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Abstract
Advanced human motion capture technologies have benefited both clinical diagnosis

and rehabilitation in the past decades, which provided scientists and clinicians with a

comprehensive understanding of human motion. So far, various motion capture

methods based on different sensors, such as IMU sensors and high-speed cameras,

have appeared and boosted the development of joint angle estimation methods. At

present, the utilization of musculoskeletal models has enabled biomedical

communities to calculate joint angles by applying a standard protocol. However, it

costs great expense when we try to develop a human motion intention prediction

method because few studies predict joint angles without EMG signals, which is a sort

of neuro signal several ten microseconds ahead of the movement. Thus, this thesis

presents works aiming to develop a lower limb human motion intention prediction

method with pure IMU sensors. To improve the calculation efficiency of joint angle

estimation, we developed an advanced algorithm based on Riemannian distance. A

new comprehensive dataset, including both single-joint and multi-joint trials, was also

collected in this part to find out suitable experimental parameters for IMU-based

measurements and validate the R-distance-based joint angle estimation method.

Moreover, we collected data from 6 healthy subjects to validate the motion intention

prediction method proposed in the study. The subjects were asked to perform the 20s

static calibration and the sit-stand-sit-walk task in the experiment. The human motion

intention prediction method gives out a novel solution to low-cost motion intention

prediction based on pure IMU data by fusing both musculoskeletal modeling
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technologies and Long Short-term memory(LSTM) neural networks. This thesis

reveals that: (1) Motion in the horizontal plane performs worse when compared with

those in the other two planes. The Root Mean Squared Error(RMSE) increases when

movement range increases and motion speed increases except for motion in the

horizontal plane, where measurement performance gets better at either a high speed or

a low speed. (2) The R-distance-based method outperforms the Euler method when it

comes to calculation efficiency. (3) The comprehensive motion intention prediction

method outperforms both the pure LSTM method and ANN fusing MSK model when

it comes to prediction accuracy.
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Chapter1 Introduction

1.1 Background

In recent years, motion capture technology has played an important role in game

design, 3D film production, and virtual reality.[1] It has attracted widespread attention

in the biomechanics community to design interventional treatment: on the one hand,

motion capture can help physicians better understand the functional movements of the

patients and design more specific treatment solutions; on the other hand, motion

capture can be used to provide biofeedback in wearable devices, which will enable

advanced control algorithms to be deployed in rehabilitation.

Fig 1.1 XSENS IMU Fig 1.2 Vicon Camera Fig 1.3 EMG signal collection

Musculoskeletal lower limb disorders(LLDs) are one of the most popular topics in

biomechanics analysis, mainly including hip and knee osteoarthritis, knee bursitis,

meniscal lesions/tears, stress fracture/reaction injury, and lower limb varicose veins.

LLDs may cause patients to suffer from movement disorders, chronic diseases and

mental sub-health. Therefore, it is highly recommended to utilize movement tracking

technologies to provide technical assistance for the treatment and rehabilitation of

lower limb movement diseases. Movement could be measured by optical motion

capture devices or inertia measurement units (IMUs), as shown in Fig 1.1. Optical
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motion capture device mainly refers to a measurement system composed of several

high-speed cameras (Fig 1.2) and a central signal processing device, which estimates

the joint angle by tracking the trajectory of the reflective markers. An IMU sensor

commonly contains a gyroscope, an accelerometer, and an optional magnetometer.

The postures of different body segments are estimated through a sensor fusion

algorithm like Kalman Filter, Complementary Filter, and so on to calculate the value

of the joint angles between the tracked segments. Compared to the optical sensing

signals, the signals measured by IMU sensors possess unique advantages in joint

angle estimation: (1) IMU sensing equipment can be used in outdoor environments

flexibly, and the equipment has higher portability. In contrast, optical motion capture

devices raise high requirements of dedicated areas with limited capture volume, like a

laboratory or large hospital, and tend to be bulky to transport. (2) The cost of an IMU

motion capture device is much lower and therefore it is more economical to be

deployed on different occasions. (4) IMU-based human motion tracking pipeline also

has a promising accuracy like the optical method [2] . Therefore, IMU sensing

technology is a promising lower limb motion tracking method.

IMU-based motion capture techniques could estimate joint angles between the

tracking segments. However, it suffers from signal delay, mainly caused by signal

transmission and the calculation of joint angles. It is difficult to meet the demand for

real-time joint angle estimation and control of wearable devices Therefore, it is also

necessary to develop a joint angle prediction technology to provide reliable real-time
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biofeedback for rehabilitation devices. Most IMU joint angle prediction technologies

fuse IMU signals and other sensor signals, such as optical motion capture signals,

EMG (Fig 1.3) and other signals with sensor fusion algorithms, machine learning

algorithms, and statistical methods to predict joints. For example, when it comes to

joint angle prediction, electromyogram (EMG) data are often applied to provide extra

bio information because neuromuscular currents are often several tens of milliseconds

ahead of human movement. Using signals from multiple sorts of collection devices

for data fusions to conduct joint angle prediction can provide relatively accurate

predictions. However, this approach greatly increases the cost of the equipment,

which in turn raises the financial burden.

1.2 Structure of the thesis

Chapter 2 is a literature review on IMU-based human motion tracking technologies.

First, this thesis will give out a brief scan of the IMU-based Human Motion Capture

pipeline and some necessary pre-processing technologies. Then a series of IMU data

sensor fusion algorithms were introduced, from raw strapdown integration to

Complementary Filter, Kalman Filter, Extended Kalman Filter, etc. After sensor

fusion, we made a detailed review on the calibration and its function. Various valid

designs of calibration protocols were introduced. It’s difficult to design a motion

tracking pipeline from scratch, thus, we also reviewed different multi-body simulation

software which provides proven technologies of MSK modelling and simulation. Last
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but not least, to emphasize the significance of motion intention prediction

technologies, we introduced some up-to-date research on human motion intention

prediction.

In Chapter 3, we proposed and validated a novel optimization algorithm designed for

joint angle estimation in the orientation-based inverse kinematics problems. Moreover,

the experiment in this chapter aims to find out suitable measurement conditions for

IMU data collection. First, different sorts of orientation representation methods and an

Euler-angle-based optimization algorithm, which suffers from gimbal lock, were

introduced. To get rid of the drawback of the Euler-angle-based method, we proposed

a novel method by adopting a set of generalized coordinates to build the cost function.

Then the validation experiment was conducted with the Delsys inertial data and the

TM5-900 robot arm to validate the proposed algorithm.

Chapter 4 presented a human motion intention prediction method with the utilization

of modern AI technologies. A series of lower limb motion trials were carried out on 6

healthy subjects, in which both IMU sensors and 8 high-speed cameras were used to

capture human motion simultaneously. Then, further data processing was conducted,

including an IMU-based human motion tracking pipeline and a marker-based human

motion capture pipeline. The IMU-based method was adopted for further application

of motion intention prediction while the marker-based method was utilized to work as

a golden standard for further validation. Moreover, we proposed a novel lower limb



5

motion intention prediction method by fusing an LSTM neural network and MSK

modelling technologies in this part.

Chapter 5 gives out conclusions of this study and future directions for further research.
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Chapter2 Literature Review

2.1 IMU-based motion capture

The IMU-based motion capture pipeline often takes the orientation values over time

calculated with 6 or 9 axes IMU data as the input. The orientation at each frame is

estimated by fusing 6-axes data (3-axes accelerometer, 3-axes gyroscope) or 9-axes

data (3-axes accelerometer, 3-axes gyroscope, and 3-axes magnetometer). So far, a lot

of research work has been devoted to the topic of estimating the orientation of

corresponding IMU based on the raw data. To increase the accuracy of raw data of

IMU sensors, various methods, including gyroscope compensation, and accelerometer

calibration has been developed. The raw output data tends to contain high-frequency

noise, which might corrupt the result of orientation estimation. Thus, the Butterworth

filter was applied to suppress the noise, whose order was chosen between 2 and 4. To

reduce the effect of high-frequency noise, the cut-off frequency was normally set

below 20Hz[3].

2.1.1 Sensor fusion algorithm

To estimate the orientation of IMUs, sensor fusion algorithms were adopted to

integrate the raw data of IMUs, i.e., 3-axis accelerometer data, 3-axis gyroscope data,

and 3-axis magnetometer data(optional). There are 3 commonly used sensor fusion

methods: strap-down integration, complementary filter, and extended Kalman filter. (1)
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strap-down integration: A strapdown algorithm integrates attitude changes in pitch,

roll and yaw, as well as gross movements to estimate orientation. Rouhani, et al.

measured foot joint angles with a combination of strap-down integration and low-

acceleration instants detection [4] . Favre, et al. combined a former alignment method

and a fusion algorithm based on strap-down integration to track the 3D motion of

knee joint angle [5] . Tadano, et al. applied a quaternion-based strap-down integration

method to conduct lower limb motion capture with 7 IMUs[6]. A strap-down method

was also utilized by Fasel, et al. to reduce the orientation drift on the occasion where

highly dynamic movements exist [7] . Strap-down is a classical framework for IMU

sensor fusion. However, random noise and nonlinear error require more advanced

sensor fusion algorithms to suppress. (2) Complementary filter: Seel, et al. applied a

standard complementary filter to estimate the orientation of IMUs, which were in turn

used to calculate flexion/extension joint angles[8]. Cockcroft, et al. proposed a novel

nonlinear complementary filter, which possesses dynamic acceleration

compensation [9] . The authors assumed that the skeletal model movement could be

regarded as the thigh moving like a pendulum around the centre of the hip. (3)

Extended Kalman filter: Jonathan, et al. applied an extended Kalman filter, which

enables the proposed approach to extract joint angles from arbitrary human

movements by fusing the raw data of the accelerometer and gyroscope [10] . A

Rhythmic Extended Kalman Filter method was developed by Joukov, et al. to estimate

the orientation of IMUs[11]. The algorithm improved the accuracy of pose estimation

by learning individualized models after every period, and in turn utilize the learned
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model to improve the performance of extended Kalman Filter(EKF). The proposed

method could improve the accuracy of EKF estimation of acceleration by 40% and

velocity by 37%. To track long-term walking, Slajpha, et al. proposed a method fusing

angular velocity and linear acceleration of 7 segments with the prior knowledge of

relationships between the segments [12] . Moreover, data from two instrumented shoe

insoles were also fused with that from 7 IMUs. Similarly, Joukov, et al fused

gyroscope data, accelerometer data, and trajectories of optical markers with an

extended Kalman filter to perform the gait analysis [13] . To avoid singularity and

improve computational efficiency, Yun, et al. tracked human motion with a novel

Kalman filter whose rotation representation was quaternion rather than Euler angle or

axis/angle[14]. Linear sensor fusion algorithms have a higher running speed. However,

nonlinear algorithms were recommended to apply in tasks of higher velocity in order

to have a satisfactory accuracy. In general, novel sensor fusion algorithms have been

proposed to solve specific technical problems while ensuring a high accuracy.

The pre-processing and sensor fusion gives out a reliable estimation of IMU

orientation. Thus, in this thesis, we directly take the fused orientation of IMUs output

by the Delsys Trigno system as the input of the human motion tracking pipeline.

2.1.2 Sensor calibration

After the raw data preprocessing and sensor fusion, the IMU measurement system can

output the orientation of IMUs over time. To calculate the joint angle by numerical
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method, a calibration procedure is also demanded. The calibration process registers

the IMU to the corresponding body segment and calculates the rotation transformation

from the IMU coordinate system to the corresponding body segment coordinate

system (usually given in the form of a rotation matrix, Euler angle, or quaternions).

Cheng, et al. surveyed a calibration method validated by a rigid robot arm [3] . The

placement of IMU sensors was regarded to be well designed to make sure that the

axes of the IMU reference frame coincided with those of the corresponding body

segment reference frame. This kind of calibration method works based on the

assumption that the tested subject is a system with multiple rigid bodies. However, in

reality, artefacts exist in the measurement of the human motion process, which means

that soft tissues could seriously challenge the placement of markers. Thus, the method

can introduce extra errors to the measurement.

Predefined calibration postures are introduced to calculate the transformation rotation

matrix between the IMU reference frame and body segment reference frame. Vries, et

al. applied a static calibration method to upper limb IMU to body segment

alignment [15] . To get the calibration matrices, the subjects were asked to stand in a

so-called SAP pose for about 5 seconds. The SAP refers to standing straight with arms

hanging along the torso naturally and hand pointing to the direction of the anterior.

Palermo, et al. proposed a novel body-to-sensor calibration method for lower limb

gait analysis[16]. Three static poses, including standing straight, sitting with the back
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of the torso inclined and the legs stretched, and lying on a flat surface were applied in

the experiment. Both two calibration methods can calculate the calibration matrices

with relatively high accuracy (RMSE<4 degs).

Adopting functional calibration movement is also a popular method to improve the

accuracy of the calibration process. Favre, et al. proposed a functional calibration

procedure for 3D joint angle estimation with a moderate error between 4.0 degrees

and 8.1 degrees[5]. The research used up to three different functional movements: (1)

Hip abduction/adduction motion in the frontal plane. (2) Passive shank motion in the

sagittal plane. (3) Passive shank motion in the frontal plane. Similarly, two functional

movements were adopted in the research conducted by Karol, et al[17].: one with the

subjects standing straight while rotating the lower limb about the body’s longitudinal

axis in the range of 0 degrees to 360 degrees and the other with the subject sitting at

the neutral pose while the legs and feet perform a flexion/extension movement.

Chardonnens, et al. combined the IMU reference with another motion capture system

reference system by designing a calibration movement that the subjects

simultaneously hold the IMU sensor and mobile part of the motion capture system

with one hand and rotate around three orthogonal axes [18] . A combination of static

calibration pose and functional calibration movements was also adopted by

researchers to better perform IMU-to-segment alignment. In the study, all of the 3

above methods were utilized to estimate the axes of body segments. Replacing body

segment axes with those of IMUs was denoted as TECH methods. Estimating body

segment axes by performing predefined poses was denoted as STATIC. Estimating
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body segment axes with functional movements were denoted as FUNC. Two

combinations of various calibration approaches were raised in this paper. One is that

combine the TECH method and two STATIC calibration procedures to achieve a full-

segment calibration. The other is that combine both STATIC and FUNC methods.

Haoyang, et al. developed a calibration process with 4 predefined postures(1 static

and 3 functional) to track upper limb human motion[19] . (1) Stand straight with two

arms hanging towards two sides of the body and palms pointing down in direction. (2)

Stand at (1) pose and pronate/supinate the palms for about 180 degrees. (3) Stand in a

neutral pose and raise the arms in the sagittal plane. (4) Stand in a neutral pose and

raise the arms in the frontal plane. Both static poses and functional movements can

provide a reliable calibration procedure for an IMU-based human motion capture

pipeline. Thus, this thesis calibrates the skeletal model with a classical static pose

recommended by the OpenSense official documents. The subjects were asked to stand

straight in a neutral pose with their hands crossed on their chest.

2.1.3 A pipeline for automatic calibration and measurement

So far, numerous scientists and engineers track human motion by coding from scratch.

However, it could be difficult to develop a comprehensive simulation environment for

human movement analysis from nothing. Thus, there existed several multi-body

simulation engines/software which allows developers to develop or validate their

ideas about human motion tracking. As surveyed by Ivaldi, et al., there are many

simulation software for multibody kinematics and dynamics calculation which can be
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classified into two groups [20] : one for robotics analysis, and the other for

biomechanics use. Commonly used multibody analysis tools are Gazebo, Webots,

ODE, V-REP, and ROS. Quigley, et al. developed a robot operating system named

ROS, which provides the developers with a platform characterized by peer-to-peer,

tools-based, multi-lingual thin, free and open-source, to support the modular

development of robotics technologies [21] . When it comes to ROS, ODE is also a

popular topic for engineers and scientists. ODE is an extensive open dynamics engine

in ROS to improve the accuracy and efficiency of the multibody simulation. Moreover,

the robotics community usually discusses Gazebo, Webots, and V-REP. Webots is a

professional mobile robotics simulation tool. The Gazebo is a 3D dynamic simulation

tool that can accurately and effectively simulate robot groups in complex indoor and

outdoor environments. Both three tools above were capable of multibody simulation.

Some related work has been conducted in the above tools to track human movements.

Du, et al. developed an upper limb virtual training rehabilitation scene with a

combination of Gazebo and ROS[22]. A virtual scene was set up in the Gazebo to help

the rehabilitation of patients with upper limb disorders. Qi, et al. proposed a human

motion analysis system with inertial sensors in V-rep [23] . A quaternion-based

orientation estimation algorithm was adopted in the research, after which the

orientation data was imported to the V-REP to reconstruct the human motion.

Although related research works reveal that robotics multibody simulation tools can

be utilized to perform human motion tracking, it's not highly recommended to use

these tools to solve biomechanical problems because most of them are based on
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gaming engines. A gaming engine can provide stable multibody simulation, but it's

based on simple gaming physics and doesn't incorporate most musculoskeletal models.
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Fig 2.1 Anybody GUI

Fig 2.2 MSMS GUI
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Fig 2.3 OpenSim GUI

Nunes, et al. surveyed 25 tools designed for human motion analysis and

simulation [24] . After a thorough comparison, we could conclude that OpenSim is

more suitable for this study. Among the surveyed tools, those which support the

academic project, well-designed modelling module, 3D human motion analysis, and

3D human motion simulation are AnyBody modelling system(Fig 2.1), MSMS(Fig

2.2), OpenSim(Fig 2.3), and SIMM. The AnyBody Modeling System is a tool

developed at the Aalborg University, Denmark which allows a 3D human-

environment interaction simulation. MSMS is a free tool for modelling and neural

prostheses simulation developed at the University of South California (USA). The

software is designed to simulate the movements of human and prosthetic limbs. It

allows MSK modelling and real-time 3D simulation like OpenSim.SIMM (Software
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for Interactive Musculoskeletal Modeling) is developed by MusculoGraphics, Inc.

(USA), which supports musculoskeletal model analysis.OpenSim is a software for

modelling the human body and the environment, which could simulate human

movements and interactions with the environment. OpenSim possesses a graphical

user interface (GUI) capable of visualizing musculoskeletal (MSK) models and

performing multibody simulations, as shown in Fig 2.4. OpenSim is open-source

software with all the source code accessible to global developers. Engineers are free

to develop the software by utilizing the OpenSim application programming interface

(API). The simulation platform was firstly introduced by Scott Delp, Jennifer Hicks,

Ajay Seth et al. at the American Society of Biomechanics Conference in 2007, which

was known as version 1.0. An application programming interface (API) was added in

V2.0 and the API was extended to MatLab and Python in the latest version. The

extension to MatLab and Python greatly enhanced the data processing ability of the

developers. The software OpenSim is also an interdisciplinary simulation platform

that is compatible with multiple programming languages and enables engineers and

scientists from different academic institutions to collaborate on biomechanics research.

The core code of the software is developed in C++ while the graphical user interface

(GUI) is developed based on Java. Developers could develop new MSK models or

simulate human motion with data collected from sensors. Besides, there are numerous

plug-ins on the OpenSim website for people to download and run without compiling,

which makes it accessible to control OpenSim on other platforms. OpenSense is a

novel workflow in OpenSim 4.0 which is developed for IMU-based human motion
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tracking tasks. The workflow is designed to solve orientation-based inverse

kinematics(OB-IK) problems based on IMU data (i.e. calculate joint angles between

adjacent body segments). A multi-body model with a target joint is required before the

human motion capture pipeline. Any model in .osim format could be utilized to

conduct inverse kinematics research and no scaling is required in the procedure. Since

the workflow provides user-friendly APIs for developers to communicate with

MatLab and gives out an advanced solution to joint angle estimation, we chose to

develop an IMU-based pipeline based on the workflow of OpenSense.

Fig 2.4 Standard OpenSense Workflow

2.2 IMU-based human motion prediction

As shown above, most contributions to human motion tracking in the past focused on

joint angle estimation. However, with the delay caused by transmission and

calculation, real-time tasks call for a predictive joint angle estimation method, as
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shown in Fig 2.5. Thus, some research works shifted their attention to the motion

intention prediction tasks.

Fig 2.5 Flowchart of human motion intention Prediction

To predict both the upper limb motion and lower limb motion, Huang, et al. applied a

structure of deep neural networks named recurrent neural network(RNN) to predict

joint angles based on a combination of data from IMU sensors and EMG

electrodes[25]. The method achieved a low error of 2.93 degrees within the prediction

horizon of 50 ms. In this work, the fusion of IMU data and EMG data both contribute

to the high accuracy of the prediction result: IMU is a promising way for accurate

human motion capture. Meanwhile, the EMG data is normally several ten ms ahead of

kinematic movements, thus it could provide information for motion intention

prediction. Liu, et al. predicted the joint angles with pure sEMG data by integrated

muscle synergy theory with generalized regression neural network(GRNN) [26] .

Unlike RNNs, this work extracted the time-domain features of sEMG signals and
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compressed them into a synergy matrix and an activation coefficient matrix. Then, a

GRNN was applied to build the relationship between activation coefficients and joint

angles. This work gets a result of a coefficient of determination of 0.933 on average.

Information for prediction was provided only by sEMG data in this research. Gautam,

et al. proposed an long-term recurrent convolutional network(LRCN) named MyoNet

to predict joint angles [27] . This work performed the joint angle prediction by using

end-to-end deep learning technology. The method was validated by three lower limb

functional movements and got an error result of 8.1% in the healthy group and 9.2%

on the group with knee pathology. Jiehe, et al. proposed an LSTM-based human

motion intention prediction method with the use of Kinect visual data[28]. This study

focused on predicting lower limb movements while walking on the treadmill. Both

upper limb swing and lower limb swing data were collected. The hip and knee angles

were predicted by the LSTM model with the input of visual data of the elbow and

shoulder on the opposite side. The most obvious difference between this reference and

others in this part is that applying visual data of one body area to predict joint angles

in other areas of the human body. Xie, et al. proposed a limb joint angle prediction

method by utilizing GS-GRNN[29]. The hip joint angles and lower limb EMG signal

were used as the input of the neural network to predict lower limb joint angles. The

result revealed that GRNN has better performance than BP Neural Networks in joint

angle prediction.

There is no comprehensive study to predict human motion with pure IMU data. Thus,

this paper presents a hybrid method of the skeletal model and LSTM to predict the
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lower limb joint angles with pure IMU data, which has the potential to be a low-cost,

easy-to-use alternative in motion prediction.
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Chapter3 IMU-based joint angle estimation and
validation

To estimate the lower limb joint angles, we start with the kinematic relationship

between two rigid bodies. Given two rigid bodies A and B: while describing the

motion of a rigid body B relative to another rigid body A, two reference frames are

required to be built on the two rigid bodies. We assume that the reference frame on

body A is still, which is defined as the global reference frame. The reference frame on

rigid body B is moving relative to the global frame, which is defined as the local

reference frame. The movement of the rigid body A is divided into translation and

rotation. In this study, we focus on the joint angle calculation rather than tilt between

body segments. Thus, only rotation between rigid bodies will be discussed in this

thesis.

Usually, to calculate the joint angles from the rotation matrix output from the IMU,

researchers process the rotation matrix corresponding to each frame. For simple tasks,

reference frames rotate without any constraint. Problems of this sort are classified as

unconstrained inverse kinematics problems. The solution to the unconstrained inverse

kinematic problem is performed by multiplication of the rotation matrix and its

inverse matrix. SO(3) space is a lie group whose elements are three-dimensional

rotation matrices[30]. The tangent space of a SO(3) space is denoted as so(3), whose

elements are skew-symmetric matrix. The multiplication of matrices in the rotation

matrix space SO3 corresponds to the superposition of rotations. The inverse of a

rotation matrix represents exchanging the local reference frame and the global
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reference frame. Apart from unconstrained IK problems, there exist various

constraints in the process of joint angle calculation. For example, when we calculate

the knee joint with the rotation matrices of the thigh segment and the shank segment,

the shank mainly acts in the sagittal plane and the other two directions possess limited

movement range. Besides, the joint only act in a specific range.

The solution of the inverse kinematics with constraints is solved by transforming it

into an optimization problem. The constrained inverse kinematics could also be

classified into two groups: orientation-based inverse kinematics and marker-based

inverse kinematics. The previous inverse kinematics problem takes the rotation

matrices measured by IMUs as input while the following one takes marker trajectories

in the global reference frame as input. The orientation-based inverse kinematic

problem is similar to the marker-based inverse kinematic problem in that both express

the loss function in terms of generalized coordinates and then search for the value of

the generalized coordinate that minimizes the loss function ordered by the constraints

through optimization methods.

IMU-based human motion tracking technologies play a significant role in joint angle

estimation and motion reconstruction due to being free of test occasions and low cost,

which makes them an excellent replacement for marker-based motion tracking when

orientations and positions are collected outdoors[31]. Original data collected by IMU

could contain nine-axes data, including three-axis acceleration, three-axis angular

velocity, and three-axis magnetic field. The sensor fusion algorithm such as the

Kalman filter and complementary filter will be applied to the original data to generate
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estimated orientation data of every IMU[32]. By conducting some calibration poses, a

transformation matrix could be used to calculate and transform the orientation from

the IMU frame to the corresponding segment frame. After the calibration process,

joint angles could be estimated by applying some optimization methods to the

orientation data based on the musculoskeletal model [33] . Apart from model-based

joint angle estimation, inverse kinematics problems could also be solved by applying

machine learning methods either based on the raw data collected by IMUs or

orientation data.

The study in this chapter aimed to propose a novel IMU-based joint angle estimation

method. When compared to the marker-based motion capture system, it has the

advantages of 1)It does not suffer from the gimbal lock. 2) It outperforms the Euler-

based method when it comes to iteration required to converge to a fixed value. 3) To

validate the method, we collected raw data using Trigno Avanti (Delsys, USA) and

calculated the joint angle in the MatLab platform based on some optimization

algorithm. The validation data was collected from the TM5-900 robot arm (Techman,

Taiwan).

3.1 Representation of 3D Rotation

The orientation of a reference frame with respect to another reference frame can be

represented by Euler angles, rotation matrix, and quaternions[34].
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3.1.1 Euler Angle

Euler angles are a set of angles used to represent the rotation of a reference system,

usually denoted as ( , , )   . These three angles represent the counterclockwise

rotation of the reference frame around the corresponding coordinate axes. In general,

Euler angles could be defined as either intrinsic rotations (around local coordinate

axes) or extrinsic rotations (around global reference axes). A local coordinate axis

stands for a coordinate axis in the local reference frame while a global coordinate axis

stands for one in the global reference frame. Depending on the axis of rotation and the

order of rotation, the intrinsic Euler angles are divided into 12 types, z-x-z, x-y-x, y-z-

y, z- y-z, x-z-x, y-x-y, x-y-z, y-z -x, z-x-y, x-z-y, z-y-x, y-x-z. Similarly, the extrinsic

Euler angles are classified into 12 types, Z-X-Z, X-Y-X, Y-Z-Y, Z-Y-Z, X-Z-X, Y-X-Y,

X-Y-Z, Y-Z-X, Z-X-Y, X-Z-Y, Z-Y-X, Y-X-Z.

The advantage of Euler angles is that there are fewer parameters and only three angle

values are required to represent a rotation. In addition, Euler angles are more intuitive

than the other two rotational representations. The Euler angle representation has four

drawbacks: (1) the Euler angle suffers from gimbal deadlock, which means there

might be missing degrees of freedom in specific positions. (2) Euler angles could not

be numerically calculated and calculations must be made with the assistance of a

rotation matrix. (3) there is a larger error in the interpolation calculation, as the

rotation is performed on three axes. (4) there are 24 representations of Euler angles,

which need to be converted for different applications. Therefore, the Euler angle

representation is more suitable for the rotation visualization while the numerical
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calculation is usually performed with a rotation matrix or quaternions.

3.1.2 Rotation Matrix

The rotation matrix is a 3*3 matrix, which is a common rotation representation. The

rotation matrix is often denoted as R. The rotation matrix R has the following

properties: (1) The row and column vectors are unit vectors that are orthogonal to

each other. (2) The determinant of the matrix is 1. (3) TRR I i.e., the transpose

matrix of a rotation matrix is its inverse matrix. The order of rotation needs to be

specified, a three-dimensional rotation corresponds to a unique rotation matrix.

Besides, the calculation of rotation matrices can be performed directly by

multiplication and transposition. A rotation matrix contains nine elements, which

makes it more time-consuming and storage-consuming during the calculation process.

3.1.3 Quaternion

A quaternion consists of a real part and three imaginary parts, which is often denoted

as 1 2 3 4q q q i q j q k    , 1 2 3 4( , , , )q q q q R . Rotation is usually expressed in terms of

unit quaternions. The quaternion operation has the following property:

2 2 2 1i j k ijk     . In comparison with the other two rotational representations,

the quaternion representation could avoid the lack of degrees of freedom caused by

the gimbal locking. At the same time, the quaternion representation requires only a 4-

dimensional unit vector to represent arbitrary rotations, which in some cases is more

computationally efficient than a rotation matrix. In addition, quaternion rotations can
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provide smooth interpolation. The disadvantage of the quaternion representation is

that it is more complex than the Euler angle representation, as it is more difficult to

understand with an extra dimension.

3.2 Optimization Theory on Joint Angle Estimation

The output of an IMU device is in the form of a rotation matrix. By means of

calibration, the movement over time of the anatomical reference frame of the body

segment to which the IMU is attached can be obtained.

1 3.2.1 Unconstrained Joint Model

For an unconstrained joint model with three rotational degrees of freedom, its rotation

matrix can be denoted as A
BR , where A and B are the reference frames of A and B for

two adjacent segments, and R is the rotation matrix of B with respect to A. Then this

matrix can be calculated by the following equation:

G G

G G

A BA A G
B A G B BR R R R R (3.1)

Where AG denotes the IMU reference frame of segment A, BG denotes the IMU

reference frame of segment BG denotes the global reference frame.

In order to calculate the joint angles, further conversion of the rotation matrix into

Euler angles is required.

3.2.2 Constrained Joint Model

When it comes to human motion tracking tasks, human synovial joints are often

modelled with limited rotational degrees of freedom, representative of their functional
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movement and anatomy. The knee, ankle, and hip are three representative lower limb

joints modelled with a different number of degrees of freedom (DOF) according to

anatomy. The knee joint can be modelled (Fig 3.1) as a 1DOF with flexion/extension

movement. The ankle joint can be modelled (Fig 3.2) as a 2DOF joint with both

flexion/ extension and lateral rotation. The hip joint model (Fig 3.3) is a 3DOF joint,

including flexion/ extension, lateral rotation, and adduction/ abduction.

Fig 3.1 Knee Joint Model Fig 3.2 Ankle Joint Model Fig 3.3 Hip Joint Model

The constrained joint models make the joint angle calculations difficult to be obtained

directly by a rotation matrix. Thus, optimization methods are utilized to calculate joint

angles.

In the orientation-based inverse kinematics method, the norm-2 square of the Euler

angular error is often taken as the cost function. Thereby, the problem is transformed

into a least-squared problem in order to minimize the mismatch of the segmentation

orientation[32]. The cost function is defined as below:

21
2 k k g

k

J w   
(3.2)

Where wk denotes the weight of the kth body segment,  Tk k k k    denotes

the Euler angle error of the kth body segment.
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The gradient descent (GD) method (Boyd, S., Vandenberghe, L., 2004) is usually

applied to find the optimal solution to the problem. First, the gradient is calculated as:

T
J J J
  

   
       (3.3)

Where: given
J  



 


, given
J  



 


, given
J  



 


.

In each calculation epoch, the algorithm can be updated with the following formula

until a satisfactory result is obtained:

*r    (3.4)

Where r is the learning rate of the algorithm which should be specified before the

loop.

3.2.3 Proposed Joint Angle Estimation Model

As mentioned above, the Euler angle-based representation has the drawback of gimbal

lock, which might disable the optimization method when it deals with some special

angle values. Thus, it is of great significance to find a method free of gimbal lock to

reconstruct the cost function.

From the perspective of mathematics, Riemannian based representation is the intrinsic

representation for 3D rotation[35]. A Lie group is a group that is also a differentiable

manifold. The SO(3) group is a Lie group with three degrees of freedom, used to

describe the rotation of a rigid body in three dimensions. the elements of SO(3) are

often represented by a three-dimensional matrix, which is also known as the rotation

matrix. the characteristics of SO(3) are twofold: on the one hand, the determinant of
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the elements of SO(3) is equal to 1; on the other hand, the transpose of the elements of

SO(3) is equal to its inverse matrix. In this thesis, we denote the SO(3) group as:

3 3(3) :{ | ,det( ) 1}TSO R RR I R   (3.5)

Where R is the element of the assembly.

Correspondingly, the Lie group SO(3) corresponds to the Lie algebra so(3) for

inducing exponential maps on SO(3) space. so(3) space is essentially the tangent

space of SO(3) space. elements on so(3) are also three-dimensional matrices with the

following properties: the transpose of a matrix is the opposite matrix of that matrix

(i.e., the corresponding w elements sum to 0). The so(3) space is described as below.

3 3ˆ ˆ ˆ(3) :{ | }Tso      (3.6)

Wherê denotes the element of the so(3) assembly, which has the below structure.

3 2

3 1

2 1

0
ˆ 0

0

 
  

 

 
   
   (3.7)

1 2 3 are three elements of the matrix .

The elements on the so(3) space, the exponential operation can be defined as follows:

theta is the angle of rotation under the axial angle method representation. When the

angle theta is equal to 0, the corresponding result is the unit matrix I. And when theta

is not equal to 0, the corresponding result is calculated by the formula in the second

row below.

ˆ
2

2

0
sin 1 cosˆ ˆ 0

I
e

I



   

 


 

   (3.8)

Where  2 2 2
1 2 3 0,         , which means ̂ is equal to the rotation axis
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multiplies the rotation angle in axis-angle representation.

Similarly, the logarithmic operation can be expressed as follows: when theta is equal

to 0, the result is a zero matrix; when theta is not equal to 0, the result is calculated by

the second row of the formula.

0 0
log( )

( ) 0
2sin

TR
R R


 



 

  (3.9)

In the optimization method with Euler's angle as the rotational representation, the loss

function is the square of the Euclidean distance between two elements in the three-

dimensional linear space where Euler's angle is located. This distance is taken as the

Euclidean distance between the set of Euler angles to be optimized and the target

Euler angle in the process of calculating the optimal solution to characterize the error,

which is then minimized to approximate the optimal solution.

However, this approach has two potential shortcomings: on the one hand, the use of

Euler angles to represent rotation is subject to gimbal self-locking at some specific

positions: for some joints with a limited range of motion, this shortcoming is not

affected. However, when dealing with joints with multiple degrees of freedom and a

large range of motion such as the shoulder joint, such algorithmic limitations may

manifest themselves. On the other hand, designing the loss function on the 3D linear

space where the Euler angles are located, the corresponding step size may be

inhomogeneous with respect to the rotation space.

Therefore, it is necessary to develop optimization algorithms using representations

that are more closely aligned with the nature of rotation. In this study, we use the
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Riemann distance of the two rotation matrices on the SO(3) space to characterize the

difference between the two rotations. The Riemann distance on the SO(3) space is

calculated as follows.

1 2 1 2
1( , ) log( )
2

T
R F
d R R R R

(3.10)

Where R1, R2 respectively represent two rotation matrices in the SO(3) space, and

Log() is the logarithmic operation defined in the formula 3.10. F
 stands for the

Frobenius norm of a matrix.

Besides, the Riemannian distance could also be approximated as below according to

the B-C-H formula. We need to perform the approximation in this thesis as analytic

solution of the raw formula is difficult to calculate when it comes to gradient matrix

calculation.

1 2 2 1
1( , ) log( ) log( )
2R F

d R R R R 
(3.11)

In this study, we define the cost function F as half of the square of the Riemannian

distance defined in formula 3.11.

21
2

F d
(3.12)

i.e.:

21 1( log( ) )
2 2

T
m F

F R R
(3.13)

R represents the variable to be optimized in the minimization algorithm and Rm

stands for the target rotation matrix calculated from the reference data. The reference

data could be either in the format of normal rotation representation, including Euler
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angle, rotation matrix, quaternion, and axis-angle representation, or generalized

coordinates.

If we directly calculate the F-parametrization of the loss function, we find that we

cannot separate the two variables Rm and R, which in turn makes the calculation

much more difficult. Therefore, in this paper, we consider the BCH formula to

simplify the original loss function formula, i.e.:

21 1( log( ) log( ) )
2 2 m F

F R R 
(3.14)

The logarithm of a rotation matrix yields the antisymmetric matrix corresponding to

that rotation matrix, expressed as follows.

ˆ log( )R  (3.16)

Thus, the formula 3.14 could be simplified as:

21 1 ˆ ˆ( )
2 2 m F

F   
(3.17)

For a matrix R, its F-parametrization is equal to the trace of the product of it and the

transpose matrix. Then, the above formula could be written as:

1 1 ˆ ˆ ˆ ˆ(( )( ) )
2 2

T
m mF tr      

(3.18)

Then, we could represent the cost function F with three parameters of the

antisymmetric matrix 1 2 3( , , )   , which are also the three elements of the product of

the rotation axis and the rotation angle in the axis-angle representation. And the cost

function will be:

2 2 2
1 1 2 2 3 3

1 1 1( ) ( ) ( )
2 2 2m m mF           

(3.19)
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However, if we directly use the coordinate set 1 2 3( , , )   to minimize the cost

function, the algorithm will also suffer some restrictions. First, w is the product of the

rotation angle and the rotation axis, and the rotation angle varies from -180 degrees to

180 degrees, implying that the set of coordinates is little affected by the perturbation

when the rotation angle is near 0 degrees, and much affected by the perturbation near

180 degrees. Second, at an angle of 0, the loss function decreases to 0, so that the

same Euler-like self-locking phenomenon occurs. Finally, the product of axes and

angles makes a coupling of two independent variables, which is not recommended in

the mathematics.

To prevent the proposed algorithm from the drawbacks mentioned above, the

coordinate set should be highly independent from each other. The coordinate set

1 2 3( , , )   is characterized by twofold: one is that its vector modulus length is equal

to a specific value; the other is that after normalization the three elements of it lie on a

sphere in the 3D space whose radius is 1. Therefore, we intended to utilize the

spherical polar coordinates as a set of generalized coordinates to work as the variable

to be optimized. The conversion relationships are shown below.

1 1 2cos cos    (3.20)

2 1 2cos sin    (3.21)

3 1sin   (3.22)

The gradient matrix of the loss function to the spherical polar coordinates is found by

the matrix derivative chain rule.



34

1 1 1

1 21

2 2 2

2 1 2

3 3 3

3 1 2
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       (3.23)

Replace the corresponding parts of the above equation with analytical solutions of the

corresponding partial derivative.

1 1 1

1 2
1 2 1 2 1 2

2 2 2
1 2 1 2 1 2

1 2
1 1

3 3 3

1 2

sin cos cos sin cos cos
sin sin cos cos cos sin
cos 0 sin

  
  

       
          
  

  
  
  

   
       
                  
 
    (3.24)
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2 2
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  (3.25)

Compared with the Euler angles-based method, the method proposed in this study

avoids gimbal lock and variables being affected differently by perturbations at

different positions. However, the introduction of generalized coordinates leads to a

more complicated calculation of the gradient matrix, i.e., more computational

resources are required. This problem is against our original intention of proposing the

algorithm, so we consider further improvement of the algorithm. The bottleneck we

encounter in this algorithm is the computational overload due to the fact that we use

both the Riemann distance in the SO(3) space to construct the loss function and the
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generalized coordinates guided by the parameters on this space as the variables to be

optimized. It is not difficult to find that the key to avoid gimbal lock and uneven

scaling of variable steps is to use the bootstrapped coordinates. Therefore, we imitate

the Euler angle-based optimization algorithm and construct the loss function directly

using the generalized coordinates.

In this study, we proposed a novel method with the representation of a set of

generalized coordinates to search for the optimal solution in the range.

Firstly, we introduced a set of generalized coordinates based on the axis-angle

representation. When dealing with three-dimensional space problems, it is often

necessary to characterize spatial rotations with a 3*3 rotation matrix. This

representation is usually the most convenient because multiplying a vector by that

matrix is equivalent to rotating it in a corresponding way. The inconvenience is that it

does not visualize the meaning of the rotation of a 3*3 matrix.

Another easy way to visualize the representation is to represent the rotation in vector

form, and that rotation operates with a single angle at a time. In this case, the most

standard way to illustrate the rotation around the coordinate axes is to use only one

vector, the direction of the vector is determined by the right-hand rule, and the length

of the vector indicates the angle of counterclockwise rotation around the axis, i.e., the

axis angle method.

The axis-angle method and the rotation matrix method can be translated using the

Rodriguez transformation. When we want to represent a rotation operation, we first

define an axis which the local reference frame rotates around.
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1 2 3[ ]TX x x x (3.26)

The vector X represents the rotation axis of the corresponding rotation operation,

whose components respectively stand for its x,y,z coordinate in the global reference

frame.

Similarly, the rotation angle of the rotation operation is represented as  , which forms

the axis-angle representation of a rotation operation together with the vector X.

To calculate the rotation matrix with the axis-angle representation, the Rodriguez

formulation is often used.

2ˆ ˆsin (1 cos )R I X X     (3.27)

Where Rdenotes the rotation matrix, X̂ stands for the antisymmetric matrix of X. For

a matrix A, if it satisfies this property: TA A  , it’s denoted as a antisymmetric

matrix. The antisymmetric matrix of a 3-dimensional vector could be calculated by

the below formula:

3 2

3 1

2 1

0
ˆ 0

0

x x
X x x

x x

 
   
   (3.28)

Considering that the axial angle method can represent rotation intuitively, one can try

to use this representation to construct the loss function. But the three components of

the vector X are not completely independent of each other. We know that in the axis-

angle representation, the modulus of the rotation axis X is equal to 1, which makes the

direct use of the axis-angle method to construct the loss function impose additional

constraints and make the solution of the optimization problem more difficult.

Therefore, we consider introducing generalized coordinates to represent the vector X.
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The vector X is known to have modulus 1, so it can be viewed as a vector pointing

from the origin to a point on the sphere of radius 1. Therefore, it can be replaced by a

spherical polar coordinate system.

We introduce two spherical polar coordinates [0, 2 ]  , [0, ]  .

The conversion relationship between the spherical polar coordinate system and the

Cartesian coordinate system is as follows:

1 sin cosx   (3.29)

2 sin sinx   (3.30)

3 cosx  (3.31)

Similarly, when we calculate the spherical polar coordinates with Cartesian

coordinates, we normally use the below formulations:

2

1

arctan( )x
x

 
(3.32)

3arccos( )x  (3.33)

The two spherical polar coordinates obtained by the right-angle coordinate-sphere

polar coordinate transformation of the rotation axis X have no additional constraint

constraints in the definition domain and can form a new set of generalized coordinates

together with the rotation angle. Denote the generalized coordinate set as G. Imitating

Equation 2.1, we use half of the 2-parametric square of the generalized coordinate

error as the cost function.

21
2 tf G G 

(3.34)

Where f stands for the cost function, Gt denotes the reference value calculated from
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the measurement data.

The partial derivatives are found for the loss function and gradient descent is taken to

find the optimal solution. The derivatives off with respect to the three generalized

coordinates are found separately to obtain the gradient matrix.

=
T

f f f
  

   
      (3.35)

Where  , , respectively denotes three components of the generalized coordinate

set G.

To continually search the optimal solution for the IK problem, we need to update the

vector G with a update formula. The update formula for the gradient descent method

is:

*G G    (3.36)

Where is the learning rate of the optimization method.

Constraint:

(1) In Euler-based method, for a set of Euler angles  T    , if in any degree

of freedom, the joint is constrained, then the corresponding theta will be set as 0.

(2) In R-distance-based method and the proposed method, for a set of generated

coordinates  1 2 3
T    , if :

(a) move around X axis: 1=0 , 2=0 .

(b) move around Y axis: 1= 2
 , 2=0 .

(c) move around Z axis: 1=0 , 2= 2
 .



39

3.3 Introduction to Techman Robot Arm

The OB-IK optimization algorithm could estimate the joint angle between two

adjacent body segments with the input of rotation matrices of corresponding body

segments. However, it’s difficult to evaluate a method without reference. In order to

effectively validate the human motion tracking workflow proposed above, a

validation protocol is required to act as a golden standard. So far, validation protocols

based on X-ray or high-speed cameras have been applied in the past decades as

golden standards for motion tracking, which are characterized by high accuracy, high

reliability, and low risk. However, to act as validation methods, they normally suffer

from errors caused by body artefacts, which might be different among different

groups. Thus, it is necessary to develop a validation protocol free of artefact error to

work as a golden standard for joint angle estimation. The artefact error caused by

subjects could be reduced by applying extra experimental operations or optimization

algorithms. The artefact error is caused by soft tissues like skin, muscle, and fat and

people with lower BMI/Body Fat rates tend to have less muscle and fat. To avoid the

artefact error, we introduced a novel validation protocol where the robot arm was

applied as the research subject. Robot arms are rigid bodies that are free of translation

between the IMU sensor and the segment it attaches to during the experiment process.

When we firmly attach an IMU on a link of the robot arm, it will move with the link

with almost no translation. Moreover, a robot arm could perform functional actions

like a human with high precision thanks to the employment of servo technologies,

which makes the experiment highly repeatable.



40

TM Robot Arm is a 6-axis collaborative robot with force and power limiting

capabilities, user-friendly programming, innovative vision integration and the latest

safety measures to operate at full speed within barriers and in collaborative areas

(Fig3.4). In this study, a TM5-900 robot arm was selected to perform basic operations

to simulate human movements. The TM5 has a workspace of 900mm and a max

payload of 4 kg, which ensures it perform some complicated tasks. The robot arm

contains eight segments, including the base, the 1st segment, the 2nd segment, the 3rd

segment, the 4th segment, the 5th segment, the 6th segment, and the end effector.

Denote the base as a proximal end and the end as the distal end. From the proximal

end to the distal end the joints was named the 1st joint, the 2nd joint, the 3rd joint, the

4th joint, the 5th joint, and the 6th joint (Fig 3.5). The TM robot consists of a robot

arm, a control box, and a control panel. The robot arm takes responsibility for

performing operations delivered by the control box and sending signals from the force

sensor/ the camera to the control box. A flowchart-based operation is developed for

the TM robot arm to make it accessible to more researchers. The control box receives

signals from the operating system and sends control commands to the robot arm. The

start/pause/end state and speed of the robot arm could be controlled by the control

panel during the experiment.
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Fig 3.4 TM5-900 Fig 3.5 TM5-900 Structure

3.4 TM5 Robot Modelling

In order to simulate the robot arm movements in the OpenSim, a TM5 robot model

in .osim format is required to be created from scratch. The OpenSim platform

provides a workflow for multibody IK solution, with the input of MSK model,

parameters configuration, and There are various ways to create a model in OpenSim,

among which Simbody based programming and XML based programming. Simbody

is a multi-body physics API in OpenSim which is developed for modelling. MSK

models or any multi-body model could be generated by calling the API in C++. The

rigid boy segments generated by Simbody can be connected with joints to make up a

model. Force and constraints could also be defined in the interface. Like Simbody,

a.osim model file could also be created by programming in XML. The advantage of

Somebody is that all the processes in the API are highly repeatable as only parameters

of the multi-body are required during the modelling process and there are various

templates online. In this study, the TM5 robot arm model was generated by the XML
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based methods due to its convenience and access to every modelling detail.

No dynamic parameters like mass or inertial moments were set during the modelling

process as this model was designed for validation of a human motion capture pipeline

(i.e., an inverse kinematics problem). The model in OpenSim is expected to possess

the same parameters as the TM5 robot arm, including mechanical structures, size of

segments, joint ranges, and joint types.

An entire TM5 model in .stp format was downloaded and then converted into .stl

format. in Solidworks as the OpenSim is only compatible with .stl, .vtp, or .obj files.

After the model of the segments were created, a series of parameters were set in the

OpenSim model file model TM5.osim according to the Techman5 robot arm

configurations. The size of segments in OpenSim model file depends on the size of

model imported from Solidworks. Thus, no extra configuration of body size was

required. Every joint in a TM5-900 contains a single degree of freedom, so joints in

the model file were set as the sphere joint with two degrees of freedom locked. Body

segments of the robot arm model were connected by the six joints in the sequence of

segment number and the joint number. The base was attached to the origin of the

ground with six degrees of free, i.e. three dimensional translation and three

dimensional rotation. Then every segment was attached to its parent segment with the

corresponding joint. The modelling process is conducted with reference to the

reference frame of the segments, which were specified in the Solidworks. The end

effector was attached to the last segment with the 6th joint. The assembling was

followed by parameters configuration, where the max joint speed and the max/ min
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joint position were set. The max speed of the first three joints is 190 degrees per

second while that of the other three is 235 degrees of freedom. The six joints have the

max joint position of +/-270 degs, +/- 180 degs, +/- 155 degs, +/- 180 degs, +/- 180

degs, +/-270 degs (Table 3.1). Moreover, there was no translation movement enabled

for any joints except the base-ground joint due to the experiment refers to rotation

motion only.

Table 3.1 Joint Parameters

Joint Speed/dps Min/Max Joint Position/deg
1st Joint 190 -270/ 270
2nd Joint 190 - 180/ 180
3rd Joint 190 - 155/ 155
4th Joint 235 - 180/ 180
5th Joint 235 - 180/ 180
6th Joint 235 -270/ 270

3.5 Experiment Design

To provide a dataset for proposed algorithm validation, we designed an experiment

with the assistance of advanced robotic technologies. The experiment was conducted

with a Delsys Trigno Avanti system and a Techman5-900 robot system. The Delsys

Trigno Avanti system is a device capable of bio-signal capture, including EMG

signals and IMU signals. When attached on a body segment, the device could detect

the EMG signal under the skin in a non-invasive way. In this experiment, we only

take IMU data as input, so the EMG mode was disabled. When it comes to inertial

data measurement, the Delsys Trigno has two classic modes: one is orientation mode,

which directly gives out the rotation matrices or quaternions over time estimated by
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the embedded CPU; the other is inertial data mode, which output gyroscope data and

accelerometer data. In this study, we directly outputted the quaternions matrices as the

input. The TM5-900 robot arm is an advanced robot arm capable to undertake

comprehensive tasks. It contains various motion modes and could be controlled by the

command panel/ flow-chart based command programming. No human subjects were

recruited in this experiment.

The target of the experiment is to measure the joint angle estimation accuracy of the

human motion capture pipeline. In order to ensure that the motion tasks designed for

the robotic arm can as much as possible represent the characteristics of the motion of

the human joints, single joint trials are needed to simulate joint movement in one

degree of freedom. In contrast, to simulate comprehensive joint motion tasks of

specific joint like the hip, a multi-joint trial is required where movement tasks are

performed by several joints simultaneously. Thus, single joint trials along with multi-

joint trials were conducted with the robot arm work in different state to simulate

human movements. In single joint trials, we chose the robot arm joint between base

link and link 1 to perform the movement task as the axis along the joint is vertical to

the ground. Similarly, other two sort of trials where joint moves around global Y axis

and global Z axis were designed.

Four IMU sensors were used in this study, which were respectively attached on the

base link, link 1, link 4, and link 5 with 3M medical tapes. Thus, only movements of

joint 1, joint 4, and joint 5 were tracked while the motion of other unused joints was

disabled during the process of data collection.
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The tracked robot arm joint moved around different axes with reference to the base

frame, in different ranges, and at different speeds. Take joint 1 as example, the base

frame was attached on the base link, i.e. the parent rigid body of the joint.

Table 3.2 Movement Around Global Z Axis

Joint Range
5% speed(9.5dps) +/-30° +/-45° +/-60° +/-75° +/-90°
10% speed(19dps) +/-30° +/-45° +/-60° +/-75° +/-90°

15%
speed(28.5dps)

+/-30° +/-45° +/-60° +/-75° +/-90°

20% speed(38dps) +/-30° +/-45° +/-60° +/-75° +/-90°
25%

speed(47.5dps)
+/-30° +/-45° +/-60° +/-75° +/-90°

Table 3.3 Movement Around Global Y Axis

Joint Range
5% speed(9.5dps) +/-30° +/-45° +/-60° +/-75° +/-90°
10% speed(19dps) +/-30° +/-45° +/-60° +/-75° +/-90°

15%
speed(28.5dps)

+/-30° +/-45° +/-60° +/-75° +/-90°

20% speed(38dps) +/-30° +/-45° +/-60° +/-75° +/-90°
25%

speed(47.5dps)
+/-30° +/-45° +/-60° +/-75° +/-90°

Table 3.4 Movement Around Global X Axis

Joint Range
5% speed(11.75dps) +/-30° +/-45° +/-60° +/-75° +/-90°
10% speed(23.5dps) +/-30° +/-45° +/-60° +/-75° +/-90°

15%
speed(35.25dps)

+/-30° +/-45° +/-60° +/-75° +/-90°

20% speed(47dps) +/-30° +/-45° +/-60° +/-75° +/-90°
25%

speed(58.75dps)
+/-30° +/-45° +/-60° +/-75° +/-90°

As every joint of the robot arm only possesses one single degree of freedom, it is

difficult to measure three-axis joint motion with one joint. To measure joint

movements around different axis, the robot arm was set at a neutral position with the

6 joints at 0 deg, 0 deg, 0 deg, 90 deg, 0 deg, and 0 deg. The movement joint one,



46

three, and five separately corresponds to the motion around X, Y, and Z-axis.

Therefore, the IMU sensors were attached to the base, the first segment, the fourth

segment, and the fifth segment. To investigate the relationship between measurement

accuracy of IMU-based methods and the movement speed of the rigid body they

attached to, the movement speed should be taken into consideration as an

experimental parameter. Moreover, it is helpful to find out an optimal speed range for

IMU-based joint angle estimation. The joints moved at a constant speed and the speed

of the joint motion varied from 5% to 25% in the experiment. The speed was directly

controlled by the control panel, thus, we set the movement command in the PC

software and change the speed with the control panel. Apart from the movement speed,

the motion range is also significant for research IMU-based measurement methods as

it reveals the effects of the motion range of tracked rigid body on the measurement

accuracy. The joint motion range moves from +/- 30 deg to +/- 90 deg, which was

configured in the flow-chart based operation system (Table 3.2, Table 3.3, Table 3.4).

The experiment protocol was designed with a robot arm operation system called

TMflow, which aims to provide researchers or engineers with a user-friendly and

reliable interface for robot arm control. Unlike most programming environments, the

TMflow is a flowchart-based logistic programming environment, ensuring researchers

with limited coding experience have access to the robot arm control. In this study, the

robot arm needs to perform a calibration pose and then the tracking movements. The

calibration pose was designed to calculate the rotation matrices between IMUs and the

rigid bodies they attached to. In a calibration pose, all joints of the robot arm were
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controlled to keep still in a neutral position while the IMUs recorded the orientation

information and in turned fed back it to the PC. The tracking movements were motion

tasks in which robot arm moves by following specific control commands. In single

joint trials, the tracked joint moved in a specific motion range at a constant speed.

Similarly, in multi-joint trials, the tracked joints move simultaneously with the

inputted parameters like above.

Take the ‘X-axis, +/-45°, 5% speed’ trial as an example: Four modules were imported

in the trial, i.e., Point, Move, Set, and If (Fig 3.6). The position module could make

the robot arm move into a specific position. In this module, there are mainly two

modes to set the state of the TechMan 5-900: one is to input the position of the end

effector with reference to the base frame, while the other is to set the values of the six

joint angles. In this study, we took the joint angles as input to set a Position module. A

Position flowchart was first imported to make sure the robot arm was in a neutral

position at the start of the trial. The Move module takes the Position module as input,

which controls the robot arm move from one position to another at a constant speed.

When the robot arm system is conducting( the Move command, it always chooses the

shortest route to move from one position to another, which means the motion is

uniform with respect to the time scale. And then three Move modules were imported

into the trial to make joint 1 of the robot arm move from -45 deg to 45 deg. The SET

module could either set a value to an available variable generated before the module.

The If module could discriminate whether the conditions are met to determine which

branch the process will enter. After that, a Set module and an If module were imported
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to discriminate when to stop the movement. A variable ‘flag’ with the initial value of 0

was added by one in this step every loop. At last, the robot arm was set to the initial

pose by a Position module in the first step. In the calibration protocol, the end

termination condition was set as ‘flag>=1’, which made the robot arm joint 1 move

from -45 deg to 45 deg, and then the neutral pose. Movements before the calibration

step aimed at IMU sensor activation, which was helpful for the sensors to perform

better. The procedure controlled the TM5 to move in the specific range to activate the

inertial sensors, which might suffer from drift errors when keep still for a long time.

After that, the robot arm stay at the neutral pose for calibration data collection. The

calibration data will be sent to the PC in the Delsys software. In the motion tracking

protocol, the end termination condition was set as ‘flag>=9999’, making the robot

arm keep moving in the range of -45 deg to 45 deg at a constant speed. When set

‘flag>=9999’, we keep the robot arm moving in the given range without termination.

After data collection it could be stopped by the control panel.

Fig 3.6 Programming Protocol

3.6 Data Processing

In order to quantitatively compare the optimal estimation effects of different methods

and find out the relationship between estimation accuracy and measurement

parameters, this part was divided into three parts: unconstrained optimization
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estimation performance, measurement parameters effects on estimation accuracy, and

constrained optimization estimation performance.

To validate the performance of the three optimization methods, we need to test them

both under unconstrained conditions and constrained conditions. In this study, we

validated the estimation performance under unconstrained condition by adopting a

fixed value of orientation. It was represented both in the form of Euler angle and

generalized coordinates and then taken as the input of corresponding methods.

Considering that we have deduced related formulas or equations based on Euler angle,

rotation matrix, and generalized coordinates, we took quaternions as the

representation for orientation when it comes to performance comparison. In this part,

we calculated RMSD between estimation results and reference data at every iteration

to visualize the convergence performance of different methods. After that, the

minimum required iterations to decrease the RMSD to 0.1 were calculated to quantify

the convergence efficiency. Besides, the required time to run 1000 standard iterations

were recorded to compare their running speed.

In the second part, we conducted a series of trials of different rotation axes, motion

speeds, and motion ranges to get a comprehensive understanding of what

experimental condition is suitable for the motion capture process. We evaluated

accuracy of each trial by calculated the RMSD between reference data and the

estimated joint angle. In every single-joint trial, there was only one rotation axis

which could move. Thus, we assume that the data is reliable and estimate the joint

angle at every frame by treating it as an unconstrained joint angle estimation. The
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joint angle was calculated by rotation inverse and multiplication.

In the first part of the study, we could compare the computational efficiency between

different algorithms and the proposed algorithm. However, to evaluate the

performance of an algorithm, it is necessary to verify its accuracy. In the third part, we

use multi-joint experiments to act as validation data to compare accuracy of the Euler-

based method with the generalized-coordinates-based method. To represent the

accuracy of different optimization algorithms, we compare the estimated joint angles

with the reference data and calculate the RMSE between them.

3.7 Results and Discussion

Fig 3.7 Error represented by quaternion: the relationship between iteration and RMSD.

Table 3.5 Iteration Required (RMSD < 0.1)

Method R-distance based Euler based Proposed
Iteration 211 438 214

Table 3.6 Running Time for 1000 Iterations

Method R-distance based Euler based Proposed
Time/s 0.0242 0.0036 0.0035

As shown in Fig 3.7, all three algorithms allow the RMSE to be continuously reduced
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and eventually allow the results to converge to the reference value.

The calculation efficiency of a algorithm can be characterized by the number of

iterations required to converge to a fixed value and the average time required for a

single iteration.

Calculating the RMSE with quaternions representation and counting the number of

iterations required by different algorithms to get the RMSE down to 0.1, it turns out

that: R-distance based method requires 211 iterations while Euler based method and

proposed method respectively require 438 and 214 iterations, as shown in Table 3.5.

The number of required iterations are about the same when it comes to the R-distance

based method and the proposed method while the Euler based method requires about

twice as many iterations as them.

The running time required for different algorithms to complete 1000 iterations could

reflect the running time required for different algorithms to complete a single iteration.

It reveals that: R-distance based method takes 0.0242 seconds to finish 1000 iterations

while Euler based method and proposed method respectively take 0.0036 seconds and

0.0035 seconds, as shown in Table 3.6. The running time of Euler based method and

the method are similar, which are far less than that of the R-distance based method.

Thus, the proposed method was assumed to have a better performance than the other

two methods when it comes to calculation efficiency.
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Table 3.7 RMSE around global Z axis

+/-30° +/-45° +/-60° +/-75° +/-90°
5% speed(9.5dps) 0.1317 0.2248 0.2883 0.3155 0.3307
10% speed(19dps) 0.4618 0.0696 0.4255 0.3835 0.4644
15% speed(28.5dps) 0.3210 0.9086 1.0430 0.2188 0.4076
20% speed(38dps) 0.2394 0.7045 0.9042 1.7055 2.0223
25% speed(47.5dps) 0.2223 0.5835 0.7359 1.3885 1.6666

Table 3.8 RMSE around global Y axis

+/-30° +/-45° +/-60° +/-75° +/-90°
5% speed(9.5dps) 0.0793 0.0375 0.0557 0.1835 0.1966
10% speed(19dps) 0.0803 0.1149 0.1001 0.1321 0.3879
15% speed(28.5dps) 0.0899 0.1132 0.1471 0.1964 0.2680
20% speed(38dps) 0.0822 0.0510 0.1800 0.1217 0.2521
25% speed(47.5dps) 0.0777 0.0927 0.2111 0.1833 0.3553

Table 3.9 RMSE around global X axis

+/-30° +/-45° +/-60° +/-75° +/-90°
5% speed(11.75dps) 0.0747 0.0731 0.0677 0.1510 0.1764
10% speed(23.5dps) 0.0287 0.1192 0.0986 0.1498 0.2884

15%
speed(35.25dps)

0.0435 0.0524 0.1326 0.1827 0.1223

20% speed(47dps) 0.0464 0.0680 0.1446 0.2004 0.6123
25%

speed(58.75dps)
0.0964 0.0720 0.1262 0.3617 0.5510

Fig 3.8 RMSE of different single-joint trials

The blue bar is for trials around global Z axis, while the green bar and the yellow bar
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are respectively for those around Y and X axis. The 25 trials were divided into five

adjacent groups, with the motion range of each group increasing, i. e. +/-30°, +/-45°,

+/-60°, +/-75°, +/-90°. The first 5 trials stand for trials with a speed of 5%, 10%, 15%,

20%, 25%. Similarly, in other groups the speed increases as number of a trial

increases.

Moreover, an N-way ANOVA test in Matlab were also performed to investigate the

relationship between Joint Number, Motion Range, Speed, and measurement accuracy.

The result is shown in Table 3.10.

Table 3.10 ANOVA Test result

Source Sum Sq. d.f. Mean Sq. F Prob>F
Joint_Num 4.0066 2 2.0033 38.12 0

Motion Range 1.4504 4 0.3626 6.9 0.0004
Speed 1.2341 4 0.30825 5.87 0.0012

Joint_Num* Motion Range 0.463 8 0.05787 1.1 0.3882
Joint_Num* Speed 1.5142 8 0.18927 3.6 0.0044

Motion Range* Speed 1.2805 16 0.08003 1.52 0.1519
Error 1.6819 32 0..05256 N/A N/A
Total 11.6305 74 N/A N/A N/A

The RMSE of different single-joint trials are recorded in the Table 3.7, Table 3.8,

Table 3.9, Table 3.10, and Table 3.11Fig 3.8. It reveals that:

(1) The RMSEs of trials which are around the global Z axis are obviously larger than

those of trials around Y and X axis. It might be caused by magnetic distortion, as the

motion in the horizonal plane is always effected by the magnetic fields more than

motions in the other two planes.

(2) In trials around global Z axis, either a high motion speed or a low motion speed

leads to a lower RMSE, which means a better estimation performance. However, in

trials around the other two set of trials, there was no obvious evidence to support this
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phenomenon. We inferred that it’s caused by the AHRS algorithm itself, in which the

heading axis are estimated both by the accelerometer, gyroscope and magnetometer.

On low-speed occasions, magnetic distortion caused by movement is relatively little

and the magnetometer could provide accurate information. On high-speed occasions,

the drift of the accelerometer and gyroscope is small, which means a better estimation

of the heading axis.

(3) In all groups of trials, the RMSE increases with the motion range, which means a

larger motion range leads to a worse estimation performance. This result indicates that

a larger motion range leads to a larger RMSE.

Fig 3.9 result of multi-joints trial: The blue line stands for the reference data, the red line

stands for the Euler-based method, while the yellow line stand for the proposed method.

Table 3.11 RMSE of Multi-joints Trials

Joint 1 Joint 2 Joint 3
Euler based 0.1509 0.0242 0.3168
Proposed 0.1620 0.0383 0.1299
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In third part, we validated the RMSEs of both Euler-based method and our proposed

method. The result is recorded in the Fig 3.9 and table 3.5. It reveals that:

(1) Both two methods performed best when it came to joint 2. The 1st joint suffered

from magnetic distortion most, which restricted its accuracy. The 3rd joint was

located at the distal end of the robot arm, meaning that errors from the first two joints

might accumulated in its result.

(2) Our proposed method had a similar performance with the Euler-based method

when it came to joint 1 and joint 2. However, it revealed that for joint 3, the RMSE of

the proposed method was about half of that of Euler-based method.

Thus, the proposed method was assumed to have a better performance than the Euler-

based method when it comes to calculation accuracy.
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Chapter4 Human Motion Prediction

In the past decades, it reveals that there’s a growing interest in the biomechanics

community in wearable sensors, which enables the clinical diagnosis of motion

disorders and design of the rehabilitation devices. To provide reliable feedback in the

human-machine interface for advanced rehabilitation devices, methods to predict

motion intention are developed. An inertial measurement unit (IMU) is a promising

device for motion tracking, with the advantages of low cost and high convenience in

sensor placement to measure motion in almost every environment. However, it reveals

that there is no comprehensive study to predict human motion with pure IMU data.

Thus, this paper presents a hybrid method of the skeletal model and LSTM to predict

the lower limb joint angles with pure IMU data, which has the potential to be a low-

cost, easy-to-use alternative in motion prediction. The LSTM is a recurrent neural

network where the input of a node is the output of another one, making it robust for

solving time-series problems. In comparison with RNN, nodes in the input layer of an

Artificial Neural Network (ANN) are independent. A standard RNN commonly

suffers from gradient explosion or gradient dispersion. Thus, we chose LSTM to

undertake the task of human motion intention prediction. Our research purpose are: (1)

to estimate the motion using an IMU driven MSK model while the marker-based

model output was considered as the gold standard; (2) to train machine learning

models (RNN and LSTM) to predict motion intention; (3) to compare the errors from

the different machine learning models with the hypothesis that: LSTM outperforms

traditional artificial neural networks.
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4.1 Experiments

To get access to human motion data for validation, a functional movement data

experiment was designed and carried out in the motion capture lab.

This study focuses on algorithm validation rather than specific lower limb diseases

research, thus trials on healthy groups were enough for following research.Six healthy

subjects (4 males, mean ± SD; age 22.8±0.4 years; height 168.7±5.6 cm; body mass

55.5±7.7 kg) with no self-reported lower limb musculoskeletal (MSK) pain or

impairments were recruited. Before the data collection process, institutional ethics

approval and informed consent had been obtained.

(a) (b)

Fig 4.1 Experimental Setup and Marker Placement

Considering that we carried out such trials to compare performance of IMU-based

method and a golden standard, an extra optical motion capture system was also

introduced in this part. IMU data and optical motion capture data were collected by

using an integrated Inertial Measurement Units system(DelsysTrigno Avanti, USA,

2000 Hz) and an 8-camera optical motion capture system(Vicon, UK, 100 Hz),

respectively. The DelsysTrigno Avanti system was composed of IMU module and
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EMG module, which enabled it to output both inertial motion data and functional

muscle activity simultaneously. The following data processing didn’t deal with EMG

data, thus this module was disabled. The Vicon system consisted of a PC for data

processing, a data exchanger, 8 advanced high-speed cameras, and a wand for

calibration. It is worth mentioning that the data exchanger of the Vicon motion

capture system was able to collect motion capture data either from the high-speed

cameras and the Trigno Avanti inertial sensors.The motion data and IMU data were

synchronized during motion tracking.

With the advanced motion tracking devices mentioned in the last paragraph, we could

carry out motion capture trials with high reliability. However, there would not be any

possibility to get high accuracy data without dedicated maker placement. In this study,

the marker placement process was much complicated than those of experiments with

single sensor type. There were 7 inertial sensors for lower motion tracking and 39

reflective markers for cameras to track.For each subject, seven IMUs were placed on

the lower limb body segments for the pelvis, thighs, shanks, and feet. The principle of

how to place an IMU was to put it on a body area with as less artefact as possible. The

pelvis IMU was placed on the lower back where pelvis was located as there might be

more soft tissues on the belly of most subjects. The IMU sensors on the shanks and

thighs were located at the centre of marker plates, which were solid and tightly taped

to the corresponding body segments. Moreover, the IMUs on the feet were located at

the front area of the shoes.The sensor reference frame of a Delsys IMU is shown in

Fig 4.1(a). The global reference frame was defined as ENU(X-axis to the East, Y-axis
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to the North, Z-axis to the Up). At the same time, 39 reflective markers were also

attached to body segments (Fig 4.1). They were placed on the anatomical bony

landmarks of anterior/posterior superior iliac spine (APSIS), medial/lateral femoral

epicondyles, medial/lateral malleoli, second/fifth metatarsal head, and posterior

calcaneus. Additionally, two clusters of four markers were placed onto the lateral

aspects of the thighs and shanks. The bony markers were used for both scaling and

motion tracking while other markers such as those on the marker plates were attached

on different body areas to provide extra movement information.

Apart from functional movement tasks, calibration was also necessary for us to align

IMU reference frame with corresponding body segment reference frame (i.e.

anatomical reference frame). Thus, three tasks were assigned to each subject,

including calibration, sit-to-stand, and walking. For IMU calibration, both functional

calibration and static calibration were adopted by former researches. However, for

scaling data collection, it was highly recommended that we adopted a static pose as

the calibration data could be calculated as average value in a specific time period. In

the calibration task, the subjects were asked to stand upright in a neutral pose for

about 20 seconds. They were also asked to stand with their hands crossed on their

chests to avoid blocking bony marker from camera sights. After that we carried out

formal functional movements. In the sit-to-stand task, the subjects were asked to sit

on a height-adjustable seat. The height of the seatwas adjusted so their knees were at

90° flexion in the sitting position.Subjects were askedto firstly stand in the calibration

pose, and then they were informed to sit down and stand up slowly with a relatively
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stable speed themselves. In the walking task, the subjects were asked to walk forward

naturallyat a comfortable speed, which was like how they walked on normal

occasions.

4.2 IMU-based human motion tracking protocol in

OpenSense

Joint angle calculation of data collected by inertial sensor was carried out in

OpenSense, which was a standard solution protocol provided by OpenSim.

4.2.1 Introduction to OpenSim/OpenSense

OpenSim is a software for modelling the human body and the environment, which

could simulate human movements and interactions with the environment. OpenSim

possesses a graphical user interface (GUI) which could visualize musculoskeletal

(MSK) models and perform simulations (Fig 4.2). OpenSim is an open-source

software with all the source code accessible to global developers. Engineers are free

to develop the software by utilizing the OpenSim application programming interface

(API). OpenSim was firstly introduced by Scott Delp, Jennifer Hicks, Ajay Seth et al.

at the American Society of Biomechanics Conference in 2007, which was known as

version 1.0. An application programming interface (API) was added in V2.0 and the

API was extended to Matlab and Python in the latest version. The software OpenSim

is an interdisciplinary simulation platform that is compatible with multiple

programming languages and enables engineers and scientists from different academic
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institutions to collaborate on biomedical research. The core code of the software is

developed in C++ while the graphical user interface (GUI) is developed based on Java.

Developers could develop new MSK models or simulate human motion with data

collected from sensors. Besides, there are numerous plug-ins on the OpenSim website

for people to download and run without compiling, which makes it accessible to

control OpenSim in other platforms.

Fig 4.2 OpenSim Graphic User Interface

OpenSense is a novel workflow in OpenSim 4.0 which is developed for IMU data

based human motion tracking tasks. The workflow is designed to solve inverse

kinematics problems based on IMU data (i.e. calculate joint angles between adjacent

body segments). A multi-body model with target joint is required before the human

motion capture pipeline. Any model in .osim format could be utilized to conduct

inverse kinematics research and no scaling are required in the procedure. A standard

OpenSense workflow includes five steps: data collection & preprocessing, data format

conversion, calibration, human motion tracking, and results visualization.The output
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of the Delsys IMU system is the orientation between the IMU reference frame and the

global reference frame over time. Normally, one IMU sensor is attached to one body

segment, and the placement information should be recorded before the experiment.

OpenSense currently only supports data collected from the Xsens/ADPM IMU system.

Calibration data were collected before motion capture data to make sure the data

could be converted from the IMU reference frame to the anatomical reference frame.

There are two types of calibration: static calibration and functional calibration, and in

this study, only static calibration pose was adopted. The OpenSense workflow also

provides developers with a heading correction option. To correct IMUs’ heading, a

base IMU whose heading information will be utilized to conduct correction is

required. Calibration data was set in the first line of the time-series orientation file as

OpenSense assumes the calibration pose corresponds to the zero-timestamp pose.

Another work in the calibration process is to calculate the sensor to OpenSim

rotations because the OpenSim world reference frame is Y to the up, Z to the right.

After calibration, joint angle estimation could be performed in OpenSense to track

human motion. The inverse kinematics minimize the angular error between Euler

angles to seek the optimized solution in every epoch.

4.2.2 Data Collection and Pre-processing

Data collection plays a significant role in the human motion tracking pipeline.

Normally, one IMU sensor is attached to one body segment, and the placement

information should be recorded before the experiment. Calibration data was collected
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before motion capture data to make sure the data could be converted from IMU

reference frame to anatomical reference frame. here are two types of calibration: static

calibration and functional calibration. The previous one performs a pose where the

tracked joint angle is assumed as 0 deg or any other specific values and keep still. The

other one performs a function action to optimize the joint angle estimation. In this

study, a basic static calibration method was adopted. The OpenSense workflow also

provides developers with a heading correction option. To correct IMUs’ heading, a

base IMU whose heading information will be utilized to conduct correction is

required. There was no heading IMU in this study in order to reduce the number of

IMUs. Raw data is collected in the format of rotation matrix or quaternions from IMU

sensors. The official workflow is only compatible with Xsens IMU and ADPM IMU.

Sensor fusion, synchronizing, and interpolation for missing entries are assumed to be

performed before the pipeline.

4.2.3 Data Format Conversion

After the first step, the data is expected to be converted into a format which is

compatible with OpenSim and then attached to the model in OpenSim. At this stage,

OpenSense only support data from Xsens/APDM IMU sensors. After import, a time-

series quaternions data will be generated in .sto format by converting the rotation

matrices into quaternions.

In this study, we used DelsysTrigno Avanti IMU sensors to perform human motion

measurement, which possesses a different output format from that of Xsens/ADPM.
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The collected data was first collected in the EMGworks Acquisition software and then

transferred into .mat format by the Trigno File Utility for further processing. Two

methods were adopted in this step to import IMU data: one is generate the same .txt

files from Trigno Avanti data in MatLab, and then follow the standard human tracking

pipeline provided by OpenSense developers; the other one is directly generate time-

series quaternions data which is in .sto format in MatLab without callback the import

functions provided byOpenSense. The rotation matrices provided by IMU sensors

should by direct cosine matrices (DCM).

In a standard data conversion workflow, an XML file is expected to inform the

platform which sensor corresponds to which body segment in the OpenSim model.

The XML file specifies trial_prefix, Experimental Sensor name, and name_in_model.

The naming convention of the study should go along with OpenSense where an IMU

will be named as <body segment>_imu. The OpenSense will generate a .sto file with

orientation data and IMU information of each sensor.

In this study, another MatLab function was developed to directly generate the .sto file

from time-series orientation data.

4.2.4 Calibration in OpenSense

Whe it comes to calibration, an OpenSim model and orientation data are required to

calculate the offset, i.e. the rotation of IMU reference frame relative to the anatomical

reference frame. The model applied in the trial was the Rajagopal (2015) model.

Virtual markers are attached to the the corresponding body segments due to the
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information provided by the .sto file. Calibration data was set in the first line of the

time-series orientation file as OpenSense assumes the calibration pose is corresponded

to the zero time stamp pose. Another work in calibration process is to calculate the

sensor to OpenSim rotations because the OpenSim world reference frame is Y to the

up, Z to the right, which is different from the IMU world reference frame(Z to the up,

Y to the north). Moreover, the base IMU and its heading axis could be specified in

OpenSense to make adjustments to the initial orientation of the model. Normally, the

pelvis IMU will be chosen as the heading IMU toperform correction to initial

orientation. The heading axis is specified related to the experiment, which could be x,

-x, y, -y, z, or -z. In the trial, no heading IMU was applied as the number of IMUs

were expected to be minimized.

4.2.5 Human Motion Tracking in Opensense

After calibration, joint angle estimation could be performed in OpenSense to track

human motion. The invers kinematics minimize the angular error between Euler

angles to seek for the optimized solution in every epoch. A calibrated OpenSim model

and a time-series orientation file was needed for motion capture. Several parameters

could be specified before motion capture, including time range, sensor to opensim

rotations, model file name, orientation file name. The time range specifies the start

time and end time of the simulation procedure. The sensor to opensim rotations

specifies the rotation (Euler angles in global XYZ) from IMU world reference

frame(Z to the up, Y to the north) to OpenSim world reference frame(Z to the right, Y
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to the up). The model file name specifies the calibrated model utilized to perform

motion tracking while the orientations file name specifies the orientation data. In

order to ensure the motion tracking is accurate, all the joint angles in the model except

the tracked one were locked in this step.

4.2.6 Results Visualization

The result of the trial could be visualized by OpenSim GUI by loading the motion

file(.mot) on the calibrated model and the click run in the OpenSim interface. When it

comes to data visualization, the OpenSim provides a embedded plottin function. The

result could also be output to another software for postprocessing.

4.3 Marker-based human motion tracking in OpenSim

It’s also of great significance to collect accurate data to work as a golden standard for

following validation steps. Thus, we chose a marker-based based protocol to generate

reference data due to its high accuracy and satisfactory repeatability in former

research. Marker labeling and gap-filling were performed in Vicon Nexus (Vicon,

UK). Smoothed marker trajectories were the input of a generic, full-body MSK model

(Rajagopal, 2015) in OpenSim (Version 4.3, USA), i.e. the same as that in the

standard OpenSense pipeline. The model contains 22 rigid bodies and each lower

limb is modelled with 7 degrees of freedom including hip rotation, hip flexion, hip

adduction, knee flexion, ankle inversion, ankle dorsiflexion, and toe flexion. Our
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simulation workflow began with scaling the geometry ofthe generic model to match

the anthropometry ofeach subject, using the OpenSim Scale Tool. The marker

trajectories from the calibration tasks were used in scaling. A tracking weight of 1000

was assigned to the anatomical bony landmarks while a small weight of 1 was

assigned to other markers such as markers on the thigh and shank clusters. Lower

limb joint angles during tasks of sit-to-stand and walking were generated by

usingOpenSim’s Inverse Kinematics (IK) Tool.

4.3.1 Data collection and preprocessing in the Vicon Nexus

The eight high-speed cameras directly captured raw trajectories of markers attached to

the subject and sent them to the PC software via the central data exchanger. However,

it’s difficult for us to analyze human motion without preprocessing because it’s hard

for a machine to discriminate which marker corresponded to which segment. Thus, we

designed a 39-marker template for the experiment in Vicon Nexus. It included two

parts: one was for marker labelling and the other was for segment generation. We

labelled every marker in the first frame, and then the software automatically labelled

the remained frames. Segments were also created in this part: we picked out four

markers to specify a segment they were attached to, after which we assigned all of the

markers to the body segment they belonged to.

The created template enabled us to label the trajectories with high efficiency, which

means that we didn’t need to label the markers and assign them to the corresponding

body segment frame by frame. It’s revealed that there also existed a problem that the
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automatically labelled trajectories suffered from trajectory gaps and unlabeled

markers in some frames where optical information provided by the cameras was not

sufficient. To solve the problem, we could utilize the standard protocols in the Vicon

Nexus to carry out the following marker labelling and gap-filling manually. We could

conveniently select markers from the created template and assigned the specification

to the unlabeled marker to finish marker labelling. However, when it came to gap-

filling, we needed to utilize suitable gap-filling methods. The software provided us

with fivemodes: spine fill, pattern fill, rigid body fill, kinematic fill, and cyclic fill.

This study only referred to the previous 3 modes. The spine fill conducted simple

interpolation for the missing points in a trajectory, which was suitable for the situation

where the number of missing points between two frame was not too large. We defined

the max value as 20, which meant that we would not consider this method when

missing gaps between two frames were more than 20. The pattern fill generated part

of the trajectory of a marker with reference to another marker. Thus, the reference

marker should possess a similar movement pattern to the marker to be gap-filled. The

rigid body fill generated the position of a marker in a specific frame with 3D position

values of another 3 markers on the same rigid body.

4.3.2 Scalingand marker-based inverse kinematics in

OpenSim

To calculate joint angles accurately, we adopted a standard inverse kinematics

protocol in OpenSim. Two steps were included: scaling and inverse kinematics. The
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protocol took .trc file which recorded marker trajectories, a generic OpenSim model,

and a series of parameter setting as input.

In case that the difference of body segment geometries could introduce extra errors,

we scaled the generic model with the scale tool. A marker set in the OpenSim was

required before scaling, in which each maker was located with reference to marker

placement in the experiment and assigned to the corresponding body segment. The

maker set and a generic skeletal model Rajagopal in OpenSim were both inputted into

the scale tool. For scaling, we also loaded a static trial to provide true measurement

information and adopted the average data between start time and end time. For each

body segment, to scale its geometry, we needed to assign corresponding scale factors

either by manual measurement or using measurements. In this study, we used

measurements to scale different body segments by choosing suitable marker pairs.

Apart from marker pairs, we also assigned different weights to different markers,

depending on its contribution to the scaling.The scale tool would automatically

generate a scaled model in which each body segment had been tailored into the same

size of the subject. Then the scaled model, along with the marker set mentioned above

were inputted into the inverse kinematic tool to calculate lower limb joint angles. The

weightsof bony landmarks were set as 1 while weights of other markers were set as

0.1.
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4.4 Development of LSTM Neural Network

4.4.1 Introduction to ANN &LSTM

BP neural network is a research hotspot in the field of artificial intelligence, it

information processing perspective to abstract the human brain neurons, to build some

kind of simple model, according to different ways to form a network, each node of the

network is called a neuron. For a single neuron, the model is as follows, i.e., Fig 4.3.

Fig 4.3 Structure of a node

The model contains input data, output data and neuron nodes, which are generally

composed of a summation function and an activation function. The activation function

can be chosen by oneself and is commonly used as an S function or hyperbolic

tangent function.

The data processing effect of a single neuron is often limited, and combining a large

number of such neurons into a neural network can greatly improve the effectiveness

of the model. The model is as follows, i.e., Fig 4.4.
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Fig 4.4 Structure of ANN

The model mainly consists of an input layer, a hidden layer and an output layer, which

are responsible for input, operation and output tasks respectively. The mathematical

model of the S-function is as follows.

1
1 zy
e


 (4.1)

Tz w x b  (4.2)

where y is the neuron output, z is the summation function output, x is the input, w is

the weight matrix, and b is the bias.

In the feed-forward process, a series of operations are required to make predictions

and calculate the loss function, which is calculated as follows.

1
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where y is the observed value and is the predicted value.

To ensure that the loss function converges to a minimum, the gradient needs to be

calculated during the feedback process and the weight matrix and bias matrix need to
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be updated.
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where is the model learning rate.

Fig 4.5 Structure of the Predictive Model

Fig 4.6 Structure of an LSTM layer
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LSTM (Fig 4.5) is one of the variants of recurrent neural networks, which includes

SequenceInputLayer, LSTM Layer,FullyConnectedLayer, and RegressionLayer.

Similar to basic artificial neural networks, LSTM networks are composed of multiple

layers, each of which in turn consists of multiple nodes. the LSTM layer (Fig 4.6) is

the core layer of the LSTM network, where the input of each node is the output of the

previous node and the output is the input of the previous node.The structure of the

LSTM layer dictates that the relationships of neighboring nodes are coupled, however,

in an ANN, the nodes in the same layer are independent of each other.

4.4.2 Human motion prediction with different methods

The LSTM neural network was trained and validated in MatLab with

MatLabDeepLearning Toolbox. Before training the neural networks, the data was

normalized to gain better performance by eliminating the influence of magnitudes.

The parameters of different neural networks are shown in Table 4.1. The NumFeatures,

NumResponse, and NumHiddenUnits respectively represent the number of units in

the corresponding layer. The MaxEpochs denotes the training times while LearnRate

stands for the convergence speed in every epoch.

Table 4.1 Parameters of Neural Networks

Parameter LSTM+MSK
Model

ANN+MSK
Model

LSTM
only

NumFeatures 1 1 8
NumResponses 1 1 8
NumHiddenUnits 200 200 200

MaxEpochs 1000 1000 1000
LearnRate 0.005 0.005 0.005
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Another two methods were tested in this study to compare with the developed motion

intention prediction method. One is a model-free motion intention prediction method

with LSTM. This method inputs the output of IMUs on adjacent segments to predict

the corresponding joint angle. The result of the neural networks is the joint angle

reference data several periods ahead of the input. In another trial, we replace the

LSTM neural networks with traditional ANN to predict the joint angles. Similarly, the

output of the IMUs will firstly be processed by the OpenSense human motion tracking

pipeline and then trained by ANN to gain the capability to predict joint angles. The

input of the neural network is the time-series joint angle estimated by the MSK model

in OpenSense while the output is the joint angle data several periods ahead of the

input.

4.5 Data analysis

In this study, we applied one sit-to-stand-to-walk trial to train and test the prediction

model. We stitched together ten trials of time-series data for data analysis. The first

nine trials are the training dataset to train the models, and the last trial is the test

dataset to analyze the accuracy of the different methods. We predict joint angle in the

next frame with the input of the previous few frames. Our proposed model could

predict the data at any time after the current moment in theory. The prediction

accuracy decreases as the time gap increases. We calculated RMSD between marker-

based estimation result and IMU-based estimation result to validate the reliability of
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IMU-based human motion tracking pipeline in OpenSim/OpenSense, and then,

calculated the RMSD between IMU-based estimation result and prediction result to

evaluate the accuracy of the proposed method. We plotted the result of prediction,

IMU-based estimation, and marker-based estimation in the same figure for reference.

Moreover, we calculated prediction results of the pure LSTM and ANN/MSK model

in comparison with our proposed method. Last but not least, K-fold validation was

also performed on the six-subject dataset. For data of each subject, data every trial

took turns to work as test dataset, and data in the rest trials work as training dataset.

Both RMSE and decision coefficient R2_score were calculated.

4.6 Results

Fig 4.7 A comparison of knee joint angles during tasks of stand-to-sit-to-stand and walking

from one representative subject. The knee joint angles are calculated from the marker-based

MSK model (in red), from the IMU-based MSK model (in blue) and predicted from the method

of LSTM integrating with MSK modeling (in yellow).
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(a)LSTM+MSK Model

(b)ANN+MSK Model

(c)LSTM only

Fig 4.8 Prediction performance of knee joint angles from one representative subject between

the (a) LSTM with MSK modeling, (b) ANN with MSK modelling and (c) LSTM without MSK

modelling.

Table 4.2 Performance of Different Methods

Pure LSTM ANN+MSK LSTM+MSK
RMSE/deg 31.15 31.66 2.93

Table 4.3 Performance of Proposed Method

Subject Number RMSE/deg R2_score
1 26.82 0.41
2 8.38 0.76
3 32.13 0.64
4 6.72 0.88
5 5.74 0.89
6 15.66 0.49

Ten trials (including stand-to-sit-to-stand and walking of the subject) were stitched

together. The data was first downsampled from 100Hz to 10Hz to achieve a better

performance in the model training. The first nine trials were set as the training dataset

and the last trial was the prediction. The reference data was the joint angle overtime
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calculated from the MSK model in OpenSim with IMU data as inputs.

As shown in Fig 4.7 and Table 4.2, the result of the proposed method follows the

estimated joint angle well. The RMSE between IMU-based estimation joint angle and

optical-marker-based estimation joint angle is 7.26 deg. As revealed in Fig 4.8(a), the

result of the proposed hybrid method has an excellent performance in predicting

human intention. In comparison, the ANN-based hybrid method and the pure LSTM

neural network turn out to possess a limited capability to predict human intention (Fig

4.8(b), Fig 4.8(c)). The RMSE of the proposed method is 2.93 deg while the RSME of

the other two is respectively 31.15 deg and 31.66 deg.

As shown in Table 4.3, the RMSEs of some subjects are lower than 10 degrees and

decision coefficients are relatively high. However, for other subjects, RMSE could be

higher than 20 degrees, which indicates a bad performance. This is because the

repeatability of picked trials varies from each other, for those with a higher

repeatability, the LSTM has a better prediction performance.

4.7 Discussion

The proposed method which fuses the skeletal model and LSTM greatly outperforms

pure LSTM and the method fuses the skeletal model and ANN. The result reveals that

the hybrid method possesses a high accuracy of 2.93 degrees in RMSE.

The LSTM layer enables the hybrid method to predict human motion intention with

satisfactory accuracy. In an LSTM layer, the output of a node is the input of the next

node, which makes it suitable for time-series data processing, including
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prediction.Applying pure LSTM neural networks to perform the motion intention

prediction tends to result in limited accuracy. Compared with Neural Networks,

model-based methods perform better in joint angle estimation.If the LSTM layer is

replaced with an ANN layer, it reveals that the hybrid model will lack the capability to

predict human motion. Thus, EMG data was customarily adopted to provide

preliminary information for an ANN-based deep learning model, significantly

increasing cost.

Most studies applied human motion intention prediction methods by measuring both

kinematics information (optical data, IMU data, etc.) and biomechanics information

(EMG). Our proposed hybrid method has three advantages: (1) Prediction model with

pure IMU data has less limitation when it comes to outdoor human motion

measurement. (2) Accuracy of marker-based or EMG-based motion intention method

is more likely to be affected by maker placement. (3) Pure IMU devices are cheaper

than those designed for EMG or marker trajectory measurement. (4) By applying

LSTM rather than ANN, the model could predict the motion intention flexibly.
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Chapter5 Conclusion and Future Work

5.1 Conclusion

This thesis aims to develop a lower limb motion capture protocol with high accuracy

and reliability. To fulfill the basic requirement of this project, both robot arm research

and human motion research were carried out.

In robot arm validation experiment, data of a series of trials with different parameters,

such as rotation axis, motion speed, and motion range were collected to give a

comprehensive understanding of the suitable experimental conditions for IMU-based

motion capture trials. Moreover, we developed a novel optimal joint angle estimation

method to improve the running efficiency of the motion tracking pipeline. In the

lower limb human motion capture experiment, we collected data from six healthy

subjects with both IMU sensors and high-speed cameras. We proposed a novel

method to predict motion intention of subjects by fusing both MSK modelling

technologies and LSTM neural networks. The results reveal that:

For IMU-based human motion tracking, the motion in the horizontal plane has a

larger measurement error in comparison with motion in the other two planes. The

measurement error increases when motion range increases.Either a high speed or low

speed causes lower measurement error for motion in the horizontal plane. However,

when it comes to the other two plane, the error increases when the motion speed

increases.

The proposed method to calculate joint angle with high calculation efficiency
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outperforms the Euler method when it comes to iteration required to converge to a

fixed value. It means the method has better efficiency. It differs from traditional joint

angle estimation algorithms in that it’s proposed based on Riemannian distance

between rotation matrices rather than Euclid distance between some specified

parameters.

The developed method in chapter 4 outperforms pure LSTM and ANN fusing MSK

model when it comes to prediction accuracy. It differs from with traditional methods

in: (1) Focusing on solving motion intention prediction with pure IMU data, which

means for lower cost and higher adaptability to outdoor occasions. (2) Integrating

both MSK models and LSTM neural networks to take advantage of two models, i.e.

MSK model for estimation and LSTM for prediction.

5.2 Future Work

There are also some future works which deserves further research:

The result in the chapter 3 reveals that experimental parameters, i.e. rotation axis,

motion range, motion speed, and so on, requires to be carefully picked up. Thus, it’s

highly recommended that further research focuses on choosing suitable parameters

with reference experimental conditions before starting an IMU-based motion capture

experiment. Future work related to joint angle estimation might focus on the intrinsic

representation of 3D orientation to improve efficiency of further methods.

Motion in the horizontal plane, i.e., around the global Z axis has a larger measurement

than the other two. Three further solutions are recommended: (1) To develop an more
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advanced sensor fusion algorithm to suppress the measurement error caused by

magnetic distortion. (2) To design a better experimental protocol to reduce the

negative effect of magnetic field. (3) To improve the performance of hardware, for

example, utilize magnetometer with higher robustness.

The motion intention prediction method can be improved by developing an adaptive

module for more flexible prediction, which enables it to predict motion after specific

time period. Moreover, it reveals that fusing MSK models with AI technologies might

give out a novel perspective to improve performance of related methods.
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