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Abstract 

Lung cancer is the second most diagnosed cancer, after breast cancer, worldwide. However, 

it is still the leading cause of cancer-specific mortality globally, contributing to 18% of all 

cancer-related deaths. Non-small cell lung cancer (NSCLC) makes up 85% of lung cancers and 

dependent on the stage, is amenable to a wide of treatments from surgery to systemic 

therapy. Immune responses within the tumour microenvironment have increasingly been 

implicated as determining factors in tumour progression and aggressiveness, and the focus 

has predominated on T-cell biology. The immune response is a complex interplay between 

the primary tumour and microenvironment, T and B cells. The role of the B cell in tumour 

survival is unclear but clearly has a function as tumour infiltration is commonly reported. 

Through deep phenotyping and multispectral tissue imaging techniques, we identified key 

differences in the effector and suppressive B cell composition between the tumour and 

peripheral blood compartments. IL10 positive suppressive B regulatory phenotypes were 

significantly more abundant in the circulation of patients who recurred post-operatively. 

Using a broad spectrum immunome array, we employed machine learning techniques and 

identified an auto-antibody signature in the serum of NSCLC patients that was highly 

predictive for post-operative recurrence in two independent cohorts.  

In addition to the techniques described above, we utilised functional ex vivo B cell assays to 

interrogate the response to checkpoint blockade in advanced disease patients and how this 

relates to B cell dynamics. Our findings demonstrated that lack of a suppressive B cell “brake” 

predisposed patients to high grade immune related adverse events post-treatment. 

Moreover, the B cells from toxicity patients were not only functionally defective in their ability 
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to produce IL10 but also displayed a pan cytokine failure affecting pro-inflammatory cytokines 

thus suggesting B cell exhaustion in these patients. These findings significantly enhanced our 

understanding of the aetiopathogenesis of auto-immune toxicity secondary to checkpoint 

blockade with anti PD-1/PDL-1.  

In summary, this study aimed to explore the role of B cell biology in NSCLC by employing deep 

phenotyping and functional assay techniques at the blood and tissue level in both early and 

advanced stage disease. Our findings are likely to be informative in biomarker development 

for predicting response to treatment, post-operative relapse and for therapeutic adjuvant 

polyepitopic vaccine strategies in high-risk patients.  
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Overarching Project Summary 

This section will summarise the individual hypotheses and different patient cohorts that were 

investigated in this project.  

Objective 1 

Hypothesis 1 

B cell immune phenotype is predictive of subsequent post-operative outcome in non-small cell 

lung cancer 

 

The first objective aimed to better characterise B cell populations in matched resected NSCLC 

tumour and peripheral blood samples from a cohort of patients with NSCLC that underwent 

surgical resection. In the field of renal cell carcinoma, distinct immune cell compositions were 

identified and correlated with progression free survival. A robust human atlas of the immune 

cell signature in these patients revealed potential biomarkers for disease as well as targets for 

immunotherapy development (1). Through the use of mass cytometry and multiplex 

immunofluorescence (VECTRA Polaris) analyses, we were able to perform deep B cell 

phenotyping in this patient population in paired blood and tumour samples.  

 

Objective 2 

Hypothesis 2 

B cell changes are predictive of outcome and immune related adverse events (irAE) in NSCLC 

patients receiving checkpoint blockade therapy +/- chemotherapy 
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The second objective aimed to determine if B cell phenotype was predictive of outcome and 

toxicity (immune-related adverse events; irAE) in patients with advanced NSCLC being treated 

with immune-oncotherapy (IO; checkpoint blockade agents) alone, or in combination with 

other immunotherapy agents (IO/IO) or chemotherapy (IO/chemo).  

 

Unlocking the phenotypic diversity of the B cell milieu in NSCLC will enable the identification 

of immune cell patterns that correlate with outcome (negative or positive) which may harbour 

new avenues for immunotherapy. There is a changing landscape in checkpoint 

immunotherapy in NSCLC, whether it is monotherapy with a checkpoint inhibitor (PD1 or 

CTLA4 or both) or in combination with an angiogenesis inhibitor or even chemotherapy, the 

regime is evolving to the point that combination therapy in patients with advanced disease 

will become the standard of care over the course of this project.  

 

Treatment with IO has shown promise in the treatment of advanced melanoma (2) however 

its application is stifled by the incidence of irAEs which lead to the discontinuation of therapy. 

Whilst these events are thought to be T-cell mediated, there is evidence for B cell implication 

(3). Moreover, loss of CTLA4 in humans has, in addition to T cell dysregulation, resulted in 

progressive circulating B cell loss and accumulation of autoreactive B cells (CD21lo) with 

subsequent deregulated lymphocyte homeostasis (4). It was therefore desirable to know if 

changes in B cell profile affect can predict for the development of irAE. Early B cell changes 

have been detected in melanoma patients on IO/IO combination therapy; low levels of 

circulating B cells and high numbers of CD21-Lo B cells and plasmablasts were found in 

patients who experienced higher rates of grade 3 or higher irAE six months after treatment 
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(2). Through the use of mass cytometry and various functional B cell and CD4+ T cell assays, 

we explored the B cell signatures in the blood of these patients pre- and post-treatment.  

 

Objective 3 

Hypothesis 3 

The circulating tumour-associated auto-antibody signature in NSCLC is predictive of outcome 

post-surgical resection 

 

The third objective sought to characterise the proteome in the serum of NSCLC patients who 

underwent surgical resection. We utilised the pre-operative serum samples from a historical 

cohort of NSCLC patients with early-stage disease. This cohort was clinically robust with clear 

stratification between survivors and non-survivors. Survivors were patients who are alive and 

disease-free at a minimum of 5 years post resection. Non-survivors died from disease 

recurrence within 12 months post resection. We employed the ImmunomeTM protein array 

precision medicine technology developed by Sengenics® to determine the expression of >1600 

autoantibodies in the pre-operative serum of these patients.  
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Chapter 1. Introduction 

1.1 Overview 

The overview of this report is the investigation of the humoral immune response in the 

pathophysiology of non-small cell lung cancer, specifically with reference to the role B cells 

and their soluble antibody products play in tumorigenesis. B cell responses have been 

implicated in both the anti-cancer and pro-cancer responses in lung cancer, but their 

definitive role remains unclear. Thus, this report will focus on exploring deep B cell 

phenotypes in early and advanced stage non-small cell lung cancers, response to treatment 

with checkpoint blockade therapies and the role of functional in vivo B cell responses. This 

chapter will discuss the epidemiology and natural history of lung cancer and novel emerging 

treatments. The immunobiology of B cells in disease and malignancy will be explored, 

focussing on pathogenesis and potential role in non-small cell lung cancer and functional B 

cell immunity and infection.  

 

1.2 Burden of Disease 

1.2.1 Lung Cancer Epidemiology 

Lung cancer is on the rise globally and is the commonest cause of cancer-related deaths, with 

tobacco smoking posing the single biggest risk factor for malignancy (5). Despite advances in 

our understanding of lung cancer genetics, the role of the immune system in controlling lung 

cancer and allied treatment options, the number of year-on-year cases is rising and survival 

continues to be low. In 2020, GLOBOCAN estimated 2.2 million new cases (11.6% of total 

cancer cases) and 1.76 million deaths (18.4% of total cancer deaths), which were higher than 

the 2012 reported rates (1.8 million new cases and 1.6 million deaths) (6). In the UK, there 
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are 48,000 new lung cancer cases and 35,100 lung cancer-related deaths each year, with very 

little improvement in overall lung cancer survival in the last 40 years (7).  

1.2.2 Natural History and outcome 

The survival of patients with lung cancer at 5 years after diagnosis is between 11 and 17% in 

most countries among those diagnosed during 2010 through 2014, although rates are higher 

in Japan (33%), Israel (27%), and the Republic of Korea (25%) (6,8). These rates are also 

dependent on stage, histological and molecular subtypes. There is wide variation in tumour 

growth rates reflecting the heterogeneity of this disease. Cancers diagnosed at a very early 

stage during routine medical practice can be rapidly fatal, hence the need for prompt 

specialist referral and evaluation (9,10). Large scale registry data has shown that in the first 6 

year after diagnosis irrespective of stage, lung cancer itself is the predominant cause of death 

in these patients, largely due to respiratory failure (11). With time, the relative contribution 

of cardiovascular disease, COPD and infection increased however the absolute contribution 

of lung cancer remained high, particularly in non-metastatic disease.  

 

1.3  Detection and Screening 

1.3.1 Clinical Presentation and Investigation 

There are usually no symptoms or signs in the early stages of lung cancer, but these can 

develop with disease progression and include, a persistent cough, haemoptysis, 

breathlessness, as well as unexplained fatigue, malaise and weight loss (12). A plain film 

radiograph of the chest is usually the first test used to detect any abnormalities within the 

chest. This is usually followed by a formal assessment of the lungs and thoracic cavity with 

cross-sectional imaging. Computed Tomography (CT) – Positron Emission Tomography (PET) 
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scan can detect lesions suspicious for malignancy within the chest cavity and determine the 

degree of metabolic activity within these lesions; metabolically active lesions (“hot”) usually 

correlate with malignancy, but this is not always absolute. A definitive tissue diagnosis is 

usually performed with a biopsy via bronchoscopy, radiologically under CT guidance or at the 

time of surgery (12). Information gathered through these tests will enable the disease to be 

staged according to the recent iteration of the International Association for the Study of Lung 

Cancer Staging Project (13). This will inform which treatment strategies are employed.  

1.3.2 Histological Subtypes 

Primary lung cancer is broadly divided into two groups: non-small cell lung cancer (NSCLC) 

and small cell lung cancer (SCLC). The former accounts for 80-85% of all lung cancers and are 

grouped together owing to the way in which they behave, progress and respond to treatment. 

Adenocarcinoma, Squamous cell carcinoma and Large cell carcinoma are all examples of 

NSCLC (14). SCLC accounts for 15-20% of all lung cancer and tends to be detected at a late 

stage, which confers poorer outcomes. This group belongs to a broader class of tumour 

known as neuroendocrine tumour (NET) (14).  

1.3.3 Screening 

Screening with low dose computed tomography (CT) for high‐risk individuals (current and 

former heavy smokers) can help diagnose cancer early, when successful treatment is more 

likely. The efficacy of annual low‐dose CT screening in reducing lung cancer mortality has been 

confirmed in several independent, international, randomized controlled clinical trials (15–18). 

Low-dose CT based screening of high-risk smokers reduced lung cancer-specific mortality; 

consensus from a recently published position statement by European investigators 

recommended implementation of screening across Europe (17). Recently, the use of volume 
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CT screening, with growth‐rate assessment as an imaging biomarker for indeterminate tests, 

resulted in a lung cancer mortality reduction at 10 years of follow‐up of 24% in men and 33% 

in women compared with no screening.  

In 2010, the US-based National Lung Cancer Screening Trial (NLST) was stopped 1 year early 

because a 20% relative reduction in lung cancer mortality had been achieved by low-dose CT 

compared with chest x-ray after three annual screens and 6 years of follow-up (15). 

Subsequently, the IASLC has made six recommendations with regard to the implementation 

of CT screening in future screening initiatives (19).  

a) Optimisation of identification of high-risk individuals.  

b) Development of radiological guidelines. 

c) Development of guidelines for the clinical workup of indeterminate nodules. 

d) Development of guidelines for pathology reporting.  

e) Definition of criteria for surgical and therapeutic interventions of suspicious nodules 

identified through lung cancer CT screening programmes.  

f) Development of recommendations for the integration of smoking cessation practices 

into future national lung cancer CT screening programmes. 

 

The pilot UK lung cancer screening (UKLS) RCT compared low dose CT scanning screening to 

usual care in order to demonstrate the effectiveness of risk prediction modelling for the 

selection of high risk participants, to evaluate the use of volumetric analysis in nodule 

management and to determine cost-effectiveness based on modelling of the pilot approach 

(19). The UKLS trial demonstrated that it is possible to detect lung cancer at an early stage 

and deliver potentially curative treatment in over 80% of cases on a cost-effective basis. The 
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long-term NHS plan, by 2028, is to have increased the diagnosis rate of early-stage cancers to 

75%. The primary aim of which is to reduce mortality from lung cancer. This must be achieved 

with minimal physical and psychological harm. The NHS England document “Target screening 

for lung cancer with low radiation dose computed tomography – standard protocol” has 

outlined an incremental roll out service to deliver targeted lung health checks over the next 

five years (6).  

 

1.4  Aetiology of Lung Cancer 

Figure 1.1 below illustrates the common risk factors and causal factors linked to the 

development of lung cancer.  

 

Figure 1.1. A schema to illustrate the common risk factors causally linked to increased risk of lung 

cancer around the world. This figure has been adapted from an educational website 

(https://ib.bioninja.co.au).  

https://ib.bioninja.co.au/
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1.4.1 Genetics of Lung Cancer 

1.4.1.1 Inheritance 

Most cases of lung cancer are not related to an inherited genetic mutation, but instead are 

due to somatic mutations occurring in certain cells within the lungs or airways. When lung 

cancer is related to inherited genetic changes, the risk of developing cancer follows an 

autosomal dominant pattern, which means one copy of the altered gene in each cell is 

sufficient to increase a person's chance of developing the disease (20).  

1.4.1.2 Culprit Genes 

The occurrence of genetic mutations in critical genes, those that control cell growth, division, 

DNA damage repair pathways, often result in unregulated cell proliferation. The most 

commonly identified types of genetic mutations in lung cancer include missense/nonsense 

mutations, small insertions or deletion, alternative splicing and chromosomal fusion 

rearrangements (21). Predominantly implicated genes include eGFR, KRAS, TP53, MET, LKB1, 

BRAF, PIK3CA, ALK, RET and ROS1 (21).  Copy number alternations also play a significant role,  

both eGFR and KRAS copy number gains have been found to occur more frequently in tumours 

harbouring activating mutations for these oncogenes (22) which results in enhanced cellular 

proliferation. Following the discovery of a specific cluster of eGFR mutations in lung 

adenocarcinomas and the correlation with enhanced clinical response to eGFR tyrosine kinase 

inhibitors (TKIs) (23,24), this paved the way for the development of the “targeted therapy” 

paradigm in lung cancer. KRAS gene mutations are generally more prevalent in 

adenocarcinomas (15-25%) and tend to be found in lung cancers with wild-type eGFR protein 

(25,26). Contrastingly, over-expression of the MET oncogene is common in NSCLC and 

correlates with over-expression of eGFR (27).  
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Somatic mutations in the TP53 gene are one of the most frequent aberrations in human 

cancers and were some of the earliest described in NSCLC (28). Germline mutations in this 

gene are the underlying cause of Li-Fraumeni syndrome which predisposes to a wide range of 

early-onset cancers (29). The p53 protein is a nuclear phosphoprotein that maintains the 

integrity of the genome by exerting control over the G1-S and G2-M cell cycle checkpoints to 

prevent the replication of damaged DNA and cell division (30). If the DNA repair pathway fails, 

p53 triggers cellular apoptosis (30). Aberrations in this protein account for over 60% of human 

lung cancer cases (28–30). 

The LKB1 (STK11) gene is another tumour suppressor gene and germline mutations in this 

gene are the causative insult leading to the development of Peutz-Jeghers syndrome (21). 

Inactivating mutations of LKB1 occur in 4% of NSCLC cases, with a preponderance for 

adenocarcinoma and co-exist with activating KRAS mutations (21,31). BRAF and PIK3CA are 

examples of commonly over-expressed kinases in NSCLC which are responsible for 

uncontrolled cellular growth, proliferation, and differentiation. ALK, RET and ROS1 are all 

examples of receptor tyrosine kinases which form chimeric fusion gene variants through 

oncogenic chromosomal translocations. Only 3-7% of NSCLC harbour ALK fusions, with the 

EML4-ALK fusion driver mutant kinase being reported in 2007, the presence of which 

correlates with eGFR TKI resistance (32,33).  

Decades of research into NSCLC has led to the discovery of these culprit genes, which has 

transformed treatment paradigms but clinical outcomes for these patients’ still remains poor, 

reflecting the unmet need for further insight into the biology of lung cancer and how this 

tracks with outcome. 
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1.4.2 Lung Cancer Evolution 

The study of tumour evolution has expanded rapidly over the last decade, particularly through 

the advent of the TRACERx study in NSCLC (34,35). The TRACERx (Tracking Cancer Evolution 

through therapy) lung study, set up in 2014, aims to integrate new technologies to study 

cancer evolution in up to 840 lung cancer patients. This ranges from analysing longitudinal 

changes in tumour DNA, to studying how these changes can be detected in blood and 

expanding into the characterization of tumour immune and tissue microenvironments. By 

tracking the clonal and subclonal mutations in tumours, it has been shown that tumours 

follow distinct evolutionary patterns, either Darwinian selection of subclonal events or an 

accumulation of mutations following a clonal driver event (34–36). A prospective analysis of 

100 NSCLC tumour samples through whole exome sequencing, determined that intratumour 

heterogeneity of copy-number events is associated with adverse outcome (34). Moreover, 

the presence of such intratumour heterogeneity can render gene-expression biomarkers 

vulnerable to sampling bias, whereas a panel of robust clonally expressed genes (present in 

all cells) can offer greater diagnostic or indeed prognostic utility (37). Early in tumour 

evolution, there are strong selection pressures to evade host immune surveillance through 

numerous immune escape methods (38) and those tumours with multiple regions of poor 

immune cell infiltration associate with worse outcome (39). Work from TRACERx has shed 

light on the dynamic and ever changing genomic landscape in NSCLC, the therapeutic utility 

of targeting clonal neoantigens and the use of circulating tumour DNA in the detection of 

minimal residual disease in the adjuvant setting (35,36).  Translating this knowledge into 

longitudinal prospective clinical trials is the next step. Understanding the deeper role of the 

anti-tumour and indeed pro-tumour response will help to inform therapeutic strategies which 

can be incorporated into such clinical trials.  
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1.4.3 Environmental factors 

The aetiology of lung carcinogenesis is multi-factorial. Cellular, genetic and environmental 

factors are all responsible for neoplastic transformation. There are numerous lifestyle and 

environmental factors that expose individuals to carcinogens and increase the rate at which 

somatic mutations occur, contributing to a person's risk of developing lung cancer. Tobacco 

smoking confers a significant relative risk of 20-25% and an attributable risk of 85-90% for 

lung cancer (40). Other risk factors include exposure to environmental tobacco smoke, air 

pollution, and occupational exposure to radon, asbestos, certain metals and chemicals (41). 

Of these, only smoking prevention and cessation program have been shown to reduce lung 

cancer risk (40).  Smokers who quit for more than 15 years have an 80-90% reduction in their 

risk for lung cancer compared with persons who continue to smoke (41). In addition to those 

mentioned, data from a 2008 risk-scoring model determined that a prior diagnosis of 

pneumonia (OR 1.83) and a family history of lung cancer (OR 2.02 for early-onset (<60 years) 

and OR 1.18 for late-onset (>60 years)) were significant independent risk factors for 

developing lung cancer (42). The rationale of employing so-called “chemopreventative 

agents” to limit DNA damage and hence malignant progression has demonstrated success in 

breast (tamoxifen) and colon (celecoxib) (41). However the use of chemopreventative agents 

such as Vitamin A, β-Carotene, N-acetylcysteine and selenium have not shown efficacy in 

preventing lung cancer in high-risk individuals in large-scale clinical trials (40,41).  

 

1.5  Treatment Options 

The treatment for lung cancer tends to involve multiple modalities managed by a team of 

healthcare professionals. The most common treatment options include surgical resection, 
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chemotherapy, radiotherapy, and immunotherapy. The type or combination of treatment 

modality employed depends on the type of lung cancer (NSCLC or SCLC), the size and position 

of the cancer within the thoracic cavity, the stage of cancer and overall health status of the 

patient. Figure 1.2 below summarises the current available treatment pathways in lung 

cancer.  

 

Figure 1.2. A schematic to illustrate currently available treatment options in lung cancer, both early 

and advanced stages. The modalities have been stratified according to traditional options (left panel) 

which include surgical resection and chemoradiotherapy and more novel precision medicine options 

(right panel) which include targeted therapy and immunotherapy. Targeted therapy involves the use 

of specific enzyme inhibitor molecules (TKIs) to target specific mutations in lung cancer. 

Immunotherapy uses the body’s own immune system to target the cancer. Figure adapted from 

Conquer Magazine, April 2020, Volume 6, issue 2, TLG1784-2.  

1.5.1 Surgery 

Treatment of NSCLC is stage-specific and generally early-stage cancers (I/II) undergo complete 

surgical resection when not contraindicated. Lobectomy (complete removal of a single lobe) 

with systematic lymph node dissection is considered the gold standard operation (43). 

Registry data from Norway showed that for operated patients, 5-year relative survival for 
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stage I and II disease was 58.4% and 28.4% respectively (43). Sublobar resection 

(segmentectomy or wedge resection) however has the advantage of preserving lung function 

as well as offering lower morbidity and mortality post-operatively (44). Historical data from 

the pre-PET scan era demonstrated that sublobar resections associated with a significantly 

higher local recurrence rate compared with lobectomy (45). In the current era, the question 

of whether segmentectomy is superior to lobectomy for early-stage NSCLC is being addressed 

by the Japan Clinical Oncology Group 0802/WJOG 4607L randomised controlled trial.  

1.5.1.1 Neoadjuvant and Adjuvant Therapy 

Chemotherapy can be employed pre-operatively (neoadjuvant) to downstage potentially 

resectable tumours and clear micro-metastatic disease or post-operatively (adjuvant) to 

reduce the chance of distant metastasis following a potentially curative resection (46). Meta-

analytical data from 13 RCTs has shown that neoadjuvant chemotherapy improves the overall 

survival of operable NSCLC patients including those with stage III disease (HR 0.84, p<0.05) 

(47). However it is important to note that this analysis did not include data from a large RCT 

from the same time involving 624 patients where no difference was found between groups in 

overall or disease-free survival (48). Pooled trial from the adjuvant setting has demonstrated 

an absolute survival benefit of 5.4% at 5 years, this is pronounced in tumours exceeding 4cm, 

stage II disease and after complete resection in stage IIIa disease (46,49). The use of TKIs and 

immunotherapeutic agents in the neoadjuvant and adjuvant setting is currently being 

explored through large scale phase III RCTs. 

1.5.2 Chemo-radiation 

Pre-immunotherapy, the standard treatment regimen for advanced metastatic NSCLC was to 

treat with a combination of a platinum-doublet agent in combination with Gemcitabine, 
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Vinorelbine or taxanes (Paclitaxel or Docetaxel) (46). Pemetrexed, a multi-targeted folate in 

combination with Cisplatin showed significant survival benefit (HR 0.81) in patients with non-

squamous histology and became the standard of care in these patients (46). Moreover, for 

unresectable stage III NSCLC, concurrent chemo-radiation was the preferred treatment 

however survival remains poor at 15% at 5 years (46). Four year data from the PACIFIC trial 

(50,51) showed that stage III patients treated with Durvalumab post chemo-radiation had 

significantly better overall (HR 0.71) and disease free (HR 0.55) survival compared to placebo.   

1.5.3 Immunotherapy and Checkpoint Blockade 

The advent of immunotherapy has rapidly transformed the landscape of anti-cancer 

treatment not only in lung cancer but across a range of other malignancies such as melanoma 

and renal cell carcinoma. The success of single agent and combination checkpoint blockade, 

which enables antigen-experienced micro-environmental T cells, has transformed the 

treatment paradigm of advanced NSCLC both as a front-line option and in the platinum-

refractory setting. Despite the successful application of immunotherapy, a large proportion 

of patients with advanced stages cancers do not experience significant improvements in 

overall survival, this is largely reflective of the intricate and highly regulated nature of the host 

immune system and its interplay with the ever-changing and the ever-adapting tumour 

microenvironment (TME) (52).  

1.5.3.1 Manipulating the Adaptive Immune System 

The adaptive immune system was characterised by the discovery of two major subtypes of 

lymphocytes; the B lymphocytes and T lymphocytes (53). B lymphocytes respond to antigens 

in circulation by secreting protective antibodies, where T cells recognise peptide antigen 

loaded onto cell surface MHC molecules (antigen presentation). Two broad classes of T cell 
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exist, CD4+, which detect MHC class II-loaded antigen and coordinate the adaptive immune 

system by secreting chemotactic and pro-inflammatory cytokines (54,55) and CD8+ cells 

which detect MHC class I loaded antigen and carry out direct cytotoxic reactions against 

infected or neoplastic cells (54). A subclass of CD4 T cells known as Tregs or regulatory T cells 

(CD4+ CD25+) suppress the immune response (55,56). The role of T cells in modern cancer 

immunotherapies has been extensively explored, and as we shall discuss later, in recent years, 

B cells have been increasingly explored with great interest not only in the context of 

immunotherapy but in the context of solid cancers also.  

1.5.3.2 Concept of “Immune Checkpoint Blockade” 

The rationale behind blocking key immune “checkpoints” was to reactivate and unleash 

powerful T cell responses against tumour cells. These checkpoint molecules exist as a fail-safe 

within the body to regulate the immune response and protect against hyperactive T cell 

responses (57). The programmed cell death 1 (PD1) and cytotoxic T lymphocyte antigen 4 

(CTLA4) molecules are critical checkpoints which regulate cell function throughout distinct 

sites in the body (58). Targeting these molecules through the use of monoclonal antibodies 

effectively releases this brake on T cell function, enabling T cell activity against recalcitrant 

cancers.  

1.5.3.3 CTLA-4 Axis  

During T cell activation, the T cell receptor (TCR) on the surface of naïve T cells interacts with 

its cognate peptide-antigen loaded on MHC molecules on antigen-presenting cells (APC). 

Concurrently, the co-stimulatory receptor, CD28 (T cell surface) binds to its complementary 

B7 ligands (B7.1, B7.2) on the surface of APCs. This process results in T cell activation (57). 

CTLA-4 possesses sequence similarity with CD28 in the extracellular binding domain and 
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competes with CD28 with greater affinity and avidity for the B7 ligands on APCs. CTLA4 

(inhibitory) is stored within vesicles in naïve T cells and constitutively expressed on the surface 

of immunosuppressive Tregs (57). Following T cell activation in the lymphoid tissues, CTLA4 is 

displayed on the cell surface and binds to B7.1/B7.2 on APC, preventing their binding to CD28 

and rendering activated T cells anergic (57). Treg-expressed CTLA4 leads to trans-endocytosis 

of B7 ligands and thus interferes with the co-stimulatory ability of CD28 (57).  

1.5.3.4 PD1/PD-L1 Axis 

Early after activation within the peripheral tissues, PD1 transcription is upregulated on the T 

cell surface which continues resulting in significant surface expression of PD1. This binds to 

its complementary ligands PD-L1 and PD-L2 on the surface of other immune cells or tumour 

cells resulting in T cell exhaustion (57). PD-L1 (also known as B7-H1) and PDL2 (also known as 

B7-DC), are present constitutively on APCs and can be induced in non-haematopoietic tissues 

by pro-inflammatory cytokines (57). Cells which express PD-L1 include B cells, macrophages, 

dendritic cells and epithelial cells under the right inflammatory conditions. Blocking of the 

PD1 axis through the administration of an anti-PD1 (or anti-PDL1 or anti-PDL2) antibody 

prevents this inhibitory interaction and unleashes anti-tumoural T lymphocyte activity by 

promoting increased T cell activation and proliferation, by enhancing their effector functions 

and by supporting the formation of memory cells. Consequently, more T cells bind to tumour 

antigens presented on tumour cells by MHC molecules via their T cell receptors (TCRs). This 

ultimately leads to the release of cytolytic mediators, such as perforin and granzyme, causing 

enhanced tumour killing.  
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1.5.3.5 Immune-related Adverse Events (irAE) 

Blocking immune checkpoints overrides the normal mechanism of immune tolerance to self-

tissues, as such the use of these therapies is associated with autoimmune toxicity (59). The 

incidence of this relatively common (15-90%) (60,61) and any organ be targeted, with the 

most frequently occurring irAEs affecting the skin, colon, endocrine organs, liver, lungs and 

kidneys (62). Others are very infrequent but may be very serious, even lethal, such as 

neurological disorders and myocarditis. Toxicities affecting the gastrointestinal tract and 

brain are more common with anti-CTLA4 therapy, whereas patients treated with PD1/PD-L1 

axis targeted therapies are at higher risk of hypothyroidism, hepatotoxicity and pneumonitis 

(63). Clinical management of these irAE is the same and the toxicities are graded according to 

the 2009 National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) 

severity scale (63). These range from mild (grade I) which are not typically treated, to severe 

and life-threatening toxicity (grade III/IV respectively) which require complete 

discontinuation of treatment and use of glucocorticoids, immunosuppressants and life-saving 

measures (62,63). This poses a huge healthcare burden and is associated with considerable 

detriment to patient quality of life and overall survival.  

 

1.5.3.6 Clinical Trial Data 

Numerous monoclonal antibodies targeting the PD1/PD-L1 axis have reached the clinic 

following large scale phase III RCTs. Antibodies targeting PD1 (Nivolumab, Pembrolizumab) 

and the ligand PD-L1 (Atezolizumab, Durvalumab, Avelumab) have shown durables responses 

in up to 20% of patients with advanced NSCLC (64–67). Five year follow-up data has recently 

emerged from the early immunotherapy trials in NSCLC; KEYNOTE 024 showed a 5-year 

overall survival rate that was almost doubled in metastatic NSCLC patients with PD-L1 tumour 
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proportion score (TPS) of >50% compared with those receiving standard chemotherapy 

(31.9% versus 16.3%) (66). Three year data from KEYNOTE 189 showed that combination 

chemo-immunotherapy improved overall and disease free survival compared to 

chemotherapy alone in metastatic non-squamous NSCLC irrespective of PD-L1 expression 

(68), and a similar relationship was observed at median follow-up (14.3 months) in metastatic 

squamous cell cancers from KEYNOTE 407 (69,70). In two phase III trials (CheckMate 017 and 

CheckMate 057), Nivolumab showed an improvement in overall survival and favourable 

safety versus docetaxel in patients with previously treated, advanced squamous and non-

squamous NSCLC, respectively (67,71). Five-year pooled results showed that patients derived 

long-term survival benefit and durable responses with Nivolumab versus chemotherapy, 

regardless of histology and PD-L1 expression (71). The clinical trial space in immunotherapy 

for lung cancer is vast and evolving at a rapid rate.  

1.5.4 Targeted Therapies 

Use of agents to target specific oncogenic driver mutations (discussed in section 1.4.2) in 

NSCLC has changed the treatment profile in the past few years. High response rates have been 

achieved in eGFR mutant cancers, through the use of TKIs and monoclonal antibodies 

targeting the eGFR mutant receptor (46). However, resistance to therapy in these cancers 

develops after 6-12 months; the T790M missense mutation at exon 20 (up to 60% of patients) 

is a common mechanism of resistance, requiring switching to Osimertinib (third generation 

agent) (72). Mutations in PIK3CA, amplification of HER-2 and MET are other secondary 

resistance mechanisms in these patients (73,74).  

The small subset of cancers with ALK and ROS1 translocations (1-5%) (75) are targeted with 

Crizotinib, a TKI which demonstrated a higher response rate (65% versus 20%) and disease 
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free survival compared to standard therapy in ALK positive tumours that progressed on first-

line chemotherapy (76). Alectinib and Lorlatinib are new generation ALK inhibitors with the 

latter demonstrating activity against all known resistance mutations in ALK translocation 

positive cancers (77). In ROS1 positive cancers, Crizotinib is the preferred first-line therapy 

(78) with newer agents such as Ceritinib and Cabozantinib under investigation for those who 

progress on first-line therapy (79). Other targetable mutations include BRAF (2% of NSCLC), 

half of whom have the V600E mutation which can be targeted by the TKI, Vemurafenib (80). 

Neurotrophic Receptor Tyrosine Kinase (NTRK) gene fusion positive cancers that have 

progressed on chemo/immunotherapy can be targeted with Larotrectinib, an oral 

tropomyosin receptor kinase inhibitor (81). Although KRAS mutations are the most prevalent 

in NSCLC, there are no suitable agents that have undergone large scale phase III trials as yet 

(82).  

1.6 Immunobiology of Lung Cancer 

Immune responses within the tumour microenvironment (TME) are important determinants 

of tumour behaviour, progression and aggressiveness and are often very different to the 

systemic immune responses in terms of inflammatory cell infiltrate and cytokine milieu (83). 

Flow cytometric analyses have identified thirteen predominant immune cell phenotypes in 

NSCLC, with the landscape largely dominated by T cells (47% of all CD45+ cells) with a close 

to even split between CD4+ (26%) and CD8+ (22%) subtypes (84). B lymphocytes, 

macrophages and natural killer (NK) cells comprised 16%, 4.7% and 4.5% respectively (84). 

Three types of dendritic cell (DC) were also identified, plasmacytoid DCs, CD1c+ DCs and 

CD141+ DCs, collectively accounting for 2.1% of all tumour infiltrating immune cells (84).  
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Immune cells have been studied extensively in an attempt to understand their role in 

prognosticating disease. The interaction between immune cells and the tumour in the TME is 

influenced by the type of immune cells, their density and location (tumour stroma or nest) 

(85). In NSCLC, cytotoxic CD8+ T cells are generally thought to be protective in lung cancer but 

the literature is conflicted and owing to heterogeneity between the studies in terms of stage, 

histology of NSCLC and tumour regions studied (nest or stroma), this makes it challenging to 

further determine their role (83). Stromal CD4+, stromal CD20+ and co-localisation of stromal 

CD4+ and CD8+ lymphocytes have all shown an association with improved survival in NSCLC 

(83,86). Dieu-Nosjean et al showed that the presence of mature Lamp+ DCs within tertiary 

lymphoid structures (TLS) correlated with higher T and B lymphocyte infiltration and better 

overall survival (87). The link between tumour-associated macrophages (TAMs) and outcome 

is also dependent on the location of the immune cell infiltrate (88); intra-tumoural 

macrophages (M1) associate with better survival whereas stromal macrophages (M2) and 

their associated cytokines, IL-8, IL-10 and TREM-1 associate with poor survival (83,88–90). 

FoxP3+ Tregs also associate with poor survival (91) and attenuation of their activity in vivo 

decreased overall tumour burden (92).  

 

Ultimately the TME is influenced by these cellular interactions between immune and tumour 

cells and their cytokines. This alters the balance from a pro-inflammatory to an anti-

inflammatory TME and it is this that determines the natural progression of the disease.  

 

1.7  B Lymphocytes in Health and Disease 

The role of T cell-mediated immune responses in solid tumours is well established and has 

become the driving force for major therapeutic advances, specifically with the advent of 
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immune checkpoint inhibitors (93). As a consequence, our understanding of the biology of 

these T cells has expanded exponentially. In contrast, our knowledge of B cell biology in cancer 

is less well developed. Tumour-infiltrating B cells have been observed in all stages of lung 

cancer development, with their presence differing according to stage and histological 

subtype. Given that they play a role in both humoral and cellular immunity B cell parameters 

may be important in determining both responsiveness to and toxicity of checkpoint blockade. 

Manipulation of B cell biology might offer significant immune-therapeutic opportunities (94). 

Thus, understanding B cell biology in NSCLC is of fundamental importance in informing 

potential novel multi-faceted approaches to favourably reset the immune contexture of the 

cancer microenvironment. 

1.7.1 Normal Development and Ontogeny 

In the bone marrow, haematopoietic stem cells serve as the common lymphoid progenitor 

and continually give rise to B cells throughout life (95) (Figure 1.3). B cell development and 

differentiation are subsequently regulated through the B cell receptor (BCR). The pro-B cell is 

BCR naïve; the transition from the pro-B cell phase to the pre-B cell phase is dependent on 

the generation of a functional immunoglobulin μ heavy chain by rearranging the 

immunoglobulin heavy chain variable (V), diversity (D) and joining (J) segments and the VDJ 

locus is spliced to the μ constant region (Cμ) gene. The pre-B cell receptor is composed of the 

heavy chain paired with the surrogate light chain (95). These pre-B cells then undergo light 

chain V and J segment rearrangement with either κ or λ constant regions. This complex results 

in the formation of immunoglobulin M (IgM) expressed on immature B cells which are still 

resident within the bone marrow. Alternative splicing of the heavy chain VDJ locus to the δ 

constant region (Cδ) gene generates IgD, which is co-expressed with IgM on mature B cells in 

the periphery (95). Subsequent development takes place in B cell follicles within secondary 
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lymphoid organs (SLOS), where germinal centres (GC) develop in response to antigen 

encounter. Mature B cells undergo a process known as somatic hypermutation (SHM) where 

the enzyme, Activation Induced Cytidine Deaminase (AICD) introduces mutations in the heavy 

and light chain variable regions in order to further diversify the immunological repertoire. 

AICD also mediates immunological class switch recombination (CSR), replacing the μ constant 

region for another heavy chain region in order to generate IgA, IgE or IgG. The cells with the 

highest affinity B cell receptors (BCR) are positively selected (this requires signalling through 

the BCR for the cell to survive, negative selection occurs when the B cell antigen receptor 

binds self-antigen and therefore undergoes cell death) and undergo clonal expansion in the 

germinal centre. These class-switched B cells can then give rise to long-lived plasma cells or 

memory B cells. Mature B cells leaving the bone marrow that do not undergo SHM or CSR in 

the GC reside within lymph node follicles or splenic sinusoids (follicular B cells) or traffic to 

the marginal zone (marginal zone B cells); this is an area located at the interface of the 

circulation and lymphoid tissue of SLOS (95). These cells often express polyreactive BCRs and 

respond to conserved microbial antigens. Germinal centres, which are normally found in SLOS 

such as the spleen and lymph nodes, can also occur as tertiary lymphoid structures (TLS) in 

tumours; this has been reported in colon, breast and NSCLC (5–7). The de novo formation of 

ectopic lymphoid tissue can occur at the site of inflammation in potentially any organ system 

(98). There is evidence that the adaptive immune system can be initiated independent of SLOS 

in these TLS in  NSCLC (87). 
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Figure 1.3. This flowchart illustrates the development stages in B cell maturation from 

haematopoietic stem cells in the bone marrow to terminally differentiated plasma cells which hone 

back to the bone marrow. The canonical B cell lineage markers are shown at each stage of maturation, 

with CD19 and CD20 being the classic B cell lineage markers. This figure has been taken from Edwards 

JCW et al, Nat Rev Immunol 2006; PMID 16622478.  
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Figure 1.4. This schematic illustrates the more complex interplay in B cell ontogeny highlighting 

different biological compartments and in particular the extra-follicular pathway of B cell maturation 

towards the plasma cell phenotype. Memory B cells can differentiate through both germinal centre 

and extra-follicular pathways and traffic from the periphery to the bone marrow and vice-versa. This 

figure has been taken from Sanz I et al, Front Immunol 2019; PMID 31681331.  
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1.7.2 B cell Function 

1.7.2.1 Antigen-Presentation 

T cell immune responses can be activated by B cells. Antigen-specific interactions require 

antigen internalisation via the BCR with subsequent presentation to T cells in an MHC-

restricted manner (99). Depleting host B cells from normal adult mice results in sub-optimal 

CD4+ T cell activation during immune responses to low-dose foreign antigen (100). Activated 

B cells derived from peripheral donor blood from healthy controls present antigens to CD4+ 

and CD8+ T cells (12). B cells and dendritic cells further provide a co-stimulatory signal which 

is critical to the expansion of an effector T cell population, namely the cross-linking of CD40 

with CD154 (CD40 Ligand) on CD4+ T cells (99) which in turn induces the expression and 

thence stabilisation of CD86 (B7.2) and CD80 (B7.1) on the B cell surface (second co-

stimulatory signal).  

 

1.7.2.2 Antibody Production 

B cells exist as long-lived plasma cells to produce antigen-specific antibody. The functional 

BCR can recognise an array of foreign antigens in the circulation and lymphoid organs, which 

then triggers antigen-specific antibody responses. Following antigen binding, BCR stimulation 

results in a signalling cascade mediated by membrane bound protein tyrosine kinases, Spleen 

Tyrosine Kinase (SYK), Bruton Tyrosine Kinase (BTK) and PI3K, in particular PI3Kδ which is a 

p110 isoform with high lymphocyte specificity (95). This in turn results in B cell differentiation 

into plasma and memory cells. The plasma cells will traffic to the bone marrow or reside in 

SLOS where they will continue to secrete antibody. BCR signalling controls this process from 

early B cell precursor development to terminal plasma cell differentiation, long-lived IgG 

plasma cells are devoid of the BCR (102).   
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1.7.2.3 Immunosuppression 

B cells play a vital role in the development of the immune system but are also responsible for 

immune homeostasis. Their immunosuppressive role has been illustrated by their ability to 

function as regulatory cells or Bregs whereby they influence T cell differentiation and thus T 

cell mediated inflammatory responses through IL-10 production (103). B regulatory cells are 

associated with limiting excessive inflammation (104) and mice lacking IL-10 producing Bregs 

develop chronic inflammation (105). IL-10 producing Bregs induce the Treg phenotype by 

skewing T cell differentiation in mice (106) and humans (107). Other cytokines that have been 

implicated in B-cell specific immunosuppression are TGF-beta and IL-35. TGF-beta when 

produced by B cells can induce CD4+ T cell apoptosis (108) and CD8+ T cell anergy (109). 

Chimaeric mice lacking either p35 or EBi3 (IL-35 subunits) in B cells develop accentuated 

autoimmune responses and have greater protection against Salmonella induced sepsis (110). 

IL-10 has been useful for Breg characterisation in both mice and humans however this can be 

up or down-regulated during immune activation and is not a stable inducible trait (104,111). 

A lineage-specific marker for Bregs equivalent to Foxp3 has not been identified. B cells are 

polarised to Bregs in response to microenvironmental cues: Bregs have been derived by 

treating human derived peripheral B cells with tumour-conditioned media; these Bregs were 

able to suppress the activity of human T cells in vitro and they exhibited low surface 

expression of CD20 unlike healthy control human B cells (112,113). These tumour evoked 

Bregs did not utilise IL-10 dependent suppression but instead primarily functioned to promote 

the differentiation of Tregs (CD25+) via the TGFβ signalling axis (112).  
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1.7.3 Role of B cells in Malignancy 

1.7.3.1 Pre-Clinical Studies of the Role of B cells in Cancer 

There appears to be a significant difference in the role of B cells in animal models which 

represent different stages in the development of cancer. In murine models of pre-malignancy, 

B cells appear to drive inflammation which in turn induces pre-malignancy.  

 

1.7.3.1.1 Pre-Malignancy Models 

Early evidence  from the K14-HPV16 model (these RAG-1 knockout (KO) mice in which  

carcinogenesis is initiated by HPV lack T and B cells) has shown that the lack of an adaptive 

immune  response results in failure to initiate leucocyte infiltration during pre-malignancy 

(114) and this halts progression towards carcinogenesis. Adoptive transfer of B lymphocytes 

or serum from HPV16 mice into HPV16/RAG1−/− mice resulted in significant infiltration of 

CD45+ leucocytes, macrophages and granulocytes in the dermal stroma as well as detectably 

higher levels of serum Ig which then enhanced malignant progression. In this model of 

squamous carcinogenesis, B cells were shown to play a role in activating Fcγ receptors (FcγRs) 

on resident and recruited myeloid cells likely via circulating immune complexes (CIC) detected 

in the serum of HPV16 mice and formed from IgG bound to cognate HPV16 antigens. These 

CICs were localised to both the epidermal and dermal components of neoplastic skin. The 

recruitment of these chronically activated leucocytes was dependent on FcγR expression 

(115), as shown by the reduced level of inflammatory cell infiltration in neoplastic skin in FcγR-

/- KO mice. Subsequently it was shown in K14-HPV16 mice that premalignant dysplasia could 

be prevented through B cell depletion (116). Administration of anti-CD20 monoclonal 

antibodies depleted B cells in peripheral blood and SLOS with resultant reduced levels of 
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circulating IgG, immune complex deposition and trafficking of myeloid cells (CD11+), CD45+ 

leucocytes, mast cells and GR1+ cells to neoplastic skin (116).  

 

In a  DMBA/TPA murine model of skin carcinogenesis adoptive transfer of B cells from 

DMBA/TPA wild type (WT) mice into TNF-α knockout mice significantly increased papilloma 

development (p<0.05), an effect not seen when B cells from the TNF-α knockout mice were 

transferred to RAG2-/- mice (117). TNF-α is a potent inflammatory cytokine and tumour 

promotor, Bregs are known producers of TNF-α. Selective TNF-α deletion in CD19+-Cre B cells 

significantly reduced papilloma development compared to B cells from WT mice (p<0.002). 

TNF-α knockout mice showed increased levels of IFN- γ and CD8+ T cell skin infiltration, but 

also a significant reduction in the number of splenic CD19+ CD21hi, IL-10 producing Bregs 

compared with WT mice (p<0.01). Further experimental data showed that TNF-α blockade of 

LPS-induced B cell activation significantly reduced IL-10 production with no difference in IL-2, 

-4, -5, -12 or IFN-γ. The results of this study identify Bregs as contributory to squamous 

carcinogenesis, with their activity likely regulated by TNF-alpha with Bregs themselves acting 

as a cellular source of TNF-α.  

 

The impact of B cells in established cancer appears to be very different to their role in pre-

malignant disease. 

 

1.7.3.1.2 Established Cancer Models 

B cell depletion using anti-CD20 in a B16 melanoma murine model, resulted in increased 

tumour burden and the development of pulmonary metastasis (118). CpG (TLR 9 ligand) 

primed B cells caused tumour regressions in a B cell deficient melanoma model (119). CpG 
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treatment of B cells induced higher expression of MHC class I and II as well as CD20. It was 

also noted that in the mice that underwent adoptive B cell transfer, the lung tumours 

expressed significantly lower levels of BCL-2 (an anti-apoptotic protein) and increased levels 

of TRAIL (TNF-related-apoptosis-inducing-ligand, a pro-apoptotic protein), TRAIL expression 

is highest in germinal centre B cells and thus the upregulation in these murine lung tumours 

is likely B cell driven (119).  

 

In a 4T1 breast cancer model treatment with an anti-CD20 antibody resulted in massive 

cancer growth and metastasis. Eradication of CD20hiB cells, enriched for a select population 

of CD20LO Bregs which escaped CD20-directed depletion and thus significantly suppressed 

CD4+ and CD8+ T cell activity thus abrogating anti-tumour responses (113). Targeted delivery 

of CpG-ODN to CXCR5 expressing cells, reversed the phenotype of these tumour evoked Bregs 

(which upregulated CD20) and restored effector B cell responses. This was demonstrated by 

a complete abrogation of tumour metastasis in anti-CD20 treated 4T1.2 cancer bearing mice 

after adoptive transfer of CpG treated B cells (120). Using the same murine model, Tao and 

colleagues demonstrated that IL-10 inhibition significantly augmented the therapeutic 

efficacy of adoptive B cell transfer, as demonstrated by increased trafficking of CD8+ T cells 

into the tumour microenvironment as well as in vitro antigen-specific B cell dependent, FasL-

mediated tumour cell killing (121). Activated B cells from this model produce IgG and mediate 

complement-dependent tumour cell lysis in vitro (122). Finally, the use of intra-tumoural TLR9 

immune stimulation in combination with PD-1 blockade has demonstrated clinical efficacy in 

advanced melanoma, with increased B cell infiltration noted on post-treatment tumour 

biopsies (123). Phase I clinical trial data from patients with metastatic solid tumours showed 

a non-significant increase in TLR9-expressing naïve B cells during therapy (124). 
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1.7.3.2 Clinical Studies of the Role of B cells in Cancer 

Across all the studies in solid human cancers, assessing the role of B cells in outcome, CD20+ 

tumour infiltrating lymphocyte characterisation using IHC is the most commonly reported 

parameter (54 separate cohorts encompassing 15 types of cancer) (125). As a marker of naïve 

and memory B cells, this method attempts to capture B cells across most stages of 

differentiation. The prognostic effect of CD20+ TIL was positive in 27 (50%), neutral in 22 

(40.7%), and negative in 5 (9.3%) studies (125). This again is reflective of the heterogeneity 

between studies in terms of clinico-pathological factors, experimental technique, type of 

tissue section, counting strategies and methods of statistical analysis. On balance however, B 

cells associate with a positive outcome in the large majority of solid cancers, including breast 

(126), colorectal (127), gastric (128), ovarian (129), and hepatocellular (130) carcinomas, and 

cutaneous melanoma (118,131,132). 

 

1.8 Tumour-Infiltrating B Lymphocytes in Human Lung Cancer 

Numerous studies have identified TIL-Bs in tissue and examined their associated prognostic 

significance [See Patel AJ, 2020 PMID  31901949]. These studies largely focus on NSCLC which 

is where the correlation between TIL-Bs and disease-specific outcome has been shown to be 

strongest by comparison with other forms of Lung cancer. However, groups have investigated 

the immune milieu in large cell carcinoma and Small Cell Lung Carcinoma (SCLC). In the 

former, Eerola et al have demonstrated that TIL-Bs do correlate with better overall survival 

(133) whereas in SCLC, B cell infiltration is significantly reduced compared with CD8+ T cell 

and Macrophage infiltration and TIL-B number has not been shown to associate with survival 

(p=0.634 by log rank) (134).  
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Most studies have used a combination of immunofluorescence or immunohistochemistry in 

order to identify these cells in tissue. An anti-BCL-6 antibody and an anti-CD21 antibody were 

utilised in order to identify Germinal Centre B cells and mature B cells respectively. 

Immunohistochemistry was used to determine B cell density, location and phenotype within 

NSCLC tissue (97). Studies have utilised PCR-microarray and mRNA sequencing techniques in 

order to identify primarily humoral immunity related gene signatures in NSCLC specimens 

(135,136). CD20+ B cell infiltration has been shown to be positively prognostic in NSCLC by a 

number of different groups (38–43). Disease-free and overall survival was significantly higher 

in non-smokers with non-squamous NSCLC (138). Significantly improved survival has also 

been shown in large cell carcinomas with higher degrees of CD20+ B cell infiltration (133). 

Associations have been made between TLS (GCs forming as ectopic foci of follicular B cells 

and clusters of mature DC-Lamp+ve Dendritic cells and T cells in cancer tissue, in response to 

antigen stimulation) in NSCLC and improved long-term survival. The presence of both types 

of antigen-presenting cells and mature dendritic cells in these TLS strongly predicts the 

outcome of patients (87,137). A low density of both follicular B cells and mature dendritic 

cells allows the identification of patients at high risk of poor survival. A higher prevalence of 

intra-tumoural GC formation was found in NSCLC stage I tumours compared with higher stage 

(II-IV) tumours (p<0.02) (97). In a recent study (142) the expression of a tumour-induced 

plasmablast-like B cell signature (TIPB) was significantly correlated with the expression of 

CD8a signatures and the density of CD8+ cells. High expression of the TIPB signature was 

correlated with overall survival in the melanoma TCGA dataset. Importantly, a cohort of 

melanoma patients treated with anti-CD20 antibodies, showed significant on-treatment 

down-regulation of the TIPB signature: the signature was highly correlated with tumour 

inflammatory score, interferon gamma and T cell effector signatures all of which significantly 
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decreased on anti-CD20 therapy. There was a marked depletion in in both CD4+ and CD8+ cell 

density at the invasive tumour-stroma margin and a reduction in the TLS area, an effect which 

was prolonged. In support of this data suggesting the importance of B cells in a successful 

anti-cancer immune response, long-term follow-up of CD20 depletion with Rituximab in 

patients with lymphoma, it was shown that CD20 depletion was an independent risk factor 

for the development of secondary solid tumour malignancy in both univariate and 

multivariate analyses (143). 

 

CD138+ plasma cell infiltration has correlated with both good and poor outcomes in NSCLC 

depending on the study (62–64), with a predilection for a favourable prognosis in 

adenocarcinoma subtypes. CD138 expression has been associated with increased survival 

across all NSCLC stages (145,146), and IgG4+ (145) and Ig kappa C expression (146) have 

independently been shown to be positively prognostic. IgG4 is the least abundant subclass of 

IgG and is produced in response to chronic antigenic stimulus and inflammation which 

explains its abundance in the setting of cancer. Reports of IgG4 antibodies and IgG4+ B cells 

in different cancers suggest the involvement of IgG4 in tumour escape from immune 

surveillance through a number of potential mechanisms, including IgG4 blockade of IgG1-

mediated effector functions (147). In melanoma, IgG4 subclass antibodies effectively impair 

anti-tumour immunity and IgG4 secreting polarised B cells increased VEGF in cultures and 

correlated with increased tumour cell IL-10 secretion (148). The association with IgG4 

accumulation and poor outcome with links to tumour immune evasion mechanisms has been 

further delineated in oesophageal cancer (149). Hald and colleagues conferred no prognostic 

correlation for epithelial or stromal CD138 expression in NSCLC (p=0.292) (150). However, in 

this 55-patient cohort, 24 patient tumours were CD138LO and 29 were CD138HI and 5-year 
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overall survival rates between the two sub-groups were 35% and 54% respectively. 

Interrogation of distinct plasma cell subtypes in NSCLC identified a subset of CD138+ plasma 

cells as an independent negative prognostic in all cases of lung adenocarcinoma and stage 1 

cases overall (p<0.001) (144). This study further determined this to not be a conventional Ig 

producing population, but instead a plasmablast-type population displaying Breg 

characteristics through IL-35 production (144).  

 

Finally, the prognostic impact of follicular B cells was evaluated in two patient cohorts; early-

stage untreated NSCLC and advanced stage NSCLC treated with neoadjuvant chemotherapy. 

“Foll-B-Hi” patients had significantly prolonged survival in early-stage disease, (97% DFS at 4 

years compared with 62% in the “Foll-B-Lo” group), and in advanced stage disease, a benefit 

was demonstrated albeit not significant (56 months median DFS compared with 23 months in 

the “Foll-B-Lo” group). The global increase in follicular B cell density was associated with an 

overall increase in mature DC density. When the combined immune populations were taken 

into account and correlated with survival, “Foll-B-Hi/mDC-LampHI” patients had the highest 

median survival, 100% of early stage patients (p<0.04) and 55% of advanced disease patients 

(p=0.007) were alive after a follow-up of 50 and 60 months respectively (137). “Foll-B-

Lo/mDC-LampLO” patients had the worst prognosis.  

 

Some studies have not demonstrated a prognostic impact of B cell density on NSCLC 

outcomes (141,144,150–152). However, it may be that the lack of prognostic impact may 

relate to the high density of Bregs in such studies and it would appear to be essential that 

Breg density be considered separately (141,150,151). An explicit analysis of whether Breg 

density is negatively prognostic for outcome however has not been performed. Finally, the 
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prognostic impact may be dependant not only on enumeration of the appropriate B cell 

subsets (TIMPs, follicular) but also by enumeration of tumour-associated B cells in the 

appropriate compartment, as opposed to analysis of un-segmented tumoural B cell density. 

Most B cells are found at the invasive tumour-stroma margin, and it is here that the cancer 

cells are likely to polarise B cells to the immune-stimulatory TIPB phenotype. 

 

1.8.1 Tumour-specific B cell responses 

1.8.1.1 Antibody Specificity and Antigen Presentation 

Tumour antigen-specific B cell responses are evidenced by the production of tumour-specific 

antibody and the oligo-clonality of TIL-Bs in the TLS (153). B cells cultured from TLS’ have been 

shown to produce tumour-specific IgG and IgA antibodies (137). LAGE-1 was identified as the 

most immunogenic tumour antigen in NSCLC, followed by MAGE family antigens, p53 and NY-

ESO-1(137). Plasma cell and Ig expression associates favourably with outcome in NSCLC 

(136,145,146). IgG4+ plasma cell infiltration correlates favourably with prognosis (145).  

 

In NSCLC tissue TIL-Bs present antigen to CD4+ TILs with resultant effector responses (153). 

CD4+ T cells, B cells and DCs were co-cultured together with protein +/- co-stimulation with 

an anti-CD40/anti-CD28 antibody. Anti-HLA-DR, -DP and –DQ was used to block MHC class II 

antigen presentation. T cell responses were stratified according to “activated” (spontaneous 

presentation of antigen to CD4+ T cells), “antigen-associated” (presentation of antigen 

following re-stimulation by the antigen itself) and “non-responsive”. Activated TIL-Bs (CD19+ 

CD20+ CD69+ CD27+ CD21+) and antigen associated B cells mediated an effector T-cell 

response (IFN- γ producing CD4+ T cells). Conversely, exhausted phenotype TIL-Bs (CD19+ 

CD20+ CD69+ CD27- CD21-) were associated with a regulatory T-cell phenotype (Foxp3+ CD4+ 
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TILs) (153). Exhausted TIL-Bs were still able to antigen present but controlled host damage 

from chronic antigen exposure by inducing a Treg phenotype and ultimately dampening anti-

tumour immunity (153).  

 

1.8.1.2 Antibody Production 

In the context of NSCLC, plasma cell and Ig expression associates favourably with outcome 

(136,145,146). IgG4+ plasma cell infiltration correlates favourably with prognosis (145). 

Moreover B cells cultured from TLS’ appear to be participating in the anti-tumour response 

given that they have been shown to produce tumour-specific IgG and IgA antibodies (137). 

Meta-analysis of non-TCGA transcriptomic data from over 18000 human tumours found intra-

tumoural plasma cell presence to be a significant positive prognostic factor for survival in the 

case of non-brain solid tumours, except for large cell lung carcinoma (154). IgG+ plasma cells 

often produce IgG1 with extreme specificity and as part of large hypermutating clonal 

populations, these cells partake in tumour cell killing via opsonisation, complement fixation 

and promotion of antigen presentation by dendritic cells (131,155–157). These populations 

often exist on a phenotypic spectrum and work in synchrony with other IgG+ effector B cells 

with produce Granzyme B, interferon-γ and MHC class II partaking in direct tumour cell killing 

and antigen-presentation as well as shifting the balance towards anti-tumour M1 

macrophage production (131,155–157).  

 

B cell subsets have been identified through flow cytometry using CD19 as a pan marker as 

well as differential expression of IgD together with CD38 and CD138 for plasma cells. 

Infiltrating plasma cells produced tumour-specific antibody. This was determined by B cell 

cultures from the patient tumours which were analysed by ELISA for IgG and IgA binding 
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against a series of 33 tumour antigens. LAGE-1 was identified as the most immunogenic 

tumour antigen in NSCLC, followed by MAGE family antigens, p53 and NY-ESO-1(their 

prognostic correlations were not described in this study) (137). There is a clear organisation 

of B cells into follicles intra-tumourally within TLS’. The development of which is associated 

with the development of antigen-specific humoral responses such as the production of 

tumour-antigen-specific immunoglobulin.  

 

Plasma cell infiltration has also been shown to be an independent negative prognostic factor 

in papillary/acinar adenocarcinoma (144). Kurebayashi and colleagues have demonstrated 

that the fraction of IgG4+ or IgA+ plasma cells varied amongst the cases with increased plasma 

cell infiltration which may be reflective of the differing cytokine milieu in each 

adenocarcinoma; however the fraction of neither IgG4- nor IgA-producing plasma cells 

influenced prognosis (144), which contrasts the findings from Fujimoto’s group where IgG4+ 

infiltration associated with improved outcome (145). This however starkly contrasts the 

finding of numerous studies implicating IgG4 in tumour immune escape, and furthermore in 

non-cancerous disease processes such as atopic allergy and SLE (149).  

 

Plasma cell survival is dependent on the expression of B cell Activating Factor (BAFF) and a 

proliferation-inducing ligand; APRIL which can be secreted by different cell types depending 

on the environment (158). Increased numbers of APRIL-producing cells were observed in 

cases where there was higher plasma cell infiltration (144). The co-infiltration of both cell 

types suggests that the environment in question is conducive to prolonged plasma cell 

survival in the cancer stroma. Moreover, plasma cells intermingled with B cells in the 

adenocarcinoma tissue did not display the germinal centre reaction typically seen in the 
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lymphoid follicle, but instead mimicked the extra-follicular differentiation of plasma cells that 

is induced by chronic inflammation (144,159). The plasma cells were mainly derived from in 

situ B cell differentiation in the cancer stroma driven by the favourable environment as 

opposed to being trafficked in from regional lymph nodes (144). The environment therefore 

influences a plasma cell subtype with a particular phenotype, whether it is IL-35 production 

(an immunosuppressive cytokine that is CD25+ Foxp3 Treg or Breg derived) or indeed 

IgG4/IGKC expression, and this could be influencing the differing associations with outcome 

in NSCLC. These immunosuppressive B cells and plasma cells (often IgA+ CD20-) tend to exert 

their effector responses via IL-10, TGF-beta, PDL1 and IL-35 and convert CD4+ T cells into 

Tregs and promote macrophage conversion to the pro-tumoural M2 phenotype (156,160). 

 

1.8.1.3 Immunosuppression 

In NSCLC, significantly higher frequencies of peripheral Bregs (CD19+ CD24hi CD27+) and 

CD19+ IL-10+ B cells were detected compared with healthy controls (161). IL-10+ B cell 

infiltration has positively correlated with CD25+ Treg expression and advanced clinical stage 

(162). Multiple subsets exist with similarities in effector function and phenotype; in humans 

Br1 cells (CD19+ CD25hi CD71hi) are strongly IL-10 positive. The differentiation of activated B 

cells into plasma cells is controlled by the expression of transcription factors, IRF4 and BLIMP-

1 which are also critical for B cell suppressive functions and some T cell suppressive functions 

(IRF4 expression in Tregs is dependent on Foxp3) (92). B cells that co-express IRF4 and BLIMP-

1 are the main source of B cell derived IL-10 in vivo, and plasma cells are therefore a significant 

contributor however not all plasma cells produce IL-10 (163). Currently, the signals that are 

required for differentiation into these regulatory B cells are not known.  
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Numerous studies have phenotypically characterised various Breg subsets in health and 

disease, (161,162,164–183). The findings from these studies of human Bregs in cancer 

underscores the ability of different Breg subsets to mediate immunosuppression in support 

of tumour growth through a variety of mechanisms; suppressive cytokine production (IL-10, 

TGF-β, IL-35), suppression of T cells and NK cells and the expansion of suppressive Tregs and 

myeloid-derived suppressor cells (120), expression of inhibitory ligands such as PD-L1 to 

dampen anti-tumour immunity (184) and STAT3 mediated promotion of angiogenesis and 

Treg augmentation (112,171,185). It is unclear whether Bregs enhance tumour progression 

directly or if an increase in the Breg population is merely reflective of the immune response 

being mounted against the tumour (186). 

1.8.2 B cell repertoire in NSCLC 

B cells can exist in a continuum of naïve cells to terminally differentiated plasma cells within 

the TME and more specifically within the TLS (137). Determining the ratio between these so-

called “anti-tumour” TLS derived TIL-Bs and the “pro-tumour”, inhibitory Bregs is important 

in order to understand the biology and long-term outcome from this disease. This balance is 

likely influenced by the micro-environmental cues which play a role in determining B cell 

polarity. CXCL13 and Lymphotoxin have been identified as two factors critical to the formation 

and development of lymphoid follicles in the gut (187), and in lung cancer, B cells produce 

CXCL13 and Lymphotoxin via TLR4 signalling which acts as a positive feedback loop to support 

the formation and high density of TLS (188,189). CXCR5 expressing B cells stimulated by CXC13 

coupled CpG-ODN can trigger the cytolytic effect of CD8+ T cells leading to the abrogation of 

metastasis in 4T1.2 tumour-bearing mice (113). Resveratrol, Lipoxin, Glucosides of Paeony 

have also inhibited Bregs through STAT3 and/or ERK inactivation leading to a reduction in IL-

10 and TGF-β levels thus exerting an anti-tumour effect (190). B cell homeostasis and thus 
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polarity will largely be determined by the degree of inflammation within the tumour, factors 

such as tissue hypoxia, intra-tumoural vascularity, cytokine milieu and cellular infiltration are 

all factors which are likely to exert control over the pro versus anti-tumour B cell balance but 

as yet there is little evidence describing the Breg/B effector ratio in tumour biology, and this 

is likely due to the transient inducible nature of Bregs.  

 

1.8.3 The Interplay of B cells and Checkpoint Blockade  

In the first study to investigate whether B cell density impacts outcome with checkpoint 

blockade, B cell content was determined in 34 melanoma patients undergoing PD-1 blockade 

monotherapy and evaluated for response (191). Dichotomising the patients at the median of 

CD20 positive cells in at least one histospot there was no difference in response or survival 

between those with high and low B cell density. The comments made earlier about 

enumeration of specific B cell populations in specific microenvironmental segments also apply 

here. B cell depletion in the MC38 (colon carcinoma) and YUMMER1.7 (melanoma) models 

did not impact the efficacy of anti-PD-1 treatment. Anti-PD-1 outcomes were similar in in 

muMT mice (mice lacking B cells) and WT mice bearing MC38 tumours (191). In human 

studies, immunofluorescence staining of CXCR5 and CXCL13 in combination with CD20 in 

melanoma revealed the formation of TLS, the presence of which was translated into an 

associative gene signature which was able to predict improved clinical outcomes in patients 

undergoing checkpoint blockade therapy (131). B cell signatures in melanoma have further 

been shown to be enriched in treatment responders where immune cells were localised to 

TLS, a strong proportion of which were class-switched memory cells (157). Work in soft-tissue 

sarcoma demonstrated that tumours rich in TLS and B cells demonstrated significantly 
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improved survival and a high response rate to PD1 blockade with Pembrolizumab in phase II 

trials (192).  

 

Larger datasets in other cancers need to be interrogated to fully understand whether there is 

any impact of specific intra-tumoural B cell populations on the outcome of checkpoint 

blockade. This is particularly the case given earlier data showing that clinical benefit with 

ipilimumab was greater in melanoma patients with sero-positivity against NY-ESO (193): as 

mentioned above, the CTags appear to be potent immunogens stimulating antibody 

responses. Furthermore, gene-expression profiling in urothelial carcinoma and melanoma 

patients undergoing both anti-PD-1/PD-L1 and anti-CTLA4 therapy identified a memory B cell 

(MBL) signature which was significantly and reproducibly elevated in patients showing clinical 

benefit (194). It significantly outperformed other immune cell signatures and remained 

significantly associated with outcome when including tumour mutational burden, copy 

number aberration burden and checkpoint expression. Samples enriched for an innate PD-1 

resistance scores had significantly lower levels of MBL scores. The MBL score positively 

correlated with BCR heavy chain expression and the expression of T cell activation genes, MHC 

class II and genes responsible for B cell proliferation and activation within the TME. Finally, 

high expression of the TIPB signature was associated with improved survival in melanoma 

patients treated with anti-PD-1, and plasmablast-like and naïve B cell frequencies were 

significantly higher in patients responding to immune checkpoint blockade (142). The use of 

anti-PD-1 treatment in murine models has shown to increase total IgG and OVA-specific IgG 

production in OVA-immunised mice (195). The enhanced humoural response in these mice is 

thought to be mediated by CD4+ ICOS+ T cells which are presumably of the T follicular helper 

(Tfh) phenotype that go on to augment terminal B cell differentiation in the germinal centre 
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(195). PD-1/PD-L1 interactions between Tfh and Bregs control this axis (196,197) and by 

blocking this checkpoint, Tfh cells are released from Breg-induced suppression. This 

demonstrates the importance of heterogeneity of the B cell repertoire and how checkpoint 

blockade can impact downstream immune responses by targeting select populations. 

Importantly, none of the above studies have examined B cell density as predictive of response 

to checkpoint blockade in NSCLC or to combination chemo/immunotherapy which has 

become a 1st line standard of care in this disease.  

Given that PD-1 is expressed on B cells and can limit B cell responsiveness (198,199) and 

further, that certain auto-immune conditions are mediated via auto-antibody formation, the 

association of B cell sub-populations with checkpoint blockade toxicity has become a focus of 

investigation.  Das et al demonstrated in melanoma patients, a detectable decline in 

circulating B cell numbers together with an increase in CD21LO B cells and plasmablasts after 

the first cycle of combination checkpoint blockade therapy (2). These treatment induced 

changes in B cell numbers preceded and correlated with both the frequency and timing of 

immune related adverse events (irAE). Early B cell changes correlated with a higher rate of 

grade 3 or higher irAEs 6 months after starting treatment. Contrastingly, several groups have 

shown through case report series’ that B cell depletion therapy using Rituximab successfully 

treated B-cell mediated irAEs in NSCLC (200,201), SCLC (202), Melanoma (203) and Urothelial 

Carcinoma (204). This recapitulates the idea of B cell enumeration and selective targeting of 

certain micro environmental B cell populations. Bregs which by nature are 

immunosuppressive and dampen down inflammation would limit anti-tumour activity in 

response to PD-1 blockade but effector B cell populations with robust humoural responses 

and T cell activation mechanisms are driving autoimmunity and irAE in response to PD-1 

blockade. These intriguing analyses need to be validated, extended and applied to other 
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cancers amenable to checkpoint blockade and the mechanisms underlying these observations 

identified. 

 

1.8.4 B cell derived Treatment Strategies 

Studies in mouse models of pre-malignancy suggest that B cell-mediated inflammation may 

be important in promoting the progression to invasive malignancy. Given the huge promise 

of reversing the pre-malignant phenotype to reduce the cancer burden, there is an urgent 

need to understand the role of B cells in human metaplasia, dysplasia and in situ cancer and 

how they mediate progression through these stages in order to decide whether B cell-

directed strategies may be of value in reducing the progression of pre-malignancy. 

 

Studies examining B cells with a regulatory phenotype (Bregs) consistently suggest that Breg 

infiltration may enhance tumour progression. The factors that induce Bregs in human 

malignancy need to be defined. Specifically are there particular microbes, TLR ligands or 

cancer cell produced cytokines in the TME that polarise B cells to a Breg phenotype (104,205).   

Currently used B-cell depleting antibodies cannot distinguish between effector and regulatory 

B cell subsets, therefore meticulous phenotypic characterisation and study of this subset in 

the TME (104,205) is required in order to identify Breg specific targets that can be exploited 

to selectively deplete Breg populations but more fundamentally to fully understand the role 

of Bregs in human cancer.  There are some current potential anti-Breg strategies.  In vivo 

murine studies have displayed selective Breg depletion using LXA4 without affecting 

conventional B cell proliferation, differentiation and germinal centre formation thus 

promoting  an anti-tumour responses (190). An alternate to Breg depletion would be 

repolarisation of this subpopulation into B effector cells, as has been shown with TLR9 ligands 
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in vitro (112,113). Adoptive transfer of CpG-pulsed B cells with effector phenotypes into 

patients with established cancer could be employed to shift the balance in favour of an anti-

tumour B cell response within the TME.  

 

More work is needed to understand the anti-tumour impact of antibodies against tumour 

associate antigens, particularly CTags which appear to be strong immunogens, and to identify 

new humoural immunity targets. The disappointing results of the MAGRIT trial vaccinating 

NSCLC patients in the adjuvant setting (206) should not be taken as suggesting that harnessing 

the anti-tumour antibody response should be deprioritised: mono-epitopic vaccination as 

cancer therapy has a long history of failure. Multi-valent vaccines, preferably against 

personalised B cell antigens, are one option. Building on the model of the chimaeric antigen 

receptor T cells (CART), highly specific B cell receptors to critical tumour antigens could be 

cloned into autologous B cells and transferred into patients with resultant high specificity and 

high affinity anti-tumour Ig production. Alternatively, antibodies could be produced ex-vivo 

and adoptively transferred. Given the role of B cell PD-1 expression in mediating B cell hypo-

responsiveness, the role of PD-1 blockade in augmenting these strategies should be explored, 

as a research priority. Understanding B cell biology will help to refine the understanding 

behind the effects of checkpoint blockade on the immune milieu. Toxicity from these 

therapies is the Achilles heel of this treatment strategy. As was alluded to earlier, work in mice 

and humans has demonstrated that PD-L1hi Bregs play a role in the suppression of humoural 

immunity through Tfh cell regulation, moreover these cells are resistant to classical anti-CD20 

therapy (197). Firmly understanding the ontogeny of these B cells and their relationship to 

other B cell subsets, including other Breg phenotypes is of paramount importance if we hope 



64 | P a g e  
 

to be able to refine therapeutic strategies so as to augment anti-tumour protective immunity 

and dampen down autoimmune and hence toxic responses.  

 

Finally, large scale prospective and careful B cell sub-type specific and microenvironment 

segment specific analyses are required in lung cancer and in other cancers to clarify the role 

of B cells in modulating the responsiveness to checkpoint blockade and in mediating the 

toxicity to these therapies. These studies will define the role of B cell-targeted strategies in 

augmenting the activity of, reducing resistance to and the ameliorating toxicity of this crucial 

class of anti-cancer agents. 

 

1.9 Functional B cell Immunity and Infection 

The role of the B cell in tumour survival clearly has a function as tumour infiltration is 

commonly reported. The functional capabilities of B cells in NSCLC and the degree of patient 

immune competency remain to be further elucidated. The incidence of most common cancers 

increases with age, and this occurs in association with a decline in the quality of the immune 

response, known as immune senescence. Defects arise in the humoral (B cell) and cellular (T 

cell) arms of the immune system with age which parallels the age-associated peak incidences 

of cancer (207). Correlations have been made between age and primary resistance to novel 

immunotherapeutic anti-cancer agents; a phenomenon also likely to be linked to immune 

senescence (208). When dominant B cell clones become non-functional (immunoparesis) as 

in multiple myeloma, this can lead to an increased burden of infections. It is possible tumours 

act in a similar, inducing non-functional clones and switching off anti-tumour responses.  
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One of our best tools in the box for assessing immune competence is measuring antibody 

response to vaccination. The current literature suggests that there are a significant proportion 

of cancer patients who die from non-cancer related causes such as infection. Data from 

Netherlands and Belgium has shown that patients with lung cancer aged above 60 are 

increasingly likely to die from cardiovascular disease and respiratory infections (11). 

Furthermore, follow-up work done by a similar group showed that 22% of all unexpected 

hospital admissions within a cohort of lung cancer patients were due to respiratory infection 

(209). Research has shown that vaccinating against Streptococcus pneumoniae in elderly lung 

cancer patients decreased hospitalisation from community acquired pneumonia and 

improved survival (210); and moreover there is an increasing drive to vaccinate against 

influenza and pneumococcal pneumonia in these patients. The current guidelines from the 

department of health mandate that any person over the age of 65 should be vaccinated 

against pneumococcus as a standard of care. We thus sought to determine the burden of 

pneumonia and vaccine uptake in our regional population of NSCLC patients at a tertiary 

treatment site (Appendix 1) and moreover designed an observational interventional study 

which involved vaccinating NSCLC patients with Pneumovax (PPSV23) and measuring the 

functional in vivo B cell response (chapter 7).  
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Chapter 2. Key Methods 

The methodology section has been ordered such that it maps the specific experimental 

techniques used in each objective of this project. The structure is as follows.  

i. Patient recruitment and sample processing for Objectives 1 and 2 

ii. Experimental Techniques for Objective 1 – Mass cytometry and RNA sequencing 

iii. Experimental Techniques for Objective 2 – Mass cytometry (discussed with 

Objective 1 methodology), Functional Ex vivo B and T cell assays, Intracellular Flow 

Cytometry and ELISA 

iv. Experimental Techniques for Objective 3 – SengenicsTM Immunome Protein 

Microarray platform 

v. Data Acquisition and Analysis – mirrored to sections I to IV 

The methodology has been crafted with expert input from Tan Ti-Myen (bioinformatician 

from Sengenics Inc), who helped oversee and confirm validity of the machine learning pipeline 

(Objective 3). Dr. Peter Nightingale from the institute of translational medicine, University of 

Birmingham helped oversee and craft the general statistical methodology. Dr. Boris Noyvert 

from the Department of Genomics and Cancer Sciences at the University of Birmingham 

helped to oversee and craft the high dimensional RNA sequencing data analysis pipelines. 

Technical field experts, James Youell and Thomas Adejumo gave input and advice on mass 

cytometry marker orientation and panel set-up. 

2.1 Patient Recruitment 

2.1.1 Objective 1 

Deep B cell immune phenotyping in the acute surgical NSCLC cohort. 
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Patients were recruited at the pre-operative thoracic surgical clinic typically 1-2 weeks before 

the date of surgery for suspected lung cancer. Patient data was recorded which included age, 

demographic, lung cancer staging and histology as well as any significant co-morbidity 

(including smoking history). All data capture, recording and storage were performed in line 

with the ethical remit and the trust R&D policies. 

2.1.2 Objective 2 

Deep B cell immune phenotyping in the advanced disease NSCLC cohort. 

Patients were recruited at the pre-treatment oncology clinic typically 3-4 weeks prior to 

starting definitive anti-cancer treatment (chemotherapy, immunotherapy, radiotherapy) for 

advanced stage lung cancer. Patient data was recorded which included age, demographic, 

lung cancer staging and histology as well as any significant co-morbidity (including smoking 

history). All data capture, recording and storage were performed in line with the ethical remit 

and the trust R&D policies.  

2.2 Patient Samples and Processing  

2.2.1 Peripheral Blood Samples 

Blood was taken from pre-operative NSCLC patients in the pre-operative thoracic surgical 

clinic by peripheral venepuncture into 3 BD vacutainer® CPT bottles (NH: ~130IU FICOLLTM 

2.0ml) [each bottle contained 8mls of blood] after taking consent as per ethical protocol 

guidelines and then processed in the laboratory within 2-4 hours. The bloods were typically 

taken in the morning between 0930am and 1230pm to reduce the effect of diurnal variation 

on lymphocyte count and subsets. 

Blood was taken from healthy volunteers by peripheral venepuncture into 3 BD vacutainer® 

CPT bottles (NH: ~130IU FICOLLTM 2.0ml) within the University of Birmingham Medical School, 
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Clinical Immunology Service Department after taking as per university guidelines and 

immediately processed in the laboratory.  

2.2.1.1 Isolation of Peripheral Blood Mononuclear Cells (PBMCs) [BLOOD] 

Blood was taken from patients by peripheral venepuncture into 3 BD vacutainer® CPT bottles 

(NH: ~130IU FICOLLTM 2.0ml) [each bottle contained 8mls of blood] as part of the ethics (REC 

17/WM/0272 MLTC). The vacutainer® CPT tubes prevent coagulation and were inverted 

several times to ensure mixing (8-10 times prior to centrifugation).  The CPT tubes were 

transported to the laboratory and were processed within 2-4 hours of venepuncture for PBMC 

isolation. After collection, the tubes were stored upright at room temperature (18-25oC) until 

centrifugation. The tubes were centrifuged directly in a horizontal rotor (swing-out head) for 

30 minutes at 1500g (the relative centrifugal force [RCF]). After centrifugation, the 

mononuclear cell layer (whitish layer – see Figure 2.1) was collected with a 2.5 ml Pasteur 

pipette (Alphalabs, Eastleigh, UK) and transferred to a 50ml size sterile conical shaped Falcon 

tube.  
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Figure 2.1. A schematic to demonstrate whole blood layering before and after centrifugation with 

vacutainer CPT tubes.  

 

The 50ml Falcon tubes were then diluted with 10mls of warmed culture media [RPMI 1640 

media; 10% FBS] and then mixed by inversion. The 50ml Falcon™ tubes were then centrifuged 

at 300g with zero acceleration and zero brake for 15 minutes at room temperature. The 

supernatant was aspirated as much as possible without disturbing the cell pellet. The pellet 

was then re-suspended and washed in a further 10mls of RPMI 1640. The tube was tapped 

and gently pipetted with a P1000 in order to resuspend the pellet. The cells were then 

centrifuged at 300g with zero acceleration and zero brake for 10 minutes at room 

temperature. After the second wash, 1ml of RPMI was added to the cell pellet following 

supernatant discard and resuspended. A cell count was thence performed (detailed below). 
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Following the cell count, a final wash with 10mls RPMI and centrifugation with zero 

acceleration and zero brake for 10 minutes at room temperature was performed.  

2.2.2 NSCLC Tissue Samples 

Lung resections samples collected as part of the ethics (REC) were immediately taken “fresh” 

to the histopathology suite at the Birmingham Heartlands Hospital, UHB NHS Trust. Following 

examination by the consultant histopathologist, two sections of the tumour were sampled 

with each sample containing tissue from the core as well as periphery to ensure as much 

tumour microenvironment representation as possible. The samples taken were not required 

for diagnostic or clinical purposes and thus did not compromise the clinicopathological 

analysis of the tumour. One sample was immediately placed in sterile sealed container 

containing Miltenyi Tumour Storage Solution and stored in a fridge at 4oC [cell labelling and 

cytometric analysis specimen] and the second sample was immediately placed in a sterile 

sealed container containing formalin for fixation and stored in a fridge at 4oC [VECTRA 

multiplex immunofluorescence analysis specimen]. All samples were transported to the 

laboratory for processing and analysis within 24-48 hours. 

2.2.2.1 Isolation of Peripheral Blood Mononuclear Cells (pBMCs) [TUMOUR] 

The lung tumour sample acquired was stored in Tumour Storage Solution (Miltenyi Biotech) 

for up to 72h at 4oC. Within the 72h window, the tumour tissue was dissociated into a single 

cell suspension by combining mechanical dissociation with enzymatic degradation of the 

extracellular matrix, which maintains the structural integrity of the tissue. The tumour tissue 

was enzymatically digested using kit components and the gentleMACSTM Octo dissociator was 

used for the mechanical dissociation steps. Tumour tissue was weighed to ensure that it fit 
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within a range of 0.01g to 1g in order to ensure the appropriate volume of enzyme mix and 

RPMI 1640 culture media (approximately 5mls TOTAL).  

2.2.2.1.1 Reagent Preparation 

All reagents were supplied by Miltenyi Biotech and reconstituted in a standardised way. 

Enzyme H was reconstituted from lyophilized powder in a volume of 3ml RPMI 1640 with 

subsequent aliquoting into volumes of 200l. Enzyme R was reconstituted from lyophilized 

powder in a volume of 2.7ml RPMI 1640 with subsequent aliquoting into volumes of 100l. 

Enzyme A was reconstituted from lyophilized powder in a volume of 1ml Buffer A with 

subsequent aliquoting into volumes of 25l. Aliquots were prepared to avoid repeated freeze-

thaw cycles.  

2.2.2.1.2 Dissociation of Lung tumour specimen 

The tumour sample was cut up into small 2-4mm pieces in a sterile fashion using a 24-blade 

sterile disposable scalpel (Swann-Morton®, Sheffield, England, 24 blade, REF 0511). Necrotic 

areas, excess fat or fibrotic tissue was discarded. The tumour pieces were placed into a 

gentleMACS® C Tube along with the enzyme mix (200l enzyme H, 100l enzyme R and 25l 

enzyme A) and 4.7ml of warmed RPMI 1640. The C tube was then inverted and placed onto a 

gentleMACS® Octo Dissociator and covered with a heated jacket. The 37C_h_TDK_2 program 

was run for 1 hour to allow full dissociation into a single cell suspension. Prior to filtration, a 

70μm filter was pre-wet with 2ml of warmed RPMI 1640. The tumour suspension was applied 

to a MACS® SmartStrainer (70μm filter) which was placed over a 50ml Falcon tube. This was 

then washed through with 20mls of warmed RPMI1640. The cell suspension was 

subsequently centrifuged at 300RCF for 7 minutes. Following this, the supernatant was 
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aspirated, and the cell pellet gently resuspended in 1ml of warmed RPMI 1640 using pipetting 

with a P1000. A cell count was subsequently performed as detailed below.  

2.2.3 Cell Count and Viability  

Cell count was performed using a HORIBA Cell Counter (HORIBA Inc. Kyoto, Japan) method. A 

50l aliquot was sampled from the 1ml PBMC suspension and placed under the cell counting 

apparatus. Cells were then re-suspended in culture media dependent on total cell count to 

an initial volume such that the concentration was 1x106 for use in phenotyping.  

2.2.4 Freezing down PBMCs 

Following cell count and repeat centrifugation, the supernatant was discarded, taking care 

not to disturb the pellet. The pellet was then re-suspended in freezing solution (sterilised mix 

of 90% heat inactivated fetal calf serum and 10% DMSO) at a density of 4-10 x106/ml. The 

freezing solution DMSO was added in a dropwise fashion to the cell suspension. The 

cell/freezing solution suspension was then aliquoted into pre-labelled 1ml cryovials. The 

cryovials were then transferred into a Coolcell freezing container and placed in a -80oC freezer 

for a minimum of 4 hours. The cryovials containing patients PBMCs were transferred into the 

main -80oC compartment within 72 hours of freezing down and their position was recorded 

in a sample log. 

2.2.5 Defrosting PBMCs for Phenotyping on Mass Cytometer (CyTOF) 

Cryovials containing PBMCs were removed from the freezer and transported to the lab on ice. 

Cryovials were subsequently placed into a 37oC incubator and gently swirled until a few ice 

crystals remained. All contents were then transferred into a pre-labelled 50ml Falcon tube 

and washed with 15mls of warmed RPMI 1640. This was then spun at 300RCF for 10 minutes 

in a similar fashion to above. The supernatant was decanted, and the cells resuspended in 
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their residual volume. This was further diluted with 2mls of warmed RPMI 1640 and 1 

microlitre of Benzonase (Merck 70664-3, 10KU vial, 25U/microlitre) for every 1x106 cells that 

were frozen down (titrated according to cell number). The cells were then incubated for 1 

hour at 37oC. Following this, the cells were washed again with 10mls of warmed RPMI 1640 

and spun at 300g for 10 minutes. The cells were then resuspended in 1ml of RPMI 1640 in 

preparation for a cell count as described above. Expected cellular reconstitution rate was 80-

90%.  

2.3  Experimental Methods 

2.3.1 Cytometry by Time of Flight (CyTOF) Phenotyping 

Mass Cytometry enables the measurement of up to 50 features on a single cell. This technique 

was developed as an alternative to fluorescence flow cytometry, where instead of 

fluorophores, mass cytometry uses metal ions as the labelling reagent. Inductively-coupled 

plasma mass spectrometry (ICP-MS) is used for detection and quantification instead of 

photomultiplier tubes (211,212). This eliminates the issue of spectral overlap and 

theoretically allows 100 or more features to be measured simultaneously, however in reality 

the majority of experiments are performed less than 50 channels owing to the limitations 

both in isotopically pure elements with suitable valence and atomic mass, and stable 

chelation for certain sizes or valences of the metal ions (212). The pre-labelled cells (with 

antibody-metal ion tag) are fed through the device, and this enables readouts as a function 

of time of flight through the apparatus, hence the name CyTOF; Cytometry by Time of Flight. 

The conjugation of metals to antibody is discussed further below. Sample preparation 

involves incubations of cells with metal-containing reagents and iridium or rhodium 

containing DNA intercalators to allow for cell detection regardless of whether any metal-
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labelled antibodies bind. This is discussed further below. Currently, mass cytometry is unable 

to offer information on the size or complexity of cells, i.e., there is no parameter analogous 

to side scatter in fluorescence flow cytometry. Groups have reported use of plasma 

membrane staining assays to evaluate mammalian cell size in mass cytometry. This technique 

employed wheat germ agglutinin staining or Osmium tetroxide (OsO4) which have preferential 

affinity for cell membranes (213). We found that the number of different antibodies that can 

be simultaneously employed per sample can also circumvent this issue somewhat by 

providing increased detail on cell phenotypes and populations (212). 

We thus employed mass cytometry as our primary phenotyping method to determine the 

properties and phenotype of B cells circulating in the blood of NSCLC patients undergoing 

surgery and in those with advanced disease due to start on checkpoint blockade therapy +/- 

chemotherapy. Using custom-designed B cell CyTOF antibody panels (detailed below), we 

used mass cytometry to profile the B cell immune signature in these lung cancer patients. In 

order to comprehensively analyse the immune landscape in the tumour microenvironment, 

millions of cells from human tumours must be characterised by simultaneous analysis of 

dozens of markers (214). Mass cytometry enables the quantification of more than 50 readouts 

at the single-cell level by combining metal isotope-labelled antibodies with mass 

spectrometry detection (1); this can be done in a time and cost efficient manner, and 

therefore served as our primary phenotyping method.  

2.3.1.1 Antibody Panels 

Given the paucity of deep B cell immune-profiling in humans with lung cancer, I based the 

antibody panels (Table 2.1) on broad B cell subsets, B cell ontogeny and on work done in 

melanoma (2) as well as work done within the clinical immunology service lab on myeloma 
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and myeloid leukaemia. CyTOF panels were designed using the panel design tool via the 

Fluidigm website and antibody titrations at serial concentrations were carried out to validate 

the entire panel. This was performed on healthy control samples. Each antibody was serially 

titrated starting with a fixed volume of 0.5µL and depending on the signal intensity, cell 

capture and degree of spillover, this amount was titrated upwards or downwards. For rarer 

markers such as IL-10, full dose of 1µL per patient sample was used in the antibody cocktail. 

All antibodies were titrated and validated in this way individually on healthy control PBMCs 

before combining together in a cocktail for use on patient samples. Figure 2.2 below 

illustrates the gating of healthy controls at multiple antibody volumes to achieve the optimum 

antibody concentration, here CD20 is used as an example.   

 

Figure 2.2. Validation of antibody titrations and CyTOF panel set-up is shown above using CD20 

titrations as an example. Multiple antibody volumes are trialled, from 0µl to 1µl. Under live CD19+ B 

cells, staining is more intense at higher volumes however some intermediate non-specific B cell 
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staining is seen. This must be taken into account along with the spillover index at varying volumes. 

The red arrows in the third column indicate spillover into neighbouring channels (CD20 is on 161Dy 

here), therefore +1 indicates 162Dy, +2 indicates 163Dy and -1 indicates 160Dy. There is less spillover 

at lower concentrations such as 0.33µL, indicating that the optimal volume is between 0.1 and 0.3µL.  

2.3.1.2 Probe Selection 

The most commonly used probes for antigen detection are antibodies, which bind to the 

biomolecules of interest. Other probes also exist, designed for investigating more specific 

biological processes such as carbohydrate-binding proteins (215), small molecules such as 

tellurium-based oxygen sensors (216), or modified nucleotides for cell-cycle analysis (217). 

Ensuring that the probes are specific is crucial as cross-reactivity for other targets (secondary 

affinity) will compromise the integrity of the data. We chose complementary antibodies 

specific to the antigens of interest as marked out on the panels.   

2.3.1.3 Panel Design 

We considered the following aspects when designing the CyTOF panels, on the advice of 

Fluidigm® field application specialists (James Youell and Thomas Adejumo from Fluidigm Inc).  

a) Matching antibody probes with appropriate elemental isotopes in order to achieve 

adequate signal intensity. Given that the majority of antibodies were procured directly 

from Fluidigm®, the pairings were already biologically validated. The degree of signal 

intensity also correlates with likelihood for single spillover into neighbouring channels.  

b) Oxide formation when cells travel through the ion cloud results in the addition of 16 

mass units (16O) to an element’s mass. Oxide formation is primarily a problem for La, 

Pr, Nd, and Sm-labeled probes, and can never be completely eliminated (215,218). 

Standard daily tuning of the instrument uses the signal from the tuning solution, in 
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order to optimise machine parameters to limit the 139La + 16O signal to less than 3% 

of the 159Tb signal present in the tuning solution. 

c) The uniformity of the distribution of ion arrival times at the detector is dependent on 

the mass of ions i.e., this distribution is narrower for low-mass ions (e.g., 133Cs in the 

tuning solution) and broader for higher-mass ions (e.g., 193Ir). As ion optics have 

improved, this has decreased from ~2% for the first CyTOF model to ~0.3% for 

CyTOF2™ and Helios™ for 159Tb (Fluidigm Handbook®). All our samples were run on 

the HeliosTM instrument.  

2.3.1.4 Custom Conjugations 

Developing the panels required adhering to the principle of “one antigen per metal” whilst 

simultaneously trying to reduce significant spillover into neighbouring channels. Most 

antibodies were procured from Fluidigm® as “off the shelf” biologically validated antibodies. 

Six antibodies in panel 1 and 13 antibodies in panel 2 required custom conjugation with 

lanthanide metals in order to fit on the panel-appropriate channel. These custom antigens 

are specified in Table 1. The Conjugation Protocol is summarised below in the flow diagram 

(Figure 2.3). Broadly speaking this involves, binding the metal ions with a polymer that 

possesses pendant chelating groups and then the metal-loaded polymer is used to label 

antibodies or other specific reagents. We followed the Fluidigm® MaxPar antibody labelling 

guide protocol however modified the protocol in order to optimise the yielded antibody 

conjugates. The steps are outlined in detail below.  
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Figure 2.3. Schematic illustrating custom antibody conjugation protocol for mass cytometry. 

2.3.1.5 Conjugation Protocol 

The first phase of the protocol was to load polymer with the lanthanide metal of interest 

(Figure 2.2). The polymer was spun down in an Eppendorf tube to ensure all had collected at 

the bottom (10 seconds at 10,000RPM). This was then resuspended in 95μl of Loading (L) 

buffer and mixed thoroughly. 5μl of Lanthanide metal of interest was added to this tube to 
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yield a final concentration of 2.5mM in 100μl. This metal-polymer conjugate was then 

incubated for 40 minutes in a 37°C sterile incubator.  

At this point the manufacturer’s recommendation was to move to buffer exchange and partial 

reduction of the antibody to be conjugated to the metal. However due to the time critical 

nature of this step, we elected to perform this step later.  

Following polymer incubation, we retrieved the metal-polymer conjugate and transferred the 

volume (100μl) to a 3kDa filter pre-loaded with 200μl L-buffer. This was centrifuged at 

12,000g for 25 minutes and room temperature. The wash was repeated with 400μl of 

Conjugation (C) buffer which was added directly to the filter and centrifuged at 12,000g for 

30 minutes at room temperature. During this second centrifugation we proceeded to partially 

reduce the antibody.  

100μg of stock antibody was diluted in 400μl of Reducing ® buffer in a 50kDa filter. This was 

centrifuged in a separate microfuge at 12,000g for 10 minutes at room temperature. During 

the centrifugation step, 0.5M TCEP stock was diluted in R buffer in order to achieve a 4mM 

working solution (992μl of R buffer was added to 8μl of 0.5M TCEP stock). For every antibody 

that required partial reduction, 100μl of 4mM TCEP solution was required and added 

accordingly to the antibody in the 50kDa filter and incubated in a 37°C sterile incubator for 

no more than 30 minutes. This step was time critical as exceeding this reduction step would 

completely reduce the antibody by irreversibly breaking the disulphide linkages between the 

antibody Fc regions rendering it unusable.  

Following incubation, the partially reduced antibody would be washed in the 50kDa filter with 

300μl of C buffer and centrifuged at 12,000g for 10 minutes at room temperature. This step 

was repeated once with 400μl of C buffer for the second wash. 
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The purified lanthanide-loaded polymer was retrieved following centrifugation was 

resuspended in 60μl of C buffer. The resuspended contents were transferred from the 3kDa 

filter to the 50kDa filter containing the partially reduced antibody resulting in a final volume 

of circa 100μl. This was gently mixed by pipetting and incubated for 90 minutes. This was 

followed by 4 wash steps whereby the antibody-conjugation mixture was resuspended in up 

to 400μl of Wash (W) buffer and then centrifuged at 12,000g for 10 minutes and repeated 

accordingly. After the final wash, the conjugate was diluted in 80μl of W buffer, with the walls 

of the filter washed up and down to ensure no antibody-conjugate mixture was wasted. At 

this point, 1μl of this circa 100μl mixture was used to measure the conjugated antibody yield 

to ensure that the process had worked properly. The nanodrop device measures the 

absorbance at 280nm against a W buffer blank. The yield generated however were often 

unreliable and not at all correlatives as to how the antibody would perform on the mass 

cytometer. Therefore, we elected to forego this step in the majority of conjugation 

experiments instead relying on healthy pilot control runs on the mass cytometer as a way of 

determining antibody performance.  

The antibody-conjugate was centrifuged at 12,000g for 10 minutes to remove the W buffer. 

100μl of antibody stabilisation buffer (supplemented with 0.05% Sodium Azide) was added to 

the conjugate and collected in a separate tube by inverting the 50kDa filter over a new tube 

and spinning at 1,000g for 2 minutes. This was then stored at 4°C until ready to titrate. 

Titration experiments usually took place using healthy control donor PBMCs at a variety of 

concentrations (0.25μg/ml, 0.4μg/ml, 0.5μg/ml, 0.75μg/ml, 1μg/ml). 
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Table 2.1. This illustrates the markers used in each antibody panel. The Base B cell panel has 34 

markers and the Breg/Tfh panel has 37 markers. The antigen, corresponding metal tag, clone and 

source are shown for both panels.  
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2.3.1.6 Phenotyping Staining Protocol 

Following cellular resuspension, the cells were filtered through a blue strainer cap FACS tube 

in a volume of approximately 50 microlitres (l). The cell volume can be titrated upwards (if 

low volumes) with MaxPar® cell staining buffer (Fluidigm®). MaxPar® cell staining buffer 

(Fluidigm®) was added (2-3mls) with a 2.5 ml Pasteur pipette (Alphalabs, Eastleigh, UK), and 

then spun at 1500RPM for 5 minutes. The antibody cocktail was made up according to pre-

determined amounts of antibody required per patient sample. Separate surface and 

intracellular marker cocktails were made. This was then multiplied by the total number of 

samples (n) requiring staining in that session to avoid working with very low antibody volumes 

and therefore risking reagent loss. Moreover, due to the repeated pipetting and 

filtering/washing steps, antibody cocktail was made up for “n+2” samples to account for any 

inter-step reagent loss. The supernatant was decanted, and the cell suspension transferred 

to regular 5ml FACS tubes; 5l of Fc blocking agent (Biolegend®) was added and, the cells 

were incubated at room temperature for 10 minutes. Without washing off the Fc block, the 

antibody cocktail was added to the suspension (surface cocktail) and vortexed gently for a 

few seconds. The total staining reaction volume was 100l; the required volume of MaxPar® 

cell staining buffer (Fluidigm®) is added to achieve this. This was followed by 30-minute 

incubation at room temperature. During the last two minutes of this incubation, a cisplatin 

viability stain was performed. Cisplatin was added at a concentration of 5μM to the cell 

suspension and incubated at room temperature for no more than 2 minutes. The samples 

were then washed with 4 ml of MaxPar® cell staining buffer (Fluidigm®) and centrifuged at 

1500RPM for 5 minutes. The supernatant was aspirated, and the wash and centrifugation 

were repeated.  
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Following surface antibody staining, the cells were permeabilised for intracellular staining. 

The cells were first fixed by adding 1ml of MaxPar Fix I Buffer (Fluidigm®) to each tube and 

gently vortexed. This was followed by a 15-minute incubation period at room temperature. 

The cells were then washed with 2mls of MaxPar Perm-S Buffer (Fluidigm®) and centrifuged 

for 5 minutes at 1500RPM. The supernatant was discarded, and the cell pellet resuspended 

in residual volume; the wash step with the MaxPar Perm-S Buffer (Fluidigm®) was repeated 

along with repeat centrifugation. The cells were resuspended and 2l of Heparin solution 

(2kU/ml stock) was added to each sample to prevent non-specific binding of charged 

eosinophils. This was followed by a 10-minute incubation period. The antibody cocktail 

(intracellular) (required volume) was then added, and tubes were gently agitated. The total 

volume was 100l; the required volume of MaxPar® cell staining buffer (Fluidigm®) is added 

to achieve this. This was followed by a 30-minute incubation period at room temperature. 

The samples were washed with 4mls of MaxPar® cell staining buffer (Fluidigm®) and 

centrifuged at 1500RPM for 5 minutes and the supernatant discarded. During the wash, 

500microlitres of cell intercalation solution (CIS) for each sample was prepared by adding 

Rhodium 103 (4l) to 4mls of Fix and Perm Buffer (Fluidigm®). 

Following addition of the 0.5ml of CIS, the samples were gently vortexed and incubated at 

room temperature for 1 hour or left overnight at 4oC. For the validation work, cells were 

extracted from whole blood and directly stained as per the method described and left in CIS 

for 24h and 48h prior to running on the machine. Cells were also defrosted from the -80oC 

freezer and stained and left in CIS for 24h and 48h prior to running on the CyTOF. A batch of 

cells was stained and then instead of placing in CIS, they were placed in 9 parts heat-

inactivated fetal calf serum and 1-part DMSO and frozen down at -80oC. This batch was 
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defrosted and run on the CyTOF to provide additional validation to the staining protocol 

variations. The most consistent staining protocols with good antibody capture and binding of 

metal tagged antibody to antigen were staining from fresh blood and staining from defrosted 

PBMCs (one defrost cycle) and running within 24hours. Owing to logistics and sample 

acquisition rates, all samples were frozen down at -80 degrees in a uniform manner and 

defrosted 24 hours prior to running on the mass cytometer.  

2.3.1.7 Cell number 

When considering starting cell number, the following factors were taken into account.  

a) Initial cell viability: if this was low to begin with, more aliquots were used given that 

the defrosting process would result in circa 10-20% loss of PBMCs. Poor initial viability 

would result in fewer live intact singlets.  

b) Rare populations: B cells were our target population of interest, and this makes up 5% 

of the total PBMC population. On average, we would aim to collect between 40,000-

50,000 Live CD19+ B cells as this would enable reasonable interrogation of rare 

subsets such as Bregs. Assuming the “5%” rule was true across all samples; we would 

want to collect 0.8*106 – 1.0*106 live PBMCs.  

c) The staining protocol particularly intracellular staining would result in around 50-60% 

cell loss, therefore a starting amount of 2*106 PBMCs per sample would be 

reasonable. 

d) The maximum amount we would stain in one sample tube would be 3*106 cells, as 

beyond this, antibodies would saturate leading to poor binding and suboptimal data.  

e) Length of sample acquisition was performed at an average rate of 350 events per 

second, with view to collecting a minimum of 800,000 events (38 minutes). It was 



86 | P a g e  
 

logistically prohibitive to run for longer and still gather data on 4-6 samples in one 

session. Enriching for CD19+ B cells prior to running was a possibility however this 

would have not given us information about other populations of interest and their 

relative frequencies. Enriching also risks potentially losing cells. 

2.3.2 RNA Extraction from Tumour Specimens 

Tumour RNA was extracted and purified using the Qiagen RNeasy® Plus Mini Kit according to 

manufacturer protocol. Tumour samples were defrosted according to the protocol outlined 

above. This kit was chosen for its versatility, avoidance of use of toxic substances such as 

phenol which can affect RNA integrity and the ability for parallel processing of samples. Time 

efficiency was key in RNA extraction, the sooner the samples were placed on ice and kept 

cool, the higher the chance of improved RNA integrity. The “plus” kit further allowed for 

simultaneous selective removal of double stranded DNA without the need for additional 

DNase digestion.  

Samples were first lysed and homogenised in a highly denaturing buffer, which deactivated 

the RNases to ensure isolation of intact RNA. The lysate was then passed through a gDNA 

Eliminator spin column. This column, in combination with the optimized high-salt buffer, 

allowed efficient removal of genomic DNA. Ethanol was added to the “flow-through” to 

provide appropriate binding conditions for RNA, and the sample was then applied to a RNeasy 

spin column, where total RNA binds to the membrane and contaminants washed away. High-

quality RNA was then eluted in 30-45μl of water. The procedure is highlighted in Figure 2.3.  
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Figure 2.4. Overview of Qiagen RNeasy® Plus Mini Elution protocol  
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Per sample, the maximum amount of cellular starting material did not exceed 1*107 cells so 

as to avoid overloading the gDNA Eliminator spin columns and therefore contaminating 

purified RNA with DNA.  

2.3.2.1 Reagent Preparation 

1. β-mercaptoethanol (β-ME) was added to Buffer RLT plus in order to deal with 

potentially high RNase concentration in the cell suspensions [10μl β-ME per 1 ml 

Buffer RLT Plus]. This solution was stable at room temperature for up to 30 days.  

2. Buffer RPE was supplied as a concentrate, therefore 4 volumes of 96-100% ethanol 

was added to obtain a working solution.  

3. All steps were performed at room temperature including those requiring a 

microcentrifuge. 

2.3.2.2 Protocol 

1. Reagents were appropriately prepared on the day of RNA extraction.  

2. Cellular material was defrosted as per in-house protocol and collected as a cell pellet.  

3. The cell pellet was resuspended in 350μl of buffer RLT plus and then transferred to a 

QIA shredder column for homogenisation and disruption of the cellular material. 

Homogenisation was carried out in order to maximise RNA yield and prevent clogging 

of the RNA spin easy column.  

4. The QIA shredder spin columns were then placed in a 2 ml collection tube and 

centrifuged for 2 min at maximum speed (12,000RPM).  

5. The supernatant was carefully removed by pipetting and transferred to a gDNA 

Eliminator spin column placed in a 2 ml collection tube. This was centrifuge for 30 

seconds at 10,000RPM.  
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6. The column was discarded and “flow-through” preserved. This step was to remove 

any insoluble material that could clog the gDNA Eliminator spin column and interfere 

with DNA removal.  

7. Centrifugation was repeated as required in order to remove any remaining liquid from 

the column membrane. 

8. 350μl of 70% ethanol was then added to the flow-through and mixed by pipetting. 

9. 700μl of the sample was then transferred to a RNeasy spin column placed in a 2 ml 

collection tube, centrifuged for 15 seconds at 10,000RPM and flow-through discarded. 

This step was carried out twice if the starting volume was greater than 700μl. 

10. 700μl of Buffer RW1 was added to the RNeasy spin column and centrifuged for 15 

seconds at 10,000RPM to wash the spin column membrane and flow-through 

discarded.  

11. 500μl of Buffer RPE was added to the RNeasy spin column, centrifuged for 15 seconds 

at 10,000RPM to wash the spin column membrane and flow-through discarded. This 

step was performed twice, the second time however, the centrifugation was for 2 

minutes so as to dry the spin column membrane, ensuring that no ethanol is carried 

over during RNA elution. Residual ethanol may interfere with downstream reactions. 

12. The RNeasy spin column was then placed in a new 1.5ml collection tube and 30–45μl 

of RNase-free water was added directly to the spin column membrane. This was then 

centrifuged for 1 minute at 10,000RPM to elute the RNA. In cases where the expected 

yield was >30μg, this step was repeated using another 30–45μl of RNase-free water. 

13. RNA was then frozen down at -80 degrees in two batches per sample. 

14. Two separate aliquots were frozen, a 5μl for RNA quality control check and the rest 

for full experimental sequencing. 
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2.3.3 Functional Ex vivo B and T cell Assays 

2.3.3.1 Cell isolation and culture 

PBMCs were isolated as described and defrosted from -80oC as per the protocol. All 

subsequent steps involved in isolation and culture were performed sterile in the hood. CD4+ 

T cells and CD19+ B cells were subsequently isolated by magnetic cell sorting, based on CD4 

microbead positive selection and subsequent CD19 negative selection (MACS, Miltenyi 

Biotech); purity was consistently >98%. The cellular isolation was carried out according to the 

manufacturer protocols (Miltenyi Biotech). Briefly, this involved resuspension of defrosted 

PBMC pellets in MACS running buffer, incubation with microbeads and staining antibody 

cocktails and then passing through appropriately sized filter columns placed within a magnet 

to carry magnetic cell separation. All steps were performed “cold”, all reagents were kept on 

ice to preserve cells and ensure correct labelling with microbeads and antibodies. CD4+ T cells 

were collected first (positive selection) and then CD19+ B cells were collected. During the 

CD19+ elution step, CD4+ T cells were labelled with cell trace violet (CTV) according to 

manufacturer instructions. In order to ensure correct, plating concentrations, the cell number 

was determined using the cell counter method or manual counting using a haemocytometer 

to calculate volumes of culture buffer for resuspension. Cells were cultured in 10% FBS, RPMI-

1640 (Sigma) with 2mM L- glutamine (Sigma), 0.1g/L sodium bicarbonate (Sigma), 

supplemented with 100U/mL penicillin and 0.1mg/mL Streptomycin (PAA), and 10mM Hepes 

(PAA), in round bottom 96-well Nunclon plates (Thermo Scientific) at 0.3 x 106 cells/well. To 

induce IL-10 expression, the TLR9 ligand CpG ODN 2006 (achieve a 1µM concentration) 

(Miltenyi Biotech) was used, alongside IL-2 (250µg/ml, Aldesleukin, Peprotech). All B cell only 

cultures lasted for 40 hours. This time point was chosen as most appropriate for the detection 

of IL-10, based on expression kinetics. Cells were re-stimulated with PMA (1mg/mL) and 
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Ionomyocin (1mg/mL, Sigma) in the presence of Brefeldin A, and GolgiStop (both 1mg/ml) for 

three hours at a 1:1000 concentration, and then stained for intracellular cytokine production. 

2.3.3.2 T and B cell co-culture 

Autologous CD4+ T and CD19+ B cells were isolated as described above. CD4+ T cells were 

stimulated with plate bound CD3 and CD28 (both 1mg/ml, Biolegend). B cells were stimulated 

to induce IL-10 expression in the same manner as for B cell only assays: the TLR9 ligand CpG 

ODN 2006 (achieve a 1µM concentration) (Miltenyi Biotech) was used, alongside IL-2 

(250µg/ml, Aldesleukin, Peprotech) and cells cultured for 40 hours. The B cells were then 

added to the T cells in a 1:1, 1:2 and 1:4 ratio and cultured for 4 days. After 91 hours, cells 

were re-stimulated with PMA (1mg/ml) and Ionomyocin (1mg/mL, Sigma) in the presence of 

Brefeldin A, and GolgiStop (both 1mg/ml) for five hours, and then stained for intracellular 

cytokine production. Various control wells were used as well as technical replicates (at least 

two) per sample. The plate set-up including description of the wells is shown below in Figure 

2.5.  
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Figure 2.5. T and B cell co-culture set up including B cell only culture set up 

 

i. CTV negative control: (Any CD4+ cells, healthy donor): Unstained CD4+ T cells preserved in IL-2 but no activation with CD3/CD28 (negative gate in your flow 

cytometry assay) 

ii. CTV positive control: As above, but CTV-stained cells preserved in IL-2 during culture time but no activation with CD3/CD28. This will be the brightest (undivided) 

population 

iii. CD4+ T cells alone: Maximum CD4+ T cell proliferation expected with FULL activation (plate bound CD3/CD28) conditions and CTV labelling. Stimulated and 

unstimulated fractions (with PMA/Ionomycin/Brefeldin/Monensin cocktail) 

iv. CD4:CD19 co-culture wells [1:1, 1:2, and 1:4]: CD4+ T cells as per iii. Different ratios of CD19+ B cells added. Stimulated and unstimulated fractions (with 

PMA/Ionomycin/Brefeldin/Monensin cocktail) 
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2.3.3.3 CD4+ T cell Proliferation Assay 

To assess the effect of IL-10 on CD4+ T cell proliferation, cell trace violet (Thermofisher 

Scientific) was used. CD4+ T cells isolated from PBMCs were stained with 5µM cell trace violet 

(Thermofisher Scientific), following manufacturer’s instructions. Briefly the CD4+ T cells were 

resuspended in a warm 1:1000 diluted solution of CTV: DMSO in PBS and incubated for 30 

minutes before being washed and resuspended in culture media. Cells were then cultured 

with varying concentrations of CD19+ B cells from 0.6 x 105 – 0.24 x 106/well. They were 

subsequently cultured in 96-well flat bottom plates, containing plate bound CD3 and CD28 

(both 1mg/ml), at 0.3 x 106 cells per well. After 4 days, cells were harvested and acquired. 
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2.4  Data Acquisition 

2.4.1 CyTOF 

Immediately prior to running on the mass cytometer, cells were washed with 4mls of MaxPar® 

cell staining buffer (Fluidigm®), centrifuged as above and the supernatant discarded. Prior to 

acquisition on the CyTOF, the cells underwent two cycles of wash with ddH2O and 5-minute 

centrifugation at 800g. After removal of supernatant, cells were left pelleted until ready to 

run on the CyTOF. EQ beads (Fluidigm®) were vortexed and diluted at a ratio of 9 parts ddH2O 

to 1 part EQ beads. The cell pellet was resuspended in the 0.1×EQ bead solution and then the 

cells were filtered through cell strainer cap tubes. The cell concentration was adjusted with 

EQ bead solution to achieve 0.5-1.0 x106 cells/ml. Concentrations exceeding this, were likely 

to cause a higher incidence of ion cloud fusion and doublet acquisition on the CyTOF (Helios 

flow rate is fixed at 30 microlitres/minute thus 1.0 x106 cells/ml is 500 events per second 

which is optimal). In order to stay within a safe window, samples were run at a rate of 300-

400 events per second. 

2.4.1.1 CyTOF Data Pre-processing 

Before informative data analysis was carried out, a number of pre-processing steps were 

completed in order to convert the estimated ion counts in the FCS file into a matrix of ion 

counts for live, intact, single cells to enable appropriate analysis (212). There are two types of 

file formats, IMD (integrated mass data format) and FCS (flow cytometry standard format). 

The latter was the primary type of file format we utilised.  

2.4.1.2 Normalisation and Batch correction 

The use of the normalisation beads (EQ) pre-sample loading acts as a reference to which 

reported signals can be normalised. This is because during the course of a CyTOF run, 
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instrument sensitivity may decline due to cone contamination and mass calibration drift and 

cause overall signal intensity decay (212). The normalisation of data can be carried out on the 

instrument using Fluidigm software  

The occurrence of batch effect due to use of different lots of reagent, runs on different days 

(219), or runs on different CyTOF instruments (219) was also taken into account. All 

experimental design was standardised and the analysis pipeline, which is discussed later, was 

used to account for potential batch effect within the data. The inclusion of well-characterized 

healthy controls was another precautionary measure (220).  

2.4.2 Next Generation Bulk RNA sequencing 

RNA, once extracted from tumour specimens was frozen down at -80 degrees in two batches 

per sample, one for quality control assessment and the other for bulk sequencing. The first 

step in RNA sequencing was generation of the library preparation. This involves fragmenting 

the RNA and converting the RNA fragments into double stranded DNA as this is more stable 

than RNA. Moreover, it can be amplified and modified. Sequencing adaptors are then added 

in order to allow the sequencing apparatus to recognise fragments and to sequence multiple 

samples at the same time. PCR is employed to amplify the sequences which then undergo QC 

to ensure they are of adequate length and concentration. This is followed by sequencing of 

the library where millions of sequences are generated and known as “reads”. The outputs are 

stored as FASTq files (Illumina only outputs) or SRA files (if dealing with SRA archive). Pre-

processing of these files prior to data analysis is discussed further below.  

We used the Lexogen QuantSeq 3’ mRNA sequencing kit. This kit provides library preparation 

protocols that generate illumina-compatible libraries from poly-adenylated RNA within 4.5 

hours. The protocol generates one fragment per transcript, resulting in accurate gene 
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expression values with sequences obtained closed to the 3’ end of the transcript. There are 

two read directions, FWD (forward) and REV (reverse). We used the FWD kit. This method 

contains the Read 1 linker sequence in the second strand synthesis primer, hence the next 

generation sequence reads are generated towards the poly(A) tail and directly correspond to 

the mRNA sequence.  

An overview schematic of the RNA sequencing process can be found in the Lexogen handbook 

along with detailed procedural steps (221).  

2.4.2.1 Pre-processing of Data 

FASTq files which are generated from each sequencing read are structured as four lines of 

raw data. The first line starts with an “@” and is followed by a unique ID for the sequence 

that follows. The second line are the bases called for the sequence fragment. The third line is 

always a “+” character and the fourth line contains quality scores for each base in the 

sequenced fragment. This raw data undergoes several quality control processes prior to 

analysis and the initial phases are performed through a linux terminal. Whereas most 

downstream steps for analysis are done in R, the pre-processing steps are very 

computationally intensive and beyond the remit of most personal computer processors. 

Quality control steps included filtering out any “garbage” reads, with further trimming of the 

data with Trimmomatic or Cutadapt (222,223). The high quality reads were then aligned to 

the genome in a process known as “mapping” using HISAT2 or STAR with subsequent quality 

control checks using RSeQC (224–226). The “counting” and generation of read count files 

were carried out with STAR (226)  (HTSeq or Subread packages (227,228) can also be used to 

count the number of reads per gene (pre-specified by intron or exon and attribute type such 
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as “gene ID”) and generate read count files in .tsv and table format). The raw read count files 

were then imported into R for differential gene expression analysis.  

2.4.3 Multiplex Immunofluorescence (VECTRA Polaris) 

The NSCLC samples were fixed in 4% isotonic formaldehyde for no more than 24 hours, 

dehydrated and embedded in paraffin. Sections (4-μm) were cut from each paraffin-

embedded tissue and stained with hematoxylin and eosin (HE) to evaluate tumour pathology.  

Formalin-fixed, paraffin-embedded (FFPE) tissue sections of (4μm) were baked for 2 h at 60 

°C before staining. Deparaffinization and antigen retrieval (pH9 for 20 minutes at 100°C) were 

performed on the Leica BondRx Automated IHC stainer. Primary antibody dilutions were 

optimized individually in a chromogenic DAB staining. Control tissue was stained with the 

Bond Polymer Refine Detection kit (DS9800) and evaluated by a pathologist for specificity. 

Each marker was then assessed by a single fluorescence staining, to optimise the fluorophores 

dilution and to generate a library for spectral separation, using the Opal Polaris 7 Colour 

Automation IHC Detection Kit (NEL871001KT) from Akoya Biosciences. Each marker was 

tested in the six different positions to evaluate the effect of the heat deactivation steps and 

the epitope stability and determine their sequence in the panel accordingly (Table 2.2).  
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Table 2.2. Markers of interest used during tissue immunofluorescence analysis, with corresponding 

supplier information, dilution, reporter channel and position.  

Slides were serially stained with the following antibodies: IL-10 (1:400), CD138 (RTU), anti-

CD4 (1:200), -CD20 (1:200), -BCL6 (RTU) and CD8 (1:400), with an incubation of 30 minutes. 

Secondary antibody used was OPAL POLYMER HRP MS + RB (ARH1001EA) from Akoya 

Biosciences, incubated for 10 minutes. TSA-conjugated fluorophores used to visualize each 

biomarker were Opal 480, Opal 780, Opal 690, Opal 620, Opal 570 and Opal 520, with a 10-

minute incubation. Opal 780 was incubated for 60 minutes, preceded by a 10-minute 

incubation in TSA-DIG. Slides were mounted with ProLong Diamond Antifade Mountant 

(Fisher Scientific Ltd, 15205739) and stored at 4°C before imaging. Image acquisitions 

(20 × magnification as multispectral images) were performed using the Vectra Polaris 

multispectral imaging platform (Akoya Biosciences), with the entire slide image being scanned 

and 7-10 representative regions of interest chosen by the pathologist. DAPI was used to count 

number of cells per slide. Negative controls (PBS instead of primary antibody) were run 

simultaneously with these samples. 

2.4.4 Intracellular Flow Cytometry (ICFC) 

Antibodies used, and their dilutions, are shown in Table 2.3. For cytokine detection, cells were 

re-stimulated in the final 3 (CD19+ only) or 5 (co-culture) hours of culture with PMA (1mg/mL) 

and Ionomyocin (1mg/mL, Sigma) in the presence of Brefeldin A, and GolgiStop (both 1mg/ml, 

both BD Biosciences). Cells were harvested and incubated with Live/Dead stain in a dark 

incubation chamber at room temperature (eBioscience™ Fixable Viability Dye eFluor™), then 

washed and fixed in 4% paraformaldehyde (Fixation Buffer, Biolegend) for 15 minutes in a 

dark incubation chamber at room temperature. Following fixation, cells were washed twice, 

firstly with 3ml PBS and secondly with 3ml PBS supplemented with 1% FBS. Cells were then 
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incubated with the appropriate volume of antibody, diluted in 0.1% Saponin in 0.5% BSA in 

PBS for 60 minutes in a dark incubation chamber at room temperature. Cells were acquired 

using a BD FACSCanto II (BD Biosciences), and analysis was conducted using MRC Cytobank 

software (Beckman Coulter Inc.). A general gating strategy to identify live human B cells is 

shown in Figure 2.5. Gating was carried out using either a fluorescence minus one control, 

and/or unstimulated cells. 

 

Figure 2.6. General Gating Strategy to Identify purified CD19+ B cells (lymphocytes) 

 

Marker Biolegend Fluorophore 

Fixability Viability Dye eFluor 
780 

Equivalent to APC-eFluor 
780 or APC Alexa Fluor 750 

IL-2 Ax647 

IL-6 PE/Dazzle 594 

IL-10 Ax488 

IL-17  PE 

TNF-alpha BV421 

IFN-gamma PE-Cy7 

Cell Trace Violet 401-450 Excitation 
 

Table 2.3. Intracellular antigen targets of interest along with corresponding fluorophores/detection 

channels 
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2.4.5 ELISA  

Prior to ICFC staining, cell culture supernates were harvested (circa 80-100µl) and stored at -

20oC until analysis. Sandwich ELISA was used to analyse supernatant analytes. ELISAs for IL-

10 (Human Quantikine R&D systems) were conducted as per manufacturer’s protocols. 

Quantification of concentrations was drawn from a standard curve run on each plate. 

2.4.6 Proteomics Immunome Array 

Objective 3 was centred on characterising the proteome in NSCLC. We utilised pre-operative 

serum samples from a historical NSCLC trial (CLUB) cohort and identified the circulating auto-

antibody signature using Immunome microarray technology from Sengenics Inc. This 

technology is based on their KREX patented protein-folding technology, which enables the 

expression of functional proteins to create high-density arrays. It provides a simple and rapid 

way to immobilize and purify correctly folded proteins for the detection of autoantibodies. A 

schematic below illustrates this principle (Figure 2.6). 

 

Figure 2.7. A schematic illustrating KREX binding principle from the Sengenics Inc Website 

(https://sengenics.com/technology/krex-protein-folding-technology/). 

 

https://sengenics.com/technology/krex-protein-folding-technology/
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The process of sample application to the immunome array is illustrated below in Figure 2.7.  

 

Figure 2.8. Graphic overview of the Sengenics Immunome Protein Array assay. Autoantibodies in the 

sample are captured by the immobilised, native recombinant human proteins. The unbound material 

is removed by washing and the captured autoantibodies are detected by anti-human IgG coupled to 

Cy-3 fluorescent dye. Available at https://sengenics.com/wp-content/uploads/2022/07/i-Ome-

Protein-Array-Kit-Instruction-Manual-07-22-2022.pdf 

2.4.6.1 Sample Collection 

Serum samples were taken at enrolment or prior to surgery. Samples were collected from all 

participants in a starved state to maintain uniformity. A sample of 7 ml whole venous blood 

was taken into standard collection tubes and allowed to clot for 2 h. Samples were centrifuged 

at 3000G for 20 minutes. Serum was then carefully aspirated, divided into aliquots and stored 

at −80 °C (229). 

2.4.6.2 Serum/Plasma dilution 

Samples were placed in a shaking incubator set at 20°C to allow thawing for 30 minutes. When 

completely thawed, each sample was vortexed three times at full speed and spun down for 3 

minutes at 13,000RPM using a micro-centrifuge. An 11.25 µL sample volume was then 

https://sengenics.com/wp-content/uploads/2022/07/i-Ome-Protein-Array-Kit-Instruction-Manual-07-22-2022.pdf
https://sengenics.com/wp-content/uploads/2022/07/i-Ome-Protein-Array-Kit-Instruction-Manual-07-22-2022.pdf
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pipetted into Serum Assay Buffer (SAB, sample buffer) which consists of 0.1 % v/v Triton, 0.1% 

w/v BSA in PBS (20°C) to a final volume of 4.5 mL and were mixed three times by pipetting. 

The tube was tilted during aspiration to ensure that the sera were sampled from below the 

lipid layer at the top. This serum/plasma dilution process was carried out in a class II biological 

safety cabinet.  

2.4.6.3 Sample incubation 

The slide was removed from the storage buffer using forceps, placed in the slide box and rack 

containing 200mL cold SAB and shaken on an orbital shaker at 50RPM, for 5 minutes. When 

the slides had completed washing, the slide was placed, array side up, in a slide hybridization 

chamber with individual sera, which had been diluted earlier. All slides were scanned using 

the barcode scanner into the relevant batch record and incubated on a horizontal shaker at 

50RPM for 2 hours at 20°C. 

2.4.6.4 Array Washing After Serum Binding 

The protein array slide was then rinsed twice in individual "Pap jars" with 30 mL SAB, followed 

by 200 mL of SAB buffer in the slide-staining box for 20 minutes on the shaker at 50RPM at 

room temperature. All slides were transferred sequentially and in the same orientation.  

2.4.6.5 Incubation with Cy3-anti IgG 

After incubation, the slide was dipped in 200 mL of SAB buffer, three times for 5 minutes at 

50RPM at room temperature. Excess buffer was removed by immersing the slide in 200mL of 

pure water for a few minutes. Slides were then dried for 2 minutes at 240G at room 

temperature. Slides were then stored at room temperature until scanning (preferably the 

same day). Hybridization signals were measured with a microarray laser scanner (Agilent 

Scanner) at 10µm resolution. 
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2.4.6.6 Data pre-processing 

Scanned images were pre-processed and quality control checks were performed on the 

generated data using the Sengenics internal pipeline (230). Composite normalization of the 

data was done subsequently by using both quantile-based and intensity-based modules on 

the Cy3-labelled biotinylated BSA positive control probes as reported by Duarte et al (231). 

Autoantibody binding towards specific proteins were presented as relative fluorescent 

intensities (RFU) and used as inputs for downstream analysis. 

2.4.6.7 Penetrance fold change analysis  

The penetrance fold change (pFC) analysis compares both the frequency and strength of 

autoantibody signals with the intention of identifying biomarkers which are highly elevated 

in survivors. To achieve this, individual fold changes of survivors and non-survivors were 

estimated using the equation below: 

IFC(protein A, sample X) = RFU(protein A, sample X) / μ RFU(protein A, control group) 

Protein A represents each protein in the Immunome array and X represent every sample 

assayed in the microarray platform. The mean RFU value for each protein in the control group 

were used as a background threshold.  

For both the survivor and non-survivor groups respectively, pFC values for each group were 

obtained by calculating the mean IFC of patients which passes the IFC threshold of ≥ 2. The 

penetrance frequencies were then calculated by estimating the number of patients (in each 

group) which has an IFC ≥ 2 (232). Biomarkers were further filtered based on the criteria of i) 

pFC of survivors ≥2, ii) % penetrance frequency of survivors ≥ 10% and iii) penetrance 

frequency of non-survivors ≤10%. 
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2.5 Quantification and Data Analysis 

2.5.1 CyTOF 

Files (.fcs) were processed and normalised as described and uploaded into Cytobank, 

populations of interest were manually gated, biaxial marker expression was performed for 

visualisation in Cytobank and events of interest were exported as .fcs files. CD19+ sample 

‘clean-up’ was performed by gating on intact (103Rh+ DNA stain), non-beads (140Ce−), live 

(194Pt+), events followed by gating out T-cells (CD3−, 141Pr-), immature granulocytes and 

natural killer cells (CD16−, 209Bi) and then using a CD45+ CD19+ gate to select B cells. Pre-

processing of files in order to rename files, edit panels, remove unwanted parameters and 

perform bead-based normalisation was also carried out using the Premessa package 

(233,234). 

For downstream analysis, .fcs files were loaded into R (R Core Development Team, 2015). 

Signal intensities for each channel were arcsinh transformed with a cofactor of 5 

(x_transf=asinh(x/5)). In order to facilitate differential discovery and analysis within our 

dataset, we employed a hybrid R-based pipeline largely based on Bioconductor packages; 

flowCore  (235), FlowSOM (236), CATALYST (237,238), diffCYT (239).   

High-resolution, unsupervised clustering and meta-clustering was performed using the 

FlowSOM and ConsensusClusterPlus packages respectively, the former allowed for scaling of 

millions of cells therefore no sub-sampling of the data was required (235,236). Visualisation 

of data was carried out through the CATALYST package which employs the ggplot2 R package 

as the graphical engine. To visualize the high-dimensional cell populations in two dimensions, 

the UMAP (Uniform Manifold Approximation and Projection) algorithm (240) was applied in 

order to represent characteristics of the annotated cell populations and identified 
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biomarkers. Differential cell abundance analysis was performed using generalised linear 

mixed models (GLMM) and of marker intensities using linear mixed models (LMM), 

implemented via the diffCYT package (237,239) using a false discovery rate adjustment (at 5% 

using the Benjamini-Hochberg method) for multiple hypothesis testing. Internally, model 

fitting is performed with packages lme4 and stats, and hypothesis testing with the multcomp 

package (237). The use of these various regression models overcomes the issues of simple 

statistical tests (t-test, Mann-Whitney) in assessing arbitrary experimental design and issues 

such as batch effects and paired experiments. As in genomic datasets, logistic regression 

cannot capture the over-dispersion that is present in high dimensional CyTOF data. The 

GLMM model offers additional variation whereby sample ID, patient pairings, and patient-

patient variability can be modelled as random effects in order to model the over-dispersion 

proportionally (237,241).  

In order to identify the main cell subsets using both B cell panels, FlowSOM was run with the 

parameter k ((x dim = 10 x ydim=10) = 100), defining the number of nearest neighbours, set 

to 100. The function will then metacluster populations into 2 through maxk (default 20) 

clusters (236). In order to confirm and extend our biological discovery, the clustering 

algorithm was modified to detect a maximum of 8 meta-clusters after assessing the initial 

unsupervised 20 meta-clusters for biological relevance and this was to deduce which clusters 

were deemed most important according to the algorithm. A more objective way of 

determining the optimal cluster number was by creating a delta plot as shown in the Nowicka 

pipeline to see at which point the clustering algorithm stabilises, this is usually beyond 8 meta-

clusters. Clustering too few or too many can result in loss of biological interpretability and 

rare populations and incur too many insignificant populations respectively. Furthermore, 

selective marker clustering algorithms were run to assure us of true marker expression within 
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the clusters of interest. In order to further define specific B cell clusters, runs were carried out 

with Principal Component Analysis (PCA) pre-processing incorporating all markers on the 

panel (including those for T cell lineage) and then run without these markers (namely CD3, 

CD4, CD8) to exclude those that are not expressed on B cells and likely to add “noise” in the 

cluster generation process and increase the impact of the biologically relevant markers 

(1,238). 

2.5.2 Bulk RNA sequencing differential gene expression analysis 

Once raw read counts had been imported into R. We employed the DESeq2 package (242) in 

order to analyse the data. The typical distribution of count data is not normal; it behaves like 

an atypical Poisson distribution where the variance increases in a non-linear fashion as the 

mean count number increases, i.e., a negative binomial distribution. DESeq2 must also adjust 

for differences in library sizes between samples and adjusting for differences in library 

composition (e.g., if comparing different tissue types where different tissues have different 

sets of tissue specific genes). DESeq2 accounts for both of these issues. Scaling using DESeq2 

accounts for composition bias (where certain genes may be more highly expressed in certain 

samples).  

The processes that DESeq2 uses to analyse count data are as follows: estimates size factors, 

estimates gene-wise dispersion, fits curve to gene-wise dispersion estimates, shrinks gene-

wise dispersion estimates, Generalised Linear Model (GLM) fit for each gene (the GLM model 

takes non-normally distributed data and fits a linear model to it, hence the “generalised” 

prefix) (242–245).   

The outputs generated include the log2fold change expression of each gene between 

conditions and a p value for significance, which is adjusted using Benjamini-Hochberg 
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correction. We took the significant differentially expressed genes (DEGs) and mapped the 

Ensemble IDs to obtain gene names and Entrez IDs using annotation DBi (homosapiens) and 

biomaRt packages (246,247). The complex heatmap and enhanced volcano packages were 

used to generate heatmaps and volcano plots respectively (248,249). Gene Set Enrichment 

analysis (GSEA), Gene ontology pathway analysis and KEGG pathway analysis were performed 

using the gage, clusterProfiler and pathview packages (250–252). Broadly speaking these 

analyses relied on ranking all genes in the data set, identifying the rank positions of all 

members of the gene set in the ranked data set and then calculating an enrichment score (ES) 

that represents the difference between the observed rankings and that which would be 

expected assuming a random rank distribution.  

2.5.3 Multiplex Immunofluorescence (VECTRA Polaris) 

Once quantitative imagery had been acquired, regions of interest were selected using the 

Phenochart image viewer. Data extraction was then performed using the inForm software 

interface which utilised machine learning to create tissue segmentation and cell phenotyping 

algorithms which were then applied to the entire cohort. Cells were phenotyped by 

thresholding markers for positive or negative signal with the assistance of a pathologist. 

Differential expression analysis was performed using the Wilcoxon rank sums test. Non-

parametric correlation analyses were performed for cell populations in each tissue 

compartment.  

2.5.4 Intracellular Flow Cytometry  

Data was exported as .fcs files and gated as described above. Cytokine positive cells were 

gated with live CD4+ or CD19+ cells as the parent population. Downstream analysis in R was 

carried out using the cytokine positive populations as a percentage of the parent population. 
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Inter-group differences were analysed for CD19+ B cells and differences between CD4: B co-

culture conditions were also carried out. Statistical significance was determined using a 2-

tailed non-parametric test for unpaired (Mann-Whitney U test) or paired (Wilcoxon Rank 

Sums test) samples and for more than 2 independent groups, Kruskal-Wallis. A p value less 

than 0.05 was considered significant. Multiple comparisons correction was applied using the 

Benjamini-Hochberg method. Graphical representation was carried using the ggpubr package 

in R (253).  

2.5.5 ELISA  

Raw data readouts from the plate reader were calculated by generating a four-parameter 

logistic (4-PL) curve fit. The absorbance reads and the concentrations reads from the standard 

curve were used in subsequent inter-group analyses. Multiple wells were used for each 

sample (technical replicates) with calculation of inter-well CV errors. Statistical significance 

and testing was carried out as for ICFC analysis, with graphical representation using the 

ggpubr package in R (253). 

2.5.6 Proteomic Data Analysis and Biomarker Panel Generation using Machine Learning 

Pipelines 

A schematic of the machine learning processes, and the bespoke data analysis algorithm is 

illustrated below in Figure 2.6. A combination of feature selection and machine learning 

methodologies were used to determine the optimal number of biomarkers that were able to 

provide the best stratification between survivors and non survivors (254). For feature 

selection, univariate statistical tests, random forest importance and mutual information 

metrics were the filter methods used to rank biomarkers. Given the degree of multi-

collinearity between the biomarkers, Recursive-Feature Elimination (RFE) with Random 
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Forest modelling was applied to the dataset, looping across 100 unsupervised iterations using 

random seeds for marker reliability. The topmost stable biomarkers were used to generate 

biomarker panels by additively selecting the top-ranking biomarkers (top 3.75% of 

biomarkers, n=60) in a cumulative fashion, starting with the most stable biomarker from the 

RFE set (i.e. 1st, 1st + 2nd, 1st + 2nd + 3rd etc). ROC metrics were determined for each additive 

model and the top-performing combination taken forward as input to machine learning 

models. Any further addition of biomarkers did not lead to significant improvements of model 

performance but only further increases in computational time. To determine the biomarker 

panel performance, ROC, sensitivity and specificity were evaluated and the biomarker panel 

with the best sensitivity and specificity was deemed the optimal panel to stratify between 

survivors and non-survivors. For this analysis, Boosted Logistic Regression was performed 

under default settings using accuracy estimation methods, repeated cross-fold validation and 

leave-one out cross validation (LOOCV) (255). 

2.5.6.1 Model Selection 

To corroborate marker selection from the RFE algorithm, we used lasso regression with 

repeated tenfold cross-validation in the training set. This was applied using the R package 

glmnet. We set the elastic-net penalty, α, that bridges the gap between lasso (α = 1, the 

default) and ridge regression (α = 0), to 0.9 for numerical stability (256). Furthermore, we 

processed proteomics data using DESeq2 (v.4.0.2) software to identify differentially 

expressed proteins between survivors and non-survivors. A cut-off of gene-expression fold 

change of ≥ 2 or ≤ 0.5 and an FDR q ≤ 0.05 was applied to select the most differentially 

expressed proteins.   
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2.5.6.2 Akaike Information Criterion 

We adopted a model averaging approach using the Akaike information criterion (AIC) weights 

(231,257) in order to estimate the in-sample prediction error and thereby the relative quality 

of the statistical models for a given set of data. We used an information theoretics approach 

to calculate the AIC for each model permutation within the top-ranking biomarkers using the 

glmulti and MuMIn packages in order to determine the most parsimonious model with the 

greatest explanatory predictive power. The AIC is a measure of how well a model fits the data 

relative to the other possible models given the data analysed and favours fewer parameters 

(258). The model with the lowest AIC is the best model approximating the outcome of 

interest. AIC can be expressed as: 

AIC=−2(loglikelihood)+2K, 

K = number of model parameters and log-likelihood is a measure of model fit. In this study, as 

n/K ≤ 60 for sample size n and the model with the largest value of K, we used the second-

order bias correction version of the AIC (AICc): 

AICc=−2(loglikelihood)+2K+2K(K+1)n−K−1, 

AICc=AIC+2K(K+1)n−K−1, 

where n = sample size, K = number of model parameters and log-likelihood is a measure of 

model fit (257,259). From an information-theoretic perspective, the Akaike weights for a 

particular model can be regarded as the probability or “weight of evidence” that the model is 

the best model (in a Kullback-Leibler sense of minimizing the loss of information when 

approximating full reality by a fitted model) out of all of the models considered/fitted based 

on the available data set (257,258). 



111 
 

2.5.6.3 Pathway analysis 

Biological process pathway analysis was carried out using Gene Ontology and PANTHER25. 

UniProt accession numbers of proteins corresponding to the biomarkers selected from RFE 

were uploaded to http://geneontology.org and all Homo sapiens genes in the database were 

used as a reference list. Fisher’s exact with false discovery rate (FDR) multiple test correction 

was used for determining pathway significance. 

2.5.6.4 Additional Statistical Analyses 

All other statistical analyses were done using the RFU values of 1600+ proteins using the R 

platform. ROC analyses were performed using the package OptimalCutpoints (260) and 

plotted using ggplot2 (261). Survival analyses were performed using survminer package (262). 

Machine learning analyses were performed using the mlr (263), party (264), ranger (255), 

randomForest (265) and praznik (266) and caret (267) package. Power calculations were 

performed using the samplesize and sizepower packages (267–269). Data presentation in 

table format was implemented using the gtsummary package (270).  
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Figure 2.9. Data analysis algorithm for unsupervised biomarker panel selection, this was crafted with 

oversight and supervision from Tan Ti-Myen, Department of Bioinformatic, Sengenics Inc.  
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Chapter 3. Objective 1 

B cell immune phenotype is predictive of subsequent post-operative outcome in non-small cell 

lung cancer 

3.1 Surgery in NSCLC 

Surgery serves an important role in the diagnosis, staging, and definitive management of non-

small cell lung cancer (NSCLC). Resection is the treatment of choice for stage I and II NSCLC 

and an important component of the multimodality approach to stage IIIA disease (271). 

Standard resections include removal of the lobe involved with tumour and systematic 

evaluation of ipsilateral hilar and mediastinal lymph nodes. For early stage disease the 

evolving surgical treatment goals are aimed at decreasing morbidity and mortality through 

less invasive approaches including video-assisted thoracoscopic surgery and robotic 

approaches, and potentially decreasing the volume of lung removed for select patients with 

well-staged small peripheral tumours (271,272). The gold standard operation for early-stage 

lung cancer is lobectomy with systematic lymph node dissection.  

Despite the successes of surgery and the curative potential, recurrence rates remain high. 

Between 30 and 55% of NSCLC patients recur following resection which is the major 

contributor to mortality (273,274). Complete removal of cancer needs to be performed at 

both the macroscopic and microscopic level. The presence of occult micro-metastatic 

circulating tumour cells at the time of surgery which cannot be detected by modern staging 

methods are likely to drive recurrence post-resection of the tumour bulk (273). 

Clinicopathological correlates such as those based on the TNM staging system and which 

include lymphovascular invasion, nodal involvement and tumour size can help to predict 

recurrence, but this is by no means a perfect system. Increasingly we must delve deeper into 
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the biology of lung cancer and use molecular biological techniques to help map the course of 

this aggressive disease. Immune responses within the tumour microenvironment are 

increasingly implicated as determining factors in tumour progression and aggressiveness (83). 

Immune research in NSCLC has focused predominantly around T-cell immune-biology, 

however, in reality the immune response is a complex interplay between the primary tumour 

and microenvironment, T and B cells (153). The role of the B cell in tumour survival is unclear 

but clearly has a function as tumour infiltration is commonly reported; B cell presence has 

been shown to correlate with improved survival and lower relapse rates in ovarian, cervical 

and NSCLC (129,139,275). The role of B cells and their antibody products is poorly defined in 

NSCLC and potentially could be tumour protective or tumour suppressive. Defining B cell or 

antibody capability offers the potential for tumour surveillance through biomarker 

identification and tumour treatment through monoclonal antibody production.  

In order to explore the relationship between B cells and post-resection outcome in these early 

stage cancers, we utilised deep phenotyping techniques with a B cell specific CyTOF panel, 

multiplex immunofluorescence tissue imaging (VECTRA Polaris), bulk RNA sequencing, robust 

high dimensional display techniques, and regression models to analyse the importance of 

specific B cell immunophenotypes in the circulation and within the tumour microenvironment 

on various clinical correlates including disease-specific outcome. We explored the B cell 

signatures in NSCLC in publicly available genomics datasets to corroborate our findings.  

3.2 Early Disease Surgical NSCLC Cohort 

Our early-stage NSCLC cohort (stage I-IIIa) consisted of 56 patients; full demographic data is 

shown below in Figure 3.1. Median follow-up in these patients was 3 years. Median age was 

74 years, with a preponderance of males (66%). Most cancers removed were 



115 
 

adenocarcinomas (54%), with a relatively stage III preponderance (48%). Fourteen patients 

(25%) in this cohort died within the follow-up period and twelve patients succumbed to 

disease recurrence (21%). Median overall and disease-free survival was 809 and 740 days 

respectively.  

 

Figure 3.1. A table to illustrate the overall demographic, oncological and outcome data in the cohort 

(n=56).  

We examined the risk factors which emerged as significant independent predictors of overall 

and disease-free survival on multivariate testing (Figure 3.2). Squamous cell carcinoma was 
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associated with reduced risk of death (HR 0.17, p-0.014) and male gender was associated with 

an increased risk of death (HR 5.45, p=0.034). In terms of recurrence, advanced stage (III) was 

associated with an increased risk (HR 25.6, p=0.016) and adjuvant chemotherapy was 

associated with a reduced risk (HR 0.04, p=0.018).  

 

Figure 3.2. A backward elimination stepwise multivariate regression model to illustrate the significant 

independent predictors of outcome in our cohort. Overall survival/death (left hand column) and 

disease-free survival/recurrence (right hand panel) are both shown. Cox proportional hazards 

modelling was employed, p<0.05 was deemed significant.  

3.3 Deep B cell phenotype in NSCLC 

We performed large-scale mass cytometry analysis of paired peripheral blood and tumour 

samples from patients with early-stage NSCLC (IASLC stage I-IIIa). The following schematic 

illustrates the analyses undertaken.  
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Surrogacy (n=48) Circulating versus Intra-tumoural B cell profile 

Histology Circulation (Peripheral Blood) 
(n=52) 

Intratumoural (n=48) 

Stage Circulation (Peripheral Blood) 
(n=52) 

Intratumoural (n=48) 

Lymphovascular Invasion Circulation (Peripheral Blood) 
(n=52) 

Intratumoural (n=48) 

Recurrence  Circulation (Peripheral Blood) 
(n=52) 

Intratumoural (n=48) 

 

Table 3.1. A table to illustrate mass cytometric analyses undertaken. 

3.3.1 Antibody Panels 

Cells were stained with one antibody panel (Base B cell panel) created for this study (Table 

2.1). There is a paucity of data in the literature demonstrating deep B cell phenotyping. The 

first panel was designed to detect the expression of B cells at various stages of maturation 

(activated, transitional, marginal zone, follicular, germinal centre, class-switched and plasma) 

as well as rarer B cell populations such B regulatory (Breg) cells. All patients were run on this 

first “base” B cell panel. This panel included markers for natural killer cells, T cells and 

granulocytes. 

3.3.2 B cell Milieu in Early-Stage NSCLC 

In order to generate a comprehensive picture of the B cell landscape we created two-

dimensional maps of the data, using dimensionality reduction algorithms (UMAP and 

diffusion maps). UMAP was used in preference to t-SNE owing to faster run times, especially 

with large perplexity hyper-parameters and better preservation of the global cellular 

architecture with competitive visual quality (240). The arrangement of cells along their 

development path, with bifurcations along points of differentiation was achieved using 

diffusion maps. Distinct cellular phenotypes were determined following application of the 

FlowSOM clustering algorithm which employs a Self-Organising Map to order determine how 
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markers are behaving on cells in high dimensional space thus creating well partitioned cellular 

subsets (236).  

3.3.2.1 Deep B cell phenotyping reveals clear differences between the peripheral circulating and tumour-

infiltrating B cell milieu in NSCLC 

CD19+ cells were taken forward into all further downstream analyses. In order to map cell 

phenotypes, FlowSOM clustering was performed, and expression of B cell clusters were 

visualised as a heatmap (Figure 3.3) with heterogeneity in marker level displayed at single cell 

level using UMAP. 

 

Figure 3.3. A heatmap demonstrating predominant 20 clusters in the B cell repertoire, as seen 

following FlowSOM clustering. 

Table 3.2 below has enumerated all 20 clusters and contains their likely phenotype based on 

the surface marker expression in the heatmap (Figure 3.3).  
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Cluster Number Population 

1 ki67hi IL10+ CD27+ CD38+ plasmablasts 

2 immature PDL1+ IL10+ Breg 

3 Ig- Plasma cells characterised by low/dim CD19 expression and CD138 positivity 

4 Insignificant cluster (0.2%) cannot be identified 

5 Ig- CD38lo Plasma 

6 ki67hi CD24 CD25 CD27 B10 Breg 

7 Ig- Plasma cells characterised by low/dim CD19 expression and CD138 positivity 

8 immature PDL1+ IL10+ CD5hi Breg 

9 ki67hi IL10+ CD27+ CD38+ plasmablasts 

10 Insignificant cluster (0.48%) cannot be identified 

11 CD5hi CD10+ CD27hi CD38+ Transitional 

12 Follicular (CD20hi CD22hi IgD+ IgMlo) 

13 Double negative memory B cells (CD27lo IgD- IgM-) 

14 Fully affinity matured, class-switched B cells (CD27hi IgD- IgM-) 

15 Ig- Plasma cells characterised by low/dim CD19 expression and CD138 positivity 

16 Activated (IgM+ IgD+ CD25+ CD27+) 

17 Germinal Centre  

18 Early memory  

19 PD1+ CD5hi CD25hi IL10+ Breg 

20 Transitional (IgMhi IgDhi CD24hi CD38hi CD10hi CD5+) 
 

Table 3.2. A table to illustrate the likely B cell populations in the circulation and tumour 

microenvironment in early-stage non-small cell lung cancer patients. Clusters 4 and 10 were not 

identifiable and very sparsely represented in the overall population. 

 

Unsupervised multi-dimensional scaling (principal component analysis) shows the broad 

differences in B cell make=up between blood and tumour samples. There is clear separation 

of these samples indicating likely differences in immunophenotype expression in the different 

environments (Figure 3.4).  
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Figure 3.4. A multi-dimensional scaled plot to display samples according to type of tissue and to 

determine if this shows any differences based on principal component analysis. 

We defined 20 distinct B cell clusters at various stages of maturation. The mostly frequently observed 

cluster was of the follicular B cell lineage (clusters 12, 43.41% of the total population (Figure 3.3) 

characterised by high expression of CD20, CD22 and IgD and with lower levels of IgM. Activated (IgM+ 

IgD+ CD25+ CD27+) (cluster 16) and Transitional B cell (IgMhi IgDhi CD24hi CD38hi CD10hi CD5+) clusters 

(cluster 20) comprised 7.8% and 0.99% of the total B cell population respectively. Ig negative Plasma 

cells characterised by low/dim CD19 expression and CD138 positivity (clusters 3, 7 and 15) comprised 

1.98%, 1.38% and 0.39% of the total B cell population respectively. Memory B cells were observed at 

various stages of maturation: early memory B cells (cluster 18, 0.32%), fully affinity matured, class-

switched B cells (CD27hi IgD- IgM-) (cluster 14, 12.13%) and double negative memory B cells (CD27lo 

IgD- IgM-) (cluster 13, 2.53%). Several B regulatory cell clusters were also identified, characterised 

using surface markers such as CD5, CD24, CD25, CD27, CD38, CD1d, TIM-1, PD1, PDL-1, TGF-beta and 

intracellular cytokine expression of IL-10, were observed to varying frequencies (0.21%-2%). Clusters 

1 and 9 are both likely to represent ki67hi IL10+ CD27+ CD38+ plasmablasts. Clusters 2 and 8 represent 

immature PDL1+ IL10+ Bregs with cluster 8 also being CD5hi. Cluster 19 is a PD1+ CD5hi CD25hi IL10+ 

Breg.   
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All B cells were unstimulated and thus IL-10 expression was representative of the in vivo immune 

milieu of NSCLC patients and healthy donors.  

We performed comparative analyses between the paired blood and tumour samples from each 

patient (n=48) (Figure 3.5). On visual inspection, there are clear differences in cluster expression 

between the environments.  

In blood, there is higher expression of the following.  

Cluster 12 – Follicular (light green) 

Cluster 13 –Double negative Memory (Teal) 

Cluster 14 – Class-switched Memory (Aquamarine) 

Cluster 16 – Activated (Mustard) 

Cluster 17 – Germinal Centre (Lilac) 

Cluster 19 – PD1+ Breg (Dark Grey) 

Cluster 20 – Transitional (Light Grey) 

In tumour, there is higher expression of the following. 

Cluster 3 – CD138+ Plasma (Royal Blue) 

Cluster 7 – Ig- CD38hi Plasma (Orange) 
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Figure 3.5. A dimensionality reduction method known as UMAP, employed to display high-

dimensional clusters from Figure 3.3 in two dimensions. This map segregates populations in 

accordance with phenotypic similarities and abundance. Comparative cluster expression between 

blood and tumour is shown. 

3.3.2.1.1 Differential Abundance Analysis  

We performed a differential abundance (DA) analysis of the defined cell populations, 

reporting on all B cell clusters in the population. This method compares the proportions of 

cell types between the two clinical conditions and aims to highlight the populations that are 

present at significantly different ratios. In order to gain power to detect differences between 

conditions, we utilised a mixed model to model the response and patients were treated as a 

random effect thus formally accounting for patient to patient variability as described by 

Nowicka et al (237,276). DA analysis of the overall cell population identified eight clusters as 

significantly differentially abundant between the two environments (Figure 3.6). These are as 

follows: 
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Cluster Predominant Abundance P value 

3 - CD138+ Plasma Tumour  7.7*10-6 

5 - Ig- CD38lo Plasma Tumour 1.4*10-9 

7 - Ig- CD38hi Plasma Tumour 9.2*10-21 

12 - Follicular Blood 5.7*10-11 

13 - Double negative 
Memory 

Blood 1.2*10-3 

14 - Class-switched Memory Blood 2.0*10-12 

16 - Activated Blood 3.3*10-14 

17 - Germinal Centre Blood 9.7*10-17 

 

 

Figure 3.6. A differential abundance heatmap demonstrating the significantly abundant clusters in 

accordance with tissue compartment. Tissue type is shown along the bottom x axis (B – blood, T – 

tumour). The grey bars on the right-hand side indicate a p<0.05 accounting for multiple correction 

testing with Benjamini Hochberg. The log fold change is with respect to tumour. The table above 

summarises the differentially abundant populations according to tissue compartment along with 

corresponding p-value.  
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Figure 3.7 below is a graphical representation of the differing abundances of each cluster 

described in table 3.2 across the two tissue compartments (blood and tumour). 

 

Figure 3.7. Boxplots to illustrate the compartmental difference in cluster abundance. Those that are 

significantly differentially abundant on the differential abundance heatmap (Figure 3.6) are shown 

above – clusters 3, 5, 7, 12, 13, 14, 16 and 17. Clusters 18 and 20 although are visually more abundant 

in the circulation, these did not fall out as significant on differential abundance testing.  

3.3.2.1.2 Interrogation of a Public Mass Cytometry Dataset 

Lavin et al [PMID 28475900] demonstrated significantly different innate cell compartments in 

lung adenocarcinoma between healthy tissue and cancerous tissues (277). We used the data 

from this group and gated for CD19+ B cells and performed an unsupervised comparative 

principal component analysis between healthy lung tissue, blood, and tumour samples from 

stage I lung adenocarcinoma patients. The MDS plot (Figure 3.7) illustrates clear separation 

between the three tissue types suggesting differences in the CD19+ B cell compartment 

between a) healthy and cancer tissue and b) blood and tumour of NSCLC patients. This 

supports the gross differences we observed in our dataset. Owing to the significant 
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heterogeneity between the antibody panel used by this group and ours, we were unable to 

drill deeper into the observed phenotypes. However, differential abundance analysis revealed 

several clusters which were significantly higher in the blood than in the tumour 

microenvironment.   

 

Figure 3.8. A Multi-dimensional scaling plot demonstrating compartmental differences in a public 

dataset based on principal component analysis. 

3.3.2.2 Histology 

We examined the differences in the B cell profile between different histological subtypes 

(adenocarcinoma and squamous cell carcinoma) in the blood and in the tumour. On 

assessment of the baseline characteristics of these patients, we noted no significant 

differences in demographics, onco-pathological factors, and outcome between these two 

histological subtypes. Although there was a preponderance of males with squamous cell 

carcinoma (82%), this difference was not significant after correction for multiple testing 

(p=0.362).  



126 
 

3.3.2.2.1 Blood  

Comparative expression of B cell populations between the histological subtypes revealed 

visual differences albeit subtle. Cluster 3, 11 and 18 were deemed the only clusters significant 

on differential abundance analysis however this was without considering patient to patient 

variability indicating that a small number of patients were driving these differences. All three 

clusters; transitional cell population (3), CD138hi plasma cell population (11) and CD5hi CD25hi 

PD1int Breg (18) were more abundant in adenocarcinoma patients.  

3.3.2.2.2 Tumour 

Despite visually striking differences in cluster 9, CD138+ plasma cell population; higher in 

adenocarcinoma, this was not significant on differential abundance testing. Of note, cluster 

11, CD5+ CD25+ PD1+ Breg was higher intra-tumourally in squamous cell carcinoma, the 

inverse relationship to what was seen in the blood (p=NS).  

3.3.2.3 Stage 

We examined the differences in the B cell profile between the different stages of cancer in 

the blood and in the tumour. On assessment of the baseline characteristics of these patients, 

we noted a significantly higher mortality rate (p=0.045) as well as a lower median disease-

free survival (671 days) in stage III cancers (p=0.041) although these differences were not 

significant after correction for multiple testing.  

3.3.2.3.1 Blood  

No B cell populations were deemed to be significantly differentially abundant between cancer 

stages in the circulation.  
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3.3.2.3.2 Tumour 

Significantly higher levels of intratumoural IgG+ CD138+ terminally differentiated plasma cells 

(cluster 15) were found in higher stage tumours (2 and 3) with respect to stage 1 tumours 

(p=0.016) (Figure 3.8).  

 

Figure 3.9. Comparative UMAP demonstrating higher visual intra-tumoural expression of cluster 15 

(CD138+, brown cluster in the grey box) in higher stage tumours. Each number 1, 2, 3 along the top 

row corresponds to stage of cancer. In early-stage tumours (1), there is low visual presence of the 

brown cluster 15, as demonstrated by the grey box. However, as stage increases, the presence of this 

brown cluster increases. These cells represent a terminally differentiated plasma cell population that 

is Ig producing, i.e., an effector population. 

3.3.2.4 Lymphovascular Invasion 

We examined the differences in the B cell profile between the tumours that displayed 

pathological evidence of lymphovascular invasion post-resection.  On assessment of the 

baseline characteristics of these patients, we noted a significantly higher rate of visceral 

pleural invasion (p=0.016) in cancers with lymphovascular invasion, although these 

differences were not significant after correction for multiple testing.  
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3.3.2.4.1 Blood  

No B cell populations were deemed to be significantly differentially abundant between the 

two pathological groups in the circulation.  

3.3.2.4.2 Tumour 

No B cell populations were deemed to be significantly differentially abundant between the 

two pathological groups in the tumour.  

3.3.2.5 Recurrence 

We examined the differences in the B cell profile between those patients that recurred and 

those that did not. On assessment of the baseline characteristics of these patients, we noted 

a significantly higher mortality rate (58% versus 16%) in those patients who developed post-

operative recurrence (p=0.006).  

3.3.2.5.1 Blood 

Significantly higher levels of circulating ki67+ CD27hi CD38hi CD95hi IL10int plasmablasts were 

noted in recurrence patients (p=0.02) (Figure 3.9). 
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Figure 3.10. Comparative UMAP demonstrating higher visual circulating expression of cluster 15 

(IL10+ plasmablasts, brown cluster in the grey box) in recurrence patients. Although the visual 

difference is not particularly striking, the differential abundance based on overall abundance was 

significant.  

 3.3.2.5.2 Tumour 

Significantly higher levels of intratumoural CD138+ IgG+ CD25hi early plasma 

cell/plasmablasts were noted in non-recurrence patients (p=0.039) (Figure 3.11). This 

population was weakly PDL1+. Overall expression of CD138 and IgG (plasma cell markers) 

within the tumour were also noted to be higher in non-recurrence patients. Of note, the 

following populations were visually more differentially abundant in non-recurrence patients, 

albeit not significant (Figure 3.11).   

Cluster 9 – CD138+ CD25hi IgG+ PDL1- IL10- Plasma cell (pink cluster) 

Cluster 10 – CD138int IgGint PDL1int IL10int Plasma cell/regulatory suppressive (light pink 

cluster) 

Cluster 11 – ki67hi CD5+ CD10+ CD24hi CD25+ CD27+ PD1+ Transitional (green cluster) 

Cluster 13 – CD138hi IgGhi PDL1lo IL10- Plasma cell (aquamarine cluster) 

Cluster 14 – CD19- CD38hi IgG+ Early Plasma cell (teal cluster) 

Of the above populations, only cluster 13 was deemed to be significantly more abundant in 

non-recurrence patients (Figure 3.11, grey box) (p=0.03) on differential abundance analysis. 

However, there is visual attenuation of all clusters above in the recurrence cohort. Cluster 14 

shows early features of plasma cell differentiation with CD19, high CD38 expression and early 

IgG expression. Cluster 9 then shows CD138 expression with higher levels being expressed by 

cluster 13 which is a true effector terminally differentiated plasma cell population. Cluster 13 
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also shows early PDL1 expression which represents likely early transitioning to a regulatory 

plasma cell phenotype; cluster 10 displays higher levels of PDL1 as well as producing IL10 

becoming a suppressive plasma cell population. Cluster 11 represents a very early transitional 

cell population which has not yet become suppressive (IL10-, CD10+, PD1+).  This focused 

assessment of the TME reinforces the phenotypic spectrum of infiltrating early/late plasma 

cells, with effector populations conferring less disease aggression and better outcomes and 

suppressive populations behaving like true B regulatory cells (Bregs) as in the circulation and 

conferring poorer outcomes. 

  

Figure 3.11. Comparative UMAP demonstrating higher visual intra-tumoural expression of cluster 13 (CD138+, aquamarine 

cluster in the grey box) in non-recurrence patients. There is visually higher expression of other clusters which were not 

deemed significant in non-recurrence patients: Cluster 14 shows early features of plasma cell differentiation with CD19, high 

CD38 expression and early IgG expression. Cluster 9 then shows CD138 expression with higher levels being expressed by 

cluster 13 which is a true effector terminally differentiated plasma cell population. Cluster 13 also shows early PDL1 

expression which represents likely early transitioning to a regulatory plasma cell phenotype; cluster 10 displays higher levels 

of PDL1 as well as producing IL10 becoming a suppressive plasma cell population. Cluster 11 represents a very early 

transitional cell population which has not yet become suppressive (IL10-, CD10+, PD1+).  
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3.4 Quantitative Multispectral Tissue Imaging (VECTRA Polaris) 

Multiplexed immunofluorescent assays for CD4, CD8, CD20, CD138, IL-10 and BCL-6 were 

employed to visualise changes in immune infiltrate composition across NSCLC and with 

reference to those patients who developed post-operative recurrence. The proportion of 

various cell phenotypes (CD4+ T cells, CD8+ T cells, CD20+ B cells, CD20+ BCL6+ B cells, CD138+ 

Plasma cells, CD138+ IL10+ suppressive Plasma cells and CD20+ IL10+ B regulatory cells) in 

each slice was calculated (% = cell phenotype count/total number of cells in each slice x 100%). 

A significantly higher proportion of suppressive B cells (CD138+ IL10+ and CD20+ IL10+) 

infiltrate the tumour stroma as opposed to the tumour nest (p<0.0001) (Figure 3.12).  

 

Figure 3.12. Boxplot demonstrating the differences in phenotype infiltration across tumour 

compartments. Pairwise Wilcoxon Rank Sums Test was used to determine statistical significance. 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  
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Visual representation of these differences is shown below in Figure 3.13. Multispectral 

Immunofluorescence tissue slices illustrate the preponderance of suppressive CD138+ and 

CD20+ populations at the tumour stroma surrounding the nest.  

 

Figure 3.13. Non-small cell lung cancer tissue slices illustrating B cell geospatial distribution. The left-

hand panel shows the populations lighting up as yellow, are IL-10 producing cells which are CD20+. 

They aggregate to the peripheral stroma of the tumour. The right-hand panel similarly shows yellow 

populations which represent CD138+ IL10+ cells collecting around the tumour nest in the stroma.  

There were not any overall or compartmental differences in phenotype when stratified 

according to histology, stage, presence of lymphovascular invasion, presence of visceral 

pleural invasion or mortality. Similarly, despite a slight increase in the presence of suppressive 

B cells, both CD138+ and CD20+, in those patients who recurred, this was not deemed 

significant. Univariate and Multivariate testing by cox proportional hazards did not identify 

any significant independent predictors of recurrence or death. Correlation analyses did 

identify a strong positive correlation between CD20+ and CD138+ cells in both the tumour 

nest and stroma (Figure 3.12). A weaker positive correlation in the tumour stroma was seen 

between CD4+ and CD8+ T cells (r=0.6, p<0.05).  
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Figure 3.14. Correlation analysis for cellular phenotypes detected in the tumour stroma. This matrix 

indicates correlation between the cellular phenotypes studied along the x and y axes. The numbers 

in the boxes indicate correlation strength. They range from -1 to +1. A positive number indicates a 

positive correlation whereas a negative number, a negative correlation. Those numbers that are not 

crossed out indicate a significant correlation i.e. a p value of <0.05. The correlation between CD138+ 

and CD138+ IL10+ cells in the tumour stroma is very strong at 0.9. Similarly CD138+ cells associate 

strongly with CD2+ BCL6+ cells albeit less strongly with an R value of 0.78. 

3.5 Functional Genomics Analysis 

Numerous exploratory strategies have been taken to investigate the immune milieu in cancer, 

as such as we performed bulk RNA sequencing on a subset of our tumour samples (n=27) as 

well as interrogating public RNAseq transcriptomic datasets in NSCLC as a way of exploring 

any predictive biomarkers for outcome and validating the single cell findings from our high-

dimensional data (section 3.3).  
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Owing to the delicate nature of the NSCLC tumour tissue and PBMCs, RNA extraction was 

sensitive, and yield was low despite good RNA Integrity Number (RIN) values for most 

samples. Thus, we proceeded with a stranded analysis on the 3’ QuantSeq mRNA kit from 

Lexogen on Illumina NextSeq platform [FWD kit] (section 2.4.2). This allowed us to perform a 

genome wide analysis of gene expression, which proved to be cost efficient alternative to 

microarray and standard RNA-sequencing. This method uses the first 50 base pairs only from 

the polyA tail so cannot use information for mapping or mutations only gene expression.  

3.5.1 Transcriptomics Cohort 

The cohort consisted of 27 tumour samples taken from the initial NSCLC cohort. Of these, 14 

were adenocarcinoma, 12 squamous cell carcinomas and 1 was a large cell carcinoma. Eight 

patients recurred. Eighteen patients displayed lymphovascular invasion on the post-resection 

tumour samples. The tumour stage (T stage) was as follows: T1 (n=2), T2 (n=10), T3 (n=6) and 

T4 (n=9).  

3.5.2 Data Integrity 

Overall, the data integrity was below average owing to numerous factors including a lower-

than-expected yield of uniquely mapped reads (60-70%). There were a few samples which 

had higher than expected proportions of unmapped reads (up to 50% in some cases) and in 

others the proportion of fragments mapping to multiple loci exceeded 10%. This is likely 

explained by DNA and rRNA contamination. Owing to the problems on different levels, 

affecting the samples in a non-uniform way, most probably introducing a bias to the gene 

counts, we elected to optimise the subsequent analysis by excluding some samples from the 

analysis.  



135 
 

3.5.3 Recurrence 

We analysed the data by specifically looking at the genomic signatures between those 

tumours that recurred and those that did not. We performed Differential Gene Expression 

(DGE) analysis on the bulk raw data and identified 293 differentially expressed genes (p<0.05) 

between recurrence and non-recurrence patients. Of these, 88 were positively upregulated 

in recurrence patients and 205 were down regulated with respect to recurrence patients 

(Figure 3.13). However, there was no unification of said genes into any specific ontological 

pathway. Gene Ontology analysis did not demonstrate any significant ontological correlates 

at p<0.05.  

 

Figure 3.15. Bulk RNA sequencing heatmap stratified between various parameters. Top 100 

differentially expressed genes displayed.  

Insight into specific gene pathways with KEGG analysis showed in non-recurrence patients, a 

significantly higher expression of genes associated with Lysine degradation. Groups have 

demonstrated links between lysine demethylation and B cell proliferation and humoural 



136 
 

responses (278), however no tangible links have yet been demonstrated to unify said 

pathways, B cells and outcomes in cancer.  

3.5.4 NSCLC [Public RNAseq Dataset] 

Rousseaux S et al (GSE30219) analysed the transcriptomic profile in 174 NSCLC patients as a 

means of identifying differentially expressed genes associated with early recurrence and 

aggressive lung cancers following surgery (279). We performed Differential Gene Expression 

(DGE) analysis on the bulk raw data and identified 298 differentially expressed genes (p<0.05) 

between recurrence and non-recurrence patients. Of these, 252 were positively upregulated 

in recurrence patients and 46 were down regulated with respect to recurrence patients. 

Insight into specific gene pathways with KEGG analysis showed in recurrence patients, a 

significantly higher expression of genes associated with cell cycle and oocyte meiosis. Gene 

Ontology analysis corroborated these findings, highlighting genes associated with the nuclear 

and cell division as the most significantly enriched in recurrence patients (Figure 3.14). No 

specific genomic correlation between recurrence and B cell function was found on 

interrogation of this dataset.  

 

Figure 3.16. Gene ontological assessment of public RNAseq database (GSE30219), demonstrating 

significantly upregulated biological pathways in NSCLC patients who suffer from early recurrence.  
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3.6 Discussion 

B cells and plasma cells located in the tumour microenvironment or in the circulation play 

important roles in shaping the anti-tumour effector immune response. Tumour-infiltrating B 

cells can exert both pro- or anti-tumour responses depending on the composition of the 

tumour microenvironment, the B cell phenotypes (suppressive or effector) present and any 

associated antibody production.  

Our interrogation into the B cell repertoire of early-stage NSCLC patients, utilised deep 

phenotyping using mass cytometry, bulk RNA sequencing and multispectral tissue imaging 

using immunofluorescence. A clear difference in B cell surrogacy between tumour and blood 

was demonstrated using mass cytometry where a higher CD138+ plasma cell infiltrate was 

noted in tumour tissue. This tumour-infiltrating, antibody-producing cells associated with a 

lower degree of recurrence (p<0.05). In the circulation, a higher suppressive B cell presence 

was linked to recurrence (p<0.05) and at the tissue level, these suppressive B cells (CD138+ 

or CD20+) were noted to reside predominantly in the tumour stroma as opposed to infiltrating 

the nest.  

Analysis of RNA sequencing data from The Cancer Genome Atlas (TCGA) database revealed 

that high levels of expression of B cell and plasma cell signature genes correlated with 

increased overall survival in patients with melanoma, lung adenocarcinoma, pancreatic 

adenocarcinoma, and head and neck squamous cell carcinoma but contrastingly had the 

inverse correlation in glioblastoma and clear cell renal cell carcinoma (156). IgG+ plasma cells 

with focused specificity and the ability to expand into large hypermutating clones facilitate 

tumour cell killing via complement fixation, promotion of antigen presentation via dendritic 

cell and drive cytotoxic T cell responses (131,155,157,189,192). Effector B cells which produce 
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inflammatory cytokines and upregulate MHC class I and II, also exert direct tumour cell killing, 

form tertiary lymphoid structures and shift the balance toward tumouricidal M1 macrophage 

phenotypes (131,157). Conversely, immunosuppressive B cells residing in the circulation and 

IgA+ plasma cells act in the opposite way, shifting the balance towards suppressive T 

regulatory cells, M2 macrophages and dampen Th1 responses thus exerting an overall pro-

tumour effect (120,160).  

Tumour-Infiltrating B cells (TILBs) and plasma cells have become recently identified as 

important components of TME and are linked to outcomes in lung cancer and responses to 

checkpoint blockade in advanced disease (131,157,192). Recent spatial mapping of lung 

adenocarcinoma has shown highly enriched populations of plasma and memory B cells in 

tumour tissues with high levels of differentiation and somatic hypermutation (280). High 

levels of CXCL13 production were noted in the tumour tissue and this evolved with cancer 

progression suggesting increased trafficking of these cells into the TME from tumour derived 

signals (280). Plasma cell preponderance was noted in the TME in our study with follicular and 

memory residing in the circulation with trafficking into the TME dependent on the 

appropriate chemotactic/antigen-specific signal.  

CD138+ plasma cell infiltration has correlated with both good and poor outcomes in NSCLC 

depending on the study (144–146), with a predilection for a favourable prognosis in 

adenocarcinoma subtypes. CD138 expression has been associated with increased survival 

across all NSCLC stages (145,146). Immunohistochemistry data from a large clinical cohort 

(281) has demonstrated a significant link between CD138+ plasma cell infiltration and better 

survival. CD138+ cells co-localised with p46+ NK cells; NK:B cell interactions have been shown 
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in vivo whereby NK cells can induce the plasma cell effector phenotype with subsequent Ig 

production (282).  

Increased intratumoural plasma cell infiltration has been reported to be associated with 

extended overall survival in NSCLC patients receiving anti-PDL1 treatment (283). Single cell 

RNA sequencing data from the POPLAR trial (284) showed that the status of an immune 

module, determined by the high correlation found among activated T cells, IgG+ Plasma cells 

and macrophages, termed lung cancer activated molecule (LCAM1) is associated with better 

progression free survival in patients treated with anti-PDL1. The LCAM1hi status showed a 

trend towards better overall survival in similarly treated patients (285). Murine models of 

castrate resistant prostate cancer refractory to Oxaliplatin treatment have demonstrated an 

increased presence of IgA+ Plasma cells that induce exhaustion of CD8+ T cells through PDL1 

expression as well as TGF-β and IL-10 production, a true regulatory suppressive plasma cell 

phenotype (286). Removal of this population re-enables the control of large tumours by 

Oxaliplatin. This same suppressive population has been shown to accumulate in animal and 

human cases of inflammatory liver diseases impeding anti-cancer effector T cell responses 

(287). Blockade of PDL1 in advanced stage lung cancer could be dampening down the 

suppressive plasma cell phenotypes at play in the TME and thus shifting the balance towards 

the effector IgG producing phenotypes. Patil et al intimate that the benefit of PDL1 blockade 

is a result of direct effector plasma cell behaviour that is T cell independent (283). In serous 

ovarian cancer, Kroeger et al (288) demonstrated that plasma cells are required to induce 

CD8+ effector T cell responses, with adaptive immune response coordination occurring in 

Tertiary Lymphoid Structures (TLS). In reality, there is likely to be multi-level plasma cell:T cell 

cross-talk facilitating effector tumour responses.  
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We have demonstrated an infiltration of plasma cells into the TME that exist across a 

phenotypic spectrum. Suppressive regulatory B cells can develop at any stage of B cell 

maturation; the finding of CD138+ IL-10 producing plasmablasts provided evidence that this 

could occur even at the terminally differentiated end of the spectrum, with these cells 

demonstrating a BLIMP-1LO phenotype and expressing switched IgG isotypes (180,289). 

Suppressive Bregs can suppress through cytokine signalling (IL-10, IL-35, TGF-β) or 

independently through PD-1/PDL-1 interactions. A recent description of neurotransmitter, 

GABA release by activated B and plasma cells promotes induction of IL-10+ suppressive 

macrophage populations which subsequently dampens anti-tumour CD8+ T cell responses 

(290).  

Further questions remain such as what type or stage of B cell lymphocyte gives rise to a 

particular plasma cell subset? What are the extracellular or tumour derived signals inducing 

the regulatory phenotype? What are the core transcriptional elements that drive plasma cell 

phenotype? 

There is a clear heterogeneity in the literature which describes the role of CD138+ plasma 

cells and CD20+ B cells in solid tumours. This is likely due to the study of limited markers, 

additional deeper study of plasma cells and matched antibody isotypes, account for 

concurrent T cell subset and address the impact of unique histological and molecular subtypes 

as well the impact of prior treatments (125). Our data has demonstrated the unique roles of 

effector and suppressive B cell subsets in NSCLC and the clear difference in surrogacy between 

tissue compartments. The lesser infiltration of suppressive phenotypes into the tumour nest 

may be to prevent the subsequent infiltration of effector plasma and effector B cells into the 

tumour nest. This tumour line of defence would be in keeping with the observation that 
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higher levels of suppressive B cell subsets in the circulation links to higher rates of recurrence 

and a higher tumour plasma cell infiltrate correlates with protection against recurrent 

disease.  

The ambiguous role of B cells in the tumour environment predetermines the multidirectional 

development of immunotherapeutic approaches, either supporting positive B cell types or 

inhibiting the suppressive B cell phenotypes (156).  
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Chapter 4. Objective 2 

B cell changes are predictive of outcome and immune related adverse events (irAE) in NSCLC 

patients receiving checkpoint blockade therapy 

4.1 Immunotherapy in NSCLC 

Checkpoint blockade immunotherapy has transformed the management of many common 

cancers. Five year overall survival (OS) for combined nivolumab/ipilimumab in advanced 

melanoma was 52% and for nivolumab alone 44% (60). The complete response rate with 

combination immunotherapy was 22%. The median OS for advanced NSCLC treated with best 

supportive care is less than 5 months (291); the median OS in patients with tumour proportion 

score (TPS) of >50% treated with pembrolizumab was 30 months (66). Five year OS for 

treatment naïve patients treated with pembrolizumab was 23%, and for those with TPS >50%, 

OS was 29.6% (65). In patients with PD-L1 negative non-squamous lung cancer the addition 

of pembrolizumab to chemotherapy improved the objective response rate (ORR) from 14.3% 

for chemotherapy alone to 32.3%, and more than doubled the 24 month survival rate from 

15.5% to 38.5% (68).  

Whilst checkpoint blockade primes naïve T cells and abrogates T cell exhaustion in the tumour 

microenvironment to mediate the immunological regression of cancer it is increasingly clear 

that B cells are also crucial cellular components contributing to the efficacy of checkpoint 

blockade. Higher expression of B cell related genes were seen in responders compared to 

non-responders, as was the density of micro-environmental B cells and tertiary lymphoid 

structures (TLSs) in the tumour tissue of melanoma patients (157). Enrichment of a TLS 

signature (TLSs were B cell rich) predicted improved survival with immunotherapy in 

melanoma (131). Sarcoma immune class (SIC) E is characterised by high expression of a B cell 
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lineage signature and these patients had the highest response rate (RR) and progression free 

survival (PFS) when treated with pembrolizumab (192). 

However, the utility of these agents is marred by the development of immune related adverse 

events (irAE) which are common toxicities with checkpoint blockade. In a meta-analysis of 

7936 patients in 48 clinical trials the most common all grade irAEs with nivolumab were skin 

(24.28%), gastro-intestinal (10.73%) and endocrine (10.09%) and the most common grade 3 

or higher irAEs were hepatitis (1.26%) gastrointestinal (1.2%) and skin (0.99%) (292). 

Pneumonitis was reported in 3% of patients. For the nivolumab/ipilimumab combination, the 

most common all grade irAEs were skin (50.56%), gastro-intestinal (33.55%) and endocrine 

(27.55%) and grade 3 or greater toxicity, hepatic (10.06%), gastrointestinal (9.93%) and 

endocrine (4.07%). Pneumonitis was reported in 7.23% and grade 3 or greater colitis in 5.21%. 

The most common cause of treatment-related death with anti-PD-1/PD-L1 is pneumonitis 

(35%) whereas with CTLA4 blockade, 70% of all fatal irAEs are caused by colitis (293). The rate 

of pneumonitis with combined pemetrexed or platinum or pembrolizumab was 4.9% (68) and 

pulmonary irAEs negatively correlate with objective response in patients treated with 

nivolumab (292). Given the very widespread use of these agents, the management of severe 

irAEs represents a significant health care burden. Thus, predictors of those at high risk of high-

grade toxicity would be of huge value to adequately assess the risk:benefit ratio for 

immunotherapy, to develop vigilant surveillance policies in high-risk patients and possibly 

develop preventive strategies. 

We are aware of only one study that analyses the role of B cells in the development of irAEs 

secondary to checkpoint blockade (2). On-treatment changes in peripheral B cells were 

analysed in 39 melanoma patients, 23 of whom were treated with combination 
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immunotherapy. This group utilised a B cell parameter comprising a decline in B cell number 

>70% and a 2-fold or greater increase in either CD21lo B cells or plasmablasts. The CD21lo B 

cells were associated with greater clonality, activation and PD1 expression. None of the 

patients with B cell changes treated with combination therapy were free of grade 3 or greater 

irAEs at 6 months compared with 87% of those without such B cell changes, and such patients 

were more likely to develop multi-organ autoimmune toxicities (2).  

In order to explore the relationship between B cells and outcome on checkpoint blockade 

therapy, we utilised deep phenotyping techniques with two B cell specific CyTOF panels, 

functional B cell assays, robust high dimensional display techniques, and regression models 

to analyse the importance of pre-treatment specific B cell immunophenotypes on response 

and the development of severe irAEs in lung cancer patients treated with anti-PD-1/PD-L1 or 

combination chemotherapy/PD-1 blockade. We explored the changes between pre- and post-

treatment B cells in circulation as well as publicly available genomics datasets in both 

melanoma and NSCLC to corroborate our findings.  

4.2 Advanced Disease NSCLC Cohort 

Our cohort consisted of 46 patients; full demographic data is shown in Table 4.1. Median 

follow-up was 399 days with each patient having completed at least twelve cycles of 

treatment by the time of analysis with time on treatment across the entire cohort ranging 

from 331 days to 590 days.  

Eight patients (17.4%) experienced severe grade 3 or greater irAE as defined in the ESMO 

Clinical Practice Guidelines (62) post checkpoint blockade treatment. Of these, four patients 

received pembrolizumab monotherapy and four were on combination treatment with 

chemotherapy. All irAE were diagnosed using clinico-radiological correlates and required 
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biopsy verification in the case of colitis. These patents constitute the toxicity cohort. The 

median time to severe toxicity was 42.5 days, range 31 days (Polymyalgia Rheumatica) – 115 

days (colitis). All patients in the toxicity group discontinued immunotherapy. The remaining 

no toxicity patients did not experience grade 3/4 toxicity, however 4 patients of the non-

toxicity group developed a self-limiting grade 1 skin rash after the first cycle of therapy which 

resolved with emollients and topical steroids and did not require stopping the 

immunotherapy. At the time of peripheral blood sampling, all patients were treatment naïve 

(baseline samples, day 0). Post-treatment samples were taken after the first cycle of 

checkpoint blockade on day 21. There was no significant history of previous cancers, 

autoimmune phenomena, allergic conditions, current steroid use or recent (within previous 

6 months) vaccination history in our cohort. There was no significant difference in age or 

gender between the toxicity cohort (n=8) and the non-toxicity cohort (n=38). Clinical 

responses such as complete response (CR) (n=2), partial response (PR) (n=16), stable disease 

(SD) (n=8), and progressive disease (PD) (n=20) (disease progression within 180 days) were 

determined based on Response Evaluation Criteria in Solid Tumours (RECIST) 1.1 (294). For 

the purposes of data analysis, patients were further categorized as responders (n=26) based 

on progression-free survival for at least 180 days, while non-responders were patients who 

had disease progression within 180 days (n=20). 
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Table 4.1. Cohort Characteristics 

  Advanced NSCLC Cohort (n=46) Control (n=5) 

Age (years) 72.3 +/- 1.8 70.7 +/- 0.8 

Gender (% male) 73% 60% 

Advanced NSCLC Cohort (n=46) 

Mutation Status* 

PD-L1 < 50% 56.5% (n=26) 

PD-L1 > 50% 43.5% (n=20) 

Treatment Arm 

Anti-PD1 (Pembrolizumab or 
Nivolumab) 32.6% (n=15) [12 Pembrolizumab, 3 Nivolumab] 

Anti-PD1 + Chemotherapy  52.2% (n=24) 

Anti-PDL-1 (Atezolizumab) 6.5% (n=3) 

Anti-PDL-1 + Avastin + 
Chemotherapy  8.7% (n=4) 

Tumour Stage 

IASLC Stage IIIb 8.7% (n=4) 

IASLC Stage IIIc 26.1% (n=12) 

IASLC Stage IVa 41.3% (n=19) 

IASLC Stage IVb 23.9% (n=11) 

Histology 

Adenocarcinoma 67.4% (n=31) 

Squamous Cell Carcinoma 32.6% (n=15) 

Immune-Related Adverse Events** 

Grade 3-4 17.4% (n=8) 
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Target Organ 

Colon 6.5% (n=3) 

Lungs 2.2% (n=1) 

Kidneys 2.2% (n=1) 

Other*** 6.5% (n=3) 

Number of Organs affected 

0 82.6% (n=38) 

1 15.2% (n=7) 

2 2.2% (n=1) 

   
*All patients were eGFR, ALK, ROS, BRAF wildtype except those who underwent QUAD therapy treatment with Atezolizumab, Avastin and 
Chemotherapy following TKI failure (eGFR+ve) 
 
**No significant baseline differences between those who developed toxicity and those who did not 
 
***Other includes arthritis, arthralgias, polymyalgia rheumatica and dry eyes  

 

Table 4.1. Baseline characteristics of the advanced disease NSCLC patients who received 

immunotherapy. 

4.3 Deep B cell phenotype in NSCLC 

We performed large-scale mass cytometry analysis of 46 peripheral blood samples from 

patients with advanced stage NSCLC (IASLC stage IIIb or higher) and five healthy age-matched 

donor samples (Table 4.1). This dataset was analysed using an internal test/validation 

method, the first 20 prospectively samples were analysed, and our findings were 

corroborated and replicated using the second set (n=26) of prospectively collected samples. 

We present the analysis of all samples here. All patient samples were taken before 

commencing treatment checkpoint blockade as either anti-PD-1/PD-L1 monotherapy or 

pembrolizumab in combination with chemotherapy. Post-treatment samples were taken 

after the first cycle of immunotherapy, on day 21 post baseline draw (day 0).  
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4.3.1 Antibody Panels 

Cells were stained with two antibody panels created for this study (Table 2.1). There is a 

paucity of data in the literature demonstrating deep B cell phenotyping. The first panel was 

designed to detect the expression of B cells at various stages of maturation (activated, 

transitional, marginal zone, follicular, germinal centre, class-switched and plasma) as well as 

rarer B cell populations such B regulatory (Breg) cells. All patients were run on this first “base” 

B cell panel. The second panel was designed to interrogate Breg phenotypes further and run 

on a subset of patients (n=8) in order to validate and further characterise the phenotypes 

identified by the first panel. Both panels included markers for natural killer cells, T cells and 

granulocytes.  

4.3.2 B cell Milieu in Pre-Treatment Advanced Disease NSCLC 

In order to generate a comprehensive picture of the B cell landscape we created two-

dimensional maps of the data, using dimensionality reduction algorithms (UMAP and 

Diffusion Maps). UMAP was used in preference to t-SNE owing to faster run times, especially 

with large perplexity hyper-parameters and better preservation of the global cellular 

architecture with competitive visual quality (240). The arrangement of cells along their 

development path, with bifurcations along points of differentiation was achieved using 

diffusion maps. Distinct cellular phenotypes were determined following application of the 

FlowSOM clustering algorithm which employs a Self-Organising Map to order determine how 

markers are behaving on cells in high dimensional space thus creating well partitioned cellular 

subsets (236).  

CD3+ T cells accounted for 54.4% (mean) of the total live cell population across all samples. 

The total CD19+ B cell population accounted for 5.3% of the total live cell population on 
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average across all samples. CD19+ cells were taken forward into all further downstream 

analyses.  

In order to map cell phenotypes, FlowSOM analyses were repeatedly performed for reliability 

and expression of B cell clusters were visualised as a heatmap (Figure 4.1) with heterogeneity 

in marker level displayed at single cell level using UMAP (Figure 4.2).  

 

Figure 4.1. Base B cell phenotyping heatmap illustrating 20 B cell phenotypes as clusters (1-20). 
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Figure 4.2. UMAP plot displaying all cells from each FlowSOM-derived cluster identified in (A) 

coloured by cluster. 

 

We defined 20 distinct B cell clusters at various stages of maturation. The mostly frequently 

observed cluster was of the follicular B cell lineage (clusters 5 (Figure 4.1)) characterised by 

high expression of CD20, CD22 and IgD and with lower levels of IgM. Marginal zone (IgM+ 

IgDlo CD21int CD27lo) (cluster 10) and Transitional B cell (IgMhi CD24hi CD38hi CD5+) clusters 

(cluster 16) comprised 5.1% and 3.14% of the total B cell population respectively. Clusters 13 

(0.89%) and 15 (2.16%) are also likely to represent transitional B cell populations with high 

levels of CD10, CD24 and CD38. Both clusters are also high expressers of IgM and IgD, with 

cluster 13 being CD21lo and cluster 15 being CD21hi. Memory B cells were observed at various 
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stages of maturation: early memory B cells (cluster 19, 0.28%), fully affinity matured, class-

switched B cells (CD27hi IgD- IgM-) (cluster 14, 2.3%) and double negative memory B cells 

(CD27lo IgD- IgM-) (cluster 11, 2.22%).  

Seven B regulatory cell clusters, characterised using surface markers such as CD5, CD24, CD25, 

CD27, CD38, CD1d, TIM-1, PD1, PDL-1, TGF-β and intracellular cytokine expression of IL-10, 

were observed to varying frequencies (0.35% to 7.38%) (Clusters 1, 2, 3, 9, 12, 17 and 18). All 

B cells were unstimulated and thus IL-10 expression was representative of the in vivo immune 

milieu of NSCLC patients and healthy donors. These same populations were also seen in our 

Objective 1 cohort with the PDL1+ populations driving suppression and tumour progression 

in the early-stage setting. 

4.3.3 Deep B cell Phenotype associates with high-grade irAEs secondary to Checkpoint 

Blockade 

We performed comparative analyses between toxicity patients (n=8), no toxicity (NT) patients 

(n=38) and healthy controls (n=5) (Figure 4.3 and 4.4).  
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Figure 4.3. UMAP plots stratified according to condition, “no toxicity”, “toxicity” and “healthy 

controls”. Clusters highlighted by blue boxes correspond to clusters 1, 2, 3, 9, and 12 identified from 

Figure 4.1. These clusters are attenuated in the “toxicity” cohort in this unsupervised analysis. The 

box labelled “A” is encircling cluster 2 (peach). The box labelled “B” is encircling clusters 1 (red) and 

3 (blue). The box labelled “C” is encircling clusters 9 (pink) and 12 (light green). All samples are 

randomly downsampled to account for equally representative populations across samples.  

 

Figure 4.4. Diffusion map stratified according to condition, “no toxicity”, “toxicity” and “healthy 

controls”. Clusters highlighted by blue boxes correspond to clusters 1, 2, 9, 12, 17 and 18 identified 

from Figure 4.1. These clusters are attenuated in the “toxicity” cohort in this unsupervised analysis. 

The box labelled “A” is encircling clusters 9 (pink) and 12 (light green). The box labelled “B” is 

encircling clusters 17 (deep lilac) and 18 (light lilac). The box labelled “C” is encircling clusters 1 (red) 
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and 2 (peach). All samples are randomly downsampled to account for equally representative 

populations across samples. 

 

The UMAP data (Figure 4.3) clearly shows loss of clusters 9 and 12 together with loss of cluster 

15 and significant attenuation of clusters 1,2 and 3 in the toxicity patients. The diffusion map 

(Figure 4.4) also very clearly shows loss of clusters 2 and 9, significant attenuation of clusters 

1, 2 and 3 and loss of clusters 17 and 18. The loss of these latter two clusters is not 

immediately obvious on the UMAP as they are small subsets and lost in the group of similarly 

differentiated subsets. Thus, the proportions of the seven suppressive B cell clusters (Clusters 

1, 2, 3, 9, 12, 17 and 18) were severely attenuated in the toxicity cohort relative to the NT 

cohort. On deeper interrogation of the clusters attenuated in the toxicity cohort (Toxicity 

Linked Clusters; TLCs), the most notable feature was IL-10 expression seen in clusters 1, 3, 9, 

12, 17 and 18. In total, there are ten IL-10+ clusters in the entire B cell population (with all the 

other 10 B cell clusters being completely negative for IL-10 expression), with the expression 

of IL-10 residing within six out of the seven of the suppressive clusters of interest (Clusters 1, 

3, 9, 12, 17 and 18). Cluster 2 was clearly attenuated. Even though this is not an IL-10+ 

population, this is a PDL1hi B cell subset which has been described as suppressing via PDL1 

independently of IL-10 (197). Whilst there is presence of IL-10 in the TLCs in the NT patient 

group (Figure 4.5, TLCs demarcated by red arrows with IL-10 positive regions shown as yellow) 

there is clearly less IL-10 expression in the corresponding TLCs in the toxicity patients.  
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Figure 4.5. UMAP plots stratified according to overall population IL-10 expression and by condition. 

Expression is largely confined to the Breg clusters demarcated by the red arrows. Matched IL10 

expression in the corresponding clusters in the toxicity patients is reduced. The left hand most red 

arrow depicts cluster 2 with subpopulations of IL10 expressing cells (areas of light green and yellow), 

said cells are not seen in the corresponding cells in the toxicity patients.  

 

4.3.3.1 Breg phenotypes associated with autoimmune toxicity in NSCLC patients on CCB  

IL-10 is an immunosuppressive cytokine and a canonical marker for the B regulatory cell (Breg) 

population. This diverse array of cells work to limit excessive inflammation and autoimmunity 

through IL-10 production (104). Analysis of individual marker expression patterns within the 

most strongly IL-10+ clusters that were significantly reduced in the toxicity cohort allowed for 

partitioning into four major phenotypes (Figure 4.1) which are based on the unsupervised 

partition analysis (Figure 4.2). 

One of these clusters was PD1+ (cluster 9) and two were PDL1+ (clusters 2 and 18 (Figure 4.1): 

these were the only PD-1 positive or PD-L1 positive clusters of the entire 20 B cell subsets. 

Cluster 18 was the only population to express high levels of TGF-β, a known 

immunosuppressive cytokine. Of the remaining four clusters, we observed high CD5 
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expression as well as expression of CD24, CD25 and CD27 in clusters 12 and 17, and high CD38 

and CD27 expression in clusters 1 and 3. Thus, phenotypically these seven attenuated clusters 

were characterised as (Figure 4.1): 

A. Ki67hi CD38hi CD27hi CD95hi IL-10int  Red Cluster (Cluster 1) 

B. PDL1hi CD38int CD95int TGF-β-ve IL-10lo Peach Cluster (Cluster 2) 

C. Ki67int CD38int CD27int CD95hi IL-10lo  Royal Blue Cluster (3) 

D. PD1hi CD5hi CD25hi CD27hi CD24lo CD38lo IL-10int  Pink Cluster (9) 

E. CD5hi CD24lo CD25lo CD27lo IL-10lo  Light Green Cluster (12)  

F. CD24hi CD25hi CD27hi IL-10lo  Deep Lilac Cluster (17) 

G. PDL1hi CD38int CD95lo TGFβhi IL-10lo  Light Lilac Cluster (18) 

These clusters all map to the following Breg populations as described in the literature: 

1. PD-1hi Breg which as here (cluster 9) was CD5hi CD24lo and CD38lo and which produced 

significant IL-10 on PD-1 triggering (295).   

2. PD-L1hi Breg which like our clusters 2 and 18 subset were CD10 and CD27 negative 

(197).  

3. The other high IL-10 expressing clusters were Clusters 1 and 3 which were highly 

proliferative and had phenotypic similarity to the previously described plasmablast 

phenotype (CD27+ CD38+ IL-10+) (180). 

4. Finally, clusters 12 and 17 expressed CD24, CD25 and CD27 and cluster 12 was one of 

only 2 clusters besides the PD-1+ cluster expressing high levels of CD5. Furthermore, 

clusters 12 and 17 also expressed int/hi levels of CD1d. B10 cells are characterised as 

CD1dhi CD5+ (173). Whilst IL-10 expression is the best marker of human B10 plus B10 

progenitor cells (296), these cells form a subset of CD24hi CD27+ B cells (296) and both 
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of these markers were present on cluster 17, with the expression of CD24 being the 

highest in all of the strong IL-10 expressing cells in this cluster. 

 

4.3.3.2 Differential Abundance Analysis 

We performed a differential abundance (DA) analysis of the defined cell populations, 

reporting on all B cell clusters in the population. This method compares the proportions of 

cell types between the two clinical conditions and aims to highlight the populations that are 

present at significantly different ratios. In order to gain power to detect differences between 

conditions, we utilised a mixed model to model the response and patients were treated as a 

random effect thus formally accounting for patient to patient variability as described by 

Nowicka et al (237,276). DA analysis of the overall cell population identified five clusters as 

significantly more abundant in the non-toxicity cohort as shown by the grey bars in Figure 4.6. 

Four of these are the described suppressive Breg populations (clusters 2, 9, 12 and 18), which 

are as follows:  

- PDL1hi CD38int CD95int TGF-β-ve IL-10lo Breg (p=0.011) (Cluster 2 from initial 

unsupervised analysis) 

- PD1hi CD5hi CD25hi CD27hi CD24lo CD38lo IL-10int Breg (p=0.011) (Cluster 9 from initial 

unsupervised analysis) 

- CD5hi CD24lo CD25lo CD27lo IL-10lo Breg (p=0.011) (Cluster 12 from initial unsupervised 

analysis) 

- PDL1hi CD38int CD95lo TGFβhi IL-10lo Breg (p=0.042) (Cluster 18 from initial unsupervised 

analysis) 

 

 



157 
 

 

Figure 4.6. Differential Abundance Heatmap illustrating 20 previously identified clusters (2A) (left 

hand column) with relative normalised abundance of each cluster by individual patient and healthy 

control sample (main panel). Patient to patient variability was treated as a random effect to improve 

the robustness of the model. A generalised linear mixed regression model was applied to determine 

significance of differential abundance between conditions (toxicity and no-toxicity); the top five 

clusters were of statistical significance as shown by the green bars. Of these, four are the identified 

Breg populations. PDL1hi CD38int CD95int TGFβ-ve IL-10-ve Breg (p=0.011) (Cluster 2 from initial 

unsupervised analysis), PD1hi CD5hi CD25hi CD27hi CD24lo CD38lo IL-10int Breg (p=0.011) (Cluster 9 

from initial unsupervised analysis), CD5hi CD24lo CD25lo CD27lo IL-10lo Breg (p=0.011) (Cluster 12 

from initial unsupervised analysis) and PDL1hi CD38int CD95lo TGFβhi IL-10lo Breg (p=0.042) (Cluster 

18 from initial unsupervised analysis). Cluster 15, an identified Transitional B cell population (IgMhi 

CD5- CD21hi CD10hi CD24hi CD38hi) was also significantly more abundant in non-toxicity patients 

(p=0.013).   

 

4.3.3.3 Breg/Tfh Panel Sub-Group Analysis 

We analysed a subgroup of eight patients (5 no-toxicity, 3 toxicity) on a more targeted Breg-

specific panel. The data were analysed as above using dimensionality reduction plots to 
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display clusters by condition (Figure 4.7). Clusters 13, 14 and 16 are all significantly deficient 

in toxicity patients based on DA testing (p<0.01). Clusters 13 and 16 are both PD1+, with 

cluster 13 being PD1int and cluster 16 being PD1lo. Both clusters also express TIGIT and CD1d, 

with higher levels of both in cluster 13. Cluster 14 is a B10 type cluster. Importantly, it is a 

significant lack of all three types of clusters, which seems to be the consistent feature amongst 

the toxicity patients identified. 

 

 

Figure 4.7. Comparative UMAP stratified according to toxicity in a subcohort of 8 patients using a 

refined Breg/Tfh panel 

4.3.3.4 Time to Toxicity Analysis 

We assessed the association between cluster abundance and time to toxicity in the form of 

Kaplan Meier analyses focusing on the seven identified main Breg subsets which were 

identified as differentially abundant either visually and/or through generalised mixed 

modelling based on median cluster abundance and expression. Clusters were delineated as 

high or low abundance according to measures and cut-off points taken from individual 
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bootstrapped ROC curve analyses. Of these, only clusters 9 and 17 showed significantly 

reduced time to toxicity with low Breg abundance (Figure 4.8). The cohort of patients with 

low abundance of specific Breg clusters had a greater risk of high-grade irAEs.  

 

Figure 4.8. Kaplan-Meier Time to Toxicity analyses stratified to four pertinent suppressive Breg 

clusters identified in phenotyping analyses. 

 

The rates of freedom from high-grade irAEs at 6 months were 100% (high) versus 58% (low) 

for the PD1hi subset (cluster 9) (p=0.0061). For the PDL1hi TGF-β-ve subset (cluster 2), 96% 

(high) versus 61% (low) (p=0.0912). For the B10-like subset (cluster 17), 98% (high) versus 73% 

(low) (p=0.0038) and 89% (high) versus 55% (low) for the PDL1hi TGF-βhi subset (cluster 18) 

(p=0.0387 Fisher’s exact test).  
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4.3.3.5 Deep B cell phenotyping in an independent cohort of NSCLC patients using Mass Cytometry 

4.3.3.5.1 NSCLC 

We validated our findings using an entirely separate cohort of patients from a different 

institution (PAIR Study, REC reference 17/LO/1950 Guy’s and St Thomas’s NHS Foundation 

Trust and King’s College London. Credit to Dr. Zena Willsmore who facilitated sample handling 

and CyTOF data acquisition in NSCLC and Melanoma cohorts). This was a small but well 

dichotomised group of patients (n=8) with two of the patients experiencing high-grade 

toxicity on checkpoint blockade therapy. Using the same base B cell mass cytometry panel, 

we created a comprehensive overview of the B cell landscape. In this independent cohort, 

nine truly IL10+ Breg phenotypes were identified (clusters 4, 9, 12, 14, 16, 17, 18, 19 and 20), 

in the same proportions and expression of canonical Breg markers as previously described 

(Figure 4.9). Of these, the six most strongly IL10+ clusters are summarised below: 

PDL1hi CD38int CD95lo TGFβhi IL-10lo  Light Blue Cluster (4) 

PD1hi CD5lo CD25hi CD27hi CD24lo CD38lo IL-10lo  Light Green Cluster (12) 

Ki67hi CD38hi CD27hi CD95hi IL-10hi Mustard Cluster (16) 

Ki67hi CD38hi CD27int CD95hi IL-10int  Deep Lilac Cluster (17) 

Ki67lo CD38hi CD27hi CD95hi IL-10lo  Light Lilac Cluster (18) 

PD1hi CD5hi CD25hi CD27hi CD24lo CD38lo IL-10lo  Light Grey Cluster (20) 
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Figure 4.9. Heatmap showing normalised expression of the base B cell panel markers for the 20 B cell 

clusters identified with FlowSOM. The cluster IDs and relative frequencies are displayed as a bar graph 

on the right-hand side, along with the median scaled expression. 

 

These nine clusters fit into the already described populations, namely plasmablasts (clusters 

16, 17 and 18), B10-type cells (clusters 9, 14 and 19), PD1hi Bregs (clusters 12 and 20) and the 

PDL1+ Immature Bregs (cluster 4). In this cohort, we noted two PD1+ populations largely 

delineated from one another by levels of CD5 expression (295) and three plasmablast 

populations with varying degrees of proliferation (ki67 positivity) and IL-10 expression. 

Cluster 16 was the most strongly IL-10 positive population. The PDL1+ population (cluster 7) 

displayed high levels of PDL1 expression, which has been observed in the original description 

of this heterogeneous population (197).  
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Comparative expression of the B cell populations between toxicity and non-toxicity patients 

was displayed using dimensionality reduction methods (Figures 4.10 and 4.11).  

 

Figure 4.10. UMAP plots stratified according to condition, “no toxicity”, “toxicity” and “healthy 

controls”. Clusters highlighted by blue boxes correspond to clusters identified from (4.9). These 

clusters are attenuated in the “toxicity” cohort in this unsupervised analysis. The box labelled “A” is 

encircling clusters 16 (mustard) and 17 (lilac). The box labelled “B” is encircling cluster 4 (light blue). 

The box labelled “C” is encircling cluster 12 (light green). All samples are randomly downsampled to 

account for equally representative populations across samples. 
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Figure 4.11. Diffusion map stratified according to condition, “no toxicity”, “toxicity” and “healthy 

controls”. Clusters labelled are 4, 12, 16, 17, and 20 are attenuated in the “toxicity” cohort in this 

unsupervised analysis. Cluster 4 is shown by the thin “light blue” line of cells to the right of the darker 

blue cells in cluster 3. All samples are randomly downsampled to account for equally representative 

populations across samples. 

 

Comparative expression with UMAP (Figure 4.10) shows a striking loss of clusters 1 and 2 in 

the toxicity cohort. These map to transitional cell clusters 13 (CD21lo) and 15 (CD21hi CD27+) 

respectively from our initial cohort, which were also deficient in toxicity patients; cluster 15 

was significantly attenuated in toxicity patients on differential abundance testing (p=0.013). 

Cluster 4 was significantly attenuated in toxicity patients (Figure 4.10) and this maps to the 

similarly deficient PDL1hi CD38int CD95lo TGFβhi IL-10lo population, cluster 18 from our initial 

cohort. The diffusion map (Figure 4.11) shows a clear loss of clusters 12 and 20 (PD1hi) and a 

significant attenuation of clusters 16 and 17 (plasmablast) in the toxicity cohort. Clusters 12 

and 20 map to cluster 9 (PD1hi) from our initial cohort. Finally, clusters 16 and 17 map to 
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clusters 1 and 3 respectively in our initial cohort, thus providing validation of our initial 

findings.  

 

Bulk expression of IL-10 (Figure 4.12) shows predominant expression focused to the Breg 

clusters of interest (notably clusters 12, 16, 17 and 18) and despite the presence of these Breg 

phenotypes in toxicity patients (albeit lower compared to non-toxicity patients), there is 

diminished scale expression of IL-10 in these populations in toxicity patients. Figure 4.10 also 

shows a striking loss of clusters 1, 2 and 6 in toxicity patients: phenotypically these are likely 

to represent IgM+ IgD+ CD5+ CD21+ CD10+ CD24+ CD38+ transitional B cells which represent 

B cells at a key stage in their developmental pathway and encompass a range of transitional 

B cell subsets with unique regulatory functional profiles including those which suppress via 

IL-10 (297). These three clusters (1, 2, and 6) mirror the transitional cell populations, clusters 

13, 15 and 16 defined in our initial NSCLC cohort respectively. In the initial cohort cluster 15 

was one of the 5 significantly reduced B cell clusters in toxicity patients. Cluster 1 in this 

validation cohort and cluster 13 from the original are both CD21lo which is known to be 

associated with high PD-1 expression. 
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Figure 4.12. Bulk expression UMAP stratified according to IL-10 expression, which demonstrates less 

intense IL-10 expression in the toxicity cohort compared to the non-toxicity patients. Expression is 

largely confined to the Breg clusters demarcated by the red arrows. Matched IL10 expression in the 

corresponding clusters in the toxicity patients is reduced.   

 

4.3.3.5.2 Melanoma 

We performed a similar validation in an independent cohort of melanoma patients from a 

different institution (King’s College London) and where the CyTOF analysis was performed. 

This was to assess whether the noted B cell changes in NSCLC were disease specific. This 

cohort contained 15 treatment naïve patients, all of whom were treated with anti-PD1 

checkpoint blockade therapy. Six patients developed high-grade irAE. FlowSOM clustering in 

the same manner revealed IL10 positive populations with significant similarity to the 

populations seen in our NSCLC cohorts, both in terms of phenotype and proportion (Figure 
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4.13). Eight total IL10 positive clusters were detected with six matching the phenotypes 

already described.  

A. Cluster 2 (2.16%) – ki67int IL10int IgGhi CD24+ CD25hi CD27hi Br1 Breg 

B. Cluster 3 (2.19%) – ki67int IL10int CD24+ CD27hi CD38hi CD95hi Plasmablast 

C. Cluster 4 (1.61%) – ki67hi IL10int CD24lo CD27hi CD38hi CD95hi Plasmablast 

D. Cluster 9 (0.49%) – IL10lo, CD25int CD38hi CD95hi CD24- CD27lo Br1 subtype 

E. Cluster 16 (2.17%)  – PDL1hi TGF-βhi CD24+ CD38+ Immature Breg 

F. Cluster 20 (0.55%) – CD5+ CD25+ PD1+ IL10lo/- Breg 

 

 

Figure 4.13. Heatmap showing normalised expression of the base B cell panel markers for the 20 B 

cell clusters identified with FlowSOM in melanoma patients. The cluster IDs and relative frequencies 

are displayed as a bar graph on the right-hand side, along with the median scaled expression. 

 

Again, using comparative expression UMAP, diffusion map and boxplots between those who 

did and did not experience high-grade toxicity on checkpoint blockade, we demonstrated 

increased expression of these six pertinent IL10 clusters in non-toxicity patients (Figure 4.14).  
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Figure 4.14. Boxplot representation highlighting differential cluster abundance between toxicity and 

non-toxicity melanoma patients. Suppressive clusters include 2, 3, 4, 9, 16 and 20. Cluster 9 which is 

demarcated by the red star, is the only statistically significant cluster that was differential abundant 

between the two conditions. This represented a suppressive B10 population which was more 

abundant in non-toxicity patients (p=0.043).  

 

Loss of the PD1+ cluster is most striking on the comparative UMAP (Figure 4.15) and the 

added information from the diffusion map shows lower abundance of the Plasmablast 

population (cluster 4 which is most IL10 positive population), as well as cluster 20 (light grey, 

PD1+), cluster 9 (Br1 – pink cluster) and cluster 3 (dark blue, also Plasmablast). 
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Figure 4.15. UMAP plots stratified according to condition, “no toxicity” and “toxicity”. Clusters 

highlighted by blue boxes correspond to clusters identified from (4.13). These clusters are attenuated 

in the “toxicity” cohort in this unsupervised analysis. All samples are randomly downsampled to 

account for equally representative populations across samples. 

 

 

Differential abundance testing revealed significantly higher expression of cluster 9 (Br1 

subtype) in non-toxicity patients (p=0.043). Although visually the dimensionality reduction 

maps are not as striking as the comparative maps in NSCLC, despite well dichotomised 

cohorts, one must consider the biologically very different disease processes. The NSCLC 

cohorts had a median age of 65-70 compared to a much younger melanoma cohort of 50 

years. Furthermore, all patients in the NSCLC cohorts were either ex- or current smokers 

which was not the case for the melanoma patients. These factors will likely influence the 

degree of inflammation in the tumour microenvironment and the subsequent in vivo 
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induction of these suppressive B cell phenotypes. The differences in Breg biology between 

different cancers will certainly require further exploration.  

 

To the best of our knowledge, these data provide the first detailed analysis of the association 

of circulating IL10 positive B regulatory cells with the development of severe autoimmunity 

following immunotherapy in NSCLC patients. Patients developing grade 3/4 irAEs have a 

significant phenotypic defect in their regulatory B cell repertoire prior to commencing 

immunotherapy. Given the variability in these differences on an individual patient level, we 

sought to explore the functional B cell biology in these patients with respect to suppressive 

function. This is detailed in section 4.4. 

 

4.3.4 Deep B cell Phenotype associates with Response to Checkpoint Blockade Treatment [Pre-

Treatment] 

We performed comparative analyses between responders (n=26) and non-responders (n=20) 

using dimensionality reduction methods. The most noticeable differences related to two 

clusters both of which were PDL1 positive, and likely suppressive phenotypes as shown by 

IL10 and TGF-β expression.  

A. PDL1int/hi CD38hi CD95hi TGFβ-ve IL-10lo - Mustard Cluster (16 – 3.86%) 

B. PDL1hi CD38int CD95int TGFβint IL-10lo - Deep Lilac Cluster (17 – 0.35%) 

Subtle blunting of these two clusters was demonstrated on UMAP and diffusion map in 

responders. Stratification according to IL-10 and PDL1 expression (Figure 4.16) showed 

noticeably higher expression of PDL1 in cluster 16 in non-responders and slightly higher IL10 

in clusters 19 and 20 (grey island on UMAP) also in non-responders, although not as striking. 
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Clusters 19 and 20 are both ki67hi Plasmablast populations as previously described and 

expressed the highest amount of IL10 in the B cell repertoire. Differential abundance analysis 

indicated significantly higher expression of the likely immature PDL1 Breg phenotypes; 16 and 

17 in non-responders (p=0.002 and p=0.00022 respectively).  

 

 

Figure 4.16. UMAP plots stratified according to overall population IL-10 and PD-L1 expression and by 

condition. Expression is largely confined to the suppressive B cell clusters demarcated by the red 

arrows, however there is no major difference in IL-10 expression between conditions, but there is 

higher expression of PD-L1 in non-responders. Both PDL1+ clusters (green box) were significantly 

more abundant in non-responders when analysed with differential abundance analysis (p<0.05, 

Benjamini-Hochberg correction).  

4.3.4.1 Validation of B cell changes associated with Response to CCB in Melanoma [Analysis of a public 

dataset] 

We sought to seek corroboration of our findings from 4.3.4 in a publicly available mass 

cytometry dataset in melanoma (298). We gated the files for CD19+ positive cells and utilised 
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the panel’s B cell markers to cluster the cells. The cohort was split into those who received 

Pembrolizumab (anti-PD1, n=40) or Ipilimumab (anti-CTLA4, n=24) as first-line therapy.  

In the Pembrolizumab cohort, the pre-treatment circulating B cell profile demonstrated 

presence of PDL1+ cells and PD1+ cells. Differential abundance testing revealed significantly 

higher expression of PD1+ CD25+ CD38+ IL10+ Bregs in non-responders, which phenotypically 

mapped to cluster 9 from our toxicity analysis (p=0.00069) but no other clusters. This cluster 

existed in those patients who went on to receive Ipilimumab therapy and was indeed higher 

in non-responders albeit not significant on statistical modelling. Although the exact clusters 

were not shown to be significant in this separate dataset, the presence of suppressive IL10 

positive B cell populations in those who patients who fail to respond to treatment provides 

validation that suppression of key anti-tumour responses (whether they are T or B cell driven) 

is driving poor outcomes in these patients.  

From our dataset, aside from the PDL1+ cells, no further link with TLCs and response to 

treatment was observed. The relationship between toxicity and response to treatment was 

not significant (p=0.121 by Chi Squared with Yates’ correction).  

 

4.3.5 Longitudinal Changes on Treatment with Checkpoint Blockade 

We performed longitudinal analysis comparing the circulating B cell profiles between paired 

pre- and post-treatment peripheral blood samples (n=19) from our initial NSCLC cohort. All 

patients received anti-PD1 therapy. Comparative diffusion maps did not display any grossly 

obvious differences between pre- and post-treatment samples however, we did note 

significant on treatment changes in circulating Breg profiles. We interrogated the Breg 

phenotypes identified.  
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4.3.5.1 Longitudinal changes on immunotherapy in Breg subsets that distinguish between toxicity and 

non-toxicity patients 

We assessed the effect of immunotherapy on the identified Breg populations (Figure 4.17). In 

those patients who did not experience irAE, treatment induced a significant increase in 

circulating PD1hi and PDL1hi TGF-βhi Breg cells with no change in the circulating PDL1hi TGF-β-

ve or B10 type populations. However, in those who did experience severe toxicity, there was 

no significant increase in any of the Breg subsets and the level of the PDL1hi TGF-βhi and the 

B10-type populations decreased.  

 

 

Figure 4.17. Longitudinal analyses demonstrate significant increases in circulating Breg number post-

treatment with checkpoint blockade therapy. Line plots indicate the fold change in circulating Breg 

cluster abundance before and after treatment with sub-stratification according to those who 

developed high-grade irAE after treatment. Changes are shown for four major Breg phenotypes 

identified in the initial unsupervised analysis. None of the patients who developed toxicity post-

treatment patients experienced significant increases in circulating population number. Statistical 

PDL1hi

TGF hi PDL1hiB10 CD5 hi 

PD1hi
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significance was determined by pairwise Wilcoxon signed rank test (significance level p<0.05). 

*P<0.05, **P<0.01, ***P<0.001. 

 

4.4 Functional B cell Assays 

We sought to further explore the biology of Breg deficiency in toxicity patients by carrying out 

functional ex vivo assays to determine the nature of the cytokine response in these advanced 

disease patients. We induced Bregs ex vivo and cultured/stimulated them alone and in co-

culture with autologous CD4+ T cells from toxicity and non-toxicity patients as defined in the 

key methods section 2.3.3.  

4.4.1 Ex vivo induction of primary B cell derived cytokines is reduced in patients who develop 

high-grade irAE on combination checkpoint blockade 

4.4.1.1 Anti-inflammatory IL-10 deficit 

We analysed all 8 toxicity patients, 29 non-toxicity patients and 8 healthy controls from the 

initial cohort (investigators were blinded to the outcome of these patients). TLR9 ligation has 

been shown to induce a regulatory phenotype in B cells with subsequent IL-10 production 

(299). Subsequent stimulation of B cells ex vivo with Phorbol 12-myristate 13-acetate (PMA) 

and Ionomycin resulted in a potent induction at 40 hours post initial stimulation, measured 

through intracellular cytokine staining. There was a considerable decrease in B cell derived IL-

10 production in those patients developing high-grade post-treatment irAE (Figure 4.18). We 

detected significantly lower levels of free IL10 in the cell culture supernatants from toxicity 

patients as measured through IL-10 Quantikine ELISA (Figure 4.19). This was the case both in 

terms of IL-10 absorbance and concentration (pg/ml).  
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Figure 4.18. CD19+ B cell IL-10 expression in NSCLC patients stratified by the development of high-

grade post-treatment irAE. Data are presented as % of total CD19+ population, with points indicating 

individual patients. Statistical analysis was conducted using Wilcoxon Rank Sums test (to test for 

specific inter-group differences) and Kruskal Wallis (to generally test for overall differences between 

all three groups). All analyses were conducted using a Benjamini-Hochberg multiple comparisons 

correction, comparing all conditions as indicated. A significance level of <0.05 was adopted.  
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Figure 4.19. ELISA of CD19+ B cell culture supernatants in NSCLC patients stratified by the 

development of high-grade post-treatment irAE. Data are presented as absorbance (nm) and 

concentration (pg/ml), with mean values portrayed. Individual points indicating individual patients. 

Statistical analysis was conducted using Wilcoxon Rank Sums test and Kruskal Wallis followed by a 

Benjamini-Hochberg multiple comparisons correction, comparing all conditions as indicated; 

*P<0.05, **P<0.01, ***P<0.001.  

4.4.1.2 Pro-inflammatory cytokine failure in B cells 

On further investigation, we detected a significantly lower expression of a range of pro-

inflammatory cytokines from the B cells of patients who experienced high grade toxicity. We 

examined IFN-γ, TNF-α, IL-6, IL-17 and IL-2 (Figure 4.20).  The pattern for IFN-γ expression was 

similar to that of IL-10 - significantly higher expression in non-toxicity patients when 

compared with toxicity patients and no difference between healthy donors and no toxicity 

patients (Figure 4.21). There was also statistically significantly increased expression of IL-6 
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and IL-17 in the non-toxicity cohort compared with the toxicity cohort albeit the differences 

were less marked when compared to IL-10. Healthy controls produced the most TNF-α with 

no significant difference between toxicity and non-toxicity patients. As shown in Figure 4.20, 

there is quite some variability in the different cytokine production across the different 

conditions. This is not only true for the toxicity and non-toxicity conditions (cancer patients) 

but also in healthy controls. It has been demonstrated that healthy control PBMCs when 

stimulated ex vivo produce cytokines across a spectrum of concentrations, from low natural 

producers to very high natural producers (111). This natural variation in cytokine production 

could well be what we are seeing in our healthy controls but also in the cancer patients, the 

same variation is likely to be exaggerated if the tumours are inducing or indeed inhibiting 

cytokine responses.  

Thus, there appears to be a poly-functional failure in B cells derived from toxicity patient that 

affects both pro- and anti-inflammatory cytokines. Although this seems to be most marked 

for IL-10, the global cytokine deficit suggests a form B cell exhaustion in these patients.  
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Figure 4.20. CD19+ B cell pan-cytokine expression in NSCLC patients stratified by the development of 

high-grade post-treatment irAE. Data are presented as % of total CD19+ population, (mean), with 

points indicating individual patients. Statistical analysis was conducted using Wilcoxon Rank Sums 

test and Kruskal Wallis followed by a Benjamini-Hochberg multiple comparisons correction, 

comparing all conditions as indicated; *P<0.05, **P<0.01, ***P<0.001.  
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Figure 4.21. Representative and quantitative plots of CD19+ B cell IFN-γ production after culture 

alone. Total CD19
+
 B cells were stimulated with CpG (TLR9), and IL-2. Cells were incubated for 40 

hours, including re-stimulation with PMA and Ionomycin in the final 3 hours before harvesting and 

analysis by flow cytometry.  

 

 

4.4.2 B cell suppression of CD4+ Th1 responses is diminished in patients who develop high-

grade irAE on CCB 

Human B cells are known to exhibit suppressive capacity in vitro. The can suppress both innate 

and adaptive cells, including monocyte pro-inflammatory cytokine release, and a number of 

Th cytokines, mediated through the release of IL-10 (104). TLR9-activated B cells were able to 

suppress IFN production by T cells activated with CD3/28 in healthy cohorts and in patients 

who did not develop high-grade irAE on treatment with checkpoint blockade therapy in a 

dose-dependent manner (Figures 4.22).  
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Figure 4.22. Representative and quantitative plots of CD4+ T cell IFNγ production after culture alone 

(left hand panels), co-culture with CD19+ B cells (right hand panels) for both non-toxicity (top row) 

and toxicity (bottom row) patients. Cell trace violet (CTV)-labelled CD4+ T cells stimulated with 

αCD3/28 for 4 days, including re-stimulation with PMA+IO in the final 5 hours before harvesting and 

analysis of IFNγ production, or CTV dilution by flow cytometry (n=16, total). IFNγ production assessed 

after co-culture with autologous CD19+ B cells in all patients.  

 

However, this suppression was not seen in patients who developed high-grade irAEs at low 

(1:1) and high (1:4) B cell concentrations. Figure 4.23 shows a stepwise decrease in IFN 

production with increasing concentration of CD19+ B cells in co-culture, whilst this trend is 

also relatively preserved in toxicity patients, there is no inter-group or overall statistical 

significance. Whereas there is statistical significance in the non-toxicity and control cohorts.  
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Figure 4.23. IFNγ production by maximally stimulated CD4+ cells alone and in co-culture with 

increasing doses of paired autologous primary CD19+ B cells. Data points indicate individual patients. 

Statistical analysis was conducted using Wilcoxon Rank Sums test and Kruskal Wallis followed by a 

Benjamini-Hochberg multiple comparisons correction, comparing all conditions as indicated; 

*P<0.05, **P<0.01, ***P<0.001. 

 

Similarly, significantly higher IFN suppression indices were seen in non-toxicity and control 

patients with respect to toxicity patients at all B cell concentrations (Figure 4.24). 

Neutralisation of IL-10 within similar co-cultures has resulted in a loss of suppression 

(300,301) confirming the dependency on IL-10 to suppress T cell responses, and it was also 

demonstrated that concentrations of IL-10 upon TLR9 activation (>1ng/ml) were sufficient to 

directly suppress IFN production in CD4+ T cells. These data demonstrate an inherent 

functional defect in Breg IL10 effector response in lung cancer patients who experience high-
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grade autoimmune toxicity on checkpoint blockade therapy, which results in an inability to 

suppress autologous CD4+ Th1 responses.  

 

Figure 4.24. IFNγ suppression calculated by ((x-y/x) *100, where x = IFNγ production by maximally 

stimulated and activated CD4+ T cells, y = IFNγ production in co-cultured T cells at varying CD4:CD19+ 

B cell ratios. Data points indicate individual patients. Statistical analysis was conducted using 

Wilcoxon Rank Sums test and Kruskal Wallis followed by a Benjamini-Hochberg multiple comparisons 

correction, comparing all conditions as indicated; *P<0.05, **P<0.01, ***P<0.001. 

4.5 Functional Genomics Analysis [Public RNAseq Datasets] 

Numerous exploratory strategies have been taken to improve the response to checkpoint 

blockade in cancer. We sought to interrogate public bulk RNA sequencing transcriptomics 

datasets in NSCLC and melanoma as a means of exploring any predictive biomarkers for 
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response to checkpoint blockade and validate the single cell findings from our high-

dimensional data in NSCLC (section 4.3.4).  

4.5.1 NSCLC 

Cho J-W et al (GSE126044) analysed the tumour DNA methylome in NSCLC as a means of 

identifying differentially methylated promotors or enhancers associated with response to 

anti-PD1 therapy (302). We performed Differential Gene Expression (DGE) analysis on the 

bulk raw data and identified 458 differentially expressed genes (p<0.05) between responders 

and non-responders. Of these, 287 were positively upregulated in responders and 171 were 

down regulated with respect to responders. Insight into specific gene pathways with KEGG 

analysis showed in responders, a significantly higher expression of genes associated with 

antigen presentation and co-stimulation of lymphoid cells; MHC class II, CD80/86 and indeed 

genes associated with cytotoxic T lymphocytes such as Granzyme B and Perforin. Gene 

Ontology analysis corroborated these findings, highlighting genes associated with the 

adaptive immune response, neutrophil and granulocyte activation and regulation of the 

inflammatory response as the most significantly enriched in responders. No specific genomic 

correlation between response and suppressive B cell function was found on interrogation of 

this dataset.  

4.5.2 Melanoma 

Auslander et al (GSE115821) analysed similar “omics” and response data in melanoma 

patients (303). In a similar manner to the above, we performed DGE analysis on the bulk raw 

data and identified data and identified 668 differentially expressed genes (p<0.05) between 

responders and non-responders. Of these, 446 were positively upregulated in responders and 

222 were down regulated with respect to responders. KEGG analysis identified B cell specific 
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lineage factors as upregulated in responders, such as CD19, CD20, CD21 and B cell survival 

factor, BAFF. As with NSCLC, the gene ontology analysis found genes associated with the 

adaptive immune response, B cell activation and B cell/Ig-mediated immunity to be 

significantly enriched in responders (gene ontology figures). The emphasis from the genomic 

data revealed biomarkers strongly associated with response as opposed to those associated 

with poor response. This was the case for both disease types.  

4.6 Discussion 

As the use of checkpoint inhibitors in cancer has increased, the incidence of irAEs has become 

a significant health care issue and predictive biomarkers of those at risk of developing irAEs is 

of crucial importance in limiting excessive toxicity and maximising the risk:benefit equation 

for the use of these agents. Numerous studies have demonstrated the role of B regulatory 

cells (Bregs) in limiting immune reactivity. Bregs can suppress immune reactivity against 

exogenous and endogenous antigen and in particular act as a cellular brake on the 

development and severity of autoimmunity often via IL-10 production. Through testing in 

independent cohorts, we show here that lung cancer patients developing severe toxicity from 

anti PD-1 +/- chemotherapy had significant gaps in their B cell repertoire specifically affecting 

IL-10 expressing B cell subsets. IL-10 production is a cardinal feature of Bregs, and all subsets 

described have strong phenotypic parallels with previously described Breg subsets. Patients’ 

not developing severe toxicity had preservation of these subsets which were functionally 

competent, and, in these patients, levels of these cells increased on checkpoint blockade 

whereas in toxicity patients they either remained static or fell.  

Of these Bregs subsets, we noted in our NSCLC cohort a separate validation cohort in 

melanoma, preponderance of PD1+ and PDL1+ Bregs in non-responders. The pro-
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tumourigenic effects of Bregs on the anti-tumour microenvironment has been well described; 

via the production of IL10, IL35 and TGF-β, these suppressive cells enhance the tolerability of 

the TME to the host immune response (304–306) 

Aberrancy in Breg number and function has been identified in numerous immune-related 

pathologies such as autoimmune disease, chronic infection, cancer and in transplant rejection 

(104,307). The hallmark of Breg identification and enumeration is considered to be IL-10 

production which is the major effector mechanism of suppression. Unlike Tregs there is no 

unequivocal lineage marker by which to capture this heterogeneous subset (104). The original 

description of these suppressive cells was noted by Janeway et al who noted that B-cell 

deficient mice developed an exacerbated form of experimental autoimmune 

encephalomyelitis (EAE) (308). The protective role of IL10 producing B cells was then 

confirmed in an EAE murine model by Fillatreu and colleagues (105), after which various other 

regulatory B cell subsets were described (110,180). Unique Breg subsets have been implicated 

in maintaining immune tolerance in allergen-induced hypersensitivities (179) as well as 

protecting against allograft rejection in murine models of transplantation and using IL-10 as 

a biomarker for predicting clinical outcomes in patients undergoing transplantation (309). 

More recently, reduced numbers of IL10 producing B cells have been suggested as 

contributory to severity of disease in SARS-CoV-2 infection (310,311).  

Through testing in independent cohorts, we show here that lung cancer patients developing 

severe toxicity from anti PD-1/PD-L1 blockade had significant gaps in their B cell profile at 

diagnosis, specifically affecting suppressive B cell subsets (IL-10+, TGF-β+ or PDL-1+). All 

subsets detected in this context display strong phenotypic parallels with previously described 

Breg subsets. Patients who did not subsequently develop severe toxicity had preservation of 
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these subsets at diagnosis and in these patients, the levels of these cells increased on 

checkpoint blockade whereas in toxicity patients Breg populations they either remained static 

or fell. Our phenotyping data suggests there is an attenuated presence of circulating Breg 

populations in toxicity patients and our functional data suggests that the B cells in toxicity 

patients not only fail to mount an adequate anti-inflammatory cytokine (IL-10) response but 

also an adequate pro-inflammatory cytokine (IFN-γ, IL-6, IL-17) response. Pro-inflammatory 

cytokine production has been demonstrated by B cells ex vivo and in the setting of checkpoint 

blockade in melanoma (312,313). TLR9 ligation upregulates B cell IL-6 production and 

PMA/ionomycin drives IFN production (314). Both of these components are part of the Breg 

IL-10 stimulation cocktail and neither IL-10, IL-6 or IFN production was seen in B cells from 

patients developing toxicity.  This pan-cytokine failure in B cells from toxicity patients may 

explain the lack of a reciprocal relationship between toxicity and response to treatment. The 

nature and mechanistic underpinning of this polyfunctional defect and which implies B cell 

exhaustion in toxicity patients is unknown and is a key part of our ongoing studies. 

B cell depletion significantly enhanced the local reaction to applied antigen in a contact 

hypersensitivity model where inflammation is T cell dependent (173). This was due to the 

significant reduction of a splenic IL-10 producing CD1dhi CD5+ B cell subset - B10 cells. 

Suppression of T cell driven inflammation was IL-10 dependent and in this model, IL-10 

production was restricted to this particular B cell subset. Adoptive transfer of CD1dhi CD5+ B 

cells into CD19-/- mice inhibited hypersensitivity responses but transfer of CD1dhi CD5+ B cells 

from unsensitised mice or from mice sensitised with an unrelated antigen had no effect 

suggesting that these B10 cells were likely to be antigen specific. B cell depletion prior to EAE 

induction with myelin oligodendrocyte glycoprotein (MOG) significantly exacerbated the 

resulting disease (315). B cell depletion prior to immunisation led to significant increases in 
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MOG-specific T effector cells and IFN-γ and IL-17 producing CD4+ cells. Adoptive transfer of 

modest numbers of B10 cells completely reversed the accelerated disease of B cell depleted 

mice prior to MOG immunisation. B10 function required IL-21R signalling, CD40 interaction 

and class II expression (316). A model was proposed whereby B cells capture autoantigen thus 

triggering BCR signalling and driving IL-10 producing capacity. These B cells present antigen 

via class II in a cognate interaction to CD4+ cells, which produce local IL-21 inducing B cell IL-

10 production and subsequent T cell suppression. In humans, B10+ and B10pro cells are a 

subset of CD24hi and CD27+ B cells. Clusters 12 and 17 (from the initial NSCLC dataset, n=46) 

described herein were CD1dint/hi CD5hi CD24lo CD25lo CD27lo IL-10lo and CD24hi CD25hi CD27hi IL-

10lo respectively, the latter of which have the highest CD24 expression of our identified Bregs. 

These B cell subsets were significantly reduced in toxicity patients. 

Three of our patients developed severe colitis, one of the most serious autoimmune 

complications of checkpoint blockade therapy. In the DSS model of ulcerative colitis (UC), 

CD19-/- mice were more susceptible to DSS-induced intestinal damage and there was greater 

intestinal infiltration of neutrophils and T cells (317). The proportion of splenic B cells was 

inversely proportional to the degree of intestinal damage and the proportion of circulating 

B10 cells increased during DSS-induced damage. The administration of IL-10 to CD19-/- mice 

significantly decreased intestinal damage and adoptive transfer of B10 cells to CD19-/- mice 

significantly reduced colitis. Co-administration of peritoneal IL-10 competent B cells also 

reduced the severity of colitis induced by the intraperitoneal administration of CD25-CD45RBhi 

CD4+ T cells(318). CpG-induced B cell production of IL-10 and the frequency of IL-10 producing 

B cells (CD19hi CD1dhi) was significantly reduced in patients with Crohn’s disease (CD) or UC 

compared with B cells from healthy donors (319). 
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Other groups have shown that the main Breg subset supressing MOG-induced EAE are the 

CD138+ plasmablasts which regulate the generation of MOG-specific Th1 and Th17 cells by 

suppressing DCs through high IL-10 production (180). It was suggested that the protective 

effect of splenic B cells was due to Plasmablast differentiation in DLNs: CD1dhi CD5+ B10 cells 

differentiate into plasmablasts in culture (289). The phenotype of human IL-10 producing 

plasmablasts was CD27int CD38+cells. Clusters 1 and 3, depleted in toxicity patients, are highly 

proliferative B cell subsets, which have a strong phenotypic resemblance to this subset with 

a Ki67+ CD38+ CD27+ CD95hi IL-10+ phenotype. This mirrors clusters 5, 15 and 20 from the 

independent NSCLC validation cohort (section 4.3.3.5.1).  

Hepatocellular carcinoma (HCC) tissues contain a significant population of PD-1hi B cells 

whose presence correlated with disease progression and with levels of plasma IL-10 (295). 

These exhibited a CD5hi CD24-/+ CD27hi/+ CD38dim phenotype. Our PD-1+ cluster, significantly 

reduced in toxicity patients, has strong phenotypic resemblance to this Breg subset, being 

PD1hi CD5hi CD25hi CD27hi CD24lo CD38lo IL-10int. Incubation with HCC cell supernatants 

induced B cell PD-1 expression via TLR4 ligation. PD-1 triggering and PD-L1/PD-1 interaction 

induced marked IL-10 production and CD5hi PD1hi B cells were major IL-10 producers. This PD-

1 driven IL-10 production suppressed T cell immunity thus accelerating tumour progression 

(295). The increased expression of this subset in our non-responder cohort of NSCLC patients 

fits with the findings from this group where high infiltration of these PD-1hi B cells in HCC 

correlated with disease stage and early recurrence. PD-1+ B cells from thyroid cancer patients 

suppressed T cell proliferation and decreased T cell viability, effects which could be reversed 

with PD-L1 blockade (320). Patients with oesophageal squamous cell carcinoma had 

significant elevation of peripheral CD19+CD24hiCD27+ B10 cells with elevated peripheral B 

cell IL-10 production (321). B cells could internalise exosomes and treatment with exosomes 
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from these patients could significantly increase the B10 population and stimulate both IL-10 

and PD-1 expression, an effect apparently mediated via TLR4 and MAPK pathway activation.  

Finally, we also found deficiency in toxicity patients and in treatment responders of a PDL1hi 

CD38int CD95int TGF-betalo IL-10int subset. PDL1hi Bregs limit the expansion of the humoural 

immune response in part by blocking the differentiation of TFH cells (197). TFH cells typically 

express PD-1 and interact with B cells in the B cell follicle to initiate the GC reaction, whereby 

B cells undergo expansion and affinity maturation. Elevated levels of TFH cells are well 

described in autoimmune diseases characterised by autoantibody formation particularly the 

rheumatic diseases (322). Autoimmune thyroiditis is a common irAE. The percentage of 

CXCR5+ circulating TFH cells was elevated in patients with Hashimoto’s thyroiditis compared 

with controls as were the percentages of PD-1+ TFH cells (323). The percentage of PD-1+ TFH 

cells positively correlated with anti-thyroglobulin antibody levels and negatively correlated 

with FT3 levels. PD-L1 blockade of PD-L1+ Bregs from untreated Rheumatoid Arthritis (RA) 

patients increased the proliferation and cytokine production of CD8+ T cells (324). These PD-

L1+ Bregs were significantly decreased in untreated patients compared with controls and 

were increased upon successful treatment of RA. In the 4T1 breast cancer model PD-L1 + B 

cells suppressive of T cell proliferation were increased in bone marrow, peripheral blood and 

spleen (325). These PD-L1+ CD19+ cells were also up regulated in the peripheral blood of 

breast cancer patients. Myeloid derived suppressor cells (MDSCs) appeared to co-localise 

with marginal zone B cells suggesting the potential for crosstalk between these two cell types 

within the tumour microenvironment. Indeed, co-culture of murine MDSCs with B cells up-

regulated PD-L1 expression and drove the B cells to become T cell suppressive (325).  
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Compelling evidence shows that Bregs directly suppress auto-reactive T cells, suppress TFH 

cell generation thereby limiting autoreactive B cells, and thus serve as a brake on 

autoimmunity. Thus, it is entirely plausible that a defective Breg brake could predispose to 

the development of autoimmunity upon the use of checkpoint blockade. A deficient Breg 

checkpoint will fail to limit the enhanced activity of self-reactive T cells and auto-antibody 

formation enabled by PD-1/PD-L1 blockade, a situation in which anti-PD-1 will also directly 

reduce the suppressive functions of PD-1+ and PD-L1+ Bregs. The paradox is that by negatively 

regulating T cell function, Bregs are likely to blunt the anti-tumour response and hence result 

in disease progression. 

We show here that toxicity patients have a clear defect in their functional Breg repertoire, 

with significant reduction of separate IL-10 expressing B cell subsets, which closely map to 

Breg subsets described in the literature. A limitation of this study is its size and so these 

results, while striking and biologically plausible, will need to be validated in more patients 

possibly using a narrower spectrum flow cytometry panel. The high-dimensional nature of the 

data allied with the analysis enabled for robust exploration, biomarker discovery, annotation 

and differential abundance analysis. However, the technique and analysis will be limited by 

manual gating methods, which are open to subjectivity, bias towards well-known subtypes 

and inefficiency in larger datasets. The development of integrated machine learning methods 

will help to bridge the gap with other OMICS data analyses and help to infer developmental 

trajectories directly from cytometry data (326).  

Although, many irAEs occur early, longer-term follow-up will be required to ensure that the 

no toxicity patients remain free of severe irAEs. Furthermore, although we performed high 

dimensional analyses in lung cancer and melanoma patients treated with PD-1/PD-L1 



190 
 

blockade, larger scale validation in other cancers including melanoma will need to be 

performed and in those treated with anti-CTLA4 blockade. If validated, pre-therapy functional 

Breg profiling could become an important tool to help identify patients who may be at high 

risk of developing severe irAEs on checkpoint blockade. 
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Chapter 5. Objective 3 

The circulating tumour-associated auto-antibody signature in NSCLC is predictive of outcome 

post-surgical resection 

5.1 Characterising the Proteome in Non-Small Cell Lung Cancer 

Worldwide, lung cancer is the leading cause of malignancy-related death in men and the 

second in women. Only 18% of patients at initial presentation are suitable for curative 

treatment, mainly surgical resection. The overall survival in treated patients is 20-30%, which 

can improve to 60% in early stage disease (327,328). However, there are still a considerable 

proportion of patients with early-stage lung cancers who relapse very quickly post resection. 

The behaviour of these cancers does not obey the expected outcomes based on disease 

patterns set out by prognostic scores such as the TNM staging system. Biologically, these 

cancers are very different and this warrants development of scoring systems that delve 

deeper into the biological nature of these cancers and are therefore better able to 

prognosticate surgically resected disease. 

Lung cancers are clinically detected late in their natural history. Detection and screening is at 

present based on clinico-radiological assessment. Modalities such as low-dose CT scanning 

are albeit highly sensitive at detecting small lung nodules but at the cost of a high false 

positive rate which will affect their utility as routine screening tools (329). There have been 

attempts to utilise common tumour markers, such as carcino-embryonic antigen (CEA), 

cytokeratin-19 fragments and neuron-specific enolase (NSE), but these methods lack 

adequate sensitivity and/or specificity (330). The discovery of novel biomarkers might aid 

early diagnosis, screening and importantly provide predictive insight into the response to 

treatment and natural progression of the disease post-resection (330,331).  
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In an era of patient-tailored immuno-therapeutics and molecular profiling of cancers, 

biomarker-based stratification of post-operative outcome is vital to tackling malignancy.  This 

is especially true for lung cancer, where disease recurrence confers little chance for 

meaningful therapeutic intervention.  

5.1.1 Biomarker Research in NSCLC 

The current clinical TNM staging system (13) (IASLC 8th TNM edition) allows us to group 

patients in categories and allocate them to surgery & non-surgical treatment. But we 

recognize the imperfections of this crude system and the need to revise the stage of patients 

up or down following intervention and after obtaining full operative and pathological data. 

This has marked effect on operative mortality and survival results.  

It is important to make the distinction between diagnostic biomarker signatures in NSCLC, of 

which there are many and prognostic biomarker signatures, of which there are fewer. Whilst 

the aim of our study was to discover biomarkers for prognostic purposes, we discuss current 

diagnostic panels for early lung cancer detection further below.  

Current prognostic biomarkers for early stage lung cancers have been described but are 

limited in their utility owing to the lack of proper validation and lack of adequate sensitivity 

and/or specificity (330). In the past few decades, numerous prognostic biomarkers have been 

proposed but few have been validated. Genomic biomarker investigation has advanced our 

understanding of lung cancer and indeed mutations in p53, KRAS, eGFR and BRCA are well 

established aberrancies seen in early stage cancer and confer significantly reduced overall 5-

year survival (331). However assessing tissue level DNA requires access to tissue and biopsies 

are not always truly representative of the tumour landscape owing to intra-tumoural 

heterogeneity (34,332). Multiplex gene panels in breast cancer such as MammaPrint and 
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OncotypeDX similarly require fresh frozen tissue collected in RNA preservation solution which 

adds to the complexity (333). Disparities also exist among different racial groups in accessing 

these platforms which again limits clinical utility (334). Transcriptomic and epigenetic 

biomarker research is an evolving field; JAK-STAT pathway mRNA is being explored as an 

NSCLC biomarker and associations are being made between global CpG methylation patterns 

and outcome in adenocarcinoma (335,336). However, these fields are still within the 

preliminary phases, and translation into the patient clinic is not without its challenges. 

Immuno-histological markers such as tumour-infiltrating lymphocytes (TILs) (CD8+, T 

regulatory cells) and the presence of lymphovascular invasion have also been explored 

(34,333,334). More recently, the paradigm of checkpoint blockade has resulted in tumour 

stratification according to CTLA-4 and PD-L1 status, with discordant results (332,335). 

Proteomic based research exploring autoantibodies in the serum is an attractive option, 

collecting serum in the pre-treatment phase is an easily implementable intervention and can 

be carried out in the clinic or bedside. Few proteomics signatures stratifying outcome in 

NSCLC have been validated. Mass spectrometry defined signatures has demonstrated poor 

survival in early stage lung cancer histological specimens, but despite this the mechanistic 

relationship between proteomic signatures and disease outcome is poorly understood 

(331,337). 

5.1.2 Proteomic Signatures in NSCLC 

Autoantibody (AAb) profiling is a promising approach that incorporates the immune 

recognition of a myriad of aberrant cancer proteins into a single diagnostic test. In an era of 

precision medicine and increasing health care-associated costs, the potential predictive value 

of peripheral blood AAb for mapping the clinical course of disease pre- and post-treatment is 

increasingly important and warrants investigation (329). Autoantibodies (AAbs) reflect the 
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initial humoral immune response against a tumour and their increased levels can be 

detectable months to years prior to clinical evidence of a primary tumour (338) or indeed 

recurrence post-resection of a primary tumour. While the mechanisms involved in the 

production of AAbs in cancer patients (338), remain speculative, AAbs are well known to be 

sensitive biomarkers in the detection and surveillance of many types of tumours (338,339).  

In depth meta-analytical work identified 52 studies which investigated 64 single tumour AAbs 

and 20 tumour AAb panels in the early detection of lung cancer (diagnostic) (329). 

Autoantibody panels outperformed the predictive capabilities of single AAbs, and although 

there was a wide range in specificity and sensitivity for both types of panels, this difference 

was narrower in the multi-AAb panels. This relationship holds true for prognostic AAb panels 

in early stage NSCLC, where panels of AAbs are more reliable in predicting long term survival 

in radically treated patients (340). Combined CYFRA 21-1 and CEA have a stronger association 

with prognosis than the individual measures taken alone (341,342).  

High-density protein microarrays allow the functional testing of thousands of proteins 

simultaneously, increasing the chance of discovery of new autoantibody signatures (343). 

These microarrays, in which proteins are immobilised in their natural conformations, enable 

the identification of AAb profiles within patient sera (343,344). Here we utilised the Sengenics 

Immunome™ Protein Array [Sengenics, Singapore] containing 1627 proteins, to screen sera 

from a total of 157 NSCLC patients. After which, we adopted a machine learning approach in 

order to investigate the utility of using the pre-resection samples in the context of malignancy 

to identify sera-based proteomic changes specifically associated with outcome in non-small 

cell lung cancer (NSCLC) following surgery, with a view to using them as predictive surveillance 

markers. This yielded predictive AAb panels which were able to determine outcome in 
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resected NSCLC patients with considerable accuracy in the test and validation cohorts. It is 

important to recognise that the biomarker panels we identified are based on the circulating 

autoantibodies in pre-operative patient serum so whilst they may be a reflection of the in vivo 

B cell response to tumour associated antigen, there may also be long-lived memory B cell 

populations which are generating said antibodies and therefore we cannot assume a direct 

1:1 correlation between autoantibody level and complementary protein antigen expression. 

Furthermore, determining whether these antibodies are functional i.e., inhibitory, or 

stimulatory would help to shed more light on the overall biological interactions between host 

and tumour. Is there a protective humoural arm or a suppressive arm being induced by the 

tumour itself? These questions are still to answered and were not addressed by this array as 

it was not designed for that purpose however it will form part of the further external 

validation work we are hoping to undertake in the near future. 

5.2 Carcinoma of Lung Biomarkers (CLUB) Study Cohort 

The CLUB study was a historical study that aimed to assess the sera proteomics of participants 

with lung cancer. The working hypothesis from this trial was that “sera from patients with 

lung cancer have proteomic profile(s) different to those from individuals without lung 

cancer”. The primary objective of this study was to detect biological marker(s) in the sera of 

patients with lung cancer and correlate them with clinical outcomes (detection of primary 

tumours, recurrence, survival, and prognosis). Information collected included demographic 

data such as age, gender, race, occupation, smoking, alcohol, any co-morbidity, nutritional 

status (weight, BMI), hormonal influences such as time into menstrual cycle in addition to 

haematological and biochemical investigations. Histo-pathological diagnosis was also 

collected as an essential component of the patient clinical data to be collected. 
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The patient selection criteria are summarised below 

Inclusion criteria  

i. Radiologically confirmed lung mass/nodule/disease referred for surgical exploration, 

sampling or resection  

ii. No previous malignancy (other than adequately treated BCC of the skin).  

iii. Age greater than 18 years  

iv. Life expectancy >12 weeks  

v. Fit for surgery 

vi. Written informed consent  

This historical trial generated a biorepository of pre- and post-operative serum samples taken 

from NSCLC patients who underwent surgical resection for stage I-III disease. We utilised 

these samples for further proteomics analysis in order to stratify between survivorship in this 

clinically robust cohort. Patient samples in the initial stage were selected based on robust 

clinical annotation and sample availability. 

5.2.1 Study Design 

A total of 157 study participants’ (NSCLC Stage I-III) pre-operative serum samples were utilised 

in the proteomics analysis, taken from the repository of trial patients. This was determined 

using a power calculation based on the standard deviations of each protein in the immunome 

array and sample size estimates were calculated across a range of power values (90-99%), 

finally settling on a power value of 95%. Once this overall cohort size was determined, a 

random set of patients (investigators were blinded to clinical metadata) was selected in order 

to train the machine learning model and subsequently tune the model hyperparameters using 

k-fold cross validation (345). This training cohort is known as cohort 1. A smaller independent, 
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separate cohort of patients was randomly selected to provide an unbiased evaluation of the 

final model. This entirely independent cohort used to validate the model is known as cohort 

2. Cohort sizes were determined using a stratified random sample-based approach to split the 

overall dataset. For reasonable sized datasets (n > 100), this commonly used approach in 

machine learning settings has been shown to be close to optimal when allocating 66-70% of 

the samples to the training set (cohort 1) (346). 

5.3 Sengenics Platform 

The Sengenics Immunome protein array (Sengenics Inc, Singapore) contains over 1600 

correctly folded and functional human proteins spotted in quadruplicate. This employs 

patented KREX functional proteomics technology which utilises the BCCP folding marker for 

the production of correct folded and functional proteins. For further details on the platform, 

sample preparation, experimental methods, data acquisition and analysis, see sections 2.4.6 

and 2.5.6.   

5.4 Results 

5.4.1 Pilot Set 

In order to determine the utility of the platform in biomarker discovery in NSCLC, we first 

selected a well-defined cohort of early-stage NSCLC patients (n=42). These patients were all 

stage I patients with 50:50 split between survivors and non-survivors. A simple ROC analysis 

was performed on this curated early-stage NSCLC dataset, the top performing individual AAbs 

are shown below in Figure 5.1. The top performing individual AAb was EAPP with an AUC 

0.641.  
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Figure 5.1. Top performing AAbs in the pilot dataset of stage I NSCLC 

Survival analysis was performed on the AAbs with only 16 AAbs showing significantly different 

survival pattern between high and low expressers. However, owing to the small sample size 

in this dataset, the analyses were biased towards the number of observations in each cohort. 

The top 15 AAbs from the ROC analysis were thence taken forward into a ROC-RFE analysis to 

identify the best performing panel combination (Figure 5.2).  



199 
 

 

Figure 5.2. ROC-RFE analysis of the top 15 AAbs identified 30 AAb panels with high sensitivity and 

specificity in the training set. The figures show the AUC, sensitivity, and specificity values for both the 

training (2/3rd of pilot set) and testing cohorts (1/3rd of pilot set).  
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Panels containing PTK7_int and NFIB as the core component were able to stratify between 

survivors and non-survivors with high sensitivity (0.933) in the training set (blue) but this 

decreased in the testing sets (orange). This is likely due to the small numbers in the latter. 

Figure 5.3 below shows the ROC performance of top performing panels in terms of AUC (0.85-

0.95) in the training set. Biologically, PTK7_int and NFIB have demonstrated strong 

associations with outcomes in NSCLC (347–350).  

 

 

Figure 5.3. ROC curve of the top performing AAb panels (5 panels) in the pilot dataset of stage I NSCLC 
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This preliminary dataset demonstrated the robustness of the platform, and the data analysis 

processes. As such we proceeded with a larger dataset and split the cohorts as described 

above (section 5.2.1).  

5.4.2 Study Cohorts 

Cohort 1 consisted of 111 NSCLC patients (65 survivors, 46 non-survivors). Cohort 2 consisted 

of 46 NSCLC patients (27 survivors, 19 non-survivors). Survivors were defined as patients who 

were alive and recurrence-free at follow-up. Median follow-up of the entire recurrence free 

population was 1825 days (range of 1195-2555 days). Non-survivors were defined as patients 

who died from post-operative recurrence within 12 months. The participant characteristics 

are summarised in Table 5.1. There was no significant difference between cohorts 1 and 2 in 

terms of age, gender and stage. There was a higher preponderance of adenocarcinomas in 

cohort 2 (60.9% versus 49.5%), and a higher preponderance of squamous cell carcinomas in 

cohort 1 (50.5 versus 39.1%).  
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Table 5.1 Clinico-pathological characteristics of the study cohorts 
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Survival distribution of the total study population is displayed in Figure 5.4. Cox Proportional 

Multivariate Hazards Analysis identified IASLC stage and the presence of lymphovascular 

invasion as significant independent negative prognostic risk factors (HR 1.72, p<0.001 and HR 

2.03, p=0.006 respectively); histology was not deemed significant. 

 

Figure 5.4. Multivariate Analysis using logistic and cox proportional hazards regression to assess 

outcome in terms of post-operative mortality and time to death respectively. Stepwise backward 

elimination was employed to remove the least significant independent predictors. All variables (age, 

gender, histology, IASLC stage, nodal status, lymphovascular invasion and adjuvant chemotherapy 

use) were entered into the model and successively removed depending on significance in the model. 

All samples were assayed using the Sengenics Immunome Protein Array containing 1600+ 

proteins spotted in quadruplicates (Sengenics Inc, Singapore). 

5.4.3 Identification of Predictive AAbs 

The final AAb panel was selected based on an iterative applied machine learning pipeline as 

specified in the methodology, the algorithm for which is shown in Figure 2.6. This bespoke 

algorithm comprised machine learning elements that have been previously validated in other 

cancer classification datasets (267,351)   
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Initial data processing involved filtering according to the penetrance fold change analysis in 

order to avoid biasing subsequent model generation. 1355 AAbs remained which were taken 

forward into the deeper analysis. Within the remaining AAb data, >93% displayed collinearity 

of r>0.75 on Spearman Rank Correlation analysis, hence the reason for proceeding with 

recursive feature elimination by random forest modelling.  

The AAbs, which appeared most frequently with the highest importance values across 100 

randomly seeded iterations, are listed in Table 5.2. Corroborative regression and genomics 

analysis methods were performed and indicate the AAbs, which were common to all 

analytical techniques. Overall, 60 AAbs (RFE set) were identified as the most stable with no 

improvement in predictive performance beyond this number.  

 

AAb 
Repeated k-fold 
cross validation 

 

LOOCV 
Lasso 
Regression 

 

DESeq
2 

SPATA19     

CASP7     

TSPY3     

GLS2     

TCEA2     

CTNNA2     

ITPKB     

AFF4     

MAGEB2     

C1orf174     

TSGA10     

TYRO3_int     

DCBLD2     

PCLAF     

SPO11     

BPIFA1     

MAGEB4     

HMGN5     

MAEL     

LUZP4     

HDAC4     

SOX15     

HOOK1     
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CDK16     

CSAG1     

SPACA3     

IMPDH1     

MAGEB5     

TXN2     

NFYA     

PHF7     

HIST1H1C     

IP6K1     

TFG     

AIM2     

SGO1     

PYCR1     

FAM50B     

HK2     

ERBB3_int     

TBL1X     

ZNF207     

EEF1D     

PPP2R1A     

MAP2K7     

RPL7A     

CBLC     

COX6B2     

ACTB     

CA9     

FLCN     

GAGE2     

ARAF     

AK3     

HMG20B     

CNN1     

EPAS1     

EAPP     

TSSK6     

GRK6     

 

Table 5.2. Topmost stable AAbs as determined by recursive feature elimination 

5.4.4 Additive Predictive Modelling 

The RFE set of AAbs was used to generate AAb panels by additively selecting the top-ranking 

AAbs in a cumulative fashion. These inputs were used to determine the ROC metrics at each 
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additive iteration for cohort 1 (Figure 5.5). An upward linear trend in all three parameters 

(AUC< sensitivity, specificity) was noted as more AAbs were added. This progressive increase 

peaked at 44 cumulative AAbs (AUC 0.44-0.975; Sensitivity 67.4%-87%; Specificity 46.2%-

98.5%). Beyond this, the predictive metrics become rather unstable and less uniform hence 

the decision to proceed with the top 44 AAbs for deeper analysis.  

 

 

Figure 5.5. ROC metrics displayed for additive modelling of AAbs in the RFE set (n=60). There is a 

progressive linear increase in AUC (blue), sensitivity (orange) and specificity (grey) with each 

cumulative addition of AAbs. The solid lines show the interval change in each metric with each AAb 

addition and the dashed lines represent the overall trend. There is a progressive improvement in all 

parameters up to 44 AAbs, beyond which, there is a decay in performance for each metric as shown 

by the sharp negative deflection (red arrow). The performance of the model deteriorated beyond 44 

cumulative AAbs indicating no added value.  



207 
 

5.4.5 Multi-model Inference Approach 

Given that a 60-AAb diagnostic scoring system would be cumbersome and impractical, we 

utilised an information-theoretic approach to determine the AAb combination with the 

highest diagnostic potential in the most parsimonious model. We employed the Akiake 

Information Criterion method (AICc) in order to estimate the “goodness of fit” of statistical 

models and thereby compare multiple models with one another. The AICc avoids overfitting 

the model in smaller sample sizes. Based on the cumulative ROC analysis, we proceeded with 

the top 44 AAbs in this downstream analysis. Following stepwise backward elimination of 

these markers in a multivariate logistic regression model, with survivorship as the dependent 

variable, 18 AAbs were determined to be the most significant and were therefore used in the 

multi-model inference analysis. Any further addition of more AAbs did not lead to significant 

improvements of model performance but did contribute to significant increases in 

computational time. 

5.4.6 Assessing Model Performance  

Panel A, the most parsimonious and best performing model, comprised 13 AAbs - SPATA19, 

TSPY3, GLS2, TCEA2, TSGA10, HMGN5, LUZP4, HDAC4, SPACA3, IMPDH1, TXN2, TFG and 

PPP2R1A (Table 5.2). This refined model was assessed in cohort 1 (AUC 0.918, Sensitivity 

89.1%, Specificity 80.1%) and validated in the independent cohort 2 (AUC 0.842, Sensitivity 

84.2%, Specificity 74.1%) (Figure 5.6). There was no significant difference in the ROC metrics 

between the two cohorts, indicating good performance in the validation cohort.  
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Figure 5.6. ROC curves demonstrating performance of Panel A (13 AAbs) in both cohort 1 (test) and 

cohort 2 (validation). P value indicates no significant difference in performance of this model between 

cohorts. AUC 95% confidence intervals displayed in brackets.  

 

We noted a preponderance of bona-fide Cancer Testis Antigens (CTAGs) in the RFE AAb set 

(16/60 (26.7%)). We thus elected to explore two further CTAG specific panels in order to 

determine the prognostic relevance of these highly conserved AAbs in NSCLC. We refer to the 

final AAb panel we defined as Panel A (13 AAbs). Panel B refers to the CTAGs extracted from 

the RFE set (16 AAbs) and Panel C refers to the CTAGs extracted from Panel A (6 AAbs). 

The strong CTAG presence in Panel A was comprised of six AAbs, SPATA19, SPACA3, TSPY3, 

TCEA2, TSGA10 and LUZP4, all with established pro-tumourigenic roles in cancer (Table 5.2). 

CTAGs trigger unprompted humoral immunity and immune responses in malignancies, 

altering tumour cell physiology and neoplastic behaviours. Their limited expression in normal 
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somatic tissues coupled with recurrent up-regulation in epithelial carcinomas makes them 

highly attractive AAb and vaccine targets. We explored performance of all three panels in 

cohort 1 and 2 (Figure 5.7 and 5.8). Panel A performed significantly better in cohort 1 (test) 

than both panels B and C (CTAG panels). However, in cohort 2 (validation), the differences 

between panel A and the CTAG panels (B and C) was not significant. Panel B (16 CTAG panel) 

outperformed panel A in cohort 2 (AUC 0.875 versus 0.842, p=NS) but panel C 

underperformed compared to panel A in cohort 2 (AUC 0.69 versus 0.842, p=NS). The 

increased predictive performance of panel B (16 CTAG panel) reaffirms the importance of 

CTAGs in discriminating between survivorship in lung cancer. In spite of CTAG preponderance, 

this data shows that the non CTAG antigens in panel A, which are critical mediators of Wnt 

signalling and phosphatase activity are clearly biologically important in their ability to 

prognosticate in lung cancer. We therefore developed global score indexes for each panel and 

explored the survival implications of each panel in multivariate models.  
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Figure 5.7. ROC curves demonstrating performance of Panel A (13 AAbs) and Panel B (16 CTAG AAbs from RFE set) in cohort 

1 (test) (left panel) and cohort 2 (validation) (right panel). AUC confidence intervals displayed in brackets. P values indicate 

significant differences in performance in cohort 1 but not cohort 2. 
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Figure 5.8. ROC curves demonstrating performance of Panel A (13 AAbs) and Panel C (6 CTAG AAbs 

from Panel A) in cohort 1 (test) (left panel) and cohort 2 (validation) (right panel). AUC confidence 

intervals displayed in brackets. P values indicate significant differences in performance in cohort 1 

but not cohort 2.  

5.4.7 Survival Analysis 

Further interrogation of these signatures was carried out by generating a continuous risk 

score for every individual on the basis of model coefficients. The resultant predicted risk 

scores from cohort 1 (training) were divided using optimal cut-off points determined through 

ROC analysis in order to further dichotomise the patient cohorts as “high expressers” and 

“low expressers”. We performed this for all three panels (A, B and C), the scores were inferred 

directly from the AAb signal intensities. Using these individual risk scores, we carried out 

survival analyses (Figure 5.9) and multivariate cox proportional hazards modelling (Figure 

5.10) in the entire NSCLC cohort.  Patient age, gender, histology, nodal status, IASLC stage, 

lymphovascular invasion and whether patients underwent adjuvant chemotherapy were all 

predictors that were entered into the model alongside all the panel scores. All panels were 
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able to effectively dichotomise between survivor statuses in our cohort, with high expression 

conferring a significantly worse outcome (p<0.001), reaffirming findings from the ROC 

analysis. Five-year survival in high expressers of panels A, B and C was 7.6%, 16.4% and 19.9% 

respectively and high expressers of panel A had a median survival of just under 16 months 

which for early stage resected lung cancer is very low. On multivariate testing, only panels A 

and B were deemed significant independent predictors of survival, HR 19.6 and 7.22 

respectively (p<0.05). IASLC stage was still deemed an independent predictor of outcome 

albeit not significant (HR 1.24, p=0.11). Panel C was deemed a significant independent 

predictor of outcome only when entered into a multivariate model without panels A and B. 

This reaffirmed the findings that the CTAGs alone from panel A were not sufficiently predictive 

enough when compared with panels A and B but are still significant predictors independent 

of age, gender, IASLC stage, lymphovascular invasion, histology, nodal status and whether 

patients underwent adjuvant chemotherapy.  
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Figure 5.9. Kaplan Meier Survival Analysis for Panel A (13 AAbs), Panel B (16 CTAG AAbs from RFE set) 

and Panel C (6 CTAG AAbs from panel A). All curves demonstrate significantly worse outcome in 

patients with high global expression of each AAb signature. The number of patients in each expression 

group is shown in brackets in the legend for each Kaplan-Meier plot. Percentage survival out to 5 

years is displayed to the right-hand side for each expression group in each plot. The median survival 

for high expressers of Panel A, B and C is 479 days, 558 days and 600.5 days respectively.  
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Figure 5.10. Multivariate Cox Proportional Hazards modelling in entire NSCLC cohort (n=157). 

Stepwise backward elimination was employed to remove the least significant independent 

predictors.  

5.4.8 Gene Ontology Analysis 

Of the identified AAbs in the RFE set (n=60), all are known for their role in biological processes 

heavily interlinked with neoplasia and malignant transformation. Processes such as 

chromosomal organisation, cellular component homeostasis, ribosome function, 

transcription regulation, DNA repair and regulation of AAb phosphotransferase activity, 

namely MAPK activation and the MAP/RAF kinase cascade (352) thus reaffirming their 

biological relevance. This is consistent with gene ontological analysis where the most 

significant pathways related to the RFE set, altered chromosome organisation [gene ontology 

(GO) term GO:0051276, false discovery rate (FDR) = 5.24*10-3] and phosphotransferase 

activity (GO:0016776, FDR = 3.89*10-2) in NSCLC.  

The generated STRING AAb association network of the top 60 AAbs (section 2.5.6.3) 

demonstrated that the overall interaction enrichment for this selected number of AAbs was 

significantly higher than would be expected for a random set of AAbs of similar size, drawn 

from the genome (p=0.0022) suggesting biological interaction as a group and consistent with 

the preponderance of CTAGs. Further underscoring this; most of the sero-reactive AAbs are 

intracellular antigens (52/60) interacting with membrane and non-membrane bound 

organelles such as ribosomes (4/60) with the majority residing within the nucleus (37), a 
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usually immuno-privileged site. This pattern has been observed in autoantibody studies in 

melanoma (339). Despite this, autoantibodies generated against autologous nuclear antigens 

are frequently found in cancer patient sera (338). Nuclear antigens however do not undergo 

antigen presentation during the negative selection of self-reactive lymphocytes largely 

because of their intrinsic proteolytic instability, which affects the binding kinetics with MHC 

class II receptors (338). Exposure of the nuclear antigens to one’s immune system and the 

resultant generation of autoantibodies is therefore thought to occur following tumour cell 

death and release of the intracellular contents into the circulation (353). 

5.5 Biomarker Discovery 

Historically, the majority of autoantibody-based biomarker research has concentrated on 

diagnosis of disease states or early detection of cancers as opposed to trying to map the 

course of disease post-treatment. This is true for NSCLC and melanoma (354). Overall, this 

balance is likely to shift in favour of the latter. Results from the NLST and European NELSON 

trials (355,356), strongly supported lung cancer screening. Widespread use of CT coronary 

angiography to assess inpatient chest pain as well as use of whole-body CT use in the 

assessment of Trans-catheter valve intervention results in a high detection rate of incidental 

findings, a large proportion of which are lung malignancies. The combination of screening 

strategies and increased use of CT scanning for non-cancer related conditions will result in a 

surge in the detection rate of early-stage lung cancers and therefore an increased surgical 

resection rate.  Early-stage lung cancers confer a multitude of outcomes ranging from indolent 

disease with high post-operative disease-free survival rates at 5 years to highly aggressive 

disease with relapse in the first 12 months post-resection. Identifying patients at the greatest 
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risk of recurrence and aspects of the biology of poor outcome disease through biomarker-

based stratification is becoming an ever-more pressing need.  

Current prognostic biomarkers for early-stage lung cancers have been described but are 

limited in their utility owing to the lack of proper validation and lack of adequate sensitivity 

and/or specificity. The key points in evaluating biomarker studies in early-stage lung cancer 

include well-defined objectives and study populations, robust specimen storage and use, and 

use of a clinically applicable assay that is validated in an independent cohort of patients. 

Critical appraisal of published prognostic signatures in early-stage lung cancers found that 

adherence to these criteria was poor with overt flaws in study design. Subramanian et al 

published a set of guidelines to inform prognostic biomarker studies in lung cancer, and 

although all the studies pertain to gene expression microarray data, we have adhered to these 

criteria as closely as possible (357). We validated our signature in one completely 

independent dataset which is a feature that is lacking in many prognostic signatures in early 

stage lung cancer (357). A 14 gene, qt-PCR derived expression signature was previously 

validated in two independent large stage I, non-squamous NSCLC datasets which 

demonstrated robustness of the statistical design. This signature showed poor survival in 

high-risk patients based on gene expression in both validation cohorts and although the AUC 

values were significantly higher for this signature than standard NCCN risk criteria in both 

validation sets, the absolute values were still relatively low (0.60 and 0.61), compared with 

the AUC values from our panels A and B (AUC 0.842 and 0.875) (358). Furthermore, this study 

did not assess the therapeutic relevance of the genes identified in the final signature.  

Most studies in the last decade that have explored serum or blood based antibodies targeting 

tumour-associated antigens have been for early lung cancer detection and have employed 
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ELISA as the primary detection method as well as Western blotting, AAb chip and SDS-PAGE 

(329). Studies investigating single AAbs have included Cyclin B1, p53, NY-ESO-1, MUC1, 

MDM2, p16, APE1, CD25, Cathepsin D, ABCC3, IGFBP-2, BARD1, BRAF, Dickkopf-1, c-Myc and 

a range of heat shock AAbs (329). Sensitivities and specificities for lung cancer detection have 

ranged from 0-90.3% and 0 to 100% respectively (reviewed in 23). Studies investigating panels 

of AAbs have commonly utilised p53, cyclin B1, MDM2, IMPDH, NY-ESO-1, CAGE, GAGE and 

MAGE family AAbs, SOX2 and c-Myc. Sensitivities and specificities for lung cancer detection 

have ranged from 0-92.2% and 79.5 to 92.2% respectively. Commonly used AAbs in clinical 

practice include total PSA for prostate cancer (AUC 0.71) (359), pre-operative serum CEA for 

colorectal cancer (AUC 0.543) (360), NY-ESO-1 and Neuron-specific enolase (NSE) in small cell 

lung cancer (AUC 0.619 and 0.773 respectively) (361), and a panel of serum autoantibodies 

including NY-ESO-1, p53, MMP-7 and HSP70 in oesophageal adenocarcinoma (AUC 0.815) 

(362). Much like the markers delineated in our dataset, these tumour-associated antigens are 

a combination of tumour suppressor genes and oncogenes, with roles in cell cycle regulation, 

DNA replication and apoptosis. These are processes that are commonly deregulated in various 

solid tumours such as breast, bladder, colon, oesophageal and prostate (329,363–365).  

Circulating AAbs have also been investigated as prognostic AAbs in early-stage lung cancer, 

the most common of which are CEA and CYFRA 21-1. The largest study exploring the role of 

CEA found that elevated pre-operative levels conferred poor 5-year survival (366). The body 

of data exploring this AAb in prognosticating NSCLC is conflicted, with some studies reporting 

no association with post-operative survival (340), this is also true for NSE. Meta-analytical 

data demonstrated that elevated pre-treatment CYFRA 21-1 is an independent negative 

prognostic risk factor at 12 months (HR 1.88) in 2063 patients (367). Combined AAb panels of 

CEA and CYFRA 21-1 have demonstrated prognostic value in some studies (342) but not others 
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(341). Combined pre-operative elevation of NSE and CA125 conferred reduced overall and 

disease free survival in NSCLC (368).  

Rather than focus on a single uniquely predictive marker, antibody profiling offers higher 

predictive power that is predicated on combining numerous tumour-associated antibodies. 

Given the complexity and multi-factorial nature of the anti-tumour immune response and 

tumour immune evasion mechanisms in cancers that are not solely reliant on single oncogenic 

drivers, combination AAb signatures would prove more valuable (329). None of the 

prognostic studies mentioned offered any predictive assessment of their panels but instead 

used hazard ratios (measures of association, not predictive power) with no separate 

test/validation. Our panels are significant independent predictors of outcome with robust 

ROC metrics and outperform the commonly used diagnostic panels used in clinical practice 

today (AUC 0.845-0.875). Rousseaux et al (279) described a 26-gene signature which was an 

independent predictor of poor prognosis in early stage lung cancer. Much like our cohorts, 

they described a 152-patient population with early-stage lung cancer that they followed up 

for a minimum of 5 years. The cohort was not exclusively NSCLC however, but comprised of 

small cell, carcinoid, and large cell cancers. Gene expression was assessed using Affymetrix 

microarray technology on resected tumour specimens and analysis identified 26 germline 

restricted genes whose aberrant expression was individually associated with lower survival 

probability. The expression pattern of the genes was used to dichotomise the cohort into 3 

groups ranging from absolutely no expression of any of the 26 genes to expression of 3 or 

more of the 26 genes. Our approach assessed the proteomic profile by utilising the raw data 

in predictive models and by incorporating overall signature scores which preserves the overall 

biological expression of each marker. Their dataset lacked internal testing and validation on 

a separate cohort but utilised orthogonal techniques to explore the expression of the 26 
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genes (i.e qt-PCR). Our blood-based AAb panel demonstrates robust prognostic capabilities in 

separate test and validation cohorts, which in themselves are well dichotomised.  

Using the approach adopted by Gnjatic and colleagues (344); identifying AAbs based on RFU 

levels and positive seroreactivity in survivors versus non-survivors, we successfully identified 

60 prognostic AAbs with individual ROC and survival data metrics. This collection of AAbs 

demonstrates biological interaction as a group, partaking in key cellular processes that are 

often unregulated in tumours and are the inciting insult in tumorigenesis.  

Three broad categories of genes comprised our final panel (panel A), namely CTAG expression, 

Wnt signalling AAb aberrancy and Serine/Threonine AAb phosphatase deregulation. CTAGs 

are united by their role in embryonic development and restriction of expression to male germ 

cells. Ectopic re-expression of these antigens has been seen in a variety of somatic solid 

tumours and in triple negative breast cancers, high expression correlated with worse survival 

in multivariate analysis (HR 2.02, 95% CI 1.27-3.20; p=0.003) (369). Ectopic gene signatures of 

normally silenced CTAG genes that are expressed in cancer associated with a highly aggressive 

lung cancer phenotype and independently predicted poor outcome (279). We identified 16 

CTAGs (27%) in our RFE set (S2) as being highly discriminatory for survivorship in this distinct 

cohort of NSCLC patients (SPATA19, SPACA3, TSGA10, TSPY3, LUZP4, TCEA2, CTNNA2, 

MAGEB2, SPO11, MAGEB4, MAEL, CSAG1, MAGEB5, COX6B2, GAGE2, TSSK6). This CTAG only 

model displayed high predictive power in the validation cohort (AUC 0.875, sensitivity 84.2%) 

and was a significant independent predictor of poor outcome. Clonal and subclonal CTAG 

expansion is generally uniform in tumour cells with variations in behaviour tightly regulated 

by epigenetic alterations (370). CTNNA2, a known regulator of cell-cell adhesion and tumour 

suppressor gene, is frequently mutated in laryngeal carcinoma  (371) and genomics analyses 
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have identified CTNNA2 mutation as a driver event in gastric carcinogenesis as well as being 

a late expanded subclonal population in various other cancer types (372). DNA methylation 

and post-translational histone modification are the most common epigenetic driver events 

(373). Co-expression of HDAC4 in the RFE set provides a mechanistic relationship between 

these two types of tumour-associated antigens possibly working in synergy with one another.  

This has prompted their investigation as therapeutic targets and AAbs of disease. Owing to 

their highly restricted expression patterns in normal tissues and ectopic expression in tumour 

types, their utility as individual diagnostic markers is limited but makes them highly sought 

after as targets for cancer vaccines (374). CTAGs such as MAGE, GAGE, NY-ESO-1 are well 

described in historical AAb signatures in lung cancer as well as other solid tumours and MAGE, 

PRAME and NY-ESO-1 CTAGs are being investigated as targets for CAR-T cell based therapies 

in solid tumours (375). Numerous trials are underway exploring NY-ESO-1 specific TCR gene 

transduced lymphocytes, humanised antibodies, peptide conjugation into oncolytic viral 

vectors and antibody drug conjugates targeting this CTAG (376). Toxic payload delivery via 

TCR conjugates has successfully targeted intracellular NY-ESO-1 and LAGE1 in vitro and in vivo 

abrogating tumour growth (377).  

A key element to the success of CTAG-dependent vaccine therapy is in appropriately 

identifying CTAG-expressing cancer cells that are abundant in tumours, rarely expressed in 

normal tissue, and have defined functional characteristics such that targeting results in the 

absolute attenuation of tumourigenic potential. Whilst peptide-based vaccine therapies 

alone have been met with challenges; MAGEA3 targeting although elicited CD8+ T cell clones, 

showed no measurable clinical benefit (206,370). Combining said therapies with 

immunogenic adjuvants, adoptive T cell transfer and even polyepitopic RNA based vaccines 
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hold a lot of promise. The Lipo-MERIT trial demonstrated strong CD4+ and CD8+ T cell 

induction along with durable objective clinical benefit in unresectable melanoma patients 

treated with a poly-antigenic liposomal RNA vaccine with or without combination with anti-

PD1 checkpoint blockade therapy (378). The RNA vaccine targeted four main CTAGs; NY-ESO-

1, MAGEA3, TPTE and Tyrosinase (378).  

Aberrant activation of the Wnt/B-catenin signalling pathway is causally linked to many 

cancers, in terms of recurrence, immune evasion and metastasis. A number of the identified 

tumour-associated antigens are known to signal via this cascade, HMGN5, TFG, MAEL, SOX15 

and Dicckopf-1, the latter of which has been investigated in numerous other AAb signatures 

(379,380) and like TFG interacts via the Wnt co-receptor LRP6 (381). AAbs such as MAEL and 

PTK7 both signal via this cascade and expression was significantly associated with poor 

outcome in our cohort. MAEL, also a CTAG, has been shown to be critical for cancer cell 

survival and is over-expressed in bladder and gastric cancers (382). Functional experiments 

have determined that MAEL AAb exerts its oncogenic dominance through degradation of the 

AAb phosphatase ILKAP (382). Mutating or silencing of phosphatase activity is a well-known 

tumour escape mechanism and forms one of the core themes of our identified AAb panel, 

along with aberrant CTAG expression and dysregulated Wnt Signalling. MAEL provides a 

unique link between all three biological pathways. These molecules provide unique 

therapeutic targets as demonstrated by an antibody drug conjugate against the Wnt-

signalling PTK7 tyrosine kinase molecule which elicited potent anti-tumour activity in low-

passage patient derived solid tumour xenograft models (347). In solid tumours like NSCLC, 

high PTK7 expression confers significantly reduced overall survival. Targeting this molecule in 

early phase I human clinical trials have just completed recruiting in December 2020 

[NCT02222922]. Other agents targeting parts of the Wnt signalling axis that have entered or 
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completed phase I clinical trials include Vantictumab, a monoclonal antibody against the Fzd 

receptor (NCT01345201, NCT02005315, NCT01957007, and NCT01973309). OMP-54F28 acts 

as a decoy receptor binding all Wnt ligands to suppress downstream signalling has entered 

phase II trials (NCT02069145, NCT02092363, NCT02050178, and NCT01608867). Porcupine 

enzyme inhibitors which suppress the production of bioactive Wnt ligands have also entered 

phase I trials (LGK974,NCT01351103; and ETC‐1922159, NCT02521844) (379,383).  

Cellular responses to DNA damage are integral to maintaining the genome and preventing 

cancer progression; Serine-Threonine phosphatases like AAb Phosphatase 2 play a key role in 

the DNA damage response through regulation of important cell cycle AAbs and tumour 

suppressor genes such as ATM, Chk1, Chk2, p53 and BRCA1 (384). Cancer cells tend to evade 

the activation of DNA repair pathways through copy number alterations of Ser/Thr 

phosphatases, missense mutations and increased mutant gene expression. Identifying 

aberrancy of these important AAbs and utilising early antigen expression is key to disease 

surveillance and therapeutics. Following the exploitation of BCR/ABL kinase inhibition in 

chronic myeloid leukaemia, efforts have been made to explore PP2A phosphatase 

reactivation/inhibition in anti-tumour therapy. PPP2R1A dysregulation was individually a 

significant independent predictor of poor survival in both cohorts, belonging to the PP2A 

enzyme family, these complexes exert control over oncogenic signalling pathways (MEK/ERK, 

Srk-Jnk) and over collateral resistance phosphorylation pathways. Their inhibition in a KRAS-

mutant human lung cancer cell line resulted in improved responses with MEK inhibitors (385). 

Mutations of PPP2R1A significantly enhance cancer cell migration in endometrial and ovarian 

carcinomas (386), whereas allosteric activation of this wild-type complex induces cell cycle 

arrest with broad anti-tumour activity (387). Current phase 2 trials in recurrent glioblastoma 

(NCT03027388) are investigating the role of PP2A inhibitor, LB100. TPTE, a CTAG also exerts 
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PTEN-related tyrosine phosphatase activity and was one of the targets of the liposomal RNA 

vaccine used in the lipo-MERIT study (378) thus demonstrating the key role of AAb 

phosphatases in tumorigenesis and how tumours exert oncogenic control through 

dysregulation of this proliferative brake.  

The current era in lung cancer research utilises promising molecular AAbs including auto-

antibodies in the blood, complement fragments, circulating microRNAs, circulating tumour 

DNA, DNA methylation status of tumour tissue, direct profiling of tumour-associated antigens 

in serum and RNA airway and nasal signatures (330). With the development of artificial 

intelligence technologies and biological integration, future AAbs prospects will encompass 

areas such as metabolomics, exhaled breath AAbs, integrating low-dose CT scanning with 

sputum cell image analysis as well as the use of next generation RNA sequencing for 

circulating tumour DNA in early lung cancer detection (330). Due to the sheer mass of AAbs 

in need of clinical validation, standardised metrics of clinical utility are required as well as the 

use of newer AI-based and machine learning technologies to help select the most robust 

combinations.  

Whilst the aim of this study was to identify a highly prognostic panel for early-stage lung 

cancer, the biology of the final markers suggests a line of sight to the clinic in terms of 

adjuvant therapies, in which high expression of our prognostic AAb might indicate a very poor 

outcome group of patients whose survival; might be improved by targeting some of the AAbs 

that the autoantibodies have formed against particularly the CTAGs. In our dataset, low CTAG 

expressers (Figure 5.9) had good outcomes, with 85.4% 5-year overall survival (p<0.001), 

targeting this group is unlikely therefore to be of benefit however high expressers who suffer 

poor outcomes post-resection, may well be suitable for a CTAG-based polyepitopic RNA 
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vaccine as an adjunct to standard adjuvant chemotherapy to further eliminate micro-

metastatic deposits and cells with high biological propensity for aggressive disease. One must 

consider the limitations with polyepitopic vaccines in that a dominant epitope may drive 

immune responses and according to vaccine timing and location, different Th1/Th2 responses 

will be elicited. 

This unique dataset with its robust clinical stratification (death from recurrent disease in 12 

months versus long-term disease-free survivorship at greater than 5-year follow-up) and long-

term follow-up is well placed to explore proteomic-based differences. This analysis utilised 

novel machine learning approaches to derive unique AAb signatures with the highest 

predictive capability in our patient cohorts. The AAbs individually are highly relevant to cancer 

biology with important roles in key mechanisms that underlie tumorigenesis and are fuelling 

current clinical trials in cancer medicine. Elucidating the role of CTAGs in cancer medicine and 

exploring links with Wnt Signalling and phosphatase cascades is of vital importance. These 

tightly regulated antigens with their almost uniform expression in epithelial carcinomas 

provide an excellent target for not only prognosticating disease but also as a therapeutic 

vaccine target, clearly exemplified by the data from the LipoMERIT study (378). Our broad 

unsupervised interrogation of >1600 AAbs in a robust clinical dataset only serves to reinforce 

this. 

5.5.1 Limitations and Further Work 

Despite good performance, the panel identified should also be employed to determine clinical 

utility in larger external cohorts in a pragmatic setting involving NSCLC patients as well as 

other cancers to ascertain if the signature is disease specific. 
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Chapter 6. Discussion  

The B cell repertoire in patients with Non-Small Cell Lung cancer plays a clear role at the level 

of the circulation and in the tumour microenvironment. This is clear in treatment naïve 

patients and in predicting response to therapy with checkpoint blockade. The dual pro-

tumour and anti-tumour B cell responses in NSCLC, underpin the need for proper systematic 

characterization of antibody expression, spatial localisation, and functional phenotypes of B 

cells in order to ultimately guide the multi-faceted development of B cell derived 

immunotherapies.  

 

Figure 6.1. This schematic illustrates the interplay between Bregs, CD4+ T cells, Tfh, and Tfr cells and 

the role of suppressive cytokines and the PD1-PD-L1 axis in mediating downstream responses. Bregs 

can be PD1 or PDL1 positive. Interactions with tumour cell PD-L1 (1.) or upon encountering PD-L1+ 

cells, this PD-1 triggering results in acquisition of suppressive functions with suppresses tumour-

specific T-cell immunity and promotes cancer growth via IL-10 production. Interaction with CD4+ 

specific PD-1 via B-cell specific PD-L1 (2.) inhibits Tfh maturation and differentiation from CD4+ T cells 

and subsequent entry into the germinal centre where Tfh help induces B cell maturation into memory 

and terminally differentiated plasma cells. These direct PD1-PD-L1 interactions between CD4+ and 

Breg cells respectively results in Stat5 upregulation and subsequent Tfh suppression. CXCR5+ CD25+ 

Foxp3+ T follicular regulatory cells work synergistically with Breg cells to skew the balance away from 
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Tfh maturation and expansion. Tfh suppression also occurs via suppressive cytokine signalling (3.). 

These three mechanisms are thought to be the B cell exerted brakes on autoimmunity which prevents 

unregulated immune related adverse events following checkpoint blockade.  

6.1 Differential intra-tumoural and circulating B cell phenotype expression exists in the 

setting of early-stage NSCLC and is predictive of post-operative outcome.  

Our interrogation into the B cell repertoire of early-stage NSCLC patients, utilised deep 

phenotyping using mass cytometry, bulk RNA sequencing and multispectral tissue imaging 

using immunofluorescence. A clear difference in B cell surrogacy between tumour and blood 

was demonstrated using mass cytometry where a higher CD138+ plasma cell infiltrate was 

noted in tumour tissue. These tumour-infiltrating, antibody-producing cells associated with a 

lower degree of recurrence (p<0.05). In the circulation, a higher suppressive B cell presence 

was linked to recurrence (p<0.05) and at the tissue level, these suppressive B cells (CD138+ 

or CD20+) were noted to reside predominantly in the tumour stroma as opposed to infiltrating 

the nest.  

The ambiguous role of B cells in the tumour environment predetermines the multidirectional 

development of immunotherapeutic approaches, either supporting positive B cell types or 

inhibiting the suppressive B cell phenotypes (156).  

The lack of a universally accepted method for evaluating antitumor versus pro-tumour B cells 

makes it difficult to evaluate the role of B cells cancer. In general, the presence of CD20+ B 

cells or IgG+ plasma cells confers prognostic benefit, however there are discrepancies with 

this rule (94). This has been observed the with CD138 expression also (154). Suppressive B 

cells (Bregs) are deleterious in lung cancer and given the common surface markers which are 

universally shared with effector type B cells, the expansion of robust multi-OMICS techniques 

will help to serve to delineate these niche populations effectively.  
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6.1.1 Theoretical Implications 

Mimicking the impact of effector B cells in NSCLC is an attractive immunotherapeutic strategy. 

Whether this is through adoptive transfer of Ig producing B cells or enhancing B cell activation 

with exogenous ligands, remains to be seen. The latter has been shown to be effective in 

restricting tumour growth and metastasis in murine models (113,119). Similarly CD138+ 

induction with Reishi polysaccharide fraction has been shown to  suppress tumour in an 

antibody mediated cytotoxic fashion in the Lewis lung tumour mouse model (388). Our 

current understanding indicates that tumour-infiltrating B cells are important regulators of 

lung cancer progression. B cells are multi-faceted; either pro- or anti-tumour as determined 

by the signals delivered by the TME. Further exploration into this area will serve in developing 

B cell based immunotherapeutic strategies.  

6.2 Circulating B cell changes are predictive of outcome and immune related adverse 

events (irAE) in NSCLC patients receiving checkpoint blockade therapy 

Through testing in independent cohorts, we showed that lung cancer patients developing 

severe toxicity from anti PD-1/PD-L1 blockade had significant gaps in their B cell profile at 

diagnosis, specifically affecting suppressive B cell subsets (IL-10+, TGF-β+ or PDL-1+). All 

subsets detected in this context display strong phenotypic parallels with previously described 

Breg subsets. Patients who did not subsequently develop severe toxicity had preservation of 

these subsets at diagnosis and in these patients, the levels of these cells increased on 

checkpoint blockade whereas in toxicity patients Breg populations either remained static or 

fell. Our phenotyping data suggests there is circulating presence of Breg populations in 

toxicity patients however our functional data suggests that the B cells in toxicity patients not 

only fail to mount an adequate anti-inflammatory cytokine (IL-10) response but also an 
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adequate pro-inflammatory cytokine (IFN-γ, IL-6, IL-17) response. This polyfunctional defect 

implies B cell exhaustion in toxicity patients likely driven by the tumour microenvironment, 

the signal for which remains to be elucidated. This pan-cytokine failure in B cells from toxicity 

patients explains the lack of a reciprocal relationship between toxicity and response to 

treatment. 

6.2.1 Theoretical Implications 

In summary, we show that patients who have inherent functional defects in their Breg 

repertoire as well as deficits in specific peripheral Breg phenotypes are predisposed to 

developing severe autoimmunity. Our findings, despite the small size of the external 

validation cohort, significantly enhance our understanding of the aetiopathogenesis of severe 

autoimmunity under checkpoint blockade. They have significant implications for our ability 

both to predict the likelihood of severe immune toxicity with checkpoint blockade, and 

ultimately also to develop tolerable checkpoint blockade regimens in such high-risk patients. 

Future translational applications are both potentially diagnostic and therapeutic. Narrower 

spectrum flow cytometry assays at diagnosis would help formulate an idea of the circulating 

Breg milieu in patients and when combined with functional IL-10 assays, would stratify risk of 

toxicity in patients undergoing checkpoint blockade therapy. By stratifying susceptible 

patients based on Breg profile and comparing to those patients included for treatment 

according to standard criteria as parallel trial arms, we could gain useful insight into the utility 

of this type of cellular risk stratification. Similarly, developing a large prospective cohort of 

patients would inform us as to whether specific Breg signatures or deficiencies correlate with 

toxicity at anatomical sites. As was shown in murine models of intestinal damage, 

administering an IL-10 adjuvant either as a stable mRNA vaccine or via CD19+ adoptive B cell 

transfer, to patients experiencing toxicity, tissue damage could be considerably limited. This 
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could be a significant therapeutic application if not prophylactic in those who are deemed 

highly susceptible to toxicity. 

6.3 Circulating tumour-associated auto-antibody signatures in NSCLC are predictive of 

post-operative outcome 

We utilised the Sengenics Immunome™ AAb Array [Sengenics, Singapore] containing 1627 

AAbs, to screen sera and profile the circulating auto-antibody signatures from a total of 157 

non-small cell lung cancer (NSCLC) patients across two independent cohorts. We set out to 

identify a high-risk sub-group of surgically resectable NSCLC patients who may benefit from 

adjuvant therapy and explore the biological significance of the identified AAbs along with 

information relevant to therapeutic application. We implemented a bespoke machine 

learning approach to investigate the utility of using the pre-resection samples in the context 

of malignancy to identify sera-based proteomic changes specifically associated with outcome 

in NSCLC following surgery. This yielded predictive AAb panels which were able to predict 

outcome in resected NSCLC patients with considerable accuracy, provide improved 

prognostic accuracy beyond the IASLC staging system and differentiate high and low-risk 

patients based on panel expression within all disease stages.  

6.3.1 Theoretical Implications 

Three broad categories of genes comprised our final panel, namely CTAG expression, Wnt 

signalling AAb aberrancy and serine/threonine AAb phosphatase deregulation. Biologically 

these pathways are all heavily implicated in tumour progression and potentially the markers 

identified could bear significant therapeutic implications. Adjuvant therapies could be 

delivered to those patients determined as high risk by this AAb panel for post-operative 

recurrence. For example, the highly restricted expression patterns of CTAGs in normal tissues 
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and ectopic expression in tumour types, makes them highly sought after as targets for cancer 

vaccines (374). The Lipo-MERIT trial demonstrated strong CD4+ and CD8+ T cell induction 

along with durable objective clinical benefit in unresectable melanoma patients treated with 

a poly-antigenic liposomal RNA vaccine with or without combination with anti-PD1 

checkpoint blockade therapy (389). High CTAG expressers who suffer poor outcomes post-

resection, may well be suitable for a CTAG-based polyepitopic RNA vaccine as an adjunct to 

standard adjuvant chemotherapy to further eliminate micro-metastatic deposits and cells 

with high biological propensity for aggressive disease.  

6.4 Concluding Remarks 

Throughout the course of this project, the generated data has shed light into the role of B 

cells in the immunobiology of NSCLC, both in early and advanced disease. We have 

demonstrated clear differences in the surrogate nature of B cells between the circulation and 

the tumour microenvironment. We have determined a highly predictive prognostic auto-

antibody signature which we will be seeking to validate in an independent external cohort. 

Lastly, we have demonstrated insight into the role of the suppressive B cell and the 

aetiopathogenesis of immune related adverse events following checkpoint blockade.  

B cells exist on a phenotypic spectrum but also a functional spectrum. At any stage of 

maturation, B cells given the right environmental stimulus can either be effector (supporting 

anti-cancer CT8+ T cells and produce Ig) or suppressive and produce IL-10, IL-35 or TGF-β. The 

suppressive B cells can suppress independently of cytokine production and instead dampen 

immune responses through direct PD-1/PDL-1 interactions. In early-stage disease, we have 

demonstrated that plasma cells in the TME exist on this functional spectrum with effector 

phenotypes associating with positive outcomes and vice-versa with suppressive phenotypes. 
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The natural regulatory plasma cells gather around the tumour nest preventing effector T cell 

infiltration presumably and inducing the suppressive phenotype in trafficking B cells from the 

circulation. Suppressive cells however are not for all intents and purposes entirely deleterious 

in cancer, as we have shown in the context of checkpoint blockade these can be protective 

against autoimmune complications. In patients who lack these suppressive responses, we 

postulate that B cells exhibit an exhausted phenotype which pre-dominantly affects the 

suppressive cytokines but also pro-inflammatory IL-6, IFN-γ and TNF-α, which would explain 

the lack of reciprocity with response to treatment. The humoural response to tumour 

associated antigen is still poorly understood, we have attempted to study the autoantibodies 

in the circulation of patients with early-stage lung cancer and derived a predictive biomarker 

for relapse. These anti-antibodies are either produced by the effector terminally 

differentiated plasma cells which we have seen are protective (Objective 1) in response to 

tumour-associated antigen. It is unclear if these are inhibitory or activatory and whether they 

are produced solely in response to the tumour or by circulating memory B cells constitutively.  

Understanding the environmental signals that induce either phenotype, whether it be locally 

produced TME stimuli or host stimuli, remains the key to understanding how to support anti-

cancer effector responses and in the right situation either support or inhibit the suppressive 

B cell responses.  

There is much to still investigate, however. In early-stage disease, determining clonal 

differences in B cell populations between recurrence and non-recurrence patients is of key 

importance, and in particular determining if there are key tumour associated antigens which 

are driving any clonal changes. We hope to investigate this through single cell RNA sequencing 

of the B cell receptor in a wider cohort. In the advanced disease setting, we aim to 
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prospectively validate a bespoke Breg flow cytometry panel on a larger scale to further 

investigate the role of Bregs in determining outcome post-checkpoint blockade. Moreover, 

investigating this in other disease settings such as melanoma will be important. Some irAEs 

may develop on the basis of pre-existing autoimmunity to autoantigens expressed in the 

target organ (and tumour) and baseline autoantibody may be of value in predicting those at 

risk of these irAEs. A lack of adequate Breg induction may be permissive of checkpoint-related 

autoimmunity mediated by activated CD4 cells and exacerbating auto-antibody formation. 

Much of the recent literature has demonstrated a role for the microbiome in Breg induction 

and whether there are such differences in NSCLC patients receiving checkpoint blockade who 

develop toxicity and those who do not, remains to be seen. The microbiome appears crucial 

not only in driving colitis secondary to checkpoint blockade but other severe irAEs and may 

be important in determining Breg induction. Exploring the gut and lung microbiome in this 

setting through murine models will form another facet of our ongoing work. Finally, the role 

of the functional in vivo B cell response in determining outcome is yet to be properly 

investigated, we cover this final phase in Chapter 7.  
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Chapter 7. Further Work 

Determining the Functional in vivo B cell response to vaccination with Pneumovax 

(PPSV23) in NSCLC patients 

7.1 Background and Rationale 

Our retrospective analysis [Patel AJ et al, J Thorac Dis 2020 – Appendix 1] at QEHB to ascertain 

the proportion of NSCLC patients who are hospitalised due to respiratory infection/bacterial 

LRTI showed that within the NSCLC cohort at the QEHB, there were 480 admissions over 2 

years of which 165 were for respiratory infection (34%). There were 110 in-hospital deaths 

(22.9% mortality rate during admission) of which 65% of all mortality were due to respiratory 

infection. Whilst infection appears an enormous unmet need, prophylactic antibiotics may 

well be detrimental as this inhibits the activity of PD1 checkpoint blockade agents which are 

rapidly becoming the mainstay of treatment in this patient group (390). Thus, infection 

prevention is key, and vaccination is a useful tool especially as 18% of all audited respiratory 

admissions had a positive pneumococcal culture (the most prevalent micro-organism out of 

all those who were culture positive – Figure 7.1 below) and this is likely to be an under 

representation as pneumococcus is notoriously difficult to culture from sick patients. Given 

that these patients are older adults with COPD and are current smokers, it is likely that they 

will benefit from vaccination from a clinical perspective whilst allowing the investigation of 

the utility of a functional in vivo B cell model to predict outcome from disease. Antibody 

responses to pneumonia vaccination have never been undertaken in NSCLC despite multiple 

pragmatic guidelines recommending this action.  
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Figure 7.1. Microbiological Repertoire of sputum growth from NSCLC cohort 
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7.2 Study Design 

This study is a basic science investigation involving human participants within University 

Hospitals Birmingham NHS Trust, with patient recruitment from two sites within the trust; 

Birmingham Heartland’s hospital (surgical NSCLC cohort) and from Queen Elizabeth Hospital 

Birmingham (QEHB) (advanced disease cohort). 

The study has been discussed and presented to a Patient and Public Involvement (PPI) group 

(below). The results from this cohort will be compared during data analysis with healthy 

volunteers who are being recruited for vaccination as part of the Time of Day (ToD) study (REC 

Reference: 17/WM/0426, IRAS ID: 235222).  

7.2.1 Study Participants 

The study participants will be patients with NSCLC from two cohorts.  

Cohort 1: acute surgical NSCLC patients, informed of study at visit 1 (first surgical assessment), 

recruited and vaccinated at visit 2 (pre-operative consultation). 

Cohort 2: advanced disease NSCLC patients, informed of study at visit 1 (first oncology assessment), 

recruited and vaccinated at visit 2 (pre-treatment consultation). 

Participants will receive PPSV23 vaccine in their non-dominant arm by intra-muscular 

injection in the deltoid muscle bulk. This will take place in the pre-operative setting or pre-

initiation of chemo/immunotherapy.  

7.2.2 Planned Size of recruitment target  

The aim is to recruit 40 patients across the cohort; this is in keeping with one of our primary 

endpoints of feasibility. The recruitment period is 12 months from the start of the study.  
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7.2.3 Follow-up duration 

12 months 

7.2.4 Planned Study Period* 

April 2019-October 2021 

*Owing to the development and resurgence of the COVID-19 pandemic, this study has been paused 

by the R&D department at the trust until COVID-19 pressures ease and we are able to resume 

recruitment.  

7.2.5 Research Question/Aim(s) 

The over-arching aim of the study is to determine the functional in vivo B cell response in 

NSCLC patients through vaccination. We plan to achieve this by performing functional 

antibody testing on NSCLC patients by assessing their response to vaccination in the pre-

treatment phase (pre-surgery or pre-treatment with immunotherapy +/- chemotherapy). 

7.2.6 Patient & Public Involvement Group  

The study has been discussed and presented to the RESOLVE group, which is the national 

thoracic surgical patient and public involvement group. This took place at the national society 

of cardiothoracic surgery conference in London (March 2019). Their input has been most 

favourable and helped to design this study. A member of the RESOLVE group will provide 

input either in person or via telephone conference at all future study management meetings.  

7.2.7 Design and Timing Rationale 

This is a high risk cohort of patients particularly for post-operative infection; patients who 

undergo thoracic surgical resection are much more likely to develop a post-operative 

pulmonary complication such as pneumonia (391). This provides good rationale to vaccinate; 
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we are electing not to vaccinate in the immediate pre-operative period as some patients may 

develop a reaction to the vaccine and become unwell which would preclude them from 

undergoing their lung cancer resection. Furthermore, through work examining the innate 

immune responses to pulmonary resection; it was found that greater pro- as well as anti-

inflammatory responses were detected via thoracotomy as compared with minimally invasive 

surgery (392). When the body is stressed by surgery, there is a propensity for a more 

exaggerated immune response which correlates with the invasiveness of the surgery. 

Therefore, vaccinating in the immediate post-operative period will make functional B cell 

responses largely uninterpretable owing to the confounding from the post-surgical stress 

response.  

Thus, vaccinating all patients pre-operatively, allowing a minimum of 2-4 weeks from the time 

of vaccination to surgery will confer added protection against the development of post-

operative pulmonary complications whilst still allowing for any vaccine induced reactions to 

occur and settle prior to surgery. Similarly in the advanced disease cohort, vaccinating patient 

prior to commencing any therapy within a similar time frame will offer maximal protection 

whilst still allowing the standard of care to take place.  This will maintain the ability to examine 

the functional B cell response in the context of NSCLC in this unique cohort of previously 

unstudied patients. The results from this cohort will be compared during data analysis with 

healthy volunteers who are being recruited for vaccination as part of the Time of Day (ToD) 

study (REC Reference: 17/WM/0426, IRAS ID: 235222).  
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7.2.8 Study Flow Chart 

 

7.2.9 Pneumococcus 

Streptococcus pneumoniae (S. pneumoniae), a bacterium also known as a pneumococcus, is a 

major cause of pneumonia, sepsis and meningitis. Mortality rates remain high despite modern 

antibiotics, so successful vaccination is vital in order to prevent infection. Research suggests 

that there is a correlation between invasive pneumococcal disease (IPD) and dysfunctional B-

cell responses (393,394). In 2003, a single dose of Pneumovax-23 (PPSV23) was 

recommended for all individuals aged 65 and over, and individuals below the age of 65 with 
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a long-term health condition such as chronic obstructive pulmonary disease (COPD), diabetes, 

chronic kidney or liver failure or immunosuppression (The Green Book, 2017). This is the 

vaccine which participants in this study will be receiving. PPSV23 contains purified capsular 

polysaccharide to 23 different pneumococcal capsular serotypes (1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 

9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19F, 19A, 20, 22F, 23F, 33F).  

 

7.2.10 PPSV23 Treatment 

The PPSV23 vaccination is an NHS standard of care treatment available to all adults aged 65 

and over, as well as anyone from the ages of 2 to 65 years with a long-term health condition 

such as COPD, diabetes, chronic kidney or liver failure or immunosuppression.  

 

People over 65 only need a single vaccination at any time which will protect for life; those 

with a long-term health condition may just need a single one-off vaccination or five-yearly 

vaccination depending on their underlying health problem 

(https://www.nhs.uk/conditions/vaccinations/pneumococcal-vaccination/). As the 

vaccination can be offered at any time on the NHS in accordance with the above criteria; 

participants will receive PPSV23 vaccine in their non-dominant arm by intra-muscular 

injection in the deltoid muscle bulk. This will take place during visit 2. 

 

7.3 Study Objectives 

This is an exploratory physiological investigation which seeks to determine the functional in 

vivo B cell response in NSCLC.  
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7.3.1 Primary Objectives 

• Explore the functional in vivo B cell response at 4 weeks (+/- 7 days) and 52 weeks (+/- 

7 days) post vaccination (nationally recommended, standard of care vaccination, 

PPSV23) in NSCLC patients who are due to undergo treatment by surgery and those 

who are due to start first-line immunotherapy +/- chemotherapy. 

• Assess the feasibility of carrying out this study using the proposed research methods 

in the NSCLC cohorts described. Feasibility is defined in terms of study uptake rates (% 

of those approached who are recruited), recruitment rates (n/month) and retention 

rates (% of those who provide samples and data at follow-up appointments). 

7.3.2 Secondary Objectives 

• Determine if the functional in vivo B cell response correlates with outcome or 

prognosis in this cohort of patients.  

• Compare the functional in vivo B cell response in NSCLC patients with trends seen in 

the healthy volunteer population from the Time-of-Day study, as an exploratory 

endpoint (REC reference: 17/WM/0426, IRAS ID: 235222).  

• Report on trends seen in morbidity and mortality secondary to respiratory infection in 

this cohort of patients, as an exploratory endpoint, if time permits. 

• Through serial blood samples and laboratory testing of AAbs of specific adaptive 

immunity, investigate the mechanism by which NSCLC determines a functional 

immune response.  

7.3.3 Laboratory Outcomes 

• Vaccine specific serum antibody concentration (IgG, IgA and IgM) following a single 

dose of PPSV23 vaccination at 4 weeks (+/- 7 days) and 52 weeks (+/- 7 days) post 
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vaccination to determine the functional B cell response (quality, quantity and 

longevity of the antibody response) in the context of NSCLC. 

• Ig levels by class and by antibodies specific for bacterial target antigens using standard 

laboratory ELISA and multiplex immunoassays including functional antibody tests 

(Luminex platform, Opsonophagocytic killing assays (OPKA) and total IgG, A and M).  

• Antigen specific B cell levels, to be measured by ELISpot and Cytometry by Time of 

Flight (CyTOF) method.  

• Investigation of AAbs of inflammation, innate and specific immunity will be made to 

determine how the NSCLC microenvironment influences immune response. This will 

include numbers and activation status of neutrophils, monocytes, dendritic cells, 

natural killer cells, T and B lymphocyte subsets measured in serial blood samples at 4 

weeks (+/- 7 days) and 52 weeks (+/- 7 days) post vaccination. 

 

7.3.4 Disease Specific Outcomes 

• Overall and Progression-free survival in days for both treatment cohorts.  

• Pathological staging of disease (i.e. Tumour status). 

 

7.3.5 Proposed Analysis Methods 

1. Descriptive stats for patients (split by cohort of NSCLC patients and healthy controls), 

use plots and tables where appropriate.  

2. Investigate results using Chi-square (or Fisher’s Exact for low numbers). 

3. Compare pre- and post-vaccination (4 and 52 week) blood results of NSCLC and control 

patients using mixed effects models with adjustment for patient characteristics, 

baseline blood measurements and prognostic factors. 
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4. Kaplan-Meier survival plots (for PFS and OS) produced as appropriate for data (e.g., 

curves comparing B cell signatures of the NSCLC and outcomes). 

5. Cox proportional hazard regression models constructed for each outcome: PFS and 

OS, using NSCLC and control groups, and B cell signatures as categorical explanatory 

variables, adjusting for patient characteristics. 

 

7.4 Eligibility Criteria 

7.4.1 Inclusion criteria  

• Patient is able to give informed consent and undertake the patient assessment as 

detailed in the protocol. 

• Patient has resectable NSCLC and be scheduled for surgical resection of the NSCLC 

from the time of baseline blood withdrawal OR has advanced disease NSCLC that is 

eligible for chemo/immunotherapy.  

• Patient is aged 65 or over OR patient is aged between 18 to 65 years AND have a long-

term health condition such as COPD, diabetes, chronic kidney disease or liver disease, 

and therefore meeting standard of care requirements for PPSV23 vaccination.  

 

7.4.2 Exclusion criteria  

• Patient has been previously vaccinated with the PPSV23 vaccine in the last 5 years.  

• Patient takes long-term oral steroids or other form of long-term immunosuppression 

that will affect vaccine response (a 14-day washout period is required for a short 

course of steroids or immunosuppression). 

• Patient has a suppressed immune system caused by a health condition such as HIV.  

• Patient is known to be allergic to components of the study vaccines. 
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• Patient is suffering from an acute infective illness (as determined by the clinician at 

visit 2). 

 

7.5 Recruitment Target 

7.5.1 Size of recruitment target 

The analyses of this study are exploratory, and as one of the objectives is to assess feasibility, 

a partially qualitative outcome, it is difficult to effectively power the study. However, the 

following considerations have been taken into account. In 1995 Browne recommended a 

sample of 30 subjects or more as a general rule for pilot studies when the aim is to obtain 

variance estimates for a sample size calculation sample size for a bigger Randomised 

Controlled Trial. Kieser and Wassmer (395) investigated the theoretical basis for Browne’s 

recommendation and concluded that a sample size of 40 will be adequate for applying 

Browne’s method in the subsequent sample size calculation. We have therefore chosen an 

intended sample size of 40 patients for a given disease area. This sample size will allow the 

mean value for a standardised, normally distributed primary outcome measure to be 

estimated to within ±4% with 90% confidence, i.e., 90% confidence interval (CI) width of 8%, 

assuming a relative standard deviation of 10%. Recruitment of at least 44 patients per group 

will allow for the sample size of 40 to be met whilst allowing for 10% dropout. A control group 

of health elderly patients (no NSCLC) who will receive vaccination as part of the Time-of-Day 

study (REC reference: 17/WM/0426, IRAS ID: 235222) will be used to compare the trends in 

the incidence of respiratory infection as well as their functional B cell response to vaccination. 
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7.6 Trial Delivery 

Once the COVID-19 pressures have eased, we will carry out this study in line with the remits 

set out in the MHRA ethics approval (REC 19/WM/0182, IRAS 262536, ISRCTN 49173282).  
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Appendices 

Appendix 1.  Characterising the Impact of Pneumonia on outcome in NSCLC [Patel AJ et 

al, J Thorac Dis 2020 PMID 32642129] 

Background 

Lung cancer patients often present with pneumonia which remains an important cause of 

morbidity and mortality during the disease course (396). The pathogenesis of infection is 

multi-factorial and is influenced by the underlying disease, co-morbidities, and iatrogenic 

immunosuppression. In lung cancer this can range from infections resulting from tumour 

obstruction of the airways to infective exacerbations of chronic obstructive pulmonary 

disease (COPD), to opportunistic infections due to immunosuppression (396). The frequency 

of respiratory infection in Unplanned Hospital Admissions (UHAs) in the existing literature, is 

between 21.9% and 49% (209,397–399). Studies examining this are largely historical, variable 

in sample size and may be difficult to extrapolate from given the changes in the epidemiology 

and treatment of lung cancer. A retrospective study characterising lung cancer patients in the 

Netherlands highlighted the potential impact of respiratory infection on a nationwide level 

(11). The burden of community acquired pneumonia is high in cancer in general, with 

variations by cancer subtype and particularly high rates in lung cancer (400). 

Retrospective Cohort Analysis  

[Published analysis; Patel AJ et al, J Thorac Dis 2020 PMID 32642129] 

Knowing that Lung cancer is a significant global burden, there is strong potential for improving 

survival if we can identify and treat modifiable risk factors for infection. Specifically, with 

reference to the uptake of Pneumovax (PPSV23) vaccination which is an NHS standard of care 

vaccine designed to protect against pneumonia and therefore an easily implementable 

strategy. We hypothesised that pneumonia presents a significant burden and is strongly 

linked to outcome in lung cancer patients who present to hospital and significantly more so 
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when compared to other cancer subtypes. We carried out an observational study, 

characterising the impact of pneumonia in three cohorts of patients (see below) and 

specifically assessing the importance of PPSV23 vaccination in NSCLC patients.  

 

1. Non-Small Cell Lung Cancer (NSCLC) patients 

2. Breast, Colorectal and Prostate cancer patients 

3. All other patients without any form of malignancy 

 

We analysed the proportion of UHAs from a single UK centre within these patient cohorts. 

NSCLC represents 85% of lung cancer and is pathologically and clinically very different to small 

cell lung cancer as a result this study is limited to the larger NSCLC cohort.  

Data Synthesis Methods 

This retrospective observational analysis was conducted at a single centre. The University 

Hospitals Birmingham is one of the largest teaching hospital trusts in England, serving a 

regional, national and international population and treating almost 2.2 million patients per 

year. Between April 2016 and June 2018, data was gathered concerning all UHAs to our centre 

from the entire cohort of NSCLC patients referred to our centre for diagnosis and treatment 

(n=605); this figure was calculated at the end of our study period and therefore accounts for 

all new cases of NSCLC found on admission. The time period was dictated by the availability 

and completeness of data from the electronic patients’ records (EPR). The study was 

conducted with the approval of the UHB Trust and registered with the Queen Elizabeth 

Hospital audit department (audit code 14333).  
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The total number of NSCLC patients being treated at QEH within our time frame, both in the 

inpatient and outpatient setting, were identified through an informatics search for the ICD-

10 code C349 and cross referenced for accuracy with the EPR ‘prescribing information and 

communications system’ (PICS), a technique which has shown validity in other studies (401). 

Our study cohort included all patients with known NSCLC who had a UHA to our centre; we 

retrospectively ascertained clinical and demographic data at admission and during their 

inpatient stay in this time period. The data included; demographics, past medication history, 

5-year vaccine status (Pneumovax - PPSV23), lung cancer staging (TNM 8th Edition (9)), 

smoking status and co-morbidities. Smoking status was categorised into current, never 

smoked and ex-smokers who were further sub-stratified according to those who quit within 

the last 2 years, and those who quit greater than 2 years ago. This method was employed in 

an epidemiology study which described how to model smoking history (402). Admission data 

included haematological, biochemical and microbiological parameters, radiography, 

treatment initiated upon admission, in-hospital mortality and length of stay as well as 30-day 

readmission to hospital.  

The type of admission was categorised according to those who were admitted with a 

pneumonia (Pn) and all other admissions (AOA). This was ascertained by scrutinising the 

presenting complaints from the patient (i.e. “difficulty in breathing”, “shortness of breath”, 

fever, purulent/productive cough, wheeze, limited exercise capacity) and the working 

diagnosis as documented in the post-take medical discharge letter. In addition, correlation 

was made with infection AAbs (white cell count, neutrophil count, C-reactive AAb (CRP), and 

albumin levels), positive microbiological growth from sputum and blood cultures. All chest 
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radiographs on admission were individually reviewed for evidence of consolidation or 

pneumonic changes to enrich the clinical data. With cases where there was a degree of 

ambiguity as to the aetiology of the changes on the “admission chest radiograph”, relevant 

cases were discussed with radiology colleagues with further review of cross-sectional imaging 

(baseline or most recent CT thorax where available).  

Where appropriate, the cause of death was obtained from the medical death certificate and 

hospital records. Deaths were classified as complications from respiratory infection (e.g., 

pneumonia, chest sepsis and respiratory or multi-system organ failure secondary to chest 

sepsis) whether from their initial admission or 30-day readmission, cancer related for those 

patients who died of disease progression, non-cancer related and if the cause of death was 

uncertain when records were not available classified as unclear.  

A more limited data set were collected, over the same time period as cohort 1, for cohort 2 

(Breast, Colorectal or Prostate cancer patients) and cohort 3 (all other patients without any 

form of malignancy), focusing on the type of UHA (Pn or AOA) and outcome data (length of 

in-hospital stay and mortality) for inter-cohort comparison.  

Statistical Analysis 

For continuous variables, results are expressed as means and standard deviations and for 

categorical variables, as counts and percentages. For continuous data, group comparison was 

carried out using a t-test or Mann-Whitney test depending on the distribution of data. Group 

differences for categorical data were assessed using the chi squared test of independence. 

Ordinal data were further assessed using Kendall’s tau-b statistic. Inter-cohort comparison of 

continuous data was assessed using Kruskal-Wallis analysis. Univariate analyses of risk factors 

associated with respiratory related UHA were assessed by performing individual unadjusted 
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logistic regression analysis with inclusion of one covariate per model. A backward elimination, 

stepwise multivariate logistic regression analysis was performed to identify the independent 

predictors of in-hospital mortality within this dataset as a whole and sub-stratified according 

to those who presented with a UHA secondary to pneumonia. The tests were considered 

significant at p<0.05. Missing data were excluded from analyses. All analyses were performed 

using the IBM SPSS Statistics for Windows, Version 22.0 (IBM Corp. Released 2013. Armonk, 

NY: IBM Corp. and SAS 9.3 statistical package version (SAS Institute, Inc, Carry, North Carolina, 

USA).   

Results 

The informatics search identified 455 NSCLC, 1190 other cancer and 54,158 non-cancer 

patient UHAs to be included in analysis. Over the 26-month study period, the UHA rate for 

patients with NSCLC was 75.2%; there were 455 separate patient UHAs from a total cohort of 

605 patients.  

The NSCLC cohort are described in more detail showing that these patients are elderly (mean 

age 71.9 years) with a small male preponderance (56.7%) and a significant number of co-

morbidities including 17.6% of patients with a coded diagnosis of COPD. The NSCLC patient 

UHAs were further stratified into those that presented with a pneumonia (Pn) and all other 

admission (AOA) cause (Table 6.1).  
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Variables Value  
Entire UHA 
Cohort (n=455) 

Pneumonia 
(Pn) Cohort 
(n=164) 

All Other 
Causes 
(AOC) 
Cohort 
(n=291) 

p Value  

Age 
Mean (+/- SD) 
[years] 

71.9 (+/- 11.3) 
72.4 (+/- 
10.5) 

71.7 (+/- 
11.8) 

0.534 

Gender 

Male 258 (56.7%) 99 (60.4%) 
159 
(54.6%) 

0.278 

Female 197 (43.3%) 65 (39.6%) 
132 
(45.4%) 

Chronic Obstructive 
Pulmonary Disease 

Yes 80 (17.6%) 36 (22.0%) 44 (15.1%) 0.073 

Smoking Status 

Current  66 (14.5%) 26 (15.8%) 40 (13.7%) 

0.003 

Ex-smoker (1 day 
– 2 years) 

 176 (38.7%) 65 (39.6%)  
111 
(38.2%) 

Ex-smoker (>2 
years) 

70 (15.4%) 36 (22.0%) 34 (11.7%) 

Never  143 (31.4%) 37 (22.6%) 
106 
(36.4%) 

Pneumovax (PPSV23) 
status in the last 5 
years 

Yes 147 (32.3%) 66 (40.2%) 81 (27.8%) 

0.009 

No 308 (67.7%) 98 (59.8%) 
210 
(72.2%) 

Type 2 Diabetes 
Mellitus 

Non-Insulin 
Dependent 

44 (9.7%) 16 (9.8%) 28 (9.6%) 

0.815 
Insulin 
Dependent 

7 (1.5%) 2 (1.2%) 5 (1.7%) 

No 404 (88.8%) 146 (89%) 
258 
(88.7%) 

Ischaemic Heart 
Disease 

Acute MI within 
30 days pre-
admission 

14 (3.0%) 3 (1.8%) 11 (3.8%) 
0.32 

Stable angina  28 (6.2%) 13 (8.0%) 15 (5.2%) 
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No 413 (90.8%) 
148 
(90.2%) 

265 (91%) 

Gastro-oesophageal 
reflux disease 

Yes 4 (0.9%) 0 4 (1.4%) 0.302 

Atrial Fibrillation Yes 32 (7.0%) 13 (8.0%) 19 (6.5%) 0.572 

Hypertension  Yes 90 (19.8%) 33 (20.1%) 57 (19.6%) 0.903 

Chronic Renal Failure 
(stage III or greater) 

Yes  6 (1.3%) 1 (0.6%) 5 (1.7%) 0.426 

Abdominal Aortic 
Aneurysm 

Yes 9 (1.9%) 3 (1.8%) 6 (2.1%) 0.583 

Cerebrovascular 
Disease 

Transient 
Ischaemic attack 

8 (1.8%) 4 (2.4%) 4 (1.4%) 

0.53 Stroke 9 (2.0%) 2 (1.2%) 7 (2.4%) 

No 438 (96.2%) 
158 
(96.4%) 

280 
(96.2%) 

Hypercholesterolaemia Yes 12 (2.6%) 3 (1.8%) 9 (3.1%) 0.55 

Peripheral Vascular 
Disease  

Yes 9 (1.9%) 4 (2.4%) 5 (1.7%) 0.728 

NSCLC Staging 

Ia 67 (14.7%) 18 (11.0%) 49 (16.8%) 

0.855 

Ib 32 (7.0%) 13 (7.9%) 19 (6.5%) 

IIa 17 (3.7%) 5 (3.0%) 12 (4.1%) 

IIb 33 (7.3%) 11 (6.7%) 21 (7.2%) 

IIIa 62 (13.6%) 31 (18.9%) 33 (11.3%) 

IIIb 39 (8.6%) 14 (8.5%) 25 (8.5%) 

IIIc 13 (2.9%) 8 (4.9%) 5 (1.7%) 

IVa 175 (38.5%) 58 35.4%) 
117 
(40.2%) 

IVb 17 (3.7%) 6 (3.7%) 11 (3.7%) 

Histology* 

Adenocarcinoma 198 (43.5%) 67 (40.9%) 131 (45%) 

0.767 
Adenosquamous 7 (1.5%) 4 (2.4%) 3 (1.1%) 

Squamous Cell 
Carcinoma 

111 (24.4%) 42 (25.6%) 69 (23.7%) 
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Carcinoid 3 (0.7%) 1 (0.6%) 2 (0.7%) 

Large Cell 
Neuroendocrine 

10 (2.2%) 3 (1.8%) 7 (2.4%) 

Synovial 
Sarcoma 

2 (0.4%) 1 (0.6%) 1 (0.3%) 

Unknown 124 (27.3%) 46 (28.1%) 78 (26.8%) N/A 

Previous Lung 
Resection* 

Yes 42 (9.2%) 14 (8.5%) 28 (9.6%) 

0.759 

  No 348 (76.5%) 
124 
(75.6%) 

224 (77%) 

  Unknown 65 (14.3%) 26 (15.9%) 39 (13.4%) N/A 

Recurrence of Disease 
following Lung 
Resection 

Yes 21 (4.6%) 6 (3.7%) 15 (5.2%) 
0.513 

No 21 (4.6%) 8 (4.9%) 13 (4.5%) 

*Missing/’Not available’ data accounted 
for  

    
 

Table 1: Baseline characteristics for UHA in NSCLC patients including univariate analyses of risk factors 

associated with Admission for Respiratory Infection
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Within the NSCLC cohort, 164 UHAs were as a direct result of pneumonia (36.0%). The 

proportion of these UHAs which were associated with a new lung cancer diagnoses following 

admission was 3.1% (n=14) so 96.9% of UHAs were in known NSCLC patients (64% of new lung 

cancer diagnoses were stage III disease or higher (n=9)). Differences in demographic and 

clinical data between Pn and AOA sub-groups were explored (Tables 6.1 and 6.2); the 

respiratory cohort were more likely to have had the pure polysaccharide vaccine, Pneumovax 

(PPSV23) vaccine (p=0.009) and a positive smoking history (p=0.003). Co-morbidities, age; 

cancer staging, and histological diagnosis were not significantly different between the 

cohorts. Comparison of blood parameters and treatment profiles (Table 6.2) found CRP to be 

higher (p=0.001) and albumin to be significantly lower in the Pn sub-group (p<0.0001).  

 

 
  

Variables Value  
Pneumonia (Pn) 
Cohort (n=164) 

All Other Causes 
(AOC) Cohort 
(n=291) 

p Value  

White Cell 
Count* 

Median 
[*106 
cells/ml] 

10.4 9.7 0.432 

Neutrophil 
Count* 

Median 
[*106 
cells/ml] 

8.3 7.5 0.243 

Lymphocyte 
Count* 

Median 
[*106 
cells/ml] 

1.1 1.3 0.172 

CRP* 
Median 
[mg/L] 

60 17 0.001 

Albumin 

Mean (+/- 
SD) 
[grams/L] 

36.4 (+/- 5.95) 39.03 (+/- 5.06) <0.0001 
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Total AAb 

Mean (+/- 
SD) 
[grams/L] 

66.1 (+/- 8.53) 67.95 (+/- 7.84) 0.066 

Clarithromycin Yes 68 (41.5%) 33 (11.3%) <0.0001 

Co-amoxiclav Yes 90 (54.9%) 85(29.2%) <0.0001 

Tazocin Yes 68 (41.5%) 67 (23%) <0.0001 

Doxycycline Yes 32 (19.5%) 14 (4.8%) <0.0001 

Ciprofloxacin Yes 12 (7.3%) 7 (2.4%)  0.015 

*log values analysed to portray normality of data.   
 

Table 2. UHA Clinical data for NSCLC patients  

Streptococcus pneumoniae was cultured from the secretions of 31 patients (18.9%) and in 2 

cases (1.2%); there was co-growth of Haemophilus influenza. In-hospital mortality (p<0.0001) 

and length of hospital stay (p=0.031) were significantly higher in the Pn sub-group (Table 6.3).  

 
 

Variables Value  
Pneumonia (Pn) 
Cohort (n=164) 

All Other Causes 
(AOC) Cohort 
(n=291) 

p Value  

In-hospital 
Mortality  

Yes 72 (43.9%) 38 (13.1%) 
<0.0001 

No 92 (56.1%) 253 (86.9%)  

Total Length of 
Hospital Stay 

Mean (+/-
SD) [days] 

11.76 +/- 13.4 9.35 +/- 10.1 0.031 

30-day 
readmission  

Yes 4 (2.4%) 19 (6.5%) 
0.056 

No 160 (97.6%) 272 (93.5%) 

 

Table 3. Outcome data following Hospital Admission in NSCLC cohort 

The overall 30-day readmission rate was 5.1% (n=23), 4 from the Pn and 19 from the non-

respiratory sub-group (p=0.056). Eight readmissions were due to new pneumonia cases 

(34.8%). In-hospital mortality following readmission was 65.2% (n=15). Factors related to in-
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hospital mortality within the NSCLC patient cohort were further explored by Multivariate 

analysis (Tables 6.4 and 6.5); patient age, PPSV23 status, Pn admission, Tazocin administration 

on admission, tumour stages IIb, IIb, IVa and IVb and smoking status were all significant 

independent predictors of in-hospital mortality. NSCLC staging was also significantly 

associated with in-hospital mortality on univariate analysis (p=0.017).  

 

 

Table 4. Significant Independent Risk factors associated with In-hospital Mortality in the NSCLC 

Cohort on Multivariate Logistic Regression Analysis 

 

 

Variables Estimate Standard Error p Value 
Odds 
Ratio  

95% Confidence 
Interval 

CONSTANT -9 1.366 <0.0001 0.0001 - 

Age 0.065 0.015 <0.0001 1.067 1.035 – 1.099 

Positive 5-year 
Pneumovax (PPSV23) 
status 

-1.83 0.377 <0.0001 0.16 0.077 – 0.366 

Pneumonia (Pn) 
admission 

2.254 0.324 <0.0001 9.522 5.051 – 17.954  

Tazocin administered 
on Admission  

1.882 0.338 <0.0001 6.57 3.385 – 12.751 

Current Smoker 
(versus never) 

2.016 0.451 <0.0001 7.508 3.104 – 18.161 

Ex-smoker [1 day – 2 
years] (versus never) 

1.1 0.371 0.003 3.004 1.451 – 6.217 

Tumour Staging IIb 
(versus stage Ia 
disease) 

2.75 0.724 <0.0001 15.646 3.785 – 64.670 

Tumour Staging IIIb 
(versus stage Ia 
disease) 

1.529 0.696 0.028 4.614 1.180 – 18.037 

Tumour Staging IVa 
(versus stage Ia 
disease) 

1.311 0.557 0.019 3.709 1.245 – 11.046 

Tumour Staging IVb 
(versus stage Ia 
disease) 

2.26 0.809 0.005 9.584 1.961 – 46.804 
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Variables Estimate 
Standard 
Error 

p Value Odds Ratio  
95% Confidence 
Interval 

CONSTANT -6.004 1.881 0.001 0.002 - 

Age 0.069 0.024 0.003 1.072 1.023 – 1.122 

Positive 5-year 
Pneumovax (PPSV23) 
status 

-1.312 0.497 0.008 0.269 0.102 – 0.713 

Raised Neutrophil Count 
on Admission 

0.09 0.043 0.038 1.094 1.005 – 1.191 

Current Smoker (versus 
never) 

1.899 0.724 0.009 6.678 1.615 – 27.614 

 

Table 5. Significant Independent Risk factors associated with In-hospital Mortality in the Pneumonia 

(Pn) sub-group within the NSCLC Cohort on Multivariate Logistic Regression Analysis 

Within the NSCLC cohort, odds ratios of 0.160 (95% CI 0.077 – 0.366; p<0.0001) for positive 

PPSV23 status and 9.522 (95% CI 5.051 – 17.954; p<0.0001) for Pn status indicate that for 

patients admitted to hospital with pneumonia without previous PPSV23 in the last 5 years, 

the odds of death were almost 60-fold higher. There were no significant associations between 

other blood parameters, tumour histology or comorbidity and in-hospital mortality. 

Inter-cohort Comparison 

There was a significantly higher incidence of pneumonia in the NSCLC cohort (cohort 1) 

compared with cohorts 2 and 3, p<0.0001 (36.0% versus 1.3% versus 2.2% respectively). 

Clinical and demographic data for the NSCLC cohort show there was a significantly higher 

incidence of COPD in the NSCLC cohort compared with cohorts 2 and 3 (p<0.0001). When 

compared with the outcome data in cohorts 2 and 3, NSCLC patients with pneumonia had a 
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significantly higher rate of in-hospital mortality and length of in-hospital stay compared with 

pneumonia in cohorts 2 and 3 (p<0.0001 and p=0.011 respectively) (Table 6.6 and Figure 6.1). 

 
     

 
 

Variables Value  

Pneumonia 
(Pn) NSCLC 
Cohort only 
(n=164) 

Pneumonia (Pn) 
in Other 
Malignancy 
Cohort (breast, 
colon, prostate) 
(n=15) 

Pneumonia 
(Pn) in Non-
Malignancy 
Cohort 
(n=1185) 

p Value  

In-hospital 
mortality  

Yes  72 (43.9%) 6 (40.0%) 215 (18.1%) <0.0001 

Length of In-
hospital stay 

Median 
number 
of days 

8 7 5 0.011 

Readmission 
within 30 
days 

Yes 4 (2.4%) 0 (0.0%) 9 (0.8%) 0.141 

Table 6. Outcome data following Hospital Admission in three UHA cohorts 
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Figure 1. Length of in-hospital stay by patient group 
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Discussion 

Our study has shown a high incidence of UHA in patients with NSCLC and admission for 

pneumonia affects over one third of all NSCLC patients admitted to hospital which is higher 

than for other cancer cohorts (breast, colorectal, prostate) and non-cancer patients. In our 

NSCLC cohort, we found that 36% of UHAs were due to pneumonia which is similar to 34.3%, 

a rate from a previously reported study examining broncho-alveolar lavage (BAL) growth in 

all lung cancer admissions over a retrospective period  (397). Similarly, the incidence of 

community-acquired pneumonia from a population of 89,007 cancer patients revealed 21-

fold higher rate in lung cancer patients compared with other non-malignancy, propensity-

scored, age-matched cohorts (400). Advanced stage lung cancer in particular is difficult to 

treat and given the high prevalence of Stage III disease or higher in the respiratory cohort 

(71.3%, n=117), the control of infection may be an important clinical step in improving the 

prognosis of lung cancer. 

 

Survival outcome from pneumonia in NSCLC is significantly worse than for other cancer and 

non-cancer patients. For NSCLC patients, pneumonia is associated with significantly longer 

lengths of in-hospital stay and is an independent risk factor for in-hospital mortality as is the 

need for readmission and not having had the PPSV23 pneumonia vaccination. Historical, 

retrospective data have shown median survival of all lung cancer (small and non-small cell) 

patients following hospital admission with a respiratory infection was significantly lower than 

those who did not contract respiratory infection during their inpatient stay (4.2 months versus 

12.9 months; p<0.05) (403). In the context of a relatively lethal disease such as lung cancer, 

intervening to reduce the mortality from the tumour itself or from comorbidities is 

challenging. This study shows that inter-current events such as infection have a detrimental 
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effect on mortality and infection prevention and early management could contribute large 

gains to overall survival (11,404,405).  

 

The physiological status of patients presenting with pneumonia in the NSCLC cohort was 

worse than in those who did not. Hypoalbuminaemia is known to be an independent predictor 

of poor outcome in hospitalised patients, and this association appears to be independent of 

both inflammation and nutritional status (406). Our study demonstrated that albumin levels 

on admission to hospital were significantly lower in patients with pneumonia, and CRP levels 

higher. Neutrophil count emerged as an independent predictor of mortality in the respiratory 

admission sub-group only; higher counts on admission conferred a poorer in-hospital 

outcome. This relationship has also been demonstrated in colorectal cancer patients suffering 

from bacterial infections with higher neutrophil counts conferring poorer cancer-specific 

survival (p=0.02) (407). In prostate cancer, exposure to medical androgen receptor therapy is 

associated with a significantly higher risk of community-acquired pneumonia (p< 0.001) 

presumably owing to poorer physiological reserve (408). Chang et al  postulated that 

prognosis of lung cancer patients with severe pneumonia is mainly dependent on the 

underlying lung injury, which can be surmised through admission criteria, i.e. higher 

inflammatory markers connote a more intense systemic inflammatory response indicative of 

greater on-going parenchymal injury and factors such as previous radiotherapy or 

chemotherapy also contribute to lung injury (409). Higher neutrophil counts on admission 

would indicate a robust and active innate immune response with greater degrees of on-going 

inflammation and injury (410).  
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Streptococcus pneumoniae was the most frequently cultured organism from sputum in our 

NSCLC pneumonia sub-group, at a rate of 18.9%. Few studies have managed to address the 

microbiological repertoire of culprit organisms in pulmonary infection in the setting of NSCLC 

and culture rates vary considerably. Diagnosing pneumonia in this cohort of patients can 

prove to be difficult given that clinical signs such as pyrexia and productive cough, allied with 

raised inflammatory markers such as CRP and white cell count, may be a manifestation of the 

cancer itself as opposed to pulmonary sepsis. Combining clinical criteria with radiological 

findings and microbiology is essential. Determining the exact culprit organism in pneumonia 

is often difficult and unreliable; sputum culture examination has a low specificity and BAL fluid 

is frequently contaminated with upper airway bacterial commensals (397,398). A 6-year 

retrospective analysis evaluated 9624 patients with a discharge diagnosis of pneumonia, 

46.1% of these patients were culture-negative, of the ones that were culture-positive (51.2%), 

pathogens that were commonly grown include S. pneumoniae (11.4%), H. influenza (16.7%) 

and Methicillin Sensitive Staphylococcus Aureus (MSSA) (26.0%) (411). The S. pneumoniae 

positive cases are potentially vaccine preventable infections. This large study demonstrated 

that culture-negative pneumonia was independently associated with lower risk for 90-day 

readmission (411); our study did not demonstrate a significant link between pneumonia and 

readmission, the numbers were small therefore perhaps not adequately powered to look at 

this specifically.   

This analysis has highlighted the significant difference in mortality between those who have 

received PPSV23 (3.96%) and those who have not (20.2%). Five-year positive PPSV23 status 

was significantly higher in the NSCLC Pn sub-group (p=0.009), likely owing to the fact this was 

a higher risk group and therefore warranted vaccination. Multivariate analysis identified 5-

year PPSV23 status as an independent predictor of mortality (p<0.0001); in the entire NSCLC 



293 | P a g e  
 

cohort, not having had the vaccine conferred 6.25-fold higher odds of in-hospital death. S. 

pneumoniae is the most prevalent organism (60-75%) responsible for cases of community 

acquired pneumonia (CAP) in the UK (412). 

 

In the United Kingdom and in the USA, the administration of PPSV23 is a national health 

directive led recommendation for all adults above the age of 65 and those below the age of 

65 with a long-term health condition. However, for patients with cancer, there has been little 

investigation into the efficacy of PPSV23. Given that lung cancer is responsible for the highest 

burden of cancer-related deaths globally, identifying preventable risk factors for early 

morbidity and mortality in this cohort of patients should be a clear public health aim (1). 

Preventing pneumonia and reinforcing the need for smoking cessation are crucial. Owing to 

intensive anti-cancer therapies, lung cancer patients have a degree of immune compromise 

making them significantly more susceptible to invasive pneumococcal disease (IPD) than the 

overall adult population (413,414). Studies have shown that between 69% and 72.4% of 

cancer patient IPD cases were caused by serotypes covered in the 23-valent PPSV23 

(414,415). The level of information in the literature regarding the effectiveness of PPSV23 in 

cancer patients is limited however a nationwide population based cohort study from Taiwan 

examined the effects of PPSV23 in 157 newly diagnosed elderly lung cancer patients (all 

comers) (210). Two-year cumulative CAP hospitalisation rates were 37.1% versus 55.4% for 

lung cancer patients with and without PPSV23 (p<0.001) and overall survival rates were 46.6% 

versus 26.2% for lung cancer patients with and without PPSV23 (p<0.001) (210).  

Our data demonstrated significantly higher antibiotic administration on admission in the 

NSCLC Pn sub-group; in lung cancer patients in whom infection is suspected, empiric antibiotic 
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therapy is often  administered, and more so in the setting of chemotherapy induced 

neutropenia (396,416). Prophylactic administration of fluoroquinolones post-chemotherapy 

in lung cancer patients has been shown to reduce the incidence of fever, probable infection 

and hospitalisation (417). However, advocating increased antibiotic usage in an era of 

antimicrobial resistance needs challenging. Moreover, specific to NSCLC, in the era of 

immunotherapy, Microbiome data has demonstrated that the routine use of antibiotics in 

NSCLC reduces the efficacy of checkpoint blockade agents conferring poorer median overall 

survival (8.3 months versus 15.3 months, p=0.001) (418).  

 

Conclusions 

Pneumonia contributes a large burden to the comorbidity of NSCLC. Given that a number of 

new lung cancer diagnoses were made on admission with pneumonia, being more vigilant 

and screening for infection in this “at risk” cohort may help to identify disease at an earlier 

stage and thus bode better patient outcomes. There is a higher burden of pneumonia in 

NSCLC patients compared with other cohorts, and these patients have a poorer physiological 

status as demonstrated by our biochemical admission data. This, coupled with poor vaccine 

uptake in the cohort in general and high antibiotic use in pneumonia patients are highly 

conducive to poor outcome in this group .Therefore, vigilance for infection, optimising 

vaccination, judicious use of antibiotics particularly in the era of immunotherapy, patient 

education, early diagnosis with adequate assessment and efforts to identify a culprit organism 

should be a priority in both the inpatient and outpatient setting to improve outcome in NSCLC 

and reduce the incidence of hospital admission. These are all low cost, easy to implement 

strategies that could be rapidly adopted to make significant advances in reducing mortality 

from infection in NSCLC. 
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Study Strengths and Limitations 

This study has a number of limitations; firstly, it was undertaken in a large tertiary centre in 

the UK and so it is possible that the UHA rate has been underestimated as patients have 

attended elsewhere and this study doesn’t include primary care contacts. The study is 

retrospective making it potentially prone to interpretation or selection bias and the data was 

not recorded in a systematic, planned manner. A prospective study could have gathered more 

complete data on performance status and lung function which could contribute to infection 

risk. More comprehensive data could also then be gathered for NSCLC patients who did not 

have a UHA to identify risk factors for admission. Similarly, owing to lack of data 

contemporaneity, it was difficult to perform further sub-group analyses for the “other cancer” 

and “non-cancer” cohorts as was done for the NSCLC cohort. Despite these limitations this 

large study does demonstrate the frequency of UHAs for NSCLC patients in a single centre and 

highlights the importance of pneumonia in the morbidity and mortality of this disease, 

particularly when compared with other cancer types and indeed non-malignancy patients.   

 

Study Rationale 

The literature suggests that functional antibody assessment to vaccination in NSCLC patients 

has not yet been done. The paradigm of immune incompetence as a function of the lung 

cancer suggests that response to vaccine may also be impaired and assessing immune 

competence in these patients could be used to stratify or indicate prognosis/outcome. We 

intended to study this through design and conduct of an observational study in NSCLC patients 

being vaccinated against pneumonia with PPSV23. The outlines and details of this study are 

discussed in the “Further Work” section. Owing to the outbreak of the global COVID-19 
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pandemic, recruitment was halted just as the study had opened at both sites. We intend to 

continue with this work once the COVID-19 pressures ease and the study is once again given 

the “green light”.  

 




