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ABSTRACT

This thesis analyses possible origins of fractional conductance in one-dimensional systems.

Two complementary approaches that use continuum and finite techniques are presented. The

continuum description investigates how Luttinger liquids can, though equilibration with the

contacts or backscattering, produce conductance plateaus at fractions of e2/h. The microscopic

perspective uses Wigner chains to concretely understand how whole electrons can be changed

into fractional excitations. When only the edges of the system are coupled to the reservoirs, the

effect of the coupling can be explicitly solved. The spinful realisation of this model produces

resonances with fractional peaks, due to the proportion of configurations that can conduct.
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CHAPTER 1

CONDUCTANCE IN BALLISTIC

SYSTEMS

Modern technology has only been made possible by our understanding of how materials con-

duct electricity. Transistors have now been produced so abundantly that more transistors are

estimated to have been made than there are cells in every living human on the planet [1, 2].

Recent advances of understanding in this field have allowed for increasingly fine control over

the transport of electrons. One frontier of research that would improve the capabilities of cur-

rent computing hardware is the development of devices that allow control over the transport of

electron spins. The study of the multiple possible realisations of qubits, that are required for

quantum computing, is another area that holds the potential to revolutionise modern technol-

ogy. The understanding of many of these new devices is based on mesoscopic physics, which

accounts for the wave-like nature of particles, and is the area that this thesis explores.

There are two common quantities that are used to encapsulate transport behaviour: the

conductance and the conductivity. The conductance is the ratio of the voltage applied across a

sample to the current that passes through it. If this varies in a non-linear way, I(V ), then the

differential conductance is defined,

G =
dI

dV
. (1.1)

This is not always the most useful quantity as it often dependent on the size of the sample.

1



CHAPTER 1. CONDUCTANCE IN BALLISTIC SYSTEMS

The conductivity is defined to provide an intrinsic variable in common macroscopic applica-

tions. For a cross-sectional area A and length of wire L, the conductivity is,

� = G
L

A
, =) G = �Ld�2, (1.2)

for generic dimension d. Often the inverse of these quantities, the resistivity ⇢ and resistance R,

are used instead.

This thesis investigates a bizarre phenomenon found when looking at the conductance in

certain devices known as quantum point contacts (QPCs) which will be introduced shortly. To

describe these experiments and why they are unusual, the transport regime in which the QPC

exists in needs to be understood. By considering the original model of transport, the reason for

these different transport regimes can be seen. For an electron of mass m, charge e, and electron

density n in a system, the Drude model produces a conductivity of,

� =
ne2⌧

m
, (1.3)

which introduces the phenomenological scattering time ⌧ that details the amount of disorder

in a system. Mobility, µ, is often used to characterise this disorder and is given by � = enµ.

This quantity relates the typical drift velocity of the electrons to the applied electric field that

is driving the transport. Originally, this treatment considered electrons to be classical particles

that elastically scatter off impurities. These impurities randomise the momentum of the electron,

with the rate at which these collisions occur being ⌧�1. Subsequent treatments have managed

obtain this formula from both a quantum mechanical [3] and a field theoretical perspective [4]

and surprisingly the same result is obtained.

A pertinent question to ask is what will happen as the scattering time increases to infinity and

the electron does not scatter - does this cause an infinite conductance? This limit is equivalent

to considering a smaller length of system such that the time taken for an electron to travel across

the system is smaller than ⌧ , defining the onset of the ballistic regime. It has only been possible

to investigate this experimentally in the last 40 years, with the results showing that infinite

2



1.1. LENGTH SCALES

conductance is not found and the Drude result no longer holds.

1.1 Length Scales

The transport regime that describes a particular material is defined by the interplay of various

length scales that are varied by either the material properties or by changing the applied con-

ditions on the sample. The scales are; the mean free path L⌧ , the localisation length l⇠, the

coherence length L�, system size L, and the Fermi wavelength �F [5]. The mean free path de-

termines whether the transport is ballistic or diffusive. Ballistic transport occurs when L . L⌧ ,

corresponding to an electron traversing the system without scattering. As understood from

solid state physics, particles at the Fermi surface are responsible for the transport properties of

materials [3]. Therefore, the mean free path is,

L⌧ = vF ⌧, (1.4)

where vF = h̄kF is the Fermi velocity. For a free electron gas in two dimensions, the relevance

of which will be seen shortly, the Fermi wavevector is related to the density of electrons, kF =

2
p
4⇡n. The typical density of electrons in metals is 1022/cm3, semiconductors have 1019/cm3,

while the quantum point contacts that will be examined have 1012/cm3.

Another important factor is the extent to which the particles responsible for transport are

discretised. For lengths below the Fermi wavelength, �F = 2⇡/kF , the true wave-like nature

of the electron is expressed. This length also defines the discreteness of the energy levels of the

system, allowing for resonant and discrete behaviour.

The opposite limit to the ballistic regime is that of a ‘bad metal’, when the electron scatters

so often it becomes comparable to the Fermi wavelength, �F ⌧ L⌧ . The criteria, kFL⌧ � 1, is

where the semiclassical Drude model works. Putting the expression for the Drude conductivity

into this separation of length scales gives,

⇢⌧ 200 µ⌦cm⇥ �F ( in Å). (1.5)

3



CHAPTER 1. CONDUCTANCE IN BALLISTIC SYSTEMS

This is known as the Ioffe-Regel-Mott criterion [6] which indicates the limits of applicability

of the Drude formalism. For resistivities higher than this limit, which correspond to there being

many scatterings, a new description is needed which considers the true wave-like nature of the

electron.

Interference effects between two particles can still occur on sizes much larger than the Fermi

wavelength as long as the phases of particles are related to each other. This stability of the

relationship between the phases is the factor that determines whether transport is coherent or

incoherent. The length over which they lose their relationship defines the phase breaking length

L�. This scale is independent of the mean free path, as scattering elastically will shift the

momentum of a path by a fixed amount, but there is still a definite relation between the two

phases [7].

This phase decoherence can be caused by temperature fluctuations, magnetic impurities and

electron-electron interactions. Any scattering that is time-dependent will change the phase by

an indefinite amount due to the uncertainty in the point in time where the scattering occurred.

The temperature fluctuations essentially broaden the quantum states of the system such that they

can be excited between each other. When temperature is comparable to the energy spacing, the

individuality of the excitations becomes muddied and the phase information is lost. Therefore

increasing L� is often done by reducing the temperature of the system.

The final length of interest is the localisation length, l⇠, which gives the length over which

the wavefunctions of the single particle excitations decay. A large localisation length means

the particle will not experience any localisation effects over the entire sample. This length is

responsible for metals becoming insulators at low temperatures, when l⇠ ⌧ L. This regime is

brought upon by large disorder, so l⇠ is related to L⌧ though the precise functional relationship

can vary. The coherent nature of the electrons means that incident waves can interfere with

waves that are scattered backwards by an elastic collision, resulting in the electrons becoming

localised around different lattice sites for a small mean free path.

The diffusive-incoherent classical Drude picture is relevant when the following hierarchy

of length scales is found �F , L� ⌧ L⌧ ⌧ L ⌧ l⇠. Quantum corrections become important

4



1.2. LOW-DIMENSIONAL SYSTEMS

when either �F or L� are comparable to L⌧ . Strong localisation occurs when the localisation

length is of the order of the mean free path and Fermi wavelength �F ⇠ L⌧ ⇠ l⇠ ⌧ L. The

hopping current between these localised states can either be coherent or incoherent dependent

on whether l⇠ or L� is larger [8].

Quantum point contacts exist in the ballistic-coherent transport regime where L . L�, L⌧ .

The field of mesoscopics occurs when one of the system lengths becomes comparable to L�,

with a diffusive mesoscopic regime also being possible if L⌧ ⌧ L . L�. This brief overview of

the transport regimes serves as an introduction to the ideas of mesoscopic physics, and will help

contextualise the central problems of this thesis. The variety exhibited in these systems is due

to the many length scales, one of which must be of the size of the system. It is in the liminality

between microscopics and macroscopics that the many of the novel material properties are

found.

1.2 Low-Dimensional Systems

To access the ballistic-coherent regime, a system that is clean from impurities must be fabri-

cated and measurements taken at low temperature. This purity is incredibly difficult to achieve.

However, a way to reach this behaviour can be guaranteed in low-dimensional systems. Before

eventually arriving at the experimental system, physics in low dimensions will first be explored.

In quantum mechanics, and in statistical mechanics, reducing the dimensionality of a sys-

tem requires some way of freezing out certain degrees of freedom. This occurs when certain

eigenstates are energetically inaccessible by temperature fluctuations. This can be done by con-

sidering the geometry of a wire where the length in two of the dimensions is a lot smaller than

the other. Constricting the electrons by imposing an infinite potential outside the wire geometry

leads to the eigenstates,

E(nx,ny ,nz) =
⇡2h̄2

2m

⇣n2
x

d2x
+

n2
y

d2y
+

n2
z

d2z

⌘
, (1.6)

for integers nx, ny, nz, where m is the mass of the particle and d is the width of the constriction

5



CHAPTER 1. CONDUCTANCE IN BALLISTIC SYSTEMS

Figure 1.1: Both a QPC and a 2DEG are created near the interface between GaAs and AlGaAs1.
(a) The Fermi level changes in the z direction, with the bending of bands creating a triangular
well. (b) Introducing gates on top of the sample allows a parabolic confining potential to con-
strict the 2DEG into a QPC.

in their respective direction. If dy is small, then the energetic difference between the ny = 1 and

ny = 2 states will be large and no transitions between the states will be possible if temperature is

smaller than this gap. Confining electrons to two spatial dimensions creates a two-dimensional

electron gas (2DEG).

Creating this infinite confining potential experimentally is difficult, but through some in-

genious combination of materials, solid state physics can create one that mimics its effects.

Grafting two specific materials together causes the conductance bands to bend in such a way to

create a triangular well. This occurs when one of the materials has a larger Fermi level than the

other, which then causes electrons to migrate to the lower Fermi energy and leave behind their

associated positively charged ions. The build up of charge across the heterojunction prevents all

the charges from flooding the lower Fermi energy [5]. This electrostatic field causes the local

bending of the bands that form the well, which is shown in Figure 1.1(a).

The current materials of choice are a heterostructure of GaAs/AlGaAs [9], due to the large

mobility µ = 31⇥106 cm2/Vs possible in these systems [10]. This corresponds to L⌧ ⇠ 100µm,

encroaching upon more everyday length scales. Other methods of creating a 2DEG are possible,

with many mesoscopic studies being originally performed on metal–oxide–semiconductor field-
1The actual QPC used in experiments is more sophisticated than just two materials placed next to each other.

In order to achieve the high mobility, there are different layers in the AlGaAs section, including regions of silicon
or n-doping. This is to bend the band further upwards on the AlGaAs side to prevent tunnelling from out of the
2DEG. Other realisations use two layers of AlGaAs either side but this schematic understanding will suffice for
theorists!

6



1.2. LOW-DIMENSIONAL SYSTEMS

Figure 1.2: The conductance through a quantum point contact is measured against the charging
on the side gates of the system. Reprinted from Reference 15.

effect transistor (MOSFET) devices [11]. Precise patterning of wires can allow even metals to

access the mesoscopic regime [12], but to obtain the largest mean free paths the heterostructure

is the best choice.

Having restricted one direction, the other can be constrained to obtain one-dimensional (1D)

behaviour by introducing two contacts, called split gates, either side of the material that can be

charged to produce an electrostatic field that will deplete the electrons in the 2DEG layer. The

typical spacing of these gates is ⇠ 250 nm [13]. The squeezing from the side of the sample

produces a parabolic potential with its minimum in the centre of the sample, restricting motion

to 1D behaviour. This type of experimental system is the quantum point contact [14], with the

placement of the gates shown in Figure 1.1 (b).

The transport properties of a QPC can be measured by applying a voltage to the source and

drain connected either end of the sample which will cause a current to flow. This conductance

can be measured against different chargings of the split gate. At a large negative voltage on

the gates, the resulting potential will be strong enough to discourage any current from flowing.

Reducing the voltage to zero will remove the restriction and result in two-dimensional behaviour

again. Performing this experiment resulted in plateaus appearing at integer values of 2e2/h [15],

which has been shown in Figure 1.2. The full reason for this result will be explored in Section

5.2, but it is indicative of 1D physics occurring.

7



CHAPTER 1. CONDUCTANCE IN BALLISTIC SYSTEMS

Figure 1.3: The conductance of a QPC against the confining split gate voltage is shown for
different chargings of the top gate. The inset figure demonstrates the positioning of the various
gates on the underlying heterostructure. Figure taken from Reference 17.

Further refinements of the QPC setup saw a top gate being added. This gate is placed on top

of the entire heterostructure with a dielectric buffer, ensuring that the material of the gate does

not interact with the confining potential in unintended ways. This allows fine control of the

carrier concentration in the 2DEG which, when varied, reveals greater detail on conductance

plots as shown in Figure 1.3. There is a small region at a split gate voltage of Vsg = �3.2V,

in which the previous plateaus at 2e2/h disappear and then reappear. It is in this specific point

that the recent experiments have been performed. This region can also be created through

asymmetrically biasing the split gates and creating an asymmetric confining potential [16].

1.3 Fractional Conductance

Plateaus are indicative of an underlying quantisation occurring. The previous plateaus occur due

to each possible transport channel contributing the quantum of conductance, e2/h. In Kumar et

al. [18], multiple different plateaus were found at a plethora of fractional values of the quantum

of conductance. Some of these are shown in Figure 1.4, and were expressed through varying

8



1.3. FRACTIONAL CONDUCTANCE

Figure 1.4: The values of the conductance sweeps in side gate potentials are plotted for increas-
ing asymmetry of the confining potentials for each offset plot from left to right. Figure reprinted
from Reference 18.

the asymmetry of the confinement.

The fact that plateaus are occurring at fractional values of fundamental constants suggests

that somehow there is less charge associated with each transport channel - a fractionalisation of

charge! The most prominent fractions occur at 2/5, 1/2, 1/6 with no obvious relation between

the fractions. Other similar transport experiments, in a two-dimensional hole gas instead, have

seen different fractions [19], notably 1/2, 1/16.

These examples are not the first instances of such plateaus in transport measurements, which

have also famously been seen to occur in the fractional quantum Hall effect [20]. This was

also discovered experimentally in the 2DEG of the GaAs/AlGaAs heterostructure. For this

experiment the sample was subjected to a large magnetic field, resulting in plateaus occurring

in the Hall conductivity. Of the various plateaus found, the one that occurred at a value of

(1/3)e2/h was explained due to the presence of an excitation that carries the charge of e/3

[21]. These Laughlin states apply for all odd denominator fractions that occur. Other fractions,

notably (5/2)e2/h, are a lot more subtle [22].

There is also precedent for conductance plateaus in the absence of a magnetic field, which

can be seen in the left of Figure 1.4. This plateau around (1.5)e2/h, is known as the 0.7

anomaly2 which was observed in early experiments on the system [23]. This feature has been

2This mismatch of naming convention is due to including spin into the quantum of conductance so that it is
2e2/h. Even with the doubling, it still does not match, but this is because the value of the plateau can vary. The
original experiments used a symmetric confinement to find the eponymous value.
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CHAPTER 1. CONDUCTANCE IN BALLISTIC SYSTEMS

the subject of numerous theoretical work and has many competing explanations.

In this thesis, models that produce fractional conductance in low-dimensional systems will

be explored. As such, the thesis is split up into three parts. The first part introduces the multitude

of theoretical techniques that are needed to tackle this problem. Chapters 2 and 3 introduce

quantum field theory, and build up to the non-equilibrium description of the problem. Chapter

4 introduces Luttinger liquids which will form a basis in how to describe low-dimensional

systems in a variety of different situations. Chapter 5 then introduces the techniques to extract

the conductance of the system from the mathematical description.

Armed with this theoretical firepower, there will be two parallel developments, one from a

continuum perspective and another from a finite perspective. These analyses are split into the

final two parts. The continuum part concerns how Luttinger liquids can produce a fractional

conductance, focusing on how a description of the contacts or backscattering in multi-channel

systems form mechanisms by which a fractional conductance can be produced.

The finite section approaches the problem from a different viewpoint in order to concretely

understand how whole particles can turn into fractional excitations. The solitons of a Wigner

chain provide the perfect framework in which to see how this transformation occurs. It also

results in a different mechanism for producing fractions, where the proportion of conducting

configurations in comparison to total configurations controls the conductance. The final two

chapters contain the bulk of the original research in this thesis.
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Mathematical Requirements
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CHAPTER 2

QUANTUM FIELD THEORY

Introducing the ideas of quantum field theory (QFT) in a way that is self-contained is a chal-

lenging task: the multiplicity of the subject spills from the seams. For every class of models that

can be solved, there are substantially more models that require radically different techniques to

extract any information. Condensed matter contains this same multiplicity, with microscopic

and phenomenological models inextricably tied together to both provide insight. Through all of

these theories, there is a thread that ties them together - a Hamiltonian acting on a Hilbert space

of states1.

Observables are obtained through taking appropriately defined averages of operators and

these observables encompass all the information that can be extracted from the theory. Obtain-

ing a complete understanding of the states and averages - and how they evolve in time - is the

goal of studying a model. Often this is only possible, however, where the model is so simplistic

that it describes nothing! Therefore the techniques developed must be flexible enough to allow

information to be extracted, even if a full description of the states is not available.

In this chapter the understanding of how these observables can be calculated will be devel-

oped, culminating in the contour-ordered Green’s function. Familiarity with second quantised

operators and their commutators will be assumed. For the start of this chapter, zero tempera-

ture QFT will be considered, where the average of an operator is given by the trace over the
1High-energy physics does not often concern itself with finding eigenstates but they are still hidden beneath

their fundamental Lagrangian approach. This diversity of approaches is precisely why an introduction is so diffi-
cult!
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CHAPTER 2. QUANTUM FIELD THEORY

normalised eigenstates |ni of the underlying Hamiltonian,

D
Ô
E
=
X

n

hn| Ô |ni .

The trace of an operator is independent of basis, so any suitable orthonormal set of states can

be chosen. This schematic way of showing the average overlooks a crucial point - that the

eigenstates and operators can have time dependence, resulting in a time-xdependent observable.

There are three common ways of including this dependence into quantum mechanics, which will

be introduced in the next section.

2.1 Pictures of Quantum Mechanics

Offloading all of the time dependence onto the states, | (t)iS , is known as the Schrödinger

picture. The dynamics of the system are governed by the Schrödinger equation, where h̄ = 1,

in which application of a time-independent Hamiltonian evolves the states in time,

i@t | (t)iS = Ĥ | (t)iS . (2.1)

Any quantum state can be expressed in the basis of the eigenvectors of the Hamiltonian, which

are stationary states and only change by a phase. This disentangles the matrix aspect of Equation

2.1 into multiple independent problems. The formal solution is the time evolution operator Û

which connects states at different times,

| (t)iS = Û(t, tr) | (tr)i , Û(t, tr) ⌘ exp
n
�iĤ(t� tr)

o
. (2.2)

The S subscript is dropped for | (tr)i because this is a state at a given reference time tr. The

operator has the property that any evolution in time can be split up into successive evolutions,

Û(t1, t2)Û(t2, t3) = Û(t1, t3). Its conjugate evolves bra states h (t)| = h (t0)| Û †(t, t0) in

a similar way. Requiring that the states are normalised at all points in time means that the

evolution must be unitary, and that the conjugate is the inverse of the evolution, Û †(t, t0) =

14



2.1. PICTURES OF QUANTUM MECHANICS

Û�1(t, t0) = Û(t0, t),

There is no inherent reason to consider states as the objects that evolve in time. An alterna-

tive picture emerges when considering matrix overlaps,

h (t)| Ô | (t)iS = h (tr)| Û
†(t, tr)ÔÛ(t, tr) | (tr)i ⌘ h (tr)| ÔH(t) | (tr)i

where the time dependence can be shifted onto the operators rather than the states. This defines

operators for the Heisenberg picture, ÔH(t), that time evolve the state from the reference time,

act with the Schrödinger operator at time t, then evolve back. The dynamics of the operator are

described by the Heisenberg equation of motion,

dÔ(t)

dt
= �i[Ô, Ĥ(t)]. (2.3)

Although this seems like a redundant change of emphasis, the apparatus of many-particle

quantum mechanics is built from time-dependent creation and annihilation operators. These

operators encode the statistics of the system much more naturally than explicitly considering

the (anti)symmetrised state space for the Hilbert space of every particle number.

The time evolution operator can be generalised for a time-dependent Hamiltonian,

Û(t, tr) = T exp

✓
�i

Z t

tr

d⌧Ĥ(⌧)

◆
, (2.4)

where T is the time ordering operator. It denotes that the string of operators within are ordered

to have them act by whichever operator is earliest in time, the earliest put to the right. This can

be explicitly formulated by using Heaviside functions ⇥(x),

T {Â(t1)B̂(t2)} = ✓(t1 � t2)Â(t1)B̂(t2)± ✓(t2 � t1)B̂(t2)Â(t1), (2.5)

where the ± refers to the sign produced by the commutation relations of bosonic or fermionic

operators.
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Generalising this ordering to a string of n operators requires each of the n! possible com-

binations of times to be enforced by increasingly intricate Heaviside functions. The derivation

of Equation 2.4 is shown in Appendix B. The conjugate of U(t, tr) will be anti-time ordered,

where the latest time operators act first by putting them at the right of the operator string. This

is the first encounter with the time ordering operator which arises naturally from solving the

Schrödinger equation for a time-dependent Hamiltonian. This ordering of operators turns out to

be at the heart of QFT and the concept will be contorted into even more bizarre forms throughout

this section.

There are two hurdles with calculating using this machinery built so far; the first is that to

calculate anything, the full eigenstates are needed. This is not a simple task, even for a time-

independent Hamiltonian. The second issue is that the average of multiple operators acting at

different times will be described by a string of time evolution operators with different ordering

rules. The aim is to find an ordering rule which applies to the whole expression, regardless of

how many operators there are. The process of trying to accommodate for these two things will

guide the following section.

2.1.1 Interaction Picture

When the eigenstates are not fully known, the interaction picture is the most convenient way

to include the time dependence [24]. It is a halfway house between the previous two pictures,

where the operators and states both evolve in time. This complexity appears to have neither

benefit of the other pictures, but is crucial to building a robust theory.

The Hamiltonian is split up into two parts, one part for which the eigenstates are known

and a second interacting part that depends on time, Ĥ = Ĥ0 + V̂ (t). This is the situation

throughout physics where we often have an idea of what the rudimentary description should be,

with complications being additionally included. This splitting of the Hamiltonian parameterises

our ignorance of the full eigenstates into V̂ (t).

Mathematically, the idea is to overcompensate in the time evolution of states by the time
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2.2. TIME EVOLVING AVERAGES

evolution that is known. So defining

| (t)iI = eiĤ0(t�tr) | (t)iS , (2.6)

and putting this into the Schrödinger equation results in,

i@t | (t)iI = eiĤ0(t�tr)V̂ e�iĤ0(t�tr) | (t)iI ⌘ V̂I(t) | (t)iI . (2.7)

This gives a new Schrödinger equation that defines a new time evolution operator ÛI(t, t, r) =

T exp
⇣
�i
R t

tr
V̂I(t)

⌘
. Ensuring that averages give the same result regardless of picture cho-

sen, all operators must evolve like in the Heisenberg picture but with Ĥ0 instead of the full

Hamiltonian

ÔI(t) = eiĤ0tOe�iĤ0t. (2.8)

This completes the tour of the pictures of quantum mechanics, each with their merits. The

Schrödinger picture often forms the easiest route into quantum mechanics - relying on a wave-

function that describes the system at any point in time, similar to a classical mechanics de-

scription but with a new probabilistic object. The Heisenberg representation leads much more

naturally into the language of second quantised operators, but it is the interaction picture in

which a rigorous perturbation theory can be formulated.

2.2 Time Evolving Averages

The next focus will be on how averages evolve in time which will be independent from the

picture chosen. Writing out an average in every picture, where the hat notation of the operators

is now dropped,

S h (t)|OS | (t)iS = h (tr)|U
†(t, tr)OSU(t, tr) | (tr)i =I h (t)|OI(t) | (t)iI

= h (tr)|U
†
I (t, tr)OI(t)UI(t, tr) | (tr)i . (2.9)
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CHAPTER 2. QUANTUM FIELD THEORY

Figure 2.1: An average can be interpreted as evolving an underlying state up to where an oper-
ator acts on it and the state is then time evolved back with the inner product taken. The forward
and backwards paths have been displaced in the y axis to show the two different directions.

Comparing terms, the full Heisenberg time evolution is related to the interacting time evolution

by,

U(t, tr) = e�iH0(t�tr)UI(t, tr). (2.10)

Equation 2.9 can be interpreted as beginning with the reference state and evolving it to time t

using UI(t, tr) as shown in Figure 2.1.

With this in mind, one of the goals of this section can now be completed for single operator

averages. Instead of having time ordering evolving out to time t and anti-time ordering on the

way back, all times could be described as existing on a contour in time [25]. Using ⌧ to indicate

that these times are now on the contour C of Figure 2.1, which extends from tr to t and loops

back round. This gives for an operator acting at a specific time t,

OH(t) = TC{e
�i

R
C VI(⌧)d⌧OI(t)}. (2.11)

The contour ordering operator, TC , orders all operators within to act first at the earliest time

along the contour. It has the same form as time ordering but is only in reference to the parame-
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2.2. TIME EVOLVING AVERAGES

terised time on the contour rather than over the full range of time

TC{A(⌧1)B(⌧2)} = ✓(⌧1 � ⌧2)A(⌧1)B(⌧2)± ✓(⌧2 � ⌧1)B(⌧2)A(⌧1). (2.12)

It should now be possible to understand why there was the goal of rewriting the problem

in terms of one ordering rule. If there was a small parameter in the interacting part of the

Hamiltonian, the exponential in Equation 2.11 can be expanded to give perturbative corrections.

All of these corrections obey the same ordering rule so a robust perturbation theory can be

formulated. Finding how to actually calculate these contour-ordered correction is examined

next chapter. The important thing to see is that everything can be expressed in terms of the

same type of object.

2.2.1 Evolving Two-Point Functions

From this point onward, the analysis will only becomes more complicated - as is natural for

an introductory chapter. The natural progression is to consider how to express two operators

acting at different times. From the previous section, each operator can be described in terms of

a contour ordering

hAH(t1)BH(t2)i =
D
TC1{A(t1)e

�i
R
C1

d⌧VI(⌧)
}TC2{B(t2)e

�i
R
C2

d⌧VI(⌧)
}

E

=

⌧
TC0{A(t1)B(t2) exp

✓
�i

Z

C0
d⌧VI(⌧)

◆
}

�
, (2.13)

where C1 is the contour of Figure 2.1 that evolves up to t1 and C2 evolves up to t2 assuming

that t1 > t2. This double-peaked contour can be deformed into just one, as shown in Figure 2.2.

This can be seen within the maths by writing the ordering explicitly,

hAH(t1)BH(t2)i = hU †
I (t1, tr)AI(t1) UI(t1, tr)| {z }

UI(t1,t2)UI(t2,tr)

U †
I (t2, tr)BI(t2)UI(t2, tr)i. (2.14)

The cancellation of the overlapping parts of the contour appears when the full evolution is
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Figure 2.2: The evolution along a complicated double-peaked contour is equivalent to two
operators acting on a single peaked contour. This figure demonstrates the case where t1 < t2,
where the shaded box shows the two parts of the contours that cancel out.

split into two parts, which due to the unitarity of the operator cancels the previous evolution.

This overall contour can be therefore deformed to a single contour C 0 that goes from tr to t1

and back again with the operator B acting on the forward evolution branch. The opposite case

of t1 < t2, when the order of operators stays the same, will have a contour that extends to t2

and the operator A will act during the backwards evolution.

It turns out that although this procedure can be generalised to larger strings of operators,

often all that is needed is the two-point averages due to Wick’s theorem which will be covered

shortly. The newly ordered Equation 2.13 not only describes hAH(t1)BH(t2)i when t1 > t2,

but also hBH(t2)AH(t1)i for t1 < t2.

The bedrock of QFT, the Green’s function, can now be defined. This is the average of

a creation and annihilation field operator, with the appropriate bosonic (�) or fermionic (+)

commutation relations between them,

[ (x, t), †(x0, t)]± = �(x� x0). (2.15)

The contour-ordered Green’s function becomes,

D
T { H(x, t) 

†
H(x

0, t0)}
E
=
D
TC{ I(x, t) 

†
I(x

0, t0)e�i
R
C d⌧VI(⌧)}

E
= iGC(x, x

0; t, t0). (2.16)

It is worth recapping what has been achieved here. The appearance of all of these ordering
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operators stems from the time evolution operator containing time ordering. The interaction

picture is used due to the possibility of not knowing the full eigenstates. In trying to express the

ordering as acting on all operators in the same fashion, contour ordering was introduced.

2.2.2 A Time-Ordered Theory

Having seen all these complicated things about time contours, it is natural to wonder why this

rigorous of a treatment is not normally required. Time ordering by itself is actually sufficient

for zero temperature QFT, but the full non-equilibrium nature to be explored in the next chapter

necessitates this time-contour description.

Moving from contour ordering to time ordering, requires a way to relate the states at the

reference time to a time beyond the contour. For averages at zero temperature, the system will

always be in the ground state |GSi, which may not be fully known. Knowing the evolution

of the ground state along the time contour provides all the information required to compute

averages.

The reason for switching into the interaction picture is to utilise the fact that there is a

solution to a part of the problem, H0. It is only when introducing the interaction V (t), that the

exact ground state is not known. If there was a time that V (t⇤) = 0, then there is a complete

description of the state at that time. Therefore, consider a system that slowly turns on and off

the interacting part [24], such that

V (t) = e�✏|t|Ṽ (t). (2.17)

Changing the value of ✏ allows control over how fast or slow the interactions are turned on.

The limit that ✏! 0 corresponds to adiabatically switching on the interactions, where the slow

change means that the system will always be in the same ground state. Providing that there are

no crossings of energy levels or a phase transition as the interactions are varied, then the Gell-

Mann and Low theorem [26] relates the ground states at the different asymptotic times. All the

caveats are included simply to ensure that the ground state remains the same ground state after
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the infinite time evolution.

The theorem states that the ground state after turning the interactions off at t = 1 is related

to the original ground state by a phase, hGS(t = 1)|GS(t = �1)i = ei�. This is proven by

expanding the time evolution operator for this specific form of interaction.

By extending the time contour beyond max(t1, t2), using the cancellation from Section

2.2.1, the contour can now stretch from t = �1 to t = 1 and back again. This contour

will have both operators occurring on the section that goes forward in time. The ordered av-

erage can be split into a part that orders everything in real time and a final evolution back,
⌦
U †(1,�1)T {AI(t1)BI(t2)UI(1,�1)}

↵
. The final evolution back is exactly the phase

factor which can be cancelled out by introducing a denominator. Contour ordering only along

the forward contour is equivalent to normal time ordering. Therefore the contour average of

two operators becomes,

D
T {ÂH(t1)B̂H(t2)}

E
(2.18)

=
hGS(t = �1)| T {AI(t1)BI(t2) exp

⇣
�i
R1
�1 dtVI(t)

⌘
} |GS(t = �1)i

hGS(t = �1)| T exp
⇣
�i
R1
�1 dtVI(t)

⌘
} |GS(t = �1)i

.

When time is treated as a real time, instead of the contour-ordered time, a Fourier transform

to frequency space can be performed to diagonalise the expression. Often systems have time

translational invariance so the two-point average will often depend on t1 � t2 (which is shown

using the cyclic nature of the trace) resulting in only one frequency variable.

2.3 Finite Temperature - Time to Get Complex

The effect of finite temperature is to weight each eigenstate in an average by the Boltzmann

factor e��"n for the inverse temperature �. Allowing for variation in particle number is achieved

by introducing chemical potential µ and weighting the eigenstates with N particles by e�µN .
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The total average schematically then becomes

D
ÂB̂
E
=

1

Z

X

n

hn| ÂB̂e��(Ĥ�µN̂)
|ni ,

where the partition function Z =
P

n hn| e
��(Ĥ�µN̂)

|ni normalises the average and N̂ is the

number operator. The sum over eigenstates now includes all states with all possible number of

particles in those states.

If the operators were time-ordered, it strongly resembles the previous formulation. The main

difference is that to obtain the Boltzmann weighting rather than Equation 2.13, time evolution

would have to evolve in imaginary time. Writing the factor as exp
⇣
i
R i�

0 dt(H � µN)
⌘

, makes

this connection explicit. But what does it mean for operators that are defined in real time to be

evolving through imaginary time? This question is answered by changing our entire description

to be in terms of imaginary time.

Performing a Wick rotation [24] into imaginary time will cause t ! i⌧ for all instances

of time. This technique works best for time-independent Hamiltonians, so this form will be

assumed for the rest of this section. The Heisenberg time dependence of the operators then

becomes,

OH(⌧) = eH⌧Oe�H⌧ , (2.19)

where the reference point is taken as ⌧r = 0. Having done this, an analogous interaction picture

in imaginary time can be defined relating the time evolution operators in these two pictures

e�H⌧ = eH0⌧TC⇤ exp

✓
�

Z ⌧

0

VI(⌧
0)d⌧ 0

◆
(2.20)

where the contour time ordering now is for imaginary times, denoted by C⇤. All the ideas of

this chapter can be used again to express the average of two operators,

e��HTC⇤{AH(⌧1)BH(⌧2)} = e��HTC⇤{AI(⌧1)BI(⌧2) exp

✓
�

Z

C0⇤
V (⌧ 0)d⌧ 0

◆
}. (2.21)

Splitting up e��H as in Equation 2.20 reveals a final forward evolution and an remaining
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Figure 2.3: The contour followed in imaginary time by the time evolution of the operator
e��HOI(⌧1)OI(⌧2) | (0)i in the case that ⌧1 > ⌧2. The contour could be deformed to give
just a single line by cancelling the inverse evolution of U †

I (⌧1, 0) with the part of UI(�, 0) that
goes between 0 and ⌧1.

factor of e��Ĥ0 . This contour is shown in Figure 2.3, and can be deformed into just a single

line. The time ordering on this line results in normal time ordering but in imaginary time. Our

final expression is therefore,

hTC{AH(⌧1)BH(⌧2)}i (2.22)

=
1

Z

X

n

hn(⌧ = 0)| e��H0T {AI(⌧1)BI(⌧2) exp

✓Z �

0

V (⌧)d⌧

◆
} |n(⌧ = 0)i .

The weighting of the eigenstates is now with respect to the quadratic part of the Hamiltonian,

which should be possible to calculate. In order for the averages to not diverge, ⌧1 � ⌧2 < �.

Everything is still in imaginary time though, so the final part is to analytically continue from

imaginary time back to real time.

This continuation procedure can be more clearly seen for the imaginary time Green’s func-

tion, where the two operators of Equation 2.22 are the creation and annihilation field operators

seen in Equation 2.16. The spatial index is not affected by switching to imaginary time so can

be safely ignored. If the Hamiltonian is time-independent, the Green’s function only depends

on the difference ⌧ ⌘ ⌧1 � ⌧2. Now a curious periodicity in imaginary time appears, with the

Green’s function being periodic at ⌧ = 0, � if the field operators are bosonic. A fermionic

Green’s function produces an anti-periodicity at these same points.
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This permits a transformation to a Fourier series in terms of the Matsubara frequencies,

which have a different form for fermions and bosons

!n =

8
>><

>>:

2⇡n� for bosons

2⇡�(n+ 1
2) for fermions

, where n 2 N. (2.23)

In the low temperature limit, the replacement of !n ! i! takes the problem back to real time.

If the Green’s function has poles or branch cuts in the complex plane, a more complicated

continuation may be necessary.

2.4 Wick’s Theorem

Returning to the question of why two-point averages can form a basis for an entire theory;

this is due to Wick’s theorem. It states that the average of a string of contour-ordered creation

and annihilation operators with respect to a quadratic Hamiltonian is equal to the sum of the

products of the average of only two of these operators2 That is to say, for a generic operator c,

hTC{c(⌧n) · · · c(⌧1)}iH0
=
X

Pairs

Y

q,q0

hTC{c(⌧q)c(⌧q0)}iH0
, (2.24)

where H0 is there to indicate that these averages are taking place with respect to a quadratic

Hamiltonian where the eigenstates are known.

As an example of the pairing, consider the average of a four-point function of bosonic oper-

ators, b(t). Bosonic operators are chosen to avoid signs arising when operators are commuted

through. The contour ordering and quadratic Hamiltonian notation is dropped here for clarity

of the pairing process. The pairing then proceeds in the following way,

2This is true for any of the contours dealt with in the previous section.
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To reiterate, each pair of operators in the original expression produces a two-point average

that is multiplied into all of the other averages from the pairings for a given configuration.

Summing over all configurations gives the full answer, which in this case will be just the sum

of these three terms,

⌦
b†(t1)b(t2)b

†(t3)b(t4)
↵
=
⌦
b†(t1)b(t2)

↵ ⌦
b†(t3)b(t4)

↵
+
⌦
b†(t1)b(t4)

↵ ⌦
b(t2)b

†(t3)
↵

+
⌦
b†(t1)b

†(t3)
↵
hb(t2)b(t4)i . (2.25)

Often some of the resulting averages can be ignored. Averages with two annihilation op-

erators will not have any matrix elements connecting them in a quadratic Hamiltonian, so the

final term can be set to zero. This is unless the system is superconducting. Wick’s theorem

will not be proved here as the proof for contour ordering is quite involved [25]. In many places

this theorem is shown for time ordering by swapping to normal ordering - where annihilation

operators act first [27]. Functional integrals, introduced in Appendix A, also form another path

to showing this result.

This chapter has introduced the idea of expressing operators in terms of a contour-ordered

interaction picture. This is the most general form of the problem that is designed to deal with

models when the eigenstates are not exactly known. Wick’s theorem gives a procedure whereby
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which larger strings of contour-ordered operators can be ground up into smaller expressions.

The detour to relate this contour ordering to the time ordering of zero and finite temperature

equilibrium QFT highlights that all techniques here apply equally. It is going from the contour

to real time where the difference between the methods appears.
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CHAPTER 3

KELDYSH FORMALISM

The tautology of defining non-equilibrium as not being in equilibrium can be made clearer

by exploring the conditions that define an equilibrium system [28]. An equilibrium system

is described by a unique set of intensive and extensive macroscopic variables that are time

independent. Additionally, these variables must not change upon isolating the system from it’s

environment.

Transport experiments present a natural reason to consider non-equilibrium. This is because

the experimental realisation consists of measuring current by applying a voltage across the entire

sample. When this voltage is applied, the system will have a constant density distribution but

isolating the system will cause the density to relax back to the equilibrium Gibbs distribution.

The class of systems that have variables that are time-independent apart from when isolated

from its surroundings are known as steady states.

Non-equilibrium theories have been the focus of many different sub-disciplines in physics

with each discipline requiring different modifications to their underlying theories. The ex-

tension of quantum field theory to its full non-equilibrium splendour is encapsulated by the

Keldysh formalism. The idea of contour ordering is the nexus of this formalism and additional

matrix structure will appear when going back to real time. This matrix structure is what cap-

tures the non-equilibrium effects. The advantages of Keldysh above the purely imaginary time

Matsubara Green’s functions is that time-dependence can be more easily incorporated and the
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CHAPTER 3. KELDYSH FORMALISM

assumption of the form of distribution (i.e. Fermi-Dirac or Bose-Einstien) is not made.

3.1 Keldysh Contour

The contour-ordered Green’s function [29], is written explicitly as

GC(x, t, x0, t0) = i

P
n hn(tr)| TK{ I(x, t) 

†
I(x

0, t0) exp
�
�i
R
K VI(⌧)d⌧

�
e��H0} |n(tr)iP

n hn(tr)| TK{exp
�
�i
R
K VI(⌧)d⌧

�
e��H0} |n(tr)i

,

(3.1)

where  I(x, ⌧) is a bosonic or fermionic field operator which obeys the canonical commutation

relations. The averages are over the eigenstates at the reference time, when there is a full

description of the states. The integral over ⌧ is along the Keldysh contour in complex time

which is depicted in Figure 3.1 and the ordering TK is along this contour.

The contour stretches from our reference time and extends out to infinity, then returns back

to our reference time. This forwards and backwards evolution is normally distinguished by the

forward branch being offset by +i⌘ into imaginary time and �i⌘ on the way back. Finally the

contour travels along the ‘interaction’ part which extends down to �i�, including the effects of

the temperature like in the Matsubara technique, but without using a Wick rotation. Often the

complex part of the contour can be ignored, which reduces down to the contour of the previous

chapter. This can be done by taking tr to be �1 then the final evolution on the interacting

part of the contour will be at �i
R �1�i�

�1 VI(⌧)d⌧ which will decay rapidly upon going into the

complex plane.

The ability to set the reference time to negative infinity is a statement on initial correlations.

If the final state is independent of the initial conditions, then any residual correlations must have

decayed away. Evolving the state from negative infinity will ensure that the internal scattering

time of the interactions will have been exceeded multiple times, washing out any memory of

the initial conditions. These assumptions are natural for a steady state solution! The previous

section showed how the form of Equation 3.1 was obtained, but now the way that it is used to

solve problems will be explored.
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3.1. KELDYSH CONTOUR

Figure 3.1: The contour through imaginary time, on which the time ordering of Keldysh non-
equilibrium technique takes place.

3.1.1 Dyson’s Equation

As an instructive example, the interaction part of the Hamiltonian is chosen to be a weak cou-

pling to a classical field H = H0 + �
R
dxA(x, ⌧) †(x, ⌧) (x, ⌧). The interaction picture will

have field operators evolving as  I(x, ⌧) = eiH0(⌧�tr) (x)e�iH0(⌧�tr) and the contour-ordered

Green’s function, upon expanding the exponential, will be

GC(x, t, x
0, t0) = �iTr

 
TK

n
 I(x, t) 

†
I(x

0, t0)

⇥

h
1� i�

Z

K

d⌧1

Z
dx1A(x, ⌧) 

†
I(x1, ⌧1) I(x1, ⌧1) +O(�2)

io!

H0

. (3.2)

The denominator in the original equation can be ignored as without any external operators,

evolving the exponential along the forwards and backward part will exactly cancel out with a

generic result of Keldysh being that the normalisation in the denominator is equal to 1. Wick’s

theorem can be applied to the term that is linear in �, resulting in,

GC(x, t, x
0, t0) = �iTr

⇣
TK{ I(x, t) 

†
I(x

0, t0)}
⌘

H0

(3.3)

� i�

Z

K

d⌧1

Z
dx1 Tr

�
TK{ I(x, t) 

†(x1, ⌧1)}
�
H0
V (x1, ⌧1) Tr

⇣
TK{ I(x1, ⌧1) 

†
I(x

0, t0)}
⌘

H0

.

The other possible term allowed from pairing, h (x, t) †(x0, t0)i h †
I(x1, ⌧1) I(x1, ⌧1)i, is
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cancelled out by evolving it along the Keldysh contour. This is because one of the averages

contains only points along the contour (x1, ⌧1), without any external operators (x, t). Without

external input, evolution along the Keldysh contour is identically zero. This is the cancellation

of vacuum diagrams of equilibrium theory that manifests here in a new way due to setting the

denominator to be unity earlier.

Simplifying Notation

Before continuing further, the notation will be condensed as it is unwieldy. The way to multiply

Green’s functions together to produce another Green’s function is by integrating over shared

internal variables,

A(x, t, x00, t00) =

Z
dx0dt0 B(x, t, x0, t0)C(x0, t0, x00, t00) ⌘ B(x, t, x0, t0)�C(x0, t0, x00, t00), (3.4)

where this operation is not commutative. Inverses are defined as

G�1(x, t, x0, t0) �G(x0, t0, x00, t00) = �(x� x00)�(t� t00). (3.5)

Introducing the bare Green’s function as the average with respect to the quadratic Hamil-

tonian G0(x, ⌧, x0, ⌧ 0) = �iTr
⇣
TK{ I(x, ⌧) 

†
I(x

0, ⌧ 0)}
⌘

H0

, the second term in Equation 3.3

becomes G0 � Ṽ �G0 which defines Ṽ (x, t, x0, t0) = �(x�x0)�(t� t0)�V (x, t). This procedure

can be iterated to obtain higher and higher orders of perturbation and we can describe this pic-

torially as as infinite sum of terms. The Green’s function can be expressed as an infinite sum of

bare Green’s functions, which can be expressed iteratively. Suppressing the variables,

GC = G0 +G0 � Ṽ �G0 +G0 � Ṽ �G0 � Ṽ �G0 + · · ·

GC = G0 +G0 � Ṽ �GC , (3.6)

=) G�1
C = G�1

0 + Ṽ . (3.7)

These ideas can be generalised for interactions that are more complicated than just the cou-
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pling to a classical field. The expansion of the operator and use of Wick’s theorem proceeds in

the same way, however many more types of terms are produced. Keeping track of these terms

via assigning a diagram to them is the ubiquitous Feynman diagram technique [25], which will

not be used extensively in this thesis. The combinitorial process is the same in the equilib-

rium and non-equilibrium cases due to the equivalence between the ordering rules, therefore all

knowledge of equilibrium perturbation theory can be imported into this formalism.

Writing these more complicated terms in the form of 3.6 is possible, and introduces the

self-energy ⌃ which replaces Ṽ ,

GC = G0 +G0 � ⌃ �GC . (3.8)

Theoretically ⌃ can contain an infinite number of terms, but this specificity is not useful. Ap-

proximations are therefore usually made to exclude certain types of diagrams that arise in the

full perturbative treatment. Self-energy is incredibly useful and encapsulates how the system

changes from interactions. How this information is encoded will be understood when the form

of Green’s functions are looked at.

3.2 Real-time Expressions

There are two equivalent approaches to return to real time; Langreth’s rules and introducing

matrix structure. The latter is introduced by partitioning the contour into forward and backward

evolution [29], allowing a 2x2 matrix to be formed when the operators act on either the top

or bottom of the contour. Introducing a new index  T and  B for the top and bottom contour

respectively, the matrix Green’s function becomes,

GC =

0

B@
�i
D
TC{ T (t) 

†
T (t

0)}
E

i
D
TC{ T (t) 

†
B(t

0)}
E

�i
D
TC{ B(t) 

†
T (t

0)}
E

�i
D
TC{ B(t) 

†
B(t

0)}
E

1

CA . (3.9)
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When both operators act on the top of the contour, the time simply increases from �1 to 1,

so ordering the operators on this contour is normal time ordering, T . The same logic applies

for when both operators are on the bottom branch except the contour travels backwards in

time, producing anti-time ordering T̃ . The diagonal elements only have one possible order

as contour ordering forces the operator on the top branch to be on the right, so GC
TB(t, t

0) =

i
D
 †
B(t

0) T (t)
E

and GC
BT (t, t

0) = �i
D
 B(t) 

†
T (t

0)
E

.

This can be put all into one matrix equation to express the Green’s function in real time,

G
C =

2

64
�i
D
T  T (t) 

†
T (t

0)
E

�i
D
 †
B(t

0) T (t)
E

�i
D
 B(t) 

†
T (t

0)
E

�i
D
T̃  B(t) 

†
B(t

0)
E

3

75 =

2

64
Gt(t, t0) G>(t, t0)

G<(t, t0) Gt̃

3

75 (3.10)

where we have introduced G-lesser and G-greater alongside the time-ordered and anti-time

ordered Green’s functions. With a closer inspection of these functions, they can be seen to not

be independent. A rotation exists that will cause the matrix to always have one component be

zero. The cost of considering non-equilibrium is the introduction of this matrix structure to the

problem.

3.2.1 Menagerie of Two-Point Functions

Up to this point, the form that these Green’s functions take has been left to the readers imagi-

nation. This section will detail all their various representations and the relations between them.

The two foundational two-point functions are G-lesser and G-greater, which correspond to the

spatial distribution of electrons or holes in the system respectively when x = x0, t = t0,

G<(x, t; x0, t0) = i
⌦
 †(x0, t0) (x, t)

↵
, G>(x, t; x0, t0) = �i

⌦
 (x, t) †(x0, t0)

↵
. (3.11)

In equilibrium, these functions can be determined using the Fermi (or Bose) distribution

when considered in the frequency-momentum basis for systems with spatial and time indepen-
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dence,

G<(k,!) =
X

k,!

1

e��"(k,!) + 1
. (3.12)

Again it should be stressed that to actually calculate these requires knowledge of the eigen-

states of the Hamiltonian. These two functions are also not technically Green’s functions but

they are often referred to as such. Actual Green’s functions satisfy the equation,

(i@t � Ĥ)G(x, t; x0, t0) = �(x� x0)�(t� t0), (3.13)

with the equivalent equation for the G-lesser and G-greater functions having zero on the right

hand side rather than delta functions. Any solution to Equation 3.13 is not uniquely defined and

depends on the boundary conditions. There are four boundary conditions that are incredibly

useful in physics, which results in four Green’s functions,

Gr(t, t0) = ⇥(t� t0)
⇣
G>(t, t0)�G<(t, t0)

⌘
,

Ga(t, t0) = ⇥(t� t0)
⇣
G>(t, t0)�G<(t, t0)

⌘
,

Gt(t, t0) = ⇥(t� t0)G>(t, t0)�⇥(t0 � t)G<(t, t0),

Gt̃(t, t0) = ⇥(t� t0)G<(t, t0)�⇥(t0 � t)G>(t, t0) (3.14)

where spatial dependence will be suppressed as it does not affect the ordering. The theta func-

tions are what produces the delta function so the lesser and greater functions can be then seen

to be the solutions to the homogeneous version of Equation 3.13.

These various Green’s functions can be shown to satisfy the relations,

Gr
�Ga = G>

�G<, Gr = Gt
�G<, Ga = Gt

�G> (3.15)

which demonstrates the linear dependence of the four Green’s functions. The meaning of the

various terms are a little more opaque, but the retarded Green’s function shows the response of

the electrons to an impulse at t = t0 and the advanced Green’s function shows this for the holes.
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The causal nature of the retarded Green’s function means that it has an actual interpretation,

rather than the more abstract (contour) time-ordered functions [7]. As we are back in real time

a Fourier transform of equation 3.13 can be performed to obtain,

Gr,a(!) =
1

! � Ĥ ± i�
, Gt,t̃(!) =

1

! � Ĥ ± i�sgn(±!)
(3.16)

where the form of the infinitessimal � varies between each one to obtain the boundary conditions

on time from Equation 3.14. The effect of the self-energy is often to affect the dispersion as

Gr =
1

! �H0 + ⌃+ i�
(3.17)

which shifts the energies of the Hamiltonian by ⌃. It should be remembered that all these

quantities are matrices so despite the seeming simplicity of the equation, most of the work

comes in dealing with the matrix aspect. Understanding that the self-energy shifts the energies,

the imaginary part of ⌃ will be seen to create complex energies. The usual oscillatory solutions

will now acquire a finite lifetime, which will be proportional to the size of Im(⌃) = 1/⌧ . The

choice of ⌧ here is not accidental as it is the scattering time - describing how long the excitations

last before scattering off to a new momentum.

3.2.2 Langreth’s Theorem

Langreth’s theorem provides a dictionary of how to go from a contour-ordered expression to

a real-time one. It consists of multiple equations that each describe how different real-time

functions are obtained through combinations of contour-ordered functions. The proof of these

results can be found in Reference 30 and is based on deforming contours, seen in the previ-

ous chapter. If the expression is given by C(⌧, ⌧ 0) =
R
K dt1A(⌧, t1)B(t1, ⌧ 0), the real time

expression for the lesser function will be

C<(t, t0) =

Z 1

�1
dt1
⇣
Ar(t, t1)B

<(t1, t
0) + A<(t, t1)B

a(t1, t
0)
⌘
. (3.18)
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The real time form of C> can be found by replacing the lesser by the greater. The retarded

function is given by

Cr(t, t0) =

Z 1

�1
dt1A

r(t, t1)B
r(t1, t

0) (3.19)

and equivalently for the advanced function where r $ a. Having got an expression for all

varieties of Green’s function, the process can be generalised to a double integral over the product

of three contour-ordered functions or higher orders.

There is another form in which contour-ordered functions may appear: as a simple multipli-

cation without the integration, D(⌧, ⌧ 0) = A(⌧, ⌧ 0)B(⌧, ⌧ 0). The corresponding real-time lesser

function of this becomes,

D<(t, t0) = A<(t, t0)B<(t, t0), (3.20)

and changing < for > will again give the real-time greater function. The retarded (and equiva-

lently advanced) function becomes

Dr(t, t0) = A<(t, t0)Br(t, t0) + Ar(t, t0)B<(t, t0) + Ar(t, t0)Br(t, t0). (3.21)

This forms our recipe book for how to get from the functions in which there is a formal pertur-

bation theory to functions that correspond to observables.

3.3 Dyson’s Equation Redux

To derive some useful formulas, and as a practice of applying Langreth’s theorem, a real-time

version of the contour-ordered Dyson’s equation can be calculated. Suppressing all the indices,

Dyson’s equation is,

G = G0 +G0 � ⌃ �G (3.22)
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where the self-energy is generically defined. Due to the integration over the internal indices,

Equation 3.19 can be used to continue to a retarded or advanced real-time expression,

Gr = Gr
0 +Gr

0 � ⌃
r
�Gr, Ga = Ga

0 +Ga
0 � ⌃

a
�Ga. (3.23)

These are reminiscent of the equilibrium case, but new information is contained within the

kinetic equation which is the continuation to G-lesser using equation 3.18,

G< = G<
0 +Gr

0 � ⌃
r
�G< +Gr

0 � ⌃
<
�Ga +G<

0 � ⌃a
�Ga. (3.24)

Through using (1�Gr
0 � ⌃

r)�1
�Gr

0 = Gr which is obtained from rearranging Equation 3.23,

The kinetic equation becomes

G< = Gr
� (Gr

0)
�1

�G<
0 � (1 + ⌃a

�Ga) +Gr
� ⌃<

�Ga = Gr
� ⌃<

�Ga, (3.25)

where the first term will be zero as the inverse of the retarded free Green’s function is the differ-

ential operator of Equation 3.13. This will act on G<
0 , which is the solution of the homogeneous

part, resulting in (Gr
0)

�1
�G<

0 = 0 and the cancellation of the first term.

This completes the introductory tour of QFT. Although a detailed description of the per-

turbative rules has not been shown here, these chapters exemplify how the calculation of these

averages, when the full eigenstates are not known, requires this variety of theoretical tools. The

perturbative structure is exactly the same in equilibrium and non-equilibrium. The approaches

differ in the continuation back to real time. This continuation is trivial for zero temperature

QFT, requires analytic continuation for finite temperature Matsubara technique, and introduces

a matrix structure for finite temperature non-equilibrium systems.

Green’s functions can be found through their definitions when the eigenstates are known. If

the eigenstates are not exactly known, Dyson’s equation relates the full Green’s function to one

calculated with the quadratic part of the Hamiltonian which involves the self-energy.
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LUTTINGER LIQUIDS

The introduction examined how a system in our inherently three-dimensional world can be

restricted to only one. The mathematical formulation of quantum field theory in 1D, does not

require such considerations, it is by definition 1D. This chapter will go through the paradigm

of 1D physics - the Luttinger liquid which describes the gapless low-energy excitations as a

bosonic density wave. Quantum point contacts have experimentally shown behaviour that is

consistent with a Luttinger liquid description. This was found by measuring the deviation of

the integer conductance plateaus upon increasing temperature [31], therefore this analysis is

pertinent to our understanding of the fractional plateaus.

This chapter will first explore how physics is altered in this reduced dimensionality and why

conventional descriptions of continuum fermionic systems fail. The process of linearisation is

examined to understand why this technique is so widely applicable, which results in a new

effective model of the low-lying excitations. This effective model is then converted to the

Luttinger liquid description by bosonisation. Additional electron species, in this case spin, will

then be included into the description. Most of this chapter draws from Giarmachi’s authoritative

book on 1D physics [32].
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4.1 One-Dimensional Idiosyncrasies

The defining feature of one-dimensional physics is that all motion must be collective. Consider

a chain of particles where one particle collides with a neighbouring particle, causing some dis-

placement. The neighbouring particle will then interact with its neighbour and create a cascade

of interactions between pairs of particles that travels along the chain - a propagating longitudinal

density wave. In higher dimensions, a particle can avoid or lessen a collision by going around

other particles. This leads the influence of a disturbance fizzling out over shorter distances in

higher dimensions for similar interaction strengths. The requirement to interact in 1D results

in all excitations being density fluctuations, which are bosonic and therefore there must be a

bosonic description of a fermionic 1D system. Obtaining this description is what bosonisation

achieves. Tomonaga [33] was the first to attempt to describe a one-dimensional system in this

way, paving the way for the linear model introduced by Luttinger [34] that was grouped into the

‘Luttinger liquid’ collection of models by Haldane [35].

The necessity to consider collective motion elevates the importance of interactions to a sys-

tem; changing the statistics of particles and amplifying the effect of fluctuations. Quantum

fluctuations will have their effect felt over larger distances, resulting long-range order being un-

able to form even at zero temperature. Statistics upon particle exchange are not only determined

from the particle’s inherent statistics, but also from the phase shift from collisions. This means

there is a parameter related to the interactions that can be smoothly changed to describe sys-

tems with different statistics, shown in Figure 4.1, where the parameter K will get an explicit

formulation later.

Throughout this thesis, our interest is in fermionic systems. The underlying solution from

which interactions are adiabatically introduced differs for low-dimensional systems. In dimen-

sions larger than two, Fermi liquid theory permits the absorption of electron-electron interac-

tions into a renormalisation of the electron mass in the quadratic Fermi gas dispersion [4]. The

Tomonaga-Luttinger model serves as the point from which to introduce interactions in 1D.

One of the reasons that Fermi liquid theory fails in 1D is due to an inherent instability in

the description. Considering the susceptibility of an equilibrium system of volume ⌦ to a static
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Figure 4.1: Varying the Luttinger parameter changes what underlying model our Luttinger liq-
uid description corresponds to. Certain common models coincide with specific values of K that
are shown here.

perturbation of momentum q,

�(q) =
1

⌦

X

k

f(⇠(k))� f(⇠(k + q))

⇠(k)� ⇠(k + q)
, (4.1)

where f(k) is the Fermi function and ⇠(k) is the energy measured relative to the Fermi sur-

face. This form follows from an application of Kubo formalism to a perturbation in density,

explored in Section 5.1. For a specific k and q that links two points on the Fermi surface,

⇠(k) = ⇠(k + q) = 0 resulting in a divergence in the summand. There are pairs of points in

all dimensions where this ‘nesting’ condition is met, but the divergence is smoothed out by the

additional factors that appear upon exchanging the sum for an integration, such as kD�1dk when

integrating an isotropic distribution in D dimensions.

In one dimension, this divergence is not cancelled and the entire Fermi surface is nested as

there are only two points. This means that the system is infinitely susceptible to a perturba-

tion where q = 2kF . A diverging susceptibility is an indication of the original non-interacting

ground state being completely different to the interacting one, as any interaction with an in-

finitesimal 2kF momentum component will result in an infinite response of the system. This

will change the underlying description to one that is non-trivially related to the original de-

scription. For fermions at half filling on a lattice this instability causes the Peierls transition

where pairs of electrons bunch up and double the periodicity of the chain [36]. The system is

not just unstable towards this process, as there is a superconducting instability that competes
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with the dimerisation. The 1D system is also cursed to never be able to achieve long range

order, as mentioned earlier, so these two processes compete and leave the system on the verge

of instability.

It will be shown that the elementary excitations of a class of 1D models are density waves

of spin and charge. Any fermionic excitation, like creating an additional electron, must nec-

essarily split up into constituent spin and charge components. This spin-charge separation is

the simplest example of charge fractionalisation [37], the extension of which are fractionally

charged excitations.

4.2 Tomonaga-Luttinger Model

To see how bosonic density excitations could form the low-energy excitations of a fermionic

1D model, first consider a gas of non-interacting electrons. Density fluctuations are particle-

hole pairs that destroy a particle at momentum k and create a particle at a new momentum

k + q, denoted as c†k+qck. The dispersion of a Fermi gas measured about the Fermi surface is

⇠(k) = (k2
� k2

F )/2m, so the excitations have an energy of,

Ek(q) = ⇠(k + q)� ⇠(k) =
2qk + q2

2m
. (4.2)

The average value of the energy E(q) over the region [kF�q, kF ], and the variation in the energy

�E(q) = max(Ek(q)) � min(Ek(q)) in the same segment, can be calculated. This particular

region is chosen so that c†k+q does not act on an already filled state. This gives,

E(q) = kF q/m = vF q, �E(q) = q2/m = E(q)2/mv2F . (4.3)

Provided that there is a finite slope at the Fermi level (so vF 6= 0), the average energy of

an excitation only depends on the momentum of the particle-hole pair. The variation in energy

goes to zero faster than the average energy. Therefore these particles will have a well defined

momentum and energy that become long lived as the energy tends to zero. The independence
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of Equation 4.3 of the original k means that the mapping to particle-like excitations will hold

for all fillings away from the bottom of the band.

Having seen how the density fluctuations are well-defined particles, the Tomonaga-Luttinger

model can now be introduced. The energy spectrum is that of a relativistic fermion, travelling

at a speed vF instead of c

"q = ⌘vF q where ⌘ = {R = 1, L = �1}. (4.4)

There are two branches of the dispersion that correspond to right movers for positive ⌘ and

left movers for negative ⌘. An excitation with negative q (so moving to the left) will then have

a positive energy, hence the extra minus sign in the dispersion. This directionality causes the

branches to act as two different non-interacting fermion species if kF is large. Then only a large

momentum scattering of 2kF would allow a change of direction. In this model, for all possible q

to be considered, an infinite number of negative energy states must be introduced that are filled

up to a certain energy - much like the Dirac sea.

This model can be seen to represent the low-energy excitations of a Fermi liquid in 1D with

electron and hole symmetry. Expanding the dispersion around the two Fermi points of the Fermi

surface k = ±kF , where q = k � kF , gives a dispersion of,

⇠k =
1

2m
(k � kF )(k + kF ) =

8
>><

>>:

vF q, for k ⇡ kF ,

�vF q, for k ⇡ �kF .

(4.5)

This expansion is only valid if kF � q. For fluctuations caused by temperature, this con-

dition becomes T ⌧ ✏F . Although the increase to the infinite number of electrons in the

Tomonaga-Luttinger model is unphysical, it will not affect the low-energy behaviour. The

exclusion principle means that in order for electrons at a large negative energy to be able to

contribute, they must be excited above the Fermi surface. This would cost a lot of energy and

so the original approximation of low energies would be violated. Figure 4.2 shows this process

of linearisation.
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Figure 4.2: Linearising the Fermi gas dispersion about the Fermi points results in the two linear
branches of the Tomonaga-Luttinger model. The solid lines indicate that the states are occupied
and the dashed lines are unoccupied states, with the occupation in the Tomonaga-Luttinger
model extending to ✏! �1.

The reason for this extension to a Dirac sea is that the model has a complete, infinite dimen-

sional Hilbert space with an energy spectrum that is unbounded from above. To have an exact

mapping from fermions to bosons this must be the case as bosons can infinitely occupy a single

mode.

There are various different ways of mapping this model onto a bosonic one: through func-

tional [38], operator [39] or phenomenological methods [35, 40]. The operator route is often

used as there is an exact Fock space operator identity [41], though the phenomenological path-

way provides a lot of intuition as to what the bosonic fields correspond to. Most of the thesis

focuses on treating Luttinger Liquids using functional integrals, which are introduced in Ap-

pendix A, therefore functional bosonisation will be introduced.
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4.3 Bosonisation

The action of the Tomonaga-Luttinger model without interactions is,

S0 = SL + SR =
X

⌘

Z
dxdt  ̄⌘(x, t)i@⌘ ⌘(x, t), @⌘ = @t + ⌘vF@x, (4.6)

where there are separate fermion fields for the different chiralities. Here ⌘ is defined as being

R,L when appearing as a subscript or +1,�1 respectively when being used as an algebraic

variable. To reiterate that this description is equivalent to the low-energy model of the quadratic

model, consider the chiral fields  ⌘(x, t). These fields can be derived from the original field of

the quadratic dispersion by considering the general Fourier transform of the field  (x, t) and

removing a factor of eikF x to get in the vicinity of k = ±kF ,

 (x, t) = eikF x R(x, t) + e�ikF x L(x, t),

 ⌘(x, t) =

Z 1

�1

d!

2⇡

Z ⌘1

0

dk

2⇡
ei(k�⌘kF )x�i!t k,!. (4.7)

Therefore  ⌘(x, t) will only have slow oscillating components when k ⇠ kF .

The density operator becomes split into chiral components,

⇢ =  † = ⇢R + ⇢L + e2ikF x †
L R + e�2ikF x †

R L, where ⇢⌘ =  †
⌘ ⌘. (4.8)

The cross terms contain an rapidly oscillating component that will cause the term be negligible

for any integration over space, such as the one in the action. This cannot be ignored if a large

momentum scattering interaction 2kF is relevant.

Now the foundational equation of bosonisation is introduced, which is a mapping between

the fermionic field and a bosonic field ✓⌘(x, t),

 ⌘ = �⌘e
i✓⌘(x,t),  ̄⌘ = �⌘e

�i✓⌘(x,t), (4.9)

where � is a global Majorana field, included to ensure the proper anticommutation of fermionic
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fields while commuting with the bosonic fields1. Majorana fields have the property that they

are their conjugate, so �̄ = �. The anticommutation implies that �2 = 0. Naively substituting

this transformation into the action results in Equation 4.6 becoming zero due to both �2 = 0

and @x� = 0 with the latter caused by the global nature of the Majorana field. In all methods

of bosonisation, there are spurious zeroes that occur that upon closer inspection, have a finite

value. When using functional bosonisation, this is a manifestation of the QFT anomaly. The

way to obtain a non-zero action is to look at the measure of the partition function when changing

variables [42]. The anomaly arises as the symmetry of the classical action under this chiral

transformation  ⌘ !  ⌘ei⌘✓⌘ (suppressing the variables of the fields from now on) is not obeyed

by the Jacobian of the transformation, which affects the measure D ⌘ in the partition function.

To understand how this symmetry is preserved in the measure, consider the gauge transfor-

mation  ⌘ !  ̃⌘ei✓ on the action, where not using Majorana fields means the action does not

vanish. The transformed action becomes,

S̃ =

Z
dxdt ˜̄ ⌘(i@⌘ + @⌘✓⌘) ̃⌘. (4.10)

The partition functions Z⌘ =
R
D ⌘eiS⌘ for the original and transformed action can be calcu-

lated as the fields are quadratic in the action. The relation of these to each other defines the

Jacobian of the transformation,

Z⌘ = J⌘Z̃⌘, =) J⌘ =
det
�
g�1
⌘

�

det
�
g�1
⌘ + @⌘✓⌘

� , (4.11)

where g�1
⌘ is the inverse of the Green’s function for the equation of motion,

i@⌘g⌘ = �(x� x0)�(t� t0). (4.12)

1There is some subtlety about choosing the prefactor to be a Majorana field [41]. From an operator perspective,
this factor here should also reduce/raise the number of fermions in the system by one, amounting to a shift in kF .
In the thermodynamic limit, this shift is very small so can be ignored. When calculating averages that have an
equal number of creation and annihilation operators, the raising and lowering operator take us back to the original
particle number subspace and can therefore be left out. This is why despite seeming crucial to this derivation, they
do not appear again in this thesis.
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Upon using the ubiquitous linear algebra identity, ln(det(A)) = tr(ln(A)) for a matrix A,

Equation 4.11 can be seen as a disguised exponential and therefore as a contribution to the

action. Upon performing the trace over the Green’s functions, the Jacobian becomes,

ln(J⌘) = �
i⌘

4⇡
Tr(@⌘✓⌘@x✓⌘). (4.13)

The derivation of this result is presented in Appendix C. Defining new fields ✓ = (✓L � ✓R)/2

and � = (✓L + ✓R)/2, the action which is determined fully by the Jacobian becomes,

S0 =
1

4⇡

Z
dxdt @L✓L@x✓L � @R✓R@x✓R

=
1

2⇡

Z
dxdt @t✓@x�+ @t�@x✓ � vF (@x✓)

2
� vF (@x�)

2. (4.14)

Integrating one of the first two terms by parts and then performing the functional integral

over one of the fields gives two possibilities for the action, dependent on what field was inte-

grated out2. The bosonised action is,

S0 =
1

2⇡vF

Z
dxdt (@t✓)

2
� v2F (@x✓)

2, (4.15)

=
1

2⇡vF

Z
dxdt (@t�)

2
� v2F (@x�)

2. (4.16)

This dual representation allows whatever action is most convenient to be used. The distinction

here seems academic, but upon including interactions the two actions will have different forms.

In trying to obtain a representation of the density in this new bosonised form, the anomaly once

again rears its ugly head, as ⇢⌘ =  ̄⌘ ⌘ will be zero upon using Equation 4.9. The antidote

this time is to introduce a source field prior to bosonisation, which when differentiated gives the

density. Carrying it through the derivation, the density becomes,

⇢⌘ =
⌘

2⇡
@x✓⌘, =) ⇢ = �

1

⇡
@x✓. (4.17)

2Any contribution from the quadratic functional integral that is integrated out will be cancelled out by the
denominator in an average and therefore can be forgotten.
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This issue can also be resolved by point splitting the fields and being more careful in the

limit that the fields are evaluated in the same point [43]. From the continuity equation, the

current can be found to be,

@t⇢ = �@xj, j =
1

⇡
@t✓. (4.18)

If this bosonisation procedure was performed with operators, it can be found that the operator

fields ✓ and @x� are conjugate variables and satisfy the canonical commutation relations with

an extra factor of ⇡.

4.3.1 Including Interactions

The strength of this technique is in how it simplifies interactions. It has just been shown that,

surprisingly, a kinetic term that is quadratic in fermionic fields is also quadratic in bosonic

fields. For terms that are quartic in the fermionic fields, it is obvious that this can be expressed

by two bosonic fields. The interaction term in a generic fermionic model is

Sint =

Z
dxdx0dtdt0  ̄(x, t) (x, t)V (x, x0; t, t0) ̄(x0, t0) (x0, t) ⇠

Z
dxdt⇢2(x, t). (4.19)

The ‘g-ology’ formalism of interactions in the Tomonaga-Luttinger model is obtained through

setting the interactions to be instantaneous and only upon contact, V (x, x0; t, t0) ⇠ �(x�x0)�(t�

t0). This strongly screened Coulomb approximation manages to retain a lot of the underlying

physics despite its apparent restriction. This interaction, however, is not modelled as entirely

featureless with a different weighting being given to the terms that appear upon substituting

Equation 4.8 into the interacting action,

Sint =

Z
dxdt g4(⇢

2
L + ⇢2R) + g2⇢L⇢R

+ (g1 
†
L R 

†
R L + g3e

4ikF x †
L R 

†
L R + h.c.), (4.20)

where the e2ikF x terms are averaged out. The g3 term can be relevant if there is umklapp scatter-

ing from the presence of a lattice - this is the cause of the Peierls distortion. In the spinless case,
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where just one fermionic species is considered, g1 is a rearrangement of g2 and can therefore be

absorbed into the definition of the g2 terms. When performing the spinful analysis in the next

section, this cannot be completely absorbed.

Away from specific fillings of a lattice, there will be no relevant umklapp scattering so the

interaction just becomes the first half of Equation 4.20. Using the equivalent density for the

bosonic fields in Equation 4.17, the action becomes,

Sint =

Z
dxdt

g4
4⇡2

((@x✓L)
2 + (@x✓R)

2)�
g2
4⇡
@x✓L@x✓R. (4.21)

Performing the same substitution as before where ✓L = ✓ + �, ✓R = � � ✓ gives a final action

of

S =
1

2⇡

Z
dxdt 2@x�@t✓ �

⇣
vF +

g2
2⇡

+
g4
2⇡

⌘
(@x✓)

2
�

⇣
vF +

g4
2⇡

�
g2
2⇡

⌘
(@x�)

2. (4.22)

Commonly, the coefficients of the gradient terms are defined using variables ⌫ and K where

⌫K = vF +
g2
2⇡

+
g4
2⇡

,
⌫

K
= vF +

g4
2⇡

�
g2
2⇡

=) K =

r
2⇡vF + g4 � g2
2⇡vF + g4 + g2

, ⌫ = vF

r⇣
1 +

g4
2⇡vF

⌘2
�

⇣ g2
2⇡vF

⌘2
. (4.23)

The action can then be integrated out to give,

S =
K

2⇡⌫

Z
dxdt

⇣
(@t�)

2
� ⌫2(@x�)

2
⌘

(4.24)

S =
1

2⇡⌫K

Z
dxdt

⇣
(@t✓)

2
� ⌫2(@x✓)

2
⌘
. (4.25)

Finally, we have obtained an explicit formula for the Luttinger parameter K that was intro-

duced conceptually at the start of the chapter. The above form means that for g4 and g2 being

positive constants, as they should be for a repulsive fermionic model, then K  1. This con-

firms what was previously stated in Figure 4.1, that fermionic models correspond to this region

of K. This action can be expressed in terms of an inverse Green’s function by integrating by
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parts,

S =
1

2⇡⌫K

Z
dxdt ✓

⇣
@2t � ⌫2@2x

⌘
✓ =

1

2

Z
dxdt ✓(x, t)G�1(x, x0, t, t0)✓(x0t0). (4.26)

The field dependencies have appeared again to make it clear that this expresses the inverse

Green’s function in position and real time. From this form, all the other Green’s functions can

be found through computing the Fourier transforms. This will be done in Chapter 6 in order to

calculate the conductance through the system.

The overall effect of this renormalisation on the spectrum is that the dispersion becomes

"q = ⌘⌫q, where ⌫ has replaced vF . In this final form the reason for the dual actions can be

seen as the interaction parameter K is inverted in the two different representations. This means

that if the parameter is large in one representation, we can use the dual to express our action in

such a way that the parameter is small and a perturbative expansion can be found.

4.4 Spinful Luttinger Liquids

Including the electron’s spin into the non-interacting Tomonaga-Luttinger model simply dou-

bles the degrees of freedom with 4 types of fermion, one for each chirality and spin. Each of

these can be bosonised by,

 ⌘� = ��e
i✓⌘� , (4.27)

where � = {", #}. Following the same procedure of calculating the Jacobian gives the kinetic

part of the action as,

S0 =
1

2⇡vF

X

�

Z
dxdt (@t✓�)

2
� v2F (@x✓�)

2, (4.28)

with the new fields ✓� = ✓L� � ✓R�, �� = ✓L� + ✓R�. The density is then generalised as

⇢⌘� = �
⌘

2⇡
@x✓⌘�, ⇢� = �

1

⇡
@x✓�. (4.29)
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The full electron-electron interaction is a generalisation of Equation 4.19, where the density

fluctuations of a particular spin species will influence other density fluctuations. Splitting the

field of each spin into the left and right chiral components gives an interaction term that can be

split up into the different possible pairings of chirality. The terms are,

Sint = S1 + S2 + S4 ⇠

Z
dxdt

X

⌘1⌘2⌘3⌘4
�1�2

 †
⌘1�1 ⌘2�1 

†
⌘3�2 ⌘4�2 , (4.30)

S4 =

Z
dxdt

X

�,⌘

g4?⇢⌘�⇢⌘�̄ + g4||⇢⌘�⇢⌘�, (4.31)

S2 =

Z
dxdt

X

�

g2?⇢L�⇢R�̄ + g2||⇢L�⇢R�, (4.32)

S1 =

Z
dxdt

X

�

g1|| 
†
L� 

†
R� L� R� + g1? 

†
L� 

†
R�̄ L�̄ R� + h.c, (4.33)

where the introduction of ? and || is to denote whether the interaction is between different

spins or the same spins respectively. The umklapp terms that should appear with g3 are again

ignored. Mirroring the spinless case, g1|| can be rearranged to give a contribution of the form

g2||. However, g1? contains interactions between different spin species and cannot be formulated

in terms of densities.

Ignoring the g1? term for the moment, the g2 and g4 spinful terms have terms that mix the

✓" and ✓# fields. A rotation is therefore made to diagonalise the Hamiltonian, which introduces

charge and spin fields,

✓⇢ =
1
p
2
(✓" + ✓#), ✓� =

1
p
2
(✓" � ✓#),

�⇢ =
1
p
2
(�" + �#), �� =

1
p
2
(�" � �#). (4.34)

With these definitions, and the patience to perform some algebra, both the g2 and g4 terms can

be absorbed into a quadratic description. The g1 term however results in a different kind of term

upon bosonising,

 ̄L" ̄R# L# R" ⇠ e�i(✓L"+✓R#�✓L#�✓R") = e�2i
p
2✓s . (4.35)
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Adding this to its Hermitian conjugate gives a final action,

S =
1

2⇡⌫⇢K⇢

Z
dxdt(@t✓⇢)

2 + ⌫2⇢(@x✓⇢)

+
1

2⇡⌫�K�

Z
dxdt(@t✓�)

2 + ⌫2�(@x✓�)
2 +

Z
dxdt 2g1? cos

⇣
2
p

2✓�
⌘
. (4.36)

The ⌫a and Ka parameters, where a = {⇢, �}, are given by,

Ka =

r
2⇡vF + g4a � g2a
2⇡vF + g4a + g2a

, ⌫a = vF

r⇣
1 +

g4a
2⇡vF

⌘2
�

⇣ g2a
2⇡vF

⌘2
, (4.37)

for g2a = g1|| � g2|| ± g2?, g4a = g4|| ± g4?,

where ⇢ corresponds to the positive sign choice and � for the negative. Note that the action could

be equivalently described with �⇢ instead of ✓⇢ which amounts to using the form of Equation

4.24 with the new spinful Luttinger parameters.

Now the spin and charge fields are completely decoupled and unaffected by each other’s

dynamics. This is the spin-charge separation mentioned at the beginning of the chapter and

presents an example of fractionalisation. The spin sector however now contains a curious cosine

term. This will have no affect on the charge transport but will obviously result in different

behaviour for the spins. Terms of this form will be explored further in Chapter 6.

A final side note is that all of this analysis relied on bosonising the full Tomonaga-Luttinger

model with its infinite spectrum but many systems have a finite bandwidth. To mimic this in the

bosonic fields, a factor of (2⇡↵)�1/2 where ↵ is related to the bandwidth is introduced to the

bosonisation formula as well as a restriction on the momentum integrals of Equation 4.7 to the

bandwidth.

This concludes the introduction to Luttinger liquids. The transport properties of both the

spinless and spinful model will be explored in Chapter 6. The great strength of this model is in

its applicability to a variety of situations, not just the QPC. Carbon nanowires [44] and chains of

gold atoms [45] can be fabricated and they produce results that are consistent with a Luttinger

liquid being the underlying description. The fractional quantum Hall effect contains a chiral
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Luttinger liquid, which will also be explored in Chapter 6. Signatures of this state have been

experimentally verified [46]. A large class of materials display more general 1D behaviour,

when the cosine terms modifies the pure Luttinger liquid action [39]. The past few decades

have shown that 1D physics is not only the theorist’s playground, but the experimentalist’s too.
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CHAPTER 5

CONDUCTANCE FORMALISMS

The variety of regimes of transport that were covered in the opening chapter suggests that a

diverse range of mathematical approaches are needed to extract the conductance. The three

microscopic techniques that will be discussed in this chapter are the Kubo, Landauer, and non-

equilibrium Green’s function (NEGF) formalisms. The Kubo technique is the most theoretically

direct way of finding the conductivity, where the current due to an applied electromagnetic field

is calculated perturbatively. The conductivity, by definition, relates these two quantities. The

difficulty comes from mathematically computing the response to the perturbation.

The Landauer formalism is based on how current is passed through mesoscopic systems

experimentally. It introduces additional concepts to keep the calculation tractable rather than

mathematical approximations of the Kubo formalism. Complicating the conceptual understand-

ing allows the calculation to become that of a scattering problem. In the most simple cases,

finding the conductance is no more complicated than the quintessential quantum mechanics

problem of finding the transmission of an incident particle on a potential barrier. The final tech-

nique is the NEGF formalism where the entire system is included in the description by using the

Keldysh technique. However, the accuracy of the description comes at the price of the analytical

results becoming harder to extract.

55



CHAPTER 5. CONDUCTANCE FORMALISMS

5.1 Kubo

At the heart of the Kubo formalism is the fluctuation-dissipation theorem (FDT). This deep

underlying relation between the fluctuations of a system at equilibrium and the method by which

the system dissipates excess energy allows the full non-equilibrium description to be avoided.

Dissipation is interlinked with conductivity, as the scattering of electrons from their original

path is what causes a finite conductivity. If electrons do not get scattered, an electric field would

infinitely accelerate the particles. This would produce an infinite current from an infinitesimally

weak applied field and an infinite conductance.

The current in the Kubo formalism is induced by a perturbing electric field. Conceptually,

this is equivalent to putting a sample of material into an electromagnetic cavity and looking at

the absorption of the field in the cavity due to the presence of the sample [6]. Obtaining the

frequency-dependent response is natural for this formalism. The proof of the FDT will now be

presented, following Reference 28. Using the FDT depends on the perturbing field being weak,

therefore the linear response R(x, t), to an external perturbation P (x0, t0) defines the general

susceptibility �,

R(r, t) =

Z
dr0
Z

dt0�(r, r0, t, t0)P (r0, t0) +O(P 2), (5.1)

for sufficiently weak perturbation. If there is time and translational invariance, then the sus-

ceptibility will depend on the difference in space and time �(r � r0, t � t0). This allows the

transformation to a diagonal basis of a single momentum k and frequency ! so that,

R(k,!) = �(k,!)P (k,!). (5.2)

Any response that is at a different frequency to the perturbing field indicates non-linear

behaviour, where the Kubo formalism is no longer applicable. A macroscopic response in

quantum mechanics will be the expectation of some single particle operator, X , that has an

expansion in terms of the eigenstate fields, R(r, t) =
P

ij

⌦
 ̄i(r, t)Xij j(r, t)

↵
. The action of

the system will include the perturbation P (r, t), locally coupled to the single particle operator
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that responds to the perturbation,

S[ ̄, , P, A] = S0[ ̄, ] +
X

ij

Z
dr

Z
dt ̄i(r, t)Xij j(r, t)[P (r, t) + A(r, t)], (5.3)

where A(r, t) is a source field. The expectation value of operator becomes

R(r, t) = �
�

�A(r, t)
ln(Z[P,A])

����
A=0

, where Z[P,A] =

Z
D ̄D eiS[ ̄, ,P,A]. (5.4)

For a weak perturbing field, the logarithm of the partition function can be expanded to linear

order in P (r, t),

ln(Z[P,A = 0]) = ln(Z[P ])

����
P=0

+

Z
dr0
Z

dt0
� ln(Z[P ])

�P (r0, t0)

����
P=0

P (r0, t0). (5.5)

The first term in the expansion will be independent of P . Without the perturbation, the

average of the operator is zero (or can be shifted to be zero) so only the first order term needs

to be included. The response becomes,

R(r, t) = �

Z
dr

Z
dt

�2

�A(r, t)�P (r, t)
ln(Z[P,A])

����
A=P=0

P (r, t). (5.6)

Comparing this equation to the definition of the susceptibility in Equation 5.1 gives an equation

for the susceptibility. Using the chain rule, it becomes,

�(r, r0, t, t0) = �
1

Z[P,A]

�2

�A(r0, t)�P (r0, t0)
Z[P,A]

����
A=P=0

. (5.7)

Performing the functional derivative shows that the susceptibility is related to the two-point

function hX(r, t)X(r0, t0)i. When the expectation value of X is shifted to zero, the two-point

function can be directly related to the fluctuations,

�(r, r0, t, t0) = h(X(r, t)� hXi)(X(r0, t0)� hXi)i , (5.8)
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which is the statement of the FDT. The susceptibility characterises how the system disperses

the perturbation and it has been related to the fluctuations of an operator about its average.

To derive the exact expression for the response to an applied electric field, we need to

account for the fact that it is actually the vector potential that couples to the action. In this case,

the perturbation and source term of Equation 5.3 are the same field. The current in response to

a constant electric field is given by,

j(x, t) =

Z
dx0dt0�(x, x0, t, t0)@tA(x

0, t0), =) �!(x, x
0) =

�!(x, x0)

!
. (5.9)

A choice of gauge for the A field can be chosen that eliminates the scalar potential from the

description. The calculation of this average is often not simple, as perturbative methods have to

be used for a non-quadratic action. In this thesis, perturbative methods are not used because the

Luttinger liquid action is quadratic.

One consideration to bear in mind is that the susceptibility must be causal. The system

cannot respond to a perturbation before it has been applied, therefore the external field in the

future should not affect the response. This alters the integral limits in Equation 5.1 and 5.9 to be

only for t0 < t. The retarded current-current correlator is therefore the actual susceptibility, but

as seen in Chapter 3, a perturbation theory can only be built from contour-ordered expressions.

Therefore the calculation of the average is done with the contour-ordered contribution and then

is analytically continued to real-time.

5.2 Landauer

The Landauer formalism appeals to the setup of transport experiments in order to avoid the full

non-equilibrium description. In contrast to the Kubo technique - where the definition of current

across the system came from using a perturbing electric field with no reference to how this field

is generated - the Landauer formalism [47] centres how the external circuit causes a potential

difference across the sample. The rallying cry of this formalism is ‘conductance is transmission’

which concisely states its main result. It is intuitively appealing that the conductance of a
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sample can be understood as a scattering problem. Indeed, scattering problems had been used

to describe the behaviour of tunnel junctions as early as 1930 [48]. The introduction of the

concepts within this formalism, however, provide a more conclusive understanding as to why

this approach works in many other cases.

The crucial concept that is introduced is the reservoirs between which our sample of mate-

rial lies [7, 49]. These reservoirs can freely exchange electrons to and from the wire without

changing the internal state of the reservoir1, with the energy required to extract an electron being

the chemical potential. This feature also appears in the non-equilibrium description and corre-

sponds to experiment where the wire is connected to an external circuit and particle number in

the sample is not conserved. Current will only flow when the chemical potential of the reser-

voirs either side of the sample are different. If the chemical potentials are equal, any current one

way will be exactly cancelled by current flowing in the opposite direction. It is this spatial dif-

ference of potential energy boundary conditions that self-consistently induces an electric field

across the sample, as opposed to the fundamental external electric field of the Kubo formalism.

These reservoirs (or contacts) are connected to leads which funnel a wavepacket into the

sample. The leads are waveguides with quantised transverse modes, where the quantisation

behaves in the same way as the low-dimensional systems considered in Chapter 1.2. Essentially

this replaces the full open system description of the reservoirs with a scattering problem for the

leads and wire system. This partitioning of the system is shown in Figure 5.1. A scattering

description is where an incident particle, prepared infinitely far away, hits a potential barrier. It

will either pass through and continue infinitely past the sample with a possible additional phase,

or reflect back. The potential in the direction of motion in the leads is flat and particles will only

encounter a barrier, and possibly reflect, when reaching the sample. The leads are also assumed

to perfectly eject the particle into a reservoir - known as a reflectionless contact.

This final reflectionless assumption means that the right moving electrons in the left lead

can only originate from the left reservoir and vice versa for the left moving electrons in the

right lead. The problem is now in terms of the scattering of these asymptotic solutions (also

1This requirement is interchangeable with considering the reservoirs to be infinite.
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Figure 5.1: The partitioning of the system into reservoirs, leads and sample that forms the basis
of the Landauer formalism.

called channels or modes) by the sample. To understand the maths used, we will begin with the

perfectly transmitting one-channel case. As the system is in a steady state, the current can be

measured through any slice of the system, as the current through the slice is independent of the

chosen site of the slice.

In a single channel there are a continuum of states in the unconstrained direction of the

system, so any quantity needs to be averaged over these states. The current is then the difference

in the averaged velocity for the right and left channels,

I = q

Z
dk h L,k| v | L,ki � h R,k| v | R,ki . (5.10)

These states originate from the reservoirs that are described by a free Fermi gas, | L,ki, with

dispersion ✏ = k2/2m and charge e. The velocity of these states is given by the group velocity

v = d✏
dk . Changing the integration to be over energy introduces the density of states, g(✏) =

1
2h̄⇡

dk
d✏ , where an extra factor of a half occurs as the dispersion is split up into positive and

negative momentum. The current becomes,

I =

Z
d✏ g(✏)

d✏

dk
(| L,✏|

2
� | R,✏|

2). (5.11)

The energy dependence of both the density of states and velocity cancel out exactly. As the

states are injected into the leads by the reservoirs, the probability of the states being occupied

will be given by the Fermi-Dirac distribution for their respective chemical potentials. In the
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ballistic case where there is no potential barrier, this results in,

I =
e

h

Z
d✏ f(✏� µL)� f(✏� µR), (5.12)

a form which makes apparent the importance of differing chemical potentials. If µL = µR, then

the two Fermi functions completely cancel out, which results in no current flowing. If a voltage

difference is applied to left reservoir then µL = µ + eV . In the linear bias regime, the Fermi

functions can be expanded in terms of V to give,

I =
e

h

Z
d✏

df

d✏
eV, =) G = I/V =

e2

h
. (5.13)

This is the quantisation of conductance. The final step is possible because the derivative

of a Fermi function is a delta function at zero temperature. At finite temperatures, there is a

broadening of this step. The multiple discrete steps that occur in experiments, shown in Figure

1.2, are a result of changing the details of the transverse quantisation.

Not all transverse modes, for given reservoir chemical potentials, are energetically accessi-

ble. Transverse quantisation of a single particle of mass m is often modelled with a quantum

well that has eigenstates of En = h̄2⇡2n2/2mL2
y, for integer n. Upon increasing the size of

the constriction Ly, the energy difference between the modes will decrease. The energy of a

particular mode can then drop beneath the chemical potential of the reservoirs and suddenly

become accessible to the electrons. The orthogonality of the different modes results in the total

conductance of Equation 5.13 being multiplied by the number of modes that are contributing to

the current - each mode supplying one quantum of conductance. Figure 5.2 shows this process.

This argument is furthered by Lesovik et al. [50] to explicitly show why the quantum point

contacts used in experiments show the same features as the idealised case.

The more general case is when multiple modes impinge upon the sample and have a prob-

ability of being reflected. This is described by a scattering matrix S, which encapsulates the
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Figure 5.2: (a) The three lowest energy transverse modes are shown for a 1D wire. (b) The
dispersion of the transverse modes is shown for the longitudinal momentum of the wire. The
electrons in the energy window µ1 � µ2 are the ones that contribute to the current. Decreasing
the confinement shifts the dispersions to lower energies, allowing another channel to be energet-
ically accessible. (c) Each channel contributes e2/h to the conductance resulting in the jumps
upon becoming accessible. The side gate voltage Vsg is increased to relax the constriction.

Figure 5.3: The N incoming channels from the left/right of the sample are connected to the
outgoing channels on the left and right of the sample. The incoming channels either side are
not related to each other due to the requirement of the contacts to be reflectionless.
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problem that is displayed graphically in Figure 5.3

0

B@
OL

OR

1

CA =

0

B@
r t

t
0 r0

1

CA

0

B@
IL

IR

1

CA , (5.14)

where I{L,R} is a N dimensional vector of the incoming particles in the left or right leads and

O{L,R} are the outgoing solutions. The N⇥N matrices r, t encode how the solutions transform

after scattering with the sample. Requiring that probability is conserved means that S†
S = .

In terms of the reflection and transmission matrices, this requirement states that,

X

n0

|rnn0 |
2 + |t0nn0 |

2 = 1, (5.15)

for any n where n, n0 index the N ⇥ N matrix. Each channel in the system must either reflect

or transmit. Often there is time-reversal symmetry so the complex conjugate of the scattering

matrix, which swaps positive and negative momenta, gives another valid description of the

system. From this, it follows that S = ST and t = t
0.

The current is evaluated on the left side of the sample. This can be chosen as a steady state

solution will have a current that is independent of position. Therefore the current can be written

as the difference in incoming and outgoing states,

I = e

Z
dk hIL| v |ILi � hOL| v |OLi (5.16)

= e

Z
dk hIL| v |ILi � hIL| vr

2
|ILi � hIR| vt

2
|IRi ,

with the second line utilising the orthogonality of |IRi and |ILi. Using Equation 5.15 the two

IL terms can be combined. Swapping to an energy integral and inputting the probability that

the modes are occupied, gives the famous Landauer result,

I = e

Z
d✏ Tr

h
t(✏)(fL(✏)� fR(✏))

i
. (5.17)
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The trace enforces the sum over the different contributing modes. In the spinful case there

are two modes, spin up and spin down, that will be decoupled from each other in the reservoirs.

When the voltage across the sample is the same for both spins, and they are both perfectly

transmitted, there will be a conductance of 2e2/h. The presence of the transmission matrix

allows fractions of the conductance to appear.

5.2.1 Contact Resistance

The form of the Landauer formula In Equation 5.17 is not the only version of this formula.

Another form existed that predicted infinite conductance across a 1D sample, exactly the issue

brought up at the start of this thesis. The resolution of these competing equations was found

by the multi-terminal Landauer-Büttiker formalism [51], which can derive both forms and was

interpreted by Imry [6].

The idea is that for the two-terminal conductance measurement, the voltage is deep within

the contacts and not in the leads. The voltage drop, and therefore the dissipation, in the ballistic

regime occurs at the interface of the leads and the higher-dimensional contacts. Although the

contacts are reflectionless, this does not preclude electrons from being reflected when trying to

enter the leads. This ‘filtering out’ of many electrons in the contacts to a few in the leads is the

source of resistance - measuring the voltage within the leads will not include this. The multi-

terminal geometry can reproduce the infinite result with voltage probes actually measuring the

voltage in the sample.

The explicit value of the resistance can be found through using the Landauer formula G�1 =

hM/2e2, where M is the number of transport channels. The resistance decreases with the

number of modes participating in transport, which is why the effect only matters at the quantum

level. The resistance for a single mode is approximately 12.9kW. In a ballistic system with a

few modes, any description of two-terminal conductance must explicitly take into account the

contacts. This idea will be used when calculating the conductance through a Luttinger liquid in

the next chapter.
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5.3 Non-Equilibrium

The previous two sections explored ways to side-step the full non-equilibrium description. Now

the coupling to the leads will be explicitly considered, removing the need to introduce leads that

transmit perfectly. This section follows work done by Meir and Wingreen [52, 53] to develop an

expression for the current through a generic interacting 1D region. Unlike this chapter thus far,

where intuition where intuition and concepts were introduced, this section is purely an exercise

in QFT fluency.

The system under consideration shares many features with the Landauer setup but does not

contain the leads, with the reservoirs now directly tunnelling into the system. The sample will

now be taken to not have a continuum of states but a discrete spectrum, meaning we are dealing

with a quantum dot. Firstly, the Hamiltonian of the system needs to be split up into these

different sections,

H = HL
reservoir +Hdot +HR

reservoir +Htun

=
X

k

✏Lk c
†
L,kcL,k +

X

q

Eqd
†
qdq +

X

k

✏Rk c
†
R,kcR,k

+
X

k,q

VL,q,k

⇣
c†L,kdq + d†qcL,k

⌘
+ VR,q,k

⇣
c†R,k + d†NcR,k

⌘
.

The operators c↵,k, where ↵ = {L,R}, destroy an electron in the left/right reservoirs with a

momentum k. Assuming that the leads are given by a Fermi gas (or liquid with a renormalised

mass/charge) results in ✏↵k being a quadratic dispersion. The other set of operators, dq, describe

creating and destroying electrons in the sample, expressed in terms of their eigenvalues q. For

the moment, spinless fermions will be considered but this formalism can be generalised to more

channels.
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Tunnelling into the system occurs with an electron in the ↵ reservoir with momentum k

becoming the eigenstate q in the dot. The strength of that hopping is given by V ↵
q,k. The current

can be defined from the continuity equation to be the quantum average of the time derivative

of the number of electrons, J↵ ⌘ �e
D
Ṅ↵

E
. The number of fermions in the ↵ reservoir is

N↵ =
P

k c
†
↵,kc↵,k. Using the Heisenberg equation of motion, where h̄ = 1,

J↵ = �ie h[H,N↵]i

= �ie

*
X

k0,q

[V ↵
q,k0

⇣
c†↵,k0dq + d†qc↵,k0

⌘
,
X

k

c†↵,kc↵,k]

+
= ie

X

k,q

V ↵
q,k

⇣D
c†↵,kdq

E
�
⌦
d†qc↵,k

↵ ⌘
.

The only non-zero commutator of N↵ will be with the tunnelling part of the Hamiltonian

as c commutes with d and [N↵, c
†
L,kcL,k] = 0. Using functional integration to express these

averages, the quantum Hamiltonian is changed into an action with classical fields  k,�q where

| ↵,ki = e ↵,kc
†
↵,k |0i and |�qi = e�qd

†
q |0i. This results in an action of,

S[ ,�] = SL
res + Swire + SR

res + Stun, (5.18)

S↵res =

Z

K

dt

Z

K0
dt0
X

k

 ̄↵,k(t)g
�1
↵,k(t, t

0) ↵,k(t
0), (5.19)

Swire =

Z

K

dt

Z

K0
dt0
X

q

�̄q(t)X
�1
q (t, t0)�q(t

0), (5.20)

Stun =
X

↵,k,q

Z

K

dt V ↵
q,k

⇣
 ̄↵,k(t)�q(t) + �̄q(t) ↵,k(t)

⌘
. (5.21)

The time integral is taken along the Keldysh contour as the system is not guaranteed to be in

equilibrium. The Green’s functions of the isolated reservoirs and dot are given by g and X

respectively. The Green’s functions can be expressed as averages over parts of the action,

ig↵,k(t, t
0) =

⌦
 ↵,k(t) ̄↵,k(t

0)
↵
S↵
res

, iXq(t, t
0) =

⌦
�q(t)�̄q(t

0)
↵
Swire

. (5.22)
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Introducing a source field into the action allows the current to be expressed as a derivative

with respect to this source field,

J↵ =
1

Z

Z
D D�

X

k,q

ieV ↵
q,k

h̄
( ̄↵,k�q � �̄q ↵,k)e

iS

=
1

Z

�

�A↵

Z
D D� exp

 
iS +

X

↵

Z

K

dtA↵(t)j↵(t)

!�����
A↵=0

(5.23)

where j↵(t) =
X

k,q

ieV ↵
q,k( ̄↵,k(t)�q(t)� �̄q(t) ↵,k(t)), Z =

Z
D D�eiS.

5.3.1 Integrating Out Quadratic Fields

One of the most useful features of functional integrals is that an effective description of the

problem can be obtained by integrating out quadratic fields. As the dot is the object that is of

most interest, the two reservoir actions will be integrated out. Performing the integral of the left

reservoir first and denoting part of the action as I ,

I =

Z
D L exp

✓
i(SL

res + SL
tun) +

Z

K

dtAL(t)jL(t)

◆

=

Z
D L exp

 
iSL

res + i
X

k,q

Z

K

dtVL,q,k( ̄L,k�q(1 + eAL) + �̄q L,k(1� eAL))

!
.

Shifting the fields in the following way,

 L,k(t
0) !  L,k(t

0)�
X

q

VL,q,k

Z
dt1 gL,k(t1, t

0)�q(t1)(1� eAL(t1))

 ̄L,k(t) !  ̄L,k(t)�
X

q

VL,q,k

Z
dt2 gL,k(t, t2)�̄q(t2)(1 + eAL(t2))

allows the usual quadratic action functional integral formula of Equation A.3 to be used.
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A change of the position of the minimum does not affect the Gaussian integral result so I

becomes,

I =

Z
D Le

iSL
res

⇥ exp

 
�i
X

k,q,q0

Z
dt

Z
dt0 VL,q,kVL,q0,k�̄q(t)

⇣
1 + eAL(t)

⌘
gL,k(t, t

0)�q0(t
0)
⇣
1� eAL(t

0)
⌘!

.

The exact same process can be repeated using  R,k and AR to give a similar result where

L ! R, with both contributions being multiplied together. The fields in the partition function

Z also need to be integrated out, which won’t involve adding a source field,

Z =

Z
D�eiSwire[�]

Z
D Le

i(SL
res[ L]+SL

tun[ L,�])

Z
D Re

i(SR
res[ R]+SR

tun[ R,�])

=

Z
D�eiSwire exp

 
�

X

↵,q,q0,k

iV ↵
q,kV

↵
q0,k

Z
dt

Z
dt0�̄q(t)g↵,k(t, t

0)�q0(t
0)

!

⇥

Z
D Le

iSL
res[ L]

Z
D Re

iSR
res[ R]

=

Z
D�eiSeff

Z
D Le

iSL
res[ L]

Z
D Re

iSR
res[ R]. (5.24)

The integrals over  L and  R will cancel out in the numerator and denominator of the current

expression. This leaves us with just the effective action,

Seff = Swire �

Z

K

dtdt0
X

↵,q,q0,k

V ↵
q,kV

↵
q0,k�̄q(t)g↵,k(t, t

0)�q0(t). (5.25)

Performing the functional derivative in Equation 5.23 with the new action from integrating out

the fields gives,
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J↵(t1) =
1

Z 0

Z
D�eiSwire

⇣
� i

X

q,q0,k

V ↵
q,kV

↵
q0,k

Z
dt

Z
dt0

⇥ e�̄q(t)g↵,k(t, t
0)�q0(t

0)�(t� t1)� e�̄q(t)g↵,k(t, t
0)�q0(t

0)�(t0 � t1) +O(A)
⌘

⇥ exp

0

@�i
X

↵,q,q0,k

Z
dt

Z
dt0 V ↵

q,kV
↵
q0,k�̄q(t)

⇣
1 + eA↵(t)

⌘
g↵,k(t, t

0)�q0(t
0)
⇣
1� eA↵(t

0)
⌘
1

A

������
A↵=0

= �
ie

Z 0

Z
D�
⇣ X

k,q,q0

V ↵
q,kV

↵
q0,k

Z
dt�̄q(t1)g↵,k(t1, t)�q0(t)� �̄q(t)g↵,k(t, t1)�q0(t1)

⌘
eiSeff/h̄,

(5.26)

where Z
0 =

R
D�eiSeff/h̄.

5.3.2 Real-Time Expression

With the reservoir fields now integrated out, the self-energy is defined as ⌃↵,qq0,k(t, t0) ⌘ V ↵
q,kV

↵
q0,kg↵,k(t, t

0).

Equation 5.26 contains averages of terms that are bilinear in the field � over an effective action that

includes these reservoirs. The new Green’s function, iGqq0(t, t0) ⌘
⌦
�q(t)�̄q0(t0)

↵
Seff

, describes the

effective excitations of the system in the presence of the reservoirs that scatter from eigenstate q0 to q.

The current expression can be written as,

J↵(t1) = e
X

k,q,q0

Z

K
dtGqq0(t1, t)⌃↵,qq0,k(t, t1)� ⌃↵,qq0,k(t1, t)Gqq0(t, t1). (5.27)

The sum over q, q0 is the same as taking the trace when the states are expressed in an eigenstate basis.

This allows some of the indices to be dropped to give,

J↵(t1) = e
X

k

Trqq0
h Z

K
dtG(t1, t)⌃↵,k(t, t1)�⌃↵,k(t1, t)G(t, t1)

i
. (5.28)

This expression is still over the Keldysh contour which now needs to be continued to a real-time

expression. Using Langreth’s theorem from Equation 3.18 and Fourier transforming gives the final ex-

pression of,
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J↵ = e
X

k

Trqq0
h Z 1

�1

d!

2⇡
G

r(!)⌃<
↵,k(!) +G

<(!)⌃a
↵,k �⌃

r
↵,k(!)G

<(!)�⌃<
↵,k(!)G

a(!)
i

(5.29)

= e
X

k

Trqq0
h Z 1

�1

d!

2⇡
�G(!)⌃<

↵,k(!)�G
<(!)�⌃↵,k(!)

i
, where �A ⌘ Ar

�Aa. (5.30)

This expression is very general and difficult to manipulate any further without first making assumptions

about the form of the coupling to the leads. In quantum dots, especially for the Coulomb blockade

regime, a resonant-level model is used where the coupling to only one of the eigenstates is considered

[30, 54]. Often, in order to proceed further, the kinetic equation derived in the Keldysh chapter is used to

re-express G<. The current in the reservoirs can also be taken to be equal in magnitude but in opposite

directions and can be related using JL = (JL � JR)/2. This allows some simplifications to be made in

certain cases.

To summarise the arduous process to arrive at Equation 5.30, the current in the reservoirs is first

expressed by using the continuity equation. An effective description of the isolated system that includes

the effect of the reservoirs is then found. Although somewhat difficult in practice, the Green’s function

can then be calculated. The self-energy term contains both the coupling to the reservoirs and the Green’s

function of the reservoirs. Having found both of these terms, their retarded, advance, and lesser versions

are found by analytically continuing from the Keldysh contour. The self-energy can all be found for all

versions as the reservoirs are in equilibrium. Finding the different types of Green’s function for G is

harder, as they are linked through the kinetic equation. Taking the trace over all modes then gives the

current, from which the conductance can be found.

These three ways of calculating conductance; Kubo, Landauer, and NEGF, will be used in the fol-

lowing chapters of this thesis. Although this chapter has often viewed them as contrasting, these methods

are flexible enough to be modified to account for their weaknesses. As an example, the Kubo formula

could be rewritten using an action along the Keldysh contour which would encapsulate non-equilibrium

effects. Considering the action as varying spatially would allow reservoirs to be accounted for in the

Kubo formula too, which will be undertaken in Chapter 6.1.2. Even the Landauer formalism can be

generalised to the interacting case and described in terms of Green’s functions and self-energy terms that

couple to the leads. Choosing which formalism to use is more a question of taste than necessity.
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CHAPTER 6

CONDUCTANCE IN LUTTINGER

LIQUIDS

Having extensively detailed many different techniques, our attention can now be turned towards examin-

ing 1D models. This chapter will focus on passing current through a Luttinger Liquid: an obvious place

to start from due to the applicability of the model to many different physical situations. The complexity

of the analysis will be built up over the course of the chapter in order to understand the experimentally

relevant model.

The first task is to understand how an infinite Luttinger liquid conducts. Contacts will then be at-

tached either side of a Luttinger liquid wire, in the knowledge that their behaviour was crucial in previous

analyses of the ballistic regime. This compliments the original debate on the relevance of contacts in the

Landauer formalism, now encompassing interacting electrons. The nature of the coupling to the contact

will be explored by showing that the equilibration between the Luttinger liquid and reservoir is what

controls the conductance.

Manipulating the contacts is not the only way in which to generate interesting transport behaviour, as

the presence of an impurity completely changes the transport properties. The behaviour of a single im-

purity on the conductance will be investigated in detail next, as this calculation will form a foundational

basis for the more complex situations that will be considered going forwards. This requires the use of

the renormalisation group (RG) technique which is introduced in Appendix D.

Furnished with the knowledge of how one channel is affected by an impurity, we can consider
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backscattering in multi-channel Luttinger liquids. Fractional conductance can be achieved by com-

pletely reflecting a portion of the affected channels. There is a wealth of theoretical papers analysing

the response of Luttinger liquids to different types of backscattering or impurities [55, 56, 57], but our

attention will be focused on a recent paper by Shavit and Oreg [58] that claims that this backscattering

mechanism is the cause of the fractional plateaus observed in experiment.

This chapter functions as a literature review of how fractional conductance can be achieved by open-

ing gaps in the spectrum of a two-channel gapless system, with the resulting current being reduced by

a transmission factor. So much focus is given to this topic as the original direction of our research

was to explore this exact situation - building on the general multi-channel formulation in Reference 56.

Shavit and Oreg thoroughly covered this ground before us, which prompted looking into the conductance

through a gapped system, explored at the end of the chapter. This led to our finite model that is explored

in the final two chapters.

6.1 Conductance of a Clean Single Channel Luttinger Liquid

6.1.1 Infinite Luttinger Liquids

As an introduction to the application of conductance techniques, the conductance of an infinite Luttinger

liquid will be found using the Kubo formula developed in the Section 5.1. The first thing required is

to include the electromagnetic potential into the Luttinger liquid action, which will be carried out by

considering the Hamiltonian and using minimal coupling. The Hamiltonian can be obtained through

performing the usual Legendre transformation on the action where ⇧ = �S/�(@t✓). The two quantities

are related1 as,

S =

Z
dtdx L(✓(x, t), @t✓(x, t)) =

Z
dtdx

⇣
⇧(x, t)@t✓(x, t)�H(✓(x, t),⇧(x, t))

⌘
. (6.1)

The Hamiltonian with the shift will be, suppressing the field dependencies,

H(⇧, ✓) =

Z
dx

⌫K

2⇡
(⇡⇧� eA)2 +

⌫

2⇡K
(@x✓)

2, (6.2)

1A technical point is that there is some subtlety about going between the formalisms as a specific time point is
chosen, and hence the disappearing of the time integral in the Hamiltonian formulation. As it is only a brief detour,
these will be not dealt with explicitly - plus the Hamiltonian is a constant of the motion anyway!
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where minimal coupling causes ⇧ ! ⇧ + eA/⇡. The factor of ⇡ comes from actually performing the

substitution on the derivative of the phase field that is the conjugate to the density ✓, @x� = ⇡⇧. This can

now be put back into the action S[A,⇧, ✓] by introducing the ⇧@t✓ term again. In imaginary time, this

term will become i⇧(x, ⌧)@⌧✓(x, ⌧). The response can be calculated using Equation 5.7, which gives,

�(x, x0, ⌧, ⌧ 0) = �
1

Z

�2

�A�A

Z
D✓e�S[A,⇧,✓]

����
A=0

=
1

Z

Z
D✓

�

�A

he⌫K
⇡

(⇡⇧� eA)e�S[A,⇧,✓]
i����

A=0

= �e2⌫2K2
⌦
⇧(x, ⌧)⇧(x0, ⌧ 0))

↵
S[A=0,⇧,✓]

+
e2⌫K

⇡
�(x� x0)�(⌧ � ⌧ 0), (6.3)

where the field dependencies have been but back in on the final line. The delta functions occur due to the

second functional derivative acting on the field A(x0, t0) in the coefficient of the exponential of the action.

This term is known as the diamagnetic part as it can be traced back to the A2 term that is produced by

minimal coupling, which results in a contribution to the current that is proportional to the field. This is

in contrast to the paramagnetic part, which is the current at A = 0 and is the first term in Equation 6.3.

The average can be calculated [32] by introducing a source field,

⌦
⇧(x, ⌧)⇧(x0, ⌧ 0))

↵
S[⇧,✓]

=
1

Z

�2

�B�B

Z
D⇧D✓ exp

✓
�S[⇧, ✓] +

Z
dxd⌧⇧(x, ⌧)B(x, ⌧)

◆

=
1

Z 0
�2

�B�B

Z
D✓ exp

✓
1

2⇡⌫K

Z
dxd⌧(i@⌧✓ +B)2 � ⌫2(@x✓)

2

◆

= �
h@⌧✓(x, ⌧)@⌧✓(x0, ⌧ 0)i

⇡2⌫2K2
+

1

⇡⌫K
�(x� x0)�(⌧ � ⌧ 0). (6.4)

This results in a susceptibility of,

�(x, x0, ⌧, ⌧ 0) =
e2

⇡2
⌦
@⌧✓(x, ⌧)@⌧✓(x

0, ⌧ 0)
↵
S[✓]

. (6.5)

This cancellation of the diamagnetic part should be expected as the original model has a linearised

fermionic spectrum, which upon minimal coupling will only generate terms linear in A. This cancel-

lation is true for all non-superconducting electronic states, although the proof gets more involved than

the natural cancellation presented here. It generically occurs in Fermi liquids because of the analyticity

properties when continuing the paramagnetic term back to real time [28]. An alternative operator ap-

proach in Luttinger liquids is shown by Shankar, where integration by parts acts on the time-ordering
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operator to cancel the diamagnetic term [59].

The susceptibility above has been calculated in imaginary time. The final result should be in real-

time and must be causal as was explained in Chapter 5.1. The imaginary-time Matsubara frequencies, !̄,

must be continued to the retarded two-point average by setting i!̄ ! ! + i�. The conductivity can be

found through dividing the calculated susceptibility by !̄ giving,

�(x, x0; !̄) =
e2

!̄⇡2

Z �

0
d⌧
⌦
@⌧✓(x, ⌧)@⌧✓(x

0, 0)
↵
ei!̄t. (6.6)

Performing integration by parts twice, the conductivity becomes related to the two-point correlator of the

✓ fields,

�(x, x0; !̄) = �
e2!̄

⇡2

Z �

0
d⌧
⌦
✓(x, ⌧)✓(x0, 0)

↵
ei!̄t = �

e2!̄

⇡2
G!̄(x, x

0). (6.7)

The action of a Luttinger liquid is quadratic in the fields, so this correlator is the Green’s function of

the action that has been Fourier transformed into frequency. In general, the Luttinger parameters ⌫,K

can vary in space so the Green’s function of a Luttinger liquid must satisfy,

⇣
� @x

v(x)

⇡K(x)
@x +

!̄2

⇡v(x)K(x)

⌘
G!̄(x, x

0) = �(x� x0). (6.8)

There is a sign change from what would be expected from Equation 4.26 due to the rotation into imag-

inary time. When the parameters do not vary in space, there is translational invariance. A Fourier

transform can then be taken to obtain,

G(q,!) =
h 1

(!̄ � i⌫q)(!̄ + i⌫q)

i
⇡⌫K =) G(x� x0; !̄) =

�⇡K

2!̄
e�i!̄|x�x0|/⌫ , (6.9)

where a contour integral has been performed to go from momentum to position space. The conductivity

reduces to,

�(x, x0; !̄) =
e2K

2⇡
e�i!̄(x�x0)/⌫ . (6.10)

The continuation back to real-time of the conductivity can be performed without any issues i!̄ ! !+ i�,

due to the cancellation of the diverging part.
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To find the conductance from the conductivity, the total current must be found. This is defined to be,

I(x, t) =

Z L

0
dx0
Z

d!

2⇡
ei!t�!(x, x

0)E!(x
0). (6.11)

where ! without the bar corresponds to the frequency of the perturbing electric field. A static electric

field over the entire system will be given by E!(x) = 2⇡�(!)@xV (x), where the factor of 2⇡ eliminates

the one that comes with the now redundant Fourier transform. This results in,

I(x) =
Ke2

2⇡

⇣
V (L)� V (0)

⌘
. (6.12)

This produces the quantum of conductance multiplied by the Luttinger parameter, Ke2/h (as the scaling

h̄ = 1 or h = 2⇡ has been used throughout). Therefore the interactions in an infinite Luttinger liquid

renormalise the conductance. The situation, however, is more complex than this infinite translationally

invariant result suggests, with the analysis requiring the inclusion of the process by which the system

changes from higher dimensions into 1D.

6.1.2 Including Reservoirs

When applying the Landauer result to ballistic transport, the importance of the contacts was stressed.

The infinite Luttinger liquid cannot incorporate contacts, so a finite length of Luttinger liquid will now

be investigated.

There are multiple ways of imbuing the effects of the reservoirs into the mathematics. One of the

most popular ways was pioneered by Maslov and Stone [60], and Ponomarenko [61]. They consider

a spatially varying Luttinger parameter because the reservoirs are modelled as a 1D Fermi gas, which

corresponds to K = 1. Despite the instability of a Fermi gas in 1D, which was explained in Chapter

4.1, this is permitted as the reservoirs are higher-dimensional which stabilises the state. The inflow of

particles into the sample will be on one line, with particles off this line being reflected at the contact,

so the modelling as 1D captures this aspect. The system is split into three regions; two outside regions

where KL = 1, and the wire that connects these that has a Luttinger parameter of KW . If an adiabatic

connection between the parts is assumed, the parameter will then change sharply at the boundaries of the

section. The spatial variation of the Luttinger parameters is displayed in Figure 6.1.
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Figure 6.1: The Luttinger parameter is made to vary spatially, to reach a value of KL = 1 in the
contacts and KW in the wire which is chosen to be for 0  x < L.

This spatial variation results in the conductance not being renormalised by the interactions. Due to

the breaking of translational invariance by the spatial dependence of the parameters, Equation 6.8 now

has to be fully solved to show this lack of renormalisation. Away from x = 0, x0, L, the parameters are

all constants and the differential equation is homogeneous,

@x
v(x)

K(x)
@xG!̄(x, x

0) =
!̄2

v(x)K(x)
G!̄(x, x

0), (6.13)

which has solutions of G!̄(x, x0) ⇠ e±!̄x/v(x). In the definition of current in Equation 6.11, x0 is only

considered in the wire. Therefore there will be four different regions in x for a fixed x0 to consider; the

two Green’s functions in the wire and reservoir where x < x0 and the two on the right where x > x0.

The total Green’s function is,

G!̄(x, x
0) =

8
>>>>>>>>>><

>>>>>>>>>>:

Ae!̄x/vL , x  0,

Be!̄x/vW + Ce�!̄x/vW , 0 < x  x0,

De!̄x/vW + Ee�!̄x/vW , x0 < x  L,

Fe�!̄x/vL , x > L,

(6.14)

where the diverging solutions are left out. The constants in the above equation are determined by the

boundary conditions, although they will only be constant for a specific value of x0 - changing x0 will
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change the ‘constants’. One of the boundary conditions that specify these ‘constants’ is that the Green’s

function must be continuous everywhere. Any discontinuity would be expressed with a step function,

which would result in the derivatives of delta function appearing on the right hand side of Equation 6.8.

Therefore G!̄(x, x0) will be continuous at x = 0, x0, L.

The boundary condition on the derivatives can be found by integrating Equation 6.8 over a small

width 2�. For y = {0, x0, L},

Z y+�

y��
dx
⇣
� @x

v

⇡K
@x +

!̄2

⇡vK

⌘
G!̄0(x, x0) =

Z y+�

y��
�(x� x0). (6.15)

Considering that the !̄2 term on the left hand side is continuous, the � ! 0 limit will have no contribution

from that term. The boundary condition on the derivatives becomes,

h v(x)

⇡K(x)
@xG(x, x0)

iy+0

y�0
=

8
>><

>>:

0 for y = 0, L

1 for y = x0
. (6.16)

Solving the problem

Substituting the full problem into the boundary conditions at x = 0, L, results in the following equations,

A = B + C, F = De!̄L(1/vK+1/vL) + Ee�!̄L(1/vK�1/vL)

KW

KL
A = B � C,

KW

KL
= Ee�!̄L(1/vK�1/vL) �De!̄L(1/vK+1/vL).

To be mathematically safe, the constants E,D could be redefined to include their !̄ dependent coeffi-

cients but they will all tend to unity as in the d.c. limit2, !̄ ! 0. Therefore, they shall be ignored, but a

full treatment at finite frequencies must include these terms. These now give,

B = �CK̃, E = �DK̃, where K̃ =
1 + KW

KL

1� KW
KL

, (6.17)

which defines the two functions inside the wire either side of the point x = x0,

yL = C(e�!̄x/vW � K̃e!̄x/vW ), yR = D(e!̄x/vW � K̃e�!̄x/vW ). (6.18)

2The precise limit here is ! ! 0, and the continuation to ! + i� should be performed first. But as seen in the
infinite case, these limits are equivalent.
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Joining up two solutions with a discrete step in the derivative is done by evaluating yL, yR and their

derivatives at x = x0. This gives,

G!̄(x, x
0) =

1

W (x)

����
x=x0

⇣
✓(x0 � x)yL(x)yR(x

0) + ✓(x� x0)yR(x)yL(x
0)
⌘
,

W (x) =
vW
⇡KW

(y0L(x)yR(x)� y0R(x)yL(x)).

The Wronskian W (x0) becomes �2!̄CD(1 � K̃2)/⇡KW when the solutions are substituted in. The

numerator contains the sum of exponentials that depend on ±x⌥x0. Again appealing to the !̄ ! 0 limit

allows the exponentials to be ignored to give,

G!̄!0(x, x
0) = �

⇡KW (1� K̃)2

2!̄(1� K̃2)
= �

⇡KL

2!̄
. (6.19)

In the d.c. limit, the Green’s function becomes independent of both x, x0 and the dependence of KW

cancels out. The conductance becomes dependent on the Luttinger parameter in the contacts,

G = KLe
2/2⇡. (6.20)

In the case where the contacts are described by a Fermi gas, KL = 1 and conductance is equal to the

quantum of conductance. The interactions in the wire no longer renormalise the conductance.

The order of the ! ! 0 and q ! 0 limits is what causes the difference between this result and that of

Equation 6.12. This is because there is a finite size associated with the frequency ! which corresponds

to the distance travelled by an excitation in time 1/! [32]. This distance is L! = v/! and a finite

system that has an applied static field corresponds to L << L!. In obtaining Equation 6.20, the finite

length of the Luttinger liquid section was not taken to infinity at any point, therefore the ! ! 0 limit

was performed first. In the derivation of Equation 6.12, the integral over q was performed before the !

integral, meaning that the q ! 0 limit was taken first and the opposite regime, L >> L!, is considered.

Incorporating the effects of the reservoirs by spatially modulating the Luttinger parameter, is a pop-

ular method due to its numerical applicability. Safi and Schultz [62] presented an alternative view of

the problem by looking at multiple reflections of a wavepacket incident upon this spatial variation of pa-

rameters, generalising the Landauer approach for interacting systems. Kuwabata [63] developed a more

physical understanding, considering that that the conductance of e2/h was due to the renormalisation
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of the voltage drop. This compliments the approach that Egger and Grabert took [64, 65] in which the

effects of the reservoirs amount to boundary conditions on the displacement field of the Luttinger liquid.

6.1.3 Equilibrating with Contacts

Despite the reasoning of the previous section, there is a way to obtain fractional two-terminal conduc-

tance in a Luttinger liquid but it requires the contacts to fully equilibrate with the Luttinger liquid. This

can be seen by relaxing our strict adherence to 1D systems and considering the fractional quantum Hall

effect in 2D. A chiral Luttinger liquid, where the two directions of movers are spatially separated, lives

on the edge of a sample in the fractional quantum Hall state [46, 66]. The presence of gapless modes on

the edge of the sample is guaranteed due to the bulk-boundary correspondence in topological condensed

matter.

Due to the spatial separation of the directions, the description is not exactly the Luttinger liquid

action that we are used to, but can be derived from it. Starting from the Hamiltonian, the transformation

�̃R = K✓ � �, �̃L = K✓ + �, (6.21)

can be seen to decouple the problem into new ‘left’ and ‘right’ movers [67]. The density of these fields

can be defined to give a Hamiltonian,

H =
⇡⌫

K

Z
dx ⇢̃2L + ⇢̃2R, ⇢̃R,L = ±

1

2⇡
@x�̃R,L. (6.22)

If the fields were being treated as operators, they would now commute between each other. All fields

with a tilde over them should now be understood as operators. The commutation relation of the fields is

given as,

[�̃⌘(x), �̃⌘0(x
0)] = �⌘⌘0i⇡Ksgn(x� x0), =) ⇧̃⌘ = �

1

2⇡K
@x�̃⌘. (6.23)

The conjugate momenta can be calculated from the commutation relation. The commutation between the

types of movers means that, when the Heisenberg equation of motion is used to find the time dependence

of these densities, they only depend on their respective field. These modes propagate without any notice
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Figure 6.2: This figure depicts the way that contacts couple to the chiral edge mode of the
fractional quantum Hall state in the Hall bar geometry. The two types of contacts are defined
by how many points along the sides connect the system to the reservoir - either there is a single
point where this occurs or there is a continuum of them. The various quantities used in the
derivation are placed in their appropriate location.

of the other. The equation of motion is in the form of a continuity equation,

@t⇢̃R,L ± ⌫@x⇢̃R,L = 0, =) JR,L = ⌫⇢̃R,L. (6.24)

To calculate the current of these new states, we again use the continuity equation to obtain, JR,L =

±@t�̃R,L/2⇡. Setting �H = �
R
dxeµ⇢̃L, the current can be calculated from using the Heisenberg

equation of motion on �̃L which produces,

J =
eK

2⇡
µ. (6.25)

This would result in the renormalised conductance, which is expected as there is no Fermi reservoirs to

change the result from the one obtained for an infinite Luttinger liquid. However, as was seen in the

previous section, the addition of reservoirs can completely change the behaviour.

For a Hall bar geometry, the 2DEG electron gas is a rectangle that is connected to reservoirs on

the shorter sides of the rectangle. The 1D current flows around the edge of the system in a direction

determined by the applied magnetic field. Therefore the L,R notation will be dropped as only one

direction is considered. Two different types of contacts with the reservoir will be considered - single

points and a continuum of contacts [68, 69]. The setup of the system is shown in Figure 6.2, with both
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possible types of coupling shown.

To model the injected current, a term can be added to the continuity equation,

@tn+ @xj = Ic, (6.26)

where Ic denotes the contributions from particles tunnelling into the edge. The operator that creates a

particle in the chiral Luttinger liquid is given by the bosonisation formula for the chiral field ei�̃. The

effect of this operator on the number of particles can be calculated through the commutator,

[⇢̃(x), ei�̃(x
0)] = [�K

Z x

dx1⇧̃(x1), e
i�̃(x)] = �Kei�̃(x). (6.27)

Acting all the terms on a generic state with n particles of charge e, shows that ei�̃ removes eK of

charge from the system. Due to the ‘mixing up’ of the interactions and fermionic field in Equation 6.21,

the fields now describe fractional charges. Equivalently, e�i�̃ inserts a charge of eK into the system.

Whether these fractional charges are quantum mechanically sharply defined as fractional particles or

whether this represents a splitting of the probabilities is a subtle question due to the gapless nature of the

excitations [70]. For our purposes, the distinction is not important so it is left as a side note.

The operator e�i�̃/K will therefore insert a whole fermion into the system. This restricts what values

of K correspond to a model of the edge excitations of a fractional quantum Hall state by requiring that

e�i�̃/K must anti-commute with itself. This results in the requirement that 1/K must be an odd integer

[46].

Therefore the tunnelling operator, acting a point y along the edge of the sample, will be given by,

Îc = �t0 (y)e
�i�(y)/K�(y) + h.c., (6.28)

where  (y) destroys an electron in the reservoir. This non-linear operator cannot be put into the continu-

ity equation as it is, but an averaged version which will be a good approximation in the t0 ! 0 incoherent

tunnelling limit, can be used in the continuity equation.

The average tunnelling contribution becomes the contact conductance, Gc, multiplied by the voltage

drop upon entering the edge. The chemical potential at the edge can be calculated by rearranging the

previously calculated current, j = Keµ/2⇡. The contribution from the tunnelling at each contact {yi}
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will be,

Ic =
X

i

�(yi)Gc

⇣
µL,R(yi)� 2⇡j(yi)/eK

⌘
. (6.29)

In the case of a single contact either side, the continuity equation can be integrated from 0 to W

for both edges in contact with the reservoirs, where W is the width of the sample. This results in two

equations that both contain the difference between current at the top and bottom of the sample. On the

left side, the current becomes,

Z W

0
@yJ(y) = JT � JB = Gc

⇣
µL �

hJB
eK

⌘
. (6.30)

Finding a similar equation for the right contact allows the total current I = JT � JB to be found as,

Ipoint =
Gc
2 (µL � µR)

1� Gch
eK

, (6.31)

where the h dependence has been put back in. The limit that the contact conductance is small, Gc ⌧ e/h,

reproduces the unrenormalised conductance result of the previous section. This condition will often be

satisfied as the contact resistance is inversely proportional to the number of modes.

Considering the conductance per unit length �c = Gc/W , the continuity equation now can be solved

via an integrating factor to give the generic result for both reservoirs,

Icont(y) =
eK

h
(µL � µR) + (J(0) + (µL � µR)eK/h)e�

eK
h�c

y. (6.32)

If y � h�c/eK, then the second term will be negligible and the renormalised conductance of the infinite

Luttinger liquid will be found. The difference in the fractional quantum Hall case and the usual Luttinger

liquid comes down to whether the ⇢̃ mode is directly coupled to in the contacts. Even if they are directly

coupled, an equilibration of these modes to the chemical potentials of the reservoirs is also required for

a fractional conductance to be obtained.

This concludes the analysis of a clean Luttinger liquid, where the nature of the contacts is the deter-

mining factor of whether the conductance is renormalised by the interactions in a system. Not all systems

can enjoy the luxury of being free from all scattering, so the effect of backscattering and impurities on

the conductance will be examined for the remainder of the chapter. The detour to chiral Luttinger liquids

will now be abandoned in preference of our previous formulation of action.

84



6.2. IMPURITIES IN LUTTINGER LIQUIDS

6.2 Impurities in Luttinger Liquids

In the conventional Drude picture of transport, impurities are what generate the dissipation of energy

contained within the finite conductance. A natural question to ask is what happens when impurities are

embedded into a Luttinger liquid. This was the main investigation of the preeminent Kane and Fisher

paper [71], which analyses the RG flow of the impurity strength. The renormalisation group technique is

one of the most important developments in modern physics but the introduction to it has been relegated

to Appendix D in this thesis.

Consider a scattering potential V0 that only exists at x = 0 in a spinless Luttinger liquid. The

potential will locally bias the density at a single point, contributing to the action as,

Limp = V0⇢(x = 0, t) = V0

⇣
 †
L L +  †

R R +  †
L R +  †

R L

⌘����
x=0

. (6.33)

After splitting up this density into left and right movers, the forward scattering terms that contain the same

chirality can be absorbed into a redefinition of the Luttinger parameter. The scattering of 2kF changes

the directionality of the movers. When combined with its Hermitian conjugate, it produces a cosine term

when bosonised. This results in the Luttinger liquid action changing into the local sine-Gordon model,

S =
1

2⇡⌫K

Z
dxdt

⇣
(@t✓)

2
� ⌫2(@x✓)

2
⌘
+ 2

Z
dt V0 cos(✓(x = 0, t)). (6.34)

A RG analysis can be performed to perturbatively determine the effect of a weak impurity at the

relevant energy scales, leading to the RG flow equation of the backscattering strength,

V0(b) = b1�KV0 , (6.35)

for b being the size of the slice of momentum space that has been integrated out. The momentum slice

could be taken to be infinitesimal to get a differential equation, but that is not necessary for our purposes.

This result, along with the rest of the RG calculations, are shown more explicitly in Appendix E. Under n

iterations of the RG (until a low-energy cutoff such as temperature or length of system has been reached),

the strength of the impurity at that energy will be multiplied by bn(1�K). Therefore if K > 1, then V0

will become smaller with decreasing energy. The term is then RG irrelevant and can be ignored at low

temperatures.
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In the opposite case, K < 1, the strength of the impurity will increase at lower energies and the

interaction is then RG relevant. Both of these cases will produce power law corrections to various

quantities for a finite infrared cutoff. In the zero temperature case for an infinite Luttinger liquid, there

is no low-energy cutoff and the RG flow will iterate indefinitely. The impurity strength will then become

either infinitely large or vanishingly small. A large impurity strength violates the original assumption

that the impurity is weak and therefore the whole perturbative RG process breaks down.

The contrasting case of weak tunnelling, which is equivalent to a very strong impurity, can be anal-

ysed in a similar way. Using the dual action in terms of �, the effect of large impurities can be understood.

This gives an RG flow equation of,

t(b) = b1�
1
K t0 , (6.36)

where t is the strength of the tunnelling and t0 is the unrenormalised hopping. Performing the same

analysis as before, the K > 1 regime results in the hopping matrix becoming larger with successive

renormalisation. If K < 1 then t will tend to zero and can be ignored.

Phase Diagram of Conductance

Having established two complimentary descriptions, the behaviour of the whole system can be inter-

polated. Figure 6.3 shows the RG flows of the respective parameters to small or large coupling. By

positioning the two parameters as contrasting limits, the RG flows can be seen to be pointing in the

same direction. This suggests that the two descriptions can be joined up to give a complete continuous

phase diagram. For K < 1, any impurity will drastically affect the system and for an infinite wire at

zero temperature, any strength impurity will eventually flow to the case where the hopping is reduced

to zero. For K > 1, the opposite is true: no matter how strong the impurity is, there will be no effect

on the zero temperature transport. Furusaki and Nagaosa investigated an impurity in a spatially varying

Luttinger liquid where the reservoirs are explicitly taken into account [72]. They found that the unrenor-

malised conductance is still obtained in the static limit but distinct non-universal features that depend on

interaction K can be seen in the system’s response to finite ! perturbations.

The analysis of impurities in a Luttinger liquid was explored in detail because it forms the blueprint

of how to approach multi-channel Luttinger liquids. The basic idea is that channels with an impurity can

be assumed to perfectly reflect incoming modes, opening up a gap in the spectrum. Channels without
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Figure 6.3: The RG flows are represented by filled arrows. Considering the single impurity
problem for K < 1, they flow to stronger impurity strength V and weaker tunnelling for t. The
opposite case is found for K > 1 and by continuity, shown by the outlined arrows, both regions
can be joined to give the entire picture. The flows are faster the further away they are from
K = 1, meaning that the low-energy behaviour will be reached faster for stronger interactions.
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an impurity successfully carry the current through the system. The interplay of these processes causes a

transmission-like effect resulting in a fraction of the conductance contributing.

6.3 Multi-channel Luttinger Liquids

A large body of scholarship has built up with the aim of understanding how many-channel Luttinger

liquid behave, specifically when different types of scattering mechanisms are inserted into the system.

An overarching model for two channels is one in which the spinful Luttinger Liquid Hamiltonian has a

global sine-Gordon term [73],

H =

Z
dx
⌫⇢
2⇡

⇣ 1

K⇢
(@x�⇢)

2 +K⇢(@x✓⇢)
2
⌘
+
⌫�
2⇡

⇣ 1

K�
(@x��)

2 +K�(@x✓�)
2
⌘

Z
dx� cos

⇣p
2(n⇢�✓⇢ + n⇢+�⇢ + n��✓� + n�+��)

⌘
(6.37)

where each n is a different possible integer. The naming convention comes from ✓⇢ being the sum of spins

but the difference between chiralities, hence the subscript � in n⇢�. The choice to use the Hamiltonian

instead of the action is due to the cosine term containing higher orders of both fields, which means that

functional integration cannot be performed. When only n�� = 2 is non-zero, then this matches up with

Equation 4.36 and corresponds to the g1? term, which was ignored in Chapter 4.4. Note that here the

cosine term extends throughout the system unlike the local version of Equation 6.35.

The origin of the cosine term comes from bosonising a generic backscattering operator, which will

be expressed as a combination of the  ̄⌘�, ⌘� fields. Each field will be bosonised to give an exponential

containing different amounts of ✓L", ✓L#, ✓R", ✓R#. This specifies a vector which can be transformed to

the charge-spin basis by using a matrix form of Equation 4.34,

0

BBBBBBB@

✓⇢

✓�

�⇢

��

1

CCCCCCCA

=
1

2
p
2

0

BBBBBBB@

1 1 �1 �1

1 �1 �1 1

1 1 1 1

1 �1 1 �1

1

CCCCCCCA

0

BBBBBBB@

✓L"

✓L#

✓R"

✓R#

1

CCCCCCCA

. (6.38)

This global cosine term can cause a gap to open in the spectrum, pinning the field to be such that the

argument of the cosine is zero. The reason that a gap opens will be shown shortly and occurs when the
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cosine term is RG relevant. Any orthogonal sectors to this will remain gapless. This will obviously result

in different behaviour than the purely gapless Luttinger liquid. Not all possible backscattering terms are

permitted as they must conserve charge which implies that n⇢+ = 0.

Beginning the analysis with different fermionic models results in different values for the integers.

Nanowires with an external rotating magnetic field [74] will couple different spins by  ̄R" L#. This leads

to n⇢� = 1, n�+ = 1 [75]. This field can naturally arise in GaAs/AlGaAs 1D systems, through the lattice

of nuclear spins interacting with the conducting fermions of the Luttinger liquid by the RKKY interaction

and tending to helical order [76]. Rashba nanowires occur when the Rashba spin orbit interaction and

a magnetic field combine to make a back scattering process of ( ̄R" L")n ̄L# R"( ̄R# L#)n relevant.

This corresponds to n�+ = 1, n⇢� = 2n + 1 for integer n [57, 77]. This is a generalisation of the

rotating field which corresponds to the n = 0 limit of the Rashba nanowire. There are multiple possible

relevant scatterings because the chemical potential of the bands can be tuned to make different processes

be momentum conserving.

The result of the cosine term is to open up a gap in the spectrum. This can be shown through a

semiclassical analysis of the problem that can be performed if � is large compared to the contributions

from the rest of the action. To see this, return back to Equation 4.36 which has a gapless ✓⇢ that allows

that part to be safely ignored. A large cosine term, � ! 1, will pin the value of the field to have the

argument be zero, ✓� = ⇡(n+ 1/2), as any fluctuations from the minimum will be penalised by a large

contribution to the action. The field could be pinned to any value of the minima. Expanding about one

of these minima to quadratic order,

S� =
1

2⇡⌫�K�

Z
dxdt(@t✓�)

2 + ⌫2�(@x✓�)
2 +

�

2

Z
dxdt 8✓2�

=
1

2⇡⌫�K�

1

�V

X

k,!n

⇣
!2
n + ⌫2�k

2 + 8⇡⌫�K��
⌘
✓⇤�(k,!n)✓�(k,!n), (6.39)

where the constant contribution from the expansion and shifting of the fields can be ignored. For simplic-

ity, translational invariance is assumed which allows the Fourier transform of the fields to be performed.

The dispersion then can be read off as being,

! = ±

p
⌫2�k

2 + 8⇡⌫�K��, � =
p
8⇡⌫�K��. (6.40)
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The gap � is the finite amount of energy required for an excitation at k = 0. The requirement

for backscattering to be strong is not as restrictive as it seems, as an RG analysis of this term can be

performed. If the term is RG relevant, then at low temperatures even a small original backscattering

strength could renormalise to a regime in which the semiclassical analysis is appropriate. The size of the

gap is proportional to the coupling, so will also become larger under successive renormalisation. The

RG flow equation for the cosine operator, when an infinitesimal slice of momentum space is integrated

out, is
d�

dl
= �(l)(2�D) = �(2� 2K�) (6.41)

where D is the scaling dimension of the operator, and is equal to 2K�. This is also derived in Appendix

E. The difference between this and Equation 6.35 is the factor of two which comes from the number of

dimensions being rescaled. Previously the cosine term acted at a single point, so only the time integral

had to be rescaled but now both time and space have to be rescaled. This term will be relevant if K� < 1.

This analysis of backscattering terms can be generalised to more than just two channels which in-

volves being more careful with the rotation of fields [56]. The problem becomes increasingly complex

for more than two channels but progress can be made for certain models, such as Hsu et al. who tackle

two spinful bands [78] with a rotating magnetic field.

6.3.1 Shavit and Oreg

To make this analysis more concrete, our attention will turn to a recent paper from Shavit and Oreg [58].

Here a two band system, which is not specified to be spin but will be notated as such for consistency with

previous sections, is tuned in order to make intraband scattering between chiralities become momentum

conserving. The scattering operator is

( ̄R" L")
n( ̄L# R#)

m
⇠ e�in✓R"+in✓L"�im✓L"+im✓# . (6.42)

Using the rotation as defined in Equation 6.38, this corresponds to n⇢� = n � m,n�� = n + m,

where n,m are both integers. If the Fermi wavevector of the different bands is given by kF", kF#, then

this process will conserve momentum when nkF" ⇡ mkF# which amounts to adjusting the chemi-

cal potentials of each band. This allows a wide range of fractions to materialise and notably also al-

lows this backscattering to occur when the system is time-reversal symmetric - so without a magnetic
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Figure 6.4: A momentum conserving backscattering process is shown for a two-channel system.
The solid lines represent occupied states that are filled up to a chemical potential and the dotted
lines show the unoccupied states. Two scatterings from right to left chiralities in one band
counteract a single backscattering process in the other band in the opposite direction.

field! Umklapp scattering can also be considered within this formalism by having a negative n or m as

( †
R L)�|n1| ⌘ ( †

L R)|n1|, which is a scattering in the other direction. This will conserve momentum

for nkF" +mkF# ⇡ ⇡N for integer N . Figure 6.4 demonstrates one of the possible realisations of these

scattering process when n1 = 1, n2 = 2.

Now the RG relevance of this operator can be calculated by considering the coupling strength of the

operator, �, as a small parameter. The scaling dimension of this operator, to be used in the generic RG

flow equation of Equation 6.35, is

D = (n2 +m2)
K⇢ +K�

2
� nm(K⇢ �K�). (6.43)

This result is also derived in Appendix E. If D < 2, then the operator is relevant and this condition can

be satisfied for sufficiently strong repulsive interactions. As seen earlier, a gap will open up in the sector,

✓g ⌘ (n✓1 +m✓2)/A, while being gapless for ✓f ⌘ (m✓1 � n✓2)/A for A =
p
n2 +m2.

At low temperatures, ✓g will be completely inaccessible for low-energy excitations. All current in

these channels will be completely backscattered, while all current in �f will be mostly unobstructed.

The rotation of the Luttinger liquid Hamiltonian to these new fields however does create a mixed term of
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the form @x✓g@x✓f , which only causes a slight renormalisation of the gap.

6.3.2 Calculating the Conductivity

For a system that is smoothly connected to the reservoirs, the ideas of Landauer can be applied to define

a scattering matrix in terms of the chiral fields for each spin species. Taking the time derivative of these

fields, evaluated at ±1, gives incoming and outgoing currents,

I⌘,� =
e

2⇡
@t✓⌘�

����
x=⌘1

, O⌘� =
e

2⇡
@t✓⌘�

����
x=�⌘1

. (6.44)

The incoming current will be the vector (IL", IL#, IR", IR#)T = (IR, IL)T . Assuming time-reversal

symmetry and the conservation of current, the incoming and outgoing chiral vectors can be related by

the 2⇥ 2 scattering matrix,

0

B@
OL

OR

1

CA =

0

B@
T 1� T

1� T T

1

CA

0

B@
IL

IR

1

CA . (6.45)

In contrast to the naming conventions of introductory Landauer section, the indices L, R, reference

the direction of the movers, not the side of the sample.3. In the limit that the backscattering becomes

infinitely strong under successive renormalisation, the ✓g field will be completely gapped and the ✓f

field will be gapless. Therefore, there is no current in the gapped sector and perfect transmission in the

orthogonal sector,
e

2⇡
@t✓g = 0,

e

2⇡
@t✓f

����
x=�1

=
e

2⇡
@t✓f

����
x=1

. (6.46)

The gapped boundary conditions become,

1

A
(nIL" +mIL# � nOR" �mOR#) = 0, n

1

A
(OL" +mOL# � nIR" �mIR#) = 0. (6.47)

Defining the vector nT = 1
A(n,m), allows the transmission matrix of Equation 6.45 to be used to

3Because of the conflicting notation, the results of the Landauer section cannot be recklessly applied. This
spirit of the calculation is the same but the trace of the transmission matrix as defined here is not equal to the
conductance.
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simplify the boundary conditions,

n
TT (IL � IR) = 0, n

TT (IR � IL) = 0, =) n
TT = (0, 0). (6.48)

Turning to the gapless sector boundary condition, the vector mT = 1
A(n,�m) is similarly defined to

produce,

m
T (1� T )(IL � IR) = m

T (1� T )(IR � IL), =) m
T (1� T ) = 0. (6.49)

Realising that the vectors n and m are actually orthogonal to each other and have been normalised all

along, the following solution

T = 1� nn
T =

0

B@
1� n2/A2 nm/A2

nm/A2 1�m2/A2

1

CA , (6.50)

can be seen to satisfy both conditions.

Having found the transmission matrix, the total current will be

J =

✓
1 1

◆
· (IL �OR) =

✓
1 1

◆
· (TIR � TIL). (6.51)

Setting the incoming current to be at a voltage V on the right, and zero voltage on the left. In this vector

form, this is IL = (0 0)T and IR = e2V (1 1)T . The dimensionless conductance therefore becomes,

g =
J

V e2
=

✓
1 1

◆
·

0

B@
1� n2/A2 nm/A2

nm/A2 1�m2/A2

1

CA

0

B@
1

1

1

CA =
(n+m)2

n2 +m2
. (6.52)

This is the crucial result of Shavit and Oreg’s paper: the appearance of fractional values of conduc-

tance g [58]. The fractions that appear are determined by the number of backscatterings and require the

strong coupling limit to be taken. The system will be time-reversal symmetric if n + m is even. Re-

membering that setting m to �m treats the corresponding umklapp processes, fractions less than e2/h

are possible,

gum =
(n�m)2

n2 +m2
. (6.53)
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The smallest possible fraction that is time-reversal symmetric occurs for n = 1,m = 3. Plugging these

values into the conductance formula, gives, g = 2
5 .

This derivation of conductance from the conditions imposed by backscattering opening a gap in the

spectrum and causing no current to flow can be generalised to N channels quite easily. The result is that

the conductance for N channels is

g = 1TN (1� nnT )1N = N �
(
P

i ni)2P
i n

2
i

. (6.54)

The choice to use a scattering description to obtain the conductance may seem a little odd as it is

not clear whether the excitations of the Luttinger liquids (rotated ones at that) persist in the reservoir

where the voltage is measured. Other papers that dealt with helical Luttinger liquids, which corresponds

to |m| = |n+ 1| in this model, use different analysis which produce similar results. Meng et al. [77]

explicitly solve for the current-current correlator in a spatially varying helical Luttinger liquid, as intro-

duced in Chapter 6.1.2. Refermionisation - the opposite of bosonisation - is an exact mapping that is

possible at a specific value of K [79]. This technique is used to give an exact solution that the com-

pliments the RG results that provides a description of a large area in parameter space. Assev, Loss and

Klinovaja [55] analyse the sine-Gordon action of the helical wire by using the semiclassical dilute soli-

ton gas approximation. This captures the tunnelling that is ignored in the strong coupling limit, with the

conductance being found through using the Kubo formula. Solitons will be explained in most detail over

the rest of this thesis. All of these other methods have verified this fractional result.

Shavit and Oreg performed this refermionisation to obtain finite temperature and length behaviour,

and the similarity between their results and experiment is striking. Their results are shown in Figure 6.5.

However, there are a limited number of fractions that can occur, even for systems that break time-reversal

invariance. For processes involving n = 1 and m = �2, the fraction is found to be 1/5 through Equation

6.52. Other fractions can appear, but require more total scatterings. The larger the number of scatterings,

the smaller the original value of � and the longer it takes for RG to reach the strong coupling regime.

As mentioned at the start of the chapter, the original direction of the research was to achieve this

analysis. The general form of conductance in Equation 6.54 represents the totality of fractional conduc-

tance that can be achieved through opening gaps in the spectrum and the current flowing in the remaining

gapless sector. The ideas can be pushed further, by considering two spinful channels [78], yet the un-
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Figure 6.5: The conductance as a function of the chemical potential, and therefore the gate
voltage, is plotted. � is the size of the gap opened by the backscattering. The different plots
correspond to the conductance at different temperatures, increasing from left to right. Originally
from Reference 58.

derlying physics remains the same. A new direction was then pursued, trying to understand the gapped

sector in more detail.

6.4 Solitons in Field Theory

Up to this point, the gapped sector has been assumed to perfectly backscatter all incident electrons with

no chance of any dynamics. This is quite a strong assumption, and the rest of the thesis will look at what

is possible in this sector. Firstly this will be through a continuum perspective [80], with the final part of

the thesis constructing a finite model of this sector.

Fractional charge is not unique to Luttinger liquids, with the first model to display such unique

behaviour being introduced by Jackiw and Rebbi [81]. They showed that a double well potential will

have a classical solution, known as a soliton, that connects the two minima. These solutions satisfy the

boundary condition of the field being in different minima at x = ±1. Solitons have non-trivial topology

as it costs an infinite amount of energy to change between the different possible boundary conditions,

disconnecting sectors of solutions. The solitons of the model carry a fractional charge of e/2. To make

these solutions fully quantum, the oscillations around this classical solution are quantised. These can

then be excited and the soliton solution brought into the full quantum theory [82].

Su, Schrieffer and Heeger [83] discovered that this behaviour can occur in a condensed matter context

while studying a model for poly-acetylene. This model has a degenerate ground state where double and
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Figure 6.6: The two ground states of the SSH model are given by alternating single and double
bonds. The states differ by the order in which these bonds occur.

single bonds alternate, shown in Figure 6.6. For periodic boundary conditions, the degeneracy is between

the double bonds being between the even and odd numbered sites or vice versa. Rotating the system by

a single position transforms the solutions between each other. This degeneracy is what allows the non-

linear soliton excitations to occur and will be explored in a finite context in the next chapter.

Further analysis of solitons, by Goldstone and Wilczek, found that charges of 1/n could be obtained

[84]. The distinction between the fractional charges in the chiral Luttinger liquid and the solitons is

that the former are gapless excitations while solitons occur in gapped systems. The quick analysis of

the cosine backscattering term in the previous section showed that gaps can appear in Luttinger liquid

models. Multiple degenerate minima are present due to the cosine potential, with solitons describing

transport in this gapped regime.

However, the quesion of whether these fraction charges manifest in the conductance measurements

remains unclear. Some papers suggest that solitons do cause fractional conductance [85, 86], but the

process by which they obtain these results is suspect. In refermionisating the entire system, including the

Fermi gas reservoirs, the boundary conditions are changed. As learnt in Chapter 6.1.2, the behaviour of

the reservoirs is crucial to the fractional conductance results, so changing their value will naturally affect

the conductance.

This chapter has examined the conductance of Luttinger liquids and found that the connection to
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the reservoirs is crucial in determining whether the conductance is fractional or not. Deviating from the

purely gapless multi-channel Luttinger liquid behaviour can provide a mechanism by which a fractional

conductance can occur. There are multiple ways of realising the necessary backscattering, including one

which shows time-reversal symmetric backscattering as being possible. This reflects a certain proportion

of channels and produces a fractional transmission. This recreates experimental behaviour for the 2/5

fraction, but other fractions are not accounted for.

Finally, solitons were briefly introduced in continuum field theory as the transport mechanism when

the spectrum is gapped. These have been hiding in the gaps created by impurity backscattering in a

Luttinger liquid. The transport of fractionally charged excitation will be the main focus of the final

chapter, where solitons will be realised in a finite system and their conductance properties analysed.
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CHAPTER 7

WIGNER CHAINS

The bulk of literature on fractional conductance in gapped 1D systems comes from continuum field

theories as explored in the previous chapter. The next two chapters investigate whether a discrete theory

reproduces the same results. Discrete here means, unlike papers that consider fermionic ladders [87],

the energy spectrum is taken to be discrete and not a continuum in the direction along the wire. This

discreteness of charge has been the focus of work on quantum dots in the Coulomb blockade regime

[88]. Previously it was mentioned that in the gapped sector, transport can be facilitated by solitons

which have fractional charge. The question of whether the transport of fractional charges correspond to

fractional conductance is fundamental to the rest of the thesis, with differing answers being found when

looked at from a continuum perspective. This chapter explores how to define a discrete 1D microscopic

model where solitons transport the charge, with the next chapter investigating the transport properties of

such a model.

The movement of domain walls in a charge density wave (CDW) is described by solitons. A discrete

analogue of this state is a Wigner crystal where a lattice is formed of mutually repelling electrons1. To

explore the connection between a Wigner Crystal and experiment, first consider how the CDW phase

can arise from a Luttinger liquid. This is achieved by adding long-range Coulomb interactions to the

Luttinger liquid description or by certain backscattering terms becoming relevant. These terms can be

generated by the presence of a lattice with a spacing that is commensurate with the average electron

spacing, 1/2kF , in the Luttinger Liquid [32]. Commensurate fillings mean that the g3 backscattering

1There is more subtlety about this correspondence in dimensions higher than one. This is due to the finite
number of discrete crystalline solutions possible, compared to the freedom to describe any spatial modulations in
continuum.
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term in the Luttinger liquid description becomes relevant and opens a gap in the charge sector. The

filling of the lattice, 1/n, defines the number of of degenerate minima and therefore the fractional charge.

Direct visualisation of the spatial separation of electrons has been managed in carbon nanotubes [89, 90].

Upon increasing the interactions between the electron further in a quasi-one-dimensional system, a

zig-zag Wigner crystal is predicted to occur [91, 92]. This is when two lines of the chain move away to

minimise the repulsion, resulting in the fermions alternating their position in the confined direction. The

fractional conductance plateaus observed in experiment [18] occur in this weak-confinement, strong-

interaction regime. Other experiments have managed to confirm the presence of this phase in QPC

devices through either the conductance properties [93] or electron focusing techniques [94]. Therefore

an analysis of transport through a single Wigner chain is a pertinent problem to study, with an idea of

generalising the analysis to the zig-zag case in the future.

This chapter is split into the spinless and spinful analyses, first justifying a Hamiltonian and then

solving for its eigenstates. The focus is on models where the solitons have a charge of e/2, as these are

the easiest to construct, with other charges being discussed in the final chapter.

7.1 Spinless Model

A finite model that produces a Wigner crystal is described by the Hamiltonian,

H = �t
X

i

(d†idi+1 + d†i+1di) + U1

X

i

nini+1, (7.1)

where operator d†i creates a spinless fermion on site i 2 {1, 2, · · · , L � 1} in a chain of L sites. The

number operator ni will be either zero or one for each site. The usual 1D tight binding hopping term

is present. It that gains an energy t upon a fermion changing sites, which encourages hybridisation

of the configurations into the usual cosine bands. The other term is an energetic cost to occupy two

neighbouring sites.

This differs from other models used in the literature [95, 96] where their interaction term is,

I
X

i

⇣
d†idi �

1

2

⌘⇣
d†i+1di+1 �

1

2

⌘
. (7.2)

This particular form of the interaction is used because it maps onto the XXZ Heinsenberg model through
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the Jordan-Wigner transformation, which can be solved using the Bethe Ansatz. Aside from an irrelevant

constant shift of the energy, there is an additional onsite contribution, �I/2
P

i(ni+ni+1), in comparison

to Equation 7.1. For periodic boundary conditions, the site indices will now include i = L and contains

the periodicity L + 1 ⌘ 1. Performing the sum of the additional onsite term leads to an equal energy

shifting of �I for every fermion in the system. A lot of the literature focuses on rings of CDWs where

this periodicity is enforced. These two interaction terms then encapsulate the exact same physics.

The Hamiltonians no longer match when the system has open boundary conditions. In this case, the

sum in the onsite term only ranges from 1 to L � 1, which results in a difference between the energetic

shifting of the bulk and edge sites. In configurations containing occupied bulk states, i 6= 1, L, the states

will undergo a �I energy shift. The configuration with occupied edges sites, i = 1, L, only have one

term in the sum and are shifted by �I/2. This asymmetry between the bulk and edge of the chain can

result in a soliton being bound to the edge of the system for I > 2t.

There is also a difference in how the occupations of the lattice hybridise with each other when

different boundary conditions are applied. To understand why this is, consider the ground states in the

t = 0 limit, which reduces the problem to arranging the fermions so that no two are next to each other.

Half filling, for even L and periodic boundary conditions, leads to a ground state where either the even

or odd sites are occupied. This is contrasted with open boundary conditions at half filling where there

are L/2 + 1 states with zero energy. Figure 7.1 displays this difference.

Upon reintroducing hopping, such that t << U1, the previously degenerate states will hybridise

with each other to utilise the reduction in energy that hopping between sites provides. For open boundary

conditions, the number of these states that can hybridise will linearly increase with the size of the system.

This results in an energy band that does not happen for CDW rings, which will be frozen into one of the

configurations.

Having explored why the boundary conditions and choice of Hamiltonian should produce different

results, we will now stick to open boundary conditions and the Hamiltonian defined in Equation 7.1. As

the details of the eigenstates depend on the filling, the filling parameter is introduced as,

Q = ne �
L

2
, (7.3)

where ne is the number of fermions. Q will be either an integer or half-integer, dependent on whether
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Figure 7.1: Showing the different possible zero-energy configurations in the t = 0 classical
limit for different boundary conditions where the blue dots are the occupied sites

there are an even or odd number of sites. It will be positive or negative depending on being above or

below half filling. The aim is to find the conductance through this system when connected up to contacts,

which for the NEGF formalism requires the Green’s function of the isolated system. As the system is

isolated, the number of fermions in the system is a good quantum number and so the first task is to solve

for the eigenstates for different fillings of the system.

To analytically find the eigenstates of the system, the limit U1 ! 1 is taken which will project out

any occupations that contain neighbouring fermions from our state space. Before this projection, our

state space in the n particle subspace will be given by all the ways of arranging n fermions on a chain of

length L.

The parameter LS , which describes the total possible number of fermions before there must be two

neighbouring fermions, is given by,

LS =

8
><

>:

L+1
2 , when L is odd

L
2 + 1, when L is even.

(7.4)

Any state with more than LS fermions will then be associated with an infinite energy in the limit and

become energetically inaccessible for states to hybridise with. For the subspaces with LS fermions in or
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fewer, some of the configurations of the fermions on the chain will be projected out. This reduces the

total number of states in these subspaces and it is in these reduced subspaces that the Hamiltonian will

be solved.

7.1.1 Eigenstates

The most simple filling to understand is the Q = 1/2 filling where only one configuration exists.

|Q = 1/2i = |⇥�⇥� · · ·�⇥i =

L�1
2Y

i=0

d†2i+1 |0i . (7.5)

The string ⇥ � ⇥ · · · represents the occupation of the sites with ⇥ denoting a fermion occupying that

site. Any other configuration of fermions will have neighbouring fermions and therefore an infinite

energy cost, which would have been projected out by the U1 ! 1 limit. This state will be a zero-energy

eigenstate of the system, as there are no other states in the subspace for it to hybridise with and all

possible hops of the fermions will take us to a state with neighbouring fermions.

For other fillings that will be considered, there is a general procedure that solves for the eigenstates.

The main step is mapping the problem from the original occupation basis to a soliton basis which will

eliminate some redundancy in the description. In this new basis the Hamiltonian becomes easier to solve,

although it may require further mappings to solve completely.

Q=0

To understand solitonic behaviour in this model, the Q = 0 part is solved first as only one soliton is

present. Any two neighbouring unoccupied sites in the chain form a soliton as they mark the presence

of a domain wall. The two types of domains are when the fermions occupy even or odd indexed sites.

Joining up these domains requires the existence of two neighbouring unoccupied sites2. To see how this

is expressed in the mathematics, the occupation ni of a configuration at site i at this filling will be given

by,

ni =
1

2

⇣
1� cos(⇡i+ �i(u))

⌘
, (7.6)

2In general, two adjacent occupied sites can also join up the domains but this possibility does not survive the
infinite U1 limit.
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where �i(u) is,

�i(u) =

8
>><

>>:

0, i < u,

⇡, i � u.

(7.7)

This is a discretised version of the continuum 1D soliton of the �4 model,

�i(u) = arctan(�(i� u)) +
⇡

2
, (7.8)

in the limit that � ! 1 [82]. The values that u can take define the soliton lattice which will be a set of

discrete values rather than the continuous variable of the above equation. To find these values, consider

all possible occupation configurations of the fermions on the lattice and express them in this form.

To be concrete, all the states in the Q = 0 projected subspace for a 10 site chain are,

|�⇥�⇥�⇥�⇥�⇥i , |⇥��⇥�⇥�⇥�⇥i
��1̃
↵
,
��2̃
↵

|⇥�⇥��⇥�⇥�⇥i , |⇥�⇥�⇥��⇥�⇥i !
��3̃
↵
,
��4̃
↵

|⇥�⇥�⇥�⇥��⇥i , |⇥�⇥�⇥�⇥�⇥�i
��5̃
↵
,
��6̃
↵

where ⇥ indicates an occupied site and � an unoccupied one. The position of the soliton is given by

the location of the adjacent empty sites, which can be seen to have moved further along to the right

of the chain in each basis state. This gives six possible values of u. The values it can take are u =

{1, 3, 5, 7, 9, 11}. These 6 states are then ordered by their value of u and mapped to a soliton position ĩ

where ĩ = {1, · · ·LS}.

Figure 7.2 shows the mapping from a occupation configuration to a position on a soliton lattice.

Under this relabelling, the Hamiltonian hops the soliton along the soliton lattice states. Although there

are many fermions for a given configuration that could hop, many of the configurations they can hop to

are projected out by the U1 ! 1 limit as they would result in neighbouring fermions. The only fermions

that can change site without incurring an infinite energy cost are those either side of a soliton. When a

fermion moves, it will leave a vacancy. As all fermions must already have neighbouring empty states,

this creates two adjacent unoccupied sites next to the previous ones. The Hamiltonian on the soliton

lattice becomes,

H
��̃i
↵
= �t

��̃i� 1
↵
� t
��̃i+ 1

↵
= ✏

��̃i
↵
, (7.9)
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Figure 7.2: Showing how a particular configuration can be uniquely mapped to the position
of its soliton. For the atomic lattice, occupied fermionic sites are in blue and open boundary
conditions are depicted by the red crosses on the edge sites. The phase shift of the occupation
is shown by the overlayed dotted line. The position of the empty dimer is then shown to be at
one of sex possible places, indicated on the soliton lattice underneath

which has solutions of,

✏n = �2t cos

✓
⇡n

L+ 1

◆
,

��̃i
↵
=

r
2

L+ 1
sin

✓
⇡n

L+ 1
ĩ

◆
, (7.10)

for n 2 {1, 2, · · · , LS}.

Q=-1/2 Eigenstates

Having initially considered the more straightforward problem of one soliton, the same procedure is re-

peated but for two solitons in the system. Firstly, the allowed states in the projected subspace need to be

found. As an example, consider the L = 9 case which would have 4 electrons for Q = �1/2. Writing

out all the electron states is just a combinatorial problem and will form the basis for our eigenstates. This

is shown in Figure 7.3

The next step is to understand these basis states in terms of the solitons. The system will now have

two solitons, so two sets of empty adjacent sites, which can be seen in some of the configurations. Other

configurations, however, have three neighbouring empty sites and some appear to only have one soliton.

The open boundary conditions provide two more empty sites which explain the configurations that seem

to only have one soliton - the other one is hiding at the edge.
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Figure 7.3: Configurations in the Q = �1/2 subspace in the limit U1 ! 0. The blue, filled
circles represent a fermion occupying that site.

Figure 7.4: For a given configuration in the Q = �1/2 subspace, the phase shift that corre-
sponds to the specific occupation is shown.

This will be described by an occupation of,

ni =
1

2

⇣
1� cos(⇡i+ �i(u) + �i(v))

⌘
, (7.11)

where �i(u),�i(v) have the same form as before. Figure 7.4 demonstrates how this phase shifting works

for a specific state. Now the possible values of u, v that correspond to the configurations need to be

found. The position of one of the solitons describes the location of two empty sites when the empty site

on the right of the pair has an odd atomic index. The other soliton describes the empty sites for the right

site having an even atomic index. Looking back to the one soliton case, the right site of the pair always

lands on an odd atomic site so this parity does not have to be considered in the previous case. Writing

the values explicitly for the 9 site case, u = {1, 3, 5, 7}, v = {2, 4, 6, 8}, where u < v.

The occupation labelling can therefore be replaced by |ũ, ṽi where ũ, ṽ 2 {1, 2, · · ·LS}, u is the odd

indexed soliton and v is the even one. Figure 7.5 shows the mapping for two more states. When mapping

all the allowed configurations in the subspace, a restriction arises that u  v. This can be confirmed
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Figure 7.5: Showing how the mapping to the soliton basis occurs in the case of two separate
solitons and for three neighbouring unoccupied sites

through trying to construct a state that contradicts this restriction, with the rules laid out for u, v. Any

state that has u > v will have to contain adjacent fermions to have the right filling.

The next hurdle is to find how the Hamiltonian acts on the soliton representation. Similarly to the

previous case, only fermions that are next to a soliton will be able to hop. However, when there are two

solitons in the system this means that there is a maximum of four fermions that can move. Figure 7.6

displays how the hopping of the fermions also moves the domain walls.

The Hamiltonian in terms of the soliton indices becomes,

H |u, vi = �t |u� 1, vi � t |u+ 1, vi � t |u, v + 1i � t |u, v � 1i , where u  v. (7.12)

The restriction on the indices carries over to the Hamiltonian so the number of states that can hop to

depends on the current state. There is, however, a nice geometric way to visualise the possible hoppings.

Figure 7.7 shows these connections.

The problem will be easier to solve when mapped to a 2D square lattice hopping problem. This

mapping is suitable as there are two ‘independent’ indices that hop both forwards and backwards, but

with an extra constraint on where the hopping can occur. Solving a hopping Hamiltonian on a finite 2D
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Figure 7.6: Configurations that differ by the movement of one fermion also have adjacent soli-
tons.

Figure 7.7: The possible hoppings between the different configurations of the Q = �1/2 filling
are demonstrated for LS = 5. The states connected with a line can hop to each other and gain
an energy t in the process.
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square lattice is simple. Having arrived upon these solutions, the task is to understand what restrictions

on the 2D problem will give the solutions to the original restricted hopping problem.

2D Finite Square Lattice

Continuing to use LS = 5, more states have to be introduced to match this problem up with a 2D square

lattice. These additional sites are shown in red below.

Requiring a state to be zero will stop any neighbouring state from being able to hop to that state. If

all of the states along the diagonal of the square lattice are zero, then there becomes two disconnected

sublattices. In each of the disconnected copies, the connection between the states are identical to the

original problem. Therefore finding a solution to one particle moving on a square lattice such that there

is no hopping through the diagonal will solve the original problem.

To clean up notation, we define  xy ⌘ |x, y + 1i where the second index is shifted by one in order

to make the main diagonal in the matrix of states above correspond to  xx. The generic square matrix

problem is solved by utilising the open boundary conditions which mean that  0y =  7y = 0 and

 x0 =  x7 = 0. The square lattice wavefunction and eigenvalues will be given by

 (n,m)
xy =

r
2

D + 1
sin(kxx) sin(kyy), ✏(n,m) = �2t( cos(kx) + cos(ky)) (7.13)

where kx =
⇡n

D + 1
, ky =

⇡m

D + 1
, for n,m, x, y 2 {1, 2, · · · , D}, (7.14)

where D = LS + 1 is the length of the square lattice. Requiring  xx = 0 for all x will ensure the

diagonal is always zero. This condition will be satisfied when the solution is antisymmetrised in the
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Figure 7.8: The different energies that can occur in the Q = �1/2 filling are shown for a chain
of 23 sites. The eigenstate index labels the combinations (n,m) that produce distinct energies
with there being a positive and negative energy pair for each non-zero combination. The zero
modes have been overlaid and do not correspond to an eigenstate index.

position index,

�(n,m)
xy =  (n,m)

xy �  (n,m)
yx

=

r
2

D + 1

h
sin

✓
⇡n

D + 1
x

◆
sin

✓
⇡m

D + 1
y

◆
� sin

✓
⇡m

D + 1
x

◆
sin

✓
⇡n

D + 1
y

◆i
. (7.15)

To ensure there is no double counting arising from the two disconnected copies, we arbitrarily choose

x < y and n < m. This is the same reason that the normalisation stays the same despite the factor of

1/
p
2 that normally is required. That factor would be needed if the solution was being normalised on

the full square lattice, but the number of sites in the restricted problem is half the number of sites that

contribute to the normalisation - cancelling the factors of two. Appendix F shows more details of this

antisymmetrisation. The eigenvalues will be,

✏(n,m) = �2t
⇣
cos

✓
⇡n

D + 1

◆
+ cos

✓
⇡m

D + 1

◆⌘
. (7.16)

The form of the dispersion is shown in Figure 7.8 for N = 23. This shows that for each non-zero

energy state there are positive and negative energy pairs. There are also zero-energy modes, the number
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of which grow linearly with the size of the system. Inserting two solitons into the system can lower the

energy in comparison to the frozen state due to the hybridisation of the configurations.

The eigenstates of the 1D Wigner chain at Q = �1/2 have been found in terms of the configurations

of the fermions on the chain. Although two mappings were used to find these coefficients, the mapping

has always been one to one and the relationship between the representations are,

�12 = |1, 1i = |��⇥�⇥�⇥�⇥i . (7.17)

An eigenstate for a given (n,m) is a linear combination of all �(n,m)
xy that have x < y. The value of

�(n,m)
12 describes the coefficient of the |1, 1i term for a given eigenvalue. The rest of the eigenstates are

given by every value of n,m that have n < m. In a compact form the general eigenstates are,

|Q = �1/2, (n,m)i =
X

0<x<yLS

�(n,m)
xy |x, y � 1i . (7.18)

Using sin(x) = (�1)n sin(x� ⇡n) for integer n it can be shown that,

�(n,m)
LSLS+1 = (�1)n+m+1�(n,m)

12 . (7.19)

This relation means that for any eigenstate, the probability of the soliton being either end of the wire

is the same because  12 � |1, 1i and  LSLS+1 = |LS , LSi. This will turn out to be useful in the next

chapter. Although we have only solved the eigenstates for a couple of the fillings, only these are needed

due to limits that will be taken later in the calculation.

7.2 Spinful Model

The idea of the spinless case will now be generalised in the presence of spin. The crucial point here

is that Coulomb interactions still dominate the behaviour with interaction between different spins being

negligible. Therefore any spin coupling terms, which would act either on the same site or on neighbour-

ing sites, will not be included in the Hamiltonian as the limit of U1 ! 1 will prevent the electrons from

occupying neighbouring positions.

Therefore the Hamiltonian we will consider is,
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Hspin = �t
X

�

X

i

(d†�,id�,i+1 + d†�,i+1d�,i) +
X

i

U0n",in#,i +NiU1Ni+1 (7.20)

where d�,i now annihilates an electron of spin � on site i and Ni is the total number electron operator

Ni = n",i + n#,i. Taking the U0, U1 ! 1 limit projects out any states that contain neighbouring spins,

regardless of their respective spins. Crucially the hopping term in the Hamiltonian is diagonal in spin

space, with no spin flipping terms. The filling parameter Q now refers to the total electrons,

Q = Ne +
L

2
. (7.21)

7.2.1 Eigenstates

As before, the eigenstates at Q = 1/2 and Q = �1/2 need to be solved for in order to find the uncou-

pled Green’s function. Instead of having one frozen state at Q = 1/2, there now are 2LS degenerate

configurations of the form |�1 � �2 � · · ·� �LS i that will be orthogonal to each other. All of these spin

configurations are eigenstates with zero energy.

The Q = �1/2 filling will have 2LS�1 subspaces corresponding to each possible ordering of spins.

The infinite repulsion between the electrons prevents two spins from swapping places, so there is a sub-

space for every ordering rather than just total magnetisation. The eigenstates are given by the spinless

eigenstates. To see why, consider all the possible states in the projected subspace for a given spin con-

figuration {�1�2 · · ·�LS�1}. The eigenstates will be a linear combination of all of the ways to arrange

the electrons on the sites, such that the ordering remains the same,

|Q = �1/2, {�1�2 · · ·�LS�1}, ki =a1,k |�� �1 � �2 � · · ·� �LS�1i (7.22)

+ a2,k |��1 ���2 � · · ·� �LS�1i

· · ·+ aP,k |�1 � �2 � · · ·� �LS�1 ��i ,

where P = LS(LS + 1)/2.

This collection of basis states corresponds to the positional configurations of the spinless case for a

specific spin configuration and can be mapped to the same soliton representation in the exact same way.

The hopping is equal for the different spins, so the Hamiltonian in the soliton basis is the same. Therefore
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the eigenstates and coefficients for a given spin configuration are exactly the same as in Equation 7.15

and 7.16. As there is no magnetic field, all configurations are equal in energy and the full dispersion is

the spinless dispersion with a 2LS�1 degeneracy at each eigenstate corresponding to each possible spin

configuration. The coefficients of the above expression will be the same for every spin configuration for

a particle eigenstate but the basis states will be different due to involving a different set of spins.

To recap notation, the occupation representation will be denoted by the string of dashes and �. The

eigenstates of the spinful Hamiltonian will contain the filling, the spin configuration from left to right

and an additional counting index labelling the eigenstates for the Q = �1/2 filling. The eigenstate index

is not needed in the Q = 1/2 filling as there is only one state for each spin configuration.

Having solved for the isolated system, the next task is to understand the transport properties. This

will be done by using the non-equilibrium theory developed in Chapter 5.3, connecting the isolated

system up to reservoirs.
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CHAPTER 8

CURRENT THROUGH WIGNER

CHAINS

The next step is to introduce the system to the two reservoirs either side and utilise the NEGF formalism

to find an expression for the current. Finally, the Green’s functions for the isolated wire will be calculated

to obtain a description of the conductance near the eigenstates of the finite system. On investigation, the

spinless case matches the Maslov-Stone result - that interactions do not affect the two-terminal conduc-

tance. The conductance is found to be a series of Breit-Wigner resonant peaks that reach a maximum of

the quantum of conductance. The width of these peaks do, however, depend on the microscopics of the

system and exhibit different behaviour as the length of the system changes. The spinful case shows a

splitting of these peaks and a reduction of their maximum values to fractions of e2/h, despite expecting

the conductance to double.

8.1 Spinless Reservoirs

To find the conductance, a connection to the contacts must be made. For a wire between two reservoirs,

the only sites in the wire that will exchange particles with the reservoirs are the two edges of the finite
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Figure 8.1: The connection of a 1D Wigner chain to reservoirs either side.

system as long as the overlap decays sufficiently quickly. The Hamiltonian for the full system becomes,

H = HL
reservoir +Hwire +HR

reservoir +Htun (8.1)

=
X

k

✏Lk c
†
L,kcL,k +

X

q

Eqd
†
qdq +

X

k

✏Rk c
†
R,kcR,k

�

X

k

V L
1,k

⇣
c†L,kd1 + d†1cL,k

⌘
+ V R

L,k

⇣
c†R,kdL + d†LcR,k

⌘
,

for operators c↵,k that annihilate a fermion in the ↵ = {L,R} reservoir with momentum k. The operators

di annihilate a fermion on site i as before and dq annihilates the eigenstate q on the wire. Figure 8.1

illustrates the setup of the system.

Comparing this Hamiltonian to the generic one considered in the NEGF formalism, the coupling is

now between positions rather than eigenstates. This does not cause much trouble because both the effec-

tive action and the current expression contain the trace over the eigenstates which is basis-independent.

Therefore the trace can be chosen to be performed in the position basis which will utilise the sparseness

of the coupling.

The form of the self-energy matrix can be calculated through finding the effective action after inte-

grating out the reservoirs. This was found in Section 5.3 to be,

Seff = Swire +

Z

K
dtdt0

X

↵,k

Trq,q0
h
V ↵
q,kV

↵
q0,k�̄q(t)g↵,k(t, t

0)�q0(t)
i
. (8.2)

Taking the trace in the position basis results in just one term for each reservoir as the coupling in the
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Hamiltonian only has non-zero V L
1,k term (i.e. V L

2,k = 0). Therefore our effective action becomes,

Seff = Swire � e
X

k

Z

K
dtdt0 (V L

1,k)
2�̄1(t)gL,k(t, t

0)�1(t) + (V R
N,k)

2�̄L(t)gR,k(t, t
0)�L(t), (8.3)

where the number of indices can finally be reduced by letting V L
1,k ⌘ VL,k.

This defines the matrix structure of the self-energy in position space, �̄⌃�, for� = (�1,�2, · · ·�L)T

as,

⌃ =

0

BBBBBBB@

⌃L(k) 0 · · · 0

0 0 · · · 0
...

...
...

...

0 0 · · · ⌃R(k)

1

CCCCCCCA

(8.4)

where ⌃L(k) = V 2
L,kgL,k and ⌃R(k) = V 2

R,kgR,k.

8.1.1 Generic Conductance Expression

Having found the self-energy matrix, the current expression of the NEGF formalism can be simplified by

utilising the sparseness of the self-energy matrix. This will result in an expression for the conductance

for any model where the coupling is between the two edge sites. This gives the current as,

J↵ = e
X

k

Z 1

�1

d!

2⇡
�G↵↵(!)⌃

<
↵,k(!)�G<

↵↵(!)�⌃↵,k(!), where �A ⌘ Ar
�Aa, (8.5)

where ↵ in the Green’s function index refers to the first site if ↵ = L, or the last site if ↵ = R. The indices

(r, a,<) have their usual meaning as the retarded, advanced and lesser Green’s functions respectively.

The kinetic equation can be used to get a Landauer type equation where the transmission multiplied by

the difference of two Fermi distributions. The kinetic equation is,

G
{<,>} = G

r⌃{<,>}
G

a =) G
>
�G

< = G
r
�G

a = �G = G
r�⌃Ga. (8.6)

This can then be put into our current equation to give,

J↵ =

Z 1

�1

d!

2⇡
(Gr�⌃Ga)↵↵⌃

<
↵ � (Gr⌃<Ga)↵↵�⌃↵, (8.7)
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where the matrix elements can be calculated. Doing this for each of the reservoir currents gives,

JL = e
X

k

Z 1

�1

d!

2⇡
Gr

1N�⌃RG
a
N1⌃

<
L �Gr

1N⌃<
LG

a
N1�⌃R

= e
X

k

Z 1

�1

d!

2⇡
|Gr

1N |
2(�⌃R⌃

<
L ��⌃L⌃

<
R), (8.8)

JR = e
X

k

Z 1

�1

d!

2⇡
Gr

N1�⌃LG
a
1N⌃<

R �Gr
N1⌃

<
RG

a
1N�⌃L

= e
X

k

Z 1

�1

d!

2⇡
|Gr

N1|
2(�⌃L⌃

<
R ��⌃R⌃

<
L ). (8.9)

Spatial invariance means that Gr
1N = Gr

N1, which will be seen more explicitly shortly. It follows that

the two currents are equal in magnitude and opposite in direction.

The self-energy contains the Green’s function of the reservoirs which are taken to be a Fermi gas.

As the reservoirs are much larger than the contacts, which are in equilibrium, which allows the different

types of self-energy to be related. The difference between the retarded and advanced functions, �⌃, is

the density of states of the eigenvalues of ⌃, because ⌃r = (⌃a)⇤ and Im(⌃r) = �
P

k ⇡�(!� ✏k). The

self-energy then becomes �⌃↵,k = �2⇡iV 2
↵,k�(! � ✏k) ⌘ �2i�↵,k where the delta function will give

the density of states of a Fermi gas in the ↵ reservoir when the sum over k is performed. From Fermi’s

golden rule, multiplying the density of states and the coupling matrix elements gives the tunnelling rate,

�↵,k.

Next, the lesser function is defined as A<(t, t0) = i
⌦
a†(t0)a(t)

↵
. The fermions in the reservoirs are

a Fermi gas, so the lesser self-energy can be rewritten as ⌃<
k,↵(!) = �f↵(!)�⌃k,↵(!) where f↵(!)

is the Fermi distribution in the ↵ reservoir. This states that the average occupation of electrons in the

reservoirs is given by the Fermi distribution multiplied by the density of states. This form is possible

because
D
a†k(!)ak(!)

E
=
⌦
c†(!)c(!)

↵
�(! � ✏k). The average

⌦
c†(!)c(!)

↵
is simply given by the

Fermi function f(!). There will also be a a chemical potential µL and µR associated to each lead so

⌃<
↵ = ��⌃↵f(! � µ↵).

Putting this into Equation 8.9, gives

JL = e
X

k

Z 1

�1

d!

2⇡
�⌃L,k�⌃R,k|G

r
1N |

2(fL � fR)

= e2V
X

k

4�L,k�R,k

Z 1

�1

d!

2⇡
|Gr

1N (!)|2f
0
(! � µ). (8.10)

120



8.1. SPINLESS RESERVOIRS

This assumes linear bias by setting µL = µR+eV (where V here is the applied voltage not the coupling)

which results in fR ⇡ fL + eV f
0
L + O(V 2). The conductance through a spinless wire connected up

reservoirs through single sites is therefore,

g =
e2

2⇡

X

k

4��k�k

Z 1

�1
d!|Gr

1N (!)|2 sech2 (
�

2
(! � µ)). (8.11)

From here on, the notation of the retarded Green’s function will be dropped as this will be the only type

of Green’s function that is used. This result is similar to the Landauer formalism with the difference of

two Fermi functions providing the voltage through the system. The transmission matrix here is expressed

in terms of the probability for the effective excitations to travel from one end of the wire to the other.

Coupled Green’s Functions

In the NEGF formalism, Gij was defined with the effective action that took into account the contacts.

The ‘coupled’ Green’s functions are related to the uncoupled ones, Gij , using Dyson’s equation. The

uncoupled Green’s functions are the ones that are described in terms of the eigenstates of the isolated

system. The specific form of the coupling allows the problem to be simplified. This is because Dyson’s

equation involves a matrix of Green’s functions and would in general require a full matrix inversion. The

sparseness of the coupling matrix allows the inversion to be performed and Gr
1N calculated.

The coupling is ⌃ij = �ij(�1i⌃L + �iN⌃R). This can be substituted into the Dyson equation for

G11 and G1N . Assuming that the imaginary singularity of the reservoir Green’s function dominates the

real principle part, means that ⌃r
↵ = �i�↵. The real part usually rescales the energy so can be safely

ignored. The Dyson’s equation becomes,

G = G � iG�G. (8.12)

Denoting G11 ⌘ A, G1N ⌘ B, GN1 ⌘ C, GNN ⌘ D, this matrix equation can be explicitly

solved. There is translational symmetry in the wire so G11 = GNN ⌘ a and G1N = GN1 ⌘ b which

can be explicitly seen from the form of the uncoupled Green’s functions in the next section. The matrix
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equation then reduces to,

A = a� ia�LA� ib�RC, B = b� ia�LB � ib�RD (8.13)

C = b� ib�LA� ia�RC, D = a� ib�LB � ia�RD. (8.14)

These two pairs of equations are the same under �L $ �R. Solving simultaneously for A and C,

C(1 + ia�R) = b�
ib�L

1 + ia�L

⇣
a� ib�RC

⌘
=) C

⇣
(1 + ia�R)(1 + ia�L) + b2�L�R

⌘
= b.

Therefore,

GN1 =
G1N

1 + 2iG11(�R + �L) + (G2
1N � G

2
11)�L�R

= G1N . (8.15)

The final answer is invariant under �L $ �R which shows that G1N = GN1.

8.1.2 Conductance of a Spinless Wigner Chain

Having discovered how to relate the coupled Green’s function that appears in the current formula to

the uncoupled Green’s functions, our attention turns to calculating the uncoupled Green’s functions.

This will use the isolated eigenstates that were explicitly calculated in Chapter 7.1.1. The Lehmann

representation of a Green’s function is,

Gij(!) =
1

Z

X

n,m

⇣
e��(✏n�µne) + e��(✏m�µme)

⌘hn| d†j |mi hm| di |ni

! + ✏m � ✏n + i�
, (8.16)

where the sum n,m is over all possible eigenstates which includes all fillings. This form is simply the

definition of Equation 3.16 expressed in terms of the positional operators. The number of fermions in

the eigenstates are given by ne,me, for each eigenstate and the partition function is Z .

The calculations will consider low temperatures and µ > 0. For large µ, the system will be forced

into the Q = 1/2 frozen state. The chemical potential will be set so that the cost in removing a particle

from the system will be compensated by the reduction in energy from introducing two solitons into the

system. This amounts to setting µ + ✏0 ⇡ 0 as the minimum energy, ✏0, of the Q = �1/2 state. This

minimum energy is negative, as can be seen in Figure 7.8. In this regime, the Green’s function can be
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simplified to,

G11(!) =
X

q

zq
! � ✏q + i⌘

, G1N (!) =
X

q

z0q
! � ✏q + i�

, (8.17)

where ✏q denotes the qth eigenstate for the Q = �1/2 filling. Note that when the eigenstates were

calculated earlier they were indexed by the tuple of integers (n,m) but now it will be indexed by just

one integer q. The coefficients zq, z0q is given by

zq =
1

Z
( q

12)
2(1 + e��(✏q+µ)), z0q =

1

Z
 q
LSLS+1 

q
12(1 + e��(✏q+µ)), (8.18)

where the reduced partition function Z is,

Z = 1 +
X

q

e��(✏q+µ). (8.19)

A more lengthy derivation of this form is shown in Appendix F. To briefly understand why this

form is obtained, a factor of e�µLS is taken out which results in any subspaces with fillings lower than

Q = �1/2 being exponentially suppressed. This simplification is only possible if the ground state

eigenvalue of the Q = �3/2 filling is less than twice as large as the ground state of the Q = �1/2

filling. This has not been analytically proven but can be shown to be true numerically. The frozen state

means that one of the summations in Equation 8.16 can be dropped as there is only one possible state in

the larger subspace.

To understand why the coefficients have the form they do in Equation 8.18, the matrix overlaps will

now be calculated. Considering G11 first, one of the overlaps is given by,

hQ = �1/2, q| d1 |Q = 1/2i = hQ = �1/2, q|��⇥�⇥ · · ·�⇥i =  q
12. (8.20)

Using Equation 7.18 to express the eigenstates, the overlap is seen to be  q
12. The other matrix element

in G11 is given by the complex conjugate of the above term leading to a total factor of ( q
12)

2.

For G1N , one of the overlaps is the same as Equation 8.20. The other overlap is given by,

hQ = 1/2| d†N |Q = �1/2, qi = h⇥ � ⇥ · · ·⇥��|Q = �1/2, qi =  q
LSLS+1. (8.21)

Multiplying these contributions together gives the result of Equation 8.18.
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Recalling Equation 7.19 allows the coefficients of the two different Green’s functions to be linked.

Introducing zq = z0qsq, where sq = {1,�1}, provides the connection. Consider one term in the Green’s

function sum, denoted q⇤. Then G
2
11 = G

2
1N as z2q = z

02
q . The coupled Green’s function becomes,

G1N =
G1N

1 + i(�L + �R)G11
=

zq⇤sq⇤

! � ✏q⇤ + i(�L + �R)zq⇤
. (8.22)

Only considering one term is reasonable when the chemical potential is near the resonance of ✏0 and the

eigenstate spacing � is large1.

Connecting up the reservoirs for a spinless system broadens the peaks and leads to the Green’s

functions acquiring a finite imaginary part. The quasi-particles of the system now have finite lifetimes,

proportional to the tunnelling rate. For very weak couplings to the reservoirs, �L + �R << �, each of

the peaks in the Green’s function will be renormalised separately. This is possible as �L,R is the width

of the resonance and each resonance will be � away from each other. This limit corresponds to a high

potential barrier for tunnelling into the system. The full coupled Green’s function is then the sum over

each renormalised peak,

Gr
1N =

X

q

zqsq
! � ✏q + i(�L + �R)zq

. (8.23)

The conductance then becomes,

X

k

4�L,k�R,k

Z 1

�1
d!

�����
X

q

zq
! � ✏q + i(�L,k + �R,k)zq

�����

2

� sech2(�(! � µ)). (8.24)

This expression contains the integral over two sharply peaked distributions - one being the sum of

Lorenztians coming from Green’s functions and the other is due to the temperature. Taking temperature

to be the smallest scale in the system, the temperature peak becomes a delta function and sets all frequen-

cies to be µ. The sum over k is related to the frequency due to the dispersion of the reservoirs. Only the

small energy region around µ will contribute in the sum. Therefore setting ! to be the chemical potential

reduces the k sum to just only contain one term at k and the coupling becomes �̄↵ = V 2
↵,kF

⌫kF where

⌫kF is the density of states at kF .

1The main reason why so many terms can be ignored is due to the peaked temperature function in Equation
8.11. This peak will only select a certain frequency in the Green’s function sum. The criterion for whether terms
can be ignored depends on if each peak affects each other, not the relative size of the peaks. When the chemical
potential is at resonance with an excited state, the size of the ground state peak will be much larger. Yet, if it is far
enough away from the excited state, it will not affect the peak of the excitation.
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Figure 8.2: The conductance is shown to be peak at e2/h as the chemical potentials of the
reservoirs are changed. The width of the peak is smaller for larger 1D chains in the Wigner
crystal regime.

Taking into account the first excited state above ✏0 which will be at an energy of ✏0 + �, the conduc-

tance can finally be given as,

g = 4�̄L�̄R

����
1

i(�̄L + �̄R)
+

zq0

� + i(�̄L + �̄R)zq0

����
2

=
4�̄L�̄R

(�̄L + �̄R)2
+O(

�̄L,R

�
). (8.25)

This is finally the conductance! It was already assumed that the eigenvalue spacing is much larger

than the coupling so higher-order terms will be suppressed. In the case of equal coupling either side of the

wire, there is perfect cancellation and the peak of the conductance is not renormalised by the interaction

in the wire. The microscopics of the state are relegated to only affecting the width of the resonance.

To get the width of the resonance we let µ = ✏0 + �µ such that �µ << �. Knowing that all the

higher-order terms do not contribute means only the term at resonance needs to be considered. This

results in,

g =
4�̄L�̄Rz2q⇤

�µ2 + z2q⇤(�̄L + �̄R)2
. (8.26)
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The width of the peak depends on the length of the system and Figure 8.2 displays the conductance for

different number of sites. Equation 8.18 defines the widths in terms of the wavefunction overlaps. For the

ground state, the width decreases as 1/L5
S , or 1/L3

S for the excited states, whereas the eigenvalue spacing

decreases by 1/L2
S . Therefore the infinite length system should have a conductance equal to the quantum

of conductance over the range of the band. This result will hold until the chemical potential is such that

other fillings apart from Q = 1/2,�1/2 are allowed. This result mirrors the result of Maslov-Stone,

where the interactions in the system are irrelevant to the linear-response conductance.

Altering the coupling to the reservoirs independently provides one method for obtaining fractional

conductance peaks. Letting n�̄L = m�̄R results in,

g =
nm

n2 +m2
. (8.27)

This result could be found in the original treatment by Meir, Wingreen and Jauho [30]. It is not of much

interest here as the fractions are not an expression of the underlying quantum state but are caused by the

imposed constraint. There is no requirement for n or m to be an integer when setting the couplings to

the reservoirs, therefore changing the parameters of the system will likely affect the precise nature of the

coupling. This makes unequal coupling to the reservoirs unlikely to be a cause of the fractional plateaus,

especially as experimentally there is no reason to expect unequal coupling.

8.2 Spinful Reservoirs

The previous analysis will now be generalised to a spinful case. If there are no interactions between the

two channels, a doubling of the spinless result would be expected. Surprisingly, fractional peaks occur in

the conductance when multiple channels are considered. The lack of renormalisation in the prior result is

due to the cancellation provided by G
2
1N = G

2
11 for each term. Any system that has a difference between

excitations travelling along the chain and staying at the same place will result in different behaviour to

the spinless case. A spinful generalisation of the original model will provide this transmission behaviour.

A crucial change from the spinless case is that there are now extra modes in the reservoir and each
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mode can hop onto the wire. The total Hamiltonian of the system now becomes,

H =
X

�

X

k,↵

✏�k,↵c
†
k,�,↵ck,�,↵ +

X

�,↵

V �
k,↵(c

†
k,�,↵d�,↵ + d†�,↵ck,�,↵) +Hspin. (8.28)

Using Equation 8.2, the effective action can be found,

Seff = Swire + e
X

k,�

Z

K
dtdt0 V 2

L,�,k�̄�,1(t)gL,�,k(t, t
0)��,1(t) + V 2

R,�,k�̄�,L(t)gR,�,k(t, t
0)�L,�(t),

where the Green’s functions in the reservoir are now defined for each spin mode. As before, the extra

terms in the effective action define the self-energy matrix. Using the vector � = (�",�#)T , where ��

is the N dimensional vector that describes the field at each position along the chain for each spin, the

self-energy becomes,

⌃ =

0

B@
⌃"" 0

0 ⌃##

1

CA . (8.29)

This is just two copies of the spinless case where ⌃�� are N ⇥ N matrices with only two non-zero

elements at ⌃��11 = V 2
�,L,kg

�
k,L and a similarly defined ⌃��NN .

The current JL," will be given by Equation 8.5

JL," =

Z 1

�1
d!(�G)""11(⌃

""
11)

< + (�⌃)""11(G
""
11)

<, (8.30)

where the new spinful coupled Green’s functions are,

G��0
ij =

1

Z

Z
D� ��i�̄�0je

iSeff . (8.31)

The kinetic equation then is used to express �G and G< in terms of the retarded and advanced

Green’s function. There is no spin flipping term in the Hamiltonian, therefore the uncoupled Green’s

function will not have any terms that link together the spin spaces. As the self-energy is also diagonal,

the problem decouples into two spin sectors that do not interact with each other. This is what is expected

to happen - after all in the Landauer case every channel contributes e2/h and there are two non-interacting

channels. The channels are non-interacting as all interactions are projected out in the U0, U1 ! 1 limit.

The spin space decoupling means that the derivation of the current expression will proceed in the
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same way as the spinless case. Therefore,

JL," =

Z 1

�1
(G""

1N )r(G""
N1)

a[�⌃""
R (⌃""

L )< � (⌃""
L )<�⌃""

R ]. (8.32)

The total current, ĪL = IL," + IL,#, in the left reservoir will become,

ĪL = e2V
X

k

Z 1

�1

d!

2⇡

⇣
4�"

L,k�
"
R,k

���(G""
1N )r(!)

���
2
f

0
"(! � µ) + 4�#

L,k�
#
R,k

���(G##
1N )r(!)

���
2
f

0
#(! � µ)

⌘
.

(8.33)

Solving Dyson’s equation for the coupled Green’s function also uses the separation of spin spaces.

There is then an equation for each spin,

G
�� = G�� + G��⌃��G�� (8.34)

where the uncoupled Green’s functions in the spinful case become,

G
��0
ij (!) =

1

Z

X

n,m

⇣
e��(✏n�µne) + e��(✏m�µme)

⌘hn| d†j�0 |mi hm| di� |ni

! + ✏m � ✏n + i⌘
. (8.35)

Dyson’s equation can be solved in the exact same way as previously. The coupled spinful Green’s

function becomes,

G��
1N =

G
��
1N

1 + 2iG��11 (�
�
R + ��L) + ((G��1N )2 � (G��11 )

2)��L�
�
R

. (8.36)

This looks identical to the previous case and would naively be expected to simply double the pre-

vious result. It is in the calculation of the matrix overlaps in the uncoupled Green’s function where the

difference hides.

8.2.1 Conductance of a Spinful Wigner Chain

To calculate G
��
11 and G

��
1N , only the Q = �1/2 and Q = 1/2 fillings are considered. This is justified

in the same way as before: that the chemical potential is chossen to be equal to the ground state energy

of the Q = �1/2 filling. The small temperature guarantees that the other fillings are exponentially

suppressed. With this simplification, and using the fact that all eigenstates with a Q = 1/2 filling are
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zero energy,

G
��0
11 =

1

Z

X

n,m

1 + e��(✏n+µ)

! � ✏n + i⌘

⇥ hQ = 1/2,m| d†1� |Q = �1/2, ni hQ = �1/2, n| d1�0 |Q = 1/2,mi (8.37)

where n,m index the states in the Q = �1/2 and Q = 1/2 fillings respectively regardless of spin

configuration.

The crux of the difference in the spinful case can be found in the matrix overlaps, which depend on

the spin structure. Considering the frozen states in the Q = 1/2 filling, the sum over all eigenstates is

the same as the sum over all configurations {�},

X

m

|Q = 1/2,mi =
X

{�}

|�1 � �2 � · · ·� �LS i . (8.38)

The smaller filling contains the same eigenstate sum as the spinless case, summed over all spin configu-

rations. There will be half the number of spin configurations in this sum as there is one fewer electron,

X

n

|Q = �1/2, ni =
X

{�}

X

k

|Q = �1/2, {�1�2 · · ·�LS�1}, ki . (8.39)

For a given spin configuration, we act the annihilation operator on the first site,

d1�0 |Q = 1/2, {�1 � �2 � · · ·� �LS}i = ��0�1 |Q = �1/2, {�� �2 � · · ·� �LS}i , (8.40)

giving one of the underlying occupation configurations. This will have a non-zero overlap with the

eigenstates in the |Q = �1/2, {�2 · · ·�LS}i subspace. The overlap will be given by  q
12.

Applying the creation operator d†1� in this subspace produces the original state with the coefficient

of the eigenstate expansion,

d†1� |Q = �1/2,�2 · · ·�LS , qi = d†1�

⇣
 q
12 |�� �2 � · · ·� �LS i+ · · ·

⌘

=  q
12 |� � �2 � · · ·� �LS i . (8.41)

All the operators must bring us back to the original state due to the trace, resulting in � = �0. The
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factor of ��0�1 means that all configurations with �0 6= �1 do not contribute, halving the number of

contributing spin configurations. The Green’s function then becomes,

G
��0
11 =

1

Z

X

q

X

{�}

1 + e��(✏n+µ)

! � ✏n + i⌘
��0,�1( 

q
12)

2 =
2LS�1

Z

X

q

1 + e��(✏n+µ)

! � ✏n + i⌘
( q

12)
2. (8.42)

It is due to the degeneracy of the eigenstates for each spin configuration that the sum can be easily

performed.

When considering propagation through the entire chain, the new matrix overlap to consider is,

hQ = 1/2,m| c†N� |Q = �1/2, ni hQ = �1/2, n| c1� |Q = 1/2,mi , (8.43)

Following the above idea, the annihilation operator acts first, annihilating the electron on the end site,

c1� |Q = 1/2, {�1 � �2 � · · ·� �LS}i = ���1 |Q = �1/2, {�� �2 � · · ·� �LS}i . (8.44)

This will only have a non-zero overlap with an eigenstate that has same the spin configuration, This

produces the coefficient of this state in the Q = �1/2 eigenstate expansion which is  q
12, just like the

previous case. Acting the creation operator in this subspace gives,

d†N� |Q = �1/2, {�2 · · ·�LS}, qi = d†1�

⇣
 q
12 |�� �2 � · · ·� �LS i+ · · ·

⌘

=  q
LSLS+1 |�2 � �3 � · · ·�LS � �i . (8.45)

The overlap between this state and the original state |�1 � �2 � · · ·� �LS i will only be non-zero if

�i+1 = �i for all i. This means only a fully polarised spin chain can have an electron hop off at one end

and hop on at the other. All other possibilities are precluded by the orthogonality of spin configurations.

Figure 8.3 shows how a non-polarised spin configuration will result in an orthogonal configuration after

acting the operators in the Green’s function.

Therefore in the summation over all possible spin configurations in the Green’s function not every

state contributes equally. Only the polarised configuration has a non-zero overlap,

G
��
1N =

1

Z

X

q

1 + e��(✏n+µ)

! � ✏n + i⌘
 q
12 

q
LSLS+1. (8.46)
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Figure 8.3: Demonstrating how the states change upon application of the creation and annihi-
lation operators in GN1 starting from a given spin configuration. The final state is orthogonal
to the starting state, which will result in only spin-polarised states contributing in the sum over
spin configurations in the Green’s function.

Thus we have shown the form that the Green’s functions take in the spinful case. Using the same

form as Equation 8.17 we obtain,

G
��
11 (!) =

A

Z

X

q

zq
! � ✏q + i⌘

, G
��
1N (!) =

1

Z

X

q

zqsq
! � ✏q + i⌘

, (8.47)

where A = 2LS�1 and sq = {1,�1} as before.

To calculate the precise form of the coupled spinful Green’s function, Equation 8.36 is used. Again

only one term, q⇤, in the sum will contribute. This results in,

G��
1N =

zq⇤s⇤q⇣
! � ✏q⇤ � �L�Rz2q⇤(

A2�1
!�✏q⇤ )

⌘
+ izq⇤A(�L + �R)

, (8.48)

where the � ! 0 limit can be safely taken due to the finite imaginary part. The conductance uses the

modulus squared of this expression, which in the the zero temperature limit allows us to set !�✏q⇤ = �µ

in the expression,

4�̄L�̄R|G
��
1N |

2 =
4�̄L�̄Rz2q⇤⇣

�µ�
�̄L�̄Rz2

q⇤ (A
2�1)

�µ

⌘2
+A2z2q⇤(�̄L + �̄R)2

. (8.49)

The term containing �µ is positive definite, so the maximum of the function can be found where this

term equals zero, �µ = ±zq⇤�
p
A2 � 1. The conductance peak will therefore split into two upon the
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addition of spinful channels. The height of this peak is 1/A2 for equal coupling to the reservoirs. Exactly

at resonance, when �µ = 0, this expression tends to zero. For A = 1, this term reduces to the spinless

result of Equation 8.26.

Calculating the total current requires the contribution from both channels which will behave in the

exact same way due to the separation in spin space. For zero temperature and generic coupling, upon

substituting back in for A,

g =
I"L + I#L

V
=

1

22LS�4

h �"
L�

"
R

(�"
L + �"

L)
2
+

�#
L�

#
R

(�#
L + �#

L)
2

i
. (8.50)

Many different fractions can be achieved when tuning the couplings to the reservoirs as there are

four parameters to vary. This case is not particularly remarkable, as the fractions arise from the choice

of condition, rather than as an expression of the microscopic behaviour.

The more compelling case is when the couplings are equal. Fractional resonant peaks will occur at

values of 1/22LS�3. When LS = 1, there is only one site which will either be occupied or unoccupied

and this has a conductance of 2e2/h, which is to be expected for a system with two channels. The first

few fractions in units of e2/h are 2, 1/2, 1/8, 1/32, 1/128. The results for different numbers of electrons

in the Wigner chain are shown in Figure 8.4.

Adding a magnetic field to the spinful case will lift the degeneracy. This will reduce the coefficient

of the G11 term because any configuration that is not spin-polarised will have its energy raised. The

sum over all spin configurations in Equation 8.42 will only contain a spin-polarised state, for a strong

enough field. Therefore this recovers G11 = G1N for individual terms in the sum and produces the

spinless result. More complex interactions could occur when the energy separation from the magnetic

field becomes large enough to cross over the excited state.

Finally, higher order process such as co-tunnelling can be safely ignored. For weak coupling to the

reservoirs, these terms are suppressed by �2p where p is the integer number of tunnelling events. The

number of spin configurations that can contribute to transport, upon allowing higher order processes,

does not increase sufficiently quickly to counteract the small coupling. As an example, there are two spin

configurations that require four interactions with the reservoir to shift the spin ordering along by two.

These correspond to the two antiferromagnetic configurations, which will not compensate the squaring

of the coupling.
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Figure 8.4: The conductance of a spinful Wigner chain upon varying the chemical potential for
a different lengths in the system.

8.3 Further Work and Conclusions

This thesis set out to analyse the possible origins of fractional conductance in one-dimensional systems.

A variety of approaches were explored through a pedagogical lens to provide a solid grounding of the

problem and the existing literature that surrounds it. The strongly correlated regime, in which these

fractional plateaus reside, is notorious for being hard to study which is why a multi-pronged approach is

useful.

Most of the literature has approached this problem, and transport in 1D more generally, by starting

with a Luttinger liquid. The ubiquity of this approach is due to the quadratic nature of the action and the

universality of the resulting description, which encapsulates many different models. Under certain con-

ditions with the contacts, this produces fractional plateaus. Luttinger liquid ideas have been successfully

applied to describe the fractional plateaus in the fractional quantum Hall effect. Increasingly ingenious

combinations of chiral Luttinger liquids and QPCs have resulted in a wealth of understanding and pos-

sibilities in this area, with evidence for the fractional statistics of the quasiparticles being observed in

recent years [97, 98].

Helical Luttinger liquids were instrumental in reproducing fractional conductance not just in a chiral
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edge mode of a 2D system, but in a 1D system proper. Shavit and Oreg [58] managed to extend these

ideas to a situation where time-reversal symmetry holds. Their results match up to experiment incredibly

well, but only for the plateau at (2/5)e2/h. Other fractions are observed which cannot be predicted

by this approach. Although Shavit and Oreg’s approach gives a convincing partial explanation of this

phenomenon, there are clearly other pieces of the puzzle yet to be found.

The concurrent understanding of quantum dots has been developing to describe increasingly com-

plex situations. Much of the research in this field is interested in the limit that there are many electrons

crammed onto the dot. The final chapter of this thesis explored the application of these discrete tech-

niques on fractional plateaus. This constitutes a new approach to this problem, with many features that

are distinct to finite systems which are quickly washed out with increasing system length.

The fundamental feature that obtains these fractional values of conductance at resonance is a splitting

of the state space into states that can support transport and those that cannot. This mechanism could, in

theory, generate any fraction. The difficulty is in finding models that have this feature. Both the spinful

and spinless cases of a 1D Wigner chain were examined, with the spinless chain containing the exact

same amount of configurations that could conduct as ones that could not. The degenerate spinful case

did show a difference, where only the polarised configuration could have an electron hopping on at one

end and off at the other. The other configurations required higher-order interactions with the reservoirs,

which would be negligible for weak tunnelling.

The most obvious way that this work could be extended is through considering the situation where

spin symmetry is broken. This would result in both coupled and uncoupled Green’s functions no longer

being diagonal in spin space. To consider situations where the coupling to the reservoirs is increased

would require an understanding of how the co-tunnelling terms contribute. The interaction between

the excited states and the lifting of the degeneracy by a magnetic field could also result in interesting

behaviour.

Introducing interactions at longer range would require additional terms in the original Hamiltonian,

Including U2, which would act on next-nearest neighbours, forms another possible extension. Taking

the infinite interaction limit of this new term would result in a Wigner crystal with an electron every

three sites. There would be three solitons in the system, of charge e/3. The mappings to the 3D square

lattice may allow for the eigenstates to be calculated. Generalising this process to a filling of 1/n would

be possible though by considering the infinite interaction limit of the Un�1 term. This will, however,

134



8.3. FURTHER WORK AND CONCLUSIONS

become increasingly unlikely to be a reasonable approximation.

Many more scenarios could be concocted and analysed in the same way, with a microscopic model

being required. The number of transport channels in both the wire and contacts are crucial quantities in

determining the conductance behaviour. This chapter has only considered the case where each contact

was directly connected to the transport channel. This could be generalised by considering channels in

the wire that are not connected to the contacts.
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APPENDIX A

FUNCTIONALS

A.1 Functional Calculus

Functionals, written as F [x(t)], describe a mapping from a function x(t) to a scalar. This is often

implemented by an integration over the variables that the function depend on. Before understanding why

functionals are useful in quantum theory, we will deal with how to mathematically deal with the calculus

of functionals. All of this introduction follows Altland and Simons’ book [28].

A.1.1 Functional Derivatives

Derivatives of functionals describe how the scalar result of the functional changes upon modifying the

underlying function [99]. A way of perturbing a given function, x(t) is by using a delta function acting at

a generic point t0. As functionals contain an integration, the delta functions are well defined and provide

a small bump in the original function. The functional derivative is defined as,

�F [x(t)]

�x(t0)
= lim

✏!0

F [x(t) + ✏�(t� t0)]� F [x(t)]

✏
. (A.1)

To actually perform any functional derivatives, we simply rely on the following result that can be

seen from the definition,
�x(t)

�x(t0)
= �(t� t0). (A.2)

Using this relation and both the chain and product rules, which survive the transition to functional differ-
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entiation, any functional derivative can be computed. As a prescient example, if G[x(t)] = e
R
dtx(t)a(t)

then,

�G

�a(t0)
= e

R
dtx(t)a(t) �

�a(t0)

Z
dta(t)x(t) = e

R
dtx(t)a(t)

Z
dtx(t)�(t� t0) = x(t0)G[x(t)]. (A.3)

Note that taking the functional derivative with respect to t0 produces a function that depends on t0, as

we have obtained a description of how large the change in the functional is when perturbing the original

function at the point t0. Therefore the total change to the functional upon perturbing by a generic function

would require an integral over all t0. To linear order for a generic perturbation g(t),

�F [x(t) + ✏g(t)] = ✏

Z
dt0
�F [x(t)]

�x(t0)
g(t0) +O(✏2). (A.4)

Higher orders of functional differentiation are introduced in a similar way but must be with respect

to a different variable. The change of a function when it is perturbed in two different places will depend

on the location of both t0 and t00, and both must therefore be integrated over. The second order term in

the above expansion will therefore be,

1

2!

Z Z
dt dt0

�2F [x(t)]

�x(t0)�x(t00)
h(t00)g(t0), (A.5)

with the nth order functional derivative requiring n different variables to be integrated over. With this

knowledge, any functional can be expanded in a functional Taylor series, except instead of being around

a point, it will be around a specific function.

A.1.2 Functional Gaussian Integration

Much like in the calculus of functions, functional integration is a lot harder than calculating derivatives.

There is only a small class of functionals that can be integrated and the proof of how they are integrated

then comes from considering a continuum generalisation of multi-dimensional Gaussian integration. As

such, it is worth a recap of how to integrate Gaussian functions. For N independent copies of a Gaussian

multiplied together, each one can be performed separately to give,

Z 1

�1

NY

i=1

dxie
�xiAixi =

NY

i=1

r
⇡

Ai
. (A.6)
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Each Ai must be positive in order to ensure convergence of the integral. This can be transformed into a

more general matrix form by considering xi as vectors. The product over exponentials becomes a sum

in the exponents, and the components Ai can be interpreted as a the diagonal elements of a matrix Aij .

A generic form can be found through performing a unitary transformation on the diagonal basis, mixing

up the eigenvectors xi. A unitary transformation is chosen as the Jacobian will be equal to unity and

therefore not affect the measure
Q

dxi. The product of all Ai on the right hand side of Equation A.6,

then becomes the determinant of the matrix Aij which is basis independent. This gives the more general

result of,
Z 1

�1
(

NY

i=1

dxi)e
�

P
ij xiAijxj = (⇡)N/2 1p

det(A)
. (A.7)

Another generalisation is possible by adding a linear term,

Z 1

�1
(

NY

i=1

dxi)e
�

P
ij xiAijxj+

P
i Jixi = (⇡)N/2 1p

det(A)
e
P

ij JiA
�1
ij Jj/4 (A.8)

where A�1
ij is the ijth component of the matrix inverse of matrix A. This can be shown through a linear

transformation on the vectors, essentially completing the square in a multi-dimensional case. Functional

integration comes from letting N ! 1, because then i goes from an index of different x components to

a variable, producing a function, x(i). Each point is separately integrated from �1 to 1 which means

that all possible x(i) are considered.

The main equation of functional integration is,

Z
Dx(t) exp

✓
�
1

2

Z
dtdt0x(t)A(t, t0)v(t0) +

Z
dtJ(t)v(t)

◆

/ (detA)�1/2 exp

✓
1

2

Z
dtdt0j(t)A�1(t, t0)j(t0)

◆
, (A.9)

where A�1 must now satisfy,

Z
dt0A(t, t0)A�1(t0, t00) = �(t� t00). (A.10)

The measure Dx(t) is a compact way to write the infinite product of dxi integrations. The first issue

is that both ⇡N/2 and the determinant diverge in the infinite dimensional limit, which is why functional
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averages need to be introduced. The average of a quantity is defined as

h(· · ·)i =
1

Z

Z
Dx(t) (· · ·)eiS[x(t)], Z =

Z
Dx(t)eiS[x(t)] (A.11)

where (· · ·) is any combination of the functions x(t). The functional, S[x(t)], defines the weighting

of this average. The partition function, Z provides the same coefficients that diverge as the functional

integral in the numerator - resulting in a finite answer.

If the functional is quadratic (which includes the possibility of having a linear term as well) in the

fields, then the main functional integration formula can be used to calculate any average. Here is where

we introduce the main machinery of functional QFT, differentiating with source fields that get set to zero.

For a functional S0, the average of two functions is defined as,

hx(t1)x(t2)i =
1

Z

Z
Dx(t) x(t1)x(t2)e

iS0[x(t)], S0[x(t)] =
1

2

Z Z
dtdt0 x(t)A(t, t0)x(t0).

(A.12)

This average can be found by considering it as the average of a modified functional. A new source field

is introduced that linearly and locally couples to the field,

S0[x(t), J(t)] = S0[x(t)] +

Z
dt x(t)J(t). (A.13)

For J(t) = 0, it is clear that the two functionals match. The average over the original functional can

then be rewritten using Equation A.3,

hx(t1)x(t2)i = �
1

Z

Z
Dx(t)

�2

�J(t1)J(t2)
eiS

0[x(t),J(t)]

����
J=0

. (A.14)

The functional with the source field can be integrated using Equation A.9. The diverging constants will

be cancelled out by Z to give

hx(t1)x(t2)i =�
�2

�J(t1)J(t2)
exp

✓
i

2

Z
dtdt0 J(t)A�1(t, t0)J(t0)

◆����
J=0

=A�1(t1, t2) (A.15)

where we have used A�1(t1, t2) = A�1(t2, t1) to collect terms.
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Any average over an odd number of fields for a purely quadratic action will result in zero because

performing the functional derivative will always produce terms with a factor of the source field that will

be set to zero. Averages over an even number of fields can be performed in a similar way and is a

demonstration of Wick’s theorem,

hx(t1) · · ·x(t2n)i =
X

pairings of
{t1,···t2n}

A�1(tk1 , tk2) · · ·A
�1(tk2n�1 , tk2n) (A.16)

Finally, it must be acknowledged that so far we had been considering real functions. The complex

Gaussian integral has a similar form to Equation A.9, but the square roots on both the ⇡ and the determi-

nant disappear. This is because both real and imaginary parts have to be integrated, essentially doubling

N .

A.1.3 Beyond Quadratic Functionals

This seems like a very limited formalism as only averages that use functionals that are quadratic in their

functions can be calculated. If higher order terms in the function exist in the functional, their effect can

be calculated perturbatively. Defining a new functional to average over,

S[x(t)] = S0[x(t)] + �

Z
dt x(t)4, (A.17)

which is the prototypical �4 action of QFT [27]. When � is small, this means that the exponential of this

functional present in the average definition can be expanded to give,

hx(t1)x(t2)i =
1

Z

Z
Dx(t) x(t1)x(t2)e

S0[x(t)]
⇣
1 + �

Z
dtx(t)4 + · · ·

⌘
(A.18)

= hx(t1)x(t2)iS0
+ �

⌧
x(t1)

Z
dtx(t)4x(t2)

�

S0

+ · · · . (A.19)

This brings the averages back to being over a quadratic functional and so the previous results can

be used. Terms that arise from the expansion of the exponential can be calculated using Equation A.16.

This transforms the problem into a combinitorial one, where the number of ways that the functions can

be paired up is investigated. The Feynman diagram formalism is exactly this problem and all results from

it can be derived in this functional way as mentioned in Chapter 3.
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Another approximate way to deal with more complicated functionals is to find a stationary config-

uration and find the functional Taylor series. Expanding around this configuration allows the quadratic

terms in this expansion to be considered. This is the basis of the semiclassical approximation which is

one of the major strengths of the functional formalism.

A.2 Functional Integrals are Quantum Averages

Quantum mechanics is all about finding averages. Normally these take the form familiar from linear

algebra - a weighted sum over eigenstates. Through some clever manipulations we can express these

quantum averages as a functional integral. As the first example of re-expressing a quantum problem

in terms of functionals, consider a particle moving through a potential, described by the Hamiltonian,

H = P 2/2m+ V (x).

The aim is to know the probability that the particle will be at a given point, knowing its original

position. This is encapsulated in the matrix overlap of hqf |U |qii, where U is the usual quantum me-

chanical evolution operator. To tackle this integral, the operator is split up into N time chunks, a process

known aptly as time slicing [28]. Letting t = N�t gives us a parameter that is small compared to the

eigenvalues of the operator, it can be expanded as,

hqf | exp(�iHt/h̄) |qii = hqf | exp(�iH�t/h̄) · · · exp(�iH�t/h̄) |qii . (A.20)

Using the Baker–Campbell–Hausdorff (BCH) relation eAeB = eA+BeO([A,B]), the exponential of

the Hamiltonian can be split in the following way,

e�i�tH/h̄
⇡ e�iT�t/h̄e�iV�t/h̄, (A.21)

as the commutators in the BCH relation will contain higher powers of h̄. Denoting the states at each of
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the time evolution as {|qii} with |q0i being the initial state, the probability for one time slice becomes,

P = hqN | e�iT�th̄e�iV�t/h̄
· · · e�iT�t/h̄

|q0i e
�iV (q0)�t/h̄

=

Z
dp0 hqN | e�iT�th̄e�iV�t/h̄

· · · e�iT�th̄
|p0i hp0|q0i e

�iV (q0)�t/h̄

=

Z
dp0 hqN | e�iT�th̄e�iV�t/h̄

· · · |p0i e
�iT (p0)�t/h̄eip0q0/h̄e�iV (q0)�t/h̄

=

Z
dp0

Z
dq1
2⇡

hqN | e�iT�th̄e�iV�t/h̄
· · · |q1i e

�ip0q1/h̄eip0q0/h̄e�iT (p0)�t/h̄�iV (q0)�t/h̄.

Continuing on in this fashion gives the matrix element as,

P =

Z N�1Y

n=1

dqn
2⇡

NY

n=0

dpn exp

 
�
i�t

h̄

N�1X

n=0

V (qn) + T (pn)� pn
qn+1 � qn

�t

!
. (A.22)

This integral is a (2N � 1) dimensional integral over position and momentum at each of these time

slices. In the continuum limit, where N ! 1 and �t ! 0 such that t is finite, these integrals become

the functional integrals of the previous section. There are now boundary conditions on the fields where

the initial and final states are set by the specific matrix overlap we are calculating.

Expressing the quantum average in terms of a functional integral considers all possible ways that

the particle could travel from the initial to final point, with each path weighted by this functional. To

understand what the functional that weights the average corresponds to, the field p(t) is integrated out by

using equation A.9,

P =

Z
DpDx exp

✓
i

h̄

Z t

0
pq̇ �H(x, p)dt

◆
=

Z
Dx exp

✓
i

h̄

Z t

0
L(x, ẋ)dt

◆
. (A.23)

The averages can now be seen to be weighted by the action. The use of functional integrals is not limited

to just single particle quantum mechanics, so their implementation in QFT will now be looked into.

A.2.1 Functional Integrals in Quantum Field Theory

In many high-energy physics QFT books, the coherent state field integral is not discussed as the funda-

mental starting point of the Lagrangian is preferred. In condensed matter however, a microscopic second

quantised description of the problem is the fundamental description.

In QFT, there no longer is a dynamical position operator that evolves in time. Instead a field of
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operators is present in both space and time that obey the equal time commutation relations. In this

second quantised form, it is natural to use the creation and annihilation operators to describe a given

Hamiltonian. This is a convenient way to represent the many body quantum state that must be confronted

in condensed matter, especially the statistical properties of fermions and bosons.

In the calculation of the quantum mechanical average, the eigenstates of both position and momen-

tum operators were used to act the Hamiltonian on a state. It turns out that eigenstates of the annihilation

operator can be found and the same procedure performed on a second quantised Hamiltonian. The eigen-

states are called coherent states and are given as the infinite sum of creation operators,

ai |�i = �i |�i , |�i = exp

 
X

i

�ia
†
i

!
|0i , h�| a†i = h�| �̄i (A.24)

for bosonic annihilation operator ai. The eigenvalue �i can be any, possibly complex, number. It turns

out that different coherent states are not orthogonal and form an over-complete basis where the resolution

of unity becomes,

=

Z Y

i

d�̄id�i
⇡

e�
P

i �̄i�i |�i h�| . (A.25)

This has the same measure as a complex functional integral when i ! 1, which corresponds to a

bosonic operator at every point in space - exactly the quantum field!

The quantity of interest in field theory is the weighted average of eigenstates. For a normal ordered

Hamiltonian H(a†i , ai) with number operator N =
P

i a
†
iai, the average is given by a sum over the

eigenstates |ni of the Hamiltonian. This can be time sliced, but in imaginary time,

X

n

hn| e��(H�µN)
|ni =

X

n

hn| e��⌧(H�µN)
· · · e��⌧(H�µN)

|ni . (A.26)

The details of the change to imaginary time are explored in Chapter 2. Upon inserting a resolution of

identity in between each slice, an expression for this average (which is the partition function in disguise)

becomes,

Z =

Z
D�̄D�e�S[�̄,�], S[�̄,�] =

Z �

0
d⌧ ̄@⌧ +H( ̄, )� µN( ̄, ). (A.27)

The requirements of the eigenstate to still be hn|, enforced by the trace, after the full evolution gives a

periodicity to the fields  (0) =  (�). The measures over �̄ and � are combined into just one throughout
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this thesis.

Fermions have a similar description this bosonic one introduced, but they require the introduction of

Grassmann numbers, ⌘. These new strange objects have the fermionic property of anticommuting with

themselves, ⌘i⌘j = �⌘j⌘i. This means that ⌘2i = 0 which is exactly Pauli’s exclusion principle. A field

of these numbers can be created. All the coherent state structure of Equation A.24 will persist when

Grassmann numbers are used instead of the complex ones. The representation of the coherent state as

the exponential of the creation operators multiplied by a number will still work as all terms higher than

⌘2 cancel. There are some slight subtleties in that the measure no longer contains the factor of ⇡. The

functional integral over these Grassmann fields are now proportional to det(A) instead of the inverse

square root found in Equation A.9.

A final point to make about this construction is that the average of functions as defined in Equation

A.12 is inherently time ordered. All of the structure of going from a time-ordered formulation to a

real-time one is required after averages have been calculated.

Therefore we have managed to describe both finite temperature averages and matrix overlaps as a

functional integral over classical fields. The fields manage to sweep a few subtleties about time ordering

and rigorous mathematical definition under the rug, but come with the benefit of being much clearer in

the symmetries of the system. It is easier to find a transformation under which something is invariant,

than a commuting operator.
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DYSON’S EXPANSION

To find the expression for the time evolution of a time-dependent Hamiltonian, Schrödinger’s equation

must be solved [27]. Using the evolution operators results in,

i
dU(t, tr)

dt
= H(t)U(t, tr), ! U(t, tr) = U(tr, tr)� i

Z t

tr

dt1H(t1)U(t1, tr). (B.1)

When no time evolution occurs, the state must not change which implies that U(t, t) = 1. The problem

can be solved by inserting U(t, tr) into the right hand side iteratively,

U(t, tr) = 1� i

Z t

tr

dt1H(t1)
⇣
1� i

Z t1

tr

dt2H(t2)U(t2, tr)
⌘
. (B.2)

This is an infinite sum so we can express it as such,

U(t, tr) =
1X

n=0

(�i)n
Z t

tr

dt1

Z t1

tr

· · ·

Z tn�1

tr

dtn H(t1) · · ·H(tn). (B.3)

There are n integrals at the nth order of summation. It is crucial to remember in this derivation that

the Hamiltonian is a fully fledged operator whose order cannot be swapped carelessly. The set of tn is also

ordered so that t � t1 � t2 · · · � tn � tr. This is due to the iterative nature of the procedure requiring

intermediate times and those intermediate times appearing as the integration limits. This dependence

however is difficult to implement and we can re-express this chain of conditional integrals with all the

integrals having the same limits. To see how to obtain the same limits on the integral consider the term
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at second order,

O(2)(t, tr) = �

Z t

tr

dt1

Z t1

tr

dt2H(t1)H(t2), where t1 � t2. (B.4)

Let’s introduce a notation for ordering our operators called the time ordering operator T . It is a tool

that ensures that operators at earlier times act first and are therefore on the right side of the equation.

This can be explicitly formulated by using Heaviside functions ⇥(x),

T {A(t1)B(t2)} = ✓(t1 � t2)A(t1)B(t2)± ✓(t2 � t1)B(t2)A(t1), (B.5)

where the ± refers to the sign produced by the commutation relations of bosons or fermions. The second

order term is re-written using this operator,

T {

Z t

tr

dt1

Z t

tr

dt2H(t1)H(t2)} = 2O(2)(t, tr) (B.6)

which allows the limits on the integral to be the same as the Heaviside function enforces these limits

now.

The factor of two must be introduced as the time ordering operator does not specify which time will

be smaller. There are two ways of ordering t1 and t2, so if we want to obtain just one of the ways then the

division by two must occur. This logic continues to the mth order, where there are m! ways of ordering

m times. Each term in the sum can be then be formulate in terms of a time-ordered expression. This

leads to the final result,

U(t, tr) = T {

1X

n=0

1

n!

Z t

tr

dt1 · · · dtn H(t1) · · ·H(tn)} = T exp

✓
�i

Z t

tr

d⌧H(⌧)

◆
. (B.7)

The time-ordering that pervades quantum field theory arises due to the time evolution operator being

expressed in this way.
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CALCULATING THE JACOBIAN

The Jacobian is calculated from Equation 4.11, which can be rearranged into

ln(J⌘) = �Tr(ln(1 + g⌘↵⌘))) = �Tr

 
X

n

(g⌘↵⌘)2

n

!
(C.1)

where ↵⌘ = @⌘✓(x, t) has been introduced. The focus of this appendix is concerned with showing that

all terms in the sum where n 6= 2 do not contribute. Following this, the n = 2 term will be calculated to

provide the final result of Equation 4.13.

To get to this loop cancellation theorem [42], we first need to examine the Green’s functions calcu-

lated at finite temperature. The Green’s function of the Tomonaga-Luttinger model can be found through

taking a Fourier transform of Equation 4.6 and performing a Wick rotation into imaginary time,

g⌘(k,!n) =
1

i!n � ⌘vFk
. (C.2)

Fourier transforming back into position space gives,

g⌘(x� x,!n) =
i

⌫F
e
� ⌘!n

⌫F
(x�x0) (C.3)

The sum over the Matsubara frequencies, !n = 2⇡T (n + 1/2), can be taken explicitly without having
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to deal with contour integrals. This gives the Green’s function in imaginary time,

g⌘(x� x0, ⌧ � ⌧ 0) =
1

2�vF

1

sin
⇣
⇡
� ((⌧ � ⌧ 0) + i⌘

vF
(x� x0))

⌘ . (C.4)

C.1 Loop Cancellation

The actual trace over of the nth term in the sum, where translational and temporal invariance is assumed,

is given by,

Tr(↵⌘g⌘)
n =

Z nY

i=1

dxid⌧i

nY

i=1

↵⌘(xi, ti) (C.5)

⇥ g⌘(x1 � x2; t1 � t2)g⌘(x2 � x3; t2 � t3) · · · g⌘(xn � x1; tn � t1).

The convolution of all of the Green’s functions is defined as �. This function is proportional to the

product of all of the sine terms,

�(s1, s2, · · · , sn) /
nY

i=1

si
si � si+1

, where si = exp

✓
2i⇡

�
(⌧ + ix/vF )

◆
. (C.6)

To see why this rewriting is possible, notice that Equation C.4 can be expressed as,

g⌘(x1, x2, ⌧1, ⌧2) /

p
s1s2

s1 � s2
(C.7)

from which it is easier to see how Equation C.6 is obtained. Any antisymmetric part of this function1

will vanish upon the integration over all space and time from the trace. Therefore all our attention is

turned to calculating the symmetric part which can be split into,

nY

i=1

si
si � si+1

=
An(s1, s2 · · · sn)Q
1i<jn(si � sj)

nY

i=1

si. (C.8)

The numerator of the left hand side can be seen to be symmetric, and the denominator has been

formed into an antisymmetric form, at the cost of introducing another polynomial A. This polynomial

must be antisymmetric in order for the full expression to be symmetric. As an example of what values it

1Here symmetric is defined with respect to interchange of the variables of this multi-variable polynomial.
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should take, consider the n = 4 term,

�4 =
s1s2s3s4

(s1 � s2)(s2 � s3)(s3 � s4)(s4 � s1)

=
s1s2s3s4

(s1 � s2)(s1 � s3)(s1 � s4)(s2 � s3)(s2 � s4)(s3 � s4)
⇥�(s1 � s3)(s2 � s4),

where the final term is A4. By counting the powers of the right hand side of Equation C.8, the order of

the polynomial must be n(n� 3)/2. This comes from the fact that there are n(n� 1)/2 ways of having

i < j (in a calculation to one performed in Chapter 7) and the order from the numerator will be just n.

Note that negative orders are allowed as 1/(s1 � s2) is antisymmetric, so they can be simply view as

inverses.

The minimum order of an antisymmetric polynomial must be n(n � 1)/2 as the powers of each

variable must be different in each term of the polynomial. For n = 3, one of the terms will be s01s
1
2s

2
3.

The full polynomial will be the sum of the different ways of distributing the exponents on these three

terms. These are the only terms allowed as if the powers were the same on any two terms, there would

be a symmetry upon swapping the variables.

Combining these two pieces of information, the required order of the polynomial by power counting

is smaller than the minimum possible order for it to be antisymmetric if n > 2. Therefore there is no

way to create a symmetric contribution to � for all n > 2. These higher order terms can contribute in

an antisymmetric way, but this will be exactly zero upon performing the trace. The n = 0 term is just a

constant so can be ignored. The n = 1 term is related to the total electric charge, because the Green’s

function is like a density operator,
D
ckc

†
k

E
. This is coupled to the introduced field, ✓, which acts like an

electromagnetic field A. This means the first order of the expansion gives the total charge, which must

be zero due to electronegativity requirements.

C.2 The RPA Term

The only term that needs to be calculated is the n = 2 term, which corresponds to a polarisation term.

Therefore the RPA approximation of normal materials is exact in the Tomonaga-Luttinger model! This
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term in the expansion of Equation C.1 is, for ⇠ ⌘ (x, t),

�
1

2
Tr
�
↵2
⌘g

2
⌘

�
= �

1

2

Z
d⇠1d⇠2 ↵⌘(⇠1)g⌘(⇠1 � ⇠2)↵⌘(⇠2)g⌘(⇠2 � ⇠1)

= �
1

2

X

✏n

Z
dk

2⇡
↵⌘(k, ✏n)↵⌘(�k,�✏n)

X

!n

Z
dp

2⇡
g⌘(p+ k, ✏n + !n)g⌘(p,!n). (C.9)

Both !n, ✏n are fermionic Matsubara frequencies. The sum over !n can be performed by considering a

contour integral with a function that has poles at each of the fermionic Matsubara frequencies multiplied

into the integrand. The contour along the imaginary axis is again deformed to include the two poles of

the Green’s function,

1

2⇡i

I
dz

�

e�z + 1

1

z + i✏n � ⌘vF (p+ k)

1

z � ⌘vF p
=

1

i✏n � ⌘vFk
(f(p)� f(p+ k)), (C.10)

where f(p) is the Fermi function at momentum p.

At low temperatures the integral over p will give either ±k, dependent on the sign of ⌘ as both Fermi

functions can be assumed to be a step function. The remaining term is simply g⌘(✏n, k) so we have

shown that the convolution of two Green’s functions produces the Green’s function multiplied by ±k.

The whole expression is,

ln(J⌘) = �

X

✏n

Z
dk

2⇡
↵⌘(✏n, k)↵⌘(�✏n,�k)

⌘k

4⇡
g⌘(✏n, k) (C.11)

= �
i⌘

4⇡

Z
d⇠1d⇠2 ↵⌘(⇠1)@x(g⌘(⇠1 � ⇠2)↵⌘(⇠2)). (C.12)

The Green’s function is the inverse of the kernel in the action, g⌘ = @�1
⌘ . This will cancel with the @⌘ in

the definition of ↵. This gives the final result as stated in the main thesis.
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RENORMALISATION GROUP

The renormalisation group (RG) is a technique to extract the desired information from equations that

cannot be exactly solved - allowing us to go from a complex microscopic theory to a macroscopic one.

The idea behind it is that the description of a system at one specific scale can be related to the description

at another scale with changed parameters. Usually in condensed matter physics we are interested in

long wavelength degrees of freedom, so we want a procedure that integrates out the short wavelengths

iteratively and focuses in on the low-energy behaviour. For a theory to be renormalisable, the structure of

the Hamiltonian (or action) must be the same up to parameters changing, following this course graining

procedure. Observing how these parameters change iteratively provides insight into whether microscopic

interactions affect the long wavelength behaviour, helping to define relevant models.

If the parameter associated with an interaction strength grows under repeated action of the RG, then

the interaction will dominate the low-energy behaviour [28, 100]. Although this can be performed in

real space, performing this course graining in momentum space allows the procedure to be done in

infinitesimal steps.

The particular way that RG will be implemented in this thesis will be the perturbative functional

integral way. The first step is to split the field up into fast and slow modes, which are chosen to occur at

⇤0. Beginning with a generic field ✓(r),

✓(r, t) =
1

�L

X

!

eiqrei!t✓(q,!) =
1

�L

X

!<⇤0

eiqrei!t✓✓(q,!) +
1

�L

X

⇤0<!<⇤

eiqrei!t✓✓(q,!) (D.1)

= ✓s(r, t) + ✓f (r, t),
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where ✓s are defined as the ‘slow’ modes and ✓f are the ‘fast’ modes. ⇤ is an ultraviolet cutoff beyond

which contributions to the field are ignored. This is often the bandwidth in many fermionic problems.

Another way of parameterising the frequency is by a scaling parameter b such that ⇤0 = ⇤/b. Letting

b = 1 + �l, defines an infinitesimally small portion of fast modes.

The next step is to integrate over all the fast modes to find a new effective action. The form of this

new action is compared to the original action and must contain the same types of terms. If extra terms are

generated by the integrating out of the fast modes then the procedure cannot be iterated and the theory

is not renormalisable. Splitting the action of the system into parts containing the slow and fast modes

separately and a mixed term,

Z[✓] =

Z
D✓e�S[✓] =

Z
D✓se�Ss[✓s]

Z
D✓fe�Sf [✓f ]�Sm[✓f ,✓s] (D.2)

=

Z
D✓se�S0[✓s], (D.3)

defines a new action S0[✓] that is given by the original slow modes of the action multiplied by functional

integral over the fast modes. Defining this as an average with respect to the fast mode action, the new

renormalised action becomes,

e�S0[✓s] = e�Ss[✓s]

R
D✓fe�Sm[✓f ,✓s]e�Sf [✓f ]

R
D✓fe�Sf [✓f ]

Z
D✓fe�Sf [✓f ]

= e�Ss[✓s]he�Sm[✓f ,✓s]
iSfZf [✓

f ] . (D.4)

The partition function of the fast variables will be independent of the slow variables and will be

cancelled in any calculations of the correlation functions. If this average can be calculated then we can

follow the couplings in the action and determine how the system behaves at low energy. It is not always

possible to calculate this average exactly, so the average must be perturbatively calculated.

Suppose there is a coupling in the action of the mixed term S[✓f , ✓s] = �S[✓f , ✓s], where � is small.

An expansion about this parameter can be performed to first order in �. If the term is small enough, the

resulting term can be re-exponentiated,

he��Sm[✓f ,✓s]
iSf ⇡ 1� �

D
Sm[✓f , ✓s]

E

Sf

⇡ e
��hSm[✓f ,✓s]i

Sf . (D.5)
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The final step is to rescale the frequencies in the effective action so that the cutoff momenta is the

same regardless of scale !0 = s!. This will rescale the fields by ✓0(!0) = ⇣�1✓s(!0/s), and ⇣ is chosen

appropriately. This allows us to compare the new action to the old one.

The new action is characterised by coupling constants changing, which in this case would be �.

Iterating the procedure leads to the RG flow equations which describe how � changes with !. An

example of this technique in action is shown in Appendix E.
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APPENDIX E

RG CALCULATIONS

Most of the calculations in this section appear in many other resources, notably Giamarchi’s book [32].

They are written out here in a reasonable amount of detail for anyone masochistic enough to want to know

the details. One of the difficulties of RG calculations in Luttinger liquids is that, despite their ubiquity

within the literature, each author has their own choice of scaling of the fields. This leads to extra factors

floating around in the calculation and can make switching between different literature confusing.

E.1 Weak Local Impurity

The effect of a point-like impurity at x = 0 (V (x) = V0�(x)) to the Lagrangian will be

Limp = V0⇢(x = 0, t) = V0 ( 
†
L +  †

R)( L +  R)

����
x=0

(E.1)

= V0

✓
⇢0 �

1

⇡
@x✓ + 2 cos(2✓)

◆����
x=0

,

where the fermionic operators have been bosonised between lines. The first two terms can be absorbed

into a redefinition of the Luttinger parameters. The cosine term, however, cannot be incorporated. This

non-quadratic term only exists at one point, with the fields being quadratic at all other points in the

system. Therefore an effective description can be obtained by integrating out these fields, which is done

by introducing a new variable that only depends on time. Illustrating this technique, we use the action of
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a infinite spinless Luttinger liquid with an impurity at the origin

S =
1

2⇡K⌫

Z
dxd⌧

⇣
(@⌧✓)

2 + (⌫@x✓)
2
⌘
+ 2V0

Z
d⌧ cos(2✓(x = 0, ⌧)). (E.2)

A Lagrange multiplier � can be introduced that sets ✓(x = 0, t⇤) = ✓0(t⇤) for a specific point in

time t⇤. Doing this for all times introduces the function �(t). This function can also be introduced by

multiplying the measure by delta functions that enforce that the ✓(x, t) field is equal to ✓0(t) at all points

in time, then taking the Fourier transform. Now the quadratic fields can be integrated out by first Fourier

transforming the quadratic part of the action,

e�Seff =

Z
D✓D� exp

✓
�

1

2⇡K⌫

Z
d!dq

4⇡2
(!2 + ⌫2q2)|✓(q,!)|2 + i

Z
d⌧�(⌧)[✓0(⌧)� ✓(x = 0, ⌧)]

◆
.

(E.3)

All these calculations will be at zero temperature to make calculations easier but can be generalised to

finite temperatures by using Matsubara sums. The ✓ functional integral can be performed after taking the

Fourier transform of the Lagrange multiplier term,

e�Seff =

Z
D✓D�exp

 
�

1

2⇡K⌫

Z
d!dq

4⇡2
(!2 + ⌫2q2)|✓(q,!)|2

+ i

Z
d!

2⇡
�(!)

h
✓0(�!)�

Z
dq

2⇡
✓(q,�!)

i!

= A

Z
D� exp

✓
�
1

4

Z
dqd!

4⇡2
K⇡⌫�(!)�(�!)

!2 + ⌫2q2
+ i

Z
d!

2⇡
�(!)✓0(�!)

◆
.

Extra factors of 1/2 are appearing as the functional integrals are complex and the �(!)✓(�!) term is

being split up into �(!)✓(�!)+�(�!)✓(!). This gets it into the form of the usual functional integration,

but at the cost of introducing a half.

The q integration in the first term can be performed. Finally the � functional integral can be evaluated

to give the effective action, where all quadratic fields have been integrated out,

e�Seff =

Z
D� exp

✓
�
1

4

Z
d!

2⇡

K⇡

2|!|
�(!)�(�!) + i

Z
d!

2⇡
�(!)✓0(�!)

◆

= exp

✓
�
1

8

Z
d!

2⇡

|!|

K⇡
|✓0(!)|

2
◆
.
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Combining this with the impurity term and redefining the fields, 2✓0 ! ✓ give the action,

S =
1

32⇡

Z

|!|<⇤

d!

2⇡

|!|

K
|✓(!)|2 + 2V0

Z
d⌧ cos(✓(⌧)) , (E.4)

where an ultraviolet cutoff corresponding to bandwidth has been included to prevent divergences. As a

small note, inserting this bandwidth means that the bosonisation form with the cutoff should have been

used throughout this calculation. However, this amounts to the introduction of some factors of
p
2⇡↵

which can be absorbed into definitions of K and V0.

Following the procedure outlined in Appendix D, the fields are split into slow and fast modes ✓(⌧) =

✓f (⌧) + ✓s(⌧) with fast modes being defined as the modes that lie between ⇤/b < |!| < ⇤. As the

quadratic part of the integral is already expressed in the frequency basis, it can simply be split into slow

and fast modes by having two terms with the integral limits 0 to ⇤0 and ⇤0 to ⇤. The mixed term of this

problem arises from the cosine term, so this is the average that needs to be considered

hSmixedif = 2V0 hcos(2✓s + 2✓f )if = V0(e
2i✓s

D
e2i✓f

E

f
+ e�2i✓s

D
e�2i✓f

E

f
) . (E.5)

Performing this average is possible when armed with the following identity,

D
ei✓
E
= e�

1
2h✓

2i, (E.6)

which results in the average becoming,

hSmixedif = 2V0 cos(✓s(x = 0, ⌧))e
�2h✓f (x=0,⌧)2i

f . (E.7)

The average of ✓(⌧)2 defines the Green’s function of the action evaluated at the same point. The

average is over the quadratic part of the action which is is invariant over space, therefore it does not

matter where it is evaluated. There is no issue with the diverging nature of the Green’s function as the

average is over an infinitesimal slice of !. The average of the Green’s function is evaluated in frequency

and momentum space by translating the limits on the energy integral to be on the momentum integral.
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This avoids doing a more difficult integral. This gives,

⌦
✓2f (x, ⌧)

↵
f
=

Z ⇤/⌫

⇤0/⌫

dq

2⇡

Z
d!

2⇡

⇡⌫K

!2 + ⌫2q2
ei!⌧ =

K

2
ln

✓
⇤

⇤0

◆
. (E.8)

Putting this all back into the original action results in,

S =
1

32⇡

Z

|!|<⇤0
d!

|!|

K
|✓s(!)|

2 + 2V0e
K ln(⇤/⇤0)

Z
d⌧ cos(✓s(⌧)) . (E.9)

This has the same form as our original action in Equation E.4, up to the integration limits in the

first term and a multiplicative factor in the second term. To bring the original cutoff to same value, the

energy is rescaled by !0 = b! and correspondingly ⌧ 0 = ⌧/b. As our interest is in how the impurity

term changes, we elect to leave the cosine term to be invariant under this transformation by rescaling the

fields by ✓0(⌧ 0) = ✓(⌧) which enforces that ✓0(!0) = ✓(!)/b. The action after performing one iteration

of the RG is therefore,

S =
1

8⇡2

Z

|!|<⇤
d!

|!|

K
|✓(!)|2 + V0b

1�K
Z

d⌧ cos(✓(⌧)). (E.10)

Comparing this to the original action, the RG flow equation for the impurity strength is

V (b) = b1�KV0. (E.11)

E.2 Weak Link

The opposite limit to a small barrier is a weak link between two separated Luttinger liquids. Hopping

between the systems now becomes the small parameter in our RG calculations. Two separate Luttinger

liquids can be described by having a term of the form �(✓(x = 0, ⌧)) essentially ensuring that there are

no particles at x = 0 as @x✓ is the density. The phase � over this disconnect will be continuous so the

dual action is used instead,

SL =
K

2⇡⌫

Z 0

�1
dx

Z
d⌧
⇣
(@⌧�1)

2
�v2(@x�1)

2
⌘
+

K

2⇡⌫

Z 1

0
dx

Z
d⌧
⇣
(@⌧�2)

2+v2(@x�2)
2
⌘
, (E.12)
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where �1(x) = �(x < 0),�2(x) = �(x > 0). To get things moving between the two wires, a hopping

term is introduced,

�H = �t( †
L(x = 0) R(x = 0) + h.c). (E.13)

When bosonising this term, we can use the fact that the density field will be pinned at x = 0 due to

the discontinuity. Therefore instead of  ⌘ = ei(��⌘✓, the ✓ field can be completely ignored to give ei�.

Using this for each respective side, the hopping term becomes,

S = �2t

Z
dxd⌧ cos(�1(x = 0, ⌧)� �2(x = 0, ⌧)). (E.14)

The argument of the cosine term does not match up to the action, therefore a rotation to new fields

are needed. This can be done with,

�̃1 =
1

2
p
2
(�1 + �2), �̃2 =

1

2
p
2
(�2 � �1), (E.15)

where the cross terms �̃1�̃2 in the new action will cancel out. The new action is,

S =
4K

⇡⌫

Z
dxd⌧(@⌧ �̃1)

2 + ⌫2(@x�̃1)
2 (E.16)

+
4K

⇡⌫

Z
dxd⌧(@⌧ �̃2)

2 + ⌫2(@x�̃2)
2
� 2t

Z
dxd⌧ cos

⇣
2
p

2�2
⌘
. (E.17)

Only �̃2 needs to be considered as the other field is the usual term. The remaining action is simply

the dual of Equation E.2, where ✓ ! �̃ and K ! 1/K. The result of the weak impurity in Equation

E.11 can therefore be transformed to its dual to solve the weak tunnelling problem,

t = b1�
1
K t0. (E.18)

Although the use of the dual mapping seems like cheating, it can be shown by employing the exact same

process as earlier that the same result is achieved.
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E.3 Global Sine-Gordon

When the cosine term is not local, the analysis is actually a lot simpler because the effective action for the

integrated out fields is not needed. Using the spin sector of the spinful Luttinger liquid as a prototypical

case,

S� =
1

2⇡⌫�K�

Z
dxd⌧(@t✓�)

2 + ⌫2�(@x✓�)
2 +

Z
dxdt 2g1? cos

⇣
2
p

2✓�
⌘
. (E.19)

The RG calculation can be started straight away. Equation E.7 is obtained in the exact same way

except the average for the full Green’s function is found rather than at a specific point,

hSmixedif = 2g1? cos(✓s(x, ⌧))e
�4h✓f (x,⌧)2if . (E.20)

where the 2
p
2 factor in the cosine results in the factor of 4 instead of 1/2. Equation E.8 describes the

average over the fast modes again. The rescaling of the slow modes of the field now have to occur for

both energy and momentum, which results in a factor of 2 cropping up. This results in an RG equation

of,

g = g1?(2� 2K�). (E.21)

When the cosine term has a combination of different ✓ fields, the RG equation for that can be found

by relating the Luttinger parameters and performing a rotation to the new ones, much like in the analysis

of the weak link case. For the Shavit and Oreg paper, the action is,

S = S⇢[✓⇢] + S�[✓�] + 2�

Z
dxd⌧ cos

⇣p
2(n�m)✓⇢ +

p

2(n+m)✓�
⌘
, (E.22)

where the rotation of the original chiral fields is performed by using Equation 6.38.

The average over the mixed term now contains and average over the fast modes of ✓⇢ and ✓�. In this

case,

hSmixed[✓⇢, ✓�]if = e�
p
2i(n�m)✓s⇢+

p
2i✓s�(n+m)

D
e
p
2i(n�m)✓f⇢

E

Sf
⇢

D
e
p
2i(n+m)✓f⇢

E

Sf
�

+ h.c. (E.23)

= 2 cos
⇣p

2(n�m)✓s⇢ +
p

2(n+m)✓s�

⌘
e�

K⇢
2 (n�m)2 ln(⇤/⇤0)e�

K�
2 (n+m)2 ln(⇤/⇤0).
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APPENDIX F

FINITE CALCULATIONS

F.1 Finding the Q = �1/2 Eigenstates

To expand on the process by which the Q = �1/2 eigenstates are found, we start with the matrix of

wavefunctions on the square lattice for LS = 5,

 =

2

666666666666664

 11  12  13  14  15  16

 21  22  23  24  25  26

 31  32  33  34  35  36

 41  42  43  44  45  46

 51  52  53  54  55  56

 61  62  63  64  65  66

3

777777777777775

. (F.1)

The generic square lattice hopping problem is described by,

H xy = �t( x+1y +  x�1y +  xy+1 +  xy�1),  0y =  7y =  x0 =  x7 = 0. (F.2)

The following wavefunctions can be seen to solve this equation,

 (n,m)
xy = A sin(kxx) sin(kyy), ✏(n,m) = �2t( cos(kx) + cos(ky)) (F.3)

where kx =
⇡n

D + 1
, ky =

⇡m

D + 1
, for n,m 2 {1, 2, · · · , D},
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where D corresponds to the size of the finite 2D square lattice which is one site longer than the soliton

chain, LS + 1 = D. There must be D⇥D eigenvalues, as we are in a D⇥D size vector space. We can

form a matrix of the different eigenvectors, which themselves are matrices,

 =

2

666666666666664

 
(1,1)

 
(1,2)

 
(1,3)

 
(1,4)

 
(1,5)

 
(1,6)

 
(2,1)

 
(2,2)

 
(2,3)

 
(2,4)

 
(2,5)

 
(2,6)

 
(3,1)

 
(3,2)

 
(3,3)

 
(3,4)

 
(3,5)

 
(3,6)

 
(4,1)

 
(4,2)

 
(4,3)

 
(4,4)

 
(4,5)

 
(4,6)

 
(5,1)

 
(5,2)

 
(5,3)

 
(5,4)

 
(5,5)

 
(5,6)

 
(6,1)

 
(6,2)

 
(6,3)

 
(6,4)

 
(6,5)

 
(6,6)

3

777777777777775

. (F.4)

This may seem like a redundant step but the reason for doing this is to re-express the antisymmetri-

sation of the position indices in terms of the eigenstates. This antisymmetrisation is given by,

�(n,m)
xy =  (n,m)

xy �  (n,m)
yx . (F.5)

The explicit form of  (n,m)
xy in Equation F.3 can be seen to have a symmetry upon the interchange of

x $ y and n $ m. The antisymmetrised solutions can now be expressed as �(n,m)
xy =  (n,m)

xy �  (m,n)
xy .

This will cause the diagonals in n,m to be zero,

� =

2

666666666666664

�
(1,1)

�
(1,2)

�
(1,3)

�
(1,4)

�
(1,5)

�
(1,6)

�
(2,1)

�
(2,2)

�
(2,3)

�
(2,4)

�
(2,5)

�
(2,6)

�
(3,1)

�
(3,2)

�
(3,3)

�
(3,4)

�
(3,5)

�
(3,6)

�
(4,1)

�
(4,2)

�
(4,3)

�
(4,4)

�
(4,5)

�
(4,6)

�
(5,1)

�
(5,2)

�
(5,3)

�
(5,4)

�
(5,5)

�
(5,6)

�
(6,1)

�
(6,2)

�
(6,3)

�
(6,4)

�
(6,5)

�
(6,6)

3

777777777777775

=

2

666666666666664

0 �
(1,2)

�
(1,3)

�
(1,4)

�
(1,5)

�
(1,6)

�
(2,1) 0 �

(2,3)
�
(2,4)

�
(2,5)

�
(2,6)

�
(3,1)

�
(3,2) 0 �

(3,4)
�
(3,5)

�
(3,6)

�
(4,1)

�
(4,2)

�
(4,3) 0 �

(4,5)
�
(4,6)

�
(5,1)

�
(5,2)

�
(5,3)

�
(5,4) 0 �

(5,6)

�
(6,1)

�
(6,2)

�
(6,3)

�
(6,4)

�
(6,5) 0

3

777777777777775

.

(F.6)

Using the same symmetry of the square lattice solutions, the off-diagonal solutions can be shown to

be related, �(n,m)
xy = ��(m,n)

xy . This means that there are 5⇥4⇥ · · ·⇥1 independent eigenvectors. This is

exactly the size of the state space of our restricted problem. Therefore choosing the side where n < m,

gives the solutions in the main text in Equation 7.15.
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F.2 Green’s Function Simplifications

Having obtained a description of the eigenfunctions, the Green’s function can be calculated in certain

limits such that only some of the n particle subspaces need to be taken into account. The other subspaces

will be exponentially suppressed in the summation. From the Lehmann representation where n,m are

full eigenstates of the system,

Gij(!) =
1

Z

X

n,m

⇣
e��(✏n�µne) + e��(✏m�µme)

⌘hn| c†j |mi hm| ci |ni

! + ✏m � ✏n + i⌘
. (F.7)

The total fermions in the system is a good quantum number as the uncoupled Green’s function is

for the isolated system. Therefore the eigenstates can be split up into the ne particle subspaces and the

qne eigenstates in that subspace, |ne, qnei where each subspace will have a different dimension. These

eigenstates will have an energy ✏qne
. The summation in the Green’s function can be split into these parts,

where n must be in the subspace with one extra particle than m,

Gij(!) =
1

Z

⇣ X

qM ,qM�1

e��(✏qM�µM) + e��(✏qM�1�µ(M�1))

! � ✏qM�1 + ✏qM + i⌘
Aij(qM , qM�1) (F.8)

+
X

qM�1,qM�2

e��(✏qM�1�µ(M�1) + e��(✏qM�2�µ(M�2))

! � ✏qM�2 + ✏qM�1 + i⌘
Aij(qM�1, qM�2) + · · ·

⌘
,

where M = LS is largest number of fermions that the system can have in the projected subspace and

Aij(qN , qN�1) = hN, qN | c†j |N � 1, qN�1i hN � 1, qN�1| ci |N, qN i . (F.9)

Upon factorising e�µM , all terms apart from the frozen state will depend on higher orders of e��µ

which for large µ and low temperatures will exponentially decay. In the spinless case, there is only one

possible frozen state for the M fermion subspace, denoted q⇤, which will have zero energy. Therefore

the sum over these states can be dropped.

Now consider what happens when µ is reduced such that the filling below the Q = 1/2 frozen state

is energetically accessible. The minima of the Q = �1/2 state is denoted ✏0, which occurs at k⇤. This

value was found to be negative earlier as the system gains energy when hybridising the solitons in the
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Q = �1/2 state. Before setting µ = �✏0, consider the previous expansion,

Gij(!) =
e�µM

Z

⇣ X

qM�1

1 + e��(✏qM�1+µ)

! + ✏q⇤ � ✏qM�1 + i⌘
Aij(q

⇤, qM�1) (F.10)

+ e��µ
X

qM�1,qM�2

e��✏qM�1 + e��(✏qM�2+µ)

! + ✏qM1
� ✏qM�2 + i⌘

Aij(qM�1, qM�2) + · · ·

⌘
.

Taking µ = �✏0 results in the other states becoming exponentially suppressed if |✏1| < 2|✏0|, with

✏1 being the minima of the Q = �3/2 state. This condition can be numerically shown to be satisfied.

This agrees with intuition as, although there are more states to hybridise with in a lower filling, the

band will not double in size. This now means that any term that contains ✏qM�2 or higher orders can

be discarded. The next simplification is to consider other states in the qM�1 subspace. If the distance

between successive eigenvalues is �, the state above ✏0 will be given by ✏0 + �. Terms in the sum over

all qM�1, will have the form e��(✏0+�+µ). Assuming that e��� is small, any higher-energy states in the

Q = �1/2 will be zero due to the rapid decaying of the exponential.

Putting together those simplifications, the Green’s function becomes,

Gij(!) =
e�µM

Z

⇣2Aij(q⇤, k⇤)

! � ✏0 + i⌘
+

X

qM�1 6=k⇤

Aij(q⇤, qM�1)

! � ✏qM�1 + i⌘
+
X

qM�2

Bk⇤,qM�2

! + ✏0 � ✏qM�2 + i⌘

⌘
. (F.11)

This can be simplified further by ignoring the summation over the M � 2,M � 1 fermion subspaces,

which will not be exponentially suppressed in the Green’s function but correspond to peaks at further

distances away from ! ⇠ ✏0. Currently because these are the uncoupled Green’s functions, the peaks

are all delta functions due to the infinitesimal ⌘. However, upon including the coupling to the leads �,

each term obtains a finite imaginary width. This on its own is not enough to justify ignoring these terms,

but the fact that the conductance is given by the square of the Green’s function evaluated at the chemical

potential means that peaks far away from the chemical potential will not affect behaviour.

The width of the peaks is given by � and the spacing between them is �, so if � ⌧ � then each peak

will not affect the other. The remaining sums in Equation F.11 will pick up a factor of �2/�2 and can

therefore be ignored. The starting point of calculation in Chapter 8.1.2 is obtained by remembering that

the temperature delta function in the conductance means that only one peak will contribute if the peaks

are well separated.

166



BIBLIOGRAPHY

[1] D. Laws. 13 sextillion & counting: the long & winding road to the most frequently manufactured
human artifact in history. CHM Blogs, accessed on 08/09/2022.

[2] R. Sender, S. Fuchs, and R. Milo. Revised estimates for the number of human and bacteria cells
in the body. PLoS Biology, 14(8):e1002533, 2016.

[3] N.W. Ashcroft and N.D. Mermin. Solid State Physics. Saunders College Publishing, 1976.

[4] H. Bruus and K. Flensberg. Many-body quantum theory in condensed matter physics: an intro-
duction. Oxford University Press, 2004.

[5] D. Ferry and S. M. Goodnick. Transport in nanostructures. Cambridge University Press, 1999.

[6] Y. Imry. Introduction to mesoscopic physics. Oxford University Press, 2002.

[7] S. Datta. Electronic transport in mesoscopic systems. Cambridge University Press, 1997.

[8] T. Ihn. Diffusive quantum transport. In Semiconductor Nanostructures: Quantum states and
electronic transport. Oxford University Press, 2009.

[9] K.-F. Berggren, T. J. Thornton, D. J. Newson, and M. Pepper. Magnetic depopulation of 1D
subbands in a narrow 2D electron gas in a GaAs:AlGaAs heterojunction. Physical Review Letters,
57:1769–1772, 1986.

[10] L. Pfeiffer and K.W. West. The role of MBE in recent quantum Hall effect physics discoveries.
Physica E: Low-dimensional Systems and Nanostructures, 20(1):57–64, 2003.

[11] T. Ando, A. B. Fowler, and F. Stern. Electronic properties of two-dimensional systems. Reviews
of Modern Physics, 54:437–672, 1982.

[12] C. P. Umbach, C. Van Haesendonck, R. B. Laibowitz, S. Washburn, and R. A. Webb. Direct
observation of ensemble averaging of the Aharonov-Bohm effect in normal-metal loops. Physical
Review Letters, 56:386–389, 1986.

[13] H. van Houten, B. J. van Wees, and C. W. J. Beenakker. Quantum and classical ballistic transport
in constricted two-dimensional electron gases. In H. Heinrich, G. Bauer, and F. Kuchar, editors,
Physics and Technology of Submicron Structures, pages 198–207. Springer Berlin Heidelberg,
1988.

[14] H. Van Houten and C.W.J. Beenakker. Quantum point contacts. Physics Today, 49(7), 1996.

[15] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven,
D. van der Marel, and C. T. Foxon. Quantized conductance of point contacts in a two-dimensional
electron gas. Physical Review Letters, 60:848–850, 1988.

167



BIBLIOGRAPHY

[16] S. Kumar, M. Pepper, H. Montagu, D. Ritchie, I. Farrer, J. Griffiths, and G. Jones. Engineering
electron wavefunctions in asymmetrically confined quasi one-dimensional structures. Applied
Physics Letters, 118(12):124002, 2021.

[17] S. Kumar and M. Pepper. Interactions and non-magnetic fractional quantization in one-dimension.
Applied Physics Letters, 119(11):110502, 2021.

[18] S. Kumar, M. Pepper, S. N. Holmes, H. Montagu, Y. Gul, D. A. Ritchie, and I. Farrer. Zero-
magnetic field fractional quantum states. Physical Review Letters, 122:086803, 2019.

[19] Y. Gul, S.N. Holmes, M. Myronov, S. Kumar, and M. Pepper. Self-organised fractional quantisa-
tion in a hole quantum wire. Journal of Physics: Condensed Matter, 30(9):09LT01, 2018.

[20] D. C. Tsui, H. L. Stormer, and A. C. Gossard. Two-dimensional magnetotransport in the extreme
quantum limit. Physical Review Letters, 48:1559–1562, 1982.

[21] R. B. Laughlin. Anomalous quantum Hall effect: An incompressible quantum fluid with fraction-
ally charged excitations. Physical Review Letters, 50:1395–1398, 1983.

[22] R. L. Willett. The quantum Hall effect at 5/2 filling factor. Reports on Progress in Physics,
76(7):076501, 2013.

[23] A.P. Micolich. What lurks below the last plateau: experimental studies of the 0.7 × 2e2/h
conductance anomaly in one-dimensional systems. Journal of Physics: Condensed Matter,
23(44):443201, 2011.

[24] G. D. Mahan. Many-particle physics. Plenum Press New York, 1981.

[25] J. Rammer. Quantum Field Theory of Non-equilibrium States. Cambridge University Press, 2007.

[26] M. Gell-Mann and F. Low. Bound states in quantum field theory. Physical Review, 84:350–354,
1951.

[27] M. E. Peskin and D.V. Schroeder. An Introduction to quantum field theory. Addison-Wesley,
Reading, USA, 1995.

[28] A. Altland and B. D. Simons. Condensed matter field theory. Cambridge University Press, 2010.

[29] J. Rammer and H. Smith. Quantum field-theoretical methods in transport theory of metals. Re-
views of modern physics, 58(2):323, 1986.

[30] A.-P. Jauho, N. S. Wingreen, and Y. Meir. Time-dependent transport in interacting and noninter-
acting resonant-tunneling systems. Physical Review B, 50(8):5528, 1994.

[31] M. Rother, W. Wegscheider, R.A. Deutschmann, M. Bichler, and G Abstreiter. Evidence of Lut-
tinger liquid behavior in GaAs/AlGaAs quantum wires. Physica E: Low-dimensional Systems and
Nanostructures, 6(1):551–554, 2000.

[32] T. Giamarchi. Quantum physics in one dimension, volume 121. Clarendon Press, 2003.

[33] S. Tomonaga. Remarks on Bloch’s Method of Sound Waves applied to Many-Fermion Problems.
Progress of Theoretical Physics, 5(4):544–569, 1950.

[34] J. M. Luttinger. An exactly soluble model of a many-fermion system. Journal of Mathematical
Physics, 4(9):1154–1162, 1963.

168



BIBLIOGRAPHY

[35] F. D. M. Haldane. 'Luttinger liquid theory' of one-dimensional quantum fluids. I. properties of the
Luttinger model and their extension to the general 1D interacting spinless Fermi gas. Journal of
Physics C: Solid State Physics, 14(19):2585–2609, 1981.

[36] G. Gruner. Density waves in solids. CRC Press, 2018.

[37] S.A. Kivelson. Electron fractionalization. Synthetic Metals, 125(1):99–106, 2001.

[38] D.K.K. Lee and Y. Chen. Functional bosonisation of the Tomonaga-Luttinger model. Journal of
Physics A: Mathematical and General, 21(22):4155–4171, November 1988.

[39] J. Voit. One-dimensional Fermi liquids. Reports on Progress in Physics, 58(9):977–1116, 1995.

[40] M. A. Cazalilla. Bosonizing one-dimensional cold atomic gases. Journal of Physics B: Atomic,
Molecular and Optical Physics, 37(7):S1–S47, 2004.

[41] J. von Delft and H. Schoeller. Bosonization for beginners - refermionization for experts. Annalen
der Physik, 7(4):225–305, November 1998.

[42] A. Grishin, I. V. Yurkevich, and I. V. Lerner. Functional integral bosonization for an impurity in a
Luttinger liquid. Physical Review B, 69:165108, 2004.

[43] R. Shankar. Quantum Field Theory and Condensed Matter: An Introduction. Cambridge Univer-
sity Press, 2017.

[44] M. Bockrath, D. H. Cobden, J. Lu, A. G Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen.
Luttinger-liquid behaviour in carbon nanotubes. Nature, 397(6720):598–601, 1999.
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electronic Wigner crystal in one dimension. Science, 364(6443):870–875, 2019.

171



BIBLIOGRAPHY

[90] N. T. Ziani, F. Cavaliere, K. G. Becerra, and M. Sassetti. A short review of one-dimensional
Wigner crystallization. Crystals, 11(1), 2021.

[91] J. S. Meyer, K. A. Matveev, and A. I. Larkin. Transition from a one-dimensional to a quasi-one-
dimensional state in interacting quantum wires. Physical review letters, 98(12):126404, 2007.

[92] J.S. Meyer and K.A Matveev. Wigner crystal physics in quantum wires. Journal of Physics:
Condensed Matter, 21(2):023203, 2008.

[93] W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie.
Incipient formation of an electron lattice in a weakly confined quantum wire. Physical Review
Letters, 102:056804, 2009.

[94] S.-C. Ho, H.-J. Chang, C.-H. Chang, S.-T. Lo, G Creeth, S Kumar, I Farrer, D Ritchie, J Griffiths,
G Jones, M Pepper, and T.-M. Chen. Imaging the zigzag Wigner crystal in confinement-tunable
quantum wires. Physical Review Letters, 121:106801, 2018.

[95] Y. Weiss, M. Goldstein, and R. Berkovits. Finite doping of a one-dimensional charge density
wave: Solitons vs Luttinger liquid charge density. Physical Review B, 77(20):205128, 2008.
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