
Computation of nodes and
weights of Gaussian

quadrature rule by using
Jacobi’s method

By

Raja Zafar Iqbal

A thesis submitted to
The University of Birmingham

for the Degree of
Master of Philosophy

School of Mathematics
The University of Birmingham

2008

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Acknowledgements

I would like to thank my supervisor, Professor Roy Mathias, for his ex-
cellent guidance, patience and advice throughout this dissertation. Without
his support it would not be possible in short span of time.

I wish to thank Prof C.Parker , Dr Sharon Stephen, Dr Patricia Odber
and Mrs J Lowe for their magnificent support, professional advice and ex-
perience to overcome my problems.

I am grateful to my colleagues Muhammad Ali, S.Ghufran and Nour Ud-
din for their help and support, and Habib ur Rehman for his kindness.

I am also very grateful to my parents and my wife for their support and
trust throughout these long hard times. Further I would like to thank my
family and especially to my kids how missed me a lot.

ii

Abstract

Numerical analysis has become important in solving large eigenvalue
problems in science and engineering due to the increasing spread of quan-
titative analysis. These problems occur in a wide variety of applications.
Eigenvalues are very useful in engineering for the dynamic analysis of large-
scale structures such as aerospace. There is also a useful connection between
nodes and weights of Gaussian quadrature and eigenvalues and eigenvectors.
Thus the need for faster methods to solve these larger eigenvalue problems
has become very important.

A standard textbook method for finding the eigenvalues of a matrix
A is to solve for the roots λ of

| A− λI |= 0

It is quite easy to solve analytically when matrix is small but it is more
difficult for large matrices. For such problems numerical methods are used
to find eigenvalues and corresponding eigenvectors. There are numerous nu-
merical methods for the solution of the symmetric eigenvalue problems. Of
these the QR algorithm, Cholesky iteration and Jacobi rotational methods
are commonly used.

In this project we checked rate the of convergence and accuracy of
the Cholesky-iterative method and the Jacobi’s method for finding eigenval-
ues and eigen vectors and found that the Jacobi’s method converges faster
than the Cholesky method. Then by using ”three-term recurrence relation”
we calculated nodes and weights of Gaussian quadrature by eigenvalues and
eigenvectors. The nodes and weights computed were found to be highly ac-
curate, so this method allows one to perform Gaussian Quadrature without
using standard tables of nodes and weights, saving time and avoiding the risk
of errors in entering the nodes and weights from tables.

iii

Dedicated to

My Wife , Sons and Daughters

They sacrificed a lot for my studies

iv

Contents

1 Introduction 3

2 Gaussian Quadrature and Eigenvalue Problems 6
2.1 Numerical Integration . 6

2.1.1 Newton-Cotes Formulas 6
2.1.2 Trapezoidal Rule . 7
2.1.3 Simpson’s 1

3
Rule . 8

2.2 Gaussian Quadrature Rule . 8
2.2.1 Higher point Gaussian Quadrature Formulas 9
2.2.2 Change of interval . 10
2.2.3 Error in Gaussian Quadrature 10
2.2.4 Orthogonal Polynomials and Gaussian

Quadrature . 11
2.3 Comparison of Newton-Cotes rules with Gaussian quadrature

rule . 12
2.4 Connection between Gaussian quadrature rule and Eigenval-

ues problem . 14

3 The Hermitian Eigenvalue Problems 16
3.1 Introduction to Matrix Analysis 16
3.2 Some Special Matrices . 17
3.3 Norms of Vectors and Matrices 19

3.3.1 Vector Norms . 19
3.3.2 Matrix Norms . 20

3.4 Matrix Factorizations . 21
3.4.1 LU factorization . 21
3.4.2 Schur form . 22
3.4.3 Schur complement . 22
3.4.4 QR factorization . 23
3.4.5 Householder Transformation 24
3.4.6 Givens Rotations . 28

1

3.5 The Standard Eigenvalue Problem 31
3.5.1 Eigenvalue and polynomials 32

3.6 Numerical Methods for finding Eigenvalue Problems 33
3.6.1 Power method for simple eigenvalues 33
3.6.2 Cholesky decomposition 37
3.6.3 Jacobi Method . 40
3.6.4 Singular Value Decomposition (SVD) 45

4 Accuracy of Methods 47
4.1 Cholesky Iterative Method to compute eigenvalues 47
4.2 Jacobi’s Method for computing eigenvalues and eigenvectors . 69

4.2.1 Here are Matlab codes for Jacobi’s Method 71
4.3 Comparison of Cholesky Iterative Method and Jacobi’s Method

82

5 Applying Methods to compute weights and nodes of Gaus-
sian quadrature 86
5.1 Introduction . 86
5.2 Computing Nodes and Weights by using Jacobi-Gaussian Mat-

lab codes . 86
5.3 Comparison of Calculated and Standard Nodes of Gaussian

quadrature . 88
5.4 Comparison of Calculated and Standard Weights of Gaussian

quadrature . 92
5.5 Conclusion and Future work 96

2

Chapter 1

Introduction

Numerical methods for solving large eigenvalue problems in science
and engineering have gained much importance. This is due to the increasing
spread of quantitative analysis. The eigenvalue problems occur in a wide
variety of applications like prediction of structural responses in solid and soil
mechanics. These are very useful in structural-engineering as well.

There is a useful connection between nodes and weights of Gaussian
quadrature and eigenvalues and eigenvectors, and this yields a fast and an
accurate method to compute the nodes an weights for Gaussian Quadrature.
Thus the need for faster methods to solve these larger eigenvalue problems
has become very important.

The standard method for finding the eigenvalues of a matrix A is
to solve for the roots λ of

| A− λI |= 0

where λ is eigenvalue of matrix A. If size of matrix A is small then it is quite
easy to solve it analytically. Whereas for large and sparse matrix it is more
difficult to find eigenvalues using the direct methods. For such problems
numerical iterative methods are used to find eigenvalues and corresponding
eigenvectors.

Eigenvalues are often studies in the context of linear algebra and
matrix analysis. These are being studied and are in use since 20th century.
Hilbert studied the integral operators by viewing the operator as infinite
matrices. In 1904, he was first to use the German word eigen to denote
”characteristics”. Where as the Power method by Van Mises, in 1929 was
the first numerical algorithm for computing eigenvalues and eigenvectors.

3

There are numerous numerical methods for computation of eigenvalue prob-
lems in these days.. All these methods reduce matrix A to a simpler form.
Of these the QR algorithm, Cholesky decomposition and Jacobi rotational
methods are commonly used. But the Jacobi method is fast convergent and
more accurate for finding eigenvalues of Hermitian matrices.

In this project we checked the rate of convergence and accuracy of
the Cholesky-iterative method and the Jacobi method for finding eigenvalues
and eigenvectors and found that the Jacobi method is fast convergent than
the Cholesky method. Then by using ”three-term recurrence relation” we
calculated nodes and weights of Gaussian quadrature by eigenvalues and
eigenvectors.

This thesis consists of five chapters.

Chapter 1 : Introduction

This chapter is about the introduction of eigenvalue problems and
their computations. Various method are discussed which would be used in
later work.
Brief introduction is presented about next four chapters.

Chapter 2 : Gaussian Quadrature and Eigenvalue Problems

The main aim of this chapter is to see which numerical integration
method is better one. For this purpose a model problem of definite integral
is selected.

Model Problem

Evaluate the integral

I =

∫ 1

0

sinxdx (1.1)

Exact value (analytical solution) of problem calculated by simple inte-
gration rules is calculated equal to 4.59769769413186e− 001.
If we plot sine function for these limits, a curve is obtained. Now we apply
numerical integration rules to measure the area under the curve. We shall
apply Newton-Cotes rules and Gaussian quadrature formulae to find numer-
ical integration for different n values. Then we compare errors due to these
methods. Connection between nodes and weights of Gaussian quadrature
formula and eigenvalues and eigenvectors turn our attention to Hermitian

4

eigenvalue problems.

Chapter 3 : The Hermitian Eigenvalue Problems

The main goal of this chapter is to give some introduction about ma-
trices. Various decompositions of matrices are discussed and through Matlab
codes results are being analyzed.

Chapter 4 : Accuracy of Methods

In this chapter we build Matlab codes for iterative Cholesky and Ja-
cobi methods and check the convergence for various order of matrices. We see
that Jacobi’s method is fast convergent and more accurate than the Cholesky
iterative method.

Chapter 5 : Applying Methods to compute weights and nodes
of Gaussian quadrature

Finally we shall compute nodes and weights of Gaussian quadrature
through eigenvalues and eigenvectors by using Matlab codes. Conclusion of
work and future work be presented in this last chapter.

5

Chapter 2

Gaussian Quadrature and
Eigenvalue Problems

2.1 Numerical Integration

Mathematicians and scientists are sometime confronted with definite
integrals which are not easily evaluated analytically, even a function f(x) is
known completely. To overcome this difficulty numerical methods are used.
Numerical integration involves replacing an integral by a sum. The term
quadrature is used as a synonym for numerical integration in one dimension.
Let f(x) be a function which is defined on some interval [a,b] and on the
set of distinct points {x0, x1,, xn}. Then the numerical integration for ap-
proximation can be defined as∫ b

a

f(x) dx ∼=
n∑
i=0

wif(xi) (2.1)

where wi are the quadrature weights and xi the quadrature points. There
are a number of numerical integration methods for evaluation of definite
integrals. The most commonly used methods are the Newton-Cotes formulas
and Gaussian quadrature rules. Here we shall give a brief introduction and
implementation for these methods.

2.1.1 Newton-Cotes Formulas

The numerical integration methods that are derived by integrating
the Newton interpolation formulas are termed as Newton-Cotes integration
formulas. The Trapezoidal Rule and Simpson’s Rules are members of this
family.

6

2.1.2 Trapezoidal Rule

The trapezoidal rule is a numerical integration method derived by
integrating the linear polynomial interpolation. It is written as

I =

∫ b

a

f(x)dx =
b− a

2
[f(a) + f(b)] + E (2.2)

where E represents the error of trapezoidal rule. This error is high when
we approximate the area under a curve by using single trapezoid [5]. The
interval [a, b] can be divided into n intervals with equal width h. These points
are a = x0, x1, x2, ..., xn = b where xi = x0 + ih, for all i = 1, 2, ..., n.
The value h is given as

h =
b− a
n

Above relation for n-interval case can be written as

I =

∫ b

a

f(x)dx =
h

2
[f(a) + 2

n−1∑
i=1

f(a+ ih) + f(b)] + E (2.3)

I =

∫ b

a

f(x)dx =
h

2
[f(a) + 2f(x1) + 2f(x2) ++ 2f(xn−1) + f(b)] + E

(2.4)
If we replace f(a) = f0, f1 = f(a+h) and fi = f(a+ ih) then above relation
can be expressed as

I =
h

2
[f0 + 2f1 + 2f2 ++ 2fi−1 + fi] + E (2.5)

The error of the trapezoidal rule is given as:

E = − 1

12
(b− a)h2f ′′(ξ) (2.6)

where a 6 ξ 6 b
It is clear that the error of the trapezoidal rule is proportional to f ′′ and de-
creases proportionally to h2 when we increase the number of intervals. The
error is large for the single segment trapezoidal rule. To reduce this error,
we divide the interval into subintervals and then apply the trapezoidal rule
over each segment.

7

2.1.3 Simpson’s 1
3 Rule

Simpson’s 1
3

rule is based on quadratic polynomial interpolation. In
general the Simpson’s rule is used for equally spaced data with width h. Re-
sults obtained by the trapezoidal rule lead us to think that we might be able
to do better than the trapezoidal rule by using high-degree polynomial [1].

For three points x0 = a, x1 = a + h and x2 = b , Simpson’s rule
can be written as :

I =

∫ b

a

f(x)dx =
h

3
[f(x0) + 4f(x1) + f(x2)] + E (2.7)

where E denote error in Simpson’s rule which is obtained as:

E = −(b− a)
h4

180
f iv(ξ) (2.8)

where a 6 ξ 6 b.

This error would be zero if f(x) is a polynomial of degree 3 or
less. Simpson’s rule is easy to apply and it is considered reasonable for many
applications. Error of Simpson’s rule is high for n = 2 and its accuracy
can be enhanced by dividing interval [a, b] into several subintervals. These
intervals should be even for Simpson rule. In general we write:

I =
h

3
[f(a) + 4

n−1∑
i=1,odd i

f(a+ ih) + 2
n−2∑

i=2,even i

f(a+ ih) + f(b)] + E (2.9)

Setting fi = f(a+ ih) in above relation we get

I =
h

3
[f0 + 4(f1 + f3 + ...+ fn−1) + 2(f2 + f4 + ...+ fn−2) + fn] +E (2.10)

2.2 Gaussian Quadrature Rule

The numerical integral methods described earlier have a simple choice
of points to evaluate a function f(x) in a known interval [a,b]. These methods
are based on equally space points. When we have freedom of choice regarding
evaluation points, then more accuracy can be achieved. Gaussian quadra-
ture is a powerful tool for approximating integrals. The quadrature rules are
all based on special values of weights and abscissas. Abscissas are commonly
called evaluation points or ”Gauss points”, which are normally pre-computed

8

and available in most standard mathematics tables. Algorithms and com-
puter codes are also available to compute them.
The two-point Gauss quadrature rule for a function f(x) can be evaluated
between fixed limits a and b as follow :

I =

∫ b

a

f(x)dx ≈ c1f(x1) + c2f(x2) (2.11)

There are four unknowns, c1, c2, x1 and x2 which can determined by integrat-
ing a general third order polynomial, f(x) = a0 + a1x + a2x

2 + a3x
3, which

has 4 coefficients.

2.2.1 Higher point Gaussian Quadrature Formulas

To get more accurate results, the number of Gaussian Quadratures are
increased. For this three points or higher point Gaussian Quadrature rule
can be used. Three points Gaussian Quadrature rule is written as:

I =

∫ b

a

f(x)dx ≈ c1f(x1) + c2f(x2) + c3f(x3) (2.12)

When n points are used, we call the method an ”n-point” Gaussian method,
which can be used to approximate a function f(x) between fixed limits as:

I =

∫ b

a

f(x)dx ≈ c1f(x1) + c2f(x2) ++ cnf(xn) (2.13)

Gaussian Integration is simply based on the use of a polynomials
to approximate the integrand f(t) over the interval [−1, 1]. The accuracy
and optimality of results depend on the choice of polynomial. The coeffi-
cients of this polynomial are unknown variables which can be determined by
using any suitable method. The simplest form of Gaussian quadrature uses
a uniform weighting over the interval. The particular points at which we
have to evaluate f(t) are the roots of a particular class of polynomials, the
Legendre polynomials, over the interval. Gaussian quadrature formulae are
evaluating using abscissae and weight. The choice of n is not always clear,
and experimentations are useful to see the influence of choosing a different
number of points.

In most cases we shall evaluate the integral on a more general in-
terval .We shall use the variable x on interval [a,b], and linearly map this
interval for x onto the [-1,1] interval for t.

9

2.2.2 Change of interval

If the integral is not posed over the interval [−1, 1] then we can apply
a simple change of variable to rewrite any integral over [a, b] as an integral
over [−1, 1].
Let x = mt+ c.
If x = a, then t = −1 and when x = b then t = 1.
So

x =
b− a

2
t+

b+ a

2
(2.14)

After simplification we have

I =

∫ b

a

f(x)dx =

∫ 1

−1

(
b− a

2
t+

b+ a

2
)
b− a

2
dt (2.15)

The simplest form of Gaussian quadrature uses a uniform weights over the
interval [-1,1]. The particular points at which f(t) is evaluated are the roots
of Legendre polynomials as we will see in the next section.

If n number of points are evaluated for the function f(t) the result-
ing integral value is of the same accuracy as a simplest polynomial method
like the Simpson rule with degree 2n.
The high accuracy of Gaussian quadrature comes from the fact that it in-
tegrates very-high-degree polynomials exactly. In trapezoidal method and
Simpson’s rule we used a fixed grid points which are predetermined. A fixed
degree of polynomial is integrated exactly over each subinterval.

Let In be a quadrature rule, and assume it is exact for all polyno-
mials of degree 6 p . Then we say that In has degree of precision p.
In the Gaussian quadrature both grid points and the weights are chosen to
maximize the degree of precision. The degree of polynomial increases pro-
portionally with number of points used in quadrature rule. The degree of
polynomial is 6 2n− 1 (where n is number of grid points), and coefficients
of this polynomial are 2n. Thus the number of unknowns (n weights and n
abscissas) is equal to the number of equations to get exact solution.

2.2.3 Error in Gaussian Quadrature

The error in the Gaussian quadrature rule [1] is

E = I(f)−Gn(f) =
(b− a)2n+1(n!)4f (2n)(ξn)

(2n+ 1)[(2n)!]3
(2.16)

10

where a < ξn < b and I(f) and Gn(f) denote values of function calculated
analytically and by using the Gaussian quadrature formula.

2.2.4 Orthogonal Polynomials and Gaussian
Quadrature

Orthogonal polynomials are classes of polynomials pn(x) defined over
a range [a, b] that obey an orthogonality relation∫ b

a

w(x)pm(x)pn(x)dx = δmncn (2.17)

where w(x) is a weighting function and δmn is the the Kronecker delta.
Orthogonal polynomials are very useful in finding the solution of mathe-
matical and physical problems. Such polynomials can be constructed by
Gram-Schmidt orthonalization of the monomials 1, x, x2, Our goal is to
find nodes and weights. This is a tedious work . This difficulty is overcome
by using the idea of ”three-term recurrence”. We will develop this theory a
little in this section.

Theorem 1. The abscissas of the N -point Gaussian quadrature formula are
precisely the roots of the orthogonal polynomial [1] for the same interval and
weighting function.
Let pn be a nontrivial polynomial of degree n such that∫ b

a

w(x)xkpn(x)dx = 0, for k = 0, 1, 2, ...n− 1. (2.18)

If we pick the nodes to be the zeros of pn , then there exist weights wi
which make the computed integral exact for all polynomials of degree 2n− 1
or less. Furthermore, all these nodes will lie in the open interval (a, b).
For more understanding we present another theorem.

Theorem 2. Construction of Gaussian quadrature
For N = 2n − 1, there exists [1] a set of Gaussian points x

(n)
i and weights

w
(n)
i , such that ∫ 1

−1

xkdx =
n∑
i=1

w
(n)
i (x

(n)
i)k

holds for all k = 0, 1, 2, ..., N

11

Proof Let the Gaussian points x
(n)
i be the roots of the Legendre family

of orthogonal polynomials and P (x) be an arbitrary polynomial of degree
6 2n− 1. We can write

P (x) = Pn(x)Q(x) +R(x) (2.19)

where both Q and R are polynomials of degree 6 n− 1 and Pn is defined as

Pn(x) =
n∏
i=1

(x− xni) (2.20)

For Pn(xi) = 0 this implies that P (xi) = R(xi).
Let Q(x) be any polynomial of degree 6 n−1, so that the product Pn(x)Q(x)
has degree 6 2n− 1. Then∫ 1

−1

P (x)dx =

∫ 1

−1

(Pn(x)Q(x) +R(x))dx (2.21)

=

∫ 1

−1

Pn(x)Q(x)dx+

∫ 1

−1

R(x))dx (2.22)

The orthogonality property of Pn implies that first integral is zero. Hence∫ 1

−1

P (x)dx =

∫ 1

−1

n∑
i=1

R(xi)
(n)Li(x))dx (2.23)

=
n∑
i=1

R(xi)
(n)

∫ 1

−1

Li(x)dx =
n∑
i=1

R(xi)
(n)wni (2.24)

=
n∑
i=1

P (x
(n)
i)w

(n)
i (2.25)

This proves that the quadrature rule is exact for an arbitrary polynomial
of degree 6 2n− 1.

2.3 Comparison of Newton-Cotes rules with

Gaussian quadrature rule

In this section we compare the accuracy of Newton-Cotes method and
Gaussian quadrature for the model problem.

12

Example 1. Evaluate the integral

I =

∫ 1

0

sin(x)dx (2.26)

by using the Trapezoidal rule , Simpson rule and Gaussian quadrature for-
mula.

Exact value (analytical solution) is calculated by simple integration rules
which is 4.5970e− 001.
We will present a table about the comparisons of errors due to the Trapezoidal
rule, Simpson’s rule and Gaussian quadrature rule.

Table 1.1: Comparison of Errors

N-Values Trapezoidal rule Simpson rule Gaussian quadrature rule

2 9.6172e-003 -1.6450e-004 6.4180e-003
4 2.3968e-003 -1.0051e-005 1.5772e-005
6 1.0646e-003 -1.9771e-006 5.2273e-010
8 5.9872e-004 -6.2467e-007 4.8849e-015
10 3.8315e-004 -2.5569e-007 2.2204e-016
20 9.5774e-005 -1.5966e-008 4.4409e-016
30 4.2565e-005 -3.1534e-009 6.6613e-016
40 2.3943e-005 -3.1534e-009 1.3323e-015
50 1.5323e-005 -4.0864e-010 1.5754e-011
100 3.8308e-006 -2.5539e-011 1.3323e-015

From the table, we see that the error of 4 points Gaussian quadra-
ture rule is almost equal to 50 points of the Trapezoidal rule. Similarly abso-
lute error due to using 6 points Gaussian quadrature rule is almost equal to
50 points Simpson’s rule. From these results it is clear that error of Gaussian
quadrature rule is about 10 times less than Newton-Cotes formulas. Further
when n > 10 the error due to Gaussian quadrature becomes negligibly small.

The main benefit of Gaussian quadrature is that of its very high-
order accuracy with very few number of intervals, especially when we are
using points less than 10. This accuracy is further enhanced by increasing
number of points. Due to these reasons we prefer Gaussian quadrature rule
over other methods.

13

2.4 Connection between Gaussian quadrature

rule and Eigenvalues problem

We know that the zeros of orthogonal polynomials are the eigenvalues
of particular tridiagonal symmetric matrices.
It is known that monic orthogonal polynomials satisfy a three- term recur-
rence relation [2] of the form

Pn(x) + (An − x)Pn−1(x) +BnPn−2(x) = 0 n = 2, 3, ... (2.27)

where Bn > 0 and initial conditions are P0(x) = 1 , P1(x) = x− A1

The method generates a sequence of tridiagonal matrices Tn.
Let

Tn =


α1 β1

β1 α2 β2

β2 α3
. . .

. βn−1

βn−1 αn

 (2.28)

is a tridiagonal matrix, and let pn be the characteristic polynomial of
Tn.
Also let

Pn(x) = det(xI − Tn) (2.29)

Expanding det(xI − Tn) along the last row, we have

Pn(x) = det(xI − Tn) (2.30)

Pn(x) = (x− αn) det(xI − Tn−1)−B2
n−1 det(xI − Tn−1)

= (x− αn)Pn−1(x)−B2
n Pn−2(x)

Pn(x) + (αn − x)Pn−1(x) +B2
n Pn−2(x) = 0 (2.31)

Thus pn and Pn satisfy the same three-term recurrence .
Further, one can easily verify that p1(x) = P1(x), p2(x) = P2(x).
Thus

pi(x) = Pi(x) i = 1, 2, ...

There is also a relation between the nodes and weights of Gauss quadra-
ture formulas and the eigenvalues and eigenvectors of Tn. We further explain
this relation by a theorem, but we omit the proof.

14

Theorem 3. Let Tn be the n× n Jacobi matrix with entries β1, β2,, βn−1.
Let Tn = V DV T be an orthogonal diagonalization of Tn with V = [v1|...|vn]
and D = diag(λ1,, λn). Then the nodes and weights of the Gauss-Legendre
quadrature formulas are given by

xj = λj , wj = 2(vj)
2
1 , j = 1, 2, ..., n.

where xj and wj are required nodes and weights and λj and vj are eigen-
values and eigenvectors of Tn respectively.

The connection between the eigenvectors and the weights is considerably
more complicated than the connection between the eigenvalues and nodes
We have transform the problem of finding the nodes and weights for Gaus-
sian quadrature to one of finding eigenvalues and eigenvectors of a symmetric
tridiagonal matrix. There is considerable theory and many numerical meth-
ods for this problem.

15

Chapter 3

The Hermitian Eigenvalue
Problems

Previous chapter ended up with conclusion that there is connection
between Gaussian quadrature nodes and weights with eigenvalue problems.
Hence we have a problem in Matrix Analysis. We start by giving some
definitions and background theory about matrices their special forms which
would be used later in this work .

3.1 Introduction to Matrix Analysis

Matrix analysis study can be traced centuries back. The work of the
British mathematician Arthur Cayley (1821-1895) was pioneer of modern
matrix analysis [4]. He singled out the matrix as a separate entity, distinct
from the notion of a determinant. He defined various algebraic operations
between matrices. In 1855, Cayley introduced his basic ideas through his pa-
pers. He laid the foundation for the modern theory and is generally credited
for the birth of the subjects of matrix analysis and linear algebra. In 1850s,
due to collaboration between Cayley and Sylvester matrix theory was born
and nurtured. They shared many mathematical interests despite difference
in their mathematical approaches. Morris Kline says in his book ”Mathemat-
ical Thought from Ancient to Modern Times” that ”the subject of matrix
theory was well developed before it was created.” It is fact that immediately
after the publication of Cayley’s ” A Memoir on the theory of Matrices”, the
subject of matrix theory and linear algebra expanded and quickly evolved
into discipline that now occupies a central position in applied mathematics.

16

Before we start the computation of eigenvalues and eigenvectors to establish
relation with nodes and weights, here we present some basic understanding
about matrices, their special forms and operations to convert them into di-
agonal form.

3.2 Some Special Matrices

A matrix is an m × n array of scalars from a field F. If m = n, the
matrix is said to be square. The set of all m-by-n matrices over F is denoted
by Mm,n(F), and Mn,n(F) is abbreviated to Mn(F).
Let A ∈Mm,n(F), such that A = (aij)

• Rank A is the largest number of columns of A which constitute a lin-
early independent set. A very useful result is that ”rank AT=rank A”.
Equivalently rank of a matrix can be expressed in terms of rows. It is
also worth noting that ”row rank = column rank”.

• If |A| = 0 then A is singular. Otherwise it is non-singular.

• For a square non-singular matrix A, there exists a unique inverse matrix
A−1 such that AA−1 = A−1A = I

• AT ∈Mn,m(F) is called transpose of matrix A and
denoted by AT = (aji).

• A is called symmetric if AT = A,i.e., aij = aji for all i, j.
Symmetric matrices have the following properties:
* Eigenvalues are real.
* Eigenvectors are orthogonal.
* They are always diagonalizable.

• A is called skew-symmetric if AT = −A.

• A ∈Mn(C) is Hermitian if A∗ = A, i.e., aij = āji for all i, j.

• A ∈Mn(C) is skew-Hermitian if A∗ = −A, i.e., aij = −āji for all i, j

• Let A ∈ Mn then A can be written as A = H + iK with H and K
hermitian in exactly one way:

H = (A+ A∗)/2; K = (A− A∗)/(2i).

17

• A matrix U ∈ Mn is said to be unitary if U∗U = UU∗ = I. Where as
U ∈Mn(R) then U is said to be real orthogonal.

• A is diagonal if aij = 0 for i 6= j.

• The identity matrix is special case of diagonal matrix with all diagonal
entries equal to 1.

• A permutation matrix denoted by P is obtained from the identity ma-
trix by row or column permutation.

• Any square matrix A is upper triangular if aij = 0 for i > j.

• Any square matrix A is lower triangular if aij = 0 for i < j.

• If all diagonal elements of A are equal to 1 then A is called a unit upper
or lower triangular.

• Two matrices A and B of order n× n are said to be similar whenever
there exists a nonsingular matrix P such that P−1AP = B. The prod-
uct P−1AP is called a similarity transformation on A. Here are some
important rules regarding similar matrices.

• A square matrix A is diagonalizable whenever A is similar to a diagonal
matrix. Any An×n matrix is diagonalizable if and only if A possesses a
complete set of eigenvectors. Moreover P−1AP = diag(λ1, λ2, ..., λn) if
and only if the columns of P constitute a complete set of eigenvectors
and the λj’s are the associated eigenvalues.

Definition 1. Diagonally Dominant Matrices (DDM) An n× n ma-
trix A is termed diagonally dominant if

|Aii| >
∑
j 6=i

|Aij|, i = 1, , n.

Example 2.

Let

A =

 3 −2 1
−3 6 2
4 1 3


is not diagonally dominant.
Where as

B =

 −5 −2 1
−3 6 1
4 1 7


is diagonally dominant matrix

18

3.3 Norms of Vectors and Matrices

Norms are very useful and important in error analysis of vectors and matrices.
Norms are means of measuring the size of a vector or matrix. Here we shall
present the formal definitions of various norms. In future work we will use
norms to analyse the accuracy of the numerical methods we have used to
compute eigenvalue and eigen vectors.

3.3.1 Vector Norms

Norms are a means of obtaining a scalar measure of a vector or matrix.
Let V be a vector space over a field F (Ror C). A function ‖.‖ : V → R is
a vector normif for all x, y ∈ V ,

• ‖ x ‖> 0

• ‖ x ‖= 0 if and only if x=0

• ‖ cx ‖=| c |‖ x ‖ for all scalar c ∈ F

• ‖ x+ y ‖6‖ x ‖ + ‖ y ‖

The Holder p-norm is defined as

‖x‖p =

(
n∑
i=1

| xi |p
)1/p

, p > 1.

By using this definition we get three vector norms :

‖x‖1 =
n∑
i=1

| xi |,

‖x‖2 =

(
n∑
i=1

| xi |2
)1/2

= (x∗x)1/2

(which is Euclidean Norm).

‖x‖∞ = max16i6n | xi |

(which is the infinity norm).

19

Example 3. For more explanation and to establish relation between various
vector noms we present a example.
Let

x =

 −1
1
1


‖x‖1 =

3∑
i=1

| xi |= 3

‖x‖2 =

(
3∑
i=1

| xi |2
)1/2

= (3)1/2 =
√

3

‖x‖∞ = max16i63 | xi |= 1

One can easily show that for any vector x,

‖x‖1 > ‖x‖2 > ‖x‖∞

3.3.2 Matrix Norms

We can define matrix norms as functions ‖.‖ : Cm×n→R and satisfy the
matrix norm axioms:

• ‖ A ‖> 0 for all A ∈ Cn×n, and ‖ A ‖= 0 if and only if A = 0.

• ‖ κA ‖=| κ |‖ A ‖ for all scalar κ ∈ C,A ∈ Cn×n.

• ‖ A+B ‖6‖ A ‖ + ‖ B ‖ for all A,B ∈ Cn×n.

• ‖ AB ‖6‖ A ‖‖ B ‖ whenever AB is defined.

The matrix infinity norm,‖A‖∞,can be shown to be equivalent to the follow-
ing computation:

‖A‖∞ = max16i6n

n∑
j=1

| aij |

Thus ‖A‖∞ is defined as the maximum row sum.
Here is another useful subordinate matrix norms :

‖A‖1 = max16j6n

m∑
i=1

| aij |

20

(maximum column sum).

The Matrix 2-norm can be represented as follows :

‖A‖2 =
√
ρ(AtA) = σmax(A)

where ρ(A) is the largest absolute eigenvalue of the matrix A.
For a square matrix A, the number

ρ(A) = maxλ∈σ(A)|λ|

is called the spectral radius of A.
The Frobenius norms are very common matrix norms. Let A ∈ Cm×n

then the Frobenius norms are defined as

‖A‖F =

(
m∑
i=1

n∑
j=1

| aij |2
)1/2

Example 4. Let

A =

 2 3 1
−3 1 2
−1 4 2


Find various matrix norms.

Solution: We can prove easily that

‖A‖1 = 8

‖A‖2 = 5.8107

‖A‖∞ = 7

3.4 Matrix Factorizations

Representing a matrix as the product of two or more matrices with special
properties, makes the solution of linear algebra problems straightforward.

3.4.1 LU factorization

If A = LU where L is lower triangular and U is upper triangular then
A = LU is called a LU factorization of A. Not every matrix has an LU

21

factorization.For this let us take a example of symmetric and nonsingular
matrix. Suppose

A =

(
0 1
1 0

)
= LU =

(
l11 0
l21 l22

)(
u11 u12

0 u22

)
By comparison of corresponding entries, we have

l11u11 = 0, l11u12 = 1 l21u11 = 1 l21u12 + l22u22 = 0

But l11u11 = 0 implies that either l11 = 0 or u11 = 0. Which contradict
l11u12 = 1 and l21u11 = 1.
Note that such a factorization is possible when A is symmetric and positive
definite(we shall discuss it in detail under Choleski factorization)

Definition 2. Let A be a nonsingular matrix, then a decomposition of A as
a product of a unit lower triangular matrix L, a diagonal matrix D and a
unit upper triangular matrix U such that :

A = LDU

is called an LDU decomposition of A.

3.4.2 Schur form

Let A ∈Mn have eigenvalues λ1, λ2 . . . , λn, (taken in any order) then there
is a unitary matrix U and an upper triangular matrix T such that A = U∗TU
and tii = λi.
In other words every square matrix is unitarily similar to an upper triangular
matrix. That is for each An×n, there exist a unitary matrix U (not unique)
and an upper-triangular matrix T , not unique, such that U∗AU = T and
the diagonal entries of T are the eigenvalues of A.
Real Schur form Let A ∈ Mn(R). The Schur form above will not be real
if A has complex eigenvalues. However, there is a real orthogonal matrix Q
and a block upper triangular matrix T , with 1× 1 and 2× 2 diagonal blocks
such that A = QTTQ.

3.4.3 Schur complement

Let us compute a block LU factorization of block matrix:(
A11 A12

A21 A22

)
22

where A is n × n and A11 and A22 are square but A12 and A21 are not
necessarily square:(

A11 A12

A21 A22

)
=

(
I 0

A21A
−1
11 I

)(
A11 A12

0 A22 − A21A
−1
11 A12

)

The matrix S = A22−A21A
−1
11 A12 is called the Schur Complement of A11

in A.

3.4.4 QR factorization

Let A ∈ Mn(R). If A = QR where Q is orthogonal and R is upper
triangular then A = QR is called a QR factorization of A. We can prove
that A = QR factorization is much better than the A = LU factorization
when we use it to solve the system AX = B .
The QR decomposition rewrites the given matrix A into two special matrices.
The system can then be solved in the form of

AX = B

QRX = B

(QTQ)RX = QTB

RX = QTB

Since Q is orthogonal, ‖Q‖ = 1 and ‖Q−1‖ = ‖QT‖ = 1

How to find QR factorization?

TheQR factorization algorithm is one of the most important and widely
used for matrix computation. There are several forms of QR factorization
which are used to compute the eigenvalues of real symmetric nonsymmetric
matrices.

Many people have contributed to the development of various QR
algorithms. The work of Wilkinson presented in his book, The Algebraic
Eigenvalue Problem is remarkable.

Here we present the basic computational outline for QR.

23

1. Take A and find orthogonal matrix Q1 such that A1 = Q1A has some
zero entries in the right place.

2. Take A1 and find orthogonal matrix Q2 such that A2 = Q2A1, has some
zero entries as A and some more.

Eventually we have
Qk....Q2Q1A = R

A = QT
1Q

T
kR

A = (Qk, ..., Q1︸ ︷︷ ︸)TR
A = QR

Using different methods for putting zeros yields different QR factorization
algorithms.

The most commonly used methods for QR− factorization are:

1. Householder transformation

2. Givens rotation

3.4.5 Householder Transformation

Householder reflection is a matrix of form H = I − 2uuT , where u is
unitary vector,i.e., ‖u‖ = 1. It is the generalization of the reflection onto the
plane with normal vector u ∈ R. It is easy to check that H is symmetric,that
is H = HT . Now we prove that it is also symmetric orthogonal matrix,i.e.,
HHT = HTH = I.
Let

HHT = (I − 2uuT)(I − 2uuT)

= I − 2uuT − 2uuT + 4uuTuuT

= I − 4uuT + 4u(uuT)u = I

Given a vector x 6= 0, it is easy to find a Householder reflection
H = I − 2uuT to zero out all but the first entry of x.

Hx = x− 2(uTx)u =


c
0
0
...
0

 = ce1 (3.1)

24

Since H is orthogonal
‖Hx‖ = |ce1|

⇒ |c| = ‖x‖

From relation(3.1), we have

(x− ce1) = 2(uuT)

u =
1

2uTu
(x− ce1)

Finally we get
H(x) = I − 2uuT

= I − 2ũũT

‖ũ‖2

where
ũ =

u

‖u‖

QR-factorization of A by using Householder reflection

The working procedure of Householder reflection is similar to the Gauss
elimination in the LU − factorization. Let A ∈ Mn. We convert A into
upper triangular form R by multiplying it from the left by appropriately
chosen Householder matrix. Assume that all columns of A are not fully zero.
Select a1, the first column of A. In the first step we eliminate all entries of
column below (1, 1) position. We can do it by one single Householder matrix,
namely by H(a1). the result is

A1 = H(a1)A =


⊕ ⊕ ⊕ . . . ⊕
0 ⊕ ⊕ . . . ⊕
0 ⊕ ⊕ . . . ⊕
...

...
...

...
0 ⊕ ⊕ . . . ⊕


where ⊕ denotes a possibly non-zero entry. Also for simplicity we shall use
H1 = H(a1). Next, we look at the second column of the matrix A1 = H(a1)A.
First row of matrix A1 will remain unchanged so we cut off the first entry of
the second column,i.e., we are left with vector ã2 of size (n−1) which consists
of the under lined elements. We shall convert it into upper triangular by
reducing all entries to zero below ã2.

25

After this we use a Household reflectionH(ã2) in the space of ”cut off”vectors.
Then the new

H(a2) = H2 =


1 0 . . . 0
0
... H(ã2)
0


In result

A2 = H2A1 =


⊕ ⊕ ⊕ . . . ⊕
0 ⊕ ⊕ . . . ⊕
0 0 ⊕ . . . ⊕
...

...
...

...
0 0 ⊕ . . . ⊕


Repeat all steps on similar lines for third row. Now consider rest

columns of A2 which has non-zero elements below the third row. Again by
cutting off the top two entries of this vector ã3, we are left with (n − 2)
elements which are under lined in A2.
Now find Householder reflection H(ã3) and then calculate H3 by multiplying
with A2 from the left

H(a3) = H3 =


1 0 0 . . . 0
0 1 0 . . . 0
0 0
...

... H(ã3)
0 0


Hence in result

A3 = H3A2 =



⊕ ⊕ ⊕ ⊕ . . . ⊕
0 ⊕ ⊕ ⊕ . . . ⊕
0 0 ⊕ ⊕ . . . ⊕
0 0 0 ⊕ . . . ⊕
...

...
...

...
...

0 0 0 ⊕ . . . ⊕


In (m− 1) steps we get R which is a upper triangular. In result we have

Hm−1Hm−2...H2H1A = R

⇒ A = QR
where Q = H1H2...Hm−2Hm−1.

26

Example 5. Let

A =

 1 2 3
2 3 0
1 0 2


find the QR factorization with Householder reflection.

Solution Select first column vector

a1 =

 1
2
1


‖a1‖ = 2.4495

b1 =

 2.4495
0
0


Let u1 = The Householder vector = (a1 − b1)

u1 =

 −1.4495
2
1


‖u1‖ = 2.6648

ũ1 =
u1

‖u1‖
=

 −0.5439
0.7505
0.3753


H1 = I − 2ũ1ũ

T
1 =

 0.4082 0.8165 0.4082
0.8165 −0.1266 −0.5633
0.4082 −0.5633 0.7184


In result

A1 = H1A =

 2.4495 3.2660 2.0412
0.0000 1.2532 1.3229
0.0000 −0.8734 2.6614


The next cutoff vector is

a2 =

(
1.2532
−0.8734

)
‖a2‖ = 1.5275

27

b2 =

(
1.5275

0

)
u2 = (a2 − b2)

u2 =

(
−0.2743
−0.8734

)
ũ2 =

u2

‖u2‖
=

(
−0.2997
−0.9540

)
H(a2) = I − 2ũ2ũ

T
2 =

(
0.8204 −0.5718
−0.5718 −0.8204

)

H2 =

 1.0000 0 0
0 0.8204 −0.5718
0 −0.5718 −0.8204


H2H1A =

 2.4495 3.2660 2.0412
0.0000 1.5276 −0.4365
0.0000 −0.0000 −2.9399


This is R factor of A.
And Q = H1 ∗H2 ∗Hm−1

3.4.6 Givens Rotations

Let A be an (m,n) matrix with m > n. An orthogonal QR decompo-
sition consists in determining an (m,m) orthogonal matrix Q s.t

QTA = R

where R is upper triangular of order (n, n).In this way one has only to solve
the triangular system Rx = Py, where P consists of the first n rows of Q .
Householder transformations clear whole column except for first element of a
vector. If one wants to clear out one element at a time then Givens rotations
are the best choice. The basic idea is that by an appropriately chosen θ we
can always rotate a given vector into a vector whose second entry is zero:(

cosθ −sinθ
sinθ cosθ

)(
x
y

)
=

(√
x2 + y2

0

)
where

c = cosθ =
x√

x2 + y2

28

and

s = sinθ =
−y√
x2 + y2

We can write these rotations as follow,

G(i, j, θ) =


1

c −s
1

1
s c

1


where the trigonometric functions are in the i-th and j-th columns and all
entries are zero.
Let A ∈ Mn. Select first column and take the first non-zero element in the
first column below the diagonal. Chose θ appropriately for any k − th row
and can be eliminated by left multiplication by R(1, k, θ). All columns of
A are converted into zero below the diagonal. We notice that the zeros in
first column remain zero after these multiplications as R(i, j, θ) acts only on
the i-th and j-th columns and rows respectively and does not touch the first
column. After series of repeated N-steps we get an upper triangular matrix
as a result of many multiplications by Givens matrices,i.e.

GNGN−1....G2G1A = R

For any square matrix A of order n × n, the maximum number of Givens
rotations are

N = (n− 1)(n− 2)/2

The QR−factorization of A is now obtained by inverting all Givens matrices
to transposes,

Q = GT
1G

T
2G

T
N

⇒ A = QR

Working procedure of Givens rotations: Consider any matrix of order
(4× 3) .

A =


⊕ ⊕ ⊕
⊕ ⊕ ⊕
⊕ ⊕ ⊕
⊕ ⊕ ⊕


Here the underlined position is to be eliminated. First we calculate values of
cosθ and sinθ as follow

c = cosθ =
a11√

a2
11 + a2

21

29

s = sinθ =
−a21√
a2

11 + a2
21

For this purpose R(1, 2, θ) matrix is chosen like

G1 =


c −s
s c

1
1


This gives

A1 = G1A =


c −s
s c

1
1



⊕ ⊕ ⊕
⊕ ⊕ ⊕
⊕ ⊕ ⊕
⊕ ⊕ ⊕

 =


⊕ ⊕ ⊕
0 ⊕ ⊕
⊕ ⊕ ⊕
⊕ ⊕ ⊕


We repeat same procedure for matrices G2 = R(1, 3, θ) and G3 =

R(1, 4, θ) to eliminate remaining entries of matrix A for first column.
Similarly select second column and repeat step by step all procedure already
done. Hence for third column. Ultimately we get a upper triangular matrix.

Example 6. Find the QR factorization of

A =

 1 1 0
2 1 1
0 2 1


by using Givens rotations.

Solution: Select first column vector

c =
1√
5

= 0.4472

s =
−2√

5
= −0.8944

G1 =

 c s 0
−s c 0
0 0 1


G1 =

 0.4472 0.8944 0
−0.8944 0.4472 0

0 0 1


30

A1 = G1A =

 2.2361 1.3416 0.8944
0 −0.4472 0.4472

0.8944 2.0000 1.0000


c1 =

−0.4472√
0.44722 + 4

= −0.2182

s1 =
−2√

0.44722 + 4
= −0.9759

G2 =

 1 0 0
0 c1 s1

0 −s1 c1


G2 =

 1.0000 0 0
0 −0.2182 0.9759
0 −0.9759 −0.2182


A2 = G2A1 =

 2.2361 1.3416 0.8944
0 2.0494 0.8783

0.9844 0.0000 −0.6546


Q = G1 ∗G2

 0.4472 o.1952 0.8729
0.8944 −0.0976 −0.4364

0 0.9759 −0.2182


This rotation gives one zero in (3, 1) position. By repeating the same
procedure, an upper triangular matrix Q is obtained.

3.5 The Standard Eigenvalue Problem

If A ∈ C, x 6= 0 ∈ Cn and λ ∈ C, then we call the problem

Ax = λx (3.2)

the standard eigenvalue problem. The scalar λ is an eigenvalue and x is a
corresponding eigenvector. For a certain matrix, each one of its eigenvectors
is associated with a particular (though not necessarily unique) eigenvalue. If
we write (3.2) as

(A− λI)x = 0 (3.3)

Then we see that x is in the null space of the matrix (A−λI), which therefore
has to be nonempty. Equivalently

det(A− λI) = 0

31

which is a n degree polynomial called as the characteristic polynomial.

Definition 3. The set of all λ ∈ C that are eigenvalues of A ∈Mn is called
the spectrum of A and is denoted by σ(A). The spectrum radius of A is the
nonnegative real number ρ(A) = max{|λ| : λ ∈ σ(A)}.
This is just the radius of the smallest disc centered at the origin in the complex
plane that includes all the eigenvalues of A.

3.5.1 Eigenvalue and polynomials

The problem of computing the eigenvalues of a n × n matrix is equivalent
to that of finding the zeros of a complex polynomial of degree n. To see
this note that the eigenvalues of A ∈ Mn are the zeros of its characteristic
polynomial: pA(t) = det(tI − A). The zeros of a monic polynomial p(t) =
tn + an−1t

n−1 + · · ·+ a1t+ a0 are the eigenvalues of its companion matrix:
0 1

0 1
.

0 1
an−1 · · · · · · a1 a0


It is a fact that there is no finite algorithm to compute the zeros

of a polynomial of degree greater than 5, and consequently, there can be no
finite algorithm to compute the eigenvalues of a general matrix of order 5
or greater. Consequently, any factorization that exposes the eigenvalues of
a matrix cannot in general be computed in a finite number of steps. On
the other hand, the zeros of a polynomial are continuous functions of the
coefficients, and hence the eigenvalues of a matrix are continuous functions
of the entries of the matrix.
To illustrate the concept of eigenvalues and eigenvectors let us see following
examples. Let (

1 −1
−1 1

)(
1
1

)
= 0

(
1
1

)

Here

(
1
1

)
is the eigenvector and 0 is its associated eigenvalue.

(
2 1
1 2

)(
1
1

)
= 3

(
1
1

)
32

In the second example 3 is eigenvalue and

(
1
1

)
is eigenvector.

Problem:Diagonalize the matrix

A =

(
2 5
−1 −4

)
SOLUTION: We have to find eigenvalues and eigenvectors. Steps follows as:
Step 1: Find the characteristic polynomial:

p(λ) = det

(
2− λ 5
−1 −4− λ

)
= (2− λ)(−4− λ)− 5(−1) = λ2 + 2λ− 3

Step 2: Find the roots of p(λ).
λ1 = 1 , λ2 = −3
Step 3: Find the eigenvectors. Must be done separately for each eigenvalue.
Eigenvector for λ1 = 1 and λ2 = −3 are

(
−5
1

)
and

(
−1
1

)
respectively.

3.6 Numerical Methods for finding Eigenvalue

Problems

A number of numerical methods are commonly used for finding eigenvalues
of symmetric matrices.

3.6.1 Power method for simple eigenvalues

This is very simple and the oldest method for finding eigenvalue prob-
lems. Take any square matrix A. Select any vector x0 and start multiplying
successively with A. In this way we can easily find eigenvalues of any square
matrix.

The power method is the iterative method of the form

xk+1 =
Axk
sk+1

33

where sk is a scaling factor, and x0 is the chosen starting vector. If we take
sk = 1 for all k then we get

xk+1 = Axk = AAxk−1 = · · · = Ak+1x0.

From that we see why it is called the power method. In general, the
iteration with sk ≡ 1 will not converge. Either ‖xk‖ will converge to 0, or
will go to infinity. To ensure convergence we must ensure that xk neither
goes to 0 nor blows up. A useful choice is to take sk to be the largest entry
of Axk in absolute value. This is what we will assume from now on. Then
provided |λ1| > |λ2| the scaling factors sk converge to an eigenvalue of A and
|sk| → |λ1|, and the vectors xk converge to a corresponding eigenvector. To
see these results let us assume that A is diagonalizable, that is, there are n
linearly independent vectors v1, . . . , vn such that Avi = λivi. These vectors
form a basis, so the starting vector x0 can be written as a linear combination
of the vi’s,

x0 =
n∑
i=1

α
(0)
i vi.

Now multiplying by A we get

Ax0 =
n∑
i=1

α
(0)
i Avi =

n∑
i=1

α
(0)
i λivi,

and so

x1 =
Ax0

s1

=
n∑
i=1

α
(0)
i λi
s1

vi =
n∑
i=1

α
(1)
i vi

where α
(1)
i = α

(0)
i λi/s1.

In the same way

xk =
n∑
i=1

α
(k)
i vk

where
α

(k)
i = α

(0)
i λki /(s1 · · · sk).

Notice that the ratio
α

(k)
i

α
(k)
1

=

(
λi
λ1

)k
is independent of the choice of scaling, and converges to 0. If we choose the
scaling to ensure that α

(k)
1 converges then the α

(k)
i will go to zero for i > 1

34

and so, the sequence of vectors xi will converge to a multiple of v1. There
are many scalings that achieve this, and the one we have chosen is one such.
The rate of convergence is |λ1|

|λ2|– smaller the ratio faster the convergence. An
important fact is that we don’t need the matrix explicitly – we just need to
know how to compute Ax. An important application is the estimation of
‖A−1‖2. Suppose that we are solving Ax = b, using say an LU factorization.
We then want to estimate ‖A−1‖2 to get error bounds. Given L and U
we could use them to compute A−1, but this would require an additional
computations. Instead, we can use the fact that

‖A−1‖22 = ρ(A−1A−T).

That is, we can compute the 2-norm by computing the spectral radius. To
employ the power method for this we need only be able to compute products
for the form

A−1A−Tx = U−1L−1L−TU−Tx = U\(L\(LT\(UT\x)))

Where B\y means solve the system Bz = y for z. To compute A−1A−Tx for
a given vector x we need only solve 4 triangular systems – 4n2 flops/. A few
iterations of the power method will generally give an estimate of ‖A−1‖ that
is correct up to a factor of 10.

Example 7. Let

A =

 1 2 3
2 4 5
3 5 6


Use the Power method to approximately compute the eigenvalue of A by
largest modulus. Perform 3 steps of the Power method. Use the entry of
Axk that has the largest modulus as the scaling factor, and use

x0 =

 1
2
1


Solution

Ax0 =

 6
11
14


⇒ s0 = 14

x1 =
Ax0

s0

=

 0.4286
0.7857
1.0000


35

Ax1 =

 5.0000
8.9994
11.2143


⇒ s1 = 11.2143

x2 =
Ax1

s1

=

 0.4459
0.8025
1.0000


Ax2 =

 5.0509
9.1018
11.3503


⇒ s2 = 11.3503

x3 =
Ax2

s2

=

 0.4450
0.8019
1.0000


Ax3 =

 5.0488
9.0976
11.3445


⇒ s3 = 11.3445

Best estimate for the eigenvalue of A is 11.3445.
True eigenvalues of A are:

eig(A) =

 −0.5157
0.1709
11.3448


Power method is converging to the eigen value with largest modulus.

What about the other eigenvalues? We have seen that we can com-
pute the largest eigenvalue of A by the power method. If we apply the power
method to A−1, we will get the largest eigenvalue of A−1, which is λ−1

n .
A major limitation of power method is that it only find the largest eigenvalue.
Similarly, the inverse power iteration sees only able to find the eigenvalue of
smallest magnitude. Also power method fails when matrix has no dominant
eigenvalue. As we are looking for more efficient and more convergent method
for finding all eigenvalues so we switch to Cholesky and Jacobi methods.

36

3.6.2 Cholesky decomposition

Let A = [aij] be any positive definite matrix then A can be factorized
in the the form A = LLT , this is nice form of LU factorization. This is
possible when A is symmetric and positive definite (xTAx > 0 if xTx > 0),
with condition U = LT . Equating row by row corresponding elements in
the equation A = LLT we can determine elements of L, where L is diagonal
matrix with positive entries.

a11 a1n
...

...
...

...
...

...
an1 ann

 =


l11 0 0
...

. . .
...

...
. . .

...
...

. . .
...

ln1 lnn




l11 ln1
...

. . .
...

...
. . .

...
...

. . .
...

0 0 lnn



We have in left side

aij =

j∑
k=1

likljk, j = 1, 2, ..., i.

This gives

lij =
aij −

∑j−1
k=1 likljk
ljj

, j = 1, 2, ..., i− 1.

Hence

lii =

(
aij −

i−1∑
k=1

l2ik

)1/2

.

Now we apply another approach to get partition, which is Block Cholesky
Factorization. (

a11 bT

b Â

)
=

(
l11 0

h Ĝ

)(
l11 hT

0 ĜT

)
Next procedure is ” how to find l11, h, and Ĝ ? ” For this compare left

and right hand side entries, which implies

l11 =
√
a11

h =
b

l11

37

For Ĝ:
Â = hhT + ĜĜT

Ĝ = (Â− hhT)ĜT

Ĝ is Choleski factor of
Â− hhT

Here we present simple Cholesky method for LLT factorization.

function [L] = iqbal_chol(M)

n = length(M); % calculate length of input matrix to use in for loop

L = zeros(n,n); % create a matrix of 0’s

% loop through all the elements and do the required calculations

for i=1:n

L(i,i) = sqrt(M(i,i) - L(i,:)*L(i,:)’);

for j=(i+1):n

L(j,i) = (M(j,i) - L(i,:)*L(j,:)’)/L(i,i);

end

end

disp(’This is L: ’); %Matlab display L’

disp(L);

disp(’This is L primed: ’);

disp(L’);

Example 8. Find Cholesky decomposition of any square matrix M by
using Matlab cods.

Here is example for n = 3

M=rand(3)

M =

0.0118 0.2987 0.4692

0.8939 0.6614 0.0648

0.1991 0.2844 0.9883

M=M*M’ % Now M is symmetric

M =

38

0.3095 0.2385 0.5511

0.2385 1.2408 0.4302

0.5511 0.4302 1.0974

This is L: % We display only final answer

0.5564 0 0

0.4287 1.0281 0

0.9904 0.0054 0.3411

Example 9. Here is another example for n = 4 to find Cholesky decomposi-
tion of any square matrix M by using Matlab cods.

M=rand(4) % M is random square matrix of order 4

M =

0.5828 0.4329 0.5298 0.7833

0.4235 0.2259 0.6405 0.6808

0.5155 0.5798 0.2091 0.4611

0.3340 0.7604 0.3798 0.5678

M=M*M’

M = % Now M is symmetric

1.4214 1.2173 1.0234 1.1698

1.2173 1.1042 0.7972 0.9431

1.0234 0.7972 0.8582 0.9543

1.1698 0.9431 0.9543 1.1564

This is L:

1.1922 0 0 0

1.0211 0.2483 0 0

0.8584 -0.3193 0.1393 0

0.9812 -0.2366 0.2613 0.2633

39

Example 10. Here is special example for n = 3 to find Cholesky decomposi-
tion of any square matrix M which is not symmetric we observe complex
entries in L.

M=rand(3) % M is random square matrix of order 3

M = % M is not symmetric

0.8180 0.2897 0.7271

0.6602 0.3412 0.3093

0.3420 0.5341 0.8385

This is L:

0.9044 0 0

0.7300 0 + 0.4378i 0

0.3781 0 - 0.5894i 0.5901

These are examples of simple Cholesky decomposition. In next chapter we
will apply Cholesky iterative method for finding eigenvalue by converting a
square matrix in diagonal form.

3.6.3 Jacobi Method

This is widely used method to find the eigenvalues and eigenvectors
of a real symmetric matrix. It is easily understandable and reliable method
that produces uniformly accurate answers for the results [3]. The algorithm
is very accurate for matrices of order up to 10. In case of matrices of higher
order like 20× 20 it is little bit slow but results are quite acceptable.
Since all the eigenvalues of A are real and there exist a real orthogonal matrix
S, such that, S−1AS = D , (Diagonal matrix).
As D and A are similar, the diagonal elements of D are the eigenvalues of A.
This method finds the spectral decomposition A = V DV T of a symmetric
matrix. It finds eigenvalues and eigenvectors in one sweep. This algorithm
is slow but stable.

Jacobi’s method is based Jacobi rotation G = R(i, j, θ) such that
the (i , j)-th entry of matrix GtAG be zero. Symmetrically the (j , i)-th entry

40

will also be zero. We can write

B = GtAG =



...
...

. . . bii . . . bij . . .
...

...
. . . bji . . . bjj . . .

...
...



=


1

c s
1

1
−s c

1





...
...

. . . aii . . . aij . . .
...

...
. . . aji . . . ajj . . .

...
...




1

c −s
1

1
s c

1


in this calculation we make sure that bij = bji = 0 in terms of the elements
of A and c, s. where

s =

(
1

2
− β

2
√

1 + β2

)1/2

and

c =

(
1

2
+

β

2
√

1 + β2

)1/2

the value of β is found as

β =
aii − ajj

2aij

In the Jacobi algorithm we choose the rotation matrix and its transpose to
get a zero at the required position.
We presents here some computational aspects of Jacobi method. Take aij,
which is largest offdiagonal element. We construct matrix G by using values
of c and s . Set A1 = GtAG. Repeat the process with new offdiagonal of A1

matrix. In result we get
A0 = A

An+1 = Gt
nAnGn

To find the diagonal matrix D, take limit as,

lim
n→∞

An → D

41

Our goal is to get sufficiently near to exact solution. This can be achieved
by running the iteration until the off-diagonal elements are sufficiently small.
In result we have

A ≈ QDQt

where
Q = G1G2...GN ,

which is spectral decomposition of the matrix A.

Example 11. Find the eigenvalues and eigenvectors of the symmetric ma-
trix by using Jacobi Method [5].

A =

 1 2 2
2 1 2
2 2 1


Solution: Choose largest off-diagonal element that is ’2’ at (1,2), (1,3)

and (2,3) positions. Choosing largest offdiagonal element is called ” Clas-
sical Jacobi method”. The usual approach is to eliminate each element in
turn. We call a Jacobi sweep for every n(n−1)

2
plane rotations reducing all

off-diagonal elements.
The rotation angle θ is given by tan2θ = 2a12

a11−a22

For this problem θ = π
4
.Thus the orthogonal matrix S1 is

S1 =

 cosπ/4 −sinπ/4 0
sinπ/4 cosπ/4 0

0 0 1

 =

 1/
√

2 −1/
√

2 0

1/
√

2 1/
√

2 0
0 0 1


Then the first rotation yields

D1 = S−1
1 AS1 =

 3 0 2.82843
0 −1 0

2.82843 0 1


The largest off-diagonal element of D1 is now 2.82843 situated at (1, 3) posi-
tion and hence the rotation angle is θ = 0.61548.
The second orthogonal matrix S2 is

S2 =

 cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 =

 0.8165 0 −0.57735
0 1 0

0.57735 0 0.8165



42

Thus the second rotation gives

D2 = S−1
2 AS2 =

 5 0 0
0 −1 0
0 0 −1


which is diagonal matrix and eigenvalues are 5,−1,−1.
Note: It is very rare for Jacobi method to converge in a finite number of
steps. The eigenvectors are the columns of matrix S, where,

S = S1S2 =

 0.57735 −0.70711 −0.40825
0.57735 0.70711 −0.40825
0.57735 0 0.8165


Example 12. Find one-sweep Jacobi rotations for matrix A by using matlab
codes.

Here is a matlab m-file that does one-sweep of the Jacobi method.

function [A] = jac_sweep(A)

sz = size(A);

n = sz(1); % not checking square

for i=1:n-1,

for j = i+1:n,

% zero out i,j and j,i elements

indx = [i j];

B = A(indx,indx);

[c, s] = jac2(B);

J = [c -s ; s c];

Q = eye(n);

Q(indx, indx) = J;

A1 = Q’*A*Q; % simple but very inefficient

A1 = (A1+A1’)/2;

A = A1;

end

end

% compute the cos and sine for Jacobi rotation applied to B

function [c s] = jac2(B)

if abs(B(1,2)) > 1e-16,

tau = (B(1,1) - B(2,2))/(2*B(1,2));

43

t = min([-tau + sqrt(1 + tau*tau),

-tau - sqrt(1 + tau*tau)]) ;

else

t = 0;

end

c = 1/(sqrt(1+t*t));

s = t*c;

Example 13. Apply one-sweep Jacobi method to any square matrix A to see
its results.

We select randomly a square matrix A of order 4 and apply one-sweep
Jacobi method after making it positive definite.

A=rand(4)

4.4510e-001 8.4622e-001 8.3812e-001 8.3180e-001

9.3181e-001 5.2515e-001 1.9640e-002 5.0281e-001

4.6599e-001 2.0265e-001 6.8128e-001 7.0947e-001

4.1865e-001 6.7214e-001 3.7948e-001 4.2889e-001

A=A*A’ % A is symmetric

2.3085e+000 1.2938e+000 1.5400e+000 1.4299e+000

1.2938e+000 1.3973e+000 9.1075e-001 9.6618e-001

1.5400e+000 9.1075e-001 1.2257e+000 8.9411e-001

1.4299e+000 9.6618e-001 8.9411e-001 9.5499e-001

jac_sweep(A) % apply Jacobi sweep for A

ans =

4.2181e-001 1.3568e-001 9.7757e-002 -1.5154e-001

1.3568e-001 2.0282e-001 1.4772e-001 -3.1795e-001

9.7757e-002 1.4772e-001 1.2182e-001 2.4443e-016

-1.5154e-001 -3.1795e-001 2.4443e-016 5.1400e+000

Results In one-sweep all elements are not set to 0 at once, but each time
one element is set to 0, the previous 0 may be made non-zero, so only the

44

(3, 4) and (4, 3) elements which is 8.9411e − 001 initially is selected and
reduced in one sweep to 2.4443e− 016 which is sufficiently zero.

3.6.4 Singular Value Decomposition (SVD)

We are looking for the best form to reduce a matrix. The diagonal
form is the best form of a matrix. As it is extremely easy to manipulate with
diagonal matrices. In other words, if one is allowed to change bases indepen-
dently, then one gets the best possible form one could hope for. This is called
Singular Value Decomposition (SVD). It is most useful decomposition.
Definition Let A ∈ Mm,n. Then there are unitary matrices U and V of
appropriate dimensions and a non-negative diagonal matrix Σ ∈ Mm,n such
that

A = UΣV ∗

The diagonal entries of Σ, ordered in non-increasing order, and

σ11 > σ22 > > σqq > 0

are the singular values of A where q = min(m,n).

Theorem: Let A ∈Mm,n(F). Let q = min(m,n). Then

1. There exist unitary U ∈ Mm(F) and V ∈ Mn(F) and real diagonal
matrix Σ ∈Mm,n such that

A = UΣV ∗

where Σ is diagonal in the sense that

σij = 0 if i 6= j

We set
σi = σii

2. The σi’s are uniquely determined, and they are denoted by σi(A) and
are called the singular values of A.

3. The columns of U and V are called the left and right singular vec-
tor of A. If the σi are distinct then the singular vectors are unique up to
multiplication by a number of modulus 1.

45

How to compute practically the SVD of A?

For any square matrix A , we have

A∗A = UΣ2V ∗

We can compute the eigenvalues of A∗A and then take square roots to get the
singular values. It is not a good idea as we ”square the condition number”
each time.
Now we present another idea through a theorem.

Theorem 4. Let A ∈Mm,n. The corresponding Jordan-Wielandt matrix

WA =

(
0 A
A∗ 0

)
∈Mm+n

has eigenvalues as
±σ1(A), ...,±σq(A), 0, ..., 0

We have then (
0 A∗

A 0

)(
V V
U −U

)
=

(
A∗U −A∗U
AV AV

)
(3.4)

From definition of SVD we can write AV = UΣ also A∗ = (UΣV ∗)
⇒ A∗U = V Σ
Equation(3.3) is written as(

0 A∗

A 0

)(
V V
U −U

)
=

(
V Σ −V Σ
UΣ UΣ

)
=

(
V V
U −U

)(
Σ 0
0 −Σ

)
this gives diagonal form of last matrix.
Further it can be written as(

0 A∗

A 0

)
=

(
V V
U −U

)(
Σ 0
0 −Σ

)(
V V
U −U

)−1

It proves that to calculate the singular values of A, we can calculate in-
stead the eigenvalues of eigenvalues of WA. It is useful connection between
eigenvalues and singular values of any matrix A.

46

Chapter 4

Accuracy of Methods

In this chapter we shall discussing convergence of Cholesky and Jacobi meth-
ods through iterative schemes and shall compare the rate of convergence for
both methods.

4.1 Cholesky Iterative Method to compute

eigenvalues

We know by Cholesky factorization any square matrix A can be writ-
ten A = LLT . Now we want to construct a iterative Cholesky Algorithm for
computation of eigenvalues of A0. For this first we convert the given matrix
into LLT by using Cholesky method and then set A1 equal to LTL. Here we
use the definition of similar matrices,i.e., similar matrices have same eigen-
values. By continuing the process we get a diagonalized matrix Ai where i is
number of iterations. The diagonal entries are eigenvalue of matrix A0. Here
are mathematical steps which are being used in Matlab codes. Assume

A0 > 0, (Positive definite)

Factorize into A0 = LLT

set A1 ← LTL
Again factorize for A1 = L1L

T
1

then set A2 ← LT1L1

Again factorize for A1 = L1L
T
1

Repeating this process until diagonalized L. Diagonal entries of this resultant
matrix are eigenvalues of starting matrix A0.

47

Matlab codes for Cholesky iterative method:
Here are Matlab codes for Cholesky iterative method to find eigen values of
square matrix by using first converting it into tridiagonal form.

In first section we present Matlab codes which checks that all off-
diagonal elements are zero. For this we set ε1 as precondition. This process
operates until we get diagonal matrix.

function d = isDiag(A,s)

d=1;

eps1=0.0001;

for r=1:s

for c=1:s

if r==c

continue

elseif(A(r,c)>eps1)

d=0;

return

else

continue

end

end

end

Now consider second set of codes. We start by random square matrix
A. Make it symmetric and then tridiagonal form. Now decompose it into
Cholesky factors L. Then again set in the product of LLT and apply Cholesky
method for decomposition. In result we succeeded in converting more off-
diagonal elements to zero. This is iterative method as it always take previous
values and repeat again and again until all off-diagonal elements are reduced
to zero.We can also set maximum number of iterations.

n=input (’enter value of n: ’);

A=rand(n); % take any square matrix of order n

A=A*A’; % make A positive definite

disp(’The input array A is:’)

disp(A)

A=hess(A); % make A tridiagonal matrix

[T,p]=chol(A); if p>0

’Not a positive definite Matrix’

48

return

end

T=A;

for i=1:100 %max number of iterations

L1=chol(T);

A1=L1*L1’

disp(’iteration: ’)

disp(i)

disp(’A1 after this iteration is:’)

disp(A1)

if isDiag(A1,n)==0 % check for diagonal

T=A1;

continue

else

break

end

end

disp(’ eigen(A) eig using Cholesky’)

disp(sort([eig(A) diag(A1)]))

’Total iterations ’, i

Example 14. Find eigenvalues of any square matrix by using Cholesky-
iterative method.

Here is example for n = 5

The input array A is: % A is symmetric

1.3838 1.0815 1.6375 0.8233 1.6341

1.0815 2.0368 1.6443 1.1305 2.0806

1.6375 1.6443 2.3864 1.4994 2.0649

0.8233 1.1305 1.4994 1.1860 1.2218

1.6341 2.0806 2.0649 1.2218 2.5416

49

iteration: 1

A1 after this iteration is:

0.5077 0.2518 0 0 0

0.2518 0.2890 -0.2307 0 0

0 -0.2307 1.1774 1.9407 0

0 0 1.9407 7.5603 -0.0168

0 0 0 -0.0168 0.0001

iteration: 2

A1 after this iteration is:

0.6326 0.1432 0 0 0

0.1432 0.4883 -0.5259 0 0

0 -0.5259 5.2674 3.7266 0

0 0 3.7266 3.1463 -0.0000

0 0 0 -0.0000 0.0000

iteration: 3

A1 after this iteration is:

0.6650 0.1215 0 0 0

0.1215 1.0626 -1.6816 0 0

0 -1.6816 7.6405 0.7044 0

0 0 0.7044 0.1665 -0.0000

0 0 0 -0.0000 0.0000

iteration: 4

A1 after this iteration is:

0.6872 0.1520 0 0 0

0.1520 3.7583 -3.6578 0 0

0 -3.6578 5.0233 0.0814 0

0 0 0.0814 0.0657 -0.0000

50

0 0 0 -0.0000 0.0000

iteration: 5

A1 after this iteration is:

0.7208 0.3539 0 0 0

0.3539 7.3167 -2.2674 0 0

0 -2.2674 1.4359 0.0168 0

0 0 0.0168 0.0611 -0.0000

0 0 0 -0.0000 0.0000

iteration: 6

A1 after this iteration is:

0.8946 1.1142 0 0 0

1.1142 7.8627 -0.7180 0 0

0 -0.7180 0.7166 0.0049 0

0 0 0.0049 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 7

A1 after this iteration is:

2.2822 2.9975 0 0 0

2.9975 6.5547 -0.2252 0 0

0 -0.2252 0.6370 0.0015 0

0 0 0.0015 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 8

A1 after this iteration is:

6.2191 3.2103 0 0 0

51

3.2103 2.6372 -0.1094 0 0

0 -0.1094 0.6176 0.0005 0

0 0 0.0005 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 9

A1 after this iteration is:

7.8763 1.2744 0 0 0

1.2744 0.9922 -0.0860 0 0

0 -0.0860 0.6054 0.0001 0

0 0 0.0001 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 10

A1 after this iteration is:

8.0824 0.4026 0 0 0

0.4026 0.7954 -0.0749 0 0

0 -0.0749 0.5960 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 11

A1 after this iteration is:

8.1025 0.1247 0 0 0

0.1247 0.7826 -0.0652 0 0

0 -0.0652 0.5888 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 12

A1 after this iteration is:

52

8.1044 0.0387 0 0 0

0.0387 0.7862 -0.0564 0 0

0 -0.0564 0.5833 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 13

A1 after this iteration is:

8.1046 0.0121 0 0 0

0.0121 0.7900 -0.0484 0 0

0 -0.0484 0.5793 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 14

A1 after this iteration is:

8.1046 0.0038 0 0 0

0.0038 0.7930 -0.0413 0 0

0 -0.0413 0.5763 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 15

A1 after this iteration is:

8.1046 0.0012 0 0 0

0.0012 0.7951 -0.0352 0 0

0 -0.0352 0.5742 0.0000 0

0 0 0.0000 0.0607 -0.0000

53

0 0 0 -0.0000 0.0000

iteration: 16

A1 after this iteration is:

8.1046 0.0004 0 0 0

0.0004 0.7967 -0.0299 0 0

0 -0.0299 0.5726 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 17

A1 after this iteration is:

8.1046 0.0001 0 0 0

0.0001 0.7978 -0.0253 0 0

0 -0.0253 0.5715 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 18

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.7986 -0.0214 0 0

0 -0.0214 0.5707 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 19

A1 after this iteration is:

8.1046 0.0000 0 0 0

54

0.0000 0.7992 -0.0181 0 0

0 -0.0181 0.5701 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 20

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.7996 -0.0153 0 0

0 -0.0153 0.5697 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 21

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.7999 -0.0129 0 0

0 -0.0129 0.5694 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 22

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8001 -0.0109 0 0

0 -0.0109 0.5692 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 23

55

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8002 -0.0092 0 0

0 -0.0092 0.5691 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 24

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8003 -0.0077 0 0

0 -0.0077 0.5690 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 25

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8004 -0.0065 0 0

0 -0.0065 0.5689 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 26

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8004 -0.0055 0 0

0 -0.0055 0.5688 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

56

iteration: 27

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8005 -0.0046 0 0

0 -0.0046 0.5688 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 28

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8005 -0.0039 0 0

0 -0.0039 0.5688 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 29

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8005 -0.0033 0 0

0 -0.0033 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 30

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8005 -0.0028 0 0

0 -0.0028 0.5687 0.0000 0

57

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 31

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0023 0 0

0 -0.0023 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 32

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0020 0 0

0 -0.0020 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 33

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0017 0 0

0 -0.0017 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 34

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0014 0 0

58

0 -0.0014 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 35

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0012 0 0

0 -0.0012 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 36

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0010 0 0

0 -0.0010 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 37

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0008 0 0

0 -0.0008 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 38

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0007 0 0

0 -0.0007 0.5687 0.0000 0

59

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 39

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0006 0 0

0 -0.0006 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 40

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0005 0 0

0 -0.0005 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 41

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0004 0 0

0 -0.0004 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 42

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0004 0 0

0 -0.0004 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

60

0 0 0 -0.0000 0.0000

iteration: 43

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0003 0 0

0 -0.0003 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 44

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0003 0 0

0 -0.0003 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 45

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0002 0 0

0 -0.0002 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 46

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0002 0 0

0 -0.0002 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

61

iteration: 47

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0002 0 0

0 -0.0002 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 48

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0001 0 0

0 -0.0001 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 49

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0001 0 0

0 -0.0001 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

iteration: 50

A1 after this iteration is:

8.1046 0.0000 0 0 0

0.0000 0.8006 -0.0001 0 0

0 -0.0001 0.5687 0.0000 0

0 0 0.0000 0.0607 -0.0000

0 0 0 -0.0000 0.0000

eigval(A) eigval using Cholesky

0.0000 0.0000

62

0.0607 0.0607

0.5687 0.5687

0.8006 0.8006

8.1046 8.1046

Comments: It is a nice example in which matrix converge to diagonal
form in 50 iterations. We observe the fact that the off diagonal entries con-
verge linearly to 0. Consider (3, 2) entry of matrix A1. In first iteration it is
(-0.2307). Its value increases in first four iterations and then start decreasing
in every iteration. The rate of convergence is very high for large values. After
10 iterations its value is (−0.0749), which is about three times decrease in
stating value. After 20 iterations, the decrease is 15 times with respect to
starting value and 5 times as compared to 10-th iteration. Similarly we notice
that rate of decease is very high for 30-th and 40-th iterations. It is about
80 times and 500 times respectively. The rate of decrease for off diagonal
elements is less when this value is sufficiently near to zero. For example in
41st iteration, the value of entry (2,3) is (−0.0004) which is same for next
iteration. This means that rate of convergence is slow when element value
is too small. In result of this continuous decrease, the value of entry (3, 2)
converges linearly to ε = 0.0001. Similarly the other off-diagonal entries con-
verges linearly to zero so the matrix A become diagonal. The diagonal entries
are eigenvalues of matrix diagA which are same as that of the eigenvalues of
matrix A, computed from the computer.

63

Some more examples with different n-values

Example 15. To find eigenvalue of matrix by using Cholesky iterative method.

We take a small matrix of n = 2 in long format.

A1 = % starting with symmetric matrix

1.57489724733728 0.12141320187440

0.12141320187440 0.01296269516289

%After 89 iterations we get

A1 =

1.58427866132836 0.00000000000000

0.00000000000000 0.00358128117180

ans =

[eig(A) (eig(diagA1)]

0.00358128117180 0.00358128117180

1.58427866132836 1.58427866132836

Eigenvalues in both columns are exactly same.

Example 16. To find eigenvalue of matrix by using Cholesky iterative method
with long format.

Let us consider matrix of order n = 4 in long format.

A1 = % A is tridiagonal matrix

0.21569190405489 -0.01008604686090 0 0

-0.01008604686090 0.29671268251995 0.82660931243546 0

0 0.82660931243546 2.55889895739011 -0.17379533705833

0 0 -0.17379533705833 0.12450366947428

64

Total iterations =200 % after 200 iterations A1 is diagonal

A1 =

2.83881735297896 -0.00000000000000 0 0

-0.00000000000000 0.21627220943165 0.00000000000001 0

0 0.00000000000001 0.13981059419017 -0.00000000000000

0 0 -0.00000000000000 0.00090705683845

ans =

[eig(A) diag(A1)]

0.00090705683845 0.00090705683845

0.13981059419017 0.13981059419017

0.21627220943165 0.21627220943165

2.83881735297896 2.83881735297896

Comments : After 200 iterations, which were fixed for this problem, the re-
sulting matrix is not fully diagonal. Element at position (2, 3) is (0.00000000000001),
which is sufficiently near to zero. It means the matrix still needs more itera-
tions to converge to diagonal form. Even then the calculated eigenvalues are
exactly same the of matrix A.

Example 17. To find eigenvalue of matrix by using Cholesky iterative method.

Let us consider square matrix of order n = 6 in long format.

% A is tridiagonal matrix

A1 =

Columns 1 through 4

0.19533323556977 0.01398283556730 0 0

0.01398283556730 0.11082581131561 -0.07202155712020 0

0 -0.07202155712020 0.16361942031202 0.20167753449254

0 0 0.20167753449254 2.14017667644203

0 0 0 3.69095244262304

0 0 0 0

65

Columns 5 through 6

0 0

0 0

0 0

3.69095244262304 0

10.74368296306688 -0.15972018150605

-0.15972018150605 0.00824155939965

Total iterations = 200

A1 =

Columns 1 through 4

12.11236890017097 0.00000000000000 0 0

0.00000000000000 0.83161400302255 -0.00000000000000 0

0 -0.00000000000000 0.20061461638438 0.00000316667893

0 0 0.00000316667893 0.17514140273163

0 0 0 0.00000000000000

0 0 0 0

Columns 5 through 6

0 0

0 0

0 0

0.00000000000000 0

0.04204003036315 -0.00000000000000

-0.00000000000000 0.00010071343329

ans =

[eig(A) diag(A1)]

0.00010071343329 0.00010071343329

0.04204003036315 0.04204003036315

0.17514140233796 0.17514140273163

0.20061461677805 0.20061461638438

0.83161400302255 0.83161400302255

12.11236890017097 12.11236890017097

66

Comments : This is an interesting example like previous one. After 200
iterations, which were fixed for this problem, the resulting matrix is not fully
diagonal. Element at positions (4, 3) and (3, 4) is (0.00000316667893), which
is s near to zero. It means that the matrix still needs more iterations to
converge to diagonal form. Thus the calculated eigenvalues are not same
like matrix A. Two calculated eigenvalues are different. The results for
these value are correct up to 9 digits only. We can calculate more accurate
eigenvalues by doing more iterations.

Example 18. To find eigenvalue of matrix by using Cholesky iterative method.

Let us consider matrix of order n = 8 in long format.

A1 =

Columns 1 through 4

0.01124719261622 -0.00104377027794 0 0

-0.00104377027794 0.23514859215081 0.03007700177251 0

0 0.03007700177251 0.46088278629551 -0.18483885526471

0 0 -0.18483885526471 0.69015252137979

0 0 0 0.35631014869781

0 0 0 0

0 0 0 0

0 0 0 0

Columns 5 through 8

0 0 0 0

0 0 0 0

0 0 0 0

0.35631014869781 0 0 0

0.84326532838711 -0.53447440386778 0 0

-0.53447440386778 3.85513262884968 5.40691823731328 0

0 5.40691823731328 12.81628614402076 -0.69061828871510

0 0 -0.69061828871510 0.13260218509142

Total iterations =200

67

A1 =

Columns 1 through 4

15.38700744365881 -0.00000000000000 0 0

-0.00000000000000 1.69362540608433 0.00000000000002 0

0 0.00000000000002 0.95809189912697 -0.00000000000000

0 0 -0.00000000000000 0.49903353284934

0 0 0 0.00000000000000

0 0 0 0

0 0 0 0

0 0 0 0

Columns 5 through 8

0 0 0 0

0 0 0 0

0 0 0 0

0.00000000000000 0 0 0

0.25640091859294 -0.00001175785708 0 0

-0.00001175785708 0.22221989855918 0.00000000000000 0

0 0.00000000000000 0.01709601436317 -0.00000000003717

0 0 -0.00000000003717 0.01124226555658

[eig(A) diag(A1)]

0.01124226555658 0.01124226555658

0.01709601436317 0.01709601436317

0.22221989451462 0.22221989855918

0.25640092263750 0.25640091859294

0.49903353284934 0.49903353284934

0.95809189912697 0.95809189912697

1.69362540608433 1.69362540608433

15.38700744365880 15.38700744365881

Comments : This is almost same case as we discussed in previous example.
The resulting matrix is not fully diagonal. Thus the calculated eigenvalues
are not same like matrix A. There is a difference in three calculated and exact
eigenvalues. It means the matrix still needs more iterations to converge to
diagonal form.

68

4.2 Jacobi’s Method for computing eigenval-

ues and eigenvectors

Consider the eigenvalue problem

AX = λX

Start with the real symmetric matrix A. We want to construct the sequence
of the orthogonal matrices J1, J2, ..., Jn as follow:

D0 = A

Dk = J ′kDk−1Jk

for k=1,2,... Now we proceed to construct the sequence Jk, so that

limk→∞Dk = D = diag(λ1, λ2, ...λn)

The stoping criteria is when off-diagonal elements are sufficiently near to zero
then halt further computation. In result we have

Dn ≈ D.

The result produces

Dn = J ′nJ
′
n−1...J

′
1AJ1J2...Jn−1Jn (4.1)

where
J = J1.J2...Jn−1.Jn

then
J−1AJ = Dk

⇒ AJ = JDk ≈ Jdaig(λ1, λ2, ...λn) (4.2)

Let the columns of R be denoted by the vectors X1, X2, ..., Xn then J can
be expressed as a row vector of column vectors :

J = [X1 X2....Xn]

Finally we get the relation

[AX1 AX2....AXn] ≈ [λ1X1 λ2X2....λnXn]

this is relation between eigen vectors of J and corresponding eigenvalues λk.

69

Working procedure

Each step in Jacobi’s method will accomplish the limited objective of reduc-
ing the two off-diagonal elements dij and dji to zero. At the same time there
is reduction in sum squares of off-diagonal elements. For this first select row
i and column j for which aij 6= 0. In second step it calculates the quantities
c, s and θ. Then each time the algorithm set D = D1 and then iterates the
same procedure.
Let J1 denote the first orthogonal matrix used. Suppose that;

D1 = J ′1AJ1

reduces the elements dij and dji to zero, where J1 is of the form

J1 =


1

c s
1

1
−s c

1


Because sum-squares of off-diagonal elements is reducing, the sequence

Dj converges to diagonal matrix D. The magnitude of off-diagonal elements
are compared to ε, the pre-assigned tolerance. When all off-diagonal ele-
ments met this criteria we get diagonal matrix D. Diagonal entries of D
are eigenvalues of initial matrix A. At end these calculated eigenvalues are
compared to eigenvalues of matrix A computed by computer.

70

4.2.1 Here are Matlab codes for Jacobi’s Method

% method to calculate eigenvalues by jac_sweep iterations

format(’long’); % set digit precision

n=input (’enter value of n: ’); % read matrix dimensions

A=randn(n); % generate a random matrix of the size just read

A=A*A’; % calculate symmetric matrix

T=A; % T is a temporary matrix for the coming calculations

disp(’The input array A is:’);

disp(A); % display the original matrix

for i=1:100 %max Iteration to go through

L1=jac_sweep(T); % use jac_sweep to zeros off-diagonal elements

disp(’iteration: ’)

disp(i)

if isDiag_ssq(L1,n)==0 % determine whether the resulting matrix is diagonal

T=L1; % continue if it is not

continue

else

break

end

end

% calculate, sort and display the eigen values of our matrices to compare

% the results

sort([eig(A) diag(L1)])

’Total iterations ’, i

% function to calculate sum of square roots of off diagonal elements

% calls isDiag to determine whether a matrix is diagonal then calculates

function d = isDiag(A,s)

d = 1;

eps1=1e-12;

ssq = 0;

for r=1:s-1

for c=r+1:s

ssq = ssq + A(r,c)^2; % this is where it adds the values of square roots

end

end

71

% calculate and display the value of the sum of square roots

’Sqrt of ssq’ sqrt(ssq) if sqrt(ssq) > eps1

d = 0;

end

Example 19. Use Matlab codes for Jacobi iterations to transform the sym-
metric matrices of order 10× 10 to diagonal form.

The input array A is: % after transforming into symmetric form

Columns 1 through 4

4.92710426689493 -0.73123145016046 1.24525579943457 -5.32406359697361

-0.73123145016046 6.81880151866267 -0.54293841246707 0.66062742639089

1.24525579943457 -0.54293841246707 5.54186551184006 -2.66189154132271

-5.32406359697361 0.66062742639089 -2.66189154132271 17.75552652820081

-0.03843179645927 4.23079660267863 2.58878779079049 -1.79535706393124

-1.10406936493870 -2.96376960993967 2.25157227754740 0.80569204415550

-1.81285344851994 -2.76930612417051 0.66097134550134 5.66664043634968

2.45397888885462 -0.25877131970736 -2.24300075322014 -7.09568605948711

4.13699337840298 1.13733527372539 2.37494300368035 -6.68966953927205

0.06921060048142 -2.06507713955600 1.74873663660925 -2.00250153441941

Columns 5 through 8

-0.03843179645927 -1.10406936493870 -1.81285344851994 2.45397888885462

4.23079660267863 -2.96376960993967 -2.76930612417051 -0.25877131970736

2.58878779079049 2.25157227754740 0.66097134550134 -2.24300075322014

-1.79535706393124 0.80569204415550 5.66664043634968 -7.09568605948711

7.07523415313795 -1.56030631327115 -0.52038650945168 -0.39024019047969

-1.56030631327115 5.12406014637303 2.92621808184685 -2.32052161823381

-0.52038650945168 2.92621808184685 7.90963836595350 -2.34603603907912

-0.39024019047969 -2.32052161823381 -2.34603603907912 7.16639485430050

0.09797946434719 -1.26953768511102 -3.55902374495130 3.53024415350407

-0.00292755601975 1.40772697327753 0.19640995960539 -0.44726870751898

Columns 9 through 10

4.13699337840298 0.06921060048142

1.13733527372539 -2.06507713955600

72

2.37494300368035 1.74873663660925

-6.68966953927205 -2.00250153441941

0.09797946434719 -0.00292755601975

-1.26953768511102 1.40772697327753

-3.55902374495130 0.19640995960539

3.53024415350407 -0.44726870751898

10.83716546981608 -0.95712002016701

-0.95712002016701 1.74937502893952

Iteration: 1

Sqrt of ssq = 8.9427e+000

Iteration: 2

Sqrt of ssq = 1.9727e+000

Iteration: 3

Sqrt of ssq = 3.0269e-001

iteration: 4

Sqrt of ssq = 1.1834e-002

iteration: 5

Sqrt of ssq = 2.6852e-005

iteration: 6

Sqrt of ssq = 8.1106e-012

iteration: 7

Sqrt of ssq = 2.2204e-016

[eig(A) diag(L1)]

3.3838e-002 3.3838e-002

3.6222e-001 3.6222e-001

9.5270e-001 9.5270e-001

1.5914e+000 1.5914e+000

3.0482e+000 3.0482e+000

5.1223e+000 5.1223e+000

7.8689e+000 7.8689e+000

1.1215e+001 1.1215e+001

1.4008e+001 1.4008e+001

3.0703e+001 3.0703e+001

73

Comments: We get results in 7 iterations . Eigenvalues are exactly same. In
first iteration Sqrt of ssq = 8.9427e+ 000 which is reduced to Sqrt of ssq =
1.9727e + 000 in second run. This shows that Jacobi method is converging
quadratically.

Example 20. Use Matlab codes for Jacobi iterations to transform the sym-
metric matrices of order 20× 20 to diagonal form.

The input array A is:

Columns 1 through 4

18.33274113269596 8.69063532557255 -8.05080742697037 -0.96202282467986

8.69063532557255 19.46968766495169 -5.39095457475524 -0.04317196901132

-8.05080742697037 -5.39095457475524 14.43579663929603 1.93855268715616

-0.96202282467986 -0.04317196901132 1.93855268715616 19.82384132725523

4.80923555559124 3.71909912376392 -2.05369996319796 -6.29614390474461

8.44585029786143 2.15758931270338 -0.41792313542981 1.11738001300005

4.04219454083908 4.15139307014492 3.80635394253985 1.99624826423733

4.50525189729215 4.92162864528229 -4.02871588487598 1.00598889768494

-2.80917027670684 1.10436192374786 0.57792662993850 3.29202931182155

4.49524067860350 -0.75430208080295 -4.24950641271152 -3.78643567441964

-3.52103855354539 3.57750484830174 2.71752440158303 6.15786515520179

-7.87996008113431 2.15109723190010 2.90011089067157 3.54609009021479

4.80002265904681 -1.59105805368087 1.29356820990489 7.38470429023030

1.66717040639530 1.14545917632083 -4.36092392862978 -1.91712736186076

-3.80725360173308 7.05813185145915 6.02825993049226 3.20436113613495

1.72471100875360 3.61060094661089 -3.33614466357950 4.75588750380413

6.81572444425526 4.91771989320600 -5.15723268330519 -6.22541483185501

-1.79094569115684 2.21104150087101 1.32024529078390 5.91887377065978

7.19510238432702 5.88149749387292 -0.06753554887202 -1.18611708282151

-3.01670335976680 -5.40505279830859 -3.46917850882857 0.01551779178417

Columns 5 through 8

4.80923555559124 8.44585029786143 4.04219454083908 4.50525189729215

3.71909912376392 2.15758931270338 4.15139307014492 4.92162864528229

-2.05369996319796 -0.41792313542981 3.80635394253985 -4.02871588487598

-6.29614390474461 1.11738001300005 1.99624826423733 1.00598889768494

14.36099946332437 3.73046883821772 1.10844810537455 -5.33900390221854

3.73046883821772 24.38276377925606 5.65799421780889 -4.58252434307211

74

1.10844810537455 5.65799421780889 13.66103168184937 1.97999449452723

-5.33900390221854 -4.58252434307211 1.97999449452723 15.00822013660078

-0.05521626329838 1.85219726366423 -7.29662813475638 -1.85849141290655

-2.43082953900282 3.05065135460699 -0.93762358626709 -3.21364576272254

-2.40268468385147 -3.10783986924079 6.36199769209926 -2.20192162924585

-1.89673904423745 -0.85346280807182 6.91710281913630 1.89641964906194

-2.07065108483332 7.49997231296922 13.00254144974241 1.58294777412672

7.55480336539587 -1.32008757986820 -4.69947306080261 -3.92886713309874

-0.00596942006038 -2.96394598497866 3.06920670625717 -1.50690283174512

-4.25217716278094 -4.10668478685671 -0.82559016994131 9.70423242893581

0.96514731283814 0.97727344005285 -8.21499784888196 -1.70909340333592

-3.83184464730678 6.55765762103624 -0.38964057450520 1.21426787642390

1.76472662201430 10.64116320585426 3.93486714955786 -1.87052606954003

-2.86087258885245 1.79706122754855 -3.13443959529720 1.59561888208891

Columns 9 through 12

-2.80917027670684 4.49524067860350 -3.52103855354539 -7.87996008113431

1.10436192374786 -0.75430208080295 3.57750484830174 2.15109723190010

0.57792662993850 -4.24950641271152 2.71752440158303 2.90011089067157

3.29202931182155 -3.78643567441964 6.15786515520179 3.54609009021479

-0.05521626329838 -2.43082953900282 -2.40268468385147 -1.89673904423745

1.85219726366423 3.05065135460699 -3.10783986924079 -0.85346280807182

-7.29662813475638 -0.93762358626709 6.36199769209926 6.91710281913630

-1.85849141290655 -3.21364576272254 -2.20192162924585 1.89641964906194

15.31908761456532 -2.44512995368064 -1.93501853259340 -3.05911080290154

-2.44512995368064 19.44708718410749 -2.40514484831925 -6.37098563710744

-1.93501853259340 -2.40514484831925 19.30028747813050 9.27582299968460

-3.05911080290154 -6.37098563710744 9.27582299968460 20.72087175916059

-8.83303092955187 -0.43885426723912 5.07190293805150 3.92800372721324

1.18154455303509 0.94372571020949 -4.16622801226983 -1.26616230824007

0.32395599527496 1.24869106166008 5.04902937673208 9.81059790448825

4.32860300715391 -1.30113353291271 2.43705352037408 -2.00333197999432

2.91309522604263 5.05344205364850 -5.22306371835993 -10.38425712770274

3.20029605264920 1.03281224227556 -1.74284279027901 5.09571414430093

-1.29984264363845 2.10106992889620 -3.88282213813449 -4.57936806239257

5.35027212388616 0.80284270135759 -3.63448710105253 0.34165786764706

Columns 13 through 16

4.80002265904681 1.66717040639530 -3.80725360173308 1.72471100875360

75

-1.59105805368087 1.14545917632083 7.05813185145915 3.61060094661089

1.29356820990489 -4.36092392862978 6.02825993049226 -3.33614466357950

7.38470429023030 -1.91712736186076 3.20436113613495 4.75588750380413

-2.07065108483332 7.55480336539587 -0.00596942006038 -4.25217716278094

7.49997231296922 -1.32008757986820 -2.96394598497866 -4.10668478685671

13.00254144974241 -4.69947306080261 3.06920670625717 -0.82559016994131

1.58294777412672 -3.92886713309874 -1.50690283174512 9.70423242893581

-8.83303092955187 1.18154455303509 0.32395599527496 4.32860300715391

-0.43885426723912 0.94372571020949 1.24869106166008 -1.30113353291271

5.07190293805150 -4.16622801226983 5.04902937673208 2.43705352037408

3.92800372721324 -1.26616230824007 9.81059790448825 -2.00333197999432

24.12522802600309 -3.41608222510974 -0.50117706718829 2.76400060312202

-3.41608222510974 19.83312260680773 5.01613937346091 -3.63929156555895

-0.50117706718829 5.01613937346091 21.07261881401281 -1.66159180249801

2.76400060312202 -3.63929156555895 -1.66159180249801 17.04227540736978

-6.95779821614710 1.87825028566875 -3.96396867475761 1.09177466684760

-0.16965881003028 -3.29430437293934 5.12084378782793 -0.89842450071235

6.40320120125264 1.94119135446451 2.74734505765918 -4.24963905501730

0.12756734106068 -2.83122105320255 -4.77783909060213 5.02032919340751

Columns 17 through 20

6.81572444425526 -1.79094569115684 7.19510238432702 -3.01670335976680

4.91771989320600 2.21104150087101 5.88149749387292 -5.40505279830859

-5.15723268330519 1.32024529078390 -0.06753554887202 -3.46917850882857

-6.22541483185501 5.91887377065978 -1.18611708282151 0.01551779178417

0.96514731283814 -3.83184464730678 1.76472662201430 -2.86087258885245

0.97727344005285 6.55765762103624 10.64116320585426 1.79706122754855

-8.21499784888196 -0.38964057450520 3.93486714955786 -3.13443959529720

-1.70909340333592 1.21426787642390 -1.87052606954003 1.59561888208891

2.91309522604263 3.20029605264920 -1.29984264363845 5.35027212388616

5.05344205364850 1.03281224227556 2.10106992889620 0.80284270135759

-5.22306371835993 -1.74284279027901 -3.88282213813449 -3.63448710105253

-10.38425712770274 5.09571414430093 -4.57936806239257 0.34165786764706

-6.95779821614710 -0.16965881003028 6.40320120125264 0.12756734106068

1.87825028566875 -3.29430437293934 1.94119135446451 -2.83122105320255

-3.96396867475761 5.12084378782793 2.74734505765918 -4.77783909060213

1.09177466684760 -0.89842450071235 -4.24963905501730 5.02032919340751

29.82838754136444 -1.26458282650169 2.20104361650244 -4.42658610991927

-1.26458282650169 17.84150006836002 3.35641843894882 -3.22307705469232

2.20104361650244 3.35641843894882 16.62589584989890 -3.80128969490291

76

-4.42658610991927 -3.22307705469232 -3.80128969490291 13.69197701790477

Iteration: 1

Sqrt of ssq = 3.9555e+001

Iteration: 2

Sqrt of ssq = 1.3845e+001

Iteration:3

Sqrt of ssq = 3.3652e+000

Iteration:4

Sqrt of ssq = 7.3924e-001

Iteration:5

Sqrt of ssq = 1.5517e-001

Iteration: 6

Sqrt of ssq = 5.1515e-003

Iteration: 7

Sqrt of ssq = 9.2725e-006

Iteration: 8

Sqrt of ssq = 2.0652e-015

[eig(A) eig(diag L1)]

5.9679e-004 5.9679e-004

5.2900e-002 5.2900e-002

3.5223e-001 3.5223e-001

1.0328e+000 1.0328e+000

2.6762e+000 2.6762e+000

2.9316e+000 2.9316e+000

5.1808e+000 5.1808e+000

6.5284e+000 6.5284e+000

8.3462e+000 8.3462e+000

1.2623e+001 1.2623e+001

1.4645e+001 1.4645e+001

1.7913e+001 1.7913e+001

2.0490e+001 2.0490e+001

77

2.1185e+001 2.1185e+001

2.5473e+001 2.5473e+001

3.2831e+001 3.2831e+001

3.7543e+001 3.7543e+001

4.2013e+001 4.2013e+001

5.5268e+001 5.5268e+001

6.7238e+001 6.7238e+001

Comments: By looking into all 8 iterations we notice that sum of squares
of offdiagonal entries is reducing very fast. In each run they are converging
quadratically.

Example 21. Use Matlab codes for Jacobi’s method to find eigenvalues of a
symmetric matrix of order 100× 100 by converting into to diagonal form.

Here we present only final results to for simplicity.

Iteration:1

Sqrt of ssq = 4.8436e+002

Iteration: 2

Sqrt of ssq = 1.7927e+002

Iteration:3

Sqrt of ssq = 5.2088e+001

Iteration:4

Sqrt of ssq = 1.5027e+001

Iteration: 5

Sqrt of ssq = 3.7894e+000

Iteration: 6

Sqrt of ssq = 5.9729e-001

iteration: 7

Sqrt of ssq = 6.3850e-002

Iteration: 8

Sqrt of ssq =6.2185e-004

78

Iteration:9

Sqrt of ssq = 9.0480e-007

Iteration: 10

Sqrt of ssq = 1.0080e-013

[eig(A) eig(diag A)]

1.0692e-002 1.0692e-002

7.1967e-002 7.1967e-002

9.4433e-002 9.4433e-002

2.7659e-001 2.7659e-001

3.9153e-001 3.9153e-001

6.4258e-001 6.4258e-001

9.2235e-001 9.2235e-001

1.0307e+000 1.0307e+000

1.7843e+000 1.7843e+000

2.1695e+000 2.1695e+000

2.5173e+000 2.5173e+000

2.8806e+000 2.8806e+000

3.4883e+000 3.4883e+000

3.6898e+000 3.6898e+000

4.9216e+000 4.9216e+000

5.3648e+000 5.3648e+000

6.4946e+000 6.4946e+000

6.8548e+000 6.8548e+000

7.2262e+000 7.2262e+000

8.9053e+000 8.9053e+000

1.0184e+001 1.0184e+001

1.0600e+001 1.0600e+001

1.1214e+001 1.1214e+001

1.3334e+001 1.3334e+001

1.5464e+001 1.5464e+001

1.6300e+001 1.6300e+001

1.7052e+001 1.7052e+001

1.9204e+001 1.9204e+001

2.0544e+001 2.0544e+001

2.2796e+001 2.2796e+001

2.3526e+001 2.3526e+001

2.4927e+001 2.4927e+001

79

2.6809e+001 2.6809e+001

2.9533e+001 2.9533e+001

3.0385e+001 3.0385e+001

3.0883e+001 3.0883e+001

3.2936e+001 3.2936e+001

3.3861e+001 3.3861e+001

3.5061e+001 3.5061e+001

3.7552e+001 3.7552e+001

4.0822e+001 4.0822e+001

4.1795e+001 4.1795e+001

4.2036e+001 4.2036e+001

4.4028e+001 4.4028e+001

4.8187e+001 4.8187e+001

5.1844e+001 5.1844e+001

5.5792e+001 5.5792e+001

5.9542e+001 5.9542e+001

6.1548e+001 6.1548e+001

6.2222e+001 6.2222e+001

6.4556e+001 6.4556e+001

6.9297e+001 6.9297e+001

7.1777e+001 7.1777e+001

7.4904e+001 7.4904e+001

7.9578e+001 7.9578e+001

8.1615e+001 8.1615e+001

8.2583e+001 8.2583e+001

8.7462e+001 8.7462e+001

9.1724e+001 9.1724e+001

9.3655e+001 9.3655e+001

9.6224e+001 9.6224e+001

9.8530e+001 9.8530e+001

1.0197e+002 1.0197e+002

1.0879e+002 1.0879e+002

1.0983e+002 1.0983e+002

1.1618e+002 1.1618e+002

1.2290e+002 1.2290e+002

1.2651e+002 1.2651e+002

1.2997e+002 1.2997e+002

1.3650e+002 1.3650e+002

1.3939e+002 1.3939e+002

1.4081e+002 1.4081e+002

1.4820e+002 1.4820e+002

80

1.5583e+002 1.5583e+002

1.6110e+002 1.6110e+002

1.6411e+002 1.6411e+002

1.7380e+002 1.7380e+002

1.7706e+002 1.7706e+002

1.8696e+002 1.8696e+002

1.9173e+002 1.9173e+002

1.9468e+002 1.9468e+002

2.0102e+002 2.0102e+002

2.0810e+002 2.0810e+002

2.1546e+002 2.1546e+002

2.2183e+002 2.2183e+002

2.3335e+002 2.3335e+002

2.4015e+002 2.4015e+002

2.4397e+002 2.4397e+002

2.5792e+002 2.5792e+002

2.6546e+002 2.6546e+002

2.6987e+002 2.6987e+002

2.7875e+002 2.7875e+002

2.8824e+002 2.8824e+002

2.8883e+002 2.8883e+002

3.0179e+002 3.0179e+002

3.0708e+002 3.0708e+002

3.2280e+002 3.2280e+002

3.4641e+002 3.4641e+002

3.5484e+002 3.5484e+002

3.6748e+002 3.6748e+002

Comments: This a nice example in which a matrix of order 100 × 100
is diagonalized in just 10 iterations. Final results are very accurate. Thus
the results are of Jacobi’s method to find eigenvalues are more accurate and
reliable.

81

4.3 Comparison of Cholesky Iterative Method

and Jacobi’s Method

Both methods are convergent. Cholesky method converges linearly while
Jacobi method converges quadratically. Here we present an example to see
the rate of convergent of both methods by applying on same matrix and will
see the number of iterations and final results for eigenvalues.

Example 22. Find eigenvalues of any square matrix A by using both Jacobi
and Cholesky Methods and check number of iterations for each method.

% codes for jac_chol_iterat_compare.m

n=input (’enter value of n: ’);

A=rand(n);

A=A*A’;

% A is symmetric

T=A;

disp(’The input array A is:’)

disp(A)

for i=1:100 %max iterations

J=jac_sweep(T); % Jacobi rotations

disp(’iteration: ’)

disp(i)

disp(’J after this iteration is:’)

disp(J)

if isDiag(J,n)==0 % checking off-diagonal entries each time

T=J; % diagonal matrix

continue

else

break

end

end

% now apply chol_tri to the same matrix to compare the results

A=hess(A); % make A tridiagonal matrix

[T,p]=chol(A); % permutation matrix

if p>0

82

’Not a positive definite Matrix’

return

end

T=A;

for i=1:100 %max Iteration

L1=chol(T);

A1=L1*L1’; % set each time

disp(’iteration: ’)

disp(i)

disp(’A1 after this iteration is:’)

disp(A1)

if isDiag(A1,n)==0

T=A1; % Diagonal matrix

continue

else

break

end

end

disp(’Jacobi:’) % final results

disp(J)

disp(’Cholesky’)

disp(A1)

disp(’ eigen(A) eig using % compare eigenvalues

Jacobi eig using Cholesky’)

disp(sort([eig(A) diag(J) diag(A1)]))

Example 23. Comparison Results for a randam matrix of order (5× 5).

enter value of n: 5

The input array A is: % A is symmetric

2.0869 1.6316 1.5179 1.9186 1.3259

1.6316 2.2654 1.3120 1.6595 1.5064

1.5179 1.3120 1.7033 1.4225 0.9348

1.9186 1.6595 1.4225 2.2551 1.8170

83

1.3259 1.5064 0.9348 1.8170 1.6679

iteration: 1

J after this iteration is:

1.7158 -0.1753 0.3326 -0.1829 -2.8171

-0.1753 0.6410 0.0633 -0.0613 -0.2495

0.3326 0.0633 0.6124 -0.0025 -0.1216

-0.1829 -0.0613 -0.0025 0.1682 0.0000

-2.8171 -0.2495 -0.1216 0.0000 6.8412

iteration: 7 % after 7 iterations diagonal J

J after this iteration is:

0.3024 -0.0000 0.0000 -0.0000 -0.0000

-0.0000 0.6830 -0.0000 0.0000 -0.0000

0.0000 -0.0000 0.8940 -0.0000 -0.0000

-0.0000 0.0000 -0.0000 8.0991 -0.0000

-0.0000 -0.0000 -0.0000 -0.0000 0.0001

% Results of Cholesky iterative method

Iteration: 1

A1 after this iteration is:

0.6610 0.1071 0 0 0

0.1071 0.3983 -0.2028 0 0

0 -0.2028 2.3323 2.9519 0

0 0 2.9519 6.5866 -0.0243

0 0 0 -0.0243 0.0004

%Results after 71 iterations.

Iteration: 71

A1 after this iteration is:

8.0991 0.0000 0 0 0

0.0000 0.8940 -0.0001 0 0

0 -0.0001 0.6830 0.0000 0

84

0 0 0.0000 0.3024 -0.0000

0 0 0 -0.0000 0.0001

eigen(A) eig using Jacobi eig using Cholesky

0.0001 0.0001 0.0001

0.3024 0.3024 0.3024

0.6830 0.6830 0.6830

0.8940 0.8940 0.8940

8.0991 8.0991 8.0991

Comments:We tested both methods on same random matrix of size
(5 × 5). Maximum number of iterations are fixed at 100. Jacobi’s method
converges very fast and after 7 iterations diagonal matrix J is obtained.
Where as Cholesky method needed 71 iterations to converge diagonal form.
Eigenvalues obtained are exactly same by using Cholesky iterative method
and Jacobi’s method. In a few iterations Jacobi showed better results than
Cholesky. Jacobi’s method uses a lot more flops per iteration so it is not
surprising that it converges in fewer iterations. Finally we come to conclusion
that Jacobi’s method is our better choice to compute eigenvalues of a real
symmetric matrix.

85

Chapter 5

Applying Methods to compute
weights and nodes of Gaussian
quadrature

5.1 Introduction

As already discussed in chapter 1 that Gaussian quadrature is more accu-
rate method for numerical integration. It calculated nodes and weights and
then use these values for computing area under the integral, which is tedious.
Using three-term recurrence relation we find connection between nodes and
weights with eigenvalues and eigenvectors. This have transformed the nu-
merical integration problem into eigenvalue problem.
In previous discussion we concluded with conclusion that Jacobi method is
better choice for computation of eigenvalues. Here we are presenting Mat-
lab codes for Jacobi rotation method and Gaussian quadrature method for
computing nodes and weights. At the end there is a comparison of calcu-
lated nodes and weights by this algorithm and standard nodes and weights
available online.

5.2 Computing Nodes and Weights by using

Jacobi-Gaussian Matlab codes

Problem: Let us consider definite integral

I =

∫ 1

0

exp(x)dx

86

Its analytic value is 1.71828182845905.
By using relation of nodes and weights as discussed in chapter 1, we calculate
λ-the eigenvalue and V - the eigen vector. These values gave nodes and
weights very easily.
Here are Matlab codes for this algorithm.

format(’long’);

n=input (’enter value of n: ’); % the size of tridiagonal matrix T

alpha=zeros(1,n); % entries of matrix T

beta=zeros(1,n);

for i=1:n

beta(i)=1/2*(1-(2*i)^(-2))^-.5; % calculating diagonal entry beta

end

t=zeros(n);

for i=1:n-1

t(i,i+1)=beta(i); % to calculate matrix T

t(i+1,i)=beta(i);

end

lambda=eig(t); % calculating eigenvalues which are also node values

[V D]=eig(t); % calculating eigenvectors

for i=1:n

w(i)=2*((V(1,i)^2)); % calculating weights from eigenvectors

end

These calculated value are presented in following table.

87

5.3 Comparison of Calculated and Standard

Nodes of Gaussian quadrature

Comparison of Results
n-values Calculated Nodes Standard Nodes

2 ± 0.57735026918963 ± 0.5773502691896257645091488
4 ±0.33998104358486 ±0.3399810435848562648026658

± 0.86113631159405 ±0.8611363115940525752239465
6 ± 0.23861918608320 ± 0.2386191860831969086305017

±0.66120938646626 ± 0.6612093864662645136613996
±0.93246951420315 ±0.9324695142031520278123016

8 ± 0.18343464249565 ±0.1834346424956498049394761
± 0.52553240991633 ±0.5255324099163289858177390
±0.79666647741363 ±0.7966664774136267395915539
± 0.96028985649754 ±0.9602898564975362316835609

10 ± 0.14887433898163 ± 0.1488743389816312108848260
± 0.43339539412925 ± 0.4333953941292471907992659
± 0.67940956829902 ± 0.6794095682990244062343274
± 0.86506336668898 ± 0.8650633666889845107320967
± 0.97390652851717 ± 0.9739065285171717200779640

12 ± 0.12523340851147 ± 0.1252334085114689154724414
±0.36783149899818 ± 0.3678314989981801937526915
± 0.58731795428662 ± 0.5873179542866174472967024
±0.76990267419430 ± 0.7699026741943046870368938
±0.90411725637047 ± 0.9041172563704748566784659
±0.98156063424672 ± 0.9815606342467192506905491

14 ± 0.10805494870734 ± 0.1080549487073436620662447
± 0.31911236892789 ± 0.3191123689278897604356718
±0.51524863635815 ± 0.5152486363581540919652907
±0.68729290481169 ± 0.6872929048116854701480198
±0.82720131506977 ±0.8272013150697649931897947
± 0.92843488366357 ± 0.9284348836635735173363911
±0.98628380869681 ± 0.9862838086968123388415973

16 ± 0.09501250983764 ± 0.0950125098376374401853193
±0.28160355077926 ± 0.2816035507792589132304605
±0.45801677765723 ± 0.4580167776572273863424194
±0.61787624440264 ± 0.6178762444026437484466718
±0.75540440835500 ± 0.7554044083550030338951012
±0.86563120238783 ± 0.8656312023878317438804679
±0.94457502307323 ± 0.9445750230732325760779884
±0.98940093499165 ± 0.9894009349916499325961542

88

Comparison of Results
n-values Calculated Nodes Standard Nodes

18 ±0.08477501304174 ± 0.0847750130417353012422619
±0.25188622569151 ± 0.2518862256915055095889729
±0.41175116146284 ± 0.4117511614628426460359318
±0.55977083107395 ± 0.5597708310739475346078715
±0.69168704306035 ± 0.6916870430603532078748911
±0.80370495897252 ± 0.8037049589725231156824175
± 0.89260246649756 ± 0.8926024664975557392060606
±0.95582394957140 ± 0.9558239495713977551811959
± 0.99156516842093 ± 0.9915651684209309467300160

20 ± 0.07652652113350 ± 0.0765265211334973337546404
±0.22778585114164 ± 0.2277858511416450780804962
±0.37370608871542 ±0.3737060887154195606725482
±0.51086700195083 ± 0.5108670019508270980043641
±0.63605368072652 ±0.6360536807265150254528367
±0.74633190646015 ±0.7463319064601507926143051
±0.83911697182222 ± 0.8391169718222188233945291
±0.91223442825133 ± 0.9122344282513259058677524
±0.96397192727791 ± 0.9639719272779137912676661
±0.99312859918510 ± 0.9931285991850949247861224

64 ±0.02435029266342 ± 0.0243502926634244325089558
±0.07299312178780 ± 0.0729931217877990394495429
±0.12146281929612 ± 0.1214628192961205544703765
±0.16964442042399 ± 0.1696444204239928180373136
±0.21742364374001 ± 0.2174236437400070841496487
±0.26468716220877 ± 0.2646871622087674163739642
±0.31132287199021 ± 0.3113228719902109561575127
±0.35722015833767 ± 0.3572201583376681159504426
±0.40227015796399 ± 0.4022701579639916036957668
±0.44636601725346 ± 0.4463660172534640879849477
±0.48940314570705 ± 0.4894031457070529574785263
±0.53127946401989 ± 0.5312794640198945456580139
±0.57189564620263 ± 0.5718956462026340342838781
±0.61115535517239 ± 0.6111553551723932502488530
±0.64896547125466 ± 0.6489654712546573398577612
±0.68523631305423 ± 0.6852363130542332425635584

89

Comparison of Results
n-values Calculated Nodes Standard Nodes

64 ±0.71988185017161 ± 0.7198818501716108268489402
±0.75281990726053 ± 0.7528199072605318966118638
±0.78397235894334 ± 0.7839723589433414076102205
±0.81326531512280 ± 0.8132653151227975597419233
±0.84062929625258 ± 0.8406292962525803627516915
±0.86599939815409 ± 0.8659993981540928197607834
±0.88931544599511 ± 0.8893154459951141058534040
±0.91052213707850 ± 0.9105221370785028057563807
±0.92956917213194 ± 0.9295691721319395758214902
±0.94641137485840 ± 0.9464113748584028160624815
±0.96100879965205 ± 0.9610087996520537189186141
±0.97332682778991 ± 0.9733268277899109637418535
±0.98333625388463 ± 0.9833362538846259569312993
±0.99101337147674 ± 0.9910133714767443207393824
±0.99634011677196 ± 0.9963401167719552793469245
±0.99930504173577 ± 0.9993050417357721394569056

100 ±0.01562898442154 ± 0.0156289844215430828722167
±0.04687168242159 ± 0.0468716824215916316149239
±0.07806858281344 ± 0.0780685828134366366948174
±0.10918920358006 ± 0.1091892035800611150034260
±0.14020313723611 ± 0.1402031372361139732075146
±0.17108008053860 ± 0.1710800805386032748875324
±0.20178986409574 ± 0.2017898640957359972360489
±0.23230248184497 ± 0.2323024818449739696495100
±0.26258812037150 ± 0.2625881203715034791689293
±0.29261718803847 ± 0.2926171880384719647375559
±0.32236034390053 ± 0.3223603439005291517224766
±0.35178852637242 ± 0.3517885263724217209723438
±0.38087298162463 ± 0.3808729816246299567633625
±0.40958529167830 ± 0.4095852916783015425288684
±0.43789740217203 ± 0.4378974021720315131089780
±0.46578164977336 ± 0.4657816497733580422492166
±0.49321078920819 ± 0.4932107892081909335693088
±0.52015801988176 ± 0.5201580198817630566468157
±0.54659701206509 ± 0.5465970120650941674679943
±0.57250193262138 ± 0.5725019326213811913168704
±0.59784747024718 ± 0.5978474702471787212648065
±0.62260886020371 ±0.6226088602037077716041908

90

Comparison of Results
n-values Calculated Nodes Standard Nodes

100 ±0.64676190851413 ± 0.6467619085141292798326303
±0.67028301560314 ± 0.6702830156031410158025870
±0.69314919935580 ± 0.6931491993558019659486479
±0.71533811757306 ± 0.7153381175730564464599671
±0.73682808980202 ± 0.7368280898020207055124277
±0.75759811851971 ± 0.7575981185197071760356680
±0.77762790964950 ±0.7776279096494954756275514
±0.79689789239031 ±0.7968978923903144763895729
±0.81538923833918 ±0.8153892383391762543939888
±0.83308387988840 ±0.8330838798884008235429158
±0.84996452787959 ±0.8499645278795912842933626
±0.86601468849716 ±0.8660146884971646234107400
±0.88121867938502 ±0.8812186793850184155733168
±0.89556164497073 ±0.8955616449707269866985210
±0.90902957098253 ±0.9090295709825296904671263
±0.92160929814533 ±0.9216092981453339526669513
±0.93328853504308 ±0.9332885350430795459243337
±0.94405587013626 ±0.9440558701362559779627747
±0.95390078292549 ±0.9539007829254917428493369
±0.96281365425582 ±0.9628136542558155272936593
±0.97078577576371 ±0.9707857757637063319308979
±0.97780935848692 ±0.9778093584869182885537811
±0.98387754070606 ±0.9838775407060570154961002
±0.98898439524299 ±0.9889843952429917480044187
±0.99312493703744 ±0.9931249370374434596520099
±0.99629513473313 ±0.9962951347331251491861317
±0.99849195063960 ±0.9984919506395958184001634
±0.99971372677344 ±0.9997137267734412336782285

Comments: The calculated results are displayed in maximum length of 14
digits as per capacity of Matlab program. The results are matched with stan-
dard values calculated by ”NumericalIntegrationPavelHoloborodko”and can
be found at ”www.holoborodko.com/pavel/”. Calculated values are correct
up to 14-digits length.

91

5.4 Comparison of Calculated and Standard

Weights of Gaussian quadrature

Calculated values
n-values Calculated Weights Standard Weights

2 1.00000000000000 1.00000000000000000000000

4 0.65214515486255 0.6521451548625461426269361
0.34785484513745 0.3478548451374538573730639

6 0.17132449237917 0.1713244923791703450402961
0.36076157304814 0.3607615730481386075698335
0.46791393457269 0.4679139345726910473898703

8 0.10122853629038 0.1012285362903762591525314
0.22238103445337 0.2223810344533744705443560
0.31370664587789 0.3137066458778872873379622
0.36268378337836 0.3626837833783619829651504

10 0.06667134430869 0.0666713443086881375935688
0.14945134915058 0.1494513491505805931457763
0.21908636251598 0.2190863625159820439955349
0.26926671931000 0.2692667193099963550912269
0.29552422471475 0.2955242247147528701738930

12 0.04717533638651 0.0471753363865118271946160
0.10693932599532 0.1069393259953184309602547
0.16007832854335 0.1600783285433462263346525
0.20316742672307 0.2031674267230659217490645
0.23349253653835 0.2334925365383548087608499
0.24914704581340 0.2491470458134027850005624

14 0.03511946033175 0.0351194603317518630318329
0.08015808715976 0.0801580871597602098056333
0.12151857068790 0.1215185706879031846894148
0.15720316715819 0.1572031671581935345696019
0.18553839747794 0.1855383974779378137417166
0.20519846372130 0.2051984637212956039659241
0.21526385346316 0.2152638534631577901958764

16 0.02715245941175 0.0271524594117540948517806
0.06225352393865 0.0622535239386478928628438
0.09515851168249 0.0951585116824927848099251
0.12462897125553 0.1246289712555338720524763
0.14959598881658 0.1495959888165767320815017
0.16915651939500 0.1691565193950025381893121
0.18260341504492 0.1826034150449235888667637
0.18945061045507 0.1894506104550684962853967

92

Calculated values
n-values Calculated Weights Standard Weights

18 0.02161601352648 0.0216160135264833103133427
0.04971454889497 0.0497145488949697964533349
0.07642573025489 0.0764257302548890565291297
0.10094204410629 0.1009420441062871655628140
0.12255520671148 0.1225552067114784601845191
0.14064291467065 0.1406429146706506512047313
0.15468467512627 0.1546846751262652449254180
0.16427648374583 0.1642764837458327229860538
0.16914238296314 0.1691423829631435918406565

20 0.01761400713915 0.0176140071391521183118620
0.04060142980039 0.0406014298003869413310400
0.06267204833411 0.0626720483341090635695065
0.08327674157670 0.0832767415767047487247581
0.10193011981724 0.1019301198172404350367501
0.11819453196152 0.1181945319615184173123774
0.13168863844918 0.1316886384491766268984945
0.14209610931838 0.1420961093183820513292983
0.14917298647260 0.1491729864726037467878287
0.15275338713072 0.1527533871307258506980843

64 0.00178328072170 0.0017832807216964329472961
0.00414703326056 0.0041470332605624676352875
0.00650445796898 0.0065044579689783628561174
0.00884675982636 0.0088467598263639477230309
0.01116813946013 0.0111681394601311288185905
0.01346304789672 0.0134630478967186425980608
0.01572603047602 0.0157260304760247193219660
0.01795171577570 0.0179517157756973430850453
0.02013482315353 0.0201348231535302093723403
0.02227017380838 0.0222701738083832541592983
0.02435270256871 0.0243527025687108733381776
0.02637746971505 0.0263774697150546586716918
0.02833967261426 0.0283396726142594832275113
0.03023465707240 0.0302346570724024788679741
0.03205792835485 0.0320579283548515535854675
0.03380516183714 0.0338051618371416093915655

93

Calculated values
n-values Calculated Weights Standard Weights

64 0.03547221325688 0.0354722132568823838106931
0.03705512854024 0.0370551285402400460404151
0.03855015317862 0.0385501531786156291289625
0.03995374113272 0.0399537411327203413866569
0.04126256324262 0.0412625632426235286101563
0.04247351512365 0.0424735151236535890073398
0.04358372452932 0.0435837245293234533768279
0.04459055816376 0.0445905581637565630601347
0.04549162792742 0.0454916279274181444797710
0.04628479658131 0.0462847965813144172959532
0.04696818281621 0.0469681828162100173253263
0.04754016571483 0.0475401657148303086622822
0.04799938859646 0.0479993885964583077281262
0.04834476223480 0.0483447622348029571697695
0.04857546744150 0.0485754674415034269347991
0.04869095700914 0.0486909570091397203833654

100 0.00073463449051 0.0007346344905056717304063
0.00170939265352 0.0017093926535181052395294
0.00268392537155 0.0026839253715534824194396
0.00365596120133 0.0036559612013263751823425
0.00462445006342 0.0046244500634221193510958
0.00558842800387 0.0055884280038655151572119
0.00654694845085 0.0065469484508453227641521
0.00749907325547 0.0074990732554647115788287
0.00844387146967 0.0084438714696689714026208
0.00938041965369 0.0093804196536944579514182
0.01030780257487 0.0103078025748689695857821
0.01122511402319 0.0112251140231859771172216
0.01213145766298 0.0121314576629794974077448
0.01302594789297 0.0130259478929715422855586
0.01390771070372 0.0139077107037187726879541
0.01477588452744 0.0147758845274413017688800
0.01562962107755 0.0156296210775460027239369
0.01646808617614 0.0164680861761452126431050
0.01729046056832 0.0172904605683235824393442
0.01809594072213 0.0180959407221281166643908
0.01888373961338 0.0188837396133749045529412
0.01965308749444 0.0196530874944353058653815

94

Calculated values
n-values Calculated Weights Standard Weights

100 0.02040323264621 0.0204032326462094327668389
0.02113344211253 0.0211334421125276415426723
0.02184300241625 0.0218430024162473863139537
0.02253122025634 0.0225312202563362727017970
0.02319742318525 0.0231974231852541216224889
0.02384096026597 0.0238409602659682059625604
0.02446120270796 0.0244612027079570527199750
0.02505754448158 0.0250575444815795897037642
0.02562940291021 0.0256294029102081160756420
0.02617621923955 0.0261762192395456763423087
0.02669745918357 0.0266974591835709626603847
0.02719261344658 0.0271926134465768801364916
0.02766119822079 0.0276611982207923882942042
0.02810275565910 0.0281027556591011733176483
0.02851685432240 0.0285168543223950979909368
0.02890308960113 0.0289030896011252031348762
0.02926108411064 0.0292610841106382766201190
0.02959048805991 0.0295904880599126425117545
0.02989097959333 0.0298909795933328309168368
0.03016226510517 0.0301622651051691449190687
0.03040407952645 0.0304040795264548200165079
0.03061618658398 0.0306161865839804484964594
0.03079837903115 0.0307983790311525904277139
0.03095047885049 0.0309504788504909882340635
0.03107233742757 0.0310723374275665165878102
0.03116383569621 0.0311638356962099067838183
0.03122488425485 0.0312248842548493577323765
0.03125542345386 0.0312554234538633569476425

Comments: The calculated weights are displayed in maximum length of
14 digits as per capacity of Matlab 7.1 program. The results are matched with
standard values obtained by ”NumericalIntegrationPavelHoloborodko” and
can be found at ”www.holoborodko.com/pavel/”. Calculated values are cor-
rect up to 14-digits length.

95

5.5 Conclusion and Future work

In this project we solved a problem of numerical integration by using nodes
and weights of Gaussian quadrature rule. This method is good but takes
lot a of time and labor. To overcome this drawback we used the connection
between nodes and weights of Gaussian quadratures with eigenvalue problem.
We notice that computing nodes and weights by Jacobi method is very easy
but as Matlab [7.1 version] read maximum 14 digits only so we could not get
exact answer although it is very close to exact.
For future work we will devise an implementation of our method using high
precision and will compare the basic method with the high precision method.
Also in future work we will use norms to analyse the accuracy of the numerical
methods we have used to compute eigenvalues and eigen vectors.

96

Bibliography

[1] James F. Epperson, An introduction to numerical methods and analysis,
John Wiley and Sons,Inc, 2002.

[2] David Bau III Lloyd N. Trefethen, Numerical linear algebra, Society for
Industrial and applied Mathematics, 1997.

[3] John H. Mathews and Kurtis K.Fink, Numerical methods using matlab,
Prentice-Hall Inc, 2004.

[4] Carl D. Meyer, Matrix analysis and applied linear algebra, Society for
Industrial and Applied Mathematics, 2000.

[5] Madhumangal Pal, Numerical analysis for scientists and engineers, Alpha
Science International Ltd, 2007.

97

