Yusuf, Sagir Muhammad (2023). Managing distributed situation awareness in a team of agents. University of Birmingham. Ph.D.
|
Yusuf2023PhD.pdf
Text - Accepted Version Available under License All rights reserved. Download (7MB) | Preview |
Abstract
The research presented in this thesis investigates the best ways to manage Distributed Situation Awareness (DSA) for a team of agents tasked to conduct search activity with limited resources (battery life, memory use, computational power, etc.). In the first part of the thesis, an algorithm to coordinate agents (e.g., UAVs) is developed. This is based on Delaunay triangulation with the aim of supporting efficient, adaptable, scalable, and predictable search. Results from simulation and physical experiments with UAVs show good performance in terms of resources utilisation, adaptability, scalability, and predictability of the developed method in comparison with the existing fixed-pattern, pseudorandom, and hybrid methods. The second aspect of the thesis employs Bayesian Belief Networks (BBNs) to define and manage DSA based on the information obtained from the agents' search activity. Algorithms and methods were developed to describe how agents update the BBN to model the system’s DSA, predict plausible future states of the agents’ search area, handle uncertainties, manage agents’ beliefs (based on sensor differences), monitor agents’ interactions, and maintains adaptable BBN for DSA management using structural learning. The evaluation uses environment situation information obtained from agents’ sensors during search activity, and the results proved superior performance over well-known alternative methods in terms of situation prediction accuracy, uncertainty handling, and adaptability. Therefore, the thesis’s main contributions are (i) the development of a simple search planning algorithm that combines the strength of fixed-pattern and pseudorandom methods with resources utilisation, scalability, adaptability, and predictability features; (ii) a formal model of DSA using BBN that can be updated and learnt during the mission; (iii) investigation of the relationship between agents search coordination and DSA management.
Type of Work: | Thesis (Doctorates > Ph.D.) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Award Type: | Doctorates > Ph.D. | |||||||||
Supervisor(s): |
|
|||||||||
Licence: | All rights reserved | |||||||||
College/Faculty: | Colleges (2008 onwards) > College of Engineering & Physical Sciences | |||||||||
School or Department: | School of Computer Science | |||||||||
Funders: | Other | |||||||||
Other Funders: | Petroleum Technology Trust Funds, Nigeria | |||||||||
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science | |||||||||
URI: | http://etheses.bham.ac.uk/id/eprint/13295 |
Actions
Request a Correction | |
View Item |
Downloads
Downloads per month over past year