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Abstract

This thesis consists of three chapters on sovereign default. The first chapter investi-

gates the influences of fiscal austerity on sovereign debt yield spreads, which has caused

heated debates since the Eurozone debt crisis in 2010s. The analysis in this chapter

is based on an endogenous sovereign default model with private capital accumulation

and fiscal rule. The model provides several contributions: First, it rationalizes the

empirical evidence of state-dependent relationships between fiscal austerity and debt

spreads: When the economy is under high financial stress characterised by high levels

of outstanding debt and low productivity, government spending cuts increase spreads.

By contrast, under low financial stress, fiscal austerity reduces spreads. Second, as in

Greek data, the model predicts that the pre-default spread surge will be accompanied

by fiscal consolidation. Third, it reveals a non-negligible role played by the wealth

effect: if expected to be long-lived, austerity harms investment, damages production

and eventually raises spreads. In conclusion, even though fiscal austerity could reduce

sovereign spreads and debt-to-GDP ratios in the long term, its short-term self-defeating

probabilities could be non-trivial.

The second chapter discusses efficiently deriving numerical solutions to macroeco-

nomic models on Matlab with the GPU (Graphic Processing Unit) Parallel Computing

toolkit. For many non-linear models such as the endogenous sovereign default model

in chapter one, we resort to the discretized value function iteration (DVFI) approach

to obtain robust solutions. Unfortunately, this method is typically slow and the speed

problem worsens when a high number of grid points for state variables is needed. This

paper shows that the GPU toolkit on the commonly used Matlab platform provides an

up to tenfold speed boost compared with using the conventional CPU method. Using

the appropriate algorithm is important to achieve this and Matlab favours a combi-

nation of vectorization and serial execution, i.e. the Looping Over Exogenous Shocks

(LOES) approach. With LOES, records show the solving time spent on Matlab CPU

and GPU is significantly shorter than its Julia counterparts. Moreover, implementing

GPU computation is easy on Matlab.

The third chapter studies the impacts of shifting long-run growth expectation on

sovereign default risk. We show the new evidence of negative non-linear relationships

iii



between potential GDP growth forecasts and government debt spreads during the

recent Eurozone sovereign debt crisis (2009-2016). Existing equilibrium default models

assuming full information rational expectation (FIRE) on trend growth struggle to

explain the new evidence because correlation between trend growth and simulated

spreads is not statistically significant. In this paper, we build a new sovereign default

model where the knowledge of trend growth is assumed to be imperfect and hence

agents have to learn about it to make optimal decisions. The simulation results show

that embedding such a learning mechanism in sovereign default model provides an

easy solution to rationalize our new evidence.
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Chapter 1

Fiscal Austerity, Investment and

Sovereign Default

1.1 Introduction

In late 2009 the Eurozone sovereign debt crisis surfaced. Sizable fiscal consolidation

measures that feature sharp government spending cut is implemented for crisis-striken

members, especially for the southern European countries. For instance, between 2010

and 2013, the Greek total government expenditure is cut by 27.8 billion euros, which is

equivalent to 11.6% of the 2009 GDP1. These austerity measures were aimed at slowing

down the rapid rise in governmental debt to GDP ratios, improving fiscal position and

hence alleviating the accumulating doubts about solvency. On the contrary, sovereign

default premium, measured as the spreads in government bond yields vis-à-vis default-

free reference bond, kept rising as austerity packages were implemented2. For Greece,

sovereign debt spreads grew continuously and eventually peaked at 22% before the

2012 default. This raises the question that, in terms of financial market response,

whether austerity helps to mitigate or exacerbates the debt crisis.

1See the estimation in Gechert and Rannenberg (2015).
2See the figure A.2 in the online appendix of Born et al. (2020). Credit default swap (CDS)

spreads, another measurement of default risk, also witnessed sharp increment in the meantime.
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1.1. Introduction Chapter 1

Although it is widely acknowledged that austerity slows down economic growth

and hence undermines market confidence, whether this adverse effect outweighs the

benefit of improved fiscal position is in heated debates. As it turns out, we should

take the specific situations of the economy into account. For example, Cottarelli

(2012) highlights a nonlinear relationship: the more fiscal tightening hurts growth,

the more it will rise up spreads. When growth is less sensitive, austerity could lower

spreads. Corsetti et al. (2012) also emphasizes that the question depends on financial

circumstances: countries already facing a high and volatile risk premium is different

from those enjoying negligible default risk. Recent empirical work in Born et al.

(2020) verifies that the relationship between default premium and fiscal austerity is

state-dependent: if the premium is initially high (low), government spending cuts will

push the spread even higher (lower).

This paper seeks to answer the question of under what circumstances fiscal aus-

terity increases or decreases sovereign debt spreads when the market takes the risk of

default into pricing. To do so, I construct a stochastic dynamic model with three fea-

tures. First, the model incorporates unsecured debt and strategic default. Following

Chatterjee and Eyigungor (2012), the government issues unsecured long-term bonds

and whether to default on this external debt is its endogenous choice. Foreign lenders

charge a premium that accounts for this default risk. Second, motivated by the to-

tal investment decline in periphery Eurozone countries3, the model includes capital

accumulation as in Gordon and Guerron-Quintana (2018) and Arellano et al. (2018).

Third, government expenditure follows a realistic fiscal rule as in Leeper et al. (2010)

that consists of both an endogenous cyclical component and a discretionary spending

shock. Fiscal austerity is modelled as a negative discretionary shock. The interplay of

above characteristics generates intriguing dynamics: The combination of fiscal shock

and King–Plosser–Rebelo utility (King et al., 1988) gives rise to wealth effect, while

the co-existence of defaultable debt, wealth effect and investment contributes to a

state-dependent relationship between discretionary fiscal policy and default premium.

Quantitative analysis shows that the above mentioned state-dependent relationship

rationalizes the main empirical findings in Born et al. (2020). Specifically, in states

3Namely, Greece, Italy, Portugal and Spain, all severely affected by debt crisis and fiscal austerity
in the 2010s.
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1.1. Introduction Chapter 1

of high total factor productivity (TFP) and/or low indebtedness, i.e. when spreads

are initially low, fiscal austerity tends to reduce sovereign debt spreads. By contrast,

when the economy has low TFP and/or high debt outstanding, i.e. spreads are initially

high, fiscal austerity enhances the incentives of default and hence increases spreads to

further higher levels. In other words, fiscal austerity helps to strengthen financial

market confidence when the economy enjoys low spreads but could be self-defeating

when foreign lenders already charge a high risk premium. Other fundamentals of the

model drive the spread in a linear way: given government spending shock, spreads

decrease (increase) as TFP and investment rises (drops), and ascend (descend) with

more (less) debt. Policies functions have linear relationship with fiscal shock: austerity

(expansion) leads to depresses (stimulates) investment and borrowing.

This paper also investigates the sources of state-dependent relationship between

spreads to austerity. Default risk plays an essential role. When spending cut is imple-

mented at small default risk, the market confidence boost from lower debt outstanding

outweighs the adverse effect of lower production. Therefore, the spread slopes down.

Conversely, when default risk is looming, the losses from economic slowdown outweigh

the gains from better fiscal position and hence spreads rise up. Austerity shock reduces

investment, which in turn exacerbates this state-dependent relationship: Reduction in

capital stock reduces default risk when the risk is already small, but expands the risk

when the economy is already on the brink of default4. As shown in the robust test,

comparing with the default risk channel, the motion of capital only reinforces the

state-dependent relationship.

What would happen if a debt crisis haunted economy implements unexpected

spending-based consolidation? This question is answered with a case study of Greece

where our model well matches Greek business cycle statistics and default episodes.

It turns out the probability of encountering self-defeating austerity is non negligible:

Debt spreads, as well as debt-to-GDP ratio and net repayment obligation, rise up

following an austerity shock. The previously mentioned state-dependence plays an

important role here. If the impulse response is conditional on the economy already

4Reader are referred to the discussion of“autarky channel”and“smoothing channel”in Gordon and
Guerron-Quintana (2018) that supports the above mentioned exacerbation effects from incorporating
investment.
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1.1. Introduction Chapter 1

having high risk premium, the spread surge becomes more than threefold higher than

the unconditional case. By contrast, conditional on being in the states of enjoying low

default premium, spreads immediately fall down. Eventually, in all three scenarios,

spreads returns to the pre-shock level and fall even lower. The high persistence of

austerity5, the investment and production contractions all contribute to this result.

Literature review. This article is related to two strands of research. The first

strand is on the recent sovereign debt crisis and fiscal austerity in southern Euro-

pean countries. Lane (2012) regards the pre-crisis periods as a missed opportunity to

tighten fiscal policy, especially when individual member countries are restricted to use

monetary tools to unwind the high stress in bond market. Gechert and Rannenberg

(2015) argue that the 2010-2014 period is a wrong timing for fiscal austerity for Greece

and the governmental expenditure cuts should have been gradually implemented after

recovery. Mendoza et al. (2014) reveal that to implementing tax-based consolidation

the Europe should evaluate the negative spillovers that work through international

markets. House et al. (2020) estimate that austerity accounts for large cross-country

GDP variations in advance economies. They show the highly contractionary austerity

even worsened some countries’ fiscal position. Kuang and Mitra (2021) exhibit a mu-

tual reinforcement mechanism of austerity and pessimism, and the resulting prolonged

recession in the European Union. The above three DSGE-based studies do not take

sovereign default risk into consideration. Bi (2012) and Corsetti et al. (2013) find that

government spending cut reduces risk premium when default risk is taken in account,

Jointly incorporating default and investment, Galli (2021) advocates third-party liq-

uidity support to correct the externalities associated with under-investment to realize

good equilibrium in a debt crisis. However, default is not a strategic choice in above

models. As will be shown in our paper, endogenous default is key to rationalizing the

negative impact of fiscal retrenchment on sovereign debt spreads. Recent empirical

finding in Born et al. (2020) of the state-dependent relationship between risk premium

and unexpected fiscal spending cut6 is a direct motivation to my paper.

5As mentioned in Kanellopoulos and Kousis (2018), Greek austerity has long duration: the first
package was passed in 2010 and the recent package continues until at least 2020. In 2017, the
fourteenth austerity package, Medium-term Fiscal Strategy Framework 2018-2021, was approved by
the Hellenic Parliament.

6In stark contrast, David et al. (2022) show that news of the approval of austerity is related to
spreads falls. However, their sample excludes developed economies, such as crisis-striken countries in
recent Eurozone debt crisis.
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The second strand of literature relates to models with sovereign default and fiscal

policy. The endogenous/strategic default framework in this paper follows Eaton and

Gersovitz (1981) and Arellano (2008), and the structure of long-term unsecured debt

is borrowed from Chatterjee and Eyigungor (2012). I solve the convergence problem

involved in long-term debt with the taste shock method in Gordon (2019). Our paper

also relates to the papers incorporating capital within the endogenous default frame-

work, such as Park (2017), Arellano et al. (2018) and Gordon and Guerron-Quintana

(2018). Research on the impact of fiscal austerity within endogenous default models

emerges in recent years. Arellano and Bai (2017) show that distortionary tax based

austerity deepens recession. However, in their model, government spending is static

and does not influence production. Bianchi et al. (2019) show that optimal fiscal pol-

icy could be procyclical: at higher debt levels, the government should cut spending to

reduce the possibility of a default crisis. Anzoategui (2021) incorporates nominal wage

rigidity and, as in our paper, calibrated government spending rule. He shows the like-

lihood of encountering self-defeating austerity is very small in the case of Spain, and

it is related to the persistence of austerity and fiscal multiplier. Overall, these studies

do not provide a rationale for the state-dependent relationship between spreads and

austerity. Our paper fills this gap and provides detailed explanation of the mechanism

behind the rationale.

The rest of this paper is organized as follows. Section 1.2 presents the model in

detail. Section 1.3 shows that the model calibration provides a good match to Greek

business cycle statistics and default episodes. Section 1.4 answers how fiscal austerity

affects sovereign debt spreads. First I illustrate that government spending shocks

impose state-dependent impacts on spreads. In later subsections, the mechanism for

such state-dependence is comprehensively investigated and explained. We find that

the likelihood of self-defeating austerity is non negligible. Section 1.5 presents the

sensitivity analysis and highlights that the expected persistence of austerity matters.

In the end, section 1.7 draws the conclusions.
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1.2 The Model

The model is in discrete time and infinite horizon. It describes an economy populated

with two agents: the representative household and a benevolent government.

1.2.1 Household

The representative household chooses optimal amount of consumption and labour sup-

ply to maximize expected discounted utility in infinite horizon:

max
Ct,Ht

E0

∞∑
t

βtu(Ct, Ht) (1.1)

where u(·) follows the widely used King–Plosser–Rebelo (KPR) form preference (King

et al., 1988):

u(Ct, Ht) = ln(Ct)− θ
H1+χ

t

1 + χ
(1.2)

where θ governs the magnitude of disutility of supplying labour, and χ denotes the

inverse of Frisch elasticity. Consumption must satisfy a flow budget constraint:

Ct = Yt − Ĩt − Tt (1.3)

where Yt is the domestic production, Ĩt is the investment after capital adjustment cost

and Tt stands for a lump sum tax imposed on the household.

1.2.2 Production environment

The production is determined by capital stock Kt, labour input Ht and exogenous

productivity shock zt. Production technology follows the standard Cobb-Douglass

form:

Yt = eztKα
t H

1−α
t (1.4)

6



1.2. The Model Chapter 1

Productivity follows a standard AR(1) process:

zt = ρzzt−1 + εzt (1.5)

with |ρz|< 1 and εzt being independently, identically, and normally distributed, i.e.,

εzt ∼ i.i.N(0, σ2
z). The motion of capital is described by a standard law:

It = Kt+1 − (1− δ)Kt (1.6)

where δ is a constant rate of capital depreciation. Following literature, a capital

adjustment cost is included, because otherwise it is generally difficult to match the

ratio of investment volatility over production volatility. We denote Ĩt as the investment

with capital adjustment cost, which is borrowed from Arellano et al. (2018):

Ĩt = It +
ϕ

2

(
Kt+1 −Kt

Kt

)2

Kt (1.7)

where parameter ϕ governs the magnitude of adjustment cost.

1.2.3 The government

The government is benevolent in the sense that it aims at maximizing the household’s

expected discounted utility. Long-maturity sovereign bonds Bt are issued by the gov-

ernment. Following Chatterjee and Eyigungor (2012), the issuer is obligated to pay

coupon η > 0 for each unit of debt outstanding. In each period, a λ share of debt out-

standing matures while the remaining 1−λ share does not. The principal and coupon

repayment of maturing bonds equals [λ+(1−λ)η]Bt. New debts are issued at price qt,

and hence the net income from issuing sovereign debts is qtBt+1−[λ+(1−λ)(η+qt)Bt].

The net cash flow from international lenders is transferred to the household to finance

their consumption.

The government could either choose to honour or default its sovereign debt obliga-

tion. If debts are repaid, the country is defined to be in good financial status, indicated

as the default indicator Dt taking the value of 0. Otherwise, the economy is in bad

7



1.2. The Model Chapter 1

financial status that is denoted as Dt = 1 and the government cannot issue sovereign

bonds in the international financial market. This “financial autarky” assumption is

commonly used in endogenous sovereign default literature à la Eaton and Gersovitz

(1981). Moreover, as commonly assumed in sovereign default models, the economy

also suffers from an ad hoc productivity loss if it falls into bad financial status7. The

loss function L(zt) takes a quadratic form as in Chatterjee and Eyigungor (2012):

L(zt) = max
{
0, κ1 exp(zt) + κ2 exp(zt)

2
}

(1.8)

where κ1 and κ2 are parameters. See Uribe and Schmitt-Grohé (2017) for a discussion

on different styles of default loss functions. The productivity after penalty is ezt−L(zt).
In each period of the bad financial status, there is a constant probability µ that the

country regains the good financial status, i.e. the access to external financing. Upon

entering that status, financial autarky and productivity penalty are immediately lifted.

Government expenditure is determined by a fiscal rule as in Leeper et al. (2010):

Gt = ψ1Yt + ψ2(1−Dt)Bt + uGt , uGt = ρGu
G
t−1 + εGt (1.9)

with ψ1 > 0, ψ2 < 0. uGt denotes an exogenous discretionary part of government

spending, with |ρG|< 1 and εGt ∼ i.i.N(0, σ2
G). The spending is financed by net foreign

debt borrowing (1−Dt)
{
qtBt+1−

[
λ+(1−λ)(η+ qt)

]
Bt

}
and lump-sum tax revenue

Tt. In other words, the government’s budget constraint is:

Tt + qt(Bt+1 − (1− λ)Bt) = Gt + [λ+ (1− λ)η]Bt (1.10)

As in Bianchi et al. (2019) and Anzoategui (2021), I abstract from distortionary tax

rates. According to House et al. (2020), other austerity measures such as cutting

off transfers or raising taxes do not explain the cross country variation in GDP for

European countries between 2010 and 2014. In fact, government expenditure cut

remains significant during the recent Eurozone sovereign debt crisis even if the effects

of business cycles are controlled. As shown in the Table 2 of Kuang and Mitra (2021)

the structural balance of Greece rose up by 10 percent in 2012 comparing with 2009.

7Mendoza and Yue (2012) and Park (2017) offer examples of endogenous default loss.
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1.2.4 Recursive representation

I denote S = (S,B,K,D) as the set of state variables of the model, where S = (z, uG) is

the set of exogenous shocks. The government solves the following problem to determine

whether or not outstanding sovereign debts will be repaid.

V (S,B,K) = max
D=0,1

(1−D)V g(S,B,K) +DV b(S,K) (1.11)

where V g is the value of being in good financial status, V b refers to the value of being in

bad status. Following the common assumption of no confiscation after default, capital

K remains a state variable in V b. Given productivity and government spending shock,

the problem of repaying debt and maintaining a good financial status is characterized

by:

V g(S,B,K) = max
C,H,B′,K′

u(C,H) + βES′|SV (S ′, B′, K ′) (1.12)

subject to evolution law of capital (1.7) and resource constraint:

C = (1− ψ1)Y + qB′ −
[
ψ2 + λ+ (1− λ)(η + q)

]
B − Ĩ − uG (1.13)

The problem of falling into bad financial status is

V b(S,K) = max
C,H,K′

u(C,H) + βES′|S

[
(1− µ)V b(S ′, K ′) + µV (S ′, 0, K ′)

]
(1.14)

which is subject to (1.7) and resource constraint:

C = (1− ψ1)
(
ez − L(z)

)
KαH(1−α) − Ĩ − uG (1.15)

V (S, 0, K) indicates that in the re-entry period, all debt obligations are exempted.

Given a debt and capital states, default (D(S,B,K) = 1) is desirable when the value

of repaying is smaller than the value of reneging:

D(S,B,K) =

 0, if V g(S,B,K) > V b(S,K).

1, if V g(S,B,K) ≤ V b(S,K).
(1.16)
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Sovereign debts are purchased by risk-neutral international lenders and they equate

debt price to the expected discounted repayment:

q(S,B′, K ′) =
ES′|S(1−D′)

[
λ+ (1− λ)

(
η + q(S ′, B′′, K ′′)

)]
1 + r∗

(1.17)

where B′′ = B(S ′, B′, K ′) and K ′′ = K(S ′, B′, K ′) are debt and capital policies based

on respective policy functions. Notice that there is no assurance of a solution for

(1.17) when exogenous shocks and endogenous states are discrete (see Chatterjee and

Eyigungor (2012) for a detailed discussion). The inclusion of capital in discrete term

makes the convergence of value function iteration even more difficult, as discussed

in Gordon and Guerron-Quintana (2018). Following the method proposed in Gordon

(2019), I introduce taste shocks on the joint policies for debt issuanceB′ and investment

K ′, which is denoted as A′, as well as default choices D to facilitate the convergence of

solving via discretized value function iteration approach. The method of introducing

taste shocks has been used in recent sovereign default models with long-term debts,

for example Arellano et al. (2020). Please see the appendix for any further detail.

Definition 1 (Model equilibrium). Given exogenous state S, endogenous state of debt

holding B and capital stock K, a recursive equilibrium of the model consists of pol-

icy functions of default choice D, output Y private consumption C, working hours

H, investment Ĩ, debt issuance B′, capital policy K ′, value functions V (S,B,K),

V g(S,B,K), V b(S,K) and bond price schedule q, such that:

1. Given bond price schedule q, the value functions (1.11), (1.12) and (1.14) solve

the economy’s problem.

2. Given a default decision, sovereign debt price q satisfies risk-neutral rule (1.17).

3. Y , C, H and Ĩ depend on equilibrium conditions and default loss function.

10
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1.3 Quantitative Results

1.3.1 Calibration and business cycle statistics

The first group of parameters are calibrated following endogenous default literature,

as shown in Table 1.1. The maturity structure of long-maturity bond is the same as

in Chatterjee and Eyigungor (2012): debt matures with probability 5% (λ = 0.05,

average maturity is 20 quarters) and coupon rate is 3% (η = 0.03). Following Na

et al. (2018) the re-entry probability in each quarter µ is 0.0385, implying an average

of 6.5 years of staying in autarky after default. The serial correlation of productivity

shock takes 0.90, in line with Aguiar and Gopinath (2006) and other literature. For

the discretionary part of fiscal rule, the persistence is calibrated to match a half-life of

6.5 years (i.e. ρG = 0.975) to be in line with the Greek governmental budget cuts from

early 2010 to at least 2020 (see Kanellopoulos and Kousis (2018)) 8. The standard

deviation of εGt is set to be 0.65 percent to match the insignificant correlation between

Greek sovereign debt spreads and the government expenditure in the whole sample

period9. Depreciation rate of capital stock takes the commonly used 2.5% per quarter

in macroeconomics literature. Disutility of labour θ is chosen such that the steady

state of labour is normalized to 1. Frisch elasticity of labour supply takes 3 (χ = 1/3)

to be within the range of the macro Frisch elasticities summarised in Peterman (2016).

The second group of parameters are summarized in Table 1.2. They are calibrated

to match the business cycle statistics and the default episodes of Greece between 2000

and 2017. The default event is scheduled at March 2012 (Chambers and Gurwitz,

2014), when Greece and its external creditors completed a debt restructuring agree-

ment. The parameters for the cyclical part of fiscal rule are similar to Kuang and Mitra

(2021) and it matches the average government expenditure to GDP ratio. Productiv-

ity loss parameters ψ1 and ψ2, subjective discount factor β as well as the standard

8High persistence of government spending shock is common in the literature. For example, Leeper
et al. (2010) estimates this parameter to be 0.97. Anzoategui (2021) estimates the persistence to be
0.95 in a case study of Spain. House et al. (2020) set the persistence to be 0.93 to match a half-life
of 2.5 years. The impulse response analysis in a later section explores the cases with different ρG.

9The correlation is low because the sample includes both booming and crisis periods. As will be
shown in the later part of this paper, this correlation is state-dependent.
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Table 1.1: Parameters calibrated independently

Description Parameters Value

Share of capital α 1/3

Relative risk aversion σ 2

Probability of reentry µ 0.0385

Coupon rate η 0.03

Reciprocal of average maturity λ 0.05

Depreciation rate δ 0.025

Quarterly risk-free rate r∗ 0.01

Reciprocal of Frisch Elasticity χ 1/3

Persistence of TFP shock ρz 0.90

Persistence of government shock ρG 0.975

Disutility of labour θ 2.18

deviations of εzt and εGt are jointly calibrated to match the average sovereign spreads,

the volatility of outputs and the average governmental debt-to-GDP ratio. As in other

sovereign default models that incorporate capital accumulation, such as Park (2017),

Gordon and Guerron-Quintana (2018) and Arellano et al. (2018), a high capital ad-

justment cost parameter ϕ is important to match the excess volatility of investment

over output.

As shown in Table 1.3, the calibrated model is capable to match Greek business

cycle statistics well. Simulated consumption is less volatile than output, which is

typical for for developed economies. The counter cyclical movement of debt spreads

and trade-balance-to-GDP ratios are also well replicated. As in data, spreads are

negatively correlated with private sector consumption, investment and gross output,

and positively related to trade balance.
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Table 1.2: Parameters calibrated to match business cycle statistics

Calibrated Parameters

Description Parameters Value

TFP loss parameter 1 κ1 -0.700

TFP loss parameter 2 κ2 0.790

Subjective discount factor β 0.9825

Capital adjustment cost ϕ 7

Fiscal rule parameter 1 ψ1 0.5

Fiscal rule parameter 2 ψ2 -0.02

Standard deviation of TFP shock εzt 2.75%

Standard deviation of government shock εGt 0.65%

Targeted Statistics

Description Data Model

Average spread E(r − r∗)* 4.68 4.51

Debt-to-GDP ratio E(B/Y )* 78.6% 73.7%

Government expenditure to GDP E(G/Y ) 50.3% 48.7%

Standard deviation of output σ(Y ) 11.5% 11.6%

Investment volatility σ(I)/σ(Y ) 2.57 2.50

Correlation ρ(r − r∗, G)* 0.094 0.030

Notes: r − r∗ stands for the sovereign debt spreads. In the model, when the economy is in bad

financial status, debt stock is zero, sovereign debt spread is not defined. Thus, statistics containing

r − r∗ and B only covers the sample between 2000Q1 to 2012Q2.
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Table 1.3: Other business cycle statistics from data and simulation

Description Data Simulation

ρ(r − r∗, C)* -0.22 -0.54

ρ(r − r∗, I)* -0.48 -0.52

ρ(r − r∗, Y )* -0.46 -0.25

ρ(r − r∗, TBY )* 0.59 0.92

σ(C)/σ(Y ) 0.93 0.79

ρ(Y,C) 0.85 0.63

ρ(Y, I) 0.90 0.68

ρ(Y, TBY ) -0.58 -0.26

Notes: In this table, TBY stands for trade balance to GDP ratio. Samples with * exclude default

periods in data (periods after second quarter of 2012) and in simulation.

1.3.2 Typical default episodes

The changes of macroeconomic variables in default episodes are of general interest for

quantitative endogenous sovereign default studies, such as Mendoza and Yue (2012).

In Figure 1.1, each trajectory from the model is the averages of all simulated paths

that include a default event. Default is normalized to happen at time zero. Each

variable is exhibited within a window of 12 quarters before and after such a default

event. For spreads and debt-to-GDP ratio the post-default periods are not included

because they are not defined in bad financial status. As depicted in Figure 1.1 with red

dashed lines, the Greek default is accompanied by the troughs in output, consumption

and investment, by a surge in government debt-to-GDP ratio, by a peak in sovereign

debt spreads, and by a fiscal consolidation in the form of government expenditure cut.

The model successfully replicates the default episodes of Greece at least in a qual-

itative way: the blue solid lines (from simulation) move in the similar trends as their

respective red dashed lines (from data). The model predicts a decreasing government

expenditure during the pre-default periods. Most importantly, as illustrated in the
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Figure 1.1: Default episodes from Greek data and model simulation. The default period is nor-

malized to be zero and highlighted by a vertical green line. Period -4 indicates 4 quarters before

the default and period 4 refers to 4 quarters after the default. The trajectories for Greek output,

consumption, investment and government spending are drawn with HP-filtered.

15



1.4. The state-dependent effects of fiscal austerity Chapter 1

last panel of Figure 1.1, government spending shock uGt experiences a sharp decline

from period −5 to the default period, indicating that default is typically correlated

with a fiscal austerity.

1.4 The state-dependent effects of fiscal austerity

As discussed in the introduction, the effects of fiscal austerity on the sovereign spreads

are state-dependent. To be specific, the relationship between the exogenous state uGt

and sovereign debt prices qt depends on debt state Bt as well as exogenous produc-

tivity zt. Figure 1.2 depicts the contour lines for the sovereign debt price schedules,

q(S,B′, K ′). Holding zt and Kt constant, the schedule is a function of only two vari-

ables, uGt and Bt. The “default set” illustrated in the figure corresponds to the coor-

dinate points where default is the indebted country’s optimal choice. As can be seen

in the left panel where the debt outstanding is low, these contour lines are downwards

sloping to the right, implying that government spending cut correlates to a higher debt

prices (or lower debt spreads). However, in states of high debt levels (see the right

panel of Figure 1.2) price contour lines have positive gradients. Moreover, the closer

these contour lines are to the default set, the greater are the slopes. This demonstrates

a converse relationship: low government shocks now correlate to low debt prices (or

high spreads).

Figure 1.3 depicts debt prices as functions of government spending shock uGt and

productivity shock zt. In the first panel with low debt levels, a lower government shock

leads to a higher debt price (or a lower spread). On coordinate points of high debt and

high productivity (see the middle panel), this relationship persists but becomes weaker

as the productivity goes down. At the bottom of the middle panel the contour line for

price 1.11 is almost horizontal, suggesting that government shock impose little influence

on debt price. Furthermore, if the economy is highly indebted and its productivity

is low enough (the economy is in severe financial stress and default is very likely to

happen) the above relationship will reverse. As can be seen in the last panel of Figure

1.3, the price contour lines slope downwards to the right, implying a deteriorating debt

issuing price if fiscal austerity is implemented.
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Figure 1.2: Contour lines for debt price q(S,B′,K ′), holding productivity at its unconditional mean

and capital stock at its median level.

If economic fundamentals worsen further (either because of lower productivity or

higher debt stock), it is optimal for the government to renege on sovereign debt obli-

gations. The question is, how would fiscal austerity influence the borrowing country’s

default decision? According to the pricing rule (1.17), the expected default proba-

bility is positively related to spreads. Since it is shown that a government spending

cut raises spreads in states near the default set, the default set itself should be en-

larged. Figure 1.4 verifies the above conjecture: the default set D, whether defined as

D(B) =
{
z : V g ≤ V b

}
(the left panel) or D(K) =

{
z : V g ≤ V b

}
(the right panel),

enlarges after a low uG shock.

In conclusion, fiscal austerity leads to lower debt spreads only if the economy

is under low financial stress that features low external debt outstanding and high

productivity. However, when the financial stress is high (high debt stock and low

productivity) austerity becomes self-defeating: it results in lower debt issuing price,

which indicates a worsening financial credibility for the borrowing country.
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1.4. The state-dependent effects of fiscal austerity Chapter 1

Figure 1.4: Default set as a function of TFP and debt. Low (high) govt spending shock is linked

with large (small) default set. Default set as a function of TFP and capital. Low govt spending shock

is linked with larger default set.
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1.4.1 The role of capital

In next sections, I will explain the mechanism behind the state-dependent relationships

between fiscal austerity and spreads. To begin with, it is necessary to understand how

capital k and debt B influence debt prices. Figure A.1 and A.2 in the appendix depict

debt prices as a function of Kt and Bt while keeping TFP and government shock uG

fixed at their respective unconditional means. We can see that higher Bt leads to lower

prices, while Kt raises debt price for virtually any debt level.

We should be cautious on the interplay of capital, debt and TFP. Figure 1.5 shows

the contour lines of the distinctions in value functions, V g−V b with varying government

shocks uGt and capital Kt. Smaller V g − V b indicates the benevolent social planner

holds stronger incentives to default and hence external creditors charge higher spreads.

The upper panels show V g − V b with debt outstanding fixed at high and low levels

and TFP fixed at mean. The lower government shock reduces V g − V b at almost

everywhere but the relationship between capital state and value function difference

depends on debt. At high debt levels (see the upper left panel), capital increases the

difference. By contrast, at low debt levels, V g − V b decreases with capital. There is

similar state-dependence at different TFP levels if debt level is fixed. As illustrated

by the lower left panel where the productivity is low, additional capital contributes to

bigger distinctions in value of repayment and default. At high levels of TFP, V g − V b

decreases slowly as capital stock increases.

The role of capital could be explained using the terms from Gordon and Guerron-

Quintana (2018). On the one hand, there is an “autarky channel” that under low

financial stress (low debt level, high TFP level and low debt spread) capital enhances

the benefit of default10. On the other hand, a counteracting force called “smoothing

channel” kicks in when the economy suffers from high indebtedness and low produc-

tivity. Through this channel capital delays default because capital could either be

10The intuition of the autarky channel: If the country defaults with high capital stock, it may ben-
efit from saving the debt repayments to external creditors and the production is not severely impaired
because there is little need to borrow from external creditors to accumulate capital. Meanwhile, in
modern history, physical assets in a default country’s domain have not been confiscated by creditors,
as documented in Tomz and Wright (2013). See Gordon and Guerron-Quintana (2018) for a detailed
explanation for the autarky channel
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Figure 1.5: Contour lines for the differences between value functions of staying in good financial

status V g and falling to bad financial status V b, i.e. V g − V b.
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Figure 1.6: Contour lines slopes for different coordinates of states.

liquidated to fulfill repayment obligations or be invested into production to improve

employment, boost production and improve the capability to repay debts. As in Gor-

don and Guerron-Quintana (2018), quantitatively the smoothing channel dominates

the autarky channel11 so that as shown by Figure A.1 and A.2 spreads declines as the

capital stock decreases if debt outstanding is fixed at almost every level.

Comparing with the default risk channel, the capital channel plays a secondary

role in determining the state-dependent relationship between spreads and austerity

shock: It only reinforces the negative (positive) relationship between spreads and fiscal

shock under severe (mild) financial stress. This could be verified by comparing our

benchmark model with a model without capital, as illustrated in Figure 1.6. The upper

11Park (2017) provides an extreme case where the autarky channel is so powerful that the economy
may optimally default during good times.
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panel shows the spread contour slopes for states (uG, B; z,K) where productivity and

capital are fixed at the levels of Figure 1.2. The blue solid line refers to the benchmark

model while the red dashed line corresponds to the comparable model without capital

(with productivities fixed at the same level). We can see the model without capital

also displays state-dependent relationships between spreads and austerity. However,

slopes for the benchmark contour are higher at high spreads but lower at low spreads,

indicating that under severe (mild) financial stress the negative (positive) relationship

between spreads and fiscal shock is stronger in the benchmark. Similar results are

depicted for states (uG, z;B,K) (corresponding to the middle and right panels of

Figure 1.3, but now the X axis is z and the Y axis is UG. Debt states fixed at the

same level): Contour slopes for the benchmark are lower (higher) than the alternative

model under high (low) financial stress, indicating that austerity leads to bigger spread

changes at the two extremes if capital is incorporated.

1.4.2 The role of wealth effect

The state-dependent effects of fiscal austerity is closely linked to the above mentioned

state-dependent role of capital. While this link relies on wealth effect, which arises from

the inclusion of KPR style utility function and government spending shock. In Figure

1.7, the impact of fiscal austerity in the form of government spending cuts is visualized

by Generalized Impulse Response Functions (GIRF) that are drawn following the

method of Koop et al. (1996). The GIRF refers to the average of shocked paths

in simulation. As in Arellano et al. (2018), if a simulated path includes a default event

in the reported 27-period window, the path will be excluded from the calculation,

The response functions in blue solid lines come from the benchmark calibration model

where the persistence of government spending shock ρG is 0.975.

Following a -1.5% government shock, the output Yt drops immediately by nearly

1.7% from its pre shock average. The implied fiscal multiplier ∂Yt/∂Gt is 1.5
12, which

is in the range of estimations in literature. Because of lower lump-sum tax imposed

on her income, the representative household feels wealthier and decides to consume

12Fiscal multiplier is calculated by dividing the impulse response of Yt by the impulse response in
government spending Gt. Note that Gt is not shown in Figure 1.7.
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Figure 1.7: Generalized impulse response functions (IRF) for a negative 2% government spending

shock. IRF for the models with different ρG exhibited. The benchmark ρG is 0.975. The innovation

is normalized to hit the economy on period 0.
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more (Ct ↑) and work less (Ht ↓, the definition of wealth effect). In the benchmark

model wealth effect is so strong that investment must decline to satisfy the national

income balance. Expecting lower capital, foreign lenders hold lower expectation about

production and debt repayment and hence charge higher spreads. Meanwhile, the

household would substitute cheap lump-sum tax reduction for expensive sovereign

debt in financing her consumption, i.e. the“substitution effect”13. It is well understood

that lower debt outstanding decreases debt spreads (see quantitative sovereign default

models such as Arellano, 2008; Chatterjee and Eyigungor, 2012 and Mendoza and

Yue, 2012) but as shown in Figure 1.7 this “indebtedness effect” is overwhelmed by

the contrary influence from the smoothing channel of capital. Notice that an expected

rise in spreads reinforces the decline in capital: because of lower income from debt

issuance, the net repayment on debt obligations, i.e. −qtBt+1+[λ+(1−λ)(η+ qt)]Bt,

would be higher. As a consequence, the borrowing country has to liquidate additional

capital to fulfill the repayment.

The importance of the wealth effect could be further demonstrated by comparing

the GIRFs across different values of government shock persistence, ρG. Ceteris paribus,

higher ρG increases wealth effect and vice versa. Comparing with the benchmark, in

the case of ρG = 0.99 the output is expected to be on a lower track, the decline of

investment almost doubles, and the surges in sovereign spreads and net debt repay-

ment are much higher. When ρG decreases to 0.93, wealth effect is much weaker so

that the investment even rises above its pre-shock average level. Therefore, the vicious

circle of the expected capital liquidation and spreads rising is absent. Notice that now

although the spread decreases, net repayment still slightly increases because optimal

debt issuance Bt+1 goes down. Unlike the cases of higher wealth effect, this down-

ward movement of Bt is not owing to higher interest rate: the increment in capital

and decline in lump-sum tax jointly reduce the attractiveness of expensive external

financing.

In the long run, austerity has opposite effects on spreads. In the benchmark model,

spreads drop below the pre-shock level in three periods and keeps being lower in the

next 23 periods. Similar long-run effects is found in the alternative calibrations. The

reason is that although fiscal austerity impairs economic activities, it does adjust debt

13The impulse response analysis in Bianchi et al. (2019) also reveals this effect.
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Figure 1.8: Illustration of the price change to fiscal austerity policy.

outstanding downwards and hence there is“indebtedness effect”that improves solvency.

In the long term, financial stress improves because the “indebtedness effect” outweighs

the weakening negative influences on production and employment.

1.4.3 Explaining state dependence

Knowing the role of wealth effect and investment, the illustrated state-dependent re-

lationships between government spending shocks and sovereign spreads could be well

explained. Figure 1.8 summarizes these effects. The blue chain refers to the case

that capital is excluded from the model: Fiscal austerity is equivalent to reduction in

lump-sum tax and hence there is the substitution effect that the household reduces the

demand of expensive foreign borrowing Bt+1, while the lower expected indebtedness

leads to better solvency and lower debt spreads. The inclusion of capital provides

an additional mechanism as depicted in the red chain. Because of a large wealth

effect, austerity decreases investment (recall the impulse response analysis) and the

consequent effect depends on the competition between the smoothing channel and au-

tarky channel. The former prevails under high financial stress and drives debt spreads

higher. By contrast, the latter dominates the former for states of low financial stress

and reduces spread.
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Back to Figure 1.2, at high debt levels (right panel), the smoothing channel domi-

nates the autarky channel and indebtedness effect and therefore the net effect of lower

capital policy Kt+1 and debt policy Bt+1 is higher spreads. As shown by the upward

sloping contour lines, low levels of government shock is related to low debt prices.

Conversely, at low levels of debt outstanding (left panel of Figure 1.2) financial stress

becomes mild and the autarky channel eventually outweighs the smoothing channel.

Hence, an austerity policy is increasingly associated with a higher debt price. As de-

picted by the right panel those contour lines slope increasingly downward as the debt

outstanding declines.

Following a similar logic, Figure 1.3 could also be well explained. With medium

capital level and low TFP, the smoothing channel dominates and hence lower govern-

ment shocks lead to lower capital stock and lower debt prices (see right panel). At

higher levels of TFP, the autarky channel gradually takes over and as a result uGt re-

duction is increasingly associated with higher prices (see middle panel). The left panel

is more complicated. At the coordinate points of low debt and high TFP (see the

upper half of the left panel), financial stress is low and the autarky channel plays the

leading role. Thus, at lower levels of uGt the associated low capital and debt policies

jointly contribute to higher debt price. High productivity improves solvency so that

price increases from the southeast to the northwest corner on the coordinate plane.

At the lower half of the subplot, when zt goes down financial stress increases but the

autarky channel still outweighs the smoothing channel. Therefore, lower levels of cap-

ital and debt policies raise debt price and hence the contours on the lower panel bends

and becomes vertical.

Now we can also rationalize the impact of fiscal austerity on default set as shown

in Figure 1.4. As in most sovereign default models, the default set resides in states

of high debt outstanding and low TFP and here the smoothing channel outweighs the

combination of the autarky channel and indebtedness effect. Following a reduction in

government shock uGt , the adjustment in debt is too small to cancel out the adverse

effect from investment decline and hence default becomes more desirable: As verified

by Figure 1.4, default sets for both D(B) (left panel) and D(K) (right panel) will

expand.
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Figure 1.9: Generalized impulse response functions (IRF) for a negative 1.5% government spending

shock across different levels of financial stress. The innovation hits the economy on period 0. High

financial stress is defined as the states where z ≤ −0.02 and b ≥ 0.7, while being in low financial

stress means z ≥ −0.02 and b ≤ 0.7. The IRF (rt − r∗) comes from the benchmark model, same as

the counterpart in figure 1.7.
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To further stress the state-dependence, I propose an experiment as shown by Figure

1.9. The solid blue line is the standard spread impulse response following a -1.5%

government spending shock. The dashed red line depicts the debt spread in response

to the same shock with an additional condition: the economy is under high financial

stress that features high debt and low TFP levels. This condition excludes most of the

states where the autarky channel and indebtedness take control. We should expect

higher spreads because in the remaining state fiscal austerity leads to lower capital and

the dominant smoothing channel increases default probability. Figure 1.9 corroborates

this conjecture: comparing with the blue line, the spread surge conditional on being

under high financial stress is tripled. Similarly, the green dotted IRF is conditional on

the economy being under low financial stress and now the spread decreases on impact.

1.5 Sensitivity Analysis

1.5.1 Persistence of fiscal shock

From previous analysis, we know ρg governs the magnitude of wealth effect and hence

the responses of spreads to austerity shock −ug: Under high (low) financial stress,

austerity tends to raise (decrease) debt spreads. In this section, We change the value

of persistence of the government spending shock process, i.e. ρg, to see if the outcomes

of fiscal austerity changes. Specifically, whether the state-dependence and the self-

defeating effect still exist.

We first reset ρg to be 0.95 as in Anzoategui (2021), which indicates the half-life of

fiscal shock shrinks from 6.5 years (ρg = 0.975) to 3 years and a quarter. Figure 1.10

illustrates the debt price contours across different outstanding debt and productivity

states. When productivity and capital stock are jointly fixed at their respective median

levels (upper panels), austerity (low government spending shocks) shrinks debt spreads

(raises prices) if debt is initially low but enhances spreads (decreases prices) if debt

outstanding is high. Meanwhile, as shown by the lower panels, state-dependence arises

when debt outstanding and capital stock are jointly controlled at their respective high
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Figure 1.10: Contours of debt price, ρg = 0.95.
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and median levels. Again, fiscal austerity pushes spreads up under high financial stress

(lower right panel that features high debt and low productivity) but depresses spreads

at higher levels of productivity.

Next we set ρg = 0.93 (as in House et al., 2020), which corresponds to a short

2-year 1-quarter half life. From the price contours (Figure 1.11), we can see that the

state-dependence still exists but the positive relationship between austerity and debt

spreads weakens: 1. The magnitude of the contour slopes diminishes as ρg decreases.

2. The supports of this relationship shrinks as ρg goes down. Taking the (B(high), uG)

states for example, the support narrows from [0.75, 1.1] at the ρg = 0.975 case to [0.81,

1.1] at ρg = 0.95 and further to [0.9, 1.1] for the ρg = 0.93 case.

In Figure 1.12, I draw the conditional impulse response functions for ρg = 0.95

and ρg = 0.93. We can see that with lower persistence in the fiscal shock process, the

spread surge under high financial stress decreases and even becomes negative when

ρg = 0.93. Meanwhile, the spreads drops immediately upon the austerity shock at

the average and low financial stress. In conclusion, the probability of encountering

self-defeating austerity declines if the policy is (expected to be) short-term.

1.6 Discussions

Policy implications. The model provides useful policy implications: austerity could

have produced better results if it had been implemented when the the economy were

under mild financial stress. Similar arguments could be found in Lane (2012), Gechert

and Rannenberg (2015) and Born et al. (2020). Unfortunately, the Greek fiscal con-

solidations packages were introduced at an awkward timing: the country was carrying

a too high level of external debt outstanding and was mired in the aftermath of the

Great Recession. Therefore, there is a high probability that the market perceives the

harms of austerity outweighs the benefits. Another implication is to support invest-

ment, maintain employment and production and hence to enhance the capability to

repay debts for those countries in distress. However, we have to be cautious with the

implementation of expansionary fiscal policy during bad times. Growing government
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Figure 1.11: Contours of debt price, ρg = 0.93.

32



1.6. Discussions Chapter 1

Figure 1.12: Impulse response functions to a 1.5% fiscal austerity shock conditional on different

levels of financial stress. The upper panel shows the case of ρg = 0.95 while the lower panel shows

the ρg = 0.93 counterparts.
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spending funded by additional external debts may fuel the suspicion of deteriorating

solvency, especially if markets are not convinced of its stimulative effect. In that sense,

as argued in Galli (2021), an external financial support can be valuable.

Scope limitations. While contributing to studying how fiscal austerity influences

sovereign debt spreads, this paper has several limitations: First, the paper does not

explore the impact of spreads on fiscal austerity. In fact, the surge of spreads may

induce the indebted country to implement austerity, as in Bianchi et al. (2019) and

Aguiar et al. (2022). Thus, if the economy is under high financial stress (austerity leads

to higher spreads), we can expect a vicious circle of spreads rising and austerity. Sec-

ond, the debt pricing rule in the equation (1.17) only incorporates default risk. Other

factors such as liquidity problems, inflation risks, exchange rate risks are excluded.

1.7 Conclusion

In this paper I propose an endogenous sovereign default model to study the influences

of fiscal austerity on sovereign debt spreads. The model is calibrated to Greece and

matches its default episodes around 2012: a typical simulated default is accompanied

with austerity. The analysis of model solutions reveals state-dependent influences:

when the borrowing country is highly indebted and in recession, i.e. being under high

financial stress, austerity increases spreads and vice versa. Because debt crisis usually

happens during such vulnerable periods, the probability of encountering self-defeating

austerity would be non trivial. The mechanism for such a state-dependence relies on

the existence of default risk and incorporation of capital accumulation.

The paper contributes literature in several ways: To my knowledge, it provides the

first theoretical research based on endogenous default model that stresses the impor-

tance of capital accumulation to determine the outcomes of fiscal austerity. Second, it

rationalizes the empirical evidence of state-dependent influences of fiscal austerity on

sovereign spreads. Third, it shows that the probability of encountering self-defeating

austerity is non trivial at least for countries like Greece. Fourth, it reveals that the

high degree of persistence of austerity plans is crucial to the adverse effects.
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Chapter 2

Matlab-Based GPU Computation of

Sovereign Default Models

2.1 Introduction

This paper discusses the efficient numerical solving for non-linear macroeconomic mod-

els. Discretized Value Function Iteration (DVFI) method has been widely applied to

this type of problems because it is suitable to address the inherent kinks and en-

dogenous choice dependent variables in such models. To implement DVFI, the state

space should be discretized into grid points and integration is in terms of probability

weighted average (addition). Endogenous sovereign default models1 in the Eaton and

Gersovitz (1981) framework belong to this strand of models: the option to default leads

to kinks and the equilibrium debt price depends on policies. Hence, such models need

to be solved via DVFI2. However, solving via the DVFI is typically slow because this

method usually leads to large-scale matrix multiplication and hundreds of iterations.

This problem worsens when more state variables are included and hence the number of

1Also called equilibrium default model or quantitative default model.
2Local solution based on perturbation method, such as first-order approximation in Uhlig (1995)

and Sims (2002) as well as higher order approximation in Schmitt-Grohé and Uribe (2004), is not
feasible for endogenous sovereign default models. Readers are referred to the second section of this
paper for an detailed explanation.
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grid points grows exponentially. Meanwhile, calibrating means such models need to be

repeatedly solved. Therefore, accelerating the DVFI is of interest to macroeconomic

researchers using sovereign default models as well as other non-linear models, such as

the heterogeneous agents model, as workhorses.

This paper proposes a method to achieve the acceleration of solving with DVFI:

to implement DVFI on the Matlab Parallel Computing Toolbox with GPU (Graphic

Processing Unit). The advantages for choosing this platform is twofold. First, most

macroeconomists currently use Matlab programming language (Coleman et al., 2021).

Besides, Matlab’s parallel computation toolbox has always been well maintained, up-

dated and optimized by professionals. Moreover, this GPU language is easy to write.

The intuition behind GPU acceleration is that this device is designed to employ large

amount of processors 3 to accomplish mathematical computation in a synchronized

manner. Hence, GPU has been intensively used in high-performance computation like

deep learning. While CPU (Central Processing Unit) is a generalized processor that

cannot handle parallelization as efficiently as a GPU. Second, parallelization with GPU

is accessible at home. Nowadays personal computers (even laptops for home use) that

possess a discrete NVIDIA GPU are easy-to-find and affordable. CPUs with a large

number of processors are expensive and usually installed in supercomputers.

The endogenous sovereign default models discussed in the paper includes the one-

period bond model as in Arellano (2008) and the long-maturity bond model from

Chatterjee and Eyigungor (2012). The long-maturity case is more complicated in cal-

culation and hence it provides a good example for exploring the relationship between

computation efficiency improvement and complexity of codes. We find that the im-

provement from GPU could reach tenfold. Although this paper focuses on solving

sovereign default models, the GPU parallel coding could be easily adapted to solve

other complex dynamic stochastic general equilibrium (DSGE) models. In the latter

part of the paper, I apply the Matlab GPU computation to solve a classic neoclassical

growth model. The time consumed in solving shows that the GPU approach provides

even larger efficiency improvement (over 20 times) for such a simpler DSGE model. In

this paper, the efficiency improvement is defined by comparing the time consumed for

3For example, the GPU device used in this paper, NVIDIA RTX 3060 Laptop Version, has 3,840
cores while the CPU device, Intel Core 11800H, has only 8 cores.
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solving a model in GPU approach with the non parallelized CPU approach4.

The paper contributes to the efficient computation of endogenous sovereign default

models in several aspects. First, it provides a comparison of three algorithms that

implement the DVFI method to solve sovereign default models. The record of time

consumed in solving dislikes the frequently used Full Vectorization (FV) algorithm

but favours the use of a single loop, i.e., the Looping Over Exogenous Shocks (LOES)

algorithm. In LOES, only the grid points for the exogenous shock (in this paper

this shock is the endowment income for debt issuing country) are in the loop index.

The Looping Over All States (LOAS) algorithm, where the loop indices cover all grid

points of the state variables (in this paper, these variables are endowment and debt

outstanding), requires two layers of loop and it is the slowest among all 3 algorithms.

This result not only holds for the CPU computation but is also robust to the GPU

approach5. Apart from being slower than LOES, the FV algorithm is much easier to

encounter the out-of-memory problem6. The likelihood of encountering this problem

is much larger if the model has more than one endogenous state, for example when

capital accumulation is incorporated. Like the LOES, the LOAS algorithm effectively

avoids the memory trap but its speed is usually lower than FV7.

Second, the efficiency improvement from switching to GPU on Matlab is similar to

the application of GPU with Julia via Julia CUDA. When GPU computation is ac-

companied with the LOES algorithm on Matlab to solve the one-period debt sovereign

default model, it takes only 30 percent of the time spent in solving the same model

4In the scope of this paper, GPU computation denotes to using the “gpuArray()” command to
distribute array elements to the GPU memory and hence enable the GPU parallel computing. The
CPU computation refers to the execution of code on Matlab without using the CPU-based parallel
command, i.e. “parfor”.

5Usually, efficient algorithms for CPU also work well for GPU device. See Mathwork® web page
Measure and Improve GPU Performance for detailed discussion.

6More specifically, the size of data that Matlab sent to a random access memory (RAM) exceeds
the limit in MATLAB Workspace Preferences (usually very close to the upper limit of the RAM)

7Matlab is an interpreted language and hence using multiple layers of loops in Matlab significantly
reduces computation efficiency. Compiled languages like C/C++ and FORTRAN are way more
efficient in using LOAS algorithm.
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with Julia CUDA, which is reported in Guerrón-Quintana (2021)8. Overall, comparing

with CPU, the speed-ups from using GPU on Matlab could be near 10 times, very close

to the acceleration from applying GPU computation in Julia. Therefore, switching to

Julia does not seem to be more attractive than Matlab in terms of the benefit from

GPU devices. Comparing with Matlab, the macroeconomist community is still less fa-

miliar with Julia. Last but not least, with 25% more efficient CPU, this paper reports

a solving with Matlab that is 3 times faster than the reported Julia CPU results.

In terms of the third contribution, the speed enhancement of GPU computation

relative to CPU depends on the complexity of applied algorithm. Incorporating taste

shocks to facilitate solving long-maturity debt default models leads to more compli-

cated codes and higher computation workload, which decreases the efficiency improve-

ment from 10 times to 7 times. To further explore this point, I write Matlab codes to

solve the neoclassical growth model that is much simpler to solve than sovereign default

models: 1. only a single value function needs to be updated during each iteration9; 2.

sovereign debt price depends on the expected difference between value functions while

the neoclassical growth model does not have such computation workload. The time

records of solving such a simpler model show that the acceleration from GPU could

be as high as 21 times.

This paper is closely related to the literature on solving macroeconomics with GPU

computation. Guerrón-Quintana (2021) implement Julia CUDA to solve a sovereign

default model with one-period debt. They also discuss Julia specific acceleration tech-

niques and coding recommendations. The magnitudes of Julia GPU speed-up relative

to Julia CPU could reach tenfold, which is similar to this paper. However, the com-

parable time spent in solving via either Julia CPU or GPU is significantly higher than

the respective Matlab results in this paper. Aldrich et al. (2011) show that using

CUDA C, a dialect of C/C++ that enables using NVIDIA GPU, to solve a neoclas-

8For floating-point performance, the GPU device used for this paper (NVIDIA RTX 3060 Laptop
Version) outperforms that in Guerrón-Quintana (2021) (NVIDIA RTX 2060 Laptop Version) by 90%
(8.76 TFLOPS vs 4.61 TFLOPS). Hence, under the same programming language, the time spent in
GPU computation on my laptop should theoretically take more than 50% of the time spent on their
laptop.

9For sovereign default model, two new value functions need to be computed — the value of
repayment (and hence being in good financial status) V G and the value of default (and hence falling
into bad financial status) V B .
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sical growth model provides huge speed improvement comparing with utilizing CPU.

However, macroeconomists are usually unfamiliar with C/C++ and mastering this

language requires a steep learning curve. Fernández-Villaverde and Valencia (2018)

provides pedagogical guidance for using CPU and GPU parallel computation to solve

a life-cycle model. Although they implement the computation on many different plat-

forms, such as Julia, Matlab, R, Python, C++, their codes are not optimized to each

of these languages and hence the computation speed comparison should be interpreted

with caution. Coleman et al. (2021) test the efficiency of solving neoclassical growth

model with DVFI method on Matlab, Python, Julia10. They parallelize the computa-

tion on CPU and find the speed across three platforms similar. However, the speed

for any of the three languages they report fall significantly behind the counterparts in

this paper.

The rest of this paper is organized as follows. In Section 2, I test LOES, FV and

LOAS algorithms on both CPU and GPU devices to solve sovereign default models

with one-period and long-maturity debt. I find the LOES prevails and with that

algorithm applying GPU could provide tenfold acceleration over CPU. I also replicate

the Julia solve model in Guerrón-Quintana (2021) on my Matlab to compare the speed

of the two languages. Section 3 delivers a robustness test: I use neoclassical growth

model to evaluate the computing speed as in Section 2. I find that as code complexity

and computational workload increase, the speed advantage of the GPU deteriorates.

I draw the conclusion in Section 4.

2.2 Endogenous Sovereign Default Models

In this section I discuss 3 algorithms to solve endogenous sovereign default models à

la Eaton and Gersovitz (1981) with either one-period or long term sovereign debt. I

first show that solving with a single loop (the LOES algorithm) over all grid points of

the exogenous state is faster than the conventional full vectorization method as well

as a double loop method (LOAS). Second, I show that GPU computation provides a

significant solving acceleration over the CPU for both the short-term and long-term

10This strand of results is illustrated in Table 3 of Coleman et al. (2021).
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debt models. Third, we can see that incorporating long-term debt to the endogenous

default framework results in higher computation workloads and hence slows down the

solving with either CPU or GPU and deteriorates the speed-up benefits of GPU over

CPU.

2.2.1 The Model with One-Period Debt

The sovereign default model with one-period debt follows Arellano (2008). In each

period the economy receives an exogenous endowment income y that follows an AR(1)

motion law:

log(y) = ρy log(y) + εy, εy ∼ i.i.N(0, σy) (2.1)

The social planner solves the following optimization problems to determine debt is-

suance b′ and whether to default D. To begin with, the value of repaying debts and

hence maintaining good financial status is denoted as

V G(y, b) = max
b′≥0, c≥0

u(c) + βEy′|yV (y′, d′) (2.2)

subject to budget constraint

c = y − b+ q(y, b′)b′ (2.3)

where b is the outstanding sovereign debt, b′ is the debt issuance (policy) and q(y, b′) is

the issuing price of debt. The value of default and therefore falling into bad financial

status is

V B(y) = u(y − L(y)) + βEy′|y

[
(1− µ)V B(y) + µV (y′, 0)

]
(2.4)

where L(y) is the endowment cost owing to the bad financial status. It follows the

quadratic loss function as in Chatterjee and Eyigungor (2012):

L(y) = max
{
0, κ1y + κ2y

2
}

(2.5)

where µ is an exogenous probability to re-enter the international financial market if

the country is already in bad financial status. Notice that at the re-entry period, the
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country is exempted from previous debt obligations. Finally, the social planner decides

whether to default by comparing the value of repayment to that of default:

V (y, b) = max
D=0, 1

(1−D)V G(y, b) +DV B(y) (2.6)

If V G − V B > 0, the social planner chooses not to default, i.e. D(y, b) = 0. If

V G−V B ≤ 0, default becomes the optimal choice, i.e. D(y, b) = 1. Debt issuing price

is determined by risk-neutral foreign lenders:

q(y, b′) = Ey′|y

[
1−D(y′, b′)

]
/(1 + r∗) (2.7)

where r∗ denotes the world risk-free interest rate.

Definition 2 (Recursive equilibrium). Given endowment y and debt outstanding b, a

recursive equilibrium of the sovereign default model with one-period bond has following

elements:

1. A set of value functions V G(y, b), V B(y) and V (y, b)

2. Debt issuance b′(y, b) and default decision D(y, b).

3. A debt price function q(y, b′) such that

(a) Given bond price q(y, b′) and budget constraint equation (2.3), the value

functions (2.6), (2.2) and (2.4) solve the social planner’s problem and pro-

vides the default rule D(y, b).

(b) Given D(y, b) the price of sovereign bond satisfies the risk-neutral rule (2.7).

(c) The bond price solves problem (2.6) and the debt issuing policy solves (2.2).

The solutions to such sovereign default model are numerically derived via the dis-

cretized value function iteration (DVFI) method. To implement such method, the

state space is discretized into candidate grid points, expectation is the probability

weighted sum of discrete states while the value functions and debt price function are

based on the coordinates of grid points. In other words, this paper does not use off-

the-grid methods to find the debt policy. Readers interested in off-the-grid methods
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are referred to Hatchondo et al. (2010) where the robustness of Chebyshev collocation

and spline interpolation methods are discussed.

Perturbation methods, or local approximation methods, are not suitable to solve

sovereign default models (Guerrón-Quintana, 2021). Reasons are as follows. First,

the optimization problems are different between the good and bad financial status.

Therefore, the value V (y, b) and policy D have kinks, which makes the problem not

differentiable at the default threshold. Second, the debt price is a function of expected

default decision D, which is a function of expected debt issuance and itself is an

endogenous variable. Hence, we need a global optimization approach like DVFI to solve

the model and time-saving local perturbation methods are not feasible. The above-

mentioned second problem adds additional difficulties to the convergence of solving.

For example, Arellano et al. (2016) report that solving endogenous default model with

envelop condition method (ECM), which provides huge speed improvement than DVFI

for neoclassical growth model, easily runs into convergence problems. Convergence

becomes more difficult if long-maturity debt is incorporated.

2.2.1.1 Algorithms for Discretized Value Function Iteration

In this section I compare three algorithms to apply the DVFI method to either CPU

or GPU. It should be noted that all models are solved using the one-loop method11

as defined in Hatchondo et al. (2010) That is, value functions and bond price are

simultaneously updated in each iteration. To begin with, I show the general DVFI

algorithm for one-period debt sovereign default model, as in Algorithm 1.

There are three versions of codes to implement DVFI. The first version is referred

to as the full vectorization method (FV) that is used in Arellano (2008). In the

FV, all candidate coordinate points for the value and price functions are vectorized

in the “while” loop. Specifically, the V G
0 (y, b), V B

0 (y, b) and q0(y, b
′) functions are

reformulated to be V G
0 (y×b, b′), V B

0 (y×b, b′) and q0(y×b, b′) such that each row index

of the matrices corresponds to a combination of y and b states while each column

11As reported in Hatchondo et al. (2010), this one-loop approach is significantly more time-saving
than the two-loop method that is widely used in earlier default models.
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Algorithm 1: FV algorithm for DVFI

Data: Initial guesses for value functions V B
0 , V G

0 , V0, debt price q0, a tolerance

threshold tol and ∆ such that ∆ > tol

Result: The value functions V B, V G, V , debt policy B′ and debt price q.

Initialization;

while ∆ > tol do

Given debt price q0, derive consumption c with equation (2.3) and value

functions for being in good V G and bad financial status V B with equation

(2.8), (2.2) and (2.4);

Calculate the default indicator as D(y, b) = V G − V B and the risk-neutral

price q(y, b′) as in equation (2.7);

Calculate the aggregate maximum norm ∆ between the old and new value

functions and debt prices ∆ =∥ V G − V G
0 ∥ + ∥ V B − V B

0 ∥ + ∥ q − q0 ∥ ;

Set V G = max{V G, V B}, V G
0 = V G, V B

0 = V B, V0 = V G(y, 0) and q0 = q;

otherwise, end the loop;

end
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index relates to a grid point of the candidate debt choice. The number of grid points

for debt choice is the same as debt state. Hence, all the matrices fed into 2.4 and

2.2 are (Ny × Nb, Nb) matrices if the numbers of grid points for y and b states are

respectively Ny and Nb. In consequence, the updated V G(y, b), V B(y, b) and q(y, b′)

will be (Ny ×Nb, 1) column vectors because the debt policy b
′∗ has been found. They

should be reshaped into (Ny, Nb) matrices for the next iteration within the “while”

loop. For Matlab, matrix operation would automatically utilize multiple CPU cores

and hence using FV algorithm benefits from that.

The second algorithm features a naive ”looping over all states” (LOAS) that uses

multiple loops to separately visit the grid points of all state variables. In the scope of

this paper, this method incorporates two loops within the “while” loop: the outer loop

operates on the grid points of endowment y while the inner loop iterates on the grids

of debt outstanding b. Hence, for each pair of grid points the state variables (yi, bi),

we evaluate a (1, Nb) welfare vector, i.e. u + βEy′|yV
G
0 , to obtain the updated value

functions and policy. The pseudo code listed in Algorithm (2) provides a detailed

explanation. In the illustration, Y and B respectively denote the set of grid points

for exogenous state y and endogenous state b. LOAS algorithm is straightforward and

widely used in coding with complied languages, such as C/C++ and FORTRAN. It is

less used in Matlab (an interpreted language) because of its inefficiency in executing

multiple lays of loops.

The third method is called the “looping over exogenous shocks” (LOES) algorithm.

Within the “for” loop, grid points for the endowment yi are sequentially visited and

at each visit the corresponding value and price functions V G(yi, b) and q(yi, b
′) are

evaluated. For each grid point of y we need to calculate an (Nb, Nb) welfare matrix to

find out the value function V G and the corresponding debt policy B′. All value and

policy functions are (1, Nb) vectors in the “for” loop and these vectors are integrated

into (Ny, Nb) matrices to execute the next iteration in the outer “while” loop. There-

fore, the LOES algorithm could be regarded as a mix of FV and LOAS. The details of

LOES are illustrated in 3.
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Algorithm 2: LOAS algorithm for DVFI

while ∆ < tol do

for Each grid point of Y, yi do

for Each grid point of B, bi do

c = b′ × q(yi, b
′)− bi + yi ;

[V G(yi, bi), B
′(yi, bi)] = max{u(c) + βEy′|yiV

G
0 };

end

end

V B(y, b) = u(y − L(y)) + βEy′|y(µV0 + (1− µ)V B
0 );

if V G(yi, bi) > V B(yi, bi) then

D(yi, bi) = 0

else

D(yi, bi) = 1

end

q(y, b′) = (1− Ey′|yD(y, b))/(1 + r∗);

Calculate ∆ and update value functions, debt price and debt policy;

end

Algorithm 3: LOES algorithm for DVFI

while ∆ < tol do

for Each grid point of Y, yi do

c = b′ × q(yi, b
′)− b+ yi;

[V G(yi, b), B
′(yi, b)] = max{u(c) + βEy′|yiV

G
0 }

end

All else the same as in Algorithm (2);

end
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2.2.1.2 The Results of One-Period Debt Model

In the quantitative implementation, the utility function follows the standard constant

relative risk aversion (CRRA) form:

u(c) =
c1−σ − 1

1− σ
(2.8)

For the calibration, the risk aversion parameter σ is 2 and the discount factor β takes

0.90. The endowment loss parameters are κ1 = −0.35, κ1 = 0.44. The risk-free interest

rate is set to r∗ = 0.01. Following Uribe and Schmitt-Grohé (2017), the endowment

process is characterized by ρy = 0.93165 and σy = 0.0369612 to match the Argentina

default in 2001. The AR(1) process for endowment is approximated via a probability

transition matrix Ey′|y that is drawn following the Tauchen (1986) method. Y consists

of 25 equally spaced grid points within the 4.2 standard deviations above and below the

unconditional mean of endowment process. The probability of re-entering international

financial market is fixed at 0.0385 (Chatterjee and Eyigungor, 2012) indicating a 6.5-

year exclusion on average. Debt outstanding relative to the unconditional mean of

endowment is in the interval of B ∈ [0, 2]. The tolerance threshold for the value

function iteration, i.e. tol, is set to be 1e−7.

The grid points for debt policy are equally discretized within the debt state B.
Several numbers of grid points for b are used to implement the solving: 200, 600, 1500,

3000, 6000. As argued by many quantitative researches on sovereign default model

such as Hatchondo et al. (2010), this number should be large enough to provide a

good approximation. For single endogenous state (debt) case, using 400 grid points

seems to be satisfactory (Uribe and Schmitt-Grohé, 2017). However, if two endogenous

states are incorporated the corresponding total number of grid points for state variables

could be very large. For example, using 50 grids for debt as well as capital results in

12See the Chapter 13 of Uribe and Schmitt-Grohé (2017).

46



2.2. Endogenous Sovereign Default Models Chapter 2

50 × 50 = 2500 grids in total13 and we need to search throughout the 2500 grid

points to locate the best policy that maximizes the debt issuing country’s welfare.

Therefore, it is of interest to explore the case of large set of grid points for debt in this

single-endogenous-state sovereign default model to shed light on the case of multiple

endogenous states.

Table 2.1: Speed Comparison, 3 Algorithms for CPU, One-period Debt Model

Debt Points LOES FV LOAS

200 0.887 2.437 5.038

(0.3424) (0.9410) (1.9452)

600 10.484 25.94 37.15

(3.666) (9.069) (12.989)

1500 91.17 163.24 201.84

(30.800) (55.149) (68.190)

3000 394.36 N.A. 651.30

(131.45) (N.A.) (217.10)

6000 1654.66 N.A. 2273.23

(528.64) (N.A.) (726.27)

Notes: The time spent in solving is in seconds. Figures in brackets represent the average solving

time multiplied by 100. The Full Vectorization (FV) algorithm results for debt points 3000 and 6000

are not available because the computer will run out of memory.

The remaining of this section provides following findings: First, as shown in Table

2.1, I compare the performance of above-mentioned three algorithms performed on

CPU. Second, I pick the best performing LOES algorithm14 to be executed on Matlab

13For example, Park (2017) discretizes debt and capital state spaces respectively into 200 and 800
grid points. He uses parallel computing with 30 CPU cores to handle such large computation workload.
Na et al. (2018) uses 200 grids for debt and 150 grids for lagged real wage as two endogenous state
variables and solving that model requires 189,650 seconds on a desktop with an Intel Xeon 3.5 GHz
CPU and 256GB RAM, which is far more powerful than the personal laptop used as an experimental
platform for this paper.

14GPU computation with LOAS algorithm is not reported because it is much slower than FV and
LOES.
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Parallel Computation Toolbox with GPU devices and compare its performance with

the CPU approach. The results are reported in Table 2.2. Finally, for the GPU

computation, the FV method is faster than LOES for small numbers of debt grid

points but falls behind LOES when the number of debt grids goes larger (See Table

2.3). We measure the speed of computation by the time consumed in executing the

outer “while” loop in each case.

Before reporting the results, it is necessary to clarify the experimental platform.

All computing performance experiments are conducted on a Dell G15 5511 Laptop

with Windows 11 operating system. The CPU used is an Intel® Core™ i7-11800H

with 2.30 GHz and the Random Access Memory (RAM15) is 2×8 GB with 3200 MHz.

The discrete Graphic card is a NVIDIA® GeForce RTX™ 3060 (Laptop version) with

6 GB memory. The GPU computation mentioned in this paper uses double precision

to be in line with CPU, although that device is designed to be more efficient when

operating at single precision16. All versions of programs run on the 2021b version of

Matlab software.

As can be seen in Table 2.1, for CPU computation the LOES algorithm is superior

to the frequently used FV algorithm in endogenous sovereign default studies, such as

Aguiar and Gopinath (2006), Arellano (2008) and Na et al. (2018), etc. On the one

hand, the computation time consumed by the FV method is about 2 times bigger than

the LOES counterpart. On the other hand, the LOES method effectively avoids the

out-of-memory problem that the FV method easily encounters when the number of

debt grid points exceeds 1500. The reason is that the value function to evaluate is an

(Ny×Nb, Nb) matrix in the FV method. With LOES, for each grid point of yi the value

matrix to evaluate is of (Nb, Nb) size and this matrix is rewritten (thus the memory

is reused) for the next stride yi+1. The LOAS method also use small size of value

matrices ((1, Nb)) but it falls behind of LOES. This drawback is mainly attributed to

that Matlab is an interpreted and untyped language and hence it has to read the“max”

function, check the inputs and outputs of a function each time it is called. While the

function is call Ny times in the LOES but Ny × Nb times in the LOAS. Therefore,

15The size and memory frequency of RAM significantly influences the performance of CPU com-
putation.

16For computer, the the largest ϵ that makes equation 1 + ϵ = 1 hold is smaller than 1e−16 under
double precision. For single precision, the largest ϵ would be 1e−8.

48



2.2. Endogenous Sovereign Default Models Chapter 2

LOAS spend much more time in reading and checking the functions. Notice that this

speed difference narrows down with the expansion grid points of debt: LOAS
LOES

is 5.68 at

Nd = 200 but LOAS
LOES

falls to 1.37 at Nd = 6000.

Table 2.2: Speed Comparison, LOES Algorithm, One-Period Debt Model

Debt Points CPU GPU CPU
GPU

200 0.887 3.386 0.262

(0.3424) (1.3074) -

600 10.688 5.428 1.969

(3.7371) (1.8978) -

1500 91.17 16.06 5.677

(30.800) (5.4251) -

3000 394.36 47.23 8.349

(131.45) (15.744) -

6000 1654.66 178.35 9.278

(528.64) (56.98) -

12000 7263.60 1185.82 6.125

(2194.44) (358.25) -

Notes: The time spent in solving the One-Period Debt Model is in seconds. Figures in brackets

represent the average solving time multiplied by 100. GPU compuation with LOAS algorithm are not

reported because they are very slow on Matlab. For a comparision between LOES and FV algorithm,

please find it in Table 2.3.

Next, the model is solved via GPU basing with the LOES algorithm. A comparison

of efficiency between CPU and GPU is reported in Table 2.2. For small number of debt

grid points, i.e. Nb = 200, applying GPU does not pay off. As Nb grows larger, the

speed improvement from GPU significantly increases. At Nb = 600, GPU computation

is 2 times faster than CPU. At Nb = 6, 000, the acceleration from GPU reaches the

peak of 9.3 times. If the Nb keeps growing, the advantage of GPU seems to wane but

the scale of speed-up is still over 6 times. Overall, under LOES algorithm, the GPU

has significant advantage in solving one-period debt sovereign default model with a
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large number of grid points.

Table 2.3: Speed Comparison, FV Algorithm, One-Period Debt Model

Debt Points CPU GPU CPU
GPU

GPU(FV)
GPU(LOES)

200 2.437 1.056 2.307 0.312

(0.9410) (0.4079) - -

600 25.94 4.086 6.349 0.753

(9.069) (1.4285) - -

1500 163.24 27.46 5.946 1.710

(55.149) (9.2758) - -

Notes: The time spent in solving the One-Period Debt Model is in seconds. Figures in brackets

represent the average solving time multiplied by 100. The Full Vectorization (FV) algorithm results

for debt points higher than 1500 are not available because in that cases the computer run out of

memory.

Finally, I investigate the efficiency difference between GPU and CPU when the FV

algorithm is applied. FV consumes longer time than LOES if we use CPU computa-

tion. From Table 2.3, we can see that utilizing GPU device with LOES underperforms

GPU with FV for small numbers of grid points, i.e. Nb = 200 and Nb = 600. How-

ever, as the number expands to 1500, the LOES algorithm becomes more efficient.

Meanwhile, the speed-up from GPU with the FV algorithm seems to hit the upper

limit at Nd = 600 and then drops to 5.95 times at Nd = 1, 500. This further supports

using LOES algorithm to implement GPU computation. The results of LOAS are not

reported because under that algorithm GPU computation is much slower than CPU

as LOAS has multiple layers of “for” loops. Intuitively, GPU’s better performance over

CPU comes from synchronization while too many“for” loops significantly increases the

number of serial operations.
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Table 2.4: Speed Comparison, Matlab v.s. Julia, One-Period Debt Model

Debt Points CPU(Matlab)
CPU(Matlab)
CPU(Julia) GPU(Matlab)

GPU(Matlab)
GPU(Julia)

100 0.1070 8.47% 1.4470 87.2%

(0.0378) - (0.5113) -

500 2.0206 18.64% 1.5788 43.4%

(0.7140) - (0.5579) -

1000 6.3850 17.3% 2.5766 39.4%

(2.2562) - (0.9105) -

5000 268.38 32.3% 27.42 32.7%

(95.17) - (9.7247) -

Notes: The time spent in solving the One-Period Debt Model is in seconds. Figures in brackets

represent the average solving time multiplied by 100. CPU (Matlab) and GPU (Matlab) respectively

denotes the time spent under the LOES algorithm on Matlab with CPU and GPU, while CPU (Julia)

and GPU (Julia) respectively corresponds to the Julia CPU and GPU run time reported in the Figure

11 of Guerrón-Quintana (2021).
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2.2.1.3 Comparing with Julia

In this section, I compare the Matlab CPU/GPU solving efficiency with the results

reported in Guerrón-Quintana (2021), whose experiments are performed with Julia

and Julia CUDA. For comparability, I replicate the one-period debt sovereign default

model and the corresponding calibration in their paper: now the endowment after

default loss is (1 − τ)y where τ is a constant parameter taking the value 0.15. The

endowment process takes the same form as equation (2.1) but is calibrated as ρy = 0.9,

σy = 0.025. Debt state is equally discretized with B ∈ [0, 1] and Ny = 7. Apart from

that, subjective discount rate is β = 0.953, world risk-free interest rate is r∗ = 0.017,

re-entry probability is µ = 0.28.

It should be noted that the CPU and GPU device in this paper outperforms those

used in Guerrón-Quintana (2021) by respectively 63% and 90% 17. We can see that

with 5,000 grid points for candidate debt policies, the Matlab CPU computation out-

performs Julia CPU by 210% (1/32.3% - 1) while for GPU computation Matlab defeats

Julia CUDA by 206% (1/32.7% - 1). These magnitudes of outperforming significantly

exceed the theoretical computation enhancement from the evolution of CPU/GPU de-

vices between two papers. Overall, applying GPU computation on Matlab to solve the

sovereign default model is at least as efficient as on Julia.

2.2.2 The Model with Long-Term Debt

The model with long-maturity debt follows the Chatterjee and Eyigungor (2012). The

issuer is obligated to pay coupon rate η > 0 for each unit of debt outstanding. In each

period, a λ share of debt outstanding matures while the remaining 1 − λ share does

not. Overall, the model is similar to the version with one-period debt, except for the

budget constraint for being in good financial status

c = y + q(y, b′)b′ −
[
λ+ (1− λ)(η + q(y, b′)

]
b (2.9)

17The CPU speed is measured by Cinebench R23 (Multi-Core) performance. GPU performance
is measured with floating point operations per second (FLOPS), as indicated by the footnotes in the
Introduction section.
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and the risk-neutral pricing rule

q(y, b′) =
Ey′|y(1−D(y′, b′))

[
λ+ (1− λ)(η + q(y, b′)

]
1 + r∗

(2.10)

The loss function takes the same form as in equation (2.5) but the calibration is

different: κ1 = −0.18819, κ1 = 0.24558. The probability of re-entering international

financial market is still 0.0385 in each period after default. Coupon rate η = 0.03

and the reciprocal of average maturity length is λ = 0.05. The calibration for the

endowment process, which follows equation (2.1), is borrowed from Gordon (2019)

where ρy = 0.9485 and σy = 0.027092. As in the one-period debt model, the set

Y equally discretized with 25 grids. The grid points for debt outstanding is equally

spaced within b ∈ [0, 1.4] and the number of B varies from 200 to 6,000. The tolerance

threshold tol is still 1e−7.

As mentioned, endogenous sovereign default models may suffer from convergence

problem in solving. When long-maturity debt is incorporated into such a model, naive

DVFI method generally does not deliver convergence and hence we need more sophis-

ticated algorithm which in turn leads to heavier computation workload and slower

computation. Chatterjee and Eyigungor (2012) and Gordon and Guerron-Quintana

(2018) mitigates the convergence problem by incorporating continuous iid transitory

income shocks. In this paper, I adopt a simpler method from Gordon (2019) that

introduces taste shocks to both debt issuance and default decision to induce conver-

gence for the DVFI approach. This taste shock method has been used in several recent

quantitative sovereign default papers, such as Arellano et al. (2020). The mathemati-

cal details of this algorithm are explained in the appendix. Briefly speaking, we need

to assign probabilities to each choice of default and debt issuance to smooth the ex-

pected value functions and hence to facilitate the global maximum search, as shown

in Algorithm 4.

To implement Algorithm 4, the critical value for debt policy εb and default choice εD

are set to be 5e−4 and 2e−4, respectively. Since we use double precision (ϵ = 1e−16), the

εb equals 5e
−4×log(ϵ), while the εD is numerically equivalent to 2e−4×log(ϵ). If the log

odd ratio for debt policy, i.e. W (yi, bj, b
′)−V G(yi, bj), is smaller than εb then the debt

policy b′ is treated as highly unlikely and the probability assigned to such policy is zero.
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Algorithm 4: LOES algorithm for DVFI, Long-Maturity Debt Model

while ∆ < tol do

for Each grid point of Y, yi do

c = b′ × q(yi, b
′)− (λ+ (1− λ)× (η + q(yi, b

′))b+ yi;

W (yi, b, b
′) = u(c) + βEy′|yiV

G
0 ;

[V G(yi, b), B
′(yi, b)] = max {W} ;

if W (yi, b, b
′)− V G(yi, b) > εb then

W (yi, b, i
′) = W (yi, b, b

′)

else

W (yi, b, i
′) = − inf

end

Calculate the probability of debt policy i, i.e. P(b′ = i|yi, b), with

equation (B.4) in the appendix;

V B(yi, b) = u(yi − L(yi)) + βEy′|yi(µV0 + (1− µ)V B
0 );

if V B(yi, b)− V G(yi, b) > εD then

V (yi, b) = V B(yi, b)

else

V (yi, b) = − inf

end

Calculate P(D = 0|y, b) = exp[V (yi,b,D=0)−V G(yi,b)]
exp[V (yi,b,D=0)−V G(yi,b)]+exp[V (yi,b,D=0)−V B(yi,b)]

or equivalently equation (B.6).

end

Calculate debt price via equation (B.7);

All else the same as in Algorithm (2);

end
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Similarly, for log odd ratio V B(yi, bj)−V G(yi, bj) smaller than εD, default risk related

to state (yi, bj) will be deemed to be negligible. This choice of taste shocks ensures the

convergence of solving the long-maturity debt default model with DVFI within 1000

iterations. Readers may have noticed that the taste shock method described in the

appendix is naturally incompatible with FV method: for each exogenous state yi, the

accumulative probability for all debt policy grids or default decisions is required to be

one unit and hence looping over Y is necessary. Therefore, in addition to the previously

mentioned speed and memory drawbacks, being incompatible with taste shocks and

hence not suitable for solving long-maturity debt model is another limitation of the

FV method.

Table 2.5: Speed Comparison, Long-Term Debt Model

Debt Points CPU GPU CPU
GPU

200 2.529 13.058 0.194

(0.7640) (3.9451) -

600 27.043 18.005 1.502

(8.1947) (5.4561) -

1500 367.27 73.19 5.025

(69.43) (13.83) -

3000 1902.85 279.22 6.803

(293.20) (43.02) -

6000 9674.41 1369.07 7.067

(1175.51) (166.35) -

Notes: The time spent in solving the Long-Term Debt Model is in seconds. Figures in brackets

represent the average solving time multiplied by 100. The algorithm applied to both CPU and GPU

is the LOES.

Table 2.5 reveals several facts on the computational efficiency. First of all, the

improvement from applying GPU parallel computation becomes more obvious as the

number of grid points for debt (policy) grows larger. With 200 grid points, CPU

computation is even faster than GPU. At Nb = 600 the time consumed by CPU is
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1.5 times bigger than the GPU counterpart. For Nb = 1500 the ratio of time elapsed

for CPU over GPU grows to 5. At Nb = 6000, the GPU only consumes 14.14% of

the time spent in CPU. By exploring the GPU computation for solving long-maturity

debt model, I also wish to find out if a higher complexity in algorithm would lead to a

different magnitude of efficiency improvement. This could be answered by comparing

Table 2.5 with the results from one-period debt model (Table 2.2), both using the

LOES coding. The higher complexity in solving long-maturity debt model decreases

the efficiency improvement from utilizing GPU. The potential reason is that CPU

is more efficient at dealing with general operations while GPU provides the biggest

improvement in conducting simple numerical calculations like matrix multiplication

and addition. Calculating probability weighted integrals in discrete time, which takes

a large part of time consumed in this paper, is one of the advantages of GPU. Later,

we will see that GPU provides much larger efficiency enhancement in solving a simple

neoclassical growth model.

2.3 Neoclassical Growth Model for Comparison

In this section I illustrate the speed improvement from switching to GPU in calculat-

ing the numerical solutions of a standard neoclassical growth model. We consider a

dynamic programming problem of finding the value function V and capital policy k′

to solve the Bellman equation below:

V (z, k) = max
c≥0, k′

u(c) + βEz′|zV (z′, k′) (2.11)

where β is the subjective discount factor. The budget constraint for this problem is

c = ezkα + (1− δ)k − k′ (2.12)

where c, k and z denote consumption, capital stock and productivity respectively. δ is

the depreciation rate of capital stock. The stochastic productivity z follows an AR(1)

law:

z′ = ρzz + εz, εz ∼ i.i.N(0, σz) (2.13)
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The primes on variables denote next period and Ez′|zV (z′, k′) is the expected value

conditional on state (z, k) and the probability transition law of z. The utility function

takes the same form as in equation 2.8. For the calibration, β = 0.95, σ = 2, α = 0.33,

δ = 0.1, ρz = 0.9 and σz = 0.01. The probability transition matrix for z is drawn by

the Tauchen (1986) method with 25 equally spaced grid points. Capital k is equally

discretized between 25% and 400% of its steady state and the number of grid points

Nk varies from 200 to 6000.

Algorithm 5: FV algorithm, neoclassical growth model

while ∆ < tol do

c = exp(z)kα + (1− δ)k − k′;

Calculate u(c) with equation (2.8) and replicate u(c) in row by Nk times;

EV = Ez′|z × V0, then replicate EV in row by Nk times;

Find the column index (debt policy K ′): [V,K ′] = max {u(c) + βEV };

∆ = max(|V − V0|);

V0 = V ;

end

Algorithm 5 and 6 respectively describe the FV and LOES methods to solve the

neoclassical growth model. We can see that compared with previous sovereign default

models, these algorithms are much simpler: On the one hand, in each “while” loop

for solving sovereign default models, two value functions (V G and V B) and hence two

probability weighted averages (expected values in discrete time) need to be calculated.

For the neoclassical growth model, only one value function and expected value need

to be computed. On the other hand, debt prices should be updated in each “while”

loop for sovereign default models but no such computation is required for the neo-

classical growth model. Overall, the workload for solving neoclassical growth model is

significantly smaller than sovereign default models.

As can be seen in Table 2.6, GPU provides huge improvement relative to conven-

tional CPU computation under the FV algorithm. For Nk = 600, the acceleration

exceeds 15 times. This magnitude grows to 21.7 at 1,500 grid points for capital stock.
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Algorithm 6: LOES algorithm, neoclassical growth model

while ∆ < tol do

for Each grid point of Z, zi do

c = exp(zi)k
α + (1− δ)k − k′;

Calculate u(c) with equation (2.8);

EV = Ez′|zi × V0;

Find the column index (debt policy K ′): [V,K ′] = max {u(c) + βEV };

∆ = max(|V − V0|);

V0 = V ;

end

end

Table 2.6: Speed Comparison, neoclassical growth model via FV

Debt Points CPU GPU CPU
GPU

GPU(FV)
GPU(LOES)

200 2.386 0.702 3.399 0.132

(0.6629) (0.1950) - -

600 25.05 1.575 15.905 0.218

(6.9581) (0.4376) - -

1500 152.65 7.034 21.702 0.398

(42.402) (1.9539) - -

Notes: The time spent in solving the neoclassical growth model is in seconds. Figures in brackets

represent the average solving time multiplied by 100. To be in line with previous tables, the Full

Vectorization (FV) algorithm results for debt points higher than 1,500 are not reported. In fact,

for Nk = 2, 000 the computation with FV is still free from the out-of-memory problem. GPU(FV )
GPU(LOES)

represents the ratio of time spent with FV over LOES, with GPU devices applied for both algorithms.
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The FV method performed with GPU devices also dominates the LOES algorithm

in efficiency (see the fifth column of Table 2.6). For example, at Nk = 600 the time

elapsed under FV takes only 21 percent of LOES. However, the GPU(FV )
GPU(LOES)

ratio grows

as the number of capital grid points enlarges and the out-of-memory problem is still

there.

Table 2.7: Speed Comparison, neoclassical growth model via LOES

Debt Points CPU GPU CPU
GPU

200 1.1609 3.6250 0.320

(0.4739) (1.4796) -

600 10.1067 4.9178 2.055

(4.1252) (2.0073) -

1500 80.53 12.02 6.70

(32.87) (4.905) -

3000 340.69 34.01 10.02

(139.06) (13.88) -

6000 1386.82 139.76 9.92

(566.05) (57.05) -

Notes: The time spent in solving the neoclassical growth model is in seconds. Figures in brackets

represent the average solving time multiplied by 100. The algorithm applied to both CPU and GPU

is the LOES. Notice that the number of iteration for LOES is different from that of FV: the former

uses 246 iterations while the latter needs 361. However, the derived value and policy functions are

the same across two algorithms.

In the next, I solve the neoclassical growth model with LOES and test the im-

provement from utilizing GPU devices. The first finding is that CPU computation

with LOES algorithm is faster than FV. As for GPU, if the number of grid points

is small (200, 600 and 1,500), solving with LOES algorithm underperforms FV. For

higher levels of Nb, GPU with LOES offers 10-times speed-up over the CPU but this

magnitude of improvement is much smaller than the FV counterpart. The GPU(FV )
GPU(LOES)

ratios reported in Table 2.6 are well below 1 unit. As been explained, the workload in

solving neoclassical growth model is significantly smaller than solving sovereign default
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models. In the meantime, the LOES algorithm forces GPU to execute the solving in

a partially sequential manner while the FV fully utilizes the built-in parallelization

advantage between GPU cores. To sum up, the efficiency improvement from switching

to GPU is significant but it is negatively correlated with the complexity of algorithm.

2.4 Conclusion

This paper discusses the efficient solving with discretized value function iteration

(DVFI) method. Although this method is generally slow, it is robust and irreplaceable

for many non-linear macroeconomic models, Accelerating DVFI is therefore of interest

to macroeconomic modellers. The paper uses endogenous sovereign default models to

evaluate the efficiency improvement in solving non-linear models by switching from

CPU (and no parallelization) to GPU parallel computation. These experiments are

conducted on Matlab with its Parallel Toolbox for GPU. The time consumed in solving

is compared with the Matlab CPU counterpart.

The paper provides several findings. First of all, the Looping Over Exogenous

Shocks (LOES) algorithm is significantly faster than the commonly used Full Vector-

ization (FV) algorithm as well as the straightforward Looping Over All States (LOAS)

approach, either for CPU or GPU computation. We also find that for the sovereign

default model with one-period debt, the efficiency improvement of GPU over CPU

could reach tenfold. This relative speed-up is at least as good as the results from ap-

plying Julia CUDA (GPU computation with Julia language). The GPU acceleration

is negatively correlated with the complexity of DVFI algorithm: For a neoclassical

growth model, which is much simpler than the one-period debt model, the speed en-

hancement could reach 21 times. However, if long-maturity debt is incorporated into

the sovereign default framework, which means additional complexity and hence higher

workload in the algorithm, the speed-up from GPU degenerates to 7 times relative to

CPU. In conclusion, the Matlab Parallel Toolbox with GPU parallelization provides

significant and convenient efficiency gains in solving sovereign default models. This

advantage could be applied to solving other non-linear macroeconomic models via the

DVFI approach.
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Chapter 3

Sovereign Debt Pricing with Shifting

Long-run Growth Expectations1

3.1 Introduction

The far-reaching Eurozone debt crisis since 2009 has caused default concerns in the

European debt market and drawn attention to the determinants of sovereign debt

spreads. At that time, fundamentals such as debt-to-GDP ratio, fiscal deficits seemed

not to be the sole driving force of spreads. For example, De Grauwe and Ji (2013)

demonstrate that spreads surge is associated with negative self-fulling market senti-

ments. The role that output expectation plays has been highlighted by Durdu et al.

(2013). In their sovereign default model, agents learn total factor productivity (TFP)

growth via noisy news. Bad news leads to underestimated output growth and therefore

decreases expected probability to repay and increases spreads. In this article, we doc-

ument new evidence on the relationship between spreads and output expectation: the

1This chapter is based on joint work with Dr. Pei Kuang and Prof. Kaushik Mitra.
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potential growth rate forecasts and sovereign debt spreads2 are negatively correlated.

The correlation coefficient is −0.63 for GIIPS countries3 and −0.47 for non-GIIPS

Eurozone economies. These correlations are also non-linear: the negative relationship

is stronger at lower potential growth forecasts and vice versa.

Existing equilibrium sovereign default models struggle to explain this documented

new evidence. Aguiar and Gopinath (2006) incorporate trend shocks in their model

and assume full information rational expectation (FIRE) on trend knowledge. How-

ever, quantitative results show that the correlation between trend growth rates and

spreads is insignificant. Durdu et al. (2013) do not distinguish trend growth rate

and hence provide no rationale. In this paper, we provide a solution by relaxing the

FIRE assumption for trend growth. Agents possess imperfect knowledge on trend and

they form subjective beliefs into infinite horizon to make optimal decisions, including

debt issuance and whether to default. Following the quantitative default framework

à la Eaton and Gersovitz (1981), the government issues debts to risk-neutral foreign

lenders who incorporate default risk into yield spreads. Default is endogenously made

to maximize household’s utility.

Why incorporating learning about trend is important to the rationale of new evi-

dence? On the one hand, when the model is built upon a FIRE hypothesis, existing

estimations show that trend shock only take a very small portion of the total variance

of TFP shocks, i.e. the trend-TFP variance ratio is low, especially when financial

friction is considered4. Apart from productivity shocks, Garcia-Cicco et al. (2010) let

TFP shocks, which include trend and transitory components, compete with interest-

rate shocks, preference shocks and government spending shocks. The estimated trend-

TFP variance ratio is only 2.4%. In Gordon et al. (2018) default risk, another form

of financial friction, is included and the estimated trend-TFP variance ratio is only

2The potential growth rate forecast data comes from the European Economic Forecast published
by the European Commission. Following literature, sovereign debt spreads are measured as the
premiums in the 10-year government bonds over the German counterpart. The sample of spreads
includes 10 Eurozone countries between 2004 and 2016: Austria, Belgium, France, Finland, Greece,
Ireland, Italy, Netherlands, Portugal, Spain.

3The GIIPS countries include Greece, Ireland, Italy, Portugal and Spain, all severely affected by
the Eurozone debt crisis.

4In a frictionless neoclassical framework, Aguiar and Gopinath (2007) estimate that trend shock
takes 40% of the TFP variance for Canada. Uribe and Schmitt-Grohé (2017) provide thorough
critiques on the relative importance of trend shocks.
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1.3%. As verified in the later part of this paper, with a trivial importance of trend

shocks, assuming FIRE in an sovereign default framework makes the simulated corre-

lation coefficient between debt spreads and trend beliefs insignificant. On the other

hand, Boz et al. (2011) embed learning about trend shocks into a small open economy

framework5 and the ratio of trend-TFP variance is estimated to be 20% for a case

of developed economy. We develop their learning model by incorporating endogenous

default risk. With calibrated 6.5% trend-TFP variance ratio, the simulated correlation

coefficient matches GIIPS data.

There are two channels contribute to the non-trivial impact of subjective trends

on spreads. The first one is related to the belief updating system and we refer to it

as the learning channel. This channel arises from the updating of subjective trend

shocks. The TFP consists of transitory and trend components, both of which are

unobservable. Trend beliefs are updated via a Bayesian system, with observed TFP

shocks and noisy signals about the trend as inputs. Therefore, agents usually have

difficulty in distinguishing the trend and transitory shocks. Statistics results show the

perceived trend is positively correlated with the perceived transitory shock, which is

the main driver of expected output, debt issuance, default and hence spreads.

The second channel, denoted as the belief channel, is associated with how agents

taking subjective beliefs into account. Decisions are based on infinite horizon forecasts,

while the probability distribution of future states is deeply influenced by perceived

trend growth rates. Intuitively, beginning at the steady state of the FIRE model,

lower (higher) trend/transitory shock leads to lower (higher) expected output, lower

(higher) capability to repay maturing debt and hence foreign lenders charge higher

(lower) spreads. The previously mentioned learning channel exaggerates shocks: the

perceived trend growth is usually below (above) real trend during economic downturn

(booming). Therefore, pessimism (optimism) over trend growth results in underesti-

mated (overestimated) output, overestimated (lower) default probability Accordingly,

debt spreads raise higher than levels determined by fundamentals.

We show that our learning model also generates much more volatile debt market

5Similar to Schmitt-Grohé and Uribe (2003), the small open economy faces external debt-elastic
interest-rate premium, which represents a simple way to introduce financial friction.
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variables compared to its FIRE counterpart. The default frequency and standard

deviation of spreads are respectively 10 and 4 times higher. Because of the much

larger probability of default, simulated average spreads in the learning model is 3.2

times larger. This improvement in debt-relevant statistics is closely related to the

movements of trend beliefs. As confirmed by a generalized impulse response analysis

in Koop et al. (1996) style, upon a negative transitory productivity shock, trend growth

becomes underestimated and spreads immediately rise up. For the FIRE model, agents

know that trend growth is independent with transitory shocks so that spreads stay

unaffected in this scenario. We also prepare typical default analysis as in Mendoza

and Yue (2012) and the results resemble the Greek default in 2012. More importantly,

as the typical default event approaches, the learning model delivers a deeper reduction

in subjective trend growth estimates and a greater surge in spreads than FIRE.

This paper is related to two strands of literature. The first strand of literature

incorporates learning behaviour into macroeconomic models in a range of wide ap-

plications. Such as Preston (2005), Eusepi and Preston (2011), Adam et al. (2012),

Kuang (2014). Agents behave as econometricians who update parameters when new

data are available, make infinite horizon forecasts and solve their optimization prob-

lems. This method could also be regarded as the ”anticipated utility” approach in

Kreps (1998). Following that, each of the perceived trend growth rates corresponds

to a specific set of policy functions and debt price. Trend belief is acquired via a Boz

et al. (2011) style Bayesian updating rule6 where agents estimate the trend and tran-

sitory components of TFP shock. Kuang and Mitra (2016) show that potential GDP

growth forecasts is a crucial ingredient in understanding business cycle fluctuations,

while Kuang and Mitra (2021) document the systematic forecast errors for Eurozone

potential GDP growth rates. Inspired by these papers, we wish to see if beliefs of

potential growth are correlated with sovereign debt markets during recent Eurozone

debt crises.

The second steam of literature is on quantitative sovereign debt default models

in Eaton and Gersovitz (1981) style where default is endogenous. Various researches

6In fact, the Bayesian updating rule in Boz et al. (2011) is embedded into the first-order linear
solutions of their model, see the chapter 5 of Uribe and Schmitt-Grohé (2017) for detail. Such
algorithm is unable to be applied to sovereign default model because of the non-linearity.
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have investigated how economic fluctuations influences default risk/sovereign debt pric-

ing and vice versa. A short list includes Arellano (2008), Mendoza and Yue (2012),

Chatterjee and Eyigungor (2012), Na et al. (2018), etc. Specifically, our FIRE model

resembles Aguiar and Gopinath (2006), where the TFP shock has both permanent and

transitory components. The most relevant paper is Durdu et al. (2013), which incor-

porates imperfect knowledge on productivity shock to study the relationship between

news and default risk. We advance on these two studies by introducing subjective

trend growth. Sovereign default literature exploring the self-fulfilling default crisis,

i.e. belief that default is possible could accelerate default, is also relevant. For exam-

ple, Bocola and Dovis (2019) find this nonfundamental risk played a role in the crisis.

Galli (2021) show the vicious circle of pessimism beliefs in repayment, substituting

borrowing with taxation, and hence lower growth and higher default risk.

The remainder of this paper proceeds as follows: Section 2 exhibits the new ev-

idence on the relationships between Eurozone sovereign debt spreads and potential

growth forecasts; Section 3 explains the learning model as well as its comparative full

information model; Section 4 shows the calibration and quantitative analysis of our

model; in Section 5, we conduct sensitivity analysis by changing the trend belief cali-

brations and considering long-maturity sovereign debt; Section 6 draws the conclusion.

3.2 New evidence

This section presents new evidence on Eurozone sovereign debt crisis. We firstly docu-

ment evidence on the relationship between sovereign bond spreads and potential GDP

growth forecasts. The former is measured as the difference in the 10-year govern-

ment bond yields for sampling countries against Germany. The latter is the average

of growth rate of real potential GDP forecast over year t to t + 3 made in Spring or

Autumn of year t. Forecasts are taken from the annual macroeconomic database pub-

lished in European Economic Forecast by the European Commission (EC) that covers
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data vintages from 2004 Autumn to 2016 Spring7. This dataset has been computed

consistently across countries by the EC using a uniform estimation methodology for po-

tential output. Quarterly sovereign bond yields are from Datastream. Using the data

between 2004 Autumn and 2016 Spring, Table 3.1 reports the correlation coefficients

between 10-year government bond yield spreads and average forecasts of growth rates

of real potential GDP over next four years for ten Eurozone countries. There are neg-

ative correlation coefficients for the potential output growth forecasts and government

bond spreads. The coefficients range from -0.53 to -0.84, all statistically significant at

1% confidence level.

Table 3.1: Correlation between spreads and potential GDP growth forecasts

Country ρ(γ̃, r − r∗) p-value

Greece -0.78 0.000

Ireland -0.81 0.000

Italy -0.82 0.000

Portugal -0.80 0.000

Spain -0.84 0.000

Belgium -0.65 0.001

France -0.77 0.000

Netherlands -0.68 0.000

Austria -0.53 0.008

Finland -0.60 0.002

Notes: r − r∗ stands for the spread of 10-year government bond, i.e. the bond yield to maturity

r minus risk-free rate r∗, which is Germany 10-year government bond yield to maturity. γ̃ denotes

potential GDP growth forecast. ρ(γ̃, r−r∗) is the correlation coefficient between trend growth forecast

and sovereign debt spread.

Upper panel of Figure 3.1 plots pooled sovereign bond spread data in vertical axis

7We use European Economic Forecast data because it is an expert forecast. In our learning model,
although agents only possess imperfect information on trend growth, they estimate the trend in an
optimal manner. Hence, we argue that European Economic Forecast is a good match with our model
setup.
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against pooled average of real potential output growth rate forecasts in horizontal axis.

Data comes from GIIPS countries that were most severely influenced by the recent

crisis. The correlation coefficient of these two variables is -0.63. The lower panel

of Figure 3.1 plots the same relationship for all 10 Eurozone countries mentioned in

Table 3.1 and the correlation coefficient is -0.55. For the pooled data for 5 non-GIIPS

countries, the correlations coefficient is -0.47.

Notice that the above-mentioned relationships are not linear. To illustrate this, We

fit the pooled data for both GIIPS and all 10 Eurozone countries with a linear model:

γ̃t = β1 + β2(rt − r∗) + εt (3.1)

as well as a non-linear model

γ̃t = β1 · exp
[
β2 · (rt − r∗)

]
+ εt (3.2)

We estimate parameters β1 and β2 for both models with the debt spread data (rt− r∗)
as dependent variable and potential GDP growth forecast data γ̃t as independent

variable. Estimation results are reported in table 3.2, which indicates that the non-

linear model outperforms the linear model. Specifically, given that β̂1 and β̂2 for both

models are significant in 1% confidence level, the information criteria and the sum of

squared errors of the non-linear model are lower than those of the linear model.

As shown in Figure 3.1, this non-linear relationship indicates that when the trend

forecast falls, the negative correlation between spreads and forecasts becomes stronger.

By contrast, at optimistic levels of trend forecasts, this correlation is much weaker.

As will be explained, the equilibrium default model with learning mechanism could

replicate the negative correlation coefficient between spreads and trend beliefs but also

the non-linearity of this relationship.

Finally, we draw the movements of sovereign debt spread and GDP potential growth

rate forecast for Greece during its default episodes around the second quarter of 2012.

As shown in Figure 3.2, it is clear that the projected potential GDP growth exhibits

continued decline prior to the default. In the meantime, Greek 10-year government

bond spread experiences dramatic increase. After 2012, sovereign spread stays at a
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Figure 3.1: Debt spreads and trend forecasts data, 2004-2016, from GIIPS and 10 Eurozone coun-

tries. Trend forecast is the deviation from each country’s mean level.
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Table 3.2: Data-Based Estimation of linear and non-linear relationships

GIIPS 10 Eurozone

Statistics Non-linear Linear Non-linear Linear

β̂1 1.893 2.623 1.032 1.492

(0.3064) (0.2763) (0.1433) (0.160)

β̂2 -0.547 -1.482 -0.754 -1.307

(0.0684) (0.1686) (0.0569) (0.1282)

SSE 984.21 1081.3 1181.9 1469.1

AIC 595.07 608.35 1065.7 1119.9

BIC 600.64 613.93 1072.7 1126.9

Sample size 120 120 240 240

Notes: SSE is sum of squared error of estimation; AIC is Akaike’s Information Criteria; BIC means

Bayesian Information Criteria. Numbers in brackets are standard errors in parameter estimation. All

8 estimated coefficients are statistically significant in 1% confidence level.

Figure 3.2: Debt spreads and trend forecast in recent Greece sovereign debt crisis. Spread data is

from 10-year government bond spread, trend growth rate forecast comes from European Economic

Forecast, both two times series are in semi annual frequency. Vertical dotted line indicates default

time. In March 2012, Greece and its private creditors completed a debt restructuring, so we define

the first half of 2012 as default time.
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lower platform, while the trend growth forecast stops decreasing and stabilizes. In

summary, the negative correlation between trend growth forecast and sovereign bond

spread is a non negligible feature for the recent Eurozone debt crisis.

3.3 The model

In this section, we explain the sovereign default model built upon imperfect knowledge

on trend growth rate. We begin with the model where agents have full knowledge on

the permanent and transitory components of the TFP, or equivalently Full Information

Rational Expectation (FIRE) model.

3.3.1 The FIRE model

Three types of agents resides in the economy: the representative household, firm and

government. The household aims to maximize the sum of expected discounted utility

E0

∞∑
t=0

βtu(Ct, ht) (3.3)

Ct is consumption, ht denotes working hours. Utility function follows the commonly

used Greenwood–Hercowitz–Huffman (GHH) form (Greenwood et al., 1988) in equilib-

rium sovereign default literature. It is adjusted to be compatible with the stationarity

of ht:

u(Ct, ht) =
1

1− σ

[(
Ct −

1

ω
Γt−1h

ω
t

)1−σ

− 1

]
(3.4)

Household consumption is financed by wage income Wtht, dividend income Πt and

government transfer payment Ft, as shown in the budget constraint:

Ct = Wtht +Πt + Ft (3.5)
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The firm seeks to maximise profit Πt by producing real goods and hiring optimal

amount of labour:

max
ht

{Πt} = max
ht

{Yt −Wtht} (3.6)

Real goods are produced with following function (Aguiar and Gopinath, 2006):

Yt = eztΓth
1−α
t (3.7)

where zt stands for the transitory component of TFP and follows an AR(1) process:

zt = ρzzt−1 + εzt (3.8)

with |ρz|< 1 and εzt ∼ i.i.N(0, σ2
z). Γt represents the cumulative product of the

permanent component of TFP:

Γt = γtΓt−1 =
t∏

s=0

γt (3.9)

where the trend growth γt follows

log(γt) = (1− ργ) log(γ) + ργ log(γt−1) + εγt (3.10)

with |ργ|< 1 and εγt ∼ i.i.N(0, σ2
γ). The TFP shock is At = eztΓt and its growth rate

in logarithm is:

∆ log(At) ≡ log

(
eztΓt

ezt−1Γt−1

)
= zt − zt−1 + log(γt) (3.11)

The benevolent government issues foreign debt Dt+1 at price qt if the country

maintains good financial status, i.e. It = 1. All net governmental borrowings are

transferred to the household:

Ft = It

(
qtDt+1 −Dt

)
(3.12)

Default is another endogenous choice: all external debts not recognised and all due
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repayments are transferred to the household8. After default, the country immediately

falls into bad financial status (It = 0) where it cannot issue sovereign debt. In each

period of bad financial status, there is a constant probability θ that the country returns

to good financial status and regain access to foreign lending, see equation (3.17). Debt

issuance price qt is determined in a buy-side market where buyers are risk-neutral and

equate the price to the expected value of repayment:

qt =
EtIt+1

1 + r∗
(3.13)

where r∗ is the risk-free rate. In bad financial status, the sovereign debt price does not

exist 9.

Apart from financial autarky, the country also suffers from an output loss L(yt)

in bad financial status. As argued in Arellano (2008) and quantitatively shown in

Uribe and Schmitt-Grohé (2017), default cost is important to generate low default

frequency. In this article, we adopt an ad hoc quadratic productivity loss function

similar to Chatterjee and Eyigungor (2012):

L (exp(zt)) = max
{
0, δ1 exp(zt) + δ2[exp(zt)]

2
}

(3.14)

Trend shock γt is not included into the productivity loss, in line with the empirical

findings in Borensztein and Panizza (2009) that output loss of default is short-lived.

The transitory shock after default cost is exp(zautt ) = exp(zt)−L (exp(zt)). Detrended

output in bad financial status yaut is assumed to be a function of variable zaut and the

unconditional mean of trend growth as a parameter:

yautt = y(zautt ; γ) (3.15)

Similarly, the equilibrium labour in bad financial status is hautt = h(zautt ; γ)10

8See Yue (2010) for an example of debt renegotiation.
9Readers interested in the shadow price of domestic debt are referred to Na et al. (2018) equation

(21). We do not explore the shadow price in this paper.
10We treat trend growth as parameter in yautt and haut

t for the convenience of incorporating antic-
ipated learning about trend growth rate. Using γt in yautt and haut

t casts little influence on the results
but significantly complicates the learning model.
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3.3.1.1 Recursive Representation of the FIRE Model

Let st = (zt, γt) denotes the set of exogenous variables, dt stands for the endogenous

state variable debt. Define V as the detrended11 value function. The value corre-

sponding to good financial status is V g, while V b corresponds to being in bad financial

status. Social planner maximizes V g by choosing optimal consumption, working hours

and debt policy dt+1, given st:

V g(s, d) = max
c,h,d′

{
u(c, h) + β̃Es′|sV

o(s′, d′)
}

(3.16)

where β̃ = βγ1−σ. The optimization of V g is subject to the consumption constraint in

good financial status, as replicated from equation (C.11):

c = y − d+ γqd′

The value function corresponding to being in bad financial status is

V b(s) = u
(
caut, haut

)
+ β̃Es′|s

[
θV o(s′, 0) + (1− θ)V b(s′)

]
(3.17)

The V o in above two value functions denotes the value of the default option:

V o(s, d) = max
{
V g(s, d), V b(s)

}
(3.18)

The default indicator It depends on the value of staying in good financial status or

falling into bad financial status:

I =

 1, if V g(s, d) > V b(s).

0, otherwise.
(3.19)

The face value of sovereign bond is assumed to be one unit. Risk-neutral lenders

equalize qt and default risk adjusted discounted value of expected future repayment

Es′|sI ′:

I
[
q(s, d′)−

Es′|sI(s′, d′)
1 + r∗

]
= 0 (3.20)

11For the derivation of detrended equations equilibrium conditions of RE model, see Appendix A.
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The yield to maturity of bond is rt = 1/qt. Sovereign spread is defined as the difference

between the yield to maturity and risk free rate, rt − r∗.

Definition 3 (Model equilibrium, FIRE Model). Given exogenous shocks st and debt

state dt, a recursive equilibrium for the FIRE model consists of the policy functions of

default It, output yt, consumption ct, working hours ht, debt issuance dt+1, and the

value functions for different financial status, V g(s, d), V b(s), V o(s, d) and bond price

qt, such that

1. Given price qt, the policy functions and value functions (3.16), (3.17), (3.18)

solve the social planner’s optimization problem.

2. Given optimal default rule It, bond price qt satisfies the risk-neutral rule (3.20).

3. yt, ct and ht depend on default loss functions and other equilibrium conditions.

3.3.2 Learning about Trend

We has shown the empirical evidence of non-linear negative relationship between

sovereign debt spreads and trend growth forecasts. This evidence is rationalized with

a quantitative sovereign default model where agents have imperfect information on

trend growth rates. We refer to this model, to be explained in this section, as the

“learning model”.

The agents cannot observe zt and γt so that they can only learn the transitory

and trend shocks, i.e. z̃t and γ̃t, to make decisions. The belief formation is based on

observed TFP growth ∆ log(At) and a noisy signal nt about the trend growth:

nt = log(γt) + εnt (3.21)

where εnt ∼ i.i.N(0, σ2
n) is a noise that measures the deviation of signal from true

trend shock. The structures of ∆ log(At) (3.11) and nt are assumed to be known to

agents. The observation equation summarizes the construction of observed TFP and
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trend signal in state space representation Yt = Ztαt, or equivalently:

[
∆ log (At)

nt

]
=

[
1 −1 1 0

0 0 1 1

]
·


zt

zt−1

log(γt)

εnt

 (3.22)

Another equation called transition equation describes the evolution of unobserved

variables αt = (zt, zt−1, log(γt), ε
n
t )

T on the left hand side of equation (3.22): αt =

Tαt−1 +C+Rηt, or equivalently:
zt

zt−1

log(γt)

εnt

 =


ρz 0 0 0

1 0 0 0

0 0 ργ 0

0 0 0 0




zt−1

zt−2

log(γt−1)

εnt−1

+


0

0

(1− ργ) log (γ)

0

+


1 0 0

0 0 0

0 1 0

0 0 1


ε

z
t

εγt

εnt


(3.23)

where ηt ∼ i.i.N(0,Q), Q is the variance-covariance matrix for the three independent

shocks. As σn → +∞, the signal provides less information on trend growth. As

σn → 0, the signal becomes more accurate.

Given equation (3.22) and (3.23), a Bayesian updating rule provides the best es-

timation at for the unobserved variables, αt. The prior estimator is determined by

at|t−1 = T · at−1 +C while the posterior at is a linear combination of the prior beliefs

and observations such that

at = κ1at|t−1 + κ2Yt (3.24)

where κ1 = [I−PZ′(ZPZ′)−1Z] and κ2 = PZ′(ZPZ′)−1 are the gain parameters 12.

I is a 4 × 4 identity matrix. We denote the vector at as [z̃t, z̃t−1, log(γ̃t), ε̃
n
t ]

T . Notice

that rule (3.24) only governs the perceptions of exogenous shocks. In Boz et al. (2011),

a similar updating rule is embedded into the linear solutions of their model so that

agents will anticipate this learning rule. Readers interested in the details of their

method are referred to the chapter 5 of Uribe and Schmitt-Grohé (2017). However,

12Pt is the covariance matrix of estimation error. Pt ≡ E [(αt − at)(αt − at)
′] with an updating

rule called Raccati equation, which is is written as Pt+1 = TPtT
′−ZPtZ

′(ZPtZ
′)−1ZPtT

′+RQR′.
To obtain the steady state of Pt, we run iterations given an initial guess P0 until the absolute value
norm of the difference between Pt+1 and Pt is smaller than a tolerance rate.
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such an asymptotic method should not be applied to sovereign default model because

of its built-in kink: different financial statuses deliver different optimization problems.

For dynamic programming problems like the equilibrium sovereign default model, a

natural method to introduce imperfect information is the“anticipated utility”approach

in Kreps (1998). Policy functions are updated in each period using current posterior of

the parameters of interest. To solve the optimization problem, agents treat the learnt

parameters as constant into infinite future. Under this approach, trend uncertainty are

accounted for but learning itself is not anticipated, as discussed in Koulovatianos et al.

(2009). Incorporating anticipated learning in sovereign default model is intractable,

but anticipated utility approach provides a reasonable alternative.

The solutions of the learning model is as follows In the FIRE model, the percep-

tions of transitory growth z̃t and trend growth γ̃t coincide with the true realizations.

However, in the learning model, z̃t and γ̃t generally deviate from the true shocks. γ̃t

is treated as constant parameter when the dynamics programming problems are being

solved. z̃t is still treated as a stochastic shock. We define xt as the set of control

variables, xt = (ct, yt, ht, qt, y
aut
t , hautt , It). For each trend belief γ̃t, we obtain a unique

decision equation that governs the evolution of control variables:

xt = g(z̃t, dt; γ̃t) (3.25)

and a motion law of the endogenous state:

dt+1 = h(z̃t, dt, xt; γ̃t) (3.26)

Beliefs z̃t and γ̃t evolves as the Bayesian updating rule in 3.24.
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3.3.2.1 Recursive Representation of the Learning Model

In the learning model, given belief z̃t, social planner treat γ̃t as a parameter to solve

her optimization problem. Value function in good financial status is:

(3.27)V g(z̃, d; γ̃) = max
{c,h,d′}

{
u(c, h) + β̃Ez̃′|z̃V

o(z̃′, d′; γ̃)
}

value function in bad financial status is:

V b(z̃; γ̃) = u
(
c(z̃aut; γ), h(z̃aut; γ)

)
+ β̃Ez̃′|z̃

[
θV o(z̃′, 0; γ̃) + (1− θ)V b (z̃′; γ̃)

]
(3.28)

and the value of default option is:

V o(z̃, d; γ̃) = max
{
V g(z̃, d; γ̃), V b(z̃; γ̃)

}
(3.29)

The non-default indicator is now Ĩ = I(z̃, d; γ̃), and the risk-neutral pricing rule of

sovereign debt becomes:

I(z̃, d; γ̃) ·
[
q(z̃, d′; γ̃)−

Ez̃′|z̃I(z̃′, d′; γ̃)
1 + r∗

]
= 0 (3.30)

The difference in I(s, d) and I(z̃, d; γ̃) plays an important role in replicating the

evidence of negative correlation between sovereign bond spread and trend growth rate

forecast. Recall that social planner chooses to default if and only if V b is bigger

than V g. When trend growth belief is pessimistic (γ̃ < γ), y(s) is more likely to

be higher than y(z̃; γ̃). So that for the imperfect information case, the production

difference between bad and good financial status, yaut(z̃; γ) − y(z̃; γ̃), is more likely

to be overestimated relative to the corresponding difference from the full information

case, i.e., yaut(z; γ)− y(s). This indicates that the gap between the value functions of

bad and good financial status, V b − V g, is likely to be overestimated in the imperfect

information case. As a result, expected default probability [1 − Ez̃′|z̃I(z̃′, d′; γ̃)] will
be overestimated (underestimated) if the social planner holds pessimistic (optimistic)

perceptions on trend growth. Accordingly, the risk-neutral pricing rule (3.30) delivers
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lower (higher) sovereign bond price q(z̃, d′; γ̃) < q(s, d′) (q(s, d′) < q(z̃, d′; γ̃)) in the

imperfect information case compared with the full information case. For the algorithm

that solves this learning model, readers are referred to appendix C.2.

Definition 4 (Model equilibrium, learning model). Given state z̃t and dt, and current

trend belief γ̃t, a recursive equilibrium for the learning model consists of policy func-

tions of default choice Ĩt, output yt, consumption ct, working hours ht, debt issuance

dt+1, value functions V g(z̃, d; γ̃), V b(z̃; γ̃), V o(z̃, d; γ̃) and bond price qt, such that

1. Given bond price qt, the policy functions, value functions (3.16), (3.17) and (3.18)

solve the economy’s optimization problem.

2. Given default decision Ĩt, bond price qt satisfies risk-neutral pricing rule (3.30).

3. yt, ct and ht depend on default loss functions and other equilibrium conditions.

3.4 Calibration and Computation

The learning model is calibrated to match the average of GIIPS economies’ quarterly

business cycle statistics between the first quarter of 2000 and the fourth quarter of

2018. The FIRE model takes the same calibration, except that there is no parameter

relevant to the learning mechanism. The calibration is summarized in Table 3.3 and

could be classified into three strands. The first strand relates to the trend belief

updating: The standard deviation of error term for transitory shock process σz, trend

growth σγ and signal noise σn. To calibrate standard deviation of signal noise process

error term σn, we set the signal to noise ratio σγ/σn to be 23%. The autoregressive

coefficient of transitory shock process ρz is 0.90 as commonly used in literature. Given

the variance of TFP

V ar
[
log(∆At)

]
= V ar

[
log(γt) + zt − zt−1

]
=

σ2
γ

1− ρ2γ
+

2σ2
z

1 + ρz
(3.31)

78



3.4. Calibration and Computation Chapter 3

the variance of trend shock could be derived as the following equation:

σ2
γ =

Vγ/VA
1− Vγ/VA

·
2σ2

z(1− ρ2γ)

1 + ρz
(3.32)

We pick σz and Vγ/VA such that the standard deviation of Hodrick–Prescott filtered

simulated output matches the average of GIIPS countries’ GDP data, 2.5%. See the

sensitivity analysis in later section for alternative values for Vγ/VA. Similar small

Vγ/VA could be found in Garcia-Cicco et al. (2010) and Gordon et al. (2018) where

financial frictions are incorporated. The choice of σγ and σn makes the difference

between the simulated maximum and minimum quarterly trend growth belief to be

0.88%, close to the documented trend forecast range for GIIPS counties, 1.08%.

The second strand of calibration consists of structural parameters for a typical

equilibrium default model. β is lower than the commonly used values in RBC models

but within the range of sovereign default literature. A low β is needed to generate

reasonable default frequency and sovereign bond spread. The value of productivity

loss parameters δ1 and δ2 are selected to make simulated output loss conditional on

being in bad financial status equal 7%, as in Na et al. (2018). β, δ1 and δ2 are jointly

calibrated to deliver average bond spread of 2.02% to match the average sovereign bond

spread for GIIPS countries in sample. The resulting average debt-to-output ratio from

our model is 32% that is in line with literature on sovereign default but falls below the

average government debt to GDP ratio for the GIIPS countries.

The third strand relates to the discretization of state spaces. we approximate the

processes for zt, γt and z̃t with the method in Tauchen (1986). The maximum and

minimum deviations from the unconditional means is set to be 4.2 standard deviations.

Notice the structure of perceived transitory process {z̃t} is generally different in struc-

ture from the true process {zt}. To account for this difference, simulated z̃t is used to

estimate the AR(1) parameters of {z̃t} process for the learning model. The estimated

serial correlation parameter is 0.9475, while the estimated standard deviation of error

term is 0.94%. Both z̃ and γ̃ are discretized into 101 equally spaced grid points. Debt

state is equally spaced into 200 grids within [0, 80%], and the upper bound is never

visited during the simulation. Overall, our learning model has 101 × 101 × 200 coor-

dinate points of states. Ceteris paribus, the FIRE model has 51 grid points for both
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Table 3.3: Calibration, the Learning Model

Parameters Value Description

1− α 0.68 Share of labour

β 0.913 Subjective discount factor

σ 2 Coeff. of relative risk aversion

θ 0.1 Probability of reentry

r∗ 0.01 Risk free rate

ω 1.455 Labour supply curvature

δ1 -0.6919 Loss function parameter

δ2 0.7477 Loss function parameter

ρz 0.90 Serial correlation of zt

σz 0.96% Standard deviation of εzt

γ 1.005 Unconditional mean of trend

ργ 0.21 Serial correlation of γt

σγ 0.254% Standard deviation of εγt

σn 1.13% Std of trend growth signal noise

Vγ/VA 0.065 Relative variance of trend

σγ/σn 0.23 Signal-to-noise ratio

Discretization

[nz̃, nz] [101, 51] Number of z̃t and zt grids

[nγ̃, γz] [101, 51] Number of γ̃t and γt grids

[d, d] [0, 0.800] Range of debt grids

[log(γ̃), log(γ̃)] [0.057%, 0.938%] Range of trend belief grids

Notes: θ follows Aguiar and Gopinath (2006), indicating average autarky duration of 2.5 years.

α, σ and ω values are common in small open economy literature. ργ follows the Boz et al. (2011)

estimation for developed economies.
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exogenous shocks. The value functions for good financial status, bad financial status

and bond price are iterated until the aggregate maximum norm between two adjacent

steps is below 1.0e− 6.

3.5 Results

3.5.1 Quantitative results

Table 3.4 reports business cycle statistics of interest from data and simulations. The

first column shows the results from data, all calculated as the average of individual

GIIPS countries’ respective statistics. The second column exhibits simulated moments

from our learning model. The third column shows moments from the FIRE model. To

compute the moments from two models, we run 500 independent chains of simulation

with each chain containing 1200 quarters. We drop the first 200 quarters in each chain

to obtain stationarity. The reported moments takes the median value of statistics

across all 500 chains.

As we can see from the Table 3.4, the learning model generally matches business

cycle data well. Most importantly, it produces highly negative correlation coefficient

between trend growth beliefs and sovereign spreads, i.e. ρ(r− r∗, γ) = −0.62, which is

very close to the coefficient in data -0.63. Meanwhile, the FIRE model only produces

weak correlation (absolute value lower than 0.1) between perceived trend growth rates

and sovereign spreads. The reason of low correlation for FIRE model is that the

unconditional variance of trend growth process is very low while the changes in spreads

are dominated by transitory shocks. In this article, we are able to rationalize the

evidence of tight correlation between trend growth beliefs and sovereign debt spreads,

even though the true trend may not be important to explain spreads.

There are two channels contributing to the match of coefficient of ρ(r − r∗, γ̃).

The first is referred to as the “learning channel”: trend growth perceptions are posi-

tively correlated with transitory growth beliefs. Under belief updating rule described
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Table 3.4: Statistics from Data and Simulation

Data Learning FIRE

Default frequency - 4.4% 0.4%

E(r − r∗) 2.03 2.02 0.64

σ(r − r∗) 0.026 0.027 0.007

σ(y) 0.025 0.025 0.024

σ(c)/σ(y) 0.9 1.30 1.34

ρ(r − r∗, y) -0.42 -0.47 -0.59

ρ(r − r∗, tby) 0.45 0.71 0.82

ρ(r − r∗, z̃) - -0.51 -0.56

ρ(r − r∗, γ̃) -0.63 -0.62 -0.07

Notes: Default frequency is calculated as the frequency of default event in 400 quarters. r − r∗

stands for the spread of sovereign debt, i.e. the yield of sovereign bond minus risk-free rate. y denotes

HP-filtered GDP. tby denotes net export, or trade balance to GDP ratio. c stands for HP-filtered

consumption. z̃ stands for the perceived transitory shock. γ̃ is the perceived trend growth rate.
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Figure 3.3: Bond price as functions of debt states. The blue solid lines correspond to 0.2% quarterly

γ̃; red dashed lines correspond to 0.6% quarterly γ̃. z̃ is 0.056 in the high case (top panel), 0 in the

median case (medium panel) and -0.056 in the low case (bottom panel). Prices only resides in good

financial status. Lower z̃ results in fewer price supporting debt states. In the high and median z̃

case, the bond prices corresponding to zero debt outstanding are 0.99. Price lines are truncated for

the convenience of illustration. “Default low” denotes the default sets associated with low perceived

trend, while “Default high” relates to the high perceived trend.
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by equation (3.24), trend belief comoves with the observed TFP, whose fluctuations

are mainly ascribed to transitory shocks. Since debt price and most endogenous vari-

ables in the model is driven by transitory shocks, the correlation between spreads and

transitory shocks will be strong. As verified by simulation, the correlation coefficient

between γ̃ and z̃ is 0.42, while the correlation coefficient between γ̃ and rt−r∗ is -0.62.

The second channel is named as the “belief channel”. It comes from the fact that

the perceived trend growth rate is taken into agents’ infinite horizon expectation and

hence influences their choices. As discussed in a previous section, the underestimation

of trend growth leads to an overestimation of the value function gap V b − V g, which

implies that repaying debt is becoming suboptimal because the future income and

consumption are more likely to be lower. Observing this, the risk neutral foreign

lenders takes the higher default probability into account and hence charge a higher

spread over the country’s sovereign debts. This relationship is verified by the debt

price schedules as shown in Figure 3.3. We can see that for all three fixed levels of

transitory growth beliefs, the prices (spreads) of sovereign debt corresponding to low

trend belief is lower (higher) than the prices (spreads) corresponding to higher trend

beliefs, across all shared debt states.

Comparing with the FIRE model, assuming imperfect knowledge on trend not only

delivers higher default frequency but also a default frequency that is larger than average

spread13. The reason is twofold. First, the default set resides on the downside of trend

beliefs. Consider an imaginary threshold γ below which default is optimal. Lower

trend belief leads to higher probability of γt < γ. While higher trend belief makes the

economy further away from default. Eventually the distribution of perceived trend is

more dispersed than the real trend, as a result the default set {γ : γ ≤ γ} enlarges.

Second, trend belief is treated as a constant each time agents solve the optimization

problems so that for an γt lower than γ the probability of γt < γ is zero (According

to equation 3.30, debt price and spread is related to expected γt). Hence, the setup of

anticipated utility negatively influences spreads. Overall, there is larger chance that

the average spread falls below default frequency in the learning model.

13As discussed in Uribe and Schmitt-Grohé (2017), for equilibrium default model with one period
debt, the simulated default frequency usually falls below the average debt spread.
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Table 3.5: Simulation-Based Estimation of linear and non-linear relationships

Simulation GIIPS Data

Statistics Non-linear Linear Non-linear Linear

β̂1 1.724 2.105 1.893 2.623

(0.0748) (0.0701) (0.3064) (0.2763)

β̂2 -2.016 -4.684 -0.547 -1.482

(0.0825) (0.1990) (0.0684) (0.1686)

SSE 3639.5 3846.5 984.21 1081.3

AIC 3767.0 3816.7 595.07 608.35

BIC 3776.6 3826.1 600.64 613.93

Sample size 1000 1000 120 120

Notes: SSE is sum of squared error of estimation; AIC is Akaike’s Information Criteria; BIC means

Bayesian Information Criteria. Numbers in brackets are standard errors of respective estimation. All

4 estimated coefficients are statistically significant in 1% confidence level.

Our learning model also replicates the non-linearity in the relationship between

spreads and trend growth forecasts. As shown in Table 3.5, the sum of squared errors

and information criteria for the non-linear model is much smaller than those for the

linear model. Figure 3.4 visualizes the curve fitting. Data points in this figure is taken

from an arbitrary chain of the 500 simulated chains. As in data, the simulated negative

correlation is stronger at lower levels of trend belief. Regarding the intuition behind

this non-linear relationship, note that default is a tail risk and default set is on the left-

hand side of the probability density curve of the perceived TFP distribution. Below

some threshold of TFP (keeping the debt state fixed), default would be an optimal

choice. When the perceived trend growth is low, the density curve of perceived TFP

moves to the left. Hence, the area below the density curve and to the left of the TFP

threshold increases exponentially. This means if the perceived trend growth drops, the

probability of default grows exponentially, and therefore the spread rises up with an

increasing speed.
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Figure 3.4: Debt spreads and trend forecasts from the learning model’s simulation.

3.5.2 Impulse Response Analysis

In this section we conduct impulse response analysis to show how a negative transitory

shock (transitory shock takes 96.5% of the TFP shock variance) influences exogenous

beliefs and other variables. Considering the non-linear nature of sovereign default

model, we follow Koop et al. (1996) and Arellano et al. (2018) to draw generalized

impulse response functions. We simulate two bunches of 5000 independent paths, each

path includes 320 periods.

The first bunch is called shocked paths. From time 1 to 320, true transitory shocks zt

are randomly generated following the underlying Markov chain, while trend estimation

error εγt and trend signal noise εnt follows their respective IID distribution. Given zt,

εγt and εnt , perceived exogenous shocks z̃t and γ̃t are generated following the belief

updating rule (3.24). The first 300 periods are used to get rid of the influence of initial

value. The shocked time is 301, which is normalised to be time 0 in Figure 3.5: zt is

adjusted downwards by 1 percent in each path, but εγt and εnt stay unchanged. From
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time 301 on, zt evolves under its conditional Markov chain while z̃t and γ̃t continue to

update under rule (3.24).

For each shocked path, there is a unshocked paths, which is the same as the corre-

sponding shocked path before time 301. From time 301 on, the unshocked path is not

influenced by the 1% transitory shock. Hence, we obtain 5000 pairs of shocked and

unshocked paths. Impulse response functions for variables with trend (such as output

and consumption) take the average of the percentage differences between shocked and

unshocked paths. For stationary variables such as exogenous shocks, sovereign spread

and debt-to-GDP ratio, impulse response functions are simply the difference between

two paths. Impulse response functions are plotted in Figure 3.5. Periods 1 to 300 are

truncated. Any path with default event in the remaining 20 periods is discarded, as

in Arellano et al. (2018).

In the z̃ panel of Figure 3.5, the magnitude of perceived transitory shock z̃ change

in learning model (in blue solid line) is smaller than the size of the perceived change

(which coincides with z) in FIRE model. This underestimation comes from learning

rule (3.24) that a part of the true shock z is allocated to a downward adjustment

in trend belief in the learning model. As illustrated by the γ̃ panel, trend belief for

the learning model decreases on impact, while the belief for FIRE model is always γ

because agents know that γ is independent with transitory shock. The r − r∗ panel

shows that debt spreads for both models rise up immediately at the time of impact.

The magnitude of the movement for the learning model is significantly larger than

FIRE model (2.55% v.s. 0.70%). The spread change is also very short-lived: the

surges drop sharply after time 0 and become very close to pre-shock levels on time

3. Since the change in trend belief is also transitory these impulse response functions

verifies the negative ρ(r − r∗, γ̃) for the learning model.

Spread movement is accompanied with quick adjustment of debt. As shown in

the d/y panel, debt-to-GDP ratios slightly rise up on time 0 and bottoms at time

3. A reduction in debt-to-GDP ratio decreases social planner’s incentives to default,

which is widely documented in sovereign default literature (e.g. Arellano (2008)) and

revealed in Figure 3.3 that higher debt states are associated with lower prices (higher
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Figure 3.5: Impulse response functions to 1% decline in true transitory shock at time 0. d − qd′

denotes net debt repayment, h is working hours, d/y stands for debt-to-GDP ratio. Debt-to-GDP

ratio d/y and spreads r − r∗ are the percentage point deviations from respective steady states.
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spreads). Quick adjustment of borrowing results in swift recovery of spreads 14. The

upward movement in debt-to-GDP ratio at time 0 is due to the decline in output: d0 is

determined at time -1 at time 0 it is on the pre-shock level. y0 is determined in period

0 and y−1 is at steady state because it is an endogenous variable that is determined at

time -1. Since y0 < y−1 and d0 = d−1, d0/y0 will be higher than d−1/y−1.

In the y and h panel of Figure 3.5, output and working hours drop in similar scales

for both models because the change in perceived TFP for the learning model (γ̃ plus z̃

equals -0.997%) is very close to FIRE model (-1%). Since period 1, output for learning

becomes slightly higher because its z̃ is higher than the true size z while the difference

between γ̃ and γ is negligible. The percentage growth of net export on GDP ratio is

larger in learning model, as shown in the top right panel of Figure 3.5. For learning

model, the obviously larger increment in debt spread means its net debt repayment

d0− γ̃0q0d1 must be lower. Therefore, higher trade balance is needed to finance a larger

capital inflow reduction. Hence, consumption will be more adversely affected.

3.5.3 Typical Default Episodes

In this section we discuss typical default episodes, a topic generally of interest in

equilibrium sovereign default literature (Mendoza and Yue, 2012, Gordon et al., 2018

and Na et al., 2018). Figure 3.6 shows the averages of all simulated paths around

default events. The blue solid lines depict the learning model, while red dashed lines

belong to the FIRE model. Default is normalized to happen at time 0. Time -2

indicates two periods before a typical default, while 2 denotes two periods after default.

For trend belief, debt-to-GDP ratio and debt spread the windows end at 0, because

in bad financial status sovereign debt does not exist, debt spread is not defined while

trend belief is assumed to be on steady state.

As in most literature, defaults typically happen during“bad times” the features low

14If capital is involved in a sovereign default model, the response of spreads to a technology
innovation will be much more persistent. For example, in Arellano et al. (2018), spreads revert to
steady state in 25 periods following a -0.5% productivity innovation.
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Figure 3.6: Typical default episodes for main variables. Debt-to-GDP ratio d/y and spreads r− r∗

are the percentage point deviations from respective steady states.
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productivity, consumption and output15. As can be seen in the z̃ subplot of Figure

3.6, transitory shock in both models (FIRE model in red dashed line and the learning

model in blue solid line) sharply drop down 2 periods before default. z̃ in the learning

model is slightly higher because under the belief updating rule (3.24) part of the true

transitory shock is allocated to trend belief. The fact of z̃ > z at default time results

in output and consumption in the learning model being higher than FIRE model,

which indicates that imperfect information on trend increases default tendency. The

debt-to-GDP ratios for the two models both exhibit an upward trend, qualitatively in

line with the Greek default documented in the Figure 8 of Na et al. (2018).

In the γ̃ panel, perceived trend growth for the learning model decreases since time

-4 and this decline accelerates as the default time approaches. Trend growth for FIRE

model drops down in a magnitude smaller than learning model. In the bottom right

panel, sovereign bond spread rises in both models but the learning model has a larger

scale of surge: since time -12, the increment in the spread is 1.74% for the learning

model and only 0.71% for the FIRE. The above movements in contrary directions

during typical default episodes is similar to the Greek data as illustrated in Figure 3.2.

Meanwhile, the different magnitudes indicates that the learning model will deliver a

more non-linear relationship between spreads and trend beliefs.

3.5.4 Output loss

In this section we provide a different perspective on the mechanisms of belief channel:

Output loss is underestimated in the learning model when agents are pessimistic about

trend growth, which in turn leads to higher default probability and spreads. The

output in bad financial status before adjusting for productivity loss is denoted as

y, while the output in bad financial status after productivity loss is labeled as yaut.

Output loss is defined as yaut’s percentage deviation from y: (y − yaut)/y × 100.

15Readers interested in defaults during “good times”may find Durdu et al. (2013) and Park (2017)
useful. The former incorporates news shock so that bad news during good times could incur default;
the later includes capital so that default may become optimal if high levels of capital is accumulated,
even if the economy is in “good times”.
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Figure 3.7: Different levels of output loss from the FIRE and Learning model.
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The top and middle panel of Figure 3.7 show y and yaut around a typical default

event for the learning and FIRE model, respectively. Default is normalized to happen

at time 0. The difference between y and yaut becomes obvious after the default.

Productivity cost defined in equation (3.14) sets an upper bound of productivity for

bad financial status, resulting in yaut being lower than y As highlighted by the bottom

panel, the magnitude of output loss (calculated as y minus yaut) for the learning model

is smaller than that of FIRE model: at time 0, default cost is 8.80% in the former case

but 5.42% in latter case.

The lower default cost in the learning model comes from the structural design:

productivity loss is exogenously imposed and is independent of agents’ trend beliefs.

After a sequence of adverse TFP shocks, agents become pessimistic about trend growth

(see learning rule 3.24). That is, yaut(zaut; γ) is more likely to be higher than y(zaut, γ̃),

and hence y(zaut, γ̃) − yaut(zaut; γ) is more likely to be smaller. This means default

cost tends to be underestimated during bad times in the learning model, which in turn

delivers high incentives of borrowing and reneging.

3.6 Sensitivity analysis

3.6.1 Size of Errors about Trend Belief

In this section, we perform sensitivity analysis to see how the main results would alter

with the different levels of trend growth uncertainty. Table 3.6 reports the results.

In the benchmark model, the ratio of trend growth variance (Vγ) over TFP variance

(VA), i.e. Vγ/VA, is calibrated to be 0.065 and the signal noise ratio σγ/σn is set to

be 23%. Now we use alternative values for Vγ/VA and σγ/σn to see how the simulated

statistics would change. As shown in Table 3.6, for those alternative calibrations, the

correlation coefficients ρ(r − r∗, γ) lie in interval [−0.47,−0.73]. In other words, the

negative correlation between trend growth beliefs and sovereign spreads still holds.

Case (6) to case (11) show adjustments in signal-to-noise ratio of trend (σγ/σn).
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Table 3.6: Sensitivity analysis of trend uncertainty.

σ(r − r∗) ρ(r − r∗, y) ρ(r−r∗, tby) ρ(r − r∗, z) ρ(r − r∗, γ̃)

(1) Data 0.026 -0.42 0.45 N.A. -0.63

(2) Benchmark 0.027 -0.47 0.71 -0.51 -0.62

Signal-to-noise ratio (σγ/σn = 0.23)

(6) σγ/σs = 0.11 0.024 -0.47 0.72 -0.50 -0.73

(7) σγ/σs = 0.16 0.026 -0.47 0.71 -0.51 -0.69

(8) σγ/σs = 0.21 0.026 -0.47 0.71 -0.50 -0.64

(9) σγ/σs = 0.25 0.027 -0.46 0.71 -0.50 -0.61

(10) σγ/σs = 0.30 0.029 -0.47 0.70 -0.51 -0.57

(11) σγ/σs = 0.45 0.036 -0.45 0.67 -0.51 -0.47

Trend shock to TFP (Vγ/VA = 0.065)

(12) Vγ/VA = 0.05 0.046 -0.45 0.62 -0.53 -0.57

(13) Vγ/VA = 0.06 0.031 -0.46 0.69 -0.52 -0.60

(14) Vγ/VA = 0.07 0.024 -0.46 0.72 -0.49 -0.63

(15) Vγ/VA = 0.08 0.019 -0.45 0.74 -0.45 -0.66

(16) Vγ/VA = 0.09 0.017 -0.43 0.75 -0.42 -0.67

Notes: Ratios in brackets show the calibration of benchmark model.
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Lower ratios indicate noisier trend signals so that agents form their trend beliefs relying

heavier on the observed TFPs. In case (6), ρ(γ̃, z̃) = 0.51 is higher than benchmark

(ρ(γ̃, z̃) = 0.42). Recall that transitory shock takes the dominant part of TFP variance

and is the main driver of spreads, thus ρ(r − r∗, γ) is also higher in magnitude than

the benchmark. For case (11), trend signal becomes more reliable as its variance of

noise is smaller. The corresponding ρ(γ̃, z) = 0.27 is significantly lower than that of

the benchmark, resulting in the correlation ρ(r − r∗, γ̃) as low as −0.47.

Case (12) to (16) explore different unconditional variance ratios for trend shock

over TFP (Vγ/VA). The low ratio in case (12) leads to a low variance in trend (log(γ̃t)

is in the interval of [0.14%, 0.86%], while for the benchmark case the corresponding

interval is [0.06%, 0.94%]). Low variance in trend leads to smaller magnitude in the

correlation between spreads and trend beliefs. Case (12) also delivers high variance

of bond spreads because the unconditional variance of perceived transitory shock is

0.096%, larger than the 0.063% in case (16) and the 0.078% in the baseline. By

contrast, a larger Vγ/VA ratio in case (16) delivers a wider range of trend growth

beliefs and bigger magnitude in ρ(r − r∗, γ̃).

3.6.2 Long-Maturity Debt

In this section we investigate whether the main results still hold if the government

issues long-maturity debts. Compared with one-period debt in the benchmark model,

long-maturity debt facilitates hedging against income risks because the it provides

state-contingent payoffs. If income risk is better insured, would trend beliefs still be

significantly related to sovereign spreads? Following Chatterjee and Eyigungor (2012),

the government pays coupon η > 0 in the form of final output for every unit of sovereign

bond outstanding Dt. On each period, λ share of bond outstanding matures while the

remaining 1 − λ share does not. The repayment of maturing bond’s principal and

coupon equals [λ + (1 − λ)η]Dt, while the income from issuing bonds is qtDt+1. The

transfer payment to household at period t is

(3.33)F = qD′ − [λ+ (1− λ)(η + q′)]D
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The debt pricing rule is in the following form

I ·

q(z, d′; γ)− Ez′|zI ′
[
λ+ (1− λ)

(
η + q(z′, a(z′, d′; γ); γ

)]
1 + r∗

 = 0 (3.34)

where a(z′, d′; γ) is the policy rule of dt+1. There is convergence difficulty in solving this

type of dynamic programming problem. Following Gordon (2019), I use taste shock

on both default and debt issuance decisions to facilitate convergence. This algorithm

is also used in Arellano et al. (2020) and Galli (2020). Details of this algorithm are

attached in the Appendix.

Discount rate β, productivity loss parameter δ1 and δ2 and true transitory shock

error term σz are calibrated to match average spreads 2.05%, output loss 7% and stan-

dard deviation of output 2.5%. All other variables remain the same as the benchmark

learning model. We also formulate the comparable FIRE model. The learning model

delivers correlation coefficient between spreads and trend beliefs ρ(r−r∗, γ) = −0.47, a

huge improvement than FIRE model where ρ(r−r∗, γ) = −0.10. Figure C.1 shows the

long-maturity bond price schedules for different trend beliefs and transitory shocks.

We can see that bond prices (spreads) are lower (higher) if trend belief decreases.

Figure C.2 depicts the impulse functions to negative transitory shock. It is clear to

see that in learning model transitory shock leads to underestimation of trend growth

and bigger spreads surge. Figure C.3 illustrates typical default event. For the learning

model, the pre-default trend belief decline is more consistent and the spreads rising is

much higher. Both figure C.2 and C.3 are similar to the benchmark learning model

with one-period debt.

3.7 Conclusion

Fundamentals seemed not to be the sole determinant of sovereign debt spreads dur-

ing the recent Eurozone debt crisis. Contributing to this field of research, this paper

documents new evidence on the role of potential output expectation: the correlation
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between sovereign debt spreads and potential GDP growth forecasts is significantly

negative and non-linear for Eurozone countries. Existing sovereign default models

built on full information rational expectation (FIRE) hypothesis that agents know

the true trend growth rates have hard time in explaining this new evidence. To pro-

vide a rationale, we augment the equilibrium sovereign default framework à la Aguiar

and Gopinath (2006) by relaxing the FIRE: agents only have imperfect information on

trend growth and therefore they need to learn about it to make optimal decisions about

debt issuance and whether to default or repay. Beliefs on the transitory and trend com-

ponents of TFP shocks are updated via an Bayesian updating rule. Each new trend

belief is taken into infinite future when agents solve their optimization problems. Simu-

lation results show the model replicates the documented new evidence: the correlation

coefficient between spreads and trend beliefs is -0.62, very close to the -0.63 in GIIPS

countries’ data. Meanwhile, this relationship exhibits the significant non-linearity as

in data: the negative correlation grows stronger at lower levels of trend beliefs. Im-

pulse response analysis and the simulated typical episodes of default, which resembles

the Greek default data around 2012, support the comovement between spreads and

trend beliefs. We also explain the mechanisms of the above rationale: the learning

channel relates the transitory shocks to the perceived trend beliefs. Meanwhile, the

belief channel delivers debt price schedules that vary with trend beliefs.
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Appendix to Chapter 1

A.1 Deriving Optimal Consumption and Labour

Assume a social planner who knows all the information of the economy wishes to max-

imize household’s utility u(C,H). Combining the budget constraints for the household

and government, respectively equation (1.3) and (1.10), and the government spending

rule (1.9), we obtain the post-tax budget constraint for the household:

Ct + Ĩt + uGt = (1− ψ1)Yt + qtBt+1 − (ψ2 + q1t )Bt

where q1t = λ+(1−λ)(η+qt). Then we can build a Lagrangian to derive the necessary

conditions for the social planner’s problem:

Lt = ln(Ct)− θ
H1+χ

t

1 + χ
− Λt

[
Ct − (1− ψ1)Yt + Ĩt + uGt − qtBt+1 + (ψ2 + q1t )Bt

]
Optimization yields the following first order conditions for consumption and working

hours:
1

Ct

(1− ψ1)e
ztKα

t (1− α)H−α
t = θHχ+α

t
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then we can derive

Yt =
θCtH

1+χ
t

(1− ψ1)(1− α)

Substituting the above equation into the post-tax budget constraint for the house-

hold, we can write working hours as a function of variables determined by states and

candidate policies:

Ht =
[1− α

θ

(
1 +

st
Ct

)] 1
χ+1

where st = Ĩt + uGt − qtBt+1 + (ψ2 + q1t )Bt. qt is treated as given for the social planner

because the debt price is determined in a buy-side international financial market, as

shown in equation (1.17). Now the budget constraint could be modified as

Ct = (1− ψ1)e
ztKα

t

[1− α

θ

(
1 +

st
Ct

)] 1−α
1+χ − st

Notice that other than Ct, all the variables in the above equation are states and

candidate polices (recall the price qt is a function of exogenous shocks and K ′, B′).

Thus, we can derive the optimal consumption by finding the roots of the above function

of Ct.

A.2 Solving Long-Maturity Debt with Taste Shock

In this section we show how to implement taste shocks in the debt borrowing decision

and default decision to induce convergence in value function iteration. I restrict debt

policy B′ and K ′ within a discrete set and associate each coordinate of B′ and K ′ with

an i.i.d. taste shock in Gumbel (Extreme Value Type I) distribution. The coordinates

of debt and capital states are denoted as A and the according policy coordinates are

A′. The government’s optimization problem of repayment is rearranged as:

V g(S,A, ⟨εA′⟩) = EεA′

[
max
C,H,A′

W(S ′, A′) + σAεA′

]
(A.1)

where σA governs the relative importance of taste shock on debt and capital choice.

σA should be big enough to ensure convergence. With σA = 0, V g(S,A, ⟨εA′⟩) returns
to the non perturbed case, which suffers from convergence problem in value function
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iteration solution method. W is the value of repayment for all possible choices of A′:

W(S,A,A′) = u(C,H) + βES′|SV (S ′, A′) (A.2)

Notice that the W associated with optimal debt and capital choice is denoted as W∗:

W∗(S,A) = max
A′

W(S,A,A′) (A.3)

The ex ante choice probability of debt policy is given by

P(A′ = i|S,A) =
exp

[
(W(S,A, i)−W∗(S,A))/σA

]
∑

ĩ exp
[
(W(S,A, ĩ)−W∗(S,A))/σA

] (A.4)

After introducing the taste shock on the default decision, the value of default becomes

V (S,A) = EεD=1,εD=0

[
max
D=0,1

{
V g(S,A) + σDεD=0, V

b(S,K) + σDεD=1

}]
(A.5)

where σD governs the importance of taste shock on default decision. The probability

of being in good financial state has following closed form expression:

P(D = 0|S,A) =
exp

[
V g(S,A)/σD

]
exp

[
V b(S,K)/σD

]
+ exp

[
V g(S,A)/σD

] (A.6)

Following the assumption of risk-neutral pricing, the price schedule of long-term debt

becomes:

q(S,A′) = ES′|S

[
P(D = 0|S ′, A′)

λ+ (1− λ)
(
η +

∑
A′′ P(A′′|S ′, A′)q(S ′, A′′)

)
1 + r∗

]
(A.7)

Now, P(D = 1|S,A) and P(A′ = i|S,A) moves continuously in a guess of price rule,

facilitating convergence in price schedule. Without taste shock, there is possibility

that in some states social planner is indifferent between two debt policies, therefore

stationary solution cannot be obtained. I discrete the space of productivity shock
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and government spending shock into 31 equally spaced grid points respectively. Debt

and capital space are respectively discretized into 85 grid points. Therefore, there are

31 × 31 coordinates for exogenous states while 85 × 85 coordinates for endogenous

states. Accordingly, I set σB to 3e−3 and σD to 5.0e−4. This choice of taste shock

size ensures convergence of the long-term debt sovereign default model within 1000

iterations. The debt price as functions of capital and debt are depicted as follows
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Figure A.1: Debt price as function of capital and debt state, with medium TFP, zero govt shock.

Figure A.2: Debt price contour lines on capital and debt states (medium TFP, zero govt shock).
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Appendix to Chapter 2

B.1 Solving Long-Maturity Debt with Taste Shock

In this section I show the taste shock algorithm to solve the sovereign default model

with long-maturity debts. Debt policy b′ is restricted within a discrete set and each

grid point of b′ is associated with an i.i.d. taste shock in Gumbel (Extreme Value Type

I) distribution. The government’s optimization problem of repayment is rearranged

as:

V G(y, b, ⟨εb′⟩) = Eεb′

[
max

c≥0,b′≥0
W(y′, b′) + σbεb′

]
(B.1)

where σb governs the relative importance of taste shock on debt issuance. With σb =

0, V G(y, b, ⟨εb′⟩) returns to the non perturbed case, which suffers from convergence

problem in value function iteration solution method. In the implementation, I set σD

to 5e−4 and σB to 2e−4 and this size of taste shock ensures the convergence of the long-

term debt sovereign default model within 1000 iterations. W is the value of repayment

for all possible choices of b′:

W(y, b, b′) = u(c) + βEy′|yV (y′, b′) (B.2)
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Notice that the W associated with optimal debt and capital choice is denoted as W∗:

W∗(y, b) = max
b′

W(y, b, b′) (B.3)

The ex ante choice probability of debt policy is given by

P(b′ = i|y, b) =
exp

[
(W(y, b, i)−W∗(y, b))/σb

]
∑

ĩ exp
[
(W(y, b, ĩ)−W∗(y, b))/σb

] (B.4)

With taste shock, the value of being in bad financial status becomes

V (y, b) = EεD=1,εD=0

[
max
D=0,1

{
V G(y, b) + σDεD=0, V

B(y) + σDεD=1

}]
(B.5)

where σD governs the importance of taste shock on default decision. The probability

of being in good financial state has following closed form expression:

P(D = 0|y, b) =
exp

(
V G(y, b)/σD

)
exp

(
V B(y)/σD

)
+ exp

(
V G(y, b)/σD

) (B.6)

and the price of long-term debt becomes:

q(y, b′) = Ey′|y

[
P(D = 0|y′, b′)

λ+ (1− λ)
(
η +

∑
b′′ P(b′′|y′, b′)q(y′, b′′)

)
1 + r∗

]
(B.7)

Now P(D = 1|y, b) and P(b′ = i|y, b) moves continuously between debt grids and

hence facilitates the convergence in price function. Without taste shock the social

planner is likely to be indifferent between two debt policies and therefore no stationary

solution could be obtained.
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B.2 Debt Price Schedules

In this section I show sovereign debt price as a function of endowment y and debt

issuance b′, i.e. q = q(y, b′), for one-period debt (Figure B.1) and long-maturity debt

(Figure B.2). We set Ny = 25 and Nb = 200 for the upper panels of two figures while

Ny = 25 and Nb = 3000 for the lower panels. We can see that for both models, low

endowments and high debt policies are related to lower debt prices (higher spreads). It

is also clear that higher number of debt grid points (Nb) leads to better approximation

for the DVFI solutions: the debt prices in the lower panels looks smoother than those

in the upper panels.
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Figure B.1: One-period debt price as a function of endowment y and debt policy b′.
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Figure B.2: Long-maturity debt price as a function of endowment y and debt policy
b′.
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Appendix to Chapter 3

C.1 First Order Conditions

In this section, I show the derivation of equilibrium consumption and labour. To solve

household’s problem, build the Lagrangian

L = Et

∞∑
t=0

βt
{
u(Ct, ht)− Λt

[
Ct −Wtht − Πt − Ft

]}
(C.1)

where Λt is the Lagrangian multiplier with trend. We can derive the First Order

Conditions (F.O.C.) with respect to consumption and labour supply (working hours):

Ct :

(
Ct −

1

ω
Γt−1h

ω
t

)−σ

= Λt (C.2)

ht :

(
Ct −

1

ω
Γt−1h

ω
t

)−σ

Γt−1h
ω−1
t = ΛtWt (C.3)

From output function (3.7) and profit function (3.6), firm’s F.O.C. with respect to

labour demand is:

ht : (1− α)eztΓth
−α
t = Wt (C.4)
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We induce stationary by normalizing all variables with trend by Γt−1, as in Boz et al.

(2011). Specifically, let lowercase letter denote detrended variables, then xt ≡ Xt

Γt−1
and

λt ≡ (Γt−1)
σΛt, where X = {C,W,D, Y }.

First we detrend households’ sequential budget constraint:

Ct

Γt−1

=
Wtht
Γt−1

+
(Yt −Wtht)

Γt−1

+
Ft

Γt−1

⇒ ct = yt + ft (C.5)

We can combine the household’s F.O.C. with respect to consumption and labour supply

to derive the optimal labour as a function of wage. Because we use GHH preference,

labour supply is irrelevant to consumption decisions:

Γt−1h
ω−1
t = Wt

⇒ ht = w
1

ω−1

t (C.6)

where wt is detrended wage, wt = Wt/Γt−1. From firm’s F.O.C. with respect to labour

demand, we derive wage as a function of labour:

Wt

Γt−1

= (1− α)ezt
Γt

Γt−1

h−α
t

⇒ wt = (1− α)eztγth
−α
t (C.7)

We obtain the equilibrium labour by combining labour supply and demand function

to diminish wage:

ht =
(
(1− α)eztγth

−α
t

) 1
ω−1

⇒ ht =
(
(1− α)eztγt

) 1
ω+α−1

(C.8)

then equilibrium output in good financial status can be written as function of produc-

tivity, beginning from detrended production function:

Yt
Γt−1

= ezt
Γt

Γt−1

h1−α
t
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⇒ yt = (1− α)
1−α

ω+α−1

(
eztγt

) ω
ω+α−1

(C.9)

For the government transfer, divide both sides by Γt−1:

Ft

Γt−1

= It

(
− Dt

Γt−1

+ qt
Dt+1

Γt

Γt

Γt−1

)

⇒ ft = It

(
− dt + γtqtdt+1

)
(C.10)

The detrended consumption rule is derived by replacing government transfer ft in

flow budget constraint of households (C.5). When the country is in good financial

status (It = 1):

ct = yt − dt + γtqtdt+1 (C.11)

and consumption rule in bad financial status (It = 0)

cautt = yautt = (1− α)
1−α

ω+α−1

(
γte

zautt

) ω
ω+α−1

(C.12)

where yautt is related to default loss, see relevant section for details. Equilibrium

working hours in bad financial status is

hautt =
(
(1− α)γte

zautt

) 1
ω+α−1

(C.13)

while detrended wage in this state is

waut
t = (1− α)ez

aut
t γt(h

aut
t )−α (C.14)

C.2 Algorithm

At time t, the social planner treat current trend belief γ̃ as a constant parameter to

obtain solutions. During the simulation, given a chain of estimated trend growth with

length T , i.e. {γ̃1, γ̃2, ..., γ̃T}, we may need to obtain T decision rules {g(z̃, d; γ̃)}Tt=0.
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Unfortunately, following literature, reliable solutions for sovereign default model resort

to value function iteration method, which could be very slow if the number of T is big

enough to deliver reliable analysis.

To speed up, we discrete the space of trend growth belief into a small group of

candidate grid points. Suppose all the visited trend belief during the simulation lie in

interval [a, b], we define a sequence of n candidate grids: γ̃is and list them in ascending

order: {γ̃1, γ̃2, ..., γ̃n}, where γ̃1 ≥ a and γ̃n ≤ b. n could be much smaller than T .

For each candidate grid point γ̃i, the dynamic programming problem is solved to get

decision rule gi(·; γ̃i) and transition rule hi(·; γ̃i) For the total of n grids, we solve the

model by n times and obtain a sequence of decision rules {g1, g2, ..., gn} as well as

transition rules {h1, h2, ..., hn}. During the simulation, given a trend belief γ̃t, we find

the ith candidate grid that minimizes its distance to γ̃t, i.e. i = argmin(|γ̃t − γ̃i|).
With index i, corresponding gi(·; γ̃i) and hi(·; γ̃i) are picked out to run the calculation.

For next period, we find the new index i to locate new solutions. We continue the loop

until the simulation of T periods is completed.

C.3 Relevant Figures for Long-Maturity Debt
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Figure C.1: Debt price schedules across different beliefs of transitory and trend growth beliefs in

the sovereign default model with long-maturity debt. 0.9 is the upper limit for debt outstanding.
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Figure C.2: Impulse response functions to 1% decline in the true transitory productivity. Debt-to-

GDP ratio d/y and spreads r− r∗ are the percentage point deviations from respective steady states.
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Figure C.3: Typical default episodes for long-maturity debt models. Debt-to-GDP ratio d/y and

spreads r − r∗ are the percentage point deviations from respective steady states.
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