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Abstract 

Robots performing pick-and-place tasks need to be given a specific end-effector pose to grasp 

the object. This pose is usually generated by a grasp planner without considering the future 

motion of the robot. This is acceptable for manipulating small objects with simple geometry 

inside a large free space. However, for complex structures being manipulated in a cluttered 

environment, some grasp poses may lead to redundant robot motion or even failure of 

transferring the object to the desired goal location. This thesis addresses this limitation by 

designing methods and algorithms that can solve the integrated problem of grasp selection and 

motion planning in three different scenarios. In the first scenario, feasible grasps can be sampled 

directly given the geometry of a complex 3D pipe structure. The robot needs to manipulate the 

pipe following a given object path while optimising several objectives. In the second scenario, 

a set of precomputed feasible grasps of an arbitrarily complex object is assumed and only the 

start and goal pose of the object are given. An optimised path needs to be generated offline and 

the robot will execute this path repeatedly. Finally, the third scenario assumes the same planning 

problem as the second scenario but requires the robot to be extremely responsive. The robot 

needs to generate a feasible motion online as fast as possible to manipulate the object to the 

desired pose. In these scenarios, a desirable grasp can be chosen, and the subsequent motion of 

the robot is planned simultaneously by using the proposed methods. The developed methods 

are generally applicable. However, they will be most useful in cases involving the manipulation 

of large and complex objects that have many available grasps in a relatively narrow environment. 

A specific application scenario of the developed algorithms is the Factory-In-A-Box (FIAB) 

project. The project aims at manufacturing complex pipe structures fully automatically inside a 

compact container and an industrial robot is employed to transfer pipe structures between 

different manufacturing processes. Experiments show the advantages of the developed 

algorithms in terms of both path costs and planning time compared to the traditional 

manipulation planning method where only a single grasp is generated for motion planning.
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Chapter 1 Introduction 

Robots are widely used in today’s factories from automotive to electronics industry. Apart from 

mass production, deploying a flexible robotic workcell is becoming an increasingly popular 

choice with the trends of customisation [1], especially for small and mid-size enterprises. A 

good example of deploying such a flexible robotic workcell is the Factory-In-A-Box (FIAB) 

project. FIAB is a high-profile project funded by Innovate UK as part of the Thermal Energy 

Research Accelerator (T-ERA) carried out at the Manufacturing Technology Centre (MTC), 

Coventry, UK. A simulated FIAB environment is shown in Figure 1.1. FIAB aims at 

manufacturing cryogenic pipe assemblies inside a compact container with the focus on 

flexibility (the factory can adapt quickly to manufacture pipes of different structures at different 

quantities according to customer needs) and mobility (the factory can be rapidly deployed 

anywhere) [2]. The manufacturing process usually involves cutting, bending, brazing, and 

pressure testing. An industrial robot is mounted on an overhead rail to grasp and transfer pipes 

between different stations inside FIAB. During the simulation and the actual operation, the path 

of the robot is planned fully automatically. 

 

Figure 1.1 A simulated factory-in-a-box layout (Image Courtesy of Manufacturing Technology Centre (MTC), 

Coventry, UK) 
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Despite the success of using automated planning in the FIAB project, automated motion 

planners are far from being perfect. Many examples have shown that in a relatively compact 

environment and/or if the robot is manipulating a relatively large and complex object, the 

automated planner is likely to fail when there is an obvious feasible path available for the robot 

to execute [3–6]. 

Planning in a compact environment usually induces a common issue in motion planning known 

as the narrow passage problem [3]. Sampling-based motion planners [7] become inefficient in 

this case since the probability of generating samples inside the narrow passage is extremely 

small. However, in the context of manipulation planning, another equally important reason for 

the failure is because standard motion planning algorithms do not exploit available grasp 

information sufficiently. Traditional motion planning algorithms always aim at solving a 

problem given a single start configuration of the robot, but this is not the case for manipulation 

problems, especially when the objects being manipulated is large and complex. In this context, 

there are usually many available grasps poses for the robot to choose from. Choosing different 

grasps leads to different motion planning problems. In each problem, not only the start and goal 

configuration are different, but also the free configuration space for the robot to move is 

different because the geometry of the robot-object combination is changed. However, 

manipulation tasks (e.g., pick-and-place) do not require the robots to be at a specific start or 

goal configuration, as long as they transfer the object to the desired location and stay away from 

obstacles. Being able to choose from multiple available grasps brings both opportunities and 

challenges to the manipulation planning algorithms. In many cases, choosing a good grasp 

makes the planning problem rather trivial as a straight-line path may be enough to avoid 

obstacles in the environment. However, an unsatisfactory choice of grasp may result in a very 

difficult problem where the robot needs to circumvent obstacles carefully, or even a problem 

that is infeasible for the planner to solve in any reasonable amount of time. Since motion 

planning algorithms generally build on the assumption that only a single start configuration is 

available, they are not able to take advantage of multiple grasps to accelerate the search or find 

a better path. Therefore, currently, the standard planning pipeline for manipulation tasks still 
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decouples the process of grasp planning and the motion planning, which is very inefficient. 

1.1 Aims, Objectives and Innovations 

This thesis attempts to exploit the opportunity brought by the grasp redundancy (i.e., multiple 

available grasps) when manipulating complex structures to accelerate the motion planning and 

find a better path for the robot to execute. The overall aim of this thesis is to develop planners 

that consider explicitly the impact of grasp choice on the robot motion after grasping.  

To achieve this aim, three specific objectives will be completed: 

⚫ Develop a grasp pose planning method for robots to manipulate pipe assemblies 

following a predefined trajectory of the pipe while optimising post-grasp trajectory 

objectives such as distance of robot joint motion, manipulability, and the deformation 

of the objects (Chapter 3). 

⚫ Given a set of precomputed feasible grasps of an arbitrary object, develop an integrated 

grasp selection and motion planning algorithm for robots to manipulate objects from 

start to goal location in the free space (Chapter 4). 

⚫ Design a new algorithm for solving the integrated grasp selection and motion planning 

problem to generate a feasible path as fast as possible (Chapter 5). 

Some innovations of the thesis are highlighted as follows: 

• In Chapter 3, a novel local search strategy is developed to accelerate the optimisation. 

Besides, multiple inverse kinematics solutions for a given end-effector pose are 

considered explicitly to further optimise the objective costs. 

• In Chapter 4, a novel algorithm (PRM*-MG) is proposed by converting the single-

query manipulation planning problem to a multi-query motion planning problem. 

Newly designed data structure allows the algorithm can process a large number of 
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grasps. Batch processing of feasible grasps improves the anytime performance of the 

algorithm and allows the use of upper bound to prune suboptimal solution. 

• In Chapter 5, a novel algorithm (RRT*-MG) is proposed. The proposed algorithm 

features a new connection criterion that biases the search towards grasps that are more 

likely to contain the optimal path. In addition, a number of other strategies are proposed 

to improve the search efficiency by pruning and reusing sampled vertices. 

1.2 Layout of this Thesis 

The rest of the thesis is structured as follows: Chapter 2 introduces important concepts and 

reviews existing works related to motion and manipulation planning with a focus on sampling-

based methods. Chapter 3 presents a grasp pose optimisation method for manipulating 3D pipe 

assemblies. The method is specifically developed for manufacturing cryogenic pipe assemblies 

autonomously in a Factory-In-A-Box scenario, but the same framework can be applied to other 

types of objects. In Chapter 4, an asymptotically optimal manipulation planning algorithm 

PRM*-MG is developed to solve the integrated grasp selection and motion planning problem. 

Chapter 5 presents RRT*-MG, an anytime algorithm that can return the first feasible solution 

within a very short time and keep improving the solution if more time is available. Finally, 

Chapter 6 concludes this thesis and provides future research directions. 

1.2.1 Logical Sequences of the Chapters 

The three main chapters (Chapter 3, Chapter 4, and Chapter 5) of the thesis are organised to 

consider scenarios from simple to challenging. Chapter 3 considers a very practical and 

simplified setting. Therefore, the method developed in Chapter 3 can only deal with objects 

whose grasp poses can be continuously sampled and it requires a reference trajectory as input. 

In the next Chapter (Chapter 4), the setting is more general and challenging, i.e., the algorithm 

has no assumption on the object and gripper type, In addition, the reference trajectory is not 

required. Finally, in Chapter 5, the setting is similar to Chapter 4 except being more time 
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restrictive, i.e., the solution needs to be generated online for the robot to execute as fast as 

possible. 
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Chapter 2 Literature Review 

The literature review consists of four subsections. Section 2.1 first reviews concepts and 

definitions in motion planning and then introduces methods developed for the standard motion 

planning problem, i.e., given a start and a goal (or a goal region), how can a collision-free path 

be planned. In Section 2.2, methods for manipulation planning especially prehensile 

manipulation are reviewed. Section 2.2 mainly focus on rigid object, however, many objects in 

industrial and domestic environment are flexible such as the pipe assemblies manufactured 

inside FIAB. Therefore, Section 2.3 reviews methods specifically designed for flexible objects 

like deformable linear objects (DLOs) and compliant sheet metals. Section 2.4 discusses the 

relationship between this thesis and the reviewed existing studies. 

2.1 Motion Planning 

Motion planning concerns finding a collision-free path from a start state to a goal state of robot. 

Before introducing specific class of motion planning algorithms, it is useful to introduce some 

important concepts and differentiate between several different planning problems. 

The configuration (𝑥 ) of the robot is a set of independent parameters that characterise the 

position of every point in the robot [8]. The configuration space or 𝐶-space (𝑋) of the robot is 

the space of all possible configurations of a robot. For example:  

1. The configuration of a point robot on a 2D plane is defined by its (x, y) coordinates 

respective to the origin. The configuration space is ℝ2. 

2. The configuration of an autonomous car on a 2D map is given by its 2D position and 

orientation, i.e., (x, y, θ). The configuration space is the special Euclidean group 𝑆𝐸(2). 

3. The configuration of a freely movable rigid body in 3D space (e.g., drones) is given by 

its 3D position (x, y, z) and 3D rotation (α, β, γ). The configuration space is the special 
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Euclidean group 𝑆𝐸(3). 

4. The configuration of a fixed-base d-axis articulated robot manipulator is given by its 

joint coordinates x1, x2, … , xd. The configuration space is ℝd.  

Definitions and explanations for some close related problems in motion planning are given 

below. 

• Path Planning: Given the environment, path planning aims at finding a collision-free 

geometric path for the robot to move from its start configuration to a goal configuration. 

• Trajectory Planning: Given a path of the robot, design a timed trajectory subject to 

kinematic constraints (usually collision constraints are not considered in the context of 

trajectory planning).  

• Kinodynamic Planning: Given the environment, planning a collision-free and 

dynamically feasible trajectory for the robot to move from its start state to a goal state. 

• Motion Planning: In many cases, motion planning is equivalent to Path Planning. 

However, it is also used as an umbrella word for all the planning problems defined 

above. 

In this thesis, only the geometric path of the robot and the object are concerned, leaving the 

trajectory planning part to the low level controller of robot, which is the usual case for industrial 

robots. Therefore, this thesis will use “path”, “motion”, and “trajectory” interchangeably, 

however, they should all be interpreted as geometric paths unless specifically explained. In 

addition, “configuration” and “state” will be used interchangeably while they should all be 

interpreted as robot configurations in ℝd , where d  is the number of joints or degrees of 

freedom.  

Next, three classes of widely used motion planning methods, namely, sampling-based method, 

optimisation-based method, and search-based method will be reviewed.  
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2.1.1 Sampling-based method 

Sampling-based motion planning algorithms are perhaps the most widely used algorithms for 

planning high dimensional robot motion (e.g., manipulators). The basic idea of sampling-based 

algorithms is to avoid representing the obstacles explicitly, since it is generally difficult in high 

dimensional configuration space. Rather, they generate random samples in the whole 

configuration space and use an external collision checker to check whether a specific robot 

configuration is in collision or not. Probabilistic Roadmap (PRM) [9] and Rapidly exploring 

Random Trees (RRT) [10] are two most widely used sampling-based algorithms.  

PRM is a two phase planner, it first constructs and stores a graph offline by randomly sampling 

a bunch of configurations and using a simple local planner to connect them (learning phase). 

Then, during the query phase, the planner connects the start and goal configuration to the offline 

constructed graph and then uses a graph search algorithm (e.g., Dijkstra’s or A*) to search a 

path from the start to the goal. PRM is probabilistically complete [11] while the simplified 

version (s-PRM or PRM*)  is asymptotically optimal as well [12] with an appropriate 

connection radius. The aim of PRM is to build a graph that can be used for answering multiple 

queries. Therefore, the graph needs to cover the entire configuration space. This is efficient for 

robot that operates in a static environment as the graph is always valid. However, in many cases, 

the environment may change between different queries, which means the feasibility of the graph 

also changes. In these cases, variants of PRM such as Lazy PRM [13] or Quasi-random Lazy 

PRM [14] can be employed. In these variants, the graph is constructed without collision 

checking, i.e., all edges are considered to be valid. Then, during the query phase, the planner 

still searches for the shortest path connecting the start and goal. However, this shortest path may 

contain infeasible edges. Therefore, the planner needs to call a collision checker online to test 

the feasibility and removes edges in collision. This process (graph search, collision checking, 

and edge removing) is run iteratively until a feasible path is found. 

Incremental tree-based planners like RRT are typically more efficient in the case of single query 

planning problems. An example of growing RRT in a 2D environment is given in Figure 2.1. 
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RRT initialises a tree with its root at the start configuration of the robot. In each iteration, RRT 

samples a random node in the configuration space and queries the nearest neighbour from the 

current tree. Then, a new node is created. The new node should be closer to the random node 

than the nearest neighbour. If the new node and the edge connecting the new node to the nearest 

neighbour is collision free, then the new node and the new edge are added to the tree. During 

the expansion of the tree, the probability that a node is selected to extend is proportional to the 

volume of its Voronoi region. In this way, the algorithm biases its search towards the unexplored 

space. Apart from being efficient in the single query planning problem, RRT can also solve 

kinodynamic planning problem more easily [15].  

 

Figure 2.1 An example of a sampling-based planner (RRT) working in a 2D environment. (a) The planning problem. 

The blue circle is the start configuration while the orange circle is the goal configuration. The black ellipsoid is 

the obstacle. (b) The planner samples a random configuration 𝑥𝑟𝑎𝑛𝑑 in the free configuration space. The tree is 

extended from the nearest configuration (in this case 𝑥𝑠𝑡𝑎𝑟𝑡) to 𝑥𝑟𝑎𝑛𝑑 with a user defined step size 𝜂, creating a 

new vertex 𝑥𝑛𝑒𝑤 . (c) The tree keeps growing, exploring the free configuration space while rejecting connection in 

collision. (d) A path to goal is found by occasionally sampling the goal configuration directly. 

RRT explores the whole planning domain. However, in the case of single query planning 

problems, only a path between start and goal configuration is of interest. It is possible to avoid 

exploring the entire planning domain by using a bidirectional variant e.g., RRT-Connect [16]. 

RRT-Connect grows two trees from the start node and goal node respectively. In each iteration 

the first tree is grown in the same manner as RRT. If a new node is added successfully to the 

first tree, the second tree uses the new node as a random sample and attempt to grow towards 

the new node until a collision is encountered. By the end of each iteration, th two trees are 

swapped. Therefore, in the next iteration, the new node will be added to the tree that attempts 

to connect in the current iteration.  
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heuristically-guided RRT (hRRT [17]) uses heuristic functions to probabilistically reject or 

accept a uniformly distributed random sample. This strategy guides the search to find low cost 

solutions. The experiments demonstrate significant improvement in the path quality compared 

to RRT while very little additional computational costs.  

Anytime RRTs [18] is another sampling-based algorithm focuses on improving the path quality 

found by RRT. The algorithm achieves this behaviour by growing a series of Rapidly-exploring 

Random Trees and each tree uses information from previous searches to restrict the search 

domain. In this way, a first solution can be obtained very quickly and by shrinking the search 

domain, better solution can be found in trees grown in the later iteration.  

Although above sampling-based algorithms are fast in generating solutions even in very high-

dimensional planning problems, the solution of the generated path is arbitrary. hRRT and 

Anytime RRTs all try to improve the path quality found by RRT, but no optimality guarantee 

can be provided by these algorithms. RRT* [12,19] on the other hand, provides asymptotically 

optimal guarantee for the solution path it finds, i.e., the solution found by RRT* will converge 

to the optimum with probability 1 if given an infinite number of samples. 

Instead of always connecting the new vertex to the nearest vertex in the tree like RRT, RRT* 

considers a neighbourhood and connects the new vertex to the vertex in this neighbourhood that 

has the least cost-to-come value to the new vertex. After connecting the new vertex to the tree, 

RRT* also checks whether the connected new vertex can improve the path to reach other 

vertices in the neighbourhood. If such an improvement can be made, the parent of the improved 

vertex will be rewired to the new vertex. This allows RRT* to improve the existing tree with 

the help of future samples.  

However, RRT* is not a particularly fast algorithm, it usually converges very slowly in practice. 

One of the reasons for the slow convergency is because RRT* attempts to find the optimal path 

to every point in the planning domain, which is not necessary in the case of single query motion 

planning since the problem only cares the optimal path to a specific goal configuration. 
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Therefore, many variants [20–24] and other asymptotically optimal planners [25–27] were 

proposed to accelerate the convergency of RRT*. Two variants Bi-RRT*[24] and Informed-

RRT* [22,23] will be introduced in detail in Chapter 5.   

2.1.2 Optimisation-based method 

Sampling-based planning algorithms can find feasible or even optimal solutions when solving 

very high dimensional difficult problems. However, optimisation based method provides 

distinct features like being more natural in incorporating other types of objectives other than 

path length and generating smooth path without post processing. However, optimisation-based 

algorithms generally suffer from local optimality, and if the local optimum is an infeasible 

solution, optimisation-based method may fail on this problem. Therefore, optimisation-based 

methods do not have guarantees like probabilistic completeness and asymptotic optimality, and 

its performance relies heavily on a good initial guess. Otherwise, the method may need to restart 

multiple times before finding a satisfactory solution path. The behaviour of an optimisation-

based planner is shown in Figure 2.2. 

 

Figure 2.2 An example of an optimisation-based planner working in a 2D environment. (a) The planning problem. 

The obstacle is shown in grey. The blue circle is the start configuration while the orange circle is the goal 

configuration. (b) An initial guess to the solution is provided as input. (c) The planner keeps optimising the 

objective costs (here the objective costs contain both path length and collision cost) by generating a series of 

trajectories. (d) A solution path is returned. Following this path, the robot travels a short distance as well as stays 

away from the obstacle. 

CHOMP (Covariant Hamiltonian Optimisation for Motion Planning [28,29]) solves the 

trajectory optimisation planning problem using covariant gradient descent. The method 
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considers two objectives, i.e., the smoothness objective and the obstacle objectives. However, 

other objectives and constraints can also be dealt with. Smoothness is defined as the squared 

velocity along the trajectory. The second objective is related to obstacles, which is defined as 

the integral of the maximum obstacle cost over the body along the trajectory. The obstacle cost 

is defined by a function over precomputed signed distance field where points in the interior of 

the obstacles have higher costs, and points away from obstacles have zero costs. The robot 

manipulator is approximated by a set of spheres in order to perform fast collision queries. 

CHOMP also uses Hamilton Monte Carlo algorithm to perturb the trajectory out of local 

minima. 

STOMP (Stochastic Trajectory Optimisation for Motion Planning [30]) presents another 

method for solving motion planning problem using a trajectory optimisation framework. The 

optimisation objectives and obstacle representations are similar to CHOMP. However, instead 

of using gradient based techniques for optimisation, STOMP uses a gradient free stochastic 

optimisation approach. In each step, a bunch of noisy trajectories are created and evaluated. 

Then the probability of contribution of each trajectory to the update is computed. High quality 

trajectories will contribute more to the update, while lower quality trajectories contribute less. 

STOMP has two advantages over CHOMP. The first one is the method does not need the 

objective being differentiable since it uses derivative free method for optimisation. The second 

one is due to the stochastic nature of the update rule, it is less prone to local optima. 

TrajOpt [31,32] uses sequential convex optimisation to solve the optimisation problem. The 

outer loop of the optimisation is a penalty loop which drives the constraint costs to zero by 

increasing the penalty coefficient each iteration if the constraint is not satisfied after the 

finishing optimisation process of inner loop. TrajOpt also features a different collision 

formulation. Instead of using signed distance field, it computes the signed distance between 

two convex objects directly by GJK [33,34] (for minimum distance) and EPA [35] (for 

penetration depth) directly. In this way, the collision checking is performed without 

approximation as in CHOMP. TrajOpt also consider continuous time collision checking instead 
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of discrete time collision checking. This allows few waypoints being generated when creating 

the trajectory which further accelerate the method.   

Other optimisation based motion planning approaches includes GPMP (Gaussian Process 

Motion Planner) and GPMP2 [36–38], ITOMP (Incremental Trajectory Optimization) [39], 

Functional Gradient Motion Planning [40] and CFS (Convex Feasible Set) [41] etc. 

2.1.3 Search-based method 

The third class of method for solving motion planning is search-based method. Search-based 

methods rely on discretisation of the planning domain to individual states (or configurations), 

and the fact that states adjacent to each other are connected (i.e., can be reached directly from 

one to another). 

Most search-based methods rely on classic graph search algorithms such as Dijkstra’s algorithm 

[42] and A* algorithm [43].  

Dijkstra’s algorithm computes the shortest distance from the start state to every state in the 

planning domain. The algorithm constructs a queue of vertices ordered by the cost-to-come 

value. The cost-to-come values for all vertices are initialised to infinity except the start vertex, 

which is initialised to zero. In each iteration, the algorithm removes the top of the vertex queue 

(i.e., the vertex with the least cost-to-come value) and updates the cost-to-come values for its 

children. In the case of a single goal state, the algorithm can stop as soon as the goal is removed 

from the queue. Figure 2.3 shows how Dijkstra’s algorithm works in a 2D environment. 

Dijkstra’s is an uninformed algorithm, i.e., it does not use any information about the goal state. 

A* on the other hand modifies the priority associated with the queue from cost-to-come to the 

sum of cost-to-come and optimistically estimated cost-to-go. This allows the algorithm to 

always focus search on the vertices that can potentially provide better solutions. A* works the 

same as Dijkstra’s algorithm except using a different priority. A* is also optimal in the number 

of vertices expanded before finding the goal. It is proved in [43] that any resolution optimal 
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algorithm will expand at least same number of vertices as A* when using a same heuristic.  

 

Figure 2.3 An example of a search-based planner (Dijkstra’s Algorithm) working in a 2D environment. (a) The 

original motion planning problem. The blue circle is the start state while the orange circle is the goal state. The 

black ellipsoid is the original obstacle. (b) The problem is discretised into grid world representation. (c) Dijkstra’s 

expands to neighbouring states uniformly according to cost-to-come. The number on the grid is the distance to 

start state (assuming no diagonal movement is allowed). (d) The next state to be expanded will be the target. 

However, the shortest distance to the target can only be determined when it is removed from the queue in the future. 

However, A* as a resolution-optimal algorithm finds difficulty in planning for high dimensional 

configuration space e.g., manipulators. Methods exist to accelerate A* at the cost of sacrificing 

optimality. For example, weighted A* [44,45] inflates the admissible heuristic by 𝜖 > 1 which 

bias the search towards vertices that closer to the goal and expand fewer vertices that A*. 

However, the solution cost could be 𝜖 times worse than the optimal cost.  

Search-based techniques are also good at replanning. LPA* [46] searches first solution as A* 

but can keep finding new solutions quickly if the edge costs are changed. D*[47], focussed D* 

[48] and D* lite [49] also attempt to quickly replan on a changing graph, However, they assume 

a robot is moving on the graph. Therefore, the start state is changed each time a path needs to 

be replanned. 

For a long time, search-based methods are considered not suitable for manipulation problems 

due to the high dimensionality of such problems. However, recently, it has been shown that by 

using carefully designed heuristics and graph representations, the performances of search-based 

methods are comparable to sampling-based and optimisation-based algorithms [50–55]. 

Search-based methods do not rely on random samples and can generally provide optimality 

guarantees for given resolutions, which is arguably more desirable than sampling-based 
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planners. However, designing informative heuristics remains to be a challenge for search-based 

method in solving high-dimensional problems. 

2.1.4 Combined Sampling and Optimisation 

Recently, there is a trend in merging methods from different classes of algorithms, especially 

combining sampling-based algorithm and optimisation based method [56–63]. This is due to 

the fact that sampling-based methods can generally avoid local optimum while optimisation 

based methods can locally improve a feasible path very efficiently. Some important methods in 

this class are briefly introduced below.  

A parallel planning method is presented in [56] for cartesian trajectory planning. The method 

precomputes a roadmap that considers static obstacle. After receiving a planning request, a few 

paths are computed from the roadmap and then parallelly optimised by a CHOMP like planner 

considering singularity, static and dynamic obstacles as well as the violation of Cartesian 

constraints. By using such a parallel scheme, the success rate in solving the motion planning 

problem is increased while the planning time is reduced. 

BiRRTOpt [57] uses bidirectional RRT (RRT-Connect [16]) to search an initial feasible solution 

and then pass to TrajOpt for optimisation. The combined method is faster than running TrajOpt 

from scratch. In addition, since the initial solution is provided by a probabilistically complete 

planner, the combined method is also probabilistically complete.  

Regionally Accelerated Batch Informed Trees (RABIT* [58]) uses CHOMP to accelerate the 

search of BIT*. Instead of optimising the entire trajectory computed by BIT*, this method 

optimised edges before adding them to the graph if the heuristic cost of the edge is less than its 

true cost. Optimising individual edges avoids the paths computed by sampling-based planners 

being too long (i.e., containing too many waypoints), which would be difficult for the 

optimisation-based planners to process. 

Dancing PRM* and Batch Dancing Tree [59,60] are hybrid motion planning algorithms that do 
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not rely on priori information of the environment. Instead, the methods learn spatial collision 

information during execution of the algorithm and use this information to approximate 

collision-free configuration space, ultimately guiding trajectories towards these regions. They 

rely on Lazy PRM* and BIT* for sampling-based planning respectively while the trajectory 

optimisation is based on CHOMP. 

2.2 Manipulation Planning 

Robotic manipulation can consist of many different tasks related to objects being moved by 

robots e.g., pick-and-place, in-hand manipulation, mechanical assembly of parts etc [64]. In this 

thesis, the focus is on pick-and-place tasks and no regrasping is allowed. Although the setup 

seems to be simple and restrictive, it is actually the most common manipulation tasks performed 

by robots in industry. More general setups consider the problem of regrasping and movable 

obstacles inside environment [65–71]. However, these manipulation strategies are usually 

avoided in the real production environment.  

2.2.1 Grasp Planning 

In order to perform pick-and-place manipulation planning, this thesis assumes grasps can be 

directly generated from simple geometric primitives (e.g., cylinders or a combination of 

multiple cylinders) (Chapter 3), or a set of feasible grasps is given a grasp planner (Chapter 4 

and Chapter 5). Generated grasp candidates should consist of a 6-DoF end-effector pose and an 

d-dimensional hand/gripper configuration (e.g., a simple parallel two-finger gripper has one 

DoF). There are two class of grasp planning approaches i.e., analytical approaches and 

empirical (or data-driven) approaches [72–74]. The analytical method aims at finding a force 

closure or form closure grasp while optimizing some other objectives [75,76]. Recently, deep 

learning based data-driven methods like [77–81] have become more popular because they do 

not require geometry information as a priori information and can detect grasps for unseen 

objects using vision.  
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2.2.2 Pre-grasp Motion and Manipulation Planning 

The grasp motion alone is only one stage of the entire manipulation process. Before grasping, 

the robot needs to reach the desired grasp pose. After successfully grasping the object, the robot 

manipulator is expected to move the object to the goal pose and perform subsequent tasks. 

Therefore, pre-grasp and post-grasp manipulation are of great importance in planning the entire 

robot trajectory.  

Many integrated approaches have also been proposed to solve the combined problem of 

grasping and Pre-grasp motion planning. GraspRRT is proposed in [82] to integrate grasp 

planning and pre-grasp motion planning. To evaluate the quality of reachable grasp poses, grasp 

wrench space analysis is used. The same problem is studied in [83], where independent contact 

regions are used to achieve greater robustness in grasping. A hierarchical contact optimisation 

method is integrated with a sampling-based motion planner (CBiRRT [84]) to simultaneously 

plan the collision-free arm motion as well as the fingertip grasp in [85]. A heuristic-guided 

sampling-based search algorithm in proposed in [5] to increase the success ratio for planning 

pre-grasp motion in dense clutter. The method first planning motion for the end-effector only 

ignoring the constraint of manipulator and then use the planning results as a heuristic to guide 

the planning for the manipulator. 

In some cases, where a single grasp cannot produce desired motion to satisfy the task 

requirement, the robot can perform pre-grasp manipulation (e.g., sliding, pushing or rotation 

[86–89]) to reorient the object to the desired pose. However, this is also generally avoided in 

production environment.  

2.2.3 Grasp selection based on post-grasp motion objectives 

The impact of choosing different grasp poses on the post-grasp manipulation process has been 

analysed in [6,90–92]. In their work, the optimal path of the manipulated object is assumed to 

be found either by human knowledge or an optimal motion planner. Then a few grasp candidates 
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are generated by a grasp planner. Next, for each grasp pose, an inverse kinematics (IK) solver 

is used to generate robot motion and an objective function is defined to evaluate the quality of 

the grasp candidates. In this way, a more efficient grasp pose is found by considering the robot 

motion after grasping. The objective used in [6] is to maximise its distance from any collisions 

along the trajectory while [91] considers how the impact force can be minimised by choosing 

appropriate grasp if a collision does happen. The inertia and dynamics of the grasped objects 

are considered in [90] when choosing a grasp, which results in optimised robot joint torques for 

executing a specified object trajectory. A human-in-the-loop scenario is considered in [92], 

where the human is assisted by an autonomous agent to select grasp that maximise the post-

grasp velocity manipulability along a specified trajectory. 

2.2.4 Grasp Optimised Motion Planning 

Methods presented in this section attempt to solve the integrated grasp and motion planning 

problem. Unlike methods presented in Section 2.2.2, The entire manipulation process or at least 

the post-grasp manipulation is considered. Considering post-grasp manipulation brings special 

challenges to the planning problem since there are more than one potential start configuration 

(grasp) for robot to choose. Besides, choosing different start configurations (grasps) leads to 

different collision checking results for the same robot configuration, which means the planning 

results for one grasp cannot be reused efficiently by another grasp.  

Therefore, methods developed for this problem are mainly optimisation-based, attempting to 

approximate a continuous cost function over the grasp and trajectory space in [93–95]. However, 

the fundamental drawback of these methods is they are very conservative about the shape of 

the object being manipulated (mainly cuboid, sphere, cylinder etc.) and also the gripper type 

(mainly two finger parallel gripper) since the grasp space for complex objects is difficult to 

parametrise.   

An optimal control problem is considered in [93] so that the locally optimal grasp contact 

position, grasping force and robot arm trajectory can be obtained by solving a single 
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optimisation problem. However, they only consider two dimensional objects. A multi-level 

optimisation framework is proposed in [94]. The framework can simultaneously plan the 

grasping location, robot configurations for pick, drop, and handover objects, as well as the 

collision-free arm motion for dual-arm assembly tasks. However, only cuboid objects are 

considered with potential extension to other trivial objects like spherical and cylindrical objects. 

The grasp space is divided into multiple regions in [95] to allow continuous optimisation on 

each region, however, the method can only be applied to limited type of objects as [93] and 

[94]. 

In [96], the grasp optimized motion planning problem is studied. After the grasp planner 

generates a feasible grasp, an optimisation-based planner is used to find the optimal grasp pose 

(while maintaining the same contact positions as the initial grasp) as well as generate the post-

grasp motion. This method can extend to arbitrary objects, but it needs to solve an optimisation 

problem for each single grasp generated by the grasp planner, which is not efficient in case of 

many feasible grasps are available.   

2.3 Manipulation Planning for Non Rigid object 

The methods reviewed in Section 2.2 are mainly for grasp and motion planning of rigid objects, 

However, many objects in industrial and domestic environments are deformable. Manipulation 

of deformable objects has been reviewed in [97–99]. In this section, the manipulation strategies 

for two classes of deformable objects related to pipe assemblies are reviewed.  

2.3.1 Deformable Linear Object 

This thesis analyses the manipulation of 3D pipe (or in general, frame) structures. The 3D pipe 

is bent or assembled by joints from multiple one-dimensional pipes. A 1D pipe can be viewed 

as a deformable linear object (DLO), i.e., it is much larger along one dimension than the other 

two. Manipulation planning strategies have been widely researched for DLOs [100–102]. In 

[100], A two-phase path planner together with a cable pose measurement approach is proposed 
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for cable grasping. The method focuses on the pre-grasp stage and uses force directional 

manipulability to determine the optimal grasp pose. A method for automatic mating of a wire 

harness onto a car body by wire tracing operation is proposed in [101]. In [102], A manipulation 

framework is proposed to shape the cable by environmental contacts. However, common 

techniques used in the literature for DLO manipulation like structure reshaping and exploiting 

environmental contacts are not suitable for 3D pipe manipulation due to the complex structure 

and relatively large strain. Instead, the method presented in Chapter 3 of this thesis aims at 

maintaining the geometry and reducing the deformation of the pipe during the manipulation 

process.  

2.3.2 Compliant Sheet Metal  

Researchers have investigated the problem of minimising deformation when handling 

compliant sheet metal parts. A trajectory optimisation approach is used in [103] to plan a 

minimal deformation trajectory while maintaining the same productivity. A response surface 

model is generated based on finite element analysis (FEA) of the handled part and end-effector, 

so that deformation can be quickly estimated during optimisation. Other approaches attempt to 

reduce the deformation of an object during handling by designing a part-specific end-effector 

layout. A simple methodology is proposed in [104] to determine the number of vacuum cups 

needed for handling a compliant sheet metal part as well as their locations. The method focuses 

on placing vacuum cups evenly based on the gravity distribution of the object. Although the 

deformation and holding force decrease significantly by using the proposed method, the 

deformation information is not directly used during the optimisation process, which means the 

positions of the end-effector could be further optimised. A methodology is proposed in [105] to 

optimise the design of end-effector and robot motion simultaneously in order to achieve less 

cycle time as well as less deformation for a multi-robot system. Although the deformation 

information is used directly, it also relies on a precomputed model to estimate the deformation 

during optimisation as in [103], which is not suitable for manipulating objects with different 

dimensions and geometries.  
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2.4 Discussion 

The current literature on motion and manipulation planning can generate a feasible solution 

very fast and find a near-optimal solution given more time. However, only a few works consider 

the impact of selecting different grasps on the post-grasp robot motion as reviewed in Section 

2.2.3 and 2.2.4. They also tend to formulate the problem in a very restrictive way (e.g., limited 

number of feasible grasps, precomputed deformation models, and/or simple gripper and object 

models). This thesis attempts to address these issues.  

Specifically, Chapter 3 studies a similar problem as reviewed in Section 2.2.3 and 2.3.2. 

However, unlike works in Section 2.2.3 which assume a small number of grasps are available, 

this thesis deals with the case that grasps can be continuously sampled. Besides, Chapter 3 also 

considers the impact of grasp on the grasped object, while works in Section 2.2.3 focus on the 

impact on robots and humans. Unlike methods reviewed in Section 2.3.2, the end-effector used 

in Chapter 3 is a general two-finger gripper so that the optimisation is performed at the actual 

manipulation stage rather than the design stage and no precomputed deformation model is 

required. Hence, the proposed method is more versatile to different pipe geometries. 

Chapter 4 and Chapter 5 study a similar problem to Section 2.2.4. However, the formulation in 

this thesis is more versatile i.e., no constraint is put on the type of gripper or the object shape. 

As long as a suitable grasp planner is available, the methods will work. Besides, one of the 

planners proposed in this thesis can find globally asymptotically optimal paths, while methods 

in Section 2.2.4 are only locally optimal. However, since methods in Section 2.2.4 are 

optimisation-based, they usually generate smoother trajectories and can be executed on the 

robot without further processing. 

Methods presented in Section 2.2.2 all focus on pre-grasp manipulation strategies and motion 

planning. They can be viewed as a complementation to methods developed in this thesis since 

it is possible to use the methods in Section 2.2.2 to generate multiple reachable grasps and then 

pass to planners developed in this thesis to select the optimal grasp based on post-grasp motion 
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costs. It should be noted that, although this thesis also studies the integrated grasp and motion 

planning problem, methods reviewed in Section 2.2.2 cannot be applied to the problem studied 

in this thesis because of two fundamental differences. The first one is methods in Section 2.2.2 

assume the robot starts from a single start configuration and has a goal region to reach. The 

second difference is methods in Section 2.2.2 do not need to consider the problem of change of 

geometry when grasping objects with different poses since they focus on the pre-grasp stage. 

These two differences make the pre-grasp motion planning problem satisfies the assumption of 

most motion planning algorithm thus modifying existing motion planning algorithms to solve 

the pre-grasp motion planning problem is more straightforward. 
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Chapter 3 Multi-objective grasp pose 

optimisation for robotic 3D pipe assembly 

manipulation 

3.1 Introduction 

Currently, the solution for grasping pipe assemblies in FIAB is by designing a part-specific end-

effector. While this solution provides a robust grasp and reduces excessive deformation during 

manipulation, it also increases the weight of the end-effector which makes the process less 

energy efficient. Besides, as the custom-designed end-effector is larger and more complex in 

terms of its geometry, some pipes may deem to be infeasible to manufacture due to possible 

collision with the end-effector. More importantly, the custom-designed gripper is much more 

expensive than a general gripper. 

 

Figure 3.1 A 3D pipe assembly. 

Therefore, this chapter proposes a method based on using a general two-finger gripper. As 

shown in Figure 3.1, the pipe assembly consists of several sections. The simple cylindrical 

shape of each section makes it possible for the assembly to be grasped by a low-cost parallel 

gripper robustly with a properly designed attachment (as shown in Figure 3.2). Although the 
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grasping motion alone is easy, other issues may arise when the robot motion after grasping is 

considered. For example, some grasp poses may lead to collisions between the robot (or grasped 

object) and the environment. This is very common inside FIAB since the space is relatively 

compact. Other grasp poses may lead to redundant motion of the robot, proximity to robot 

singularity and excessive deformation of the pipe assemblies. Therefore, an optimisation 

process needs to be implemented to find a suitable and possibly optimal grasp pose for the pipe 

assembly. 

In order to address these issues, this chapter considers the problem of grasp pose optimisation 

for manipulating 3D pipe assemblies during the manufacturing process. The method presented 

in this chapter is specifically developed for manufacturing cryogenic pipe assemblies 

autonomously in FIAB. However, it also can be used for robotic manipulation of general frame 

structures. 

  

Figure 3.2 The attachment design for securely grasping the pipe.  

The problem is formulated as a constrained multi-objective optimisation problem. The 

optimisation algorithm first searches for solutions that satisfy two constraints: (i) robot 

workspace reachability (i.e., feasible inverse kinematics solution for a given end-effector pose); 

and (ii) any possible collision when executing the post-grasp motion, and continuously 

improves them based on three objectives: (i) minimise robot joint motion for executing a 
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specified pipe trajectory; (ii) minimise the sum of maximum deformation of pipe assembly 

along the trajectory; and (iii) minimise the sum of robot force manipulability along the trajectory.  

The proposed method assumes robot perform repetitive tasks in a static environment. Therefore, 

once the optimal solution is computed offline, the robot can execute the trajectory repetitively 

with the optimal grasp to increase the production efficiency. Previous work on the similar 

problem like [6,90–92] only deals with a limited number of grasp candidates, thus no 

optimisation algorithm is used. This chapter follows the same assumption in [6] that an optimal 

object trajectory is known beforehand. However, this chapter considers deformation and other 

objectives that are not used in previous work and uses Analytical Hierarchy Process (AHP) to 

determine weights for each objective. A special constraint handling method is also used to 

decouple the constraint and objective evaluation process, allowing expensive objectives (e.g., 

deformation) to be evaluated only when constraints are satisfied, thus significantly reducing the 

computation time. In addition, The algorithm explicitly considers the possibility of multiple 

inverse kinematics (IK) solutions (for the same end-effector pose) and uses a graph search 

algorithm (Dijkstra’s Algorithm) to find the optimal trajectory among all feasible trajectories, 

thus further optimising the objective costs. The optimisation problem is solved using the Bees 

Algorithm with a proposed problem-specific local search strategy. Extensive benchmarks show 

that the proposed strategy achieves better overall results than the default strategy of the Bees 

Algorithm and other metaheuristics. 

The remainder of this chapter is structured as follows: Section 3.2 formulates the problem, in 

which optimisation variables, objectives, and constraints are modelled. Section 3.3 describes 

the details of the objective and constraint evaluation method. Section 3.4 introduces the 

optimisation algorithm used in this chapter and proposes problem-specific search strategies. 

Section 3.5 presents the experiments, results, and analyses. Section 3.6 concludes this chapter.   

3.2 Problem Formulation 
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3.2.1 Problem Description  

The simulated environment is shown in Figure 3.3. The pipe is placed on a fixture for the robot 

to grasp. The initial pose of pipe is denoted as 𝐀p,0. 𝐀p,0 is a homogeneous transformation 

matrix with respect to world frame, i.e.,  

𝐀p,0 = [
𝐑 𝒑
𝟎 1

], 

where 𝐑 ∈ ℝ3×3, 𝒑 ∈ ℝ3, 𝐑𝑇𝐑 = 𝐑𝐑𝑇 = 𝐈, det(𝐑) = 1. 

After successfully grasping the pipe, the robot will transfer the pipe to a desired pose 𝐀p,n. The 

trajectory of the pipe is denoted by a series of waypoints: 𝐀p,1, 𝐀p,2, … , 𝐀p,n. 

 

Figure 3.3 A robot picks up a pipe assembly and transfer it to the desired pose 

As mentioned above, with a proper design, the end-effector can grasp almost at any position of 

the pipe. However, not every pose is reachable for the robot to perform grasping, or even if the 

grasping pose is reachable, the predefined pipe trajectory cannot be followed exactly. In order 

to achieve fast and efficient production as well as maintain the quality of the pipe, there are 

several issues that need to be considered when the robot chooses a pose to grasp the pipe: 
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- the trajectory of the pipe can be followed exactly. 

- there is no collision between the robot (with the grasped pipe) and the environment or 

self-collision. 

- minimise the robot joint motion distance. 

- minimise the deformation of pipe along the trajectory. 

- minimise force manipulability of robot along the trajectory. 

The first two issues are modelled as constraints and the latter three are modelled as objectives 

in Section 3.2.3. 

3.2.2 Abstracted Pipe Geometry 

The pipe assembly is abstracted to simplify the process of generating grasp poses and 

computing the deformation after being grasped by the robot. The abstraction of the 3D pipe 

assembly in Figure 3.1 is shown in Figure 3.4. The assembly consists of several sections 

(S1, S2, S3, … ). Each section is defined by two nodes. Each node stores its own 3D position with 

respect to its local coordinate system. Each section stores properties like diameter, wall 

thickness and material density. In this way, theoretically, the pipe can consist of sections with 

different materials (PVC and copper) and diameters. The geometry of the pipe assembly in 

Figure 3.4 can be defined by a 6 by 2 matrix [
1 2 3 4 4 6
2 3 4 5 6 7

]
𝑇

, where each entry of the 

matrix is the index of the node and each row defines a section. 
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Figure 3.4 An abstracted pipe assembly in its local frame. 

3.2.3 Mathematical Modelling  

In this section, the optimisation variables, constraints, and objectives of the problem are 

modelled based on the issues discussed in Section 3.2.1. 

3.2.3.1 Optimisation Variables 

The problem is aimed at finding the optimal grasp pose. A grasp pose is essentially a rigid body 

transformation and can be represented by a homogeneous transformation matrix. In our problem, 

the grasp pose must satisfy certain constraints to enable feasible grasping. Specifically, the 

position vector must be on the centreline of the pipe and the orientation vector has to be 

perpendicular to the pipe centreline. Given the geometry of pipe assembly, a grasp pose can be 

defined with 4 variables as shown in Figure 3.5. The definitions of the variables are given as 

follows: 

- grasp section (e.g., S1, S2, S3, …) 

- grasp position (len): this is the length between the starting node of a section (e.g., the 

starting node of S1 is N1) and the grasp location (where gripper TCP is placed). 

- grasp angle (ϕ ): this is the angle between the y-axis and the gripper approaching 

direction (grey arrow). 
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- flip angle (θ): This angle is around the gripper approaching direction (grey arrow) and 

can only be either 0 or 180 due to geometric constraint of pipe and the design of parallel 

gripper.  

Given the geometry of pipe P, grasp ℊ = {S, len, ϕ, θ} can then be generated. Knowing the 

grasp parameter, it becomes convenient to calculate the end-effector grasp pose 𝐁e
P  in the 

matrix form with respect to the pipe local coordinate system.  

 

Figure 3.5 Variables that define a grasp. 

3.2.3.2 Optimisation Constraints  

3.2.3.2.1 Reachability Constraint (C1) 

The first constraint that needs to be considered is the reachability of the robot. All the end-

effector poses on the trajectory must be inside the workspace of the robot. Given the trajectory 

of the pipe and the generated local grasp pose 𝐁e
P, the robot end-effector pose in the world 

frame can be computed as follows:  

𝐓e,i = 𝐀p,i𝐁e
P(ℊ). 

Therefore, the robot joint trajectory can be computed by solving the inverse kinematics problem:  

 𝒙i = IK(𝐓e,i), ( 3.1 ) 

where 𝒙𝑖 is a vector that describes the robot configuration. The dimension of 𝒙i is the degrees 
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of freedom of the robot. If for i  =  0  …  n, Eq. ( 3.1 ) is solvable and the solution satisfy the 

robot joint range constraint, then this grasp pose satisfies the reachability constraint. 

3.2.3.2.2 Collision Constraint (C2) 

The second constraint that needs to be satisfied is that the whole manipulation process must be 

collision-free. To satisfy this constraint, collision checking is performed for all the robot 

configurations (𝒙0, 𝒙1, … , 𝒙n) and intermediate states during the manipulation process. When 

performing collision checking, a safe distance is implemented to ensure that no collision 

happens in case of any uncertainties e.g., geometric modelling errors, robot motion inaccuracy 

or part deformations. The collision checking is performed by an open source library FCL [106] 

which supports both collision detection and distance queries. 

3.2.3.3 Optimisation Objectives 

3.2.3.3.1 Joint Motion (𝐎𝟏) 

Objective O1  is defined as the sum of squared displacements between two consecutive 

waypoints to encourage minimum robot joint motion. Since the robot configurations required 

to follow the given pipe trajectory and grasp pose have been calculated already using IK solver 

in the constraint checking process, the computation of O1 is straightforward: 

Cost(O1) = ∑ ‖𝒙i − 𝒙i−1‖2
n
i=1 , 

where n is the number of waypoints of the trajectory as mentioned above. 

3.2.3.3.2 Deformation of the pipe (𝐎𝟐) 

This objective intends to minimise the sum of maximum deformation that happens at each 

waypoint along the trajectory. In this way, the geometric shape of the pipe can be maintained 

during the manipulation process. The deformation depends on the grasp position with respect 

to the pipe frame as well as the orientation of the pipe with respect to the world frame. The pipe 

is modelled as a frame structure that consists of arbitrarily oriented beam members which are 

connected rigidly. The beam members support bending, shearing as well as axial loads. A 
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custom FEA program is implemented by using the matrix method described in [107]. The key 

step here is to reconstruct the boundary condition when evaluating different grasp poses. After 

grasping, the pipe is assumed to be rigidly supported at the grasping location. The initial pipe 

structure is created before the optimisation process starts as in Section 3.2.2. Once the current 

grasp pose is determined, a new node is created at the grasp location and the original grasp 

section is broken into two sections. The matrix used to store the geometry of the pipe assembly 

is updated accordingly. After creating the new geometry, the stiffness matrix of the pipe can be 

constructed. The general stiffness matrix for a 1D pipe section in the local frame is given by: 

𝐊 =

[
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where E  and G  are the Young’s modulus and the shear modulus. Iy  and Iz  are the second 

moment of area. J is the torsional constant (same as Ix in the circular case) and 𝐿 is the length 

of the pipe section. Since each node has 6 degrees of freedom, assuming the structure has 𝑁 

nodes, the stiffness matrix for the whole structure is a 6𝑁 by 6𝑁 matrix. Transform from local 

to the global coordinate system: 

𝐊global = 𝐑T𝐊𝐑, 

where 𝐑 is the rotation matrix which represents how each pipe section is oriented from the 
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global coordinate system. Details about constructing the stiffness matrix for a structure can be 

found in [107]. 

The weight of the pipe distributes evenly along its length as shown in Figure 3.6(a). Therefore, 

the loading conditions is equivalent to having one force and one moment acting on each node 

of the section as shown in the Figure 3.6(b). Assuming W is the weight per unit length, the 

equivalent loading can be obtained as follows: 

F =  −WL/2 

M1 = WL2/12 

M2 = −WL2/12 

The force vector can then be constructed for each node by using the above equations. Once the 

force vector is obtained, the displacement vector 𝒖 can be computed by: 

𝒇 =  𝐊𝒖. 

where both 𝒇 and 𝒖 are all column vectors of size 6𝑁. 

 

Figure 3.6 Loading condition of a pipe element. (a) Loading condition of pipe element under gravity. (b) 

Equivalent loading condition.        

The maximum deformation (maxDeform) of the pipe at one specific pose can then be obtained 

by computing the norm of displacement vector 𝒖 for each node. The Cost(O2) is defined to 

be the sum of the maximum deformation at each pose along the trajectory as follows: 

Cost(O2) = ∑ maxDeformi

𝑛

i=1
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Note here the deformation of first trajectory waypoint (𝑖 =  0) is not computed since the pipe 

is still placed on a fixture at this pose. 

3.2.3.3.3 Force Manipulability (𝐎𝟑) 

The third objective is to minimise the force manipulability along the end-effector moving 

direction. According to the force/velocity duality, minimising the force manipulability is 

equivalent to maximising its velocity manipulability. Therefore, for a given set of joint 

velocities, the end-effector can move faster with a large velocity manipulability.1 In order to 

compute the manipulability along a specific trajectory, the manipulability ellipsoids are 

constructed as follows: 

 𝒗𝑇 (𝑱𝒇(𝒙). 𝑱𝒇
𝑇(𝒙))

−1

𝒗 = 1 ( 3.2 ) 

 𝜸𝑇 (𝑱𝒇(𝒙). 𝑱𝒇
𝑇(𝒙))𝜸 =  1. ( 3.3 ) 

where 𝑱𝒇(𝒙) is the Jacobian matrix of joint configuration 𝒙. 𝒗 is the velocity vector of the 

end-effector and 𝜸  is the force (torque) vector of the end-effector. Eq. ( 3.2 ) defines the 

velocity manipulability ellipsoid and Eq. ( 3.3 ) defines the force manipulability ellipsoid. Both 

ellipsoids are shown in Figure 3.7 for a simple 3-link planar robot manipulator. 

 

 
1 Although the intention is to maximise the velocity manipulability, the velocity manipulability is not directly used to avoid 

the scenario that 2 objectives need to be minimised while the other one needs to be maximised. This scenario often leads to 

negating the objective to be maximised. However, negative objective costs are not ideal since Dijkstra’s Algorithm used later 

requires edge weights of the graph to be positive. Therefore, the force manipulability is used instead. 
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Figure 3.7 Force and velocity ellipsoid for a 3-link planar robot 

Given a unit vector 𝒛 represents the direction of movement of the end-effector, the velocity 

manipulability (β(𝒙)) and the force manipulability (α(𝒙)) are defined to be the length of the 

vector from the centre of the ellipsoid along 𝒛 to the surface of the respective ellipsoid. β(𝒙) 

and α(𝒙) can be computed by rearranging Eq. ( 3.2 ) and ( 3.3 ) as follows: 

β(𝒙) = (𝒛𝑻(𝑱𝒇(𝒙)𝑱𝒇
𝑇(𝒙))−𝟏𝒛)−1/2 

α(𝒙) = (𝒛𝑻𝑱𝒇(𝒙)𝑱𝒇
𝑇(𝒙)𝒛)−1/2. 

As shown in Figure 3.7, a direction with small α(𝒙) has a relatively large β(𝒙) which suggests 

that the end-effector is relatively easier to move along the given direction 𝒛. The objective 

function is defined as follows: 

Cost(O3) = ∑ α(𝒙𝑖)
𝑛
𝑖=1 . 

Note here again i starts from 1 rather than 0, since 𝒛i is defined to be the vector when robot 

attempts to move from pose i − 1 to pose i. In this way, all three objectives are consistent in 

the sense that they are trajectory based objectives since there has to be at least 2 waypoints in 

the trajectory. 

3.3 Objective and Constraint Evaluation 

3.3.1 Constraint Handling Method 

The constraints are handled by using the method reported in [108]. The method compares two 
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solutions based on the following 3 criteria: 

1. A feasible solution is always better than an infeasible solution. 

2. Between two infeasible solutions, the one that violates the constraint less is considered 

to be better. 

3. Between two feasible solutions, the one with a better objective cost is better. 

The advantages of this method are twofold. Firstly, it does not require an explicit penalty 

parameter to handle the constraints. Besides, it allows objectives to be evaluated only when all 

the constraints are satisfied, which significantly reduces the algorithm running time especially 

in the case of having an expensive objective function. 

The optimisation problem has two constraints. The collision constraint is checked by the FCL 

library [106]. To check if the reachability constraint is satisfied, a third party IK solver (IKfast 

[109]) is used. The returned result of the IK solver is binary, either successful or not, which 

means it is impossible to compare two infeasible grasps which one violates the constraint more. 

To solve this problem, a combined constraint cost is defined for each waypoint along the 

trajectory as follows: 

Cost(Ci) = {
0,  
1,
2,

    
if both C1 and C2 are satisfied
if C1 is satisfied while C2 is not

if C1 is not satisfied
 . 

And the cost for the whole trajectory is defined as follows: 

Cost(C) = ∑ Cost(Ci)
n
i=0 . 

It should be noted that the cost for the waypoint is set to 2 automatically when C1  is not 

satisfied. That is because the joint configuration (𝒙), which is required for checking C2, can 

only be obtained when C1 is satisfied. 

3.3.2 Weights Selection for Combining Multiple Objectives 

A weighted sum approach is used to handle multiple objectives: 

Cost(O) = w1Cost(O1) + w2Cost(O2) + w3Cost(O3). 
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To systematically determine the weights for each objective, an Analytical Hierarchy Process 

[110] is used. The approach determines the relative importance among objectives by a series of 

pairwise comparisons. The results of the comparison are used to generate a comparison matrix: 

 (

O1 O2 O3
O1 1 6 2
O2 1/6 1 1/4
O3 1/2 4 1

). 

The entry of the matrix tells the preference level between the 2 objectives. For example, the 

entry at (O1, O2) is 6, which means O1 is much preferred to O2 (these numbers are subjective 

since they are selected based on the author’s preferences and experiences). Then the consistency 

of the matrix is verified by computing the consistency ratio (CR) as follows: 

{
CI  =  

λ𝑚𝑎𝑥 −  m

m − 1

CR  =  
CI

RI

 

where CI is the consistency index of the comparison matrix, RI is the average random index 

(given in Table 3.1), CR is the random consistence ratio of the comparison matrix, 𝜆𝑚𝑎𝑥  is the 

maximal eigenvalue, and 𝑚 is the order of the judgment matrix. If CR is less than 10%, the 

matrix is considered as having an acceptable consistency. In our case, the CR is 0.79%, which 

is acceptable. 

Table 3.1 Random indices from [110]. 

m 3 4 5 6 7 8 9 10 

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

For a consistency matrix, the weights are computed by normalising each column of the matrix 

and then calculating the average of each row. The resultant weight vector is 𝒘  =

[w1 w2 w3]
𝑇  =  [0.56 0.12 0.32]𝑇. 

3.3.3 Considering Multiple IK Solutions 

Eq. ( 3.1 ) assumes only one IK solution is available given an end-effector pose. However, there 

could be at most 16 different joint configurations for a 6 DoF robot [111]. Analytical IK solvers 

like IKFast can compute multiple IK solutions efficiently. In this section, the method used to 
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handle multiple IK solutions is introduced. As shown in Figure 3.8, each circle corresponds to 

a robot configuration (IK solution). All the circles in the same column have the same end-

effector pose. A graph can then be constructed. The vertices of the graph are the robot 

configurations (blue circles in Figure 3.8). The edges are created by connecting each vertex in 

one column to all the vertices in the next column. The cost of each edge is the weighted sum of 

joint motion distance (O1) and manipulability (O3). Deformation objective (O2) is not used to 

compute the cost because the deformation only depends on the orientation of the pipe and the 

grasp pose. Different arm configurations producing the same end-effector pose will not have an 

impact on the deformation cost. In this way, evaluating the cost of a single grasp is converted 

to a graph search problem. The problem is solved by running Dijkstra’s algorithm for each start 

vertex (i.e., vertices in the first column). This process is similar to the Descartes Planner in ROS 

industrial project [112]. 

 

Figure 3.8 The inverse kinematics solution graph for a given object trajectory 

3.3.4 Overall Evaluation Process 

The complete procedure for evaluating objective and constraint cost is presented in Algorithm 

3.1. The function starts by initialising both constraint cost and objective cost to be 0 and then 

for each waypoint on the trajectory of the pipe, the end-effector pose is computed. Given an 

end-effector pose, a subfunction MULTI-IK is called to get multiple IK solutions from the IK 

solver. If the size of 𝐗i is zero, the end-effector pose is determined to be not reachable (i.e., 
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C1 is not satisfied), thus the constraint cost is incremented by 2. If there is at least one feasible 

IK solution, the function will perform collision checking for all IK solutions. If there is no 

collision-free IK solution in 𝐗i (i.e., C2 is not satisfied), the constraint cost is incremented by 

1. After checking whether constraints are satisfied or not, the objective cost will be evaluated 

for the constraint-free grasp. A weighted graph is created first. Then, for each IK solution (𝐗0[j]) 

in 𝐗0, Dijkstra’s Algorithm is used to search for the shortest path from 𝐗0[j] to any IK solution 

in 𝐗n, whose cost is assigned to 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑠𝑡. 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡 tracks the cost of the best IK 

solutions found so far in 𝐗0. Then the cost for the grasp is set to be the sum of the optimal 

graph cost and the weighted deformation cost. 

Algorithm 3.1 GRASP-EVALUATION-MULTI-IK(ℊ) 

1. Cost(C)  =  0, Cost(O)  =  0 

2. for i =  0 ∶  n, 

3.   𝐓e,i = 𝐀p,i𝐁e
P(ℊ) 

4.   𝑿i =  MULTI-IK(𝐓e,i)  // 𝐗i is a matrix and each column is a valid IK solution 

5.   if 𝐗i. cols() == 0 // IK solver returns 0 solution 

6.     Cost(C) +=  2 

7.   else 

8.     for j =  0 ∶ 𝐗i. cols() 

9.       if not COLLISION-FREE(𝐗i[𝑗]) 

10.         DELETE 𝐗i[j] from 𝐗i  // delete solution in collision 

11.     if 𝐗i. cols() == 0  // no IK solution satisfies collision constraint 

12.       Cost(C) += 1  

13. if Cost(C) == 0 

14.   𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡 = INFINITY 

15.   𝐺 = CONSTRUCT-GRAPH (𝐗0, … , 𝐗n)   // construct graph  

16.   for j = 0 : 𝐗0. cols() , 

17.     𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑠𝑡 = DIJKSTRA-SEARCH (𝐺, j)  // search graph given the start vertex 

18.     if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑠𝑡 <  𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡 

19.       𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑠𝑡 
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20.   Cost(O) = 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡  +  w2Cost(O2) 

21.   ℊ. 𝑐𝑜𝑠𝑡 = {0, Cost(O)} 

22. else   

23.   ℊ. 𝑐𝑜𝑠𝑡 = {Cost(C), 0} 

3.4 Optimisation Algorithm 

3.4.1 Original Bees Algorithm 

Bees algorithm (BA) [113], a population-based search algorithm which mimics the food 

foraging behaviour of honey bees, is used to solve the optimisation problem. The algorithm is 

shown in Algorithm 3.2 and the definitions of hyperparameters are given in Table 3.2 

 

Algorithm 3.2 BA 

1. Initialise 𝑔𝑟𝑎𝑠𝑝𝑉𝑒𝑐 

2. for each grasp ℊ in 𝑔𝑟𝑎𝑠𝑝𝑉𝑒𝑐 

3.   GRASP-EVALUATION-MULTI-IK(𝑔) 

4. while stopping condition not true 

5.   Locate elite and non-elite best sites 

6.   Local search   

7.   Site abandonment and neighbourhood shrinking 

8.   Global Search 

 

 

Table 3.2 BA parameters and definitions 

Parameter Definition 

ns Number of scout bees 

ne Number of elite sites 

nb Number of best sites 

nre Number of recruited bees for elite sites 

nrb Number of recruited bees for remaining best sites 

stlim Number of no improve iterations before site abandonment (stagnation limit) 
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The algorithm initialises 𝑔𝑟𝑎𝑠𝑝𝑉𝑒𝑐 by creating a colony of ns scout bees randomly in the 

search space. Each point in the search space (also known as a site in the Bees Algorithm 

literature) corresponds to a solution grasp ℊ. After evaluating the cost of each site, all sites 

visited by scout bees are sorted and the best nb <  ns  sites are selected for local search. 

Among nb best sites, the scout bees at top ne sites recruit nre bees to perform local search in 

the neighbourhood. The bees at the remaining nb − ne best sites recruit nrb bees to perform 

local search (nrb <  nre). If the result of local search does not improve and the site is searched 

again in the next iteration, the neighbourhood size is shrunk. The initial neighbourhood size is 

defined to be a proportion of the interval where the variable is defined. If the same site is 

searched for a predefined number of iterations (known as stagnation limit, stlim ) without 

improving, the local minimum is considered to be reached and the scout bee at that site will 

perform random search again (site abandonment). After finishing local search, the remaining 

scout bees will be placed randomly in the search space to perform global search. Unlike the 

standard implementation of BA, the number of global searches in this work is set as 

ns –  ne ×  nre − (nb − ne)  ×  nrb to keep the same number of function evaluations in the 

initialisation process and later iterations. 

3.4.2 Local Search Strategy 

The local search strategy of the standard bees algorithm is straightforward. Given a solution 

site, The neighbourhood of the site is defined as a hyperrectangle. Recruited bees are randomly 

placed in the hyperrectangle to generate new grasps. The size of the hyperrectangle is shrunk 

when the same site is searched multiple times without improving. However, the optimisation 

variables used in this chapter does not ensure newly generated grasps inside hyperrectangular 

are close to each other in terms of their Cartesian coordinate (as shown in Figure 3.9(a)). Since 

only variable S  and len  determine the Cartesian coordinates of a grasp, three different 

neighbourhood generation strategies for S and len are presented as follows:  

- Str1: This strategy performs the default behaviour of the bees algorithm i.e., treating S 
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and len  independently. For example, if the solution site is on S3  and the 

neighbourhood size for S is 4, the newly generated grasps can be on S1 – S5. If the 

solution site is close to one end of the section, it is likely that the newly generated grasp 

position len is out of the range. In this case, the len will be set as the limit (either 0 or 

the maximum length of the section). 

- Str2: This strategy is similar to Str1 except that the neighbourhood size for S is always 

0. This ensures the newly generated grasps are always close to the solution site being 

searched since they are constrained to be on the same section. However, this strategy is 

very conservative and may lead to early convergence. 

- Str3 (proposed): Like Str2, Str3 does not allow the section to be changed in the usual 

condition. However, if the newly generated grasp position len  is out of the range, 

unlike Str1 and Str2, Str3 will explicitly find if there is any other section connected to 

the section of the solution site and select randomly from all connected sections to locate 

the grasp. For example, the feasible range for len on S3 is [0, 150]. If the generated 

len is -10 on S3, the grasp will be located on S2 with len set as maxLength(𝑆2) −

10. In this way, Str3 ensures the newly generated grasps are close to the solution site 

and also allow the change of section during local search to avoid early convergence.  

The neighbourhoods of Str1, Str2 and Str3 are shown as the blue area in Figure 3.9(a), (b) and 

(c). The red star is the solution site. 

 

Figure 3.9 Search neighbourhood for Str1 (a), Str2 (b) and Str3 (c) respectively. 
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3.5 Experiment and Results 

3.5.1 Experiment Setup 

In the experiment, three different copper pipe assemblies are tested in a simulated environment 

using the proposed method. The geometries of Pipe1, Pipe2 and Pipe3 are shown in Figure 3.10. 

The dimension of each pipe section is given in Table 3.3. Other properties of the pipe are listed 

in Table 3.4. The robot used in the experiment is a standard 6-axis industrial robot with a 

spherical wrist (KUKA KR6 R900 sixx). The maximum reach of the robot is 900mm and the 

payload is 6kg. The program is run on a Linux machine with an Intel Core i7-4712MQ CPU @ 

2.30 GHz and 8GB RAM. The IK solver and collision checking library are accessed through 

ROS MoveIt/Descartes API. 

 

Figure 3.10 The CAD model for Pipe2 (a) and Pipe3 (b). 

Table 3.3 Pipe assembly dimensions. 

Section (mm) S1 S2 S3 S4 S5 S6 S7 S8 

Pipe1 200 200 150 200 400 100 \ \ 

Pipe2 200 200 300 200 200 \ \ \ 

Pipe3 200 150 200 200 400 150 100 50 

Table 3.4 Pipe properties. 

Outer diameter 

(mm) 

Inner diameter 

(mm) 

Density 

(kg/m^3) 

Young’s 

modulus (GPa) 

Shear modulus 

(GPa) 

12 10 8960 110 40 

To avoid the potential impact of hyperparameters on the performance of the algorithm, each 

strategy is tested with 9 different sets of hyperparameters (listed in Table 3.5) for 50 times. In 

the experiments, three sets of hyperparameters are tested in parallel to accelerate the 
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computation. The percentage 10%, 30% and 45% under the “Random Scout” column indicate 

the approximate proportion of global search in population. The optimal solution is determined 

to be found if the objective cost is within ±0.1%  range of the known optimal cost. The 

optimisation process stops if the optimal solution is found, or the maximum iteration is reached. 

For all 9 sets of hyperparameters, the maximum number of grasp evaluations are the same 

(ns ×  iteration =  1530).  

Table 3.5 Tested 9 sets of hyperparameters for Bees Algorithm. 

Genetic Algorithm (GA) [114] and Particle Swarm Optimisation (PSO) [115], two widely used 

population-based metaheuristics, are also implemented to solve the proposed problem for 

comparison. To ensure a relatively unbiased comparison, 9 sets of hyperparameters are tested 

for both GA and PSO and the stopping condition is the same as BA. For GA, 9 sets of 

hyperparameters are generated from 3 population sizes (34, 51 and 102) and 3 mutation rates 

(0.2, 0.3 and 0.4). Binary tournament selection is used in the parents selection process of GA. 

The solutions are real value encoded. Single point crossover is used with crossover rate 1. The 

mutation operator for the binary variable θ is simply bit-flip. For S, len and ϕ, the mutation 

operator samples uniformly within a given mutation range. For S , the mutation range is 

[S1, Smax], where Smax is the maximum section number of the current pipe. For len and ϕ, if 

the current solution value is a, the mutation range is [a − 100, a + 100], while satisfying the 

usual lower and upper limits of the variable. 

For PSO, 9 sets of hyperparameters are generated from 3 population sizes (34, 51 and 102) and 

No. ne nre nb nrb Random Scout ns Iteration 

1 1 12 7 3 4 (10%) 34 45 

2 1 15 7 5 6 (10%) 51 30 

3 1 20 15 5 12 (10%) 102 15 

4 1 12 5 3 10 (30%) 34 45 

5 1 15 6 4 16 (30%) 51 30 

6 1 20 11 5 32 (30%) 102 15 

7 1 10 4 3 15 (45%) 34 45 

8 1 12 5 4 23 (45%) 51 30 

9 1 15 9 5 47 (45%) 102 15 
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3 connectivity levels (10%, 50%, and 100%). For example, if the population size is 34, a 10% 

connectivity level means each particle is connected to 3 closest particles (fractional part is 

truncated). Inertia weight is set to 0.7 and both acceleration coefficients (c1 and c2) are set to 

2. The velocity update is not implemented for the grasp section S and the flip angle θ since 

they are intrinsically discrete (binary). These two variables are updated to be the same as their 

personal best, global best or keep their original value with probability 0.3, 0.4 and 0.3, 

respectively. 

An additional experiment is performed to compare the performance of the multi IK evaluation 

method (Algorithm 3.1) and the single IK counterpart (implemented by removing the graph 

search step from Algorithm 3.1). Both methods use the same set of hyperparameters (No. 7 in 

Table 3.5, except the number of iterations). The same 3 pipes in Table 3.3 are tested in this 

experiment. However, the stopping condition is different since it is difficult to determine the 

optimal solution for the single IK method. Theoretically, the optimal solution should be the 

same as the multi IK method. However, in practice, it almost never finds the same optimal 

solution since 1). the single IK method uses a numerical IK solver which usually only finds the 

solution closer to the initially provided solution; 2). There are too many possible arm motions 

for a predefined workspace object trajectory (for example, imagine there are 10 waypoints, and 

each waypoint has 2-4 possible IK solutions, the probability for the IK solver to generate the 

exact optimal combination is between 1/210 and 1/410). Therefore, the stopping condition 

for both methods is set to be the completion of 30 search iterations (i.e., 1020 grasp evaluations). 

3.5.2 Results and Discussion  

3.5.2.1 Optimal Grasp and Robot Trajectory 

The optimal grasp parameters found for each pipe to complete the given pipe trajectory are 

listed in Table 3.6. The trajectory of the robot for manipulating Pipe1-3 is shown in Figure 3.11. 

It can be found in Table 3.6 that the flip angle θ can choose either 0 or 180 for all 3 pipes. This 

is because the gripper that used in this chapter is symmetric and mounted to be aligned with the 
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rotation axis of the last joint of the robot. Therefore, θ can be chosen as either 0 or 180 without 

affecting the following motion of the robot. 

Table 3.6 Optimal solutions found for each pipe 

 S len ϕ θ Objective Cost 

Pipe1 S4 79 -155 180/0 4.7638 

Pipe2 S3 151 -100 180/0 4.1487 

Pipe3 S2 96/97 23 180/0 5.7905 
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Figure 3.11 The robot trajectories when manipulating Pipe1 (a), Pipe2 (b) and Pipe3 (c). 

3.5.2.2 Comparison among different algorithms  

For each algorithm (strategy), the best optimisation results for solving 3 problems are combined 
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and listed in Table 3.7. It is worth noting that the best set of hyperparameters is different for 

different problems. Therefore, each column in Table 3.7 is not for a single set of 

hyperparameters but the combination of best results from different sets of hyperparameters on 

different problems. The results show that by using an appropriate set of hyperparameters, all 3 

BA local search strategies can achieve a 100% success rate out of 50 tests in finding the optimal 

solution. However, the computation speed of each strategy is different. The row named “Grasp 

Evaluations” lists the number of grasps evaluated for solving 3 problems by each strategy. It is 

clear that Str2 and Str3 require significantly fewer grasp evaluations than Str1, which suggests 

that Str2 and Str3 should converge much faster than Str1. However, in terms of the actual 

running time shown in the next row, Str1 is a lot faster than both Str2 and Str3. The 

inconsistency is due to the constraint handling method used in this work (see Section 3.3.1). 

Since Str1 is intrinsically more stochastic and does not focus on a single section during the local 

search, the search efficiency of Str1 is lower than Str2 and Str3, thus it requires generating a 

large number of grasps to find the optimal solution. However, the grasp evaluation process is 

not required to be fully performed if the generated grasp is in constraint. Therefore, although 

Str1 generates more grasps to be evaluated, most of them can be evaluated within a short time. 

On the other hand, Str2 and Str3 mainly generate grasps that are close to the feasible grasps, 

which makes the generated grasps more likely to be feasible and need to be fully evaluated. 

Since evaluating the deformation objective O2 is relatively a time-consuming operation, Str1 

has the advantage in terms of time consumption even though it generates more grasps. The 

results of GA and PSO are listed in the last two columns of Table 3.7. By using the algorithm 

setup in Section 3.5.1, the GA and PSO generally perform not as good as BA as they cannot 

achieve a 100% success rate on all three problems and the time required to finish the 

optimisation is longer. 

Table 3.7 Optimisation results of the best performed set of hyperparameters for each strategy 

 Str1(BA) Str2(BA) Str3(BA) GA PSO 

Grasp Evaluations 1100 845 832 2172 1205 

Time (s) 31.4 40.1 37.5 76.49 49.7 

Success Rate 100% 100% 100% 93.3% 98% 
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The first three columns of Table 3.8 show the average results of 3 strategies over 9 sets of 

hyperparameters. Still, Str1 evaluates more grasps with less time than both Str1 and Str2. In 

terms of overall success rate, Str3 achieves the highest success rate. Table 3.9 lists how many 

times each local search strategy fails to find the optimal solution on the individual problem out 

of 450 tests (9 configs × 50 tests/config). It can be found that Str1 is likely to fail on Pipe2 and 

Str2 is likely to fail on Pipe3, while Str3 performs more consistently over different problems. 

The inconsistency of the algorithm performance is due to the choice of hyperparameters. More 

analyses regarding the impact of hyperparameters on the performance of the algorithm are 

presented in the next section. The average results of GA and PSO over all sets of 

hyperparameters are listed in the last two columns of Table 3.8. It can be found that, by using 

the algorithm setup in Section 3.5.1, GA and PSO are more sensitive to the selection of 

hyperparameters than BA as the success rate drops significantly compared to the best results in 

Table 3.7. The last 2 columns of Table 3.9 also show that the implemented GA and PSO version 

in this work perform worse than BA on all tested problems except Pipe2, where the result of 

PSO is comparable to BA. 

Based on the above analyses, generally, it is recommended to use Str3 for consistently good 

performance over different problems. However, if the computation time is extremely critical, 

Str1 can be considered as well. 

Table 3.8 Average optimisation results over 9 sets of hyperparameters for each strategy 

 Str1(BA) Str2(BA) Str3(BA) GA PSO 

Grasp Evaluations 1572 1192 1168 2699 1891 

Time (s) 41 57.4 51.4 92.4 93.2 

Success rate 98.9% 98.5% 99.6% 76.8% 81.3% 

Table 3.9 number of times that the algorithm fails to find global optimal 

 Str1(BA) Str2(BA) Str3(BA) GA PSO 

Pipe1 0  0 2 46 154 

Pipe2 9 2 2 76 7 

Pipe3 5 18 1 191 91 

Total 14 20 5 313 252 
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3.5.2.3 The impact of the hyperparameters on the performance of the 

algorithm 

The impact of hyperparameters (i.e., population size and the proportion of global search) on the 

performance of BA is analysed in this section. 

3.5.2.3.1 The size of scout bees  

As shown in Table 3.10, by using a large size of population, all 3 strategies take longer to 

converge in terms of both the number of function evaluations and actual running time. In terms 

of success rate, Str1 with population size 102 only achieves a 97.7% success rate, which is 

obviously worse than others. Generally speaking, a large size of population means fewer 

iterations can be run given a finite number of grasp evaluations, thus the algorithm cannot 

update current best solutions timely and reallocate computation resources efficiently, which 

leads to longer running time and less success rate. However, if the strategy lacks stochastics, 

using a large population size may have some advantages. As in the case of Str2, using 102 

achieves a 98.7% success rate, slightly higher than both 34 and 51. This is because a large 

population size ensures that initially the scout bees can cover the search space as much as 

possible and avoid early convergence. 

Table 3.10 Optimisation results using different population size 

 Str1 Str2 Str3 

Population size 34 51 102 34 51 102 34 51 102 

Grasp Evaluations 1179 1453 2085 976 1137 1462 975 1090 1441 

Time (s) 35.0 39.5 48.4 52.4 57.5 62.3 48.9 49.8 55.8 

Success Rate (%) 99.5 99.5 97.7 98.4 98.4 98.7 99.5 99.8 99.5 

3.5.2.3.2 The proportion of global search 

As shown in Table 3.11, with the increasing of global search proportion (random scout), the 

numbers of grasp evaluations for Str2 and 3 almost stay at the same level, while Str1 increases 

steadily. This is because Str1 already has a lot of stochastics, continuing to increase the 

proportion of global search only makes the algorithm need more evaluations to converge. In 

terms of actual running time, Str1 is not impacted by the increase of global search proportion, 
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while Str2 and Str3 run faster. This is due to the same reason why Str1 is faster than Str2 and 

Str3 as explained in Section 3.5.2.2. In terms of success rate, Str2 with 10% global search 

performs significantly worse than others. This is because Str2 does not allow any change of 

section during local search and relies heavily on global search to jump out of local minimum. 

It is also interesting to see that the success rates of all 3 strategies go up when the global search 

proportion increase from 10% to 30%, and then drops when the proportion keeps increasing. 

This trend indicates keeping adding more global searches to the algorithm will probably have 

a negative impact on the success rate. 

Table 3.11 Optimisation results using different proportion of global search 

 Str1 Str2 Str3 

Random Scout 10% 30% 45% 10% 30% 45% 10% 30% 45% 

Grasp Evaluations 1503 1546 1668 1180 1208 1186 1212 1112 1178 

Time (s) 41.2 40.3 41.6 67.4 56.8 48.0 61.5 47.4 45.3 

Success Rate (%) 98.4 99.3 99.1 96.8 99.6 99.1 99.3 100 99.6 

3.5.2.4 Comparison between multi IK and single IK method 

The final result presented is the comparison between the multi IK grasp evaluation method and 

the single IK counterpart. The single IK method has the advantage that it does not need an 

analytical solver to generate multiple IK solutions, which is preferable if the robot system is not 

standard and does not have available analytical solutions. Although the details of the single IK 

grasp evaluation method are not presented, it should be easy to implement by slightly modifying 

the multi IK method. 

As shown in Figure 3.12, for all 3 pipes, the multi IK method achieves significantly lower 

average objective cost (19.6%, 11.3% and 8.4% respectively). Besides, the standard errors are 

also smaller, which means the results are more consistent. In terms of the running time, multi 

IK requires more time to finish for solving Pipe1 and Pipe2 than the single IK. This is 

predictable as multi IK has an additional graph search process. However, it is interesting to see 

that single IK requires more time for solving Pipe3 than multi IK. A possible explanation is that 
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the solution single IK converges to may have many feasible solutions in the neighbourhood, 

which requires a large amount of time to fully evaluate them, while the neighbourhood of the 

true optimal that multi IK converges to has less feasible solutions, therefore the method skips 

the objective function evaluation process which results in faster convergence. This result 

suggests that although multi IK requires an additional graph search process when evaluating a 

single grasp pose, it is not necessarily slower than the single IK method. Therefore, the multi 

IK method is preferable whenever a suitable IK solver is available. 

 

 

Figure 3.12 Performance comparison between the multi IK and the single IK method. (a) – (c) Obtained objective 

costs at each iteration for solving Pipe1 – 3 with multi IK and single IK method for 30 iterations. (d) – (e) The 

time consumption at each iteration for solving Pipe1 – 3 with multi IK and single IK method for 30 iterations 

3.6 Conclusion 

In this chapter, a methodology is developed to optimise the grasp pose for 3D pipe assembly 

manipulation. The method can effectively optimise the grasp pose based on three trajectory-

based objectives (joint motion, deformation of the object and force manipulability), while 
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satisfying reachability and collision constraint. The grasp evaluation process features a 

decoupled constraint handling method to reduce grasp evaluation time, an AHP method to select 

the weights for combining multiple objectives, and a Dijkstra’s Algorithm to find optimal 

trajectory among all possible IK solutions. Bees Algorithms is used to solve the constrained 

optimisation problem with a proposed problem-specific local search strategy. Extensive 

benchmarks have been performed to evaluate the performance of 3 local search strategies and 

2 other metaheuristics (GA and PSO). It is found that BA with proposed Str3 is less sensitive 

to the hyperparameters and can achieve consistently good performance on different problems. 

Besides, the comparison between multi IK and single IK method proves that by considering 

multiple IK solutions, the objective cost can be improved significantly indeed. 

The method is intended for manufacturing pipe assemblies in the Factory-In-A Box (FIAB) 

scenario to address the limitation of specially designed end-effector, the compact environment 

of FIAB and the flexibility of pipe structure. However, it can also be generalised to 

manipulating other compliant objects that have many grasp candidates with alternative 

deformation estimation methods. 

Planning for a given object trajectory is useful in many cases. However, many other 

manipulation tasks only care about the start and final location of the object regardless of what 

trajectory it takes to get to the goal. In this case, free space motion is required to be planned. 

Next chapter will show methods that simultaneously select a grasp from a feasible grasp set as 

well as plan its post-grasp free space motion. 
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Chapter 4 Integrated Grasp Selection and Post-

grasp Optimal Robot Motion Planning 

4.1 Introduction  

Manipulation planning problem concerns finding a collision-free path for a robot to transfer an 

object from the initial pose to the goal pose. To generate a successful grasp for manipulating 

the object, it is necessary to consider the problem of post-grasp motion planning in the 

meantime, since a good grasp in terms of force closure and other grasp quality measures may 

lead to an inefficient or even infeasible post-grasp motion. This problem is especially significant 

in the case of manipulating relatively large and complex structures. These objects typically have 

many feasible grasps and choosing different grasps results in very different geometries. One 

example of this type of object is the 3D pipe assembly shown in Figure 4.1. The green pipe is  

manipulated by a robot to the desired pose while avoiding obstacles in the environment. 

 
Figure 4.1 A 3D pipe assembly manipulated by an industrial robot 
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To successfully plan the motion for robot, a grasp planner is assumed to be available to generate 

a set of feasible grasp candidates for the gripper. Generated grasps should consist of a 6-DoF 

end-effector pose and a d -dimensional hand/gripper configuration as mentioned in Section 

2.2.1. The method presented in this chapter does not limit the choice of grasp planners, however, 

planners that only produce contact points/regions on the object need additional computation to 

consider specific hand model to generate a fully feasible grasp. 

After generating feasible grasps, manipulation planning methods usually rely on motion 

planning algorithms to generate continuous motion in the free space. Sampling-based planners 

(reviewed in Section 2.1.1) like Rapidly-exploring Random Trees (RRT) [10] and Probabilistic 

RoadMap (PRM) [9] are very effective for solving high dimensional motion planning problems 

such as planning motion for a robot manipulator. Although they can find feasible path for robot 

to execute, it has been shown in [12] that the planner will almost surely converge to a 

suboptimal solution. They also proposed RRT* and PRM* which guarantee finding an 

asymptotically optimal solution.  

This chapter presents PRM*-MG (Optimal PRM for Multiple Grasps). PRM*-MG is based on 

the PRM algorithm [9] and also incorporates ideas from its optimal and lazy variants (PRM* 

and Lazy PRM [12,13]). Since the integrated problem involves multiple grasps, it is natural to 

reformulate the integrated problem to a multi-query motion planning problem and use PRM to 

solve it. However, to solve the problem correctly and efficiently, two major issues need to be 

considered. First, the feasibility of the roadmap is different when processing different grasps. 

Second, processing each grasp sequentially is very slow as the number of grasps grows. To 

handle the first issue, the proposed algorithm adopts a lazy search strategy, and a data structure 

is designed to track the feasibility of edges and vertices of the graph (roadmap) for each grasp. 

The second issue is dealt with by batch processing the grasps. Inside each batch, the collision 

checking is only performed for the optimal path after the whole batch is searched, which 

introduces another level of laziness into the algorithm. After searching one batch, if a feasible 

solution exists, the cost of the solution will be used as an upper bound to prune the roadmap in 
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subsequent searches. PRM*-MG includes two special versions. In the first version, the batch 

size equals 1, while in the second version, the batch size equals the size of the whole feasible 

grasp set (in other words, there is only one batch). 

The main contribution of this chapter is the development of a manipulation planner that can fast 

process a large number of grasps to find the one with the optimal post-grasp motion cost. The 

problem studied in this chapter is similar to [96] but can deal with more general cases. 

Specifically, in [96], the grasp optimisation is restricted to one degree of freedom, since it needs 

to maintain the same contacts as the generated grasp, while the method developed in this chapter 

can deal with a larger set of feasible grasps with different contact points. This chapter also does 

not restrict the gripper type, while in [96] the method can only apply to suction cups and 

standard two-finger grippers. However, the method proposed in [96] minimizes the execution 

time directly and considers the smoothness of trajectory while the proposed method in this work 

generates an asymptotically optimal path but requires additional post-processing to obtain a 

smooth trajectory. 

The rest of the chapter is organized as follows. The problem is defined formally in Section 4.2. 

The main algorithm and relative functions are described in Section 4.3. The theoretical 

properties of the algorithm are analyzed in Section 4.4. The experiments and results are 

presented in Section 4.5 and Section 4.6 concludes the chapter. 

4.2 Problem Formulation 

Given an object 𝒪, the start and goal pose of 𝒪 are denoted as P𝒪𝑆𝑡𝑎𝑟𝑡 ∈ 𝑆𝐸(3) and P𝒪𝐺𝑜𝑎𝑙 ∈

𝑆𝐸(3). Let  𝒢 =  {ℊ𝑖 = 1...𝑚} be a set of feasible grasps generated by a grasp planner. Let 𝑋 ⊆

ℝd be the set of all possible robot configurations, 𝑋𝑜𝑏𝑠 ⊂ 𝑋 be the set of configurations that 

are in collision with obstacles, and 𝑋𝑓𝑟𝑒𝑒  =  𝑋 ∖ 𝑋𝑜𝑏𝑠  be the set of all collision-free 

configurations. A feasible path of the robot is defined as 𝜎: [0, 1]  →  𝑋𝑓𝑟𝑒𝑒  which is a 

continuous map to a sequence of configurations through collision-free space. Let Σ be the set 

of all such feasible paths. Given a cost function, 𝑐 ∶  (Σ, 𝒢)  →  ℝ≥0, the problem is to find the 
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optimal grasp ℊ∗  from 𝒢  and the optimal path 𝜎∗  from Σ  such that 𝑐(𝜎∗, ℊ∗) =

 𝑚𝑖𝑛{𝑐(𝜎, ℊ) | FK(𝜎(0), ℊ) = P𝒪𝑆𝑡𝑎𝑟𝑡, FK(𝜎(1), ℊ) = P𝒪𝐺𝑜𝑎𝑙} , where FK  is the forward 

kinematics function that maps the given robot configuration and the grasp to the object pose. 

4.3 Algorithm 

This section starts by giving an overview of the PRM*-MG algorithm in Section 4.3.1. Then, 

some basic functions and a data structure used in PRM*-MG are introduced in Section 4.3.2. 

Section 4.3.3 describes the PRM*-MG algorithm in detail. Two special cases of the algorithm 

are presented in Section 4.3.4. Section 4.3.5 discusses some practical considerations. 

4.3.1 Overview of the Algorithm 

Given the problem formulated in Section 4.2, a straightforward approach is to run lazy-PRM 

for each grasp. The lazy strategy delays the collision checking step until a solution is found for 

a grasp. Therefore, different grasps can use the same graph (with different start and goal states) 

for initial search and attach the object only when performing collision checking. Since the 

formulated problem only requires finding the optimal path, it is unnecessary to evaluate the 

feasibility of the path once the path is known to be non-optimal. Therefore, a simple but 

powerful improvement can be applied by using the optimal cost from previously searched 

grasps as an upper bound for pruning during the searching process of the next grasp. This 

version of the algorithm is referred to as naïve PRM*-MG.  

However, naïve PRM*-MG still fully evaluates many grasps before the optimal grasp is found. 

To further reduce the unnecessary collision checking, it may be helpful to only check collision 

for the current optimal solution. This idea motivates the development of batch PRM*-MG 

algorithm, which further delays the collision checking until all grasps in the grasp set are 

searched once and only performs collision checking for the solution with the optimal cost. This 

is the key insight of this chapter. By delaying collision checking until all grasps are searched 

once, the approach essentially applies the lazy strategy at the grasp level rather than robot 
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configuration level as originally introduced in [13]. 

Since graph searching must be performed on all grasps before generating the first solution, the 

anytime performance of batch PRM*-MG is not ideal, especially when searching over a large 

feasible grasp set and/or a large graph. Therefore, it is natural to consider combining the above 

two ideas to design an algorithm that balances the anytime performance and the total run time. 

This consideration leads to the standard version of the PRM*-MG. The algorithm first divides 

the grasp set into several small batches. Then, for each small batch, the batch PRM*-MG is 

used to search for the optimal solution in that batch. Similar to the naïve version, the optimal 

cost from previously searched batch is used as an upper bound for pruning in graph search of 

the next batch. This version of PRM*-MG also includes the naïve and batch versions as special 

cases. 

4.3.2 Function and Data Structure 

4.3.2.1 GraphConstruction  

Similar to PRM and PRM*, PRM*-MG has a graph construction process and a query process. 

The graph construction process is shown in Algorithm 4.1. 𝑉 and 𝐸 are the vertex set and the 

edge set of graph 𝐺 respectively. Function Near queries all vertices within r(n) distance of 

vertex 𝑣 and stores them in 𝑈. As presented in the algorithm, the graph will be constructed in 

the same way as PRM* with the only exception that the no collision checking is performed 

during the graph construction due to the use of lazy strategy. To guarantee the asymptotic 

optimality of the algorithm, it is necessary to use a connection radius 𝑟(𝑛)  =  𝛾PRM( log(n)/

n)1/d, where 𝛾PRM  >  𝛾PRM∗ = 2(1 + 1/d)1/d(𝜇(𝑋free)/ζd)
1/d,𝑛 is the number of vertices, 

d is the dimension of the configuration space, μ(∙) is the Lebesgue measure of a set (i.e., the 

volume), and ζd  is the volume of the unit ball in d-dimensional Euclidean space [12]. An 

example of the roadmap constructed by Algorithm 4.1 is shown in Figure 4.2. 
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Figure 4.2 An example of roadmap constructed by Algorithm 4.1 in 2D. Obstacles are shown in blue. Because no 

collision checking is performed, it can contain edges and nodes in collision. 

 

Algorithm 4.1: GraphConstruction() 

1. 𝑉 ←  {Samplei}i=1,...,n;  𝐸 ←  ∅ 

2. foreach 𝑣 ∈  𝑉 do 

3.   𝑈 ←  Near(𝐺 = ( 𝑉, 𝐸), 𝑣, r(n))\{𝑣}; 

4.   foreach 𝑢 ∈  𝑈 do 

5.     𝐸 ←  𝐸 ∪ {( 𝑣, 𝑢) , ( 𝑢, 𝑣) } 

6.   endfor 

7. endfor 

8. return 𝐺 = ( 𝑉, 𝐸) 

It is worth noting that the lazy strategy must be used because when the robot grasps the object 

at different poses, the feasibility of the graph is different. Without lazy evaluation of the graph 

feasibility, if there are 𝑚  grasp candidates given, the algorithm ends up performing full 

collision checking for 𝑚 graphs, which takes an extremely long time. Even if this process can 

be performed offline, storing the results would still take a lot of resources. Section 4.3.5 will 

discuss the necessary steps for generating a graph offline and using it online. 

4.3.2.2 PrivateGraph (Data Structure) 

PRM*-MG needs to deal with multiple grasps and each grasp corresponds to a graph with 
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different feasibility. Therefore, it seems inevitable to copy the constructed graph multiple times 

and even store multiple copies of the constructed graph (in the case of batch PRM*-MG). When 

the graph is large and there are many grasp candidates, this process becomes extremely slow, 

and the memory size of the computer becomes inadequate. Therefore, instead of copying and 

storing the whole graph for each individual grasp. A new data structure privateGraph (pG) is 

created to efficiently store the minimum information relevant to a specific grasp and its 

corresponding graph (e.g., grasp, robot start and goal configurations, edges connected to start 

and goal vertex, edges in collision, current optimal path, and cost). 

By using pG , only one complete graph is generated using Algorithm 4.1 and stays in the 

memory until the program finishes. Each time before processing (including graph searching 

and collision checking) the graph for a grasp candidate, the graph is modified based on 

information stored in pG by calling ResetStartAndGoalStates(), AddStartAndGoalEdges(), 

and RemoveEdgesInCollision(). After processing the graph, the graph is restored by calling 

RemoveStartAndGoalEdges() and RecoverEdgesInCollision() so that all vertices and edges 

are kept the same as the originally generated graph. By using pG, the copy operation reduces 

to adding and removing edges, which can be executed efficiently (depending on specific graph 

implementation) and the memory problem is relieved as well. 

4.3.2.3 ComputeStartAndGoal 

This function generates start and goal configurations of the robot by calling third party inverse 

kinematics (IK) solver for all grasps in the given pG_set (set of all privateGraph). Depending 

on the IK solver and the workspace of the robot, the number of valid start and goal 

configurations may be greater or less than the size of grasp set due to 1). no IK solution for the 

given grasp pose; 2). multiple IK solutions for the same grasp pose. However, the 

implementation of this chapter only uses a single IK solution, thus the number of valid grasps 

is always less than the number of the grasps given. If the IK computation is successful, the 

function will then search for vertices in 𝐺 (generated by Algorithm 4.1) within a given ball 

centred at 𝑥𝑖nit and 𝑥𝑔𝑜𝑎𝑙 with radius r(n). Vertices inside the ball will be recorded by pG. If 
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either IK computation or vertex searching procedure fails for either start or goal vertex. This 

grasp is determined as infeasible given the current graph and will be removed from pG_set. 

4.3.2.4 CollisionFree 

This function checks the feasibility for a given path connected between the start and goal 

configurations. When performing collision checking, the edges in collide are removed from 𝐺 

but tracked in pG for future recovery of the graph. If the collision happens at the vertex and 

the collision is due to the robot rather than the grasped object, the algorithm simply removes all 

its connected edges from 𝐺 without tracking, this leads to an isolated vertex and will never be 

visited again during graph search. However, isolated vertices are not removed because they do 

not affect the correctness or performance of the algorithm. Besides, removing a vertex and can 

be a rather expensive process for some graph implementation. 

4.3.2.5 PathConstruction 

A path from the start to the goal vertex can be found immediately without searching the graph 

and the cost of the path can be used as an upper bound for shortest path search. This is achieved 

by using previous search results. Assume v0 is the start vertex and 𝑣n+1 is the goal vertex. 

Two grasps are available in the grasp set with start configurations 𝑣0(1) and 𝑣0(2) and goal 

configurations 𝑣n+1(1) and 𝑣n+1(2). Assume a path from 𝑣0(1) to 𝑣n+1(1) passing 𝑣i and 

𝑣j is found in previous iterations and 𝑣0(2) and 𝑣n+1(2) can also be connected with 𝑣i and 

𝑣j. Since the path from 𝑣i to 𝑣j is known already, it is easy to construct a path from 𝑣0(2) to 

𝑣n+1(2). It is worth noting that 𝑣i and 𝑣j can be the same vertex and they don’t have to be 

connected with 𝑣0(1) and 𝑣n+1(1) directly. 

4.3.2.6 GraphSearch 

This function searches for the shortest path from start (𝑠) to goal (𝑡) using Dijkstra’s algorithm 

(Algorithm 4.2). Unlike the original Dijkstra’s algorithm, an upper bound is used in the 

searching process. Before relaxing the neighbour k of a vertex u, if the distance to k is still 

infinity, the function will compute the sum of distance to k after relaxing and the straight line 



61 
 

distance from k to goal vertex t. This is an optimistically estimated cost of a path passing k 

to the goal vertex. If the sum is greater than the upper bound, it means that vertex k will not be 

on the optimal path of the problem, therefore the algorithm continues with the next neighbour 

without relaxing k . The reason that this pruning process only needs to be done when the 

distance to k is infinity is that, after k is relaxed once, future relaxation will only decrease the 

distance to k monotonically. Therefore, if the relaxation condition is satisfied (Line 17), the 

estimated cost will surely be less than the upper bound. 

Algorithm 4.2: GraphSearch(𝐺, 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑, pG) 

1. foreach 𝑣 ∈  𝑉 do 

2.     v. 𝑑𝑖𝑠𝑡 ←  𝑖𝑛𝑓 

3.     v. 𝑝𝑟𝑒𝑣 ←  𝑛𝑖𝑙  

4. endfor 

5. s. 𝑑𝑖𝑠𝑡 ←  0 

6. 𝑄 ←  𝑉 

7. while (Q ≠ ∅) 

8.     u ← ExtractMin(𝑄) 

9.     if u == t 

10.         if u. 𝑑𝑖𝑠𝑡 ≠ 𝑖𝑛𝑓; return TRUE 

11.         else if u. 𝑑𝑖𝑠𝑡 == 𝑖𝑛𝑓; return FALSE 

12.     endif 

13.     foreach k ∈  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟(𝐺, u) do 

14.         if k. 𝑑𝑖𝑠𝑡 == 𝑖𝑛𝑓 and u. 𝑑𝑖𝑠𝑡 + 𝐶𝑜𝑠𝑡(u, k) + ||k, t||2 > 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 

15.                  continue 

16.         endif 

17.         if u. 𝑑𝑖𝑠𝑡 + 𝐶𝑜𝑠𝑡(u, k) <  k. 𝑑𝑖𝑠𝑡  

18.             k. 𝑑𝑖𝑠𝑡 ←  u. 𝑑𝑖𝑠𝑡 + 𝐶𝑜𝑠𝑡(u, k) 

19.             k. 𝑝𝑟𝑒𝑣 ←  u 

20.         endif 

21.     endfor 

22. endwhile 
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4.3.3 Detailed Algorithm  

The detailed algorithm is given in Algorithm 4.3. The algorithm starts by initialising the current 

optimal cost to infinity. The pG_set is also initialised given the candidate grasp set. Then a 

graph is constructed by using Algorithm 4.1. The algorithm then computes the start and goal 

configurations of the robot for each given grasp and find vertices in the graph that are close to 

the start and goal configurations of the robot. Next, the pG_set is randomly and equally divided 

into several small batches and a batch_set is created consisting of all batches. 

The algorithm then processes each batch sequentially. For each pG in a batch, the algorithm 

starts by setting/resetting the start and goal configurations and adding connected edges. An 

upper bound is obtained by comparing the current optimal cost (𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡) and the cost of 

newly constructed path (𝑛𝑒𝑤_𝑝𝑎𝑡ℎ_𝑐𝑜𝑠𝑡 ). GraphSearch  then computes the optimal path 

connecting the start and goal configurations and stores the path in pG. pG is then inserted into 

a min heap 𝒬 (ordered by path cost). Since an upper bound is used, only paths with optimal 

cost less than the upper bound will be found by GraphSearch  and inserted into 𝒬 . Before 

processing the next pG, edges connected with start and goal vertices are removed. 

After searching all grasps in a batch, if the heap is not empty, the pG with the lowest path cost 

will be extracted from the heap and checked. Before collision checking, it is important to attach 

the object to the robot with the correct grasp pose (Line 21) . If the path is collision-free, the 

loop is terminated, and the optimal cost is reset. Since the upper bound is used for graph 

searching, the cost of the feasible path is guaranteed to be less than the current optimal cost. If 

collision checking is failed, the graph is searched again with edges in collision removed, and 

feasible results will be inserted back to 𝒬  (with new cost). Whether collision checking is 

successful or not, the graph needs to be recovered (Line 25) because edges in collision for one 

grasp may be feasible for another grasp. The while loop terminates when a collision-free path 

is found, or the heap is empty. The algorithm then continues to search the next batch until all 

batches are searched. 
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It should be noted that on Line 28 the upper bound is set to 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡  rather than 

𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑  as on Line 11. This is because the path construction step on Line 10 may 

construct a path in collision but its cost (𝑛𝑒𝑤_𝑝𝑎𝑡ℎ_𝑐𝑜𝑠𝑡 ) is less than 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡  (i.e., 

𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑  is equal to 𝑛𝑒𝑤_𝑝𝑎𝑡ℎ_𝑐𝑜𝑠𝑡  in this case). Consider the constructed path 

happens to be the optimal path found by GraphSearch on Line 11. Since edges in collision are 

removed during collision checking (Line 22), if 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 is still used in the GraphSearch 

on Line 28, it is impossible to find a path with a cost less than or equal to the 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑，

and feasible path with a cost between 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 and 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡 will be ignored. 

Algorithm 4.3: PRM*-MG 

1. optimal_cost ← ∞ ; pG_set ← {pG(ℊi)}𝑖  = 1......𝑚 

2. 𝐺 ←  GraphConstruction() 

3. ComputeStartAndGoal(G, pG_set)  

4. batch_set ←  BatchCreation(pG_set)   

5. foreach batch ∈ batch_set 

6.     foreach pG ∈  batch 

7.         ResetStartAndGoalConfig()  

8.         AddStartAndGoalEdges() 

9.         𝑛𝑒𝑤_𝑝𝑎𝑡ℎ_𝑐𝑜𝑠𝑡 ←  PathConstruction(pG, 𝒬)  

10.         𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 ←  𝐦𝐢𝐧 (𝑛𝑒𝑤_𝑝𝑎𝑡ℎ_𝑐𝑜𝑠𝑡, 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡)   

11.         if GraphSearch(G, 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑, pG) 

12.             insert (𝒬, pG) 

13.         endif 

14.         RemoveStartAndGoalEdges()  

15.     endfor 

16.     while (𝒬 ≠ ∅) 

17.         pG ←  ExtractMin(Q) 

18.         ResetStartAndGoalConfig() 

19.         AddStartAndGoalEdges() 

20.         RemoveEdgesInCollision() 

21.         ReAttachObject() 
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22.         if CollisionFree(𝐺, pG)    

23.             𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡 ← pG. current_optimal  

24.             RemoveStartAndGoalEdges() 

25.             RecoverEdgesInCollision() 

26.             break    //continue with next batch 

27.         else  

28.             if GraphSearch(G, 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡, pG) 

29.                 insert (𝒬, pG) 

30.             endif  

31.             RemoveStartAndGoalEdges() 

32.             RecoverEdgesInCollision() 

33.         endif 

34.     endwhile 

35. endfor 

4.3.4 Two special cases of PRM*-MG (Naïve and Batch) 

The algorithm presented in Algorithm 4.3 is the standard PRM*-MG which includes two special 

cases i.e., batch PRM*-MG and naïve PRM*-MG. The batch version of the algorithm only 

creates one single batch. Therefore, the outer loop in Algorithm 4.3 (Line 5-35) only needs to 

be executed once. 

The naïve version of the algorithm treats each grasp (pG ) as a single batch. Therefore, 

maintaining a min heap 𝒬 is unnecessary as it has at most one element. A simplified and more 

efficient implementation of the naïve PRM*-MG is given in Algorithm 4.4. 

The naïve PRM*-MG does not offer better performance compared to the other algorithms in 

most cases. However, it is conceptually important since it can be viewed as a modified Lazy 

PRM for solving the proposed problem. It also provides a good baseline performance for 

evaluating the performance of the other two versions. Besides, the use of the upper bound is 

also proposed when evaluating the performance of the naïve PRM*-MG, which reduces the run 
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time significantly.  

Algorithm 4.4: naïve PRM*-MG 

1. 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡 ← ∞ ; pG_set ← {pG(ℊi)}𝑖  = 1......𝑚 

2. 𝐺 ←  GraphConstruction() 

3. ComputeStartAndGoal(𝐺, pG_set) 

4. foreach pG ∈ pG_set 

5.     ResetStartAndGoalConfig()  

6.     AddStartAndGoalEdges() 

7.     while GraphSearch(G, 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡 , pG) 

8.         ReAttachObject() 

9.         if CollisionFree(𝐺, pG. collision_edges, pG. path) 

10.             𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑠𝑡 ← pG. current_optimal  

11.             break     

12.         endif 

13.     endwhile 

14.     RemoveStartAndGoalEdges()  

15.     RecoverEdgesInCollision() 

16. endfor 

 

4.3.5 Practical Considerations 

4.3.5.1 Offline Graph Construction 

The graph construction process can be performed offline. The robot can then answer multiple 

manipulation queries online using the same graph. When generating a graph offline, it is also 

useful to perform collision checking to the graph. However, the collision checking is only 

performed for the robot itself without considering the attached object, i.e., the generated graph 

can be used to plan robot motion for manipulating any object. Therefore, the graph can still 

contain vertices and edges in collision due to the attached object, thus collision checking still 

needs to be performed for the found optimal path during online manipulation query (in contrast 
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to a multi-query motion planning problem, where online query generates feasible path directly). 

However, all robot configurations in the graph are valid, thus CollisionFree does not need to 

check the feasibility of the robot. 

4.3.5.2 Pre-processing grasps 

PRM*-MG assumes a set of feasible grasps is available based on the geometry of an object. As 

mentioned above, the grasp contains not only a 6-DoF grasp pose but also the configuration of 

the robot hand. Theoretically, the same grasp pose can have different grasps, especially in the 

case of dexterous hands, which possibly leads to different solutions. However, in most cases, 

the workspace of a hand can be enclosed by a bounding box (sphere). Therefore, it is usually 

redundant to generate different grasps with the same grasp pose as they will have same planning 

results. Another consideration is that in Algorithm 4.3, all grasps in the given grasp set are pre-

processed to find IK results and connected vertices in the graph (Line 3 

ComputeStartAndGoal ). This process may be expensive depending on the range search 

algorithm, thus delaying the time to find the first feasible result. To achieve better anytime 

performance, it is possible to solve IK and find connected vertices when processing each pG 

in the batch (before Line 7 of Algorithm 4.3, ResetStartAndGoalConfig()). 

4.4 Theoretical Properties 

Since the proposed algorithm considers all feasible grasp candidates, given a graph 

(probabilistic roadmap), if there exists a grasp in the given grasp set that can be chosen to 

manipulate the object optimally from start to goal pose by searching the given roadmap, then 

this grasp will be found eventually. According to [12], when using a connection radius 𝑟(𝑛)  

with 𝛾𝑃𝑅𝑀  >  𝛾𝑃𝑅𝑀∗  , the constructed probabilistic roadmap will almost surely contain an 

optimal path as the number of vertices in the graph goes to infinity. Therefore, it becomes 

obvious that PRM*-MG inherits the probabilistic completeness and asymptotic optimality from 

PRM*. 

It should be noted that in [12], the assumption is the configuration space is d-dimensional 
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Euclidean unit hypercube (0,1)d and the cost metric is Euclidean length. However, the results 

are still applicable to the targeted system in this thesis i.e., manipulators with rotational degrees 

of freedom, which is locally Euclidean as discussed in [116,117]. When using a cost function 

other than Euclidean length, the optimality of the algorithm may not be preserved. It has been 

mentioned in [118] that the asymptotic optimality still holds in the case of line integral cost 

function under a slightly modified condition. However, from a practical point of view, it is more 

convenient to tune the parameter 𝛾𝑃𝑅𝑀 directly so that vertices in the graph are connected with 

a reasonable number of edges. 

4.5 Experiment and Results 

In this section, the physical experiment and some benchmark results are presented. The objects 

being manipulated in the experiment are 3D pipe structures (as shown in Figure 4.3). Each pipe 

is given a set of feasible grasps (the grasp generation process is trivial for cylindrical shaped 

pipes). The robot needs to manipulate the pipe from the given start pose to the desired goal pose 

while avoiding obstacles. Figure 4.4 shows a collaborative robot manipulating a 3D pipe 

assembly in the lab environment, whose motion is generated by the proposed algorithm. 

4.5.1 Experiment Setup 

Two experiments are performed. The robot used in both experiments is a 6-axis collaborative 

robot with a non-spherical wrist (Techman TM14-1100). The maximum reach of the robot is 

1100mm and the payload is 14kg. The aim of the first experiment is to compare the performance 

of 3 versions of PRM*-MG when given different numbers of grasps (from 25 to 2000). In this 

experiment, 8 problems are tested, each with different pipe geometries (as shown in Figure 4.3) 

and different start and goal poses. For standard PRM*-MG, the batch size is set to be one-fifth 

of the total grasps. In the second experiment, the behaviour of the standard PRM*-MG using 

different batch sizes (from 1 to 2000) is studied when the total number of grasps given is 2000. 

As mentioned before, when the batch size is 1, the standard PRM*-MG reduces to the naïve 

version. When the batch size is equal to the size of a given grasp set, the algorithm becomes the 
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batch PRM*-MG. Both experiments are run 10 times for each problem. Each time the grasps 

and graph are regenerated. 

In both experiments, the generated graph contains 5000 samples and 𝛾𝑃𝑅𝑀  is set to 4. The 

objective for both experiments is to minimize the path length in the manipulator configuration 

space. To accelerate the shortest path search (Algorithm 4.2), A* with Euclidean distance 

heuristic is used instead of Dijkstra’s Algorithm. The naïve version can be viewed as a baseline 

as mentioned in Section 4.3.4. However, since naïve PRM*-MG uses a newly designed data 

structure and pruning strategy, it is still several magnitudes faster than running existing motion 

planning algorithms for each available grasp sequentially. Because the graph construction and 

IK computation process are exactly the same for all three algorithms, they have only been 

performed once. By using the same graph and grasp set, the optimal grasp and its cost found by 

all three algorithms should be identical. The time spent on the graph construction and IK 

computation is not included in the results, since the graph can be constructed offline and IK 

computation is usually fast when using an analytical solver. Third-party packages are used for 

computing IK solutions (IKfast) [109], collision checking (FCL) [106] and range search 

(FLANN) .  

To avoid too much time spent on solving a single problem during the benchmark, the time for 

searching a single grasp (in the case of naïve PRM*-MG) or a single batch (in the case of 

standard PRM*-MG) is limited to 5 seconds. In the case of batch PRM*-MG, the time limit is 

set to 15 seconds for executing the loop from Line 16 to Line 34 in Algorithm 4.3. The time 

limitation leads to an incomplete version of the original algorithm, which means a solution may 

not be found even there exists one for the current graph and grasp set, or only find a suboptimal 

solution. However, these situations are not included in the benchmark results since they rarely 

happen in practice.  
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Figure 4.3 Eight different 3D pipe assemblies manipulated by Techman Robot 

 

Figure 4.4 A pipe manipulated by Techman Robot from start (a) to goal pose (f) 

4.5.2 Results and Discussion 

The success rates for solving the same 8 problems given different numbers of grasps are listed 

Table 4.1. Generally, a larger grasp set will have a higher success rate in solving the given 

problems. Since all three versions of PRM*-MG use the same graph and grasp set, they will 

have the same success rate as well. Therefore, in the rest of this section infeasible solutions are 

not considered when evaluating the performance of the algorithms.  

The results of the first experiment are shown in Figure 4.5. Figure 4.5 (a) shows the average 

time to the initial solution given different numbers of grasps. It can be found that for naïve 

PRM*-MG, the time required for obtaining the initial solution generally does not increase much 

as the number of grasps increases. For batch PRM*-MG, since it needs to perform more graph 



70 
 

searches to generate the initial solution as the given number of grasps increases, the required 

time to find the initial solution also grows. In terms of standard PRM*-MG, the time to the first 

solution first decreases and then increases. This is because the given number of grasps is too 

small, which leads to an even smaller batch size. Therefore, the algorithm fails to find the 

feasible solution after evaluating the first few batches but spends unnecessary time on collision 

checking for infeasible solution paths. Figure 4.5 (b) shows the total computation time. The 

planning time for all 3 algorithms increases as the number of grasps increases. However, the 

run time of standard PRM*-MG almost remains the same when the given number of grasps is 

less than 1000. Batch PRM*-MG also grows very slow when the number of grasps is less than 

100 and performs best among the three algorithms. However, beyond 100, since no upper bound 

is used in the batch version, the planning time grows faster than standard PRM*-MG. When the 

number of grasps reaches 2000, standard and batch PRM*-MG perform almost the same. It can 

be predicted that, given a larger grasp set, the performance advantage of batch PRM*-MG when 

dealing small grasp set will vanish. 

Table 4.1 Success rate given different number of grasps 

 

Figure 4.5 (c) shows the algorithm run time to the optimal solution. The trend is very similar to 

Figure 4.5 (b). However, the performance gap between batch and standard PRM*-MG vanishes 

from 500 grasps. When the number of grasps reaches 2000, standard PRM*-MG finds optimal 

solution faster than the batch version. It should be noted that, for batch PRM*-MG, the time to 

initial solution, time to optimal solution, and total run time are all the same, since the first 

solution is always the optimal solution. Figure 4.5 (d) shows the initial path length for batch 

and standard PRM*-MG and the found optimal path length for all three algorithms. The initial 

solution found by the naïve PRM*-MG remains at the same level as the number of grasps 

increases. However, the standard PRM*-MG finds a better initial solution as the number of 

grasps increases, because it evaluates more grasps before reporting the first result. It can also 

be found that even with 2000 grasps to evaluate, the standard PRM*-MG can still find an initial 

solution in around 1 seconds and the cost is very close to the optimal cost.  

Number of grasps 25 50 100 500 1000 2000 

Success rate 0.85 0.9125 0.9625 1 1 1 
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Figure 4.5 Performance comparison between three versions of PRM*-MG. (a) Average time to initial solution. 

(b) Average total computation time. (c) Average time to optimal solution. (d) Average solution cost. 

Table 4.2 shows the performance of each algorithm when solving different problems averaged 

over different numbers of grasps. The results of the best performed algorithm are in bold. It is 

obvious that batch PRM*-MG offers the best average performance when the given number of 

grasps is less than 2000. The advantage is especially significant in the case of some difficult 

problems like Problem 5-7, where the batch PRM*-MG can be 6-10 times faster than the naïve 

version. 

Based on the presented results, it can be concluded that, when the number of grasps is small 

(less than 100, which is the usual case if use this algorithm in practice), batch PRM*-MG 

provides the best performance. When the number of grasps is large, using standard PRM*-MG 

is preferable. In terms of time to initial solution, although naïve PRM*-MG attempts to return 
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the first feasible solution as soon as possible, the average performance is actually worse due to 

wasting time on collision checking for infeasible solutions. Also, when the given number of 

grasps is less than 1000, the planning time does not change significantly as the number of grasps 

increases for the standard version. For some problems, searching a larger grasp set requires 

even less time while the solution cost drops significantly, and the success rate increases. This 

counterintuitive fact suggests that providing a slightly larger grasp set will benefit both the time 

performance and solution cost. 

Table 4.2 Time and cost results for solving 8 different problems with 3 versions of PRM*-MG. 

Since standard PRM*-MG is a better choice when a large set of feasible grasps is available, a 

second experiment is performed to study the behaviour of standard PRM*-MG using different 

batch sizes. Figure 4.6(a) shows that, as the batch size increase, the planning time drops for a 

period before increasing again. This fact suggests that using a medium batch size (between 100-

500) is preferable, which balances the anytime performance as well as the total run time. From 

Figure 4.6(b), it can also be found that the cost of the initial solution is very close to the optimal 

cost after evaluating 500 grasps. 

 Time to initial Solution(s) Total Run Time(s) Cost of Initial Solution 

Prob. 

No. 
naive std. batch naive std. batch naive std.  batch 

1 1.21 0.35 0.63 2.38 0.71 0.63 10.39 7.27 5.81 

2 0.94 0.68 0.73 1.95 1.07 0.73 10.53 7.79 6.29 

3 1.24 0.34 0.61 2.20 0.71 0.61 10.22 7.40 6.10 

4 1.69 0.61 0.82 3.59 1.16 0.82 10.99 7.56 6.25 

5 5.61 2.05 1.59 9.65 3.67 1.59 10.55 9.04 7.81 

6 20.25 2.89 2.29 26.96 4.99 2.29 11.38 9.29 8.54 

7 5.38 1.29 1.06 7.66 1.39 1.06 9.81 7.96 7.76 

8 2.82 1.12 1.28 4.82 1.99 1.28 10.83 8.40 7.39 

ave. 4.89 1.16 1.13 7.40 1.96 1.13 10.59 8.09 6.99 
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Figure 4.6 Performance comparison of batch PRM*-MG when using different batch sizes. (a) Algorithm run 

time versus batch size. (b) Solution cost (path length) versus batch size. 

4.6 Conclusion 

This chapter presents PRM*-MG, an algorithm for integrated grasp selection and post-grasp 

optimal motion planning. Given a set of feasible grasp candidates for an object as well as the 

start and goal pose, PRM*-MG can quickly select the optimal grasp from the given grasp set as 

well generate the corresponding optimal motion to manipulate the object. The algorithm uses a 

lazy strategy that only checks collision for the current optimal path. The algorithm also divides 

the whole grasp set into several batches to balance the anytime performance and the total 

computation time. The optimal cost from the previously searched batches is used as an upper 

bound to prune the graph in subsequent searches. A data structure that contains minimum 

information related to a grasp and its corresponding graph is also designed to avoid copying 

and storing multiple graphs.  

Three different versions of the proposed algorithms are compared against each other. All three 

algorithms can successfully find the optimal solution given the same grasp set and same graph. 

However, it is found that batch PRM*-MG performs best when the size of the grasp set is small 

to medium and when the problem is difficult, while standard PRM*-MG performs better in 

terms of finding the initial solution and when an extremely large grasp set is given. Naïve 
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PRM*-MG does not perform as well as the other two since it wastes time on checking collision 

for the suboptimal solution path. 

The method presented in this chapter is theoretically sound and can find satisfactory path in the 

offline scenario. For some online scenario, as long as the time restriction is not too tight, it will 

still work. However, in order to build a truly responsive robot system, a faster algorithm is 

required. In the next chapter, it will be shown how existing anytime sampling-based algorithm 

can be modified to solve the integrated grasp selection and motion planning problem to further 

accelerate the planning process and find better path. 
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Chapter 5 An anytime, sampling-based 

planning algorithm for manipulating objects 

with multiple available grasps 

5.1 Introduction 

In Chapter 4, the problem of manipulation planning given multiple available grasps is studied. 

The algorithm (PRM*-MG) developed in Chapter 4 has nice theoretical properties including 

asymptotical optimality and probabilistic completeness. However, like PRM, PRM*-MG is not 

an anytime algorithm i.e., the algorithm stops once the graph search process for all grasps is 

finished. If the output solution is not desired (or even no feasible solution is found), more 

vertices have to be added to the graph and the graph has to be searched again from scratch, 

which is extremely inefficient. Indeed, there are post-processing methods that can quickly 

improve the solution found by sampling-based motion planning algorithms [119–121]. 

However, post-processing can only improve the solution locally and it generally requires a 

feasible path as input. 

Therefore, to obtain a satisfactory solution without adding more vertices online, one has to build 

a large enough graph offline. In this way, the constructed graph will have a high probability of 

containing a satisfactory solution path. However, a large graph will delay the finding of the first 

solution, which is not desired in the case of online planning. This is especially more difficult 

for PRM*-MG than the PRM since it must perform collision checking online due to a change 

of geometry when grasping the object with a different pose. 

Due to the above reasons, although PRM*-MG can be used as an online algorithm, the 

performance may not be satisfactory. On the other hand, single query planners like RRT and 

RRT* are good at solving motion planning problem online since they can provide a feasible 

solution quickly and iteratively improve the solution. Therefore, it would be ideal that a single-
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query motion planner can be designed to solve the problem. To convert an asymptotically 

optimal single query planner like RRT* to solve the integrated grasp selection and motion 

planning problem is not hard. A straightforward idea is to grow a tree for each grasp. After 

generating a random vertex in each iteration, a random grasp (tree) is chosen to be extended. In 

this way, the planner will solve the optimal motion planning problem for all grasps and obtain 

the least cost path and grasp. However, it is obvious that this naïve approach is highly inefficient, 

especially if the number of grasps is large. Therefore, it is important that the designed algorithm 

constructs a tree (or multiple trees) biased towards the grasp that is most likely to yield an 

optimal solution. 

In this chapter, RRT*-MG is proposed to solve the grasp optimised motion planning problem. 

The proposed algorithm achieves the desired behaviour by 1). considering both cost-to-come 

and cost-to-go value of a vertex when connecting the new vertex to the tree; 2). pruning or 

reassigning vertices to trees that can be improved; 3) balancing exploitation and exploration. In 

addition, informed sampling and bidirectional search are also introduced to accelerate the 

search process. Experiments show that RRT*-MG usually finds a feasible solution faster and 

yields a better solution when sampling the same number of vertices compared to PRM*MG.  

The rest of the chapter is organised as follows: Section 5.2 introduces preliminaries on RRT* 

and its variants. Section 5.3 presents the developed algorithm in detail. Experiments and 

benchmark results against PRM*-MG are reported in Section 5.4. Section 5.5 provides 

concluding remarks for this chapter. 

5.2 Preliminaries 

The proposed algorithm builds upon existing single query motion planning algorithms like 

RRT* and its variants. In this section, RRT* is first introduced and then two of its variants (Bi-

RRT* and Informed RRT*) are reviewed. To be consistent with previous chapters, an abstract 

point in the robot configuration space and vertex set is denoted by 𝑥  while the specific 

configuration (i.e., the column vector associated with it) is denoted by bold characters e.g., 𝒙 ∈

ℝd for matrix computation . 
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5.2.1 RRT* 

The RRT* algorithm is presented in Algorithm 5.1 – Algorithm 5.5. This is a slightly modified 

version from the original version presented in [12,122]. Some important procedures and 

subfunctions are introduced below before introducing the full algorithm: 

Nearest: This function queries the closet vertex in the tree from the given vertex. 

Nearest(𝐺 = (𝑉, 𝐸), 𝑥) ∶= argmin
𝒗∈𝑉

‖𝒙 –  𝒗‖2    

Near: This function queries all the points inside a ball centred at the given vertex (𝑥) within 

radius r . This is the same procedure used in Algorithm 4.1 in generating the probabilistic 

roadmap. 

Near(G = (𝑉, 𝐸), 𝑥) ∶= {𝑣 ∈ 𝑉|‖𝒙 –  𝒗‖2 < r} 

Steer: Given two points 𝑥, 𝑦 ∈  𝑋, this function returns a point 𝑧 ∈  𝑋 which is closer to 

𝑦 than 𝑥 is. For example, on Line 2 of Algorithm 5.2, the function steers 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 to 𝑥𝑟𝑎𝑛𝑑 

by generating a new vertex 𝑥𝑛𝑒𝑤. Usually, 𝑥𝑛𝑒𝑤 is on the straight line connecting 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 

and 𝑥𝑟𝑎𝑛𝑑 with a predefined distance 𝜂 to 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡. 𝜂 can be viewed as a step size, which 

limits the growth of the tree.  

Steer ∶=  argmin
𝑧∈𝑋

{‖𝒛 –  𝒚‖2 | ‖𝒛 –  𝒙‖2  ≤ 𝜂} 

Using a step size instead of connecting 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 and 𝑥𝑟𝑎𝑛𝑑 directly is beneficial since if a 

step is too long, it is more likely to be in collision. Besides, in some nonholonomic system, it is 

infeasible to connect two random points in the space directly. Occasionally, Steer will also be 

used to generate an edge connecting 𝑧 and 𝑥 directly (e.g., Line3, Algorithm 5.3). 

CollisionFree: This function tests whether the path given is in collision or not. The function 

returns true if there is no collision (Note this is a simplified version than the one introduced in 

Chapter 4). 

Cost: When this function is applied to a vertex, it will compute the cost of the path from the 

start vertex to the given vertex along the tree. When this function is called given an edge or a 
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set of edges (i.e., the path) as an input, it will return the cost of the edge (e.g., Euclidean length). 

Parent: Given a tree structure and a node, the Parent function queries the parent of the node 

on the given tree. 

ExtendAndRewire (Algorithm 5.2): This is the main part of RRT*. In each iteration, RRT* 

performs extend and rewire operation after sampling a new vertex. The extend operation grows 

the current tree towards the newly generated vertex along a minimum cost path, while the rewire 

operation uses the newly generated vertex to modify the path to existing vertices if a better path 

is found. 

GetSortedLists (Algorithm 5.3): Given a vertex set 𝑋𝑛𝑒𝑎𝑟, this function sorts all vertices in 

the set based on the distance from the start vertex (𝑥𝑠𝑡𝑎𝑟𝑡 ) to 𝑥𝑛𝑒𝑤  while passing 𝑥𝑛𝑒𝑎𝑟 ∈

𝑋𝑛𝑒𝑎𝑟. In this way, the vertex with the shortest distance to 𝑥𝑛𝑒𝑤 will be placed on the front of 

the set, which avoids unnecessary collision checking. 

GetBestParent (Algorithm 5.4): This function checks collision for all edges stored in 𝐿𝑛𝑒𝑎𝑟. 

Since 𝐿𝑛𝑒𝑎𝑟 is sorted, once a collision-free edge is found, the function returns immediately. 

RRT* samples a new point in the robot configuration space each iteration and uses it to generate 

𝑥𝑛𝑒𝑤. However, it does not simply connect the nearest point 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 to the new sample 𝑥𝑛𝑒𝑤 

but considers all points within distance r(n) from 𝑥𝑛𝑒𝑤 where r(n) = 𝑚𝑖𝑛{𝛾𝑅𝑅𝑇∗(log(n)/

n)1/d, 𝜂}. On Line 3 of Algorithm 5.2, the Near function may return an empty set. This is 

because the connection radius r(n) may be less than the step size 𝜂 used in Steer. Therefore, 

to ensure there is at least one vertex in 𝑋𝑛𝑒𝑎𝑟, 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 is always added. If GetBestParent 

succeed (Line 6 of Algorithm 5.2), then 𝑥𝑛𝑒𝑤 can be connected to the current tree successfully. 

Therefore, the new vertex and new edge are added to the vertex set and edge set respectively 

(Line 7 and 8 of Algorithm 5.2). After adding the new vertex, the algorithm examines all 

vertices in 𝑋𝑛𝑒𝑎𝑟 again to check whether a path passing 𝑥𝑛𝑒𝑤 to 𝑥𝑛𝑒𝑎𝑟 can yield a better 

path than the original path to 𝑥𝑛𝑒𝑎𝑟 (Line 2 of Algorithm 5.5). If there is such a path, the parent 

of corresponding 𝑥𝑛𝑒𝑎𝑟 will be set as 𝑥𝑛𝑒𝑤 by removing the old edge and adding the new 

edge (Line 5 and 6 of Algorithm 5.5) 
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Algorithm 5.1: RRT* 

1. 𝑉 ← {𝑥𝑠𝑡𝑎𝑟𝑡}; 𝐸 ← ∅; 

2. for 𝑖 =  1, … , 𝑛 do 

3.   𝑥𝑟𝑎𝑛𝑑 ← SampleFree(𝑖) 

4.   ExtendAndRewire(𝑥𝑟𝑎𝑛𝑑) 

5. endfor 

6. return 𝑇 = (𝑉, 𝐸) 

 

Algorithm 5.2: ExtendAndRewire(𝑥𝑟𝑎𝑛𝑑, 𝐸, 𝑉) 

1. 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← Nearest(𝑉, 𝑥𝑟𝑎𝑛𝑑) 

2. 𝑥𝑛𝑒𝑤 ← Steer(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑟𝑎𝑛𝑑)  

3. 𝑋𝑛𝑒𝑎𝑟 ← Near(𝑉, 𝑥𝑛𝑒𝑤) ∪ 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 

4. 𝐿𝑛𝑒𝑎𝑟 ← GetSortedLists(𝑋𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤) 

5. 𝑥𝑝𝑎𝑟𝑒𝑛𝑡 ← GetBestParent(𝐿𝑛𝑒𝑎𝑟) 

6. if 𝑥𝑝𝑎𝑟𝑒𝑛𝑡 ≠  NULL 

7.   𝑉 ← 𝑉  ∪  {𝑥𝑛𝑒𝑤} 

8.   𝐸 ← 𝐸 ∪ {(𝑥𝑝𝑎𝑟𝑒𝑛𝑡, 𝑥𝑛𝑒𝑤)} 

9.   𝐸 ← RewireVertices(𝑥𝑛𝑒𝑤, 𝐿𝑛𝑒𝑎𝑟 , 𝐸) 

10. endif 

11. return 𝑥𝑛𝑒𝑤 

 

Algorithm 5.3: GetSortedLists(𝑋𝑛𝑒𝑎𝑟, 𝑥𝑛𝑒𝑤) 

1. 𝐿𝑛𝑒𝑎𝑟 ← ∅ 

2. foreach 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟 do 

3.   𝜎𝑛𝑒𝑎𝑟 ← Steer(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤) 

4.   𝑐𝑛𝑒𝑎𝑟 ← Cost(𝑥𝑛𝑒𝑎𝑟) + Cost(𝜎𝑛𝑒𝑎𝑟) 

5.   𝐿𝑛𝑒𝑎𝑟 ← 𝐿𝑛𝑒𝑎𝑟 ∪ {(𝑐𝑛𝑒𝑎𝑟, 𝑥𝑛𝑒𝑎𝑟 , 𝜎𝑛𝑒𝑎𝑟)} 

6. endfor 

7. Sort(𝐿𝑛𝑒𝑎𝑟) 

8. return 𝐿𝑛𝑒𝑎𝑟 
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Algorithm 5.4: GetBestParent(𝐿𝑛𝑒𝑎𝑟) 

1. foreach (𝑐𝑛𝑒𝑎𝑟, 𝑥𝑛𝑒𝑎𝑟 , 𝜎𝑛𝑒𝑎𝑟) ∈ 𝐿𝑛𝑒𝑎𝑟  do 

2.   if CollisionFree(𝜎𝑛𝑒𝑎𝑟) then 

3.     return 𝑥𝑛𝑒𝑎𝑟 

4.   endif 

5. return NULL 

 

Algorithm 5.5: RewireVertices(𝐸, 𝐿𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤) 

1. foreach (𝑐𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑎𝑟 , 𝜎𝑛𝑒𝑎𝑟) ∈ 𝐿𝑛𝑒𝑎𝑟  do 

2.   if  Cost(𝑥𝑛𝑒𝑤) + Cost(𝜎𝑛𝑒𝑎𝑟) < Cost(𝑥𝑛𝑒𝑎𝑟) then 

3.     if CollisionFree(𝜎𝑛𝑒𝑎𝑟) then 

4.       𝑥𝑜𝑙𝑑𝑝𝑎𝑟𝑒𝑛𝑡 ← Parent(E, 𝑥𝑛𝑒𝑎𝑟) 

5.       𝐸 ← 𝐸 ∖ {(𝑥𝑜𝑙𝑑𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑥𝑛𝑒𝑎𝑟)} 

6.       𝐸 ← 𝐸 ∪ {(𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟)} 

7.     endif 

8.   endif 

9. endfor 

10. return 𝐸 

5.2.2 Bidirectional RRT* 

Bi-RRT* is a bidirectional version of RRT* which uses a similar connection strategy from RRT-

connect [24]. A slightly simplified version is presented in Algorithm 5.6 and Algorithm 5.7. In 

Bi-RRT*, Instead of growing a single tree, two trees (𝑇𝑎 and 𝑇𝑏) are grown from the start and 

goal vertex (𝑥𝑖𝑛𝑖𝑡 and 𝑥𝑔𝑜𝑎𝑙) towards each other interchangeably. The algorithm is exactly the 

same as RRT* for growing the first tree. After the ExtendAndRewire procedure is finished 

for the first tree. The new vertex is used as a random sample for growing the other tree. 

Therefore, the nearest vertex to 𝑥𝑛𝑒𝑤 in 𝑇𝑏 is queried (Line 1 of Algorithm 5.7). However, a 

direct connection from 𝑥𝑛𝑒𝑤 𝑡𝑜 𝑥𝑐𝑜𝑛𝑛𝑒𝑐𝑡 may not maintain the optimality of RRT*. Instead, 

an additional vertex 𝑥′𝑛𝑒𝑤 is created by steering from 𝑥𝑐𝑜𝑛𝑛𝑒𝑐𝑡 to 𝑥𝑛𝑒𝑤, and all points in 𝑇𝑏 

within distance r(n)  from 𝑥′𝑛𝑒𝑤  are considered for potential connection (Line 3-5 of 
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Algorithm 5.7). If there exists a point in 𝑋𝑛𝑒𝑎𝑟 that can be connected to 𝑥𝑛𝑒𝑤, then a new edge 

is added, and the path 𝜎𝑠𝑜𝑙  is generated by the function GeneratePath . After a successful 

solution is generated, it is added to the solution set (Line 6-7 of Algorithm 5.6). The iteration 

ends after two trees are swapped. In this way, the tree extended in this iteration will be used for 

connection in the next iteration and vice versa.  

Algorithm 5.6: Bi-RRT* 

1. 𝑉 ← {𝑥𝑠𝑎𝑡𝑟𝑡, 𝑥𝑔𝑜𝑎𝑙}; 𝐸 ← ∅; 𝑇𝑎 ← (𝑥𝑠𝑡𝑎𝑟𝑡, E), 𝑇𝑏 ← (𝑥𝑔𝑜𝑎𝑙, 𝐸); Σ𝑠𝑜𝑙 ←  ∅ 

2. for i =  1, … , n do 

3.   𝑥𝑟𝑎𝑛𝑑 ← SampleFree(i) 

4.   𝑥𝑛𝑒𝑤 ← ExtendAndRewire(𝑥𝑟𝑎𝑛𝑑) 

5.   𝜎𝑠𝑜𝑙 ← ConnectTrees(𝑇𝑏 , 𝑥𝑛𝑒𝑤) 

6.   if 𝜎𝑠𝑜𝑙  ≠ ∅  

7.     Σ𝑠𝑜𝑙 ← Σ𝑠𝑜𝑙 ∪ 𝜎𝑠𝑜𝑙 

8.   endif 

9.   SwapTrees(𝑇𝑎, 𝑇𝑏) 

10. endfor 

11. return 𝑇 = (𝑉, 𝐸) 

 

Algorithm 5.7: ConnectTrees(𝑇𝑏, 𝑥𝑛𝑒𝑤) 

1. 𝑥𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ← Nearest(𝑇𝑏, 𝑥𝑛𝑒𝑤) 

2. 𝑥′𝑛𝑒𝑤 ← Steer(𝑥𝑐𝑜𝑛𝑛𝑒𝑐𝑡, 𝑥𝑛𝑒𝑤) 

3. 𝑋𝑛𝑒𝑎𝑟 ← Near(𝑇𝑏 , 𝑥′𝑛𝑒𝑤) ∪ 𝑥𝑐𝑜𝑛𝑛𝑒𝑐𝑡 

4. 𝐿𝑛𝑒𝑎𝑟 ← GetSortedLists(𝑋𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤) 

5. 𝑥min ← GetBestParent(𝐿near) 

6. if 𝑥𝑚𝑖𝑛 ≠  NULL 

7.   𝐸 ← 𝐸 ∪ {(𝑥min, 𝑥new)} 

8.   𝜎𝑠𝑜𝑙 ← GeneratePath(𝑥𝑚𝑖𝑛, 𝑥𝑛𝑒𝑤) 

9.   return 𝜎𝑠𝑜𝑙 

10. endif 

11. return NULL 
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One may notice that ConnectTrees is actually quite similar to ExtendAndRewire apart from 

no rewiring is performed. Another difference is that unlike in ExtendAndRewire, since the 

goal is to generate a connected path, no step size is used to limit the growth of the tree, i.e., the 

tree attempts to connect to 𝑥𝑛𝑒𝑤 directly rather than 𝑥′𝑛𝑒𝑤 generated by the steering function. 

However, these are only implementation choices and can be modified to serve different 

preferences. 

5.2.3 Informed RRT* 

Informed RRT* [22] works the same as RRT* before finding the first feasible solution. 

However, it uses the concept of the informed set to generate new samples in the configuration 

space once a feasible solution is found. Generating samples inside the informed set is a 

necessary condition for improving the current solution (see Lemma 12 in [23]). As the cost of 

the optimal solution improves each iteration, the informed set will also be updated (i.e., the size 

of informed set will be reduced). In this way, the planning algorithm avoids generating new 

samples that cannot improve the current solution and results in faster convergence. This section 

reviews algorithms introduced in [23] with some theoretical details omitted. The definition of 

informed set will be given in Section 5.2.3.1. In Section 5.2.3.2, a direct sampling method is 

presented to improve the sample efficiency. Section 5.2.3.3 generalise the direct sampling 

method to the case of multiple pairs of start and goal state, which is particularly useful for the 

problem considered in this chapter. 

5.2.3.1 𝑳𝟐 Informed set 

Let 𝑓(𝑥) be a heuristic function that estimates the cost of the solution path from 𝑥𝑠𝑡𝑎𝑟𝑡 to 

𝑥𝑔𝑜𝑎𝑙 while passing state 𝑥 ∈  𝑋. An informed set is defined as all points 𝑥 ∈  𝑋, such that 

the 𝑓(𝑥) is less than the optimal solution cost of the current iteration 𝑐𝑖. An informed set is 

admissible if the heuristic function used is admissible. In other words, it always underestimates 

the true optimal cost 𝑓(𝑥)∗ passing 𝑥, i.e., 𝑓(𝑥)  <  𝑓(𝑥)∗. A commonly used, universally 

admissible 𝑓(𝑥) is given as follows:  
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𝑓(𝑥) = ‖𝒙–𝒙𝑠𝑡𝑎𝑟𝑡‖2  +  ‖𝒙–𝒙𝑔𝑜𝑎𝑙‖2
 

where ‖𝒙– 𝒙𝑠𝑡𝑎𝑟𝑡‖2  is the 𝐿2  norm (Euclidean distance) between 𝑥  and 𝑥𝑠𝑡𝑎𝑟𝑡  while 

‖𝒙–𝒙𝑔𝑜𝑎𝑙‖2
 is the 𝐿2 norm between 𝑥 and 𝑥𝑔𝑜𝑎𝑙. 

Therefore, the 𝐿2 informed set can be defined as follows: 

𝑋�̂� ∶=  {𝑥 ∈ 𝑋𝑓𝑟𝑒𝑒 | ‖𝒙–𝒙𝑠𝑡𝑎𝑟𝑡‖2  +  ‖𝒙– 𝒙𝑔𝑜𝑎𝑙‖2
 <  𝑐𝑖}. 

Obviously, 𝑋�̂� is an intersection between the space of all collision-free robot configuration 

(𝑋𝑓𝑟𝑒𝑒) and a 𝑑-dimensional hyperellipsoid symmetric about its transverse axis (Figure 5.1). 

Two focal points of the hyperellipsoid are 𝑥𝑠𝑡𝑎𝑟𝑡  and 𝑥𝑔𝑜𝑎𝑙 . The transverse diameter and 

conjugate diameter are ci and √ci
2 − cmin

2  respectively, where cmin = ‖𝒙𝑔𝑜𝑎𝑙– 𝒙𝑠𝑡𝑎𝑟𝑡 ‖2
 is 

the Euclidean distance between start and goal. 

 

Figure 5.1 The 𝐿2 informed set without obstacles is a hyperellipsoid. 

5.2.3.2 Direct Sampling  

Direct sampling the informed set is not practical because sampling-based motion planning 

algorithms always represent the free space implicitly. However, it is possible to sample the 

hyperellipsoid uniformly. The interior of a hyperellipsoid is defined as  

𝑋𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 ∶= {𝒙 ∈ ℝ𝑛| (𝒙 − 𝒙𝑐𝑒𝑛𝑡𝑟𝑒)
𝑇𝐒−1(𝒙 − 𝒙𝑐𝑒𝑛𝑡𝑟𝑒) < 1} 
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where 𝐒 is a symmetric positive definite matrix that defines the hyperellipsoid and 𝑥𝑐𝑒𝑛𝑡𝑟𝑒 is 

the centre of the hyperellipsoid [123]. In this chapter, the centre is always the middle point on 

the straight line connecting 𝑥𝑠𝑡𝑎𝑟𝑡  and 𝑥𝑔𝑜𝑎𝑙 , i.e., 𝒙𝑐𝑒𝑛𝑡𝑟𝑒 ∶= (𝒙𝑠𝑡𝑎𝑟𝑡 + 𝒙𝑔𝑜𝑎𝑙)/2 . To 

uniformly sample the interior of the hyperellipsoid, first, a new point 𝑥𝑏𝑎𝑙𝑙 is sampled from a 

𝑑-dimensional unit ball. Then 𝑥𝑏𝑎𝑙𝑙 is transformed into a point in the hyperellipsoid 𝑥𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 

by  

𝒙𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 = 𝐋𝒙𝑏𝑎𝑙𝑙 + 𝒙𝑐𝑒𝑛𝑡𝑟𝑒 

where 𝐋 ∈ ℝ𝑛×𝑛 is a lower triangular matrix and  𝐋𝐋T = 𝐒. 𝐒 can be chosen to be diagonal 

for hyperellipsoid with orthogonal axes to simplify the computation, 

𝐒 ∶=  diag(r1
2, r2

2, … , rn
2), 

where rj is the radius of the jth axis and diag(∙) represents a diagonal matrix. For the problem 

considered in this chapter, 

𝐒 = diag(
ci
2

4
,
ci
2−cmin

2

4
, … ,

ci
2−cmin

2

4
). 

Therefore, 𝐋 can be obtained by the following equation: 

 𝐋 = diag(
ci

2
,
√ci−cmin

2
 , … ,

√ci−cmin

2
). 

A rotational transformation 𝑪 ∈ 𝑆𝑂(𝑛) should be applied to transform the ellipsoid from the 

frame it is defined to the desired frame (i.e., the frame defined by 𝑥𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑔𝑜𝑎𝑙) 

𝒙𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 = 𝐂𝐋𝒙𝑏𝑎𝑙𝑙 + 𝒙𝑐𝑒𝑛𝑡𝑟𝑒. 

Finding 𝑪 between two frames is a well-studied problem known as Wahba’s problem [124]. 

The solution can be computed by the following procedures. First a matrix 𝐌 is constructed by  

𝐌 = [𝒂1, 𝒂2, … , 𝒂𝑗][𝒃1, 𝒃2, … , 𝒃𝑗]
T
 

where {𝒂1, 𝒂2, … , 𝒂n} is a set of frame axes and {𝒃1, 𝒃2, … , 𝒃n} is another set of frame axes. 

𝐌 can still be constructed even when some axes are unknown, which is the case of this chapter: 

𝐌 = 𝒂1𝐈1
𝐓 

where 𝒂1 is the transverse axis after rotational transformation: 
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𝒂1 = (𝒙𝑔𝑜𝑎𝑙 − 𝒙𝑠𝑡𝑎𝑟𝑡)/‖𝒙𝑔𝑜𝑎𝑙 − 𝒙𝑠𝑡𝑎𝑟𝑡‖2
 

while 𝐈1 is the first column of the identity matrix 𝐈. 

Then, a singular value decomposition is performed to get orthogonal matrices 𝐔 ∈  ℝ𝑛 and 

𝐕 ∈  ℝ𝑛 from 𝐌: 

𝐔𝚺𝐕𝐓 = 𝐌. 

Finally, the rotation matrix is given by 

𝐂 = 𝐔𝚲𝐕𝐓 

where 𝚲 = diag(1, … , 1, det(𝐔)det(𝐕)) ∈  ℝ𝑛×𝑛  and det(∙)  computes the determinant of 

the matrix. In this way, the generated samples 𝑥𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑  are uniformly distributed inside 

hyperellipsoid.  

The full algorithm for informed sampling is given in Algorithm 5.8 and Algorithm 5.9. 𝜇 is the 

volume of a space. In case that the informed set is larger than the planning domain, the algorithm 

still samples 𝑋 directly. 

Algorithm 5.8: Sample(𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑔𝑜𝑎𝑙, 𝑐𝑖) 

1. repeat  

2.   if 𝜇(𝑋𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑) < 𝜇(𝑋) then 

3.     𝑥𝑟𝑎𝑛𝑑 ← SampleEllipsoid(𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑔𝑜𝑎𝑙, ci) 

4.   else 

5.     𝑥𝑟𝑎𝑛𝑑 ← SamplePeoblem(X) 

6.    endif 

7. until 𝑥𝑟𝑎𝑛𝑑 ∈ 𝑋𝑓𝑟𝑒𝑒  ⋂𝑋𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 

8. return 𝑥𝑟𝑎𝑛𝑑 
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Algorithm 5.9: SampleEllipsoid(𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑔𝑜𝑎𝑙, 𝑐𝑖) 

1. cmin  ←  ‖𝒙𝑔𝑜𝑎𝑙 − 𝒙𝑠𝑡𝑎𝑟𝑡‖2
 

2. 𝒙𝑐𝑒𝑛𝑡𝑟𝑒 ← (𝒙𝑠𝑡𝑎𝑟𝑡 + 𝒙𝑔𝑜𝑎𝑙)/2 

3. 𝒂1 ← (𝒙𝑔𝑜𝑎𝑙 − 𝒙𝑠𝑡𝑎𝑟𝑡)/𝑐𝑚𝑖𝑛 

4. {𝐔, 𝐕} ← SVD(𝒂1𝐈1
T) 

5. 𝚲 ← diag(1,… , det(𝐔) det(𝐕)); 

6. 𝐂 ← 𝐔𝚲𝐕𝐓 

7. r1 ← ci/2 

8. 𝐋 ← diag(ci/2 , √ci − cmin/2,… , √ci − cmin/2) 

9. 𝑥𝑏𝑎𝑙𝑙 ← SampleUnitBall(n) 

10. 𝒙𝑟𝑎𝑛𝑑 ← 𝐂𝐋𝒙𝑏𝑎𝑙𝑙 + 𝒙𝑐𝑒𝑛𝑡𝑟𝑒 

11. return 𝑥𝑟𝑎𝑛𝑑 

5.2.3.3 Direct Sampling for Multiple Pairs of Start and Goal  

The problem considered in this chapter involves multiple pairs of start and goal which means 

each pair of start and goal corresponds to an ellipsoid. A method for sampling the informed set 

for multiple goals is given in [23], which is also applicable for multiple pairs of start and goal. 

Assuming there are 𝑧  pairs of start and goal, the generated new samples should uniformly 

distribute in 𝑧 ellipsoids. A straightforward approach is to probabilistically select an ellipsoid 

for a pair of start and goal based on the volume of the ellipsoid. However, since ellipsoids may 

overlap with each other, the generated sample will be probabilistically rejected based on the 

number of ellipsoids containing this sample. The algorithm for uniformly sampling multiple 

informed ellipsoids is given in Algorithm 5.10 - Algorithm 5.12. The algorithm presented uses 

a loop for clarity, however, when implementing the program, vectorised operations should be 

used to accelerate the computation, especially when dealing with a large number of start and 

goal pairs. 

Algorithm 5.10: Sample({𝑥𝑠𝑡𝑎𝑟𝑡}, {𝑥𝑔𝑜𝑎𝑙}, 𝑐𝑖) 

1. 𝑗 ←  NULL 

2. repeat  
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3.   if 
1

z
 ∑ 𝜆(𝑋𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑,𝑗) < 𝜆(𝑋)z

𝑗 = 1  then 

4.     𝑥𝑔𝑜𝑎𝑙 , 𝑗 ←  RandomGoal({𝑥𝑠𝑡𝑎𝑟𝑡}, {𝑥𝑔𝑜𝑎𝑙}, ci) 

5.     𝑥𝑟𝑎𝑛𝑑 ← SampleEllipsoid(𝑥start, 𝑥goal, ci) 

6.   else 

7.     𝑥𝑟𝑎𝑛𝑑 ← SamplePeoblem(X) 

8.   endif 

9. until 𝑥𝑟𝑎𝑛𝑑 ∈ 𝑋𝑓𝑟𝑒𝑒  ⋂  (⋃ 𝑋𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑,𝑗)
𝑧
𝑗 = 𝑖  and 

KeepSample(𝑥𝑟𝑎𝑛𝑑, {𝑥𝑠𝑡𝑎𝑟𝑡}, {𝑥𝑔𝑜𝑎𝑙}, 𝑐𝑖) 

10. return 𝑥𝑟𝑎𝑛𝑑 , 𝑗 

 

Algorithm 5.11: RandomGoal({𝑥𝑠𝑡𝑎𝑟𝑡}, {𝑥𝑔𝑜𝑎𝑙}, 𝑐𝑖) 

1. a = ∑ 𝜆(𝑋𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑,𝑗)
z
𝑗 = 1   

2. 𝑝 ←  UniformSample(0, 1) 

3. 𝑗 ← 0 

4. repeat 

5.   j ← j +  1 

6.   p ← p − λ(𝑋ellipsoid,j)/a 

7. until p ≤  0 

8. return 𝑥𝑔𝑜𝑎𝑙, 𝑗 

 

Algorithm 5.12:KeepSample(𝑥𝑟𝑎𝑛𝑑, {𝑥𝑠𝑡𝑎𝑟𝑡}, {𝑥𝑔𝑜𝑎𝑙}, 𝑐𝑖) 

1. a ← 𝟎  

2. for k = 1,…  z 

3.     𝐢𝐟 ‖𝒙𝑟𝑎𝑛𝑑–𝒙𝑠𝑡𝑎𝑟𝑡,𝑘‖2
 +  ‖𝒙𝑟𝑎𝑛𝑑– 𝒙𝑔𝑜𝑎𝑙,𝑘‖2

 <  𝑐𝑖 then 

4.       a =  a + 1 

5.     endif 

6.  endfor 

7.  𝑝 ←  UniformSample(0, 1) 

8. return p ≤ 1/a 
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5.3 Algorithm 

In this section, the proposed algorithm RRT*-MG is described. The proposed algorithm is based 

on RRT* and incorporates ideas from the variants introduced in Section 5.2. However, a number 

of key modifications are introduced to bias the search towards grasps that are more likely to 

generate a good solution. To simplify the presentation of the algorithm, no kinematic 

redundancy is considered, i.e., each grasp only corresponds to a single pair of start and goal. 

However, the developed method applies to the case of multiple IK solutions straightforwardly.  

Since the problem involves multiple pairs of start and goal configuration, RRT*-MG grows 

multiple trees instead of a single tree as presented in the original RRT* algorithm. In this way, 

each tree belongs to a pair of start and goal configuration. Each tree is denoted as 𝑇𝑖 and the 

vertex and edge set of the tree is denoted as 𝑉𝑖 and 𝐸𝑖 respectively. The graph containing 

multiple trees is known as a forest 𝕋 ∶= {𝑇𝑖=1,…,𝑛}. The vertex set and edge set of the forest 

are defined as 𝕍 ∶= {𝑉𝑖=1,…,𝑛} and 𝔼 ∶= {𝐸𝑖=1,…,𝑛}.  

Although multiple trees are initialised, to maintain the efficiency of the algorithm, it would be 

ideal that only one tree is extended in each iteration. If the extended tree always belongs to the 

optimal grasp, the algorithm essentially solves a single start single goal planning problem, 

which can be extremely efficient. However, it is impossible to know which grasp is optimal. 

Therefore, to avoid wasting time on planning for suboptimal grasps, a critical question is which 

tree should be extended given a randomly sampled point in each iteration. Section 5.3.1 

introduces a simple heuristic for choosing which tree to be extended. Section 5.3.2 discusses 

the rewiring strategy used in the proposed algorithm and some special cases that need to be 

careful about. Section 5.3.3 introduces another procedure called pruning and reassigning which 

discusses how vertices should be managed correctly if they cannot improve the current solution. 

In Section 5.3.4, a strategy is introduced to balance exploration and exploitation so that search 

efforts are not spent on a single grasp too much.  
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5.3.1 Making New Connections 

As shown in Algorithm 5.1, the original RRT* algorithm steers the nearest vertex to 𝑥𝑟and to 

create a new vertex 𝑥𝑛ew. Then, all vertices within radius 𝑟 of 𝑥𝑛ew are queried and the one 

with the least cost-to-come to 𝑥𝑛ew  is connected with 𝑥𝑛ew . In RRT*-MG, a similar 

procedure can be employed as shown in Figure 5.2. Each iteration, after a random point is 

generated, the nearest vertex 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 in the vertex set (𝕍) is queried and steered to a new 

vertex 𝑥𝑛ew. Then all vertices in 𝕍 within radius 𝑟 of 𝑥𝑛ew are queried to construct a set 

𝑋𝑛𝑒𝑎𝑟 ← {𝑥𝑛𝑒𝑎𝑟} and the one with the least cost 𝑐𝑛𝑒𝑎𝑟 is connected to 𝑥𝑛ew, where  

 𝑐𝑛𝑒𝑎𝑟 =  𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟) + 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤) + ℎ̂(𝑥𝑛𝑒𝑤 ). ( 5.1 ) 

Here, considering both cost-to-come along the current tree and optimistically estimated cost-

to-go is a critical step to make the proposed algorithm run fast. Since different grasps have 

different goals and starts, reaching 𝑥𝑛ew  from the 𝑗 th start 𝑥𝑠𝑡𝑎𝑟𝑡,𝑗  with a short distance 

(cost-to-come) does not mean the grasp will contain an efficient path reaching its corresponding 

goal vertex 𝑥𝑔𝑜𝑎𝑙,𝑗.  
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Figure 5.2 An illustration of how RRT*-MG makes new a connection. (a) Before connecting the new vertex. (b) 

New connection is made to black tree (dot line becomes solid). The brown ellipsoid represents the obstacle. Two 

trees are grown from start vertices (𝑥1𝑠𝑡𝑎𝑟𝑡  and 𝑥2𝑠𝑡𝑎𝑟𝑡)  to goal vertices (𝑥1𝑔𝑜𝑎𝑙  and 𝑥2𝑔𝑜𝑎𝑙). The red circle 

is 𝑋𝑛𝑒𝑎𝑟 . both trees have vertices inside 𝑋𝑛𝑒𝑎𝑟 . However, the connection to 𝑥𝑛𝑒𝑤 is made to the black tree since 

𝐶𝑜𝑠𝑡(𝑥1𝑛𝑒𝑎𝑟) (length of solid line) +𝐶𝑜𝑠𝑡(𝑥1𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤) (length of dot line) + ℎ̂(𝑥1𝑛𝑒𝑤  ) (length of dash line) 

is smaller. Note this illustration does not represent any real system doing rigid transformation, since 𝑥1𝑔𝑜𝑎𝑙  and 

𝑥2𝑔𝑜𝑎𝑙   should at least maintain the same distance as 𝑥1𝑠𝑡𝑎𝑟𝑡   and 𝑥2𝑠𝑡𝑎𝑟𝑡  . If the system only allows 

translation, the orientation should be maintained as well. 
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5.3.2 Rewiring and Vertex Duplicating 

Another key difference to original RRT* is in the rewiring process. The rewiring process is 

illustrated in Figure 5.3. Since a grasp has been selected implicitly for extension, the proposed 

algorithm only rewires vertices that belong to the same grasp rather than all vertices in 𝑋𝑛ear. 

This is because the two cost-to-come values of a vertex through different paths cannot be 

compared as in the case of RRT*. A path with a larger cost-to-come value may have a lower 

cost-to-go value, which results in a better path. Rewiring such a vertex negatively impact the 

performance of the algorithm. Besides, rewiring a vertex from a different tree also requires 

checking the collision status of all the descendants, since the change of grasp results in the 

change of geometry. This also makes the algorithm run slower. 

However, it is possible that an 𝑥𝑛𝑒𝑎𝑟  belonging to another grasp can provide a potentially 

better path (i.e., belongs to the informed set) for the grasp that 𝑥𝑛𝑒𝑤 belongs to. In this case, it 

is reasonable to add a new edge connecting 𝑥𝑛𝑒𝑤 and 𝑥𝑛𝑒𝑎𝑟. In practice, to maintain the tree 

structure, a new vertex should be added with the same robot configuration as 𝑥𝑛𝑒𝑎𝑟 instead of 

connecting with the original 𝑥𝑛𝑒𝑎𝑟 (i.e., vertex duplicating). 
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Figure 5.3 An illustration of how RRT*-MG rewires a vertex. (a) Before rewiring, 𝑥1𝑛𝑒𝑎𝑟
′   is connected to 

𝑥1𝑜𝑙𝑑𝑝𝑎𝑟𝑒𝑛𝑡 . (b) After rewiring, 𝑥1𝑛𝑒𝑎𝑟
′   is connected to 𝑥𝑛𝑒𝑤   instead. Assume an additional vertex 𝑥2𝑛𝑒𝑎𝑟   is 

inside 𝑋𝑛𝑒𝑎𝑟, which belongs to the blue tree. Rewiring will only consider 𝑥1′𝑛𝑒𝑎𝑟  whether it can be reached from 

𝑥𝑛𝑒𝑤  with a shorter distance. 𝑥2𝑛𝑒𝑎𝑟  will not be considered for rewiring, even it may be reached from 𝑥𝑛𝑒𝑤  with 

a shorter distance. However, if 𝑥2𝑛𝑒𝑎𝑟  is inside the informed set of the black tree, then it can be duplicated and 

added to the black tree as well.  
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5.3.3 Pruning and Reassigning 

This procedure can be viewed as a more advanced rewiring operation. It has been discussed in 

Section 5.3.2 that a normal rewiring can only been performed between vertices in the same tree. 

However, some leaves of the tree (i.e., vertices without descendants) cannot improve the grasp 

tree it belongs to (i.e., outside of its informed set), which means they should be pruned2. This 

is an admissible pruning method introduced in [23]. However, for the problem studied in this 

chapter, they may still belong to the informed set of other grasps, then it would be beneficial to 

reassign them to new grasp tree. The vertices pruned from their current grasp tree but can be 

reassigned to other trees are denoted as 𝑥𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛 ∈ 𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛 . This behaviour is similar to 

rewiring, but the criterion is different. Rewiring uses the cost-to-come value while reassigning 

uses the informed set. Reassigning is actually equivalent to reusing these pruned samples as 

new samples to extend the tree. Note vertices that satisfy the reassigning condition may already 

be duplicated. If that is the case, reassigning is not performed (i.e., they will not be added to 

𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛). Function PruneAndReassign (Line 9 of Algorithm 5.13) will prune the vertices in 

the tree and add feasible vertices to 𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛 . The actual reassign operation is done by 

SampleRandom  function, in which a new sample will be chosen from 𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛  directly 

(Line 19 -20 of Algorithm 5.13). since a new sample may belong to the informed set of multiple 

pairs of start and goal, a grasp tree will also be chosen randomly (subject to the informed set 

constraint). In order to keep vertices in 𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛 always belonging to the informed set, the 

samples in 𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛 should be updated (Line 7 of Algorithm 5.13) before sampling from it as 

the solution cost could be improved after each iteration. 

5.3.4 Balancing Exploration and Exploitation 

In this section, two strategies (exploration and exploitation) will be presented for choosing 

 

 
2 In many cases, the measure of an informed set may even be zero since the cost of a straight line path from the start to the 

goal of current tree is higher than the optimal cost found already. 
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which tree to be extended. Exploration means the algorithm extends the tree according to the 

sampling results. Because each time a new vertex is sampled, a grasp (at the same time, a pair 

of start and goal state) is selected implicitly. The probability of selecting a grasp is proportional 

to the measure of the hyperellipsoid defined by the corresponding pair of start and goal, which 

ensures the tree belongs to the optimal grasp can always be extended with non-zero probability. 

Therefore, this procedure is useful for avoiding converging to a local minimum (i.e., the found 

solution path is optimal for one of the grasps, but another grasp may yield a better solution). 

On the other hand, the exploitation strategy uses the connection method introduced in Section 

5.3.1. It is proposed that the connection is made to vertices in 𝑋𝑛𝑒𝑎𝑟  with the least cost 

computed by Eq. ( 5.1 ). In this way, trees with more vertices are more likely to be extended 

again. However, it is also possible that, after a feasible solution is found, the grasp trees of all 

vertices in 𝑋𝑛𝑒𝑎𝑟 cannot be improved by connecting to the new vertex 𝑥𝑛𝑒𝑤 (i.e., outside of 

the informed set). Therefore, making new connections with vertices in 𝑋𝑛𝑒𝑎𝑟 is not necessary. 

In this case, 𝑥𝑟𝑎𝑛𝑑  will be recycled (added to 𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛 ) and start the next iteration 

immediately without connecting with the other tree (Line 16 - 17 of Algorithm 5.13). 

ExtendAndRewire-MG is the same as ExtendAndRewire except that it uses Eq. ( 5.1 ) to 

decide which vertex to connect and check whether the connected vertex belongs to the informed 

set. 

In practice, the implemented software interleaves between querying 𝑋𝑛𝑒𝑎𝑟  from 𝕋 

(exploitation) and 𝑋𝑛𝑒𝑎𝑟  subject to the same grasp constraint (exploration). This 

implementation can be used to achieve asymptotically optimality once a feasible solution is 

found. When reassigning vertices in 𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛, the algorithm also performs exploration (Line 

20 of Algorithm 5.13), since 𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛  may contain vertices fail to be connected in the 

exploitation step of previous iterations. The full algorithm is given in Algorithm 5.13. It is worth 

noting that collision checking should be performed with objects attached at correct poses. 

 



95 
 

Algorithm 5.13: RRT*-MG 

1. for 𝑗 =  1, … ,𝑚 do 

2.   𝑉𝑗 ← {𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑔𝑜𝑎𝑙}; 𝐸𝑗 ← ∅ // initialise 𝑚 trees in the graph for each feasible grasp 

3. endfor 

4. 𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛 ← ∅; 𝑐𝑜 ← INFINITY 

5. 𝕍 ← {𝑉𝑗}; 𝔼 ← {𝐸𝑗}; 𝕋 = {𝕍, 𝔼} 

6. for 𝑖 =  1, … , 𝑛 do 

7.   𝑐𝑖 ← BestSolutionCosts(Σ𝑠𝑜𝑙); Update(𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛)  

8.   if 𝑐𝑖 < 𝑐𝑖−1 

9.     PruneAndReassign(𝕋 = {𝕍, 𝔼}, 𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛 𝑐𝑖) 

10.   endif 

11.   if 𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛 == ∅ 

12.     {𝑥𝑟𝑎𝑛𝑑 , 𝑗} ← Sample({𝑥𝑠𝑡𝑎𝑟𝑡}, {𝑥𝑔𝑜𝑎𝑙}, 𝑐𝑖)  

13.      if 𝑐𝑖 < INFINITY and random(0, 1) < 𝑝𝑏𝑙𝑡 // see Section 5.4.3 for performance of 

                                                   // using different probabilities here. 

14.       ExtendAndRewire(𝑥𝑟𝑎𝑛𝑑, 𝑉𝑗, 𝐸𝑗) // extend tree with same grasp constraint. 

15.     else 

16.        𝑗 ← ExtendAndRewire-MG(𝑥𝑟𝑎𝑛𝑑, 𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛, 𝕍, 𝔼) // extend tree close to 𝑥𝑟𝑎𝑛𝑑  

                 // and with lowest heuristic cost, 𝑗 is the grasp index 𝑥new inherits. 

                 // The 𝑗 obtained on Line 12 could be updated here. 

17.        if  𝑗 == NULL, break 

18.   else 

19.     {𝑥𝑟𝑎𝑛𝑑 , 𝑗} ← SampleRandom(𝑋𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛)  // 𝑗 is the index of the grasp that 𝑥𝑟𝑎𝑛𝑑 

                                            // belongs to  

20.     ExtendAndRewire(𝑥𝑟𝑎𝑛𝑑, 𝑉𝑗 , 𝐸𝑗) // extend tree with same grasp 

21.   endif 

22.   𝜎𝑠𝑜𝑙 ← ConnectTrees(𝑇𝑏,𝑗 , 𝑥𝑛𝑒𝑤 )  

23.   if 𝜎𝑠𝑜𝑙  ≠ ∅  

24.     Σ𝑠𝑜𝑙 ← Σ𝑠𝑜𝑙 ∪ σ𝑠𝑜𝑙  

25.   endif 

26.   SwapTrees(𝑇𝑎, 𝑇𝑏) 

27. endfor 

28. return 𝑇 = (𝑉, 𝐸) 
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5.4 Experiment and Results 

Three sets of experiments are performed to study the behaviour of RRT*-MG. All experiments 

use the same 8 pipes as in Chapter 4. Examples of planned robot motion are shown in Figure 

5.4 (a) - (h). The experiments are performed on an Ubuntu 20.04 machine with an Intel Core 

i7-4712MQ CPU @ 2.30 GHz and 8GB RAM. The program is implemented in C++. The 

nearest neighbour search is performed by FLANN. The sample unit ball and SVD procedure 

during informed sampling is done by Boost and Eigen library respectively. The collision 

checking is performed by FCL accessed through MoveIt API.  

 

 

(a) 

(b) 
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(c) 

(d) 

(e) 
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Figure 5.4 Example trajectories of Techman robot manipulating 8 different pipes. 

(f) 

(g) 

(h) 
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5.4.1 Comparison between PRM*-MG and RRT*-MG 

In the first experiment, the performance of PRM*-MG and RRT*-MG is compared. Five 

different number of grasps are tested from 50 to 2000. The minimum number of grasps is set to 

50 as opposed to 25 in the experiments of Chapter 4. This is because a very small sized graph 

is used for PRM*-MG (1000 vertices) thus using 25 grasps with this small graph results in 

failure of finding a feasible solution frequently. Since PRM*-MG is not an anytime algorithm, 

two graphs of different sizes for PRM are tested. The first small graph as mentioned above has 

only 1000 vertices while the second large graph has 20000 vertices. Using a larger graph size 

means PRM*-MG is more likely to contain a better solution. This is indeed the case when the 

number of grasps is small (less than 500). Using a large grasp set makes this difference vanishes 

as shown in Figure 5.5 (the red and blue line of Figure 5.5 have nearly the same initial and 

optimal path length when using more than 500 grasps). However, RRT*-MG keeps performing 

better than PRM*-MG in finding the optimal solution regardless of graph size (RRT*-MG 

always stops after sampling 1000 vertices since this is enough to show its advantages). In terms 

of initial solution costs, RRT*-MG is better when only a small number of grasps is given, but 

slightly worse when there is a large number of grasps available as shown in Figure 5.5 (a). This 

is because PRM*-MG searches more grasps globally, thus yielding better solutions. However, 

finding such a solution also takes much more time than RRT*-MG needs (Figure 5.6 (a)). 

RRT*-MG also maintains the same level of performance irrespective of the number of grasps 

given. RRT*-MG generally takes 50ms to generate the first solution for tested problems. while 

PRM*-MG takes 500ms given a pre-constructed graph. RRT*-MG also finds significantly 

better solution after sampling 1000 vertices (Figure 5.5 (b)) although it may not be a globally 

asymptotically optimal algorithm as PRM*-MG is. The time taken for algorithms to find the 

optimal solution and the total run time is shown in Figure 5.6 (b) and (c). RRT*-MG  still 

performs best in almost all tests with the exception of 500 grasps, where the performance gap 

between RRT*-MG and PRM*-MG with 1000 vertices is small. However, in this case, the 

solution found by RRT*-MG is much better. 
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Figure 5.5 Solution cost comparison between PRM*-MG and RRT*-MG. (a) Initial path length versus grasp 

size. (b) Optimal path length versus grasp size.

Figure 5.6 Algorithm running time comparison between PRM*-MG and RRT*-MG. (a) Time to initial solution 

versus grasp size. (b) Time to optimal solution versus grasp size. (c) Total run time versus grasp size. 
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5.4.2 Effectiveness of Informed Sampling and Bidirectional Search 

In the second experiment, the effectiveness of bidirectional search and informed sampling is 

shown. Both implementations (V1 and V2) of the algorithms are run with 1000 samples. The 

first row of Table 5.1 (V1) shows of the results of the implementation without bidirectional 

search and informed sampling while the second row (V2) implements these two strategies. It is 

obvious that by using bidirectional search and informed sampling, the success rate increases 

significantly (from less than 70% to nearly 100%) with planning time decreased and solution 

costs improved. 

Table 5.1 Performance comparison between algorithms on whether using bidirectional search and informed 

sampling. 

 Success rate Initial time (ms) Optimal time(ms) Initial cost Optimal cost 

V1 69.75% 2915ms 3301ms 6.29 5.80 

V2 99.50% 57ms 252ms 5.40 3.37 

5.4.3 Effectiveness of Balancing Exploration and Exploitation 

This experiment uses 2000 grasps and 20000 samples to study the convergency property of the 

algorithm. The value of 𝑝𝑏𝑙𝑡 in the first column means the probability the algorithm chooses 

to extend 𝑋𝑛𝑒𝑎𝑟 subject to same grasp constraint (Line 13 of Algorithm 5.13). If 𝑝𝑏𝑙𝑡 is 1, it 

means the algorithm always extend 𝑋𝑛𝑒𝑎𝑟  subject to same grasp constraint, which is 

equivalent to selecting a grasp randomly and extend. This unbiased search is not efficient in 

most cases. As shown in Table 5.2, when 𝑝𝑏𝑙𝑡 is 1, the algorithm is fast, but does not find 

good enough solution. While using a 𝑝𝑏𝑙𝑡 =  0.5   (i.e., balancing the exploitation and 

exploration), the algorithm achieves best solution cost with a medium planning time. 

Table 5.2 Average results for 8 problems. 

𝑝𝑏𝑙𝑡  Success rate Optimal time(ms) Optimal cost 

 1 100% 2741 3.22 

 0.5 100% 3146 2.99 

 0 100% 3859 3.01 
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However, there is one problem in the test shows that using a large 𝑝𝑏𝑙𝑡  value is useful 

(Problem 8). In this problem, using 𝑝𝑏𝑙𝑡 =  1 finds better solutions than a biased search with 

𝑝𝑏𝑙𝑡 = 0 (3.49 as opposed to 3.60) as listed in Table 5.3 Results for Problem 8. However, 

using 𝑝𝑏𝑙𝑡 = 0.5 still finds equally good solution but takes more time to generate the results. 

Table 5.3 Results for Problem 8. 

𝑝𝑏𝑙𝑡  Success rate Optimal time(ms) Optimal cost 

1 100% 1779 3.49 

0.5 100% 2809 3.49 

0 100% 1213 3.60 

5.5 Conclusion 

In this chapter, a new single-query manipulation planning algorithm RRT*-MG is proposed. 

The algorithm is based on RRT* but biases the search towards the grasp that is most likely to 

contain the optimal path. New connection and rewiring strategies are proposed. Additional 

pruning and reassigning strategies are also introduced to utilise the samples more efficiently. 

The proposed algorithm can solve manipulation planning problem for multiple grasps in almost 

the same time as the single grasp manipulation planning problem. In many cases, the algorithm 

is even faster in generating the first solution because it detects the easiest grasp and focuses on 

searching it. The final version of the algorithm also incorporates ideas from RRT-connect and 

informed-RRT*. Experiment results show that informed sampling and bidirectional search 

improves the search efficiency significantly. 
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Chapter 6 Conclusion 

This thesis investigates the impact of selecting different grasps on the subsequent robot motion 

and develops methods and algorithms that can select grasps and plan robot motion in an 

integrated manner. The thesis is motivated by problems encountered when manufacturing pipe 

assemblies inside a compact factory (Factory-In-A-Box). Three different scenarios are 

considered, and specific algorithms are developed for each scenario.  

In Chapter 2, the existing work on motion and manipulation planning are reviewed. The focus 

is on sampling-based motion planning algorithms, which are the primary methods used in 

Chapter 4 and Chapter 5. Manipulation methods that combine grasp and motion planning are 

also reviewed and the research gaps are identified. 

In Chapter 3, a predefined object path is given as input. The robot needs to select an optimal 

grasp to follow this given trajectory. To solve this problem, an optimisation framework is 

developed to optimise the grasp pose and select joint configurations (from multiple IK solutions) 

simultaneously. The proposed method first searches for grasp poses that satisfy workspace 

reachability and collision-free constraints then continuously optimise solutions based on three 

objectives (joint motion, deformation of the object and force manipulability). A special 

constraint handling method is used to decouple the constraint and objective evaluation process, 

allowing expensive objectives (deformation) to be evaluated only when constraints are satisfied. 

The method explicitly considers the kinematic redundancy of robot (i.e., multiple IK solutions 

for a given end-effector pose) and uses a graph search algorithm (Dijkstra’s Algorithm) to find 

the optimal path among all feasible paths. The Bees Algorithm is used to solve the constrained 

optimisation problem with a proposed problem-specific local search strategy. Extensive 

benchmarks have been performed to evaluate the performance of 3 local search strategies and 

2 other metaheuristics (GA and PSO). It is found that Bees Algorithm with the proposed local 

search strategy is less sensitive to the hyperparameters and can achieve consistently good 

performance on different problems.  

In Chapter 4, the free space motion planning problem is considered given a set of feasible 
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grasps. The robot needs to select the optimal grasp such that the post-grasp motion cost is 

minimized. There is no constraint on the path of the object as long as it reaches the final location. 

A new algorithm (PRM*-MG) based on the probabilistic roadmap (PRM) is proposed to solve 

the problem efficiently. The new algorithm accelerates the planning process by using: 1) a lazy 

strategy to avoid collision checking for suboptimal paths; 2) the current optimal cost from 

previous searches as an upper bound to prune the roadmap in subsequent searches. Given a 

constructed roadmap, the proposed algorithm can process thousands of grasps within seconds, 

making it suitable for planning problems without strict time requirements. The algorithm also 

has desirable theoretical properties such as probabilistic completeness and asymptotically 

optimality.  

In Chapter 5, RRT*-MG is developed to solve the same free space motion planning problem 

given multiple feasible grasps, but in a more time-limited scenario. The algorithm needs to 

generate a feasible solution as fast as possible and keep improving it if more time is allowed. 

RRT*-MG solves the single query manipulation problem directly without reformulating it to a 

multi-query motion planning problem as opposed to PRM*-MG. The proposed algorithm is 

based on RRT* and incorporates ideas like informed sampling and bidirectional search from 

other literature. Besides combining ideas from existing literature, a novel connection criterion 

is proposed to bias the search towards grasps that are more likely to yield optimal paths. 

Pruning and reassigning strategies that are specific to the multiple available grasps case are 

also introduced for reusing the samples more efficiently. The algorithm also explicitly balances 

exploration and exploitation to avoid converging to local optima. 

6.1 Summary of Contributions  

Traditional motion planners can produce optimised motion for a robot to move from a single 

start configuration to a goal configuration. However, by using methods and algorithms 

developed in this thesis, the motion of the robot can be further optimised at the level of multiple 

grasps (in other words, multiple start and goal configuration pairs). Apart from proposing 
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several methods and algorithms, perhaps a more important finding of this thesis is that planning 

motion for a robot to manipulate objects given multiple grasps is not a time-consuming process 

at all if using a specifically designed algorithm. In many cases, it is even more efficient than 

planning motion for a single grasp. This finding should encourage both researchers and 

practitioners to provide more feasible grasps for the robot to choose when planning motion for 

pick-and-place tasks, especially in the case of manipulating large and complex objects in a 

narrow environment. 

Specifically, this thesis has made the following contributions: 

• The developed grasp pose optimisation framework makes it possible for the robot to 

manipulate 3D pipe assemblies and other complex structures inside a compact factory 

without specially designed gripper. Experiments demonstrate the advantages of using 

Bees Algorithm to solve the proposed optimisation problem over other metaheuristics. 

A novel problem-specific local search strategy is proposed to accelerate the 

optimisation process (Chapter 3). 

• The problem of integrated grasp selection and post-grasp optimal motion planning is 

formally defined. An asymptotically optimal algorithm (PRM*-MG) is developed to 

solve the integrated grasp selection and motion planning problem. A novel lazy 

collision checking strategy at the grasp level and a graph pruning procedure using an 

upper bound constructed in previous searches are developed. (Chapter 4) 

• An anytime algorithm RRT*-MG is developed to solve the integrated grasp selection 

and motion planning problem under strict time limitations. A new connection strategy 

is developed to bias the search towards the grasp that is most likely to generate an 

optimal path. New rewiring, pruning, and reassigning strategies are developed to use 

the samples more efficiently. (Chapter 5) 
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6.2 Future work 

Multiple potential research directions can be explored based on the work in this thesis. In 

Chapter 3, the grasp pose is optimised based mainly on objectives that capture the quasi-static 

performance of robot motion. However, if the robot needs to be operating at high speed, the 

dynamics of both robot and object (i.e., the deformation of the pipe when being manipulated at 

high speed) must be considered to enable fast, smooth, and safe motion.  

In Chapter 4 and Chapter 5, the cost function used to optimise the robot motion is the path 

length. Although other cost functions can be considered, however, their performance would be 

generally worse than optimising path length since few good heuristics are available a priori. 

One possible solution is by incorporating ideas from advanced sampling-based motion planners 

like AIT* and EIT* [125], which uses an asymmetric bidirectional search to calculate problem-

specific heuristics during the search.  

The algorithms developed in Chapter 4 and Chapter 5 are sampling-based. Recently, many 

integrated motion planners have been proposed by combining sampling-based motion planners 

and optimisation-based motion planners for standard single start single goal planning problem 

as discussed in Section 2.1.4. It would be interesting to explore whether this combination can 

be efficiently applied to the problem studied in this thesis (e.g., integrating GOMP [96] with 

algorithms presented in Chapter 4 and Chapter 5) to generate smooth and possibly time-optimal 

trajectories without post-processing. 
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