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Abstract

In this thesis we present new results in graph and hypergraph theory all of which feature
paths or cycles.

A k-uniform tight cycle C%) is a k-uniform hypergraph on n vertices with a cyclic
ordering of its vertices such that the edges are all k-sets of consecutive vertices in the
ordering.

We consider a generalisation of Lehel’s Conjecture, which states that every 2-edge-
coloured complete graph can be partitioned into two cycles of distinct colour, to k-uniform
hypergraphs and prove results in the 4- and 5-uniform case.

For a k-uniform hypergraph H, the Ramsey number r(H) is the smallest integer N such
that any 2-edge-colouring of the complete k-uniform hypergraph on N vertices contains a
monochromatic copy of H. We determine the Ramsey number for 4-uniform tight cycles
asymptotically in the case where the length of the cycle is divisible by 4, by showing that
r(Ch) = (54 o(1)n.

We prove a resilience result for tight Hamiltonicity in random hypergraphs. More
precisely, we show that for any v > 0 and k£ > 3 asymptotically almost surely, every
subgraph of the binomial random k-uniform hypergraph G*)(n, n?~!) in which all (k — 1)-
sets are contained in at least (% + 27)pn edges has a tight Hamilton cycle.

A random graph model on a host graph H is said to be 1-independent if for every
pair of vertex-disjoint subsets A, B of E(H), the state of edges (absent or present) in A
is independent of the state of edges in B. We show that p = 4 — 2v/3 is the critical
probability such that every 1-independent graph model on Z? x K,, where each edge is

present with probability at least p contains an infinite path.
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CHAPTER 1

INTRODUCTION

Combinatorial problems have captured the interest of humanity for thousands of years.
This is evidenced by the fact that one of the oldest known mathematical documents, the
Rhind mathematical papyrus, which is more than 3500 years old, contains what can be
interpreted as a combinatorial exercise [23]. The origin of graph theory, one of the most
important areas of modern combinatorics, is much more recent and is commonly attributed
to the work of Euler on the problem of the Bridges of Konigsberg dating back to 1735 [11§].
A graph G is defined to be a pair of sets (V(G), E(G)), where V(G) is called the set of
vertices of G and E(G), the set of edges of G, is a subset of the set of 2-element subsets
of V(G). The objects of study in this thesis will be graphs and hypergraphs (a natural
generalisation of graphs where each edge can contain any number of vertices instead of
having to contain exactly two). In this thesis we will consider problems in two areas of
combinatorics, extremal combinatorics and probabilistic combinatorics. These areas of
combinatorics were both popularised by Paul Erdos and now form an integral part of
modern combinatorics.

Extremal combinatorics concerns itself with how large or small a given parameter can
be in a given set of discrete structures. One of the first such problems was considered by
Mantel [87] in 1907 who showed that the maximal number of edges that a triangle-free

n2

graph on n vertices can have is MTJ' One branch of extremal combinatorics that has seen

extensive study is Ramsey theory which originated when Ramsey [100] proved what is



now known as Ramsey’s theorem. Ramsey’s theorem states that for any integers s,t > 1
there exists an integer R(s,t) such that any red-blue edge-colouring of the complete graph
on R(s,t) vertices contains a complete graph on s vertices which contains only red edges
or a complete graph on t vertices which contains only blue edges. In general problems in
Ramsey theory ask how big a certain structure has to be in order for it to be guaranteed
to contain a specific ordered substructure. In Chapter 2] we consider a generalisation
to hypergraphs of Lehel’s conjecture which is closely related to Ramsey theory and in
Chapter |3| we consider a problem in hypergraph Ramsey theory.

Combinatorics and probability theory have been closely related ever since the advent of
probability theory in the seventeenth century. The relevance of combinatorics to probability
theory is natural given the fact that one often has to enumerate combinatorial objects
when calculating probabilities. Perhaps more surprising is the fact that probability theory
can often be helpful in solving purely deterministic problems in combinatorics that do
not at first seem to have anything to do with randomness. The use of such probabilistic
techniques in combinatorics is called the probabilistic method and will feature at several
points in the work presented in this thesis. Probabilistic combinatorics is about both the
study of random discrete structures and about the probabilistic method. The most widely
studied random structure in graph theory is the Erdés-Rényi random graph G, , which is
the graph on n vertices where each edge is present independently with probability p. The
study of such random graphs was initiated by Erdés and Rényi [44] in 1959. In Chapter
we will consider a generalisation of the Erdos—Rényi random graph to hypergraphs and in
Chapter p| we will study different random graph models, where, in particular, we relax the
condition that edges are added independently.

The chapters of this thesis will consider the following topics. In Chapter [2| we will
examine a generalisation of monochromatic cycle partitioning to hypergraphs, Chapter
will be about the Ramsey number for 4-unifrom tight cycles, Chapter 4| will be about
resilience for Hamiltonicity in random hypergraphs, and Chapter |5| will consider percolation

in random graph models with a relaxed independence condition. We will now present our



results and give a more detailed introduction for each of the relevant areas.

1.1 Monochromatic cycle partitioning

An r-edge-colouring of a graph (or hypergraph) is a colouring of its edges with r colours.
A monochromatic subgraph of an r-edge-coloured graph is one in which all the edges have
the same colour.

An old observation of Erdos and Rado states that every 2-edge-coloured complete
graph contains a monochromatic spanning tree. Although this statement is easy to prove
this led to further study of Ramsey type problems for large sparse structures. Gerencsér
and Gyéarfas [54] showed the tight result that any 2-edge-colouring of K, contains a
monochromatic path of length at least {%"J They remarked that the easier result that any
2-edge-coloured K, contains a monochromatic path of length at least n/2 can be shown
by noting that the path of maximal length that consists of a red[| path followed by a blue
path is always spanning. In particular, every 2-edge-coloured complete graph on n vertices
admits a partition of the vertex set into a red path and a blue path. Gyarfas [57] went
on to show the stronger statement that in every 2-edge-coloured K, the vertices can be
covered by a red cycle and a blue cycle that share at most one vertex. Lehel conjectured
that this statement remains true if one asks for the cycles to be disjoint. More precisely
Lehel conjectured that every 2-edge-colouring of the complete graph on n vertices admits
a partition of the vertex set into two monochromatic cycles of distinct colours, where the
empty set, a single vertex and a single edge are considered to be degenerate cycles and are
allowed as cycles for the partition. The conjecture was first stated in [11] where it was
proved for special types of 2-edge-colourings of K,,. The conjecture was then proved for
large n by Luczak, Rodl and Szemerédi [85] using Szemerédi’s Regularity Lemma. Allen [1]
subsequently improved the bound on n by giving a different proof that avoids the use of

the regularity lemma. Finally Bessy and Thomassé [22] proved Lehel’s conjecture for all n

'We will always assume that the two colours used in a 2-edge-colouring are red and blue.



by giving a short and clever proof.

Similar problems for the complete bipartite graph K, ,, have also been studied. Gyarfas
and Lehel [59, 57] showed that any 2-edge-coloured K, , contains a red path and a blue
path that are disjoint and together cover all but possibly a single vertex unless the colouring
is a split colouring. Here a split colouring is one such that each colour class consists of the
disjoint union of two complete bipartite graphs. This was improved by Pokrovskiy [97] who
showed that any 2-edge-colouring of K, ,, that is not a split colouring admits a partition
of the vertices into two monochromatic paths of distinct colours. Recently, Stein [113]
further generalised this by showing that any such colouring admits a partition into a
monochromatic cycle and a monochromatic path of distinct colours.

It is natural to ask if the condition for Lehel’s conjecture that the graph be complete is
necessary or if a minimum degree condition suffices. It was conjectured by Balogh, Barat,
Gerbner, Gyérfas and Sarkozy [20] that Lehel’s conjecture can be strengthened in this
way. They conjectured that any 2-edge-coloured graph G on n vertices with §(G) > 3n/4
can be partitioned into a red and a blue cycle. They gave a construction showing that
their conjecture is best possible and proved an approximate version of it by showing that,
for every e > 0 and large n, under the stronger assumption that 6(G) > (3/4 + ¢)n all but
en of the vertices can be partitioned into a red and a blue cycle. This was improved by
DeBiasio and Nelsen [38] who showed that under this stronger minimum degree condition a
partition of all the vertices into a red and a blue cycle can be obtained. Finally Letzter [80]
proved the full conjecture for large n. In a similar direction Pokrovskiy [98] conjectured
that, for n large, any 2-edge-coloured graph G on n vertices with §(G) > 2n/3 can be
partitioned into 3 monochromatic cycles and that if instead 6(G) > n/2 then G can be
partitioned into four monochromatic cycles. An approximate version of the first part of
this conjecture was proved by Allen, Bottcher, Lang, Skokan and Stein [5] who showed
that, for any € > 0, if 6(G) > (2/3 + €)n, then G can be partitioned into 3 monochromatic
cycles. The second part of the conjecture however was disproved by Korandi, Lang, Letzter

and Pokrovskiy [73] who showed that for sufficiently large n there exists a 2-edge-coloured



graph G on n vertices with 6(G) > n/2 + logn/(16loglogn) whose vertices cannot be
partitioned into fewer than logn/(321oglogn) monochromatic cycles.

Similar problems have also been considered for colourings with a general number of
colours. In particular, a lot of attention has been given to the problem of determining
the number of monochromatic cycles that are needed to partition an r-edge-coloured
complete graph. Erdés, Gyarfas and Pyber [45] proved that every r-edge-coloured complete
graph can be partitioned into O(r?logr) monochromatic cycles and conjectured that r
monochromatic cycles would suffice. Their result was improved by Gyarfas, Ruszinkd,
Sarkézy and Szemerédi [62] who showed that O(rlogr) monochromatic cycles are enough.
However, Pokrovskiy [97] disproved the conjecture by showing that for each r > 3 there
exist infinitely many r-edge-coloured complete graphs which cannot be partitioned into r
monochromatic cycles. Even so, in these counterexamples it is still possible to cover all
but 1 of the vertices with r vertex-disjoint monochromatic cycles. This lead Pokrovskiy
to propose a weaker version of the conjecture stating that each r-edge-coloured complete
graph contains r vertex-disjoint monochromatic cycles that together cover all but at
most ¢, of the vertices, where ¢, is a constant depending only on r. Pokrovskiy [98]
subsequently proved that we can take c3 < 43000 for large enough n. Minimum degree
conditions have also been considered in this setting. It was shown by Korandi, Lang,
Letzter and Pokrovskiy [73] that there exists a constant ¢ such that any r-edge-coloured
graph on n vertices with minimum degree at least n/2 + crlogn can be partitioned
into O(r?) monochromatic cycles. They also provided a construction showing that this is
essentially best possible.

Recently, generalisations of Lehel’s conjecture to hypergraphs have also been considered.
For any positive integer k, a k-uniform hypergraph, or k-graph, H is an ordered pair of
sets (V(H), E(H)) such that E(H) C (V(kH)), where (2) is the set of all subsets of S of
size k. Let K be the complete k-graph on n vertices.

In k-graphs there are several notions of cycle. For integers 1 < ¢ < k < n, a k-graph C

on n vertices is called an ¢-cycle if there is an ordering of its vertices V/(C') = {vo, ..., vy—1}



such that F(C) = {{vik—0)s - - - s Vigk—t)15-1}: 0 < @ < n/(k —£) — 1}, where the indices
are taken modulo n. That is, an ¢-cycle is a k-graph with a cyclic ordering of its vertices
such that its edges are sets of k consecutive vertices and consecutive edges share exactly ¢
vertices. (Note that a k-uniform ¢-cycle on n vertices only exists if k — ¢ divides n.) A
single edge or any set of fewer than k vertices is considered to be a degenerate (-cycle.
Further, 1-cycles and (k — 1)-cycles are called loose cycles and tight cycles, respectively.

For loose cycles, Gyéarfas and Sarkozy [60] showed that every r-edge-coloured com-
plete k-graph on n vertices can be partitioned into ¢(k, ) monochromatic loose cycles.
Séarkozy [110] showed that, for n sufficiently large, 50kr log(kr) loose cycles are enough.
For tight cycles, Bustamante, Corsten, Frankl, Pokrovskiy and Skokan [27] showed that
every r-edge-coloured complete k-graph can be partitioned into C'(k,r) monochromatic
tight cycles. See [58] for a survey on other results about monochromatic cycle partitions
and related problems.

In Chapter [2| we investigate monochromatic tight cycle partitions in 2-edge-coloured
complete k-graphs on n vertices. When k = 3, Bustamante, Han and Stein [28] showed
that there exist two vertex-disjoint monochromatic tight cycles of distinct colours covering
all but at most o(n) of the vertices. Recently, Garbe, Mycroft, Lang, Lo and Sanhueza-
Matamala [53] proved that two monochromatic tight cycles are sufficient to cover all
vertices. However, these cycles may not be of distinct colours. We show that for all £ > 3,
there are arbitrarily large 2-edge-coloured complete k-graphs that cannot be partitioned

into two monochromatic tight cycles of distinct colours.

Proposition 1.1.1. For all k > 3 and m > k + 1, there exists a 2-edge-colouring

of K,gl(?nH)H that does not admit a partition into two tight cycles of distinct colours.

It is interesting to note that, as was recently proved by Stein [113], every 2-edge-
coloured K3 admits a partition into two tight path of distinct colours.
It is natural to ask whether we can cover almost all vertices of a 2-edge-coloured

complete k-graphs with two vertex-disjoint monochromatic tight cycles of distinct colours.

LA Ek-uniform tight path is a k-graph obtained from a k-uniform tight cycle by deleting a vertex.
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The case when k = 3 is affirmed in [28]. Here, we show that this is true when k = 4.

Theorem 1.1.2. For every e > 0, there exists an integer ny such that, for alln > nq, every
2-edge-coloured complete 4-graph on n vertices contains two vertex-disjoint monochromatic

tight cycles of distinct colours covering all but at most en of the vertices.

When k& = 5, we prove a weaker result that four monochromatic tight cycles are

sufficient to cover almost all vertices.

Theorem 1.1.3. For every ¢ > 0, there exists an integer ny such that, for alln > ny, every
2-edge-coloured complete 5-graph on n vertices contains four vertex-disjoint monochromatic

tight cycles covering all but at most en of the vertices.

1.2 Ramsey theory

The Ramsey number r(Hy, ..., Hy,) for k-graphs Hy,..., H,, is the smallest integer N

) contains a monochromatic

such that any m-edge-colouring of the complete k-graph K](\f
copy of H; in the i-th colour for some 1 < i <m. If Hy,..., H,, are all isomorphic to H
then we let r,,(H) = r(Hy, ..., H,) and call it the m-colour Ramsey number for H. We
also write r(H) for ro(H) and simply call it the Ramsey number for H.

The Ramsey number for the complete graph has seen extensive study. Nevertheless,
the important problem of determining the asymptotic behaviour remains widely open.
The best known bounds are

2 n ogn
(1—o(1)) \/_n\@ <r(K,) < n—Crostogm 4"

e =

for a constant C' > 0, where the lower bound is by Spencer [112] and the upper bound
is by Conlon [31]. As this example shows, determining the asymptotic behaviour of the
Ramsey number for certain graphs can be very hard. In general, we know even less
about Ramsey numbers for hypergraphs. However, Ramsey numbers for cycles in graphs

and hypergraphs, which we focus on here, are a bit better understood. In particular,
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cycles in graphs and hypergraphs have bounded degree and their Ramsey numbers are
thus known to be linear in the number of their vertices. That bounded degree graphs
have Ramsey numbers linear in their number of vertices was shown by Chvatal, Rodl,
Szemerédi and Trotter [29]. The analogous result for 3-uniform hypergraphs was shown
independently by Cooley, Fountoulakis, Kithn and Osthus [34] and by Nagle, Olsen,
Rodl and Schacht [93]. Subsequently Cooley, Fountoulakis, Kithn and Osthus proved a
generalisation to hypergraphs of any constant uniformity [35]. A shorter proof of this that
gives better constants was later given by Conlon, Fox, and Sudakov [32] by avoiding the
use of the hypergraph regularity lemma that was employed by previous proofs.

The Ramsey number for cycles in graphs was determined exactly in [26], 48, [108]. In

particular, for n > 5, we have

3p—1, if nis even,

r(Cn) = ’
2n — 1, if nis odd.

Note that there is a dependence on the parity of the length of the cycle. For the m-colour
Ramsey number, Jenssen and Skokan [68] proved that for m > 2 and any large enough

odd integer n we have r,,(C,,) = 2™ (n — 1) + 1.
Some Ramsey numbers for k-graphs related to cycles have also been studied. A k-
uniform tight cycle C%*) is a k-graph on n vertices with a cyclic ordering of its vertices
such that its edges are the sets of k consecutive vertices. The Ramsey number of the

3-uniform tight cycle on n vertices C3) was determined asymptotically by Haxell, Luczak,

Peng, Rodl, Ruciniski and Skokan, see [66], 67]. They showed that, for i € {1,2},
r(CP) = (14 0(1))4n and r(C$Y,,) = (1 + o(1))6n.

Note that just as for cycles in graphs the Ramsey number for 3-uniform tight cycles
depends on the parity of the length of the cycle.

We define the k-uniform tight path on n vertices P*) to be the k-graph obtained



from C’,(L]i)l by deleting a vertex. Using the bound on the Turan number for tight paths
that was recently shown by Firedi, Jiang, Kostochka, Mubayi and Verstraéte [52], one
can deduce that 7(P®) < k(n — k + 1) for any even k > 2.

The Ramsey number for loose cycles have also been studied. We denote by LC®*),
where n = ¢(k — 1), the k-uniform loose cycle on n vertices, that is the k-graph with vertex
set {v1,...,v,} and edges €; = {vitik-1),-- -, Vktigh—1)} for 0 <@ < £ — 1, where indices
are taken modulo n. Note that the k-uniform loose cycle on n vertices only exists if n is
divisible by k — 1. Haxell, Luczak, Peng, Rodl, Rucinski, Simonovits, and Skokan [65]
showed that 7(LC®) = (1+0(1))5n/4 for even n. This was generalised to all uniformities
by Gyarfas, Sarkozy and Szemerédi [61] who showed that, for £ > 3 and n divisible

by k —1,
2k — 1
2k — 2

r(LC,(f)) =(1+o0(1)) n.

Recently, the exact values of Ramsey numbers for loose cycles have been determined in
various cases, see [I11] for more details.

Another problem of interest in this area is determining the Ramsey number of a
complete graph and a cycle. For graphs, Keevash, Long and Skokan [69] showed that there

exists an absolute constant C' > 1 such that

Clogn
K,)=0(/-1 -1 1 i > —
r(Co, Kp) = (0 —1)(n — 1) 4+ 1 provided ¢ > og log 1

Analogous problems for hypergraphs have also been considered. See [90, 92], 96] for the
analogous problem with loose, tight and Berge cycles, respectively.

In this Chapter |3| we will consider the Ramsey number for tight cycles. We determine
the Ramsey number for the 4-uniform tight cycle on n vertices C*) asymptotically in the

case where n is divisible by 4.
Theorem 1.2.1. Let € > 0. For n large enough we have T(Cii)) < (5+¢)n.

It is easy to see that this is asymptotically tight.



Proposition 1.2.2. Forn,k > 2, we have that r(c,i’:)) > (k+1)n—1.

Proof. Let N = (k + 1)n — 2. We show that there exists a red-blue edge-colouring of KJ(\,f)
that does not contain a monochromatic copy of C,gi). We partition the vertex set of K ](Vk)
into two sets X and Y of sizes n — 1 and kn — 1, respectively. We colour every edge that
intersects the set X red and every other edge blue. It is easy to see that this red-blue
edge-colouring of K ](Vk) does not even contain a monochromatic matching of size n and thus
also cannot contain a monochromatic copy of C’,g]:;). Indeed, there is no red matching of
size n since every red edge must intersect X and |X| =n — 1. Moreover, there is no blue

matching of size n since all blue edges are entirely contained in Y and |Y|=kn—1. O

It is clear that the proof of Proposition also shows that r(Pﬁ)jLi) > 5n — 1 for

0 <4 <3. Since Cia +1) contains le(ilw for each 0 <17 < 3, Theorem [1.2.1] also determines

the Ramsey number for the 4-uniform tight path asymptotically.

Corollary 1.2.3. We have r(P) = (5/4 + o(1))n.

1.3 Resilience for Hamiltonicity in random graphs

The study of Hamilton cycles in graphs is one of the oldest topics in graph theory. In
extremal graph theory, Dirac [41] in 1952 proved that an n-vertex graph with minimum
degree at least 7 contains a Hamilton cycle. The graph K, ,,;1 shows that this result is
tight. In random graph theory, Pésa [99] and Korshunov [74] [75] independently showed
in the 1970s that Hamilton cycles first appear in the random graph G(n,p) — that is,
the n-vertex graph where edges are present independently with probability p — at a
threshold p = @(10%) Komlés and Szemerédi [72] showed that the sharp threshold for
Hamiltonicity coincides with that for minimum degree 2, and Bollobés [24] strengthened
this by showing a hitting time version: if edges are added one by one, the edge which

causes minimum degree 2 will asymptotically almost surely]l] also cause Hamiltonicity.

! Asymptotically almost surely (a.a.s.) is with probability tending to 1 as n tends to infinity.
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Combining these areas, Sudakov and Vu [I14] introduced the term resilience (though
the same concept appears earlier in work of Alon, Capalbo, Kohayakawa, Rodl, Rucinski
and Szemerédi [9]). They proved that for each v > 0, the random graph I' = G(n, p) is
a.a.s. (% + 7) -resiliently Hamiltonian whenever p = w(n~"log*n); that is, every subgraph
of I' with minimum degree at least (% + 7) pn has a Hamilton cycle. This result is sharp
in the minimum degree, for the same reason as Dirac’s theorem, but the probability can
be improved. This was done over a succession of papers: Lee and Sudakov [79] showed
that p can be reduced to the threshold Q(n~!logn) and recently Montgomery [91] and,
independently, Nenadov, Steger and Truji¢ [95] showed the hitting time version of this
result (for which one needs to be a little more careful with edge deletion: it is permitted

1

to delete only a (5 — ’y) -fraction of the edges at any given vertex).

Hamilton cycles in hypergraphs have only much more recently been attacked. There
are several natural notions of paths and cycles in hypergraphs: the one that will concern
us here is that of tight paths and cycles in k-uniform hypergraphs. That is, we work with
hypergraphs in which all edges have uniformity k. We say that a given linear ordering of
some vertices is a tight path if each consecutive k-set of vertices forms an edge; a given
cyclic ordering of some vertices with the same condition forms a tight cycle. The k = 2
case of this definition reduces to the usual paths and cycles in graphs. For brevity, in what
follows we write k-graph for k-uniform hypergraph.

In terms of extremal results, there are again several reasonable questions — one should
place some form of ‘minimum degree’ condition for tight Hamilton cycles, but this can take
the form of insisting that every j-set of vertices is in sufficiently many edges, where one can
choose j between 1 and k — 1. This leads to several significantly different problems (and
even more if one considers other notions of cycle). We refer the reader to the comprehensive
survey of Kithn and Osthus [77] for details, and focus on the version of minimum degree
we want to work with. This is the case 7 = k — 1, sometimes called codegree. Here,
the Hamiltonicity problem is resolved. Rodl, Rucinski and Szemerédi [103] 104], first

for 3-uniform and then for general uniformity, showed that if n is sufficiently large, any
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n-vertex k-graph with minimum codegree at least (% + 'y>n (i.e. every (k — 1)-set is in at
least that many edges) contains a tight Hamilton cycle. For 3-graphs, they [I05] were also
able to give the exact result for sufficiently large n (finding exactly what should replace
the error term yn).

In random hypergraphs, Dudek and Frieze [42, [43] found for several different notions
of ‘cycle’ the threshold for Hamiltonicity in the binomial random hypergraph G*)(n, p),
that is the n-vertex k-graph in which k-sets are edges independently with probability p. In
particular, in [43] they showed by the second moment method that for k& = 3 the threshold
is w(n_l), and for k > 4 the sharp threshold is at en™!. Narayanan and Schacht [94]
strengthened these results, in particular showing that en™! is also the sharp threshold for
k= 3.

Combining these (and answering a question of Frieze [51]), we prove, in Chapter , the

following corresponding codegree resilience statement.

Theorem 1.3.1. Given anyy >0 and k > 3, if p > n~'"*7, we show that T = G*) (n, p)
a.a.s. satisfies the following. Let G be any n-vertex subgraph of I' such that 6x_1(G) >

(% + 27)pn. Then G contains a tight Hamilton cycle.

Observe that this theorem is sharp in the minimum degree requirement, but it is
presumably not sharp in the probability. More precisely, when p = Q(logn/n) then a.a.s.
in I" there is an n-vertex subgraph G such that 0;_1(G) > (1/2 — v)pn and G does not
contain a tight Hamilton cycle. When p = o(logn/n), there a.a.s. are (k — 1)-tuples in I'
that are not contained in any edges and, therefore, no GG as required by the theorem exists.
For this regime the resilience condition needs to be adjusted, perhaps as explained above
for the hitting time results in graphs from [91], 95]. We certainly need p > 2en~! for any
statement of this kind to be true, otherwise randomly deleting half of the edges from I’
would a.a.s. destroy the tight Hamiltonicity.

This is the first resilience statement for tight Hamilton cycles in sparse random
hypergraphs to the best of our knowledge; however for Berge cycles, Clemens, Ehrenmiiller

and Person [30] proved a resilience statement which is both tight in the minimum degree
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and has only a polylogarithmic gap in the probability. For perfect matchings it was shown
by Ferber and Hirschfeld [49] that the same codegree resilience as in Theorem holds
with p = Q(logn/n), which is significantly above the threshold for the appearance of
perfect matchings, but optimal for the same reasons as discussed above. More generally,
Ferber and Kwan [50] studied the transference of results for perfect matchings in dense
hypergraphs into resilience statements in random hypergraphs.

It would be interesting to investigate this transference for other types of Hamilton cycles
and other degree conditions. For example, in the case of 3-graphs Reiher, Rodl, Rucinski,
Schacht, and Szemerédi [101] show that any n-vertex 3-graph with minimum vertex degree
(g +7) (g) contains a tight Hamilton cycle. Can this be extended to a resilience statement
in random 3-graphs? More precisely, can the condition d(G) > (5 4~)pn in Theorem m
for k = 3 be replaced by 01(G) > (g + 7)p(§>? The bound on the minimum degree would

again be sharp.

1.4 Percolation and 1l-independent random graph
models

Percolation theory lies at the interface of probability theory, statistical physics and
combinatorics. Its object of study is, roughly speaking, the connectivity properties of
random subgraphs of infinite connected graphs, and in particular the points at which
these undergo drastic transitions such as the emergence of infinite components. Since
its inception in Oxford in the late 1950s, percolation theory has become a rich field of
study (see e.g. the monographs [25, 56, [88]). One of the cornerstones of the discipline is
the Harris—Kesten Theorem [64], [70], which states that if each edge of the integer square
lattice Z? is open independently at random with probability p, then if p < % almost surely
all connected components of open edges are finite, while if p > % almost surely there exists
an infinite connected component of open edges. Thus 1/2 is what is known as the critical

probability for independent bond percolation on Z2.
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In general, given an infinite connected graph H, determining the critical probability
for independent bond percolation on H is a hard problem, with the answer known exactly
only in a handful of cases. There is thus great interest in methods for rigorously estimating
such critical probabilities. One of the most powerful and effective techniques for doing
just that was developed by Balister, Bollobas and Walters [16], and relies on comparing
percolation processes with locally dependent bond percolation on Z? (to be more precise:
l-independent bond percolation; see below for a definition). The method of Balister,
Bollobas and Walters has proved influential, and has been widely applied to obtain the
best rigorous confidence interval estimates for the value of the critical parameter in a wide
range of models, see e.g. [12, 14} 16} 15 [17, 19} 21, 39, 140, 109, 102].

However, as noted by the authors of [16] and again by Balister and Bollobés [13] in
2012, locally dependent bond percolation is poorly understood. To quote from the latter
work, “[given that] 1-independent percolation models have become a key tool in establishing
bounds on critical probabilities [...], it is perhaps surprising that some of the most basic
questions about 1-independent models are open”. In particular, there is no known locally
dependent analogue of the Harris—Kesten Theorem, nor even until now much of a sense
of what the corresponding 1-independent critical probability ought to be. In Chapter
we contribute to the broader project initiated by Balister and Bollobas of addressing the
gap in our knowledge about 1-independent bond percolation by making some first steps
towards a 1-independent Harris—Kesten Theorem. To state our results and place them in
their proper context, we first need to give some definitions.

Let H = (V, E) be a graph. Given a probability measure p on subsets of E, a p-random
graph H,, is a random spanning subgraph of H whose edge-set is chosen randomly from
subsets of E according to the law given by u. Each probability measure p on subsets of E
thus gives rise to a random graph model on the host graph H, and we use the two terms
(probability measure 4 on subsets of E/random graph model H,, on H) interchangeably.
We will be interested in random graph models where the state (present/absent) of edges is

dependent only on the states of nearby edges. Recall that the graph distance between two
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subsets A, B C F is the length of the shortest path in H from an endpoint of an edge in A
to an endpoint of an edge in B. So in particular if an edge in A shares a vertex with an
edge in B, then the graph distance from A to B is zero, while if A and B are supported

on disjoint vertex-sets then the graph distance from A to B is at least one.

Definition 1.4.1 (k-independence). A random graph model H,, on a host graph H is
k-independent if whenever A, B are disjoint subsets of E(H) such that the graph distance
between A and B is at least k, the random variables E(H,) N A and E(H,) N B are
independent. If H, is k-independent, we say that the associated probability measure [ is a

k-independent measure, or k-ipm, on H.

Let My >,(H) denote the collection of all k-independent measures p on E(H) in which
each edge of H is included in H,, with probability at least p. We define M, <,,(H) mutatis
mutandis, and let My, ,(H) denote My, >, N M}, <, — in other words My, is the collection
of all k-ipm p on H in which each edge of H is included in H,, with probability exactly p.

Observe that a 0-independent measure p is what is known as a Bernoulli or product
measure on F: each edge in £ is included in H,, at random independently of all the others.
We refer to such measures as independent measures. The collection My ,(H) thus consists
of a single measure, the p-random measure, in which each edge of H is included in the
associated random graph with probability p, independently of all the other edges. When
the host graph H is K,,, the complete graph on n vertices, this gives rise to the celebrated
Erdés-Rényi random graph model, while when H = Z? this is exactly the independent
bond percolation model considered in the Harris—-Kesten Theorem.

We will focus instead on M, >, (H) and M, ,(H), whose probability measures allow
for some local dependence between the edges. A simple and well-studied example of a
model from M ,(H) is given by site percolation: build a random spanning subgraph Hj '
of H by assigning each vertex v € V(H) a state S, independently at random, with S, =1
with probability § and S, = 0 otherwise, and including an edge uv € E(H) in H§* if and
only if S, = S, = 1. Each edge of H is in this random graph with probability p = 62, and

the model is clearly 1-independent since ‘randomness resides in the vertices’, and so what
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happens inside two disjoint vertex sets is independent. More generally, any state-based
model obtained by first assigning independent random states S, to vertices v € V(H) and
then adding an edge uv according to some deterministic or probabilistic rule depending
only on the ordered pair (Sy,S,) will give rise to a 1-ipm on H. State-based models are a
generalisation of the probabilistic notion of a two-block factor, see [81] for details.

Given a 1-ipm p on an infinite connected graph H, we say that p percolates if H,,

almost surely (i.e. with probability 1) contains an infinite connected component.

Definition 1.4.2. Given an infinite connected graph H, we define the 1-independent

critical percolation probability for H to be

pe(H) :=inf{p >0: Vu € My >,(H), p percolates}.

Remark 1.4.3. Given 1 € M >,(H) we can obtain a random graph H,, from H,, by de-
leting each edge uv of H,, independently at random with probability 1 —p/ (Pluv € E(H,)]).
Clearly H,, stochastically dominates (i.e. is a supergraph of) H, and v € My ,(H). Thus
the definition of p1.(H) above is unchanged if we replace My >,(H) by My ,(H).

Remark 1.4.4. The probability p, .(H) is in fact one of five natural critical probabilities
for 1-independent percolation one could consider, all of which are distinct in general —

see [36], Section 11.3, Corollary 50 and Question 53].

Balister, Bollobas and Walters [16] devised a highly effective method for giving rigorous
confidence interval results for critical parameters in percolation theory via comparison
with 1l-independent models on the square integer lattice Z?. Their method relies on
estimating the probability of certain finite, bounded events (usually via Monte Carlo
methods, whence the confidence intervals) and on bounds on the 1-independent critical
probability p; .(Z?). Work of Liggett, Schonman and Stacey [81] on stochastic domination
of independent models by 1-independent models implied p; .(Z?) < 1. Balister, Bollobas
and Walters [16, Theorem 2| obtained the effective upper bound p; .(Z?*) < 0.8639 via a

renormalisation argument and noted “it would be of interest to give significantly better
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bounds for p1.(Z*); unfortunately, we cannot even hazard a quess as to [its] value”. The
question of determining p; .(Z*) was raised again by Balister and Bollobas [I3, Question

2], who noted the difficulty of the problem:
Problem 1.4.5 (1-independent Harris-Kesten problem). Determine p; .(Z?).

Very recently, Balister, Johnston, Savery and Scott [I8] proved the new upper bound
p1.c(Z%) < 0.8457.

Balister and Bollobés [13] observed that a simple modification of site percolation due to
Newman shows that p; .(Z?) > (0s)*+ (1 —60,)?, where 0, = 0,(Z?) is the critical probability
for site percolation in Z2. Since it is known that 6, € [0.556,0.679492] (see [116], 117]), this
shows that p; .(Z?) > 0.5062. Non-rigorous simulation-based estimates 0, ~ 0.597246 [119]
improve this to a non-rigorous lower bound of 0.5172. Recently, Day, Falgas-Ravry and
Hancock gave significant improvements on these lower bounds. In [36, Theorem 7|, they
constructed measures based on an idea from the PhD thesis [46, Theorem 62] of Falgas-
Ravry showing that for any d € N, p; .(Z9) > 4 — 21/3 = 0.5358 .. .. They in fact showed
pe(H) >4 - 21/3 for any host graph H satisfying what they call the finite 2-percolation
property (see [36, Corollary 24]), a family which includes the graphs Z? x K, for any n € N.
Further, the same authors gave a different construction [36, Theorem 8] showing that

1— 6,

pl,c(Z2) Z (95)2 + 92 )

(1.4.1)

where 0, = 0,(Z?) is the critical probability for site percolation in Z?. Using the aforemen-
tioned simulation-based estimates for 6, this gives a non-rigorous lower bound of 0.5549 on
p1.c(Z?*). Very recently, Balister, Johnston, Savery and Scott [I8] proved the new rigorous
lower bound p; .(Z?) > (35 — 3v/3) = 0.555197... and also gave a new non-rigorous
simulation-based bound p; .(Z%) > 0.5921. All these lower bounds remain far apart
from the upper bound of 0.8457 from [I§], and, as noted in [16], part of the difficulty of
Problem has been the absence of a clear candidate conjecture to aim for.

In view of the difficulty of Problem [1.4.5] there has been interest in increasing our
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understanding of 1-independent models on other host graphs than Z2 Balister and
Bollobas noted p; .(Z?) is non-increasing in d and must therefore converge to a limit as
d — o0o0. They showed this limit is at least 1/2 and posed the following problem [I3]

Question 2J:
Problem 1.4.6 (Balister and Bollobds problem). Determine limg_,o, p1..(Z%).

By the construction of Day, Falgas-Ravry and Hancock mentioned above, this limit
is in fact at least 4 — 21/3; the best known upper bound is 0.5847 and was proved very
recently by Balister, Johnston, Savery and Scott [18].

Balister and Bollobas have further studied 1-independent models on infinite trees,
obtaining in this setting 1-independent analogues of classical results of Lyons [86] for
independent bond percolation. Day, Falgas-Ravry and Hancock for their part gave a number
of results on the connectivity of 1-independent random graphs on paths and complete
graphs, and on the almost sure emergence of arbitrarily long paths in 1-independent
models. More precisely, they introduced the long paths critical probability p1p(H) of H,

given by

prp(H) :=inf{p € [0,1]: Vu e M, ,, V¢ € N, P[H, contains a path of length ¢] > 0},

and showed py1p(Z) = 3/4, pip(Z x Ky) = 2/3. Since the sequence py1p(Z x K,,)
is non-increasing in n, it tends to a limit in [0,1] as n — oo. Day, Falgas-Ravry and
Hancock showed in [36, Theorem 12(v)] that this limit lies in the interval [4 — 2+/3,5/9]

and asked [36, Problem 54]:
Problem 1.4.7 (Day, Falgas-Ravry and Hancock). Determine lim,,_,o p11p(Z x K,,).

In Chapter [5| we determine the limit of the 1-independent critical probability for

percolation in Z? x K, as n — 00:
Theorem 1.4.8. The following hold:

(i) If p > 4 — 2v/3 is fized, then there exists N € N such that py . (7> x Ky) < p.
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(ii) For everyn € N, p; . (Z? x K,,) > 4 — 2+/3.
In particular, we have lim,, . pl,C(Z2 x K,)=4-— 23 =0.5358... .

As a corollary to the key result in our proof of Theorem [1.4.8] we also obtain a
solution to the problem of Day, Falgas-Ravry and Hancock on long paths in 1-independent
percolation, Problem [1.4.7] above:

Theorem 1.4.9. lim,, ,oop11p (Z X K,,)) =4 — 24/3.

In fact, we are able to show the conclusions of Theorems [1.4.8| and [1.4.9| still hold if we

replace the complete graph K, by a suitable pseudorandom graph. Recall that the study
of pseudorandom graphs originates in the ground-breaking work of Thomason [I15]. We
shall use the following notion of weak pseudorandomness (see Condition (3) in the survey

of Krivelevich and Sudakov [76]):

Definition 1.4.10. Let ¢ = q(n) be a sequence in [0,1]. A sequence (Gp)nen of n-vertex

graphs is weakly g-pseudorandom if

Note that if (G,)nen is a sequence of weakly g-pseudorandom graphs, then for any

Ul,UQ Q V(Gn) with U1 N U2 = @, we have

e(GalU1, Ua]) = q|UL| [Us] + o(qn?).

Theorem 1.4.11. Let g = q(n) satisfy nq(n) > logn. Then for any sequence (Gp)nen of

n-vertex graphs which is weakly q-pseudorandom, we have lim,, . p1 .(Z* x G,,) = 4 — 2/3.

Theorem 1.4.12. Let g = q(n) satisfy nq(n) > logn. Then for any sequence (Gp)nen of

n-vertex graphs which is weakly q-pseudorandom, we have lim,,_,o p1 1p(Z x G,,) = 4—2/3.

We conjecture that the conclusion of Theorem [1.4.8|still holds if we replace the complete

graph K, by an n-dimensional hypercube.

19



Conjecture 1.4.13. lim, o p1(Z* X Q) = 4 — 2/3.

Observe Conjecture [1.4.13] implies the answer to the problem of Balister and Bollobas,

Problem above, is 4 — 2v/3. In fact, we make the following bolder conjecture:

Conjecture 1.4.14 (1-independent percolation in high dimension). There ezists d > 3
such that
Pre(Z%) =4 —2V/3,

Finally we prove some modest results on component evolution in 1-independent models
on K, and on pseudorandom graphs. The main point of these results is that ‘the two-state
measure minimises the size of the largest component’, a heuristic which in turn guides our
Conjecture [1.4.13] Here by the two-state measure, we mean the following variant of site

percolation, due to Newman (see [89]):

Definition 1.4.15 (Two-state measure). Let H be a graph, and let p € [1,1]. The
two-state measure o5, € Mi,(H) is constructed as follows: assign to each vertex
v e V(H) a state S, independently and uniformly at random, with S, = 1 with probability
6=0(p)=1+2p—1)/2 and S, = 0 otherwise. Then let H,,_  be the random subgraph

of H obtained by including an edge if and only if its endpoints are in the same state.

Day, Falgas-Ravry and Hancock showed in [36, Theorem 16] that jios, minimises the
probability of connected subgraphs over all 1-ipm p € M ,(K5,). We show below that it
also minimises the probability of having a component of size at least n. Explicitly, given
a set of edges F' C E(H) in a graph H, we let C;(F') denote the i-th largest connected

component in the associated subgraph (V(H), F) of H. Then:

Proposition 1.4.16. Set ps, = % (1 — tan? (ﬁ)) and H = Ks,. Then for all p € [pan, 1],

min{[P (G (HL)| > n]: pe Ml,zp(Kgn)} — 1 (?) (1;7”)“

Further, we show that the two-state measure also asymptotically minimises the likely

size of a largest component in 1-independent models on pseudorandom graphs:
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Theorem 1.4.17. Letr € N, and let p € (?117 %] be fized. Let (H,)nen be a sequence of
weakly q-pseudorandom graphs on n vertices with ¢ = q(n) > log(n)/n. Then the following

hold for H = H,:
(i) For every p € My ,(H), with probability 1 — o(1) we have

1+ (r+1)p—1

|Ch(H,)| > (1 —0(1)) T{”

(i) There ezists p € My ,(H) such that with probability 1 — o(1) the random graph H,,
1 (r+1)p—1
satisfies |Cy(H,)| < (1+o(1)) V" p.

r+1

This leads us to the natural conjecture that the two-state measure asymptotically

minimises the size of a largest component in 1-independent models on the hypercube @),,:

Conjecture 1.4.18. Let p € (3,1] be fized, and let H = Q,,. Then for all 1 € Mi >,(Qn),

with probability 1 — o(1) we have |Cy (H,) | > (1+7 V2l 0(1)) 2",

We suspect a proof of this conjecture combined with the ideas presented in this chapter
would yield a proof of Conjecture [1.4.13]

Overall, our results would lead us to speculate that the true value of p; .(Z?) is probably
a lot closer to the non-rigorous lower bound of 0.5921 than to the upper bound of 0.8457
(both obtained in [I8]). However a rigorous proof of improved upper bounds on p; .(Z?)

remains elusive for the time being.
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CHAPTER 2

TOWARDS LEHEL’S CONJECTURE FOR
4-UNIFORM TIGHT CYCLES

The main aim of this chapter is to prove Theorems [1.1.2l and [1.1.3] We first recall some

definitions and then restate these theorems. Recall that an r-edge-colouring of a k-graph
H is a colouring of the edges of H with r colours. Also recall that a monochromatic
subgraph of an r-edge-coloured graph is one in which all the edges have the same colour.
Moreover, recall that a k-uniform tight cycle is a k-graph with a cyclic ordering of its

vertices such that its edges are precisely all k-sets of consecutive vertices in the ordering.

We now restate Theorems [1.1.2/ and [1.1.3l

Theorem 1.1.2. For every e > 0, there exists an integer ny such that, for alln > ny, every
2-edge-coloured complete 4-graph on n vertices contains two vertex-disjoint monochromatic

tight cycles of distinct colours covering all but at most en of the vertices.

Theorem 1.1.3. For every e > 0, there exists an integer ny such that, for alln > ny, every
2-edge-coloured complete 5-graph on n vertices contains four vertezr-disjoint monochromatic

tight cycles covering all but at most en of the vertices.

To prove Theorems|1.1.2{and|1.1.3] we use the connected matching method that has often

been credited to Luczak [84]. We now present a sketch-proof for Theorem[1.1.2, Consider a
2-edge-coloured complete 4-graph KY) on n vertices. We start by applying the Hypergraph

Regularity Lemma to the 2-edge-coloured complete 4-graph K. More precisely the

23



Regular Slice Lemma of Allen, Bottcher, Cooley and Mycroft [2], see Lemma . We
obtain a 2-edge-coloured reduced graph R that is almost complete. A monochromatic
matching in a k-graph is a set of vertex-disjoint edges of the same colour. We say that
it is tightly connected if, for any two edges f and f’, there exists a sequence of edges
e1,...,e of the same colour such that e; = f, e, = f' and |e;Ne;q| = k — 1 for all
i € [t —1]. Using Corollary , it suffices to find two vertex-disjoint monochromatic
tightly connected matchings of distinct colours in the reduced graph R. The main challenge
is to identify the ‘tightly connected components’ (see Section for the formal definition)
in which we will find the matchings. To do so, we introduce the concept of ‘blueprint’,
which is a 2-edge-coloured 2-graph with the same vertex set as 'R. The key property is
that connected components in the blueprint correspond to tightly connected components
in R.

The remainder of this chapter is organised as follows. In Section [2.1] we introduce
some basic notation and definitions. In Section we prove Proposition [I.I.1] In
Section [2.3] we introduce the statements about hypergraph regularity and prove the crucial
Corollary [2.3.12]that allows us to reduce our problem of finding cycles in the complete graph
to one about finding tightly connected matchings in the reduced graph. In Section we
give the definition of blueprint and setup some useful results. In Sections [2.5) and we
prove Theorems [I.1.2] and [I.1.3] respectively. Finally, we make some concluding remarks
in Section .71

2.1 Preliminaries

If we say that a statement holds for 0 < a < b < 1, then we mean that there exists a
non-decreasing function f: (0,1] — (0, 1] such that the statement holds for all a,b € (0, 1]
with a < f(b). Similar expressions with more variables are defined analogously. If 1/n
appears in one of these expressions, then we implicitly assume that n is a positive integer.

We omit floors and ceilings whenever doing so does not affect the argument.
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We often write x; ...z, for the set {z1,...,2,}. Moreover, for each positive integer n,
we let [n] = {1,...,n}. For a set S and a non-negative integer & we denote by (;j) the set
of all subsets of S of size k.

A k-graph H is a pair of sets (V(H), E(H)) such that F(H) C (V(kH)) We let
v(H) = |V(H)| be the number of vertices of H. We abuse notation by identifying the
k-graph H with its edge set F(H). Hence by |H| we mean the number of edges of H.

A 2-edge-coloured k-graph is a k-graph together with a colouring of its edges with the
colours red and blue. For a 2-edge-coloured k-graph H we denote by H™ and H®"¢ the
k-graph on V(H) induced by the red and the blue edges of H, respectively. A subgraph of
a 2-edge-coloured k-graph is called monochromatic if all its edges have the same colour.

Let H be a 2-edge-coloured k-graph. Two edges f and f’ in H are tightly connected if
there exists a sequence of edges ey, ..., e, such that e; = f, e, = f' and |e; Ne; 11| =k — 1
for all i € [t — 1]. A subgraph H' of H is tightly connected if every pair of edges in H’
is tightly connected in H. A maximal tightly connected subgraph of H is called a tight
component of H. Note that a tight component is a subgraph rather than a vertex subset
as in the traditional graph case. In a 2-graph G, we simply call a tight component a
component and a spanning component is one that covers all the vertices of G. A tightly
connected matching in a k-graph H is a matching contained in a tight component of H. A
red tight component and a red tightly connected matching are a tight component and a
tightly connected matching in H™9, respectively. We define these terms similarly for blue.

Let H be a k-graph and S, W C V(H). We denote by H — W the k-graph with
V(H-W)=V(H)\Wand E(H-W) ={e€ E(H):enW =g@}. Wecall H—-W
the k-graph obtained from H by deleting W. Further we let H[W] = H — (V(H) \ W).
Let F' be a k-graph or a set of k-element sets. We denote by H — F' the subgraph
of H obtained by deleting the edges in F. We define Ny (S, W) to be the set {e €
(kl/l|/5|) ceUS € H} and we define dy (S, W) to be its cardinality. Further we write Ny (5)
and dg(S) for Ng(S,V(H)) and dy (S, V(H)), respectively. If H is 2-edge-coloured, then
we write NS, W), di4(S, W), NEue(S, W), d?e(S, W) for Nyrea(S, W), dgrea(S, W),
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Ny (S, W), dgone (S, W), respectively. The link graph of H with respect to S, denoted
by Hg, is the (k — |S|)-graph satisfying V(Hg) = V(H) \ S and E(Hg) = Ny(S).

For j € [k —1], the j-th shadow of H, denoted by &’ H, is the (k — j)-graph with vertex
set V(0?H) = V(H) and edge set

E(0H) = {e € C;(_HJ)) :e C f for some f € E(H)}

For the 1-st shadow of H, we also simply write OH instead of O'H.

For p, o > 0, we say that a k-graph H on n vertices is (i, a)-dense if, for each i € [k—1],
we have dy(S) > u(k’iz) for all but at most 04(?) sets S € (V(Z.H)) and dy(S) = 0 for all
other S € (V(H)).

i

Proposition 2.1.1. Let 0 < o, u < 1 and let H be a (u, «)-dense k-graph on n vertices.
Then |H| > (1 — «) (2) Moreover, if p > 1/2, then H is tightly connected.

Proof. Note that

Hl=p ¥ )z 0=, Jez e},

se(WY)

Now suppose that g > 1/2. We show that H is tightly connected. Note that, for

k—1

S, 8" e (V(H)) with dg(S),du(S") > 0, we have dy(S),dy(S") > un > n/2 and thus
Ny (S)N Ny (S') # @.

Let f = x1...2, and f' = y;...y,r be two edges of H. Inductively choose vertices

21y ..., 2k—1 € V(H) such that

2% € Ng(z1.. . 2ic1®igpr - o) DNy (21 - Zic1Yiv1 - - - Yk)

for all i € [k — 1]. It follows that f and f” are tightly connected. O

The following proposition shows that any k-graph that has all but a small fraction of
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the possible edges contains a (1 — ¢, a)-dense subgraph. The proof was inspired by the
proof of Lemma 8.8 in [63]. A different generalisation of this lemma can also be found as

Lemma 2.3 in [78].

Proposition 2.1.2. Let 1/n < o < 1/k < 1/2. Let H be a k-graph on n vertices with
|H| > (1 - a)(Z) Then there exists a subgraph H' of H such that V(H') = V(H) and H'

is (1 — 204 20/ _dense.

Proof. We call a set S C V(H) with |S| € [k — 1] bad if dg(S) < (1 — al/z)(k_”m). For

i € [k — 1], let B; be the set of all bad i-sets. For each i € [k — 1], we have

o))< s = () ) Yo

This implies
Bl< L (@ . <1><><>) <207
(0% 1 (k—z) ]

Let 8 = o'/, For all j € {k— 1,k —2,...,1} in turn, we construct A; C (V(J.H))
inductively as follows. We set Ay_1 = Bj_1. Given 2 < j < k —1 and A;, we define

A C (‘;(_bp) to be the set of all X € (V(H)) such that X € B;_; or dy,(X) > BY2n.

j—1
Claim 2.1.3. For alli € [k —1], |A;| < 61@) Moreover, if 1 <i<j<k—1and a set
S e (V(Z.H)) satisfies d g, (S) > Bl/Q(j_i)< " ), then S € A;.

j—i
Proof of Claim. We first prove the first part by induction on k — 7. For ¢ = k — 1, we have

|~’4/€—1| = |Bk_1| < 2@1/2(k” ) < kal( n )

-1 k—1

Now suppose 2 <i < k —1 and |A4;| < (’;) By double counting tuples (X, w) with

X € A1\ Bi_y and X Uw € A;, we have (|A;i_1| — |Bi_1|) 8*/?n < i|A;|. Hence

) i 1 n
Sl <Z> +2a /2(2_ " 1)
_ Bi—l/Z <TZ:11> 4 9a1/2 (Z 7_1 1) < 5i—1<i il 1).
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This proves the first part of the claim.

We now prove the second part of the claim. Fix ¢ € [k — 1]. We proceed by induction
on j — 1. For j =i+ 1, the statement holds by the definition of A;. Now let S € (V(iH))
and j > i 4 2 be such that d4,(S) > /260 (]Z) If S € B;, then S € A;. Recall that if

T e (‘;(j)) \ A;_1, then d,(T) < 5"/*n. We have

i n
/26 ><,_Z‘> <dy(S)< Y doM+ Y da(T)
J Tg.éJT_1 TE(‘;(_}?)\Ajfl
C SCT

< a1 () + 5 nd oy 4, (9)

< ' 1/2 n
_nd.Agfl(S)—f_ﬁ n(]_z_1>7

and thus

, S gl/2(i—i-1) n .
dA]—1(S)—6 <j—Z—1>

Hence by the induction hypothesis we have S € A,;. [
For each j € [k—1], let F; be the set of edges e € H for which there exists some S € A,

with S Ce. Let F' = Ujep_1) Fj and let H' = H — F. We will show that H' is the desired
k-graph. For i € [k — 1], let S; be the set of all S € (V(Z.H)) such that dp(S) > BY/%* (k” )

—1

Claim 2.1.4. Fori € [k —1], |S;| < 8'2(7).

Proof of Claim. For j € [k — 1], we have
n— 7\ CamBI3 - /n\ [ n—j (kN (n
1< A < j ey '
|F]’_|Aj|<k—1> =7 (j)(k—j) g <J)<k‘>

Fl< X Bl ¥ ﬁj(’;)(@gkﬁ@'

je[k—1] je[k—1]

Thus
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Now, for i € [k — 1], we have

|S|51/2k< ) < ‘F‘ <2k6< )

()
and thus | < gY2(7). |

Consider i € [k — 1]. Note that |S; U B;| < 2a1/4k2< > Now let S € (V(H)> \ (S U By).
As S ¢ B;, we have dy(S) > (1—a'/?)(,",). As S ¢ S;, we have

—1
2 (L =o' =51 (kﬁ z) 2 (1 - 22 (k . z)

Consider X € (V(H ) with dg(X) # 0. We want to show that dyr (X) > (1 —2a1/4) (k:)

() = ()~ 45(5) 2 du5) - 57, ")

By the above, it suffices to show that X & B; US;. Let e € H' with X C e. Since
e g F;, X ¢ A; and thus X ¢ B;. It remains for us to show that X ¢ &;. Assume the
contrary that X is contained in more that B1/2k< 71.) edges of F. Let Y = Np(X), so
V| > ﬁl/%( ) For each Y € V), fix a set Ay € Uje_1]A; such that Ay € X UY and
let Ty = X N Ay and Sy = Y \ Ay. If Ay C X, then Ay C e € H’, a contradiction.
Hence Ay NY # @ forall Y € Y. For Y € Y, we have X NY = &, and thus
|Ty| < |Ay| — 1 < k — 2. By an averaging argument, there exist t € {0,1,...,k — 2},
Te()f),ae[k: ]SE( +t)andyC))suchthat forall Y € Y, we have Ty = T,
|Ay| = a, Sy = S and

3 Y 1/2(k1)< n )
Y| > > .
Y 2k = 1) (" o) b a—t

Since Y\ Ay = Sy = S and |Ay| =a forall Y € 37, the Ay are distinct for all Y € ).
Recall that T C Ay € A, foreachY € Y. If T = &, then ¢t = 0 and so | A, > ‘JNJ‘ > B“(Z)

contradicting Claim [2.1.3, If T" # @, then we have d4, (T) > ‘37‘ > pl/2%k=1) (a’it).

Claim [2.1.3] implies that 7" € A;. Since T'C X C ¢, we have e € F}; contradicting the fact
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that e € H =H— Uje[k—l} F} ]

2.2 Extremal example

In this section, we prove Proposition [I.1.1] that is, we prove that, for k£ > 3, there exist
arbitrarily large 2-edge-coloured complete k-graphs that do not admit a partition into two
tight cycles of distinct colours.

A k-uniform tight path is a k-graph obtained by deleting a vertex from a tight cycle.

First we need the following proposition.

Proposition 2.2.1. Let k > 3, let P and C be a k-uniform tight path and tight cycle,

respectively. We have the following.

(i) If X andY partition V(P) such that e N Y| > 2 for alle € P, then 2(| X|—(k—1)) <
(k—2)|Y]|.

(i) If X and Y partition V(C) such that leNY| > 2 for all e € C, then 2|X| <
(k—2)]Y]|.

Proof. We first prove . Let M be a matching of maximum size in P. Since each edge

of P contains at least 2 vertices of Y,

k—2)|Y
T

!XIS\XWV(M)IHV(P)\V(M)\S(k—Q)IMHk—lS(

Now we prove [(if)] Since [eNY| > 2 and |e N X| < k — 2 for each edge e € C, we have

|eﬂX| 1

-2 k
nNy| < -
|mY| ’—k;

—2
Y|=——IY].
leny| =21y

X = Z|€ﬂX| Z

eEC eEC

ecC
]

We are now ready to give our extremal example. Note that the case k = 3 of the
extremal example is already given in [53]. Recall that, in a k-graph, we consider a single

edge and any set of fewer than k vertices to be degenerate cycles.
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Proof of Proposition[1.1.1. Let k>3, m >k+1andn =k(m+1)+1. Let X, Y and {z}
be three disjoint vertex sets of K*) of sizes (k— 1)m+k —2, m+2 and 1, respectively. We
colour an edge e in K*) red if 2 € e and |eNY| >2or z € e and |eNY| = 1. Otherwise

we colour it blue. Note that K(*) — z has the following 3 monochromatic tight components:

X XUY XUY
Blz<k>732:{e€< . >:|6ﬂY|22},R:{e€< I ):\eﬂY|:1}.

Note that By, and Bs are blue and R is red. Suppose for a contradiction that K,(f) can be
partitioned into a red tight cycle C'z and a blue tight cycle Cp.

First assume z € V(Cg). Since all the red edges containing z are in a red tight
component disjoint from R, we have |V (Cg)| < k. Hence |V(Cg)| = n — |[V(Cg)| >
n—k>km>kand |[V(Cg)NY| = |Y\V(Cg)| >m+2—-(k—1) > 1. SoCpis
not degenerate and Cp C By. Any edge e € Cp contains at least 2 vertices in Y. By

Proposition [2.2.1{(ii)|, 2|V (Cp) N X| < (kK —2) |[V(Cp) NY|. It follows that

20k — 1)m — 2 = 2(1X| — (k— 1)) < 2|V(Cp) N X]

<(k=2)|V(Cp)NY| < (k=2)Y| = (k—2)(m+2).

This implies that m < 2, a contradiction.

Hence, we may assume that z € V(Cp). This implies that Cr C R or |V(Cg)| < k — 1.
Let xp = |V(Cr)NX]|, yr = |V(Cr)NY]|, 25 = |V(Cp)NX| and yp = |[V(Cp)NY]|.
Let Pg be the tight path Cp — z. Clearly |V(Pg) N X| = zp and |V (Pp) N Y| = yp. Since
CrC Ror |[V(Cg)| <k—1,

X
yRSmaX{LJ_HJ ,k—l}:m< Y. (2.2.1)

Hence, V(Pg)NY # @ and |V(Pg)| > (n — 1) — km > k. We must have Pg C By. By
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Proposition [2.2.1f(i), we have that
2(ep — (k—1)) < (k—2)yp. (2.2.2)
Thus

k k k

<mk=n-—1-k.
This implies that |V (Cg)| > k. Hence Cr C R and thus
zg = (k — 1)yg. (2.2.3)
Since xp +ap =|X|=(k—1)m+k—-2and yg +ysg =|Y|=m+2, implies

(k=2)(m+2—yg) =2 2(|X[| —2r — (k= 1))

=2((k—1)m+k—-2—(k—1yr— (k1))

which implies yp > m — 1. If yg = m — 1, then (2.2.3]) implies that zg = (k — 1)(m — 1)
and thus xp = 2k — 3 and yg = 3. Let Pg = vy ...vg. Either the edge v;... v, or the

edge vgy1 - .. Vg contains at most one vertex of Y, a contradiction to Pg C Bs. Thus we

may assume ygr > m and since yg < m by (2.2.1]), we have yg = m. By ([2.2.3]), we have
rp = (k—1)m and thus x5 = k — 2 and yp = 2. Moreover, C' is a copy of K,gl_?l that has

a blue edge containing z and at least two vertices of Y, a contradiction. O]

2.3 Hypergraph regularity

In this section, we follow the notation of Allen, Bottcher, Cooley and Mycroft [2]. A

hypergraph H is an ordered pair (V(H), E(H)), where E(H) C 2V Again, we identify
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the hypergraph H with its edge set F(#H). A subgraph H’ of H is a hypergraph with
V(H') CV(H)and E(H') C E(H). It is spanning if V(H') = V(H). For U C V(H), we
define ‘H[U] to be the subgraph of H with V(H[U]) = U and E(H[U]) ={e € E(H): e C
U}. We call H a complex if H is down-closed, that is if e € H and f C e, then f € H. A
k-complex is a complex with only edges of size at most k. We denote by H?) the spanning
subgraph of H containing only the edges of size i. Let P be a partition of V(#) into
parts Vi,...,V;. Then we say that a set S C V(H) is P-partite if |SNV;| < 1 for all
i € [s]. For P" ={V;,,...,V;.} C P, we define the subgraph of H induced by P’, denoted
by H[P'] or H[V;,,..., Vi ], to be the subgraph of H[JP’] containing only the edges that
are P’-partite. The hypergraph H is P-partite if all of its edges are P-partite. In this case
we call the parts of P the verter classes of H. We say that H is s-partite if it is P-partite
for some partition P of V(H) into s parts. Let H be a P-partite hypergraph. If X is a
k-set of vertex classes of H, then we write Hx for the k-partite subgraph of H®) induced
by U X, whose vertex classes are the elements of X. Moreover, we denote by Hx< the
k-partite hypergraph with V(Hx<) = UX and E(Hx<) = Uycx Hx. In particular, if H
is a complex, then Hx< is a (k — 1)-complex because X is a set of size k.

Let i > 2, and let P; be a partition of a vertex set V into ¢ parts. Let H; and H;_; be
a P;-partite i-graph and a P;-partite (i — 1)-graph on a common vertex set V', respectively.
We say that a P;-partite i-set in V' is supported on H;_; if it induces a copy of the complete
(i — 1)-graph KZ(i_l) on ¢ vertices in H; 1. We denote by K;(H;_1) the P;-partite i-graph
on V whose edges are all P;-partite i-sets contained in V' which are supported on H; ;.
Now we define the density of H; with respect to H;_1 to be

|Ki(HZ-,1) N H1-|
d Jqz Hi— -
il Hio) = = )

proportion of P;-partite copies of K} in H,;_; which are also edges of H;. More generally,

if Q= (Q1,Q2,...,Q,) is a collection of r (not necessarily disjoint) subgraphs of H; 1, we
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define K;(Q) = Uj_, Ki(Q;) and

|K:(Q) N Hi
WA= Q)

if |K;(Q)| >0and d(H; | Q) =0if |K;(Q)| =0. We say that H; is (d;, e, r)-reqular with
respect to H;_1, if we have d(H; | Q) = d; & ¢ for every r-set Q of subgraphs of H;
with |K;(Q)| > ¢ |K;(Hi-1)|. We say that H; is (e, r)-reqular with respect to H;_ if there
exists some d; for which H; is (d;, e, r)-regular with respect to H;_;. Finally, given an
i-graph G whose vertex set contains that of H; 1, we say that G is (d;, e, r)-reqular with
respect to H; 1 if the i-partite subgraph of G induced by the vertex classes of H;_; is
(d;, e, r)-regular with respect to H;_1. We refer to the density of this i-partite subgraph
of G with respect to H;_1 as the relative density of G with respect to H;_;.

Now let s > k£ > 3 and let ‘H be an s-partite k-complex on vertex classes Vi, ..., V;.
For any set A C [s], we write V) for ;c4 V;i. Note that, if e € H® for some 2 < i < k,
then the vertices of e induce a copy of K/~ ' in H~Y. Therefore, for any set A € ([j]),
the density d(H®[V,] | HE=1[V4]) is the proportion of ‘possible edges’ of H ) [V,], which

are indeed edges. We say that H is (dy, ..., ds, ek, €, r)-reqular if

(a) forany 2 <i<k—1and any A € ([j]), the induced subgraph H®[V,4] is (d;, e, 1)-

regular with respect to HY[V,], and

(b) for any A € ([Z}), the induced subgraph H®[V,] is (dy, ey, 7)-regular with respect to
H(k_l)[VA].

Fora (k—1)-tupled = (dg, . .., ds), we write (d, g, , 7)-regular to mean (d, . .., da, £k, €,7)-
regular. We say that a (k — 1)-complex J is (o, t1, €)-equitable if it has the following

properties.

(a) J is P-partite for some P which partitions V' (7) in to ¢ parts, where to <t < ¢y, of
equal size. We refer to P as the ground partition of J, and to the parts of P as the

clusters of J.
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(b) There exists a density vector d = (dg_1,...,ds) such that, for each 2 <i < k — 1,

we have d; > 1/t; and 1/d; € N, and J is (d, e, ¢, 1)-regular.

For any k-set X of clusters of 7, we denote by Jx the k-partite (k — 1)-graph (Jx<)®*~Y
and call Jy a polyad. Given a (to,t1,€)-equitable (k — 1)-complex J and a k-graph G on
V(J), we say that G is (eg, r)-reqular with respect to a k-set X of clusters of J if there
exists some d such that G is (d, e, r)-regular with respect to the polyad Jx. Moreover,
we write dg ,(X) for the relative density of G with respect to Jx; we may drop either
subscript if it is clear from context.

We can now give the crucial definition of a regular slice.

Definition 2.3.1 (Regular slice). Given €,¢, > 0,7,%9,t; € N, a graph G and a (k — 1)-
complex J on V(G), we call J a (tg, t1, e, e, r)-reqular slice for G if J is (tg, t1, €)-equitable
and G is (g, r)-regular with respect to all but at most & (Z) of the k-sets of clusters of 7,

where ¢ is the number of clusters of 7.

If we specify the density vector d and the number of clusters ¢ of an equitable complex
or a regular slice, then it is not necessary to specify ¢y, and ¢; (since the only role of
these is to bound d and t). In this situation we write that J is (-, -, €)-equitable, or is a
(v, -, &, e, r)-regular slice for G.

Given a regular slice J for a k-graph G, we define the d-reduced k-graph R (G) as

follows.

Definition 2.3.2 (The d-reduced k-graph). Let & > 3. Let G be a k-graph and let J
be a (to,t1, €, e, r)-regular slice for G. Then, for d > 0, we define the d-reduced k-graph
RJ(G) to be the k-graph whose vertices are the clusters of J and whose edges are all

k-sets X of clusters of J such that G is (e, r)-regular with respect to X and d*(X) > d.

We now state the version of the Regular Slice Lemma that we need, which is a special

case of [2, Lemma 10].

Lemma 2.3.3 (Regular Slice Lemma [2, Lemma 10]). Let k > 3. For all positive integers to

and s, positive € and all functions r: N — N and e: N — (0, 1], there are integers t,
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and ng such that the following holds for all n > ng which are divisible by t1!. Let K be a
2-edge-coloured complete k-graph on n vertices. Then there exists a (k — 1)-complex J

on V(K) which is a (tg, t1,€(t1), e, 7(t1))-reqular slice for both K™ and K"ve.

Given a 2-edge-coloured complete k-graph H we want to apply the Regular Slice
Lemma to H™ and H"¢. The following lemma shows that in this setting the union of

the corresponding reduced graphs Ry (H™%) U RJ (HP"°) is almost complete.

Lemma 2.3.4 ([53, Lemma 8.5]). Let k > 3. Let K be a 2-edge-coloured complete
k-graph and let J be a (-,-,&,¢ep,1)-reqular slice for both K™% and K™©. Let t be the

number of clusters of J. Then, provided that d < 1/2, we have ’Rdj(Kred) U Ry (KPe)
(1—2e1)().

>

Proof. Since J is a (-, -, ¢, &g, r)-regular slice for both K™ and K" there are at least
(1-— 25@(2) k-sets X of clusters of J such that both K™ and K" are (&, r)-regular
with respect to X. Let X be such a k-set. Since K™ and KP"® are complements of each
other, we have djrea(X) + djeone (X) = 1. Hence djrea(X) > 1/2 or djenue(X) > 1/2 and
thus, since d < 1/2, we have X € Ry (K™) U R (KPve). O

Let H be a k-graph. A fractional matching in H is a function w : E(H) — [0, 1] such
that for all v € V(H), ¥ ccmaweew(€) < 1. The weight of the fractional matching is defined
to be Y .cxgw(e). A fractional matching is tightly connected if the subgraph induced by
the edges e with w(e) > 0 is tightly connected in H. The following result from [2] converts
a tightly connected fractional matching in the reduced graph into a tight cycle in the

original graph.

Lemma 2.3.5 ([2, Lemma 13]). Let k,r,ng,t be positive integers, and let 1, e, ey, dy, . . ., ds

be positive constants such that 1/d; € N for each 2 <1 <k —1, and such that 1/ny < 1/t,

1 1 1
— L e KL e, di_1,...,dy and e <K Y, dg, —.
no r k

Then the following holds for all integers n > ngy. Let G be a k-graph on n vertices, and J be
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a (-, e ek, r)-reqular slice for G with t clusters and density vector (di_1,...,ds). Suppose
that Rdjk (G) contains a tightly connected fractional matching with weight . Then G

contains a tight cycle of length ¢ for every ¢ < (1 —)kun/t that is divisible by k.

We use the following fact, lemma and proposition to prove Lemma [2.3.10| which is a

stronger version of Lemma that allows us to control the location of the tight cycle.

Fact 2.3.6 ([2| Fact 7]). Suppose that 1/mo < e < 1/t1,1/ty,8,1/k < 1/3 and that J is
a (to, t1,€)-equitable (k — 1)-complex with density vector (dy_1,...,ds) whose clusters each

have size m > myq. Let X be a set of k clusters of J. Then
)
K (Tx)* )| = (1 B)ym* [T di”.
i=2

Lemma 2.3.7 (Regular Restriction Lemma [2, Lemma 28]). Suppose integers k,m and

reals o, €, ey, dg, ..., dy > 0 are such that

1 1
— KL eKeg,dp_1,...,dy and ep <L a, —.
m k

For any r,s € N and d, > 0, set d = (dg,...,ds), and let G be an s-partite k-complex
whose vertex classes Vi, ..., Vs each have size m and which is (d, ey, €, 7)-reqular. Choose
any V! C V; with |V!| > am for each i € [s|. Then the induced subcomplex G[V]U---UV/]

is (d, /€, Ve, T)-reqular.

The following proposition shows that a refinement of a regular slice is also a regular

slice.

Proposition 2.3.8. Let 1/m < ¢ < 1/N,1/to,1/t1,1/k < 1/3. Let J be a (to,t1,¢)-
equitable (k — 1)-complex with density vector (dx_1,...,ds) and clusters Vy,...,V; each
of size m. Let Viy,...,Vin be an equipartition of V; for each i € [t]. Then there exists
a (Nto, Nt1, /2)-equitable (k — 1)-complex J with density vector (dy_1, ..., ds), ground

partition {V; ;: i € [t],j € [N]} and T[V4,...,Vi] = T.
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Proof. We construct J from J as follows. Let the ground partition of J be {Vijiie
[t],j € [N]}. Starting with the edges of J we iteratively add additional edges at random
as follows. For each 2 <17 < k — 1, beginning with ¢ = 2, we add each i-edge that contains
two vertices that are in vertex classes with the same first index and is supported on the
(1 — 1)-edges independently with probability d;.
We now show that with high probability J is the desired (k — 1)-complex. Note that
it suffices to show that with high probability J is (d, \/z, v/, 1)-regular.
Let J< = Ujerg JY and d=% = (d;, ..., d»). For i € [k — 1], let B; be the event that
T<iis not (d=%,\/z, /€, 1)-regular. Note that B; = @. Consider 2 < i < k — 1 and
Ae (M XZ.[N]>. Let B; 4 be the event that J@[V,] is not (d;, /2, 1)-regular with respect to

:rf(z‘—l) [VA]-

Claim 2.3.9. Fori € [k —1] and A € ([t Xle), we have P [Bi,A |*BZ._1] — oMY 4

m — Q.

Proof of Claim. Assume B;_; holds. Let A = {(r;,s;): j € [i]}. Define A = {r;: j € [i]}.
If the r; are distinct, then the claim holds by Lemma ” with G = J [VZ] and @ = 1/N.

Jj=2"j

If not all the r; are distinct, then ‘Ki(:f(i_l)[VA])’ > 2 <H’ : d( )> (m/N)*, by Fact [2.3.6

Thus for each subgraph Q of 7D [V,] such that |K;(Q)| > /& ‘Ki(ﬁi_l) [V4])|, a Chernoff
bound implies that
P [d(TVVA] | Q) # di + 7| B |
=2 |[|70n K@) - 4 Q)] > 4 (@) B
2
1
<2exp (—3 (f) di |K1(Q)|) < 2exp ( ‘K VAR 1)[VA]’>
132 [ () /m\! i
<2 — & (=) | <e Y,
= eXp( 6 d; (;1;12 g <N> =
Since there are at most 2™ " choices for @, the claim follows by a union bound. [ |

Note that if J is not (d, v/e, /e, 1)-regular, then there exists some i € [k — 1] and
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Ae (M x[N ]) such that B; 4 holds. Further by choosing ¢ minimal we can ensure that B;_;

(2

holds. Thus, by a union bound and Claim we have

P [j is not (d, v, Ve, 1)—regular} < ki:l Z P {Bi’A N K]

i=1 pg(lXIV)

<> Y P[Bua| B =ol).

i=1 gg(IXIN)
O

The following lemma is a strengthening of Lemma [2.3.5 We believe the constant 3
and the corresponding condition could be removed if one were to go through the proof of

Lemma to prove a stronger result.

Lemma 2.3.10. Let 1/n < 1/r,e < ep,di_1,...,do and e, < &' < 9, dy, 5,1/k < 1/3
and 1/n < 1/t such that t divides n and 1/d; € N for all 2 < i < k—1. Let G be a
k-graph on n vertices and J be a (-, -, €, ek, r)-reqular slice for G. Further, let J have t
clusters Vi, ...,V all of size n/t and density vector d = (dg_1,...,ds). Suppose that the
reduced graph ng (G) contains a tightly connected fractional matching ¢ with weight p.
Assume that all edges with non-zero weight have weight at least 5. For each i € [t], let
W; C V; be such that |W;| > ((1 —3&")o(V;) + &)n/t. Then G [Uz’e[t] WZ} contains a tight
cycle of length € for each £ < (1 —)kun/t that is divisible by k.

We first explain the main ideas of the proof. We would like to find a regular slice for
G’ = G[U;ep Wil to then apply Lemma m The issue is that not all vertex classes in G’
have the same size. To get around this we take a refinement of the original partition and
use Proposition to find a new regular slice with that ground partition. The reduced
graph for this new regular slice will be a blow up of the original reduced graph. We can
find a corresponding tightly connected matching in this new reduced graph. Then we

simply apply Lemma [2.3.5]

Proof of Lemma[2.3.10. Let m = n/t and m = |¢'m/2|. For each i € [t], let V; C V;
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such that m | Vi| and V;\‘N/l < ¢'m/2. By Lemma [2.3.7] j[f/l,...,V}] is (+,+,\/2)-

equitable with density vector (dg_1,...,ds). Let N = |m/m| and, for each i € [t], let
N; = (1 = 3¢)e(V;) +€)N| < ||Wi| /m]. For each i € [t], let Viy,...,V;n be an

equipartition of V; such that Vit,-.,Vin, € W,. Let W = {Vij:i€lt],j € [Vi]} and

t = ’W‘ By Proposition [2.3.8] there exists a (-, -, e"/4)-equitable (k — 1)-complex J*

with density vector (di_1,...,ds) and ground partition {V; ;: ¢ € [t],j € [N]} such that
IV, ... Vil =T Vi,...,Vi]. Let J = J%, that is J is the (k — 1)-complex contained
in J* induced by the vertex classes in w.

Let G be the subgraph of G (8] W] obtained by removing all edges contained in k-tuples
of density less than dj and in irregular k-tuples. We show that J is a regular slice for
G. Let X be a set of k clusters of 7. If the k clusters in X are all contained in distinct
clusters of J that form a regular k-tuple of density at least dj, then let Y denote the
k-set of these clusters. Note that (GU J)[Y]is ((d,dk_1,...,d2), e, €, 7)-regular, for some
d > dy — ey, and thus, by Lemma (GUIN[X]is ((d, dg_r, - . ., dy), VEk, Ve, )-regular.
Hence G is (d, V/k, r)-regular with respect to (Tx<)*D. Note that, for all other k-sets of
clusters X, the k-partite subgraph of G induced by the clusters in X is empty. For these
k-sets of clusters, G is (0, V€, r)-regular with respect to the polyad (j;«)(k’l). Thus J
is a (-, Ex, /4, r)-regular slice for G.

Note that R = Rdjkfz\/?k

fractional matching ¢ on ng (G) with weight p. We construct a tightly connected

(G) is a blow-up of Ry (G). Consider the tightly connected

matching on R as follows. For each e € Ry (G), we will pick a matching M, in R of size

o(e) = | (1 —3¢")¢(e)N|. Note that, for each i € [t],

> @) < [((1=3e)e(Vi) +&)N] = Ni. (2.3.1)

eaV;

For each vertex V; in Ry (G) and each edge e € Ry (G) that contains V;, we choose
disjoint sets I, C [NV;] such that |I; .| = @(e). This is possible by (2.3.1). Recall that R
is a blow-up of Ry (G). For each edge e = {V;;, V;,,..., Vi, } € RJ (G), the subgraph R.
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of R induced by the set of edges {{V;, ;,,...,Vi,i,}: j1 € Liyer .- -, jr € Ii, o} is a balanced
complete k-partite k-graph. Pick a perfect matching M, in 72/6. Let M = UeERdJ te) M..
k

Note that M is a matching of size

Y. ple)= > [(1-3")p(e)N] > (1 =3&)p(e)N —1)
eeng (G) eeR;]k (@) eeng (G)
©(e)>0

1
> (1 =3¢ )uN — p/B = (1 — 3¢’ — Nﬁ) pN

> (1-3<' = &/B)N > (1= V&N = (1 -2V

In the second inequality above we used the fact that since ¢ is a fractional matching with
weight p and all edges have weight at least 3, there are at most p/ edges of positive
weight. Since R is a blow-up of Rc{k (G), M is tightly connected. We conclude by applying
Lemma with k, r,n,t, 9%, e'/*, Ve Ak — 24/Ek, di—1, . . ., da, f Gl playing the roles
of k,r,ng, t, 0, e, e, dg,...,do, J,G, L. O

For the next result, we need the following definition.

Definition 2.3.11. Let uj(5,e,n) be the largest p such that every 2-edge-coloured
(1 — &,¢e)-dense k-graph on n vertices contains a fractional matching with weight u such
that all edges with non-zero weight have weight at least 5 and lie in s monochromatic tight
components. Let pi(8) = liminf. ¢ liminf, . p;(8,e,n)/n. Similarly, let p;(8,e,n)
be the largest p such that every 2-edge-coloured (1 — €, ¢)-dense k-graph on n vertices
contains a fractional matching with weight p such that all edges with non-zero weight
have weight at least 5 and lie in one red and one blue tight component. Let pj(5) =

liminf. o liminf, . pi(B,e,n)/n.

The following is the crucial result that reduces finding cycles in the original graph to

finding tightly connected matchings in the reduced graph.

Corollary 2.3.12. Let 1/n < n,5,1/k,1/s with k > 3. Let K be a 2-edge-coloured

complete k-graph on n vertices. Then the following hold.
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(i) K contains s vertex-disjoint monochromatic tight cycles covering at least (uj(3) —

n)kn vertices.

(ii) K contains two vertex-disjoint monochromatic tight cycles of distinct colours covering

at least (u}(B) — n)kn vertices.

(iii) K contains a monochromatic tight cycle of length £ for any ¢ < (ur(B) — n)kn

divisible by k.

Proof. We prove the first statement. The other two statements can be proved similarly
(where for the third statement we additionally make use of the fact that Lemma
also allows us to control the length of the resulting cycle). Without loss of generality
assume that n < 1/3. Let dy =1/2 and 1/t) < ¢, < &' < e < n,,1/k,1/s. Note that
wi(B,e,t) > (ui(B8) — )t for all t > t;. We choose functions £(-) and r(-) where &(-)
approaches zero sufficiently quickly and r(-) increases sufficiently quickly such that for any
integer t* >ty and dy, . .., dx—1 > 1/t* we may apply Lemma with £(t*) and r(t*)
playing the roles of € and r, respectively. We apply Lemma to obtain ng and ;.
Let & = £(t;) and r = r(t;). Let ny > ng be large enough such that for all n > n; and
dy,...,dp_1 > 1/t; we may apply Lemma . Let ny = ny + t;!. We show that the
theorem holds for all n > ny. Let K be a 2-edge-coloured complete k-graph on n vertices.
Let n < n be the largest integer such that t;! divides n. Let K be a complete subgraph
of K on n vertices. Note that n > n;. By Lemma , there exists a (to, t1,¢&, ek, r)-
regular slice J for both K™ and K" Let ¢ be the number of clusters of 7 and let
(dig_1, . ..,ds) be the density vector of 7. Let H = ng (Kred) U ng(f(/bl“e) be a 2-edge-
coloured k-graph such that Ry (K™) \ R (KP") C Hd and R (KP'*) \ R (K™) C

H"e By Lemma [2.3.4] we have ‘ﬁ‘ > (1 — 2¢ey) (Z) By Proposition [2.1.2] there

exists a (1 — (2e,) YW+ (22,)V/ 4+ _dense subgraph H C H with V(H) = V(H).
Since ¢ < &, H is (1 — ¢,¢)-dense. Let ¢ be a fractional matching in H of weight
= pi(B,e,t) > (i (B) — 2n*)t such that all edges with non-zero weight have weight at

least 8 and lie in s monochromatic tight components K, ..., K of H. For each j € [s],
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we define a fractional matching ¢; in H by setting ¢;(e) = ¢(e) if e € K; and ¢p(e) =0
otherwise. For each j € [s], let p1; be the weight of ;. It follows that Djels] i = b

Let Vi,...,V; be the clusters of J. For each i € [t] and j € [s]|, we define

w;; = max{ Y ¢;(e) — se’ &'}
ecH
Vi€e

For each i € [t], let Vi 1,..., Vi, be disjoint subsets of V; such that |V; ;| = [w; ;n/t]. By
Lemma [2.3.10, there exist tight cycles Cy, ...,y in K such that, for all j € [s], |C}| =
(1 —n?)ukn/t, C; C K [Uie[t] V;,]} and C; has the same colour as K;. Hence C},...,C;

are vertex-disjoint and together cover

(1= pkn/t > (1 —n?)(ui(B) — n*)kn > (ui(8) — n)kn

vertices of K. O

2.4 Blueprints

Let H be a 2-edge-coloured k-graph. We define what we call a blueprint for H which is an
auxiliary graph that can be used as a guide when finding connected matchings in H. A

form of the notion of blueprint for k = 3 already appeared in [67].

Definition 2.4.1. Let € > 0, £ > 3 and let H be a 2-edge-coloured k-graph on n vertices.

We say that a 2-edge-coloured (k — 2)-graph G with V(G) C V(H) is an e-blueprint for H,

if

(BP1) for every edge e € GG, there exists a monochromatic tight component H(e) in H
such that H(e) has the same colour as e and dyg()(e) > (1 —€)n and

(BP2) for e, e’ € G of the same colour with |eNe’| =k — 3, we have H(e) = H(¢').

We say that e induces H(e) and write R(e) or B(e) instead of H(e) if e is red or blue,

respectively. We simply say that G is a blueprint, when H is clear from context and there
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exists € > 0 such that G is an e-blueprint for H. For S € (2(_?), all the red (blue) edges
of a blueprint containing S induce the same red (blue) tight component, so we call that

component the red (blue) tight component induced by S. Note that any subgraph of a

blueprint is also a blueprint.

Example 2.4.2. Let k > 3 and let n be a positive integer. Let A and B be disjoint vertex
sets with |AU B| =n. Let K® (A, B) be the 2-edge-coloured complete k-graph with vertex
set AU B where an edge e is red if and only if |e N A| is even (and blue otherwise). Let H
be KW (A, B) and let G be K% (A, B) with colours reversed. If e > ¥=2 then G is an
e-blueprint for H. Indeed, for an edge e € G we can set H(e) = {f € H: |fNA| =

len Al +1}.

The main aim of this section is to prove the following lemma that establishes the

existence of blueprints for 2-edge-coloured (1 — ¢, @)-dense graphs.

Lemma 2.4.3. Let1/n < ¢ < a < 1/k <1/3. Let H be a 2-edge-coloured (1—e, «)-dense
k-graph on n wvertices. Then there exists a 3\/e-blueprint G, for H with V(G,) =V (H)
and |G| > (1 — o — 24k\/5)<kf2>. Moreover, if k > 4 and ¢ < «, there exists a

(1 — aV/@E=22+1) G 1/(AGE=2*+1))_dense spanning subgraph G of G,.

We need a few simple preliminary results to prove Lemma [2.4.3] First we show that
any 2-edge-coloured 2-graph with large minimum degree contains a large monochromatic

connected subgraph.

Proposition 2.4.4. Let 0 < 8 < 1/6 and let F be a 2-edge-coloured 2-graph with
[V(F)| < nand 6(F) > (1 — 8)n. Then there exists a subgraph F' of F of order at

least (1 — B)n that contains a spanning monochromatic component and 6(F') > (1 — 2f)n.

Proof. Let F' be a subgraph of I’ of maximum order that contains a spanning monochro-
matic component. Assume without loss of generality that F’ contains a spanning red
component. Let S = V(F') and S = V(F)\ V(F'). Since §(F) > (1 — 8)n, we have that

|S| > (1 — B)n/2. Suppose, for a contradiction, that |S| < (1 — f)n. Note that all edges
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between S and S are blue. If 6(F) — |S| +1 > ‘S‘ /2, then each pair of vertices in S has
a common neighbour in S and so there is a blue component strictly containing S which

contradicts the maximality of F’. Therefore

S(F) =S|+ 1< [S| /2= (IV(F)| = S)/2 < (n — |S])/2.
Hence

S| > 20(F) —n+2>2(1—Bn—n+2=(1-28)n+2.
But now every pair of vertices in S has a common neighbour in S, since ‘?‘ < |V(F)|—]|S] <
24n and so

S(F)=[S|+1>(1=B)n—28n+1=(1-38n+1>n/2

Thus S U Ng(S) is spanned by a blue component. But since

[SUN#(S)| > 6(F) > (1 - B)n,

we have a contradiction. It is easy to see that 6(F") > (1 — 2/)n. O

Proposition 2.4.5. Let 1/n < v < 1/9. Let F be a 2-graph with |V (F)| < n and

|[E(F)| > (1 —7) (g) Then there exists a subgraph of F' with minimum degree at least
(1—=37)n.

Proof. Let W = {v € V(F): d(v) < (1 —2,/7)n}. We have that

(1- 29> <2{B(F) = Y d@v) <n®—2y7n|W].

veV (F)

This implies that [W| < /yn. Let F* = F—W. It follows that §(F*) > (1-2,/7)n—|W| >
(1—3y7)n. O

Corollary 2.4.6. Let 1/n < ¢ < 1/324. Let F be a 2-edge-coloured 2-graph with
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\V(F)| <nand|E(F)| > (1—5)(3). Then there exists a subgraph F' of F' of order at least

(1 — 3y/e)n that contains a spanning monochromatic component and 6(F") > (1 — 64/¢)n.

Proof. By Proposition [2.4.5] there exists a subgraph F* of F' with §(F*) > (1 — 3 /¢)n.
We conclude by applying Proposition with F'= F* and 8 = 3/c. O

2.4.1 Proof of Lemma [2.4.3

Now we show that for any (1 — ¢, «)-dense 2-edge-coloured graph we can find a dense

blueprint.

Proof of Lemma[2.4.3 Let F = 9*H. Since H is (1 — ¢, a)-dense,

E(F) = {6 c (Z(_HD dp(e) > 0} = {e S (Z(_HD tdp(e) = (1—¢) <Z>}

and

\E(F)| > (1—04)(]{?2). (2.4.1)

We now colour each edge e of F' as follows. Note that the link graph H, is a 2-graph. We
induce a 2-edge-colouring on H, by colouring the 2-edge f € H. with the colour of the
k-edge eU f € H. By Corollary [2.4.6] there exists a monochromatic component in H, of
order at least (1 — 3y/¢)n. Let K. be such a component chosen arbitrarily. We colour the
edge e according to the colour of K.. If e is red in F', then we define R(e) C H to be the
red tight component containing all the edges e U f where f € K,. If e is blue in F, then

we define B(e) analogously.

V(H)

3 ), almost all edges in F' of the same

In the next claim we show that, for each S € (

colour containing S induce the same monochromatic tight component in H.

Claim 2.4.7. For each S € (‘;;(_?), there exist T™4(S) C N*4(S) and TPue(S) C Nhlue(S)

with — 64/en such that, for all

eA(S)| > [NjU(S)] = 6y/En and [[P(S)| > [NP(S)

y1,y2 € I™4(S), R(SUy1) = R(SUys) and, for all y;,ys € TP¢(S), B(SUY,) = B(SUY,).

46



Proof of Claim. We only prove the statement for N¥4(S) as the proof of the statement
for NPe(S) is analogous. Assume ‘N}ed(S)‘ > 6+/en (or else we simply set [™4(S) = @).

Let D be the directed graph with vertex set N24(S) and edge set

E(D) = {yy2: 1 € V(Ksuy,)} -

Note that, for y1y2 € E(D), there exists an edge in R(S U yy) containing S U y;y2. So
if 1190 is a double edge (that is, y1y2,y2y1 € E(D)), then R(S Uy;) = R(S Uy,). For
y € Ni(9),

dp(y) > |NFI(S) NV (Ksuy)| > [ N34(S)| - 3en,

since |V(Ksuy)| > (1 — 3y/)n. Hence the number of double edges in D is at least
()| ([VE()] = 3vn) = 5 [NES)[ = 5 [Vil ()] (|NE(S)] — 6v/En)

Thus there exists a vertex yo € Nx4(S) that is incident to at least ’N}ﬁd(S)‘ — 6y/en

double edges. Let T™4(S) = {yo} U{y € N*4(S): yyo,yoy € E(D)}. Note that Fred(S)’ >
[N#4(8)| = 6y/En and R(S Uy) = R(S Uy) for all y € T™4(S). |

Consider the multi-(k — 2)-graph D* with

V(H)

E(D*):{SUy:SG (k_g

>’y c Fred(S) U Fblue(s)} )

Note that
B(D) = > |[Us)uTeS)| > Y (dr(S) - 12vEn)
se(h4) se(’m)

> (k—2)|F| —24k\/§<kf2).

Every edge in D* has multiplicity at most k — 2. So at least |F| — 24k\/5(kf2> edges

e € (‘;ﬁ?) have multiplicity £ — 2 in D*. Let G, be the (k — 2)-graph on V(H) such

47



that e € G, if and only if e has multiplicity & — 2 in D*. So, by (2.4.1)), |G.| >
|| = 24k/E(,",) > (1 - a — 24kv/E) ().

We now show that G, is a 3y/z-blueprint for H. Consider any e, ¢’ € G4 with
lene| =k—3. Let S=ene,y=¢\Sandy =e\S. Since e,/ € G*¢, we have

y,y € T*4(S) and so R(e) = R(SUy) = R(SUy') = R(¢'). Further, for e € G™¢, we

have dape)(€) > |V(K.)| > (1 — 3y/)n. Analogous statements hold for edges of Gbe.

If k>4 and € < «, then |G,| > (1 — 4a) (kﬁQ) and thus by Proposition [2.1.2| there

exists a subgraph G C G, such that G is (1 — al/(4(’“_2)2+1),al/(4(k_2)2+1))—dense and

V(G) = V(G,) = V(H). O

2.4.2 Some lemmas about blueprints

Let H be a k-graph and G be a blueprint for H. We write H(G) for U.eq H(e). We

write GT for the subgraph of H(G) with edge set

E(GT)={ee€ H(G): f C e for some [ € G},

that is, the subgraph of H(G) obtained by deleting all edges that do not contain an edge
of G. Note that this also defines (G')* for any subgraph G’ of G as a subgraph of a
blueprint for H is also a blueprint for H. Moreover, note that G* is a subgraph of H,
not of G. For a red tight component R, and a blue tight component B, in H, we denote
by R¥=2 and B2 the sets of edges of G that induce R, and B,, respectively.

We prove some lemmas that we will use several times later on. Roughly speaking, the
following lemma states that if S is a set of k — 4 vertices of H contained in many edges

of both R*~2 and B*~2 then S is contained in an edge of R, or B,.

Lemma 2.4.8. Let 1/n < ¢ < a < 1. Let H be a 2-edge-coloured (1 —¢, )-dense k-graph

on n vertices and G a 3+/e-blueprint for H. Let R, and B, be a red and a blue tight
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component of H, respectively. Let U C V(G) and S € (k 4) such that
dR’j—2 (S, U), dBf—Q(S7 U) > 51/4712.

Then there exist x,x',y,y' € U such that SUzx’ € R¥2, SUyy € B*¥2, SUz2'y € OR,,

SUyy'z € 0B, and S Uxx'yy' € H. In particular, (RF-2)*[U] U (BT [U] # @.

Proof. Let X, = {x € U: dpi—2(SUx,U) > '/2n} and X, = {z € U: dge—(SUz,U) >

e'/?n}. Note that

e < dgi-2(S,U) = QZdezSUxU)<n|X |+ e,

zelU

Thus [Xp. | > (V" — e'/2)n > 1e¥/4n. Similarly, | Xp.| > 1e'/n.

For each x € Xy, let

Y, ={y € Xp,: SUyy € B"? and S Uayy' € 0B, for some ¢/ € U}

= U NBffz(SUy/)ﬂNaB*(SUl’y/»

y'elU

For each y € Xp_, there exists 3y € U with SUyy’ € BX=2. By dop,(SUYY', Xg,) >

| Xg,| — 3v/en. Hence each y € Xp, is contained in at least | Xpg,

— 3y/en of the sets Y.

By averaging, there exists an x € Xg, such that

(| Xr,

—3ven) [Xp,| > 1 1 1/dy,

Y, > Xn|>
[YVel 2 2 [ X, > Xb.| 2 ge

*

Fix such an o € Xp,. For each y € Yy, choose a vertex 3/ € U such that S U yy' € BF2
and SUzyy' € 0B,. Let X = Npr2(SUz,U), so |X] > e!/2n, since x € Xp,. For each
y € Y, since H is (1 — &, «v)-dense, there are at least |X| — en vertices 2’ € X such that

S Uza'yy’ € H. Thus, by averaging, there exists a vertex z’ € X and a set Y, C Y, with

oo (X = )\Yl 1
Y| > Y,| > —&'/4
= 2\X\ | (25
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such that S U zz'yy’ € H for all y € Y,. Fix such an 2/ € X. Since S U za’ € RF2, we

have that

__ 1
’NaR*(5U$$,)ﬂKc > |Y,| — 3y/en > <3251/4—3\/§)n>0.

Choose y € Nygr, (S Uzz’) NY,. We have SUzz' € RF2 SUyy € B*2, SUzz'y € OR,,

SUuzyy € 0B, and SU xx'yy’ € H as required. O

The following lemma shows that if we have a vertex set T' € (Vk(_G?))> such that d%4(T)
and d2'(T) are both large, then T is contained a lot of sets in R N OB, where R and B
are the red and blue tight components induced by the red and blue edges incident to 7',

respectively.

Lemma 2.4.9. Let 1/n < e < 1, k>3 and § > 5\/e. Let H be a 2-edge-coloured k-graph

on n vertices and G a 3+/e-blueprint for H. Let T € (‘76%)) Let SPve C N2M(T) and

Sred C NEAY(T) be such that |SP|, |S™d| > dn. Then there exists a vertex y € S such

that, for
red __ red ,
[y ={re S TUxyc OR(TUx)NIB(TUy)},
we have |74 > (0 — 6y/€)n. Moreover, if § > /%, then || > (1 —e'/*) |S™|. The
same statements hold when the colours are reversed.
Proof. Let mppe = |SP™°] and myeq = |S™Y]. If § < £'/°, then we may assume that

Mplue = Mred = |On] by deleting vertices in SP"® and S™¢ if necessary. Let D be the
bipartite directed graph with vertex classes SP and S*? such that, for each y € SP!"® and
z € 5™ we have N (y) = Nop(T Uy) N S™ and N (z) = Nor(T U z) N SPe. Since G

is a 3y/e-blueprint for H, we have that

|E(D)| > mblue(mred - 3\/571) -+ mred<mblue — 3\/571)

- meluemred - 3\/gn<mblue + mred)-
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Thus the number of double edges in D is at least mpjueMied — 3v/ENR(Mplue + Mired). For
each y € SP¢ let I', = {z € S™: zy,yx € D}. Hence there is some vertex y € S

such that

Mile + mred) - (0 —6ye)n,  if§<e'/?;

Mplue

|Fy| Z Myed — 3\/5’” (
Mrea(1 — /1), otherwise.

Note that if zy, yz € D with x € §™% and y € SP!¢, then TUzy € OR(T Ux)NOB(T Uy).

Hence I', C erd and thus the lemma follows. O]

Roughly speaking, in the next lemma we consider the following situation. Let R
be a red tight complement in H, G be a blueprint for H and Rz C G™9 be such that
H(Rg) € R. We pick a maximal matching in R{, and let U be the remaining vertices
of H not in this matching, so RS[U] is empty. Then the lemma implies that the number
of monochromatic tight components in U is less than what we would expect. In particular,

if £ = 4, then the edges in G[U] induce only two monochromatic tight components in H.

Lemma 2.4.10. Let k >4 and 1/n < e € a,d < n < 1. Let H be a (1 — ¢, a)-dense
k-graph and G a 3\/e-blueprint for H. Let R be a red tight component in H. Let Rg C G*¢
be such that H(Rg) C R. Let U C V(H) be such that |U| > nn/2 and RE[U] = @. Let
S e (/fi;) be such that the link graph Gs of G satisfies GE[U] C (Rg)s and §(Gs[U]) >
\U| — on. Then there exists a subgraph Js of Gs[U] such that |Js| > |Gs[U]| — 76Y/4n?
and H(SUe) = H(SU¢) for all e,e’ € Jg of the same colour. In particular, if k = 4,
then the edges in J induce only one red and one blue tight component in H. The same

statement holds when the colours are reversed.

Proof. Set J¥d = G%4[U]. Note that for e, ¢ € J¥4, we have e, ¢’ € (Rg)s and thus
H(SUe)=H(SU¢€) = R since H(Rg) € R. Therefore to prove the lemma, it suffices to
prove that there exists J5 C G2 [U] such that

Jged > |Gs[U]| — 76'/*n? and

+ ‘ ngue

H(SUe)=H(SU¢) for all e, e € JEMe,
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For simplicity we assume k = 4 and S = @. It is easy to see that an analogous argument
works in the general case. Thus for the rest of the proof, we omit the subscript S.

Let K = G[U]. If ’Kblue < 26212 then we are done by setting J?® = & as

Jred > |K| —26"%n* > |K| — 76"/*n?.

— ‘Kred

— ’K’ o ‘Kblue

> 20'2n2. Let X = {z € V(K): d?"(z) > dn}. We have that

Now assume ‘K blue

251/2n2 < ‘Kblue

<> dRe(x) < nlX|+ o
zelU
Thus | X| > §'/2n. Let D be the digraph with vertex set X such that, for each z € X,

Np(z) = NP"(z, X) U {2’ € Ni$¥(z, X): 22’y € ORN OB(wy) for some y € NP(z)}.

We now bound §*(D) as follows. If di¢d(x, X) > én, then by applying Lemma [2.4.9] (with

x, N3l (2, U), N§4(z, X), § playing the roles of T, SPue S™d §) we deduce that

‘{az’ € NiY (2, X): za'y € OR(zz’) N OB(wy) for some y € N[b(lue(a:)}‘

> (1 — /M (z, X).
Recall that R = R(xa’) for all ' € Ni¢d(x, X), | X| > §'/?n and € < §. Hence

dp(x) > di"(, X) + (1 = /)it (w, X) > (1 = ) (dg"* (2, X) + di (2, X))

= (1 —eYdg(z, X) > (1 — /(| X]| = on) > (1 — 2672)|X].
On the other hand, if d%¢%(z, X) < dn, then
d5(z) > de(z, X) > | X| — 0n — &z, X) > | X| — 20n > (1 — 202 |X]|.

Therefore, we have 6t(D) > (1 — 26'/2) |X| and so |E(D)| > (1 — 26Y2)|X|> > 2(1 —
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261/2) (l); ‘). Let F' be the graph with vertex set X in which zz’ forms an edge if and only

P

if it forms a double edge in D. Note that |F| > (1 — 451/2)(”2(‘). By Proposition [2.4.5

there exists a subgraph F™* of F with §(F*) > (1 — 66'/4)|X|. Clearly, F’* is connected.
Let JPe = {za' € KPve: ¢ € V(F*)}. We have

Jred U Jblue > |K| . Z dl[a(lue<x/) . |X \ V(F*)|n

z'eU\X

> |K| — on* — 66Y4n% > |G[U]| — 76Y*n?

We now show that B(x21) = B(xa29) for all z121, 1920 € J. Since F* is connected
and d e (z) > 0 for all x € V(F*), it suffices to consider the case when zxo € F*. If
1179 € KPU then 2121, 1129, 1220 € GP" and so B(x121) = B(x172) = B(222,), since G is
a blueprint. Now assume that z;25 € K. Since z129 € F* C F, there are y; € Nlbéue(xl)
and yo € NPU(zy) such that zyz9y; € OR N OB(z1y1) and z129y2 € OR N OB(x2y3).
Let u € Ny(z129y1) N Ny (z122y2) NU. Since RE[U] = @, we have x12oy1u, 112Z2Y0u €
HP'e Hence, B(z1y1) = B(w2ys). Moreover, since x1y1, 121, Toly2, Tazo € GP we have

B(z12z1) = B(x1y1) = B(x2y2) = B(x922) as required. O

2.5 Monochromatic connected matchings in K%

In this section, we prove that every almost complete red-blue edge-coloured 4-graph H
contains a red and a blue tightly connected matching that are vertex-disjoint and together

cover almost all vertices of H.

Lemma 2.5.1. Let 1/n < e K a < n < 1. Let H be a 2-edge-coloured (1 — &, «)-dense 4-
graph on n vertices. Then H contains two vertex-disjoint monochromatic tightly connected

matchings of distinct colours such that their union covers all but at most 3nn of the vertices

of H.

Note that this implies u}(1,e,n) > (1 —3n)n/4 for 1/n < ¢ < n < 1. Hence
wi(1) > 1/4. Therefore, together with Corollary 2.3.12] Lemma implies Theorem|[I.1.2]
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To prove Lemma [2.5.1] we first need the following lemma which chooses the initial tight

components in H in which we find our tightly connected matchings.

Lemma 2.5.2. Let I/n < e < a<n<1. Let H be a 2-edge-coloured (1 — ¢, av)-dense
4-graph on n vertices. Suppose that H does not contain two vertex-disjoint monochromatic
tightly connected matchings of distinct colours such that their union covers all but at
most 3nn of the vertices of H. Then, there exists a red tight component R in H, a blue
tight component B in H, a 3+/e-blueprint G for H and a matching My in RU B such that
the following hold, where Wy =V (G) \ V(My).

(i) 6(G) = (1 — a/*)n.

(ii) R(e) = R and B(e') = B for all edges e € GV (M) U Wo] and all edges
e € GPU[V (MPMe) U Wo).

(111) MO C (Gred)+ U (Gblue)+‘
(iv) (G™H)F[Wo] U (GPle) W] is empty.

Proof. By Lemma [2.4.3] there exists a 3y/z-blueprint Gy for H with V(Gy) = V(H) and

|Go| > (1 — o — 964/¢) (g) > (1— 404)(721). By Corollary [2.4.6, there exists a subgraph G

of Gy of order at least (1 — 64/a)n that contains a spanning monochromatic component
and 6(G1) > (1 — 12y/a)n. Note that that Gy is also a 3y/e-blueprint for H.

We assume without loss of generality that G; contains a spanning red component.
Since G is a blueprint, all the red edges in G; induce the same red tight component R
in H. Let Rt = (G*)" C R. Let M be a matching in RT of maximum size. Let
U=V(G1)\V(M).

Thus [U| > nn (orelse |V(M)| > |V(G1)|—|U| > (1—2n)n, a contradiction). Moreover,
R*[U] = @. Since §(G;) > (1 — 12y/a)n, we have 6(G1[U]) > |U| — o'/3n. Hence, by
Lemma (with 4, U, @, o!/? playing the roles of k, U, S, §), there exists a subgraph .J
of G1[U] such that |J| > |G1[U]| — 2a*/'3n?, such that H(e) = H(¢') for all e, e’ € J of
the same colour. Let Gy = (G — GP¢[U]) U J and B = B(e) for e € J™™. Note that

o4



|Ga] > (1 — al/l‘*)(Z). By Proposition [2.4.5 there exists a subgraph G of G5 such that
§5(G) > (1 — al/3%n, so (i) holds.
Let W =V(G)\ V(M). Next, we show that and hold but with M, W instead

of My, W,. Note that M = & so holds by our construction. Since G4 C G4
and G%4 is connected and a blueprint, R(e) = R for all e € G™. Note that GPe[V (MPle)y
W] = GMe — V(M) C G e[U] = J so B(e) = B for all e € GPUe[V(MPue) U W].
Hence |(ii){ holds. We now add vertex-disjoint edges of (G™4)*[W]U (GP¢)T[W] to M and
call the resulting matching M,. We deduce that M, satisfies [

We now prove Lemma [2.5.1}

Proof of Lemma |2.5.1. Suppose the contrary that H does not contain two vertex-disjoint
monochromatic tightly connected matchings of distinct colours such that their union
covers all but at most 3nn of the vertices of H. We call this the initial assumption. Apply

Lemma and obtain a red tight component R, a blue tight component B in H, a

3y/e-blueprint G for H and a matching M, in R U B satisfying Lemma (iv)}

We now fix GG, R and B. We use the following notation for the rest of the proof. For a

matching M in RU B, we set

W =W(M) =V(G)\V (M),
Wied = Wiea(M) = {w € W dtgﬁf{,} (w) < 8y/en},

Whive = Whiwe(M) = {w € W': dlgﬁ/y] (w) < 8y/en}.

Note that |W| > nn by the initial assumption. Without loss of generality, |Wie(Mp)| <
‘Wred(MO)‘~
We define M be the set of matchings M in RU B such that

(i") R(e) = R and B(e') = B for all edges e € G™4[W] and ¢’ € GPve[V (MPe) U W],
(ii/) Mblue C (Gblue)Jr’ and

(iii") (Grd)*[IW] U (GP)*[W] is empty.
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Note that and are weaker statements of those in Lemma [2.5.2(ii)| and |(iii), so

My € M. Let M’ be the set of M € M also satisfying
(ivl> |Wb1ue’ < |Wred|-

Observe that My € M’, so M’ is nonempty.
Let v = 10a'/3°. We now show that, for all M € M, W,eq and Wiue partition W, and

moreover one of them is small.

Claim 2.5.3. Let M € M. The following holds.
(a) For all w € W, either dg?ﬁ,v] (w) < T\/en or d}g}ﬁ,‘f,} (w) < 7y/en.
(b) Wiea and Wi partition W.
(c) Either [Wyne| < yn or |[Wiea| < yn.

In particular, if M € M', then |Wye| < yn.

Proof of Claim. Suppose that there exists a vertex w € W that satisfies dgﬁm (w),
dglﬁff,](w) > 7y/en. By Lemma (with 7/, w, Née[‘%,v} (w), gl[‘ﬁe/](w) playing the roles
of §, T, Srd, SPue) there exist = € Ng;e[% (w) and y € Ngl[‘ﬁ‘e,] (w) such that wry € RN IB.
In particular, dy(wzy) # 0 and thus dy(wzy) > (1 — €)n, which implies that there exists
a vertex w’ € W such that ww'zy € H. Note that ww'zy € (G*Y)T[W]U (GP)T[W] con-
tradicting |(iii’)} Hence, min{dg?ﬁm (w), dglﬁ}f/] (w)} < 7y/en. Since Lemma implies
that 6(G[W]) > [W] — a/*n > 16,/en, we deduce that [(a)] and [(b)] hold.

Recall that |W| > nn > 2yn. So one of W,q and Wy, has size greater than ~yn.
Suppose both are (that is, |(c)|is false). Since 6(G) > (1 — a'/3%)n = (1 — v/10)n, we have

that there are at least
Whine| (|Wred| —yn/10 — 8\/571) > [ Whoine| (|Wred| = y1/5) > 3 |[Whied| [Whine| /4

blue edges between Wy,e and Wieq and similarly there are at least 3 |Wieq| |[Whine| /4 red

edges between Wye and Wieq. Thus e(Wieq, Whine) > [Wied| |[Wolue|, @ contradiction. W
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Let M, € M’ be such that (|M,|, |Mrd

) is lexicographically maximum. We write
W W4 Wihe for W(M.), Wiea (M), Wie (M, ), respectively.

The next claim shows that almost all 4-edges in H[W*] are blue and they form a tight
component. Indeed, this follows from the fact that almost all edges in G[W*] are red and

thus almost all triples in W* are in OR.

Claim 2.5.4. There exists a blue tight component B" in H such that the number of triples

ryz € (Wé;d) NOB' with dp (vyz, Wry) > |Wiy| — en is at least (1 — a'/3) ’(Wg;d)

Proof of Claim. Let T be the set of triples zyz € (WBd) N OR such that xy € G*%. Note

that, for any z € W7y, y € N5z, Wr,) and z € Nygr(zy, W), we have zyz € T. Thus

T

T1 2 o Wl (1Wal = 0% — 8/En) (W] — 3v2n)

Wl 2a1/30n, sy | Wik
> 1— > (1 —
=3l Wl > (1o 17

as Wiyl > nn/2. By [(iii')} we have that if zyz € T and w € Ny(zyz, Wy,), then

)

wxyz € HP. For zyz € T, let B(wyz) be the maximal blue tight component containing
all the edges zyzw, where w € Ny (zyz, Wr,). We say that xyz generates the blue tight
component B(xyz). It suffices to show that all xyz € T generate the same blue tight
component. First we show that triples that share two vertices generate the same blue
tight component. Note that, for zyz;, xyze € T, we have dy(zyz1, W), du(xyze, Wiy) >
(Wil —en > |Wiky| /2 and thus there exists w € Ny (zyz1) N Ny (zyze) N Wi,. Since the
edges wryz; and wxyzy are blue, it follows that B(zyz,) = B(zyzs).

Now let 119121, Tayazs € T, where 2191, Toys € G™4. Let w1 € Nagr(z191)NNag(way2)N
Ngrea(x1) N Ngrea(z2) N Wiy and we € Ngg(z1wy) N Nor(zowy) N Wiy, It follows that
TP W1, T1WWe, TowqWe, Toyowy € T. Hence B(xiyi1z1) = Bl(xiyiwy) = B(rjwiwy) =
B(zowjwy) = B(xayswi) = B(xaysze). Let B’ be the unique blue tight component

generated by all triples zyz € T. [ |

The previous claim and a greedy argument imply that there is a matching MP" in B/[W*]
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> nn/4,

that covers all but nn of the vertices in W*. Thus we may assume that ‘M,‘flue
otherwise ‘V(Mjed U Mf/)‘ > n — 3nn, which is a contradiction to the initial assumption.
To complete the proof, we will show that in fact B’ = B, implying M**? and MPhe U AP
are tightly connected matchings, a contradiction to the initial assumption.

We now pick a special edge e* € MPU"e. Its special property that we desire is stated

in Claim 2.5.6

Claim 2.5.5. There ezist an edge e* = viviviv; € MP® and distinct vertices wy, . .., wy,

wh, ..., wy € Wk, such that, for each j € [4],

T

(a) all the red edges of G incident to vi induce R, or
(b) viw; € G*™ and viw;wj € IRNIB.

Proof of Claim. For each edge e € M, let v¢, v5, v5, v§ be an enumeration of its vertices.

It is easy to see that there exists M C MPM® with ‘M{’h‘e

_ blue
— ‘M*

/16 such that for
each j € [4] we have that either

(a’) for all e € MP™, there is a red edge in G between v§ and Wy, or

(b) for all e € MY, all edges in G between v$ and W, are blue.
Let .J; be the set of j € [4] such that [(a)| holds and .J, = [4] \ J;. Since each vertex in Wy,
is incident to a red edge of G that induces R and G is a blueprint for H, we have that, for

all e € MP™® and all j € Ji, all the red edges incident to v§ induce R. For every j € J,

we have that

’Gblue[{vjl ec M{Jlue}’ rt;d]‘ Z ‘M{olue

(|W:ed| - a1/30n) > (1 — a1/31) ‘M{Dlue

|Wrt;d| :

Thus there exists w; € Wy, such that w;v¢ is blue for at least ’M{’luo (1 — a'/3?) of

J

the vertices v§, with e € MPe, Tt is easy to see that we can choose the w; to be

distinct. Hence there exist distinct vertices wy, wo, w3, wy € Wy and MM C MPM with

‘M;me /2 > nn/128 such that for all j € J; and all e € M}™® we have that

_ blue
— ‘Ml

[3 blue
w;v§ € GO,
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For j € Jy, let V; = {v¢: e € My™M} and note that dg*®(w;, V;) = ‘M;Iue

> nn/128 and
disd(w;, Wry) > nn/2. For each j € Jp, we apply Lemma with colours reversed and
wj, Vj, W, playing the roles of TSP, §red where T, denotes W, with all previously

chosen vertices removed. Thus, we find distinct w} € Wik, \ {w1, wa, w3, wy} and MM C

Mpe with

blue
M;

_ blue
- ]MQ

/2 such that, for all j € J, and all e € MP" we have that
vw; € GPM and viw;w) € 9RN B. We complete the proof by choosing e* = viviviv; €

M and a distinct vertex w) € Wy for each j € Jy. [

T
Let W= Wi\ {w1,...,wg,wy, ..., wi}.

Claim 2.5.6. The graph Ble* UW'] does not contain two vertex-disjoint edges each of
which contains an edge of GP'® and R[e* UW'| is empty. In particular, there do not exist

two vertez-disjoint edges f1 and fy in (RU B)[e* UW'] each containing an edge of G'U.

Proof of Claim. First suppose there exist two vertex-disjoint edges fi, fo € Ble* U W]
each of which contains an edge of G™°. By the maximality of |M,|, both f; and f, must
intersect e*. For simplicity, we only consider the case that e* \ (f; U fo) = {vj} (the other
cases can be proved similarly). By Claim , we have that all red edges of GG incident
to v} induce R or viw; € G™™ and viw,w| € ORN IB.

First suppose that vjw; € GP® and viw,w| € RN OB. Let w] € Ny (viww), W*\
(fiUf2)) and f3 = viwjwiw]. Let M" = (M, \{e*})U{ f1, f2, f3}. Note that W(M"') C W*.
Since [W| > nn > 3yn and [Wyy,.| < vn by Claim 2.5.3] we deduce that M’ satisfies
Hence M’ € M’ contradicting the maximality of |M,|.

Now assume that all the red edges of GG incident to v induce R. Let M be a matching

in RU B containing (M, \ {e*}) U{fi1, fo} satisfying and We now show that
M € M’', which then contradicts the maximality of |M,|. Recall that v € e* € MP 5o

W C W\ (fiU fo))U{v} and V(M) U W C V(M) u W™, (2.5.1)
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Together with our assumption on v}, M satisfies . Hence M € M. Forallw € WNWx

red»

Claim 25.%a)]
deifii (w) "< g (w) + o] B 1< 8ven

and a similar inequality holds for all w € WNWy,,.. This implies that Wie € Wi, U{v*}.
Since |W| > nn > 3yn and |[W{i..| < yn by Claim [2.5.3] we deduce that M satisfies |(iv’)]
Hence, M € M’ as required, a contradiction.

Therefore, Ble* UW'] does not contain two vertex-disjoint edges each of which contains
an edge of GP"°. If R[e* UTW’] contains an edge f, then a similar argument holds with f
replacing { f1, fo}. Note that if |M| = |M,|, then we obtain a contradiction by showing

that Mt . ]

< ’ Mred

Since e* € MPe C (GPe) T we may assume without loss of generality that vivy € GPe.
The following claim shows that one of the vertices v] and v; has small blue degree in G

to W' (and thus it has large red degree to W”).
Claim 2.5.7. We have d2"(vi, W) < 3yn or d2"¢(vy, W') < 3yn.

Proof of Claim. Suppose to the contrary that we have d2(vi, W’), d2e (v, W’) > 3vyn.
By Claim [2.5.6] it suffices to show that we can find two vertex-disjoint edges f; and fo
in (RU B)[e* UW’| each containing an edge of G, It is easy to see that we can
greedily choose vertices z € N&Ue(vi, W), 2/ € NE(x, W) N Nyg(viz, W') and 2" €
Nor(xx', W) N Ng(viza',W'). Set fi = viza'z”. By our construction, vizz’ € 0B and
zz'z” € OR implying f; € (RU B)[e* UW’]. Similarly there exists an edge fo = viyy'y” €
(RU B)le* UW’] disjoint from f; with y,y',y" € W". [

Without loss of generality assume d2"(vi, W) < 3yn and so di$4(vi, W') > |W'| —
a'Bln. Let w € Nop(vivg) N NE(vi) N W', w' € N5 (w) N Nag(viw) N Ny (viviw) "W’
and w” € Ny (viww', W’). (We can find these vertices greedily one by one.) By Claim [2.5.4}
we may further assume that ww'w” € 0B’. By construction, we have that vjww’ € OR

and thus Claim implies that both vjviww’ and viww'w” are blue. Since viviw € 0B,
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we deduce that viviww', viww'vw” € B and so ww'w” € B implying that 0B NIB’ # &.

Therefore B = B’ as required. O

2.6 Monochromatic connected matchings in K°

The aim of this section is to prove the following lemma which shows that 2-edge-coloured
dense 5-graphs can be almost partitioned into four monochromatic tightly connected

matchings.

Lemma 2.6.1. Let 1/n < e K a < n < 1. Let H be a 2-edge-coloured (1 — €, a)-dense 5-
graph on n vertices. Then H contains four vertez-disjoint monochromatic tightly connected

matchings such that their union covers all but at most 3nn of the vertices of H.

Note that this implies pi(1,e,n) > (1 — 3n)n/5 for 1/n < ¢ < n < 1. Hence
p2(1) > 1/5. Together with Corollary [2.3.12] Lemma implies Theorem [1.1.3]

We use the following notation throughout this section. Let H be a 2-edge-coloured
5-graph and let G be a blueprint for H. Given a red tight component R C H, we write R
for the edges of G that induce R. We use analogous notation for blue tight components.

Let H be a 2-edge-coloured dense 5-graph. We first apply Lemma to H to get a
blueprint G for H. Since G is 2-edge-coloured dense 3-graph, we can apply Lemma
again to G to obtain a blueprint for G, which is a 2-coloured 1-graph. The following

lemma summarises the structural information about H that we obtain in this way:.

Lemma 2.6.2. Let 1/n < ¢ € a < 1. Let H be a 2-edge-coloured (1 — e, a)-dense
5-graph on n vertices. Then there exists a 3-graph G with V(G) = V(H), two disjoint
subsets V4 and VP of V(H), a red tight component R C H and a blue tight component

B C H such that the following properties hold.
(i) G is a (1 —a'/37,a'/37)-dense 3/e-blueprint for H.

(i) [V(H)\ (Vred uVPie)| < ol/Tn,
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(iii) daps(v) > (1 — a/™)n for all v € V™4,
(iv) dpps(v) > (1 — a/™)n for all v € VPhe,

Proof. By Lemmal[2.4.3 there exists a (1 —a!/37, a!/37)-dense 3,/z-blueprint G for H with
V(G) = V(H). We apply Lemma to G and obtain a a'/™-blueprint J for G with
|J| > (1—a'™)n. Note that, as a blueprint for a 3-graph, .J is a 1-graph. Hence each edge
of J contains precisely one vertex. By the definition of a blueprint all the red edges of J
induce the same red tight component Rg of G. Let V™4 = |J J™4. Since R is a red tight
component of G all its edges induce the same red tight component R of H. Define VPue

and B analogously. O

Two edges f and f’ in H are loosely connected if there exists a sequence of edges
e1,...,e; such that e; = f, e, = f" and |e; Ne;jqq| > 1 for all ¢ € [t — 1]. A subgraph H’
of H is loosely connected if every pair of edges in H' is loosely connected. A maximal
loosely connected subgraph of H is called a loose component of H.

We now prove Lemma [2.6.1] The proof works by first finding a maximal matching
in RU B, where R and B are the components given by Lemma and then finding

maximal connected matchings in the remaining vertices.

Proof of Lemma|[2.6.1. Assume, for a contradiction, that such matchings do not exist. We
call this the initial assumption. Apply Lemma, and obtain V4 VPlve @ R3 R B3 B
and let V* = Vred U VP Since there are only few vertices in V(H) \ V* we ignore these
vertices from the start and construct our matchings in H[V*].

We begin by choosing a matching M C (R U B)[V*] of maximum size. Let U =
V*\ V(M). Note that we have R[U] = B[U] = @ and |U| > nn by the initial assumption.
Let U™ = UNV™ and UP" = UN VP, The following claim shows that if U™ and UPe

are both large, then G[U] must contain many edges in R* or many edges in B3.

Claim 2.6.3. If ‘Ured > a3 then we have that max{|R*[U]|,|B%[U]|} >

bl
,‘U ue

% ‘Ured |U] _ 3q1/155),3.

) Ublue
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Proof of Claim. Define a bipartite graph K, with vertex classes U™ and U™ such that
xr € U™ and y € U are joined by an edge if and only if zy € OR3> N 0B3. Recall that
dops(r) > (1 — a/™)n and dygs(y) > (1 — a/™)n for all z € U™ and y € U™, Hence
QM2

’KO| Z ‘Ublue Ured

Since G is (1 — a'/37, a!/*")-dense, we have dg(zy,U) > |U| — a'/37n for zy € K,. We
now colour the edges of K such that zy € Ky is red if dgs(xy,U) > |U| — 2a'/™n and
blue if dgs(zy,U) > |U| — 2a/™n. Since Ky C OR* N IB?, if zyz € G with xy € Ky,
then zyz € R3U B3. Hence it suffices to show that almost all edges of K| are of the same

colour. Indeed, if we have that at least ‘U red — 3a/14n? edges of K, are red, then

’ Ublue

we have

] 1
‘R3[U]‘ 2 5(‘U'red i 3a1/154n2)(|U| . 20(1/7671) Z 5 ‘Ured |U| - 3061/1557L3.

‘ Ublue

‘ Ublue

We show that each edge xy € K is coloured either red or blue. It suffices to show that
either dps(wy,U) < a¥/™n or dps(vy,U) < o/™n. Indeed if dgs(zy,U),dps(vy,U) >
a/™n, then by Lemma , there exists u, v’ € U such that xyu € R?, zyu’ € B? and
zyuu' € RN OB. For any u” € Ny(zyuu',U), we would have zyuu'v” € R[U] U B[U],
a contradiction to the maximality of M. Moreover, by Lemma [2.4.8] we have that
min{d (u), i (u)} < a'/™n for all u € U.

Let K; be the graph obtained from K, by, for each u € U, deleting all red edges
incident to u if d%%(u) < a'/"n and all blue edges incident to u if d®(u) < a'/"n. Note

that | K| > ‘U red — a'/™n? and that, in K, each vertex is incident to only edges

‘ Ublue

/15412 additional edges,

of one colour. It is not too hard to see that by deleting at most 2«
we can obtain a subgraph K, of K; for which each vertex has degree 0 or large degree.

More precisely, for all u € U™,

dr,(u) > ‘Ublue — 303%p or dy, (u) =0
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and, for all v € UPe,

d,(u) > ‘Ured — 3a%%n, or dy, (u) = 0.

Since each vertex is incident to only edges of one colour and any two vertices in U™ that
have non-zero degree have a common neighbour this implies that all edges in K5 are of

the same colour. Since |K3| > ‘U red — 3a!/1%4n?2  this concludes the proof. |

‘ Ublue

The following claim shows that there is a red tight component R, and a blue tight

component B, of H such that almost all the edges in G[U] induce one of these components.

Claim 2.6.4. Let v = o'/"M0. There exists a red tight component R, and a blue tight

component B, of H such that
(i) ‘RE[U” > ‘Gred[U]‘ _ 871/57”&3 and ‘BE[UH > ‘Gblue[U]‘ . 871/5713,
(i) 17U BYIU)] 2 (1 = 7/9)() and
(iii) R« = R or B, = B.

Proof of Claim. First we show that, for each u € U, there exists J, C G,[U], where G, is
the link graph of G at u, such that |J,| > |G,[U]| — a'/"n? and R(e Uu) = R(e/ Uu) for
e,e € J* and B(e Uu) = B(¢' Uu) for e, e € JPhe,

To show this fix v € U. Without loss of generality assume that u € U™. By
Lemma [2.6.2 dyps(u,U) > |U| — a/™n. Let U, = Nygs(u,U). Clearly, |U.| > nn/2
and G™[U,] C R3. Moreover, for all x € U,, we have dg(ux) > 0 and thus, since G is
(1 —a'/37 al/3")-dense, dg(uz) > (1 — a/*")n. It follows that §(G,[U.]) > |U,| — a'/3n.
Thus by applying Lemma with R3,u, U,, o!/37 playing the roles of R¢, S, U, §, there
exists J, € G,[U.] C G,[U] such that

|Ju| Z ‘GU[U*” . 7a1/148n2 Z ‘GU[U” . a1/75n2 . 7a1/148n2 Z ’GH[U” . O61/149712

and H(uUe) = H(uU¢') for e, e’ € J, of the same colour.
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Now consider the auxiliary multi-3-graph D = U,cy{e Uu: e € J,}. Note that

|D‘ _ Z ‘Ju’ > Z (‘GU[U” . a1/149n2> > 3’G[U]| o Oél/l49n3.

uelU ueU

Let F' be the subgraph of G[U] for which e € F' if and only if e is an edge of multiplicity 3

in D. Since G is (1—a'/37, a!/37)-dense, Proposition [2.1.1{implies that |G| > (1—2a'/37) (g)

e (1)) (5] -s4=(10)
(5500 ()

Thercfore |F| > |G[U]| — aX/M%n? > (1 — a!/150)(W). Recall that y = al/11. By

Hence

Propositions [2.1.1] and [2.1.2] there exists a (1 — 4/, 4'/5)-dense subgraph F' C F with

V(F) = V(F) = U and, by Proposition [2.1.1] ’15’ > (1-— 271/5)(“?{‘). Hence ‘F’red >

‘Gred[U ‘ 291513, Let S = {z € U: dg,.(x) > 64"/°n?}. Let F3° be the subgraph

> ’ﬁ’red _

of F™d consisting of all edges that contain a vertex in S™4. Note that ‘Fged
671503 > ’Gred[U]‘ — 81/5p3,

We claim that all the edges in Fi®® induce the same red tight component R, in H.
Let e, ¢ € [ with u € e N €. Note that e\ u, e’ \ v € J* and so R(e) = R(¢’). Hence
edges in the same loose component of F™4 induce the same red tight component in H. In
particular, since Frd C F red for u € S, all the edges in N Féed(U) induce the same red
tight component R(u) of H.

Let u,v € S™. We want to show that R(u) = R(v). We may assume that u
and v are in distinct loose components L and L' of F'®d, respectively. In particular,
any edge of F' that intersects both V(L) and V(L) is in FP™. If u,v € V™ then
dors (1), dops (v) > (1 — a¥/™)n implying R(u) = R = R(v). Thus we may assume that
one of v and v is in VP say v € VP, Let I'p(u) = {o/ € V(L): dr(uu') > ~v/°n} and

Lp(v) ={v' € V(L): dp(vv') > 4°n}. Tt is easy to see that [['p(u)|, [T (v)] > 5vY/°n.
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Let D' be the bipartite directed graph with parts I' (u) and I'z/(v) such that, for ' € I'r(u),

N (W) = {v' € Tp(v): wu'v' € FP and wu'v"v' € dR(uu'v") N OB (uu'v')

and uu'v"vv" € H for some v” € Np(uu')},
and, for v' € '/ (v),

N (@) = {u' € Ty(u): vo'u’ € FP and v'v € dB® and vo'v"u’ € 9B N OR(vv'v")

and vv'v"uu’ € H for some v" € Np/(vv')}.

By Lemma [2.4.9| the fact that F is (1 — /5, 4'/%)-dense and the fact that H is (1 — &, a)-

dense, we have, for v’ € 'z (u),
dh, (W) > [Ty (v)] —4Yon — Y4 —en > [T (v)] /2.
Similarly, also using the fact that dyps(v) > (1 — a/™)n, we have, for v’ € I'r/(v),
dh, () > |Tp(u)] —yY°n — o/ ™Pn — ¥4 — en > |Tp(u)] /2.

It follows that D’ contains a double edge u'v’, where v’ € I'f(u) and v' € T'1,(v). Let
u”’ € Np(uu') and v € Np/(vv') be the vertices that are guaranteed to exist by the
definition of D'. Since u'v € dB3, we have that vv'u € B? and thus also wu/v’ € B3.
As B|U] = @, we have vv'v"uu/, uu'v"vv" € H*? and thus R(uu'v") = R(vv'v"). Hence
R(u) = R(v). We define FP™® and B, in an analogous way. This proves .

Note that |(ii)| follows from |(i)| using the facts |U| > nn and |G[U]| > (1 — o!/3¥) ('g'),
which were noted earlier in this proof.

We will now prove We distinguish between two cases.

Case 1: ‘Ure‘i > ~1/13p,

, ’Ublue

By Claim [2.6.3, we have max{|R*[U]|,|B*[U]|} > §|Urd U| — 315503, Since

‘ [Jblue
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1 red
114

’ Ublue

U| — 3a/155n3 > 142/Bpp3 — 301/155p3 > 241/6p3 we have R? N R3 # @

or B3N B3 # @ and thus R, = R or B, = B.

Case 2: |UPlue < 4Y13n,

< '71/1377, or ’Ured

Say ‘Ublue

< ~4Y13n. Then ’Umd

= [U] = [P > U] — 4130, Let Q° = {T €

(g) : @) NOR? # @}. Since dyg(u,U) > |U| — o/™n for u € U™, there can be at most

‘U red| 0,2/T5n2 triples that intersect U™ and are not in @*. Hence

’Q‘g‘ > <|g|> . ’Ublue

U U
> <|3|> _ 73/13713 — a2 > <|3|> _ 271/5713_

Q22

3 - ‘Ured

Note that | R*[U]] > |@ N G™[U]| > |GI[U]| — 29!/°n®. Therefore, we have R, = R. M

We define R, = RU R, and B, = B U B,. Note that, by Claim R, U B,
is the union of at most three monochromatic tight components. Let M, be a maximal
matching in (R, U B,)[V*] containing M. Let W = V*\ V(M,). Since M C M,, we have
W C U. By the initial assumption, we have |IW| > nn. Note that (R, U B,)[W] = @ and,
since W C U, (R, U B,)[W] > (|v;/|) — 4Y/6p3. The following claim shows that almost all

the edges in G[W] are of the same colour.
Claim 2.6.5. We have |R3[W]| > ('V;’q) — Y93 or |B3[W]| > ('V;’q) — /93,

Proof of Claim. Let G, = R3U B2. We define

Wied = {u € W: dg, (u, W) > 2an® and dps(u, W) < an®},
Wote = {u € W: dg. (u, W) > 2an® and dgs(u, W) < an®},

Wy = {u e W:dg, (u,W) < 2an?}.

Since (R. U B,)[W] = @, by Lemma [2.4.8, Wieq, Wie and Wy partition W. Let J be the
subgraph of G.[W] obtained by deleting all red edges containing a vertex in Wy,e U Wy

and all blue edges containing a vertex in Wieq U Wy. Note that |J| > |G [W]| — 2an® >
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(1- 71/7)(‘?) and J C (Wg‘*d)U(W‘;“). Hence

(1- 71/7)<|2/|> < ('W?j“|> + ('nge‘). (2.6.1)

Suppose that |Wiea| , [Whive| < (1 — a/®) [W|. By (2.6.1)), we may assume without loss of
generality assume that |Wieq| > |[W/| /2. Noting that z — 2 + (|W| — x)3 is an increasing

function for x > |W| /2 we have

Wre Whine 1
<| d|> T <| ; l) < 6 (|Wred|3 + |Wblue|3> = (lWred|3 +(Wl = |Wred|)3)

|

3 3
| 3

< (=7 4 < (M),

a contradiction to (2.6.1).

Hence at least one of Weq and Wiy, has size at least (1 — +'/8) |W|. Without loss of
generality assume |Wyeq| > (1 — /%) |W|. Note that any edge of J contained in Wieq is

in R, hence

|REW| > || — [\ wred

> (1) <

This proves the claim. |

Now assume without loss of generality that |R3[W]| > ('V?) —~1/%n3. Note that almost
all edges in H[W] are blue (otherwise there would have to be an edge in R,[W], which

would contradict the maximality of M). More precisely, we have

e = SR O] =3B (W - e = =) ().

1/1010 1/1010)
)

By Propositions [2.1.1/and [2.1.2} there exists a (1 —~ -dense tightly connected

Y
subgraph HP'" of HPWe[W] with V (H"™¢) = W and ‘ﬁ blue

> (1-— 271/1010) (IV;/I). By an
easy greedy argument, there exists a matching M’ in HPe that covers all but at most nn

of the vertices in W. The matching M’ U M, covers all but at most 3nn of the vertices
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of H. This contradicts the initial assumption. O]

2.7 Concluding remarks

For k > 3, let f(k) be the minimum integer m such that, for all large 2-edge-coloured
complete k-graphs, there exists m vertex-disjoint monochromatic tight cycles covering
almost all vertices. Note that f(k) is well defined by [27] but the bound is very large. It is
easy to see that f(k) > 2 for all k > 3. Indeed, consider the k-graph H = K*®)(A, B) given
in Example with [A| = 3%-1n. Note that H[A] is a red tight component. Moreover,
note that any tight cycle contained in a monochromatic tight component other than H[A]
covers at most about a third of the vertices of H and any tight cycle in H[A] leaves all 3
vertices in B uncovered. Hence no monochromatic tight cycle covers almost all vertices
in H. We have f(3) = 2 by [28]. Theorems and imply f(4) =2 and f(5) < 4,
respectively. In general, we believe that f(k) = 2 for all k. However, we believe that new
ideas may be needed as indicated by again considering the k-graph H = K®)(A, B) with
|A| = 3-1n (as above). If H contains two vertex-disjoint monochromatic tight cycles of
distinct colour covering almost all vertices, then one of the two cycles must lie entirely
in the red tight component H[A]. However, this tight component is not induced by any
edge in the blueprint of H (which is K2 (A, B) with colours swapped). Thus we ask

the weaker question of whether one can bound f(k) by some suitable function of k.
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CHAPTER 3

THE RAMSEY NUMBER FOR 4-UNIFORM TIGHT
CYCLES

Our aim in this chapter is to prove Theorem [I.2.1] We recall some definitions and then
restate the theorem. Recall that for a k-graph H, we define the Ramsey number of H,
denoted by r(H), to be the least positive integer N such that any 2-edge-coloured complete
graph on IV vertices contains a monochromatic copy of H. Also recall that the k-uniform
tight cycle CF) is defined to be the k-graph on n vertices with a cyclic ordering of its
vertices such that its edges are the k-sets of consecutive vertices in the ordering. We now

restate Theorem [L.2.11
Theorem 1.2.1. Let € > 0. For n large enough we have T(Cﬁ)) < (5+4+¢)n.

The remainder of this chapter is organised as follows. In the next section we give a
sketch of the proof of Theorem [1.2.1] In Section [3.2) we introduce basic notation and
definitions. In Section 3.3 we define blow-ups and prove some basic propositions about
them. In Section [2.4] we define blueprints, state a result about their existence and prove
some basic results about how they interact with blow-ups. In Section (3.5, we prove that
an almost complete 2-edge-coloured 4-graph contains a monochromatic tightly connected

fractional matching with large weight. In Section |3.6, we show how to use this to prove

Theorem [L.2.1]
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3.1 Sketch of the proof of Theorem [1.2.1

We now sketch the proof of Theorem [I.2.1 We use a hypergraph version of the connected
matching method of Luczak [84] as follows. We consider a red-blue edge-colouring of K](\‘,l)
for N = (5/4 + e)n. We begin by applying the Hypergraph Regularity Lemma. More
precisely, we use the Regular Slice Lemma of Allen, Béttcher, Cooley and Myecroft [2]. This
gives us a reduced graph R, which is a red-blue edge-coloured almost complete 4-graph
on (5/4 + e)n’ vertices. To prove Theorem [1.2.1] it now suffices to find a monochromatic
tightly connected matching of size n’ /4 in R. A monochromatic tightly connected matching
is a monochromatic matching M such that for any two edges f, f’ € M, there exists a
tight wall[| in R of the same colour as M connecting f and f’. This reduction of our
problem to finding a monochromatic tightly connected matching in the reduced graph is
formalised in Corollary [2.3.12

Let v be a constant such that 0 < v < ¢ and let M be a maximal monochromatic
tightly connected matching in R. Suppose that M has size less than n//4 and is red.
We show that we can find a monochromatic tightly connected matching of size at least
|M| + vyn/. By iterating this we get our desired result. We actually find a fractional
matching instead. Note that by taking a blow-up of R we can then convert it back into
an integral matching. For simplicity, let us further assume that R has only one red and
one blue tight component (see Section for the definition). Then any monochromatic
matching is tightly connected. Consider an edge f € M and a vertex w not covered by M.
Observe that if all the edges in R[f U {w}] are red, then we get a larger red fractional
matching (by giving weight 1/4 to each of the five edges in R[f U {w}]). Thus for almost
all the edges f € M there is a blue edge f’ such that |f N f'| = 3. This gives us a
blue matching M’ of almost the same size as M. Note that the set of leftover vertices
W =V(R)\ V(MUM') has size at least en’. By the maximality of M, any edge in

R[W] must be blue. So we can extend M’ by adding a matching in W to get the desired

YA tight walk in a k-graph is a sequence of edges ej,...,e; such that |e; Ne;r1| = k — 1 for all
1<i<t—1.
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matching of size at least | M|+ yn'.

However, R may contain many monochromatic tight components (instead of just two).
Hence we need to choose monochromatic tight components carefully. To do this we use
a novel auxiliary graph called the blueprint which we will also use in Chapter 2 The
blueprint is a graph with the key property that monochromatic connected components in
it correspond to monochromatic tight components in the 4-graph we are considering. Since
the blueprint is red-blue edge-coloured and almost complete, it contains an almost-spanning
monochromatic tree. Using the key property of blueprints this shows that R contains a

large monochromatic tight component.

3.2 Preliminaries

In this chapter we reuse definitions from Chapter . If H is a k-graph and P = {V;,...V,}
a partition of V(H), then we call an edge e € H P-partite if |V;Ne| <1 for all i € [s]. If
all edges of H are P-partite, then we call H P-partite. We call H s-partite if H is P-partite
for some partition P of V/(H) into s sets. For vertex-disjoint k-graphs H; and Hs, we
define the k-graph Hy U Hy = (V(H,) UV (H,), E(H,) U E(Hs)).

A fractional matching in a k-graph H is a function ¢: E(H) — [0, 1] such that for
every v € V(H), Xcepmyvee (€) < 1. For each e € E(H) we call ¢(e) the weight of e.
The weight of ¢ is e pm) w(e). For a positive integer 7, a 1/r-fractional matching ¢ in a
k-graph H is a fractional matching such that each edge has weight in {0,%,2, ... =% 1},

that is {¢(e): e € E(H)} € {0,%,2,..., =% 1}. For vertex-disjoint k-graphs H; and H,
and fractional matchings ¢; and ¢, in H; and H,, respectively, we define the fractional
matching ¢; + po: E(H; U Hy) — [0,1] in H; U Hy by setting (p1 + v2)(e) = ¢i(e) if
e € Hy and (91 + 2)(e) = pa(e) if e € Hy. For a k-graph H, a subgraph H' of H and a
fractional matching ¢ in H’, we define the completion of ¢ with respect to H, denoted ¥,
to be the fractional matching p: E(H) — [0,1] such that pf(e) = p(e) if e € H and

¢(e) = 0 otherwise. For a matching M in a k-graph H, we define the fractional matching
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induced by the matching M to be the fractional matching ¢: E(M) — [0, 1] with ¢(e) =1
for all e € M. A tightly connected fractional matching in a k-graph H is a fractional
matching ¢: E(H') — [0, 1] where H' is a tight component of H.

A red tight component, a red tightly connected matching and a red tightly connected
fractional matching in a 2-edge-coloured k-graph H are a tight component, a tightly
connected matching and a tightly connected fractional matching, respectively, in H*4. We
define these terms analogously for blue. A monochromatic tight component in H is a red

or a blue tight component in H and similarly for the other terms.

3.3 Blow-ups

We will later need blow-ups to convert fractional matchings to integral ones. So we define

blow-ups here and show some basic facts.

Definition 3.3.1. Given a k-graph H we say that H, is a blow-up of H if there exists
a partition P = {V,: x € V(H)} of V(H,) such that H, = Uy, apen Kviy,..v4, » Where
v,, is the complete k-partite k-graph with vertex classes V,, ..., Vs, . Moreover,

,,,,,

if H is 2-edge-coloured, then we have

red __ blue __
o= |J Ky, and M= |J Ky, v,

x1...xp, € Hred x1...x), € Hblue

If |V,| = r for all x € V(H), then we call H, an r-blow-up of H. If e, = y;...yx € H,,

then we let f., = 21 ... 2, be the unique edge in H such that y; € V,, for all i € [k].

Recall that a k-graph H on n vertices is called (p, a)-dense if, for each i € [k — 1], we
have dy(S) > u(k:) for all but at most a(’i‘) sets S € (V(I.H)> and dy(S) = 0 for all other
sets S € (V(iH )). The following proposition shows that the r-blow-up of a (1 — ¢, a)-dense
k-graph is (1 — 2¢, 2«r)-dense.

Proposition 3.3.2. Let 1/n < e,a,1/r,1/k. Let H be a (1 — ¢, a)-dense k-graph on n

vertices and let H, be an r-blow-up of H. Then H, is (1 — 2¢,2«a)-dense.
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Proof. Let P ={V,: xz € V(H)} be the partition of V(H,). Let i € [k—1] and S € (V(f*)>

-----

Suppose dg(S") > (1 —¢) (k:) Then dy,(S) > (1 —¢) (kﬁi)r’“_i > (1 —2¢) (k”_’"l), since

(knji) = (1+ 0(1))<k7_Li)7’k’i as n — oco. The number of sets S € (V(f*)> for which this
is true is at least 7(1 — «) (7;) > (1 —2a) ("l’") For all other sets S € (V(f*)), we have

dy,(S) = 0. Hence H, is (1 — 2¢, 2a)-dense. O

The following proposition shows how to turn a matching in a blow-up of a k-graph H

into a fractional matching in H and vice versa.

Proposition 3.3.3. Let 1/N < e < 1/r and k > 2. Let H be an edge-coloured k-graph
on N wvertices and let H, be an r-blow-up of H. Then H, contains a monochromatic
tightly connected matching M of size m if and only if H contains a monochromatic tightly

connected 1/r-fractional matching of weight m/r of the same colour.

Proof. Let P ={V,: x € V(H)} be the partition of V(H,). Let F, be the monochromatic
tight component of H, that contains M. There exists a monochromatic tight component F’

of H such that

zy..c€F
We define the fractional matching ¢: F' — [0, 1] as follows. For each edge e = 1 ... 24 € F,

we set

.....

For each z € V(H),

) w(e)=i|{f€M:fﬂvﬁé®}!§1,

ecH: x€e

since M is a matching and |V,| = r. Hence ¢ is a monochromatic tightly connected
1/r-fractional matching. We conclude by noting that ¢ has weight m/r.

The other direction is proved similarly. O
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3.4 Blueprints and blow-ups

We use the notion of blueprint introduced in Section [2.4] which allows us to track
monochromatic tight components. In this section we show that blueprints work well

together with blow-ups.

Proposition 3.4.1. Let 1/n < ¢ < 1/k < 1/4 and let r > 2 be an integer. Let H
be a 2-edge-coloured k-graph on n vertices, let G be an e-blueprint for H, and H, an
r-blow-up of H with vertex partition P ={V,: x € V(H)}. Let G, = G.(H, H.,G) be the
r-blow-up of G with vertex partition P’ = {V,: x € V(G)}. Then G, is an e-blueprint
for H,. Moreover, for e, =y1...yp—2 € Gy and f., = x1... 259 € G where y; € V., for

,,,,,

all i € [k — 2], we have H.(e.) = U.,. . en(s.,) Kv., ... v.,, that is H.(e.) is the r-blow-up

of H(fe,) in H.,.

Proof. For e, = y1...yp_2 € G,, we let H,(e,) be the blow-up of H(f.,) with respect
to P, that is H.(e.) = U.,. pen..) Kv.,...v., - Since H(fe,) is a monochromatic tight
component in H, H,(e,) is indeed a monochromatic tight component in H, as required.
Moreover, since f,, has the same colour as e,, H(e,) has the same colour as e,.

Let e, € G.. We show that dop,(..)(ex) > (1 — e)nr. Since H,(e,) is the blow-up
of H(f.,) with respect to P, 0H,(e.) is the blow-up of OH(f.,) with respect to P. It
follows that dap, (c.)(€x) = Tdons.,)(fe.) = (1 —&)nr.

Now let e, ¢, € G, of the same colour with |e, Ne.| = k — 3. We show that H.(e.) =
H.(e}). We have |f., N fo| =k —3 and f., and f.. have the same colour. Thus since G is
a blueprint for H, we have H(f.,) = H(f..). Thus, by definition, H.(e,) = H.(e}). O

The blueprint of a 2-edge-coloured 4-graph is a 2-edge-coloured graph. We use the
following proposition to show that the blow-up of such a blueprint retains the properties

of having large minimum degree and of having a spanning red component.

Proposition 3.4.2. Let 1/n < §,r. Let G be a 2-edge-coloured 2-graph with §(G) >
(1—p5)n and let G, be the r-blow-up of G with vertex partition P ={V,: x € V(G)}. Then
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0(Gy) > (1 = B)nr. Further, if G contains a spanning red component, then G, contains a

spanning red component. The same statement holds with the colours reversed.

Proof. Let v € V(G,). There exists x € V(G) such that v € V,. We have Ng,(v) =
Uyeng (@) Vy and thus dg, (v) > 6(G)r > (1—B)nr. Now assume that G contains a spanning
red component. We show that G, contains a spanning red component. Let u,v € V(G,).
There exist z,y € V(G) such that u € V, and v € V,,. Let z € V(G) \ {z,y}. Since G
contains a spanning red component, there exist walks zx; ... z,z and yy; ... yz in G™4.
Choose vertices u; € V,,, v; € V,,, and v, € V, for i € [k] and j € [{]. Note that

uuy ... upzvy . .. v is a walk in G™4. Hence G, contains a spanning red component. [

We also reuse Lemma [2.4.3| and Corollary from Chapter [2 to show that a 2-
edge-coloured almost complete 4-graph has a blueprint with large minimum degree that

contains a spanning monochromatic component.

3.5 Finding monochromatic tightly connected match-
ings

Our goal in this section is to prove the following lemma which is the main ingredient in

the proof of Theorem [1.2.1]

Lemma 3.5.1. Let 1/n < e K ¢ < n. Let N = (5/4+3n)n. Let H be a 2-edge-coloured
(1—¢,¢e)-dense 4-graph on N wvertices. Then there ezists a monochromatic tightly connected

fractional matching in H with weight at least n/4 and all weights at least c.

By using Proposition proving Lemma is reduced to showing that, for some
e < 1/s < n, an s-blow-up H, of H contains a monochromatic tightly connected matching
of size at least v(H,)/5. We will prove this as follows. First we find a monochromatic
tightly connected matching in H of size dn for some 1/s < 0 < 1. We then iteratively
take blow-ups of H that contain monochromatic tightly connected matchings that cover

a larger and larger proportion of the vertices. We prove this by showing that as long as
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our current matching M in a blow-up H, of H is not yet large enough, we can find a
fractional monochromatic matching of weight |M| + yv(H,) (where 1/s < v < 9). This
is the main ingredient in the proof of Lemma [3.5.1 and is formalised in Lemma We
then convert this fractional matching into an integral matching by taking another blow-up
(see Proposition [3.5.4).

Since H is only almost complete, its blueprint will also only be almost complete. To
overcome some difficulties arising from this, we mostly work with edges of H that work
well with respect to its blueprint. We call these edges good edges and define them as

follows.

Definition 3.5.2 (Good edges, good sets of edges, good fractional matchings, J*). Let H
be a 2-edge-coloured 4-graph and G a blueprint for H. We call an edge f € H good
for (H,G) if

(G1) fCV(G),
(G2) G[f] = K4 and

(G3) there exists z € f such that xyz € OH (xy) for every zy € (f\éz}).

We call a set of edges ' C H good for (H,G), if every edge f € F is good for (H,G).
For a subgraph J of H, a fractional matching ¢: FE(J) — [0, 1] is called good for (H,G)
if {e € E(J): ¢(e) > 0} is good for (H,G). If H and G are clear from context, then we
simply call such edges, sets of edges and fractional matchings good. For a subgraph J
of H, we let J© be the subgraph of J that contains only the edges of J that are good
for (H,G). Note that this is different from the notion of G* for a blueprint G that we

introduced in Section We do not use this latter notion in this chapter.

Intuitively, by using only good edges we can ignore some of the problems that arise
from the fact that H and G are only almost complete. The purpose of [(G3)|is to allow
us to deduce, in some situations, that the edge f is in one of the monochromatic tight

components induced by the edges of G[f]. For example, if f = z1z52324 is a blue edge

in H and 2129, r324 € GP"°, then implies that f € B(z122) U B(z3z4).
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The following lemma is the main ingredient in the proof of Lemma [3.5.1] It states that
if we have a monochromatic matching that is not large enough, then we can find a larger

one.

Lemma 3.5.3. Let r = (). Let 1/n < e <y <6 < n < 1. Let N = (5/4 + 3np)n.
Let H be a 2-edge-coloured (1 — e, €)-dense 4-graph on N wvertices that does not contain a
monochromatic tightly connected matching of size at least n/4. Let G be an e-blueprint
for H with §(G) > (1 —e)N. Suppose H contains a red tight component R satisfying
H(e) = R for every e € G™4. Let M be a good matching in H with 36n < |M| < n/4 such

that one of the following holds.
(H1) M C R or
(H2) M is contained in a blue tight component B of H.

Then H contains a good 1/r-fractional matching in R or in a blue tight component of H

of weight at least |M| + yn. The same statement holds with colours reversed.

3.5.1 Proof of Lemma assuming Lemma

Before proving Lemma |3.5.3] we show how to prove Lemma [3.5.1] using Lemma [3.5.3] To
do this we need a few other small results.
The following proposition shows that we can turn a good 1/r-fractional matching into

a good integral matching by taking an r-blow-up.

Proposition 3.5.4. Let n,r > 2 be integers and p > 0. Let H be 2-edge-coloured 4-graph
on n vertices. Let H, be an r-blow-up of H with vertex partition P = {V,: xz € V(H)}.
Let G be a blueprint for H and let G, be the corresponding blueprint for H, as defined
in Proposition [3.4.1. Let F be a monochromatic tight component of H and let F, =
Usr..cscr Kv,, ... v, be the corresponding monochromatic tight component of H,. Let ¢ be
a 1/r-fractional matching in F' with weight p that is good for (H,G). Then there ezists an

(integral) matching in F, of size pr that is good for (H.,G.).
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Proof. For each vertex x € V(H) and each edge e € F' containing x, choose disjoint sets
U, C V, such that |U, .| = r¢(e). This is possible since ¢ is a 1/r-fractional matching
and |V,| = r for each x € V(H). For each edge e = x1...24 € F, let M, be a perfect
matching in KUzl,e _____ Usyer Clearly, the M, are disjoint. Let M = U.cp M.. Note that
|M| =Y .crre(e) = pr. Tt is easy to see that since ¢ is a fractional matching in F' that is
good for (H,G), M is a matching in F, that is good for (H,, G.). ]

The following proposition shows that (in a strong sense) most edges are good in our
usual setting of having a (1 — ¢, £)-dense 2-edge-coloured 4-graph H and a blueprint G for
it with large minimum degree. Recall that H* is the subgraph of H that contains only
the edges of H that are good for (H, Q).

Proposition 3.5.5. Let 1/N < ¢ < . Let H be a (1 — ¢,¢)-dense 2-edge-coloured
4-graph on N wvertices, let G be an e-blueprint for H with §(G) > (1—¢)N and W C V(G)
a set of size at least yN. Then 6;(HT[W]) > ("g') — 2eN3. Moreover, HY[W] contains a

matching of size at least % —yN.

Proof. Fix v € V(H). Choose vertices

21 € Ng(v),
29 € Ng(v) N Ng(21) N Nopr(vz,)(v21) and
23 € Ng(v) N Ng(z1) N Na(z2) N () Nomy (zy) N Nu(vzi2s).
eye(*12)
Note that vz 2925 is good. Since G is an e-blueprint for H with 6(G) > (1 —¢)N and H
is (1 — g, €)-dense, the number of choices for z;, zo and 23 are at least (1 —e)N, (1 —3e)N
and (1 — 7¢)N, respectively. Hence

. 3
51(H+) > (155)]\[ > (g) — 92¢N3.

It follows that &;(H*t[W]) > ('g') — 2eN3. By a greedy argument, H*[IV] contains a

matching of size at least @ —yN. m
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The following proposition shows that in our usual setting the following holds. Given
two sets of vertices Ty and Ty (with |T;| € {2,3,4} and satisfying some simple conditions)
there exist vertices zi, 29, 23 such that all the edges in H[T; U z12923] are good. It is also
shown that we can choose these vertices z1, 2o and z3 in any not too small set of vertices.

We use this to find tight connections of good edges between small sets of vertices.

Proposition 3.5.6. Let 1/N < ¢ < . Let H be a (1 — ¢,¢)-dense 2-edge-coloured
4-graph on N vertices, let G be an e-blueprint for H with 6(G) > (1—¢)N. Let W C V(G)

be a set of size at least YN. Let T, To C V(G) be sets such that, for i € [2],
(a) 2<[TG| <4,
(b) T; € H if |T;| = 4,
(c) GITi] = Kz,
(d) Nu(S) # @ for all S € ().

Then there exist vertices zy, z2, z3 € W such that, fori € [2],

(4)

(1) H[T; U z12923] = Ké_‘%,

(i) G[T; U z12023] = K713,

(iii) xyz; € OH(xy) for all xy € (TQ),
(iv) zyze € OH(xy) for all xy € (Tiuzl),

2

In particular, HY[T; U 21 2923] = K|(7413|+3 fori € [2].
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Proof. Choose vertices

z1 € WN m NH(S) N ﬂ NG(-%) N ﬂ NBH(:vy)(:Ey)?

56(7;}1)U(7;2) zeT1UTs my€(7;1)u(7;2)
2z e WnN ﬂ Ny (S)N ﬂ Ng(x) N ﬂ Not (zy)(zy) and
SG(T1§JZl)U(T2L3le> zeT1UTHrUz mye<T1;JZ1)U(T2L;Z2)
zz3 €W N ﬂ NH<S)H ﬂ Ng(il?)
SG(T1U§1Z2)U(T2U§1Z2) z€T1UTsUz1 22
n N Noti ay) (2y),

mye(T1U§122)U(T2U§1Z3)

noting that these vertices exist since H is (1 —¢, 5)—denseE| G is an e-blueprint for H with

(G) > (1 —¢e)N and |W| > ~N. O

The following corollary states that in our usual setting the good edges are tightly

connected in any not too small induced subgraph of H.

Corollary 3.5.7. Let 1/N < e < . Let H be a (1 — €,¢)-dense 2-edge-coloured 4-graph
on N vertices. Let G be an e-blueprint for H with §(G) > (1 —e)N. Let W C V(G) be a

set of size at least YN. Then HT[W)] is tightly connected.

Proof. Let f1, fo € HT[W]. By Proposition [3.5.6, there exist vertices z1, 22, 23 € W such
that H[f1 U z12023] = HY[fo U 212023 = K§4). It follows that f; and f, are in the same

tight component of H. O

The next lemma allows us to find blue tight components with useful properties. Recall
that given a 2-edge-coloured 4-graph H, a blueprint G for H and a blue tight component B

of H, we denote by B? the set of edges e € GP® such that B(e) = B.

Lemma 3.5.8. Let I/n < e < v« n<1. Let N=(5/4+3n)n. Let H be a 2-edge-
coloured (1 — ,¢e)-dense 4-graph on N wvertices and let G be an e-blueprint for H with
0(G) > (1 —e)N. Suppose H contains a red tight component R satisfying H(e) = R
for every e € G™4. Then for each W C V(G) with |W| > ~yn such that RT[W] =

'We use that for z,y,2z € V(H) with zyz € 0H, we have dy(zyz) > 0 and thus dy(zyz) > (1 —¢)N.
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&, there exists a blue tight component By, of H such that the following holds. Let

Tw = {T € (%}): GIT] = K3,G™[T] # @, Nu(T) # @}. For T € T, let Tw(T) =

W N Maer Na (@) N Nyye (1) Norey) (2y) 0 Nu(T).

(B1) For any T € Tw, we have Ty (T) # @ and T Uw € By, for allw € Tw(T). In

particular, Ty C OBy .
(B2) For each e € G™™[W], we have B(e) = By, that is, G?“°[W] C BZ,.

Moreover, if Wi, W C V(G) satisfy |[W1 N Wa| > yn and RY[W;] = RT[W3] = &, then
Bw, = Byw,.

Proof. For T' € Ty, since G is an e-blueprint for H with §(G) > (1 — )N and H is

(1 — €,¢)-dense, we have
Tw(T)| > |W| —TeN > |W]| — 14en. (3.5.1)

In particular, for any T € Ty, Tw/(T) # @ (since |W| > yn and £ < 7).

Note that if T € Ty and w € Ty (T), then TUw € H?™® (or else TUw € RT as
zyw € IR for some zy € G™4[T] contradicting R*[W] = @). For T € Ty, let BE, be the
blue tight component of H containing all the edges T'U w where w € I'y (7). Note that,

in particular, T € dB{, for every T € Ty,. Moreover,
B(e) = B}, for all T € Ty, and e € G™°[T]. (3.5.2)

Claim 3.5.9. There exists a blue tight component By, such that By, = B(e) = By for

any e € G*"[W] and any T € Ty .

Proof of Claim. First assume that Ty = @. This implies that G™4[W] = @. So GPe[WV]

is connected and thus, since G is a blueprint, B(e;) = B(es) for any ey, eo € GP"[W]. So

we may set By = B(e) for all e € GP"[W]. Tt follows that |(B1)|and |(B2)| both hold.
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Now assume that Ty # @. First we show that
B} = B for any Ty, Ty € Ty with [T7 N Ty| > 2. (3.5.3)

Let Ty, Ty € Tw with |77 NT3| = 2. By (3.5.1)), there exists w € I'y (77) N T'w (T3). We
have T} Uw € By and Th Uw € B, Since |(Ty Uw) N (T, Uw)| = 3 and By and By
are blue tight components, we have Byt = B2

Now we show that (3.5.3)) actually holds for any 77,7 € Ty, that is
B} = B for any Ty, Ty € Ty (3.5.4)

Let Ty, T € Tyw. Say Ty = z129x5 and Th = y1yays, where 2125 € G4 and yiys € G™.

By Proposition [3.5.6] there exist vertices 21, zo € W such that
H[T; U z125) = K& and G[T, U 220) = K5 for i € [2].

Note that 212921, y1y221 € Tiy. If 2121 and y,21 are both in G4, then 12120, Y1212 € Twy
and thus by (3.5.3), we have Bt = Bii™* = Biia®2 = BU»* — Biw® — Bl If 1,2
and v,z are both in G"'"® then by and the fact that G is a blueprint, we have
Bl} = Bip™* = B(x121) = B(y121) = B = B;?. Now assume that exactly one
of 2121 and 12 is in G™4, say z12; € G™ and y12; € GP°. Note that x12120 € Tyy. If
2129 € G™4 then 12122, Y12122 € Ty and so by , we have Ba} = By = Byt =

By = B = B2 If 212, € G then by (3.5.2), (3.5.3) and the fact that G is a
blueprint, we have By = B2 = BES? = B(z,2,) = B(y121) = Bi*** = B2,

Now we show that
By, = B(e) for any T € Ty and any e € G"™[W]. (3.5.5)

Let T € Ty with e; = 2179 € G™[T] and ey = y,y, € G"[W]. By Proposition [3.5.6]
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there exist vertices 21, zo € W such that
€; U2122 < 1'.’17L fori e [2]

If y121 € G™4, then y,y221 € Ty and by and (3.5.4)), we have B, = B4¥?* = B(ey).
Now assume 7,21 € GP°. If 2,2, € G, then by , and the fact that G
is a blueprint, we have Bf, = B{j}*** = B(z121) = B(y121) = B(ez). Next assume
1121 € G™ If 2129 € G*, then by , and the fact that G is a blueprint, we
have Bl, = B{™* = B(y121) = Blez). If 2129 € GP°, then by , and the
fact that G is a blueprint, we have Bl, = Bjt*'® = B(z122) = B(y121) = B(es).

Since Ty # @, (3.5.5)) implies that

B(er) = B(ey) for any ey, ey € GP[W]. (3.5.6)

It follows from (3.5.4)), (3.5.5) and (3.5.6)) that we may set By = B, = B(e) for all
T € Tw and all e € GP[W]. Tt follows that |(B1)|and |(B2)| hold. |

Now we show the final statement of the lemma. Let Wy, Wy C V(G) with |[W; N Wy| >
yn and RT[W;] = RT[W5] = @. Greedily choose vertices x1,z9, 23 € W7 N Wy such
that G[zixox3] = K3 and xyxews € OH(x129) (this is possible since G is an e-blueprint
with A(G) < 2en and 1/n < ¢ < 7). Note that since z z913 € OH(x129), we have
Ny (z12923) # 2. If 2129 € G, then x 2973 € Ty, N Ty, € OBy, N OBy, and thus

BV[/1 = BW2. If 2129 € Gblue) then B{/V1 = B(l’ll‘g) = BWQ. ]
We are now ready to prove Lemma [3.5.1| assuming Lemma [3.5.3]

Proof of Lemma |3.5.1 Suppose for a contradiction that there does not exist a tightly
connected fractional matching in H with weight at least n/4 and all weights at least c.
Let r = (Z)!. Choose new constants €y, and ¢ such that 1/n € ¢ € gp € ¢ € 7 K

0 < n. By Lemma and Corollary [2.4.6| there exists an gp-blueprint for H with

0(G) > (1 — g9)N that contains a spanning monochromatic component. Without loss of
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generality assume that G contains a spanning red component and let R be the unique red

tight component of H such that H(e) = R for every edge e € G™4.

Claim 3.5.10. There exists a good matching M of size at least 36n in H that is contained

in R orin a blue tight component of H.

Proof of Claim. Let M be a maximum good matching in R and let W = V(G) \ V(M).
It follows that R*[W] = @. Moreover, we may assume that |M| < 30n (or else we are
done). Thus |[W| > |V(G)| —126n > N — 136n. Let B = By be the blue tight component

that exists by Lemma [3.5.8]

Case A: G™4[W] contains a matching of size at least 3dn. Let t = 36n and let
{u;v;: i € [t]} be a matching in G*[W]. Let Ty and 'y be defined as in Lemma [3.5.8
Since G is an gp-blueprint for H with 6(G) > (1—&() N, there exist distinct vertices w; € W,
one for each ¢ € [t], such that w,v;w; € Ty . Since H is (1 — €, £)-dense, there exist disjoint
vertices w} € 'y (u;v;w;), one for each i € [t]. By Lemma wv;w;w, € BT for
each i € [t]. It follows that {wv;w;w;: i € [t]} is a good matching of size 30n in B, as

required.

Case B: G™4[W] does not contain a matching of size at least 3dn. It follows that
there exists a set W’ C W of size at least |IW| — 6dn > N — 196n such that G[W’] C GPe,
By Lemma [3.5.§[(B2)] G[W’] € B2 Let M’ be a maximum matching in B*[W’]. We
may assume that |M’| < 3én (or else we are done). Let W’ = W'\ V(M’) and so
|[W”| > N — 316n. Note that by the maximality of M’ and G[W’] C B?, we have that
H*[W"] C H™. By Corollary , there exists a red tight component R, of H such that
HH[W"] = RF[W"]. Thus by Proposition [3.5.5, R} [W"] contains a matching of size at
least
W N —31én

n
—ON > ———«— —20n > —
o 1 on 1

a contradiction. [}

Let 0 < L < 1/v be the largest integer such that the following holds. Let H, be an
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rL-blow-up of H. Let P = {V,: x € V(H)} be the partition of V(H,). Let G, be the
e-blueprint for H, as defined in Proposition [3.4.1 Let R. be the red tight component
in H, that is the r“-blow-up of R. Then H, contains a matching M, in R, or in a blue
tight component of H, with |M,| > rZ(30n + Lyn) that is good for (H,, G.).

By Claim , we have that L is well-defined. Moreover, if L > %, then by Pro-
position , we are done. Hence we may assume that L < ﬁ. Let n, = nr’ and
N, = Nrlt = (5/4 4 3n)n.. Since H is (1 — ¢, ¢)-dense, Proposition implies that H,
is (1 — 2¢,2¢)-dense and hence also (1 — €, gg)-dense. By Proposition and Pro-
position [3.4.2] G, is an eg-blueprint for H, with §(G.) > (1 — o)nr’ = (1 — g9)n. such
that H.(e) = R, for all e € fod. We may further assume that H, does not contain
a monochromatic tightly connected matching of size at least n,/4 (or else we are done
by Proposition . We apply Lemma with 7, n, €9,7, 6,1, Ny, Hy, Gy, R, M, play-
ing the roles of r,n,e,v,d,n, N, H,G, R, M. We deduce that H, contains a 1/r-fractional
matching in R, or in a blue tight component of H, that is good for (H,, G.) of weight at
least |M,| + yn.. Let H,, be an r-blow-up of H, and note that H,, is an rZ™l-blow-up
of H. Let R,. be the red tight component of H,, that is the r-blow-up of R, and thus is
the r“*l-blow-up of R. By Proposition m, H..(e) = R,, for all e € G*. By Propos-
ition [3.5.4] H,, contains a matching in R,, or in a blue tight component of H,, that is

good for (H.., G..) of size at least
r(|M.| 4+ yn.) > r(r*(36n + Lyn) +yrtn) = v (36n + (L + 1)yn).

This is a contradiction to the maximality of L. O

3.5.2 Sketch of the proof of Lemma and suitable pairs

Before proceeding with the proof of Lemma |[3.5.3] we give a sketch of the proof. Recall
that our aim is given a monochromatic tightly connected matching M, to find a larger

monochromatic tightly connected fractional matching. We split the proof into two cases
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depending on whether or |(H2) holds. We only sketch the proof of the case where

holds, that is M C R (the other case is similar). We may assume that M is a matching of

maximum size in R. Moreover, for simplicity, we assume that

H and G are complete, V(G) = V(H) and for every e € G and v € V(H) \ e,
we have e Uv € 0H (e), W
the last of which is an idealised version of .
Let W = V(H) \ V(M) be the vertices of H not covered by M. By Lemma [3.5.8]
there exists a blue tight component B in H such that (vg) C 9B and every e € GPU¢[W]
induces B. We will find our desired fractional matching in R or B.

Our first step is to find a subset U" C W and two matchings M’ = {f"(u): w € U'} C

M C Rand My ={f}:ueU'} C B such that |U'| = |M|, and
If(w)N f]=3and fi\ f'(u) =u for all u € U

If no such U’ exists, then we can find a small matching M” C M and for each f € M" a
disjoint 4-set Wy C W such that, for each f € M" there exists a fractional matching ¢y
in R[f U W] of weight at least %1 (where r is some absolute constant). By starting

with M and replacing each edge f € M” with ¢ we get a larger fractional matching. (See

Claim [3.5.16| for the details.)

In our second step we then extend the matching M7 to a larger fractional matching
in B completing the proof.

We will use the following fact which allows us to find a fractional matching in R[fUW/].

Fact 3.5.11. Let k,s > 2. Let H be a k-graph and let ' C E(H) be a nonempty set
such that NF = @ and |F| = s. Then there exists a ﬁ—fmctianal matching in H with

weight 5.

Proof. Let ¢: E(H) — [0,1] be defined by ¢(e) = - for each e € F and p(e) = 0

otherwise. Since (| F' = & each vertex of H is contained in at most s — 1 edges of F. It
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1

—-fractional

follows that for every v € V/(H), we have - .c gy vee (€) < 1. Thus ¢ is a

matching in H. O]

In the actual proof of Lemma [3.5.3, H and G will only be almost complete and so
do not satisfy (A). In particular, we may not have e Uv € 9H/(e) for some e € G and
v e V(H)\ e. To overcome the difficulties that arise from this, we introduce the following
notion of suitable pairs. For a suitable pair (f, W), it is useful to think of f as an edge

of some good matching and W as a subset of the vertices not covered by that matching.

Then |(SP1)| to |(SP6)|are the properties that we would have in the idealised case where

holds that are necessary for our proof.

Definition 3.5.12 (Suitable pairs). Let H be a 2-edge-coloured 4-graph and G a blueprint
for H. Let f € H be a good edge and W C V(G) \ f. We call (f, W) a suitable pair for

(H, Q) if the following properties hold, where s = |W]|.
(SP1) H[f uW] =~ K,

(SP2) G[fUW] = Kgyy.

(SP3) If zy € (’;) and z € W, then xyz € 0H (zy).
(SP4) If zy € (V;) and z € f, then zyz € 0H (xy).
(SP5) If z € f and yz € (V;), then xyz € OH (zy).
(SP6) If zyz € (?), then zyz € 0H (zy).

If H and G are clear from context, we simply call (f, W) a suitable pair. Note that if
(f,W) is a suitable pair and W’ C W, then (f, W) is a suitable pair. Moreover, if (f, W)
is a suitable pair, then any edge in H[f U W] is good. Also if e € R?*[W], then f’ € R* for
any edge f' € H[f UW] with e C f'.

We use the following lemma to find suitable pairs. The main idea is that if we choose
uniformly at random an edge f from a good matching M and a subset W} of constant

size from V(G) \ V(M), then (f, W;) is likely to be a suitable pair.
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Lemma 3.5.13. Let I/N K e K 7 < K 1/s < 1. Let H be a (1 —¢,¢)-dense 2-edge-
coloured 4-graph on N wertices and let G be an e-blueprint for H with §(G) > (1 — e)N.
Let M be a good matching in H of size at least SN and let W C V(G) \ V(M) with
|W| > 6N. Then there exist a matching M' C M with |M'| > yvN and disjoint sets

W; e (VSV) for each f € M'" such that (f,Wy) is a suitable pair for each f € M'.

Proof. Let m = 2yN. We independently choose {f;: i € [m]} uniformly at random
among all subsets of M of size m and {W/,: i € [m]} uniformly at random among all
sets of m disjoint sets in (VSV> Note that for each ¢ € [m], f; is distributed uniformly
in M and Wy, is independent from f; and distributed uniformly in (Vg) For each i € [m],
let A; be the event that (f;, Wy,) is a suitable pair. Note that it suffices to show that
P[A;] > 1/2 for each i € [m] since then for M’ = {f;: i € [m] such that A; holds}, we
have E[|M'|]] > m/2 > ~yN.

Fix i € [m]. For j € {1,2}, let A, ; be the event that (f;, Wy,) satisfies (SPj). For
Jj €43,...,6}, we modify the statements slightly for the following probability calculation.
For j € {3,...,6}, let A, ; be the event that (f;, W},) satisfies (SPj) but only for those
pairs zy such that zy € G. Note that A; C ;¢ Aij-

To prove the lemma, it suffices to show that P[A; ;] > 11/12 for each j € [6].

To bound P[4, ;], we fix f; and count the number of sets W; € (VD such that (f;, W)
satisfies . Note that if we iteratively choose

wj eWwWn n NH(S>

Se(fiuwlgwjfl)

for each j € [s], then (f;, {wn,...,ws}) satisfies |(SP1). Since dy(S) > (1 —¢)N for each

S € (V(:,)H)> with Ny (S) # @, the number of choices for w; is at least |W| — (sg?’)d\f.

Hence the number of sets W; € (‘f) such that (f;, W;) satisfies |(SP1)|is at least

(W] = (3")eN)”

s!
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It follows that

itz ST (- (L)) 21 ()

where in the second inequality we used that |[W| > éN. By a similar argument, since

W CV(G) and 6(G) > (1 —e)N, we have

— N)? 11
PlA,) > WIZEEINT S gz
! GUE 12
To bound P[A; 3], we fix f; and recall that since Wy, = {wy, ..., ws} is chosen uniformly

at random in (V:), each wj; is distributed uniformly in W. Since G is an e-blueprint, [(BP1)

implies that dyp(zy)(zy) > (1 — )N for every xy € G. Hence for zy € f; and j € [s], we
have that Plw; & Nop(ay)(zy)] < eN/|W| < y/e. A union bound implies that

11
P[Azg] >1_6S\/_>E

To bound P[4, 4] we fix Wy, and recall that f; is distributed uniformly in M. Since G

is an e-blueprint, for each zy € G[Wy,], we have dyp (zy)(zy) > (1 —€)N. Hence there are

at most 4( )5]\7 elements of M for which (f;, Wy,) does not satisfy [(SP4)| It follows that

M| —4(3)eN
P[A;4] > | Zl—4< >\/_212

as |[M| > dN.
To bound P[A4; 5], we fix f; and let Wy, = {wy,...,ws}. For each distinct j,j" €
[s], wjw;j: is distributed uniformly in (V;) Since G is an e-blueprint, for each zy € G, we

have dop(zy)(xy) > (1 — €)N. Hence, for x € f; and distinct j, j' € [s], we have

|[W|eN

o)

Plrw; & G or wyr € Nop(zw)(zw;)] <
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A union bound implies that

|W|eN

(")

11
P[A;5] > 1 —4s° >1—4s%/e > ok

Similarly,

LW = eN

31("))

11
P[A;¢] > 1 >1—s3/e> o

]

The following proposition analyses a specific pattern that we will encounter a few times

in our proof.

Proposition 3.5.14. Let H be a 2-edge-coloured 4-graph and let G be a blueprint for H.
Let R be a red tight component of H. Let f € RT and let (f,W) be a suitable pair such
that |W| = 3 and there is an edge e € R*}[W]. Let F = {f' € H®[fUW]:e C f'}.
Suppose N R[f UW] # &. Then there exists v € f NN F. In particular, for any edge
f' € H[f UW] with e C f' and x € f', we have f' € H"™. The same statement holds

with colours reversed.

Proof. Suppose for a contradiction that f "NNF = &. Let f' € F and let z € f'N f.
By |(SP4), eU z € 9H(e) = OR. Since eU z C f" and f' € H™, we have f' € R. Thus
F C R. It follows that N R[f U W] = &, a contradiction. O

3.5.3 Proof of Lemma assuming [(H1)|

We prove Lemma for the case that [(H1)| holds, that is, M C R.

Proof of Lemma assuming [(H1), Assume for a contradiction that H does not contain
a good 1/r-fractional matching in R or in a blue tight component of H of weight at least
| M|+ ~vn. Note that |[V(G)| > (1 —e)N > N —2en > (5/4 + 2n)n. We will construct our

fractional matching in H[V(G)] ignoring the small number of vertices in V(H) \ V(G).
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It suffices to assume that M is a maximum good matching in R (that is a maximum
matching in R™) and that among all such matchings M contains the smallest number of

edges f such that
GP°[f] # @ and B(e) # By for all e € GP°[f], (3.5.7)

where W = W (M) = V(G)\ V(M) and By is as in Lemma[3.5.8] Here By is defined since
R*[W] = @ by the maximality of M and |[W| > (5/4 4 2n)n —4|M| > (1/44 2n)n > yn
as |[M| < n/4. Let B = By.

Claim 3.5.15. Let f € M and e € G*™[W] such that GP™[f] # @ and (f,e) is a suitable

pair. Then f contains an edge ¢’ € GP°[f] with B(¢') = B.

Proof of Claim. Suppose for a contradiction that B(e') # B for all ¢ € GP°[f]. Let
e =z € G™°[f] and e = 29ys. By Lemma[3.5.8) B(e) = B. Since G is a blueprint and
B(e') # B, we have 125 € G*¢. By , 11Ty € OR. If f, = z1201192 € H™9, then
f« € RT and thus the matching M* = (M \ {f}) U {f.} is good and has one less edge
satisfying than M (since By (a+) = Bw () by Lemma, a contradiction. Hence

fo € HP°. By |(SP4), z172ys € OH(x9y2) = OB and by |(SP3), z1y172 € OH (11y) =
0B(¢'). It follows that B(e’) = B, a contradiction. |

Let U C W be a set of maximum size such that for each u € U, there exists a distinct
edge f(u) € M so that (f(u),u) is a suitable pair and H™[f(u)Uu| = KW 1 |U| > 4vn,
then we are done since the 1/r-fractional matching ¢: R — [0, 1] with ¢(e) = 1 for
e € M\ Uper f(u), p(e) = 1/4 for each edge e € Uyey H™Y[f(u) Uu] and ¢(e) = 0 for
all other edges e € R is a good 1/r-fractional matching in R of weight at least |M| + yn.
Now assume that |U| < 4yn. Let W = W\ U and M’ = M \ U,ey f(u). Note that
(W'| > (5/442n)n —4|M| —4yn > (1/4 +n)n and 26n < |M| — 4yn < |[M'| < n/4.

By the maximality of U, we have that

HMe[f Uw] # @ (3.5.8)
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for every suitable pair (f,w) € M’ x W'. Let U" C W' be a set of maximum size such that
there exists for each u € U’, a distinct edge f'(u) € M’ such that (f'(u),u) is a suitable

pair and B[f'(u) Uu] # &. Let

W =W\ U and M" = M'\ | f'(u).

uelU’
Note that |W”| > |W'| —|U'| > (1/4+n)n — |M'| > nn > nN/2. Let v < §p < 9.
Claim 3.5.16. We have |U'| > |[M'| — dpn.

Proof of Claim. Suppose not. We have |M”| > don > doN/2. By the maximality of U’,
we have

BlfUw]| =2 (3.5.9)

for every suitable pair (f,w) € M” x W”. By Lemma [3.5.13] there exists M* C M” with
|M*| = ryn and disjoint sets W € (wg") for each f € M* such that (f, Wy) is a suitable
pair for each f € M*. Let oy be the fractional matching induced by the matching M \ M*.
It suffices to show that, for every f € M*, there exists a 1/r-fractional matching ¢ in
R[fUW/] of weight at least T’:f—l Indeed, the completion of wg+3" rep+ ¢ With respect to R
is a good 1/r-fractional matching in R of weight at least [M \ M*| + == |M*| > [M|+n

giving us a contradiction.

Consider any f = x1xox314 € M*. By Fact|3.5.11|and since r = (Z)!, we may assume

that N R[f U W] # @. We distinguish between several cases.

Case A: G™W;] # @. Let W; = wvw with e = uv € G™W;]. Recall that (f, Wy) is
a suitable pair. We apply Proposition [3.5.14| with r, H, G, R, f, W/, e playing the roles of
r,H,G, R,, f,W,e. So there exists x € f such that

f/ € H™ for any edge f' € H[f UW;] with e C f' and z & f'. (3.5.10)

By (3.5.8)) and (3.5.9)), there exists an edge f. € H™°[f Uu]\ B. Since f € R, we have
u € f.. Let yz C (f. N f)\ 2. By (3.5.10), yuvw, yzuv € H"*. By Lemma
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uvw € 0B. Hence yuvw,yzuv, f, € B, a contradiction to f, ¢ B.

Case B: G™4[W;] = @. By Lemma (B2)|, we have G[W;] C G C B?. Let
uv € B*[W;]. We distinguish between the following cases. It is easy to see that these

cases exhaust all possibilities.

Case B.1: ’th‘e[f]‘ > 3 and GP"°[f] 2 K, 3. Note that GP"°[f] is connected, hence
Claim and the fact that G is a blueprint imply that G™°[f] C B2 By ,
there exists an edge f, € HP°[f Uu]. Observe that f, contains an edge zy € G"[f] and
u € f,. By , we have zyu € 0H (zy) = 0B. Hence f, € B, a contradiction to .
Case B.2: ’Gbl“e[ f]’ > 2 and N GP[f] # @. Without loss of generality assume that
1179, 2173 € GP[f] and wows3, Toxy, 1374 € G4, By Claim and the fact that G
is a blueprint, we have that G"¢[f] C B?. By and , there exists an edge
f. € H”™e[f Uu]\ B. Observe that f, = zoxsz4u since, by , T1Xou, T123u € 0B. Let
€11 = ToZaUv, €fo = TolyUv, €53 = r3rquv. Note that, for all i € [3], we have ey, N f € R?
and ey; N W; € B? and thus, by and we have e;; € RU B. Since f, ¢ B,
we have ey; € R for all i € [3]. We are done since {f,es1,€e52,€er3} C R[f U W] has an

empty intersection, a contradiction.

Case B.3: G™4[f] contains a copy of C4. Without loss of generality assume that
T1To, Tox3, T3Tg, T1704 € G4 f]. By , we have uvz; € 0B for all j € [4]. By
we have x1xou, Toxgu, x3xsu, T124u € OR for all ¢ € [4].

If zyzouv and zzxguv are red, then F' = {f, zyzouv, xszyuv} C R has an empty
intersection, a contradiction. So we may assume that x;zsuv is blue and thus in B.
Similarly, by considering { f, x1x4uv, xox3uv}, we may assume that xyzuv € B. By
and , there exists an edge f. € H”"[f Uwu]\ B. Since x1xouv, 1104u0 € B, we
have f, = xox3z4u and zoxsuv, xoxsuv, r3xuv € R. Thus we obtain a contradiction as

{f, zoz3uv, Towsuv, 30400} C R has an empty intersection. [ |

For the remainder of the proof, our aim is to find a good 1/r-fractional matching

in B of weight at least |M| + yn. For each u € U’, choose an edge f; € B[f'(u) U u]
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which exists by the definition of U’. Since (f’(u),u) is a suitable pair, f; is good. Let

M; ={f: uwe U’} and note that M7 is a good matching in B. Note
|M;| = |U'| > |M'| = on > | M| — 25on.

Let My C BT[V(G)\ V(M7)] be a maximum matching. If |M;|+ |M;| > |M|+ yn, then

we are done. Thus we may assume |M{| + |M3| < |M|+ yn, so |M3| < 3don. Let

U'={uelU" (f'luyUu)NV(M)) =a},

My= |J f'(u) and

ueU”

Wo=W"\ V(M) =W

We have

\U"| > |U'| —4|M5| > | M| — 146pn > 26n > 6N,
|My| = |U"] > N and

(Wol = [W"| = 4|M3| = nn/2 = nN/4.

By Lemma [3.5.13] there exist a subset Uy C U” corresponding to the matching {f’(u): u €
Up} C My of size 3rdon and disjoint sets W, € (If:o) for each u € Uy such that (f'(u), W,)
is a suitable pair for each u € Uj.

We now construct a good 1/r-fractional matching ¢: B — [0, 1] in B as follows. Let ¢
be the fractional matching induced by the matching (M{\{f}: u € Uy})UM;. Suppose that,
for each u € Uy, there exists a good 1/r-fractional matching ¢, in B[f’(u)UuUW,,] of weight
at least ’”Til Then the completion of ¢g+3",cp, ¢u With respect to B is a good 1/r-fractional
matching in B of weight at least | M|+ | M|+ |Us| /7 > | M| —20gn+3don > | M |+~n. Thus
it suffices to show that, for each u € Uy, there exists a good 1/r-fractional matching ¢,
in B[f'(u) UuUW,] of weight at least “*. Note that B[f'(u) UW,]U{f;} € B*.
By Fact [3.5.11] it suffices to show that N(B[f'(v) UW,] U{[f;}) = 2.
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Consider any u € Uy. Let
f(u) = yz12023 € R, [ = z12023u € B and W, = wywywzwy.

By the maximality of M, we have wywowsw, ¢ B. Hence implies that G*4[W,] = @.
Thus by Lemma , we have G[W,,] C B2. In particular, wyw, € B? and thus
and imply ywjws, wywews € 0B. By the maximality of M, and the maximality
of M, we have that ywjwows, wiwywsw, € H™\ RH

We distinguish between two cases.

Case A: At least two of yz;,yzs,yz3 are in G4, Without loss of generality
assume that yz1,yz € G™4. By [(SP3)|, we have yz,w, yzw, € OR. Since yw,wyws €
Hred \ R and ywywe € OB, we have yzjwws, yzowjws € B. Thus we are done since

{z1 2223, yz1wiwe, yzowiws } C B has an empty intersection.

Case B: At least two of yz;,yzs,yzs are in GP™e. Without loss of generality
assume that yz1, yzo € GP" so GP"[y2; 2023] is connected. Since wiw, € GP"[W] and
(yz12223, wiws) is a suitable pair, Claim [3.5.15 implies that B(yz) = B(yz) = B and thus
yziwy, yzewy € 0B by . If yziwiws, yzowiwy € HPM®, then yzwiws, yzowiwy € B
(since wywqy € OB by . Note that {z12923u, yz1wiws, yzewiwse} C B has an empty

intersection and thus we are done.

Hence, we may assume without loss of generality that yz;w,ws is red. Since ywiwsws €
H™ \ R and yzyw; € 0B, we have yz 2wy, yz123w; € B. If yzwiw, is red, then
yzozsw; € B (since ywywyws € H™\ R and yzw; € 0B). Thus we are done since
{z12023u, yz1 20w1, Y21 231, Y2zoz3w1 + € B has an empty intersection. If yzow,wse is blue,
then we have yzowjwy € B since ywyws € OB. Thus we are done since {z12223u, yz1 z3w1,

yzowijwy} C B has an empty intersection.

This completes the proof. O

1Since yz12023 € R and R is a red tight component, this implies that we have yz;, z;,w;, € HPlve op
Yzi, wi,w;, € HP for all distinct i1, 4q, 13 € [4].
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3.5.4 Proof of Lemma assuming ((H2)|

We now prove the remaining case of Lemma |3.5.3| that is when M is contained in a blue

tight component B of H. Note that the proof is similar to the proof for the case where we

assume |[(H1)|

Proof of Lemma assuming . Assume for a contradiction that H does not contain
a good 1/r-fractional matching in R or in a blue tight component of H of weight at least
|M| 4+ yn. Note that |V(G)| > (1 —e)N > N — 2en > (5/4 + 2n)n. We will construct
all our good fractional matching in H[V (G)] ignoring the small number of vertices in
V(H)\ V(G).

It suffices to assume that M is a maximum good matching in B, that is a maximum

matching in B*. Let W = V(G) \ V(M). Note that BY[W] = .

Claim 3.5.17. If f € M is an edge such that GP™[f] contains a triangle or a matching
of size 2, then GP°[f] contains an edge e € B?. Moreover, if ’Gblue[f]’ > 4, then

Gblue[f] C BQ.

Proof of Claim. Let f be such an edge in M. Since M is a good matching, there exists
z € f such that zyz € 0H(xy) for every zy € (f \éz}). Observe that there exists
e e (f\g}) NG, Hence e Uz € B(e). Since f € B, we have B(e) = B, that is, e € B2.

If ‘Gblue[ f]‘ > 4, then G"'"°[f] contains a triangle or a matching of size 2 and thus by
the previous argument GP°[f] contains an edge e € B2 Moreover, G*'"°[f] is connected

and thus, since G is a blueprint, we have G™"¢[f] C B2. |

Let U C W be a set of maximum size such that for each u € U there exists a distinct
edge f(u) € M for which (f(u),u) is a suitable pair and H"™[f(u) Uv] = K. If
|U| > 4+n, then we are done since the 1/r-fractional matching ¢: B — [0, 1] with ¢(e) = 1
for e € M\ Uyer f(u), p(e) = 1/4 for each edge e € Uyey HP[f(u) Uu] and p(e) = 0
for all other edges e € B is a good 1/r-fractional matching in B and has weight at least

|M| + yn. Now assume that |U| < 4yn.
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Let W =W\ U and M' = M \ Uyer f(u). Note that
(W' > (5/4 4 2n)n — 4 |M| — 4yn > (1/4+n)n (3.5.11)
and 26n < |M| —4yn < |M’| < n/4. By the maximality of U, we have
H™[fUuw] # 2 (3.5.12)

for every suitable pair (f,w) € M’ x W'.

We distinguish between two cases.

Case 1: G [W'] = @ and B?[W’'] # @. Recall that |[W'| > (1/4 + n)n and
§(G) > (1 —¢)N. So G[W'] is connected. Hence G[W’'| C B2 We start by proving the

following claim.

Claim 3.5.18. There exists a red tight component R. of H such that HT[W'] C Rf.

Proof of Claim. By the maximality of M and G[W'] C B2, we have H*[W'] C H™[]
By Corollary [3.5.7, H*[W’] is tightly connected. Hence there exists a red tight compon-
ent R, of H such that HT[W'] C R}. |

Let U" C W' be a set of maximum size such that for each u € U’, there exists a
distinct edge f'(u) € M’ so that (f'(u), ) is a suitable pair and R.[f'(u) Uu] # @. Let
W"=W'\U" and M" = M’ \ Uuepr f'(u). Note that

(W = W= U =2 (1/4+m)n — [M']| = nn.

Let 0y be a new constant such that v < dy < 9.

Claim 3.5.19. We have |U'| > |M'| — don > | M| — 26¢n.

!Suppose there was an edge f € HY[W’'] N HPUe, Since f € H, by there exists z € f such
that xyz € OH (zy) for all zy € (f\éz}). Let xy € (f\éz}). Since G[W’] C B2, we have 2y € B? and thus
xyz € OB. Hence f € B, a contradiction to the maximality of M.
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Proof of Claim. Suppose not. We have |M”| > don > doN/2. By the maximality of U’,
we have

R.fUw] =2 (3.5.13)

for every suitable pair (f,w) € M” x W”. By Lemma [3.5.13] there exists M* C M” with
|M*| = ryn and disjoint sets W € (VZ") for each f € M* such that (f, Wy) is a suitable
pair for each f € M*. Let o be the fractional matching induced by the matching M \ M*.
It suffices to show that, for every f € M*, there exists a good 1/r-fractional matching ¢ in
B[fUWy] of weight at least Tril Indeed the completion of ¢+ 3" ¢epr+ @y With respect to B
is a good 1/r-fractional matching in B of weight at least |M \ M*|+ == |M*| > |[M| +n

giving us a contradiction.

Consider any f = zyzoxszry € M*. By Fact |3.5.11] r = (2)! and B[f UW¢| C BT, we

may assume that N B[f U W] # @.

Let Wy = wywywswy € HY[W"] C RY. Let W} = wiwaws and e = wyw,. Note that
(f, W}) is a suitable pair and e € B? since G[W'] € B*. We apply Proposition [3.5.14| with
colours reversed and r, H, G, B, f, W7, e playing the roles of r, H, G, R., f, W,e. So there

exists © € f such that
f' € H™ for any edge f' € H[f U W] with e = wywy C f and x & f'. (3.5.14)

By (3.5.12) and (3.5.13), there exists an edge f, € H™[f Uw;]\ R,. Since f € B,
we have w; € f,.. Let yz = (f. N f) \ z. By (3.5.14)), ywywows, yzwiw, € H™. Since

wiwywzwy € HT[W"] C RY, wiwaws = Wi € OR.. Hence ywiwaws, yzwiwy, f. € R, a

contradiction to f, € R,. [ |

We now find a matching in R as follows. For each u € U’, choose an edge fr €

R.[f'(u) U u] and note that, since (f'(u),u) is a suitable pair, f} is good. Let M; =

u

{ff:ue U}, so M{ is a matching in Rf[V(H)\ W”]. By Claim [3.5.18, HT[W"] C R}.

By Proposition [3.5.5, RS [W"] contains a matching Mj of size at least lWT:,' — YN >
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1 2yn.

Thus M U M; is a matching in R of size

w” 1
2451+ 1283 2 |0+ ) oyn = 2107+ W) - 29m
Chaim (5T, @511
> E(3|M|—650n—|—(5/4+27])n—4|M|—4771)—2771

?

> L(5/4+n)n— |M]) >

-3

where the last inequality holds as |M| < n/4. Hence H contains a good monochromatic

tightly connected matching of size at least n/4, a contradiction.

Case 2: G™[W'] # & or B2[W'] = @. Recall that by the maximality of M, we have
BT W'l =w.

Claim 3.5.20. Let yyy2ysys € HY[W'] with y1y2 € B* and y1y2ys € OB. Then y1y2ysys €
RT.

Proof of Claim. If B?[W’'] = @, then this is vacuously true. Hence we may assume
that G*™4[IW’] # @. Suppose to the contrary, that y1y»ysys ¢ RT. Since BT [W'] = &,
we have y1yoy3ys € H™ \ R. Let z129 € G™W’]. By Proposition , there exist
vertices z1, 29,23 € W’ such that HT[y1y2ysysz12023] = K§4), H [x1m921 2923) = KE(,4),

y1yez1 € OH(y1y2), y1z122 € OH(y121), 212023 € OH(z122), w12120 € OH(x121) and
T1x921 € OH (x129).

Since y1y2 € B2, we have y1y221 € OB. Since BY[W'] = @ and y1yoy3ys € H™4\ R, we
have y1y22122, Y1Yoyzz1 € H™¢ \ R. This implies that y;2; € GPlue (or else y1y22122 € R)
and so 121 € B2 Thus 312120 € 9B and yi212023 € H™ \ R (or else BT [W'] # @).
Similarly, we deduce that z;2, € GP" and so 2120 € B2 Thus 212223 € OB and since
BT W' = @, 21212023 € H™4\ R. Tt follows that 2,2, € G"™ and so 2,2, € B2 Thus
T12129 € OB and since BY[W'] = @, z1202120 € H™. Since 7125 € G™¢, we have

17221 € OR and thus y,92y3ys € RT, a contradiction. [ |
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Let U’ C W’ be a set of maximum size such that for each u € U’, there exists a
distinct edge f'(u) € M’ for which (f'(u),u) is a suitable pair and R[f'(u) U u] # @.
Let W = W'\ U and M" = M’ \ Uyepr f'(u). Note that |W"| = |[W'| — |U'| >

(1/4+n)n—|M'| > nn >nN/2. Let §y be a new constant such that v < §y < 0.

Claim 3.5.21. We have |U'| > |M'| — don.

Proof of Claim. Suppose not. We have |M"| > don > doN/2. By the maximality of U’,
we have

R[fUuw] =2 (3.5.15)

for every suitable pair (f,w) € M"” x W”. By Lemma [3.5.13] there exists M* C M"” with
|M*| = ryn and disjoint sets W; € (VZ") for each f € M* such that (f, W) is a suitable

pair for each f € M*.

Let ¢g be the fractional matching induced by the matching M \ M*. Suppose that, for
every f € M*, there exists good a 1/r-fractional matching ¢ in B[f U W/] of weight at
least # Then the completion of ¢o+ > repr+ ¢ With respect to B is a good 1/r-fractional
matching in B of weight at least |[M \ M*| + == |M*| > |M| 4+ yn. Thus it suffices to
show that, for every f € M*, there exists a 1/r-fractional matching ¢, in B[f U W/] of

weight at least ™.

Consider any f = zjzox324 € M*. By Fact [3.5.11) B[f UW;] C B* and r = (i)!, it

suffices to show that N B[f U W] = @. Let uv € G[W¢|. We distinguish between several

cases.

Case A: ’Gmd[f]’ > 3 with G™4[f] 2 K3 or G™4[f] is a matching of size 2.
By , there exists an edge f. € H™![f Uu]. Observe that f, contains an edge
vy € G*[f] and u € f,. By , we have zyu € 0H(xy) = OR. Hence f, € R, a
contradiction to (3.5.15)).

Case B: uv € G™, |G™[f]| > 2 and NG™[f] # @. Without loss of generality

assume that z,79, 1125 € G™[f] and zox3, 1274, T374 € GP". By Claim [3.5.17, we have
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B(zoxs) = B(xoxy) = B(zszy) = B. By (3.5.12) and (3.5.15)), there exists an edge
f« € He[f Uu]\ R. Observe that f, = zozzzsu since, by [(SP3), x179u, 173u € OR. Let

€11 = ToZaUv, €59 = ToZyuv, €53 = r3rquv. Note that, for all i € [3], we have ey ;N f € B?

and e;; N Wy = uwv € R? and thus, by [(SP3)| and |(SP4)| we have e;; € RU B. Since

f« € R, we have ey, € B for all i € [3]. We are done since {f,es1,€er2,€er3} C B has an

empty intersection.

Case C: uv € G and G"™°[f] contains a copy of C,. We assume without loss of
generality that @179, o3, ¥374, 7174 € GP[f]. By Claim , T1X9, LT3, T3Ly, T1T4 €
B%. By , we have uvx; € OR for all i € [4]. By we have x1x9u, Tox3u, T3 4U,
rix4u € OB. If z129uv and xsxyuv are blue, then both are in BT and together with f
they form a set F' C B[f UW/] with N F = @. So we may assume that z;2ouv is red and
thus in R. Similarly, we may assume that zyx4uv € R. By and , there
exists an edge f, € H™Y[f Uu]\ R. Since 7 zouv, r174uv € R, We have f, = zoz3r4u and
ToX3Uv, Toxsuv, r3x4uv € B. Thus we are done since F' = {f, xoxzuv, xoxuv, r3z4uv} has
an empty intersection.

Case D: uv € B?. Let W} = uvw C Wy. Note that since (f,Wy) is a suitable pair
and Wj C Wy, we have that (f,W}) is a suitable pair. Suppose for a contradiction, that

N B[fUW}] # @. We apply Proposition|3.5.14|with colours reversed and r, H, G, B, f, W}, e

playing the roles of r, H, G, R,, f,W,e. We have that there exists x € f such that
f' € H™ for any edge f' € H[f U Wil with e = uv C f"and = & f'. (3.5.16)

By (3.5.12) and (3.5.15)), there exists an edge f, € H™[f Uu]\ R. Since f € B, we
have u € f.. Let yz C (f. N f) \ z. By (3.5.16)), yuvw, yzuv € H™. Let w’ € W; \ uow.

Since uv € B?, we have uvw € 9B. Since (f,W;) is a suitable pair, uwvww’ € HT.
By Claim |3.5.20, we have uvww’ € R™ and thus vvw € R. Hence yuvw, yzuv, f, € R, a

contradiction to f. € R.

Case E: uv € GP \ B2, If |G™I[f]| > 3 with G™I[f] Ky 5 or G™[f] is a matching
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of size 2, then we are in Case . Hence we may assume that GP"°[f] contains a triangle.
We assume without loss of generality that x;xq, Toxs, 7123 € GP". By Claim , we
have GP"°[f] C B2. By|[(SP3)| we have z179u, z2x3u, 123u € OB. Let B, = B(uv) # B.
By , we have wvx; € 0B, for all ¢ € [3]. Hence, since B, # B, we have F =
{12000, Tox3uV, 173UV} C H™. Since uv € B? and B, # B, we have x;u € G for
all i € [3]. By we have z;uv € OR for all i € [3]. Hence E C R. It follows that

T1ToU, Toxzu, T103u € OR. This contradicts the fact that H™[f Uu]\ R # @ which holds

by (3.5.12)) and (3.5.15)). [

For the remainder of the proof, our aim is to find a good 1/r-fractional matching in R
of weight at least |M| 4 yn. For each uw € U’, choose an edge f¥ € R[f'(u) Uu]. Since
(f'(u),u) is a suitable pair, f is good. Let M; = {f}: uw € U'}, so M; is a good matching
in R. Note

M| = |U"| > |M'| = don > | M| — 25qn.

Let M; C R" be a maximum matching vertex-disjoint from M. If |[M;|+| M| > |M|+yn,
then we are done. Thus we may assume |M;| + |Mj| < |M|+ yn, so |Mj| < 3dpn.
Let U" = {u € U': (f'(u) Uu)NV(M;) = @}. We have |U"| > |U'| — 4|M;| >
|M| — 145on > 26n > ON. Let My = Uyepr f'(u) and note that |My| = |U”| > oN.
Recall that W = W'\ U" and |W"| > nN/2 and let Wy = W"” \ V(M) and note
that [Wy| > [W”| — 4|M3| > nN/4. By Lemma [3.5.13] there exist a subset Uy C U”
corresponding to the matching U,cy, f'(u) € My of size 3rdon and disjoint sets W, € (VZO)

for each u € Uy such that (f'(u), W,) is a suitable pair for each u € Uy.

We now construct a good 1/r-fractional matching ¢: R — [0,1] in R as follows. Let ¢
be the fractional matching induced by the matching (M\{f5: u € Uy})UM;. Suppose that,
for each u € Uy, there exists a good 1/r-fractional matching ¢, in R[f’(u)UuUW,,| of weight
at least irl Then the completion of o+, cp, @u With respect to R is a good 1/r-fractional
matching in R of weight at least | M{|+|M5|+|Us| /7 > |M|—26gn+30on > |M|+~yn. Thus

it suffices to show that, for each u € Uy, there exists a good 1/r-fractional matching ¢, in
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R[f'(u) UuUW,] of weight at least “t.

Consider any u € Uy. Note that f is good and since (f'(u), W) is a suitable pair, any
edge in H[f'(u) UW,] is good. By Fact [3.5.11] it suffices to show that N(R[f"(u) UW,] U
i) =2

Let

f(u) = yz12023 € B, fi = z12023u € R and W,, = wywywzwy.

By the maximality of M, we have wywowsw, ¢ B. By the maximality of M;, we have

wywowzwy € R. Hence Claim [3.5.20] and [(SP6)| imply that B?[W,] = @. It follows that

the following cases exhaust all possibilities.

Case A: G™4[W,] # @. We assume without loss of generality that wyw, € G*4.

By|(SP6)|and |(SP4)|, wiwows, wiwsey € OR. Since wywowswy ¢ RUB, we have wywewzwy €

HPUe\ B. By the maximality of M;, we have yw wows € HP®\ B. We now consider the

colours of the edges yz; for i € [3].

Case A.1: At least two edges in {yz;: ¢ € [3]} are in B2. We assume without loss of
generality that yz;,yz € B2 By |(SP3)| yz1w:, yzow; € B. Since ywiwyws € HMe\ B,
we have yz wiws, yzewiwy € H™. Since wjwyy € OR, we have {z12023u, Yz1wiwe,
yzowiwy } C R. Moreover, this set has an empty intersection and so we are done.
Case A.2: At least two edges in {yz;: i € [3]} are in G*?. We assume without loss
of generality that yzi,yz € G™4. By , we have yzjwi, yzow, € OR. We distinguish
between the following three subcases.

If yziwiws, yzowqws are both red, then, yziwiws, yzowiwe € R as ywiws € OR. We
are done since {21223, yzywiwe, yzowiwe} C R has an empty intersection.

If yz1wiws is blue and yzowqws is red, then since yzow; € IR and ywiwows € HbluC\B,
we have yzpwiws € R and yzywywy € HPM\ B. From yz12023 € B and yzwiwy € HPU\ B,
it follows that yzzzw; € H™. Since yzyw, € OR, we have yz,zzw; € R. We are done
since {z12923u, yz123w1, yzowiwe} € R has an empty intersection.

Hence we may assume that yz,w;wy, yzew;wy are both blue. Since yw wowz € HPMe\ B
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and yz; 2023 € B, we have yz 20wy, Y21 23W1, Y2ozzw; € H™. From yziwi, yzow, € OR, it
follows that yzq 20w, yz123w1, y2ez3w; € R. We are done since {21 2223w, yz1 20w1, y2123w1,
yzezzwi} € R has an empty intersection.

Case A.3: At least two edges in {yz;: ¢ € [3]} are in GP'"*\ B2. We assume without
loss of generality that yz1,yze € GP"\ B2. Let B, = B(yz1) = B(yz) and note that
B, # B. We have 2,2y, 2,23, 2223 € G™4 (or else Claim implies yz1, yzo € B?). Since
Yyz1wy, yzewy € 0B, byand Yyz12923 € B # B,, we have yzy 25wy, Y21 23wy, Yz223w1 €
H™. Since 21 29w1, 2123w1, 2223w1 € OR by , we have yzy 29wy, yz1 23w, Y2o23w1 € R.

We are done since {z2923u, y2z120w1, Y21 23w1, Y2z223w1 } € R has an empty intersection.

Case B: G[W,] C G*\ B2. Since G is a blueprint all the edges in G[W,] induce the

same blue tight component B, # B of H. By |(SP4) and |(SP6)|, yw,ws, ywiws, ywows,

wiwews € OB,.

Case B.1: At least one edge in {yz;: ¢« € [3]} is in B2. We assume without loss
of generality that yz; € B?. By , yzw; € OB. Note that yw; € G™ (else B, = B
since G is a blueprint). By ywiwe € OR and the maximality of MJ implies
ywiwowsz € B,. Since B # B,, yzyw; € 0B and ywiw, € OR, we have yzjwiws € R.

If yzowjwy is red, then we have yzowijwy € R as ywjwy € OR. Moreover, {z12223u,
yz1wiws, yzowwe b C R has an empty intersection. Hence we may assume that yzow;wsy
is blue. We have yzyw,wy € B, since ywywows € B,. It follows that yzyzsw; € H™ (else
B = B,).

Now if yz € G™4, then yzow; € OR by and thus yzozzw; € R. We are done
since {21223, yzwiws, yzozzwy } C R has an empty intersection. Hence we may assume
that yzo € G, Since yz; € B? and G is a blueprint, we have yz, € B2, By |[(SP3)| we
have yzowy € OB. Since B, # B, yzow; € 0B and ywywy € OR, we have yzow,wy € R.
We are done since {z12923u, yz1wiws, yzewiwye} C R has an empty intersection.

Case B.2: At least one of the edges z;22, 2123, 2223 is in B2. We assume without

loss of generality that z;2, € B2, We may assume that yz;,yz; € G™¢ (else we are in
Case [B.1)). By [(SP4)|, we have yzjwq,yzw; € OR. Let Fy = {yzjwiws, yz123w;} and
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Fy = {yzowwsy, yzozqw; }. We claim that each of F} and F; contains a red edge. Suppose
not, and assume without loss of generality that F; C HPM®. Since yz12023 = f'(u) € B
and yw we € 0B,, we have B, = B, a contradiction. Let f; € F} and f, € F, be red
edges. Since yzwy, yzow, € OR, we have fi, fo € R. We are done since {f, f1, fo} C R

has an empty intersection.

Case B.3: f contains no edges of B2. Since f contains no edges of B?, Claim
implies that th‘e[ f] does not contain a triangle. Thus we may choose edges e €
G yz12], €15 € G™yz123] and eg3 € G™[yz0z3]. Let Fio = {yzi20wy, 19 U wiwy},
Fi3 = {yz1z3w1, e13 U wjws} and Fys = {yzez3ws, €93 U wows}. Suppose that each of
Fi9, Fi3 and Fy3 contains a red edge fio, fi3 and fo3, respectively. By , we have
that e1o Uwy, e13 U wy,es3 Uwy € IR and thus F = {f, fi2, f13, f23} € R. We are done
since I’ has an empty intersection. Hence we may assume that one of Fio, Fi3 and Fy3
contains only blue edges. We assume without loss of generality that Fijs contains only
blue edges. That is yz;2z0w; and ejp U wijwy are blue. Note that these two edges are
in B since yz12023 = f'(u) € B. By , we have ziywiwa, 2owiwy € 0B,. Hence

Yz125W1, €12 U wiwy € B,. This contradicts B, # B.

This completes the proof. n

3.6 Proof of Theorem 1.2.1]

Definition 3.6.1. Let 1 (3, e,n) be the largest p such that every 2-edge-coloured (1—¢, €)-
dense k-graph on n vertices contains a factional matching with weight p such that all edges

with non-zero weight have weight at least § and lie in s monochromatic tight components.

Let pi(8) = liminf. o liminf, . (8, e,n)/n.

We will also reuse the crucial result Corollary [2.3.12| from Chapter 2| that reduces
finding cycles in the original graph to finding tightly connected matchings in the reduced

graph.
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We are now ready to prove Theorem [1.2.1}

Proof of Theorem[1.2.1. Let 1/n < ¢ < n < €. Let K be a 2-edge-coloured complete
4-graph on N = (5 4 ¢)n vertices. We show that K contains a monochromatic tight
cycle of length 4n. Note that Lemma implies that ui(c) > 1/5 —n. Applying
Corollary with N,n,c, 4, K playing the roles of n,n, 8, k, K we obtain that K
contains a monochromatic tight cycle of length ¢ for any ¢ < (uj(c) — n)4N divisible by 4.
Since

(H3(c) — AN > (1/5 — 20)(5 + e)dn > 4n,

we have that K contains a monochromatic tight cycle of length 4n. O]

3.7 Concluding remarks

Here we determined the Ramsey number for 4-uniform tight cycles asymptotically in the
case where the length of the tight cycle is divisible by 4. The cases where the length of
the tight cycle is not divisible by 4 are still open. The general conjecture for the Ramsey

numbers of tight cycles is as follows.

Conjecture 3.7.1 (Haxell, Luczak, Peng, Rodl, Rucinski, Skokan [67]). Let k > 2,
0<i<k-—1andd=ged(k,i). Then r(c,g’;@) = (1+o(1)) =L kn.

The lower bound is given by the following extremal example.

Proposition 3.7.2. Let n > 1,k > 2 and 0 < i < k — 1. Then r(C{Y,,) > “lkn — 2

where d = ged(k, ).

Proof. Let N = d%dllm — 2 and consider the following red-blue edge-colouring of K](\lf).

Partition the vertex set of K](\]f) into two sets X and Y such that |X| = gn — 1 and
|Y| = kn — 1. Colour each edge that has an even number of vertices in X red and all other
edges blue. Note that each monochromatic tight component in this red-blue edge-colouring

of KW consists of all edges e such that |eN X| = r1 and |e Y| = ry for some pair of
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nonnegative integers (ry,ry) with r + ro = k. We claim that this red-blue edge-colouring
(

of K A’; ) does not contain a monochromatic copy of C’,g:l)ﬂ Suppose for a contradiction that
there is a monochromatic copy C' of C’,gfl)ﬂ Let (r1,72) be the pair of nonnegative integers
that correspond to the monochromatic tight component that contains C'. Note that if
ry = 0, then V(C) C Y. But since |V(C)| = kn +i > kn — 1 = |Y|, this is impossible.
Hence r; > 1.

First suppose that ¢ = 0. Then d = k and so |X| = n — 1. By double counting the
pairs (v,e) such that v € V(C)N X and v € e € C, we have k|V(C) N X| = rikn. Since
n—1=|X|>|V(C)NX|=rn>n, we have a contradiction.

Now suppose that 1 <7 < k — 1. By the same double counting argument as above,
we have k |[V(C)NX| = ri(kn + ). Hence k| r1(kn + i) and thus &k | ryi. Thus ryi is a
common multiple of ¢ and k. It follows that ik = ged(k, i)lem(k, ) < dryi and so r; > £.

Now we have |X| > | X NV(C)| = Z(kn+i) > rin > £n > |X], a contradiction. O

For 4-uniform tight cycles, Conjecture implies that T(Cﬁ)ﬂ) =(1+0(1))8n =
T(Cﬁ)ﬁ) and r(Cﬁ@) = (14 0(1))6n. In order to prove these remaining cases, finding
a large monochromatic tightly connected fractional matching in the reduced graph is no
longer sufficient. Indeed, if the corresponding monochromatic tight component in the
original graph is a complete 4-partite 4-graph, then it only contains tight cycles of length
divisible by 4. A natural approach to overcome this problem is to additionally require that
the chosen monochromatic tight component in the reduced graph contains a copy of 05(4)
(or a subgraph homomorphic to C’E()4)). One of the difficulties with this approach is that we
can no longer just choose a maximum matching in a monochromatic tight component, as
these matchings can now be arbitrarily large (as long as we cannot also find a subgraph
homomorphic to C§4)). Thus a lot of the arguments we used in our proof do no longer
apply in this setting. Nevertheless we hope that some of our methods will be useful for

further research on this conjecture.
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CHAPTER 4

RESILIENCE FOR TIGHT HAMILTONICITY

Due to space constraints for this thesis, we omit several more technical proofs of results
in this chapter. For any proofs thus omitted we refer the reader to the full paper this
chapter is based on [8]. Our aim in this chapter is to prove Theorem We recall some
definitions before stating the theorem again.

Recall that G®)(n, p) is the binomial random k-graph, that is the k-graph on n vertices
for which each k-set of vertices forms an edge independently with probability p. Recall that
we say an event holds asymptotically almost surely (a.a.s. for short) if its probability tends
to 1 as n tends to infinity. Finally, recall that for a k-graph G, we denote by d;_1(G) the
minimum codegree of G, that is dx_1(G) = minSG(\Z(_GI)) dg(9), where, for S C V(G), da(S)
is the number of edges of GG that contain S.

We now recall the statement of Theorem [L.3.1]

Theorem 1.3.1. Given anyy >0 and k > 3, if p > n~'*7, we show that T = G%) (n, p)
a.a.s. satisfies the following. Let G be any n-vertex subgraph of ' such that 0,1 (G) >

(% + 27>pn. Then G contains a tight Hamilton cycle.

The remainder of this chapter is organised as follows. We first give the ideas of the
proof of Theorem |1.3.1] Then we gather the tools we need for the proof of Theorem [1.3.1
(including a special version of hypergraph regularity and some useful properties of the

random hypergraph) in Section and finally prove the theorem in Section .
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4.1 Ideas of the proof

Our proof strategy for Theorem [1.3.1| uses the reservoir method, which was previously
used in [4] and [7], in a similar way to the use we will make here, to give polynomial-time
algorithms that find tight Hamilton cycles in I itself for broadly similar values of p. Very
briefly, the reservoir method is as follows.

In a first step, we identify a reservoir set R, which contains a small (but bounded away
from 0) fraction of the vertices of G. We construct a reservoir path P, which is a tight
path that contains all the vertices of R and in addition for any subset R’ of R, there is a
tight path with the same ends as P,s whose vertex set is V(Pres) \ R

In a second step, we extend P, to an almost-spanning tight path P,j0. In the final
step we re-use some vertices of R to extend P, further to a structure which is ‘almost’
a tight Hamilton cycle, except that some vertices R’ of R are used twice. Finally we apply

the reservoir property of P, to obtain the desired tight Hamilton cycle.

In [7], in the random hypergraph, there are two main tools needed to put this plan
into action. First, for any given ordered (k — 1)-tuple x of vertices and set S of ‘unused’
vertices which is not too small, there will be lots of ways to start a tight path from x and
continuing with vertices of S. Second, for any given pair of ordered (k — 1)-tuples x and y,
and any given set S of unused vertices which is not too small, it is possible to find a tight
path from x to y in S.E|

Neither of these statements is true in the resilience setting. Instead, we make use of
hypergraph regularity to help us. In Section 4.2/ we state our main tools, and prove some
of them. We first introduce spike paths, which we need to construct our reservoir structure
(much as in [7]).

We give the notational setup for hypergraph regularity, and state a sparse, strengthened
version of the Strong Hypergraph Regularity Lemma, Lemma [4.2.4] which may be of

independent interest. We show that the output of this Regularity Lemma is, for k-graphs

1To be accurate, these statements will be true for all the sets S that actually appear in the proof, by a
careful revealing argument; they are not true for every S.
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with our minimum degree condition, a structure which is robustly tightly linked: this is a
version of connectivity appropriate for tight paths.

We show that the random hypergraph has certain nice properties: in particular, once
one removes a small fraction of (k — 1)-tuples, for any remaining (k — 1)-tuple x and set S
which is reasonably small (it cannot contain more than n/2 vertices) there are lots of ways
to start constructing a tight path from x avoiding S (Lemma , and if we do so for a
sufficiently large (but independent of n) number of steps, we reach a positive fraction of
all (k — 1)-tuples. This statement (Lemma is one of the key points in our proof:
most of the time, we can expand in a few steps from any given (k — 1)-tuple to a positive
density of (k — 1)-tuples (and a similar statement holds for spike paths).

Using Lemma [4.2.10, regularity and tight linkedness, we can prove a Connecting Lemma
(Lemma which states that for any reasonably small set S and most pairs x and y
of (k — 1)-tuples, there is a short tight path from x to y which avoids S.

These tools are enough to prove a Reservoir Lemma [4.2.21] which (much as in [7])
constructs P, mentioned above. However again at this point difficulties arise. In the
random hypergraph of [7], the vertices outside P, have no particular structure. In our
setting, P,. interacts in some rather unpredictable way with the existing structure provided
by the Regularity Lemma. To deal with this, we use LP-duality in Lemma to find a
fractional matching which will tell us how many vertices we should use in each part of our
regular partition in order to obtain Pj,est- We also at this point run into the difficulty
that we can only guarantee expansion from the minimum degree when we are avoiding
less than n/2 vertices, yet Pamost 18 supposed to cover almost all of the vertices; it is here

that we need the ‘strengthened’ property of our Regularity Lemma.

4.2 Tools

In this section we present the tools needed to prove Theorem [1.3.1]
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4.2.1 Spike paths

To build our reservoir structure we need spike paths, which are the following variant of a
tight path that changes orientation every (k — 1) steps. We will only consider spike paths

with a number of vertices divisible by k& — 1.

Definition 4.2.1 (Spike path). In an k-uniform hypergraph, a spike path with t spikes con-
sists of a sequence of t pairwise disjoint (k—1)-tuples ay, ..., a;, where a; = (a;1, ..., k1)
for all i, with the property, that the edges {aij—;, ..., a1, Git11,- .-, Qir1,;} are present for

allv=1,...,t—1andj=1,...,k—1. We call a; the ith spike.

4.2.2 Notation for k-multicomplexes

In this section we explain some notation for k-multicomplexes most of which is needed for
our version of Hypergraph Regularity Lemma (Lemma .

A k-complex is a hypergraph H all of whose edges have size at most k, which is
down-closed, i.e. if e € E(H) and ¢ C e then ¢ € E(H). The layers of a k-complex
are, for each 0 < i < k, the j-uniform hypergraph H® on the same vertex set, where
E(HD) ={c € E(H): || =1}.

A k-multicomplex is, informally, a k-complex in which multiple edges of any size
between 2 and k are permitted, together with a map boundary 0 identifying the (i — 1)-
edges which support a given i-edge. Formally, a k-multicomplex H consists of a vertex
set V(H), together with a set of edges E(H), a vertices map vertices : E — P (V') such
that vertices(e) is a set of size between 0 and k for each e € E(H), and a boundary
map 0 : E\ {0} — P(F) such that de contains exactly one edge whose vertices are
vertices(e) \ {v} for each v € vertices(e), and no other edges. We further insist on the
following consistency condition: if 2 < ¢ < k, and S is a set of i edges each with i — 1
vertices, such that ’Ufes 8f‘ > (if2>, then there are no edges e € H such that de = S.
We say that the uniformity of an edge e is |vertices(e)|, and we may write that e is an

edge on the set vertices(e), or that e is a |vertices(e)|-edge. We will also say, given a set S
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consisting of ¢ edges of uniformity (i — 1), that e is supported on S if de = S.

Note that the boundary of a 1-edge is necessarily {#}, and that ‘down-closure’ is
forced by the condition of the boundary map. To better understand the consistency
condition, consider the following. If e is an edge of H with at least two vertices, and z
and y are distinct vertices of e, let e, and e, be the edges in Je whose vertices do not
contain respectively x and y. There is an edge e;, in de,, and an edge ey, in de,, on
vertices(e) \ {z,y}. The consistency condition is equivalent to insisting that for any e, =
and y we have ey, = egy.

Observe that a k-complex is a k-multicomplex, where the vertices of each edge are simply
its members as a set, and the boundary map is the usual boundary de = {e \{v}:ve e}
(which is in this case the only possible boundary map for the given vertices map). However
in general, for a given ground set, edge set and vertices map, there may be several
different boundary maps which fit the definition of k-multicomplex; these return different
multicomplexes. The idea here is that we will need to think of a given edge (say with
vertices {1,2,3}) as containing specific edges with vertices {1,2}, {1,3} and {2,3}, and
the map 0 tells us which edges these are. We should stress that it is possible to have a
k-multicomplex in which there are two different edges which have the same boundary and
vertices, and indeed the multicomplexes we consider in this paper will have this property
for edges of uniformity two and above (though for us a 1-edge will always be the unique
1-edge on a given vertex).

Given a vector d = (d, . .., d) where 1/d; € N for each i, we call a k-multicomplex H
d-equitable if there is exactly one 1-edge on each vertex, and furthermore for any 2 <1 < k
and i-set X of vertices the following holds. Whenever S is a collection of ¢ edges of
uniformity ¢ — 1 in H, one on the vertices X \ {#} for each z € X, if the union Uc5 0f
has exactly (Z_ZQ) edges then the number of i-edges in H supported on S is exactly 1/d;.
We refer to d as the density vector of the multicomplex.

Finally, we need a notion of connectedness for multicomplexes.
Definition 4.2.2 (tight link, tightly linked). Given a k-multicomplex R, and two (k —1)-
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edges u,v of R, let u be u together with an ordering (u,...,ux_1) of its vertices, and
similarly let v be v together with an ordering (vy,...,vx_1) of its vertices. A tight link
from u to v in R is the following collection of (not necessarily distinct) vertices and edges
of R.

For each 1 < j < k — 1, there is a vertex wj. There are k-edges e1, and ei,
of R, where ey, is on vertices {uy, ..., up_1, w1} and v € dey,, and ey, is on vertices
{vi, ..., v_1,w1} and v € dey,. For each 2 < j <k —1, there are k-edges e;,, and e,
of R, where ej,, is on vertices {uj, ..., ug_1, w1, ..., w;} and 0e;_1,Ndej, # 0, and e;, is
on vertices {vj, ..., Up_1, w1, ..., w;} and Oe;_1,Ne;, # 0. Finally Oe_1.,NOe_1, # 0.

We say that a k-multicomplex R is tightly linked if for any two (k — 1)-edges in R,

and any orderings of their vertices, u and v, there is a tight link from u to v in R.

The precise sequence of vertices and edges is not critical (it is simply a particular
structure we can easily construct). However it will be convenient to note that the k-edges
of a tight link are in fact a spike path with three spikes. Note that there is £ € N and a
permutation p on [k — 1] such that for any u and v, if there is a tight link from u to v
then there is a homomorphism from the /-vertex tight path to R, using only the k-edges
of the tight link, where the first k& — 1 vertices of the tight path are sent to u in order and

the last & — 1 vertices to the vertices of v in the order p.

4.2.3 Sparse hypergraph regularity

We need a strengthened version of the Strong Hypergraph Regularity Lemma for sparse
hypergraphs. The Strong Hypergraph Regularity Lemma was first proved by Rodl and
Skokan [107] and Gowers [55]; we use a version due to Rédl and Schacht [106], from which
we deduce a strengthened version by a standard method. We then use a weak sparse
regularity lemma of Conlon, Fox and Zhao [33] to transfer this strengthened version to a
sparse version, following [6].

In order to state our regularity lemma, we need quite a few definitions. These are either
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standard definitions for the dense (p = 1) case, or the natural sparse versions of the same,
as taken from [3]. Note that definitions here differ from the definitions for hypergraph
regularity in Chapter [2| as we need a different version of hypergraph regularity in this
chapter.

Let P partition a vertex set V' into parts Vi,...,V,. We say that a subset S C V
is P-partite if |SNV;| < 1 for every i € [s] and the index of a P-partite set S C V is
i(S):={ie[s]:|SNV;| =1}. For any A C [s] we write V4 for U,c4 V;. Similarly, we say
that a hypergraph H is P-partite if all of its edges are P-partite. In this case we refer
to the parts of P as the vertex classes of H. Moreover, we say that a hypergraph H is
s-partite if there is some partition P of V(H) into s parts for which H is P-partite.

Let i > 2, let H; be any i-partite i-graph, and let H;_; be any i-partite (i — 1)-graph,
on a common vertex set V partitioned into ¢ common vertex classes. We denote by
K;(H;_1) the i-partite i-graph on V' whose edges are all i-sets in V' which are supported
on H;_; (i.e. induce a copy of the complete (i — 1)-graph K} ' on i vertices in H;_;).
Given p € (0, 1], the p-density of H; with respect to H; 1 is then defined to be

|Ki(HZ-_1) N Hi]
d Hz Hi— =
p(Hil i) == ]

if |K;(H;—1)| > 0. For convenience we take d,(H;|H;—1) := 0 if |K;(H;_1)| = 0, and we
assume H, is the complete 1-graph on V', whose edge set is V. So d,(H;|H;—1) is the
proportion of copies of Kf_l in H;_1 which are also edges of H;, scaled by p. When H;_; is
clear from the context, we simply refer to d,(H;|H;_1) as the relative p-density of H;. We
say that H; is (d;, €, p)-regqular with respect to H;_; if we have d,(H;|H[_,) = d;£¢ for every
subgraph H/ ; of H;_; such that |K;(H]_,)| > ¢|K;(H;-1)|. Given an i-graph G whose
vertex set contains that of H; 1, we say that G is (d;, e, p)-regular with respect to H; 1 if
the i-partite subgraph of G induced by the vertex classes of H; 1 is (d;, €, p)-regular with
respect to H;_1. Finally, we say G is (g, p)-regular with respect to H;_; if there exists d;

such that G is (d;, e, p)-regular with respect to H; ;. Similarly as before, when H, ; is

117



clear from the context, we refer to the relative density of this ¢-partite subgraph of G' with
respect to H;_; as the relative p-density of G.

Now let H be an s-partite k-complex on vertex classes Vi,...,V, where s > k > 3.
Recall that, since H is a complex, if e € H and ¢’ C e then ¢/ € H. So if e € H® for
some 2 < i < k, then the vertices of e induce a copy of K!~! in H0~1. We say that H is

(di,...,ds, e, &, p)-reqular if

(a) forany 2 <i<k—1and any A € ([S]), the induced subgraph H®[V,4] is (d;, e, 1)-

%

regular with respect to H~1[V,], and

(b) for any A € ([Z]), the induced subgraph H®[V,] is (d, e, p)-regular with respect
to H*=D[V,].

So each constant d; approximates the relative density of each subgraph H®[V,] for
A € ([j]). For a (k — 1)-tuple d = (dg,...,dy) we write (d,eg,¢,p)-regular to mean
(di, . ..,ds, e, €, p)-regular.

The definition of a (d, e, ¢, p)-regular complex H is the ‘right’ generalisation of an
e-regular pair (X,Y’) in dense graphs to sparse hypergraphs. The Szemerédi Regularity
Lemma states that there is a partition of the vertices of any graph into boundedly many
parts such that most pairs of parts are regular; now our aim is to define a generalisation
of ‘partition’ in order to say that we can partition any k-uniform hypergraph G such that
most k-sets lie in regular complexes. As one can guess from the phrasing, the k-layer of
each complex will consist of (all) edges of G supported by the complex. The lower layers
will be in the ‘partition’, and we now set up the notation to define this.

Fix k > 3, and let P partition a vertex set V into parts Vi,...,V;. For any A C [t],
we denote by Crosss(P) the collection of P-partite subsets S C V' of index i(S) = A.
Likewise, we denote by Cross;(P) the union of Cross, for each A € ([;]>, so Cross;(P)
contains all P-partite subsets S C V of size 5. When P is clear from the context, we write
simply Crossg and Cross;. For each 2 < j <k —1and A € ([;J) let P4 be a partition

of Cross,. For consistency of notation we also define the trivial partitions Py = {V}
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for s € [t] and Py := {0}. Let P* consist of the partitions P4 for each A € ([;J) and
each 0 < j < k — 1. We say that P* is a (k — 1)-family of partitions on V if whenever
S, T € Crossx lie in the same part of P4 and B C A, then SNU;ep V; and T'NU ep V; lie
in the same part of Pg. In other words, given A € ([;.]), if we specify one part of each Ppg
with B € (jﬁ), then we obtain a subset of Cross, consisting of all S € Cross4 whose
(7 — 1)-subsets are in the specified parts. We say that this subset of Crossa is the subset
supported by the specified parts of Pg. In general, we say that a j-set e is supported
by a collection S, with |S| = j, of (j — 1)-graphs if exactly one (j — 1)-subset of e is in
each member of S, and we say a set of j-edges F is supported by S if each edge of E is
supported by S.

Thus the partitions Ppg give a natural partition of Cross,, and we are saying that P,
must refine it.

We refer to the parts of each member of P* as cells. Also, we refer to P as the ground
partition of P*, and the parts of P (i.e. the vertex classes V;) as the clusters of P*. For
each 0 < j < k — 1 let PY) denote the partition of Cross; formed by the parts (which we
call j-cells) of each of the partitions P4 with A € ([j.]) (so in particular P = P).

Observe that a (k — 1)-family of partitions P* naturally form the edges of a k-
multicomplex, whose vertex set is the (set of parts of the) ground partition, whose
edges of uniformity 7 < k — 1 are the j-cells, with the vertices map identifying the j parts
of the ground partition which contain a given j-cell, and where the boundary operator de
identifies the (|e| — 1)-cells supporting e. So far we have described a (k — 1)-multicomplex;
we extend this to a k-complex by adding, for each set .S of k edges of uniformity k£ —1 which
can be a boundary (i.e. which is such that ‘ Uses 8f’ = (kﬁ2) ) one edge of uniformity &
whose boundary is S. When we refer to the multicomplex of the family of partitions P* we
mean this multicomplex. Note that we have defined the word ‘support’ both in terms of
multicomplexes and in terms of a family of partitions: but these definitions are consistent,
i.e. that a given j-cell is supported by some (j — 1)-cells means the same thing whether

one reads ‘support’ in terms of the family of partitions or its multicomplex.
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Forany 0 <j<k—1,any A € <[;]) and any @' € Crossy, let Cg denote the cell of
P4 which contains (). Then the fact that P* is a family of partitions implies that for any
@ € Crossy, the union J(Q) = Ugrcq Cgr of cells containing subsets of @ is a k-partite

(k — 1)-complex. We say that the (k — 1)-family of partitions P* is (to, t1, €)-equitable if
(a) P partitions V into t clusters of equal size, where to <t < {1,
(b) for each 2 < j < k — 1, PY) partitions Cross; into at most ¢ cells,

(c) there exists d = (dj_1,...,ds) such that for each 2 < j <k — 1 we have d; > 1/t;
and 1/d; € N, and for every () € Cross; the k-partite (kK — 1)-complex J(Q) is

(d, e, e, 1)-regular.

Note that conditions4.2.3[and |4.2.3|imply that J(Q) is a (1, t1, €)-equitable (k—1)-complex

(with the same density vector d) for any @) € Crossy.

Next, for any P-partite set Q with 2 < |Q| < k, define ]S(Q; P*) to be the |Q|-partite
(|Q| —1)-graph on V() with edge set UQ/€(|Q\Q—1) Cor. We refer to P(Q; P*) as a |Q|-polyad;
when the family of partitions P* is clear from the context, we write simply ]S(Q) rather
than P(Q;P*). Note that the condition for P* to be a (k — 1)-family of partitions can then
be rephrased as saying that if 2 < |@Q| < k — 1 then the cell Cy is supported on ﬁ’(Q), and
in the multicomplex corresponding to P* we have edges corresponding to the cells of each
uniformity from 1 to k — 1 inclusive, together with edges corresponding to the k-polyads
supported by P*. As shown in [3, Claim 32], if P* is (o, t1, €)-equitable for sufficiently
small €, then for any 2 < j < k — 1 and any @) € Cross; the number of j-cells of P*
supported on f’(Q) is precisely equal to 1/d;. More specifically, if (dj_l — 1) (dj+¢) <1,
and (d;l + 1) (d; —e) > 1, then by definition necessarily there are exactly dj’1 cells
supported; it suffices to choose ¢ < d? to ensure these two inequalities. In other words,
the multicomplex corresponding to P* is d-equitable.

Now let G be a k-graph on V, and let P* be a (k — 1)-family of partitions on V.
Let @ € Crossg, so the polyad f’(Q) is a k-partite (k — 1)-graph. We say that G is

(ek, p)-reqular with respect to P* if there are at most ak(“;') sets ) € Crossy, for which G
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is not (e, p)-regular with respect to the polyad 15(@) That is, at most an e,-proportion
of subsets of V' of size k yield polyads with respect to which G is not regular (though some
subsets of V' of size k do not yield any polyad due to not being members of Crossy,).

At this point we have the setup to state the Strong Hypergraph Regularity Lemma,
which states that for any k-uniform hypergraph G there is a (k — 1)-family of partitions P*,
which is (g, t1, €)-equitable for some t; independent of |V (G)|, such that G is regular with
respect to P*. However we need a stronger version, which is not standard (the dense graph
version, called the Strengthened Regularity Lemma, is due to Alon, Fischer, Krivelevich
and Szegedy [10], and it is folklore that the hypergraph version we now state should exist).
To that end, given two families of partitions P* and Q* on the same vertex set, we say

that P* refines Q* if every cell of P* is a subset of some cell of Q*.

Definition 4.2.3. Given a k-uniform hypergraph G, we call a pair of families of partitions
(Px,P;) on V(G) a (to, t1,t2, k€, fr, f, p)-strengthened pair for G if the following are

true.

(S1) Py refines Py,

(S2) P is (to, t1,€)-equitable.

(S3) G is (g, p)-regular with respect to Pr.
(S4) P; is (to, ta, f)-equitable.

(S5) G is (fx,p)-regular with respect to P;.

(S6) For all but at most g%<|V(kG)|> elements @ of Crossi(P.), we have d, (G’ﬁ(Q,P:)) =
dy(G|P(Q, P))) + .

We refer to Py as the coarse partition and P as the fine partition. Slightly extending
the usual definition, we say a k-polyad P(Q;P?) is irregular (with respect to G) if any

one of the following three things occurs:

(i) G is not (g4, p)-regular with respect to P(Q; P*),
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(ii) for more than an ei-fraction of the k-sets @' supported on 15(62;73;k ), G is not

(fk,p)—regular with respect to ﬁ(Q/; P}k)j or

(iii) for more than an e;-fraction of the k-sets Q' supported on P(Q:P*), we have
4, (G|P(Q:Pp) # dy(G]P(Q:PY)) £
If a polyad of P} is not irregular, we say it is regular.

We will always choose f;, such that f, < €7, and € small enough that every k-
polyad supports very close to the same number of k-edges. Under this assumption,
it is straightforward to check that at most a 4e;-fraction of polyads in P} are irregular
(the proof of this can be found in the Appendix of [g]).

We need one more definition. Given any (not necessarily distinct) subsets Ey, ..., Ej
in (k[ﬁ}l), we say a k-set S C [n] is rainbow for the F; if there is an injective labelling of the
(k — 1)-subsets of S with the numbers 1,..., k such that the (k — 1)-subset labelled i is
in ;. We write Ky(E\, ..., Ey) for the set of rainbow k-sets in [n]. We say that a graph G

on [n] is (n, p)-upper regular if the following holds. For any Ej, ..., Ej, we have
[B(G) N Ku(B,... B)| < p|Ki(By, . Ey)| + pm®

Finally, we are in a position to state our strengthened sparse version of the Strong
Hypergraph Regularity Lemma. Informally, what this states is that we can find P; and Pj
which are simultaneously a strengthened pair for s edge-disjoint graphs, for any (fixed)
regularity €5 of P’, where € and f can be as small as desired depending on the number
of parts in P and P} respectively, and furthermore the regularity fi of P} can depend

arbitrarily on the number of parts of P7.

Lemma 4.2.4 (Strengthened Sparse Strong Hypergraph Regularity Lemma [§, Lemma
5]). Given integers k > 2 and ty and s, real €, > 0 and functions ¢, fi, f : N — (0, 1],
there exists a real n > 0 and integers T and ng such that the following holds for all
n > ng with T|n. Let V' be a vertex set of size n, suppose that Gy, ..., Gy are k-uniform

hypergraphs on' V', and suppose Q* is a family of partitions on V which is (1, tg, n)-equitable.
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Suppose furthermore that for each 1 < i < s there is a real p; € (0,1] such that G; is
(n, p;)-upper reqular. Then there are integers tq,ts with to < t; <ty < T, and families of
partitions P; and Py, both refining Q*, such that for each 1 <i < s, the pair (P}, P}) is

a \lg,l1,02,8k,E(L1), JK\TL1 2),Di | -stren ene alr jor (.
(to, 11, ta,2x,2(11), fi(tr), f(£2), pi)-strengthened pair for G

In this thesis, we omit the proof of this lemma (for the proof see [8, Lemma 5]). Note
that the case k = 2 will not be used here; and in this setting the ‘families of partitions’
are simply vertex set partitions and the functions € and f play no role.

Given a (to, t1, 2, €k, €, fr, f, p)-strengthened pair (P}, P}) for G, recall that P; has the
structure of a multicomplex. We denote by R., (G; P, P;) the ex-reduced multicomplex
of G with respect to (P, P}), which is the (unique) maximal submulticomplex of P; which

has the following properties.
(RG1) Every k-edge of R, (G; Py, Py) is regular.
(RG2) For each 1 <i <k — 1, each i-edge of R., (G; Py, P;) is in the boundary of at least

%

il
(1 - 2i+2g}/’“>t 15 ifi<k—1, and
=2

(1 - 2k+151/k>t’h1 a0 ipi— ko1
k j -
=2

(i 4 1)-edges of R., (G; P, P;).

The existence and uniqueness of the reduced multicomplex are trivial: we obtain it by
simply iteratively removing from the multicomplex P’ edges which either fail one of
or or from whose boundary we removed edges (so that they are no longer supported
and cannot be in the multicomplex). It is easy, but not quite trivial, to show that most of
the vertices of R., (G; P, Pf) (i.e. the parts of P) are also 1-edges of R., (G; P, P;). Now
given d > 0, we let R., 4(G; P, P;) be the (unique) submulticomplex of R., (G; P:, Pf)
obtained by removing all k-edges corresponding to polyads whose relative p-density is
less than d. We call R., 4(G; Py, P;) the (ex, d)-reduced multicomplex of G with respect to
(P&, P).
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The following lemma shows some useful properties about the (g, d)-reduced multicom-

plex of G in our usual setting. In this thesis, we omit its proof (for the proof see [8, Lemma
6]).

Lemma 4.2.5 (|8, Lemma 6]). Given k € N and d > 0 suppose that to € N is sufficiently
large. Given any constants 6,eg, v > 0, any function € : N — (0, 1] which tends to zero
sufficiently fast, any t1,ty € N, any 0 < fr < % and any f > 0, there exists n > 0 such that
the following holds for any sufficiently large n and any p > 0. Suppose G is an n-vertex
hypergraph which is (n, p)-upper reqular and every (k — 1)-set in V(G) is contained in at
least opn edges. Suppose that (P),P;) is a (to,t1,t2, ek, €(t1), fr, f,p)-strengthened pair
for G.

Let R = R., a(G; Pr, P;) be the (e, d)-reduced multicomplex of G, and suppose that P
has t clusters and density vector d = (dg_1,...,ds). Then R contains at least (1 — 4Ei/k)t

1-edges, and every (k — 1)-edge of R is contained in at least
k=1 /g1
(6 —2d—2"2/")t- ] 4, (=)

i=2

k-edges of R.
Finally, if § > %+2d+2k+25,1€/k+y, then any induced subcomplex of R on at least (1—v)t

1-edges is tightly linked.

If we do not remove too many vertices from the 1-cells we still have a regular complex

with slightly different parameters.

Lemma 4.2.6 (Regular Restriction Lemma [3, Lemma 28]). For all integers k > 2 and
constants «, dy > 0, there exists € > 0 such that the following holds. Let d = (dy_1, ..., ds)
be a vector of real numbers with d; > do for each 2 <i <k —1, and let G be a k-partite

U which is (d,¢e,¢e,1)-regular. Choose

(k — 1)-complex with parts Vi, ..., Vi of size m > &~
any V! CV; of size at least am fori=1,... k. Then the induced subcomplex G[V{,. .., V/]

is (d, /e, 1)-reqular.
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4.2.4 Properties of the random hypergraph

We use the following standard versions of the Chernoff bound.

Theorem 4.2.7. Let X be a random variable with distribution Bin(n,p). Then for any

e > 0 we have
P(X >pn+en) <exp(—D(p+ellp)n) and P(X <pn—en) <exp(—D(p—e¢l|lp)n),

where D(zx||y) = xlog (%) + (1 —xz)log G%;) is the Kullback-Leibler divergence between

two Bernoulli-distributed random variables with parameters x and y, respectively. From
this it follows

e2pn

]P’(|X—pn|>€pn)<2exp(— : ) for any € <

3
2

and if t > 6pn we have

Pr(X >pn+t) < exp(—t).

Lemma 4.2.8. Givenn > 0, k € N there exists C' such that if p > %, then T = G®(n, p),

and all its subgraphs, are a.a.s. (n, p)-upper reqular.

Proof. Observe that if ' = G*)(n, p) is (1, p)-upper-regular, then automatically all its
subgraphs are also. We assume without loss of generality that n < 1, and set C' = 18kn=3.

Given any Ey,...,E, C ([Z]), we aim to estimate the probability that Ey,..., E}
witness the failure of G%*)(n,p) to be (n,p)-upper regular. The expected number of

edges of G*)(n, p) which appear on the sets Ki(E, ..., Ey) is p‘Kk(El, ooy Ey)

, and the
distribution is binomial, so we may apply the Chernoftf bound.

If ‘Kk(El, e ,Ek)‘ < énnk’, then failure to be (7, p)-upper regular means that the
number of k-edges appearing on Ky (FE1, ..., Ey) is at least seven times the expected number;
by the Chernoff bound the probability of this event is less than exp(—pnn”) < exp(—kn*~1).

If ’Kk(El, . ,Ek)‘ > ¢nn®, then, by the Chernoff bound, the probability that more
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than (1 + n)p’Kk(El, e Ek)’ edges appear is at most

n’p|Ki(Ey, . .., Ey) 2C ik
‘ k ; k‘)gexp<—nzgn

exp ( — ) = exp ( — knk_l) .

Since there are at most 2(<"1) choices for each E;, by the union bound the probability that

G®)(n,p) is not (n, p)-upper regular is at most
9k("4) exp ( — knkfl)

which tends to zero as n tends to infinity. O

Given a set S C V(I'), we say a (k — 1)-set x is (g, p, 1)-good for S if we have
’{s eS:axU{s}e E(F)H =p|S| £epn.

For each ¢ > 2, we say inductively that a (k — 1)-set = is (g, p, £)-good for S if it is
(e,p, — 1)-good for S and there are at most epn edges of I' which contain z and in

addition contain a set which is not (e, p, ¢ — 1)-good for S.

Lemma 4.2.9. Given € > 0, k € N there exists C' such that if p > %, then I' =
G®(n,p) a.a.s. has the following property. For each set S C V(I'), and each 1 < { <

& loglogn, there are at most o(n) (k—1)-sets in V(') outside S which are not (e, p,£)-good
for S.

Proof. Given S, we first estimate the number of (k — 1)-sets  which are outside S and
not (e, p, 1)-good for S.

If |S] < %571, then failure of a given z to be (g, p, 1)-good for S means x forms an edge
with at least 7p|S| vertices in S, the probability of which is by the Chernoff bound at most
exp(—epn), which for large enough C'is smaller than n~*. If on the other hand |S| > pn,
then the probability that x does not form an edge with (1 & ¢)p|S| vertices of S is at most

2exp (@) < n~% for large enough C. We see that in either case, the probability that =
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is not (g, p, 1)-good for S is at most n=*. Now if z and 2’ are two different (k — 1)-sets

outside S, then the events of 2 and of 2’ being not (e, p, 1)-good for S are independent, so

again using the Chernoff bound we can estimate the likelihood of many sets being bad
1.~k _

for S. The expected number of bad sets for S is at most n*~! - n=% = n~1. Therefore, for

any t > 1, we can bound the probability that there are ¢ or more bad (k — 1)-sets for S by

t1
exp (—D(n‘k + tnl_k||n_k)nk_1> < exp (— Oan> :

In particular, taking ¢t = 4n/logn and using the union bound, the probability that there
exists a set S for which more than 4n/logn (k—1)-sets are not (e, p, 1)-good is at most 27".
Suppose that I' is such that this good event occurs, and in addition that every (k — 1)-set
of vertices of I' is contained in at most 2pn edges of I'.

Let K = 2ke™!. Now given S and ¢ > 1, we claim that the number of (k — 1)-sets
outside S which are not (g, p, £)-good for S is at most 4n - K*~1/logn. We prove this by
induction on ¢; the base case ¢ = 1 is the assumption on I'. Suppose ¢ > 2, and that
the number of (k — 1)-sets outside S which are not (e,p,¢ — 1)-good for S is at most
4n - K2 /logn. For each (k — 1)-set x outside S which is not (g, p, ¢ — 1)-good for S, we
assign to each (k — 1)-set y such that x Uy is an edge of I' one unit of badness. Observe
that the total number of units of badness assigned is at most (k—1)-2pn -4n- K‘~2/logn.
On the other hand, a set y which is (¢, p, £ — 1)-good for S can only fail to be (g, p, £)-good
for S if it is assigned at least epn units of badness. It follows that the total number of such
sets is at most 2(k — 1)e~! - 4nK*"2/logn, and so the number of (k — 1)-sets outside S

which are not (g, p, £)-good for S is at most
2k — e ' - 4nK*%/logn +4n - K"%/logn < 4n- K" /logn,

as desired. In particular, this formula is in o(n) for all 1 < ¢ < £ loglogn with C' large

enough. O]
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For a given (k — 1)-tuple, we will find many paths starting from there. To get expansion

we need to ensure that they have many different end-tuples.

Lemma 4.2.10. For~ > 0, k > 3, any fixed integer £ > % +k—1, and any p > 0 a.a.s.
in T = G®(n,p) with p = n~*7 the following holds. For any (k — 1)-tuple x in V(I')
and a set P of at least (upn)t tight paths in T with £ + (k — 1) vertices and rooted at x,
the number of end (k — 1)-tuples of the paths in P is at least %),n . Moreover, when

(k — 1)|¢, the same holds for spike paths rooted at x.

To prove Lemma we need a concentration result of Kim and Vu [71]. We first
give some definitions and then state the result. Let m be a positive integer and H be a
hypergraph with |V (H)| = m and each edge has at most r vertices. Let p € [0, 1] and let
X;,1 € V(H) be independent random variables with P[X; = 1] = p and P[X; = 0] =1 — p.

We define the random variable

= 2 1~

fEE(H)icf

For each subset A C V(H), we define the A-truncated subgraph H(A) of H to be the
subgraph of H with V(H(A)) = V(H)\Aand E(H(A)) ={f CV(H(A)): fUA € E(H)}.

Hence

> I~

FEE(H) icf\A
ACf

Now, for 0 < i < r, we set &(H) = maxacv(m),aj=i E[Yu(a)]. Note that & (H) = E[Yx].

Finally, we let 5(H> = InaXp<i<r (C:Z(H) and g,(H) = maxj<i<r 52(H>

Theorem 4.2.11 (Kim-Vu polynomial concentration [71]). In this setting we have
P|Yy — E(Yx)| > a(E(H)E'(H))2A")] = O(exp(=A + (r — 1)logm))

for any A > 1 and a, = 8"r!"/2.

Moreover, we will need the following definitions. Let £ > 3, £ > kK — 1, and v > 0.
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Roughly speaking, we define D, to be the k-graph obtained from two vertex-disjoint tight
paths on ¢ + k — 1 vertices by identifying the end (k — 1)-tuples and let D, be the set of
hypergraphs obtained from D, by additionally identifying some (or none) of the not yet
identified vertices from the first tight path with such vertices from the second without
completely collapsing it into a tight path. More precisely, we let U = {uy, ..., upip_1}
and W = {wy,..., w1} be two sets of vertices that are disjoint except that x =
(up, .. up—1) = (wy, ..., wx_1) and y = (Ugsg—1, .-, Uptr1) = (Wesk—1,-..,Wer1). Then Dy

is the hypergraph with vertex set U U W and edge set

{{ui, - 7ui+k:—1}: 1€ [6]} U {{U)“ c 7wz’+k—1}: 1€ [6]}

For 0 < j < ¢ — (k — 1), we denote by D} the graphs obtained from D, by taking sets
I, 1, C{k,...,} each of size j and a bijection o: I} — I and identifying u; with we
for all i € I, where, if j = ¢ — (k — 1), then we do not allow o to be the identity (since
that would collapse D, into a tight path). We say that such a graph F' € Dﬁ is rooted at
x and call the vertices in y the end-vertices of F'. Moreover, for any edge {u;, ..., ujyr—1}
in F'e Dz as above we call u; the first verter and u;,,_1 the last vertex of the edge and
say that the edge starts in u; and ends in u;4,—1 (and analogously for edges contained in
W). Finally, we let Dy = Up<j<¢—x-1) Dj.

We now prove the following lemma which we will use to prove Lemma [4.2.10]

Lemma 4.2.12. For v > 0, k£ > 3, and any fized integer ¢ > % +k—1 aa.s.

in T' = GW(n, p) with p = n="*7 the following holds. For all (k — 1)-tuples x in V(T'), the

number of copies of elements of Dy in T that are rooted at x is at most 2p*n?¢—*k=1),

Proof. Fix a (k — 1)-tuple x in V(I') and an integer ¢ > % + k — 1 and let n be large
enough. We call the vertices in x rooted and any other vertices unrooted. Let F' € D, and

consider the complete k-graph K¥) on n vertices. We define a hypergraph Hp as follows.
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Let V(Hy) = BE(K(®) and let

E(K )
E(Hp) = {]: € ( ((Z*:L) )> : F spans a copy of F'in Kff) rooted at X} )
e
Note that, since e(F') < 2/, each edge in Hp has size at most 2. For each e € V(Hp) let
X, be the random variable for which X, = 1 if e is an edge of I' and X, = 0 otherwise.
Note that P[X. = 1] = p. It is easy to see that with these definitions Yy, is the number of

copies of F in I" rooted at x. Since e(Dy) = 2¢, v(D,) = 2¢, and k — 1 vertices are rooted,

we have (2@&4))17% < E[Ya,,| < p*n* "1 in particular E[Yy,, ] = ©(p*n*~*-1).

Claim 4.2.13. For F € Dy \ {D,}, we have

E[Yi,] = o (E[Ya,,|)-

Proof of Claim. We split the proof into two cases depending on the integer j for which we
have F' € DZ.

First suppose that F' € D for some j € {1,...,¢—2(k —1)}. Note that v(F) = 2¢ — j.
We claim that e(F') > 2¢ — j. This can be seen as follows. Recall that F' is obtained from
D, by identifying j additional vertices from the first tight path in D, with vertices from
the second. This leaves ¢ — (k — 1) — j > k — 1 unidentified vertices in the first tight
path. In addition to the ¢ edges in the second path, F' contains an edge ending in each
of the unidentified vertices and one more additional edge starting with each of the last
k — 1 unidentified vertices (these edges cannot end in an unidentified vertex, so there is no

double counting). Thus
e(Fy>04+0—(k—1)—j+(k—1)=20—.
Hence, since k — 1 vertices are rooted,
E[Yy,] < p%—jn%—j—(k—l) _ p%nze—(k—l)(pn)—j — p%n?f—(k—l)n—ﬂ =0 (]E |:YHDZ:|> .
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Now suppose that F' € D} for some j € {¢ —2(k — 1)+ 1,....£ — (k — 1)}. As in the
previous case, in addition to the ¢ edges in the second path, F' contains an edge ending in
each of the ¢ — (k — 1) — j unidentified vertices. Thus e(F') > 2¢ — (k — 1) — j. Hence,
since v(F') = 2¢ — j, k — 1 vertices are rooted, and j > ¢ — 2(k — 1), we have

E[YHF] < p2£—j—(kz—1)n2é—j—(k—1) _ p2én2£—(k—1)(pn)—jp—(k—l)

2 (=) =i (=)= (1) 26 26 (k=1) =y (E=2(k= 1)+ (k=1) = (k=1)

— Pl 6-) o (R [y, 1),
14

since€>%+k—1. [ |

Combining the claim with our bound on E[Y},, | we obtain

3 (ke
S E[Yu,] < 5p”n% (k=1), (4.2.1)
FeDy

Next we show that, for all /' € D,, the random variable Yy, is concentrated around its

expectation.
Claim 4.2.14. For all F € D,, we have

p%n%f(kfl)

P ||Yy. — E|Y; _
| Hp { HF” > 2|D4|

] =0 (exp(—n"*/(ﬁz))) .

Proof of Claim. Let F € D,. We first show that &'(Hy) < n*~(=Up2n=7. To that end
let 1 <i<2land A C V(Hp) = E(K®) with |A] = i. Note that it suffices to show
that E[Yy, (1)) < n2=*k=Dp2n=7" We let v4 be the number of vertices covered by A, that
is, v4 = |UA| and we let r4 be the number of rooted vertices not covered by A, that is,
ra = |x \UA|. Moreover, we call edges in A covered edges, edges not in A uncovered
edges, vertices in |JA covered vertices and vertices not in |J A uncovered vertices. Note
that Yy, (4) is the number of copies of F'in I' + A that are rooted at x and contain A. So

if A is not contained in (the edge set of) any copy of F rooted at x, then Yy, 4y = 0 and
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we are done. Now assume that A is contained in a copy of F' rooted at x. We consider
two cases.

First suppose that the number of uncovered unrooted vertices in any copy of F' rooted
at x and containing A is at most ¢ + k — 2, that is, v(F) —vs —ra < £+ k — 2. Note that
there are at least v(F') — vq — r4 uncovered edges, that is, e(F) —i > v(F) —vq4 — ra as
for each uncovered unrooted vertex, there is at least one uncovered edge ending in that

vertex. Thus

E Vi, () < ntE)mvarapelF)=i < (ppyrF)=va=ra < pa(tHk=2) — patia(k-2)
< 2= =)=y (b (h=2) 290 (kD)= 20 (k1) 26, =y

where the last inequality follows from the fact that ¢ > % +k—1.
Now we consider the case where the number of uncovered unrooted vertices in any copy
of F rooted at x and containing A is at least { + k — 1, that is, v(F) —vq —1r4 > {4+ k — 1.
Consider such a copy of F'. Recall that F' is obtained from two tight paths by identifying
vertices. Note that in this case there are at least k — 1 vertices in each of the tight paths
that are unrooted, uncovered, not on the other tight path, and not part of the £ — 1
end-vertices of F'. Let B be the set of the last £ — 1 such vertices on the first tight
path. We now show that F' has at least v(F') —vq — ra + k — 1 uncovered edges, that is,
e(F)—i>v(F)—va—ra+k—1. Note that for each uncovered unrooted vertex there is
at least one uncovered edge ending in that vertex. That gives us v(F') —v4 — r4 uncovered
edges. We show that for each vertex in B there is at least one more uncovered edge that
we have not yet counted. For each vertex u € B, consider the uncovered edge starting
in u. If it ends in a covered vertex, then it is one more uncovered edge that we have not
yet counted. If it ends in an uncovered vertex w, then the corresponding edge on the other
tight path is also uncovered. Thus there are two uncovered edges ending in w and we have

only counted one of them. Since there are k — 1 vertices in B, it follows that there are at

least v(F') —vq4 —ra + k — 1 uncovered edges in F'. Thus for any copy of F' containing A,
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we have

20—1>e(F)—i>v(F)—va—ra+k—1.

Hence

E[YHF(A)] S nU(F)_UA—TApe(F)—i < ne(F)—i_(k;_l)pe(F)_i

< (np)e(F)—in—(k—l) < (np)%—ln—(k—l) _ n2£—(k—1)p2£n—'y‘

We have shown that &'(Hyp) < n?~*=Yp2p=7  Now note that, since E[Yy,] <
E[Yp,,] < n2=*k=Dp2 we have £(Hp) = max{&'(Hp), E[Yy,]} < n?~FDp¥ Tt follows

that
(g(HF)g/(HF))l/g < nQZ—(k—l)p%n—'y/Z‘

Therefore, with

- ( pn2t=(k=1) )1/(213) N ( /2 )1/(25) -
2’1)@‘(125(5(]{}7)5/([{}7))1/2 - 2|Dg|(l2€ - ’

we have, by Theorem |4.2.11],

p2£n2€f(k71)

P ||Yy. — E|Y; _

] =P[[Yu, — E[Yn,]| > ax(E(Hp)E'(Hp)) A}

=0 (e (e + 20— 1y1es 7))

=0 (exp(—rﬂ/(w + (20 — 1)klog n)) =0 (exp(—rﬂ/(“))) :

Now let Zy be the number of copies of elements of D, in I' rooted at x. Note that
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Zx = Y pep, Y- We have

P[Z >2p2€ 20— (k— l)] <P

’

> 2p2ﬁ 20— Z E YHF
FeDy

FeDy

> Yu, —E[Yg,]| > p% 2= )]

FeDy

<y P[WHF CEYn]| >

p2€n25 (k— 1)‘|
FeDy

2|Dy|

= O (Dl exp(n™/)),

where the last inequality follows from the union bound together with the fact that if the

20 20— (k—1)

average of the values |Yg, — E[Yq,]| is at least &

5Dy , then at least one of the values

has to be that large. Finally, the result follows by the union bound over all (k — 1)-tuples x
in V(I). O

We are now ready to prove Lemma |4.2.10]

Proof of Lemma[f.2.10. Let x be a (k—1)-tuple in V(T') and P be a set of at least (upn)*
tight paths in I" with ¢ + (k — 1) vertices and rooted at x. Let @) be the set of end-tuples
we reach from x with paths in P. For each q € @), let P, be those paths in P that end

in q. Note that, for q € ) and distinct elements P, P’ € Py, we have P U P" € D,. Thus

Pq

for each q € (), there are at least @( 9

) copies of elements of D, in I" rooted at x and
ending in q (we divide by (2¢)! since there are at most (2¢)! ways the union of two paths
in P could result in the same copy of an element of D,). Hence the number of copies of
elements of D, in I' rooted at x is at least

Z 1 <|Pq|> |Q| ( Mm ) > (#p”)%

a0 20!\ 2 (26) 2 —420NQV’
where the penultimate inequality follows by Jensen’s inequality. Thus, by Lemma 4.2.12]

we have a.a.s.

2p2€n2£—(k—1) > (upn)%
—4201Q]
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and thus
2%
2 k—1
> .
Q1= g™

Moreover, an analogous argument shows the result for spike paths. O

Together with the definition of tuples that are (g, p, £)-good for S, Lemma 4.2.10| implies

the following.

Corollary 4.2.15. For any v > 0 and any 0 < ¢ < i% and integers s, k > 3, and
> % + k — 1, there exists v > 0 such that in T = G®)(n,p) a.a.s. the following holds
when p=n"'". Let G CT satisfy 6p_1(G) > (% + v)pn. Let S, 8" C V(I') be sets with
1S] < %n and |S'| < s. Let x be a (k — 1)-tuple, which is (g, p,{)-good for S. Then there
are at least vn*=1 different (k — 1)-tuples y, such that there exists a tight path in G of
length € with ends x and 'y and no vertices of the path in S U S’ except for possibly some
of the vertices in x. Moreover, when (k — 1)|¢, the same holds for spike paths in G of

length (.

Proof. We only prove the statement for tight paths as it is easy to see that the proof can
be adapted for spike paths. We set p = i% and v = ﬁi)!' Suppose that the good event
of Lemma , with input 7, k, and g, holds for I' = G (n, p).

Given G and x as in the lemma statement, let x = (331, . ,xk_l). We construct
tight paths ;... 2,1 rooted at x by choosing vertices g, ..., 21,1 Oone by one as
follows. For each k < i < ¢+ k — 1, we choose z; such that x; ¢ SU S " U{xy,..., 2,1}
and {;_gs1,...,2;} € BE(G). If i <+ k — 1, we insist in addition that {x;_pio,...,2;}
is (,p, — (i — k 4+ 1))-good for S. Since x is (e,p,¥)-good for S, for each k < i <
¢+ k — 1, the number of choices for each x;, such that {z;_py1,...,2;} is an edge of G,

v, € SUS ' U{xy,..., 21}, and {x;_pio,..., 2} is (e,p,€ — (1 — k + 1))-good, is at least
(%—i—v)pn—(p|S|—|—€pn)—3—€—(k—1)—5pn2 (v—2e)pn—s—€—(k—1) > 1ypn.

¢
Let P be the set of tight paths constructed in this way; then we have |P| > (ivpn) =
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(upn)®. Since the good event of Lemma [4.2.10| holds, the number of end (k — 1)-tuples of

these paths is at least %nkil = vnF~1 as desired. O

4.2.5 Connecting lemma

The next lemma will enable us to connect two (k — 1)-tuples, which are (¢’, p, £)-good for

some set S, by a path of length at most ¢ avoiding S.

Lemma 4.2.16 ([8, Lemma 20]). Given k > 3, and v > 0, there exists an integer {
such that for any integer s the following holds. For any d,n > 0, any 0 < &' < i% any
integer to, any small enough v,y > 0, any functions €, f, fr. : N — (0, 1] which tend to zero
sufficiently fast, and any large enough ty,ty € N, the following holds a.a.s. in I' = G*) (n, p)
with p > n=1%7. Suppose G C T is an n-vertex k-graph with §p_1(G) > (% + ’y)pn, that
(Pr,P37) is a (to, t1,t2, ex, €(t1), fu(t1), f(t2), p)-strengthened pair for G, and that t is the
number of 1-cells in P}. Let R' C R = R., 4(G; P}, P;) be an induced subcomplex of the
(e, d)-reduced multicomplex of G on at least (1 — v)t 1-edges and assume that it is tightly
linked. Further, let S C V(G) be such that |S| < in and it intersects all 1-cells of R’ in at
most an (1 —n)-fraction. Then for any two (k — 1)-tuples x and 'y, which are (€', p, {)-good
for S, and any set S" of size at most s, there exists a tight path of length ¢ with ends x

andy.

In this thesis, we omit the proof of Lemma [4.2.16| (for the proof see [8, Lemma 20]).
In [8] we prove this lemma by using Lemma [4.2.17, which allows us to connect a fraction
of any good (k — 1)-cell to a fraction of an adjacent good (k — 1)-cell, where adjacency is

with respect to regular polyads.

Lemma 4.2.17 ([8, Lemma 21}). Given k > 3 and v > 0, there exists an integer ¢
such that for any integer s the following holds. For any d,n,v > 0, any ty € N, any
small enough g > 0, any functions e, f : N — (0, 1] which tend to zero sufficiently fast,
any integers to > t; > to, and any small enough f; > 0, the following holds a.a.s. in

I = G®(n,p) with p > n~*7. Suppose G C T is an n-vertex k-graph, that (Px,P;) is
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a (to,t1,ta, e, e(t1), fr, f(t2), p)-strengthened pair for G, let H = P(Q;Pj) be a reqular
polyad in the reduced complexr R., 4(G;P:,P;), Vi,..., Vi its underlying 1-cells, and
S C V(QG) is a set intersecting each of these in at most an (1 —n)-fraction. Further, let Ey
and Ey be the two (k — 1)-cells of H missing Vi and Vi, respectively.

Let the tuples in By and Ej, be ordered according to Vi, ..., Vi. Then there is E}, C E},
with |Ey| > (1 — v)|Ey|, such that for any x € Ey and any set S’ of at most s vertices
there is a tight path from x to 'y of length € with internal vertices not in S U S" for a

(1 — v)-fraction of the tuples 'y € Ej.

With this lemma and Corollary it is straightforward to prove Lemma [4.2.16]
The idea of the proof is to first expand from the tuples x and y using Corollary
and then connect two of the many ends that we found with Lemma by following a
tight link given by Lemma [£.2.5

In this thesis, we also omit the proof of Lemma (for the full details see [8, Lemma
21]) but here we briefly explain the idea for the proof by sketching an easier version.
Suppose that k = 2 (i.e. we are dealing with graphs, not hypergraphs) and rather than
having two clusters which are adjacent in the reduced graph, we have a path of ¢ + 1
clusters Vi, ..., Vp, Vpy1 in the reduced graph. We want to show that for most vertices
x € Vi, there is a path from x to y for most y € V1. To begin with, we look at the fine
parts within V,. We discard those fine parts which do not form (f, %d, p)-regular pairs
with most fine parts in V,,; by definition of the reduced graph, there are few such, and
we let X, be the remaining subset of V,. Next, for each : =/¢—1,...,1 we discard from V}
those vertices with fewer than (d — e9)p| X1 1| neighbours in X;,; to obtain X;. Again, by
regularity we discard few vertices at each step, so X; is most of V;. Now if we choose any
x € X1, we claim there is a path from x to y for most y € Vj,;4.

To see this, note that there are many paths which start at x and go out to X,: we
can construct these paths greedily starting from z, and we have at least %dp]Vi| choices in
each X;. By Lemma [4.2.10| and choice of ¢, there are linearly many different endvertices

of these paths in X,. We call this the coarse expansion. However the number of these

137



endvertices will be much smaller than 9| X,|, so we cannot use the coarse regularity to say
anything about the set of endvertices. This is where we need the fine partition: we can
ensure the fine regularity constant f, is so small that the number of endvertices is much
larger than fy|X,|. By averaging, there is a fine part Z contained in X, which contains
a set Ry of endvertices, where |Ry| > f»|Z|. Now Z forms a (fs, 3d, p)-regular pair with
most fine parts in Vyyq. For any such fine part Z', by (fs, 3d, p)-regularity, the set Ry of
vertices in Z’' which we cannot reach, i.e. which do not send an edge to Ry, is of size at
most f|Z'|. In other words, we have found, for most fine parts Z’ in V4,1, a path from x
to most vertices of Z’; that is the desired paths to most vertices of V1. We call this

second step the fine expansion.

It is fairly easy to see that this strategy still works with sets S and S’ to avoid. It
is also not very hard to modify it to work with one regular pair rather than a path of
regular pairs: we split off a small fraction of each cluster to use for the coarse expansion
(and we do not reuse this part for the fine expansion). What is not, however, so easy is
to make this argument work for k-graphs for £ > 3. The coarse expansion step works
much as described above, but the fine expansion requires more care. If we are given
k = 3 and a regular polyad on parts (X, Y, Z), and a significant fraction of the XY 2-cell
are marked as end-tuples of tight paths from some given x, then we cannot necessarily
conclude that almost all pairs in the Y Z 2-cell are end-tuples of tight paths from x. We
can only conclude this for those pairs whose vertex in Y is also in many marked pairs.
However this does then imply that most vertices of Z are in Y Z pairs which form an edge
with a marked pair, and taking another step, using another regular polyad (Y, Z, W), we
can finally argue that most ZW pairs are end-tuples of tight paths from x; so the ZW
pairs play the same role as Z’ in the argument sketched above. For higher uniformity, we
generalise this argument; in uniformity k, we need k — 1 steps.

The following lemma deals with the fine expansion mentioned above. It is also used in
proving Lemma [4.2.21] In this thesis, we omit the proof of this lemma (for the proof see

[8, Lemma 25]).
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Lemma 4.2.18 (|8, Lemma 25]). Given k > 3 and ¢, di, > 0, for all sufficiently small
fi. > 0 we have: given dy > 0, for all sufficiently small f' > 0 and all sufficiently large m
the following holds.

Given a set V' of vertices, suppose that we have a ground partition P = {Xo, ..., Xog_3}
with | X;| = m for each i, and for each 2 < i < k — 1 a P-partite i-graph G; on V' such
that for each Y C {0,...,2k — 3} the graph Gi[nyey Xy} is (d;, f', 1)-reqular with respect
to Gi—1 (where we assume E(Gy) =V ). Furthermore suppose that we have a P-partite
k-graph Gy, such that Gy[X;, ..., Xj1k_1] is (dx, fi,p)-regular with respect to Gy_y for
each 0 < j < k — 2. Suppose that d; > dy for each 2 < i < k — 1. Suppose that for each
2 <1<k, all the edges of G; are supported by G;_1.

Suppose that we are given a set Ry C Gr_1[Xo, ..., Xp_o| of size at least
k—1 (k—l)
sm ' [ dp © 7.
(=2

Let Ry_1 C Gr_1[Xk_1, ..., Xog_3] be those (k — 1)-edges which are the end-tuples of some
tight path in Gy, with one vertex in each of Xy, ..., Xog_s and whose start (k — 1)-tuple is
m R().

k-1
Then we have |Ry_1| > (1 — §)m* 1 [T} =, dlg ‘ )

4.2.6 Fractional matchings

While the clusters of a regular partition are all the same size, and are still about the
same size after we remove the reservoir set, the reservoir path may intersect the clusters
in very different amounts. When we extend the reservoir path to an almost-spanning
path, this means we need to use different numbers of vertices in the different clusters.
To guide the construction of the almost-spanning path, the following lemma returns a
fractional matching in the cluster graph such that the total weight on each cluster is
at most the fraction of vertices still to use in that cluster, and the total weight of the

fractional matching is very close to % times the fraction of vertices in total still to use.
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Lemma 4.2.19. Let H be an m-vertex k-complex, and let w: V(H) — [0, 1] be a weight
function. Given € > 0, suppose that H has at least (1 — €)m edges of size 1, and that
for each 1 < i < k — 2, each i-edge of H is contained in at least (1 — €)m edges of
size i + 1. Finally suppose that each (k — 1)-edge of H is contained in at least (% + 7)m
edges of size k, and suppose 3 ,cygyw(v) > (1 —~)m. Then there is a weight function
w* E(H(k)) — [0,1] such that for each v € V(H) we have Y5, w*(e) < w(v) and
yurle) 2 (Soevim wi) —em) - £,

eeE(H<k>

Proof. Consider the linear program

maximise ~ »_ w*(e)
ecE(H®))

subject to > w*(e) < w(v) for each v € V(H) and w*(e) > 0.
esv
The dual program has variables y : V(H) — [0, 1] such that for each e € F (H (k)) we have
>vee ¥(v) > 1, where we minimise Y-,y g ¥(v)w(v). Suppose that y is a feasible solution
to the dual program.

We order V(H) according to decreasing y. We find a k-edge of H as follows. We take
the last vy such that {v1} is a 1-edge of H. Then for each 2 < i < k in succession, we
choose the last vertex v; such that {vq,...,v;} is an i-edge of H.

For each 1 < i < k — 1, since by construction {vy,...,v;_1} is an (i — 1)-edge of H,
there are at most em choices of v; which do not give an i-edge of H, and in particular v; will
be at or after position (1 — €)m in the order. Finally since {vy,...,v5_1} is a (k — 1)-edge
of H, necessarily v, will be at position at or after (% + 7)m in the order.

Suppose that the vertex v of H at position (1 —&)m in the order satisfies y(v) = a, and
let y(vy) = b. Then we have (k — 1)a +b > X%  y(v;) > 1, where the second inequality is
since y is feasible for the dual program. On the other hand, let o denote the sum of w(u)
over vertices u equal to or earlier in the order than vy, and let 8 denote the sum of w(u)
over vertices u after vy but not after v (where v is at position (1 —e)m in the order). Then

we have 3= ey w(v)y(v) > ab+ Ba.
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We view this as an optimisation problem: given 0 < a < b < 1 such that (k—1)a+b > 1,
minimise ab + fa. Trivially we can assume the minimum occurs for (kK — 1)a +b =1, and
since k > 2 and « > 3, the unique minimum occurs when a = b = %

Thus we have 3 ,cy ) w(v)y(v) > (a+ ) - + for any feasible solution y to the dual
program, so the value of the dual program is at least (a + f3) - % By the Duality Theorem

for linear programming, the value of the primal program is the same. Finally since

w(v) € [0,1] we have Y,y w(v) < a+ B +em, and the lemma follows. O

4.2.7 Reservoir path

Definition 4.2.20 (Reservoir path). A reservoir path P with a reservoir set R C V(Pres)
is an k-uniform hypergraph with two (k—1)-tuples v and w, such that for any R’ C R, Pres

contains a tight path with the vertexr set V(Poes) \ R’ and end-tuples v and w.

Lemma 4.2.21 (Reservoir Lemma [8, Lemma 24]). Given k > 3, v > 0, and ¢’ € N, there
exist an integer ¢, such that for 0 < &’ < i% 0<d< %7, large enough ty, small enough
v,ex > 0, any functions e, fx, f : N — (0, 1] which tend to zero sufficiently fast and any
integers ty > t1 >ty the following holds a.a.s. in T = G%¥)(n,p) with p > n~'7. Suppose
G C T with 6,1(G) > (3 +7)pn, that (P;,P}) is a (to,t1, b2, ex,6(t1), fu(tr), F(82), D)
strengthened pair for G, and that t is the number of 1-cells in P;. Let R = R., 4(G; P}, P;)
be the (e, d)-reduced multicomplex of G and let S be the union of the 1-cells that are not
in R. Then given R C V(G) with |R| < vn there exists a reservoir path P in G with
reservoir set R and ends v and w, such that v,w are (¢',p,l')-good for S UV (P,s) and

[V (Pres)| < ¢|R].

We briefly sketch the proof of this lemma but omit the full proof for the purpose of
this thesis (for the proof see [§, Lemma 24]). We fix G and let R C V(G) be a set of
size r = |R| < vn. For every u € R we need a reservoir path P, with reservoir set {u}
on a constant number of vertices with end-tuples v, and w,; this is a tight path with

end-tuples v, and w, and vertex set V' (P,) such that there also exists a tight path with
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the same end-tuples and vertex set V(P,) \ {u}.

To build P, we begin with an arbitrary (k — 1)-tuple v = w, which is a reservoir path
with an empty reservoir set, and call this F. Assume we have built a reservoir path P,_;
with reservoir set R' C R of size i — 1 and end-tuples v;_; and w;_; such that V(P,_)
does not intersect R\ R’. Then, for some u € R\ R, we construct a reservoir path P,
with end-tuples v, and w, that is disjoint from P,_;. If 7 is odd we connect w;_; to v,
by a tight path (using Lemma and let w; = w, and v; = v. If 1 — 1 is even we
connect v;_; to w, by a tight path and let v; = v, and w; = w. In both cases we obtain
a reservoir path P; with reservoir set R' U {u}, end-tuples v; and w;, and continue. By
alternating between the endpoints we ensure that the end-tuples are always (¢’, p, ')-good
for V(Pl.).

Finally, let us sketch how we construct P,, a picture of which (for £ = 5) is in Figure
We begin by finding a (2k — 1)-vertex tight path with u its central vertex; this gives the
spikes u and x; in the figure. We look at all the ways to fill in the upper and lower
spike paths in the figure. Using Lemma [4.2.10 we see that from each we can get to a
positive density of end-tuples. In particular, we can get to a positive density of each of
two vertex-disjoint coarse (k — 1)-cells in the regular partition, and two applications of
Lemma [4.2.18| gives us the tuple v connecting the paths, completing the spikes. We then
use Lemma [4.2.16| repeatedly to create the paths between pairs of spikes. The only point
where we need to be a bit careful is to ensure that when creating the upper and lower
spike paths, and when connecting them, we do not reuse vertices; for this purpose we
randomly split the vertex set into three parts and use one for each of the upper spike path,

the lower spike path, and the connection.
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Figure 4.1: Reservoir structure in the case k = 5 with ¢* = ¢/(k — 1) for one vertex u with
two tight paths that both have end-tuples u and v, where one is using all vertices and the

other all but .

4.3 Proof of Theorem

Proof. Given v > 0 and k > 3, let gz > % + k be returned by Lemma |4.2.17| for
input k, 0, and ~. Similarly, let ;g7 be given by Lemma [4.2.16| with input £ and %7. Let

Varzm be returned by Corollary 4.2.15( for input v, € = i'y, s =k, k, and {;gz and let

VigzT = iqu. Let ¢ be the integer returned by Lemma [4.2.21| for input v, k and ;g5
and then let %’y > d > 0. Let tg > klvgg be sufficiently large for Lemma [4.2.21| with

input as above, ¢’ = %7 and d, for Lemma with input as above and n = %, g = %'y,
and s = 3l,g5g + 3k, and for Lemma with input k& and d.

We then choose 145 < g such that 2u, is sufficiently small for Lemma with
the given input and vgzm > 0 is small enough for Lemma with the given input.
We let migzm = 1070 mthesimzm. Next we choose ey < 1070k *pk vk nk - small
enough for Lemma with input as above and s = gz, d, Mgz, Vi, and &’ = %7,
for Lemma with input as above, and also such that 2v_*e, is small enough for

es

Lemma [4.2.16| with input as above.
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We choose functions €, fi, f : N — (0, 1] such that /g, 2v. % fi and \/f are all smaller

res

than €, small enough for each of Lemmas [4.2.16| 4.2.17] and [4.2.21| with the above inputs,

and that for each ¢, both €(¢) and f(t) are small enough for Lemma with input k&,
o= %I/res and dy = 2% Let mgzg and Tigzg be returned by Lemma for input k&, to,
s=1,¢ek & fr, f.

Given n, let p > n~'*7. Let L be a set of at most Tygzgl — 1 vertices in [n] such

that n — |E| is divisible by Tigz. Suppose that r=G® (n,p) and its induced subgraph

[ =I'— L are in the good events of Corollary 4.2.15, Lemmas [4.2.17 and [4.2.21| with inputs

as above and Lemma with input ivures and k. Suppose that I' and all its subgraphs
are (Mg, p)-upper regular, which by Lemma holds a.a.s. In addition, suppose that T’
satisfies the following: if R is a set of vertices chosen independently with probability v
from V(T'), then a.a.s. ['[R] is in the good event of Lemma[{.2.16] with input as above. Note
that this last event occurs a.a.s. for the following reason: if we first choose R randomly
then expose the edges of I', a.a.s. we obtain a set R of size (1 + %)yresn, and given this
Lemma states that a.a.s. I'[R] will be in the good event. Thus the probability of
obtaining a pair (R,I") such that I'[R] is not in the good event of Lemma is o(1),

and it follows that, for any ¢ > 0, the probability of choosing I' such that ( I'[R] has

probability at least ¢ of not being in the good event of Lemma |4.2.16 ), is o(1).

Given G C T’ with (5k,1(C~¥) > (%4—27) pn, we remove L to obtain an induced subgraph G

with Tigzal|v(G). Observe that §;_1(G) > (% + 7)pn. We apply Lemma [4.2.4/ to G, with

input as above, to obtain a (tg,tl,tQ,ék,é(tl), fr(t1), f(tQ),p)—strengthened pair (Ps, P}),

where tg < t; <ty < Tigzg Let ¢t be the number of clusters of P.; by definition we have

to <t < t;. Applying Lemma [4.2.5, we see that the (g, d)-reduced multicomplex R of G,
1/k

with respect to this strengthened pair, has at least (1 —4e, )t 1-edges, every (k — 1)-edge

of R is contained in at least

k—1 - k—1 _
(% +y—2d— 2k+252/k)t H di—(?_f) > (% +% )t H di—(f_ll)
=2 i=2
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k-edges, and every induced subcomplex of R on at least (1 —y+2d+ 2k+25i/k)t < (1 — %7)75
vertices is tightly linked.

We choose a subset R of [n] by selecting vertices uniformly at random with probabil-
ity pes. A.a.s. we have |R| = (1+0(1))uresn. By Chernoff’s inequality and the union bound,
a.a.s. for each V' which is a part of either P. or Py, we have |V N R| = (1 + 0(1)>ureS]V|.
Furthermore, for each S which is the neighbourhood in G or in T of some (k — 1)-set of
vertices, we have |S N R| = (1 + 0(1))VreS\S | (recall that any such set S has size at least
spn > n/2). Finally, by our assumption on I', we have a.a.s. that I'[R] is in the good
event of Lemma with input as above. Suppose that R is such that all of these likely
events occur.

We apply Lemma 4.2.21] with inputs as above, to find a reservoir path P in G
with reservoir set R whose ends are v, and w,., such that v, and w. are both
(i’y,p, ligzr)-good for S UV (Pys), where S is the union of all 1-cells not in R, and such
that [V (Pees)

< dlR| < Iyn.

We now aim to extend P, from its end w,, to a path Pt covering almost all
vertices of G. To begin with, let R’ denote the complex on V(R) obtained by letting ¢’
be an edge of R’ whenever there is an edge e of R such that vertices(e) = ¢’. Thus the
1-edges of R and R’ are identical, and it follows inductively from the definition of an
(€g, d)-reduced multicomplex that for each 1 <i < k — 2, each i-edge of R’ is contained in
at least (1 - 2i+25,1€/k)t (7 + 1)-edges, and each (k — 1)-edge of R’ is contained in at least
(% + %v)t k-edges. We define a weight function w on V(R') as follows. Given a cluster

Vi e V(R'), if |[Vi\ V(Pres)| < 2migzzm’, we set w(V;) = 0. Otherwise, we set

_ Vi\ V(Pres)| — QUm?
(1 - Vres)%

w(Vi)

Note that since |V; \ V(Pws)| < |Vi\ R| < (1 + 0(1))(1 — Vres) 7, this weight function takes
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values in [0, 1]. Furthermore, we have

Z w(‘/i):n_|v<Pres>|_27hmn > (1_1,}/)?5

V»L‘EV(R/) (1 - Vres)?

This is the required setup to apply Lemma {4.2.19] with input 2k+25,1€/ " and %fy. The

result is a weight function w* : E(R'®) — [0,1] such that for each V; € V(R’) we have

>esv, wh(e) < w(V;), and

n— |V(Pres>| - 27711323:2(” - 2k+3€’1€/kn

> wile) > £ w(V;) — 22 /%) > 1 (ST
ecR/(k) V;eV(R/) Vres n
> 1. "= |V (Pres)| — 31hmzzn
k n ’
(1 - Vres)?

(4.3.1)

Recall that R is tightly linked, even if an arbitrary set of %w vertices is removed. If

a cluster of P. has w-weight zero, then it contains at least ; vertices of P, so there

are at most w = Acthest < %fyt clusters with w-weight zero. In particular, the

submulticomplex of R induced by removing clusters of w-weight zero is tightly linked.

We next construct a path Pinest extending P from wy as follows. Recall that wig

is (i%p, €m>—good for S UV (Pys). To begin with, we use Corollary [4.2.15(to obtain a

collection of (k — 1)-tuples, of size at least vgzmn" !, each of which is the end-tuple of a
path of length (g7 starting at w5 whose vertices, other than those in w,g, are disjoint
from V(P,.s). Note that all these tuples are by construction outside V(P,s) and so also
outside R. By definition of a strengthened pair and (g, d)-reduced multicomplex, and
choice of ¢y and ¢, at least half of these end-tuples are contained in (k — 1)-cells of P
which are in R. In particular, by averaging there is a (k — 1)-cell of R, with clusters in a
given order, fy, such that at least a %Vdm—fraction of these end-tuples are in f; in the
given order. Let Py = Py, and let @)y denote the set of (k — 1)-tuples in fy which are ends
of paths of length ¢,g7 starting from wy := W, whose vertices outside wq are disjoint

from F,.
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We order arbitrarily the k-edges of R’ with positive w*-weight, and for each j, let g; be
a k-edge of R whose vertices are the same as the jth k-edge of R'; we let w*(g;) be given
by w* at the jth edge of R'. We now create a sequence eq, ... of k-edges of R as follows.
To begin with, we choose a tight link in R from fy; to a (k — 1)-tuple in g; using only
clusters of positive weight, and we let the first edges ey, ... be the edges of a homomorphic
copy of a minimum length tight path following this tight link. We then repeat ¢; in the

sequence

k(1 — vres) - w™(g1)
| |

Uhiwnv
times, follow a tight link to g2, and so on. When we follow a tight link, we always do so such
that the edges eq,... form a homomorphic copy of a tight path in R, using only vertices
whose weight according to w is positive; this is possible since the vertices of each g; have
weight at least w*(g;) > 0, and since the positive-weight induced submulticomplex of R is
tightly linked. Note that the number of repetitions of g; fixes the ordered (k — 1)-cell in
the boundary of ¢g; from which we follow a tight link to go, and so on.

k k
Since R is a bounded size multicomplex — it contains in total at most ¢ ‘t52> e tg’“’l) <

t%k edges of size k — the total number of edges e; used in following tight links is at most
4k3 2

We now use the following procedure repeatedly for ¢« > 1. We are given P,_; which is a
path from v, to w;_1, an ordered (k — 1)-cell f;_; of R (which is contained in e;_; and
also in e;), and a set ;1 of (k — 1)-tuples in f;_; which are ends of paths of length ¢;g71m
from w;_; whose vertices outside w;_; are disjoint from P;_;. We suppose ();_1 contains
at least a 2vgzrrfraction of the (k — 1)-tuples in f;_;. We let f; be the (k — 1)-cell in the
boundary of e; on the last k — 1 clusters of e;, with the order inherited from e;.

By Lemma[4.2.17 with input as above, and S = V(P,_1), and choice of vygz there is a
tuple w; in (Q;_; such that the following holds. Let P; denote the extension of P,_; to w; by
adding a path of length ;g7 witnessing w; € @Q;_1; let S” be the vertices V(FP;) \ V(P;_1).
There is a set @Q; of (1 — vigz)-fraction of the tuples of f;, each of which is the end of a

path of length ¢ ;g1 from w;, whose vertices outside w; are disjoint from V(P;_;) and
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from S’. Note that this is the setup required to iterate the application of Lemma [4.2.17
provided that we ensure that at no stage does S = V(P,_;) intersect any cluster of e;
in more than a (1 — ngzrm)-fraction. This is guaranteed for the following reason. Given
a cluster V; of P., if w(V;) = 0 then V; is not a vertex of any e;. If on the other hand

w(V;) > 0, then the total number of vertices used in V; is at most

ty

k(1 — vres) .

>+ﬁm.
k 14
T g5V

b 4K 2 4 2 - (
where the first term counts vertices used in following tight links, the second accounts for
the rounding up in the weighting at each edge g; containing V; and the (at most) one
vertex per g; extra since the tight path may use one more vertex in some clusters than
others (since ﬁﬂkm:ﬂ may not be an integer). Note that these first two terms are bounded
from above by a constant. Since 3, 5y, w*(g;) < w(V;), we see that the number of vertices

used in Vj is at most

k(1 — vres)

O(1)+4£210.

w(V?) = O(l)+|v}\v(Pres)|_2an% < "/j\V(Pres) —Ulm%,

and in particular at all times at least mgzrny vertices remain in V;. We let Pijmost denote
the final tight path from v, to w,p, obtained by this procedure.
Observe that, just counting repetitions of the g;, the total number of vertices ‘V(Palmost)\

V(Pres)

is at least

k(l—l/res)ﬂ * n
g git E w <€)>k(1_yres)?' (1_1/ )ﬁ
eeR/(k) o (4.3.2)

n—= ’V(PreS)| — 3Mgzn

x|

=10 — |V (Pres)| = 3Mmzran -

It follows that 7 — |V (Pamest)| < 3mazmzn. Let L = (V(G)\V(Pamost)) UL. Recall that L
is the set of at most Tjgzg! — 1 vertices we removed from G in order to guarantee the
required divisibility condition.

Our final task is to extend P,inost, re-using some vertices of R, to cover the vertices of L
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and connect the ends. Critically, observe that |L| is much smaller than |R|, and that by
assumption on I" and R, the good event of Lemma holds for I'[R], for the input given
at the start of the proof. Recall that G[R] has minimum codegree at least (% + %’y) p|R|.
Let P7. and Pj, denote the families of partitions obtained from P; and P} respectively
by reducing each cell to only those elements contained in R. By Lemma |4.2.6| and choice
of ek, €, fr and f, (P, P;,.) is a (to, t1, ta, 2vker, \/e(th), 2vuF fr, 1/ f(t2), p)-strengthened
pair for G[R]. Let R, denote the multicomplex obtained from R by replacing the cells
of P¥ with those of P*.. Note that R, is still the (e, d)-reduced multicomplex for this
strengthened pair, so it is contained in the (2v ey, d)-reduced multicomplex.

Let S_; = (. We now construct for i = 0, 1,... two disjoint tight paths P, ; and P,,; and
S; =V(P,;) UV(P,,;), where one end of P, ; is Vi and the other, v;, is (ifyures,p, Urm)-
good for S;_;, and P, ; contains ¢ vertices of L and all other vertices, except those of vy,
are in R. Similarly one end of P, ; is Wa, and the other, w;, is (iyyms, P, igrm)-good
for S;_1, and P, ; contains ¢ vertices of L, not in P, ;, and all other vertices, except those
of Wum, are in . We do this as follows. To begin with, we find a tight path P, of
length £ — 1, one of whose end tuples is Vies and the other of which, v, is contained in R.
Recall that every (k — 1)-set in V(G) is contained in at least (% + %7) p|R| edges of size k
with the extra vertex in R, so in particular we can greedily build the required path of
length k£ — 1. We construct P, o from w,y,, to wy similarly. Observe that, by definition,
both vy and wy are (iyyres,p, ligrm)-good for S_;.

Now suppose 7 > 1 and that we have constructed tight paths P,; ; and P, ,;_; as
above, whose ends v;_; and w;_; are both (iw/res,p,ﬁ)-good for S;_5, and we have
|Si—1| < 4(i — 1)ligzrg. We first extend P,;_; to a path P,; as follows. We choose any
u € L\ S;_1 and vertices vy,...,vp_o from R\ S;_; such that the tuple (u,vq,...,v5_2)
is (iw/res,p, gz + k — 1)-good for S;_;. This step always succeeds, as o(n) of these
tuples are not (iw/res,p, ligzm + k — 1)-good for S; 1, by the good event of Lemma m

assumed above. Then we can easily choose additional vertices vy_1,u1,...,u,_1 from

R\ S;_1 such that for j =1,... k there is a k-edge {u;, ..., up_1,u,v1,...,vj_1} and the
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tuples v; = (vq,...,v5-1) and u = (uy,...,ux_1) are (i’yyres,p, ligzm)-good for S;_;. For
example, there are at least (% + iv)p|R| edges {u,vy,...,v_1} in G with vy_; € R, of
which at most p|S;_1| + ifyz/respn < ip|R| have v,_; € S;_; and at most ifyurespn are such
that (vy,...,v5_1) is not (iw/res,p,fjt k — 2)-good for S;_;.

Next, with Lemma [£.2.16], we connect v;_; to u with a tight path of length {;z7r
and internal vertices not in S;_;. Note that here we added the set S’ containing the
vertices V(P ;1) \ V(Pyi-2), V(Pyi-1) \ V(Py,i—2), and {u,vy,...,v5_1} and that S| <
20,5z + 2k. To see that the conditions of Lemma are satisfied, recall that |S;_1| <
41 — 1) gz < 6Mipzmalizzman. By the choice of gz, this is at most 1|R| and there can
bet at most vzt 1-cells in R, which intersect S;_; in at least a %—fraction. We then
let P,; be the path obtained by concatenating P,; 1, the path from v;_; to u, and the
path from u via u to v;.

If there remain uncovered vertices in L, we repeat the same procedure to extend P, ;4
to P,;, where in the last step we also add the vertices from V(P,;) \ V(P,;-1) to S’
and get |S’| < 3l gz + 3k. Note that afterwards with S; = V(P,,;) UV (P,;) we have
|S;| < 4il;gzg and all conditions of P, ; and P,,; needed for the next iterations are satisfied.
We stop this procedure as soon as all vertices of L are used; we let P, denote the final P, ;
with end tuple v = v;, and P, denote either P, ; or P, ;1 (depending on whether |L|
is even or odd, respectively) with end tuple w either w; or w;_y, respectively. Finally
we make a last use of Lemma to find a tight path in R whose interior vertices are
disjoint from V(P,) U V(P,), and whose ends are ¥ and w. This is possible for the same
reasons as above. Concatenating these three tight paths, we obtain a tight path P.over
whose end tuples are Wy, and Vi, such that L C V(P ), and such that all interior
vertices of P...r are contained in L U R.

Let R’ denote the set of vertices V ( Peover) N R. By the reservoir property of P, there is
a tight path P’  whose end tuples are identical to P,s and whose vertex set is V(Pyes) \ R’

res

We replace P, with Pr

res

in Pmost to obtain a tight path P}y Whose end tuples are

identical to those of Pyness and whose vertex set is V(Pamost) \ B = V(G) \ (LU R').
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Concatenating P« and Peover, We obtain the desired tight Hamilton cycle in G. O
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CHAPTER 5

1-INDEPENDENT PERCOLATION ON Z? x Ky

The main aim of this chapter is to prove Theorems|1.4.8] [1.4.9 [1.4.11|and [1.4.12] We recall

the following definitions and then restate the theorems. Let H = (V| E) be a graph. Given
a probability measure ;1 on subsets of E, a pu-random graph H,, is a random spanning
subgraph of H whose edge-set is chosen randomly from subsets of E according to the law
given by p. A random graph model H), is 1-independent if, for vertex-disjoint subsets
A, B C E(H), the random variables H, N A and H, N B are independent. In this case,
we call the associated probability measure p a 1-independent measure (1-imp) on H. For
p € [0,1], let My, and M >,, be the sets of 1-independent measures on H for which
cach edge of H is present in H,, with probability exactly p and with probability at least p,
respectively. Given a 1-ipm g on an infinite connected graph H, we say that p percolates if
H,, almost surely (i.e. with probability 1) contains an infinite connected component. Given
an infinite connected graph H, we define the 1-independent critical percolation probability
for H to be p1.(H) :=1inf{p > 0: Vu € My >,(H), u percolates}. Moreover, we define

the long paths critical probability p, 1p(H) of H, to be given by

pip(H) :=inf{p € [0,1]: Vu e M,;,, ¥Vl € N, P[H, contains a path of length ¢] > 0} .

In this chapter we will prove Theorems |1.4.8/ and [1.4.9|

Theorem 1.4.8. The following hold:
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(1) If p > 4 — 2v/3 is fized, then there exists N € N such that p . (Z* x Ky) < p.
(ii) For everyn €N, p1.(Z* x K,,) > 4 — 2/3.
In particular, we have lim,,_, . plyc(Z2 x K,)=4-— 243 =0.5358... .

Theorem 1.4.9. lim,, oo p1p (Z X K,,)) =4 — 2/3.

We also prove Theorems|1.4.11}and [1.4.12| which are stronger versions of these theorems

where K, is replaced by a sequence of weakly pseudorandom graphs. Recall that, for a

sequence ¢ = g(n) in [0, 1], a sequence of n-vertex graphs (G, )nen is weakly g-pseudorandom

max {

Theorem 1.4.11. Let ¢ = q(n) satisfy ng(n) > logn. Then for any sequence (Gp)nen of

if

U}”

(GulU)) ~ '

: U C V(Gn)} = o(qn?).

n-vertex graphs which is weakly q-pseudorandom, we have lim,, ., p1 (Z* x G,,) = 4 — 2V/3.

Theorem 1.4.12. Let ¢ = q(n) satisfy ng(n) > logn. Then for any sequence (Gp)nen of

n-vertex graphs which is weakly q-pseudorandom, we have lim,, o, py1p(Z x Gy,) = 4—2+/3.

The remainder of this chapter is organised as follows. In the next section we explain
some basic notation. The key step in the proof of our main results in this chapter,
Theorem , is proved in Section ; it establishes that p = 4 — 2v/3 is the threshold
for ensuring there is a high probability in any 1-independent model of finding a path
between the largest components in two disjoint copies of K, joined by a matching. The

argument in a sense captures ‘what makes the 4 — 2v/3 measure of [36, 46] tick’. We

then use Theorem [5.2.1|in Section to prove Theorems [1.4.8] {1.4.9] [1.4.11) and [1.4.12]

Our component evolution results, Proposition [1.4.16[ and Theorem are proved in

Section [£.4]
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5.1 Notation

Given n € N we write [n] for the discrete interval {1,2,...,n}. We write S for the
collection of all unordered pairs from a set S. We use standard graph-theoretic notation.
Given a graph H, we use V = V(H) and E = E(H) to refer to its vertex-set and edge-set
respectively, and write e(H ) for the size of E(H). Given X C V| we write H[X] for the
subgraph of H induced by X, i.e. the graph (X, E(H) N X®). For disjoint subsets X,Y
of V' we also write H[X,Y] for the bipartite subgraph of H induced by X LY, that is the
graph (X UY,{zy€ E(H): x € X,y € Y}). We denote by K, the complete graph on n
vertices, K, = ([n], [n]®).

The Cartesian product of two graphs G; and Gy is the graph G x Go with V(G X
G2) = {(v1,v2) : v € V(Gh),v2 € V(G2)} and E(Gy x G3) consisting of all pairs
{(u1,u2), (v1,v9)} with either u; = vy € V(G1) and ugvy € E(G3) or uyvy € E(G4) and
s = v9 € V(Gq). In particular if Gy = Kb, i.e. a single edge, then G; X Gy is the bunkbed
graph of G5 consisting of two disjoint copies of Gg, the left copy {1} x G5 and the right
copy {2} x G, together with a perfect matching joining each vertex (1,v) in the left copy

to its image (2,v) in the right copy.

KQ K3 KQ X K3

Figure 5.1: The Cartesian product Ky x K3

Finally we use the standard Landau notation for asymptotic behaviour: given functions
fig: N—= R, we write f = O(g) if |f(n)| < C|g(n)| for some C' > 0 and all n sufficiently
large, and f = o(g) if lim, o |f(n)/g(n)] = 0. We use f = Q(g) and f = w(g) to
denote g = O(f) and g = o(f), respectively. We also sometimes use f < g and f > g
as a shorthand for f = o(g) and f = w(g), respectively. Given a sequence of events
(En),ey in some probability space, we say that £, occurs with high probability (whp) if
P[E, =1-o0o(1).

155



5.2 When left meets right: joining the largest com-
ponents on either side of Ky x GG,

Let (G,)nen be a sequence of weakly g-pseudorandom n-vertex graphs where gn > logn.
Consider the Cartesian product H = K3 X G,,. Given u € M, ,(H), let ‘Left meets Right’
denote the event that the y-random graph H, contains a connected component containing
both strictly more than half of the vertices in {1} x [n] and strictly more than half
of the vertices in {2} x [n]. Our main result in this section is showing that the event
‘Left meets Right’ undergoes a sharp transition at p = 4 — 24/3, in the sense that for
p < 4 —24/3 it is possible to construct 1-independent measures p € M, ,(H) such that
whp the event ‘Left meets Right’ does not occur, while for p > 4 — 24/3 it occurs whp

regardless of the choice of .

Theorem 5.2.1. (i) Let p > 4 — 2v/3 be fived. Then for every u € M, ,(H),
P [Left meets Right] =1 — o(1).
(ii) Let & <p <4 —2V/3 be fized. Then there exists p € My >,(H) such that
P [Left meets Right] = o(1).
For p € (3,1], let 8 = 6(p) be given by
14++v2p—1 '

0(p) = 5

The quantity 6 will play an important role in the proof of both parts of Theorem [5.2.1]

Observe that 6 € [p, 1] and satisfies
> +(1—-0)72=p and 20(1 —6) =1—p.

The latter of these relations and the resolution of the quadratic inequality p* — 8p +4 > 0
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for p € [0, 1] can be used to show
O0vp<1l-p if and only if p<4—2V3. (5.2.1)

Our proofs will also make extensive use of the following Chernoff bound: given a binomial

random variable X ~ Binom(N,p) and € € (0,1), we have

52Np

P[|X — Np| > eNp| <2e” 5 .

(5.2.2)

5.2.1 Lower bound construction: proof of Theorem |5.2.1|(ii)|

For each 1/2 < p < 4 — 24/3, we construct a state-based measure pp € M, (Ky x Gy),
based on the ideas behind constructions in [36, 46]. Assume without loss of generality that
V(G,) = [n]. We randomly assign to each vertex (i,v) € [2] X [n] a state S, € {0, 1,x},

independently of all the other vertices, with
(a) Saw = 1 with probability § and S ) = 0 otherwise;
(b) Sz = 0 with probability \/p and S,y = % otherwise.

We then include edges of H = K, x G, in our random subgraph H,,, according to the

following rules:
(i) an edge {(1,u),(1,v)} is included if S1,u) = S1,0);
(ii) an edge {(2,u), (2,v)} is included if S = S(2,0) = 0;
(iii) an edge {(1,v),(2,v)} is included if S(z.) = % or if S(1,5) = S(2,0) = 0.

See Fig. for an illustration of the construction. Since ur is state-based, it is clearly a
l-ipm. Our state distributions (a)—(b) imply that every edge in the left copy of G,, is open
(included in our random graph) with probability 6% + (1 — 6)* = p (by the edge-rule (i)

above), and that every edge in the right copy of G, is open with probability (,/p)* = p
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@
i / State 0

*— / ° State *

State 1 State 0

{1} x [n] {2} > [n]

Figure 5.2: The Lower bound construction

(by the edge-rule (ii) above). On the other hand, (by the edge-rule (iii) above) an edge
{(1,v),(2,v)} from the left copy to the right copy is closed if and only if S ,) =1 and
S2,0) = 0, which by occurs with probability 6,/p <1 — p provided p < 4 — 2/3.
Thus up € My >p(K2 x G,,) as claimed.

All that remains to show is that for this measure the event ‘Left meets Right’ occurs
with probability o(1) in the random graph H,,.. Observe that the construction of up
ensures there is no path in Hj,, from the vertices in {1} x [n] in state 1 to the vertices in

{2} x [n] in state 0. Indeed the only edges of H,, in which the endpoints are in different

HE
states are those edges containing a vertex (2,v) in state S(2,,) = *. Since by construction

vertices in state x have degree exactly one in H,, ., it follows that there is no component

pr
of H,, containing both vertices in state 1 and vertices in state 0.

Since the expected number of vertices in {1} x [n] in state 1 is On > pn and the
expected number of vertices in {2} x [n] in state 0 is \/pn > pn, and since states are
assigned independently, it follows from that for all fixed p with 1/2 < p < 4 —2/3,
with probability 1 — o(1) there is no connected component in H,,, containing at least
half of the vertices of both {1} x [n] and {2} X [n]. Thus ‘Left meets Right’ occurs with
probability o(1) for H

urs as claimed. O
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5.2.2 Upper bound: proof of Theorem [5.2.1f(i)!

Suppose p > 4 — 2y/3 is fixed. We shall show that for n sufficiently large this implies
that for any p € M, ,(H), whp ‘Left meets Right’ occurs. Our strategy for doing this
is as follows: first of all we show in Lemma m that, for each i € [2], in any fixed
tripartition LZ_, V; of {i} x [n], whp each of the parts V; contains roughly the expected
number of edges of H,, i.e. (p + o(1))e(H[V;]). This immediately implies that whp there
is a component C, of H, containing strictly more than half of the vertices of {1} x [n],
and another component Cr containing at least half of the vertices of {2} x [n].

If these two components C, and Cg are not the same, then we colour vertices of [2] X [n]
Green if they lie in a small component of H,[{i} x [n]] for some i € [2], and otherwise
Red if they are part of C, and Blue if not (so in particular vertices in Cr are coloured
Blue). This gives rise to a partition of [n] into 9 sets V. ., corresponding to the possible
ordered colour pairs assigned to the vertex pairs ((1,v),(2,v)), v € [n]. Since whp at

least (p — o(1))n of the n edges from {1} x [n] to {2} x [n] are present in H,, we can

s

combine the probabilistic information from Lemma to show that whp the relative

sizes of the V. almost satisfy a certain system S = S(p) of inequalities (5.2.7)) to (5.2.10)

(or more precisely that we can extract from the |V.~|/n a solution to S(p,) for some p, a
little smaller than p). For p > 4 — 2v/3 and n sufficiently large, we are able to show this
leads to a contradiction (Lemma [5.2.7)). Having outlined our proof strategy, we now fill
in the details. We shall use the following path-decomposition theorem due to Dean and

Kouider.

Theorem 5.2.2 (Dean and Kouider [37]). Let G be an n-vertex graph. Then there exists
a set P of edge-disjoint paths in G such that |P| < % and Upep E(P) = E(G).

Recall that a matching in a graph is a set of vertex-disjoint edges.

Corollary 5.2.3. Let ¢ > 0 and let G be an n-vertex graph with e(G) > 2n/e. Then there

exists a set M of edge-disjoint matchings in G such that
(M1) M| < 2n,
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(M2) |E(G) \ Uprem M| < 2ee(G), and
(M3) [M] > =4S for every M € M.

Proof. By Theorem [5.2.2] there exists a set P of edge-disjoint paths in G such that
[Pl < 2 and E(G) = Upep E(P). Let Py = {P € P: e(P) < 2e4G) } Let M be the
set of matchings obtained by decomposing each path in P\ Py into two matchings. We
have |[M| < 2|P| < 2n. Moreover, each M € M satisfies | M| > Lse }] > = ) Finally,

|E(G) \ Uprem E(M)| < 2. 2:49 < 22¢(Q). O

Matchings are useful in a 1-independent context since the states of their edges (present

or absent) are independent. This is shown formally in the following proposition.

Proposition 5.2.4. Let G be an n-vertex graph, p € [0,1], and p € My ,(G). Let M be a
matching in G and for each e € M, let X, =1 if e € E(G,) and X. = 0 otherwise. Then

{X.: e € M} is a set of independent random variables.

Proof. Let M' = {ey,...,e;} C M and for each i € [t], let z; € {0, 1}. It suffices to show

that

ﬂ{Xez—.iE}] H]P’ e = Ti .

i€t] i€(t]

This follows immediately from the fact that for each 2 < j <t

=P ﬂ {Xe, =i}

1€[j—1]

P O {Xei = xz -P [Xej = J}j} ,
i€

€yl

where we have used that p is a 1-independent probability measure and thus the random

variables {ei,...,e;_1} N E(G,) and {e;} N E£(G,,) are independent. O

We can thus combine Corollary with a Chernoff bound to show the number of

edges in a 1-independent model is concentrated around its mean.

Lemma 5.2.5. Let ¢ > 0 and p € (0,1]. Let G be an n-vertex graph with e(G) > 2n/e
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and let j € My ,(G). Then

Ple(G,) < (1 — 3¢)pe(G)] < dnexp (-83]9;5@) .

Proof. We apply Corollary to obtain a set M of edge-disjoint matchings in G such

that properties |(M1)| to |(M3)| hold. For every M € M, we have |M| > 862(5). Thus by
(5.2.2) and 1-independence,

P[e(Gy 1 M) < (1= )p|M]] < 2exp (—537’667@) |

By a union bound, we have

3pe(G

Ple(G, N M) > (1—¢e)p|M]| for all M € M] > 1 — 2|M|exp (—”’5”)
n
3
S 1 dnexp <_€p€<0>> |

61

. 1. 53pe(G)
Thus with probability at least 1 — 4n exp <_T) we have

e(Gu) 2 ZM(l —e)p|M| = (1 —e)p(1 - 2)e(G) = (1 — 3e)pe(G).

This completes the proof. n

Lemma 5.2.6. Let p € (3,1], and let ¢ = (p) > 0 be fivred and sufficiently small. Let G

be an n-vertex graph satisfying

e(@v)) - %L

<
5 | =

2
anz (5.2.3)

for allU C V(G), where q(n) > 8. Consider a fized tripartition V(G) = Vi U Vo U V5.
Then for every i € My ,(G), the following hold whp:

‘ 2

(P1) e(GL[Vi]) > pgiE — eqn? for every i € [3].

(P2) e(G,[Vi, Vi]) > pq |Vi| |Vi]| — eqn?® for all 1 <i < j <3.
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(P3) For every i € [3] with |V;| > e'/*n, G,[Vi] contains a unique largest connected

component C; of order at least (6 — e'/*)|Vj|.

(P4) For all 1 <i < j <3 with |Vj|,|V;| > e'/*n, there exists a path from C; to C; in

GulVi, Vil

(P5) There is a unique largest connected component C in G,, such that |C| > (6 —3&Y*)n

and for each i € [3] with |Vi| > e'/*n, C; C C.

Proof. We first show that holds whp. Fix i € [3]. If |Vj| < y/n, then trivially
holds. Hence we assume that |V;| > y/en. By our pseudorandomness assumption ([5.2.3))

on G we have e(G[V}]) > q@ — £qn? (which for n sufficiently large is greater than 2 so

that we can apply Lemma |5.2.5)). Thus we have

Vi[?

P |e(GulVi]) < pr g — caqn| < P [e(GulVi) < pe(GIVi) — San’]

<P (Gl < (1-5) pelcivi)]

€<G[V]>>> — dnexp (—Q(qn)) = o(1),

n

< 4nexp (—Q (

where the inequality in the third line follows from Lemma [5.2.5] So [(P1)| holds whp.

Next we show that holds whp. Fix 1 <i<j <3.If |V}| <enor |V} <en, then
trivially holds. Hence we may assume that |V;|,|V;| > en. By (5.2.3) applied three
times (to V;, V; and V; UV;), we have e(G[V;,V}]) > q|Vi| |V;| — B%qn? In particular,

e(G[V;, Vj]) > %qnz, which for n sufficiently large is greater than 2?" We now apply

Lemma to show that [(P2)| holds whp. We have

P [e(GulVi, Vil) < pa IVl V3] — 2qn?] < P [e(GulVi, Vi]) < pelGIVi Vi) = Sa?]

6(G[V¢,Vj])>>

n

<P [, 1.1 < (1= §) et )] < newp (-0

=4dnexp (—Q(qn)) = o(1).

So |(P2)[ holds whp.
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Now we show that |(P1)| implies Assume that holds. Fix i € [3] and assume

that |V;| > e/*n. Let C C V; be a largest connected component in G,[V;] and suppose for

a contradiction that |C| < (0 — e'/*) |Vj|.

[Vi]
2

If|C] < “g', then there is a partition of V; into at most 4 sets, each of size at most
such that every connected component of G ,[V;] is entirely contained in one of the sets
of the partition. Indeed, such a partition can be obtained by starting with the partition
where every connected component of G,,[V;] forms its own part and then as long as there
are two parts of size at most % merging them into a single part. Since for any quadruple
(21, 29, w3, 74) With 3 > 2; > 0 and Y, 2; = 1 we have ¥ ;(z;)* < 1, it follows from |(P1)

and ((5.2.3) that

Vil? Vil®
pq|2| —eqn® < e(G,[Vi]) < q|4| + e%qn®.

Rearranging terms, this gives

[Vi]
5 -

which is a contradiction for € chosen sufficiently small. Thus we may assume |C| >

Now by |(P1)[and (5.2.3)) again, we have

pal "k — ean? < e(GuIV) < €(GulC) + e(Gul1:\ O

C] (Vil=1c)? | &
<q 5 5 + 2qn-

2
+4q

Dividing by q@ and using |V;| > £'/4n, we deduce that

p—3ye < <||‘(“/:||>2 + <1 — ||‘(“/:||>2. (5.2.4)

Since # + x? + (1 — 2)? is an increasing function in the interval [3,1], 3 |V;| < |C| <
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(6 — Y1) |Vj|, and 62 + (1 — )% = p, we have

2 2
() + (1) =o-emrrasosery

=024 (1 —0)% — 2420 — 1) +2/e < p — 4/E,

contradicting (5.2.4). Hence |C| > (0 — '/4)|Vi|. Note that since 6 — £'/* > 1/2 (for
e = €(p) chosen sufficiently small), C' is the unique largest component in G,[V;]. So
holds whp.

Next we show that [(P2)] and [[P3)] together imply [(P4)] Assume that [P2)| and [[P3)]

hold. Fix 1 <i < j < 3 and assume that |V, |V;| > e'/4n. Suppose for a contradiction
that there is no path in G,[V;,V}| from C; to C;. Let A; C V; and A; C V; be the sets
of vertices which cannot be reached by a path in G,[V;,V}] from C; and C;, respectively.
Since there is no path from C; to C;, we must have C; C A; and C; C A;. By by the
definition of A; and A;, and by (applied in A;, A;, Vi \ A;, V;\ A;, AU (V3 \ 4A))
and A; U (V; \ 4;)), we have

pa Vil [V — eqn® < e(Gu[Vi, Vi]) < e(GulAi, Vi \ Aj]) + e(GulVi \ A, Aj])

s (5.2.5)
< ALV = 145D + a4 (Vi = [AD + - gnt.
Let z; = “é;" and z; = ||A7]7“ By |(P3)} z; > ||‘C/Z"| >0 — gt/ > 5 and similarly 2; > 1. From

(5.2.5) we get by dividing by ¢ |V;| |V;| and using |V;|,|V;| > e¥/*n, that
1

where the last inequality follows since (x,y) — = + y — 2xy is non-increasing in both z

and y for z,y > 1. Note that (5.2.6) gives a contradiction for e sufficiently small since

p > 3. So|(P4) holds whp.
Finally, we observe that |(P5)| follows directly from |(P3)|and |(P4)! O

Let S(p) denote the collection of 3 x 3 matrices A with non-negative entries A;; > 0,
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i,j € [3], satisfying the following inequalities:

i?j

1
Alj Z 5 ZA” \V/] € [3] and

| (5.2.8)
Ail Z 52141] Vi € [3],
A+ A 20 (S 4) viell (5:29)

The key step in our proof of Theorem [5.2.1| will be, assuming that ‘Left meets Right’ does
not occur whp, to use Lemma to exhibit a partition of [n] into 9 parts whose relative
sizes can be used to find a solution to S(p,), for some p, such that 4 — 2v/3 < p, < p. We

will then be able to use the following lemma to derive a contradiction.
Lemma 5.2.7. For4—2y/3<p<1, S(p) = @.
Proof. Suppose not and let A € S(p). Note that the bound for 3, ; A;; in (5.2.7) implies
Ay + Ay <1—p. (5.2.11)
By transpose-symmetry of S(p) and (5.2.7]), we may assume without loss of generality that
p

w = AQl + A31 + A32 + A33 Z 5 (5212)

Note that if >°; As; > %, then, since x — 2% + (1 — x)? is an increasing function of x in

the interval [3,1] and since As; > 3 3; As; by (5.2.8),

As )2 < A )2 ( As )2 ( At )2 ) 2
+ < +(1- <0+ (1—-0)"=p,
<Zj A3j Zj A3j Zj ABj Zj A3j ( ) P
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contradicting (5.2.10)). Hence
> Ay < ——. (5.2.13)

By an analogous argument, we have >, A;; < % and thus

1-6
A S Ap 4 Ap < ——An. (5.2.14)

Now, by (5.2.13) we have w < Ay + %. By 1) we have that

o < VAP

= \/]_? - AH — Agl.

Substituting this expression into our upper bound on w, we get

(1-0)Ay Ap n \/<A11)2 + (A21)2'

w J— J—

- 6 0 0P
_Q=0y Ay VAW
0 0

0P

is increasing in y in that

For Ay fixed, the continuous function fa,, (y) = is convex

(1-0) | 1
0 0v/py/ (A1 /y)?+1
interval. By (5.2.14)), 0 < Ay < 1%ﬂAH, which together with the convexity of fa,, gives:

in (0,+400) as its derivative f) (y) = —

w < max {fAu (0)7 fAll (?A11>}

< max<{ —

2 1 1-6 2
An  An 1-10 A An A + (T>
0 T T\ R
N/l VD

(5 (351 40-0
{13285 ).

where the last inequality follows from the upper bound ([5.2.11]) on A;;. We now claim
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that this contradicts ([5.2.12)), i.e. that

{152 (L) 122 <

Note that p — 22 (ﬁ — 1) — 2 and p — 2(1 — ) — £ are both strictly decreasing

functions (as @ is increasing in p). Hence to prove the claim above, it suffices to show that

1\3.\%

for p = 4—2+/3, we have % (% — 1) < %and %(1—9) <Z Letp= 4—2+/3. Note that

(V3-1?=4-2V3and (2—V3)>=7—-4V3. Hence /p=+v3—-1, y2p—1=2-/3,
and 6 = (3 — v/3)/2. Now it is easy to check that

1 0
;%—1:1—9:(1_m

V3-—1
2 b

N3

which completes the proof. O]
We are now ready to complete the proof of Theorem [}

Proof. Let p >4 — 24/3 be fixed. Let ¢ = £(p) > 0 be fixed and chosen sufficiently small.
Let p, = % (4 — 2\/§+p). Finally, let n be sufficiently large so that for G = G,, the
pseudorandomness assumption holds, and let u € M, ,(H), where H = Ky X G,

For i € [2], let G|, = H,[{i} x [n]]. For i,j € [2] with i # j, let &; be the event that
for any partition ({i} x V1)U ({i} x Vo) U ({i} x V3) of {i} x [n] such that {i} x V; and
{i} x V3 are each a union of components of order at least £'/*n in G!,, we have that G/,
satisfies to of Lemma [5.2.6) with {j} x Vi, {j} x Vs, {j} x V3 playing the roles
of V1, Vi, V3. Given GL and ¢ fixed, the number of such partitions is at most 37V = O(1).
Hence Lemma implies that &;; holds whp.

Further, by 1-independence and , whp there are at least (p — )n edges in the
matching H,[{1} x [n], {2} % [n]]. Let Egoa be the event that £, and &; both occur and
that in addition e(H,[{1} x [n], {2} x [n]]) > (p — €)n. Then Ezpoq holds whp. We claim
that if Eyp0q holds, then so does ‘Left meets Right’ (which implies the statement of the

theorem).
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Suppose for a contradiction that £goq holds but ‘Left meets Right” does not. For
i € [2], let C* be the unique largest connected component in GL (this exist by [(P5)]). Let
Uy WUy U U3 = [n] and Wy U Wy U W3 = [n] be such that the following hold.

(a) {1} x Uy is the union of C'" and all connected components in G, of order at least

e/4n that can be reached from C* by a path in H,.
(b) {1} x Uy is the union of all other connected components in G, of order at least et/4n.
(¢) {1} x Us is the union of all connected components of order less than £'/4n in G,.

(d) {2} x Wy is the union of all connected components in G2 of order at least e'/*n that

cannot be reached from C' by a path in H,,.

(e) {2} x Wy is the union of all connected components in G2 of order at least £'/*n that

can be reached from C' by a path in H,,.
(f) {2} x W3 is the union of all connected components in G2 of order less than e/*n.

We can think of these partitions as giving us a 3-colouring of the vertices in V' (H): a vertex
in {i} x [n] is coloured red if it belongs to a large component in G!, and can be reached
from C' in H,, blue if it belongs to a large component in GL and cannot be reached
by C* in H,,, and green if it belongs to a small component in fo The key properties of
this colouring are that the large components C' and C* in G, and G, are coloured red
and blue respectively, that there are no edges from red vertices to blue vertices, and that
the green vertices span few edges in GL, i € [2]. Our 3-colouring of V(H) gives rise to a
partition of [n] into 9 sets in a natural way, by considering the possible colour pairs for

((1,v),(2,v)), v € [n]. This partition is illustrated in Fig. 5.3
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{2} % [n]
Figure 5.3: The partition of V(H)

We now investigate the relative sizes of this 9-partition. For ,j € [3], let V;; = U;NW;.
Since there is no path from C*! to C? in H,, there are no edges present in the bipartite
graphs H,[{1} x Vi1,{2} x V41| and H,[{1} X Vag, {2} X Vas]. Since Ezooa holds, there are

at least (p — e)n edges in H,[{1} x [n], {2} x [n]] in total, which implies
Vir| + [Vao| < (1 —p +¢)n. (5.2.15)

Moreover, Y, ;|V;j| = n. Hence

i |

Vil = Vil = [Vae| = (p — &) (5.2.16)
i

For j € [3], if |W;| > &Y4n, we have by |[(P3)| and |(P5)| that there is a unique largest

connected component C} in G [{1} x W;], and that this component satisfies C} C C*
and [C}| > (0 — '/*)|W;|, which for e = £(p) chosen sufficiently small is greater than
$|W;|. Translating this in terms of our 9-partition, we have that for all j € [3] such that

> Vij = el/in

1
Vil > 5 D1Vl (5.2.17)
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holds. By a symmetric argument, for every i € [3] such that >, V;; > e'/*n we have
1
[Vir| > 52 |Viil - (5.2.18)
J

Let j € [3]. Note that G,[Us] contains only connected components of size at most e'/*n.

cl/4
2

These components can be covered by at most 61% sets, each of order at least % and at

most £'/4n. By (5.2.3) (which holds by our choice of n), each of these sets contains at most

e1/2p2
2

have e(G}[V3;]) < 2¢/*gn®. By |(P1){and the pseudorandomness assumption (5.2.3), we

have

+ %an < ¢e'/?n? edges. Hence we have B(G}L[Ug]) < 2eM%gn?. Since Vs; C Us, we

w;|?
pal I qn® < e(GLI{1) < W)

= e(G[{1} x Vi;]) + e(G[{1} x Vy;]) + e(G[{1} x Vy)])
< Vi q|V2j|2 Vul? | vyl

2
2e1/4gn? & 2 14,02
_q2—|— 2+8qn+2qn<q2+q2+3€qn
Hence, for every j € [3] and e chosen sufficiently small,
2
Vil + [V Zp(ZIVUI) — 7e'tn?. (5.2.19)
Similarly, for every i € [3],
2
Val* + [Veel* 2 p (Z ’Vij|) — 7ettn?, (5.2.20)
J

Let A be the 3 x 3 matrix with entries

Vij it |V
7|7’L|’ lf | 7,]’ >€1/9n,

0, otherwise.

We claim that, provided € = ¢(p) was chosen sufficiently small, A € S(p,). Indeed, A
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clearly has nonnegative entries summing up to at most 1, thus the second inequality
of is satisfied, while the first inequality (with p, instead of p) follows from (5.2.16)
and an appropriately small choice of ¢ (more specifically, we need p, < p —¢e — 7el/ 9.

Next, consider j € [3]. If ;|Vi| > €'/4n, then by we have Aj; > £, Ay
(regardless of whether some of the Vj;, i € [3] have size less than £'/n). Other the other
hand if 3, |V;i| < £'/*n, then Ayj = Ay; = Azj = 0. In either case, Ay; > %Zi A;j holds. By
a symmetric argument we obtain that A;; > %Zj A;; holds for every ¢ € [3]. Thus
is satisfied by A.

Finally, pick j € [3]. If |Via| > €'/%n, then by which we have just established and
the definition of A;;, we have |V;;| > £'/%n also. In this case and an appropriately
small choice of ¢ ensure that (A;;)% + (Az;)% > p. (X; A;;)°. On the other hand, suppose
|Via| < €¥n. If |Vj1| < €'/°n, then by the inequality (A;)? 4 (Az;)? > pu (X Aiy)”
holds trivially, since the right hand-side is zero. So suppose that |Vi;| > &'/%n > |Viy].

Then (5.2.19), and p > 1/2 imply that

Val* > [Vaal? = Vil (2p Vil = (1= p) [Vil) = p (V] + [Vis)” = 702

Together with an appropriately small choice of ¢, this ensures (A;;)2+ (Ag;)? > pe (3 Aij)
again. Thus in every case is satisfied by A (with p, instead of p). A symmetric
argument shows A satisfies for p, as well.

Thus A € S(p,) as claimed. However, since p, > 4 — 2y/3, Lemma implies that
S(ps) = @, a contradiction. Thus the event E,ooq, which holds whp, does imply the event

‘Left meets Right’, proving the theorem. O]

5.3 Proof of Theorems [1.4.8], 1.4.9, [1.4.11| and [1.4.12

Our main theorems are all proved via a renormalisation argument combined with The-

orem Given two graphs G and H, we may view the Cartesian product H x GG as a
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kind of ‘augmented’ version of H, and use any 1l-independent random graph (H x G),, on
H x GG to construct a new 1l-independent random graph H, on H as follows: given an edge
uwv € E(H), we let uv be present in H, if in the restriction of (H x G),, to {u,v} x V(G)
there is a connected component containing strictly more than half of the vertices in each
of {u} x V(G) and {v} x V(G).

That H, is a l-independent random graph follows immediately from the fact that
(H x G), was l-independent: the states of edges inside vertex-disjoint edge-sets in H, are
determined by the states of edges inside vertex-disjoint edge sets in (H x G),,. Further, any
path in H, can be ‘lifted” up to a path in (H x G), of equal or greater length: if uv, vw
are present in H,,, then there exist connected subgraphs C,, and C,, in (H x G), with
Cuv € {u, v} xV(G), Cppy C {v,w} xV(G), CpyN({u} x V(G)) and Cyy N ({w} x V(G))
both non-empty, and C,,, C, ., both containing strictly more than half of the vertices in
{v} x V(G) (and hence having non-empty intersection).

Now the likelihood of an edge uv being present in H,, is exactly the probability of
the event corresponding to ‘Left meets Right’ occurring in the restriction of (H x G),,
to the vertex-set {u,v} x V(G) (which induces a copy of Ky x G in H x (). Thus for
p > 4 — 2v/3 and a suitable choice of G, we can use Theorem M(l) to ensure that each
edge in the 1-independent random graph H,, is present with probability 1 — o(1). With
such a high edge probability, we can then establish the almost sure existence of infinite
components or long paths in H, in a straightforward way — either by using results in the
literature, or by direct argument.

On the other hand if p < 4 — 2v/3, we can use ideas from the lower bound construction
in the proof of Theorem [5.2.1](ii), which date back to [36, 46], in order to construct a
1-independent random subgraph G of H x K, that fails to percolate (or, if H = 7Z, that
only contain paths of length O(n)). For the convenience of the reader, we sketch below
how this works in the special case H = Z2.

Take p = 4 — 2v/3, and set 6 = (1 + /2p — 1)/2. Independently assign to each vertex

(z,y,2) € Z* x V(K,) a random state S, . € {0,1,%} as follows:
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o if [[(z,9)]|c =0 mod 6, set S, . = 1 with probability 1;

o if |(z,9)]lc =1 mod 6, set S;, . =1 with probability 6, and 0 otherwise;

o if [[(#,9)|lc =2 mod 6, set S,,. = 0 with probability \/p, and x otherwise;
o if [(z,9)]lc =3 mod 6, set S, , . = 0 with probability 1;

o if |(z,9)]loc =4 mod 6, set S;, . = 0 with probability §, and 1 otherwise;

o if |(z,y)]|oc =5 mod 6, set S, . = 1 with probability ,/p, and % otherwise.

We now use these random states to build a 1-independent random graph G as follows.
Given an edge{(z1,v1, 21), (22, Y2, 22)} of H x K,,, include it in G if one of the following
holds:

Sm,yl,n = sz,yz,Zz 7£ *
o @ y)lleo < 122, 92)|l00 and Siy s 20 = *.

Then the choice of probabilities for our random states ensure each edge is 0penE| with
probability at least p = 4 — 2v/3, and our edge rules further imply that every connected
component C' in G meets at most four consecutive cylinders C, := {(x,y,2) : ||(x,y)||c =
r}, r € Zsg since, as is easily checked, a connected component in G cannot both contain
a vertex assigned state 0 and a vertex assigned state 1 — we leave this as an exercise to
the reader, and refer them to [36, Corollary 24] for a proof of this fact in a more general
setting. In particular, we have that G does not percolate.

Having thus outlined our proof ideas, we now fill in the details. First we formalise our

renormalisation argument with the following lemma.

Lemma 5.3.1 (Renormalisation lemma). Let H be a graph. Let ¢ = q(n) satisfy ng(n) >
logn, and let (Gp)nen be a sequence of n-vertex graphs which is weakly q-pseudorandom.

Then for every e > 0 and every p > 4 — 2v/3 fized, there exists no such that for all n > ny,

Here we say that an edge is open if it is included in the random graph corresponding to the measure.
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G =Gy and p € My >,(H x G) there exists v € My >1_.(H) and a coupling between H,,
and (H x G>u such that there exists a path from u to v in H, only if there exists a path
from {u} x V(G) to {v} x V(G) in (Hx G),.

Proof. Let p > 4 —2v/3 and ¢ > 0 be fixed. By Theorem , there exists ng € N
such that for all n > ng and all p € M, 5,(Ky x G,,), the p-probability of the event
‘Left meets Right’ is at least 1 —e. For n > ng, G = G, and pu € M >,(H x G), define
a random graph model H, from (H x G), as follows: for each edge uwv € E(H), we
add wv to H, if and only if there is a connected component in (H x G),[{u, v} x V(G,)]
containing strictly more than half of the vertices in {u} x V(G,,) and strictly more than half
of the vertices {v} x V(G,). The model H,, is clearly 1-independent, has edge-probability
at least 1 — ¢, and has the property that any path in H, can be lifted up to a path in

(H x G),,. This proves the Lemma. O

Recall that 2-neighbour bootstrap percolation on a graph G is a discrete-time process
defined as follows. At time t = 0, an initial set of infected vertices A = Ay is given. At every
time t > 1, every vertex of G which has at least 2 neighbours in A;_; becomes infected
and is added to A, ; to form A;. We denote by A the set of all vertices of G which are
eventually infected, A = U;>¢ A;. Following Day, Falgas-Ravry and Hancock [36], we say
that a graph G has the finite 2-percolation property if for every finite set of initially infected
vertices A, the set of eventually infected vertices A is finite. The content of [36][Corollary
24] is, informally, that the construction based on random-states we outline above ‘works

on all host graphs that have the finite 2-percolation property’.

Proof of Theorem[I.].11. Let H = Z?. Pick € > 0 such that 1 — e > 0.8639. Then by
Lemma , for any p > 4 — 2v/3, n sufficiently large and G = G,,, we can couple
a random graph (H x G) ,, pp € M, >,(H) with a random graph H,, u € M >;-.(H)
such that if H, percolates then so does (H x G)u' Since p1.(H) < 0.8639, as proved
in [16, Theorem 2], it follows that p; .(H x G) < p. Since p > 4 — 21/3 was arbitrary,

we have the claimed upper bound lim, .. p1.(H X G,) < 4 — 2v/3. The lower bound
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limy, oo p1o(H X Gy) > 4— 2+/3 follows from [36], Corollary 24] and the fact that Z2 x G, is
easily seen to have the finite 2-percolation property. Indeed, for any finite set of vertices A
in Z* x G, there is some finite N such that A C [N]? x V(G,,). Now every vertex outside
[N]? x V(G,,) has at most one neighbour in [N]* x V(G,,), and thus can never be infected

by a 2-neighbour bootstrap percolation process started from A. O

Remark 5.3.2. The proof above in fact works in a more general setting than Z2: suppose H
has the finite 2-percolation property and satisfies p1.(H) < 1. Let (Gy,)nen be a sequence
of weakly q-pseudorandom n-vertex graphs with ng(n) > logn. Then H x G, also has the

finite 2-percolation property, and the proof above shows
nh_)rgoch(H x Gp)=4— 2V/3.

Examples of graphs with the finite 2-percolation property include many of the standard
lattices studied in percolation theory, such as the honeycomb (hexagonal) lattice, the dice

(rhombile) lattice or the tetrakis (‘Union Jack’) lattice.

Proof of Theorem[1.4.8. Since K, is 1-pseudorandom, Theorem [I.4.8] is immediate from
Theorem L4171 O

Proof of Theorem[1.].19. Let H = Z?. Pick ¢ > 0 such that 1 — e > 3/4. Then by
Lemma [5.3.1} for any p > 4 — 2v/3, n sufficiently large and G = G,,, we can couple a
random graph (H X G),,, € My >,(H) with a random graph H,, u € M >1-.(H) such

3
1 as

that if H, contains a path of length ¢ then so does (H x G),. Since pirp(H) =
proved in [36, Theorem ll(i)] it follows that p; p(H x G) < p. Since p > 4 — 2/3 was
arbitrary, we have the claimed upper bound lim,_,o p1p(H x G,) < 4 — 24/3. The lower
bound lim,, o p1..(H X G,,) > 4 — 21/3 was proved in [36, Theorem 12(v)] (with the same

construction as we outlined at the beginning of this section, adapted mutatis mutandis to

the setting H = 7). O

'For the proof of this theorem, all we need is p; p(H) < 1, and thus the weaker bound p; rp(H) <
1 —1/3e (which follows directly from an application of the Lovész local lemma) would suffice for our
purposes here.
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Proof of Theorem[I1.4.9. Since K, is 1-pseudorandom, Theorem is immediate from
Theorem [L4.12] O

5.4 Component evolution in 1-independent models

Recall that the independence number «(G) of a graph G is the size of a largest independent
(edge-free) subset of V(G), and that a perfect matching in a graph G is a matching whose
edges together cover all the vertices in V(G). Moreover, a graph G is a complete multipartite
graph if there exists a partition of V(G) such that two vertices in V(G) are joined by an
edge in G if and only if they are contained in different parts of the partition. Finally, the
complement G of a graph G is the graph on V(G) whose edges are the non-edges of G,
G*:= (V(G),V(G)?P\ E(G)).

Lemma 5.4.1. If G is a complete multipartite graph on 2n vertices with independence

number a(G) < n, then G contains at least n! perfect matchings.

Proof. Let G be a complete multipartite graph on 2n vertices with the minimum number
of perfect matchings subject to a(G) < n. Let V4, V3, ..., V, denote the parts of G with
Vil > [Va| = -+ > |V,|. If |V,_1]+|Vi| < n, then the graph G’ obtained from G by deleting
all edges in G[V,_1,V,] satisfies a(G") < n and has at most as many perfect matchings
as G. We may therefore assume that |V,._1| + |V,.| > n, and thus in particular that r < 3.
Consider a perfect matching M in G and let i be the number of edges in E(G[Vy, Va]) N M.
Clearly [E(G[Va, V5]) N M| = [Vi] — i and [E(G[Va, Va]) (1 M| = [Va| — i = [Va] — (|Va] — ).

From this we deduce that ¢ = 5(|V1]| + V2| — |V3|) = n — |V3|. Hence the number PM(G)

1
2

of perfect matchings in G is:

enice) = () () (Lot = v o

_ VAl [Valt v !
(n— [Vi)(n — [Va])l(n — V&)

(Here ("?‘) ("?‘)i! counts the number of different ways of selecting i-sets of vertices from
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each of V| and V5 and joining them by a perfect matching, while (“‘/Yflz) (|Va| = )l(|V1] —9)!
counts the number of ways of joining the vertices of V3 by a perfect matching to the
remaining vertices of 1 U V4.)
If |V3] > 0, then let G’ be the complete tripartite graph with parts of size |Vi|,|Va| +
1,|V5] — 1. Note that a(G’") < n. By the formula above , we have

PM(G) _ [Vs|(n—[V5[+1)

PM(GY) (V| + D —[Val) =

since [Vs| (n = [Va| +1) = ([Va| + 1)(n = [Vaf) = ([Va| = [Va| + (V| + [Vs] = 1) > 0 (as
|Va| > |V5] and |Va| + |V5| > n). It follows that PM(G) > PM(K,,,,) = n! as claimed. O

Proof of Proposition[1..16, Let H = K,,. For all p € [3,1], we may construct the

two-state measure po;, € My ,(H) which satisfies:

B(|Cy(H,,.,)| < n] = P[|Cy(H,,,)| = n] = (2: )9”<1 —6)" = (2: ) (54)

proving the upper bound in that range. For ps, < p < I, we note that § = 6(p) is no
longer a real number. However, as shown in [36, Section 7.1], we may take a ‘complex
limit’ of the 2-state measure f;,, and the conclusion above still holds.

For the lower bound, let C, Cs, ..., C, be the connected components of a y-random
subgraph H,, of Ky,. Let G denote the complete multipartite graph associated with the
partition U;C; of V(Ka,) = [2n]. Observe that G is a subgraph of the complement HY,
of H,,. If |C;| < n for all 4, then o(G) < n, whence by Lemma[5.4.1] G contains at least n!

perfect matchings. In particular, Hf must contain at least n! perfect matchings. By

Markov’s inequality, we thus have

P[|Ci(H,)| <n] <P [H contains > n! perfect matchings}

1

< JE {#{perfect matchings in HZ}}
1 /1 (on—2i 2n\ /1 —p\™
n!(n!}}( 2 )>< P) (n)( 2 )
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(Here (i | s (2”_%)) counts the number of perfect matchings in K, by selecting n

n! 2

vertex-disjoint edges sequentially one after the other, and dividing through by n!.) The

lower bound follows. O]

Proof of Theorem[1.].17. Let p € (=, 1] be fixed. Fix ¢ = ¢(p) > 0 sufficiently small.

r4+17r

For n large enough, we have by the pseudorandomness assumption on H,, that for every

UCV(H,), e(H,]U]) < q@ + e2pgn?. Tt then follows from Lemma |5.2.5| that whp

(H,) > pals (1 - 46%), (4.1)

which is strictly greater than 2(37f1) for ¢ = £(p) chosen sufficiently small. Assume (5.4.1]).
We show this implies the claimed lower bound on the size of a largest component.

If |C1(H,)| < ;35 —en, then for ¢ sufficiently small there is a partition of V(H) into at
most 2(r + 1) + 1 sets, each of which has size at most 35 — en, such that every connected
component of H, is wholly contained in one of the sets of the partition. Indeed, such

a partition can be obtained by starting with a partition of V(H) into the connected

components of H,, and then as long as the partition contains two parts of size at most

% (rﬁl — 5n), choosing two such parts arbitrarily and merging them into a single part.

Since for any (2r + 3)-tuple (z1, ..., Tg.43) with i —e>x; > 0and Y, z; = 1 we have
2
i) < (r+1) (r%l - 5) + ((r +1)e)?, we have by our pseudorandomness assumption

that

qn’

2(r+1)

2
g) nt o ((r+1)2) 02 + (2r + 3)e%pan® <

o(H,) < q(r+1) < 1

2 r+1

for ¢ sufficiently small, contradicting (5.4.1). Thus we may assume that |C;(H,)| >

n
1 EN.

If [C1(H,)| > %, then we have nothing to show. Finally if 25 —en < |Ci(H,)| < 7,

then H,, contains at least 7 +1 components. Let an denote the size of a largest component,
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where -~ — ¢ < o < L. Then
r+1 r

2 2
ra® + (1 —ra)? qnf + (r +2)e*pgn® > e(H,) > pqn—(l — 4¢?).
2 . 2

Dividing through by gn?/2, rearranging terms and using the fact ¢ is chosen sufficiently

small, we get
ra’ +(1—ra)>>p—e.

Solving for o, we get that
1+ (r+1)(p—e)—1

T

>
- r+1

giving part (i).
For part (ii), consider the r + 1-state measure in which each vertex is assigned state r+1

with probability %

and a uniform random state from the set {1,2,...,r}
otherwise, and in which an edge is open if and only if its vertices are in the same state.

This is easily seen to be a 1-ipm with the requisite properties. O

179



180



1]

[10]

BIBLIOGRAPHY

P. Allen. Covering two-edge-coloured complete graphs with two disjoint monochro-
matic cycles. Combin. Probab. Comput., 17(4):471-486, 2008.

P. Allen, J. Béttcher, O. Cooley, and R. Mycroft. Tight cycles and regular slices in
dense hypergraphs. J. Combin. Theory Ser. A, 149:30-100, 2017.

P. Allen, J. Béttcher, O. Cooley, and R. Mycroft. Tight cycles and regular slices in
dense hypergraphs. J. Combin. Theory Ser. A, 149:30-100, 2017.

P. Allen, J. Bottcher, Y. Kohayakawa, and Y. Person. Tight Hamilton cycles in
random hypergraphs. Random Structures Algorithms, 46(3):446-465, 2015.

P. Allen, J. Bottcher, R. Lang, J. Skokan, and M. Stein. Partitioning a 2-edge-
coloured graph of minimum degree 2n/3 + o(n) into three monochromatic cycles.
arXiv e-prints, arXiv:2204.00496, 2022.

P. Allen, E. Davies, and J. Skokan. Regularity inheritance in hypergraphs. arXiv
e-prints, arXiv:1901.05955, 2019.

P. Allen, C. Koch, O. Parczyk, and Y. Person. Finding tight Hamilton cycles in
random hypergraphs faster. Combin. Probab. Comput, pages 1-19, Sep 2020.

P. Allen, O. Parczyk, and V. Pfenninger. Resilience for tight Hamiltonicity. arXiv
e-prints, arXiv:2105.04513, 2021.

N. Alon, M. Capalbo, Y. Kohayakawa, V. Rodl, A. Rucinski, and E. Szemerédi.
Universality and tolerance (extended abstract). In 41st Annual Symposium on
Foundations of Computer Science (Redondo Beach, CA, 2000), pages 14-21. IEEE
Comput. Soc. Press, Los Alamitos, CA, 2000.

N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs.
Combinatorica, 20(4):451-476, 2000.

181



[11] J. Ayel. Sur l'existence de deux cycles supplémentaires unicolores, disjoints et de
couleurs différentes dans un graphe complet bicolore. Theses, Université Joseph-
Fourier - Grenoble I, May 1979.

[12] A. Balint, V. Beffara, and V. Tassion. On the critical value function in the divide
and color model. ALEA Lat. Am. J. Probab. Math. Stat., 10(2):653-666, 2013.

[13] P. Balister and B. Bollobas. Critical probabilities of 1-independent percolation
models. Combin. Probab. Comput., 21(1-2):11-22, 2012.

[14] P. Balister and B. Bollobds. Percolation in the k-nearest neighbor graph. In Recent
Results in Designs and Graphs: a Tribute to Lucia Gionfriddo, volume 28 of Quaderni
di Matematica, pages 83-100. 2013.

[15] P. Balister, B. Bollobas, A. Sarkar, and S. Kumar. Reliable density estimates for
coverage and connectivity in thin strips of finite length. In Proceedings of the 13th

annual ACM international conference on Mobile computing and networking, pages
75-86. ACM, 2007.

[16] P. Balister, B. Bollobas, and M. Walters. Continuum percolation with steps in the
square or the disc. Random Structures Algorithms, 26(4):392-403, 2005.

[17] P. Balister, B. Bollobés, and M. Walters. Random transceiver networks. Adv. in
Appl. Probab., 41(2):323-343, 2009.

[18] P. Balister, T. Johnston, M. Savery, and A. Scott. Improved bounds for 1-independent
percolation on Z". arXiv e-prints, arXiv:2206.12335, 2022.

[19] N. Ball. Rigorous confidence intervals on critical thresholds in 3 dimensions. J. Stat.
Phys., 156(3):574-585, 2014.

[20] J. Balogh, J. Barét, D. Gerbner, A. Gyérfas, and G. N. Sérkozy. Partitioning 2-edge-
colored graphs by monochromatic paths and cycles. Combinatorica, 34(5):507-526,
2014.

[21] 1. Benjamini and A. Stauffer. Perturbing the hexagonal circle packing: a percolation
perspective. In Annales de ’Institut Henri Poincaré, Probabilités et Statistiques,
volume 49, pages 1141-1157. Institut Henri Poincaré, 2013.

182



22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

S. Bessy and S. Thomassé. Partitioning a graph into a cycle and an anticycle, a
proof of lehel’s conjecture. J. Combin. Theory Ser. B, 100(2):176 — 180, 2010.

N. Biggs. The roots of combinatorics. Historia Mathematica, 6(2):109-136, 1979.

B. Bollobas. The evolution of sparse graphs. In Graph theory and combinatorics
(Cambridge, 1983), pages 35-57. Academic Press, London, 1984.

B. Bollobas and O. Riordan. Percolation. Cambridge University Press, New York,
2006.

J. A. Bondy and P. Erd6s. Ramsey numbers for cycles in graphs. J. Combin. Theory
Ser. B, 14:46-54, 1973.

S. Bustamante, J. Corsten, N. Frankl, A. Pokrovskiy, and J. Skokan. Partitioning
edge-colored hypergraphs into few monochromatic tight cycles. SIAM J. Discrete
Math., 34(2):1460-1471, 2020.

S. Bustamante, H. Han, and M. Stein. Almost partitioning 2-colored complete

3-uniform hypergraphs into two monochromatic tight or loose cycles. J. Graph
Theory, 91(1):5-15, 2019.

C. Chvatal, V. Rodl, E. Szemerédi, and W. T. Trotter, Jr. The Ramsey number of a
graph with bounded maximum degree. J. Combin. Theory Ser. B, 34(3):239-243,
1983.

D. Clemens, J. Ehrenmiiller, and Y. Person. A Dirac-type theorem for Hamilton
Berge cycles in random hypergraphs. In Discrete mathematical days. Fxtended
abstracts of the 10th “Jornadas de matemdtica discreta y algoritmica” (JMDA),
Barcelona, Spain, July 6-8, 2016, pages 181-186. Amsterdam: Elsevier, 2016.

D. Conlon. A new upper bound for diagonal Ramsey numbers. Ann. of Math. (2),
170(2):941-960, 2000.

D. Conlon, J. Fox, and B. Sudakov. Ramsey numbers of sparse hypergraphs. Random
Structures Algorithms, 35(1):1-14, 2009.

D. Conlon, J. Fox, and Y. Zhao. A relative Szemerédi theorem. Geom. Funct. Anal.,
25(3):733-762, 2015.

183



[34] O. Cooley, N. Fountoulakis, D. Kiithn, and D. Osthus. 3-uniform hypergraphs of
bounded degree have linear Ramsey numbers. J. Combin. Theory Ser. B, 98(3):484—
505, 2008.

[35] O. Cooley, N. Fountoulakis, D. Kithn, and D. Osthus. Embeddings and Ramsey
numbers of sparse k-uniform hypergraphs. Combinatorica, 29(3):263-297, 2009.

[36] A. N. Day, V. Falgas-Ravry, and R. Hancock. Long paths and connectivity in
l-independent random graphs. Random Structures Algorithms, 57(4):1007-1049,
2020.

[37] N. Dean and M. Kouider. Gallai’s conjecture for disconnected graphs. Discrete
Math., 213(1-3):43-54, 2000. Selected topics in discrete mathematics (Warsaw, 1996).

[38] L. DeBiasio and L. L. Nelsen. Monochromatic cycle partitions of graphs with large
minimum degree. J. Combin. Theory Ser. B, 122:634-667, 2017.

[39] M. Deijfen, O. Héggstrom, and A. E. Holroyd. Percolation in invariant Poisson
graphs with iid degrees. Arkiv for matematik, 50(1):41-58, 2012.

[40] M. Deijfen, A. E. Holroyd, and Y. Peres. Stable Poisson graphs in one dimension.
Electron. J. Probab., 16:no. 44, 1238-1253, 2011.

[41] G. A. Dirac. Some theorems on abstract graphs. Proc. Lond. Math. Soc., 3(1):69-81,
1952.

[42] A. Dudek and A. Frieze. Loose Hamilton cycles in random uniform hypergraphs.
Electron. J. Combin., 18(1):P48, 2011.

[43] A. Dudek and A. Frieze. Tight Hamilton cycles in random uniform hypergraphs.
Random Structures Algorithms, 42(3):374-385, 2013.

[44] P. Erdds and A. Rényi. On random graphs. I. Publ. Math. Debrecen, 6:290-297,
19509.

[45] P. Erdés, A. Gyérfas, and L. Pyber. Vertex coverings by monochromatic cycles and
trees. J. Combin. Theory Ser. B, 51(1):90 — 95, 1991.

184



[46] V. Falgas-Ravry. Thresholds in probabilistic and extremal combinatorics. PhD thesis,
University of London, 2012.

[47] V. Falgas-Ravry and V. Pfenninger. 1-independent percolation on Z? x K,,. arXiv
e-prints, arXiv:2106.08674, 2021.

[48] R. J. Faudree and R. H. Schelp. All Ramsey numbers for cycles in graphs. Discrete
Math., 8:313-329, 1974.

[49] A. Ferber and L. Hirschfeld. Co-degrees resilience for perfect matchings in random
hypergraphs. Electron. J. Combin., 27:P1.40, 2020.

[50] A. Ferber and M. Kwan. Dirac-type theorems in random hypergraphs. J. Combin.
Theory Ser. B, 155:318-357, 2022.

[51] A. Frieze. Hamilton Cycles in Random Graphs: a bibliography. arXiv e-prints,
arXiv:1901.07139, 2019.

[52] Z. Firedi, T. Jiang, A. Kostochka, D. Mubayi, and J. Verstraéte. Tight paths in
convex geometric hypergraphs. Adv. Comb., pages Paper No. 1, 14, 2020.

[53] F. Garbe, R. Mycroft, R. Lang, A. Lo, and N. Sanhueza-Matamala. Partitioning
2-coloured complete 3-uniform hypergraphs into two monochromatic tight cycles. In
preparation.

[54] L. Gerencsér and A. Gyarfas. On Ramsey-type problems. Ann. Univ. Sci. Budapest.
FEotvos Sect. Math., 10:167-170, 1967.

[55] W. T. Gowers. Hypergraph regularity and the multidimensional Szemerédi theorem.
Ann. of Math., pages 897-946, 2007.

[56] G. Grimmett. Percolation, volume 321 of Grundlehren der mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, second edition, 1999.

[57] A. Gyéarfas. Vertex coverings by monochromatic paths and cycles. J. Graph Theory,
7(1):131-135, 1983.

185



[58] A. Gyérfas. Vertex covers by monochromatic pieces — a survey of results and
problems. Discrete Math., 339(7):1970 — 1977, 2016.

[59] A. Gyarfas and J. Lehel. A Ramsey-type problem in directed and bipartite graphs.
Period. Math. Hungar., 3(3-4):299-304, 1973.

[60] A. Gyarfas and G. N. Sarkozy. Monochromatic path and cycle partitions in hyper-
graphs. FElectron. J. Combin., 20(1):18, 2013.

[61] A. Gyarfas, G. N. Sarkozy, and E. Szemerédi. The Ramsey number of diamond-
matchings and loose cycles in hypergraphs. FElectron. J. Combin., 15(1):Research
Paper 126, 14, 2008.

[62] A. Gyarfas, M. Ruszinkd, G. N. Sarkozy, and E. Szemerédi. An improved bound for
the monochromatic cycle partition number. J. Combin. Theory Ser. B, 96(6):855 —
873, 2006.

[63] J. Han, A. Lo, and N. Sanhueza-Matamala. Covering and tiling hypergraphs with
tight cycles. Combin. Probab. Comput., to appear.

[64] T. E. Harris. A lower bound for the critical probability in a certain percolation
process. Proc. Cambridge Philos. Soc., 56:13-20, 1960.

[65] P. E. Haxell, T. L uczak, Y. Peng, V. Rodl, A. Rucinski, M. Simonovits, and
J. Skokan. The Ramsey number of hypergraph cycles. I. J. Combin. Theory Ser. A,
113(1):67-83, 2006.

[66] P. E. Haxell, T. Luczak, Y. Peng, V. Rodl, A. Rucinski, and J. Skokan. The Ramsey
number for hypergraph cycles II. CDAM Research Report, LSE-CDAM-2007-04,
2007.

[67] P. E. Haxell, T. Luczak, Y. Peng, V. Rodl, A. Rucinski, and J. Skokan. The
Ramsey number for 3-uniform tight hypergraph cycles. Combin. Probab. Comput.,
18(1-2):165-203, 20009.

[68] M. Jenssen and J. Skokan. Exact Ramsey numbers of odd cycles via nonlinear
optimisation. Adv. Math., 376:107444, 46, 2021.

[69] P. Keevash, E. Long, and J. Skokan. Cycle-complete Ramsey numbers. Int. Math.
Res. Not. IMRN, (1):277-302, 2021.

186



[70]

[71]

[72]

[79]

[80]

[81]

[82]

H. Kesten. The critical probability of bond percolation on the square lattice equals
1/2. Comm. Math. Phys., 74(1):41-59, 1980.

J. H. Kim and V. H. Vu. Concentration of multivariate polynomials and its applica-
tions. Combinatorica, 20(3):417-434, 2000.

J. Komldés and E. Szemerédi. Limit distribution for the existence of Hamiltonian
cycles in a random graph. Discrete Math., 43(1):55-63, 1983.

D. Korandi, R. Lang, S. Letzter, and A. Pokrovskiy. Minimum degree conditions for
monochromatic cycle partitioning. J. Combin. Theory Ser. B, 146:96-123, 2021.

A. D. Korshunov. Solution of a problem of Erdds and Renyi on Hamiltonian cycles
in nonoriented graphs. Sov. Math., Dokl., 17:760-764, 1976.

A. D. Korshunov. Solution of a problem of P. Erdés and A. Renyi on Hamiltonian
cycles in undirected graphs. Metody Diskretn. Anal., 31:17-56, 1977.

M. Krivelevich and B. Sudakov. Pseudo-random graphs. In More sets, graphs and
numbers, pages 199-262. Springer, 2006.

D. Kithn and D. Osthus. Hamilton cycles in graphs and hypergraphs: an extremal
perspective. In Proceedings of the International Congress of Mathematicians—Seoul
2014. Vol. IV, pages 381-406. Kyung Moon Sa, Seoul, 2014.

R. Lang and N. Sanhueza-Matamala. Minimum degree conditions for tight Hamilton
cycles. arXiv e-prints, arXiv:2005.05291, 2020.

C. Lee and B. Sudakov. Dirac’s theorem for random graphs. Random Structures
Algorithms, 41(3):293-305, 2012.

S. Letzter. Monochromatic cycle partitions of 2-coloured graphs with minimum
degree 3n/4. FElectron. J. Combin., 26(1):Paper No. 1.19, 67, 2019.

T. M. Liggett, R. H. Schonmann, and A. M. Stacey. Domination by product measures.
Ann. Probab., 25(1):71-95, 1997.

A. Lo and V. Pfenninger. Towards Lehel’s conjecture for 4-uniform tight cycles.
arXiv e-prints, arXiv:2012.08875, 2020.

187



[83] A. Lo and V. Pfenninger. The Ramsey number for 4-uniform tight cycles. arXiv
e-prints, arXiv:2111.05276, 2021.

[84] T. Luczak. R(C,,,C,,Cy) < (44 0(1))n. J. Combin. Theory Ser. B, 75(2):174 — 187,
1999.

[85] T. Luczak, V. Rodl, and E. Szemerédi. Partitioning two-coloured complete graphs
into two monochromatic cycles. Combin. Probab. Comput., 7(4):423-436, 1998.

[86] R. Lyons. Random walks and percolation on trees. Ann. Probab., 18(3):931-958,
1990.

[87] W. Mantel. Problem 28. Wiskundige Opgaven, 10:60-61, 1907.

[88] R. Meester and R. Roy. Continuum percolation, volume 119 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, 1996.

[89] R. W. J. Meester. Uniqueness in percolation theory. Statist. Neerlandica, 48(3):237—
252, 1994.

[90] A. Méroueh. The Ramsey number of loose cycles versus cliques. J. Graph Theory,
00(2):172-188, 2019.

[91] R. Montgomery. Hamiltonicity in random graphs is born resilient. J. Combin. Theory
Ser. B, 139:316-341, 2019.

[92] D. Mubayi and V. Rodl. Hypergraph Ramsey numbers: tight cycles versus cliques.
Bull. Lond. Math. Soc., 48(1):127-134, 2016.

[93] B. Nagle, S. Olsen, V. Rodl, and M. Schacht. On the Ramsey number of sparse
3-graphs. Graphs Combin., 24(3):205-228, 2008.

[94] B. Narayanan and M. Schacht. Sharp thresholds for nonlinear hamiltonian cycles in
hypergraphs. Random Structures Algorithms, 57(1):244-255, 2020.

[95] R. Nenadov, A. Steger, and M. Truji¢. Resilience of perfect matchings and hamilton-
icity in random graph processes. Random Structures Algorithms, 54(4):797-819,
2019.

188



[96] J. Nie and J. Verstraéte. Ramsey numbers for nontrivial Berge cycles. SIAM J.
Discrete Math., 36(1):103-113, 2022.

[97] A. Pokrovskiy. Partitioning edge-coloured complete graphs into monochromatic
cycles and paths. J. Combin. Theory Ser. B, 106:70 — 97, 2014.

[98] A. Pokrovskiy. Partitioning a graph into a cycle and a sparse graph. arXiv e-prints,
arXiv:1607.03348, 2016.

[99] L. Pésa. Hamiltonian circuits in random graphs. Discrete Math., 14(4):359-364,
1976.

[100] F. P. Ramsey. On a Problem of Formal Logic. Proc. London Math. Soc. (2),
30(4):264-286, 1929.

[101] C. Reiher, V. Rodl, A. Rucifiski, M. Schacht, and E. Szemerédi. Minimum
vertex degree condition for tight hamiltonian cycles in 3-uniform hypergraphs.
Proc. Lond. Math. Soc., 119(2):409-439, 2019.

[102] O. Riordan and M. Walters. Rigorous confidence intervals for critical probabilities.
Phys. Rev. E, 76:011110, Jul 2007.

[103] V. Rodl, A. Rucinski, and E. Szemerédi. A Dirac-type theorem for 3-uniform
hypergraphs. Combin. Probab. Comput., 15(1-2):229-251, 2006.

[104] V. Rodl, A. Rucinski, and E. Szemerédi. An approximate Dirac-type theorem for
k-uniform hypergraphs. Combinatorica, 28(2):229-260, 2008.

[105] V. Rédl, A. Rucinski, and E. Szemerédi. Dirac-type conditions for Hamiltonian
paths and cycles in 3-uniform hypergraphs. Adv. Math., 227(3):1225-1299, 2011.

[106] V. Rodl and M. Schacht. Regular partitions of hypergraphs: regularity lemmas.
Combin. Probab. Comput., 16(6):833-885, 2007.

[107] V. Rodl and J. Skokan. Regularity lemma for k-uniform hypergraphs. Random
Structures Algorithms, 25(1):1-42, 2004.

[108] V. Rosta. On a Ramsey-type problem of J. A. Bondy and P. Erdés. I, II. J. Combin.
Theory Ser. B, 15:94-104; ibid. 15 (1973), 105-120, 1973.

189



[109] A. Sarkar and M. Haenggi. Percolation in the secrecy graph. Discrete Appl. Math.,
161(13-14):2120-2132, 2013.

[110] G. N. Sarkozy. Improved monochromatic loose cycle partitions in hypergraphs.
Discrete Math., 334:52 — 62, 2014.

[111] M. Shahsiah. Ramsey numbers of 5-uniform loose cycles. Graphs Combin., 38(1):Pa-
per No. 5, 23, 2022.

[112] J. Spencer. Ramsey’s theorem—a new lower bound. J. Combinatorial Theory Ser.
A, 18:108-115, 1975.

[113] M. Stein. Monochromatic paths in 2-edge coloured graphs and hypergraphs. arXiv
e-prints, arXiv:2204.12464, 2022.

[114] B. Sudakov and V. H. Vu. Local resilience of graphs. Random Structures Algorithms,
33(4):409-433, 2008.

[115] A. Thomason. Pseudo-random graphs. In M. Karonski, editor, Proceedings of
Random Graphs, Pozndn 1985, volume 33 of Ann. Discrete Math., pages 307-331.
North-Holland, 1987.

[116] J. van den Berg and A. Ermakov. A new lower bound for the critical probability of
site percolation on the square lattice. Random Structures Algorithms, 8(3):199-212,
1996.

[117] J. C. Wierman. Substitution method critical probability bounds for the square
lattice site percolation model. Combin. Probab. Comput., 4(2):181-188, 1995.

[118] R. Wilson and J. J. Watkins, editors. Combinatorics: ancient and modern. Oxford
University Press, Oxford, 2013.

[119] R. M. Ziff. Spanning probability in 2d percolation. Phys. Rev. Lett., 69(18):2670,
1992.

190



	Introduction
	Monochromatic cycle partitioning
	Ramsey theory
	Resilience for Hamiltonicity in random graphs
	Percolation and 1-independent random graph models

	Towards Lehel's conjecture for 4-uniform tight cycles
	Preliminaries
	Extremal example
	Hypergraph regularity
	Blueprints
	Proof of the blueprint lemma
	Some lemmas about blueprints

	Monochromatic connected matchings in Kn(4)
	Monochromatic connected matchings in Kn(5)
	Concluding remarks

	The Ramsey number for 4-uniform tight cycles
	Sketch of the proof of Theorem 1.2.1
	Preliminaries
	Blow-ups
	Blueprints and blow-ups
	Finding monochromatic tightly connected matchings
	Proof of Lemma 5.1 assuming Lemma 5.3
	Sketch of the proof of Lemma 3.5.3 and suitable pairs
	Proof of Lemma 4.4 assuming (H1)
	Proof of Lemma 4.5 assuming (H2)

	Proof of the Main Theorem
	Concluding remarks

	Resilience for tight Hamiltonicity
	Ideas of the proof
	Tools
	Spike paths
	Notation for k-multicomplexes
	Sparse hypergraph regularity
	Properties of the random hypergraph
	Connecting lemma
	Fractional matchings
	Reservoir path

	Proof of Theorem 1.3.1

	1-independent percolation on Z2 x Kn
	Notation
	When left meets right: joining the largest components on either side of K2 x Gn
	Lower bound construction
	Upper bound

	Proof of the main theorems
	Component evolution in 1-independent models

	Bibliography

