO could be the cause of the 

significant increasing (decreasing) precipitation trend observed over Scandinavia (the Iberian 

Peninsula). Furthermore, the trend towards a strengthening of the NAO influence on 

European climate during the last part of the Twentieth Century is thought to be due to an 

eastward movement (i.e. toward Europe) of MSLP anomalies associated with the NAO 

(Vicente-Serrano and Lopez-Moreno, 2008). 

The influence of trends (in both the precipitation and MSLP time series) on the significance 

of the correlations was assessed using a bootstrap procedure. Figure 6.4 shows the empirical 

bootstrap distribution of the 1000 correlations produced between the grid cell with 

precipitation time series with the strongest increasing trend (February, 62.25°N 9.75°E; 

Norway) and the MSLP grid cell with the strongest observed correlation in February         

(ρ=-0.667; 70°N 7.5°W). The 95% percentile of the empirical bootstrap correlation 

distribution (black vertical line in Figure 6.4) is less than zero; therefore, the trend does not 

affect the significance of the observed correlation at this grid point at the 0.05 significance 

level. Hence, the correlation is significant even without a trend present. Results of the 

empirical bootstrap distributions at all MSLP grid points for the precipitation grids with 

significant trends reveals that the significance levels (i.e. 0.05) were almost identical to those 

obtained through the observed correlation analysis, demonstrating more widely that the 

presence of trends does not significantly affect the results presented herein. 
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Figure 6.4: The empirical bootstrap distribution of the correlation from the 1000 realisations 

between the February precipitation time series with the strongest increasing trend (62.25°N 

9.75°E; Norway) and the MSLP time series (70°N 7.5°W) with the highest observed 

correlation with precipitation. Black vertical line is the 95% percentile; dashed line is 

correlation ρ=0. 

6.4 Correlation between MSLP and precipitation  

This section presents the correlation analyses of large-scale MSLP with European 

precipitation. A precipitation grid in western Scotland (57.25°N 5.25°W) is used to illustrate 

how the correlation results are presented because of this location’s closeness to the westerly 

flow that results in strong MSLP-precipitation relationships. Figure 6.5 shows the map of 

correlations in January between the precipitation time series in western Scotland and the 

gridded MSLP field across the domain 0°N–90°N and 90°W–90°E (i.e. half of the Northern 

Hemisphere). This map shows a correlation dipole with significant negative correlation (blue 

colour) centred over the Norwegian Sea and significant positive correlation (red colour) 

centred near the Azores. This dipole implies that as MSLP falls (rises) to the north 
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(southwest) of the British Isles, precipitation increases in western Scotland, which relates to 

the Icelandic Low and Azores high pressure systems respectively. Note that the continuous 

blue colour at high latitudes (at 90°N) occurs because there is only one MSLP value (i.e. an 

artefact of the cartographic projection chosen). Following the nested research design adopted, 

results (with correlation maps similar to Figure 6.5) are firstly presented for precipitation grid 

cells in the British Isles (Figure 6.6) and secondly presented for Europe (Figures 6.7 – 6.10) 

for selected months.  

 

Figure 6.5: Correlation analysis of precipitation in a single grid in western Scotland (57.25°N 

5.25°W; location given by black box) with MSLP across 0°N–90°N and 90°W–90°E in 

January (1958–2002). Red (blue) colour signifies significant positive (negative) Spearman 

rank correlation (significance level α = 0.05). 
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6.4.1 Correlation analysis over the British Isles in January 

In January across the British Isles, the location of areas with significant correlation between 

MSLP and precipitation vary both in size and location (coloured areas in Figure 6.6). In 

western Scotland, the correlation dipole has significant negative (positive) correlation across 

the northern (southern) part of the geographical domain (as in Figure 6.5); this relates to the 

Icelandic Low and Azores High pressure centres, respectively. The large areas of significant 

correlation between MSLP and precipitation in western British districts (including western 

Scottish Highlands, the Pennines and Welsh mountains) are due partly to the orographic 

enhancement of rainfall (Roy, 1997, Sumner, 1997, Tufnell, 1997). Notably, as distance 

increases from the Atlantic Ocean, the correlation dipole shrinks and areas with non-

significant correlation become more prominent, probably due to the shelter from the westerly 

air flow by western mountain chains. Precipitation in eastern Britain has no significant 

positive correlation with MSLP to the southwest of the British Isles. Instead, positive 

correlation is seen with MSLP over central Russia, which could relate to the Siberian High 

pressure system (Figure 6.6). This suggests that precipitation is related to an easterly air flow 

on the southern edge of the Siberian High. On route to Britain, the easterly flow would be 

modified becoming moist due to evaporation over the North Sea, which in turn could produce 

precipitation in northeast England.  
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Figure 6.6: Correlation analysis of gridded precipitation over the British Isles with MSLP for 

January 1958–2002. The grey background in each grid box represents the land masses in the 

study domain [Key as Figure 6.5]. 

6.4.2 Correlation analysis over Europe in winter 

The MSLP correlation dipole seen across the western British Isles corresponds with 

precipitation across northern Norway and Sweden (i.e. across the northwest European 

boundary with the North Atlantic Ocean; Figure 6.7). This statistically significant MSLP 

correlation dipole (ρ > |0.6|) is strongest in December, January (Figure 6.7), and February; 

and it implies that, from the western British Isles through to Scandinavia, precipitation occurs 

when MSLP is low (high) near Iceland (the Azores). This same dipole structure, although 

smaller in extent (especially for the positive correlation area), is also found across northern 

continental Europe from northern France to Finland, indicating that precipitation has a 
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positive relationship with the NAO-like pattern. These results show that a similar large-scale 

atmospheric circulation generates winter precipitation across northern and western Europe. 

 

Figure 6.7: Correlation analysis of gridded European precipitation with MSLP for January 

1958–2002 [Key as Figure 6.5].  

From western to eastern Scandinavia, the size of significant MSLP correlation patterns show 

a distinct west-east gradient, with stronger and larger MSLP influence on precipitation in the 

west than in the east. The effect of MSLP on precipitation, as characterised by the correlation 
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patterns, is less in central and East Sweden than in western Norway which is likely to be due 

to the Scandes mountains (between Norway and Sweden) reducing the influence of moist 

westerly winds from the Atlantic on central Sweden (Uvo, 2003, Kingston et al., 2009). In 

southern Finland, where there is a lesser influence of mountains on the atmospheric flow, 

westerly winds can penetrate further into the European continent, thus bringing precipitation 

(Uvo, 2003).  

From central France southwards, the winter correlation dipole has a reversed pattern 

compared to northern Europe (as also identified by Bartolini et al., 2009). From the Iberian 

Peninsula to the Balkans, large regions of negative and positive correlation are centred over 

the Azores and northern Europe, respectively (Figure 6.7). This means that as MSLP falls 

(rises) near the Azores (Iceland), a cyclonic circulation affects southern Europe, thus 

increasing precipitation. This atmospheric circulation is associated with storm tracks that are 

located further south than normal that would steer rain-bearing depressions into southern 

Europe (Marshall et al., 2001). South-eastern European (Balkans) precipitation has positive 

MSLP correlation over Asia, which indicates a link with the Siberian High pressure system. 

In central and Eastern Europe downwind of the European Alps, smaller MSLP-precipitation 

correlation patterns occur indicating that the Alps reduce the influence of westerly winds on 

precipitation in this region. 

6.4.3 Correlation analysis over Europe in spring 

With the onset of spring, the pole-to-equator temperature gradient across the North Atlantic 

(hence, the westerly air flow) weakens. The MSLP-precipitation correlation patterns for April 

(Figure 6.8) show that smaller-scale atmospheric circulation patterns are linked with 

precipitation and the large-scale winter atmospheric patterns have broken down. However, 
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note that in northern Scandinavia and in the far northwest of Scotland, a North Atlantic 

correlation dipole still exists in April suggesting that the winter circulation patterns have a 

longer duration at higher latitudes. 

 

Figure 6.8: Correlation analysis of gridded European precipitation with MSLP for April 

1958–2002 [Key as Figure 6.5]. 
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6.4.4 Correlation analysis over Europe in summer 

As summer approaches, the North Atlantic correlation dipole continues to weaken. During 

summer (June, July, August; JJA), northern European precipitation has no significant positive 

correlation over the Azores region. In general, precipitation has fewer significant correlations 

with the MSLP field (larger white areas in Figure 6.9 in July). During June and July, 

significant positive (negative) MSLP correlation over Greenland is found with northwest 

(southern to southeast) European precipitation. This means that as pressure falls over 

Greenland, pressure rises over northwest Europe resulting in precipitation decrease over 

northwest Europe; this is shown by the positive (red) correlation in the top-left (northwest) of 

many precipitation grids in Northwest Europe (Figure 6.9). For southern Europe the negative 

(blue) correlation areas over Greenland (northwest of each precipitation grid) highlight that 

as pressure falls over Greenland, pressure falls over the Mediterranean, and precipitation 

increases over Southeast Europe. Zveryaev (2004) identified summer relationships between 

precipitation and patterns of high pressure over northwest Europe and low pressure over 

Greenland and the Mediterranean; this was described as the SNAO. The centres of 

correlation of MSLP and precipitation shown herein coincide with those of Zveryaev (2004). 

The smaller extent of the significant MSLP correlation patterns in summer compared to 

winter suggests that the large-scale climatic circulation has a lesser influence on summer 

precipitation. This may be related to the prevalence of convective precipitation events in 

summer (Berg et al., 2009) that correspond to smaller scale weather systems. Zveryaev and 

Allan (2010) suggest local processes play a dominant role in summer precipitation 

occurrence because of an uncovered significant statistical linkage between European 

precipitation and European land surface evaporation. In our analysis herein, although the 

temporal (monthly) and spatial (2.5°×2.5°) resolution of the MSLP fields are too coarse to 
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resolve convective activity, the small size of correlation patterns identified with European 

precipitation in summer is a sign of smaller scale atmospheric dynamics in operation. 

 

 

Figure 6.9: Correlation analysis of gridded European precipitation with MSLP for July 1958–

2002 [Key as Figure 6.5]. 
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6.4.5 Correlation analysis over Europe in autumn 

 

Figure 6.10: Correlation analysis of gridded European precipitation with MSLP for October 

1957–2001 [Key as Figure 6.5]. 

During autumn, the North Atlantic correlation dipole pattern begins to reappear in September 

in northern Europe; this is visible in October (Figure 6.10) across western British Isles and 

Scandinavia. Note that over Scandinavia, the MSLP-precipitation correlation patterns have a 

more easterly location compared to the western British Isles, which suggests a linkage with 

the Scandinavian climate pattern (Barnston and Livezey, 1987); the Scandinavian pattern is 
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discussed further in section 6.5. The re-formation of the large-scale North Atlantic 

atmospheric patterns is not found until December in the southern British Isles and northern 

France (not shown) suggesting that the winter circulation pattern is in place earlier further 

north where the winter season is longer. 

6.5 Correlation between NAOI and precipitation 

The maximum and minimum gridded MSLP-precipitation correlations were compared to the 

NAOI-precipitation correlations for six selected precipitation time series (as in Figures 6.1 

and 6.2). Since the NAOI has been used widely as a measure of the strength of the North 

Atlantic influence on European climate (as reviewed in sections 2.4 and 6.1), our 

comparative analysis herein serves to benchmark the gridded MSLP-precipitation 

correlations. For all six locations, precipitation has stronger correlations with the MSLP than 

with the NAOI, regardless of season (Table 6.1 for January; Table 6.2 for July). This 

suggests that the NAOI is unable to explain precipitation occurrence as well as MSLP 

because the centres of strong MSLP correlation do not always coincide with the fixed 

Azores-Iceland locations defining the NAOI. In January (Table 6.1) northern (southern) 

European precipitation has a positive (negative) relationship with the NAOI, as shown by the 

time series plots in Figure 6.1 and as also found by Hurrell (1995). Further east (central 

France and Czech Republic) the NAOI has lower correlation with precipitation reflecting: (a) 

a reduced oceanic influence on precipitation and (b) the areas of climatic control on 

precipitation are not co-located with the NAOI definition. In July, only western Scotland and 

central France have significant NAOI-precipitation correlations (Table 6.2), possibly 

reflecting strong maritime influence on western Scottish precipitation due to its close 
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proximity to the Atlantic Ocean, and French precipitation being influenced by the SNAO 

pattern (Figure 6.9).  

Table 6.1: Spearman rank correlation for the January time series (1958–2002; n=45) of the 

six precipitation grids of Figure 6.1. Maximum and minimum correlation with the MSLP 

field and correlation with the NAOI are shown. Correlation at the significance level α = 0.05 

is in bold font. 

Region Grid NAOI Max. MSLP Min. MSLP 

western Scotland 57.25°N 5.25°W 0.784 0.801 -0.883 

Norway 65.25°N 13.75°E 0.505 0.806 -0.794 

southern Spain 37.75°N 3.75°W -0.758 0.740 -0.902 

central France 47.25°N 3.25°E 0.042 0.566 -0.708 

Czech Republic 49.75°N 15.25°E 0.169 0.538 -0.630 

Balkans 42.75°N 20.25°E -0.351 0.627 -0.842 

 

Table 6.2: Spearman rank correlation for the July time series (1958–2002; n=45) of the six 

precipitation grids of Figure 6.2 [Key as Table 6.1].  

Region Grid NAOI Max. MSLP Min. MSLP 

western Scotland 57.25°N 5.25°W 0.429 0.413 -0.781 

Norway 65.25°N 13.75°E 0.209 0.438 -0.680 

southern Spain 37.75°N 3.75°W 0.277 0.432 -0.287 

central France 47.25°N 3.25°E -0.538 0.414 -0.595 

Czech Republic 49.75°N 15.25°E -0.102 0.653 -0.700 

Balkans 42.75°N 20.25°E -0.023 0.477 -0.529 

 

Other climatic patterns that are characterised by simple indices may also be related to 

European precipitation. In particular, evidence of the Scandinavian pattern (Barnston and 

Livezey, 1987) can be found in the MSLP-precipitation correlation maps. A positive phase of 
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the Scandinavian pattern has an anticyclone over Scandinavia and weaker cyclonic regions 

over Western Europe and eastern Russia, which results in lower (higher) precipitation totals 

over Scandinavia (central Europe). For example, precipitation over eastern France in October 

(Figure 6.10) shows a positive relationship with the Scandinavian pattern with positive 

(negative) correlations over Scandinavia (Western Europe). In this analysis, however, only 

the NAOI was used to show that gridded MSLP fields yield stronger statistical relationships 

with precipitation than this dominant atmospheric mode’s index. 

6.6 Conclusions 

This chapter has assessed spatiotemporal variability of European precipitation by quantifying 

the seasonal and temporal movement of links between large-scale mean sea-level pressure 

(MSLP) and European precipitation. Correlation analysis between gridded MSLP and 

precipitation highlighted significant hydroclimatological relationships that improved 

understanding of precipitation generating mechanisms in Europe, particularly with respect to 

large-scale atmospheric circulation. 

Throughout the year, precipitation is associated with MSLP centres of action located over 

different areas of the Northern Hemisphere, with the winter yielding generally larger regions 

of significant correlation than the summer. In winter, precipitation shows links with extensive 

atmospheric areas reflecting the strong influence of the large-scale atmospheric circulation on 

European precipitation (especially in the west). In northern (southern) Europe, positive 

(negative) correlation exists over the Azores and negative (positive) correlation exists near 

Iceland, implying a positive (negative) relationship with the NAO, as identified by Hurrell 

(1995). These correlation centres relate to the Azores High and Icelandic Low pressure 

systems. Over northern Europe, precipitation increases when there is a strong pressure 
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gradient between the Azores and Iceland, which strengthens the westerly flow (Bouwer et al., 

2006). Conversely when a retrograde (easterly) flow occurs, or when the pressure gradient 

between these two meridional pressure centres is slack, storm tracks have a more southerly 

trajectory and precipitation increases over southern Europe. The large spatial scale of 

significant atmospheric patterns over Northwest Britain and Scandinavia is thought to be 

caused in part by orographic effects on precipitation.  

In summer, European precipitation has fewer significant correlations with the large-scale 

climatic circulation, implying that precipitation is produced by local scale and shorter 

duration weather systems. As this study used a coarse temporal (monthly) and spatial 

(2.5°×2.5°) resolution of MSLP, convective systems that are a source of summer European 

precipitation (Berg et al., 2009) would not have been well captured. The summer MSLP 

correlation patterns show relationships with the SNAO, a variant of the well-established 

NAO. A positive phase of the SNAO, relates to lower (higher) precipitation totals over 

northwest (southern) Europe. In spring and autumn, smaller MSLP patterns are associated 

with precipitation. Notably, patterns in MSLP reveal an extended winter season in the far 

north of Europe (e.g. Scandinavia). Also, evidence of the Scandinavian climate pattern is 

found in the MSLP-precipitation correlation maps over Scandinavia and central Europe. 

The gridded MSLP data yield stronger empirical relationships compared to the NAOI 

because the MSLP can capture the dynamic seasonal movement of the atmospheric areas 

with strongest control on European precipitation. The fixed-points used in the NAOI 

definition do not always coincide with the high MSLP-precipitation correlation areas; 

therefore, the NAOI is a less powerful explanatory variable of precipitation. Although 

atmospheric indices are useful as a starting point in investigating large-scale climatic control 

on European precipitation variability, the results herein suggest that finer scale (i.e. gridded) 
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data yield stronger statistical relationships and improved understanding of this important 

socially relevant hydroclimatological process. 

There is a gradient in the influence of North Atlantic pressure systems over Europe, as shown 

by larger MSLP-precipitation correlation areas in western districts compared to eastern 

districts (i.e. from west-to-east Britain, across the European Alps and from Norway to central 

and East Sweden). This reflects the heterogeneities of the European land mass, in particular 

the barrier effect of mountain chains such as the Scandes or Alps, which limit penetration of 

eastward rain-bearing systems resulting in smaller precipitation totals in their lee (i.e. rain 

shadow) and weaker MSLP-precipitation correlation patterns. As the large-scale atmospheric 

dynamics are most active in the winter season, this phenomenon is most notable in the winter 

months. 

The availability of gridded precipitation and MSLP has made it possible to undertake, for the 

first time, a consistent spatiotemporal analysis of the large-scale climatic control on European 

precipitation. The results presented herein corroborate previous research that considered 

atmospheric indices (e.g. Hurrell, 1995), but our findings demonstrated that an index with 

fixed-point definition, such as the NAOI, is not subtle enough to explain precipitation 

occurrence in certain regions (i.e. central Europe, such as the Czech Republic; Tables 6.1 and 

6.2) and seasons (i.e. summer). The strong significant statistical relationships between the 

large-scale MSLP and precipitation in some areas of Europe and in certain seasons have 

demonstrated that precipitation variability is not random, but results from variations in the 

large-scale atmospheric circulation. This suggests that despite high precipitation variability in 

Europe, there is a certain degree of predictability of precipitation because of its relationship 

with MSLP, in particular in winter for Western European coastal regions. The identified 

hydroclimatological relationships could be used to evaluate climate model output to 
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determine if the location, strength and timing of these hydroclimatological connections can 

be reproduced faithfully by models. If climate models become capable of reproducing the 

hydroclimatological correlation patterns, then a portion of European precipitation 

predictability could be realised yielding scientific and societal benefits. 

6.7 Chapter summary 

This research has shown that there is spatial and temporal variability of the relationships 

between large-scale MSLP and precipitation across Europe. The fixed-point NAOI is not as 

powerful in explaining the spatiotemporal hydroclimatological variability in Europe, but note 

that the NAOI in winter was able to capture precipitation occurrence in European regions 

closest to the North Atlantic Ocean. Chapter 7 partly assesses seasonal climate model 

predictive skill of MSLP to determine whether the uncovered significant statistical 

relationships in this chapter (and in Chapter 5) could be used with seasonal climate model 

output for monthly or seasonal precipitation predictions. 
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7. ASSESSMENT OF SEASONAL CLIMATE MODEL PREDICTIVE SKILL FOR 

APPLICATIONS 

Chapter Objective: to assess the predictive skill in the CFS and DEMETER seasonal climate 

models to determine their usefulness for applications. 

7.1 Introduction 

Seasonal climate prediction is based on the premise that the lower-boundary SST forcing, 

which evolves slowly, imparts predictability on atmospheric development (Palmer and 

Anderson, 1994). In particular persistent SST anomalies associated with ENSO influence 

atmospheric circulation, thus producing seasonal climate anomalies (Carson, 1998, Stockdale 

et al., 2006). Operational climate forecast centres such as the ECMWF and the National 

Oceanic and Atmospheric Administration’s (NOAA) NCEP are now using coupled 

atmosphere-land-ocean models to produce their seasonal forecasts (Palmer et al., 2004, Saha 

et al., 2006). Integrating coupled atmosphere-land-ocean models with an ensemble of 

different initial conditions allows predictions that consider uncertainty in the initial state, 

resulting in what is referred to as an ensemble forecast. Seasonal climate forecasts can be 

incorporated into end-user application models for determining crop yield amounts 

(Cantelaube and Terres, 2005, Challinor et al., 2005) and future epidemic malaria (Thomson 

et al., 2006). Retrospective forecast (hindcast) datasets, such as those from the DEMETER 

project, give the opportunity to assess the predictive skill in current seasonal climate forecast 

models.  

Forecast quality in its complete sense can be assessed using a distributions-oriented 

framework (Murphy, 1993). This approach uses the joint distribution of the forecasts ( )f  and 

observations ( )o  as this contains all of the non-time dependent information necessary for 
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evaluating the forecast quality (Murphy and Winkler, 1987, Murphy, 1993). For applications, 

one must determine the following: given a particular seasonal climate forecast, what is the 

conditional probability distribution of (future) seasonal climate )( fop  | . The extent to which 

the conditional seasonal distribution )( fop  |  varies from the climatological distribution ( )op  

is an indication of the skill of the forecast. Murphy and Winkler (1987) refer to the 

factorization of the joint distribution into the conditional )( fop  |  and marginal ( )fp  

distributions as the ‘calibration-refinement factorization’. Furthermore, this can also be done 

within a Bayesian framework that will spatially downscale and bias correct the seasonal 

climate forecasts, making them relevant for applications (Luo et al., 2007).  

The predictability of 2-metre air temperature (hereafter, temperature), precipitation and 

MSLP is a multidimensional variable that can vary with geographical location (x, y), lead-

time (τ), season (t) and with temporal (T) and spatial (L) scales. A thorough literature review 

of seasonal climate forecast quality assessment suggests a paucity of published papers on 

evaluation of monthly predictions, a fact also noted by (Weigel et al., 2008). To address this 

gap, this chapter assesses 1) the actual or realisable predictability of monthly temperature, 

precipitation and MSLP hindcasts, and 2) the idealised predictability of monthly temperature 

and precipitation hindcasts from the NCEP CFS (Saha et al., 2006) and seven models from 

the DEMETER project (Palmer et al., 2004). The analysis shows the current predictive 

capability in the “actual” and “model” climate systems. 

7.2 Data and Methodology 

DEMETER is a European Union (EU) funded project that created a multi-model ensemble 

hindcast dataset containing seven models each with nine ensemble members. The models are 
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from climate centres around Europe and their acronyms are: CERFACS, ECMWF, INGV, 

LODYC, METEO-FRANCE, MPI, and UKMO. The DEMETER models were initialised on 

1
st
 February, 1

st
 May, 1

st
 August and 1

st
 November to assess the seasonal dependence of the 

hindcasts, and integrated for 180 days (Palmer et al., 2004). For the period being studied, 

CFS has 15 nine-month hindcasts initialised during each calendar month (Saha et al., 2006). 

The common period for the DEMETER and CFS models is 1981–2001 (21 years). 

Temperature and MSLP at a 2.5° × 2.5° resolution from the ERA-40 re-analysis dataset 

(Uppala et al., 2005) and monthly observed precipitation at 1.0° × 1.0° from the GPCC 

(Rudolf et al., 2005) are used as the reference datasets. Precipitation was regridded to 2.5° 

resolution to match the model hindcasts’ resolution.  

The joint probability distribution is computed between the model ensemble mean and 

observations using the operational hindcasts and observed climate outcomes. This joint 

distribution can be represented by a bivariate-Normal distribution (Wilks, 2006). The 

conditional mean, )( fom  | , and variance, )( fo  |
2

σ , of )( fop  |  is 
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)]([
)()()|(
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rofo −= σσ , where ( )om , ( )fm , ( )oσ  

and ( )fσ  are the means and standard deviations of the marginal distributions of ( )op  and 

( )fp  respectively, ( )o
2

σ  is the variance of the marginal distribution of ( )op  and r is the 

correlation between the forecast and resulting observation. Note that the conditional 

explained variance due to the forecast is reduced from the unconditional variance 

(climatology) in the climate variable by ( )or
22

σ , which provides a measure of the 

information content from the seasonal forecast. A variety of skill scores could be used 

(Wilks, 2006), but the product-moment correlation coefficient r is applied between the 

observed climate and forecast ensemble mean series at a particular lead time and temporal 
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average as it is central in determining the usefulness of seasonal forecasts for applications. 

Correlation represents a traditional summary measure between the forecasts and observations 

(Murphy et al., 1989), and has been widely used in previous research (Davies et al., 1997, 

Colman and Davey, 1999, Peng et al., 2000, Folland et al., 2001, Van Oldenborgh et al., 

2005, Wu et al., 2009). The methodology is applied for each model separately and for an 

equally-weighted (averaged) multi-model using all members from the eight models 

(Hagedorn et al., 2005).  

The idealised predictability of a forecasting model is thought to be the upper limit of its 

predictive capability, where the forecast model and “climate” system have the same physics; 

that of the forecast model (Koster et al., 2004). This model estimate considers the spread 

(variance) of the ensemble members, which can be thought of as indicative of the predictive 

skill. If an ensemble has small (large) spread, then the forecast is likely to be insensitive 

(sensitive) to initial condition uncertainty, resulting in high (low) predictive skill (Koster et 

al., 2004, Tang et al., 2008). The methodology used is done for each DEMETER and CFS 

model (temperature and precipitation only), and assumes that one member of the ensemble is 

the “truth” and that the remaining ensemble average is the “predictor”. As before, r measures 

the linear association between the observed and predictor series. For DEMETER (CFS) this 

procedure is repeated nine (fifteen) times with each ensemble member in turn being 

considered as the truth. The nine (fifteen) values of r are averaged, which forms the final 

estimate of the system in predicting itself (Koster et al., 2004). 
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7.3 Results 

 

Figure 7.1: Actual predictive skill for each model grid point for 1981–2001 for a 30 day 

temporal average at a 1 day lead time for May two metre temperature forecasts for a) 

CERFACS, b) ECMWF, c) INGV, d) LODYC, e) METEO FRANCE, f) MPI, g) UKMO, h) 

CFS, and i) the MULTI-MODEL. Non-white colours represent significant correlation r at the 

p < 0.05 level. 

The global actual predictive skill of temperature, precipitation and MSLP for the eight 

models was calculated at the model grid scale; note that precipitation was only evaluated over 

the land masses. Figure 7.1 shows the realisable predictive skill of temperature for the eight 

models and multi-model for the first 30 day period (i.e. a 30 day temporal average at a 1 day 

lead time, or month-1) from 1
st
 May. High predictive skill of r>0.70 is generally confined to 

the oceans, especially over the equatorial Pacific and subtropical Atlantic. Skilful forecasts 
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over the equatorial Pacific in the ECMWF (Figure 7.1b) and UKMO (Figure 7.1g) models 

appear to be largely behind the multi-model skill (Figure 7.1i) in that region. Few models 

have noteworthy skill over land regions for the first 30 day forecast period.  

 

Figure 7.2: Actual predictive skill for each model grid point for 1981–2001 for a 30 day 

temporal average at a 1 day lead time for May precipitation forecasts for a) CERFACS, b) 

ECMWF, c) INGV, d) LODYC, e) METEO FRANCE, f) MPI, g) UKMO, h) CFS, and i) the 

MULTIMODEL [Key as Figure 7.1]. 



Chapter 7 Seasonal Climate Model Predictive Skill 

 

122 

 

 

Figure 7.3: Multi-model forecasts for 1981–2001 for a 30 day temporal average at a 1 day 

lead time for May a) two metre temperature and c) precipitation. Multi-model forecasts for a 

30 day temporal average at a 31 day lead time for May b) two metre temperature and d) 

precipitation [Key as Figure 7.1]. 

Figure 7.2 shows the realisable predictive skill of precipitation for month-1 from 1
st
 May. 

Strikingly, there are very few grids with r>0.40 (non-white areas), and there are fewer 

significant correlations over the land masses compared with temperature. Six out of eight 

models have significant skill over the Amazon basin, and all models have skill in the North 

American monsoon region. These two areas are also seen in the multi-model forecast. Figure 

7.3 shows multi-model predictive skill of temperature and precipitation for month-1 and 

month-2 (second 30 day period) of May hindcasts. For month-1, high predictive skill of 

temperature over land (r>0.70) is found over the Amazon basin, Congo basin, south-central 
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Asia, central Europe and north-western and south-western North America. As lead time 

increases to 31 days (month-2 forecast), it is apparent that skilful temperature forecasts 

reduce back to the tropics (Figure 7.3b) and little skill exists for precipitation (Figure 7.3d). 

The multi-model tends to improve the predictive skill over the individual models. In general 

the land masses have negligible skill at a 31 day lead time, which is a relatively short lead 

time in terms of seasonal climate forecasting.  

 

Figure 7.4: Actual predictive skill for each model grid point for 1981–2001 for a 30 day 

temporal average at a 1 day lead time for May MSLP forecasts for a) CERFACS, b) 

ECMWF, c) INGV, d) LODYC, e) METEO FRANCE, f) MPI, g) UKMO, h) CFS, and i) the 

MULTIMODEL [Key as Figure 7.1]. 
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Figure 7.4 shows the realisable predictive skill of MSLP for month-1 from 1
st
 May. Similar 

to temperature, high predictive skill of r>0.70 is predominantly confined to the oceans, 

especially over the tropical Pacific and in particular in the region synonymous with El Niño 

(eastern Pacific). A sector of high MSLP predictive skill is found over Russia in some models 

(e.g. ECMWF; Figure 7.4b), but in general little skill is seen over land regions for the first 30 

day forecast period. As forecast lead time increases, the skilful MSLP forecasts shrink back 

to the tropics further indicating that the large-scale circulation as characterised by the MSLP 

has limited monthly predictive skill in current seasonal climate models. 

Figure 7.5 shows the global grid scale idealised predictive skill for May temperature 

hindcasts for the first 30 day period. Idealised predictive skill in the DEMETER models is 

higher than that seen for the real climate system. This is true for the land masses and oceans 

and is particularly noticeable for the models shown in the left panels of Figure 7.5. Low 

idealised skill in the extratropical regions in the CFS model could be due to the ensemble 

initialisation, which produces members staggered throughout the month leading to members 

of varying ages. However, even with an ensemble of differing “initial” values, the members 

seem to forecast a similar climate state in the equatorial Pacific, which corroborates previous 

research by Shukla (1998). Idealised predictive skill of May precipitation for month-1 (not 

shown) exhibits much less idealised predictive skill than for temperature. As the lead time 

increases only a narrow region of the equatorial Pacific has idealised skill (not shown). This 

significant decrease in idealised predictive skill, more so for precipitation than temperature, 

demonstrates yet again the chaotic nature of climate (Lorenz, 1963) and the possible futility 

of long-lead seasonal climate forecasting. 
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Figure 7.5: Idealised predictive skill for each model grid point for 1981–2001 for a 30 day 

temporal average at a 1 day lead time for May two metre temperature forecasts for a) 

CERFACS, b) ECMWF, c) INGV, d) LODYC, e) METEO FRANCE, f) MPI, g) UKMO, 

and h) CFS. 

It appears that the high idealised predictive skill evident during month-1 is attributable to the 

skill present in the first two weeks of the forecast when the spread of ensemble members is 

small. This is confirmed by calculating the idealised skill on the first and second 15 day 

averages, which shows a large drop off in predictive skill in the second of these 15 day 

periods. 
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7.4 Discussion and Summary 

This work has shown that limited realisable predictive skill of temperature, precipitation and 

MSLP is found in the DEMETER and CFS seasonal climate forecasting models. Globally for 

30 day temporal averages the skill deteriorates with lead time becoming primarily located 

over the equatorial regions, in particular the eastern Pacific. In other words, these results 

suggest that the equatorial regions are predominately where a change can be detected in the 

conditional distribution of the observations given a seasonal forecast. Generally, only during 

the first month of the forecasts can a change in conditional distribution of the observations be 

seen over the land masses. Previous research concurs with the findings here showing higher 

predictive skill in the tropics (Peng et al., 2000, Phelps et al., 2004, Kumar et al., 2007, 

Weigel et al., 2008). Results also highlight that predictive skill in the idealised world is 

higher than in the real world, especially for the first month but degrades significantly after 

about 30 days. The idealised predictability estimates vary between the models (Figure 7.5) 

and depending on the noise inherent in the climate model system, the potential improvement 

in realisable seasonal climate predictability will also vary. However, if areas with higher 

idealised predictability (compared to realisable predictability) of temperature in the first 

month (cf. Figures 7.1 and 7.5) could be translated to the real climate system, then improved 

month-1 climate forecasts could be attained. This realisation of predictive skill would have 

benefits for decision making based on these forecasts.  

Attempts are being made by the Global Land-Atmosphere Coupling Experiment (GLACE2; 

Koster et al. (2010)) to assess whether sub-seasonal predictive skill can be improved by 

having a more accurately initialised land surface. The Global Energy and Water Cycle 

Experiment (GEWEX; Sorooshian et al. (2005)) and the Hydrologic Ensemble Prediction 

Experiment (HEPEX; Schaake et al. (2007)) also aim to improve seasonal prediction 
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practices. There is potential in using a multi-model approach (Krishnamurti et al., 2006), but 

the ideal way to combine the models is unresolved (Kirtman and Pirani, 2009). Given the 

actual skill demonstrated by operational seasonal climate forecasting models, it appears that 

only through significant model improvements can useful long-lead forecasts be provided that 

would be useful for decision makers – a quest that may prove to be elusive. 

7.5 Chapter summary 

This work has shown that skilful seasonal climate model forecasts are currently only 

available for the tropical regions with temperature and MSLP having higher predictive skill 

than precipitation. It is not advisable to use the predictions from these models for decision 

making in the extratropical regions near Great Britain. Also, due to the limited predictive 

skill of the large-scale atmospheric circulation (MSLP), it is not presently possible to use 

these climate forecasts with the uncovered statistical hydroclimatological relationships 

(Chapters 5 and 6) for “perfect prognosis” precipitation/discharge forecasting. 

The low seasonal climate model predictive skill of precipitation highlights why River Dyfi 

discharge predictions driven by DEMETER models’ precipitation were so poor (Chapter 4). 

Even though the research in Chapter 5 showed that more appropriate geographical areas 

could have been used for the River Dyfi precipitation downscaling in Chapter 4, the low 

MSLP predictive skill (a proxy for large-scale atmospheric circulation; similar to the 

geopotential at 500 hPa) also helps to explain why the downscaling did not yield river flow 

forecasts with greater skill than the historical river flow observations.  
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8. CONCLUSIONS AND FUTURE WORK 

8.1 Introduction 

Chapter 1 introduced the subject area and provided a rationale to undertake the work. A 

literature review that identified the research gaps for investigation was presented in Chapter 

2. In light of the recognised knowledge gaps, the overarching aim of this thesis was to 

evaluate the potential for seasonal hydrological prediction in Great Britain. The data required 

and an overview of the statistical methods needed to fulfil the aim were described in Chapter 

3. The specific objectives of the thesis (sections 1.2 and 2.6) were: 

1) To undertake river flow prediction in Great Britain using a rainfall-runoff model and 

GCM output to in turn evaluate the current weaknesses of this approach. The evaluation 

of this physically realistic modelling system was the subject of Chapter 4. 

2) To identify and quantify the spatiotemporal variability in hydroclimatological 

relationships across Great Britain and Europe. These were the topics of Chapters 5 and 6 

respectively. 

3) To assess at the global scale the current level of seasonal climate model predictive skill 

(specifically 2-metre temperature, precipitation and MSLP) for potential applications in 

sectors such as hydrology. This was presented in Chapter 7. 

This final chapter draws conclusions on the research undertaken and identifies areas for 

further research. 
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8.2 Major research findings 

Before detailing the conclusions in each chapter, the thesis’s most significant findings and 

advancements in scientific understanding are identified and highlighted. Three principal 

outcomes from the research are as follows:  

1) A rainfall-runoff model forced with GCM output (precipitation and downscaled 

precipitation) is currently unable to skilfully simulate observed river flow in a temperate 

basin such as the Dyfi in Wales. The climate-to-river modelling chain used here produced 

lower river flow forecast skill than historical river flow observations. 

2) Confirmation of spatiotemporal variation of the hydroclimatological linkages across 

Britain and Europe. The identification of the large-scale climatic circulation that is related 

to British precipitation/river flow and European precipitation has improved process 

understanding, and has shown the benefit of using gridded climate fields as opposed to a 

fixed-point index (NAOI). 

3) Seasonal climate models are shown to have low forecast skill over the land masses and 

over most extratropical regions for forecasts beyond month-1, with precipitation having a 

more pronounced drop in skill than 2-metre air temperature or mean sea level pressure. 

The results may be seen as a benchmark of current climate prediction capability using 

(dynamic) coupled models. 

8.3 River flow prediction using a rainfall-runoff model forced with climate model data 

(Chapter 4) 

This chapter evaluated river flow prediction by using the PDM rainfall-runoff model forced 

with direct and downscaled ERA-40 re-analysis and DEMETER climate models’ 
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precipitation (i.e. a physically realistic modelling system), thus addressing research   

objective 1. It was found that climate model precipitation (ERA-40 and DEMETER) was not 

able to skilfully force the PDM rainfall-runoff model for the River Dyfi in West Wales, Great 

Britain. This precludes the direct use of GCM precipitation in river flow forecasting. The low 

seasonal climate model predictive skill of precipitation in Chapter 7 highlighted why the 

River Dyfi discharge forecasts driven by DEMETER models’ precipitation were so poor 

(Figure 7.2).  

A downscaling procedure (SDSM) was applied to produce more appropriate basin-scale 

(local-scale) precipitation time series. This downscaling process increased the river flow 

predictive skill compared to simply using GCM precipitation, but this analysis showed that 

river flow forecasts driven by downscaled DEMETER models’ precipitation were not as 

skilful as forecasts based on historical river flow observations (climatology). Reasons for this 

result were expounded in Chapters 5 and 7. Chapter 5 showed that the geographical areas 

with strongest large-scale climatic control on Dyfi basin precipitation/discharge were not 

local to the Dyfi basin (i.e. nearest GCM grid point), but instead exhibited space-time 

variability. The regions with strongest statistical associations must be considered in future 

downscaling studies to attain the highest levels of precipitation or river flow forecast skill. 

Research in Chapter 7 showed that the large-scale atmospheric circulation (MSLP) in the 

DEMETER models had low predictive skill in the extratropics, which further explained the 

reason for inferior river flow forecast skill when using downscaled precipitation series 

compared to historical river flow observations.  
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8.4 Variation of hydroclimatological relationships across Great Britain (Chapter 5) 

This part of the research investigated the linkages between the large-scale climatic circulation 

(ERA-40) and precipitation and river flow in 10 British river basins addressing objective 2. 

Monthly concurrent Spearman rank correlation analysis was performed between gridded 

ERA-40 re-analysis climate variables and British river basin precipitation and river flow. The 

statistical links between the large-scale climatic circulation, and precipitation and river flow 

shifted and varied in strength seasonally for the 10 study basins, with strongest associations 

evident in western Britain in winter. The month-to-month shift of strongest correlation 

highlighted changing precipitation and river flow generating weather systems throughout the 

year. An atmospheric index, such as the NAOI used herein, was unable to capture these 

seasonal movements due to the fixed station locations used for the index calculation. This 

was shown by the systematically lower monthly correlations obtained between the NAOI and 

precipitation and river flow compared to the gridded (ERA-40) large-scale climatic 

circulation variables (and in particular the comparable MSLP). Note that weaker large-scale 

atmospheric links are found with river flow compared to precipitation because of 

evapotranspiration control on river flow and due to basin properties (such as permeable 

geologies and basin steepness) that dampen the climate signal. The uncovered spatiotemporal 

variability in hydroclimatological relationships across Great Britain must be considered in 

future precipitation downscaling models to achieve the highest river flow forecast skill. 

8.5 European precipitation connections with large-scale MSLP fields (Chapter 6) 

As the relationships between the large-scale climatic circulation and basin precipitation had 

spatiotemporal variation across Great Britain (Chapter 5), the research was taken further to 

determine if this was true across Europe, thus completing objective 2. Monthly concurrent 
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Spearman rank correlation analysis was performed between gridded ERA-40 re-analysis 

MSLP and gridded European precipitation time series from the ENSEMBLES project. 

Results suggested that the large-scale climate-precipitation relationships had spatiotemporal 

variability across Europe. In winter a significant MSLP correlation dipole exists with 

European precipitation, with strongest links in coastal regions (e.g. western Scandinavia, 

British Isles and Iberian Peninsula) and weaker relationships inland. During spring, summer 

and autumn smaller MSLP correlation patterns were found with precipitation suggesting that 

precipitation is generated by smaller scale atmospheric dynamics. In the far north of Europe, 

in particular Scandinavia, the large-scale winter climatic circulation is in place for longer 

implying an extended winter season. The smaller regions of climatic control on precipitation 

in summer possibly indicate that convective weather systems contribute to precipitation 

receipt. Summer precipitation in Northwest (southern) Europe has a negative (positive) 

relationship with the SNAO pattern. 

The strong significant statistical relationships between the large-scale MSLP and 

precipitation in some areas of Europe and in certain seasons has aided understanding of the 

process chain across Europe and demonstrated that precipitation variability is not random, 

but results from variations in the large-scale atmospheric circulation. This suggests that 

despite high precipitation variability in Europe, there is a certain degree of predictability of 

precipitation because of its relationship with MSLP, in particular in winter in western 

European coastal regions. This precipitation predictability is yet to be realised with the 

current generation of climate models (see Chapter 7). 
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8.6 Current level of seasonal climate model predictive skill for applications (Chapter 7) 

To address objective 3, a careful analysis of the predictive skill of 2-metre air temperature, 

precipitation and MSLP was undertaken for eight seasonal climate forecast models (CFS and 

DEMETER) by using the joint distribution of observations and forecasts. Using the 

correlation coefficient, a shift in the conditional distribution of the observations given a 

forecast could be detected, which determines the usefulness of the forecast for applications. 

Results suggested that there is a deficiency of skill in the forecasts beyond month-1, with 

precipitation having a more pronounced drop in skill than temperature or MSLP. At long lead 

times only the equatorial Pacific Ocean exhibits significant skill. Higher skill is found for 

temperature in the “idealised” climate model system compared to the real climate system, and 

if this could be translated to the real climate system improved predictive skill in month-1 

could be attained. The low level of predictive skill in the extratropical regions could have an 

influence on the planned use of seasonal forecasts in climate services and these results may 

also be seen as a benchmark of current climate prediction capability using (dynamic) coupled 

models.  

8.7 Recommendations for future work 

8.7.1 Further evaluation of British and European hydroclimatological relationships 

As strong concurrent hydroclimatological relationships have been found in Great Britain and 

Europe, lagged correlation analyses should be undertaken between large-scale climatic 

circulation and precipitation/river flow to determine whether climate or hydrological system 

memory provides additional insight on process understanding and precipitation/river flow 

prediction potential. Uncovering lagged links between the large-scale climatic circulation and 

river flow may especially be possible for permeable basins (generally basins with high BFI 
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values), where the rainfall-runoff transformation is strongly attenuated. Furthermore, in 

permeable basins such as the Dun used in Chapter 5, hydrological memory and thus river 

flow autocorrelation between successive months could be exploited in autoregressive moving 

average (ARMA) models for river flow prediction. ARMA models could also be 

incorporated, for example, in a regression-type model that uses other explanatory variables 

(e.g. MSLP, SST and sea-ice) of river flow to increase the predictive capability. To this end, 

it is also necessary to undertake exploratory analyses aimed at identifying geographical 

regions where slowly varying global boundary anomalies (e.g. SST) are significantly linked 

with British and European precipitation/river flow. Finally, the use of different temporal 

averaging periods (such as two-weekly, two-monthly or seasonal averages) for investigating 

hydroclimatological linkages should be considered to tease out and elucidate on process 

understanding and prediction potential.  

8.7.2 Seasonal climate prediction 

Based on the conclusions from the assessment of seasonal climate model forecast skill 

(Chapter 7), the following factors may lead to a larger portion of the inherent climate 

predictability being realised (i.e. higher predictive skill), and thus should be considered by 

the climate modelling community:  

1) A concerted effort toward improving the understanding and modelling of global 

atmosphere-land and atmosphere-ocean interactions. As the slowly-varying lower 

boundary forcing is the premise for seasonal climate predictability (Palmer and Anderson, 

1994), the results herein may indicate that the climate models’ coupling between the 

lower boundary (land and ocean surfaces) and overlaying atmosphere may not currently 

be sufficient to transfer potential predictability from the land/ocean to the atmosphere. 
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2) A more accurate initialisation of the land surface so that the influence of the land on 

atmospheric development is more accurately simulated. Research in this vein is being 

undertaken as part of the GLACE2 experiment (Koster et al., 2010). 

3) Increased model resolution is required to more accurately capture regional-scale 

atmospheric processes. It is hoped that this will be feasible with ever-increasing 

computing power. 

As datasets over a longer time period become available, it should also be feasible to build 

more stable downscaling models that capture a wider range of climate variability and 

therefore perform better in simulating future climate and hydrological extremes. 

8.7.3 Bayesian merging of climate model forecasts for seasonal hydrological prediction 

A seasonal hydrological prediction technique that could be tested for British river basins is a 

Bayesian approach. A Bayesian methodology can spatially downscale and bias correct the 

seasonal climate predictions, making them relevant for applications. This has been used with 

some success for seasonal hydrological prediction in North America (Luo et al., 2007, Luo 

and Wood, 2008). If the seasonal climate predictions are not skilful then the resultant 

prediction from Bayesian merging (e.g. precipitation) will simply tend to the observed 

distribution or climatology (see Luo et al., 2007). 

8.8 Final remarks – current status of seasonal hydrological prediction in Great Britain 

This research has shown that it is not currently possible to use seasonal climate model output 

(directly or downscaled) to skilfully force a rainfall-runoff model for hydrological prediction 

in Great Britain, underscoring the inherent difficulty in producing climate or hydrological 

predictions in the extratropics in the vicinity of Great Britain. The assessment of seasonal 
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climate model predictive skill for applications also highlighted the low climate model 

predictive skill in the mid-latitudes, and thus the caution that should be exercised when 

considering such predictions in decision making processes.  

The strong significant statistical relationships found between the large-scale atmosphere and 

precipitation/river flow (in Great Britain and Europe) have improved process understanding 

and shown that it is necessary to use different geographical areas in each month when 

building precipitation downscaling models. If skilful seasonal climate predictions are realised 

in the coming years, then these concurrent hydroclimatological statistical relationships could 

be used in a “perfect prognosis” (Wilks, 2006) precipitation/river flow prediction approach. 

In the future it is hoped that seasonal hydrological prediction using a climate-to-river 

modelling chain could be improved through consideration of the uncovered spatiotemporal 

hydroclimatological variability, using different downscaling techniques and because of 

potential improvements to seasonal climate modelling.  



Appendix I 

 

 

 

 

 

 

 

APPENDIX I 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix I 

 

Table 1: The monthly multiple linear regression equations used in the SDSM downscaling 

process in Chapter 4. 

Month Multiple Linear Regression Equation  

January 0.819U500 + 0.052V850 - 0.007Z500 - 0.057 

February 0.767U500 + 0.120V850 + 0.006Z500 - 0.049 

March 0.769U500 + 0.066V850 + 0.021Z500 - 0.100 

April 0.650U500 + 0.148V850 + 0.055Z500 - 0.285 

May 0.712U500 + 0.150V850 + 0.106Z500 - 0.350 

June 0.905U500 + 0.198V850 + 0.088Z500 - 0.295 

July 0.993U500 + 0.230V850 + 0.039Z500 - 0.380 

August 0.916U500 + 0.203V850 + 0.009Z500 - 0.222 

September 0.805U500 + 0.216V850 + 0.076Z500 - 0.207 

October 0.844U500 + 0.053V850 + 0.017Z500 - 0.095 

November 0.783U500 + 0.094V850 + 0.011Z500 - 0.103 

December 0.831U500 + 0.073V850 + 0.015Z500 - 0.044 
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Table 2: Bias and Spearman rank correlation for the mean monthly river flow forecasts 

driven by the DEMETER 0–3 months and 4–6 months multi-model ensemble precipitation 

over May 1980 to April 2001. Bold values indicate significant correlation at α=0.05 level. 

DEMETER  

Multi-Model 

0–3 months precipitation 4–6 months precipitation 

Bias Correlation Bias Correlation 

January -36.31 0.004 -36.15 -0.17 

February -42.31 0.26 -35.58 -0.30 

March -46.69 0.01 -46.29 -0.006 

April -33.16 0.38 -30.97 0.43 

May -19.15 0.39 -7.15 0.36 

June -57.10 0.36 -52.84 0.22 

July -55.73 0.19 -47.15 0.06 

August -75.46 0.34 -65.41 0.28 

September -81.26 0.11 -77.63 -0.17 

October -76.67 -0.02 -77.28 -0.33 

November -61.54 0.17 -56.22 -0.14 

December -57.21 -0.07 -54.51 -0.23 
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Table 3 (a) – (h): Contingency tables for July and August 1984 (low flow period) showing 

when daily forecasted (from downscaled 0–3 months DEMETER models) and observed river 

flow are above and below the daily median observed flow over the study period. Correct 

forecasts are in red font and the percent correct rate (%) is shown in the top right of each 

individual forecast box. DEMETER represents a forecast using the mean of downscaled 

ensemble members from all seven DEMETER models; M. FRA stands for METEO 

FRANCE.   

 (a) Forecasts 50% (b) Forecasts 50% (c) Forecasts 50% 

 CERFACS >med <med Totals ECMWF >med <med Totals INGV >med <med Totals 

O
bs

er
ve

d >med 0 31 31 >med 31 0 31 >med 31 0 31 

<med 0 31 31 <med 31 0 31 <med 31 0 31 

 

Totals 0 62 62 Totals 62 0 62 Totals 62 0 62 

 (d) Forecasts 35% (e) Forecasts 50% (f) Forecasts 50% 

 LODYC >med <med Totals M. FRA >med <med Totals MPI >med <med Totals 

O
bs

er
ve

d >med 22 9 31 >med 0 31 31 >med 31 0 31 

<med 31 0 31 <med 0 31 31 <med 31 0 31 

 

Totals 53 9 62 Totals 0 62 62 Totals 62 0 62 

 (g) Forecasts 50% (h) Forecasts 50% 

 UKMO >med <med Totals DEMETER >med <med Totals 

O
bs

er
ve

d >med 31 0 31 >med 31 0 31 

<med 31 0 31 <med 31 0 31 

 Totals 62 0 62 Totals 62 0 62 
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Table 4 (a) – (h): Contingency tables for October and November 2000 (High flow period) 

showing when daily forecasted (from downscaled 0–3 months DEMETER models) and 

observed river flow are above and below the median observed flow over the study period 

(Key as in Table 3 in Appendix I).  

 (a) Forecasts 50% (b) Forecasts 50% (c) Forecasts 50% 

 CERFACS >med <med Totals ECMWF >med <med Totals INGV >med <med Totals 

O
bs

er
ve

d >med 0 30 30 >med 0 30 30 >med 0 30 30 

<med 0 30 30 <med 0 30 30 <med 0 30 30 

 

Totals 0 60 60 Totals 0 60 60 Totals 0 60 60 

 (d) Forecasts 50% (e) Forecasts 50% (f) Forecasts 50% 

 LODYC >med <med Totals M. FRA >med <med Totals MPI >med <med Totals 

O
bs

er
ve

d >med 0 30 30 >med 0 30 30 >med 0 30 30 

<med 0 30 30 <med 0 30 30 <med 0 30 30 

 

Totals 0 60 60 Totals 0 60 60 Totals 0 60 60 

 (g) Forecasts 57% (h) Forecasts 50% 

 UKMO >med <med Totals DEMETER >med <med Totals 

O
bs

er
ve

d >med 6 24 30 >med 0 30 30 

<med 2 28 30 <med 0 30 30 

 Totals 8 52 60 Totals 0 60 60 
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Appendix II 

 

Lavers, D. A., Prudhomme, C. & Hannah, D. M. (2010) Large-scale Climatic Influences on 

Precipitation and Discharge for a British River Basin. Hydrol. Processes, 24, 2555-

2563. (http://onlinelibrary.wiley.com/doi/10.1002/hyp.7668/abstract). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix III 

 

 

 

 

 

 

 

APPENDIX III 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix III 

 

Lavers, D. A., Prudhomme, C. & Hannah, D. M. (2010) Large-scale climate, precipitation 

and British river flows: identifying hydroclimatological connections and dynamics. 

Journal of Hydrology, 395, 242-255. (doi:10.1016/j.jhydrol.2010.10.036). 
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Appendix IV 

 

Lavers, D., Luo, L. F. and Wood, E. F. (2009). A multiple model assessment of seasonal 

climate forecast skill for applications. Geophysical Research Letters, 36, L23711, 

doi:10.1029/2009GL041365. 

(http://www.agu.org/journals/ABS/2009/2009GL041365.shtml). 
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