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ABSTRACT 

 

Recently, excellent properties have been realised from structures formed by carbon 

nanotubes. This propelled their use as nanoscale electronic devices in the information 

technology industry. The discovery of carbon nanotubes has stimulated interest in carbon-

based electronics. Metal-Oxide-Semiconductor systems (MOS) are used to model charge 

transport within these carbon structures. Schrodinger‟s equation is solved self-consistently 

with Poisson‟s equation. The Poisson equation, which defines the potential distribution on the 

surface of the nanotube, is computed using a two-dimensional finite difference algorithm 

exploiting the azimuthal symmetry. A solution to the Schrodinger‟s equation is required to 

obtain the wavefunctions within the nanotube model. This is implemented with the scattering 

matrix method. The resulting wavefunctions defined on the nanotube surface are normalised 

to the flux computed by the Landauer equation. A novel implementation of the Schrodinger-

Poisson solver for providing a solution to a three dimensional nanoscale system is described. 

To avoid convergence problems, an adaptive Simpson‟s method is employed in the model 

devices. Another main contribution to this field is the highlighting of the differences in the 

output characteristics of carbon nanotube- and graphene-based devices. In addition, the 

source and drain contacts that give an optimum device performance are identified. The 

limitation of this model is that quantised conductance appears on making contact to the 

nanotube ends. Electron transport in carbon nanotubes can be studied using non-contacting 

means. A new approach is to induce current in the nanotubes using microwave energy. A 

resonator-based measurement method is used to examine the electrical properties of the 

nanotubes. Remarkably, the nanotubes appear to have the smallest sheet resistance of any 

non-superconducting material. The possibility of a ferromagnetic carbon nanotube is 

investigated due to the remarkable screening properties observed. Measurements of the 

magnetisation as a function of the applied magnetic field are conducted using a vector 

vibrating sample magnetometer. The morphology and microstructure of the nanotubes are 

observed using scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM), respectively. Carbon nanotubes can be contaminated with metal particulates during 

growth. These impurities can modify charge transport in these carbon structures.  
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Chapter 1  

Introduction 

 

 

1.1 Carbon Structures 

 

Over the past several decades, the density of devices on a microprocessor has been doubling 

every three years. Metal-oxide-semiconductor field-effect transistors (MOSFETs) are now 

approaching their scaling limit. To avoid scaling issues the channel of a MOS device could be 

replaced with a nanoscale structure. A carbon nanotube (CNT) can serve as the channel of a 

MOS device because it is a nanoscale structure with excellent electronic properties.  

 

In the early nineties, Sumio Iijima brought CNTs into the awareness of the scientific 

community [1]. Since then, there has been rapid progress in understanding their electronic 

properties. CNTs are cylindrical structures of nanometric size, based on a hexagonal lattice of 

carbon atoms. Before the electronic properties of CNTs can be understood, the properties of 

the carbon atom must first be studied.  

 

There are six electrons inside a carbon atom, which orbit the nucleus in shells. Two electrons 

are in the inner shell while the other four are in the outer shell. The state of these outer 

electron shells determines the stability of the carbon atoms. A stable arrangement is achieved 

when the outer electron shell is full. Atoms gain, lose, or share electrons with neighbouring 

atoms so that all the atoms involved end up with complete outer shells. As they share 

electrons in a reaction, they form bonds between each other, leading to molecules and 

compounds formation. 
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Fig. 1.1 shows different crystalline forms of carbon. These crystalline forms of carbon are 

called allotropes, which include diamond, graphite, buckyball, graphene and carbon nanotube 

[2]. 

 

 

 

 

Figure 1.1: Some allotropes of carbon [2]. 

 

Diamond is the hardest natural substance on earth due to the strong bonding between the 

carbon atoms. Each carbon atom in a diamond molecule is joined to four others in a 

tetrahedron structure. The bonds have similar strength and a regular pattern through the 

molecule.  

 

Graphite is a layered compound, the carbon atoms on each layer are arranged in a hexagonal 

lattice with separation of         and the distance between the planes is        .   

 

Fullerene is an allotrope of carbon with a structure similar to that of graphite but the carbon 

atoms are linked in hexagonal and pentagonal patterns. The surface of a fullerene molecule 

looks like a soccer ball, which gave it the name buckyball.  
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Graphene is a flat monolayer of carbon atoms, tightly packed into a two-dimensional 

honeycomb lattice [3]. It is the basic building block for graphitic materials of all other 

dimensionalities. Initially, graphene was presumed not to exist in free state but Novoselov 

et.al [3] managed to extract graphene from bulk graphite in 2004. Graphene has the potential 

to be the building block for next generation nanoelectronics because of its unique electronic 

properties.  

 

CNT is the main allotrope of carbon studied in this work. CNTs are categorized as single-

walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs). A SWNT consists of a 

single graphene sheet rolled up to form a tube while a MWNT consists of multiple graphene 

sheets.  

 

In the next section, the properties of carbon that make them useful in electronics application 

are discussed.  

 

 

 

1.2 Carbon Electronics 

 

The enormous growth in the information technology industry has been based on 

developments in charge transport of semiconductor devices. The most important device is the 

MOSFET and its development has been based on planar technology and the oxidation of 

silicon. The mobility of the charge carriers in the channel region is one of the most important 

parameters that determine the performance of a MOSFET. High mobilities are obtained when 

the effective mass of the charge carriers is small and the mean time between their collisions is 

long. 

 

Recently, devices based on carbon have attracted considerable interest due to the remarkable 

properties of structures formed from carbon nanotubes [4][5][6]. Initially, CNTs were 

extensively studied as they could be either metallic or semiconducting. Experimentally, 



 

Chapter 1. Introduction 

 

 

 

 

 

 

Page 4 of 179 

 

electrons were found to travel along the CNTs ballistically [7]. In metallic CNTs, the energy 

bandgap is zero and electrons travel at the Fermi velocity             [8].  

 

Stanford University developed a compact model that can be used to investigate the 

performance of carbon nanotube field-effect transistors (CNFETs) [9][10][11].  This model 

accounts for practical issues such as scattering in the channel, electron-electron interactions, 

effects of source/drain extension region, and charge screening. In addition, the model can be 

used to examine the frequency response and the circuit compatibility of interconnected 

CNFETs [12][13][14][15].  

 

There is a great interest in CNTs because the prototype structures of carbon nanotube field-

effect transistors displayed excellent performance. Although, the performance of CNFETs is 

comparable to that of silicon-based MOS transistors, it is still difficult to control the energy 

bandgap of the nanotubes. The bandgap of a CNT is dependent on its diameter and chirality, 

which is uncontrollable during growth. This limits the use of CNFETs in integrated circuit 

(IC) applications. 

 

Alternatively, a semiconducting graphene structure such as a graphene nanoribbon can 

replace the CNT structure in the MOS device. The electron mobility   for graphene can 

exceed              . Graphene has an advantage over CNT because it can be patterned 

using standard nanoelectronics lithography. It has been reported that graphene could be easily 

produced using sticky tape [16]. When tailored to less than       wide, graphene 

nanoribbons open a bandgap. This bandgap is due to electron confinement. The bandgap can 

be varied by simply changing the edge types or width of the nanoribbon, which makes it 

possible to use graphene as the channel of MOSFETs.  

 

Various techniques have been employed to model charge transport within CNTs and 

graphene-based devices. These techniques include non-equilibrium green function (NEGF), 

atomistic NEGF, and Schrodinger-Poisson solver. These techniques are based on the self-

consistent simulation scheme, and they adequately treat electron transport within the 

structures when they are coupled to end contacts. These modelling techniques are now 

reviewed.  
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In the NEGF approach [17][18][19], the model device is described by a Hamiltonian 

matrix   ). The self-consistent potential is incorporated into this Hamiltonian matrix, which 

is coupled to the end contacts (Source/Drain contacts). The self-energy matrices,    and    

are used to describe the coupling between the channel and the end contacts. The contacts are 

characterised by the left and right Fermi energies     and    , respectively. Incoherent charge 

transport can be described using the self-energy       [20]. In nanoscale structures such as 

CNTs, electrons are assumed to move in the active region coherently and unscattered [21]. 

They operate in the ballistic transport regime where the scattering length is much greater than 

the device length. In this case, the self-energy       can be ignored in the Hamiltonian matrix. 

Using these parameters                  , the transmission coefficient, the device charge 

density and the terminal currents are computed by performing numerical integrations over the 

energy space.  

 

The network for computational nanotechnology at Purdue University developed FETtoy, 

which is a set of MATLAB scripts used to compute the ballistic output characteristics of 

CNFETs [22][23][24][25]. FETtoy employs the NEGF approach for quantum transport and it 

assumes a cylindrical geometry for CNT-based devices [26]. Although, this model considers 

only the lowest subband, it can be simply modified to include multiple subbands. 

 

The atomistic NEGF [27][28] method can be used to examine the impact of bandstructure 

effects on carrier transport in nanoscale devices such as CNFETs. The first step is to identify 

a set of atomistic orbitals that describe the fundamentals for carrier transport. This basis set is 

then used to derive the Hamiltonian matrix for the isolated channel. The size of the 

Hamiltonian matrix depends on the number of carbon atoms in the channel. The tight-binding 

approximation [29] is used to describe the interaction between the carbon atoms, and the 

nearest-nearest neighbour coupling is included in this approximation. The self-energy 

matrices for the end contacts are obtained from the channel‟s Hamiltonian matrix. 

 

The NEGF approach is numerically intensive and it is difficult to develop simple intuitive 

description of the device physics. Therefore, a simpler modelling technique based on ballistic 

transport assumption is required. Electron transport through nanoscale devices is more 
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affected by quantum mechanical phenomena [4][30]. In this work, the Schrodinger-Poisson 

solver is the technique employed to model charge transport within CNTs and graphene-based 

devices. This solver is a full quantum mechanical transport model that describes the wave-

like behaviour of the electrons in the ballistic transport regime. This modelling technique is 

based on a self-consistent solution of the Schrodinger and Poisson equations.  

 

The solution to the Poisson‟s equation is obtained using a two-dimensional finite difference 

method [31]. The finite difference method is based on approximations that allow the 

differential equations to be replaced by finite difference equations. These finite difference 

equations are algebraic in form and they relate the value of the dependent variable at a point 

in the solution region to some neighbouring point‟s value. A detailed procedure of the finite 

difference method is described in Appendix 1.  

 

The solution to the Schrodinger‟s equation is obtained using the scattering matrix method 

[32]. In this approach, the device regions are characterised by the transmission and the 

reflection of incoming waves from both ends of the device. The knowledge of the overall 

transmission coefficient is then used to compute the charge density in the device. In 

Appendix 2, the scattering matrix method is described in detail.  

 

Successful device modelling requires various parameters to be determined experimentally.  

Researchers in this field have employed a range of techniques to determine the transport 

parameters. Connecting electrodes to the nanotube ends is the most common experimental 

technique used to detect electric signals through a nanotube.  However, difficulties arise due 

to contact effects in low-dimensional systems. The concepts of bulk device physics do not 

simply apply to low dimensionality structures, leading to unusual device performance when 

electrodes are attached. For instance, the contact interface realised in a CNFET device could 

introduce strain in the CNT used as the channel. This can lead to strain-induced bandgaps, 

which will influence the electronic properties of the CNT.   

 

In this thesis, a contactless measurement technique is investigated, which involves inducing 

current in the nanotubes using microwave energy. In the course of these measurements, 

CNTs were found to show remarkable screening properties.  Further experimental work 
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showed that the CNTs also had magnetic properties as observed by other workers but without 

satisfactory explanation.   

 

 

1.3 Thesis Outline 

 

The aim in this thesis is to provide a detailed study of electron transport within CNTs. This 

thesis builds on previous work that has been carried out on CNTs [4]. At the initial stage of 

this work, electron transport in a CNT-based MOS transistor using a coupled Schrodinger-

Poisson solver is simulated. In this case, metallic contacts are used to terminate the nanotube 

ends.  

 

Simulation results show that the CNT device performance is influenced by these metallic 

contacts. Therefore, other ways of examining electron transport in a CNT were investigated. 

One of the possible ways is to induce current in the CNT using microwaves and then examine 

the microwave loss.  

 

Due to the screening properties observed in the microwave experiment, the possibility of a 

ferromagnetic CNT is investigated. The experimental analysis suggests that an additional 

feature of a CNT is its strong magnetic nature. Based on this suggestion, a CNT could serve 

as the main building block for future magneto-electronic device.  The structure of this thesis 

is as follows: 

 

 

 Modelling Charge Transport in Carbon Nanotubes using a Coupled 

Schrodinger-Poisson Solver (Chapter 2) 

 

Chapter 2 of this thesis describes the simulation of electron transport in a semiconducting 

CNT by solving self-consistently a coupled Poisson and Schrodinger equations using a finite 

difference technique and a scattering matrix method, respectively. The performance of the 

CNT-based device is analysed from the conduction band profile, the carrier concentration 
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along the nanotube length, the transmission probabilities for electrons and the current-voltage 

characteristics of the device. 

 

Since the CNT ends are terminated with metallic contacts, there is a Schottky barrier at the 

CNT/contact interface, and the on-current of the device depends on the barrier height. 

Therefore, the role of the CNT/metal interface in the performance of a CNFET device is 

examined. Finally, the type of metal contact that gives the optimum CNFET performance is 

identified.  

 

 

 Comparison of the Current-Voltage Characteristics of MOS Devices Based 

on Carbon Nanotubes and Graphene (Chapter 3) 

 

In Chapter 3, a MOS structure based on a graphene nanostrip is modelled and its performance 

is compared to that of a CNFET device. The Schrödinger-Poisson solver is employed to 

examine the electronic properties of a semiconducting graphene nanostrip.   

 

A tight-binding method is used to obtain the energy bandstructure in graphene. A three-

dimensional (3D) simulation of the graphene nanostrip field-effect transistor (GFET) is 

performed using a self-consistent solution of Schrödinger and Poisson equations. Also, the 

on-state of a GFET is compared to that of a CNFET, and the differences in their output 

characteristics highlighted.    

 

 

 Experiment – Contactless Measurements of Electron Transport in Carbon 

Nanotubes (Chapter 4) 

 

In Chapter 4, a non-contact experiment to study electron transport within CNTs is performed. 

In this experiment, current is induced in the CNTs using microwave energy. A sample of 

CNTs is inserted into the cavity of a hairpin resonator, and the change in the internal 

properties of the resonator is analysed.  



 

Chapter 1. Introduction 

 

 

 

 

 

 

Page 9 of 179 

 

 

Ferromagnetism in CNTs is investigated because the CNTs sample screens the applied 

magnetic field. The ferromagnetic properties of the CNTs are examined using vibrating 

sample magnetometer. Morphology and microstructural studies are conducted on the CNTs 

sample to confirm its composition.  

 

 

 3D Electromagnetic Simulation of Hairpin Resonator for the Microwave 

Characterisation of Carbon Nanotubes Sample (Chapter 5) 

 

In Chapter 5, the experiment described in Chapter 4 is simulated using COMSOL 

multiphysics. A 3D modelling of tightly packed carbon nanotubes in a hairpin resonator is 

described. Conductivity of the sample is an input parameter in this simulation. The average 

conductivity of a CNT is derived starting from the density of states calculation.  

 

The magnitude of field screening is examined from the shift in the resonant frequency of the 

hairpin resonator by introducing different conductivities. Simulation results show that the 

sample only screens when its conductivity is very high          . Finally, the broadening 

of the spectral response bandwidth of the hairpin resonator when the sample is introduced 

into its cavity is examined.  

 

 

 Conclusions and Future Work (Chapter 6) 

 

This chapter is used to summarise the work carried out in this project. The observations made 

from the AC and DC studies conducted on CNTs are discussed. The simulation and 

experimental results are compared to other work that has been done in this field. In the work, 

it was observed that CNTs have intriguing electronic and magnetic properties. One of the 

suggestions for future work is to use a CNT as the building block of a magneto-electronic 

device.  
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Chapter 2  

Modelling Charge Transport in Carbon Nanotubes using a Coupled 

Schrodinger-Poisson Solver 

 

 

 

2.1 Introduction 

 

Carbon Nanotubes (CNTs) are one-dimensional nanostructures, which have been extensively 

explored from technological perspectives. Few semiconductor companies such as IBM, 

Fujitsu and other research institutes have actually used CNTs to build prototype nanodevices 

such as carbon nanotube field-effect transistors (CNFETs) [1][2]. They were able to construct 

CNFET devices and build the logic circuits on a wafer scale [3][4]. Numerical simulations 

are used to explain the engineering issues of the prototype CNFETs, to understand their 

operation, explore what controls their performance, and explore ways to improve the 

transistors‟ performance.  

 

In this chapter, the electronic properties of a CNFET are investigated. The simulation 

technique employed is based on a numerical algorithm employed by John et. al [5]. It relies 

on a self-consistent solution of the Schrodinger and Poisson equations to compute the 

conduction band profile and the charge density in the device. Using the finite difference 

method, a two-dimensional Poisson equation is solved to obtain the electrostatic potential in 

the device. Simultaneously, a one-dimensional Schrodinger equation is solved using the 

scattering matrix method. 
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Knowledge of the CNT bandstructure is required for this simulation method. The CNT 

bandstructure is obtained by folding the two-dimensional graphene bandstructure onto a one-

dimensional Brillouin zone of the CNT. In the following section the bandstructure calculation 

starting from the analysis of a single layer of graphene strip is performed.  

 

 

 

2.1.1 Graphene 

 

Graphene is made up of carbon atoms that are arranged in a planar hexagonal lattice structure 

[6]. Each carbon atom has four electrons in the outer shell three of which hybridize to form 

the directed orbitals that result in the hexagonal lattice structure. The single electron 

remaining occupies the pi-orbital that sticks out of the plane. All the single electrons from the 

individual carbon atoms are free to move around in the plane, and they are responsible for the 

electronic properties of graphene.  

 

The bandstructure of graphene was obtained using a tight-binding Hamiltonian, which 

describes the movement of electrons along the hexagonal lattice structure of graphene [6].  

 

 

Bandstructure of Graphene [3] 

 

The lattice structure of graphene is shown in Fig. 2.1.  
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Figure 2.1: Graphene Lattice. The carbon atoms are illustrated using the shaded nodes and the 

chemical bonds represented by the lines are derived from the    -orbitals. The primitive 

lattice vectors are       and the unit-cell is the shaded region. There are two carbon atoms per 

unit-cell, represented by   and  .  

 

The electronic properties of graphene are derived from the fourth valence electron not used 

for the     bonds. In terms of atomic orbitals, the fourth electron occupies the    orbital, and 

there are two such electrons per unit cell, leading to two  -bands. Based on the lattice 

structure shown in Fig. 2.1, the lattice vectors       are written in the       basis as: 

 

                                                                  (2.1) 

                                                                 (2.2) 

 

where    is the nearest-neighbour distance (         ). The    atomic-orbitals are oriented 

perpendicular to the plane and they have rotational symmetry around the  -axis.  

 

The Ansatz wavefunction is given by: 

 

                                                                          (2.3) 

 

where   is a set of lattice vectors and       is the atomic wavefunction. There are two    

orbitals per unit cell, and their corresponding wavefunctions are defined as    and   , where 
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the index refers to their respective carbon atom. The total wavefunction,    is a linear 

combination of    and   . 

 

                                                                  (2.4) 

  

where    and    are integers. The tight-binding Hamiltonian for a single electron in the 

atomic potential,     is given by: 

 

   
   

  
                                                                (2.5) 

 

where     and     represent the positions of the two carbon atoms within the unit cell. 

Multiplying Eq. 2.5 by   , gives: 

 

                                                                    (2.6) 

 

where    is the eigenvalue of the atomic    state. The second section of Eq. 2.6 is abbreviated 

by       yielding: 

 

                                                                    (2.7) 

 

Eq. 2.7 can be simplified further by noting that       and that the energy can be set to zero. 

Choosing       , Eq. 2.7 becomes: 

 

                                                                (2.8) 

                                                                (2.9) 

 

Now, solve the Schrodinger equation: 

 

                                                                      (2.10) 
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Since there are two parameters,    and   , two equations are required for this eigenvalue 

problem.  These equations are obtained by projecting   on the two states    and    yielding 

[6]: 

 

                                                                             (2.11) 

 

To calculate        and       , only the nearest-neighbour overlap integrals are taken into 

account to obtain the two equations:  

 

                
                                                           (2.12) 

                
                                                           (2.13) 

 

Assume that the overlap integral is real:  

 

      
                                                              (2.14) 

 

To calculate               , only the nearest-neighbour overlap integrals are taken into 

account. Use the abbreviation:  

 

      
          

                                                  (2.15) 

 

The following two equations are obtained: 

 

                                                                            (2.16) 

                                                                            (2.17) 

 

Putting all these equations together (i.e. Eq. 2.11, 2.12, 2.13, 2.16 and 2.17), and using the 

abbreviation       , the eigenvalue problem is reduced to: 
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                               (2.18) 

                                                                              (2.19) 

 

The dispersion relation        is obtained from Eq. 2.18 by setting the determinant to zero. 

Making use of the fact that    is small, obtain as an approximation, the dispersion relation:  

 

                                                                     (2.20) 

 

The magnitude of   is calculated from Eq. 2.19 and used to solve Eq. 2.20. The dispersion 

relation becomes: 

 

                                                                         (2.21) 

 

Based on the lattice structure shown in Fig. 2.1, the dispersion relation is expressed in a 

different form using the       components for    : 

  

                    
     

 
     

   

 
        

   

 
                       (2.22) 

 

where   is the lattice constant (      ). 

 

Fig. 2.2 shows a three-dimensional (3D) plot of the bandstructure of graphene. The 

conduction and valence states in graphene only meet at singular points in k-space called K 

points. The dispersion around these points is conical.  
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Figure 2.2: The dispersion relation of graphene. The conduction and valence states meet at K-

points. 

 

In the next section, we describe the electronic states of a CNT are described by combining the 

electronic properties of graphene with cylindrical boundary conditions. 

 

 

 

2.1.2 Carbon  Nanotubes 

 

Having described graphene in section 2.1.1, carbon nanotubes, which are cylindrical 

structures based on graphene are now discussed. Their dimensions are typically a few 

nanometers in diameter and up to       long. Fig. 2.3b shows a CNT formed by rolling up 

a graphene sheet.   
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Figure 2.3: (a) Hexagonal lattice structure of a graphene sheet, (b) carbon nanotube formed 

by rolling up a graphene sheet [6][7]. 

 

The rolling up of a graphene sheet can be described in terms of the chiral (wrapping) 

vector   , which  connects two sites of the two-dimensional (2D) graphene sheet that are 

crystallographically equivalent: 

 

                                                                 (2.23) 
 

 

 

 

where     and     are the unit vectors of hexagonal graphene lattice separated by 60 degrees 

and the indices       are positive integers         that specify the chirality of the tube.  

 

As shown in Fig. 2.3, the chiral vector starts and ends at equivalent lattice points. The tube is 

formed by rolling up the chiral vector so that its head and tail join, forming a ring around the 

tube. The length of the chiral vector is the circumference of the tube, and the radius of the 

tube,    is given by: 

 

   
    

  
 

               

  
                                           (2.24) 
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The number of atoms per nanometer-length on a single-walled nanotube is given by [4]:  

 

           
    

    

 

  
   

      

      
 

 

  
                                     (2.25) 

                           

where   denotes area, and    is the length of the nanotube.  

 

CNTs can be further divided into different groups depending on their       indices. These 

groups are named based on the shape of the cross-section established by the chiral vector 

slicing across the hexagonal pattern. The groups are armchair nanotube            

    , zig-zag nanotube               and chiral (other cases), where   is the angle 

between    and    .  

 

The microstructures of CNTs have mostly been observed using Transmission Electron 

Microscopy (TEM). Detailed analysis of the microstructures of CNTs shows that their 

electrical properties (Semiconductor or Metal) depend on the structure of the graphitic sheet 

[7]. A CNT can be either metallic or semiconducting depending on the indices that specify 

the chirality of the tube. A CNT is metallic if        , where   is a positive integer. 

Otherwise, it is semiconducting. The electrical properties of a CNT also depend on the 

separation between the energy of valence and conduction states. The energy gap of a metallic 

CNT is zero while that of a semiconducting CNT is nonzero.  

 

 

 

Bandstructure of Carbon Nanotubes 

 

The bandstructure of a CNT can be approximated using the zone-folding method ZFM [8]. In 

this approach, the rolled up graphene restricts the available wave vector space. A diagram of 

a zig-zag nanotube is shown in Fig. 2.4. 
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Figure 2.4: A zig-zag carbon nanotube, where   represents the length of the unit cell. 

 

The wave vectors along the tube axis are continuous and restricted differently to that of 

graphene because the length of the CNT unit cell is larger in this direction. Significant 

confinement of the electron eigenvectors allows only discrete wave vector values in the 

direction perpendicular to the tube axis. The electron is therefore treated as a wave packet of 

Bloch states along the axis of the tube [7].  

 

Fig. 2.5 shows the Brillouin zone for a      zig-zag nanotube. The CNT Brillouin zone is 

a collection of   1D slices through the  -space of graphene. The length of each 1D slice 

is     , where   represents the length of the CNT unit cell, and   represents the number of 

graphene unit cells within a single CNT unit cell.  
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Figure 2.5: Brillouin zone for a zig-zag        nanotube super-imposed on graphene  - 

space. The wave vectors along the nanotube axis and perpendicular direction are represented 

by    and   , respectively. The dash lines at the ends are for zone boundaries and they count 

as a single slice.  

 

For each of the    graphene unit cells within the zig-zag CNT unit cell, there is only one 

discrete value for the wave vector perpendicular to the axis of the nanotube. Each band of 

graphene is then broken into    subbands in the CNT. The electron wave vector for a zig-zag 

nanotube with a diameter   is:  

 

               
  

 
                                                      (2.26) 

 

where the electronic quantum number   represents the confinement along   . At     , the 

wave vectors are treated as one shared zone boundary wave vector. If it is assumed that the 

length of the nanotube is very long, the   component along the nanotube axis    can be 

treated as continuous. The electronic subbands are degenerate for   . As shown in Fig. 2.5, 

this degeneracy in   corresponds to two equivalent valleys in the subband structure each 

centred near a graphene K-point.  
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Electron conduction is within the delocalized   orbitals along the nanotube axis. For this 

calculation, the subbands produced from the  -antibonding band of graphene is required. The 

bandstructure of CNT is calculated from the  -orbital nearest-neighbour tight-binding 

bandstructure of graphene (described in section 2.1.1). The energy dispersion for a zig-zag 

nanotube is: 

 

                         
   

 
     

  

 
        

  

 
                   (2.27) 

 
 

 
    

 

 
 

 

For the zone-folding method, the conduction electron wavefunction is [7]:  

 

             
 

     
                                                        (2.28) 

 

where    is the length of the CNT and   represents the graphene  -antibonding orbitals 

normalized over the graphene unit cell.  

 

In the later stage of this chapter, the simulation of electron transport in a CNT at low applied 

fields is described. Therefore, the electronic bandstructure of the first few subbands are 

required. The  -  relation of the first three subbands is described using Eq. 2.29 [8].   

 

    
 

   
    

        
                   

                                  (2.29) 

where   is the subband index          ,   
     is the energy minimum,   

     is the 

effective mass and       is the nonparabolicity factor of subband  . Table 2.1 shows the 

details of Eq. 2.29 parameters. These parameters are a function of the nanotube index because 

they are related to the diameter of the nanotube. 
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Subbands Energy Minimum Effective Mass Nonparabolicity 

Factor 
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Table 2.1: The bandstructure properties of the first three subbands, where           is the 

greatest common divisor of   and   [8]. 

 

Having provided a detailed atomic description of CNTs, the modelling techniques used to 

simulate electron transport in CNTs at low applied fields are now discussed.  
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2.2 Modelling Techniques 

 

In this section, the simulation techniques used in our work are introduced. The CNFET model 

described in section 2.3 is based on a self-consistent solution of Poisson and Schrodinger 

equations. The Poisson equation is solved using a two-dimensional finite difference method 

(described in section 2.2.1), and the Schrodinger equation is solved using the scattering 

matrix method (described in section 2.2.2). 

 

 

 

2.2.1 Finite Difference Method 

 

The finite difference method can be used to solve a Laplace equation in cylindrical 

coordinates         [9]. In cylindrical coordinates, the Laplace equation is written as: 
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                                           (2.30) 

 

The equivalent finite difference approximation at point             is:  
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                             (2.31) 

 

where   ,    and    are the step sizes along  ,   and  , respectively. Eq. 2.31 is derived 

from the cylindrical coordinates shown in Fig. 2.6. 
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Figure 2.6: (a), (b) - Typical nodes in cylindrical coordinates and (c) Finite difference grid for 

an axisymmetric system. 
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For an axisymmetric system such as the one described in Fig. 2.6, there is no dependence 

of  , so         . Assuming square nets i.e.        , the solution region becomes 

discretized. Eq. 2.31 becomes: 

 

   
 

   
          

 

   
                                                (2.33) 

 

Set a point at                 to give: 
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                (2.35) 

 

There is singularity at      and by symmetry, all odd order derivatives must be zero: 

 

   

  
 
   

                                                               (2.36) 

                                                                     (2.37) 

 

By L‟Hopital‟s rule, 

 

       
 

  

   

  
 
   

   
  

   
 
  

                                               (2.38) 

 

The Laplace‟s equation becomes: 

 

   
   

      
   

                                                                (2.39) 

 

Applying finite difference to Eq. 2.39 gives: 
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                                                           (2.41) 

 

To solve the Poisson equation in cylindrical coordinates, replace the zero on the right hand 

side of the Laplace equation with the term       .  

 

       
 

 
                   

    

  
         

    

  
                  (2.42) 

 

where   is the permittivity,   is the step size and    is the charge density. 

 

To treat an interface between two media, the boundary condition         must be imposed 

at the interface, where   is the electric displacement field.  
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Figure 2.7: Interface between two different media. 

 

Applying Taylor series expansion to points 1, 2 and 5 in medium 1 of Fig. 2.7, gives:  
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where superscript (1) denotes medium 1. Summing Eq. 2.30 and Eq. 2.43, gives: 
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                                            (2.45) 

 

Also, applying the Taylor series to points 1, 2, and 6 in medium 2, gives:  
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Summing Eq. 2.30 and Eq. 2.46 yields: 
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Applying the boundary condition         or   
   

   

  
   

   
   

  
 and solving for    gives: 
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Having covered the finite difference method used for solving the Poisson equation, the 

scattering matrix method used for solving the Schrodinger equation is now described.  

 

 

 

2.2.2 Scattering Matrix Method 

 

Classical physics describes the macroscopic world but quantum mechanics describes the 

microscopic world of atoms and molecules. Phase randomizing scattering dominates 

macroscopic devices so quantum interference effects can be ignored [10]. However, for very 

small devices there is a need to use a wave approach to electron transport.  

 

In this work, electron transport in the mesoscopic regime, which is a size scale between 

microscopic and macroscopic, is studied. Consider a structure connected to metallic contacts 

as shown in Fig. 2.8.  
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Figure 2.8: Flux of carriers injected from each contact into the device (a). A fraction of the 

flux from both sides transmits across the device     Equilibrium and     Under bias.  
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The end contacts inject a flux of electrons into the structure. The entire device is then 

described by its transmission coefficients, T and T
‟
, and the net flux through the device is: 

 

                                                                (2.50) 

 

where    and    are the fluxes injected from the left and right contacts, respectively. The 

transmission coefficients for the device are determined using a semi-classical calculation.   

 

The scattering matrix theory is derived in terms of carrier fluxes and their backscattering 

probabilities [10]. Consider a semiconductor slab with a finite thickness   , as shown in Fig. 

2.9. Assuming steady state conditions,      and      are the position-dependent, steady state, 

right- and left-directed fluxes. There is a right-directed flux incident on the left face of the 

slab and a left-directed flux incident on the right face.  
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Figure 2.9: Fluxes of charge carriers incident upon and reflected from a slab of finite 

thickness. 

 

In this example, fluxes      and         that emerge from the slab are to be determined. 

These fluxes can be expressed in scattering matrix form, which relates both fluxes emerging 

from the slab to the two incident fluxes on the slab: 
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where   and    denote the fraction of the steady-state right- and left-directed fluxes 

transmitted across the slab.  

 

The scattering theory can be applied to the device shown in Fig. 2.8. In this case, the device is 

divided into a set of thin slabs connected so that the output fluxes from one slab provide the 

input fluxes to its neighbouring slabs. The two fluxes injected from the left and right contacts 

are used as the boundary conditions. Fig. 2.10 shows two interconnected scattering matrices.  
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Figure 2.10: Two scattering matrices cascaded to produce a single, composite scattering 

matrix. 

 

Taking only the fluxes emerging from the set of two scattering matrices,    and    into 

account, the two scattering matrices can be replaced by a single scattering matrix. Assume 

that the two scattering matrices have transmission elements    ,   
 ,     and   

 . The elements of 

the composite scattering matrix are: 

 

           
    

     

         
        

    
                                              (2.52) 

   
    

         
    

    
   

  

   
    

      
    

    
  

 

where        , etc. Eq. 2.52 describes the multiple reflection processes that occur when a 

flux coming from the left or right, transmits across the first slab then backscatters and reflects 

from the interiors of the two slabs.  
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In real applications, the device is divided into a finite number of scattering matrices. These 

matrices are then cascaded two at a time until the entire device is described by a single 

scattering matrix. Once this matrix is computed, the current through the device is determined 

by subtracting the right- and left-directed fluxes. 

 

In the next section, this modelling technique is applied to a MOS device based on a 

semiconducting CNT. The electronic properties of the device are determined from the fluxes 

evaluated throughout the device.   

 

 

 

2.3 A Two-Dimensional Simulation of Carbon Nanotube Field-Effect 

Transistors 

 

In this section, the simulation of electron transport in a semiconducting nanotube using the 

CNFET structure is described. Accurate modelling of CNFETs requires a self-consistent 

solution of the Poisson and Schrodinger equations. The quantum mechanical treatment of 

electron transport is included by solving a one-dimensional Schrödinger equation.  

 

CNFETs are devices with a gate wrapped around the gate dielectric and the nanotube [11]. 

Here, the coaxial geometry of the CNFET is considered due to the cylindrical nature of 

CNTs. Fig. 2.11 shows the structure of the CNFET device described in this work. 
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Figure 2.11: The Coaxial Carbon Nanotube FET Geometry. 
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Since the source and drain contacts have the same radius as the gate contact, the metallic 

cylinder is closed and the simulation technique that is based on a numerical method employed 

by John et. al [5] is used to solve for the parameters of the closed system. The device shown 

in Fig. 2.11 consists of a semiconducting nanotube surrounded by an insulator with relative 

permittivity      and a cylindrical, wrap-around gate contact. The ends of the device are 

terminated by the source and drain contacts. The device dimensions include the gate 

radius   , the nanotube radius   , the insulator thickness           , and the device 

length   .  

 

In this closed metallic cylinder system, Poisson‟s equation is restricted to just two dimensions 

by azimuthal symmetry. To fully specify the geometry of this device, the Poisson‟s equation 

as a function of polar and cylindrical coordinates shown in Fig. 2.12, is derived (refer to 

Appendix 3). 

 

 

z

y

x

 z

),,( z


 

Figure 2.12: Cylindrical Coordinates. 

 

 

In cylindrical coordinates, the Poisson‟s equation restricted to two dimensions by azimuthal 

symmetry is: 

 

   

   
 

 

 

  

  
 

   

   
  

 

 
                                             (2.53) 

 

where      )  is the potential within the outer cylinder,   is the permittivity and   is the 

charge density. Although the solution to Eq. 2.53 encompasses the entire volume of the 
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device, the longitudinal potential profile                along the surface of the nanotube 

is mainly required. Knowledge of this potential is required for the carrier transport 

calculations.  

 

The solution to Eq. 2.53 is obtained via the finite difference method, which is implemented 

by discretizing the spatial domain and using central differencing to generate a linear system 

of equations for some known charges, and subject to the boundary conditions. The boundary 

conditions for the CNFET device are:  

 

     
 

 
                                                            (2.54) 

                                                                 (2.55) 

                                                                 (2.56) 

 

where   is the work function,   is the electron charge,     is the gate-source voltage and     

is the drain-source voltage. In our system, we replace the values of the potential at the device 

boundaries with the boundary conditions shown in Eq. 2.54 - Eq. 2.56. A detailed procedure 

for computing the electrostatic potential within the CNFET structure is described in 

Appendix 4. 

 

The charge distribution on the surface of the nanotube is obtained by solving the Poisson 

equation coupled with the time-independent Schrödinger equation: 

 

   

   
    

   

  
                                                   (2.57) 

 

where        is the wavefunction of the carrier with an Energy  ,    is the effective mass 

obtained from the bandstructure of the zig-zag nanotube and   is the local effective potential 

seen by the carriers. 
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                                                                   (2.58) 

 

where       is the electron affinity of CNT.  

 

The charge density in the CNFET device is given by: 

 

    
      

  

       

 
                                                 (2.59) 

 

where        is the Dirac delta function in cylindrical coordinates,   and   are computed 

from the Schrodinger equation. A numerical solution of Eq. 2.57 is found at any given 

energy  . Schrodinger‟s equation is solved using the scattering matrix method in which a 

numerical solution is propagated by cascading     matrices as described in section 2.2.2.  

 

A detailed description of the grid implementation for the model device is provided in 

Appendix 5. The entire system is divided into   grids and for each grid the electron 

wavefunction   is expressed as: 

 

                                                                (2.60) 

 

where   is the wavevector,   and   are the amplitudes of the wavefunctions. The 

wavefunction and its derivative are matched on the boundary between intervals   and     

using the relations:  

 

                                                                (2.61) 

   

  
 

     

  
                                                       (2.62) 

 

As described in section 2.2.2, the relationship between          and            
  is 

obtained using: 
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                                                     (2.63) 

 

where          is the transpose of the matrix        ,    is the scattering coefficient,    and 

   are the wavefunctions in the source and drain contacts, respectively. When computing the 

wavefunctions for the source injection, the amplitude of the wavefunction at the drain end is 

set to zero. An analogous calculation is performed when considering the drain injection.  

 

The Landauer equation is expected to hold for the flux and the probability current    equated 

to the Landauer current    [12]: 

 

      
  

  
   

  

  
 

 
     

  

  
                                       (2.64) 
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                                                     (2.66) 

 

where    is the Fermi-Dirac carrier distribution in the source and T is the transmission 

probability described by: 

 

   
       

       
                                                      (2.67) 

 

The normalization condition is: 

 

      
    

     
                                                    (2.68) 
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The total carrier density in the system is computed from the normalized wavefunctions. In 

order to obtain the carrier distribution along the surface of the nanotube,   is integrated over 

all possible energy levels.  

 

             
 

       
 
   

    

    
                                         (2.69) 

             
 

       
 
   

    

    
                                         (2.70) 

 

where      is the bottom of the energy band,      is the vacuum energy level,      is the 

electrons source injection,      is  the electrons drain injection,      is the holes source 

injection, and      is the holes drain injection. Eq. 2.69 and Eq. 2.70 can be solved using the 

right-point rectangle rule [13] or the adaptive Simpson‟s method [14].   

 

The right-point rectangle rule is expressed as: 

 

   
 

 
                 

                                             (2.71) 

 

In this approach, the interval [    ,     ] is simply divided into equidistant points and the 

Schrodinger equation is solved at these points. This method can only give an accurate result if 

a large number of points are allocated within the intervals. This will require an extremely 

large computing time to achieve a converged carrier density. Narrow resonances of the 

wavefunction may occur at certain energy levels when the potential profile on the CNT 

channel changes. These narrow resonances will lead to a sudden change of the carrier 

concentration and result in longer simulation time or even worse an oscillated and non-

converged charge density. This problem can be avoided by using a numerical integration 

method that refines the grid in the region of resonances.  

 

The integrations were performed using the adaptive Simpson‟s method with different 

subdivided intervals defined [14]. The adaptive Simpson‟s method is expressed as: 
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                                                  (2.72) 

      
 

 
        

 

 
     

 

  
                                    (2.73) 

where   
   

 
   

   

 
   

   

 
 

 

If             , where   is a predefined tolerance, the algorithm calls for further division 

of the integration interval into two, and the adaptive Simpson's method is applied to each 

subinterval in a recursive manner. In this approach, the points in the integration intervals are 

non-equidistant, so there are many points around the resonances while there are only few 

points in other regions. 

 

 

Simulation Procedure 

 

To start the simulation, the initial charge density inside the device is guessed, usually zero. 

The next step is to compute the electron potential inside the device by solving Poisson‟s 

equation. The new charge density in the device is computed by using the scattering matrix 

method to solve the Schrodinger equation. This new charge density is then used to solve the 

Poisson equation again and these steps are repeated a number of times until the new value of 

the charge density match the older one. At this point, the criterion for convergence of the 

system is achieved and other properties of the device are observed via numerical integrations. 

Fig. 2.13 shows the flow chart of the simulation procedure. 
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Initial guess of n(r)
Solve the Poisson 

Equation -> V(r)

Final Result
Solve the Schrodinger 

Equation -> New n(r)

Self Consistent?

 

 

Figure 2.13: Iterative procedure for computing electrostatics and charge transport self-

consistently. 

 

 

 

2.4 Simulation Results  

 

The carbon nanotube used for this simulation is a zig-zag nanotube with indices    

       . The nanotube diameter    is        and the corresponding bandgap is       . 

Other parameters of the device include the nanotube length        , dielectric thickness 

           and        . The nanotube ends are terminated with silver      contacts 

having a work function   of      . The electron affinity      is      , and the nanotube is 

presumed to have a free-space relative permittivity (    ). The electron effective mass    

is calculated from the bandstructure properties of the nanotube (as described in table 2.1) and 

it is          for both electrons and holes [6][7], where    is the free electron mass. 

 

Now, the result of a simulation based on the theory described in section 2.3 is analysed. Fig. 

2.14 shows the conduction band profile when the applied gate voltage is varied. A positive 

gate bias pulls the conduction band down, allowing more propagating modes in the channel. 
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Figure 2.14: Simulation of the potential energy seen by the electrons at different gate bias for 

the equilibrium condition (       . Conduction band edge along the length of the device 

for         ,          and         . 

 

The potential profile for applied        and      is shown in Fig. 2.15. Fig. 2.16 shows 

the electron density when the drain-source voltage     is varied and a constant gate-source 

voltage     of      is applied. The electrons in the channel are from the source and drain 

contacts and they are drawn into the nanotube by tunneling through the barriers at the 

contacts. When the system is in equilibrium (      , the charge carrier concentration is 

evenly distributed throughout the device, following the shape of the conduction band profile. 

Interference effects on the charge distributions are observed when the system is out of 

equilibrium. The electron concentration in the channel reduces as     increases because 

evanescent states dominate the electron concentrations near the device contacts and the effect 

is seen on the local potential.  
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Figure 2.15: Conduction band edge along the device length for          ,        

and         . The energies are with respect to the source Fermi level.  

 

 

 

 

Figure 2.16: Simulation of the carrier density as a function of position and varying     

when         .  
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The simulation method allows the inclusion of quantum mechanical reflection for the 

thermionic component of the flux. The total carrier distribution within the nanotube is 

determined by the action of reflections at the barriers near the contacts on the injected 

carriers. Carriers above the potential barrier are often assumed to have a transmission 

probability closed to unity. This approximation does not hold in general since there is a 

significant reflection when the minimum integration energy (taken to be       below the 

metal Fermi level [5]) is much lower than the conduction band edge. As shown in Fig. 2.17, 

for energies that are well above the barrier height, the transmission coefficient is oscillatory 

approaching unity as   becomes large.  

 

 

 

(a)                                                                              (b) 

 

Figure 2.17: Transmission probabilities for electrons (a), and the corresponding conduction 

band edge (b) at          and         . 

 

Fig. 2.18 shows the drain I-V characteristics for the model device. For an applied gate bias of 

0.5V, the nanotube saturation current is achieved at a drain bias of 0.2V. The reflecting action 

at the nanotube-drain interface limits the expected full saturation current of      . There is a 

significant reflection when the minimum integration energy is much lower than the 

conduction band edge.  
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Figure 2.18: The I-V characteristics of the zig-zag nanotube for different gate bias. 

 

 

 

Figure 2.19: Drain current characteristics for the nanotube based on the FETtoy model [15] 
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Fig. 2.19 shows the output characteristics for the nanotube based on the FETtoy model. The 

I-V characteristics obtained in this work is comparable to those calculated using other 

simulation methods [15][16][17]. As shown in Fig. 2.18, the device current also saturates at a 

drain bias of around 0.2V when the gate bias is 0.5V. The slight difference in both output 

characteristics is that the maximum current drive achieved for the gate bias of 0.5V is higher 

for the FETtoy model.  This difference may be due to numerical evaluation of integrals in 

both models using different approach. In this work, the adaptive Simpson‟s method was 

employed while the Newton-Raphson was used in the FETtoy model.  

 

The saturation current depends on how the barriers at the source and drain contacts are 

treated. In the next section, the role of the metallic contacts on the transport properties of the 

zig-zag nanotube is investigated.  

 

 

 

 

2.4 Role of the Metal-Carbon Nanotube Contact in Computing Electron 

Transport   in Carbon Nanotubes 

 

 

The current in the device on-state is one of the most important characteristics of the CNT 

device. The I-V characteristics of CNFETs with different metal contacts and the metallic 

contact that gives the highest on-current is identified.  

 

In MOS devices, contacts play an important role in their performance and a lot of work has 

been done to control their effects on electron transport [18][19][20][21]. CNFETs have 

produced on-currents ranging from       to       because the electrodes used to terminate 

the CNTs are different [22].  

 

In addition, experimental results show a variation in on-currents of approximately 3-4 orders 

of magnitude for different metal contacted CNTs [22]. The magnitude of the on-currents was 
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observed to be dependent on the work functions of the metal used to terminate the nanotube 

[22]. The variation in on-currents was linked to the electron injection into the nanotube, 

which is dependent on the line-up of the metal Fermi level and the conduction band in the 

nanotube. 

 

Another experimental issue is that a nanotube could be end-bonded to the metal as shown in 

Fig. 2.20a or it could lay on the metal surface and be side-contacted as shown in Fig. 2.20b. 

The contact geometry realised defines the coupling strength, which influences electron 

transport at the metal/nanotube interface [19][23]. 
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Figure 2.20:     A carbon nanotube „end bonded‟ to the metal,     a carbon nanotube 

forming „side contacts‟ on gold electrodes 

 

Here the performance of CNFETs modelled with different metallic contacts is analysed. 

Silver     , Iron      and Gold      are the metals used for this simulation. The work 

functions for   ,    and    are      ,       and      , respectively. As before, the 

Poisson and Schrodinger equations are self-consistently solved using finite difference 
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technique and scattering matrix method, respectively. The transmission probability for the 

electrons is then computed from the solution of the Schrodinger equation. Since the 

metal/nanotube interface introduces boundary conditions in the solution of the Schrodinger 

equation, the transmission probability is dependent on the metal work function.  

 

 

 

Simulation Results 

 

The transport properties of the zig-zag nanotube are examined when different metal contacts 

terminate its ends. Electron transport from the metal contact into the nanotube is dominated 

by quantum mechanical tunnelling, thereby increasing the resistance of the contact.  The 

conduction band profile is analysed and we look closely at the barriers near the end contacts. 

At the metal/nanotube interface, the barrier height depends on the metal work function.  

 

Fig. 2.21 shows the conduction band edge for the CNFETs with different metal contacts. The 

band bending occurs over a length scale known as the Debye length   . At this length scale, 

the electrons screen out the applied fields (refer to Appendix 7 for details). In the devices, 

when         and         ,    is approximately    ,     and     for   ,    

and    contacts, respectively.  

 

The device current depends on    and the barrier height at the metal/nanotube interface. If    

is small, electrons tunnel through the barriers at the contact more readily and this will lead to 

an increased current.  

 



 

Chapter 2. Modelling Charge Transport in Carbon Nanotubes using a Coupled Schrodinger-Poisson Solver 

 

 

 

 

 

 

Page 50 of 179 

 

              

 (a)                                                                              (b) 

              

                                (c)                                                                              (d) 

 

               

                                (e)                                                                              (f) 

 

Figure 2.21: The band bending for the metal/nanotube junction at       ,         

         and the transmission probability for electrons at                . [   with 

        - (a), (b)], [   with         - (c), (d)] and [   with         - (e), (f)]. The 

band bending occurs over a length scale   . 
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As shown in Fig. 2.22, the on-currents of the zig-zag nanotube vary for different metal 

contacts. On comparing the I-V characteristics of the devices, it was observed that on-current 

is higher when    is used as the device contacts. This is expected as    and the barrier height 

for    are smaller when compared to those of    and   . When    is used as the metal 

contacts, the maximum current drive is achieved at a lower drain voltage compared to    

and   . As shown in Fig. 2.22, a full current saturation is only achieved for    contacts but 

the current saturates at a larger drain voltage       . Based on the observed on-current and 

current saturation, an optimum CNFET performance is achieved when    is used as the 

nanotube end contacts.  

 

 

 

Figure 2.22: Plot of CNFETs I-V characteristics as a function of metal contacts at        . 
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Figure 2.23: The ideal output characteristics of the device without contact effects [15]. 

 

The differences in the output characteristics of the devices can be understood from the 

relationship between the drain current     and the transmission probability for electrons. As 

shown in Fig. 2.21, the transmission probability when the energy is greater than       is 

higher for    and stays constant afterwards (as described by the spikes). However, the 

transmission probability for    and    is still increasing for these energies, and this prevents 

full current saturation. The trends for the I-V characteristics follow that of the metal work 

functions. Therefore, the operation of CNFETs can be controlled by modulating the 

tunnelling barriers at the contacts. Fig. 2.23 shows the output characteristics of the device 

without the contact effects. In the ideal case, a full current saturation is achieved for a drain 

bias of around     . 
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2.5 Conclusions 

 

The bandstructure of graphene is calculated through a tight-binding Hamiltonian. Using the 

zone-folding method ZFM [8], the bandstructure of CNTs is obtained from the  -orbital 

nearest-neighbour tight-binding bandstructure of graphene [6].  

 

Methods for modelling charge transport in a CNT have been discussed and illustrated using 

the Schrodinger-Poisson solver. Poisson‟s equation is solved self-consistently with 

Schrodinger‟s equation using the finite difference and scattering matrix techniques, 

respectively. The scattering matrix method enables resonance effects to be taken into account.  

 

A fully wrapped around gate is assumed to improve immunity to short channel effects [24]. 

The drain I-V characteristics of the CNFET device suggest there is a reflecting action at the 

nanotube-drain contact interface influencing the current saturation of the device.  

 

The role of metal-nanotube contacts in computing electron transport in CNTs has been 

investigated. Simulation results show that contacts play a dominant role in the performance of 

CNFETs. In the later stage of this thesis, electron transport in CNTs is investigated using a 

method that avoids the influence of metal contacts.  

 

In the next Chapter, a simulation of electron transport in a graphene nanoribbon is described 

and its output characteristics compared to that of a CNFET. 
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Chapter 3  

Comparison of the Current-Voltage Characteristics of MOS Devices Based 

on Carbon Nanotubes and Graphene 

 

 

3.1 Introduction 

 

Simulations of the electronic properties of CNFETs suggest that they have great potential in 

future high speed electronic systems [2][3]. However, in practice, it is difficult to control the 

chirality of carbon nanotubes and the structures cannot readily be integrated into an electronic 

system. The chirality is important because the energy bandgap of a semiconducting CNT is a 

function of it [4].  

 

Recently, graphene [5], which is a single sheet of graphite, has been created in the laboratory 

for the first time. Although graphene has been studied theoretically for many years it was 

thought to be too unstable to exist in its basic form. The discovery of stable graphene at the 

University of Manchester in 2004 has led to the realistic prospect of its utilization within 

electronic devices. The advantage of graphene is that it is compatible with the planar 

technology employed within the semiconductor industry. Like CNTs, graphene exhibits high 

electron mobilities [5], μ, in excess of               and it can be metallic or 

semiconducting.  

 

When tailored to less than       wide graphene nanoribbons may open a band gap due to 

the electron confinement. Electronic states of the graphene nanoribbon largely depend on the 

edge structures and the width [6]. There are two main types of nanoribbon, known as 
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armchair-edge and zigzag-edge, depending on the arrangements of carbon atoms along the 

nanoribbon edges.   

 

One of the most important potential applications of graphene is as the channel for electron 

transport in a MOS structure. Structures of this kind have been demonstrated experimentally 

[7] using epitaxially synthesized graphene on silicon carbide substrates. This work describes 

the simulation of an armchair-edge graphene based MOS transistor using a coupled 

Schrödinger-Poisson solver and compares the result with the characteristics of CNT based 

MOSFETs described in Chapter 2. 

 

 

 

 

3.2 Model - Graphene Nanostrip Field Effect Transistors (GFETs) 

 

A semiconducting armchair-edge graphene nanoribbon is used as the channel of the device to 

be modelled. The band structure is obtained through a tight-binding Hamiltonian of the 

armchair-edge nanoribbon that includes the summation of the first-nearest-neighbour (1NN) 

Hamiltonian, third-nearest-neighbour (3NN) Hamiltonian, 3NN truncation Hamiltonian and 

the 1NN edge distortion Hamiltonian [8].  

 

Charge transport in graphene is investigated through the self-consistent solution of the charge 

and local electrostatic potential. The quantum mechanical treatment of electron transport is 

included by solving a one-dimensional (1D) Schrödinger‟s equation. A graphene field-effect 

transistor (GFET) based on the structure shown in the Fig. 3.1 is modelled. This device 

consists of a semiconducting nanoribbon with a wrap around gate at four faces of the 

rectangular geometry. A dielectric with relative permittivity     separates the semiconductor 

region of the device from the surrounding gate contact. The ends of the device are terminated 

by the source and drain contacts. Device parameters include the length (along x-direction) of 

the nanoribbon, its width (along z-direction) and the thickness of the insulator      separating 

the graphene from the gate contact.  
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Figure 3.1: Cubical geometry of Graphene FET. 

 

 

The potential profile in the entire model is obtained from the solution of the three-

dimensional Poisson‟s equation in a rectangular system given by: 

 

 
 

   
 

 

   
 

 

   
           

        

 
                                       (3.1) 

 

where          and          are the potential and charge density, respectively. The width 

of the nanoribbon is divided into unit cells allowing the graphene sheet to be treated as a 

quasi-one-dimensional conductor. The charge distribution on the surface of the material is 

obtained by solving the time-independent Schrödinger equation given by: 

 

   

   
    

   

  
            

                                            (3.2) 

 

where        is the wavefunction of the carrier having an energy   and    is the effective 

mass obtained from the bandstructure of the nanoribbon and is the same for both electrons 

and holes due to symmetry [9]. U is the local potential.  
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3.3 Device Simulation 

 

The simulation is based on a numerical procedure employed by John et. al. [2]. Poisson‟s 

equation is solved using a finite difference method applying central differencing, forward 

differencing and backward differencing where applicable in the grid system. In matrix form 

Poisson‟s equation is written as 

 

    
  

 
                                                           (3.3) 

 

where   and   are the potential and charge density vectors, respectively,   is the length of 

the grid and   is a matrix generated from the finite difference method. Boundary conditions 

for the potential are defined by the terminal voltages and work functions. 

 

The computed potential on the surface of the graphene sheet is defined by the vacuum level, 

          . The potential energy seen by the electrons and holes is given by:  

 

                                                                (3.4) 

                                                                (3.5) 

 

where     and      are electron affinity and graphene band gap, respectively.  

 

The charge distribution on the graphene surface is obtained by solving the Schrödinger 

equation using the scattering matrix. The charge density in the model device is given by 

 

     
             

  
                                                 (3.6) 

 

where   is the electron charge,      and      computed from Eq. 3.15 and Eq. 3.16  are the 

number of electrons and holes, respectively, in the graphene as a function of position. The 
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grid system used in the simulation is based on a series of       matrices; the wavefunction 

and its derivative are matched at the boundaries between the intervals   and     yielding a 

stable system [10]. The boundary conditions give: 

 

                                                                  (3.7) 

  

  
 

    

  
                                                            (3.8) 

 

Boundary conditions for the wavefunctions at the contacts are given by: 

 

      
         

                                                   (3.9) 

                                                               (3.10) 

 

where    and    are the wavefunction at source and drain, respectively,   ,   ,    and    are 

the amplitudes of the wavefunctions and   ,    are the wavevectors in the source and drain, 

respectively. The relationship between the amplitude of the wavefunctions          and 

           
  is given by the transfer matrix: 

 

 
  

  
     

    

    
                                                       (3.11) 

 

The Landauer expression [10] holds for the flux and equals the probability current yielding: 

 

 

  
     

  

  
                                                         (3.12) 

 

where    is the Fermi-Dirac carrier distribution in the source, and    is the transmission 

probability specified by: 

 

   
       

       
                                                          (3.13) 

 

Substituting the expression for the transmission probability into the Landauer equation results 

in the normalization 
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                                                          (3.14) 

 

By including the source and drain injection components, the normalized wavefunction gives 

the total carrier density in the device. The carrier density on the graphene sheet is calculated 

by integrating   over all possible energies levels.  

 

             
 

       
 
   

    

    
                                     (3.15) 

             
 

       
 
   

    

    
                                     (3.16) 

 

Here      is the conduction band edge,       is the vacuum energy level,      and       are 

the electron wavefunctions within the source and drain, respectively while      and      are 

the equivalent wavefunctions for holes. The integration is performed using the procedure 

described in ref. 3.  

 

Using a numerical damping factor, the coupled Schrödinger-Poisson equation model was 

solved iteratively. An initial assumption of zero charge    on the graphene surface was made 

and the electrostatic potential    computed from Poisson‟s equation. A new charge density is 

computed     
  using the calculated electrostatic potential   . The new charge density     

     is 

used for the calculation of the new potential     
    and finally the new potential      is 

calculated as: 

 

          
                                                    (3.17) 

 

where      . The convergence of the system is achieved when the defined criterion is 

met (i.e. error less than10
-5

).  
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Figure 3.2: Normalised potential updates after each iteration. 

 

 

 

 

3.4 Simulation Results 

 

The graphene nanoribbon used in the study has dimensions           . Carbon 

nanotubes are formed by rolling the nanoribbon resulting in tubes of radius       . For both 

structures the work-functions of the source and drain regions were taken to be       and the 

conduction band edge in the channel in equilibrium is        above the Fermi energy level. 

The work function is chosen to be consistent with the value for silver      used in the 

experimental work reported in ref [11]. Only the first subband was considered as the energies 

of the upper subbands exceed the drain voltage in the structures used in this simulation. A 

single effective mass was used in the model devices to allow comparison of their output 

characteristics. The effective mass was          for both electrons and holes, where,    is 

the free electron mass [12].  

 

Fig. 3.3a shows a three-dimensional (3D) plot of the electron potential energy within the 

graphene sheet with     = 0V and     = 0.5V. The electron potential energy, represented by 

the conduction band edge, is lower at the edges of the sheet due to the wrap around gate. 



 

Chapter 3. Comparison of the Current-Voltage Characteristics of MOS Devices Based on Carbon Nanotubes and Graphene 

 

 

 

 

 

 

Page 64 of 179 

 

Increasing     lowers the conduction band edge in the central region as shown in Fig. 3.3b. 

Cross-sections of the electron energy profiles along the edge of the sheet and in the centre of 

the channel, giving a clearer picture of the effect of drain voltage on electron energy, are 

shown in Figs. 3.3c and 3.3d respectively. 

 

                  

                                (a)                                                                              (b) 

 

                 

                                (c)                                                                              (d) 

 

Figure 3.3: Simulation of the potential energy seen by the electrons at            (a) 3D 

view of the conduction band edge at          (b) 3D view of the conduction band edge at 

          (c) Conduction band edge along the length of the device for different     at the 

edge of the graphene sheet (d) Conduction band edge along the length of the device for 

different     at the centre of the graphene sheet. 
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Figures 3.4a and 3.4b show the electron density throughout the graphene sheet resulting from 

tunneling through the potential barrier at the contact. When the       , the electron 

density is higher at the edges than in the centre, a result consistent with the variation of the 

conduction band edge. As the drain voltage is increased to      , the electron density falls 

within the centre and at the edges. Again, this can be seen more clearly from the cross-

sections of the energy density profile through the centre of the device and at the edges. This 

result can be compared with that obtained in chapter 2 for a carbon nanotube structure. 

               

                                (a)                                                                              (b) 

                  

                                (c)                                                                              (d) 

Figure 3.4: Simulation of the carrier density at         . (a) 3D view of the net carrier 

density as a function of position at         . (b) 3D view of the net carrier density as a 

function of position at         . (c) Cross-section of carrier density for different     at the 

centre of graphene sheet (d) Cross-section of carrier density for different     at the edge of 

the graphene sheet.   
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Figures 3.5 (a) & (b), respectively, show the output characteristics of MOSFETs for a 

graphene ribbon and a carbon nanotube. The width of the graphene ribbon equals the 

circumference of CNT. Comparing the I-V characteristics of these devices it is observed that 

for graphene the maximum current drive is achieved at a much lower drain bias. This result 

suggests that circuits based on graphene MOSFETs may have a superior switching 

performance than those based on CNTs. The saturation currents for the graphene and CNT 

devices are       and      , respectively. The low bias conductance of the devices can be 

approximated from the slope of the I-V characteristics. Based on this approximation, the 

maximum conductance for the graphene and CNT devices are       and     , respectively. 

 

                  

                                (a)                                                                              (b) 

Figure 3.5: I-V characteristics of Graphene (a) and CNT (b) 

 

The physical origin of the difference in the output characteristics can be understood by 

considering the relationship between the drain current,    , and the transmission probability, 

   and Fermi Dirac function     : 

                                      

    
  

 
                                                     (3.18) 

 

Figures 3.6 (a) – (f) show plots of   ,       and           for the graphene and CNT 

based MOSFETs at three drain-source voltages,                and     . Figures 2.25 (a), 
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(c) & (e) are the results for the graphene-based device while figures 2.25 (b), (d), & (f) are 

the corresponding results for the CNT-based device. The drain current is represented by the 

area under the graph of           versus energy. The physical difference in the output 

characteristics of the two devices stems from differences in transmission probabilities. For 

the graphene based device the transmission probability rises rapidly but oscillates between 

    and     . However, in the CNT based device, transmission probability rises slowly 

with energy and exhibits oscillations between    and     where       is significant.  

 

 

         

 

                        

                                (a)                                                                              (b) 

 

 

          

 

                        

                                (c)                                                                              (d) 
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                                (e)                                                                              (f) 

 

Figure 3.6: Transmission Probability and Fermi Dirac Distribution for different    . Carbon 

nanotubes – (a), (c), (e) and graphene – (b), (d), (f) 

 

As shown in Fig. 3.6, the current increases until the maximum value of         is unity. 

Beyond that point, the current is mainly determined by    while the change in         has 

no effect on the net current. The      plot shows that above the conduction band edge all the 

energy states in graphene make a contribution to the current where the transmission 

probabilities are well above zero. For a CNT, the transmission probabilities for electrons at 

some states are close to zero thereby making little contribution to the current and increasing 

the magnitude of     required to obtain maximum current. 
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3.5 Conclusions 

 

In this work charge transport in MOS systems based on graphene nanoribbon and carbon 

nanotubes has been modeled and compared. Poisson‟s equation is discretized in three-

dimensions and solved self-consistently with Schrödinger‟s equation. The latter is solved 

using the scattering matrix method enabling resonance effects to be taken into account. The 

band structure of graphene is obtained through a tight-binding Hamiltonian of the armchair-

edge nanoribbon. To improve immunity to short channel effects, a fully wrapped gate is 

assumed for both devices [13].  

 

In the graphene-based FET edge effects influence the energy band structure and charge 

density. Differences are observed in the output characteristics of the two devices that stem 

from differences in transmission probabilities. For CNFET‟s the transmission probability is 

the same at all points on the circumference of the nanotube. However, the structure chosen 

for the graphene FET results in potential differences between the edges and the centre of the 

graphene sheet leading to differences in the amplitudes of the electron wavefunction. The 

total transmission probability for the graphene FET is, therefore, a summation of transmission 

probabilities over the width of the graphene nanoribbon. As each element of the summation 

has the characteristic form exhibited by the CNT structure the total transmission probability 

for the nanoribbon displays smaller oscillations and a more rapid rise in average value with 

increasing energy.  

 

The output characteristics of the CNFET and GFET devices are largely dependent on the 

contacts used to terminate the device ends. In the next chapter, electron transport in CNTs is 

studied using non-contacting means. The contactless studies were carried out on CNTs as 

samples are readily available.  
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Chapter 4  

Experiment – Contactless Measurements of Electron Transport in Carbon 

Nanotubes 

 

 

4.1 Introduction - Metallic Contact Limitations 

 

There has been intensive research on carbon nanotubes (CNTs) to examine their electron 

transport properties and their possible use as future nanoscale devices. So far, experimental 

results have shown that these new carbon structures have the potential to be the building 

blocks of electronic systems for various applications [1][2].  

 

The electronic properties of CNTs have mostly been observed by connecting electrodes to the 

nanotube ends but quantised conductance appears on making contacts [3]. There is a 

fundamental ballistic conductance which sets a saturation of the device current with a 

quantum resistance. As shown in Fig. 4.1, there is a broadening of the energy level that 

accompanies the coupling of the nanotube to the electrodes. As a result, part of the energy 

level spreads outside the energy range between electrochemical potentials    and    where 

current flows, consequently reducing the expected current. The ballistic conductance   of the 

device is expressed as:  

 

   
 

   
 

  

   
                                                         (4.1) 

 

 

where   is the device current,     is the drain voltage,   is the electron charge,   is the 

reduced Planck‟s constant, and   is the coupling strength. In chapter 2, it was observed that 
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the on-current of a CNFET device depends on the tunnelling barrier, the height of which is 

determined by the end contacts. 

 

                        

Figure 4.1: (a) A small drain bias applied across the channel causing a splitting of the 

electrochemical potentials. (b) Energy level broadening due to the process of coupling to the 

channel.  

 

Experimentally, it is difficult to control the contact effects of the electrodes, which is one of 

the issues in the development of CNT devices. So, there is still a need to determine the 

fundamental properties of CNTs, accurately.  

 

In this chapter, electron transport in CNTs is studied using non-contacting means, by 

inducing current in individual nanotubes using microwave energy. A sample of nanotubes is 

inserted into the high field region of a hairpin resonator cavity, and this drives current along 

the nanotubes. The electronic properties of the CNTs are then examined using cavity 

perturbation theory [4]. In this study, the very nature of current in the sample is specified by 

imposing Ohm‟s law to be satisfied within the lossy sample. 

 

In the next section, the experimental techniques used to observe the morphology and 

microstructure of the CNTs are introduced.  
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4.2 Experimental Techniques 

 

Detailed information of the nanotube sample topography is obtained using scanning electron 

microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and energy 

dispersive X-ray spectroscopy (EDX). The microstructure of the CNTs is examined using 

HRTEM, and the morphology of the sample is examined using SEM. EDX is used on 

selected areas of the CNT for composition analysis.  

 

 

 

4.2.1 Scanning Electron Microscopy/Transmission Electron Microscopy [5] 

 

A scanning electron microscope images the surface of samples using a high-energy beam of 

electrons [5]. Electrons from a field-emission cathode are accelerated through a voltage 

difference between the cathode and anode, in the range of        and      . The smallest 

beam cross-section at the gun is demagnified by a two- or three-stage electron lens system so 

that an electron probe is formed at the surface of the specimen. Detectors inside the chamber 

record the emitted electron spectrum. The emitted electrons interact with the atoms in the 

molecule producing signals that contain information about the sample. A deflection coil 

system raster scans the electron probe across the specimen in synchronisation with the 

electron beam of a separate cathode-ray tube (CRT). One of the signals recorded modulates 

the intensity of the CRT to form an image.  

 

Transmission electron microscopy (TEM) is one of the main tools used for observing the 

microstructural characterization of materials [6]. A variation in the intensity of electron 

diffraction across a thin specimen, known as diffraction contrast, is used for making images 

of defects. In HRTEM, the phase of the diffracted electron wave is preserved and allowed to 
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interfere with the phase of the transmitted wave. The phase contrast imaging technique is 

used to form images of columns of atoms. The high-energy electrons in the microscope cause 

electronic excitations of the atoms in the specimen and chemical information can be obtained 

from the electron excitations. 

 

 

4.2.2 Energy Dispersive X-ray Spectroscopy [7] 

 

Energy dispersive X-ray spectroscopy is an analytical technique used predominantly for the 

elemental analysis of a specimen [7]. X-rays of a variety of energies are generated by the 

specimen and strike a silicon crystal. When the X-ray strikes the silicon crystal, it releases its 

energy in series of collision events and each event gives rise to one electron and one hole.  

 

Since there is a voltage bias of     between the gold layers at the surface of the silicon 

crystal, the electrons and holes are attracted to the opposite sides of the crystal, causing a 

pulse of current to occur. The energy of the X-ray entering the crystal is proportional to the 

number of electron-hole pairs generated. Therefore, the current pulse is also proportional to 

the X-ray energy. The generated current pulse is converted to a voltage pulse, and the height 

of the voltage pulse is proportional to the energy of the incident X-ray. The pulse height 

analyser measures the height of the voltage pulse and stores the result.  

 

The information of the pulse stored after a period is a spectrum, which has as its ordinate the 

X-ray energy and its abscissa the number of pulses proportional to the number of X-rays that 

entered the silicon crystal of this energy.  

 

In the next section, the morphology and the microstructure of the CNTs sample used for this 

experiment are examined. Powdered nanotubes were obtained from Thomas Swan Ltd. The 

nanotubes were grown at       by thermal chemical vapour decomposition (CVD) on Ni/Si 

substrates, giving a mixture of semiconducting and metallic SWNTs. 
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4.3 Microstructure and Morphology of the CNTs 

 

Using a mortar and pestle, the clumped nanotubes are manually ground, turning them into 

fine particles. The surface topography and microstructure were analysed using SEM and 

TEM, respectively. A Cu/Rh grid covered with formvar was used for the TEM grid [8]. 

About       of nanotube powder is dispersed in     of toluene solvent, followed by an 

hour sonication in order to achieve full dispersion, and a drop was deposited on the grid. In 

addition, Energy Dispersive X-ray Spectroscopy is used to examine the composition of the 

nanotubes sample. 

 

Figure 4.2 shows the SEM image of the nanotubes before and after manual grinding. The 

long nanotubes are broken into smaller segments and it is possible to obtain a finer sample. 

This confirms the production of short carbon nanotubes, which has been previously reported 

using the ball milling technique [8].  

 

 

         

(a) 
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(b)    

0.4µm

 

(c) 

 

Figure 4.2: SEM image of the CNTs used for this experiment (a) before and (b,c) after 

manual grinding. 

 

Structural characteristics of the nanotubes were observed by TEM. From TEM observations, 

the nanotube length can be measured and the distribution of the nanotubes within the bulk 

sample can be examined. Fig. 4.3 shows the TEM images of the nanotubes with diameters 

ranging from       to       and the length ranging from       to    . Scanning 

transmission microscopy (STEM) of the nanotubes shows that there are iron (Fe) impurities 

on the surface of the nanotubes. These magnetic impurities are from the substrate used to 

stimulate the growth of the nanotubes during production [8]. More TEM images of the 

nanotubes are shown in Appendix 7.  
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(a) 

 

 

 

(b) 

 

Figure 4.3: (a) The TEM image of the nanotube sample, the dark spots representing the 

impurities and (b) an evidence of the Fe content (inset) in the STEM image of the sample. 
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The EDX analysis also confirmed the presence of iron (Fe) impurities in the chemical 

composition of the nanotubes sample. The volume of contamination is less than 3% of the 

entire sample. As shown in Table 4.1, EDX gives atomic % ratios of 96.5:2.7:0.8 for C:O:Fe. 

Since the small amount of Fe in the nanotube sample is well dispersed, it is not expected to 

influence the microwave measurements. 

 

 

 

Figure 4.4: EDX result showing the composition of the CNTs. 

 

Element Weight % Atomic % 

Carbon, C 92.99 96.48 

Oxygen, O 3.52 2.74 

Iron, Fe 3.49 0.78 

Totals 100.00 100.00 
 

 

Table 4.1: Elemental analysis of the nanotubes sample using EDX. 

 

In the next section, the hairpin resonator used to study the electronic properties of the CNTs 

is described.  
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4.4. Copper Hairpin Resonator  

 

A hairpin resonator is equivalent to a quarter wavelength long resonant transverse 

electromagnetic transmission line (TL) [9]. A schematic representation of a hairpin resonator 

is shown in Fig. 4.5. Microwaves are coupled into the resonator cavity through a pair of loop-

coupled coaxial cables, which induce a standing quarter wave resonance along the hairpin 

resonator. A segment of the TL resonates when its length equals odd integer multiples of a 

quarter wavelength. The fundamental resonant mode occurs at       and its corresponding 

resonant frequency is: 

 

     
 

  
                                                            (4.2) 

 

where   represents the length of the hairpin and   is the speed of light. As shown in Fig. 4.5a, 

the electromagnetic fields mainly occupy the volume of the parallel plates. There are two 

insertion points in the radiation shield of the resonator, top and bottom and correspond to the 

electric field maximum and magnetic field maximum, respectively. Samples can be placed in 

either the magnetic field or the electric field region depending on the required measurement. 

 

A vector network analyser (VNA) is used to measure the magnitude of the voltage 

transmission coefficient       of the hairpin resonator as a function of frequency. VNAs are 

usually employed for measuring the quality factor     and the resonant frequency     .  
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Figure 4.5: A schematic of the hairpin resonator used for the microwave measurements [9]. 

(a) Side view (b) Top view and (c) Inner structure. 

 

 



 

Chapter 4. Experiment – Contactless Measurements of Electron Transport in Carbon Nanotubes 

 

 

 

 

 

 

Page 82 of 179 

 

 

The quality factor of the resonator is the ratio of the resonant frequency    to the frequency of 

the bandwidth at half-maximum power   . It gives an indication of the overall sensitivity of 

the resonator and it should be large enough to show the maximum change in the bandwidth 

when a sample is inserted. When the quality factor is high for a small volume of the parallel 

plates in the resonator, there is high filling factor when the sample is inserted into the cavity, 

leading to a very sensitive measurement. The ideal spectral response of a resonator operating 

in the transmission mode is shown in Fig. 4.6. 
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Figure 4.6: The spectral response of a resonator in transmission mode observed using the 

Agilent E5071B  Network Analyser. 

 

The cavity perturbation technique is based on first-order perturbation theory [10], and it is 

frequently employed when resonators are modified by the introduction of small samples into 

their cavities. The main assumption in the perturbation technique is that        and 

         , where    is the permittivity,    is the loss factor,     and        are changes 

in    and     due to sample insertion, respectively [11].  
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4.5 Experimental Analysis using Cavity Perturbation Technique 

 

In this experiment, a sample of CNTs is inserted in the high magnetic field region of the 

hairpin resonator cavity. The electrical properties of the CNTs were then examined using 

cavity perturbation technique. Fig. 4.7 shows the hairpin resonator used for this experiment. 

The hairpin resonator is treated as a transmission-line antenna that is shorted at one end while 

opened at the other end, forming a two-plated hairpin structure [12]. The fundamental 

resonant frequency of the hairpin resonator is determined by Eq. 4.2. At resonance, the 

electric field is at its maximum at the open circuit end and zero at the short circuit end. On the 

other hand, the magnetic field is largest at the short circuit end and zero at the open circuit 

end.  

 

The hairpin resonator used in this experiment was constructed from a     thick copper 

sheet with a length of     . According to Eq. 4.2, these dimensions yield a resonant 

frequency of     . The hairpin structure was enclosed in a copper radiation shield having a 

diameter of     . The radiation shield ensured that a high   was obtained by avoiding the 

loss of the stored energy through emission of the electromagnetic radiation.  
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(a)                                                                  (b) 

Figure 4.7: (a) 3GHz copper hairpin resonator & (b) Inner structure of the resonator. 
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The sample is inserted in the region of high magnetic field via the small hole created on the 

outer shield of the resonator. The magnetic field is generated from the microwave energy 

applied through the coaxial input shown in Fig. 4.7a. The microwave energy undergoes a 

change, as it passes through the inner structure of the resonator, dependent on the loaded 

sample. The output energy of the hairpin resonator is then measured at the coaxial output. 

The input and output energies differ if the sample absorbs some of the applied microwave 

energy and the electrical properties of the sample from the recorded energy loss can be 

examined.  

 

As shown in Fig. 4.8, when the sample is inserted in the region of uniform magnetic field, a 

screening current can be induced. If this screening current is large enough, there will be a 

large inverse internal magnetic field that attempts to cancel the changing applied magnetic 

field, according to Lenz‟s law. During this process, the sample acquires a magnetic dipole 

moment   and the internal magnetic field    is reduced compared to the external applied 

magnetic field    .  
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Figure 4.8: Screening current in the CNTs sample due to applied magnetic field. 

 

The resulting perturbations on a host resonator used to apply the field are [11]: 

 

   

  
 

  

  
                                                              (4.3) 

   

  
 

  

  
                                                             (4.4) 
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where    is the magnetic constant,   is stored energy,     is the increased resonant 

frequency,     is the increased bandwidth. The total energy stored   is the sum of electric 

and magnetic energies, which are equal at resonance [13]: 

 

     

V

m dVHUU 2
00

2

1
2 

                                             (4.5) 

 

where   is the cavity volume and    is the stored magnetic energy. As shown in Eq. 4.3 and 

Eq. 4.4, the real and imaginary parts of the applied magnetic field are related to the stored 

energy and therefore, the electrical properties of the loaded sample can be examined from the 

stored energy. 

 

Now, an expression that relates the applied magnetic field    to the internal magnetic 

field    is derived. The magnetic moment and the internal magnetic field depend on the 

geometry of the CNTs. Since this varies for different measurements, the analysis is semi-

quantitative.  

 

The screening current is calculated from the generated internal magnetic field. Fig. 4.9 shows 

the possible screening current directions in the nanotubes. In the analysis, the individual 

nanotube is treated as a conductor and quantisation is ignored, allowing electrons to move 

freely along the length of the nanotube.  

 

 

Figure 4.9: Possible screening current patterns for various orientations of the CNTs in the 

bulk sample. 
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The relationship between the internal magnetic field    and the applied magnetic field    is 

derived for all possible screening current directions in the sample. Fig. 4.10 shows one of the 

possible geometries of the nanotubes in the bulk sample. The magnetic moment   of the 

system measures the strength and the direction of its magnetisation. The relationship between 

the magnetic moment and the screening current is given by: 

  

                                                                (4.6) 

 

where   is the screening current and   is the area enclosed by the loop. The magnetisation   

is the quantity of magnetic moment per unit volume   . In the system,   is related to    by: 

 

                                                          (4.7) 

 

Solving for the internal magnetic field   , equating Eq. 4.6 to Eq. 4.7 yields: 

 

                                                            (4.8) 
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Figure 4.10: One of the possible geometries of the nanotubes in the bulk sample. 

 

According to Faraday‟s law of electromagnetic induction, the induced electric field is related 

to the magnetic field by: 

 

       
  

  
                                                       (4.9) 

       
 

  
                                                     (4.10) 
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                                              (4.11) 

    
   

 

   

  
                                                      (4.12) 

 

where   is the radius of the nanotube. The current density   is proportional to the electric 

field  , as expressed by Ohm‟s law:   

 

                                                              (4.13) 

                                                                (4.14) 

 

where    is the thickness of the graphene wall of the nanotube, which is around      . 

Solving Eq. 4.8 and Eq. 4.13 together yields: 

 

                                                                (4.15) 

           
 

   
                                                    (4.16) 

 

where the electrical conductivity  , is related to the sheet resistance     by: 

 

     
 

   
                                                          (4.17) 

 

Substituting Eq. 4.12 into Eq. 4.16, we have 

 

            
   

    

   

  
                                            (4.18) 

            
   

  
                                               (4.19) 

   

  
                                                           (4.20) 

 

In all three cases described in Fig. 4.9, the internal magnetic field is related to the applied 

magnetic field through Eq. 4.21. 
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                                                      (4.21) 

From Eq. 4.18, the relaxation time  , is defined as:  

    
   

   
                                                          (4.22) 

Based on Eq. 4.21, effective screening only occurs in the limit when     . This leads to 

the limits on the sheet resistance, which is         , as obtained from Eq. 4.22. For the 

magnetic field applied to the CNTs sample, the main results are [11]: 

 

   

  
    

    

       
  

    
                                               (4.23) 

   

  
  

  

       
  

    
                                                 (4.24) 

 

where,    is the total sample volume,      is the effective cavity volume defined via: 

 

  2
2

10 lWddVHHV
cavity

eff  
                                       (4.25) 

 

where  ,  , and   are the length, width and diameter of the hairpin, respectively.  

 

The radius of the nanotube sample is much less than the skin depth, and the sample can be 

treated as a lossy dielectric with a uniform internal magnetic field    responding to the 

applied magnetic field   . Therefore, the change in the spectral response bandwidth due to 

the loaded nanotubes sample is proportional to the conductivity of the sample.    

 

In the next section, the experimental results obtained using the      microwave host cavity 

to study the electronic properties of single-walled carbon nanotubes (SWNTs) are discussed.  
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4.6 Experimental Results 

 

The CNTs were dispersed in paraffin wax using     by volume powder:wax composite, in a 

uniform manner. Samples were loaded into low-loss quartz tubes (inner diameter of       

and wall thickness of       ) and placed parallel to the magnetic field in the      quarter-

wave copper hairpin cavity with magnetic coupling, shown in Fig. 4.7.  

 

The transmitted microwave power was measured in the frequency domain using an Agilent 

E5071B network analyser operating in the transmission mode (S21). The spectral response of 

the resonator was observed with and without the nanotubes sample. The recorded bandwidth 

when the resonator contains an empty quartz tube is subtracted from the recorded bandwidth 

when the resonator contains the sample plus quartz tube. The interaction between the 

microwave energy and the quartz tube is very small. Therefore, the tube does not affect the 

magnetic field in its vicinity.  

 

Fig. 4.11 shows the spectral response of the hairpin resonator when empty. Microwave 

energy is transferred into the resonator cavity and the output power, which depends on the 

content of the resonator, is measured from the coaxial output. The spectral response plot 

shows the transmitted power, which is the ratio of the input and output microwave energy 

measured in decibels against frequency in Hertz. The bandwidth   , the centre frequency   , 

and the quality factor   are determined from the spectral response plot. The quality factor of 

the empty cavity is around     , which is large for its small volume (       ), thus 

enhancing the sample filling factor for sensitive measurements.  
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Figure 4.11: Spectral response of the empty hairpin resonator. 

 

As part of the experimental analysis, a calibration was carried out. Small copper spheres of 

radii       were inserted into the same magnetic field region of the resonator cavity. As 

shown in Fig. 4.12, a frequency shift of                  per sphere is observed, which 

allows comparison of the experimental effective cavity volume of           to the 

expected value of             . The length  , width   and diameter   are     , 

    and    , respectively 

.  

 

(a) 
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(b) 

 

Figure 4.12: Calibration experiment: (a) Quartz tube loaded with copper spheres. (b) Spectral 

response of the hairpin resonator when loaded with small copper spheres. 

 

Fig. 4.13 shows the spectral response when the nanotube sample is inserted into the cavity of 

the hairpin resonator. A shift in the resonant frequency       is observed due to the loaded 

sample. The response of the nanotubes to the surrounding magnetic field has an effect on the 

transmitted microwave energy, leading to a change in the spectral response of the resonator. 

An increased resonant frequency of about            was recorded when the sample was 

inserted into the cavity. An increased     bandwidth of              was also 

recorded, which confirms that the nanotubes sample is lossy.  

 

There is a shift in the resonant frequency,     because the sample screens the applied 

magnetic field, which shows that the sample is conductive. The magnitude of the screening 

current is proportional to the conductivity of the sample. The observed broadening of the 

spectral response bandwidth is also an effect of the sample conductivity. The overall loss in 

the resonator cavity decreases with increasing conductivity of the loaded sample, which 

consequently leads to the broadening of the bandwidth.  
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        (a) 

 

 

 

         (b)            

 

Figure 4.13: (a) Spectral response of the hairpin resonator when loaded with nanotubes 

sample, (b) Scaled plot of the spectral response shown in (a).  
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The observed resonant frequency shift is largely dependent on how the magnetic field is 

screened within the nanotubes. From the measurements, the screened volume is      

          with an estimated nanotube volume of                 (estimated from 

powder mass of      ). As shown in Fig. 4.13, the screening current is quite high for such a 

small sample mass, which confirms that the conductivity of the CNTs is high. As shown in 

Eq. 4.22, an effective screening of the magnetic energy only occurs in the limit when     , 

therefore,               /sq based on a mean nanotube radius of      . Also, based 

on the recorded bandwidth increase, the calculated sheet resistance is           . Using 

Eq. 4.17, the calculated conductivity   of an individual CNT is         , which is 

extremely high.  

 

Fig. 4.14 shows the spectral response of the hairpin resonator when loaded with graphite. A 

similar measurement performed on graphite shows that the conductivity of graphite is not 

sufficient for measurable screening, justifying the experimental procedure. 

 

 

 

Figure 4.14: Resonant traces for graphite powder. 
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In addition, the sample magnetisation was examined because the nanotube powder attracts 

magnets. The magnetisation as a function of the applied magnetic field was measured using a 

vector vibrating sample magnetometer [14]. Fig. 4.15 shows the magnetisation versus the 

applied magnetic field curves for the nanotubes. The detailed properties of the hysteresis loop 

were not included in the analysis because a tiny magnetic signature was observed in the 

CNTs sample. The size of the coercive field, saturation fields and the remanences in the 

hysteresis loop are too small to analyse.  

 

 

 

 

Figure 4.15: Magnetisation versus applied magnetic field curve for the sample with a mass of 

   . 
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4.7 Conclusions 

 

In this work, microwaves have been used as a means of exciting currents in CNTs, thus 

avoiding the requirement for electrical contacts. In the experiments, a powder CNT sample is 

placed in a region of high microwave magnetic field in a      copper hairpin cavity and the 

electrical properties of the CNTs are determined using the cavity perturbation technique.  

 

The sample exhibited screening of the microwave magnetic field, that is, an increased 

resonant frequency                relative to the empty tube, together with very large 

losses, that is, an increased     bandwidth of            . Such screening is usually 

observed only in powdered metals having a conductivity large enough for the mean particle 

size to become much greater than the microwave skin depth. Based on a mean nanotube 

radius of      , the recorded nanotube sheet resistance is         . An extremely high 

conductivity of          was estimated from the sheet resistance of individual nanotube. 

The nanotubes appear to have the highest conductivity of any non-superconducting material. 

 

The morphology and microstructural studies conducted on the CNTs sample confirmed the 

presence of magnetic impurities in the sample. EDX gave atomic % ratios of 96.5:2.7:0.8 for 

C:O:Fe. These impurities are thought to arise from the substrate used to stimulate the growth 

of the nanotubes during production. Since the small amount of Fe is well dispersed, it is not 

expected to influence the microwave measurements significantly.  

 

Since the properties of CNTs are very sensitive to their geometries, the applied magnetic field 

could have changed their internal structures, thus causing the magnetic signatures in the 

CNTs. This work is inconclusive because not all samples examined show such striking 

behaviour, so future work should consider experimenting on wider range of frequencies and 

on well-aligned nanotubes.  
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Chapter 5  

3D Electromagnetic Simulation of Hairpin Resonator for the Microwave 

Characterisation of Carbon Nanotubes Sample 

 

 

5.1 Introduction 

 

A 3D modelling of the characterisation of tightly packed nanotubes using a hairpin resonator 

is now described. The hairpin resonator is modelled using the COMSOL multiphysics 

software. It is examined how the presence of nanotubes can change the magnitude of the 

magnetic field screening in the hairpin resonator. The magnetic field screening is examined 

from the shift in the resonant frequency of the hairpin resonator by introducing different 

conductivities. Also, the broadening of the spectral response bandwidth of the hairpin 

resonator when the nanotubes are introduced into the cavity is examined. As part of the 

analysis, the   of the hairpin resonator is calculated from the simulation and its value 

compared with that obtained from experiment. 

 

In this simulation, COMSOL serves to solve a complex Helmholtz equation. The Helmholtz 

equation relates the amplitude of the magnetic potential to the electrical conductivity of the 

measurement sample. The partial differential equation (PDE) that describes the 

electromagnetic system is formulated, and the solution of this PDE used to examine the 

properties of the nanotubes sample. More detailed information of the COMSOL software is 

provided in the following section.  
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5.2 Background 
 

COMSOL multiphysics [1] is a finite element analysis software used for the modeling and 

simulation of any physics-based system. The original COMSOL codes were written by 

graduate students for a graduate course at the Royal Institute of Technology in Stockholm, 

Sweden [1]. The COMSOL multiphysics modelling environment has a functionality 

optimised for the analysis of electromagnetic effects, components and systems. The 

underlying equations for electromagnetics are available in all the application modes, which is 

a feature unique to COMSOL multiphysics. Any model developed using the electromagnetic 

module can be transformed into a model described by the underlying partial differential 

equations. Simulation models can be exported to COMSOL script and MATLAB. Also, it is 

possible to incorporate the models with other products in the MATLAB family such as 

Simulink.  

 

In COMSOL, the finite element method approximates the solution within each element using 

some elementary shape function, which can be constant, linear, or of higher order. The mesh 

for the problem must be generated before it can be solved, and the requirement for a finer or 

coarser mesh depends on the element order in the model. The mesh resolution is determined 

by the variation in the solution, which could be due to geometrical factors, skin effect, or 

wavelength.  

 

Also, the COMSOL package is equipped with an option to make a selection from a set of 

solvers for PDE-based problems. The selection of the solver type is dependent on the 

application mode and the analysis type, which includes stationary, eigenfrequency, transient, 

time-dependent, and parametric analyses. The simulation results obtained from the solver are 

analysed using the postprocessing and visualization tools, which include advanced graphics, 

data display and export functions. From the postprocessing tool, the solutions of the 

electromagnetic problem such as the field patterns, resonant frequency,    and the quality 

factor,   can be retrieved. It is possible to undertake further postprocessing calculations by 

exporting the solutions to MATLAB.  

 

The later sections discuss the detailed modeling and postprocessing of the hairpin resonator.  
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5.2.1 Theory of COMSOL Multiphysics [4] 

 

In this work, the AC Power Electromagnetics mode is employed for the electromagnetic 

simulation of the hairpin resonator. COMSOL computes the PDE coefficients based on the 

parameters of the application mode [2].  

 

The PDE for this application mode is formulated by deriving the equation this mode solves, 

starting with the Ampere‟s law [3]: 

 

      
  

  
            

  

  
                               (5.1) 

 

where   is the magnetic field intensity,   is the electric current density,   is the electric flux 

density,   is the electric field intensity,   is the velocity of the conductor and   is the 

magnetic flux density. Assuming time-harmonic fields and using the potentials yields: 

 

                                                              (5.2) 

      
  

  
                                                      (5.3) 

 

Combining Eq. 5.2 and Eq. 5.3 with the constitutive relationships           and   

     , the Ampere‟s law is rewritten as 

 

                 
                                         (5.4) 

 

where   is the electrical conductivity,   is the angular frequency,   is the magnetic vector 

potential, M is the magnetisation and P is the polarisation density.  

 

The following boundary and interface conditions are applied to the electromagnetic problem. 

The interface condition is [2]: 

 

                                                            (5.5) 
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The magnetic field boundary condition that specifies the tangential component of the 

magnetic field strength at the boundary is:  

 

                                                           (5.6) 

 

In addition, specify the surface current flowing along the longitudinal direction ( -direction) 

and the surface-current boundary condition: 

 

                                                               (5.7) 

 

The electric insulation boundary condition sets the magnetic field to zero: 

 

                                                              (5.8) 

 

The magnetic potential boundary condition that specifies the magnetic potential is given by: 

 

                                                               (5.9) 

 

The magnetic insulation boundary condition that sets the magnetic potential to zero at the 

boundary is: 

 

                                                               (5.10) 

 

The continuity boundary condition that allows the continuity of the tangential component of 

the magnetic field is: 

 

                                                           (5.11) 

 

A solution to an AC power electromagnetic problem is required for a conductor carrying 

alternating currents [3]. Consider a homogenous dielectric with a dielectric constant   and 

magnetic permeability  , and it is assumed that there is no charge at any point. The fields 

must satisfy a set of Maxwell equations:  
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                                                        (5.12) 

        
  

  
                                                        (5.13) 

 

where   is the electric field,   is the magnetic field and   is the current density. When there 

is no current, the magnetic field   can be eliminated from the second set and both fields 

satisfy wave equations with wave speed  : 

 

                                                                   (5.14) 

   –    
   

                                                             (5.15) 

   –    
   

                                                             (5.16) 

 

For the charge-free homogenous dielectric with conductivity  , the current density is:  

 

                                                                  (5.17) 

 

The ohmic resistance damps the waves, leading to Eq. 5.18 & Eq. 5.19. 

 

   –    
  

  
 –    

   

                                                   (5.18) 

   –    
  

  
 –    

   

                                                   (5.19) 

 

Using the complex form, the case of time-harmonic field is treated by replacing   with     . 

The conductivity is calculated using Eq. 5.18 & 5.19, and it can be used to examine the skin 

effect and other properties of the current-carrying conductor.   

 

Before solving a radio frequency (RF) cavity problem, the cavity layout must be described in 

such a way that it can be utilized as input for solution of the Helmholtz equation. Given a 

source-free, linear, isotropic, homogenous region, the Maxwell-Curl equations [4] that 

constitute two equations for the two unknowns,    and    in phasor form are: 
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                                                                (5.20) 

                                                                (5.21) 

 

Solve Eq. 5.20 and Eq. 5.21 for either    or    by taking the Curl of these equations to yield:  

 

                                                          (5.22) 

 

Eq. 5.22 is simplified using the vector identity                    , which is valid 

for the rectangular components of an arbitrary vector   . Since        in a source-free 

region, 

 

                                                              (5.23) 

 

Eq. 5.23 is known as the wave equation or Helmholtz equation for   . Derive an identical 

equation for    using the same steps: 

 

                                                              (5.24) 

 

Using the AC Power Electromagnetics mode [5], the equation solved in COMSOL is a 

complex Helmholtz equation for the amplitude of the magnetic potential: 

 

    
 

 
                                                          (5.25) 

                                                               (5.26) 

 

The boundary conditions are considered carefully, and either the magnetic potential    or the 

normal derivative of the same field is specified on the outer surface. The final solution of the 

AC Power Electromagnetics equation is a complex value that reflects the time lag between 

the surface and the interior.  
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5.2.2 Skin Depth 

 

The skin effect is observed during the flow of an alternating current. Electrons tend to move 

along the surface of the conductor and the current density near the surface of the conductor is 

greater than that at its core. A change in the amplitude and direction of the current induces a 

magnetic field that pushes electrons towards the exterior of the conductor. As shown in Eq. 

5.28, the skin depth increases when the applied frequency decreases. In an infinitely thick 

plane conductor, the current density decreases exponentially with depth   from the surface, 

yielding [6]: 

 

     
                                                            (5.27) 

 

where    is the skin depth. The skin depth, also known as the characteristic depth of 

penetration, is defined as  

 

      
 

   
    

 

     
                                            (5.28) 

 

where   is the frequency,   is the conductivity,    is the permeability of free space and   is 

the angular frequency. The skin depth    of the conductor is the depth at which the current 

density reduces in magnitude to     or      .  

 

Skin depth plays an important role when investigating screening in a conducting sample. The 

radius of the conducting sample must be larger than the skin depth for screening to be 

observed.  

 

Since conductivity of the sample is an input parameter in this simulation, the average 

conductivity of a CNT is now derived starting from the density of states calculation. 
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5.2.3 Calculation of the Charge Density in a Carbon Nanotube 

 

In chapter 4, it was reported that the resonant frequency      of a hairpin resonator increased 

when a sample of carbon nanotubes (CNTs) was placed in the magnetic field anti-node of the 

resonator cavity. The resonant frequency increased because the sample screened the 

microwave magnetic field. It was also observed that the resonant frequency increased when 

small copper spheres were inserted into the hairpin cavity. According to the experimental 

analyses in section 4.6, the nanotubes served to screen the microwave magnetic field more 

than the copper spheres. This is remarkable as copper (Cu) is known to have a very high 

conductivity but the experimental results suggest that the conductivity of a CNT is higher. 

Consider a comparison of a CNT to a copper wire. The physical dimensions of the structures 

are shown in Fig. 5.1.    

 

 

(a) 

 

                                   

L=1µm

2a=3nm

 

(b) 

Figure 5.1: Cylindrical geometry of (a) carbon nanotube, and (b) copper wire. 

 

For both structures shown in Fig. 5.1, the length and radius are     and      , respectively. 

The charge density in the CNT is compared to that of copper wire using fundamental 

calculations. Since the structures are treated as conductors and quantisation ignored, classical 

calculations can be used to describe the movement of electrons along their lengths. The 

electron concentration in copper is             but only the free electrons are included in 
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this calculation. The free electrons occupy the lowest energy states and they form a sphere in 

momentum space [7]. Fig. 5.2 shows the surface of the sphere also known as the Fermi 

surface. The free electrons that contribute to current flow are those near the Fermi surface, 

and it is assumed that they are     below the Fermi energy, where    is Boltzmann‟s 

constant and T is the absolute temperature [7].  

 

          

kz

ky

kx

Fermi 

Surface

 

Figure 5.2: The representation of the Fermi surface in momentum space [7]. 

 

The radius of the Fermi sphere (red) and the inner sphere (yellow) shown in Fig. 5.2 are 

expressed in Eq. 5.29 and Eq. 5.30, respectively [7]. 

 

     
    

                                                              (5.29) 

     
        

                                                        (5.30) 

 

where    is the Fermi energy of copper,   is the reduced Planck‟s constant and   is the 

electron mass. In order to determine the number of free electrons in copper, the ratio of the 

volume of the Fermi sphere to the volume of the inner sphere is calculated, yielding: 

 

         
           

                                                            (5.31) 
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Based on the expression shown in Eq. 5.31 and applying    of     , the calculated ratio is 

0.0056. Therefore, the number of free electrons in copper is the known number of electrons 

divided by 178, which is the inverse of the calculated ratio.     

 

The charge density per unit length,  , in the copper wire is given by:  

 

                                                              (5.32) 

 

where   is the number of free electrons per cubic meter and   is the cross-sectional area of 

the copper wire. From Eq. 5.32, the charge density in the copper wire is          .  

 

To calculate the charge density in the CNT, start from the density of states calculation [8]. 

The density of states      for the CNT is determined using Eq. 5.33.  

 

      
  

   

 

      
 

                                                   (5.33) 

   
   

 
   

  

 
                                                      (5.34) 

 

where   is the nanotube length,   is the diameter,        ,    is the carbon-carbon length, 

  is an index of the CNT,   is the energy subband index,   is energy , and   is the tight-

binding overlap integral. Fig. 5.3 shows the plot of the density of states for the CNT 

considered. The charge density in the CNT structure is related to      and the Fermi-Dirac 

distribution      by: 

 

                
 

 
                                            (5.35) 

 

Performing the integration described in Eq. 5.35 over all possible energies, the charge density 

in the CNT structure is          . An atom density of           is estimated using the 

formula shown in Eq. 2.25 (section 2.1.2). These separate calculations point to similar 

number of atoms contributing to the conducting “cloud”. 
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Figure 5.3: Density of states      for a carbon nanotube calculated using Eq. 5.33. 
 

Since the conductivity of copper is known to be              [7], the conductivity of the 

nanotube can be estimated using Eq. 5.37. Conductivity is related to the number of electrons 

in the structure and Fermi velocity of charge carriers as: 
 

 

                                                                  (5.36) 

 

The charge carried by electrons in the structures shown in Fig. 5.1 is      , which is 

related to conductivity as:  

       

         
 

   

    
                                                        (5.37) 

 

where   is the Fermi velocity and   is the electron charge. Using Eq. 5.37, the conductivity of 

an individual nanotube is estimated to be           , which is lower than that of copper. 

This conductivity is significantly different from that extracted from       of the hairpin 

resonator described in chapter 4, where a conductivity of around          was obtained 

from the experiment.  

 

The detailed 3D modelling of microwave characterization of CNTs sample using hairpin 

resonator is now discussed. This enables validation of the experimental results discussed in 

chapter 4. The average conductivity of the nanotubes derived is an input parameter in this 

simulation. 
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5.3 Modelling of Hairpin Resonator 

 

5.3.1 Introduction  

 

In this section, the 3D modelling of the hairpin resonator used to investigate the screening 

properties of nanotubes sample is presented. The fundamental theory of a hairpin resonator 

was introduced in section 4.4. The hairpin resonator is a variant of the wide microstrip line, 

which supports transverse electromagnetic waves (TEM) along its length [9]. The hairpin 

structure is made out of a copper strip bent at one end to form the short-circuited termination 

while open at the other end. Resonance occurs when the length,   of the hairpin is integer 

multiples of a quarter wavelength. The fundamental resonance mode occurs at       with 

the corresponding resonant frequency,    given by [9][10]: 

 

    
 

  
   

  

     
                                                    (5.38) 

 

As shown in Eq. 5.38, the resonant frequency,    of the hairpin resonator only depends on  . 

Fig. 5.4 shows a schematic diagram of the hairpin resonator considered in this work.  

           

l
t

d W

Region of high 

electric field

Region of high 

magnetic field

 

Figure 5.4: Schematics of the hairpin resonator, where   is the plate length,   is the plate 

width,   is the separation between the plates and   is the plate thickness [9][11].  
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When the hairpin resonates, the electric and magnetic fields increase drastically and a 

standing wave occurs on the hairpin such that the voltage (current) is maximum (minimum) 

at the open circuit end and minimum (maximum) at the short circuit end. As illustrated in Fig. 

5.4, the electric field along the length of the hairpin is concentrated at the open circuit end 

and zero at the short circuit end. The magnetic field is largest at the short circuit end and 

minimal at the open circuit end. In this work, the concentrated magnetic field is used to 

induce current in a tightly packed sample of carbon nanotubes.  

 

The quality factor,   is another parameter relevant to the studies in this chapter. The 

unloaded quality factor,    of the hairpin resonator is derived starting with the transmission 

line (TL) resonator [9][10]. As shown in Eq. 5.39, the    of transmission line resonators has 

two components (   and   ):   

 

  
     

     
                                                    (5.39) 

                                                                (5.40) 

                                                             (5.41) 

 

where    is the attenuation constant due to conductor loss,    is the attenuation constant due 

to dielectric loss,   is the skin depth of copper,    is the conductor quality factor and    is 

the dielectric quality factor. Since the spacing between the plates of the hairpin structure is 

filled with air,            and    becomes infinitely large. Therefore, the unloaded 

quality factor of the hairpin resonator is only dependent on   .  

 

                                                          (5.42) 

 

The attenuation constant due to conductor loss,    is related to the hairpin resistance   and 

characteristic impedance    as: 

 

                                                           (5.43) 

                                                           (5.44) 
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The inductance   and capacitance   are related to the hairpin structure as: 

 

                                                            (5.45) 

                                                            (5.46) 

 

Substituting the equations for   and   into Eq. 5.44 yields 

 

     
  

  
 

 

 
                                                     (5.47) 

 

The hairpin resistance per unit length is given by [9][10]: 

 

   
  

  
 

  

  
 

   

 
                                                (5.48) 

 

where   is the resistivity, surface resistance,        and    is the area of each hairpin 

plate. Substituting Eq. 5.47 and Eq. 5.48 into Eq. 5.43 yields: 

 

    
  

       
                                                   (5.49) 

    
        

    
                                                 (5.50) 

 

Applying         and           into Eq. 5.50, the    of the hairpin resonator 

becomes: 
 

    
      

  
                                                   (5.51) 

 

The relationship between the loaded quality factor,    of the resonator and    is given by 

[12]: 

 

                                                         (5.52) 

where    is the insertion loss.  
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In the next section, the hairpin resonator is modelled to give a resonance frequency of     . 

The field patterns, resonant frequency and the quality factor are obtained directly from the 

output file of the COMSOL software.  

 

 

5.3.2 Hairpin Resonator Model 

 

The electromagnetic simulation of the hairpin resonator used for observing screening in 

CNTs is now described. The simulation is performed using COMSOL Multiphysics. Fig. 5.5 

shows the 3D structure of the hairpin resonator used in this work. The hairpin is constructed 

from a     thick copper sheet with length       , width      , and diameter   

   . Based on these dimensions, the resonant frequency,    of the hairpin resonator 

is     . The hairpin structure is enclosed in a radiation shield made out of copper. As shown 

in Fig. 5.5, the radiation shield has two parts; the cylindrical housing surrounding the hairpin 

and the base for the cylindrical housing fitting. The radiation shield prevents the loss of 

stored energy to the surroundings, ensuring high quality factor.  

 

 

 

Figure 5.5: 3D geometry of the hairpin resonator modelled using COMSOL Multiphysics. 
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Different regions of the resonator are defined in the subdomain settings of COMSOL by 

stating the properties of the material such as permittivity and permeability. In the boundary 

settings function, the boundary conditions described in section 5.2.1 are applied. At the 

interface between two different media, the continuity boundary condition shown in Eq. 5.11 

is applied.  

 

In order to reduce the size of the cavity problem and achieve a converged solution, only one 

half of the problem geometry is specified as shown in Fig. 5.6. The „create composite object‟ 

function was used to cut the hairpin resonator model in half. An efficient boundary condition 

is then applied on the truncated section of the geometry to minimize the problem size. 

 

 

 

Figure 5.6: 3D geometry of the hairpin resonator cut in half to reduce the size of the RF 

cavity problem. 

 

The mesh for the hairpin structure to be analysed is set before solving the Helmholtz equation 

(Eq. 5.25) that describes the RF cavity problem. A finer mesh is applied where the 

electromagnetic field is highly concentrated, which aids the solution convergence. The 
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eigenfrequency solver is used to obtain    and   of the hairpin resonator. In this case, 

COMSOL computes the solutions of the transverse electric      mode to obtain the field 

patterns, and they are stored in the post-processing tool of COMSOL. This allows 

interpolation of the fields at various points to compute other quantities such as conductor 

losses, energy stored within the cavity and screening.  

 

 

5.3.3 Simulation Results 

 

The 3D simulation of the hairpin resonator using the RF module in COMSOL is now 

presented. In the 3D solid shown in Fig. 5.6, the  -axis,  -axis and  -axis represent the 

positions along the width, radius and length of the hairpin resonator, respectively. Fig. 5.7a 

and Fig. 5.7b show the streamline and contour plot of the magnetic field and electric field in 

the empty hairpin resonator, respectively. As expected the magnetic field is concentrated at 

the short-circuited end of the hairpin while the electric field is largest at the open end of the 

hairpin. As depicted by the bar in Fig. 5.7, the maximum magnetic field strength is around 

            while the maximum electric field is around            .  

 

                  

(a) 
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(b) 

 

Figure 5.7: Field concentration and distribution within the hairpin. (a) High magnetic field 

concentration observed at the short-circuited end of the hairpin. (b) Electric field is maximum 

at the open end of the hairpin.  

 

 

 

Figure 5.8: Top view of the magnetic field pattern within the radiation shield of the hairpin 

resonator. 
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In COMSOL the resonant frequency,    is computed by numerically integrating the field 

components at various points. Based on the simulation results, the resonance frequency of the 

empty hairpin resonator is         , which is very close to the value         recorded in 

the experiment using a network analyzer. The    of the empty hairpin resonator obtained 

from the simulation is 1399, and the corresponding    value calculated using Eq. 5.52 is 

1220. A    value similar to the 1200 recorded in the experiment was obtained.  

 

As shown in Fig. 5.9 the sample of nanotubes is introduced in the high magnetic field region 

of the hairpin structure. The nanotubes sample had a packing density of           and a 

conductivity of          , estimated in section 5.1. As shown in Fig. 5.7 and Fig. 5.9, 

there is no obvious change in the magnetic field strength when the sample is introduced into 

the resonator cavity. The maximum magnetic field strength only reduced from     

        to             because the sample absorbed some of the field.  

 

       

 

Figure 5.9: The hairpin resonator is loaded with tightly packed nanotubes sample (       in 

volume corresponding to a sample mass of      ).  
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Furthermore, based on the results shown in Table 5.1, there is no significant change in    

when the conductivity of the sample is          , implying the conductivity is not high 

enough to screen the field. The magnitude of field screening is examined from the change in 

the resonant frequency       of the hairpin resonator by introducing materials with different 

conductivities. Table 5.1 shows the trend of the field screening as the conductivity of the 

sample increases. The simulation result confirms that     increases as the conductivity of the 

sample increases. Screening was only observed when the conductivity of the sample is higher 

than        .  

 

A conductivity of           was found in the experiment, therefore computation of     was 

conducted for this conductivity. A value of           was observed, which is similar to 

that of the experiment, and validates the simulation procedure. 

 

In addition, a validation of the simulation has been carried out by introducing copper into the 

resonator cavity. As discussed in chapter 4, a resonant frequency shift of        was 

observed on insertion of copper spheres (             ) into the cavity. A similar 

scenario has been confirmed in the COMSOL simulation by inserting a copper rod into the 

resonator cavity, which results in a resonant frequency shift of       . This confirms that 

the simulation result is nearly the same as that of the experiment with an error of    .  

 

Conductivity (S/m) Resonant Frequency (Hz)         

      3001417305 908 794 

      3005485516 1181 1032 

      3008674750 1327 1160 

      3010474929 1372 1199 

      3011215490 1391 1216 

       3012371644 1394 1218 

       3019527680 1398 1220 

 

Table 5.1: Recorded increase in the resonant frequency as the conductivity of the nanotubes 

sample increases. 
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Also, the quality factor,   was computed when the nanotubes sample is in the hairpin 

resonator cavity. The field components are extracted from the COMSOL output file and a 

numerical integration was performed to obtain the parameters required for the hairpin 

resonator   calculations (Eq. 5.52).  

 

For an empty resonator, the value of    is 1220 but when a sample of nanotubes having a 

conductivity of            is inside the region of high magnetic field, the value of     

reduces to 1160. There is a reduction in the value of    because the sample absorbed some of 

the microwave energy. The sample of nanotubes introduced some loss in the resonant device, 

which is evident from the    value.  

 

The    value was used to calculate the change in the spectral response bandwidth     from 

the well-known   factor expression,         . The bandwidth increased by        

because of the microwave loss introduced by the nanotubes. The sample decreased the overall 

loss of the resonator, leading to bandwidth broadening.  

 

In this simulation, similar     have been observed when compared to that of the experiment 

but there is difference in    . In the experiment,     was found to be       while that 

recorded in this simulation is only       . This suggests that there is something else 

contributing to the experimental observations.  

 

In the following section, quantization in CNTs and the effect of axial magnetic fields on their 

electronic structure are discussed.  

 

 

  



 

Chapter 5. 3D Electromagnetic Simulation of Hairpin Resonator for the Microwave Characterisation of Carbon Nanotubes Sample 

 

 

 

 

 

 

Page 119 of 179 

 

 

 

5.4 Discussion 

 

 

In a CNT, the electron wave number perpendicular to the axis of the CNT,   , is quantized. 

The quantized    are determined by the boundary condition shown in Eq. 5.53 [13]. 

 

                                                             (5.53) 

 

where   is an integer and   is the nanotube diameter. Fig. 5.10 shows the quantization of 

wave-states around a CNT. As shown in Fig. 5.10, there is a significant spacing between the 

quantised values of    for CNTs with small diameters (~   ). Fig. 5.10b shows the contour 

plot of graphene valence states for a CNT. The parallel lines represent the wavevectors 

allowed in the cylindrical boundary condition, and each line is a 1D subband. Electrons are 

free to move over long distances when the electron wave number is continuous.  

 

 

              

(a) 
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(b) 

 

Figure 5.10: Quantization of electronic wave states around a carbon nanotube. (a) The 

parallel and perpendicular axes of a CNT. (b) The contour plot of graphene valence states for 

a CNT [13].  

 

For a CNT with large diameter, the spacing between the values of    are small, which may 

lead to continuum of    states. In such case, electrons could travel in the circumferential 

direction of the CNT as shown in Fig. 5.11.  Since some of the CNTs in the experimental 

sample have diameters much larger than    , electrons travelling in the circumferential 

directions can acquire magnetic moments, and consequently screen the surrounding magnetic 

field.  

 

 

Figure 5.11: Screening currents for the microwave magnetic field applied parallel to the 

nanotube axis. 
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When a magnetic field is applied parallel to a CNT, the allowed    states in the CNT are 

modified by an Aharonov-Bohm phase [13]. In the presence of an axial magnetic field, the 

boundary condition for electron wave states around the CNT is given by: 

 

        
 

  
                                                         (5.54) 

   
      

 
                                                           (5.55) 

 

where    is the flux passing through the CNT,     is the axial magnetic field, and        is 

the flux quantum. The second term in Eq. 5.54 is the Aharonov-Bohm phase acquired by the 

electrons as they encircle a magnetic flux. The allowed    states is shifted by an amount 

           , which consequently changes the bandgap of the CNT. The change in the 

bandgap of the CNT is given by [13][14]:  

 

     

  
        

   

  
     

    

 
                                          (5.56) 

 

where      is the energy bandgap,   is the reduced Planck‟s constant,    is the Fermi 

velocity and the quantity,             is the orbital magnetic moment. Electronic states 

near the energy gap are predicted [14][15] to have an orbital magnetic moment much larger 

than Bohr magneton, which is the magnetic moment due to an electron spin. This large 

moment is thought to cause the magnetic behaviour of CNTs [16][17]. 
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5.5 Conclusions 

 

In this chapter, the 3D modelling of tightly packed carbon nanotubes using a hairpin 

resonator was described. The conductivity of the sample is one of the input parameters of this 

simulation. An expression for the average conductivity of the CNTs was derived starting 

from the density of states calculations. Based on the calculations described in section 5.1, the 

conductivity used in the simulation is          .  

 

For a conductivity of          , the resonant frequency of the hairpin decreases 

by       . An incremental shift was observed in the resonant frequency of the hairpin 

resonator only when a sample of highly conductive nanotubes         is inside its cavity. In 

such a case, the resonant frequency increased because the sample screened the applied 

microwave energy. As shown in Table 5.1, there is a trend in     as the conductivity of the 

sample is varied incrementally. Also, the screening properties of the sample were observed 

when its conductivity is           (based on the value extracted from the experimental 

results). The resonant frequency increased from 3.009GHz to 3.090GHz, which is 

comparable to that recorded in the experiment.  

 

In addition, it was examined how    changes when the hairpin cavity is loaded with the 

nanotubes sample. The    value reduces from 1220 to 1160 due to the microwave loss 

introduced by the sample in the resonant device. The broadening of the spectral response 

bandwidth (i.e.       ) is also due to the sample loss. 

 

In the simulations, a resonant frequency shift was observed only when the sample inside the 

cavity has a high conductivity (        ). This observation suggests that the nanotubes 

used in the experiment have extremely low sheet resistance. 
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Chapter 6  

Conclusions and Future Work 

 

6.1 General Observation 

 

In this work, theoretical and experimental studies of the conductivity of carbon nanotubes 

(CNTs) in steady state and at microwave frequencies have been described. A numerical 

simulation was used to understand the operation and performance of a Metal-Oxide-

Semiconductor (MOS) device based on a CNT. The simulation technique employed is based 

on a numerical algorithm employed by John et. al [1]. Poisson‟s equation is solved self-

consistently with Schrodinger‟s equation using the finite difference and scattering matrix 

techniques, respectively. Knowledge of the CNT bandstructure is required for this simulation 

method. Using the zone-folding method (ZFM), we obtained the bandstructure of CNTs from 

the pi-orbital nearest-neighbour tight-binding bandstructure of graphene.  

 

From the simulation results in chapter 2 it was observed that a MOS device based on a 

semiconducting CNT exhibits intriguing electronic properties. The I-V characteristics shown 

in Fig. 2.21 show that the current of the CNFET device saturates at a drain-source bias 

of     . This shows that carbon nanotube field-effect transistors (CNFETs) have good 

switching performance, which makes them useful in low voltage power switching 

applications. 

 

In chapter 3, the output characteristics of a CNFET device were compared to those of a 

graphene field-effect transistor (GFET). To improve immunity to short channel effects, a 

fully wrapped gate is assumed for both devices. The simulation result in chapter 3 suggests 

that circuits based on graphene FETs may have a superior switching performance than those 
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based on CNTs. Comparing the I-V characteristics of these devices we observed that a full 

current saturation is achieved for the GFET because the transmission probability for electrons 

rises rapidly with energy.  

 

The output characteristics of CNFETs depend on the nature of source and drain contacts, 

which is one of the issues in the development of CNT devices. In the simulation, the on-

current of the CNFET device depends on the tunnelling barrier, the height of which is 

determined by the end contacts. The electronic properties of CNFETs having different end 

contacts (Silver     , Iron     , and Gold     ) was compared. A higher on-current was 

observed when    is used as the device contacts. This is because the barrier height for    is 

smaller when compared to that of    and   .  

 

Since the DC transport properties of CNTs vary considerably with differing contacts, we 

electron transport in CNTs was studied using non-contact means (chapter 4). In the 

experiment, a      microwave host cavity was used to study the conductivity of carbon 

nanotubes. Placing the CNTs in the high magnetic field region of the resonator cavity induces 

current in the CNTs. The CNTs used in the experiment screen the applied microwave 

magnetic field. The sheet resistance of the CNTs was extracted from the shift in the resonant 

frequency of the resonator when the CNTs are introduced into the cavity. A very low sheet 

resistance of           was observed, which is very small for a non-superconducting 

material. Based on the sheet resistance, the conductivity of an individual nanotube was 

estimated to be          . Further experiment needs to be carried out on aligned 

nanotubes to justify this high conductivity. 

 

Morphological and microstructural studies of the carbon nanotubes conducted on the sample 

of nanotubes confirmed the presence of impurities. Energy dispersive X-ray spectroscopy 

(EDX) gives atomic % ratios of 96.5:2.7:0.8 for Carbon:Oxygen:Iron.. The    impurities are 

from the substrates used to stimulate the growth of the nanotubes during production. Since 

the small amount of    is well dispersed, it is not expected to influence the microwave 

measurements significantly.  
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In chapter 5, a numerical simulation of a hairpin resonator was used to validate the 

experimental procedure. Conductivity of the sample is an input parameter in this simulation. 

The average conductivity of a CNT is          as estimated from its charge density. In 

the simulation, it was observed that the tightly packed CNTs only screen when the 

conductivity is        . The conductivity estimated from the charge density of a CNT is 

not high enough to produce a screening effect. This suggests that there might be something 

else contributing to the screening observed in chapter 4. 

 

When the sample of CNTs is placed next to a magnet, it is attracted. The magnetic properties 

of the CNTs may have caused the screening effect observed in the microwave experiment. 

We have investigated ferromagnetism in the CNTs using vibrating sample magnetometer. As 

shown in Fig. 4.14, the hysteresis loops of the CNTs displayed a tiny magnetic hysteresis. 

Other researchers have also reported ferromagnetism in CNTs but the magnetic behaviour of 

the CNTs was linked to spin transport from the substrate to the nanotubes [2].  

 

Since the properties of CNTs are very sensitive to their geometries, the applied magnetic field 

could have altered the energy bandgaps of the nanotubes, thus changing the microwave 

properties of the CNTs. This work is inconclusive because not all samples examined show 

such striking behaviour, so future work should consider experimenting on wider range of 

frequencies and on well-aligned nanotubes.  

 

 

 

6.2 Future Outlook 

 

As reported in this work, CNTs have intriguing electronic and magnetic properties. 

Therefore, they can serve as the building blocks of future magneto-electronic devices. Since 

device scaling is one of the technological challenges facing magnetoelectronics [3], CNTs 

can be employed as magneto-devices due to their small dimensions. Experimentally, a MOS 
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device having a doped nanotube as the source and drain contacts has been developed [4] but a 

magnetic device based on a nanotube is yet to be explored. 

 

The presence of magnetic impurities in these CNTs and the variation in the sample geometry 

made it difficult to conclude the experimental work adequately. For future work, the 

experimental measurements should be repeated on pure and aligned nanotubes, which would 

make the microwave experiment more quantitative. In addition, it would give a better view of 

the magnetic behaviour of CNTs.  

 

For microwave experiment on aligned nanotubes, one of the likely drawbacks is that the 

coating substance used during production may contaminate the nanotubes. It is possible to 

examine the properties of the aligned nanotubes if the properties of the coating substance are 

known. The microwave technique employed in this work can be used to obtain the properties 

of the coating substance in a similar procedure presented in section 4.5. In addition, future 

contactless experiment on CNTs should be performed over a wider range of frequencies.  

 

Experimentally, it will be difficult to miniaturize a hairpin resonator on which to take 

measurement of samples with volumes much smaller than the one considered in this work. It 

is easier to miniaturize a dielectric resonator because its internal properties depend mainly on 

the type of dielectric used [5]. In Appendix 8, the simulation described in chapter 5 was 

repeated using a sapphire dielectric resonator. In future work, the sapphire dielectric 

resonator should be constructed and used to study a well-aligned nanotube sample.  

 

In future work, microwaves studies should be conducted on graphene. Microwave 

characterisations of graphene would be more quantitative because they have a planar 

structure, and can be produced more easily. 
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Appendix 1  

A1. Detailed Procedure for Implementing a Finite Difference Algorithm  

 

 

The finite difference methods are based upon approximations, which permit replacing 

differential equations by finite difference equations. These finite difference approximations 

are algebraic in form and they relate the value of the dependent variable at a point in the 

solution region to some neighbouring point‟s value. A finite difference solution involves 

three steps: 

 

 Dividing the solution region into a grid of nodes 

 Approximating the specified differential equation by finite difference equivalent that 

relates the dependent variable at a point in the solution region to its value at the 

neighbouring points 

 Solving the difference equations subject to the prescribed boundary conditions  

 

The course of action depends on the nature of the problem, the solution region and the 

boundary conditions. The most commonly used grid patterns for two-dimensional problems 

are shown in Fig.1.1. 

 

(a) (b)

(c) (d)  

 

Figure A1.1: Common grid patterns: (a) rectangular grid, (b) skew grid, (c) triangular grid, 

(d) circular grid. 
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Figure A1.2: Estimates for the derivative of      at P using forward, backward, and central 

differences. 

 

Constructing the finite difference approximations from a given differential equation involves 

estimating derivatives numerically. Given a function      shown in Fig. A1.2, its derivative 

i.e. the slope of the tangent at P by the slope of arc PB, can be approximated using the 

forward-difference formula 

 

       
              

  
                                                     (A1.1) 

 

Or the slope of the arc AP, yielding the backward-difference formula as 

 

       
              

  
                                                    (A1.2) 

 

Or the slope of the arc AB, resulting in the central-difference formula; 

 

       
                 

   
                                                 (A1.3) 

 

Also, the second derivative of      at P can be estimated as 

 

        
                       

  
 

 

  
 
              

  
 

              

  
                (A1.4) 
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OR 

 

        
                        

     
                                          (A1.5) 

 

Any approximation of a derivative in terms of values at a discrete set of points is known as 

finite difference approximation. In order to use the finite difference approach to find the 

solution of a function       , the solution region in the       plane is divided into equal 

rectangles or meshes of sides    and    as shown in Fig. A1.3. 
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Figure A1.3: Finite difference mesh for two independent variables   and  . 

 

Let the coordinates       of a typical grid point or node be  

 

                                                                (A1.6) 

                                                                 (A1.7) 

 

and the value of   at   be 

 

                                                               (A1.8) 
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With this notation, the central difference approximations of the derivatives of   at the          

node are 

 

        
                 

   
                                                 (A1.9) 

        
                 

   
                                               (A1.10) 

         
                         

     
                                         (A1.11) 

         
                         

     
                                         (A1.12) 
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Appendix 2  

A2. Explanation of the Scattering Matrix Method by Analysing a Single 

Symmetric Planar Barrier of Defined Width and Height 

 

 

To explain the scattering matrix method, consider a single symmetric planar barrier of 

defined width and height shown in Fig. A2.1. Let us assume a parabolic dispersion relation 

for an electron in the conduction band incident on the left side of the barrier. The solution of 

this dispersion relation can be separated into parallel and perpendicular parts relative to the 

barrier. Then, solve the    Schrödinger equation for the stationary solutions in the z-

direction, which is perpendicular to the barrier.    

 

 
   

 

 

  

 

     

 

  
                                                    (A2.1) 
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Figure A2.1: A simple rectangular tunnelling barrier 

 

The solution of the Schrödinger equation (Eq.A2.1) can be written for different region of the 

barrier as 

 

      
                     

                    
                    

                                      (A2.2) 
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                                                         (A2.3) 

  
          

 
                                                     (A2.4) 

 

where     are the wavevectors and   is the thickness of the barrier. The incoming and 

outgoing waves on the left side of the barrier are represented by coefficients   and  , 

respectively. Coefficients   and   are the incoming and outgoing waves on the right side of 

barrier, respectively. For the continuity of the envelope wavefunction  , the coefficients A to 

F are related to each other through the boundary conditions. The boundary conditions is set 

by matching the wavefunctions and its derivatives at interfaces      and    . For 

instance, at     :  

 

                                                                  (A2.5) 
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where the     array elements are calculated from the matrix multiplication of the     

arrays appearing in Eq. A2.9 and Eq. A2.12. A different matrix relation can be defined in 

terms of the outgoing fluxes,   and  , and incoming fluxes,   and  , on either side of the 

barrier as shown in Eq. A2.14. 

 

 
 
 

   
   

   

      

     
   

 
 

                                                     (A2.14) 

 

where the S-Matrix is known as the scattering matrix. The transmission and reflection 

coefficients are obtained by setting    , which yields Eq. A2.15 and Eq. A2.16. 

 

       
                                                             (A2.15) 

       
                                                            (A2.16) 

 

Considering the incident waves from the right side of the barrier, the transmission and 

reflection coefficients are determined by setting    .  

 

       
                                                            (A2.17) 
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Appendix 3  

A3. Derivation of the Laplace equation as a Function of Polar and 

Cylindrical Coordinates 

 

In a closed metallic cylinder system, Poisson‟s equation restricted to just two dimensions by 

azimuthal symmetry is analysed below. In the CNT model devices, use of the polar and 

)cos(rx  cylindrical coordinates is more convenient as the model is closer to this form. 

Now, the Laplace‟s equation for a function of polar and cylindrical coordinates is derived. 
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Figure A3.1: Cylindrical Coordinates. 

 

Cylindrical and rectangular coordinates as shown in the Fig. A3.1 are related by 

 

                                             
 

 
            (A3.1) 

 

For instance, if   and   are both negative then     is positive but       is in the third 

quadrant which implies that   must be between   and     . Assuming  , which is a function 

of        , is continuous with continuous first and second partial derivatives in some 

region  . In view of the first equation in Eq. A3.1,   can be considered as a function of  ,   

and  . Applying the chain rule to Eq. A3.1 yields: 
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Note:   and   are independent, which implies 
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Similarly,  
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Now the second derivatives are calculated by differentiating Eq. A3.5 with respect to   

yielding  
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On applying the chain rule to the last two terms of Eq. A3.6, we have 
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Differentiating Eq. A3.5 with respect to   yields  
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Summing Eq. A3.7 and Eq. A3.8 gives the Laplacian in cylindrical coordinates 
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Finally, for Laplace‟s equation in cylindrical coordinates and restricting the above equation to 

just two dimensions by azimuthal symmetry, write 
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Appendix 4  

A4. A Detailed Procedure for Computing the Electrostatic Potential within 

the CNFET Structure 

 

The electrostatic potential within the CNFET structure is computed by solving Eq. A4.1 

using a 2D finite difference algorithm. 

 

        

   
 

 

 

       

  
 

        

   
  

 

    
                                 (A4.1) 

 

From the Poisson‟s equation, let     represent an approximation to       . To discretize Eq. 

A4.1, we replace both   and   derivatives with centered finite differences. Now divide the 2D 

cylindrical structure into       grids and number each grid by an index  , where 
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Multiplying    
  on both sides yields: 

 

         
    

    
                    

    

    
                 

  
       

    
             (A4.10) 
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The singularity at     was addressed by applying L‟Hopital‟s rule to the Poisson 

equation‟s, yielding 
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Applying Eq. A4.17 and Eq. A4.18 gives 
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At the CNT radius                
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Applying Eq. A4.21 – Eq. A4.23 to the nanotube-insulator interface yields: 
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The boundary conditions for the potential are given by 
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1. Apply   , when                          

2. Apply   , when                          

3. Apply   , when                               

 

Express these derived equations in a matrix form as shown in Eq. A4.27. 

 

     
  

  

    
                                                        (A4.27) 

 

where                        
 ,                         

  and   is a     

     sparse matrix. Once the charge density vector   has been computed, the potential at 

every grid by simply inversing the  -matrix is then determined. 

       
  

  

    
                                                    (A4.28) 

 

Boundary conditions for the system 

 

Inside the cylindrical system, Eq. A4.28 gives the general form for all the grids. As a case 

study, assume that the grid with index   is on the boundary. When the simulation gets to the 

    row of the  -matrix, the general equation is no longer applicable because it requires the 

knowledge of the potential outside the system. In order to avoid this problem, modify both 

the  -matrix and the     element of the charge density vector  . Replace the value of the 

potential     
          at the particular grid with the boundary condition, which could be the 

source-   , drain-    and gate-    voltage of the CNFET device. 
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                                                                 (A4.30) 

                                                                 (A4.31) 

 

where   is the work function,     is the gate-source voltage and     is the drain-source 

voltage. The     row of the modified  -matrix becomes         and    is now the 

corresponding boundary condition. 
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A5. A Detailed Description of the Grid Implementation for the CNFET 

Device 

 

In this section, the details of the cylindrical system grid implementations are provided.  
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Figure A5.1: Grid implementation of the azimuthal symmetry in the coaxial CNFET. 
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For the source injection, 
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For drain injection, 
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Appendix 6  

A6. Debye Length Theory 

 

The Debye Length is the scale over which electrons screen out electric fields in a 

semiconductive material. The energy of a charge   in the potential to be screened is   , 

where   is the potential. Using the Boltzmann distribution to define the probability of finding 

a particle within this energy, the number of particles within this potential is given by 

 

        
                                                      (A6.1) 

 

where    is the Boltzmann constant,    is the density when the potential is zero, T is the 

absolute temperature. The potential can be determined as a function of position by placing the 

charge density in Poisson‟s equation  
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where    is the electric constant,    is the relative static electric permittivity of the medium. 

The thermal voltage is defined as: 
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The Poisson equation becomes 
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A7. The Images Obtained from the Morphology and Microstructural 

Studies Conducted on the Nanotube Sample 

 

 

      

                                        (a)                                                               (b) 

 

        

                                       (c)                                                               (d) 

 

Figure A7.1: (a), (b) - Series of TEM micrographs showing the microstructure of the CNTs. 

(c), (d) - Images (a) and (b) are magnified, black spots showing impurities. 
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                                       (a)                                                               (b) 

 

      

                                       (c)                                                               (d) 

 

Figure A7.2: (a), (b) – Series of STEM photographs showing the bulk nanotube sample. 

(c), (d) – Magnified to capture the presence of Fe particles (the bright dot) 
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                                       (a)                                                               (b) 

 

      

                                       (c)                                                               (d) 

 

Figure A7.3: EDX analysis is performed on the inset shown in (a). (b) – Carbon, (c) – 

Silicon, and (d) – Iron 
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A8. 3D Electromagnetic Simulation of Sapphire Dielectric Resonator for 

the Microwave Characterisation of Carbon Nanotubes Sample 

 

A8.1 Introduction  

 

Here the electrical conductivity of CNTs is examined by observing the change in the internal 

properties of a sapphire resonator when a nanotube powder is inside its cavity. The sapphire 

resonator is also modelled using COMSOL multiphysics. Our sapphire resonator model has a 

small disc of low-loss high dielectric constant      that ensures most of the fields are 

contained within the dielectric, which results in a high Q-factor. The dielectric loss is due to a 

finite dielectric conductivity, or a finite phase angle between the dielectric polarisation and 

the electric field producing it. Therefore, the relative permittivity    is complex and written as 

 

                                                            (A8.1) 

 

The real part (    of Eq. A8.1 measures the electrical energy stored in the dielectric while the 

imaginary part      measures the loss in the medium as heat. This heat is due to damping of 

the vibrating dipole moments [1]. The radiation loss is very small and the quality factor of the 

dielectric      is only limited by the losses inside the dielectric body. If the entire field of the 

resonant mode is stored inside the resonator and if there are no losses due to external fields, 

we have 

 

                                                             (A8.2) 

 

The quantity      is known as the loss tangent, which is defined as           . The 

sapphire resonator was used to investigate the surface resistance of the nanotubes. For the 

      resonant mode, a theoretical analysis of the electromagnetic fields allows the surface 

resistance and the current density to be determined from the value of the resonant frequency, 
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 -value and dissipated power of the resonator. In dielectric resonators, the dielectric material 

in the resonator is used to concentrate the high frequency field on the measurement sample. 

The    and    modes with integer subscripts             are used to describe the resonant 

modes in dielectric resonators [1,2]. The subscripts     and   characterise half-period field 

variations in the circumferential, radial and axial directions, respectively. Most methods that 

measure surface resistance of samples use a       resonant mode. The       family of 

modes is unique because its electric field pattern is purely azimuthal. As shown in Fig. A8.1, 

the magnetic field in this mode is solenoidal in nature. Although there is no conducting 

material on the side of the walls of the dielectric rod, the mode still has a high  -value. The 

resonant frequency of the isolated       mode in     is  

 

    
  

    
 
 

 
                                                         (A8.3) 

 

where   and   represents the radius and length of the dielectric resonator, respectively.  

 

Dielectric rod

 

Electric Field Line

Magnetic Field Line

 

 

Figure A8.1: Field configuration for a       resonant mode [3]. 

 

For this dielectric resonator method, a sapphire disk is attached permanently to a conducting 

plate. The Q-factor of the resonator is mainly dependent on the average value of the surface 

resistance of the conducting plate and the measurement sample.  
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A8.2 Sapphire Resonator Model 

 

A cylindrical sapphire resonator-based measurement method is implemented for examining 

the electrical properties of CNTs. The main building block of this resonator is the single 

crystal sapphire, which has a cavity to allow the insertion of measurement samples. Sapphire 

is an anisotropic material and its dielectric constant is dependent on the direction of the 

electric field. In the model, the sapphire rod has a diameter of     and a length of    . To 

avoid radiation losses, we enclose the sapphire rod in a cylindrical copper shield. The internal 

diameter and the length of the copper shield are 16mm and 10mm, respectively. The model 

permits a hole of diameter     in the sapphire cavity, and the sample is placed in this gap. 

Fig. A8.2 shows a schematic of the sapphire resonator used for this simulation. The resonant 

frequency of the resonator is around     .  

 

Sapphire Disk

AirCopper radiation shield  

(a) 

 

Sapphire Disk

Cavity  

(b) 

Figure A8.2: A schematic of the cylindrical sapphire resonator. (a) Resonator with the field 

lines, dotted lines represent magnetic field patterns while the solid lines represent the electric 

field patterns (b) Top view of the structure. 
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The       resonant mode of the sapphire dielectric resonator is used for our simulation. The 

sapphire resonator was placed in an electromagnetic field, which excites a       resonant 

mode. Using COMSOL, the conducting sample inside a     quartz tube is modelled. It is 

good to point out that the quartz tube is assumed to be filled with nanotubes sample. 

Therefore, an effective screening from the bulk nanotubes was observed. The loaded quartz 

tube is in the cylindrical cavity of the sapphire rod shown in Fig. A8.2. The permittivity of 

the sapphire rod is determined from the resonant frequency. The simulation is started by 

defining the conductivity of the sample. The sample is in the region of high magnetic field, 

which is in the middle of the sapphire rod. Screening current is induced in the sample if its 

conductivity is high enough. During the flow of this current, the skin effect arises and 

electrons tend to move along the surface of the sample. The estimation of the skin depth is 

crucial when predicting how thick the sample in the quartz tube needs to be in order to 

minimise field penetration. The computed skin depth is compared to that obtained 

theoretically using the known surface resistivity model. The nanotubes in the bulk sample 

have various orientations, and there are physical contacts between the nanotubes.  

 

 

From the quality factor,   of the resonator shown in Fig. A8.2, the loss of the resonant 

system can be measured. The overall   of the resonator device reflects the properties of the 

sample occupying the resonator. For this particular sapphire resonator, the   is defined as [2] 

 

     
                           

                              
    

   

   
                           (A8.4) 

                                                                     (A8.5) 

 

where        is the power loss in the sample,      is the dielectric power loss and      is the 

power loss due to fields radiation. The sapphire rod is placed in a closed cavity with high 

conductive walls. Therefore, the field radiation is assumed to be zero, leaving us with        

and     .  
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where      is the sample   factor and    is the   factor of the sapphire rod. For      

calculations, we have 
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where    is the surface resistance,   is the surface area of the cavity,   is the volume of the 

cavity,    is the permeability of free space and   is the magnetic field strength. Therefore, 

      becomes 
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For    calculations, 
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where    is the permittivity of free space,    is the permittivity in the air region,    is the 

permittivity of the dielectric,   is the electric field, ins represents the region inside the 

dielectric, out represents the air region between the copper shield and the dielectric,     is the 

total energy stored inside the dielectric and the air around it [2].  Therefore,     becomes 
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A8.3 Simulation Results 

 

The sapphire resonator was designed using the axisymmetric electromagnetics application 

mode in COMSOL. The simulation method presents the cylindrical structure of the resonator 

as a rectangular geometry due to the nature of this application mode. The modelling plane is a 

    plane, where the  -axis represents the horizontal axis and the  -axis represents the 

vertical axis. The actual 3D geometry of the model can be obtained by revolving the 2D 

geometry around the  -axis. Fig. A8.3 shows the 2D and 3D geometries of the sapphire 

resonator modelled using COMSOL. 
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(b) 

Figure A8.3: 2D & 3D geometries of the sapphire resonator modelled using COMSOL. 
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A       resonant mode is excited due to the ratio of                 (0.5) of the 

cylindrical resonator. Fig. A8.4 shows the field patterns in the resonator with and without the 

sample. Sapphire is a high dielectric material and when operating in the       mode, most of 

the stored electric energy and magnetic energy are contained within the material. As shown in 

Fig. A8.4, the remainder of the energy is distributed around the dielectric resonator in the 

space within the shield. Current is driven through the conductive sample using the region 

concentrated with magnetic field. 

 

 

(a) 

 

Sample

 

(b) 

 

Figure A8.4: The       magnetic field pattern in the sapphire resonator simulated using 

COMSOL (a) before inserting the conducting sample, (b) after inserting the sample.  
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For an assumed conductivity of        , a skin depth of       was computed for the 

conducting sample. The sample fills a quartz tube having a length of       and a diameter 

of     . The current density at the surface of the sample is much higher than that within the 

interior of the sample due to the skin effect. The accuracy of the simulation model was 

investigated by comparing the computed skin depth to that theoretically calculated using the 

surface resistivity model. As analysed in Table A8.1, the skin depth varies with the 

conductivity of the sample. As the conductivity increases, the skin depth decreases and the 

electrons move along the surface of the sample, which validates the simulation method. 

 

 

Conductivity [S/m] Theoretical  Calculation [m] Measured Value [m] 

                      

                      

                      

 

Table A8.1: The skin depth computed from our simulation model is compared to that of the 

surface resistivity model. 

 

Experimentally, a high field screening from the CNTs sample was observed. In the 

experiment, it was suggested that the extensive field screening is due to the high conductivity 

of the CNTs. Here the simulation is started by assuming a conductivity of         for the 

sample placed in the sapphire resonator [4]. Using this conductivity, a field screening was 

observed when the conducting sample was placed in the region of high magnetic field. Fig. 

A8.5 shows the screening observed in our simulation. As shown in Fig. A8.5a, the entire 

magnetic fields penetrate into the sample with a conductivity of        . When the 

conductivity of the sample is         , the penetration of the magnetic fields is limited.  
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Figure A8.5: Field screening observed when the conducting sample is placed in the region of 

high magnetic field. (a) Assumed conductivity of        , and (b) conductivity of        . 
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Also, the conductivity of the sample is varied and the magnetic field strength computed at the 

surface of the sample. As shown in Fig. A8.6, the field strength at the surface of the sample 

decreases as its conductivity in the simulation is increased. This observation suggests that the 

experimental nanotubes sample exhibited screening because it is very conductive.  

 

 

 

Figure A8.6: The plot of the magnetic field strength against position         along the 

surface of the conducting sample with varying conductivity.  
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A9. Publication - Modelling Charge Transport in Graphene Nanoribbons 

and Carbon Nanotubes using a Schrodinger–Poisson Solver 
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A10. Publication - Microwave Characterisation of Carbon Nanotube 

Powders 

 

 


