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Abstract

In the first part of this thesis, we construct a function that lies in Lp(Rd) for every

p ∈ (1,∞] and whose Fourier transform has no Lebesgue points in a Cantor set of

full Hausdorff dimension. We apply Kovač’s maximal restriction principle to show

that the same full-dimensional set is avoided by any Borel measure satisfying a

nontrivial Fourier restriction theorem. As a consequence of a near-optimal fractal

restriction theorem of Łaba and Wang, we hence prove that no previously unknown

relations hold between the Hausdorff dimension of a set and the range of valid

Fourier restriction exponents for measures supported in the set.

In the second part, we prove sharp local and global variation bounds for the

centred Hardy–Littlewood maximal functions of indicator functions in one dimen-

sion, establishing that they are variation diminishing. We characterise maximisers,

treat both the continuous and discrete settings and extend our results to a larger

class of functions. This is partial progress towards proving a conjecture of Kurka

and Bober, Carneiro, Hughes and Pierce.





獻給子慧





Acknowledgements

Thank you, Christoph and Felix, for getting me on track.

Ben, Felix, Felix, Gianmarco, Haiyang, Jennifer, Joaquín, Julian, Lukas, Markus,

Max, Samantha, Sergej, Soodeh, Stefanos, Tejas, Willem, Yahya and Zihui, for

sharing part of the journey. Michael and Nathan, not on this particular journey.

M.B., for predicting the future, moderately accurately. F.S., for teaching me all

I ever need. S.S., for teaching me all I won’t ever need. Or will I? A.T. and P.Z.,

for inspiring me. C.T., for your sincerity.

Everyone in Bielefeld (which exists), Bilbao, Birmingham, Bonn, Castellón,

Edinburgh, Hamburg, Helsinki, Karlsruhe, Kopp, Lund, Madison and Praha, where

I carried out this work, for your hospitality, friendship and our discussions. In

Burg, Dresden, Olbernhau and Seiffen, for everything else that matters.

My research was supported by an EPSRC PhD scholarship awarded by the

University of Birmingham, for which I am very grateful. The Hausdorff Research

Institute for Mathematics has generously supported a three month stay.

Thank you, Diogo and Jon, for guiding me, for doing the work that was visible

to me and the work that was not.





Contents

1 Introduction 1

1.1 Lebesgue points of Fourier transforms . . . . . . . . . . . . . . . . . 2

1.2 Sharp regularity of maximal functions . . . . . . . . . . . . . . . . . 12

2 Large sets without Fourier restriction theorems 19

2.1 Proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Cantor sets as non-Lebesgue sets . . . . . . . . . . . . . . . . . . . 21

2.3 Incomplete cosine expansions of sin(x)/x . . . . . . . . . . . . . . . 30

2.4 Proof of Theorem 1.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Proofs of Corollaries 1.1.5 and 1.1.9 . . . . . . . . . . . . . . . . . . 40

3 The one-dimensional centred maximal function diminishes the

variation of indicator functions 43

3.1 Proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Proof of Proposition 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Proof of Theorem 1.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Discrete setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65





Notation

By |X| we denote the Lebesgue measure of a set in Euclidean space and by #S

we denote the cardinality of a finite set. We use the average integral notation

 
X

f(x) dx = 1
|X|

ˆ
X

f(x) dx

and the average sum notation

n+r∑
m=n−r

f(m) = 1
2r + 1

n+r∑
m=n−r

f(m).

Let S(Rd) be the space of Schwartz functions. The Lebesgue space Lp(Rd) is

associated to Lebesgue measure, while Lp(µ) is associated to another Borel measure

on Rd. We write A . B if A ≤ CB for some finite constant C independent of all

parameters.





Chapter 1

Introduction

This thesis comprises two parts, each concerned with a different regularity issue in

harmonic analysis.

In the first part, we study Lebesgue points of Fourier transforms, a subject that

arose from the recent introduction of maximal functions as an object of study

in Fourier restriction theory. We explain how our results clarify the relationship

between the size of a set and its restriction properties. This discussion reveals

interesting open questions, which we highlight. We introduce our point of view and

our results in Section 1.1 and the proofs can be found in Chapter 2. This material

is based on the published paper [Bil22].

In the second part, we study the regularity of maximal functions themselves.

This area of research continues to attract plenty of interest, particularly in questions

of boundedness and continuity in Sobolev spaces. However, progress on establishing

sharp versions of known inequalities has been slow. We establish the first sharp

variation bounds for the centred Hardy–Littlewood maximal function. Our results

are discussed in Section 1.2 and the proofs are contained in Chapter 3. This material

is based on the joint work [BW21] with Julian Weigt, submitted for publication.
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Chapter 1 Introduction

1.1 Lebesgue points of Fourier transforms

In this section, we are concerned with the regularity of the Fourier transform

f̂(ξ) =
ˆ
Rd
f(x)e−2πix·ξ dx

of a function f ∈ Lp(Rd). Two fundamental consequences of Hölder’s inequality

and the dominated convergence theorem are that if p = 1, then the above integral

converges for any ξ ∈ Rd and f̂ is continuous. Neither fact remains true when

p ∈ (1, 2], in which case the Fourier transform is defined by the standard procedure

involving dense continuation and interpolation.

Does the Fourier transform retain a weaker kind of continuity for p close to 1?

Our goal is to show that this is not the case if we measure this weaker kind of

continuity by the prevalence of Lebesgue points.

Definition 1.1.1 (Lebesgue point). Let g : Rd → C be a Borel measurable function.

We say that a point ξ ∈ Rd is a Lebesgue point of g if there exists a number c ∈ C

such that

lim
r→0

 
{|η|<r}

|g(ξ − η)− c| dη → 0.

In this case, we call c the regularised value of g at ξ. The non-Lebesgue set of g is

the set of its non-Lebesgue points.

By continuity, any point is a Lebesgue point of f̂ if p = 1. We complement this

with the following main result.

Theorem 1.1.2. There exists a function in ⋂p∈(1,∞] L
p(Rd) whose Fourier trans-

form has no Lebesgue points in some compact set of Hausdorff dimension d.

2



1.1 Lebesgue points of Fourier transforms

The Lebesgue differentiation theorem states that non-Lebesgue sets of locally

integrable functions have Lebesgue measure zero. Theorem 1.1.2 shows that this

cannot be sharpened in terms of Hausdorff dimension for the class of Fourier

transforms of Lp(Rd) functions when p > 1.

1.1.1 Restriction inequalities

Our interest in this problem stems from its connection to restriction inequalities

‖f̂‖Lq(µ) ≤ C‖f‖Lp(Rd), f ∈ S(Rd) (1.1.1)

where p ∈ [1, 2], q ∈ [1,∞], µ is a Borel measure on Rd and C is a constant that is

independent of f , but may depend on p, q, d and µ. The first such inequality was

proved by Stein in 1967, see [Ste93, p. 374]. Restriction inequalities are therefore a

relatively late discovery in the field of harmonic analysis, which has roots 200 years

ago in the work of Fourier [Fou22].

The main focus of the now extensive literature on restriction inequalities lies on

natural measures µ supported in hypersurfaces such as the sphere, the paraboloid

and the cone, as well as lower-dimensional submanifolds and curves. The range

of valid restriction inequalities strongly depends on the curvature properties of

the underlying submanifold. This line of research has important connections to

other areas of mathematics, including PDE, number theory and geometric measure

theory. Despite significant progress, Stein’s restriction conjecture [Ste79] remains

unresolved in most cases. We refer the reader to the surveys [Sto19; Tao04] and

the references therein.
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Chapter 1 Introduction

The Stein–Tomas argument [Tom75] is a useful tool in the case that q = 2, where

it can be used to prove (1.1.1) in the best possible range of exponents p on compact

hypersurfaces of positive Gaussian curvature. It is also robust enough to yield

interesting restriction inequalities for fractals, as Mockenhaupt [Moc00] and Mitsis

[Mit02] have observed, see Section 1.1.3.

1.1.2 Maximal and intrinsic restriction

The connection between Theorem 1.1.2 and the restriction inequality (1.1.1) arises

from the pointwise perspective recently introduced by Müller, Ricci and Wright

[MRW19]. If (1.1.1) holds, then the Fourier transform on S(Rd) extends to a

bounded restriction operator Rµ : Lp(Rd) → Lq(µ). In the case of a singular

measure µ, this operator can be regarded as a natural way of assigning values

µ-almost everywhere to the Fourier transform of an Lp(Rd) function. Indeed, (1.1.1)

readily implies that for any f ∈ Lp(R) there exists a sequence of radii rn → 0 such

that

lim
n→∞

 
{|η|<rn}

f̂(ξ − η) dη = Rµf(ξ) µ-a.e.

Of course this does not mean that a limit exists for any sequence of radii rn → 0

or that all such limits are equal. Therefore it is unclear at first how the µ-almost

everywhere definedRµf can be recovered from the only Lebesgue-almost everywhere

defined f̂ .

Müller, Ricci and Wright addressed this issue in the case of planar curves by

strengthening the mode of convergence as follows:

lim
r→0

 
{|η|<r}

|f̂(ξ − η)−Rµf(ξ)| dη = 0 µ-a.e. (1.1.2)

4



1.1 Lebesgue points of Fourier transforms

when µ is the affine arc length measure on a smooth planar curve and f ∈ Lp(R2),

1 ≤ p < 8/7. This means that µ-almost every ξ ∈ R2 is a Lebesgue point of f̂ with

regularised value Rµf(ξ). The proof of (1.1.2) relies on the maximal restriction

inequality ∥∥∥∥∥ sup
r∈(0,1)

 
{|η|<r}

|f̂(ξ − η)| dη
∥∥∥∥∥
Lq
ξ
(µ)
≤ C‖f‖Lp(Rd) (1.1.3)

in the same way that the proof of the Lebesgue differentiation theorem relies on

the Hardy–Littlewood maximal inequality. Later, Vitturi [Vit22] obtained a similar

result for the surface measure of the sphere Sd−1 ⊆ Rd and Kovač and Oliveira

e Silva [KO21] proved a stronger variational restriction inequality for spheres,

where the supremum in (1.1.3) is replaced by a variation norm.

Then, Kovač proved a general variational restriction principle that for instance

implies the following result.

Theorem 1.1.3 (see [Kov19, Remark 3]). If the restriction inequality (1.1.1) holds

for some finite Borel measure µ on Rd and some exponents p ∈ [1, 2] and q ∈ (p,∞),

then the maximal restriction inequality (1.1.3) holds with the exponents p1 = 2p
p+1

and q1 = 2q. Hence (1.1.2) holds for any f ∈ L2p/(p+1)(Rd).

Kovač’s methods also apply to more singular averaging kernels in place of the

ball averages in (1.1.2), see also the work of Ramos [Ram22].

Theorem 1.1.3 shows that restriction inequalities imply an intrinsic restriction

property that can conceivably be studied independently. The following question

seems natural, but nothing appears to be known.

Question 1.1.4. Does intrinsic restriction imply the presence of an underlying

restriction inequality, i.e. does the second part of Theorem 1.1.3 have a converse?

5



Chapter 1 Introduction

The proof of Theorem 1.1.3 relies on the Christ–Kiselev lemma and this is why

q > p is assumed. Based on a multi-parameter Christ–Kiselev lemma, Bulj and

Kovač [BK22] proved a multi-parameter maximal restriction principle that implies

a version of Theorem 1.1.3 for anisotropic averages. It is unknown whether general

maximal restriction principles can be proved without assuming that q > p.

Similarly, it is unknown whether the conclusion of Theorem 1.1.3 can in general be

strengthened by replacing 2p
p+1 with p and 2q with q. Here, the seeming inefficiency

is due to a reflection argument that is needed in order to obtain the positive

(also called strong) maximal inequality (1.1.3) from an oscillatory version with the

modulus pulled outside of the integral. Ramos [Ram20] used a linearisation method

to circumvent this issue for strictly convex C2 curves. The C2 regularity assumption

was later removed by Fraccaroli [Fra21]. The above-mentioned reflection argument

involves a maximal L2-average operator and Ramos [Ram22] and Jesurum [Jes22]

proved versions of (1.1.3) for maximal Lr-averages.

The non-Lebesgue sets of Lq(Rd) functions, q ∈ [1,∞], were characterised by

D’yachkov [Dya93] as the Gδσ sets of zero Lebesgue measure, a class that does not

depend on q. This is in contrast with the smaller class of non-Lebesgue sets of

Fourier transforms of Lp(Rd) functions. No nontrivial examples of such sets appear

to be known beyond what is provided by Theorem 1.1.2. A positive answer to

Question 1.1.4 would provide a sufficient condition.

However, p-dependent necessary conditions follow from maximal restriction

theorems such as the above. The second part of Theorem 1.1.3 states that, under

fairly general assumptions, non-Lebesgue sets of Fourier transforms are avoided by

measures satisfying restriction inequalities. Since many such measures are known,

6



1.1 Lebesgue points of Fourier transforms

this is a strong structural condition on such sets. Our Theorem 1.1.2 shows that

these sets can nevertheless be large in a metric sense.

By combining Theorems 1.1.2 and 1.1.3 we prove the existence of a set of full

Hausdorff dimension and without nontrivial restriction theorems.

Corollary 1.1.5. There exists a compact subset E of Rd such that E has Hausdorff

dimension d and for any Borel measure µ on Rd with µ(E) > 0 and for any p ∈ (1, 2]

and any q ∈ [1,∞] it holds that

sup
f∈S(Rd)

‖f̂‖Lq(µ)

‖f‖Lp(Rd)
=∞.

We further strengthen this result by showing that no relations except for a well-

known energy-theoretic inequality hold between the Hausdorff dimension of a set

and the supremum of the range of exponents p for which Lp(Rd)-based restriction

inequalities hold on that set, see Corollary 1.1.9 in the next subsection.

1.1.3 Restriction to fractals

It was first observed by Mockenhaupt [Moc00] and Mitsis [Mit02] that the Stein–

Tomas argument mentioned in Section 1.1.1 can be used to prove interesting

restriction inequalities on fractals. In its endpoint form due to Bak and Seeger

[BS11], this idea implies the following: if µ is a finite Borel measure on Rd with

Fourier decay

sup
ξ∈Rd
|ξ|β/2|µ̂(ξ)| <∞ (1.1.4)

for some β ∈ [0, d), then it satisfies the restriction inequality (1.1.1) for any

p ∈ [1, 4d/(4d− β)] and q = 2.
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Chapter 1 Introduction

The full Mockenhaupt–Mitsis–Bak–Seeger theorem contains an additional di-

mensionality condition that leads to a larger range of restriction exponents p in

most cases. The exponent 4d/(4d − β) that we give above corresponds to the

dimensionality that is implied by (1.1.4), see e.g. [Mit02, Corollary 3.1].

The sharpness of the Mockenhaupt–Mitsis–Bak–Seeger theorem in one dimension

was established by Chen [Che16] following work of Hambrook and Łaba [HŁ13].

In higher dimensions, sharpness in the case that β > d − 1 was established by

Hambrook and Łaba [HŁ16].

Fourier decay gives rise to the following notion of dimension.

Definition 1.1.6 (Fourier dimension). The supremum of the set of rates β ∈ [0, d)

for which (1.1.4) holds is the Fourier dimension of the measure µ. The Fourier

dimension of a subset of Rd is the supremum of the set of Fourier dimensions of all

finite nonzero Borel measures that are compactly supported in that set.

Hence, the Mockenhaupt–Mitsis–Bak–Seeger theorem yields a nontrivial restric-

tion theorem for any Borel measure or set of strictly positive Fourier dimension.

This makes it widely applicable not only to curved submanifolds, but also to

pseudorandom fractals. In order to demonstrate this, we mention a few interre-

lated classes of deterministic and random fractal sets that have positive Fourier

dimension, with selected references:

• images of stochastic processes [Kah85] and random diffeomorphisms [Eks16],

• certain sets arising from Diophantine approximation [Kau81; JS16],

• limit sets of Fuchsian groups [BD17] and

• various constructions based on Cantor sets [Sal51; ŁW18].

8



1.1 Lebesgue points of Fourier transforms

On the other hand, fractal measures can have Fourier dimension zero. For

instance, this is the case for any measure supported in a hyperplane. Erdős

[Erd39] showed that the natural measure on a Cantor set of dissection ratio 1/α

has Fourier dimension zero if α is a Pisot number, e.g. if α is 3 or the golden

ratio. The set that we use to prove Corollary 1.1.5 is also a Cantor set and by

the Mockenhaupt–Mitsis–Bak–Seeger theorem it necessarily has Fourier dimension

zero.

We refer the reader to Łaba’s survey [Łab14] for further information on the role

of Fourier dimension in harmonic analysis.

The Mockenhaupt–Mitsis–Bak–Seeger theorem is not the only way of proving

fractal restriction inequalities. Chen [Che14] showed that any finite Borel measure

with a convolution power in Lr(Rd) satisfies a nontrivial restriction inequality.

This theorem, too, is applicable to a large class of fractal measures: Körner

[Kör08] showed that, in a Baire category sense, many Borel probability measures

with support of Hausdorff dimension 1/2 on the real line have a continuous self-

convolution. For such a measure, Chen’s result implies the restriction inequality

(1.1.1) with 1 ≤ p ≤ 4/3 and q = 2. This range of exponents p is optimal in the

following sense.

Definition 1.1.7 (Endpoint restriction exponent). Given a subset E of Rd, we

denote by pres(E) the supremum of the range of exponents p ∈ [1, 2] for which there

exists a Borel measure µ with µ(E) > 0 such that the restriction inequality (1.1.1)

holds for some exponent q ∈ [1,∞].

The universal L1(Rd)→ L∞(µ) bound implies that pres(E) ≥ 1. If E has positive

Lebesgue measure, then by the Plancherel theorem we have pres(E) = 2. An energy

9



Chapter 1 Introduction

integral argument, see e.g. [Moc00, Section 2], shows that pres(E) cannot be too

large depending on the Hausdorff dimension dimH(E) and the ambient dimension d.

Namely, it holds that

pres(E) ≤ 2d
2d− dimH(E) . (1.1.5)

The combination of the results of Chen and Körner described above gives a

restriction inequality with d = 1 and dimH(E) = 1/2 that is optimal with respect

to (1.1.5). Their methods were extended by Chen and Seeger [CS17] to the case

that d ≥ 1 and dimH(E) = d/n for some integer n. Related results were obtained

by Shmerkin and Suomala [SS18] using a different approach involving so called

spatially independent martingales.

Łaba and Wang used yet another method to show that equality in (1.1.5) can be

attained even in the general case.

Theorem 1.1.8 ([ŁW18]). Let d ≥ 1 and α ∈ (0, d). There exists a Borel

probability measure µ with compact support of Hausdorff dimension α such that the

restriction inequality (1.1.1) holds for any 1 ≤ p < 2d/(2d− α) and q = 2.

Their proof is based on a decoupling argument and the existence of Λ(p) sets of

asymptotically largest possible cardinality.

We combine Corollary 1.1.5 and Theorem 1.1.8 to show that (1.1.5) is the

only relation that holds between the endpoint restriction exponent, the Hausdorff

dimension and the ambient dimension.

Corollary 1.1.9. Let α ∈ [0, d] and p ∈ [1, 2d/(2d− α)]. There exists a compact

set E ⊆ Rd of Hausdorff dimension α such that pres(E) = p.

10



1.1 Lebesgue points of Fourier transforms

At least in the cases covered by the above-mentioned results of [Che14; CS17;

SS18], the set E can be chosen so that the endpoint exponent p = 2d/(2d − α)

itself satisfies the restriction inequality (1.1.1) for some µ and q. It is unknown

whether this can be achieved in general. Theorem 1.1.8 and hence Corollary 1.1.9

do not address this question.

Corollary 1.1.9 may be compared to the well-known result that for any α ∈ [0, d]

and any β ∈ [0, α] there exists a set of Hausdorff dimension α and Fourier dimension

β. Körner [Kör11] proved a stronger version of that statement where the set is

further guaranteed to be precisely the support of a measure of Fourier dimension β.

It would be interesting to show a similarly strengthened version of Corollary 1.1.9.

Our proof strategy is unsuitable for this problem.

Körner’s result in the last paragraph is perhaps unsurprising given that Hausdorff

dimension is a metric property of a set and Fourier dimension is not, see e.g. [Eks16].

Similarly, Corollary 1.1.9 is perhaps unsurprising if restriction estimates rely on

some pseudorandomness of the underlying measure, manifesting itself, for instance,

in a positive Fourier dimension, see e.g. [Łab14]. However, a converse of, for

instance, the Mockenhaupt–Mitsis–Bak–Seeger theorem is not known, except in

the case of hypersurfaces due to a result of Iosevich and Lu [IL00]. Therefore, we

do not know whether Körner’s result can be used to prove Corollary 1.1.9. In this

connection, an answer to the following question would shed further light on the

nature of fractal restriction.

Question 1.1.10. Except for the Mockenhaupt–Mitsis–Bak–Seeger theorem, what

other relations, if any, hold between the Fourier dimension of a measure and its

range of valid restriction inequalities?

11



Chapter 1 Introduction

1.2 Sharp regularity of maximal functions

It is a common theme in analysis that averaging operations can improve the

regularity of a function. An instance of this is the following consequence of Young’s

convolution inequality: For any fixed radius r > 0 and any function in the Sobolev

space W 1,p(R), p ∈ [1,∞], it holds that

∥∥∥∥ ddx
 x+r

x−r
|f(y)| dy

∥∥∥∥
Lpx(R)

≤
∥∥∥∥ dfdx

∥∥∥∥
Lp(R)

.

Since the right-hand side does not depend on r, it is natural to ask what happens

if we replace the average on the left-hand side by a maximal average. This was

studied by Kinnunen [Kin97], who proved that for p > 1,

∥∥∥∥ ddx sup
r>0

 x+r

x−r
|f(y)| dy

∥∥∥∥
Lpx(R)

≤ C(p)
∥∥∥∥ dfdx

∥∥∥∥
Lp(R)

, (1.2.1)

where C(p) is the constant in the Hardy–Littlewood maximal inequality. The case

p = 1 was resolved by Kurka [Kur15], who in fact proved a more general statement

for functions of bounded variation. But his methods do not provide the optimal

constant C(1) in the above inequality.

We determine optimal constants and characterise maximisers of Kurka’s inequal-

ity when it is restricted to special classes of functions. Section 1.2.1 discusses

bounds on the real line and Section 1.2.2 discusses bounds on the integers.

12



1.2 Sharp regularity of maximal functions

1.2.1 Continuous setting

On the real line R, the Hardy–Littlewood maximal function is defined by

Mf(x) = sup
r>0

 x+r

x−r
|f(y)| dy.

The variation of a function f : R→ R on an interval I ⊆ R is

varI(f) = sup
φ : Z→ I monotone

∑
i∈Z
|f(φ(i))− f(φ(i+ 1))|.

We write var(f) = varR(f) and say that f is of bounded variation if var(f) <∞.

Kurka [Kur15] proved that for any such function it holds that

var(Mf) ≤ C var(f) (1.2.2)

for some large constant C independent of f . It is an open conjecture that the

optimal constant in this inequality is C = 1, see e.g. [BCHP12; Kur15]. The

following main result establishes this in the case of indicator functions.

Theorem 1.2.1. Let f : R → {0, 1} be a function of bounded variation. Then

(1.2.2) holds with C = 1. Equality is attained if and only if f is constant or the set

{x ∈ R | f(x) = 1} is a bounded interval of positive length.

An indicator function is of bounded variation precisely if it has at most finitely

many jumps. This immediately implies that f(x) = 0 or f(x) = Mf(x) for

Lebesgue-almost every x ∈ R. Our methods only require this weaker assumption,

allowing us to prove the following more general result for nonnegative functions.

13



Chapter 1 Introduction

Theorem 1.2.2. Let f : R→ [0,∞) be a function of bounded variation such that

for almost every x ∈ R we have that f(x) = 0 or f(x) = Mf(x). Then (1.2.2)

holds with C = 1. Equality is attained if and only if f is constant or the set

{x ∈ R | f(x) > 0} is a bounded interval of positive length and for any x ∈ R,

lim inf
y→x

f(y) ≤ f(x) ≤ lim sup
y→x

f(y).

Another common notion of variation is given by the total variation |Df |(Rd) of

the distributional derivative Df , i.e. the measure satisfying the integration by parts

rule ˆ
Rd
fϕ′ dx = −

ˆ
Rd
ϕ d(Df)

for all functions ϕ ∈ C∞c (Rd). The variation of a function on Rd with d > 1 is

usually defined in this way. For any function f : R → R of bounded variation

it holds that |Df |(R) ≤ var(f). Conversely, if |Df |(R) < ∞, then there exists

a function f̄ equal to f almost everywhere such that var(f̄) = |Df |(R), see e.g.

[Leo09, Theorem 7.2]. If f satisfies the hypotheses of Theorem 1.2.2, then it follows

that

|DMf |(R) ≤ var(Mf) = var(Mf̄) ≤ var(f̄) = |Df |(R).

Hence Theorem 1.2.2 remains true for this definition of the variation.

The regularity of maximal functions was first studied by Kinnunen [Kin97],

who proved that the d-dimensional centred Hardy–Littlewood maximal operator

is bounded on the Sobolev space W 1,p(Rd) when 1 < p ≤ ∞ and d ≥ 1. The

one-dimensional case of this statement already appeared in (1.2.1). Hajłasz and

14



1.2 Sharp regularity of maximal functions

Onninen [HO04] later asked whether the endpoint inequality

‖∇Mf‖L1(Rd) ≤ C‖∇f‖L1(Rd) (1.2.3)

also holds and Kurka’s inequality (1.2.2) provides a positive answer to this question

in one dimension. The higher-dimensional case remains completely open.

In comparison to the one-dimensional centred Hardy–Littlewood maximal func-

tion, its uncentred counterpart

∼
Mf(x) = sup

x0<x<x1

 x1

x0

|f(y)| dy

allows averages over a larger class of intervals and hence may be expected to be

smoother. Indeed, Tanaka [Tan02] gave a short proof of the uncentred version

of (1.2.2) with C = 2 and later Aldaz and Pérez Lázaro [AP07] showed that the

optimal constant is C = 1. Ramos [Ram19] studied the sharp version of (1.2.2) for

a family of nontangential maximal functions interpolating between the centred and

uncentred Hardy–Littlewood maximal functions.

Similarly, higher-dimensional partial results are available for the uncentred

maximal function where the corresponding results are not known in the centred

case. The first such result is due to Aldaz and Pérez Lázaro [AP09] who proved

the uncentred version of (1.2.3) for so-called block decreasing functions. Later,

Luiro [Lui18] proved the same for radial functions and Weigt [Wei22] proved an

analogous inequality for indicator functions.
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1.2.2 Discrete setting

Our methods also imply discrete analogues of Theorems 1.2.1 and 1.2.2. The

centred Hardy–Littlewood maximal function Mf : Z → R of a bounded function

f : Z→ R is defined by

Mf(n) = sup
r∈Z≥0

n+r∑
m=n−r

|f(m)|.

For a discrete interval I ⊆ Z, i.e. the intersection of Z and a real interval, the

variation of f on I is

varI(f) =
∑

n,n+1∈I
|f(n)− f(n+ 1)|.

We say that f is of bounded variation if varZ(f) <∞.

Bober, Carneiro, Hughes and Pierce [BCHP12] proved that

varZ(Mf) ≤ C
∑
n∈Z
|f(n)|

for C = 2 + 146
315 . They asked whether the optimal constant in this inequality is

C = 2 and whether the stronger inequality

varZ(Mf) ≤ C varZ(f) (1.2.4)

analogous to (1.2.2) holds. Madrid [Mad17] affirmatively answered the first question

and Temur [Tem13] adapted Kurka’s method to prove (1.2.4) with a large constant.

We improve a special case of Temur’s result by establishing the optimal constant

C = 1 in the case of indicator functions.

16



1.2 Sharp regularity of maximal functions

Theorem 1.2.3. Let f : Z → {0, 1} be a function of bounded variation. Then

(1.2.4) holds with C = 1. Equality is attained if and only if f is constant or the set

{n ∈ Z | f(n) = 1} is a bounded nonempty discrete interval.

In fact this result quickly follows from the continuous Theorem 1.2.1 and an

embedding argument. When combined with a complementary approximation

argument, this embedding argument also implies the following relationship between

the optimal constants in the continuous and discrete variation bounds for general

functions of bounded variation.

Proposition 1.2.4. The optimal constants in (1.2.2) and (1.2.4) are the same,

i.e. if (1.2.2) holds for all functions of bounded variation, then the same is true for

(1.2.4) with the same constant C and vice versa.

However, we do not know whether an embedding argument can be used to prove

the following discrete analogue of the stronger Theorem 1.2.2. This is because

of the additional assumptions in these theorems. Instead, we adapt the proof of

Theorem 1.2.2 to the discrete setting for the following result.

Theorem 1.2.5. Let f : Z→ [0,∞) be a function of bounded variation such that

for any n ∈ Z we have f(n) = 0 or f(n) = Mf(n). Then (1.2.4) holds with C = 1.

Equality is attained if and only if f is constant or the set {n ∈ Z | f(n) > 0} is a

bounded nonempty discrete interval.

Although the proofs of Theorems 1.2.2 and 1.2.5 are quite similar, different

technical difficulties arise in each case. In the continuous setting, we have to deal

with compactness issues and exceptional sets of measure zero. In the discrete setting,

one inconvenience is that not every integer interval has an integer midpoint.
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Chapter 2

Large sets without Fourier
restriction theorems

In this chapter, we prove the results contained in Section 1.1. The proof of The-

orem 1.1.2 is made up of Sections 2.2 to 2.4 and the derivations of Corollaries 1.1.5

and 1.1.9 are contained in Section 2.5.

2.1 Proof strategy

Let us first comment on the proof strategy for Theorem 1.1.2, which involves a

somewhat delicate construction based on a Cantor set. In Section 2.2, we introduce

a family of Cantor sets parameterised by their dissection ratios θj ∈ (0, 1/2), j ≥ 0,

at different scales. We establish conditions under which such a Cantor set E is

the non-Lebesgue set of a certain natural function g and we calculate the inverse

Fourier transform ǧ. The proof of Theorem 1.1.2 then comes down to choosing

the dissection ratios in such a way that E has full Hausdorff dimension while ǧ is

p-integrable for any p > 1. The key terms in the p-integral of ǧ are products of

cosines resembling
k−1∏
j=0

cos(1
2θ0θ1 · · · θj−1ξ). (2.1.1)
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Chapter 2 Large sets without Fourier restriction theorems

In Section 2.3, motivated by Euler’s formula for the sinc function, we bound

p-integrals of products of cosines with dyadic phases of the form

∏
j∈J

cos(2−jξ) (2.1.2)

where J is a set of positive integers. Our estimate involves some loss depending on

the number of components of J .

The dissection ratios θj that we fix in Section 2.4 to complete the proof of

Theorem 1.1.2 have the following essential properties:

(i) The dissection ratios are very close to 1/2 in an average sense. This ensures

that the Cantor set has full Hausdorff dimension and it enables us to ap-

proximate the products (2.1.1) appearing in the p-norm of ǧ by products of

cosines with dyadic phases (2.1.2), for which we have bounds.

(ii) Infinitely many consecutive pairs of dissection ratios are bounded away from

0 and 1/2. Under this condition, the Cantor set is the non-Lebesgue set of

the associated function g. However, the boundedness away from 1/2 could

break the comparability of the products (2.1.1) and (2.1.2). Therefore, we

are led to the following condition.

(iii) The dissection ratios that are not close to 1/2 are powers of 1/2. Then, in

the analysis of (2.1.1), these small dissection ratios conveniently translate

into gaps in (2.1.2), so that the set J has multiple components.

(iv) We raise 1/2 to exponents that are large on average. This ameliorates the

aforementioned loss in our integral estimate of (2.1.2) that depends on the
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2.2 Cantor sets as non-Lebesgue sets

number of components of J . However, a subsequence of the exponents must

remain bounded because of Item (ii).

2.2 Cantor sets as non-Lebesgue sets

Let θj ∈ (0, 1/2), j ≥ 0, and let S be an infinite set of nonnegative integers. Write

Θk = θ0θ1 · · · θk−1.

Using a Cantor set with dissection ratios θj we prove the following Proposition 2.2.1

which serves as the starting point for the proof of Theorem 1.1.2.

In that proof, it will be important to ensure that the dissection ratios have a

certain asymptotic behaviour. The set S will be the set of indices for which the

dissection ratios are not close to 1/2 and this set will have natural density zero.

Proposition 2.2.1. Let θj, Θk and S be as above. Assume that

lim
k→∞

Θ1/k
k = 1

2 (2.2.1)

and that there exists an ε > 0 such that

θj, θj+1 ∈ (ε, 1
2 − ε) for infinitely many j ∈ S with j + 1 ∈ S. (2.2.2)

Then there exists a Borel measurable function g : Rd → {−1, 0, 1} such that

(i) the non-Lebesgue set of g is compact and has Hausdorff dimension d and
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Chapter 2 Large sets without Fourier restriction theorems

(ii) for any p > 1, the inverse Fourier transform ǧ lies in ⋂r∈[p,∞] L
r(Rd) if

ˆ ∞
0

(∑
k∈S

2kΘk

1 + (1− 2θk)Θk|ξ|

k−1∏
j=0
|cos((1− θj)Θjπξ)|

)p
dξ <∞.

We simultaneously construct the function g : Rd → {−1, 0, 1} and the set E ⊆ Rd

that we then show to be the non-Lebesgue set of g. Let c(I) denote the midpoint of

an interval. We define familiesWk and Bk of white and black intervals of generations

k = 0, 1, . . . by the recursion

W0 =
{[
−1

2 ,
1
2

]}
,

Bk = {Bk open interval | c(Bk) = c(Wk) and |Bk| = (1− 2θk)|Wk|

for some Wk ∈ Wk},

Wk+1 = set of connected components of
⋃

Wk∈Wk

Wk \
⋃

Bk∈Bk
Bk.

In each generation, one black interval is removed from the middle of each remaining

white interval, leaving two white intervals of the next generation. The remaining

white set ⋃Wk∈Wk
Wk is decreasing in k. Its limit as k →∞ is a Cantor set E(1) ⊆ R

with dissection ratios θk:

E(1) =
∞⋂
k=0

⋃
Wk∈Wk

Wk = [−1
2 ,

1
2 ] \

∞⋃
k=0

⋃
Bk∈Bk

Bk.

We define an oscillating function g(1) : R → {−1, 0, 1} associated to the black

intervals by

g(1) =
∑
k∈S

(−1)k
∑

Bk∈Bk
χBk . (2.2.3)
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2.2 Cantor sets as non-Lebesgue sets

Here, χBk : R → {0, 1} is the characteristic function of Bk. The series (2.2.3)

converges pointwise and in L1(R) and takes values in {−1, 0, 1} since the black

intervals Bk are pairwise disjoint.

From E(1) and g(1) we construct the corresponding d-dimensional objects E ⊆ Rd

and g : Rd → {−1, 0, 1} by taking a tensor product:

E =
{

(x1, . . . , xd) ∈ [−1
2 ,

1
2 ]d | xi ∈ E(1) for some i

}
,

g(x1, . . . , xd) = g(1)(x1) · · · g(1)(xd).

We next show that E has full Hausdorff dimension precisely when (2.2.1) holds.

Lemma 2.2.2. The Hausdorff dimension of E is d if and only if Θ1/k
k → 1/2 as

k →∞.

The proof is based on the following version of Frostman’s lemma, see e.g. [Mat15,

Theorem 2.7].

Theorem 2.2.3. A compact set E in Rd has Hausdorff dimension at least α ∈ [0, d]

if and only if for any β ∈ [0, α) there exists a Borel measure µ on Rd such that

µ(E) > 0 and µ(U) ≤ diam(U)β for any Borel set U .

Proof of Lemma 2.2.2. From the above recursive construction one can verify that

the lengths of any Wk ∈ Wk and Bk ∈ Bk are

|Wk| = Θk and |Bk| = (1− 2θk)Θk. (2.2.4)

The families Wk and Bk each contain 2k intervals.
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Chapter 2 Large sets without Fourier restriction theorems

First assume that E has Hausdorff dimension d. Let β ∈ [0, d) and let the

measure µ be as in Theorem 2.2.3. Since E is covered by d isometric copies of⋃
Wk∈Wk

Wk × [−1/2, 1/2]d−1 and diam(Wk) = Θk, we can cover E by at most

2kΘ−d+1
k d boxes of diameter comparable to Θk and hence

0 < µ(E) . 2kΘ−d+1
k d ·Θβ

k .

Taking kth roots, followed by lim infk→∞ and then letting β → d, this implies

lim inf
k→∞

Θ1/k
k ≥ 1

2 .

Since Θk = θ0 · · · θk−1 < 2−k, we in fact have Θ1/k
k → 1/2 as k →∞.

Now we assume that Θ1/k
k → 1/2 as k → ∞. Let µ be the Borel probability

measure supported in E given by

µ(Wk × T ) = 2−k|T |

for any Wk ∈ Wk, k ≥ 0, and any Borel set T ⊆ [−1/2, 1/2]d−1.

Fix a β < d and choose a large integer N = N(β) ≥ 2 such that

Θ1/k
k ≥ 2−1/(1−d+β) for any k ≥ N .

Let U ⊆ Rd be a Borel set of diameter diam(U) < ΘN . Since Θk → 0 as k →∞,

there is a k ≥ N such that

Θk+1 ≤ diam(U) < Θk.
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2.2 Cantor sets as non-Lebesgue sets

Then U intersects Wk × [−1/2, 1/2]d−1 for at most two intervals Wk ∈ Wk. Hence,

1
4µ(U) ≤ 2−k−1 diam(U)d−1 ≤ Θ1−d+β

k+1 diam(U)d−1 ≤ diam(U)β.

Since ΘN < 1/4 and µ(Rd) = 1, it follows that the renormalised measure Θβ
Nµ

satisfies the inequality in Theorem 2.2.3 for any Borel set U . Letting β → d, it

follows that E has Hausdorff dimension d.

Note that ǧ is bounded since g is integrable. Hence, we can prove Proposi-

tion 2.2.1(ii) by showing the following result.

Lemma 2.2.4. Let p > 1. It holds that

‖ǧ‖p/dLp(Rd) .
ˆ ∞

0

(∑
k∈S

2kΘk

1 + (1− 2θk)Θk|ξ|

k−1∏
j=0
|cos((1− θj)Θjπξ)|

)p
dξ.

Proof. By Fubini’s theorem we have ǧ(ξ1, . . . , ξd) = ǧ(1)(ξ1) · · · ǧ(1)(ξd) and therefore

‖ǧ‖p/dLp(Rd) =
ˆ ∞
−∞
|ǧ(1)(ξ)|p dξ. (2.2.5)

Since the series (2.2.3) converges in L1(R), we have

ǧ(1)(ξ) =
∑
k∈S

(−1)k
∑

Bk∈Bk

sin(|Bk|πξ)
πξ

e2πic(Bk)ξ (2.2.6)

and the outer sum converges uniformly. The midpoints of the black (and the white)

intervals are given by

{c(Bk) | Bk ∈ Bk} =
{
k−1∑
j=0

σj
1− θj

2 Θj

∣∣∣∣∣ σj ∈ {−1, 1}
}
.
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We use this to rewrite the inner sum in (2.2.6) and then we apply the identity

e−iα + eiα = 2 cos(α) to get

∑
Bk∈Bk

e2πic(Bk)ξ =
k−1∏
j=0

(
e−i(1−θj)Θjπξ + ei(1−θj)Θjπξ

)
= 2k

k−1∏
j=0

cos((1− θj)Θjπξ).

Combining this with (2.2.6), (2.2.4) and the elementary estimate |sin(η)/η| .

(1 + |η|)−1 gives the pointwise bound

|ǧ(1)(−ξ)| = |ǧ(1)(ξ)| .
∑
k∈S

2kΘk

1 + (1− 2θk)Θk|ξ|

k−1∏
j=0
|cos((1− θj)Θjπξ)|.

In view of (2.2.5), this completes the proof of the lemma.

We now complete the proof of Proposition 2.2.1(i) by showing the following

result.

Lemma 2.2.5. If there exists an ε > 0 such that (2.2.2) holds, then E is the non-

Lebesgue set of g.

Note that (2.2.2) implies lim infk→∞ θk < 1/2 and hence by (2.2.4):

|E| ≤ d · lim
k→∞

∑
Wk∈Wk

|Wk| · |[−1
2 ,

1
2 ]|d−1 = d · lim

k→∞
2kΘk = 0.

By the Lebesgue differentiation theorem, this is a necessary condition for E to be

the non-Lebesgue set of a locally integrable function.

The key step in the proof of Lemma 2.2.5 is the following lower bound on the

oscillation of averages of the one-dimensional function g(1).
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2.2 Cantor sets as non-Lebesgue sets

Lemma 2.2.6. For any k ≥ 0 and any Wk,W
′
k ∈ Wk it holds that

 
Wk

g(1) dx =
 
W ′
k

g(1) dx

and for any k, k + 1 ∈ S and any Wk ∈ Wk and Wk+1 ∈ Wk+1 it holds that

∣∣∣∣∣
 
Wk

g(1) dx−
 
Wk+1

g(1) dx

∣∣∣∣∣ ≥ 2(1− 2θk)(1− 2θk+1).

Before proving this lemma, we show how it can be used to prove Lemma 2.2.5.

Proof of Lemma 2.2.5. The function g is constant in each of the connected com-

ponents of the open set Rd \ E. Hence, every point of that set is a Lebesgue

point.

It remains to show that there are no Lebesgue points in E. By (2.2.2)

and Lemma 2.2.6, we can find sequences of indices k(a), k′(a) ∈ S, a ≥ 0, with

k′(a) = k(a)± 1 and k(a)→∞ as a→∞ such that

θk(a), θk′(a) > ε,

∣∣∣∣∣
 
Wk(a)

g(1) dx−
 
Wk′(a)

g(1) dx

∣∣∣∣∣ > 8ε2,
∣∣∣∣∣
 
Wk(a)

g(1) dx

∣∣∣∣∣ > 4ε2

(2.2.7)

for any Wk(a) ∈ Wk(a) and Wk′(a) ∈ Wk′(a).

Fix a point (x1, . . . , xd) ∈ E and let a ≥ 0 be so large that g(1) is identically

equal to 1 or identically equal to −1 in a Θk(a)-neighborhood of any xi 6∈ E(1),

i = 1, . . . , d. For xi 6∈ E(1), let W i
k(a) be any interval, not necessarily in Wk(a),

of length Θk(a) containing xi. For xi ∈ E(1), choose intervals W i
k(a) ∈ Wk(a) and

W i
k′(a) ∈ Wk′(a) that contain xi. In both cases, we have by g = ±1 and the third
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inequality in (2.2.7), respectively:

∣∣∣∣∣
 
W i
k(a)

g(1) dx

∣∣∣∣∣ > 4ε2. (2.2.8)

Fix an index j for which xj ∈ E and consider the Cartesian products

Q2a =
d∏
i=1

W i
k(a), Q2a+1 =

j−1∏
i=1

W i
k(a) ×W

j
k′(a) ×

d∏
i=j+1

W i
k(a).

Making use of the tensor product structure of g, we can use the second inequality

in (2.2.7) and (2.2.8) as follows:

∣∣∣∣∣
 
Q2a

g −
 
Q2a+1

g

∣∣∣∣∣ =
∣∣∣∣∣
 
W j
k(a)

g(1) −
 
W j

k′(a)

g(1)
∣∣∣∣∣ ·∏

i 6=j

∣∣∣∣∣
 
W i
k(a)

g(1)
∣∣∣∣∣

> 22d+1ε2d > 0,

which holds for any large enough a, i.e. the averages of g over the boxes Qb do not

converge as b → ∞. On the other hand, by the first inequality in (2.2.7) these

boxes have bounded eccentricity. This shows that (x1, . . . , xd) ∈
⋂
b≥0Qb is not a

Lebesgue point of g.

To complete the proof of Lemma 2.2.5 and hence of Proposition 2.2.1, we need

to perform the calculations leading to Lemma 2.2.6.

Proof of Lemma 2.2.6. By construction, it holds that Bj ∩Wk = ∅ when Bj ∈ Bj,

Wk ∈ Wk and j < k. For j ≥ k we either have Bj ∩Wk = ∅ or Bj ⊆ Wk. Hence,

 
Wk

g(1) dx =
 
Wk

∑
j∈S; j≥k

(−1)j
∑

Bj∈Bj ;Bj⊆Wk

χBj . (2.2.9)
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2.2 Cantor sets as non-Lebesgue sets

For a fixed Wk ∈ Wk, there are precisely 2j−k intervals Bj ∈ Bj for which Bj ⊆ Wk.

Furthermore for fixed k and j, the average
ffl
Wk
χBj dx does by (2.2.4) not depend

on the choice of Wk ∈ Wk and Bj ∈ Bj as long as Bj ⊆ Wk. This shows the first

claim of the lemma.

It remains to prove the inequality in the second claim. Let k, k + 1 ∈ S and let

Wk ∈ Wk and Wk+1 ∈ Wk+1. As Wk is the disjoint union of two intervals in Wk+1

and one interval in Bk, we have by (2.2.4):

 
Wk

g(1) dx = 2θk
 
Wk+1

g(1) dx+ (−1)k(1− 2θk).

Since |g(1)(x)| ≤ 1 for any x ∈ R, it follows from ignoring all but the first term of

the outer sum on the right-hand side of (2.2.9) that

(−1)k+1
 
Wk+1

g(1) dx ≥ −1 + 2(1− 2θk+1).

Together with the last equation this implies that

(−1)k
( 

Wk

g(1) dx−
 
Wk+1

g(1) dx

)
≥ 2(1− 2θk)(1− 2θk+1).

Because the right-hand side is positive, this completes the proof of Lemma 2.2.6.

We have now proved Proposition 2.2.1.

Remark 2.2.7. In the definition (2.2.3) of g(1), the oscillating coefficients ±1 may

be replaced by 0 and 1, respectively, yielding {0, 1}-valued functions g(1) and g

instead of {−1, 0, 1}-valued ones. The thus modified function g still satisfies all

properties that are asserted in Proposition 2.2.1. However, if d ≥ 2, then the non-

29



Chapter 2 Large sets without Fourier restriction theorems

Lebesgue set of g, while still of full Hausdorff dimension, would be a proper subset

of E since (2.2.8) would fail for some xi 6∈ E(1).

2.3 Incomplete cosine expansions of sin(x)/x

In the proof of Theorem 1.1.2 we need to verify the inequality in Proposition 2.2.1(ii).

In this section, we provide a tool for this task by bounding p-integrals of products

of cosines with dyadic phases. Our motivation is Euler’s product expansion of the

sinc function:
∞∏
j=1

cos(2−jξ) = sin(ξ)
ξ

. (2.3.1)

A quick proof of this identity can be obtained by iterating the double-angle formula

sin(ξ) = 2 sin(ξ/2) cos(ξ/2) and using that 2n sin(ξ/2n) → ξ as n → ∞. Other

proofs are possible, see e.g. the probabilistic proof in [Kac59].

The function in (2.3.1) lies in Lpξ(R) for any p > 1. We are interested in the

stability of this property under omission of factors from the product of cosines.

First, it follows from (2.3.1) that the product can be truncated after logarithmically

in |ξ| many steps without a loss in the decay rate. More precisely,

∣∣∣∣sin(ξ)
ξ

∣∣∣∣ ≤ n∏
j=1
|cos(2−jξ)| ≤ π

2 ·
∣∣∣∣sin(ξ)

ξ

∣∣∣∣ if |ξ| ≤ 2n−1π. (2.3.2)

However, if any further factor is omitted from this finite product, then the pointwise

upper bound fails dramatically for some |ξ| ≤ 2n−1π. We therefore focus on integral

estimates. Given a finite set J of integers, we define its number of components b(J)

as follows:

b(J) = #{j ∈ J | j − 1 6∈ J}.
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Lemma 2.3.1. Let n ≥ 1 be an integer and let J ⊆ {1, 2, . . . , n}. Then it holds

for every p ∈ (1,∞) that

ˆ 2n−1π

0

∏
j∈J
|cos(2−jξ)|p dξ ≤ 2n−|J |−1πCb(J)

p , (2.3.3)

where Cp is a finite constant that depends only on p.

Proof. We prove the lemma with the (non-optimal) constant

Cp = 2πp
∞∑
s=1

1
sp
<∞.

We proceed by induction on the number of components b(J). If b(J) = 0, then J is

empty and (2.3.3) is immediate.

Now fix a nonnegative integer b and assume that (2.3.3) holds whenever b(J) = b.

Let n be a positive integer and let J1 be a subset of {1, . . . , n} such that b(J1) = b+1.

We can decompose this set as J1 = J0 ∪ {`, ` + 1, . . . ,m} where b(J0) = b and

sup(J0) + 2 ≤ ` ≤ m ≤ n. Write n0 = max(J0 ∪ {0}).

We need to show (2.3.3) for J1. To this end, we cover the domain of integration

[0, 2n−1π] by the essentially disjoint intervals of equal length

A(q, r) = [(2m−1q + 2n0−1r)π, (2m−1q + 2n0−1(r + 1))π]

for any integers q and r with 0 ≤ q < 2n−m and 0 ≤ r < 2m−n0 . If j ∈ J0, then the

function ξ 7→ |cos(2−jξ)| is even and 2n0π-periodic. We use this and the induction
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hypothesis to obtain

ˆ
A(q,r)

∏
j∈J0

|cos(2−jξ)|p dξ =
ˆ 2n0−1π

0

∏
j∈J0

|cos(2−jξ)|p dξ

≤ 2n0−|J0|−1πCb(J0)
p

= 2n0−|J |+m−`πCb(J)−1
p .

Similarly for j ≤ m, the function ξ 7→ |cos(2−jξ)| is even and 2mπ-periodic. This

gives

sup
ξ∈A(q,r)

m∏
j=`
|cos(2−jξ)| = sup

ξ∈A(0,r)

m∏
j=`
|cos(2−jξ)|

= sup
ξ∈A(0,r)

m−`+1∏
j=1
|cos(2−j21−`ξ)|

≤ π

1 + 2n0−`πr
.

The last inequality follows from (2.3.2) and the definition of A(0, r). We combine

the last two estimates to get an estimate for the product over the full set of indices

J1: ˆ
A(q,r)

∏
j∈J1

|cos(2−jξ)|p dξ ≤
2n0−|J |+m−`πp+1Cb(J)−1

p

(1 + 2n0−`πr)p .

Note that the numerator does not depend on q or r and the denominator does not

depend on q. Therefore, we can sum over q and r as follows:

ˆ 2n−1π

0

∏
j∈J1

|cos(2−jξ)|p dξ =
2n−m−1∑
q=0

2m−n0−1∑
r=0

ˆ
A(q,r)

∏
j∈J1

|cos(2−jξ)|p dξ

≤ 2n−m2n0−|J |+m−`πp+1Cb(J)−1
p

∞∑
r=0

1
(1 + 2n0−`πr)p
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≤ 2n−|J |πp+1Cb(J)−1
p

∞∑
s=1

1
sp
.

For the last inequality, we replaced πr by the largest multiple of 2`−n0 not ex-

ceeding r. By our choice of Cp, this shows (2.3.3) for J1 and hence closes the

induction.

In the proof of Theorem 1.1.2 we need the following perturbed version of the

previous result.

Lemma 2.3.2. Let n ≥ 1 be an integer, let J ⊆ {1, 2, . . . , n}, let 1 < p ≤ p0 <∞

and let ε > 0. There exists a number δ = δ(n, p0, ε) > 0 that does not depend on J

or p such that if

φj ∈ (2−j(1− δ), 2−j(1 + δ)) (2.3.4)

for all j ∈ J , then the following inequality holds:

ˆ 2n−1π

0

∏
j∈J
|cos(φjξ)|p dξ ≤ (1 + ε)2n−|J |−1πCb(J)

p .

Proof. First, let J ⊆ {1, . . . , n} be fixed. Consider the integrals

Ip({φj}j∈J) =
ˆ 2n−1π

0

∏
j∈J
|cos(φjξ)|p dξ ∈ (0,∞).

By the dominated convergence theorem, Ip({φj}j∈J) is continuous in p ∈ [1,∞)

and φj ∈ R. Hence it is uniformly continuous once p and the φj are confined to a

compact domain. We have by compactness that

ˆ 2n−1π

0

∏
j∈J
|cos(2−jξ)|p dξ > 0
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uniformly in p ∈ [1, p0]. Now this together with uniform continuity allows us to

find δ = δ(n, J, p0, ε) > 0 such that

ˆ 2n−1π

0

∏
j∈J
|cos(φjξ)|p dξ ≤ (1 + ε)

ˆ 2n−1π

0

∏
j∈J
|cos(2−jξ)|p dξ

whenever 1 ≤ p ≤ p0 and (2.3.4) holds. As there are only finitely many subsets of

{1, . . . , n}, the number δ can in fact be chosen independently of J . An application

of Lemma 2.3.1 completes the proof.

2.4 Proof of Theorem 1.1.2

In this section, we use the criteria of Proposition 2.2.1 and the analytical

Lemma 2.3.2 to prove Theorem 1.1.2 in five steps.

2.4.1 Choice of parameters

We fix a set S of nonnegative integers and a weight function w : S → {2, 3, 4, . . .}

and define

w+(k) =
∑

j∈S; j<k
w(j) and χ+(k) = #(S ∩ [0, k − 1])

such that there is a finite constant M ≥ 2 and there are infinitely many k ∈ S

for which k + 1 ∈ S and w(k), w(k + 1) ≤M and such that we have the following

asymptotics:

lim
k→∞
k∈S

w(k)
w+(k) = 0 and lim

k→∞

χ+(k)
w+(k) = 0 and lim

k→∞

w+(k)
k

= 0. (2.4.1)
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2.4 Proof of Theorem 1.1.2

For example, we may choose S = {n3 | n ≥ 2} ∪ {n6 + 1 | n ≥ 2} and w(n3) = n if

n is not a square and w(n6) = w(n6 + 1) = 2 for any n ≥ 2.

Next we fix a function r : {0, 1, 2, . . .} → {0, 1, 2, . . .} satisfying

lim
s→∞

r(s) =∞ and lim
s→∞

r(s)
w+(s) = 0. (2.4.2)

Let δ(n, p0, ε) be the numbers from Lemma 2.3.2 and write δ(n) = δ(n, 2, 1). We

may assume that 0 < δ(n+ 1) < δ(n) < 1/2 for any n. Finally we choose dissection

ratios θj ∈ (0, 1/2) as follows:

θj =


2−w(j) if j ∈ S,

1
2(1− αj) if j 6∈ S,

with error terms αj satisfying 0 < 2αj+1 ≤ αj ≤ 1/4 and

2αj ≤ inf{δ(2s) | s ≥ 0, r(s) ≤ j} (2.4.3)

for any j ≥ 0. Note that the infimum above is positive since r(s)→∞ as s→∞.

2.4.2 Asymptotics of products of dissection ratios

It follows that
∞∏
j=k

(1− αj) ≥ 1−
∞∑
j=k

αj ≥ 1− 2αk.
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Chapter 2 Large sets without Fourier restriction theorems

This bound is significant because of the following expansion of Θk based on our

choice of dissection ratios:

Θk =
∏

j∈S; j<k
2−w(j) ·

∏
j 6∈S; j<k

1
2(1− αj)

= 2−k−w+(k)+χ+(k) ·
∏

j 6∈S; j<k
(1− αj).

For convenience, we define corresponding to any index i a larger index by

i∗ = i+ w+(i)− χ+(i).

Then, we obtain the following inequalities for any k ≥ 0 and j ≥ r(s):

2−k∗−1 ≤ Θk ≤ 2−k∗ , (2.4.4)

(1− δ(2s))2−j∗+r(s)∗ ≤ Θ−1
r(s)Θj ≤ 2−j∗+r(s)∗ . (2.4.5)

Hence, Θk is close to a particular power of 1/2 and this relation is even tighter

for the partial product Θ−1
r(s)Θj. Using the last two limits in (2.4.1), it follows

from (2.4.4) that Θ1/k
k → 1/2 as k → ∞. This verifies assumption (2.2.1) of

Proposition 2.2.1. Notice that assumption (2.2.2) is satisfied for any ε ∈ (0, 2−M)

by our choices of S and θj.

2.4.3 Integral decomposition

In order to prove Theorem 1.1.2, it remains to verify the inequality in Proposi-

tion 2.2.1(ii) for any p ∈ (1, 2]. Since 1−2θk ≥ 1/2 for k ∈ S we may omit this term

from the left-hand side of that inequality. Hence, in order to prove Theorem 1.1.2
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2.4 Proof of Theorem 1.1.2

it now suffices to show that

H(ξ) =
∑
k∈S

2kΘk

1 + Θk|ξ|

k−1∏
j=0
|cos((1− θj)Θjπξ)|

lies in Lpξ([0,∞)) for any p ∈ (1, 2]. Consider the integrals at scales s ≥ k:

Ipk,s =
ˆ Θ−1

s

0

k−1∏
j=0
|cos((1− θj)Θjπξ)|p dξ. (2.4.6)

We use Minkowski’s inequality in Lp([0,∞)) and for every k ∈ S we decompose

[0,∞) into the subintervals [0,Θ−1
k ) and [Θ−1

s ,Θ−1
s+1) for s ≥ k to obtain the bound

‖H‖Lp([0,∞)) .
∑
k∈S

2kΘk

(
Ipk,k +

∞∑
s=k

Θp
s

Θp
k

Ipk,s+1

)1/p

=:
∑
k∈S

Apk. (2.4.7)

We let go of some factors in the product of cosines in (2.4.6), perform a linear

change of variables and then slightly enlarge the domain of integration using (2.4.4)

to obtain

Ipk,s ≤ π−1Θ−1
r(s)

ˆ Θr(s)Θ−1
s π

0

∏
j 6∈S

r(s)≤j≤k−1

|cos((1− θj)Θ−1
r(s)Θjξ)|p dξ

. Θ−1
r(s)

ˆ 2s∗−r(s)∗+1π

0

∏
j 6∈S

r(s)≤j≤k−1

|cos((1− θj)Θ−1
r(s)Θjξ)|p dξ. (2.4.8)
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Chapter 2 Large sets without Fourier restriction theorems

2.4.4 Application of Lemma 2.3.2

We next analyze the phases of the cosines in (2.4.8). If j 6∈ S and r(s) ≤ j ≤

k − 1 < s, then (2.4.5), (2.4.3) and the inequality 1− θj > 1/2 imply

|2−(j∗−r(s)∗+1) − (1− θj)Θ−1
r(s)Θj| ≤ 2−(j∗−r(s)∗+1)δ(2s).

If k and hence s are larger than some sufficiently large constant K = KS,θj , then

we have by (2.4.1) that s∗ ≤ 2s− 2 and j∗ − r(s)∗ + 1 ≤ 2s. Therefore, we verified

the assumption (2.3.4) in Lemma 2.3.2 in the case when k ≥ K with the near-

dyadic phases

φj∗−r(s)∗+1 = φj∗−r(s)∗+1,s = (1− θj)Θ−1
r(s)Θj

and the following set of dyadic exponents:

J = Jk,s = {j∗ − r(s)∗ + 1 | j 6∈ S and r(s) ≤ j ≤ k − 1}.

Since the map j 7→ j∗ is strictly increasing and therefore injective we have

#Jk,s ≥ k − χ+(k)− r(s) = k∗ − w+(k)− r(s).

We have (j + 1)∗ = j∗ + 1 if and only if j 6∈ S. Hence for any j /∈ S with

r(s) < j ≤ k − 1 the condition j∗ − r(s)∗ 6∈ Jk,s is equivalent to j − 1 ∈ S. This

allows us to bound the number of components of Jk,s:

b(Jk,s) ≤ #(S ∩ [r(s), k − 2]) + 1 ≤ χ+(k) + 1.
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2.4 Proof of Theorem 1.1.2

Furthermore, the set Jk,s is bounded from above:

sup(Jk,s) ≤ (k − 1)∗ − r(s)∗ + 1 ≤ s∗ − r(s)∗.

Compare this to the upper bound of integration in (2.4.8) to see that Lemma 2.3.2

is applicable to the integral in (2.4.8). We obtain that

Ipk,s . Θ−1
r(s)2s

∗−r(s)∗−#Jk,sCb(Jk,s)
p , if k ≥ K.

We use (2.4.4) and the above bounds on #Jk,s and b(Jk,s) to bring this estimate

into a more convenient form:

Ipk,s . Θ−1
s 2−#Jk,sCb(Jk,s)

p . Θ−1
s Θk2w

+(k)+r(s)Cχ+(k)+1
p , if k ≥ K.

2.4.5 Conclusion

We use the previous inequality and (2.4.4) to estimate the terms Apk, k ∈ S, of the

sum in (2.4.7):

Apk . 2−(1−1/p)w+(k)+χ+(k)C(χ+(k)+1)/p
p

(
2r(k) +

∞∑
s=k

Θp−1
s

Θp−1
k

θ−1
s 2r(s+1)

)1/p

.

Fix a positive number ε such that 2ε < 1 − 1/p and ε < p − 1. After possibly

increasing K, we obtain from the limits (2.4.1) and (2.4.2) that

θ−1
s 2r(s+1) ≤ 2εw+(s) = 2εw+(k)2ε(w+(s)−w+(k)) ≤ 2εw+(k)Θ−εs Θε

k, if s ≥ K
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Chapter 2 Large sets without Fourier restriction theorems

and further for k ∈ S with k ≥ K:

Apk . 2−(1−1/p−2ε)w+(k)
(

1 +
∞∑
s=k

Θp−1−ε
s

Θp−1−ε
k

)1/p

≤ 2−(1−1/p−2ε)w+(k)Sp,ε,

where Sp,ε is a constant depending on p and ε. We split the sum in (2.4.7) as

follows:

‖H‖Lp([0,∞)) .
∑

k∈S; k<K
Apk +

∑
k∈S; k≥K

Apk.

The sum over k ≥ K is dominated by a convergent geometric series due to the

last bound on Apk and since 1 − 1/p − 2ε > 0 and w+(k1) ≤ w+(k2) − 2 for any

k1, k2 ∈ S with k1 < k2. The sum over k < K above is finite since it is the sum of

finitely many terms Apk, each of which is finite. Hence, H lies in Lp([0,∞)). This

completes the proof of Theorem 1.1.2.

2.5 Proofs of Corollaries 1.1.5 and 1.1.9

We first prove Corollary 1.1.5 using Theorems 1.1.2 and 1.1.3 and then we prove

Corollary 1.1.9 using Corollary 1.1.5 and Theorem 1.1.8.

Proof of Corollary 1.1.5. By Theorem 1.1.2, there is a function f ∈ ⋂p∈(1,∞] L
p(Rd)

such that the non-Lebesgue set E of f̂ is compact and has full Hausdorff dimension d.

We now show that E satisfies the remaining assertion of Corollary 1.1.5.

To this end, let µ be a nonzero Borel measure such that the restriction inequality

(1.1.1) holds for some exponents p ∈ (1, 2] and q ∈ [1,∞]. It suffices to show that

µ(E) = 0. A scaling argument shows that since p > 1, we necessarily have q <∞.

Therefore, it follows from (1.1.1) that µ is σ-finite and an interpolation with the
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trivial L1(Rd)→ L∞(µ) bound gives a Lp1(Rd)→ Lq1(µ) restriction estimate with

1 < p1 < q1 < ∞. Hence, by Theorem 1.1.3 and since f lies in L2p1/(p1+1)(Rd),

µ-almost every point is a Lebesgue point of f̂ . But f̂ has no Lebesgue points in E

and therefore µ(E) = 0. This completes the proof.

We need the following theorem of Besicovitch [Bes52], see also [Dav52].

Theorem 2.5.1. Any closed set in Rd has subsets of any smaller Hausdorff

dimension.

Proof of Corollary 1.1.9. If p = 2, then α = d and any compact set of positive

Lebesgue measure proves the corollary. We may now assume that p < 2.

Let E be the set from Corollary 1.1.5. Let E1 be a compact subset of E of

Hausdorff dimension equal to α. Such a subset can be obtained by appropriately

reducing the Cantor set of Section 2.2 or by applying Theorem 2.5.1.

If p = 1, then we are finished since pres(E) = 1 and hence pres(E1) = 1. We may

now assume that 1 < p ≤ 2d/(2d − α). Hence, there is an α0 ∈ (0, α] such that

p = 2d/(2d − α0). Using the previous reduction to the case p < 2, we see that

α0 < d. By [ŁW18, Theorem 2], there is a compact set E2 of Hausdorff dimension

α0 such that pres(E2) = p. Now we have for the Hausdorff dimensions,

dimH(E1 ∪ E2) = max(dimH(E1), dimH(E2)) = max(α, α0) = α

and similarly for the endpoint restriction exponents,

pres(E1 ∪ E2) = max(pres(E1), pres(E2)) = max(1, p) = p.

Hence, the compact set E1 ∪ E2 has the claimed properties.
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Chapter 3

The one-dimensional centred
maximal function diminishes the
variation of indicator functions

In this chapter, we prove the results contained in Section 1.2. In Section 3.1, we

introduce a local variation bound in the continuous setting which we then prove

in Section 3.2. This bound is the key to the proof of Theorem 1.2.2, and hence

Theorem 1.2.1, in Section 3.3.

Our proofs in the discrete setting are contained in Section 3.4. In Section 3.4.3

we prove an analogous discrete local variation bound which we then apply in

Sections 3.4.4 and 3.4.5 to show the discrete Theorem 1.2.5. These proofs can be

read mostly independently from Sections 3.2 and 3.3. Section 3.4.1 contains the

embedding argument leading to one of the inequalities in Proposition 1.2.4, as well as

to the derivation of Theorem 1.2.3 from Theorem 1.2.1. In Section 3.4.2, we use an

approximation argument to establish the remaining inequality in Proposition 1.2.4.

3.1 Proof strategy

Let us explain our ideas in the continuous setting since they are largely the same

in the discrete setting. Our main observation is that, for a function f : R→ [0,∞)
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satisfying the assumptions of Theorem 1.2.2, the local variation bound

var[a,b](Mf) ≤ var[a,b](f) (3.1.1)

holds for any real numbers a < b such that f(a) = Mf(a) and f(b) = Mf(b), i.e.

such that Mf is attached to f at a and b. Our proof of Theorem 1.2.2 heavily

relies on this property. The following example shows a typical situation. Denote

χ[a,b](x) =



1 if a < x < b,

1/2 if x = a or x = b,

0 otherwise.

Example 3.1.1. Let c ∈ (1, 3) and f = χ[−c,−1] + χ[1,c]. Then Mf is attached to f

at any point x with 1 ≤ |x| ≤ c and var[−1,1](Mf) = c−1 < 1 = var[−1,1](f). The

maximal function Mf has a strict local maximum of value (c− 1)/c at 0 and two

strict local minima of value (3c− 3)/(4c) at ±c/3, see Fig. 3.1.

−c −1 0 1 c

0

1
f
Mf

Figure 3.1: The functions f and Mf in Example 3.1.1 with c = 3/2.
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3.1 Proof strategy

By taking c→ 1, we obtain a sequence of functions with var(Mf)/ var(f)→ 1

that does not converge pointwise modulo symmetries to a nonzero maximiser of

Theorem 1.2.2, even though maximisers exist. This lack of compactness presents a

difficulty that any proof of a sharp version of (1.2.2) has to overcome.

The calculations leading to Example 3.1.1 and Fig. 3.1, as well as to Example 3.1.3

and Figs. 3.2 and 3.3 below, are straightforward because for step functions it holds

that

Mf(x) = sup
y 6= x is a jump of f

 x+|x−y|

x−|x−y|
|f(z)| dz.

The local variation bound (3.1.1) will follow from part (i) of the following result.

An analogue for unbounded intervals is contained in part (ii).

Proposition 3.1.2. Let f : R→ [0,∞) be a bounded Borel measurable function

and let I ⊆ R be an interval such that f(x) = 0 for almost every x ∈ I. Then the

following holds:

(i) If I = [a, b] for some real numbers a < b, then var[a,(a+b)/2](Mf) ≤ Mf(a)

and var[(a+b)/2,b](Mf) ≤Mf(b). Both of these inequalities are strict unless f

vanishes almost everywhere on R.

(ii) If I = (−∞, a] or I = [a,∞) for some real a, then Mf is monotone on I

and varI(Mf) = Mf(a)− infx∈IMf(x).

Our approach may be compared to the strategy of Aldaz and Pérez Lázaro

[AP07] for the uncentred Hardy–Littlewood maximal function
∼
Mf . They show

that if f : R→ R is of bounded variation and satisfies f(x) = lim supy→x f(y) for

any x ∈ R, then
∼
Mf ≥ f and

∼
Mf is attached to f at any strict local maximum
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point of
∼
Mf . This can be used to show (3.1.1) when Mf is replaced by

∼
Mf and a

and b are neighbouring strict local maximum points of
∼
Mf .

However, in the centred case, Mf is not necessarily attached to f at strict local

maxima of Mf , see Example 3.1.1 above. We overcome this by making use of

a gradient bound for Mf in the proof of Proposition 3.1.2. On the other hand,

this bound becomes less useful for our purposes if a function fails to satisfy the

assumptions of Theorem 1.2.2. In fact, for general functions of bounded variation,

the local variation bound (3.1.1) often fails between points of attachment. This

is what prevents us from generalising our results to a substantially larger class of

functions than in Theorem 1.2.2.

Example 3.1.3. Let h = 2/5 and f = χ[−3/2,−1] +h ·χ[−1/2,1/2] +χ[1,3/2]. Then f is

constant in (−1/2, 1/2) and Mf is attached to f at any point x with 2 ≤ 8|x| ≤ 3,

but Mf has a strict local maximum of value 7/15 > h at 0. In particular, (3.1.1)

fails between the points of attachment a = −1/3 and b = 1/3, see Fig. 3.2.

−1 a 0 b 1

0

1
f
Mf

Figure 3.2: The functions f and Mf in Example 3.1.3.
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3.2 Proof of Proposition 3.1.2

Throughout this section, let f : R → [0,∞) be a bounded Borel measurable

function. The following result proves the unbounded case in Proposition 3.1.2(ii).

By symmetry, it suffices to take I = [a,∞).

Lemma 3.2.1. Let a ∈ R be such that f(x) = 0 for almost every x ≥ a. Then

Mf is nonincreasing on [a,∞) and hence

var[a,∞)(Mf) = Mf(a)− inf
x∈[a,∞)

Mf(x).

Proof. Let a ≤ x ≤ y. By the definition of Mf and the assumptions on f ,

Mf(x) = sup
r>x−a

 x+r

x−r
f(z) dz ≥ sup

r>x−a

 x+r+2(y−x)

x−r
f(z) dz = Mf(y).

This completes the proof.

The rest of this section is devoted to the proof of Proposition 3.1.2(i), i.e. the

case that I = [a, b] for some real numbers a < b. It suffices to consider the special

case that a = −1 and b = 1 and to prove the strict inequality

var[0,1](Mf) < Mf(1) (3.2.1)

under the assumption that f(x) = 0 for almost every x ∈ [−1, 1] and that f does

not vanish almost everywhere on R. The general case follows from this because for

any nonconstant affine map φ : R→ R we have that M(f ◦ φ)(1) = Mf(φ(1)) and

varφ([0,1])(Mf) = var[0,1]((Mf) ◦ φ) = var[0,1](M(f ◦ φ)).
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For the proof of (3.2.1) we first note thatMf restricted to [0,∞) is the pointwise

maximum of the auxiliary maximal functions M0f,M1f : [0,∞)→ [0,∞) defined

by

M0f(x) = sup
r≤1+x

 x+r

x−r
f(y) dy, M1f(x) = sup

r≥1+x

 x+r

x−r
f(y) dy,

see Fig. 3.3 for an example. Of these, M1f only permits averages over large radii.

Based on this, our first lemma bounds the difference quotients of M1f .

Lemma 3.2.2. Let x, y ≥ 0 be distinct and let r ≥ 1 + x be such that

M1f(x) = sup
s≥r

 x+s

x−s
f(z) dz.

Then,
M1f(x)−M1f(y)

|x− y|
≤ M1f(x)
r + |x− y| ≤

M1f(y)
r

.

0 1

0

1
f M0f M1f

Figure 3.3: The auxiliary maximal functions M0f and M1f on [0, 1.3] for the
function f = χ[−5/2,−2] + χ[−3/2,−1] + χ[1,2] + χ[3,7/2].
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Note that by the definition of M1f , we can always take r to be at least 1 + x.

The lemma also holds for Mf instead of M1f , but then we are not guaranteed a

good lower bound on r.

Proof. We have that M1f(x) <∞ since f is bounded. Hence, for any ε > 0 there

exists an s ≥ r such that (1− ε)M1f(x) ≤
ffl x+s
x−s f(z) dz and therefore,

(1− ε)M1f(x)−M1f(y) ≤
 x+s

x−s
f(z) dz −

 y+s+|x−y|

y−s−|x−y|
f(z) dz

≤
( 1

2s −
1

2s+ 2|x− y|

)ˆ x+s

x−s
f(z) dz

= |x− y|
s+ |x− y|

 x+s

x−s
f(z) dz

≤ |x− y|
r + |x− y|M1f(x).

The first inequality uses the definition of M1f(y) together with the fact that

s + |x − y| ≥ 1 + y. In the second inequality, we use the nonnegativity of f to

reduce the domain of integration of the second integral. The last two relations

follow from definitions. Now the first inequality in the lemma follows by letting

ε→ 0. The second inequality follows after rearranging terms.

Bounds similar to Lemma 3.2.2 have frequently appeared in the literature,

including in higher dimensions. The related inequality |∇Mαf(x)| ≤ CMα−1f(x)

for the fractional maximal function Mαf with 1 ≤ α ≤ d was proved by Kinnunen

and Saksman [KS03]. A generalisation to the range 0 ≤ α ≤ d is due to Beltran,

González-Riquelme, Madrid Padilla and Weigt [BGMW21, Section 2.5].

We now employ the previous result to prove a local variation bound forM1f . The

strictness of this inequality will be crucial to our characterisation of maximisers.
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Lemma 3.2.3. It holds that var[0,1](M1f) ≤ M1f(1) and this inequality is strict

if f(x) = 0 for almost every x ∈ [−1, 1] and f(x) > 0 for any x in some set of

positive measure.

Proof. First assume that f(x) = 0 for almost every x ∈ [−1, 1] and f(x) > 0

for any x in some set of positive measure. Then M1f(x) > 0 for any x ≥ 0. By

Lemma 3.2.2,M1f is continuous. Since the map (x, s) 7→
ffl x+s
x−s f(y) dy is continuous

at (x, s) = (0, 1) and f(y) = 0 for almost every y ∈ [−1, 1], this implies the existence

of a δ ∈ (0, 1) such that for any x ∈ [0, δ),

M1f(x) = sup
s≥1+x+δ

 x+s

x−s
f(y) dy

and hence f and x satisfy the hypotheses of Lemma 3.2.2 with r = 1 + x + δ.

Without the additional assumptions that f(x) = 0 for almost every x ∈ [−1, 1]

and that f(x) > 0 for any x in some set of positive measure, this remains true for

δ = 0.

In order to estimate the variation of M1f on [0, 1], we let k ≥ 1 and

0 = x0 < x1 < . . . < xk = 1

We write δi = δ if xi < δ and δi = 0 otherwise. By the two inequalities in

Lemma 3.2.2 and the monotonicity of the sequences xi and δi,

k−1∑
i=0
|M1f(xi)−M1f(xi+1)|

≤
k−1∑
i=0

max
(

M1f(xi)
1 + xi+1 + δi

,
M1f(xi+1)

1 + 2xi+1 − xi + δi+1

)
(xi+1 − xi)
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≤
k−1∑
i=0

max(M1f(xi),M1f(xi+1)) xi+1 − xi
1 + xi + δi+1

≤
k−1∑
i=0

max
( 2 + δi

1 + xi + δi
,

2 + δi+1

1 + xi+1 + δi+1

)
xi+1 − xi

1 + xi + δi+1
M1f(1)

≤
k−1∑
i=0

(2 + δi)(xi+1 − xi)
(1 + xi + δi+1)2 M1f(1).

Except for the summand corresponding to the case xi < δ ≤ xi+1, this is a Riemann

sum and therefore

var[0,1](M1f) ≤
(ˆ δ

0

2 + δ

(1 + x+ δ)2 dx+
ˆ 1

δ

2
(1 + x)2 dx

)
M1f(1)

≤
ˆ 1

0

2
(1 + x)2 dx ·M1f(1)

= M1f(1)

and the second inequality is strict if δ > 0. This completes the proof.

Remark 3.2.4. Let us sketch a shorter but less elementary version of the second

part of the above proof. By Lemma 3.2.2, the auxiliary maximal function M1f is

Lipschitz continuous. Hence it is differentiable almost everywhere and

var[0,1](M1f) =
ˆ 1

0
|(M1f)′(x)| dx.

At any point of differentiability x ∈ (0, 1) we have by Lemma 3.2.2 that

|(M1f)′(x)| ≤ M1f(x)
1 + x

≤ 2M1f(1)
(1 + x)2
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and the first inequality is strict in some neighbourhood of 0. Plugging this into the

above formula for var[0,1](M1f) yields Lemma 3.2.3.

The next lemma concerns the other auxiliary maximal function M0f .

Lemma 3.2.5. Let f(x) = 0 for almost every x ∈ [−1, 1]. Then M0f is non-

decreasing on [0, 1].

Proof. This is similar to the proof of Lemma 3.2.1. Let 0 < x ≤ y ≤ 1. Then,

M0f(x) = sup
1−x<r≤1+x

 x+r

x−r
f(z) dz ≤ sup

1−x<r≤1+x

 x+r

x−r+2(y−x)
f(z) dz ≤M0f(y).

Since M0f(0) = 0 and M0f is nonnegative, this completes the proof.

We have established the monotonicity of M0f in Lemma 3.2.5 and a variation

bound for M1f in Lemma 3.2.3. The next result will allow us to deduce a variation

bound for the pointwise maximum Mf = max(M0f,M1f).

Lemma 3.2.6. Let g, h : [0, 1]→ R be functions such that g(1) ≤ h(1) and let g be

nondecreasing. Then var[0,1](max(g, h)) ≤ var[0,1](h).

Proof. Write u = max(g, h). We need to show that for any k ≥ 1 and any

0 = x0 < x1 < . . . < xk = 1

it holds that
k−1∑
i=0
|u(xi)− u(xi+1)| ≤ var[0,1](h).

Write xk+1 = 1 and consider the set

P = {−1} ∪ {i ∈ {0, . . . , k} | h(xi) ≥ u(xi+1)}.
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Since xk = xk+1 = 1 and by assumption, h(xk) = u(xk+1) and hence k ∈ P . Let

` = #P − 2 and let p(−1) < p(0) < . . . < p(`) be the elements of P . Clearly,

p(−1) = −1 and p(`) = k. If i ∈ {0, . . . , k} \ P , then h(xi) < u(xi+1). Since g is

nondecreasing, we also have that g(xi) ≤ g(xi+1) and hence u(xi) ≤ u(xi+1). On

the other hand, if i ∈ P \ {−1}, then

h(xi) ≥ u(xi+1) ≥ g(xi+1) ≥ g(xi)

and hence h(xi) = u(xi) and u(xi) ≥ u(xi+1). This shows that for any 0 ≤ j ≤ `,

u(xp(j−1)+1) ≤ u(xp(j−1)+2) ≤ . . . ≤ u(xp(j)) = h(xp(j))

and h(xp(j)) ≥ u(xp(j)+1). We conclude that

k−1∑
i=0
|u(xi)− u(xi+1)| =

∑̀
j=0

p(j)∑
i=p(j−1)+1

|u(xi)− u(xi+1)|

=
∑̀
j=0

2h(xp(j))− u(xp(j−1)+1)− u(xp(j)+1)

≤
∑̀
j=0

2h(xp(j))− h(xp(j−1)+1)− h(xp(j)+1)

≤ var[0,1](h).

This completes the proof.

We are now ready to prove (3.2.1). Let f(x) = 0 for almost every x ∈ [−1, 1] and

let h : [0, 1]→ [0,∞) be the function defined by h(x) = M1f(x) for 0 ≤ x < 1 and

h(1) = Mf(1). Then M0f(1) ≤ h(1) and Mf restricted to [0, 1] is the pointwise
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maximum of M0f and h. Hence by an application of Lemmas 3.2.5 and 3.2.6 and

then Lemma 3.2.3,

var[0,1](Mf) ≤ var[0,1](h) ≤ var[0,1](M1f) +Mf(1)−M1f(1) ≤Mf(1).

The last inequality is strict if f does not vanish almost everywhere on R. This

shows (3.2.1) and hence completes the proof of Proposition 3.1.2.

Remark 3.2.7. One can show that M0f is also Lipschitz continuous on [0, 1] and

that M0f and M1f do not coincide at more than one point in [0, 1] if f does not

vanish almost everywhere on R. Let us only sketch a proof of the fact that if

y ∈ [0, 1] is such that M0f(y) ≥M1f(y), then M0f(x) > M1f(x) for any x ∈ (y, 1].

By Lemma 3.2.2,
M1f(x)−M1f(y)

x− y
≤ M1f(y)

1 + x
.

Similarly as in the proofs of Lemmas 3.2.2 and 3.2.5, one can show that

M0f(x)−M0f(y)
x− y

≥ M0f(y)
1− x+ 2y .

Since M0f(y) ≥M1f(y) > 0 and y < x it follows that M0f(x) > M1f(x).

3.3 Proof of Theorem 1.2.2

Throughout this section, let f : R → [0,∞) be a function of bounded variation

such that for almost every x ∈ R we have that f(x) = 0 or f(x) = Mf(x). In
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3.3 Proof of Theorem 1.2.2

order to prove Theorem 1.2.2, we need to show the inequality

var(Mf) ≤ var(f) (3.3.1)

and determine its cases of equality. We will accomplish this by using a certain

canonical representative f̄ whose properties facilitate the application of Proposi-

tion 3.1.2. In Section 3.3.1, we define f̄ , show that f and f̄ agree almost everywhere

and that

var(f̄) ≤ var(f). (3.3.2)

There, we also establish some further properties of f̄ . In Section 3.3.2, we apply

Proposition 3.1.2 to show (3.3.1) for f̄ , i.e. we show that

var(Mf) ≤ var(f̄). (3.3.3)

Inequalities (3.3.2) and (3.3.3) together imply (3.3.1). In Section 3.3.3, we char-

acterise the cases of equality in (3.3.1) by characterising the cases of equality in

(3.3.3) and then characterising the cases of equality in (3.3.2) under the assumption

that equality holds in (3.3.3).

3.3.1 Canonical representative

Let us define a function f̄ : R→ [0,∞) as follows. If x ∈ R is such that

lim sup
r↘0

 x+r

x−r
f(y) dy = 0, (3.3.4)
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then we let f̄(x) = 0 and otherwise we let f̄(x) = Mf(x). This canonical

representative is related to but distinct from the homonymous object in [AP07].

By the Lebesgue differentiation theorem and the assumption on f , we have that

f(x) = f̄(x) for almost every x ∈ R and hence Mf(x) = Mf̄(x) for any x ∈ R.

Since f is of bounded variation, its one-sided limits exist at any point. It follows

that (3.3.4) can be rewritten without the use of an integral, but we will not need

this.

The following lemma will be used multiple times throughout this section.

Lemma 3.3.1. The maximal function Mf is lower semi-continuous, i.e. for any

x ∈ R it holds that lim infy→xMf(y) ≥Mf(x).

Proof. By definition, Mf is the pointwise supremum of the continuous functions

R 3 x 7→
 x+r

x−r
f(y) dy, r > 0.

The lemma follows from this.

We now show that the canonical representative does not increase the variation.

Lemma 3.3.2. Inequality (3.3.2) holds.

Proof. We first claim that it suffices to show that for any x ∈ R and ε > 0 there

exist y1, y2 ∈ (x− ε, x+ ε) such that f(y1)− ε ≤ f̄(x) ≤ f(y2) + ε. Let k ≥ 1 and

let

−∞ < x0 < x1 < . . . < xk <∞.
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By iteratively removing any points xi with 1 ≤ i ≤ k− 1 for which f̄(xi) lies in the

convex hull of {f̄(xi−1), f̄(xi+1)}, we obtain a subsequence x′0 < . . . < x′` such that

k−1∑
i=0
|f̄(xi)− f̄(xi+1)| = σ

`−1∑
i=0

(−1)if̄(x′i) + (−1)i+1f̄(x′i+1)

for some σ ∈ {−1, 1}. Let ε > 0. By the claim made at the beginning of the proof,

there exist points yi ∈ (x′i − ε, x′i + ε) such that

σ(−1)if̄(x′i) ≤ σ(−1)if(yi) + ε

for any 0 ≤ i ≤ `. If ε is small enough, then yi is increasing in i and hence

k−1∑
i=0
|f̄(xi)− f̄(xi+1)| − 2`ε ≤ σ

`−1∑
i=0

(−1)if(yi) + (−1)i+1f(yi+1) ≤ var(f).

Let ε→ 0 and then take the supremum over all k and xi as above to show (3.3.2).

It remains to show that for any x ∈ R and ε > 0 there exist points y1 and y2 as

above. Let r ∈ (0, ε). We start with the existence of y1. By the definitions of f̄(x)

and Mf(x),

f̄(x) ≥ lim sup
r↘0

 x+r

x−r
f(y) dy.

Hence if r is sufficiently small, then the integral on the right-hand side is at most

f̄(x) + ε and so there exists a y1 ∈ (x− r, x+ r) with f(y1)− ε ≤ f̄(x), as required.

We complete the proof by showing the existence of y2. If f̄(x) = 0, then

we may simply choose y2 = x because f is nonnegative. So we assume that

f̄(x) = Mf(x) > 0. Since (3.3.4) fails, f(y) > 0 for any y in some subset of positive

measure of (x− r, x+ r). As f and f̄ are equal almost everywhere, it follows that
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f(y2) = f̄(y2) = Mf(y2) for some y2 ∈ (x− r, x+ r). Hence if r is small enough,

then Lemma 3.3.1 implies that f(y2) + ε ≥ f̄(x), as required.

In particular, (3.3.2) shows that f̄ is of bounded variation. Together with the

definition of f̄ , this implies some topological properties of the vanishing set

V = {x ∈ R | f̄(x) = 0}.

Lemma 3.3.3. The set V is open and its boundary has no limit points in R.

This can be stated equivalently as follows: There exists a finite or countably

infinite nondecreasing sequence of points ai ∈ R ∪ {±∞} without accumulation

points in R such that V = ⋃
i(a2i, a2i+1).

Proof. If f vanishes almost everywhere, then V = R and the lemma follows. Since

f is nonnegative, we may therefore assume that f is positive in a set of positive

measure. Let x ∈ R. Then Mf(x) > 0 and by Lemma 3.3.1 there exists an ε > 0

such that Mf(y) > ε for any y ∈ (x− ε, x+ ε).

We first show that x is not a limit point of the boundary of V . Let k ≥ 0 and let

x− ε < x0 < x1 < . . . < x2k+1 < x+ ε

be a sequence of points with f̄(x2i) = 0 and f̄(x2i+1) = Mf̄(x2i+1) for any 0 ≤ i ≤ k.

It suffices to show that k is bounded by a constant that only depends on f̄ and ε.

Such a bound holds because

(2k + 1)ε <
2k∑
i=0
|f̄(xi+1)− f̄(xi)| ≤ var(f̄) <∞.
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The first inequality above holds by the properties of ε and xk. The second inequality

holds by definition. Hence x is not a limit point of the boundary of V .

It remains to show that V is open. To this end, let x be a boundary point

of V . We need to show that f̄(x) > 0. By the first part of the proof, f(y) > ε

for any y in some one-sided neighbourhood of x, i.e. for any y in (x − r, x) or

(x, x+ r) for some r > 0. Since f is nonnegative, we see that (3.3.4) fails and hence

f̄(x) = Mf(x) > 0. This completes the proof.

3.3.2 Global variation bound

In Section 3.3.1, we proved (3.3.2). Together with the following result, this implies

(3.3.1), proving the first part of Theorem 1.2.2.

Proposition 3.3.4. Inequality (3.3.3) holds.

Proof. By Lemma 3.3.3 and a subdivision of R we see that (3.3.3) holds if

varI(Mf) ≤ varI(f̄) (3.3.5)

whenever I is a connected component of R \ V or the closure of a connected

component of V . If I is a connected component of R \ V , then f̄ and Mf agree

on I, so that (3.3.5) holds with equality. Now let I be the closure of a connected

component of V . If I = R, then both sides of (3.3.5) are zero. On the other

hand, if I 6= R, then by Lemma 3.3.3, f̄ and Mf agree on the boundary of I and

therefore (3.3.5) follows from either (i) or (ii) in Proposition 3.1.2. This completes

the proof.
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3.3.3 Cases of equality

It remains to characterise the cases of equality in (3.3.1). We first establish certain

regularity properties of f̄ .

Lemma 3.3.5. Any connected component of V or R \ V has positive length.

Proof. Let x ∈ R. If f̄(y) > 0 for any y 6= x in some compact neighbourhood of x,

then by Lemma 3.3.1 there exists an ε > 0 such that f̄(y) = Mf(y) > ε for any

such y. Hence (3.3.4) fails and f̄(x) = Mf(x) > ε. This shows that {x} is not a

connected component of V .

On the other hand, if f̄(y) = 0 for any y 6= x in some neighbourhood of x,

then (3.3.4) holds and hence f̄(x) = 0. This shows that {x} is not a connected

component of R \ V . Since x ∈ R was arbitrary, it follows that any connected

component of V or R \ V has positive length.

Now we investigate the behaviour of the canonical representative f̄ on connected

components of its support

R \ V = {x ∈ R | f̄(x) > 0}.

This set is closed by Lemma 3.3.3. Our next result will only be applied in the case

of an unbounded connected component, but its proof is identical in the bounded

and unbounded cases.

Lemma 3.3.6. The function f̄ is concave on any connected component of R \ V .

Proof. Suppose for a contradiction that f̄ is not concave on some connected

component I of R \ V . Then there exist points x0 < x1 < x2 in I such that
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f̄(x1) < L(x1) where L : R→ R is the affine linear function defined by L(x0) = f̄(x0)

and L(x2) = f̄(x2). Hence for g = f̄ − L we have g(x1) < 0 and g(x0) = g(x2) = 0.

Since f̄ and Mf are equal in I, Lemma 3.3.1 and the continuity of L imply that

there exists a smallest x′1 ∈ [x0, x2] such that

g(x′1) = inf
x0≤y≤x2

g(y) < 0.

Since g(x0) = 0, there exists an r > 0 such that [x′1 − r, x′1 + r] ⊆ [x0, x2]. We have

that g(y) ≥ g(x′1) for any y ∈ [x0, x2] and the inequality is strict if y < x′1. Hence

by the mean value property for L,

Mf(x′1) ≥
 x′1+r

x′1−r
f̄(y) dy =

 x′1+r

x′1−r
g(y) dy + L(x′1) > g(x′1) + L(x′1) = f̄(x′1).

This is a contradiction to the fact that x′1 ∈ R\V . Therefore f̄ is concave on I.

The following result is a consequence of Lemma 3.3.6.

Lemma 3.3.7. Let I be an unbounded connected component of R \ V . Then,

lim
|x|→∞;x∈I

f̄(x) > 0.

Furthermore, if I = R, then f̄ is constant.

Proof. Suppose for a contradiction that one of the conclusions of the lemma is

false. Let x0 ∈ I, meaning that f̄(x0) > 0. Then by symmetry, we may assume

that [x0,∞) ⊆ I and that there exists a x1 > x0 such that f̄(x1) < f̄(x0). By

Lemma 3.3.6, it follows that f̄(x2) ≤ L(x2) for any x2 ≥ x1 where L : R → R is

the affine linear function defined by L(x0) = f̄(x0) and L(x1) = f̄(x1). Notice
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that L is strictly decreasing and hence f̄(x2) < 0 if x2 is large enough. This is a

contradiction to the nonnegativity of f̄ .

We can now characterise the cases of equality in the intermediate inequality

(3.3.3).

Proposition 3.3.8. Equality holds in (3.3.3) if and only if f̄ is constant or R \ V

is a compact interval of positive length.

Proof. It suffices to consider the case that f̄ is not constant since otherwise both

sides of (3.3.3) are zero. Then R\V is nonempty. By the second part of Lemma 3.3.7,

we also have that V is nonempty.

By the proof of Proposition 3.3.4, equality holds in (3.3.3) if and only if (3.3.5)

holds with equality whenever I is the closure of some connected component of

V . Any such I has positive length by Lemma 3.3.5. By the strictness in Proposi-

tion 3.1.2(i), this means that (3.3.3) can only hold with equality if all connected

components of V are unbounded, i.e. if R \ V is a nonempty interval. This interval

is closed by Lemma 3.3.3 and has positive length by Lemma 3.3.5.

Now let I 6= R be an unbounded connected component of V . Since the function

f̄ is of bounded variation, its limits at ±∞ exist and for any x ∈ R,

Mf(x) ≥ lim
r→∞

 x+r

x−r
f̄(y) dy = lim

y→∞

f̄(y) + f̄(−y)
2 .

Furthermore, if the right-hand side is zero, then lim|x|→∞Mf(x) = 0. By Proposi-

tion 3.1.2(ii), it follows that (3.3.5) holds with equality if and only if lim|x|→∞ f̄(x) =

0. By Lemma 3.3.7, this is the case precisely when R \ V has no unbounded com-

ponents. We conclude that if f̄ is not constant, then (3.3.3) holds with equality
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if and only if R \ V is a compact interval of positive length. This completes the

proof.

We can now characterise the cases of equality in (3.3.1). We first assume that

equality holds and show that f is constant or the set {x ∈ R | f(x) > 0} is a

bounded interval of positive length and for any x ∈ R,

lim inf
y→x

f(y) ≤ f(x) ≤ lim sup
y→x

f(y). (3.3.6)

If f̄ is constant, then Mf is constant and equality in (3.3.1) implies that f

is constant. Now consider the case that f̄ is not constant. By Lemma 3.3.2

and Proposition 3.3.4, equality in (3.3.1) implies equality in (3.3.2) and (3.3.3).

Hence by Proposition 3.3.8, it follows that R \ V = [a, b] for some real numbers

a < b. By Lemma 3.3.6, the canonical representative f̄ is concave on [a, b] and

hence continuous on (a, b) with

0 = lim
y↗a

f̄(y) ≤ f̄(a) ≤ lim
y↘a

f̄(y) and 0 = lim
y↘b

f̄(y) ≤ f̄(b) ≤ lim
y↗b

f̄(y). (3.3.7)

Since f and f̄ are equal almost everywhere and f̄ is continuous in R\{a, b}, equality

in (3.3.2) now implies that f(x) = f̄(x) for any x ∈ R \ {a, b}. It follows that

{x ∈ R | f(x) > 0} contains (a, b) and is contained in [a, b], verifying that this set

is a bounded interval of positive length. Furthermore, (3.3.6) holds if x 6∈ {a, b}.

At x = a, using (3.3.7) together with the equality in (3.3.2) we obtain that

0 = lim
y↗a

f̄(y) ≤ f(a) ≤ lim
y↘a

f̄(y)
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and a similar statement holds at x = b. Since we already established that f(y) =

f̄(y) for y ∈ R \ {a, b}, we can replace f̄(y) by f(y) in the above limits. Hence,

(3.3.6) is true also for x ∈ {a, b}, and we conclude that f has the properties stated

in the previous paragraph.

Conversely, assume that f is constant or the set {x ∈ R | f(x) > 0} is a bounded

interval of positive length and (3.3.6) holds for any x ∈ R. We need to show equality

in (3.3.1). This is immediate if f is constant, so it remains to consider the case that

there exist real numbers a < b such that {x ∈ R | f(x) > 0} contains (a, b) and is

contained in [a, b]. Using the Lebesgue differentiation theorem and Lemma 3.3.3 it

follows that R \ V = [a, b]. Hence equality holds in (3.3.3) by Proposition 3.3.8 and

f̄ is continuous in (a, b) by Lemma 3.3.6. It remains to show equality in (3.3.2).

Since f and f̄ agree almost everywhere and are of bounded variation, we have that

lim inf
y→x

f(y) = lim inf
y→x

f̄(y) = f̄(x)

for every x ∈ (a, b) and the same holds with lim inf replaced by lim sup. Now

f(x) = f̄(x) holds for any x ∈ (a, b) by (3.3.6) and for any x ∈ R \ [a, b] by

assumption on f , i.e. f(x) and f̄(x) may only disagree if x ∈ {a, b}. However,

Lemma 3.3.6 implies (3.3.7) as before and (3.3.7) continues to hold if f̄ is replaced

by f , which is a consequence of (3.3.6). We can conclude equality in (3.3.2), which

implies equality in (3.3.1) because we already showed equality in (3.3.3). This

completes the proof of Theorem 1.2.2.
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3.4 Discrete setting

3.4 Discrete setting

In this section, we first use an embedding argument and a complementary approx-

imation argument to prove the conditional result Proposition 1.2.4 and to derive the

discrete Theorem 1.2.3 from the continuous Theorem 1.2.1. Afterwards, we adapt

the arguments in Sections 3.2 and 3.3 to show the general discrete Theorem 1.2.5.

3.4.1 Embedding

Let f : Z → R be a function of bounded variation and let Mf : Z → R be the

discrete maximal function as defined in Section 1.2.2. We define an associated

step function fc : R → R by setting fc(x) = f(n) for any integer n and any

x ∈ [n− 1/2, n+ 1/2). Let Mfc : R→ R be the continuous maximal function as

defined in Section 1.2.1.

For any monotone map φ : Z→ Z there exists a monotone map ψ : Z→ R such

that f ◦φ = fc ◦ψ and vice versa. Hence varZ(f) = var(fc). Our next claim is that

varZ(Mf) ≤ var(Mfc). This is an immediate consequence of the following result.

Lemma 3.4.1. We have that Mf(n) = Mfc(n) for any integer n.

Proof. For any nonnegative integer m, the step function fc is constant on the

intervals [n−m− 1/2, n−m+ 1/2) and [n+m− 1/2, n+m+ 1/2). Thus for any

positive radius r with |r −m| ≤ 1/2 we have that

 n+r

n−r
|fc(y)| dy = 1

2r

ˆ n+m

n−m
|fc(y)| dy + r −m

2r (|fc(n−m)|+ |fc(n+m)|).

The right-hand side is of the form A+B/r for some constants A and B independent

of r, where B = 0 if m = 0. It follows that the map r 7→
ffl n+r
n−r fc(y) dy is constant
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on (0, 1/2] and monotone on [m− 1/2,m+ 1/2] for any positive integer m. Hence,

Mfc(n) = sup
r∈Z≥0

 n+r+1/2

n−r−1/2
|fc(y)| dy = sup

r∈Z≥0

n+r∑
m=n−r

|f(m)| = Mf(n).

This completes the proof.

If fc satisfies (1.2.2) for some constant C, then it follows from the above that

varZ(Mf) ≤ var(Mfc) ≤ C var(fc) = C varZ(f) (3.4.1)

and hence f satisfies (1.2.4) with the same constant. This proves a part of

Proposition 1.2.4, namely that the optimal constant in the continuous inequality

(1.2.2) is not strictly smaller than the optimal constant in the discrete inequality

(1.2.4). Similarly, (3.4.1) enables us to derive Theorem 1.2.3 from Theorem 1.2.1.

Proof of Theorem 1.2.3. By assumption, f is {0, 1}-valued and of bounded vari-

ation and so the same is true for fc. Hence by (3.4.1) and Theorem 1.2.1, we see

that f satisfies (1.2.4) with C = 1. Equality can only hold if equality holds in

Theorem 1.2.1. For a nonconstant f , this implies that the set {x ∈ R | fc(x) = 1}

is a bounded interval of positive length and hence the set {n ∈ Z | f(n) = 1} is a

bounded nonempty discrete interval. On the other hand, if f is of this form, then

equality is attained because for any integer n with f(n) = 1 we have that

varZ(Mf) ≥ 2Mf(n)− lim
m→∞

Mf(m) +Mf(−m) = 2− 0 = varZ(f).

This completes the proof.
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3.4.2 Approximation

In order to complete the proof of Proposition 1.2.4, it remains to show that the

optimal constant in the continuous inequality (1.2.2) is not strictly larger than the

optimal constant in the discrete inequality (1.2.4).

Assume that (1.2.4) holds for some constant C. By the following result, it suffices

to show that var(Mfc) ≤ C var(fc) for any nonnegative function fc : R→ [0,∞) of

bounded variation.

Lemma 3.4.2. For any function g : R→ R of bounded variation, Mg = M |g| and

var(|g|) ≤ var(g).

Proof. The equality is immediate from the definition of the maximal function and

the inequality follows from the reverse triangle inequality:

∣∣∣|g(x)| − |g(y)|
∣∣∣ ≤ |g(x)− g(y)|

for any real numbers x and y.

Let a be a nonnegative integer and define a function fa : Z→ [0,∞) by setting

fa(n) =
 2−a(n+1/2)

2−a(n−1/2)
fc(x) dx, n ∈ Z.

Lemma 3.4.3. It holds that varZ(fa) ≤ var(fc).

Proof. Similarly as in the proof of Lemma 3.3.2, it suffices to show that for any n ∈ Z

there exist points y1, y2 ∈ 2−a(n− 1/2, n+ 1/2) such that fc(y1) ≤ fa(n) ≤ fc(y2).

This follows from the definition of fa(n) as an average.
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By the last result and (1.2.4) it suffices to show that

var(Mfc) ≤ sup
a≥0

varZ(Mfa).

Our proof of this inequality consists of two parts: Lemma 3.4.4 relates Mfc to

Mfa on the set

Z[1
2 ] = {2−an | a, n ∈ Z}

whose elememts are known as the dyadic rationals. Then, Lemma 3.4.6 shows that

the variation of Mfc is exhausted by dyadic rationals.

Lemma 3.4.4. If x is a dyadic rational, then lima→∞Mfa(2ax) = Mfc(x).

Proof. If a is sufficiently large, then Mfa(2ax) is defined and we have

Mfa(2ax) = sup
r∈Z≥0

2ax+r∑
n=2ax−r

fa(n) = sup
r∈2−a(Z≥0+1/2)

 x+r

x−r
fc(y) dy.

If U is an nonempty open subset of [0,∞], then the set of radii 2−a(Z≥0 + 1/2)

intersects U for any sufficiently large a. Since fc is of bounded variation, the map

[0,∞] 3 r 7→ lim
s→r

s∈(0,∞)

 x+s

x−s
fc(y) dy

is continuous and hence lima→∞Mfa(2ax) = supr>0
ffl x+r
x−r fc(y) dy, as required.

Now we need to strengthen the lower semicontinuity established in Lemma 3.3.1.

Note that Lemma 3.3.1 applies to fc since its proof does not use the additional

assumptions of Section 3.3.
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Lemma 3.4.5. Let xi be a sequence of real numbers converging to some real limit x.

If limi→∞ fc(xi) = lim infy→x fc(y), then limi→∞Mfc(xi) = Mfc(x). In particular,

Mfc is continuous at points where fc is continuous.

Proof. By Lemma 3.3.1 it suffices to show that lim supi→∞Mfc(xi) ≤Mfc(x). Let

ri ∈ [0,∞] be such that

Mfc(xi) = lim
s→ri

s∈(0,∞)

 xi+s

xi−s
fc(y) dy.

After extracting a subsequence we may assume that ri converges to some r∗ ∈ [0,∞].

Note that the map

R× (0,∞] 3 (z, r) 7→ lim
s→r

s∈(0,∞)

 z+s

z−s
fc(y) dy

is continuous. Therefore, if r∗ > 0, then

lim
i→∞

Mfc(xi) = lim
s→r∗
s∈(0,∞)

 x+s

x−s
fc(y) dy ≤Mfc(x),

as required. We now assume that r∗ = 0. Since fc is of bounded variation, it has

one-sided limits at x. By our assumption that limi→∞ fc(xi) = lim infy→x fc(y), it

follows that one of the two limits

lim
i→∞

 xi

xi−ri
fc(y) dy and lim

i→∞

 xi+ri

xi

fc(y) dy
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is equal to lim infy→x fc(y) and the other is at most lim supy→x fc(y). Hence,

lim
i→∞

Mfc(xi) ≤
1
2

(
lim inf
y→x

fc(y) + lim sup
y→x

fc(y)
)

= lim
s↘0

 x+s

x−s
fc(y) dy ≤Mfc(x),

as required.

This allows us to prove that the variation ofMfc is exhausted by dyadic rationals.

We write

varZ[1/2](Mfc) = sup
φ : Z→ Z[1/2] monotone

∑
i∈Z
|Mfc(φ(i))−Mfc(φ(i+ 1))|.

Lemma 3.4.6. It holds that var(Mfc) ≤ varZ[1/2](Mfc).

Proof. Similarly as in the proof of Lemma 3.3.2, it suffices to show that for any

x ∈ R and ε > 0 there exists a dyadic rational y ∈ (x − ε, x + ε) such that

Mfc(y) − ε ≤ Mfc(x) ≤ Mfc(y) + ε. This follows from Lemma 3.4.5 since the

dyadic rationals are dense in R and since the one-sided limits of the function of

bounded variation fc exist.

By Lemmas 3.4.4 and 3.4.6 we have

var(Mfc) ≤ varZ[1/2](Mfc) ≤ sup
a≥0

varZ(Mfa)

and this completes the proof of Proposition 1.2.4.

3.4.3 Discrete local variation bound

The following result is the discrete analogue of Proposition 3.1.2. We will use it

to derive Theorem 1.2.5 similarly as Theorem 1.1.2 in the continuous setting, but
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without any of the technical difficulties related to compactness issues or exceptional

sets of measure zero.

Proposition 3.4.7. Let f : Z → [0,∞) be a bounded function and let I ⊆ R be

an interval such that f(n) = 0 for any integer n in the interior of I. Then the

following holds:

(i) If I = [a, b] for some integers a < b, then varI∩Z(Mf) ≤ Mf(a) + Mf(b).

The inequality is strict unless f vanishes everywhere on Z.

(ii) If I = (−∞, a] or I = [a,∞) for some integer a, then Mf is monotone on

I ∩ Z and varI∩Z(Mf) = Mf(a)− infn∈I∩ZMf(n).

The proof of this result goes along similar lines of the proof of Proposition 3.1.2,

although some details differ. In particular we have to work around the fact that

not all integer intervals have integer midpoints.

We first prove the unbounded case in Proposition 3.4.7(ii). By symmetry, it

suffices to take I = [a,∞).

Lemma 3.4.8. Let f : Z → [0,∞) be a bounded function and let a ∈ Z be such

that f(n) = 0 for every integer n > a. Then Mf is nonincreasing on [a,∞) ∩ Z

and hence

var[a,∞)∩Z(Mf) = Mf(a)− inf
n∈[a,∞)∩Z

Mf(n).

Proof. This is similar to the proof of Lemma 3.2.1. Let n,m ∈ Z be such that

a ≤ n ≤ m. Then,

Mf(n) = sup
r≥n−a

n+r∑
k=n−r

f(k) ≥ sup
r≥n−a

n+r+2(m−n)∑
k=n−r

f(k) = Mf(m).
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The rest of this section is devoted to the proof of Proposition 3.4.7(i), i.e. the case

that I = [a, b] for some integers a < b. We start with a reduction using translation

invariance. We also insert a midpoint in the case that a+ b is odd. For this, let f

be as in Proposition 3.4.7. Set

S =


Z if a+ b is even,

Z + 1
2 =

{
. . . ,−3

2 ,−
1
2 ,

1
2 ,

3
2 , . . .

}
if a+ b is odd

and write S0 = S ∪ {0}. We define a translated function
∼
f : S → [0,∞) by

∼
f(n) = f

(
n+ a+ b

2

)

and we define its centred maximal function M
∼
f : S0 → [0,∞) by

M
∼
f(n) = sup

v∈S; v≤n

2n−v∑
m=v

∼
f(m).

Given a domain T ∈ {S, S0}, a function g : T → [0,∞) and an interval I ⊆ R we

define the variation of g on the discrete interval I ∩ T by

varI∩T (g) = sup
φ : Z→ I ∩ T monotone

∑
i∈Z
|g(φ(i))− g(φ(i+ 1))|.

If S = Z, then these definitions agree with those in Section 1.2.2. Note that

var[a,b]∩Z(Mf) = var[−(b−a)/2,(b−a)/2]∩S(M
∼
f) ≤ var[−(b−a)/2,(b−a)/2]∩S0(M

∼
f)
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and

M
∼
f
(
−b− a2

)
= Mf(a), M

∼
f
(
b− a

2

)
= Mf(b).

From now on and for the rest of the proof of Proposition 3.4.7(i), let f : S → [0,∞)

be a bounded nonzero function. By the above relations and by symmetry, it is

enough to show the strict inequality

var[0,a]∩S0(Mf) < Mf(a) (3.4.2)

for any positive a ∈ S such that f(n) = 0 for all n ∈ S with −a < n < a. This is

analogous to (3.2.1).

Similarly as in the continuous setting, Mf restricted to [0, a]∩S0 is the pointwise

maximum of the auxiliary maximal functionsM0f,M1f : [0, a]∩S0 → [0,∞) defined

by

M0f(n) = max
v∈S;−a<v≤n

2n−v∑
m=v

f(m), M1f(n) = sup
v∈S; v≤−a

2n−v∑
m=v

f(m).

The following gradient bound forM1f is analogous to the continuous Lemma 3.2.2.

Since admissible radii in the above discrete setting are separated by a distance of 1,

an additional term 1/2 appears in this bound. Because of this, we also dispense

with the additional lower bound on the radii in Lemma 3.2.2. Except for these

differences, the proof is similar to the continuous case.

Lemma 3.4.9. Let n,m ∈ [0,∞) ∩ S0 be distinct. Then,

M1f(n)−M1f(m)
|n−m|

≤ M1f(n)
n+ a+ 1/2 + |n−m| ≤

M1f(m)
n+ a+ 1/2 .

73



Chapter 3 The centred maximal function diminishes the variation

Proof. We have M1f(n) <∞ since f is bounded. Hence for any ε > 0 there exists

a v ∈ S with v ≤ −a such that (1− ε)M1f(n) ≤ ∑2n−v
k=v f(k). Let w be such that

m− w = n− v + |n−m|.

Then w ∈ S because v − w is an integer. Since w ≤ v < 2n− v ≤ 2m− w,

(1− ε)M1f(n)−M1f(m) ≤
2n−v∑
k=v

f(k)−
2m−w∑
k=w

f(k)

≤
( 1

2(n− v) + 1 −
1

2(m− w) + 1

) 2n−v∑
k=v

f(k)

= 2|n−m|
2(m− w) + 1

2n−v∑
k=v

f(k)

≤ |n−m|
n+ a+ 1/2 + |n−m|M1f(n).

The first, third and fourth relations follow from definitions and the fact that w ≤ −a.

In the second line, we use that f is nonnegative to reduce the range of summation

of the second sum. Now the first inequality in the lemma follows by letting ε→ 0.

The second inequality follows after rearranging terms.

Our next result is a local variation bound for M1f analogous to the continuous

Lemma 3.2.3. Here the proof is somewhat simplified due to a telescoping argument.

Furthermore, due to the additional term 1/2 in Lemma 3.4.9 above, we are able to

show a slightly stronger inequality than in the continuous setting. This artefact

already allows us to obtain a strict inequality, whereas in the continuous setting

we have to work a little harder to get the strict inequality in Lemma 3.2.3.
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Lemma 3.4.10. Let a ∈ S be nonnegative. Then,

var[0,a]∩S0(M1f) ≤ 2a
2a+ 1M1f(a).

Proof. Let n < m be elements of [0, a]∩S0. By the two inequalities in Lemma 3.4.9,

|M1f(n)−M1f(m)| ≤ m− n
m+ a+ 1/2 max(M1f(n),M1f(m))

≤ (m− n)(2a+ 1/2)
(n+ a+ 1/2)(m+ a+ 1/2)M1f(a)

=
( 2a+ 1/2
n+ a+ 1/2 −

2a+ 1/2
m+ a+ 1/2

)
M1f(a).

Now let 0 = n0 < n1 < . . . < nk = a be an enumeration of [0, a] ∩ S0. We use the

above estimate and evaluate the resulting telescoping sum to obtain that

var[0,a]∩S0(M1f) =
k−1∑
i=0
|M1f(ni)−M1f(ni+1)| ≤

(2a+ 1/2
a+ 1/2 − 1

)
M1f(a).

This completes the proof.

Regarding the other auxiliary maximal function M0f , the following result similar

to Lemmas 3.2.5 and 3.4.8 holds.

Lemma 3.4.11. Let a ∈ S be nonnegative and let f(n) = 0 for any n ∈ S with

−a < n < a. Then M0f is nondecreasing on [0, a] ∩ S0.

Proof. Let n,m ∈ S be such that 0 < n ≤ m ≤ a. Then,

M0f(n) = max
v∈S;−a<v≤2n−a

2n−v∑
k=v

f(k) ≤ max
v∈S;−a<v≤2n−a

2n−v∑
k=v+2(m−n)

f(k) ≤M0f(m).
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Since M0f(0) = 0 and M0f is nonnegative, this completes the proof.

Having established the monotonicity of M0f and a variation bound for M1f

similarly as in the continuous setting, the next step is to combine these results

using the following analogue of Lemma 3.2.6. We omit the proof because it is the

same.

Lemma 3.4.12. Let a ∈ S be nonnegative. Let g, h : [0, a] ∩ S0 → R be functions

such that g(a) ≤ h(a) and let g be nondecreasing. Then,

var[0,a]∩S0(max(g, h)) ≤ var[0,a]∩S0(h).

We are now ready to prove (3.4.2). Let a ∈ S be positive such that f(n) = 0 for

any n ∈ S with −a < n < a and let h : [0, a] ∩ S0 → [0,∞) be the function defined

by h(n) = M1f(n) for n < a and h(a) = Mf(a). Then M0f(a) ≤ h(a) and Mf

restricted to [0, a] ∩ S0 is the pointwise maximum of M0f and h. Hence we can

apply Lemmas 3.4.11 and 3.4.12 and then Lemma 3.4.10 to obtain that

var[0,a]∩S0(Mf) ≤ var[0,a]∩S0(h) ≤ var[0,a]∩S0(M1f) +Mf(a)−M1f(a) < Mf(a).

This proves (3.4.2) and thus completes the proof of Proposition 3.4.7.

3.4.4 Discrete global variation bound

We now prove the inequality in Theorem 1.2.5. Throughout this subsection and the

next subsection, let f : Z→ [0,∞) be a function of bounded variation such that

for any n ∈ Z we have f(n) = 0 or f(n) = Mf(n). For possibly infinite endpoints
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a ≤ b we write

[a, b] ∩ Z = {n ∈ Z | a ≤ n ≤ b}.

There exists a possibly unbounded discrete interval I ⊆ Z and a nondecreasing

sequence (ai)i∈I of points in Z ∪ {±∞} such that

{n ∈ Z | f(n) > 0} =
⋃

i,i+1∈I; i odd
[ai, ai+1] ∩ Z = Z \

⋃
i,i+1∈I; i even

(ai, ai+1)

and ai + 2 ≤ ai+1 for any even i ∈ I such that i+ 1 ∈ I. We may further assume

that the points ±∞ each occur at most once in the sequence (ai)i∈I .

Let i ∈ I be such that i+ 1 ∈ I. If i is even, then by Proposition 3.4.7,

var[ai,ai+1]∩Z(Mf) ≤ var[ai,ai+1]∩Z(f). (3.4.3)

On the other hand, if i is odd, then by assumption it holds that f(n) = Mf(n) for

all n ∈ [ai, ai+1] ∩ Z and thus (3.4.3) holds with equality. We can conclude that

varZ(Mf) =
∑

i,i+1∈I
var[ai,ai+1]∩Z(Mf) ≤

∑
i,i+1∈I

var[ai,ai+1]∩Z(f) = varZ(f). (3.4.4)

This proves the inequality in Theorem 1.2.5.

3.4.5 Cases of equality

For the characterisation of the cases of equality in Theorem 1.2.5, we may assume

that f is not constant since otherwise both sides of (3.4.4) are zero. By the last

subsection, equality holds in (3.4.4) if and only if for every even i ∈ I with i+1 ∈ I

we have equality in (3.4.3). We need the following concavity result whose proof
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we omit because it is similar to the proof of Lemma 3.3.7. The conclusion of this

result slightly differs from Lemma 3.3.7 because here we already assume f to be

nonconstant.

Lemma 3.4.13. Let i ∈ I be odd and such that i + 1 ∈ I and ai+1 = ∞. Then

limn→∞ f(n) > 0 and ai > −∞.

By definition, I has at least two elements. Since f is not constant, it is not the

zero function. Hence I is not of the form {i, i+1} for any even i. By Lemma 3.4.13,

it is also not of this form for any odd i. Hence I has at least three elements. If

there exists an even i ∈ I with i+ 1 ∈ I and ai, ai+1 ∈ Z, then (3.4.3) is a strict

inequality by Proposition 3.4.7 and hence (3.4.4) is strict. It remains to consider

the case that no such i exists. After re-indexing and up to symmetry, this means

that I is either {0, 1, 2, 3} or {0, 1, 2}.

In the first case, f is finitely supported and hence, by Proposition 3.4.7(ii),

equality holds in (3.4.3) for the even indices i = 0 and i = 2. Thus (3.4.4) holds

with equality. In the second case, by Lemma 3.4.13,

Mf(n) ≥ lim
r→∞

n+r∑
m=n−r

f(m) = lim
m→∞

f(m)
2 > 0.

for any integer n. By Proposition 3.4.7(ii), this means that (3.4.3) is strict for i = 0

and hence (3.4.4) is strict. We conclude that equality holds in (3.4.4) if and only

if f is constant or {n ∈ Z | f(n) > 0} = [a, b] ∩ Z for some integers a ≤ b. This

completes the proof of Theorem 1.2.5.
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