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ABSTRACT

The first part of this thesis concerns perfect matchings and their generalisations. We deter-
mine the minimum vertex degree that ensures a perfect matching in a 3-uniform hypergraph,
thereby answering a question of Han, Person and Schacht.

We say that a graph G has a perfect H-packing (also called an H-factor) if there exists
a set of disjoint copies of H in G which together cover all the vertices of G. Given a graph
H, we determine, asymptotically, the Ore-type degree condition which ensures that a graph
G has a perfect H-packing.

The second part of the thesis concerns Hamilton cycles in directed graphs. We give a
condition on the degree sequences of a digraph G that ensures GG is Hamiltonian. This gives
an approximate solution to a problem of Nash-Williams concerning a digraph analogue of
Chvétal’s theorem.

We also show that every sufficiently large regular tournament can almost completely
be decomposed into edge-disjoint Hamilton cycles. More precisely, for each n > 0 every
regular tournament G of sufficiently large order n contains at least (1/2 —n)n edge-disjoint

Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968.
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CHAPTER 1
INTRODUCTION

A natural question is to establish conditions that ensure a graph G contains some spanning
subgraph F'. For example F' could be a Hamilton cycle or a perfect matching. Of course,
it is desirable to fully characterise those graphs G which contain a spanning copy of a
given graph F'. For example, Tutte’s theorem [93] characterises those graphs with a perfect
matching. However, for some graphs F' (for example Hamilton cycles) it is unlikely that
such a characterisation exists. Indeed, for many graphs F' (including Hamilton cycles) the
decision problem of whether a graph G contains F' is NP-complete. Thus, it is of interest

to find sufficient conditions.

1.1 Generalisations of perfect matchings

1.1.1 Perfect H-packings

Perhaps the simplest parameter of a graph G to consider is the minimum degree §(G) of
G. Dirac [23] showed that any graph G on n > 3 vertices has a Hamilton cycle provided
that 6(G) > n/2. So when n is even this implies that G contains a perfect matching (and
it is easy to see that this bound is tight). Chapter 3 of this thesis is concerned with the
case when F' is composed of many copies of a small graph H, i.e. when F is a perfect
H-packing. More precisely, a perfect H-packing in G consists of vertex-disjoint copies of

H in G covering all the vertices of G. So if H = K», a perfect H-packing in G is simply a



perfect matching in G. Hajnal and Szemerédi [33] established the bound on the minimum
degree of a graph G which guarantees that G contains a perfect K,.-packing. Given any
graph H, Kiithn and Osthus [57] determined, up to an additive constant, the bound on the
minimum degree of a graph G that ensures a perfect H-packing in G.

It is also of interest to consider other types of degree conditions that force a perfect
H-packing in a graph G. Ore’s theorem [73] generalises Dirac’s theorem. This result
states that a graph G of order n > 3 contains a Hamilton cycle if d(z) + d(y) > n for all
non-adjacent x # y € V(G). We refer to such conditions on the sum of the degrees of
non-adjacent vertices of a graph as Ore-type degree conditions. A result of Kierstead and
Kostochka [45] implies a ‘best possible’ Ore-type degree condition which guarantees the
existence of a perfect K,-packing in a graph GG. In Chapter 3 we asymptotically determine
the Ore-type degree condition that ensures a perfect H-packing in a graph G for any graph
H (see Theorem 3.2). Thus, this provides an Ore-type analogue of the result of Kiihn and
Osthus mentioned above.

Notice that the Ore-type degree condition which forces a Hamilton cycle in a graph is
‘twice the minimum degree condition’ in Dirac’s theorem. Further the corresponding bound
in the aforementioned result of Kierstead and Kostochka is again ‘twice the minimum degree
condition’ in the Hajnal-Szemerédi theorem. Thus, one may imagine that we have a similar
phenomenon for our result concerning perfect H-packings. However, perhaps surprisingly,
this is not the case. Indeed, for some graphs H the Ore-type degree condition which ensures
a perfect H-packing in a graph G involves the so-called colour extension number of H. This
parameter is not relevant, however, in the corresponding minimum degree condition.

The Erdoés-Stone theorem gives a condition on the number of edges in a graph G which
forces a copy of some fixed graph H in G. Clearly a necessary condition for the existence
of a perfect H-packing in a graph G is the property that for all € V(G) there exists a
copy of H in G containing x. In Section 3.1.4 we characterise, up to an error term, the
minimum and Ore-type degree conditions that ensure a copy of a graph H in G containing
a given z € V(G). In some sense the bound in this latter result is the ‘reason’ why the

Ore-type degree condition which guarantees a perfect H-packing in a graph G is not twice



the minimum degree condition in the result of Kithn and Osthus. This will be discussed in

more depth in Section 3.1.4.

1.1.2 Matchings in r-uniform hypergraphs

As mentioned earlier, a theorem of Tutte [93] characterises all those graphs that contain a
perfect matching. In contrast, a result of Garey and Johnson [29] implies that the decision
problem whether an r-uniform hypergraph contains a perfect matching is NP-complete
for r > 3. So again it is natural to seek simple sufficient conditions that ensure a perfect
matching. Given an r-uniform hypergraph H and distinct vertices vy, ...,v, € V(H) (where
1 < ¢ < r—1) we define dg(vy,...,v) to be the number of edges containing each of
v1,...,0v. The minimum ¢-degree d;(H) of H is the minimum of dg(v1,...,ve) over all
(-element sets of vertices in H. We refer to §;(H) as the minimum vertex degree of H, and
dr—1(H) as the minimum codegree of H.

In recent years there has been significant progress on this problem. Indeed, following
on from work in [54, 79], R6dl, Rucinski and Szemerédi [80] characterised the minimum
codegree that ensures a perfect matching in an r-uniform hypergraph. However, much
less is known about minimum vertex degree conditions for perfect matchings in r-uniform
hypergraphs H. Han, Person and Schacht [34] gave conditions on §;(H) that ensure a
perfect matching in the case when r > 4. These bounds were subsequently lowered by
Markstrom and Ruciriski [65]. This result, however, is believed to be far from tight. In the
case when r = 3, Han, Person and Schacht [34] asymptotically determined the minimum
vertex degree that ensures a perfect matching. In Chapter 4 we determine this threshold
exactly.

It is also natural to ask for conditions that ensure a matching of given size d in an r-
uniform hypergraph H. In the case when d is small compared to the order of H, Bollobas,
Daykin and Erdés [11] determined the minimum vertex degree that forces a matching of
size d in an r-uniform hypergraph H. In Chapter 4 we extend this result to all possible

values of d in the case when H is 3-uniform.



1.2 Hamilton cycles in directed graphs

1.2.1 Degree sequences forcing Hamilton cycles

Dirac’s theorem is best possible in the sense that a lower minimum degree condition does
not force Hamiltonicity. However, it is of interest to strengthen Dirac’s theorem by finding
conditions on a graph G of order n which ensure Hamiltonicity but which allow some
vertices to have degree much less than n/2. Pésa [75] gave such a condition on the so-called
degree sequence of a graph: Suppose that the degrees of a graph G of even order n are
dy <---<d,. fn>4andd; >i+1 for all i <n/2 then G contains a Hamilton cycle.
So the condition considers graphs G for which nearly half the vertices may have degree
much less than n/2. Chvatal [19] generalised this result by characterising all those degree
sequences that ensure the existence of a Hamilton cycle in a graph.

Finding analogous results for directed graphs (digraphs) has proved to be much more
difficult. (Throughout this thesis the digraphs we consider do not have loops and we al-
low at most one edge in each direction between any pair of vertices.) Ghouila-Houri [30]
proved an analogue of Dirac’s theorem for digraphs. In Chapter 5 we consider a conjec-
ture of Nash-Williams which, if true, provides a digraph analogue of Chvatal’s theorem.
Indeed, the conjecture would imply a complete characterisation of all those digraph de-
gree sequences which force Hamiltonicity. No progress has been made on Nash-Williams’
conjecture so far. However, we will prove an approximate version of this conjecture for suf-
ficiently large digraphs (Theorem 5.2). In order to prove this result we will prove a stronger
result which ensures a Hamilton cycle in ‘robustly expanding digraphs’ of linear degree (see
Theorem 5.13).

An oriented graph is a digraph which can be obtained from an undirected graph by
orienting its edges. Thomassen [88] raised the question of an analogue of Dirac’s theorem
for oriented graphs. Proving a conjecture of Haggkvist [31], Keevash, Kiithn and Osthus [41]
determined the bound on the minimum semidegree of an oriented graph G which forces G
to contain a Hamilton cycle (for sufficiently large oriented graphs). As indicated earlier,

for undirected graphs Pésa’s theorem is much stronger than Dirac’s theorem. It is natural



to seek a result which strengthens Héggkvist’s conjecture in the same way. Interestingly

though, in Section 5.4 we show that no such analogue of Pésa’s theorem exists.

1.2.2 Powers of Hamilton cycles and related problems

A well-studied generalisation of the notion of a Hamilton cycle is that of the rth power of
a Hamilton cycle. (The rth power of a Hamilton cycle C' is obtained from C by adding
an edge between every pair of vertices of distance at most r on C.) Seymour [84] gave
a conjectural bound on the minimum degree of a graph G that forces G to contain the
rth power of a Hamilton cycle. This conjecture was verified for large graphs by Komlds,
Sérkozy and Szemerédi [50]. Seymour’s conjecture extends a conjecture of Pésa (see [25])
who proposed the bound in the case of the square of a Hamilton cycle (that is, when r = 2).

The notion of the rth power of a Hamilton cycle also makes sense in the digraph setting:
In this case the rth power of a Hamilton cycle C' is the digraph obtained from C' by adding
a directed edge from x to y if there is a path of length at most r from z to y on C. In
Section 6.1 we give a conjecture on the minimum semidegree of an oriented graph GG which
ensures that G contains the square of a Hamilton cycle. We also show that, if true, the
conjecture would be best possible.

Notice that in the case when r + 1 divides |G|, a necessary condition for a graph G
to contain the rth power of a Hamilton cycle is that G contains a perfect K, i-packing.
In fact, the Hajnal-Szemerédi theorem together with the result of Komlds, Sarkozy and
Szemerédi show that the minimum degree bound which forces a perfect K, i1-packing is
the same as the minimum degree bound which forces the rth power of a Hamilton cycle.

Similarly when 3 divides |G|, a necessary condition for an oriented graph G to contain
the square of a Hamilton cycle is that G contains a perfect packing of transitive triangles. In
Section 6.2 we give a conjecture on the minimum semidegree of an oriented graph G which
ensures that G contains a perfect packing of transitive triangles. Perhaps surprisingly, this
bound is lower than the bound given in our conjecture concerning the square of a Hamilton

cycle.



1.2.3 Decomposing oriented graphs into Hamilton cycles

Another variant of the Hamilton cycle problem which has received much attention is the
problem of whether a graph or digraph G has a Hamilton decomposition. That is, whether
the edge set of G can be decomposed into a collection of edge-disjoint Hamilton cycles. The
problem originates from 1892 when Walecki showed that K, has a Hamilton decomposition
precisely when n is odd.

A regular tournament is an orientation of a complete graph such that every vertex has
equal in- and outdegree. In 1968 Kelly (see e.g. [8, 13, 67]) conjectured that every regular
tournament has a Hamilton decomposition. Despite receiving much attention this problem
remains open. However, in Chapter 7 we prove an approximate version of Kelly’s conjecture
(Theorem 7.2) which roughly states that all sufficiently large regular tournaments G can
be ‘almost’ decomposed into edge-disjoint Hamilton cycles (i.e. all but o(|G|?) edges of G
lie in a collection of edge-disjoint Hamilton cycles).

Instead of proving our approximate version of Kelly’s conjecture directly, we prove a
much stronger result (Theorem 7.3). Indeed, we give a condition on the minimum semide-
gree of an ‘almost regular’ oriented graph G that ensures the edge set of G can be almost
decomposed into edge-disjoint Hamilton cycles. (Here, by ‘almost regular’ we mean every
vertex has roughly the same in- and outdegree.)

In 1982 Thomassen [89] posed a weaker version of Kelly’s conjecture: If G is a regular
tournament on 2k 4 1 vertices and A is any set of at most k — 1 edges of GG, then G — A has
a Hamilton cycle. Using our result (Theorem 5.13) concerning Hamilton cycles in robustly
expanding digraphs we prove this conjecture in the case when G is large. The content of

Chapters 3, 4, 5 and 7 is based on joint work [60, 63, 61, 62] with Kithn and Osthus.

1.3 Szemerédi’s Regularity lemma

Szemerédi’s Regularity lemma [86] allows us to approximate sufficiently large and dense
graphs by a ‘random-like’ graph. The Blow-up lemma of Komlds, Sérkozy and Szemerédi [49]

provides a way of embedding spanning subgraphs H of bounded degree into such random-



like graphs. Thus these results are essential tools in proving several of the theorems given
in this thesis. Indeed, Alon and Shapira [3] established a variant of the Regularity lemma
for digraphs. This will be exploited in the proof of Theorems 5.2 and 7.3. We will not use
the Blow-up lemma directly in the proof of Theorem 5.2. However, we will use a result
(Lemma 5.9) from [41] whose proof uses a version of the Blow-up lemma due to Csaba [20].
(We do not, however, use the Blow-up lemma in the proof of Theorem 7.3.) The proof
of Theorem 3.2 given in Chapter 3 uses the ‘standard’ version of the Blow-up lemma
(Lemma 2.6). In Chapter 2 we draw together all the information we require concerning

the Regularity lemma and the Blow-up lemma.

1.4 Notation and preliminaries

If G is a graph or digraph we write V' (G) to denote the set of vertices of G and E(G) the
set of its edges. Furthermore e(G) denotes the number of edges in G and |G| the order of
G.

Given a graph G and a vertex € V(G) we denote by dg(x) the degree of = in G, §(G)
the minimum degree of G and A(G) the maximum degree of G. The chromatic number of
G is denoted by x(G).

Given a graph G and disjoint A, B C V(G), an A-B edge is an edge of G with one
endvertex in A and the other in B. The number of these edges is denoted by eg(A, B)
or e(A, B) if this is unambiguous. We write (A, B)¢ for the bipartite subgraph of G with
vertex classes A and B whose edges are precisely the A-B edges in G. Similarly, given a
digraph G and disjoint A, B C V(G), we write eq(A, B) for the number of all those edges
which are directed from some vertex in A to some vertex in B. We also write (A, B)¢ for
the oriented bipartite subgraph of G with vertex classes A and B whose edges are precisely
the edges from A to B in G.

Given two vertices x and y of a digraph G, we write zy for the edge directed from x
to y. We denote by N, (z) and N (z) the out- and the inneighbourhood of z and by d(, ()

and dg(x) its out- and indegree. We will write N (z) for example, if this is unambiguous.



Given S C V(G), we write N (9) for the union of N/ (z) for all z € S and define N ()
analogously. The minimum semidegree §°(G) of G is the minimum of its minimum outde-
gree 67 (G) and its minimum indegree §~ (G). The maximum of the maximum outdegree
AT (G) and the maximum indegree A~ (G) is denoted by A%(G).

Throughout this thesis we omit floors and ceilings whenever this does not affect the

argument.



CHAPTER 2
THE REGULARITY LEMMA AND THE
BLOW-UP LEMMA

2.1 The Regularity lemma for graphs

Szemerédi’s Regularity lemma [86] has proved to be an incredibly powerful and useful tool
in graph theory as well as in Ramsey theory, combinatorial number theory and other areas
of mathematics and theoretical computer science. Indeed, the result was initially proved by
Szemerédi in order to prove a conjecture of Erdds and Turan [26] that sequences of integers
of positive upper density must contain long arithmetic progressions.

The lemma essentially says that large dense graphs can be approximated by a random-
like graph. The strength of this result will be useful for the proof of the results concerning
packings in graphs given in Chapter 3. As mentioned in Section 1.3, there is a version of
the Regularity lemma for digraphs due to Alon and Shapira [3], which will be used in the
proof of Theorems 5.2 and 7.3.

Before stating the Regularity lemma we first need to introduce some more notation and
definitions. The density of a bipartite graph G with vertex classes A and B is defined to
be

eq(A, B
da(4, B) = W'

We will write d(A, B) if this is unambiguous. Given any e,¢’ > 0, we say that G is

[e,€']-regular if for all sets X C A and Y C B with |X| > ¢|A| and |Y| > ¢|B| we have



|d(A,B) —d(X,Y)| < £. In the case when ¢ = &’ we say that G is e-regular (we also say
that (A, B)¢g is an e-regular pair). One can think of an e-regular pair as a bipartite graph
which has its edges distributed in a fairly uniform way. Further, the smaller ¢ is, the ‘more
uniform’ the pair is.

The notion of a super-regular pair is similar to that of a regular pair. However, here we
require a lower bound on the degrees of the vertices in such a pair. Indeed, given a bipartite
graph G with vertex classes A and B and given any € > 0 and d € [0,1) we say that G is
(e, d)-super-reqular if all sets X C A and Y C B with |X| > ¢|A| and |Y| > ¢|B| satisfy
d(X,Y) > d and, furthermore, if dg(a) > d|B]| for all a € A and dg(b) > d|A| for all b € B.
(In Chapter 7 it will be more convenient to use a slight variant of this definition.) The next

fact states that every regular pair has an almost spanning subgraph which is super-regular.

Fact 2.1 If (A, B) is an e-reqular pair with density d (where 0 < ¢ < 1/3), then there
exists A’ C A and B' C B with |A’| > (1 — ¢)|A| and |B’| > (1 — ¢)|B]|, such that (A’, B)

is a (2e,d — 3¢)-super-reqular pair.

Szemerédi’s Regularity lemma states that we can partition the vertices of any large
graph into a bounded number of ‘clusters’ so that most of the pairs of clusters induce

e-regular pairs.

Lemma 2.2 (Szemerédi [86]) For every € > 0 and each integer {y there is an M =
M (e, 4y) such that if G is any graph on at least M wvertices then there exists a partition of
V(G) into Vo, Vi,...,Vy such that the following holds:

o Iy </t< M,
o [Vo| <elG,
o [Vi|=---=|Vi| =L,

e for all but el pairs 1 <i < j < { the graph (V;,V;)q is e-regular.

In this thesis we will use the following degree form of Szemerédi’s Regularity lemma which

can easily be derived from Lemma 2.2.

10



Lemma 2.3 (Degree form of the Regularity lemma) For every ¢ > 0 and each in-
teger Ly there is an M = M(e,ly) such that if G is any graph on at least M wvertices
and d € [0,1), then there exists a partition of V(QG) into £ + 1 classes Vp, Vi, ..., Vi, and a

spanning subgraph G' C G with the following properties:
o lo <L M, Vo <elGf, i = - = [Vi| = L,
o do/(v) > dg(v) — (d+¢)|G| for allv € V(G),
e ¢(G'[V;]) =0 foralli > 1,

o for all 1 < i < j < ( the graph (V;,V})qr is e-reqular and has density either 0 or

greater than d.

The sets V1,...,V, are called clusters, Vj is called the exceptional set and the vertices in Vj
exceptional vertices. We refer to G’ as the pure graph of G. Clearly, we may assume that
(Vi,Vj)a is not e-regular or has density at most d whenever (V;,V;)e contains no edges
(for all 1 <i < j </¥). The reduced graph R of G is the graph whose vertices are Vi,...,V}
and in which V; is adjacent to V; whenever (V;,V})¢ is e-regular and has density greater
than d. The reduced graph R of a graph G inherits certain properties of G. For example,

the next fact states that R ‘almost inherits’ the minimum degree of G.

Fact 2.4 Suppose R is the reduced graph of G with parameters € and d. If 0 < 2e < d < ¢/2
and §(G) > ¢|G| then 6(R) > (c — 2d)|R|.

It is often useful to consider the reduced graph R of a graph G when seeking some given
substructure in G. This is illustrated by the following Embedding lemma. The proof is
based on a simple greedy argument, see e.g. Lemma 7.5.2 in [22] or Theorem 2.1 in [52] for

details.

Lemma 2.5 (Embedding lemma) Let H be an r-partite graph with vertez classes X1, ..., X,
and let €,d,ng be constants such that 0 < 1/ng < ¢ < d,1/|H|. Let G be an r-partite graph
with vertex classes Vi,...,V, of size at least ng such that (V;,V;)q is e-regular and has
density at least d whenever H contains an edge between X; and X; (for all1 <i<j<r).

Then G contains a copy of H such that X; C V;.

11



Here (and later on) we write 0 < a1 < ag < ag < 1 to mean that we can choose the
constants aq, as, as from right to left. More precisely, there are increasing functions f and
g such that, given ag, whenever we choose some ay < f(a3) and a; < g(ag), all calculations
needed in the proof of Lemma 2.5 are valid.

Let H be an r-partite graph and suppose we have applied Lemma 2.3 with parameters
e and d to G to obtain clusters of size L such that 0 < 1/L < ¢ < d,1/|H|. Then the
Embedding lemma tells us that if we have found a copy of K, in R then we can find a copy
of H in G.

The Embedding lemma cannot be used by itself to find spanning subgraphs of a graph
G. However, the Blow-up lemma of Komlés, Sarkézy and Szemerédi [49] states that one
can even find a spanning subgraph H in G provided that H has bounded maximum degree

and the bipartite pairs forming G are super-regular.

Lemma 2.6 (Blow-up lemma) Given a graph R with V(R) = {1,...,r} and d,A > 0,
there is a constant g = £o(d, A,r) > 0 such that the following holds. Given Ly,...,L, € N
and 0 < € < gg, let R* be the graph obtained from R by replacing each vertex i € V(R) with
a set Vi of L; new vertices and joining all vertices in V; to all vertices in V; precisely when
ij € E(R). Let G be a spanning subgraph of R* such that for everyij € E(R) the bipartite
graph (Vi,V;)a is (e,d)-super-reqular. Then G contains a copy of every subgraph H of R*
with A(H) < A.

2.2 The Regularity lemma for digraphs

In the proof of Theorems 5.2 and 7.3 we will use the directed version of Szemerédi’s Regu-
larity lemma. Before we state it we need to define what we mean by an e-regular pair in a
digraph. Recall that given disjoint vertex sets A and B in a digraph G, we write (A, B)¢
for the oriented bipartite subgraph of G whose vertex classes are A and B and whose edges
are all the edges from A to B in G. We say (A, B)g is [e,€'|-regular and has density d’ if
this holds for the underlying undirected bipartite graph of (A, B)q. (Note that the ordering

of the pair (A, B)¢ is important here.) In the case when ¢ = &’ we say that (A, B)g is
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e-reqular and has density d'. Similarly, given d € [0,1) we say (4, B)¢ is (¢, d)-super-regular
if this holds for the underlying undirected bipartite graph. The Diregularity lemma is a
variant of the Regularity lemma for digraphs due to Alon and Shapira [3]. Its proof is
similar to the undirected version. We will use the degree form of the Diregularity lemma
which is derived (see for example [95]) from the standard version in the same manner as

the undirected degree form.

Lemma 2.7 (Degree form of the Diregularity lemma) For every ¢ € (0,1) and ev-
ery integer M’ there are integers M and ng such that if G is a digraph on n > ng vertices
and d € [0,1) is any real number, then there is a partition of the vertex set of G into

Vo, Vi,..., VL, and a spanning subdigraph G' of G such that the following holds:

o M'<L<M,

Vo| <en,

Vil = - =[Vi| =:m,

df(z) > di(z) — (d+ e)n for all vertices x € V(G),

dey(x) > dg(x) — (d+e)n for all vertices x € V(G),

for alli=1,...,L the digraph G'|V;] is empty,

o forall1 <i,j < L with i # j the pair (V;,Vj)ar is e-reqular and has density either 0

or density at least d.

As in the graph case, we call Vi, ...,V clusters, V| the exceptional set and the vertices in V{
exceptional vertices. We refer to G’ as the pure digraph. The last condition of the lemma
says that all pairs of clusters are e-regular in both directions (but possibly with different
densities). The reduced digraph R of G with parameters €, d and M' is the digraph whose
vertices are Vi,...,Vr and in which V;V; is an edge precisely when (V;,Vj)qr is e-regular

and has density at least d.
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CHAPTER 3
AN ORE-TYPE THEOREM FOR
PERFECT PACKINGS IN GRAPHS

3.1 Introduction

3.1.1 Perfect packings in graphs of large minimum degree

Given two graphs H and G, an H-packing in G is a collection of vertex-disjoint copies of
H in G. An H-packing is called perfect if it covers all the vertices of G. In this case one
also says that G contains an H -factor. H-packings are generalisations of graph matchings
(which correspond to the case when H is a single edge).

In the case when H is an edge, Tutte’s theorem characterises those graphs which have
a perfect H-packing. However, for other connected graphs H no characterisation is known.
Furthermore, Hell and Kirkpatrick [35] showed that the decision problem whether a graph G
has a perfect H-packing is NP-complete precisely when H has a component consisting of
at least 3 vertices. It is natural therefore to ask for simple sufficient conditions which
ensure the existence of a perfect H-packing. One such result is a theorem of Hajnal and
Szemerédi [33] which states that a graph G whose order n is divisible by r has a perfect
K,-packing provided that 6(G) > (1 — 1/r)n. It is easy to see that the minimum degree
condition here is best possible. So for H = K., the parameter which governs the existence
of a perfect H-packing in a graph G of large minimum degree is x(H) = r.

Kiithn and Osthus [56, 57] showed that for any graph H either the so-called critical
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chromatic number or the chromatic number of H is the relevant parameter. Here the
critical chromatic number x..(H) of a graph H is defined as

H|

Xer(H) == (X(H) — 1)m,

where o(H) denotes the size of the smallest possible colour class in any y(H)-colouring
of H. When considering H-packings we will only consider graphs H which contain at
least one edge (without mentioning this explicitly), so x.-(H) is well defined. Note that
X(H) —1 < xe(H) < x(H) for all graphs H, and x.-(H) = x(H) precisely when every
X(H )-colouring of H has colour classes of equal size. The characterisation of when y(H)
or Xer(H) is the relevant parameter depends on the so-called highest common factor of H,
which is defined as follows.

We say that a colouring of H is optimal if it uses exactly x(H) =: r colours. Given
an optimal colouring ¢ of H, let z1 < z9 < --- < x,. denote the sizes of the colour classes
of c. We write D(c) :={wzjt1 —x; |i=1,...,r — 1}, and let D(H) denote the union of all
the sets D(c) taken over all optimal colourings ¢ of H. We denote by hcf, (H) the highest
common factor of all integers in D(H). If D(H) = {0} then we define hcf, (H) := co. We
write hef.(H) for the highest common factor of all the orders of components of H. For
non-bipartite graphs H we say that hef(H) = 1 if hefy (H) = 1. If x(H) = 2 then we say

hef(H) =1 if hef.(H) = 1 and hef, (H) < 2. (See [57] for some examples.) Put

Ner(H)  if hef(H) = 15
X"(H) :=
X(H)  otherwise.

Also let 0(H,n) denote the smallest integer k such that every graph G whose order n is

divisible by |H| and with 6(G) > k contains a perfect H-packing.

Theorem 3.1 (Kithn and Osthus [57]) For every graph H there exists a constant C =
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C(H) such that

(1—ﬁH)>n—1§5(H,n)§ <1—ﬁ>n+d

Theorem 3.1 improved previous bounds by Alon and Yuster [5], who showed that 6(H,n) <
(1—-1/x(H))n+o(n), and by Komlds, Sarkézy and Szemerédi [51], who replaced the o(n)-
term by a constant depending only on H. Further related results are discussed in the

surveys [46, 47, 52, 58, 97].

3.1.2 Ore-type degree conditions for perfect packings

Of course, one can also consider other types of degree conditions that ensure a perfect H-
packing in a graph G. One natural such condition is an Ore-type degree condition requiring
a lower bound on the sum of the degrees of non-adjacent vertices of G. (The name comes
from Ore’s theorem [73], which states that a graph G of order n > 3 contains a Hamilton
cycle if d(x) 4+ d(y) > n for all non-adjacent x # y € V(QG).)

A result of Kierstead and Kostochka [45] on equitable colourings implies that a graph G
whose order n is divisible by r and with d(x) 4+ d(y) > 2(1 — 1/r)n — 1 for all non-adjacent
x # y € V(G) contains a perfect K,-packing. Note that this is a strengthening of the
Hajnal-Szemerédi theorem. Kawarabayashi [40] asked for the Ore-type condition which
guarantees a K, -packing in a graph G covering a given number of vertices of G. (Here K
denotes the graph obtained from K, by removing an edge.) Similarly it is natural to seek
an Ore-type analogue of Theorem 3.1. This will be the main result of this chapter (but
with an o(n)-error term). Perhaps surprisingly, the Ore-type condition needed is not ‘twice
the minimum degree condition’. For some graphs H it depends on the so-called colour
extension number of H, which we will define now. Roughly speaking, this is a measure of
how many extra colours we need to properly colour H if we try to build this colouring by
extending an (r — 2)-colouring of a neighbourhood of a vertex of H.

More precisely, suppose that H is a graph with x(H) =: r which contains a vertex x

for which the subgraph H[N(x)] induced by the neighbourhood of z is (r — 2)-colourable.
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Given such a vertex x € V(H), let m, denote the smallest integer for which there exists
an (r — 2)-colouring of H[N(z)] that can be extended to an (r + m;)-colouring of H. The

colour extension number CE(H) of H is defined as

CE(H) :=min{m, | v € V(H) with x(H[N(z)]) <r —2}.

If x(H[N(x)]) =r—1forallz € V(H) we define CE(H) := co. So every bipartite graph H
without isolated vertices has CE(H) = co. All other bipartite graphs H have CE(H) = 0.
In general, 1 < CE(H) < oo if for any optimal colouring of H and any v € V(H), N(v)
lies in exactly r — 1 colour classes of H, but there exists a vertex = € V(H) such that
X(H[N(x)]) < r — 2. Note that in this case CE(H) < r — 2. (Indeed, we can colour
H — N(z) with r different colours to obtain a (2r — 2)-colouring of H.)

In order to help the readers to familiarise themselves with the notion of the colour
extension number we now give a number of examples. x (K, ) = 3 and x(K, [N(x)]) = 2
for every vertex x of K, . Thus CE(K, ) = co. Next consider the graph F® obtained from
the complete 3-partite graph Koo by removing an edge xy of Ks29 and adding a new
vertex z which is adjacent to = and y only. Then x(F°) = 3, x(F°[N(w)]) = 2 for every
vertex w # z in F° and x(F°[N(z)]) = 1. Note that in any 3-colouring of F°, x and y are
coloured differently. So if we 1-colour N(z) = {x,y}, this colouring can be extended to a
4-colouring of F*° but not a 3-colouring. Thus CE(F°) = 1.

For each k > 1 and r > k 4+ 2 we now give an example of a family of graphs H® with
CE(H®) = k and x(H®) = r. Consider a complete r-partite graph whose vertex classes
Vi,...,V, have size > k. Let H® be obtained from this graph by deleting the edges of k
vertex-disjoint copies K1, ..., K* of Kj1q which lie in Vi U---UVj41, and by adding a new
vertex x which is adjacent to the k(k + 1) vertices lying in these copies of K1 as well as
to all the vertices in Vji4a,...,V,_1 (see Figure 3.1). Note that x(H®) = r. Furthermore,
any vertex y € V3 U--- UV, lies in a copy of K, in H®. So x(H°[N(y)]) = r — 1. However,
the subgraph D := H°[N(xz) N Vi N --- N Viy1] has a k-colouring ¢, with colour classes

V(KY),...,V(K") and it is easy to check that this is the only k-colouring of D (and so in
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Figure 3.1: The graph H® in the case when k = 2, » = 5 and when each V; has size 3. The
dashed lines indicate the deleted edges.

particular x(D) = k). Thus x(H°[N(z)]) = r—2 and the only (r —2)-colouring of H°[N (z)]
is the one which agrees with ¢, on D and colours each of Viio,...,V,_1 with a new colour.
Let ¢, denote this colouring. When extending ¢, to a proper colouring of H® we cannot
reuse the 7 — 2 colours used in ¢, since every y € V(H?®)\ N(z) is adjacent to a vertex in
each colour class of ¢;. As x(H® — N(z)) =r — (r — k —2) = k + 2 this means that we
require 7 + k colours in total to extend ¢, to a proper colouring of H®. Thus CE(H®) = k.

Let

X(H) if hef(H) # 1 or CE(H) = oo

max {Xcr(H), X(H) — m} otherwise.

Recall that CE(K, ) = oo and CE(F°) = 1, where F'° was defined above. So xore(K; ) =
X(K, ) = 3. Any 3-colouring of F** has one colour class of size 3 and two colour classes of size
2. So hef(F°) =1 and thus xore(F°) = max{x¢(F°),3 —2/3} = max{14/5,7/3} = 14/5.

Note that if hef(H) = 1 and CE(H) = 0 then xore(H) = Xer(H) (an odd cycle of
length at least 5 provides an example of such a graph H). On the other hand, one can
choose the sizes of the vertex classes V; in the preceding example H® so that xore(H®) lies
strictly between x.r(H¢) and x(H?®). (For instance, take k large, |Vi| = k + 1, |[Va| = 2k
and |V;| = 2k + 1 for all ¢ > 3. Then x..(H®) is close to x(H®) — 1/2, hef(H®) =1 and so
Yore(H?) = X(H®) = 2/(k +2).

Given a graph H, let dore(H,n) be the smallest integer k such that every graph G
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whose order n is divisible by |H| and with d(z) + d(y) > k for all non-adjacent = #
y € V(G) contains a perfect H-packing. Roughly speaking, our next result states that
when considering an Ore-type degree condition, for any graph H, xore(H) is the relevant
parameter which governs the existence of a perfect H-packing. In particular, it implies that

we do not have a ‘dichotomy’ involving only x(H) and x..(H) as in Theorem 3.1.

Theorem 3.2 For every graph H and each n > 0 there exists a constant C = C(H) and

an integer ng = no(H,n) such that if n > ngy then

2<1—X()%(H)>n—0§50re(ﬂ,n) §2<1—XO%(H)+77) n.
So for example, Theorem 3.2 implies that lim,, .o dore(K; ,n)/n = 4/3 and
limy, 00 d0re(F°,m) /m = 9/7.

The upper bound in Theorem 3.2 follows from Lemmas 3.11 and 3.12 in Section 3.3,
which in turn are proved in Sections 3.3 and 3.5. The lower bound is proved in Section 3.2.
For every graph H there are infinitely many values of n for which we can take C' = 2 in
Theorem 3.2. In fact, if hef(H) # 1 or CE(H) = oo then C = 2 suffices for all n divisible
by |H|. In general C' < 2|H|* (see Section 3.2). It would be interesting to know whether

one can replace the error term nn by a constant depending only on H.

3.1.3 Almost perfect packings

The critical chromatic number was first introduced by Komlds [48], who showed that it is

the relevant parameter when considering ‘almost’ perfect H-packings.

Theorem 3.3 (Komlés [48]) For every graph H and each v > 0 there exists an integer
no = no(y, H) such that every graph G of order n > ng and minimum degree at least

(1 =1/xer(H))n contains an H-packing which covers all but at most yn vertices of G.

It is easy to see that the bound on the minimum degree in Theorem 3.3 is best possible.
In the proof of Theorem 3.2 we will use the following result which provides an Ore-type

analogue of Theorem 3.3. Again, the critical chromatic number is the relevant parameter for
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any graph H. In particular, this means that Theorem 3.4 is a generalisation of Theorem 3.3.
The proof of Theorem 3.4 is almost identical to that of Theorem 3.3, details can be found
in [92].

Theorem 3.4 For every graph H and each n > 0 there exists an integer ng = no(H,n)

such that if G is a graph on n > ng vertices and

d(z) +d(y) > 2 (1 - miH)) n

for all non-adjacent x # y € V(G) then G has an H-packing covering all but at most nn

vertices.

Shokoufandeh and Zhao [85] showed that in Theorem 3.3 the bound on the number of
uncovered vertices can be reduced to a constant depending only on H. We conjectured

in [60] that this should also be the case for Theorem 3.4.

3.1.4 Copies of H covering a given vertex

In the proof of Theorem 3.2 it will be useful to determine the Ore-type degree condition
which guarantees a copy of H covering a given vertex of G. Let dg,.(H,n) denote the
smallest integer k such that whenever w is a vertex of a graph G of order n with d(z)+d(y) >

k for all non-adjacent x # y € V(@) then G contains a copy of H covering w. Define

X(H) if CE(H) = oo
X(H) — m otherwise.

Theorem 3.5 For every graph H and every n > 0 there exists an integer ng = no(H,n)

and a constant C' = C(H) such that if n > ng then

1 1
2(1-———— ) n—C<8h(Hn §2(1—7+ >n
) ore (1) )

Theorem 3.5 is proved in Section 3.3. As in the case of perfect H-packings, the Ore-

type degree condition in Theorem 3.5 does not quite match the bound needed for the
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corresponding minimum degree version. Indeed, let §'(H,n) denote the smallest integer k
such that whenever w is a vertex of a graph G of order n with §(G) > k then G contains a
copy of H covering w. Together with the Erd&és-Stone theorem the next result implies that
asymptotically ¢ (H,n) is the same as the minimum degree needed to force any copy of H

in a graph of order n.

Proposition 3.6 For every graph H and every n > 0 there exists an integer ng = no(H,n)

such that if n > ng then

(1—;G%t7>n—1§5%&n)g<1—;@%t7+n>n

Proof. Let r := x(H). The lower bound on ¢'(H,n) follows by considering a complete
(r — 1)-partite graph G whose vertex classes are as equal as possible. We now prove
the upper bound on §(H,n). Let G be a sufficiently large graph of order n such that
(G) > (1 — r_% + 77) n. Let x be any vertex of G. We have to find a copy of H in G which
contains x.

Choose additional constants €, d,n; and « such that
Il<egd<sm<Kakn

and let ¢y := 1/e. Apply Lemma 2.3 with parameters €,d,fy to G to obtain clusters
Vi,...,Vy of size L, an exceptional set Vj, a pure graph G’ and a reduced graph R. Fact 2.4

implies that

5(R) > (1—;i%1+—g)|RL (3.1)

By adding the vertices of one cluster to Vj if necessary (and deleting this cluster from R)
we may assume that = € Vj. (So now |Vp| < 2en.)

Let t € N be sufficiently large and let F' denote the complete r-partite graph with one

|F|
FI-1

vertex class of size one and r—1 vertex classes of size t. Now x..(F) = (r—1) | =r—1+1.

Thus, we may assume that ¢t was chosen so that

1— +1>1-

r—1 2 Xer(F)
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In fact, we will need to assume that ¢t was chosen so that

LSS 2 >t (3.2)
—1t it eEye=n SR :

1—

So by the choice of ¢t and by (3.1) we have that

5(R) > (1 - XL(F)) IR

Since € was chosen to be sufficiently small, |R| > ¢ is sufficiently large so that we can apply
Komlés’ theorem (Theorem 3.3) to obtain an F-packing F in R covering all but at most
| R| vertices in R. We remove all clusters in R that are not covered by this F-packing,
and put all the vertices lying in such clusters into Vj. (So now |Vp| < 2min.)

We say that z is adjacent to a cluster V; € V(R) if x is adjacent to at least aL vertices
of V; in G. We let dr(z) denote the number of clusters V; € V(R) that z is adjacent to.

Now

(1 T i Tt 77) n < dg(w) < dr(r)L + (|| — dr(z))al + [Vo| < dr(z)L + 2an

and so

dn(z) > (1 - % + g) IR (3.3)

We say a copy F' € F of F is useful for z if x is adjacent to r — 1 clusters belonging
to different vertex classes of F’. Notice that if we have a useful copy F”’ of F' in F then we
can apply the Embedding lemma (Lemma 2.5) to obtain our desired copy of H in G which
contains x. Indeed, in this case x could play the role of any vertex y € V(H). The vertices
in Ny (y) would be embedded into the aforementioned r — 1 clusters of F” that x is adjacent
to, and H — Ny (y) would be embedded into the clusters of F’. Thus, it suffices to find a

useful copy of F'in F.
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If a copy F' € F of F is not useful then x is adjacent to at most |F| —t — 1 clusters in

F'. However,

t—1

FIF| —t—1) = (1 - W) R| < dn(a)

by (3.2) and (3.3). Thus we must have a useful copy of F' in F, as required. O

We will not use Proposition 3.6 in the proof of Theorem 3.2, however it does help to explain
the difference between Theorems 3.1 and 3.2. Indeed, Theorem 3.3 and Proposition 3.6
show that the minimum degree which ensures an almost perfect H-packing is larger than
the minimum degree which guarantees a copy of H covering any given vertex. In contrast,
Theorems 3.4 and 3.5 imply that for some H this is not true in the Ore-type case. So it
is natural that dore(H,n) involves this property explicitly (since the property that every
vertex is contained in a copy of H is clearly necessary to ensure a perfect H-packing). In
fact, this is the only real difference to the expression for §(H,n) in Theorem 3.1: note that

we have Xore(H) = max{x*(H), X (H)} and thus Theorems 3.1, 3.2 and 3.5 imply that
dore(H,n) = max {26(H,n), 6¢,c(H,n)} 4 o(n).

3.1.5 Forcing a single copy of H

In view of Theorem 3.5, one might also wonder what Ore-type degree condition ensures at
least one copy of H (i.e. we do not require every vertex to lie in a copy of H). It is easy to
see that if G is of order n then the condition is similar to the condition on the minimum

degree.

Proposition 3.7 For every graph H and every n > 0 there exists an integer ng = no(H,n)

such that if n > ng and G is a graph on n vertices which satisfies

1
d(z) +d(y 22<1—7+77)n
() + () S
for all non-adjacent x #y € V(G), then G contains a copy of H.
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Proposition 3.7 immediately follows from the Erd&s-Stone theorem and the following ob-

servation (which we expect to be known, but we were unable to find a reference):

Proposition 3.8 Let G be a graph with d(x) + d(y) > 2k for all non-adjacent x # y €

V(G). Then G has average degree at least k.

To prove Proposition 3.8, let A be the set of vertices in G whose degree is less than k& and
let B be the set of remaining vertices. Let G denote the complement of G and let F denote
the bipartite subgraph of G induced by A and B. Hall’s theorem implies that F has a
matching covering all of A (Hall’s condition can be verified by noting that for all X C A
the number of edges in F' between X and the neighbourhood of X is at least | X|(n—k—1)
and at most |[N(X)|(n —k —1)). Now apply the Ore-type degree condition to all pairs of

vertices of G which are contained in this matching.

3.2 Extremal examples

Let us now prove the lower bound in Theorem 3.2. The next proposition deals with the

case when CE(H) = oc.

Proposition 3.9 Let H be a graph with CE(H) = co. Let n > |H|. Then there ezists a

graph G of order n with

d(x)+d(y)22(1—ﬁ>n—2

for all non-adjacent x # y € V(G) containing a vertex that does not belong to a copy of H.

(In particular, G has no perfect H-packing.)

Proof. Let r := x(H). Consider the complete r-partite graph of order n whose vertex
classes V{,Vy, Vs, ..., V, have sizes as equal as possible, where |[V{| < |[V5| < V5] < -+ <
[V.|]. Note that n — |[V{| = |V5| > n —2n/r.

Let G be obtained from this graph by moving all but one vertex, w say, from V{ to V3,
by making the set V5 O Vj thus obtained from Vj into a clique and by deleting all the edges

between w and the vertices in V5.
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Any vertex y € V3 U --- UV, satisfies d(y) > n — [2] > (1 — 1/x(H))n — 1. Thus
d(y1) + d(y2) > 2(1 — 1/x(H))n — 2 for all non-adjacent y; # y2 € V(G)\({w} U V3).
Moreover, d(w) =n — |V{| = |[V4]| > n — 2n/r and for any z € V, we have d(z) =n — 2. So
d(w) +d(z) >2(1 —1/x(H))n — 2. Hence G satisfies our Ore-type degree condition.

The neighbourhood of w in G induces an (r —2)-partite subgraph of G. Therefore, since
X(H[N(x)]) =r —1 for all z € V(H), w cannot play the role of any vertex in H. So G

does not contain a copy of H covering w. O

The following proposition will be used for the case when H is non-bipartite and CE(H) <

Proposition 3.10 Let H be a graph with r := x(H) > 3 for which m := CE(H) < oo.

Then there are infinitely many graphs G whose order n is divisible by |H| and such that

d(x)+d(y)22<1—%>n—l

T e

for all non-adjacent x # y € V(G) containing a vertex that does not belong to a copy of H.

(In particular, G has no perfect H-packing.)

Proof. Lett € Nbesuch that ((m+2)r—2)(r—2) divides t. Define s := 2|H|/((m~+2)r—2).
Let G’ be the complete (r + m — 1)-partite graph with one vertex class V; of size st — 1,

m vertex classes Vo, ..., V41 of size st and r — 2 vertex classes Viu49,..., Vitm—1 of size

|H |t—(m+1)st
2

r—

. Let G be obtained from G’ by adding a vertex w to G’ such that w is adjacent
to precisely those vertices in V4o U+ U Vipm_1. So |G| = |H]t.

Any y € Vi U -+ - U V41 satisfies

d(y) + d(w) > 2|H|t — (m +2)st — 1 =2 <1 - #) G| - 1.
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Furthermore, given any y; # yo € V; for some m +2 <¢ <r+m — 1, we have

d(y1) + d(ys) = 2|H|t — 2 (!H!t —T(m + 1)st> _9l6] 2 (1 B (Q(Tni—i—l)) .

-2 r—2 m+2)r —2
B 2 (m+2)(r—2) ., m+ 2
= 2¢] r—2 (m—|—2)r—2|G|_2 ! (m+2)r —2 G

Since d(y) + d(y') > d(y) + d(w) for any y # v’ € V; with 1 < ¢ < m + 1 this implies that
G satisfies our Ore-type degree condition.

Suppose that w belongs to some copy H,, of H in G. Since x(G) = m+7r—1, an optimal
colouring of G induces an (m + r — 1)-colouring of H,, and an (r — 2)-colouring of G[N (w)].
But then w must be playing the role of a vertex x € V(H) such that x(H[N(z)]) <r — 2,

contradicting the definition of m = CE(H). O

We will now use Propositions 3.9 and 3.10 to prove the lower bound of Theorem 3.2.

Proof of Theorem 3.2 (lower bound). In the case when hcf(H) # 1 the lower
bound follows from the lower bound in Theorem 3.1. Proposition 3.9 settles the case when
CE(H) = co. So we may assume that hef(H) =1 and CE(H) < oo. In this case, the lower

bound in Theorem 3.1 also implies that

Sove(H,m) > 2(1 — 1/xer (H)) — 2 (3.4)

(for any graph H). Suppose first that H is bipartite. Since CE(H) < oo this means that
H must have an isolated vertex and so CE(H) = 0. Thus xore(H) = Xer(H) and so we are
done by (3.4).

So suppose next that x(H) > 3. In this case the proof of Proposition 3.10 implies the
lower bound whenever n is divisible by ((m + 2)r — 2)(r — 2)|H|. To deduce the lower
bound for any n > ((m + 2)r — 2)(r — 2)|H| which is divisible by |H| we proceed as follows.
Let n’ be the largest integer such that n’ < n and n’ is divisible by ((m + 2)r — 2)(r —
2)|H|. Construct a graph G of order n’ as in the proof of Proposition 3.10. Then add
n—n' < ((m+2)r —2)(r — 2)|H| new vertices to V; so that these vertices have the same

neighbourhoods as the original vertices in V;. Then |G| = n and by the same argument as
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in Proposition 3.10, G does not contain a perfect H-packing. Moreover, it is easy to check
that d(z) +d(y) > 2(1 — 1/(r — 2/(m + 2)))n — 2|H|* for all non-adjacent x # y € V(G).
O

3.3 Some useful results

In Section 3.2 we proved the lower bound on doye(H, n) in Theorem 3.2. The following two

results together imply the upper bound.

Lemma 3.11 Let H be a graph and let n > 0. There exists an integer ng = no(H,n) such

that if G is a graph whose order n > ng is divisible by |H| and

1
d(z) +d(y 22<1——+77)n
() + d(y) i
for all non-adjacent x #y € V(G) then G contains a perfect H-packing.

Lemma 3.12 Letn > 0 and suppose that H is a graph such that hcf(H) =1 and CE(H) <
oo. There exists an integer ny = ng(H,n) such that if G is a graph whose order n > ng is

divisible by |H| and

1 1
d(z) + d(y) > max {2 (1 v CE(%T)H +n> n,2 (1 ~ o + 77> n} (3.5)

for all non-adjacent x #y € V(G) then G contains a perfect H-packing.

Note that Lemma 3.11 implies the upper bound on 6(H,n) by Alon and Yuster (which we

mentioned in Section 3.1). We now deduce Lemma 3.11 from Lemma 3.12.

Proof of Lemma 3.11. Let h := |H| and r := x(H). Given any k > 2, define H* to be the
complete (r+ 1)-partite graph with one vertex class of size 1, one vertex class of size hk — 1
and r—1 vertex classes of size hk. Let H' be obtained from H* by removing an edge between

some vertex y in a vertex class of size hk and the vertex in the singleton vertex class. So

X(H') =r+1, |[H'| = hkr and x(H'[N(y)]) = r — 1. Moreover, CE(H') = 0 since N(y)
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lies in r — 1 vertex classes of H'. It is easy to see that H’ contains a perfect H-packing and

H' H' .
that hef(H') = 1. So xore(H') = Xer(H') = (x(H') — 1) |H’\‘—a|(H/) = ru‘{,‘ll. In particular,
we can choose k sufficiently large to guarantee that 1/x..(H') > 1/x(H) — n/4.
Consider any graph G as in Lemma 3.11. Choose a < kr such that n—ah is divisible by
|H'| = hkr. Apply Proposition 3.7 to obtain a disjoint copies of H in G. Remove these a

copies of H from G to obtain a graph G’ whose order is divisible by |H'| and which satisfies

1 n / 1 n /
, (9) > =47 > - 41
dg(xl)-l—dg(xg)_Q(l X(H)+2>|G|_2(1 Xcr(H/)+4>|G|

for all non-adjacent z7 # x2 € V(G’). Apply Lemma 3.12 to find a perfect H'-packing
in G'. In particular, this induces a perfect H-packing in G’. Thus, together with all those

copies of H in G — G’ we have chosen before, we obtain a perfect H-packing in G. U

Thus to prove Theorem 3.2 it remains to prove Lemma 3.12, which we will do in Sec-
tion 3.5. In order to deal with the ‘exceptional’ vertices in the proof of Lemma 3.12 we use
the following result which implies that every vertex w of a graph G as in Lemma 3.12 is

contained in a copy of H. We prove Lemma 3.13 in Section 3.4.

Lemma 3.13 Let H be a graph such that m := CE(H) < co. Let r := x(H) and n > 0.
There exists an integer ng = ng(n, H) such that whenever G is a graph on n > ngy vertices

with
d(z) + d(y) > 2 (1 B - n) n (3.6)
;)

for all non-adjacent x #y € V(QG) then every vertex of G lies in a copy of H in G.

The above results also imply Theorem 3.5:

Proof of Theorem 3.5. The lower bound in the case when CE(H) = oo follows from
Proposition 3.9. If CE(H) < oo and x(H) > 3 then Proposition 3.10 gives the lower bound
for infinitely many values of n and as in the proof of the lower bound in Theorem 3.2 it

can be used to derive the lower bound for any n. If CE(H) < oo and x(H) = 2 then
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CE(H) = 0 and so the lower bound is trivial. The upper bound follows from Lemmas 3.11
and 3.13. 0

Fact 2.4 states that the minimum degree of a graph G is almost inherited by its reduced
graph. We now prove an analogue of this for an Ore-type degree condition. This will be

useful in the proof of Lemmas 3.12 and 3.13.

Lemma 3.14 Given a constant c, let G be a graph such that dg(x) + da(y) > c|G| for all
non-adjacent © # y € V(G). Suppose we have applied Lemma 2.3 with parameters € and d
to G. Let R be the corresponding reduced graph. Then dr(V;) + dr(V;) > (¢ — 2d — 4¢)|R]
for all non-adjacent V; # V; € V(R).

Proof. Let Vi,...,V; denote the clusters obtained from Lemma 2.3. Let L := |Vj| =+ =
[V], let V denote the exceptional set and let G’ be the pure graph. Set G’ := G' — Vj.
Consider any pair V;V; of clusters which does not form an edge in R. Pick z € V; and y € Vj
such that zy € E(G). So dg(x)+dg(y) > ¢|G| and thus dgv (z) +dgr (y) > (c—2d—4¢)|G)|.
However, by definition of G”, each cluster containing a neighbour of z in G” must be a

neighbour of V; in R and the analogue holds for the clusters containing the neighbours of y.

Thus dr(V;) + dr(V}) > (dgr(z) + dar(y))/L > (¢ — 2d — 4¢)|R|, as required. O

In our proof of Lemma 3.12 we will also use the following result, Lemma 12 from [57].
It gives a sufficient condition on the sizes of the vertex classes of a complete x(H )-partite
graph G which ensures that G has a perfect H-packing. Lemma 3.15 is the point where

the assumption that hef(H) = 1 is crucial — it is false for graphs with hef(H) # 1.

Lemma 3.15 Let H be a graph withhef(H) = 1. Putr := x(H) and~y := (r—1)o(H)/(|H|—
o(H)). Let 0 < B1 < A\ € 7,1 —7,1/|H| be positive constants. Suppose that G is a com-
plete r-partite graph with vertex classes Uy, ..., U, such that |G| > |H| is divisible by |H|,
1= AU < AU < (1= AT, for all i < v and such that ||U;| — |U;]| < B1|G]

whenever 1 < i < j <r. Then G contains a perfect H-packing.
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3.4 Proof of Lemma 3.13

Let H be as in the statement of the lemma and let G be a graph of sufficiently large order n
which satisfies (3.6). Recall that r = x(H) and m = CE(H). Let = be any vertex of G. We
have to find a copy of H in G which contains x. Suppose first that » = 2. Then H must
have an isolated vertex v (since CE(H) < o0). So we can apply Proposition 3.7 to find a
copy of H — v in G — x and thus a copy of H in G (where z plays the role of v).

So suppose that r > 3. Choose additional constants €,d and « such that
Il<egd<gakn

and let ¢y := 1/e. Apply the Regularity lemma with parameters ¢,d, ¢y to G to obtain
clusters Vi,...,V; of size L, an exceptional set Vj, a pure graph G’ and a reduced graph R.
Let

k:=(m+2)r—2.

Lemma 3.14 implies that

1 + 2
dr(V;) + dp(Vy) > 2 (1 ——+ 9) IRl =2 (1 _rro ﬂ) IRl (3.7)
r m—+2 2 2

k

for all V; # V; € V(R) with V;V; € E(R). By adding the vertices of one cluster to Vj
if necessary (and deleting this cluster from R) we may assume that z € V5. (So now
[Vo| < 2en.) We say that x is adjacent to a cluster V; € V(R) if x is adjacent to at least
aL vertices of V; in G. We denote by S the set of clusters V; € V(R) that x is adjacent to,
and define s := |S|/|R|. Also, we write S := V(R)\ S. Note that

da(x) < |S|IL + |S|laL + [Vo| < (s +a+2e)n < (s + 2a)n (3.8)
and so
1) (3.6) 2 2 2
LGP (1—72+2n>—2az1—w+n. (3.9)
n alTxs> K
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In particular s > 0 since r > 3. Our aim now is to find either a copy K| of K, in R
containing r — 1 clusters adjacent to z (i.e. [V(K,)NS|>r —1), or a copy K], of K.,
in R containing r — 2 clusters adjacent to z. In both cases we could apply the Embedding
lemma (Lemma 2.5) to find the desired copy H, of H in G. Indeed, in the case where we
find K/

++m we could use x to play the role of a vertex y € V(H) for which there exists

an (r — 2)-colouring of H[N (y)] that can be extended to an (r + m)-colouring of H. The
neighbourhood Ny (y) of y would be embedded into the clusters belonging to V(K. ,,,) NS
and H — Ng(y) would be embedded into the clusters belonging to V(K] ,,,) (so here we
use the fact that CE(H) = m). In the case where we find K/, x can play the role of any
vertex of H. Given some optimal colouring of H, the vertices of H which have a different
colour than z are embedded into the clusters in V(K) NS (so we only use that x(H) =r
in this case).

Let C be the set of clusters U € S with dr(U) < (1 — (m +2)/k + n/2)|R|. By (3.7),
C induces a clique. So we may assume that |C| < r, since otherwise we have our copy
K] of K,. Suppose now that for some 1 < ¢ < r — 1 we have already found ¢ clusters
Up,...,U; € S\ C such that Uy,...,U; form a copy K| of K; in R. Then

i .
() Nr@)] = = DR+ S e = (1= D g2) 1R a0
1<j<i =1

Casel. 1 -s<(2m+2)/k
In this case, we will find a copy of K, which contains at least » — 1 vertices in S. Suppose
that ¢ <r — 2 and we have found Uy, ...,U; as above. Then 1 —i(m +2)/k > (2m +2)/k
and so (3.10) implies that the common neighbourhood Ng(K?) of K/ satisfies |Nr(K])| >
(1 —s+mn/2)|R|. So we can choose Ujy1 € S\ C to extend K/ into a copy of K;y; in
R[S\ C] (we can avoid C' when choosing U;;1 since |C| < r < n|R|). If i = r — 1, then
1- w = > 0. So |[Nr(Kj)| > n|R|/2 and we can extend K] = K] _, into the desired

copy of K, using an arbitrary vertex of R.
Case 2. 1 —s> (2m+2)/k

In this case, we will either find a copy of K, which contains at least r — 1 vertices in S or
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find a copy of K,i,, which contains at least r — 2 vertices in S. Suppose that ¢ < r — 3
and we have found Uy, ...,U; as described before Case 1 which form a copy K| of K; in

R[S\ C]. Note that

_im+2) k= =3)m+2) _3m+2-2_
k- K K ="k

(3.9)
2(m + 2) ST

Thus (3.10) implies that we can choose a cluster U;1 € S\ C which forms a K together
with K. This shows that we can find a copy K| _, of K,_o which lies in R[S\ C]. Note
that (3.10) also implies that the common neighbourhood Ng(K]_,) of K| _, satisfies

INR(E] )| > (1 - w + g) IR| = (W + g) IR|. (3.11)

Now we aim to extend K]_, into a copy K| _,, of K;4,,. We will aim to find the additional
vertices in S. Suppose for some 0 < i < m + 1 we have found ¢ clusters Wq,...,W; € S
which together with K] _, form a copy K| _,.; of K. _o,; in R. We will need a lower bound
on dr(W;) for all j =1,...,4. To derive this, note that the definition of S implies that W
contains a vertex y which is not adjacent to z in G. So (3.6) and (3.8) and the inequality

in Case 2 imply that

d(;(y)z(2(1—mT+2—|—77>—3—2a>nZ(1—%4—77)7&

and so dg(y) > (1 —2/k +n/2)n. But each cluster containing a neighbour of y in G’ must

be a neighbour of W in R. Hence

dp(W;) > M > <1 - %) IR|. (3.12)

So the common neighbourhood Ng(K| _, ;) of K|_, ; satisfies

. ‘ (311),312) /9(m+1) .2 R
N} ) 2 INalRE il RS anvy) 2 (2 i ) > 2
j=1

k k2
(3.13)
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So we can choose a vertex W11 € V(R) \ C that is a common neighbour of the clusters

in K/

+_o.i- Suppose that Wi, 1 € S. Then together with K]_, this forms a copy K]_; of

K,_1 in R[S\ C]. Now (3.10) implies that |[Nr(K|_;)| > (m/k +n/2)|R| and so we can
extend K/_; to a copy of K, with at least » — 1 vertices in S. So we may assume that
W1 € S. Continuing in this way, we obtain a copy of K, having r — 2 clusters in S, as

required.

3.5 Proof of Lemma 3.12

3.5.1 Preliminaries and an outline of the proof

Let H, G and n > 0 be as in Lemma 3.12 and let r := x(H). Choose ¢ € N such that
t|H|(r — 1) > 4r/n. Let 21 :=t(r — 1)o(H) and z := t(|H| — o(H)). Put v := z;/2. Note
that 0 < v < 1 since hef(H) = 1. Define B* to be the complete r-partite graph with one
vertex class of size z; and r — 1 vertex classes of size z. Then B* has a perfect H-packing
and n|B*|/4 > r. Moreover,

H o, =Dt

|H| — o(H) m—oy T B

Xer(BY) = Xer(H) = (r — 1)

Choose s € N and a new constant A such that 0 < A < 7,7,1—- as well as s1 := y(14+\)s €
N and s; < s. Let B’ denote the complete r-partite graph with one vertex class of size s;
and r — 1 vertex classes of size s. Thus,

|B'|

—— =r -1 1+ A). Nl
1B’ — s1 r +y(1+A) (3.15)

Xcr(B,) =(r—1)

Note that the proportion (1 + ) of the size of the smallest vertex class of B’ compared to
the size of one of the larger classes is slightly larger than the corresponding proportion ~y
associated with B*. We can therefore choose s and )\ in such a way that B’ has a perfect
B*-packing, and thus a perfect H-packing. (Indeed, the perfect B*-packing would consist
of ‘most’ but not all of the copies of B* having their smallest vertex class lying in the

smallest vertex class of B'.)

33



We now give an outline for the proof of Lemma 3.12. We first apply the Regularity
lemma to G to obtain a reduced graph R. Since R almost inherits the Ore-type condition
on G we may apply Theorem 3.4 to find an almost perfect B’-packing of R. We then remove
all clusters from R that are not covered by this B’-packing and add the vertices in these
clusters to the exceptional set Vj.

For each exceptional vertex x € Vg, we apply Lemma 3.13 to find a copy of H in G
containing x, and remove the vertices in this copy from G. Thus some vertices in clusters
in R will be removed from G. The copies of H will be chosen to be disjoint for different
exceptional vertices.

Our aim is to apply the Blow-up lemma to each copy B, of B’ in the B’-packing of R in
order to find an H-packing in G which covers all the vertices belonging to (the modified)
clusters in B]. Then all these H-packings together with all those copies of H chosen for the
exceptional vertices would form a perfect H-packing in G. However, to do this, we need
that the complete r-partite graph F;" whose jth vertex class is the union of all the clusters
in the jth vertex class of B/ has a perfect H-packing. Lemma 3.15 gives a condition which
guarantees this.

To apply Lemma 3.15 we need that |F*| is divisible by |H|. We will remove a bounded
number of further copies of H from G to ensure this (see Section 3.5.4). Furthermore, we
require that F;" has r — 1 vertex classes of roughly the same size, u say, and that its other
vertex class is a little larger than yu. But this condition will be satisfied automatically by
the choice of the sizes of the vertex classes in B’. In fact, this is the reason why we chose
a B’-packing in R rather than a B*-packing. The above strategy is based on that in [56].

However, there are additional difficulties.

3.5.2 Applying the Regularity lemma and modifying the reduced graph

We define further constants satisfying

l<e<d<sm<LpLag<ALn,y,1—7.
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We also choose 7; so that

< .
m |B’|

Throughout the proof we assume that the order n of our graph G is sufficiently large for
our calculations to hold. Apply the Regularity lemma with parameters ¢, d and ¢y := 1/¢

to obtain clusters Vi, ..., V; of size L, an exceptional set Vj, a pure graph G’ and a reduced

graph R. Let m := CE(H). By Lemma 3.14 we have that

1 n 1 n
dr(Vj,) + dr(Vj,) > maX{Q <1 S + 5) |R|,2 <1 — () + 5) |R|}

T m+2

for all Vj, # Vj}, € V(R) with V},V}, € E(R). Together with (3.14) and (3.15) this implies

that

dn(Vy) + dn(V,) > 2 (1 - ﬁ) R

for all V;, # Vj, € V(R) with V},V}, € E(R). So we can apply Theorem 3.4 to R to obtain
a B’-packing covering all but at most n;|R| vertices. We denote the copies of B’ in this
packing by Bi,...,B;. We delete all the clusters not contained in some B] from R and
add all vertices lying in these clusters to Vp. So |Vo| < en+min < 2nin. We now refer to R

as this modified reduced graph. We still have that

1 n ( 1 n)
e MV igL2 (1 —— 1+ ") RS (3.6
R Tes) 4)’ | o )y B

for all V;, # V;, € V(R) with V;,Vj, ¢ E(R). Recall that by definition of B’, each B]

dr(V},) + dr(Vj,) > max {2 <1 —

contains a perfect B*-packing. Fix such a B*-packing for each i = 1,...,¢. The union of
all these B*-packings gives us a perfect B*-packing B* in R.

Given any BY, it is easy to check that we can replace each cluster V; € V(B]) with
a subcluster of size L' := (1 — ¢|B’|)L such that for each edge V;,Vj, of B} the chosen
subclusters of V}, and Vj, form a (2¢,d/2)-super-regular pair in G’. (Indeed, this is just a
generalisation of Fact 2.1.) We do this for each ¢ = 1,...,¢ and add all the vertices not

belonging to our chosen subclusters to V. We now refer to these subclusters as the clusters
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of R. Then for every edge V;, Vj, of R the pair (V},, V},)q is still 2e-regular and has density
more than d/2. Moreover,

[Vo| < 2mn + ¢|B'|n < 3mn. (3.17)

We now partition each cluster V; into a red part ered and a blue part ijl“e where | |ered| -
\ijl“e\ | < el and ||Ng(z) N V}’"ed\ — |Ng(z) N ijl“e] | < el for all z € V(G). (Consider
a random partition to see that there are erd and ij“‘e with these properties.) Together
all these partitions of the clusters yield a partition of V(G) — Vj into a set V"¢ of red
vertices and a set V"¢ of blue vertices. In Section 3.5.3 we will choose certain copies of H
in G to cover the exceptional vertices in Vj, but each of these copies will avoid the red
vertices. All the vertices contained in these copies of H will be removed from the clusters
they belong to. However, for every edge V;, Vj, of B] the modified bipartite subgraph of G’
whose vertex classes are the remainders of V}, and Vj, will still be (5¢, d/5)-super-regular
since it still contains all vertices in qued U Vj’;ed. Furthermore, all edges in R will still
correspond to He-regular pairs of density more than d/5. After Section 3.5.3 we will only
remove a bounded number of further vertices from the clusters, which will not affect the

super-regularity significantly.

3.5.3 Incorporating the exceptional vertices

In this section we cover all the exceptional vertices with vertex-disjoint copies of H. Let
GYe denote the induced subgraph of G with vertex set V%€ U1;. The definition of Vue,

(3.5) and (3.17) together imply that

1 n b 1 n bl
ue ue > 2 1 _—_ — ue 2 1 - - L ue
depiue () + dpiue (Y) max{ ( . 5 i + 2) |G, ( o) + 5 |Gblue|

for all non-adjacent z # y € V(G""¢). Let vy, ... , U|vp| be an enumeration of the exceptional
vertices. Lemma 3.13 gives us a copy H,, of H in G""¢ covering v;. Delete the vertices
of H,, from G"“ and apply the lemma again to find a copy H,, of H covering vo. We
would like to continue this way. However, for later purposes it is convenient to be able

to assume that from each cluster we only delete a small proportion of vertices during this
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process. So before choosing the copy H,, for v; (say), we call B} bad if it contains a cluster
meeting the copies Hy,, ..., Hy, , that we have chosen before in at least BL' vertices. So at
most |Vo||H|/(BL") < 3mi|Hn/(BL") < nt’'/10 of the B are bad. We delete all the vertices
belonging to clusters in bad B! from G*“¢. Since there are at most nn/10 < n|G*"“¢|/4 such
vertices, we can still apply Lemma 3.13 to find H,,. Thus we can cover all the exceptional
vertices. We remove all the vertices lying in the copies H,,, ..., H Yvp | of H from the clusters

they belong to (and from G).

3.5.4 Making the blow-up of each B € B* divisible by |H|

Given a subgraph S C R we write Viz(.S) for the set of all those vertices of G that belong
to a cluster in S. Our aim now is to find, for each B! in our B’-packing in R, an H-packing
in G covering all the vertices in Vi(B)). Thus, taking the union of these H-packings and
the copies of H containing the vertices in Vj, we will obtain a perfect H-packing in G. If
we can ensure that the complete r-partite graph whose jth vertex class is the union of all
clusters in the jth vertex class of B] has a perfect H-packing, then by the Blow-up lemma
the subgraph of G’ corresponding to B] will have a perfect H-packing. By Lemma 3.15 the
former will turn out to be the case provided that |H| divides |V (B})|. So our next aim is to
remove a bounded number of copies of H from G to ensure that |Vg(B])| is divisible by |H|
for all i =1,...,¢. This in turn will be achieved by ensuring that |H| divides |V (B)| for
all B € B*.

Consider the auxiliary graph F' whose vertices are the elements of B* where By, By € B*
are adjacent in F' if R contains a copy of K, with one vertex in By and r — 1 vertices in Bo
or vice versa.

Suppose first that F' is connected. Consider a spanning tree 1" of F' with root By € B*,
say. If By, By € B* are adjacent in F' then by the Embedding lemma G contains a copy
of H with one vertex in Viz(Bj) and all the other vertices in Viz(Bz), or vice versa. (To
see this, let K] be a copy of K, in R with one vertex V € Vr(B;) and all other vertices
in Vg(Bz). Choose any V' € Vr(B2) which is adjacent to all of V(K])\ {V}. Then our

copy of H will have one vertex, v say, in V. All other vertices of H lying in the same colour
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class as v will be embedded into V'’ and all the remaining vertices of H will be embedded
into V(K/)\{V}.) In fact, we can choose |H|—1 disjoint such copies of H. So by removing
at most |H| — 1 such copies of H we can ensure |Vg(B1)| is divisible by |H|.

We can use this observation to ‘shift the remainders mod |H|” along T" to achieve that |H|
divides |V (B)| for all B € B* as follows. Let jmqe be the largest distance of some B € B*
from By in T'. Then for all B € B* of distance j,q: from By we can remove copies of H as
indicated above to ensure that |H| divides |V (B)|. We can repeat this for all those B € B*
of distance jpar — 1 from By etc. until |Vig(B)| is divisible by |H| for all B € B*. (This
follows as ) g |[Va(B)| is divisible by [H| since |G| is divisible by |H|.)

So we may assume that F' is not connected. Let C denote the set of all components
of F. Given C € C, we denote by Vi(C) C V(R) the set of all those clusters which belong
to some B € B* with B € C. We write Vg(C) C V(G) for the union of all the clusters
in Vr(C). We will show that we can remove a bounded number of copies of H from G to
achieve that |Vg(C)| is divisible by |H| for all C' € C. As in the case when F' is connected,
we can then ‘shift the remainders mod |H|" along a spanning tree of each component to
make |Vg(B)| divisible by |H| for all B € B*.

In the case when r = 2 this is straightforward. Indeed, in this case H contains an isolated
vertex (since CE(H) < 00). So given any C € C we can apply the Embedding lemma to
find |H| — 1 vertex-disjoint copies of H in G such that one vertex (playing the role of the
isolated vertex) lies in Viz(C') and the other vertices lie in Viz(C’) for some C’ € C\ {C}. By
removing a suitable number of such copies we can ensure that |H| divides |Vg(C)|. Since
in the above argument we can choose any C’ € C \ {C'} to contain the remaining vertices
of our copy of H (and since |G| is divisible by |H|) we can apply this argument repeatedly
to make |Vz(C")| divisible by |H| for all C” € C.

So now we consider the case when r > 3. We need the following claim.

Claim 3.16 Let C1,Cy € C and let V € Vi(Cy). Then

1

INR(V) 1 Va(Ch)| < (1 i

) e
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Proof. Suppose not. Then there exists some B € B* such that B € C; and

1 (r—=1)z+=z

- B:B— :B_ .
7“—1—1—7)‘ | =1B] r—1+4+2z/z Bl - =

‘NR(V)QB’ > (1—

Hence V has a neighbour in at least » — 1 vertex classes of B. So R contains a copy of K,
with one vertex, namely V, in a copy By € B* and r — 1 vertices in B. So B and By are

adjacent in F. But they lie in different components of F', a contradiction. U

We now show that we can remove a bounded number of copies of H from G to make |Vg(C)|
divisible by |H| for some C € C. (In particular, if F' consists of exactly two components C

and C' this also ensures that [V(C”)| is divisible by |H]|.)

Claim 3.17 There ezists a component C € C with |[Vg(C)| < |R|/2 for which we can ensure

that |H| divides |Va(C)| by removing at most |H| — 1 copies of H from G.
Proof. To prove the claim we will distinguish two cases.

Case 1. There exists a component C1 € C with |Vr(C1)| < |R|/2 and such that there is a
cluster Vi € Vi(Ch) with dr(Vh) > (1 — 1/xe(H) +n/4)|R).
Recall that K, is a K;41 with one edge removed. We call the two non-adjacent vertices
of K, small. We say that a copy K’ of K| in R is good if either (i) V(K') N Vr(C1)
consists of a small vertex of K’ or (ii) V(K') \ Vgr(Ci) consists of a small vertex of K.
Once we have found a good K’, we can use the Embedding lemma to find at most |H| — 1
vertex-disjoint copies of H in G such that their removal from G ensures that |Vg(Ch)| is
divisible by |H|, as desired. (In case (i) precisely one vertex in each of these copies of H
lies in Viz(C1) while in case (ii) precisely |H| — 1 vertices in each of these copies of H lies
in Vg(C1).) So it suffices to find a good copy of K ;.

Let S denote the set of neighbours of V; outside Vz(C1) in R. Let K be the set of
vertices V € S with dr(V') < (1 —1/xer(H) +n/4)|R|. By (3.16), K induces a clique in R.
If [K| > r, then we have a found a good copy of K, (consisting of V; and r vertices of

K). So we may assume that |K| < r.
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Since r > 3 we have that dr(Vy) > (1/2 +n/4)|R|. So |S\ K| > n|R|/4 —r > 0. Thus
we can choose V5 € S\ K. By (3.14) the number of common neighbours of V; and V, in R

is at least

2 n
1——+ -] |R| 3.18
< r—1+’y+4>‘ | ( )

We first consider the case when at least (1— ﬁ + DIV (R)\ Vr(C1)| common neighbours
of V1 and V4 lie outside Vg(Cy). We claim that we can find Vj,...,V, € S\ K which form
a K, with V7 and V5. Suppose that we have found V3,...,V; where 2 < i < r — 1. Note
that Claim 3.16 and the definition of S imply that for j > 2 the number of neighbours of
V; outside Vr(C1) is at least (1 —1/(r —1+7))|V(R) \ Vr(C1)|. Together with (3.18), this

implies that the common neighbourhood of Vi,...,V; outside Vr(C1) has size at least

i n n
l————+ > - K. 1
(1= s+ 2) W\ V() = 2V VR(C)l > 7> KL (319
This shows that we can find V1 and more generally V3,...,V, as required. A similar

calculation as in (3.19), shows that the common neighbourhood of V3, ...,V outside Vi (C})
is non-empty and so contains some vertex V1 say. Together with Vi,...,V,, V.1 forms

a good copy of K ;.

2
r—147y

Now consider the case when at least (1 — + )|Vr(C1)| common neighbours of V3
and V3 lie inside Vi (C1). Since n|Vg(Ch)|/4 > n|B*|/4 > r we can argue as in the previous
case. Indeed, this time we choose Vs, ...,V inside Vz(C1) to obtain a copy of K, in R with
one vertex, namely V5, outside Vz(C7). We also choose a vertex V.41 inside Vz(Cy) that is

adjacent to V1, V3,...,V,. Again, Vi,...,V;41 form a good copy of K, ;.

Case 2.  Ewvery component C € C with |Vr(C)| < |R|/2 is such that dr(V) < (1 —
1/xer(H) +n/4)|R| for all V € VR(C).

Together with (3.16) this implies that V1V2 € E(R) for all Vi € Vi(C1), Va € Vi(Csy) where
C4,C; € C are such that |[Vr(C1)|, |Vr(C2)| < |R|/2. But this means that there is only one
component C’ € C with [Vg(C")| < |R|/2. So F consists of precisely two components C’

and C" where Vi(C") forms a clique in R and |Vr(C")| > |R|/2.

We first consider the case when r = 3. Note that R contains an edge between Vi (C’)
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and Vr(C"). Indeed, if not then for any V'’ € V(C’) and V" € Vr(C”) by (3.16) we have
that dp(V') + dp(V") > 2(1 = 1/xer(H) + 1n/4)|R| > |R| and so there must be an edge
from V' to Vr(C") or from V" to Vx(C’), a contradiction.

So since |VR(C")| > |B*| > r + m we have a copy K|, of K, n in Vg(C") such that

there is a cluster V" € Vi(C") adjacent to one of the clusters, V' say, of K

r+m:*

Using the
definition of m and the Embedding lemma we can find at most |[H| — 1 copies of H in G
each containing precisely one vertex in V(C”) such that their removal ensures that |H|
divides |Vi(C")| and thus also [Vr(C”)|. (Indeed, by definition of m there exists a vertex y
of H such that x(H[N(y)]) = r — 2 = 1 and such that some 1-colouring of N(y) can be
extended to an (r + m)-colouring of H. So in our copies of H the vertex y will lie in V",
N (y) will lie in V’ and the remaining vertices of H will lie in V(K] _,,).)

Now suppose that r > 4. We claim that there exists V" € Vg(C”) which sends at least r
edges to Vi(C’) in R. Suppose not. Thenno V' € Vi(C”) is joined to all of Vi(C"). Together
with the definition of C’ and (3.16) this implies that dg(V) > (1—1/xe(H)+n/4)|R|. But
then |Vg(C")| < |R|/xer(H) since otherwise V' is joined to n|R|/4 > r vertices in Vr(C").
By assumption there are less than r|Vi(C")| < r|R| edges between Vi(C’) and Vi(C")
in R. Moreover, by (3.16) and since |Vr(C")| < |R|/xcr(H) every cluster in Vg(C”) sends
at least (1 —3/xer(H)+n/4)|R| > n|R|/4 edges to VR(C"). So n|R||Vr(C")|/4 < r|R|. But
|[VR(C")| > |B*| > 4r/n by definition of B* and so n|R||[Vgr(C")|/4 > r|R)|, a contradiction.
So indeed there exists a vertex V" € Vx(C") sending at least r edges to Vg(C”). As before,
we can remove at most |H| — 1 copies of H from G to ensure that |H| divides both |[Vg(C’)|
and |Vg(C")). O

Claim 3.18 We can make |Vg(B)| divisible by |H| for all B € B* by removing at most
|B*||H| copies of H from G.

Proof. Our first aim is to take out some copies of H in G to achieve that |Vg(C)| is
divisible by |H| for each C' € C. We apply Claim 3.17 to remove at most |H| — 1 copies
of H from G to ensure that |Viz(C1)| is divisible by |H| for some component Cy € C with
[VR(C1)| < |R|/2. Next we consider the graphs F} := F — V(C}) and R; := R — Vi(Cy)
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instead of F' and R. Claim 3.16 and (3.16) together imply that

1 1
dr, (Vj,) +dg, (Vj,) > 2 (1 T Tivn + Z) |1 |

for all V}, # Vj, € V(Ry) with V},V}, &€ E(R1). Now suppose that |[C| > 3. Then similarly
as in the proof of Claim 3.17 we can find a component Cy € C with |[Vg(Cs)| < |Ry|/2
and such that by removing at most |H| — 1 copies of H from G we ensure that |H| divides
[V (Co)|. As |G| was divisible by |H| we can continue in this fashion to achieve that |V(C)]
is divisible by |H| for each C € C.

During this process we have to take out at most (|C| — 1)(|H| — 1) copies of H in G.
Now consider each C' € C separately. By proceeding as in the connected case for each C
and taking out at most (|C| — 1)(|H| — 1) further copies of H in each case, we can make
|V (B)| divisible by |H| for all B € B*. Hence, in total we have taken out at most (|C| —
D(H|-1)+(B*|—|C|)(|H|—1) < |B*||H| copies of H. (Note that |B*||H]| is also an upper

bound on the number of copies of H removed from G in the case when r = 2.) (]

3.5.5 Applying the Blow-up lemma

We now consider all the copies By, ..., Bj, of B’ in the B’-packing of R, where the vertices
of R are the modified clusters (i.e. they do not contain the vertices contained in the copies
of H removed in Sections 3.5.3 and 3.5.4). For each i < ¢ let G denote the r-partite
subgraph of G’ whose jth vertex class is the union of all the clusters lying in the jth vertex
class of B! (for j = 1,...,r). In Section 3.5.4 we made |G}| = |V(BY})| divisible by |H|
for each 7. Moreover, in Section 3.5.3 we removed at most L’ vertices from each cluster.
In Section 3.5.4 we removed only a bounded number of further vertices. So altogether we
removed at most 26L’ vertices from each cluster. Since 8 < A < 7,1 — v we may apply
Lemma 3.15 to conclude that the complete r-partite graph whose vertex classes are the
same as the vertex classes of G} has a perfect H-packing.

We observed at the end of Section 3.5.2 that the choice of those copies of H removed

in Section 3.5.3 ensures that all the bipartite subgraphs corresponding to edges of B] are
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still (5e,d/5)-super-regular. In Section 3.5.4 we only removed a bounded number of further
vertices from each cluster. So after Section 3.5.4 the bipartite subgraphs of G/ are still
(6¢,d/6)-super-regular. Hence, for each i = 1,...,¢', we may apply the Blow-up lemma to
find a perfect H-packing in G;. All these H-packings together with the copies of H chosen

previously form a perfect H-packing in GG, as desired.
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CHAPTER 4
MATCHINGS IN 3-UNIFORM
HYPERGRAPHS

4.1 Introduction

A perfect matching in a hypergraph H is a collection of vertex-disjoint edges of H which
cover the vertex set V(H) of H. A theorem of Tutte [93] gives a characterisation of all
those graphs which contain a perfect matching. On the other hand, the decision problem
whether an r-uniform hypergraph contains a perfect matching is NP-complete for r» > 3.
(See, for example, [39] for complexity results in the area.) It is natural therefore to seek
simple sufficient conditions that ensure a perfect matching in an r-uniform hypergraph.

Given an r-uniform hypergraph H and distinct vertices vy, ...,v; € V(H) (where 1 <
¢ <r—1) we define dg(vy,...,vp) to be the number of edges containing each of vy, ..., vy.
The minimum £-degree 6y(H) of H is the minimum of dg(v1,...,vs) over all f-element sets
of vertices in H. Of these parameters the two most natural to consider are the minimum
vertex degree §1(H) and the minimum collective degree or minimum codegree §,_1(H).
R6dl, Ruciniski and Szemerédi [80] determined the minimum codegree that ensures a perfect
matching in an r-uniform hypergraph. This improved bounds given in [54, 79]. An r-partite
version was proved by Aharoni, Georgakopoulos and Spriissel [1].

Much less is known about minimum vertex degree conditions for perfect matchings in

r-uniform hypergraphs H. Han, Person and Schacht [34] showed that the threshold in the
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case when r = 3 is (1 + 0(1))3(“2{ |). This improved an earlier bound given by Daykin
and Haggkvist [21]. In this chapter we determine the threshold exactly, which answers a

question from [34].

Theorem 4.1 There exists an ng € N such that the following holds. Suppose that H is a

3-uniform hypergraph whose order n > ng s divisible by 3. If

an- () (F)

then H has a perfect matching.

While finalising this thesis we learned from [78] that the same result was also announced
recently by Szemerédi. The following example shows that the result is best possible: let H*
be the 3-uniform hypergraph whose vertex set is partitioned into two vertex classes V and
W of sizes 2n/3 + 1 and n/3 — 1 respectively and whose edge set consists precisely of all
those edges with at least one endpoint in W. Then H* does not have a perfect matching

-1 2n/3
and 61 (H) = (%3) - ().
The example generalises in the obvious way to r-uniform hypergraphs. This leads to the

following conjecture, which is implicit in several papers (see e.g. [34, 58]). Partial results

were proved by Han, Person and Schacht [34] as well as Markstrom and Rucinski [65].

Conjecture 4.2 For each integer v > 3 there exists an integer ng = no(r) such that the

following holds. Suppose that H is an r-uniform hypergraph whose order n > nqg is divisible

5 (H) > <?::D N <(7“ ;i);&/r>’

then H has a perfect matching.

by r. If

It is also natural to ask about the minimum (vertex) degree which guarantees a matching
of given size d. Bollobds, Daykin and Erdés [11] solved this problem for the case when d is
small compared to the order of H. We state the 3-uniform case of their result here. The
above hypergraph H* with W of size d — 1 shows that the minimum degree bound is best

possible.
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Theorem 4.3 (Bollobas, Daykin and Erdds [11]) Let d € N. If H is a 3-uniform

hypergraph on n > 54(d + 1) vertices and

n—1 n—d
o1(H —
o> ("3)-("2)
then H contains a matching of size at least d.

In this chapter we extend this result to the entire range of d. Note that Theorem 4.4

generalises Theorem 4.1, so it suffices to prove Theorem 4.4.

Theorem 4.4 There exists an ng € N such that the following holds. Suppose that H is a

3-uniform hypergraph on n > ng vertices, that n/3 > d € N and that

n—1 n—d
H — .
Then H contains a matching of size at least d.

It would be interesting to obtain analogous results (i.e. minimum degree conditions
which guarantee a matching of size d) for r-uniform hypergraphs and for r-partite hyper-
graphs (some bounds are given in [21]).

The situation for ¢-degrees where 1 < ¢ < r — 1 is also still open. Pikhurko [74] showed
that if ¢ > r/2 and H is an r-uniform hypergraph whose order n is divisible by r then H
has a perfect matching provided that & (H) > (1/2+0(1))(,",). This result is best possible
up to the o(1)-term. In [34], Han, Person and Schacht provided conditions on §;(H) that
ensure a perfect matching in the case when ¢ < r/2. These bounds were subsequently
lowered by Markstrém and Rucinski [65]. See [78] for further results concerning perfect

matchings in hypergraphs.

4.2 Notation

Given a hypergraph H and subsets V1, Vo, V3 of its vertex set V(H), we say that an edge

vivgusg is of type ViVoVs if v1 € Vi, vy € Vo and vy € V3.
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Let d < n/3 and let V, W be a partition of a set of n vertices such that |W| = d. Define
H,, 4(V,W) to be the hypergraph with vertex set V. UW consisting of all those edges which
have type VVW or VIWW. Thus H,, 4(V, W) has a matching of size d,

01 (Hpa(V, W) = (" N 1> - (n - ;l - 1>

and H, q(V,W) is very close to the extremal hypergraph which shows that the degree
condition in Theorem 4.4 is best possible. V' and W are the vertex classes of Hy q(V,W).

Given ¢ > 0, a 3-uniform hypergraph H on n vertices and a partition V,W of V(H)
with |[W| = d, we say that H is e-close to Hy, q(V, W) if

|E(Hypa(V,W))\ E(H)| < en®.

In this case we also call V and W vertex classes of H. (So H does not have unique vertex
classes.) We say that H is e-close to H,, 4 if there is a partition V, W of V(H) such that
|W|=d and H is e-close to Hy 4(V,W).

Given a vertex v of a 3-uniform hypergraph H, we write Ny (v) for the neighbourhood
of v, i.e. the set of all those (unordered) tuples of vertices which form an edge together
with v. Given two disjoint sets A, B C V(H), we define the link graph L,(A, B) of v with
respect to A, B to be the bipartite graph whose vertex classes are A and B and in which
a € A is joined to b € B if and only if ab € Ng(v). Similarly, given a set A C V(H),
we define the link graph L,(A) of v with respect to A to be the graph whose vertex set
is A and in which a,a’ € A are joined if and only if aa’ € Ng(v). Also, given disjoint
sets A,B,C,D,E C V(H), we write L,(ABCD) for L,(A,B)U L,(B,C)U L,(C,D). We
define L,(ABCDE) similarly. If M is a matching in H and E, F' are two edges in M with
v ¢ E,F, we write L,(EF) for L,(V(E),V(F)). If Ey, ..., E5 are matching edges avoiding
v, we define L,(E...E,) and L,(E; ... Es) similarly. If e = ww is an edge in the link
graph of v, then we write ve for the edge vuw of H. A matching in H of size d is called a
d-matching.

Given a set M and k > 2, we write (]\,f ) for the set of all k-element subsets of M. Given
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sets M and M’, we write MM’ for the set of all pairs mm’ with m € M and m’ € M’.
Given two graphs G and G’, we write G = G’ if they are isomorphic. A bipartite graph is

called balanced if its vertex classes have equal size.

4.3 Preliminaries and outline of proof

Our approach towards Theorem 4.4 follows the so-called stability approach: we prove an
approximate version of the desired result which states that the minimum degree condition
implies that either (i) H contains a d-matching or (ii) H is ‘close’ to the extremal hyper-
graph. The latter implies that H is ‘close’ to the hypergraph H,, 4 defined in the previous
section. This extremal situation (ii) is then dealt with separately. We do this in Section 4.4,
where we prove Lemma 4.7. The proof of Lemma 4.7 makes use of Theorem 4.3.

The non-extremal case is proved in Section 4.5. As mentioned earlier, an approximate
version of Theorem 4.1 was proved in [34]. However, we need to proceed somewhat dif-
ferently as the argument in [34] fails to guarantee the ‘closeness’ of H to the extremal
hypergraph in case (ii). (But we do use the same general approach and a number of ideas
from [34].)

We begin by considering a matching M of maximum size and suppose that |M| < d.
We then carry out a sequence of steps, where in each step we show that we can either
find a larger matching (and thus obtain a contradiction), or show that H is successively
‘closer’ to H,, 4. Amongst others, the following fact from [34] will be used to achieve this

(see Figure 4.1 for the definitions of Byss, Bo2s, B113)-
Fact 4.5 Let B be a balanced bipartite graph on 6 vertices.
e [fe(B) > 7 then B contains a perfect matching.
e [fe(B) =6 then either B contains a perfect matching or B = Byss.
e [fe(B) =5 then either B contains a perfect matching or B = Byas, B113.

We call the vertices of degree 3 in Bi13 the base vertices of By13 and the edge between them

the base edge of Biis.
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Boos Byss By

Figure 4.1: The graphs B with e(B) > 5 and no perfect matching

To see how the above fact can be used, suppose for example that z1, zo and x3 are
unmatched vertices, that E and F' are edges in M and that the link graphs L, (EF') are
identical (call this graph B). The minimum degree condition implies that, for almost all
unmatched vertices x, we have e(L,(EF)) > 5. So let us assume this holds for z1, z2, x3.
If B contains a perfect matching, it is easy to see that we can transform M into a (larger)
matching which also covers the x;. If B = B3, we can use this to prove that we are ‘closer’
to Hy, 4. In particular, note that if H = H,, 4, then in the above example we have B = Bj3.
If B =2 Byes, Byss, we need to consider link graphs involving more than 2 edges from M in
order to gain further information.

To find a matching which is larger than M, we will often need several vertices whose link
graphs with respect to some set of matching edges are identical (as in the above example).
We can usually achieve this with a simple application of the pigeonhole principle. But
for this to work, we need to be able to assume that the number of vertices not covered
by M is fairly large. This may not be true if e.g. we are seeking a perfect matching.
To overcome this problem, we apply the ‘absorbing method’ which was first introduced
in [80]. The method (as used in [34]) guarantees the existence of a small matching M*
which can ‘absorb’ any (very) small set of leftover vertices V' into a matching covering all
of VUV (M*). (The existence of M* is shown using a probabilistic argument.) So if we
are seeking e.g. a perfect matching, it suffices to prove the existence of an almost perfect
one outside M*. In particular, we can always assume that the set of vertices not covered

by M is reasonably large, as otherwise we are done by the following lemma.

Lemma 4.6 (Han, Person and Schacht [34]) Given any v > 0 there exists an integer
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no = no(7y) such that the following holds. Suppose that H is a 3-uniform hypergraph on
n > ng vertices such that §;(H) > (1/2 4 2v)(}). Then there is a matching M* in H of
size |M*| < 43n/3 such that for every set V! C V(H)\V(M*) with v5n > |V'| € 3Z there

is a matching in H covering precisely the vertices in V. (M*)UV'.

4.4 Extremal case

The aim of this section is to show that hypergraphs which satisfy the degree condition in

Theorem 4.4 and are close to H,, 4 contain a d-matching.

Lemma 4.7 There exist € > 0 and ng € N such that the following holds. Suppose that H

is a 3-uniform hypergraph on n > ng vertices and d < n/3 is an integer. If

o 51 (H) > (";") - (";d) and

e H ise-close to Hy, 4,
then H contains a d-matching.

We will first prove the lemma in the case when H is not only close to H,, 4, but when for
every vertex v most of the edges of H,, 4 incident to v also lie in H. More precisely, given
a > 0 and a 3-uniform hypergraph H on the same vertex set V(H) as H, 4, we say that a
vertex v € V(H) is a-bad if [Ny, ,(v)\Ng(v)] > an®. Otherwise we say that v is a-good.
So if v is a-good then all but at most an? of the edges incident to v in H, 4 also lie in H.

We will now show that if d > n/150 then any such H contains a d-matching.

Lemma 4.8 Let 0 < o < 107% and let n,d € N be such that n/150 < d < n/3. Suppose
that H is a 3-uniform hypergraph on the same vertex set as H, 4 and every vertex of H is

a-good. Then H contains a d-matching.

Proof. Let V and W denote the vertex classes of H,, 4 of sizes n — d and d respectively.
Consider the largest matching M in H which consists entirely of edges of type VVW. Let V'
denote the set of vertices in V' uncovered by M. Define W' similarly. For a contradiction

we assume that |M| < d. First note that |M| > n/4. Indeed, to see this consider any
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vertex w € W’. Since w is a-good but Ny (w) N (‘;) = 0, it follows that |V'| < 2\/an.
Thus |[M| = |V\V'|/2 > (n —d—2/an)/2 > n/4.

Consider v1,v9 € V' and w € W’ where v1 # v9. Given a pair ejes of distinct matching
edges from M, we say that ejes is good for vivow if there are all possible edges e in H
which take the following form: e has type VV W and contains one vertex from {v,ve, w},
one vertex from e; and one vertex from es. Note that if ejes is good for vyvow then H has
a 3-matching which consists of edges of type VVW and contains precisely the vertices in
e1, eg and {v1,ve, w}. Soif such a pair ejes exists, we obtain a matching in H that is larger
than M, yielding a contradiction.

Since |M| > n/4 we have at least ("44) > n?/40 pairs of distinct matching edges
e1,ea € M. Since vy, vy and w are a-good there are at most 3an? < n2/40 such pairs ejeq
that are not good for vivew. So one such pair must be good for vivow, a contradiction.

O

We now use Lemma 4.8 to prove Lemma 4.7. Our strategy is to obtain a ‘small’ matching
M in H that covers all ‘bad’ vertices in H. We will construct M in stages so as to ensure
that H —V (M) satisfies the hypothesis of Lemma 4.8. Thus we obtain a (d—|M|)-matching
M’ of H—V (M), and hence a d-matching M U M’ of H.

Proof of Lemma 4.7. Let 0 < 1/ng < ¢ € ¢/ < ¢’ « ¢” < 1. By Theorem 4.3 we may
assume that d > n/100. Suppose that H is as in the statement of the lemma and let V' and
W denote the vertex classes of H of sizes n — d and d respectively. Since H is e-close to
H,, 4, all but at most 3,/en vertices in H are y/e-good. Let V" denote the set of \/z-bad
vertices in V. Define W similarly. So [V%ed| |Wbd| < 3,/en.

Define ¢ := |W"4| V; := VU W and Wy := W\W?, Thusa:=|Vi|]=n—d+c
and b := |W;| = d — c. Moreover,

S1(H[VA]) > 61 (H) — (g) —(a—1)b> (” ) 1> - <” ) d> - (g) —(a—1)b.
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But (";") = (“;") + (a— )b+ (12’) and so

s> (7)== (%) (%)
Since ¢ < 3y/en we can apply Theorem 4.3 to obtain a matching M; of size ¢ in H[Vi].

Let Hy := H — V(M) and Va := V;\V(M;). (Note that if W = ) then H; = H.) So
H; has vertex classes Vo and Wi where |V3| = a — 3c. Since H is e-close to Hy, 4(V, W) and
3¢ < 9y/en < &'n we have that H; is €’-close to Hyp,) (V2, W1). By definition of Wy all
vertices in Wi are ¢’-good in Hj. Furthermore, if a vertex v € V(Hy) is ¢-bad in H; then
v e Vyand v e VdyWwhad, Let VP2 denote the set of such vertices. So [V?%4| < 3./en. If
VQb“d = () then we can apply Lemma 4.8 to obtain a b-matching My in H;. We thus obtain
a matching My U Ms of size b+ c=d in H . So we may assume that VQbad # (.

We say that a vertex v € VP is useful if there are at least ¢'n? pairs of vertices
v'w € VoW1 such that vv'w is an edge in Hy. Clearly we can greedily select a matching Mo
in Hj such that mg := | M| < |V.2%| where M, covers all useful vertices and consists entirely
of edges of type VoVoWy. Let Hy := Hy — V(Ms), Vs := Vo\V (Mz) and Wy := Wi \V (My).

Then |V3| = |Va| — 2mg = a — 3¢ — 2mgy and |[Wa| = b — ma. Note that

(503900693
:(1—5)(%—Z—Z)%Q:(l—g)d(n_g), (1)

Consider any vertex v € V*\V (Ms). Since v is not useful, it must lie in more than

51 (H)—nl|V (H)\ V(Hy)| - &'n? — (";V?') e <n - g) A SRS J

2d
>d(n—d) —edn — 2&'n? > Tn — 3¢'n? > 2¢/n?

edges of Hs[V3]. Since |VP%| < 3y/en we can greedily select a matching M3z in Hs[V3] of

size m3 := |M3| < |V2%| which covers all the vertices in Hy which lie in V4.
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Let Hy := Hy — V(M3) and Vy := V3\V(M3). So Hs has vertex classes Vj; and Wy
where |V4| = |V3| — 3m3 = a — 3¢ — 2my — 3ms. Recall that every vertex in V (Hy) \ Vo is
g’-good in Hj. Since VY% C V(MyU Mj3) and |Hy| — |Hs| = 3(|Ma| + | M3|) < &'n, it follows
that every vertex of Hj is €”’-good. So certainly for every vertex w € W5 there are at least
[V4||W2|/2 pairs vw’ € V4W5 such that vww’ is an edge in Hs. Thus we can greedily find a
matching My of size mg such that each edge in My has type ViWoWo.

Let Hy := Hs — V(My), V5 := Vj\V(My) and W3 := W)\V(My). So Hy has vertex
classes V5 and W3 of sizes |V5| = |V4| —ms = a — 3¢ —2mg —4dms = n—d — 2c — 2mgy — 4mg
and |W3| = |[Wa| — 2mg = b — mg — 2mg = d — ¢ — mg — 2m3. Moreover, every vertex of
Hy is €”-good. Thus we can apply Lemma 4.8 to Hy to obtain a |Ws|-matching M in Hy.
But then M; U My U M3 U My U Ms is a matching of size ¢ + mg + mg + mg + |[Ws| = d in
H, as desired. O

We remark that the only point in the proof of Theorem 4.4 where we need the full
strength of the minimum degree condition is when we apply Theorem 4.3 to find the match-

ing Mj in the proof of Lemma 4.7.

4.5 Proof of Theorem 4.4

4.5.1 Preliminaries

We first define constants satisfying

0<1l/np<k1/C <y <y <xy<xéd<ge<sny<ngd <o <gpgr<l.
(4.2)

Let H be a 3-uniform hypergraph on n > ng vertices such that

an > ("3 1) = ("5 1) 2 a = -ae), (43)

where d is an integer such that 1 < d < n/3. (Note that the second inequality in (4.3)

follows from the same argument as (4.1).) We wish to find a d-matching in H. Note that

93



Theorem 4.3 covers the case when d < n/100. So we may assume that /100 < d < n/3.
Suppose d > n/3 — rn. Since 7 < 1, (4.3) gives us that 01 (H) > (1/2+27")(}). So by
Lemma 4.6 there is a matching M* in H of size |M*| < (v")3n/3 such that for every set
V' C V(H)\V(M*) with (y")%n > |V’| € 3Z there is a matching in H covering precisely
the vertices in V(M*)UV'. If n/100 < d < n/3 — mn we set M* := ().
In both cases we define H' := H—V(M*). (So H = H if n/100 < d < n/3—7n.) Thus

51(H') > 6,(H) —~/'n’. (4.4)

Let M be the largest matching in H’. Clearly we may assume that |[M| < d. Theorem 4.3

implies that
n/200 < |M| < d. (4.5)

Let Vi := V(M) and V := V(H')\Vp. So [Vo| < n— |Vl If n/100 < d < n/3 — 7n then
[Vo| > n — 3d > 3tn. Suppose d > n/3 — tn. If |Vo| < (7")%n, then by definition of M*,
there is a matching M’ in H containing all but at most two vertices from V(M*)UV;. But
then M U M’ is a matching in H of size [n/3] > d, as desired. So in both cases we may

assume that
(v")°n < Vol < n— Vil (4.6)

4.5.2 Finding structure in the link graphs

In this section we show that ‘most’ of our link graphs L,(EF') with v € V and EF € (]\2/[)

are copies of Byis (recall that B3 was defined after Fact 4.5).
Claim 4.9 There does not exist vivav3 € (‘go) and EFF € (1‘2/[) such that
o L, (EF)= Ly, (EF)= Ly (EF) and

e L, (EF) contains a perfect matching.
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Proof. The proof is identical to the proof of Fact 17 in [34]. We include it here for
completeness. Let E = {x1,z9, 23} and F = {y1,y2,y3} and suppose z1y1, z2y2 and x3ys
is a perfect matching in L,, (EF'F'). Since these edges lie in L,,(EF) for each 1 < ¢ < 3 the
edges v171y1, voToys and vsxzys lie in H'. Replacing F and F in M with these edges we

obtain a larger matching in H’, a contradiction. U

We will now use Claim 4.9 to show that only a constant number of vertices v € Vj have

‘many’ link graphs L,(FF') containing perfect matchings.

Claim 4.10 Let Vjj denote the set of all those vertices v € Vy for which there are at least

en? pairs EF € (]\24) such that L,(EF') contains a perfect matching. Then |Vj| < C.

Proof. Let G be the bipartite graph with vertex classes Vj and (]\24 ) where {v, EF} is
an edge in G precisely when L,(EF) contains a perfect matching. So G contains at least
|Vylen? edges. If |V{| > C then there is a pair EF € (1\24) such that dg(EF) > Ce >3- 2°
(since 1/C < ¢€). Since there are 22 labelled bipartite graphs with vertex classes E and F,
there are 3 vertices vy, v2,v3 € Vjj such that L, (EF) = L,,(EF) = L,,(EF) and L,, (EF)

contains a perfect matching. This contradicts Claim 4.9, as required. U

Claim 4.11 Let V' denote the set of all those vertices v € Vi for which there are at least

en? pairs EF € (1‘2/1) such that L,(EF) = Boes, Boss. Then |V§'| < C.

Proof. Suppose for a contradiction that |Vj'| > C. Given any v € V{, define an auxiliary
oriented graph G, as follows: The vertex set of G, is M and given EF € (1\24 ) there is an
edge directed from E to F precisely when L,(EF) = Byas, Bogs where E is the vertex class
that contains the isolated vertex in L,(EF). Since v € V', we have that e(G,) > en?.
We call a path Ej ... E5 of length 4 in G, suitable if its (directed) edges are Ey Eo, E3FEo, EsFEy

and F5E,. Our first aim is to find at least €'n® suitable paths in G,. Choose a partition
Vi, Vs of V(G,) such that eq, (V1,V2) > e(G,)/5 > en?/5. (To see the existence of such a
partition, consider the expected number of edges from V; to V5 in a random partition of

V(G,).) Let G, denote the undirected bipartite graph with vertex classes V4 and V, whose
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edges are all those edges in G, that are oriented from V; to Va. Since e(G%) > en?/5, G,

contains a subgraph G/ with 6(GY) > d(G))/2 > en/5. Thus we can greedily find at least

paths of length 4 in G/ whose endpoints both lie in V;. By definition of G, each of these
paths corresponds to a suitable path in G,.

Consider a suitable path Fy ... E5 in Gy. So L,(E2E3), L,(E3Ey) = Byas, Boss with the
isolated vertex in both graphs lying in F3. Choose edges e; of L, (E2FE3) and e of L, (E3Ey)
such that e; and eg are disjoint. Since L, (E1E2) = Boes, Boss and E; contains the isolated
vertex in this graph, there is a 2-matching {es,es} in L,(E1E>) that is disjoint from ej.
Similarly since L, (E4Es5) = Byas, Boss and E5 contains the isolated vertex in this graph,
there is a 2-matching {es, eg} in L, (E4FE5) that is disjoint from es. Hence L, (EyEyE3E4Es5)
contains a 6-matching {ej, e, €3, €4, €5, €6}

Let G be the bipartite graph with vertex classes V{’ and the set (M) of all ordered
5-tuples of elements of M where {v, E1EyE3E F5} is an edge in G precisely when Ej ... Ej
is a suitable path in G,. So G contains at least |Vy'|e'n® edges.

Since |V§/| > C there exists EyE2FE3E E5 € (M)5 such that dg(EyE2E3E(E5) >
Ce'" > 6-23. Further, there are at most 236 distinct graphs in the collection of all
those graphs L,(FE1FEoFE3E4E5) for which v € Ng(E1E2E3E4FEs5). Thus there are 6 ver-
tices vy,...,v6 € V' such that vy,...,vs € Ng(E1EyE3E E5) and Ly, (E1EyE3E Es) =
o = Ly (E1EoE3EyEs). Let {z1y1,...,26Ys} be a 6-matching in L, (E1E2E3E4FE5). So
{viz1y1, ..., v6x6ys} is a 6-matching in H'. Replacing the edges Ei,...,E5 in M with

{viz1Y1, ..., v6T6Ys} We obtain a larger matching, a contradiction. O

Claim 4.12 Let V" denote the set of all those vertices v € Vi which fail to satisfy

e(Ly(Vo, Var)) < (1+ V) [Vol | M| (4.7)

Then |Vy"| < C.
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Proof. Suppose for a contradiction that [Vj”| > C' > 2/+'. Given an edge E in M, we say
that E is good for v € V" if at least two vertices in E have degree at least 3 in L,(E, V}).

"

For every v € Vjj”, there are at least 7/|M| edges in M which are good for v. (To see this,

suppose there are fewer edges which are good for v. Then

e(Lo(Vo, Var)) < (1 =) [M|(4+ [Vol) + 7' [M] - 3|Vo|

< M|Vl (1 =) (1 +7) +37) < (1+ V) Vol M,

a contradiction to the fact that v € Vj”.) This in turn implies that there are vy, v € VJ’

and an edge F in M which is good for both v; and vy. Then the definition of ‘good’ implies
that are disjoint edges e; € Ly, (E,Vp) and ez € Ly, (E, Vy) which do not contain v; or vs.
Now we can enlarge M by removing F and adding vie; and vses. This contradiction to the

maximality of M proves the claim. O

Claim 4.13 Ewvery vertex v € Vo\Vy" satisfies

M
et = 6 - ().
Proof. Suppose v € Vp\Vy". Then as e(L,(Vp)) =0

(4.4)
e(Ly(Var)) > 01(H) — e(Ly(Vo, Vir)) — 'Y/nQ

(4.3),(4.7)
> (1=7)dn = d/2) = (14 V7) Vol|M| =7/,

=
—

Now note that the function d(n — d/2) is increasing in d for d < n/3. So

(L) = (1= )101] (= 1) = (14 V7) (0= 3D ot =

M 2
> (nlr) = 555~ ynjary) = (olad] = sipr + nla) — 5/

(45) 5| M ? M
> 5'2' —400ﬁlMl22(5—v>('2'>,

which completes the proof of the claim. O
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Claim 4.14 Let V" denote the set of all those vertices v € Vo\Vy" for which there are at

least nm? pairs EF € (%)) such that L,(EF) contains at most 4 edges. Then |VJ"| < 2C.

Proof. Suppose for a contradiction that |[Vj"| > 2C. Let v € V§. At most 3|M| edges
e = vv1ve in H containing v are such that vq and vy lie in the same edge F € M. Thus

Claim 4.13 implies that

> ettt = - ) sz (1)) <t @8)

EFe(Y)

Let ¢ denote the number of pairs EF € (1\24 ) such that L,(EF) contains at most 4 edges.
Then ¢ > nn? and so (4.8) implies that there are at least n'n? pairs EF € (]\2/[) such that

L,(EF) contains at least 6 edges. Indeed, suppose that this is not the case. Then

Y e(Ly(EF)) <de+9y'n® +5 [(‘f’) - c] = 5(“‘5‘) — ¢+ 9n'n?

gre()
M
- 5(I . |> — n?

since v < 1’ < n. This contradicts (4.8), as desired.

Recall from Fact 4.5 that a balanced bipartite graph B on 6 vertices that contains at
least 6 edges either has a perfect matching or B & Byss. Thus, given any v € V" there are
at least r > n'n?/2 > en? pairs B\ Fy,...,E.F, € (1‘2/1) such that either

e L,(E;F;) contains a perfect matching for all 1 <i <r or,

o LU(EZE) = B033 for all 1 < 1 <r.

So since |V§"”'| > 2C' one of the following holds:
(1) There are more than C' vertices v € V" for which there are at least en? pairs EF €
(1\24 ) such that L,(EF) contains a perfect matching.

(ag) There are more than C' vertices v € V" for which there are at least en? pairs EF €

(M) such that L,(EF) = Byas.
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In either case we get a contradiction: (ay) contradicts Claim 4.10 and («2) contradicts

Claim 4.11. O

Recall from Fact 4.5 that if B is a balanced bipartite graph on 6 vertices with e(B) =5
then either B contains a perfect matching or B = Byog, B113. If e(B) > 6 then either B
contains a perfect matching or B = Bysz. Thus Claims 4.10, 4.11, 4.12 and 4.14 together

imply that all vertices v € Vo \ (Vg U V' U V" U V") satisty
(8) Ly(EF) % B3 for at least (U‘Q/”) —2en? —qn? > (1 - o/)(U‘Q/I') pairs EF € (1‘2/[)

Let Vi := Vo \ (VZ UV U V" U V™). Thus

Vo \ Vo'l < 5C.
Moreover, each v € V' satisfies
M M M
e(Ly(Var)) < 5(1 —a) <| 5 |) - 9o/(| 5 |> +3|M| < 5(1+a) <| 5 |). (4.9)

Here the term 3| M| accounts for the edges which have both endpoints in the same matching
edge of M.
We can now show that M has almost the required size. This will be used in Section 4.5.3

to prove that H is close to H,, 4.
Claim 4.15 |M| > d— an.
Proof. Assume for a contradiction that |M| < d — an. Consider any v € V. Then

(4.3),(4.4)
di(v) > (1=9)d(n—d/2) —~vn?>d(n —d/2) — 2¢'n% (4.10)

99



Also e(Ly(Vp)) = 0 since M is maximal. Thus

o) = (L) + el i) % s +a) (1)) e vl

< 5(1+4d) <”‘24’) + (|M|(n —3|M|) + WTF)
< |M|(n—|M|/2) + Va'n? < (d— an)(n — d/2 + an/2) + Va/n?

< d(n—d/2) —2v/'n?

a contradiction to (4.10), as desired. (In the third line we again used that the function

d(n — d/2) is increasing in d for d < n/3.) O

In the next sequence of claims, we will show that there are vertices vy,...,vi9 € Vy
whose link graphs L,,(Vas) are very similar to each other (see Claim 4.19 for the precise

statement).

Claim 4.16 Suppose vi,...,vi9 € Vi are distinct vertices such that for some EF € (1\2/[)’

Ly, (EF), ... Ly, (EF) & Bys. Then Ly (EF) = -+ = Ly, (EF).

Proof. We suppose for a contradiction that the claim does not hold. Since there are 9
labelled bipartite graphs with vertex classes E and F' which are isomorphic to Biis, two
of the L,,(EF) must be the same. So we may assume that L, (EF) = L,,(EF) but
L, (EF) # Ly (EF). Let E = {z1,22,23} and F = {y1,y2,y3}. Suppose E(L,,(EF)) =
E(L,,(EF)) = {z1y1,21Y2, T1Y3, T2Y1, Z3Yy1}. (So x1y; is the base edge of L,, (EF) and
L,,(EF) as defined after Fact 4.5.) Since L, (EF) # L,,(EF) there is an edge e €

L,,(EF)\L,, (EF). We may assume e = x3y3. Replacing E and F' with v;x1y2, vazay1 and

vsr3ys in M we obtain a larger matching, a contradiction. U
Choose distinct vy,...,v19 € V{J which will be fixed throughout the remainder of the
proof.

Claim 4.17 There is a set £ of at least (1 — «)|M| matching edges E € M such that for

each E € & there are at least (1 — a)|M| edges F € M for which

L, (EF)=---= Ly,,(EF) = Bys.
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Proof. By () and Claim 4.16 there are at least (1 — 100/)(“\24‘) pairs EF € (1\24) such that

Ly, (EF)=---= Ly,(EF) = Byi3. This in turn immediately implies the claim. O

Claim 4.18 For every E € & there is a set Fg of at least (1 — 2a)|M| edges in M such

that
(01) Ly, (EF) =+ = Ly,,(EF) = By13 for each F € Fg and

(02) in each of the L, (EF) with F' € Fg the same vertex x plays the role of the base

verter in E.

Proof. Since E € & there is a set Fp of at least (1 — a)|M| edges in M such that
L, (EF) =--- = Ly, ,(EF) = By3 for each F € Fp. Let Fg := FpNE. Then |Fg| >
(1 — 2a)| M| and for each F' € Fp there are at least (1 — a)|M| edges F' € M for which
Ly (FF') = = Ly (FF') 2 Byy3.

We claim that Fg satisfies the claim. Certainly Fg satisfies (61). Suppose for a con-
tradiction that there are Fp, Fb € Fg such that the vertex x1 € F that plays the role of a
base vertex in L,, (EFy) is different from the vertex xo € F that plays the role of a base
vertex in L, (EFy). Let F' € M be such that L, (FoF') = -+ = L, (FoF') & Bji3, and
F' 4B, F.

Since L, (EFy) = Bjis and x1 # x9, there exists a 2-matching {ej,es} in L, (EF})
that is disjoint from x2. Similarly since L,, (F5F") & Bj13 there exists a 2-matching {es, e4}
in Ly, (F»F’). Since z9 € F is a base vertex in L,, (EF;), there is an edge e5 from o
to the vertex in F, that is uncovered by {es,es}. So {e1,e2,e3,€4,€5} is a 5-matching in
Ly, (F1EFyF"). We have chosen Fi, Fy and F’ so that L, (F1EFyF') = L,,(FiEFF') =
<o = Ly (I EFyF'). Thus M’ := {vieq, vaea,v3€3, v4€4, U5€5} is a 5-matching in H' that
contains only vertices from F U F' U F} U Fy U {v1, v2,v3,v4,v5}. Replacing E, F', F} and

F, in M with the edges in M’ yields a larger matching, a contradiction. U

Given E € &, we call the unique vertex x € V(F) satisfying (d2) a bottom vertez. If

y € E is such that y # x then we say that y is a top verter. So each E € £ contains
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one bottom vertex and two top vertices whereas none of the at most o|M| edges in M \ €

contains a top or bottom vertex.

Claim 4.19 There are at least (1 — 6a)|M|?/2 pairs EF € (1\24) such that
(1) Ly, (EF)=---= Ly,,(EF) = Bii3;

(e2) both E and F' contain a bottom vertex w and z respectively;

(e3) wz is the base edge of L, (EF).

Proof. Consider the directed graph G whose vertex set is M and in which there is a
directed edge from E to F if EF € £ and F' € Fg. Claims 4.17 and 4.18 together imply that
G has at least (1 — 3a)|M|? edges and thus at least (1 — 6«)|M|?/2 pairs EF of vertices in

G must be joined by a double edge. But each such pair EF satisfies the claim. U

4.5.3 Showing that H is ,/p-close to H, 4

We have now collected all the information we need for showing that H is close to H,, 4(V, W),
where W will be constructed from the set of bottom vertices in M. More precisely, let W’

denote the set of all the bottom vertices. So Claims 4.15 and 4.17 together imply that
d—2an < (1—a)|M| < |&] = W' < M| <d. (4.11)
Let V'’ denote the set of all the top vertices in H. Thus
2d — 4an < 2(1 — a)|M| < |V'| =2|W'| < 2d. (4.12)

Choose a partition V, W of V(H) such that |W| =d, W C W, V' C V. Note that since
(4.11) implies that W\ W’| < 2an, all but at most 2an vertices of Vj lie in V. Our aim is
to show that H is \/p-close to Hy, 4(V,W). Note that showing this proves Theorem 4.4 as

we can apply Lemma 4.7 since we chose p < 1 in (4.2).
Claim 4.20 H does not contain an edge of type V'VuVj.
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Proof. Suppose that the claim is false and let v'vvy be an edge of H with v € V'’ and
v,v9 € Vy. Let E € £ be the matching edge containing v’. Take any F' € Fg. Take any
2 vertices from vy, ...,v19 which are not equal to vy or v, call them z and y. Since v’ is a
top vertex of E, it follows that L,(FF) contains a 2-matching e, e avoiding v'. Note that
this is also a 2-matching in L,(EF'). Now we can enlarge M by removing E, F' and adding

v'vvg, xey and yeo. This contradicts the maximality of M and proves the claim. O

Claim 4.21
e H contains at least (1 — p")|W'||[V'||Vo| edges of type W'V'V.
e H contains at least (1 — p’)\Vo\(Wg,‘) edges of type W'W'Vj.

e H contains at most p’]%](";/‘) edges of type V'V'V.

Proof. To see the first part of the claim, consider any v € V' and any pair «’,v" with
w' € W' and v € V/. Both w’ and v/ could lie in the same matching edge from M, but
there are at most 3| M| such pairs. Also, w’ and v’ could lie in a pair E, F' of matching edges
from M for which either L,(EF') % Bji3 or which does not satisfy (¢1)—(e3) in Claim 4.19.
But (3) and Claim 4.19 together imply that there are at most \/an? such pairs E, F. So
suppose next that w’ and ' lie in a pair E, F satisfying L,(EF) = Bj13 and (£1)—(e3).
Then Ly(EF), Ly, (EF),. .., Ly (EF) = B3 and s0 Ly(EF) = Ly (EF) = - -- = Ly, (EF)
by Claim 4.16. Conditions (g2) and (£3) now imply that w'v' € E(L,(W',V")). So

e(Lo(V!,W") Z [V[[W'| = 2V/an® > (1 = p/2)[V'[[W|.

Summing over all vertices v € V{f and using that |Vj \ V| < 5C implies the first part of

the claim. The remaining parts of the claim can be proved similarly. (]

Claim 4.22 H contains at least ]W’\(“go‘) — pn? edges of type W'VoVy.

Proof. Consider any v € Vj. By Claim 4.20 there are no edges in L,(V(H)) with one

endpoint in V' and the other in Vy. By (4.11) there are at most 3a|M|n < 3an? edges in
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L,(V(H)) with one endpoint in V3;\(V' U W’) and the other in Vj. Furthermore, L,(V})

contains no edges. Thus,

e(L,(W', Vp)) 61(H') — e(Lo(Vay)) — 3an?

(1—+")d (n — g) —'n? = 5(1+a) ('J\;') — 3an?

>
(4.3),(4.4),(4.9)
>

(4.5) M M|?
2 ey (n- ) - s+ vt
> M| 3M]) — ValMn > W[Vo] — 'n?.

As earlier, here we use the fact that the function d(n — d/2) is increasing in d for d < n/3.
Summing over all vertices v € V' and using the fact that |Vj \ V| < 5C now proves the

claim. O

Claim 4.23
e H contains at least (1 — p)]W’\(“Q') edges of type W'V'V'.
e H contains at least (1 — p)|V’|(|m2//|) edges of type WW'V'.

Proof. First note that the last part of Claim 4.21 implies that all but at most 2v/p'n
vertices z € V' lie in at most /p/|V’||Vy| edges of type V'V'Vj. Call such vertices x useful.
Consider any useful z. Then z € E’ for some E’ € £ C M. Further, since z is a top vertex
in E’, certainly there exists an edge F’ € M such that L, (E'F’) = L,,(E'F') & Bis,
where z is not a base vertex in L, (E'F’). So L,,(E'F’) contains a 2-matching {e1, ez}
which avoids z.

Consider any pair EF € (M\{gl’F/}) satisfying (e1)—(e3). We claim that L,(EF) C
L, (EF). Indeed, if not then there exist disjoint edges es,es and e; such that ez €
E(L,(EF)) and e4,e5 € E(L,, (EF)). Since Ly, (E'F') = L,,(E'F’) and since EF sat-
isfies (e1) we have that vieq, vaes, wes, vseq and vyes are edges in H'. Replacing E, F, E'| F’
with vieq, veea, Te3, v3es and vies in M yields a larger matching in H’, a contradiction. So

indeed Ly (EF) C Ly, (EF).
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There are at least (1 — 6a)|M|?/2 — 2|M| > (1 — Ta)|M|?/2 pairs EF € (M\{E/’F/})
satisfying (e1)-(e3). We claim that at most p?|M|?/2 of these pairs EF are such that
L.(EF) contains fewer than 5 edges. Indeed, suppose not. Since for such EF, L,(EF) C
L,,(EF) % B3, the number of edges of H which contain = and have no endpoint outside

Vi is at most
4-p*IMP?/24+5-(1 —Ta—p?)|M|*/2+9-Ta|M*/2 4+ 3|M| < (5 + 30a — p*)|M|*/2.

Here the third term accounts for edges between pairs not satisfying (¢1)—(e3) and the final
term for edges with 2 vertices in the same matching edge from M. Let us now bound
the number of edges containing = which have an endpoint outside Vj;. There are at most
|W'|(n — 3|M]|) < |M|(n — 3|M|) such edges having an endpoint in W’ and at most /an?
such edges having an endpoint outside V' U W’ U V;. Since H has no edge of type V'V,
by Claim 4.20, the only other such edges consist of z, one vertex in V'’ and one vertex in V.
But since z is useful the number of such edges is at most +/p'|V’|[Vp|. Thus in total there
are at most |M|(n — 3|M|) + 21/p'n? edges which contain z and have an endpoint outside

Var. So the degree of x in H is at most

(5+ 300 — )| M2/2 + [M|(n - 3[M|) + 2/g/n® < [M|(n— [M]/2) - p*n?
(4.5),(4.3)

< d(n—dJ2) —p’n? < 6(H),

a contradiction. Thus there are at least (1 — Ta — p?)|M|?/2 pairs EF € (M\{E/’F/})

satisfying (e1)—(e3) such that Ly(EF) = L,,(EF) = Byj3. Let P denote the set of such
pairs.

Now consider any pair w',v" with v’ € W’ and ' € V' \ {z}. Both «w',v" could lie

in the same matching edge from M, but there are at most 3|M| such pairs. Also, w', v’

could lie in a pair E, F of matching edges which does not belong to P. But there at

most 5p?|M|? such pairs w’,v’. So suppose next that w’,v’ lies in a pair E, F belonging

to P. Since L, (EF) = L,,(EF) = B3 and EF satisfies (e2) and (e3) it follows that

w'v' € E(Ly(EF)). Thus e(Ly(W', V') > (1 — 6p*)|[W||V'|. Summing over all useful
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vertices € V' proves the first part of the claim. The second part follows similarly (the

only change is that we consider a pair w), w) € W' in the final paragraph). O

Claims 4.21-4.23 together with (4.11) and (4.12) now show that H contains all but at
most \/,Tm3 edges of type WVV and WWV and thus H is ,/p-close to Hy, 4(V,W). Hence

H contains a perfect matching by Lemma 4.7.

Remark. One can also obtain Theorem 4.4 by proving the result only in the case when
d = |n/3]. Indeed, suppose that H is as in the theorem. Let a := |(n — 3d)/2]. Obtain
a new 3-uniform hypergraph H' from H by adding a new vertices to H such that each of
these vertices forms an edge with all pairs of vertices in H’. It is not hard to check that
0 (H') > ('le‘_l) — ('Hl‘_LQ‘H/V‘gJ) and so H' has a matching M’ of size ||H’|/3]. One can
then show that M’ contains at least d edges from H, as desired. (We thank Peter Allen for
suggesting this trick.)

However, the proof of Theorem 4.4 is only slightly simpler in the case when d = [n/3]
(we do not need Claims 4.20-4.22 in this case) and to show that the above trick works, one

requires some extra calculations.
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CHAPTER 5
HAMILTONIAN DEGREE SEQUENCES IN
DIGRAPHS

5.1 Introduction

Since it is unlikely that there is a characterisation of all those graphs which contain a
Hamilton cycle it is natural to ask for sufficient conditions which ensure Hamiltonicity.
One of the most general of these is Chvétal’s theorem [19] that characterises all those
degree sequences which ensure the existence of a Hamilton cycle in a graph: Suppose that
the degrees of the graph are dy < --- <d,. f n>3and d; >i+1or d,_; > n—1i for all
i < n/2 then G is Hamiltonian. This condition on the degree sequence is best possible in the
sense that for any degree sequence violating this condition there is a corresponding graph
with no Hamilton cycle. More precisely, if d; < --- < d,, is a graphical degree sequence (i.e.
there exists a graph with this degree sequence) then there exists a non-Hamiltonian graph
G whose degree sequence dj < --- < d/ is such that d; > d; for all 1 <1i < n.

A special case of Chvatal’s theorem is Dirac’s theorem, which states that every graph
with n > 3 vertices and minimum degree at least n/2 has a Hamilton cycle. An analogue of
Dirac’s theorem for digraphs was proved by Ghouila-Houri [30]. Nash-Williams [72] raised
the question of a digraph analogue of Chvatal’s theorem quite soon after the latter was
proved.

For a digraph G it is natural to consider both its outdegree sequence df, ...,d} and
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Throughout this chapter we take the convention that

its indegree sequence d; ,...,d, .

df < ... <df and df <--- <d;, without mentioning this explicitly. Note that the terms

d;r and d; do not necessarily correspond to the degree of the same vertex of G.

Conjecture 5.1 (Nash-Williams [72]) Suppose that G is a strongly connected digraph

on n > 3 vertices such that for all i < n/2
(i) dj >i+1lord, ,>n—i,
(ii) di >i+1ord! ,>n—i.

Then G contains a Hamilton cycle.

No progress has been made on this conjecture so far (see also [8]). It is even an open
problem whether the conditions imply the existence of a cycle through any pair of given
vertices (see [10]).

As discussed in Section 5.2, one cannot omit the condition that G is strongly connected.

At first sight one might also try to replace the degree condition in Chvétal’s theorem by
e df >i+lord ,>n—i,
e d >i+lord, ,>n—1.

However, Bermond and Thomassen [10] observed that the latter conditions do not guarantee
Hamiltonicity. Indeed, consider the digraph obtained from the complete digraph K on
n — 2 > 4 vertices by adding two new vertices v and w which both send an edge to every
vertex in K and receive an edge from one fixed vertex u € K.

The following example shows that the degree condition in Conjecture 5.1 would be
best possible in the sense that for all n > 3 and all £ < n/2 there is a non-Hamiltonian
strongly connected digraph G on n vertices which satisfies the degree condition except that
d,j, d,, > k+1 are replaced by d:, d,, > k in the kth pair of conditions. To see this, take an
independent set I of size k < n/2 and a complete digraph K of order n — k. Pick a set X

of k vertices of K and add all possible edges (in both directions) between I and X. The
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digraph G thus obtained is strongly connected, not Hamiltonian and

k,....kkn—1—k,....n—1—-kn—-1,....,n—1
N——
k times n—2k times k times

is both the out- and indegree sequence of G. A more detailed discussion of extremal
examples is given in Section 5.2.
In this chapter we prove the following approximate version of Conjecture 5.1 for large

digraphs.

Theorem 5.2 For every n > 0 there exists an integer ng = ng(n) such that the following

holds. Suppose G is a digraph on n > ng vertices such that for all i < n/2

° djziﬂ—nn O’f’d;_i_nnzn—’i,
o d >i+nn 0rdn_i_nn >n—1.

Then G contains a Hamilton cycle.

Instead of proving Theorem 5.2 directly, we will prove the existence of a Hamilton cycle
in a digraph satisfying a certain expansion property (Theorem 5.13). We defer the precise
statement to Section 5.6.

The following weakening of Conjecture 5.1 was posed earlier by Nash-Williams [68, 69].
It would yield a digraph analogue of Pésa’s theorem which states that a graph G onn > 3
vertices has a Hamilton cycle if its degree sequence dy,...,d, satisfies d; > i + 1 for all
i < (n—1)/2 and if additionally df,, /97 > [n/2] when n is odd [75]. Note that this is much

stronger than Dirac’s theorem but is a special case of Chvatal’s theorem.

Conjecture 5.3 (Nash-Williams [68, 69]) Let G be a digraph on n > 3 vertices such
that d",d; > i+ 1 for all i < (n —1)/2 and such that additionally 91> Aoy = [n/2]
when n is odd. Then G contains a Hamilton cycle.

The previous example shows that the degree condition would be best possible in the same
sense as described there. The assumption of strong connectivity is not necessary in Con-

jecture 5.3, as it follows from the degree conditions. The following approximate version of

Conjecture 5.3 is an immediate consequence of Theorem 5.2.
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Corollary 5.4 For everyn > 0 there exists an integer ng = ng(n) such that every digraph G

on n > ng vertices with df, d; > i+nn for alli <n/2 contains a Hamilton cycle.

In Section 5.4 we give a construction which shows that for oriented graphs there is no
analogue of Pésa’s theorem.
It will turn out that the conditions of Theorem 5.2 even guarantee the digraph G to be

pancyclic, i.e. G contains a cycle of length ¢ for all t = 2,... n.

Corollary 5.5 For every n > 0 there exists an integer ng = ng(n) such that the following

holds. Suppose G is a digraph on n > ng vertices such that for all i < n/2

° d;rzi+77n ord;_i_nnZn—i,
o d; >i+nn ord;lifmZn—i.

Then G is pancyclic.

Thomassen [87] proved an Ore-type condition which implies that every digraph with mini-
mum in- and outdegree > n/2 is pancyclic. (The complete bipartite digraph whose vertex
class sizes are as equal as possible shows that the latter bound is best possible.) Alon and
Gutin [2] observed that one can use Ghouila-Houri’s theorem to show that every digraph
G with minimum in- and outdegree > n/2 is even vertex-pancyclic. Here a digraph G is
called wvertex-pancyclic if every vertex of G lies on a cycle of length ¢ for all t = 2,... n.
In Proposition 5.7 we show that one cannot replace pancyclicity by vertex-pancyclicity in
Corollary 5.5. Minimum degree conditions for (vertex-) pancyclicity of oriented graphs are
discussed in [44].

This chapter is organised as follows. We first give a more detailed discussion of extremal
examples for Conjecture 5.1. In Section 5.3 we then deduce Corollary 5.5 from Theorem 5.2
and show that one cannot replace pancyclicity by vertex-pancyclicity. The proof of The-
orem 5.2 uses the Regularity lemma for digraphs (Lemma 2.7) which was introduced in
Section 2.2. The proof of Theorem 5.2 is included in Section 5.6. It relies on a result
(Lemma 5.9) of Keevash, Kiithn and Osthus [41] which was used to prove an analogue of

Dirac’s theorem for oriented graphs. A related result was proved earlier in [43].
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It is a natural question to ask whether the ‘error terms’ in Theorem 5.2 and Corollary 5.4
can be eliminated using an ‘extremal case’ or ‘stability’ analysis. However, this seems quite
difficult as there are many different types of digraphs which come close to violating the
conditions in Conjectures 5.1 and 5.3 (this is different e.g. to the situation in [41]). As a
step in this direction, recently it was shown in [16] that the degrees in the first parts of the

conditions in Theorem 5.2 can be capped at n/2, i.e. the conditions can be replaced by

e d > min{i+nn,n/2} or Ay = 10— 1,
e d; > min{i+nn,n/2} or d:[ﬂ;m >n —i.

The proof of this result is considerably more difficult than that of Theorem 5.2. A (parallel)
algorithmic version of Chvatal’s theorem for undirected graphs was recently considered

in [83] and for directed graphs in [17].

5.2 Extremal examples for Conjecture 5.1 and a weaker con-

jecture

The example given in Section 5.1 does not quite imply that Conjecture 5.1 would be best
possible, as for some k it violates both (i) and (ii) for ¢ = k. Here is a slightly more
complicated example which only violates one of the conditions for ¢ = k (unless n is odd
and k = [n/2]).

Suppose n > 5 and 1 < k < n/2. Let K and K’ be complete digraphs on k — 1 and
n—k — 2 vertices respectively. Let G be the digraph on n vertices obtained from the disjoint
union of K and K’ as follows. Add all possible edges from K’ to K (but no edges from K
to K') and add new vertices u and v to the digraph such that there are all possible edges
from K’ to v and v and all possible edges from v and v to K. Finally, add a vertex w that
sends and receives edges from all other vertices of G (see Figure 5.1). Thus G is strongly

connected, not Hamiltonian and has outdegree sequence

k—1,....k—1Lkkn—-1,....n—1
| S —
k—1 times n—k—1 times
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Figure 5.1: An extremal example for Conjecture 5.1

u
v

)l

|

and indegree sequence

n—k—2,...n—-k—-2n—-k—1n—-k—1n—-1,...,n—1.

n—k—2 times k times

Suppose that either n is even or, if n is odd, we have that & < [n/2]. One can check that G
then satisfies the conditions in Conjecture 5.1 except that d;r =kandd, , =n—Fk—1
(When checking the conditions, it is convenient to note that our assumptions on k and n
imply n — k — 1 > [n/2]. Hence there are at least [n/2] vertices of outdegree n — 1 and
so (ii) holds for all i < n/2.) If n is odd and k = |n/2] then conditions (i) and (ii) both fail
for ¢ = k. We do not know whether a similar construction as above also exists for this case.
It would also be interesting to find an analogous construction as above for Conjecture 5.3.

Here is also an example which shows that the assumption of strong connectivity in
Conjecture 5.1 cannot be omitted. Let n > 4 be even. Let K and K’ be two disjoint copies
of a complete digraph on n/2 vertices. Obtain a digraph G from K and K’ by adding all
possible edges from K to K’ (but none from K’ to K). It is easy to see that G is neither
Hamiltonian, nor strongly connected, but satisfies the condition on the degree sequences
given in Conjecture 5.1.

As it stands, the additional connectivity assumption means that Conjecture 5.1 does
not seem to be a precise digraph analogue of Chvatal’s theorem: in such an analogue,
we would ask for a complete characterisation of all digraph degree sequences which force
Hamiltonicity. However, it turns out that it makes sense to replace the strong connectivity
assumption with an additional degree condition (condition (iii) below). If true, the following

conjecture would provide the desired characterisation.
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Conjecture 5.6 (Kiihn, Osthus and Treglown [61]) Suppose that G is a digraph on

n > 3 vertices such that for all i < n/2
(i) df >i+1ord, .>n—i,
(i) di >i+1ord' . >n—i,

and such that (iii) d::/Q >n/2 or dy o 2 n/2 if n is even. Then G contains a Hamilton

cycle.

Conjecture 5.6 would actually follow from Conjecture 5.1. To see this, it of course suffices
to check that the conditions in Conjecture 5.6 imply strong connectivity. This in turn is
easy to verify, as the degree conditions imply that for any vertex set S with |S| < n/2 we
have [N~ (S)U S| > |S] and |[NT(S) U S| > |S|. (We need (iii) to obtain this assertion
precisely for those S with |S| = n/2.)

It remains to check that Conjecture 5.6 would indeed characterise all digraph degree
sequences which force a Hamilton cycle. Unless n is odd and k = |n/2], the construction
at the beginning of the section already gives non-Hamiltonian graphs which satisfy all the
degree conditions (including (iii)) except (i) for i = k. To cover the case when n is odd
and k = |n/2], let G be the digraph obtained from two disjoint cliques K and K’ of orders
[n/2] and |n/2] by adding all edges from K to K'. If i = k = |n/2| then G satisfies (ii)
(because d , =mn — 1) but not (i). For all other i, both conditions are satisfied. Finally,
the example immediately preceding Conjecture 5.6 gives a graph on an even number n of
vertices which satisfies (i) and (ii) for all ¢ < n/2 but does not satisfy (iii).

Nash-Williams observed that Conjecture 5.1 would imply Chvétal’s theorem. (Indeed,
given an undirected graph G satisfying the degree condition in Chvatal’s theorem, obtain
a digraph by replacing each undirected edge with a pair of directed edges, one in each
direction. This satisfies the degree condition in Conjecture 5.1. It is also strongly connected,
as it is easy to see that G must be connected.) A disadvantage of Conjecture 5.6 is that it
would not imply Chvatal’s theorem in the same way: consider a graph G which is obtained
from K, /3,/2 by removing a perfect matching and adding a spanning cycle in one of the

two vertex classes. The degree sequence of this G satisfies the conditions of Chvatal’s
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theorem. However, the digraph obtained by doubling the edges of G does not satisfy (iii)

in Conjecture 5.6.

5.3 The proof of Corollary 5.5

We begin this section with a proof of Corollary 5.5.

Proof of Corollary 5.5. Our first aim is to prove the existence of a vertex z € V(QG)
such that d*(z)+d~ (x) > n. Such a vertex exists if there is an index j with d;r +d,_;=n.
Indeed, at least n — j + 1 vertices of G have outdegree at least d;r and at least 7 + 1
vertices have indegree at least d, ;. Thus there will be a vertex x with dt(z) > dj and
d-(z) > d,_;.

To prove the existence of such an index j, suppose first that there is an ¢ with 2 < i < n/2
and such that d;tl > 4 but df =4. Then d _, > n —1i and so dj +d,_; > n as required.
The same argument works if there is an ¢ with 2 < ¢ < n/2 and such that d;_; > i but
d; = i. Suppose next that df <1 Thend, ; > n—1and so df = 1. Thus we can
take j := 1. Again, the same argument works if d; < 1. Thus we may assume that
d%/21—1’dfn/21—1 > [n/2]. But in this case we can take j := |n/2].

Now let = be a vertex with d*(z) + d~(z) > n, set G’ := G —x and n’ := |G'|. Let
dtG,, e ,d:,’G, and diG,, e ’d;’,G’ denote the out- and the indegree sequences of G’. Given
some ¢ < n' and s > 0, if d;r > s then at least n 4+ 1 — ¢ vertices in G have outdegree at

least s. Thus at least n —i = n/ + 1 — ¢ vertices in G’ have outdegree at least s — 1 and so

dZG, > s — 1. Thus for all i < n/2 the degree sequences of G’ satisfy

o dfy >itm—lord, ,  >n—i-1,
° d;G, >i+nn—1or ererifnn,G/ >n—1—1
and so

] d'?,—G/ Z ] + nn//2 or dT_L/fifnn//Q,G/ Z n/ - 2‘7

o d oy >i+nn'/20r d},

)

/ .
—i—mn'/2,G’ Zn =i
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Hence we can apply Theorem 5.2 with 7 replaced by 1/2 to obtain a Hamilton cycle C' =
x1...xy in G'. We now apply the same trick as in [2] to obtain a cycle (through z) in G of
the desired length, ¢ say (where 2 < ¢ < n): Since d;(z) + d(z) > n > n’ there exists an
i such that z; € NZ () and z;44—2 € N; (z) (where we take the indices modulo n’). But

then zx; ... x;4,—ox is the required cycle of length t. (]

Note that the proof of Corollary 5.5 shows that if Conjecture 5.1 holds and G is a

strongly 2-connected digraph with
edf>i+2ord, , ,>n—i
ed  >i+2ord! ,  >n—i

for all ¢ < n/2 then G is pancyclic.
The next result implies that we cannot replace pancyclicity with vertex-pancyclicity in

Corollary 5.5.

Proposition 5.7 Given any k > 3 there are n = n(k) > 0 and ng = no(k) such that for
every n > ng there exists a digraph G on n vertices with d;r,d; > i+ nn for alli < n/2,

but such that some vertex of G does not lie on a cycle of length less than k.

Proof. Let n := 1/(k3%) and suppose that n is sufficiently large. Let G be the digraph
obtained from the disjoint union of k — 2 independent sets V3, ..., Vi_o with |V;| = 3i[nn]
and a complete digraph K on n—1—|V3U---UVj_o| vertices as follows. Add a new vertex x
which sends an edge to all vertices in V] and receives an edge from all vertices in K. Add
all possible edges from V; to V;+1 (but no edges from Vj;1 to V;) for each i < k — 3. Finally,
add all possible edges going from vertices in K to other vertices and add all edges from
Vi—2 to K. Then d; > |K| > 2n/3 and d; > i + nn for all i < n/2 with room to spare.
However, if C' is a cycle containing = then the inneighbour of z on C' must lie in K. But

the shortest path from x to K has length k£ — 1 and so |C| > k, as required. U
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5.4 Degree sequences for Hamilton cycles in oriented graphs

In Section 5.1 we mentioned Ghouila-Houri’s theorem which gives a bound on the minimum
semidegree of a digraph G guaranteeing a Hamilton cycle. A natural question raised by
Thomassen [88] is that of determining the minimum semidegree which ensures a Hamilton
cycle in an oriented graph. Héggkvist [31] conjectured that every oriented graph G of
order n > 3 with 6°(G) > (3n — 4)/8 contains a Hamilton cycle. The bound on the
minimum semidegree would be best possible. Keevash, Kithn and Osthus [41] confirmed
this conjecture for sufficiently large oriented graphs.

Pésa’s theorem implies the existence of a Hamilton cycle in a graph G even if G con-
tains a significant number of vertices of degree much less than n/2, i.e. of degree much
less than the minimum degree required to force a Hamilton cycle. In particular, Pésa’s
theorem is much stronger than Dirac’s theorem. In the same sense, Conjecture 5.3 would
be much stronger than Ghouila-Houri’s theorem. The following proposition implies that we
cannot strengthen Haggkvist’s conjecture in this way: there are non-Hamiltonian oriented
graphs which contain just a bounded number of vertices whose semidegree is (only slightly)
smaller than 3n/8. To state this proposition we need to introduce the notion of dominating
sequences: Given sequences z1,...,%, and yi,...,y, of numbers we say that yi,...,y,

dominates x1,...,x, if x; <y; forall 1 <i <n.

Proposition 5.8 For every 0 < a < 3/8, there is an integer ¢ = c(a) and infinitely many

oriented graphs G whose in- and outdegree sequences both dominate

alGl,...,alG|,3|G/S,. .. ,3|G|/8
N—

c times
but such that G does not contain a Hamilton cycle.

Proof. Define ¢ := 4t where ¢t € N is chosen such that 3 — 1/t > 8a. Let n be
sufficiently large and such that 8t divides n and define vertex sets A, B,C, D and F of sizes
n/4,n/8,n/8 —1,n/4+ 1 and n/4 respectively.

Let G be the oriented graph obtained from the disjoint union of A, B,C, D and E by
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defining the following edges: G contains all possible edges from A to B, Bto C, C' to D, A
toC, Bto D and D to A. E sends out all possible edges to A and B and receives all possible
edges from C' and D. B and C both induce tournaments that are as regular as possible

(see Figure 5.2). So certainly df(z),dg(z) > 3n/8 for all z € BUC U E. Furthermore,

Figure 5.2: The oriented graph G in Proposition 5.8

currently, d(a) = n/4 -1, dg(a) = n/2+ 1, d5(d) = n/2 and d;(d) = n/4 — 1 for all
a€ Aandallde D.

Partition A into A" and A” where |A”| = ¢ and thus |[A'| = n/4 —c. Write A’ =:
{w1, 02, Tr8c/2, Y1, Y25 - -+ Unjs—cso} and A" =i {z1,... 201, w1,...,wa}. Let A" in-
duce a tournament that is as regular as possible. In particular, every vertex in A’ sends
out at least n/8 — ¢/2 — 1 edges to other vertices in A’. We define the edges between A’
and A" as follows: Add the edges z;z;,y;wj to G for all 1 <i<n/8—¢/2 and 1 < j < 2.
Note that we can partition both {z1,...,2,/8_¢/o} and {y1,...,Yn/s—c/2} into t sets of size
s:=mn/(2¢c) — 2. For each 0 <4 <t — 1 add all possible edges from {zs;y1,...,T4u41)} tO
{wair1, waire} and from {ysiy1,. .., Ysr1)} t0 {2001, 22042} If a' € A" and " € A" are
such that the edge a’a” has not been included into G so far then add the edge a”a’ to G.

Thus, d(a’) > (n/4—1)+ (n/8 —¢/2 — 1) +¢/2+2=3n/8 for all ’ € A" and
di(@")y > (n/4—1)+ (n/8 —c/2—5)=3n/8—c/2 —n/(2¢) +1 > an

for all a” € A”.

Partitioning D into D’ and D” (where |D”| = ¢) and defining edges inside D in a similar
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fashion to those inside A, we can ensure that d(d') > 3n/8 for all d' € D" and d(d") > an
for all d’ € D”. So indeed G has the desired degree sequences.

FE is an independent set, so if G' contains a Hamilton cycle H then the inneighbour of
each vertex in F on H must lie in C'U D while its outneighbour lies in AU B. So H contains
at least |E| = n/4 disjoint edges going from AU B to C'U D. However, all such edges in G
have at least one endvertex in BUC. So there are at most |B|+ |C| =n/4 —1 < |E| such
disjoint edges in G. Thus G does not contain a Hamilton cycle (in fact, G does not contain

a 1-factor). O

5.5 Expansion and robustness in digraphs

Given 0 < v < 7 < 1, we call a digraph G a (v, 7)-outexpander if [NT(S)| > |S| + v|G]| for
all S C V(G) with 7|G| < |S| < (1 — 7)|G|. The main tool in the proof of Theorem 5.2 is

the following result from [41].

Lemma 5.9 Let M’ ,ng be positive integers and let €,d,n,v,T be positive constants such
that 1/ng < 1/M' < e K d < v <7 <K n <1 Let G be an oriented graph on n > ng
vertices such that 8°(G) > 2nn. Let R be the reduced digraph of G with parameters e, d
and M'. Suppose that there exists a spanning oriented subgraph R* of R with §°(R*) > n|R*|

which is a (v, T)-outezpander. Then G contains a Hamilton cycle.

Our next aim is to show that any digraph G as in Theorem 5.2 is an outexpander. In fact,
we will show that even the ‘robust outneighbourhood’ of any set S C V(G) of reasonable
size is significantly larger than S. More precisely, let 0 < v < 7 < 1. Given any digraph G
and S C V(G), the v-robust outneighbourhood RN:G(S) of S is the set of all those vertices
of G which have at least v|G| inneighbours in S. G is called a robust (v, T)-outezpander if

\RN:G(S)] > |S| + v|G| for all S C V(G) with 7|G| < |S] < (1 — 7)|G].

Lemma 5.10 Let ng be a positive integer and 7,71 be positive constants such that 1/ng <

Tn<1. Let G be a digraph on n > ng vertices with

(i) df >i+mnn ord, >n—i,

n—i—mn —
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(it) d; >i+mnn ord’ >n—i

n—i—nn
for all i <n/2. Then §°(G) > nn and G is a robust (72, 7)-outezpander.

Proof. Clearly, if d > 1+ nn then 67(G) > nn. If df < 1+ nn then (i) implies that

d >n —1. Thus G has at least nn + 1 vertices of indegree n — 1 and so 67(G) > nn.

TiL*l*’I]?’L
It follows similarly that 6~ (G) > nn.
Consider any non-empty set S C V(G) with 7n < |S| < (1 —7)n and |S| # n/2+ |tn].

Let us first deal with the case when d;

S|~ rn) = S| = mn] +nn =[S 4+ nn/2. Then S

contains a set X of |7n] vertices, each having outdegree at least |S| + nn/2. Let Y be the

set of all those vertices of G that have at least 72n inneighbours in X. Then
|1 X[(IS] +nn/2) < Y]IX]+ (n = [Y)7°n < [Y[|X]| + 7°0°

and so \RNTJE’G(S)\ > Y| > |S| + 272n.

So suppose next that d\glﬂ < |S| = [tn] + nn. Since §~(G) > nn we may assume

™|
that |S| < (1 —n+7%)n <n—1—nn+ |tn] (otherwise RN‘E’G(S) = V(G) and we are
done). Thus

o gl trn) g 2 7~ ISI+ [7n] 20— |S| +7%n

by (i) and (ii). (Here we use that |S| # n/2+ [tn].)

So G contains at least |S| — |7n] + nn > |S| + nn/2 vertices = of indegree at least
n—|S|+712n. If ]RN:E}G(S)] < |S|+272n then V(G) \RN:E}G(S) contains such a vertex z.
But then x has at least 72n neighbours in S, i.e. x € RN‘;FQ’G(S), a contradiction.

If |S| = n/2+ [mn| then considering the outneighbourhood of a subset of S of size |S|—1
shows that \RNTJE’G(S)\ > S| —1+272n > |S| + 7%n. O

The next result implies that the property of a digraph G being a robust outexpander is
‘inherited’ by the reduced digraph of G. For this (and for Lemma 5.12) we need that G is

a robust outexpander, rather than just an outexpander.

Lemma 5.11 Let M’ ng be positive integers and let €,d,n,v,T be positive constants such

that 1/ng < ¢ < d < v,7,n < 1 and such that M’ < ngy. Let G be a digraph on n > ng
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vertices with §°(G) > nn and such that G is a robust (v,T)-outexpander. Let R be the

reduced digraph of G with parameters €, d and M'. Then §°(R) > n|R|/2 and R is a robust

(v/2,27)-outexpander.

Proof. Let G’ denote the pure digraph, L := |R|, let V4,..., VL be the clusters of G (i.e. the

vertices of R) and Vj the exceptional set. Let m :=|Vi| =--- = |V|. Then
0°(R) = (8°(G") = [Val)/m > (6°(G) — (d + 2e)n) /m > nL/2.

Consider any S C V(R) with 27L < |S| < (1 — 27)L. Let S’ be the union of all the
clusters belonging to S. Then tn < [S'| < (1 —27)n. Since [N, ()N S'| > |Ng ()N S| —
(d+e)n >wvn/2 for every z € RN:G(S’) this implies that

|IRN'T

V/2,G/(S/)‘ > ]RN:G(S’)] > 18" +vn > |S|m + vmlL.

However, in G’ every vertex * € RN, ., (S")\Vo receives edges from vertices in at least

v/2,G’
IN& () N S’|/m > (vn/2)/m > vL/2 clusters V; € S. Thus by the final property of the
partition in Lemma 2.7 the cluster V; containing z is an outneighbour of each such V; (in R).

Hence V; € RN, +

V)2 (S). This in turn implies that

[RNSy g(S)] = (RN, 0 (S))] = Vo) /m > |S| +vL/2,

as required. O

The strategy of the proof of Theorem 5.2 is as follows. By Lemma 5.10 our given
digraph G is a robust outexpander and by Lemma 5.11 this also holds for the reduced
digraph R of G. The next result gives us a spanning oriented subgraph R* of R which is
still an outexpander. The somewhat technical property concerning the subdigraph H C R
in Lemma 5.12 will be used to guarantee an oriented subgraph G* of G which has linear
minimum semidegree and such that R* is a reduced digraph of G*. (G* will be obtained
from the spanning subgraph of the pure digraph G’ which corresponds to R* by modifying

the neighbourhoods of a small number of vertices.) Finally, we will apply Lemma 5.9
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with R* playing the role of both R and R* and G* playing the role of G to find a Hamilton

cycle in G* and thus in G.

Lemma 5.12 Given positive constants v < 7 < 1, there exists a positive integer ng such
that the following holds. Let R be a digraph on n > ng vertices which is a robust (v,T)-
outezpander. Let H be a spanning subdigraph of R with 6°(H) > nn. Then R has a spanning

oriented subgraph R* which is a robust (v/12,7T)-outexpander and such that §°(R* N H) >
nn/4.

Proof. Consider a random spanning oriented subgraph R* of R obtained by deleting one of
the edges zy, yx (each with probability 1/2) for every pair z,y € V(R) for which zy,yz €
E(R), independently from all other such pairs. Given a vertex = of R, we write Nﬁ(m)
for the set of all those vertices of R which are both out- and inneighbours of x and define
N (x) similarly. Let H* := H N R*. Clearly, dj;.(z),dg.(z) > nn/4 if N7 (z)| < 3nn/4.
So suppose that [N7(2)| > 3nn/4. Let X := N7 (2) N Nj. (2)|. Then EX > 3nn/8 and so

a standard Chernoff estimate (see e.g. [4, Cor. A.14]) implies that
P(df;.(z) < nn/4) < P(X < nn/4) <P(X < 2EX/3) < 26~ EX < g¢=3em/8)

where ¢ is an absolute constant (i.e. it does not depend on v, 7 or n). Similarly it follows
that P(d. () < nn/4) < 2e~3em/8,

Consider any set S C V(R*) = V(R). Let ERN;/&R(S) .= RN"

/3 r(S)\ S and de-

+
fine ERN,, p.

ERN;37R(S) are contained in ERN;F/H,R*

(S) similarly. We say that S is good if all but at most vn/6 vertices in

(S). Our next aim is to show that
P(S is not good) < e ™. (5.1)

To prove (5.1), write ERNEE(S) for the set of all those vertices x € ERN;?3 R

(S)\ ERN(S) will automatically

(S) for which

|N§t(:c) NS| > vn/4. Note that every vertex in ERN;F/&R

licin ERN*

V12, R* (S). We say that a vertex x € ERN;{F(S) fails if x ¢ ERN;F/MR* (S). The

expected size of Np.(x) N Néc(a:) NS is at least vn/8. So as before, a Chernoff estimate
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gives

P(x fails) < P(|Np. () N Ni(2) 0S| < vn/12) < 2e=/E = p,

Let Y be the number of all those vertices x € ERN;%(S) which fail. Then EY < p]ERNéE(S)] <
pn. Note that the failure of distinct vertices is independent (which is the reason we are only
considering vertices in the external neighbourhood of S). So we can apply the following

Chernoff estimate (see e.g. [4, Theorem A.12]): If C' > e? we have
]P)(Y > CEY) < e(C*ClnC)EY < efc(lnC)]EY/2.
Setting C' := vn/(6EY’) > v/(6p) this gives

P(S is not good) = P(Y > vn/6) = P(Y > CEY) < ¢ CIMOEY/2 _ (—vn(inC)/12

<e ™

(The last inequality follows since p < v if n is sufficiently large.) This completes the proof
of (5.1).

Since 4ne3m/8 4 2ne=" < 1 (if n is sufficiently large) this implies that there is an
outcome for R* such that 6°(R* N H) > nn/4 and such that every set S C V(R) is good.
We will now show that the latter property implies that such an R* is a robust (v/12,7)-
outexpander. So consider any set S C V(R) with 7n < |S| < (1 — 7)n. Let EN =
ERN:R(S) and N := RN:R(S) NnS. So ENUN = RN:R(S). Since S is good and
EN C ERN:/&R(S) all but at most vn/6 vertices in EN are contained in ERN;F/MR* (S) C
RN 5 (S).

Now consider any partition of S into S; and Sy such that every vertex x € N satisfies

|Ng (x) NS;| > vn/3 for i = 1,2. (The existence of such a partition follows by considering

a random partition.) Then S1 NN C ERNT

/3 r(S52). But since S is good this implies that

all but at most vn /6 vertices in S; N N are contained in FRN T

v/12,R* (52) € RN;L/H,R* ().

Similarly, since Sj is good, all but at most vn/6 vertices in So N N are contained in
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ERN) 5 p-(S1) € RN}

V12 g+ (5). Altogether this shows that

3vn vn vn
]RN;MR*(S)\ >|ENU(S1NN)U(SenNN)| — o = \RN:R(S)] — 5 > S|+ TR

as required. O

5.6 Proof of Theorem 5.2

As indicated in Section 5.1, instead of proving Theorem 5.2 directly, we will prove the
following stronger result. It immediately implies Theorem 5.2 since by Lemma 5.10 any

digraph G as in Theorem 5.2 is a robust outexpander and satisfies °(G) > nn.

Theorem 5.13 Let ng be a positive integer and v,7,n be positive constants such that
I/ng < v <7 < n < 1. Let G be a digraph on n > ng vertices with 8°(G) > nn

which is a robust (v, T)-outexpander. Then G contains a Hamilton cycle.

Proof. Pick a positive integer M’ and additional constants ¢, d such that 1/ng < 1/M’' <
e € d < v. Apply the Regularity lemma (Lemma 2.7) with parameters ¢, d and M’
to G to obtain clusters Vi,..., Vs, an exceptional set Vy and a pure digraph G’. Then
§°(G") > (n—(d+¢))n by Lemma 2.7. Let R be the reduced digraph of G with parameters
g, d and M’. Lemma 5.11 implies that 6°(R) > nL/2 and that R is a robust (v/2,27)-
outexpander.

Let H be the spanning subdigraph of R in which V;V} is an edge if V;V; € E(R) and
the density dgr(V;,V;) of the oriented subgraph (V;,Vj)e of G’ is at least n/4. We will
now give a lower bound on 67 (H). So consider any cluster V; and let m := |V;|. Writing

ec(Vi, V(G) \ Vo) for the number of all edges from V; to V(G) \ Vp in G, we have

S (Vi Vim? = e (Vi, V(G) \ V) = 6°(G)m — [Volm > (n — 2d)nm.
V;ENF (Vi)

It is easy to see that this implies that there are at least nL/4 outneighbours V; of V;

in R such that dg/(V;,Vj) > n/4. But each such Vj is an outneighbour of V; in H and so
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6T (H) > nL/4. Tt follows similarly that 6~ (H) > nL/4. We now apply Lemma 5.12 to find
a spanning oriented subgraph R* of R which is a (robust) (v/24, 27)-outexpander and such
that 0°(R* N H) > nL/16. Let H* := H N R*.

Our next aim is to modify the pure digraph G’ into a spanning oriented subgraph of G
having minimum semidegree at least n?1/100. Let G* be the spanning subgraph of G’ which
corresponds to R*. So G* is obtained from G’ by deleting all those edges xy that join some
cluster V; to some cluster V; with V;V; € E(R) \ E(R*). Note that G* — Vj is an oriented
graph. However, some vertices of G* — V; may have small degrees. We will show that there
are only a few such vertices and we will add them to Vj in order to achieve that the out-
and indegrees of all the vertices outside Vg are large. So consider any cluster V;. For any
cluster V; € N;7.(V;) at most em vertices in V; have less than (dg(V;, V) — €)m > nm/5
outneighbours in V; (in the digraph G). Call all these vertices of V; useless for V;. Thus
on average any vertex of V; is useless for at most e|N. (V;)| clusters V; € N (V;). This
implies that at most \/em vertices in V; are useless for more than /2| N . (V;)| clusters
V; € Nj.(Vi). Let U C V; be a set of size /em which consists of all these vertices and
some extra vertices from Vj if necessary. Similarly, we can choose a set U, C V; '\ UiJr of
size \/em such that for every vertex x € V; \ U; there are at most /g|N.(V;)| clusters
Vj € Ny.(V;) such that = has less than nm/5 inneighbours in V;. For each i = 1,...,L
remove all the vertices in UZ-+ UU;” and add them to Vj. We still denote the subclusters
obtained in this way by Vi,...,V and the exceptional set by Vj. Thus we now have that
[Vo| < 3y/en. Moreover,

nmnL n2n
1- O(H*) — V| > 212 >
(1= VE(H") — Vol > B2 3v/en > 18

(G — V) > %
We now modify G* by altering the neighbours of the exceptional vertices: For every x € )
we select a set of 7n/2 outneighbours of z in G and a set of n/2 inneighbours such that these
two sets are disjoint and add the edges between x and the selected neighbours to G*. We

still denote the oriented graph thus obtained from G* by G*. Then §°(G*) > 7%*n/100. Since

the partition Vy, Vi,..., Vg of V(G*) is as described in the Regularity lemma (Lemma 2.7)

84



with parameters 3/, d — ¢ and M’ (where G* plays the role of G’ and G) we can say
that R* is a reduced digraph of G* with these parameters. Thus we may apply Lemma 5.9
with R* playing the role of both R and R* and G* playing the role of G to find a Hamilton

cycle in G* and thus in G. O

Theorem 5.13 is used as a tool in [53] to prove an approximate version of Sumner’s
universal tournament conjecture. The result also has an application to a conjecture of
Thomassen on tournaments which will be discussed in Chapter 7.

The notion of robust expansion can also be defined in the graph setting: Let 0 < v <
7 < 1. Given a graph G and S C V(G), the v-robust neighbourhood RN, ¢(S) of S is the
set of all those vertices x of G which have at least v|G| neighbours in S. G is called a robust
(v, 7)-expander if |[RN, ¢(S)| > |S| + v|G| for all S C V(G) with 7|G| < |S| < (1 —71)|G]|.

We obtain the following immediate corollary of Theorem 5.13.

Corollary 5.14 Let ng be a positive integer and v,7,n be positive constants such that
1/ng < v<1<Kn<1. LetG be a graph on n > ngy vertices with 6(G) > nn which is a

robust (v, T)-expander. Then G contains a Hamilton cycle.
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CHAPTER 6
SOME EMBEDDING PROBLEMS FOR
ORIENTED GRAPHS

6.1 Powers of Hamilton cycles

A generalisation of the notion of a Hamilton cycle is that of the rth power of a Hamilton
cycle. Indeed, the rth power of a Hamilton cycle C' is obtained from C' by adding an edge
between every pair of vertices of distance at most r on C. Seymour [84] conjectured the

following strengthening of Dirac’s theorem.

Conjecture 6.1 (Seymour [84]) Let G be a graph on n vertices. If 6(G) > qn then G

contains the rth power of a Hamilton cycle.

Pésa (see [25]) had earlier proposed the conjecture in the case of the square of a Hamilton
cycle (that is, when r = 2). Komlés, Sarkozy and Szemerédi [50] proved Conjecture 6.1 for
sufficiently large graphs.

The notion of the rth power of a Hamilton cycle also makes sense in the digraph setting:
In this case the rth power of a Hamilton cycle C' is the digraph obtained from C' by adding
a directed edge from z to y if there is a path of length at most r from = to y on C.
Bollobas and Héaggkvist [12] proved that given any € > 0 and any r € N, all sufficiently
large tournaments T' on n vertices with 6°(7) > (1/4 + €)n contain the rth power of a

Hamilton cycle.
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One would expect that the minimum semidegree threshold that ensures a digraph con-
tains the rth power of a Hamilton cycle is the ‘same’ as the condition in Conjecture 6.1.
But it is far less clear at first sight what to expect in the oriented case. We propose the

following oriented graph analogue of Pésa’s conjecture.

Conjecture 6.2 Suppose G is an oriented graph on n vertices such that §°(G) > 5n/12.

Then G contains the square of a Hamilton cycle.
The following proposition shows that, if true, Conjecture 6.2 is ‘best possible’.

Proposition 6.3 Let n € N be divisible by 12. Then there is an oriented graph G on n

vertices with §°(G) = 5n/12 — 1 which does not contain the square of a Hamilton cycle.

Proof. Let G denote the oriented graph on n vertices whose vertex set consists of the sets
A,B,C,D and FE where |[A| =n/6+1, |B|=n/6—1, |C| =n/3 and |D| = |E| = n/6. The
edge set of (G is obtained as follows: Add all possible edges from A U B to C, from C to
DUE, from D to AUB and from E to AUD. Let B, C' and D all induce tournaments that
are as regular as possible (so 6°(G[B]) = §°(G[D]) = n/12 — 1 and §°(G[C]) = n/6 — 1).
We add edges between A and B in such a way that every vertex in A sends and receives at
least n/12 — 1 edges to and from B, and every vertex in B sends and receives at least n/12
edges to and from A. Similarly, we add edges between B and F in such a way that every
vertex in B sends and receives n/12 edges to and from F, and every vertex in F sends and
receives at least n/12 — 1 edges to and from B. A and E are both independent sets (see
Figure 6.1). So 0°(G) = 5n/12 — 1.

Assume that G contains the square of a Hamilton cycle F. Since |B| < |E|, showing
that F' must visit B between any two visits of E would yield a contradiction. Thus, consider
any vertex e € E. Its predecessor ¢; on F' lies in BUC, so without loss of generality we may
assume that ¢; € C. The predecessor ¢z of ¢; on F must lie in N~ (e) " N~ (¢;) C BUC.
So without loss of generality we may assume that co € C'. The predecessor c3 of ¢ on F
lies in AU B UC. Again we are done if ¢3 € B, so we assume that ¢c3 € AUC. Since F

visits all the vertices of G we must eventually arrive at a predecessor a € A whose successor

87



con F lies in C. But now the predecessor of a on F' must lie in N~ (¢) N N~ (a) C B, as

required. O

A E

Figure 6.1: The oriented graph G from Proposition 6.3

6.2 Transitive triangle packings

In Chapter 3 we considered perfect H-packings in graphs G. It is also natural to consider the
case when H and G are oriented graphs. As discussed earlier, perfect H-packings in graphs
have been widely studied. However, far less is known in the oriented graph case. Keevash
and Sudakov [42] showed that any oriented graph G on n vertices with 6°(G) > (1/2—o(1))n
contains a packing of cyclic triangles covering all but at most 3 vertices.

It is natural to ask for the minimum semidegree of an oriented graph which ensures
a perfect packing of transitive triangles T5. Note that if 3 divides |G| then a necessary
condition for an oriented graph G to contain a square of a Hamilton cycle is that G contains
a perfect packing of transitive triangles. Let 6(G) denote the minimum degree of an oriented
graph G (that is, the minimum number of edges incident to a vertex in G). The following
proposition from [96] implies that a minimum semidegree as in Conjecture 6.2 ensures a

perfect T3-packing.

Proposition 6.4 (Yuster [96]) Suppose G is an oriented graph whose order n is divisible

by 3. If 6(G) > 5n/6 then G contains a perfect Ts-packing.
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Proposition 6.4 is best possible in the sense that there are oriented graphs G whose order n
is divisible by 3 and where §(G) = (5n—3)/6 but which do not contain a perfect Ts-packing.
(Indeed, consider the oriented graph G on 6m + 3 vertices consisting of 3 vertex sets A, B
and C where |A| = |B] = m+ 1 and |C| = 4m + 1, and such that C' induces a tournament,
A sends out all possible edges to B, B sends out all possible edges to C' and C sends out
all possible edges to A. Then GG does not contain a perfect T3-packing since every copy of
T3 in G has at most one vertex in AU B.) We believe however that, in terms of minimum

semidegree, one can improve on the bound given in Proposition 6.4.

Conjecture 6.5 Suppose G is an oriented graph whose order n is divisible by 3. If 5°(G) >

™n/18 then G contains a perfect Ts-packing.

If true, Conjecture 6.5 would characterise the minimum semidegree which ensures an ori-

ented graph has a perfect T3-packing.

Proposition 6.6 Let n € N be divisible by 18. Then there is an oriented graph G on n

vertices with 8°(G) = Tn/18 — 1 which does not contain a perfect T3-packing.

Proof. Let G denote the oriented graph on n vertices whose vertex set consists of the sets
A, B, C and D where |A| =2n/9+1, |B| = |C| =2n/9 and |D| = n/3 — 1 and whose edge
set is obtained as follows: Add all possible edges from A to B, from B to C and from C to
A. Let D induce a regular tournament. Partition D into two sets D" and D" of sizes n/6
and n/6 — 1 respectively. Add all possible edges from D' to BUC, from A to D', from D"
to A and from BUC to D" (see Figure 6.2). It is easy to see that 6°(G) = Tn/18 — 1. Note
that G does not have a perfect T5-packing since every copy of T3 in G must have at least

one vertex in D. 0

6.3 Packing transitive tournaments

Let T}, denote the transitive tournament on k vertices. In light of Conjecture 6.5 we ask

the following question.
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Figure 6.2: The oriented graph G from Proposition 6.6

Question 1 What minimum semidegree condition ensures that an oriented graph contains

a perfect Ty-packing?

Recall that in the oriented graph G given in Proposition 6.6 the vertex set AUBUC induces
an oriented graph which does not contain a copy of 73. This is the ‘reason’ why G does
not contain a perfect T3-packing. It would be of interest to establish whether the extremal
examples, in terms of perfect Tj-packings, take a similar form. Thus, Question 1 is closely

linked to the following question.

Question 2 What minimum semidegree condition ensures that an oriented graph contains

a copy of Ty ?

Valadkhan [94] has investigated this problem with respect to density conditions. It is easy
to see that an oriented graph G on n vertices with 6°(G) > n/3 contains a copy of T3 (and

the blow-up of a cyclic triangle shows that this bound is best possible).

6.4 Perfect packings and Ramsey numbers

The oriented tiling Ramsey number T—]%(k:) of k is the smallest integer n divisible by &
such that any orientation of the complete graph K, contains a perfect Tp-packing. Erdos
(see [76]) proved the existence of these numbers. The following simple result gives a bound

on the minimum degree which ensures an oriented graph G contains a perfect Tj-packing.

Proposition 6.7 Suppose G is an oriented graph whose order n is divisible by k and such

that 6(G) > (1 — :ﬁ}(k))” Then G contains a perfect Tj-packing.
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Sketch proof. Let m := T—}%(k) Consider the case when m divides n. By disregarding the
orientations of the edges of G we obtain a graph G* on n vertices with 6(G*) > (1 — L)n.
The Hajnal-Szemerédi theorem [33] implies that G* has a perfect K,,-packing. By definition
of m this implies that G has a perfect Tp-packing. If n is not divisible by m, we remove
a number of vertex-disjoint copies of T} from G until m divides |G|. We then proceed as

before. O

Note that T—])%(?)) = 6 so Proposition 6.7 implies Proposition 6.4. In view of Proposi-
tion 6.7 it is natural to seek good upper bounds on T—}%(k) The oriented Ramsey number
]_%)(k') of k is the smallest integer n such that any orientation of K, contains a copy of Tk.
The following proposition gives an upper bound on T—])%(k') in terms of oriented Ramsey

numbers.
— — —
Proposition 6.8 Given any k € N, TR(k) < R(2k — 1) + (2k — 1) R (k).

Proof. We use the same trick as Caro used in [15]. Let n be the largest integer divisible
by k such that n < R (2k — 1)+ (2k — 1) R (k) and £ the largest integer divisible by k which
satisfies ¢ < ]_%(k:) Consider any orientation K of K,,. By definition of n, K contains /
vertex-disjoint copies of Th,_1. We can cover all but ¢ of the remaining vertices of K with
vertex-disjoint copies of Tj. Each of the £ uncovered vertices = are paired off with one of our
copies Tz’k_f1 of Th,_1. Since x either sends out at least k edges to Tz’k_f1 in ? or receives
at least k edges from T3, , in ?, we have that the oriented subgraph of K induced by

V(Ty,._,)U{x} contains a perfect Tj-packing. Thus K contains a perfect Tj-packing. O

The numbers ]_%)(k') are known for k < 6 (see [77, 81]). Sanchez-Flores [82] showed
that 1_%>(7) < 54 which by an induction argument implies that T%)(k) <542 for k > 7
(this is the best known general upper bound on oriented Ramsey numbers). Note also that

]_%)(k') < R(k) where R(k) denotes the Ramsey number of k.
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CHAPTER 7
HAMILTON DECOMPOSITIONS OF
REGULAR TOURNAMENTS

7.1 Introduction

7.1.1 Kelly’s conjecture

A Hamilton decomposition of a graph or digraph G is a set of edge-disjoint Hamilton cycles
which together cover all the edges of G. The topic has a long history but some of the
main questions remain open. In 1892, Walecki showed that the edge set of the complete
graph K,, on n vertices has a Hamilton decomposition if n is odd (see e.g. [6, 64] for the
construction). If n is even, then n is not a factor of (g), so clearly K, does not have such
a decomposition. Walecki’s result implies that a complete digraph G on n vertices has a
Hamilton decomposition if n is odd. More generally, Tillson [91] proved that a complete
digraph G on n vertices has a Hamilton decomposition if and only if n # 4, 6.

A tournament is an orientation of a complete graph. We say that a tournament is
regular if every vertex has equal in- and outdegree. Thus regular tournaments contain an
odd number n of vertices and each vertex has in- and outdegree (n — 1)/2. The following
beautiful conjecture of Kelly (see e.g. [8, 13, 67]), which has attracted much attention, states

that every regular tournament has a Hamilton decomposition:

Conjecture 7.1 (Kelly) FEvery regular tournament on n vertices can be decomposed into

(n —1)/2 edge-disjoint Hamilton cycles.
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In this chapter we prove an approximate version of Kelly’s conjecture.

Theorem 7.2 For every n > 0 there exists an integer ng so that every regular tournament

on n > ng vertices contains at least (1/2 — n)n edge-disjoint Hamilton cycles.

Most of the previous partial results towards Kelly’s conjecture have been obtained by giving
bounds on the minimum semidegree of an oriented graph which guarantees a Hamilton cycle.
This approach was first used by Jackson [37], who showed that every regular tournament
on at least 5 vertices contains a Hamilton cycle and a Hamilton path which are edge-
disjoint. Zhang [98] then showed that every such tournament contains two edge-disjoint
Hamilton cycles. Improved bounds on the value of §°(G) which forces a Hamilton cycle
were then found by Thomassen [89], Haggkvist [31], Higgkvist and Thomason [32] as well
as Kelly, Kiithn and Osthus [43]. Finally, Keevash, Kithn and Osthus [41] showed that every
sufficiently large oriented graph G on n vertices with §°(G) > (3n—4)/8 contains a Hamilton
cycle. This bound on §°(G) is best possible and confirmed a conjecture of Higgkvist [31].
Note that this result implies that every sufficiently large regular tournament on n vertices
contains at least n/8 edge-disjoint Hamilton cycles. This was the best bound so far towards
Kelly’s conjecture. Kelly’s conjecture has also been verified for n < 9 by Alspach (see the
survey [10]).

We do not prove Theorem 7.2 directly, rather we prove the following stronger result.
(We say that an oriented graph G on n vertices is (a4 n)n-regular if §°(G) > (o —n)n and
A%G) < (a+mn.)

Theorem 7.3 For every v > 0 there exist ng = no(y) and n = n(y) > 0 such that the
following holds. Suppose that G is an (« £ n)n-reqular oriented graph on n > ng vertices

where 3/8+v < a < 1/2. Then G contains at least (o« —y)n edge-disjoint Hamilton cycles.

We will prove Theorem 7.3 only for the case when o« = 3/8 + v since the general result
follows immediately from this.

Theorem 7.3 is best possible in the sense that there are almost regular oriented graphs
whose semidegrees are all close to 3n/8 but which do not contain a Hamilton cycle. These

were first found by Héggkvist [31]. However, we believe that if one requires G to be
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completely regular, then one can actually obtain a Hamilton decomposition of G. Note this

would be a significant generalisation of Kelly’s conjecture.

Conjecture 7.4 (Kithn, Osthus and Treglown [62]) For every~y > 0 there exists ng =
no(y) such that for all m > ng and all v > (3/8 + v)n each r-regular oriented graph on n

vertices has a decomposition into Hamilton cycles.

At present we do not even have any examples to rule out the possibility that one can reduce

the constant 3/8 in the above conjecture:

Question 3 Is there a constant ¢ < 3/8 such that for every sufficiently large n every cn-
reqular oriented graph G on n vertices has a Hamilton decomposition or at least a set of

edge-disjoint Hamilton cycles covering almost all edges of G ¢

It is clear that we cannot take ¢ < 1/4 since there are non-Hamiltonian k-regular oriented

graphs on n vertices with k =n/4 — 1/2 (consider a union of two regular tournaments).

7.1.2 Related results and problems

Jackson [37] introduced the following bipartite version of Kelly’s conjecture (both versions
are also discussed e.g. in the Handbook article by Bondy [13]). A bipartite tournament is

an orientation of a complete bipartite graph.

Conjecture 7.5 (Jackson [37]) FEvery regular bipartite tournament has a Hamilton de-

composition.

An undirected version of Conjecture 7.5 was proved independently by Auerbach and Laskar [7],
as well as Hetyei [36].
Kelly’s conjecture has been generalised in several directions. For instance, given an

oriented graph G, define its excess by

ex(G) == Y max{d"(v) —d (v),0},

veV(Q)

where d*(v) denotes the number of outneighbours of the vertex v, and d~ (v) the number

of its inneighbours. Pullman (see e.g. Conjecture 8.25 in [13]) conjectured that if G is an
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oriented graph such that d*(v) + d~(v) = d for all vertices v of G, where d is odd, then
G has a decomposition into ex(G) directed paths. To see that this would imply Kelly’s
conjecture, let G be the oriented graph obtained from a regular tournament by deleting a
vertex. Another generalisation was made by Bang-Jensen and Yeo [9], who conjectured that
every k-edge-connected tournament has a decomposition into k£ spanning strong digraphs.

In [89], Thomassen also formulated the following weakening of Kelly’s conjecture.

Conjecture 7.6 (Thomassen [89]) If G is a regular tournament on 2k + 1 vertices and

A is any set of at most k — 1 edges of G, then G — A has a Hamilton cycle.

([89] also contains the related conjecture that for any ¢ > 2, there is an f(¢) so that every
strongly f(¢)-connected tournament contains ¢ edge-disjoint Hamilton cycles.) Recall that
in Section 5.6 we proved a result on the existence of Hamilton cycles in ‘robust expander
digraphs’ (Theorem 5.13). In Section 7.6 we use Theorem 5.13 to prove Conjecture 7.6 for
large tournaments.

Further support for Kelly’s conjecture was also provided by Thomassen [90], who showed
that the edges of every regular tournament on n vertices can be covered by 12n Hamilton
cycles. In [59] Kiithn and Osthus observed that one can use Theorem 7.2 to reduce this to
(1/24 o(1))n Hamilton cycles. A discussion of further recent results about Hamilton cycles
in directed graphs can be found in the survey [59].

It seems likely that the techniques developed in this chapter will also be useful in solving
further problems. In fact, Christofides, Kithn and Osthus [18] used similar ideas to prove
approximate versions of the following two long-standing conjectures of Nash-Williams [70,

71]:

Conjecture 7.7 (Nash-Williams [70]) Let G be a 2d-regular graph on at most 4d + 1

vertices, where d > 1. Then G has a Hamilton decomposition.

Conjecture 7.8 (Nash-Williams [71]) Let G be a graph on n vertices with minimum

degree at least n/2. Then G contains n/8 4+ o(n) edge-disjoint Hamilton cycles.

(Actually, Nash-Williams initially formulated Conjecture 7.8 with the term n/8 replaced

by n/4, but Babai found a counterexample to this.)
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Another related problem was raised by Erdés (see [89]), who asked whether almost all
tournaments G have at least 6°(G) edge-disjoint Hamilton cycles. Note that an affirmative
answer would not directly imply that Kelly’s conjecture holds for almost all regular tour-
naments, which would of course be an interesting result in itself. There are also a number
of corresponding questions for random undirected graphs (see e.g. [28]).

After giving an outline of the argument in the next section, we will give some useful
results related to the Regularity lemma in Section 7.3. Section 7.4 contains statements and
proofs of several auxiliary results, mostly on (almost) 1-factors in (almost) regular oriented

graphs. The proof of Theorem 7.3 is given in Section 7.5.

7.2 Sketch of the proof of Theorem 7.3

Let v > 0 and «a := 3/8 4+ . Suppose we are given an an-regular oriented graph G on
n vertices and our aim is to ‘almost’ decompose it into Hamilton cycles. One possible
approach might be the following: first remove a spanning regular oriented subgraph H
whose degree nn satisfies n < 1. Let G’ be the remaining oriented subgraph of G. Now
consider a decomposition of G’ into 1-factors Fi, ..., F, (which clearly exists). Next, try to
transform each F; into a Hamilton cycle by removing some of its edges and adding some
suitable edges of H. This is of course impossible if many of the F; consist of many cycles.
However, an auxiliary result of Frieze and Krivelevich in [28] implies that we can ‘almost’
decompose G’ so that each 1-factor F; consists of only a few cycles.

If H were a ‘quasi-random’ oriented graph, then (as in [28]) one could use it to suc-
cessively ‘merge’ the cycles of each F; into Hamilton cycles using a ‘rotation-extension’
argument: delete an edge of a cycle C of F; to obtain a path P from a to b, say. If there
is an edge of H from b to another cycle C’ of Fj, then extend P to include the vertices of
C’ (and similarly for a). Continue until there is no such edge. Then (in H) the current
endvertices of the path P have many neighbours on P. One can use this together with the
quasi-randomness of H to transform P into a cycle with the same vertices as P. Now repeat

this, until we have merged all the cycles into a single (Hamilton) cycle. Of course, one has to
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be careful to maintain the quasi-randomness of H in carrying out this ‘rotation-extension’
process for the successive F; (the fact that F; contains only few cycles is important for this).
The main problem is that G need not contain such a spanning ‘quasi-random’ subgraph
H. So instead, in Section 7.5.1 we use Szemerédi’s regularity lemma to decompose G into
quasi-random subgraphs. We then choose both our 1-factors F; and the graph H according
to the structure of this decomposition. More precisely, we apply the directed version of
Szemerédi’s regularity lemma (Lemma 2.7) to obtain a partition of the vertices of G into
a bounded number of clusters V; so that almost all of the bipartite subgraphs spanned by
ordered pairs of clusters are quasi-random. This then yields a reduced digraph R, whose
vertices correspond to the clusters, with an edge from one cluster U to another cluster
W if the edges from U to W in G form a quasi-random graph. (Note that R need not
be oriented.) We view R as a weighted digraph whose edge weights are the densities of
the corresponding ordered pair of clusters. We then obtain an unweighted multidigraph
R,, from R as follows: given an edge e of R joining a cluster U to W, replace it with
K = K (e) copies of e, where K is approximately proportional to the density of the ordered
pair (U, W). It is not hard to show that R,, is approximately regular (see Lemma 7.11). If
R, were regular, then it would have a decomposition into 1-factors, but this assumption
may not be true. However, we can show that R, can ‘almost’ be decomposed into ‘almost’
1-factors. In other words, there exist edge-disjoint collections Fi, ..., F;, of vertex-disjoint
cycles in R, such that each F; covers almost all of the clusters in R, (see Lemma 7.17).
Now we choose edge-disjoint oriented spanning subgraphs C,...,C, of G so that each
C; corresponds to F;. For this, consider an edge e of R from U to W and suppose for
example that F;, F» and Fg are the only F; containing copies of e in R,,. Then for each
edge of G from U to W in turn, we assign it to one of C7, Cy and Cg with equal probability.
Then with high probability, each C; consists of bipartite quasi-random oriented graphs
which together form a disjoint union of ‘blown-up’ cycles. Moreover, we can arrange that
all the vertices have degree close to fm (here m is the cluster size and [ a small parameter
which does not depend on i). We now remove a small proportion of the edges from G

(and thus from each C;) to form oriented subgraphs H;", Hy , Ho, Hs ;, Hy, Hs ; of G, where
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1 <4 < r. Ideally, we would like to show that each C; can almost be decomposed into
Hamilton cycles. Since the C; are edge-disjoint, this would yield the required result.

One obvious obstacle is that the C; need not be spanning subgraphs of G (because
of the exceptional set Vj returned by the regularity lemma and because the F; are not
spanning). So in Section 7.5.2 we add suitable edges between C; and the leftover vertices
to form edge-disjoint oriented spanning subgraphs G; of G where every vertex has degree
close to fm. (The edges of H; and H fr are used in this step.) But the distribution of the
edges added in this step may be somewhat ‘unbalanced’;, with some vertices of C; sending
out or receiving too many of them. In fact, as discussed at the beginning of Section 7.5.4,
we cannot even guarantee that GG; has a single 1-factor. We overcome this new difficulty
by adding carefully chosen further edges (from Hj this time) to each G; which compensate
the above imbalances.

Once these edges have been added, in Section 7.5.5 we can use the max-flow min-cut
theorem to almost decompose each G; into 1-factors F; ;. (This is one of the points where
we use the fact that the C; consist of quasi-random graphs which form a union of blown-up
cycles.) Moreover, (i) the number of cycles in each of these 1-factors is not too large and (ii)
most of the cycles inherit the structure of F;. More precisely, (ii) means that most vertices
u of C; have the following property: let U be the cluster containing u and let U™ be the
successor of U in F;. Then the successor ut of u in F; ; lies in U™.

In Section 7.5.6 we can use (i) and (ii) to merge the cycles of each F;; into a 1-factor
FZ-C ; consisting only of a bounded number of cycles — for each cycle C of F;, all the vertices
of GG; which lie in clusters of C will lie in the same cycle of FZ-’7 ;- We will apply a rotation-
extension argument for this, where the additional edges (i.e. those not in F; ;) come from
Hs ;. Finally, in Section 7.5.7 we will use the fact that R,, contains many short paths to
merge each Fi’7 ; into a single Hamilton cycle. The additional edges will come from H4 and

H57i this time.
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7.3 Notation and some results related to the Diregularity

lemma

7.3.1 Notation

Given a multidigraph G, we denote by Nér (z) the multiset of vertices where a vertex
y € V(G) appears k times in Ng(x) if G contains precisely k edges from x to y. Again,
we have an analogous definition for Ng (z). We will write Nt (z) for example, if this is
unambiguous. Given a vertex z of a multidigraph G, we write dj(z) := [N (z)| for the
outdegree of z, dg(x) := [N~ (x)] for its indegree and d(x) := d* (x) +d~ (x) for its degree.
The maximum of the maximum outdegree A*(G) and the maximum indegree A~ (G) is
denoted by A°(G). The minimum semidegree §°(G) of G is the minimum of its minimum
outdegree 1 (G) and its minimum indegree 6~ (G). Throughout this chapter we will use
dé(m), 6% (G) and Ng(x) as ‘shorthand’ notation. For example, 6*(G) > 6% (H)/2 is read
as 07 (G) > 0t (H)/2 and 6 (G) > 6 (H)/2.

A I-factor of a multidigraph G is a collection of vertex-disjoint cycles in G which
together cover all the vertices of G. Given A, B C V(G), we write eq(A, B) to denote the
number of edges in G with startpoint in A and endpoint in B. Given a multiset X and a
set Y we define X NY to be the multiset where = appears as an element precisely k times
in XNY ifzx e X, z €Y and x appears precisely k times in X. We write a = b &+ ¢ for

aclb—eb+el

7.3.2 A Chernoff bound

We will often use the following Chernoff bound for binomial and hypergeometric distribu-
tions (see e.g. [38, Corollary 2.3 and Theorem 2.10]). Recall that the binomial random
variable with parameters (n,p) is the sum of n independent Bernoulli variables, each taking
value 1 with probability p or 0 with probability 1 —p. The hypergeometric random variable
X with parameters (n,m, k) is defined as follows. We let N be a set of size n, fix S C N

of size |S| = m, pick a uniformly random 7' C N of size |T| = k, then define X = |T'N S].
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Note that EX = km/n.

Proposition 7.9 Suppose X has binomial or hypergeometric distribution and 0 < a < 3/2.
a2
Then P(|X — EX| > aEX) < 2¢ 55X,

7.3.3 The Diregularity lemma

In the proof of Theorem 7.3 we will use the directed version of Szemerédi’s Regularity
lemma (Lemma 2.7). To prove Theorem 7.3 it will be more convenient to use the following
definition of super-regularity (which is different to the definition used earlier in this thesis):
Given ¢ > 0 and d € [0,1) we say that G is (e,d)-super-regular if all sets X C A and
Y C B with |X| > ¢|A| and |Y| > ¢|B] satisfy d(X,Y) = d £ ¢ and, furthermore, if
da(a) = (d+¢€)|B| for all a € A and dg(b) = (d £ ¢)|A| for all b € B.

The next result shows that we can partition the set of edges of an e-(super)-regular pair

into edge-disjoint subgraphs such that each of them is still (super)-regular.

Lemma 7.10 Let 0 < € < dg < 1 and suppose K > 1. Then there exists an integer

mo = mo(e, do, K) such that for all d > dy the following holds.

(i) Suppose that G = (A, B) is an e-regular pair of density d where |A| = |B| =m > my.
Then there are | K| edge-disjoint spanning subgraphs S1,...,S| k| of G such that each
S; is [e,4e/ K|-reqular of density (d +2¢)/K.

(ii) If K = 2 and G = (A, B) is (e,d)-super-regular with |A| = |B] = m > mq. then
there are two edge-disjoint spanning subgraphs S1 and So of G such that each S; is

(2e,d/2)-super-regular.
Proof. We first prove (i). Suppose we have chosen mg sufficiently large. Initially set
E(S;) =0 for each i = 1,..., [ K]. We consider each edge of G in turn and add it to each
E(S;) with probability 1/K, independently of all other edges of G. So the probability that
ry is added to none of the S; is 1 — | K| /K. Moreover, E(e(S;)) = e(G)/K = dm?/K.
Given X C A and Y C B with |X|,|Y| > em we have that |dg(X,Y) — d| < e. Thus

(= 2)|XIIY| < Bles, (X,Y) < (d+ )| X|[V
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for each i. Proposition 7.9 for the binomial distribution implies that with high probability
(d—2¢)|X||]Y]/K < es,;(X,Y) < (d+2¢)|X||Y|/K for each i < | K| and every X C A and
Y C B with | X]|,|Y| > em. Such S; are as required in (i).

The proof of (ii) is similar. Indeed, as in (i) one can show that with high probability any
X CAandY C Bwith | X|,|Y| > em satisfy dg,(X,Y) = d/2+2¢ (for ¢ = 1,2). Moreover,
each vertex a € A satisfies E(dg,(a)) = dg(a)/2 = (d £ e)m/2 (for i = 1,2) and similarly
for the vertices in B. So again Proposition 7.9 for the binomial distribution implies that
with high probability dg,(a) = (d/2 + 2¢)m for all a € A and dg,(b) = (d/2 £ 2¢)m for
all b € B. Altogether this shows that with high probability both S; and Sy are (2¢,d/2)-

super-regular. O

Suppose 0 < 1/M’' < ¢ < f# < d < 1 and let G be a digraph. Let R and G’ denote
the reduced digraph and pure digraph respectively, obtained by applying Lemma 2.7 to
G with parameters €,d and M'. For each edge V;V; of R we write d; ; for the density of
(Vi,Vj)ar. (So d; j > d.) The reduced multidigraph Ry, of G with parameters ¢, 3,d and M’
is obtained from R by setting V(R,,) := V(R) and adding |d; ;/B] directed edges from V;
to V; whenever V;V; € E(R).

We will always consider the reduced multidigraph R,, of a digraph G whose order
is sufficiently large in order to apply Lemma 7.10 to any pair (V;,Vj)g of clusters with
ViV; € E(R). Let K := d;;/B and S;;1,...,5;; k| be the spanning subgraphs of
(Vi, Vj)ar obtained from Lemma 7.10. (So each ;1 is e-regular of density 3 £ ¢e.) Let
(ViVi)1,-..,(ViVj)| k| denote the directed edges from V; to V; in R,,. We associate each
(ViVj) with the edges in S; ;.

Lemma 7.11 Let 0 < I/M' < e € f <€ d <K 1 < ¢cg <1 and let G be a digraph of
sufficiently large order n with 6°(G) > cin and A%(G) < con. Apply Lemma 2.7 with
parameters €,d and M’ to obtain a pure digraph G' and a reduced digraph R of G. Let Ry,

denote the reduced multidigraph of G with parameters €,3,d and M'. Then

Y (Rp) > (1 — 3d)% and A°(R,,) < (co + 2€)|R—ﬁm|.
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Note the corresponding upper bound would not hold if we considered R instead of R,, here.

Proof. Given any V;,V; € V(R), let d; ; denote the density of (V;, V})q. Then

c1 — 2d)nm Zv V; (d v) — ‘VO‘
(e — 2d)|R| < ( m2) e - < > d” (7.1)
V;eV(R
by Lemma 2.7. Thus
. 1 71
G- Y% =3 ARul 2 (1 - 20— )]
V€V (Rm) B ﬁVEV(R) B
J m J
Ry,
> (Cl — 3d)%

So indeed §*(R,,) > (c1 — 3d)|R;|/B- Similar arguments can be used to show that

5 (Ry) > (e1 — 3d)|Rpn|/B and A%(R,,) < (co + 2¢)| R/ 8. O

We will also need the well-known fact that for any cycle C' of the reduced multigraph
R,, we can delete a small number of vertices from the clusters in C' in order to ensure that

each edge of C corresponds to a super-regular pair. We include a proof for completeness.

Lemma 7.12 Let C =V}, ... Vj, be a cycle in the reduced multigraph Ry, as in Lemma 7.11.

For each t = 1,...,s let (V},Vj, ., )k, denote the edge of C which joins Vj, to Vj,, (where

t+1

V; =V}, ). Then we can choose subclusters V]’t C Vj, of size m' := (1 — 4e)m such that

Js+1 :
Vi, V]’HI)SRJHLM is (10e, B)-super-reqular (for each t =1,...,s).

Proof. Recall that for each t = 1,...,s the digraph Sj, ;, ., k, corresponding to the edge
V3,V

ies1 ke Of Cis e-regular and has density 3+ ¢. So Vj, contains at most 2em vertices

whose outdegree in S is either at most (8 — 2e)m or at least (5 + 2¢)m. Similarly,

trJt+1,kt

there are at most 2em vertices in V;, whose indegree in S; is either at most (5—2¢)m

t—1,Jt:kt—1
or at least (8 + 2¢)m. Let Vj be a set of size m' obtained from Vj, by deleting all these
vertices (and some additional vertices if necessary). It is easy to check that Vj’l, ey V}’t are

subclusters as required. O

Finally, we will use the following crude version of the fact that every [e,&']-regular pair
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contains a subgraph of given maximum degree A whose average degree is close to A.

Lemma 7.13 Suppose that 0 < 1/n < €';e < dy < d; < 1 and that (A, B) is an [e,€']-
regular pair of density dy with n vertices in each class. Then (A, B) contains a subgraph H

whose mazimum degree is at most don and whose average degree is at least don/8.

Proof. Let A” C A be the set of vertices of degree at least 2din and define B” similarly.
Then |A”|,|B"| < en. Let A’ := A\ A” and B’ := B\ B”. Then (A’, B’) is still [2¢,2¢']-
regular of density at least dy/2. Now consider a spanning subgraph H of (A’, B’) which
is obtained from (A’, B’) by including each edge with probability dy/3d;. So the expected
degree of every vertex is at most 2dgn/3 and the expected number of edges of H is at least
do(n—en)? /6. Now apply the Chernoff bound on the binomial distribution in Proposition 7.9
to each of the vertex degrees and to the total number of edges in H to see that with high

probability H has the desired properties. O

7.4 Useful results

7.4.1 1-factors in multidigraphs

Our main aim in this subsection is to show that the reduced multidigraph R,, contains
a collection of ‘almost’ 1-factors which together cover almost all the edges of R, (see

Lemma 7.17). To prove this we will need the following collection of results.

Lemma 7.14 Let 0 < 1/n < 1/M' < e € d < d' < v < 1. Suppose that G is an oriented
graph of order n with §°(G) > (a4 y)n for some a > 0. Let R denote the reduced digraph
of G with parameters €,d and M’ obtained by applying Lemma 2.7. Then there ewists a
spanning oriented subgraph R. of R whose edges correspond to pairs of density at least d’

and

0°(Rg) > (a +7/2)| Ry -

Proof. Applying Lemma 2.7 to G with parameters ¢, d and M’ we obtain clusters V1, ...,V

of size m, an exceptional set Vj and a pure digraph G’. Let R’ denote the spanning
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subdigraph of R whose edge set consists of precisely those edges corresponding to pairs of
density at least d'.

Let G” denote the subgraph of G’ ‘induced’ by the edges of R’. More precisely, let G”
be the subgraph of G’ with vertex set V(G)\V, and with edge set consisting precisely of

those edges in G’ which correspond to an edge in R’. Notice that given any V; € V(R')
ZGG//(W"G) > ZGG/(%,‘/]') — d/mQL. (72)
J#i J#i
We will now obtain R, from R’ by deleting edges randomly as follows. Given an un-

ordered pair of clusters Vj, V; of R’ we delete the edge V;Vj (if it exists) with probability

eqr(Vj, Vi)
eqr(Vi, Vj) + eqn(V;, Vi)

(7.3)

Otherwise we delete V;V; (if it exists). In the case when V;V}, V;V; ¢ E(R’) then we interpret
(7.3) as 0. Thus if at most one of V;V; and V;V; is an edge then with probability 1 we do
not delete an edge. We repeat this for all unordered pairs of clusters V;,V; of R’. Thus

given any V; € V(Ry),

eqr(Vi, Vj) eqr(Vi, Vj)
E d+, Vi) = J > G\ 7))
(dp, (Vi) Z e (Vi Vi) + eqn (V;, Vi) —Z ViV
J# J#
(7-2) e (‘/Z, ‘/J) / L /
> ET —dLE% E 'eG/(Vz’an) —dL
J#i J#i
L L
> dt,(z) — |Vo|) —d'L > — 4~/5 —dL= 3~v/4)L.
> =37 (d(@) = [Vol) = d'L > —(a+ dy/5)nm (o +37/4)

z€eV;

Similarly E(dy, (Vi)) > (a+3v/4)L. Applying, for example, a Simple Concentration Bound
0
(see [66]), since L > M’ and M’ is sufficiently large we have that, with probability > 0,

SO(RL) > (a+v/2)L, as desired. O
The following is an immediate consequence of Lemma 12 in [43].

Lemma 7.15 Let R be an oriented graph on L vertices with 6°(R) > (3/8 +~)L for some
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0<vy<1. If X CV(R) is non-empty such that | X| < (1—~)L then |[N*(X)| > | X|+~L.

Lemma 7.16 Let R be an oriented graph on L vertices with 6°(R) > (3/8 +~)L for some
0 < v < 1. Given any distinct vertices x,y € V(R) there exists a directed path of length at

most 1/y from x to y in R.

Proof. Let X; be the set of vertices v for which there is a directed walk from x to v in R of
length at most i. So Xo = {z} and X; = N*(z)U{z}. If | X;] < (1 —~)L then Lemma 7.15
implies that |X;11] > [N1(X;)| > | X;| + vL. So certainly for i’ := |1/v] — 1 we have that
| Xir| > (1 —~)L. But since §°(R) > (3/8 + )L we have that Xy 1 = V(R). In particular
this implies that for any y # x there is a directed path of length at most 1/v from x to y
in R. O

Lemma 7.17 Let 0 < 1/n < 1/M' < e K < n<Kd < d < c < d < v <1 and define
a = 3/8 4+ . Suppose that G is an (an £+ nn)-reqular oriented graph of order n. Let Ry,
denote the reduced multidigraph of G with parameters €, 3,d and M’ obtained by applying
Lemma 2.7. Let r := (a — ¢)|Rp|/B. Then there exist edge-disjoint collections Fi,...,F;
of vertex-disjoint cycles in Ry, such that each F; covers all but at most c|Ry,| of the clusters

mn Ry,.

Proof. Let L :=|R,,|. Lemma 7.11 implies that

O(Rp) > (e —4d)= and A%R,,) < (a+2n)=. (7.4)

|
|

Let R denote the reduced digraph R of G with parameters e,d and M’. Let R! denote the
oriented spanning subgraph of R obtained by applying Lemma 7.14 with parameter d’. So
5(R,) > (3/8 +v/4)L.

First we find a set of clusters X C V(R) with the following properties:
o | X|=cL,

o |Ng,. (Vi) N X[ = (a+5d) for all V; € V(Ry,),

. |N§g(%) NX| > (3/8+~/5)cL for all V; € V(R.).
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We obtain X by choosing a set of cL clusters uniformly at random. Then each cluster V;
satisfies

B(INE, (V) 1 XD = Nz, ()] 2 o £ 40)7

and

E(IN (Vi) N X]) > (3/8 +7/4)eL.

Proposition 7.9 for the hypergeometric distribution now implies that with nonzero prob-
ability X satisfies our desired conditions. (Recall that Nlj%Lm (Vi) is a multiset. Formally
Proposition 7.9 does not apply to multisets. However, for each j = 1,...,1/3 we can apply
Proposition 7.9 to the set of all those clusters which appear at least j times in Nérm(v;),
and similarly for N, (V;).)

Note that

di

L
Rm\X(Vi) = (v — awc £ 5d) 3

for each V; € V(R,,\X). We now add a small number of temporary edges to R,,\X in
order to turn it into an 7’-regular multidigraph where r’ := (o — ac + 5d)%. We do this as
follows. As long as R,,\X is not r’-regular there exist V;,V; € V(R \X) such that V; has
outdegree less than ' and V; has indegree less than /. In this case we add an edge from
Vi to V. (Note we may have ¢ = j, in which case we add a loop.)

We decompose the edge set of R,;,\X into r’ 1-factors Fi,...,F.,. (To see that we can
do this, consider the bipartite multigraph H where both vertex classes A, B consist of a
copy of V(R,,\X) and we have s edges between a € A and b € B if there are precisely s
edges from a to b in R,,\ X, including the temporary edges. Then H is regular and so has a
perfect matching. This corresponds to a 1-factor F|. Now remove the edges of F| from H
and continue to find F3,...,F,, in the same way.) Since at each cluster we added at most
QOd% temporary edges, all but at most 20\/8% of the F] contain at most VdL temporary
edges. By relabeling if necessary we may assume that F7,...,F, are such 1-factors. We

now remove the temporary edges from each of these 1-factors, though we still refer to the

digraphs obtained in this way as F7, ..., F}. So each F| spans R,,\X and consists of cycles
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and at most v/dL paths.

Our aim is to use the clusters in X to piece up these paths into cycles in order to
obtain edge-disjoint directed subgraphs Fi,...,F, of R, where each F; is a collection of
vertex-disjoint cycles and F, C F;.

Let P/, ..., P} denote all the paths lying in one of F7,..., F. (so ¢ < VdLr < VdL?/p).
Our next task is to find edge-disjoint paths and cycles Py, ..., Py of length at most 10/ in

R,, with the following properties.

(i) If P consists of a single cluster V;; € V(R) then P; is a cycle consisting of at most

8/~ clusters in X as well as V.

(i) If P} is a path of length > 1 then P; is a path whose startpoint is the endpoint of P;.

Similarly the endpoint of P; is the startpoint of P;.
(iii) If P]f is a path of length > 1 then the internal clusters in the path P; lie in X.
(iv) If P} and P}, lie in the same J; then P;, and P, are vertex-disjoint.

So conditions (i)—(iii) imply that P; U P; is a directed cycle for each 1 < j <. Assuming
we have found such paths and cycles Pi,..., Py, we define Fi,...,F, as follows. Suppose
Pl ..., P} are the paths in ;. Then we obtain J; from 7 by adding the paths and cycles

P

iy - -5 Pj, to F!. Condition (iv) ensures that the F; are indeed collections of vertex-disjoint

cycles.

It remains to show the existence of Pp,..., P;. Suppose that for some j < ¢ we have
already found Py, ..., P;_; and now need to define P;. Consider P]’ and suppose it lies in
F;. Let V, denote the startpoint of P; and V} its endpoint.

We call an edge (V;, Vi, )i in Ry, full if it has been used in one of P, ..., Pj_;. Otherwise
we call (Vi, Vi, )k free. We have at most %(j -1)< % d% < c’% full edges in R,,. So at
most 2v/¢L clusters in X have more than v/¢/ L/ full edges incident to them in R,,. Let
Xo denote the set of such clusters in X and set X’ := X\ Xp. So |X'| > [X| — 2V/¢L.

Let P/ ,..., P denote the paths which lie in Fj (sot < VdL). At most %\/EL clusters

J1’

in X’ lie in the paths and cycles Pj,, ..., P}, already defined. Let X; denote the set of such
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clusters in X’ and set X" := X'\ X;. So |X"| > |X| - 2V¢L — %\/EL > |X| - 3VCL.
Let Rx» := R.[X"]. Thus 6°(Rx») > (3/8 4+ v/5)cL — 3V/JIL > (3/8 + ~/6)|X"| since
d <e<g.

Every edge VV™ in Ry~ corresponds to an e-regular pair of density at least d’. Thus
there are at least |d'/3] edges in R,, associated with VV*. We say such an edge VV*
in Rxv is full if all the edges in R,, associated with VV T are full. Since X” C X’ each

cluster V € X” is incident to at most \/EL/ [ full edges in R,,. Thus given any cluster

V € V(Rxn), there are at most \/g%/Ld’/ﬁj < 2\£?L full edges in Rx~ incident to V. We

remove all full edges from Rx». So we now have that

0°(Rx) = (3/8 +7/6)|X"| — 2§L > (3/8 +/7)|X"]. (7.5)

Since [Np (Vo) N X[ > (a—5d)cL/B and |X"| > [X|— 3v/¢ L we have that INp (Va)N
X"| > (a—5d)cL/B -3V L/B > (3/8+~/2)cL/B. There are at most 20v/dL/ (3 full edges
in R,, incident to V,. Since (3/8+~/2)cL/3 —20V/dL/3 > 1 we can still choose a suitable
cluster V,- in Np (V) N X" which will play the role of the inneighbour of V, on P;. Let
(Va=Va)k, denote the corresponding free edge in R,, which will be used in P;. A similar
argument, shows that we can find a cluster Vj+ # V,- to play the role of the outneighbour
of V, on Pj. So Vp+ € X” and there is a free edge (VpVi+ )k, in Rpy.

Using (7.5) to apply Lemma 7.16 to Rx~» we see that there exists a directed path of
length at most 7/ from Vj+ to V,~ in Rx~. By definition of Ry~ this path corresponds
to a directed path P; from Vj+ to V,- in R, which consists of free edges and which
avoids clusters lying on the paths P; ,..., P;,. We take P; to be the directed path or cycle
PrU{(Va-Va)kas VoVt )i, }- O

7.4.2 Spanning subgraphs of super-regular pairs

Frieze and Krivelevich [28] showed that every (e, §)-super-regular pair I' contains a regular
subgraph IV whose density is almost the same as that of I'. The following lemma is an

extension of this, where we can require IV to have a given degree sequence, as long as this
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degree sequence is almost regular.

Lemma 7.18 Let 0 < 1/m < ¢ € f < o < a < 1. Suppose that T' = (U,V) is an
(e, B+ ¢€)-super-regular pair where |U| = |V| = m. Define 7 := (1—«)Bm. Suppose we have
a non-negative integer x; < o/ Bm associated with each u; € U and a mon-negative integer
y; < o Bm associated with each v; € V' such that ZuieU T, = ZviEV y;. Then T' contains a
spanning subgraph T” in which ¢; := T — x; is the degree of u; € U and d; := T — y; is the

degree of v; € V.

Proof. We first obtain a directed network N from I' by adding a source s and a sink ¢.
We add an edge su; of capacity ¢; for each u; € U and an edge v;t of capacity d; for each
v; € V. We give all the edges in I' capacity 1 and direct them from U to V.

Our aim is to show that the capacity of any cut is at least ZuiGU c = Zvie\/ d;. By
the max-flow min-cut theorem this would imply that N admits a flow of value ZuieU Ciy
which by construction of N implies the existence of our desired subgraph I".

So consider any (s,t)-cut (9,S) where S = {s} US; U Sy with S; C U and Sy C V. Let

S := U\S; and Sy := V\Sy. The capacity of this cut is
Z C; + Z di + 6(31, Sz)
u; €S v; €S2

and so our aim is to show that

6(51,52) Z Z C; — Z dz‘. (7.6)

uiESl UiGSQ

Now

Y= > di < S| —a)fm —[Saf(1—a—a')sm (7.7)

u»;ESl UiGSQ

and similarly

Sa- Y di=Yd- Y a<|S1-a)pm—|S|1-a-ad)fm  (78)

u; €51 v; €S2 v; €S9 u; €51
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By (7.7) we may assume that [S1| > (1-2a/)|S2|. (Since otherwise >, g ci—>,.c5, di <0

and thus (7.6) is satisfied.) Similarly by (7.8) we may assume that |Sy| > (1 —2a/)|S|. Let

a* := o/ /a. We now consider several cases.

Case 1. |S1],|S2| > em and |Sy| > (1 + a*)|Ss|.

Since I' is (g, B + €)-super-regular we have that

e(S1,52) > BIS1|(m —[Sa]) = Am(|S1] —|S2])
= (|51](1 = @)Bm — |S2|(1 — a — &) Bm) + aBm|S1| — (o + ') Bm| S|

> 151|(1 — a)pm — |Ss|(1 — a — o) Bm.

(The last inequality follows since «|Si| > (a + ')|S2|.) Together with (7.7) this implies

(7.6).
Case 2. |S1],|Ss| > em, |S1] < (14 a*)|S2| and |Ss] < (1 — a*)m.

Again since T is (g, 3 + ¢)-super-regular we have that

e(S1,52) = BlSu|(m —|Sa]) = BIS1[]Sal- (7.9)

As before, to prove (7.6) we will show that

e(S1,9) > |S1|(1 — a)Bm — |Sa|(1 — a — o) Bm.

Thus by (7.9) it suffices to show that am|Sy| — |S1]|S2| + (1 — a — &/)m|S2| > 0. We know
that |So|(1 —a — ') > [S1](1 — a — a*) since (1 + *)|S2| > |S1|. Hence, «|Si| — |S1](1 —
a®)+|S2|(1—a—a’) > 0. So am|S1|—|S1]|S2|+ (1 —a—a')m|Sz| > 0 as |Ss| < (1—a*)m.
So indeed (7.6) is satisfied.

Case 3. |S1], || > em, |S1] < (1 4+ a*)|S2| and |Ss| > (1 — a*)m.

By (7.8) in order to prove (7.6) it suffices to show that

e(S1,92) > |S:|(1 — a)Bm — |S1](1 — a — o) Bm.
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Since (7.9) also holds in this case, this means that it suffices to show that a|Ss|m—|S1||S2|+
(1 —a—a)|Si/m > 0. Since |S1| > (1 — 2/)|S2| and |Ss| > (1 — a*)m we have that

|S1| > (1 — @)m. Thus a|Ss|m > |S1]|Ss| and so indeed (7.6) holds.
Case 4. |S1]| < em and |Sy| > em.

Since |S1] > (1 — 2a’)|S2| we have that S| < 2em. Hence,
e(S1,52) > Bm|S1| — |S1]|S2] > (B — 2e)m|S1| > (1 — @) Bm]| S|

and so by (7.7) we see that (7.6) is satisfied, as desired.

Case 5. |S1| > em and |Sy| < em.

Similarly as in Case 4 it follows that e(S7,S2) > (1 — a)B3m|S2| and so by (7.8) we see that

(7.6) is satisfied, as desired.

Note that we have considered all possible cases since we cannot have that |Sy], |Ss| < em.
Indeed, if |S1|,|S2] < em then |S3| > (1 — &)m and as |S1| > (1 — 2a/)|Ss| this implies

Sil > (1 —2&/)(1 — €)m, a contradiction. O
| ,

7.4.3 Special 1-factors in graphs and digraphs

It is easy to see that every regular oriented graph G contains a 1-factor. The following
result states that if G is also dense, then (i) we can guarantee a 1-factor with few cycles.
Such 1-factors have the advantage that we can transform them into a Hamilton cycle by
adding/deleting a comparatively small number of edges. (ii) implies that even if G contains
a sparse ‘bad’ subgraph H, then there will be a 1-factor which does not contain ‘too many’

edges of H.

Lemma 7.19 Let 0 < 01,09,05 < 1/2 and 01/035 < 03. Let G be a p-regular oriented
graph whose order n is sufficiently large and where p := O3n. Suppose Aq, ..., As, are sets
of vertices in G with a; := |A;| > n'/2. Let H be an oriented subgraph of G such that

dli{(:ﬂ) < Oin for all x € A; (for each i). Then G has a 1-factor F such that
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(i) F contains at most n/(logn)'/> cycles;
(ii) For each i, at most 6ya; edges of H N F are incident to A;.

To prove this result we will use ideas similar to those used by Frieze and Krivelevich [28].
In particular, we will use the following bounds on the number of perfect matchings in a

bipartite graph.

Theorem 7.20 Suppose that B is a bipartite graph whose vertex classes have size n and
dy,...,d, are the degrees of the vertices in one of these vertex classes. Let p(B) denote the

number of perfect matchings in B. Then

u(B) < [[ ().

k=1

Furthermore, if B is p-regular then

The upper bound in Theorem 7.20 was proved by Brégman [14]. The lower bound is
a consequence of the Van der Waerden conjecture which was proved independently by
Egorychev [24] and Falikman [27].

We will deduce (i) from the following result in [55], which in turn is similar to Lemma 2

in [28].

Lemma 7.21 For all 0 < 1 there exists ng = ng(0) such that the following holds. Let B
be a On-regular bipartite graph whose vertez classes U and W satisfy |[U| = |W| =:n > ny.
Let My be any perfect matching from U to W which is disjoint from B. Let My be a
perfect matching chosen uniformly at random from the set of all perfect matchings in B.
Let F = M U Ms be the resulting 2-factor. Then the probability that F' contains more than

n/(logn)'/® cycles is at most e~™.

Proof of Lemma 7.19. Consider the p-regular bipartite graph B whose vertex classes

Vi, Vo are copies of V(G) and where z € V; is joined to y € V5 if zy is a directed edge in G.
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Note that every perfect matching in B corresponds to a 1-factor of G and vice versa. Let

w(B) denote the number of perfect matchings of B. Then

)= (2w (2) (2 (2 a0

by Theorem 7.20. Here we have also used Stirling’s formula which implies that for suffi-

ciently large m,

(@>m <ml < (@)mﬂ. (7.11)

We now count the number p;(G) of 1-factors of G which contain more than fsa; edges of

H which are incident to A;. Note that

20,1‘

(G < (g ) (un) 0 (7.12)

O2a;

Indeed, the term (02;31) (61n)%2% in (7.12) gives an upper bound for the number of ways we
can choose 6sa; edges from H which are incident to A; such that no two of these edges
have the same startpoint and no two of these edges have the same endpoint. The term

(ph)(n=020:)/p in (7.12) uses the upper bound in Theorem 7.20 to give a bound on the

number of 1-factors in G containing 02a; fixed edges. Now

(7.11) (1+1/p)(n—62a;) n—=02a;,+1/03
1 (n=62a:)/p = (P < (P
(o) (?) <(%)

(7.13)

(& e

since p = 03n and

92a¢71/93 O2a;
(=)
p Osn

since a; > n'/2. Furthermore,

2a; (2a;)%20i (T11) /2 02a;
<22 < — . 1
(02&@) - ((92&1')! - 02 (7 5)
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So by (7.12) we have that

(7.13),(7.15) /9¢\ P24 . n—0za;+1/0s
(@) < (—) (01m) (£)

(T14) /2¢ — 2¢ \%2% ,p\n (7110) /4620, 2% 1(B)
< (gt R B) < 5222
- ( m > (6) - ( 0564 ) M( ) < on

since 01 /05 < 02, a; > n'/2 and n is sufficiently large.

Now we apply Lemma 7.21 to B where M; is the identity matching (i.e. every vertex
in V; is matched to its copy in V2). Then a cycle of length 2¢ in M; U My corresponds
to a cycle of length ¢ in G. So, since n is sufficiently large, the number of 1-factors of G
containing more than n/(logn)'/® cycles is at most e~"u(B). So there exists a 1-factor F

of G which satisfies (i) and (ii). O

7.4.4 Rotation-Extension lemma

The following lemma will be a useful tool when transforming 1-factors into Hamilton cycles.
Given such a 1-factor F', we will obtain a path P by cutting up and connecting several cycles
in F' (as described in the proof sketch in Section 7.2). We will then apply the lemma to

obtain a cycle C' containing precisely the vertices of P.

Lemma 7.22 Let 0 < 1/m < e <y < 1. Let G be an oriented graph on n > 2m vertices.

Suppose that U and V' are disjoint subsets of V(G) of size m with the following property:
If S CU, T CV are such that |S|,|T| > em then eq(S,T) > ~|S||T|/2. (7.16)

Suppose that P = uq...u is a directed path in G where w1 € V and up, € U. Let X
denote the set of inneighbours u; of u; which lie on P so that u; € U and uj+1 € V.
Similarly let Y denote the set of outneighbours u; of up which lie on P so that u; € V
and u;—1 € U. Suppose that | X|,|Y| > ym. Then there exists a cycle C in G containing
precisely the vertices of P such that |E(C)\E(P)| < 5. Furthermore, E(P)\E(C) consists
of edges from X to X* and edges from Y~ to Y. (Here X7 is the set of successors of

vertices in X on P and Y~ is the set of predecessors of vertices in'Y on P.)
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Proof. Clearly we may assume that ugu; ¢ E(G). Let X1 denote the set of the first ym/2
vertices in X along P and X the set of the last ym /2 vertices in X along P. We define Y;

and Y5 analogously. So X1, Xo C U and Y7,Ys C V. We have two cases to consider.

Case 1. All the vertices in Xy precede those in Y5 along P.

Partition X7 = X731 U X192 where X717 denotes the set of the first ym/4 vertices in X; along
P. We partition Y5 into Y51 and Ysy analogously. Let Xf; denote the set of successors on
P of the vertices in X2 and Y, the set of predecessors of the vertices in Y31. So X E cVv

and Y, C U. Further define
e X!, :={u; | ui_1 € X11 and 3 edge from u;_; to X;5} and
o Vi, :={u; | uiy1 € Yoo and 3 edge from Y5, to u;y1}.

So X{; CVand Yy, CU.

From (7.16) it follows that | X7{,| > %ﬁ‘)'m > em and similarly Yy, > em. Since
X1, CVand Yy, CU, by (7.16) G contains an edge u;u; from Yy, to X{;. Since u; € X1,
by definition of X7, it follows that G contains an edge u;_ju; for some u; € Xh,. Likewise,

since uy € Y3y, there is an edge wjiuyyq for some uj € Yy . Furthermore, uj_ju; and

upuj 41 are edges of G by definition of X E and Y, . It is easy to check that the cycle
C = uy ... ui,luju]url e uj/ui/+1uz~/+2 e ukuj/+1uj/+2 e U UgUG4T - - Uj,1U1

has the required properties (see Figure 7.1). For example, E(P)\E(C) consists of the edges
Ui U, Uj—1Uj, Ujruy g and uyuyyq. The former two edges go from X to X and the

latter two from Y~ to Y.

Figure 7.1: The cycle C from Case 1
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Case 2. All the vertices in Y] precede those in X5 along P.

Let Y] be the predecessors of the vertices in Y7 and X;r the successors of the vertices in
Xy on P. So |Y] | =|Xy | =vym/2and Y] CU and X; C V. Thus by (7.16) there exists

an edge u;uj; € E(G) from Y™ to X2+ . Again, it is easy to check that the cycle
C = uy ... ul-uju]qu o URUG41UG42 - - Uj,1U1

has the desired properties. O

7.4.5 Shifted walks

Suppose R is a digraph and F is a collection of vertex-disjoint cycles with V/(F') C V(R).

A closed shifted walk W in R with respect to F is a walk in RU F' of the form
W = chlclc;ngcz ... 6;10571637161036301

where
e {C1,...,C} is the set of all cycles in F;

e ¢; lies on C; and cf is the successor of ¢; on C; for each 1 < i < s;

+ + .ot
c;h 1 is an edge of R (here ¢ | :=c}).

[ ] Ci
Note that the cycles C1,...,Cs are not necessarily distinct. If a cycle C; in F' appears
exactly t times in W we say that C; is traversed t times. Note that a closed shifted walk
W has the property that for every cycle C of F, every vertex of C' is visited the same
number of times by W. The next lemma will be used in Section 7.5.7 to combine cycles of

G which correspond to different cycles of F' into a single (Hamilton) cycle. Shifted walks

were introduced in [43], where they were used for a similar purpose.

Lemma 7.23 Let 0 < 1/n < I/ M' <« e < d < ¢ < d < v < 1. Suppose that G is

an oriented graph of order n with 6°(G) > (3/8 +~)n. Let R denote the reduced digraph
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of G with parameters e,d and M’ obtained by applying Lemma 2.7 and set L := |R|. Let
R! denote the spanning oriented subgraph of R obtained by applying Lemma 7.14 to R with
parameter d'. Suppose F is a collection of vertex-disjoint cycles with V(F) C V(R.) and
[V(F)| > (1 —¢)L. Then R, contains a closed shifted walk with respect to F so that each

cycle C in F is traversed at most L/~ times.

Proof. From Lemma 7.14 we know that 6°(R.) > (3/8 +~/2)L. Let Ry := R.[V(F)]. So
SO(R%) > (3/8 +v/2)L — cL > (3/8 +v/3)L. Arguing in a similar fashion to the proof
of Corollary 15 in [43] we obtain a closed shifted walk W in R}, with respect to F' which
traverses each cycle in F' at most |Rx|/y < L/7 times. Since R C R}, W is also a closed

shifted walk in R/ with respect to F, as desired. O

7.5 Proof of Theorem 7.3

7.5.1 Applying the Diregularity lemma

Without loss of generality we may assume that 0 < v < 1. Define further constants

satisfying

0<I/M<egfBgn<d<e<d<<m<E<m<p<pLny<<d <y <y,
(7.17)

Define a := 3/8 + . Let G be an oriented graph of order n > M’ such that G is
(an £ nn)-regular. Apply the Diregularity lemma (Lemma 2.7) to G with parameters ¢, d
and M’ to obtain clusters Vi,...,V of size m, an exceptional set Vj, a pure digraph G’
and a reduced digraph R (so L = |R|). Let R] be the oriented spanning subdigraph of R
obtained by applying Lemma 7.14 to R with parameter d’. So if V;V; is an edge of R], then
(Vi, V})or has density at least d'.

Let R,, denote the reduced multidigraph of G with parameters ¢,3,d and M’. For
each edge V;V; of R let d; ; denote the density of the e-regular pair (V;, Vj)qr. Recall that

each edge (V;V})i € E(R,,) is associated with the kth spanning subgraph S; ; . of (V;,V})ar
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obtained by applying Lemma 7.10 with parameters €,d; ; and K := d; j/3. Each S is
e-regular with density 5+ ¢. Lemma 7.11 implies that

L

3 and A°(R,,) < (a+ 277)£. (7.18)

0 _
8"(Rp) > (a — 4d) 5

Apply Lemma 7.17 to R,, in order to obtain

r:=(a—1n)L/B (7.19)

edge-disjoint collections Fi, ..., F; of vertex-disjoint cycles in R, such that each JF; contains
all but at most cL of the clusters in R,,. Let Vp; denote the set of all those vertices
in G which do not lie in clusters covered by F;. So Vy C Vp; for all 1 < 7 < r and
Vo,il < |[Vo|l+ cLm < (¢ 4+ ¢)n. We now apply Lemma 7.12 to each cycle in F; to obtain
subclusters of size m’ := (1 — 4e)m such that the edges of F; now correspond to (10, 3)-
super-regular pairs. By removing one extra vertex from each cluster if necessary we may
assume that m’ is even. All vertices not belonging to the chosen subclusters of F; are added

to Vo,i. So now
Vo.,i| < 2cn. (7.20)

We refer to the chosen subclusters as the clusters of F; and still denote these clusters by
Vi,...,Vr. (This is a slight abuse of notation since the clusters of F; might be different
from those of Fi7.) Thus an edge (V},V},)r in F; corresponds to the (10e, 3)-super-regular
pair 7, 5 1= (Vi Via s,y e

Let C; denote the oriented subgraph of G whose vertices are all those vertices belonging
to clusters in F; such that for each (V},V),)r € E(F;) the edges between Vj, and Vj}, are

precisely all the edges in S} Clearly C1,...,C, are edge-disjoint.

1,J2,k"
We now define ‘random’ edge-disjoint oriented subgraphs Hf , H, Hy, H3;, Hy and
Hs; of G (for each i = 1,...,7). H{” and H; will be used in Section 7.5.2 to incorporate

the exceptional vertices in Vp; into C;. Ha will be used to choose the skeleton walks in
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Section 7.5.4. The Hjz; will be used in Section 7.5.6 to merge certain cycles. H4 and the
Hs ; will be used in Section 7.5.7 to find our almost decomposition into Hamilton cycles.

We will choose these subgraphs to satisfy the following properties:

Properties of H1+ and H; .
e H is a spanning oriented subgraph of G.
e For all z € V(Hf‘), mn < dliﬁ(x) < 2mn.
e For all z € V(H;) and each 1 <i <, |N§1+(x) N Vo.il < 5m Vol

e M satisfies analogous properties.

Properties of Hs.

e The vertex set of Hy consists of precisely all those vertices of G which lie in a cluster

of R (i.e. V(Hs) = V(G) \ Vp).

e For each edge (V},V},)i of R,,, Hy contains a spanning oriented subgraph of Sj, j, i

which forms an e-regular pair of density at least 120.
e All edges of Hy belong to one of these e-regular pairs.

e For all x € V(H,), dlib(x) < 2man.

Properties of each Hsj ;.

e The vertex set of Hs; consists of precisely all those vertices of G which lie in a cluster

e For each edge (V},Vj,)r of Fi, H3; contains a spanning oriented subgraph of 53'1 ok

which forms a (1/2/2, 2n33)-super-regular pair.
e All edges in H3; belong to one of these pairs.

e Let H3 denote the union of all the oriented graphs Hs;. The last two properties

together with (7.19) imply that d§3 (x) < 3nsn for all x € V(Hs).
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Properties of Hy.

e The vertex set of Hy consists of precisely all those vertices of G which lie in a cluster

of R (i.e. V(Hy) =V(G) \ Vo).
e For each edge V;,Vj, of R, (V},,Vj,)n, is e-regular of density at least nad'.
e All edges in H4 belong to one of these e-regular pairs.

e For all x € V(Hy), dil (x) < 2myn.

Properties of each Hj ;.

e The vertex set of Hs; consists of precisely all those vertices of G which lie in a cluster

of F;.

e For each edge (V},Vj,)r of Fi, Hs; contains a spanning oriented subgraph of 5}1 ok

which forms a (1/2/2, 295 3)-super-regular pair.
e All edges in Hjs; belong to one of these pairs.

e Let Hs denote the union of all the oriented graphs Hs;. The last two properties

together with (7.19) imply that di (x) < 3msn for all x € V(Hs).

Properties of each S£7j7k.

e For each edge (V},Vj, )i of F; the oriented subgraph obtained from 5’

i1 ja,ke DY TEMOVING

all the edges in H;", H{ , Ha, ..., Hj is (e1/3, B3 )-super-regular for some 3; with
(1-n)B<pL<B. (7.21)

The existence of Hf , H, Hy, H3;, Hy and Hs; can be shown by considering suitable
random subgraphs of G and applying the Chernoff bound in Proposition 7.9. For example,
to show that H; exists, consider a random subgraph of G which is obtained by including
each edge of G with probability 47;. Similarly, to define Hy choose every edge in Sj, j, i

with probability 3n2/2 (for all Sj, j, x) and argue as in the proof of Lemma 7.10. Note
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that since Hy only consists of edges between pairs of clusters Vj} ,Vj, which form an edge

in R/, the densities of oriented subgraphs obtained from the S} by deleting all the

1,92,k
edges in Hf,Hf,Hg, ..., Hs will not be close enough to each other. Indeed, if V}Vj, ¢
E(R)), then the corresponding density will be larger. However, for such pairs we can delete
approximately a further ny-proportion of the edges to ensure this property holds. Again,
the deletion is done by considering a random subgraph obtained by deleting edges with
probability 7.

We now remove the edges in H1+ yH{ ,Hy, ..., Hs from each C;. We still refer to the

subgraphs of C; and S}hh’k thus obtained as C; and S;.l,j%k.

7.5.2 Incorporating Vj; into C;

Our ultimate aim is to use each of the C; as a ‘framework’ to piece together roughly (ym’
Hamilton cycles in G. In this section we will incorporate the vertices in Vp;, together
with some edges incident to these vertices, into C;. For each i = 1,...,r, let G; denote
the oriented spanning subgraph of G obtained from C; by adding the vertices of V ;. So
initially G; contains no edges with a start- or endpoint in Vj;. We now wish to add edges

to GG; so that
(i) da (x) > (1 — y/c)B1m' where z has neighbours only in Cj, for all z € Vj;;
(i) [Ng, (y) N Vol < v/epim! for all y € V(Ci);
(iii) Gy,...,G, are edge-disjoint.

For each x € V(G) we define £, :={i | v € V;} and let L, := |L,|. Let

li= > mn .
B {xEV(G) | Ly > 251m’}

We now consider the vertices in B” and V(G)\B’ separately.
First consider any z € V(G)\ B’. Let p := 26ym//mn and consider each edge e sent out
by x in H{". With probability L,p < 1 we will assign e to exactly one of the G; with i € L,.

More precisely, for each i € L, we assign e to G; with probability p. So the probability e
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is not assigned to any of the G; is 1 — L,p > 0. We randomly distribute the edges of H;
received by x in an analogous way amongst all the G; with i € £,.

We proceed similarly for all the vertices in V(G) \ B’, with the random choices being
independent for different such vertices. Since H;" and H; are edge-disjoint from each other
and from all the Cj, the oriented graphs obtained from Gj, ..., G, in this way will still be
edge-disjoint. Moreover, E(da (z)) > mnp and E(da[vo,i}(:c)) < Vo,ilp < 2enp for every
x € V(G) \ B and each i € L,. Thus

E(!NGiZ (x) NV (Cy)]) = (m — 2c)np > Brm. (7.22)

Let B; := Vp,; N B’ and B; := Vy;\B’. Since |N§+UH_(y) N Vol < 10m|Vo,i| for every
1 1
y € V(C;) (by definition of H;” and H; ) we have that

_ (7.20)
E(INE (y) N Bi|) < 10m|Volp < 40cpim’. (7.23)

Applying the Chernoff bound in Proposition 7.9 (for the binomial distribution) for each 4
and summing up the error probabilities for all 7 we see that with nonzero probability the

following properties hold:
e (7.22) implies that |N§Z () NV (C;)| > (1 —\/c)pym/ for every x € B;.
e (7.23) implies that \Na (y) N B;| < \/eBym' /2 for every y € V(C;).

For each i we delete all the edges with both endpoints in Vj; from G;.
Having dealt with the vertices in V(G) \ B’, let us now consider any = € B’. We call
each edge of G with startpoint = free if it does not lie in any of Cj, Hf,Hf,Hg, ..., Hs

(for all i = 1,...,7) and if the endpoint is not in B’. Note that

T
mn (7.20) (719) T,
|B'|—— < E Voil < 2ern < en=,
261m P 8
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and so |B'| < 2770—1” So the number of free edges sent out by x is at least

(@ —n)n — (B +Y3)m/ (r — L) — 4mn — 2na9n — 3nan — 2qun — 3nsn — | B

(7.19) L 2
= (a—mn— (B+)m (0 =) + Lafm’ — s — —;”
1
(7.17) 1/3 / (7.17)
> (a—mnn - (O‘gﬁ oy om) + L Lo~ 5mgn = LuBym,

We consider L, (31m' of these free edges sent out by x and distribute them randomly amongst
all the G; with i € L£,. More precisely, each such edge is assigned to G; with probability
1/L, (for each i € L;). So for each i € Ly,

E(dg;, () = fim (7.24)
and

< Vem' /4. (7.25)

1 (720 2681m/ 4crm/
+ N =

T

We can introduce an analogous definition of a free edge at x but for edges whose endpoint
is z. As above we randomly distribute L,3;m’ such edges amongst all the G; with i € L.

Thus for each i € L,
E(dg, (x)) = fim’ and E(dai%’i](m)) < Vepim' /4. (7.26)

We proceed similarly for all vertices in B’, with the random choices being independent for
different vertices z € B’. (Note that every edge of G is free with respect to at most one

vertex in B’.) Then using the lower bound on L, for all z € B’ we have

23;m/ (7.20)
BN ) N Bil) < Vo 220 <" e /4 (7.27)

for each ¢ = 1,...,r and all y € V(C;). As before, applying the Chernoff type bound in

Proposition 7.9 for each ¢ and summing up the failure probabilities over all ¢ shows that

123



with nonzero probability the following properties hold:
e (7.24)—(7.26) imply that \Na () NV(Cy)| > (1 = /e)B1m/ for each x € B;.
e (7.27) implies that \Na (y) N B;| < \/eBym! /2 for each y € V(C;).

Together with the properties of G; established after choosing the edges at the vertices
in V(G) \ B’ it follows that \Ni(m) NV(C)| > (1 = e)pim! for every z € Vp; and
|N§Z(y) N Vil < VeBim/ for every y € V(C;). Furthermore, Gy,...,G, are still edge-
disjoint since when dealing with the vertices in B’ we only added free edges. By discarding
any edges assigned to G; which lie entirely in V) ; we can ensure that (i) holds. So altogether

(i)—(iii) are satisfied, as desired.

7.5.3 Randomly splitting the G;

As mentioned in the previous section we will use each of the G; to piece together roughly
B1m’ Hamilton cycles of G. We will achieve this by firstly adding some more special edges to
each G; (see Section 7.5.4) and then almost decomposing each G; into 1-factors. However,
in order to use these 1-factors to create Hamilton cycles we will need to ensure that no 1-
factor contains a 2-path with start- and endpoint in V{;, and midpoint in C;. Unfortunately
G; might contain such paths. To avoid them, we will ‘randomly split’ each G;.

We start by considering a random partition of each V € V(F;). Using the Chernoff
bound in Proposition 7.9 for the hypergeometric distribution one can show that there exists

a partition of V into subclusters V' and V" so that the following conditions hold:
o [V'|,|V"| =m//2 for each V € V(F;).
o INZ (x)NV'| > (1/2—/c)pim’ and [N (2)NV"| > (1/2—/c)Bim’ for each x € Vp,;.
(Hel"e V, = UVGV(]:Z) V, and V” = Uvev(fz) V”.)

Recall that each edge (V},Vj,)r € E(F;) corresponds to the (¢!/3, 81)-super-regular pair
S’ Let 52 = ﬁ1/2. So

Ji.j2,k

7.21 (7.21

(1/2—7)p ( < ) By < ) B/2. (7.28)
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E!

Apply Lemma 7.10(ii) to obtain a partition E, .

g2k i of the edge set of S;'l,jg,k so that

the following condition holds:

e The edges of £ , , and EY

" j»k Doth induce an (e1/4, By)-super-regular pair which

/
ns S, . .
spans Sjmmk

We now partition G; into two oriented spanning subgraphs G} and G as follows.

e The edge set of G is the union of all E,

ok (over all edges (Vj,V;, ) of F;) together

with all the edges in G; from Vj; to V', and all edges in G; from V" to Vj ;.

e The edge set of G7 is the union of all E”

ok (over all edges (V},Vj, )i, of F;) together

with all the edges in G; from Vj; to V", and all edges in G; from V' to Vj ;.

Note that neither G nor G/ contains the type of 2-paths we wish to avoid. For each
i =1,...,7 we use Lemma 7.10(ii) to partition the edge set of each Hj; to obtain edge-

disjoint oriented spanning subgraphs Hj,; and Hy; so that the following condition holds:

e For each edge (V}, V},)x in 7, both Hj ; and Hj; contain a spanning oriented subgraph
of S,

%\ i»k Which is (v/€, m3/3)-super-regular. Moreover, all edges in Hj ; and Hy; belong

to one of these pairs.

Similarly we partition the edge set of each Hjs; to obtain edge-disjoint oriented spanning

subgraphs HY ; and Hy; so that the following condition holds:

e For each edge (V},V},)r. in Fi, both Hy ; and Hy; contain a spanning oriented subgraph
of 8% ., 1 which is (V/z, 95 8)-super-regular. Moreover, all edges in Hy ; and Hy; belong

to one of these pairs.

We pair Hj; and Hf ; with G} and pair Hj; and Hy; with G}. We now have 2r edge-disjoint

oriented subgraphs of G, namely G, GY, ..., G., G. To simplify notation, we relabel these
oriented graphs as G1,..., G, where
= 2r "2 90 )L 8. (7.29)
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We similarly relabel the oriented graphs Hj,, H3,,...,H;,, H3, as Hs1,...,H3, and
relabel Hy |, HY y, ..., H5 ., HE as Hs,..., Hs, in such a way that Hz; and Hj; are the
oriented graphs which we paired with G;. For each i we still use the notation F;, C; and

Vo,i in the usual way. Now (i) from Section 7.5.2 becomes
(i") da (x) > (1/2 — /e)pym/ where x has neighbours only in Cj, for all z € Vp;,

while (ii) and (iii) remain valid.

7.5.4 Adding skeleton walks to the G;

Note that all vertices (including the vertices of Vp ;) in each G; now have in- and outdegree

close to Bom/. In Section 7.5.5 our aim is to find a 7-regular oriented subgraph of G;, where
7= (1—1n)Bm’. (7.30)

However, this may not be possible: suppose for instance that Vp ; consists of a single vertex
x, F; consists of 2 cycles C and C’ and that all outneighbours of x lie on C' and all
inneighbours lie on C’. Then G; does not even contain a 1-factor. A similar problem arises
if for example V; consists of a single vertex x, F; consists of a single cycle C' = Vi ...V},
all outneighbours of z lie in the cluster V5 and all inneighbours in the cluster V5. Note that
in both situations, the edges between V;; and C; are not ‘well-distributed’” or ‘balanced’.
To overcome this problem, we add further edges to C; which will ‘balance out’ the edges
between C; and Vp; which we added previously. These edges will be part of the skeleton
walks which we define below. To motivate the definition of the skeleton walks it may be
helpful to consider the second example above: Suppose that we add an edge e from V; to
Vy. Then G; now has a 1-factor. In general, we cannot find such an edge, but it will turn
out that we can find a collection of a bounded number of edges fulfilling the same purpose.

A skeleton walk S in G with respect to G is a collection of distinct edges z1z2, 5 3,

.., ¥, 1%, and x 1 of G with the following properties:

e 21 € Vp,; and all vertices in V (S)\{z1} lie in C;.
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e Given some 2 < j < z, let V' € V(F;) denote the cluster in F; containing x; and let
C denote the cycle in F; containing V. Then T € V=, where V~ is the predecessor

of VonC.

The edges x5 3, ..., x,_;x, are referred to as the internal edges of S. We define z to be
the length of S.

Note that whenever S is a union of edge-disjoint skeleton walks and V is a cluster in
F;, then number of edges in S whose endpoint is in V' is the same as the number of edges
in § whose startpoint is in V7. As indicated above, this ‘balanced’ property will be crucial
when finding a 7-regular oriented subgraph of G; in Section 7.5.5.

The internal edges of each skeleton walk S with respect to G; will lie in the ‘random’
graph Hy chosen in Section 7.5.1. More precisely, each of these edges will lie in a ‘slice’
Hy; of Hy assigned to G;. We will now partition Hy into these ‘slices” Ha1,...,Hy,/. To
do this, recall that any edge (V},V},)r in Ry, corresponds to an e-regular pair of density
at least 708 in Ho. Here Vj, and Vj, are viewed as clusters in R,,, so |V}, | = |V},| = m.
Apply Lemma 7.10(i) to each such pair of clusters to find edge-disjoint oriented subgraphs
Hyi,...,Hy, of Hy so that for each Hy; all the edges (V},Vj,)r in Ry, correspond to
[e,60¢/L]-regular pairs with density at least (123 — 2¢)8/L > 1n23%/2L in Ha ;.

Recall that by (i) in Section 7.5.3 each vertex x € V{; has at least (1/2 —\/c)Bym’ > 7
outneighbours in C; and at least (1/2 — \/c)B1m’ inneighbours in C;. We pair 7 of these
outneighbours 1 with distinct inneighbours ~. For each of these T pairs 7, z~ we wish
to find a skeleton walk with respect to G; whose start edge is zz™ and whose end edge is
z~z. We denote the union of these 7 pairs za™, 2~ x of edges over all = € Vp; by 7.

In Section 7.5.3 we partitioned each cluster V' € V(F;) into subclusters V'’ and V. We
next show how to choose the skeleton walks for all those G; for which each edge in G; with
startpoint in Vp; has its endpoint in V' (and so each edge in G; with endpoint in Vj; has

startpoint in V"). The other case is similar, one only has to interchange V' and V".

Claim 7.24 We can find a set S; of 7|Voi| skeleton walks of length at most 20/v with

respect to Gy, one for each pair of edges in 7T;, such that S; has the following properties:
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(i) For each skeleton walk in S;, its internal edges all lie in Ho; and all these edges have

their startpoint in V" and endpoint in V'.
i1) Any two of the skeleton walks in S; are edge-disjoint.
i) Any two of the skeleton walks in S dge-disjoint

(iii) Everyy € V(C;) is incident to at most ¢'/°Bym/ edges belonging to the skeleton walks

Note that |S;| = |7;| = 7|Vo,| < 2¢8am/n by (7.20) and (7.30). To find S;, we will first
find so-called shadow skeleton walks (here the internal edges are edges of R,, instead of G).
More precisely, a shadow skeleton walk S’ with respect to G; is a collection of two edges
x1x2, ; x1 of G and z — 2 edges (X5 X3)k,, (X5 Xa)ky, -+, (X1 X))k, , of Ry, with the

following properties:
® x1x2, T, 1 is a pair in 7;.

e 23 € Xy, 7 € X and each Xj is a vertex of a cycle in F; and X is the predecessor

of X; on that cycle.

We refer to the edges (X5 X4)kg,- -, (X, _9X.—1)k._, as the internal edges of ', (X5 X3),
as the internal start edge and (X, X.)x, , as the internal end edge of S’. The length of
S’ s z.

Note that in the second condition we slightly abused the notation: as X is a cluster
in R,,, it only corresponds to a cluster in F; (which has size m’ and is a subcluster of the
one in R,,). However, in order to simplify our exposition, we will use the same notation for
a cluster in R, as for the cluster in F; corresponding to it.

Given a collection 8" of shadow skeleton walks (with respect to G;) we say an edge of

R, is bad if it is used at least

B .= Cl/4ﬁ2(m/)2/L

times as an internal edge in §’. We say an edge from V to U in Ry, is (V,+)-bad if it is
used at least B times as an internal start edge in the shadow skeleton walks of §’. An edge

from W to V in R, is (V,—)-bad if it is used at least B times as an internal end edge in
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the shadow skeleton walks of &’. We say an edge in R,, is very bad if it is used at least
10B times as an edge in S'.

To prove Claim 7.24 we will first prove the following result.

Claim 7.25 We can find a collection S; of T|Vy | shadow skeleton walks with respect to
G;, one for each of pair in T;, and each of length at most 20/, such that no edge in Ry, is

very bad.

In order to find the internal edges of our desired shadow skeleton walks in Claim 7.25 we
will have to find certain collections of edges in a special oriented subgraph of R. One can
view these as ‘skeletons’ of the shifted walks defined in Section 7.4.5.

Suppose R’ is a digraph and F' a collection of vertex-disjoint cycles with V(F) = V(R’)
(note F' doesn’t have to lie in R’ here). Suppose V,W € V(R'). A V-W skeleton walk S in

R’ with respect to F of length k + 1 is a collection of edges
VVi, ViV, Vy Vs, ..., Vi Vi and Vi W

in R’ with the following properties:
e If V; belongs to the cluster C' on F' then V,~ denotes the predecessor of V' on C;
o V& {Vi, Vo, ... Vi, Vi, Vo, Vi L

We say a V-W skeleton walk S in strict if either S has length 1 or
W& {Vi,Vo,..., V., Vi",Vy ..., V" }. Note that if V' = W then a V-W skeleton walk S

must be strict.

Claim 7.26 Suppose that R°® is an oriented subgraph of R where V(R®) =L > (1 —~)L
and F is a collection of vertex-disjoint cycles such that V(F) = V(R®). Let B be a set of

at most yL' /8 wertices in R°. Suppose that for all V € V(R°)\B,

A5 (V) > (3/8 + )L (7.31)
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Given any V,W € V(R®°)\B there ezists a strict V-W skeleton walk S in R® with respect

to F of length at most 2/~ such that no edge of S is incident to a vertezx in B.

Proof. We first consider the case when V' # W. Let R°\B denote the oriented subgraph

of R® induced by V(R°®)\B. By (7.31) we have that
0°(R°\B) > (3/8 +7)L' — |B| > (3/8 +~/2)L"

where L” := |R°\B| = L' — |B| > (1 —~/8)L’. Thus by Lemma 7.15 we have that given any
non-empty X C V(R®°)\B and |X| < (1 —~/2)L" then

[N

o s(X)] > |X] +9L" /2, (7.32)

Let X; denote the set of vertices V' € V(R®)\B where V' # V for which there is a V-V’
skeleton walk S’ of length at most 7 for which no edge in S’ is incident to a vertex in B,
and for which W doesn’t play the role of one of the V., in S’ (i.e. W does not play the role
of the startpoint of any of the edges in 7).

So X; = N,

RQ\B(V) and hence | X1| > (3/8 +v/2)L". Let X, denote the set of those

vertices which are predecessors of the vertices in X; on the cycles from F' but which do not

lie in BU{V,W}. Thus | X, | > |X;| — |B] — 2. Note that
Xip = (NHXD) UX)\ (BU{VY). (7.33)

Suppose that |X;| < (1 —~/2)L”. If | X; | > 0 then since |X; | < |X;| < (1 —~/2)L" by

(7.32) we have that
INHO) 2 X +L"/2 2 X — |Bl =2+ L"j2 > X 4L A+ 1. (734)

Since |X1| > yL’ we will have that |X;| > L’ for all ¢ and so |X; | > |X;| —|B| —2 > 0.

Thus (7.34) holds for all ¢ > 1 such that | X;| < (1—~/2)L". So for such i, (7.33) and (7.34)
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imply that
[ Xit1] 2 [Xi| +9L"/4+1 = B =1 = |X;] +~L"/8.

Since |X1| > (3/8 +~/2)L", for i* := |1/v] — 1 we must have that | X;«| > (1 —~/2)L".
Thus |X;.| > (1—~/2)L" — |B|—2 > (1—~)L". Since W has at least (3/8++/2)L" > ~L"
inneighbours in R°\B, W € N*(X.). So there exits a V-W skeleton walk S in R°® of
length at most 1/ which is disjoint from B and for which W only appears as the endpoint
of an edge in S. If we restrict S to all those edges up to and including the first edge on S
containing W then we see that this forms our desired strict V-W skeleton walk.

In the case when V = W we choose any W' € V(R®)\B such that W’ # V. As above
we can choose strict V-W’ and strict W’-V skeleton walks S7 and Sy of length at most 1/~

which are both disjoint from B. S1U.Ss gives us our desired strict V-W skeleton walk. (]

Proof of Claim 7.25. Suppose that we have already found ¢ < 7|Vp,| of our desired
shadow skeleton walks for G;. Let xz™,x~2 be a pair in 7; for which we have yet to
define a shadow skeleton walk. We will now find such a shadow skeleton walk S’. Suppose
2zt € VT and 2= € W, where VT, W~ € V(F;). Let V denote the predecessor of V' in
F; and W the successor of W~ in F;.

Our first aim is to find a strict V-W skeleton walk in R which will be used to define
the internal edges of S’. Recall that R, is the oriented spanning subgraph of R obtained by
applying Lemma 7.14 to R with parameter d’. From Lemma 7.14 we know that 6°(R)) >
(3/8 +7/3)L. Let R,,; denote the oriented subgraph of R, induced by the clusters of F;.

Since F; contains all but at most cL of the clusters of R;, we have that |R,, ;| > (1—c¢)L and
0°(Ry5) = (3/8 +7/3)L —cL > (3/8 +~/4)L.

Given any edge Vg, Vs, € V(R ;) there are at least [d'/3] edges (V, Va, )k in Ry, asso-

ciated with it. By definition of G; (condition (ii) in Section 7.5.2), each y € V(C;) has at
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most /cB1m’ inneighbours in Vj; in G;. So the number of (V,+)-bad edges is at most

VB JaB(m? AL man L (7.35)

B 61/452 ) /L 52 — ﬁ

We remove an edge VV,, from R’O’i if all edges (VV,,)r in R,, associated with V'V, are

(V,+)-bad. By (7.35) we are removing at most

(/12/8) / (2/8)) < 20t

edges sent out by V in Rj ;. Thus,

20/

d;:m(V) > (3/8 +~/4)L — > (3/8 +v/5)L. (7.36)

We remove an edge V,, W from R, , if all edges (V,, W) in Ry, associated with V,, W are

0,1

(W, —)-bad. A similar argument as above shows that
d}_%’i(W) > (3/8+/5)L. (7.37)
Further we now have that for all Vi, € V(R )\{V, W},
Ty (Vo) > (3/8 +7/4)L ~
and

dp (V) d;, (W) > (3/8+y/4)L — 1. (7.38)

Since each of the ¢ shadow skeleton walks already defined have length at most 20/, the

number of bad edges in R, is at most

207 |Vo.il /v (7.202(7.30) 40Bym’cn - 45¢3/48, L2 (7. 28) 45c3/4 1,2
B Ty (m/)?/L V6 DA

We say a cluster V,, in R! . is bad if at least vd'L/(403) edges incident to V,, in R, are

0,1
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bad. Thus the number of bad vertices in Ry ; is at most

90¢3/4L?/(v3)  3600c*4L < 0p

VLjo0p) Az T
Let B denote the set of all bad vertices in R, ;. So |B| < yOL. Given an edge V,, V,, that
is disjoint from the clusters V and W we remove it from R, ; if all edges (Vo Va,)r in Ry

associated with V;, V,, are bad. Thus if V,, € B we have removed at most

vd'L/(405)

@5 =

edges incident to V,, in R, ;. Hence, we have that for all V,, € V(R,, ,)\(BU{V,W}),
dﬁ;yi(Val) > (3/8 4 ~/4)L — 2 —~vL/20 > (3/8 +~/6)L. (7.39)
So (7.36), (7.37), (7.38) and (7.39) imply that
Ty (V) 2 (3/8+7/6)L

for all V,, € V(R ;)\B.
Thus we can apply Claim 7.26 to obtain a strict V-W skeleton walk S in R/ . with

0,1

respect to F; of length at most 12/ that avoids B. Suppose S consists of the edges
VVA, Vi Va, Vs Va,..., Vo Vs and V, W

Then by definition of R;,; there is an edge (V'V1)g, in Ry, that is not (V, +)-bad. Similarly

there is an edge (V, W)k, in Ry, that is not (W, —)-bad. Further, given any 2 < s’ < s,

s+1
there exists an edge (V,_, V)i, in R, which is not bad. (Note that this follows from the
definition of Rfm- and since V| Vi is disjoint from V' and W.) The edges

(Vvl)kl’ (V17V2)k2’ (V27V3)k3’ AR (Vsilvs)ks and (Vs_W)k

s+1
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together with 2™, 2~ yield our desired shadow skeleton walk. We repeat this process
until we have our collection S; of skeleton shadow walks. By construction no edge in R,
plays the role of an internal start edge in S; more than B times, the role of an internal end
edge more than B times, and the role of an internal edge more than B times. So no edge

in R,, is very bad, as desired. O

We now use Claim 7.25 to prove Claim 7.24.

Proof of Claim 7.24. We apply Claim 7.25 to obtain a collection S of shadow skeleton
walks. We will replace each edge of R, in these shadow skeleton walks with a distinct edge
of Hj; to obtain our desired collection S; of skeleton walks.

Recall that each edge (VW) in R, corresponds to an [, 63/ L]-regular pair of density
at least 723%/2L in Hy,;. Thus in Hy; the edges from V" to W’ induce a [3e,12¢3/L]-
regular pair of density di > 123%/3L. (Here V', V" and W', W" are the partitions of V and
W chosen in Section 7.5.3.) Let dgy := 80B/(m’/2)? and note that dy < d;. So we can now
apply Lemma 7.13 to (V”,W')p, , to obtain a subgraph Hy ,[V", W] with maximum degree
at most dom’/2 and at least do(m’/2)?/8 = 10B edges. We do this for all those edges in
R,, which are used in a shadow skeleton walk in S.

Since no edge in R, is very bad, for each S’ € S we can replace an edge (VW) in S’
with a distinct edge e from V" to W’ lying in Hy ,[V", W’]. Thus we obtain a collection
S, of skeleton walks which satisfy properties (i) and (ii) of Claim 7.24. Note that by the
construction of S; every vertex y € V(C;) is incident to at most dom/L/f < ¢'/°Bym’ /2
edges which play the role of an internal edge in a skeleton walk in S;. Condition (ii) in
Section 7.5.2 implies that y is incident to at most 2v/cBim’ edges in 7;. So in total y is
incident to at most ¢!/ SBam’ /2 + 2y/cBim! < /5 Bym/ edges of the skeleton walks in S;.

Hence (iii) and thus the entire claim is satisfied. O

We now add the edges of the skeleton walks in S; to G;. Moreover, for each x € V; we

delete all those edges at & which do not lie in a skeleton walk in ;.
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7.5.5 Almost decomposing the G; into 1-factors

Our aim in this section is to find a suitable collection of 1-factors in each G; which together
cover almost all the edges of GG;. In order to do this, we first choose a T-regular spanning
oriented subgraph G} of G; and then apply Lemma 7.19 to G7.

We will refer to all those edges in GG; which lie in a skeleton walk in S; as red, and all
other edges in G; as white. Given V € V(F;) and z € V, we denote by N,!(z) the set of
all those vertices which receive a white edge from z in G;. Similarly we denote by N (x)
the set of all those vertices which send out a white edge to x in G;. So N;f (z) C V' and
N, (z) C V~, where V' and V~ are the successor and the predecessor of V in F;. Note

that G; has the following properties:

(1) da (x) = 7 for each x € Vp,;. Moreover, x does not have any in- or outneighbours in

Vo,i-
() Every path in G; consisting of two red edges has its midpoint in Vj ;.

(ag) For each (VjV]Jr)k € E(F;) the white edges in G; from V; to V}Jr induce a (74, 3,)-

super-regular pair (V}, V}+)Gi-

(og) Every vertex u € V(C;) receives at most ¢'/°fym’ red edges and sends out at most

/5 Bym/ red edges in G;.

(as) In total, the vertices in G; lying in a cluster V; € V(F;) send out the same number of

red edges as the vertices in Vj+ receive.

In order to find our 7-regular spanning oriented subgraph of G;, consider any edge (V; V]+) k€
E(F;). Given any ug € Vj, let 2y denote the number of red edges sent out by u, in G;.
Similarly given any v, € VjJr, let yy denote the number of red edges received by vy in Gj.

By (a4) we have that z;,y, < ¢'/°Bym’ and by (a5) we have that

Swe= > e

up€Vj szVjJF
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Thus we can apply Lemma 7.18 to obtain an oriented spanning subgraph of (V;, V}JF)GZ. in
which each uy has outdegree 7 — xy and each vy has indegree 7 — y,. We apply Lemma 7.18
to each (V V]Jr) i € E(F;). The union of all these oriented subgraphs together with the red
edges in G; clearly yield a T-regular oriented subgraph G} of G;, as desired.

We will use the following claim to almost decompose G} into 1-factors with certain

useful properties.

Claim 7.27 Let G* be a spanning p-reqular oriented subgraph of G; where p > n'Bom/.

Then G* contains a 1-factor F* with the following properties:

1/5

(i) F* contains at most n/(logn)'/° cycles.

(i) For each V; € V(F;), F* contains at most ¢'m’ red edges incident to vertices in V.

(ili) Let Fr,, denote the set of vertices which are incident to a red edge in F*. Then

|E,

red

N Nﬁgl(x)\ < 2dn3Bm! for each x € V(C;).

(iv) |F*

red

N NZE(z)| < 2 Bom’ for each x € V(C;).

Proof. A direct application of Lemma 7.19 to G* proves the claim. Indeed, we apply
the lemma with 6; = (c'/°Bym/)/n, 03 = ¢, 65 = p/n > (1 Bam’) /n and with the oriented
spanning subgraph of G* whose edge set consists precisely of the red edges in G* playing the
role of H. Furthermore, the clusters in V(F;) together with the sets N (x) and Nﬁg’i (x)

(for each x € V(C;)) play the role of the A;. O

Repeatedly applying Claim 7.27 we obtain edge-disjoint 1-factors Fjq,...,F;, of G;

satisfying conditions (i)—(iv) of the claim, where
= (1—2n")Bam/. (7.40)

Our aim is now to transform each of the F; ; into a Hamilton cycle using the edges of H3;,

H4 and H57i.
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7.5.6 Merging the cycles in F;; into a bounded number of cycles

Let Dy, ..., D¢ denote the cycles in F; and define Vz(Dy) to be the set of vertices in G;
which lie in clusters in the cycle Dy. In this subsection, for each ¢ and j we will merge the
cycles in F; ; to obtain a 1-factor FZ-’J- consisting of at most & cycles.

Recall from Section 7.5.5 that we call the edges of G; which lie on a skeleton walk in S;
red and the non-red edges of G; white. We call the edges of the ‘random’ oriented graph
H3; defined in Section 7.5.1 green. (Recall that Hj; was modified in Section 7.5.3.) We
will use the edges from Hs; to obtain 1-factors Fz‘l,l’ .. an',,w for each G; with the following

properties:
(B1) Ifi#i or j#j then Fj; and F ;+ are edge-disjoint.

(B2) For each V € V(F;) all x € V which send out a white edge in Fj; lie on the same

cycle C in Fj ;.

(Bs) |E(F; )\E(Fi ;)| < 6n/(logn)'/> for all i and j. Moreover, E(F];)\E(Fj;) consists

of green and white edges only.
(B1) For every edge in F;; both endvertices lie on the same cycle in F] ;.
(B5) All the red edges in F; still lie in F} ;.

Before showing the existence of 1-factors satisfying (81)—(8s), we will derive two further
properties (3s) and (f7) from them which we will use in the next subsection. So suppose
that [}, is a 1-factor satisfying the above conditions. Consider any cluster V € V(F;).
Claim 7.27(ii) implies that F; ; contains at most ¢'m’ red edges with startpoint in V. So
the cycle C' in Fi” ; which contains all vertices z € V' sending out a white edge in F; ; must
contain at least (1 — ¢’)m’ such vertices x. In particular there are at least (1 —¢)m’ > ¢'m/
vertices y € V't which lie on C. So some of these vertices y send out a white edge in F; ;.
But by (f2) this means that C contains all those vertices y € V™ which send out a white
edge in Fj ;. Repeating this argument shows that C' contains all vertices in V' (Dj) which

send out a white edge in F; ; (here Dy, is the cycle on F; that contains V). Furthermore,
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by property (84), C contains all vertices in V' (Dj) which receive a white edge in F; ;. By
property (a2) in Section 7.5.5 no vertex of C; is both a startpoint of a red edge in G; and
an endpoint of a red edge in G;. So this implies that all vertices in Viz(Dy) lie on C. Thus
if we obtain 1-factors FZ-’J, e 7Fz‘/,¢ satisfying (1)—(05) then the following conditions also
hold:

(B) For each j =1,...,1 and each k = 1,...,¢ all the vertices in Vz(Dy) lie on the same

cycle in Fj ;.

(B7) For each V € V(F;) and each j = 1,...,9 at most ¢'m’ vertices in V' lie on a red edge

: !
in Fi,j'

(Condition (F7) follows from Claim 7.27(ii) and the ‘moreover’ part of (33).)

For every i, we will define the 1-factors F;‘/,17"'7F1i/,w sequentially. Initially, we let
F]; = Fij. So the I satisfy all conditions except (32). Next, we describe how to modify
F | so that it also satisfies (32).

Recall from Section 7.5.3 that for each edge (VV*) of F; the pair (V,V ')y, is
(v/2,m38)-super-regular and thus 6% (Hs;) > (138 — v&)m' > n3Bm’/2. Furthermore,
whenever V' € V(F;) and « € V, the outneighbourhood of x in Hj; lies in VT and the
inneighbourhood of = in H3; lies in V™. Let H?’)Z denote the oriented spanning subgraph
of H3; whose edge set consists of those edges xy of Hjz; for which x is not a startpoint of a
red edge in our current 1-factor Fi/,l and y is not an endpoint of a red edge in FZ-’J. Consider
a white edge zy in F},. Claim 7.27(iii) implies that x sends out most 2¢'n3m’ green edges
rz in Hjz; which do not lie in Hj,. So d};é,i (x) > (1/2 = 2d)n3Bm/. Similarly, dl}é,i (y) >
(v) =0.) Thus

(1/2 =2 )nspm’. (However, if uv is a red edge in F}, then dj,, (u)=dy,
) 3,i 3,i

we have the following properties of Hs; and Héz
(71) For each V € V(F;) all the edges in Hs; sent out by vertices in V go to V.
(v2) If 2y is a white edge in F}; then d}_}é’i (x), d;{él(y) > nsBm’ /3.

(v3) Consider any V € V(F;). Let S C V and T C VT be such that |S|,|T| > em'.
Then 6H37i(S, T) > n3B|S||T|/2.

138



If Fi/,l does not satisfy (f2), then it contains cycles C' # C* such that there is a cluster
V € V(F;) and white edges zy on C and z*y* on C* with x,z* € V and y,y* € V.

We have 3 cases to consider. Firstly, we may have a green edge xz € F(H. :’“) such that
z lies on a cycle C' # C'in F,. Then z € V" and z is the endpoint of a white edge in F},
(by (v1) and the definition of Hy ;). Secondly, there may be a green edge wy* € E(Hj ;)
such that w lies on a cycle C' # C* in F];. So here w € V' is the startpoint of a white
edge in Fi/,l' If neither of these cases hold, then Ngéz(x) lies on C' and NI}é,i(y*) lies on

C*. Since dzé,i (x),d;,, (y*) > nsBm’/3 by (y2), we can use (y3) to find a green edge 'y’

Hy,
from ngé,i (y*) to Ngéz(:c) Then o’ € V, y € VT, 2/ is the startpoint of a white edge in
F/, and y' is the endpoint of a white edge in ;.

We will only consider the first of these 3 cases. The other cases can be dealt with
analogously: In the second case w plays the role of x and y* plays the role of z. In the
third case 2’ plays the role of z and 3’ plays the role of z.

So let us assume that the first case holds, i.e. there is a green edge vz € E(Hj;) such
that z lies on a cycle C” # C in F}; and z lies on a white edge wz on C’. Let P denote the
directed path (CUC"U{zz})\{zy,wz} from y € VT to w € V. Suppose that the endpoint
w of P lies on a green edge wv € E(Hél) such that v lies outside P. Then v € VT is the
endpoint of a white edge uv lying on the cycle C” in Fj; which contains v. We extend
P by replacing P and C” with (P U C” U {wv})\{uv}. We make similar extensions if the
startpoint y of P has an inneighbour in H. él outside P. We repeat this ‘extension’ procedure
as long as we can. Let P denote the path obtained in this way, say P joins a € VT to
b € V. Note that a must be the endpoint of a white edge in Fi/,l and b the startpoint of a
white edge in F; ;.

We will now apply a ‘rotation’ procedure to close P into a cycle. By (72) a has at least
n3Bm’ /3 inneighbours in Hj ; and b has at least 3 m’/3 outneighbours in Hj ; and all these
in- and outneighbours lie on P since we could not extend P any further. Let X := N I;é (a)
and Y := Ngéz(b) So |X|,|Y| > n3Bm//3 and X CV and Y C VT by (y1). Moreover,
whenever ¢ € X and ¢t is the successor of ¢ on P, then either cc™ was a white edge in Fl-’y1

or cct € E(Hj ;). Thus in both cases ¢t € V*. So the set Xt of successors in P of all the
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vertices in X lies in V1 and no vertex in X sends out a red edge in P. Similarly one can
show that the set Y~ of predecessors in P of all the vertices in Y lies in V' and no vertex
in Y receives a red edge in P. Together with (y3) this shows that we can apply Lemma 7.22
with P U Hs; playing the role of G and V' playing the role of V and V playing the role
of U to obtain a cycle C' containing precisely the vertices of P such that |E(C)\E(P)| < 5,
E(C)\E(P) C E(Hs;) and such that E(P)\E(C) consists of edges from X to X+ and
edges from Y~ to Y. Thus E(P)\E(C) contains no red edges. Replacing P with C' gives
us a l-factor (which we still call F} ;) with fewer cycles. Also note that if the number of
cycles is reduced by ¢, then we use at most £+ 5 < 6/ edges in H3; to achieve this. So Fi” j
still satisfies all requirements with the possible exception of (33). If it still does not satisfy
(B2), we will repeatedly apply this ‘rotation-extension’ procedure until the current 1-factor
FZ-C1 also satisfies (32). However, we need to be careful since we do not want to use edges of
H3j ; several times in this process. Simply deleting the edges we use may not work as (y2)
might fail later on (when we will repeat the above process for Fi” ; with j > 1).

So each time we modify FZ-’J, we also modify Hgs; as follows. All the edges from Hj;
which are used in Fi/,l are removed from H3 ;. All the edges which are removed from Fi’71 in
the rotation-extension procedure are added to Hs;. (Note that by (85) we never add red
edges to H3;.) When we refer to H3;, we always mean the ‘current’ version of Hs;, not
the original one. Furthermore, at every step we still refer to an edge of H3; as green, even
if initially the edge did not lie in Hj3 ;. Similarly at every step we refer to the non-red edges
of our current 1-factor as white, even if initially they belonged to Hj ;.

Note that if we added a green edge xz into FZ-’J, then z lost an outneighbour in Hs;,
namely z. However, ((5) implies that we also moved some (white) edge xy of FZ-’71 to Hs;,
where y lies in the same cluster V' € V(F;) as z (here z € V). So we still have that
6T (Hs,) > n3Bm//3. Similarly, at any stage 6~ (Hs;) > nsfm’/3. When Hj; is modified,
then H?’)Z is modified accordingly. This will occur if we add some white edges to H3; whose

start or endpoint lies on a red edge in FZ-’J. However, Claim 7.27(iv) implies that at any
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stage we still have
d;é,i (@), dyy (y) > (1/2 = 2c)mzBm’ — 2¢ Bam” > n38m/ /3.
Also note that by (fs), the modified version of Hs; still satisfies
ety (S, T) > (138 — VE)IS||IT| = 6n/(logn)'/® > n3|S||T|/2. (741)

So H3; and Héz will satisfy (v1)—(7y3) throughout and thus the above argument still works.

So after at most n/(logn)'/?

steps F; will also satisfy (32).

Suppose that for some 1 < j < 1 we have found 1-factors Fj,,..., F]; ; satisfying
(B1)~(B5). We can now carry out the rotation-extension procedure for Fy ; in the same way
as for Fl-’y1 until FZ-’7 ; also satisfies (B2). In the construction of Fi” ;» we do not use the original

Hs;, but the modified version obtained in the construction of Fy We then introduce

i,j—1°
the oriented spanning subgraph Héz of Hs; similarly as before (but with respect to the
current 1-factor FZ-’7 j). Then all the above bounds on these graphs still hold, except that in
the middle expression of (7.41) we multiply the term 6n/(logn)'/5 by j to account for the

total number of edges removed from H3 ; so far. But this does not affect the next inequality.

So eventually, all the F ; will satisfy (31)—(8s)-

7.5.7 Merging the cycles in F}; to obtain Hamilton cycles

Our final aim is to piece together the cycles in Fi’yj, for each ¢ and j, to obtain edge-disjoint

Hamilton cycles of G. Since we have ¢ 1-factors Fi’vl, . 7Fz‘/,¢ for each Gj, in total we will
find
(7.29),(7.40) (7.28)
grt U= (1 =2n")Bom'2(c =) L/B = 2(1 =21 ) (e = ) (1/2 = ")m'L
(7.17)
> (-

edge-disjoint Hamilton cycles of GG, as desired.

Recall that R/ was defined in Section 7.5.1. Given any 4, apply Lemma 7.23 to obtain
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a closed shifted walk
W; = UfLDiUlU;DéUg ... U;r_lD;_lUs_lU;rD"SUSUfr

in R/ with respect to F; such that each cycle in F; is traversed at most 2L/v times. So
{Df,...,D.} is the set of all cycles in F;, U,j is the successor of Uy, on D) and U;.CU/,;F_H €

E(R)) for each k = 1,...,s (where Usyq := Uy). Moreover,
s < 2L2/y. (7.42)

For each 1-factor Fi” ; we will now use the edges of Hy and Hs; to obtain a Hamilton cycle

C;,; with the following properties:
(i) If i #4' or j # j' then C;; and Cy j» are edge-disjoint.

(i) E(C;;) consists of edges from F,

2,7

Hy and Hs; only.
(iii) There are at most 2L?/v edges from Hy lying in C; ;.
(iv) There are at most 2L% /vy + 5 edges from Hj; lying in C; ;.

For each 7, we will use W; to ‘guide’ us how to merge the cycles in FZ-’7 ; into the Hamilton
cycle C; ;. Suppose that we have already defined ¢ < 1’ of the Hamilton cycles Cy j
satisfying (i)-(iv), but have yet to define C; ;. We remove all those edges which have been
used in these ¢ Hamilton cycles from both Hy and Hs ;.

For each V' € V(F;), we denote by V,, the subcluster of V' containing all those vertices
which do not lie on a red edge in FZ-’7 ;- We refer to Vi, as the white subcluster of V. Thus
[Vl = (1 — ¢)m/ by property (£7) in Section 7.5.6. Note that the outneighbours of the
vertices in V, on FZ-C j all lie in V* while their inneighbours lie in V. For each k =1,...,s
we will denote the white subcluster of a cluster Uy by Uy ,,. We use similar notation for
U and U, .

Consider any UV € E(R.). Recall that U and V are viewed as clusters of size m in

R/, but when considering F; we are in fact considering subclusters of U and V of size m/.
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When viewed as clusters in R, UV initially corresponded to an e-regular pair of density
at least n4d’ in Hy. Thus when viewed as clusters in F;, UV initially corresponded to a
2e-regular pair of density at least n4d’/2 in Hy. Moreover, initially the edges from U, to
Vi in Hy induce a 3e-regular pair of density at least n4d’/3. However, we have removed all
the edges lying in the ¢ Hamilton cycles Cy j which we have defined already. Property (iii)
implies that we have removed at most 2L2¢/y < 2L?n /v edges from H,. Thus we have the

following property:

(01) Given any UV € E(R.), let S C Uy, T C V,, be such that |S|,|T| > 3em/. Then
er, (S, T) 2 md'[S||T|/4.

When constructing C; ; we will remove at most 2L% /v more edges from Hy. But since (d;)
is far from being tight, it will hold throughout the argument below. Similarly, the initial

definition of Hj; (c.f. Section 7.5.3) and (iv) together imply the following property:

(82) Consider any edge VV*t € E(F;). Let S CV and T C V' be such that |S|,|T| >
vem'. Then eg, (S, T) > ns3|S||T|/2.

We now construct C;; from Fj;. Condition (fs) in Section 7.5.6 implies that, for each
k=1,...,s, every vertex in Vg(D},) lies on the same cycle, C}, say, in ﬂ,,j- Let z1 € Uy
be such that 1 has at least nsd’ |U2Jr wl/4 > nad'm’ /5 outneighbours in Hy which lie in U;f w-
By (61) all but at most 3em/ vertices in Uj ,, have this property. Note that the outneighbour
in F}; of any such vertex lies in Uit However, by (d2) all but at most \/em’ vertices in U;"
have at least 753|U1 |/2 > ns8m’/3 inneighbours in Hs; which lie in Uy ,,. Thus we can
choose x; with the additional property that its outneighbour y; € U1+ in Fi/,j has at least
nsBm’ /3 inneighbours in Hs; which lie in Uy .

Let P denote the directed path C| — z1y; from y; to z1. We now have two cases to

consider.
Case 1. C] # Cs.

Note that z1 has at least ngd'm’/5 — ¢'m’ > n4d’'m’ /6 outneighbours v/, € U{w in Hy such

that the inneighbour of 5 in F} ; lies in Us,,. However, by (d1) all but at most 3em/ vertices
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in Uy, have at least nysd'm’/5 outneighbours in Hy which lie in Ug’r - Thus we can choose
an outneighbour ) € UQJ’r w of ¥1 in Hy such that the inneighbour x5 of y5 in Fj; lies in
Uz and o4 has at least nsd'm’/5 outneighbours in Hy which lie in Ugf - We extend P by
replacing it with (P U C) U {x1y5})\{zhv5}-

Case 2. C] = ().

In this case the vertices in V(D)) already lie on P. We will use the following claim to

modify P.

Claim 7.28 There is a vertex ys € U;fw such that:

o 11ys € E(Hy).

The predecessor xo of ya on P lies in Usy,.

There is an edge x2ys in Hs; such that yy € U;fw and yo precedes yh, on P (but need

not be its immediate predecessor).

The predecessor x5 of yy on P lies in U ,.

xh has at least nyd'm'/5 outneighbours in Hy which lie in U;w.

Y1 Y2 yh x1

Figure 7.2: The modified path P in Case 2

Proof. Since x; has at least nyd'm//5 outneighbours in Hy which lie in U{ e at least
nad'm’ /5 — m’ — 3em’ > nud'm’ /6 of these outneighbours y are such that the predecessor
xz of y on P lies in Uy, and at least nud'm’/5 outneighbours of x in Hy lie in U; - This
follows since all such vertices y have their predecessor on P lying in Us (since y € U{ w)
since |Uz | > (1 — ¢)m' and since by (6;) all but at most 3em’ vertices in U, have at

least ny4d'm’/5 outneighbours in Ugf .- Let Ys denote the set of all such vertices y, and
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let Xy denote the set of all such vertices z. So |Xa| = |Ya| > nad'm//6, Xo C Usyy,
Y, C U{w N N§4 (x1). Let X5 denote the set of the first nyd'm’/12 vertices in X3 on P and
Y5 the set of the last nyd'm’/12 vertices in Y2 on P. Then (d2) implies the existence of an

edge xayh from X3 to Y5 in Hs ;. Then the successor ya of x9 on P satisfies the claim. O

Let x9,y2, 25 and y) be as in Claim 7.28. We modify P by replacing P with

(P U {z1y2, 22y5})\{z2y2, 2515}

(see Figure 7.2).

In either of the above cases we obtain a path P from y; to some vertex zf, € Us,, which
has at least nyd'm’/5 outneighbours in Hy lying in Ug’r »- We can repeat the above process:
If C% # C1,C4 then we extend P as in Case 1. If C§ = C] or C§ = CY then we modify P
as in Case 2. In both cases we obtain a new path P which starts in y; and ends in some
zhy € Us,, that has at least nad'm’/5 outneighbours in Hy lying in U, I »- We can continue
this process, for each C}, in turn, until we obtain a path P which contains all the vertices in
Ci,...,C! (and thus all the vertices in G), starts in y; and ends in some z, € Uy, having

at least n4d’'m’/5 outneighbours in H4 which lie in Uf -

Claim 7.29 There is a vertez vy € U] \ {y1} such that:

ryy) € E(Hy).

The predecessor x| of yj on P lies in Uy .

There is an edge x|y} in Hs; such that y] € Uffw and yy precedes yy on P.

The predecessor z of ¥ on P lies in Uy .
1 1 ,

x| has at least nsm’ /3 outneighbours in Hs; which lie in Uffw.

Proof. The proof is almost identical to that of Claim 7.28 except that we apply (d2) to

ensure that = has at least 754m’/3 outneighbours in Hy; which lie in Uff w- O
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Let z7, vy}, 2] and y{ be as in Claim 7.29. We modify P by replacing it with the path
(P U{alyt, 2y D\ {1y, 2w’}

from y; to . So P is a Hamilton path in G which is edge-disjoint from the ¢ Hamilton
cycles Cy jr already defined. In each of the s steps in our construction of P we have added
at most one edge from each of Hy and Hj;. So by (7.42) P contains at most 2L% /7y edges
from Hy and at most 2L%/v edges from Hj,;. All other edges of P lie in FZ-’7 ;- Recall that
y1 has at least n54m’/3 inneighbours in Hp; which lie in Uy ,, and 2/ has at least ns8m’/3
outneighbours in Hs; which lie in Uf:w. Thus we can apply Lemma 7.22 to P U Hs; with
U1+ playing the role of V' and U; playing the role of U to obtain a Hamilton cycle C; ; in G
where |E(C; ;)\E(P)| < 5. By construction, C; ; satisfies (i)-(iv). Thus we can indeed find

(v — v)n Hamilton cycles in G, as desired.

7.6 Proof of Conjecture 7.6 for large tournaments

In this section we prove Conjecture 7.6 for sufficiently large regular tournaments. The

following observation of Keevash and Sudakov [42] will be useful for this.

Proposition 7.30 Let 0 < ¢ < 107 and let G be an oriented graph on n vertices such
that 8°(G) > (1/2 — c¢)n. Then for any (not necessarily disjoint) S,T C V(G) of size at

least (1/2 — ¢)n there are at least n?/60 directed edges from S to T.

We now show that Theorem 5.13 implies Conjecture 7.6 for sufficiently large regular

tournaments.

Theorem 7.31 There exists an integer ng such that the following holds. Given any regular
tournament G on n > ng vertices and a set A of less than (n—1)/2 edges of G, then G — A

contains a Hamilton cycle.

Proof. Let 0 < v < 7 < n < 1. It is not difficult to show that G is a robust (v, 7)-
outexpander. Indeed, if S C V(G) and (1/2+7)n < |S| < (1—7)n then RN:G(S) =V(G).
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If Tn < |S| < (1/2 — 7)n then it is easy to see that \RN:G(S)] > (1—=7)n/2>|S|+vn.
So consider the case when (1/2 — 7)n < [S| < (1/2 4+ 7)n. Suppose ]RN:G(S)\ < |8+
vn < (1/2 + 27)n. Then by Proposition 7.30 there are at least n?/60 directed edges from
S to V(G)\RN:G(S). By definition each vertex x € V(G)\RN:G(S) has less than vn
inneighbours in S, a contradiction. So ]RN:G(S)\ > |S| + vn as desired.

Since |A| < (n —1)/2 and n is sufficiently large, G — A must be a robust (v/2,7)-
outexpander. Thus if 6°(G — A) > nn then by Theorem 5.13, G — A contains a Hamilton
cycle.

If 6°(G — A) < nn then there exists precisely one vertex € V(G — A) such that
either dg_ alx) < mnor di_,(x) < nn. Without loss of generality we may assume that
df_,(z) < mn. Note that d_,(z) > 1 and let y € N/ _,(z). Let G’ be the digraph
obtained from G — A by removing x and y from G — A and adding a new vertex z so that
Ngi(2) == NZ_4(y) and Ng,(2) := Ng_,(z). So 6°%(G') > nn—2 > nn/2 and G’ is a
robust (v/3,27)-outexpander. Thus by Theorem 5.13 G’ contains a Hamilton cycle which

corresponds to one in G. U
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