
Domain Theory in Constructive and
Predicative Univalent Foundations

by

Tom de Jong

A thesis submitted to the University of Birmingham for the degree of
Doctor of Philosophy

School of Computer Science
College of Engineering and Physical Sciences

University of Birmingham
September 2022

University of Birmingham Research Archive
e-theses repository

This unpublished thesis/dissertation is under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

 Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you

or your use.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the public domain or where your use is

permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For

example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

Unless otherwise stated, any material in this thesis/dissertation that is cited to a third-party source is not included in

the terms of this licence. Please refer to the original source(s) for licencing conditions of any quotes, images or other

material cited to a third party.

https://creativecommons.org/licenses/by/4.0/

Abstract

We develop domain theory in constructive and predicative univalent foundations (also
known as homotopy type theory). That we work predicatively means that we do
not assume Voevodsky’s propositional resizing axioms. Our work is constructive in
the sense that we do not rely on excluded middle or the axiom of (countable) choice.
Domain theory studies so-called directed complete posets (dcpos) and Scott continuous
maps between them and has applications in a variety of fields, such as programming
language semantics, higher-type computability and topology. A common approach to
deal with size issues in a predicative foundation is to work with information systems,
abstract bases or formal topologies rather than dcpos, and approximable relations
rather than Scott continuous functions. In our type-theoretic approach, we instead
accept that dcpos may be large and work with type universes to account for this.
A priori one might expect that complex constructions of dcpos, involving countably
infinite iterations of exponentials for example, result in a need for ever-increasing
universes and are predicatively impossible. We show, through a careful tracking of type
universe parameters, that such constructions can be carried out in a predicative setting.
We illustrate the development with applications in the semantics of programming
languages: the soundness and computational adequacy of the Scott model of PCF,
and Scott’s 𝐷∞ model of the untyped _-calculus. Both of these applications make
use of Escardó’s and Knapp’s type of partial elements. Taking inspiration from work
in category theory by Johnstone and Joyal, we also give a predicative account of
continuous and algebraic dcpos, and of the related notions of a small (compact) basis
and its rounded ideal completion. This is accompanied by concrete examples, such as
the small compact basis of Kuratowski finite subsets of the powerset. The fact that
nontrivial dcpos have large carriers is in fact unavoidable and characteristic of our
predicative setting, as we explain in a complementary chapter on the constructive and
predicative limitations of univalent foundations. We prove no-go theorems for a general
class of posets that includes dcpos, bounded complete posets, sup-lattices and frames.
In particular, we show that, constructively, locally small nontrivial dcpos necessarily
lack decidable equality. Our account of domain theory in univalent foundations has
been fully formalised with only a fewminor exceptions. The ability of the proof assistant
Agda to infer universe levels has been invaluable for our purposes.

Acknowledgements

First and foremost, it is my pleasure to express my deepest thanks to my supervisor
Martín Escardó. This thesis simply wouldn’t exist without his ideas, patient teaching,
and ever-helpful feedback and support. Secondly, I am grateful to my co-supervisor
Benedikt Ahrens who really helped me feel at home in Birmingham and has always
been available to offer sage advice even after he moved away from Birmingham.

I feel fortunate to have been a part of the very vibrant Theory group at Birmingham
and wish to thank all its members, and the participants of our Theory PhD student
seminar Bravo in particular.

Of the (former) PhD students, Alex Rice, Auke Booij, Ayberk Tosun, Calin Tataru,
George Kaye and ToddWaughAmbridge deserve a special mention. Alex and Calin were
excellent teaching assistants and great office mates before they moved to Cambridge.
The framework developed to mark Functional Programming assignments is largely due
to them. Auke was very welcoming and helpful when I first moved to Birmingham.
With George I had the pleasure of organising the Theory seminar, upgrading the
Theory website and introducing web profiles for PhD students. I have had interesting
discussions with Ayberk and Todd and would like to thank them for their efforts as
teaching assistants in the modules we taught together. Moreover, like George, they
became my friends in Birmingham.

Of the Theory staff members, I would like to mention Anupam Das, Eric Finster,
Paul Levy and Sonia Marin in particular. Anupam is responsible for much of the social
activities in the Theory group and seemingly never tires of playing devil’s advocate.
It was a pleasure to work with Eric in (Advanced) Functional Programming and at
MGS’22. Both Sonia and Paul were simply two very friendly presences in the School of
Computer Science and I wish to thank them for all our hallway conversations. Moreover,
I appreciate that Paul has agreed to chair my viva.

Next, I would like to express my thanks tomy thesis group committeemembers Steve
Vickers and Vincent Rahli, and its past members Nicolai Kraus and Noam Zeilberger,
for their interest, questions and comments. Furthermore, I wish to thank Vincent for
accepting to be my internal examiner.

Last but not least on the list of people at University of Birmingham are Jason
Fenemore and his successor Angeliki Bompetsi who must be mentioned for their
outstanding work in supporting PhD students and dealing with Worklink.

A special thanks is reserved for Andrea Vezzosi who, upon request, kindly imple-
mented the lossy-unification flag in Agda. This heuristic significantly speeds up

iii Acknowledgements

Agda’s typechecking in some cases and it allowed me to complete my formalisation of
domain theory.

I am grateful to Andrej Bauer for agreeing to bemy external examiner and for hosting
me during my research visit to Ljubljana, where I had many inspiring conversations
with Egbert Rijke to whom I am indebted. I quickly felt at home in Ljubljana thanks
to them, Ajda Lampe, Alex Simpson, Filip Koprivec, Katja Berčič, Léo Mangel, and in
particular, Jure Taslak.

I would also like to thank the organisers, lecturers, participants, and especially, my
fellow teaching assistants of the HoTTEST Summer School 2022: it has been a great
pleasure to learn and work with you.

My fourth and final year as a PhD student was financially supported by theHomotopy
Type Theory Dissertation Fellowship, funded by Cambridge Quantum Computing and
Ilyas Khan. I wish to express my sincere thanks to them and the committee members
Steve Awodey, Thierry Coquand, Emily Riehl, and Mike Shulman for allowing me to
work on this topic for another year.

I moved to Nottingham towards the end of my PhD and I greatly appreciated Nicolai
Kraus’ help and support in moving. I am also very grateful to Josh Chen and Stefania
Damato for making my first weeks in Nottingham so enjoyable.

I am indebted to Harry Smit for manywonderful conversations, especially when they
concerned life as an academic. A special thanks to Menno de Boer for his enthusiasm,
our discussions on homotopy type theory and for proofreading parts of this thesis.

These acknowledgements have deliberately been restricted to people that were
directly involved in my academic endeavours, and fall short of mentioning many
friends and family that I am thankful to. I wish to make a single important exception:
Madelon, thank you for all your love, support and understanding. I am deeply grateful
that you were, and will be, by my side while I pursue(d) my academic interests abroad.

Contents

Abstract i

Acknowledgements ii

Contents iv

1 Introduction 1
1.1 Related work . 4

1.1.1 Domain theory . 4
1.1.2 Predicativity . 6

1.2 Outline and summary of contributions 7
1.2.1 Summary of contributions . 7
1.2.2 Publications . 9

2 Univalent foundations 10
2.1 Type universes . 11

2.1.1 Operations on universes . 11
2.1.2 Closure properties . 12

2.2 Identity types and function extensionality 12
2.3 Subsingletons, sets and (higher) groupoids 14

2.3.1 Hedberg’s Lemma . 16
2.3.2 Closure properties . 16
2.3.3 Propositional extensionality . 18

2.4 Embeddings, equivalences and retracts 19
2.5 Function extensionality revisited . 22
2.6 Propositional truncation, images and surjections 22

2.6.1 Propositional truncation . 23
2.6.2 Images and surjections . 24
2.6.3 Mapping from propositional truncations into sets 25

2.7 Logic, (semi)decidability and constructivity 26
2.7.1 Subsets and powersets . 27
2.7.2 Decidability . 27
2.7.3 Constructivity . 28

2.8 Univalent universes . 31

v Contents

2.9 Small and locally small types . 32
2.10 Impredicativity: resizing axioms . 34
2.11 Quotients, replacement, and propositional truncations revisited 35

2.11.1 Propositional truncations and propositional resizing 35
2.11.2 Set quotients from propositional truncations 37
2.11.3 Propositional truncations from set quotients 40
2.11.4 Set replacement . 42

2.12 Indexed W-types . 43
2.12.1 Basic definitions and examples 43
2.12.2 IndexedW-types with decidable equality 46
2.12.3 Proving indexedW-types to have decidable equality 47

2.13 Notes . 50

3 Basic domain theory 51
3.1 Introduction . 51
3.2 Directed complete posets . 52
3.3 Scott continuous maps . 55
3.4 Lifting . 58
3.5 Products and exponentials . 65
3.6 Bilimits . 69
3.7 Notes . 77

4 Continuous and algebraic dcpos 79
4.1 Introduction . 79
4.2 The way-below relation and compactness 80
4.3 The ind-completion . 84
4.4 Continuous dcpos . 85
4.5 Pseudocontinuity . 89
4.6 Algebraic dcpos . 91
4.7 Small bases . 92
4.8 Small compact bases . 95
4.9 Examples of dcpos with small compact bases 96
4.10 The rounded ideal completion . 97

4.10.1 The rounded ideal completion of a reflexive abstract basis . . . 100
4.10.2 Example: the ideal completion of dyadics 101

4.11 Ideal completions of small bases . 103
4.11.1 Ideal completion with respect to the way-below relation 104
4.11.2 Ideal completion with respect to the order relation 105

4.12 Structurally continuous and algebraic bilimits 106
4.13 Exponentials with small (compact) bases 108

4.13.1 Single step functions . 108
4.13.2 Exponentials with small compact bases 109
4.13.3 Exponentials with small bases 110

4.14 Notes . 111

Contents vi

5 Applications in semantics of programming languages 113
5.1 Scott’s 𝐷∞ model of the untyped _-calculus 113
5.2 Scott’s model of the programming language PCF 118

5.2.1 PCF and its operational semantics 119
5.2.2 The Scott model of PCF . 121
5.2.3 Soundness and computational adequacy 123
5.2.4 Semidecidability and PCF terms of the base type 125

5.3 Notes . 128

6 Predicativity in order theory 129
6.1 Introduction . 129
6.2 Large posets without decidable equality 130

6.2.1 𝛿V -complete posets . 130
6.2.2 Nontrivial and positive posets 131
6.2.3 Retract lemmas . 135
6.2.4 Small completeness with resizing 136

6.3 Maximal points and fixed points . 139
6.3.1 A predicative counterexample 139
6.3.2 Small suprema of small ordinals 141

6.4 Families and subsets . 143
6.5 Notes . 146

7 Formalisation 147
7.1 Overview . 148
7.2 Future work . 149
7.3 Statistics . 149

8 Conclusion 151
8.1 Summary . 151
8.2 Future work . 152

Bibliography 154

Index of symbols 171

Index 178

Chapter 1

Introduction

Univalent foundations [Voe15], also known as homotopy type theory [Uni13] and often
abbreviated as HoTT or HoTT/UF, is a recent enhancement of intensional Martin-Löf
Type Theory (MLTT) [Mar84] and has many complementary uses. For example, it
is a language for (∞, 1)-toposes [Shu19], it allows for a natural development of syn-
thetic homotopy theory [Uni13; Rij18; BGL+17; BFC+; RBP+] and synthetic group
theory [BBC+22; RBP+], and it functions as a modern foundation [Uni13; Esc19b; RBP+]
for general mathematics providing an alternative to traditional set-theoretic approaches.
Moreover, thanks to the type-theoretic basis of univalent foundations, it is possible to
implement proofs in HoTT/UF in proof assistants such as Agda [NDCA+], Cubical
Agda [VMA19], Coq [Coq] and Lean [AdMKU+], among others [Jet; ACF+b; ACF+a;
ACF+c], allowing for a formalised, computer-checked development of mathematics.

This thesis is concerned with homotopy type theory as a foundations for (formalised)
mathematics. Specifically, we develop a formalised account of domain theory, an
important area in theoretical computer science, in univalent foundations. In fact, we
present a fully constructive and predicative treatment of domain theory within this
setting. A precise overview of what is covered can be found in Section 1.2, but for
now we emphasise that our development is illustrated and proved to be useful through
the exposition of two applications in the semantics of programming languages: the
soundness and computational adequacy of the Scott model of PCF [Plo77; Sco93], and
Scott’s 𝐷∞ model [Sco82b] of the untyped _-calculus, which are fully formalised in
Agda [dJon22a; Har20] and Coq [dJon19a; dJon19b].

Domain theory Domain theory [AJ94] studies a particular class of posets and has
applications in a variety of fields, such as: programming language semantics [Plo77;
Sco82b; Sco93], higher-type computability [LN15] and topology [GHK+03]. For in-
stance, domain-theoretic insights have led to the discovery of surprising algorithms that
exhaustively search infinite sets in finite time [Ber90; Esc08]. More generally, domain
theory can be used to prove correctness of algorithms through denotational semantics.

2

The univalent point of view In intensional Martin-Löf Type Theory, the identity
type of a type is uniformly and inductively defined. Thus, for every type 𝑋 , we have
a type 𝑥 = 𝑦 of identities, or identifications. One of the key features of univalent
foundations, and of the univalence axiom specifically, is that type of identifications
captures (in a precise sense) the correct notion of equality, cf. [Uni13, Section 9.8],
[CD13], [Esc19b, Section 3.33] and [ANST20]. For example, if we have two elements
𝐺 and 𝐻 of the type of groups, then the type 𝐺 = 𝐻 is equivalent (in Voevodsky’s
sense [Voe15]) to the type of group isomorphisms from𝐺 to𝐻 . In particular, the type of
identifications 𝑥 = 𝑦 can contain many elements, so equality in univalent foundations
is not necessarily a truth value. This naturally leads to higher structures in univalent
foundations. In fact, another key insight of Voevodsky [Voe15] was that the stratification
of types according to the complexity of their identity types into (sub)singletons (truth
values), sets, 1-groupoids, 2-groupoids, etc. can be internalised and defined inside MLTT.

Consequently, the mathematical distinction between a property and (additional)
data or structure is also internalised. Sometimes we know how to express something as
an equipment with extra structure, but we are interested in obtaining a property instead.
For this, we turn to the propositional truncation: the universal method of making a type
into a subsingleton. The propositional truncation is an example, and in this thesis the
only example, of a higher inductive type [Uni13, Section 6].

For developing domain theory we typically do not need the theory of higher
groupoids. Accordingly, weaker consequences of the univalence axiom (function ex-
tensionality and propositional extensionality, to be precise) are often sufficient for our
purposes. An important exception, besides its use in the theory of ordinals (Section 6.3.2),
is the fundamental notion of V-smallness: if we want to know that it expresses a prop-
erty, then univalence is sufficient and (in some precise sense) necessary, as we explain
in Section 2.9. Even if univalence is often not needed, it will hopefully become clear
throughout this thesis, that the univalent point of view is prevalent in our work. For
example, we recall that if a type 𝑋 is equipped with a subsingleton-valued reflexive and
antisymmetric binary relation, then 𝑋 is a set, meaning its elements can be equal in at
most one way. Moreover, our development fundamentally relies on the aforementioned
propositional truncation and also features several applications of a theorem [KECA17,
Theorem 5.4] that characterises when we can map from a propositionally truncated
type to a set.

Constructivity Constructivity has historically always been important in the type
theoretic tradition. Indeed, Martin-Löf invented his type theory to serve as a con-
structive foundation of mathematics [Mar75]. More recently, its extension, univalent
foundations, has been given a computational interpretation through cubical type the-
ory [CCHM18] and this has been implemented in practice as the proof assistant and
functional programming language Cubical Agda [VMA19].

That we work constructively means that we do not assume excluded middle, or
weaker variants, such as Bishop’s LPO [Bis67], or the axiom of choice (which implies
excluded middle), or its weaker variants, such as the axiom of countable choice. An ad-
vantage of working constructively and not relying on these additional logical axioms is
that our development is valid in every (∞, 1)-topos [Shu19] and not just those in which
the logic is classical.

3 Chapter 1. Introduction

Our commitment to constructivity has several manifestations throughout this thesis.
For example, it means we cannot simply add a least element to a set to obtain the
free pointed directed complete poset (dcpo). Instead of adding a single least element
representing an undefined value, we must work with a more complex type of partial
elements (Section 3.4). Another example is the distinction between continuity and
pseudocontinuity of dcpos (Section 4.5); the notions coincide when the axiom of choice
is assumed. Moreover, the absence of countable choice is discussed in connection to
semidecidability and the Scott model of PCF in Section 5.2.4.

Constructive mathematics is naturally at home in theoretical computer science,
because constructive proofs give rise to algorithms [Bis70; Mar82]. We illustrate this
point through a domain-theoretic example. In Section 5.2 we give a constructive proof
that the Scott model of PCF is computationally adequate. The constructive nature
of the proof yields (in theory, at least) an interpreter: if we can prove that a given
program (of base type) is total, then we can compute its numerical outcome through
computational adequacy. In classical domain theory it is of fundamental interest [Sco70;
Smy77] how its aspects can be formulated in an effective or computational manner.
The computational nature of constructive mathematics might enable one to use our
constructive development of domain theory to obtain algorithms without having to
develop a separate account of effectively given dcpos.

The advent of proof assistants (many based on type theory, including Martin-Löf
Type Theory and the Calculus of Constructions [CH88]) has narrowed the gap between
mathematics and computer science further and we discuss the implementations of our
work in the proof assistants Agda and Coq below and in more detail in Chapter 7.

Predicativity Ourwork is predicative in the sense that we do not assume Voevodsky’s
resizing rules [Voe11; Voe15] or axioms. In particular, powersets of small types are
large. Before we explain some of the ramifications of this for the domain-theoretic
development, we reflect on some of the reasons for working without resizing principles.

First and foremost, it is currently an open problem whether propositional resizing
axioms can be given a computational interpretation, as has been done for the univalence
axiom and higher inductive types in cubical type theory [CCHM18]. Thus, in line
with our constructive agenda and to retain a computational interpretation (in for
instance, Cubical Agda [VMA19]) we work in the absence of propositional resizing
axioms. Since higher inductive types may be seen as particular resizing principles,
it is also noteworthy that the only higher inductive type needed in our work is the
propositional truncation. Another reason for being interested in predicativity is the fact
that propositional resizing axioms fail in some models of univalent type theory. This is
discussed further in Section 1.1.2. Furthermore, it is expected, by analogy to predicative
and impredicative set theories, that adding resizing axioms significantly increases the
proof-theoretic strength of univalent type theory [Shu19, Remark 1.2]. Lastly, one
may have philosophical reservations regarding impredicativity. For example, some
constructivists may accept predicative set theories like Aczel’s CZF or Myhill’s CST,
but not Friedman’s impredicative set theory IZF [Bee85]. Or, paraphrasing Shulman’s
narrative [Shu11], one can ask why propositions (or (−1)-types) should be treated
differently, i.e. given that we have to take size seriously for 𝑛-types for 𝑛 > −1, why
not do the same for (−1)-types?

1.1. Related work 4

A common approach to deal with domain-theoretic size issues in a predicative
foundation is to work with information systems [Sco82a; Sco82b], abstract bases [AJ94]
or formal topologies [Sam87; Sam03; CSSV03] rather than dcpos, and approximable
relations rather than Scott continuous functions. Instead, we work directly with dcpos
and Scott continuous functions. In dealing with size issues, we draw inspiration from
category theory and make crucial use of type universes and type equivalences to capture
smallness. For example, in our development of the Scott model of PCF, the dcpos have
carriers in the second universe U1 and least upper bounds for directed families indexed
by types in the first universe U0. Moreover, up to equivalence of types, the order relation
of the dcpos takes values in the lowest universe U0. Seeing a poset as a category in
the usual way, we can say that these dcpos are large, but locally small, and have small
filtered colimits. The fact that the dcpos have large carriers is in fact unavoidable and
characteristic of predicative settings, as proved in Chapter 6. Because the dcpos have
large carriers it is a priori not clear that complex constructions of dcpos, involving
countably infinite iterations of exponentials for example, do not result in a need for
ever-increasing universes and are predicatively possible. We show that they are possible
through a careful tracking of type universe parameters, and this is also illustrated by
applications, such as the Scott model of PCF and 𝐷∞. Since keeping track of these
universes is prone to mistakes, we have implemented much of our work in Agda; its
ability to infer universe levels has been invaluable.

Formalisation Type theories are the basis of many successful proof assistants, such
as Agda [NDCA+], Coq [Coq] and Lean [AdMKU+]. Much of the work in this thesis
has been formalised in Agda using Escardó’s TypeTopology [Esc+] development and
this has helped considerably to guide our predicative and constructive development
of domain theory. A full discussion of the formalisation efforts, including the work
in Coq/UniMath, can be found in Chapter 7.

1.1 Related work

We give a brief overview of related work on (constructive and/or predicative) domain
theory and of predicativity in general. In short, the distinguishing features of our work
are: (i) the adoption of homotopy type theory as a foundation, (ii) a commitment to
predicatively and constructively valid reasoning, (iii) the use of type universes to avoid
size issues concerning large posets.

1.1.1 Domain theory
The standard works on domain theory, e.g. [AJ94; GHK+03], are based on traditional
impredicative set theory with classical logic. A constructive, topos valid, and hence
impredicative, treatment of some domain theory can be found in [Tay99, Chapter III].

Domain theory has been studied predicatively in the setting of formal topology
[Sam87; Sam03; CSSV03] in [MV04; Neg02; SVV96] and the more recent categorical
papers [Kaw17; Kaw21]. In this predicative setting, one avoids size issues by working
with information systems [Sco82a; Sco82b], abstract bases [AJ94] or formal topologies,

5 Chapter 1. Introduction

rather than dcpos, and approximable relations rather than Scott continuous functions.
Hedberg [Hed96] presented some of these ideas in Martin-Löf Type Theory and for-
malised them in the proof assistant ALF [Mag94], a precursor to Agda. A modern
formalisation in Agda based on Hedberg’s work was recently carried out in Lidell’s
master thesis [Lid20].

Our development differs from the above line of work in that it studies dcpos directly
and uses type universes to account for the fact that dcpos may be large. An advantage
of this approach is that we can work with (Scott functions) functions rather than the
arguably more involved (approximable) relations. For the treatment of continuous
(and algebraic) dcpos we turn to the work of Johnstone and Joyal [JJ82] which is
situated in category theory where attention must be paid to size issues even in an
impredicative setting. In constructive set theory, this corresponds to working with
partially ordered classes [Acz06] as opposed to sets, where our notion of a small basis
for a dcpo (Section 4.7) is similar to Aczel’s notion of a set-generated [Acz06, Section 6.4]
dcpo.

Another approach to formalising domain theory in type theory can be found
in [BKV09; Doc14]. Both formalisations study 𝜔-chain complete preorders, work with
setoids, and make use of Coq’s impredicative sort Prop. A setoid is a type equipped
with an equivalence relation that must be respected by all functions. The particular
equivalence relation given by equality is automatically respected of course, but for
general equivalence relations this must be proved explicitly. The aforementioned for-
malisations work with preorders, rather than posets, because they are setoids where
two elements 𝑥 and 𝑦 are related if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 . Our development avoids the use
of setoids thanks to the adoption of the univalent point of view. Moreover, we work
predicatively and we work with the more general directed families rather than𝜔-chains,
as we intend the theory to be also applicable to topology and algebra [GHK+03].

There are also constructive accounts of domain theory aimed at program extrac-
tion [BK09; PM21]. Both these works study𝜔-chain complete posets (𝜔-cpos) and define
notions of 𝜔-continuity for them. The former [BK09] is notably predicative, but makes
use of additional logical axioms: countable choice, dependent choice and Markov’s
Principle, which are validated by a realisability interpretation. The latter [PM21] uses
constructive logic to extract witnesses but employs classical logic in the proofs of
correctness by phrasing them in the double negation fragment of constructive logic.
By contrast, we study (continuous) dcpos rather than (𝜔-continuous) 𝜔-cpos and is
fully constructive without relying on additional principles such as countable choice or
Markov’s Principle.

Finally, yet another approach is the field of synthetic domain theory [Ros86; Ros87;
Hyl91; Reu99; RS99]. Although the work in this area is constructive, it is still impredica-
tive, as it is based on topos logic; but more importantly it has a focus different from that
of regular domain theory. The aim is to isolate a few basic axioms and find models in
(realisability) toposes where every object is a domain and every morphism is continuous.
These models often validate additional axioms, such as Markov’s Principle and count-
able choice, and moreover (necessarily) falsify excluded middle. We have a different
goal, namely to develop regular domain theory constructively and predicatively, but in
a foundation compatible with excluded middle and choice, while not relying on them
or on Markov’s Principle or countable choice.

1.1. Related work 6

1.1.2 Predicativity
We summarise work on (im)predicativity in univalent foundations as well as work on the
limits of predicative mathematics and its relation to the results presented in Chapter 6.

Resizing in models of univalent foundations

As mentioned in the introduction, propositional resizing axioms fail in some models of
univalent type theory. A notable example of such a model is Uemura’s cubical assembly
model [Uem19]. What is particularly striking about Uemura’s model is that it does
support an impredicative universe U in the sense that if 𝑋 is any type and 𝑌 : 𝑋 → U ,
then Π𝑥 :𝑋𝑌 (𝑥) is in U again even if 𝑋 isn’t, but that propositional resizing fails for
this universe. We also highlight Swan’s (unpublished) results [Swa19b; Swa19a] that
show that propositional resizing axioms fail in certain presheaf (cubical) models of
type theory. Interestingly, Swan’s argument works by showing that the models violate
certain collection principles if we assume Brouwerian continuity principles in the
metatheory.

By contrast, we should mention that propositional resizing is validated in many
models when a classical metatheory is assumed. For example, this is true for any type-
theoretic model topos [Shu19, Proposition 11.3]. In particular, Voevodsky’s simplical
sets model [KL21] validates excluded middle and hence propositional resizing. We note,
however, that in other models it is possible for propositional resizing to hold and
excluded middle to fail, as shown by [Shu15, Remark 11.24].

Resizing rules versus axioms

This thesis concerns resizing axioms, meaning we ask a given type to be equivalent to
one in a fixed universe U of “small” types. Voevodsky [Voe11] originally introduced
resizing rules which add judgements and hence modify the syntax of the type theory
to make the given type inhabit U , rather than only asking for an equivalent copy
in U . It is not known whether Voevodsky’s resizing rules are consistent with univalent
foundations in the sense that no-one has constructed a model of univalent type theory
extended with such resizing rules. It is also an open problem [CCHM18, Section 10]
whether we have normalisation for cubical type theory extended with resizing rules. In
fact, as far as we know, it is an open problem for plain Martin-Löf Type Theory as well.

Limits of predicativity

While Chapters 3 to 5 are devoted to demonstrating the possibility of developing
domain theory predicatively in univalent foundations, Chapter 6 instead explores what
cannot be done in our predicative setting. Curi had a similar goal and investigated
the limits of predicative mathematics in CZF [AR10] in a series of papers [Cur10a;
Cur10b; Cur15; Cur18; CR12]. In particular, Curi shows (see [Cur10a, Theorem 4.4 and
Corollary 4.11], [Cur10b, Lemma 1.1] and [Cur15, Theorem 2.5]) that CZF cannot prove
that various nontrivial posets, including sup-lattices, dcpos and frames, are small. This
result is obtained by exploiting that CZF is consistent with the anti-classical generalised
uniformity principle (GUP) [vdBer06, Theorem 4.3.5].

7 Chapter 1. Introduction

Our related Theorem 6.2.21 is of a different nature in two ways. Firstly, the theorem
is in the spirit of reverse constructive mathematics [Ish06]: Instead of showing that GUP
implies that there are no non-trivial small dcpos, we show that the existence of a non-
trivial small dcpo is equivalent to weak propositional resizing, and that the existence of
a positive small dcpo is equivalent to full propositional resizing. Thus, if we wish to
work with small dcpos, we are forced to assume resizing axioms. Secondly, we work in
univalent foundations rather than CZF. This may seem a superficial difference, but a
number of arguments in Curi’s papers [Cur15; Cur18] crucially rely on set-theoretical
notions and principles such as transitive set, set-induction, and the weak regular
extension axiom (wREA), which cannot even be formulated in the underlying type
theory of univalent foundations. Moreover, although Curi claims that the arguments
of [Cur10a; Cur10b] can be adapted to some version of Martin-Löf Type Theory, it is
presently not clear whether there is any model of univalent foundations which validates
GUP. However, one of the anonymous reviewers of [dJE22a] suggested that Uemura’s
cubical assemblies model [Uem19] might validate it. In particular, the reviewer hinted
that [Uem19, Proposition 21] may be seen as a uniformity principle.

1.2 Outline and summary of contributions

We develop domain theory (Chapter 3) in predicative and constructive univalent founda-
tions (Chapter 2). We include the theory of continuous and algebraic dcpos and rounded
ideal completions (Chapter 4), as well as applications in the semantics of programming
languages (Chapter 5), namely soundness and computational adequacy of Scott’s model
of PCF, and Scott’s 𝐷∞ model of the untyped _-calculus. We use type universes to
deal with size issues arising in our predicative setting. Moreover, we show that dcpos
are predicatively necessarily large in Chapter 6. The development of domain theory,
including the applications, is supported by a formalisation, as discussed in Chapter 7.
In particular, Agda’s ability to automatically infer universe levels has been invaluable
to us.

1.2.1 Summary of contributions
We briefly describe our contributions per chapter and record what parts of this thesis
are based on our publications. The full bibliographical details of the publications can
be found in Section 1.2.2. Moreover, each chapter features a section at the end with
further bibliographical notes.

Chapter 2 Univalent foundations
Our exposition of univalent foundations is fairly standard and largely follows [Uni13],

and in particular [Esc19b]. Two exceptions are Sections 2.11.3 and 2.11.4 which are
original contributions where we show small set quotients and a set replacement principle
to be equivalent. Section 2.11, on set quotients, propositional truncations and their
universe levels, as a whole was included in our work [dJE21b; dJE22a]. Other exceptions
are the main results on indexed W-types with decidable equality in Section 2.12 which
are due to Jasper Hugunin [Hug17b; Hug17a], and were included in our paper [dJon19b].

1.2. Outline and summary of contributions 8

Chapter 3 Basic domain theory
We present the basic definitions of domain theory: directed complete posets (dcpos)

and Scott continuous functions. It must be remarked that our definitions make use of type
universes and are size-aware: we ask for suprema of directed families indexed by types
in some fixed universe. We proceed with several basic examples and with constructions
of dcpos: products, exponentials, lifting and bilimits. Because we work constructively
we use Escardó’s and Knapp’s [EK17; Kna18] lifting monad to construct the free dcpo
with a least element on a set. This chapter is a revision of our two papers [dJon19b;
dJE21a], see the Notes for further details.

Chapter 4 Continuous and algebraic dcpos
This chapter has its roots in [dJE21a], but the treatment has been considerably

expanded and revised. In particular, we disentangled the notions of continuity and
having a (small) basis in this thesis. Taking inspiration from the categorical treatment
of [JJ82], we give predicatively adequate definitions of continuous and algebraic dcpos,
and discuss issues related to the absence of the axiom of choice. We also present
predicative adaptations of the notions of a basis and the rounded ideal completion [AJ94].
Our development is illustrated with several examples: we describe small compact bases
for the lifting and the powerset, and consider the ideal completion of the dyadics.

Chapter 5 Applications in semantics of programming languages
We describe two applications of domain theory to the semantics of programming

languages. The first application is a predicative reconstruction of Scott’s [Sco72] famous
𝐷∞ model of the untyped _-calculus, and was included in our paper [dJE21a]. The use
of exponentials and bilimits of dcpos is crucial in the construction of 𝐷∞ and we
describe how Scott’s original proof is adapted to predicative and proof relevant setting
of univalent foundations. The second application is the Scott model [Plo77; Sco93]
of the typed programming language PCF, including its soundness and computational
adequacy, and was the subject of our publication [dJon19b]. The Scott model of PCF
highlights our use of the lifting monad in particular. We also discuss issues concerning
semidecidability and countable choice.

Chapter 6 Predicativity in order theory
We complement the above development by exploring the predicative and construc-

tive limits of order theory in univalent foundations. We show that nontrivial dcpos
are necessarily large and necessarily lack decidable equality in our constructive and
predicative setting. In particular, the carriers of the dcpos of the Scott model of PCF can
only live in the lowest universe U0 if we work impredicatively. The fact that nontrivial
dcpos are necessarily large has the important consequence that Tarski’s theorem (and
similar results) cannot be applied in nontrivial instances, even though it has a pred-
icative proof. Further, we explain, by studying the large sup-lattice of ordinals, that
generalisations of Tarski’s theorem which allow for large structures are provably false.
Finally, we elaborate on the connections between requiring suprema of families and
of subsets in our predicative setting. This chapter is taken mostly verbatim from our
preprint [dJE22a] which itself is based on our conference paper [dJE21b].

9 Chapter 1. Introduction

Chapter 7 Formalisation
Our development of domain theory in constructive and predicative univalent foun-

dations is accompanied by extensive formalisations that encompass, with very few
exceptions, all of Chapters 3 to 5.

1.2.2 Publications
This thesis is based on the following papers, all of which have been published, except
for [dJE22a], which has been accepted subject to minor revisions.

[dJE21a] Tom de Jong and Martín Hötzel Escardó.
‘Domain Theory in Constructive and Predicative Univalent Foundations’.
In: 29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Ed. by Christel Baier and Jean Goubault-Larrecq. Vol. 183.
Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021, 28:1–28:18.
doi: 10.4230/LIPIcs.CSL.2021.28. Expanded version with full proofs
available on arXiv: 2008.01422 [math.LO].

[dJE21b] Tom de Jong and Martín Hötzel Escardó.
‘Predicative Aspects of Order Theory in Univalent Foundations’.
In: 6th International Conference on Formal Structures for Computation and
Deduction (FSCD 2021). Ed. by Naoki Kobayashi. Vol. 195.
Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021, 8:1–8:18.
doi: 10.4230/LIPIcs.FSCD.2021.8.

[dJE22a] Tom de Jong and Martín Hötzel Escardó.
‘On Small Types in Univalent Foundations’. Sept. 2022.
arXiv: 2111.00482 [cs.LO]. Revised and expanded version of [dJE21b].
Accepted pending minor revision to a special issue of Logical Methods in
Computer Science on selected papers from FSCD 2021.

[dJon19b] Tom de Jong. ‘The Scott model of PCF in univalent type theory’.
In: Mathematical Structures in Computer Science 31.10 (2019): Homotopy
Type Theory 2019, pp. 1270–1300. doi: 10.1017/S0960129521000153.

The work [dJE21b] won the Best Paper by a Junior Researcher award and some of the
above publications led to the award of the Homotopy Type Theory Dissertation Fellowship.

https://doi.org/10.4230/LIPIcs.CSL.2021.28
https://arxiv.org/abs/2008.01422
https://doi.org/10.4230/LIPIcs.FSCD.2021.8
https://arxiv.org/abs/2111.00482
https://doi.org/10.1017/S0960129521000153

Chapter 2

Univalent foundations

Our foundational starting point is intensional Martin-Löf Type Theory (MLTT) [Mar75;
Mar84] with an empty type 0, unit type 1, natural numbers typeN, binary coproducts (+),
dependent sums (Σ), dependent products (Π), intensional identity types, and general
inductive types (i.e.W-types as discussed in Section 2.12).

In the upcoming sections, we will discuss additions to this type theory that will de-
fine our foundational setup. These additions will be: universes, function extensionality,
propositional extensionality, propositional truncations, and (sometimes) univalence.

We also introduce some of the characteristic features of univalent foundations,
such as the stratification of types into (sub)singletons, sets, 1-groupoids, . . . , accord-
ing to the complexity of their identity types (Section 2.3), the notions of embedding
and equivalence (Section 2.4), propositional truncations (Section 2.6) and univalence
(Section 2.8).

The notion of subsingletons gives rise to a refinement of the Curry–Howard
paradigm to logical-propositions-as-subsingletons, as explained in Section 2.7. This
distinguishes univalent foundations from other type theories such as the Calculus of
(Inductive) Constructions [CH88] and Coq [Coq], where logic is set to take place in a
special designated Prop type. The fact that our logic is constructive is discussed in
Section 2.7.3, while its predicativity is studied in Section 2.10 after we introduce the
theory of (locally) small types in Section 2.9. Finally, set quotients and set replacement
are examined in a predicative context in Section 2.11.

Notation If 𝑋 is a type and 𝑌 (𝑥) a dependent type over 𝑋 , then we denote its type
of dependent functions as Π𝑥 :𝑋𝑌 (𝑥) or sometimes just Π𝑌 , and similarly for Σ-types.
If 𝑌 (𝑥) does not depend on 𝑋 , then we respectively denote Π𝑥 :𝑋𝑌 (𝑥) by 𝑋 → 𝑌 and
Σ𝑥 :𝑋𝑌 (𝑥) by 𝑋 × 𝑌 .

Further, the first projection is denoted by pr1 : (Σ𝑥 :𝑋𝑌 (𝑥)) → 𝑋 , while the second
projection is called pr2 : Π𝑠:Σ𝑥 :𝑋𝑌 (𝑥)𝑌 (pr1(𝑠)). The identity map on a type 𝑋 is denoted
by id or id𝑋 and function composition is denoted by 𝑔 ◦ 𝑓 where the codomain of 𝑓 is

11 Chapter 2. Univalent foundations

definitionally equal to the domain of 𝑔.
Definitional (or judgemental) equality is denoted by ≡ and we use :≡ to signal that

we are making a definition. For a type 𝑋 with elements 𝑥,𝑦 : 𝑋 , the corresponding
identity type is denoted by 𝑥 = 𝑦, or sometimes 𝑥 =𝑋 𝑦 to highlight the type of 𝑥 and
𝑦. If 𝑝 : 𝑥 = 𝑦, then we write 𝑝−1 : 𝑦 = 𝑥 for its inverse (up to intensional equality)
and if 𝑞 : 𝑦 = 𝑧, then we write 𝑝 • 𝑞 : 𝑥 = 𝑧 for the composition of the identifications.
Moreover, we sometimes find it convenient to write 𝑓 ∼ 𝑔 for Π𝑥 :𝑋 𝑓 (𝑥) = 𝑔(𝑥) for
(dependent) functions 𝑓 , 𝑔 : Π𝑥 :𝑋𝑌 (𝑥).

The unique element of the unit type will be written as ★ : 1. The constructors of
the coproduct are denoted by inl and inr. We denote the particular coproduct 1 + 1 by 2
and write 0 and 1 for its elements.

Terminology Following [Uni13], when we define a (dependent) function using the
elimination rule of the identity type, then we say we define it by (path) induction. We
will also refer to elements of the identity type as “equalities”, “identifications” or “paths”,
and write refl or refl𝑥 for reflexivity at 𝑥 , the canonical element of 𝑥 = 𝑥 .

In line with the Curry–Howard paradigm and [Uni13], we will work informally
in type theory and for example say that “𝑌 (𝑥) holds for every 𝑥 : 𝑋 ” if we have an
element of Π𝑥 :𝑋𝑌 (𝑥). Similarly, “𝑃 and 𝑄 hold” will mean that the type 𝑃 ×𝑄 has an
element.

2.1 Type universes

Type universes will play a fundamental role in our development of domain theory in
a predicative context, because, by our definitions, they will keep track of size for us.
But type universes are indispensable in MLTT anyway as they have many other uses,
e.g. defining type families by induction and collecting mathematical structures into a
single type (e.g. the type of all (small) groups). Our setup of type universes follows
that of Agda [NDCA+] and [Esc19b; Esc21], but differs from that of Coq [Coq] and
[Uni13] because we do not assume cumulativity (see Remark 2.1.1); any lifting of types
to higher universes will be annotated explicitly (see Remark 2.1.2).

Intuitively a type universe is a type of types. In so-called Tarski-style universes, the
elements of a universe U are codes for types and the universe comes equipped with a
decoding 𝜏 such that if 𝑥 : U , then 𝜏 (𝑥) is a type. This is useful, because it maintains a
clean separation between types and elements of types, but cumbersome in practice. By
contrast, in Russell-style universes, the elements of a universe U are actual types. This
complicates the meta-theory because now 𝑋 : U is both an element of U and a type.
Our universes will be presented à la Russell, but one should read this as an abbreviation
for Tarski-style universes.

2.1.1 Operations on universes
First of all, we postulate that there is a universe U0. Secondly, we postulate two meta-
operations on universes: a unary operation (−)+, called successor, and a binary operation
(−) ⊔ (−) satisfying the following conditions:

2.2. Identity types and function extensionality 12

(i) for every universe U , we have U0 ⊔ U ≡ U and U ⊔ U+ ≡ U+;
(ii) the operation (−)⊔ (−) is definitionally idempotent, commutative and associative,

i.e. for all universes U , V andW , we assume U ⊔U ≡ U as well as U ⊔V ≡ V ⊔U
and (U ⊔ V) ⊔W ≡ U ⊔ (V ⊔W);

(iii) the successor operation (−)+ distributes over (−) ⊔ (−) definitionally, i.e. for
every two universes U and V , we have (U ⊔ V)+ ≡ U+ ⊔ V+.

In particular, we can iterate the successor operation starting with U0 to obtain an
infinite tower of universes that we denote by U0, U1, U2,

Remark 2.1.1. We do not assume cumulativity of the universes, i.e. we do not require
that 𝐴 : U implies 𝐴 : U ⊔ V for every two universes U and V . However, in
Remark 2.1.2 we describe how we can easily transport types to higher universes in a
suitable sense.

2.1.2 Closure properties
We assume the following closure properties regarding universes:

(i) if 𝑋 : U , then the identity type (𝑥 = 𝑦) lives in U for every 𝑥,𝑦 : 𝑋 ;
(ii) if 𝑋 : U and 𝑌 : V , then 𝑋 + 𝑌 : U ⊔ V ;
(iii) if 𝑋 : U and 𝑌 : 𝑋 → V , then the types Σ𝑥 :𝑋𝑌 (𝑥) and Π𝑥 :𝑋𝑌 (𝑥) are both assumed

to be in U ⊔ V ;
(iv) the universe U0 contains the type of natural numbers N;
(v) every universe U contains copies 0U and 1U of respectively the empty and unit

type.
We write 2U :≡ 1U + 1U and 0 and 1 for its two inhabitants.

Remark 2.1.2. To compensate for the fact that we do not assume cumulativity, we
observe that, using the empty and unit types, it is easy to define a map

liftU ,V : U → U ⊔ V

for every two universes such that every type 𝑋 : U is equivalent (a notion we
define later) to liftU ,V (𝑋). For instance, the map 𝑋 ↦→ 𝑋 + 0V does the job, as does
𝑋 ↦→ 𝑋 × 1V . But, in the absence of cumulativity, the types 𝑋 and liftU ,V (𝑋) cannot
be equal, because they do not even live in the same universe.

2.2 Identity types and function extensionality

The identity type is defined uniformly for every type 𝑋 : U as the inductive family
𝑋 → 𝑋 → U generated by refl : 𝑥 = 𝑥 . It is possible, however, to show that the identity
type acts as expected for specific types. For example, given (𝑥,𝑦), (𝑥′, 𝑦′) : 𝑋 × 𝑌 , we
would expect (𝑥,𝑦) = (𝑥′, 𝑦′) to hold precisely when 𝑥 = 𝑥′ and 𝑦 = 𝑦′. Similarly,
we can show that if 𝑥 : 𝑋 and 𝑦 : 𝑌 , then inl(𝑥) =𝑋+𝑌 inr(𝑦) never holds, while
inl(𝑥) =𝑋+𝑌 inl(𝑥′) holds precisely when 𝑥 =𝑋 𝑥

′. The situation for Σ-types is slightly
more involved and requires the notion of transport.

13 Chapter 2. Univalent foundations

Definition 2.2.1 (Transport). For every type 𝑋 : U and type family 𝑌 : 𝑋 → V , we
have a function transport𝑌 : Π𝑥,𝑥 ′:𝑋 (𝑥 = 𝑥′→ 𝑌 (𝑥) → 𝑌 (𝑥′)) defined inductively as
transport𝑌 (refl) :≡ id, where we have left the arguments 𝑥 and 𝑥′ implicit.

We also take this opportunity to define the action of a map on paths.

Definition 2.2.2 (Action on paths, ap𝑓). Every function 𝑓 : 𝑋 → 𝑌 induces a map on
identity types ap𝑓 : (𝑥 = 𝑦) → (𝑓 (𝑥) = 𝑓 (𝑦)) for every 𝑥,𝑦 : 𝑋 defined inductively
by ap𝑓 (refl) :≡ refl, and sometimes called the action (of 𝑓) on paths.

For characterising identity types, we introduce the notion of an invertible map. In
Section 2.4 we consider the more refined notion of a map being an equivalence. Another
useful notion is that of a left-cancellable map, which we will similarly refine to the
notion of an embedding later.

Definition 2.2.3 (Invertibility and left-cancellability). A map 𝑓 : 𝑋 → 𝑌 is
(i) invertible if we have a specified 𝑔 : 𝑌 → 𝑋 with 𝑔(𝑓 (𝑥)) = 𝑥 for every 𝑥 : 𝑋

and 𝑓 (𝑔(𝑦)) = 𝑦 for every 𝑦 : 𝑌 , and
(ii) left-cancellable if for every 𝑥, 𝑥′ : 𝑋 , we have a function

(𝑓 (𝑥) = 𝑓 (𝑥′)) → (𝑥 = 𝑥′).

Lemma 2.2.4. Every invertible map is left-cancellable.

Proof. If 𝑓 : 𝑋 → 𝑌 is invertible with inverse 𝑔 : 𝑌 → 𝑋 , then for every 𝑥, 𝑥′ : 𝑋 ,
we have 𝑓 (𝑥) = 𝑓 (𝑥′)

ap𝑔−−→ 𝑔(𝑓 (𝑥)) = 𝑔(𝑓 (𝑥′)) → 𝑥 = 𝑥′, where the final map is
obtained using that 𝑔 is the inverse of 𝑓 .

Lemma 2.2.5. For every type family 𝑌 over a type 𝑋 , and every (𝑥,𝑦), (𝑥′, 𝑦′) : Σ𝑌 ,
we have invertible maps between the identity type (𝑥,𝑦) =Σ𝑌 (𝑥′, 𝑦′) and the Σ-type
Σ𝑝:𝑥=𝑥 ′ transport𝑌 (𝑝,𝑦) = 𝑦′.
In particular, if 𝑌 is just a type, then we have invertible maps between the identity type
(𝑥,𝑦) =𝑋×𝑌 (𝑥′, 𝑦′) and the product of identity types (𝑥 = 𝑥′) × (𝑦 = 𝑦′).

The need for transporting 𝑦 arises from the fact that 𝑦 : 𝑌 (𝑥), while 𝑦′ : 𝑌 (𝑥′), so
𝑦 and 𝑦′ cannot be equal as they do not have the same type.

Proof. The invertible maps are inductively defined as

(𝑥,𝑦) =Σ𝑌 (𝑥′, 𝑦′) Σ𝑝:𝑥=𝑥 ′ transport𝑌 (𝑝,𝑦) = 𝑦′

refl(𝑥,𝑦) ↦→ (refl𝑥 , refl𝑦)
refl(𝑥,𝑦) ←[(refl𝑥 , refl𝑦)

By contrast, it is not provable in intensional Martin-Löf Type Theory that two
pointwise equal functions are equal, as shown by [Str93, Theorem 3.17]. Therefore, we
wish to add it as an axiom. However, for reasons that we will explain later, the official

2.3. Subsingletons, sets and (higher) groupoids 14

formulation of the axiom will have to wait. Even so, the official formulation will be
logically equivalent to the following unofficial axiom that we introduce now under the
name “naive function extensionality”.

Definition 2.2.6 (Naive function extensionality). Naive function extensionality asserts
that for every two functions 𝑓 , 𝑔 : 𝑋 → 𝑌 , if 𝑓 (𝑥) = 𝑔(𝑥) for every 𝑥 : 𝑋 , then 𝑓 = 𝑔.
In other words, naive function extensionality says that pointwise functions are equal.

The reason that we introduce naive function extensionality this early is that it allows
us to present many useful results earlier. When using it, we typically drop the word
“naive” and simply say “by function extensionality”. The following lemma prepares us
for the official formulation of function extensionality later.

Lemma 2.2.7. Naive function extensionality is logically equivalent to all of the below,
seemingly stronger, statements:

(i) for every two dependent functions 𝑓 , 𝑔 : Π𝑥 :𝑋𝑌 (𝑥), if 𝑓 (𝑥) = 𝑔(𝑥) for every 𝑥 : 𝑋 ,
then 𝑓 = 𝑔;

(ii) for every two functions 𝑓 , 𝑔 : 𝑋 → 𝑌 , the canonical function from 𝑓 = 𝑔 to
Π𝑥 :𝑋 𝑓 (𝑥) = 𝑔(𝑥) given by 𝑒 ↦→ _ 𝑥 . ap

_ ℎ.ℎ(𝑥) (𝑒) is invertible;
(iii) for every two dependent functions 𝑓 , 𝑔 : Π𝑥 :𝑋𝑌 (𝑥), the canonical function from

𝑓 = 𝑔 to Π𝑥 :𝑋 𝑓 (𝑥) = 𝑔(𝑥) is invertible.

Proof. See [Esc19b, Section 3.18].

2.3 Subsingletons, sets and (higher) groupoids

A fundamental idea in univalent foundations is the stratification of types according to
the complexity of their identity types.

Definition 2.3.1 (Subsingleton, proposition, truth value). A type 𝑋 is a subsingleton
(or proposition or truth value) if it has at most one element, meaning we have an
element of Π𝑥,𝑦:𝑋 𝑥 = 𝑦.

Remark 2.3.2 (Property and data). If a type𝑋 is a subsingleton, then we like to say that
𝑋 is property. By contrast, if 𝑋 can have more than one element, then we sometimes
say that 𝑋 is data. For example, as we explain in Section 2.4 the notion of being an
equivalence is a property, while being invertible is data. Another example comes
from our development of domain theory and is the distinction between structural
continuity and continuity of a directed complete poset (Section 4.4). The former
equips the poset with additional structure in the form of a specified mapping, while
the latter only requires some unspecified mapping to exist, in a sense to be made
precise in Section 2.6.

The names “proposition” and “truth value” suggests that subsingletons are related
to logic and indeed we will use the subsingletons to encode logic in our type theory
in Section 2.7.

15 Chapter 2. Univalent foundations

Definition 2.3.3 (Type of subsingletons, ΩU). The type of subsingletons in a uni-
verse U is defined as ΩU :≡ Σ𝑃 :U is-subsingleton(𝑃).

Definition 2.3.4 (Singleton, contractibility). A type 𝑋 is a singleton (or said to be
contractible) if it is a subsingleton and moreover we have an element of 𝑋 .

Theorem 2.3.5. For every element 𝑥 of a type 𝑋 , the type Σ𝑦:𝑋 𝑥 = 𝑦 is a singleton
with unique element (𝑥, refl).

Proof. We have to show that for every 𝑦 : 𝑋 and 𝑝 : 𝑥 = 𝑦, the pair (𝑦, 𝑝) = (𝑥, refl),
but by path induction we may assume that 𝑦 ≡ 𝑥 and 𝑝 ≡ refl in which case it is
trivial.

Example 2.3.6. The empty type 0U and the unit type 1U in any universe U are both
subsingletons. A further example of a subsingleton is the type

Σ𝑛:N(𝑛 is the least number 𝑘 for which 𝛼𝑘 = 0)

where 𝛼 : N→ 2. By contrast, the type Σ𝑛:N 𝛼𝑛 = 0 is not necessarily a subsingleton,
because 𝛼 could have multiple roots.

Remark 2.3.7. The fact that the type Σ𝑛:N(𝑛 is the least number 𝑘 for which 𝛼𝑘 = 0)
from Example 2.3.6 is a subsingleton shows us that subsingletons are not necessarily
proof irrelevant, because an inhabitant of that type gives us an explicit natural number.
Another example that we will discuss in some detail later (Section 2.4) is the notion of
an equivalence: the type expressing that a map 𝑓 is an equivalence is a subsingleton,
but given an inhabitant of it, we can construct an inverse of 𝑓 .

So a subsingleton is a type where any two elements are equal. Going up one level,
we consider types where any two identifications are equal.

Definition 2.3.8 (Set). A type 𝑋 is a set if the type 𝑥 = 𝑦 is a subsingleton for every
𝑥,𝑦 : 𝑋 .

In other words, in a set two elements are equal in at most one way.

Example 2.3.9. Every type with decidable equality is a set. This classic result is
known as Hedberg’s Theorem [Hed98] (Theorem 2.7.12 below). In particular, the
type N of natural numbers is a set.

We could iterate these definitions and arrive at higher groupoids: a 1-groupoid is
a type whose identity types are sets, a 2-groupoid is a type whose identity types are
1-groupoids, etc.

Example 2.3.10. An example of a type that is not a set is the circle S1, a higher
inductive type [Uni13, Chapter 6] with a chosen basepoint base : S1 for which we can
prove, assuming univalence (see Definition 2.8.1), that (base = base) is equivalent

2.3. Subsingletons, sets and (higher) groupoids 16

to Z, the type of the integers. In our work, we will not assume any higher inductive
types other than propositional truncations.

As explained in [Uni13, Example 3.1.9], another example of a non-set is given by
any univalent universe U . By univalence of U , one can show that 2U = 2U contains
exactly two elements, which shows that the universe U is not a set. A nice example
of a 1-groupoid is the type of groups in a universe U : for two groups 𝐺 and 𝐻 , the
type 𝐺 =GrpU 𝐻 is, assuming univalence, equivalent to the type of group isomorphisms
between 𝐺 and 𝐻 , which is a set.

In this thesis we do not need to develop the theory of higher groupoids and besides
universes we can often restrict our attention to sets and subsingletons, like in the
upcoming closure results.

2.3.1 Hedberg’s Lemma
In proving various results about subsingletons and sets, the following lemma, which
we call Hedberg’s Lemma, proves highly useful. While all the techniques were already
present in Hedberg’s paper [Hed98], the precise formulation presented below only
appeared in [KECA17, Lemma 3.11].

Definition 2.3.11 (Constant). A map 𝑓 : 𝑋 → 𝑌 is constant if 𝑓 (𝑥) = 𝑓 (𝑥′) for every
𝑥, 𝑥′ : 𝑋 .

Remark 2.3.12. This is sometimes called weakly constant or wildly constant, because if
𝑌 is not a set, then 𝑓 can be constant in more than one way, but also in an incoherent
way in a precise higher categorical sense [Kra15]. In other words, the above definition
does not account for further coherence conditions. But we will only be interested in
constant maps to sets, so we simply stick to “constant”.

Lemma 2.3.13 (Hedberg’s Lemma). Let 𝑥 be an arbitrary, but fixed element of a
type 𝑋 . If we have a constant endofunction on 𝑥 = 𝑦 for every 𝑦 : 𝑋 , then 𝑥 = 𝑦 is a
proposition for every 𝑦 : 𝑋 .

Proof. Suppose that 𝑓𝑦 : (𝑥 = 𝑦) → (𝑥 = 𝑦) is constant for every 𝑦 : 𝑋 . By induction
on 𝑝 : 𝑥 = 𝑦, we see that every 𝑝 : 𝑥 = 𝑦 is equal to 𝑓𝑥 (refl)−1 • 𝑓𝑦 (𝑝). Hence, if 𝑦 : 𝑋
is arbitrary and 𝑝, 𝑞 : 𝑥 = 𝑦, then 𝑝 = 𝑓𝑥 (refl)−1 • 𝑓𝑦 (𝑝) = 𝑓𝑥 (refl)−1 • 𝑓𝑦 (𝑞) = 𝑞, as 𝑓𝑦
is constant. Hence, each 𝑥 = 𝑦 is a proposition, as desired.

2.3.2 Closure properties
The proofs of the following two lemmas illustrate how to apply Hedberg’s Lemma.

Lemma 2.3.14. Every subsingleton is a set.

17 Chapter 2. Univalent foundations

Proof. If 𝑋 is a subsingleton, then for every 𝑥,𝑦 : 𝑋 we have a map 1→ (𝑥 = 𝑦). But
the composite (𝑥 = 𝑦) → 1→ (𝑥 = 𝑦) is constant, because 1 is a subsingleton, so 𝑋
must be a set by Hedberg’s Lemma.

Lemma 2.3.15. If 𝑌 is a subsingleton (or set, respectively) and 𝑓 : 𝑋 → 𝑌 is a left-
cancellable map, then 𝑋 is a subsingleton (or set, respectively) too. In particular, this
holds if 𝑓 is invertible.

Proof. Assume that 𝑓 is left-cancellable. Suppose first that 𝑌 is a subsingleton and
let 𝑥, 𝑥′ : 𝑋 be arbitrary. Then 𝑓 (𝑥) = 𝑓 (𝑥′) because 𝑌 is a subsingleton, but 𝑓 is
left-cancellable so we get the desired 𝑥 = 𝑥′, showing that 𝑋 is a subsingleton.
Now suppose that 𝑌 is a set. To show that 𝑋 is a set, it suffices, by Hedberg’s Lemma,
to construct a constant endofunction on 𝑥 = 𝑥′ for every 𝑥, 𝑥′ : 𝑋 . But because 𝑌 is a
set, the second map, and hence the composite

𝑥 = 𝑥′
ap𝑓−−→ 𝑓 (𝑥) = 𝑓 (𝑥′)

𝑓 is left-cancellable
−−−−−−−−−−−−−−→ 𝑥 = 𝑥′

is constant.
The final claim holds because every invertible map is left-cancellable as shown in
Lemma 2.2.4.

Theorem 2.3.16. The subsingletons and sets are closed under Σ, e.g. if 𝑋 is a subsingle-
ton and 𝑌 is a type family over 𝑋 such that each 𝑌 (𝑥) is a subsingleton, then Σ𝑥 :𝑋𝑌 (𝑥)
is a subsingleton too. In particular, if 𝑌 is just a type, then 𝑋 × 𝑌 is a subsingleton (or
set, respectively) if both 𝑋 and 𝑌 are.

Proof. Suppose first that 𝑋 and each 𝑌 (𝑥) are subsingletons and that we have two
pairs (𝑥,𝑦), (𝑥′, 𝑦′) : Σ𝑌 . We wish to show that (𝑥,𝑦) = (𝑥′, 𝑦′). By Lemma 2.2.5 it
suffices to find an element 𝑝 : 𝑥 = 𝑥′ and an element of transport𝑌 (𝑝,𝑦) = 𝑦′. But 𝑋
is assumed to be a subsingleton, so we have such a 𝑝 and moreover, 𝑌 (𝑥′) is assumed
to be a proposition, so any two of its element are equal, in particular transport𝑌 (𝑝,𝑦)
and 𝑦′ must be equal.
Now suppose that 𝑋 and each 𝑌 (𝑥) are sets. To show that Σ𝑌 is a set, we have to
prove that (𝑥,𝑦) = (𝑥′, 𝑦′) is a subsingleton for every two pairs (𝑥,𝑦), (𝑥′, 𝑦′) : Σ𝑌 .
By Lemmas 2.2.5 and 2.3.15 it is enough to show that Σ𝑝:𝑥=𝑥 ′ transport𝑌 (𝑝,𝑦) = 𝑦′ is a
subsingleton. But this is a Σ-type of subsingletons because 𝑋 and 𝑌 (𝑥′) are assumed
to be sets and we already proved that such Σ-types are subsingletons again.

The proof of the following fundamental theorem features our first application of
function extensionality. That function extensionality is in fact necessary is discussed
in [Esc19b, Section 3.18].

Theorem 2.3.17. The subsingletons and sets form a (dependent) exponential ideal. That
is, if 𝑌 is a type family over an arbitrary type 𝑋 such that each 𝑌 (𝑥) is a subsingleton
(or set, respectively), then Π𝑥 :𝑋𝑌 (𝑥) is a subsingleton (or set, respectively) too.

2.3. Subsingletons, sets and (higher) groupoids 18

In particular, if 𝑌 is just a type, then 𝑋 → 𝑌 is a subsingleton (or set, resp.) if 𝑌 is.

We stress that, unlike for Σ-types, 𝑋 is not required to be a subsingleton or a set.

Proof. Note that if each 𝑌 (𝑥) is a subsingleton, then 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 : 𝑋 and all
functions 𝑓 , 𝑔 : Π𝑌 . Hence, 𝑓 = 𝑔 for all 𝑓 , 𝑔 : Π𝑥 :𝑋𝑌 (𝑥) by function extensionality.
Now assume that each 𝑌 (𝑥) is a set and let 𝑓 , 𝑔 : Π𝑥 :𝑋𝑌 (𝑥) be arbitrary. We must
show that 𝑓 = 𝑔 is a subsingleton. By function extensionality and Lemma 2.2.7 we
have an invertible map from 𝑓 = 𝑔 to Π𝑥 :𝑋 𝑓 (𝑥) = 𝑔(𝑥) for every two 𝑓 , 𝑔 : Π𝑥 :𝑋𝑌 (𝑥).
Hence, by Lemma 2.3.15 it suffices to prove that Π𝑥 :𝑋 𝑓 (𝑥) = 𝑔(𝑥) is a subsingleton.
But each 𝑌 (𝑥) is a set, so this is a Π-type over a subsingleton-valued family and
hence a subsingleton itself as we have just shown.

Lemma 2.3.18. For every type 𝑋 , if we have a function 𝑋 → is-subsingleton(𝑋), then
𝑋 is a subsingleton.

Proof. Suppose that we have a function 𝑓 : 𝑋 → is-subsingleton(𝑋). To show that
𝑋 is a subsingleton, recall that is-subsingleton(𝑋) :≡ Π𝑥,𝑦:𝑋 (𝑥 = 𝑦). So let 𝑥 : 𝑋 be
arbitrary and note that we must prove that 𝑥 = 𝑦 for every 𝑦 : 𝑋 . But this is given by
𝑓𝑥 (𝑥).

Theorem 2.3.19. Being a set or (sub)singleton is a property, i.e. for every type 𝑋 , the
types is-subsingleton(𝑋), is-singleton(𝑋) and is-set(𝑋) are themselves subsingletons.

Proof. We first show that is-subsingleton(𝑋) is a subsingleton. By Lemma 2.3.18
we may assume that we have an element of is-subsingleton(𝑋), i.e. that 𝑋 is a
subsingleton. Now recall that is-subsingleton(𝑋) :≡ Π𝑥,𝑦:𝑋 (𝑥 = 𝑦). By Theorem 2.3.17
it suffices to prove that 𝑥 = 𝑦 is a subsingleton for every 𝑥,𝑦 : 𝑋 . But this is indeed the
case, as𝑋 was assumed to be a subsingleton, and hence must be a set by Lemma 2.3.14.
Thus, for every type 𝑋 , the type is-subsingleton(𝑋) is a subsingleton, as desired. In
particular, if 𝑋 is an arbitrary type, then is-subsingleton(𝑥 = 𝑦) is a subsingleton for
every 𝑥,𝑦 : 𝑋 . Hence, is-set(𝑋) is a subsingleton by Theorem 2.3.17. Finally, to show
that is-singleton(𝑋) is a subsingleton, note that we can assume that 𝑋 is a singleton
by Lemma 2.3.18. Hence, in particular, it is a subsingleton, so is-singleton(𝑋) ≡
𝑋 × is-subsingleton(𝑋) is seen to be a proposition by Theorem 2.3.16.

2.3.3 Propositional extensionality
Having introduced subsingletons (or propositions), we ask: when should two proposi-
tions be equal? Since they have at most one element, it seems natural to want them to
be equal exactly when one has an element if and only if the other does.

Definition 2.3.20 (Axiom: Propositional extensionality). Propositional extensionality
asserts that for every two propositions 𝑃 and 𝑄 , if 𝑃 → 𝑄 and 𝑄 → 𝑃 , then 𝑃 = 𝑄 .
In other words, it says that logically equivalent propositions are equal.

19 Chapter 2. Univalent foundations

We take propositional extensionality as an axiom and often use it tacitly.

Remark 2.3.21. This really is an axiom scheme: we add propositional extensionality
for propositions in every type universe U . One is forced to formulate the axiom
for universes anyway, because writing 𝑃 = 𝑄 only makes sense when 𝑃 and 𝑄 are
elements of the same type, which we are taking to be a universe U here.

Theorem 2.3.22. Assuming function extensionality and propositional extensionality
for U , the type ΩU of propositions in U is a set.

Proof. The type ΩU consists of pairs (𝑃, 𝑖) with 𝑃 : U a type and 𝑖 : is-subsingleton(𝑃).
By Theorem 2.3.19, two such pairs are equal if and only if their first components are
equal, so this is what we set out to prove.
By Hedberg’s Lemma (Lemma 2.3.13), it suffices to construct a constant endomap on
𝑃 = 𝑄 for every two propositions 𝑃 and 𝑄 in U . But the map

(𝑃 = 𝑄)
refl ↦→(id,id)
−−−−−−−−→ (𝑃 → 𝑄) × (𝑄 → 𝑃)

prop-extU−−−−−−−→ (𝑃 = 𝑄)

does the job, because the type (𝑃 → 𝑄) × (𝑄 → 𝑃) is a subsingleton by Theo-
rems 2.3.16 and 2.3.17.

Proposition 2.3.23 (Propositional extensionality is a property). Assuming only
function extensionality, the type expressing propositional extensionality for a universe
U is a subsingleton.

Proof. Lemma 2.3.18 tells us that we may assume propositional extensionality for U
to prove the lemma. By a repeated application of Theorem 2.3.17, it suffices to prove
that 𝑃 = 𝑄 is a proposition for every two propositions 𝑃 and𝑄 in U . But this is given
by Theorem 2.3.22.

Remark 2.3.24. It is important that propositional extensionality is a property, because
it gives us a guarantee that a construction using propositional extensionality cannot
depend on a specific witness of propositional extensionality as they are all the same
up to intensional equality. Put differently, in adding it as an axiom to our type theory
we are adding a property and not additional data.

2.4 Embeddings, equivalences and retracts

A major application of having defined the notion of (sub)singleton is being able to
define what it means for a map to be an embedding or an equivalence.

Definition 2.4.1 (Fibre, fib𝑓). The fibre of a map 𝑓 : 𝑋 → 𝑌 at 𝑦 : 𝑌 is the type
fib𝑓 (𝑦) :≡ Σ𝑥 :𝑋 𝑓 (𝑥) = 𝑦.

2.4. Embeddings, eqivalences and retracts 20

Definition 2.4.2 (Embedding, equivalence, 𝑋 ↩→ 𝑌 , 𝑋 ≃ 𝑌). A map 𝑓 : 𝑋 → 𝑌 is
(i) an embedding if all of its fibres are subsingletons, and
(ii) an equivalence if all of its fibres are singletons.

We denote the type of embeddings from𝑋 to𝑌 by𝑋 ↩→ 𝑌 and the type of equivalences
from 𝑋 to 𝑌 by 𝑋 ≃ 𝑌 .

We understand this definition as follows: a map 𝑓 : 𝑋 → 𝑌 is an equivalence if for
every 𝑦 : 𝑌 there is exactly one 𝑥 : 𝑋 with 𝑓 (𝑥) = 𝑦. Similarly, a map 𝑓 : 𝑋 → 𝑌 is an
embedding if for every 𝑦 : 𝑌 there is at most one 𝑥 : 𝑋 with 𝑓 (𝑥) = 𝑦.

Observe how the notions of embedding and equivalence and defined in terms of
the fibres of the map. After we introduce the proposition truncation in Section 2.6, we
will see that a map is a surjection if its fibres are all inhabited and a split surjection if
its fibres are all pointed. Thus, the fibres of a map are of fundamental interest.

Theorem 2.4.3. Being an embedding/equivalence is a property, i.e. for every map
𝑓 : 𝑋 → 𝑌 the types expressing that 𝑓 is an embedding/equivalence are subsingletons.

Proof. Immediate consequence of Theorems 2.3.17 and 2.3.19.

It is natural to wonder if, in the definition of a map being an equivalence, the
uniqueness conditions can be expressed as: “if we have another 𝑥′ : 𝑋 such that
𝑓 (𝑥′) = 𝑦, then 𝑥′ = 𝑥”. This is equivalent to the above definition when 𝑌 is a set, but
in general this fails to account for the structure that the identity types of 𝑌 might carry
in the sense that the types expressing this may fail to be propositions. The upshot of
Theorem 2.4.3 is that the equivalence between 𝑋 and 𝑌 form a subtype of all functions
from 𝑋 to 𝑌 , as we explain in Example 2.4.10 below.

The following result is rather useful for proving that a map is an equivalence.

Proposition 2.4.4. A map 𝑓 : 𝑋 → 𝑌 is an equivalence if and only if it is invertible.

Proof. See [Esc19b, Section 3.10] for a proof or [Uni13, Chapter 4] where this and
related results and issues are discussed at length.

One may ask why we did not define 𝑓 to be an equivalence when it’s invertible.
After all, Proposition 2.4.4 tells us that the two are logically equivalent. However, they
are not equivalent in the sense of Definition 2.4.2, as being invertible may fail to be
property (recall Remark 2.3.2), cf. [Uni13, Theorem 4.1.3], while being an equivalence is.
Without going into the details of the proof too much, the circle S1 (recall Example 2.3.10)
provides an illustrative example where invertibility may fail to be a property, as the
following example makes clear.

Example 2.4.5 (Invertibility is not necessarily a property). The type expressing that
the identity on S1 is invertible is

Σ𝑓 :S1→S1 (Π𝑥 :S1 (𝑓 ◦ id) (𝑥) = id(𝑥)) × (Π𝑥 :S1 (id ◦𝑓) (𝑥) = id(𝑥)).
But by function extensionality, see Lemma 2.2.7, this is equivalent to

Σ𝑓 :S1→S1 (𝑓 = id) × (𝑓 = id),

21 Chapter 2. Univalent foundations

which, by Theorem 2.3.5, is equivalent to idS1 = idS1 . By function extensionality, this
is equivalent to Π𝑥 :S1 𝑥 = 𝑥 which can be shown to be equivalent to (base = base)
and hence to the type of integers Z, see Example 2.3.10.

As mentioned above, the fact that being an equivalence is a property ensures that
the type of equivalences is a subtype (in the sense of Definition 2.4.7 below). Moreover,
the notion of an equivalence is crucial for formulating the univalence axiom (Defini-
tion 2.8.1 below), because the formulation using invertible maps is provably false [Uni13,
Exercise 4.6(c)].

Proposition 2.4.6. A map 𝑓 : 𝑋 → 𝑌 is an embedding if and only if for every 𝑥,𝑦 : 𝑋
we have an equivalence (𝑥 = 𝑦) ≃ (𝑓 (𝑥) = 𝑓 (𝑦)).

Proof. See [Esc19b, Section 3.26].

Definition 2.4.7 (Subtype). A subtype of a type 𝑋 is a type 𝐴 together with an
embedding 𝐴 ↩→ 𝑋 .

Lemma 2.4.8. If 𝑌 is a proposition-valued type family over 𝑋 , then Σ𝑥 :𝑋𝑌 (𝑥) is a
subtype of 𝑋 , as witnessed by the first projection. In particular, two elements (𝑥,𝑦) and
(𝑥′, 𝑦′) of the Σ-type are equal if and only if 𝑥 = 𝑥′.

Proof. We have to show that all fibres of pr1 : (Σ𝑥 :𝑋𝑌 (𝑥)) → 𝑋 are subsingletons.
For arbitrary 𝑥 : 𝑋 we have

fibpr1 (𝑥) ≡
(
Σ(𝑥 ′,𝑦):Σ𝑌 (𝑥′ = 𝑥)

)
≃ (Σ𝑥 ′:𝑋 (𝑌 (𝑥′) × (𝑥′ = 𝑥))) ≃ 𝑌 (𝑥)

by reshuffling the Σ-types and the contractibility of the type Σ𝑥 ′:𝑋 (𝑥′ = 𝑥) at (𝑥, refl).
But 𝑌 (𝑥) is a subsingleton by assumption, proving that the first projection is an
embedding. The second claim follows from Proposition 2.4.6.

Remark 2.4.9. In the situation of Lemma 2.4.8 we often omit the second component
of elements of Σ𝑥 :𝑋𝑌 (𝑥) which is justified because any two elements of the second
component are equal anyway.

Example 2.4.10. For any types𝑋 and𝑌 , the types𝑋 ↩→ 𝑌 and𝑋 ≃ 𝑌 are subtypes of
𝑋 → 𝑌 by Theorem 2.4.3 and Lemma 2.4.8. Hence, two embeddings or equivalences
are equal precisely when they are equal as ordinary maps. In particular, following
Remark 2.4.9, we simply write 𝑓 : 𝑋 ≃ 𝑌 for what is formally (𝑓 , 𝑖) : 𝑋 ≃ 𝑌 with 𝑖
witnessing that 𝑓 is an equivalence.

Definition 2.4.11 (Section, retraction and retract). A section is a map 𝑠 : 𝑋 → 𝑌

together with a left inverse 𝑟 : 𝑌 → 𝑋 , i.e. the maps satisfy 𝑟 (𝑠 (𝑥)) = 𝑥 for every
𝑥 : 𝑋 . We call 𝑟 the retraction and say that 𝑋 is a retract of 𝑌 .

2.5. Function extensionality revisited 22

Lemma 2.4.12. Sections to sets are embeddings.

Proof. Let 𝑠 : 𝑋 → 𝑌 be a section to a set. Since 𝑌 is a set, the type 𝑠 (𝑥) = 𝑦 is a
proposition for every 𝑥 : 𝑋 and 𝑦 : 𝑌 . Hence, by Lemma 2.4.8, to prove that every
fibre of 𝑠 is a subsingleton, it suffices to prove that 𝑥 = 𝑥′ whenever 𝑠 (𝑥) = 𝑠 (𝑥′). But
if 𝑠 (𝑥) = 𝑠 (𝑥′), then we can apply the retraction on both sides to get 𝑥 = 𝑥′.

Remark 2.4.13. The restriction to sets in Lemma 2.4.12 is a necessary one, because
[Shu16, Remark 3.11(2)] tells us that if every section is an embedding then every type
is a set.

2.5 Function extensionality revisited

Armed with the notion of equivalence, we are now ready to give the official definition of
function extensionality that improves on the naive version presented in Definition 2.2.6.

Definition 2.5.1 (Axiom: Function extensionality). Function extensionality asserts
that for every two (dependent) functions 𝑓 , 𝑔 : Π𝑥 :𝑋𝑌 (𝑥), the canonical map from
𝑓 = 𝑔 to Π𝑥 :𝑋 𝑓 (𝑥) = 𝑔(𝑥) is an equivalence.

Naive function extensionality and function extensionality are logically equivalent,
but the advantage of the above official formulation of function extensionality is that its
type is a subsingleton, i.e. function extensionality is a property. So the distinction is
similar to that between invertible maps and equivalences.

Proposition 2.5.2. Assuming function extensionality, the type expressing function
extensionality is a subsingleton.

Proof. This follows from Theorems 2.4.3 and 2.3.17.

2.6 Propositional truncation, images and surjections

We turn to introducing propositional truncations, which we will motivate through the
problem of defining the image of a map. Intuitively, the image of 𝑓 : 𝑋 → 𝑌 should
be the collection of elements 𝑦 : 𝑌 such that there exists 𝑥 : 𝑋 with 𝑓 (𝑥) = 𝑦. A naive
attempt at defining this might lead us to the type Σ𝑦:𝑌Σ𝑥 :𝑋 𝑓 (𝑥) = 𝑦.

Notice that Σ plays a double role here: the first Σ collects elements 𝑦 : 𝑌 , while
the second Σ supposedly expresses the existence of 𝑥 : 𝑋 with 𝑓 (𝑥) = 𝑦. This hints
at a problem and indeed there is one, because the type Σ𝑦:𝑌Σ𝑥 :𝑋 𝑓 (𝑥) = 𝑦 is obviously
equivalent to Σ𝑥 :𝑋Σ𝑦:𝑌 𝑓 (𝑥) = 𝑦, which in turn is equivalent to just 𝑋 , because for every
𝑥 : 𝑋 , the type Σ𝑦:𝑌 𝑓 (𝑥) = 𝑦 is a singleton by Theorem 2.3.5.

The above illustrates our lack of expressing “there exists” or “we have an unspecified”.
Instead of collecting 𝑥 : 𝑋 for which 𝑓 (𝑥) = 𝑦, we only wish to record the knowledge

23 Chapter 2. Univalent foundations

that there is some 𝑥 : 𝑋 with 𝑓 (𝑥) = 𝑦. We will do so by means of propositional
truncations and subsequently use them to define images and surjections.

2.6.1 Propositional truncation
The propositional truncation is a higher inductive type; the only one we use in this
thesis. We postulate a constructor ∥−∥ that takes a type and returns a proposition:
its propositional truncation. We require, unless explicitly stated otherwise, that our
universes are closed under propositional truncations, i.e. if 𝑋 : U , then ∥𝑋 ∥ : U .
Moreover, as part of the propositional truncation, we postulate that we have a map
|−| : 𝑋 → ∥𝑋 ∥ for every type 𝑋 .

We think of an element of ∥𝑋 ∥ as an unspecified element of 𝑋 . The map |−| then
says that every specified elements gives rise to an unspecified one.

In the vocabulary of Martin-Löf Type Theory, the above gives a formation and
an introduction rule for the propositional truncation, but we have not specified an
elimination and computation rule yet. The elimination principle expresses that the
propositional truncation is a reflector in the categorical sense: it is a left adjoint to the
inclusion of proposition into all types. Spelled out it says that every map 𝑓 : 𝑋 → 𝑃 to
a proposition factors through |−| : 𝑋 → ∥𝑋 ∥, i.e. we have a map 𝑓 : ∥𝑋 ∥ → 𝑃 such
that the diagram

𝑋 𝑃

∥𝑋 ∥
|−|

𝑓

𝑓

commutes.
What is paramount here is that this universal property holds for all propositions in

arbitrary universes and not just for those in the same universe as 𝑋 . We will return to
this phenomenon in Section 2.11.2.

Some sources, e.g. [Uni13], also demand that the diagram above commutes def-
initionally: for every 𝑥 : 𝑋 , we have 𝑓 (𝑥) ≡ 𝑓 (|𝑥 |). Having definitional equalities
has some interesting consequences, such as being able to prove function extensional-
ity [KECA17, Section 8]. We do not require definitional equalities, but notice that we
do have 𝑓 (𝑥) = 𝑓 (|𝑥 |) (up to an identification) for every 𝑥 : 𝑋 , as 𝑃 is a subsingleton.
In particular it follows using function extensionality that 𝑓 is the unique factorisation.

From the universal property, we can prove that ∥−∥ is a functor, because any map
𝑓 : 𝑋 → 𝑌 between types gives rise to a necessarily unique map ∥ 𝑓 ∥ : ∥𝑋 ∥ → ∥𝑌 ∥
such that ∥ 𝑓 ∥(|𝑥 |) = |𝑓 (𝑥) | for every 𝑥 : 𝑋 . Moreover, if a propositional truncation
exists, then it is unique up to unique equivalence.

Definition 2.6.1 (Unspecified and specified existence, ∃𝑥 :𝑋𝑌 (𝑥)).
(i) We suggestively write ∃𝑥 :𝑋𝑌 (𝑥) for the propositional truncation of Σ𝑥 :𝑋𝑌 (𝑥).
(ii) We say that “there exists (some) 𝑥 : 𝑋 with 𝑌 (𝑥)” or that we “have an unspeci-

fied 𝑥 : 𝑋 with 𝑌 (𝑥)” to mean that we have an element of ∃𝑥 :𝑋𝑌 (𝑥).
(iii) By contrast, we say that we “have 𝑥 : 𝑋 with 𝑌 (𝑥)” or sometimes for emphasis,

that we “have a specified 𝑥 : 𝑋 with 𝑌 (𝑥)” to mean that we have an element of
Σ𝑥 :𝑋𝑌 (𝑥).

2.6. Propositional truncation, images and surjections 24

The following lemma is sometimes known as “the type-theoretic axiom of choice”,
which is a misnomer, because, as emphasised in the above distinction between specified
and unspecified existence, there is no choice involved, since elements of Σ-types are
specified witnesses. A correct formulation of the axiom of choice will be presented
in Definition 2.7.24.
Lemma 2.6.2 (Distributivity of Π over Σ). For every type family 𝑌 over a type 𝑋 and
every family 𝑃 : Π𝑥 :𝑋 (𝑌 (𝑥) → U) we have an equivalence(

Π𝑥 :𝑋Σ𝑦:𝑌 (𝑥)𝑃 (𝑥,𝑦)
)
≃
(
Σ𝑓 :Π𝑌Π𝑥 :𝑋𝑃 (𝑥, 𝑓 (𝑥))

)
.

Proof. In the left-to-right direction, assume we have 𝜑 : Π𝑥 :𝑋Σ𝑦:𝑌 (𝑥)𝑃 (𝑥,𝑦). Then, we
define 𝑓 : Π𝑌 by 𝑓 :≡ pr1 ◦ 𝜑 and we see that 𝜑 yields an element of 𝑃 (𝑥, 𝑓 (𝑥)) for
every 𝑥 : 𝑋 . Conversely, if we have 𝑓 : Π𝑌 and 𝜌 : Π𝑥 :𝑋𝑃 (𝑥, 𝑓 (𝑥)), then we define
𝜑 : Π𝑥 :𝑋Σ𝑦:𝑌 (𝑥)𝑃 (𝑥,𝑦) as 𝜑 (𝑥) :≡ (𝑓 (𝑥), 𝜌 (𝑥)). Finally, a direct computation shows
that the maps above are indeed inverses.

Definition 2.6.3 (Inhabited). We say that a type is inhabited if we have an element
of its propositional truncation.

Thus, a type is inhabited if we have an unspecified element of it. We do not use the
word nonempty for this, because in our constructive setting this will mean something
weaker, as explained in Section 2.7.

2.6.2 Images and surjections
As discussed, we now use the propositional truncation to define the image of map.

Definition 2.6.4 (Image, im(𝑓), corestriction). For a map 𝑓 : 𝑋 → 𝑌 we define
(i) its image as im(𝑓) :≡ Σ𝑦:𝑌∃𝑥 :𝑋 𝑓 (𝑥) = 𝑦, and
(ii) its corestriction as the map 𝑓 : 𝑋 → im(𝑓) given by 𝑥 ↦→ (𝑓 (𝑥), | (𝑥, refl) |).

Another take on the problem described in the introduction to this section is that
the type Σ𝑦:𝑌Σ𝑥 :𝑋 𝑓 (𝑥) = 𝑦, being equivalent to 𝑋 , is not a subtype of 𝑌 . Reassuringly,
with the above official definition of image we do get a subtype.

Definition 2.6.5 (Surjection, 𝑋 ↠ 𝑌). A map 𝑓 : 𝑋 → 𝑌 is a surjection if all fibres
are inhabited. In others words, for every 𝑦 : 𝑌 , there exists some 𝑥 : 𝑋 with 𝑓 (𝑥) = 𝑦.
The type of surjections from 𝑋 to 𝑌 is denoted by 𝑋 ↠ 𝑌 .

Lemma 2.6.6. All corestrictions are surjections.

Proof. By definition of the corestriction.

Lemma 2.6.7 (Surjection induction). If 𝑓 : 𝑋 → 𝑌 is a surjection, then the following
induction principle holds: for every subsingleton-valued 𝑃 : 𝑌 → W , with W an
arbitrary universe, if 𝑃 (𝑓 (𝑥)) holds for every 𝑥 : 𝑋 , then 𝑃 (𝑦) holds for every 𝑦 : 𝑌 .

25 Chapter 2. Univalent foundations

In the other direction, for any map 𝑓 : 𝑋 → 𝑌 , if the above induction principle holds for
the specific family 𝑃 (𝑦) :≡ ∃𝑥 :𝑋 (𝑓 (𝑥) = 𝑦), then 𝑓 is a surjection.

Proof. Suppose that 𝑓 : 𝑋 → 𝑌 is a surjection, let 𝑃 : 𝑌 →W be subsingleton-valued
and assume that 𝑃 (𝑓 (𝑥)) holds for every 𝑥 : 𝑋 . Now let 𝑦 : 𝑌 be arbitrary. We are
to prove that 𝑃 (𝑦) holds. Since 𝑓 is a surjection, we have ∃𝑥 :𝑋 (𝑓 (𝑥) = 𝑦). But 𝑃 (𝑦)
is a subsingleton, so, by the universal property of the propositional truncation, we
may assume that we have a specific 𝑥 : 𝑋 with 𝑓 (𝑥) = 𝑦. But then 𝑃 (𝑦) must hold,
because 𝑃 (𝑓 (𝑥)) does by assumption.
For the other direction, notice that if 𝑃 (𝑦) :≡ ∃𝑥 :𝑋 (𝑓 (𝑥) = 𝑦), then 𝑃 (𝑓 (𝑥)) clearly
holds for every 𝑥 : 𝑋 . So by assuming that the induction principle applies, we get
that 𝑃 (𝑦) holds for every 𝑦 : 𝑌 , which says exactly that 𝑓 is a surjection.

Lemma 2.6.8. Every map 𝑓 : 𝑋 → 𝑌 factors as a surjection followed by an embedding:
𝑋 ↠ im(𝑓) ↩→ 𝑌 , where the first map is the corestriction of 𝑓 and the second map is
the first projection.

Proof. That 𝑓 is equal to the composite 𝑋 ↠ im(𝑓) ↩→ 𝑌 is immediate. Moreover,
the corestriction 𝑋 → im(𝑓) is a surjection by Lemma 2.6.6, and the first projection
im(𝑓) → 𝑌 is an embedding because of Lemma 2.4.8.

2.6.3 Mapping from propositional truncations into sets
We recall a result due to Kraus, Escardó, Coquand and Altenkirch [KECA17] which has
several applications throughout this thesis.

Theorem 2.6.9 ([KECA17, Theorem 5.4]). Every constant map to a set factors through
the truncation of its domain.

Proof. Suppose that 𝑓 : 𝑋 → 𝑌 is a constant map to a set. By Lemma 2.6.8 and the
universal property of the propositional truncation it suffices to prove that the image
of 𝑓 is a proposition, as this would yield the dashed map making the diagram

∥𝑋 ∥

𝑋 im(𝑓) 𝑌

|−|

𝑓

commute. So suppose that we have 𝑦,𝑦′ : 𝑌 such that there exists some 𝑥 : 𝑋 with
𝑓 (𝑥) = 𝑦 and some 𝑥′ : 𝑋 with 𝑓 (𝑥′) = 𝑦′. By Lemma 2.4.8, we only have to prove
that 𝑦 = 𝑦′. But 𝑌 is assumed to be a set, so this a proposition. Hence, we can assume
that we have specified 𝑥 : 𝑋 and 𝑥′ : 𝑋 with 𝑓 (𝑥) = 𝑦 and 𝑓 (𝑥′) = 𝑦′. But then
𝑦 = 𝑓 (𝑥) = 𝑓 (𝑥′) = 𝑦′, as 𝑓 is assumed to be constant.

2.7. Logic, (semi)decidability and constructivity 26

The theorem can be explained at a high level: since 𝑓 is constant it does not matter
what element we have of 𝑋 (at least when 𝑌 is a set and has no higher dimensional
structure). Thus, at least intuitively, as soon as we know that there exists some 𝑥 : 𝑋
we should obtain a corresponding element of 𝑌 , because the choice of 𝑥 is irrelevant.

2.7 Logic, (semi)decidability and constructivity

In univalent foundations and motivated by the discussion at the start of Section 2.6,
we refine the Curry–Howard paradigm of propositions-as-types to propositions-as-
subsingletons. That is, logical statements will be interpreted as types that have at most
one element. For example, we interpret the existential quantifier as the propositional
truncation of Σ. Thus, the logic in traditional set-level mathematics is encoded according
to the following table.

Logical proposition Subsingleton
True 1
False 0

𝑃 and 𝑄 𝑃 ×𝑄
𝑃 implies 𝑄 𝑃 → 𝑄

𝑃 or 𝑄 ∥𝑃 +𝑄 ∥
For every 𝑥 : 𝑋 we have 𝑃 (𝑥) Π𝑥 :𝑋𝑃 (𝑥)

There exists 𝑥 : 𝑋 such that 𝑃 (𝑥) ∥Σ𝑥 :𝑋𝑃 (𝑥)∥

Table 2.7.1: Curry–Howard in univalent foundations.

Note that Theorems 2.3.16 and 2.3.17 ensure that 𝑃 ×𝑄 , 𝑃 → 𝑄 and Π𝑥 :𝑋𝑃 (𝑥) are
propositions if 𝑃 , 𝑄 and each 𝑃 (𝑥) are, while we use truncations to ensure that we get
subsingletons for ∨ and the existential quantifier.

Definition 2.7.2 (Logical or, ∨). We write 𝑋 ∨ 𝑌 :≡ ∥𝑋 + 𝑌 ∥ for any two types 𝑋
and 𝑌 .

Definition 2.7.3 (Negation, ¬). The negation of a type 𝑋 is denoted by ¬𝑋 and
defined as 𝑋 → 0.

Remark 2.7.4. Strictly speaking we should specify a universe for 0, but the choice is
immaterial because 0U and 0V are easily seen to be equivalent for any two universes
U and V . For the sake of definiteness, we take 0U0 in the definition of negation.

Note that the negation of any type is a subsingleton by Theorem 2.3.17 and the fact
that 0 is a subsingleton.

Finally, it is important to be mindful of the fact that our logic will be constructive,
as explained in Section 2.7.3.

27 Chapter 2. Univalent foundations

2.7.1 Subsets and powersets

Definition 2.7.5 (T -powerset, T -valued subsets, PT (𝑋), 𝑥 ∈ 𝐴). For any type 𝑋
and a type universe T , the T -powerset PT (𝑋) of 𝑋 is defined as 𝑋 → ΩT . We refer
to its elements as T -valued subsets of 𝑋 . Given a T -valued subset 𝐴 of 𝑋 and 𝑥 : 𝑋 ,
we write 𝑥 ∈ 𝐴 for 𝐴(𝑥).

Lemma 2.7.6. The T -powerset of any type is a set.

Proof. By Theorems 2.3.17 and 2.3.22.

Definition 2.7.7 (Union, intersection, empty subset, singleton, 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵, ∅, {𝑥}).
For T -valued subsets 𝐴 and 𝐵 of a type 𝑋 , we respectively write 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵 for
union and intersection that are formally defined by the maps _ 𝑥 . (𝑥 ∈ 𝐴) ∨ (𝑥 ∈ 𝐵)
and _ 𝑥 . (𝑥 ∈ 𝐴) × (𝑥 ∈ 𝐵).
The empty subset of 𝑋 is denoted by ∅ (leaving 𝑋 and T implicit) and formally
defined as _ 𝑥 . 0T .
If𝑋 is a set in T , then we have singleton subsets {𝑥} for every 𝑥 : 𝑋 , formally defined
by _𝑦 . (𝑥 = 𝑦). Note that the requirement that 𝑋 is a set in T is used to ensure that
𝑥 = 𝑦 is indeed an element of ΩT .

Of course, besides binary unions and intersections, we could use∃ andΠ to construct
unions and intersections of families of subsets, but this matter is tightly connected to
predicativity issues, so we will revisit it in some detail later.

Definition 2.7.8 (Subset inclusion, ⊆). Given a T -valued subset 𝐴 and a W-valued
subset 𝐵 of a type 𝑋 : U , we write 𝐴 ⊆ 𝐵 for the notion of subset inclusion that is
formally defined as having an element of Π𝑥 :𝑋 (𝑥 ∈ 𝐴→ 𝑥 ∈ 𝐵).

2.7.2 Decidability
In discussing constructive logic the notion of decidability is fundamental.

Definition 2.7.9 ((Weak) decidability of a type/equality). A type 𝑋
(i) is decidable if we have an element of 𝑋 + ¬𝑋 ,
(ii) is weakly decidable if we have an element of ¬¬𝑋 + ¬𝑋 , and
(iii) has decidable equality if 𝑥 = 𝑦 is decidable for every 𝑥,𝑦 : 𝑋 .

Note that (i) is data, while (ii) and (iii) are property. For (ii), this holds because
negated types are subsingletons and because ¬¬𝑋 and ¬𝑋 are mutually exclusive.
For (iii), this is a consequence of Hedberg’s Theorem, which is Theorem 2.7.12 below.

Example 2.7.10. The types 0, 1 and N all have decidable equality.

Lemma 2.7.11. If we have maps back and forth between two types 𝑋 and 𝑌 and one of
the types is decidable, then so is the other.

2.7. Logic, (semi)decidability and constructivity 28

Proof. Suppose that 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 and that 𝑋 is decidable. Then we have
𝑥 : 𝑋 or ¬𝑋 . In the first case we get 𝑓 (𝑥) : 𝑌 and in the second case, we get ¬𝑌 by
contraposition and 𝑔 : 𝑌 → 𝑋 .

Theorem 2.7.12 (Hedberg’s Theorem [Hed98]). If a type has decidable equality, then
it is a set.

Proof. Suppose that 𝑋 is a type with decidable equality. By Hedberg’s Lemma
(Lemma 2.3.13), it suffices to construct a constant endofunction on 𝑥 = 𝑦 for ev-
ery 𝑥,𝑦 : 𝑋 . By assumption, we either have 𝑝 : 𝑥 = 𝑦 or 𝑥 ≠ 𝑦. In the latter case,
𝑥 = 𝑦 is equivalent to 0 and so it certainly has a constant endomap. And if we
have 𝑝 : 𝑥 = 𝑦, then the function (𝑥 = 𝑦) → (𝑥 = 𝑦) mapping everything to 𝑝 is
constant.

When studying the Scott model of PCF in Section 5.2, the notion of semidecidability
also makes an appearance. Intuitively, a proposition is semidecidable if it can be affirmed
through some finite procedure. Notice how we do not impose such a restriction on it
being refuted, so this notion is characteristically asymmetric.

Definition 2.7.13 (Semidecidability). A proposition 𝑃 is semidecidable if there exists
some binary sequence 𝛼 : N→ 2 such that 𝑃 holds if and only if there exists some
𝑛 : N for which 𝛼 (𝑛) = 1.

Indeed, if a semidecidable proposition 𝑃 holds, then we will eventually find 𝑛 : N for
which 𝛼 (𝑛). But inspecting the sequence 𝛼 for any finite number of values will never
allow us to conclude that the negation of 𝑃 holds as this would require knowing that
the sequence never attains the value 1. Also notice that every decidable proposition is
semidecidable.
Lemma 2.7.14. A proposition 𝑃 is semidecidable if and only if there exists a natural
number 𝑘 : N and a family 𝑄 : N𝑘 → U0 such that 𝑄 (®𝑛) is decidable for all inputs
®𝑛 : N𝑘 and 𝑃 holds exactly when ∃®𝑛:N𝑘𝑄 (®𝑛) does.

Proof. Note that the type of decidable propositions is equivalent to 2 and that for
every natural number 𝑘 we have a bijection N𝑘 ≃ N, so that we can always turn a
family with 𝑘 parameters into a corresponding one with a single parameter.

2.7.3 Constructivity
Our foundational setup will be constructive in the sense that we do not assume any
additional logical axioms beyond propositional extensionality and function extension-
ality. In particular, we do not assume (weak) excluded middle (Definition 2.7.19), the
limited principle of omniscience (LPO; Definition 2.7.22) or the axiom of (countable)
choice (Definition 2.7.24), as these are constructively unacceptable [Bis67, p. 9], and
even provably false in some varieties of constructive mathematics [BR87, pp. 3–4]. In
MLTT, and univalent foundations, they are simply independent: they cannot be proved,
but neither can their negations.

29 Chapter 2. Univalent foundations

This does not mean that these logical principles will have no use for us. In fact,
they will feature as constructive taboos. That is, sometimes we wish to argue that
something is inherently nonconstructive and we can do so as follows: if we can show
that 𝑋 implies excluded middle, then this tells us that 𝑋 is constructively unacceptable,
because excluded middle is.
Definition 2.7.15 (Nonemptiness). A type 𝑋 is nonempty if ¬¬𝑋 has an element.

Lemma 2.7.16. Every inhabited type is nonempty.

Proof. Let 𝑋 be an inhabited type, i.e. we have an element 𝑡 of ∥𝑋 ∥. Since being
nonempty is a proposition by Theorem 2.3.17, we can eliminate 𝑡 and assume to have
𝑥 : 𝑋 . But then _ (𝑓 : ¬𝑋) . 𝑓 (𝑥) is an element of ¬¬𝑋 .

Definition 2.7.17 (¬¬-stability, type of ¬¬-stable propositions, Ω¬¬U).
(i) A type 𝑋 is said to be ¬¬-stable if we have an element of ¬¬𝑋 → 𝑋 .
(ii) We denote the type of ¬¬-stable propositions in a universe U by Ω¬¬U .

Remark 2.7.18. Using the terminology of Definition 2.6.3 and the observation that a
proposition is equivalent to its propositional truncation, we see that a proposition is
¬¬-stable precisely when it is inhabited as soon as it is nonempty.

Definition 2.7.19 ((Weak) excluded middle). For a type universe U , (weak) excluded
middle in U asserts that every proposition in U is (weakly) decidable.

Remark 2.7.20. The restriction to propositions in the formulation of (weak) excluded
middle can be explained in two ways. Firstly, given our interpretation of (logical)-
propositions-as-subsingletons, it seems appropriate to restrict (weak) excludedmiddle
to the logical fragment of our framework. In fact, the statement 𝑋 + ¬𝑋 for all types
𝑋 is global choice: it says that we can choose a specified element of every nonempty
type, and is incompatible with univalence [Esc19b, Section 3.35.6]. Secondly, the
unrestricted formulation is provably false in the presence of the univalence axiom,
while the restricted formulation is consistent with univalent type theory, as shown
by Voevodsky’s simplicial sets model [KL21].

Lemma 2.7.21. The following logical statements are equivalent for a universe U :
(i) excluded middle in U ;
(ii) every proposition in U is equal to either 0U or 1U ;
(iii) the type ΩU has decidable equality;
(iv) the map 2V → ΩU given by 0 ↦→ 0U and 1 ↦→ 1U is an equivalence for any type

universe V ;
(v) all elements of ΩU are ¬¬-stable (double negation elimination);
(vi) every nonempty type is inhabited.

Similarly, the following logical statements are equivalent for every universe U :
(i’) weak excluded middle in U ;

2.7. Logic, (semi)decidability and constructivity 30

(ii’) every ¬¬-stable proposition in U is equal to either 0U or 1U ;
(iii’) the type Ω¬¬U has decidable equality;
(iv’) the map 2V → Ω¬¬U given by 0 ↦→ 0U and 1 ↦→ 1U is an equivalence for any type

universe V .

Proof. For the equivalence of (i)–(iii), observe that, by propositional extensionality,
a proposition holds if and only if it is equal to the unit type and does not hold if
and only if it is equal to the empty type. It is also clear that (iv) implies (ii). For the
converse, assume (ii) and note that it implies that

ΩU ≃ Σ𝑃 :U ((𝑃 = 1U) + (𝑃 = 0U)) ≃ (Σ𝑃 :U 𝑃 = 1U) + (Σ𝑃 :U 𝑃 = 0U) ≃ 2V ,

where the final equivalence holds by Theorem 2.3.5 and the fact that every contractible
type is equivalent to 1V .
The equivalence of (i) and (v) is well-known in constructive logic. If we assume
excluded middle in U and 𝑃 is an arbitrary proposition in U , then we have 𝑃 or ¬𝑃 .
In the first case, obviously ¬¬𝑃 → 𝑃 and in the second case this also holds, because
the antecedent of the implication contradicts ¬𝑃 . Conversely, if double negation
elimination for U holds and 𝑃 is an arbitrary proposition in U , then in particular the
proposition 𝑃 + ¬𝑃 is ¬¬-stable. But ¬¬(𝑃 + ¬𝑃) is a tautology: for if we assume
¬(𝑃 + ¬𝑃), then assuming either 𝑃 or ¬𝑃 would yield a contradiction, hence we have
¬𝑃 × ¬¬𝑃 , which is false. Thus, by our double negation elimination assumption, we
get decidability of 𝑃 , completing the proof that items (i)–(v) are equivalent.
The equivalence of (v) and (vi) follows from the observations that every proposition
is equivalent to its propositional truncation, and that ¬¬𝑋 is equivalent to ¬¬∥𝑋 ∥.
The final claim of the lemma, concerning (i’)–(iv’), follows from the fact that decid-
ability and weak decidability coincide for ¬¬-stable propositions.

Definition 2.7.22 (Limited principle of omniscience (LPO)). Bishop’s limited principle
of omniscience (LPO) asserts that for every binary sequence 𝛼 : N→ 2 the proposition
∃𝑛:N 𝛼 (𝑛) = 1 is decidable.

Remark 2.7.23. Unfolding the definitions, we see that LPO says exactly that every
semidecidable proposition is decidable.

Definition 2.7.24 (Axiom of (countable) choice). The axiom of choice with respect to
universesU and V says that for every set𝑋 : U and set-valued type-family𝑌 : 𝑋 → V ,
if every 𝑌 (𝑥) is inhabited, then Π𝑥 :𝑋𝑌 (𝑥) is inhabited as well. Symbolically, this reads

(Π𝑥 :𝑋 ∥𝑌 (𝑥)∥) → ∥Π𝑥 :𝑋𝑌 (𝑥)∥ (2.7.25)

The special case where 𝑋 ≡ N is called countable choice.

There are multiple equivalent ways of phrasing the axiom of choice in univalent
foundations, see [Esc19b, Section 3.35], but the above is themost convenient formulation
for us.

31 Chapter 2. Univalent foundations

Remark 2.7.26. Semidecidability and countable choice are closely linked as investi-
gated in [Kna18; EK17] and further in [dJon22c], but it is somewhat beyond the scope
of this thesis to go into this here.

2.8 Univalent universes

By analogy to propositional extensionality (Definition 2.3.20) and function extensional-
ity (Definition 2.5.1), we define an extensionality axiom for types and say that a universe
is univalent if its types satisfy it.

Definition 2.8.1 (Univalence). A type universe U is univalent if for every𝑋,𝑌 : U the
map (𝑋 =U 𝑌) → (𝑋 ≃ 𝑌) defined by path induction as refl ↦→ id is an equivalence.

In other words, two types are equal precisely when they are equivalent, although
the formulation above is carefully chosen to ensure (through Theorems 2.4.3 and 2.3.17)
that being univalent is a property of a universe.

The univalence axiom asserts that all universes are univalent. Unlike propositional
extensionality and function extensionality, we do not assume this globally, but rather
add the univalence of a universe as an explicit hypothesis to our theorems when needed.

The consistency of the univalence axiom was established by Voevodsky through
the simplicial sets model [KL21].

Theorem 2.8.2. If U is univalent, then we have propositional extensionality in U and
function extensionality for functions between types in U .

Proof. That univalence implies propositional extensionality is straightforward as two
propositions are equivalent precisely when they imply each other. That function
extensionality can be derived from univalence is due to Voevodsky, see [Esc19b,
Section 3.17] or [Uni13, Section 4.9] for proofs.

The following result should be compared to Theorem 2.3.5.

Theorem 2.8.3. A universe U is univalent if and only if for every 𝑋 : U the type
Σ𝑌 :U 𝑋 ≃ 𝑌 is contractible.

Proof. See [Esc19b, Section 3.14].

Definition 2.8.4 (Universe embedding; [Esc19b, Section 3.30]). A function 𝑓 between
universes U and V is a universe embedding if 𝑓 (𝑋) ≃ 𝑋 for every 𝑋 : U .

Proposition 2.8.5 ([Esc19b, Section 3.30]). If U and V are univalent universes, then
every universe embedding between U and V is an embedding.

Proof. Suppose that U and V are univalent and that 𝑓 is a universe embedding. Then

2.9. Small and locally small types 32

for every 𝑋,𝑌 : U , we have

(𝑋 = 𝑌) ≃ (𝑋 ≃ 𝑌) (since U is univalent)
≃ (𝑓 (𝑋) ≃ 𝑓 (𝑌)) (since 𝑓 is a universe embedding)
≃ (𝑓 (𝑋) = 𝑓 (𝑌)) (since V is univalent)

so that 𝑓 is an embedding by Proposition 2.4.6.

Corollary 2.8.6. If the universes U and U ⊔ V are univalent, then the universe embed-
ding liftU ,V : U → U ⊔ V defined by 𝑋 ↦→ 𝑋 × 1V is an embedding.

2.9 Small and locally small types

A fundamental theme of this work will be the concept of a (locally) small type, as
(im)predicativity is all about whether (types of) propositions are small or not.

Definition 2.9.1 ((Local) U-smallness; Rijke [Rij17]). A type 𝑋 in any universe is
(i) U-small if it is equivalent to a type in the universe U , i.e.

𝑋 is U-small :≡ ∑
𝑌 :U (𝑌 ≃ 𝑋),

(ii) locally U-small if the type (𝑥 = 𝑦) is U-small for every 𝑥,𝑦 : 𝑋 .

From a categorical perspective, U-small really means essentially U-small, because
we are considering types up to equivalence. We simply call it U-smallness, because the
corresponding strict notions where 𝑌 is equal (definitional, or up to the intensional
identity type) to 𝑋 can only make sense if 𝑋 is already in the same universe as 𝑌 .

A fact that we will often use tacitly is the useful but simple observation that if 𝑋 is
U-small and 𝑋 ≃ 𝑌 then 𝑌 is U-small too.
Example 2.9.2.

(i) Every U-small type is locally U-small.
(ii) The type ΩU of propositions in a universe U lives in U+, but is locally U-small

by propositional extensionality.

Even though we phrased U-smallness using equivalences, a type can be U-small in
at most one way, provided that the universes involved are univalent.

Proposition 2.9.3. If V and U ⊔ V are univalent universes, then the type expressing
that 𝑋 is V-small is a proposition for every 𝑋 : U .

33 Chapter 2. Univalent foundations

Proof. If U ⊔ V is univalent, then

𝑋 is V-small ≡ Σ𝑌 :V (𝑌 ≃ 𝑋)
≃ Σ𝑌 :V (liftV,U (𝑌) ≃ liftU ,V (𝑋)) (as the lifts are universe embeddings)
≃ Σ𝑌 :V (liftV,U (𝑌) = liftU ,V (𝑋)) (as U ⊔ V is univalent)
≡ fibliftV,U

(
liftU ,V (𝑋)

)
.

But the latter is a proposition because liftV,U is an embedding by Corollary 2.8.6 using
our assumptions that V and U ⊔ V are univalent.

The converse also holds in the following form.

Proposition 2.9.4. The type expressing that 𝑋 is U-small is a proposition for every
𝑋 : U if and only if the universe U is univalent.

Proof. This follows from Theorem 2.8.3.

Lemma 2.9.5. Propositional extensionality suffices to prove that being U-small is a
property for propositions.

Proof. For propositions we see that the argument of Proposition 2.9.3 and its de-
pendency Proposition 2.8.5 only require propositional extensionality and not full
univalence.

We end this section by showing our main technical result on small types here,
namely that being small is closed under retracts. The following original definition
extends the notion of a small type to functions.

Definition 2.9.6 (U-smallness for maps). A map 𝑓 : 𝑋 → 𝑌 is said be U-small if all
its fibres are.

Lemma 2.9.7.
(i) A type 𝑋 is U-small if and only if the unique map 𝑋 → 1U0 is U-small.
(ii) If 𝑌 is U-small, then a map 𝑓 : 𝑋 → 𝑌 is U-small if and only if 𝑋 is.

Proof. (i) Writing !𝑋 for the map 𝑋 → 1U0 we have fib!𝑋 (★) ≃ 𝑋 . (ii) If 𝑋 and
𝑌 are both U-small, witnessed respectively by 𝜑 : 𝑋 ′ ≃ 𝑋 and 𝜓 : 𝑌 ′ ≃ 𝑌 ,
then fib𝑓 (𝑦) is U-small for every 𝑦 : 𝑌 , because fib𝑓 (𝑦) ≡ Σ𝑥 :𝑋 (𝑓 (𝑥) = 𝑦) ≃
Σ𝑥 ′:𝑋 ′

(
𝜓−1(𝑓 (𝜑 (𝑥′))) = 𝜓−1(𝑦)

)
. Conversely, if 𝑓 and 𝑌 are U-small, then so is 𝑋 ,

because [Uni13, Lemma 4.8.2] tells us that 𝑋 ≃ Σ𝑦:𝑌 fib𝑓 (𝑦).

Theorem 2.9.8. Every section into a U -small type is U -small. In particular, its domain
is U-small.

Proof. We show that the domain is U-small from which it follows that the section is
U-small by Lemma 2.9.7(ii). So suppose we have a section 𝑠 : 𝑋 → 𝑌 with retraction

2.10. Impredicativity: resizing axioms 34

𝑟 : 𝑌 → 𝑋 and that 𝑌 is U-small. By [Shu16, Lemma 3.6], the endomap 𝑓 :≡ 𝑟 ◦ 𝑠
on 𝑌 is a quasi-idempotent [Shu16, Definition 3.5]. Hence, [Shu16, Theorem 5.3]
tells us that 𝑓 can be split as 𝑌 𝑟 ′−→ 𝐴

𝑠′−→ 𝑌 for some maps 𝑠′ and 𝑟 ′ and some type 𝐴
recalled below. Now 𝑋 and 𝐴 are equivalent as witnessed by the maps 𝑥 ↦→ 𝑟 ′(𝑠 (𝑥))
and 𝑎 ↦→ 𝑟 (𝑠′(𝑎)). Finally, we recall from the proof of [Shu16, Theorem 5.3] that
𝐴 :≡ Σ𝜎 :N→𝑌Π𝑛:N(𝑓 (𝜎𝑛+1) = 𝜎𝑛) which is U-small because 𝑌 is assumed to be.

Remark 2.9.9. In [dJE21b] we had a weaker version of Theorem 2.9.8 where we in-
cluded the additional assumption that the section was an embedding. (Note that if ev-
ery section is an embedding, then every type is a set [Shu16, Remark 3.11(2)], but that
all sections into sets are embeddings [Esc19b, lc-maps-into-sets-are-embeddings].)
We are grateful to the anonymous reviewer of [dJE22a] who proposed the above
strengthening.

2.10 Impredicativity: resizing axioms

We have already explained in Section 2.7.3 that our setup is constructive because we do
not assume excluded middle or the axiom of choice. Similarly, our setup is predicative
because we do not assume certain resizing principles concerning propositions which
we define below. Recall that the type of all propositions in a universe U is denoted by
ΩU and lives in U+. Similarly, the type of all ¬¬-stable propositions in U is denoted by
Ω¬¬U and also lives in U+.

Definition 2.10.1 (Propositional resizing).
(i) By Propositional-ResizingU ,V we mean the assertion that every proposition 𝑃 in

a universe U is V-small.
(ii) We write Ω-ResizingU ,V for the assertion that the type ΩU is V-small.
(iii) By Ω¬¬-ResizingU ,V we mean the assertion that the type Ω¬¬U is V-small.
(iv) For the particular case of a single universe, we respectively write Ω-ResizingU

and Ω¬¬-ResizingU for the assertions that ΩU is U-small and Ω¬¬U is U-small.

The resizing of the type of propositions in a universe (ii) is closely related to the
resizing of the propositions themselves (i), as we show now.

Proposition 2.10.2 (cf. [Esc19b, Section 3.36.4]). For every two type universes U and V
we have that

(i) Ω-ResizingU ,V implies Propositional-ResizingU ,V , and
(ii) the conjunction of Propositional-ResizingU ,V and Propositional-ResizingV,U im-

plies Ω-ResizingU ,V+ .

Proof. (i) Assuming Ω-ResizingU ,V we have an equivalence 𝜑 : ΩU ≃ 𝑇 : V , so if 𝑃
is an arbitrary proposition in U , then 𝑃 holds if and only if 𝑃 = 1U if and only if
𝜑 (𝑃) = 𝜑 (1U), but the latter is a type in V . (ii) Assuming Propositional-ResizingU ,V
and Propositional-ResizingV,U yields maps 𝜙 : ΩU → ΩV and 𝜓 : ΩV → ΩU such

35 Chapter 2. Univalent foundations

that for every 𝑃 : ΩU and 𝑄 : ΩV we have 𝑃 ≃ 𝜙 (𝑃) and 𝑄 ≃ 𝜓 (𝑄). Hence, for every
𝑃 : ΩU we have 𝑃 ≃ 𝜙 (𝑃) ≃ 𝜓 (𝜙 (𝑃)) and similarly 𝑄 ≃ 𝜙 (𝜓 (𝑄)) for every 𝑄 : ΩV .
Thus, by propositional extensionality, we get an equivalence ΩU ≃ ΩV , but ΩV : V+,
so Ω-ResizingU ,V+ must hold.

Remark 2.10.3. In light of the occurrence of V+ in Proposition 2.10.2(ii), it is worth
observing that if we assume the strong principle Propositional-ResizingU ,U0

then
Ω-ResizingU ,U1

holds. Hence, if we can resize every proposition to one in the lowest
universe U0, then the type of propositions in an arbitrary universe is equivalent to a
type in U1, which is a significant resizing for all universes except U0.

With the classical axiom of excluded middle, impredicativity becomes a theorem.
Thus, if we wish to explore predicativity (in the form of propositional resizing axioms)
in univalent foundations then we must work constructively.

Proposition 2.10.4 (cf. [Esc19b, Section 3.36.2]). Excluded middle implies impredica-
tivity. Specifically,

(i) excluded middle in U implies Ω-ResizingU ,U0
, and

(ii) weak excluded middle in U implies Ω¬¬-ResizingU ,U0
.

Proof. (i) By Lemma 2.7.21(iv) we know that excluded middle in U implies having an
equivalence ΩU ≃ 2U0 . (ii) By Lemma 2.7.21(iv’).

2.11 Quotients, replacement, and propositional trun-
cations revisited

We investigate the inter-definability and interaction of type universe levels of proposi-
tional truncations and set quotients in the absence of propositional resizing axioms.
In particular, we will see that it is not so important if the set quotient or propositional
truncation lives in a higher universe. What is paramount instead is whether the uni-
versal property applies to types in arbitrary universes. However, in some cases, like
in Section 6.3.2, it is relevant whether set quotients are small and we show this to be
equivalent to a set replacement principle in Section 2.11.4.

Remark 2.11.1. Recall from Section 2.6.1 that in this thesis we typically assume our
universes to be closed under propositional truncations. However, in this section,
we will be more general and assume that ∥𝑋 ∥ : 𝐹 (U) where 𝐹 is a metafunction on
universes, so that the above case is obtained by taking 𝐹 to be the identity. We will
also consider 𝐹 (U) = U1 ⊔ U in the final subsection.

2.11.1 Propositional truncations and propositional resizing
Voevodsky [Voe11] introduced propositional resizing rules in order to construct propo-
sitional truncations [PVW15, Section 2.4]. Here we review Voevodsky’s construction,

2.11. Quotients, replacement, and propositional truncations revisited 36

paying special attention to the universes involved.
NB. We do not assume the availability of propositional truncations in this section.

Definition 2.11.2 (Voevodsky propositional truncation, ∥𝑋 ∥𝑣). The Voevodsky propo-
sitional truncation ∥𝑋 ∥𝑣 of a type 𝑋 : U is defined as

∥𝑋 ∥𝑣 :≡
∏
𝑃 :U
(is-subsingleton(𝑃) → (𝑋 → 𝑃) → 𝑃).

Observe that this is a System-F [Gir71; Rey74; AFS18] style definition where we use
the desired universal property and a (large) quantification to encode a type.

Also notice that the part (𝑋 → 𝑃) → 𝑃 in the Voevodsky propositional truncation
generalises the double negation (which is given by taking 𝑃 ≡ 0). The double negation
of a type is a proposition, but it enjoys the universal property of the propositional
truncation if and only if excluded middle holds [KECA17, Section 7].

Because of Theorem 2.3.17, one can show that ∥𝑋 ∥𝑣 is indeed a proposition for every
type 𝑋 . Moreover, we have a map |−|𝑣 : 𝑋 → ∥𝑋 ∥𝑣 given by |𝑥 |𝑣 :≡ (𝑃, 𝑖, 𝑓) ↦→ 𝑓 (𝑥).

Observe that ∥𝑋 ∥𝑣 : U+, so using the notation from Remark 2.11.1, we have
𝐹 (U) :≡ U+. However, as we will argue for set quotients, it does not matter so much
where the truncated proposition lives; it is much more important that we can elim-
inate into subsingletons in arbitrary universes, i.e. that ∥−∥𝑣 satisfies the right uni-
versal property. Given 𝑋 : U and a map 𝑓 : 𝑋 → 𝑃 to a proposition 𝑃 : U with
𝑖 : is-subsingleton(𝑃), we have a map ∥𝑋 ∥𝑣 → 𝑃 given as Φ ↦→ Φ(𝑃, 𝑖, 𝑓). However, if
the proposition 𝑃 lives in some other universe V , then we seem to be completely stuck.
To clarify this, we consider the example of functoriality.

Example 2.11.3. If we have a map 𝑓 : 𝑋 → 𝑌 with 𝑋 : U and 𝑌 : U , then
we get a lifting simply by precomposition, i.e. we define |𝑓 |𝑣 : ∥𝑋 ∥𝑣 → ∥𝑌 ∥𝑣 by
|𝑓 |𝑣 (Φ) :≡ (𝑃, 𝑖, 𝑔) ↦→ Φ(𝑃, 𝑖, 𝑔◦ 𝑓). But obviously, we also want functoriality for maps
𝑓 : 𝑋 → 𝑌 with 𝑋 : U and 𝑌 : V , but this is impossible with the above definition of
|𝑓 |𝑣 , because for ∥𝑋 ∥𝑣 we are considering propositions in U , while for ∥𝑌 ∥𝑣 we are
considering propositions in V .
In particular, even if the types 𝑋 : U and 𝑌 : V are equivalent, then it does not
seem possible to construct an equivalence between ∥𝑋 ∥𝑣 and ∥𝑌 ∥𝑣 . This issue also
comes up if one tries to prove that the map |−|𝑣 : 𝑋 → ∥𝑋 ∥𝑣 is a surjection [Esc19b,
Section 3.34.1].

Proposition 2.11.4 (cf. [KECA17, Theorem 3.8]). If our type theory has propositional
truncations with ∥𝑋 ∥ : U whenever 𝑋 : U , then ∥𝑋 ∥𝑣 is U-small.

Proof. We will show that ∥𝑋 ∥ and ∥𝑋 ∥𝑣 are logically equivalent (i.e. we have maps
in both directions), which suffices, because both types are subsingletons. We obtain a
map ∥𝑋 ∥ → ∥𝑋 ∥𝑣 by applying the universal property of ∥𝑋 ∥ to the map |−|𝑣 : 𝑋 →
∥𝑋 ∥𝑣 . Observe that it is essential that the universal property allows for elimination
into subsingletons in universes other than U , as ∥𝑋 ∥𝑣 : U+. For the function in the
other direction, simply note that ∥𝑋 ∥ : U , so that we can construct ∥𝑋 ∥𝑣 → ∥𝑋 ∥ as
Φ ↦→ Φ(∥𝑋 ∥, 𝑖, |−|) where 𝑖 witnesses that ∥𝑋 ∥ is a subsingleton.

37 Chapter 2. Univalent foundations

Thus, as is folklore in the univalent foundations community, we can view higher
inductive types as specific resizing axioms. But note that the converse to the above
proposition does not appear to hold, because even if ∥𝑋 ∥𝑣 is U-small, then it still
wouldn’t have the appropriate universal property. This is because the definition of
∥𝑋 ∥𝑣 is a dependent product over propositions in U only, which now includes ∥𝑋 ∥𝑣 ,
but still misses propositions in other universes. In the presence of resizing axioms, we
could obtain the full universal property, because we would have (equivalent copies of)
all propositions in a single universe:

Proposition 2.11.5 (cf. [Esc19b, Section 36.5]). If Propositional-ResizingU ,U0
holds

for every universe U , then the Voevodsky propositional truncation satisfies the full
universal property with respect to all types in all universes.

2.11.2 Set quotients from propositional truncations
In this section we assume to have propositional truncations with ∥𝑋 ∥ : 𝐹 (U) when
𝑋 : U for some metafunction 𝐹 on universes. We will be mainly interested in 𝐹 (U) = U
and 𝐹 (U) = U1 ⊔ U for the reasons explained below.

We prove that we can construct set quotients using propositional truncations. The
construction is due to Voevodsky and also appears in [Uni13, Section 6.10] and [RS15,
Section 3.4]. While Voevodsky assumed propositional resizing rules in his construction,
we show, following [Esc19b, Section 3.37], that resizing is not needed to prove the
universal property of the set quotient, provided propositional truncations are available.

Definition 2.11.6 (Equivalence relation). An equivalence relation on a type 𝑋 is a
binary type family ≈ : 𝑋 → 𝑋 → V that is

(i) subsingleton-valued, i.e. 𝑥 ≈ 𝑦 is a subsingleton for every 𝑥,𝑦 : 𝑋 ,
(ii) reflexive, i.e. 𝑥 ≈ 𝑥 for every 𝑥 : 𝑋 ,
(iii) symmetric, i.e. 𝑥 ≈ 𝑦 implies 𝑦 ≈ 𝑥 for every 𝑥,𝑦 : 𝑋 , and
(iv) transitive, i.e. the conjunction of 𝑥 ≈ 𝑦 and 𝑦 ≈ 𝑧 implies 𝑥 ≈ 𝑧 for every

𝑥,𝑦, 𝑧 : 𝑋 .

Definition 2.11.7 (Set quotient, 𝑋/≈). We define the set quotient 𝑋/≈ of 𝑋 by ≈ to
be the image of 𝑒≈ where

𝑒≈ : 𝑋 → (𝑋 → ΩV)
𝑥 ↦→ (𝑦 ↦→ (𝑥 ≈ 𝑦, 𝑝 (𝑥,𝑦)))

and 𝑝 is the witness that ≈ is subsingleton-valued.

Of course, we should prove that 𝑋/≈ really is the quotient of 𝑋 by ≈ by proving a
suitable universal property. The following definition and lemmas indeed build up to
this. For the remainder of this section, we will fix a type 𝑋 : U with an equivalence
relation ≈ : 𝑋 → 𝑋 → V .

2.11. Quotients, replacement, and propositional truncations revisited 38

Remark 2.11.8. Since 𝑋/≈ ≡ im(𝑒≈) ≡ Σ𝜑 :𝑋→ΩV∃𝑥 :𝑋 (_𝑦 . 𝑥 ≈ 𝑦) = 𝜑 , we see, recall-
ing Remark 2.11.1 and the fact that ΩV is a type in V+, that we have 𝑋/≈ : T ⊔ 𝐹 (T)
with T :≡ V+ ⊔ U . In the particular case that 𝐹 is the identity, we obtain the simpler
𝑋/≈ : V+ ⊔ U .

Lemma 2.11.9. The quotient 𝑋/≈ is a set.

Proof. Recall that 𝑋/≈ is defined as the image of 𝑒≈ and that this is a subtype of the
powerset PV (𝑋) which is a set by Lemma 2.7.6. Since it holds generally that subtypes
of sets are sets, this proves the lemma.

Definition 2.11.10 (Universal map, [). The universal map [: 𝑋 → 𝑋/≈ is defined
to be the corestriction of 𝑒≈.

Although, in general, the type 𝑋/≈ lives in another universe than 𝑋 (see Re-
mark 2.11.8), we can still prove the following induction principle for subsingleton-valued
families into arbitrary universes.

Lemma 2.11.11 (Set quotient induction). For every subsingleton-valued family
𝑃 : 𝑋/≈ →W , with W any universe, if 𝑃 ([(𝑥)) holds for every 𝑥 : 𝑋 , then 𝑃 (𝑥′)
holds for every 𝑥′ : 𝑋/≈.

Proof. The map [is surjective by Lemma 2.6.6, so that Lemma 2.6.7 yields the desired
result.

Definition 2.11.12 (Respect equivalence relation). A map 𝑓 : 𝑋 → 𝐴 respects the
equivalence relation ≈ if 𝑥 ≈ 𝑦 implies 𝑓 (𝑥) = 𝑓 (𝑦) for every 𝑥,𝑦 : 𝑋 .

Observe that respecting an equivalence relation is property rather than data, when
the codomain 𝐴 of the map 𝑓 : 𝑋 → 𝐴 is a set.

Lemma 2.11.13. The map [: 𝑋 → 𝑋/≈ respects the equivalence relation ≈ and the
set quotient is effective, i.e. for every 𝑥,𝑦 : 𝑋 , we have 𝑥 ≈ 𝑦 if and only if [(𝑥) = [(𝑦).

Proof. By definition of the image and function extensionality, we have for every
𝑥,𝑦 : 𝑋 that [(𝑥) = [(𝑦) holds if and only if

∀𝑧:𝑋 (𝑥 ≈ 𝑧 ⇐⇒ 𝑦 ≈ 𝑧) (∗)

holds. If (∗) holds, then so does 𝑥 ≈ 𝑦 by reflexivity and symmetry of the equivalence
relation. Conversely, if 𝑥 ≈ 𝑦 and 𝑧 : 𝑋 is such that 𝑥 ≈ 𝑧, then 𝑦 ≈ 𝑧 by symmetry
and transitivity; and similarly if 𝑧 : 𝑋 is such that 𝑦 ≈ 𝑧. Hence, (∗) holds if and only
if 𝑥 ≈ 𝑦 holds. Thus, [(𝑥) = [(𝑦) if and only if 𝑥 ≈ 𝑦, as desired.

The universal property of the set quotient states that the map [: 𝑋 → 𝑋/≈ is the
universal function to a set preserving the equivalence relation. We can prove it using

39 Chapter 2. Univalent foundations

only Lemma 2.11.11 and Lemma 2.11.13, without needing to inspect the definition of
the quotient.

Theorem 2.11.14 (Universal property of the set quotient). For every set 𝐴 : W in
any universe W and function 𝑓 : 𝑋 → 𝐴 respecting the equivalence relation, there is a
unique function 𝑓 : 𝑋/≈ → 𝐴 such that the diagram

𝑋 𝑋/≈

𝐴

𝑓

[

𝑓

commutes.

Proof. Let 𝐴 : W be a set and 𝑓 : 𝑋 → 𝐴 respect the equivalence relation. The
following auxiliary type family over 𝑋/≈ will be at the heart of our proof:

𝐵(𝑥′) :≡ Σ𝑎:𝐴∃𝑥 :𝑋 (([(𝑥) = 𝑥′) × (𝑓 (𝑥) = 𝑎)) .

Claim. The type 𝐵(𝑥′) is a subsingleton for every 𝑥′ : 𝑋/≈.

Proof of claim. By function extensionality, the type expressing that 𝐵(𝑥′) is a subs-
ingleton for every 𝑥′ : 𝑋/≈ is itself a subsingleton. So by set quotient induction,
it suffices to prove that 𝐵([(𝑥)) is a subsingleton for every 𝑥 : 𝑋 . So assume that
we have (𝑎, 𝑝), (𝑏, 𝑞) : 𝐵([(𝑥)). We only need to show that 𝑎 = 𝑏. The elements
𝑝 and 𝑞 witness

∃𝑥1:𝑋 (([(𝑥1) = [(𝑥)) × (𝑓 (𝑥1) = 𝑎))
and

∃𝑥2:𝑋 (([(𝑥2) = [(𝑥)) × (𝑓 (𝑥2) = 𝑏)),
respectively. By Lemma 2.11.13 and the fact that 𝑓 respects the equivalence relation,
we obtain 𝑓 (𝑥) = 𝑎 and 𝑓 (𝑥) = 𝑏 and hence the desired 𝑎 = 𝑏.

Next, we define 𝑘 : Π𝑥 :𝑋𝐵([(𝑥)) by 𝑘 (𝑥) = (𝑓 (𝑥), | (𝑥, refl, refl) |). By set quotient
induction and the claim, the function 𝑘 induces a dependent map 𝑘 : Π(𝑥 ′:𝑋/≈)𝐵(𝑥′).
We then define the (nondependent) function 𝑓 : 𝑋/≈ → 𝐴 as pr1 ◦ 𝑘 . We proceed by
showing that 𝑓 ◦ [= 𝑓 . By function extensionality, it suffices to prove that we have
𝑓 ([(𝑥)) = 𝑓 (𝑥) for every 𝑥 : 𝑋 . But notice that:

𝑓 ([(𝑥)) ≡ pr1(𝑘 ([(𝑥)))
= pr1(𝑘 (𝑥)) (since 𝑘 ([(𝑥)) = 𝑘 (𝑥) because of the claim)
≡ 𝑓 (𝑥).

Finally, we wish to show that 𝑓 is the unique such function, so suppose that
𝑔 : 𝑋/≈ → 𝐴 is another function such that 𝑔 ◦ [= 𝑓 . By function extensional-
ity, it suffices to prove that 𝑔(𝑥′) = 𝑓 (𝑥′) for every 𝑥′ : 𝑋/≈, which is a subsingleton
as 𝐴 is a set. Hence, set quotient induction tells us that it is enough to show that
𝑔([(𝑥)) = 𝑓 ([(𝑥)) for every 𝑥 : 𝑋 , but this holds as both sides of the equation are
equal to 𝑓 (𝑥).

2.11. Quotients, replacement, and propositional truncations revisited 40

Remark 2.11.15 (cf. Section 3.21 of [Esc19b]). In univalent foundations, some atten-
tion is needed in phrasing unique existence, so we pause to discuss the phrasing
of Theorem 2.11.14 here. Typically, if we wish to express unique existence of an
element 𝑥 : 𝑋 satisfying 𝑃 (𝑥) for some type family 𝑃 : U → V , then we should
phrase it as is-singleton(Σ𝑥 :𝑋𝑃 (𝑥)). That is, we require that there is a unique pair
(𝑥, 𝑝) : Σ𝑥 :𝑋𝑃 (𝑥). However, if 𝑃 is subsingleton-valued, then it is equivalent to the
traditional formulation of unique existence: i.e. that there is an 𝑥 : 𝑋 with 𝑃 (𝑥)
such that every 𝑦 : 𝑋 with 𝑃 (𝑦) is equal to 𝑥 . This happens to be the situation
in Theorem 2.11.14, because of function extensionality and the fact that 𝐴 is a set.

We stress that although the set quotient increases universe levels, see Remark 2.11.8,
it does satisfy the appropriate universal property, so that resizing is not needed.

Having small set quotients is closely related to propositional resizing, as we show
now.
Proposition 2.11.16. Suppose that ∥−∥ does not increase universe levels, i.e. in the
notation of Remark 2.11.1, the function 𝐹 is the identity.

(i) If Ω-ResizingV,U holds for universesU andV , then the set quotient𝑋/≈ isU -small
for any type 𝑋 : U and any V-valued equivalence relation.

(ii) Conversely, if the set quotient 2/≈ is U-small for every V-valued equivalence
relation on 2, then Propositional-ResizingV,U holds.

Proof. (i): If we have Ω-ResizingV,U , then ΩV is U-small, so that 𝑋/≈ ≡ im(𝑒≈) is
U-small too when 𝑋 : U and ≈ is V-valued. (ii): Let 𝑃 : V be any proposition and
consider the V-valued equivalence relation 𝑥 ≈𝑃 𝑦 :≡ (𝑥 = 𝑦) ∨ 𝑃 on 2. Notice that

(2/≈𝑃) is a subsingleton ⇐⇒ 𝑃 holds,

so if 2/≈𝑃 is U-small, then so is the type is-subsingleton(2/≈𝑃) and therefore 𝑃 .

2.11.3 Propositional truncations from set quotients
Conversely, the propositional truncation arises as a particular set quotient, namely by
identifying all elements of a type. However, in order to get an exact match in terms of
back-and-forth constructions, we must pay some attention to the universes involved as
in Remark 2.11.20 below.

NB. We do not assume the availability of propositional truncations in this section.

Definition 2.11.17 (Existence of set quotients). We say that set quotients exist if for
every type 𝑋 and equivalence relation ≈ on 𝑋 , we have a set 𝑋/≈ with a universal
map [: 𝑋 → 𝑋/≈ that respects the equivalence relation such that the universal
property set out in Theorem 2.11.14 is satisfied.

Theorem 2.11.18. Any set quotient satisfies the induction principle of Lemma 2.11.11,
i.e. it is implied by the universal property of the set quotient.

41 Chapter 2. Univalent foundations

Proof. Suppose that 𝑃 : 𝑋/≈ → W is a proposition-valued type-family over the
set quotient 𝑋/≈ and that we have 𝜌 : Π𝑥 :𝑋𝑃 ([(𝑥)). We write 𝑆 :≡ Σ𝑥 ′:𝑋/≈ 𝑃 (𝑥′)
and define the map 𝑓 : 𝑋 → 𝑆 by 𝑓 (𝑥) :≡ ([(𝑥), 𝜌 (𝑥)). Note that 𝑓 respects the
equivalence relation since [does and 𝑃 is proposition-valued. Moreover, 𝑆 is a set,
because subtypes of sets are sets and the quotient 𝑋/≈ is a set by assumption. Hence,
by the universal property, 𝑓 induces a map 𝑓 : 𝑋/≈ → 𝑆 such that 𝑓 ◦ [= 𝑓 . We
claim that 𝑓 is a section of pr1 : 𝑆 → 𝑋/≈. Note that this would finish the proof,
because if we have 𝑒 : Π𝑥 ′:𝑋/≈ pr1

(
𝑓 (𝑥′)

)
= 𝑥′, then we obtain 𝑃 (𝑥′) for every 𝑥′ by

transporting pr2
(
𝑓 (𝑥′)

)
along 𝑒 (𝑥′). But 𝑓 must be a section of pr1, because we can

take both pr1 ◦ 𝑓 and id for the dashed map in the commutative diagram

𝑋 𝑋/≈

𝑋/≈
[

[

since pr1 ◦ 𝑓 ◦ [= pr1 ◦ 𝑓 = [, so pr1 ◦ 𝑓 and id must be equal by the universal
property of the set quotient.

Theorem 2.11.19. If set quotients exist, then every type has a propositional truncation.

Proof. Let 𝑋 : U be any type and consider the U0-valued equivalence relation that
identifies all elements: 𝑥 ≈1 𝑦 :≡ 1U0 . To see that 𝑋/≈1 is a subsingleton, note that
by set quotient induction it suffices to prove [(𝑥) = [(𝑦) for every 𝑥,𝑦 : 𝑋 . But
𝑥 ≈1 𝑦 for every 𝑥,𝑦 : 𝑋 , and [respects the equivalence relation, so this is indeed
the case. Now if 𝑃 : V is any subsingleton and 𝑓 : 𝑋 → 𝑃 is any map, then 𝑓 respects
the equivalence relation ≈1 on 𝑋 , simply because 𝑃 is a subsingleton. Thus, by the
universal property of the quotient, we obtain the desired map 𝑓 : 𝑋/≈1 → 𝑃 and
hence, 𝑋/≈1 has the universal property of the propositional truncation.

Remark 2.11.20. Because the set quotients constructed using the propositional trun-
cation live in higher universes, we embark on a careful comparison of universes.
Suppose that propositional truncations of types 𝑋 : U exist and that ∥𝑋 ∥ : 𝐹 (U).
Then by Remark 2.11.8, the set quotient 𝑋/≈1 in the proof above lives in the type
universe (U1 ⊔ U) ⊔ 𝐹 (U1 ⊔ U).
In particular, if 𝐹 is the identity and the propositional truncation of 𝑋 : U lives in U ,
then the quotient 𝑋/≈1 lives in U1 ⊔ U , which simplifies to U whenever U is at least
U1. In other words, the universes of ∥𝑋 ∥ and 𝑋/≈1 match up for types 𝑋 in every
universe, except the first universe U0.
If we always wish to have 𝑋/≈1 in the same universe as ∥𝑋 ∥, then we can achieve
this by assuming 𝐹 (V) :≡ U1 ⊔ V , which says that the propositional truncations stay
in the same universe, except when the type is in the first universe U0 in which case
the truncation will be in the second universe U1.

Theorem 2.11.21. All set quotients are effective, i.e. [(𝑥) = [(𝑦) implies 𝑥 ≈ 𝑦.

2.11. Quotients, replacement, and propositional truncations revisited 42

Proof. If we have set quotients, then we have propositional truncations by Theo-
rem 2.11.19 which we can use to construct effective set quotients following Sec-
tion 2.11.2. But any two set quotients of a type by an equivalence relation must be
equivalent, so the original set quotients are effective too.

2.11.4 Set replacement
In this section, we return to our running assumption that universes are closed under
propositional truncations, i.e. the metafunction 𝐹 above is assumed to be the identity.
We study the equivalence of a set replacement principle and the smallness of set
quotients using our construction of Section 2.11.2. These principles will find application
in Section 6.3.2, but are quite relevant to us in any case, as smallness of types is a central
theme in this thesis.
Definition 2.11.22 (Set replacement). The set replacement principle asserts that the
image of a map 𝑓 : 𝑋 → 𝑌 is (U ⊔ V)-small if 𝑋 is a U-small type and 𝑌 is a locally
V-small set.

In particular, if U and V are the same, then the image is U-small. The name “set
replacement” is inspired by [BBC+22, Section 2.19], but the principle presented here
differs from the one in [BBC+22] in twoways: In [BBC+22], replacement is not restricted
to maps into sets, and the universe parameters U and V are taken to be the same.
Rijke [Rij17] shows that the replacement of [BBC+22] is provable in the presence of a
univalent universe closed under pushouts.

We are going to show that set replacement is logically equivalent to having small
set quotients, where the latter means that the quotient of a type 𝑋 : U by a V-valued
equivalence relation lives in U ⊔ V .

Definition 2.11.23 (Existence of small set quotients). We say that small set quotients
exist if set quotients exists in the sense of Definition 2.11.17, and moreover, the
quotient 𝑋/≈ of a type 𝑋 : U by a V-valued equivalence relation lives in U ⊔ V .

Note that we would get small set quotients if we added set quotients as a primitive
higher inductive type. Also, if one assumes Ω-ResizingV , then the construction of set
quotients in Section 2.11.2 yields a quotient 𝑋/≈ in U ⊔ V when 𝑋 : U and ≈ is a
V-valued equivalence relation on 𝑋 .

Theorem 2.11.24. Set replacement is logically equivalent to the existence of small set
quotients.

Proof. Suppose set replacement is true and that a type 𝑋 : U and a V-valued equiv-
alence relation ≈ are given. Using the construction laid out in Section 2.11.2, we
construct a set quotient 𝑋/≈ in U ⊔ V+ as the image of a map 𝑋 → (𝑋 → ΩV). But
by propositional extensionality ΩV is locally V-small and by function extensionality
so is 𝑋 → ΩV . Hence, 𝑋/≈ is (U ⊔V)-small by set replacement, so 𝑋/≈ is equivalent
to a type 𝑌 : U ⊔ V . It is then straightforward to show that 𝑌 satisfies the properties
of the set quotient as well, finishing the proof of one implication.

43 Chapter 2. Univalent foundations

Conversely, let 𝑓 : 𝑋 → 𝑌 be a map from a U-small type to a locally V-small set.
Since 𝑋 is U-small, we have 𝑋 ′ : U such that 𝑋 ′ ≃ 𝑋 . And because 𝑌 is locally
V-small, we have a V-valued binary relation =V on 𝑌 such that (𝑦 =V 𝑦

′) ≃ (𝑦 = 𝑦′)
for every 𝑦,𝑦′ : 𝑌 . We now define the V-valued equivalence relation ≈ on 𝑋 ′ by
(𝑥 ≈ 𝑥′) :≡ (𝑓 ′(𝑥) =V 𝑓 ′(𝑥′)), where 𝑓 ′ is the composite𝑋 ′ ≃ 𝑋

𝑓
−→ 𝑌 . By assumption,

the quotient 𝑋 ′/≈ lives in U ⊔ V . But it is straightforward to work out that im(𝑓) is
equivalent to this quotient. Hence, im(𝑓) is (U ⊔ V)-small, as desired.

The left-to-right implication of the theorem above is similar to [Rij17, Corollary 5.1],
but our theorem generalises the universe parameters and restricts to maps into sets.
The latter is the reason why the converse also holds.

2.12 Indexed W-types

This final section discusses a general encoding of inductive types known asW-types,
which are due to Martin-Löf [Mar84]. The purpose of this encoding is that it allows us to
prove results about general inductive types by proving them forW-types. This is exactly
what we do in this section. Specifically, we present a criterion for having decidable
equality for a further generalisation of W-types known as indexed W-types [GH04;
AAG04; AGH+15; Sat15], which will find application in Section 5.2. The further gener-
alisation allows for inductive types with many-sorted constructors as we explain below.
But we start by defining and illustrating (nonindexed)W-types.

2.12.1 Basic definitions and examples

Definition 2.12.1 (W-type,W𝐴,𝐵 , sup). TheW-typeW𝐴,𝐵 specified by a type 𝐴 : U
and type family 𝐵 : 𝐴→ V is the inductive type with a single constructor

sup : Π𝑎:𝐴
((
𝐵(𝑎) →W𝐴,𝐵

)
→W𝐴,𝐵

)
.

We postulate thatW𝐴,𝐵 lives in the universe U ⊔ V .

Remark 2.12.2 (The induction principle of a W-type). Spelling out the induction
principle of W𝐴,𝐵 , it reads: for every 𝑌 : W𝐴,𝐵 → T , then to prove 𝑌 (𝑤) for every
𝑤 : W𝐴,𝐵 , it suffices to prove that for any 𝑎 : 𝐴 and 𝑓 : 𝐵(𝑎) → W𝐴,𝐵 satisfying
𝑌 (𝑓 (𝑏)) for every 𝑏 : 𝐵(𝑎) (the “induction hypothesis”), we have 𝑌 (sup(𝑎, 𝑓)).

The elements of a W-type W𝐴,𝐵 can be thought of as some kind of well-founded
trees, hence the name W-type, but we prefer another viewpoint. We think of the type
𝐴 in the definition above as a type of labels for constructors, while 𝐵(𝑎) encodes the
arity of the constructor labelled by 𝑎.1 It is instructive to see how W-types can encode
the type of natural numbers.

1The name sup does not make much sense from this point of view, but it is the traditional name in
the existing literature.

2.12. IndexedW-types 44

Example 2.12.3 (The type of natural numbers as aW-type). Following the above
description, we define 𝐴 :≡ 2, since N has two constructors. Furthermore, we put
𝐵(0) = 0, since the zero constructor takes no arguments, while 𝐵(1) = 1, because
succ takes one recursive argument.
We recursively define functions back and forth between the types as follows:

𝜙 : N→W𝐴,𝐵

zero ↦→ sup(0, unique-from-0),
succ(𝑛) ↦→ sup(1, _★ . 𝜙 (𝑛)),

𝜓 : W𝐴,𝐵 → N
sup(0, 𝑓) ↦→ zero,

sup(1, 𝑓) ↦→ succ(𝑓 (★)),

where unique-from-0 is the unique map from 0 toW𝐴,𝐵 .
Using the induction principles of N and W𝐴,𝐵 it is then straightforward to prove that
𝜙 and𝜓 are inverses. Thus, the types N andW𝐴,𝐵 are equivalent.

Another example that will come in useful later when studying the programming
language PCF is the encoding of PCF types.

Example 2.12.4 (The PCF types as a W-type). The PCF types are inductively gener-
ated:] is a PCF type, known as the base type and if 𝜎 and 𝜏 are PCF types, then we
have another PCF type, called the (PCF) function type and denoted by 𝜎 ⇒ 𝜏 .
We can encode this inductive type as aW-type as follows. Take 𝐴 :≡ 2 since we have
two constructors and put 𝐵(0) = 0, since the base type needs no arguments, while
𝐵(1) = 2, because to construct a PCF function type we need to be given two PCF
types. The maps back and forth the inductive types are given by

𝜙 : PCF-Types→W𝐴,𝐵,

] ↦→ sup(0, unique-from-0),
𝜎 ⇒ 𝜏 ↦→ sup(1, 𝑔),

𝜓 : W𝐴,𝐵 → PCF-Types
sup(0, 𝑓) ↦→],

sup(1, 𝑓) ↦→ 𝜓 (𝑓 (0)) ⇒ 𝜓 (𝑓 (1)),

with 𝑔 : 2 → W𝐴,𝐵 given by 𝑔(0) :≡ 𝜙 (𝜎) and 𝑔(1) :≡ 𝜙 (𝜏). Using the induction
principles of PCF-Types and W𝐴,𝐵 it is then straightforward to prove that 𝜙 and 𝜓
are inverses. Thus, the types PCF-Types andW𝐴,𝐵 are equivalent.

We now generalise W-types to indexed W-types which encode inductively defined
families over some type 𝐼 .

Definition 2.12.5 (IndexedW-type,W𝑠,𝑡 , sup). Let 𝐴 and 𝐼 be types and let 𝐵 be a
type family over 𝐴. Suppose we have 𝑡 : 𝐴→ 𝐼 and 𝑠 : (Σ𝑎:𝐴𝐵(𝑎)) → 𝐼 . The indexed
W-type W𝑠,𝑡 specified by 𝑠 and 𝑡 is the inductive type family over 𝐼 generated by the
constructor

sup :
∏
𝑎:𝐴

((
Π𝑏:𝐵(𝑎)W𝑠,𝑡 (𝑠 (𝑎, 𝑏))

)
→W𝑠,𝑡 (𝑡 (𝑎))

)
.

If we have 𝐼 : U , 𝐴 : V and 𝐵 : W , then we assumeW𝑠,𝑡 (𝑖) : V ⊔W for every 𝑖 : 𝐼 .

Remark 2.12.6 (The induction principle of an indexedW-type). We spell out the induc-
tion principle for indexedW-types. If we have 𝑌 : Π𝑖:𝐼

(
W𝑠,𝑡 (𝑖) → T

)
, then to prove

45 Chapter 2. Univalent foundations

Π𝑖:𝐼Π𝑤 :W𝑠,𝑡 (𝑖)𝑌 (𝑖,𝑤), it suffices to show that for any 𝑎 : 𝐴 and 𝑓 : Π𝑏:𝐵(𝑎)W𝑠,𝑡 (𝑠 (𝑎, 𝑏))
satisfying 𝑌 (𝑠 (𝑎, 𝑏), 𝑓 (𝑏)) for every 𝑏 : 𝐵(𝑎) (the induction hypothesis), we have a
term of type 𝑌 (𝑡 (𝑎), sup(𝑎, 𝑓)).

That this is indeed a generalisation of W-types is witnessed by the following result.

Proposition 2.12.7. Every W-type is equivalent to an indexedW-type over 1.

Proof. Given aW-type with parameters 𝐴 and 𝐵, we define the functions 𝑡 : 𝐴→ 1
and 𝑠 : (Σ𝑎:𝐴𝐵(𝑎)) → 1 to be the unique maps to 1. It is then not hard to see that
W𝐴,𝐵 ≃W𝑠,𝑡 (★) ≃ Σ𝑢:1W𝑠,𝑡 (𝑢).

As with ordinaryW-types, we think of 𝐴 as a type of (labels of) constructors and of
𝐵 as encoding the arity of the constructors. But in the indexed case each constructor
𝑎 : 𝐴 has a sort given by 𝑡 (𝑎) : 𝐼 and the arguments 𝑏 : 𝐵(𝑎) to a constructor 𝑎 : 𝐴 also
have sorts given by 𝑠 (𝑎, 𝑏).2 Again, it is illuminating to look at an example.

Example 2.12.8 (A subset of PCF as an indexed W-type). In this example, we define
the terms of a very basic typed programming language, using the PCF types of
Example 2.12.4. This will be a subset of the PCF programming language studied
in Section 5.2.1.
The type family T : PCF-Types→ U0 is inductively defined as:

(i) zero is a term of type] (i.e. zero : T(]));
(ii) succ is a term of type] ⇒];
(iii) for every two PCF types 𝜎 and 𝜏 , given a term 𝑠 of type 𝜎 ⇒ 𝜏 and a term 𝑡

of type 𝜎 , we have a term of type 𝜏 denoted by juxtaposition 𝑠𝑡 and called 𝑠
applied to 𝑡 .

Besides application our only other terms are zero and succ, so the fact that our
application defined for general types doesn’t get us verymuch, but it helps to illustrate
indexedW-types. For the indexedW-type, take 𝐼 to be the type of PCF types and put
𝐴 :≡ 2 + (𝐼 × 𝐼). Define 𝐵 : 𝐴→ U0 by

𝐵(inl(0)) :≡ 𝐵(inl(1)) :≡ 0, and
𝐵(inr(𝜎, 𝜏)) :≡ 2.

Finally, define 𝑡 by

𝑡 (inl(0)) :≡],
𝑡 (inl(1)) :≡] ⇒], and

𝑡 (inr(𝜎, 𝜏)) :≡ 𝜏 ;

and 𝑠 by

𝑠 (inr(𝜎, 𝜏), 0) :≡ 𝜎 ⇒ 𝜏, and
𝑠 (inr(𝜎, 𝜏), 1) :≡ 𝜎 ;

2The names 𝑠 and 𝑡 stand for source and target respectively.

2.12. IndexedW-types 46

on the other elements 𝑠 is defined as the unique function from 0.
It is then tedious, but straightforward to define, by induction on PCF types, maps
between T(𝜎) and W𝑠,𝑡 (𝜎) for every PCF type 𝜎 and prove that they are inverses,
establishing that T(𝜎) and W𝑠,𝑡 (𝜎) are equivalent for every PCF type 𝜎 .

2.12.2 IndexedW-types with decidable equality
We wish to isolate some conditions on the parameters of an indexedW-type that are
sufficient to conclude that an indexedW-type has decidable equality. We first need a
few definitions before we can state the theorem.
Definition 2.12.9 (Π-compactness; [Esc+, TypeTopology.CompactTypes]). A type
𝑋 is Π-compact when every type family 𝑌 over 𝑋 satisfies: if 𝑌 (𝑥) is decidable for
every 𝑥 : 𝑋 , then so is the dependent product Π𝑥 :𝑋𝑌 (𝑥).

Example 2.12.10. The empty type 0 is vacuously Π-compact. The unit type 1 is
also easily seen to be Π-compact. There are also interesting examples of infinite
types that are Π-compact, such as N∞, the one-point compactification of the natural
numbers [Esc19a].

Lemma 2.12.11 (cf. [Esc+, TypeTopology.CompactTypes]). The Π-compact types are
closed under binary coproducts.

Proof. Let 𝑋 and 𝑌 be Π-compact types. Suppose 𝐹 is a type family over 𝑋 + 𝑌 such
that 𝐹 (𝑧) is decidable for every 𝑧 : 𝑋 +𝑌 . We must show that Π𝑧:𝑋+𝑌𝐹 (𝑧) is decidable.
Define the type family 𝐹𝑋 over 𝑋 by 𝐹𝑋 (𝑥) :≡ 𝐹 (inl(𝑥)) and the type family 𝐹𝑌
over 𝑌 by 𝐹𝑌 (𝑦) :≡ 𝐹 (inr(𝑦)). By our assumption on 𝐹 , the types 𝐹𝑋 (𝑥) and 𝐹𝑌 (𝑦)
are decidable for every 𝑥 : 𝑋 and 𝑦 : 𝑌 . Hence, since 𝑋 and 𝑌 are assumed to be
Π-compact, the dependent products Π𝑥 :𝑋𝐹𝑋 (𝑥) and Π𝑦:𝑌𝐹𝑌 (𝑦) are decidable.
Finally, Π𝑧:𝑋+𝑌𝐹 (𝑧) is logically equivalent to (Π𝑥 :𝑋𝐹𝑋 (𝑥)) ×

(
Π𝑦:𝑌𝐹𝑌 (𝑦)

)
. Since the

product of two decidable types is again decidable, an application of Lemma 2.7.11
now finishes the proof.

We are now in position to state the general theorem about decidable equality on
indexedW-types. We will use this theorem in Section 5.2 to prove that the syntax of
the typed programming language PCF has decidable equality.

Theorem 2.12.12. An indexed W-type W𝑠,𝑡 specified by parameters 𝑠 : 𝐴 → 𝐼 and
𝑡 : (Σ𝑎:𝐴𝐵(𝑎)) → 𝐼 has decidable equality at every 𝑖 : 𝐼 if

(i) 𝐼 is a set,
(ii) 𝐴 has decidable equality, and
(iii) 𝐵(𝑎) is Π-compact for every 𝑎 : 𝐴.

Corollary 2.12.13. A W-type W𝐴,𝐵 specified by a type 𝐴 and a type family 𝐵 over
𝐴 has decidable equality if 𝐴 has decidable equality and 𝐵(𝑎) is Π-compact for every
𝑎 : 𝐴.

https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.TypeTopology.CompactTypes.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.TypeTopology.CompactTypes.html

47 Chapter 2. Univalent foundations

Proof. By Proposition 2.12.7 the type W𝐴,𝐵 is an indexed W-type over 𝐼 :≡ 1 which is
a set.

The proof of Theorem 2.12.12 is quite technical, so we postpone it until Section 2.12.3.
Instead, we next describe how to apply the theorem to prove that the PCF types and
the type family from Example 2.12.8 have decidable equality.

Proposition 2.12.14. The type family from Example 2.12.8 has decidable equality.

Proof. We apply Theorem 2.12.12 with parameters 𝑡 : 𝐴→ 𝐼 and 𝑠 : (Σ𝑎:𝐴𝐵(𝑎)) → 𝐼

for the indexed W-type defined in Example 2.12.8. By using Example 2.12.10 and
Lemma 2.12.11 we see that 𝐵(𝑎) is Π-compact for every 𝑎 : 𝐴. Further, note that
𝐴 ≡ 𝐼 has decidable equality if 𝐼 does. So it remains to prove that 𝐼 , the type of PCF
types, has decidable equality. But this follows from Corollary 2.12.13, because by
Example 2.12.4 we can encode PCF types as a (nonindexed) W-type with parameters
𝐴 :≡ 2 and 𝐵 : 𝐴 → U0 given by 𝐵(0) :≡ 0 and 𝐵(1) :≡ 2, and 𝐴 has decidable
equality while 𝐵(𝑎) is Π-compact for every 𝑎 : 𝐴 because of Example 2.12.10 and
Lemma 2.12.11.

2.12.3 Proving indexedW-types to have decidable equality
In this section we prove Theorem 2.12.12 by deriving it as a corollary of another result,
namely Theorem 2.12.15 below. This result seems to have been first established by
Jasper Hugunin, who reported on it in a post on the Homotopy Type Theory mailing
list [Hug17a]. Our proof of Theorem 2.12.15 is a simplified written-up account of
Hugunin’s Coq code [Hug17b, FiberProperties.v].

Theorem 2.12.15 (Jasper Hugunin). An indexedW-typeW𝑠,𝑡 specified by 𝑠 : 𝐴→ 𝐼

and 𝑡 : (Σ𝑎:𝐴𝐵(𝑎)) → 𝐼 has decidable equality at every 𝑖 : 𝐼 if
(i) 𝐵(𝑎) is Π-compact for every 𝑎 : 𝐴, and
(ii) the fibres of 𝑡 at every 𝑖 : 𝐼 all have decidable equality.

Let us see how to obtain Theorem 2.12.12 from Theorem 2.12.15.
Proof of Theorem 2.12.12 (using Theorem 2.12.15). Suppose that𝐴 has decidable equal-
ity and 𝐼 is a set. We are to show that the fibre of 𝑡 over 𝑖 has decidable equality for
every 𝑖 : 𝐼 . So suppose we have (𝑎, 𝑝) and (𝑎′, 𝑝′) in the fibre of 𝑡 over 𝑖 . Since 𝐴 has
decidable equality, we can decide whether 𝑎 and 𝑎′ are equal or not. If they are not,
then certainly (𝑎, 𝑝) ≠ (𝑎′, 𝑝′). If they are, then we claim that the dependent pairs
(𝑎, 𝑝) and (𝑎′, 𝑝′) are also equal. If 𝑒 : 𝑎 = 𝑎′ is the supposed equality, then it suffices
to show that transport_𝑥 :𝐴.𝑡 (𝑥)=𝑖 (𝑒, 𝑝) = 𝑝′, but both these elements are identifications
in 𝐼 and 𝐼 is a set, so they must be equal.

We now embark on a proof of Theorem 2.12.15. For the remainder of this section, let
us fix types 𝐴 and 𝐼 , a type family 𝐵 over 𝐴 and maps 𝑡 : 𝐴→ 𝐼 and 𝑠 : (Σ𝑎:𝐴𝐵(𝑎)) → 𝐼 .

We do not prove the theorem directly. The statement makes it impossible to assume
two elements 𝑢, 𝑣 : W𝑠,𝑡 (𝑖) and proceed by induction on both 𝑢 and 𝑣 . Instead, we will

2.12. IndexedW-types 48

state and prove a more general result that is amenable to a proof by induction. But first,
we need additional general lemmas and some definitions.

Lemma 2.12.16. If 𝑋 is a set, then the right pair function of any type family 𝑌 over
𝑋 is left-cancellable, in the following sense: if (𝑥,𝑦) = (𝑥,𝑦′) as elements of Σ𝑎:𝑋𝑌 (𝑎),
then 𝑦 = 𝑦′.

Proof. Suppose 𝑋 is a set, 𝑥 : 𝑋 and 𝑦,𝑦′ : 𝑌 (𝑥) with 𝑒 : (𝑥,𝑦) = (𝑥,𝑦′). From 𝑒 , we
obtain 𝑒1 : 𝑥 = 𝑥 and 𝑒2 : transport𝑌 (𝑒1, 𝑦) = 𝑦′. Since 𝑋 is a set, we must have that
𝑒1 = refl𝑥 , so that 𝑒2 yields 𝑦 ≡ transport𝑌 (refl𝑥 , 𝑦) = 𝑦′, as desired.

Definition 2.12.17 (Subtrees, sub𝑖). For each 𝑖 : 𝐼 , define

sub𝑖 : W𝑠,𝑡 (𝑖) →
∑︁

𝑝:fib𝑡 (𝑖)

∏
𝑏:𝐵(pr1 (𝑝))

W𝑠,𝑡 (𝑠 (pr1(𝑝), 𝑏))

by induction as
sub𝑡 (𝑎) (sup(𝑎, 𝑓)) :≡

((
𝑎, refl𝑡 (𝑎)

)
, 𝑓
)
.

For notational convenience, we will omit the subscript of sub.

The name sub comes from subtrees, thinking of the elements of a W-type as a
well-founded trees.
Lemma 2.12.18. If the fibre of 𝑡 over 𝑖 has decidable equality for every 𝑖 : 𝐼 , then
sup(𝑎, 𝑓) = sup(𝑎,𝑔) implies 𝑓 = 𝑔 for every 𝑎 : 𝐴 and 𝑓 , 𝑔 : Π𝑏:𝐵(𝑎)W𝑠,𝑡 (𝑠 (𝑎, 𝑏)).

Proof. Suppose sup(𝑎, 𝑓) = sup(𝑎,𝑔). Then((
𝑎, refl𝑡 (𝑎)

)
, 𝑓
)
≡ sub(sup(𝑎, 𝑓)) = sub(sup(𝑎,𝑔)) ≡

((
𝑎, refl𝑡 (𝑎)

)
, 𝑔
)
.

As fib𝑡 (𝑖) is assumed to be decidable, it is a set by Hedberg’s theorem (Theorem 2.7.12).
Hence 𝑓 = 𝑔 by Lemma 2.12.16.

Definition 2.12.19 (to-fib𝑖). For every 𝑖 : 𝐼 , we define to-fib𝑖 : W𝑠,𝑡 (𝑖) → fib𝑡 (𝑖)
inductively by

to-fib𝑡 (𝑎) (sup(𝑎, 𝑓)) :≡ (𝑎, refl𝑡 (𝑎)).
In future use, we omit the subscript of to-fib.

Lemma 2.12.20. For 𝑖, 𝑗 : 𝐼 with a path 𝑝 : 𝑖 = 𝑗 and𝑤 : W𝑠,𝑡 (𝑖), we have the following
equality:

to-fib(transportW𝑠,𝑡 (𝑝,𝑤)) = (pr1(to-fib(𝑤)), pr2(to-fib(𝑤)) • 𝑝).

Proof. By path induction on 𝑝 .

We are now in position to state and prove the lemma from which we will derive
Theorem 2.12.15.

49 Chapter 2. Univalent foundations

Lemma 2.12.21. Suppose that 𝐵(𝑎) is Π-compact for every 𝑎 : 𝐴 and that the fibre of
𝑡 over each 𝑖 : 𝐼 has decidable equality. For any 𝑖 : 𝐼 , 𝑢 : W𝑠,𝑡 (𝑖), 𝑗 : 𝐼 , path 𝑝 : 𝑖 = 𝑗 and
𝑣 : W𝑠,𝑡 (𝑗), the type

transportW𝑠,𝑡 (𝑝,𝑢) = 𝑣
is decidable.

Proof. Suppose 𝑖 : 𝐼 and 𝑢 : W𝑠,𝑡 (𝑖). We proceed by induction on 𝑢 and so we assume
that 𝑢 ≡ sup(𝑎, 𝑓). The induction hypothesis reads:∏

𝑏:𝐵(𝑎)

∏
𝑗 ′:𝐼

∏
𝑝′:𝑠 (𝑎,𝑏)= 𝑗 ′

∏
𝑣 ′:W𝑠,𝑡 (𝑗 ′)

(transportW𝑠,𝑡 (𝑝′, 𝑓 (𝑏)) = 𝑣′) is decidable . (∗)

Suppose we have 𝑗 : 𝐼 with path 𝑝 : 𝑡 (𝑎) = 𝑗 and 𝑣 : W𝑠,𝑡 (𝑗). By induction, we may
assume that 𝑣 ≡ sup(𝑎′, 𝑓 ′). We are tasked to show that

transportW𝑠,𝑡 (𝑝, sup(𝑎, 𝑓)) = sup(𝑎′, 𝑓 ′) (†)

is decidable, where 𝑝 : 𝑡 (𝑎) = 𝑡 (𝑎′).
By assumption the fibre of 𝑡 over 𝑡 (𝑎′) has decidable equality. Hence, we can decide
if
(
𝑎′, refl𝑡 (𝑎′)

)
and (𝑎, 𝑝) are equal or not. Suppose first that the pairs are not equal.

We claim that in this case ¬(†). For suppose we had 𝑒 : (†), then

apto-fib(𝑒) : to-fib(transportW𝑠,𝑡 (𝑝, sup(𝑎, 𝑓))) = to-fib(sup(𝑎′, 𝑓 ′)) .

By definition, the right hand side is (𝑎′, refl𝑡 (𝑎′)). By Lemma 2.12.20, the left hand side
is equal to (𝑎, refl𝑡 (𝑎) •𝑝) which is in turn equal to (𝑎, 𝑝), contradicting our assumption
that

(
𝑎′, refl𝑡 (𝑎′)

)
and (𝑎, 𝑝) were not equal.

Now suppose that
(
𝑎′, refl𝑡 (𝑎′)

)
= (𝑎, 𝑝). From this, we obtain paths 𝑒1 : 𝑎′ = 𝑎 and

𝑒2 : transport_𝑥 :𝐴.𝑡 (𝑥)=𝑡 (𝑎′) (𝑒1, refl𝑡 (𝑎′)
)
= 𝑝 . By path induction, we may assume

𝑒1 ≡ refl𝑎′ , so that from 𝑒2 we obtain an identification

𝜌 : refl𝑡 (𝑎′) = 𝑝.

Using this identification, we see that the left hand side of (†) is equal to sup(𝑎′, 𝑓), so
we are left to show that

sup(𝑎′, 𝑓) = sup(𝑎′, 𝑓 ′)
is decidable. By induction hypothesis (∗) and the fact that𝑎 ≡ 𝑎′, the type 𝑓 (𝑏) = 𝑓 ′(𝑏)
is decidable for every 𝑏 : 𝐵(𝑎′). Since 𝐵(𝑎′) is Π-compact, this implies that the type(
Π𝑏:𝐵(𝑎′) 𝑓 (𝑏) = 𝑓 ′(𝑏)

)
is decidable. Suppose first that Π𝑏:𝐵(𝑎′) 𝑓 (𝑏) = 𝑓 ′(𝑏). Function

extensionality then yields 𝑓 = 𝑓 ′, so that sup(𝑎′, 𝑓) = sup(𝑎′, 𝑓 ′). On the other
hand, suppose ¬

(
Π𝑏:𝐵(𝑎′) 𝑓 (𝑏) = 𝑓 ′(𝑏)

)
. We claim that the elements sup(𝑎′, 𝑓) and

sup(𝑎′, 𝑓 ′) cannot be equal. For if they were equal, then Lemma 2.12.18 would yield
𝑓 = 𝑓 ′, contradicting our assumption that ¬

(
Π𝑏:𝐵(𝑎) 𝑓 (𝑏) = 𝑓 ′(𝑏)

)
, which finishes the

proof.

The proof of Theorem 2.12.15 now follows readily.

2.13. Notes 50

Proof of Theorem 2.12.15. Let 𝑖 : 𝐼 and 𝑢, 𝑣 : W𝑠,𝑡 (𝑖). Taking 𝑗 :≡ 𝑖 and 𝑝 :≡ refl𝑖 in
Lemma 2.12.21, we see that 𝑢 = 𝑣 is decidable, as desired.

2.13 Notes

Our discussion of type universes in Section 2.1 closely follows that of [Esc21, Section 2.1].
Our treatment of univalent foundations in Sections 2.2–2.8 is our own, but based on
the expositions in [Uni13] and [Esc19b]. The notion of a (locally) U-small type appears
in [Rij17], but the lemmas in Section 2.9 involving retracts are our original results and
were included in our paper [dJE21b] and its extended version [dJE22a].

Section 2.11.1 closely follows the exposition in [Esc19b, Section 3.34.1], while Sec-
tion 2.11.2 is based on [Esc19b, Section 3.37]. Both Sections 2.11.3 and 2.11.4 are original
contributions. Section 2.11 as a whole was included in our work [dJE21b; dJE22a].

Finally,W-types, studied in Section 2.12, were introduced by Per Martin-Löf [Mar84]
and the main theorem presented in that section is, as mentioned before, due to Jasper
Hugunin [Hug17b; Hug17a]. This result was also included in our paper [dJon19b] with
an application to semidecidability questions pertaining to the Scott model of PCF (as
discussed in Section 5.2 of this thesis).

Chapter 3

Basic domain theory

Domain theory [AJ94] is a well-established subject in mathematics and theoretical
computer science with applications to programming language semantics [Sco72; Sco93;
Plo77], higher-type computability [LN15], topology, andmore [GHK+03]. In this chapter
we introduce basic domain theory within the context of constructive and predicative
univalent foundations. Specifically, we discuss

Section 3.2: (pointed) dcpos: the basic objects of domain theory,
Section 3.3: Scott continuous maps: morphism between dcpos,
Section 3.4: the lifting of a set and of a dcpo to get the free pointed dcpo,
Section 3.5: products and exponentials of dcpos, and
Section 3.6: bilimits of dcpos.

The basic theory will find application in the semantics of programming languages, as
laid out in Chapter 5. We offer the following overture in preparation of our development,
especially if the reader is familiar with domain theory in a classical, set-theoretic setting.

3.1 Introduction

The basic object of study in domain theory is that of a directed complete poset (dcpo). In
(impredicative) set-theoretic foundations, a dcpo can be defined to be a poset that has
least upper bounds of all directed subsets. A naive translation of this to our foundation
would be to proceed as follows. Define a poset in a universe U to be a type 𝑃 : U
with a reflexive, transitive and antisymmetric relation − ⊑ − : 𝑃 × 𝑃 → U . Since we
wish to consider posets and not categories we require that the values 𝑝 ⊑ 𝑞 of the
order relation are subsingletons. Then we could say that the poset (𝑃, ⊑) is directed
complete if every directed family 𝐼 → 𝑃 with indexing type 𝐼 : U has a least upper bound
(supremum). The problem with this definition is that there are no interesting examples
in our constructive and predicative setting. For instance, assume that the poset 2 with
two elements 0 ⊑ 1 is directed complete, and consider a proposition 𝐴 : U and the
directed family 𝐴 + 1→ 2 that maps the left component to 0 and the right component

3.2. Directed complete posets 52

to 1. By case analysis on its hypothetical supremum (Definition 3.2.6), we conclude that
the negation of𝐴 is decidable. This amounts to weak excluded middle (Definition 2.7.19)
which is constructively unacceptable.

To try to get an example, we may move to the poset ΩU0 of propositions in the
universe U0, ordered by implication. This poset does have all suprema of families
𝐼 → ΩU0 indexed by types 𝐼 in the first universe U0, given by existential quantification.
But if we consider a directed family 𝐼 → ΩU0 with 𝐼 in the same universe as ΩU0 lives,
namely the second universe U1, existential quantification gives a proposition in the
second universe U1 and so doesn’t give its supremum. In this example, we get a poset
such that

(i) the carrier lives in the universe U1,
(ii) the order has truth values in the universe U0, and
(iii) suprema of directed families indexed by types in U0 exist.
Regarding a poset as a category in the usual way, we have a large, but locally

small, category with small filtered colimits (directed suprema). This is typical of all the
concrete examples that we will consider, such as the dcpos in the Scott model of PCF
(Section 5.2) and Scott’s 𝐷∞ model of the untyped _-calculus (Section 5.1). We may say
that the predicativity restriction increases the universe usage by one. However, for the
sake of generality, we formulate our definition of dcpo with the following universe
conventions:

(i) the carrier lives in a universe U ,
(ii) the order has truth values in a universe T , and
(iii) suprema of directed families indexed by types in a universe V exist.

So our notion of dcpo has three universe parameters U ,V and T . We will say that the
dcpo is locally small when T is not necessarily the same as V , but the order has V-small
(recall Definition 2.9.1) truth values. Most of the time we mention V explicitly and leave
U and T to be understood from the context.

3.2 Directed complete posets

We introduce the basic object of domain theory: a directed complete poset. We carefully
explain our use of the propositional truncation in our definitions and, as mentioned
above, the type universes involved.

Definition 3.2.1 (Preorder, reflexivity, transitivity). A preorder (𝑃, ⊑) is a type 𝑃 : U
together with a proposition-valued binary relation ⊑ : 𝑃 → 𝑃 → ΩT satisfying

(i) reflexivity: for every 𝑝 : 𝑃 , we have 𝑝 ⊑ 𝑝 , and
(ii) transitivity: for every 𝑝, 𝑞, 𝑟 : 𝑃 , if 𝑝 ⊑ 𝑞 and 𝑞 ⊑ 𝑟 , then 𝑝 ⊑ 𝑟 .

Definition 3.2.2 (Poset, antisymmetry). A poset is a preorder (𝑃, ⊑) that is antisym-
metric: if 𝑝 ⊑ 𝑞 and 𝑞 ⊑ 𝑝 , then 𝑝 = 𝑞 for every 𝑝, 𝑞 : 𝑃 .

Lemma 3.2.3. If (𝑃, ⊑) is a poset, then 𝑃 is a set.

53 Chapter 3. Basic domain theory

Proof. For every 𝑝, 𝑞 : 𝑃 , the composite

(𝑝 = 𝑞)
by reflexivity
−−−−−−−−−→ (𝑝 ⊑ 𝑞) × (𝑞 ⊑ 𝑝)

by antisymmetry
−−−−−−−−−−−−→ (𝑝 = 𝑞)

is constant, since (𝑝 ⊑ 𝑞) × (𝑞 ⊑ 𝑝) is a proposition. Hence, by Lemma 2.3.13 it
follows that 𝑃 must be a set.

From now on, we will simply write “let 𝑃 be a poset” leaving the partial order ⊑
implicit. We will often use the symbol ⊑ for partial orders on different carriers when it
is clear from the context which one it refers to.
Definition 3.2.4 ((Semi)directed family). A family 𝛼 : 𝐼 → 𝑃 of elements of a poset
𝑃 is semidirected if whenever we have 𝑖, 𝑗 : 𝐼 , there exists some 𝑘 : 𝐼 such that
𝛼𝑖 ⊑ 𝛼𝑘 and 𝛼 𝑗 ⊑ 𝛼𝑘 . We frequently use the shorthand 𝛼𝑖, 𝛼 𝑗 ⊑ 𝛼𝑘 to denote the
latter requirement. Such a family is directed if it is semidirected and its domain 𝐼 is
inhabited.

The name “semidirected” matches Taylor’s terminology [Tay99, Definition 3.4.1].

Remark 3.2.5. Note our use of the propositional truncation in defining when a family
is directed. To make this explicit, we write out the definition in type-theoretic syntax:
a family 𝛼 : 𝐼 → 𝑃 is directed if

(i) we have an element of ∥𝐼 ∥, and
(ii) Π𝑖, 𝑗 :𝐼

Σ𝑘 :𝐼 (𝛼𝑖 ⊑ 𝛼𝑘) ×
(
𝛼 𝑗 ⊑ 𝛼𝑘

).
The use of the propositional truncation ensures Item (i) and Item (ii) are propositions
and hence that being (semi)directed is a property of a family. Item (ii) without
truncating would be asking us to assign a chosen 𝑘 : 𝐼 for every 𝑖, 𝑗 : 𝐼 instead.

Following Scott [Sco70], we sometimes think of the elements of 𝑃 as pieces of
information and 𝑝 ⊑ 𝑞 as expressing that 𝑞 contains more information or refines 𝑝 .
With this viewpoint, a directed family is a collection of pieces of information that are
consistent in the sense that any two pieces of information can be refined to a third
one that is a member of the collection. In the next definition we ask for such families
to have least upper bounds, which is like saying that such consistent collections of
information can be patched together to a piece of information that refines everything
in the family.

Definition 3.2.6 ((Least) upper bound, supremum). An element 𝑥 of a poset 𝑃 is an
upper bound of a family 𝛼 : 𝐼 → 𝑃 if 𝛼𝑖 ⊑ 𝑥 for every 𝑖 : 𝐼 . It is a least upper bound
of 𝛼 if it is an upper bound, and whenever 𝑦 : 𝑃 is an upper bound of 𝛼 , then 𝑥 ⊑ 𝑦.
By antisymmetry, a least upper bound is unique if it exists, so in this case we will
speak of the least upper bound of 𝛼 , or sometimes the supremum of 𝛼 .

Definition 3.2.7 (V-directed complete poset, V-dcpo,
⊔
𝛼 ,

⊔
𝑖:𝐼 𝛼𝑖). For a universe V ,

a V-directed complete poset (or V-dcpo, for short) is a poset 𝐷 such that every directed
family 𝛼 : 𝐼 → 𝐷 with 𝐼 : V has a supremum in 𝐷 that we denote by

⊔
𝛼 or

⊔
𝑖:𝐼 𝛼𝑖 .

3.2. Directed complete posets 54

Remark 3.2.8. Explicitly, we ask for an element of the type

Π𝐼 :VΠ𝛼 :𝐼→𝐷 (is-directed𝛼 → Σ𝑥 :𝐷 (𝑥 is-sup-of 𝛼)),

where (𝑥 is-sup-of 𝛼) is the type expressing that 𝑥 is the supremum of 𝛼 . Even
though we used Σ and not ∃ in this expression, this type is still a proposition: By
Theorem 2.3.17, it suffices to prove that the type Σ𝑥 :𝐷 (𝑥 is-sup-of 𝛼) is a proposition.
So suppose that we have 𝑥,𝑦 : 𝐷 with 𝑝 : 𝑥 is-sup-of 𝛼 and 𝑞 : 𝑦 is-sup-of 𝛼 . Being
the supremum of a family is a property because the partial order is proposition-valued.
Hence, by Lemma 2.4.8, to prove that (𝑥, 𝑝) = (𝑦, 𝑞), it suffices to prove that 𝑥 = 𝑦.
But this follows from antisymmetry and the fact that 𝑥 and 𝑦 are both suprema of 𝛼 .

We will sometimes leave the universe V implicit, and simply speak of a dcpo. On
other occasions, we need to carefully keep track of universe levels. To this end, we
make the following definition.

Definition 3.2.9 (V-DCPOU ,T). Let V , U and T be universes. We write V-DCPOU ,T
for the type of V-dcpos with carrier in U and order taking values in T .

Remark 3.2.10. In particular, it is very important to keep track of the universe parame-
ters of the lifting (Section 3.4) and of exponentials (Section 3.5) in order to ensure that
it is possible to construct the Scott model of PCF and Scott’s 𝐷∞ in our predicative
setting, as we do in Chapter 5.

In many examples and applications, we require our dcpos to have a least element.

Definition 3.2.11 (Pointed dcpo). A dcpo 𝐷 is pointed if it has a least element which
we will denote by ⊥𝐷 , or simply ⊥.

Definition 3.2.12 (Local smallness). A V-dcpo 𝐷 is locally small if 𝑥 ⊑ 𝑦 is V-small
(recall Definition 2.9.1) for every 𝑥,𝑦 : 𝐷 .

Lemma 3.2.13. A V-dcpo 𝐷 is locally small if and only if we have ⊑V : 𝐷 → 𝐷 → V
such that 𝑥 ⊑ 𝑦 holds precisely when 𝑥 ⊑V 𝑦 does.

Proof. The V-dcpo 𝐷 is locally small exactly when we have an element of

Π𝑥,𝑦:𝐷Σ𝑇 :V (𝑇 ≃ 𝑥 ⊑ 𝑦) .

But this type is equivalent to

Σ𝑅:𝐷→𝐷→VΠ𝑥,𝑦:𝐷 (𝑅(𝑥,𝑦) ≃ 𝑥 ⊑ 𝑦)

by Lemma 2.6.2.

Nearly all examples of V-dcpos in this thesis will be locally small. We now introduce
two fundamental examples of dcpos: the type of subsingletons and powersets.

55 Chapter 3. Basic domain theory

Example 3.2.14 (The type of subsingletons as a pointed dcpo). For any type uni-
verse V , the type ΩV of subsingletons in V is a poset if we order the propositions
by implication. Note that antisymmetry holds precisely because of propositional
extensionality (Definition 2.3.20). Moreover, ΩV has a least element, namely 0V , the
empty type in V . We also claim that ΩV has suprema for all (not necessarily directed)
families 𝛼 : 𝐼 → ΩV with 𝐼 : V . Given such a family 𝛼 , its least upper bound is given
by ∃𝑖:𝐼 𝛼𝑖 . It is clear that this is indeed an upper bound for 𝛼 . And if 𝑃 is a subsingleton
such that 𝛼𝑖 ⊑ 𝑃 for every 𝑖 : 𝐼 , then to show that (∃𝑖:𝐼 𝛼𝑖) → 𝑃 it suffices to construct
to construct a map (Σ𝑖:𝐼 𝛼𝑖) → 𝑃 as 𝑃 is a subsingleton. But this is easy because we
assumed that 𝛼𝑖 ⊑ 𝑃 for every 𝑖 : 𝐼 . Finally, paying attention to the universe levels
we observe that ΩV : V-DCPOV+,V .

Example 3.2.15 (Powersets as pointed dcpos). Recalling our treatment of subset and
powersets from Section 2.7.1, we show that powersets give examples of pointed dcpos.
Specifically, for every type 𝑋 : U and every type universe V , the subset inclusion ⊆
makes PV (𝑋) into a poset, where antisymmetry holds by function extensionality
and propositional extensionality. Moreover, PV (𝑋) has a least element of course: the
empty set ∅. We also claim that PV (𝑋) has suprema for all (not necessarily directed)
families 𝛼 : 𝐼 → PV (𝑋) with 𝐼 : V . Given such a family 𝛼 , its least upper bound is
given by

⋃
𝛼 :≡ _ 𝑥 . ∃𝑖:𝐼 𝑥 ∈ 𝛼𝑖 , the set-theoretic union, which is well-defined as

(∃𝑖:𝐼 𝑥 ∈ 𝛼𝑖) : V . It is clear that this is indeed an upper bound for 𝛼 . And if 𝐴 is a
V-subset of𝑋 such that 𝛼𝑖 ⊆ 𝐴 for every 𝑖 : 𝐼 , then to show that

⋃
𝛼 ⊆ 𝐴 it suffices to

construct for every 𝑥 : 𝑋 , a map (Σ𝑖:𝐼 𝛼𝑖) → (𝑥 ∈ 𝐴) as 𝑥 ∈ 𝐴 is a subsingleton. But
this is easy because we assumed that 𝛼𝑖 ⊆ 𝐴 for every 𝑖 : 𝐼 . Finally, paying attention
to the universe levels we observe that PV (𝑋) : V-DCPOV+⊔U ,V⊔U . In the case that
𝑋 : U ≡ V , we obtain the simpler, locally small PV (𝑋) : V-DCPOV+,V .

Of course, ΩV is easily seen to be equivalent toPV (1V), so Example 3.2.15 subsumes
Example 3.2.14, but it is instructive to understand Example 3.2.14 first.

Proposition 3.2.16 (𝜔-completeness). Every V-dcpo 𝐷 is 𝜔-complete, viz. if we have
elements 𝑥0 ⊑ 𝑥1 ⊑ 𝑥2 ⊑ . . . of 𝐷 , then the supremum of (𝑥𝑛)𝑛:N exists in 𝐷 .

Proof. Recalling Remark 2.1.2 and using the fact that N : U0, the type liftU0,V (N) is
in the universe V and is equivalent to N. Now liftU0,V (N) ≃ N

𝑥 (−)−−−→ 𝐷 is a directed
family as 𝑥𝑛 ⊑ 𝑥𝑛+1 for every natural number 𝑛, and it is indexed by a type in V .
Hence, it has a least upper bound in 𝐷 which is the supremum of (𝑥𝑛)𝑛:N.

3.3 Scott continuous maps

We discuss an appropriate notion of morphism between V-dcpos, namely one that
requires preservation of directed suprema and the order (Lemma 3.3.5).

3.3. Scott continuous maps 56

Definition 3.3.1 (Scott continuity). A function 𝑓 : 𝐷 → 𝐸 between two V-dcpos
is (Scott) continuous if it preserves directed suprema, i.e. if 𝐼 : V and 𝛼 : 𝐼 → 𝐷 is
directed, then 𝑓 (⊔ 𝛼) is the supremum in 𝐸 of the family 𝑓 ◦ 𝛼 .

Remark 3.3.2. When we speak of a Scott continuous function between 𝐷 and 𝐸, then
we will always assume that 𝐷 and 𝐸 are both V-dcpos for some arbitrary but fixed
type universe V .

Remark 3.3.3. The name “Scott continuous” is due to the fact that such maps are
continuous with respect to the so-called Scott topology. We will not discuss the
Scott topology in this thesis, but see Chapter 8 for a brief discussion of our work on
apartness and the Scott topology in a constructive setting.

Lemma 3.3.4. Being Scott continuous is a property. In particular, two Scott continuous
maps are equal if and only if they are equal as functions.

Proof. By Theorem 2.3.17 and the fact that being the supremum of a family is a
property, cf. Remark 3.2.8.

Lemma 3.3.5. If 𝑓 : 𝐷 → 𝐸 is Scott continuous, then it is monotone, i.e. 𝑥 ⊑𝐷 𝑦

implies 𝑓 (𝑥) ⊑𝐸 𝑓 (𝑦).

Proof. Given 𝑥,𝑦 : 𝐷 with 𝑥 ⊑ 𝑦, consider the directed family 2V
𝛼−→ 𝐷 defined by

𝛼 (0) :≡ 𝑥 and 𝛼 (1) :≡ 𝑦. Its supremum is 𝑦 and 𝑓 must preserve it. Hence, 𝑓 (𝑦) is an
upper bound of 𝑓 (𝛼 (0)) ≡ 𝑓 (𝑥), so 𝑓 (𝑥) ⊑ 𝑓 (𝑦), as we wished to show.

Lemma 3.3.6. If 𝑓 : 𝐷 → 𝐸 is monotone and 𝛼 : 𝐼 → 𝐷 is directed, then so is 𝑓 ◦ 𝛼 .

Proof. Since𝛼 is directed, 𝐼 is inhabited, so it remains to prove that 𝑓 ◦𝛼 is semidirected.
If we have 𝑖, 𝑗 : 𝐼 , then by directedness of 𝛼 , there exists 𝑘 : 𝐼 such that 𝛼𝑖, 𝛼 𝑗 ⊑ 𝛼𝑘 .
By monotonicity, we obtain 𝑓 (𝛼𝑖), 𝑓 (𝛼 𝑗) ⊑ 𝑓 (𝛼𝑘) as desired.

Lemma 3.3.7. A monotone map 𝑓 : 𝐷 → 𝐸 between V-dcpos is Scott continuous if and
only if 𝑓 (⊔ 𝛼) ⊑ ⊔

𝑓 ◦ 𝛼 .

Note that we are justified in writing
⊔
𝑓 ◦ 𝛼 because Lemma 3.3.6 tells us that 𝑓 ◦𝛼

is directed by the assumed monotonicity of 𝑓 .

Proof. The left-to-right implication is immediate. For the converse, note that it only
remains to show that 𝑓 (⊔ 𝛼) ⊒ ⊔

𝑓 ◦ 𝛼 . But for this it suffices that 𝑓 (𝛼𝑖) ⊑ 𝑓 (
⊔
𝛼)

for every 𝑖 : 𝐼 , which holds as
⊔
𝛼 is an upper bound of 𝛼 and 𝑓 is monotone.

Remark 3.3.8. In constructive mathematics it is not possible to exhibit a discontin-
uous function from NN to N, because sheaf [TvD88, Chapter 15] and realizability

57 Chapter 3. Basic domain theory

models [vOos08, e.g. Proposition 3.1.6] imply that it is consistent to assume that all
such functions are continuous. This does not mean, however, that we cannot exhibit
a discontinuous function between dcpos. In fact, the negation map ¬ : Ω → Ω is
not monotone and hence not continuous. If we were to preclude such examples,
then we can no longer work with the full type Ω of all propositions, but instead we
must restrict to a subtype of propositions, for example by using dominances [Ros86].
Indeed, this approach is investigated in the context of topos theory in [Pha91; Lon95]
and for computability instead of continuity in univalent foundations in [EK17].

Definition 3.3.9 (Strictness). A Scott continuous function 𝑓 : 𝐷 → 𝐸 between
pointed dcpos is strict if 𝑓 (⊥𝐷) = ⊥𝐸 .

Lemma 3.3.10. A poset 𝐷 is a pointed V-dcpo if and only if it has suprema for all
semidirected families indexed by types in V that we will denote using the

∨
symbol.

In particular, a pointed V-dcpo has suprema of all families indexed by propositions in V .
Moreover, if 𝑓 is a Scott continuous and strict map between pointed V-dcpos, then 𝑓
preserves suprema of semidirected families.

Proof. If 𝐷 is complete with respect to semidirected families indexed by types in V ,
then it is clearly a V-dcpo and it is pointed because the supremum of the family
indexed by the empty type is the least element. Conversely, if 𝐷 is a pointed V-dcpo
and 𝛼 : 𝐼 → 𝐷 is a semidirected family with 𝐼 : V , then the family

𝛼 : 𝐼 + 1V → 𝐷

inl(𝑖) ↦→ 𝛼𝑖

inr(★) ↦→ ⊥

is directed and hence has a supremum in 𝐷 which is also the least upper bound of 𝛼 .
A pointed V-dcpo must have suprema for all families indexed by propositions in V ,
because any such family is semidirected. Finally, suppose that 𝛼 : 𝐼 → 𝐷 is semidi-
rected and that 𝑓 : 𝐷 → 𝐸 is Scott continuous and strict. Using the (̂−)-construction
from above, we see that

𝑓 (∨𝛼) ≡ 𝑓 (⊔ 𝛼)
=
⊔
𝑓 ◦ 𝛼 (by Scott continuity of 𝑓)

=
⊔
𝑓 ◦ 𝛼 (since 𝑓 is strict)

≡ ∨
𝑓 ◦ 𝛼,

finishing the proof.

Proposition 3.3.11.
(i) The identity on any dcpo is Scott continuous.
(ii) For dcpos𝐷 and 𝐸 and𝑦 : 𝐸, the constant map 𝑥 ↦→ 𝑦 : 𝐷 → 𝐸 is Scott continuous.
(iii) If 𝑓 : 𝐷 → 𝐸 and 𝑔 : 𝐸 → 𝐸′ are Scott continuous, then so is 𝑔 ◦ 𝑓 .

3.4. Lifting 58

Moreover, if 𝐷 is pointed, then the identity on 𝐷 is strict, and if 𝑓 and 𝑔 are strict in (iii),
then so is 𝑔 ◦ 𝑓 .

Proof. The proofs of (i) and (ii) are obvious. For (iii), let 𝛼 : 𝐼 → 𝐷 be directed
and notice that 𝑔(𝑓 (⊔ 𝛼)) = 𝑔(⊔ 𝑓 ◦ 𝛼) = ⊔

𝑔 ◦ 𝑓 ◦ 𝛼 by respectively continuity of
𝑓 and 𝑔. The claims about strictness are also clear.

Definition 3.3.12 (Isomorphism). A Scott continuous map 𝑓 : 𝐷 → 𝐸 is an isomor-
phism if we have a Scott continuous inverse 𝑔 : 𝐸 → 𝐷 .

Lemma 3.3.13. Every 𝑓 : 𝐷 → 𝐸 isomorphism between pointed dcpos is strict.

Proof. Let 𝑦 : 𝐸 be arbitrary and notice that ⊥𝐷 ⊑ 𝑔(𝑦) because ⊥𝐷 is the least
element of 𝐷 . By monotonicity of 𝑓 , we get 𝑓 (⊥𝐷) ⊑ 𝑓 (𝑔(𝑦)) = 𝑦 which shows that
𝑓 (⊥𝐷) is the least element of 𝐸.

Definition 3.3.14 (Scott continuous retract). A dcpo 𝐷 is a (Scott) continuous retract
of 𝐸 if we have Scott continuous maps 𝑠 : 𝐷 → 𝐸 and 𝑟 : 𝐸 → 𝐷 such that 𝑠 is a
section of 𝑟 . We denote this situation by 𝐷 𝐸

𝑠

𝑟
.

Lemma 3.3.15. If 𝐷 is a continuous retract of 𝐸 and 𝐸 is locally small, then so is 𝐷 .

Proof. We claim that 𝑥 ⊑𝐷 𝑦 and 𝑠 (𝑥) ⊑𝐸 𝑠 (𝑦) are equivalent, which proves the
lemma as 𝐸 is assumed to be locally small. One direction of the equivalence is given
by the fact that 𝑠 is monotone. In the other direction, assume that 𝑠 (𝑥) ⊑ 𝑠 (𝑦) and
note that 𝑥 = 𝑟 (𝑠 (𝑥)) ⊑ 𝑟 (𝑠 (𝑦)) = 𝑦, as 𝑟 is monotone and 𝑠 is a section of 𝑟 .

3.4 Lifting

We now turn to constructing pointed V-dcpos from sets. First of all, every discretely
ordered set is a V-dcpo, where discretely ordered means that we have 𝑥 ⊑ 𝑦 exactly
when 𝑥 = 𝑦. This is because if 𝛼 : 𝐼 → 𝑋 is a directed family into a discretely ordered
set 𝑋 , then 𝛼 has to be constant (by semidirectedness), so 𝛼𝑖 is its supremum for any
𝑖 : 𝐼 . And since directedness includes the condition that the domain is inhabited, it
follows that 𝛼 must have a supremum in 𝑋 . In fact, ordering 𝑋 discretely yields the
free V-dcpo on the set 𝑋 in the categorical sense.

With excluded middle, the situation for pointed V-dcpos is also very straightforward.
Simply order the set 𝑋 discretely and add a least element, as depicted for 𝑋 ≡ N in
the Hasse diagram of Proposition 3.4.1. The point of that proposition is to show, by
a reduction to the constructive taboo LPO (Definition 2.7.22), that this approach is
constructively unsatisfactory. In Chapter 6 we will prove a general constructive no-
go theorem (Theorem 6.2.24) showing that there is a nontrivial dcpo with decidable
equality if and only if weak excluded middle holds.

59 Chapter 3. Basic domain theory

Proposition 3.4.1. If the poset N⊥ = (N + 1, ⊑) with order depicted by the Hasse
diagram

0 1 2 3 · · ·

⊥
is 𝜔-complete, then LPO holds. In particular, by Proposition 3.2.16, if it is U0-directed
complete, then LPO holds.

Proof. Let 𝛼 : N→ 2 be an arbitrary binary sequence. We show that ∃𝑛:N 𝛼𝑛 = 1 is
decidable. Define the family 𝛽 : N→ N⊥ by

𝛽𝑛 :≡
{

inl(𝑘) if 𝑘 is the least integer below 𝑛 for which 𝛼𝑘 = 1, and
inr(★) else.

Then 𝛽 is a chain, so by assumption it has a supremum 𝑠 in N⊥. By the induction
principle of coproducts, we have 𝑠 = inr(★) or we have 𝑘 : N such that 𝑠 = inl(𝑘). If
the latter holds, then 𝛼𝑘 = 1, so ∃𝑛:N 𝛼𝑛 = 1 is decidable. We claim that 𝑠 = inr(★)
implies that ¬(∃𝑛:N 𝛼𝑛 = 1). Indeed, assume for a contradiction that ∃𝑛:N 𝛼𝑛 = 1.
Since we are proving a proposition, we may assume to have 𝑛 : N with 𝛼𝑛 = 1. Then,
𝛽𝑛 = inl(𝑘) for a natural number 𝑘 ≤ 𝑛. Since 𝑠 is the supremum of 𝛽 we have
inl(𝑘) = 𝛽𝑛 ⊑ 𝑠 = inr(★), but inr(★) is the least element of N⊥, so by antisymmetry
inl(𝑘) = inr(★), which is impossible.

Our solution to the above will be to work with the lifting monad, sometimes known
as the partial map classifier monad from topos theory [Joh77; Ros86; Ros87; Koc91],
which has been extended to constructive type theory by Reus and Streicher [RS99] and
recently to univalent foundations by Escardó and Knapp [EK17; Kna18]; see the Notes
of this chapter for a discussion of additional related work.

Definition 3.4.2 (Lifting, partial element, LV (𝑋); [EK17, Section 2.2]). We define
the type of partial elements of a type 𝑋 : U with respect to a universe V as

LV (𝑋) :≡ Σ𝑃 :ΩV (𝑃 → 𝑋)

and we also call it the lifting of 𝑋 with respect to V .

Every (total) element of 𝑋 gives rise to a partial element of 𝑋 through the following
map, which will be shown to be the unit of the monad later.

Definition 3.4.3 ([𝑋). The map [𝑋 : 𝑋 → LV (𝑋) is defined by mapping 𝑥 to the
tuple (1V , _ 𝑢 . 𝑥), where, following Remark 2.4.9, we have omitted the witness that
1V is a subsingleton. We sometimes omit the subscript in [𝑋 .

Besides these total elements, the lifting has another distinguished element that will
be the least with respect to the order with which we shall equip the lifting.

3.4. Lifting 60

Definition 3.4.4 (⊥). For every type 𝑋 : U and universe V , we denote the element
(0V , 𝜑) : LV (𝑋) by ⊥. (Here 𝜑 is the unique map from 0V to 𝑋 .)

Next we introduce appropriate names for the projections from the type of partial
elements.
Definition 3.4.5 (is-defined and value). We write is-defined : LV (𝑋) → ΩV for the
first projection and value : Π𝑙 :LV (𝑋) (is-defined(𝑙) → 𝑋) for the second projection.

Thus, with this terminology, the element★witnesses that [(𝑥) is defined with value
𝑥 for every 𝑥 : 𝑋 , while ⊥ is not defined because is-defined(⊥) is the empty type.

Excluded middle says exactly that such elements are the only elements of the lifting
of a type𝑋 , as the following proposition shows. Thus, the lifting generalises the classical
construction of adding a new element.

Proposition 3.4.6 ([EK17, Section 2.2]). The map 𝑋 + 1
[[,const⊥]−−−−−−−→ LV (𝑋) is an

equivalence for every type 𝑋 : U if and only if excluded middle in V holds.

Proof. By the proof of Lemma 2.7.21(iv), excluded middle in V is equivalent to the map
[const0, const1] : 2V → ΩV being an equivalence. But if that map is an equivalence,
then it follows that the map [[, const⊥] : 𝑋 + 1→ LV (𝑋) is also an equivalence for
every type𝑋 . Conversely, we can take𝑋 :≡ 1V to see that [const0, const1] : 2V → ΩV
must be an equivalence.

Lemma 3.4.7. Two partial elements 𝑙,𝑚 : LV (𝑋) of a type 𝑋 are equal if and only if
we have is-defined(𝑙) ⇐⇒ is-defined(𝑚) and the diagram

is-defined(𝑚) 𝑋

is-defined(𝑙)

value(𝑚)

value(𝑙)

commutes.

Proof. By Lemma 2.2.5 we have

(𝑙 =𝑚) ≃
(
Σ𝑒:is-defined(𝑙)=is-defined(𝑚) transport_ 𝑃 .𝑃→𝑋 (𝑒, value(𝑙)) = value(𝑚)

)
By path induction on 𝑒 we can prove that

transport_ 𝑃 .𝑃→𝑋 (𝑒, value(𝑙)) = value(𝑙) ◦ 𝑒−1,

where 𝑒 is the equivalence is-defined(𝑙) ≃ is-defined(𝑚) induced by 𝑒 . Hence, using
function extensionality and propositional extensionality, the right hand side of the
equivalence given above is logically equivalent to

Σ(𝑒1,𝑒2):is-defined(𝑙)↔is-defined(𝑚) value(𝑙) ◦ 𝑒2 ∼ value(𝑚),

as desired.

61 Chapter 3. Basic domain theory

Remark 3.4.8. It is possible to promote the logical equivalence of Lemma 3.4.7
to an equivalence of types using univalence and a generalised structure iden-
tity principle [Esc19b, Section 3.33], as done in [Esc21, Lemma 44] and [Esc+,
Lifting.IdentityViaSIP]. But the above logical equivalence will suffice.

Theorem 3.4.9 (Lifting monad, Kleisli extension, 𝑓 #; [EK17, Section 2.2]). The lifting
is a monad with unit [. That is, for every map 𝑓 : 𝑋 → LV (𝑌) we have a map
𝑓 # : LV (𝑋) → LV (𝑌), the Kleisli extension of 𝑓 , such that

(i) [#
𝑋
∼ idLV (𝑋) for every type 𝑋 ,

(ii) 𝑓 # ◦ [𝑋 ∼ 𝑓 for every map 𝑓 : 𝑋 → LV (𝑌), and
(iii) (𝑔# ◦ 𝑓)# ∼ 𝑔# ◦ 𝑓 # for every two maps 𝑓 : 𝑋 → LV (𝑌) and 𝑔 : 𝑌 → LV (𝑍).

Proof. Given 𝑓 : 𝑋 → LV (𝑌), we define

𝑓 # : LV (𝑋) → LV (𝑌)
(𝑃, 𝜑) ↦→

(
Σ𝑝:𝑃 is-defined(𝑓 (𝜑 (𝑝))),𝜓

)
,

where𝜓 (𝑝, 𝑞) :≡ value(𝑓 (𝜑 (𝑝)), 𝑞).
Now for the proof of (i): Let (𝑃, 𝜑) : LV (𝑋) be arbitrary and we calculate that

[#(𝑃, 𝜑) ≡
(
Σ𝑝:𝑃 is-defined([(𝜑 (𝑝))), _ (𝑝, 𝑞) . value([(𝜑 (𝑝)), 𝑞)

)
≡ (𝑃 × 1, _ (𝑝, 𝑞) . 𝜑 (𝑝))
= (𝑃, 𝜑),

where the final equality is seen to hold using Lemma 3.4.7. For (ii), let 𝑥 : 𝑋 and
𝑓 : 𝑋 → LV (𝑌) be arbitrary and observe that

𝑓 #([(𝑥)) ≡ 𝑓 #(1, _ 𝑢 . 𝑥)
≡ (1 × is-defined(𝑓 (𝑥)), _ (𝑢, 𝑝) . value(𝑓 (𝑥), 𝑝))
= (is-defined(𝑓 (𝑥)), _ 𝑝 . value(𝑓 (𝑥), 𝑝))
≡ 𝑓 (𝑥)

where the penultimate equality is another easy application of Lemma 3.4.7. We see
that these proofs amount to the fact that 1 is the unit for taking the product of types.
For (iii) the proof amounts to the associativity of Σ.

Remark 3.4.10. It should be noted that if 𝑋 : U , then LV (𝑋) : V+ ⊔ U , so in general
the lifting is a monad “across universes”. But this increase in universes does not
hinder us in stating and proving the monad laws and using them in later proofs.

Remark 3.4.11. The equalities of Theorem 3.4.9 do not include any coherence condi-
tions which may be needed when 𝑋 is not a set but a higher type. We will restrict
to the lifting of sets, but the more general case is considered in [Esc21] where the
coherence conditions are not needed for its goals either.

https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.Lifting.IdentityViaSIP.html

3.4. Lifting 62

Definition 3.4.12 (Lifting functor, LV (𝑓)). The functorial action of the lifting could
be defined from the unit and Kleisli extension as LV (𝑓) :≡ ([𝑌 ◦ 𝑓)# for 𝑓 : 𝑋 → 𝑌 .
But it is equivalent and easier to define LV (𝑓) directly by post-composition:

LV (𝑓) (𝑃, 𝜑) :≡ (𝑃, 𝑓 ◦ 𝜑).

We now work towards showing that LV (𝑋) is the free pointed V-dcpo on a set 𝑋 .

Proposition 3.4.13. The relation ⊑ : LV (𝑋) → LV (𝑋) → V+ ⊔ U given by

𝑙 ⊑𝑚 :≡ is-defined(𝑙) → 𝑙 =𝑚

is a partial order on LV (𝑋) for every set 𝑋 : U . Moreover, it is equivalent to the more
verbose relation

(𝑃, 𝜑) ⊑′ (𝑄,𝜓) :≡ Σ𝑓 :𝑃→𝑄 (𝜑 ∼ 𝜓 ◦ 𝑓)
that is valued in V ⊔ U .

Proof. Note that ⊑ is subsingleton-valued because𝑋 is assumed to be a set. The other
properties follow using Lemma 3.4.7.

In light of Remark 3.2.10, we carefully keep track of the universe parameters of the
lifting in the following proposition.

Proposition 3.4.14 (cf. [EK17, Theorem 1]). For a set𝑋 : U , the lifting LV (𝑋) ordered
as in Proposition 3.4.13 is a pointed V-dcpo. In general, LV (𝑋) : V-DCPOV+⊔U ,V+⊔U ,
but if 𝑋 : V , then LV (𝑋) is locally small.

Proof. By Proposition 3.4.13 we have a poset and it is clear that⊥ fromDefinition 3.4.4
is its least element. Now let

(
𝑄 (−), 𝜑 (−)

)
: 𝐼 → LV (𝑋) be a directed family with

𝐼 : V . We claim that the map Σ𝑖:𝐼𝑄𝑖
(𝑖,𝑞) ↦→𝜑𝑖 (𝑞)−−−−−−−−−→ 𝑋 is constant. Indeed, given 𝑖, 𝑗 : 𝐼

with 𝑝 : 𝑄𝑖 and 𝑞 : 𝑄 𝑗 , there exists 𝑘 : 𝐼 such that (𝑄𝑖, 𝜑𝑖),
(
𝑄 𝑗 , 𝜑 𝑗

)
⊑ (𝑄𝑘 , 𝜑𝑘) by

directedness of the family. But by definition of the order and the elements 𝑝 : 𝑄𝑖
and 𝑞 : 𝑄 𝑗 , this implies that (𝑄𝑖, 𝜑𝑖) =

(
𝑄 𝑗 , 𝜑 𝑗

)
= (𝑄𝑘 , 𝜑𝑘) which in particular tells us

that 𝜑𝑖 (𝑝) = 𝜑 𝑗 (𝑞). Hence, by Theorem 2.6.9, we have a (dashed) map𝜓 making the
diagram

Σ𝑖:𝐼𝑄𝑖 𝑋

∃𝑖:𝐼𝑄𝑖
|−|

(𝑖,𝑞) ↦→𝜑𝑖 (𝑞)

𝜓

commute. We claim that (∃𝑖:𝐼𝑄𝑖,𝜓) is the least upper bound of the family. To see
that it is an upper bound, let 𝑗 : 𝐼 be arbitrary. By the commutative diagram and
Proposition 3.4.13 we see that

(
𝑄 𝑗 , 𝜑 𝑗

)
⊑ (∃𝑖:𝐼𝑄𝑖,𝜓), as desired. Moreover, if (𝑃, 𝜌) is

an upper bound for the family, then (𝑄𝑖, 𝜑𝑖) = (𝑃, 𝜌) for all 𝑖 : 𝐼 such that 𝑄𝑖 holds.
Hence, (∃𝑖:𝐼𝑄𝑖,𝜓) ⊑ (𝑃, 𝜌), as desired. Finally, local smallness in the case that 𝑋 is a
type in V follows from Proposition 3.4.13.

63 Chapter 3. Basic domain theory

Proposition 3.4.15. The Kleisli extension 𝑓 # : LV (𝑋) → LV (𝑌) is Scott continuous
for any map 𝑓 : 𝑋 → LV (𝑌).

Proof. It is straightforward to prove that 𝑓 # is monotone. Hence, it remains to prove
that 𝑓 #(⊔ 𝛼) ⊑ ⊔

𝑓 # ◦ 𝛼 for every directed family 𝛼 : 𝐼 → LV (𝑋). So suppose that
𝑓 #(⊔ 𝛼) is defined. Then we have to show that it equals

⊔
𝑓 # ◦𝛼 . By our assumption

and definition of 𝑓 # we get that
⊔
𝛼 is defined too. By the definition of suprema in the

lifting and because we are proving a proposition, we may assume to have 𝑖 : 𝐼 such
that 𝛼𝑖 is defined. But since 𝛼𝑖 ⊑

⊔
𝛼 , we get 𝛼𝑖 =

⊔
𝛼 and hence, 𝑓 #(𝛼𝑖) = 𝑓 #(⊔ 𝛼).

Finally, 𝑓 #(𝛼𝑖) ⊑
⊔
𝑓 # ◦ 𝛼 , but by assumption 𝑓 #(⊔ 𝛼) is defined and hence so is

𝑓 #(𝛼𝑖) which implies 𝑓 #(⊔ 𝛼) = 𝑓 #(𝛼𝑖) =
⊔
𝑓 # ◦ 𝛼 , as desired.

Recall from Lemma 3.3.10 that pointed V-dcpos have suprema of families indexed
by propositions in V . We make use of this fact in the following lemma.

Lemma 3.4.16. For a set𝑋 , every partial element (𝑃, 𝜑) : LV (𝑋) is equal to supremum∨
𝑝:𝑃 [𝑋 (𝜑 (𝑝)).

Proof. Note that if 𝑝 : 𝑃 , then (𝑃, 𝜑) = [𝑋 (𝜑 (𝑝)), so that the lemma follows from
antisymmetry.

The lifting LV (𝑋) gives the free pointed V-dcpo on a set 𝑋 . Keeping track of
universes, it holds in the following generality:

Theorem 3.4.17. If 𝑋 : U is a set, then for every pointed V-dcpo 𝐷 : V-DCPOU ′,T ′ and
function 𝑓 : 𝑋 → 𝐷 , there is a unique strict and continuous function 𝑓 : LV (𝑋) → 𝐷

making the diagram

𝑋 𝐷

LV (𝑋)
[𝑋

𝑓

𝑓

commute.

Proof. We define 𝑓 : LV (𝑋) → 𝐷 by (𝑃, 𝜑) ↦→ ∨
𝑝:𝑃 𝑓 (𝜑 (𝑝)), which is well-defined

by Lemma 3.3.10 and easily seen to be strict and continuous. For uniqueness, suppose
that we have 𝑔 : LV (𝑋) → 𝐷 strict and continuous such that 𝑔 ◦[𝑋 = 𝑓 and let (𝑃, 𝜑)
be an arbitrary element of LV (𝑋). Then,

𝑔(𝑃, 𝜑) = 𝑔
(∨

𝑝:𝑃 [𝑋 (𝜑 (𝑝))
)

(by Lemma 3.4.16)

=
∨
𝑝:𝑃 𝑔([𝑋 (𝜑 (𝑝))) (by Lemma 3.3.10 and strictness and continuity of 𝑔)

=
∨
𝑝:𝑃 𝑓 (𝜑 (𝑝)) (by assumption on 𝑔)

≡ 𝑓 (𝑃, 𝜑),

as desired.

3.4. Lifting 64

The proof tells us that there is yet another way in which the lifting is a free construc-
tion, namely as the free subsingleton-complete poset. What is noteworthy about this is
that freely adding subsingleton suprema automatically gives all directed suprema.

Definition 3.4.18 (Subsingleton completeness). A poset 𝑃 is subsingleton complete
with respect to a type universe V if it has suprema for all families indexed by a
subsingleton in V .

The lifting LV (𝑋) gives the free V-subsingleton complete poset on a set 𝑋 . Keeping
track of universes, it holds in the following generality:

Theorem 3.4.19. If 𝑋 : U is a set, then for every V-subsingleton complete poset 𝑃 (with
carrier and order taking values in arbitrary, possibly distinct, universes) and function
𝑓 : 𝑋 → 𝑃 , there exists a unique monotone 𝑓 : LV (𝑋) → 𝑃 preserving all suprema
indexed by propositions in V making the diagram

𝑋 𝑃

LV (𝑋)
[𝑋

𝑓

𝑓

commute.

Proof. Similar to the proof of Theorem 3.4.17.

Finally, we consider a variation of Proposition 3.4.13 which allows us to freely add
a least element to a V-dcpo instead of just a set.

Proposition 3.4.20. For a poset 𝐷 whose order takes values in T , the binary relation
⊑ : LV (𝐷) → LV (𝐷) → V ⊔ T given by

(𝑃, 𝜑) ⊑ (𝑄,𝜓) :≡ Σ𝑓 :𝑃→𝑄
(
Π𝑝:𝑃 (𝜑 (𝑝) ⊑𝐷 𝜓 (𝑓 (𝑝)))

)
is a partial order on LV (𝐷).

Proof. Similar to Proposition 3.4.13, but using that ⊑𝐷 is reflexive, transitive and
antisymmetric.

Proposition 3.4.21. For a dcpo 𝐷 : V-DCPOU ,T , the lifting LV (𝐷) ordered as in
Proposition 3.4.20 is a pointed V-dcpo. In general, LV (𝐷) : V-DCPOV+⊔U ,V⊔T , but if 𝐷
is locally small, then so is LV (𝐷).

Proof. The element ⊥ from Definition 3.4.4 is still the least element with respect to
the new order. If 𝛼 : 𝐼 → LV (𝐷) is directed, then we consider Φ : (Σ𝑖:𝐼𝑄𝑖) → 𝐷

given by (𝑖, 𝑞) ↦→ 𝜑𝑖 (𝑞). This family is semidirected, for if we have 𝑖, 𝑗 : 𝐼 with 𝑝 : 𝑄𝑖
and 𝑞 : 𝑄 𝑗 , then there exists 𝑘 : 𝐼 such that 𝛼𝑖, 𝛼 𝑗 ⊑ 𝛼𝑘 in LV (𝐷) by directedness of
𝛼 , which implies that Φ(𝑖, 𝑝) ⊑ Φ(𝑗, 𝑞) in 𝐷 . Thus, if we know that ∃𝑖:𝐼𝑄𝑖 , then the
family Φ is directed and must have a supremum in𝐷 . Hence we have a partial element

65 Chapter 3. Basic domain theory

(∃𝑖:𝐼𝑄𝑖,𝜓) : LV (𝐷) where 𝜓 takes the witness that the domain of Φ is inhabited to
the directed supremum

⊔
Φ in 𝐷 . It is not hard to verify that this partial element is

the least upper bound of 𝛼 in LV (𝐷), completing the proof.

The lifting LV (𝐷) with the partial order of Proposition 3.4.20 gives the free pointed
V-dcpo on a V-dcpo 𝐷 . Keeping track of universes, it holds in the following generality:

Theorem 3.4.22. If 𝐷 : V-DCPOU ,T is a V-dcpo, then for every pointed V-dcpo
𝐸 : V-DCPOU ′,T ′ and continuous function 𝑓 : 𝐷 → 𝐸, there is a unique strict continuous
function 𝑓 : LV (𝐷) → 𝐸 making the diagram

𝐷 𝐸

LV (𝐷)
[𝐷

𝑓

𝑓

commute.

Proof. Similar to the proof of Theorem 3.4.17.

Notice how Theorem 3.4.22 generalises Theorem 3.4.17 as any set can be viewed as
a discretely ordered V-dcpo.

3.5 Products and exponentials

We describe two constructions of V-dcpos, namely products and exponentials. Expo-
nentials will be crucial in the Scott model of PCF, as discussed in Section 5.2. Products
are not needed for this purpose as we will work with the combinatory version of PCF.
However, product allows us to state the universal property of the exponential (Propo-
sition 3.5.8). Moreover, products are also needed when extending the Scott model to
account for a version of PCF with variables and _-abstraction, see the Notes for this
chapter.

Definition 3.5.1 (Product of (pointed) dcpos, 𝐷1 × 𝐷2). The product of two V-dcpos
𝐷1 and 𝐷2 is given by the V-dcpo 𝐷1 × 𝐷2 defined as follows. Its carrier is the
cartesian product of the carriers of 𝐷1 and 𝐷2. The order is given componentwise, i.e.
(𝑥,𝑦) ⊑𝐷1×𝐷2 (𝑥′, 𝑦′) if 𝑥 ⊑𝐷1 𝑦 and 𝑦 ⊑𝐷2 𝑦

′. Accordingly directed suprema are also
given componentwise. That is, given a directed family 𝛼 : 𝐼 → 𝐷1 × 𝐷2, one quickly
verifies that the families pr1 ◦ 𝛼 and pr2 ◦ 𝛼 are also directed. We then define the
supremum of 𝛼 as (⊔ pr1 ◦ 𝛼,

⊔
pr2 ◦ 𝛼). Moreover, if 𝐷 and 𝐸 are pointed, then so

is 𝐷 × 𝐸 by taking the least elements in both components.

Remark 3.5.2. Notice that if 𝐷1 : V-DCPOU ,T and 𝐷2 : V-DCPOU ′,T ′ , then for their
product we have 𝐷1 ×𝐷2 : V-DCPOU⊔U ′,T ⊔T ′ , which simplifies to V-DCPOU ,T when
U ′ ≡ U and T ′ ≡ T .

3.5. Products and exponentials 66

Proposition 3.5.3. The product defined above satisfies the appropriate universal prop-
erty: the projections pr1 : 𝐷1 × 𝐷2 → 𝐷1 and pr2 : 𝐷1 × 𝐷2 → 𝐷2 are Scott continuous
and if 𝑓 : 𝐸 → 𝐷1 and 𝑔 : 𝐸 → 𝐷2 are Scott continuous functions from a V-dcpo 𝐸,
then there is a unique Scott continuous map 𝑘 : 𝐸 → 𝐷1 × 𝐷2 such that the diagram

𝐷1 × 𝐷2

𝐷1 𝐷2

𝐸

pr1 pr2

𝑓 𝑔

𝑘

commutes.

Proof. The projections are Scott continuous by definition of directed suprema in
𝐷1 × 𝐷2. Moreover, if 𝑓 : 𝐸 → 𝐷1 and 𝑔 : 𝐸 → 𝐷2 are Scott continuous maps, then
we see that we have no choice but to define 𝑘 : 𝐸 → 𝐷1 × 𝐷2 by 𝑒 ↦→ (𝑓 (𝑒), 𝑔(𝑒)).
Moreover, this assignment is Scott continuous, because for a directed family 𝛼 : 𝐼 →
𝐸, we have 𝑘 (⊔ 𝛼) ≡ (𝑓 (⊔ 𝛼), 𝑔(⊔ 𝛼)) = (⊔ 𝑓 ◦ 𝛼,⊔𝑔 ◦ 𝛼) ≡ ⊔

𝑘 ◦ 𝛼 by Scott
continuity of 𝑓 and 𝑔 and the definition of directed suprema in 𝐷1 × 𝐷2.

Lemma 3.5.4. A map 𝑓 : 𝐷1 × 𝐷2 → 𝐸 is Scott continuous if and only if the maps
𝑓 (𝑥,−) : 𝐷2 → 𝐸 and 𝑓 (−, 𝑦) : 𝐷1 → 𝐸 are Scott continuous for every 𝑥 : 𝐷1 and
𝑦 : 𝐷2.

Proof. Suppose first that 𝑓 : 𝐷1 × 𝐷2 → 𝐸 is Scott continuous and let 𝑥 : 𝐷1 be
arbitrary. If 𝛼 : 𝐼 → 𝐷2 is a directed family, then 𝑓 (𝑥,⊔ 𝛼) = 𝑓 (⊔ 𝛼𝑥), where
𝛼𝑥 : 𝐼 → 𝐷1 × 𝐷2 is the directed family given by 𝑖 ↦→ (𝑥, 𝛼 (𝑖)). But 𝑓 is Scott
continuous, so

⊔
𝑖:𝐼 𝑓 (𝑥, 𝛼 (𝑖)) =

⊔
𝑖:𝐼 𝑓 (𝛼𝑥 (𝑖)) = 𝑓 (⊔ 𝛼𝑥 (𝑖)) = 𝑓 (𝑥,⊔ 𝛼), as desired.

Continuity of 𝑓 (−, 𝑦) is proved similarly of course.
Conversely, suppose that the conditions in the lemma hold and let 𝛼 : 𝐼 → 𝐷1 × 𝐷2
be directed. We need to show that 𝑓 (⊔ 𝛼) ≡ 𝑓 (⊔ 𝛼1,

⊔
𝛼2) is the least upper bound

of
⊔
𝑓 ◦ 𝛼 , where 𝛼1 :≡ pr1 ◦ 𝛼 and 𝛼2 :≡ pr2 ◦ 𝛼 . To see that it is indeed an upper

bound, assume that 𝑖 : 𝐼 and observe that

𝑓 (𝛼 (𝑖)) ≡ 𝑓 (𝛼1(𝑖), 𝛼2(𝑖)) ⊑ 𝑓 (𝛼1(𝑖),
⊔
𝛼2) ⊑ 𝑓 (

⊔
𝛼1,

⊔
𝛼2),

by monotonicity of 𝑓 (𝛼1(𝑖),−) and 𝑓 (−,
⊔
𝛼2). To see that it is least, suppose that

𝑦 ⊒ 𝑓 (𝛼 (𝑖)) for every 𝑖 : 𝐼 . By Scott continuity of 𝑓 (−,⊔ 𝛼2) it is sufficient to prove
that 𝑓 (𝛼1(𝑖),

⊔
𝛼2) for every 𝑖 : 𝐼 . So let 𝑖 : 𝐼 be arbitrary. By Scott continuity of

𝑓 (𝛼1(𝑖),−) it suffices to prove 𝑓 (𝛼1(𝑖), 𝛼2(𝑗)) ⊑ 𝑦 for every 𝑗 : 𝐼 . So let 𝑗 : 𝐼 be
arbitrary. By directedness of 𝛼 , there exists 𝑘 : 𝐼 such that 𝛼 (𝑖), 𝛼 (𝑗) ⊑ 𝛼 (𝑘). Hence,
𝑓 (𝛼1(𝑖), 𝛼2(𝑗)) ⊑ 𝑓 (𝛼 (𝑘)) ⊑ 𝑦, as desired.

67 Chapter 3. Basic domain theory

Definition 3.5.5 (Exponential of (pointed) dcpos, 𝐸𝐷). The exponential of two
V-dcpos 𝐷 and 𝐸 is given by the poset 𝐸𝐷 defined as follows. Its carrier is the
type of Scott continuous functions from 𝐷 to 𝐸. The order is given pointwise, i.e.
𝑓 ⊑𝐸𝐷 𝑔 holds if 𝑓 (𝑥) ⊑𝐸 𝑔(𝑥) for every 𝑥 : 𝐷 . Notice that if 𝐸 is pointed, then
so is 𝐸𝐷 with least element given the constant function _ 𝑥 : 𝐷 . ⊥𝐸 which is Scott
continuous by Proposition 3.3.11(ii).

Note that the exponential 𝐸𝐷 is a priori not locally small even if 𝐸 is because
the partial order quantifies over all elements of 𝐷 . But if 𝐷 is continuous (a notion
that we will study in detail in Chapter 4) then 𝐸𝐷 will be locally small when 𝐸 is
(Proposition 4.7.11).

Proposition 3.5.6. The exponential 𝐸𝐷 of two V-dcpos 𝐷 and 𝐸 is V-directed complete.

Proof. Since the partial order is given pointwise, we expect directed suprema to be
calculated pointwise too. Explicitly, given a directed family 𝛼 : 𝐼 → 𝐸𝐷 , we verify
that for every 𝑥 : 𝐷 , the family 𝛼𝑥 : 𝐼 → 𝐸 defined by 𝑖 ↦→ 𝛼𝑖 (𝑥) is also directed.
Indeed, if we have 𝑖, 𝑗 : 𝐼 , then there exists 𝑘 : 𝐼 such that 𝛼𝑖, 𝛼 𝑗 ⊑ 𝛼𝑘 . Hence, for
arbitrary 𝑥 : 𝐷 , we have 𝛼𝑖 (𝑥), 𝛼 𝑗 (𝑥) ⊑ 𝛼𝑘 (𝑥), which shows that 𝛼𝑥 is directed.
Because the order is pointwise, it is clear that the function _ 𝑥 : 𝐷 .

⊔
𝛼𝑥 is the least

upper bound of 𝛼 , but we must also check that this function is Scott continuous. We
employ Lemma 3.3.7 for this, so we first check that the function is monotone. Indeed
if 𝑥 ⊑ 𝑦 in 𝐷 , then 𝛼𝑖 (𝑥) ⊑ 𝛼𝑖 (𝑦) for every 𝑖 : 𝐼 as Scott continuous functions are
monotone. Hence,

⊔
𝛼𝑥 ⊑

⊔
𝛼𝑦 in this case. Now let 𝛽 : 𝐽 → 𝐷 be directed. We have

to prove that
⊔
𝑖:𝐼 𝛼𝑖 (

⊔
𝛽) ⊑ ⊔

𝑗 :𝐽
⊔
𝑖:𝐼 𝛼𝑖

(
𝛽 𝑗
)
, for which it is enough to know that

𝛼𝑖 (
⊔
𝛽) ⊑ ⊔

𝑗 :𝐽
⊔
𝑖:𝐼 𝛼𝑖

(
𝛽 𝑗
)
for every 𝑖 : 𝐼 . But this is clear as 𝛼𝑖 (

⊔
𝛽) = ⊔

𝑗 :𝐽 𝛼𝑖
(
𝛽 𝑗
)

by Scott continuity of each 𝛼𝑖 .

Remark 3.5.7. Recall from Remark 3.2.10 that it is necessary to carefully keep track of
the universe parameters of the exponential. In general, the universe levels of 𝐸𝐷 can
be quite large and complicated. For if 𝐷 : V-DCPOU ,T and 𝐸 : V-DCPOU ′,T ′ , then

𝐸𝐷 : V-DCPOV+⊔U⊔T ⊔U ′⊔T ′,U⊔T ′ .

Even if V = U ≡ T ≡ U ′ ≡ T ′, the carrier of 𝐸𝐷 still lives in the larger universe V+,
because the type expressing Scott continuity for V-dcpos quantifies over all types
in V . Actually, the scenario where U = U ′ = V cannot happen in a predicative setting
unless 𝐷 and 𝐸 are trivial, in a sense made precise in Chapter 6.
Even so, in many applications such as those in Chapter 5, if we take V ≡ U0 and all
other parameters to be U ≡ T ≡ U ′ ≡ T ′ ≡ U1, then the situation is much simpler
and 𝐷 , 𝐸 and the exponential 𝐸𝐷 are all elements of U0-DCPOU1,U1 with all of them
being locally small (remember that this is defined up to equivalence). This turns out
to be a very favourable situation for both the Scott model of PCF and Scott’s 𝐷∞
model of the untyped _-calculus.

In the proposition below we can have 𝐷 : V-DCPOU ,T and 𝐸 : V-DCPOU ′,T ′ for

3.5. Products and exponentials 68

arbitrary universes U , T , U ′ and T ′. In particular, the universe parameters of 𝐷 and 𝐸,
apart from the universe of indexing types, need to be the same.

Proposition 3.5.8. The exponential defined above satisfies the appropriate universal
property: the evaluation map ev : 𝐸𝐷 × 𝐷 → 𝐸, (𝑔, 𝑥) ↦→ 𝑔(𝑥) is Scott continuous and
if 𝑓 : 𝐷′ × 𝐷 → 𝐸 is a Scott continuous function, then there is a unique Scott continuous
map 𝑓 : 𝐷′→ 𝐸𝐷 such that the diagram

𝐷′ × 𝐷

𝐸𝐷 × 𝐷 𝐸

𝑓
𝑓 × id𝐷

ev

commutes.

Proof. We use Lemma 3.5.4 to prove that ev is Scott continuous: It is continuous
in the second argument, because the first argument is a Scott continuous function,
and it is continuous in the first argument, because suprema in the exponential are
calculated pointwise. From the diagram we see that we have no choice but to define
𝑓 as 𝑦 ↦→ _ 𝑥 . 𝑓 (𝑦, 𝑥). It remains to prove that 𝑓 (𝑦) is Scott continuous for every
𝑦 : 𝐷′ and that this assignment itself defines a Scott continuous function 𝐷′→ 𝐸𝐷 .
For the former, note that 𝑓 (𝑦) :≡ 𝑓 (𝑦,−) is indeed Scott continuous by Lemma 3.5.4.
For the latter, note that if 𝛼 : 𝐼 → 𝐷′ is directed, then

𝑓 (⊔ 𝛼) ≡ _ 𝑥 . 𝑓 (
⊔
𝛼, 𝑥) = _ 𝑥 .

⊔
𝑖:𝐼 𝑓 (𝛼𝑖, 𝑥) ≡

⊔
𝑖:𝐼 (_ 𝑥 . 𝑓 (𝛼𝑖, 𝑥))

by Scott continuity of 𝑓 and the fact that suprema are calculated pointwise in the
exponential. Thus, 𝑓 is Scott continuous, completing the proof.

The following theorem lies at the heart of the Scott model of PCF that we will study
in Section 5.2.
Theorem 3.5.9 (Least fixed point, `). Every Scott continuous endomap 𝑓 on a pointed
V-dcpo 𝐷 has a least fixed point given by

` (𝑓) :≡ ⊔
𝑛:N 𝑓

𝑛 (⊥) .

Specifically, the following two conditions hold:
(i) 𝑓 (` (𝑓)) = ` (𝑓), and
(ii) for every 𝑥 : 𝐷 , if 𝑓 (𝑥) ⊑ 𝑥 , then ` (𝑓) ⊑ 𝑥 .

Moreover, the assignment 𝑓 ↦→ ` (𝑓) defines a Scott continuous map 𝐷𝐷 → 𝐷 .

Proof. We follow the proof given in [AJ94, Theorem 2.1.19] and first establish (ii).
Suppose that 𝑓 (𝑥) ⊑ 𝑥 . To show that ` (𝑓) ⊑ 𝑥 , it suffices to prove that 𝑓 𝑛 (⊥) ⊑ 𝑥 for
every 𝑛 : N. But this follows easily by induction on 𝑛 and the fact that 𝑓 is monotone.
For (i), first notice that

𝑓 (` (𝑓)) ≡ 𝑓 (⊔𝑛:N 𝑓
𝑛 (⊥)) = ⊔

𝑛:N 𝑓
𝑛+1(⊥) ⊑ ` (𝑓) (†)

69 Chapter 3. Basic domain theory

by Scott continuity of 𝑓 , proving one of the inequalities. But 𝑓 is monotone, so
(†) yields 𝑓 (𝑓 (` (𝑓))) ⊑ 𝑓 (` (𝑓)), which by (ii) implies ` (𝑓) ⊑ 𝑓 (` (𝑓)), so that
𝑓 (` (𝑓)) = ` (𝑓) by antisymmetry as we set out to prove. To see that the assignment
𝑓 ↦→ ` (𝑓) is continuous we will reconstruct it as the least upper bound of a family in
the exponential 𝐷 (𝐷𝐷) . First define for every natural number 𝑛 : N, the function

iter𝑛 : 𝐷𝐷 → 𝐷

𝑓 ↦→ 𝑓 𝑛 (⊥)

Observe that iter𝑛 can be factored as 𝐷𝐷
𝑓 ↦→𝑓 𝑛

−−−−→ 𝐷𝐷
evaluate at ⊥−−−−−−−−−→ 𝐷 . By induction on

𝑛 and Proposition 3.3.11 the first map is seen to be continuous, while the second is
continuous by Proposition 3.5.8. Hence, the composite, iter𝑛 is continuous for every
𝑛 : N by Proposition 3.3.11. Thus, each iter𝑛 is an element of 𝐷 (𝐷𝐷) . Moreover, the
assignment 𝑛 ↦→ iter𝑛 is directed in𝐷 (𝐷

𝐷) because if 𝑛 ≤ 𝑚, then iter𝑛 (𝑓) ≡ 𝑓 𝑛 (⊥) ⊑
𝑓𝑚 (⊥) ≡ iter𝑚 (𝑓) for every Scott continuous 𝑓 : 𝐷 → 𝐷 . Hence, we can take the
supremum of (iter)𝑛:N in 𝐷 (𝐷𝐷) which is Scott continuous by construction. But
suprema are calculated pointwise, so we can compute that (⊔ iter) (𝑓) ≡ ⊔

𝑛:N 𝑓
𝑛 (⊥),

establishing the continuity of 𝑓 ↦→ ` (𝑓) and completing the proof.

In the Scott model of PCF (Section 5.2), the ` operation is used to model general
recursion in the programming language PCF. The equation 𝑓 (` (𝑓)) = ` (𝑓) may be
regarded as the unfolding of a recursive definition, while the least element ⊥ represents
nontermination.

3.6 Bilimits

Recall that in a V-dcpo 𝐷 we can take suprema of directed families 𝛼 : 𝐼 → 𝐷 . It is a
striking feature of directed complete posets that this act is reflected in the category of
dcpos, although it does require us to specify an appropriate notion of one dcpo being
“below” another one. This notion will be exactly that of an embedding projection pair.
The technical results developed in this section will find application in the construction
of Scott’s 𝐷∞, a model of the untyped _-calculus, as discussed in Section 5.1.

A priori it is not clear that 𝐷∞ should exist in predicative univalent foundations and
it is one of the contributions of this work that this is indeed possible. Our construction
largely follows the classical development of Scott’s original paper [Sco72], but with
some crucial differences. First of all, we carefully keep track of the universe parameters
and try to be as general as possible. In the particular case of Scott’s 𝐷∞ model of the
untyped _-calculus, we obtain a U0-dcpo whose carriers lives in the second universe U1.
Secondly, difference arises from proof relevance and these complications are tackled
with techniques in univalent foundations and Theorem 2.6.9 in particular, as discussed
right before Lemma 3.6.12. Finally, we we generalise Scott’s treatment from sequential
bilimits to directed bilimits.
Definition 3.6.1 (Deflation). An endofunction 𝑓 : 𝐷 → 𝐷 on a poset 𝐷 is a deflation
if 𝑓 (𝑥) ⊑ 𝑥 for all 𝑥 : 𝐷 .

3.6. Bilimits 70

Definition 3.6.2 (Embedding-projection pair). An embedding-projection pair from
a V-dcpo 𝐷 to a V-dcpo 𝐸 consists of two Scott continuous functions Y : 𝐷 → 𝐸

(the embedding) and 𝜋 : 𝐸 → 𝐷 (the projection) such that:
(i) Y is a section of 𝜋 , and
(ii) Y ◦ 𝜋 is a deflation.

For the remainder of this section, fix the following setup, where we try to be as
general regarding universe levels as we can be. We fix a directed preorder (𝐼 , ⊑) with
𝐼 : V and ⊑ takes values in some universeW . Now suppose that (𝐼 , ⊑) indexes a family
of V-dcpos with embedding-projection pairs between them, i.e. we have

• for every 𝑖 : 𝐼 , a V-dcpo 𝐷𝑖 : V-DCPOU ,T , and
• for every 𝑖, 𝑗 : 𝐼 with 𝑖 ⊑ 𝑗 , an embedding-projection pair

(
Y𝑖, 𝑗 , 𝜋𝑖, 𝑗

)
from 𝐷𝑖 to 𝐷 𝑗 .

Moreover, we require that the following compatibility conditions hold:

for every 𝑖 : 𝐼 , we have Y𝑖,𝑖 = 𝜋𝑖,𝑖 = id; (3.6.3)
for every 𝑖 ⊑ 𝑗 ⊑ 𝑘 in 𝐼 , we have Y𝑖,𝑘 ∼ Y 𝑗,𝑘 ◦ Y𝑖, 𝑗 and 𝜋𝑖,𝑘 ∼ 𝜋𝑖, 𝑗 ◦ 𝜋 𝑗,𝑘 . (3.6.4)

Example 3.6.5. If 𝐼 :≡ N with the usual ordering, then we are looking at a diagram
of V-dcpos like this

𝐷0 𝐷1 𝐷2 𝐷3 · · ·
Y0,1

𝜋0,1

Y1,2

𝜋1,2

Y2,3

𝜋2,3

Y3,4

𝜋3,4

where, for example, we have not pictured Y1,1 : 𝐷1 ↩→ 𝐷1 and Y0,2 : 𝐷0 ↩→ 𝐷2

explicitly, as they are equal to id𝐷1 : 𝐷1 → 𝐷1 and the composition of 𝐷0
Y0,1
↩−−→ 𝐷1 and

𝐷1
Y1,2
↩−−→ 𝐷2, respectively.

The goal is now to construct another V-dcpo 𝐷∞ with embedding-projections pairs(
Y𝑖,∞ : 𝐷1 ↩→ 𝐷∞, 𝜋𝑖,∞ : 𝐷∞ → 𝐷𝑖

)
for every 𝑖 : 𝐼 , such that

(
𝐷∞,

(
Y𝑖,∞

)
𝑖:𝐼
)
is the colimit

of the diagram given by
(
Y𝑖, 𝑗

)
𝑖⊑ 𝑗 in 𝐼 and

(
𝐷∞,

(
𝜋𝑖,∞

)
𝑖:𝐼
)
is the limit of the diagram given

by
(
𝜋𝑖, 𝑗

)
𝑖⊑ 𝑗 in 𝐼 . In other words,

(
𝐷∞,

(
Y𝑖,∞

)
𝑖:𝐼 ,

(
𝜋𝑖,∞

)
𝑖:𝐼
)
is both the colimit and the limit

in the category of V-dcpos with embedding-projections pairs between them. We say
that it is the bilimit.
Definition 3.6.6 (𝐷∞). We define a poset 𝐷∞ as follows. Its carrier is given by
dependent functions 𝜎 : Π𝑖:𝐼𝐷𝑖 satisfying 𝜋𝑖, 𝑗 (𝜎 𝑗) = 𝜎𝑖 whenever 𝑖 ⊑ 𝑗 . That is, the
carrier is the type ∑︁

𝜎 :Π𝑖:𝐼𝐷𝑖

∏
𝑖, 𝑗 :𝐼 ,𝑖⊑ 𝑗

𝜋𝑖, 𝑗
(
𝜎 𝑗
)
= 𝜎𝑖 .

Note that this defines a subtype of Π𝑖:𝐼𝐷𝑖 as the condition
∏
𝑖, 𝑗 :𝐼 ,𝑖⊑ 𝑗 𝜋𝑖, 𝑗

(
𝜎 𝑗
)
= 𝜎𝑖 is a

property by Theorem 2.3.17 and the fact that each 𝐷𝑖 is a set.
These functions are ordered pointwise, i.e. if 𝜎, 𝜏 : Π𝑖:𝐼𝐷𝑖 , then 𝜎 ⊑𝐷∞ 𝜏 exactly when
𝜎𝑖 ⊑𝐷𝑖

𝜏𝑖 for every 𝑖 : 𝐼 .

71 Chapter 3. Basic domain theory

Lemma 3.6.7. The poset 𝐷∞ is V-directed complete with suprema calculated pointwise.
Paying attention to the universe levels involved, we have 𝐷∞ : V-DCPOU⊔V⊔W,U⊔T .

Proof. If 𝛼 : 𝐴 → 𝐷∞ is a directed family, then the family 𝛼𝑖 : 𝐴 → 𝐷𝑖 given by
𝛼𝑖 (𝑎) :≡ (𝛼 (𝑎))𝑖 is directed again, and we define the supremum of 𝛼 in 𝐷∞ as the
function 𝑖 ↦→ ⊔

𝛼𝑖 . To see that this indeed defines an element of 𝐷∞, observe that
for every 𝑖, 𝑗 : 𝐼 with 𝑖 ⊑ 𝑗 we have

𝜋𝑖, 𝑗
(
(⊔ 𝛼) 𝑗

)
≡ 𝜋𝑖, 𝑗

(⊔
𝛼 𝑗
)

=
⊔
𝜋𝑖, 𝑗 ◦ 𝛼 𝑗 (by Scott continuity of 𝜋𝑖, 𝑗)

≡ ⊔
𝑎:𝐴

(
𝜋𝑖, 𝑗

(
(𝛼 (𝑎)) 𝑗

))
=
⊔
𝛼𝑖 (as 𝛼 (𝑎) is an element of 𝐷∞),

as desired.

Remark 3.6.8. We allow for general universe levels here, which is why 𝐷∞ lives in
the relatively complicated universe U ⊔ V ⊔W . In concrete examples, the situation
often simplifies. E.g., in Section 5.1 we find ourselves in the favourable situation
described in Remark 3.5.7 where V ≡ W ≡ U0 and U ≡ T ≡ U1, so that we get
𝐷∞ : U0-DCPOU1,U1 , as the bilimit of a diagram of dcpos 𝐷𝑛 : U0-DCPOU1,U1 indexed
by natural numbers.

Definition 3.6.9 (𝜋𝑖,∞). For every 𝑖 : 𝐼 , we define the Scott continuous function
𝜋𝑖,∞ : 𝐷∞ → 𝐷𝑖 by 𝜎 ↦→ 𝜎𝑖 .

Lemma 3.6.10. The map 𝜋𝑖,∞ : 𝐷∞ → 𝐷𝑖 is Scott continuous for every 𝑖 : 𝐼 .

Proof. This holds because suprema in 𝐷∞ are calculated pointwise and 𝜋𝑖,∞ selects
the 𝑖-th component.

While we could closely follow [Sco72] up until this point, we will now need a new
idea to proceed. Our goal is to define maps Y𝑖,∞ : 𝐷𝑖 → 𝐷∞ for every 𝑖 : 𝐼 so that
Y𝑖,∞ and 𝜋𝑖,∞ form an embedding-projection pair. We give an outline of the idea for
defining this map Y𝑖,∞. For an arbitrary element 𝑥 : 𝐷𝑖 , we need to construct 𝜎 : 𝐷∞
at component 𝑗 : 𝐼 , say. If we had 𝑘 : 𝐼 such that 𝑖, 𝑗 ⊑ 𝑘 , then we could define
𝜎 𝑗 : 𝐷 𝑗 by 𝜋 𝑗,𝑘

(
Y𝑖,𝑘 (𝑥)

)
. Now semidirectedness of 𝐼 tells us that there exists such a 𝑘 : 𝐼 ,

so the point is to somehow make use of this propositionally truncated fact. This is
where Theorem 2.6.9 comes in. We define a map ^𝑥𝑖, 𝑗 : (Σ𝑘 :𝐼 (𝑖 ⊑ 𝑘) × (𝑗 ⊑ 𝑘)) → 𝐷 𝑗

by sending 𝑘 to 𝜋 𝑗,𝑘
(
Y𝑖,𝑘 (𝑥)

)
and show it to be constant, so that it factors through the

truncation of its domain. In the special case that 𝐼 ≡ N, as in [Sco72], we could simply
take 𝑘 to be the sum of the natural numbers 𝑖 and 𝑗 , but this does not work in the more
general directed case, of course.

3.6. Bilimits 72

Definition 3.6.11 (̂ 𝑥
𝑖, 𝑗). For every 𝑖, 𝑗 : 𝐼 and 𝑥 : 𝐷𝑖 we define the function

^𝑥𝑖, 𝑗 : (Σ𝑘 :𝐼 (𝑖 ⊑ 𝑘) × (𝑗 ⊑ 𝑘)) → 𝐷 𝑗

by mapping 𝑘 : 𝐼 with 𝑖, 𝑗 ⊑ 𝑘 to 𝜋 𝑗,𝑘
(
Y𝑖,𝑘 (𝑥)

)
.

Lemma 3.6.12. The function ^𝑥𝑖, 𝑗 is constant for ever 𝑖, 𝑗 : 𝐼 and 𝑥 : 𝐷𝑖 . Hence, ^𝑥𝑖, 𝑗
factors through ∃𝑘 :𝐼 (𝑖 ⊑ 𝑘) × (𝑗 ⊑ 𝑘) by Theorem 2.6.9.

Proof. If we have 𝑘1, 𝑘2 : 𝐼 with 𝑖 ⊑ 𝑘1, 𝑘2 and 𝑗 ⊑ 𝑘1, 𝑘2, then by semidirectedness of
𝐼 , there exists some 𝑘 : 𝐾 with 𝑘1, 𝑘2 ⊑ 𝑘 and hence,(

𝜋 𝑗,𝑘1 ◦ Y𝑖,𝑘1

)
(𝑥) =

(
𝜋 𝑗,𝑘1 ◦ 𝜋𝑘1,𝑘 ◦ Y𝑘1,𝑘 ◦ Y𝑖,𝑘1

)
(𝑥) (since Y𝑘1,𝑘 is a section of 𝜋𝑘1,𝑘)

=
(
𝜋 𝑗,𝑘 ◦ Y𝑖,𝑘

)
(𝑥) (by Equation 3.6.4)

=
(
𝜋 𝑗,𝑘 ◦ 𝜋𝑘2,𝑘 ◦ Y𝑘2,𝑘 ◦ Y𝑖,𝑘2

)
(𝑥) (since Y𝑘2,𝑘 is a section of 𝜋𝑘2,𝑘)

=
(
𝜋 𝑗,𝑘2 ◦ Y𝑖,𝑘2

)
(𝑥) (by Equation 3.6.4),

proving that ^𝑥𝑖, 𝑗 is constant.

Definition 3.6.13 (𝜌𝑖, 𝑗). For every 𝑖, 𝑗 : 𝐼 , the type ∃𝑘 :𝐼 (𝑖 ⊑ 𝑘) × (𝑗 ⊑ 𝑘) has an
element since (𝐼 , ⊑) is directed. Thus, Lemma 3.6.12 tells us that we have a function
𝜌𝑖, 𝑗 : 𝐷𝑖 → 𝐷 𝑗 such that if 𝑖, 𝑗 ⊑ 𝑘 , then the equation

𝜌𝑖, 𝑗 (𝑥) = ^𝑥𝑖, 𝑗 (𝑘) ≡ 𝜋 𝑗,𝑘
(
Y𝑖,𝑘 (𝑥)

)
(3.6.14)

holds for every 𝑥 : 𝐷𝑖 .

Definition 3.6.15 (Y𝑖,∞). The map 𝜌 induces a map Y𝑖,∞ : 𝐷𝑖 → 𝐷∞ by sending 𝑥 : 𝐷𝑖
to the function _ 𝑗 : 𝐼 . 𝜌𝑖, 𝑗 (𝑥). To see that this is well-defined, assume that we have
𝑗1 ⊑ 𝑗2 in 𝐽 and 𝑥 : 𝐷𝑖 . We have to show that 𝜋 𝑗1, 𝑗2

((
Y𝑖,∞(𝑥)

)
𝑗2

)
=

(
Y𝑖,∞(𝑥)

)
𝑗1
. By

semidirectedness of 𝐼 and the fact that are looking to prove a proposition, we may
assume to have 𝑘 : 𝐼 with 𝑖 ⊑ 𝑘 and 𝑗1 ⊑ 𝑗2 ⊑ 𝑘 . Then,

𝜋 𝑗1, 𝑗2

((
Y𝑖,∞(𝑥)

)
𝑗2

)
≡ 𝜋 𝑗1, 𝑗2

(
𝜌𝑖, 𝑗2 (𝑥)

)
= 𝜋 𝑗1, 𝑗2

(
𝜋 𝑗2,𝑘

(
Y𝑖,𝑘 (𝑥)

))
(by Equation 3.6.14)

= 𝜋 𝑗1,𝑘
(
Y𝑖,𝑘 (𝑥)

)
(by Equation 3.6.4)

= 𝜌𝑖, 𝑗1 (𝑥) (by Equation 3.6.14)
≡
(
Y𝑖,∞(𝑥)

)
𝑗1

as desired.

This completes the definition of Y𝑖,∞. From this point on, we can typically work
with it by using Equation 3.6.14 and the fact that

(
Y𝑖,∞(𝑥)

)
𝑗
is defined as 𝜌𝑖, 𝑗 (𝑥).

73 Chapter 3. Basic domain theory

Lemma 3.6.16. The map 𝜌𝑖, 𝑗 : 𝐷𝑖 → 𝐷 𝑗 is Scott continuous for every 𝑖, 𝑗 : 𝐼 .

Proof. Since we are proving a property, we may use semidirectedness of 𝐼 to get 𝑘 : 𝐼
with 𝑖, 𝑗 ⊑ 𝑘 . Then, 𝜌𝑖, 𝑗 ∼ 𝜋 𝑗,𝑘 ◦ Y𝑖,𝑘 by Equation 3.6.14. But the functions 𝜋 𝑗,𝑘 and
Y𝑖,𝑘 are continuous and continuity is preserved by function composition, so 𝜌𝑖, 𝑗 is
continuous, as we wished to show.

Lemma 3.6.17. The map Y𝑖,∞ : 𝐷𝑖 → 𝐷∞ is Scott continuous for every 𝑖 : 𝐼 .

Proof. If 𝛼 : 𝐴→ 𝐷𝑖 is directed, then for every 𝑗 : 𝐼 we have(
Y𝑖,∞(

⊔
𝛼)

)
𝑗
≡ 𝜌𝑖, 𝑗 (

⊔
𝛼)

=
⊔
𝜌𝑖, 𝑗 ◦ 𝛼 (by Lemma 3.6.16)

≡ ⊔
𝑎:𝐴

(
Y𝑖,∞(𝛼 (𝑎))

)
𝑗

≡
(⊔(

Y𝑖,∞ ◦ 𝛼
))
𝑗

(as suprema in 𝐷∞ are calculated pointwise).

Hence, Y𝑖,∞(
⊔
𝛼) = ⊔(

Y𝑖,∞ ◦ 𝛼
)
and Y𝑖,∞ is seen to be Scott continuous.

Theorem 3.6.18. For every 𝑖 : 𝐼 , the pair
(
Y𝑖,∞, 𝜋𝑖,∞

)
is an embedding-projection pair

from 𝐷𝑖 to 𝐷∞.

Proof. Scott continuity of both maps is given by Lemmas 3.6.10 and 3.6.17. To see
that Y𝑖,∞ is a section of 𝜋𝑖,∞, observe that for every 𝑥 : 𝐷𝑖 , we have

𝜋𝑖,∞
(
Y𝑖,∞(𝑥)

)
≡
(
Y𝑖,∞(𝑥)

)
𝑖

≡ 𝜌𝑖,𝑖 (𝑥)
= 𝜋𝑖,𝑖

(
Y𝑖,𝑖 (𝑥)

)
(by Equation 3.6.14)

≡ 𝑥 (by Equation 3.6.3),

so that Y𝑖,∞ is indeed a section of 𝜋𝑖,∞. It remains to prove that Y𝑖,∞
(
𝜋𝑖,∞(𝜎)

)
⊑ 𝜎 for

every 𝜎 : 𝐷∞. The order is given pointwise, so let 𝑗 : 𝐼 be arbitrary and since we are
proving a proposition, assume that we have 𝑘 : 𝐼 with 𝑖, 𝑗 ⊑ 𝑘 . Then,(

Y𝑖,∞
(
𝜋𝑖,∞(𝜎)

))
𝑗
≡
(
Y𝑖,∞(𝜎𝑖)

)
𝑗

≡ 𝜌𝑖, 𝑗 (𝜎𝑖)
= 𝜋 𝑗,𝑘

(
Y𝑖,𝑘 (𝜎𝑖)

)
(by Equation 3.6.14)

= 𝜋 𝑗,𝑘
(
Y𝑖,𝑘

(
𝜋𝑖,𝑘 (𝜎𝑘)

))
(since 𝜎 is an element of 𝐷∞)

But 𝜋𝑖,𝑘 ◦ Y𝑖,𝑘 is deflationary and 𝜋 𝑗,𝑘 is monotone, so
⊑ 𝜋 𝑗,𝑘 (𝜎𝑘)
= 𝜎 𝑗 (since 𝜎 is an element of 𝐷∞),

finishing the proof.

3.6. Bilimits 74

Lemma 3.6.19. The maps 𝜋𝑖,∞ and Y𝑖,∞ respectively commute with 𝜋𝑖, 𝑗 and Y𝑖, 𝑗 whenever
𝑖 ⊑ 𝑗 , viz. the diagrams

𝐷∞ 𝐷𝑖

𝐷 𝑗

𝜋 𝑗,∞

𝜋𝑖,∞

𝜋𝑖, 𝑗

𝐷𝑖 𝐷∞

𝐷 𝑗

Y𝑖, 𝑗

Y𝑖,∞

Y 𝑗,∞

commute for all 𝑖, 𝑗 : 𝐼 with 𝑖 ⊑ 𝑗 .

Proof. If 𝑖 ⊑ 𝑗 and 𝜎 : 𝐷∞ is arbitrary, then

𝜋𝑖, 𝑗
(
𝜋 𝑗,∞(𝜎)

)
≡ 𝜋𝑖, 𝑗

(
𝜎 𝑗
)
= 𝜎𝑖

precisely because 𝜎 is an element of 𝐷∞, which proves the commutativity of the first
diagram. For the second, let 𝑥 : 𝐷𝑖 be arbitrary and we compare

(
Y 𝑗,∞

(
Y𝑖, 𝑗 (𝑥)

))
and

Y𝑖,∞(𝑥) componentwise. So let 𝑗 ′ : 𝐼 be arbitrary. Since we are proving a proposition,
we may assume to have 𝑘 : 𝐼 with 𝑗, 𝑗 ′ ⊑ 𝑘 by semidirectedness of 𝐼 . We now calculate
that (

Y 𝑗,∞
(
Y𝑖, 𝑗 (𝑥)

))
𝑗 ′ ≡ 𝜌 𝑗, 𝑗 ′

(
Y𝑖, 𝑗 (𝑥)

)
= 𝜋 𝑗 ′,𝑘

(
Y 𝑗,𝑘

(
Y𝑖, 𝑗 (𝑥)

))
(by Equation 3.6.14)

= 𝜋 𝑗 ′,𝑘
(
Y𝑖,𝑘 (𝑥)

)
(by Equation 3.6.4)

= 𝜌𝑖, 𝑗 ′ (𝑥) (by Equation 3.6.14)
≡
(
Y𝑖,∞(𝑥)

)
𝑗 ′

as desired.

Theorem 3.6.20. The V-dcpo 𝐷∞ with the maps
(
𝜋𝑖,∞

)
𝑖:𝐼 is the limit of the diagram(

(𝐷𝑖)𝑖:𝐼 ,
(
𝜋𝑖, 𝑗

)
𝑖⊑ 𝑗

)
. That is, given a V-dcpo 𝐸 : V-DCPOU ′,T ′ and Scott continuous

functions 𝑓𝑖 : 𝐸 → 𝐷𝑖 for every 𝑖 : 𝐼 such that the diagram

𝐸 𝐷𝑖

𝐷 𝑗

𝑓𝑗

𝑓𝑖

𝜋𝑖, 𝑗
(3.6.21)

commutes for every 𝑖 ⊑ 𝑗 , we have a unique Scott continuous function 𝑓∞ : 𝐸 → 𝐷∞
making the diagram

𝐸 𝐷𝑖

𝐷∞

𝑓∞

𝑓𝑖

𝜋𝑖,∞
(3.6.22)

commute for every 𝑖 : 𝐼 .

75 Chapter 3. Basic domain theory

Proof. Note that Equation 3.6.22 dictates that we must have (𝑓∞(𝑦))𝑖 = 𝑓𝑖 (𝑦) for
every 𝑖 : 𝐼 . Hence, we define 𝑓∞ : 𝐸 → 𝐷∞ as 𝑓∞(𝑦) :≡ _ 𝑖 : 𝐼 . 𝑓𝑖 (𝑦), which is
Scott continuous because each 𝑓𝑖 is and suprema are calculated pointwise in 𝐷∞. To
see that 𝑓∞ is well-defined, i.e. that 𝑓∞(𝑦) is indeed an element of 𝐷∞, observe that
for every 𝑖 ⊑ 𝑗 , the equation 𝜋𝑖, 𝑗

(
(𝑓∞(𝑦)) 𝑗

)
≡ 𝜋𝑖, 𝑗

(
𝑓 𝑗 (𝑦)

)
= 𝑓𝑖 (𝑦) holds because of

Equation 3.6.21.

It should be noted that in the above universal property 𝐸 can have its carrier in any
universe U ′ and its order taking values in any universe T ′, even though we required all
𝐷𝑖 to have their carriers and orders in two fixed universes U and T , respectively.

Lemma 3.6.23. If 𝑖 ⊑ 𝑗 in 𝐼 , then Y𝑖,∞(𝜎𝑖) ⊑ Y 𝑗,∞(𝜎 𝑗) for every 𝜎 : 𝐷∞.

Proof. The order of 𝐷∞ is pointwise, so we compare Y𝑖,∞(𝜎𝑖) and Y 𝑗,∞(𝜎 𝑗) at an
arbitrary component 𝑘 : 𝐼 . We may assume to have 𝑚 : 𝐼 such that 𝑗, 𝑘 ⊑ 𝑚 by
semidirectedness of 𝐼 . We then calculate that(

Y𝑖,∞(𝜎𝑖)
)
𝑘
≡ 𝜌𝑖,𝑘 (𝜎𝑖)
=
(
𝜋𝑘,𝑚 ◦ Y𝑖,𝑚

)
(𝜎𝑖) (by Equation 3.6.14)

=
(
𝜋𝑘,𝑚 ◦ Y𝑖,𝑚 ◦ 𝜋𝑖, 𝑗

)
(𝜎 𝑗) (since 𝜎 is an element of 𝐷∞)

=
(
𝜋𝑘,𝑚 ◦ Y 𝑗,𝑚 ◦ Y𝑖, 𝑗 ◦ 𝜋𝑖, 𝑗

)
(𝜎 𝑗) (by Equation 3.6.4)

But Y𝑖, 𝑗 ◦ 𝜋𝑖, 𝑗 is deflationary and 𝜋𝑘,𝑚 ◦ Y 𝑗,𝑚 is monotone, so
⊑

(
𝜋𝑘,𝑚 ◦ Y 𝑗,𝑚

)
(𝜎 𝑗)

= 𝜌 𝑗,𝑘 (𝜎 𝑗) (by Equation 3.6.14)
≡
(
Y 𝑗,∞(𝜎 𝑗)

)
𝑘
,

as we wished to show.

Lemma 3.6.24. Every element 𝜎 : 𝐷∞ is equal to the directed supremum
⊔
𝑖:𝐼 Y𝑖,∞(𝜎𝑖).

Proof. The domain of the family is inhabited, because (𝐼 , ⊑) is assumed to be directed.
Moreover, if we have 𝑖, 𝑗 : 𝐼 , then there exists 𝑘 : 𝐼 with 𝑖, 𝑗 ⊑ 𝑘 , which implies
Y𝑖,∞(𝜎𝑖), Y 𝑗,∞(𝜎 𝑗) ⊑ Y𝑘,∞(𝜎𝑘) by Lemma 3.6.23. Thus, the family 𝑖 ↦→ Y𝑖,∞(𝜎𝑖) is indeed
directed. To see that its supremum is indeed 𝜎 we use antisymmetry at an arbitrary
component 𝑗 : 𝐼 . Firstly, observe that

𝜎 𝑗 = 𝜋 𝑗, 𝑗
(
Y 𝑗, 𝑗 (𝜎 𝑗)

)
(by Equation 3.6.3)

= 𝜌 𝑗, 𝑗 (𝜎 𝑗) (by Equation 3.6.14)
≡
(
Y 𝑗,∞(𝜎 𝑗)

)
𝑗

⊑
(⊔

𝑖:𝐼 Y𝑖,∞(𝜎𝑖)
)
𝑗

(since suprema are computed pointwise in 𝐷∞).

Secondly, to prove that
(⊔

𝑖:𝐼 Y𝑖,∞(𝜎𝑖)
)
𝑗
⊑ 𝜎 𝑗 it suffices to show that

(
Y𝑖,∞(𝜎𝑖)

)
𝑗
⊑ 𝜎 𝑗

for every 𝑖 : 𝐼 . But this just says that Y𝑖,∞ ◦ 𝜋𝑖,∞ is a deflation, which was proved in
Theorem 3.6.18.

3.6. Bilimits 76

Although the composites Y𝑖,∞ ◦ 𝜋𝑖,∞ are deflations for each 𝑖 : 𝐼 , the supremum of all
of them is the identity. This fact will come in useful in Section 5.1.

Lemma 3.6.25. The family 𝑖 ↦→ Y𝑖,∞ ◦ 𝜋𝑖,∞ is directed in the exponential 𝐷𝐷∞∞ and its
supremum is the identity on 𝐷∞.

Proof. The order and suprema are given pointwise in exponentials, so this follows
from Lemma 3.6.24.

Theorem 3.6.26. The V-dcpo 𝐷∞ with the maps
(
Y𝑖,∞

)
𝑖:𝐼 is the colimit of the diagram(

(𝐷𝑖)𝑖:𝐼 ,
(
Y𝑖, 𝑗

)
𝑖⊑ 𝑗

)
. That is, given a V-dcpo 𝐸 : V-DCPOU ′,T ′ and Scott continuous

functions 𝑔𝑖 : 𝐷𝑖 → 𝐸 for every 𝑖 : 𝐼 such that the diagram

𝐷𝑖 𝐸

𝐷 𝑗

Y𝑖, 𝑗

𝑔𝑖

𝑔 𝑗
(3.6.27)

commutes for every 𝑖 ⊑ 𝑗 , we have a unique Scott continuous function 𝑔∞ : 𝐷∞ → 𝐸

making the diagram

𝐷𝑖 𝐸

𝐷∞

Y𝑖,∞

𝑔𝑖

𝑔∞
(3.6.28)

commute for every 𝑖 : 𝐼 .

Proof. Note that any such Scott continuous function 𝑔∞ must satisfy

𝑔∞(𝜎) = 𝑔∞
(⊔

𝑖:𝐼 Y𝑖,∞(𝜎𝑖)
)

(by Lemma 3.6.24)
=
⊔
𝑖:𝐼 𝑔∞

(
Y𝑖,∞(𝜎𝐼)

)
(as 𝑔∞ is assumed to be Scott continuous)

=
⊔
𝑖:𝐼 𝑔𝑖 (𝜎𝑖) (by Equation 3.6.28)

for every 𝜎 : 𝐷∞. Accordingly, we define 𝑔∞ by 𝑔∞(𝜎) :≡ ⊔
𝑖:𝐼 𝑔𝑖 (𝜎𝑖), where we verify

that the family is indeed directed: If we have 𝑖, 𝑗 : 𝐼 , then there exists 𝑘 : 𝐼 with
𝑖, 𝑗 ⊑ 𝑘 , and we have

𝑔𝑖 (𝜎𝑖) = 𝑔𝑖
(
𝜋𝑖,𝑘 (𝜎𝑘)

)
(since 𝜎 is an element of 𝐷∞)

= 𝑔𝑘
(
Y𝑖,𝑘

(
𝜋𝑖,𝑘 (𝜎𝑘)

))
(by Equation 3.6.27)

⊑ 𝑔𝑘 (𝜎𝑘) (since Y𝑖,𝑘 ◦ 𝜋𝑖,𝑘 is deflationary and 𝑔𝑘 is monotone),

and similarly, 𝑔 𝑗 (𝜎 𝑗) ⊑ 𝑔𝑘 (𝜎𝑘). To see that 𝑔∞ satisfies Equation 3.6.28, let 𝑥 : 𝐷𝑖 be
arbitrary and first observe that

𝑔∞
(
Y𝑖,∞(𝑥)

)
≡ ⊔

𝑗 :𝐼 𝑔 𝑗
((
Y𝑖,∞(𝑥)

)
𝑗

)
≡ ⊔

𝑗 :𝐼 𝑔 𝑗
(
𝜌𝑖, 𝑗 (𝑥)

)
.

77 Chapter 3. Basic domain theory

We now use antisymmetry to prove that this is equal to 𝑔𝑖 (𝑥). In one direction this
is easy as 𝑔𝑖 (𝑥) =

(
𝑔𝑖 ◦ 𝜋𝑖,𝑖 ◦ Y𝑖,𝑖

)
(𝑥) ≡ 𝑔𝑖

(
𝜌𝑖,𝑖 (𝑥)

)
⊑ ⊔

𝑗 :𝐼 𝑔 𝑗
(
𝜌𝑖, 𝑗 (𝑥)

)
. In the other

direction, it suffices to prove that 𝑔 𝑗 (𝜌𝑖, 𝑗 (𝑥)) ⊑ 𝑔𝑖 (𝑥) for every 𝑗 : 𝐼 . By directedness
of 𝐼 there exists 𝑘 : 𝐼 with 𝑖, 𝑗 ⊑ 𝑘 so that

𝑔 𝑗 (𝜌𝑖, 𝑗 (𝑥)) =
(
𝑔 𝑗 ◦ 𝜋 𝑗,𝑘 ◦ Y𝑖,𝑘

)
(𝑥) (by Equation 3.6.14)

=
(
𝑔𝑘 ◦ Y 𝑗,𝑘 ◦ 𝜋 𝑗,𝑘 ◦ Y𝑖,𝑘

)
(𝑥) (by Equation 3.6.27)

But Y 𝑗,𝑘 ◦ 𝜋 𝑗,𝑘 is deflationary and 𝑔𝑘 is monotone, so
⊑

(
𝑔𝑘 ◦ Y𝑖,𝑘

)
(𝑥)

= 𝑔𝑖 (𝑥) (by Equation 3.6.27),

as we wished to show.
Finally, we verify that 𝑔∞ is Scott continuous. We first check that 𝑔∞ is monotone. If
𝜎 ⊑ 𝜏 in 𝐷∞, then 𝑔∞(𝜎) ≡

⊔
𝑖:𝐼 𝑔𝑖 (𝜎𝑖) ⊑

⊔
𝑖:𝐼 𝑔𝑖 (𝜏𝑖) ≡ 𝑔∞(𝜏), as each 𝑔𝑖 is monotone.

It remains to show that 𝑔∞(
⊔
𝛼) ⊑ ⊔(𝑔∞ ◦ 𝛼) for every directed family 𝛼 : 𝐴→ 𝐷∞.

By definition of 𝑔∞, it suffices to show that 𝑔𝑖 ((
⊔
𝛼)𝑖) ⊑

⊔(𝑔∞ ◦ 𝛼) for every 𝑖 : 𝐼 . By
continuity of 𝑔𝑖 it is enough to establish that 𝑔𝑖 ((𝛼 (𝑎))𝑖) ⊑

⊔(𝑔∞ ◦ 𝛼) for every 𝑎 : 𝐴.
But this holds as 𝑔𝑖 ((𝛼 (𝑎))𝑖) ⊑ 𝑔∞(𝛼 (𝑎)) ⊑

⊔(𝑔∞ ◦ 𝛼), completing our proof.

Proposition 3.6.29. The bilimit of locally small dcpos is locally small, i.e. if every
V-dcpo 𝐷𝑖 is locally small for all 𝑖 : 𝐼 , then so is 𝐷∞.

Proof. If every 𝐷𝑖 is locally small, then for every 𝑖 : 𝐼 , we have a specified V-valued
partial order ⊑𝑖V on 𝐷𝑖 such that for every 𝑖 : 𝐼 and every 𝑥,𝑦 : 𝐷𝑖 , we have an
equivalence (𝑥 ⊑𝐷𝑖

𝑦) ≃ (𝑥 ⊑𝑖V 𝑦). Hence, (𝜎 ⊑𝐷∞ 𝜏) ≡ (Π𝑖:𝐼 (𝜎𝑖 ⊑𝐷𝑖
𝜏𝑖)) ≃

(Π𝑖:𝐼 (𝜎𝑖 ⊑𝑖V 𝜏𝑖)), but the latter is small, because 𝐼 : V and ⊑𝑖V is V-valued.

3.7 Notes

This chapter is based on our two publications [dJE21a] and [dJon19b], but with an
improved exposition and the inclusion of more proofs. More precisely, Sections 3.2
to 3.4 and the exponentials of Section 3.5 feature in both of these works, whereas the
material of Section 3.1 and Section 3.6 only appears in [dJE21a], while Theorem 3.5.9
is only included in [dJon19b]. In [dJE21a; dJon19b] the definition of a poset included
the requirement that the carrier is a set, because we only realised later that this was
redundant (Lemma 3.2.3). Products of dcpos were not discussed in these works, but
were, building on our previous work, formalised in Agda by Brendan Hart [Har20] for
a final year MSci project supervised by Martín Escardó and myself.

Sections 3.2, 3.3 and 3.5 are predicative universe-aware adaptations of classical
domain theory as expounded in [AJ94; GHK+03], while Section 3.6 is a predicative
account of Scott’s original paper [Sco72], but with important differences, including an
application of Theorem 2.6.9, as discussed at the start of Section 3.6.

Section 3.4 uses the lifting monad in univalent type theory, which originated with

3.7. Notes 78

the works [EK17; Kna18] that deal with partiality in univalent foundations and aim to
avoid (weak) countable choice, which is not provable in constructive univalent founda-
tions [CMR17; Coq18; Swa19b; Swa19a].This is to be contrasted to other approaches
to partiality in Martin-Löf Type Theory. The first is Capretta’s delay monad [Cap05],
which uses coinduction. Arguably, the correct notion of equality of Capretta’s delay
monad is that of weak bisimilarity where two partial elements are considered equal
when they are both undefined, or, when one of them is, so is the other and they have
equal values in this case. This prompted the authors of [CUV19] to consider its quotient
by weak bisimilarity, but they use countable choice to show that quotient is again a
monad. Again using countable choice, they show that their quotient yields free pointed
𝜔-complete posets (𝜔-cpos). In [ADK17] the authors use a so-called quotient inductive-
inductive type (QIIT) to construct the free pointed 𝜔-cpo, essentially by definition of
the QIIT. It was shown in [CUV19] that a simpler higher inductive type actually suffices.
Regardless, we stress that our approach yields free dcpos as opposed to 𝜔-cpos and
does not use countable choice or higher inductive types other than the propositional
truncation. But the notion of 𝜔-completeness and countable choice will resurface in
our discussion of the Scott model of PCF in Section 5.2.

Chapter 4

Continuous and algebraic dcpos

In the previous chapter we developed sufficient domain theory for the applications
considered in Chapter 5, but we have not yet discussed a fundamental topic in domain
theory: algebraic and continuous dcpos. The study of continuous and algebraic dcpo
is a rich and deep subject [GHK+03]. We present a treatment of the basic theory
and examples in our constructive and predicative approach, where we deal with size
issues by taking direct inspiration from category theory and the work of Johnstone and
Joyal [JJ82] in particular.

4.1 Introduction

Classically, a dcpo 𝐷 is said to be continuous if for every element 𝑥 of 𝐷 the set of
elements way below it is directed and has supremum 𝑥 . The problem with this definition
in our foundational setup is that the type of elements way below 𝑥 is not necessarily
small. Although this does not stop us from asking it to be directed and having supremum
𝑥 , this still poses a problem: for example, there would be no guarantee that its supremum
is preserved by a Scott continuous function, as it is only required to preserve suprema
of directed families indexed by small types.

Our solution is to take inspiration from category theory [JJ82] and to use the ind-
completion to give a predicatively suitable definition of continuity of a dcpo. Some care
is needed to ensure that the resulting definition expresses a property of a dcpo, rather
than an equipment with additional structure. This is of course where the propositional
truncation comes in useful, but there are two natural ways of using the truncation.
We show that one of them yields a well-behaved notion that serves as our definition
of continuity, while the other, which we call pseudocontinuity, is problematic in a
constructive context. In a classical setting where the axiom of choice is assumed, the
two notions (continuity and pseudocontinuity) are equivalent.

Another approach is to turn to the notion of a basis [AJ94, Section 2.2.2], but to
include smallness conditions. While we cannot expect the type of elements way below

4.2. The way-below relation and compactness 80

an element 𝑥 to be small, in many examples it is the case that the type of basic elements
way below 𝑥 is small. We show that if a dcpo has a small basis, then it is continuous. In
fact, all our running examples of continuous dcpos are actually examples of dcpos with
small bases. Moreover, dcpos with small bases are better behaved. For example, they
are locally small and so are their exponentials. Furthermore, we show that having a
small basis is equivalent to being presented by ideals.

Once we have carefully set up predicatively suitable notions of continuity and small
bases, the theory can be developed quite smoothly. Specifically, we discuss

Section 4.2: the way-below relation and compact elements;
Section 4.3: the ind-completion: a tool used in discussing (pseudo) continuity;
Section 4.4: continuity of a dcpo and the interpolation property of the way-below

relation;
Section 4.5: pseudocontinuity of a dcpo and issues concerning the axiom of choice;
Section 4.6: algebraicity of a dcpo;
Section 4.7: the notion of a small basis: a strengthening of continuity;
Section 4.8: the notion of a small compact basis: a strengthening of algebraicity;
Section 4.9: examples of dcpos with small compact bases: the type of subsingletons,

the lifting of a set, and the powerset; and an example of an algebraic
dpco that does not necessarily have a small basis;

Section 4.10: the (rounded) ideal completion of an abstract basis, including an
example of a dcpo with a small basis that is not algebraic: the ideal
completion of inductively defined dyadic rationals;

Section 4.11: the ideal completion of a small (compact) basis and its relation to the
original dcpo;

Section 4.12: bilimits of structurally continuous or algebraic dcpos (with small
(compact) bases); and

Section 4.13: exponentials of sup-complete dcpos with small (compact) bases.

4.2 The way-below relation and compactness

The way-below relation is the fundamental ingredient in the development of continuous
dcpos. Following Scott [Sco70], we intuitively think of 𝑥 ≪ 𝑦 as saying that every
computation of 𝑦 has to print 𝑥 , or something better than 𝑥 , at some stage.

Definition 4.2.1 (Way-below relation, 𝑥 ≪ 𝑦). An element 𝑥 of a V-dcpo 𝐷 is way
below an element 𝑦 of 𝐷 if whenever we have every directed family 𝛼 : 𝐼 → 𝐷

indexed by 𝐼 : V such that 𝑦 ⊑ ⊔
𝛼 , then there exists 𝑖 : 𝐼 such that 𝑥 ⊑ 𝛼𝑖 already.

We denote this situation by 𝑥 ≪ 𝑦.

Lemma 4.2.2. The way-below relation enjoys the following properties:
(i) it is proposition-valued;
(ii) if 𝑥 ≪ 𝑦, then 𝑥 ⊑ 𝑦;
(iii) if 𝑥 ⊑ 𝑦 ≪ 𝑣 ⊑ 𝑤 , then 𝑥 ≪ 𝑤 ;
(iv) it is antisymmetric;
(v) it is transitive.

81 Chapter 4. Continuous and algebraic dcpos

Proof. (i) By Theorem 2.3.17 and the fact that we propositionally truncated the
existence of 𝑖 : 𝐼 in the definition. (ii) Simply take 𝛼 : 1V → 𝐷 to be 𝑢 ↦→ 𝑦. (iii)
Suppose that 𝛼 : 𝐼 → 𝐷 is directed with𝑤 ⊑ ⊔

𝛼 . Then 𝑣 ⊑ ⊔
𝛼 , so by assumption

that 𝑦 ≪ 𝑣 there exists 𝑖 : 𝐼 with 𝑦 ⊑ 𝛼𝑖 already. But then 𝑥 ⊑ 𝛼𝑖 . (iv) Follows from
(ii). (v) Follows from (ii) and (iii).

In general, the way below relation is not reflexive. The elements for which it is
have a special status and are called compact. We illustrate this notion by a series of
examples.

Definition 4.2.3 (Compactness). An element is compact if it is way below itself.

Example 4.2.4. The least element of a pointed dcpo is always compact.

Example 4.2.5 (Compact elements in ΩV). The compact elements of ΩV are exactly
0V and 1V . In other words, the compact elements of ΩV are precisely the decidable
propositions.

Proof. By Example 4.2.4 we know that 0V must be compact. For 1V , suppose that we
have 𝑄 (−) : 𝐼 → ΩV directed such that 1V ⊑ ∃𝑖:𝐼𝑄𝑖 . Then there exists 𝑖 : 𝐼 such that
𝑄𝑖 holds, and hence, 1V ⊑ 𝑄𝑖 . Now suppose that 𝑃 : ΩV is compact. We show that 𝑃
is decidable. The family 𝛼 : (𝑃 + 1V) → ΩV given by inl(𝑝) ↦→ 1V and inr(★) ↦→ 0V
is directed and 𝑃 ⊑ ⊔

𝛼 . Hence, by compactness, there exists 𝑖 : 𝑃 + 1V such that
𝑃 ⊑ 𝛼𝑖 already. Since being decidable is a property of a proposition, we actually get
such an 𝑖 and by case distinction on it we get decidability of 𝑃 .

Example 4.2.6 (Compact elements in the lifting). An element (𝑃, 𝜑) of the lifting
LV (𝑋) of a set 𝑋 : U is compact if and only if 𝑃 is decidable. Hence, the compact
elements of LV (𝑋) are exactly ⊥ and [(𝑥) for 𝑥 : 𝑋 .

Proof. To see that compactness implies decidability of the domain of the partial
element, we proceed as in the proof of Example 4.2.5, but for a partial element (𝑃, 𝜑),
we consider the family 𝛼 : (𝑃 + 1V) → LV (𝑋) given by inl(𝑝) ↦→ [(𝜑 (𝑝)) and
inr(★) ↦→ ⊥. Conversely, if we have a partial element (𝑃, 𝜑) with 𝑃 decidable, then
either 𝑃 is false in which case (𝑃, 𝜑) = ⊥ which is compact by Example 4.2.4, or 𝑃
holds. So suppose that 𝑃 holds and let 𝛼 : 𝐼 → LV (𝑋) be directed with 𝑃 ⊑ ⊔

𝛼 .
Since 𝑃 holds, the element

⊔
𝛼 must be defined, which means that there exists 𝑖 : 𝐼

such that 𝛼𝑖 is defined. But for this 𝑖 : 𝐼 we also have
⊔
𝛼 = 𝛼𝑖 by construction of the

supremum, and hence, 𝑃 ⊑ 𝛼𝑖 , proving compactness of (𝑃, 𝜑).

For characterising the compact elements of the powerset, we introduce a lemma, as
well as the notion of Kuratowski finiteness and the induction principle for Kuratowski
finite subsets.
Lemma 4.2.7. The compact elements of a dcpo are closed under (existing) binary joins.

4.2. The way-below relation and compactness 82

Proof. Suppose that 𝑥 and 𝑦 are compact elements of a V-dcpo 𝐷 , let 𝑧 be their least
upper bound and suppose that we have 𝛼 : 𝐼 → 𝐷 directed with 𝑧 ⊑ ⊔

𝛼 . Then
𝑥 ⊑ ⊔

𝛼 and 𝑦 ⊑ ⊔
𝛼 , so by compactness there exist 𝑖 : 𝐼 and 𝑗 : 𝐽 such that 𝑥 ⊑ 𝛼𝑖

and 𝑦 ⊑ 𝛼 𝑗 . By semidirectedness of 𝛼 , there exists 𝑘 : 𝐼 with 𝛼𝑖, 𝛼 𝑗 ⊑ 𝛼𝑘 , so that
𝑥,𝑦 ⊑ 𝛼𝑘 . But 𝑧 is the join of 𝑥 and 𝑦, so 𝑧 ⊑ 𝛼𝑘 , as desired.

Definition 4.2.8 (Total space of a subset, T). The total space of a T -valued subset 𝑆
of a type 𝑋 is defined as T(𝑆) :≡ Σ𝑥 :𝑋 (𝑥 ∈ 𝑆).

Definition 4.2.9 (Kuratowski finiteness).
(i) A type 𝑋 is Kuratowski finite if there exists some natural number 𝑛 : N and a

surjection 𝑒 : Fin(𝑛) ↠ 𝑋 , where Fin(𝑛) is the inductively defined type with
exactly 𝑛 elements.

(ii) A subset is Kuratowski finite if its total space is a Kuratowski finite type.

Thus, a type𝑋 isKuratowski finite if its elements can be finitely enumerated, possibly
with repetitions, although the repetitions can be removed when𝑋 has decidable equality.

Lemma 4.2.10. The Kuratowski finite subsets of a set are closed under finite unions
and contain all singletons.

Proof. The empty set and any singleton are clearly Kuratowski finite. Moreover, if 𝐴
and 𝐵 are Kuratowski finite subsets, then we may assume to have natural numbers
𝑛 and𝑚 and surjections 𝜎 : Fin(𝑛) ↠ T(𝐴) and 𝜏 : Fin(𝑚) ↠ T(𝐵). We can then
patch these together to obtain a surjection Fin(𝑛 +𝑚) ↠ T(𝐴 ∪ 𝐵), as desired.

Lemma 4.2.11 (Induction for Kuratowski finite subsets). A property of subsets of a
type 𝑋 holds for all Kuratowski finite subsets of 𝑋 as soon as

(i) it holds for the empty set,
(ii) it holds for any singleton subset, and
(iii) it holds for 𝐴 ∪ 𝐵, whenever it holds for 𝐴 and 𝐵.

Proof. Let 𝑄 be a such a property and let 𝐴 be an arbitrary Kuratowski finite subset
of 𝑋 . Since 𝑄 is proposition-valued, we may assume to have a natural number 𝑛 and
a surjection 𝜎 : Fin(𝑛) ↠ T(𝐴). Then the subset 𝐴 must be equal to the finite join of
singletons {𝜎0} ∪ {𝜎1} ∪ · · · ∪ {𝜎𝑛−1}, which can be shown to satisfy 𝑄 by induction
on 𝑛, and hence, so must 𝐴.

Definition 4.2.12 (𝛽). For a set 𝑋 : U , we write 𝛽 : List(𝑋) → PU (𝑋) for the map
inductively defined by [] ↦→ ∅ and 𝑥 :: 𝑙 ↦→ {𝑥} ∪ 𝛽 (𝑙).

Lemma 4.2.13. A subset 𝐴 : 𝑋 → ΩU of a set 𝑋 : U is Kuratowski finite if and only if
it is in the image of 𝛽 .

83 Chapter 4. Continuous and algebraic dcpos

Proof. The left to right direction follows from Lemma 4.2.10, while the converse
follows easily from the induction principle for Kuratowski finite subsets where we
use list concatenation in case (iii).

Example 4.2.14 (Compact elements in PU (𝑋)). The compact elements of PU (𝑋)
for a set 𝑋 : U are exactly the Kuratowski finite subsets of 𝑋 .

Proof. Suppose first that 𝐴 : PU (𝑋) is a compact element. The family(
Σ𝑙 :List(𝑋) 𝛽 (𝑙) ⊆ 𝐴

) 𝛽◦pr1−−−−→ PU (𝑋)

is directed, as it contains ∅ and we can concatenate lists to establish semidirectedness.
Moreover,

(
Σ𝑙 :List(𝑋) 𝛽 (𝑙) ⊆ 𝐴

)
lives in U and we clearly have 𝐴 ⊆ ⊔

𝛽 ◦ pr1. So by
compactness, there exists 𝑙 : List(𝑋) with 𝛽 (𝑙) ⊆ 𝐴 such that 𝐴 ⊆ 𝛽 (𝑙) already. But
this says exactly that 𝐴 is Kuratowski finite by Lemma 4.2.13.
For the converse we use the induction principle for Kuratowski finite subsets: the
empty set is compact by Example 4.2.4, singletons are easily shown to be compact,
and binary unions are compact by Lemma 4.2.7.

We end this section by presenting a few lemmas connecting the way-below relation
and compactness to Scott continuous sections.

Lemma 4.2.15. If we have a Scott continuous retract 𝐷 𝐸
𝑠

𝑟
, then 𝑦 ≪ 𝑠 (𝑥)

implies 𝑟 (𝑦) ≪ 𝑥 for every 𝑥 : 𝐷 and 𝑦 : 𝐸.

Proof. Suppose that 𝑦 ≪ 𝑠 (𝑥) and that 𝑥 ⊑ ⊔
𝛼 for a directed family 𝛼 : 𝐼 → 𝐷 .

Then 𝑠 (𝑥) ⊑ 𝑠 (⊔ 𝛼) = ⊔
𝑠 ◦ 𝛼 by Scott continuity of 𝑠 , so there exists 𝑖 : 𝐼 such

that 𝑦 ⊑ 𝑠 (𝛼𝑖) already. Now monotonicity of 𝑟 implies 𝑟 (𝑦) ⊑ 𝑟 (𝑠 (𝛼𝑖)) = 𝛼𝑖 which
completes the proof that 𝑟 (𝑦) ≪ 𝑥 .

Lemma 4.2.16. The embedding in an embedding-projection pair 𝐷 𝐸
Y

𝜋
preserves

and reflects the way-below relation, i.e. 𝑥 ≪ 𝑦 ⇐⇒ Y (𝑥) ≪ Y (𝑦). In particular, an
element 𝑥 is compact if and only if Y (𝑥) is.

Proof. Suppose that 𝑥 ≪ 𝑦 in 𝐷 and let 𝛼 : 𝐼 → 𝐸 be directed with Y (𝑦) ⊑ ⊔
𝛼 .

Then 𝑦 = 𝜋 (Y (𝑦)) ⊑ ⊔
𝜋 ◦ 𝛼 by Scott continuity of 𝜋 . Hence, there exists 𝑖 : 𝐼 such

that 𝑥 ⊑ 𝜋 (𝛼𝑖). But then Y (𝑥) ⊑ Y (𝜋 (𝛼𝑖)) ⊑ 𝛼𝑖 by monotonicity of Y and the fact
that Y ◦ 𝜋 is a deflation. This proves that 𝑥 ≪ 𝑦. Conversely, if Y (𝑥) ≪ Y (𝑦), then
𝑥 = 𝜋 (Y (𝑥)) ≪ 𝑦 by Lemma 4.2.15.

4.3. The ind-completion 84

4.3 The ind-completion

The ind-completion will be a useful tool for phrasing and proving results about directed
complete posets and is itself a directed complete preorder, cf. Lemma 4.3.3. It was
introduced by Grothendieck and Verdier in [GV72, Section 8] in the context of category
theory, but its role in order theory is discussed in [JJ82, Section 1]. We will also use it
in the context of order theory, but our treatment will involve a careful consideration of
the universes involved, very similar to the original treatment in [GV72].

Definition 4.3.1 (V-ind-completion V-Ind(𝑋), cofinality, ≲). The V-ind-completion
V-Ind(𝑋) of a preorder 𝑋 is the type of directed families in 𝑋 indexed by types in V ,
ordered by cofinality. A directed family 𝛼 : 𝐼 → 𝑋 is cofinal in 𝛽 : 𝐽 → 𝑋 if for every
𝑖 : 𝐼 , there exists 𝑗 : 𝐽 such that 𝛼𝑖 ⊑ 𝛽 𝑗 , and we denote this by 𝛼 ≲ 𝛽 .

Lemma 4.3.2. Cofinality defines a preorder on the ind-completion.

Proof. Straightforward.

Lemma 4.3.3. The V-ind-completion V-Ind(𝑋) of a preorder 𝑋 is V-directed complete.

Proof. Suppose that we have a directed family 𝛼 : 𝐼 → V-Ind(𝑋) with 𝐼 : V . Then
each 𝛼𝑖 is a directed family in 𝑋 indexed by a type 𝐽𝑖 : V . We define the family
𝛼 : (Σ𝑖:𝐼 𝐽𝑖) → 𝑋 by (𝑖, 𝑗) ↦→ 𝛼𝑖 (𝑗). It is clear that each 𝛼𝑖 is cofinal in 𝛼 , and that 𝛼
is cofinal in 𝛽 if every 𝛼𝑖 is cofinal in 𝛽 . So it remains to show that 𝛼 is in fact an
element of V-Ind(𝑋), i.e. that it is directed. Because 𝛼 and each 𝛼𝑖 are directed, 𝐼
and each 𝐽𝑖 are inhabited. Hence, so is the domain of 𝛼 . Thus, we show that 𝛼 is
semidirected. Suppose we have (𝑖1, 𝑗1), (𝑖2, 𝑗2) in the domain of 𝛼 . By directedness
of 𝛼 , there exists 𝑖 : 𝐼 such that 𝛼𝑖1 and 𝛼𝑖2 are cofinal in 𝛼𝑖 . Hence, there exist
𝑗 ′1, 𝑗
′
2 : 𝐽𝑖 with 𝛼𝑖1 (𝑗1) ⊑ 𝛼𝑖 (𝑗 ′1) and 𝛼𝑖2 (𝑗2) ⊑ 𝛼𝑖 (𝑗 ′2). Because the family 𝛼𝑖 is directed

in 𝑋 , there exists 𝑗 : 𝐽𝑖 such that 𝛼𝑖 (𝑗 ′1), 𝛼𝑖 (𝑗 ′2) ⊑ 𝛼𝑖 (𝑗). Hence, we conclude that
𝛼 (𝑖1, 𝑗1) ≡ 𝛼𝑖1 (𝑗1) ⊑ 𝛼𝑖 (𝑗 ′1) ⊑ 𝛼𝑖 (𝑗) ≡ 𝛼 (𝑖, 𝑗), and similarly for (𝑖2, 𝑗2), which proves
semidirectedness of 𝛼 .

Lemma 4.3.4. Taking directed suprema defines a monotone map from a V-dcpo to its
V-ind-completion, denoted by

⊔
: V-Ind(𝐷) → 𝐷 .

Proof. We have to show that
⊔
𝛼 ⊑ ⊔

𝛽 for directed families 𝛼 and 𝛽 such that 𝛼 is
cofinal in 𝛽 . Note that the inequality holds as soon as 𝛼𝑖 ⊑

⊔
𝛽 for every 𝑖 in the

domain of 𝛼 . For this, it suffices that for every such 𝑖 , there exists a 𝑗 in the domain
of 𝛽 such that 𝛼𝑖 ⊑ 𝛽 𝑗 . But the latter says exactly that 𝛼 is cofinal in 𝛽 .

Johnstone and Joyal [JJ82] generalise the notion of continuity from posets to cate-
gories and do so by phrasing it in terms of

⊔
: V-Ind(𝐷) → 𝐷 having a left adjoint.

We follow their approach and build towards this. It turns out to be convenient to use
the following two notions, which are in fact equivalent by Lemma 4.3.7.

85 Chapter 4. Continuous and algebraic dcpos

Definition 4.3.5 (Approximate, left adjunct). For an element 𝑥 of a dcpo 𝐷 and a
directed family 𝛼 : 𝐼 → 𝐷 , we say that

(i) 𝛼 approximates 𝑥 if the supremum of 𝛼 is 𝑥 and each 𝛼𝑖 is way below 𝑥 , and
(ii) 𝛼 is left adjunct to 𝑥 if 𝛼 ≲ 𝛽 ⇐⇒ 𝑥 ⊑ ⊔

𝛽 for every directed family 𝛽 .

Remark 4.3.6. For a V-dcpo 𝐷 , a function 𝐿 : 𝐷 → V-Ind(𝐷) is a left adjoint to⊔
: V-Ind(𝐷) → 𝐷 precisely when 𝐿(𝑥) is left adjunct to 𝑥 for every 𝑥 : 𝐷 .

One may object at this point and argue that a function 𝐿 : 𝐷 → V-Ind(𝐷) needs to
be monotone in order to truly be a left adjoint. But monotonicity actually follows
from the condition that 𝐿(𝑥) is left adjunct to 𝑥 for every 𝑥 : 𝐷 , as we show in
Corollary 4.3.9.

Lemma 4.3.7. A directed family 𝛼 approximates an element 𝑥 if and only if it is left
adjunct to it.

Proof. Suppose first 𝛼 approximates 𝑥 . If 𝛼 ≲ 𝛽 , then 𝑥 =
⊔
𝛼 ⊑ ⊔

𝛽 , by Lemma 4.3.4.
Conversely, if 𝑥 ⊑ ⊔

𝛽 , then 𝛼 is cofinal in 𝛽 : for if 𝑖 is in the domain of 𝛼 , then
𝛼𝑖 ≪ 𝑥 , so there exists 𝑗 such that 𝛼𝑖 ⊑ 𝛽 𝑗 already.
In the other direction, suppose that 𝛼 is left adjunct to 𝑥 . We show that each 𝛼𝑖 is way
below 𝑥 . If 𝛽 is a directed family with 𝑥 ⊑ ⊔

𝛽 , then 𝛼 is cofinal in 𝛽 as 𝛼 is assumed
to be left adjunct to 𝑥 . Hence, for every 𝑖 , there exists 𝑗 with 𝛼𝑖 ⊑ 𝛽 𝑗 , proving that
𝛼𝑖 ≪ 𝑥 . Since 𝛼 is cofinal in itself, we get 𝑥 ⊑ ⊔

𝛼 by assumption. For the other
inequality, we note that 𝑥 ⊑ ⊔

𝑥 , where 𝑥 : 1→ 𝐷 is the directed family that maps
to 𝑥 . Hence, as 𝛼 is left adjunct to 𝑥 , we must have that 𝛼 is cofinal in 𝑥 , which means
that each 𝛼𝑖 is below 𝑥 . Thus, we conclude

⊔
𝛼 ⊑ 𝑥 and 𝑥 =

⊔
𝛼 , as desired.

Proposition 4.3.8. For a V-dcpo 𝐷 , a function 𝐿 : 𝐷 → V-Ind(𝐷) is a left adjoint to⊔
: V-Ind(𝐷) → 𝐷 if and only if 𝐿(𝑥) approximates 𝑥 for every 𝑥 : 𝐷 .

Proof. Immediate from Lemma 4.3.7 and Remark 4.3.6.

Corollary 4.3.9. If a function 𝐿 : 𝐷 → V-Ind(𝐷) is a left adjoint to the function⊔
: V-Ind(𝐷) → 𝐷 , then it is monotone. In fact, it is also order-reflecting in this case.

Proof. Suppose that 𝐿 is a left adjoint to
⊔

and that we have elements 𝑥,𝑦 : 𝐷 . Since
𝐿 is a left adjoint, we have 𝐿(𝑥) ≲ 𝐿(𝑦) ⇐⇒ 𝑥 ⊑ ⊔

𝐿(𝑦), but 𝐿(𝑦) approximates 𝑦,
so

⊔
𝐿(𝑦) = 𝑦 and hence 𝐿(𝑥) ≲ 𝐿(𝑦) ⇐⇒ 𝑥 ⊑ 𝑦, so 𝐿 preserves and reflects the

order.

4.4 Continuous dcpos

We define what it means for a V-dcpo to be (structurally) continuous and prove the
interpolation properties for the way-below relation. We postpone giving examples
(see Sections 4.9 and 4.10.2) until we have developed the theory further.

4.4. Continuous dcpos 86

Definition 4.4.1 (Structural continuity). A V-dcpo 𝐷 is structurally continuous if for
every 𝑥 : 𝐷 we have a specified 𝐼 : V and directed approximating family 𝛼 : 𝐼 → 𝐷

such that 𝛼 has supremum 𝑥 and each element 𝛼 (𝑖) is way below 𝑥 .

Remark 4.4.2 (𝐼𝑥 , 𝛼𝑥). Note how structural continuity equips a dcpo with a function
assigning an approximating family to every element of the dcpo. If we have such an
equipment, we will write 𝛼𝑥 : 𝐼𝑥 → 𝐷 for the approximating family of an element 𝑥 .

The somewhat verbose definition of structural continuity can be succinctly phrased
as follows.
Proposition 4.4.3. Structural continuity of a V-dcpo 𝐷 is equivalent to having a
specified left adjoint to

⊔
: V-Ind(𝐷) → 𝐷 .

Proof. Immediate from Proposition 4.3.8.

Remark 4.4.4. It should be noted that structural continuity is not a property because
an element 𝑥 : 𝐷 can have several different but bicofinal approximating families,
e.g. if 𝛼 : 𝐼 → 𝐷 approximates 𝑥 , then so does [𝛼, 𝛼] : (𝐼 + 𝐼) → 𝐷 . In other words,
the left adjoint to

⊔
: V-Ind(𝐷) → 𝐷 is not unique, although it is unique up to

isomorphism. In category theory this is typically sufficient (and often the best one
can do). Johnstone and Joyal follow this philosophy in [JJ82], but we want the type
of continuous V-dcpos to be a subtype of the V-dcpos. One reason that a property
is preferred is that it is considered good mathematical practice to only consider
morphisms that preserve imposed structure. In the case of structural continuity, this
would imply preservation of the way-below relation, but this excludes many Scott
continuous maps, e.g. if the output of a constant map is not compact, then it does
not preserve the way-below relation.
One may ask why the univalence axiom cannot be used to identify these isomorphic
objects. The point is that the ind-completion V-Ind(𝐷) is not a univalent category in
the sense of [AKS15], because it is a preorder and not a poset. One way to obtain a
subtype is to propositionally truncate the notion of structural continuity and this is
indeed the approach that we will take. However, another choice that would yield a
property is to identify bicofinal elements of V-Ind(𝐷) by quotienting. This approach
is discussed at length in Section 4.5 and in particular it is explained to be inadequate
in a constructive setting.

Definition 4.4.5 (Continuity of a dcpo). A V-dcpo is continuous if the propositional
truncation of its structural continuity holds.

Thus, a dcpo is continuous if we have an unspecified function assigning an approxi-
mating family to every element of the dcpo.

Proposition 4.4.6. Continuity of a V-dcpo 𝐷 is equivalent to having an unspecified
left adjoint to

⊔
: V-Ind(𝐷) → 𝐷 .

87 Chapter 4. Continuous and algebraic dcpos

Proof. By Proposition 4.4.3 and functoriality of the propositional truncation.

Lemma 4.4.7. For elements 𝑥 and 𝑦 of a structurally continuous dcpo, the following
are equivalent:

(i) 𝑥 ⊑ 𝑦;
(ii) 𝛼𝑥 (𝑖) ⊑ 𝑦 for every 𝑖 : 𝐼𝑥 ;
(iii) 𝛼𝑥 (𝑖) ≪ 𝑦 for every 𝑖 : 𝐼𝑥 .

Proof. Note that (iii) implies (ii) and (ii) implies (i), because if 𝛼𝑥 (𝑖) ⊑ 𝑦 for every
𝑖 : 𝐼𝑥 , then 𝑥 =

⊔
𝛼𝑥 ⊑ 𝑦, as desired. So it remains to prove that (i) implies (iii), but

this holds, because 𝛼𝑥 (𝑖) ≪ 𝑥 for every 𝑖 : 𝐼𝑥 .

Lemma 4.4.8. For elements 𝑥 and 𝑦 of a structurally continuous dcpo, 𝑥 is way below 𝑦
if and only if there exists 𝑖 : 𝐼𝑦 such that 𝑥 ⊑ 𝛼𝑦 (𝑖).

Proof. The left-to-right implication holds, because 𝛼𝑦 is a directed family with supre-
mum 𝑦, while the converse holds because 𝛼𝑦 (𝑖) ≪ 𝑦 for every 𝑖 : 𝐼𝑦 .

We now prove three interpolation lemmas for structurally continuous dcpos. Be-
cause the conclusions of the lemmas are propositions, the results will follow for contin-
uous dcpo immediately.

Lemma 4.4.9 (Nullary interpolation for the way-below relation). For every 𝑥 : 𝐷 of
a (structurally) continuous dcpo 𝐷 , there exists 𝑦 : 𝐷 such that 𝑦 ≪ 𝑥 .

Proof. The approximating family 𝛼𝑥 is directed, so there exists 𝑖 : 𝐼𝑥 and hence we
can take 𝑦 :≡ 𝛼𝑥 (𝑖) since 𝛼𝑥 (𝑖) ≪ 𝑥 .

Our proof of the following lemma is inspired by [JJ82, Proposition 2.12].

Lemma 4.4.10 (Unary interpolation for the way-below relation). If 𝑥 ≪ 𝑦 in a
(structurally) continuous dcpo 𝐷 , then there exists an interpolant 𝑑 : 𝐷 such that
𝑥 ≪ 𝑑 ≪ 𝑦.

Proof. By structural continuity, we can approximate every approximant 𝛼𝑦 (𝑖) of 𝑦 by
an approximating family 𝛽𝑖 : 𝐽𝑖 → 𝐷 . This defines a map 𝛽 from 𝐼𝑦 to V-Ind(𝐷), the
ind-completion of the V-dcpo 𝐷 , by sending 𝑖 : 𝐼𝑦 to the directed family 𝛽𝑖 . We claim
that 𝛽 is directed in V-Ind(𝐷). Since 𝛼𝑦 is directed, 𝐼𝑦 is inhabited, so it remains to
prove that 𝛽 is semidirected. So suppose we have 𝑖1, 𝑖2 : 𝐼𝑦 . Because 𝛼𝑦 is semidirected,
there exists 𝑖 : 𝐼𝑦 such that 𝛼𝑦 (𝑖1), 𝛼𝑦 (𝑖2) ⊑ 𝛼𝑦 (𝑖). We claim that 𝛽𝑖1 and 𝛽𝑖2 are cofinal
in 𝛽𝑖 , which would prove semidirectedness of 𝛽 . We give the argument for 𝑖1 only
as the case for 𝑖2 is completely analogous. For the cofinality, we have to show that
for every 𝑗 : 𝐽𝑖1 , there exists 𝑗 ′ : 𝐽𝑖 such that 𝛽𝑖1 (𝑗) ⊑ 𝛽𝑖 (𝑗 ′). But this holds because
𝛽𝑖1 (𝑗) ≪

⊔
𝛽𝑖 for every such 𝑗 , as we have 𝛽𝑖1 (𝑗) ≪ 𝛼𝑦 (𝑖1) ⊑ 𝛼𝑦 (𝑖) ⊑

⊔
𝛽𝑖 .

Thus, 𝛽 is directed in V-Ind(𝐷) and hence we can calculate its supremum in V-Ind(𝐷)

4.4. Continuous dcpos 88

to obtain the directed family 𝛾 : (Σ𝑖:𝐼 𝐽𝑖) → 𝐷 given by (𝑖, 𝑗) ↦→ 𝛽𝑖 (𝑗).
We now show that 𝑦 is below the supremum of 𝛾 . By Lemma 4.4.7, it suffices to prove
that 𝛼𝑦 (𝑖) ⊑

⊔
𝛾 for every 𝑖 : 𝐼𝑦 , and, in turn, to prove this for an 𝑖 : 𝐼𝑦 it suffices to

prove that 𝛽𝑖 (𝑗) ⊑
⊔
𝛾 for every 𝑗 : 𝐽𝑖 . But this is immediate from the definition of 𝛾 .

Thus, 𝑦 ⊑ ⊔
𝛾 . Because 𝑥 ≪ 𝑦, there exists (𝑖, 𝑗) : Σ𝑖:𝐼 𝐽𝑖 such that 𝑥 ⊑ 𝛾 (𝑖, 𝑗) ≡ 𝛽𝑖 (𝑗).

Finally, for our interpolant, we take 𝑑 :≡ 𝛼𝑦 (𝑖). Then, indeed, 𝑥 ≪ 𝑑 ≪ 𝑦, because
𝑥 ⊑ 𝛽𝑖 (𝑗) ≪ 𝛼𝑦 (𝑖) ≡ 𝑑 and 𝑑 ≡ 𝛼𝑦 (𝑖) ≪ 𝑦, completing the proof.

Lemma 4.4.11 (Binary interpolation for the way-below relation). If 𝑥 ≪ 𝑧 and𝑦 ≪ 𝑧

in a (structurally) continuous dcpo 𝐷 , then there exists an interpolant 𝑑 : 𝐷 such that
𝑥,𝑦 ≪ 𝑑 and 𝑑 ≪ 𝑧.

The proof is a straightforward application of unary interpolation.

Proof. Using that 𝑥 ≪ 𝑧 and 𝑦 ≪ 𝑧, there exist interpolants 𝑑1, 𝑑2 : 𝐷 such that
𝑥 ≪ 𝑑1 ≪ 𝑧 and 𝑦 ≪ 𝑑2 ≪ 𝑧. Hence, there exist 𝑖1, 𝑖2 : 𝐼𝑧 such that 𝑑1 ⊑ 𝛼𝑧 (𝑖1) and
𝑑2 ⊑ 𝛼𝑧 (𝑖2). By semidirectedness of 𝛼𝑧 , there then exists 𝑖 : 𝐼𝑧 for which 𝑑1, 𝑑2 ⊑ 𝛼𝑧 (𝑖).
Our final interpolant is defined as 𝑑 :≡ 𝛼𝑧 (𝑖), which works because 𝑥 ≪ 𝑑1 ⊑ 𝑑 ,
𝑦 ≪ 𝑑2 ⊑ 𝑑 and 𝑑 ≡ 𝛼𝑧 (𝑖) ≪ 𝑧.

Both continuity and structural continuity are closed under Scott continuous retracts.
Keeping track of universes, it holds in the following generality:

Theorem 4.4.12. If we have dcpos 𝐷 : V-DCPOU ,T and 𝐸 : V-DCPOU ′,T ′ such that
𝐷 is a Scott continuous retract of 𝐸, then 𝐷 is (structurally) continuous if 𝐸 is.

Proof. We prove the result for structural continuity, as the other will follow from
that and the fact that the propositional truncation is functorial. So suppose that we
have a Scott continuous section 𝑠 : 𝐷 → 𝐸 and retraction 𝑟 : 𝐸 → 𝐷 and structural
continuity of 𝐸. We claim that for every 𝑥 : 𝐷 , the family 𝑟 ◦ 𝛼𝑠 (𝑥) is approximating
for 𝑥 . Firstly, it is directed, because 𝛼𝑠 (𝑥) is and 𝑟 is Scott continuous. Secondly,⊔

𝑟 ◦ 𝛼𝑠 (𝑥) = 𝑟
(⊔

𝛼𝑠 (𝑥)
)

(by Scott continuity of 𝑟)
= 𝑟 (𝑠 (𝑥)) (as 𝛼𝑠 (𝑥) is the approximating family of 𝑠 (𝑥))
= 𝑥 (because 𝑠 is a section of 𝑟),

so the supremum of 𝑟 ◦ 𝛼𝑠 (𝑥) is 𝑥 . Finally, we must prove that 𝑟
(
𝛼𝑠 (𝑥) (𝑖)

)
≪ 𝑥 for

every 𝑖 : 𝐼𝑥 . By Lemma 4.2.15, this is implied by 𝛼𝑠 (𝑥) (𝑖) ≪ 𝑠 (𝑥), which holds as 𝛼𝑠 (𝑥)
is the approximating family of 𝑠 (𝑥).

Proposition 4.4.13. A (structurally) continuous dcpo is locally small if and only if its
way-below relation has small values.

Proof. By Lemmas 4.4.7 and 4.4.8, we have

𝑥 ⊑ 𝑦 ⇐⇒ ∀𝑖:𝐼𝑥 (𝛼𝑥 (𝑖) ≪ 𝑦) and 𝑥 ≪ 𝑦 ⇐⇒ ∃𝑖:𝐼𝑦
(
𝑥 ⊑ 𝛼𝑦 (𝑖)

)
,

89 Chapter 4. Continuous and algebraic dcpos

for every two elements 𝑥 and 𝑦 of a structurally continuous dcpo. But the types
𝐼𝑥 and 𝐼𝑦 are small, finishing the proof. The result also holds for continuous dcpos,
because what we are proving is a proposition.

Proposition 4.4.13 is significant because the definition of the way-below relation for
a V-dcpo 𝐷 quantifies over all families into 𝐷 indexed by types in V .

4.5 Pseudocontinuity

In light of Proposition 4.4.3, we see that a V-dcpo 𝐷 can be structurally continuous in
more than one way: the map

⊔
: V-Ind(𝐷) → 𝐷 can have two left adjoints 𝐿1, 𝐿2 such

that for some 𝑥 : 𝐷 , the directed families 𝐿1(𝑥) and 𝐿2(𝑥) are bicofinal, yet unequal.
In order for the left adjoint to be truly unique (and not just up to isomorphism), the
preorder V-Ind(𝐷) would have to identify bicofinal families. Of course, we could
enforce this identification by passing to the poset reflection V-Ind(𝐷)/≈ of V-Ind(𝐷)
and this section studies exactly that.

Another perspective on the situation is the following: The type-theoretic definition
of structural continuity of a V-dcpo𝐷 is of the following form Π𝑥 :𝐷Σ𝐼 :VΣ𝛼 :𝐼→𝐷 . . ., while
continuity is defined as its propositional truncation ∥Π𝑥 :𝐷Σ𝐼 :VΣ𝛼 :𝐼→𝐷 . . .∥. Yet another
way to obtain a property is by putting the propositional truncation on the inside instead:
Π𝑥 :𝐷 ∥Σ𝐼 :VΣ𝛼 :𝐼→𝐷 . . .∥. We study what this amounts to and how it relates to (structural)
continuity and the poset reflection. Our results are summarised in Table 4.5.4 below.

Definition 4.5.1 (Pseudocontinuity). A V-dcpo 𝐷 is pseudocontinuous if for every
𝑥 : 𝐷 there exists an unspecified directed family that approximates 𝑥 .

Note that structural continuity⇒ continuity⇒ pseudocontinuity, but reversing
the first implication is an instance of global choice, while reversing the second amounts
to an instance of the axiom of choice (Equation 2.7.25) that we do not expect to be
provable in our constructive setting. We further discuss this point in Remark 4.5.5.

For a V-dcpo 𝐷 , the map
⊔

: V-Ind(𝐷) → 𝐷 is monotone, so it induces a unique
monotone map

⊔
≈ : V-Ind(𝐷)/≈ → 𝐷 such that the diagram

V-Ind(𝐷)/≈ 𝐷

V-Ind(𝐷)

⊔
≈

[−]
⊔ (4.5.2)

commutes.
Proposition 4.5.3. A V-dcpo 𝐷 is pseudocontinuous if and only if the map of posets⊔
≈ : V-Ind(𝐷)/≈ → 𝐷 has a (specified) left adjoint.

Observe that the type of left adjoints to
⊔
≈ : V-Ind(𝐷)/≈ → 𝐷 is a proposition,

precisely because V-Ind(𝐷)/≈ is a poset, cf. [AKS15, Lemma 5.2].

4.5. Pseudocontinuity 90

Proof. Suppose that
⊔
≈ : V-Ind(𝐷)/≈ → 𝐷 has a left adjoint 𝐿 and let 𝑥 : 𝐷 be

arbitrary. We have to prove that there exists a directed family 𝛼 : 𝐼 → 𝐷 that
approximates 𝑥 . By surjectivity of the universal map [−], there exists a directed
family 𝛼 : 𝐼 → 𝐷 such that 𝐿(𝑥) = [𝛼]. Moreover, 𝛼 approximates 𝑥 by virtue of
Lemma 4.3.7, since for every 𝛽 : V-Ind(𝐷), we have

𝛼 ≲ 𝛽 ⇐⇒ 𝐿(𝑥) ≤ [𝛽] (since 𝐿(𝑥) = [𝛼])
⇐⇒ 𝑥 ⊑ ⊔

≈ [𝛽] (since 𝐿 is a left adjoint to
⊔
≈)

⇐⇒ 𝑥 ⊑ ⊔
𝛽 (by Equation 4.5.2).

The converse is more involved and features another application of Theorem 2.6.9,
similar to the proof of Proposition 3.4.14. Assume that 𝐷 is pseudocontinuous. We
start by constructing the left adjoint, so let 𝑥 : 𝐷 be arbitrary. WritingA𝑥 for the type
of directed families that approximate 𝑥 , we have an obvious map𝜑𝑥 : A𝑥 → V-Ind(𝐷)
that forgets that the directed family approximates 𝑥 .
We claim that all elements in the image of 𝜑𝑥 are bicofinal. For if 𝛼 and 𝛽 are directed
families both approximating 𝑥 , then for every 𝑖 in the domain of 𝛼 we know that
𝛼𝑖 ≪ 𝑥 =

⊔
𝛽 , so that there exists 𝑗 with 𝛼𝑖 ⊑ 𝛽 𝑗 . Hence, passing to the poset

reflection, the composite [−] ◦ 𝜑𝑥 is constant. Thus, by Theorem 2.6.9 we have a
(necessarily unique) map𝜓𝑥 making the diagram

A𝑥 V-Ind(𝐷)/≈

∥A𝑥 ∥

[−]◦𝜑𝑥

|−| 𝜓𝑥

commute. Since 𝐷 is assumed to be pseudocontinuous, we have exactly ∥A𝑥 ∥ for
every 𝑥 : 𝐷 , so together with 𝜓𝑥 this defines a map 𝐿 : 𝐷 → V-Ind(𝐷)/≈ by
𝐿(𝑥) :≡ 𝜓𝑥 (𝑝), where 𝑝 witnesses pseudocontinuity at 𝑥 .
Lastly, we prove that 𝐿 is indeed a left adjoint to

⊔
≈. So let 𝑥 : 𝐷 be arbitrary. Since

we’re proving a property, we can use pseudocontinuity at 𝑥 to specify a directed
family 𝛼 that approximates 𝑥 . We now have to prove [𝛼] ≤ 𝛽′ ⇐⇒ 𝑥 ⊑ ⊔

≈ 𝛽
′ for

every 𝛽′ : V-Ind(𝐷)/≈. This is a proposition, so using quotient induction once more,
it suffices to prove [𝛼] ≤ [𝛽] ⇐⇒ 𝑥 ⊑ ⊔

≈ [𝛽] for every 𝛽 : V-Ind(𝐷). Indeed, for
such 𝛽 we have

[𝛼] ≤ [𝛽] ⇐⇒ 𝛼 ≲ 𝛽

⇐⇒ 𝑥 ⊑ ⊔
𝛽 (by Lemma 4.3.7 and the fact that 𝛼 approximates 𝑥)

⇐⇒ 𝑥 ⊑ ⊔
≈ [𝛽] (by Equation 4.5.2),

finishing the proof.

Thus, the explicit type-theoretic formulation and the formulation using left adjoints
in each row of Table 4.5.4 (which summarises our findings) are equivalent.

91 Chapter 4. Continuous and algebraic dcpos

Type-theoretic formulation Formulation with adjoints Property
Struc. cont. Π𝑥 :𝐷Σ𝐼 :VΣ𝛼 :𝐼→𝐷 𝛿 (𝛼, 𝑥) Specified left adjoint to⊔

: V-Ind(𝐷) → 𝐷

✕

Cont. ∥Π𝑥 :𝐷Σ𝐼 :VΣ𝛼 :𝐼→𝐷 𝛿 (𝛼, 𝑥)∥ Unspecified left adjoint to⊔
: V-Ind(𝐷) → 𝐷

✓

Pseudocont. Π𝑥 :𝐷 ∥Σ𝐼 :VΣ𝛼 :𝐼→𝐷 𝛿 (𝛼, 𝑥)∥ Specified left adjoint to⊔
≈ : V-Ind(𝐷)/≈ → 𝐷

✓

Table 4.5.4: (Structural) continuity and pseudocontinuity of a dcpo 𝐷 ,
where 𝛿 (𝛼, 𝑥) abbreviates that 𝛼 is directed and approximates 𝑥 .

Remark 4.5.5. The issue with pseudocontinuity is that taking the quotient by bicofi-
nality introduces a dependence on instances of the axiom of choice when it comes to
proving properties of pseudocontinuous dcpos. An illustrative example is the proof
of unary interpolation (Lemma 4.4.10), where we used structural continuity to first
approximate an element 𝑦 by 𝛼𝑦 and then, in turn, approximate every approximant
𝛼𝑦 (𝑖). With pseudocontinuity this argument would require choosing an approxi-
mating family for every 𝑖 . Another example is that while the preorder V-Ind(𝐷) is
V-directed complete, a direct lifting of the proof of this fact to the poset reflection
V-Ind(𝐷)/≈ requires the axiom of choice. Hence, the Rezk completion [AKS15], of
which the poset reflection is a special case, does not necessarily preserve (filtered)
colimits. Related issues concerning the axiom of choice are also discussed in [JJ82,
pp. 260–261].

4.6 Algebraic dcpos

Many of our examples of dcpos are not just continuous, but satisfy the stronger condition
of being algebraic, meaning their elements can be approximated by compact elements
only.

Definition 4.6.1 (Structural algebraicity). A V-dcpo 𝐷 is structurally algebraic if for
every 𝑥 : 𝐷 we have a specified 𝐼 : V and directed compact family ^ : 𝐼 → 𝐷 such
that ^ has supremum 𝑥 and each element ^ (𝑖) is compact.

Remark 4.6.2 (𝐼𝑥 , ^𝑥). Note how structural algebraicity equips a dcpo with a func-
tion assigning a compact family to every element of the dcpo. If we have such an
equipment, we will write ^𝑥 : 𝐼𝑥 → 𝐷 for the compact family of an element 𝑥 .

Definition 4.6.3 (Algebraicity). A V-dcpo is algebraic if the propositional truncation
of its structural algebraicity holds.

Thus, a dcpo is continuous if we have an unspecified function assigning a compact
family to every element of the dcpo.

4.7. Small bases 92

Lemma 4.6.4. Every (structurally) algebraic dcpo is (structurally) continuous.

Proof. We prove that structurally algebraic dcpos are structurally continuous. The
claim for algebraic and continuous then follows by functoriality of the propositional
truncation. It suffices to prove that ^𝑥 (𝑖) ≪ 𝑥 for every 𝑖 : 𝐼𝑥 . By assumption, ^𝑥 (𝑖) is
compact and has supremum 𝑥 . Hence, ^𝑥 (𝑖) ≪ ^𝑥 (𝑖) ⊑

⊔
^𝑥 = 𝑥 , so ^𝑥 (𝑖) ≪ 𝑥 .

4.7 Small bases

Recall that the traditional, set-theoretic definition of a dcpo 𝐷 being continuous says
that for every element 𝑥 ∈ 𝐷 , the subset {𝑦 ∈ 𝐷 | 𝑦 ≪ 𝑥} is directed with supremum 𝑥 .
As explained in the Introduction of this chapter, the problem with this definition in
a predicative context is that the subset {𝑦 ∈ 𝐷 | 𝑦 ≪ 𝑥} is not small. But, as is well-
known in domain theory, it is sufficient (and in fact equivalent) to instead ask that 𝐷
has a subset 𝐵, known as a basis, such that the subset {𝑏 ∈ 𝐵 | 𝑏 ≪ 𝑥} ⊆ 𝐵 is directed
with supremum 𝑥 , see [AJ94, Section 2.2.2] and [GHK+03, Definition III-4.1]. The idea
developed in this section is that in many examples we can find a small basis giving us a
predicative handle on the situation.

If a dcpo has a small basis, then it is continuous. In fact, all our running examples
of continuous dcpos are actually examples of dcpos with small bases. Moreover, dcpos
with small bases are better behaved. For example, they are locally small and so are their
exponentials, which also have small bases (Section 4.13). Moreover, in Section 4.11 we
show that having a small basis is equivalent to being presented by ideals.

Definition 4.7.1 (Small basis). For a V-dcpo 𝐷 , a map 𝛽 : 𝐵 → 𝐷 with 𝐵 : V is a
small basis for 𝐷 if the following conditions hold:

(i) for every 𝑥 : 𝐷 , the family (Σ𝑏:𝐵 (𝛽 (𝑏) ≪ 𝑥))
𝛽◦pr1−−−−→ 𝐷 is directed and has

supremum 𝑥 ;
(ii) for every 𝑥 : 𝐷 and 𝑏 : 𝐵, the proposition 𝛽 (𝑏) ≪ 𝑥 is V-small.

We will write

↠

𝛽 𝑥 for the type Σ𝑏:𝐵 (𝛽 (𝑏) ≪ 𝑥) and conflate this type with the canon-

ical map

↠

𝛽 𝑥
𝛽◦pr1−−−−→ 𝐷 .

Item (ii) ensures not only that the type Σ𝑏:𝐵 (𝛽 (𝑏) ≪ 𝑥) is V-small, but also that a
dcpo with a small basis is locally small (Proposition 4.7.5).

Remark 4.7.2. If 𝛽 : 𝐵 → 𝐷 is a small basis for a V-dcpo 𝐷 , then the type

↠

𝛽 𝑥 is
small. Hence, we have a type 𝐼 : V and an equivalence 𝜑 : 𝐼 ≃

↠

𝛽 𝑥 and we see that

the family 𝐼
𝜑
−→

↠

𝛽 𝑥
𝛽◦pr1−−−−→ 𝐷 is directed and has the same supremum as

↠

𝛽 𝑥 → 𝐷 .
We will use this tacitly and write as if the type

↠

𝛽 𝑥 is actually a type in V .

Lemma 4.7.3. If a dcpo comes equipped with a small basis, then it is structurally
continuous. Hence, if a dpco has an unspecified small basis, then it is continuous.

93 Chapter 4. Continuous and algebraic dcpos

Proof. For every element 𝑥 of a dcpo 𝐷 , the family

↠

𝛽 𝑥 → 𝐷 approximates 𝑥 , so the
assignment 𝑥 ↦→

↠

𝛽 𝑥 makes 𝐷 structurally continuous.

Lemma 4.7.4. In a dcpo 𝐷 with a small basis 𝛽 : 𝐵 → 𝐷 , we have 𝑥 ⊑ 𝑦 if and only if
∀𝑏:𝐵 (𝛽 (𝑏) ≪ 𝑥 → 𝛽 (𝑏) ≪ 𝑦) for every 𝑥,𝑦 : 𝐷 .

Proof. If 𝑥 ⊑ 𝑦 and 𝛽 (𝑏) ≪ 𝑥 , then 𝛽 (𝑏) ≪ 𝑦, so the left-to-right implication is clear.
For the converse, suppose that the condition of the lemma holds. Because 𝑥 =

⊔ ↠

𝛽 𝑥 ,
the inequality 𝑥 ⊑ 𝑦 holds as soon as 𝛽 (𝑏) ⊑ 𝑦 for every 𝑏 : 𝐵 with 𝛽 (𝑏) ≪ 𝑥 , but
this is implied by the condition.

Proposition 4.7.5. A dcpo with a small basis is locally small. Moreover, the way-below
relation on all of the dcpo has small values.

Proof. The first claim follows from Lemma 4.7.4 and the second follows from the first
and Proposition 4.4.13.

A notable feature of dcpos with a small basis is that interpolants for the way-below
relation, cf. Lemmas 4.4.9 to 4.4.11, can be found in the basis, as we show now.

Lemma 4.7.6 (Nullary interpolation in the basis for the way-below relation). In a
dcpo 𝐷 with a small basis 𝛽 : 𝐵 → 𝐷 , there exists 𝑏 : 𝐵 with 𝛽 (𝑏) ≪ 𝑥 for every 𝑥 : 𝐷 .

Proof. For every 𝑥 : 𝐷 , the approximating family

↠

𝑥 is directed, so there exists 𝑏 : 𝐵
with 𝛽 (𝑏) ≪ 𝑥 .

Lemma 4.7.7 (Unary interpolation in the basis for the way-below relation). If 𝑥 ≪ 𝑦

in a dcpo 𝐷 with a small basis 𝛽 : 𝐵 → 𝐷 , then there exists an interpolant 𝑏 : 𝐵 such
that 𝑥 ≪ 𝛽 (𝑏) ≪ 𝑦.

Proof. The small basis ensures that 𝐷 is structurally continuous by Lemma 4.7.3.
Hence, if 𝑥 ≪ 𝑦, then there exists an interpolant 𝑑 : 𝐷 with 𝑥 ≪ 𝑑 ≪ 𝑦. Now 𝑑 ≪
𝑦 ⊑ ⊔ ↠

𝛽 𝑦, so there exists 𝑏 : 𝐵 such that 𝑑 ⊑ 𝛽 (𝑏) ≪ 𝑦. Moreover, 𝑥 ≪ 𝑑 ⊑ 𝛽 (𝑏),
completing the proof.

Lemma 4.7.8 (Binary interpolation in the basis for the way-below relation). If 𝑥 ≪ 𝑧

and 𝑦 ≪ 𝑧 in a dcpo 𝐷 with a small basis 𝛽 : 𝐵 → 𝐷 , then there exists an interpolant
𝑏 : 𝐵 such that 𝑥,𝑦 ≪ 𝛽 (𝑏) and 𝛽 (𝑏) ≪ 𝑧.

Proof. The small basis ensures that 𝐷 is structurally continuous by Lemma 4.7.3.
Hence, if 𝑥 ≪ 𝑦 and 𝑦 ≪ 𝑧, then there exists an interpolant 𝑑 : 𝐷 with 𝑥,𝑦 ≪ 𝑑 ≪ 𝑧.
Now 𝑑 ≪ 𝑧 ⊑ ⊔ ↠

𝛽 𝑧, so there exists 𝑏 : 𝐵 such that 𝑑 ⊑ 𝛽 (𝑏) ≪ 𝑧. Moreover,
𝑥,𝑦 ≪ 𝑑 ⊑ 𝛽 (𝑏), completing the proof.

4.7. Small bases 94

Before proving the analogue of Theorem 4.4.12 (closure under Scott continuous
retracts) for small bases, we need a type-theoretic analogue of [AJ94, Proposition 2.2.4]
and [GHK+03, Proposition III-4.2], which essentially says that it is sufficient for a
“subset” of

↠

𝛽 𝑥 (given by 𝜎 in the lemma) to be directed and have suprema 𝑥 .

Lemma 4.7.9. Suppose that we have an element 𝑥 of a V-dcpo 𝐷 together with two
maps 𝛽 : 𝐵 → 𝐷 and 𝜎 : 𝐼 → Σ𝑏:𝐵 (𝛽 (𝑏) ≪ 𝑥) with 𝐼 : V . If

↠
𝛽 𝑥 ◦ 𝜎 is directed and

has supremum 𝑥 , then

↠

𝛽 𝑥 is directed with supremum 𝑥 too.

Proof. Suppose that

↠

𝛽 𝑥 ◦𝜎 is directed and has supremum 𝑥 . Obviously, 𝑥 is an upper
bound for

↠

𝛽 𝑥 , so we are to prove that it is the least. If 𝑦 is an upper bound for

↠

𝛽 𝑥 ,
then it is also an upper bound for

↠

𝛽 𝑥◦𝜎 which has supremum 𝑥 , so that 𝑥 ⊑ 𝑦 follows.
So the point is directedness of

↠

𝛽 𝑥 . Its domain is inhabited, because 𝜎 is directed.
Now suppose that we have 𝑏1, 𝑏2 : 𝐵 with 𝛽 (𝑏1), 𝛽 (𝑏2) ≪ 𝑥 . Since 𝑥 =

⊔(↠

𝛽 𝑥 ◦ 𝜎
)
,

there exist 𝑖1, 𝑖2 : 𝐼 such that 𝛽 (𝑏1) ⊑ 𝛽 (pr1(𝜎 (𝑖1))) and 𝛽 (𝑏2) ⊑ 𝛽 (pr1(𝜎 (𝑖2))). Since↠

𝛽 𝑥 ◦𝜎 is directed, there exists 𝑖 : 𝐼 with 𝛽 (pr1(𝜎 (𝑖1))), 𝛽 (pr1(𝜎 (𝑖2))) ⊑ 𝛽 (pr1(𝜎 (𝑖))).
Hence, writing 𝑏 :≡ pr1(𝜎 (𝑖)), we have 𝛽 (𝑏) ≪ 𝑥 and 𝛽 (𝑏1), 𝛽 (𝑏2) ⊑ 𝛽 (𝑏). Thus,↠

𝛽 𝑥 is directed, as desired.

Theorem 4.7.10. If we have a Scott continuous retract 𝐷 𝐸
𝑠

𝑟
and 𝛽 : 𝐵 → 𝐸 is

a small basis for 𝐸, then 𝑟 ◦ 𝛽 is a small basis for 𝐷 .

Proof. First of all, note that 𝐸 is locally small by Proposition 4.7.5. But being locally
small is closed under Scott continuous retracts by Lemma 3.3.15, so 𝐷 is locally
small too. Moreover, 𝐷 is structurally continuous by virtue of Theorem 4.4.12 and
Lemma 4.7.3. Hence, the way-below relation is small-valued by Proposition 4.4.13. In
particular, the type 𝑟 (𝛽 (𝑏)) ≪ 𝑥 is small for every 𝑏 : 𝐵 and 𝑥 : 𝐷 .
We are going to use Lemma 4.7.9 to show that

↠

𝑟◦𝛽 𝑥 is directed and has supremum
𝑥 for every 𝑥 : 𝐷 . By Lemma 4.2.15, the identity on 𝐵 induces a well-defined map
𝜎 : (Σ𝑏:𝐵 (𝛽 (𝑏) ≪ 𝑠 (𝑥))) → (Σ𝑏:𝐵 (𝑟 (𝛽 (𝑏)) ≪ 𝑦)). Now Lemma 4.7.9 tells us that it
suffices to prove that 𝑟 ◦

↠

𝛽 𝑠 (𝑥) is directed with supremum 𝑥 . But

↠

𝛽 𝑠 (𝑥) is directed
with supremum 𝑥 , so by Scott continuity of 𝑟 , the family 𝑟 ◦

↠

𝛽 𝑠 (𝑥) is directed with
supremum 𝑟 (𝑠 (𝑥)) = 𝑥 , as desired.

Finally, a nice use of dcpos with small bases is that they yield locally small expo-
nentials, as we can restrict the quantification in the pointwise order to elements of the
small basis.
Proposition 4.7.11. If 𝐷 is a dcpo with an unspecified small basis and 𝐸 is a locally
small dcpo, then the exponential 𝐸𝐷 is locally small too.

Proof. Being locally small is a proposition, so in proving the result we may assume
that 𝐷 comes equipped with a small basis 𝛽 : 𝐵 → 𝐷 . For arbitrary Scott continuous
functions 𝑓 , 𝑔 : 𝐷 → 𝐸, we claim that 𝑓 ⊑ 𝑔 precisely when ∀𝑏:𝐵 (𝑓 (𝛽 (𝑏)) ⊑ 𝑔(𝛽 (𝑏))),

95 Chapter 4. Continuous and algebraic dcpos

which is a small type using that 𝐸 is locally small. The left-to-right implication
is obvious, so suppose that 𝑓 (𝛽 (𝑏)) ⊑ 𝑔(𝛽 (𝑏)) for every 𝑏 : 𝐵 and let 𝑥 : 𝐷 be
arbitrary. We are to show that 𝑓 (𝑥) ⊑ 𝑔(𝑥). Since 𝑥 =

⊔ ↠

𝛽 𝑥 , it suffices to prove
𝑓

(⊔ ↠

𝛽 𝑥

)
⊑ 𝑔

(⊔ ↠

𝛽 𝑥

)
and in turn, that 𝑓 (𝛽 (𝑏)) ⊑ 𝑔

(⊔ ↠

𝛽 𝑥

)
for every 𝑏 : 𝐵. But

is easily seen to hold, because 𝑓 (𝛽 (𝑏)) ⊑ 𝑔(𝛽 (𝑏)) for every 𝑏 : 𝐵 by assumption.

4.8 Small compact bases

Similarly to the progression from continuous dcpos (Section 4.4) to algebraic ones
(Section 4.6), we now turn to small compact bases.

Definition 4.8.1 (Small compact basis). For a V-dcpo 𝐷 , a map 𝛽 : 𝐵 → 𝐷 with
𝐵 : V is a small compact basis for 𝐷 if the following conditions hold:

(i) for every 𝑏 : 𝐵, the element 𝛽 (𝑏) is compact in 𝐷 ;
(ii) for every 𝑥 : 𝐷 , the family (Σ𝑏:𝐵 (𝛽 (𝑏) ⊑ 𝑥))

𝛽◦pr1−−−−→ 𝐷 is directed and has
supremum 𝑥 ;

(iii) for every 𝑥 : 𝐷 and 𝑏 : 𝐵, the proposition 𝛽 (𝑏) ⊑ 𝑥 is V-small.
Wewill write ↓𝛽 𝑥 for the type Σ𝑏:𝐵 (𝛽 (𝑏) ⊑ 𝑥) and conflate this typewith the canonical

map ↓𝛽 𝑥
𝛽◦pr1−−−−→ 𝐷 .

Remark 4.8.2. If 𝛽 : 𝐵 → 𝐷 is a small compact basis for a V-dcpo 𝐷 , then the type
↓𝛽 𝑥 is small. Similarly to Remark 4.7.2, we will use this tacitly and write as if the
type ↓𝛽 𝑥 is actually a type in V .

Lemma 4.8.3. If a dcpo comes equipped with a small compact basis, then it is struc-
turally algebraic. Hence, if a dpco has an unspecified small compact basis, then it is
algebraic.

Proof. For every element 𝑥 of a dcpo 𝐷 , the family ↓𝛽 𝑥 → 𝐷 consists of compact
elements and approximates 𝑥 , so the assignment 𝑥 ↦→ ↓𝛽 𝑥 makes 𝐷 structurally
continuous.

Lemma 4.8.4. A map 𝛽 : 𝐵 → 𝐷 is a small compact basis for a dcpo 𝐷 if and only if 𝛽
is a small basis for 𝐷 and 𝛽 (𝑏) is compact for every 𝑏 : 𝐵.

Proof. If 𝛽 (𝑏) is compact for every 𝑏 : 𝐵, then 𝛽 (𝑏) ⊑ 𝑥 if and only if 𝛽 (𝑏) ≪ 𝑥

for every 𝑏 : 𝐵 and 𝑥 : 𝐷 , so that

↠

𝛽 𝑥 ≃ ↓𝛽 𝑥 for every 𝑥 : 𝐷 . In particular,

↠

𝛽 𝑥

approximates 𝑥 if and only if ↓𝛽 𝑥 does, which completes the proof.

Proposition 4.8.5. A small compact basis contains every compact element. That is, if
𝛽 : 𝐵 → 𝐷 is a small compact basis for a dcpo 𝐷 and 𝑥 : 𝐷 is compact, then there exists
𝑏 : 𝐵 such that 𝛽 (𝑏) = 𝑥 .

4.9. Examples of dcpos with small compact bases 96

Proof. Suppose we have a compact element 𝑥 : 𝐷 . By compactness of 𝑥 and the fact
that 𝑥 = ↓𝛽 𝑥 , there exists 𝑏 : 𝐵 with 𝛽 (𝑏) ≪ 𝑥 such that 𝑥 ⊑ 𝛽 (𝑏). But then 𝛽 (𝑏) = 𝑥
by antisymmetry.

4.9 Examples of dcpos with small compact bases

Armed with the theory of small bases we turn to examples illustrating small bases in
practice. Our examples will involve small compact bases and an example of a dcpo with
a small basis that is not compact will have to wait until Section 4.10.2 when we have
developed the ideal completion.

Example 4.9.1. The map 𝛽 : 2 → ΩU defined by 0 ↦→ 0U and 1 ↦→ 1U is a small
compact basis for ΩU . In particular, ΩU is (structurally) algebraic.

The basis 𝛽 : 2→ ΩU defined above has the special property that it is dense in the
sense of [Esc+, TypeTopology.Density]: its image has empty complement, i.e. the type
Σ𝑃 :ΩU¬(Σ𝑏:2 𝛽 (𝑏) = 𝑃) is empty.

Proof of Example 4.9.1. By Example 4.2.5, every element in the image of 𝛽 is compact.
Moreover, ΩU is locally small, so we only need to prove that for every 𝑃 : ΩU the
family ↓𝛽 𝑃 is directed with supremum 𝑃 . The domain of the family is inhabited,
because 𝛽 (0) is the least element. Semidirectedness also follows easily, since 2 has
only two elements for which we have 𝛽 (0) ⊑ 𝛽 (1). Finally, the supremum of ↓𝛽 𝑃
is obviously below 𝑃 . Conversely, if 𝑃 holds, then

⊔ ↓𝛽 𝑃 = 1 = 𝑃 . The final claim
follows from Lemma 4.8.3.

Example 4.9.2. For a set 𝑋 : U , the map 𝛽 : (1 + 𝑋) → LU (𝑋) given by inl(★) ↦→ ⊥
and inr(𝑥) ↦→ [(𝑥) is a small compact basis for LU (𝑋). In particular, LU (𝑋) is
(structurally) algebraic.

Similar to Example 4.9.1, the basis 𝛽 : (1+𝑋) → LU (𝑋) defined above is also dense.

Proof of Example 4.9.2. By Example 4.2.6, every element in the image of 𝛽 is com-
pact. Moreover, the lifting is locally small by Proposition 3.4.14, so we only need to
prove that for every partial element 𝑙 , the family ↓𝛽 𝑙 is directed with supremum 𝑙 .
The domain of the family is inhabited, because 𝛽 (inl(★)) is the least element. Semidi-
rectedness also follows easily: First of all, 𝛽 (inl(★)) is the least element. Secondly, if
we have 𝑥, 𝑥′ : 𝑋 such that 𝛽 (inr(𝑥)), 𝛽 (inr(𝑥′)) ⊑ 𝑙 , then because 𝛽 (inr(𝑥)) ≡ [(𝑥)
is defined, we must have 𝛽 (inr(𝑥)) = 𝑙 = 𝛽 (inr(𝑥′)) by definition of the order. Finally,
the supremum of ↓𝛽 𝑙 is obviously a partial element below 𝑙 . Conversely, if 𝑙 is defined,
then 𝑙 = [(𝑥) for some 𝑥 : 𝑋 , and hence, 𝑙 = [(𝑥) ⊑ ⊔ ↓𝛽 𝑙 . The final claim follows
from Lemma 4.8.3.

Example 4.9.3. For a set𝑋 : U , the map 𝛽 : List(𝑋) → PU (𝑋) from Definition 4.2.12
(whose image is the type of Kuratowski finite subsets of 𝑋) is a small compact basis
for PU (𝑋). In particular, PU (𝑋) is (structurally) algebraic.

https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.TypeTopology.Density.html

97 Chapter 4. Continuous and algebraic dcpos

Notice that the map 𝛽 : List(𝑋) → P (𝑋) is not an embedding, as two lists can
represent the same Kuratowski finite subset. Of course, an embedding is given by the
inclusion of the Kuratowski finite subsets into the powerset, and its codomain is small
if we assume set replacement, because it is the image of 𝛽 .

Proof of Example 4.9.3. By Lemma 4.2.13 and Example 4.2.14, all elements in the image
of 𝛽 are compact. Moreover, PU (𝑋) is locally small, so we only need to prove that
for every 𝐴 : P (𝑋) the family ↓𝛽 𝐴 is directed with supremum 𝐴, but this was also
proven in Example 4.2.14. The final claim follows from Lemma 4.8.3.

At this point the reader may ask whether we have any examples of dcpos that
are structurally algebraic but that do not have a small compact basis. The following
example shows that this can happen in our predicative setting.

Example 4.9.4. The lifting LV (𝑃) of a proposition 𝑃 : U is structurally algebraic,
but has a small compact basis if and only if 𝑃 is V-small.

Thus, requiring thatLV (𝑃) has a small basis for every proposition 𝑃 : U is equivalent
to Propositional-ResizingU ,V .

Proof of Example 4.9.4. Note that LV (𝑃) is simply the type of propositions in V that
imply 𝑃 . It is structurally algebraic, because given such a proposition 𝑄 , the family

𝑄 + 1V → LV (𝑃)
inl(𝑞) ↦→ 1V
inr(★) ↦→ 0V

is directed, has supremum 𝑄 and consists of compact elements. But if LV (𝑃) had a
small compact basis 𝛽 : 𝐵 → 𝐷 , then we would have 𝑃 ≃ ∃𝑏:𝐵 (𝛽 (𝑏) ≃ 1V) and the
latter is V-small.

4.10 The rounded ideal completion

We have seen that in continuous dcpos, the basis essentially “generates” the whole
dcpo, because the basis suffices to approximate any of its elements. It is natural to
ask whether one can start from a more abstract notion of basis and “complete” it to a
continuous dcpo. This is exactly what we do here using the notion of an abstract basis
and the rounded ideal completion.

Definition 4.10.1 (Abstract basis). An abstract V-basis is a type 𝐵 : V with a binary
relation ≺ : 𝐵 → 𝐵 → V that is proposition-valued, transitive and satisfies
nullary interpolation: for every 𝑎 : 𝐵, there exists 𝑏 : 𝐵 with 𝑏 ≺ 𝑎, and
binary interpolation: for every 𝑎1, 𝑎2 ≺ 𝑏, there exists 𝑎 : 𝐵 with 𝑎1, 𝑎2 ≺ 𝑎 ≺ 𝑏.

Definition 4.10.2 (Ideal, (rounded) ideal completion, V-Idl(𝐵, ≺)).
(i) A subset 𝐼 : 𝐵 → ΩV of an abstract V-basis (𝐵, ≺) is a V-ideal if it is a directed

4.10. The rounded ideal completion 98

lower set with respect to ≺. That it is a lower set means: if 𝑏 ∈ 𝐼 and 𝑎 ≺ 𝑏,
then 𝑎 ∈ 𝐼 too.

(ii) We write V-Idl(𝐵, ≺) for the type of V-ideals of an abstract V-basis (𝐵, ≺) and
call V-Idl(𝐵, ≺) the (rounded) ideal completion of (𝐵, ≺).

The name rounded ideal completion is justified by Lemmas 4.10.5 and 4.10.6 below.

Definition 4.10.3 (Union of ideals,
⋃

I). Given a family I : 𝑆 → V-Idl(𝐵, ≺) of
ideals, indexed by 𝑆 : V , we write⋃

I :≡ {𝑏 ∈ 𝐵 | ∃𝑠:𝑆 (𝑏 ∈ I𝑠)}

for the set-theoretic union of the ideals indexed by I .

Lemma 4.10.4. If I : 𝑆 → V-Idl(𝐵, ≺) is directed, then ⋃
I is an ideal.

Proof. The subset
⋃

I is easily seen to be a lower set, for if 𝑎 ≺ 𝑏 ∈ ⋃ I , then there
exists 𝑠 : 𝑆 such that 𝑎 ≺ 𝑏 ∈ I𝑠 , so 𝑎 ∈ I𝑠 as I𝑠 is a lower set, but then 𝑎 ∈

⋃
I .

Moreover,
⋃

I is inhabited: Since I is directed, there exists 𝑠 : 𝑆 , but I𝑠 is an ideal and
therefore inhabited, so there exists 𝑏 ∈ I𝑠 which implies 𝑏 ∈ ⋃ I . Finally, suppose we
have 𝑏1, 𝑏2 ∈

⋃
I . By definition, there exist 𝑠1, 𝑠2 : 𝑆 such that 𝑏1 ∈ I𝑠1 and 𝑏2 ∈ I𝑠2 .

By directedness of 𝑆 , there exists 𝑠 : 𝑆 such that I𝑠1, I𝑠2 ⊆ I𝑠 . Hence, 𝑏1, 𝑏2 ∈ I𝑠 ,
which is an ideal, so there exists 𝑏 ∈ I𝑠 with 𝑏1, 𝑏2 ≺ 𝑏. But then also 𝑏 ∈ ⋃ I , which
proves that

⋃
I is directed and hence an ideal, completing the proof.

Lemma 4.10.5. The rounded ideal completion of an abstract V-basis (𝐵, ≺) is a V-dcpo
when ordered by subset inclusion.

Proof. Since taking unions yields the least upper bound in the powerset, we only
have to prove that the union of ideals is again an ideal, but this is Lemma 4.10.4.

Paying attention to the universe levels, the ideals form a large but locally small
V-dcpo because V-Idl(𝐵, ≺) : V-DCPOV+,V . For the remainder of this section, we will
fix an abstract V-basis (𝐵, ≺) and consider its V-ideals.

Lemma 4.10.6 (Roundedness). The ideals of an abstract basis are rounded: for every
element 𝑎 of an ideal 𝐼 , there exists 𝑏 ∈ 𝐼 such that 𝑎 ≺ 𝑏.

Proof. Because ideals are semidirected.

Roundedness makes up for the fact that we have not required an abstract basis to
be reflexive. If it is, then (Section 4.10.1) the ideal completion is structurally algebraic.

Definition 4.10.7 (Principal ideal, ↓𝑏). The principal ideal of an element 𝑏 : 𝐵 is
defined as the subset ↓𝑏 :≡ {𝑎 ∈ 𝐵 | 𝑎 ≺ 𝑏}. Observe that the principal ideal is indeed
an ideal: it is a lower set by transitivity of ≺, and inhabited and semidirected precisely
by nullary and binary interpolation, respectively.

99 Chapter 4. Continuous and algebraic dcpos

Lemma 4.10.8. The assignment 𝑏 ↦→ ↓𝑏 is monotone, i.e. if 𝑎 ≺ 𝑏, then ↓𝑎 ⊆ ↓𝑏.

Proof. By transitivity of ≺.

Lemma 4.10.9. Every ideal is the directed supremum of its principal ideals. That is, for

an ideal 𝐼 , the family (Σ𝑏:𝐵 (𝑏 ∈ 𝐼))
𝑏 ↦→↓𝑏
−−−−→ V-Idl(𝐵, ≺) is directed and has supremum 𝐼 .

Proof. Since ideals are lower sets, we have ↓𝑏 ⊆ 𝐼 for every 𝑏 ∈ 𝐼 . Hence, the union⋃
𝑏∈𝐼 ↓𝑏 is a subset of 𝐼 . Conversely, if 𝑎 ∈ 𝐼 , then by roundedness of 𝐼 there exists

𝑎′ ∈ 𝐼 with 𝑎 ≺ 𝑎′, so that 𝑎 ∈ ⋃
𝑏∈𝐼 ↓𝑏. So it remains to show that the family

is directed. Notice that it is inhabited, because 𝐼 is an ideal. Now suppose that
𝑏1, 𝑏2 ∈ 𝐼 . Since 𝐼 is directed, there exists 𝑏 ∈ 𝐼 such that 𝑏1, 𝑏2 ≺ 𝑏. But this implies
↓𝑏1, ↓𝑏2 ⊆ ↓𝑏 by Lemma 4.10.8, so the family is semidirected, as desired.

Lemma 4.10.10. The following are equivalent for every two ideals 𝐼 and 𝐽 :
(i) 𝐼 ≪ 𝐽 ;
(ii) there exists 𝑏 ∈ 𝐽 such that 𝐼 ⊆ ↓𝑏;
(iii) there exist 𝑎 ≺ 𝑏 such that 𝐼 ⊆ ↓𝑎 ⊆ ↓𝑏 ⊆ 𝐽 .

In particular, if 𝑏 is an element of an ideal 𝐼 , then ↓𝑏 ≪ 𝐼 .

Proof. We show that (i)⇒ (ii)⇒ (iii)⇒ (i). So suppose that 𝐼 ≪ 𝐽 . Then 𝐽 is the
directed supremum of its principal ideals by Lemma 4.10.9. Hence, there exists 𝑏 ∈ 𝐽
such that 𝐼 ⊆ ↓𝑏 already, which is exactly (ii). Now suppose that we have 𝑎 ∈ 𝐽 with
𝐼 ⊆ ↓𝑎. By roundedness of 𝐽 , there exists 𝑏 ∈ 𝐽 with 𝑎 ≺ 𝑏. But then 𝐼 ⊆ ↓𝑎 ⊆ ↓𝑏 ⊆ 𝐽
by Lemma 4.10.8 and the fact that 𝐽 is a lower set, establishing (iii). Now suppose that
condition (iii) holds and that 𝐽 is a subset of some directed join of ideals J indexed
by a type 𝑆 : V . Since 𝑎 ∈ ↓𝑏 ⊆ 𝐽 , there exists 𝑠 : 𝑆 such that 𝑎 ∈ J𝑠 . In particular,
↓𝑎 ⊆ J𝑠 because ideals are lower sets. Hence, if 𝑎′ ∈ 𝐼 ⊆ ↓𝑎, then 𝑎′ ∈ J𝑠 , so 𝐼 ⊆ J𝑠 ,
which proves that 𝐼 ≪ 𝐽 .
Finally, if 𝑏 is an element of an ideal 𝐼 , then ↓𝑏 ≪ 𝐼 , because (ii) implies (i) and
↓𝑏 ⊆ ↓𝑏 obviously holds.

Theorem 4.10.11. The principal ideals ↓ (−) : 𝐵 → V-Idl(𝐵, ≺) yield a small basis
for V-Idl(𝐵, ≺). In particular, V-Idl(𝐵, ≺) is (structurally) continuous.

Proof. First of all, note that the way-below relation on V-Idl(𝐵, ≺) is small-valued
because of Lemma 4.10.10. So it remains to show that for every ideal 𝐼 , the family
(Σ𝑏:𝐵 (↓𝑏 ≪ 𝐼))

𝑏 ↦→↓𝑏
−−−−→ V-Idl(𝐵, ≺) is directed with supremum 𝐼 . That the domain of

this family is inhabited follows from Lemma 4.10.10 and the fact that 𝐼 is inhabited. For
semidirectedness, suppose we have 𝑏1, 𝑏2 : 𝐵 with ↓𝑏1, ↓𝑏2 ≪ 𝐼 . By Lemma 4.10.10
there exist 𝑐1, 𝑐2 ∈ 𝐼 such that ↓𝑏1 ⊆ ↓𝑐1 and ↓𝑏2 ⊆ ↓𝑐2. Since 𝐼 is directed, there
exists 𝑏 ∈ 𝐼 with 𝑐1, 𝑐2 ≺ 𝑏. But now ↓𝑏1 ⊆ ↓𝑐1 ⊆ ↓𝑏 ≪ 𝐼 by Lemmas 4.10.8
and 4.10.10 and similarly, ↓𝑏2 ⊆ ↓𝑏 ≪ 𝐼 . Hence, the family is semidirected, as we
wished to show. Finally, we show that 𝐼 is the supremum of the family. If 𝑏 ∈ 𝐼 , then,

4.10. The rounded ideal completion 100

since 𝐼 is rounded, there exists 𝑐 ∈ 𝐼 with 𝑏 ≺ 𝑐 . Moreover, ↓𝑐 ≪ 𝐼 by Lemma 4.10.10.
Hence, 𝑏 is included in the join of the family. Conversely, if we have 𝑏 : 𝐵 with
↓𝑏 ≪ 𝐼 , then ↓𝑏 ⊆ 𝐼 , so 𝐼 is also an upper bound for the family.

4.10.1 The rounded ideal completion of a reflexive abstract basis

Lemma 4.10.12. If ≺ : 𝐵 → 𝐵 → V is proposition-valued, transitive and reflexive,
then (𝐵, ≺) is an abstract basis.

Proof. The interpolation properties for ≺ are easily proved when it is reflexive.

Lemma 4.10.13. If an element 𝑏 : 𝐵 is reflexive, i.e. 𝑏 ≺ 𝑏 holds, then 𝑏 ∈ 𝐼 if and only
if ↓𝑏 ⊆ 𝐼 for every ideal 𝐼 .

Proof. The left-to-right implication holds because 𝐼 is a lower set and the converse
holds because 𝑏 ∈ ↓𝑏 as 𝑏 is assumed to be reflexive.

Lemma 4.10.14. If 𝑏 : 𝐵 is reflexive, then its principal ideal ↓𝑏 is compact.

Proof. Suppose that we have 𝑏 : 𝐵 such that 𝑏 ≺ 𝑏 holds and that ↓𝑏 ⊆ ⋃
I for some

directed family I of ideals. By Lemma 4.10.13, we have 𝑏 ∈ ⋃ I , which means that
there exists 𝑠 in the domain of I such that 𝑏 ∈ I𝑠 . Using Lemma 4.10.13 once more,
we see that ↓𝑏 ⊆ I𝑠 , proving that ↓𝑏 is compact.

Theorem 4.10.15. If ≺ is reflexive, then the principal ideals ↓ (−) : 𝐵 → V-Idl(𝐵, ≺)
yield a small compact basis for V-Idl(𝐵, ≺). In particular, V-Idl(𝐵, ≺) is (structurally)
algebraic.

Proof. This follows from Theorem 4.10.11 and Lemmas 4.8.4 and 4.10.14.

Theorem 4.10.16. If 𝑓 : 𝐵 → 𝐷 is a monotone map to a V-dcpo 𝐷 , then the map
𝑓 : V-Idl(𝐵, ≺) → 𝐷 defined by taking an ideal 𝐼 to the supremum of the directed
family 𝑓 ◦ pr1 : (Σ𝑏:𝐵 (𝑏 ∈ 𝐼)) → 𝐷 is Scott continuous. Moreover, if ≺ is reflexive, then
the diagram

𝐵 𝐷

V-Idl(𝐵, ≺)

𝑓

↓ (−) 𝑓

commutes.

Proof. Note that 𝑓 ◦ pr1 : (Σ𝑏:𝐵 (𝑏 ∈ 𝐼)) → 𝐷 is indeed a directed family, because 𝐼
is a directed subset of 𝐵 and 𝑓 is monotone. For Scott continuity of 𝑓 , assume that

101 Chapter 4. Continuous and algebraic dcpos

we have a directed family I of ideals indexed by 𝑆 : V . We first show that 𝑓 (⋃ I)
is an upper bound of 𝑓 ◦ I . So let 𝑠 : 𝑆 be arbitrary and note that 𝑓 (⋃ I) ⊇ 𝑓 (I𝑠)
as soon as 𝑓 (⋃ I) ⊒ 𝑓 (𝑏) for every 𝑏 ∈ I𝑠 . But for such 𝑏 we have 𝑏 ∈

⋃
I , so this

holds. Now suppose that 𝑦 is an upper bound of 𝑓 ◦ I . To show that 𝑓 (⋃ I) ⊑ 𝑦, it
is enough to prove that 𝑓 (𝑏) ⊑ 𝑦 for every 𝑏 ∈ I . But for such 𝑏, there exists 𝑠 : 𝑆
such that 𝑏 ∈ I𝑠 and hence, 𝑓 (𝑏) ⊑ 𝑓 (I𝑠) ⊑ 𝑦.
Finally, if ≺ is reflexive, then we prove that 𝑓 (↓𝑏) = 𝑓 (𝑏) for every 𝑏 : 𝐵 by an-
tisymmetry. Since ≺ is assumed to be reflexive, we have 𝑏 ∈ ↓𝑏 and therefore,
𝑓 (𝑏) ⊑ 𝑓 (↓𝑏). Conversely, for every 𝑐 ≺ 𝑏 we have 𝑓 (𝑐) ⊑ 𝑓 (𝑏) by monotonicity of
𝑓 and hence, 𝑓 (↓𝑏) ⊑ 𝑓 (𝑏), as desired.

4.10.2 Example: the ideal completion of dyadics
We end this section by describing an example of a continuous dcpo, built using the
ideal completion, that is not algebraic. In fact, this dcpo has no compact elements at all.

We inductively define a type and an order representing dyadic rationals𝑚/2𝑛 in
the interval (−1, 1) for integers𝑚,𝑛. This type is similar to the lower Dedekind reals
but with dyadics instead of rationals and is extended with a point at +∞. We prefer to
work with this type, because working with lower Dedekind reals would require us to
develop and formalise the theory of integers, rational numbers, etc.

The intuition for the upcoming definitions is the following. Start with the point 0
in the middle of the interval (represented by middle below). Then consider the two
functions (respectively represented by left and right below)

𝑙, 𝑟 : (−1, 1) → (−1, 1)
𝑙 (𝑥) :≡ (𝑥 − 1)/2
𝑟 (𝑥) :≡ (𝑥 + 1)/2

that generate the dyadic rationals. Observe that 𝑙 (𝑥) < 0 < 𝑟 (𝑥) for every 𝑥 : (−1, 1).
Accordingly, we inductively define the following types.

Definition 4.10.17 (Dyadics, D, ≺). The type of dyadics D : U0 is the inductive type
with these three constructors

middle : D left : D→ D right : D→ D.

We also inductively define ≺ : D→ D→ U0 as

middle ≺ middle :≡ 0 left(𝑥) ≺ middle :≡ 1 right(𝑥) ≺ middle :≡ 0
middle ≺ left(𝑦) :≡ 0 left(𝑥) ≺ left(𝑦) :≡ 𝑥 ≺ 𝑦 right(𝑥) ≺ left(𝑦) :≡ 0
middle ≺ right(𝑦) :≡ 1 left(𝑥) ≺ right(𝑦) :≡ 1 right(𝑥) ≺ right(𝑦) :≡ 𝑥 ≺ 𝑦.

Lemma 4.10.18. The type of dyadics is a set with decidable equality.

4.10. The rounded ideal completion 102

Proof. Sethood follows from having decidable equality by Hedberg’s Theorem. To
see that D has decidable equality, one can use a standard inductive proof.

Definition 4.10.19 (Trichotomy, density, having no endpoints). We say that a binary
relation < on a type 𝑋 is

• trichotomous if exactly one of 𝑥 < 𝑦, 𝑥 = 𝑦 or 𝑦 < 𝑥 holds.
• dense if for every 𝑥,𝑦 : 𝑋 , there exists some 𝑧 : 𝑋 such that 𝑥 ≺ 𝑧 ≺ 𝑦.
• without endpoints if for every 𝑥 : 𝑋 , there exist some 𝑦, 𝑧 : 𝑋 with 𝑦 ≺ 𝑥 ≺ 𝑧.

Lemma 4.10.20. The relation ≺ on the dyadics is proposition-valued, transitive, ir-
reflexive, trichotomous, dense and without endpoints.

Proof. That ≺ is proposition-valued, transitive, irreflexive and trichotomous is all
proven by a straightforward induction on the definition onD. That it has no endpoints
is witnessed by the fact that for every 𝑥 : D, we have

left𝑥 ≺ 𝑥 ≺ right𝑥 (†)

which is proven by induction on D as well. We spell out the inductive proof that it is
dense, making use of (†). Suppose that 𝑥 ≺ 𝑦. Looking at the definition of the order,
we see that we need to consider five cases.

• If 𝑥 = middle and 𝑦 = right𝑦′, then we have 𝑥 ≺ right(left(𝑦′)) ≺ 𝑦.
• If 𝑥 = left(𝑥′) and 𝑦 = middle, then we have 𝑥 ≺ left(right(𝑥′)) ≺ 𝑦.
• If 𝑥 = left(𝑥′) and 𝑦 = right𝑦′, then we have 𝑥 ≺ middle ≺ 𝑦.
• If 𝑥 = right(𝑥′) and 𝑦 = right𝑦′, then we have 𝑥′ ≺ 𝑦′ and therefore, by
induction hypothesis, there exists 𝑧′ : D such that 𝑥′ ≺ 𝑧′ ≺ 𝑦′. Hence,
𝑥 ≺ right(𝑧′) ≺ 𝑦.

• If 𝑥 = left(𝑥′) and 𝑦 = left(𝑦′), then 𝑥′ ≺ 𝑦′ and hence, by induction hypothesis,
there exists 𝑧′ : D such that 𝑥′ ≺ 𝑧′ ≺ 𝑦′. Thus, 𝑥 ≺ left(𝑧′) ≺ 𝑦.

Proposition 4.10.21. The pair (D, ≺) is an abstract U0-basis.

Proof. By Lemma 4.10.20 the relation ≺ is proposition-valued and transitive. More-
over, that it has no endpoints implies unary interpolation. For binary interpolation,
suppose that we have 𝑥 ≺ 𝑧 and 𝑦 ≺ 𝑧. Then by trichotomy there are three cases.

• If 𝑥 = 𝑦, then using density and our assumption that 𝑥 ≺ 𝑧, there exists 𝑑 : D
with 𝑦 = 𝑥 ≺ 𝑑 ≺ 𝑧, as desired.

• If 𝑥 ≺ 𝑦, then using density and our assumption that 𝑦 ≺ 𝑧, there exists 𝑑 : D
with 𝑦 ≺ 𝑑 ≺ 𝑧, but then also 𝑥 ≺ 𝑑 since 𝑥 ≺ 𝑦, so we are done.

• If 𝑥 ≺ 𝑦, then the proof is similar to that of the second case.

Proposition 4.10.22. The ideal completionU0-Idl(D, ≺) : U0-DCPOU1,U0 is structurally
continuous with small basis ↓(−) : D→ U0-Idl(D, ≺). Moreover, it cannot be algebraic,
because none of its elements are compact.

103 Chapter 4. Continuous and algebraic dcpos

Proof. The first claim follows from Theorem 4.10.11. Now suppose for a contradiction
that we have a compact ideal 𝐼 . By Lemma 4.10.10, there exists 𝑥 ∈ 𝐼 with 𝐼 ⊆ ↓𝑥 .
But this implies 𝑥 ≺ 𝑥 , which is impossible as ≺ is irreflexive.

4.11 Ideal completions of small bases

Given a V-dcpo 𝐷 with a small basis 𝛽 : 𝐵 → 𝐷 , we show that there are two natural
ways of turning 𝐵 into an abstract basis. Either define 𝑏 ≺ 𝑐 by 𝛽 (𝑏) ≪ 𝛽 (𝑐), or
by 𝛽 (𝑏) ⊑ 𝛽 (𝑐). Taking their V-ideal completions we show that the former yields a
continuous dcpo isomorphic to 𝐷 , while the latter yields an algebraic dcpo (with a
small compact basis) in which 𝐷 can be embedded. The latter fact will find application
in Section 4.13, while the former gives us a presentation theorem: every dcpo with
a small basis is isomorphic to a dcpo of ideals. In particular, if 𝐷 : V-DCPOU ,T has a
small basis, then it is isomorphic to a dcpo with simpler universe parameters, namely
V-Idl

(
𝐵,≪𝛽

)
: V-DCPOV+,V . Of course a similar result holds for dcpos with a small

compact basis. In studying these variations, it is helpful to first develop some machinery
that all of them have in common.

Fix a V-dcpo 𝐷 with a small basis 𝛽 : 𝐵 → 𝐷 . In what follows we conflate the
family

↠

𝛽 𝑥 : (Σ𝑏:𝐵 (𝛽 (𝑏) ≪ 𝑥))
𝛽◦pr1−−−−→ 𝐷 with its associated subset {𝑏 ∈ 𝐵 | 𝛽 (𝑏) ≪ 𝑥},

formally given by the map 𝐵 → ΩV defined as 𝑏 ↦→ ∃𝑏:𝐵 (𝛽 (𝑏) ≪ 𝑥).

Lemma 4.11.1. The assignment 𝑥 : 𝐷 ↦→

↠

𝛽 𝑥 : P (𝐵) is Scott continuous.

Proof. Note that

↠

𝛽 (−) is monotone: if 𝑥 ⊑ 𝑦 and 𝑏 : 𝐵 is such that 𝛽 (𝑏) ≪ 𝑥 ,
then also 𝛽 (𝑏) ≪ 𝑦. So it suffices to prove that

↠

𝛽 (
⊔
𝛼) ⊆ ⋃

𝑖:𝐼

↠

𝛽 𝛼𝑖 . So suppose
that 𝑏 : 𝐵 is such that 𝛽 (𝑏) ≪ ⊔

𝛼 . By Lemma 4.7.7, there exists 𝑐 : 𝐵 with
𝛽 (𝑏) ≪ 𝛽 (𝑐) ≪ ⊔

𝛼 . Hence, there exists 𝑖 : 𝐼 such that 𝛽 (𝑏) ≪ 𝛽 (𝑐) ⊑ 𝛼𝑖 already,
and therefore, 𝑏 ∈ ⋃ 𝑗 :𝐽

↠

𝛽 𝛼 𝑗 , as desired.

By virtue of the fact that 𝛽 is a small basis for 𝐷 , we know that taking the directed
supremum of

↠

𝛽 𝑥 equals 𝑥 for every 𝑥 : 𝐷 . In other words,

↠

𝛽 (−) is a section of
⊔ (−).

The following lemma gives conditions for the other composite to be an inflation or a
deflation.
Lemma 4.11.2. Let 𝐼 : 𝐵 → ΩV be a subset of 𝐵 such that its associated family

𝐼 : (Σ𝑏:𝐵 (𝑏 ∈ 𝐼))
𝛽◦pr1−−−−→ 𝐷 is directed.

(i) If the conjunction of 𝛽 (𝑏) ⊑ 𝛽 (𝑐) and 𝑐 ∈ 𝐼 implies 𝑏 ∈ 𝐼 , then

↠

𝛽

⊔
𝐼 ⊆ 𝐼 .

(ii) If for every 𝑏 ∈ 𝐼 there exists 𝑐 ∈ 𝐼 such that 𝛽 (𝑏) ≪ 𝛽 (𝑐), then 𝐼 ⊆

↠

𝛽

⊔
𝐼 .

In particular, if both conditions hold, then 𝐼 =

↠

𝛽

⊔
𝐼 .

Note that the first condition says that 𝐼 is a lower set with respect to the order of 𝐷 ,
while the second says that 𝐼 is rounded with respect to the way-below relation.

4.11. Ideal completions of small bases 104

Proof. (i) Suppose that 𝐼 is a lower set and let 𝑏 : 𝐵 be such that 𝛽 (𝑏) ≪ ⊔
𝐼 .

Then there exists 𝑐 ∈ 𝐼 with 𝛽 (𝑏) ⊑ 𝛽 (𝑐), which implies 𝑏 ∈ 𝐼 as desired, because
𝐼 is assumed to be a lower set. (ii) Assume that 𝐼 is rounded and let 𝑏 ∈ 𝐼 be
arbitrary. By roundedness of 𝐼 , there exists 𝑐 ∈ 𝐼 such that 𝛽 (𝑏) ≪ 𝛽 (𝑐). But then
𝛽 (𝑏) ≪ 𝛽 (𝑐) ⊑ ⊔

𝐼 , so that 𝑏 ∈

↠

𝛽

⊔
𝐼 , as we wished to show.

Lemma 4.11.3. Suppose that we have ≺ : 𝐵 → 𝐵 → V and let 𝑥 : 𝐷 be arbitrary.
(i) If 𝑏 ≺ 𝑐 implies 𝛽 (𝑏) ⊑ 𝛽 (𝑐) for every 𝑏, 𝑐 : 𝐵, then

↠
𝛽 𝑥 is a lower set w.r.t. ≺.

(ii) If 𝛽 (𝑏) ≪ 𝛽 (𝑐) implies 𝑏 ≺ 𝑐 for every 𝑏, 𝑐 : 𝐵, then
↠

𝛽 𝑥 is semidirected w.r.t. ≺.

Proof. (i) This is immediate, because

↠

𝛽𝑥 is a lower set with respect to the order
relation on 𝐷 . (ii) Suppose that the condition holds and that we have 𝑏1, 𝑏2 : 𝐵 such
that 𝛽 (𝑏1), 𝛽 (𝑏2) ≪ 𝑥 . Using binary interpolation in the basis, there exist 𝑐1, 𝑐2 : 𝐵
with 𝛽 (𝑏1) ≪ 𝛽 (𝑐1) ≪ 𝑥 and 𝛽 (𝑏2) ≪ 𝛽 (𝑐2) ≪ 𝑥 . Hence, 𝑐1, 𝑐2 ∈

↠

𝛽𝑥 and moreover,
by assumption we have 𝑏1 ≺ 𝑐1 and 𝑏2 ≺ 𝑐2, as desired.

4.11.1 Ideal completion with respect to the way-below relation

Lemma 4.11.4. If 𝛽 : 𝐵 → 𝐷 is a small basis for a V-dcpo 𝐷 , then
(
𝐵,≪𝛽

)
is an

abstract V-basis where 𝑏 ≪𝛽 𝑐 is defined as 𝛽 (𝑏) ≪ 𝛽 (𝑐).

Remark 4.11.5. The definition of an abstract V-basis requires the relation on it to be
V-valued. Hence, for the lemma to make sense we appeal to the fact that 𝛽 is a small
basis which tells us that we can substitute 𝛽 (𝑏) ≪ 𝛽 (𝑐) by an equivalent type in V .

Proof of Lemma 4.11.4. The way-below relation is proposition-valued and transitive.
Moreover,≪𝛽 satisfies nullary and binary interpolation precisely because we have
nullary and binary interpolation in the basis for the way-below relation by Lem-
mas 4.7.6 and 4.7.8.

The following theorem is a presentation result for dcpos with a small basis: every
such dcpo can be presented as the rounded ideal completion of its small basis.

Theorem 4.11.6. The map

↠

𝛽 (−) : 𝐷 → V-Idl
(
𝐵,≪𝛽

)
is an isomorphism of V-dcpos.

Proof. First of all, we should check that the map is well-defined, i.e. that

↠

𝛽 𝑥 is an(
𝐵,≪𝛽

)
-ideal. It is an inhabited subset by nullary interpolation in the basis and a

semidirected lower set because the criteria of Lemma 4.11.3 are satisfied when taking
≺ to be≪𝛽 . Secondly, the map

↠

𝛽 (−) is Scott continuous by Lemma 4.11.1.
Now notice that the map 𝛽 :

(
𝐵,≪𝛽

)
→ 𝐷 is monotone and that the Scott continuous

map it induces by Theorem 4.10.16 is exactly the map
⊔

: V-Idl
(
𝐵,≪𝛽

)
→ 𝐷

that takes an ideal 𝐼 to the supremum of its associated directed family 𝛽 ◦ pr1 :
(Σ𝑏:𝐵 (𝑏 ∈ 𝐼)) → 𝐷 .

105 Chapter 4. Continuous and algebraic dcpos

Since 𝛽 is a basis for𝐷 , we know that
⊔ ↠

𝛽 𝑥 = 𝑥 for every 𝑥 : 𝐷 . So it only remains to
show that

↠

𝛽 ◦
⊔

is the identity on V-Idl
(
𝐵,≪𝛽

)
, for which we will use Lemma 4.11.2.

So suppose that 𝐼 : V-Idl
(
𝐵,≪𝛽

)
is arbitrary. Then we only need to prove that

(i) the conjunction of 𝛽 (𝑏) ⊑ 𝛽 (𝑐) and 𝑐 ∈ 𝐼 implies 𝑏 ∈ 𝐼 for every 𝑏, 𝑐 : 𝐵;
(ii) for every 𝑏 ∈ 𝐼 , there exists 𝑐 ∈ 𝐼 such that 𝛽 (𝑏) ≪ 𝛽 (𝑐).

Note that (ii) is just saying that 𝐼 is a rounded ideal w.r.t.≪𝛽 , so this holds. For (i),
suppose that 𝛽 (𝑏) ⊑ 𝛽 (𝑐) and 𝑐 ∈ 𝐼 . By roundedness of 𝐼 , there exists 𝑐′ ∈ 𝐼 such that
𝑐 ≪𝛽 𝑐

′. But then 𝛽 (𝑏) ⊑ 𝛽 (𝑐) ≪ 𝛽 (𝑐′), so that 𝑏 ≪𝛽 𝑐
′ which implies that 𝑏 ∈ 𝐼 ,

because ideals are lower sets.

4.11.2 Ideal completion with respect to the order relation

Lemma 4.11.7. If 𝛽 : 𝐵 → 𝐷 is a small basis for a V-dcpo 𝐷 , then
(
𝐵, ⊑𝛽

)
is an

abstract V-basis where 𝑏 ⊑𝛽 𝑐 is defined as 𝛽 (𝑏) ⊑ 𝛽 (𝑐).

Proof. The relation ⊑𝛽 is reflexive, so this follows from Lemma 4.10.12.

Remark 4.11.8. The definition of an abstract V-basis requires the relation on it to
be V-valued. Hence, for the lemma to make sense we appeal to Proposition 4.7.5 to
know that 𝐷 is locally small which tells us that we can substitute 𝛽 (𝑏) ⊑ 𝛽 (𝑐) by an
equivalent type in V .

Theorem 4.11.9. The map

↠

𝛽 (−) : 𝐷 → V-Idl
(
𝐵, ⊑𝛽

)
is the embedding in an

embedding-projection pair. In particular, 𝐷 is a Scott continuous retract of the al-
gebraic dcpo V-Idl

(
𝐵, ⊑𝛽

)
that has a small compact basis. Moreover, if 𝛽 is a small

compact basis, then the map is an isomorphism.

Proof. First of all, we should check that the map is well-defined, i.e. that

↠

𝛽 𝑥 is an(
𝐵, ⊑𝛽

)
-ideal. It is an inhabited subset by nullary interpolation in the basis and a

semidirected lower set because the criteria of Lemma 4.11.3 are satisfied when taking
≺ to be ⊑𝛽 . Secondly, the map

↠

𝛽 (−) is Scott continuous by Lemma 4.11.1.
Now notice that the map 𝛽 :

(
𝐵, ⊑𝛽

)
→ 𝐷 is monotone and that the continuous map

it induces by Theorem 4.10.16 is exactly the map
⊔

: V-Idl
(
𝐵, ⊑𝛽

)
→ 𝐷 that takes an

ideal 𝐼 to the supremum of its associated directed family 𝛽 ◦ pr1 : (Σ𝑏:𝐵 (𝑏 ∈ 𝐼)) → 𝐷 .
Since 𝛽 is a basis for 𝐷 , we know that

⊔ ↠

𝛽 𝑥 = 𝑥 for every 𝑥 : 𝐷 . So it only remains
to show that

↠

𝛽 ◦
⊔

is a deflation, for which we will use Lemma 4.11.2. So suppose
that 𝐼 : V-Idl

(
𝐵, ⊑𝛽

)
is arbitrary. Then we only need to prove that the conjunction

of 𝛽 (𝑏) ⊑ 𝛽 (𝑐) and 𝑐 ∈ 𝐼 implies 𝑏 ∈ 𝐼 , but this holds, because 𝐼 is a lower set with
respect to ⊑𝛽 .
Finally, assume that 𝛽 is a small compact basis. We show that

↠

𝛽 ◦
⊔

is also inflation-
ary in this case. So let 𝐼 be an arbitrary ideal. By Lemma 4.11.2 it is enough to show
that for every 𝑏 ∈ 𝐼 , there exists 𝑐 ∈ 𝐼 such that 𝛽 (𝑏) ≪ 𝛽 (𝑐). But by assumption,
𝛽 (𝑏) is compact, so we can simply take 𝑐 to be 𝑏.

4.12. Structurally continuous and algebraic bilimits 106

Combining Theorems 4.10.11 and 4.11.6 and Theorems 4.11.9 and 4.10.15, we obtain
the following result.

Corollary 4.11.10.
(i) A V-dcpo 𝐷 has a small basis if and only if it is isomorphic to V-Idl(𝐵, ≺) for an

abstract basis (𝐵, ≺).
(ii) A V-dcpo𝐷 has a small compact basis if and only if it is isomorphic to V-Idl(𝐵, ≺)

for an abstract basis (𝐵, ≺) where ≺ is reflexive.
In particular, every V-dcpo with a small basis is isomorphic to one whose order takes
values in V and whose carrier lives in V+.

4.12 Structurally continuous and algebraic bilimits

We show that bilimits are closed under structural continuity/algebraicity. For the
reminder of this section, fix a directed diagram of V-dcpos (𝐷𝑖)𝑖:𝐼 with embedding-
projection pairs

(
Y𝑖, 𝑗 , 𝜋𝑖, 𝑗

)
𝑖⊑ 𝑗 in 𝐼 between them, as in Section 3.6.

Now suppose that for every 𝑖 : 𝐼 , we have 𝛼𝑖 : 𝐽𝑖 → 𝐷𝑖 with each 𝐽𝑖 : V . Then
we define 𝐽∞ :≡ Σ𝑖:𝐼 𝐽𝑖 and 𝛼∞ : 𝐽∞ → 𝐷∞ by (𝑖, 𝑗) ↦→ Y𝑖,∞(𝛼𝑖 (𝑗)), where Y𝑖,∞ is as in
Definition 3.6.15.
Lemma 4.12.1. If every 𝛼𝑖 is directed and we have 𝜎 : 𝐷∞ such that 𝛼𝑖 approximates
𝜎𝑖 , then 𝛼∞ is directed and approximates 𝜎 .

Proof. Observe that 𝛼∞ is equal to the supremum, if it exists, of the directed families(
Y𝑖,∞ ◦ 𝛼𝑖

)
𝑖:𝐼 in the ind-completion of 𝐷∞, cf. the proof of Lemma 4.3.3. Hence, for

directedness of 𝛼∞, it suffices to prove that the family 𝑖 ↦→ Y𝑖,∞ ◦ 𝛼𝑖 is directed with
respect to cofinality. The index type 𝐼 is inhabited, because we are working with a
directed diagram of dcpos. For semidirectedness, we will first prove that if 𝑖 ⊑ 𝑖′,
then Y𝑖,∞ ◦ 𝛼𝑖 is cofinal in Y𝑖′,∞ ◦ 𝛼𝑖′ .
So suppose that 𝑖 ⊑ 𝑖′ and 𝑗 : 𝐽𝑖 . As 𝛼𝑖 approximates 𝜎𝑖 , we have 𝛼𝑖 (𝑗) ≪ 𝜎𝑖 .
Because Y𝑖,𝑖′ is an embedding, it preserves the way-below relation (Lemma 4.2.16),
so that we get Y𝑖,𝑖′ (𝛼𝑖 (𝑗)) ≪ Y𝑖,𝑖′ (𝜎𝑖) ⊑ 𝜎𝑖′ =

⊔
𝛼𝑖′ . Hence, there exists 𝑗 ′ : 𝐽𝑖′

with Y𝑖,𝑖′ (𝛼𝑖 (𝑗)) ⊑ 𝛼𝑖′ (𝑗 ′) which yields Y𝑖,∞(𝛼𝑖 (𝑗)) = Y𝑖′,∞
(
Y𝑖,𝑖′ (𝛼𝑖 (𝑗))

)
⊑ Y𝑖′,∞(𝛼𝑖′ (𝑗 ′)),

completing the proof that Y𝑖,∞ ◦ 𝛼𝑖 is cofinal in Y𝑖′,∞ ◦ 𝛼𝑖′ .
Now to prove that the family 𝑖 ↦→ Y𝑖,∞ ◦ 𝛼𝑖 is semidirected with respect to cofinality,
suppose we have 𝑖1, 𝑖2 : 𝐼 . Since 𝐼 is a directed preorder, there exists 𝑖 : 𝐼 such that
𝑖1, 𝑖2 ⊑ 𝑖 . But then Y𝑖1,∞ ◦ 𝛼𝑖1 and Y𝑖2,∞ ◦ 𝛼𝑖2 are both cofinal in Y𝑖,∞ ◦ 𝛼𝑖 by the above.
Thus, 𝛼∞ is directed. To see that its supremum is 𝜎 , observe that

𝜎 =
⊔
𝑖:𝐼 Y𝑖,∞(𝜎𝑖) (by Lemma 3.6.24)

=
⊔
𝑖:𝐼 Y𝑖,∞(

⊔
𝛼𝑖) (since 𝛼𝑖 approximates 𝜎𝑖)

=
⊔
𝑖:𝐼
⊔
Y𝑖,∞ ◦ 𝛼𝑖 (by Scott continuity of Y𝑖,∞)

=
⊔
(𝑖, 𝑗):𝐽∞ 𝛼∞(𝑖, 𝑗),

as desired.
Finally, we wish to show that 𝛼∞(𝑖, 𝑗) ≪ 𝜎 for every (𝑖, 𝑗) : 𝐽∞. But Y𝑖,∞ is an embed-

107 Chapter 4. Continuous and algebraic dcpos

ding and therefore preserves the way-below relation while 𝛼𝑖 (𝑗) approximates 𝜎𝑖 , so
we get 𝛼∞(𝑖, 𝑗) ≡ Y𝑖,∞(𝛼𝑖 (𝑗)) ≪ Y𝑖,∞(𝜎𝑖) ⊑ 𝜎 where the final inequality holds because
Y𝑖,∞ ◦ 𝜋𝑖,∞ is a deflation.

Lemma 4.12.2. If 𝛼𝑖 (𝑗) is compact for every 𝑖 : 𝐼 and 𝑗 : 𝐽𝑖 , then all the values of 𝛼∞
are compact too.

Proof. Let (𝑖, 𝑗) : 𝐽∞ be arbitrary. Since Y𝑖,∞ is an embedding it preserves compact
elements, so 𝛼∞(𝑖, 𝑗) ≡ Y𝑖,∞(𝛼𝑖 (𝑗)) is compact.

Theorem 4.12.3. If each 𝐷𝑖 is structurally continuous, then so is 𝐷∞. Furthermore, if
each 𝐷𝑖 is structurally algebraic, then so is 𝐷∞.

Proof. Let 𝜎 : 𝐷∞ be arbitrary. By structural continuity of each 𝐷𝑖 , we have a directed
family 𝛼𝑖 : 𝐽𝑖 → 𝐷𝑖 approximating 𝜎𝑖 . Hence, by Lemma 4.12.1, the family 𝛼∞ is
directed and approximates 𝜎 , proving the structural continuity of 𝐷∞. Now if each
𝐷𝑖 is structurally algebraic, then 𝐷∞ is structurally algebraic by Lemma 4.12.2 and
the above.

Note that we do not expect to be able to prove that 𝐷∞ is continuous if each 𝐷𝑖
is, because it would require an instance of the axiom of choice to get the continuity
structures on each 𝐷𝑖 and without those we have nothing to operate on.

Theorem 4.12.4. If each 𝐷𝑖 has a small basis 𝛽𝑖 : 𝐵𝑖 → 𝐷𝑖 , then the map 𝛽∞ defined

by 𝛽∞ : (𝐵∞ :≡ (Σ𝑖:𝐼𝐵𝑖))
(𝑖,𝑏) ↦→Y𝑖,∞ (𝛽𝑖 (𝑏))−−−−−−−−−−−−−→ 𝐷∞ is a small basis for 𝐷∞. Furthermore, if

each 𝛽𝑖 is a small compact basis, then 𝛽∞ is a small compact basis too.

Proof. First of all, we must show that 𝛽∞(𝑖, 𝑏) ≪ 𝜎 is small for every 𝑖 : 𝐼 , 𝑏 : 𝐵𝑖
and 𝜎 : 𝐷∞. We claim that this is the case as the way-below relation on 𝐷∞ has
small values. By Proposition 4.4.13 and Theorem 4.12.3, it suffices to prove that 𝐷∞
is locally small. But this holds by Proposition 3.6.29 as each 𝐷𝑖 is locally small by
Proposition 4.7.5.
It remains to prove that, for an arbitrary element 𝜎 : 𝐷∞, the family

↠

𝛽∞
𝜎 given by(

Σ(𝑖,𝑏):𝐵∞𝛽∞(𝑖, 𝑏) ≪ 𝜎
) 𝛽∞◦pr1−−−−−→ 𝐷∞ is directed with supremum 𝜎 . Note that for every

𝑖 : 𝐼 and 𝑏 : 𝐵𝑖 , we have that 𝛽𝑖 (𝑏) ≪ 𝜎𝑖 implies

𝛽∞(𝑖, 𝑏) ≡ Y𝑖,∞(𝛽𝑖 (𝑏)) ≪ Y𝑖,∞(𝜎𝑖) ⊑ 𝜎,

since Lemma 4.2.16 tells us that the embedding Y𝑖,∞ preserves the way-below relation.
Hence, the identity induces a well-defined map

] :
(
Σ𝑖:𝐼Σ𝑏:𝐵𝑖𝛽𝑖 (𝑏) ≪ 𝜎𝑖

)
→

(
Σ(𝑖,𝑏):𝐵∞𝛽∞(𝑖, 𝑏) ≪ 𝜎

)
.

Lemma 4.7.9 now tells us that we only need to show that

↠

𝛽∞
𝜎 ◦] is directed and

has supremum 𝜎 . But if we write 𝛼𝑖 :
(
Σ𝑏:𝐵𝑖𝛽𝑖 (𝑏) ≪ 𝜎𝑖

)
→ 𝐷𝑖 for the map 𝑏 ↦→ 𝛽𝑖 (𝑏),

then we see that

↠

𝛽∞
𝜎 ◦] is given by 𝛼∞, as defined at the start of this section. But

4.13. Exponentials with small (compact) bases 108

then 𝛼∞ is indeed seen to be directed with supremum 𝜎 by virtue of Lemma 4.12.1
and the fact that 𝛼𝑖 approximates 𝜎𝑖 .
Finally, if every 𝛽𝑖 is a small compact basis, then 𝛽∞ is also a small compact basis
because by Lemma 4.8.4 all we need to know is that 𝛽∞(𝑖, 𝑏) ≡ Y𝑖,∞(𝛽𝑖 (𝑏)) is compact
for every 𝑖 : 𝐼 and 𝑏 : 𝐵𝑖 . But this follows from the fact that embeddings preserve
compactness and that each 𝛽𝑖 (𝑏) is compact.

4.13 Exponentials with small (compact) bases

Just as in the classical, impredicative setting, the exponential of two continuous dcpos
need not be continuous [Jun89]. However, with some work, we are able to show that
𝐸𝐷 has a small basis provided that both 𝐷 and 𝐸 do and that 𝐸 has all (not necessarily
directed) V-suprema. We first establish this for small compact bases using step functions
and then derive the result for compact bases using Theorem 4.11.9.

4.13.1 Single step functions
Suppose that we have a dcpo 𝐷 and a pointed dcpo 𝐸. Classically [GHK+03, Exercise II-
2.31], the single step function given by 𝑑 : 𝐷 and 𝑒 : 𝐸 is defined as

L𝑑 ⇒ 𝑒M : 𝐷 → 𝐸

𝑥 ↦→
{
𝑒 if 𝑑 ⊑ 𝑥 ;
⊥ otherwise.

Constructively, we can’t expect to make this case distinction, so we define single
step functions using subsingleton suprema instead.

Definition 4.13.1 (Single step function, L𝑑 ⇒ 𝑒M). The single step function given by
two elements 𝑑 : 𝐷 and 𝑒 : 𝐸, where 𝐷 is a locally small V-dcpo and 𝐸 is a pointed
V-dcpo, is the function L𝑑 ⇒ 𝑒M : 𝐷 → 𝐸 given by mapping 𝑥 : 𝐷 to the supremum
of the family indexed by the subsingleton 𝑑 ⊑ 𝑥 that is constantly 𝑒 .

Remark 4.13.2. Recall from Lemma 3.3.10 that the supremum of a subsingleton-
indexed family 𝛼 : 𝑃 → 𝐸 is given by the supremum of the directed family 1 + 𝑃 → 𝐸

defined by inl(★) ↦→ ⊥ and inr(𝑝) ↦→ 𝛼 (𝑝). Note that we need 𝐷 to be locally small,
because we need 𝑑 ⊑ 𝑥 to be a subsingleton in V to use the V-directed-completeness
of 𝐸.

Lemma 4.13.3. If 𝑑 : 𝐷 is compact, then L𝑑 ⇒ 𝑒M is Scott continuous for every 𝑒 : 𝐸.

Proof. Suppose that 𝑑 : 𝐷 is compact and that 𝛼 : 𝐼 → 𝐷 is a directed family. We first
show that L𝑑 ⇒ 𝑒M(⊔ 𝛼) is an upper bound of L𝑑 ⇒ 𝑒M ◦ 𝛼 . So let 𝑖 : 𝐼 be arbitrary.
Then we have to prove

⊔
𝑑⊑𝛼𝑖 𝑒 ⊑

⊔
L𝑑 ⇒ 𝑒M ◦ 𝛼 . Since the supremum gives a lower

bound of upper bounds, it suffices to prove that 𝑒 ⊑ ⊔
L𝑑 ⇒ 𝑒M ◦ 𝛼 whenever 𝑑 ⊑ 𝛼𝑖 .

109 Chapter 4. Continuous and algebraic dcpos

But in this case we have 𝑒 = L𝑑 ⇒ 𝑒M(𝛼𝑖) ⊑
⊔

L𝑑 ⇒ 𝑒M ◦ 𝛼 , so we are done.
To see that L𝑑 ⇒ 𝑒M(⊔ 𝛼) is a lower bound of upper bounds, suppose that we are
given 𝑦 : 𝐸 such that 𝑦 is an upper bound of L𝑑 ⇒ 𝑒M ◦ 𝛼 . We are to prove that(⊔

𝑑⊑⊔ 𝛼 𝑒
)
⊑ 𝑦. Note that it suffices for 𝑑 ⊑ ⊔

𝛼 to imply 𝑒 ⊑ 𝑦. So assume that
𝑑 ⊑ ⊔

𝛼 . By compactness of 𝑑 there exists 𝑖 : 𝐼 such that 𝑑 ⊑ 𝛼𝑖 already. But then
𝑒 = L𝑑 ⇒ 𝑒M(𝛼𝑖) ⊑ 𝑦, as desired.

Lemma 4.13.4. A Scott continuous function 𝑓 : 𝐷 → 𝐸 is above the single step function
L𝑑 ⇒ 𝑒M with 𝑑 : 𝐷 compact if and only if 𝑒 ⊑ 𝑓 (𝑑).

Proof. Suppose that L𝑑 ⇒ 𝑒M ⊑ 𝑓 . Then L𝑑 ⇒ 𝑒M(𝑑) = 𝑒 ⊑ 𝑓 (𝑑), proving one
implication. Now assume that 𝑒 ⊑ 𝑓 (𝑑) and let 𝑥 : 𝐷 be arbitrary. To prove that
L𝑑 ⇒ 𝑒M(𝑥) ⊑ 𝑓 (𝑥), it suffices that 𝑒 ⊑ 𝑓 (𝑥) whenever 𝑑 ⊑ 𝑥 . But if 𝑑 ⊑ 𝑥 , then
𝑒 ⊑ 𝑓 (𝑑) ⊑ 𝑓 (𝑥) by monotonicity of 𝑓 .

Lemma 4.13.5. If 𝑑 and 𝑒 are compact, then so is L𝑑 ⇒ 𝑒M in the exponential 𝐸𝐷 .

Proof. Suppose that we have a directed family 𝛼 : 𝐼 → 𝐸𝐷 such that L𝑑 ⇒ 𝑒M ⊑ ⊔
𝛼 .

Then we consider the directed family 𝛼𝑑 : 𝐼 → 𝐸 given by 𝑖 ↦→ 𝛼𝑖 (𝑑). We claim
that 𝑒 ⊑ ⊔

𝛼𝑑 . Indeed, by Lemma 4.13.4 and our assumption that L𝑑 ⇒ 𝑒M ⊑ ⊔
𝛼

we get 𝑒 ⊑ (⊔ 𝛼) (𝑑) = ⊔
𝛼𝑑 . Now by compactness of 𝑒 , there exists 𝑖 : 𝐼 such that

𝑒 ⊑ 𝛼𝑑 (𝑖) ≡ 𝛼𝑖 (𝑑) already. But this implies L𝑑 ⇒ 𝑒M ⊑ 𝛼𝑖 by Lemma 4.13.4 again,
finishing the proof.

4.13.2 Exponentials with small compact bases
Fix V-dcpos 𝐷 and 𝐸 with small compact bases 𝛽𝐷 : 𝐵𝐷 → 𝐷 and 𝛽𝐸 : 𝐵𝐸 → 𝐷 and
moreover assume that 𝐸 has suprema for all (not necessarily directed) families indexed
by types in V . We are going to construct a small compact basis on the exponential 𝐸𝐷 .

Lemma 4.13.6. If 𝐸 is sup-complete, then every Scott continuous function 𝑓 : 𝐷 → 𝐸 is
the supremum of the collection of single step functions

(
L𝛽𝐷 (𝑏) ⇒ 𝛽𝐸 (𝑐)M

)
𝑏:𝐵𝐷 ,𝑐:𝐵𝐸 that

are below 𝑓 .

Proof. Note that 𝑓 is an upper bound by definition, so it remains to prove that it is
the least. Therefore suppose we are given an upper bound 𝑔 : 𝐷 → 𝐸. We have to
prove that 𝑓 (𝑥) ⊑ 𝑔(𝑥) for every 𝑥 : 𝐷 , so let 𝑥 : 𝐷 be arbitrary. Now 𝑥 =

⊔ ↠

𝛽𝐷
𝑥 ,

because 𝛽𝐷 is a small compact basis for 𝐷 , so by Scott continuity of 𝑓 and 𝑔, it suffices
to prove that 𝑓 (𝛽𝐷 (𝑏)) ⊑ 𝑔(𝛽𝐷 (𝑏)) for every 𝑏 : 𝐵𝐷 . So let 𝑏 : 𝐵𝐷 be arbitrary. Since
𝛽𝐸 is a small compact basis for 𝐸, we have 𝑓 (𝛽𝐷 (𝑏)) =

⊔ ↓𝛽𝐸 𝑓 (𝛽𝐷 (𝑏)). So to prove
𝑓 (𝛽𝐷 (𝑏)) ⊑ 𝑔(𝛽𝐷 (𝑏)) it is enough to know that 𝛽𝐸 (𝑐) ⊑ 𝑔(𝛽𝐷 (𝑏)) for every 𝑐 : 𝐵𝐸
with 𝛽𝐸 (𝑐) ⊑ 𝑓 (𝛽𝐷 (𝑏)). But for such 𝑐 : 𝐵𝐸 we have L𝛽𝐷 (𝑏) ⇒ 𝛽𝐸 (𝑐)M ⊑ 𝑓 and
therefore L𝛽𝐷 (𝑏) ⇒ 𝛽𝐸 (𝑐)M ⊑ 𝑔 because 𝑓 is an upper bound of such single step
functions, and hence 𝛽𝐸 (𝑐) ⊑ 𝑔(𝛽𝐷 (𝑏)) by Lemma 4.13.4, as desired.

4.13. Exponentials with small (compact) bases 110

Definition 4.13.7 (Directification). In a V-sup-complete poset 𝑃 , the directification
of a family 𝛼 : 𝐼 → 𝑃 is the family 𝛼 : List(𝐼) → 𝑃 inductively defined by [] ↦→ ⊥
and 𝑖 :: 𝑙 ↦→ 𝛼𝑖 ∨ 𝛼 (𝑙), where ⊥ denotes the least element of 𝑃 and ∨ the binary join.
It is clear that 𝛼 has the same supremum as 𝛼 , and by concatenating lists, one sees
that the directification yields a directed family, hence the name.

Lemma 4.13.8. If each element of a family into a sup-complete dcpo is compact, then
so are all elements of its directification.

Proof. By induction, Example 4.2.4 and Lemma 4.2.7.

Let us write 𝜎 : 𝐵𝐷×𝐵𝐸 → 𝐸𝐷 for the map that takes (𝑏, 𝑐) to the single step function
L𝛽𝐷 (𝑏) ⇒ 𝛽𝐸 (𝑐)M and 𝛽 : 𝐵 :≡ List(𝐵𝐷 × 𝐵𝐸) → 𝐸𝐷 for its directification, which exists
because 𝐸𝐷 is V-sup-complete as 𝐸 is and suprema are calculated pointwise.

Theorem 4.13.9. The map 𝛽 is a small compact basis for the exponential 𝐸𝐷 , where 𝐸
is assumed to be sup-complete.

Proof. Firstly, every element in the image of 𝛽 is compact by Lemmas 4.13.5 and 4.13.8.
Secondly, for every 𝑏 : 𝐵 and Scott continuous map 𝑓 : 𝐷 → 𝐸, the type 𝛽 (𝑏) ⊑ 𝑓 is
small, because 𝐸𝐷 is locally small by Proposition 4.7.11. Thirdly, for every such 𝑓 ,
the family (Σ𝑏:𝐵 (𝛽 (𝑏) ⊑ 𝑓))

𝛽◦pr1−−−−→ 𝐸𝐷 is directed because 𝛽 is the directification of 𝜎 .
Finally, this family has supremum 𝑓 because of Lemma 4.13.6.

4.13.3 Exponentials with small bases
We now present a variation of Theorem 4.13.9 but for (sup-complete) dcpos with small
bases. In fact, we will prove it using Theorem 4.13.9 and the theory of Scott continuous
retracts (Theorem 4.11.9 in particular).

Definition 4.13.10 (Closure under finite joins). A small basis 𝛽 : 𝐵 → 𝐷 for a
sup-complete poset is closed under finite joins if we have 𝑏⊥ : 𝐵 with 𝛽 (𝑏⊥) = ⊥ and
a map ∨ : 𝐵 → 𝐵 → 𝐵 such that 𝛽 (𝑏 ∨ 𝑐) = 𝛽 (𝑏) ∨ 𝛽 (𝑐) for every 𝑏, 𝑐 : 𝐵.

Lemma 4.13.11. If 𝐷 is a sup-complete dcpo with a small basis 𝛽 : 𝐵 → 𝐷 , then the
directification of 𝛽 is also a small basis for 𝐷 . Moreover, by construction, it is closed
under finite joins.

Proof. Since 𝛽 is a small basis for𝐷 , it follows by Proposition 4.7.5 that the way-below
relation on 𝐷 is small-valued. Hence, writing 𝛽 for the directification of 𝛽 , it remains
to prove that

↠

𝛽 𝑥 is directed with supremum 𝑥 for every 𝑥 : 𝐷 . But this follows easily
from Lemma 4.7.9, because

↠

𝛽 𝑥 is directed with supremum 𝑥 and this family is equal

to the composite (Σ𝑏:𝐵 (𝛽 (𝑏) ≪ 𝑥))
𝑏 ↦→[𝑏]
↩−−−−→

(
Σ𝑙 :List(𝐵)

(
𝛽 (𝑙) ≪ 𝑥

)) 𝛽◦pr1−−−−→ 𝐷 .

111 Chapter 4. Continuous and algebraic dcpos

Lemma 4.13.12. If 𝐷 is a V-sup-complete poset with a small basis 𝛽 : 𝐵 → 𝐷 that is
closed under finite joins, then the ideal-completion V-Idl(𝐵, ⊑) is V-sup-complete too.

Proof. Since the V-ideal completion is V-directed complete, it suffices to show that
V-Idl(𝐵, ⊑) has finite joins. Since 𝛽 : 𝐵 → 𝐷 is closed under finite joins, we have
𝑏⊥ : 𝐵 with 𝛽 (𝑏⊥) = ⊥ and we easily see that {𝑏⊥} is the least element of V-Idl(𝐵, ⊑).
Now suppose that we have two ideals 𝐼 , 𝐽 : V-Idl(𝐵, ⊑) and consider the subset

𝐾 :≡ {𝑏 ∈ 𝐵 | ∃𝑏0,...,𝑏𝑛−1∈𝐼∃𝑐0,...,𝑐𝑚−1∈𝐽 (𝛽 (𝑏) ⊑ 𝛽 (𝑏0 ∨ · · · ∨ 𝑏𝑛−1 ∨ 𝑐0 ∨ · · · ∨ 𝑐𝑚−1))}.

Observe that 𝐾 is a lower set and that it is directed as 𝐵 is closed under finite joins.
Thus, 𝐾 ∈ V-Idl(𝐵, ⊑). We claim that 𝐾 is the join of 𝐼 and 𝐽 . First of all, 𝐼 and 𝐽 are
both subsets of 𝐾 , so it remains to prove that 𝐾 is the least upper bound. To this end,
suppose that we have an ideal 𝐿 that includes 𝐼 and 𝐽 , and let 𝑏 ∈ 𝐾 be arbitrary. We
show that𝑏 ∈ 𝐿. Since𝑏 ∈ 𝐾 , there exist𝑏0, . . . , 𝑏𝑛−1 ∈ 𝐼 and 𝑐0, . . . , 𝑐𝑚−1 ∈ 𝐽 such that
𝛽 (𝑏) ⊑ 𝛽 (𝑏0∨· · ·∨𝑏𝑛−1∨𝑐0∨· · ·∨𝑐𝑚−1). Then 𝑏0, . . . , 𝑏𝑛−1 ∈ 𝐿 and there exists 𝑏 ∈ 𝐿
such that 𝛽 (𝑏0), . . . , 𝛽 (𝑏𝑛−1) ⊑ 𝛽 (𝑏) as 𝐿 is directed. But 𝐿 is a lower set, so 𝐿 must
also contain 𝛽 (𝑏0∨· · ·∨𝑏𝑛−1). Similarly, 𝐿 contains 𝛽 (𝑐0∨· · ·∨𝑐𝑚−1). Finally, using a
similar argument once again, we get that 𝐿 contains 𝛽 (𝑏0∨· · ·∨𝑏𝑛−1∨𝑐0∨· · ·∨𝑐𝑚−1).
But 𝛽 (𝑏) is below this element, so 𝐿 must contain it, finishing the argument that
𝐾 ⊆ 𝐿. Hence, 𝐾 is the least upper bound of 𝐼 and 𝐽 , completing the proof.

Theorem 4.13.13. The exponential 𝐸𝐷 of dcpos has a specified small basis if 𝐷 and 𝐸
have specified small bases and 𝐸 is sup-complete.

Proof. Suppose that 𝛽𝐷 : 𝐵𝐷 → 𝐷 and 𝛽𝐸 : 𝐵𝐸 → 𝐸 are small bases and that 𝐸 is
sup-complete. By Lemma 4.13.11 we can assume that 𝛽𝐸 : 𝐵𝐸 → 𝐸 is closed under
finite joins. We will write 𝐷′ and 𝐸′ for the respective ideal completions V-Idl (𝐵𝐷 , ⊑)
and V-Idl(𝐵𝐸, ⊑). Then Theorem 4.11.9 tells us that we have Scott continuous re-
tracts 𝐷 𝐷′

𝑠𝐷

𝑟𝐷
and 𝐸 𝐸′

𝑠𝐸

𝑟𝐸
. Composition yields a Scott continuous retract

𝐸𝐷 𝐸′𝐷
′𝑠

𝑟
where 𝑠 (𝑓) :≡ 𝑠𝐸 ◦ 𝑓 ◦ 𝑟𝐷 and 𝑟 (𝑔) :≡ 𝑟𝐸 ◦𝑔 ◦ 𝑠𝐷 . Now 𝐷′ and 𝐸′ have

small compact basis by Theorem 4.10.15 and 𝐸′ is sup-complete by Lemma 4.13.12.
Therefore, 𝐸′𝐷 ′ has a small basis by Theorem 4.13.9. Finally, Theorem 4.7.10 tells us
that the retraction 𝑟 yields a small basis on 𝐸𝐷 , as desired.

Note how, unlike Theorem 4.13.9, the above theorem does not give an explicit
description of the small basis for the exponential. It may be possible to do so using
function graphs, as is done in the classical setting of effective domain theory in [Smy77,
Section 4.1].

4.14 Notes

This chapter is largely based on ourwork [dJE21a]. In particular, Sections 4.2 and 4.10 are
expanded and revised versions of parts of that paper. Some of the ideas for the arguments

4.14. Notes 112

in Sections 4.12 and 4.13 were already present in the expanded version of [dJE21a].
The present treatment of continuous and algebraic dcpos and small (compact) bases is
significantly different from that of [dJE21a]. In the published work, our definition of
continuous dcpo was an amalgamation of pseudocontinuity and having a small basis,
although it did not imply local smallness. In this chapter we have disentangled the two
notions and based our definition of continuity on that of [JJ82] without making any
reference to a basis. The current notion of a small basis is simpler and slightly stronger
than that of [dJE21a], which allows us to prove that having a small basis is equivalent
to being presented by ideals.

This idea of a small basis is similar, but different to Aczel’s notion of a “set-generated”
dcpo [Acz06, Section 6.4] in the context of constructive set theory, and a similar small-
ness criterion in a categorical context also appears in [JJ82, Proposition 2.16]. While
Aczel requires the set {𝑏 ∈ 𝐵 | 𝑏 ⊑ 𝑥} to be directed, we use the way-below relation
(or compact elements) in line with the usual definition of a basis [AJ94, Section 2.2.6].
The particular case of a dcpo with a small compact basis is similar to the notion of an
accessible category [MP89].

As mentioned before, our treatment of continuous dcpos is based on the work [JJ82]
of Johnstone and Joyal, but we use the propositional truncation to ensure that the type
of continuous dcpos is a subtype of the type of dcpos. Moreover, our discussion of
pseudocontinuity (Section 4.5) is new.

Abstract bases were introduced by Smyth [Smy77] under the name “R-structures”,
but our treatment of them and the rounded ideal completion is closer to that of [AJ94,
Section 2.2.6], although ours is based on families and avoids impredicative, set-theoretic
constructions.

Finally, the example of the ideal completion of the dyadics in Section 4.10.2 and
Theorem 4.13.13 were suggested to me by Martín Escardó.

Chapter 5

Applications in semantics of
programming languages

We present two applications of domain theory in the semantics of programming lan-
guages. The first application is Scott’s [Sco72] famous𝐷∞: a construction of a nontrivial
pointed dcpo 𝐷 that is isomorphic to its self-exponential 𝐷𝐷 . This allows one to view
functions as elements (and vice versa) and hence to give a genuine model of the untyped
_-calculus where self-application is fundamental. The construction works by instantiat-
ing the bilimit machinery from Section 3.6 with a particular diagram. It is noteworthy
that this construction is possible in our predicative setting given that Scott’s 𝐷∞ is
obtained by iterating exponentials where it is not obvious that this does not lead to
ever-increasing universes. While the applications can be developed fully using the
basic theory of dcpos (as set out in Chapter 3) the exposition in Chapter 4 allows us to
conclude that Scott’s 𝐷∞ is algebraic. In fact, it has a small compact basis.

The second application is a constructive and predicative account of the Scott [Sco93]
model of the typed programming language PCF [Plo77], including the fundamental
soundness and computational adequacy theorems, formulated and proved originally
by Plotkin [Plo77]. The lifting from Section 3.4 is the essential ingredient in our con-
structive treatment and the model also illustrates the usefulness of the least fixed point
theorem (Theorem 3.5.9). We employ computational adequacy in our investigations into
semidecidability and this is also where the theory on indexedW-types (Section 2.12)
will find application.

5.1 Scott’s 𝐷∞ model of the untyped _-calculus

We construct Scott’s 𝐷∞ [Sco72] predicatively. Formulated precisely, we construct a
pointed 𝐷∞ : U0-DCPOU1,U1 such that 𝐷∞ is isomorphic to its self-exponential 𝐷𝐷∞∞ ,
employing the machinery from Section 3.6.

5.1. Scott’s 𝐷∞ model of the untyped _-calculus 114

Definition 5.1.1 (𝐷𝑛). We inductively define pointed dcpos 𝐷𝑛 : U0-DCPOU1,U1 for
every natural number 𝑛 by setting 𝐷0 :≡ LU0

(
1U0

)
and 𝐷𝑛+1 :≡ 𝐷𝐷𝑛

𝑛 .

In light of Remark 3.2.10 we highlight the fact that every 𝐷𝑛 is a U0-dcpo with
carrier in U1 by the discussion of universe parameters of exponentials in Remark 3.5.7.

Definition 5.1.2 (Y𝑛 , 𝜋𝑛). We inductively define for every natural number 𝑛, two
Scott continuous maps Y𝑛 : 𝐷𝑛 → 𝐷𝑛+1 and 𝜋𝑛 : 𝐷𝑛+1 → 𝐷𝑛:

(i) • Y0 : 𝐷0 → 𝐷1 is given by mapping 𝑥 : 𝐷0 to the continuous function that
is constantly 𝑥 ,

• 𝜋0 : 𝐷1 → 𝐷0 is given by evaluating a continuous function 𝑓 : 𝐷0 → 𝐷0
at ⊥ which is itself continuous by Proposition 3.5.8,

(ii) • Y𝑛+1 : 𝐷𝑛+1 → 𝐷𝑛+2 takes a continuous function 𝑓 : 𝐷𝑛 → 𝐷𝑛 to the
continuous composite 𝐷𝑛+1

𝜋𝑛−−→ 𝐷𝑛
𝑓
−→ 𝐷𝑛

Y𝑛−→ 𝐷𝑛+1, and
• 𝜋𝑛+1 : 𝐷𝑛+2 → 𝐷𝑛+1 takes a continuous function 𝑓 : 𝐷𝑛+1 → 𝐷𝑛+1 to the
continuous composite 𝐷𝑛

Y𝑛−→ 𝐷𝑛+1
𝑓
−→ 𝐷𝑛+1

𝜋𝑛−−→ 𝐷𝑛 .

Lemma 5.1.3. The maps (Y𝑛, 𝜋𝑛) form an embedding-projection pair for every natural
number 𝑛.

Proof. We prove this by induction on 𝑛. For 𝑛 ≡ 0 and arbitrary 𝑥 : 𝐷0, we have

𝜋0(Y0(𝑥)) ≡ 𝜋0(const𝑥) ≡ const𝑥 (⊥) ≡ 𝑥,

so Y0 is indeed a section of 𝜋0. Moreover, for arbitrary 𝑓 : 𝐷1, we have

Y0(𝜋0(𝑓)) ≡ Y0(𝑓 (⊥)) ≡ const𝑓 (⊥),

so that for arbitrary 𝑥 : 𝐷0 we get (Y0(𝜋0(𝑓))) (𝑥) ≡ 𝑓 (⊥) ⊑ 𝑓 (𝑥) by monotonicity
of 𝑓 , proving that Y0 ◦ 𝜋0 is deflationary.
Now suppose that the result holds for a natural number 𝑛; we prove it for 𝑛 + 1. For
arbitrary 𝑓 : 𝐷𝑛 → 𝐷𝑛 , we calculate that

𝜋𝑛+1(Y𝑛+1(𝑓)) ≡ 𝜋𝑛 ◦ Y𝑛+1(𝑓) ◦ Y𝑛 ≡ 𝜋𝑛 ◦ Y𝑛 ◦ 𝑓 ◦ 𝜋𝑛 ◦ Y𝑛 = 𝑓 ,

as Y𝑛 is a section of 𝜋𝑛 by induction hypothesis. The proof that Y𝑛+1◦𝜋𝑛+1 is a deflation
is similar.

In order to apply the tools from Section 3.6, we will need embedding-projection
pairs

(
Y𝑛,𝑚, 𝜋𝑛,𝑚

)
from 𝐷𝑛 to 𝐷𝑚 whenever 𝑛 ≤ 𝑚.

Definition 5.1.4 (Y𝑛,𝑚, 𝜋𝑛,𝑚). We define Scott continuous maps Y𝑛,𝑚 : 𝐷𝑛 → 𝐷𝑚 and
𝜋𝑛,𝑚 : 𝐷𝑚 → 𝐷𝑛 for every two natural numbers 𝑛 ≤ 𝑚 as follows:

(i) Y𝑛,𝑚 and 𝜋𝑛,𝑚 are both defined to be the identity if 𝑛 =𝑚;
(ii) if 𝑛 < 𝑚, then we define Y𝑛,𝑚 as the composite

𝐷𝑛
Y𝑛−→ 𝐷𝑛+1 → · · · → 𝐷𝑚−1

Y𝑚−1−−−→ 𝐷𝑚

115 Chapter 5. Applications in semantics of programming languages

and 𝜋𝑛,𝑚 as the composite

𝐷𝑚
𝜋𝑚−−→ 𝐷𝑚−1 → · · · → 𝐷𝑛+1

𝜋𝑛−−→ 𝐷𝑛

which yields embedding-projection pairs as they are compositions of them.

Instantiating the framework of Section 3.6 with the above diagram of objects
𝐷𝑛 : U0-DCPOU1,U1 , we arrive at the construction of 𝐷∞ and appropriate embedding-
projection pairs. Observe that 𝐷∞ is a U0-dcpo with carrier and order taking values
in U1, just like each 𝐷𝑛 , as was also mentioned in Remark 3.6.8.

Definition 5.1.5 (𝐷∞). Applying Definitions 3.6.6, 3.6.9 and 3.6.15 to the above
diagram yields 𝐷∞ : U0-DCPOU1,U1 with embedding-projection pairs

(
Y𝑛,∞, 𝜋𝑛,∞

)
from 𝐷𝑛 to 𝐷∞ for every natural number 𝑛.

Lemma 5.1.6. The function 𝜋𝑛 : 𝐷𝑛+1 → 𝐷𝑛 is strict for every natural number 𝑛.
Hence, so is 𝜋𝑛,𝑚 whenever 𝑛 ≤ 𝑚.

Proof. Both statements are proved by induction.

Proposition 5.1.7. The dcpo 𝐷∞ is pointed.

Proof. Since every 𝐷𝑛 is pointed, we can consider the function 𝜎 : Π𝑛:N𝐷𝑛 given by
𝜎 (𝑛) :≡ ⊥𝐷𝑛

. Then 𝜎 is an element of 𝐷∞ by Lemma 5.1.6 and it is the least, so 𝐷∞ is
indeed pointed.

We now work towards showing that 𝐷∞ is isomorphic to the exponential 𝐷𝐷∞∞ .
Note that this exponential is again an element of U0-DCPOU1,U1 by Remark 3.5.7, so the
universe parameters do not increase.

Definition 5.1.8 (Φ𝑛). For every natural number 𝑛, we define the continuous maps

Φ𝑛+1 : 𝐷𝑛+1 → 𝐷
𝐷∞
∞

𝑓 ↦→ (𝐷∞
𝜋𝑛,∞−−−→ 𝐷𝑛

𝑓
−→ 𝐷𝑛

Y𝑛,∞−−−→ 𝐷∞)

and Φ0 : 𝐷0 → 𝐷
𝐷∞
∞ as Φ1 ◦ Y0.

Lemma 5.1.9. For every two natural numbers 𝑛 ≤ 𝑚, the diagram

𝐷𝑛 𝐷
𝐷∞
∞

𝐷𝑚

Y𝑛,𝑚

Φ𝑛

Φ𝑚

commutes.

5.1. Scott’s 𝐷∞ model of the untyped _-calculus 116

Proof. By induction on the difference of the two natural numbers, it suffices to prove
that for every natural number 𝑛, the diagram

𝐷𝑛 𝐷
𝐷∞
∞

𝐷𝑛+1

Y𝑛

Φ𝑛

Φ𝑛+1

commutes. But this follows from Lemma 3.6.19 and unfolding the definition ofΦ𝑛 .

Definition 5.1.10 (Φ). The map Φ : 𝐷∞ → 𝐷
𝐷∞
∞ is defined as the unique Scott

continuous map induced by the Φ𝑛 via Theorem 3.6.26.

Lemma 5.1.11. For 𝜎 : 𝐷∞ we have Φ(𝜎) = ⊔
𝑛:N Φ𝑛+1(𝜎𝑛+1).

Proof. Recalling the proof of Theorem 3.6.26 we have Φ(𝜎) ≡ ⊔
𝑛:N Φ𝑛 (𝜎𝑛), from

which the claim follows easily.

We now define a map in the other direction using that 𝐷∞ is also the limit.

Definition 5.1.12 (Ψ𝑛). For every natural number 𝑛, we define the continuous maps

Ψ𝑛+1 : 𝐷𝐷∞∞ → 𝐷𝑛+1

𝑓 ↦→ (𝐷𝑛
Y𝑛,∞−−−→ 𝐷∞

𝑓
−→ 𝐷∞

𝜋𝑛,∞−−−→ 𝐷𝑛)

and Ψ0 : 𝐷𝐷∞∞ → 𝐷0 as 𝜋0 ◦ Ψ1.

Lemma 5.1.13. For every two natural numbers 𝑛 ≤ 𝑚, the diagram

𝐷
𝐷∞
∞ 𝐷𝑛

𝐷𝑚

Ψ𝑚

Ψ𝑛

𝜋𝑛,𝑚

commutes.

Proof. Similar to Lemma 5.1.9.

Definition 5.1.14 (Ψ). The map Ψ : 𝐷𝐷∞∞ → 𝐷∞ is defined as the unique Scott
continuous map induced by the Ψ𝑛 via Theorem 3.6.20.

Lemma 5.1.15. For 𝑓 : 𝐷𝐷∞∞ we have Ψ(𝑓) = ⊔
𝑛:N Y𝑛+1,∞(Ψ𝑛+1(𝑓)).

117 Chapter 5. Applications in semantics of programming languages

Proof. Notice that

Ψ(𝑓) = ⊔
𝑛:N Y𝑛,∞

(
𝜋𝑛,∞(Ψ(𝑓))

)
(by Lemma 3.6.24)

=
⊔
𝑛:N Y𝑛,∞(Ψ𝑛 (𝑓)) (by Equation 3.6.22),

from which the claim follows easily.

Theorem 5.1.16. The maps Φ and Ψ are inverses and hence, 𝐷∞ is isomorphic to 𝐷𝐷∞∞ .

Proof. For arbitrary 𝜎 : 𝐷∞ we calculate that

Ψ(Φ(𝜎)) = Ψ(⊔𝑛:N Φ𝑛+1(𝜎𝑛+1)) (by Lemma 5.1.11)
=
⊔
𝑛:N Ψ(Φ𝑛+1(𝜎𝑛+1)) (by Scott continuity of Ψ)

=
⊔
𝑛:N

⊔
𝑚:N Y𝑚+1,∞(Ψ𝑚+1(Φ𝑛+1(𝜎𝑛+1))) (by Lemma 5.1.15)

=
⊔
𝑛:N Y𝑛+1,∞(Ψ𝑛+1(Φ𝑛+1(𝜎𝑛+1)))

≡ ⊔
𝑛:N Y𝑛+1,∞

(
𝜋𝑛,∞ ◦ Y𝑛,∞ ◦ 𝜎𝑛+1 ◦ 𝜋𝑛,∞ ◦ Y𝑛,∞

)
(by definition)

=
⊔
𝑛:N Y𝑛+1,∞(𝜎𝑛+1) (since 𝜋𝑛,∞ ◦ Y𝑛,∞ = id)

= 𝜎 (by Lemma 3.6.24),

so Φ is indeed a section of Ψ. Moreover, for arbitrary 𝑓 : 𝐷𝐷∞∞ we calculate that

Φ(Ψ(𝑓)) = Φ
(⊔

𝑛:N Y𝑛+1,∞(Ψ𝑛+1(𝑓))
)

(by Lemma 5.1.15)
=
⊔
𝑛:N Φ

(
Y𝑛+1,∞(Ψ𝑛+1(𝑓))

)
(by Scott continuity of Φ)

=
⊔
𝑛:N

⊔
𝑚:N Φ𝑚+1

(
𝜋𝑚+1,∞

(
Y𝑛+1,∞(Ψ𝑛+1(𝑓))

))
(by Lemma 5.1.11)

=
⊔
𝑛:N Φ𝑛+1

(
𝜋𝑛+1,∞

(
Y𝑛+1,∞(Ψ𝑛+1(𝑓))

))
=
⊔
𝑛:N Φ𝑛+1(Ψ𝑛+1(𝑓)) (since 𝜋𝑛+1,∞ ◦ Y𝑛+1,∞ = id)

≡ ⊔
𝑛:N

(
Y𝑛,∞ ◦ 𝜋𝑛,∞ ◦ 𝑓 ◦ Y𝑛,∞ ◦ 𝜋𝑛,∞

)
(by definition)

=
(⊔

𝑛:N Y𝑛,∞ ◦ 𝜋𝑛,∞
)
◦ 𝑓 ◦

(⊔
𝑚:N Y𝑚,∞ ◦ 𝜋𝑚,∞

)
= 𝑓 (by Lemma 3.6.25),

finishing the proof.

Remark 5.1.17. Of course, Theorem 5.1.16 is only interesting when 𝐷∞ is not the
trivial one-element dcpo. Fortunately, 𝐷∞ has (infinitely) many elements besides the
least element⊥𝐷∞ . For instance, we can consider 𝑥 :≡ [(★) : 𝐷0 and observe that
Y0,∞(𝑥) is an element of 𝐷∞ not equal to ⊥𝐷∞ , since 𝑥 ≠ ⊥𝐷0 .

Theorem 5.1.18. Scott’s𝐷∞ has a small compact basis and in particular is (structurally)
algebraic.

Proof. By Example 4.9.2 the U0-dcpo 𝐷0 has a small compact basis. Moreover, it is
not just a U0-dcpo as it has suprema for all (not necessarily directed) families indexed

5.2. Scott’s model of the programming language PCF 118

by types in U0, as 𝐷0 is isomorphic to ΩU0 . Hence, by induction it follows that each
𝐷𝑛 is U0-sup-complete. Therefore, by induction and Theorem 4.13.9 we get a small
compact basis for each 𝐷𝑛 . Thus, by Theorem 4.12.4, the bilimit 𝐷∞ has a small basis
too.

5.2 Scott’s model of the programming language PCF

PCF [Plo77] is a typed _-calculus with a base type for natural numbers and additional
constants. The full syntax of PCF and its reduction rules (operational semantics)
are described in Section 5.2.1. For example, we have numerals 𝑛 of the base type]
corresponding to natural numbers and basic operations on them, such as a predecessor
term pred and a term ifz that allows us to perform case distinction on whether an
input is zero or not. The most striking feature of PCF is its fixed point combinator fix𝜎
for every PCF type 𝜎 . The idea is that for a term 𝑡 of function type 𝜎 ⇒ 𝜎 , the term
fix𝜎 𝑡 of type 𝜎 is a fixed point of 𝑡 . The use of fix is that it gives us general recursion.
The operational semantics of PCF is a reduction strategy that allows us to compute in
PCF. We write 𝑠 ⊲ 𝑡 for 𝑠 reduces to 𝑡 . We show a few examples below:

pred 0 ⊲ 0; pred𝑛 + 1 ⊲ 𝑛; ifz 𝑠 𝑡 0 ⊲ 𝑠; ifz 𝑠 𝑡 𝑛 + 1 ⊲ 𝑡 ; fix 𝑡 ⊲ 𝑡 (fix 𝑡).

We see that pred indeed acts as a predecessor function and that ifz performs case
distinction on whether its third argument is zero or not. The reduction rule for fix
reflects that fix 𝑡 is a fixed point of 𝑡 and may be seen as an unfolding (of a recursive
definition).

Another way to give meaning to the PCF terms is through denotational semantics,
that is, by giving a model of PCF. A model of PCF assigns to every PCF type 𝜎 some
mathematical structure J𝜎K and to every PCF term 𝑡 of type 𝜎 an element J𝑡K of J𝜎K.
In Scott’s model [Sco93], we interpret the PCF types as pointed dcpos. Specifically, in
our constructive and predicative setting, we interpret the base type] as the lifting of
the type of natural numbers and function types using exponentials. The least element
serves as an interpretation of a nonterminating computation, as is made precise by
computational adequacy discussed below. As mentioned in the introduction to this
chapter, the fact that Scott continuous maps have least fixed points (Theorem 3.5.9) will
be fundamental in giving a sound meaning to PCF’s fixed point combinator.

Soundness and computational adequacy are important properties that any model of
PCF should have. Soundness states that if a PCF term 𝑠 reduces to 𝑡 (according to the
operational semantics), then their interpretations are equal in the model (symbolically,
J𝑠K = J𝑡K). Computational adequacy is completeness at the base type]. It says that for
every term 𝑡 of type] and every natural number 𝑛, if J𝑡K = J𝑛K, then 𝑡 reduces to 𝑛. The
Scott model of PCF was originally proved to be sound and computationally adequate by
Plotkin [Plo77] and we prove these results in our foundational type-theoretic setup too.

Since the base type is interpreted using the lifting, every PCF term of the base
type is interpreted as a partial element of N, and hence gives rise to a proposition (the
domain of the partial element). Motivated by constructive issues involving countable
choice (see Section 5.2.4), we use computational adequacy in a syntactic approach to
establishing that all such propositions are semidecidable.

119 Chapter 5. Applications in semantics of programming languages

5.2.1 PCF and its operational semantics
We precisely define the types and terms of PCF as well as the small-step operational
semantics. Instead of the formulation by Plotkin [Plo77], which features variables and
_-abstraction, we revert to the original, combinatory, formulation of the terms of LCF
by Scott [Sco93] in order to simplify the technical development. We note that it is
possible to represent every closed _-term in terms of combinators by a well-known
technique [HP08, Section 2C].

Definition 5.2.1 (PCF types,], 𝜎 ⇒ 𝜏). The PCF types are inductively defined as
(i)] is a type, the base type, and
(ii) for every two types 𝜎 and 𝜏 , there is a function type 𝜎 ⇒ 𝜏 .

As usual,⇒ will be right associative, so we write 𝜎 ⇒ 𝜏 ⇒ 𝜌 for 𝜎 ⇒ (𝜏 ⇒ 𝜌).

Definition 5.2.2 (PCF terms, zero, succ, pred, ifz, k𝜎,𝜏 , s𝜎,𝜏,𝜌 , fix𝜎). The PCF terms
of PCF type 𝜎 are inductively generated by

zero of type] succ of type] ⇒]

pred of type] ⇒] ifz of type] ⇒] ⇒] ⇒]

k𝜎,𝜏 of type 𝜎 ⇒ 𝜏 ⇒ 𝜎 s𝜎,𝜏,𝜌 of type (𝜎 ⇒ 𝜏 ⇒ 𝜌) ⇒ (𝜎 ⇒ 𝜏) ⇒ 𝜎 ⇒ 𝜌

fix𝜎 of type (𝜎 ⇒ 𝜎) ⇒ 𝜎

𝑠 of type 𝜎 ⇒ 𝜏 𝑡 of type 𝜎
(𝑠𝑡) of type 𝜏

We will often drop the parentheses in the final clause, as well as the PCF type sub-
scripts in k𝜎,𝜏 , s𝜎,𝜏,𝜌 and fix𝜎 . Finally, we employ the convention that the parentheses
associate to the left, i.e. we write 𝑟𝑠𝑡 for (𝑟𝑠)𝑡 .

Definition 5.2.3 (PCF numerals, 𝑛). For any 𝑛 : N, let us write 𝑛 for the 𝑛th PCF
numeral, defined inductively by 0 :≡ zero and 𝑛 + 1 :≡ succ 𝑛.

To define the small-step operational semantics of PCF, we first define an auxiliary
type family by induction and then we propositional truncate its values to obtain the
small-step relation.

Definition 5.2.4 (Small-step (pre-)relation, ⊲̃, ⊲). Define the small-step pre-relation ⊲̃

of type

Π𝜎 :PCF types(PCF terms of type 𝜎 → PCF terms of type 𝜎 → U0)

as the inductive family generated by

pred 0 ⊲̃ 0 pred𝑛 + 1 ⊲̃ 𝑛 ifz 𝑠 𝑡 0 ⊲̃ 𝑠 ifz 𝑠 𝑡 𝑛 + 1 ⊲̃ 𝑡

5.2. Scott’s model of the programming language PCF 120

k 𝑠 𝑡 ⊲̃ 𝑠 s𝑓 𝑔 𝑡 ⊲̃ 𝑓 𝑡 (𝑔 𝑡) fix 𝑓 ⊲̃ 𝑓 (fix 𝑓)
𝑓 ⊲̃ 𝑔

𝑓 𝑡 ⊲̃ 𝑔 𝑡

𝑠 ⊲̃ 𝑡
succ 𝑠 ⊲̃ succ 𝑡

𝑠 ⊲̃ 𝑡
pred 𝑠 ⊲̃ pred 𝑡

𝑟 ⊲̃ 𝑟 ′

ifz 𝑠 𝑡 𝑟 ⊲̃ ifz 𝑠 𝑡 𝑟 ′

We have been unable to prove that 𝑠 ⊲̃ 𝑡 is a proposition for all PCF terms 𝑠 and 𝑡
of the same type. The difficulty is that one cannot perform induction on both 𝑠 and
𝑡 , because the reduction relation is not defined by induction on terms. However,
conceptually, 𝑠 ⊲̃ 𝑡 should be a proposition, as (by inspection of the definition), there
is at most one way by which we obtained 𝑠 ⊲̃ 𝑡 . Moreover, for technical reasons that
will become apparent later, we need ⊲̃ to be proposition-valued.
We solve the problem by defining the small-step relation ⊲ as the propositional trun-
cation of ⊲̃, i.e. 𝑠 ⊲ 𝑡 :≡ ∥𝑠 ⊲̃ 𝑡 ∥.

Remark 5.2.5. Benedikt Ahrens pointed out that in an impredicative framework, one
could use propositional resizing and an impredicative encoding, i.e. by defining ⊲ as
a Π-type of all suitable proposition-valued relations. This is similar to the situation
in set theory, where one would define ⊲ as an intersection. Specifically, say that a
relation

𝑅 : Π𝜎 :PCF types
(
PCF terms of type 𝜎 → PCF terms of type 𝜎 → ΩU0

)
is suitable if it closed under all the clauses of Definition 5.2.4, that is, we would want
to have elements of

𝑅
(
], pred 0, 0

)
, 𝑅

(
], pred𝑛 + 1, 𝑛

)
, 𝑅

(
], ifz 𝑠 𝑡 0, 𝑠

)
, etc.

We could then define 𝑠 ⊲impred 𝑡 :≡ Π𝑅 suitable𝑅(𝜎, 𝑠, 𝑡). But notice the increase in
universes:

⊲impred : Π𝜎 :PCF types
(
PCF terms of type 𝜎 → PCF terms of type 𝜎 → ΩU1

)
.

So because of this increase, ⊲impred itself is not one of the suitable relations. More-
over, the definition ⊲impred only quantifies over U0-valued relations, and so has no
bearing on relations valued in other universes. Therefore ⊲impred does not satisfy the
appropriate universal property of being the least relation closed under the clauses
in Definition 5.2.4. Notice that this is exactly the same phenomenon as discussed in
Section 2.11.1 for the Voevodsky propositional truncation. With propositional resiz-
ing we could resize the relations to all have values in U0 and obtain the appropriate
universal property. The advantage of using the propositional truncation above is that
it does satisfy the right universal property even without propositional resizing.

121 Chapter 5. Applications in semantics of programming languages

Let 𝑅 : 𝑋 → 𝑋 → Ω be a relation on a type 𝑋 . We might try to define the reflexive
transitive closure 𝑅∗ of 𝑅 as an inductive family, generated by three constructors:

extend : Π𝑥,𝑦:𝑋 (𝑥 𝑅 𝑦 → 𝑥 𝑅∗ 𝑦);
refl : Π𝑥 :𝑋 (𝑥 𝑅∗ 𝑥);

trans : Π𝑥,𝑦,𝑧:𝑋 (𝑥 𝑅∗ 𝑦 → 𝑦 𝑅∗ 𝑧 → 𝑥 𝑅∗ 𝑧).

But 𝑅∗ is not necessarily proposition-valued, even though 𝑅 is. This is because we
might add a pair (𝑥,𝑦) to 𝑅∗ in more than one way, for example, once by an instance of
extend and once by an instance of trans. Thus, we are led to the following definition.

Definition 5.2.6. Let 𝑅 : 𝑋 → 𝑋 → Ω be a relation on a type 𝑋 . We define the
reflexive transitive closure 𝑅∗ of 𝑅 by 𝑥 𝑅∗ 𝑦 :≡ ∥𝑥 𝑅∗ 𝑦∥, where 𝑅∗ is as above.

It is not hard to show that 𝑅∗ is the least reflexive and transitive proposition-valued
relation that extends 𝑅, so 𝑅∗ satisfies the appropriate universal property.

Some properties of ⊲ reflect onto ⊲∗ as the following lemma shows.

Lemma 5.2.7. Let 𝑟 ′, 𝑟 , 𝑠 and 𝑡 be PCF terms of type]. If 𝑟 ′ ⊲∗ 𝑟 , then
(i) succ 𝑟 ′ ⊲∗ succ 𝑟 ,
(ii) pred 𝑟 ′ ⊲∗ pred 𝑟 , and
(iii) ifz 𝑠 𝑡 𝑟 ′ ⊲∗ ifz 𝑠 𝑡 𝑟 .

Moreover, if 𝑓 and 𝑔 are PCF terms of type 𝜎 ⇒ 𝜏 and 𝑓 ⊲∗ 𝑔, then 𝑓 𝑡 ⊲∗ 𝑔𝑡 for any PCF
term 𝑡 of type 𝜎 .

Proof. We only prove (i) the rest is similar. Suppose 𝑟 ′ ⊲∗ 𝑟 ′. Since succ 𝑟 ′ ⊲∗ succ 𝑟
is a proposition, we may assume that we actually have an element 𝑝 of type 𝑟 ′ ⊲∗ 𝑟 ′.
Now we can perform induction on 𝑝 . The cases were 𝑝 is formed using refl or trans
are easy. If 𝑝 is formed by extend, then we get an element of type 𝑟 ⊲ 𝑟 ′ ≡ 𝑟 ⊲̃ 𝑟 ′.
Again, as we are proving a proposition, we may suppose the existence of an element
of type 𝑟 ⊲̃ 𝑟 ′. By Definition 5.2.4, we then get succ 𝑟 ⊲̃ succ 𝑟 ′. This in turn yields,
succ 𝑟 ′ ⊲ succ 𝑟 and finally we use extend to get the desired succ 𝑟 ′ ⊲∗ succ 𝑟 .

5.2.2 The Scott model of PCF
We proceed by defining our constructive version of the Scott model of PCF using pointed
(exponentials of) U0-dcpos. Recall from Proposition 3.4.1 that interpreting the base
type by naively adding a least element to the type of natural numbers is constructively
inadequate, which is why we use the lifting (as defined in Section 3.4) of the type of
natural numbers.
Definition 5.2.8 (Interpretation of PCF types, J𝜎K). We inductively define a map

J−K : PCF types→ U0-DCPOU1,U1

interpreting a PCF type as a pointed U0-dcpo as follows:
(i) J]K :≡ L(N);
(ii) J𝜎 ⇒ 𝜏K :≡ J𝜏KJ𝜎K.

5.2. Scott’s model of the programming language PCF 122

We recall Remark 3.5.7 on universe parameters and we remark that is fortunate
that the interpretation function J−K takes values in U0-DCPOU1,U1 and does not require
ever-increasing universe parameters.

Next, we interpret PCF terms as elements of these pointed dcpos, for which we will
need that L is a monad (with unit [) and (in particular) a functor (recall Theorem 3.4.9
and Definition 3.4.12).

Definition 5.2.9 (Interpretation of PCF terms, J𝑡K). Define for each PCF term 𝑡 of
PCF type 𝜎 a term J𝑡K of type J𝜎K, by the following inductive clauses:

(i) JzeroK :≡ [(0);
(ii) JsuccK :≡ L(𝑠), where 𝑠 : N→ N is the successor function;
(iii) JpredK :≡ L(𝑝), where 𝑝 : N → N is the predecessor function with the

convention that 0 is mapped to 0;
(iv) JifzK : J] ⇒] ⇒] ⇒]K is defined using the Kleisli extension (Theorem 3.4.9)

as: _𝑥,𝑦.
(
𝜒𝑥,𝑦

)#, where

𝜒𝑥,𝑦 (𝑛) :≡
{
𝑥 if 𝑛 = 0;
𝑦 else;

(v) JkK :≡ _𝑥,𝑦.𝑥 ;
(vi) JsK :≡ _𝑓 , 𝑔, 𝑥 .(𝑓 (𝑥)) (𝑔(𝑥));
(vii) JfixK :≡ `, where ` is the least fixed point operator from Theorem 3.5.9;
(viii) J𝑠𝑡K :≡ J𝑠K

(
J𝑡K

)
for 𝑠 of type 𝜎 ⇒ 𝜏 and 𝑡 of type 𝜎 .

Remark 5.2.10. Of course, there are some things to be proved here. Namely, JsuccK,
JpredK, . . . , JfixK, J𝑠 𝑡K all need to be Scott continuous. In the case of JsuccK and
JpredK, we simply appeal to Proposition 3.4.15 and Definition 3.4.12. For JfixK, this
is guaranteed by Theorem 3.5.9. The continuity of JkK, JsK and JifzK can be verified
directly; the details are omitted here. Finally, the interpretation of application is
continuous by Proposition 3.5.8.

As a first result about our denotational semantics, we show that the PCF numerals
have a canonical interpretation in the denotational semantics. This basic result is
fundamental and finds application in the proof of soundness.

Proposition 5.2.11. For every natural number 𝑛, we have J𝑛K = [(𝑛).

Proof. We proceed by induction on 𝑛. The 𝑛 ≡ 0 case is by definition of J0K. Suppose
J𝑚K = [(𝑚) for a natural number𝑚. Then,

J𝑚 + 1K ≡ JsuccK(J𝑚K)
= L(𝑠) ([(𝑚)) (by induction hypothesis)
= [(𝑚 + 1) (by definition of the lift functor),

as desired.

123 Chapter 5. Applications in semantics of programming languages

5.2.3 Soundness and computational adequacy
Having defined the Scott model of PCF we show that it respects the operational seman-
tics by proving soundness and computational adequacy.

Theorem 5.2.12 (Soundness). If 𝑠 ⊲∗ 𝑡 , then J𝑠K = J𝑡K for every two PCF terms 𝑠 and 𝑡
(necessarily of the same type).

Proof. Since the carriers of dcpos are sets, the type J𝑠K = J𝑡K is a proposition. There-
fore, we can use induction on the derivation of 𝑠 ⊲∗ 𝑡 . We use the Kleisli monad laws
in proving some of the cases. For example, one step is to prove that

Jifz 𝑠 𝑡 𝑛 + 1K = J𝑡K.

This may be proved by the following chain of equalities:

Jifz 𝑠 𝑡 𝑛 + 1K ≡ Jifz 𝑠 𝑡K(J𝑛 + 1K)
= Jifz 𝑠 𝑡K([(𝑛 + 1)) (by Proposition 5.2.11)

≡
(
𝜒J𝑠K,J𝑡K

)#
([(𝑛 + 1)) (by definition of JifzK)

= 𝜒J𝑠K,J𝑡K(𝑛 + 1) (by Theorem 3.4.9)
= J𝑡K.

The other cases are proved similarly.

Ideally, we would like a converse to soundness. However, this is not possible, as for
example, Jk zeroK = Jk(succ(pred zero))K, but neither k zero ⊲∗ k(succ(pred zero))
nor k(succ(pred zero)) ⊲∗ k zero holds. We do, however, have the following.

Theorem 5.2.13 (Computational adequacy). For a PCF term 𝑡 of the base type, if the
partial element J𝑡K is defined, then 𝑡 reduces to the numeral given by the value of J𝑡K.

Equivalently, for every 𝑛 : N, it holds that J𝑡K = J𝑛K implies 𝑡 ⊲∗ 𝑛. Another useful
rephrasing is: for every PCF term 𝑡 of the base type, we have 𝑡 ⊲∗ value(J𝑡K, 𝑝) for every
𝑝 : is-defined(J𝑡K).

We do not prove computational adequacy directly, as, unlike soundness, it does not
allow for a straightforward proof by induction on terms. Instead, we use the standard
technique of logical relations [Str06, Chapter 7] which goes back to [Tai67] and obtain
the result as a direct corollary of Lemma 5.2.20.

Definition 5.2.14 (Logical relation, 𝑅𝜎). For every PCF type 𝜎 , define a relation

𝑅𝜎 : PCF terms of type 𝜎 → J𝜎K→ ΩU0

by induction on 𝜎 as
(i) 𝑡 𝑅] 𝑑 :≡ Π𝑝:is-defined(𝑑)

(
𝑡 ⊲∗ value(𝑑, 𝑝)

)
, and

(ii) 𝑠 𝑅𝜏⇒𝜌 𝑓 :≡ Π𝑡 :PCF terms of type 𝜏Π𝑑 :J𝜏K
(
𝑡 𝑅𝜏 𝑑 → 𝑠𝑡 𝑅𝜌 𝑓 (𝑑)

)
.

We sometimes omit the type subscript 𝜎 in 𝑅𝜎 .

5.2. Scott’s model of the programming language PCF 124

Note that (i) in Definition 5.2.14 is the statement of computational adequacy. By
generalising, we can prove properties of 𝑅 by induction on types.

Lemma 5.2.15. If 𝑠 ⊲∗ 𝑡 and 𝑡 𝑅𝜎 𝑑 , then 𝑠 𝑅𝜎 𝑑 , for all PCF types 𝜎 and PCF terms
𝑠 and 𝑡 of type 𝜎 and elements 𝑑 : J𝜎K.

Proof. By induction on 𝜎 , making use of the last part of Lemma 5.2.7.

Lemma 5.2.16. For 𝑡 equal to zero, succ, pred, ifz, k or s, we have 𝑡 𝑅 J𝑡K.

Proof. By the previous lemma and Lemma 5.2.7.

Next, we wish to extend the previous lemma to the case where 𝑡 ≡ fix𝜎 for any
PCF type 𝜎 . This is slightly more complicated and we need two intermediate lemmas.

Lemma 5.2.17. For every PCF type 𝜎 and term 𝑡 of type 𝜎 it holds that 𝑡 𝑅𝜎 ⊥.

Proof. By induction on 𝜎 : for the base type, this holds vacuously; for function types,
it follows by induction hypothesis and the pointwise ordering.

Lemma 5.2.18. The logical relation is closed under directed suprema. That is, for every
PCF type 𝜎 and every PCF term 𝑡 of type 𝜎 and every directed family 𝑑 : 𝐼 → J𝜎K, if
𝑡 𝑅𝜎 𝑑𝑖 for every 𝑖 : 𝐼 , then 𝑡 𝑅𝜎

⊔
𝑖:𝐼 𝑑𝑖 .

Proof. This proof is somewhat different from the classical proof, so we spell out
the details. We prove the lemma by induction on 𝜎 . The case when 𝜎 is a function
type is easy, because least upper bounds are calculated pointwise and so it reduces
to an application of the induction hypothesis. We concentrate on the case when
𝜎 ≡] instead. Recall that ⊔𝑖:𝐼 𝑑𝑖 is given by (∃𝑖:𝐼 is-defined(𝑑𝑖), 𝜙), where 𝜙 is the
factorisation of

(Σ𝑖:𝐼 is-defined(𝑑𝑖))
(𝑖,𝑝) ↦→value(𝑑𝑖 ,𝑝)−−−−−−−−−−−−−→ L(N)

through ∃𝑖:𝐼 is-defined(𝑑𝑖). We are tasked with proving that 𝑡 ⊲∗ 𝜙 (𝑝) whenever 𝑝
witnesses that

⊔
𝑖:𝐼 𝑑𝑖 is defined. Since we are trying to prove a proposition (as ⊲∗ is

proposition-valued), we may assume that we have (𝑗, 𝑝) : Σ𝑖:𝐼 is-defined(𝑑𝑖). By
definition of 𝜙 we have: 𝜙 (| (𝑗, 𝑝) |) = value

(
𝑑 𝑗 , 𝑝

)
and by assumption we know that

𝑡 ⊲∗ value
(
𝑑 𝑗 , 𝑝

)
, so we are done.

Lemma 5.2.19. For every PCF type 𝜎 , we have fix𝜎 𝑅(𝜎⇒𝜎)⇒𝜎 Jfix𝜎K.

Proof. Suppose that 𝑡 𝑅𝜎⇒𝜎 𝑓 ; we are to prove that fix 𝑡 𝑅𝜎 ` (𝑓). By the previous
lemma, it suffices to prove that fix 𝑡 𝑅𝜎 𝑓 𝑛 (⊥) for every natural number 𝑛, which we
do by induction on 𝑛. The base case is an application of Lemma 5.2.17. Now suppose
that fix 𝑡 𝑅𝜎 𝑓𝑚 (⊥). Then, using 𝑡 𝑅𝜎⇒𝜎 𝑓 , we find 𝑡 (fix 𝑡) 𝑅𝜎 𝑓 (𝑓𝑚 (⊥)). Hence, by
Lemma 5.2.15, we obtain the fix 𝑡 𝑅𝜎 𝑓𝑚+1(⊥), completing our inductive proof.

125 Chapter 5. Applications in semantics of programming languages

Lemma 5.2.20 (Fundamental Theorem). We have 𝑡 𝑅 J𝑡K for every PCF term 𝑡 .

Proof. The proof is by induction on 𝑡 . The base cases are taken care of by Lemma 5.2.16
and the previous lemma. For the inductive step, suppose 𝑡 is a PCF term of type
𝜎 ⇒ 𝜏 . By induction hypothesis, 𝑡𝑠 𝑅𝜏 J𝑡𝑠K for every PCF term 𝑠 of type 𝜎 , but
J𝑡𝑠K ≡ J𝑡KJ𝑠K, so we are done.

Computational adequacy is now a direct corollary of Lemma 5.2.20.

Proof of computational adequacy. Take 𝜎 to be the base type] in Lemma 5.2.20.

Using computational adequacy to compute. An interesting use of computational
adequacy is that it allows one to argue semantically to obtain results about termination
(i.e. reduction to a numeral) in PCF. Classically, every PCF program of type] either
terminates or it does not. From a constructive point of view, we wait for a program to
terminate, with no a priori knowledge of termination. The waiting could be indefinite.
Less naively, we could limit the number of computation steps to avoid indefinite waiting,
with an obvious shortcoming: how many steps are enough? Instead, one could use
computational adequacy to compute as we describe now.

For a PCF type 𝜎 , a functional of type 𝜎 is an element of J𝜎K. By induction on PCF
types, we define when a functional is said to be total:

(i) a functional 𝑖 of type] is total if 𝑖 = J𝑛K for some natural number 𝑛;
(ii) a functional 𝑓 of type 𝜎 ⇒ 𝜏 is total if it maps total functionals to total functionals,

viz. 𝑓 (𝑑) is a total functional of type 𝜏 for every total functional 𝑑 of type 𝜎 .
Now, let 𝑠 be a PCF term of type 𝜎1 ⇒ 𝜎2 ⇒ · · · ⇒ 𝜎𝑛 ⇒]. If we can prove that
J𝑠K is total, then computational adequacy lets us conclude that for all total inputs
J𝑡1K : J𝜎1K, . . . , J𝑡𝑛K : J𝜎𝑛K, the term 𝑠 (𝑡1, . . . , 𝑡𝑛) reduces to the numeral representing
J𝑠K(J𝑡1K, . . . , J𝑡𝑛K). Thus, instead of e.g. giving a number of steps as a timeout for the
computation, we supply a proof of totality to computational adequacy and we are
guaranteed to obtain a result.

Of course, this approach still requires us to prove that J𝑠K is total, which may be
challenging. But note that we can use domain-theoretic arguments to prove this about
the denotation J𝑠K, whereas in a direct proof of termination we would only have the
operational semantics available for our argument.

5.2.4 Semidecidability and PCF terms of the base type
Given a PCF term 𝑡 of the base type, we intuitively expect it to be semidecidable
whether 𝑡 will compute to a numeral, as we can reduce 𝑡 one step at a time following
the operational semantics of PCF and stop when we have obtained a numeral.

A rather slick way of proving this would be to argue that we could have restricted
to semidecidable propositions in the lifting of the natural numbers, i.e. we modify the
Scott model of PCF and set J]K :≡ Lsd(N) with

Lsd(𝑋) :≡ Σ𝑃 :ΩU0
(𝑃 is semidecidable) × (𝑃 → 𝑋).

5.2. Scott’s model of the programming language PCF 126

This restricted lifting of a set does not necessarily yield a dcpo, but observe that only
used suprema of 𝜔-chains in the Scott model of PCF. Thus it would suffice for Lsd(𝑋)
to be a 𝜔-cpo. Escardó and Knapp [EK17, Corollary 5] observed that this is indeed
the case if countable choice is assumed. And in this case it coincides with the other
constructions [CUV19; ADK17] of 𝜔-cpos, as discussed in the Notes of Chapter 3.
Countable choice is used to obtain witnessing sequences 𝛼𝑛 for a given N-indexed
sequence 𝑃𝑛 of semidecidable propositions. Indeed, at least someweak form of countable
choice is indeed necessary for Lsd(𝑋) to be closed under countable joins as shown
by [dJon22c]. But since countable choice is not provable in constructive univalent
foundations (cf. the Notes of Chapter 3), we resort to a different, syntactic approach.
That is, without using countable choice, we use soundness and computational adequacy
to prove that is-defined(J𝑡K) is semidecidable for every PCF term of the base type. In
other words, although we cannot define the Scott model using Lsd, the map

J−K : PCF terms of the base type→ L(N)

factors through Lsd(N), even in the absence of countable choice.
Specifically, we prove semidecidability of the proposition is-defined(J𝑡K) by ap-

pealing to Lemma 2.7.14 and showing that is-defined(J𝑡K) is logically equivalent to
∃𝑛:N∃𝑘 :N 𝑡 ⊲

𝑘 𝑛, where 𝑡 ⊲𝑘 𝑛 says that 𝑡 reduces to 𝑛 in at most 𝑘 steps. We prove this
notion to be decidable by using that the terms of PCF have decidable equality which is
an application of the theory on indexed W-types developed in Section 2.12. It turns
out to be helpful to study the 𝑘-step reflexive transitive closure of an arbitrary relation
more generally and isolate criteria for it to be decidable.

Decidability of the 𝑘-step reflexive transitive closure of a relation

Fix an arbitrary type 𝑋 and a proposition-valued binary relation 𝑅 on 𝑋 . We define the
𝑘-step reflexive transitive closure of 𝑅. As in Definition 5.2.6, we want this relation to be
proposition-valued again, so we proceed with an auxiliary definition that we truncate.

Definition 5.2.21 (𝑘-step reflexive transitive closure, 𝑅𝑘 , 𝑅𝑘). Define 𝑥 𝑅𝑘 𝑦 by
induction on the natural number 𝑘 as

(i) 𝑥 𝑅0 𝑦 :≡ 𝑥 = 𝑦, and
(ii) 𝑥 𝑅𝑘+1 𝑧 :≡ Σ𝑦:𝑋 (𝑥 𝑅 𝑦) × (𝑦 𝑅𝑘 𝑧).

The 𝑘-step reflexive transitive closure 𝑅𝑘 of 𝑅 is given by propositionally truncating:
𝑥 𝑅𝑘 𝑦 :≡ ∥𝑥 𝑅𝑘 𝑦∥.

The following proposition relates the reflexive transitive closure of 𝑅 and its 𝑘-step
reflexive transitive closure.
Proposition 5.2.22. For every 𝑥 and 𝑦 we have 𝑥 𝑅∗ 𝑦 if and only if Σ𝑘 :N(𝑥 𝑅𝑘 𝑦),
where 𝑅∗ is the untruncated reflexive transitive closure from just before Definition 5.2.6.
Hence, for every 𝑥 and 𝑦 it holds that 𝑥 𝑅∗ 𝑦 if and only if ∃𝑘 :N

(
𝑥 𝑅𝑘 𝑦

)
.

Proof. We define the auxiliary binary relation 𝑅′ on 𝑋 inductively: for every 𝑥 : 𝑋
we have 𝑥 𝑅′ 𝑥 ; and if 𝑥 𝑅 𝑦 and 𝑦 𝑅′ 𝑧, then 𝑥 𝑅′ 𝑧. Then 𝑅′ is reflexive, transitive
and it extends 𝑅. It follows that 𝑅′ and 𝑅∗ are equivalent, so it remains to show that

127 Chapter 5. Applications in semantics of programming languages

𝑥 𝑅′ 𝑦 and Σ𝑘 :N(𝑥 𝑅𝑘 𝑦) are logically equivalent. In one direction, induction on 𝑘
yields a proof that 𝑥 𝑅𝑘 𝑦 implies 𝑥 𝑅′ 𝑦 for every natural number 𝑘 , and hence
that Σ𝑘 :N(𝑥 𝑅𝑘 𝑦) implies 𝑥 𝑅′ 𝑦. The other direction is obtained by induction on the
constructors of 𝑅′.
The final claim follows from the functoriality of the truncation and the general fact
that ∥Σ𝑥 :𝑋𝐴(𝑥)∥ and ∥Σ𝑥 :𝑋 ∥𝐴(𝑥)∥∥ are equivalent [Uni13, Theorem 7.3.9].

Definition 5.2.23 (Singe-valuedness and decidability of a relation). The relation 𝑅 is
said to be

(i) single-valued if for every 𝑥 , 𝑦 and 𝑧 with 𝑥 𝑅 𝑦 and 𝑥 𝑅 𝑧, we have 𝑦 = 𝑧, and
(ii) decidable if the type 𝑥 𝑅 𝑦 is decidable for every 𝑥 and 𝑦 in 𝑋 .

Proposition 5.2.24. The 𝑘-step reflexive transitive closure 𝑅𝑘 is decidable for every
natural number 𝑘 if

(i) the type 𝑋 has decidable equality,
(ii) the relation 𝑅 is single-valued, and
(iii) the type Σ𝑦:𝑋 (𝑥 𝑅 𝑦) is decidable for every 𝑥 : 𝑋 .

Proof. Since the propositional truncation of a type is decidable as soon the type itself
is, it suffices to prove that the relation 𝑅𝑘 is decidable, which we do by induction
on 𝑘 . For 𝑘 = 0, this means decidability of 𝑥 = 𝑦 for every 𝑥 and 𝑦 which we have
by assumption (i). Now suppose that 𝑅𝑘 is decidable and let 𝑥 and 𝑧 be arbitrary
elements of 𝑋 . We prove that 𝑥 𝑅𝑘+1 𝑧 is decidable. By definition, this means proving
that

Σ𝑦:𝑋 (𝑥 𝑅 𝑦) × (𝑦 𝑅𝑘 𝑧) (†)
is decidable. Using (iii) we can decide whether Σ𝑦:𝑋 (𝑥 𝑅 𝑦) has an element or not. If
it does not, then obviously (†) has no elements either. So assume that we have 𝑦 : 𝑋
with 𝑥 𝑅 𝑦. By induction hypothesis, the type 𝑦 𝑅𝑘 𝑧 is decidable. If it has an element,
then so does (†). If it does not, then we claim that (†) must be empty too. For if it
isn’t, then we get 𝑦′ : 𝑋 with 𝑥 𝑅 𝑦′ and 𝑦′ 𝑅𝑘 𝑧. But the relation 𝑅 is assumed to be
single-valued, so 𝑦′ = 𝑦 and hence 𝑦 𝑅𝑘 𝑧, contradicting our assumption.

Semidecidability at the base type

After completing the generalities above, we are now ready to complete the proof of the
strategy outlined at the start of this section. The application of Proposition 5.2.24 to
the small-step reduction relation of PCF requires us to prove that the syntax of PCF
has decidable equality, which follows from the results on indexed W-types featured
in Section 2.12.
Theorem 5.2.25. For every PCF term 𝑡 of the base type, the proposition is-defined(J𝑡K)
is semidecidable as witnessed by the logical equivalence

is-defined(J𝑡K) ⇐⇒ ∃𝑛:N∃𝑘 :N 𝑡 ⊲
𝑘 𝑛

and the decidability of 𝑡 ⊲𝑘 𝑛.

5.3. Notes 128

Proof. First of all, observe that J𝑡K is defined if and only if there exists 𝑛 : N such that
𝑡 ⊲∗ 𝑛. Indeed, if we have 𝑝 : is-defined(J𝑡K), then 𝑡 ⊲∗ value(J𝑡K, 𝑝) by computational
adequacy. Conversely, if there exists a natural number 𝑛 such that 𝑡 ⊲∗ 𝑛, then J𝑡K =
[(𝑛) by soundness and Proposition 5.2.11, so that J𝑡K must be defined. Furthermore,
by Proposition 5.2.22, we have that 𝑡 ⊲∗ 𝑛 is logically equivalent to ∃𝑘 :N 𝑡 ⊲

𝑘 𝑛, so
this proves the logical equivalence is-defined(J𝑡K) ⇐⇒ ∃𝑛:N∃𝑘 :N 𝑡 ⊲

𝑘 𝑛. Hence, it
only remains to prove that 𝑡 ⊲𝑘 𝑛 is decidable, for which we use Proposition 5.2.24.
Accordingly, we need to check its three conditions. First of all, the type of PCF
terms should have decidable equality, which is guaranteed by a modest extension
of Proposition 2.12.14. The other two conditions can be proved by inspection of the
operational semantics of PCF using decidability of equality of PCF terms.

5.3 Notes

The treatment of Scott’s 𝐷∞ model of the untyped _-calculus in Section 5.1 is an
expanded account of Section 5.2 of our paper [dJE21a], while Section 5.2 is a slight
revision of the exposition in our publication [dJon19b].

The proof that𝐷∞ is isomorphic to𝐷𝐷∞∞ largely follows that of [Sco72, Theorem 4.4],
although we instantiate the general framework involving directed bilimits set out
in Section 3.6, rather than working with sequential bilimits directly.

The Scott model was proved sound and computationally adequate by Plotkin [Plo77],
and the techniques of Scott and Plotkin have been extended to many other programming
languages [Plo83]. Our proof follows themodern presentation given by Streicher [Str06],
although, instead of formulating PCF with variables and _-abstraction, we revert to
the original, combinatory, formulation of the terms of LCF by Scott [Sco93] in order to
simplify the technical development.

The formulation of computational adequacy in terms of is-defined(J𝑡K), and the
suggestion that it could be leveraged to prove semidecidability of these propositions
are due to Martín Escardó.

Chapter 6

Predicativity in order theory

In the preceding chapters we gave a type-theoretic account of constructive and predica-
tive domain theory including many familiar constructions and notions, such as Scott’s
𝐷∞ model of the untyped _-calculus and the theory of continuous dcpos. In this chapter
we complement this by exploring what cannot be done predicatively.

6.1 Introduction

The work in this chapter is in the spirit of constructive reverse mathematics [Ish06] and
amounts to predicative reverse mathematics: we show certain statements to crucially
rely on resizing axioms in the sense that they are equivalent to them. Such arguments
are important in constructive mathematics. For example, the constructive failure of
trichotomy on the real numbers is shown [BR87] by reducing it to a nonconstructive
instance of excluded middle. As another example, note that in Proposition 3.4.1 we
used a reduction to the limited principle of omniscience (LPO) to show that N⊥ cannot
be a dcpo constructively.

Our first main result is that nontrivial (directed or bounded) complete posets are
necessarily large. All examples of dcpos that we have seen have large carriers, in the
sense that all examples of V-dcpos have carriers that live in V+ or some higher universe.
We show here that this is no coincidence, but rather a necessity, in the sense that if
such a nontrivial poset is small, then weak propositional resizing holds. It is possible
to derive full propositional resizing if we strengthen nontriviality to positivity in the
sense of [Joh84]. The distinction between nontriviality and positivity is analogous to
the distinction between nonemptiness and inhabitedness. We prove our results for a
general class of posets, which includes directed complete posets, bounded complete
posets and sup-lattices, using a technical notion of a 𝛿V -complete poset. We also show
that nontrivial locally small 𝛿V-complete posets necessarily lack decidable equality.
Specifically, we can derive weak excluded middle from assuming the existence of a
nontrivial locally small 𝛿V-complete poset with decidable equality. Moreover, if we

6.2. Large posets without decidable eqality 130

assume positivity instead of nontriviality, then we can derive full excluded middle.
The fact that nontrivial dcpos are necessarily large has the important consequence

that Tarski’s Theorem (and similar results, such as Pataraia’s Lemma) cannot be applied
in nontrivial instances, even though it has a predicative proof. Furthermore, we explain
that generalisations of Tarski’s Theorem that allow for large structures are provably
false. Specifically, we show that the ordinal of ordinals in a univalent universe does
not have a maximal element, but does have small suprema in the presence of small set
quotients or set replacement, illustrating the abstract theory of Section 2.11.

Finally, we clarify, in our predicative setting, the relation between the traditional
definition of sup-lattice that requires suprema for all subsets and our definition that asks
for suprema of all small families, further explaining our choice to work with families in
our development of domain theory.

6.2 Large posets without decidable equality

A well-known result of Freyd in classical mathematics says that every complete small
category is a preorder [Fre64, Exercise D of Chapter 3]. In other words, complete
categories are necessarily large and only complete preorders can be small, at least
impredicatively. Predicatively, by contrast, we show that many weakly complete posets
(including directed complete posets, bounded complete posets and sup-lattices) are
necessarily large. We capture these structures by a technical notion of a 𝛿V-complete
poset in Section 6.2.1. In Section 6.2.2 we define when such structures are nontrivial and
introduce the constructively stronger notion of positivity. Section 6.2.3 and Section 6.2.4
contain the two fundamental technical lemmas and the main theorems, respectively.
Finally, we consider alternative formulations of being nontrivial and positive that ensure
that these notions are properties rather than data and shows how the main theorems
remain valid, assuming univalence.

6.2.1 𝛿V-complete posets
We start by introducing a class of weakly complete posets that we call 𝛿V-complete
posets. The notion of a 𝛿V -complete poset is a technical and auxiliary notion sufficient
to make our main theorems go through. The important point is that many famil-
iar structures (dcpos, bounded complete posets, sup-lattices) are 𝛿V-complete posets
(see Example 6.2.3).

Definition 6.2.1 (𝛿V -complete poset, 𝛿𝑥,𝑦,𝑃 ,
∨
𝛿𝑥,𝑦,𝑃). A poset 𝑋 is 𝛿V -complete for a

universe V if for every pair of elements 𝑥,𝑦 : 𝑋 with 𝑥 ⊑ 𝑦 and every subsingleton 𝑃
in V , the family

𝛿𝑥,𝑦,𝑃 : 1 + 𝑃 → 𝑋

inl(★) ↦→ 𝑥, and
inr(𝑝) ↦→ 𝑦

has a supremum
∨
𝛿𝑥,𝑦,𝑃 in 𝑋 .

131 Chapter 6. Predicativity in order theory

Remark 6.2.2 (Classically, every poset is 𝛿V-complete). Consider a pair of elements
𝑥 ⊑ 𝑦 of a poset. If 𝑃 : V is a decidable proposition, then we can define the supremum
of 𝛿𝑥,𝑦,𝑃 by case analysis on whether 𝑃 holds or not. For if it holds, then the supremum
is 𝑦, and if it does not, then the supremum is 𝑥 . Hence, if excluded middle holds in
V , then the family 𝛿𝑥,𝑦,𝑃 has a supremum for every 𝑃 : V . Thus, if excluded middle
holds in V , then every poset (with carrier in any universe) is 𝛿V -complete.

The above remark naturally leads us to ask whether the converse also holds, i.e.
if every poset is 𝛿V-complete, does excluded middle in V hold? As far as we know,
we can only get weak excluded middle in V , as we will later see in Proposition 6.2.6.
This proposition also shows that in the absence of excluded middle, the notion of
𝛿V-completeness isn’t trivial. For now, we focus on the fact that, also constructively
and predicatively, there are many examples of 𝛿V -complete posets.

Example 6.2.3 (𝛿V -complete posets).
(i) Every V-sup-lattice is 𝛿V-complete. That is, if a poset 𝑋 has suprema for all

families 𝐼 → 𝑋 with 𝐼 in the universe V , then 𝑋 is 𝛿V-complete. Hence, in
particular, ΩV is 𝛿V -complete, as is the V-powerset PV (𝑋) for a type 𝑋 in any
universe.

(ii) Every V-bounded complete poset is 𝛿V-complete. That is, if 𝑋 is a poset with
suprema for all bounded families 𝐼 → 𝑋 with 𝐼 : V , then 𝑋 is 𝛿V-complete.
A family 𝛼 : 𝐼 → 𝑋 is bounded if there exists some 𝑥 : 𝑋 with 𝛼 (𝑖) ⊑ 𝑥 for
every 𝑖 : 𝐼 . For example, the family 𝛿𝑥,𝑦,𝑃 is bounded by 𝑦.

(iii) Every V-dcpo is 𝛿V -complete, since the family 𝛿𝑥,𝑦,𝑃 is directed.

6.2.2 Nontrivial and positive posets
In Remark 6.2.2 we saw that if we can decide a proposition 𝑃 , then we can define∨
𝛿𝑥,𝑦,𝑃 by case analysis. What about the converse? That is, if 𝛿𝑥,𝑦,𝑃 has a supremum

and we know that it equals 𝑥 or 𝑦, can we then decide 𝑃? Of course, if 𝑥 = 𝑦, then∨
𝛿𝑥,𝑦,𝑃 = 𝑥 = 𝑦, so we don’t learn anything about 𝑃 . But what if we add the assumption

that 𝑥 ≠ 𝑦? It turns out that constructively we can only expect to derive decidability of
¬𝑃 in that case. This is due to the fact that 𝑥 ≠ 𝑦 is a negated proposition, which is rather
weak constructively, leading us to later define (see Definition 6.2.8) a constructively
stronger notion for elements of 𝛿V -complete posets.

Definition 6.2.4 (Nontriviality). A poset (𝑋, ⊑) is nontrivial if we have specified
𝑥,𝑦 : 𝑋 with 𝑥 ⊑ 𝑦 and 𝑥 ≠ 𝑦.

Lemma 6.2.5. For a nontrivial poset (𝑋, ⊑, 𝑥,𝑦) and a proposition 𝑃 : V , we have the
following two implications:

(i) if the supremum of 𝛿𝑥,𝑦,𝑃 exists and 𝑥 =
∨
𝛿𝑥,𝑦,𝑃 , then ¬𝑃 is the case;

(ii) if the supremum of 𝛿𝑥,𝑦,𝑃 exists and 𝑦 =
∨
𝛿𝑥,𝑦,𝑃 , then ¬¬𝑃 is the case.

6.2. Large posets without decidable eqality 132

Proof. Let 𝑃 : V be an arbitrary proposition. For (i), suppose that 𝑥 =
∨
𝛿𝑥,𝑦,𝑃 and

assume for a contradiction that we have 𝑝 : 𝑃 . Then 𝑦 ≡ 𝛿𝑥,𝑦,𝑃 (inr(𝑝)) ⊑ ∨
𝛿𝑥,𝑦,𝑃 = 𝑥,

which is impossible by antisymmetry and our assumptions that 𝑥 ⊑ 𝑦 and 𝑥 ≠ 𝑦.
For (ii), suppose that 𝑦 =

∨
𝛿𝑥,𝑦,𝑃 and assume for a contradiction that ¬𝑃 holds. Then

𝑥 =
∨
𝛿𝑥,𝑦,𝑃 = 𝑦, contradicting our assumption that 𝑥 ≠ 𝑦.

Proposition 6.2.6. If the poset 2 with exactly two elements 0 ⊑ 1 is 𝛿V -complete, then
weak excluded middle in V holds.

Proof. Suppose that 2 were 𝛿V-complete and let 𝑃 : V be an arbitrary subsingleton.
We must show that ¬𝑃 is decidable. Since 2 has exactly two elements, the supremum∨
𝛿0,1,𝑃 must be 0 or 1. But then we apply Lemma 6.2.5 to get decidability of ¬𝑃 .

Combining Remark 6.2.2 and Proposition 6.2.6 yields that excluded middle implies
that every poset is 𝛿V-complete, which in turns implies weak excluded middle. We
do not know whether these implications can be reversed. That the conclusion of the
implication in Lemma 6.2.5(ii) cannot be strengthened to say that 𝑃 must hold is shown
by the following observation.

Proposition 6.2.7. If for every two propositions𝑄 and 𝑅 in ΩV with𝑄 ⊑ 𝑅 and𝑄 ≠ 𝑅

we have that the equality 𝑅 =
∨
𝛿𝑄,𝑅,𝑃 in ΩV implies 𝑃 for every proposition 𝑃 : V , then

excluded middle in V follows.

Proof. Assume the hypothesis in the proposition. We are going to show that¬¬𝑃 → 𝑃

for every proposition 𝑃 : V , from which excluded middle in V follows. So let 𝑃
be a proposition in V such that its double negation holds. This yields 0 ≠ 𝑃 , so
by assumption the equality 𝑃 =

∨
𝛿0,𝑃,𝑃 implies 𝑃 . But this equality holds, by

construction of suprema in ΩV .

Thus, having a pair of elements 𝑥 ⊑ 𝑦 with 𝑥 ≠ 𝑦 is rather weak constructively in
that we can only derive ¬¬𝑃 from 𝑦 =

∨
𝛿𝑥,𝑦,𝑃 . As promised in the introduction of this

section, we now introduce and motivate a constructively stronger notion.

Definition 6.2.8 (Strictly below, 𝑥 ⊏ 𝑦). We say that 𝑥 is strictly below 𝑦 in a
𝛿V-complete poset if 𝑥 ⊑ 𝑦 and, moreover, for every 𝑧 ⊒ 𝑦 and every proposition
𝑃 : V , the equality 𝑧 =

∨
𝛿𝑥,𝑧,𝑃 implies 𝑃 .

Note that with excluded middle, 𝑥 ⊏ 𝑦 is equivalent to the conjunction of 𝑥 ⊑ 𝑦
and 𝑥 ≠ 𝑦. But constructively, the former is much stronger, as the following examples
and proposition illustrate.

Example 6.2.9 (Strictly below in ΩV and PV (𝑋)).
(i) We illustrate the notion of strictly below in ΩV . For an arbitrary proposition

𝑃 : V , we have that 0V ≠ 𝑃 holds precisely when ¬¬𝑃 does. However, 0V is
strictly below 𝑃 if and only if 𝑃 holds. More generally, for any two propositions
𝑄, 𝑃 : V , we have (𝑄 ⊑ 𝑃) × (𝑄 ≠ 𝑃) if and only if ¬𝑄 ×¬¬𝑃 holds. But,𝑄 ⊏ 𝑃

holds if and only if ¬𝑄 × 𝑃 holds.

133 Chapter 6. Predicativity in order theory

(ii) In the powerset PV (𝑋) of a type 𝑋 : V the situation is slightly more involved,
but still illustrative. If we have two subsets 𝐴 ⊑ 𝐵 of 𝑋 , then 𝐴 ≠ 𝐵 if and
only if ¬(∀𝑥 :𝑋 (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)). However, if 𝐴 ⊏ 𝐵 and 𝑦 ∈ 𝐴 is decidable for
every 𝑦 : 𝑋 , then we get the stronger ∃𝑥 :𝑋 (𝑥 ∈ 𝐵 × 𝑥 ∉ 𝐴). For we can take
𝑃 : V to be ∃𝑥 :𝑋 (𝑥 ∈ 𝐵 × 𝑥 ∉ 𝐴) and observe that∨𝛿𝐴,𝐵,𝑃 = 𝐵, because if 𝑥 ∈ 𝐵,
either 𝑥 ∈ 𝐴 in which case 𝑥 ∈ ∨𝛿𝐴,𝐵,𝑃 , or 𝑥 ∉ 𝐴 in which case 𝑃 must hold
and 𝑥 ∈ 𝐵 =

∨
𝛿𝐴,𝐵,𝑃 . Conversely, if we have 𝐴 ⊑ 𝐵 and an element 𝑥 ∈ 𝐵 with

𝑥 ∉ 𝐴, then 𝐴 ⊏ 𝐵. For if 𝐶 ⊒ 𝐵 is a subset and 𝑃 : V a proposition such that∨
𝛿𝐴,𝐶,𝑃 = 𝐶 , then 𝑥 ∈ 𝐶 =

∨
𝛿𝐴,𝐶,𝑃 = 𝐴 ∪ {𝑦 ∈ 𝐶 | 𝑃}, so either 𝑥 ∈ 𝐴 or 𝑃

must hold. But 𝑥 ∉ 𝐴 by assumption, so 𝑃 must be true, proving 𝐴 ⊏ 𝐵.

Proposition 6.2.10. For elements 𝑥 and 𝑦 of a 𝛿V -complete poset, we have that 𝑥 ⊏ 𝑦

implies both 𝑥 ⊑ 𝑦 and 𝑥 ≠ 𝑦. However, if the conjunction of 𝑥 ⊑ 𝑦 and 𝑥 ≠ 𝑦 implies
𝑥 ⊏ 𝑦 for every 𝑥,𝑦 : ΩV , then excluded middle in V holds.

Proof. Note that 𝑥 ⊏ 𝑦 implies 𝑥 ⊑ 𝑦 by definition. Now suppose that 𝑥 ⊏ 𝑦. Then
the equality 𝑦 =

∨
𝛿𝑥,𝑦,0V implies that 0V holds. But if 𝑥 = 𝑦, then this equality holds,

so 𝑥 ≠ 𝑦, as desired.
For 𝑃 : ΩV we observed that 0V ≠ 𝑃 is equivalent to ¬¬𝑃 and that 0V ⊏ 𝑃 is
equivalent to 𝑃 , so if we had ((𝑥 ⊑ 𝑦) × (𝑥 ≠ 𝑦)) → 𝑥 ⊏ 𝑦 in general, then we would
have ¬¬𝑃 → 𝑃 for every proposition 𝑃 in V , which is equivalent to excluded middle
in V .

Lemma 6.2.11. The following transitivity properties hold for all elements 𝑥 , 𝑦 and 𝑧 of
a 𝛿V -complete poset:

(i) if 𝑥 ⊑ 𝑦 ⊏ 𝑧, then 𝑥 ⊏ 𝑧;
(ii) if 𝑥 ⊏ 𝑦 ⊑ 𝑧, then 𝑥 ⊏ 𝑧.

Proof. (i) Assume 𝑥 ⊑ 𝑦 ⊏ 𝑧, let 𝑃 be an arbitrary proposition in V and suppose
that 𝑧 ⊑ 𝑤 . We must show that 𝑤 =

∨
𝛿𝑥,𝑤,𝑃 implies 𝑃 . But 𝑦 ⊏ 𝑧, so we know

that the equality 𝑤 =
∨
𝛿𝑦,𝑤,𝑃 implies 𝑃 . Now observe that

∨
𝛿𝑥,𝑤,𝑃 ⊑

∨
𝛿𝑦,𝑤,𝑃 , so

if 𝑤 =
∨
𝛿𝑥,𝑤,𝑃 , then 𝑤 =

∨
𝛿𝑦,𝑤,𝑃 , finishing the proof. (ii) Assume 𝑥 ⊏ 𝑦 ⊑ 𝑧, let

𝑃 be an arbitrary proposition in V and suppose that 𝑧 ⊑ 𝑤 . We must show that
𝑤 =

∨
𝛿𝑥,𝑤,𝑃 implies 𝑃 . But 𝑥 ⊏ 𝑦 and 𝑦 ⊑ 𝑤 , so this follows immediately.

Proposition 6.2.12. The following are equivalent for an element𝑦 of a V-sup-lattice𝑋 :
(i) the least element of 𝑋 is strictly below 𝑦;
(ii) for every family 𝛼 : 𝐼 → 𝑋 with 𝐼 : V , if 𝑦 ⊑ ∨

𝛼 , then 𝐼 is inhabited;
(iii) there exists some 𝑥 : 𝑋 with 𝑥 ⊏ 𝑦.

Proof. Write ⊥ for the least element of 𝑋 . By Lemma 6.2.11 we have:

⊥ ⊏ 𝑦 ⇐⇒ ∃𝑥 :𝑋 (⊥ ⊑ 𝑥 ⊏ 𝑦) ⇐⇒ ∃𝑥 :𝑋 (𝑥 ⊏ 𝑦),

which proves the equivalence of (i) and (iii). It remains to prove that (i) and (ii)
are equivalent. Suppose that ⊥ ⊏ 𝑦 and let 𝛼 : 𝐼 → 𝑋 with 𝑦 ⊑ ∨

𝛼 . Using

6.2. Large posets without decidable eqality 134

⊥ ⊏ 𝑦 ⊑ ∨
𝛼 and Lemma 6.2.11, we have ⊥ ⊏

∨
𝛼 . Hence, we only need to

prove
∨
𝛼 ⊑ ∨

𝛿⊥,∨𝛼,∃𝑖:𝐼 , but 𝛼 𝑗 ⊑
∨
𝛿⊥,∨𝛼,∃𝑖:𝐼 for every 𝑗 : 𝐼 , so this is true indeed.

For the converse, assume that 𝑦 satisfies (ii), suppose 𝑧 ⊒ 𝑦 and let 𝑃 : V be a
proposition such that 𝑧 =

∨
𝛿⊥,𝑧,𝑃 . We must show that 𝑃 holds. But notice that

𝑦 ⊑ 𝑧 = ∨
𝛿⊥,𝑧,𝑃 =

∨((𝑝 : 𝑃) ↦→ 𝑧), so 𝑃 must be inhabited as 𝑦 satisfies (ii).

Item (ii) in Proposition 6.2.12 says exactly that 𝑦 is a positive element in the sense
of [Joh84, p. 98]. Observe that (ii) makes sense for any poset, not just V-sup-lattices:
we don’t need to assume the existence of suprema to formulate condition (ii), because
we can rephrase 𝑦 ⊑ ∨

𝛼 as “for every 𝑥 : 𝑋 , if 𝑥 is an upper bound of 𝛼 and 𝑥 is
below any other upper bound of 𝛼 , then 𝑦 ⊑ 𝑥”. Similarly, the notion of being strictly
below makes sense for any poset. What Proposition 6.2.12 shows is that strictly below
generalises Johnstone’s positivity from a unary relation to a binary one. Another binary
generalisation of positivity in a different direction is that of a positivity relation in formal
topology [Sam03; CS18; CV16]. For a formal topology 𝑆 , one considers a binary relation
⋉ between 𝑆 and its powerclass. Then 𝑎 ⋉ 𝑆 implies that 𝑎 is positive [CS18, p. 764],
while sets of the form {𝑎 ∈ 𝑆 | 𝑎 ⋉𝑈 } are thought of as formal closed subsets [CV16].

Looking to strengthen the notion of a nontrivial poset, we make the following
definitions.
Definition 6.2.13 (Positivity; cf. [Joh84, p. 98]).

(i) An element of a 𝛿V -complete poset is positive if it satisfies Proposition 6.2.12(iii).
(ii) A 𝛿V-complete poset 𝑋 is positive if we have specified 𝑥,𝑦 : 𝑋 with 𝑥 strictly

below 𝑦.

Example 6.2.14 (Nontriviality and positivity in ΩV and PV (𝑋)).
(i) Consider an element 𝑃 of the 𝛿V -complete poset ΩV . The pair (0V , 𝑃) witnesses

nontriviality of ΩV if and only if ¬¬𝑃 holds, while it witnesses positivity if and
only if 𝑃 holds.

(ii) Say that a subset 𝐴 : PV (𝑋) is nonempty if the type Σ𝑥 :𝑋 (𝑥 ∈ 𝐴) is nonempty,
and inhabited if this type is inhabited. The pair (∅, 𝐴) witnesses nontriviality
of PV (𝑋) if and only if 𝐴 is nonempty, while it witnesses positivity if and only
if 𝐴 is inhabited.

We describe how the notion of strictly below relates to compactness and the way-
below relation from domain theory.

Proposition 6.2.15. If 𝑥 ⊑ 𝑦 are unequal elements of a V-dcpo 𝐷 and 𝑦 is compact,
then 𝑥 ⊏ 𝑦 without needing to assume excluded middle. In particular, a compact element
𝑥 of a V-dcpo with a least element ⊥ is positive if and only if 𝑥 ≠ ⊥.

Proof. Suppose that 𝑥 ⊑ 𝑦 are unequal and that 𝑦 is compact. We are to show that
𝑥 ⊏ 𝑦. So assume we have 𝑧 ⊒ 𝑦 and a proposition 𝑃 : V such that 𝑦 ⊑ 𝑧 = ∨

𝛿𝑥,𝑧,𝑃 .
By compactness of 𝑦, there exists 𝑖 : 1 + 𝑃 such that 𝑦 ⊑ 𝛿𝑥,𝑧,𝑃 (𝑖) already. But 𝑖 can’t
be equal to inl(★), since 𝑥 ≠ 𝑦 is assumed. Hence, 𝑖 = inr(𝑝) and 𝑃 must hold.

Note that 𝑥 ⊏ 𝑦 does not imply 𝑥 ≪ 𝑦 in general, because with excluded middle,

135 Chapter 6. Predicativity in order theory

𝑥 ⊏ 𝑦 is simply the conjunction of 𝑥 ⊑ 𝑦 and 𝑥 ≠ 𝑦, which does not imply 𝑥 ≪ 𝑦 in
general. Also, the conjunction of 𝑥 ≪ 𝑦 and 𝑥 ≠ 𝑦 does not imply 𝑥 ⊏ 𝑦, as far as we
know.

We end this section by summarising why we consider strictly below to be a suitable
notion in our constructive framework. First of all, 𝑥 ⊏ 𝑦 coincides with (𝑥 ⊑ 𝑦)×(𝑥 ≠ 𝑦)
in the presence of excluded middle, so it is compatible with classical logic. Secondly,
we’ve seen in Example 6.2.9 that strictly below works well in the poset of truth values
and in powersets, yielding familiar constructive strengthenings. Thirdly, being strictly
below generalises Johnstone’s notion of positivity from a unary to a binary relation.
And finally, as we will see shortly, the derived notion of positive poset is exactly what we
need to derive Ω-ResizingV rather than the weaker Ω¬¬-ResizingV in Theorem 6.2.21.

6.2.3 Retract lemmas
We show that the type of propositions in V is a retract of any positive 𝛿V-complete
poset and that the type of ¬¬-stable propositions in V is a retract of any nontrivial
𝛿V -complete poset.

Definition 6.2.16 (Δ𝑥,𝑦). For a nontrivial 𝛿V-complete poset (𝑋, ⊑, 𝑥,𝑦), we define
Δ𝑥,𝑦 : ΩV → 𝑋 by the assignment 𝑃 ↦→ ∨

𝛿𝑥,𝑦,𝑃 .

We will often omit the subscripts in Δ𝑥,𝑦 when it is clear from the context. We
extend the definition of local smallness (Definition 3.2.12) from V-dcpos to 𝛿V -complete
posets.

Definition 6.2.17 (Local smallness, ⊑V). A 𝛿V -complete poset is locally small if its
order has V-small values, in which case we often denote the order with values in V
by ⊑V .

Lemma 6.2.18. A locally small 𝛿V -complete poset𝑋 is nontrivial, witnessed by elements

𝑥 ⊏ 𝑦, if and only if the composite Ω¬¬V ↩→ ΩV
Δ𝑥,𝑦−−−→ 𝑋 is a section.

Proof. Suppose first that (𝑋, ⊑, 𝑥,𝑦) is nontrivial and locally small. We define

𝑟 : 𝑋 → Ω¬¬V
𝑧 ↦→ 𝑧 ̸⊑V 𝑥 .

Note that negated propositions are ¬¬-stable, so 𝑟 is well-defined. Let 𝑃 : V be an arbi-
trary ¬¬-stable proposition. We want to show that 𝑟 (Δ𝑥,𝑦 (𝑃)) = 𝑃 . By propositional
extensionality, establishing logical equivalence suffices. Suppose first that 𝑃 holds.
Then Δ𝑥,𝑦 (𝑃) ≡

∨
𝛿𝑥,𝑦,𝑃 = 𝑦, so 𝑟 (Δ𝑥,𝑦 (𝑃)) = 𝑟 (𝑦) ≡ (𝑦 ̸⊑V 𝑥) holds by antisymmetry

and our assumptions that 𝑥 ⊑ 𝑦 and 𝑥 ≠ 𝑦. Conversely, assume that 𝑟 (Δ𝑥,𝑦 (𝑃)) holds,
i.e. that we have

∨
𝛿𝑥,𝑦,𝑃 ̸⊑V 𝑥 . Since 𝑃 is ¬¬-stable, it suffices to derive a contra-

diction from ¬𝑃 . So assume ¬𝑃 . Then 𝑥 =
∨
𝛿𝑥,𝑦,𝑃 , so 𝑟 (Δ𝑥,𝑦 (𝑃)) = 𝑟 (𝑥) ≡ 𝑥 ̸⊑V 𝑥 ,

which is false by reflexivity.
For the converse, assume that Ω¬¬V ↩→ ΩV

Δ𝑥,𝑦−−−→ 𝑋 has a retraction 𝑟 : Ω¬¬V → 𝑋 .

6.2. Large posets without decidable eqality 136

Then 0V = 𝑟 (Δ𝑥,𝑦 (0V)) = 𝑟 (𝑥) and 1V = 𝑟 (Δ𝑥,𝑦 (1V)) = 𝑟 (𝑦), where we used that 0V
and 1V are ¬¬-stable. Since 0V ≠ 1V , we get 𝑥 ≠ 𝑦, so (𝑋, ⊑, 𝑥,𝑦) is nontrivial, as
desired.

The appearance of the double negation in the above lemma is due to the definition
of nontriviality. If we instead assume a positive poset 𝑋 , then we can exhibit all of ΩV
as a retract of 𝑋 .
Lemma 6.2.19. A locally small 𝛿V -complete poset 𝑋 is positive, witnessed by elements
𝑥 ⊑ 𝑦, if and only if for every 𝑧 ⊒ 𝑦, the map Δ𝑥,𝑧 : ΩV → 𝑋 is a section.

Proof. Suppose first that (𝑋, ⊑, 𝑥,𝑦) is positive and locally small and let 𝑧 ⊒ 𝑦 be
arbitrary. We define

𝑟𝑧 : 𝑋 ↦→ ΩV

𝑤 ↦→ 𝑧 ⊑V 𝑤.

Let 𝑃 : V be arbitrary proposition. We want to show that 𝑟𝑧 (Δ𝑥,𝑧 (𝑃)) = 𝑃 . Because of
propositional extensionality, it suffices to establish a logical equivalence between 𝑃
and 𝑟𝑧 (Δ𝑥,𝑧 (𝑃)). If 𝑃 holds, then Δ𝑥,𝑧 (𝑃) = 𝑧, so 𝑟𝑧 (Δ𝑥,𝑧 (𝑃)) = 𝑟𝑧 (𝑧) ≡ (𝑧 ⊑V 𝑧) holds
as well by reflexivity. Conversely, assume that 𝑟𝑧 (Δ𝑥,𝑧 (𝑃)) holds, i.e. that we have
𝑧 ⊑V

∨
𝛿𝑥,𝑧,𝑃 . Since

∨
𝛿𝑥,𝑧,𝑃 ⊑ 𝑧 always holds, we get 𝑧 =

∨
𝛿𝑥,𝑧,𝑃 by antisymmetry.

But by assumption and Lemma 6.2.11, the element 𝑥 is strictly below 𝑧, so 𝑃 must
hold.
For the converse, assume that for every 𝑧 ⊒ 𝑦, the map Δ𝑥,𝑧 : ΩV → 𝑋 has a retraction
𝑟𝑧 : 𝑋 → ΩV . We must show that the equality 𝑧 = Δ𝑥,𝑧 (𝑃) implies 𝑃 for every 𝑧 ⊒ 𝑦
and proposition 𝑃 : V . Assuming 𝑧 = Δ𝑥,𝑧 (𝑃), we have 1V = 𝑟𝑧 (Δ𝑥,𝑧 (1V)) = 𝑟𝑧 (𝑧) =
𝑟𝑧 (Δ𝑥,𝑧 (𝑃)) = 𝑃 , so 𝑃 must hold indeed. Hence, (𝑋, ⊑, 𝑥,𝑦) is positive, as desired.

6.2.4 Small completeness with resizing
We present our main theorems here, which show that, constructively and predicatively,
nontrivial 𝛿V-complete posets are necessarily large and necessarily lack decidable
equality.

Definition 6.2.20 (Smallness). A 𝛿V -complete poset is small if it is locally small and
its carrier is V-small.

Theorem 6.2.21.
(i) There is a nontrivial small 𝛿V -complete poset if and only if Ω¬¬-ResizingV holds.
(ii) There is a positive small 𝛿V -complete poset if and only if Ω-ResizingV holds.

Proof. (i) Suppose that (𝑋, ⊑, 𝑥,𝑦) is a nontrivial small 𝛿V-complete poset. Using
Lemma 6.2.18, we can exhibit Ω¬¬V as a retract of 𝑋 . But 𝑋 is V-small by assumption,
so by Theorem 2.9.8 the type Ω¬¬V is V-small as well. For the converse, note that(
Ω¬¬V ,→, 0V , 1V

)
is a nontrivial locally small V-sup-lattice with

∨
𝛼 given by¬¬∃𝑖:𝐼𝛼𝑖 .

137 Chapter 6. Predicativity in order theory

And if we assume Ω¬¬-ResizingV , then it is small. (ii) Suppose that (𝑋, ⊑, 𝑥,𝑦) is a
positive small poset. By Lemma 6.2.19, we can exhibit ΩV as a retract of 𝑋 . But 𝑋 is
V-small by assumption, so by Theorem 2.9.8 the type ΩV is V-small as well. For the
converse, note that (ΩV ,→, 0V , 1V) is a positive locally small V-sup-lattice. And if
we assume Ω-ResizingV , then it is small.

Lemma 6.2.22 ([Esc+, TypeTopology.DiscreteAndSeparated]).
(i) Types with decidable equality are closed under retracts.
(ii) Types with ¬¬-stable equality are closed under retracts.

Proof. (i) Let 𝑠 : 𝑋 → 𝑌 be a section with retraction 𝑟 , assume that 𝑌 has decidable
equality and let 𝑥,𝑦 : 𝑋 be arbitrary. Then 𝑠 (𝑥) = 𝑠 (𝑦) is decidable by assumption. If
𝑠 (𝑥) = 𝑠 (𝑦), then 𝑥 = 𝑟 (𝑠 (𝑥)) = 𝑟 (𝑠 (𝑦)) = 𝑦; and if 𝑠 (𝑥) ≠ 𝑠 (𝑦), then certainly 𝑥 ≠ 𝑦.
Thus, 𝑥 = 𝑦 is decidable, as desired. (ii) Using the same notation as before, the type
𝑠 (𝑥) = 𝑠 (𝑦) is assumed to be ¬¬-stable. But then

¬¬(𝑥 = 𝑦)
functoriality of ¬¬
−−−−−−−−−−−−−→ ¬¬(𝑠 (𝑥) = 𝑠 (𝑦))

¬¬-stability
−−−−−−−−→ 𝑠 (𝑥) = 𝑠 (𝑦)

apply 𝑟
−−−−−→ 𝑥 = 𝑦,

so 𝑥 = 𝑦 is ¬¬-stable, completing the proof.

Example 6.2.23 (Types with ¬¬-stable equality). The simple types N, N→ N,
N→ N→ N, etc., see [Esc+, TypeTopology.SimpleTypes], and the type of Dedekind
real numbers [Esc+, Various.Dedekind] all have ¬¬-stable equality, as does the type
Ω¬¬U of ¬¬-stable propositions in any universe U .

Theorem 6.2.24. There is a nontrivial locally small 𝛿V -complete poset with decidable
equality if and only if weak excluded middle in V holds.

Proof. Suppose that (𝑋, ⊑, 𝑥,𝑦) is a nontrivial locally small 𝛿V -complete poset with
decidable equality. Then by Lemmas 6.2.18 and 6.2.22, the type Ω¬¬V must have
decidable equality too. But negated propositions are ¬¬-stable, so this yields weak
excluded middle in V . For the converse, note that

(
Ω¬¬V ,→, 0V , 1V

)
is a nontrivial

locally small V-sup-lattice that has decidable equality if and only if weak excluded
middle in V holds.

Theorem 6.2.25. The following are equivalent:
(i) there is a positive locally small 𝛿V -complete poset with ¬¬-stable equality;
(ii) there is a positive locally small 𝛿V -complete poset with decidable equality;
(iii) excluded middle in V holds.

Proof. Note that (ii)⇒ (i), so we are left to show that (iii)⇒ (ii) and that (i)⇒ (iii).
For the first implication, note that (ΩV ,→, 0V , 1V) is a positive locally small V-sup-
lattice that has decidable equality if and only if excluded middle in V holds. To see
that (i) implies (iii), suppose that (𝑋, ⊑, 𝑥,𝑦) is a positive locally small 𝛿V-complete

https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.TypeTopology.DiscreteAndSeparated.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.TypeTopology.SimpleTypes.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.Various.Dedekind.html

6.2. Large posets without decidable eqality 138

poset with ¬¬-stable equality. Then by Lemmas 6.2.19 and 6.2.22, the type ΩV must
have ¬¬-stable equality. But this implies that ¬¬𝑃 → 𝑃 for every proposition 𝑃 in V
which is equivalent to excluded middle in V .

In particular, Theorem 6.2.25(i) shows that, constructively, none of the types from Ex-
ample 6.2.23 can be equipped with the structure of a positive 𝛿V -complete poset. Hence,
we cannot expect the Dedekind reals to form a positive bounded complete poset.

Lattices, bounded complete posets and dcpos are necessarily large and necessarily
lack decidable equality in our predicative constructive setting. More precisely:

Corollary 6.2.26.
(i) There is a nontrivial small V-sup-lattice (or V-bounded complete poset or V-dcpo)

if and only if Ω¬¬-ResizingV holds.
(ii) There is a positive small V-sup-lattice (or V-bounded complete poset or V-dcpo)

if and only if Ω-ResizingV holds.
(iii) There is a nontrivial locally small V-sup-lattice (or V-bounded complete poset or

V-dcpo) with decidable equality if and only if weak excluded middle in V holds.
(iv) There is a positive locally small V-sup-lattice (or V-bounded complete poset or

V-dcpo) with decidable equality if and only if excluded middle in V holds.

The above notions of non-triviality and positivity are data rather than property.
Indeed, a nontrivial poset 𝑋 is (by definition) equipped with two designated points
𝑥,𝑦 : 𝑋 such that 𝑥 ⊑ 𝑦 and 𝑥 ≠ 𝑦. It is natural to wonder if the propositionally
truncated versions of these two notions yield the same conclusions. We show that this
is indeed the case if we assume univalence. The need for the univalence assumption
comes from the fact that smallness is a property precisely if univalence holds, as shown
in Propositions 2.9.3 and 2.9.4.

Definition 6.2.27 (Nontrivial/positive in an unspecified way). A poset𝑋 is nontrivial
in an unspecified way if there exist some elements 𝑥,𝑦 : 𝑋 such that 𝑥 ⊑ 𝑦 and 𝑥 ≠ 𝑦,
i.e. ∃𝑥,𝑦:𝑋 ((𝑥 ⊑ 𝑦) × (𝑥 ≠ 𝑦)). Similarly, we can define when a poset is positive in an
unspecified way by truncating the notion of positivity.

Theorem 6.2.28. Suppose that the universes V and V+ are univalent.
(i) There is a small 𝛿V -complete poset that is nontrivial in an unspecified way if and

only if Ω¬¬-ResizingV holds.
(ii) There is a small 𝛿V -complete poset that is positive in an unspecified way if and

only if Ω-ResizingV holds.

Proof. (i) Suppose that 𝑋 is a 𝛿V -complete poset that is nontrivial in an unspecified
way. By Proposition 2.9.3 and univalence of V and V+, the type “Ω¬¬V is V-small” is a
proposition. By the universal property of the propositional truncation, in proving that
the type Ω¬¬V is V-small we can therefore assume that are given points 𝑥,𝑦 : 𝑋 with
𝑥 ⊑ 𝑦 and 𝑥 ≠ 𝑦. The result then follows from Theorem 6.2.21(i). (ii) By reduction to
Theorem 6.2.21(ii).

139 Chapter 6. Predicativity in order theory

Similarly, we can prove the following theorem by reduction to Theorems 6.2.24
and 6.2.25.
Theorem 6.2.29.

(i) There is a locally small 𝛿V -complete poset with decidable equality that is nontrivial
in an unspecified way if and only if weak excluded middle in V holds.

(ii) There is a locally small 𝛿V -complete poset with decidable equality that is positive
in an unspecified way if and only if excluded middle in V holds.

6.3 Maximal points and fixed points

As is well known, in impredicative mathematics, a poset has suprema of all subsets
if and only if it has infima of all subsets. Perhaps counter-intuitively, this “duality”
theorem can be proved predicatively. However, in the absence of impredicativity, it
is not possible to fulfil its hypotheses when trying to apply it, because there are no
nontrivial examples.

To explain this, we first have to make the statement of the duality theorem precise.
A single universe formulation is “every V-small V-sup-lattice has all infima of families
indexed by types in V”. The usual proof, adapted from subsets to families, shows that
this formulation is predicatively provable, but in our predicative setting Theorem 6.2.21
tells us that there are no nontrivial examples to apply it to.

It is natural to wonder whether the single universe formulation can be generalised
to locally small V-sup-lattices (with large carriers), resulting in a predicatively useful
result. However, one of the anonymous reviewers of our submission [dJE22a] pointed
out that this generalisation is false and suggested the ordinals as a counterexample
in a set-theoretic setting: it is a class with suprema for all subsets but has no greatest
element. This led us to prove (Section 6.3.2) in our type-theoretic context that the locally
small, but large type of ordinals in a universe V is a V-sup-lattice (with no greatest
element).

Similarly, consider a generalised formulation of Tarski’s theorem [Tar55] that allows
for multiple universes, i.e. we define Tarski’s-TheoremV,U ,T as the assertion that every
monotone endofunction on a V-sup-lattice with carrier in a universe U and order
taking values in a universe T has a greatest fixed point. Then Tarski’s-TheoremV,V,V
corresponds to the original formulation and, moreover, is provable predicatively, but
not useful predicatively because Theorem 6.2.21 shows that its hypotheses can only be
fulfilled for trivial posets. On the other hand, Tarski’s-TheoremV,V+,V is provably false
because the identity map on the V-sup-lattice of ordinals in V is a counterexample.
Analogous considerations could be made for a lemma due to Pataraia [Pat97; Esc03]
saying that every dcpo has a greatest monotone inflationary endofunction.

6.3.1 A predicative counterexample
Because the type of ordinals in V is not V-small even impredicatively, the above does
not rule out the possibility that a V-sup-lattice𝑋 has all V-infima provided𝑋 is V-small
impredicatively. To address this, we present an example of a V-sup-lattice that is V-

6.3. Maximal points and fixed points 140

small impredicatively, but predicatively does not necessarily have a maximal element.
In particular, it need not have a greatest element or all V-infima.

Fix a proposition 𝑃U in a universe U . We consider its lifting (in the sense of Sec-
tion 3.4) with respect to a universe V , i.e. we consider LV (𝑃U) ≡ Σ𝑄 :ΩV (𝑄 → 𝑃U), just
like in Example 4.9.4. This is a subtype of ΩV and it is closed under V-suprema (in
particular, it contains the least element).

Example 6.3.1.
(i) If 𝑃U :≡ 0U , then LV (𝑃U) ≃

(
Σ𝑄 :ΩV¬𝑄

)
≃
(
Σ𝑄 :ΩV (𝑄 = 0V)

)
≃ 1.

(ii) If 𝑃U :≡ 1U , then LV (𝑃U) ≡
(
Σ𝑄 :ΩV (𝑄 → 1U)

)
≃ ΩV .

What makes LV (𝑃U) useful is the following observation.

Lemma 6.3.2. Suppose that the poset LV (𝑃U) has a maximal element 𝑄 : ΩV . Then
𝑃U is equivalent to 𝑄 , which is the greatest element of LV (𝑃U). In particular, 𝑃U is
V-small. Conversely, if 𝑃U is equivalent to a proposition 𝑄 : ΩV , then 𝑄 is the greatest
element of LV (𝑃U).

Proof. Suppose that LV (𝑃U) has a maximal element 𝑄 : ΩV . We wish to show that
𝑄 ≃ 𝑃U . By definition of LV (𝑃U), we already have that 𝑄 → 𝑃U . So only the
converse remains. Therefore suppose that 𝑃U holds. Then, 1V is an element of
LV (𝑃U). Obviously𝑄 → 1V , but𝑄 is maximal, so actually𝑄 = 1V , that is,𝑄 holds, as
desired. Thus,𝑄 ≃ 𝑃U . It is then straightforward to see that𝑄 is actually the greatest
element of LV (𝑃U), since LV (𝑃U) ≃ Σ𝑄 ′:ΩV (𝑄′→ 𝑄). For the converse, assume that
𝑃U is equivalent to a proposition𝑄 : ΩV . Then, as before, LV (𝑃U) ≃ Σ𝑄 ′:ΩV (𝑄′→ 𝑄),
which shows that 𝑄 is indeed the greatest element of LV (𝑃U).

Corollary 6.3.3. The V-sup-lattice LV (𝑃U) has all V-infima if and only if 𝑃U is
V-small.

Proof. Suppose first that LV (𝑃U) has all V-infima. Then it must have an infimum for
the empty family 0V → LV (𝑃U). But this infimum must be the greatest element of
LV (𝑃U). So by Lemma 6.3.2 the proposition 𝑃U must be V-small.
Conversely, suppose that 𝑃U is equivalent to a proposition 𝑄 : V . Then the infimum
of a family 𝛼 : 𝐼 → LV (𝑃U) with 𝐼 : V is given by (𝑄 × Π𝑖:𝐼𝛼𝑖) : V .

In [dJE21a] we used Lemma 6.3.2 to conclude that a version of Zorn’s Lemma that
says that every pointed dcpo has a maximal element is predicatively unavailable, as
LV (𝑃U) is a pointed V-dcpo, but has a maximal element if and only if 𝑃U is V-small.
But, as in our above discussion of the duality theorem and Tarski’s Theorem, we must
pay attention to the universes here. Zorn’s Lemma restricted to V-small V-sup-lattices
is, assuming excluded middle [Bel97], equivalent to the axiom of choice, as usual.
Disregarding its constructive status for a moment, the predicative issue is that there
are no nontrivial V-small V-sup-lattices (Theorem 6.2.21). But the generalisation of
Zorn’s Lemma to locally small V-sup-lattices is false (even if we assume the axiom of
choice and hence, excluded middle), because the V-sup-lattice of ordinals in V , having
no maximal element, is a counterexample.

141 Chapter 6. Predicativity in order theory

6.3.2 Small suprema of small ordinals
We now show that the ordinal OrdV of ordinals in a fixed univalent universe V has
suprema for all families indexed by types in V and that it has no maximal element.
The latter is implied by [Uni13, Lemma 10.3.21], but we were not able to find a proof of
the former in the literature: Theorem 9 of [KNX21] only proves OrdV to have joins of
increasing sequences, while [Uni13, Lemma 10.3.22] shows that every family indexed
by a type in V has some upper bound, but does not prove it to be the least (although
least upper bounds are required for [Uni13, Exercise 10.17(ii)]). We present two proofs:
one based on [Uni13, Lemma 10.3.22] using small set quotients and an alternative one
using small images.

Following [Uni13, Section 10.3], we define an ordinal to be a type equipped with a
proposition-valued, transitive, extensional and (inductive) well-founded relation. In
[Uni13] the underlying type of an ordinal is required to be a set, but this actually follows
from the other axioms, see [Esc+, Ordinals.Type]. The type of ordinals, denoted by
OrdV , in a given univalent universe V can itself be equipped with such a relation [Uni13,
Theorem 10.3.20] and thus is an ordinal again. However, it is not an ordinal in V , but
rather in the next universe V+, and this is necessary, because it is contradictory for
OrdV to be isomorphic to an ordinal in V , see [BCDE20]. Before we can prove that
OrdV has V-suprema, we need to recall a few facts. The well-order on OrdV is given by:
𝛼 ≺ 𝛽 if and only if there exists a (necessarily) unique 𝑦 : 𝛽 such that 𝛼 and 𝛽 ↓𝑦 are
isomorphic ordinals. Here 𝛽 ↓𝑦 denotes the ordinal of elements 𝑏 : 𝛽 satisfying 𝑏 ≺ 𝑦.

Lemma 6.3.4 ([Esc+, Ordinals.OrdinalOfOrdinals]). For every two points 𝑥 and 𝑦
of an ordinal 𝛼 , we have 𝑥 ≺ 𝑦 in 𝛼 if and only if 𝛼 ↓ 𝑥 ≺ 𝛼 ↓𝑦 as ordinals.

Definition 6.3.5 (Simulation; [Uni13, Section 10.3]). A simulation between two
ordinals 𝛼 and 𝛽 is a map 𝑓 : 𝛼 → 𝛽 satisfying the following conditions:

(i) for every 𝑥,𝑦 : 𝛼 , if 𝑥 ≺ 𝑦, then 𝑓 (𝑥) ≺ 𝑓 (𝑦);
(ii) for every 𝑥 : 𝛼 and 𝑦 : 𝛽 , if 𝑦 ≺ 𝑓 (𝑥), then there exists a (necessarily unique)

𝑥′ : 𝛼 such that 𝑥′ ≺ 𝑥 and 𝑓 (𝑥′) = 𝑦.

Lemma 6.3.6 ([Esc+, Ordinals.OrdinalOfOrdinals]). For ordinals 𝛼 and 𝛽 , the
following are equivalent:

(i) there exists a (necessarily unique) simulation from 𝛼 to 𝛽 ;
(ii) for every ordinal 𝛾 , if 𝛾 ≺ 𝛼 , then 𝛾 ≺ 𝛽 .

We write 𝛼 ⪯ 𝛽 if the equivalent conditions above hold.

Recall from Definition 2.11.23 what it means to have small set quotients. If these
are available, then the type of ordinals has all small suprema.

Theorem 6.3.7 (Extending [Uni13, Lemma 10.3.22]). Assuming small set quotients,
the large ordinal OrdV has suprema of families indexed by types in V .

Proof. Given 𝛼 : 𝐼 → OrdV , define 𝛼 as the quotient of Σ𝑖:𝐼 𝛼𝑖 by the V-valued
equivalence relation ≈ where (𝑖, 𝑥) ≈ (𝑗, 𝑦) if and only if 𝛼𝑖 ↓ 𝑥 and 𝛼 𝑗 ↓ 𝑦 are
isomorphic as ordinals. By our assumption, the quotient 𝛼 lives in V . Next, we

https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.Ordinals.Type.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.Ordinals.OrdinalOfOrdinals.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.Ordinals.OrdinalOfOrdinals.html

6.3. Maximal points and fixed points 142

use [Uni13, Lemma 10.3.22] which tells us that (𝛼, ≺) with

[(𝑖, 𝑥)] ≺ [(𝑗, 𝑦)] :≡ (𝛼𝑖 ↓ 𝑥) ≺ (𝛼 𝑗 ↓𝑦).

is an ordinal that is an upper bound of 𝛼 . So we show that 𝛼 is a lower bound of
upper bounds of 𝛼 . To this end, suppose that 𝛽 : OrdV is such that 𝛼𝑖 ⪯ 𝛽 for every
𝑖 : 𝐼 . In light of Lemma 6.3.6, this assumption yields two things:
(1) for every 𝑖 : 𝐼 and 𝑥 : 𝛼𝑖 there exists a unique 𝑏𝑥𝑖 : 𝛽 such that 𝛼𝑖 ↓ 𝑥 = 𝛽 ↓ 𝑏𝑥𝑖 ;
(2) for every 𝑖 : 𝐼 , a simulation 𝑓𝑖 : 𝛼𝑖 → 𝛽 such that for every 𝑥 : 𝛼𝑖 , we have

𝑓𝑖 (𝑥) = 𝑏𝑥𝑖 .
We are to prove that 𝛼 ⪯ 𝛽 . We start by defining

𝑓 : (Σ𝑖:𝐼 𝛼𝑖) → 𝛽

(𝑖, 𝑥) ↦→ 𝑏𝑥𝑖 .

Observe that 𝑓 respects ≈, for if (𝑖, 𝑥) ≈ (𝑗, 𝑦), then by univalence,

(𝛽 ↓ 𝑏𝑥𝑖) = (𝛼𝑖 ↓ 𝑥) = (𝛼 𝑗 ↓𝑦) = (𝛽 ↓ 𝑏
𝑦

𝑗
),

so 𝑏𝑥𝑖 = 𝑏
𝑦

𝑗
by uniqueness of 𝑏𝑥𝑖 . Thus, 𝑓 induces a map 𝑓 : 𝛼 → 𝛽 satisfying the

equality 𝑓 ([(𝑖, 𝑥)]) = 𝑓 (𝑖, 𝑥) for every (𝑖, 𝑥) : Σ 𝑗 :𝐽 𝛼 𝑗 .
It remains to prove that 𝑓 is a simulation. Because the defining properties of a
simulation are propositions, we can use set quotient induction and it suffices to prove
the following two things:

(I) if 𝛼𝑖 ↓ 𝑥 ≺ 𝛼 𝑗 ↓𝑦, then 𝑏𝑥𝑖 ≺ 𝑏
𝑦

𝑗
;

(II) if 𝑏 ≺ 𝑏𝑥𝑖 , then there exists 𝑗 : 𝐼 and 𝑦 : 𝛼 𝑗 such that 𝛼𝑖 ↓𝑦 ≺ 𝛼 𝑗 ↓ 𝑥 and 𝑏𝑦
𝑗
= 𝑏.

For (I), observe that if 𝛼𝑖 ↓𝑥 ≺ 𝛼 𝑗 ↓𝑦, then 𝛽 ↓𝑏𝑥𝑖 ≺ 𝛽 ↓𝑏
𝑦

𝑗
, from which 𝑏𝑥𝑖 ≺ 𝑏

𝑦

𝑗
follows

using Lemma 6.3.4. For (II) suppose that 𝑏 ≺ 𝑏𝑥𝑖 . Because 𝑓𝑖 (see item (2) above) is
a simulation, there exists 𝑦 : 𝛼𝑖 with 𝑦 ≺ 𝑥 and 𝑓𝑖 (𝑦) = 𝑏. By Lemma 6.3.4, we get
𝛼𝑖 ↓𝑦 ≺ 𝛼𝑖 ↓ 𝑥 . Moreover, 𝑏𝑦

𝑖
= 𝑓𝑖 (𝑦) = 𝑏, finishing the proof of (II).

In Section 2.11.4 we saw that set replacement is equivalent to the existence of small
set quotients, so the following result immediately follows from the theorem above. But
the point is that an alternative construction without set quotients is available, if set
replacement is assumed.

Theorem 6.3.8. Assuming set replacement, the large ordinal OrdV has suprema of
families indexed by types in V .

Proof. Given 𝛼 : 𝐼 → OrdV , consider the image of the map 𝑒 : Σ𝑖:𝐼 𝛼𝑖 → OrdV
given by 𝑒 (𝑖, 𝑥) :≡ 𝛼𝑖 ↓ 𝑥 . The image of 𝑒 is conveniently equivalent to the type
Σ𝛾 :OrdV∃𝑖:𝐼 𝛾 ≺ 𝛼𝑖 , i.e. the type of ordinals that are initial segments of some 𝛼𝑖 . One
can prove that im(𝑒) with the induced order from OrdV is again a well-order and
that for every 𝑖 : 𝐼 , the canonical map 𝛼𝑖 → im(𝑒) is a simulation. Moreover, if 𝛽 is
an ordinal such that 𝛼𝑖 ⪯ 𝛽 for every 𝑖 : 𝐼 , then for every 𝑖 : 𝐼 and every 𝑥 : 𝛼𝑖 there

143 Chapter 6. Predicativity in order theory

exists a unique 𝑏𝑥𝑖 : 𝛽 such that 𝛼𝑖 ↓ 𝑥 = 𝛽 ↓ 𝑏𝑥𝑖 . Now observe that for every 𝛾 : OrdV ,
the map

(
Σ𝑖:𝐼Σ𝑥 :𝛼𝑖 (𝛼𝑖 ↓ 𝑥 = 𝛾)

)
→ 𝛽 defined by the assignment (𝑖, 𝑥, 𝑝) ↦→ 𝑏𝑥𝑖 is a

constant function to a set. Hence, by Theorem 2.6.9, this map factors through the
propositional truncation ∃𝑖:𝐼Σ𝑥 :𝛼𝑖 (𝛼 ↓ 𝑥 = 𝛾). This yields a map im(𝑒) → 𝛽 which
can be proved to be a simulation, as desired. Finally, we use set replacement and the
fact that OrdV is locally V-small (by univalence) to get an ordinal in V equivalent to
im(𝑒), finishing the proof.

6.4 Families and subsets

In traditional impredicative foundations, completeness of posets is usually formulated
using subsets. For instance, dcpos are defined as posets 𝐷 such that every directed
subset of 𝐷 has a supremum in 𝐷 . Example 6.2.3 are all formulated using small families
instead of subsets. While subsets are primitive in set theory, families are primitive
in type theory, so this could be an argument for using families above. However, that
still leaves the natural question of how the family-based definitions compare to the
usual subset-based definitions, especially in our predicative setting, unanswered. This
section addresses this question. We first study the relation between subsets and families
predicatively and then clarify our definitions in the presence of impredicativity. In our
answers we will consider sup-lattices, but similar arguments could be made for posets
with other sorts of completeness, such as dcpos.

We first show that simply asking for completeness with respect to all subsets is not
satisfactory from a predicative viewpoint. In fact, we will now see that even asking
for completeness with respect to all elements of PT (𝑋) for some fixed universe T is
problematic from a predicative standpoint, where we recall from Definition 2.7.5 that
we refer to the elements of PT (𝑋) ≡ (𝑋 → ΩT) as T -valued subsets of 𝑋 .

Theorem 6.4.1. Let U and V be universes, fix a proposition 𝑃U : U and recall LV (𝑃U)
defined in Section 6.3.1, which has V-suprema. If LV (𝑃U) has suprema for all T -valued
subsets, then 𝑃U is V-small independently of the choice of the type universe T .

Proof. Let T be a type universe and consider the subset 𝑆 ofLV (𝑃U) given by𝑄 ↦→ 1T .
Note that 𝑆 has a supremum in LV (𝑃U) if and only if LV (𝑃U) has a greatest element,
but by Lemma 6.3.2, the latter is equivalent to 𝑃U being V-small.

The proof above illustrates that if we have a subset 𝑆 : PT (𝑋), then there is no
reason why the total space Σ𝑥 :𝑋 (𝑥 ∈ 𝑆) (recall Definition 4.2.8) should be T -small. In
fact, for 𝑆 (𝑥) :≡ 1T as above, the latter is equivalent to asking that 𝑋 is T -small.

In an attempt to solve the problem described in Theorem 6.4.1, we look to impose
size restrictions on the total space of a subset. There are two natural such restrictions
and they are reminiscent of Bishop and Kuratowski finite subsets.

Definition 6.4.2 (V-small and V-covered subsets). An element 𝑆 : PT (𝑋) is
(i) V-small if its total space is V-small, and
(ii) V-covered if we have 𝐼 : V with a surjection 𝑒 : 𝐼 ↠ T(𝑆).

6.4. Families and subsets 144

Observe that every V-small subset is V-covered, because every equivalence is a
surjection. But the converse does not hold: We can emulate the well-known argument
used to show that, constructively, Kuratowski finiteness does not necessarily imply
Bishop finiteness to show that, predicatively, being V-covered does not necessarily
imply being V-small.

Proposition 6.4.3. For every two universes U and V , if every V-covered element of
PU (ΩU) is V-small, then Propositional-ResizingU ,V holds.

Proof. Suppose that every V-covered U-valued subset of ΩU is V-small and let 𝑃 : U
be an arbitrary proposition. Consider the subset 𝑆𝑃 : ΩU → ΩU given by 𝑆𝑃 (𝑄) :≡
(𝑄 = 𝑃) ∨ (𝑄 = 1U). Notice that this is V-covered as witnessed by

(1V + 1V) ↠ T(𝑆𝑃)
inl(★) ↦→ (𝑃 , |inl(refl) |)
inr(★) ↦→ (1U , |inr(refl) |),

so by assumption T(𝑆𝑃) is V-small. But observe that 𝑃 holds if and only if T(𝑆𝑃) is a
subsingleton, but the latter type is V-small by assumption, hence so is 𝑃 .

In the case where we restrict our attention to a single universe V and a locally
V-small set 𝑋 , the two notions coincide if and only if we have set replacement for maps
into 𝑋 with V-small domain.
Proposition 6.4.4. If 𝑋 is a locally V-small set, then every V-covered element of
PV (𝑋) is V-small if and only if the image of any map into 𝑋 with a V-small domain is
V-small.

Proof. Suppose first that every V-covered subset 𝑆 : 𝑋 → ΩV is V-small and let
𝑓 : 𝐼 → 𝑋 be a map such that 𝐼 is V-small. Without loss of generality, we may assume
that 𝐼 : V , because we can always precompose 𝑓 with the equivalence witnessing that
𝐼 is V-small. Now consider the subset 𝑆 : 𝑋 → ΩV given by 𝑆 (𝑥) :≡ ∃𝑖:𝐼 (𝑓 (𝑖) =V 𝑥),
where =V has values in V and is provided by our assumption that𝑋 is locally V-small.
Then 𝑆 is V-covered, because we have 𝑋 ↠ im(𝑓) ≃ T(𝑆), where the first map is the
corestriction of 𝑓 . So by assumption T(𝑆) is V-small, which means that im(𝑓) must
be V-small too.
Conversely, assume the set replacement principle and let 𝑆 : 𝑋 → ΩV be V-covered
by 𝑒 : 𝐼 ↠ T(𝑆). Define the subset 𝑆′ : 𝑋 → ΩV by 𝑆′(𝑥) :≡ ∃𝑖:𝐼 (𝑥 =V pr1(𝑒𝑖)). By
the assumed set replacement principle for 𝑋 , the subset 𝑆′ is V-small because of the
equivalence T(𝑆′) ≃ im(pr1 ◦ 𝑒). Finally, it follows from the surjectivity of 𝑒 that 𝑆
and 𝑆′ are equal as subsets, and therefore that T(𝑆) ≃ T(𝑆′). Hence, 𝑆 is a V-small
subset, as desired.

So, predicatively, and in the absence of a set replacement principle, the notion of
a V-small subset is strictly stronger than that of a V-covered subset. Hence, in this
setting, having suprema for all V-small subsets is strictly weaker than having suprema
for all V-covered subsets. Meanwhile, Corollary 6.4.6 will imply that there are plenty

145 Chapter 6. Predicativity in order theory

of examples of posets with suprema for all V-covered subsets, even predicatively. So
we prefer the stronger, but predicatively reasonable requirement of asking for suprema
of all V-covered subsets.

Form a practical viewpoint, V-covered subsets also give us an easy handle on
examples like the following: Let 𝑋 be a poset with suprema for all (directed) U0-covered
subsets. Then the least fixed point of a Scott continuous endofunction 𝑓 on 𝑋 can
be computed as the supremum of the subset {⊥, 𝑓 (⊥), 𝑓 2(⊥), . . . }, which is covered
by N. But it is not clear that this subset is U0-small, at least not in the absence of set
replacement.

Our preference for V-covered subsets over V-small subsets also makes it clear why
we do not impose an injectivity condition on families, because for every type 𝑋 : U
there is an equivalence between embeddings 𝐼 ↩→ 𝑋 with 𝐼 : V and (U ⊔ V)-valued
subsets of 𝑋 whose total spaces are V-small, cf. [Esc+, Slice.Slice].

Theorem 6.4.5. For 𝑋 : U and any universe V we have an equivalence between
V-covered (U ⊔ V)-valued subsets of 𝑋 and families 𝐼 → 𝑋 with 𝐼 : V .

Proof. The forward map 𝜑 is given by (𝑆, 𝐼 , 𝑒) ↦→ (𝐼 , pr1 ◦ 𝑒). In the other direction,
we define𝜓 by mapping (𝐼 , 𝛼) to the triple (𝑆, 𝐼 , 𝑒) where 𝑆 is the subset of 𝑋 given
by 𝑆 (𝑥) :≡ ∃𝑖:𝐼 (𝑥 = 𝛼 (𝑖)) and 𝑒 : 𝐼 ↠ T(𝑆) is defined as 𝑒 (𝑖) :≡ (𝛼 (𝑖), | (𝑖, refl) |). The
composite 𝜑 ◦𝜓 is easily seen to be equal to the identity. To show that𝜓 ◦𝜑 equals the
identity, we need the following intermediate result, which is proved using function
extensionality and path induction.
Claim. Let 𝑆, 𝑆′ : 𝑋 → ΩU⊔V , 𝑒 : 𝐼 → T(𝑆) and 𝑒′ : 𝐼 → T(𝑆′). If 𝑆 = 𝑆′ and
pr1 ◦ 𝑒 ∼ pr1 ◦ 𝑒′, then (𝑆, 𝑒) = (𝑆′, 𝑒′).
The result follows from the claim using function and propositional extensionality.

Corollary 6.4.6. A poset with carrier in a universe U has suprema for all V-covered
(U ⊔ V)-valued subsets if and only if it has suprema for all families indexed by types
in V .

Proof. This is because the supremum of a V-covered subset equals the supremum of
the corresponding family and vice versa by inspecting the proof of Theorem 6.4.5.

We conclude by comparing our family-based approach to the subset-based approach
in the presence of impredicativity.

Theorem 6.4.7. Assuming Ω-ResizingT ,U0
for every universe T . Then the following

are equivalent for a poset with carrier in a universe U :
(i) the poset has suprema for all subsets;
(ii) the poset has suprema for all U-covered subsets;
(iii) the poset has suprema for all U-small subsets;
(iv) the poset has suprema for all families indexed by types in U .

Proof. Clearly (i) ⇒ (ii) ⇒ (iii). We show that (iii) implies (i), which proves the
equivalence of (i)–(iii). Assume that a poset 𝑋 has suprema for all U-small subsets

https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.Slice.Slice.html

6.5. Notes 146

and let 𝑆 : 𝑋 → ΩT be any subset of 𝑋 . Using Ω-ResizingT ,U0
, the total space T(𝑆)

is U-small. So 𝑋 has a supremum for 𝑆 by assumption, as desired. Finally, (ii) and (iv)
are equivalent in the presence of Ω-ResizingT ,U0

by Corollary 6.4.6.

If condition (iv) of Theorem 6.4.7 holds, then the poset has suprema for all families
indexed by types in V provided that V ⊔ U ≡ U . Typically, in the examples in our
account of domain theory for instance, U :≡ U1 and V :≡ U0, so that V ⊔ U ≡ U holds.
Thus, our V-families-based approach generalises the traditional subset-based approach.

6.5 Notes

This chapter is based on an extended and revised version [dJE22a, Sections 4–6] of our
paper [dJE21b]. We would like to thank the anonymous reviewers of [dJE22a] for their
valuable and complementary suggestions. We are particularly grateful to the reviewer
who pointed out that one of our results can be strengthened to Theorem 2.9.8 and for
their insights and questions on Sections 6.3 and 6.4 that have considerably improved
the exposition.

Chapter 7

Formalisation

This research started with formalising the Scott model of PCF in Coq [Coq] using the
UniMath [VAG+] library. The UniMath project was started in 2014 by merging repos-
itories from Vladimir Voevodsky, Benedikt Ahrens and Daniel Grayson. The current
UniMath Coordinating Committee members are: Benedikt Ahrens, Daniel Grayson,
Ralph Matthes and Niels van der Weide and the library has accepted contributions1
from over 60 people at the time of writing.

For historical reasons [Voe15], the Type-in-Type flag is enabled in UniMath, so
that it is not possible to have Coq automatically check the universes for us. Since we
were interested in developing domain theory predicatively, having the proof assistant
carefully track universes was an important feature. Hence, we decided to continue our
formalisation efforts in Agda [NDCA+] using Martín Escardó’s (and collaborators’)
TypeTopology [Esc+] development which explicitly keeps track of universes. This is the
reason some parts are formalised both in Coq/UniMath and in Agda/TypeTopology.
But because we did not wish to duplicate all our efforts, some parts are only formalised
in Coq/UniMath.

Formalising our efforts has helped to experiment with and has structured and guided
our development of domain theory as set out in this thesis. Moreover [Har20] has
shown that the Agda formalisation [dJon22a] can be taken as a starting point for a
further formal development of domain theory in univalent foundations. Since then,
the code base has been extended and improved considerably, hopefully making our
formalisation more convenient to work with.

Both the Coq/UniMath and Agda/TypeTopology proofs and their renderings in
HTML (for presentation and reading) are archived by the University of Birmingham at
doi:10.25500/edata.bham.00000912.

1https://github.com/UniMath/UniMath/graphs/contributors

https://doi.org/10.25500/edata.bham.00000912
https://github.com/UniMath/UniMath/graphs/contributors

7.1. Overview 148

7.1 Overview

We give a comprehensive overview per chapter of what is and what isn’t formalised.

Chapter 2 All the background material up to and including Section 2.10 is fairly
well-known and all formalised between [Esc+] and [Esc19b], except for Theorem 2.9.8
because we only recently learned that this stronger result was possible, see Remark 2.9.9.
The weaker result for sections that are embeddings is formalised however and is
sufficient for our applications.

Section 2.11 on set quotients, set replacement and propositional truncations is
formalised in Agda/TypeTopology, see [Esc18; dJE21c; dJon22d; dJon22b].

Section 2.12 on indexed W-types is formalised in Coq/UniMath, see [dJon19a,
MoreFoundations.Wtypes], as it was aimed at the application to PCF.

Chapter 3 All of Chapter 3 is formalised in Agda/TypeTopology, see [dJon22a],
except for

• products of dcpos (although this was included in [Har20]),
• Propositions 3.4.1 and 3.4.6, and
• Theorem 3.4.19 (but the similar Theorems 3.4.17 and 3.4.22 are formalised).

Chapter 4 All of Chapter 4 is formalised in Agda/TypeTopology, see [dJon22a],
with Example 4.9.4, and Lemmas 4.13.11 and 4.13.12 as the only exceptions.

Chapter 5 Section 5.1 is fully formalised in Agda/TypeTopology, see the dedicated
file [dJon22a, Bilimits.Dinfinity]. Regarding Section 5.2, we would like to mention
three formalisations.

The Scott model of PCF, including soundness and computational adequacy, is fully
formalised in Coq/UniMath, see [dJon19a, Partiality.PCF]. This also includes the
general Proposition 5.2.24 in [dJon19a, MoreFoundations.ClosureOfHrel], and the
logical equivalence of Theorem 5.2.25, but the application of Proposition 5.2.24 to obtain
decidability of ⊲𝑘 is not formalised.

To check the predicative validity and the universes involved, which is not possible in
Coq/UniMath because it uses Type-in-Type (as mentioned above), we also formalised
the syntax of PCF and the definition of the Scott model of PCF in Agda/TypeTopology,
see [dJon22a, ScottModelOfPCF.ScottModelOfPCF].

This Agda development was extended by Brendan Hart [Har20] to a proof of
soundness and computational adequacy for PCF with variables and _-abstraction for a
final year MSci project supervised by Martín Escardó and myself.

Chapter 6 Only the results of Section 6.3.2 on suprema of ordinals have been for-
malised in Agda/TypeTopology, see [dJE22b].

https://tdejong.com/Scott-PCF-UniMath/UniMath.MoreFoundations.Wtypes.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.Bilimits.Dinfinity.html
https://tdejong.com/Scott-PCF-UniMath/UniMath.Partiality.PCF.html
https://tdejong.com/Scott-PCF-UniMath/UniMath.MoreFoundations.ClosureOfHrel.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.ScottModelOfPCF.ScottModelOfPCF.html

149 Chapter 7. Formalisation

7.2 Future work

It would be desirable to expand [dJon22a] with a formalisation of products and Lem-
mas 4.13.11 and 4.13.12. Products are not included because they were not needed to
develop the applications in Chapter 5, while the lemmas are missing due to a lack of
time. Including products could potentially be achieved by merging [Har20]. The other
results are less pressing to have formalised, because they do not obstruct a further
computer-verified development of domain theory, for example because they are results
showing that some statement implies a constructive or predicative taboo.

7.3 Statistics

To give the reader an impression of the (relative) sizes of our formalisations of domain
theory, Table 7.3.1 and Table 7.3.2 show the number of lines in respectively [dJon19a]
and [dJon22a]. Notice that the files listed in these tables depend on auxiliary files that
develop univalent foundations (just as Chapters 3 to 5 depend on Chapter 2), but that
these auxiliary files are not included in the statistics.

File Number of lines
DCPO.v 637
LiftMonad.v 151
PartialElements.v 369
PCF.v 769

1953

Table 7.3.1: Number of lines (including comments and blank lines)
per file in our Coq/UniMath formalisation [dJon19a]. It should be
noted that the file PCF.v in Table 7.3.1 includes the soundness and
computational adequacy of the Scott model of PCF.

File Number of lines
Basics
Dcpo.lagda 303
Exponential.lagda 346
LeastFixedPoint.lagda 309
Miscelanea.lagda 668
Pointed.lagda 341
SupComplete.lagda 294
WayBelow.lagda 289

2550

7.3. Statistics 150

BasesAndContinuity
Bases.lagda 721
Continuity.lagda 502
ContinuityDiscussion.lagda 375
IndCompletion.lagda 379
StepFunctions.lagda 509

3716
Bilimits
Dinfinity.lagda 962
Directed.lagda 1229
Sequential.lagda 495

2686
Examples
IdlDyadics.lagda 80
Omega.lagda 219
Powerset.lagda 216

515
IdealCompletion
IdealCompletion.lagda 198
Properties.lagda 528
Retracts.lagda 472

1198
Lifting
LiftingDcpo.lagda 466
LiftingSet.lagda 395
LiftingSetAlgebraic.lagda 208

1069
ScottModelOfPCF
ScottModelOfPCF.lagda 71
PCF.lagda 118
PCFCombinators.lagda 474

663
All components combined 11167

Table 7.3.2: Number of lines (including comments and blank lines) per
component of our Agda/TypeTopology formalisation [dJon22a]

Chapter 8

Conclusion

We provide a summary of our contributions and our approach to developing domain
theory in constructive and predicative univalent foundations. Furthermore, we briefly
describe various directions for future research.

8.1 Summary

We have demonstrated how constructive and predicative univalent foundations provides
an adequate and sophisticated setting to develop domain theory. Since higher inductive
types can be seen as specific instances of resizing principles, it is noteworthy that the
only higher inductive type needed for our purposes is the propositional truncation.

Instead of working with information systems, abstract bases or formal topologies,
and approximable relations, we studied directed complete posets and Scott continuous
directly, using type universes and type equivalences to deal with size issues in the
absence of propositional resizing axioms. Seeing a poset as a category in the usual way,
we can say that dcpos are large, but locally small, and have small filtered colimits. By
carefully keeping track of universe parameters, we showed that complex constructions
of dcpos, such as Scott’s 𝐷∞ model of the untyped _-calculus, which involves countable
infinite iterations of exponentials, are predicatively possible. We further illustrated our
domain-theoretic development by giving a predicative and constructive account of the
soundness and computational adequacy of the Scott model of PCF. In particular, this
illustrated the use of the Escardó–Knapp lifting monad.

Taking inspiration from work in category theory by Johnstone and Joyal, we gave
predicatively adequate definitions of continuous and algebraic dcpos, and discussed
issues related to the absence of the axiom of choice. We also presented predicative
adaptations of the notions of a basis and the rounded ideal completion. The theory was
accompanied by several examples: we described small compact bases for the lifting and
the powerset, and considered the rounded ideal completion of the dyadics.

The fact that nontrivial dcpos have large carriers is in fact unavoidable and charac-

8.2. Future work 152

teristic of our predicative setting, as we explained in a complementary chapter on the
constructive and predicative limitations of univalent foundations. We proved no-go
theorems regarding both constructivity and predicativity for a general class of posets
that includes dcpos, bounded complete posets, sup-lattices and frames. In particular,
we showed that locally small nontrivial dcpos necessarily lack decidable equality in
our constructive setting. The fact that nontrivial dcpos are necessarily large has the
important consequence that Tarski’s theorem (and similar results) cannot be applied in
nontrivial instances, even though it has a predicative proof. Further, we explained, by
studying the large V-sup-lattice of ordinals in a univalent universe V , that generalisa-
tions of Tarski’s theorem that allow for large structures are provably false. Finally, we
elaborated on the connections between requiring suprema of families and of subsets in
our predicative setting.

Moreover, we contributed to the overall theory of (predicative) univalent foundations
by studying a set replacement principle and the connections and universe levels of
set quotients and propositional truncations. We also presented a general criterion for
decidable equality of indexed W-types that we applied to the syntax of PCF when
proving that totality of PCF terms of base type is semidecidable.

8.2 Future work

To prove that 𝐷∞ had a small compact basis, we used that each 𝐷𝑛 is a U0-sup-lattice,
so that we could apply the results of Section 4.13. Example 4.9.2 tells us that LU0 (N)
has a small compact basis too, but to prove that the U0-dpcos in the Scott model of PCF
have small compact bases using the techniques of Section 4.13, we would need LU0 (N)
to be a U0-sup-lattice, but it isn’t. However, it is complete for bounded families indexed
by types in U0 and we believe that is possible to generalise the results of Section 4.13
from sup-lattices to bounded complete posets. Classically, this is fairly straightforward,
but from preliminary considerations it appears that constructively one needs to impose
certain decidability criteria on the bases of the dcpos. For instance that the partial
order is decidable when restricted to basis elements. We also studied such decidability
conditions in our paper [dJon21] discussed below. These conditions should be satisfied
by the bases of the dcpos in the Scott model of PCF, but we leave a full treatment of
bounded complete dcpos with bases satisfying such conditions for future investigations.

It would be worthwhile to further develop domain-theoretic applications. Specif-
ically, it would be interesting to give a fully rigorous formalisation of the surprising
domain-theoretic algorithms that exhaustively search infinite sets in finite time due
to Berger [Ber90] and Escardó [Esc08]. The fact that our development is constructive
might then pay off as we could use our constructive proofs of domain theoretic facts to
directly compute the output of such algorithms.

To complement the applications of domain theory in the semantics of programming
language, it would be desirable to explore applications in (pointfree) topology. For
example, can we predicatively replicate the connection [Hyl81] between exponentiable
locales and continuous lattices?

Although some results (see Remark 3.3.3) can be stated in terms of opens of the Scott
topology, we have not given a constructive account of the Scott topology. We did study

153 Chapter 8. Conclusion

this topic and a related apartness relation [BV11] in our paper [dJon21]. To simplify the
development and in the interest of appealing to a broader audience of constructivists,
the work [dJon21] is situated in informal constructive, but impredicative, set theory
rather than univalent foundations. For this reason (and for time and space limitations)
this paper is not part of this thesis, even though it shares the domain-theoretic theme.

Furthermore, we hope that our formalisation efforts (as discussed in Chapter 7)
provide adequate support for thosewishing to further develop computer-verified domain
theory in univalent foundations. This hope is reinforced by the fact that a gifted MSci
student, Brendan Hart, supervised by Martín Escardó and myself, was able to do so for
a final year project [Har20] using an earlier and rudimentary version of our Agda code.

Finally, the most fundamental and pressing question regarding predicativity in
univalent foundations is whether propositional resizing can be given a computational
interpretation.

Bibliography

[AAG04] Michael Abbott, Thorsten Altenkirch and Neil Ghani.
‘Representing Nested Inductive Types Using W-Types’.
In: Automata, Languages and Programming: 31st International Colloquium,
ICALP 2004, Turku, Finland, July 2004, Proceedings.
Ed. by Josep Díaz, Juhani Karhumäki, Arto Lepistö and Donald Sannella.
Vol. 3142. Lecture Notes in Computer Science. Springer, 2004, pp. 59–71.
doi: 10.1007/978-3-540-27836-8_8 (cit. on p. 43).

[ACF+a] Carlo Angiuli, Evan Cavallo, Kuen-Bang Hou (Favonia), Robert Harper,
Anders Mörtberg and Jon Sterling. redtt. https://redprl.org/#redtt.
url: https://github.com/redprl/redtt (cit. on p. 1).

[ACF+b] Carlo Angiuli, Evan Cavallo, Kuen-Bang Hou (Favonia), Robert Harper,
Reed Mullanix and Jon Sterling. cooltt. https://redprl.org/#cooltt.
url: https://github.com/redprl/cooltt (cit. on p. 1).

[ACF+c] Carlo Angiuli, Evan Cavallo, Kuen-Bang Hou (Favonia), Robert Harper
and Jon Sterling. RedPRL. https://redprl.org/#redprl.
url: https://github.com/redprl/sml-redprl (cit. on p. 1).

[Acz06] Peter Aczel. ‘Aspects of general topology in constructive set theory’.
In: Annals of Pure and Applied Logic 137.1–3 (2006): Papers presented at
the 2nd Workshop on Formal Topology (2WFTop 2002). Ed. by
Bernhard Banaschewski, Thierry Coquand and Giovanni Sambin,
pp. 3–29. doi: 10.1016/j.apal.2005.05.016 (cit. on pp. 5, 112).

[Acz77] Peter Aczel. ‘An Introduction to Inductive Definitions’.
In: Handbook of Mathematical Logic. Ed. by Jon Barwise. Vol. 90.
Studies in Logic and the Foundations of Mathematics.
North-Holland, 1977, pp. 739–782.
doi: 10.1016/S0049-237X(08)71120-0.

[ADK17] Thorsten Altenkirch, Nils Anders Danielsson and Nicolai Kraus.
‘Partiality, Revisited: The Partiality Monad as a Quotient
Inductive-Inductive Type’. In: Foundations of Software Science and
Computation Structures: 20th International Conference, FOSSACS 2017,
Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22–29, 2017, Proceedings.

https://doi.org/10.1007/978-3-540-27836-8_8
https://redprl.org/#redtt
https://github.com/redprl/redtt
https://redprl.org/#cooltt
https://github.com/redprl/cooltt
https://redprl.org/#redprl
https://github.com/redprl/sml-redprl
https://doi.org/10.1016/j.apal.2005.05.016
https://doi.org/10.1016/S0049-237X(08)71120-0

155 Bibliography

Ed. by Javier Esparza and Andrzej S. Murawski. Vol. 10203.
Lecture Notes in Computer Science. Springer, 2017, pp. 534–549.
doi: 10.1007/978-3-662-54458-7_31 (cit. on pp. 78, 126).

[AdMKU+] Jeremy Avigad, Leonardo de Moura, Soonho Kong, Sebastian Ullrich et al.
Theorem Proving in Lean 4. url: https://leanprover.github.io/
theorem_proving_in_lean4/title_page.html (cit. on pp. 1, 4).

[AFS18] Steve Awodey, Jonas Frey and Sam Speight.
‘Impredicative Encodings of (Higher) Inductive Types’.
In: LICS ’18: Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science. Association for Computing Machinery, 2018,
pp. 76–85. doi: 10.1145/3209108.3209130 (cit. on p. 36).

[AGH+15] Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride and
Peter Morris. ‘Indexed containers’.
In: Journal of Functional Programming 25 (2015), e5.
doi: 10.1017/S095679681500009X (cit. on p. 43).

[AJ94] Samson Abramsky and Achim Jung. ‘Domain theory’.
In: Handbook of Logic in Computer Science.
Ed. by S. Abramsky, Dov M. Gabray and T. S. E. Maibaum. Vol. 3.
Clarendon Press, 1994, pp. 1–168. Updated online version available at
https://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf

(cit. on pp. 1, 4, 8, 51, 68, 77, 79, 92, 94, 112).
[AKS15] Benedikt Ahrens, Krzysztof Kapulkin and Michael Shulman.

‘Univalent categories and the Rezk completion’. In: Mathematical
Structures in Computer Science 25.5 (2015): From type theory and
homotopy theory to Univalent Foundations of Mathematics, pp. 1010–1039.
doi: 10.1017/S0960129514000486 (cit. on pp. 86, 89, 91).

[ANST20] Benedikt Ahrens, Paige Randall North, Michael Shulman and
Dimitris Tsementzis. ‘A Higher Structure Identity Principle’.
In: LICS ’20: Proceedings of the 35th Annual ACM/IEEE Symposium on
Logic in Computer Science. Association for Computing Machinery, 2020,
pp. 53–66. doi: 10.1145/3373718.3394755 (cit. on p. 2).

[AR10] Peter Aczel and Michael Rathjen. ‘Notes on Constructive Set Theory’.
https://www1.maths.leeds.ac.uk/~rathjen/book.pdf. Book draft.
Aug. 2010 (cit. on p. 6).

[BBC+22] Marc Bezem, Ulrik Buchholtz, Pierre Cagne, Bjørn Ian Dundas and
Daniel R. Grayson. ‘Symmetry’.
https://github.com/UniMath/SymmetryBook. Book draft.
31st Mar. 2022. Commit: 2722568 (cit. on pp. 1, 42).

[BCDE20] Marc Bezem, Thierry Coquand, Peter Dybjer and Martín Hötzel Escardó.
The Burali–Forti argument in HoTT/UF in Agda notation.
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.

Ordinals.BuraliForti.html. 2020.

https://doi.org/10.1007/978-3-662-54458-7_31
https://leanprover.github.io/theorem_proving_in_lean4/title_page.html
https://leanprover.github.io/theorem_proving_in_lean4/title_page.html
https://doi.org/10.1145/3209108.3209130
https://doi.org/10.1017/S095679681500009X
https://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
https://doi.org/10.1017/S0960129514000486
https://doi.org/10.1145/3373718.3394755
https://www1.maths.leeds.ac.uk/~rathjen/book.pdf
https://github.com/UniMath/SymmetryBook
https://github.com/UniMath/SymmetryBook/tree/2722568
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.Ordinals.BuraliForti.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.Ordinals.BuraliForti.html

Bibliography 156

https://github.com/martinescardo/TypeTopology/tree/master/

source/Ordinals/BuraliForti.lagda, commit d59d10b (cit. on p. 141).
[Bee85] Michael J. Beeson.

Foundations of Constructive Mathematics: Metamathematical Studies.
Vol. 6. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A
Series of Modern Surveys in Mathematics. Springer-Verlag, 1985.
doi: 10.1007/978-3-642-68952-9 (cit. on p. 3).

[Bel97] J. L. Bell. ‘Zorn’s Lemma and Complete Boolean Algebras in
Intuitionistic Type Theories’.
In: The Journal of Symbolic Logic 62.4 (1997), pp. 1265–1279.
doi: 10.2307/2275642 (cit. on p. 140).

[Ber90] Ulrich Berger. ‘Totale Objekte und Mengen in der Bereichstheorie’.
PhD thesis. Department of Mathematics,
Ludwig-Maximilians-Universität München (LMU Munich), 1990
(cit. on pp. 1, 152).

[BFC+] Guillaume Brunerie, Kuen-Bang Hou (Favonia), Evan Cavallo,
Tim Baumann, Eric Finster, Jesper Cockx, Christian Sattler et al.
Homotopy Type Theory in Agda. https://github.com/HoTT/HoTT-Agda
(cit. on p. 1).

[BGL+17] Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman,
Matthieu Sozeau and Bas Spitters.
‘The HoTT Library: A Formalization of Homotopy Type Theory in Coq’.
In: CPP 2017: Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs. Association for Computing Machinery, 2017,
pp. 164–172. doi: 10.1145/3018610.3018615 (cit. on p. 1).

[Bis67] Erret Bishop. Foundations of Constructive Analysis.
McGraw-Hill Book Company, 1967 (cit. on pp. 2, 28).

[Bis70] Errett Bishop. ‘Mathematics as a Numerical Language’.
In: Intuitionism and Proof Theory: Proceedings of the Summer Conference
at Buffalo N. Y. 1968. Ed. by A. Kino, J. Myhill and R. E. Vesley. Vol. 60.
Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Company, 1970, pp. 53–71.
doi: 10.1016/S0049-237X(08)70740-7 (cit. on p. 3).

[BK09] Andrej Bauer and Iztok Kavkler. ‘A constructive theory of continuous
domains suitable for implementation’.
In: Annals of Pure and Applied Logic 159.3 (2009): Joint Workshop Domains
VIII — Computability over Continuous Data Types, Novosibirsk, September
11–15, 2007. Ed. by Yuri L. Ershov, Klaus Keimel, Ulrich Kohlenbach and
Andrei Morozov, pp. 251–267. doi: 10.1016/j.apal.2008.09.025
(cit. on p. 5).

https://github.com/martinescardo/TypeTopology/tree/master/source/Ordinals/BuraliForti.lagda
https://github.com/martinescardo/TypeTopology/tree/master/source/Ordinals/BuraliForti.lagda
https://github.com/martinescardo/TypeTopology/tree/d59d10b/source/Ordinals/BuraliForti.lagda
https://doi.org/10.1007/978-3-642-68952-9
https://doi.org/10.2307/2275642
https://github.com/HoTT/HoTT-Agda
https://doi.org/10.1145/3018610.3018615
https://doi.org/10.1016/S0049-237X(08)70740-7
https://doi.org/10.1016/j.apal.2008.09.025

157 Bibliography

[BKV09] Nick Benton, Andrew Kennedy and Carsten Varming.
‘Some Domain Theory and Denotational Semantics in Coq’.
In: Theorem Proving in Higher Order Logics: 22nd International Conference,
TPHOLs 2009, Munich, Germany, August 17–20, 2009, Proceedings. Ed. by
Stefan Berghofer, Tobias Nipkow, Christian Urban and Makarius Wenzel.
Vol. 5674. Lecture Notes in Computer Science. Springer, 2009,
pp. 115–130. doi: 10.1007/978-3-642-03359-9_10 (cit. on p. 5).

[BR87] Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics.
Vol. 97. London Mathematical Society Lecture Note Series.
Cambridge University Press, 1987. doi: 10.1017/CBO9780511565663
(cit. on pp. 28, 129).

[BV11] Douglas S. Bridges and Luminiţa Simona Vîţǎ.
Apartness and Uniformity: A Constructive Development. Springer, 2011.
doi: 10.1007/978-3-642-22415-7 (cit. on p. 153).

[Cap05] Venanzio Capretta. ‘General Recursion via Coinductive Types’.
In: Logical Methods in Computer Science 1.2 (2005).
doi: 10.2168/LMCS-1(2:1)2005 (cit. on p. 78).

[CCHM18] Cyril Cohen, Thierry Coquand, Simon Huber and Anders Mörtberg.
‘Cubical Type Theory: A Constructive Interpretation of the Univalence
Axiom’. In: 21st International Conference on Types for Proofs and Programs
(TYPES 2015). Ed. by Tarmo Uustalu. Vol. 69.
Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018, 5:1–5:34.
doi: 10.4230/LIPIcs.TYPES.2015.5 (cit. on pp. 2–3, 6).

[CD13] Thierry Coquand and Nils Anders Danielsson. ‘Isomorphism is equality’.
In: Indagationes Mathematicae 24.4 (2013): In memory of N. G. (Dick) de
Bruijn (1918–2012). Ed. by J. W. Klop, R. Tijdeman and
J. J. O. O. Wiegerinck. In memory of N.G. (Dick) de Bruijn (1918–2012),
pp. 1105–1120. doi: 10.1016/j.indag.2013.09.002 (cit. on p. 2).

[CH88] Thierry Coquand and Gérard Huet. ‘The calculus of constructions’.
In: Information and Computation 76.2–3 (1988), pp. 95–120.
doi: 10.1016/0890-5401(88)90005-3 (cit. on pp. 3, 10).

[CMR17] Thierry Coquand, Bassel Mannaa and Fabian Ruch.
‘Stack semantics of type theory’. In: 2017 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). IEEE, 2017, pp. 1–12.
doi: 10.1109/LICS.2017.8005130 (cit. on p. 78).

[Coq] The Coq Team. The Coq Proof Assistant. url: https://coq.inria.fr
(cit. on pp. 1, 4, 10–11, 147).

[Coq18] Thierry Coquand.
‘A survey of constructive presheaf models of univalence’.
In: ACM SISLOG News 5.3 (2018), pp. 54–65.
doi: 10.1145/3242953.3242962 (cit. on p. 78).

https://doi.org/10.1007/978-3-642-03359-9_10
https://doi.org/10.1017/CBO9780511565663
https://doi.org/10.1007/978-3-642-22415-7
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1016/j.indag.2013.09.002
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1109/LICS.2017.8005130
https://coq.inria.fr
https://doi.org/10.1145/3242953.3242962

Bibliography 158

[CR12] Giovanni Curi and Michael Rathjen.
‘Formal Baire Space in Constructive Set Theory’.
In: Logic, Construction, Computation. Ed. by Ulrich Berger,
Hannes Diener, Peter Schuster and Monika Seisenberger. Vol. 3.
Ontos Matematical Logic. De Gruyter, 2012, pp. 123–136.
doi: 10.1515/9783110324921.123 (cit. on p. 6).

[CS18] Francesco Ciraulo and Giovanni Sambin.
‘Embedding locales and formal topologies into positive topologies’.
In: Archive for Mathematical Logic 57 (2018), pp. 755–768.
doi: 10.1007/s00153-017-0605-0 (cit. on p. 134).

[CSSV03] Thierry Coquand, Giovanni Sambin, Jan Smith and Silvio Valentini.
‘Inductively generated formal topologies’.
In: Annals of Pure and Applied Logic 124.1–3 (2003), pp. 71–106.
doi: 10.1016/s0168-0072(03)00052-6 (cit. on p. 4).

[Cur10a] Giovanni Curi.
‘On some peculiar aspects of the constructive theory of point-free spaces’.
In: Mathematical Logic Quarterly 56.4 (2010), pp. 375–387.
doi: 10.1002/malq.200910037 (cit. on pp. 6–7).

[Cur10b] Giovanni Curi. ‘On the existence of Stone–Čech compactification’.
In: The Journal of Symbolic Logic 75.4 (2010), pp. 1137–1146.
doi: 10.2178/jsl/1286198140 (cit. on pp. 6–7).

[Cur15] Giovanni Curi. ‘On Tarski’s fixed point theorem’. In: Proceedings of the
American Mathematical Society 143.10 (2015), pp. 4439–4455.
doi: 10.1090/proc/12569 (cit. on pp. 6–7).

[Cur18] Giovanni Curi. ‘Abstract inductive and co-inductive definitions’.
In: The Journal of Symbolic Logic 83.2 (2018), pp. 598–616.
doi: 10.1017/jsl.2018.13 (cit. on pp. 6–7).

[CUV19] James Chapman, Tarmo Uustalu and Niccolò Veltri.
‘Quotienting the delay monad by weak bisimilarity’.
In: Mathematical Structures in Computer Science 29.1 (2019): Best Papers
Presented at ICTAC 2015. Published online: 17th Oct. 2017, pp. 67–92.
doi: 10.1017/S0960129517000184 (cit. on pp. 78, 126).

[CV16] Francesco Ciraulo and Steven Vickers. ‘Positivity relations on a locale’.
In: Annals of Pure and Applied Logic 167.9 (2016): Fourth Workshop on
Formal Topology (4WFTop). Ed. by Thierry Coquand,
Maria Emilia Maietti, Giovanni Sambin and Peter Schuster, pp. 806–819.
doi: 10.1016/j.apal.2016.04.009 (cit. on p. 134).

[dJE21a] Tom de Jong and Martín Hötzel Escardó.
‘Domain Theory in Constructive and Predicative Univalent Foundations’.
In: 29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Ed. by Christel Baier and Jean Goubault-Larrecq. Vol. 183.
Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021, 28:1–28:18.

https://doi.org/10.1515/9783110324921.123
https://doi.org/10.1007/s00153-017-0605-0
https://doi.org/10.1016/s0168-0072(03)00052-6
https://doi.org/10.1002/malq.200910037
https://doi.org/10.2178/jsl/1286198140
https://doi.org/10.1090/proc/12569
https://doi.org/10.1017/jsl.2018.13
https://doi.org/10.1017/S0960129517000184
https://doi.org/10.1016/j.apal.2016.04.009

159 Bibliography

doi: 10.4230/LIPIcs.CSL.2021.28. Expanded version with full proofs
available on arXiv: 2008.01422 [math.LO]

(cit. on pp. 8, 77, 111–112, 128, 140).
[dJE21b] Tom de Jong and Martín Hötzel Escardó.

‘Predicative Aspects of Order Theory in Univalent Foundations’.
In: 6th International Conference on Formal Structures for Computation and
Deduction (FSCD 2021). Ed. by Naoki Kobayashi. Vol. 195.
Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021, 8:1–8:18.
doi: 10.4230/LIPIcs.FSCD.2021.8 (cit. on pp. 7–9, 34, 50, 146, 159).

[dJE21c] Tom de Jong and Martín Hötzel Escardó.
Set quotients in univalent mathematics with a parameter for the universes
of propositional truncations. https:
//www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Quotient-

F.html. Agda development. 2021.
https://github.com/martinescardo/TypeTopology/tree/master/

source/UF/Quotient-F.lagda, commit d59d10b (cit. on p. 148).
[dJE22a] Tom de Jong and Martín Hötzel Escardó.

‘On Small Types in Univalent Foundations’. Sept. 2022.
arXiv: 2111.00482 [cs.LO]. Revised and expanded version of [dJE21b].
Accepted pending minor revision to a special issue of Logical Methods in
Computer Science on selected papers from FSCD 2021.
(Cit. on pp. 7–9, 34, 50, 139, 146).

[dJE22b] Tom de Jong and Martín Hötzel Escardó.
The ordinal of small ordinals has small suprema.
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.

Ordinals.OrdinalOfOrdinalsSuprema.html. Agda development. 2022.
https://github.com/martinescardo/TypeTopology/tree/master/

source/Ordinals/OrdinalOfOrdinalsSuprema.lagda, commit d59d10b
(cit. on p. 148).

[dJon19a] Tom de Jong. Coq/UniMath formalisation of the Scott model of PCF in
univalent type theory. https://tdejong.com/Scott-PCF-UniMath/
UniMath.Partiality.PCF.html. 2019.
doi: 10.25500/edata.bham.00000912.
url: https://github.com/tomdjong/UniMath/tree/paper
(cit. on pp. 1, 148–149).

[dJon19b] Tom de Jong. ‘The Scott model of PCF in univalent type theory’.
In: Mathematical Structures in Computer Science 31.10 (2019): Homotopy
Type Theory 2019, pp. 1270–1300. doi: 10.1017/S0960129521000153
(cit. on pp. 1, 7–8, 50, 77, 128).

[dJon21] Tom de Jong. ‘Sharp Elements and Apartness in Domains’.
In: 37th Conference on the Mathematical Foundations of Programming
Semantics (MFPS 2021). Ed. by Ana Sokolova. Vol. 351.
Electronic Proceedings in Theoretical Computer Science.

https://doi.org/10.4230/LIPIcs.CSL.2021.28
https://arxiv.org/abs/2008.01422
https://doi.org/10.4230/LIPIcs.FSCD.2021.8
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Quotient-F.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Quotient-F.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Quotient-F.html
https://github.com/martinescardo/TypeTopology/tree/master/source/UF/Quotient-F.lagda
https://github.com/martinescardo/TypeTopology/tree/master/source/UF/Quotient-F.lagda
https://github.com/martinescardo/TypeTopology/tree/d59d10b/source/UF/Quotient-F.lagda
https://arxiv.org/abs/2111.00482
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.Ordinals.OrdinalOfOrdinalsSuprema.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.Ordinals.OrdinalOfOrdinalsSuprema.html
https://github.com/martinescardo/TypeTopology/tree/master/source/Ordinals/OrdinalOfOrdinalsSuprema.lagda
https://github.com/martinescardo/TypeTopology/tree/master/source/Ordinals/OrdinalOfOrdinalsSuprema.lagda
https://github.com/martinescardo/TypeTopology/tree/d59d10b/source/Ordinals/OrdinalOfOrdinalsSuprema.lagda
https://tdejong.com/Scott-PCF-UniMath/UniMath.Partiality.PCF.html
https://tdejong.com/Scott-PCF-UniMath/UniMath.Partiality.PCF.html
https://doi.org/10.25500/edata.bham.00000912
https://github.com/tomdjong/UniMath/tree/paper
https://doi.org/10.1017/S0960129521000153

Bibliography 160

Open Publishing Association, 2021, pp. 134–151.
doi: 10.4204/EPTCS.351.9 (cit. on pp. 152–153).

[dJon22a] Tom de Jong.
Formalisation of domain theory in univalent mathematics in Agda.
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.

DomainTheory.index.html. 2022. doi: 10.25500/edata.bham.00000912.
https://github.com/martinescardo/TypeTopology/tree/master/

source/DomainTheory, commit d59d10b (cit. on pp. 1, 147–150).
[dJon22b] Tom de Jong. Propositional truncations and set replacement from small set

quotients in univalent mathematics. https://www.cs.bham.ac.uk/~mhe/
TypeTopology/Published.UF.Quotient.html. Agda development. 2022.
https://github.com/martinescardo/TypeTopology/tree/master/

source/UF/Quotient.lagda, commit d59d10b (cit. on p. 148).
[dJon22c] Tom de Jong. ‘Semidecidability: constructive taboos, choice principles

and closure properties’.
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.

NotionsOfDecidability.SemiDecidable.html. Agda development.
2022. https://github.com/martinescardo/TypeTopology/tree/
master/source/NotionsOfDecidability/SemiDecidable.lagda,
commit d59d10b (cit. on pp. 31, 126).

[dJon22d] Tom de Jong.
Small set quotients in univalent mathematics using set replacement. https:
//www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Quotient-

Replacement.html. Agda development. 2022.
https://github.com/martinescardo/TypeTopology/tree/master/

source/UF/Quotient-Replacement.lagda, commit d59d10b
(cit. on p. 148).

[Doc14] Robert Dockins. ‘Formalized, Effective Domain Theory in Coq’.
In: Interactive Theorem Proving: 5th International Conference, ITP 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 14–17, 2014, Proceedings. Ed. by Gerwin Klein and Ruben Gamboa.
Vol. 8558. Lecture Notes in Computer Science. Springer, 2014,
pp. 209–225. doi: 10.1007/978-3-319-08970-6_14 (cit. on p. 5).

[EK17] Martín H. Escardó and Cory M. Knapp. ‘Partial Elements and Recursion
via Dominances in Univalent Type Theory’.
In: 26th EACSL Annual Conference on Computer Science Logic (CSL 2017).
Ed. by Valentin Goranko and Mads Dam. Vol. 82.
Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017, 21:1–21:16.
doi: 10.4230/LIPIcs.CSL.2017.21 (cit. on pp. 8, 31, 57, 59–62, 78, 126).

[Esc+] Martín Hötzel Escardó et al. TypeTopology.
https://www.cs.bham.ac.uk/~mhe/TypeTopology/index.html.
Agda development.

https://doi.org/10.4204/EPTCS.351.9
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.DomainTheory.index.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.DomainTheory.index.html
https://doi.org/10.25500/edata.bham.00000912
https://github.com/martinescardo/TypeTopology/tree/master/source/DomainTheory
https://github.com/martinescardo/TypeTopology/tree/master/source/DomainTheory
https://github.com/martinescardo/TypeTopology/tree/d59d10b/source/DomainTheory
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Quotient.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Quotient.html
https://github.com/martinescardo/TypeTopology/tree/master/source/UF/Quotient.lagda
https://github.com/martinescardo/TypeTopology/tree/master/source/UF/Quotient.lagda
https://github.com/martinescardo/TypeTopology/tree/d59d10b/source/UF/Quotient.lagda
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.NotionsOfDecidability.SemiDecidable.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.NotionsOfDecidability.SemiDecidable.html
https://github.com/martinescardo/TypeTopology/tree/master/source/NotionsOfDecidability/SemiDecidable.lagda
https://github.com/martinescardo/TypeTopology/tree/master/source/NotionsOfDecidability/SemiDecidable.lagda
https://github.com/martinescardo/TypeTopology/tree/d59d10b/source/NotionsOfDecidability/SemiDecidable.lagda
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Quotient-Replacement.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Quotient-Replacement.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Quotient-Replacement.html
https://github.com/martinescardo/TypeTopology/tree/master/source/UF/Quotient-Replacement.lagda
https://github.com/martinescardo/TypeTopology/tree/master/source/UF/Quotient-Replacement.lagda
https://github.com/martinescardo/TypeTopology/tree/d59d10b/source/UF/Quotient-Replacement.lagda
https://doi.org/10.1007/978-3-319-08970-6_14
https://doi.org/10.4230/LIPIcs.CSL.2017.21
https://www.cs.bham.ac.uk/~mhe/TypeTopology/index.html

161 Bibliography

https://github.com/martinescardo/TypeTopology, commit d59d10b
(cit. on pp. 4, 46, 61, 96, 137, 141, 145, 147–148).

[Esc03] Martín H. Escardó. ‘Joins in the Frame of Nuclei’.
In: Applied Categorical Structures 11 (2003), pp. 117–124.
doi: 10.1023/A:1023555514029 (cit. on p. 139).

[Esc08] Martín Escardó. ‘Exhaustible sets in higher-type computation’.
In: Logical Methods in Computer Science 4.3 (2008).
doi: 10.2168/LMCS-4(3:3)2008 (cit. on pp. 1, 152).

[Esc18] Martín Hötzel Escardó.
Set quotients in univalent mathematics in Agda notation. https:
//www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Large-

Quotient.html. 2018.
https://github.com/martinescardo/TypeTopology/tree/master/

source/UF/Large-Quotient.lagda, commit d59d10b (cit. on p. 148).
[Esc19a] Martín Hötzel Escardó. ‘Compact, totally separated and well-ordered

types in univalent mathematics’.
https://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_3.
Abstract for TYPES. June 2019.
HTML rendering of related Agda development available at
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Types2019.html

(cit. on p. 46).
[Esc19b] Martín Hötzel Escardó.

‘Introduction to Univalent Foundations of Mathematics with Agda’.
Nov. 2019. arXiv: 1911.00580 [cs.LO]

(cit. on pp. 1–2, 7, 11, 14, 17, 20–21, 29–31, 34–37, 40, 50, 61, 148).
[Esc21] Martín Hötzel Escardó. ‘Injective types in univalent mathematics’.

In: Mathematical Structures in Computer Science 31.1 (2021), pp. 89–111.
doi: 10.1017/s0960129520000225 (cit. on pp. 11, 50, 61).

[EX15] Martín Hötzel Escardó and Chuangjie Xu. ‘The Inconsistency of a
Brouwerian Continuity Principle with the Curry–Howard Interpretation’.
In: 13th International Conference on Typed Lambda Calculi and
Applications (TLCA 2015). Ed. by Thorsten Altenkirch. Vol. 38.
Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2015, pp. 153–164.
doi: 10.4230/LIPIcs.TLCA.2015.153.

[Fre64] Peter Freyd. Abelian Categories: An Introduction to the Theory of Functors.
Harper & Row, 1964.
Republished in Reprints in Theory and Applications of Categories, Vol. 3,
2003. http://www.tac.mta.ca/tac/reprints/articles/3/tr3.pdf
(cit. on p. 130).

https://github.com/martinescardo/TypeTopology
https://github.com/martinescardo/TypeTopology/tree/d59d10b
https://doi.org/10.1023/A:1023555514029
https://doi.org/10.2168/LMCS-4(3:3)2008
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Large-Quotient.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Large-Quotient.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Published.UF.Large-Quotient.html
https://github.com/martinescardo/TypeTopology/tree/master/source/UF/Large-Quotient.lagda
https://github.com/martinescardo/TypeTopology/tree/master/source/UF/Large-Quotient.lagda
https://github.com/martinescardo/TypeTopology/tree/d59d10b/source/UF/Large-Quotient.lagda
https://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_3
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Types2019.html
https://arxiv.org/abs/1911.00580
https://doi.org/10.1017/s0960129520000225
https://doi.org/10.4230/LIPIcs.TLCA.2015.153
http://www.tac.mta.ca/tac/reprints/articles/3/tr3.pdf

Bibliography 162

[GH04] Nicola Gambino and Martin Hyland.
‘Wellfounded Trees and Dependent Polynomial Functors’.
In: Types for Proofs and Programs: International Workshop, TYPES 2003,
Torino, Italy, April/May 2003, Revised Selected Papers.
Ed. by Stefano Berardi, Mario Coppo and Ferruccio Damiani. Vol. 3085.
Lecture Notes in Computer Science. Springer, 2004, pp. 210–225.
doi: 10.1007/978-3-540-24849-1_14 (cit. on p. 43).

[GHK+03] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and
D. S. Scott. Continuous Lattices and Domains. Vol. 93.
Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2003. doi: 10.1017/CBO9780511542725
(cit. on pp. 1, 4–5, 51, 77, 79, 92, 94, 108).

[Gir71] Jean-Yves Girard. ‘Une extension de l’interpretation fonctionnelle de
Gödel à l’analyse et son application à l’élimination des coupures dans
l’analyse et la théorie des types’.
In: Proceedings of the Second Scandinavian Logic Symposium.
Ed. by J. E. Fenstad. Vol. 63.
Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Company, 1971, pp. 63–92.
doi: 10.1016/S0049-237X(08)70843-7 (cit. on p. 36).

[GV72] A. Grothendieck and J. L. Verdier. ‘Prefaisceaux’.
In: Théorie des Topos et Cohomologie Etale des Schémas. Tome 1
(Séminaire de Géométrie Algébrique du Bois Marie 1963/1964, SGA4).
Ed. by A. Dold. Heidelberg and B. Eckmann. Vol. 269.
Lecture Notes in Mathematics. Springer, 1972, pp. 1–217.
doi: 10.1007/BFB0081552 (cit. on p. 84).

[Har20] Brendan Hart. ‘Investigating Properties of PCF in Agda’. Final year MSci
project. School of Computer Science, University of Birmingham, 2020.
url: https://raw.githubusercontent.com/BrendanHart/
Investigating-Properties-of-PCF/master/InvestigatingProperties

OfPCFInAgda.pdf. Agda code available at
https://github.com/BrendanHart/Investigating-Properties-of-PCF

(cit. on pp. 1, 77, 147–149, 153).
[Hed96] Michael Hedberg.

‘A type-theoretic interpretation of constructive domain theory’.
In: Journal of Automated Reasoning 16 (1996), pp. 369–425.
doi: 10.1007/BF00252182 (cit. on p. 5).

[Hed98] Michael Hedberg. ‘A coherence theorem for Martin-Löf’s type theory’.
In: Journal of Functional Programming 8.4 (1998), pp. 413–436.
doi: 10.1017/S0956796898003153 (cit. on pp. 15–16, 28).

[HP08] J. Roger Hindley and Jonathan P. Seldin.
Lambda-Calculus and Combinators: an Introduction. 2nd ed.
Cambridge University Press, 2008. doi: 10.1017/CBO9780511809835
(cit. on p. 119).

https://doi.org/10.1007/978-3-540-24849-1_14
https://doi.org/10.1017/CBO9780511542725
https://doi.org/10.1016/S0049-237X(08)70843-7
https://doi.org/10.1007/BFB0081552
https://raw.githubusercontent.com/BrendanHart/Investigating-Properties-of-PCF/master/InvestigatingPropertiesOfPCFInAgda.pdf
https://raw.githubusercontent.com/BrendanHart/Investigating-Properties-of-PCF/master/InvestigatingPropertiesOfPCFInAgda.pdf
https://raw.githubusercontent.com/BrendanHart/Investigating-Properties-of-PCF/master/InvestigatingPropertiesOfPCFInAgda.pdf
https://github.com/BrendanHart/Investigating-Properties-of-PCF
https://doi.org/10.1007/BF00252182
https://doi.org/10.1017/S0956796898003153
https://doi.org/10.1017/CBO9780511809835

163 Bibliography

[Hug17a] Jasper Hugunin. Characterizing the equality of Indexed W types.
Post on the Homotopy Type Theory mailing list. Sept. 2017. url:
https://groups.google.com/d/msg/homotopytypetheory/qj2OvRvqf-

Q/hGFBczJGAwAJ (cit. on pp. 7, 47, 50).
[Hug17b] Jasper Hugunin. ‘IWTypes — A Coq development of the theory of

Indexed W types with function extensionality’.
https://github.com/jashug/IWTypes. 2017 (cit. on pp. 7, 47, 50).

[Hyl81] J. M. E. Hyland. ‘Function spaces in the category of locales’.
In: Continuous Lattices: Proceedings of the Conference on Topological and
Categorical Aspects of Continuous Lattices (Workshop IV) Held at the
University of Bremen, Germany, November 9–11, 1979.
Ed. by Bernhard Banaschewski and Rudolf-Eberhard Hoffmann. Vol. 871.
Lecture Notes in Mathematics. Springer, 1981, pp. 264–281.
doi: 10.1007/BFB0089910 (cit. on p. 152).

[Hyl91] J. M. E. Hyland. ‘First steps in synthetic domain theory’.
In: Category Theory: Proceedings of the International Conference held in
Como, Italy, July 22–28, 1990.
Ed. by Aurelio Carboni, Maria Cristina Pedicchio and Guiseppe Rosolini.
Vol. 1488. Lecture Notes in Mathematics. Springer, 1991, pp. 131–156.
doi: 10.1007/BFB0084217 (cit. on p. 5).

[Ish06] Hajime Ishihara.
‘Reverse Mathematics in Bishop’s Constructive Mathematics’.
In: Philosophia Scientiae CS 6 (2006), pp. 43–59.
doi: 10.4000/philosophiascientiae.406 (cit. on pp. 7, 129).

[Jet] JetBrains. Arend Theorem Prover. https://arend-lang.github.io/.
url: https://github.com/JetBrains/Arend (cit. on p. 1).

[JJ82] Peter Johnstone and André Joyal.
‘Continuous categories and exponentiable toposes’.
In: Journal of Pure and Applied Algebra 25.3 (1982), pp. 255–296.
doi: 10.1016/0022-4049(82)90083-4
(cit. on pp. 5, 8, 79, 84, 86–87, 91, 112).

[Joh77] P. T. Johnstone. Topos Theory. Academic Press, 1977.
Reprinted by Dover Publications in 2014 (cit. on p. 59).

[Joh84] Peter T. Johnstone. ‘Open locales and exponentiation’.
In: Mathematical Applications of Category Theory. Ed. by J. W. Gray.
Vol. 30. Contemporary Mathematics.
American Mathematical Society, 1984, pp. 84–116.
doi: 10.1090/conm/030/749770 (cit. on pp. 129, 134).

[Jun89] Achim Jung. Cartesian Closed Categories of Domains. Vol. 66. CWI Tracts.
Centrum voor Wiskunde en Informatica (Centre for Mathematics and
Computer Science), 1989. url: https://ir.cwi.nl/pub/13191
(cit. on p. 108).

https://groups.google.com/d/msg/homotopytypetheory/qj2OvRvqf-Q/hGFBczJGAwAJ
https://groups.google.com/d/msg/homotopytypetheory/qj2OvRvqf-Q/hGFBczJGAwAJ
https://github.com/jashug/IWTypes
https://doi.org/10.1007/BFB0089910
https://doi.org/10.1007/BFB0084217
https://doi.org/10.4000/philosophiascientiae.406
https://arend-lang.github.io/
https://github.com/JetBrains/Arend
https://doi.org/10.1016/0022-4049(82)90083-4
https://doi.org/10.1090/conm/030/749770
https://ir.cwi.nl/pub/13191

Bibliography 164

[Kaw17] Tatsuji Kawai. ‘Geometric theories of patch and Lawson topologies’.
2017. arXiv: 1709.06403 [math.CT] (cit. on p. 4).

[Kaw21] Tatsuji Kawai. ‘Predicative theories of continuous lattices’.
In: Logical Methods in Computer Science 17.2 (2021).
doi: 10.23638/LMCS-17(2:22)2021 (cit. on p. 4).

[KECA17] Nicolai Kraus, Martín Hötzel Escardó, Thierry Coquand and
Thorsten Altenkirch.
‘Notions of Anonymous Existence in Martin-Löf Type Theory’.
In: Logical Methods in Computer Science 13.1 (2017).
doi: 10.23638/LMCS-13(1:15)2017 (cit. on pp. 2, 16, 23, 25, 36).

[KL21] Krzysztof Kapulkin and Peter LeFanu Lumsdaine.
‘The simplicial model of Univalent Foundations (after Voevodsky)’. In:
Journal of the European Mathematical Society 23.6 (2021), pp. 2071–2126.
doi: 10.4171/jems/1050 (cit. on pp. 6, 29, 31).

[Kna18] Cory Knapp. ‘Partial Functions and Recursion in Univalent Type Theory’.
PhD thesis. School of Computer Science, University of Birmingham, June
2018. url: https://etheses.bham.ac.uk/id/eprint/8448/
(cit. on pp. 8, 31, 59, 78).

[KNX21] Nicolai Kraus, Fredrik Nordvall Forsberg and Chuangjie Xu. ‘Connecting
Constructive Notions of Ordinals in Homotopy Type Theory’.
In: 46th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2021). Ed. by Filippo Bonchi and Simon J. Puglisi.
Vol. 202. Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021, 70:1–70:16.
doi: 10.4230/LIPIcs.MFCS.2021.70 (cit. on p. 141).

[Koc91] Anders Kock. ‘Algebras for the partial map classifier monad’.
In: Category Theory: Proceedings of the International Conference held in
Como, Italy, July 22–28, 1990.
Ed. by Aurelio Carboni, Maria Cristina Pedicchio and Guiseppe Rosolini.
Vol. 1488. Lecture Notes in Mathematics. Springer, 1991, pp. 262–278.
doi: 10.1007/BFB0084225 (cit. on p. 59).

[Kra15] Nicolai Kraus.
‘The General Universal Property of the Propositional Truncation’.
In: 20th International Conference on Types for Proofs and Programs (TYPES
2014). Ed. by Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau.
Vol. 39. Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2015, pp. 111–145.
doi: 10.4230/LIPIcs.TYPES.2014.111 (cit. on p. 16).

[Lid20] David Lidell. ‘Formalizing domain models of the typed and the untyped
lambda calculus in Agda’.
Master’s thesis. Department of Computer Science and Engineering,
Chalmers University of Technology and University of Gothenburg, 2020.
url: http://hdl.handle.net/2077/67193 (cit. on p. 5).

https://arxiv.org/abs/1709.06403
https://doi.org/10.23638/LMCS-17(2:22)2021
https://doi.org/10.23638/LMCS-13(1:15)2017
https://doi.org/10.4171/jems/1050
https://etheses.bham.ac.uk/id/eprint/8448/
https://doi.org/10.4230/LIPIcs.MFCS.2021.70
https://doi.org/10.1007/BFB0084225
https://doi.org/10.4230/LIPIcs.TYPES.2014.111
http://hdl.handle.net/2077/67193

165 Bibliography

[LN15] John Longley and Dag Normann. Higher-Order Computability.
Theory and Applications of Computability. Springer, 2015.
doi: 10.1007/978-3-662-47992-6 (cit. on pp. 1, 51).

[Lon95] John Longley. ‘Realizability Toposes and Language Semantics’.
PhD thesis. Department of Computer Science, University of Edinburgh,
1995.
url: https://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-332
(cit. on p. 57).

[Mag94] Lena Magnusson. ‘The Implementation of ALF: a Proof Editor Based on
Martin-Löf’s Monomorphic Type Theory with Explicit Substitution’.
PhD thesis. Department of Computing Science, Chalmers University of
Technology and University of Gothenburg, 1994.
url: http://hdl.handle.net/2077/12916 (cit. on p. 5).

[Mar75] Per Martin-Löf. ‘An Intuitionistic Theory of Types: Predicative Part’.
In: Logic Colloquium ’73: Proceedings of the Logic Colloquium, Bristol, July
1973. Ed. by H. E. Rose and J. C. Shepherdson. Vol. 80.
Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Company and American Elsevier Publishing Company, 1975,
pp. 73–118. doi: 10.1016/S0049-237X(08)71945-1 (cit. on pp. 2, 10).

[Mar82] Per Martin-Löf. ‘Constructive Mathematics and Computer Programming’.
In: Logic, Methodology and Philosophy of Science VI: Proceedings of the
Sixth International Congress of Logic, Methodology and Philosophy of
Science, Hannover, 1979. Ed. by L. Jonathan Cohen, Jerzy Łoś,
Helmut Pfeiffer and Klaus-Peter Podewski. Vol. 104.
Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Company and PWN — Polish Scientific Publishers, 1982,
pp. 153–175. doi: 10.1016/S0049-237X(09)70189-2 (cit. on p. 3).

[Mar84] Per Martin-Löf. Intuitionistic Type Theory. Vol. 1. Studies in Proof Theory.
Notes by Giovanni Sambin of a series of lectures given in Padua, June
1980. Bibliopolis, 1984. Re-typeset and searchable version available at
https://raw.githubusercontent.com/michaelt/martin-

lof/master/pdfs/Bibliopolis-Book-retypeset-1984.pdf

(cit. on pp. 1, 10, 43, 50).
[MP89] Michael Makkai and Robert Paré.

Accessible Categories: The Foundations of Categorical Model Theory.
Vol. 104. Contemporary Mathematics.
American Mathematical Society, 1989. doi: 10.1090/conm/104
(cit. on p. 112).

[MV04] Maria Emilia Maietti and Silvio Valentini.
‘Exponentiation of Scott Formal Topologies’. In: Electronic Notes in
Theoretical Computer Science 73 (2004): Proceedings of the Workshop on
Domains VI. Ed. by Martín Escardó and Achim Jung, pp. 111–131.
doi: 10.1016/j.entcs.2004.08.005 (cit. on p. 4).

https://doi.org/10.1007/978-3-662-47992-6
https://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-332
http://hdl.handle.net/2077/12916
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(09)70189-2
https://raw.githubusercontent.com/michaelt/martin-lof/master/pdfs/Bibliopolis-Book-retypeset-1984.pdf
https://raw.githubusercontent.com/michaelt/martin-lof/master/pdfs/Bibliopolis-Book-retypeset-1984.pdf
https://doi.org/10.1090/conm/104
https://doi.org/10.1016/j.entcs.2004.08.005

Bibliography 166

[NDCA+] Ulf Norell, Nils Anders Danielsson, Jesper Cockx, Andreas Abel et al.
Agda. url: https://wiki.portal.chalmers.se/agda/pmwiki.php
(cit. on pp. 1, 4, 11, 147).

[Neg02] Sara Negri. ‘Continuous domains as formal spaces’.
In: Mathematical Structures in Computer Science 12.1 (2002), pp. 19–52.
doi: 10.1017/S0960129501003450 (cit. on p. 4).

[Pat97] Dito Pataraia.
‘A constructive proof of Tarski’s fixed-point theorem for dcpos’.
Presented at the 65th Peripatetic Seminar on Sheaves and Logic, Aarhus,
Denmark. Nov. 1997 (cit. on p. 139).

[Pha91] Wesley Phao. ‘Domain Theory in Realizability Toposes’. PhD thesis.
Department of Computer Science, University of Edinburgh, 1991.
url: https://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-171
(cit. on p. 57).

[Plo77] G.D. Plotkin. ‘LCF considered as a programming language’.
In: Theoretical Computer Science 5.3 (1977), pp. 223–255.
doi: 10.1016/0304-3975(77)90044-5
(cit. on pp. 1, 8, 51, 113, 118–119, 128).

[Plo83] Gordon Plotkin. Domains. Course notes known as the Pisa notes. 1983.
url: https://homepages.inf.ed.ac.uk/gdp/publications/Domains_
a4.ps (cit. on p. 128).

[PM21] Dirk Pattinson and Mina Mohammadian.
‘Constructive Domains with Classical Witnesses’.
In: Logical Methods in Computer Science 17.1 (2021).
doi: 10.23638/LMCS-17(1:19)2021 (cit. on p. 5).

[PVW15] Álvaro Pelayo, Vladimir Voevodsky and Michael A. Warren.
‘A univalent formalization of the 𝑝-adic numbers’. In: Mathematical
Structures in Computer Science 25.5 (2015): From type theory and
homotopy theory to Univalent Foundations of Mathematics, pp. 1147–1171.
doi: 10.1017/S0960129514000541 (cit. on p. 35).

[RBP+] Egbert Rijke, Elisabeth Bonnevier, Jonathan Prieto-Cubides et al.
Univalent mathematics in Agda.
https://unimath.github.io/agda-unimath/.
url: https://github.com/UniMath/agda-unimath/ (cit. on p. 1).

[Reu99] Bernhard Reus. ‘Formalizing Synthetic Domain Theory’.
In: Journal of Automated Reasoning 23 (1999), pp. 411–444.
doi: 10.1023/A:1006258506401 (cit. on p. 5).

[Rey74] John C. Reynolds. ‘Towards a theory of type structure’.
In: Programming Symposium: Proceedings, Colloque sur la Programmation,
Paris, April 9–11, 1974. Ed. by G. Goos and J. Hartmanis. Vol. 19.
Lecture Notes in Computer Science. Springer-Verlag, 1974, pp. 408–425.
doi: 10.1007/3-540-06859-7_148 (cit. on p. 36).

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1017/S0960129501003450
https://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-171
https://doi.org/10.1016/0304-3975(77)90044-5
https://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps
https://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps
https://doi.org/10.23638/LMCS-17(1:19)2021
https://doi.org/10.1017/S0960129514000541
https://unimath.github.io/agda-unimath/
https://github.com/UniMath/agda-unimath/
https://doi.org/10.1023/A:1006258506401
https://doi.org/10.1007/3-540-06859-7_148

167 Bibliography

[Rij17] Egbert Rijke. ‘The join construction’. Jan. 2017.
arXiv: 1701.07538 [math.CT] (cit. on pp. 32, 42–43, 50).

[Rij18] Egbert Rijke. ‘Classifying Types: Topics in synthetic homotopy theory’.
PhD thesis. Department of Philosophy, Carnegie Mellon University, July
2018. arXiv: 1906.09435 [math.LO] (cit. on p. 1).

[Ros86] G. Rosolini. ‘Continuity and effectiveness in topoi’.
PhD thesis. University of Oxford, 1986.
url: https://www.researchgate.net/publication/35103849_
Continuity_and_effectiveness_in_topoi (cit. on pp. 5, 57, 59).

[Ros87] G. Rosolini. ‘Categories and effective computations’. In: Category Theory
and Computer Science: Edinburgh, U.K., September 7–9, 1987. Proceedings.
Ed. by David H. Pitt, Axel Poigné and David E. Rydeheard. Vol. 283.
Lecture Notes in Computer Science. Springer, 1987.
doi: 10.1007/3-540-18508-9_17 (cit. on pp. 5, 59).

[RS15] Egbert Rijke and Bas Spitters. ‘Sets in Homotopy Type Theory’.
In: Mathematical Structures in Computer Science 25.5 (2015): From type
theory and homotopy theory to Univalent Foundations of Mathematics,
pp. 1172–1202. doi: 10.1017/S0960129514000553 (cit. on p. 37).

[RS99] Bernhard Reus and Thomas Streicher.
‘General synthetic domain theory — a logical approach’.
In: Mathematical Structures in Computer Science 9.2 (1999), pp. 177–223.
doi: 10.1017/S096012959900273X (cit. on pp. 5, 59).

[Sam03] Giovanni Sambin. ‘Some points in formal topology’.
In: Theoretical Computer Science 305.1–3 (2003): Topology in Computer
Science, pp. 347–408. doi: 10.1016/S0304-3975(02)00704-1
(cit. on pp. 4, 134).

[Sam87] Giovanni Sambin. ‘Intuitionistic formal spaces — a first communication’.
In: Mathematical logic and its applications. Ed. by Dimiter G. Skordev.
Springer, 1987, pp. 187–204. doi: 10.1007/978-1-4613-0897-3_12
(cit. on p. 4).

[Sat15] Christian Sattler. ‘On relating Indexed W-Types with Ordinary Ones’.
https://cs.ioc.ee/types15/abstracts-book/contrib31.pdf.
Abstract for TYPES. May 2015. Slides available at
https://cs.ioc.ee/types15/slides/sattler-slides.pdf

(cit. on p. 43).
[Sco70] Dana Scott. Outline of a Mathematical Theory of Computation.

Tech. rep. PRG02. Oxford University Computing Laboratory, Nov. 1970.
url: https://www.cs.ox.ac.uk/publications/publication3720-
abstract.html (cit. on pp. 3, 53, 80).

https://arxiv.org/abs/1701.07538
https://arxiv.org/abs/1906.09435
https://www.researchgate.net/publication/35103849_Continuity_and_effectiveness_in_topoi
https://www.researchgate.net/publication/35103849_Continuity_and_effectiveness_in_topoi
https://doi.org/10.1007/3-540-18508-9_17
https://doi.org/10.1017/S0960129514000553
https://doi.org/10.1017/S096012959900273X
https://doi.org/10.1016/S0304-3975(02)00704-1
https://doi.org/10.1007/978-1-4613-0897-3_12
https://cs.ioc.ee/types15/abstracts-book/contrib31.pdf
https://cs.ioc.ee/types15/slides/sattler-slides.pdf
https://www.cs.ox.ac.uk/publications/publication3720-abstract.html
https://www.cs.ox.ac.uk/publications/publication3720-abstract.html

Bibliography 168

[Sco72] Dana S. Scott. ‘Continuous lattices’. In: Toposes, Algebraic Geometry and
Logic: Dalhousie University, Halifax, January 16–19, 1971.
Ed. by F. W. Lawvere. Vol. 274. Lecture Notes in Mathematics.
Springer, 1972, pp. 97–136. doi: 10.1007/BFB0073967
(cit. on pp. 8, 51, 69, 71, 77, 113, 128).

[Sco82a] Dana S. Scott. ‘Domains for denotational semantics’.
In: Automata, Languages and Programming: Ninth Colloquium. Aarhus,
Denmark, July 1982. Ed. by Mogens Nielsen and Erik Meineche Schmidt.
Vol. 140. Lecture Notes in Computer Science. Springer-Verlag, 1982,
pp. 577–610. doi: 10.1007/BFB0012801 (cit. on p. 4).

[Sco82b] Dana S. Scott. ‘Lectures on a Mathematical Theory of Computation’.
In: Theoretical Foundations of Programming Methodology: Lecture Notes of
an International Summer School, directed by F. L. Bauer, E. W. Dijkstra and
C. A. R. Hoare. Ed. by Manfred Broy and Gunther Schmidt. Vol. 91.
NATO Advanced Study Institutes Series. Springer, 1982, pp. 145–292.
doi: 10.1007/978-94-009-7893-5_9 (cit. on pp. 1, 4).

[Sco93] Dana S. Scott. ‘A type-theoretical alternative to ISWIM, CUCH, OWHY’.
In: Theoretical Computer Science 121.1–2 (1993), pp. 411–440.
doi: 10.1016/0304-3975(93)90095-B
(cit. on pp. 1, 8, 51, 113, 118–119, 128).

[Shu11] Michael Shulman. Topos Theory Can Make You a Predicativist. Blog post.
Jan. 2011. url: https://golem.ph.utexas.edu/category/2011/01/
topos_theory_can_make_you_a_pr.html (cit. on p. 3).

[Shu15] Michael Shulman.
‘Univalence for inverse diagrams and homotopy canonicity’.
In: Mathematical Structures in Computer Science 25.5 (2015): From type
theory and homotopy theory to Univalent Foundations of Mathematics,
pp. 1203–1277. doi: 10.1017/S0960129514000565 (cit. on p. 6).

[Shu16] Michael Shulman. ‘Idempotents in intensional type theory’.
In: Logical Methods in Computer Science 12.3 (2016), pp. 1–24.
doi: 10.2168/LMCS-12(3:9)2016 (cit. on pp. 22, 34).

[Shu19] Michael Shulman. ‘All (∞, 1)-toposes have strict univalent universes’.
Apr. 2019. arXiv: 1904.07004 [math.CT] (cit. on pp. 1–3, 6).

[Smy77] M. B. Smyth. ‘Effectively given domains’.
In: Theoretical Computer Science 5.3 (1977), pp. 257–274.
doi: 10.1016/0304-3975(77)90045-7 (cit. on pp. 3, 111–112).

[SP82] M. B. Smyth and G. D. Plotkin.
‘The Category-Theoretic Solution of Recursive Domain Equations’.
In: SIAM Journal on Computing 11.4 (1982), pp. 761–783.
doi: 10.1137/0211062.

[Str06] Thomas Streicher.
Domain-Theoretic Foundations of Functional Programming.
World Scientific, 2006. doi: 10.1142/6284 (cit. on pp. 123, 128).

https://doi.org/10.1007/BFB0073967
https://doi.org/10.1007/BFB0012801
https://doi.org/10.1007/978-94-009-7893-5_9
https://doi.org/10.1016/0304-3975(93)90095-B
https://golem.ph.utexas.edu/category/2011/01/topos_theory_can_make_you_a_pr.html
https://golem.ph.utexas.edu/category/2011/01/topos_theory_can_make_you_a_pr.html
https://doi.org/10.1017/S0960129514000565
https://doi.org/10.2168/LMCS-12(3:9)2016
https://arxiv.org/abs/1904.07004
https://doi.org/10.1016/0304-3975(77)90045-7
https://doi.org/10.1137/0211062
https://doi.org/10.1142/6284

169 Bibliography

[Str93] Thomas Streicher. ‘Investigations into intensional type theory’.
Habilitationsschrift. Faculty of Mathematics,
Ludwig-Maximilians-Universität München (LMU Munich), 1993.
url: https://www2.mathematik.tu-darmstadt.de/~streicher/Habil
Streicher.pdf (cit. on p. 13).

[SVV96] Giovanni Sambin, Silvio Valentini and Paolo Virgili. ‘Constructive
domain theory as a branch of intuitionistic pointfree topology’.
In: Theoretical Computer Science 159.2 (1996), pp. 319–341.
doi: 10.1016/0304-3975(95)00169-7 (cit. on p. 4).

[Swa19a] Andrew W Swan. ‘Choice, Collection and Covering in Cubical Sets’.
https://www.youtube.com/watch?v=r9KbEOzyr1g.
Talk at Homotopy Type Theory Electronic Seminar Talks (HoTTEST), online.
6th Nov. 2019. url: https://www.math.uwo.ca/faculty/kapulkin/
seminars/hottestfiles/Swan-2019-11-06-HoTTEST.pdf

(cit. on pp. 6, 78).
[Swa19b] Andrew W Swan. ‘Counterexamples in Cubical Sets’.

Talk at Mathematical Logic and Constructivity: The Scope and Limits of
Neutral Constructivism, Stockholm, Sweden. 20th Aug. 2019.
url: https://logic.math.su.se/mloc-2019/slides/Swan-mloc-2019-
slides.pdf (cit. on pp. 6, 78).

[Tai67] W. W. Tait. ‘Intensional Interpretations of Functionals of Finite Type I’.
In: The Journal of Symbolic Logic 32.2 (1967), pp. 198–212.
doi: 10.2307/2271658 (cit. on p. 123).

[Tar55] Alfred Tarski. ‘A lattice-theoretical fixpoint theorem and its applications’.
In: Pacific Journal of Mathematics 5.2 (1955), pp. 285–309.
doi: 10.2140/pjm.1955.5.285 (cit. on p. 139).

[Tay99] Paul Taylor. Practical Foundations of Mathematics. Vol. 59.
Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 1999 (cit. on pp. 4, 53).

[TvD88] A. S. Troelstra and D. van Dalen.
Constructivism in Mathematics: An Introduction. Volume II.
Ed. by J. Barwise, D. Kaplan, H. J. Keisler, P. Suppes and A. S. Troelstra.
Vol. 123. Studies in Logic and the Foundations of Mathematics.
Elsevier, 1988 (cit. on p. 56).

[Uem19] Taichi Uemura. ‘Cubical Assemblies, a Univalent and Impredicative
Universe and a Failure of Propositional Resizing’. In: 24th International
Conference on Types for Proofs and Programs (TYPES 2018).
Ed. by Peter Dybjer, José Espírito Santo and Luís Pinto. Vol. 130.
Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019, 7:1–7:20.
doi: 10.4230/LIPIcs.TYPES.2018.7 (cit. on pp. 6–7).

https://www2.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
https://doi.org/10.1016/0304-3975(95)00169-7
https://www.youtube.com/watch?v=r9KbEOzyr1g
https://www.math.uwo.ca/faculty/kapulkin/seminars/hottestfiles/Swan-2019-11-06-HoTTEST.pdf
https://www.math.uwo.ca/faculty/kapulkin/seminars/hottestfiles/Swan-2019-11-06-HoTTEST.pdf
https://logic.math.su.se/mloc-2019/slides/Swan-mloc-2019-slides.pdf
https://logic.math.su.se/mloc-2019/slides/Swan-mloc-2019-slides.pdf
https://doi.org/10.2307/2271658
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.4230/LIPIcs.TYPES.2018.7

Bibliography 170

[Uni13] The Univalent Foundations Program.
Homotopy Type Theory: Univalent Foundations of Mathematics. Institute
for Advanced Study: https://homotopytypetheory.org/book, 2013
(cit. on pp. 1–2, 7, 11, 15–16, 20–21, 23, 31, 33, 37, 50, 127, 141–142).

[VAG+] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson et al.
UniMath — a computer-checked library of univalent mathematics.
https://unimath.org. url: https://github.com/UniMath/UniMath
(cit. on p. 147).

[vdBer06] Benno van den Berg.
‘Predicative topos theory and models for constructive set theory’.
PhD thesis. Utrecht University, 2006. url:
https://staff.fnwi.uva.nl/b.vandenberg3/thesis/mythesis.pdf

(cit. on p. 6).
[vdBer11] Benno van den Berg. ‘Categorical semantics of constructive set theory’.

Habilitationsschrift. Department of Mathematics, Technical University of
Darmstadt, 2011.
url: https://staff.fnwi.uva.nl/b.vandenberg3/Habil/habil.pdf.

[VMA19] Andrea Vezzosi, Anders Mörtberg and Andreas Abel.
‘Cubical Agda: A Dependently Typed Programming Language with
Univalence and Higher Inductive Types’. In: Proceedings of the ACM on
Programming Languages 3.ICFP, 87 (2019), pp. 1–29.
doi: 10.1145/3341691 (cit. on pp. 1–3).

[Voe11] Vladimir Voevodsky.
‘Resizing Rules — their use and semantic justification’.
Talk at 18th International Conference on Types for Proofs and Programs
(TYPES), Bergen, Norway. 11th Sept. 2011.
url: https://www.math.ias.edu/vladimir/sites/math.ias.edu.
vladimir/files/2011_Bergen.pdf (cit. on pp. 3, 6, 35).

[Voe15] Vladimir Voevodsky. ‘An experimental library of formalized
mathematics based on the univalent foundations’. In: Mathematical
Structures in Computer Science 25.5 (2015): From type theory and
homotopy theory to Univalent Foundations of Mathematics, pp. 1278–1294.
doi: 10.1017/S0960129514000577 (cit. on pp. 1–3, 147).

[vOos08] Jaap van Oosten. Realizability: An Introduction to its Categorical Side.
Ed. by S. Abramsky, S. Artemov, D. M. Gabbay, A. Kechris, A. Pillay and
R. A. Shore. Vol. 152.
Studies in Logic and the Foundations of Mathematics. Elsevier, 2008.
doi: 10.1016/s0049-237X(08)X8001-2 (cit. on p. 57).

https://homotopytypetheory.org/book
https://unimath.org
https://github.com/UniMath/UniMath
https://staff.fnwi.uva.nl/b.vandenberg3/thesis/mythesis.pdf
https://staff.fnwi.uva.nl/b.vandenberg3/Habil/habil.pdf
https://doi.org/10.1145/3341691
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf
https://doi.org/10.1017/S0960129514000577
https://doi.org/10.1016/s0049-237X(08)X8001-2

Index of symbols

[] empty list, 82

0 one of the elements of the two point type 2, 11

0 empty type, 10

0U empty type in U , 12

1 one of the elements of the two point type 2, 11

1 unit type, 10

1U unit type in U , 12

2 two-element type, 11

2U two-element type in U , 12

𝛼𝑥 specified approximating family of 𝑥 in a structurally
continuous dcpo, 86

ap𝑓 (𝑒) application of 𝑓 : 𝑋 → 𝑌 to 𝑒 : 𝑥 = 𝑦, 13

𝑋 → 𝑌 type of functions from 𝑋 to 𝑌 , 10

𝑋 ↩→ 𝑌 type of embeddings from 𝑋 to 𝑌 , 20

𝑋 ≃ 𝑌 type of equivalences from 𝑋 to 𝑌 , 20

𝑋 ↠ 𝑌 type of surjections from 𝑋 to 𝑌 , 24

𝐷 𝐸
𝑠

𝑟
Scott continuous retract, 58

𝜎 ⇒ 𝜏 function type in PCF, 119

L𝑑 ⇒ 𝑒M single step function, 108

base basepoint of the circle, 15

𝛽 canonical map from lists to subsets, 82

Index of symbols 172

⊥ least element of a poset, 54

J𝜎K interpretation of a PCF type as a pointed dcpo, 121

J𝑡K interpretation of a PCF term as an element of a pointed
dcpo, 122

𝑝 • 𝑞 composition of identifications, 11

𝐴 ∩ 𝐵 intersection of two subsets, 27

𝑔 ◦ 𝑓 function composition, 10

𝑥 :: 𝑙 adding an element to the start of a list, 82⋃
I union of a family of ideals, 98

𝐴 ∪ 𝐵 union of two subsets, 27

D type of dyadics, 101

↓𝑏 principal ideal of a basis element 𝑏, 98

V-DCPOU ,T type of V-dcpos with carriers in U and orders taking
values in T , 54

↠

𝛽 𝑥 type of basis elements way below 𝑥 (or its associated
family), 92

Δ𝑥,𝑦 map sending a proposition 𝑃 to the supremum of 𝛿𝑥,𝑦,𝑃 ,
135

𝛿𝑥,𝑦,𝑃 family indexed by 1 + 𝑃 sending the left component to 𝑥
and the right component to 𝑦, 130

𝐷∞ Scott model of the untyped _-calculus, 115

𝐷∞ bilimit of a directed diagram of dcpos with embedding-
projection pairs, 70

↓𝛽 𝑥 type of compact elements below 𝑥 (or its associated fam-
ily), 95

𝛼 ↓ 𝑥 initial segment of an ordinal, 141

𝑒≈(𝑥) subset of elements related to 𝑥 via the equivalence rela-
tion ≈, 37

𝐸𝐷 exponential of (pointed) dcpos, 67

∅ empty subset, 27

Y𝑖,∞ embedding from 𝐷𝑖 to 𝐷∞, 72

173 Index of symbols

𝑥 = 𝑦 identity type, 11

𝑥 ≡ 𝑦 definitional (judgemental) equality, 11

𝑥 :≡ 𝑦 making a definition, 11

[unit of the lifting monad, 59

[(𝑥) equivalence class of 𝑥 , 38

∃𝑥 :𝑋𝑌 (𝑥) existential quantifier, propositional truncation of the
type Σ𝑥 :𝑋𝑌 (𝑥), 23

𝑓 # Kleisli extension of a map 𝑓 : 𝑋 → LV (𝑌) with respect
to the lifting monad, 61

𝐹 (U) the propositional truncation of a type in U lives in 𝐹 (U),
35

fib𝑓 (𝑦) fibre of 𝑓 : 𝑋 → 𝑌 at 𝑦 : 𝑌 , 19

Fin(𝑛) standard finite type with exactly 𝑛 elements, 82

fix fixed point combinator in PCF, 119

id identity map, 10

V-Idl(𝐵, ≺) roundedV-ideal completion of an abstractV-basis (𝐵, ≺),
98

ifz conditional in PCF, 119

im(𝑓) image of a map 𝑓 , 24

𝑥 ∈ 𝐴 membership of a subset, 27

V-Ind(𝑋) V-ind-completion of a preorder 𝑋 , 84

V-Ind(𝐷)/≈ poset reflection of the preorder V-Ind(𝐷), 89

inl first coprojection into the binary coproduct, 11

inr second coprojection into the binary coproduct, 11

𝑝−1 inverse of an identification, 11

] base type of natural numbers in PCF, 119

is-defined first projection from the lifting of a type, 60

𝐼𝑥 type indexing the approximating (resp. compact) family
of 𝑥 in a structurally continuous (resp. algebraic) dcpo
(see also p. 91), 86

Index of symbols 174

k k-combinator in PCF, 119

^𝑥 specified compact family of 𝑥 in a structurally algebraic
dcpo, 91

^𝑥𝑖, 𝑗 auxiliary function for defining 𝜌𝑖, 𝑗 : 𝐷𝑖 → 𝐷 𝑗 , 72

LV (𝑋) lifting of a type 𝑋 with respect to a universe V , 59

LV (𝑓) functorial action of the lifting on a map 𝑓 : 𝑋 → 𝑌 , 62

Lsd(𝑋) lifting of a type 𝑋 with respect to the semidecidable
propositions, 126

left left constructor of the type of dyadics, 101

𝛼 ≲ 𝛽 cofinality relation, 84

liftU ,V embedding into higher type universe, 12

𝑥 ≪ 𝑦 way-below relation, 80

𝑏 ≪𝛽 𝑐 way-below relation restricted to a basis 𝛽 , 104

middle middle constructor of the type of dyadics, 101

` (𝑓) least fixed point of a Scott continuous endomap 𝑓 on a
pointed dpco, 68

N type of natural numbers, 10

N⊥ the set N + 1 with the flat order, 59

¬ negation, 26

ΩU type of subsingletons in U , 15

Ω¬¬U type of ¬¬-stable propositions in U , 29

Ω¬¬-ResizingU ,V assertion that Ω¬¬U is V-small, 34

Ω¬¬-ResizingU assertion that Ω¬¬U is U-small, 34

Ω-ResizingU ,V assertion that ΩU is V-small, 34

Ω-ResizingU assertion that ΩU is U-small, 34

OrdV ordinal of ordinals in a univalent universe V , 141

Π𝑥 :𝑋𝑌 (𝑥) dependent product type, 10

𝜋𝑖,∞ projection from 𝐷∞ to 𝐷𝑖 , 71

|−| unit of the propositional truncation, 23

175 Index of symbols

∥−∥ propositional truncation, 23

|−|𝑣 unit of the Voevodsky propositional truncation, 36

∥−∥𝑣 Voevodsky propositional truncation, 36

𝑋 + 𝑌 binary coproduct type, 10

pr1 first projection, 10

pr2 second projection, 10

𝛼 ≺ 𝛽 well-order of an ordinal, 141

pred predecessor function on the natural numbers in PCF, 119

Prop special type of propositions in the Calculus of Construc-
tions and Coq, 5

Propositional-ResizingU ,V propositional resizing of propositions in U to V , 34

PT (𝑋) type of T -valued subsets of 𝑋 , 27

𝑋/≈ set quotient of 𝑋 by the equivalence relation ≈, 37

𝑠 𝑅𝜎 𝑡 logical relation used to prove computational adequacy,
123

refl reflexivity, constructor of the identity type, 11

𝜌𝑖, 𝑗 auxiliary map from 𝐷𝑖 to 𝐷 𝑗 for defining the embedding
Y𝑖,∞ : 𝐷𝑖 → 𝐷∞, 72

right right constructor of the type of dyadics, 101

s s-combinator in PCF, 119

S1 circle (as a higher inductive type), 15

Σ𝑥 :𝑋𝑌 (𝑥) dependent sum type, 10

𝑓 ∼ 𝑔 pointwise equality of functions, 11

{𝑥} singleton subset with 𝑥 as its only member, 27⊔
𝛼 supremum of a directed family 𝛼 , 53

U ⊔ V least upper bound of two universes, 11⊔
≈ map from V-Ind(𝐷)/≈ to 𝐷 induced by taking directed

suprema, 89

𝑥 ⊏ 𝑦 strictly below relation, 132

Index of symbols 176

𝑥 ⊑ 𝑦 order relation of a preorder, 52

𝑏 ⊑𝛽 𝑐 order relation restricted to a basis 𝛽 , 105

𝑥 ⊑V 𝑦 V-valued order relation of a locally small 𝛿V-complete
poset, 135

★ unique element of the unit type, 11

sub𝑖 subtree of an indexedW-type at index 𝑖 , 48

𝐴 ⊆ 𝐵 inclusion of subsets, 27

succ successor function on the natural numbers in PCF, 119

sup constructor for (indexed)W-types (see also p. 44), 43

T type universe, 27

T(𝑆) total space of a subset 𝑆 , 82

𝑋 × 𝑌 binary cartesian product of types, 10

𝐷 × 𝐸 binary cartesian product of (pointed) dcpos, 65

to-fib𝑖 map fromW𝑠,𝑡 (𝑖) to the fibre of 𝑡 at 𝑖 , 48

transport𝑌 (𝑒,𝑦) transport of 𝑦 : 𝑌 (𝑥) along 𝑒 : 𝑥 = 𝑥′, 13

𝑠 ⊲ 𝑡 small-step relation of PCF, 120

𝑠 ⊲̃ 𝑡 small-step pre-relation of PCF, 119

𝑠 ⊲∗ 𝑡 reflexive transitive closure of the small-step relation of
PCF, 121

𝑠 ⊲𝑘 𝑡 𝑘-step reflexive transitive closure of the small-step rela-
tion of PCF, 126

U type universe, 12

U+ successor universe, 11

U𝑖 𝑖
th type universe, 12

𝑛 numeral in PCF, 119

V type universe, 12

value second projection from the lifting of a type, 60

∨ logical or, 26

𝑥 ∨ 𝑦 binary join, 110

177 Index of symbols

∨
𝛼 supremum of a semidirected family 𝛼 , 57

W type universe, 12

W𝐴,𝐵 W-type with parameters 𝐴 : U and 𝐵 : 𝐴→ V , 43

W𝑠,𝑡 indexed W-type over 𝐼 with parameters 𝑡 : 𝐴→ 𝐼 and
𝑠 : (Σ𝑎:𝐴𝐵(𝑎)) → 𝐼 , 44

Z type of integers, 15

zero constant for the natural number 0 in PCF, 119

Index

adjoint, 85, 86, 89
adjunct, 85
Agda, see proof assistant
algebraicity, 91, 95, 102, 112, 117

structural, 91, 95, 97, 117
of the bilimit, 107

algorithm, 3, 152
antisymmetry, 52
apartness relation, 153
approximable relation, 4, 5
approximating family, 86
approximation, 85

basis, 92, 99, 103, 106, 112, 152
abstract, 4, 5, 97, 102, 103
compact, 95, 100, 106, 112, 117
for the bilimit, 107
for the exponential, 110
for the lifting, 96
for the powerset, 96
for the type of subsingletons, 96

for the bilimit, 107
for the exponential, 111, 112

bilimit, 70, 106–108, 115
embedding, 72
embedding-projection pair, 73
locally small, 77
projection, 71

bisimilarity, 78

Calculus of Constructions, 10
choice

axiom of, 30, 89, 91
axiom of countable, 5, 30, 78, 126

global, 29
circle, 15, 20
cofinality, 84

bi-, 86, 89, 91
coinduction, 78
colimit, 70, 76
combinator, 119
compact family, 91
compactness, 81, 102, 134

in the lifting, 81
in the powerset, 83
in the type of subsingletons, 81
least element, 81
of binary joins, 81
of single step functions, 109

computational adequacy, see Scott
model of PCF

constant, 16, 25
constructivity, 2–3, 5, 28–31, 58, 78, 125,

129, 152
continuity, see Scott continuity

of a dcpo, 86, 91, 92, 112, 152
pseudo-, 89, 91, 112
structural, 86, 91, 92
of the bilimit, 107

contractibility, 15, 31
Coq, see proof assistant
corestriction, 24
cumulativity, 12
Curry–Howard, 26
CZF, 3, 6, 7

data, 14
dcpo, 5, 53, 131, 138

179 Index

free pointed, see lifting
isomorphism, 58, 104, 106, 117
locally small, 54, 88, 93, 94, 112
of partial elements, see lifting
of subsets, 55
of subsingletons, 55
pointed, 54
product, 65, 77, 149
small, 6

decidability, 27, 127, 152
of equality, 27, 58, 126, 127, 129,

137, 138
weak, 27

Dedekind real, 101, 137
deflation, 69
delay monad, 78
𝛿V -completeness, see poset
density, 102
directed complete poset, see dcpo
directedness, 53
directification, 110
domain theory, 1, 4–5

synthetic, 5
duality, 139
dyadics, 101, 112

embedding, 20
embedding-projection pair, 70, 83, 114
endpoints, 102
equivalence, 20
equivalence relation, 37

respect, 38
excluded middle, 29, 35, 58, 130, 132,

133, 137
weak, 29, 35, 58, 129, 132

existence
specified, 23, 91
unspecified, 23, 91, 138

exponential, 67, 94, 108, 113, 117, 118
extensionality

function, 22
naive function, 14
propositional, 18

fibre, 19, 48
finiteness

Bishop, 143

Kuratowski, 82, 83
induction, 82

fixed point, see least fixed point
formal topology, 4, 5
formalisation, 1, 4, 77, 147–150

statistics, 149–150
fundamental theorem (of the logical

relation), 125

Hedberg’s
Lemma, 16
Theorem, 28

higher inductive type, 2, 15
homotopy type theory, see univalent

foundations
HoTT, see univalent foundations
HoTT/UF, see univalent foundations

ideal, 98
completion, 98, 102, 103
principal, 98
roundedness, 98
union, 98

image, 24
Ind-completion, 84
infimum, 140
information system, 4, 5
inhabited, 24, 29
interpolation, 87–88, 97

in the basis, 93
invertibility, 13, 20–21
isomorphism (of dcpos), 105

join
binary, 81, 82, 110
finite, 82, 110

Kleisli extension, see lifting

_-calculus, 113
least fixed point, 68, 122
left-cancellability, 13
lifting, 59, 81, 96, 118, 125, 140

as a pointed dcpo, 62, 64
free pointed dcpo, 63, 65
free subsingleton complete poset,

64
functor, 62

Index 180

Kleisli extension, 61, 63
monad, 61, 78
partial order, 62, 64

limit, 70, 74
limited principle of omniscience, 30, 59
locale, 152
logic, 26
logical relation, 123
lower set, 98
LPO, see limited principle of

omniscience

Martin-Löf Type Theory, 10
maximality, 140
MLTT, see Martin-Löf Type Theory
monotonicity, 56

nonemptiness, 29, 29
¬¬-stability, 29, 29, 137

𝜔-completeness, 5, 55, 59, 78, 126
ordinal, 130, 141–143, 148

partial, 78
element, see lifting
map classifier, 59

Pataraia’s Lemma, 139
path, 11

action on, 13
induction, 11

PCF, see also W-type, see also Scott
model of PCF, 119

fixed point, 118
functional, 125
total, 125

numeral, 119, 123, 125
operational semantics, 119, 125
small-step relation, 119
terms, 119
types, 119
base, 118, 119, 123, 125, 127
function, 119

Π-compactness, 46
poset, 52

bounded complete, 131, 138, 152
𝛿V -complete, 129
locally small, 135

positive, see positivity
small, 136

𝛿V -complete, 130
directed complete, see dcpo
nontrivial, 129, 131, 135, 137, 138
reflection, 89, 91

positivity, 129, 134, 134, 136–138
in the powerset, 134
in the type of subsingletons, 134

powerset, 27, 83, 96
predicativity, see also resizing, 3–4, 6–7,

129, 153
preorder, 5, 52
programming language, 1, 113
proof assistant, 1

Agda, 1, 4, 7, 77, 147
Coq, 1, 10, 147

property, 14, 86, 89, 91
proposition, see subsingleton
propositional truncation, 22–23, 35–37,

41, 53, 62, 71, 91, 120, 148
Voevodsky, 36

pseudocontinuity, see continuity

quotient, see set quotient

R-structure, 112
rational number, 101
reflexive transitive closure, 121, 126
reflexivity, 52, 100, 106
resizing

axioms and rules, 6
in models, 6
of the type of propositions, 34, 136
propositional, 3, 34, 35–37, 129, 144,

153
retract, 21, 135–137

Scott continuous, 58, 83, 88, 94, 105
retraction, see retract
Rezk completion, 91

Scott continuity, 56
Scott model

of PCF, 1, 118, 121–122, 125, 147,
148

computational adequacy, 1, 118,
123, 125, 126, 148

181 Index

soundness, 1, 118, 123, 126, 148
of the untyped _-calculus, 1, 113

section, see retract
semantics, 1, 113, 118
semidecidability, 28, 125, 127
semidirectedness, 53
set, 15
set quotient, 37, 130, 141, 148

effective, 41
existence of, 40
small, 42

induction, 38, 40
universal map, 38
universal property, 39

set replacement, 42, 130, 142, 144, 148
set-generated, 112
setoid, 5
simulation, 141
single step function, 108
single-valuedness, 127
singleton, see contractibility
smallness, 6, 32, 92, 112, 129, 138

for maps, 33
local, 32

soundness, see Scott model of PCF
strictly below relation, 132

in the powerset, 132
in the type of subsingletons, 132

strictness, 57
subset, 27, 143–146

covered, 143
empty, 27
inclusion, 27
intersection, 27
membership, 27
singleton, 27
small, 143
total space, 82
union, 27

subsingleton, 14
closure properties, 16–18
completeness, 64
free, see lifting

subtree, 48
subtype, 21
sup-completeness, 109

sup-lattice, 131, 138, 139
supremum

as a map from the ind-completion
to a dcpo, 84

directed, 53
of ordinals, 130, 141–143
of subsets, 143–146
semidirected, 57
subsingleton, 57, 108

surjection, 24
induction, 24

Tarski’s Theorem, 130, 139
topology, 56, 152
total space, see subset
transitivity, 52
transport, 13
trichotomy, 102
truncation, see propositional truncation
truth value, see subsingleton
type

W-, see W-type
coproduct, 10
dependent product, 10
dependent sum, 10
empty, 10
function, 10
identity, 2, 10, 12–14
inductive, 10
of ¬¬-stable propositions, 29, 29
of lists, 82, 110
of natural numbers, 10, 137
of subsets, see powerset
of subsingletons, 15, 81, 96
product, 10
standard finite, 82
unit, 10
universe, 11–12

TypeTopology, 147

uniformity principle, 6
UniMath, 147
univalence, 2, 31, 31, 138, 141
univalent foundations, 1
universe, see type universe

embedding, 31

Index 182

parameters, 4, 7, 54, 67, 71, 114, 115,
147

upper bound, 53
least, 53

W-type, 43
encoding PCF types, 44
indexed, 44, 126, 127, 148

encoding PCF terms, 45, 127
way-below relation, 80, 83, 104–105

in the rounded ideal completion, 99
well-founded

relation, 141
tree, 43

Zorn’s Lemma, 140

	Abstract
	Acknowledgements
	Contents
	Introduction
	Related work
	Domain theory
	Predicativity

	Outline and summary of contributions
	Summary of contributions
	Publications

	Univalent foundations
	Type universes
	Operations on universes
	Closure properties

	Identity types and function extensionality
	Subsingletons, sets and (higher) groupoids
	Hedberg's Lemma
	Closure properties
	Propositional extensionality

	Embeddings, equivalences and retracts
	Function extensionality revisited
	Propositional truncation, images and surjections
	Propositional truncation
	Images and surjections
	Mapping from propositional truncations into sets

	Logic, (semi)decidability and constructivity
	Subsets and powersets
	Decidability
	Constructivity

	Univalent universes
	Small and locally small types
	Impredicativity: resizing axioms
	Quotients, replacement, and propositional truncations revisited
	Propositional truncations and propositional resizing
	Set quotients from propositional truncations
	Propositional truncations from set quotients
	Set replacement

	Indexed W-types
	Basic definitions and examples
	Indexed W-types with decidable equality
	Proving indexed W-types to have decidable equality

	Notes

	Basic domain theory
	Introduction
	Directed complete posets
	Scott continuous maps
	Lifting
	Products and exponentials
	Bilimits
	Notes

	Continuous and algebraic dcpos
	Introduction
	The way-below relation and compactness
	The ind-completion
	Continuous dcpos
	Pseudocontinuity
	Algebraic dcpos
	Small bases
	Small compact bases
	Examples of dcpos with small compact bases
	The rounded ideal completion
	The rounded ideal completion of a reflexive abstract basis
	Example: the ideal completion of dyadics

	Ideal completions of small bases
	Ideal completion with respect to the way-below relation
	Ideal completion with respect to the order relation

	Structurally continuous and algebraic bilimits
	Exponentials with small (compact) bases
	Single step functions
	Exponentials with small compact bases
	Exponentials with small bases

	Notes

	Applications in semantics of programming languages
	Scott's D-infinity model of the untyped lambda-calculus
	Scott's model of the programming language PCF
	PCF and its operational semantics
	The Scott model of PCF
	Soundness and computational adequacy
	Semidecidability and PCF terms of the base type

	Notes

	Predicativity in order theory
	Introduction
	Large posets without decidable equality
	delta_V-complete posets
	Nontrivial and positive posets
	Retract lemmas
	Small completeness with resizing

	Maximal points and fixed points
	A predicative counterexample
	Small suprema of small ordinals

	Families and subsets
	Notes

	Formalisation
	Overview
	Future work
	Statistics

	Conclusion
	Summary
	Future work

	Bibliography
	Index of symbols
	Index

