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ABSTRACT 

 

Dental composite materials are evolving continuously with novel Resin Based Composites 

being at the forefront of dental restorations. The characteristics of these materials need to 

be such that they are able to withstand both mechanical (masticatory) stress and any 

chemical activity. 

 

The current study investigates the strength and biocompatibility of three Resin Based 

Composites (RBCs); Ormocer Admira (VOCO, Cuxhaven, Germany), dimethacrylate 

FiltekTMZ250 (St Paul, MN, US) and a novel RBC namely X-tra Fil (VOCO, Cuxhaven, 

Germany). These materials were tested using bi-axial flexure, vickers hardness, water 

sorption and water solubility tests, but a one-way ANOVA showed no significant 

difference between their mechanical properties.  Cytotoxicity tests were also performed by 

culturing RBC specimen discs both directly and indirectly with ATCC mouse 3T3 

fibroblasts and undifferentiated pulpal fibroblast cells (OD21 cells). These determined that 

all three materials were cytotoxic to both the cell types, however a one-way ANOVA test 

showed that there was no significant difference between the materials. This suggests that 

all the materials exerted a similar cytotoxic effect.  

 

Therefore, the current study indicated that the mechanical and cytotoxic properties of X-tra 

fil are not an improvement but are similar to those materials already available on the 

market. However, this study provides a good origin for further research into the properties 

of these materials.  
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CHAPTER 1   Introduction 

 

1.1 Clinical Perspectives 

 

1.1.1 Anatomy of the Tooth 

Oral health is necessary to maintain total health and is a reflection of, and a main contributor to a 

healthy immune system. With this in mind, it is known that the orofacial complex is the first line 

of defence and needs to be maintained (Oral Health, 2005). The oral cavity is where the digestive 

system originates and the teeth primarily act as a shield against infection and need to be restored 

accordingly (Van Noort et al., 2002).  

 

The upper and lower jaw in humans work together to act as the protective layer for the oral 

cavity and subsequently, for the rest of the body (Brand & Isselhard 2003). The teeth themselves 

are divided into sections and named according to their function with each tooth having a root and 

crown portion where the crown is covered with enamel and the root is embedded into the 

alveolar processes and is covered with cementum (Figure 1.1) (Van Noort  et al., 2002). The 

crown itself is the visible part of the tooth which is seen above the gum line and is covered with 

a tough enamel coat comprising the anatomic crown. Enamel is the hardest substance in the 

human body and composed of 95% mineral with most of the mineral made up by a compound 

called hydroxyapatite, enamel is incapable of remodelling or repairing (Brand & Isselhard 2003). 
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Figure 1.1   Illustration of the tooth anatomy, showing the crown and root sections and 

giving a description of the other tissues involved in its function.  

(http://www.doctorspiller.com/tooth_anatomy.htm) 

 

 

Cementum covers the root of the tooth whilst dentine makes up the bulk of the tooth and 

although it is a tissue that is harder than bone, it is porous due to its tubular architecture. The 

porosity contributes to the fact that if dentine becomes exposed, the tooth often becomes 

sensitive to stimuli, namely, temperature variations, air and touch. (Brand & Isselhard 2003). 
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1.1.2 The Dentine-Pulp complex 

The development, structure and function of the dentine and pulp are closely related. Even though 

the anatomical structures of mature dentine and pulp are different, they still function together as 

the “dentine-pulp complex” (Orchardson & Cadden 2001). Together, the dentine-pulp complex 

shows a range of responses to caries of the dental tissues, which represents a summation of 

injury, defence and repair mechanisms (Smith 2002). Dentine also contains the mineral 

hydroxyapatite but to a lesser degree than enamel. There are a number of different layers of 

dentine with the initial layer (mantle layer) being formed by newly differentiated odontoblast 

cells derived from the dental papillae (Orchardson & Cadden 2001). The inner part of the dentine 

contains tubules which contain a liquid derived from the pulpal extracellular fluid (Orchardson & 

Cadden 2001).  The tubules themselves contain extensions of cells from the pulp of the tooth 

including odontoblast processes and afferent nerve terminals. The dentine is supplied with 

nutrients by the pulpal blood vessels however no blood vessels are present in the dentine itself 

(Turner et al., 1989). Nerves of the dentine-pulp complex detect sensitivity of the tooth and also 

play a role in the regulation of secondary and tertiary dentine deposition (Holland 1994, Turner 

et al., 1989).  

 

 It is during the actual development of the tooth that the primary dentine layer is produced. This 

dentine continues to be deposited by the odontoblasts at a slow pace, throughout the lifespan of 

the tooth and this post developmental dentine is termed, secondary dentine. In some cases, 

dentine can become damaged and the body reacts to this by initiating further dentinogenic 

mechanisms (Holland 1994). In areas of the tooth damaged due to occlusion or disease, there is a 

layer of dentine rapidly produced to replace that which is damaged, i.e. deposited in response to 
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relevant stimuli. This newly deposited dentine is referred to as tertiary dentine. Results from 

recent studies have shown that there are two types of tertiary dentine, reactionary and reparative, 

produced as a result of different levels of pulpal stimulation (Smith et al., 1995). Reactionary 

dentine is laid down by primary odontoblasts in response to a mild stimulus, whilst reparative 

dentine is produced by secondary odontoblast-like cells derived from pulp cells, in response to a 

more intense stimulus, which resulted in the death of the primary odontoblasts (Smith et al., 

2002). It has been demonstrated in previous studies that the extracellular matrix around the 

dentine contains significant amounts of TGF-beta 1, a growth factor previously shown to 

influence odontoblast differentiation and secretory behavior (Holland 1994). Activation of 

tertiary dentinogenesis therefore most probably results from solubilization and release of growth 

factors archived within dentine which subsequently signal appropriate cellular events (Smith et 

al., 1995).  

 

Inflammatory responses are triggered by the tooth becoming injured or when disease present. 

There are two extremes to this response, as mild acute injuries can result in repair (Smith et al., 

1995) whilst more severe or chronic injury or disease can result in death of the pulp. Pulp death 

can represent a serious clinical problem, as the dentine can no longer be repaired and the teeth 

may become discoloured (non-vital) and can fracture under masticatory stress (Orchardson & 

Cadden 2001). However, this structural weakness is more likely to be due to the amount of tooth 

matter lost as opposed to the intrinsic weakness of the non-vital dentine. As a result, the vitality 

of the tooth influences the restorative strategies applied to the damaged tooth (Holland 1994, 

Orchardson & Cadden 2001).  
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Dental caries is one of the most prevalent chronic diseases in the world and results from dental 

erosion due to bacterial acids derived from the microbial plaque which consequently cause 

cavities (Ardakani et al., 2004). Early stage incipient caries are limited to a demineralized 

surface without a cavity and can be treated with fluoride and antimicrobial treatment. However, a 

carious lesion which reaches the cavitation stage usually represents a more serious clinical 

problem and is therefore treated using restorative techniques (Ardakani et al., 2004).  

 

1.2 Development of Dental Restorative Materials 

1.2.1 Resin-Based Composite Materials 

One of the first dental restorative material (dental amalgam) was introduced in the early 

nineteenth century in France where the process of restoration involved heating the alloy to 100
o
C 

and pouring it directly into the prepared cavity (Greener 1979). Over the years, dental amalgam 

has been a controversial restorative material with one of the main issues surrounding its use 

being the fact that it contains mercury, which is known to be toxic. Nevertheless, amalgam 

materials have been the most widely used direct restoratives in dentistry (Osborne & Swift 

2004). Restorative techniques have now however developed, alongside newer dental materials. 

These resin-based composites (RBCs) are constantly assessed to ensure their efficiency and more 

importantly their safety for use in humans.   

 

Commercially available RBCs for use as direct filling materials were introduced in the 1960s 

following the pioneering work of R.L. Bowen, the Associate Director of the American Dental 
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Association Research Unit at the National Bureau of Standards (Palin et al., 2003). A novel RBC 

material composed of 25wt% (weight percent) of polymerisable resin and 75wt% quartz or 

alumino-silicate glass filler was introduced and was set to bring the existing resin-based 

technology into a new era (Palin et al., 2003). As a result, developments in present-day 

composites have produced excellent anterior restorations and can be used in selected situations 

for occlusal surfaces. Newer RBCs showed promise for extended applications as amalgam use 

amongst practitioners continues to decrease (Bayne et al., 1994). More recently, studies on 

posterior usage of RBC introduced packable RBCs as an alternative to amalgam and these are 

now used extensively in the restoration of posterior teeth due to the aesthetic demands of the 

general public (Bala et al., 2003). Based on the filler load, these materials were expected to 

exhibit superior physical and mechanical properties additional to improvements in handling 

(Tagtekin et al, 2003). However early attempts to place RBCs in posterior teeth had only limited 

success because of insufficient material properties (Manhart et al., 2000). The wear of RBCs in 

the oral environment is complex and diverse with fundamental wear mechanisms such as 

adhesion, abrasion, attrition, fatigue and corrosion operating independently or in combination to 

exacerbate the wear process in the oral cavity (Palin et al., 2005). Inadequate resistance to this 

wear process, in the body of the posterior restorations, results in a loss of anatomic form under 

masticatory abrasion, attrition fracture within the margins and marginal leakage due to 

polymerisation shrinkage (Manhart et al., 1999). Therefore, with these wear mechanisms in 

mind, it has been stated previously that no current dental restorative material meets all these 

requirements enabling it to be considered „ideal‟ (de Souza Costa et al., 2003).  
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Over recent years, studies have been conducted analyzing the wear of RBCs over varying 

periods of time and improvements have been made in the composition of these materials to make 

them more resilient to stress. Whilst the mechanical properties and abrasion resistance of RBCs 

have improved, the placement of posterior resin based restoration remains very technique 

sensitive (Bala et al., 2003). However, despite these improvements there continues to be a 

problem in stress-bearing situations. When studied more intensely it was found that the problem 

was that smaller particles have higher surface areas and tendencies to agglomerate (Yap et al., 

2004). This problem is partly circumvented by matching filler sizes to improve packing 

efficiencies, by using pre-cured particles of highly filled composite (Bayne et al., 1994). Dental 

RBCs are essentially comprised of a resin matrix (organic phase), filler matrix coupling agent 

(interface), filler particles (dispersed phase) and other minor additives including polymerization 

initiators, stabilizers and colouring pigments (Yap et al., 2004) and are essentially required to 

have long-term durability in the oral cavity (Kanchanavasita et al., 1997). Manufacturers have 

increased the range of shades of light activated resin composites to meet the increasing aesthetic 

requirements of both patients and practitioners (Shortall 2005).  The aesthetic success of tooth-

coloured restorative dental materials such as RBCs, is influenced by several factors including 

translucency and opacity which are viewed as being vital components as they are indicators of 

the quality and quantity of light reflection on curing (Azzopardi et al., 2009). Ideally, 

translucency of the aesthetic restorative materials should not change after curing, however this is 

not always the case (Woo et al., 2008).  

 

Direct restorations are placed immediately into a prepared cavity in a single visit. The types of 

restorative materials that are advocated include dental amalgam, glass-ionomers, resin ionomers 
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and some RBC materials. Indirect restorations are prepared from impressions taken from the 

patient and cemented into the prepared cavity at a later date. The types of restorative materials 

advocated include inlays, onlays, veneers, crowns and bridges fabricated using gold, base metals 

alloys, ceramics or RBCs (Craig et al., 2001).   

Glass-ionomers are cements which are popular with dentists as core materials because of their 

adhesive properties and ease of handling. However, conventional glass-ionomers are only 

suitable where there is already substantial tooth substance remaining to support the material and 

where it can withstand any resistance on the natural tooth. RBC materials are rapidly becoming 

the primary restorative material of choice for replacing tooth structure and the low percentage of 

biological problems reported for RBCs is testimony to their relative biocompatibility (Osborne et 

al., 2004). As a result, new RBCs termed “packable” or “condensable” RBCs are being promoted 

as amalgam alternatives (Bala et al., 2003).  

Indirect materials can also be utilized in the restoration of teeth. The placement of an indirect 

restoration requires the preparation of a cavity with undercut-free cavity walls to allow a path of 

withdrawal and insertion of the completed restoration (Craig et al., 2001). The preservation of 

remaining tooth structure is important because the restoration relies on the strength and integrity 

of the remaining prepared tooth substance for retention and conversely the restoration is a source 

of strength for the remaining tooth structure (McCabe & Walls 1998). However, the less enamel 

and dentine present the greater the risk of mechanical and biological failure.  Ultimately, the 

choice of restoration is determined by the damage to the tooth and the resultant dental tissue left 

to support the subsequent restoration. 
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1.2.2   Composite Material Chemistry 

RBCs are three-dimensional combinations of at least two chemically different materials with a 

distinct interface (Yap et al., 2004, Guiraldo et al., 2008). Their properties depend on several 

factors, related to the polymer matrix, the filler particles and the coupling between filler and 

matrix (Asmussen & Peutzfeldt 1998). RBCs generally consist of a monomeric matrix resin, a 

silanated inorganic filler, a polymerisation initiator system, inhibitors for storage stability and 

pigmentation for shading (Eick et al., 2002). More specifically RBCs are composed of an organic 

matrix, load particles (glass, quartz and/or melted silica) and a bonding agent, usually an organic 

silane with a dual characteristic enabling chemical bonding with the load particle and co-

polymerisation with the monomers of the organic matrix (Guiraldo et al., 2008). RBCs 

containing high filler levels have superior physical, chemical and mechanical properties, but 

clinically it is the RBCs containing the smaller filler particles that are the easiest to use (Bayne et 

al., 1994). RBCs are commonly chosen for their use clinically according to their durability and 

resistance to fractures that are small/medium in size and also according to how successful they 

are at withstanding moderate chewing forces (Van Noort et al., 2002). More recently, to resolve 

any disadvantages that RBCs may have had, such as wear resistance or lack of proximal 

contacts, packable RBCs have been introduced and contain a filler distribution that gives the 

material different handling properties (Bala et al., 2005).  Improvements in the physical 

properties of the materials together with their positive clinical performances encourage the use of 

posterior RBCs as a viable alternative to amalgam (Manhart et al., 1999). Notably, RBCs are less 

stable in fluids especially in saliva where their degradation rate is increased however this 
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depends on the chemical nature of the monomers, amounts of dimers and oligomers and the 

degree of crosslinking in the polymerised matrix (Özcan et al., 2005).  

 

The organic matrix of conventional RBCs used in clinical practice, is based on methacrylate 

chemistry, in particular that of dimethacrylates (Palin & Fleming 2003). Free-radical 

polymerisation of dimethacrylate monomers by ultraviolet irradiation along with molecules 

packing more closely together leads to bulk contraction. In this process the RBC gelates when 

the curing contraction overtakes the flow of the curing monomer (Palin et al., 2003). Early 

systems for bonding composites to enamel were based on acid conditioning (etching) and 

micromechanical interlocking with bonding agents (unfilled BIS-GMA) (Bayne et al., 1994). 

The initial dimethyl methacrylate monomer is produced by the reaction between bisphenol-A 

and glycidylmethacrylate (2,2-bis[4-(2-hydroxy-3methacrylyoxypropoxy)phenyl] propane) 

whose initial synthesis in 1956 initiated a new era of dental RBCs (Bowen 1962). BisGMA 

(Figure 1.2a) is a highly rigid and viscous material (Palin et al., 2003) with the monomer systems 

of most RBCs to date being based on Bis-GMA or Bis-GMA derivatives (Asmussen & 

Peutzfeldt 1998). With respect to restorative materials used in dentistry, the complex 

environment in which they are placed contains saliva which is comprised of a variety of 

inorganic and organic species. In consequence the uptake of fluid and the solubility of these 

materials are of considerable clinical significance (Kanchanavasita et al., 1997). Whilst BisGMA 

is hydrophobic and is not particularly successful in spreading over wet surfaces due to the fact 

that dried enamel does not contain moisture, the bonding of BisGMA is generally appropriate 

(Bayne et al., 1994). 
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In recent years, the high viscosity of Bis-GMA lead to its incorporation with lower molecular 

weight dimethycrylate monomers producing a material with appropriate viscosity where fillers 

can be added (Asmussen & Peutzfeldt 1998). BisGMA was identified as being unsuitable for use 

clinically and as a result the addition of a co-monomer triethyleneglycol dimethacrylate 

(TEGDMA) (Figure 1.2b) was required. Subsequently TEGDMA was used to reduce the 

viscosity of the initial liquid and therefore improve the rheological properties of the composite 

(Palin et al., 2003, Kim et al., 2006). However, the main problem with using TEGDMA as a 

diluent was that following irradiation (curing) a relatively large amount of volumetric shrinkage 

occurred which increases the likelihood of mechanical failure following clinical placement 

resulting in pulpal infection (Palin et al., 2003, Bayne et al., 1994). Other RBCs utilise urethane 

dimethacrylate 1,6-bis(methacrylyloxy-2-ethoxycarbonylamino)-2,4,4-tri-methylhexane,  

(UDMA) (Figure 1.2c) used alone or in combination with Bis-GMA and TEGDMA (Asmussen 

& Peutzfeldt 1998, Palin et al., 2003, Chung et al., 2002). The advantages of UDMA have been 

reported to be lower viscosity and a greater flexibility of the urethane linkage, which may 

improve the toughness of the RBCs based on this monomer (Asmussen & Peutzfeldt 1998).  It 

has therefore been proposed that the incorporation of UDMA, as opposed to TEGDMA, 

improves the mechanical properties of the RBC materials (Asmussen & Peutzfeldt 1998, Palin et 

al., 2003). Studies have also suggested that by selecting specific combinations of these resins, it 

may be possible to produce RBCs that are tailored to specific clinical applications (Park et al., 

1999). As a result, the range of indications where RBCs are used has significantly increased due 

to enhancement of their physical and mechanical properties (Keulemans et al., 2009).  
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Figure 1.2   Schematic representations of the chemical structure of the resins                   a) 

BisGMA, b) TEGDMA, c) UDMA and d) BisEMA, utilised in RBC materials.   
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RBC material chemistry is continuously developing with new materials generally exhibiting 

superior physical and mechanical properties in addition to improvements in their handling 

characteristics (Sharkey et al., 2001). Recently a new type of inorganic-organic hybrid dental 

material, known as Ormocers, was developed was and this was first applied as a dental 

restorative material in 1998 (Taher 2002). Ormocers are hybrid polymers that incorporate a 

metal oxide backbone (mainly polysiloxane) with organic crosslinking (e.g. acrylate or styryl 

polymer). The synthesis of this composite was developed using special substitutes to create a 

complex structure, formed by only one polymerisable double bond and alkoxy group, 

responsible for the formation of the Si-O-Si structure (Cunha et al., 2003). After incorporation of 

filler particles, the Ormocer composites can be manipulated similar to hybrid composites (Bala et 

al., 2005). Due to the different matrix system in Ormocer resins and the incorporation of 

different filler molecules (up to 67% volume) these composites have been shown to have a 

higher surface roughness, but a higher hardness and wear resistance as compared to conventional 

hybrid RBCs (Tagtekin et al., 2004). In addition, the inclusion of fillers can cause the material to 

have a low water absorption and solubility. Due to the variation of their chemical composition, 

the properties of the materials can be tailored accordingly to their clinical application (Figure 

1.3) (Poppal 2004).  
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Figure 1.3 Illustration of an Ormocer material, showing how each component alters the 

resultant properties and therefore the function and clinical application.    

(http://www.isc.fraunhofer.de/alteseiten/ormocere_e/index_o0.html) 

A newly developed Ormocer is Admira (VOCO, Cuxhaven, Germany) and the chemical 

technology applied in this material is somewhat different from conventional RBCs as it has been 

shown to exhibit a higher surface hardness in comparison to comparable materials (Tagtekin et 

al., 2004, Yap et al., 2004). The relative proportion of its structural elements are what determines 

the material properties of an Ormocer and these are regulated by i) the choice of base materials, 

ii) how the inorganic polycondensation reaction is conducted, and iii) control of the linking 

reactions which lead to the organic network (Poppal 2004). Ormocers consist of an inorganic-

organic network matrix derived through polymerization while their filler particles are imbedded 

in this cross-linked inorganic and organic matrix. Whilst the average particle size is 0.7 µm, 

which is comparable with most mini-fill RBCs (Yap et al., 2004), Ormocers are comprised of 

matrices which shrink less and were originally developed for electronic applications reliant on an 
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inorganic alkoxysilane network which is chemically attached to traditional methacrylate groups 

(Bouillaguet et al., 2002). Multifunctional urethane and thioether(meth)acrylate alkoxysilanes 

acting as sol-gel precursors have now been developed for synthesis of inorganic-organic 

copolymer Ormocer composites for use as dental restorative materials (Manhart et al., 2000). 

The toxicological potential of this material is also considered lower than that of conventional 

composite restoratives since the acrylates and methacrylates are silane bound and covalently 

linked to the inorganic network. To improve the handling of this material, dimethacrylate is also 

incorporated (Cunha et al., 2003).  

 

1.3 Polymerisation of Light-Activated RBCs 

The polymerisation of the monomers in a RBC material are initiated by free radicals and there 

are several different types of catalysts, including both thermal and chemical, which are capable 

of promoting this polymerisation reaction (Kim et al., 2004). Currently, the approach most 

commonly used clinically is that of photochemical catalysis with different RBCs utilising 

different photochemical systems that are activated by different wavelengths of light. In general 

however light curing units have a minimum light intensity of 300 mW/cm
2
 (Bayne et al., 1994). 

 

Visible light-curing units, or LCUs, are therefore an integral part of modern adhesive dentistry. 

They are not only used to cure RBCs but also resin-modified glass ionomers, preventive pit-and-

fissure sealants, as well as materials which bond orthodontic brackets to teeth (Dunn & Bush 

2002). Along with the strength of the material, the luting technique is also important for the 

clinical success of a restoration (Pazin et al., 2008). As the light source can  significantly affect 
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the polymerisation process, combined with this  increased use of bonded composite resins in 

dentistry, the development of advanced photochemical technology designed to improve the resin 

polymerization process has been stimulated (de Araújo et al., 2008, Pazin et al., 2008).  The aims 

of photopolymerization have been stated as ensuring that there is uniform conversion in the 

depth of the restoration along with the shortest possible irradiation time and subsequently a low 

shrinkage stress (Shortall 2005).  

 

1.3.1 Light curing techniques 

Until recently, light emitted from a conventional quart-tungsten halogen light bulb (QTH) was 

used to cure composite resins and bonding agents with these still being the most commonly used 

lights today (Guiraldo et al., 2008, Bagis et al., 2008, Arrais et al., 2007). However, certain 

factors can compromise the performance of halogen light curing units (LCUs), such as 

fluctuations in the line voltage, the condition of the bulb and filter, as well as bulb overheating 

within the unit. These problems can subsequently reduce the efficiency and lifetime of the 

halogen lamps leading to poorly polymerized composite resins with impaired mechanical 

properties (Arrais et al., 2007). Advances in the field of light-curing have been remarkable, 

mainly following the development of blue light-emitting diodes (LED) for the photoactivation of 

resin composites (Camilotti et al., 2008). These LEDs have been available since the mid-1990s 

and now use a new semiconductor material system where the gallium nitride involved forms the 

basis for the blue emission and is also responsible for the high efficiency of devices that use it. 

These together are both characteristics that are essential when used in the dental curing 
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application (de Araújo et al., 2008, Tolosa et al., 2005). Notably, LED LCUs also consume little 

power in operating and do not require filters to produce blue light (de Araújo et al., 2008). 

Visible light activated RBCs were introduced in the 1970‟s and research indicated that whilst the 

ultraviolet energy has limited penetration within the dental structures it also has limited 

penetration within the composite itself, which is subsequently a disadvantage of this method 

(Filipov & Vladimirov 2006). This limitation has prompted the development of composites 

which contain camphorquinone (CPQ) (Figure 1.4) which is a catalyst for the polymerising 

reaction enabling it to proceed in the stimulated state (Tanoue et al., 2007, Filipov & Vladimirov 

et al., 2006). The use of Gallium nitride LEDs that produce a narrow wavelength peak ~470 nm, 

which is approximately the absorption peak of CQP, results in more effective polymerisation (de 

Araújo et al., 2008, Tolosa et al., 2005). Additional or alternative initiators responding to 

different wavelengths are also being introduced in some composites (Bennett & Watts., 2003). 

The mechanical and physical properties of resin composites light-cured by these LED systems 

have also been reported, such as compressive and flexural strength, hardness, degree of 

conversion and depth of cure and the use of visible light curing (VLC) for polymerisation of 

dental materials has now become an essential part of a contemporary dental practice (Wiggins et 

al., 2004). 

Figure 1.4  The chemical structure of camphorquinone (CPQ). 
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1.3.2 Chemistry of Light Activation 

Light irradiation of RBCs based on bisphenol-A-dyglycidyl-ethe-dimethacrylate (BisGMA) 

chemistry involves the free-radical polymerisation of the monomeric constituents leading to bulk 

contraction of the material (Davidson et al., 1984). Clinically this may be manifested as cuspal 

movement on polymerisation (Abbas et al., 2003). The LEDs commonly produce a narrow 

spectrum of blue light in the 400 – 500nm range (with a peak wavelength of ~460 nm). This is 

the useful energy range for activating the diketone-type photoinitiator CPQ molecule (Figure 

1.4) most commonly used to initiate the photopolymerization of dental monomers (Guiraldo et 

al., 2008, Camilotti et al., 2008, Wiggins et al., 2004).  

 

The polymerisation process generates a polymer network through the substitution of the carbon 

double link s (C=C) by simple covalent links (C-C) (de Araújo et al., 2008). The basic composite 

insertion and polymerization protocol usually recommends the curing of increments not thicker 

than 2 mm to guarantee an effective polymerization with the light guide being as close as 

possible to the composite surface to ensure the light is not dissipated (de Araújo et al., 2008). 

The properties of light-activated composites vary in accordance with the type of light-curing unit 

used for polymerisation, and the type of laboratory light-polymerising unit also affects the post-

curing properties of indirect composites (Tanoue et al., 2007).  

 

 

1.3.3 Degree of Conversion of RBCs  
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The degree of conversion (DC) of the composite material is an important aspect related to the 

durability of the restorations as it is directly related to the physical and mechanical properties of 

the material (de Araújo et al., 2008). Indeed, the DC in light cured RBCs varies within the bulk 

of the specimen as the conversion process is dependant on light energy for activation 

(Rueggeberg & Craig., 1988). The DC depends upon the factors such as monomer structure, 

amount and type of filler particles, composite shade, light curing time and curing depth. The 

curing depth in turn is dependant on the intensity of the radiation emitted from the light curing 

unit (Cook 1982). The reduction of the C=C bond rate represents the DC and this has been 

shown to maintain a direct relationship with the composite resin microhardness, therefore a 

hardness test can be used to indirectly evaluate DC (de Araújo et al., 2008).  

 

Absorption and scattering of the light by filler particles can regulate attenuation of light in the 

material, therefore the light transmission within the RBC and the source of light used are 

important factors involved in achieving DC (DeWald& Ferracane 1987, McCabe & Carrick 

1989). Indeed optical scattering has been widely studied due to its important effects on the 

colour and translucency of dental materials (Campbell et al., 1986). Research subsequently 

indicates that cure depth may also be related to the translucency (shade) of the RBC (Ferracane 

et al., 1986). In relation to this, it was originally theorized (Clewell 1941) that optical scattering 

is dependant upon the wavelength of the illumination. When the size of the scattering particle is 

much greater than the wavelength of the illumination, it is predicted that the scattering will be 

inversely proportional to the size of the particle and that the wavelength will have no effect 

(Clewell 1941, Campbell et al., 1986). Nowadays, commercial composites contain about 50% 
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volume filler with this component expected to have a great effect on the optical properties of the 

composite (Campbell et al., 1986).  

 

Limited cure depth has been a major clinical problem as the presence of unpolymerised or 

partially polymerised material in the restoration can lead to reduction of mechanical properties 

and/or pulpal tissue toxicity (Kawaguchi et al., 1994). Subsequently, the strength and hardness of 

the composite restoration can be compromised due to unreacted components being leached from 

the restoration. Combined this increases the likelihood of restoration failure leading to tissue 

irritation and secondary caries development (DeWald & Ferracane 1987).  

 

 

 

 

 

 

1.4  Characterisation Techniques 

1.4.1  Determination of Relevant RBC Mechanical Properties 

Filler content, size and particle distribution have all been shown to influence the physical and 

mechanical properties of the RBCs. It is known that filler volume friction and load level of the 
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RBCs correlate with the material strength and elastic modulus, as well as the fracture toughness 

(Manhart et al., 2000). RBC restorations placed in the posterior region of the mouth are 

subjected to compressive loading during the masticatory cycle and as a result previous studies 

have investigated the compressive strength of posterior composite restorations under laboratory 

conditions, to assess their wear potential (Palin et al., 2003). Evaluation of strength related 

properties of experimental and commercially available RBCs have previously been investigated 

diametral tensile compressive and flexural strength tests. The degree of conversion in RBC 

materials containing Bis-GMA and TEGDMA has been found to decrease with an increasing 

content of Bis-GMA. Despite the increasing content of Bis-GMA it has been found previously 

that this does not result in reductions in strength and hardness (Asmussen & Peutzfeldt 1998). 

Material properties, such as fracture resistance, elasticity, and marginal degradation of materials 

under stress have usually been evaluated by the determination of the material parameters flexural 

strength, flexural modulus and fracture toughness (Manhart et al., 2000). Bi-axial flexure 

strength testing is known to be advantageous over uni-axial diametral tensile and compressive 

testing methods but is employed less frequently for the assessment of dental composites (Palin et 

al., 2003). The bi-axial flexure test has been used frequently to determine the fracture 

characteristics of brittle materials. The measurement of brittle materials under bi-axial rather 

than uni-axial flexure conditions is often considered more reliable because the maximum tensile 

stresses occur within a central loading area allowing for slightly warped specimens to be tested 

producing results unaffected by the edge condition of the specimen (Ban et al., 1992). There 

were initially three bi-axial flexure test designs: ball-on-ring, piston-on-three-bal, and ring-on 

ring. It was found that only the ball-on-ring loading configuration was satisfactory as 

uncertainties exist about the fracture stresses for the other two cases (Shetty et al., 1980). It was 
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concluded that the stresses which developed on the support side were not significantly affected 

by the loading condition, while the stresses on the loaded side were dependant on the loading 

condition (Ban et al., 1992).  

As well as the bi-axial flexure strength, the chemical effects of solvent or mixtures may soften 

the resin in the RBC, in which a solvent penetration to a depth of just a few micrometres is 

sufficient to alter the frictional coefficient, which will therefore influence the wear behaviour 

(Tagtekin et al., 2004). A second problem is that test pieces are prepared with a flat surface, 

whereas teeth and restorations have complex morphology which result in differential stresses at 

various sites on the restoration surfaces (Tagtekin et al., 2004). According to Watts (1996) these 

methacrylates act as either open chains or residual free monomers, weakening the 

mechanical/physical properties of the dental material. In this situation, free monomers may be 

leachable in saliva, causing secondary caries, increasing the water sorption and consequently, 

interfering with the colour stability of the dental material (Watts, 1996). Consequently, a number 

of free monomers in the base of a RBC restoration (in direct contact with dentine substrate) seem 

to play an important role in the cytopathological effects of a restorative RBC by causing damage 

to the pulpal tissue (de Souza Costa et al., 2003).  

Currently polymerization contraction ranging from 1.7 – 5.7% is the most adverse property of 

the available RBC materials (Lutz et al., 1991) as it is a major cause of its clinical failure. 

Notably the shrinkage stress on polymerisation may compromise the quality of the bond at 

the tooth–restoration interface and can lead to micro-leakage of bacteria, leading to pulpal 

inflammation, necrosis and secondary caries (Chung et al., 2002, Bhamra & Fleming, 2008). 

All RBCs shrink during light irradiation and it is important to minimize the effects of composite 
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shrinkage by incrementally placing materials at 1-2mm of depth in any increment for optimum 

polymerization with most conventional RBCs have a limited depth of cure of normally no more 

than 2–4 mm (Klaff 2001, Palin et al., 2003). However, even with meticulous clinical technique,

there may not be ideal moisture control in the proximal box during bonding procedures and these 

margins are more susceptible to later debonding and so are at higher risk for microleakage or 

secondary caries (Bayne et al., 1994).  

The durability of marginal adaptation is negatively influenced by three factors:  

Residual internal stresses generated by the polymerization shrinkage challenge the 

adhesive bond to the cavity walls and margins unless they are relieved by structural 

changes within the RBC restoration or the adjacent enamel and dentin,  

Chemical degradation debonds the tooth restoration interface, 

The differing physical properties of the dental hard tissues and the bonded materials 

have the potential to become destructive during mechanical and thermal stressing. (Lutz 

et al., 1991).  

Although RBCs possess many advantages, including their ability in aqueous environments to   

absorb water, their release of unreacted monomers and the ingress of water can, in time, lead to 

the deterioration of the physical/mechanical properties. These problems are mainly due to a 

hydrolytic breakdown of the bond between silane and filler particles, filler-matrix debonding or 

even hydrolytic degradation of the fillers (Siderou et al., 2003). Notably whilst polymerization 

shrinkage can be reduced through limiting the degree of monomer conversion this will 

subsequently have adverse effects on the physical and mechanical properties of restorations. 
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Therefore maximum monomer conversion is always desired to ensure optimum properties and 

biocompatibility (Santos et al., 2004). 

  

1.4.2 Determination of RBC Biocompatibility and Cytotoxicity 

 

Cell culture studies are frequently used to assess the potential cytotoxicity of RBCs, their 

eluents, or individual components (such as monomers). Variable levels of cytotoxicity have been 

demonstrated for several RBC materials and their components. However, few studies have 

evaluated the relationship between cytotxicity and the structures of resin monomers (Issa et al., 

2004). RBCs have been shown to exert a significant cytotoxic effect in cell culture and this has 

been proven to be caused by residual uncured monomer or oligomer (Ferracane & Condon 

1990). RBCs are used with increased frequency as posterior restorative materials because of 

demand for both aesthetic restorations and worries about possible adverse effects of dental 

amalgam. However, pulpal sensitivity problems are more likely to occur with RBC materials due 

to gap formation secondary to polymerization shrinkage which occurs for many traditional 

materials (Bouillaguet et al., 2002). Most dental materials have to contact or interact with body 

tissue and fluids, so material selection must take into consideration not only mechanical and 

physical properties but also biological compatibility of a material (de Souza Costa et al., 2003). 

Although novel experimental RBC systems have exhibited promising mechanical properties, the 

slow development of flexural strength coupled with cytotoxicity and mutagenic concerns of 

oxirane-based resin blends for dental RBC application has prompted research into the 

development of an alternative class of ring-opening monomers (Palin et al., 2005). If a material 

has a high cytotoxicity initially, but gradually improves with aging, then this material might be 
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viewed more favourably than a material which continues to be cytotoxic following aging 

(Wataha et al., 2003). It has long been discovered that RBC materials can result in pulp 

inflammation (Nalçaci et al., 2004). Although the physical properties of RBCs are constantly 

being improved, in vivo studies have shown that their use is occasionally associated with 

necrosis and irritation of the pulp as well as the periodontium (Nalçaci et al., 2004). Adequate 

polymerization is a crucial factor in maximizing the physical properties and clinical performance 

of composite resin restorative materials and cytotoxicity is generally a result of residual uncured 

monomer or oligomer (Nalçaci et al., 2004, Wataha et al., 1992). Even in fully set RBC 

materials, substantial amounts of short-chain polymers remain unbound, with the result that there 

is possible elution of leachable toxic components towards the pulp (Nalçaci et al., 2004). There 

is also a correlation between the amount of uncured leachable resin in the RBC and the 

magnitude of the cytotoxic effect (Mantellini et al., 2003).  

 

In previous studies a ring of inhibition of growth around the alloy as well as densitometric and 

visual intensity of the stained monolayer were used for quantification of the toxic effect. The 

value of any of these in vitro screening tests is dependant upon its repeatability, and an 

interpretable and translational measure of cytotoxicity. Repeatability can be difficult to obtain 

because of the many potential variables that can bias results between tests (Wataha et al., 1992). 

The rate of cell division is itself a tightly regulated process that is ultimately associated with 

growth, differentiation and tissue turnover. However, when cytotoxic stimuli are intense, cells 

may escape from the cell cycle and undergo a programmed cell death called apoptosis 

(Mantellini et al., 2003).  
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1.5  Aims of the Present Investigation 

The aims of the present study were to analyse a commercially available dimethacrylate RBC 

(Filtek
TM

Z250, 3M ESPE, St Paul, MN, US), an Ormocer (Admira, VOCO, Cuxhaven, 

Germany) and a novel RBC, namely X-tra Fil (VOCO, Cuxhaven, Germany). These dental 

materials were tested for bi-axial flexure, to determine the strength, and water sorption, water 

solubility and Vickers hardness measurements were determined following short-term (0.1, 0.5, 1, 

4, 24 and 48 h) and medium-term (1, 4, 12 and 26w) water immersion at 37±1
o
C. RBC materials 

are usually only cured to a depth of 2mm with concerns arising about the efficiency of a deeper 

cure, however, the novel composite X-tra Fil was tested to a depth of 4mm (as proposed by the 

manufacturer). X-tra Fil (t) was cured to a depth of 0-2mm and X-tra Fil (b) was cured to a depth 

of 2-4mm. It has been suggested that components released from RBC materials can be irritants to 

the pulpal tissues and be detrimental to cell viability, therefore the current study assessed the 

cytotoxic effects of each material in direct contact with ATCC Mouse Fibroblasts (3T3s) and 

Undifferentiated Pulpal Fibroblast cell lines (OD21s). The influence of substances leached from 

the RBC materials when immersed for short-term periods in growth medium was also 

determined. 

 

 CHAPTER 2   Methods and Materials 

 

2.1 Biomaterials and Composite Material Testing 

 

2.1.1 Materials 
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The materials tested in the current study included a conventional hybrid RBC (Filtek
TM

Z250, 3M 

ESPE Dental Products Division, St Paul, MN, US; shade A3: batch 20050211) which contained 

BisGMA, UDMA and Bis-EMA resins with small amounts of TEGDMA and 61 vol.% 

zirconia/silica filler. The filler particle size in Filtek
TM

Z250 was 0.01 to 3.5 µm, with an average 

particle size of 0.6 µm. The Ormocer (organically modified ceramic) used was Admira (Voco, 

GmbH, Cuxhaven, Germany; shade A3; batch 20050329) and contained as reported by the 

manufacturer BisGMA, UDMA and TEGDMA with 60.2% by volume of 

bariumboroaluminiumsilicate filler. Admira is a mixture of radiopaque glass ceramic with an 

average particle size of 0.7 µm and micro-fillers from pyrogenic SiO with particle sizes of 

approzimately 0.04 µm (as reported by the manufacturer). The recently marketed X-tra fil (Voco, 

GmbH, Cuxhaven, Germany; shade A3; batch 20050329) which contains a resin mixture of Bis-

GMA, UDMA and TEGDMA with 70.1% by volume bariumboroaluminiumsilicate filler (as 

reported by the manufacturer), was also examined.  

 

Preparation of Composite Material Samples 

The uncured paste of Filtek
TM

 Z250 and Admira was weighed out and packed into a black, 

circular, nitrocellulose mould, 11mm diameter and 2mm depth (Figure 2.1).  

 

 

 a)    b) 

 

 

 
   11mm diameter 

cm diameter 

 2mm thickness 
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Figure 2.1 Diagram illustrating the nitrocellulose mould used. a) side view showing the 

2mm thickness and b) top view demonstrating the 11mm diameter of the mould.  

 

The mould was lined with DVA Very Special Separator, to ensure that the disc would be able to 

be removed from the mould once it had been cured. Cellulose acetate strips were placed on each 

surface of the mould in order to prevent oxygen inhibition. The mould was placed on a black 

Nylotron base and a 1Kg, steel load was placed on the top surface for 30 seconds for pressure, to 

ensure consistent packing. The specimens were then irradiated with a conventional halogen 

XL2500 curing-light (3M ESPE Dental Products, St Paul, MN, US) according to the time 

periods specified by manufacturer‟s instructions for each material, i.e. 20 seconds for both 

Filtek
TM

 Z250 (3M ESPE) and Admira (VOCO) (Figure 2.2). The light-intensity of the curing-

unit was measured prior to the fabrication of each specimen set (to be between 660 and 680 

mW/cm
2
) using a Model 100 curing radiometer (Demetron Research Corp., Danbury, CT). A 

13mm LCU tip diameter was employed to ensure adequate irradiation of the entire specimen. 

Following irradiation, the specimen was removed from the mould and any excess material was 

removed using Silicon Carbide abrasive paper (500 grit, Struers, Copenhagen, Denmark). Each 

disc was labelled, ensuring that the surface that was directly exposed to the light was clearly 

marked.  
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Figure 2.2  A schematic diagram of the curing method used to produce each specimen disc. 

The curing tip was positioned above the specimen surface (a), using a ring-spacer of 

thickness 2mm and 11mm diameter (c). The specimen (b) was placed within a black 

nitrocellulose mould with acetate strips covering each surface and light-irradiated above a 

black Nylotron base (d).  

 

To investigate the manufacturers‟ claim that X-tra fil could be cured to a depth of 4mm, two 

black nitrocellulose moulds were employed. The reason for manufacturing two separate 

specimen discs i.e X-tra fil (t) (0-2 mm) and X-tra fil (b) (2-4 mm) was so that the two types 

could be compared with regards to their strength, water solubility, water sorption, hardness and 

biocompatibility. This analysis will provide an indication as to whether X-tra-fil can be fully 

cured to a depth of 4mm. Prior to irradiation, two moulds were placed on top of each other, 

separated by an acetate strip, and specimens were cured in accordance with the procedure 

outlined above for 40s which was the time recommended by the manufacturers (VOCO). The 

cured discs were then labelled as outlined above. The specimens were divided into two groups of 

30 specimen discs X-tra fil (t) (0-2 mm curing depth) and X-tra fil (b) (2-4 mm curing depth).  

2.1.2 Bi-axial Flexure Strength Determination 

b 

a 

c 

 

d 
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Thirty specimens of each RBC group were investigated and were prepared according to the 

method previously described (Section 2.1.1) and incubated for 24 hours at 37oC. The bi-axial 

flexure strength of each specimen, was determined using a universal tensile testing instrument, 

Model 5544 (Instron Ltd, Buckinghamshire, England). Each of the specimens was tested by 

imposing a central load using a 4mm ball indenter on a knife-edge support, at a crosshead speed 

of 1mm/min. The specimens were loaded uniformly and this was assisted by the use of a thin, 

square sheet of rubber which was placed between the knife edge support and the sample itself 

(Figure 2.3). The specimen number, load at fracture number of fracture fragments and disc 

thickness at the point of fracture was recorded for each specimen. 

The bi-axial flexure strength for each disc was calculated in accordance with Equation 2.1

}48.0]52.0)ln(*)[0.485+{(12max 00
h
a

h
P )[0.485max       Equation 2.1

where σmax was the maximum tensile stress, P the measured load to fracture, a the radius of the 

knife-edged support, υ the Poisson‟s ratio for the material (a value of 0.225 was substituted for 

the RBCs and Ormocer (Palin et al., 2003) and h was the specimen thickness measured with a 

micrometer screw gauge (Moore and Wright, Sheffield, England) accurate to 10 µm. 
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a) 

 

 

 

 

 

 

 

 

b) 

 

Figure 2.3   

a) A schematic diagram illustrating the ball-on-ring bi-axial flexure test. A 4mm ball 

indenter (a) imposes an increasing load on the cured surface of an 11mm diameter, 2mm 

thick disc-shaped specimen (b) which was placed centrally on the 10mm circular knife edge 

support (c). A thin rubber sheet was placed between the knife-edge support and the 

specimen to accommodate for slight distortions in the peripheral thickness of the specimen 

(d).  

 

b)A photograph illustrating the 4mm ball indenter set up which was used to exert pressure 

on the disc-shaped specimen surface (cured side uppermost).   

  a 

  b 
  d 

 c  c 

    10mm 
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The bi-axial flexure for each specimen was calculated and the mean and standard deviation of 

these results for each material was then determined. From the bi-axial flexure strength values, 

the variability of each data set was calculated using the Weibull Distribution (Weibull 1951). 

The Weibull equation assumes the most critical flaw in a specimen is responsible for specimen 

failure and is based on the „weakest‟ link hypothesis, derived to assess the probability with 

which failure occurs within a material when a given load is applied (Weibull, 1951). The basic 

form of the Weibull distribution is calculated in accordance with Equation 2.2 

m

fP
0

exp1
0

    Equation 2.2 

where σ0 and m are constants. m is known as the Weibull modulus characterising the „brittleness‟ 

of a material. A higher value of m indicates a close grouping of the flexure stress data and σ0 is 

the normalising constant or the characteristic stress (MPa) which is calculated at 63.21% failure 

probability. The 95% confidence limits for the groups were calculated and differences were 

considered to be significant when the confidence intervals did not overlap.   

2.1.3 Water Sorption and Water Solubility Determination

In accordance with the ISO specification for water sorption and solubility of polymer-based 

filling, restorative and luting materials (ISO 4049; 2000), disc-specimens (11.0 ± 0.1mm 

diameter and 1.0 ± 0.1mm thickness) were prepared according to the procedure outlined above 

and assessed following short- and medium-term water immersion periods. For the medium- term 
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immersion periods (1, 2, 4, 12 and 24 weeks) each specimen of Filtek
TM

Z250, Admira and X-tra 

fil (t) (0-1mm) and X-tra fil (b) (3-4mm) was weighed and transferred to a lightproof desiccator 

containing dehydrated silica gel (Fischer Scientific, Leicester, UK) maintained at 37 ± 1
o
C for 22 

hours followed by 23  ± 1
o
C for 2 hours. The X-tra fil (b) (3-4mm) was the bottom 1mm which 

was representative of the material that was irradiated through the top 3mm of material, whilst 

Filtek
TM

Z250, Admira and X-tra fil (t) (0-1mm) was the top 1mm where the top of the specimen 

was directly exposed to the light. The specimens were then reweighed and the conditioning cycle 

repeated until the mass loss of each specimen (m1) was not more than 0.001g. After the 

conditioning cycle, the diameter and thickness of each specimen was measured using a 

micrometer screw gauge accurate to 10µm to calculate the specimen volume (V) in mm
3
. It was 

not possible to achieve the preconditioning with the short-term (0.5, 1, 4, 24 and 48 hours) 

immersion samples due to time constraints (Palin et al., 2005). Five specimens for each short- 

and medium-term immersion period investigated were suspended in 1.5ml of high purity double 

distilled water in each well of a 24 well plate (Costar
® 

Corning Inc., NY, USA) and subsequently 

stored in a lightproof container maintained at 37 ± 1
o
C. In an attempt to avoid variations in the 

pH level of the solute, the distilled water was replaced every seven days. Following each short- 

and medium-term immersion period each specimen was removed and the excess water 

eliminated using absorbent tissue. In addition, the sample was waived in air for 10 seconds and 

reweighed (m2). The immersed specimens were subjected to the aforementioned conditioning 

cycle until the mass loss of each specimen (m3) was not more than 0.001g. The water sorption 

(WS) and the water solubility (SL) of each of the five disc-shaped specimens for the short- and 

medium-term immersion periods were calculated in accordance with Equations 2.3 and 2.4 

(Palin et al., 2005) 
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V
mm

WS 32 mm
Equation 2.3

V
mm

SL 31 mm
                                                                                    Equation 2.4 

Diffusion Coefficient

Established diffusion theory previously used for estimating the water uptake behaviour of RBCs 

(Sideridou et al., 2004, Kanchanavasita et al., 1997, Kalachandra et al., 1987) was employed as 

the method of calculating the diffusion coefficient utilized. Fick‟s Law (Ferracane et al., 2006) 

predicts for the initial stages of water sorption (when Mt/Me≤0.6) that

2
1

22
22

2
l

Dt
M
M

e

t
2l

                                   Equation 2.5

where Mt was the mass uptake (g) at time t (s), Me was the mass uptake (g) at equilibrium, l was 

the specimen thickness (m) such that D is the diffusion coefficient (m2s-1) calculated from the 

gradient of Mt/Me against t1/2.  

2.1.4 Vickers Hardness Testing 

The specimens used for the water sorption and water solubility test were used to determine how 

the ageing in distilled water over short- and medium-term immersion periods alters the surface 

hardness. This was performed using the Duramin-1 Vickers Hardness tester (Struers, Glasgow, 

Scotland) (Figure 2.4).  
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Figure 2.4  A schematic diagram illustrating (a) the diamond crosshead indenter with an 

indentation angle of 68
o
 and (b) the indent pattern at the surface of the disc-shaped 

specimen produced as a result of an applied load (P) from the Vickers Hardness tester. The 

average diagonal distance (D) can subsequently be used to calculate the VHN (kgf/mm
2
). 

 

The machine is fitted with a diamond pyramid indenter head which, under a predetermined load, 

applied a downward force to the surface of the sample disc, leaving an indentation. The size of 

the indentation was then measured according to each diagonal distance of the pyramid shaped 

indent. The size of the diagonal distance produced by the indenter head was measured using a 

micrometer screw gauge which was built into the microscope and attached to the Duramin-1 

Vickers Hardness tester. The gauge provided the average value for the diagonal distance (D) 

produced by each indent in micrometers (µm). For each specimen disc, five measurements were 

taken on each side. After gathering the diagonal distance values, the Duramin-1 Vickers 

Hardness tester calculated the Vickers Hardness number for each separate indentation on the 

discs. Subsequently the mean was calculated for data set at each immersion time period. Five 

P 

  D 

  68
o 

(a) 

(b)     

Disc-shaped 

specimen 
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hardness measurements were taken across the top and bottom surfaces immediately after 

immersion using a 500g load for 15s and a mean Vickers hardness (VH) was calculated in 

accordance with Equation 2.6.   

2

854.1
D

PVH 1                                                                                       Equation 2.6 

where P was the predetermined load applied (g) and D the average diagonal distance (µm) where 

the angle of the indentation of the diamond pyramid head tip of the Vickers indenter Duramin-1

(Struers, Copenhagen, Denmark), namely 68º.  

2.1.5 Statistical Analysis 

Multiple comparisons of the bi-axial flexure strength, water sorption and water solubility and 

diffusion coefficients and Vickers hardness for the top and bottom surfaces group means were 

made utilising one-way analysis of variance (ANOVA) and Tukey‟s multiple range test at a 

significance level of P<0.05 (using SPSS® version 11.5 for Windows®).
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2.2 Cell Culture Studies 

 

2.2.1 Culture of ATCC Mouse 3T3 Fibroblasts and Undifferentiated Pulpal Fibroblast Cell 

Lines (OD21 cells).  

 

2.2.1.1 Preparation of Basic Growth Medium (Complete Medium) 

The preparation of all media was carried out under sterile conditions in the laminar flow hood to 

prevent contamination. Complete medium was prepared prior to the culture of ATCC Mouse 

3T3 Fibroblasts (3T3 cells) and Undifferentiated Pulpal Fibroblast cell lines (OD21 cells). The 

components of the complete medium were Dulbecco‟s Modified Eagle Medium (DMEM) 

without glutamine, 4.5g/l glucose, 1.5g/l sodium bicarbonate (Labtech International, UK), 

supplemented with 10% Foetal Calf Serum (FCS) (Labtech International, UK),100 units/ml of 

Penicillin (Sigma, UK), 100 µg/ml of Streptomycin (Sigma, UK) and 25mM HEPES buffer 

(Sigma, UK) at pH 7.4; Dulbecco‟s Modified Eagle Medium (DMEM) with 0.297g/500ml L-

Glutamine (filter sterilised), 4.5g/l glucose, 1.5g/l sodium bicarbonate (Labtech International, 

UK), supplemented with 10% Foetal Calf Serum (FCS) (Labtech International, UK), 100 

units/ml of Penicillin (Sigma, UK), 100 µg/ml of Streptomycin (Sigma, UK), respectively. 

HEPES buffer was synthesized by dissolving 2.383g of HEPES powder (Sigma, UK) in 10ml of 

distilled water. The pH of this resulting solution was then adjusted accordingly using 1M 

Hydrochloric Acid (Sigma, UK) and 1M Sodium Hydroxide (Sigma, UK) solutions, until a 

stable pH of 7.4 was achieved. The resultant buffer was then filter sterilised prior to addition to 

the complete medium for 3T3 cells.  
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2.2.1.2 Preparation of Maintenance Medium 

Both the 3T3 and OD21 cells have a reasonably high rate of proliferation with both cell types 

achieving maximum confluence density of 40,000 and 30,000 cells in a 75cm
2
 and 25cm

2
 flask 

respectively, over a period of approximately three days. However, in the present study, a slower 

rate of proliferation was needed to ensure that the cells were confluent on the day they were 

needed for sub-culture. The components of the maintenance medium for 3T3 and OD21 cells 

were DMEM without glutamine, 4.5g/l glucose, supplemented with 2% FCS, 100 units/ml of 

Penicillin, 100µg/ml of Streptomycin and 25mM HEPES buffer at pH 7.4; DMEM with 

0.297g/500ml L-Glutamine (filter sterilised), 4.5g/l glucose, 1.5g/l sodium bicarbonate, 

supplemented with 2% FCS, 100 units/ml of Penicillin and 100µg/ml of Streptomycin, 

respectively.  

 

2.2.1.3 Preparation of Trypsin-EDTA Solution 

Trypsin-EDTA solution was used to sub-culture the cells once they had reached their optimum 

confluency. This solution was used because it causes cell detachment from the surface of the 

culture flasks without causing irreversible damaging, however over exposure can lead to cell 

death. Therefore care was taken to ensure that the cells were not exposed to the Trypsin-EDTA 

for longer than 5 minutes or at least until all the cells were seen, using a light inverted 

microscope, to have detached from the surface of the flask. The components of Trypsin-EDTA 

solution were 1:250 Trypsin powder (sigma, UK) containing 1:500 Nα-benzoyl-L-arginine ethyl 

ester (BAEE) units/mg solid trypsin activity and 3 Nα-benzoyl-L-tyrosine ethyl ester (BTEE) 

units/mg solid chymotrypsin activity. From this mixture 10mg/ml was dissolved into Hank‟s 

Balanced Salt Solution with EDTA (HBSS + E) and the pH of the resulting solution was 
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adjusted accordingly by the addition of 1M NaOH (filter sterilized) until a stable pH of 7.4 was 

achieved.  

 

2.2.1.4 Retrieval of Cells from Liquid Nitrogen 

The required amount of complete medium was pre-equilibrated in a humidified incubator at 37
o
C 

and 5%CO2 until needed. The frozen vial of cells was removed carefully from liquid nitrogen 

and the cap loosened slightly in the laminar flow hood. The vial was placed immediately in the 

water bath (42
o
C) where the thawing process takes place rapidly, ideally in 1-2 minutes to try 

and maintain cell viability. Care was taken not to overheat the cells. Once thawed, the vial was 

sterilized by rinsing it with 70% ethanol and the 500µl of cell suspension was transferred into the 

flask already containing the equilibrated complete medium. The newly seeded flask was placed 

in a humidified incubator at 37
o
C and 5%CO2 for 24 hours to allow the cells to attach. 

Subsequently, the medium was replaced to remove all traces of Dimethyl Sulphoxide (DMSO) 

(Sigma, UK) because this can cause toxicity and cell death. DMSO was present in the cryogenic 

solution that the cells were frozen in. the cryogenic solution consists of 70% DMEM, 20% FCS 

and 10% DMSO. 

 

2.2.1.5  Sub-Culture of Cell Lines.  

Once confluent, the cells were sub-cultured to separate flasks. In the present study, one flask 

containing growing cultures was sub-cultured into three new flasks. The required amount of 

complete medium for both the 3T3 and OD21 cells was prepared and equilibrated in a 

humidified incubator at 37
o
C and 5%CO2 (15ml of complete medium for each 75cm

2
 flask). The 

flask containing the growing cultures was removed from incubation and the medium disposed of 
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in “Chloros” bleach (Chloros, UK) in the laminar flow hood. The culture surface was washed 

briefly with 5ml HBSS (without EDTA) and aspirated. 5ml of Trypsin-EDTA solution was then 

added and the flask incubated for approximately 5 minutes at 37
o
C and 5%CO2 . Flasks were 

observed frequently under the light inverted microscope (Keyence, UK) to determine whether 

the cells had detached from the flask surface. Once the cells were seen to have detached 

successfully, the flask was tapped gently to disassociate the cells. All cell clumps were 

eliminated for 3T3 and OD21 cells by gently pipetting the cell suspension. During this stage, 

care was taken not to lyse the cells due to vigorous pipetting. The monocellular suspension was 

transferred into a sterile 10ml tube using the relevant pipette and 5ml of the equilibrating 

complete medium was added to stop the action of the Trypsin-EDTA solution. The serum in the 

medium stops trypsin activity as it contains inhibitors. The cell suspension for 3T3 and OD21 

cells were centrifuged (Jouan B4i) at 1000rpm for 2 minutes and 800 rpm for 5 minutes, 

respectively, to pellet the cells. The supernatant was carefully aspirated with care taken not to 

disrupt the cell pellet. Cells were resuspended in 3ml of complete medium and gently swirled to 

ensure a homogenous suspension. This cell suspension was then divided equally between three 

newly labeled flasks and 14ml of complete medium added to each flask. The newly seeded flasks 

were then placed in a humidified incubator at 37
o
C and 5%CO2 and checked under the light 

inverted microscope every 24 hours until the cells were seen to be confluent, i.e. a monolayer of 

cells seen on the flask surface. At this point the cells were further sub-cultured.  

 

 

 

2.3 Determination of Cytotoxicity of Composite Materials 
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2.3.1 Direct Contact Technique 

Thirty specimens of each composite material were made as previously described (Section 2.1.1) 

along with 6 Teflon discs were used as a control for each immersion time period. For the 

cytotoxicity assays (including both direct contact and the media immersion techniques), X-tra fil 

specimens were cured to a depth of 2mm in contrast to the mechanical testing studies reported 

which utilized X-tra fil cured to a depth of 4mm. Teflon was used as a control as previous work 

indicates it does not affect cell growth (Wataha et al., 1992). Samples were placed in a 

humidified incubator at 37
o
C and 5%CO2 for 24 hours. After incubation, the specimens were 

sterilized in the laminar flow hood by wiping each one with 70% ethanol and then placing them 

into each well of a 24 well plate (Thermo Fisher Scientific, UK) (Figure 2.5). Five plates were 

set-up for each of the time periods of 24 hours, 48 hours, 72 hours, 1 week and 2 weeks. 25,000 

cells of both 3T3 and OD21 cells were seeded in each well of the 24 well plates (see sub-

culturing method 2.2.1.5) with complete medium added ensuring that the volume in each well 

was 1.5ml. Plates were incubated at 37
o
C and 5%CO2 for the relevant time periods after which 

the cell numbers were counted using the Haemocytometer method (Section 2.3.1) or the cell 

density was determined using the Neutral Red Assay (Section 2.3.2). 
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Figure 2.5 Schematic diagram illustrating the organisation of each 24 well plate which were 

set up for each of the time periods of 24h, 48h, 72h, 1week and 2weeks, for the Ormocer 

Admira (VOCO), the dimethacrylate RBC Filtek
TM

Z250, the novel RBC X-tra Fil and the 

Teflon Control. This enabled 6 replicates of each material for each of the time periods.  

 

 

2.3.2 Media Immersion Technique 

 

Thirty specimens of each composite material were fabricated using the method previously 

described (see 2.1.1). These specimen discs were then subjected to the conditioning cycle until 

their mass was constant (1 x 10
-3

g) (m1). The samples were sterilised in the laminar flow hood by 

wiping them with 70% ethanol and then placing in each well of a 24 well plate (Figure 2.6) ready 

for immersion in medium. Each well was filled with 1.5 ml of growth medium and placed at 

37
o
C and 5%CO2 for time periods of 24hours, 48hours, 72hours, 1week, and 2weeks. Twenty-

four hours prior to the conclusion of each time period, each well of a new 24 well plate was 

seeded with the relevant cell type at a density of 25,000 cells (see sub-culturing method 2.2.1.5). 

This approach was used to allow the attachment of the cells before the medium was replaced 

with that from the specimen disc immersions. After 24 hours, the growth medium in the new 

plate was aspirated and replaced with the immersion growth medium containing substances 

Admira  

Filtek
TM

Z250 

X-tra Fil 

Teflon Control 



 43 

leached from each composite material. The plate was then placed in a humidified incubator at 

37
o
C and 5%CO2 for 72hours. Following 72 hours of incubation, the cells in 3 of the 6 wells for 

each composite material were subjected to counts using the Haemocytometer method and the 

final 3 wells were analysed using the Neutral red assay method (Figure 2.6). Following each 

immersion time period, the composite specimens were removed from each well of the 24 well 

plate and blotted with absorbent tissue to remove any excess medium. The sample was then 

waived in the air (23 +- 1
o
C) for 10 seconds and weighed again (m2). This value was recorded 

and the sample was again subjected to the conditioning cycle, until the mass loss was no more 

than 1 x 10
-3

g (m3).  

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Schematic diagram illustrating the organisation of each 24 well plate set up for 

each of the media immersion time periods of 24h, 48h, 72h, 1week and 2weeks, for the 

Ormocer Admira (VOCO), the dimethacrylate RBC Filtek
TM

Z250, the novel RBC namely 

X-tra Fil and the Teflon Control. The samples subjected to cell counting using the 

Haemocytometer technique and the samples subjected to the Neutral Red Assay are shown.  

2.4 Cell Viability 
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2.4.1 Determination of Cell Density using the Haemocytometer Technique 

Once the cells present in the 75cm
2
 flasks were confluent they were prepared for cell counting 

using the haemocytometer. The required amount of complete medium was placed in the 

humidified incubator at 37
o
C and 5%CO2. The medium present in the flask was then discarded 

and 5ml of Trypsin-EDTA was added. This was then placed at 37
o
C for approximately 5 minutes 

to allow the cells to detach from the flask surface. Once detached, the cell suspension was 

transferred from the flask into a sterile 10ml tube using a pipette and 5ml of the fresh growth 

medium was added. The 3T3 and OD21 cell suspension was centrifuged at 1000rpm for 

5minutes and 800rpm for 3 minutes, respectively, to give a cell pellet. The supernatant was then 

carefully aspirated taking care not to dislodge the cell pellet. 1ml of fresh growth medium was 

added and the suspension was swirled to ensure that any cell clumps were removed and a 

monocellular cell suspension was produced. In order to perform cell counts over a 5 day period, 

five 35 cm
3
 sterile culture dishes were seeded with 100,000 cells for each cell type. These dishes 

were incubated for 1hour to allow the cells to attach, after which 1ml of complete medium was 

added.  

 

Cell counts were taken everyday for five days. Each day one sample was removed from 

incubation and the culture medium transferred into an eppendorf. 500µl of Trypsin-EDTA 

solution was added and the dish then placed at 37
o
C and 5%CO2 for 5 minutes. After incubation, 

the cell suspension was added to the eppendorf containing the culture medium and was vortexed 

to destroy any cell clumps ensuring a monocellular suspension. From this cell suspension, 100µl 

was transferred into a fresh eppendorf. To ensure that only live cells were counted, 30µl of 1M 

Trypan Blue Dye (Sigma, UK) was added. This stains dead cells which can therefore be 
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excluded from the cell counts. This mixture was incubated for 10 minutes at room temperature 

and the cell suspension counted using a haemocytometer. A glass coverslip was placed over the 

haemocytometer and 10µl of the cell suspension pipetted into each side of the groove. The 

haemocytometer was then placed under a light inverted microscope and the 5x5 grid identified 

(Figure 2.7). The total cells present in this grid were counted and cells stained blue were also 

recorded. This procedure was repeated 10 times. The results were recorded and the numbers of 

blue stained cells were subtracted from the total number of cells counted. Eventually, once all the 

cell counts had been recorded, a graph was plotted of percentage cell viability of control against 

time.  

 

 

Figure 2.7 Illustration of the haemocytometer grid as seen under the light inverted 

microscope. The cell count for each day was taken from the central square. Key for size of 

each shaded area is shown.  

 

 

 

 

2.4.2 Neutral Red Absorption Assay 
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For this assay, 24 well plates were used and 25,000 cells were seeded per well (see sub-culturing 

method 2.2.1.5). Plates were incubated in a humidified incubator at 37
o
C and 5%CO2 for 24 

hours to allow the cells to adhere. After 24 hours, the first plate was removed from incubation. 

The components of the 0.4% aqueous neutral red stock solution were 0.4g of neutral red (Sigma) 

in 100ml of distilled water. From this stock solution the working neutral red solution was 

prepared by adding 12.5µl/ml of the neutral red stock solution to 12mls of growth medium for 

each cell type. The culture medium from each well was aspirated and replaced with 800µl of the 

filter sterilised working neutral red solution. The plate was then incubated for 3 hours at 37
o
C 

and 5%CO2. Following incubation, the neutral red media was discarded and each well was 

rapidly washed with the “wash solution”. This consisted of 40% formaldehyde, 10% w/v 

Calcium Chloride (10g CaCl2 in 60ml distilled water plus 40ml of 10% buffered formalin). 

Following washing, 800µl of “dye extraction solution” was added to each well and the plate was 

left at room temperature for 20minutes. The components of the dye extraction solution were 1% 

Glacial Acetic (Sigma) acid and 50% ethanol (Sigma) (99ml of 50% ethanol plus 1ml of glacial 

acetic acid). The plate was then placed on a plate shaker for 1minute and the absorbance of each 

well was read at 630nm on a Bio-Tek plate reader (Vermont, USA). The values obtained were 

expressed as a percentage of the Teflon control.  

 

 

 

 

 

CHAPTER 3   Results 
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3.1 Bi-axial Flexure Strength Analysis

The mean bi-axial flexure strength of the groups of 30 disc-shaped specimens of Filtek™ Z250, 

Admira, X-tra fil (t) (0-2mm) and X-tra fil (b) (2-4mm) were 142 ± 20MPa, 131 ± 17MPa, 156 ± 

14MPa and 148 ± 18MPa, respectively (Table 3.1). A one-way analysis of variance (ANOVA) 

and paired Tukey test comparisons at the 95% significance level revealed that there was no 

significant difference (P>0.05) between the mean bi-axial flexure strengths of the Filtek  Z250, 

Admira, X-tra fil (t) and X-tra fil (b) investigated in the current study (Table 3.1). 

The bi-axial flexural strength data was ranked in ascending order and a Weibull analysis was 

performed and recorded. The 95% confidence intervals of the bi-axial flexural strength data was 

also recorded (Table 3.1).  The reliability of the strength distribution was increased for the X-tra 

fil (t) compared with the Filtek  Z250, Admira, X-tra fil (b) groups as the confidence intervals 

failed to overlap significantly. In addition the Filtekthe Filtek  Z250 group was identified as having 

reduced reliability of the flexure strength data compared with the Admira and X-tra fil (b) groups 

where the confidence intervals overlapped (Table 3.1). In addition, the characteristic stress ( 0)

was identified to decrease for all materials except X-tra fil(t) where the value remained constant 

(Table 3.1)  
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Admira Filtek Z250 X-tra fil (t) X-tra fil (b)

Mean Strength (MPa) 131 (17) 142 (20) 156 (14) 148 (18)

Characteristic Stress (MPa) 123 139 156 146

Weibull Modulus 8.4 (1.2) 6.8 (1.2) 12.3 (1.2) 8.6 (1.2)

Confidence Intervals 7.9-8.9 6.3-7.3 11.2–13.4 7.9-9.3

R2-value 0.98 0.96 0.95 0.96

Table 3.1 The mean bi-axial flexure strength and reliability of Filtek™ Z250, Admira and 

X-tra fil (t: 0-2mm) and X-tra fil (b: 2-4mm) following 24 hour immersion in a lightproof 
water-bath maintained at 37  1 C. Standard deviations are displayed in parentheses.

The r2 value provides an indication of the data correlation coefficient which is calculated 

following the utilisation of a least squares analysis on the plots of lnln(1/Ps) against the lnσ. An 

r2-value equal to 1 would represent a perfect alignment along the line of best fit (Figure 3.1). 

However, an r2-value of 0.95 is generally accepted to be a good agreement of the flexure strength 

with the regression line (Lipson and Sheth, 1973). A varied number of fracture fragments for 

each disc shaped specimen were produced following the bi-axial flexure strength testing (Table 

3.2).  
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Figure 3.1     Weibull plots illustrating the bi-axial flexure strength distributions, Weibull 

moduli (m) and r
2
 values for (a) Admira VOCO and Filtek

TM 
Z250 and (b) X-tra fil(t) (0-

2mm curing depth) and X-tra fil (b) (2-4mm curing depth). The r
2
 value for each of the 

composite materials was greater than 0.95 suggesting that the flexural strength data for all 

the materials was representative of a uni-modal distribution of a single type of defect.  
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Bi-axial flexure fracture fragments 

A varied number of fracture fragments for each disc shaped specimen were produced following 

the bi-axial flexure strength testing (Table 3.2; Figure 3.2).  

 

Both Table 3.2 and Figure 3.2 show that X-tra fil (t) had fracture fragments of either 3 or 4 while 

Admira and Filtek
TM

Z250 had a range from 2 to 7. This suggests that X-tra fil cured to a depth of 

2mm has properties making it more resilient to fracture, however in this study there was no 

significant evidence to prove this statement and further research would need to be completed 

before any conclusions made 

 

Number of 

Fragments 

Admira (VOCO) Filtek
TM

 Z250 X-tra fil(t) X-tra fil(b) 

2 2 1 - 4 

3 3 6 24 18 

4 5 13 6 8 

5 14 9 - - 

6 4 1 - - 

7 2 - - - 

 

Table 3.2      Following bi-axial flexure strength testing the number of fracture fragments 

produced for each restoratove material was recorded. In contrast, the novel RBC namely 

X-tra fil seems to have a higher number of disc shaped specimens producing a lower 

number of fracture fragments suggesting that it possesses properties more resilient to loads 

applied to it. 
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Figure 3.2  The combined plot for the number of fracture fragments produced for 30 disc 

shaped specimens of each composite material. In contrast the specimens of Admira VOCO 

and Filtek
TM

 Z250 have a wider range of numbers of fracture fragments, with specimens 

producing fracture fragment numbers ranging from 2 through to 7. X-tra fil exhibited less 

varied fracture fragment numbers ranging from 2 through to 4. This suggests that X-tra fil 

may possess properties that can withstand larger loads applied to it.  
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3.2 Effect of Post-Irradiation Water Immersion  

3.2.1 Water Sorption

The mean water sorption for both short-term (0.5, 1, 3, 24 and 48 hours) and medium-term (1, 2, 

4, 12 and 24 weeks) immersion periods were recorded (Tables 3.3 & 3.4).  In line with the 

specification standard for polymer-based filling, restorative and luting materials (ISO 4049: 

2000) the water sorption values obtained for FiltekFiltek  Z250 (12.3 ± 1.8 g/mm3) and Admira 

(16.0 ± 1.5 g/mm3) were significantly increased (P<0.05) compared with X-tra fil (t) (5.4 ± 

0.7 g/mm3) and X-tra fil (b) (6.8 ± 0.6 g/mm3) but lower than the specification standard at 1 

week of 40 g/mm3, respectively. 

Short-Term immersion 
periods (hours) Material Water Sorption 

(µg/mm3)
Water Solubility

(µg/mm3)

0.5

Admira 1.1 (0.5) 1.7 (0.2)
Filtek™ Z250 0.7 (0.6) 1.9 (0.4)

X-tra fil (t) 0.7 (0.5) 0.4 (0.2)
X-tra fil (b) 0.9 (0.3) 0.5 (0.2)

1

Admira 2.8 (0.4) 2.4 (0.2)
Filtek™ Z250 2.5 (0.7) 2.2 (0.4)

X-tra fil (t) 1.0 (0.6) 0.5 (0.2)
X-tra fil (b) 1.2 (0.7) 0.7 (0.3)

4

Admira 4.9 (0.5) 2.5 (0.2)
Filtek™ Z250 5.2 (0.4) 2.3 (0.9)

X-tra fil (t) 1.8 (1.0) 0.9 (0.7)
X-tra fil (b) 3.7 (0.6) 1.4 (0.5)

24

Admira 9.6 (0.4) 3.3 (0.3)
Filtek™ Z250 10.3 (0.9) 2.4 (0.5)

X-tra fil (t) 4.0 (0.5) 0.8 (0.2)
X-tra fil (b) 4.7 (0.6) 1.6 (0.3)
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48

Admira 13.1 (0.9) 4.2 (0.3)
Filtek™ Z250 13.1 (0.6) 2.5 (0.2)

X-tra fil (t) 5.1 (0.6) 0.9 (0.6)
X-tra fil (b) 6.2 (0.2) 1.9 (0.4)

Table 3.3  The mean water sorption and solubility of Filtek™ Z250, Admira, X-tra fil (t) (0-
2mm curing depth) and X-tra fil (b) (2-4mm curing depth). following short-term 
immersion periods of 0.1, 0.5, 1, 4, 24 and 48 hours immersion in a lightproof waterbath 
maintained at 37  1 C. Standard deviations are displayed in parentheses.  
3.2.2 Water Solubility 

The mean water solubility values were recorded for each of the materials following short-term 

(0.5, 1, 4, 24 and 48 hours) and medium-term (1, 2, 4, 12 and 24 weeks) immersion periods 

(Tables 3.3 & 3.4).  In line with the specification standard for polymer-based filling, restorative 

and luting materials (ISO 4049: 2000) the water sorption values obtained for FiltekFiltek  Z250 (2.7 

± 1.6 g/mm3) and Admira (4.3 ± 0.2 g/mm3) were significantly increased (P<0.05) compared 

with X-tra fil (t) (0.8 ± 0.2 g/mm3) and X-tra fil (b) (2.4 ± 1.1 g/mm3) but lower than the 

specification standard at 1 week of 7.5 g/mm3, respectively. 

Medium-Term 
immersion periods 

(weeks)
Material Water Sorption 

(µg/mm3)
Water Solubility

(µg/mm3)

1

Admira 16.0 (1.5) 4. (0.2)
Filtek™ Z250 12.3 (1.8) 2.7 (1.6)

X-tra fil (t) 5.4 (0.7) 0.8 (0.2)
X-tra fil (b) 6.8 (0.6) 2.4 (1.1)

2

Admira 18.0 (1.8) 5.2 (1.0)
Filtek™ Z250 18.9 (1.7) 3.1 (1.1)

X-tra fil (t) 8.1 (0.5) 0.9 (0.2)
X-tra fil (b) 8.3 (0.5) 2.6 (1.0)

4

Admira 25.8 (2.5) 7.0 (0.9)
Filtek™ Z250 27.5 (2.1) 4.3 (1.4)

X-tra fil (t) 10.0 (1.3) 0.9 (0.3)
X-tra fil (b) 11.7 (0.7) 2.7 (1.3)

12

Admira 29.8 (2.9) 7.2 (0.8)
Filtek™ Z250 28.4 (2.3) 7.3 (1.5)

X-tra fil (t) 14.9 (3.8) 1.8 (0.5)
X-tra fil (b) 13.2 (2.2) 2.7 (1.2)
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24

Admira 30.6 (2.7) 7.4 (0.9)
Filtek™ Z250 28.6 (1.9) 7.7 (1.7)

X-tra fil (t) 16.2 (3.1) 2.4 (0.9)
X-tra fil (b) 15.6 (5.1) 2.8 (1.0)

Table 3.4  The mean water sorption and solubility of Filtek™ Z250, Admira and X-tra fil 
(t) (0-2mm curing depth) and X-tra fil (b) (2-4mm curing depth) following medium-term 
immersion periods of 1, 2, 4, 12 and 24 weeks immersion in a lightproof waterbath 
maintained at 37  1 C. Standard deviations are displayed in parentheses.  

Diffusion Coefficient

The diffusion coefficient (m2s−1) calculated from the gradient of Mt/Me against t1/2plot (Figures 

3.3 and 3.4) and highlight that FiltekFiltek  Z250 and Admira have the largest diffusion coefficients 

(3.27x10-13 and 4.04x10-13ms-1, respectively) compared with X-tra fil (t) and X-tra fil (b) 

specimens (1.89x10-13 and 2.65x10-13ms-1, respectively). The higher the diffusion coefficient, the 

greater the rate of uptake of water by each of the RBC materials i.e. the higher the water sorption 

of each RBC.  From the graphs plotted (Figures 3.4 and 3.5), it can be seen that some of the 

points for all materials have deviated from the line of best fit as well as having a low r2-value 

which means that the coefficients observed may not be accurate. This would be rectified by 

repeating the whole process again and by using a larger number of samples.  
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Figure 3.3  Graphical representation of Mt /Me against t
1/2

 exhibiting the rate of water 

sorption and associated diffusion coefficients (D) for Admira and Filtek™ Z250 

 

 

 

 

 

  

y = 0.0042x + 0.0777 

R 
2 
 = 0.8892 

y = 0.0047x + 0.0724 

R 
2 
 = 0.7555 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 100 200 300 400 500 600 

t^1/2 (min) 

M
t/

M
e

 

e
 

Admira Filtek Z250 

D  (Z250) = 3.27 x 10-13 m2/s 
D  (Admira) =  4.04 x 10-13 m2/s 

y = 0.0035x + 0.0969 

R 
2 
 = 0.835 

y = 0.0033x + 0.0536 

R 
2 
 = 0.9123 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 100 200 300 400 500 600 

M
t/

M
e

 

e
 

X-tra fil (t) X-tra fil (b) 

D (X-tra fil - t) = 1.89 x 10-13 m2/s 
D (X-tra fil - b) = 2.65 x 10-13 m2/s 
 



 56 

 

 

 

 

 

Figure 3.4  Graphical representation of Mt /Me against t
1/2

 exhibiting the rate of water 

sorption and associated diffusion coefficients (D) for X-tra fil (t) and X-tra fil (b). 

 

 

3.3 Vickers Hardness 

 

3.3.1 Effect of Water Immersion on Hardness 

The Vickers hardness number (VHN) for the top and bottom surfaces of each specimen of each 

material was recorded following immersion for short-term (0.5, 1, 4, 24 and 48 hours) immersion 

periods (Table 3.5) and following medium-term (1, 2, 4, 12 and 24 weeks) immersion periods 

(Table 3.6).  

 

 

Short -Term immersion 

periods (hours) 
Material 

Vickers Hardness (Top 

Surface) 

(kgf/mm
2
) 

Vickers Hardness 

(Bottom Surface) 

(kgf/mm
2
) 

0.5 

Admira 62.2(0.9) 58.8 (1.6) 

Filtek™ Z250 98.4 (1.6) 91.5 (2.1) 

X-tra fil (t) 107.6 (6.7) 98.8 (2.7) 

X-tra fil (b) 100.1 (2.2) 84.6 (3.6) 

1 

Admira 64.3 (5.2) 57.2 (3.7) 

Filtek™ Z250 86.8 (5.8) 81.5 (5.1) 

X-tra fil (t) 112.3 (4.4) 106.8 (2.4) 

X-tra fil (b) 102.3 (3.1) 90.4 (6.4) 
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4

Admira 55.7 (2) 53.6 (1.3)
Filtek™ Z250 89.6 (6.2) 84.1 (4.2)

X-tra fil (t) 109.1 (2.7) 106 (2.3)
X-tra fil (b) 96.5 (4.2) 84.5 (1.9)

24

Admira 59.7 (3.4) 54.2 (0.9)
Filtek™ Z250 90.4 (5.8) 86.4 (7)

X-tra fil (t) 106.7 (3.3) 104.8 (2.5)
X-tra fil (b) 102.1 (4.9) 92.5 (6.7)

48

Admira 57.1 (4.6) 54.2 (2.2)
Filtek™ Z250 92.4 (2.1) 83.7 (3.2) 

X-tra fil (t) 108.1 (5.5) 103.9 (4.1)
X-tra fil (b) 92.1 (5.2) 83.8 (2)

Table 3.5  The mean top and bottom surface Vickers Hardness values for Filtek™ Z250, 

Admira and X-tra fil (t) (0-2mm curing depth) and X-tra fil (b) (2-4mm curing depth) 
following short-term immersion periods of 0.5, 1, 4, 24 and 48 hours in a lightproof 
waterbath maintained at 37  1 C. Standard deviations are displayed in parentheses.  

Medium -Term 
immersion periods 

(weeks)
Material

Vickers Hardness (Top 
Surface)

(kgf/mm2)

Vickers Hardness 
(Bottom Surface)

(kgf/mm2)

1

Admira 61.5(2.2) 61.4 (2.1)
Filtek™ Z250 87.8 (1.6) 82.7 (3.7)

X-tra fil (t) 100.7 (3) 95.2 (4.2)
X-tra fil (b) 95.2 (3.8) 83.9 (4)

2

Admira 64.3 (5.2) 69.7 (8.6)
Filtek™ Z250 86.8 (5.8) 81.5 (5.1)

X-tra fil (t) 112.3 (4.4) 106.8 (2.4)
X-tra fil (b) 100.8 (2.1) 88.0 (4.8)

4

Admira 74.9 (6.5) 69.7 (8.6)
Filtek™ Z250 90.3 (2.3) 84.2 (2.2)

X-tra fil (t) 99.8 (3.3) 97.8 (2.5)
X-tra fil (b) 100.8 (2.1) 88.0 (4.8)

12

Admira 72.8 (2.1) 70.3 (1.7)
Filtek™ Z250 96.4 (4.7) 91.2 (3.2)

X-tra fil (t) 90.8 (4.6) 91.8 (4.6)
X-tra fil (b) 83.9 (3.3) 77.7 (7.1)

24

Admira 65.0 (2.6) 61.2 (3)
Filtek™ Z250 87.9 (8.7) 83.4 (6.7) 

X-tra fil (t) 94.1 (4) 87.8 (3)
X-tra fil (b) No value No value

Table 3.6  The mean top and bottom surface Vickers Hardness values for Filtek™ Z250,
Admira and X-tra fil (t) (0-2mm curing depth) and X-tra fil (b) (2-4mm curing depth) 
following medium-term immersion periods of 1, 2, 4, 12 and 24 weeks in a lightproof 
waterbath maintained at 37  1 C. Standard deviations are displayed in parentheses.  
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Figure 3.5 illustrates the mean VHN data for the top and bottom surface of Admira and 

Filtek
TM

Z250 following both short-term and medium-term immersion periods. Figure 3.6 

illustrates the mean VHN for X-tra fil(t) and X-tra fil(b) for both the top and bottom surfaces 

following short and medium-term immersion periods.  

 

 

 

 

 

No values were recorded for X-tra-fil (b) immersed for 24 weeks, due to the lack of material 

available but also due to time restraints within the project, however the hardness of X-tra fil 

cured to a depth of 4mm could be investigated in future studies. In addition to this, it would be of 

interest to examine the hardness values for specimens of Admira and Filtek
TM

Z250 cured to a 

depth of 4mm and immersed for short and medium term periods.  

 

A one-way ANOVA and paired Tukey tests revealed no significant difference was found 

between the top and bottom surfaces when analysed individually for Admira, Filtek™ Z250 , X-

tra fil (t) or X-tra fil (b) (P>0.05). 

(a) Admira (VOCO)  
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Figure 3.5  The mean Vickers hardness (VHN) of the top and bottom surfaces of (a) the 

Ormocer Admira (VOCO) and (b) the dimethacrylate RBC Filtek
TM

Z250 following short-

term immersion periods of 0.5, 1, 4, 24 and 48 hours and medium-term immersion periods 

of 1, 4, 12 and 24 weeks in deionised water contained in a lightproof waterbath maintained 

at 37 ± 1
o
C.  
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(a) X-tra fil(t) (0-2mm curing depth)  
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(b) X-tra fil(b) (2-4mm curing depth)  
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Figure 3.6 The mean Vickers hardness (VHN) of the top and bottom surfaces of specimens 

of the novel resin based composite (RBC) (a) X-tra fil(t) (0-2mm curing depth) and (b) X-

tra fil(b) (2-4mm curing depth) following short-term immersion periods of 0.5, 1, 4, 24 and 

48 hours  and medium-term immersion periods of 1, 4, 12 and 24 weeks in deionised water 

contained in a lightproof waterbath maintained at 37 ± 1
o
C.  
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3.4 Biocompatibility and Cytotoxicity Analysis 

 

3.4.1 Determination of Cell Viability by Direct Contact with Composite Materials 

 

ATCC Mouse 3T3 Fibroblasts (3T3s) 

The percentage of the control cell viability was determined for 3T3 cells in direct contact with 

the Ormocer Admira, dimethacrylate RBC Filtek
TM

Z250 and the novel RBC X-tra fil, over 

incubation time periods of 1, 2, 3, 7 and 14 days, using the haemocytometer and neutral red 

assay technique (Table 3.7).  
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Incubation Time 

(Days) 

Material Cell Viability using 

Haemocytometer (%) 

Cell Viability using Neutral 

Red Assay (%) 

1 

Admira 60(1.5) 92.9(0.01) 

Filtek Z250 46.7(1.2) 100(0) 

X-tra fil 66.7(1.0) 91(0) 

2 

Admira 43.3(1.5) 86.8(0) 

Filtek Z250 46.7(1.2) 95.7(0.01) 

X-tra fil 63.3(0.8) 83.6(0) 

3 

Admira 15.4(1.1) 82(0) 

Filtek Z250 17.9(1.3) 96.9(0) 

X-tra fil 41(0.8) 82(0) 

7 

Admira 8.3(0.5) 80.3(0.01) 

Filtek Z250 12.5(0.9) 87.7(0.01) 

X-tra fil 18(1.2) 80.4(0.01) 

14 

Admira 0(0.4) 46(0) 

Filtek Z250 0(0.5) 55.9(0) 

X-tra fil 0(0.8) 47.2(0) 

 

Table 3.7  The percentage of control mean cell viability of ATCC Mouse 3T3 Fibroblasts 

when in direct contact with 6 specimens of the Ormocer Admira (VOCO), the 

dimethacrylate Filtek
TM

Z250 and the novel RBC namely X-tra fil over incubation time 

periods of 1, 2, 3, 7, and 14 days and using the Haemocytometer technique and the Neutral 

Red Assay. The standard deviations are displayed in parentheses. 
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When displayed graphically, the haemocytometer and neutral red assay results show different 

patterns in cell viability (Figures 3.7a and 3.7b). Both Figures 3.7a and 3.7b demonstrated an 

overall decrease in percentage of control cell viability when in direct contact with all three 

composite materials. Whilst both Filtek
TM

Z250 and X-tra fil exhibited marginally higher cell 

viability over time, this difference was not found to be significantly different.  Figures 3.8 and 

3.9 provide digital images of cells following direct contact with each material following 24 hours 

and 1 week incubation in culture. A one-way ANOVA and paired Tukey test however revealed 

that there was no significant difference between the percentage cell viability of 3T3 cells when in 

contact with the three composite materials (P>0.05), indicating that X-tra fil exhibits similar 

biocompatible to the other commercially available RBC materials.  
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a) Analysis of 3T3 cell viability in Direct Contact with Composite Materials 

(Haemocytometer analysis) 
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b) Analysis of 3T3 cell viability in Direct Contact with Composite Materials (Neutral Red 

Assay) 
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Figure 3.7  The percentage of control cell viability of ATCC Mouse 3T3 Fibroblasts when 

in direct contact with 6 specimens of the Ormocer Admira (VOCO), the dimethacrylate 

Filtek
TM

Z250 and the novel RBC namely X-tra fil over incubation time periods of 1, 2, 3, 7, 

and 14 days and using a) the Haemocytometer technique and b) the Neutral Red Assay 
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(a) 3T3 teflon control – 24hours (b) Admira – 24hours 

 
  

 

(c) Filtek
TM

Z250 – 24hours (d) X-tra fil – 24hours 

  

 

 

Figure 3.8 Digital images showing the 3T3 cell density and morphology following 24hours 

incubation at 37±1
o
C in direct contact with disc shaped specimens of (a) Teflon control, (b) 

the Ormocer Admira, (c) the dimethacrylate RBC Filtek
TM

Z250 and (d) the novel RBC 

namely X-tra fil. Bar = 100 µm 
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(a) 3T3 teflon control – 1week (b) Admira – 1week 

                      
   

  

(c) Filtek
TM

Z250 – 1week (d) X-tra fil – 1week 

                      
  

 

Figure 3.9 Digital images showing the 3T3 cell density and morphology following 1week 

incubation at 37±1
o
C in direct contact with disc shaped specimens of (a) Teflon control, (b) 

the Ormocer Admira, (c) the dimethacrylate RBC Filtek
TM

Z250 and (d) the novel RBC 

namely X-tra fil.  Bar = 100 µm 
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Undifferentiated Pulpal Fibroblast Cell Lines (OD21 cells) 

The percentage of the control cell viability determined for OD21 cells in direct contact with the 

Ormocer Admira, dimethacrylate RBC Filtek
TM

Z250 and the novel RBC X-tra fil, over 

incubation time periods of 1, 2, 3, 7 and 14 days, using the haemocytometer and neutral red 

assay technique (Table 3.8).  
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Incubation Time 

(Days) 

Material Cell Viability using 

Haemocytometer (%) 

Cell Viability using Neutral 

Red Assay (%) 

1 

Admira 35.4(1.5) 198.9(0.04) 

Filtek Z250 37.5(1.3) 204.3(0.05) 

X-tra fil 52.1(2.0) 153.6(0.01) 

2 

Admira 25.5(1.0) 164.6(0.05) 

Filtek Z250 31.4(1.0) 136.5(0.07) 

X-tra fil 31.4(1.2) 119(0.05) 

3 

Admira 11.1(1.0) 49.4(0) 

Filtek Z250 18.1(1.3) 45.3(0) 

X-tra fil 20.8(0.5) 44.3(0) 

7 

Admira 2.7(0.4) 28.1(0) 

Filtek Z250 4.3(0.8) 28.1(0) 

X-tra fil 8.1(1.6) 28.9(0) 

14 

Admira 0.5(0.5) 19.6(0) 

Filtek Z250 1(0.8) 19.7(0) 

X-tra fil 2.9(1.6) 20(0) 

 

Table 3.8  The percentage of control mean cell viability of Undifferentiated Pulpal 

Fibroblast (OD21) cells when in direct contact with 6 specimens of the Ormocer Admira 

(VOCO), the dimethacrylate Filtek
TM

Z250 and the novel RBC namely X-tra fil over 

incubation time periods of 1, 2, 3, 7, and 14 days and using the Haemocytometer technique 

and the Neutral Red Assay. Standard deviations are displayed in parentheses. 
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The haemocytometer and neutral red assay results show different patterns in cell viability with 

the neutral red assay resulting in much higher cell viability values than the cell counts with the 

haemocytometer (Figures 3.10a and 3.10b). Both Figures 3.10a and 3.10b show an overall 

decrease in percentage of control cell viability when in direct contact with all three composite 

materials. Data from cell count analysis indicated that X-tra fil appeared slightly less cytotoxic 

than Admira and Filtek
TM

Z250 when cells were cultured in direct contact with the materials. 

However, a one-way ANOVA and paired Tukey test analysis revealed that there was no 

significant difference between the percentage cell viability values obtained for OD21 cells when 

cultured in contact with the three composite materials (P>0.05). Figures 3.11 and 3.12 provide 

digital images of OD21 cell culture following direct contact with each material after 24 hours 

and 1 week incubation at 37±1
o
C.   
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a) OD21 cells in Direct Contact with Composite Materials (Haemocytometer analysis) 
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b) OD21 cells in Direct Contact with Composite Materials (Neutral Red Assay) 
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Figure 3.10  The percentage of control cell viability of Undifferentiated Pulpal Fibroblast 

(OD21) cells in direct contact with specimens of the Ormocer Admira (VOCO), the 

dimethacrylate Filtek
TM

Z250 and the novel RBC namely X-tra fil over incubation time 

periods of 1, 2, 3, 7, and 14 days and using a) the Haemocytometer technique and b) the 

Neutral Red Assay.  
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(a) Teflon control – 24hours (b) Admira – 24hours 

                         
   

 

(c) Filtek
TM

Z250 – 24hours (d) X-tra fil – 24hours 

                      
  

 

Figure 3.11 Digital images showing the OD21 cell density and morphology following 

24hours incubation at 37±1
o
C in direct contact with disc shaped specimens of (a) Teflon 

control, (b) the Ormocer Admira, (c) the dimethacrylate RBC Filtek
TM

Z250 and (d) the 

novel RBC namely X-tra fil. Bar = 100 µm 
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(a) Teflon control – 1week (b) Admira – 1week 

                         
   

 

(c) Filtek
TM

Z250 – 1week (d) X-tra fil – 1week 

                           
  

 

Figure 3.12 Digital images showing the OD21 cell density and morphology following 1week 

incubation at 37±1
o
C in direct contact with disc shaped specimens of (a) Teflon control, (b) 

the Ormocer Admira, (c) the dimethacrylate RBC Filtek
TM

Z250 and (d) the novel RBC 

namely X-tra fil. Bar = 100 µm 
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3.4.2 Determination of Cell Viability in Growth Medium containing Composite Material 

Eluents (Media Immersions). 

 

ATCC Mouse 3T3 Fibroblasts  

The percentage of the control cell viability determined for 3T3 cells cultured in medium 

containing substances leached (eluents) from the Ormocer Admira, dimethacrylate RBC 

Filtek
TM

Z250 and the novel RBC X-tra fil respectively, immersed/incubated for time periods of 

1, 2, 3, 7 and 14 days, using the haemocytometer and neutral red assays (Table 3.9). 
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Incubation Time 

(Days) 

Material Cell Viability using 

Haemocytometer (%) 

Cell Viability using Neutral 

Red Assay (%) 

1 

Admira 52.1(2.7) 86.3(0) 

Filtek Z250 33.3(2.0) 91.3(0) 

X-tra fil 39.6(1.7) 88.5(0) 

2 

Admira 33.3(1.1) 85.3(0) 

Filtek Z250 13.9(0.8) 94.1(0.01) 

X-tra fil 44.4(1.4) 79.9(0) 

3 

Admira 25.9(0.8) 70.1(0) 

Filtek Z250 22.2(0.9) 76.4(0.08) 

X-tra fil 48.1(1.0) 66.7(0) 

7 

Admira 4(0.5) 62.1(0) 

Filtek Z250 6.7(1.0) 71.6(0) 

X-tra fil 2.7(0.5) 71.6(0) 

14 

Admira 13.7(3.0) 61.9(0.01) 

Filtek Z250 11.8(1.3) 63.5(0) 

X-tra fil 22.9(1.5) 55.3(0) 

 

Table 3.9  The percentage of control cell viability of ATCC Mouse 3T3 Fibroblasts when 

cultured in medium containing substances leached from specimens of the Ormocer Admira 

(VOCO), the dimethacrylate Filtek
TM

Z250 and the novel RBC namely X-tra fil over 

immersion/incubation time periods of 1, 2, 3, 7, and 14 days and using the Haemocytometer 

technique and the Neutral Red Assay. Standard deviations are displayed in parentheses. 
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The haemocytometer cell count and neutral red assay data demonstrated different patterns in cell 

viability with the neutral red assay resulting in much higher cell viability values than the cell 

counts obtained using the haemocytometer analysis (Figures 3.13a and 3.13b). However 

potentially due to variability within the results, one-way ANOVA and paired Tukey test revealed 

that there was no significant difference between the percentage cell viability within 3T3 cultures 

when grown in medium containing substances leached from the three composite materials 

(P>0.05). 
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a) 3T3 cell cultures in medium containing eluents from the Composite Materials (Haemocytometer) 
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b) 3T3 cell cultures in medium containing eluents from the Composite Materials (Neutral Red 

Assay) 
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Figure 3.13  The percentage of control cell viability of ATCC Mouse 3T3 Fibroblasts when 

cultured in medium containing substances leached from specimens of the Ormocer Admira 

(VOCO), the dimethacrylate Filtek
TM

Z250 and the novel RBC namely X-tra fil over 

immersion/incubation time periods of 1, 2, 3, 7, and 14 days and using a) the 

Haemocytometer technique and b) the Neutral Red Assay.  
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(a) Teflon control – 24hours (b) Admira – 24hours 

                         
   

 

(c) Filtek
TM

Z250 – 24hours (d) X-tra fil – 24hours 

                            
  

 

Figure 3.14 Digital images showing the 3T3 cell density and morphology following 24hours 

incubation at 37±1
o
C in medium containing leached substances from disc shaped specimens 

of (a) Teflon control, (b) the Ormocer Admira, (c) the dimethacrylate RBC Filtek
TM

Z250 

and (d) the novel RBC namely X-tra fil. Bar = 100 µm 
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(a) Teflon control – 1week (b) Admira – 1week 

                         
   

 

(c) Filtek
TM

Z250 – 1week (d) X-tra fil – 1week 

                            
  

 

Figure 3.15  Digital images showing the 3T3 cell density and morphology following 1week 

incubation at 37±1
o
C in medium containing leached substances from disc shaped specimens 

of (a) Teflon control, (b) the Ormocer Admira, (c) the dimethacrylate RBC Filtek
TM

Z250 

and (d) the novel RBC (X-tra fil). Bar = 100 µm 
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Undifferentiated Pulpal Fibroblast (OD21) Cells 

The percentage of the control cell viability determined for OD21 cells cultured in medium 

containing substances leached from the Ormocer Admira, dimethacrylate RBC Filtek
TM

Z250 and 

the novel RBC X-tra fil, immersed/incubated for time periods of 1, 2, 3, 7 and 14 days, using the 

haemocytometer and neutral red assay technique (Table 3.10).  
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Incubation Time 

(Days) 

Material Cell Viability using 

Haemocytometer (%) 

Cell Viability using Neutral 

Red Assay (%) 

1 

Admira 122.9(2.6) 52.8(0) 

Filtek Z250 108.3(1.9) 54.7(0.01) 

X-tra fil 154.2(2.6) 66.7(0.01) 

2 

Admira 115.7(1.0) 78.6(0) 

Filtek Z250 105.9(2.8) 56.8(0) 

X-tra fil 143.1(2.8) 83.3(0.02) 

3 

Admira 87.5(2.1) 101.8(0.03) 

Filtek Z250 77.8(2.5) 106.9(0.03) 

X-tra fil 84.7(1.3) 87.8(0.02) 

7 

Admira 19.4(2.8) 76.3(0.02) 

Filtek Z250 14.5(1.6) 75.2(0.06) 

X-tra fil 18.3(2.6) 70.6(0.03) 

14 

Admira 5.5(3.0) 61.7(0.06) 

Filtek Z250 4.7(1.3) 57.6(0.03) 

X-tra fil 9.1(1.3) 60.7(0.04) 

 

Table 3.10  The percentage of control cell viability of Undifferentiated Pulpal Fibroblast 

cells when cultured in medium containing substances leached from 6 specimens of the 

Ormocer Admira (VOCO), the dimethacrylate Filtek
TM

Z250 and the novel RBC namely X-

tra fil over immersion/incubation time periods of 1, 2, 3, 7, and 14 days and using the 

Haemocytometer technique and the Neutral Red Assay. Standard deviations are displayed 

in parentheses.  
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The haemocytometer and neutral red assay results demonstrated different patterns in cell 

viability with the cell counts using the haemocytometer resulting in much higher cell viability 

values (Figures 3.16a and 3.16b). The haemocytometer results suggest that fewer cytotoxic 

substances are leached from X-tra fil as there appeared to be a higher cell viability with the 

medium containing the X-tra fil eluents. However, a one-way ANOVA and paired Tukey test 

revealed that there was no significant difference between the percentage cell viability of OD21 

cells when cultured in medium containing substances leached from the three composite materials 

(P>0.05). Figures 3.17 and 3.18 show digital images of OD21 cell viability in medium 

containing leached substances from each disc shaped specimens of each material following 

incubation at 37
o
C for 24hours and 1week.  

The cultures contained medium consisting of substances leached from the RBC materials over 

increasing time periods in this medium resulted in all cultures displaying an initial increase in 

cell density. Following culture of cells with medium containing substances leached from Admira 

for 1 week, the cell density decreased rapidly as the cells became infected due to the culture 

medium. Whilst culture of cells in medium containing substances leached from X-tra fil over a 

period of 1 week displayed a stable cell density and a gradual increase in cell number (Figures 

3.17 and 3.18) the values obtained exhibited no significant difference.  
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a) OD21 cells cultured in medium containing eluents from the Composite Materials 

(Haemocytometer analysis) 
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b) OD21 cells cultured in medium containing eluents from the Composite Materials (Neutral Red 

Assay) 
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Figure 3.16  The percentage of control cell viability of Undifferentiated Pulpal Fibroblast 

cell lines when cultured in medium containing substances leached from specimens of the 

Ormocer Admira (VOCO), the dimethacrylate Filtek
TM

Z250 and the novel RBC namely X-

tra fil over immersion/incubation time periods of 1, 2, 3, 7, and 14 days and using a) the 

Haemocytometer technique and b) the Neutral Red Assay.  
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(a) Teflon control – 24hours (b) Admira –24hours 

                         
   

 

(c) Filtek
TM

Z250 –24 hours (d) X-tra fil – 24hours 

                          

                              

 

Figure 3.17 Digital images showing the OD21 cell density and morphology following 

24hours incubation at 37±1
o
C in medium containing leached substances from disc shaped 

specimens of (a) Teflon control, (b) the Ormocer Admira, (c) the dimethacrylate RBC 

Filtek
TM

Z250 and (d) the novel RBC namely X-tra fil. Bar = 100 µm 
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(a) Teflon control – 1week (b) Admira – 1week 

                         
   

(c) Filtek
TM

Z250 – 1week (d) X-tra fil – 1week 

                           

 

 

Figure 3.18 Digital images showing the OD21 cell density and morphology following 1week 

incubation at 37±1
o
C in medium containing leached substances from disc shaped specimens 

of (a) Teflon control, (b) the Ormocer Admira, (c) the dimethacrylate RBC Filtek
TM

Z250 

and (d) the novel RBC namely X-tra fil. Bar = 100 µm 
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Overall, the results were not entirely consistent between the cell viability recorded through either 

haemocytometer cell counting or by the neutral red assay. Whilst trends were identified from 

inspection of the data, a one-way ANOVA and paired Tukey test analysis revealed that there was 

no significant difference between the cytotoxic effects of the three composite materials (P>0.05). 

Therefore, it was concluded that X-tra fil appears as biocompatible as Admira and Filtek
TM

Z250 

and does not appear to possess any characteristics that enhance its biological properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4   Discussion 
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4.1 Light-Curing  

 

The procedure used to manufacture the composite disc specimens was aimed at ensuring 

consistency between each specimen generated. The polymerisation of the monomers present in 

RBCs is directly related to the wavelength intensity of the curing unit and the time of exposure. 

The in the approach applied here there should not be notable differences between each disc 

specimen generated as the method of production was kept consistent throughout the study (Radzi 

et al., 2008). The majority of the theories related to spatial prediction assume that the data are 

generated from a Gaussian random field (Kim & Mallick 2004). The Gaussian distribution is 

also known as the normal distribution and is a continuous probability distribution that describes 

data that clusters around the mean. In this case, the curing unit exhibits decreased light intensity 

towards the tip edge and therefore observes a Gaussian distribution. This is consistent with 

previous studies which have shown that as the distance from the tip of a light guide increases, the 

irradiance decreases but the rate of decrease can vary between curing units. Clinically, this 

difference is important due to the fact that the light guide cannot always be positioned 

immediately adjacent to the material in question (Vandewalle et al., 2005). Notably therefore 

when a material is used in clinic the operator‟s curing technique are a crucial factor in the 

longevity of the restoration. Notably diminished light output can result in restorations which are 

incompletely polymerised and as a result can lead to a reduction in their mechanical properties, 

marginal breakdown, increased wear and even an increase in their water sorption (Martin 1998). 

With regards to the present study however these factors were not a problem as the specimen 
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discs were produced outside of the oral cavity and therefore there were no hindrance or 

restrictions with regards to view and access. 

 

Due to the high operating temperatures of halogen bulbs they tend to exhibit a limited lifespan. 

This is a significant disadvantage of their use and resultantly a reduction of their curing 

efficiency occurs after 100 hours of use at which point they undergo degradation in terms of light 

output (Mavropoulos et al., 2005, Vandewalle et al., 2005). Notably it is the reflector, bulb and 

filters present in the unit which can all degrade over time and therefore reduce the light‟s curing 

effectiveness (Vandewalle et al., 2005). In addition, fluctuations in the line voltage can also 

contribute to inefficiency of the curing unit (Martin 1998). As well as the normal degradation of 

light due to usage of the LCU, there are several studies which have demonstrated that many 

halogen lamps in clinical use do not produce their optimum output due to a lack of maintenance 

(Mitton & Wilson 2001). In the case of the present study the LCU used was well maintained by 

wiping clean, although due to time constraints it was not sterilised thoroughly between each 

specimen disc produced.  In future studies however sterilisation should be performed to maintain 

consistency and eliminate anomalies which might occur due to interactions between the light 

curing and sterilisation process. Notably the sterilisation of the curing unit between each disc 

manufacture could potentially pose problem as previous studies have demonstrated that repeated 

sterilisation can contaminate the light guide and also damage the fibre optic bundle within the 

unit and hence subsequently reduce the units light output (Martin 1998).  

 

Depth of cure of a resin composite may be affected by both composite-related and light-related 

factors. The light-related factors identified include irradiance, spectral distribution, exposure 
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time, post-irradiation time and light dispersion, while the composite related factors include the 

type of resin used, shade, translucency, temperature of the composite material and thickness of 

the increment (Vandewalle et al., 2005, Martin 1998). Significantly the presence of a 

photoinitiator which promotes the polymerisation process, such as Camphorquinone (CQ) can 

also affect the curing process. CQ is present in the majority of light cured RBCs currently 

available on the market today and while it is not incorporated into the polymer network of the 

resin it can leach out of the RBC over time (Volk et al., 2009).  

 

The material components in the present study were kept consistent as the shade, thickness, type 

of resin and irradiation time (recommended by the manufacturers) in an attempt to minimise 

discrepancies and facilitate comparison. The specimen discs were also produced in the same 

environment using the same methodological approach with the amount of material being 

accurately weighed to produce each disc. Clearly it is important that the synthesis of the discs 

was standardised as inconsistencies in conversion would affect subsequent the downstream data 

obtained. Indeed it has been demonstrated in previous studies that the results of material 

evaluations, including tests for mechanical strength, modulus, hardness and leachable 

components are associated with polymer conversion with incomplete conversion resulting in 

poor resistance to wear and poor colour stability (Bala et al., 2005).    

 

 

4.2 Bi-Axial Flexural Strength Testing 
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The experimental procedure used to determine the flexural strength in the current investigation 

needs to be reproducible between different test centres to enable accurate comparisons between 

materials. As a result, care has to be taken to ensure that the methods planned and carried out are 

not only an accurate assessment of flexural strength data but also conform to a specification 

standard recognised world-wide. Although the bi-axial flexure strength method is a laboratory 

representation of the actual masticatory forces encountered in the oral cavity, measures can be 

taken to reduce any anomalies and portray an in-vitro simulation of the stresses encountered 

when employed clinically. Previous studies carried out and present in dental literature have 

shown that the bi-axial flexure strength test has been the most frequently used and is the most 

reliable method for determining flexure strength (Palin et al., 2003, Higgs et al., 2001). The 

advantage of this method is that the area of maximum tensile stress is located at the center of the 

lower face of the plate and as a result this eliminates spurious edge failures commonly associated 

with three- or four-point flexure strength testing (Higgs et al., 2001). It also offers controllable 

specimen geometry, simple sample preparation, and the surface to volume ratio is more closely 

related to that of a posterior filling rather than three- or four-point flexure strength testing. 

Consequently, the assessment of bi-axial flexure strength has been investigated previously in 

many dental materials studies and was the basis for the flexural strength testing in the current 

investigation (Ferracane et al., 1998, Manhart et al., 2000, Fleming et al., 1999).  

No significant difference (P>0.05) between the mean bi-axial flexure strengths of the Filtek

Z250, Admira, X-tra fil (t) and X-tra fil (b) investigated in the current study (Table 3.1) were 

highlighted suggesting that X-tra fil as a novel material is actually very similar in its strength 
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properties as those materials already available on the market. The materials tested in the current 

study included a conventional hybrid RBC (Filtek  Z250) which contained BisGMA, UDMA 

and Bis-EMA resins which contained minimal amounts of TEGDMA and 61 vol.% 

zirconia/silica filler. The particle size distribution analysis in Z250 indicate it contains a large 

number of finer particles when compared with Z100 with the size distribution being from 0.01 

µm to 3.5 µm with an average particle size of 0.6 µm. The Ormocer (organically modified 

ceramic) used here was Admira containing BisGMA, UDMA and TEGDMA with 60.2 vol.% of 

bariumboroaluminiumsilicate filler (Wolter et al., 1994) with an average particle size of 0.7 µm 

and micro-fillers from pyrogenic SiO sized at approximately 0.04 µm in diameter. The recently 

marketed X-tra-fil contained a resin mixture of Bis-GMA, UDMA and TEGDMA with 70.1 

vol.% bariumboroaluminiumsilicate filler. With regards to the properties of the different 

materials, the bi-axial flexure strength results obtained in this study appeared not to be 

particularly influenced by the filler particle size distribution within the materials. This data is in 

agreement with that of previous studies which indicated that materials containing different filler 

substances with different particle sizes exhibited no significant differences in their wear 

(Nagarajan et al., 2004, Suzuki & Leinfelder 1993). Even though X-tra fil contains 

approximately 10 vol.% more filler than Filtek  Z250 and Admira, this property did not appear 

to have made a difference with regards to its strength as a dental material.   

The properties of resin composites depend on several factors, related to the polymer matrix, the 

filler particles and the coupling between filler and matrix. It is however often difficult on the 

basis of the published literature to determine what components cause differences in material 
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properties as these materials differ in several aspects (Asmussen et al., 1998).  Notably, the mean 

bi-axial flexure strength of Filtek  Z250 has previously been reported (Palin et al., 2005) as 140 

(12) MPa which coincided well with the value obtained in the current study (142 (20) MPa). The 

bi-axial flexure strength and reliability of RBCs have also been reported previously in the 

literature (Palin et al., 2005) as varying from 115-168 MPa with associated Weibull moduli of 

7.0-16.2 depending upon the chemistry of the monomer resins, the extent of polymerisation of 

the polymer matrix (Ferracane et al., 1998; Peutzfeldt 1997; Johnston et al., 1985), filler particle 

size and distribution (Keeters et al., 1983; Yearn 1985; Price et al., 2002), the interfacial 

properties between the filler and resin matrix (Rueggeberg et al., 1994). These results also 

correspond well with the mechanical properties identified in the current study. 

The predicted Weibull modulus of a group of specimens (provided n ≥ 20) suggests an indication 

of the flaw distribution in the specimen where a high Weibull modulus can be associated with a 

narrow distribution of defects and an increased reliability of strength data for a particular 

material. Weibull analysis applied to bond strength data allows information about bond 

reliability to be ascertained (Millett et al., 2003). This provides more detailed information 

required for the prediction of failure stress of brittle materials compared with quoting mean 

flexure strengths and associated standard deviations alone. Weibull statistics are also essential 

for predicting the reliability of both bi-axial flexure and three-point flexure strength testing 

(Palin et al., 2003). It was suggested that the significant increase in Weibull moduli could be a 

result of the specimen geometry of the bi-axial disc-shaped specimens, which allowed for 

controlled irradiation of the RBC samples compared with the overlapped curing procedure 
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associated with the manufacture of rectangular bar specimens for three-point flexure tests (Palin 

et al., 2003). Previous studies have shown that the reliability of results is determined by whether 

the confidence intervals for the Weibull modulus overlap such that if an overlap is observed the 

reliability of the bi-axial flexure strength data recorded is significant (Fleming et al., 2003).  

 

4.3 Water Sorption, Water Solubility and Diffusion Coefficients 

 

The present study showed that the water sorption and water solubility values for Filtek™ Z250 

and Admira were significantly increased (P<0.05) compared with X-tra fil (t) and X-tra fil (b). 

The rate of water sorption by dental RBCs has previously been identified as being a diffusion 

controlled process (Baharav et al., 1988, Cook, 1980, Pilo et al., 1992) and in the current study 

the plots of Mt/Me against t
1/2

 remained linear in the initial stages of water sorption (Figures 3.1 

and 3.2). The diffusion coefficient of dental RBC materials has also been reported to be 

dependent upon the chemistry of the monomer resins and the extent of polymerisation of the 

polymer matrix (Palin et al., 2005; Ferracane, 1994).  

 

Previously, Palin et al. (Palin et al., 2005) associated the decreased water sorption and associated 

lower diffusion coefficient of Filtek™ Z250 compared with Z100 with a decrease in structural 

heterogeneity of the polymer. The higher molecular weight of Z250 in comparison to Z100 is 

greater which affects the viscosity of the material measurably with Z100 being 30,000 poise and 

Z250 being 350,000 poise. The weight of the resin can result in less polymerisation shrinkage, 

reduced aging and a slightly softer resin matrix (Cunha et al., 2003, Fleming et al., 2005). Palin 

et al. (Palin et al., 2005) also proposed that the ether groups of BisEMA and the urethane groups 
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of UDMA, predominant in the resins of Filtek™ Z250, can form weaker hydrogen bonds with 

water molecules than the hydroxyl groups of BisGMA and TEGDMA molecules which are 

predominant in Z100 and also Admira used in this study (Palin et al., 2005, Pilo et al., 2002, 

Ferracane, 1994), thereby reducing the hydrophilic nature of the constituent monomer units. 

Interestingly the diffusion coefficient for the X-tra fil was reduced compared with Filtek™ Z250

despite the presence of TEDGMA, however, the increased filler content would be expected to 

result in the reduced water sorption and water solubility values determined in the current study. 

This correlates with the concept behind Ormocer technology and the chemistry of Admira, where 

there is a considerable widening of the adjustable properties by the incorporation of different 

fillers. This addition of fillers may bring an improvement of the mechanical and physical 

properties such as small abrasion rate, low water absorption and low water solubility (Cunha et 

al., 2003, Ban et al., 1992).  

The diffusion coefficient for Filtek™ Z250 identified in the current study was lower than that 

reported previously by Palin et al. (Palin et al., 2005) as the specimen thickness in this study was 

reduced to conform with the water sorption and solubility testing methodologies stipulated in 

ISO 4049 for resin-based dental restoratives. The Me against t1/2plot (Figures 3.3 and 3.4) 

highlighted the fact that FiltekFiltek  Z250 and Admira have larger diffusion coefficients in 

comparison to X-tra fil which would have been expected as X-tra-fil contains a higher volume% 

of filler. Interestingly, despite the numerous studies in the dental literature regarding water 

sorption and water solubility variations in LCU, irradiation times, irradiation protocol and 

storage condition it is difficult to correlate the data in the current study with the previous 
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investigations (Sideridou et al., 2004, Sideridou et al., 2003, Kanchanavasita et al., 1997, 

Kalachandra et al., 1987). The ISO specification standard advocates curing the disc-shaped 

specimens using an overlapping protocol that results in the 1 mm of material receiving eight 

times the irradiation that a 2 mm increment would receive when being placed clinically. It is 

suggested that by employing a larger diameter light curing tip that enables the specimen to be 

irradiated in one-hit, the values for water sorption and water solubility and the diffusion 

coefficients obtained in the current study would be expected to be closer to the values when the 

RBCs are utilised clinically. However, as already explained in Section 4.1, the diameter of the 

light curing tip is not the only factor that needs to be taken into account, namely the maintenance 

of the curing units, the life span of halogen bulbs etc.  

 

4.4 Vickers Hardness Testing 

 

Hardness is considered to be related to wear resistance and is the most commonly examined 

mechanical property indicator for synthetic restorative materials (Loyaga-Rendon et al., 2007). 

The absorption of water molecules by hydrophilic moieties within an RBC material on exposure 

to the oral environment may result in plasticization of the resin polymer network (Ferracane et 

al., 1998) thereby decreasing the mechanical properties of the material. The present investigation 

combined Vickers hardness testing with short- and medium-term immersion periods for water 

sorption and solubility testing methodologies similar to those stipulated in ISO 4049 for resin-

based dental restoratives (International Standards Organisation, 2000). No significant reduction 

in the top to bottom hardness of the materials investigated was evident in the current study for 
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short- and medium-term immersion periods which suggests that any plasticization of the resin 

polymer network was limited up to the 24 weeks investigated in the current study.  

Currently there is little agreement as to a hardness value which reflects an adequate degree of 

polymerisation for a RBC. A bottom to top hardness value of 80–90% has previously been 

suggested as an indicator for the minimum depth of cure value which is acceptable (Johnston et 

al., 1985, Keeters et al., 1983, Yearn, 1995). However, this value has been the subject of 

considerable controversy amongst dental material scientists and clinicians alike. Indeed previous 

studies have reported that reducing the depth of cure of RBCs is manifested as a decrease in the 

surface hardness (Rueggeberg et al., 1994, Baharav et al., 1988, Cook, 1980). For reduced 

exposure periods the concentration of unexcited CQ molecules decreases in the bottom layers of 

the RBC specimens following the cessation of light irradiation. With increasing specimen 

thickness, fewer photons are able to reach the CQ molecules within the resin and as a result 

fewer molecules are activated and raised to the „triple‟ (excited) state (Palin, 2004). Therefore at 

reduced light exposure periods, the quantity of CQ molecules at the lower surface of the 

specimen in the triplet state that are able to collide with an amine will be reduced and as a result 

incapable of producing free radicals to initiate polymerisation. Thus, an increase in light energy 

density for a constant irradiation time would be expected to result in an increase in the Vickers 

hardness of both the bottom and top surfaces (Pilo et al., 1992). With regards to the present study 

you would expect Xtra-fil to exhibit a higher Vickers hardness than Admira and Filtek  Z250 

due to the fact that it is cured for 20 seconds longer (according to the manufacturers 

recommendations). However, there was no significant difference seen between the materials 
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suggesting that the novel material is similar in its properties to those already available on the 

market. Further studies could include the curing of Admira and Filtek  Z250 for 40 seconds as 

well as Xtra-fil, and these materials could also all be cured to a depth of 4mm subsequent 

analysis of their mechanical properties would then be appropriate. Due to time constraints and 

material availability, this work was not performed in the present study, however it would be 

interesting to determine the materials mechanical behaviour under these curing conditions.  

The reduction of the C=C bond rate represents the degree of conversion of the composite 

material. This has been shown to maintain a direct relationship with the composite resin 

microhardness and therefore a hardness test can be used to indirectly evaluate the C=C bond rate 

(de Araújo et al., 2008). In general, the greater the hardness value is the more extensive the 

polymerization of the material (DeWald and Ferracane 1987). However, as already stated this 

may not always be the case. There are several key factors involved in determining the efficiency 

of cure of the material and these include the monomer structure, amount and type of filler 

particles, composite shade, light curing time and curing depth. The curing depth in turn is 

dependant on the intensity of the radiation emitted from the LCU (Cook 1980). Indeed previous 

studies have determined the transmission coefficient of visible-and ultraviolet-light-activated 

resin composites and reported that the visible-light-activated resin composites as a group had 

higher values of cure depth and transmission coefficient than did the ultraviolet light activated 

resin composites (Tirtha et al., 1982). Also in the same report, it was indicated that darker and 

more opaque shades of resin composites might be expected to exhibit a lower light transmission 

coefficient as this value is influenced by the wavelength of light, refractive indices of the resin 
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and fillers and types and amounts of filler particles (Kawaguchi et al., 1994).  In the current 

study, radiant exposures of 13.4 Jm-2 for Filtekfor Filtek  Z250 and Admira and 26.8 Jm-2 for X-tra fil 

were employed with the results indicating no significant differences between the top to bottom 

Vickers hardness values. However, the top to bottom Vickers hardness values were material 

specific for the RBCs investigated. The Vickers hardness results therefore further emphasise that 

the relationship between the hardness and radiant exposure, namely irradiation and time, is more 

complex than reported by many researchers.  

4.5    Biocompatibility and Cytotoxicity Analysis

In the current study, as well as the mechnical properties of the RBC materials, their cytotoxicity 

and biocompatibility were also investigated. In modern medicine or dentistry it is important to 

ensure that every material or substance which is to be placed within the body is biocompatible 

and exerts minimal cellular cytotoxic effect (Leyhausen et al., 1998). In relation to this, 

composites have previously been shown to exert significant cytotoxic effects in cell culture 

systems and this has proven to be caused by residual uncured monomers or oligomers (Ferracane 

et al., 1990). Several approaches have been used for the determination of this complex biological 

feature including: in vivo systems like usage tests in animals and in vitro systems especially 

utilising cell cultures and microbiological techniques (Leyhausen et al., 1998). Interestingly, 

several studies have shown that human primary gingival cells are more discriminating in 

cytotoxic assessment of dental materials than permanent cell lines derived from animals 

(Holland 1994, Huang et al., 2002). This indicates that cytotoxicity results can vary depending 
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upon the type of cells used for analysis (Leyhausen et al., 1998). There have been reports that 

most cytotoxic effects from composites occur during the first 24 hours of testing and correlate 

with the early leaching of residual monomers (Bouillaguet et al., 2002). However, other studies 

have reported that resin-based restorative materials may leach sufficient components to cause 

cytotoxicity as late as 2 weeks after synthesis (Wataha et al., 1999).  

 

Cell culture systems provide convenient, controllable and repeatable means for the initial 

assessment of the toxicological response to novel biomaterials. Whilst the commonly used 

cytotoxicity tests for dental materials have cell death as the end point, they however generally do 

not differentiate between the type of cell death induced (Becher et al., 2005). In the current 

investigation and in previous studies, in vitro cytotoxicity tests have been used to evaluate 

biological risks of dental resin composites. These reports support the hypothesis that mass 

release from composites, particularly of lower molecular weight diluents, is responsible for the 

cytotoxic effects of these materials in vitro (Wataha et al., 2003). When applied to resin 

composites, some in vitro tests have also used an „aging‟ of the polymerised specimens in a 

biological solution such as artificial saliva to help show trends in the biological response and 

provide additional physiological relevance (Wataha et al., 2003). It has been suggested that 

identification of leachables as well as further analysis with extracts obtained from longer 

incubation periods is needed before final conclusions can be drawn about the release of 

mutagenic components from composites (Eick et al., 2002). However, campherquinone has 

previously been identified as one of the leachables from resin materials but has been shown to 

exert a moderate cytotoxicity in comparison to other photoinitiators, although the mechanism of 

CQ cytotoxicity and its target structures is only partly understood (Volk et al., 2009).  
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In the current study, the composite materials were placed in direct contact with ATCC Mouse 

3T3 fibroblasts and with OD21 pulpal fibroblast cell lines for periods of 1, 2, 3, 7 and 14 days 

which are the incubation times recommended by Wataha et al. (2003). It has been suggested that 

rapid release of unbound components of dental composites will proceed as long as there is a 

concentration gradient and therefore the elution of these molecules is rapid essentially complete 

within the first 24 hours of culture (Ferracane et al., 1990). However, in the present 

investigation, this was not entirely supported. Cell counts as determined using the 

haemocytometer analysis showed that for both 3T3 and OD21 cells the cell their viability 

decreased over time with the lowest cell density being at the 14 day stage. Fibroblast 3T3 cells, 

however, displayed a higher cell viability as compared to OD21 cells suggesting that these cell 

types are more resistant to cytotoxic insults. Overall, this suggests that the hypothesis put 

forward by Ferracane et al. (1990) is not concurrent with the results of the present study. 

Notably, the current study utilised animal cells and in recent studies several authors have stated 

that in vitro toxicity tests should be performed with the more appropriate cells i.e. human cells, if 

these are available (Huang et al., 2002).  

 

The cytotoxicity of RBCs in the present investigation was also studied by culturing 3T3 and 

OD21 cells in growth medium containing leached substances from each of the RBC materials. 

Previously it has been stated that incubation of composites in cell culture medium for one to 

seven days is sufficient to abrogate cytotoxicity (Schedle et al., 1998). The present investigation 

extended these times periods to 14 days. When cultured with the medium containing leached 

substances, it was determined that the cell viability of the OD21 cells decreased in relation to the 
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increase in time that the composite was immersed in the medium. This suggests that the longer 

the composite was present in the medium, the more toxic substances were released from it. It 

seems that a wide range of factors may be responsible for the release of unbonded compounds 

from cured dental composites. An important factor that determines the amount of leachable resin 

components is the monomer-polymer conversion mechanism (Schweikl et al., 2005). 

Consequently, curing time, thickness of resin increment and light intensity provided by light 

units plays a role in the amount of unconverted monomers that may, in turn, remain in the resin 

composite (de Souza Costa et al., 2003). It has been shown in previous studies that an adhesive 

resin can induce apoptosis or cell-cycle arrest of cells that are major players in pulp healing and 

dentin regeneration. However with regards to the development of dental restorative materials it is 

believed that understanding the mechanisms of cytotoxicity of dental materials is necessary for 

the selection of a strategy for protection of the dentin-pulp complex that allows for pulp healing 

and dentin regeneration (Mantellini et al., 2003).  

Overall, the results of the current study are not consistent between the cell viability recorded 

through either cell counting using the haemocytometer or by the neutral red assay, as they do not 

concur. However, past studies have shown that the haemocytometer analysis is a accurate 

method for determining cell density and is a method that can be easily reproduced (de Souza 

Costa et al., 2003, Griggs et al., 2003). Therefore, it can be suggested from the haemocytometer 

data for both direct contact and media immersion, that the novel RBC  X-tra Fil seems to exert 

less cytotoxic effects on both the 3T3 and the OD21 cells compared with Admira and 

Filtek
TM

Z250. This is due to the cell viability of both cell types being greater when in direct 

contact and in media immersion with X-tra Fil specimens. The composition of RBCs are 
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continually being improved to help reduce any toxic effects that they may impose, however no 

dental material meets all the requirements to be considered as an ideal restorative material (de 

Souza Costa et al., 2003).  

The current study utilised methods that have been described in previous studies, and in this case 

the aging of RBC materials in medium prior to culture seemed to be the more accurate method of 

determining cytotoxicity. However, a better ex vivo model could be utilised in future studies to 

try and simulate the oral cavity environment more accurately. For example, dentine could have 

been left covering the cells in culture, therefore buffering any cytotoxic effects and then 

determining whether the RBCs are still exerting any toxic effect. This system provides a very 

reproducible, simple technique for the screening of large numbers of compounds. It is less time 

consuming and relatively inexpensive, especially in terms of animal usage, compared to in vivo 

tests. It has been suggested that this method, which attempts to mimic cavities in human teeth, 

may provide a more appropriate test system for comparing the relative toxicities of compounds, 

especially in view of its reproducibility (Meryon et al., 1983).  

The determination of the cell morphology was not particularly clear in the current study, 

however a more accurate method which can be utilised to observe whether the RBC materials 

alter the shape of the cells is scanning electron microscopy.  In addition to this, a larger sample 

size should be used to produce a more accurate display of results.  
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CHAPTER 5  Conclusions 

 

 

The clinical relevance of this study was to determine the effects of a novel restorative material 

compared to those materials which are currently available on the market and used in dentistry. 

The use of resin based materials is dependent on their mechanical (masticatory) stresses and 

biocompatibility properties.   

 

The current study determined that in comparison to the Ormocer Admira (VOCO, Cuxhaven, 

Germany) and the dimethacrylate RBC Filtek
TM

Z250 (St Paul, MN, US), the novel RBC, X-tra 

Fil (VOCO, Cuxhaven, Germany), exhibited bi-axial flexure strength values similar to 

Filtek
TM

Z250 following short-term and medium-term immersion in water. However there was no 

significant difference detected between the two materials, therefore it cannot be concluded here 

that the newer material had improved properties over the existing material already available on 

the market. The hardness testing of top and bottom surfaces of the three different composite 

materials determined that following immersion in water for short and medium-term periods, the 

hardness of all three materials varied over time but no significant difference was determined. 

Therefore, specific characteristics and properties of the novel material cannot be deduced and 

would need to be further investigated. With regards to curing depth, the X-tra Fil(t) (0-2mm 

curing depth) displayed better mechanical properties than the X-tra Fil(b) (2-4mm curing depth) 

however, both displayed much better bi-axial flexure strength, VHN and water sorption and 

solubility than Admira and Filtek
TM

Z250. This data suggests that X-tra fil is potentially able to 

be cured to a depth of 4mm even though the mechanical properties appear to be compromised. 

However, there was found to be no significant difference between the two different specimens 



 1 

and in order to better compare the three materials further, the Admira and Filtek
TM

Z250 

specimens would also need to be cured to a depth of 4mm and for the same irradiation time as 

Xtra-fil (40 seconds). Overall, with regards to the mechanical properties of the materials tested in 

this study, further investigation would definitely be advised in order to determine the 

reproducibility of the results presented here. No definite conclusions can be made with regards to 

the properties of the novel composite Xtra-fil and with regards to this present investigation it can 

only be presumed that the novel material is similar to those already available and does not 

demonstrate here any improved mechanical properties.  

 

The current study also investigated the cytotoxic effects of the three composite materials both by 

direct and indirect contact with two different types of murine fibroblast cell lines ; ATCC Mouse 

3T3 Fibroblasts and OD21 undifferentiated pulpal fibroblast cell lines. These biocompatibility 

tests determined that all three materials exerted a cytotoxic effect on both the cell types. There 

was no significant difference found between the materials suggesting that the novel material 

Xtra-fil is just as cytotoxic as Admira and Filtek
TM

Z250.  

 

Although the present investigation has not shown any significant differences between the 

mechanical and biocompatible properties of Admira and Filtek
TM

Z250 in comparison to the 

novel RBC Xtra-fil, it has laid the foundations for further research.  

 

 

 

  

 



CHAPTER 6  Recommendations for Further Work 
 

 

The present study tested samples of the novel RBC X-tra fil cured to a depth of 2mm and 

4mm to determine how its mechanical properties and biocompatibility were affected. In 

order to investigate this further, it is proposed that samples of FiltekTMZ250 and Admira be 

cured to a depth of 2mm and 4mm and then these materials can be compared further.  

 

Fourier transform infrared spectroscopy (FTIR) offers a direct approach to evaluating the 

depth of cure for light-activated resins. It is proposed that in order to determine the degree 

of conversion (DC) of each of the composite materials i.e. the percentage of carbon double 

bonds converted to single bonds during the polymerization reaction, specimen samples be 

evaluated using FTIR.   

 

Furthermore, for quantitative evaluation of the relationship between translucency and 

depth of cure for each of the composite materials, comparison of the transmission 

coefficient and the cure depth would be a useful method. 
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