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ABSTRACT 

 

Supplementary feeding wild birds is a widespread phenomenon. Recently, non-

governmental organisations have recommended that the bird-feeding public should 

feed wild birds throughout the breeding season. Currently, such recommendations are 

not supported by a large body of research findings to suggest that food 

supplementation has benefits for breeding birds. To investigate this further I provided 

two commercially available wild bird foods (peanut cake and mealworms [Tenebrio 

molitor]) to Blue Tits (Cyanistes caeruleus) and Great Tits (Parus major) breeding in 

a woodland in Central England from 2007 to 2009. Supplementary feeding 

significantly advanced nest construction and decreased brood provisioning rates for 

both species. Supplemented Blue Tits significantly decreased daily incubation activity 

and increased both the proportion of extra-pair young and proportion of males per 

brood while supplemented Great Tits decreased incubation recess lengths. Analyses 

of data from the British Trust for Ornithology’s Nest Record Scheme suggested that 

probable widespread supplementary feeding of both Blue and Great Tits in urban 

habitats from 1962 to 2008 influenced breeding parameters across the study period 

but measuring food availability across wide spatial scales remains problematic. I 

discuss the implications of my results within an urban garden bird feeding context and 

provide suggestions for future research.  
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Chapter One 

GENERAL INTRODUCTION 

 

1.1. WILD BIRD FEEDING 

The anthropogenic provisioning of food to wild birds, often referred to as 

supplementary feeding, is a globally widespread phenomenon (reviewed in Tasker et 

al. 2000, Jones and Reynolds 2008). Supplementary feeding can be considered as the 

provision of food in addition to that naturally available and can occur either 

intentionally, where humans provide bird food in garden bird feeders (e.g. Jones and 

Reynolds 2008, Toms and Sterry 2008), or unintentionally through commercial 

activities such as discards from the fisheries industry (e.g. Tasker et al. 2000, Votier et 

al. 2004) and disposal of food waste at landfill sites (Greig et al. 1986, Belant et al. 

1993). For much of this thesis which addresses the impacts of food supplementation 

the focus will be on the intentional feeding of wild birds.  

 

1.1.1 History of wild bird feeding 

Providing food to wild birds dates back to the 7
th

 century AD when St Cuthbert 

established the first protected area for birds in the Farne Islands, Northumbria, where 

he inevitably provided supplementary food, particularly to Common Eiders 

(Somateria mollissima). Although there are other accounts of wild bird feeding, it was 

not until the 19
th

 century when feeding garden birds emerged as a more widespread 

activity. Two pioneers of wild bird feeding at the time were Baron von Berlepsch who 

attracted birds to his German estate by covering twigs with fat, and the British 

ornithologist John Freeman Dovaston who created the first ‘ornithotrophe’ which was 

a bird feeder attracting 23 bird species during the winter of 1825. By the 20
th

 century 
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bird feeding was becoming increasingly popular aided by the publications of ‘How to 

Attract and Protect Wild Birds’ by Hiesemann (1908) and ‘The Bird Table Book’ by 

Soper (1965) compelling the American company Droll Yankees Inc. to manufacture 

the first modern tubular garden bird feeder in 1969. Ever since, the popularity of bird 

feeding has escalated and is now a common phenomenon in the Western World 

(Jones and Reynolds 2008): the density of bird feeders in urban areas of the UK is 925 

feeders km
-2 

(Fuller et al. 2008) with approx. half of UK households feeding garden 

birds at some point during the year (Davies et al. 2009, Royal Society for the 

Protection of Birds 2010) and spending approx. £200-220 million annually (CJ 

Wildlife Ltd. pers. comm). In the US 53.4 million citizens spend approx. US$3.3 

billion annually on feeding garden birds (United States Department of the Interior, 

Fish and Wildlife Service 2008) while results from a survey in Australia highlighted 

that 37%  of participants fed wild birds (Rollinson et al. 2003). There are many 

reasons why wild bird feeding has become so prevalent but it is the pleasure of 

watching wild birds and their aesthetic value which is the driving force for the 

majority of the feeding public (Horvath and Roelans 1991). 

 

1.1.2. Seasonal patterns and types of foods provided to wild birds 

Traditionally, the provision of food to birds by humans occurred during the winter 

(Cowie and Hinsley 1988a, Jones and Reynolds 2008). However, organisations such 

as the Royal Society for the Protection of Birds (RSPB) and the British Trust for 

Ornithology (BTO) now advocate year-round feeding (Toms and Sterry 2008), 

suggesting that feeding throughout the year may be beneficial (BTO 2010, RSPB 

2010), especially during the breeding season when birds can experience nutrient and 

energy limitation (Martin 1987). 



Chapter One                                                                                                                                                          General introduction 

22 

 

Types of food being provided have also varied over the last few decades. For 

example, results from a survey of householders in suburban Cardiff in the 1980s 

indicated that bread was the most common food provided to birds (by approx. 90% of 

households), followed by kitchen scraps (approx. 55% of households) but only 

approx. 40% of households provided peanuts specifically purchased for wild bird 

feeding (Cowie and Hinsley 1988a). More recently, as a result of the assimilation of 

knowledge regarding the suitability of different food types and the supply of more 

detailed advice on what to feed birds from organisations such as the RSPB and BTO 

(BTO 2010, RSPB 2010), bird food companies such as CJ Wildlife Ltd. have 

developed and introduced a wide range of bird foods, including live foods as well as a 

plethora of seed and fat types (CJ Wildlife Ltd. 2010). While these food types may 

reflect those purchased across the UK for wild birds (CJ Wildlife Ltd. pers. comm.), 

by definition they only partially reflect the global provision of food types to birds. For 

example, a study of householders in Brisbane, Australia, highlighted that 58% of 

participants provided bread and 22% provided bird seed, but 32% provided mince 

meat, specifically to attract species including Australian Magpies (Gymnorhina 

tibicen) and 4% provided sugar water to attract lorikeets (Trichoglossus spp.) 

(Rollinson et al. 2003). Sugar water is also provided in the Americas where it is 

intended mainly for species of hummingbirds (Trochilidae spp.) and other nectar-

feeding birds (Fig. 1.1). 

 

1.1.3. Bird assemblages at wild bird feeders 

Garden bird feeders may provide an important source of food to many garden bird 

species (Chamberlain et al. 2005, Fuller et al. 2008, Robb et al. 2008a) and there is 

increasing evidence that the density of garden bird feeders strongly and positively  
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Figure 1.1. Saw-billed Hermit (Ramphodon naevius) at a hummingbird feeder 

containing sugar water in Brazil 2010 (Photo: J.A. Smith). 

 

influences avian abundance at a landscape scale (Chamberlain et al. 2005, Fuller et al. 

2008, Fuller et al. In Press). For example, garden bird feeders predict 57% and 26% of 

the variation in the abundance of House Sparrows (Passer domesticus) and Common 

Starlings (Sturnus vulgaris), respectively (Fuller et al. In Press). In the UK approx. 80 

common garden bird species are known to utilise bird feeders (Glue 2006, CJ Wildlife 

Ltd. 2010) with the most common including European Robins (Erithacus rubecula), 

Common Blackbirds (Turdus merula) and Blue Tits (Cyanistes caeruleus) (Glue 

2006, Chamberlain et al. 2005) (Fig. 1.2). Other species including granivorous finches 

such as European Greenfinches (Carduelis chloris) and Common Chaffinches 

(Fringilla coelebs) are also common and have shown increased tendencies to visit 

feeders over the past 30 years, possibly as a result of the increase in the provision of  
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Figure 1.2. Blue Tits feeding on a garden bird feeder in a garden in the UK (Photo: 

CJ Wildlife Ltd.). 

 

specialised bird food targeted at them (Chamberlain et al. 2005, Glue 2006). In 

contrast to the small passerines regularly observed at bird feeders in the UK, in 

Australia bird feeders are exploited by large, socially dominant species such as 

Australian Magpies and butcherbirds (Cracticus spp.) (Rollinson et al. 2003). This 

may represent a problem to smaller garden bird species due to an increase in 

competition for food together with an increased risk of nest predation from larger, 

more aggressive carnivorous species (Rollinson et al. 2003, D. L. Jones pers. comm.). 

 

1.2. EFFECTS OF SUPPLEMENTARY FEEDING DURING REPRODUCTION 

During reproduction a breeding bird must divide time and energy between investment 

in the current breeding attempt and self-maintenance in order to maximise fitness 

benefits while not compromising its own chances of survival (reviewed in Stearns 

1989). For capital breeding species such as Common Eiders (Meijer and Drent 1999) 

the energy and nutrients required for both self-maintenance and reproduction are 
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drawn from endogenous reserves which are accumulated before breeding (Jönsson 

1997). However, income breeders, such as small passerines, must assimilate most of 

their required energy and nutrients from exogenous resources (i.e. food) (Jönsson 

1997). Blue Tits are good examples of income breeders since they rely on direct food 

intake for 90% of their total energy and protein during egg formation (Meijer and 

Drent 1999). Therefore, when food is limited during reproduction species that are 

income breeders should allocate more time and energy towards self-maintenance and 

less towards reproductive investment (reviewed in Martin 1987). In this respect, the 

availability of food during reproduction is likely to limit reproductive success. 

However, food may not always be limiting during reproduction and, indeed, previous 

studies have shown that when food is superabundant its availability does not limit 

reproduction (e.g. Bollmann et al. 1997, Rauter et al. 2000). 

 

1.2.1. The effects of food limitation on reproduction: insights from supplementary 

feeding studies 

Supplementary feeding provide a potent way to examine whether food limits 

reproduction and numerous studies have reported that food availability can have 

dramatic consequences on reproductive success (reviewed in Martin 1987, Meijer and 

Drent 1999, Christians 2002, Robb et al. 2008b). Perhaps the most common 

documented effect of supplementary feeding is the advancement of clutch initiation 

date (e.g. Arcese and Smith 1988, Källander and Karlsson 1993, Nilsson 1994, 

Harrison et al. 2010). Two main, but not mutually exclusive, hypotheses have been 

proposed to explain why food availability is likely to be a proximate cue in the 

reproductive timing of birds: (i). birds may use food availability to time breeding so 

that they will be feeding nestlings in periods of peak food abundance (Lack 1954); 
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and (ii). females can accumulate enough resources to form and lay eggs earlier  

(Perrins 1970). Birds that are able to advance breeding are likely to accrue substantial 

fitness benefits since nestlings that hatch early in the breeding season have a higher 

likelihood of survival than those hatching later (Perrins 1965 – but see Nilsson 1994).   

Another determinant of breeding phenology is the length of the incubation 

period. In intermittent incubators incubation consists of periods on the eggs, in which 

the incubator warms the eggs, interspersed with periods off the nest (and eggs), in 

which the incubating bird feeds (Deeming 2002a). When food is limited an incubating 

bird may have to allocate more towards feeding, spending more time away from the 

nest (e.g. Eikenaar et al. 2003, Londoño et al. 2008). Extended periods away from the 

nest may result in the cooling of eggs and the subsequent decrease in the rate of 

embryonic development (Deeming 2002a). Therefore, when food is limited the 

incubation period may be prolonged (Moreno 1989, Zimmerling and Ankney 2005, 

Harrison et al. 2010). Protracted incubation periods may severely reduce fitness of 

incubating birds through an increase in the costs associated with incubation, such as 

increased predation risk (reviewed in Reid et al. 2002), high energetic expenditure 

(reviewed in Tinbergen and Williams 2002) and reduced further mating opportunities 

(reviewed in Reid et al. 2002 ).  

 Supplementary feeding studies have also reported effects of food availability 

on numerous determinants of breeding performance. For example, clutch size may be 

constrained by food availability since egg formation requires energy and nutrient 

input (reviewed in Meijer and Drent 1999, Williams 2005). Indeed, previous studies 

have provided evidence that clutch size is positively related to food availability (e.g. 

Dijkstra et al. 1982, Arcese and Smith 1988). In contrast, previous work on my study 

population suggested that supplementary feeding may decrease clutch size of both 
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Blue and Great (Parus major) Tits (Harrison et al. 2010). However, the mechanism 

underlying this result is currently unclear. Food availability may also influence 

breeding performance during the nestling period when altricial young rely on food 

from their parents to satisfy the energetic and nutritional demands of growth and 

development (O’Connor 1984). Brood provisioning by adults is energetically 

demanding (reviewed in Bryant and Tatner 1991) and supplementary feeding during 

the nestling period has been shown to enhance nestling growth (Arcese and Smith 

1988), reduce partial brood mortality, increase fledging success (e.g. Arcese and 

Smith 1988, González et al. 2006 – but see Harrison 2010), and increase post-fledging 

survival (e.g. Dewey and Kennedy 2001, Harrison 2010). 

 

1.3. EFFECTS OF SUPPLEMENTARY FEEDING ON REPRODUCTIVE BEHAVIOUR 

Food availability during reproduction is likely to affect the trade-off between time 

spent on self-maintenance (e.g. preening, feeding) and that spent on reproductive 

behaviours (e.g. incubation, brood provisioning) (Nur 1984, Kacelnik and Cuthill 

1990, Ydenberg et al. 1994). Numerous supplementary feeding studies have provided 

empirical evidence that supplemented birds allocate more time to reproductive 

behaviours than nonsupplemented controls (e.g. Markman et al. 2002, Eikenaar et al. 

2003, Londoño et al. 2008). Below, I introduce the effects of supplementary feeding 

on reproductive behaviours and show that, compared with other aspects of avian 

breeding biology, our knowledge of the effects of food supplementation on the 

underlying reproductive behaviours is limited. 
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1.3.1. Nest construction behaviour 

The nest construction period represents one of the earliest reproductive phases in a 

breeding attempt constituting a significant proportion of the breeding cycle both 

temporally and energetically (e.g. Skutch 1949, Withers 1977, Collias and Collias 

1984). However, despite this, to my knowledge few studies have investigated the 

effects of supplementary feeding on this reproductive stage. However, supplementary 

feeding has been shown to advance the timing of nest construction (Ewald and 

Rohwer 1982, Kelly and van Horne 1997). Mainwaring and Hartley (2009) also 

demonstrated that supplementary feeding from the time of nest initiation to nest 

completion resulted in supplemented Blue Tits constructing heavier nests with greater 

amounts of moss base compared with controls. Since nest building is temporally and 

energetically costly, their results indicate that nest building is condition-dependent in 

this species. 

 

1.3.2. Incubation behaviour 

Incubation is the process by which eggs are maintained in optimal conditions of 

temperature and humidity for embryonic development via the exchange of heat 

between the incubating bird and the clutch of eggs during what is termed ‘contact 

incubation’ (Deeming 2002a). Incubation is energetically expensive (Williams 1996, 

Tinbergen and Williams 2002) and, therefore, in species that are income breeders that 

rely upon food for the majority of their energy (Jönsson 1997) time must be spent off 

the nest to forage (Deeming 2002a). This incubation strategy is referred to as 

‘intermittent incubation’ and consists of periods on the nest (so-called incubation 

bouts) interspersed with periods off the nest (so-called incubation recesses) (Deeming 

2002a). Since food availability partly controls the energy available to the incubator, it 
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is not surprising that numerous supplementary feeding studies have shown that 

supplemented birds have shorter incubation recess lengths (e.g. Chalfoun and Martin 

2007, Londoño et al. 2008) and/or longer incubation bout lengths (e.g. Eikennar et al. 

2003, Rastogi et al. 2006). Such effects are likely to be important since such changes 

in incubation behaviour can result in the truncation of incubation periods (Moreno 

1989, Zimmerling and Ankney 2005), reducing the likelihood of time-dependent 

predation (reviewed in Reid et al. 2002) and resulting in earlier fledging which can 

have important fitness benefits (Verboven and Visser 1998).  

 

1.3.3. Brood provisioning behaviour 

During the nestling period altricial nestlings are dependent on their parents to provide 

food to satisfy the energetic and nutritional demands of growth and development (e.g. 

O’Connor 1984, Starck and Ricklefs 1998). However, such brood provisioning is 

energetically demanding (reviewed in Bryant and Tatner 1991) and, therefore, the 

adult must provide food for not only its nestlings but also for self-maintenance to fuel 

its metabolism to sustain provisioning efforts (Ydenberg et al. 1994, Ydenberg 1998). 

When food is limited brood provisioning rates may decrease as a consequence of a 

reduction in the amount of energy available to the provisioning adult (Markman et al. 

2002). Supplementary feeding may also affect brood provisioning by directly 

increasing the amount of food available to the nestlings when the food supplement(s) 

is suitable for nestling consumption (Cucco and Malacarne 1997). This response is 

likely to be mediated through a reduction in begging intensity as a result of additional 

food (e.g. Quillfeldt and Masello 2004, Hamer et al. 2006) and may have ultimate 

fitness benefits.  

 



Chapter One                                                                                                                                                          General introduction 

30 

 

1.3.4. Mating behaviour and extra-pair paternity (EPP) 

EPP is likely to be affected by mate-guarding behaviour and the frequency of 

copulations between a social female and an extra-pair male (e.g. Møller 1987, 

Westneat 1994, Petrie and Kempenaers 1998) and since these behaviours are likely to 

be energetically and temporally costly (reviewed in Birkhead and Møller 1992, Petrie 

and Kempenaers 1998), also by food availability. However, there have been few 

studies that have investigated the effects of supplementary feeding on mating 

behaviour and EPP and, moreover, they have reported conflicting findings. For 

example, Westneat (1994) found that supplementary feeding resulted in a reduction of 

EPP on territories of male Red-winged Blackbirds (Agelaius phoeniceus) that 

presumably invested more in mate guarding compared with unfed (control) males. In 

contrast, Hoi-Leitner et al. (1999) demonstrated that supplementary feeding during the 

fertile period of female European Serins (Serinus serinus) increased the number of 

broods containing extra-pair young (EPY). While the effects of supplementary 

feeding on mating behaviour and EPP are currently unclear, it may be important to 

consider food availability during reproduction with respect to its potential influence 

on the genetic structure of avian populations (e.g. Petrie et al. 1998). 

 

1.3.5. Secondary sex ratio 

In addition to EPP, brood sex ratio may influence the genetic structure of avian 

populations (reviewed in Donald 2007). Although there is controversy over the 

mechanism (reviewed in Krakow 1995, Komdeur and Pen 2002, Alonso-Alvarez 

2006), adult females may be able to manipulate brood sex ratio in response to food 

availability when the relative reproductive value of producing males and females 

differs in relation to food resources (e.g. Clout et al. 2002, Rutstein et al. 2004). 
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Brood sex ratio manipulated at laying is referred to as primary sex ratio (Burley 

1986). Food availability may further adjust sex ratio during the nestling period 

resulting in biased secondary sex ratio (i.e. sex ratio at fledging – Burley 1986). For 

example, in sexually dimorphic species where the larger sex is more susceptible to 

starvation, food shortages during the nestling period may lead to biased mortality of 

the larger sex (e.g. Teather and Weatherhead 1989, Torres and Drummond 1997). 

Alternatively, when food is limited, mortality may be biased towards the smaller sex 

as a result of the larger having a competitive advantage and being able to monopolise 

food (Hipkiss et al. 2002). 

  

1.4. AIMS OF THE THESIS 

The main aim of this thesis is to investigate the effects of supplementary feeding on 

the reproductive behaviours of small passerines. I fed birds during the spring and 

summer to mimic the recommendations of the non-governmental organisations 

(NGOs) (e.g. BTO, RSPB) to the bird-feeding public about when they should feed 

garden birds. Currently, such recommendations are not supported by a large body of 

scientific empirical evidence that suggests food supplementation has benefits for 

breeding birds. It is important to establish the effects of supplementary feeding on 

reproductive behaviours since it is through such changes in reproductive behaviour 

that important downstream effects on breeding performance, survival and, ultimately, 

fitness may take effect. In so doing, supplementary feeding could ultimately have 

indirect, but important, effects at the population and community levels.  

 I conducted a field study in central England from 2007 to 2009 inclusive. I 

used two commercially available garden bird foods: (i). peanut cake (an energy-rich 

food source consisting of 50% peanut cake flour and 50% beef tallow); and (ii). 
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mealworms (a protein-rich food source known to be fed to nestlings by adults; CJ 

Wildlife Ltd. pers. comm.). Peanut cake was provided ad libitum from approx. 3 

weeks prior to egg laying until post-fledging while mealworms were provided during 

the nestling period as recommended by the garden bird food supplier (CJ Wildlife 

Ltd. 2010). Ideally, my study would have been conducted in suburban gardens but the 

logistical problems (e.g. gaining access to gardens, controlling the types and amounts 

of bird food provided by the public) were insurmountable and, instead, the study was 

conducted in a broadleaved woodland consisting predominantly of oaks (Quercus 

spp.) 

 A secondary aim of this thesis was to investigate the potential effects of 

supplementary feeding on avian reproduction at a national scale and to investigate 

how effects of supplementary feeding may change over time. This was achieved by 

using data from the BTO’s Nest Record Scheme (NRS) (Crick et al. 2003) collected 

from both urban and deciduous woodland habitats between 1962 and 2008 inclusive. 

Using the NRS data, I examined breeding phenology (through clutch initiation date) 

and performance (through clutch size, brood size and failure rates [brood size as a 

proportion of clutch size]). Although the extent of supplementary feeding cannot be 

quantified using data from the NRS, birds breeding in urban habitats are more likely 

to have access to supplementary food than birds breeding in deciduous woodland 

habitats since wild bird feeding is a widespread activity in UK gardens in towns and 

cities (e.g. Fuller et al. 2008, Jones and Reynolds 2008, Davies et al. 2009, Fuller et 

al. In press). While investigating the effects of supplementary feeding at a local scale 

(i.e. using a supplementary feeding field study) allows the direct manipulation of food 

availability, considering such effects at a national scale is crucial since reproductive 

performance and, therefore, potentially the effects of supplementary feeding, may 
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vary spatially (e.g. Young 1994, Fargallo 2004). Furthermore, considering how 

supplementary feeding affects reproduction over a longer timeframe than a self-

contained 3-year study is also important since it may provide valuable additional 

insights into how supplementary feeding may affect reproduction in the future in 

relation to, for example, climate change (e.g. IPCC 2001, King 2005). 

In order to address the aims of this thesis, I chose to study Blue and Great Tits 

as my focal species. They are both common species that breed in UK gardens (Bland 

et al. 2004) and deciduous woodlands (Perrins 1979) and readily feed on garden bird 

feeders consuming both peanut cake and mealworms (CJ Wildlife Ltd. 2010). 

Furthermore, they nest in nestboxes (Perrins 1979) making them easily trappable and 

relatively easy to observe, two key attributes of species that I looked to target in this 

behavioural investigation. In addition, both Blue and Great Tits are socially 

monogamous (Cramp and Perrins 1993), but will partake in extra-pair copulations 

(EPCs) resulting in EPP (e.g. Kempenaers et al. 1992, Krokene et al. 1998). They lay 

large clutches (Great Tit: 5-12 eggs; Blue Tits: 7-13 eggs – Gosler and Clement 2007) 

making them good model species to investigate the effects of supplementary feeding 

on both brood sex ratio and mating behaviour. I adopted such a two-species approach 

since during reproduction Blue and Great Tits occupy different niches (Minot 1981) 

with the dietary breadth of Great Tits exceeding that of Blue Tits (Gosler and Clement 

2007). Therefore, Blue Tits are often considered to be specialist feeders compared 

with more generalist Great Tits (Török 1986). Thus, I aimed to provide insights into 

how supplementary feeding might affect the reproductive behaviours of species with 

different feeding ecologies. This is important to consider since a wide range of species 

with different feeding ecologies feed on garden bird feeders in the UK (e.g. 

Chamberlain et al. 2005, Glue 2006). 
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1.5. STRUCTURE OF THE THESIS 

My thesis has been prepared in ‘paper’ format and each data chapter is intended for 

publication. In Chapter Two, I investigate the effects of supplementary feeding on 

the nest construction behaviour of both Blue and Great Tits over a one-year period in 

a deciduous woodland. I hypothesised that the reduction of the energetic and temporal 

costs of foraging by the provision of ad libitum supplementary food before and during 

nest building would enable food-supplemented birds to spend more time finding 

material for, and engaged in, nest construction. Thus, in comparison with 

nonsupplemented (control) birds, I predicted that food supplementation would result 

in: (i). earlier nest construction; (ii). more rapid nest construction; (iii). construction of 

deeper nests; and (iv). a longer time engaged in nest lining.  

In Chapter Three, I examine the effects of supplementary feeding on the 

incubation behaviour of both Blue and Great Tits during 2008 and 2009 in a 

deciduous woodland using two methods. I use focal behavioural observations to 

determine incubation bout and recess lengths of Great Tits and small temperature 

loggers to investigate daily incubation activity (DIA) of Blue Tits. I hypothesised that 

supplementary feeding would partly alleviate the energetic and temporal constraints 

on foraging, allowing incubating females to invest more heavily in incubation and less 

time in self-maintenance. I predicted that supplementary feeding would: (i). increase 

DIA; (ii). decrease incubation recess lengths because energy demands can be satisfied 

more rapidly; and (iii). increase incubation bout lengths.  

In Chapter Four, I assess the effects of supplementary feeding on the brood 

provisioning behaviour of both Blue and Great Tits from 2007 to 2009 in a deciduous 

woodland by using focal behavioural observations. I also explore the effect of 

supplementary feeding on nestling condition and post-fledging survival. I 
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hypothesised that the provision of supplementary food for adults (peanut cake) would 

reduce the energetic and temporal costs of foraging and would enable supplemented 

adults to invest more time and energy in provisioning nestlings. Therefore, I predicted 

that supplemented adult birds would have higher brood provisioning rates than 

nonsupplemented (control) birds. I also hypothesised that providing additional 

supplementary food intended for nestling consumption (mealworms) would further 

enhance the investment of adults in their provisioning effort of nestlings compared 

with birds simply fed with peanut cake. I also predicted that nestlings in 

supplementary fed blocks would be in better body condition than those in the control 

block, and that survival of the fledglings from the supplementary fed blocks would be 

higher. 

 In Chapter Five, I investigate the effects of supplementary feeding on the 

incidence of EPP in Blue Tits breeding in 2008 and 2009 in a deciduous woodland by 

using molecular genetic techniques. I hypothesised that supplementary food (peanut 

cake) provided prior to, and throughout, the egg laying period would partly alleviate 

the energetic and temporal constraints of foraging allowing male Blue Tits to increase 

time spent mate-guarding during the fertile period of female Blue Tits. I also 

hypothesised that feeders containing the supplementary food would act as ‘food 

hotspots’ resulting in a reduction in the roaming behaviour of foraging female Blue 

Tits allowing them to be closely mate-guarded by male Blue Tits. Therefore, I 

predicted that the supplementation of peanut cake would result in fewer nests 

containing EPY and that broods of supplemented birds would have a lower proportion 

of EPY than broods of control (nonsupplemented) birds. In addition, I hypothesised 

that an additional food supplement (mealworms) intended for nestlings, and provided 

to birds already receiving peanut cake, would result in increased nestling survival and 
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a lessening of differential mortality between WPY and EPY compared with only 

peanut cake-supplemented birds. Therefore, I predicted that the additional 

supplementation of food intended for nestlings would result in a lower proportion of 

EPY within nests compared to that in nests of birds only supplemented with peanut 

cake. 

 In Chapter Six, I assess the effects of supplementary feeding on secondary 

brood sex ratio of Blue Tits breeding in 2008 and 2009 breeding in a deciduous 

woodland by using molecular genetic techniques. I hypothesised that the 

supplementation of peanut cake intended for adult consumption during the fertile 

period would increase female condition enabling supplemented females to produce 

higher quality nestlings. Since higher quality male Blue Tits have higher reproductive 

success than high quality females (Dreiss et al. 2006), I predicted that broods in 

blocks supplemented with peanut cake would be more male-biased than in the control 

(nonsupplemented) block. In addition, I hypothesised that the additional 

supplementation of mealworms intended for nestling consumption would reduce 

male-biased mortality. Therefore, I predicted that broods in the treatment block 

supplemented with both peanut cake and mealworms would be more male-biased than 

broods in both the peanut cake-supplemented and control blocks.  

 In Chapter Seven, I use NRS data to compare breeding performance (i.e. 

clutch size, brood size and failure rates [brood size as a proportion of clutch size]) and 

phenology of both Blue and Great Tits breeding in urban and deciduous habitats 

across the UK from 1962 to 2008.  

Finally, in Chapter Eight, I summarise my results and discuss them within an 

urban garden bird feeding context. I also discuss the mechanisms underlying the 
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effects of supplementary feeding on avian reproductive behaviour and provide 

suggestions for future research.  
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Chapter Two 

 

FEATHERING THE NEST: FOOD SUPPLEMENTATION INFLUENCES NEST 

CONSTRUCTION BY BLUE AND GREAT TITS 

 

2.1. ABSTRACT 

Food supplementation during reproduction can potentially provide additional energy 

and/or liberate time usually devoted to foraging, enabling birds to invest more in 

activities such as nest construction that provide longer term fitness benefits. Although 

nest construction can represent large temporal and energetic investments in a breeding 

attempt, few studies have investigated how it is influenced by food supplementation. In 

2008 I studied the effects of food supplementation on nest construction by Blue and 

Great Tits. I found that food supplementation advanced nest construction and also 

advanced laying in both species. Food supplementation also resulted in truncation of the 

nest construction period of Blue, but not Great, Tits. The duration of the nest-lining 

period was not influenced by food supplementation in either species. Unexpectedly, 

food supplementation resulted in Blue Tits constructing significantly shallower nests 

than control conspecifics whereas the depth of Great Tit nests remained unaffected. This 

study provides empirical evidence that food availability prior to and throughout nest 

construction constrains nest construction behaviour of Blue and Great Tits breeding in a 

deciduous woodland in Central England suggesting that nest construction behaviour is 

both energetically and temporally costly.  
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2.2. INTRODUCTION 

The avian breeding cycle has been well characterised in many species (Murton and 

Westwood 1977). Although the constituent phases of egg laying, incubation and brood 

rearing are important to consider, one of the earliest phases of the breeding attempt, 

namely nest construction, remains relatively under-studied despite the fact that it may 

constitute a significant proportion of the breeding cycle both temporally and 

energetically (e.g. Skutch 1949, Withers 1977, Collias and Collias 1984). Thus, it is 

fundamental to consider this phase, together with others, when quantifying investments 

in breeding attempts and when considering the breeding biology of birds within a life-

history context (Martin and Li 1992, Stearns 1992).  

Nests can play a key role in reproduction by contributing to parental care efforts 

in the maintenance of thermal conditions during incubation and brooding, and in 

providing protection of both eggs and young against predators and inclement weather 

(e.g. Collias and Collias 1984, Kern et al. 1993, Lima 2009). During incubation nest 

architecture and integrity are fundamental for the conservation of heat within the nest 

(Deeming 2002a). In addition, nest architecture can help regulate nest humidity, a vital 

component of the nest microclimate, since nest humidity partially determines water loss 

from eggs with excessive or insufficient water loss resulting in abnormal embryonic 

development (Ar and Sidis 2002). Therefore, investment in nest building may reflect the 

phenotypic quality (e.g. Lens et al. 1994 – but see Álvarez and Barba 2008) or health 

status (e.g. Tomás et al. 2006, Moreno et al. 2008) of the nest builder and, in accordance 

with the ‘sexual display hypothesis’ (Soler et al. 1998), act as a sexually selected trait 

(e.g. Mainwaring et al. 2008).  Alternatively, investment in nest building may reflect the 

condition of the nest builder’s mate (e.g. Szentirmai et al. 2005, Broggi and Senar 2009) 
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providing support for the ‘differential allocation hypothesis’ which suggests that 

reproductive investment is influenced by mate attractiveness (Burley 1986). 

Reproductive success of birds can be limited by several factors such as adult 

condition  (Doutrelant et al. 2008), predation (Zanette et al. 2003) and inclement 

weather (Morrison and Bolger 2002), but perhaps the most important factor is food 

availability (reviewed in Martin 1987, Robb et al. 2008a). The effects of food 

availability have been revealed most directly in supplementary feeding studies in which 

birds were provided with additional supplies of food beyond those available in the 

natural environment (see Section 1.3). Many such studies have highlighted the effects of 

increased food availability on reproductive parameters such as clutch initiation date 

(e.g. Ramsay and Houston 1997), clutch size (e.g. Ewald and Rohwer 1982), egg size 

(e.g. Reynolds et al. 2003a) and brood size (e.g. Harrison et al. 2010). The influence of 

supplementary feeding on some reproductive behaviours such as incubation (e.g. 

Eikenaar et al. 2003) and brood provisioning (Cucco and Malacarne 1997) is well 

known, but relatively little is known about its influence on nest construction behaviour. 

However, Mainwaring and Hartley (2009) have recently shown that the provision of 

mealworms as a supplementary food source from the time of nest initiation to nest 

completion resulted in supplemented female Blue Tits constructing heavier nests which 

contained more moss than nonsupplemented females. This indicated that nest building 

was condition-dependent in this species.   

I investigated whether the timing and duration of nest construction of Blue and 

Great Tits are affected by supplementary feeding. Nest construction in Blue and Great 

Tits can be subdivided into two distinct phases: (i). the structural layer period (the 

period in which the structural component of the nest is built) and; (ii). the nest-lining 

period (when the nest-lining component is built). I hypothesised that the reduction of the 
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energetic and temporal costs of foraging by the provision of ad libitum supplementary 

food before and during nest building would enable food-supplemented birds to spend 

more time finding material for, and engaged in, nest construction. Thus, in comparison 

with nonsupplemented (control) birds, I predicted that food supplementation would 

result in: (i). earlier nest construction; (ii). more rapid nest construction; (iii). 

construction of deeper nests; and (iv). a longer time engaged in nest-lining.  

Prior to and during nest construction Blue and Great Tits occupy different 

niches, the former feeding mainly in the canopy and the latter mainly on the ground 

(e.g. Minot 1981). At this time the dietary breadth of Great Tits exceeds that of Blue 

Tits (Gosler and Clement 2007) and, therefore, Blue Tits are often considered to be 

specialist feeders compared with Great Tits that are considered to be generalist feeders 

(e.g. Török 1986). However, where the dietary preferences of these species overlap, and 

there is inter-specific competition for food, Great Tits are dominant (Wilson 1992). 

Since I was studying Blue and Great Tits simultaneously at the same site, I hypothesised 

that Great Tits would exploit artificial feeders to a greater extent than Blue Tits both 

through having a more generalist diet and through out-competing Blue Tits at the 

feeding stations. I know that compared with Blue Tits food supplementation of Great 

Tits in my study population has more significant effects on some breeding parameters 

(e.g. clutch initiation date, incubation period length – Harrison et al. 2010). Thus, in 

comparison with Blue Tits, I predicted that any observed effects of supplementary 

feeding would be more pronounced in Great compared with Blue Tits.  

 

2.3. METHODS 

2.3.1. Focal species 
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Blue and Great Tits are cavity nesters that readily breed in nestboxes (Perrins 1979). 

Females dominate males at the nest in both species and construct the nest alone, 

predominantly out of moss (Gosler and Clement 2007).  Blue Tits line the nest with 

feathers and Great Tits with hair or fur (Perrins 1979).  Typically, in the UK, only one 

nest is constructed in a breeding season although replacement nests are made in the 

event of nest disturbance (e.g. predation of eggs or young). However, although Great 

Tits double brood more often than Blue Tits, it occurs in <5% of Great Tits in deciduous 

broadleaved woodlands (Perrins 1979).  

 

2.3.2. Study site and supplementation 

The study was conducted in 2008 in Chaddesley Woods National Nature Reserve, 

Worcestershire, UK (52°36’N, 2°14’W), a broadleaved woodland consisting 

predominantly of oaks (Quercus spp.). Two hundred and eighty-eight identical plywood 

nestboxes (height 29.5 cm, width 12.7 cm and depth 14.6 cm) were established on the 

site in 2005. Nestboxes are approx. 2 m above the ground and have 32 mm entrance 

holes facing NE away from the prevailing SW wind. Prior to the onset of the breeding 

season, between October and December, old nesting material from previous breeding 

attempts was removed from nestboxes to ensure that they were clean prior to new 

breeding attempts. The woodland was divided into two blocks containing 192 and 96 

nestboxes which were arranged throughout on a 40 m-grid system resulting in a nestbox 

density of 6.25 ha
-1

 (Fig. 2.1). (Note the inequality in numbers of nestboxes between 

treatment blocks was the result of a broader, ongoing food supplementation study). In 

the larger nestbox block a food supplement of peanut cake (an energy-rich food source 

consisting of 50% peanut cake flour and 50% beef tallow, and known to be consumed 

extensively by both focal species – CJ Wildlife pers. comm.), was provided while in the  
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Figure 2.1.  (a) Chaddesley Woods National Nature Reserve was split into three blocks 

where Great and Blue Tits either received peanut cake (supplementary fed block) or no 

supplement (control block) before and during nest building in 2008 (see text for details). 

(b) Nestboxes were separated on a 40 m-grid system with feeders placed in the centre of 

a block of four nestboxes. 

 

smaller control block there was no food supplementation. Blocks were separated by a 

buffer strip of approx. 70 m (Fig 2.1) to reduce the probability that territorial breeding 

birds would travel far beyond their own territories and, thereby, cross between treatment 

blocks  (Naef-Daenzer 2000 – but see Wilkin et al. 2009a). In the food-supplemented 

block there were 48 peanut cake feeders that were evenly spaced with one for every four 

nestboxes. Each feeder was placed at the centre of a square of four nestboxes so that it 

was approx. 28 m away from each nestbox (Fig. 2.1) 

In 2007 nest construction at this study site started in the third week of March 

(pers. obs.) so in 2008 when this study took place supplementary feeding was started in 

the first week of March ensuring that ad libitum supplementary food was available for 

approx. 2 weeks prior to the predicted onset of nest construction and throughout nest 

construction.  
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2.3.3. Experimental procedure 

During the winter prior to the study all nest material from the previous breeding 

attempts was removed from the nestboxes. Approx. 2 weeks after the onset of food 

supplementation nestboxes were checked for the appearance of nest material. Nest 

initiation date was defined as the date on which the first nest material was seen. Since 

both Blue and Great Tits are known to continue adding material to the nest after clutch 

initiation (Perrins 1979), determination of nest completion date is problematic and, thus, 

I defined nest completion date as when clutch initiation occurred (i.e. when I assumed 

that the nest was functionally complete –  Fig. 2.2). A photograph was taken on each 

visit to a nestbox with a digital camera (Nikon Coolpix®) looking vertically down into 

the opened nestbox from a distance of approx. 30 cm (Fig. 2.2). Nestboxes were 

checked and photographed every 2-3 days between nest initiation and clutch initiation. 

The period between nest and clutch initiation was defined as the nest construction 

period. At clutch initiation, the depth of nest material was measured to the nearest mm 

at the mid-points of the back and lateral walls of the nestbox using a plastic ruler 

inserted between the nesting material and nestbox wall. The average nest depth of each 

functionally complete nest was determined from these three measurements. Thereafter, 

nestboxes were periodically visited to continue the monitoring of breeding attempts. 

Nests that appeared to be taken over by another female (e.g. where feathers from a Blue 

Tit nest were removed and replaced with fur by a Great Tit) were excluded from the 

study. The complete dataset contained 111 Blue Tit (66 food-supplemented and 45 

control) and 115 Great Tit nests (79 food-supplemented and 36 control). 

Photographs of nest building sequences (an example is shown in Fig. 2.2) were 

examined to determine the onset and duration of the nest construction period which was  
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Figure 2.2. A complete photographic time series of the nest construction period of a Great Tit breeding at Chaddesley Woods 

National Nature Reserve in 2008: (a) first appearance of nest material indicates nest initiation; (b) – (c) nest building ongoing; (d) – 

(e) appearance of fur indicates nest-lining; and (f) clutch initiation at the end of the nest-lining and nest construction period. The date 

on which each photograph was taken appears above.  
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subdivided into the structural layer period (the period in which the structural component 

of the nest is built) and the nest-lining period (when the nest-lining component is built).  

The onset of nest-lining was determined from the appearance of the first piece of lining 

material (a feather or piece of fur). The lining was defined as completed when clutch 

initiation occurred (e.g. period between Fig. 2.2d and Fig. 2.2f, respectively). The 

difference between the two dates defined the nest-lining period. 

 

2.3.4. Statistical analysis 

Mixed models were constructed using PROC GLIMMIX in SAS Version 9.2 (SAS 

Institute 2008) to test for the effects of supplementary feeding on the individual 

response variables. Nest initiation date, nest construction period, average final nest 

depth and clutch initiation date were tested for normality using the Anderson-Darling 

Test and for homogeneity of variance using the F-test. All were square-root transformed 

to normalise their distributions and then fitted with normal error distributions after 

examination of the model fit (Generalised Chi-Square/DF = approx. 1). Nest-lining and 

nest structural layer periods were fitted with Poisson error distributions. 

Differences in degrees of freedom between models can be attributed to the 

inclusion/exclusion of covariates and covariate interactions (see below). Since nest 

construction period may decrease seasonally (Mainwaring and Hartley 2008), I included 

nest initiation date as a covariate in the nest construction period analysis. Since mass of 

accumulated nest-lining material may decline seasonally (McGowan et al. 2004, 

Mainwaring and Hartley 2008), I used both nest initiation date and nest construction 

period as covariates in the nest-lining period analysis. Both of these covariates may 

influence final nest size (e.g. Møller 1982, Powell and Rangen 2000) and, thus, I used 

them as covariates in the nest depth analysis. In addition, clutch size may influence nest 
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construction behaviour with larger nests being constructed to contain larger clutches 

(see Møller 1982). Therefore, clutch size was added as a covariate in all models. To 

determine if the effects of covariates were consistent between treatment blocks, 

covariate × dietary treatment interactions were tested independently of one another 

within each model. Where multiple covariate × dietary treatment interactions were 

significant they were both included in the model as long as each remained significant 

(Grafen and Hails 2002). I performed backward model selections removing the least 

non-significant covariate interactions (P > 0.05) one-by-one from models ensuring that 

there was no significant change in deviance between models where applicable (Grafen 

and Hails 2002). 

 

2.4. RESULTS 

2.4.1. Nesting phenology 

Food-supplemented Blue and Great Tits initiated nests significantly earlier than control 

birds (Blue: F1,75 = 7.52, P = 0.01; Great: F1,97 = 8.17, P < 0.01; Table 2.1 and Fig. 

2.3a). Birds of both species in both treatments also initiated clutches significantly earlier 

than control birds (Blue: F1,76 = 4.09, P = 0.05; Great: F1,98 = 6.87, P = 0.01; Table 2.1 

and Fig. 2.3b). 

 

2.4.2. Nest construction period 

Food supplementation did not have a significant effect on the nest construction period 

of Great Tits (F1,100 = 3.41, P = 0.07; Table 2.1 and Fig. 2.4a), on the nest structural 

layer period of Great Tits (F1,97 = 0.70, P = 0.40; Table 2.1 and Fig. 2.4b) or on the nest-

lining period for either species (Blue: F1,82 = 0.09, P = 0.76; Great: F1,100 = 0.31, P = 
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Table 2.1. A comparison of nest construction traits in terms of output from final mixed models for control (nonsupplemented/N) and 

supplemented (S) Blue Tits (BT) and Great Tits (GT) breeding in Chaddesley Woods National Nature Reserve in 2008. Significant main effects 

are given in bold text. Directions of significant effects are given: ‘+’ and ‘-‘ denote significant positive and negative relationships, respectively, 

and ‘NS’ denotes nonsignificance (P > 0.05). 

      Least square means (SE)  

Response variable Species Factor F df P Nonsupplemented Supplemented Direction 

Nest initiation date (1 = 1st March) BT Dietary treatment 7.52 1,75 0.01 36.09 (0.72) 33.41 (0.58) N = latest; S = earliest 

  Clutch size 4.88 1,75 0.03   - 

  Nest construction period 140.54 1,75 <0.0001   - 

 GT Dietary treatment 8.17 1,97 <0.01 38.32 (1.00) 35.16 (0.60) N = latest; S = earliest 

  Clutch size 3.82 1,97 0.05   - 

  Nest construction period 97.12 1,97 <0.0001   - 

Nest construction period (days) BT Dietary treatment 4.96 1,75 0.03 16.00 (0.81) 13.76 (0.6) N = longest; S = shortest 

  Clutch size 4.53 1,75 0.04   + 

  Nest initiation date 164.23 1,75 <0.0001   Negative relationship 

 GT Dietary treatment 3.41 1,100 0.07 12.96 (0.80) 11.29 (0.48) NS 

  Nest initiation date 106.38 1,100 <0.0001   - 

Nest structural layer period (days) BT Dietary treatment 9.14 1,75 <0.01 9.95 (0.57) 7.90 (0.42) N = longest; S = shortest 

  Clutch size 3.23 1,75 0.08   NS 

  Nest construction period 298.48 1,75 <0.0001   + 

 GT Dietary treatment 0.70 1,97 0.40 7.23 (0.52) 6.74 (0.31) NS 

  Clutch size 1.97 1,97 0.16   NS 

  Nest construction period 187.54 1,97 <0.0001   + 

Nest-lining period (days) BT Dietary treatment 0.09 1,82 0.76 5.10 (0.41) 5.26 (0.33) NS 
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Table 2.1. continued 

      Least square means (SE)  

Response variable Species Factor F df P Nonsupplemented Supplemented Direction 

  Nest initiation date 21.00 1,82 <0.0001   - 

 GT Dietary treatment 0.31 1,100 0.58 4.18 (0.37) 4.42 (0.25) NS 

  Nest construction period 82.79 1,100 <0.0001   + 

Nest depth (mm) BT Dietary treatment 4.93 1,85 0.03 56.55 (1.82) 51.41 (1.44) N = deeper; S = shallower 

 GT Dietary treatment 1.92 1,100 0.17 50.27 (2.00) 47.06 (1.24) NS 

  Nest construction period 4.87 1,100 0.03   + 

Clutch initiation date (1 = 1st March) BT Dietary treatment 4.09 1,76 0.05 51.41 (0.86) 49.28 (0.70) N = latest; S = earliest 

  Clutch size 3.73 1,76 0.06   NS 

 GT Dietary treatment 6.87 1,98 0.01 50.55(1.00) 47.75(0.55) N = latest; S = earliest 

  Clutch size 4.49 1,98 0.04   - 
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Figure 2.3. Nest building parameters (mean ± 1 SE from statistical estimates) of control 

(nonsupplemented) and food-supplemented Blue and Great Tits breeding in Chaddesley 

Woods National Nature Reserve in 2008: (a) nest initiation date; and (b) clutch 

initiation date. The number of nests (n) is given about each bar. 

 

Figure 2.4. Nest building parameters (mean ± 1 SE from statistical estimates) of control 

(nonsupplemented) and food-supplemented Blue and Great Tits breeding in Chaddesley 

Woods National Nature Reserve in 2008: (a) nest construction period; and (b) nest 

structural layer period. The number of nests (n) is given about each bar. 

 

0.58; Table 2.1 and Fig. 2.5a). However, food-supplemented Blue Tits built the nest 

structural layer faster than control birds (F1,75 = 9.14, P < 0.01; Table 2.1 and Fig. 2.4b)  

resulting in a truncation of the total time taken to construct the nest (F1,75 = 4.96, P = 

0.03; Table 2.1 and Fig. 2.4a). 



Chapter Two                                                                                                               Food supplementation and nest construction 

51 

 

 

Figure 2.5. Nest building parameters (mean ± 1 SE from statistical estimates) of control 

(nonsupplemented) and food-supplemented Blue and Great Tits breeding in Chaddesley 

Woods National Nature Reserve in 2008: (a) nest-lining period; and (b) nest depth. The 

number of nests (n) is given about each bar. 

 

Furthermore, control Blue Tits built nests that were significantly deeper on completion 

than those breeding in the food-supplemented block  (F1,85 = 4.93, P = 0.03; Table 2.1 

and Fig. 2.5b). However, Great Tits built nests of equivalent depths irrespective of 

dietary treatment (F1,100 = 1.92, P = 0.17; Table 2.1 and Fig. 2.5b). 

 

2.4.3. Seasonal trends in nest construction 

Birds of both species in both the food-supplemented and the control blocks showed 

seasonal trends in nest building behaviour with nests that were initiated later in the 

season being constructed over a shorter period (Blue: F1,75 = 164.23, P < 0.0001; Great: 

F1,100 = 106.38, P < 0.0001; Table 2.1 and Fig. 2.6). Nests of Blue Tits that were 

initiated later in the season also took less time to line (F1,82 = 21.00, P < 0.0001; Table 

2.1). In addition, there was a tendency for both Blue and Great Tits that started breeding 

earlier to lay larger clutches (Blue: F1,76 = 3.73, P = 0.06; Great: F1,98 = 4.49, P = 0.04). 
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Figure 2.6. Nest construction period in relation to nest initiation date for food-

supplemented (filled circles and solid regression line) and control (nonsupplemented) 

(open circles and dashed regression line) birds breeding in Chaddesley Woods National 

Nature Reserve in 2008: (a) Great Tits (Pearson’s rs = 0.57, P < 0.001 and 0.52, P < 

0.001, respectively). The slopes of the regression lines do not significantly differ 

(ANCOVA: F1,114 = 3.31, P = 0.76); and (b) Blue Tits (Pearson’s rs = 0.82, P < 0.001 

and 0.72, P < 0.001, respectively). The slopes of the regression lines do not significantly 

differ (ANCOVA: F1,86 = 0.04, P = 0.84). 

 

2.5. DISCUSSION 

The ‘bird-nest unit’ (Deeming 2002a) plays an integral role in avian development by 

contributing towards parental care efforts (e.g. Collias and Collias 1984, Kern et al. 

1993) and, therefore, a bird should invest considerably in nest construction. 

Supplementary feeding should reduce a bird’s time and effort spent foraging and, 

consequently, it might allow earlier, greater or more concentrated investment of time 

and effort in nest construction. I predicted that food supplementation would result in: 

(i). earlier nest construction; (ii). more rapid nest construction; (iii). construction of 

deeper nests; and (iv). a longer time engaged in nest-lining. I also predicted that any 

observed effects of supplementary feeding would be more pronounced in Great than in 

Blue Tits. I have shown only partial support for these predictions. Supplementary 

feeding resulted in: (i). advanced nest initiation in both Blue and Great Tits; (ii). 
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advanced egg laying in both Blue and Great Tits, and this was associated with (iii). 

truncation of the nest construction period by Blue but not Great Tits; (iv). shallower, 

rather than deeper, nests in Blue Tits but no effect in Great Tits; and (v). no effect on the 

duration of nest-lining by either species.  

 

2.5.1. Nesting phenology 

The timing of reproduction can have a significant impact on the fitness of birds since 

birds that fledge earlier have a higher probability of being recruited into the breeding 

population (e.g. Verboven and Visser 1998). My results indicate that food availability at 

least partly determines the timing of reproduction by significantly advancing nest 

initiation date and egg laying date in both species. These results are consistent with 

previous studies where supplementary feeding resulted in earlier initiation of  nest 

construction (e.g. Belted Kingfishers (Megaceryle alcyon) – Kelly and van Horne 1997; 

Red-winged Blackbirds – Ewald and Rohwer 1982) and earlier egg laying (e.g. 

Common Starlings – Källander and Karlsson 1993; Blue Tit – Svensson and Nilsson 

1995; Blue and Great Tits – Harrison et al. 2010).  

Two main, but not mutually exclusive, hypotheses have been proposed to 

explain why food availability is likely to be a proximate cue in the reproductive timing 

of birds: (i). Lack (1954) proposed that birds may use food availability to time breeding 

so that they will be feeding nestlings in periods of peak food abundance; and (ii). 

Perrins (1970) suggested that it is determined by the time at which a female can 

accumulate enough resources to form and lay eggs. Birds that are supplemented with 

food prior to egg laying experience an increase in the immediate availability of energy 

enabling them to invest more time in activities such as territory defence, preening and 

vigilance (e.g. Cucco and Malacarne 1997, Fleischer et al. 2003) resulting in the 



Chapter Two                                                                                                               Food supplementation and nest construction 

54 

 

advancement of onset of breeding attempts. However, food availability is unlikely to be 

exclusively responsible for the timing of breeding in birds and numerous other 

determinants have been identified, including ambient temperature (e.g. Dhondt and 

Eyckerman 1979), parental condition (e.g. Murphy 1986), reproductive experience (e.g. 

Perrins and McCleery 1985) and parental genotype (e.g. Lambrechts et al. 1999). In the 

present study food availability is likely to be the main (direct or indirect) driver of the 

effects found because environmental determinants were likely to have been constant 

across the different dietary treatment blocks and parental genotype, parental condition 

and reproductive experience were likely to have been randomly allocated between the 

experimental blocks (Harrison 2010). However, in my study, the provisioning of food is 

expected to increase both the relative quality of territories and the physiological 

condition of breeding adults, as well as increasing the immediate availability of energy 

and nutrients. Therefore, the particular mechanisms by which food-supplements 

advanced breeding (nest and clutch initiation) cannot be elucidated. 

 

2.5.2. Nest construction period 

The construction of a nest can be both energetically and temporally costly (e.g. Withers 

1977) with the collection of nest material, rather than its transportation, being the 

principal cost. Some species are known to allocate a substantial amount of time to nest 

construction undertaking hundreds of trips to gather nest material (e.g. 873 trips per pair 

of Village Weavers [Ploceus cucullatus] – Collias and Collias 1984; 2,564 trips per pair 

of Black-billed Magpies [Pica hudsonia] – Stanley 2002). In accordance with my 

predictions, my results suggest that food-supplemented Blue Tits were able to invest 

more time and energy in nest building through a reduction in the energetic and temporal 

costs of foraging and this resulted in a shortening of the nest construction period. In 
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contrast, Mainwaring and Hartley (2009) found that Blue Tits supplemented with 

mealworms from the time of nest initiation through to nest completion did not alter their 

nest construction period. Similarly, Enoksson (1990) demonstrated that Eurasian 

Nuthatches (Sitta europaea) supplemented with Sunflower (Helianthus annuus) seeds 

during the winter spent an equivalent period of time constructing nests as the 

nonsupplemented conspecifics.  However, my findings for Great Tits agreed with both 

Enoksson (1990) and Mainwaring and Hartley (2009) in finding no influence of food 

supplementation on their nest construction period.  

 

2.5.3. Nest-lining period 

The lining of a nest functions primarily to retain heat (e.g. Winkler 1993) and 

potentially improves reproductive performance (e.g. Winkler 1993, Lombardo et al. 

1995). To maximise reproductive performance and, ultimately, fitness, birds that are 

able to reduce foraging time should invest more time collecting nest-lining materials to 

construct a well-insulated nest. I examined nest construction by examining periods to 

construct the structural layer and the nest-lining. The former was achieved faster in 

food-supplemented Blue Tits than in control birds suggesting that food supplementation 

reduced costs of collection and/or integration of materials into the nest. However, the 

duration of the nest-lining period was equivalent between the dietary treatments for both 

species. This suggests that it may be more fixed and less sensitive to food availability 

than other nesting behaviours. Food-supplemented birds might allocate the time saved 

as a result of reduced foraging effort in activities that have greater potential to increase 

fitness (e.g. seeking out EPCs, increasing vigilance). Alternatively, food-supplemented 

birds may invest more time in locating and collecting nest materials of higher insulatory 

quality instead of lining the nest more quickly compared with control birds.  
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2.5.4. Average nest depth 

Average nest depth of food-supplemented Great Tits was equivalent to that of control 

birds but there was considerable variability within and between treatments. Similarly, 

Alabrudzińska et al. (2003) found much variability in nest depth (45-150 mm) within a 

population of Great Tits in Poland. In Blue Tits I found that food-supplemented birds 

made shallower nests than control birds. Building a shallow nest may be adaptive since 

constructing such a nest increases the distance between the nest entrance and the 

eggs/nestlings, reducing predation risk (Mazgajski and Rykowska 2008). Assuming that 

nest weight correlates positively with nest size, my results conflict with those of 

Mainwaring and Hartley (2009) who found that Blue Tits supplemented with 

mealworms built heavier nests and of de Neve et al. (2004) who found that food 

supplementation of Eurasian Magpies (Pica pica) resulted in larger nests. In accordance 

with the ‘sexual-display’ hypothesis (Soler et al. 1998), Eurasian Magpies employ nest 

size as a post-mating sexually-selected signal indicating the male builder’s likelihood to 

invest in reproduction (de Neve et al. 2004). Nest size may act as a sexually-selected 

signal in both Blue and Great Tits. Nest size was positively correlated with female 

quality in the former (Mainwaring et al. 2008) and to female carotenoid-based plumage 

characteristics in the latter (Broggi and Senar 2009). Female investment in nest building 

in these species may relate to male condition (as measured by plumage coloration) 

through the ‘differential allocation hypothesis’ (Burley 1988).  

 

2.5.5. Seasonal trends in nest construction 

Similar to Mainwaring and Hartley (2008), I found that food-supplemented and 

nonsupplemented birds of both species showed a seasonal decline in nest construction 

period. Both food-supplemented and nonsupplemented birds synchronise their breeding 
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so that the greatest nutritional demands of the brood coincide with the peak abundance 

of caterpillars, the main food of the nestlings (Perrins 1979). As hypothesised by 

Mainwaring and Hartley (2008), it is likely that the seasonal decline in nest construction 

period can be explained by this need to optimise the timing of breeding. An alternative 

hypothesis could be that there is an increase in the availability of nest material as the 

breeding season progresses. However, this is not likely to have applied since natural 

feather and fur availability throughout the breeding season, often from dead animals, is 

consistently high (Hansell and Ruxton 2002). 

 

2.5.6. Future considerations and directions 

There are a number of lines of further research that could be valuable in explaining 

further the mechanism and functions of the effects of supplementary feeding that we 

have described here. Ectoparasites, such as Hen Fleas (Ceratophyllus gallinae), 

commonly inhabit nests of parids (Perrins 1979) with infestations having detrimental 

effects on nestling growth (e.g. Richner et al. 1993). Parasite load can be reduced 

through parental sanitation activities, with smaller nests being cleaned more easily 

(O’Connor 1984) perhaps partially as a result of them having fewer parasites (Heeb et 

al. 1996). It is possible that, instead of building deeper nests as I predicted, food-

supplemented Blue Tits allocated more resources to finding materials with high 

insulatory properties (e.g. down feathers rather than moss – Hilton et al. 2004), allowing 

them to reduce nest volume and parasite load, and to sanitise them more easily. To 

further explain the mechanism and function of supplementary feeding in reducing nest 

depth, further research is needed to determine the relationship between nest depth, nest 

parasite load and nest sanitation behaviour.  Furthermore, more work is needed to 
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determine why shallower nests were only found in supplemented Blue, but not Great, 

Tits. 

Ideally, I would have made daily nestbox visits but this would have increased 

the disturbance of birds and the likelihood of nest abandonment. Instead I visited nests 

every 2-3 day which is unlikely to have biased my data significantly because any errors 

in determining duration of breeding phases would have been systematic across both 

dietary treatments. However, future studies could employ nestbox cameras to monitor 

nest construction daily to provide further insight into how supplementary feeding affects 

nest construction. Finally, I assumed that the availability of nest material was constant 

throughout the study site but further study of the distribution and availability of nest 

material throughout the study site and over the nesting period might explain some of the 

inconsistencies in parts of this study. 

I have provided empirical evidence that food supplementation prior to and 

throughout nest construction has significant effects on nest building by both Blue and 

Great Tits in an English deciduous woodland. Determining the fitness benefits of food 

supplementation on reproductive performance mediated through changes in nest 

construction of birds remains problematic in my study because food supplementation 

was extended beyond nest completion and is the subject of the rest of this thesis. 

Therefore, it is likely that subsequent reproductive behaviours associated with 

downstream reproductive phases (i.e. incubation and brood provisioning) could have 

been influenced by food supplementation. Termination of food supplementation upon 

nest completion would allow more direct investigation of such effects. Further 

comparative studies of the effects of food availability on nest construction may provide 

considerable, and important, insights within a life-history context across different avian 

taxa.  
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2.5.7. The next chapter 

During incubation nest architecture and integrity are fundamental to heat conservation 

within the nest (Deeming 2002a). Therefore, nests play a key role in reproduction by 

contributing to parental care efforts in the maintenance of thermal conditions during 

incubation (e.g. Collias and Collias 1984, Kern et al. 1993). With my findings showing 

a significant effect of supplementary feeding on nest construction, I will now investigate 

the effect of supplementary feeding on incubation behaviour in Chapter Three. 
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Chapter Three 

THE EFFECTS OF SUPPLEMENTARY FEEDING ON THE INCUBATION 

BEHAVIOUR OF BLUE AND GREAT TITS 

3.1. ABSTRACT  

Incubation is energetically demanding and, as an incubating bird partly relies on 

exogenous food sources for energy, food availability is likely to influence time spent 

in incubation. Here, I test the effects of food supplementation on the incubation 

behaviour of Blue and Great Tits during 2007-2009 with 2007 as a pilot year. 

Incubation in both Blue and Great Tits consists of periods off the nest (recesses) and 

periods on the nest (bouts) in which they perform a multitude of other more subtle 

behaviours such as bill pressing, tremble-thrusting and egg turning. By providing food 

ad libitum from approx. 4 weeks before egg laying to post-fledging, I investigated the 

effects of supplementary feeding on bout and recess lengths in Great Tits and daily 

incubation activity in Blue Tits. In both 2008 and 2009 supplementary feeding had a 

significant effect on recess lengths although the direction of effect was inconsistent 

between years; in 2008 supplemented female Great Tits had longer recess lengths, and 

in 2009 shorter recess lengths, compared with control (nonsupplemented) 

conspecifics. However, incubation bout lengths were equivalent across dietary 

treatments in both years. In Blue Tits supplementary feeding resulted in a decrease in 

daily incubation activity compared with control birds. My results provide evidence 

that food is a proximate factor that influences incubation behaviour. However, my 

results suggest that the effects of food supplementation on incubation behaviour are 

not always consistent between years highlighting that the exact effects of 

supplementary feeding may depend on other factors. 
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3.2. INTRODUCTION 

In Chapter Two I provided empirical evidence that the supplementation of food prior 

to and throughout nest construction has marked effects on the nest building of both 

Blue and Great Tits. Nests can play a key role in reproduction by contributing to 

parental care efforts in the maintenance of thermal conditions during incubation (e.g. 

Collias and Collias 1984, Kern et al. 1993) as part of the ‘bird-nest unit’ (Deeming 

2002a). In this chapter, I investigate the effects of supplementary feeding on 

incubation behaviour in both Blue and Great Tits.  

 

3.2.1. Incubation behaviour and food availability  

Incubation is the process by which eggs are maintained under optimal conditions of 

temperature and humidity for embryonic development (Deeming 2002a). In the 

majority of avian species stable egg temperature is achieved through the transfer of 

heat from the incubator’s brood patch. This is a ventral body area that undergoes 

dramatic morphological changes prior to the onset of incubation that allow for 

efficient heat exchange between the incubator’s body and the eggs (Lea and Klandorf 

2002). Such heat exchange is termed ‘contact incubation’ (Deeming 2002a). Transfer 

of heat during contact incubation is regulated through the adjustment of blood flow 

through the brood patch (Lea and Klandorf 2002) so that embryo temperature is 

maintained at 37-38°C, the optimal temperature for embryonic development 

(Deeming 2002a). During incubation nest humidity partially determines water loss 

from eggs and, as excessive or insufficient water loss may result in abnormal 

embryonic development (Ar and Sidis 2002), nest humidity must also be regulated. In 

contrast to the maintenance of egg temperature, nest humidity is not actively regulated 

through egg contact with the incubating bird during incubation. Instead, regulation of 
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nest humidity is achieved through a combination of nest characteristics (e.g. selection 

of nesting material, construction of the nest, nest location) and physiology (e.g. water 

vapour loss by evaporation from skin, respiratory tract evaporation) of the incubator 

(Ar and Sidis 2002).  

The incubator relies upon energy to fuel incubation. While some endogenous 

reserves may be mobilised to achieve this (e.g. Lesser Snow Goose [Chen 

caerulescens] – Ankney and MacInnes 1978, Brant Goose [Branta bernicla] – 

Ankney 1984) in small passerines the majority of energy is supplied from food which 

is either provided by the non-incubating partner visiting the nest or by foraging of the 

incubator in recess periods away from the nest (Deeming 2002a). The latter case is 

referred to as intermittent incubation when the incubator alternates time on the nest 

when eggs are warmed (the so-called incubation bout) with time off the nest when 

eggs cool (the so-called incubation recess). During this time the incubator restores 

depleted body reserves, conducts self-maintenance behaviours (e.g. preening) and 

may defend the territory (Skutch 1962, White and Kinney 1974, Deeming 2002a). 

Intermittent incubation strategies can be broadly classified into either biparental or 

single-sex incubation with the latter split further into male- or female-only incubation 

(Deeming 2002a). Female-only (gyneparental – Williams 1996, Deeming 2002a) 

intermittent incubation is common in many passerine species including the focal 

species of this study.  

Incubation behaviour of intermittent incubators is not defined simply by 

measurement of bout and recess lengths, but it may also involve a multitude of other 

more subtle behaviours. For example, incubated eggs are continuously turned and 

moved around changing both their orientation and location within the clutch 

(Deeming 2002b). ‘Egg turning’ is a common behaviour elicited by almost all species 
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of bird and functions to prevent the embryo from adhering to the inner shell 

membrane (e.g. New 1957, Drent 1975) and to promote the formation of sub-

embryonic fluid (e.g. Deeming et al. 1987, Babiker and Baggott 1995). Egg turning is 

vital during incubation since failure to turn eggs ultimately reduces the rate of 

embryonic development and hatchability (e.g. New 1957, Tullett and Deeming 1987, 

Deeming 1989). An incubating bird may also exhibit ‘tremble-thrusting’, a behaviour 

first described by Hartshorne (1962) while studying behaviour of Eastern Bluebirds 

(Sialia sialis) at the nest. Tremble-thrusting consists of the incubator adopting a head-

down position, forcefully poking its bill deep within the nest material while 

vigorously twisting its head and trembling (Hartshorne 1962, Haftorn 1994). This 

behaviour is thought to assist egg turning (Hartshorne 1962) and to maintain the 

insulatory properties of the nest by creating small air pockets (Haftorn 1994). 

Tremble-thrusting often accompanies ‘bill pressing’ (Haftorn 1994) where the 

incubator presses its bill against the material of the nest cup lining, tightening it, 

reducing heat loss and improving the insulation of the eggs (Haftorn 1994, Haftorn 

and Slagsvold 1995).  

Incubation is energetically expensive because there is a cost to re-warming 

and sustaining egg temperature as the incubator has to raise metabolic rates to 

increase heat production (Williams 1996, Tinbergen and Williams 2002). For 

example, numerous studies have demonstrated that the metabolic rate of an incubator 

exceeds that of a non-incubating conspecific under such conditions by 6-50% 

depending on the prevailing conditions and species (e.g. Vleck 1981, Haftorn and 

Reinertsen 1985, Weathers 1985). Energetic costs of incubation are further increased 

during periods when birds have to re-warm eggs (Vleck 1981) following a recess. 

Therefore, incubation is constrained by the availability of energy and, when energy is 
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limiting, the incubator may have to increase time spent foraging and in self-

maintenance (e.g. Skutch 1962, Nilsson and Smith 1988, Moreno 1989).  

Since food availability directly controls energy flow within the incubator, it is 

predicted to directly influence the time spent by the bird in self-maintenance and 

incubation (e.g. Martin 1987, Nilsson and Smith 1988, Moreno 1989). Numerous 

studies provide empirical evidence that food availability can influence incubation 

behaviour in this way (Table 3.1). For example, Rastogi et al. (2006) showed that 

Song Sparrows (Melospiza melodia) whose food availability was supplemented with a 

mixture of white proso millet, high fat/high protein pellets and oystershell during 

incubation had shorter recesses, longer bouts and, therefore, higher incubation 

attentiveness (total time spent on nest in a given period) than nonsupplemented 

conspecifics. As a result of increased incubation attentiveness, the risk of predation 

was reduced as the incubator had more time for nest guarding (Rastogi et al. 2006). In 

contrast, Karoo Prinia (Prinia maculosa) supplemented with mealworms had shorter 

recesses than nonsupplemented females whereas bouts did not differ in length 

(Chalfoun and Martin 2007). 

While previous studies have investigated the effects of food availability on 

incubation behaviour, the majority have failed to consider the effects on the duration 

of incubation. Only a few studies have considered them, but they have provided 

inconsistent findings. For example, while some studies have demonstrated that 

supplementary feeding shortens incubation periods (e.g. Moreno 1989, Zimmerling 

and Ankney 2005), others  
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Table 3.1. Studies of the incubation biology of species in response to food availability including information about species, food type (S –  

supplemented; N – natural), incubation strategy (G – gyneparental [female-only with mate feeding]); U – uniparental [female-only without mate 

feeding]), and effects on various incubation parameters (↓ : decreased; = no change in response to food availability; ↑ : increased; – : data not 

available). Note: Common and scientific names of species follow Gill and Wright (2006).

Species common name Species 

scientific name 

Food 

type 

Incubation parameter Reference 

   strategy bout length recess length attentiveness period  

New Zealand Robin Petroica 

australis 

N G ↓ ↓ = n/a Boulton et al. (2010) 

Karoo Prinia Prinia 

maculosa 

S U = ↓ ↑ n/a Chalfoun and Martin (2007) 

Australian Reed Warbler Acrocephalus 

australis 

S U ↑ ↓ ↑ n/a Eikenaar et al. (2003) 

Bewick’s Wren Thryomanes 

bewickii 

S G ↑ = ↑ = Pearse et al. (2004) 

House Wren Troglodytes 

aedon 

S U ↑ = ↑ = Pearse et al. (2004) 

Northern Mockingbird Mimus 

polyglottos 

S U n/a ↓ ↑ n/a Londoño et al. (2008) 

Northern Wheatear Oenanthe 

oenanthe 

S U = ↓ ↑ ↓ Moreno (1989) 

European Pied Flycatcher Ficedula 

hypoleuca 

S G n/a ↓ ↑ n/a Smith et al. (1989) 

Water Pipit Anthus 

spinoletta 

N G ↑ n/a ↑ n/a Rauter and Reyer (1997) 

Red-winged Blackbird Agelaius 

phoeniceus 

N G ↑ ↓ ↑ ↓ Zimmerling and Ankney 

(2005) 

Song Sparrow Melospiza 

melodia 

S U ↑ ↓ n/a n/a Rastogi et al. (2006) 
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have demonstrated a significant effect on various aspects of incubation behaviour but 

no overall effect on incubation period (e.g. Pearse et al. 2004). 

Recent findings from my study population in Chaddesley Woods National 

Nature Reserve have provided evidence that supplementary feeding from approx. 4 

weeks before egg laying and through incubation resulted in a truncation of incubation 

period in both Blue and Great Tits (Harrison et al. 2010). However, little is known 

beyond this. Both of these parid species exhibit assisted gyneparental (i.e. female-

only) incubation which lasts approx. 12-13 days (Perrins 1979, Williams 1996). While 

bouts and recesses occur throughout daylight hours (Hinde 1952, Perrins 1979), more 

discrete incubation behaviours, such as tremble-thrusting (Hartshorne 1962), are 

commonly elicited both throughout daylight hours and at night (e.g. Haftorn 1994, 

Deeming 2002b).  

 Here, I investigate the effects of supplementary feeding on incubation 

behaviour of Great Tits, by quantifying incubation bout and recess lengths, and Blue 

Tits by quantifying overall time spent in ‘Daily Incubation Activity’ (hereafter 

referred to as ‘DIA’). In this study DIA describes the activity which occurs on the nest 

over a 24-hr period during incubation and reflects arrival and departures from the nest 

by the incubator, and also more subtle discrete behaviours such as tremble-thrusting, 

bill pressing and egg turning. I hypothesised that supplementary feeding would partly 

alleviate the energetic and temporal constraints on foraging, allowing incubating 

females to invest more heavily in incubation and less time in self-maintenance. I 

predicted that supplementary feeding would: (i). increase DIA of Blue Tits; (ii). 

decrease incubation recess lengths of Great Tits because energy demands can be 

satisfied more rapidly; and (iii). increase incubation bout lengths of Great Tits.  
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3.3. METHODS 

3.3.1. Study site and supplementation 

The study area, food supplements and food supplementation procedures were the 

same as described in Section 2.2.1. However, since this is a multi-year study I 

attempted to control for potential habitat effects by rotating dietary treatments 

between years (see Fig. 3.1 for details). 

 

Figure 3.1. Allocation of supplementary and control (nonsupplemented) dietary 

treatments (see text for details) to areas of Chaddesley Woods National Nature 

Reserve, Worcestershire, UK where Great and Blue Tits were breeding between 2007 

and 2009.  

 

3.3.2. Incubation behaviour 

Nestboxes were checked every 3-4 days to determine clutch initiation date from either 

direct observation of the first egg appearing or by back counting when more than one 

egg was present as Blue and Great Tits typically lay one egg every day around sunrise 

(Perrins 1979) until clutch completion. Thereafter, nestboxes were checked every 1-2 

days to determine clutch completion date, clutch size and the onset of incubation, 

characterised by either the presence of an incubating female sitting tightly on the 

clutch or uncovered, but warm, eggs. 
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3.3.3. Temperature loggers – Blue and Great Tits (2007 – pilot year) 

To investigate DIA Thermochron® iButton® loggers (Maxim Integrated Products., 

Sunnyvale, CA, USA; Fig. 3.2) (hereafter referred to as the ‘iButton® logger’) were  

 

Figure 3.2. A Thermochron iButton® logger used to study the incubation behaviour 

of Blue and Great Tits breeding in Chaddesley Woods National Nature Reserve in 

2007-2009. It is placed next to a 10 mm scale (Photo: N. Day). 

 

used. They are programmable, small (16 mm in diameter and 6 mm in thickness), 

durable temperature loggers that contain an in-built power supply and provide a 

means of recording thermal data (Maxim Integrated Products 2010). I employed 

iButton® logger model DS1922L (hereafter referred to as ‘nest logger’) to investigate 

DIA. These are thermally sensitive between -40°C and +85°C allowing the collection 

of thermal data that reflect both the temperature of the incubating female’s brood 

patch, which is maintained near to the optimal temperature for incubation (approx. 

38°C – Deeming 2002a), and ambient temperature throughout the breeding season. 

The use of such a device allowed the collection of data which reflected the arrival and 

departure from the nest of an incubating bird. In addition, because egg temperature 

changes vertically across an egg, being warmest at the surface which is in contact with 

the brood patch and coolest at the surface which is in contact with the nest substrate 
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on the lower side (see Ar and Sidis 2002), thermal data obtained from a nest logger 

was likely to reflect egg turning rates and other subtle incubation behaviours that 

constituted DIA. The large memory capacity (8192 bytes which allows the collection 

of 8192 data points) of the DS1922L device allowed data collection over the majority 

of the incubation period for both Blue and Great Tits (approx. 12-13 days for both 

species – Perrins 1979, Harrison et al. 2010).  

To determine DIA of Blue and Great Tits in 2007, nest loggers were 

programmed using OneWireViewer® software (Maxim Integrated Products., 

Sunnyvale, CA, USA) to record temperatures every 2 mins over an 11-day period. At 

the onset of incubation, upon departure of an incubator from a focal nestbox, a 

programmed nest logger was inserted at the top of the nestcup in close proximity to 

the top of the clutch, taking care not to disturb the eggs. Nest-lining material (fur or 

feathers) was used to cover the nest logger to avoid abrasion against the eggs. As a 

mean incubation period of 12-13 days was expected for both species (Perrins 1979), 

nestboxes were checked daily from day 10 of incubation to determine hatch date. Nest 

loggers were then carefully removed from nestboxes when brooding parent(s) were 

absent from the nestbox, and data were downloaded using the OneWireViewer® 

software. 

During hatch checks, however, it was noted that some nest loggers had been 

either buried deep within the nesting material or removed from the nest by incubating 

birds. These behaviours were more common in Great Tits and, as a result, their use to 

record the DIA of this species was discontinued early in the 2007 breeding season.  

 

3.3.4. Initial focal watches – Great Tits (2007 – pilot year) 
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As a result of problems with nest logger retention in Great Tit nestboxes (see above), 

focal nestboxes were, thereafter, directly observed or filmed using a Sony Handycam 

DCR-SR90E mounted on a tripod to investigate incubation behaviours of Great Tits 

from 2007 to 2009. 

To minimise disturbance during filming, video cameras were set up away from 

the focal nestbox and then carefully positioned as far away as possible whilst still 

being able to obtain a clear view of the nestbox entrance hole. After their 

establishment, I quietly moved away ensuring I was not in close proximity to the 

nestbox so as not to disturb the incubating female. To minimise disturbance during 

focal watches, I made myself inconspicuous by positioning myself as far away as 

possible from nestboxes using trees and shrubs as cover whilst still being able to 

observe the nestbox entrance hole. Focal watches were initiated when the bird was 

observed arriving or departing from the nestbox. Arrival and departure times of birds 

at nestboxes were noted using a watch during direct observation in the field or from 

the time trace upon playback of video footage after the breeding season. Only the 

female incubates the eggs (see above) and any visits made by the male to the nestbox 

are usually to provide food to the female and are short in duration (e.g. Hinde 1952, 

pers. obs.). Therefore, female and male visits to the nestbox could be distinguished 

according to the observed behaviour. Incubation bout and recess lengths (of females) 

were calculated from her arrival and departure times at the nestbox. The expected 

bout and recess lengths of Great Tits are approx. 30 and 10 mins, respectively (e.g. 

Hinde 1952, Perrins 1979, Gosler 1993). Therefore, to obtain successive measures of 

both bout and recess lengths, focal watches were conducted over a 3-hr period starting 

8-9 hrs after sunrise to control for diurnal variation in incubation behaviour (Hinde 

1952). At the point that I abandoned the methodology using nest loggers (see above) 
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in favour of focal watches in 2007 many of the breeding Great Tits were in the later 

stages of incubation (i.e. at day 8 or beyond). To standardise the day on which focal 

watches were conducted, in the event that incubation behaviour changed with day of 

the incubation period, all focal watches during 2007 were conducted on day 10 of 

incubation. 

 

3.3.5. Use of temperature loggers in 2008 and 2009 – Blue Tits 

Although the majority of nest loggers placed in Blue Tit nests during 2007 had not 

been removed by the incubating bird, many had been partially buried in the nesting 

material. Initial inspection of temperature traces from buried nest loggers revealed 

that data resolution was poor (compare Fig. 3.3a and Fig. 3.3b), presumably as a result 

of the insulating properties of the nest material surrounding the device. Therefore, 

during 2008 and 2009, the initial approach was modified to overcome the burial of 

nest loggers by creating a mechanism to enable nest loggers to be physically attached 

to the nest. Prior to their deployment, nest loggers were glued using small pieces of 

double-sided adhesive tape to shirt buttons of similar diameter (approx. 15 mm) 

through which a length (approx. 20 cm) of garden wire was threaded to secure the 

nest logger to the nestbox (Fig. 3.4a). The thermal sensors within all models of 

iButton® logger are positioned closer to the bottom surface, which is more thermally 

sensitive than the top surface (C. Cooper pers. comm.), and is distinguished from the 

top surface by the absence of inscribed product information (Fig. 3.2). Therefore, all 

nest loggers were glued to shirt buttons using the top surface before being 

programmed as in 2007. 

 As in 2007, nestboxes were visited every 1-2 days to determine the onset of 

incubation. At this time a nest logger was secured to the nest by threading the attached 
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Figure 3.3. Recorded 24-hr ambient temperature traces and those from nest loggers: 

(a) buried beneath nest material showing low resolution of nest temperature; and (b) 

in close proximity to an incubating Blue Tit showing high resolution of nest 

temperature. Traces are from nest loggers placed in separate Blue Tit nests in 

Chaddesley Woods National Nature Reserve in 2007.  

 

 

Figure 3.4. Attachment of nest loggers at the nest with wire: (a) fed through a shirt 

button that has been glued to the device; (b) secured on the outside of the nestbox 

after passing out of a nestbox drainage hole; and (c) directly tied into the nest 

substrate (Photos: N. Day and J. A. Smith). 
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garden wire though the nesting material and out of the nestbox drainage hole, securing 

it externally with a short twig (Fig. 3.4b). The nest logger was then positioned in the 

nest as in 2007 (Fig 3.4c). To minimise damage to nests through the repeated probing 

of garden wire, a large darning needle was used to allow the wire to be threaded 

through the nest with ease. 

In order to control for the ambient temperature in the nestbox during 

subsequent data analysis (see Fig. 3.3), it was monitored using another iButton® 

logger type (model DS1921G, hereafter referred to as ‘ambient logger’) that was 

thermally sensitive between -40°C and +85°C. This has a smaller memory capacity 

than the DS1922L used in nests (2048 compared to 8192 bytes) and was, therefore, 

programmed to record temperatures at intervals of 8 mins. Each ambient logger was 

positioned at the onset of incubation at the centre of the back wall of the nestbox 

approx. 2 cm below the nestbox lid. As in 2007, egg hatch checks were conducted and 

ambient loggers were removed once hatching had occurred and data were 

downloaded.   

 

3.3.6. Focal watches in 2008 and 2009 – Great Tits 

To maximise data collection in 2008 and 2009 focal watches were conducted on a 

randomly chosen day between days 3 and 9 of incubation, but in all other respects 

focal watches were as conducted in 2007. This approach was justified since full 

daytime incubation does not develop until 2-3 days after the onset of incubation 

(Haftorn 1981). Once a regular incubation pattern is established, incubation constancy 

(i.e. the total time that an incubating bird is on the nest during incubation – Skutch 

1962), is consistent throughout the rest of the incubation period (Zerba and Morton 

1983).  
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3.3.7. Data analysis from temperature loggers 

Data from all nest loggers were visualised using the chart function in Excel to 

determine data quality. Data were considered to be of low quality when the average 

temperature detected was <25°C and the low resolution of temperature fluctuations 

made it problematic to determine if, and when, incubation behaviours occurred (Fig. 

3.3a). Such data were omitted from statistical analyses.   

Initial observations of nest logger data revealed that temperature fluctuations 

occurred continuously over a 24-hr period and at regular intervals (5-10 mins), 

thereby providing information about incubation activities of Blue Tits (Fig. 3.5). 

 

Figure 3.5.  A 24-hr temperature trace from a nest logger placed in the nest of an 

incubating Blue Tit in Chaddesley Woods National Nature Reserve in 2007. The trace 

shows nest temperature with marked temperature fluctuations (A) throughout the 

night, and periods of more subtle temperature fluctuations (B) punctuating the trace 

throughout the day.  

 

To quantify DIA (reflecting arrival and departures from the nest by the incubator and 

other subtle incubation behaviours), nest logger data were separated into 24-hr blocks 
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(00.00-23.59 hrs GMT) for each day of incubation and each block was then plotted as 

a line plot in Excel and analysed. 

I counted the number of times temperature shifted in direction (i.e. from 

increasing to decreasing or vice versa – Fig. 3.6a), and the number of times  

 

Figure 3.6.  Temperature traces from a nest logger placed in the nest of an incubating 

Blue Tit in Chaddesley Woods National Nature Reserve in 2009 showing (a) shifts in 

temperature directions (1, 2 and 3), and (b) shifts in temperature to and from a period 

of constant temperature (1 and 2) (see text for details). 

 

temperature shifted to and from a period of constant stable temperature (Fig. 3.6b). I 

assumed that all temperature shifts reflected female movement associated with 

incubation behaviour. Data were collected for all days of incubation, providing 

repeated measures for each nestbox, apart from the partial days when nest loggers 

were deployed and hatching occurred. In addition, if a bird appeared to ‘abandon’ the 

nest for a period of >4 hrs, data from that day were discounted as it was assumed that 

this did not represent routine incubation behaviour (Fig. 3.7). 
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Figure 3.7. A 24-hr temperature trace from a nest logger (black line) and an ambient 

logger (grey line) placed in a nestbox of an incubating Blue Tit in Chaddesley Woods 

National Nature Reserve in 2009 showing a prolonged recess length or period of 

‘abandonment’ (*).   

 

3.3.8. Summary of data to be presented 

 Incubation bout and recess lengths of Great Tits breeding in 2007-2009 

collected using focal watches. Both bout and recess lengths were measured in 

secs (see Section 3.3.6) 

 Daily Incubation Activity (DIA), reflecting arrival and departures from the 

nest of the incubator and subtle incubation behaviours (including egg turning, 

tremble-thrusting and bill pressing) of Blue Tits breeding in 2007-2009 

collected using nest loggers. DIA was measured as temperature shifts per 24-

hr period (see Section 3.3.7) 

 

3.3.9. Statistical analysis 
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Due to small sample sizes in 2007 (focal watches: n = 4 per treatment block; nest 

loggers: n = 5 per treatment block), only data collected in 2008 and 2009 were 

considered in statistical analyses. Mixed models were constructed using PROC 

GLIMMIX in SAS version 9.2 (SAS Institute Inc. 2008) to test for the effects of 

supplementary feeding on individual response variables. Average bout and recess 

lengths were tested for normality using the Anderson-Darling Test and for 

homogeneity of variance using the F-test in Minitab 15 (Minitab 2007). Both were log 

transformed to normalise their distributions and then fitted with normal error 

distributions after examination of model fit (Generalised Chi-Square/DF = approx. 1). 

DIA was fitted with a Poisson error distribution.  

In models where average bout or recess length was the response variable, 

treatment block and day of incubation of focal watch were specified as random factors 

due to the repeated measures treatment block and incubation day data. Ideally, 

nestbox nested in treatment block would have been included as a random factor too 

but there was insufficient power in either model to allow for this. For DIA as the 

response the variable nestbox nested in treatment block was specified as a random 

factor to account for repeated measures on nestboxes both within and between years. 

In all analyses year was included as a fixed factor to account for potential annual 

variation in breeding performance (Nager et al. 1997). Combined-year analysis was 

conducted if there was no significant interaction between dietary treatment and year 

(year × dietary treatment: P > 0.05) and no main effect of year (year: P > 0.05). 

Otherwise independent year analyses were performed.  

For all analyses, clutch size and clutch completion date were included as 

covariates as they both may affect incubation behaviour (e.g. Haftorn and Reinertsen 

1985, Moreno and Carlson 1989). Since ambient temperature may also influence 
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incubation behaviour (e.g. Conway and Martin 2000a,b), average daily ambient 

temperature was also included as a covariate. For DIA analyses ambient temperatures 

collected from each focal nestbox were used. However, to calculate average daily 

ambient temperatures for the days in which focal watches were conducted, I used data 

recorded by ambient loggers in nestboxes of Blue Tits. Average daily temperatures 

from all ambient loggers deployed throughout the study site were then combined and 

averaged for each day to reflect average daily ambient temperature across the study 

site. To determine if the effects of covariates were consistent between treatment 

blocks, covariate × dietary treatment interactions were tested independently of one 

another within each model. Where multiple covariate × dietary treatment interactions 

were significant they were both included in the model as long as each stayed 

significant (Grafen and Hails 2002). I performed backward model selections removing 

the least non-significant covariate interactions (P > 0.05) one-by-one from models 

ensuring that there was no significant change in deviance between models where 

applicable (Grafen and Hails 2002). 

 

3.4. RESULTS 

3.4.1. DIA (Blue Tits) 

Combined-year analysis was conducted since there was no significant interaction 

between dietary treatment and year (year × dietary treatment: P > 0.05) and no main 

effect of year (year: P > 0.05) on DIA. Supplementary feeding significantly decreased 

DIA in Blue Tits (F1,398 = 4.13, P = 0.04; Fig. 3.8 and Table 3.2). Average daily 

temperature as a covariate further explained variation in DIA (DIA increased with 

increasing daily temperature – F1,398 = 4.04, P = 0.05) as did a clutch size × dietary 

treatment interaction (DIA was positively correlated with clutch size in the 



Chapter Three                                                                                                          Supplementary feeding and incubation behaviour 

 79 

nonsupplemented block and negatively correlated with clutch size in the 

supplementary fed block). 

 

Figure 3.8. Daily incubation activity (mean ± 1 SE from statistical estimates) of 

control (nonsupplemented) and supplemented Blue Tits breeding in Chaddesley 

Woods National Nature Reserve in 2008 and 2009. The number of nests (n) is given 

above each bar. 

 

3.4.2. Bout lengths (Great Tits) 

Combined-year analysis was conducted since there was no significant interaction 

between dietary treatment and year (year × dietary treatment: P > 0.05) and no main 

effect of year (year: P > 0.05) on bout length. Supplementary feeding had no 

significant effect on the average bout lengths of Great Tits (F1,60 = 2.62; P = 0.11; Fig. 

3.9 and Table 3.2).  

 

3.4.3. Recess lengths (Great Tits) 

Recess length data were treated separately for each year of study following a 

significant year × treatment effect (F1,253 = 5.24, P = 0.03; Table 3.2). In both 2008 

and 2009 supplementary feeding had a significant effect on recess lengths of Great 

Tits (2008: F1,24 = 5.82, P = 0.02; 2009: F1,26 = 5.53, P = 0.03; Table 3.2). However, 
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Table 3.2. Results from the final statistical models (see text for details) explaining measurements of incubation behaviour in control 

(nonsupplemented/N) and supplemented (S) Blue (BT) and Great (GT) Tits breeding in Chaddesley Woods National Nature Reserve in 2008 and 

2009. Significant main and interaction effects are given in bold. Directions of significant effects are given ‘+’ and ‘-‘ denote significant positive 

and negative relationships, respectively, and ‘NS’ denotes nonsignficance (P > 0.05). 

       Least square means (SE)  

Response variable Species Year Factor F df P Nonsupplemented Supplemented Direction 

Incubation bout length GT 2008+2009 Dietary treatment 2.62 1,60 0.11 1299.27(109.04) 1524.05(87.71) NS 

   Year 1.28 1,60 0.26   NS 

Incubation recess length GT 2008+2009 Dietary treatment 0.16 1,53 0.92 457.09(79.94) 489.78(59.76) NS 

   Year 4.67 1,53 0.04   2008 = longest; 2009 = shortest 

   Ambient temperature 4.04 1,53 0.05   + 

   Year × dietary treatment 5.14 1,53 0.03    

 GT 2008 Dietary treatment 5.82 1,24 0.02 424.62(74.26) 691.83(84.42) N = shortest; S = longest 

 GT 2009 Dietary treatment 5.53 1,26 0.03 537.03(93.93) 338.84(32.69) N = longest; S = shortest 

   Clutch completion date 7.21 1,29 0.01   - 

Daily incubation activity BT 2008+2009 Dietary treatment 4.13 1,398 0.04 247.28(4.91) 242.82(3.89) N = highest; S = lowest 

   Year 1.49 1,398 0.23   NS 

   Ambient temperature 4.04 1,398 0.05   - 

   Clutch size 1.53 1,398 0.22   NS 

   Clutch size ×  dietary 

treatment 

4.88 1,398 0.03   N = +; S = - 
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Figure 3.9. Average bout lengths (mean ± 1 SE from statistical estimates) of control 

(nonsupplemented) and supplemented Great Tits breeding in Chaddesley Woods 

National Nature Reserve in 2008 and 2009. The number of nests (n) is given above 

each bar. 

 

the effect of supplementary feeding on the recess lengths of Great Tits was opposite 

between years with recess lengths of supplemented Great Tits being shorter in 2008 

but longer in 2009 (Fig. 3.10).  

 

Figure 3.10. Average recess lengths (mean ± 1 SE from statistical estimates) of 

control (nonsupplemented) and supplemented Great Tits breeding in Chaddesley 

Woods National Nature Reserve in 2008 and 2009. The number of nests (n) is given 

above each bar.
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3.5. DISCUSSION 

I hypothesised that supplementary feeding would partly alleviate the energetic and 

temporal constraints on foraging, allowing incubating females to invest more heavily 

in incubation and less time in self-maintenance. I only found partial support for this 

hypothesis. Contrary to it, supplemented Blue Tits had a lower DIA than 

nonsupplemented conspecifics while supplemented Great Tits in 2008 had longer 

recess lengths than nonsupplemented conspecifics. In support of the hypothesis, I 

found that supplemented Great Tits in 2009 had shorter recess lengths than 

nonsupplemented conspecifics but I found no effect on bout lengths of Great Tits in 

either 2008 or 2009. 

 

3.5.1. Effect of supplementary feeding on DIA of Blue Tits 

Supplementary feeding decreased (rather than increased) DIA of birds. DIA reflects 

arrival and departure of birds, tremble-thrusting, bill pressing and egg turning and, 

therefore, differences in any of these behaviours between treatments could have 

contributed to my overall measure of DIA. The primary function of tremble-thrusting 

during incubation is to increase the insulating properties of the nest by creating small 

air pockets (Haftorn 1994). Although I do not have data regarding the types of nest 

material or nest insulatory properties, it is possible that supplemented Blue Tits 

constructed nests with higher insulatory properties (e.g. down feathers rather than 

moss – Hilton et al. 2004) than nonsupplemented birds (see Section 2.4). Therefore, 

the amount of tremble-thrusting exhibited by supplemented birds might be decreased 

over that of nonsupplemented birds as a result of having more insulated nests.  

 In my study population supplemented Blue Tits lay smaller clutches than their 

control counterparts (Harrison et al. 2010). Although I do not have data reflecting the 
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extent of egg turning behaviour, it is possible that supplementary fed Blue Tits spent 

less time egg turning during incubation than their control counterparts as a direct 

consequence of having fewer eggs. If egg turning behaviour is reflected through the 

data loggers then such inconsistencies in egg turning behaviour between 

supplemented and nonsupplemented Blue Tits could account for the differences 

observed in DIA. However, caution should be taken when interpreting DIA since it is 

unclear exactly what behaviours are reflected in data from the nest loggers. 

 

3.5.2. Effect of supplementary feeding on bout lengths of Great Tits 

In support of my predication that supplemented birds would have longer bout lengths 

than nonsupplemented birds, a number of studies (see Table 3.1) have found that 

supplementary feeding enables incubators to increase incubation bout lengths and nest 

attentiveness suggesting that supplemented birds are less energetically constrained 

than nonsupplemented conspecifics. In contrast, I found no significant effect of 

supplementary feeding on incubation bout lengths in either 2008 or 2009. In my study 

supplementary food was available to both sexes but I only considered its effects on 

female behaviour. In both Blue and Great Tits males feed females during incubation, a 

behaviour known as incubation feeding (Nilsson and Smith 1988). When food is 

abundant, however, the time budget of a male may be adjusted if the energetic 

demands of the female are already satisfied through self-feeding. For example, male 

Bewick’s Wrens (Thryomanes bewickii) decreased their rate of incubation feeding to 

females that were supplemented with mealworms during incubation suggesting that 

incubation feeding rates were regulated according to the nutritional state of the female 

(Pearse et al. 2004). In my study it is possible that incubation feeding rates of 

nonsupplemented males were higher than those of supplemented males in order to 
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satisfy the energetic demands of nonsupplemented females. While food 

supplementation may have enabled females to increase bout lengths compared with 

nonsupplemented birds, a disparity in incubation feeding rates between 

nonsupplemented and supplemented males may have resulted in the nutritional and 

energetic states of females in both dietary treatments being equivalent, resulting in 

equivalent bout lengths. 

 

3.5.3. Effect of supplementary feeding on recess lengths of Great Tits 

In 2009 supplementary feeding resulted in shorter recess lengths of birds suggesting 

that increased food availability alleviated the energetic and temporal costs of foraging, 

thereby allowing them to reduce time away from the nest. These results support my 

prediction that supplementary feeding would reduce recess lengths and are consistent 

with previous studies that have demonstrated that supplementary food decreases 

recess lengths (see Table 3.1). Birds that reduce time away from the nest are likely to 

accrue fitness benefits through reductions in predation risk (Martin and Ghalambor 

1999, Conway and Martin 2000a, Martin et al. 2000a) and sustained egg temperature 

that prevents then from falling below physiological zero, the temperature at which 

embryonic development suspends (Turner 2002). This reduces the potential of 

associated adverse effects on embryonic development (e.g. Feast et al. 1998, Olsen et 

al. 2008).  

 In contrast to findings in 2009, supplementary feeding in 2008 resulted in 

longer recess lengths than those of nonsupplemented birds. A difference between 

years in natural food availability and the time budget of males could partly explain the 

inconsistency in findings across years. For example, during incubation males must 

budget time and energy accordingly between activities (e.g. incubation feeding, 
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territoriality, partaking in EPC) to maximise fitness benefits (e.g. Sibley and 

McFarland 1976, McFarland 1977). When food is abundant, time allocated towards 

defending a feeding territory may be reduced since the costs of territorial behaviour 

may exceed the associated benefits of gaining additional resources (Carpenter 1987). 

Under these circumstances a male may be able to allocate more time and energy 

towards incubation feeding (Nilsson and Smith 1988).  In this study I do not have data 

on the availability of natural food during incubation. However, if natural food 

abundance during incubation was high during 2009, then it is possible that the 

additional supplementary food enabled supplemented males to reduce the time spent 

in territorial behaviour compared to nonsupplemented conspecifics and allocate more 

towards incubation feeding. An increase in incubation feeding would partly alleviate 

the energetic and temporal costs of foraging, thereby allowing females to reduce time 

spent away from the nest to forage. In contrast, if natural food abundance was low 

during 2008, then it is possible that the additional supplementary food resulted in 

supplemented males allocating more time and energy towards territoriality than 

nonsupplemented conspecifics since the benefits of gaining additional resources could 

have exceeded the costs of territorial behaviour. A subsequent reduction in incubation 

feeding by supplemented males may have resulted in supplemented females in 2008 

having to spend more time and energy in satisfying their own nutritional and energetic 

demands than nonsupplemented conspecifics resulting in longer recess lengths.  

 

3.5.4. Mechanisms underlying incubation periods of my study population 

Food supplementation results in truncation of the incubation period of both Blue and 

Great Tits in my study population and this effect is consistent between years (Harrison 

et al. 2010). Although changes in incubation behaviour have been shown to underlie 
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changes in incubation period, with increased incubation bouts and nest attentiveness 

being associated with shorter incubation periods (Moreno 1989, Zimmerling and 

Ankney 2005), mechanisms underlying such incubation patterns in my study 

population remain unclear.  

Supplemented females may be able to maintain egg temperature at the optimal 

temperature for embryonic development (i.e. approx. 38°C – Deeming 2002a) more 

successfully than nonsupplemented (control) females through meeting the energetic 

demands of incubation more readily. Challenges to the incubating bird can include 

declines in ambient temperature that can result in reduced rates of embryonic 

development if the incubating bird does not invest more time and energy by 

prolonging bout lengths (e.g. Booth 1987, Martin et al. 2007). Even marginal 

reductions in ambient temperature (e.g. by 1-2°C) can prolong incubation by 1-2 days 

(e.g. Domestic Fowl [Gallus gallus] – Deeming and Ferguson 1991).  

 

3.5.5. Further considerations and directions  

In this study I have discussed the effects of supplementary feeding on incubation 

behaviour primarily in consideration of how supplementary feeding may affect 

allocation of time and energy between behaviours associated with incubation and self-

maintenance (e.g. foraging). However, as incubation behaviour is likely to be state-

dependent, incubation rhythms may vary with the body condition of the incubator 

(e.g. Erikstad 1986, Gorman and Nager 2003). For example, individual body 

condition (i.e. residuals of body mass regressed on head-bill length) of female Tree 

Swallows (Tachycineta bicolor) influenced incubation behaviour with individuals in 

better body condition having higher incubation attentiveness (Ardia and Clotfelter 

2006). Since food availability may influence body condition (e.g. Schoech 1996, 
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Cucco and Malacarne 1997), it is possible that differences in the body condition of 

incubating females between the dietary treatments underlie the results of my study. 

However, I did not collect body condition data of incubating females and, therefore, 

future research should consider this in investigations of incubation behaviour. 

I have provided empirical evidence that food supplementation prior to and 

throughout incubation has marked effects on both recess lengths of Great Tits and on 

DIA of Blue Tits but not on bout length of Great Tits. However, my findings do not 

explain the truncation of the incubation period as a result of supplementary feeding as 

reported by Harrison et al. (2010) from the same population. Future studies should 

further consider subtle incubation behaviours through the use of telemetric eggs, for 

example, that accurately quantify egg turning rates (Boone and Mesecar 1989). 

Furthermore, direct measurements of egg temperature, in addition to energetic 

expenditure of incubating females, are likely to add to our knowledge of how 

supplementary feeding influences incubation behaviour.  

 

3.5.6. The next chapter 

Successful incubation results in egg hatching and, in altricial species, hatching 

initiates the onset of the nestling period in which the adults provide food, through 

brood provisioning, and warmth to the developing nestlings (Bennett and Owens 

2002). While food availability is likely to limit reproduction and influence life-history 

traits (Martin 1987), the allocation of energy and nutrients from exogenous food 

sources is likely to vary across different reproductive stages (Martin 1987). With my 

findings showing a significant effect of supplementary feeding on incubation 

behaviour, I will now investigate the effect of supplementary feeding on brood 

provisioning behaviour in Chapter Four.
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Chapter Four  

 

THE EFFECTS OF SUPPLEMENTARY FEEDING ON BROOD PROVISIONING 

BEHAVIOUR OF BLUE AND GREAT TITS 

4.1. ABSTRACT 

Brood provisioning behaviour is fundamental to the growth and survival of nestlings 

but is energetically costly. Therefore, parents must balance the time spent 

provisioning food to nestlings against that spent in self-maintenance to maximise 

energy delivered to nestlings without compromising their own energy balance. As 

food should alleviate energetic and temporal costs of self-maintenance, supplementary 

feeding provides a means of investigating provisioning behaviour and the trade-off 

between self- and alloprovisioning. I studied the effects of food supplementation on 

brood provisioning behaviour, nestling condition and post-fledging apparent survival 

of Blue and Great Tits between 2007 and 2009. Food supplementation had significant 

effects on both brood provisioning rates and post-fledging apparent survival but the 

direction of the effects was inconsistent between years. In contrast, supplementary 

feeding had no effect on nestling condition. As an index of natural food availability, 

the relative abundance of caterpillars (Winter Moth [Operophtera brumata] and 

Geometridae spp.) was determined throughout the study period.  I use these data to 

suggest that the inconsistent effects of supplementary feeding on brood provisioning 

behaviour between years may partly result from inter-year differences in natural food 

availability.  
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4.2. INTRODUCTION 

In Chapter Three I provided empirical evidence that food supplementation prior to 

and throughout incubation has marked effects on incubation behaviour. I showed 

significant effects on incubation recess length in Great Tits and DIA of Blue Tits but 

not on incubation bout length of Great Tits. Successful incubation results in egg 

hatching and in altricial species this initiates the nestling period in which the adults 

provide food (referred to hereafter as brood provisioning) and warmth to the 

developing nestlings (Bennett and Owens 2002). While food availability is likely to 

limit reproduction and influence life-history traits (Martin 1987), the allocation of 

energy and nutrients from exogenous food sources is likely to vary across different 

reproductive stages (Martin 1987). Therefore, with my findings showing a significant 

effect of supplementary feeding on incubation behaviour, in this chapter I investigate 

the effect of supplementary feeding on brood provisioning behaviour. 

 

4.2.1. Brood provisioning and food availability  

Nestlings of altricial species rely on parental food provisioning to meet their energetic 

and nutritional demands (O’Connor 1984). Food is critical for nestling growth, 

development and survival, and body mass at fledging in many species is directly 

related to the likelihood of survival to adulthood, and to subsequent breeding (e.g. 

Smith et al. 1989, Naef-Daenzer et al. 2001, Monrós and Barba 2002). Where parental 

feeding does not meet the food demands of the nestlings, constraints on nestling 

growth may be imposed and this can result in brood reduction, lower body masses at 

fledging, and a reduction in post-fledging survival (e.g. Nur 1984, Naef-Daenzer and 

Keller 1999, Ringsby et al. 2009). 
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Although brood provisioning is clearly fundamental to reproductive success of 

birds, such behaviour is costly to the parents. Repeated parental visits to the nest are 

likely to increase the risk of predation (Martin et al. 2000b) while foraging behaviour 

is energetically demanding (reviewed in Bryant and Tatner 1991). Therefore, during 

brood provisioning, the adult must provide food for not only its nestlings but also for 

self-maintenance to fuel its metabolism to sustain provisioning efforts (Ydenberg et 

al. 1994, Ydenberg 1998). Therefore, the provisioning adult must balance these two 

energetic demands (i.e. maximise energy delivered to nestlings without compromising 

its own energy balance – Nur 1984, Kacelnik and Cuthill 1990, Ydenberg et al. 1994). 

Brood provisioning and overall investment in current young, therefore, can be viewed 

as a trade-off between the potential fitness benefits of offspring production versus 

adult survival to breed again; they should be optimised to maximise life-time fitness 

benefits (Nur 1984, Kacelnik and Cuthill 1990). 

As food should alleviate energetic and temporal costs of self-maintenance, it is 

likely to influence parental investment in brood provisioning and, subsequently, 

offspring survival. Therefore, when natural foods are available over a brief period, 

birds should time their breeding so that the peak energetic demand of nestlings 

coincides with the peak in natural food availability (e.g. van Noordwijk et al. 1995, 

Thomas et al. 2001). This will allow maximisation of investment in brood 

provisioning, resulting in high nestling growth rates and development (e.g. Goodbred 

and Holmes 1996, Naef-Daenzer and Keller 1999). For example, Blue and Great Tits 

time their breeding so that the peak energetic demand of nestlings coincides with the 

peak in the abundance of caterpillars (Winter Moth [Operophtera brumata] and other 

Geometridae spp. – Gibb 1950, van Noordwijk et al. 1995), the preferred foods for 

brood provisioning by both Blue and Great Tits (Perrins 1965, 1991, Wilkin et al. 
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2009b). When a mismatch between these peaks occurs there is likely to be an increase 

in the energetic costs of foraging for the adults (Tinbergen and Dietz 1994, Thomas et 

al. 2001) and a decrease in brood provisioning rates (Naef-Daenzer and Keller 1999, 

Naef-Daenzer et al. 2000).  Such a mismatch may be driven by spring temperature 

that is likely to be the primary cue for caterpillar emergence (Visser and Holleman 

2001). The timing of peak caterpillar abundance is earlier in years when mean spring 

temperature is higher (Visser et al. 1998). Tits initiate breeding in advance of 

caterpillar emergence but if temperatures are high then the peak in caterpillar 

abundance may occur before the peak food demand of the nestlings.  

The effects of food availability on parental investment in brood provisioning 

can also be investigated by providing supplementary food which allows us to 

manipulate and control food availability and test specific hypotheses. Indeed, 

numerous supplementary feeding studies have provided empirical evidence that the 

availability of supplementary food can influence brood provisioning behaviour (Table 

4.1). For example, Cucco and Malacarne (1997) provided Wax Moth (Galleria 

mellonella) caterpillars during the nestling period (14 days) to adult Black Redstarts 

(Phoenicurus ochruros) and investigated the time budgets of both parents. During the 

nestling period supplemented males spent more time singing, preening and being 

vigilant and less time feeding nestlings compared to nonsupplemented (control) birds. 

In contrast, supplemented females fed nestlings significantly more than control 

conspecifics to compensate for the reduction in male feeding rates. Similarly, Simons 

and Martin (1990) provided mealworms and caterpillars of Pseudaletia spp. and 

Trichoplusia spp. during the entire nestling period to Cactus Wrens 

(Campylorhynchus brunneicapillus) that then delivered more food to nestlings than  
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Table 4.1. Studies of parental investment during the nestling period in response to food availability including information about species, food 

type (S – supplementary fed; N – natural) and effects on rates of brood provisioning (↓ : decreased; = no change in response to food availability; 

↑ : increased; – : data not available). Note: Common and scientific names of species follow Gill and Wright (2006). 

   Parental brood provisioning rate  

Species common name Species scientific name Food 

type 

Female Male Male and 

female 

combined 

Reference 

White-winged Cough                     Corcorax melanorhamphos S – – ↑ Boland et al. (1997) 

Great Tit Parus major N – – ↑ Naef-Daenzer et al. (2000) 

Blue Tit Cyanistes caeruleus S – – ↑ Grieco (2002b) 

Cactus Wren Campylorhynchus brunneicapillus S – – – Simons and Martin (1990) 

Black Redstart Phoenicurus ochruros S ↑ ↓ = Cucco and Malacarne (1997) 

Palestine Sunbird Cinnyris osea S ↑ ↑ ↑ Markman et al. (2002) 

Water Pipit Anthus spinoletta N = = = Rauter et al. (2000) 

Red-winged Blackbird Agelaius phoeniceus N ↑ ↓ – Whittingham et al. (1994) 
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control conspecifics. Nestlings that were provisioned by supplemented parents had 

greater body masses than those provisioned by control parents. In another study 

Markman et al. (2002) provided supplementary food to Palestine Sunbirds (Cinnyris 

osea) to test the prediction that parents would invest more in brood provisioning as  

the energy content of their food increased. They provided adults with different 

concentrations of sucrose solution and showed that the rates at which the adults 

provisioned nestlings with arthropods were positively correlated with the sucrose 

solution concentration. This implied that adult provisioning effort was positively 

influenced by energy content of the supplementary food.  

I investigate the effects of supplementary feeding on the brood provisioning 

behaviour of two small woodland passerines, Blue and Great Tits, by providing two 

dietary supplement treatments: (i). peanut cake ad libitum from approx. 7 weeks 

before hatching and throughout the nestling period; and (ii). peanut cake ad libitum 

from approx. 7 weeks before hatching and throughout the nestling period plus 

mealworms during the nestling period. I hypothesised that the provision of 

supplementary food for adults would reduce the energetic and temporal costs of 

foraging and would enable supplemented adults to invest more time and energy in 

provisioning nestlings. Therefore, I predicted that supplemented adult birds would 

have higher brood provisioning rates than nonsupplemented (control) birds. I also 

assumed that providing both peanut cake and mealworms in combination as 

supplementary foods would further enhance the investment of adults in their 

provisioning effort of nestlings compared with birds simply fed with peanut cake. I 

also predicted that nestlings in supplementary fed blocks would be in better body 

condition than those in the control block, and that survival of the fledglings from the 

supplementary fed blocks would be higher. 
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Prior to and during the nestling phase, Blue and Great Tits occupy different 

niches, the former feeding mainly in the canopy and the latter mainly on the ground 

(e.g. Minot 1981). At this time foraging niche breadth of ‘generalist’ Great Tits 

exceeds that of ‘specialist’ Blue Tits (Török 1986, Gosler and Clement 2007). 

However, where the dietary preferences of these species overlap, and there is inter-

specific competition for food, Great Tits are dominant (Wilson 1992). Since I was 

studying both species at the same site, I hypothesised that Great Tits would exploit 

artificial feeders to a greater extent than Blue Tits both through having a more 

generalist diet and through out-competing Blue Tits at the feeders. I know that 

compared with Blue Tits food supplementation of Great Tits in my study population 

has more significant effects on some breeding parameters (e.g. clutch initiation date, 

incubation period length – Harrison et al. 2010). Thus, in comparison with Blue Tits, I 

predicted that any observed effects of supplementary feeding would be more 

pronounced in Great compared with Blue Tits.   

 

4.3. METHODS 

4.3.1. Study species 

Blue and Great Tits are altricial and, thus, nestlings depend on food provided by 

adults to meet their energetic and nutritional demands (O’Connor 1984). In both 

species males and females provision the nestlings throughout the nestling period 

which lasts approx. 16-23 days (Perrins 1979, Gosler and Clement 2007). Early in the 

nestling phase, however, the female tends to brood the nestlings with the male 

providing most of the food to her (Gosler 1993), but by nestling day 6 both sexes 

provision at roughly equal rates (Kluijver 1950). Provisioning rates increase linearly 

with nestling age (e.g. Verhulst and Tinbergen 1997, Barba et al. 2009), levelling off 
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at around nestling day 10 to 12 (e.g. Eguchi 1980, Barba et al. 2009). Visits to the nest 

during the nestling phase usually result in nestling provisioning (Kluijver 1950). 

Therefore, I regarded all nest visits as provisioning events.  

 

4.3.2. Study site and food supplementation 

The overall experimental approach was consistent with that described in Section 2.3.2 

but in the present study the peanut cake dietary treatment block was further equally 

divided into two blocks of 96 nestboxes following hatching. One of these blocks 

received live mealworms (a protein-rich food source known to be fed to nestlings by 

adults when provided as a food supplement – CJ Wildlife Ltd. pers. comm.). Thus, at 

the time of hatching, the woodland was split into three treatment blocks of equivalent 

numbers of nestboxes. They were Coalpit Coppice, Chaddesley Wood and Santry Hill 

Wood in which the treatments were rotated between the 3 years of the study in order 

to control for any habitat differences between blocks (Fig. 4.1). 

 

Figure 4.1. Dietary treatments (yellow: nonsupplemented [control]; blue: peanut 

cake; green: peanut cake + mealworms) in different blocks of Chaddesley Woods 

National Nature Reserve where Blue and Great Tits bred in 2007, 2008 and 2009. 

Treatments were rotated between the years of study so each woodland block received 

each dietary treatment (see text for details). 
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Live mealworms were provided between hatching and fledging in a pole-mounted 

feeder placed directly in front of, and between 5 and 8 m from, each focal nestbox. 

The quantity of mealworms provided was standardised for all nestboxes by using a 

film pot canister, providing approx. 15g of mealworms at each nestbox and feeders 

were checked and re-stocked every 2 days. Any dead mealworms were removed so 

that live food was always available.     

 

4.3.3. Brood provisioning behaviour 

Nestboxes were monitored to determine hatching date (defined as nestling day 0) (see 

Section 3.3.3). Provisioning rates are known to be highest for both species on nestling 

day 9 (e.g. Eguchi 1980, Gosler 1993, Verhulst and Tinbergen 1997, Barba et al. 

2009). Therefore, on nestling day 9, brood provisioning rate at each nestbox was 

determined using either direct observation or filming using a Sony Handycam DCR-

SR90E mounted on a tripod (see Section 3.3.4). Diurnal rhythms in provisioning 

behaviour have been documented in tits and these show that peak feeding activity 

occurs soon after dawn (Kluijver 1950, Gibb 1955, Eguchi 1980 – but see Cowie and 

Hinsley 1988b). Therefore, to account for possible diurnal variation in provisioning 

rates, all focal watches were conducted approx. 1 hr after sunrise. Focal watches or 

filming lasted for approx. 1 hr, and from these data the number of visits made by 

adults to nestboxes was determined and expressed as hourly feeding rates (number of 

visits per hr). To minimise disturbance during focal watches, I made myself 

inconspicuous by positioning myself as far away as possible from focal nestboxes 

using trees and shrubs as cover while still being able to observe the nestbox entrance 

hole. A settling period of approx. 10 mins was used before watches started although 

most birds started provisioning 1-5 mins after the observer arrived (pers. obs.). 



Chapter Four                                                                                              Supplementary feeding and brood provisioning behaviour  

97 

 

Nestboxes were re-visited on nestling day 12 when nestlings were ringed under 

licence (BTO ringing permit no C/5418) using a uniquely numbered metal BTO ring.  

 

4.3.4. Nestling body condition 

To investigate the effects of supplementary feeding and brood provisioning on 

nestling body condition, three nestlings from each focal brood were randomly chosen 

during routine ringing (see above). For each nestling body mass was measured with 

an electronic balance (SA-500, SATRUE, Taiwan) and minimum tarsus length 

(Redfern and Clark 2001) was taken with a dial calliper (KWB, Switzerland). Because 

nestlings from the same nest are not statistically independent, average brood 

morphometrics from the three nestlings were calculated and average nestling body 

condition at each nestbox was expressed as a residual of average brood body mass 

regressed on average brood tarsus length (e.g. Christe et al. 1998, Ardia 2005). To 

increase sample sizes to gain a better understanding of how supplementary feeding 

affects nestling body condition morphometrics were also taken from nestlings from 

additional broods during routine nestling ringing. 

 

4.3.5. Nestling survival 

In the 3 years of study 2877 Blue Tit and 1904 Great Tit nestlings were ringed with 

every effort being made to ring all nestlings in all nestboxes. Nevertheless, each year 

a few broods (especially late ones) were not ringed as I was not always able to detect 

breeding attempts of either species late in the breeding season due to logistical 

problems. However, my nestling ringing efforts did allow me to investigate the effects 

of supplementary feeding and brood provisioning on the survival of fledglings. I 

carried out constant-effort mist-netting sessions in the autumn and winter in each year 
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of the study (see Harrison 2010 for full details). I determined the number of fledglings 

per brood that were recaptured in the same year as fledging and defined the 

probability of their recapture as their ‘apparent survival’ (sensu Harrison 2010). The 

term ‘apparent’ survival was used as apposed to ‘absolute’ survival since my study 

population is not an enclosed system. Therefore, my estimates of survival do not take 

into account individuals that have not been captured as a result of emigration, for 

example.  

 

4.3.6. Caterpillar availability and local temperature records 

To investigate if natural food availability influenced brood provisioning rates I 

monitored the availability of caterpillars (Winter Moth and Geometridae spp.) 

throughout the nestling period in each of the 3 years (see Appendix One for full 

methods). Since spring temperatures affect caterpillar abundance (Visser et al. 1998) 

and brood provisioning rates (Naef-Daenzer and Keller 1999, Naef-Daenzer et al. 

2000), spring temperatures (from April and May) in 2007-2009 were obtained from 

the nearest UK Met Office recording station. This is situated at Coleshill, 

Warwickshire (52°48’N, 1°69’W) approx. 32 km from the study site (Met Office 

2010).  

 

4.3.7. Statistical analysis 

I used both the number of provisions per brood per hr and the number of provisions 

per nestling per hr as measures of brood provisioning rate. To calculate provisioning 

rate per nestling I used the brood sizes at ringing on nestling day 12 which positively 

correlated with brood size on day 9 in both species (Blue: Pearson’s rs = 0.98, P = 

0.000; Great: Pearson’s rs = 0.91, P = 0.000).  
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To test for the effects of supplementary feeding all response variables (brood 

provisioning rates per chick and per brood, nestling condition and apparent survival) 

were included in mixed models constructed using PROC GLIMMIX in SAS version 

9.2 (SAS Institute Inc. 2008). Both brood provisioning rates per chick and 

provisioning rates per brood were fitted with Poisson error distributions, and apparent 

survival with binomial error distributions. Nestling body condition was tested for 

normality using the Anderson-Darling Test and for homogeneity of variance using the 

F-test using Minitab 15 (Minitab 2007) and was found to fit a normal distribution. 

Therefore, nestling body condition was fitted with a normal error distribution after 

examination of model fit (Generalised Chi-Square/DF = approx.1). 

In all models treatment block was specified as a random factor due to repeated 

measures on treatment blocks. Ideally, nestbox nested in treatment block would have 

been included as a random factor but there was not sufficient power in either model to 

allow for this. Year was included as a fixed factor to account for potential annual 

variation in breeding performance (Nager et al. 1997). Combined-year analysis was 

conducted if there was no significant year × dietary treatment interaction and no 

significant main effect of year (P > 0.05). Otherwise, independent year analyses were 

performed. 

Because rates of brood provisioning are positively associated with brood size 

(e.g. Nur 1984, Barba et al. 2009), and may vary temporally in relation to the 

availability of the main food items (i.e. caterpillars – Naef-Daenzer and Keller 1999), 

brood size and hatch date were both included as covariates in models where brood 

provisioning per chick and per brood were the dependent variables. Because nestling 

body mass significantly declines with brood size (Nur 1984) and is reduced in broods 

that hatch later in the season (Barba et al. 1995), both brood size and hatch date were 
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included as covariates in analyses of nestling body condition. To account for the 

effects of hatch date and brood size on survival (earlier hatched broods and heavier 

nestlings from smaller broods are more likely to survive – e.g. Norris 1993, Verboven 

and Visser 1998, Monrós and Barba 2002), both were included as covariates in the 

analysis of apparent survival. To determine if the effects of covariates were consistent 

between treatment blocks, covariate × dietary treatment interactions were tested 

independently of one another within each model. Where multiple covariate × dietary 

treatment interactions were significant they were both included in the model as long 

as each stayed significant (Grafen and Hails 2002). I performed backward model 

selections removing the least non-significant covariate interactions (P > 0.05) one-by-

one from models ensuring that there was no significant change in deviance between 

models where applicable (Grafen and Hails 2002). Tukey-Kramer post hoc tests were 

conducted for pairwise comparisons of the least-squares means with results being 

presented as adjusted P values. 

 

4.4. RESULTS 

4.4.1. Brood provisioning rates between years 

For both Blue and Great Tits there was a significant year effect on provisioning rates 

per brood (Blue: F2,68 = 5.91, P < 0.01; Great: F2,61 = 11.32, P < 0.0001; Table 4.2) 

and per nestling (Blue: F2,68 = 3.16, P = 0.05; Great: F2,61 = 14.14, P < 0.0001; Table 

4.2). Tukey Kramer post hoc tests were conducted to make pairwise comparisons 

between years by pooling provisioning rates per brood, and per nestling, across 

dietary treatment for each year (there was no main effect of dietary treatment on both 

dependent variables in the combined-year model for either species; Table 4.2). 
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Table 4.2. Results from the final statistical models (see text for details) explaining measurements of brood provisioning behaviour, nestling 

condition and apparent survival in Blue (BT) and Great (GT) Tits breeding in Chaddesley Woods National Nature Reserve between 2007 and 

2009. Significant main and interaction effects are given in bold. Directions of significant effects are given ‘+’ and ‘-‘ denote significant positive 

and negative relationships, respectively, and ‘NS’ denotes nonsignificance (P > 0.05). 

 

       Least square means (SE) – Tukey-Kramer post hoc P values  

Breeding 

parameter 

Species Year Factor F df P C vs. PC C vs. PC+MW PC vs. PC+MW Direction 

Provisioning 

rate per brood 

BT 2007-9 Dietary treatment 0.13 2,68 0.88 47.87(2.70) vs. 46.39(3.00) 

P =  0.93 

47.87(2.70) vs. 46.12(2.75)  

P = 0.90 

46.39(3.00) vs. 46.12(2.75)  

P = 1.00 

NS 

   Year 5.91 2,68 <.0.01    2009 = highest; 2008 = lowest 

   Brood size 30.91 1,68 <0.0001    + 

  2007 Dietary treatment 7.70 2,12 0.01 41.91(2.70) vs. 43.44(2.99) 

P = 0.92 

41.91(2.70) vs. 41.36(2.96) 

P = 0.99 

43.44(2.99) vs. 41.36(2.96) 

P = 0.88 

PC  = highest; PC+MW = 

lowest 

   Hatch date 14.93 1,12 <0.01    +  

   Brood size 47.94 1,12 <0.0001    +  

   Brood size × dietary treatment 8.55 2,12 <0.01    C = + ; PC = - ; PC +MW =  + 

  2008 Dietary treatment 17.52 2,24 <0.0001 36.68(2.12) vs. 36.55(1.94) 

P = 1.00 

36.68(2.12) vs. 37.75(2.36) 

P = 0.94 

36.55(1.94) vs. 37.75(2.36) 

P = 0.92 

PC+MW = highest; PC = 

lowest 

   Brood size 43.65 1,24 <0.0001    +  

   Brood size × dietary treatment 15.36 2,24 <0.0001    C = + ; PC = + ; PC+MW = - 

  2009 Dietary treatment 36.41 2,20 <0.0001 63.67(2.57) vs. 54.81(3.17) 

P = 0.12 

63.67(2.57) vs. 46.84(2.46) 

P < 0.001 

54.81(3.17) vs. 46.84(2.46) 

P = 0.15 

C = highest; PC+MW = lowest 

   Brood size 11.04 1,20 <0.01    + 

   Hatch date 30.17 1,20 <0.0001    - 

   Hatch date × dietary treatment 37.40 2,20 <0.0001    C = - ; PC = + ; PC+MW = - 

 GT 2007-9 Dietary treatment 0.27 2,61 0.77 35.10(2.90) vs. 32.92(2.64) 

P = 0.83 

35.10(2.90) vs. 32.60(2.73) 

P = 0.78 

32.92(2.64) vs. 32.60(2.73) 

P = 1.00 

NS 

   Year 11.32 2,61 <0.0001    2009 = highest; 2007 = lowest  
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Table 4.2. continued 

   Brood size 15.22 1,61 <0.001    + 

  2007 Dietary treatment 4.97 2,6 0.05 41.04(4.53) vs. 29.41(2.79)  

P = 0.13 

41.04(4.53) vs. 44.46(9.28)  

P = 0.94 

29.41(2.79) vs. 44.46(9.28)  

P = 0.25 

PC+MW = highest; PC = 

highest 

   Hatch date 6.29 1,6 0.05    + 

   Hatch date × dietary treatment 2,6 4.76 0.06    NS 

  2008 Dietary treatment 9.61 2,18 <0.01 36.31(2.40) vs. 30.34(1.85)  

P = 0.14 

36.31(2.40) vs. 19.59(2.96)  

P < 0.01 

30.34(1.85) vs. 19.59(2.96)  

P = 0.04 

C = highest; PC+MW = lowest 

   Hatch date 12.55 1,18 <0.01    -  

   Brood size 20.95 1,18 <0.001    +  

   Brood size × dietary treatment 9.69 2,18 <0.01    C = weakly – ; PC = + ; 

PC+MW = + 

   Hatch date × dietary treatment 8.48 2,18 <0.01    C = - ; PC = - ; PC+MW = + 

  2009 Dietary treatment 4.58 2,23 0.02 51.95(4.62) vs. 42.29(1.99)  

P = 0.12 

51.95(4.62) vs. 34.60(3.15)  

P = 0.02 

42.29(1.99) vs. 34.60(3.15)  

P = 0.16 

C = highest; PC+MW = lowest 

   Hatch date 15.85 1,23 <0.01    -  

   Brood size 65.24 1,23 <0.0001    +  

   Hatch date × dietary treatment 4.37 2,23 0.02    C = + ; PC -; PC+MW = -  

Provisioning 

rate per 

nestling 

BT 2007-9 Dietary treatment 0.05 2,68 0.96 5.98(0.59) vs. 6.18(0.63)  

P = 0.95 

5.98(0.59) vs. 6.09(0.61)  

P = 0.98 

6.18(0.63) vs. 6.09(0.61)  

P = 0.99 

NS 

   Year 3.16 2,68 0.05    2009 = highest; 2008 = lowest 

   Brood size 25.24 1,68 <0.0001    -  

  2007 Dietary treatment 4.88 2,12 0.03 4.81(0.88) vs. 5.17(1.09)  

P = 0.96 

4.81(0.88) vs. 5.18(0.97)  

P = 0.96 

5.17(1.09) vs. 5.18(0.97)  

P = 1.00 

PC+MW = highest; control = 

lowest 

   Hatch date 4.52 1,12 0.05     +  

   Brood size 1.26 1,12 0.28    NS 

   Brood size × dietary treatment 4.52 2,12 0.03    C = - ; PC = - ; PC+MW = +  

  2008 Dietary treatment 5.73 2,24 0.01 5.48(0.75) vs. 5.27(0.74)  

P = 0.98 

5.48(0.75) vs. 4.92(0.97)  

P = 0.90 

5.27(0.74) vs. 4.92(0.97)  

P = 0.96 

Control = highest; PC+MW = 

lowest 

   Brood size 8.49 1,24 0.01    -  
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Table 4.2. continued 

   Brood size × dietary 

treatment 

4.27 2,24 0.03    C = - ; PC = - ; PC+MW = 

strongly - 

  2009 Dietary treatment 3.68 2,20 0.04 6.87(0.85) vs. 6.16(1.06) 

P = 0.87 

6.87(0.85) vs. 5.21(0.80)  

P = 0.36  

6.16(1.06) vs. 5.21(0.80) 

P = 0.76 

C = highest; PC+MW = lowest 

   Brood size 4.22 1,20 0.05    - 

   Hatch date 3.66 1,20 0.07    NS 

   Hatch date × dietary 

treatment 

3.94 2,20 0.04    C = - ; PC  = - ; PC+MW = 

strongly - 

 GT 2007-9 Dietary treatment 0.66 2,61 0.52 5.39(0.42) vs. 4.85(0.37) 

P = 0.57 

5.39(0.42) vs. 4.85(0.39) 

P = 0.59 

4.85(0.37) vs. 4.85(0.39) 

P = 1.00 

C = highest; PC+MW = lowest 

   Year 14.14 2,61 <0.0001    2009 = highest; 2007 = lowest 

   Brood size 12.26 1,61 <0.01    - 

  2007 Dietary treatment 0.55 2,9 0.59 4.89(1.11) vs. 3.96(1.0) 

P = 0.81 

4.89(1.11) vs. 3.39(0.92) 

P = 0.58 

3.96(1.0) vs. 3.39(0.92) 

P = 0.91 

NS 

  2008 Dietary treatment 0.03 2,24 0.97 4.38(0.66) vs. 4.50(0.71) 

P = 0.99 

4.38(0.66) vs. 4.24(0.73) 

P = 0.99 

4.50(0.71) vs. 4.24(0.73) 

P = 0.97 

NS 

  2009 Dietary treatment 0.19 2,26 0.83 7.22(0.96) vs. 6.54(0.76)  

P = 0.84 

7.22(0.96) vs. 7.13(0.87) 

P = 1.0                             

6.54(0.76) vs. 7.13(0.87) 

P = 0.87 

NS 

   Brood size 5.95 1,26 0.02    - 

Nestling 

condition 

BT 2007-9 Dietary treatment 0.00 2,135 1.00 161×10-17(0.14) vs. 11×10-

16(0.15)   

P = 1.0 

161×10-17(0.14) vs. 131×10-

17(0.15)   

P = 1.0 

11×10-16(0.15)  vs. 131×10-

17(0.15)   

P = 1.0 

NS 

   Year 0.00 2,135 1.00    NS 

 GT 2007-9 Dietary treatment 0.01 2,111 0.99 -0.0004(0.16) vs.  

-0.02(0.16) P = 1.00 

-0.0004(0.16) vs. 0.02(0.17) 

P = 1.00 

-0.02(0.16) vs. 0.02(0.17) 

P = 0.99 

NS 

   Year 0.00 2,111 1.00    NS 

Apparent 

survival 

BT 2007-9 Dietary treatment 1.94 2,107 0.15 0.33(0.01) vs. 0.05(0.01) 

P = 0.23 

0.33(0.006) vs. 0.05(0.01) 

P = 0.15 

0.05(0.01) vs. 0.05(0.01) 

P = 0.97 

NS 

   Year 3.49 2,107 0.03    2009 = highest; 2007 = lowest 

   Hatch date 17.79 1,107 <0.0001    + 

 



Chapter Four                                                                                              Supplementary feeding and brood provisioning behaviour  

104 

 

Table 4.2. continued 

   Year × dietary treatment 6.97 4,107 <0.0001     

  2007 Dietary treatment 3.53 2,91 0.03 0.02(0.01) vs. 0.05(0.02) 

P = 0.03 

0.02(0.01) vs. 0.03(0.01) 

P = 0.39 

0.05(0.02) vs. 0.03(0.01) 

P = 0.31 

PC = highest; C = lowest 

   Hatch date 10.37 1,91 0.02    - 

  2008 Dietary treatment 6.60 2,109 <0.01 0.02(0.01) vs. 0.03(0.01)  

P = 0.75 

0.02(0.01) vs. 0.08(0.02) 

P = 0.01 

0.03(0.01) vs. 0.08(0.02) 

P = 0.02 

PC+MW = highest; C = lowest 

   Hatch date 8.97 1,109 <0.01    - 

  2009 Dietary treatment 2.61 2,112 0.08 0.09(0.02) vs. 0.06(0.01) 

P = 0.32 

0.09(0.02) vs. 0.05(0.01)  

P = 0.08 

0.06(0.01) vs. 0.05(0.01) 

P = 0.82 

NS 

 GT 2007-9 Dietary treatment 3.45 2,84 0.04 0.05(0.01) vs. 0.06(0.01) 

P = 0.92 

0.05(0.01) vs. 0.09(0.01) 

P = 0.06 

0.06(0.01) vs. 0.09(0.01) 

P = 0.11 

PC+MW = highest; C = lowest 

   Year 0.09 2,84 0.92    NS 

   Hatch date 11.28 1,84 <0.01    - 

   Year × dietary treatment 2.67 4,84 0.04     

  2007 Dietary treatment 8.92 2,54 <0.001 0.01(0.01) vs. 0.09(0.03) 

P = 0.02 

0.01(0.01) vs. 0.05(0.03) 

P = 0.26 

0.09(0.03) vs. 0.05(0.03) 

P = 0.59 

PC = highest; C = lowest 

   Hatch date 17.86 1,54 <0.0001    - 

   Hatch date × dietary 

treatment 

9.64 2,54 <0.001    C = - ; PC = weakly - ; 

PC+MW = -  

  2008 Dietary treatment 2.63 2,96 0.08 0.04(0.02) vs. 0.02(0.01) 

P = 0.43 

0.04(0.02) vs. 0.14(0.02) 

P = 0.01 

0.02(0.01) vs. 0.14(0.02) 

P < 0.01 

NS 

   Hatch date 15.52 1,96 <0.01    - 

   Hatch date × dietary 

treatment 

3.85 2,96 0.02    C = strongly - ; PC = - ; 

PC+MW = weakly - 

  2009 Dietary treatment 3.41 2,100 0.04 0.11(0.03) vs. 0.05(0.02) 

P = 0.19 

0.11(0.03) vs. 0.07(0.02) 

P = 0.38) 

0.05(0.02) vs. 0.07(0.02) 

P = 0.88 

C = highest; P= lowest 

   Hatch date 5.71 1,100 0.02    - 

   Brood size 5.15 1,100 0.03    + 

   Brood size × dietary 

treatment 

3.60 2,100 0.03    C = - ; PC = + ; PC+MW = + 
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For both Blue and Great Tits provisioning rates per brood in 2009 were 

significantly higher than in both 2007 (Blue: Tukey-Kramer P = 0.04; Great: Tukey-

Kramer P < 0.01; Fig. 4.2) and 2008 (Blue: Tukey-Kramer P = 0.01; Great: Tukey-

Kramer P < 0.001; Fig. 4.2). However, there was no significant difference in 

provisioning rates per brood between 2007 and 2008 for either Blue (Tukey-Kramer P 

= 0.90; Fig 4.2) or Great (Tukey-Kramer P = 0.90; Fig. 4.2) Tits. 

 

 

 

 

 

 

 

 

Figure 4.2. Provisioning rates per brood (mean ± 1 SE from statistical estimates) of 

day 9 broods by adult Blue and Great Tits breeding in Chaddesley Woods National 

Nature Reserve from 2007 to 2009. The number of broods (n) is given above each bar. 

 

For both Blue and Great Tits provisioning rates per nestling in 2009 were 

significantly higher than in 2008 (Blue: Tukey-Kramer P = 0.04; Great: Tukey-

Kramer P < 0.0001; Fig. 4.3) while they were significantly higher than in 2007 for 

Great (Tukey-Kramer P < 0.01; Fig. 4.3), but not for Blue, (Tukey-Kramer P = 0.40; 

Fig. 4.3) Tits. However, there was no significant difference in provisioning rates per 

nestling between 2007 and 2008 for either Blue (Tukey-Kramer P = 0.51; Fig 4.3) or 

Great (Tukey-Kramer P = 1.0; Fig. 4.3) Tits. Since there was a significant year effect 

on both brood provisioning rates per brood and per nestling, separate analyses for 
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each year were performed to investigate the effects of supplementary feeding on both 

dependent variables. 

 

 

 

 

 

 

 

Figure 4.3. Provisioning rates per nestling (mean ± 1 SE from statistical estimates) of 

day 9 broods by adult Blue and Great Tits breeding in Chaddesley Woods National 

Nature Reserve from 2007 to 2009. The number of broods (n) is given above each bar. 

 

4.4.2. Effects of supplementary feeding on brood provisioning rates per brood 

When independent year analyses were performed there was a significant effect of 

dietary treatment on provisioning rates per brood in Blue Tits in all years of the study 

(2007: F2,12 = 7.70, P = 0.01; 2008: F2,24 = 17.52, P < 0.0001; 2009: F2,20 = 36.41, P < 

0.0001; Fig. 4.4 and Table 4.2). In 2009 Tukey-Kramer post hoc tests (testing for 

main effects of dietary treatment) indicated that Blue Tits breeding in the control 

block had significantly higher brood provisioning rates than Blue Tits breeding in the 

peanut cake + mealworms block (Tukey-Kramer P < 0.001; Fig. 4.4 and Table 4.2). 

In contrast, there was no significant difference in provisioning rates per brood 

between Blue Tits breeding in the control and peanut cake block (Tukey-Kramer P = 

0.12; Fig. 4.4 and Table 4.2) and between Blue Tits breeding in the peanut cake and 

peanut cake + mealworms block (Tukey-Kramer P = 0.15; Fig. 4.4 and Table 4.2). 
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dietary treatment) indicated that there was no significant main effect of dietary 

treatment on provisioning rates per brood between pairs of treatment blocks (see 

Table 4.2 for full details of statistical models).  

 

 

 

 

 

 

 

 

Figure 4.4. Provisioning rates per brood (mean ± 1 SE from statistical estimates) of 

day 9 broods by adult Blue Tits breeding in Chaddesley Woods National Nature 

Reserve from 2007 to 2009. The number of broods (n) is given above each bar. 

 

In Great Tits there was a significant effect of dietary treatment on provisioning rates 

per brood in all years of the study (2007: F2,6 = 4.97, P = 0.05; 2008: F2,18 = 9.61, P < 
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Kramer post hoc tests (testing for main effects of dietary treatment) indicated that 

Great Tits breeding in the control block had significantly higher brood provisioning 

rates than Great Tits breeding in the peanut cake + mealworms block (2008: Tukey-

Kramer P < 0.01; 2009: Tukey-Kramer P = 0.02; Fig. 4.5 and Table 4.2). 

Furthermore, in 2008 Great Tits breeding in the peanut cake block had significantly 

higher provisioning rates per brood than those breeding in the peanut cake + 

mealworms block (Tukey-Kramer P = 0.04; Fig. 4.5 and Table 4.2). In contrast, there 

was no significant difference in provisioning rates per brood between Great Tits 
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breeding in the control and peanut cake block in both 2008 and 2009 (2008: Tukey-

Kramer P = 0.14; 2009: Tukey-Kramer P = 0.12; Fig. 4.5 and Table 4.2) and between 

 

 

 

 

 

 

 

 

 

Figure 4.5. Provisioning rates per brood (mean ± 1 SE from statistical estimates) of 

day 9 broods by adult Great Tits breeding in Chaddesley Woods National Nature 

Reserve from 2007 to 2009. The number of broods (n) is given above each bar. 

 

Great Tits breeding in the peanut cake and peanut cake + mealworms block in 2009 

(Tukey-Kramer P = 0.16; Fig. 4.5 and Table 4.2). In 2007, however, Tukey-Kramer 

post hoc tests (testing for main effects of dietary treatment) indicated that there was 

no significant main effect of dietary treatment on provisioning rates per brood 

between pairs of treatment blocks (see Table 4.2 for full details of statistical models). 

 

4.4.3. Effects of supplementary feeding on brood provisioning rates per nestling 

In Blue Tits there was a significant effect of dietary treatment on provisioning rates 

per nestling in all years of the study (2007: F2,12 = 4.88, P = 0.03; 2008: F2,24 = 5.73, 
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Figure 4.6. Provisioning rates per nestling (mean ± 1 SE from statistical estimates) of 

day 9 broods by adult Blue Tits breeding in Chaddesley Woods National Nature 

Reserve from 2007 to 2009. The number of broods (n) is given above each bar. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Provisioning rates per nestling (mean ± 1 SE from statistical estimates) of 

day 9 broods by adult Great Tits breeding in Chaddesley Woods National Nature 

Reserve from 2007 to 2009. The number of broods (n) is given above each bar. 
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Tits in all years of the study (2007: F2,9 = 0.55, P = 0.59; 2008: F2,24 = 0.03, P = 0.97; 

2009: F2,26 = 0.19, P = 0.83; Fig. 4.7 and Table 4.2). 

 

4.4.4. Nestling condition 

In both species nestling body condition was consistent between years (Blue: F2,135 = 

0.00, P = 1.00; Great: F2,111 = 0.66, P = 1.00). Furthermore, supplementary feeding 

had no significant effect on nestling body condition in either species (Blue: F2,135 = 

0.00, P = 1.00; Great: F2,111 = 0.01, P = 1.00).  

 

4.4.5. Apparent survival 

A significant year × dietary interaction indicated that the effect of dietary treatment on 

apparent survival of fledglings of both species was inconsistent between years (Blue: 

F4,107 =  6.97, P < 0.0001; Great: F4,84 = 2.67, P = 0.04; Table 4.2). Therefore, 

separate analyses for each year were conducted. Dietary treatment had significant 

effects on apparent survival of fledglings in each year of study. In 2007 fledglings 

from supplementary fed territories rather than from control territories showed higher 

apparent survival (Blue: F2,91 = 3.53, P = 0.03; Great: F2,54 = 8.92, P < 0.001; Fig. 4.8, 

Fig. 4.9 and Table 4.2). Food supplementation had a similar, if statistically stronger, 

effect in both species in 2008 (Blue: F2,109 = 6.60, P < 0.01; Great: F2,96 = 15.52, P < 

0.001; Fig. 4.8, Fig. 4.9 and Table 4.2) with fledglings that fledged from the peanut 

cake + mealworm dietary treatment block surviving better than fledglings that fledged 

from either peanut cake-supplemented or control territories (Table 4.2). In 2009 

dietary treatment did not appear to have a significant effect on apparent survival of 

Blue Tits (F2,112 = 2.61, P = 0.08; Fig. 4.8), but it did for Great Tit fledglings (F2,100 = 

3.41, P = 0.04; Fig. 4.9). 
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Figure 4.8. Apparent survival (mean recapture rate ± 1 SE from statistical estimates) 

of Blue Tits fledged in Chaddesley Woods National Nature Reserve between 2007 

and 2009. The number of broods (n) is given above each bar. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Apparent survival (mean recapture rate ± 1 SE from statistical estimates) 

of Great Tits and fledged in Chaddesley Woods National Nature Reserve between 

2007 and 2009. The number of broods (n) is given above each bar. 
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4.4.6. Caterpillar availability and local temperature 

Due to unforeseen circumstances, caterpillar data from 2009 were unavailable. In 

2007 and 2008 both the timing of the peak and the relative abundance of caterpillars  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Relative Geometridae spp. and Winter Moth caterpillar abundance 

(mean ± 1 SE) and timing of their emergence in Chaddesley Wood National Nature 

Reserve in (a) 2007 and (b) 2008. Colours indicate the experimental blocks: Blue – 

control; red – peanut cake; green – peanut cake + mealworms. 

 

were consistent between dietary treatment blocks within each year (Fig 4.10a and b). 

In 2007 the peak in caterpillar abundance occurred approx. 10 days earlier than in 
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than in 2007 (Fig 4.10). In 2007-2009 average daily spring temperatures fluctuated 

between 5°C and 23°C and increased as the season progressed (Fig. 4.11). Spring 

temperatures were consistent between years (ANOVA: F2,182 = 1.65, P = 0.20; mean 

temperatures ± 1SE: 2007 – 14.00 ± 0.32°C; 2008 – 13.08 ± 0.50°C; 2009: 13.91 ± 

0.32°C – Met Office 2010). 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Average daily spring time temperatures in 2007 (red), 2008 (green) and 

2009 (blue) obtained from Coleshill Met Office Land Surface Station in Warwickshire 

(52°48’N, 1°69’W), approx. 32 km from Chaddesley Woods National Nature Reserve 

(Met Office 2010).  

 

4.5. DISCUSSION  

Supplementary feeding should reduce the energetic and temporal costs of foraging 

consequently allowing supplemented adults to invest more time and energy in 

provisioning nestlings. Therefore, I predicted that food supplementation would result 

in higher brood provisioning rates and that adult birds provided with peanut cake and 
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rates of nestling provisioning across all 3 years of this study for both Blue and Great 

Tits, my results do not fully support my predictions. For Blue Tits the effects of 

supplementary feeding on brood provisioning varied between years and were more 

pronounced in 2009 than in both 2007 and 2008 when the effects were more subtle. In 

2009 supplementary feeding resulted in a reduction of brood provisioning rates per 

brood for Blue Tits with birds supplemented with both peanut cake and mealworms 

having the lowest brood provisioning rates. In 2008 and 2009 provisioning rates per 

brood were highest for Great Tits in the control block and lowest for birds 

supplemented with peanut cake and mealworms. In 2007, however, provisioning rates 

per brood were highest for Great Tits supplemented with peanut cake and mealworms. 

I also predicted that nestlings in supplementary fed blocks would be in better body 

condition than those in the control block, and that apparent survival of the fledglings 

from the supplementary fed blocks would be higher. In contrast to my prediction, food 

supplementation had no effect on nestling body condition for either species. However, 

food supplementation enhanced apparent survival of fledglings of both species across 

the 3 years of study although the effects were inconsistent between years. 

 

4.5.1. Effects of supplementary feeding on provisioning rate 

In 2008 and 2009 for Great Tits, and 2009 for Blue Tits, provisioning rates per brood 

for both species, and provisioning rates per nestling for Blue Tits, were higher in the 

control block than in the supplementary fed blocks. This is similar to the findings of 

Grieco (2002a) who showed that Blue Tits supplemented with mealworms and Wax 

Moth larvae fed their nestlings less frequently than control conspecifics but, instead, 

delivered larger food items than control birds. The authors suggested that the 

reduction in foraging constraints experienced by supplemented birds may have 
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resulted in a decrease in brood provisioning rates in two ways (Grieco 2002a). First, 

supplementary food may have enabled birds to travel further afield to exploit feeding 

sites which were less food-depleted and contained larger, more profitable food items 

(Naef-Daenzer 2000), thereby increasing time spent away from the nest. Secondly, 

supplemented birds may have been able to allocate more time in prey selectivity, 

foraging for larger, more profitable food items while rejecting smaller, less profitable 

food items (Grieco 2001, 2002b). Since selectivity determines the average searching 

time (Grieco 2001, 2002b), greater selectivity would have reduced brood provisioning 

rates. Increasing selectivity, and decreasing brood provisioning rates, are likely to be 

beneficial since they result in a reduction in the cost of repeat visitations to the nest 

(e.g. cost of flight – Bryant and Tatner 1991; predation risk – Martin et al. 2000b). In 

my study providing supplementary food may have enabled adults to satisfy their 

energetic and nutritional needs through a reduction in time spent foraging compared 

with the time needed for foraging by control birds. Although I have no data on the 

size of food items delivered to nestlings, it is possible that supplemented birds became 

more selective in their prey choice for nestlings. Such a response to supplementary 

feeding might explain the decrease in provisioning rates across dietary treatments.  

In contrast to the effects of supplementary feeding on brood provisioning in 

2009 for Blue Tits, and 2008 and 2009 for Great Tits, its effects on brood 

provisioning in 2007 for Great Tits and 2007 and 2008 for Blue Tits were more 

subtle. In a previous study investigating the provisioning behaviour of Water Pipits 

(Anthus spinoletta) between sites which differed in abundance of natural foods, food 

availability was found to have no significant effect on provisioning rates (Rauter et al. 

2000). They suggested that food was likely to be super-abundant throughout the 

foraging sites and, thus, food availability did not limit reproduction. While I only have 
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data that reflect relative natural food abundance (i.e. caterpillars) in 2007 and 2008, it 

is possible that differences in natural food availability between years accounted for 

the inconsistent effects of supplementary feeding on brood provisioning observed in 

my study. For example, if natural food availability was lower in 2009 than in 2007 

and 2008, it is possible that supplementary food had a more marked effect on brood 

provisioning rates as a result of greater energetic constraints of foraging when food 

was limited in 2009 (Tinbergen and Dietz 1994, Thomas et al. 2001).   

Below, I discuss the mechanisms that may lead to differences in natural food 

availability (i.e. caterpillars) during the nestling period, and how natural food 

availability may explain the inconsistent effects of supplementary feeding on brood 

provisioning behaviour between the years of study. 

 

4.5.2. Interactive effects of supplementary and natural food on brood provisioning 

behaviour 

Peak availability of caterpillars, the preferred food of Blue and Great Tits during the 

breeding season, occurs over a brief period in temperate habitats (Perrins 1965, 1991, 

Wilkin et al. 2009b). Breeding is timed with the peak energetic demands of nestlings 

coinciding with the peak in natural food availability (Gibb 1950, van Noordwijk et al. 

1995). A mismatch between these peaks may occur either too early or too late (e.g. 

Visser et al. 1998, Naef-Daenzer and Keller 1999) resulting in reduced foraging 

efficiency of adults and search times for food items increasing. Sometimes, birds  

switch foraging preferences, resulting in decreased provisioning rates or reduced 

quality of food items (e.g. Naef-Daenzer and Keller 1999, Tremblay et al. 2005). The 

results from 2007 and 2008 for Blue Tits support this explanation since the timing 

between the peak energetic demand of nestlings (approx. nestling day 9 – e.g. Eguchi 
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1980, Gosler 1993, Verhulst and Tinbergen 1997, Barba et al. 2009) and the peak in 

caterpillar abundance was similar as were provisioning rates (compare Fig. 4.12 with  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Timing of breeding of supplemented and control (nonsupplemented) 

Blue Tits in relation to the peak in caterpillar (Winter Moth and Geometridae spp.) 

abundance (mean ± 1 SE) in Chaddesley Woods National Nature Reserve in 2007 and 

2008.  

 

Figs 4.2 and 4.3). Moreover, between 2007 and 2008, the effects of supplementary 

feeding on brood provisioning were consistent suggesting that the energetic costs of 

foraging were equivalent. However, although Great Tits breeding in 2007 and 2008 

had equivalent provisioning rates, in 2008 they bred less synchronously with the 

emergence of caterpillars than in 2007 (compare Fig. 4.13 with Figs 4.2 and 4.3). 

Since Great Tits are generalist feeders compared to Blue Tits (e.g. Török 1986), it 

seems likely that Great Tits in 2008 were able to forage for other foods in addition to 

caterpillars and, therefore, maintained equivalent provisioning rates to Great Tits in  
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Figure 4.13. Timing of breeding of supplemented and control (nonsupplemented) 

Great Tits in relation to the peak in caterpillar (Winter Moth and Geometridae spp.) 

abundance (mean ± 1 SE) in Chaddesley Woods National Nature Reserve in 2007 and 

2008.  

 

2007.  However, these results should be treated with caution due to small sample 

sizes. 

Temperature is likely to be the primary cue for caterpillar emergence (Visser 

and Holleman 2001) with the timing of peak caterpillar abundance being earlier in 

years when mean spring temperatures are higher (Visser et al. 1998). Tits initiate 

breeding in advance of caterpillar emergence. If subsequent temperatures are high, the 

peak in caterpillar abundance may occur before the peak food demand of the nestlings 

(Visser et al. 1998). Therefore, knowledge of spring temperatures should enable us to 

predict whether breeding birds will mismatch with the peak in caterpillar availability. 

In 2009, average daily temperatures between April and May recorded at the Coleshill 

Met Office Land Surface Station were not significantly different from those in 2007 

and 2008 (see Section 4.4.6).  Therefore, the degree of synchrony between peak 
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caterpillar abundance and nestling food demand between years is likely to have been 

similar. It is unlikely, therefore, that inter-year variation in timing of caterpillar 

emergence in relation to timing of breeding accounts for the inconsistent effects of 

supplementary feeding on brood provisioning between the years of my study.  

However, the size of the caterpillar abundance peak between years varies 

(Perrins 1965, Visser et al. 1998). Annual fluctuations in Winter Moth caterpillar 

population densities are driven by cyclic variations in insect parasitoids, predators, 

disease, inter-specific competitors, and thermal conditions during development (e.g. 

Varley and Gradwell 1960, Berryman 1996, Hunter 1998). Numerous studies have 

shown that caterpillar abundance can have pronounced effects on the foraging 

performance of both Blue and Great Tits (Naef-Daenzer 2000, Stauss et al. 2005a, 

Tremblay et al. 2005). For example, in poor habitats (of low caterpillar abundance), 

mean foraging distances of Blue Tits were significantly longer than those in rich 

habitats (of higher caterpillar abundance) (39.8 ± 10.8 m vs. 22.6 ± 6.2 m, 

respectively – Stauss et al. 2005a; 53.2 ± 22.9 m vs. 25.2 ± 12.3 m respectively – 

Tremblay et al. 2005). Adults in the poor habitat were unable to match feeding rates to 

brood demand compared with those in the rich habitat. Therefore, although it seems 

likely that the timing of breeding in relation to the peak in caterpillar availability may 

have been consistent between years (but I do not have data on the relative abundance 

of caterpillars in 2009), it is possible that variation in the size of the caterpillar peak 

may account for inter-year differences in the effects of supplementary feeding on 

provisioning rates by adults.  

However, since differences in relative caterpillar abundance between 2007 and 

2008 did not subsequently result in differences in provisioning rates in either Blue or 

Great Tits (compare Figs 4.2, 4.3 and 4.10), it seems unlikely that caterpillar 
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availability can independently explain inter-year differences in the effects of 

supplementary feeding on brood provisioning behaviour. Additional factors that may 

affect foraging efficiency include rainfall (Radford et al. 2001) and availability of 

other sources of food consumed by both Blue and Great Tits during the breeding 

season (e.g. spiders, diptera, coleoptera – Betts 1955). Although I do not have data 

reflecting the availability of other food sources or weather variables, it is plausible 

that year differences in these factors may have resulted in the observed differences in 

effects of supplementary food on provisioning rates between the years of my study.          

 

4.5.3. Effects of supplementary feeding on nestling condition and apparent survival 

Results from previous studies suggest that low food availability during the nestling 

phase can lower reproductive success through reduced provisioning rates and, 

subsequently, reduce nestling body condition (e.g. Simons and Martin 1990, Naef-

Daenzer and Keller 1999) and reduce nestling survival (e.g. Verhulst 1994, Ringsby et 

al. 2009). Although I found significant effects of supplementary feeding on 

provisioning behaviour, I did not find an effect on nestling body condition. However, 

supplementary feeding appeared to promote apparent survival of fledglings but the 

effects were inconsistent between years. These results are partly consistent with those 

of other studies. For example, Reynolds et al. (2003b) found that food 

supplementation had little effect on nestling growth of Florida Scrub-Jays 

(Aphelocoma coerulescens) although the survival of fledglings from food-

supplemented territories was enhanced over that of fledglings from control territories. 

In this species supplemented females lay significantly heavier third eggs than control 

conspecifics (Reynolds et al. 2003a). Since the chances of survival of fledglings 

hatched from large eggs exceed those of nestlings hatched from smaller eggs (e.g. 
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Parsons 1970, Hegyi 1996), it was suggested that food supplementation during pre-

laying may have improved egg quality and, subsequently, influenced nestling 

survival. In my study population supplemented Great Tits lay heavier eggs than 

control conspecifics (Harrison 2010). However, since the effects of supplementary 

feeding on apparent survival were inconsistent between years, it remains unclear if 

egg quality influenced survival in my population. Moreover, since supplementary 

food was provided both throughout the nestling period and post-fledgling, separating 

pre- and post-fledging effects on survival (i.e. mediated through egg quality, brood 

provisioning, post-fledging foraging) remains challenging. 

The inconsistency of effects of dietary treatment on apparent survival between 

years could be attributed to the locations of the three mist-netting sites during the 

autumn recapture sessions (Fig. 4.14). Such inter-year inconsistencies mirror the 

rotation of  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. Location of mist-netting sites in Chaddesley Woods National Nature 

Reserve between 2007 and 2009. S1 – site 1; S2 – site 2; S3 – site 3.  
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the dietary treatments (i.e. recapture rate of fledglings in each year was always highest 

from the dietary treatment which was allotted to the Chaddesley Wood block – 

compare Figs 4.8 and 4.9 with 4.14). This provides insights into post-fledging 

behaviour demonstrating that fledglings may remain relatively close to where they 

fledged at least through their first autumn and winter until the time that we mist-

netted. However, measurements of apparent survival should be taken with caution 

since the methods used to calculate apparent survival (i.e. mist-netting) are unlikely to 

capture all surviving individuals in the population and, furthermore, will not capture 

those which have emigrated.   

 

4.5.4. Summary and future directions 

Throughout this study I have discussed my findings assuming that the effect of 

supplementary feeding is indirect and could result from the consumption of the food 

by the parent which, in turn, results in a reduction of time needed to forage. 

Subsequently, this could result in an increase in the amount of time and energy 

available for brood provisioning (Martin 1987, Grieco2002a).  The effects of 

supplementary feeding on brood provisioning behaviour could also be direct whereby 

the parent feeds the nestlings with the additional food, resulting in reduced begging 

intensity by nestlings and a decreased provisioning rate by adults (e.g. Quillfeldt and 

Masello 2004, Hamer et al. 2006). Direct effects of supplementary feeding have been 

observed in a number of supplementary feeding studies. For example, Cucco and 

Malacarne (1997) found that supplementary food was almost always provided to the 

nestlings by adult Black Redstarts; adults were rarely observed consuming it. In my 

study it is unclear if the effects of supplementary feeding were direct or indirect. 
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Therefore future research should determine the mechanisms by which supplementary 

food acts on brood provisioning.  

In a biparental mating system, such as that of Blue and Great Tits, parental 

investment during the nestling phase may be influenced by food availability and differ 

between the sexes when each sex differentially allocates time towards other activities 

such as preening, singing, vigilance and anti-predator behaviours (e.g. Ward and 

Kennedy 1996, Cucco and Malacarne 1997, Rastogi et al. 2006). Supplemented male 

Black Redstarts spent more time singing, preening and being vigilant and less time 

feeding nestlings compared with unfed birds while females increased provisioning 

rates to offset reduced male provisioning rates (Cucco and Malacarne 1997). Since 

Great and Blue Tits are polygamous, it is possible that supplementary feeding 

differentially affected the behaviour of males and females. However, this can only be 

investigated by monitoring the provisioning efforts of both sexes perhaps using PIT 

tag technology that allows the automatic identification of individual birds as they 

enter a nestbox (Freitag et al. 2001). 

I have shown that the combined provisioning efforts of breeding pairs of Great 

and Blue Tits at day 9 of the nestling period were significantly influenced by food 

supplementation whether it be food that is consumed by adults (i.e. peanut cake) or 

fed directly to chicks (i.e. mealworms). Further data on sex-specific brood investment 

by adults, natural food abundance, foraging distances and prey size would provide 

further insights in this regard.  

Nestling provisioning rates have important consequences for nestling growth 

rate, fledging body mass (Naef-Daenzer and Keller 1999) and, as a consequence, 

survival and fitness. Future work should focus on the downstream effects of nestling 

provisioning such as on nestling growth rates and nestling recruitment into the 
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breeding population. Results from my study and future work may assist in 

understanding the life-history trade-offs between self-maintenance and investment in 

current and future broods. This will increase our understanding of population and 

community dynamics in response to food availability. Finally, since feeding garden 

birds is a widespread activity amongst homeowners internationally (Jones and 

Reynolds 2008, Davies et al. 2009), the results of this and future studies may have 

important implications for recommended best practice in the timing, nature and extent 

of feeding wild birds during the breeding period. 

 

4.5.5 The next chapter 

Parental investment during the nestling phase may be influenced by food availability 

and differ between the sexes through changes in the potential for polygamy (Emlen 

and Oring 1977). For example, when reproductive success is more variable in males 

than in females and food abundance enables females to provide full parental care, it 

may be advantageous for males to allocate time and energy to seeking out EPCs 

(Emlen and Oring 1977). With my findings showing a significant effect of 

supplementary feeding on brood provisioning behaviour, I will now investigate the 

effect of supplementary feeding on the rate of EPP in Chapter Five. 
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Chapter Five 

THE EFFECT OF FOOD AVAILABILITY ON EXTRA-PAIR PATERNITY OF BLUE 

TITS 

 

5.1. ABSTRACT 

Extra-pair paternity (EPP) can provide both direct benefits and indirect benefits. 

However, since extra-pair copulations (EPCs) may be both energetically and 

temporally costly, the incidence of EPP is likely to vary in relation to food 

availability. Furthermore, since within-pair young (WPY) and extra-pair young (EPY) 

experience differential mortality, the availability of food may further influence the 

incidence of EPP within a brood post-hatching. During 2008 and 2009 I studied the 

effects of food supplementation on EPP in Blue Tits by providing supplementary food 

(peanut cake) during the fertile period, and by providing a further food supplement 

(mealworms) intended for chick consumption during the nestling period. 

Supplementary feeding had a significant effect on the proportion of EPY per brood 

with 14.75%, 28.35% and 28.64 % of nestlings being EPY in control, peanut cake, 

and peanut cake and mealworms treatments, respectively. This study provides 

empirical evidence of food availability influencing the mating behaviour of a common 

woodland passerine. Therefore, further study of the behavioural mechanisms that 

underlie mating strategies of birds is important in elucidating effects of supplementary 

food on EPP and the genetic structure of bird populations.   
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5.2. INTRODUCTION 

In Chapter Four I provided evidence that the supplementation of food prior to, and 

throughout, the nestling period had marked effects on brood provisioning behaviour 

of both Blue and Great Tits. Food availability during the nestling period may 

differentially influence male and female investment in brood provisioning through 

changes in the potential for polygamy (Emlen and Oring 1977). In this chapter, 

therefore, I investigate the effects of supplementary feeding on the incidence of EPP 

in Blue Tits. 

 

5.2.1. EPP and food availability 

The mating systems of birds are diverse and vary across species in respect to the 

number of social partners (i.e. partners who share responsibilities of parental care 

and/or territory defence) and the number of sexual partners (i.e. partners who copulate 

but do not invest in parental care). While 85% of species practise social monogamy 

(Lack 1968) (i.e. do not form social bonds with other birds outside of the social pair), 

more than 75% of socially monogamous bird species are sexually polygamous 

(Griffith et al. 2002) and partake in EPCs (i.e. where the female copulates with a male 

who is not her social mate – Bennett and Owens 2002). Engaging in EPCs, which may 

result in EPP (Bennett and Owens 2002), can provide both direct benefits and indirect 

benefits. For example, a female engaging in EPP can directly benefit by gaining 

additional food through increased foraging opportunities on an extra-pair male’s 

territory (Gray 1997); she may also gain indirect genetic benefits such as an increased 

likelihood of ‘good genes’ within her offspring (e.g. Hasselquist et al. 1996, 

Kempenaers et al. 1997). Several non-mutually exclusive hypotheses framed within 

ecological and genetic contexts have been proposed to explain the function of EPCs 
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(reviewed in Petrie and Kempenaers 1998, Griffith et al. 2002). Despite the debate 

still raging about the finer points of mechanics and functionality of EPC (reviewed in 

Petrie and Kempenaers 1998, Griffith et al. 2002), it is generally accepted that EPC 

enables males to increase the number of offspring they father and females to increase 

the quality of their offspring (Birkhead and Møller 1992). 

Despite such benefits to both sexes, undertaking EPC is likely to be costly. For 

example, a female participating in EPCs may experience a reduction in paternal care 

from her social mate who may adjust his reproductive investment in relation to his 

level of perceived cuckoldry (e.g. Dixon et al. 1994, Weatherhead et al. 1994). 

Seeking EPCs is likely to be costly for a male too as he reduces the time spent mate-

guarding and, therefore, increases the probability of being cuckolded (e.g. Komdeur et 

al. 1999, Chuang-Dobbs et al. 2001). For both sexes mating with multiple partners 

increases exposure to sexually-transmitted diseases and, because searching for EPCs 

reduces the amount of time for foraging, it is likely to be both energetically and 

temporally costly (reviewed in Birkhead and Møller 1992, Petrie and Kempenaers 

1998).  

Since the energetic and temporal constraints of foraging are likely to be 

alleviated when food is abundant, food availability may also influence the rate of EPP. 

However, to date, although some studies suggest that food availability may at least 

partially determine rates of EPP (e.g. Dunn and Hannon 1992, Charmantier and 

Blondel 2003, Rubenstein 2007), to the best of my knowledge only three food 

supplementation studies have examined the role of food availability in this regard in 

any detail. Westneat (1994) provided supplementary food (a mixture of cracked corn, 

sunflower seeds and mealworms) to Red-winged Blackbirds from the onset of nest 

construction until the third egg was laid to investigate how foraging behaviour 
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influenced paternity. Food-supplemented males sired significantly more offspring 

(88%) produced on their territories than control (nonsupplemented) males (69%) and 

made significantly fewer foraging trips (1.0 trips per hr) off their territories than did 

controls (1.7 trips per hr). Westneat (1994) concluded that the difference in paternity 

between the supplemented and control birds was the result of supplemented males 

investing more in mate-guarding and, therefore, safeguarding paternity. 

Supplementary feeding of commercially available seed mix prior to egg laying 

also led to a decrease in EPP in broods of House Sparrows with the proportion of EPY 

in broods being five times lower than in broods at sites where supplementary food 

was not available (Václav et al. 2003). This may have resulted from a change in 

female behaviour (supplemented females, but not males, increased time spent at the 

nest) which enabled them to avoid EPCs with neighbouring males (Václav et al. 

2003). In contrast, Hoi-Leitner et al. (1999) manipulated food availability by 

providing food plants (Diplotaxis spp.) during the fertile period of female European 

Serins and showed that the number of broods containing EPP was significantly higher 

on territories with high food availability.  

Females that participate in EPCs may face a reduction in paternal care from 

social mates who may adjust their reproductive investment in relation to the level of 

perceived cuckoldry (e.g. Dixon et al. 1994, Weatherhead et al. 1994). Hoi-Leitner et 

al. (1999) suggested that the costs of having help withdrawn from males were less for 

females in territories with high food availability than for those in poorer ones. 

Therefore, the costs of producing EPY for supplemented females would be reduced 

over those for the control females, thereby providing support for the ‘constrained 

female hypothesis’ (Gowaty 1996). 
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Although previous supplementary feeding studies have shown food 

availability influences the incidence of EPP (e.g. Westneat 1994, Hoi-Leitner et al. 

1999, Václav et al. 2003), whether extended supplementary feeding throughout the 

spring and summer, as recommended by organisations such as the BTO and RSPB 

(see Section 1.1.2), influences the mating systems of common garden birds has not 

been investigated. Furthermore, few studies have considered the effects of 

supplementary feeding during the nestling phase on the survival to fledging of within-

pair young (WPY) and EPY. This may be important to consider since WPY and EPY 

may experience differential mortality in the nest with the latter having a higher chance 

of fledging (e.g. Kempenaers et al. 1997, O’Brien and Dawson 2007). 

In this chapter I investigate the effects of supplementary food on the incidence 

of EPP both between and within broods of Blue Tits, a small passerine species of 

woodlands which readily feeds on garden bird feeders and nests in nestboxes (Gosler 

and Clement 2007). Although Blue Tits are socially monogamous (Cramp and Perrins 

1993), EPCs (resulting in EPY) are common in this species (e.g. Kempenaers et al. 

1992, Krokene et al. 1998) during the female’s fertile period between 5 days before 

the first egg is laid and the day on which the penultimate egg is laid (Møller 1987). I 

hypothesised that supplementary food (peanut cake) provided prior to, and 

throughout, the egg laying period would partly alleviate the energetic and temporal 

constraints of foraging allowing male Blue Tits to increase time spent mate-guarding 

during the fertile period of female Blue Tits. I also hypothesised that feeders 

containing the supplementary food would act as ‘food hotspots’ resulting in a 

reduction in the roaming behaviour of foraging female Blue Tits allowing them to be 

closely mate-guarded by male Blue Tits. Therefore, I predicted that the 

supplementation of peanut cake would result in fewer nests containing EPY and that 
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broods of supplemented birds would have a lower proportion of EPY than broods of 

control (nonsupplemented) birds. In addition, I hypothesised that an additional food 

supplement (mealworms) intended for nestlings, and provided to birds already 

receiving peanut cake, would result in increased nestling survival and a lessening of 

differential mortality between WPY and EPY compared with only peanut cake-

supplemented birds. Therefore, I predicted that the additional supplementation of food 

intended for nestlings would result in a lower proportion of EPY within nests 

compared to that in nests of birds only supplemented with peanut cake.  

 

5.3. METHODS 

5.3.1. Study site and supplementation 

Please see full details that are provided in Section 4.3.1. 

 

5.3.2. Field methods 

Nestboxes were checked every other day to determine clutch initiation date, onset of 

incubation and hatch date (see Section 3.3.2 for further details). In both 2008 and 

2009 a subset of nestboxes were chosen (approx. 15 from each dietary treatment) to 

investigate EPP. As availability of opportunities for EPCs may vary seasonally (e.g. 

Thusius et al. 2001, Stewart et al. 2010), nestboxes were selected in accordance with 

lay date to ensure that I sampled birds with hatch dates distributed throughout the 

entire breeding season. Furthermore, focal nestboxes were distributed as evenly as 

possible throughout each woodland block so as to control for potential localised 

habitat effects. In 2008, both adults and all nestlings between 10 and 14 days after 

hatching at each focal nestbox were caught under Natural England licence (20080377) 

with adults captured using spring-loaded nestbox traps (Amber Electronics Ltd., 
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Daventry, UK) and nestlings removed from nestboxes. All birds were tissue sampled 

under Home Office licence (PPL 40/2926). One to three contour feathers were 

plucked from adults and nestlings to obtain adequate amounts of DNA for paternity 

analysis (e.g. Taberlet and Bouvet 1991, Harvey et al. 2006) and feather tips were cut 

from them using dissecting scissors and stored in 1 ml of absolute ethanol. As a result 

of low yields of DNA from feather pulp in 2008, in 2009 I took 25-50 µl blood 

samples from each adult and nestling by venipuncture with a 27G hypodermic needle 

(Becton Dickinson U.K. Ltd., UK), drawing blood into glass heparinised capillary 

tubes (Bilbate, Daventry, UK) and flushing into 1 ml of absolute ethanol. Tissue 

samples were stored in a domestic fridge at 3°C pending molecular analysis. All birds 

had either been ringed previously or were ringed under BTO licence (under ringing 

permit: C/5418) at the time of tissue sampling using standard BTO metal rings for 

individual recognition. Both adults and three randomly chosen nestlings within each 

brood had tarsus length (minimum tarsus length – Redfern and Clark 2001) measured 

to the nearest 0.1 mm using a dial calliper (KWB, Switzerland) and body mass to the 

nearest 0.1 g using an electronic balance (SA-500, SATRUE, Taiwan). I took all 

morphometric measurements to avoid repeatability issues with multiple experimenters 

(Gosler et al. 1998).  

 

5.3.3. Molecular methods 

Genomic DNA was extracted using the Ammonium acetate method of Nicholls et al. 

(2000) from a total of 151 adults and 730 nestlings from 83 broods sampled in 2008 

and 2009. Extracted DNA was quantified by measuring the optimal density of 

samples at 250 nm using a Fluostar Optima fluorimeter (BMG Labtech, Offenburg, 

Germany). I used 14 autosomal polymorphic microsatellite loci in 4 multiplex primer 
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sets (see Appendix Two for details of development of multiplex primer sets) to 

determine paternity. Loci were amplified by polymerase chain reaction (PCR). Each 

2-µl PCR involved approx. 15 ng of genomic DNA, 0.5 µl of each primer (0.2 µM) 

and 1.0 µl of QIAGEN Multiplex PCR Master Mix (Kenta et al. 2008). PCR 

amplification was performed using a DNA Engine Tetrad PTC-225 Peltier thermal 

cycler (MJ Research, Bio-Rad, Hemel Hempstead, UK). A touchdown PCR was used 

(TD65-55) with the following profile: 95ºC for 15 min, then 10 cycles of 94ºC for 30 

sec, 65ºC for 90 sec (dropping 1.0ºC per cycle), 72ºC for 1 min, followed by 25 cycles 

of 94ºC for 30 sec, 55ºC for 90 sec, 72ºC for 1 min. PCR products were diluted using 

high grade water (1 in 400 dilution). One µl of each diluted sample was then mixed 

with 9.5 µl of formamide/size standard mix (made up of 1 ml of formamide and 3 µl 

of ABI ROX 500 internal size standard [Applied Biosystems, California, USA]). 

Samples were then denatured for 5 min at 95ºC and quenched on ice prior to being 

separated on an ABI 3730 DNA Analyser (Applied Biosystems, California, USA). 

Genotypes were scored relative to the 500 ROX internal size standard (Applied 

Biosystems, California, USA) using GENEMAPPER software v3.7 (Applied 

Biosystems, California, USA). 

 

5.3.4. Confirming suitability of loci for paternity analysis 

To confirm that each locus was suitable for paternity analysis, loci characteristics 

were measured (see Appendix Two for full details of measuring loci characteristics). 

For each locus, observed and expected heterozygosities (i.e. measurements of genetic 

diversity – Weir 1990), estimated null allele frequencies and non-exclusion 

probabilities were calculated using CERVUS v3.0 (Marshall et al. 1998) for each year 

independently using the genotypes from all unrelated individuals. Tests for departures 
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from Hardy-Weinberg (see Russell 1996 for overview of the Hardy-Weinberg 

equilibrium) and linkage disequilibrium (the association between alleles at different 

loci) (Amos et al. 1992) were also conducted using a Markov-chain method 

implemented in GENEPOP v.4.0 (Rousset 2008) for each year independently using 

the genotypes from all unrelated individuals. Independent year analysis was applied as 

initial inspections of genotypes suggested that more loci failed to amplify during PCR 

in DNA from the 2008 feather samples than in DNA from the 2009 blood samples. 

Therefore, it was likely that estimations of genetic variability (i.e. observed and 

expected heterozygosities, estimated null allele frequencies and non-exclusion 

probabilities) would not be consistent between years (Hoffman and Amos 2005). 

 

5.3.5. Paternity analysis 

Paternity was assigned using COLONY version 2.0.1.1 (Wang 2004). COLONY uses 

a maximum-likelihood approach to assign paternity whilst accounting for genotyping 

errors and allelic dropout.  

To estimate genotyping errors and instances of allelic dropout the number of 

allelic mismatches (i.e. when an offspring and a mother do not share a common allele 

at a locus) between putative mothers and nestlings at each locus was initially 

estimated using all genotyped individuals independently for each year. In addition to 

allelic mismatches occurring as a result of genotyping error and allelic dropout, allelic 

mismatches between offspring and putative mothers also occur when offspring 

originate from dumped eggs (i.e. intra-brood parasitism) (e.g. Meek et al. 1994, Reyer 

et al. 1997). Therefore, the presence of nestlings originating from dumped eggs may 

result in an overestimation of genotyping error and allelic dropout rates. To avoid 

overestimation of genotyping error and allelic dropout rates, I plotted the distribution 
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of allelic mismatches between putative mothers and nestlings for each year. This 

assisted in determining which allelic mismatches were due to genotyping error/allelic 

dropout as opposed to egg dumping and allowed me to omit the latter in calculations 

of genotyping error and allelic dropout.  

During paternity assignment COLONY version 2.0.1.1 (Wang 2004) accounts 

for genotyping errors and allelic dropout separately. To calculate allelic dropout rate 

using allelic mismatches, I identified allelic mismatches which resulted from one 

individual having a homozygous profile. These mismatches were assumed to result 

from the failure of one allele to amplify (i.e. allelic dropout) (Fig. 5.1). All other  

 

 

 

 

 

 

 

 

 

Figure 5.1. Allelic mismatch between the mother and offspring resulting from allelic 

dropout (i.e. where the allele from the mother failed to amplify). The ‘real’ offspring 

genotype (A/C) consists of one allele from the mother (A) and one from the father 

(C). However, the offspring genotype determined through genetic analysis is ‘false’ 

(C/C) as a result of ‘A’ failing to amplify. 

 

mismatches (i.e. where both individuals were heterozygous) were assumed to be a 

result of other genotyping errors (i.e. allele scoring issues – Marshall et al. 1998, 

Hoffman and Amos 2005). 

Mother genotype: A / B Father genotype: C / D 

‘Real’ offspring genotype: A / C 

‘False’ offspring genotype: C / C 

PCR amplification in 
which the A allele from 
the mother does not 
amplify due to allelic 

dropout 
Offspring now  

appears  to have a 
homozygous profile 
resulting in an allelic 
mismatch between 

the mother and 
offspring 
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5.3.6. Statistical analyses 

Statistical analyses were performed using data from all nestlings apart from those 

hatching from dumped eggs. I used both the proportion of nests containing EPY 

(model 1) and the proportion of EPY within a nest (model 2) as measures of EPP. 

Mixed models were constructed using PROC GLIMMIX in SAS version 9.2 (SAS 

Institute Inc. 2008) and fitted with binomial error distributions to test for the effects of 

supplementary feeding on both of the response variables independently. In both 

models, treatment block was specified as a random factor, due to repeated measures 

on treatment blocks between years, and year was included as a fixed factor to account 

for potential annual variation in breeding performance (Nager et al. 1997). Combined-

year analysis was conducted if there was no significant interaction between year and 

dietary treatment (year × dietary treatment: P > 0.05) and no main effect of year (year: 

P > 0.05). Otherwise independent year analyses were performed. 

Clutch size was included as a covariate in both models because the probability 

of having an EPY may depend on clutch size (Brommer et al. 2007). Hatch date was 

also included as a covariate in both models to control for temporal changes in 

availability of extra-pair matings resulting from seasonal changes in breeding 

synchrony and breeding densities (e.g. Thusius et al. 2001, Stewart et al. 2010). Male 

body condition (residuals from the regression of body mass on tarsus length) was also 

included as a covariate in all models because females mated to low quality (i.e. body 

condition) males are more likely to seek out EPCs than those paired to high quality 

males (e.g. Kempenaers et al. 1992, 1997). Finally, male age was included as a 

covariate in all models because older males are less likely to be cuckolded than 

younger males (e.g. Lubjuhn et al. 2007, Moreno et al. 2010). To determine if the 

effects of covariates were consistent between treatment blocks, covariate × dietary 
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treatment interactions were tested independently of one another within each model. 

Where multiple covariate × dietary treatment interactions were significant they were 

both included in the model as long as each stayed significant (Grafen and Hails 2002). 

I performed backward model selections removing the least non-significant covariate 

interactions (P > 0.05) one-by-one from models ensuring that there was no significant 

change in deviance between models where applicable (Grafen and Hails 2002). 

Tukey-Kramer post hoc tests were conducted for pairwise comparisons of the least-

square means with results being presented as adjusted P values. 

 

5.4. RESULTS 

5.4.1. Suitability of loci for paternity analysis 

The results from the tests used to investigate loci characteristics revealed that one 

locus, BT22D06, in both 2008 and 2009 was significantly out of Hardy-Weinberg 

equilibrium (P < 0.00001 – 2008 and 2009; Tables 5.1 and 5.2) and also possessed a 

high estimated null allele frequency in 2009 (0.118 [11.8% estimated as being null]; 

Table 5). Furthermore, following a Bonferroni correction for multiple comparisons 

(Rice 1989), tests for linkage disequilibrium between pairs of loci revealed that one 

pair of loci were in linkage disequilibrium in 2008 (BT19F01 vs. BT22G10, P = 

0.00). The locus BT22D06 was, therefore, excluded from genetic parentage analysis 

(see Appendix Two for details of loci characteristics and consequences for paternity 

assignment).
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Table 5.1. Details of polymorphic microsatellite loci used in the paternity analysis of Blue Tits breeding in Chaddesley Woods National 

Nature Reserve in 2008. Note: N is the number of birds tested; HO the observed heterozygosity; HE the expected heterozygosity; HWE the 

Hardy-Weinberg Equilibrium from which the P value is generated (values in bold indicate a departure from Hardy-Weinberg equilibrium 

where P < 0.05); F(null) is the expected null allele frequency as a proportion (values in bold indicate where proportion of null allele 

frequencies for the loci are > 0.1); NE-1P is the non-exclusion probability (first parent); EMBL accession number is the unique identifier given 

to each primer once submitted to the EMBL nucleotide sequence database - http://www.ebi.ac.uk/embl/; and Reference is the place of 

publication. 

Locus N Number of Alleles HO HE HWE P-value F(Null) NE-1P EMBL accession number Reference 

BT19F01 55 15 0.818 0.847 0.164 +0.011 0.480 FM878046 Unpubl. 

BT21C07 48 6 0.792 0.731 0.207 -0.043 0.692 FM878058 Unpubl. 

BT22D06 52 25 0.846 0.945 0.000 +0.050 0.229 FM878073 Unpubl. 

BT19G06 62 13 0.871 0.867 0.190 -0.008 0.436 FM878047 Unpubl. 

BT20C03 56 11 0.857 0.790 0.909 -0.048 0.582 FM878052 Unpubl. 

BT22G10 58 8 0.845 0.828 0.598 -0.017 0.530 FM878081 Unpubl. 

BT23E05 55 16 0.818 0.823 0.591 -0.001 0.516 FM878091 Unpubl. 

BT19H11 59 13 0.864 0.875 0.234 +0.004 0.413 FM878051 Unpubl. 

BT23F02 62 15 0.984 0.920 0.769 -0.038 0.301 FM878092 Unpubl. 

Pca3 57 20 0.877 0.927 0.317 +0.024 0.281 AJ279805 Dawson et al. (2000) 

Pca4 56 10 0.911 0.814 0.153 -0.063 0.554 AJ279806 Dawson et al. (2000) 

Pca7 56 11 0.893 0.859 0.962 -0.024 0.457 AJ279809 Dawson et al. (2000) 

Pca9 61 11 0.787 0.872 0.318 +0.048 0.426 AJ279811 Dawson et al. (2000) 

POCC1 26 13 0.885 0.870 0.912 -0.025 0.443 U59113 Bensch et al. (1997) 
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Table 5.2. Details of polymorphic microsatellite loci used in the paternity analysis of Blue Tits breeding in Chaddesley Woods National 

Nature Reserve in 2009. Note: N is the number of birds tested; HO the observed heterozygosity; HE the expected heterozygosity; HWE the 

Hardy-Weinberg Equilibrium from which the P value is generated (values in bold indicate a departure from Hardy-Weinberg equilibrium 

where P < 0.05); F(null) is the expected null allele frequency as a proportion (values in bold indicate where proportion of null allele 

frequencies for the loci are > 0.1); NE-1P is the non-exclusion probability (first parent); EMBL accession number is the unique identifier given 

to each primer once submitted to the EMBL nucleotide sequence database - http://www.ebi.ac.uk/embl/; and Reference is the place of 

publication. 

Locus N Number of Alleles HO HE HWE P-value F(Null) NE-1P EMBL accession number Reference 

BT19F01 82 18 0.878 0.846 0.112 -0.024 0.475 FM878046 Unpubl. 

BT21C07 81 6 0.728 0.716 0.866 -0.012 0.705 FM878058 Unpubl. 

BT22D06 82 26 0.732 0.932 0.000 0.118 0.258 FM878073 Unpubl. 

BT19G06 81 14 0.914 0.897 0.781 -0.012 0.362 FM878047 Unpubl. 

BT20C03 80 10 0.85 0.824 0.951 -0.019 0.534 FM878052 Unpubl. 

BT22G10 79 8 0.835 0.84 0.731 0.001 0.502 FM878081 Unpubl. 

BT23E05 81 16 0.84 0.786 0.142 -0.041 0.582 FM878091 Unpubl. 

BT19H11 81 12 0.914 0.86 0.509 -0.033 0.445 FM878051 Unpubl. 

BT23F02 81 18 0.926 0.906 0.581 -0.015 0.331 FM878092 Unpubl. 

Pca3 82 26 0.939 0.921 0.838 -0.014 0.287 AJ279805 Dawson et al. (2000) 

Pca4 82 15 0.878 0.827 0.175 -0.039 0.523 AJ279806 Dawson et al. (2000) 

Pca7 82 14 0.829 0.879 0.434 0.026 0.405 AJ279809 Dawson et al. (2000) 

Pca9 82 12 0.866 0.84 0.946 -0.019 0.485 AJ279811 Dawson et al. (2000) 

POCC1 77 12 0.948 0.896 0.948 -0.033 0.367 U59113 Bensch et al. (1997) 
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5.4.2. Genotyping errors and instances of allelic dropout 

To allow genotyping error and allelic dropout rates to be estimated for use in paternity 

analysis, the number of allelic mismatches was calculated. In 2008, 34 nestlings had 

allelic mismatches at one or more loci with their putative mothers compared with 17 

in 2009. The distribution of the number of allelic mismatches between nestlings and 

putative mothers was bimodal with a group of nestlings and their putative mothers 

having one or two allelic mismatches and a group having over four allelic mismatches 

(Fig 5.2a and b). I assumed that where the number of allelic mismatches between a 

nestling and its putative mother was less than three the allelic mismatches could be 

explained by genotypic error/allelic dropout. Alternatively, I assumed that where the 

number of allelic mismatches between a nestling and its putative mother was greater 

than four the allelic mismatches could be explained by egg dumping (see Meek et al. 

1994, Reyer et al. 1997 for separating EPY and young originating from intra-specific 

brood parasitism).  

 

5.4.3. Occurrence of EPP in the study population 

Thirty-two males and 38 females in 2008 and 41 males and 41 females in 2009 from 

41 and 42 nests, respectively, were genotyped and none was found to have bred in 

both years of the study. Out of 348 nestlings genotyped in 2008 and 381 in 2009, I 

successfully assigned paternity to 233 (67.0%) and 306 (80.3%), respectively. Eighty 

nestlings (23.0%) in 2008 and 67 nestlings (17.6%) in 2009 were EPY. Furthermore, 

25 of 41 nests (61.0%) in 2008 and 19 of 42 nests (45.2%) in 2009 contained EPY. In 

addition, two nests in 2008 and three nests in 2009 contained nestlings that hatched 

from dumped eggs. 

 Of 25 nests in 2008 and 19 nests in 2009 containing EPY, 10 and four 
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Figure 5.2. Distribution of allelic mismatches between genotyped putative mother 

and nestling Blue Tits sampled in (a) 2008 and (b) 2009 in Chaddesley Woods 

National Nature Reserve. Three or less mismatches between a nestling and a putative 

mother result from either genotyping error or from allelic dropout whereas four or 

more such mismatches result from incidents of egg dumping. 

 

respectively, contained nestlings that were sired by two or more extra-pair fathers 

while the remainder contained nestlings sired by a single extra-pair father (Fig. 5.3). 

In four incidences of EPP at nests in 2008, and two in 2009, the extra-pair father was 

caught at another nest (i.e. at the nest of his social mate) which was never more than 

two nestboxes away (i.e. within 80 m). However, as the dietary treatment blocks were 

separated by approx. 70 m, this highlighted the potential for EPCs to be elicited in a 

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Allelic mismatches between a putative mother and nestling 

P
e
rc

e
n
ta

g
e
 o

f 
to

ta
l a

lle
lic

 m
is

m
a
tc

h
es

 

a 

b 

Allelic mismatches resulting from egg dumping  



Chapter Five                                                                                                      The effect of food availability on extra-pair paternity  

141 

 

 

Figure 5.3. Paternity of young (within-pair, extra-pair or from dumped eggs) in Blue 

Tit broods sampled in Chaddesley Woods National Nature Reserve in 2008 and 2009 

where birds were fed peanut cake (PC), peanut cake + mealworms (PC+MW), and no 

supplement (control - C). Numbers above bars indicate the number of fathers 

represented in each brood. 
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neighbouring dietary treatment block. Indeed, in one incidence in 2009, I found that 

one male nesting on the edge of one dietary treatment block was found to have 

fathered nestlings in a nestbox on the edge of a neighbouring dietary treatment block 

(Fig. 5.4). 

 

5.4.4. Effects of supplementary feeding on EPP 

There was no significant effect of year on EPP in terms of either proportion of broods 

(F2,48 = 1.72, P = 0.12) or proportion of EPY within broods (F1,72 = 0.24, P = 0.62). 

Supplementary feeding significantly affected the proportion of broods containing EPY 

(F2,72 = 3.91, P = 0.02; Fig. 5.5) with a higher proportion of broods in both the control 

and peanut cake + mealworm treatment blocks containing EPY compared to those in 

the peanut cake treatment block (Fig. 5.5).  

Supplementary feeding also significantly influenced the proportion of EPY 

within a brood (F2,72 = 4.74, P = 0.01; Fig. 5.6) with those in both of the 

supplementary fed treatment blocks containing a higher proportion of EPY than 

control broods (Fig. 5.6).  

Tukey-Kramer post hoc tests (testing for main effects of dietary treatment) 

indicated that there was no significant main effect of dietary treatment on either 

proportion of broods containing EPY or on the proportion of EPY within broods (see 

Table 5.3 for full details of statistical models). In both models there was a significant 

clutch size × dietary treatment interaction (model 1: F2,72 = 3.93, P = 0.02; model 2: 

F2,72 = 4.48, P = 0.01; Fig 5.7) indicating that in both food-supplemented blocks, the 

proportion of EPY within a brood decreased as clutch size increased. In contrast, the 

proportion of EPY within a brood increased positively with clutch size in the control 

treatment block. 
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Figure 5.4. Occurrence and location of nestboxes (smallest squares) where extra-pair 

Blue Tit young were either present (red) or absent (blue) in Chaddesley Woods 

National Nature Reserve in 2008 and 2009. Each outlined block represents a dietary 

treatment block (A: peanut cake + mealworms; B: peanut cake; and C: control) with 

open nestboxes not sampled. Circled nestboxes contained dumped eggs and arrows 

indicate distances between ‘extra-pair nests’ and ‘social-pair nests’ and movements of 

social mates that fathered EPY.  
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Figure 5.5. Proportion of Blue Tits broods containing EPY (mean ± 1 SE from 

statistical estimates) in each dietary treatment (C: control; PC: peanut cake; and 

PC+MW: peanut cake + mealworms) in Chaddesley Woods National Nature Reserve 

in 2008 and 2009. The number of nests (n) is given above each bar. 

 

Figure 5.6. Proportion of EPY per brood (mean ± 1 SE from statistical estimates) in 

each dietary treatment (C: control; PC: peanut cake; and PC+MW: peanut cake + 

mealworms) in Chaddesley Woods National Nature reserve in 2008 and 2009. The 

number of nests (n) is given above each bar. 
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Table 5.3. Results from the final statistical models (see text for details) explaining measurements of EPP in Blue Tits breeding in Chaddesley 

Woods National Nature Reserve in 2008 and 2009. Significant main and interaction effects are given in bold. Dietary treatments: C – control; PC 

– peanut cake; and PC+MW – peanut cake + mealworms. Directions of significant effects are given ‘+’ and ‘-‘ denote significant positive and 

negative relationships, respectively, and ‘NS’ denotes nonsignificance (P > 0.05). 

     Least square means (SE) – Tukey-Kramer post hoc P values  

Measure of paternity Factor F df P C vs. PC C vs. PC+MW PC vs. PC+MW Direction 

Proportion of broods 

containing EPY 

Dietary treatment 3.91 2,72 0.02 0.61(0.12) vs. 0.45(0.12) 

P = 0.66 

0.61(0.12) vs. 0.60(0.11) 

P = 1.00 

0.45(0.12) vs. 0.60(0.11)  

P = 0.65 

C = highest; PC = lowest 

Year 2.48 1,72 0.12    NS 

Clutch size 1.20 1,72 0.28    NS 

Clutch size × 

dietary treatment 

3.93 2,72 0.02    C = + ; PC = - ; PC+MW 

= - 

Proportion of EPY 

within a brood 

Dietary treatment 4.74 2,72 0.01 0.14(0.05) vs. 0.22(0.07)  

P = 0.58 

0.14(0.05) vs. 0.26(0.07) 

P = 0.30 

0.22(0.07) vs. 0.26(0.07) 

P = 0.91 

PC+MW = highest; C = 

lowest 

 Year 0.24 1,72 0.62    NS 

 Clutch size 2.71 1,72 0.10    NS 

 Clutch size × 

dietary treatment 

4.48 2,72 0.01    C = + ; PC = - ; PC+MW 

= - 
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Figure 5.7. Proportion of EPY within a brood in relation to clutch size of Blue Tits 

breeding in Chaddesley Woods National Nature Reserve in 2008 and 2009. 

Regression lines are for the peanut cake – PC) (solid: Spearman’s r = 0.32, d.f.  = 21, 

P > 0.05), peanut cake + mealworms – PC+MW (dotted: Spearman’s r = -0.32, d.f.  = 

26, P > 0.05); and control – C (unfed) (dashed: Spearman’s r = 0.44, d.f.  = 29, P < 

0.05). 

 

 

5.5. DISCUSSION 

Supplementary feeding should reduce a bird’s time and effort spent foraging and, 

consequently, it might allow social-pair males to increase time spent mate-guarding. 

Furthermore, feeders containing supplementary food may act as ‘food hotspots’ 

allowing females to reduce the amount of time spent roaming whilst foraging for food 

making them easier to mate-guard. Therefore, I predicted that the supplementation of 

food intended for adult consumption (peanut cake) from approx. 4 weeks prior to the 

egg laying period and throughout the nestling period would result in both a lower 

proportion of broods containing EPY and a lower proportion of young within a brood 

being EPY.  Additional supplementary feeding during the nestling period should 

increase nestling survival and reduce differential mortality between WPY and EPY. 
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Therefore, I predicted that additional supplementary feeding during the nestling 

period intended for chicks (mealworms) would result in a lower proportion of young 

within a brood being EPY compared to broods of birds only receiving supplementary 

food intended for adult consumption. The results, however, do not support my 

predictions. Blue Tits supplemented with peanut cake were less likely to have a brood 

containing EPY than birds in either the peanut cake + mealworms or in the control 

treatment blocks. Furthermore, Blue Tits supplemented with either peanut cake or 

peanut cake + mealworms had a higher proportion of EPY in their broods than control 

birds, and the proportion of EPY within broods in the peanut cake + mealworms 

treatment block exceeded that of broods in the peanut cake treatment.  

 

5.5.1. Effects of supplementary feeding on the incidence of EPP: female behaviour 

The similarity between proportions of broods containing EPY in control and peanut 

cake + mealworms treatment blocks suggests that the number of females partaking in 

EPCs is consistent in at least two-thirds of my study population regardless of food 

availability at least in the 2 years of study. In contrast, supplementary feeding affected 

the proportion of EPY in broods with those in the supplementary fed treatment blocks 

containing higher proportions of EPY compared with broods in the control block (Fig. 

5.6). This is consistent with the findings of Hoi-Leitner et al. (1999) who 

demonstrated that European Serins provided with additional food plants had a higher 

likelihood of having EPY. They also found that provisioning rates of cuckolded males 

decreased as EPP increased, indicating that females on territories with high food 

abundance and incidence of EPY were not constrained by a reliance on male 

assistance. Previous studies have found a cost of EPP for females in the form of 

withdrawal of paternal investment (e.g. Dixon et al. 1994, Weatherhead et al. 1994). 
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The ‘constrained female hypothesis’ of Gowaty (1996) states that females in poor 

environments (i.e. those of low food availability) are more vulnerable to help from a 

cuckolded male being withdrawn. It also predicts that females in good environments 

(i.e. those of high food availability) are able to make up for any withdrawal in male 

assistance and, therefore, are likely to have higher rates of EPP (Gowaty 1996). 

However, since it is unclear whether supplementary feeding has an effect on male 

brood provisioning rates in my study population (see Section 4.4) it is unclear whether 

my results lend support to the ‘constrained female hypothesis’. 

I found that the number of fathers siring offspring per nest was variable 

throughout the woodland with single extra-pair fathers accounting for EPY in 30 of 44 

(68.2%) broods and multiple extra-pair fathers accounting for EPY in 14 of 44 

(31.8%) broods. Moreover, the proportion of broods containing EPY sired by two or 

more extra-pair fathers was inconsistent between treatments with the highest in the 

peanut cake + mealworms dietary treatment block (8 of 16 or 50%) and the lowest in 

the control treatment block (3 of 17 or 17.6%) (Fig. 5.3). In Blue Tits EPP is thought 

to be largely under the control of females (Kempenaers et al. 1995) who actively seek 

out EPCs by visiting territories of neighbouring males (Kempenaers et al. 1992). The 

‘genetic diversity hypothesis’ proposes that EPP maximises genetic diversity within a 

brood (Williams 1975, Westneat et al. 1990), increasing the likelihood that at least 

some offspring will survive under unpredictable environmental conditions. This 

assumes that certain genotypes are more favourable than others under certain 

environmental conditions. Thus, in accordance with the ‘genetic diversity hypothesis’, 

females should seek EPCs with multiple males to maximise genetic diversity within 

the brood, and also to obtain associated fitness benefits. In support of this hypothesis 

my results suggest that a reduction in the energetic and temporal constraints of 



Chapter Five                                                                                                      The effect of food availability on extra-pair paternity  

149 

 

foraging through food supplementation appeared to allow females to partake in EPCs 

with multiple males, possibly through undertaking more off-territory forays, thereby 

increasing both the proportion of EPY and the genetic diversity of offspring within 

broods. Alternatively, feeders may have acted as ‘food hotspots’ attracting multiple 

males allowing females to obtain multiple EPCs when they visit the feeder to feed. 

 

5.5.2. Effects of supplementary feeding on the incidence of EPP: male behaviour 

Many bird species actively defend feeding territories (e.g. Gill and Wolf 1975, Ford 

1981). However, territorial behaviour requires significant energetic and temporal 

investments and, therefore, it is likely to vary in relation to food availability and time 

needed to forage (e.g. Carpenter and MacMillen 1976, Carpenter 1978). Ydenberg 

(1984) demonstrated that food supplementation resulted in Great Tits spending more 

time mounting a territorial response to an intruder (a stuffed Great Tit mounted on a 

pole). Although I do not have data reflecting investment in mate guarding, 

supplemented male birds in my study might have similarly invested more resources in 

territorial behaviour and, consequently, less in paternity guarding. A reduction in 

mate-guarding can lead to an increase in EPCs (e.g. Møller 1987, Westneat 1994) and 

this might explain why supplemented birds had higher proportions of EPY within 

broods than controls. Alternatively, supplementary fed males may have allocated 

more time and energy towards defending a feeder and, by doing so, gained more 

EPCs with females visiting the feeder to feed.  

When females copulate with multiple males in succession, sperm will compete 

to fertilise ova, a phenomenon referred to as sperm competition (Parker 1970). The 

timing of copulations is an important mechanism underlying the outcome of sperm 

competition across avian taxa (Birkhead 1998), with the last male to copulate often 
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achieving paternity, an effect referred to as ‘last male sperm precedence’ (Birkhead 

and Møller 1992). A social mate, therefore, may intensely mate-guard and/or perform 

frequent within-pair copulations to maximise the likelihood of his sperm fertilising 

ova, a strategy to guard against loss of paternity (e.g. Birkhead 1988, Møller and 

Birkhead 1991). However, mate-guarding behaviour may be relaxed when ecological 

constraints are imposed such as intense intra-specific competition for nest sites 

(Møller and Birkhead 1991) or when low food availability results in a male having to 

spend more time foraging (Rubenstein 2007). Under such constraints, when the risk of 

being cuckolded is high, the frequency of within-pair copulations increases (‘sperm 

competition hypothesis’ – Birkhead 1988) as mate-guarding becomes ineffective 

(reviewed in Petrie and Kempenaers 1998). In my study, control males may have been 

more constrained by food availability than those in supplemented treatment blocks. 

Therefore, while the latter may have mate-guarded more intensely than control males, 

lower mate-guarding may have been compensated for by higher rates of within-pair 

copulations by control males. Despite this, mate-guarding behaviour in Blue Tits has 

not always been demonstrated to be an effective guard of paternity (Kempenaers et al. 

1995). Therefore, while the strategies outlined above may apply to Blue Tits in my 

study, in terms of male mate-guarding behaviour lowering the incidence of EPCs, and 

thus the proportion of EPY within broods in the control treatment block, much further 

research is needed to understand fully the role of mate-guarding, and within-pair 

copulation behaviours of birds in determining the genetic outcomes of breeding 

attempts.  

 

5.5.3. Effects of additional supplementary feeding during the nestling period on the 

incidence of EPP 
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There was a slightly higher proportion of EPY within broods in the peanut cake + 

mealworm treatment block compared with the peanut cake treatment when nestlings 

were sampled on approx. nestling day 12 (Fig. 5.6). I assume that the proportions of 

EPY at hatching in the two supplementary fed blocks were equivalent because the 

dietary treatments were equivalent during the fertile period of females and, therefore, 

it appears that the additional mealworm supplement had a slight effect on the 

proportion of EPY within broods post-hatching. Previous studies have shown 

differential mortality in the nest may exist between WPY and EPY in Blue Tits with 

the latter having a higher chance of surviving (e.g. Kempenaers et al. 1997, Magrath 

et al. 2009). I found slightly higher proportions of EPY within broods in the peanut 

cake + mealworms treatment block compared with just the peanut cake treatment 

block suggesting perhaps that nestlings in the former may have experienced higher 

mortality rates, with survivors being biased towards EPY. However, I do not have 

data reflecting differential mortality between EPY and WPY and, therefore, whether 

the additional supplementary feeding of mealworms during the nestling period had an 

effect on the incidence of EPY remains unclear.  

 

5.5.4. Effect of clutch size on EPP in Blue Tits between dietary treatments 

The significant interaction between dietary treatment and clutch size in both models 

indicated that clutch size had a different effect on the rate of EPP between the dietary 

treatments. In control broods the proportion of EPY significantly increased with 

clutch size. In contrast, the proportion of EPY within a brood in both supplemented 

treatment blocks decreased as clutch size increased (although not significantly) (Fig. 

5.7.). Since control females were more likely to be both energetically and temporally 

constrained by foraging, they may have allocated fewer resources to seeking out EPCs 
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than supplemented females. This may have restricted control females to opportunistic 

EPCs with extra-pair males that encroached on their territories. Under this scenario 

where females are not actively choosing extra-pair males and EPCs are the result of 

unplanned encounters, the chance of EPP is random and, therefore, the probability of 

producing EPY increases with clutch size (Brommer et al. 2007). Thus, this appears to 

explain why larger control clutches contain more EPY. In contrast, supplemented 

females were probably less constrained by available resources and, therefore, could 

undertake more off-territory forays to seek out EPCs resulting in more EPY within 

their broods. As female Blue Tits preferentially mate with extra-pair males that are in 

better body condition than their social mates (e.g. Kempenaers et al. 1992, 

Kempenaers et al. 1997 – but see Leech et al. 2001), EPY are often in better body 

condition than WPY and have a higher likelihood of survival. Since the energetic 

costs of reproduction increase with brood size, supplemented birds may adopt a 

strategy to maximise fitness benefits by producing smaller clutches containing higher 

quality offspring when broods contain EPY. 

 

5.5.5. Future directions: other mechanisms driving EPP 

Paternity in birds has been shown to vary with song (e.g. Hasselquist et al. 1996, 

Byers 2007) which can act as an honest signal of male quality because it can be 

energetically and temporally costly to produce (reviewed in Gil and Gahr 2002). For 

example, male Dusky Warblers (Phylloscopus fuscatus) that maintained a high song 

amplitude during singing (a measure of song quality in this species) were more likely 

to father EPY (Forstmeier et al. 2002). As singing performance was related to both 

EPP and survival, they concluded that females chose to mate with males with high 

song quality in order to obtain indirect genetic benefits. When food is abundant, male 
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birds can allocate more resources to song production through a reduction in the time 

and energy needed to forage (e.g. Berg et al. 2005, Barnett and Briskie 2007). It is 

possible that supplemented males in my study, therefore, may have been able to 

allocate more towards singing than control males resulting in an increase in EPCs and 

in the proportion of EPYs within broods. However, this can only be investigated 

through further study of male song characteristics. 

 

5.5.6. Conclusions and future considerations 

I have provided evidence that food supplementation (peanut cake) of adult Blue Tits 

during the fertile period, and potential food supplementation of nestlings 

(mealworms), has marked effects on both the likelihood of a brood containing EPY 

and on the proportion of EPY within a brood. However, I investigated the effects of 

food supplementation on EPP between days 10 and 14 of the nestling period, but did 

not take into account either dead nestlings (i.e. brood reduction) or unhatched eggs. 

Although my approach allows me to investigate the post-hatching effects of food 

supplementation on EPP, tissue sampling unhatched eggs and dead nestlings would 

have further elucidated the effects of food supplementation on mating behaviour 

during the female’s fertile period. 

 While I have demonstrated an effect of supplementary feeding on EPP, the 

effects of supplementary feeding on the behavioural mechanisms which drive EPP in 

this study population remain unknown. Therefore, further studies are necessary to 

determine the effects of supplementary feeding on behaviours such as female 

foraying, mate-guarding, within-pair copulation and singing performance. Since food 

supplementation in my study was protracted and used commercially available food 

supplements, it mimicked feeding patterns of garden bird feeding by the public (Toms 
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and Sterry 2008). Therefore, my findings may have implications for a wide range of 

species of birds that feed in towns and cities (Jones and Reynolds 2008). My results 

create new concerns about the extensive feeding of birds, especially with respect to its 

potential influence on the genetic structure of avian populations.  

 

5.5.7. The next chapter 

Since EPY often have greater fitness benefits than WPY (e.g. Kempenaers et al. 1992, 

Charmantier et al. 2004), sex allocation theory predicts that it is adaptive for females 

to bias the sex of EPY towards the sex which provides the greatest fitness benefits 

(e.g. Sheldon and Ellegren 1996, Johnson et al. 2009). With my findings showing a 

significant effect of supplementary feeding on EPP, I will now investigate the effect 

of supplementary feeding on brood sex ratio in Chapter Six. 
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Chapter Six 

THE EFFECTS OF SUPPLEMENTARY FEEDING ON THE SECONDARY SEX 

RATIO OF BLUE TITS 

 

6.1. ABSTRACT 

According to sex allocation theory when food is abundant a female should bias brood 

sex ratio towards the sex which has the greatest reproductive variance in order to 

maximise fitness. In Blue Tits reproductive variance is greater for males than for 

females and high quality males have higher reproductive success than high quality 

females due to increased opportunities for extra-pair paternity. In 2008 and 2009 I 

tested the prediction that supplementary feeding results in male-biased secondary 

brood sex ratio in Blue Tits by providing supplementary food to breeding birds prior 

to and during egg-laying. Since food availability is also likely to affect brood sex ratio 

post-hatching in this species through differential mortality between the sexes, I also 

investigated the effects of additional supplementary feeding on secondary brood sex 

ratio by providing a supplement to be consumed by nestlings. In 2008 the effects of 

supplementary feeding on secondary brood sex ratio could not be elucidated due to 

poor DNA amplification during PCR. However, in 2009, supplementary feeding had a 

significant effect on secondary brood sex ratio of Blue Tits with those receiving 

supplementary food intended for both adult and nestling consumption having broods 

which were more male-biased than both control birds and those receiving 

supplementary food only prior to and during egg-laying. Since I measured secondary 

sex ratio, I suggest that a combination of both pre- and post-hatching manipulation of 

sex ratio account for the findings of this study.  
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6.2. INTRODUCTION 

Female birds should alter their behaviour and life-history strategies relative to the 

prevailing environmental conditions to maximise fitness (e.g. McGinley et al. 1987, 

Morris 1987). For example, maximum fitness returns may be achieved through 

adjustment in parental investment during the nestling period (see Chapter Four and 

references therein) and in mating behaviour (see Chapter Five and references therein). 

Furthermore, according to sex allocation theory if parents can predict the relative 

reproductive value of producing males and females, and are able to control the sex of 

their offspring, they should adjust the sex ratio accordingly to maximise fitness 

(Trivers and Willard 1973).  

Although there is controversy over the mechanism involved (reviewed in 

Krakow 1995, Komdeur and Pen 2002, Alonso-Alvarez 2006), the numbers of studies 

suggesting that female birds are able to manipulate and control brood sex ratio 

adaptively during the pre-laying period, resulting in biased primary brood sex ratios 

(i.e. sex ratios at laying – Burley 1986), are increasing (e.g.  Kilner 1998, Nager et al. 

1999). In birds the female determines the sex of offspring since she is the 

heterogametic sex and is able to adjust primary brood sex ratio (e.g. Svensson and 

Nilsson 1996, Komdeur et al. 2002). Primary brood sex ratio may result from non-

random segregation during meiosis (e.g. Svensson and Nilsson 1996, Komdeur et al. 

2002), from sex-specific reabsorption of the ova in the oviduct (Emlen 1997), from 

differential survival between male and female zygotes and/or embryos (Cichoń et al. 

2005), or from the influence of circulating hormones such as corticosterone (e.g. Pike 

and Petrie 2005, 2006). Further adjustment to sex ratio at post-laying stages (so-called 

secondary manipulation resulting in secondary sex ratio – Burley 1986) result from 

interactions between primary sex ratio, parental behaviour and environmental factors 
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(e.g. Cooch et al. 1997, Korpimäki et al. 2000). One such example was documented 

by Clotfelter (1996) who found that secondary sex ratio in broods of Tree Swallows 

differed from parity as a consequence of sex-biased laying sequences followed by 

brood reduction during the nestling phase. 

 In support of sex allocation theory (Trivers and Willard 1973) there is 

increasing evidence to suggest that birds are able to adjust brood sex ratio to 

maximise fitness when the relative fitness benefits of males and females differ (e.g. 

Komdeur 1996, Kilner 1998). This occurs in relation to a number of factors including 

sexually-selected traits (e.g. Sheldon et al. 1999, Korsten et al. 2006), paternal 

survival prospects (Svensson and Nilsson 1996) and local resource competition 

(Gowaty 1993). Furthermore, resource availability (e.g. food) during the nestling 

period can differentially affect the potential fitness benefits of offspring and numerous 

studies have provided evidence that females bias primary brood sex ratio in relation to 

local food abundance to maximise fitness benefits (e.g. Clout et al. 2002, Rutstein et 

al. 2004). The fitness consequences of biasing primary brood sex ratio in relation to 

food are likely to vary between species. Factors affecting adaptive sex allocation 

include the sex-related likelihood to help in co-operatively breeding species (e.g. 

Seychelles Warbler [Acrocephalus sechellensis] – Komdeur 1996), differential 

nestling survival between the sexes (e.g. Nager et al. 1999, Kalmbach et al. 2001) and 

fecundity (e.g. Kilner 1998, Rutstein et al. 2004). Komdeur (1996) demonstrated that 

helpers in the co-operatively breeding Seychelles Warbler are usually female and only 

increase their parents’ fitness when on territories with high food availability. Pairs 

breeding on high-quality territories (as measured by food abundance) produced an 

excess of female offspring. Conversely, on poor quality territories, offspring were 
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male-biased as producing female helpers under such conditions reduces reproductive 

success (Komdeur 1996). 

The effect of food availability on maternal condition may also influence 

primary brood sex ratio when maternal condition influences sex-specific nestling 

survival (Nager et al. 1999, Kalmbach et al. 2001). Nager et al. (1999) demonstrated 

that primary brood sex ratio varies with maternal condition in the Lesser Black-

backed Gull (Larus fuscus) acting through egg quality (Bolton et al. 1992) by directly 

influencing chick survival (Bolton 1991). Males are more susceptible to starvation 

than females (Griffiths 1992) since they are the larger sex (Cramp 1985). In 

accordance with sex allocation theory (Trivers and Willard 1973), Nager et al. (1999) 

manipulated female condition at the time of egg laying by continuous egg removal 

and supplementary feeding, and demonstrated that females in poor condition produced 

lower quality eggs, thereby skewing sex ratio towards females.  

When food availability is limited it is adaptive for a female to bias primary 

brood sex ratio when nutritional conditions during the nestling period differentially 

affect the potential reproductive success of male and female offspring. For example, a 

number of studies have found that for Zebra Finches (Taeniopygia guttata) in which 

the reproductive success of males and females is differentially affected by nutritional 

conditions during the nestling phase (Kilner 1998), brood sex ratio is sensitive to food 

availability (e.g. Kilner 1998, Rutstein et al. 2004). Female fecundity is strongly 

influenced by food resources received during the nestling period (Haywood and 

Perrins 1992) and, therefore, female nestlings are expected to be more vulnerable to 

nutritional stress than their male siblings (Kilner 1998). As a result, when food is 

restricted, Zebra Finches produce male-biased broods (Kilner 1998, Rutstein et al. 

2004 – but see Bradbury and Blakey 1998, Arnold et al. 2003). 
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Food availability may further influence brood sex ratio through differential 

mortality resulting in a biased secondary brood sex ratio. For example, in sexually 

dimorphic species in which the larger sex is more susceptible to starvation, food 

shortages during the nestling period may lead to biased mortality of the larger sex 

resulting in a biased secondary sex ratio (e.g. Great-tailed Grackle [Quicalus 

mexicanus] – Teather and Weatherhead 1989; Blue-footed Booby [Sula nebouxii] – 

Torres and Drummond 1997). In contrast, Hipkiss et al. (2002) showed that nestling 

mortality of Tengmalm’s Owls (Aegolius funereus) was biased towards the smaller 

sex (males – Cramp 1985) suggesting that the larger females had a competitive 

advantage over their smaller siblings and were able to monopolise food items. The 

authors suggested that the counteractive effect of food on Tengmalm’s Owls 

compared to other species (e.g. Great-tailed Grackle – Teather and Weatherhead 

1989; Blue-footed Booby – Torres and Drummond 1997) could be explained by a sex-

biased hatching sequence in which the males hatch last. Youngest brood members are 

often more susceptible to mortality than their older and larger siblings that are able to 

out-compete them (e.g. Nuechterlein 1981, Malacarne et al. 1994).     

Although there is extensive literature relating food availability to primary 

brood sex ratio, experimental studies have failed to investigate how supplementary 

feeding might influence secondary brood sex ratio. This may be fundamental to our 

understanding of how food availability in urban habitats influences avian breeding 

biology, especially since feeding wild birds is a widespread activity in towns and 

cities of the UK (Jones and Reynolds 2008) but we understand relatively little about 

its influence on the genetic structure of avian populations. In this study, therefore, I 

investigated the effects of two commercially available garden bird food supplements 



Chapter Six                                                                                 The effects of supplementary feeding on secondary brood sex ratio 

 

160 

 

on the secondary brood sex ratios of Blue Tits fed between pre-laying to post-hatching 

inclusive. 

Blue Tits are small socially monogamous passerines that readily utilise bird 

feeders, nest in nestboxes and lay large clutches (7-13 eggs – Gosler and Clement 

2007). Reproductive variance in Blue Tits is greater for males than for females and 

high quality males have higher reproductive success than high quality females due to 

EPP (Dreiss et al. 2006). Furthermore, Blue Tits exhibit slight size dimorphism with 

males being approx. 6% larger than females (Råberg et al. 2005). Therefore, males are 

likely to be more susceptible to starvation and mortality than their smaller female 

conspecifics, making it a good study species to investigate secondary brood sex ratio 

in relation to food availability. 

I hypothesised that the supplementation of peanut cake intended for adult 

consumption during the fertile period would increase female condition enabling 

supplemented females to produce higher quality nestlings. Since higher quality male 

Blue Tits have higher reproductive success than high quality females (Dreiss et al. 

2006), I predicted that broods in blocks supplemented with peanut cake would be 

more male-biased than in the control (nonsupplemented) block. In addition, I 

hypothesised that the additional supplementation of mealworms intended for nestling 

consumption would reduce male-biased mortality. Therefore, I predicted that broods 

in the treatment block supplemented with both peanut cake and mealworms would be 

more male-biased than broods in both the peanut cake-supplemented and control 

blocks.  
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6.3. METHODS 

6.3.1. Study site and supplementation 

Please see Section 4.3.1 for full details. 

 

6.3.2. Field methods 

Please see Section 5.2.1 for full details. 

 

6.3.3. Molecular methods 

In birds the female is heterogametic with two different sex chromosomes (ZW) while 

the male is homogametic with two sex chromosomes that are homologous (ZZ) (see 

Ellegren 2000 for review of avian sex determination). Located on each avian sex 

chromosome is the CHD (Chromo-helicase-DNA-binding) gene that is present in two 

forms: the CHD-W gene located on the W chromosome and, therefore, occurring only 

in females (ZW); and the CHD-Z gene located on the Z chromosome and occurring in 

both sexes (Griffiths and Tiwari 1995). Two primers, P2 and P8, have been developed 

(Griffiths et al. 1998) that can be used to amplify homologous fragments of the CHD 

genes by PCR. The homologous fragments of the CHD-W and CHD-Z genes that are 

amplified during PCR differ in size as a result of different intron lengths between the 

fragments. Therefore, the PCR products differ in size (Griffiths et al. 1998) and can be 

separated and visualised through gel electrophoresis (Alberts et al. 1983) with one 

band being visible for a male (ZZ) and two for a female (ZW) (Griffith et al. 1998). 

 The sex of all nestlings and adults from 2008 and 2009 was determined by 

PCR amplification of the CHD genes using the P2 and P8 primers (Griffiths et al. 

1998) using DNA extracted for paternity analysis (as described in Section 5.3.3). In 

addition, two sex-linked loci linked to the Z chromosome (Z037B and Z040 – 
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Dawson 2007) were amplified using PCR to increase the reliability of allocating sex 

to individuals. Please see Appendix One for full details of sex-linked loci.   

Each 2-µl PCR contained approx. 15 ng of genomic DNA, 0.5 µl of each 

primer (0.2 µM) and 1.0 µl of QIAGEN Multiplex PCR Master Mix (Kenta et al. 

2008). PCR amplification was performed using a DNA Engine Tetrad PTC-225 

Peltier thermal cycler (MJ Research, Bio-Rad, Hemel Hempsted, UK). A PCR was 

used with the following temperature and duration profile: 95ºC for 15 min, 34 cycles 

of 94ºC for 30 sec, 57ºC for 90 sec, 72ºC for 1 min, and 72ºC for 1 min. PCR products 

were separated on an ABI 3730 DNA Analyser (Applied Biosystems, California, 

USA) and genotypes were scored using GENEMAPPER software v3.7 (Applied 

Biosystems, California, USA).  

Observed and expected heterozygosities (i.e. measurements of genetic 

diversity – Weir 1990), estimated null allele frequencies (Dakin and Avise 2004) and 

non-exclusion probabilities (i.e. probability of not being able to exclude a male from 

paternity – Jones and Ardren 2003) for both of the Z-linked loci were calculated using 

CERVUS v3.0 (Marshall et al. 1998) for each year independently (see Section 5.3.3) 

using genotypes from all unrelated males. Female genotypes were excluded from 

analysis since females are always homozygous for Z-linked loci and, therefore, 

including them would result in incorrect estimations of heterozygosity. Tests for 

departures from Hardy-Weinberg and linkage equilibria were then conducted using a 

Markov-chain method implemented in GENEPOP v.4.0 (Rousset 2008). Tests 

revealed that both loci did not deviate significantly from the Hardy-Weinberg 

equilibrium in either year (Table 6.1) and that they did not deviate from linkage 

equilibrium following a Bonferroni correction for multiple comparisons (Rice 
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Table 6.1. Details of polymorphic microsatellite loci used in the brood sex ratio analysis of Blue Tits breeding in Chaddesley Woods National 

Nature Reserve in 2008 and 2009. Note: N is the number of birds tested; HO is the observed heterozygosity; HE is the expected heterozygosity; 

HWE is the Hardy-Weinberg Equilibrium from which the P value is generated; NE-1P is the non-exclusion probability for the first parent; 

F(Null) is the expected null allele frequency as a proportion; and Reference is the place of publication. 

 

Locus Year N Number of alleles HO HE HWE P-value NE-1P F(Null) Reference 

Z040 2008 29 6 0.621 0.648 0.316 0.764 -0.010 Dawson (2007) 

2009 41 5 0.659 0.742 0.610 0.687 +0.055  

Z037B 2008 30 3 0.367 0.362 1.000 0.937 -0.030 Dawson (2007) 

2009 42 3 0.262 0.301 0.417 0.956 +0.060  
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1989). Furthermore, neither locus had high estimated null allele frequencies (i.e. 1-

6%; Table 6.1) for either year.  

 

6.3.4. Sexing analysis 

The amplified PCR products from the CHD-W and CHD-Z genes were found to be 

different in size by a magnitude of 65 base pairs, the larger 384 base pair product 

being from the female CHD-W gene. Therefore, females were separated from males 

during genotype scoring by the presence of two clearly separated peaks compared to a 

single peak in the genotype profiles of males (Fig. 6.1) 

 

 

Figure 6.1.  Two different genotypes for the CHD locus from Blue Tits breeding in 

Chaddesley Woods National Nature Reserve in 2008 and 2009 with the smaller allele 

from the CHD-Z gene and the larger one from the CHD-W gene. (a) One peak is 

present in the electropherogram for a male (ZZ) and (b) two peaks for a female (ZW). 

 

6.3.5. Statistical analyses 

Statistical analyses were performed using data from all nestlings apart from those 

hatching from dumped eggs (n = 11). Mixed models were constructed using PROC 
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GLIMMIX in SAS version 9.2 (SAS Institute Inc. 2008) and fitted with binomial 

error distributions to test for the effects of supplementary feeding on brood sex ratio 

(expressed as the number of males per brood).  

To account for seasonal variation in brood sex ratio (e.g. Cordero et al. 2001, 

Krebs et al. 2002), and for the potential effects of both maternal (e.g. Bradbury and 

Blakey 1998, Whittingham and Dunn 2000) and paternal (e.g. Kölliker et al. 1999, 

Stauss et al. 2005b) condition on sex allocation, hatch date, and male and female body 

condition (residuals from the regression of body mass on tarsus length) were included 

as covariates. In addition, since larger clutches have been shown to be more female-

biased than smaller clutches (Lessells et al. 1996, Griffith et al. 2003), clutch size was 

also included as a covariate. Finally, since EPY often have greater fitness benefits 

than WPY (e.g. Kempenaers et al. 1992, Charmantier et al. 2004), the proportion of 

EPY within the nest was included as a covariate. To determine if the effects of 

covariates were consistent between treatment blocks, covariate × dietary treatment 

interactions were tested independently of one another. Where multiple covariate × 

dietary treatment interactions were significant, they were both included in the model 

as long as each remained significant (Grafen and Hails 2002). I performed backward 

model selections removing the least non-significant covariate interactions (P > 0.05) 

one-by-one from models ensuring that there was no significant change in deviance 

between models where applicable (Grafen and Hails 2002). Tukey-Kramer post hoc 

tests were conducted for pairwise comparisons of the least-squares means with results 

presented as adjusted P values.  
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6.4. RESULTS 

6.4.1. Nestling sex ratio 

In 2009 the sexes of 366 out of 369 chicks from 41 broods were determined with 179 

(or 49%) sexed as male and 187 (or 51%) sexed as female. The sex of the remaining 

three chicks was not determined since both Z-linked loci and the CHD genes did not 

amplify during PCR. In addition, the sexes of deceased chicks and unhatched eggs 

were not determined as a result of both often being removed from the nest prior to 

collection, possibly by the parental bird (see Kirkpatrick et al. 2009). 

 

6.4.2. Effects of supplementary feeding on brood sex ratio 

Supplementary feeding had a significant effect on brood sex ratio of Blue Tits 

(expressed as the proportion of males in each brood) (F2,34 = 4.23, P = 0.02) with a 

higher proportion of males within broods in the peanut cake + mealworm treatment 

block compared to those in the peanut cake treatment and control blocks (Fig. 6.2,.   

 

 

 

 

 

 

 

 

Figure 6.2. Proportion of males per brood (mean ± 1 SE from statistical estimates) in 

relation to food supplementation (C: control; PC: peanut cake; and PC+MW: peanut 

cake + mealworms) of Blue Tits breeding in Chaddesley Woods National Nature 

Reserve in 2009. The number of broods (n) is given above each bar. 
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Table 6.2). However, there was no significant effect of supplementary feeding on 

either female or male body condition (ANOVA: Female – F2,38 = 0.00, P = 1.00; Male 

– F2,38 = 0.00, P = 0.99; Fig. 6.3). Moreover, there was no significant effect of either 

 

 Figure 6.3. Adult body condition (residuals from the regression of body mass on 

tarsus length) of (a) female and (b) male Blue Tits (mean ± 1 SE from statistical 

estimates) in relation to food supplementation (C: control; PC: peanut cake; and 

PC+MW: peanut cake + mealworms) breeding in Chaddesley Woods National Nature 

Reserve in 2009. The number of broods (n) is given above each line. 
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Table 6.2. Results from the final statistical model (see text for details) explaining brood sex ratio of Blue Tits breeding in Chaddesley Woods 

National Nature Reserve in 2009. Significant main effects are given in bold. Dietary treatments: C – control; PC – peanut cake; and PC+MW – 

peanut cake + mealworms. Directions of significant effects are given: ‘+’ and ‘-‘ denote significant positive and negative relationships, 

respectively, and ‘NS’ denotes nonsignificance (P > 0.05). 

    Least squares means (SE) – Tukey-Kramer post hoc P values  

Factor F df P C vs. PC C vs. PC+MW PC vs. PC+MW Direction 

Dietary treatment 4.23 2,30 0.02 0.48(0.03) vs. 0.50(0.05) 

P = 0.93 

0.48(0.03) vs. 0.58(0.05) 

P = 0.27 

0.50(0.05) vs. 0.58(0.05) 

P = 0.57 

PC+MW = highest; C = 

lowest 

Hatch date 0.00 1,30 0.98    NS 

Female body 

condition 

0.44 1,30 0.51    NS 

Male body condition 3.31 1,30 0.08    NS 

Hatch date × dietary 

treatment 

4.35 2,30 0.02    C = - ; PC = - ; PC+MW 

= + 
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female or male body condition on brood sex ratio both within and between dietary 

treatment blocks (P > 0.05 for main effects of male and female condition and dietary 

treatment × condition interactions; Fig. 6.4). 

 

Figure 6.4. Proportion of males within a brood in relation to adult body condition 

(residuals from the regression of body mass on tarsus length) in (a) female 

(Spearman’s r = 0.05, d.f. = 39, P > 0.05) and (b) male (Spearman’s r = 0.26, d.f. = 

39, P > 0.05) Blue Tits breeding in Chaddesley Woods National Nature Reserve in 

2009. Dietary treatments are combined since there were no significant dietary 

treatment × condition interactions in the statistical model. 
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6.5. DISCUSSION  

I hypothesised that the supplementation of peanut cake during the fertile period would 

increase female condition enabling females supplemented with peanut cake to 

produce higher quality nestlings. Since higher quality male Blue Tits have higher 

reproductive success than high quality females (Dreiss et al. 2006), I predicted that 

broods in treatment blocks supplemented with peanut cake would be more-male 

biased than in the control treatment block. However, there was no significant effect of 

the supplementation of peanut cake on either female body condition or secondary 

brood sex ratio. Since males are approx. 6% larger than females (Råberg et al. 2005) 

and, therefore, are more likely to be susceptible to starvation and mortality than their 

smaller female conspecifics, I also hypothesised that the additional supplementation 

of mealworms that are probably consumed by nestlings would reduce male-biased 

mortality in broods. Therefore, I predicted that Blue Tits receiving both peanut cake 

and mealworms would have broods that were more male-biased at fledging than 

broods receiving no food or just peanut cake. In support of my prediction I found that 

the proportion of males in broods of Blue Tits receiving both food supplements was 

higher than in broods of Blue Tits receiving no food or just peanut cake.  

 

6.5.1. Supplementary feeding during the fertile period, maternal body condition and 

sex allocation 

Previous studies have demonstrated that supplementary feeding during the fertile 

period improves maternal body condition (e.g. Meijer et al. 1988, Elliot et al. 2001). 

In turn, this can influence the relative fitness benefits of male and female offspring 

and this can have consequences for brood sex ratio (e.g. Nager et al. 1999, Korpimäki 

et al. 2000). However, I found no significant effect of supplementary feeding during 
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the fertile period on female body condition or of female body condition on brood sex 

ratio. My findings are consistent with those of Leech et al. (2001) in this regard who 

examined female body condition through a number of indices including feather mite 

load, body mass, tarsus length and wing length and found no effect on brood sex ratio. 

My findings suggest that the absence of an effect of supplementary feeding during the 

fertile period on female body condition resulted in the relative reproductive values of 

male and female offspring during egg production in 2009 being equivalent between 

dietary treatments since there was no significant main effect of dietary treatment (i.e. 

peanut cake) during the fertile period on secondary brood sex ratio.  

In contrast to my results, a number of laboratory-based studies have reported 

adaptive adjustments to brood sex ratio in response to food abundance and sex-

specific differences in reproductive potential in Zebra Finches (e.g. Bradbury and 

Blakey 1998, Kilner 1998, Rutstein et al. 2004). In Zebra Finches female nestlings are 

more dependent on food than their male siblings and the effects of nutritional stress at 

the nestling stage have a more profound effect on female reproductive success than on 

male reproductive success (reviewed in Kilner 1998). In support of predictions made 

from sex allocation theory (Trivers and Willard 1973), Rutstein et al. (2004) 

demonstrated that diet quality affected primary brood sex ratio of the Zebra Finch. 

Females were provided with either a high quality or a low quality diet from 6 weeks 

pre-laying through to, and including, chick rearing and it was found that those on the 

high quality diet produced more female offspring compared with those on the low 

quality diet (Rutstein et al. 2004). Kilner (1998) also found that food-restricted Zebra 

Finches produced male-biased broods but she did not tissue sample unhatched eggs 

and deceased chicks so only determined secondary sex ratio. Likewise, I did not tissue 

sample unhatched eggs or deceased offspring and, therefore, it is still possible that 
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supplementary feeding during the fertile period may have had an effect on primary 

sex ratio in my study.    

 In contrast to sex allocation theory (Trivers and Willard 1973), Arnold et al. 

(2003) found that a low, medium or high quality diet had no overall effect on brood 

sex ratio of Zebra Finches. Diets were provided from 4 weeks prior to pairing but 

stopped once the breeding pairs had formed. Although it is likely that this feeding 

regime manipulated pre-breeding condition of females, removing the experimental 

diet at pairing would have affected the breeding female’s perception of nestling 

rearing conditions. This is likely to be problematic since females are likely to bias sex 

ratio in relation to the expected rearing condition of the chicks (Rutstein et al. 2004).  

 

6.5.2. Supplementary feeding during the nestling period and post-hatching 

manipulation of brood sex ratio 

The supplementation of mealworms during the nestling period appeared to result in 

broods having significantly higher proportions of males than those produced in the 

peanut cake-supplemented and control blocks. This suggests that the supplementation 

of mealworms may have differentially affected sex-specific mortality of nestlings 

post-hatching between treatment blocks. 

In my study population mortality between hatching and fledging in Blue Tits 

is significantly affected by dietary treatment with mortality being significantly higher 

on supplemented treatments than in the control block (Harrison 2010). Since Blue Tits 

exhibit slight size dimorphism (males are approx. 6% larger than females – Råberg et 

al. 2005), it is expected that males are more likely to be susceptible to starvation and 

mortality than smaller female conspecifics. While overall nestling mortality is not 

significantly different between the peanut cake and peanut cake + mealworms dietary 
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treatment blocks in Blue Tits in my study population (Harrison 2010), it is possible 

that nestling mortality was more male-biased in the peanut cake compared to the 

peanut cake + mealworms as a result of lower food availability. Indeed, numerous 

other studies have demonstrated sex-biased mortality is affected by food availability 

(e.g. Teather and Weatherhead 1989, Hipkiss et al. 2002). However, the majority of 

studies that have demonstrated an effect of food abundance on secondary sex ratio 

have examined species that exhibit extreme sexual size dimorphism where one sex 

disproportionately suffers more when food-stressed (e.g. American Kestrel – Wiebe 

and Bortolotti 1992; Blue-footed Booby – Torres and Drummond 1997). Similar to 

my findings, a number of studies have provided empirical evidence that species that 

exhibit slight sexual size dimorphism can also show sex ratio bias through differential 

mortality (Cooch et al. 1997, González-Solis et al. 2005). For example, in Lesser 

Snow Geese in which males are 2-6% larger than females, male mortality between 

hatching and fledging was significantly larger than for females (Cooch et al. 1997). 

However, although I have suggested that differences in differential mortality between 

the dietary treatment blocks may account for my results, caution should be assigned 

when interpreting my results since I do not have data to confirm that differential 

mortality between male and female nestlings differed between dietary treatment 

blocks.  

 

6.5.3. Further considerations and research directions 

I have considered pre- and post-hatching manipulation of sex ratio separately. 

However, it is likely that my results are a consequence of a combination of both pre- 

and post-hatching manipulation. First, I suggest that the proportion of males in broods 

at hatching in both of the supplementary fed treatment blocks was equivalent, which, 



Chapter Six                                                                                 The effects of supplementary feeding on secondary brood sex ratio 

 

174 

 

in turn, was higher than in the nonsupplemented (control) block. Secondly, I suggest 

that a low nestling mortality rate in the control block coupled with more male-biased 

mortality in the peanut cake compared with the peanut cake + mealworms treatment 

resulted in broods from control and peanut cake treatments having equivalent 

secondary brood sex ratios. Broods from the peanut cake + mealworms treatment 

were more male-biased. To gain a better understanding of both pre- and post-hatching 

manipulation of brood sex ratio and to elucidate the effects of supplementary feeding, 

future research should consider obtaining tissues from unhatched eggs and dead 

nestlings to allow consideration of primary, as well as secondary, sex ratio. Since 

manipulations of sex ratio may be subtle and vary between years depending on local 

ecological circumstances (Korsten et al. 2006), future research should be repeated 

over many years to gain a better understanding of how supplementary feeding may 

affect sex ratio in Blue Tits. 

Operational sex ratio, defined as the ratio of potentially receptive males to 

receptive females at any time (Emlen 1976), has been shown to be male-biased in 

approx. 60% of passerine species as a result of female-biased dispersal and mortality, 

for example (reviewed in Donald 2007). Operational sex ratio has also been shown to 

be related to brood sex ratio (reviewed in Donald 2007). However, since the 

relationship between operational and brood sex ratio is not consistent between species 

with either positive (Clarke et al. 2002), negative (Ewen et al. 2001) or no relationship 

(Bensch et al. 1999) at all, the association between the two remains unclear (reviewed 

in Donald 2007). Although I have no data that reflect differences in operational sex 

ratios between dietary treatment blocks, it is possible that they may exist due to 

differences in female-biased dispersal and mortality between treatments. Therefore, 
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since operational sex ratio can partly drive brood sex ratio, future research should also 

consider operational sex ratio.   

 

6.5.4 The next chapter 

My findings from the last 5 chapters have provided evidence that supplementary 

feeding has marked effects on the reproductive behaviours of both Blue and Great 

Tits. Since food supplementation in my study was protracted and used commercially 

available food supplements, it mimicked feeding patterns of garden birds by the 

public (RSPB 2010); my findings may have implications for a wide range of species 

of birds that feed in our towns and cities (Jones and Reynolds 2008). However, my 

small-scale study was conducted in mixed broadleaved deciduous woodland and, 

therefore, did not mimic the mosaic of habitat types typical of urbanised landscapes in 

the UK. Moreover, the short-term nature of my study may mean that the results have 

limited applicability since breeding performance and, therefore, behaviour are likely 

to change in the future in relation to climate change (e.g. Dunn and Winkler 1999, 

Sanz 2003). To gain a better understanding of how the breeding performance of both 

Blue and Great Tits may vary across an urban gradient, how breeding performance 

may change temporally and to provide insights into the applicability of my research 

findings, I will now investigate differences in breeding performance of both Blue and 

Great Tits across an urban gradient over a 30-year period in Chapter Seven. 
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Chapter Seven 

 

FOOD SUPPLEMENTATION ON BROAD SPATIAL, AND OVER LONG 

TEMPORAL, SCALES: BREEDING PATTERNS OF BLUE AND GREAT TITS IN 

URBAN AND NON-URBAN HABITATS  

 

7.1. ABSTRACT 

Small-scale (i.e. local) supplementary feeding studies conducted over short time 

periods (i.e. a few years) have shown that supplementary feeding has marked effects 

on breeding performance and phenology. However, the effects of supplementary 

feeding at a large spatial scale and over a long temporal period are unknown. Here, I 

investigate the breeding phenology and performance of Blue and Great Tits breeding 

in urban habitats (where supplementary food is regularly provided) and in deciduous 

woodland habitats across the UK between 1962 and 2008 using data from the British 

Trust for Ornithology’s (BTO) Nest Record Scheme (NRS). Both Blue and Great Tits 

breeding in urban habitats bred earlier, produced smaller clutches and had higher 

failure rates (measured as brood size as a proportion of clutch size) than conspecifics 

breeding in deciduous woodland habitats. Over the 40+ years of this study the 

magnitude of the difference between clutch sizes, brood sizes and failure rates of 

Great Tits, but not of Blue Tits, breeding in urban and deciduous woodland habitats 

decreased. My results suggest that the probable widespread supplementary feeding of 

birds in urban habitats influenced their breeding parameters in both species but that 

the effects of supplementary feeding probably varied temporally. I conclude by 

considering the limitations of a food-focussed approach in a study such as this.  
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7.2. INTRODUCTION 

Currently, the global human population stands at approx. seven billion people (United 

Nations 2009) of which approx. 50% live in urban areas (United Nations 2010). 

Urbanisation results in both functional and physical changes to the ecosystem 

(reviewed in Alberti 2005). For example, urbanisation often results in the degradation 

and fragmentation of natural habitats (reviewed in Marzluff 2001), significant changes 

in weather (reviewed in Haggard 1990), an increase in atmospheric pollution 

(reviewed in Fenger 1999), and an increase in food availability as a consequence of 

garden bird feeding (e.g. Davies et al. 2009, Fuller et al. In Press).  

Feeding garden birds for a large proportion of humans living in urban areas, 

especially in the ‘Western world’, is a common phenomenon (e.g. Jones and Reynolds 

2008, Davies et al. 2009) popularised by the publication of ‘The Bird Table Book’ by 

Soper (1965). Garden bird feeding has increased in popularity (CJ Wildlife Ltd. pers. 

comm.), and now approx. half of UK households feed garden birds at some point 

during the year (Davies et al. 2009) spending approx. £200-220 million annually (CJ 

Wildlife Ltd. pers. comm.). 

Many bird species breed in urban habitats (Bland et al. 2004) and an 

increasing number of studies suggest that urbanisation has marked effects on avian 

reproduction (reviewed in Chamberlain et al. 2009). For example, birds breeding in 

urban areas often breed earlier than rural conspecifics (e.g. Dhondt et al. 1984, Cowie 

and Hinsley 1987, Harrison 2010) possibly as a result of supplementary feeding in 

gardens reducing the energetic cost of foraging, enabling birds to invest more time 

and energy in breeding attempts. Breeding earlier is beneficial since birds that fledge 

earlier are more likely to be recruited into the breeding population (e.g. Verboven and 

Visser 1998). Supplementary feeding investigations have shown that food promotes 
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breeding performance by, for example, increasing clutch size (e.g. Nilsson 1991, 

Schoech et al. 2008). However, although food availability is often higher in urban 

habitats as a consequence of garden bird feeding (e.g. Davies et al. 2009, Fuller et al. 

In Press), clutch sizes of birds breeding in urban habitats can be reduced (e.g. Perrins 

1965, Solonen 2001, Harrison 2010). One possible explanation is that food quality is 

poorer in urban habitats during egg production (e.g. Solonen 2001, Chamberlain et al. 

2009).  

In addition to food availability, other aspects of urban ecology are likely to 

influence reproduction. For example, the warmer urban climate (Haggard 1990) is 

likely to reduce the energetic requirements for egg production (Stevenson and Bryant 

2000) which may result in advanced laying (Dhondt and Eyckerman 1979) and 

increased investment into egg production (Nager and van Noordwijk 1992). The 

warmer climate of urban areas may also result in advanced breeding of birds with 

advances in the peak of availability of natural foods (e.g. caterpillars) that adult birds 

feed nestlings (e.g. Eden 1985, Both and Visser 2005). In addition, increased light 

levels associated with urban areas may both advance and prolong breeding seasons of 

some bird species (reviewed by Coppack and Pulido 2004) whilst increased urban 

pollution has been shown to decrease clutch size (Eeva and Lehikoinen 1995)  and 

decrease hatching success (Janssens et al. 2003). 

While there have been numerous studies that have investigated the effects of 

supplementary feeding on the reproductive performance of birds (reviewed by Robb 

et al. 2008a), the majority have done so at a small spatial scale and over a short 

temporal period (reviewed by Harrison et al. 2010). However, since garden bird 

feeding is a widespread activity here in the UK, is probably growing in popularity 

internationally as the world becomes increasingly urbanised (Fuller et al. In Press) and 
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may have consequences for a large number of bird species that breed in urban areas 

(Bland et al. 2004), it would clearly be valuable to know whether supplementary 

feeding affects avian reproductive performance at a landscape scale. Furthermore, 

since supplementary feeding can have differential effects on breeding performance 

between years (e.g. Schoech 1996, Dewey and Kennedy 2001, Hipkiss et al. 2002), it 

is important to consider the effects of supplementary feeding over extended periods if 

possible.  

Here, I compare the breeding phenology and breeding performance (i.e. clutch 

size, brood size and failure rates [brood size as a proportion of clutch size]) of Blue 

and Great Tits breeding in urban and rural (deciduous woodland) habitats across the 

UK from 1962 to 2008. Although it is impossible to measure directly food availability 

across such wide spatial, and long temporal, scales, it is well documented that 

supplementary feeding occurred in urban habitats throughout the period of study (e.g. 

Soper 1965, Cowie and Hinsley 1988a, Davies et al. 2009). 

 

7.3. METHODS 

7.3.1. The Nest Record Scheme (NRS) 

To investigate temporal trends in breeding performance of Blue and Great Tits 

breeding in deciduous woodland and urban habitats, I used breeding data from the 

NRS. The NRS was established by the BTO in 1939 to accumulate data on the 

breeding biology of birds using volunteer recorders (Mayer-Gross 1970). Since its 

establishment, 1,250,000 records for 232 species have been submitted (Crick et al. 

2003) providing long-term datasets which have been used, for example, to produce 

breeding biology accounts (e.g. Newton 1964, Shaw 1978), to assess the effects of 

habitat modification on reproductive performance (e.g. Siriwardena et al. 2000, 2001) 
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and to identify long-term temporal trends in breeding performance (e.g. Chamberlain 

and Crick 1999, Siriwardena and Crick 2002).  

Using a separate nest record card for each focal nest, a nest recorder 

documents species, location (county, grid reference and altitude), date of visit and the 

habitat where the nest is located. Between 1962 and 1989 habitat was recorded using a 

hierarchical coding system whereby the nest recorder firstly selected the key habitat 

(rural, suburban or urban) and then provided a description of the most important 

features of the area surrounding the nest using a list of key terms provided (Mayer-

Gross 1970). However, this system was modified and adapted from that of Yapp 

(1955), but it suffered drawbacks such as containing obsolete and irrelevant features 

(Crick 1992). Therefore, a new hierarchical habitat coding system was implemented 

in 1990 which was designed to provide more detailed information on habitat type with 

an emphasis on human-created sites (Crick 1992). For each nest, nest recorders also 

document specific details relating to the reproductive period at the time of the visit 

(i.e. the stage of nest building, number of eggs, developmental stage, number of 

nestlings, outcome of the breeding attempt [i.e. success or failure]) (Mayer-Gross 

1970, Crick et al. 2003).  

 

7.3.2. Selecting nest records 

I selected nest records for Blue and Great Tits breeding between 1962 and 2008, 

inclusive, in either urban or deciduous woodland (broadleaved) habitats throughout 

the UK (Fig. 7.1.) by using either habitat descriptions (pre-1990) or habitat codes 

(post-1990) provided by nest recorders. Pre-1962 records were not selected due to 

small sample sizes per year. For each nest record the geographic location of the 

breeding attempt was determined using Ordnance Survey (OS) grid references  
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Figure 7.1. Spatial distribution of nest records selected from the British Trust for 

Ornithology’s Nest Record Scheme for (a) Blue Tits and (b) Great Tits breeding 

between 1962 and 2008 in either urban or deciduous woodland (broadleaved) habitats 

throughout the UK. 

 

provided by the nest recorder. Where an OS grid reference was not available, the OS 

grid reference at the mid-point of the county in which the breeding attempt occurred 

was used. Using the OS grid references, eastings and northings were calculated 

(Ordnance Survey 2010). Where multiple records for an individual site (i.e. a 1-km 

square) occurred within the same year, a single record was randomly selected and the 

remainder excluded in order to minimise non-independence of nest records. 
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7.3.3. Estimating breeding parameters from nest records 

Nest records are often incomplete and, therefore, breeding parameters have to be 

estimated because of uncertainty in the data (Crick et al. 2003). I followed methods 

described in Crick et al. (2003) to estimate clutch initiation date, clutch size and brood 

size. In summary, clutch initiation date was estimated and defined as the mid-point 

between the earliest and latest first-egg dates (rounded to the nearest day). If the 

difference between the earliest and latest possible first-egg dates was > 10 days, the 

record was discarded (sensu Harrison 2010). Clutch and brood sizes were calculated 

as the maximum number of observed eggs and nestlings, respectively, but records 

were discarded from analysis if they were >16 (sensu Harrison 2010; such records 

may be erroneous since clutch sizes of both Blue and Great Tits do not usually exceed 

16 – Cramp and Perrins 1993). Nest records were also excluded if brood size = 0 (i.e. 

indicating full brood mortality) and if maximum brood size exceeded maximum 

clutch size. NRS data do not allow failure rates at both egg and nestling stages to be 

estimated independently (Crick et al 2003). Instead, I used an alternative approach 

where failure rates (combined hatching success and/or partial brood mortality) were 

examined using the ratio of maximum brood size to maximum clutch size (i.e. brood 

size as a proportion of clutch size). 

 

7.3.4. Statistical analyses 

All statistical analyses were performed using PROC GENMOD in SAS version 9.2 

(SAS Institute Inc. 2008). Clutch initiation date of both species was tested for 

normality using the Anderson-Darling Test and for homogeneity of variance using the 

F-test in Minitab 15 (Minitab 2007). Clutch initiation date of both species was square-

root transformed to normalise its distributions and then fitted with normal error 
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distributions after examination of the model fit (Deviance/DF = approx. 1, Pearson 

Chi-Square/DF = approx. 1). Clutch sizes and brood sizes were fitted with Poisson 

error distributions while failure rates were fitted with a binomial error distribution.  

In all analyses habitat was included as a categorical variable and year as a 

continuous variable. Eastings, northings and altitude were also included as continuous 

variables in all models to control for geographic variation in breeding phenology and 

performance (e.g. Sanz 1998, Fargallo 2004). Since both clutch and brood sizes may 

decline seasonally (e.g. Perrins and McCleery 1989, Smith 1993), clutch initiation 

date was included as a continuous variable in clutch and brood size analyses. To 

determine if the effects of covariates were consistent between habitats, covariate × 

habitat interactions were tested independently of one another within each model. 

Where multiple covariate × habitat interactions were significant, they were both 

included in the model as long as each stayed significant (Grafen and Hails 2002). I 

performed backward model selections removing the least non-significant covariate 

interactions (P > 0.05) one-by-one from models ensuring that there was no significant 

change in deviance between models where applicable (Grafen and Hails 2002). 

 

7.4. RESULTS 

7.4.1. Breeding phenology 

Clutch initiation date of both Blue and Great Tits was significantly affected by 

urbanisation with birds in urban habitats breeding significantly earlier than those in 

deciduous woodland habitats (Blue: F1,5271 = 5.30, P = 0.02 – 0.3 days; Great: F1,4318 

= 29.97, P < 0.0001 – 3.9 days; Table 7.1, Fig. 7.2a and b). In addition, clutch 

initiation date significantly advanced over the years of the study for birds breeding in  
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Table 7.1. Results from the final statistical models (see text for details) explaining measurements of breeding phenology and performance of 

Blue (BT) and Great (GT) Tits breeding between 1962 and 2008 in urban (U) and deciduous woodland (D) habitats. Significant main and 

interaction term effects are given in bold. Directions of significant effects are given ‘+’ and ‘-‘ denote significant positive and negative 

relationships, respectively, and ‘NS’ denotes nonsignficance (P > 0.05). 

Breeding parameter Species Factor F df P Direction 

Clutch initiation date BT Habitat 5.30 1,5271 0.02 U = earliest ; D = latest 

  Year 526.57 1,5271 < 0.0001 - 

  Northings 11.00 1,5271 < 0.001 - 

  Eastings 463.08 1,5271 < 0.0001 + 

  Altitude 87.74 1,5271 < 0.0001 + 

  Northings × habitat 6.11 1,5271 0.01 D = negative; U = less negative 

 GT Habitat 29.97 1,4318 < 0.0001 U = earliest; D = latest 

  Year 444.05 1,4318 < 0.0001 - 

  Northings 19.68 1,4318 < 0.0001 - 

  Eastings 137.59 1,4318 < 0.0001 + 

  Altitude 46.29 1,4318 < 0.0001 + 

  Altitude × habitat 4.21 1,4318 0.04 D = positive; U = less positive 

  Eastings × habitat 5.87 1,4318 0.02 D =  ; U = less positive 

Clutch size BT Habitat 173.57 1,3097 < 0.0001 U = smaller; D = larger 

  Year 250.04 1,3097 < 0.0001 - 
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Table 7.1. continued 

Breeding parameter Species Factor F df P Direction 

  Clutch initiation date 418.96 1,3097 < 0.0001 - 

  Altitude 6.95 1,3097 0.01 + 

  Eastings 11.13 1,3097 < 0.01 - 

 GT Habitat 12.39 1,2232 < 0.001 U = smaller; D = larger 

  Year 23.17 1,2232 < 0.0001 - 

  Clutch initiation date 124.66 1,2232 < 0.0001 - 

  Altitude 4.55 1,2232 0.03 - 

  Eastings 5.04 1,2232 0.02 - 

  Northings 21.41 1,2232 < 0.0001 + 

  Year × habitat 12.05 1,2232 < 0.01 D = negative; U = less negative 

Brood size BT Habitat 172.32 1,3801 < 0.0001 U = smaller ; D = larger 

  Year 273.72 1,3801 < 0.0001 - 

  Clutch initiation date 295.93 1,3801 < 0.0001 - 

  Eastings 8.79 1,3801 < 0.01 - 

  Altitude 9.56 1,3801 < 0.01 + 

 GT Habitat 22.35 1,3184 < 0.0001 U = smaller; D = larger 

  Year 24.56 1,3184 < 0.0001 - 
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Table 7.1. continued 

Breeding parameter Species Factor F df P Direction 

  Clutch initiation date 106.49 1,3184 < 0.0001 - 

  Eastings 8.02 1,3184 < 0.01 - 

  Northings 9.28 1,3184 < 0.01 + 

  Altitude 9.56 1,3184 < 0.01 + 

  Year × habitat 21.80 1,3184 < 0.0001 D = negative; U = less negative 

Failure rates (brood size 

as a proportion of clutch 

size) 

BT Habitat 4.49 1,2250 0.03 U = highest ; D = lowest  

  Year 13.28 1,2250 < 0.001 + 

  Northings 5.88 1,2250 0.02 + 

  Altitude 1.05 1,2250 0.31 N/S 

  Clutch initiation date 4.21 1,2250 0.04 + 

 GT Habitat 6.43 1,1652 0.01 U = highest ; D = lowest  

  Year 0.00 1,1652 0.96 N/S 

  Northings 7.87 1,1652 0.01 + 

  Altitude 0.20 1,1652 0.65 N/S 

  Year × habitat 6.32 1,1652 0.01 U = positive ; D = more positive 
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Figure 7.2. Temporal trend in clutch initiation date of (a) Blue Tits and (b) Great Tits 

breeding in urban (filled circles and red regression line) and deciduous woodland 

(open circles and blue regression line) habitats from 1962 to 2008 in the UK. 

Residuals of clutch initiation date were calculated after accounting for all predictors 

other than year and habitat in the final model (see Table 7.1 for details).  

 

both habitats (Blue: F1,5271= 526.57, P < 0.0001 – 8.0 days; Great: F1,4318 = 444.05, P 

< 0.0001 – 10 days; Table 7.1, Fig 7.2a and b).  Furthermore, the advancement in 

clutch initiation date over time for both Blue and Great Tits breeding in urban habitats 

was equivalent to that of conspecifics breeding in deciduous woodland habitats 

(indicated by the absence of a significant year × habitat interaction in the statistical 

models [P > 0.05]). 
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7.4.2. Breeding performance  

Clutch sizes of Blue and Great Tits breeding in urban habitats were significantly 

smaller than those of conspecifics breeding in deciduous woodland habitats (Blue: 

F1,3097 = 173.57, P < 0.0001 – 1.1 eggs; Great: F1,2232 = 12,39, P < 0.001 – 0.2 eggs; 

Table 7.1, Figs 7.3a and b). Clutch size significantly declined throughout the period of 

study in Blue and 

 

Figure 7.3. Temporal trend in clutch size of (a) Blue Tits and (b) Great Tits breeding 

in urban (filled circles and red regression line) and deciduous woodland (open circles 

and blue regression line) habitats between 1962 and 2008 in the UK. Residuals of 

clutch size were calculated after accounting for all predictors other than year and 

habitat in the final model (see Table 7.1 for details).  

 

Great Tits breeding in urban and deciduous woodland habitats (Blue: F1,3097 = 250.04, 

P < 0.0001 – 1.0 eggs; Great: F1,2232 = 23.17, P < 0.0001 – 1.5 eggs; Table 7.1, Fig. 



Chapter Seven                                                                       Food supplementation on broad spatial, and over long temporal, scales 

189 

 

7.3a and b). For Blue Tits this decline in clutch size was equivalent between urban 

and deciduous woodland habitats (as indicated by the absence of a significant year × 

habitat interaction in the statistical models [P > 0.05]). However, in Great Tits the 

decline in clutch size was more pronounced in deciduous woodland habitats compared 

to urban habitats as indicated by a significant habitat × year interaction (F1,2232 = 

12.05, P < 0.001 – deciduous: 1.8 eggs, urban: 0.9 eggs); Table 7.1 and Fig. 7.3b). 

Both Blue and Great Tits breeding in urban habitats also had significantly 

smaller brood sizes (Blue: F1,3801 = 172,32, P < 0.0001 – 0.9 chicks; Great: F1,3184 = 

22.35, P < 0.0001 – 0.4 chicks; Table 7.1, Fig. 7.4a and b). Furthermore, there was a  

 

Figure 7.4. Temporal trend in brood size of (a) Blue Tits and (b) Great Tits breeding 

in urban (filled circles and red regression line) and deciduous woodland (open circles 

and blue regression line) habitats between 1962 and 2008 in the UK. Residuals of 

brood size were calculated after accounting for all predictors other than year and 

habitat in the final model (see Table 7.1 for details). 
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significant decline in brood size in both species throughout the period of study (Blue: 

F1,3801 = 237.72, P < 0.0001 – 1.5 chicks; Great: F1,3184 = 24.56, P < 0.0001 – 0.5 

chicks; Table 7.1, Fig. 7.4a and b). Similar to the trend in clutch size, the declines in 

brood sizes of Blue Tits breeding in urban and deciduous woodland habitats were 

equivalent (as indicated by the absence of a significant year × habitat interaction in 

the statistical models [P > 0.05]). However, the decline in brood sizes of Great Tits 

breeding in deciduous woodland habitat was more pronounced than that of urban 

birds as indicated by a significant habitat × year interaction (F1,3184 = 21.80, P < 

0.0001 – urban habitats = 0.5 chicks; deciduous woodland habitats = 1.1 chicks; Table 

7.1 and Fig. 7.4b). 

 

7.4.3. Failure rates (brood size as a proportion of clutch size) 

Failure rates were significantly higher for Blue and Great Tits breeding in urban 

habitats than for conspecifics breeding in deciduous woodland habitats (Blue: 

F1,2250 = 4.49, P = 0.03 – 1.6  %; Great: F1,1652 = 6.43, P = 0.01 – 3.5 %; Table 7.1,  

Fig. 7.5a and b). Failure rates of Blue Tits increased significantly during the study 

(F1,2250 = 13.28, P < 0.001 – 4.5%; Table 7.1 and Fig. 7.5a) and the rate of increase 

was equivalent for birds breeding in urban versus deciduous woodland habitats (as 

indicated by the absence of a significant year × habitat interaction in the statistical 

models [P > 0.05]). In contrast, failure rates of Great Tits were consistent throughout 

the study (F1,1652 = 0.00, P = 0.96; Table 7.1 and Fig. 7.5b). However, a significant 

year × habitat interaction highlighted that, while failure rates appeared to remain 

consistent in urban habitats, failure rates increased for Great Tits breeding in 

deciduous woodland habitats throughout the study (F1,1652 = 6.32, P = 0.01 – 8 %; 

Table 7.1 and Fig. 7.5b). 
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Figure 7.5. Temporal trend in failure rates (brood size as a proportion of clutch size) 

of (a) Blue Tits and (b) Great Tits breeding in urban (filled circles and red regression 

line) and deciduous woodland (open circles and blue regression line) habitats between 

1962 and 2008 in the UK. Residuals of failure rates were calculated after accounting 

for all predictors other than year and habitat in the final model (see Table 7.1 for 

details).  

 

 

7.5. DISCUSSION 

Both Blue and Great Tits in urban habitats bred significantly earlier than conspecifics 

breeding in deciduous woodland habitats suggesting that breeding was advanced 

perhaps by heightened food availability. Furthermore, in both species the difference 

between breeding phenologies of birds breeding in the urban and deciduous woodland 
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habitats remained consistent throughout the study. This suggests that if the effect was 

driven by supplementary feeding in urban areas, it remained consistent across the 

study. Clutch and brood sizes of both Blue and Great Tits breeding in urban habitats 

were significantly smaller than those of conspecifics breeding in deciduous woodland 

habitats whilst failure rates were significantly higher for both Blue and Great Tits 

breeding in urban compared with deciduous woodland habitats. However, the 

magnitude of the difference changed over time for Great Tits. In contrast, the 

differences in breeding outputs of Blue Tits breeding in urban and deciduous 

woodland habitats were equivalent over the study.  

 

7.5.1. Breeding phenology 

The timing of breeding of birds is likely to have consequences for their fitness since 

birds that fledge earlier are more likely to be recruited into the breeding population 

(e.g. Verboven and Visser 1998). Similar to numerous other studies (e.g.  Dhondt et 

al. 1984, Cowie and Hinsley 1987, Harrison 2010), my results indicate that two 

species of small passerine in urban habitats initiated clutches significantly earlier than 

conspecifics breeding in deciduous woodland habitats. My thesis in this chapter is that 

increased availability of food in urban areas might drive phenology and performance 

of breeding; indeed, egg formation and laying may be constrained by food availability 

(Perrins 1970) but it is also possible that elevated temperatures in urban habitats 

(Haggard 1990) resulting in reduced energetic investment in foraging (e.g. Norberg 

1977) might enable birds to accumulate resources to form and lay eggs earlier than 

birds in deciduous woodland habitats. Alternatively, higher urban temperatures 

(Haggard 1990) may result in advanced phenology of prey availability and of avian 

breeding attempts in response (e.g. Eden 1985, Both and Visser 2005).  
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 During this study both species in both urban and deciduous woodland habitats 

progressively advanced their timing of breeding. Advancement in breeding over the 

past few decades has also been demonstrated for a number of other species (e.g. 

European Pied Flycatcher [Ficedula hypoleuca] – Both and Visser 2005; Eurasian 

Reed Warbler [Acrocephalus scirpaceus] – Halupka et al. 2008) corresponding to 

increasing spring temperatures as a result of climate change (IPCC 2001, King 2005). 

Both and Visser (2005) suggested that the ultimate reason that a number of bird 

species have advanced the timing of breeding in relation to spring time temperatures 

is so that they are able to breed in synchrony with invertebrate food sources that have 

also advanced their emergence in response to higher spring temperatures. Although 

birds advanced the timing of breeding over the study, the difference in breeding 

phenology between birds breeding in the urban and deciduous woodland habitats 

remained of constant magnitude across years. If supplementary feeding does drive 

breeding phenology in urban habitats then this suggests that the effect of 

supplementary feeding on breeding phenology remained consistent in urban areas 

throughout the study. Alternatively, the effects of higher urban temperatures (Haggard 

1990) which may result in advanced phenology may have remained consistent over 

the period of this study. 

 

7.5.2. Breeding performance 

Clutch size can be limited by food availability (e.g. Martin 1987, Williams 1996). 

Therefore, it is surprising that both species in urban habitats, where supplementary 

feeding is a widespread activity (e.g. Davies et al. 2009, Fuller et al. In Press), 

produced smaller clutches than birds breeding in deciduous woodland habitats. 

However, a recent study by Harrison et al. (2010) showed that Blue and Great Tits 
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supplemented with commercially available garden bird food produced smaller 

clutches than nonsupplemented (control) conspecifics. Therefore, it is plausible that 

supplementary food in urban habitats reduced clutch size of both species but the 

mechanism by which is mediated remains to be elucidated. Parids breeding in urban 

habitats may adaptively reduce clutch size when they breed out of synchrony with 

peaks in natural food availability that they need for egg formation, nestling 

provisioning or both (e.g. Sanz 2003, Laaksonen et al. 2006). Mistiming breeding 

relative to peaks in natural food availability may occur in urban habitats due to 

advanced breeding (see Section 7.5.1). Reducing clutch size when birds mistime 

breeding is likely to be adaptive since it results in a truncation of the time between 

laying and hatching, allowing birds to concentrate the limited food that is available on 

fewer offspring (Buse et al. 1999). It is also possible that the higher risk of predation 

in urban, compared to non-urban, habitats (Haskell et al. 2001, Lepczyk et al. 2004) 

may result in a responsive reduction in clutch size (and, therefore, brood size – see 

Fig. 7.4) in urban areas (reviewed in Lima 2009).  

 Failure rates were highest for both species when breeding in urban, compared 

with deciduous woodland, habitats suggesting that hatching success was reduced 

and/or nestling mortality was higher in the former. I suggest that the latter is more 

likely as previous studies (e.g. Mennechez and Clergeau 2006, Newhouse et al. 2008) 

have found that nestlings in urban habitats are lighter in weight and are more likely to 

starve than non-urban nestlings (e.g. Antonov and Atanasova 2003, Shawkey et al. 

2004). Differences in starvation rates between habitats may occur as a result of natural 

food availability being lower in urban habitats compared with deciduous woodland 

areas (Marciniak et al. 2007), or as a result of the adults provisioning nutritionally 

unsuitable supplementary food to the nestlings (Chamberlain et al. 2009).   
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I found that the advancement in breeding of both species in this study was 

accompanied by declines in clutch size and brood size. Although Both and Visser 

(2005) suggested the advancement in breeding over time was a response to the 

advancement of peaks in prey availability, advancing breeding in many species has 

resulted in a mismatch between the peaks of natural food availability and of the 

energetic/nutritional demands of growing and developing nestlings (reviewed in 

Visser and Both 2005). Such mistimed breeding relative to food supply may result in 

an adaptive reduction in clutch size since producing smaller clutches shortens the time 

between laying and hatching and allows adults to concentrate limited food resources 

in feeding fewer offspring (Buse et al. 1999). Similar to my results, previous studies 

(e.g. Sanz 2003, Laaksonen et al. 2006) have shown that birds that have advanced 

breeding over the last approx. 50 yrs in relation to increasing spring temperatures 

have also shown declines in clutch size. I also found that failure rates increased 

throughout the period of this study for Blue Tits breeding in urban and deciduous 

woodland habitats and for Great Tits breeding in urban, but not deciduous woodland, 

habitats. This suggests that, although Blue and Great Tits appeared to reduce clutch 

size adaptively, birds may have still not have been able to match the peak 

energetic/nutritional demands of the growing and developing nestlings with the peaks 

of natural food availability. However, failure rates of Great Tits breeding in urban 

habitats remained constant over time suggesting that supplementary food buffered the 

effect of mistiming breeding by enabling more efficient feeding efforts by adults and 

greater survival of nestlings. 

I found that the magnitude of the difference between clutch sizes, brood sizes 

and failure rates of Great Tits in urban and deciduous woodland habitats decreased 

through the course of the study period suggesting that the effects of supplementary 
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feeding also decreased over time (if, indeed, supplementary feeding did drive 

breeding performance in urban habitats; see Section 7.2). Alternatively, deciduous 

woodland habitat quality may have improved over time with respect to natural food 

availability (but see Fuller et al. 2005), for example, decreasing the difference in food 

availability and, therefore, the constraints on breeding between the two habitats. In 

contrast, differences between clutch sizes, brood sizes and failure rates of Blue Tits 

breeding in urban and deciduous woodland habitats remained consistent throughout 

my study suggesting that the effects of supplementary feeding may have remained 

consistent over time. Alternatively, deciduous woodland habitat quality may have 

remained consistent over time with respect to natural food availability, for example, 

with the differences in the constraints on breeding between the two habitats being 

maintained over time. However, establishing historic and current patterns in food 

availability on national spatial scales is problematic in terms of logistics and, besides, 

food availability does not operate in isolation from other ecological factors such as 

climate change that influence breeding performance.  

 

7.5.3. Future considerations and direction 

The results of this study suggest that food availability in urban habitats in the form of 

food supplements may have complex effects on the breeding performance of two 

small passerines. Furthermore, they suggest that the effect of supplementary feeding 

in urban habitats may not be consistent over time, at least for Great Tits. However, 

although I have assumed that differences in breeding phenology and performance 

between birds breeding in urban and deciduous woodland habitats can be explained 

by supplementary food provided in gardens, estimating food availability over such 

large spatial, and long temporal, scales is problematic. It remains to be seen how such 
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data may be collected and used in such a study. Finally, it is clear that a wide range of 

species that breed in rural and urban habitats, and use supplementary food sources, 

should be studied if we are to understand how food availability influences avian life 

history (e.g. Schoech 1996, Dewey and Kennedy 2001, Hipkiss et al. 2002) and 

productivity in the 21
st
 century.  
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Chapter Eight 

GENERAL DISCUSSION 

 

8.1. SUMMARY OF RESULTS 

Supplementary feeding of two species of small passerine during the spring and 

summer had significant effects on their reproductive behaviours at all stages of their 

breeding cycles. During nest construction supplemented Blue and Great Tits advanced 

nest building while supplemented Blue Tits also constructed shallower nests over a 

shorter period of time than unfed (control) conspecifics (Chapter Two). 

Supplementary feeding also had a significant effect on both the incubation (Chapter 

Three) and brood provisioning (Chapter Four) behaviours of both species. However, 

the directions of effects were inconsistent between years suggesting that the influence 

of supplementary feeding may depend on other ecological factors such as the 

abundance of natural food (e.g. Schoech 1996, Dewey and Kennedy 2001, Hipkiss et 

al. 2002). In contrast, the effects of supplementary feeding on mating behaviour were 

consistent between years with broods of supplemented Blue Tits in 2008 and 2009 

containing a higher proportion of EPY than those of control birds (Chapter Five). 

Supplementary feeding also appeared to influence sex allocation and/or sex-specific 

differential mortality between nestlings since broods of supplemented Blue Tits were 

significantly more male-biased than those of control birds (Chapter Six). 

 Over a broader (i.e. national), and a longer temporal (i.e. 45 yrs), scale than 

the Chaddesley study, my analysis of the BTO’s NRS data revealed that both Blue 

and Great Tits breeding in urban habitats bred significantly earlier and experienced 

reduced productivity (i.e. smaller clutch and brood sizes, higher failure rates) than 

conspecifics breeding in deciduous woodland habitats (Chapter Seven) suggesting 
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that supplementary feeding in urban areas may have reduced breeding performance in 

both species. During the period of the study (i.e. from 1962 to 2008), however, the 

magnitude of the difference between clutch size, brood size and failure rates between 

Great Tits, but not Blue Tits, breeding in urban and deciduous woodland habitats 

decreased. This suggests that the strength of the effects of supplementary feeding on 

breeding performance (and reproductive behaviours) of Great Tits also declined 

during the period of the study (if, indeed, supplementary feeding did drive breeding 

performance in urban habitats – see Section 7.2). This suggests that the reduction in 

breeding performance (and reproductive behaviours) of Great Tits in urban habitats, 

possibly as a result of supplementary feeding, became less pronounced during the 

period of the study (if, indeed, supplementary feeding did drive breeding performance 

in urban habitats – see Section 7.2). 

 

8.2 THE MECHANISMS UNDERLYING THE EFFECTS OF SUPPLEMENTARY FEEDING 

8.2.1. Direct and indirect effects of supplementary feeding 

Throughout my thesis I have considered separately the effects of supplementary 

feeding on individual behaviours that are elicited during reproduction. However, it is 

likely that supplementary feeding also acted indirectly between reproductive stages. 

For example, supplementary feeding in my field study significantly reduced 

incubation recess lengths of Great Tits in 2009 suggesting that increased food 

availability alleviated the energetic and temporal costs of foraging, thereby allowing 

Great Tits to reduce time away from the nest (Chapter Three). However, 

supplementary feeding may have indirectly influenced incubation behaviour through 

directly affecting nest construction behaviour (Chapter Two). Nest properties are 

likely to influence heat loss from a clutch of eggs (Hilton et al. 2004) and that, in turn, 
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influences incubation strategies of incubators that optimise egg temperature (Deeming 

2002a). The effects of supplementary feeding on nest construction (Chapter Two) 

may also have had indirect effects on other downstream reproductive behaviours (e.g. 

brood provisioning). For example, nest construction behaviour can act as a sexually-

selected signal influencing parental investment in other reproductive phases (e.g. de 

Neve et al. 2004). By increasing the proportion of EPY in broods (Chapter Five), 

supplementary feeding may have also indirectly influenced parental investment in 

other reproductive phases. This is because social pair males may adjust the extent of 

parental care in relation to their perceived level of paternity loss (Birkhead and Møller 

1992). For example, Hoi-Leitner et al. (1999) provided evidence that male feeding 

rates were positively related to WPY. Therefore, it is possible that supplementary 

feeding could have indirectly affected brood provisioning behaviour (Chapter Four) 

by directly affecting EPP (Chapter Five). Future research to investigate how 

supplementary feeding directly affects each reproductive behaviour should target each 

breeding phase for exclusive food supplementation. 

  

8.2.2. What does supplementary feeding provide? 

A key hypothesis underlying the predictions throughout my thesis is that 

supplementary feeding reduces the energetic and temporal costs of foraging allowing 

supplemented birds to allocate more time and energy in reproductive behaviours. 

However, the mechanism(s) for such effects on reproductive behaviours remain 

unknown, partly because of limited knowledge on the food supplement consumption 

by birds. Recent stable isotope analysis, however, revealed that supplementary food 

does not make up a substantial proportion of the diet of Blue and Great Tits in my 

study population (Harrison 2010) suggesting that Blue and Great Tits do not 
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extensively consume the supplementary food. One possible mechanism by which food 

supplementation acts is as a cue to habitat quality (i.e. to high food availability for 

nestling/fledglings). This could result in modifications in behaviours of adult birds 

with their elevated perceptions about habitat quality (see Robertson and Hutto 2006 

for discussion of ecological traps). However, since both species were observed on 

feeders throughout each year of my study (pers. obs.), and there were multiple effects 

of supplementary feeding on reproductive behaviours (Chapters Two-Six), it appears 

that supplementary food provided birds with a direct source of energy. It is also likely 

that supplementary feeding provided both species with temporal benefits as a 

supplemented bird has to spend less time foraging (e.g. Norberg 1977, Davies and 

Lundberg 1985).   

 

8.3. THE APPLIED PERSPECTIVE 

8.3.1. Implications for garden bird feeding 

Supplementary feeding in my field study had marked effects on reproductive 

behaviours in all three major constituent phases of reproduction (i.e. nest construction 

– Chapter Two; incubation – Chapter Three; and brood rearing – Chapter Four) in a 

way which might predict increased fitness benefits. For example, supplementary 

feeding significantly advanced breeding in both Blue and Great Tits (Chapter Two) 

that could be beneficial given earlier fledged birds have a higher probability of being 

recruited into the breeding population (e.g. Verboven and Visser 1998). 

Supplementary feeding also decreased incubation recess lengths of Great Tits in 2009 

(Chapter Three) which may have resulted in a truncation of incubation period and, 

consequently, a reduction in predation risk (Martin and Ghalambor 1999, Conway and 

Martin 2000a, Martin et al. 2000b). In addition, supplementary feeding significantly 
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affected brood provisioning rates (Chapter Four) and, although the effects were not 

consistent between species or years, it is likely that behavioural changes in response 

to feeding may be adaptive and, therefore, provide fitness benefits (e.g. Naef-Daenzer 

and Keller 1999, Ringsby et al. 2009). Furthermore, supplementary feeding 

significantly increased the proportion of EPY in Blue Tit broods (Chapter Five) 

which, through genetic benefits (reviewed in Petrie and Kempenaers 1998, Griffith et 

al. 2002), may have enhanced post-fledging survival. Indeed, supplementary feeding 

has previously been shown to increase post-fledging ‘apparent’ survival of both Blue 

and Great Tits in my study population (Harrison 2010). These results suggest that 

supplementary feeding may have substantial fitness benefits for garden birds when 

considered over the entire reproductive period. 

However, supplemented Blue and Great Tits in my study population advanced 

breeding but also experienced declines in breeding outputs (Harrison et al. 2010). 

Blue and Great Tits breeding in urban habitats also experience advances in breeding 

phenology but reduced breeding output (Chapter Seven) suggesting that breeding 

phenology and performance of birds in urban areas might be influenced, at least in 

part, by supplementary feeding. However, many ecological factors, other than food 

availability, may influence avian breeding performance and, therefore, care should be 

taken when drawing conclusions from the NRS analyses, especially since estimation 

of broad-scale availability of food supplements remains so intractable (as discussed in 

Chapter Seven).  

In my field study I also found that supplementary feeding of Blue Tits with 

both peanut cake + mealworms resulted in broods being male-biased (Chapter Six). In 

comparison, brood sex ratio of Blue Tits breeding in either the control or peanut cake 

dietary treatment block were not biased towards either sex (i.e. the sex ratio was 
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approx. 50:50 ) (Chapter Six). While the relationship between operational sex ratio 

(Emlen 1976) and brood sex ratio is not consistent between species (reviewed in 

Donald 2007), it is possible that supplementary feeding might indirectly elevate the 

proportion of breeding males in a population profoundly influencing population 

dynamics (reviewed in Donald 2007). For example, as the proportion of breeding 

males in a population increases, intra-sexual competition for access to breeding 

females intensifies (e.g. Emlen and Oring 1977, Grant and Foam 2002), resulting in 

some species exhibiting a greater degree of polygyny (Emlen and Oring 1977) with 

accompanying reductions in breeding success (e.g. Réale et al. 1996, Marchesan 

2002). Furthermore, a highly male-biased breeding population (e.g. where males 

outnumber females approx. 2:1 –  Steifetten and Dale 2006) may contain a high 

proportion of unpaired males (e.g. approx. 50%  – Steifetten and Dale 2006), thereby 

reducing the potential for population growth and, indeed, potentially resulting in 

population decline (e.g. Steifetten and Dale 2006, Grüebler et al. 2008).  

 

8.3.2. Future considerations in garden bird feeding 

Combining my results from the Chaddesely Woods population of birds with those of 

Harrison (2010), it appears that advocating garden bird feeding during the spring and 

summer may not be appropriate, especially when considering bird populations that are 

endangered. For example, the effects of reduced breeding performance are likely to be 

more severe for species such as Seychelles Black Paradise-flycatchers (Terpsiphone 

corvine) that exist in low numbers (approx. 150-200 individuals – Currie et al. 2003). 

Furthermore, the potential indirect effects of supplementary feeding on operational 

sex ratio may have more profound consequences for populations which are small 

and/or isolated such as the last remaining population of Ortolan Buntings (Emberiza 
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hortulana) in Norway that consists of less than 160 breeding pairs (Steifetten and 

Dale 2006), partly because the potential for female immigration to small isolated 

populations is so limited (Steifetten and Dale 2006). Therefore, extreme caution 

should be applied when planning to employ supplementary feeding for the 

conservation of garden bird species (e.g. House Sparrows – Robinson et al. 2005) and 

of critically endangered species (e.g. Kakapo [Strigops habroptilus] – Clout et al. 

2002; Spanish Imperial Eagle [Aquila adalberti] – Gonzalez et al. 2006).  

I urge caution in applying my results to supplementary feeding of birds 

generally. My two focal species did not always respond to supplementary feeding in a 

consistent manner. For example, supplementary feeding resulted in a truncation of 

nest construction period of Blue, but not Great, Tits (Chapter Two) whilst 

supplementary feeding decreased brood provisioning rates more markedly in Great 

Tits compared with Blue Tits in 2008 (Chapter Four). To gain further insight, it is 

essential that future research considers a wider range of species which utilise garden 

bird feeders, particularly those which have different feeding ecologies from tits (e.g. 

European Greenfinch, Common Chaffinch). In addition, as exemplified by an 

apparent diminution of the effects of food supplementation on breeding outputs of 

Great Tits to the present day (Chapter Seven), my findings suggest that protracted 

studies are imperative. 

Perhaps more fundamentally, it is unclear whether the results from my field 

study have direct applicability within an urban garden bird feeding context since the 

effects of supplementary feeding may partly depend on the underlying ecology of the 

habitat in which supplementary food is provided. For example, birds breeding in 

urban habitats may experience increased predation risk (e.g. Jokimäki and Huhta 

2000, Thorington and Bowman 2003), warmer air temperatures (e.g. Haggard 1990) 
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and lower natural food availability (e.g. Marciniak et al. 2007). Such fundamental 

ecological differences are likely to result in birds of different habitat types 

differentially adjusting time and energy budgets in response to supplementary feeding 

since both air temperature and natural food availability influence the energetic costs 

of foraging (e.g. Tinbergen and Dietz 1994, Stevenson and Bryant 2000, Thomas et 

al. 2001), and predation risk influences time budgets as a result of vigilance behaviour 

(e.g. de Laet 1985, Hegner 1985). Therefore, it seems plausible that the effects of 

supplementary feeding on both reproductive behaviours and performance may vary 

considerably between habitats. 

It is fundamental that future supplementary feeding studies consider 

conducting supplementary feeding experiments in urban habitats (e.g. town and city 

gardens – Jones and Reynolds 2008). However, this presents many logistical 

problems and, therefore, elucidating the effects of supplementary feeding in urban 

habitats may remain challenging (as discussed in Chapter One).  

 

8.4. FUTURE RESEARCH AT CHADDESLEY WOODS NATIONAL NATURE RESERVE 

In Section 8.3.2. I stressed the need for both long running and urban-based 

supplementary feeding studies. However, conducting small-scale scientific 

supplementary feeding studies are vital too since they enable the researcher to 

manipulate supplementary food directly and, therefore, to answer specific questions 

under tightly-controlled conditions. Therefore, here I will make recommendations for 

future research to be conducted at my field site, Chaddesley Woods National Nature 

Reserve, where the effects of supplementary feeding during spring and summer on 

reproduction have been investigated extensively for the last 5 years. 
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8.4.1. Mechanism(s) underlying the effects of supplementary feeding on reproductive 

behaviour 

Future research should focus on the potential energetic advantages to the consumer of 

supplementary feeding during breeding attempts (e.g. Tinbergen and Dietz 1994). If 

supplementary feeding reduces the energetic cost of foraging, I would expect the 

energetic expenditure on breeding attempts to be lower in supplemented compared 

with control Blue and Great Tits. The doubly-labelled water (DLW) technique 

(reviewed in Speakman 1997) could be used in such an investigation but simpler, less 

invasive techniques such as individually marking tits with colour rings before the 

breeding season could be used to monitor feeder visitation rates by focal birds.  

Further research into more subtle behavioural effects of supplementary 

feeding may prove fruitful: supplemented female Blue Tits may have spent more time 

collecting nesting material resulting in a truncation of nest construction period 

(Chapter Two); supplemented male Blue Tits may have spent more time defending 

territories, and less time mate-guarding, resulting in increased EPP rates (Chapter 

Five); and supplemented males and females may have differentially invested into 

brood provisioning influencing overall combined brood provisioning rates (Chapter 

Four). A range of remote sensing techniques could be employed such as PIT tag 

technology that allows the automatic identification of individual birds as they enter a 

nestbox (e.g. Freitag et al. 2001), and radio-tracking (e.g. Naef-Daenzer et al. 2001) 

that allows the movements of birds away from the nest to be monitored. 

 

8.4.2. Downstream effects of supplementary feeding 

Supplementary feeding is likely to have important consequences for fledgling survival 

and fitness (e.g. Naef-Daenzer and Keller 1999, Ringsby et al. 2009), and for 
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dispersal (e.g. Greenwood and Harvey 1982, Lambin et al. 2001). For example, one 

key factor that influences the latter is intra-sexual competition for resources (reviewed 

in Lambin et al. 2001). As it intensifies, the propensity to disperse increases (Arcese 

1989). Since supplementary feeding increased the proportion of male fledglings 

(Chapter Six), intra-sexual post-fledging competition in supplemented treatment 

blocks may intensify compared with that in the control block, resulting in increased 

male dispersal. However, supplementary feeding may partially alleviate competition 

(both inter- and intra-sexual) by increasing the availability of food (e.g. Arcese 1989, 

Kennedy and Ward 2003). Therefore, the effects of supplementary feeding on 

dispersal remain unclear; dispersal plays a major role in population dynamics 

(reviewed in Hanski 2001) and, therefore, understanding the effects of supplementary 

feeding on dispersal is a research priority. Many approaches might be available. A 

mark-recapture technique could be employed where nestlings and adults are ringed 

between nestling days 10 and 14 and re-sighted or recaptured by using mist-nets at 

multiple sites at set distance intervals (e.g. at 500 m distance bands) away from the 

study site. However, mark-recapture methods are restrictive because they are time-

consuming and labour-intensive. Radio-tracking could be employed by attaching 

radio tags to nestlings as they near fledging (but no later than day 15 to avoid force-

fledging) (e.g. Naef-Daenzer et al. 2001).  However, this method is problematic due to 

short battery life (e.g. <5 weeks – Biotrack Ltd. 2010) and limited detection distance 

(e.g. 500 m from the ground – Bulyuk et al. 2010). An alternative method to quantify 

dispersal would be to examine the genetic structure of a population because dispersal 

results in gene flow, the movement and integration of genes from one population to 

another (Rousset 2001). It would be straightforward to employ the tissue sampling 
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methods outlined in Chapter Five and to develop a large set of genetic markers to 

enable detailed characterisation of our focal populations.   

 

8.4.3. Effects of supplementary feeding at a population level 

Another prime area for research is how effects at the individual level translate into 

those at the level of the population. For example, breeding performance of individuals 

may be reduced by supplementary feeding (Chapter Seven, Harrison et al. 2010) but 

breeding ‘performance’ and dynamics of the population remain relatively poorly 

understood. Studying population size in this regard may be crucial, especially in an 

urban garden bird feeding context, since the size of bird assemblages at feeders may 

influence the rate of disease transmission and the risk of predation (Brittingham and 

Temple 1986, Robb et al. 2008a). To estimate population size at our study site, a 

survey of breeding attempts in both nestboxes (e.g. clutch size, fledgling success, 

double brooding) and natural cavities would be essential but problematic. 

 

8.5. CONCLUSIONS 

I have provided empirical evidence that supplementary feeding during the spring and 

summer has marked effects on reproductive behaviours throughout the breeding 

season of both Blue and Great Tits. Furthermore, my results suggest that 

supplementary feeding may reduce breeding performance and may influence the 

genetic structure of avian populations which, for small isolated populations, may lead 

to population decline. Therefore, I suggest that the recommendation by organisations 

such as the RSPB (RSPB 2010) and BTO (BTO 2010) of providing food to birds 

during the spring and summer may be premature.  
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However, caution should be taken when directly applying the results of my 

field study to an urban garden bird feeding context since the effects of supplementary 

feeding may partly depend on the underlying ecology of the habitat in which the 

supplementary food is provided. Moreover, the results of my NRS study revealed that 

the effects of supplementary feeding, at least in urban habitats, may be diminishing in 

recent decades (Chapter Seven). Therefore, a definitive conclusion about whether 

garden bird feeding should be advocated during the spring and summer cannot 

currently be drawn.  

Perhaps most importantly in this regard, future research should concentrate on 

investigating the effects of supplementary feeding on reproduction in urban habitats 

using an avian community-based approach since effects may be species-specific 

(Chapter Two, Four and Seven). With the global human population predicted to 

increase from just less than seven billion today to over nine billion by 2050 and, 

consequently, with an increase in the world’s population living in urban areas from 

approx. 50% today to 70% over the same time period (United Nations 2008), the 

influence of supplementary feeding on avian breeding performance is sure to intensify 

(Fuller et al. In Press). Therefore, studies such as mine will become ever important in 

advancing our knowledge of many aspects of avian breeding biology. 
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Appendix One 

MEASURING CATERPILLAR AVAILABILITY 

 

Both Blue and Great Tits time their breeding to coincide with the peak availability of 

caterpillars, specifically those of Winter Moths (Operophtera brumata) in addition to 

other moths (Geometridae spp.) (Gosler 1993, van Noordwijk et al. 1995). Winter 

Moths tend to concentrate on oak (Quercus spp.) to lay their eggs (Wint 1983). As 

such, Blue and Great Tits preferentially forage on oaks (Naef-Daenzer and Keller 

1999). Once the caterpillar eggs have hatched the caterpillars feed on shoots and 

leaves until they are fully grown and then descend from the canopy to pupate in the 

forest floor, usually in late May (Carter and Hargreaves 1986).  

In 2007, to investigate the abundance and timing of caterpillar emergence 10 

evenly spaced oak trees were chosen in each dietary treatment block. At each focal 

tree two pairs of plastic cat litter trays (combined surface area of approx.. 4800 cm
2
) 

were positioned on the ground under the canopy halfway between the tree trunk and 

the edge of the tree’s canopy (to control for differences in canopy size between focal 

trees) and filled with water (sensu Perrins 1991) approx. 2 weeks before the first 

clutch of eggs was expected to hatch. Caterpillars descend from the forest canopy, fall 

into the traps, drown and are then be collected for further analyses. The trays were 

covered with wire mesh (approx. 25 mm diameter holes) to prevent either the 

caterpillars or water being disturbed/consumed and secured to the ground using metal 

tent pegs. To control for potential effects of aspect on caterpillar hatching and 

abundance (Buse et al. 1999), where possible, one pair of trays was positioned to the 

north, and one to the south of the tree trunk. On hatching, trays were visited every 2-3 

days. The contents of the trays were sieved and the caterpillar biomass was transferred 
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into freezer bags and frozen in a domestic freezer pending laboratory analysis. In 

2008 and 2009 the protocol was repeated using the same focal trees as in 2008. 

However, in 2008 and 2009 I used half the number of trays that were used in 2007 to 

reduce the labour intensity of the method.   

In the laboratory Winter Moth and other geometrid caterpillars from defrosted 

samples were separated from other debris (e.g. leaf litter) in each sample. Samples 

were then dried to constant weight in an oven (Electrolux, Sweden) at 60
o
C for 

approx. 3 days. Biomass 
-day

 was calculated for the period between caterpillar 

collections.     
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Appendix Two 

DEVELOPMENT OF PRIMER SETS 

 

A brief introduction to microsatellite loci and primers 

Microsatellites are nucleotide sequences in DNA that consist of tandem repeats of short 

nucleotide units (i.e. repeat motifs) which are flanked at each end with sequences of 

nucleotides known as flanking regions (Alberts et al. 1983). Microsatellite loci 

(referring to the specific location of the microsatellite on the chromosome) are common 

in DNA across most taxa (Ellegren 2004 – but see Primmer et al. 1997) and are often 

polymorphic (i.e. have multiple alleles – e.g. Ellegren 1992, Lagercrantz et al. 1993). 

Therefore, microsatellites are commonly used for paternity analysis (reviewed in 

Queller et al. 1993, Selkoe and Toonen 2006).  

Knowledge of the sequence of microsatellite flanking regions that are generally 

conserved (i.e. identical between individuals – Selkoe and Toonen 2006), allows us to 

design and synthesise fluorescently labelled genetic markers (hereafter referred to as 

primers) (Ziegle et al. 1992). Primers are designed to bind to the flanking region and 

guide the amplification (i.e. the copying) of the microsatellite region during the 

polymerase chain reaction (PCR), a technique used to amplify target sections of DNA 

(i.e. microsatellites) sufficiently to enable genetic analysis (Alberts et al. 1983). At the 

end of the PCR the amplified microsatellite regions (i.e. the PCR products) remain 

labelled with the primer and, therefore, can be visualised by capillary electrophoresis 

using a DNA sequencer (e.g. Toh et al. 1996, Oda et al. 1997). 
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Testing microsatellite loci suitability 

I tested the suitability of 36 primer sets that had been designed for 36 unique 

microsatellite loci isolated from a microsatellite-enriched Blue Tit genomic library (G. 

Horsburgh pers. comm.) and four designed for cross-species utility (POCC1 – Bensch et 

al. 1997; Pca3, Pca7 and Pca9 – Dawson et al. 2000). They were initially tested for 

suitability using DNA from blood taken from four adult Blue Tits, which I assumed 

were unrelated, captured in Chaddesley Woods National Nature Reserve in 2009 (see 

Section 5.3.2).  

Genomic DNA was extracted from blood samples using the Ammonium acetate 

method (Nicholls et al. 2000). Extracted DNA was quantified by measuring the optimal 

density of samples at 250 nm using a Fluostar Optima fluorimeter (BMG Labtech, 

Offenburg, Germany). The microsatellite loci were then amplified using PCR. Each 2-

µl PCR contained approximately 15 ng of genomic DNA, 0.5 µl of each primer (0.2 

µM) and 1.0 µl of QIAGEN Multiplex PCR Master Mix (Kenta et al. 2008). PCR 

amplification was performed using a DNA Engine Tetrad PTC-225 Peltier thermal 

cycler (MJ Research, Bio-Rad, Hemel Hempstead, UK). A touchdown PCR was used 

(TD65-55) with the following profile: 95ºC for 15 min, then 10 cycles of 94ºC for 30 

sec, 65ºC for 90 sec (dropping 1.0ºC per cycle), 72ºC   for 1 min, followed by 25 cycles 

of 94ºC for 30 sec, 55ºC for 90 sec, and 72ºC for 1 min. PCR products were diluted 

using high grade water (1 in 400 dilution). One µl of each diluted sample was then 

mixed with 9.5 µl of formamide/size standard mix (made up of 1 ml of formamide and 3 

µl of ABI ROX 500 internal size standard [Applied Biosystems, California, USA]). 

Samples were then denatured for 5 min at 95ºC and quenched on ice prior to being 

separated on an ABI 3730 DNA Analyser (Applied Biosystems, California, USA). 
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Genotypes were scored relative to the 500 ROX internal size standard (Applied 

Biosystems, California, USA). 

Of the 40 Blue Tit loci tested, 28 were polymorphic (i.e. they had many alleles), 

four were monomorphic (i.e. only had one allele), four failed to amplify during PCR 

and four were difficult to score either due to stuttery or weak profiles. The 28 

polymorphic microsatellite loci were then tested further in 28 adult Blue Tits that I 

assumed were unrelated from the same population in Chaddesley Woods National 

Nature Reserve using the same laboratory protocol as before. At the same time the 28 

unrelated Blue Tits were also sexed using the sexing primers P2/P8 (see Section 6.6.3 – 

Griffith et al. 1998) and Z-002 (Dawson 2007) to identify whether any of the 

microsatellite loci were sex-linked (i.e. located on the Z sex chromosome). 

 

A brief introduction to sex-linked loci 

In birds males are homogametic and possess two copies of the Z sex chromosome. 

Females are heterogametic and possess one copy of the Z and one copy of the W sex 

chromosome. A sex-linked locus is one linked to the Z sex chromosome and can be 

identified when heterozygous profiles for that locus (i.e. when two alleles are present) 

only exist in males. The male is, therefore, able to have two copies of a Z-linked locus 

(i.e. one from the mother and one from the father). Conversely, a female cannot be 

heterozygous for a sex-linked locus since she only possesses one copy of the Z sex 

chromosome. Sex-linked loci can be problematic in avian parentage studies since 

female offspring (ZW) will not have copies of Z-linked loci from the mother (i.e. the 

origin of the W chromosome if maternal; the Z chromosome paternal) and, therefore, in 

female offspring the mother cannot be determined from Z-linked loci. However, sex-
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linked loci are useful in sex determination since males can be identified from 

heterozygous genotypes (see Ellegren 2000 for review of avian sex determination). 

 

Characterisation of microsatellite loci and genotyping errors 

Genotyping errors (reviewed in Hoffman and Amos 2005) can seriously disrupt 

estimates of parentage through false assignment of paternity (reviewed in Marshall et al. 

1998). For example, genotyping errors may arise when one allele fails to amplify 

resulting in heterozygotes appearing as homozygotes through a process known as allelic 

dropout (Gagneux et al. 1997) or when genotypes are scored incorrectly by the analyst 

(reviewed in Hoffmann and Amos 2005). Another way in which errors can arise is when 

microsatellite null alleles occur. A microsatellite null allele is any allele at a 

microsatellite locus that consistently fails to amplify during PCR (Dakin and Avise 

2004). It arises when the nucleotide sequence of the microsatellite flanking region does 

not complement the primer sequence because, for example, mutations occur within the 

flanking region that result in poor primer annealing and failure of allele amplification 

during PCR (reviewed in Dakin and Avise 2004). False paternity assignment occurs 

when the paternal allele does not amplify during PCR and an ‘allelic mismatch’ occurs 

between the genotypes of the offspring and father (Fig. 2.1.A).  

 Genotyping errors can be detected by testing for significant deviations from 

Hardy-Weinberg equilibrium where allelic frequencies in a population are in the 

proportion: 

 

P
2
 + 2pq + q

2
 = 1  
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where P
2
 is the frequency of the genotype ‘AA’, 2pq is the frequency of the genotype 

‘Aa’ and q
2
 is the frequency of the genotype ‘aa’. It describes the expected genotype 

frequencies in a population when gametes fuse randomly, there is random mating and 

mutation, and migration and natural selection do not occur. 

 

 

Figure 2.1.A. False paternity assignment resulting from the presence of a null allele. 

The ‘real’ offspring genotype (A/C) consists of one allele from the mother (A) and one 

from the father (C). However, the offspring genotype determined through genetic 

analysis is ‘false’ (A/A) as a result of ‘C’ being null. 

 

 

Significant deviations from Hardy-Weinberg equilibrium (when P < 0.05) indicate 

either an excess of homozygote or heterozygote genotypes in a population which may 

be indicative of high genotyping error rates (see Russell 1996 for overview of the 

Hardy-Weinberg equilibrium).  

Linkage disequilibrium (the association between alleles at different loci) (Amos 

et al. 1992) can strongly increase the likelihood of close relatives sharing particular 

combinations of alleles. Linkage disequilibrium, therefore, reduces the number of 
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informative loci during paternity analysis and may lead to spurious paternity assignment 

(Amos et al. 1992).   

To determine which loci were likely to be the most powerful for paternity 

assignment, analytical tests for departures from Hardy-Weinberg equilibrium and 

linkage equilibrium were conducted using a Markov-chain method implemented in 

GENEPOP v.4.0 (Rousset 2008). In addition, the observed and expected 

heterozygosities (i.e. measurements of genetic diversity – Weir 1990) and estimated null 

allele frequencies were calculated using CERVUS v3.0 (Marshall et al. 1998) using the 

genotypes from all unrelated individuals.  

The repeat testing of the 28 polymorphic loci highlighted that seven loci were 

significantly out of Hardy-Weinberg equilibrium (P < 0.05; Table 2.1.A) and six loci 

possessed high estimated null allele frequencies (> 0.1 [10%] estimated as being null; 

Table 2.1.A). Following a Bonferroni correction for multiple comparisons (Rice 1989), 

tests for linkage disequilibrium between pairs of loci revealed that no pairs of loci were 

in linkage disequilibrium. However, linkage disequilibrium between pairs of loci may 

remain undetected since few individuals were tested.  

 

Testing sex-linked microsatellite loci suitability 

Five loci previously known to be sexed-linked (BT22H03, BT23C07 [unpubl.], Z040, 

Z037 and Z037B – Dawson 2007) (Table 2.1.A) were also tested for their suitability by 

using 10 unrelated male Blue Tits  from Chaddesley Woods National Nature Reserve 

using the same molecular protocol as used to test the aforementioned primer sets. Of the 

five loci tested, BT22H03 did not amplify and BT23C07 was hard to score. For the 

other three loci, observed and expected heterozygosities and estimated null allele 

frequencies were calculated using CERVUS v3.0 (Marshall et al. 1998) using the 
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genotypes from the 10 males. Tests for departures from Hardy-Weinberg and linkage 

equilibrium were conducted as above. All three loci possessed high estimated null allele 

frequencies (>0.1 [10%] estimated as being null; Table 2.1.A) while one was 

significantly out of Hardy-Weinberg equilibrium (P < 0.05; Table 2.1.A). While no 

pairs of loci were found to be in linkage disequilibrium after Bonferroni correction (see 

above), linkage disequilibrium may have remained undetected since few individuals 

were tested.   



Appendix Two                                                                                                      Supporting material for Chapter Five and Chapter Six 

219 

 

Table 2.1.A. Details of polymorphic microsatellite loci tested during the development of primer sets used in the paternity analysis of Blue 

Tits breeding in Chaddesley Woods National Nature Reserve in 2008 and 2009.  

Note: N is the number of birds tested (
*
 indicates were a locus either did not amplify, was monomorphic or was hard to score); HO is the 

observed heterozygosity; HE is the expected heterozygosity; HWE is the Hardy-Weinberg Equilibrium from which the P value is generated 

(values in bold indicate a departure from Hardy-Weinberg equilibrium where P < 0.05); NE-1P is the non-exclusion probability (first 

parent); F(null) is the expected null allele frequency as a proportion (values in bold indicate where proportion of null allele frequencies for 

the loci are > 0.1; ND = not determined); EMBL accession number is the unique identifier given to each primer once submitted to the 

EMBL nucleotide sequence database - http://www.ebi.ac.uk/embl/; and Reference is the place of publication. 

Locus 

 

 

Repeat 

motif 

 

Primer sequence (5' - 3') 

 

 

N 

 

 

Number 

of 

alleles 

Product 

size range 

(base pairs) 

HO HE HWE 

P-value 

NE-1P 

 

 

F(Null) 

 

 

EMBL 

accession 

number 

Reference 

BT19A04 

 

 

GTGT 

 

 

GGGAGGCATTGCAGAAGTC 

AAAGCTTATTAGGGACTGGGAGAG 

 

27 

 

 

10 

 

 

232-259 

 

 

0.889 

 

 

0.860 

 

 

0.097 

 

 

0.470 

 

 

0.027 

 

 

FM878043 

 

 

Unpubl 

BT19B12 

 

 

ACAC 

 

 

TTTATGGCGTTGCTGCTTTC 

AACAGCAAATTGTCAGCGTAATAAG 

 

26 

 

 

10 

 

 

207-226 

 

 

0.808 

 

 

0.857 

 

 

0.069 

 

 

0.478 

 

 

0.023 

 

 

FM878045 

 

 

Unpubl 

BT19F01 

 

 

GATA 

 

 

GCAGGAGGCCTCAATTCTCTTC 

GCCTCAGTCTTATTCACACACTCTCC 

 

27 

 

 

14 

 

 

283-335 

 

 

0.889 

 

 

0.849 

 

 

0.356 

 

 

0.492 

 

 

-0.043 

 

 

FM878046 

 

 

Unpubl 

BT19G06 

 

 

ACAC 

 

 

CCTTTAATATACAACCCATGTCCAAC 

GCAGAGTTACTCCATGGGAATG 

 

27 

 

 

13 

 

 

176-199 

 

 

0.815 

 

 

0.911 

 

 

0.765 

 

 

0.354 

 

 

0.045 

 

 

FM878047 

 

 

Unpubl 

BT19G08 

 

 

GGTT 

 

 

CGTGAACAAATTCAGAGGGTGAGAC 

CAGCTGCATAGAGGTTGTGTCTGG 

 

26 

 

 

5 

 

 

280-296 

 

 

0.615 

 

 

0.735 

 

 

0.039 

 

 

0.694 

 

 

0.069 

 

 

FM878048 

 

 

Unpubl 
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Table 2.1.A continued 

BT19H02 

 

 

CTT 

 

 

TTCATCTAAATCGTCTTCTTCTTT 

AGGAATTACAGTGAGCATAACAA 

 

4* 

 

        

FM878050 

 

 

Unpubl 

BT19H11 

 

 

GATA 

 

 

TCCCATTGTCAGAATTAGGTTT 

TTTGTGTGTGGGTCAAACAG 

 

27 

 

 

9 

 

 

210-250 

 

 

0.889 

 

 

0.894 

 

 

0.473 

 

 

0.401 

 

 

-0.009 

 

 

FM878051 

 

 

Unpubl 

BT20C03 

 

 

GTGT 

 

 

TCACTGGAGTCCTTAATGCTGGTG 

GAATAAGGGACCCAGAAACATAATGAATAAC 

 

25 

 

 

8 

 

 

216-236 

 

 

0.84 

 

 

0.818 

 

 

0.454 

 

 

0.564 

 

 

-0.021 

 

 

FM878052 

 

 

Unpubl 

BT20C06 

 

 

TAGA 

 

 

CCTAATGTTGTGGTGCTTTCTCTC 

GATTTGCTTGCTTGTTATCCTGAG 

 

26 

 

 

23 

 

 

229-355 

 

 

0.808 

 

 

0.947 

 

 

0.043 

 

 

0.248 

 

 

0.071 

 

 

FM878053 

 

 

Unpubl 

BT20E11 

 

 

ACAC 

 

 

AACAGCATGGAAATAGCTGGGTTTAAG 

CGCAATGTTATTTGAACATGCTTCTG 

 

27 

 

 

10 

 

 

223-239 

 

 

0.741 

 

 

0.718 

 

 

0.797 

 

 

0.683 

 

 

-0.037 

 

 

FM878054 

 

 

Unpubl 

BT20F11 

 

 

GT 

 

 

TGGTCCCTTCCAACCTGACC 

TGGCTGGAAATGTGCTCTGG 

 

27 

 

 

7 

 

 

242-269 

 

 

0.741 

 

 

0.804 

 

 

0.429 

 

 

0.585 

 

 

0.033 

 

 

FM878055 

 

 

Unpubl 

BT21A10 

 

 

AAGA 

 

 

TGGTGGAACAACAAGTGACCTACC 

CTGCTGGTAAACACAAGGCACTG 

 

28 

 

 

6 

 

 

190-205 

 

 

0.571 

 

 

0.612 

 

 

0.030 

 

 

0.807 

 

 

0.016 

 

 

FM878056 

 

 

Unpubl 

BT21C03 

 

 

ATAG 

 

 

GAGGCTTAGAGGCAGGGCTTT 

AAACCAGTAATTCCCTTGATTGAAAGA 

 

4* 

 

        

FM878057 

 

 

Unpubl 

BT21C07 

 

 

GTGT 

 

 

TGGTGCTATCTTCCCTTACCC 

GCACCACTCACCAGCAAAG 

 

22 

 

 

5 

 

 

194-202 

 

 

0.773 

 

 

0.735 

 

 

0.412 

 

 

0.696 

 

 

-0.044 

 

 

FM878058 

 

 

Unpubl 
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Table 2.1.A continued 

BT21G02 

 

 

TCTA 

 

 

TAAGGTCCAGCTCACCAACC 

TGGTACTAGCCCAGCATCAAC 

 

4* 

 

        

FM878060 

 

 

Unpubl 

BT21G04 

 

 

CA 

 

 

TCAACCTTTTGGAACTTGACCT 

CCTCATTGGGGCATGTGTA 

 

27 

 

 

7 

 

 

179-191 

 

 

0.741 

 

 

0.697 

 

 

0.270 

 

 

0.715 

 

 

-0.058 

 

 

FM878061 

 

 

Unpubl 

BT21H05 

 

 

GAGT 

 

 

CCAGGGACTCTGGTCCTATG 

TGTGTCTCAACACCCTCACTG 

 

4* 

 

        

FM878062 

 

 

Unpubl 

BT21H09 

 

 

TC 

 

 

TTCCTTTAGCAACCTTGATGC 

AGATGGGTTTCATGGTCCTG 

 

4* 

 

        

FM878063 

 

 

Unpubl 

BT21H10 

 

 

TT 

 

 

TGGTGAGTAGGTTCCAGAAGAGCA 

TCTGCTCTATATCCTTTTCCAGTATGAATTTT 

 

23 

 

 

8 

 

 

210-219 

 

 

0.391 

 

 

0.700 

 

 

0.000 

 

 

0.720 

 

 

0.307 

 

 

FM878064 

 

 

Unpubl 

BT22B10 

 

 

AC 

 

 

GTTGCAGAATTCTTGTCATGG 

TGTCTCACACAGGCACAAAG 

 

27 

 

 

3 

 

 

174-178 

 

 

0.296 

 

 

0.520 

 

 

0.004 

 

 

0.870 

 

 

0.255 

 

 

FM878067 

 

 

Unpubl 

BT22C08 

 

 

CA 

 

 

TGGGTATAACAAACTCAACCCAGTACC 

AAGCATCCTTGCACCTTCAGC 

 

4* 

 

        

FM878069 

 

 

Unpubl 

BT22D06 

 

 

TATC 

 

 

AAGTATGCAGTTGCCAAGTGTGC 

GCATCCCTGTAGCCATGCTG 

 

24 

 

 

16 

 

 

152-237 

 

 

0.833 

 

 

0.918 

 

 

0.289 

 

 

0.332 

 

 

0.041 

 

 

FM878073 

 

 

Unpubl 

BT22F05 

 

 

AG 

 

 

TGCATACATTCTATGTGTTATATGTTC 

TGACTTGCACAACTTAACTGC 

 

4* 

 

        

FM878079 

 

 

Unpubl 
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Table 2.1.A continued 

BT22G07 

 

 

CACA 

 

 

AGCCCTCAGGGAGTATCTGG 

GCAGAAGAGGACTCGCAGAC 

 

4* 

 

        

FM878080 

 

 

Unpubl 

BT22G10 

 

 

GGTT 

 

 

ACACTTCGGTGTTCTGTGACCTG 

CCCTTGCATCTGCCAAGAAAC 

 

27 

 

 

7 

 

 

209-238 

 

 

0.889 

 

 

0.844 

 

 

0.338 

 

 

0.516 

 

 

-0.033 

 

 

FM878081 

 

 

Unpubl 

BT22H03 

 

 

TC 

 

 

CGTCTCGTCCCTTGGTAGC 

TTAGTGCCAACAAGGGTTATGC 

 

4* 

 

        

FM878082 

 

 

Unpubl 

BT22H09 

 

 

GT 

 

 

TGAGGCATAGGAACTATATTCCAGTTGTAG 

ACCAGGGAACCATTGGCATC 

 

25 

 

 

4 

 

 

148-155 

 

 

0.480 

 

 

0.520 

 

 

0.695 

 

 

0.866 

 

 

0.021 

 

 

FM878083 

 

 

Unpubl 

BT23A03 

 

 

AC 

 

 

TTTCCCCAGTTATGGTTCCATTTT 

GCAGCACATTAGGACTATGAATCCAC 

 

25 

 

 

4 

 

 

164-171 

 

 

0.360 

 

 

0.559 

 

 

0.004 

 

 

0.841 

 

 

0.212 

 

 

FM878084 

 

 

Unpubl 

BT23A11 

 

 

TCCTC 

 

 

TGGAAATATATGCATACAGATACATGG 

CACCTCCAGCTTACAATGCTC 

 

4* 

 

        

FM878085 

 

 

Unpubl 

BT23C07 

 

 

AGAAG 

 

 

TCTTTATGAGGTTGCAATGACAG 

AGAGGTCAGAGAGTTGGACTAGATG 

 

4* 

 

        

FM878086 

 

 

Unpubl 

BT23D06 

 

 

GTGT 

 

 

TGTCTGGTGTAGTGAAGAGACAATCAG 

TGGAGAAGGTCTGGCATTGTG 

 

4* 

 

        

FM878087 

 

 

Unpubl 

BT23D08 

 

 

TG 

 

 

TCTTCTTCCAATAGTCAAAGTCATCCTG 

GAATTCCTCGACTGGAACAACTGAC 

 

4* 

 

        

FM878088 

 

 

Unpubl 
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Table 2.1.A continued 

BT23D11 

 

 

GTGT 

 

 

CTTCAGCACAGGAATAGCTTCAG 

CATGAGCATGCCTTTATGTCC 

 

28 

 

 

11 

 

 

154-172 

 

 

0.750 

 

 

0.741 

 

 

0.467 

 

 

0.641 

 

 

-0.021 

 

 

FM878089 

 

 

Unpubl 

BT23E01 

 

 

CA 

 

 

TGCTTAGCTAATATGGGCCAACTG 

TCAAGGGACATTTAGTGGTGTTCTG 

 

4* 

 

        

FM878090 

 

 

Unpubl 

BT23E05 

 

 

GT 

 

 

CTCTGTCTGGGCACTGAGG 

GACCCAATGTCTCTTTCTACAGC 

 

26 

 

 

13 

 

 

236-272 

 

 

0.731 

 

 

0.758 

 

 

0.736 

 

 

0.634 

 

 

0.009 

 

 

FM878091 

 

 

Unpubl 

BT23F02 

 

 

GTGT 

 

 

AAGTGTTGGAGGAACATCGAAGG 

GAAGCAGGGCACTGGACTTTC 

 

26 

 

 

13 

 

 

229-258 

 

 

0.962 

 

 

0.916 

 

 

0.251 

 

 

0.344 

 

 

-0.036 

 

 

FM878092 

 

 

Unpubl 

BT23F09 

 

 

ATGG 

 

 

GGCTCTGGTTACCTGCAGAGG 

TCTCAAGTTCACACTGCTTTCCTG 

 

27 

 

 

20 

 

 

287-347 

 

 

0.778 

 

 

0.943 

 

 

0.011 

 

 

0.262 

 

 

0.087 

 

 

FM878093 

 

 

Unpubl 

BT23H11 

 

 

GA 

 

 

TCCAGAGCAACACTACTGACAAACATTAG 

TTGCTAAGTTGATTGTTTGCACAGC 

 

25 

 

 

3 

 

 

185-196 

 

 

0.520 

 

 

0.523 

 

 

1.000 

 

 

0.869 

 

 

-0.011 

 

 

FM878096 

 

 

Unpubl 

Pca3 

 

 

(GT)6CT(GT) 

3CT(GT)5CT 

(GT)3CT(GT)13 

GGTGTTTGTGAGCCGGGG 

TGTTACAACCAAAGCGGTCATTTG 

 

9 

 

 

12 

 

 

162-206 

 

 

0.889 

 

 

0.935 

 

 

0.644 

 

 

0.378 

 

 

ND 

 

 

AJ279805 

 

 

Dawson et 

al. 2000 

Pca7 

 

 

(TG)24 

 

 

TGAGCATCGTAGCCCAGCAG 

GGTTCAGGACACCTGCACAATG 

 

9 

 

 

9 

 

 

124-144 

 

 

0.778 

 

 

0.882 

 

 

0.636 

 

 

0.493 

 

 

ND 

 

 

AJ279809 

 

 

Dawson et 

al. 2000 

Pca9 

 

 

(GT)21 

 

 

ACCCACTGTCCAGAGCAGGG 

AGGACTGCAGCAGTTTGTGGG 

 

10 

 

 

7 

 

 

120-142 

 

 

0.900 

 

 

0.842 

 

 

0.934 

 

 

0.558 

 

 

-0.058 

 

 

AJ279811 

 

Dawson et 

al. 2000 
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Table 2.1.A continued 

POCC1 

 

 

GTGT 

 

 

TTCTGTGCTGCAATCACACA 

GCTTCCAGCACCACTTCAAT 

 

10 

 

 

10 

 

 

221-250 

 

 

1.000 

 

 

0.874 

 

 

1.000 

 

 

0.496 

 

 

-0.102 

 

 

U59113 

 

 

Bensch et 

al. 1997 

Z037 

 

ACAC 

  

7 

 

2 

 

164-166 

 

0.286 

 

0.440 

 

0.443 

 

0.917 

 

ND 

  

Dawson 

2007 

Z037B 

 

GATA 

  

13 

 

3 

 

97-103 

 

0.462 

 

0.385 

 

1.000 

 

0.932 

 

-0.124 

  

Dawson 

2007 

Z040 

 

ACAC 

  

10 

 

5 

 

131-139 

 

0.400 

 

0.695 

 

0.034 

 

0.756 

 

0.264 

  

Dawson 

2007 
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Assembling multiplex primer sets 

After examination of the loci characteristics (Table 2.1.A), I selected the loci which 

were most likely to be powerful in paternity analysis (i.e. those which were 

polymorphic, in Hardy-Weinberg and in linkage equilibria and did not possess high 

frequencies of null allele frequencies). To minimise expense whilst maximising the 

number of loci employed, I designed four multiplex primer sets using the selected loci. 

A multiplex primer set is a set of primers which can be used together in one PCR. Since 

some pairs of primers react if put together in a PCR, Autodimer (Vallone and Butler 

2004) was used to screen sets of primer pairs initially for cross-reactivity. Multiplex 

Manager Version 1.0 (Holleley and Geerts 2009) was then used to design efficient 

combinations of primers for four multiplex primer sets. Since PCR products from 

different loci can overlap in size making it challenging to analyse genoptypes visually 

(Fig. 2.2.A.a.), Multiplex Manager Version 1.0 was programmed to design primer sets 

where the expected PCR product sizes from each loci in the set were at least 30 base 

pairs apart. However, this heavily restricted the number of loci I could use and, 

therefore, to allow me to maximise the number of primers in each multiplex, I included 

an untested locus, Pca4 (Dawson et al. 2000), and I used a set of three different 

fluorescent labels (HEX [green], 6-FAM [blue] and NED [yellow]) so that PCR 

products from different loci could easily be separated visually even if the products were 

similar in size (compare Fig. 2.2.A.a with Fig 2.2.A.b). The final multiplex primer sets 

contained a combined total of 16 loci (14 autosomal [i.e. not sex-linked] and two sex-

linked ones; Table 2.2.A). 
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Figure 2.2.A.  Two electropherograms with fluorescent peaks corresponding to PCR 

products from two microsatellite loci which overlap in size where (a) the primers for 

both loci are labelled using the same dye and (b) the primers for each loci are labelled 

with different dyes. The use of multiple dyes enables PCR products from different loci 

to be visually separated with ease. 
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Table 2.2.A. Details of the four multiplex primer sets used in the paternity analysis and 

sexing of Blue Tits breeding in Chaddesley Woods National Nature Reserve in 2008 

and 2009. The locus name refers both to the locus and to the name of the primers which 

are used to guide its amplification during PCR. PCR product sizes refer to the size of 

the DNA fragments from each locus after PCR. Primers within each multiplex are 

labelled with a fluorescent dye: HEX – green; FAM – blue; or NED – yellow. 

 

Multiplex Locus PCR product 

size range 

(base pairs) 

Fluorescent 

label trade 

name 

Fluorescent 

label colour 

1 Pca4 161-211 HEX Green 

 Pca3 162-206 FAM Blue 

 BT19F01 283-335 FAM Blue 

2 Pca9 120-142 FAM Blue 

 Pca7 124-144 HEX Green 

 BT21C07 194-202 FAM Blue 

 BT22D06 152-237 NED Yellow 

 POCC1 221-250 HEX Green 

3 BT19G06 176-199 FAM Blue 

 BT20C03 216-236 HEX Green 

 BT22G10 209-238 NED Yellow 

 BT23E05 236-272 FAM Blue 

4 Z037B 97-103 HEX Green 

 Z040 131-139 FAM Blue 

 BT19H11 210-250 FAM Blue 

 BT23F02 229-258 NED Yellow 
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