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Abstract 
 

For many years, the fields of the cognitive neuroscience of language and natural 

language processing (NLP) have been relatively distinct and non-overlapping. 

Recent breakthrough research is starting to show that these two fields, in their 

common goal towards understanding and modelling language, have a lot to offer 

each other. As developments in machine learning continue to break into new ground, 

due largely in part to the successful development of novel classifiers that can be 

efficiently trained to model highly nonlinear dynamic systems, such as language, the 

open question is how well these models perform on human neural signals during 

language processing. Recent results are beginning to show that various types of 

human signals (eye-tracking, fMRI, MEG) can successfully model various linguistic 

aspects of what is being concurrently processed by the brain. EEG is a cheap and 

relatively accessible way to access neural signals and this thesis explores the extent 

to which decoding of EEG data, using state-of-the-art models common in NLP, to 

carry out this task. Critically, an important foundation needs to be in place that can 

fully explore the types of linguistic signal that is decodable with EEG. This thesis 

attempts to answer this question, setting the stage for joint modelling of text and 

neural signals to advance the field of NLP. This research is also of interest to 

cognitive neuroscientists as the data collected for this thesis will be openly 

accessible to all, with accompanying linguistic annotation, which can help to answer 

various questions about the spatiotemporal dynamics during the reading of 

naturalistic texts. In Chapter 1, I provide an overview of the major literature that has 

investigated the status of linguistic processing from neural signals, setting the 

research question in the correct historical context. This literature review serves as 

the basis for the two experimental chapters which follow and is thus subdivided into 
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two main sections. Chapter 2 explores the various aspects of linguistic processing 

which are decodable from the novel EEG dataset collected for this thesis, with a 

strong emphasis on controlling for potential confounds as much as possible. Using a 

novel machine learning classifier, I show that with specialised training methods, 

generalisation to novel data relating to part-of-speech decoding is possible. In 

Chapter 3, the preprocessing steps involved in preparing the data are examined, in 

which I show that depending on the modelling goal, some steps are particularly 

useful to boost performance of linguistic decoding of EEG stimuli. Finally, in Chapter 

4, a broad review of the results, their implications and limitations are considered. 
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CHAPTER 1: LITERATURE REVIEW & 

BACKGROUND INFORMATION 
 

When decoding word class or part-of-speech information from EEG data, the two 

primary confounds present are related to word length and word frequency. Section 

1.1 will present a short review of the available evidence that is known about the 

electrophysiological responses related to length and frequency processing in the 

brain. An understanding of both is important due to the fact that one needs to be 

acutely aware of how responses to these confounds manifest themselves in the data 

that could otherwise explain target results of interest. Section 1.2 will present a 

review on the status of word class in the brain. Section 1.2.1 will focus on the 

evidence presented (and contested) relating to the status of word class and 

grammatical category distinctions in the human brain. The experiments carried out in 

this thesis have a bearing on this long-standing debate in the literature, with the 

novel adoption of using the latest state of the art techniques in machine learning. I 

am not aware of any published work that aims to decode part-of-speech directly from 

EEG in such a multi-class setting, using such models. The proposed analyses aim to 

add to the literature on this topic by decoding from multiple parts-of-speech, 

particularly in the cases where different classes are correlated along confounding 

dimensions, where successful decoding implies classifier sensitivity to something 

deeper. The proposed use of analysing trial-averaging techniques across a wide 

range of semantic classes, highlighting response commonalities more closely 

connected to PoS-status than anything semantic, are also informative of this 

question. The theoretical grounding of experimental results is an important point to 

consider and future developments in neural decoding can benefit greatly from strong 
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theoretical grounding in (neuro)linguistic theory, though issues relating to divisions 

along semantic lines is not within the scope of this thesis. 

 

1.1 – Length and frequency responses in EEG data 
 

In order to explore linguistic properties relating to word class in EEG data, it is 

important to review the observed effects that arise in neural data during reading in 

order to better establish the response profiles, i.e. in terms of spatial and temporal 

coding, of processes such as the brain’s response to the length of words (in terms of 

number of characters) and also responses tuned to lexical frequency, as measured 

by corpus-level statistics. These features are termed confounds when the explicit 

goal is to analyse neural features that characterise the profile of e.g. lexical class. In 

other applications, the correlation between word length and frequency can be 

exploited as a helpful hint at the lexical class of a word being read, either in single 

word decoding or while reading full sentences. This idea underlies experimental 

approaches presented in later chapters. This section characterises some of the 

major work that has gone into understanding the brain’s EEG responses to word 

length and frequency so that these effects can be understood as best as possible 

when interpreting such contributions to the observed EEG data of the experimental 

chapters.  

Other important observations relating to the ERP effects of length and frequency 

come from Osterhout et al., (1997), who showed that, when trying to model open vs 

closed class differences, important properties relating to word length and word 

frequency were observable in terms of peak latency and scalp distribution, 

depending on the length of the word and how familiar it is (i.e. frequently-used). One 
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major finding in this work is a frontal symmetric scalp distribution associated with 

word length (short vs long words, categorised in a binary fashion) strongly present at 

200 ms post-stimulus. Dufau et al. (2015) reported effects of word length, 100-150 

ms post-stimulus as well as early frequency effects starting around 120 ms, citing 

similar results in Amsel (2011). This paper is worthy of highlighting because it 

contains EEG responses to 1,000 words over 75 participants. The observed effects 

are therefore over a wide range of subjects and therefore likely indicate a very robust 

effect. However, the stimuli set were word lists and did not represent language in 

use, therefore missing a lot of the potential neural signals arising from sustained 

mental structure building, semantic integration, syntactic effects which could have 

affected the observed results.  

 
Dambacher et al. (2012) explores the effects of word frequency and predictability 

effects in EEG responses. The interesting analysis explored in this paper is centred 

on varying the experimental stimulus-onset-asynchrony (SOA) between visual 

presentations of words in a visual reading experiment, showing that typical long 

SOAs (~ 700 ms) typically used in experiments resulted in larger N400 

responses, which also occur much earlier, than when SOAs are used that are more 

in line with the normal reading speed of humans (~ 450 ms or shorter). This is 

relevant in designing an EEG acquisition experiment that is as naturalistic as 

possible and is important to keep in mind should any comparisons be made between 

my results and those of long-SOA experiments with respect to e.g. word 

frequency.  The very early word frequency responses reported in Dufau et al. (2015) 

were from a word list experiment with a 600 ms SOA. This long SOA perhaps 

facilitates an earlier effect when compared with experiments that use shorter SOAs 

that are more in line with the natural pace of human reading speed. Considering that 
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responses to confound-corrected data are planned in this experiment, if word 

frequency responses are to be compared with the literature, then it is important to 

keep in mind that different experimental SOAs can facilitate responses with different 

latencies. 

 
Important work in other recording modalities also gives important clues as to the 

location and timing of word length and frequency effects. An example of this is in 

Schuster et al., (2016), who use fMRI and eye-tracking to look at the effects of these 

variables in sentence-reading. The authors found that higher word length was 

correlated with larger activations seen in occipital cortex, that a U-shaped response 

in areas of the brain strongly linked to eye-movements was present for medium-

length words, showing perhaps binary divisions between short vs long are not suited 

to certain localised regions. Furthermore, with regard to frequency, they found that 

increased word frequency was correlated with a reduction in activation across many 

language regions of the brain, such as the left-inferior gyrus, the superior and 

occipitotemporal gyri, the site of the VWFA that is purported to model more 

sublexical components of word reading, including word frequency (ibid.; Dehaene et 

al., 2001; Dehaene et al., 2004). 

 
Sereno et al. (2020) report an early effect of word frequency, which manifests itself 

as positive posterior activity between 80 - 120 ms and a larger effect between 200 - 

300 ms over midline and anterior ROIs for low-frequency over high-frequency words. 

A complementary negative-going potential response, also to low-frequency words, 

was found in the 400 ms range in anterior ROIs, accompanied by a posterior positive 

activation. Faísca et al. (2019) report that as explicit word retrieval happens, 

frequency effects can occur from 120 ms in ERP studies, but in cases more focused 
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on visual recognition (and not necessarily lexical access) then frequency effects can 

be delayed by 100 ms. This shows that task demands interact with frequency effects, 

but the study itself did not reveal early frequency effects prior to 250 ms, even 

though the implicit reading task required word meaning retrieval. These results are 

important to keep in mind in light of proposed data collection techniques as the 

planned data collection would include a similar task and therefore, we can likely 

expect similar results. 

 
A recent study (King et al., 2020) demonstrated a novel linear method to disentangle 

the neural contributions of word length, frequency and class towards single-trial MEG 

data obtained during sentence-reading. This research complements some of the 

research goals outlined in later chapters with a different but related neuroimaging 

modality (MEG). Therefore, it’s useful to outline the basic findings as the results 

obtained in later sections could support or challenge the findings in MEG data, which 

would require an explanation should any large-scale differences present themselves. 

Using a novel method to disentangle correlated features, the authors find an early 

strong response to word length beginning around 100 ms, a later strong response to 

word frequency arising around 200 ms and a sustained response to word class of 

much lower magnitude spread out over a long post-stimulus period.  

 

1.2 - Word class responses in EEG data 
 

The primary objective is to review the evidence for open- and closed-class word 

effects, with a careful eye on the potential complications that arise through 

confounding with other linguistic features described in the previous section. Open-

class words are those which belong to systematic groups that are open-ended, i.e. 
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which readily admit new entries, such as nouns, verbs, adjectives etc. Conversely, 

closed-class words are those which belong to groups that are functional in nature, 

which are systematically core to a language, and which do not admit new entries, 

such as determiners, prepositions, pronouns etc. (Akmajian et al., 2001). 

 

1.2.1 Background on decoding word class information in the brain 
 

There is a long and rich history relating to the linguistic information content of EEG 

signals. A prime example of this is the discovery of the N400 event-related potential 

(ERP), discovered in Kutas & Hillyard (1980). The N400 is defined as a negative-

going waveform, peaking between 300-500 ms, which can be modulated by 

changing the linguistic properties of a stimulus to which a subject is attending, time-

locked to the exact moment of presentation. Throughout the 40 years that cognitive 

neuroscience has known about this effect, it has been shown to be remarkably 

robust, with further nuances discovered after decades of research, such as the 

sensitivity of the N400 to thematic role assignment (Frisch & Schlesewsky, 2001; 

Kutas & Federmeier, 2011). The role of the N400 in the history of neurolinguistics set 

the stage for further research to come.  

 
At the same time that research into the N400 began, researchers in the related field 

of aphasiology were starting to unpack some curious observations that had been 

reported with regard to the processing of open- versus closed-class linguistic stimuli 

in Broca’s aphasics (Swinney et al. 1980). It appeared that damage to Broca’s area 

in the left prefrontal cortex disproportionately affected the processing of closed-class 

words, which are essential for syntactic structure building. While non-aphasic control 

subjects did not exhibit any difference to word class effects in reaction time studies, 

this distinction clearly presented itself when assessing Broca’s aphasics’ processing 
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of open- vs closed-class words. This research laid the foundation for a strong 

research programme that created a prominent role for the word class distinction in 

psycholinguistics. When EEG methods became available to study specific questions 

related to language processing in the brain, researchers soon returned to the word-

class distinction, with a new analysis toolkit at their disposal. 

 
The first major study to address the idea of word class information in EEG data was 

Neville et al. (1992). This study primarily concentrated on addressing the theoretical 

issue of a biological distinction in neural processing between semantics and 

grammatical structure. The central thesis was that cerebral processing of language 

was fundamentally different if the processed word conveyed semantic (open-class) 

information or grammatical (closed-class) information. As is common in these early 

studies on word class information in EEG, there is little appreciation for the 

fundamentally confounded nature of linguistic variables with other intimately shared 

linguistic dimensions. In this specific case, the dichotomy between semantics and 

grammar is highly confounded with the linguistic content of the stimuli, e.g. semantic 

processing will activate many aspects of the linguistic system such as idiosyncratic 

memories, colours, associated actions and mental visualisations that are absent 

during processing of grammatical / closed-class words. This is a point that will be 

revisited in greater detail later (particularly when discussing Vigliocco et al. (2011) 

and Kemmerer (2014)). These ideas are important to set up in advance of the later 

experiments of this thesis as one core theoretical underpinning is that recordable 

brain activity exists that can aid decoding of word class from single-trial stimuli. As 

more research was done in this area, an awareness of the potential for confounded 

responses associated with word length and word frequency arose. Closed-class 

words are more likely to be short and high-frequency, with respect to open-class 



8 
 

words. Attempts were made to limit such confounds, but to varying degrees of 

success. For example, the attempts in Neville et al. (1992) at confound-minimisation 

were widely criticised in follow-up research, since only semantic items were coded 

for frequency and length, while grammatical items were not coded for frequency and 

length, due to their nature of being primarily high-frequency and short. 

 
Specifically, the authors contrasted the processing of open-class vs closed-class 

stimuli between hearing and deaf subjects and found that the processing of semantic 

stimuli were virtually identical in both the hearing subjects and deaf subjects, but 

markedly different for grammatical stimuli. The main conclusion drawn was that there 

are variables that affect the linguistic development of deaf language users that 

differentially affect the cerebral systems employed when processing closed-class 

stimuli. The extraneous factors that affect deaf subjects appeared to have a strong 

impact on how they processed closed-class stimuli, an effect which wasn’t present in 

normal hearing subjects. For this to be possible, the two subsystems need to be in 

part distinct. The authors categorise this effect as a left anterior negative-going peak 

in the time-locked EEG signal, peaking approximately 280 ms post stimulus onset. 

The N280, as it was introduced, was the first demonstration of a purported EEG 

response specifically to the open/closed class status of a word and an important 

stepping-stone to later experiments, which explored neural processing distinctions 

along the boundary of word class. 

 
A later study by King & Kutas (1995) explored the effects of closed-class, word 

length and word frequency on the ERP responses to linguistic stimuli. The authors 

were acutely aware that effects relating to length and frequency must be formally 

taken into account as they were known to be very strong modulators of EEG 
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responses. They review evidence that previous reaction time and eye-tracking 

studies are modulated by word length and frequency. Specifically, they review 

evidence claiming that each character added to a word increases the expected gaze 

duration by 30 ms and each per-unit increase in log-frequency results in a similar 

reduction in gaze-duration, with many closed-class words not explicitly fixated at all. 

Later chapters will discuss preprocessing methods that aim to module the effects of 

eye movements in EEG signal prior to decoding, so it’s useful to specify some of the 

specific details from earlier work here. 

 
Taking aim at the N280, the proposed ERP index proposed by Neville et al. (1992), 

the authors note that another left anterior ERP component arises in open-class 

words but at approximately 410 ms post stimulus-onset. According to the authors, 

this ERP is characteristically different from the classic N400 response (which has a 

more posterior-central scalp topography) yet such a proximity with a classic 

language-modulated response might have resulted in less attention given to the 

N410 response. Essentially, the spatial distribution of the response is similar 

between the N280, reported only for closed-class words, to the N410, a response 

seen for open-class words. The authors then hypothesise that if there is a left 

anterior effect, which is at least partially modulated by lexical factors, it could be that 

this response is the same between open- and closed-classes, but shifted in its peak 

latency. In this case, the N280 and N410 would be the same type of response, but 

other factors (word length and frequency) affect the response latency when time-

locked to stimulus-presentation. 

 
Closed-class words are often high-frequency and consist of few characters (i.e. they 

are short words) and given that these manifest in clear temporal differences in 
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reaction time and gaze-duration in eye-tracking studies (approximately 30 ms latency 

changes, as reported earlier), the combination of short-word and high-frequency 

might mean earlier responses to closed-class words (N280), while open-class words 

take longer to process, and this was interpreted as the N410. If these two ERP 

components are related, then it doesn’t make sense to talk about them as two 

separate components and thus the authors propose the term Lexical Processing 

Negativity (LPN). These results are important as they underline the importance for 

careful matching of stimuli, specifically showing that if other confounding factors are 

not controlled for, one cannot fully interpret contrasts that involve further correlated 

variables. A lot of care will be taken in validating the acquired EEG dataset collected 

for this thesis in terms of variables that are confounded in natural language statistics, 

largely motivated by this early work that often did not attempt to take steps towards 

controlling for such confounds. 

 

The results from King & Kutas (1995) are consistent with their proposal that closed-

class words do not exhibit a categorically different EEG response to closed-class 

words, but rather that this effect is also seen with open-class words but at a later 

time. Importantly, the modulation of the LPN latency is attributed to the confounded 

linguistic factors of word length and frequency. Therefore, according to their claim, 

one cannot use this ERP as a measure to fundamentally distinguish between open- 

and closed-class processing as open-class words that are short and high-frequency 

would exhibit typical profiles of closed-class words. Previous research had failed to 

adequately take into account this confounding and the natural language statistics 

and profiles of open- vs closed-class words was primarily driven by factors not 

related to status of word class, but other related properties such as word length and 
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word frequency. One important result from the authors’ analysis is that the variance 

of the latency is much smaller than expected, considering the eye-tracking results 

mentioned earlier. For example, per-unit log change in word frequency, one sees 

only a 5 ms shift in latency (compared to a 30 ms change in gaze-duration in eye-

tracking research). A lot of questions are still left unanswered at this point and while 

the analyses presented in the previous studies provide the guideposts for further 

refined analyses, there is still a lack of theoretical-grounded insight behind the 

observations. 

 
Pulvermuller et al. (1995) also investigated the status of open- vs closed-class words 

in the brain using an EEG-based lexical decision task. The authors found no 

hemispheric peak differences for open-class words but did find closed-class words 

were more strongly associated with the left hemisphere (similar to results in Neville 

et al. 1992). The following hypothesis is proposed: the brain processes open-class 

words by relying on distributional assemblies equally present across both 

hemispheres in equal measure (equal in the sense that global averaging does not 

reveal a dominant polarity when contrasting both hemispheres) but closed-class 

words rely much more on left-hemisphere processing around the perisylvian cortices. 

Pulvermuller et al. claim that from 160 ms post-stimulus, different signals emerge 

between the two classes. The report in the paper does claim that 12 out of the 17 

electrodes are centred around the perisylvian cortex so a fair criticism is how they 

could have measured equal contributions of both hemispheres in the open-class 

case and perhaps this distribution of EEG montage has played a role in eliciting the 

observed results. 
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A later study, Osterhout et al. (1997) investigated this claim further by examining the 

extent that word-class (open vs closed) were driven by word length and word 

frequency effects and ultimately found high correlation with such confounding 

features. This result is an expected result yet showing high correlation doesn’t 

directly preclude the absence of effects at the word-class level. An explicit goal of the 

paper was to address Neville et al. (1992)’s claim of an independent closed-class 

marker (N280) and the authors did not find supporting evidence for this claim in their 

attempt to replicate that result, but do state when looking at the grammatical class of 

articles (determiners), something akin to the N280 effect was visible, but this only 

held for this specific part of speech and not for closed-class elements as a whole. 

Furthermore, they did claim to find N400 effects for closed-class stimuli, which 

complicates the picture that had been established from multiple earlier studies. 

Numerous features in the many results found in this paper are interesting and 

relevant, but a key take home message is that the impact of word class or 

grammatical category needs to be considered within sentences, given that 

responses in the 400-700 ms window seemed to be consistent across grammatical 

categories. This is taken to be evidence of differential use of sentential-level features 

of word-level class / category features, but one which disappears in the averaged 

ERP results typical of that time. This study further investigated the scalp 

topographies of ERP responses and did find that they were well explained as a 

function of grammatical categories (parts of speech), which is early evidence of 

discriminability of these classes within EEG data. The suggestion arises, considering 

these analyses, as to whether the dichotomy between open- and closed-class 

elements is really a function of linguistic part-of-speech and in the aggregate 

accumulations of open- and closed-class data sets, different distributions of these 
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classes give rise to the different results seen in the numerous studies that have 

investigated neural processing of word class. 

 
This leaves open the possibility that there could be features of grammatical 

processing that are shared among the grammatical categories of closed-class words, 

perhaps, differentially, to collections of categories that are designated as open-class. 

Slightly earlier work on the noun-verb distinction in aphasics (Caramazza & Hillis. 

1991; Miceli et al., 1988), most notably the double-dissociation between the impaired 

verb processing in Broca’s aphasics and impaired noun processing in Wernicke’s 

aphasics, had raised the profile of partially-shared and partially-distinct neural 

processing architectures of different parts-of-speech. This prior finding and general 

acceptance thereof meant that the results that Osterhout et al. found in differential 

part-of-speech processing fit in well with an emerging consensus that it was possible 

to subdivide the word class distinction into the various subcomponents (parts-of-

speech) that linguists were already familiar with, but for which there was very limited 

evidence in the brain in terms of a precise neural homologue. Osterhout and 

colleagues also report interesting results on the temporal dynamics of parts-of-

speech, in which negative-going waveforms peaked at 280 ms for articles / 

determiners, followed by prepositions at 320 ms, then pronouns at 350 ms. Slightly 

later, peaks were found to be associated with auxiliary verbs, and nouns and verbs 

peaked collectively at just over 400 ms, with a general trend for left hemisphere 

distributions to be larger over the left hemisphere over the temporal cortex. For the 

grammatical category of article (determiner), this also extended into anterior regions. 

It was this left anterior negative peak at 280 ms that the authors likened to the 

original description of the N280 ERP component for all closed-class elements. The 

key element in this research is that temporal dynamics are indicative of word class, 
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and highlights the importance of data acquisition methods that have a high temporal 

resolution, which are able to make use of such latency-based information to help in 

decoding linguistic features. 

 
The documentation of these latency-based results led some researchers to closely 

consider the potential mechanistic underpinnings that could explain time-varying 

responses to different word classes, particularly by considering both early and late 

responses to the processing signatures of word-class effects. An influential attempt 

to clarify this was proposed by Friederici (2002), building on other earlier publications 

on the same topic, resulting in what is known as the syntax-first model. The model 

incorporates both serial and parallel processes (Heim, 2005) across three main 

stages. The model is primarily focused on auditory comprehension and first 

proposes the processing of phonetic features and early access to word-class 

information during the first stage, to select candidate syntactic structures which will 

later be fleshed out with full semantic detail. The second stage assigns thematic 

roles to each element in the syntactic structure and the process ends with the final 

stage that checks whether the initial candidate syntactic structure matches and is 

compatible to be incorporated into ongoing linguistic processing. If re-analysis is 

needed, this process is then claimed to drive the P600 ERP, which was widely 

believed to be an effect of structural reanalysis of incompatible candidate syntactic 

structures.  

Similarly, early left anterior negativity (ELAN) responses were tied to the early 

access of word-class information and the N400 connected to the semantic and 

thematic-role assignment from the incoming stream of phonetic features. The 

predictions of this model state that early retrieval of morphosyntactic information 

occurs alongside other processes and is in theory available for detection early on 
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after onset of the stimulus, as well as in later post-stimulus temporal ranges. This 

suggests that information relating to morphosyntactic features, as this thesis is 

centred on, is available for long time periods. This is particularly relevant when 

considering the modelling procedure that takes into account complex interactions of 

context (Transformer-based models) and suggests that analyses over longer 

windows might be more beneficial to get a more informative temporal context. 

 
Brown et al. (1999) attempted to provide some novel insight into the disputed claim 

of differential neural architectures subserving the processing of open- vs closed-

class words, described as the “lexical-categorical distinction” in their paper. The 

previous studies have largely followed the pattern of concluding differential effects 

without fully taking into account the confounding nature of word length and word 

frequency effects. Follow-up research correctly points out the instability of the 

original conclusions in light of this, by showing the previous responses can also be 

explained with careful attention to the confounds. Brown et al. seek to model the 

confounds in a more systematic way, such that any word-class distinctions found 

cannot be attributable to inattention to confounds. They find two such markers of 

interest to the discussion of differential processing across open- vs closed-class 

words. The first is a bilateral anterior negativity in the 230-350 ms window, where 

closed-class words peak earlier than open-class words. A second negative-going 

trend occurs in the 350-500 ms window predominantly in the left-hemisphere, also 

only for closed-class words. The earlier response is not attributed to the confounding 

factors of length or frequency and therefore seems to be an ERP that specifically 

indexes categorical information relating to linguistic status of words. Although this 

effect does not serve as a differentiating feature that one could use to decode 

processing of open- or closed-class words, a class-specific latency effect was found 
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that is modulated by word class status. This paper broadly supports Neville et al.’s 

1992 claim of the closed-class specific ERP (N280) and finds support for a lexical 

N350 effect with a slightly different spatial topography. In this regard they agree with 

King & Kutas in that it is a matter of seeing the same process at different temporal 

latencies, but the attention paid to confounds shows that after taking length and 

frequency information into account, a broadly similar result to King & Kutas’ was 

indeed seen, providing a more convincing argument as to the word-class signal 

being detectable after confounds had been taken into account.  

The important role that Brown et al. (1999) has in the ongoing discussion about 

differential neural processing of word class is that it takes results from earlier papers 

which came to opposite conclusions and accounted for the observed effects in a 

clear and coherent way. Concretely, they agreed with the hypothesis put forward by 

King & Kutas that the earlier observed N280 and N410 (N350) are the same 

component, just at different latencies, yet showed these effects are still present after 

taking into account the confounds that King & Kutas previously said were the main 

modulators of such latency variations. Furthermore, the finding of the later (350-500 

ms) window in the left-hemisphere is offered as a candidate for closed-class word 

processing (peak at 420 ms), while slightly later (480 ms) peaks in the right 

hemisphere occur only for open-class words. This paper reverses a trend in trying to 

account for word class distinctions only in terms of supposed confounds. However, it 

is not just word length and frequency that has claimed to be behind the observed 

word class effects reported in the literature. This topic will be addressed in the 

following subsection. 
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The aforementioned studies focused exclusively on English and Dutch stimuli, which 

raises questions as to the generalisability of findings to languages in other language 

families (i.e. non-Germanic). Yudes et al. (2016) studied the ERPs of open and 

closed-class words, with a subsequent emphasis the noun-verb distinction. Their 

analysis was carefully controlled for varying linguistic confounds and found that 

closed-class words were processed significantly earlier than open-class in left-

anterior areas, supporting (E)LAN-based hypotheses, with a semantic division 

emerging later that defined the open-class words. More recent research on time-

frequency analyses of EEG signals, relating to the open vs closed-class distinction, 

suggests that the mechanism underlying neural processing of open vs closed-class 

elements, namely a strong theta-band effect (discovered in Bastiaansen et al. (2005) 

in a cohort of younger subjects) is not robustly detected in older populations (Mellem 

et al., 2012) and thus might reflect a developmental aspect of language processing 

across the lifespan. 

 

1.2.2 - Arguments against word-class as an organisational principle 
 

A few references in the preceding section hint at the fact that observed effects from 

experimental research on the nature of open vs closed class processing in the brain 

is more associated with brain responses to confounded variables, such as length 

and frequency. A related claim on the lack of an organisational principle on the basis 

of word class comes from Vigliocco et al. 2011, similarly echoed in Kemmerer 

(2014). These claims state that the principles upon which the brain organises 

linguistic knowledge and carries out language processing are divided along the 

correlated dimensions of how the brain processes the semantic and conceptual 

structure of the elements, i.e. Kemmerer (2014) points out that nouns involve 
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recruitment of the ventral temporal lobe to access features such as shape, while 

verbs recruit the posterior middle temporal and frontoparietal regions. 

 
The analysis and presented evidence is primarily related to the noun-verb 

dissociation widely popularised by the work of Caramazza and colleagues in the 

1900s. Higher processing demands are reported to be recruited when processing 

verbs, as these often contain multiple participants and require effort to integrate all 

the associated verbal meanings within the context. This is something not present (as 

much) in nouns and goes some way to explaining why some aphasics struggle with 

verb processing but not noun processing. The suggestion is that the limitation is at 

the level of effort required for successful linguistic processing and integration into the 

ongoing mental context.  

 
The claims that the brain does not respond differentially to morphosyntactic classes, 

with reported effects explained away once one takes into account word length and 

frequency (Münte et al., 2001) or along semantic dimensions that are tightly 

correlated to various parts-of-speech (Vigliocco et al., 2011), present theoretical 

challenges towards the idea that machine learning systems can explicitly model 

these classes from neural data, either for direct decoding or as part of a larger 

system in which neural data accompanies standard text-based NLP techniques. The 

reason this is important to review is that successful development of machine learning 

techniques to work with NLP relies on the ability to detect aspects of neural signals 

that are more than just correlations of word length, frequency and other correlated 

linguistic variables. If neural responses to purported part-of-speech categories can 

be explained via such correlations, then this presents a theoretical problem that 

would inhibit a learning system from discriminating between, e.g. determiners and 
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short high-frequency adjectives, since the distribution of word length and frequency 

in these two classes would overlap to a great degree. In such a case, we must 

accept that the scope for successful decoding of part-of-speech is limited only to 

what confounds and correlations can reveal. However, from an engineering 

perspective, which will be adopted in later chapters, the goal is primarily driven by 

successful generalisation and to this end, if the recorded neural responses aid PoS 

decoding, but are associated with other cognitive phenomena, this does not preclude 

successful development of systems that can be of great use to NLP systems in the 

future. 

 

1.2.3 - Arguments for word-class as an organisational principle 
 

Boye & Harder (2012) gave rise to an entire research programme that examined a 

proposed fundamental dichotomy between neural processes that subserve (i) lexical 

and (ii) grammatical processing. Their work ties together a look of unexplained 

results from linguistic theory and reframes them into a set of results that are neatly 

explained under their proposed assumptions of differential processing mechanisms. 

The core idea is that lexical items carry information and are primary, while 

grammatical elements are secondary and rely on lexical hosts. The underlying 

principle involves a series of operations that interact with lexical access, conceptual 

structure for information-carrying (lexical / open-class) elements while the secondary 

(closed-class) operations do not require such interactions with the wider linguistic 

system and are supported by differential neural processes. Supporting evidence for 

this idea has been found in aphasia studies (Garraffa & Fyndanis, 2020; Boye & 

Bastiaanse, 2018; Ishkhanyan et al., 2017; Nielsen et al., 2019) and more recently in 

TMS studies (Ishkhanyan et al., 2020). 
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While this information supports a dichotomy along the dimension of open vs closed-

class, the status of discernible sub-classes in terms of the part-of-speech classes 

that are well-defined in linguistic theory and key elements in NLP remains 

unspecified. Taken together, there are both arguments for and against organisational 

principles that allow for PoS-specific neural decoding and the issue remains an open 

scientific question. 

 

1.3 - Natural language processing applications of 

neuroimaging data 
 

A recent paper (Hollenstein et al., 2020) has reviewed the numerous ways so far in 

which neural signals derived from human subjects via neuroimaging and eye-

tracking are being leveraged towards NLP goals. This work places a strong 

emphasis on the use case of such applications and summarises promising 

techniques and strategies that have led to successful applications, while highlighting 

the many issues that research faces when dealing with the complexity of the 

experimental choices that are possible when both collecting data and training models 

for specific tasks.  

 

An early paper that deserves attention is Bingel et al. (2016), in which the authors 

used fMRI data from text reading in a part-of-speech induction paradigm, specifically 

by convolving voxel-level BOLD values with a hemodynamic response function, 

deriving token-level fMRI vectors for part-of-speech classification. The authors 

reported a 4% reduction in error rate when using fMRI data over and above models 

trained on text alone. This is an important point to establish that cognitive signals 

from humans contain information that can be leveraged towards computational NLP 

algorithms. 
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Frank et al. (2015) employed an information-theoretic approach to combining EEG 

and NLP, using the metric of surprisal, calculated over text corpora, to track the 

correlation between brain signals and semantic processing. They showed that 

covariation among NLP metrics and corresponding human processing from EEG 

existed, highlighting once again that there is utility in using such signals as a window 

into the human processing of language. This is an important point that is built upon 

throughout this thesis. Hale et al. (2018) demonstrated that by injecting phrase 

structure building processes into the model architecture, that EEG data could be 

predicted during auditory sentence comprehension. This paper again highlighted 

how human brain signals and NLP methods can work together, but it showed that we 

can use representative models in order to make claims about human language 

processing, not just advancing NLP via the addition of neural data. A final example 

worth highlighting is in Schwarz & Mitchell (2019), where the authors are able to 

predict, from large language models, multiple language-connected ERPs (i.e. N400, 

ELAN, P600) by mapping LSTM output vectors to textual statistics such as word 

length and log probabilities. These works, taken together, provide an important 

fundamental basis that establishes a strong connection between human language 

processing and language processing tasks that can be solved by machines. 

 

Hollenstein et al. (2018) showed specifically that information extraction, named entity 

recognition and semantic analyses are just some of the NLP tasks that can benefit 

from eye-tracking and EEG data being jointly modelled along with textual inputs. This 

shows a first foray into some of the more common tasks, but as of yet direct 

modelling of PoS information from single-trial EEG data has not been demonstrated, 

which is a gap that this thesis aims to bridge.  
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A promising strategy for future work is one that can utilise a smaller neural signal 

dataset along with a corresponding gold-standard linguistic parse tree and full 

linguistic annotation to develop a model that jointly learns from both streams of input, 

but which can be applied on text inputs after training, thereby gaining benefits from 

human neural signals but not being restricted to requiring neural signals in mass-

application. A recent example of this is in Ren & Xiong (2021), who showed that 

attention vectors can be used to extract relevant information from saved neural 

signals, which can then be applied to novel input data, requiring only cognitive 

signals during training. A further benefit of this approach is that it is claimed that, 

unlike other approaches that concatenate high-dimensional vectors of brain activity, 

the human-derived signals have been trained so that only task-relevant information 

is extracted, meaning that all extraneous information not relevant to the task at hand 

is not processed by the model as, for its purposes, this extra data is functionally 

equivalent to pure noise. 

 

1.3.1 - Transformer-based Neural Network Models 
 

Advances in machine learning in the past five years have been considerable, with 

the adoption of new models that are continually breaking records in many tasks over 

many diverse datasets across a broad spectrum of domains. Recurrent-based 

models were largely in favour in the NLP community until 2017 and had often been 

applied to decoding approaches on EEG data. A new class of models was 

introduced by Vaswani et al. (2017) that involved a decomposable mechanism to 

take contextual information into account via a parallelisable mechanism that was 

more significantly more efficient than the iterative training methods inherent to 
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recurrent architectures used in RNNs. See Figure 1.1 for a visualisation of the 

standard Transformer architecture. 

 

 

Figure 1.1. The standard Transformer model of Vaswani et al. (2017) 

 

The original implementation of the Transformer model was composed of an encoder 

and a decoder, each symbolised by stacked layers called the encoding stack, 

decoding stack, respectively. The role of the encoder blocks is to progressively 

transform the input sequence by iteratively mapping token-level layer 

representations to new forms that are weighted linear combinations of the other 

token representations. The more encoder layers there are, the more arbitrarily and 

complex derived contextual representations can be. The end goal of the encoder is 

to create a sufficiently expressive representation where each token-element is 
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mapped to a representation derived from all other tokens in the input sequence. In 

this sense the representations can be called contextualised embeddings of the input, 

namely numerical vector-space representations of tokens, where tokens can be 

words, sub-words or characters. Outside of natural language processing 

applications, there is no restriction on what can count as a token, as long as it 

represents a sequence of data one wishes to model (e.g. EEG vectors). On the other 

hand, the role of the decoder is to provide a sequential output as a function of the 

encoder representation. In a language translation task, the encoder could represent 

a sentence in one language and, using this representation, the role of the decoder 

would be to emit the translation of the sentence which was given to the encoder. It 

does this by predicting the most likely next word in the decoder’s vocabulary, or 

more generally, the distribution of classes encoded in the final layer of the decoder. 

Masking is a technique that is used so that the decoder at time point t does not use 

information from the encoder at later time steps (since representations are derived 

on sentences in discrete time-steps). This allows the decoder to work step-by-step 

on new data, after sentences are passed to the trained encoder. The notion of 

attention in models of this type is to derive a weight-vector that, for each input token 

in a sentence, gives a value which delineates its contribution to the token-level 

representation one layer higher in the processing hierarchy. Each token in each layer 

(except the input) is a linear weighted contribution of the tokens from the previous 

layer and attention is the mechanism which calculates these weights. 

 

The leftmost section of Figure 1.1 shows the encoding stack, and the rightmost 

section shows the decoding stack. As these models developed in the years since, 

derived Transformer models typically use either the encoder part exclusively (i.e. 
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BERT-style models, as introduced in Devlin et al., 2019) or the decoder part 

exclusively (i.e. autoregressive models such as GPT-2 (Radford et al., 2019) and 

GPT-3 (Brown et al., 2020)). A core component of both styles of models, as well as 

of the original encoder-version, is the self-attention mechanism. This method allows 

for vector-based input representations to be shaped by the contexts in which they sit, 

ultimately conveying nuanced representations heavily shaped by each input’s 

relation to each other input in the context.  

 

Formula 1.1. The self-attention mechanism from the Transformer model 

 

 

At the core of this method are three important matrices, which are altered during 

training. The input representations (in matrix form) are matrix-multiplied with each of 

the three matrices in order to transform the model’s input into a form that is expected 

by the model. The Q (query) matrix treats each input as a “query” which is then 

matrix-multiplied by the K (key) matrix, which can be conceptualised as a “key”. 

These together are known as the attention scores which determines how much of 

each vector in the context should help shape each individual representation itself. 

This is then scaled by the square root of the dimensionality of the vectors (which was 

found to give better performance) and multiplied by the V (value) matrix. Each triplet 

of Q, K, V matrices consists of a single “head” and by using multiple sets of triplets, 

concatenating the results, and projecting the expanded results down to a smaller 

cardinality, this leads to “multi-head” self-attention, where each triplet of matrices can 

be trained to detect various aspects of the input, such as syntax or morphology. 
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This mechanism puts the notion of the contextual environment of the inputs in centre 

stage and is therefore a good choice of model to capture the high-dimensional 

complex time-varying dynamics that are observed with neural signals typically 

emanating out of EEG / MEG experiments. This work is reviewed in detail here 

because the mechanisms of modelling are important and part of the expected 

advantages I hope to see during the experimental chapters. It will be important to 

consider the mechanisms by which Transformers perform their calculations when 

interpreting results in contrast to more basic machine learning classifiers. 

Transformers are only just beginning to be used with EEG data and this thesis aims 

to explore this in greater detail, with a particular emphasis on EEG-specific training 

steps to even further boost modelling capability and derive better models. 

 

1.4 - Effects of EEG Preprocessing on Language 

Tasks 

 

Preprocessing choices relating to specific domains of research ought to be 

thoroughly understood in terms of how these choices affect the downstream output 

of the neural representations. For example, given that many modern paradigms 

attempt to link machine learning and cognitive neuroscience via methods that map 

the outputs of artificial neural networks to vectors of brain data (encoding models), if 

preprocessing choices will change the vectors of brain data input to these 

correlational tasks, results could be significantly different had a different 

preprocessing scheme been applied to the data during the preprocessing stage. This 

is also important for decoding models as different data might contain representations 

associated with the target classes that allow for better metric scores, depending on 
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the methods used to preprocess this data. This chapter covers the main steps of 

preprocessing commonly applied to EEG data in light of the potential downstream 

effects on decoding linguistic tasks, with particular emphasis on the steps which 

might affect the linguistic information in the signal. 

 

1.4.1 - Ocular artefacts during reading 
 

The main sources of noise found in EEG recordings, which is the primary target of 

standard preprocessing strategies in cognitive neuroscience, is considered here. 

This puts the following sections, relating to specific preprocessing techniques, how 

they work and what is achieved with them, into context. Two are standard across 

most instances of EEG data acquisition (electrical and muscular), but special 

attention must be paid to another (ocular) when dealing with acquisition of linguistic 

data, due to the potential informative nature of eye movements that is tied to 

language processing. This section highlights important information on the role of eye 

movements during reading in order to understand the expected effects on the 

recorded EEG data and how this information might be relevant for some types of 

linguistic decoding tasks 

 

The electrical gradient across the eye, being positive at the cornea (front) and 

negative at the retina (back) gives rise to the corneoretinal dipole, which is very 

easily detected in EEG, particularly around the fronto-lateral electrodes (Dimigen, 

2020). During left-to-right reading as is typical in Western cultures, saccadic eye 

movements are to the right, resulting in positive visible topographies over the right 

hemisphere and more negative over the left, the effects of which are linearly related 

to the saccadic movement (Keren et al., 2010). Corneoretinal dipole artefacts occur 



28 
 

during blinking, too, where upward rotation of the eyeballs (Bell’s phenomenon) lifts 

the positive end of the cornea towards and drops it back down when the eye opens, 

causing a transient deflection observable to the naked eye (Dimigen, 2020). It is, 

however, the effect of eyelid closures that has an even greater disruptive effect in the 

EEG recording (Iwasaki et al., 2005) though in many ways resembles effects due to 

blinking yet is caused by the eyelid allowing current to flow to the forehead (Dimigen, 

2020). The effects of these artefacts are symmetric frontal positivity due to the raised 

cornea that happens during the palpebral-oculogyric reflex.  

 

Another ocular artefact commonly observed is the myogenic spike potential which 

precedes saccadic eye movement, peaking at saccade onset (Keren et al., 2010). 

This artefact is believed to be due to the extraocular muscles and results in negative 

topographies around the facial electrodes, yet exhibits a less spatially-defined 

detectable in posterior electrodes and consequently quite difficult to remove. With 

this knowledge, it’s beneficial to design reading-based EEG acquisition experiments 

with an eye to presenting stimuli in a way where saccades and their accompanying 

artefacts are minimised. 

 

1.4.2 – Filtering 
 

The presence of noise can mask a signal of interest in myriad ways. In cases where 

noise occupies a spectral region different to that of the signal of interest, the regions 

containing the noise can be attenuated (or removed completely) by filtering (de 

Cheveigne & Nelken, 2019). In the field of neuroimaging, such noise / nuisance 

signals abound, emanating both from exogenic and endogenic sources, such as 

power-line noise and electrical interference as instances of the former, and ocular 
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artefacts (particularly saccades and eye-blinks) as well as muscle and cardiac 

signals as instances of the latter (ibid.) 

 

Depending on the analysis, different signals from inside the body might be 

differentially treated as signal or noise. For example, often one treats ocular artefacts 

from the corneoretinal dipole during eye-blinking as noise that should be removed 

from EEG data, while in other experimental conditions, this could be the signal of 

interest while neuronal modulations of cognitive processing might be considered to 

be noise. It’s important to be aware of the various filtering techniques and what 

problems they explicitly address, as well as any potential inadvertent implicit 

problems that might arise from their (mis)application to neural signals on further 

downstream analyses. 

 

1.4.3 - Low-pass filters 
 

Most aspects of cognitive processing of interest to cognitive neuroscience have been 

previously linked to slow neural dynamics, meaning that such signals typically have 

higher power at the lower frequency ranges (de Cheveigné & Nelken, 2019). On the 

other hand, most noise signals, ones which typically interfere with the signals of 

interest, belong to the higher ends of the spectral continuum, resulting in a situation 

where a conceptual boundary between signal and noise can be placed, where we 

attenuate any signal of a higher frequency and allow all lower frequencies to pass 

through the filter unaffected. This is typically done to remove any electrical line noise 

at 50 Hz or 60 Hz (depending on the recording location). Low-pass filters are also 

applied on the analog signal prior to digital conversion in order to avoid anti-aliasing 

effects. This is largely constrained by the sampling rate of the recording equipment, 

which in turn defines the Nyquist frequency, under which digital samples can be 
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unambiguously reconstructed. There have been numerous claims in the literature 

that, through low-pass filtering, many neural signals belonging to higher frequency 

bands are inadvertently removed (i.e. gamma) that contain useful information for 

neural decoding (de Cheveigne & Nelken, 2019). A recent example of this, as it 

pertains to decoding of language stimuli using EEG, is given in Synigal et al. (2020). 

They found that including higher-frequency information from the gamma band 

increased the decoding accuracy of a system predicting natural speech from EEG 

signals. Such examples are important to keep in mind when building encoding / 

decoding models of linguistic brain data.  

 

1.4.4 - High-pass filters 
 

High-pass filters are used to remove the DC component of a signal, which can vary 

quite drastically over recording sessions, especially if the duration of the recording is 

long (Luck, 2005). Given that the data collected in this thesis are subsequently used 

for the decoding of linguistic features via RSVP reading, it is important to consider 

the preprocessing pipeline carefully, i.e. the choice of an appropriate value of the 

high-pass filter to apply during signal preprocessing. One such consideration is the 

effect of eye movements during reading, which requires correction, often 

implemented via ICA. Since ICA is sensitive to low-frequency drifts, the toolbox used 

in this paper (MNE-Python) recommends a cut-off frequency of 1 Hz if applying ICA 

to correct for ocular artefacts. To accept more standard values (i.e. 0.1 Hz) for the 

high-pass threshold, would potentially cause problems if trying to obtain a good ICA 

decomposition from an experiment that involved a reading task, due to this ICA 

sensitivity to the threshold value. A final important aspect to consider with regard to 

high-pass filtering is that, if many blinks contaminate the signal and are in any way 
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condition-dependent, such as might be the case in different levels of difficulty during 

text reading, as will be assessed in the following data collection procedure, care 

must be taken if high-pass filtering is applied prior to epoch generation, since causal 

filter responses to blinks can extend into epochs immediately following blink activity, 

and acausal filter responses can be affected by blinks that occur after the epoch 

ends, both of which can introduce condition-dependent differences that might be 

picked up during later classification tasks but which are not connected with neural 

processing (de Cheveigne & Nelken, 2019). 

 

1.4.5 - Band-pass / Notch filters 
 

The electrical noise frequencies pervasive around any non-shielded recording 

equipment pose a problem for preprocessing and analysis of EEG data (as well as 

many other recording modalities). In the UK, power-line noise occurs at 50 Hz, while 

in other countries such as the USA, this occurs at 60 Hz. This means that 

preprocessing pipelines for similar experiments will attenuate different frequency 

bands and any signal of interest in those bands, for the same experimental task, 

could contain task-relevant neural information differentially-depending on where in 

the world the data were recorded. This also ties into the application of low-pass 

filters since, if the low-pass frequency is close to the powerline frequency (or in 

cases with more distance between them, if the powerline distance is particularly 

strong) then notch filtering becomes more important as simple low-pass filtering in 

these boundary cases will not be sufficient to attenuate the noise introduced by the 

electrical disturbances in the recording environment. Many analyses from the 

oscillatory world of neural signals focus on the properties that filtered signals contain, 

with reference to internal / external stimuli, in different filter bands, such as delta (0.5 
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- 4 Hz), theta (4 - 7.5 Hz), alpha (8-13 Hz), beta (14 - 26 Hz) and gamma (30+ Hz) 

(Sanei et al., 2017). In cases where the frequency band of interest is sufficiently far 

(in frequency space) away from the boundaries that typically cause a lot of noise, 

which an experimenter would like to remove from the data, it is sufficient to only 

band-pass the filter as this can also by default remove the effects of low-frequency 

drifts and electrical interference from powerline noise. 

 

1.4.6 - ICA correction 
 

Independent Components Analysis aims to find a weight matrix that linearly 

transforms observed data into a series of source vectors that exhibit the property of 

being maximally statistically independent (Sun et al., 2005; Luck, 2005). By 

decomposing neural data into such components, it is possible to plot corresponding 

topographies and observe the time series of each source vector and assess whether 

it conforms to the typical behaviour of a neural component or a noise component. 

Noise can arise from many different scenarios, from electrical interference to muscle 

activity. The sources that are not deemed to be neural in origin are then zeroed out 

and the inverse of the weight matrix (the mixing matrix) then rebuilds the EEG data 

matrix minus any defined noise source vectors. One particular collection of 

interferences recorded in EEG data is ocular interference in the form of blinks 

saccades. Horizontal movement of the ocular dipole (saccades) and upward eye 

movements during Bell’s phenomenon (blinking), as well as eyelid closure effects 

are sources that are strongly represented in EEG (Iwasaki et al., 2005), resulting in a 

strong positive frontal topography (Croft & Barry, 2000).  

 

Many methods have been proposed to remove ocular effects, which are in most 

cases treated as noise and their presence, often orders of magnitude higher than the 
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effect of interest (Dimigen, 2020), is undesirable. Regression-based approaches 

(Gratton, 1998) are commonly applied, as well as explicitly recording eye 

movements with electrodes during EEG acquisition via an electrooculogram. Some 

recent proposals involve concurrent eye-tracking during EEG acquisition, which can 

detect blinks and saccades and attempts to cleverly remove the effects in the data 

via an optimised-ICA procedure (Dimigen, 2020). A common strategy is to apply ICA 

to high-pass filtered EEG data and inspect topography for broad frontal positivity 

alongside a time series containing regular high-magnitude deflections characteristic 

of blinks. Some implementations of the ICA algorithm first apply Principal 

Components Analysis (PCA) in order to obtain a cleaner version of the data, but 

questions have been raised about this stage when applying correcting EEG data via 

ICA (Fiorenzo et al., 2018). The ocular information typically removed from the signal 

might, in fact, be useful when decoding linguistic information from a reading 

experiment (as expanded on later), therefore a careful understanding of 

preprocessing methods that aim to remove traces of eye movement activity is 

warranted. 

 

1.4.7 - Baseline correction 
 

Baseline correction is a standard technique in ERP research in which each channel 

in a window of data, containing a time-locked response to an experimentally-driven 

stimulus (in the case of evoked responses) other experimental response of interest, 

has subtracted from it a channel-wise average from a different window. It is a 

necessary technique to correct for the tendency for electrophysiological signals to 

drift over time, with a non-zero mean and an offset that is not associated with any 

experimental manipulation (Luck, 2005). Signal drift is still a major issue after high-
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pass filtering, even if the duration of recording is not comparatively long (Tanner et 

al., 2016). 

 

The major assumption that underlines the most typical applications of baseline 

correction is that there is nothing relevant in the baseline interval that is connected to 

the stimulus. In many cases, this is not an issue as randomised stimuli presentations 

are accompanied by large stimulus onset asynchronies (SOAs) or relatively large 

interstimulus intervals (ISIs), wider than the effect of interest, thereby allowing 

recorded pre-stimulus data that is not correlated with any experimental target. 

Recent advances in cognitive neuroscience are many and multifaceted, with one 

particular development in the use and application of naturalistic stimuli. When these 

stimuli are of a temporal and sequential nature, such as listening to music, speech or 

reading continuous texts, a trade-off presents itself between the ability to record data 

while a subject is exposed to a more naturalistic environment, which is more 

ecologically valid and likely to result in more naturalistic brain responses. In such 

cases, where it becomes unnatural to punctuate each successive stimulus item with 

a sufficient gap to allow for effective baseline periods to be calculated and regularly 

subtracted, the immediately preceding time window will not contain responses that 

are not completely uncorrelated. This poses an issue when dealing with responses 

that are analysed collectively in which the recorded data from one epoch is 

contrasted with another epoch, where the former contains the time window used to 

baseline-correct the other.  A particular example of this is component overlap, where 

large-scale deflections in the EEG signal systematically affect the surrounding data 

in systematic ways both in terms of the temporal responses, but also with respect to 

the topography, i.e. certain channels might be systematically affected.  
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This gives rise to an alternative option in which baseline correction periods can be 

drawn from local temporal windows that are consistent with the type of stimuli being 

recorded. For example, if listening to speech then any sustained pause that 

separates utterances is a suitable option. In reading, the interval between sentential 

units also provides a suitable candidate. As sentences are presented, the SOA can 

be increased in this interval to allow for a period of recording in which channel 

averaging can occur from data that will not be used during any experimental 

analysis. This means that a certain level of signal drift is accepted, which correlates 

then with sentence length. Beyond the benefit of applying baseline correction on 

data truly external to any experimental analysis, sentence-length dependent drift is 

also potentially useful for downstream linguistic decoding.  

 

1.4.8 - Feature Scaling 
 

Feature scaling is an important step for most classifiers, with the notable exception 

of tree-based methods (Bishop, 2006). A requirement is that different features are of 

comparable magnitudes, which allows the learning mechanisms to become sensitive 

to all the input features and not focus only on features that are of higher orders of 

magnitudes than other features. This is especially important in cognitive 

neuroscience, particularly with methods like EEG, which suffer from issues such as 

electrodes becoming loose and generating lots of noise that can’t always be filtered 

out with prior preprocessing steps. Noise from the environment, alongside issues 

with electrode connectivity, often results in noise that is orders of magnitude larger 

than the neural responses of interest. This means that the correct scaling of EEG 

data is important in general, particularly when measuring responses to linguistic 

stimuli, which are not as large in magnitude as responses to visual or aural stimuli. 
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Two implementations of feature scaling are considered in this chapter: (i) (univariate) 

standardisation and (ii) multivariate noise normalisation, in which the covariance of 

the data is taken into account in order to account for potential noisy electrodes. Due 

to the fact that the magnitude of the neural signal in language experiments is much 

smaller than noise that is typically also recorded, methods that aim to enhance 

signals of interest are of critical importance for optimal decoding. 

 

1.4.8.1 – Univariate Standardisation 
 

Univariate standardisation is a simple method by which each feature in a dataset (i.e. 

electrode in the case of EEG) is scaled independently with respect to all other 

electrodes (c.f. magnetometers in MEG; voxels in fMRI) by subtracting the mean of 

the channel and dividing by the standard deviation such that the resulting channel of 

data exhibits the properties of being zero-mean and unit variance. 

 

 

Formula 2.1. The formula used to standardise a vector of data. 

 

The benefit of this method is that it is computationally cheap to apply and requires 

minimal assumptions about the underlying data. Due to the univariate nature of this 

scaling procedure, no contextual information relating to the signal-to-noise ratio 

(SNR) of other channels is taken into consideration. Therefore, while the time series 

of each channel is equal in terms of variance and average value, there is no attempt 

to discern true neural signals of interest from those which exhibit high noise. This is 

exactly the rationale behind multivariate methods to provide adequate feature scaling 
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in the context of abundant sources of potential noise interference during EEG 

acquisition. 

 

1.4.8.2 - Multivariate Noise Normalisation 
 

Multivariate Noise Normalisation is a mechanism that considers the error covariance 

between sensors / channels and scales the data according to the formula given 

below. Univariate standardisation is the case when the covariance matrix is diagonal, 

i.e. all off-diagonal covariances between signals is 0. 

 

 

Formula 2.2. The formula for multivariate noise normalisation. Various implementations are specified 

by the precise form of the covariance matrix 

 

 

As introduced in Guggenmos et al. (2018), it comes in three main forms: (i) baseline 

(ii) epoch and (iii) time point. Each version is differentiated by the data used to 

calculate the covariance matrix of the data, i.e. if it is calculated across the 

(averaged) baseline period, we get (i); when considering the average over epochs, 

this gives rise to (ii). The final version is more computationally costly and derives a 

separate covariance matrix for each time point in the epoch.  Although there are 

doubts about its effectiveness in paradigms that make extensive use of stimuli-based 

pairwise differences, such as Representational Similarity Analysis (Ritchie et al., 

2021), the mechanism in itself can be useful to help under-weight noisy channels 

and thereby allow true neural sources to be upscaled during data preprocessing. 
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Abstract 
 

This chapter explores techniques to predict Part-of-Speech tags from neural signals 

measured with millisecond temporal resolution with electroencephalography during 

text reading. We first show that information about word length, frequency and word 

class is encoded by the brain at different post-stimulus latencies and that averaging 

trials across these linguistic dimensions boosts classifier performance. We then 

demonstrate that pre-training on averaged EEG data and data augmentation 

techniques boosts PoS decoding accuracy of single-trial EEG data. Finally, we show 

that by applying optimised temporally-resolved decoding techniques, Transformer 

models substantially outperform linear SVMs on PoS tagging of unigram and bigram 

data. 

 

Background 
 

Recent research has shown that morphosyntactic information extracted from human 

functional magnetic resonance imaging (fMRI) signals during sentence-reading tasks 

can substantially improve the induction of part-of-speech tagging (Bingel et al., 

2016). Due to the sluggish nature of the hemodynamic response function, which 

typically peaks between 4-6s after stimulus onset, this extracted information reflects 

only the associated blood oxygenation level in a relatively slow manner and is not a 

measure of contemporaneous neural activity. This renders fMRI as a non-ideal 

candidate method to model and characterise the rapid neural dynamics that underlie 

natural language processing in the brain. EEG, on the other hand, measures neural 

activity at the millisecond resolution level, which allows for the online characterisation 

of neural and cognitive activity as it unfolds during sentence reading. 
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Early event-related potential studies demonstrated that the magnitude and 

topography of EEG responses during text reading tasks are dependent on various 

aspects of the linguistic stimulus, most notably on word length, word frequency as 

well as word class, i.e. whether a word belongs to an open or closed class (also 

termed lexical / grammatical class). Word length effects arise around 150 ms, 

frequency effects slightly later around 200 ms and word class effects variably from 

around 400-700 ms (Osterhout et al., 1997; Segalowitz & Lane, 2000; Münte et al., 

2001; Dufau et al., 2015). These early studies relied on averaging a vast number of 

trials into event-related potentials. 

 

In this chapter we combine EEG with linear SVMs and Transformer models to 

investigate whether morphosyntactic information, such as information relating to 

part-of-speech, can be extracted not only from trial-averaged data, but also from 

single-trial data with the goal in mind to later develop a system that can process and 

categorise linguistic information from data collected in a live setting relating to 

specific novel input, which therefore would only exist in single-trial form in naturalistic 

applications. Combining EEG recordings of text corpora with PoS tagging and / or 

dependency tree annotations would also allow for more reliable morphosyntactic 

modelling than is currently available in methods that are strictly text-based. Such a 

development would be particularly useful for the creation of resources for under-

resourced languages with limited resources. 
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2.1 - Decoding word length, frequency and class 

 

2.1.1 - Introduction 
 

Using EEG decoding with linear SVM models, we temporally resolved the linguistic 

variables of word length, word frequency and word class, during single-word reading 

of continuous naturalistic texts. To achieve this, we recorded an EEG dataset of 

word-level trials, from which the data used in this experiment were extracted. This 

allows a direct comparison with previous research assessing the effects of length, 

frequency and class in event-related potential research on linguistic processing 

during sentence and word list reading (ter Keurs et al., 1999; Hauk & Pulvermüller, 

2004; Hauk et al., 2006; Osterhout et al., 1997; Osterhout and Holcomb, 1992; 

Sereno et al., 2020; Faísca et al., 2019; Münte et al.,2001; Dufau et al., 2015). The 

results of this analysis show that the EEG dataset and decoding methods are 

sufficient to uncover the typical temporal process underlying the cognitive activity 

during word reading, as it relates to the processing of word length, frequency and 

class. Furthermore, the use of pseudotrials (trial-averaged data) at various levels 

increases the decoding accuracy as the number of averaged trials increases. This 

confirms the EEG data contains the signal of interest that later sections depend upon 

and will take advantage of, as well the fact that the signal can be boosted by trial-

averaging.  

 

2.1.2 - Methods 
 

2.1.2.1 - Data Selection 

 

Our experimental stimuli derive from a subset of the English Web Treebank corpus 

(Bies et al., 2012), a collection of English texts across multiple stylistic genres: 

weblogs, newsgroups, reviews and Yahoo answers. These data are already 
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annotated for various linguistic structures and information, such as part-of-speech 

tags and dependency parse trees. One notable feature about this data set is that it 

has been released as part of the 2017 CoNLL (Computational Natural Language 

Learning) challenge (Zeman et al., 2017), meaning that many teams have submitted 

NLP models on various derived tasks from this data set, providing a range of high-

scoring benchmarks with which we could compare our models that also incorporate 

neural data from the EEG recordings. Pre-annotated data are easy to incorporate 

into the data structures that contain EEG data of word / sentence reading from our 

experiment, meaning that it is simple to attach desired metadata to the EEG data 

structures, which facilitates standard comparisons among any desired linguistic 

features (i.e. difference waves, topographies) alongside easy ways to manipulate 

data to be exported efficiently into formats that fit more of a standard machine 

learning paradigm (e.g. NumPy arrays).  

 

The subsets from the EWT corpus that we chose to use in our experiment were 

weblogs, newsgroups and reviews and Yahoo-answers. The primary reason 

for excluding email was that many text files contained email formatting, URLs, 

email subject lines and others were of an overly casual nature with many non-

standard spellings and use of online linguistic features such as emojis, which would 

not be used in any analysis we were considering. On the other hand, longer, well-

prepared and more formal texts such as news reports (newsgroups) provided a 

range of sentence lengths that incorporate a greater diversity of vocabulary, 

dependency structure and sentence complexity.  
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2.1.2.2 - Stimuli set 
 

 

The stimulus set (outlined in the previous section) contains 4,479 sentences (74,953 

tokens) across four text genres. To facilitate future experiments where we can 

average over multiple EEG recordings of the same syntactic environments, this 

corpus was acquired approx. 5 and a half times before data acquisition ceased due 

to external factors. In total we collected EEG data for 24,323 sentences over 

404,205 tokens. The mean sentence length was 16.7 words (standard deviation: 

12.23 words). Table 2.1 below outlines the distribution of the Universal 

Dependencies PoS tagset across each partition of data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

Table 2.1. Number of samples for each PoS tag across the train, development and test sets along 
with the total values across the entire dataset 

 

Tag train dev test total 

ADJ 24,029 3,489 2,913 30,431 

ADP 33,969 5,049 4,235 43,253 

ADV 17,492 2,593 2,218 22,303 

AUX 19,351 2,833 2,485 24,669 

CCONJ 11,758 1,731 1,546 15,035 

DET 31,429 4,589 3,962 39,980 

INTJ 656 76 90 822 

NOUN 59,991 8,691 7,501 76,183 

NUM 5,062 712 677 6,451 

PART 6,955 970 908 8,833 

PRON 27,623 3,973 3,677 35,273 

PROPN 27,867 3,737 3,641 35,245 

PUNCT 3,716 485 501 4,702 

SCONJ 7,116 1,046 943 9,105 

VERB 39,710 5,723 5,186 50,619 

X 1,029 125 147 1,301 

Total 317,753 45,822 40,630 404,205 
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2.1.2.3 - Participant Selection 

 

We decided that we would like to collect multiple repetitions of our corpus from a 

single subject in order that any trial-averaging is done within-subject in order to 

quantify the applicability of this method in terms of SNR increases due to repetitions 

of the stimuli. If we had multiple subjects and trial-averaging did not work, we would 

struggle to disassociate myriad factors such as exact cap placement, different 

subject-specific phenomena. We can be more certain of the effects of trial-averaging 

by acquiring multiple versions of a dataset from the same subject. 

 

The single subject was selected out of a small group who had been previously 

invited to help trial some potential settings of our data acquisition procedure. We 

invited 5 subjects to participate in an experimental reading trial in order to determine 

the most effective word presentation rate. We tested three different levels of reading 

speed: slow (500 ms SOA), medium (240 ms SOA) and fast (120 ms SOA). 

Afterwards, we performed a 10-question post hoc memory test as well as a small 

discussion relating to the participants’ subjective experience with regard to the ease 

of reading at those different word presentation rates, which determined that the 

medium reading speed was most comfortable and resulted in the highest recall 

scores on post-reading tests. Two subjects were selected to take part in a trial using 

EEG recordings, in order to test the experimental setup. Only one of these two 

subjects was later able to commit to the long-term time frame required in order to 

acquire the amount of data planned as part of the experiment. We performed a 

sanity check on the trial EEG data and determined the correctness of the 

experimental setup. The subject agreed to take part in the full experiment and gave 

informed consent according to the ethics procedure at the University of Birmingham. 

All participants invited into the lab received monetary compensation for their time. 
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2.1.3 - Experimental Procedure 

 

In order to reduce extraneous signal contamination from saccadic eye movements, 

we presented sentences one word at a time in the centre of a screen using Rapid 

Serial Visual Presentation (RSVP) with an approximate Stimulus Onset Asynchrony 

(SOA) of 240 ms. Stimuli were presented in a white monospace font (Courier) on a 

light grey background of an LCD monitor (1920 x 1080) using the Python package 

PsychoPy (Peirce et al., 2019). Relative to a white fixation cross at the centre of the 

screen, we presented each individual word in accordance with its optimal viewing 

position (Rayner et al., 2016), which has been shown to reduce microsaccades 

during active reading in RSVP, allowing for increased ease of reading. Relative to 

the central fixation-cross, each word subtended a horizontal angle of 0.76 degrees to 

the left and 11.81 degrees to the right. Between sentence boundaries the SOA was 

increased to 500 ms while a white fixation cross was presented in the centre of the 

screen. Figure 2.1 shows a visual depiction of the experimental setup.  
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Figure 2.1. An example trial and associated EEG recording. Sentence words were presented on 
average approximately every 240 ms. EEG signals were extracted from -100 to 700 ms relative to the 

onset of when the word appeared on screen. 
 

 

In order to ensure that the subject was actively processing the text on the screen, on 

approximately 20% of the sentences in each recording session, the subject was 

given an on-screen prompt to verbalise back to the experimenter as much of the 

previous sentence as can be remembered. A mean accuracy of 93% across all 

sessions demonstrated that the subject was actively processing the text as it was 

being presented on screen. To promote the comfort of the subject during the reading 

experiment, as well as reducing any potential movement artefacts in the EEG signal, 

we stabilised the subject in a chinrest that was aligned with the centre of the 

presentation screen.  

 

2.1.3.1 - EEG data acquisition 
 

Continuous EEG signals were recorded via BrainVision’s PyCorder software using 

reference-free mode at a sampling rate of 1,000 Hz. A 64-electrode cap in 10-20 

layout with Ag/AgCl active actiCAP slim electrodes (ActiCAP, Brain Products, GmbH, 

Gilching, Germany). Prior to each recording session, channel impedances were 

verified to be below 15 kΩ.  

 

2.1.3.2 - EEG preprocessing 
 

The number of individual EEG recording sessions was 77. The collected EEG data 

were preprocessed using MNE-Python (Gramfort et al., 2014). The data were first 

band-pass filtered between 1-40 Hz and then downsampled to a new sampling rate 

of 250 Hz and re-referenced to the common average reference. Noisy channels were 
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identified by a session-wise power spectral density plot and were then interpolated. 3 

recording sessions were discarded due to excessive noise / interference that could 

not be corrected, resulting in 74 pre-processed recording sessions. Each recording 

session’s EEG data were then decomposed via Independent Component Analysis 

(ICA), where an average of 4 non-neuronal components relating to ocular, muscular 

and electrical artefacts were removed.  

 

Relative to stimulus onset-aligned word-level triggers, EEG data were extracted from 

-100 ms to 700 ms, resulting in 200 time points, each time point representing 4 ms of 

data. The pre-stimulus period (100 ms) was then used for baseline correction, such 

that the channel-wise mean from this period was subtracted from the rest of the 

epoch. The remaining 700 ms was extracted to ensure that we could capture late 

syntactic effects, such as the P600. The prestimulus period was then discarded, 

resulting in word-level EEG trials that represent the 700 ms post-stimulus window 

(176 time points in total). For all the recording sessions that were not discarded (74 

out of 77), we did not perform any epoch-level quality checks that would have 

resulted in the dropping of noisy trials. The motivation for this was that we wanted to 

be able to examine sentence-level effects and to get an estimate of expected results 

when using all trials in a recording session. In live applications, which we envisage 

for the future, one is not afforded the luxury of being able to drop excessively noisy 

trials if those trials make up the constituent parts of phrasal structures such as 

sentences or subject-predicate sentential units. By removing noisy trials in this way, 

any such accuracy estimates would be an overoptimistic expectation of what might 

be possible in live applications. 

 



48 
 

The EEG data were then spatially multivariate noise normalised using a noise 

covariance matrix, estimated separately for each target class (Guggenmos et al., 

2018). The associated metadata for each word-level trial were then annotated with 

the gold part-of-speech tags of the current and following words, along with their word 

lengths and the Zipf-logarithmic frequency scores from the WordFreq Python 

package (Speer et al., 2018). 

 

2.1.4 - Data splits 

 

The entirety of the EEG corpus consists of 74 recording sessions (each 

approximately 20-25 minutes in duration). These sessions were recorded over a 

period of 20 individual days, in which multiple recording sessions were obtained on 

each day. In cases where multiple recording sessions occur on the same day, the 

exact EEG cap placement and thus electrode location might unfairly aid training and 

generalisation scores so in order to create data splits that were equally balanced in 

this regard, a specific procedure was implemented to try to carefully match the 

development and test sets so that expected results on the development set (i.e. to 

assess early stopping) would also apply to expected performance on the test set.  

 

In order to create a development and test set that were fairly matched yet completely 

independent of the training data, segmentation of the entire dataset happened at the 

text-file level. 10% of the data was assigned to the development set (and 10% to the 

test set) in the following way. First, a recording date was selected, and all the 

filenames read by the subject on that day were extracted. A random text file from this 

list was sampled to be part of the development set and its size (measured in terms of 

number of individual words) was recorded. This text file was then removed from the 

sample and the text file with the most similar size (in terms of number of individual 
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words) was extracted and became part of the test set. This process was repeated 

until approximately 9% of the dataset had been each assigned to the development 

and test sets (whereby the training dataset consisted of 82% of the original 

data). This process is depicted in Figure 2.2. 

 

 

Figure 2.2 The data splitting procedure. Initially the corpus of text files is designated entirely as 
training data (1). Dates were EEG data were acquired were then looped through until the end. At each 
intermediate step, all text files acquired on a specific day were extracted (2) and from that subset a 
single file was sampled (3). This file is added to the dev set and the closest-matched (in terms of text 
length) from the same subset is added to the test set (4). This ensures a balance between both data 
splits. This process is repeated until each of the dev and test set consist of 10% of the text files and 
associated EEG data. 
 

 

In Figure 2.3 below, three histograms of the number of word-level EEG trial 

occurrences are given. On the left (blue) is the training set distribution. The rightmost 

two (red: development set; green: test set) have the same y-axis and show that 

across recording dates (x-axis) the distributions of EEG trials is roughly equivalent 

and shows no major confound that could be explained by the electrode locations due 

to recordings on the same day. Using the text files that are matched for length and 

recording dates, the original EEG dataset is then partitioned into training, 

development and test sets. 
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Figure 2.3. Histogram of individual recording dates for the training data set (blue, leftmost), 
development data set (red, middle) and test data set (green, rightmost). There is a broad balance of 

recording days across the data splits in order to avoid any systemic imbalance that could affect model 
training or generalisation performance. The development and test sets were explicitly chosen so as to 

reflect a similar profile across recording dates, while keeping all data between splits completely 
independent. 

 

Furthermore, we assessed the distribution of text genre among the different data 

splits in order to verify there were no significant differences that could affect model 

training and generalisation. A bar chart showing the number of word-level EEG trials 

per dataset split is given below in Figure 2.4.  

 

 
 

Figure 2.4. Histogram of text genre representation in each of train (left), development (middle) and 
test (right) data splits 
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2.1.5 - Decoding 
 

We explored two classifiers in our experiments, (i) linear SVMs and (ii) encoder-

based Transformer models. The reason why we chose to contrast these specific 

algorithms is due in part to the linear vs non-linear nature of each, in which we are 

able to examine the extent that information can be linearly separated in the 

broadband space of EEG signals. This sets an important baseline as using only a 

non-linear classifier, it’s unclear how far above more simple approaches that these 

results will be with a simpler (often linear) algorithm. Namely, if results are given only 

for the latest state-of-the-art neural networks but a simple linear classifier achieves 

roughly the same performance, it’s important to have such a comparison in order to 

quantify the difference, as otherwise the implicit biases conveyed by complex model 

architectures can often be (mis)credited with successful high-level decoding, when in 

fact comparable results on simpler linear classifiers can show this cannot be the 

case.  

 

Prior to the neural network revolution, linear SVMs were among the top-performing 

classifiers used on neuroimaging data in the multivariate pattern analysis paradigm. 

This also played a role in the selection of the linear SVM as our baseline comparison 

with which we would compare the highly non-linear mechanisms of the Transformer. 

There is an on-going debate in which linear vs non-linear classifiers are arguably 

purported to be better models of neuroimaging data (see section in lit. review on this) 

and we also felt our results might add useful information to this issue. 

 

2.1.5.1 - Classifier implementation 

 

In later experiments, we intend to contrast linear SVMs (Chang & Lin, 2011) with 

Transformer models, specifically the style of models that arose out of taking the 
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encoding part of the original encoder-decoder Transformer of Vaswani et al. (2017), 

similar to the BERT architecture (Devlin et al. 2019) which has gained widespread 

adoption due to its impressive results on many state-of-the-art datasets. A problem 

arises in that the training procedure for both classifiers is quite different, whereby the 

Transformer is trained by using Stochastic Gradient Descent (SGD) iteratively, with 

convergence assessed on a held-out development set and early-stopping methods 

which stop training when there is no consistent improvement on the development 

set. The standard method to train linear SVMs is to solve the constrained 

optimisation problem via Lagrangian multipliers (Burges, 1998). To train an SVM in 

the standard paradigm would require that the training data sizes be different between 

the linear SVM and the Transformer, in that the training data would be smaller for the 

SVM, while extra data is used for early-stopping during neural network training. We 

could combine the training and development datasets, but this then means the SVM 

is trained on more data than the Transformer would see.  

 

One solution to this is to implement an online-learning implementation of a linear 

SVM via a stochastic gradient descent classifier, which uses the hinge loss function 

(Formula 2.3) in an iterative manner, mirroring the way neural networks are trained.  

 

 

Formula 2.3 The hinge loss function, which allows SVMs to be trained via gradient descent. The two 
inputs to the loss function are (a) the predicted and (b) true class (in +1/-1 coding so that a correct 

prediction equals 1, which results in no loss for that prediction-label pair. 

 

The formulation of a linear SVM in this way allows us to implement the same training 

regime on exactly the same data, assessing the development data periodically in 



53 
 

order to implement an early-stopping mechanism. We used a Scikit-learn 

(Pedregosa et al., 2011; Zhang, 2004) implementation, which is based on LIBSVM 

(Chang & Lin, 2011). This implementation procedure requires the specification of a 

hyperparameter alpha, which is inversely proportional to the C parameter in the more 

common implementation of SVMs. The loss function for the standard SVM is given in 

Formula 2.4. Higher values of C result in upweighting the sum of the slack-variables 

(in non-perfect classification scenarios) thereby allowing for looser margins that can 

increase model complexity. This means higher values of C act in the opposite 

direction to regularisation coefficients (Bishop, 2006). A value of 0.75 was chosen for 

alpha, based on earlier (independent) experimental analyses using pilot data. 

 

Formula 2.4. SVM loss function that allows for misclassification of some data points in order to 
support the maximum-margin classification in non-linearly separable data spaces. 

 

 

2.1.5.2 - Training procedure 

 

Each EEG trial, containing 176 time points across 64 electrodes, was flattened into a 

single array, meaning each batch of data consists of a 2D matrix (batch_size x 

number of features).  The batch size used to train all SVM models in this paper is 

256, which was preselected and not a tuned hyperparameter. A full epoch is defined 

as a complete pass through the entire training data. The models were all trained for 

8 epochs, or until there was no improvement for over 10 batches of data. During 

model training, the best model according to the development data was stored. The 

model that attained the highest accuracy on the development set was then applied to 

the test data in order to yield a vector of predictions. These predictions are then 

compared to the true labels and an accuracy value is calculated. The accuracy 
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values are then added to an array that iterates over the 160 windows, which allows 

for the examination of the temporal dynamics of varying above-chance classification 

accuracy, namely the ability to visualise the time-varying effects of the neural data.  

This is performed over all 10 random seed values. 

 

2.1.6 – Class definitions 

Linguistic data are highly correlated among a large number of dimensions, meaning 

that in order to examine one aspect of the data, one must deal with the confounding 

influence of the other (correlated) dimensions. We attempted to validate the EEG 

data by assessing the extent to which we can decode the linguistic dimensions of (i) 

word length, (ii) word frequency and (iii) word class. We performed this using a 

series of binary experiments across each dimension (word length, word frequency 

and word class). We split the word length data into two classes: (a) short and (b) 

long. We furthermore split the word frequency data into: (a) high-frequency and (b) 

low-frequency. For word class data, we split the data into (a) open-class and (b) 

closed-class groups. Short words were defined as words that were written with up to 

four individual letters; anything above this was classed as a long word. We examined 

the Zipf-frequency scores of all words and found the median value (5.91) in the 

dataset. This value was used to categorise all words as either low-frequency (any 

word with a frequency score < 5.91) otherwise the word was categorised as a high-

frequency word. Out of the part-of-speech tags used in the Universal Dependencies 

paradigm, we grouped NOUN, VERB, ADJ, PROPN & ADV into the open-class 

group and ADP, DET, PRON, AUX, SCONJ & CCONJ into the closed-class group. 

A representation of these binary splits is given below in Table 2.2. 
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Linguistic 
variable 

Word length Word frequency Word class 

Group 1 4 characters or 
fewer (SHORT) 

Zipf frequency under 5.91 
(LOW-FREQ) 

ADJ, NOUN, VERB, 
ADV, PROPN (OPEN) 

Group 2 More than 4 

characters (LONG) 

Zipf frequency equal or 
over 5.91 (HIGH-FREQ) 

ADP, CCONJ, SCONJ, 
DET (CLOSED) 

Table 2.2. Description of how each linguistic variable was binarised. 

 

2.1.6 - Confound correction 
 

It should be noted here that correcting for confounds in linguistic data is a near-

impossible task and that the employed terminology used here (‘correction’) should be 

interpreted only in the sense that a concerted effort was taken to remove the most 

serious confounds. For example, it’s very hard to remove the correlation between 

closed-class words that are short and high frequency, since the class of adpositions 

consists mostly of short, high-frequency words, such as prepositions and articles in 

the case of English. We do not claim that we can completely remove such 

confounds, but we can define a procedure that corrects for them such that between 

the two binary classes (in all the cases of word length, word frequency and word 

class) that the distribution of the confounding variables is matched. We also take 

care to match across various other features such as sentence position (sentence-

initial, mid-sentence and sentence-final), as change of contexts and sentence wrap-

up effects are known to also have a confounding effect (e.g. that an open-class word 

is typically the final word in a sentence).  

 

The principal aim of this current experiment was to determine whether we could 

recover the known linguistic time courses of the expected neural behaviour via 

classification decoding. The expected neural time courses for word length, frequency 
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and class processing is outlined in greater detail in Chapter 1. By analysing the 

linguistic properties of the EEG signals in this way, we are able to (a) validate the 

dataset to show that the experimental and preprocessing paradigm resulted in 

sensible results that are in accordance with the wider literature on the topic and (b) 

to determine the range of accuracies we can expect from different levels of 

pseudotrial averaging. The reason why this latter point is important is when we later 

explore ways in which we can pre-train deep neural network models to learn from 

data that has a higher level of SNR. The necessary prior step that is required before 

this can be achieved is to show that averaging of this data does indeed result in a 

higher signal quality that is reflected by an improvement in a machine learning 

classifier to decode the relevant linguistic class (in a binary class setup) via a specific 

assessment metric (i.e. accuracy). 

 

2.1.6.1 - Implementation of the confound-correction procedure 

 

The following procedure was implemented independently for each of the training, 

development and test sets. We first discretised the frequency score for each word in 

the EEG dataset, by rounding to the nearest 0.25 and selecting all frequency levels 

between [1.0, 8.0] i.e. 28 different frequency score bins. We purposefully discarded 

any rare words (frequency score < 1.0) due to the fact that they are unlikely to 

appear in all of the train, development and test sets. With the two levels of word 

class, we selected all words of increasing length (based on the number of characters 

in the word) from 1 to 9. Finally, we left the two levels of the word class group as 

previously defined. 

 

For each of: (i) word length, (ii) word frequency and (iii) word class, we constructed a 

joint histogram over the other two variables, as well as across sentence position 
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(sentence-start, mid-sentence and sentence-end) and extracted equal number of 

samples across the main binary partition, until for word length (short / long), word 

frequency (high / low) and word class (open / closed), both levels of the binary 

partition were equally balanced with respect to all the confounds. Figure 2.5 below 

shows a visualisation for both levels of word class (open vs closed class), separately 

for each of the train, development and test sets, where the marginal distribution of 

each axis represents a confound w.r.t. word class and the central plot contains their 

joint distribution. As can be verified, for both levels of the word class variable, the 

distribution of word length and frequency is equally matched. The corresponding 

figures for word length and word frequency, across train, development, test sets are 

given in Appendices A and B. 

 



58 
 

 
 

Figure 2.5. Joint histogram of confounding variables of frequency and length with respect to word 
class as the central variable, i.e. word class is equally balanced across open and closed-class words, 
both equal with respect to the distributions of the confounds. This process is done internally to each 

data split, which is given by each row. This process is also applied separately for each of three 
sentential positions (sentence-start, sentence-middle and sentence-end). Marginal distributions are 

given along the axes. 
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2.1.6.2 - Pseudotrial averaging 

 

Trial averaging increases the signal-to-noise ratio of neural signals (Grootswagers et 

al., 2017; Guggenmos et al., 2018; Roy et al., 2019; Tuckute et al., 2019), while 

ignoring true variability of EEG data from different words in the same category and 

class differences in within-class variability (Münte et al., 2001). In order to explore 

the effect of classification accuracy with respect to the signal-to-noise ratio of the 

EEG trials, we examined three different levels of trial-averaging: (i) no trial averaging 

(using just single trials), (ii) averages of three and (iii) averages of 10. This baseline 

is important to determine because in later sections, we plan on using pre-training 

methods on higher quality data to tune the weights of neural networks prior to fine-

tuning on single trials. We therefore explored how trial-averaging affects the 

windowed decoding traces specified above (general strategy section).  

 

To create a pseudotrial, we always selected single-trial data from within each data 

partition so as to avoid any leakage of data across splits that are differentially used 

to train, evaluate and finally test candidate models. The procedure involved 

resampling with replacement (i.e. bootstrapping) either averages of 3 or 10, 

representing a form of low-averaging versus high-averaging. When generating 

pseudotrial datasets, we can theoretically pick any value to represent the number of 

pseudotrials to be generated, yet in order to be comparable with the single-trial 

dataset, we generated pseudotrials until these pseudotrial datasets were the same 

size as the corresponding single-trial dataset. In order not to violate the 

independence assumptions of the statistical tests we planned to use to assess the 

use of trial-averaging on classification accuracy (repeated Binomial tests corrected 

for multiple comparisons), resampling in the test set was always performed without 

replacement, meaning that the test sets for each level of averaging is necessarily 
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different, whereby the highest-level of averaging results in the smallest test set. The 

number of samples in each data set split, for each linguistic variable of interest (word 

length, frequency and class) are given in Table 2.3.  

 
 

length frequency class 

train 82,424 51,364 45,502 

development 12,402 7,632 6,658 

test (single-trial) 10,810 6,590 5,670 

test (avg. 3) 3,603 2,196 1,890 

test (avg. 10) 1,081 659 567 

 
Table 2.3. Distribution of word length, frequency and class over data partitions 

 

 

If random samples of single trials, when averaged together, result in higher metrics 

being measured, then we can assume that the features of the data that are averaged 

together are driving this effect. Namely, if we are averaging together low-frequency 

words, then these averages will be across a range of different word lengths and word 

classes, thereby averaging out many inconsistencies and leaving behind information 

in the signal that is common to all words that entered into the averaging procedure. 

 

2.1.7 - General Analysis Strategy 
 

The principal aim of this section is to temporally resolve how word length, frequency 

and class are encoded in the EEG signals recorded between 0 and 700 ms with 

respect to the on-screen onset of the stimulus during continuous single-word reading 

in an RSVP paradigm. This allows us to compare obtained results with those of 

previous research which have assessed the effects of word length, frequency and 

class in event-related potential (ERP) research during word-list and sentence 

reading (ter Keurs et al., 1999; Hauk & Pulvermuller, 2004; Hauk et al., 2006; 
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Osterhout et al., 1997; Osterhout & Holcomb, 1992; Sereno et al., 2020; Faísca et 

al., 2019; Münte et al., 2001; Dufau et al., 2015).   

 

We can furthermore quantify the effect of trial-averaging on the temporal resolution 

across the 700 ms epoch (176 time points, where each time point represents 4 ms). 

We implement a sliding-window approach in order to obtain a temporally-resolved 

estimate of linguistic processing across the three primary linguistic variables under 

consideration in this experiment. Each window consists of 16 time points (64 ms) 

and is shifted along by 1 time point (4 ms) over the entire epoch. The resulting vector 

of accuracy scores contains 160 values. We repeat this over all levels of averaging 

for the three linguistic variables of interest (length, frequency & class) as well as over 

10 a priori randomly-selected seed values. The same 10 seed values are used when 

running all experiments. 

 

2.1.7.1 - Statistical Analysis 

 

In order to calculate the statistical significance of the decoding traces, we take the 10 

seeds for each experiment and extract the one that had the highest score on the dev 

set. We then extract the corresponding results on the test set, for this seed value that 

scored highest on the development set. We apply False Discovery Rate correction 

(Rouam, 2013) at p < 0.05 in order to correct for multiple comparisons. We then 

indicate the temporal windows which are significantly different from chance with 

respect to an alpha value of 0.05. For plotting, we take the test results obtained 

across all 10 seeds and calculate the mean as well as the 68% confidence interval. 
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2.1.8 - Results 
 

The decoding results for the various pseudotrial levels (single trial, averages of 3 and 

averages of 10) for the linguistic variables of word length, frequency and class are 

given in Figure 2.6. The top plot associated with each linguistic variable is a butterfly 

plot of the EEG difference wave for the respective condition stated after the 

associated letter (A: length; B: frequency; C: class). For example, the butterfly plot 

for B - Frequency is High > Low, therefore the plot reflects the topography of all 

electrodes for the average of all high-frequency trials after having subtracted the 

average of all the low-frequency trials, over the 700 ms epoch window for each word-

level epoch in the dataset. The bottom plots contain the three levels of pseudotrial 

averaging (black: averages of 10, dark grey: averages of 3 and light grey: single-

trials). The topographies of two time points are also plotted to the right of each 

temporal depiction of the EEG data. The timing of these topographies is indicated by 

grey vertical lines in the butterfly plot. Statistically significant windows are marked in 

the respective trial-averaging colour above the decoding plot. Each accuracy point is 

plotted at the end of its 16 time point (64 ms) window. This means that an accuracy 

time point at 200 ms contains the result of applying the linear SVM on the window of 

data from 136 - 200 ms, therefore the time points are right-aligned with their window 

and as such represent results with a slight rightward shift in time.  
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Figure 2.6. Butterfly plots for difference waves across all 64 channels, scalp topographies and time 

courses of decoding accuracy. (A) Length: LONG > SHORT, (B) Frequency: HIGH > LOW, (C) Class: 
OPEN > CLOSED. Each line in the butterfly plot represents a channel, colour-coded by its position. 

EEG topographies are given for the indicated points in the butterfly plots (vertical grey lines). The 68% 
confidence interval over the 10 runs for each of single trials, pseudotrials (averages of 3) and 

pseudotrials (averages of 10). 
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The decoding trace of the linear SVM models replicates the temporal cascade of 

word length, frequency and class effects previously reported for ERP responses 

averaged across a large number of trials. The word length effect arises earliest, 

around 120 ms post-stimulus onset, previously associated with visual word 

processing in occipitotemporal cortices (Hauk & Pulvermuller, 2004; Pulvermuller et 

al., 2009; Schuster et al., 2016). The topography at the onset of the word length (~ 

148 ms) is centred over the visual cortex and then proceeds forwards along the left 

hemisphere (~ 200 ms). The effects of word frequency are seen to influence neural 

processing in a slightly later window, around 220 ms onwards, with a strong left-

hemisphere predominance, as observed in earlier studies which examined the 

effects of word frequency (Griffiths et al., 2012). The word class effect is more 

sustained than the word length and frequency effect, with an early peak around 250 

ms and a later one around 55 ms. The latter peak is in line with the well-known P600 

ERP, an index of syntactic processing (Osterhout & Holcomb, 1992; Hagoort et al., 

1993; ter Keurs et al., 1999). After 600 ms, the decoding traces drop off back to 

around chance performance (50%). The selected topographies show an earlier 

predominance in the left-hemisphere around 212 ms, while later windows around 

400 ms show a more balanced distribution of positive ERP activity with respect to 

hemisphere, highlighting where open-class words elicit stronger responses than 

closed-class words.  

 

Consistent with a recent report (King et al., 2020), word length and frequency were 

stronger than the word class effect and the unfolding of the temporal events matched 

well. This can be taken as converging evidence to support the magnitude and 

temporal ordering of the neural processes that occur during text reading across 
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multiple neuroimaging modalities. As expected, decoding accuracy increased with 

the level of trial-averaging. Thus, carefully controlling each comparison of interest 

(e.g. word class) for the confounding effects of no interest (e.g. word length and word 

frequency in the case of focusing on word class effects) enabled us to dissociate 

word length, frequency and class effects, despite their high correlation in natural 

language.  

 

2.1.9 - Discussion 
 

The experimental results presented thus far show that an EEG dataset, collected on 

a corpus of natural language where common aspects of language such as word 

length, frequency and class are all highly confounded, can be split such that we can 

model these effects individually by correcting for the confounds. This allows us to 

uncover the known effects of cognitive processing which have been studied before in 

ERP research, both in terms of the temporal cascade but also of expected 

topographies that have been reported. We also show that the use of pseudotrials of 

varying levels can boost decoding accuracy, which is an important point to establish 

in current data because this point underlies methods in the following sections, 

namely the pre-training on pseudotrials to expose classifier models to higher SNR 

data. Furthermore, we show in our word class decoding that effects relating to part-

of-speech exist in the data that are separate from the contributing effects of word 

length and frequency, which is an issue that has been raised in the literature on the 

status of such groupings of syntactic categories. 
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2.2 - Improving Training Methods for PoS decoding 

 

2.2.1 - Introduction 
 

After establishing that information relating to word class can be successfully decoded 

by a linear classifier, in which the binary task (open vs closed class decoding) was 

set up by collating equal proportions of different part-of-speech tags, we next 

explored two primary methods to help boost model decoding. These methods are 

commonly applied in the latest machine learning models, such as context-sensitive 

representation learning methods such as the Transformer model. We explore how 

decoding of part-of-speech in EEG signals can be enhanced in Transformer models 

by comparing their generalisation performance with training paradigms that do not 

employ these techniques. We furthermore contrast the effects of how these training 

tweaks differentially affect high-capacity Transformer models by also applying the 

same process to the linear SVM models of the previous section. Our implementation 

of the linear SVM model is tuned to mirror the training steps of the Transformer in 

order to facilitate such comparisons. We can therefore explore how these training 

methods interact with the model architectures and representational capacity.  

 

The two techniques we look at in this section are (i) data augmentation methods and 

(ii) pre-training methods. For data augmentation, we bootstrap pseudotrials as 

described previously, but to much larger dataset sizes so that the classifier has 

access to a broader range of synthetic data derived from the training data. For pre-

training methods, we focus on modelling single-trial data after having pre-trained on 

trial-averaged data, which has a higher signal-to-noise ratio. The rationale for this 

methodology is that by accessing higher quality data, when we fine-tune a model on 
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the noisier single-trial EEG data, the model is able to generalise quicker as it has 

previously had access to less noisy data.  

 

2.2.2 - Data set 
 

The primary goal of our experiments in this chapter is to address the extent that part-

of-speech can be decoded from EEG signals, so we therefore use the confound-

corrected word class data from the previous section, namely the data that was 

sampled such that there was no systematic difference between word length and 

frequency between two binary classes (open and closed-class words). From this 

dataset, we extracted three PoS categories from the open-class dataset (NOUN, 

VERB, PROPN) and three PoS categories from the closed-class dataset (ADP, DET, 

PROP). Equal amounts of each PoS class were extracted, such that the dataset also 

contains an equal amount of open and closed class words overall. This resulted in a 

training set where each of the six PoS classes appeared in the training set 3,470 

times, 335 in the development set and 335 times in the test set (total dataset size is 

approximately 20,000 data points). In order to ensure a more balanced distribution of 

words across the data splits, we selected only higher-frequency words, i.e. words 

which had a higher Zipf-score than the median value in the dataset (5.91). We also 

matched the development and test sets such that they had equal distributions of 

word lengths. 
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2.2.3 - Transformer Implementation 
 

For the Transformer (Vaswani et al., 2017), we conducted a model architecture and 

hyperparameter search over model layers, learning rate, multilayer perceptron 

dimensionality, dropout rate, encoder vs encoder-decoder) on the development set. 

The selected model consists of four encoder-blocks and a final dense layer that 

projects the output of the last encoder-block onto the PoS classes via a softmax 

function. The Adam optimiser was used alongside an early-stopping procedure. The 

implementation of the model is based on the WMT example of Google’s novel ML 

frameworks Flax / Jax. Table 2.4 lists the selected parameters. The Transformer 

received EEG channels x time points as inputs and provided a classification 

response per time point. We aggregated the classification responses across all time 

points into a single prediction via a majority-voting scheme. 

 

 

parameter value parameter value 

encoder layers 4 MLP size 1024 

learning rate 0.04 MLP dropout rate 0.1 

batch size 16 QKV size 512 

warm-up steps 50k attention heads 8 

training steps 400k attentional dropout 0.1 

Adam B1 0.9 Adam B2 0.98 

Adan epsilon 10^(-9) Adam weight decay 0.0 

 
Table 2.4.  Hyperparameters of the Transformer model 
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2.2.4 - Data augmentation 
 

2.2.4.1 Method 

 

Using this unigram part-of-speech dataset consisting of six classes, we assessed 

whether data augmentation via bootstrapping and re-averaging increases decoding 

performance for trial-averaged data (pseudotrials of 3-averaged single trials or 10-

averaged single trials, as explored in the previous section). Concretely, we sampled 

either {3,10} single-trials from the same part-of-speech class in the training set and 

averaged them iteratively until we arrived at a specific overall dataset size. We 

generated 4 different training set sizes: N_size = {20k, 100k, 250k, 500k}, 

resulting in two (3 vs 10 trial-averages) by four (dataset sizes) = eight training sets. 

The lower value of 20k was chosen because it is the same size of the single-trial 

data, and this allows us to contrast single-trial performance and pseudotrial 

performance while keeping the data set sizes consistent.  

 

A development set containing corresponding trial-averages for 3-averaged and 10-

averaged data was also generated, which matched the number of our initial 335 x 6 

= 2,010 sample single-trial dataset. Linear SVMs and Transformers were trained on 

the 8 training sets using 20 random seeds and the mean accuracy (and 68% 

confidence interval) for the development dataset, across these 20 seeds is shown in 

Figure 2.7. 

 

2.2.4.2 - Results 

 

Data augmentation systematically influenced the decoding accuracy of the 

Transformer but not in the case of the linear SVM. The Transformer’s additional 

benefit from data boosting may result from its greater model complexity. In addition, 
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the nonlinear activation functions between successive layers allow for the modelling 

of a superset of problems compared with that of the linear SVM. For both instances 

of trial-averaging, the Transformer’s decoding accuracy on the development set 

increased for some levels of averaging (100k, 250k) with respect to the cardinality of 

the dataset size of the single-trial data (20k), which we define as our baseline result. 

For the latest augmented training set size (500k) we see a slight decline in decoding 

performance for the Transformer. This decay in performance may be explained by 

the increasing dependency of the training samples via continued bootstrapping.  

 

 

 
 

Figure 2.7. Data augmentation results on the development set. The Transformer has higher decoding 
performance when trained on augmented data, but up to a limit (250k) until performance drops again. 

 

 

We formally assessed whether the Transformer’s decoding accuracy was better 

using a training set with 250k augmented pseudotrials in comparison to using our 
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baseline, i.e. 20k dataset which is the same size as the original single-trial dataset. 

To do this, we selected the model that performed best on the 250k development set, 

as well as the model that performed best on the 20k baseline development set, 

applying these models to test data that were trial-averaged via sampling without 

replacement. In the corresponding development sets, we sampled and averaged 

with replacement, such that the samples are no longer independent, therefore in 

order to respect the statistical assumptions of the tests we used, we applied the best 

performing models on pseudotrials of 3 and 10-averaged single trials. In both of 

these cases, the Transformer’s decoding was significantly better for the larger 250k 

case, but not for the linear SVM. This was assessed using the Wilcoxon signed-rank 

test (Z = 2.66, p < 0.01). 

 

2.2.5 - Pretraining 
 

2.2.5.1 - Method 

 

The ultimate goal of our work is to apply successful decoding techniques to single-

trial data such that it can be potentially used in a live application, where we do not 

have access to averaged data in the same manner as assumed earlier in this 

chapter. We therefore assessed whether pretraining the SVM and / or Transformer 

models on trial-averaged data, with subsequent fine-tuning on single-trial data, 

affords an increase in generalisation performance and decoding accuracy over and 

above training purely on single-trial data. Pretraining may be beneficial because trial-

averages have a greater signal-to-noise ratio, however, they attenuate true EEG 

variability across different words from the same PoS class. 

Specifically, we assessed the impact of pretraining in a 2 x 2 factorial design 

manipulating (i) pretraining scheme: (a) training in three steps (10-3-1) from 10-
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averaged single-trials to 3-averaged single trials, ending with single-trial data versus 

(b) training on two steps (3-1) from 3-averaged trials to single trials and (ii) data 

augmentation: training only on the baseline dataset (approximately 20k trials) versus 

augmented dataset (250k trials). We selected the 250k data augmentation as this 

option resulted in the highest development set accuracy in the previous section. We 

train both linear SVMs and Transformers on the 2 x 2 training conditions over 20 

random seeds and report the mean development set accuracy and 68% confidence 

interval across those 20 seeds in Table 2.5.  

 

2.2.5.2 - Results 

 

For the linear SVM, the 3-1 pretraining scheme without data augmentation resulted 

in the highest accuracy on the development set (32.03%), which was marginally 

better than for training on single-trials directly (31.93%), showing that data 

augmentation for SVM models does not convey a boost in accuracy by virtue of 

having access to higher signal-to-noise data. In contrast to the linear SVM, the 

Transformer is conveyed with a benefit of having access to trial-averaged data. The 

highest decoding accuracy obtained for the Transformer was with the 3-1 pretraining 

scheme with 250k data augmentation, which obtained a score of 39.41%. Using the 

Transformer model with 3-1 pretraining & 250k data augmentation as well as the one 

trained on single trials alone, we ran both models on the test set and compared both 

accuracies using the Wilcoxon signed-rank test (Pereira et al., 2009), which 

confirmed that the Transformer performed significantly better on the test set after 3-1 

(250k) pretraining with respect to just training on single-trials (Z = 2.13, p < 0.05). 
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SVM Transformer 

single-trials 31.93 (+/- 0.62) 37.15 (+/- 0.32) 

10-3-1 31.74 (+/- 0.51) 38.50 (+/- 0.28) 

10-3-1 (250k) 31.89 (+/- 0.67) 39.17 (+/- 0.33) 

3-1 32.03 (+/- 0.52) 37.83 (+/- 0.24) 

3-1 (250k) 31.79 (+/- 0.58) 39.41 (+/- 0.41) 

 
Table 2.5. Single trial decoding accuracies (%, mean across seeds +/- 68% confidence interval) on 
the development set for the linear SVM and Transformer models: without pretraining, with 10-3-1 

pretraining, with 10-3-1 pretraining and 250k data augmentation, with 3-1 pretraining, with 3-1 
pretraining and 250k data augmentation 

 

2.2.6 - Discussion 
 

The reported results show that ideas taken from mainstream machine learning 

research, such as pretraining and data augmentation, also convey advantages when 

applied to single-trial EEG decoding of linguistic information using Transformer 

models, while not for linear SVMs, which are likely constrained by a smaller class of 

representational capacity, for which these techniques do not play a large role. While 

pretraining in the NLP world largely consists of unsupervised learning over large 

volumes of texts, it remains to be seen whether large-scale pretraining of single-trial 

EEG data also benefits from such ideas, but in terms of artificially inflating the 

training set size, combined with first priming the model with cleaner data, we see 

significant increases in decoding accuracy. An open question remains in terms of 

why using 500k training samples suffered a worse score than 250k training samples. 

We speculate that the increased dependence on the training set samples has a 

slight negative effect and a threshold crossed in which pretraining can be maximised, 

given a task type and original training set size. This highlights the importance of 

experimenting with different sized datasets in order to extract maximum benefits 

from these additional training methods of neural networks on EEG data. 
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2.3 - Temporally resolved part-of-speech decoding 

 

2.3.1 - Introduction 
 

The primary motivation behind this section is to investigate how part-of-speech 

information is encoded in the neural EEG signal of unigrams and bigrams. This is 

interesting because a contrast can be established between single-word processing 

as well as simple multi-word expressions. Part of speech information in natural 

language involves combinatorial processes that progressively build up a mental 

representation and syntactic structure of our linguistic input. It’s likely that these 

processes, which are over and above the processes of single-word processing, 

contain information that can be recorded in neural signals detected by EEG and 

therefore used in categorisation of these elements. The previous section of this 

chapter examined optimised training methods for decoding linguistic information from 

EEG data, from which we determined that the best combination of steps was to 

apply data augmentation to trial-averaged data (where each derived pseudotrial 

consists of a bootstrapped average of 3 single trials), pretrain a Transformer model 

on this higher signal-to-noise data and then fine-tune on our target distribution of 

single-trials.  

 

For both unigram and bigram data, we investigated how Transformers, as well as our 

linear SVM baseline models, decode part-of-speech information as it dynamically 

evolves across post-stimulus time. This is achieved by using a sliding window of 64 

ms. Furthermore, we explore how linguistic information in the form of lexical 

categories is integrated across the post-stimulus window by training on ever-

increasing temporal windows. This allows us to compare our classifiers in terms of 
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available data in terms of decoding from restricted windows as well as how models 

differ when ever-increasing contexts are available. 

 

Previous sections aimed to match the distributions of examples from different word 

classes for word length and word frequency confounds in order to dissociate their 

distinct neural contributions to the EEG signals. This is critical, particularly from the 

perspective of cognitive neuroscience, in order to separate the different neural 

processing components involved in sentence reading. In this section, we take a more 

engineering perspective of natural language processing, whereby the length and 

frequency contributions of the signal are useful in hinting at part-of-speech identity. 

For example, short high-frequency words are more likely to be determiners (DET) 

and prepositions (ADP), while long low-frequency words are more likely to be nouns 

and verbs. Instead of treating these complementary factors as confounds that need 

to be controlled for, we extract the part-of-speech classes from the data as they exist 

in the naturalistic format they were recorded in, i.e. the six chosen PoS tags are 

taken directly out of the data, where confound correction has not been applied, thus 

information relating to word length and frequency is distributed according to the 

naturalistic text corpus. 

 

2.3.2 - Unigram Analysis 
 

2.3.2.1 - Dataset 

 

Using the same dataset splits as outlined in Section 2.1.4, which were matched for 

text length, text genre and day of EEG recording, an equal amount of the 6 most 

frequent part-of-speech tags from the data was extracted. These classes were 

NOUN, VERB, ADP [adposition], DET, PRON and PROPN [proper noun]). Each part-
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of-speech class included 28,265 samples in the training set, 2,948 samples in the 

development set and 3,183 samples in the test set. Overall, the training set 

contained 169,590 samples, the development set contained 17,688 samples and the 

test set contained 19,098 samples. 

 

2.3.2.2 - Methods  
 

We implemented the 3-1 pretraining regime with 250k data augmentation as 

described in the previous section relating to the improvement of training methods. 

For the sliding window analysis, we trained and tested linear SVMs and our 

Transformer model on EEG signals from 64 ms segments of data (16 time points), 

which shift by 16 ms, from 0 to 700 ms. This process returns a vector of accuracies 

which contains 41 different points of evaluation. For the incremental window 

analysis, we ran an ever-increasing temporal window across the range of EEG data 

in steps of 16 ms (4 time points), starting with the [0,16] ms time window all the way 

up to 700 ms. This means the final window ranges from [688,700] ms and is 4 ms 

shorter than the rest. This process returns a vector of accuracies which contains 44 

different points of evaluation.  

 

We computed decoding accuracies from the means of 10 randomly selected seed 

points, alongside the corresponding 68% confidence interval, on the test set, for 

purposes of visualisation. Across time windows we compared the decoding 

accuracies on the test sets of the model which performed highest out of all seeds on 

the development set. We submitted these values to the Wilcoxon signed-rank test 

with an alpha level of 0.05, corrected for multiple comparisons using False Discovery 

Rate (FDR) correction across time, i.e. for 41 / 44 dimensional accuracy vectors. 

Those windows where the Transformer was statistically better than the linear SVM 
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are indicated, unless all windows were significant, in which case no specific 

indication is given, but this is specified in the figure legend. 

2.3.2.3 - Results 

 

In the sliding window analysis (Figure 2.8 middle) the decoding accuracies of both 

the linear SVM and the Transformer show two prominent peaks around 200 ms and 

400 ms, suggesting that part-of-speech decoding relies on several aspects of 

information encoded in the EEG. Based on the confound-controlled analysis in 

Section 2.1, the initial peak reflects word length and word frequency processing, 

while the later peak is more closely related to semantic and syntactic aspects of 

single-word / unigram processing. 

 

 
 
Figure 2.8. Unigram results: Test set decoding accuracies with the mean across 10 seed points, plus 
the 68% confidence interval), aligned with the last bin of each time window. Top: incremental window 
analysis. Middle: Sliding window analysis. Bottom: Average ERP of all NOUN trials in the training data 

to demonstrate a visual example of the unigram data. Vertical lines indicate the timing of on-screen 
word presentations. All time windows are significant 
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The Transformer significantly outperformed the SVM for all sliding time windows and 

all incremental time windows (Wilcoxon signed-rank test, FDR-corrected at p < 0.05). 

The incremental window analysis showed an accuracy benefit of 4.5% for the 

Transformer, over the linear SVM, starting in the first window of [0,16] ms. This 

difference in performance between the two classifiers then widened even further, 

reaching a peak difference where the Transformer scored 11.6% higher than the 

linear SVM at the corresponding time point. This appeared around 360 ms post-

stimulus onset. 

Transformers thus benefit from integrating information about word length, frequency 

and class, which are available in the signal at different post-stimulus latencies, as 

shown earlier. Moreover, because the part-of-speech of subsequent words is not an 

independent factor in natural language statistics, the Transformer’s self-attention 

mechanism may also rely on information about the subsequent words encoded in the 

EEG data from 240 ms onwards, which is when a new word is presented on screen 

to the subject. 

 

2.3.3 - Bigram Analysis 
 

2.3.3.1 - Dataset 

 

We designed a bigram dataset that artificially removes the correlations of the part-of-

speech of the following word (word 2) with respect to each first word (word 1) in the 

bigram. This was done in order to assess the distinct contributions of both word 1 

and word 2 to the classification of the bigram as a whole. From the same data pool 

as the unigram analysis of the previous section, we ran an enumeration procedure to 

extract 3 classes (6 pairs) that could be equally balanced if both word 1 and word 2 

could be reversed. Only 3 parts-of-speech appear in all combinations, namely NOUN, 
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PRON and VERB. Concretely, this means our 6 classes are NOUN-PRON, NOUN-

VERB, PRON-NOUN, PRON-VERB, VERB-NOUN and VERB-PRON. As a result of 

this selection, the part-of-speech of word 1 in the bigram is uninformative about the 

part-of-speech class of word 2 and vice versa. The benefits of this dataset are that 

we force the models to rely on integrated information across both words, instead of 

taking advantage of other confounding information as would have otherwise been 

the case. However, enforcing such a strong condition naturally reduces the size of 

the dataset available in the EEG corpus. Each bigram class has 3,470 samples in 

the training set, 322 samples in the development set and 349 samples in the test 

set. Overall, the training set contained 20,820 samples, the development set 

contained 1,932 samples and the test set contained 2,094 samples. 

 

2.3.3.2 - Methods 

 

The methods we employ in this section are exactly those described in Section 2.2. 

from the unigram analysis. Please see Section 2.2 for details. 

 

2.3.3.3 - Results 

 

In accordance with the unigram results, our sliding window analysis (Figure 2.9, 

middle) revealed two prominent peaks around 200 ms and 400 ms post-stimulus 

presentation. Yet, unlike the unigram results, the 2nd peak was later and of a higher 

magnitude than the first peak, compared with the unigram sliding window results. 

This is because the EEG signal at 500 ms incorporates not only semantic and 

syntactic aspects of word 1 (as in the case of the unigrams) but also contributes 

independent information about word 2 of the bigram, which by design cannot be 

provided by word 1. 
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Figure 2.9. Bigram results: Test set decoding accuracies with the mean across 10 seed points, plus 

the 68% confidence interval), aligned with the last bin of each time window. Top: incremental window 
analysis. Middle: Sliding window analysis. Bottom: Average ERP of all VERB-PRON trials in the 

training data to demonstrate a visual example of the unigram data. Vertical lines indicate the timing of 
on-screen word presentations. Statistically significant time windows are indicated with asterisks 

 

The Transformer significantly outperformed the linear SVM as indicated in Figure 

2.9, where asterisks indicate the location of temporal windows where this is the case. 

This was confirmed by a Wilcoxon signed-rank test, FDR-corrected at p < 0.05. In 

the incremental window analysis (Figure 2.9, top) the Transformer outperforms the 

SVM at windows 0 - 208 ms and 0 - 336 ms. Yet, unlike for the unigram case, this 

performance benefit was no longer significant for time windows greater than 336 ms, 

suggesting that the benefit of the self-attention mechanism is smaller when 

independent information from both words needs to be additively combined. Our 
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choice of balanced bigrams dramatically reduced the number of samples in the 

dataset, which may have affected the Transformer’s performance more severely.  

 

2.3.4 - Discussion 
 

Both (i) unigrams and (ii) bigrams are decodable from single-trial EEG data, as 

demonstrated with these results. Both (i) and (ii) represent 6-class problems, for 

which chance accuracy is approximately 16.6%. For both sliding windows and 

incremental windows, we see peaks way above chance level. Furthermore, we also 

see a benefit of using Transformer models that specifically employ a self-attention 

mechanism that accumulates large contextually-dependent ranges of information 

into its modelling procedure. Given that the bigram dataset was selected such that it 

possessed a useful experimental factor, i.e. that of exact balancing of word 1 and 

word 2, such that identity of one part of the bigram was not informative of the other, 

necessitating the accumulation of larger windows of data (in the case of unigrams) or 

specific windows (in the case of bigrams, i.e. shortly after the presentation of word 

2), it can be seen that classifier differences are minimal. We suspect that the trade-

off with the experimental advantage of exact balancing with data set size has 

severely limited the Transformer to be able to learn from a wide range of samples. 

Effective data augmentation for Transformer-based single-trial EEG decoding 

appears to be linked with the data set size from which augmented data are 

generated, as demonstrated when 500k samples did not perform as well as 250k in 

the data augmentation analysis. The reduced pool of examples in the current bigram 

data, from which 250k samples were created for pretraining, is likely a limiting factor 

in this case. Future research which focuses on more direct comparisons of unigram 

and bigram modelling while fully taking advantage of the natural correlations in NLP 
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texts between word length, frequency, previous and following PoS classes, will likely 

shed more light on this issue. 

 

2.4 - Conclusion 

 

The past three sections have looked at various aspects of modelling linguistic 

information and part-of-speech class from EEG data, as well as optimised training 

methods that can be used to boost Transformer-based classifier performance, which 

do not convey advantages to baseline linear models such as linear support vector 

machines. Combining neural signals measured at millisecond resolution with EEG 

and a linguistically annotated corpus, this chapter shows, to the best of our 

knowledge at the time of writing, the first time that unigram and bigram part-of-

speech classes have been decoded directly from single-trial EEG data. Temporally-

resolved EEG decoding is a useful tool to unravel how information about linguistic 

and non-linguistic aspects evolve dynamically over time. 

 

In all experiments, Transformer models with a self-attention mechanism 

outperformed SVMs, particularly when the former were boosted via data 

augmentation and pretrained on higher signal-to-noise ratio data. This work provides 

an important steppingstone for future applications that incorporate human signals 

into traditional NLP methods. Applications such as part-of-speech induction jointly 

based on annotated texts and EEG signals could be transformative for corpus 

generation and tagging of gold-standard data for low-resource languages as well as 

a multitude of other live processing applications. 
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CHAPTER 3: EEG PREPROCESSING FOR 

DECODING OF LINGUISTIC STIMULI 
 

 
 
 
 
 
 
 
 

CONTRIBUTIONS 

 

All work in this chapter is the sole work of Alex Murphy, inspired by a research 
question posed by Uta Noppeney. 
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3.1 - Introduction 
 

There are many different choices that one must make when taking neuroimaging 

data from its raw form to the highly-preprocessed form that is later analysed, 

displayed and interpreted. These choices often represent standard received wisdom 

in the field and in order to minimise differences between studies, to maximise the 

probability of successful replication, standard preprocessing pipelines and toolboxes 

promote such techniques. Differences between preprocessing pipelines from 

cognitive neuroimaging experiments can be substantive between different research 

institutions and lead to very different outcomes on the same data if different research 

labs employ different standardised preprocessing scripts (Botvinik-Nezer et al., 

2020). 

 

The principal goal of this chapter is to explore the interaction between specific 

preprocessing choices during the preprocessing of EEG data, in terms of how they 

affect decoding accuracy across different types of linguistic stimuli. The motivation 

for this analysis derives from observations from eye-tracking research that have 

demonstrated strong associations between aspects of word reading and eye 

movements. This has been shown for word length (Degno et al., 2019), word 

frequency (King & Kutas, 1995) and part-of-speech (Barrett et al., 2016). A critical 

point that needs to be more formally assessed is, given that such associations exist, 

if one’s goal is to decode linguistic information from neuroimaging data such as EEG, 

standard preprocessing techniques often specifically target features of the data that 

are perhaps useful for downstream tasks such as classification or regression. If 

ocular artifacts are removed as a matter of standard preprocessing pipelines, yet this 

information proves to be useful in tasks of linguistic decoding, perhaps a more 
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carefully-designed preprocessing strategy could be implemented, which is tailored to 

the end goal more specifically. This chapter addresses how such preprocessing 

choices affect the decoding of length, frequency and word class information. 

 

This chapter is split up into two principal sections. The first examines the effect on 

our preprocessing choices on temporal sliding-window decoding analyses for each of 

the effects of interest (length, frequency and class) in a binary classification 

paradigm. The second section is an exploratory investigation that aims to quantify 

how the preprocessing effects lead to the various differences observed in the first 

section. 

 

3.2 - Effects of EEG preprocessing on temporal 

decoding 

 

3.2.1 - Introduction 
 

Kornrumpf et al. (2016) studied the various ERP effects that arise during natural 

reading (with recorded eye movements in the signal) and RSVP (which avoided such 

responses) and found that small eye movements greatly facilitated lexical processing 

of language as it was being read. One claim was that lexical load could be 

modulated in the previous word, leading to facilitatory effects if eye movements were 

allowed (i.e. naturalistic paradigm instead of RSVP). With such predictive effects 

from immediately preceding words influencing lexical load in terms of word 

frequency, it raises the question whether epoch-level baseline correction might 

remove information in the EEG signal, still present during RSVP, therefore leaving 

open the question whether different forms of baseline correction (or none at all) 

might allow the surrounding linguistic environment to better predict linguistic 
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information such as whether a word is high- or low-frequency. Furthermore, it has 

been reported that eye-tracking information has a positive correlation with decoding 

linguistic properties of stimuli during reading (Barrett et al., 2016). Taken together, 

this leads to an interesting research question which examines the effects of various 

EEG preprocessing steps on the decoding of linguistic information from stimuli 

during reading. 

 

3.2.2 - Methods 
 

3.2.2.1 - Preprocessing Choices 

 

The preprocessing options examined in this chapter relate to: 

1. Independent Component Analysis correction 

2. Baseline correction of epochs 

3. Feature scaling 

 

3.2.2.2 - ICA 
 

We consider: (i) no ICA correction, (ii) weak ICA correction and (iii) strong ICA 

correction. ICA correction is defined as ‘weak’ when a maximum of 4 primary noise 

components are removed. ICA correction is defined as ‘strong’ when up to 10 

primary noise components are removed. A component is defined as a noise 

component when, upon examination of the topography and time series, it relates 

primarily to electrode noise, eye movements / blinks or muscle activity. We use 

MNE-Python’s standard implementation of ICA decomposition, which first whitens 

the data, applies PCA and then applies the FastICA implementation of the ICA 

decomposition. A visualisation of the ICA solution for a randomly-selected session of 

EEG data is given below in Figure 3.1.  
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Figure 3.1. An example of a typical session’s ICA decomposition. The 8 highest-magnitude 
independent components are plotted alongside their topographies (to the right) over 20 seconds of 
EEG recording. Each is accompanied by a label identifying a characterisation of the component. To 
the left, a removal order is present according to the description in the text. A red square identifies 

those components removed in the weak-ICA correction condition and a green circle identifies those 
components removed in the strong-ICA correction condition. Effects of blinks are primarily in the first 

component (39.60% explained variance), but are also spread among other components that are 
mostly characterised by inactivity, except for high-magnitude bursts throughout the recording session 

 

 

In the case of preprocessing the EEG data for weak ICA correction, where a 

maximum of 4 noise components were removed, the first step was to assess the 

time series and topography of the two largest-magnitude independent components 

(top two rows in Figure 3.1) and mark these for deletion if they exhibited 

characteristics related to either electrode noise or oculomotor signals (blinks or 

saccades). The two highest-magnitude components were almost invariably related to 

blink artifacts, characterised by a broad symmetric frontal distribution of activity 

which was consistent in polarity i.e. always positive or always negative for that 

component, with frequent sharp deflections in the time course caused by the upward 

rotation of the eyes during blinking. After these were identified, then the next artifact 

components to be removed were ones that exhibited lateral eye movements (i.e. 
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saccades), which are characterised by large frontal and distinct patches of activity of 

opposite polarity, caused by repeated lateral shifts of the eye’s dipole into different 

visual fields. An example of such a topography is given in Figure 3.1 above 

(component 11). If there were at least two of these, this would make up the 

correction procedure for weak ICA correction. If there were only a single instance of 

a lateral component (as above) then the next highest-magnitude component relating 

to blinking was removed. 

 

The method for strong ICA correction is comparable to the procedure for weak ICA 

correction above, except for two minor changes: (i) an allowance for the removal of 

up to 3 lateral eye-movement components was given, but the decomposition typically 

never created more than 2 and (ii) after returning to the highest-magnitude 

independent components, blink or other strong artifacts were removed until the total 

of 10 were removed. In this case, however, if the eye movements had been 

modelled relatively successfully, many fewer components than 10 would be removed 

and this would still be classed as a case of strong ICA correction. The case where 

oculomotor artifacts are spread over multiple high-magnitude components and then 

removed is very similar to the situation where these effects were captured in fewer 

components.  
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Figure 3.2. A selection of frontal, occipital and temporoparietal electrodes around a large eye 
movement (seen most clearly in the no ICA condition to the left in red), alongside weak and strong 
ICA correction of the same 5 seconds of EEG. Strong ICA correction (right; blue) removes major 

ocular artefacts, while the weaker version (middle; red) removes the strongest of these, with 
remaining eye movement information present but not as pronounced as in the case without ICA. 

 

Figure 3.2 demonstrates the downstream effects of ICA-correction on the 

preprocessed EEG data of a single 5 second segment from a randomly-picked (yet 

representative) recording session with the three types of ICA correction outlined 

above, surrounding a prototypical typical eye movement seen in the dataset. As 

more oculomotor components are removed, the reconstructed EEG data suffers less 

from artefacts rooted in eye movements. As only frontal components were removed, 

bursts of activity over occipital electrodes remain consistent, as shown in Figure 3.2. 

 

 

3.2.2.3 - Baseline Correction 
 

We consider: (i) no baseline correction, (ii) sentence-level baseline correction and 

(iii) epoch-level baseline correction. Sentence-level baseline correction consists of 

subtracting, from each derived epoch for a sentence, the electrode-wise mean of the 

immediate 100 ms prior to the sentence start. Epoch-level baseline correction is 

defined similarly, but the average 100 ms electrode-wise values are immediately 

prior to the on-screen appearance of a word stimulus on screen. The issues 
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surrounding baseline correction and the potential effects it has on EEG decoding are 

discussed in Section 1.4.7. 

 

Feature Scaling 

We consider: (i) standardisation and (ii) multivariate noise normalisation. By 

standardisation we refer to the common practice of removing the channel-wise mean 

from each electrode series and dividing by the standard deviation such that the 

scaled time series has unit variance. For (ii) we refer to the epoch-level 

implementation of multivariate noise normalisation outlined in Guggenmos et al. 

(2018). See section 1.4.8.2 for implementational details. 

 

3.2.2.4 - Dataset 
 

In the previous chapter we introduced the idea of confound-correction as a measure 

to equally balance two classes in a binary classification problem, each with respect 

to a balanced joint histogram over confounding variables. For example, we derived a 

dataset consisting of two classes relating to word-length, namely a class of EEG 

trials where the word that appeared on screen had 4 or fewer characters (which we 

call the SHORT class) and those with more than 4 characters (which we call the LONG 

class). In both of these classes, we ensured that the exact distributions of word 

class, a fine-grained discretised frequency score and position in sentence (start, 

middle, end) were equal among both the SHORT and LONG classes. Please refer to 

Section 2.1.6 for the full description of the data set and acquisition procedure, 

alongside the confound-correction procedure that was implemented to create these 

binary splits. 
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We use single-trial data and pseudotrials each derived from an average of 10 single 

trials. Importantly, for the test dataset in the pseudotrial case, averaging is done by 

random sampling without replacement (as outlined in Section 2.1.6.2), which means 

that each data point in the test set of the pseudotrials is independent of all other 

samples, i.e. each test set data point contributes only to a single averaged 

pseudotrial. Table 3.1 displays the number of data points for each of word length, 

frequency and class groups.  

 
 

length frequency class 

train 82,424 51,364 45,502 

development 12,402 7,632 6,658 

test (single-trial) 10,810 6,590 5,670 

test (avg. 10) 1,081 659 567 

 
Table 3.1. The number of data points across the linguistic variables of word length, word frequency 

and word class, across the training set, development set, and test sets. The training and development 
sets in the pseudotrial case are resampled with replacement to match the same size as the single-trial 
dataset, but not for the test set. Thus, two rows are required to state the differing number of samples 

in this case. 

 

3.2.2.5 - Analysis Strategy 
 

We employ the same analysis as in the previous chapter, i.e. with a 64 ms (16 time 

point) sliding window shifted by 16 ms (4 time points) at every step. We vary the 

input into the model in terms of the amount of ICA correction in each dataset. We 

keep the same random seeds in the data generation process when running sliding 

window classifiers over the data, such that the principal difference in any reported 

results stems directly from the status of the data with respect to the ICA level of 

processing we applied to it. 
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The analysis is performed over both single trials and pseudotrials consisting of 

averages of 10 single trials. The previous chapter outlined how high signal-to-noise 

ratio data is useful for model pre-training and therefore the choice of preprocessing 

of this data is also pertinent to maximising the expected generalisation when using 

trial-averaged pseudotrial pretraining methods. In order to test whether observed 

results generalise over to the test set, a 3 x 2 x 3 factorial ANOVA will be performed 

separately for (i) high-SNR pseudotrial data and (ii) single-trial data, in which 

temporal windows that contain an effect of interest (as defined by observing the 

associated development set figures) are calculated over the 10 runs of the test set, 

the mean of which will serve as the dependent variable of the ANOVA. Tukey’s 

Honest Significant Difference test will be applied where appropriate to examine the 

pairwise contrasts at an alpha level of 0.05, using the Familywise Error Rate to 

control for multiple comparisons. 

 

3.2.3 – Results 
 

The effects of manipulating various preprocessing options on the task of temporal 

decoding (via a sliding window analysis) are presented in this section. The results on 

the development data are first given for each of: (i) word length, (ii) word frequency 

and (iii) word class, as outlined above. The subsequent section collects notable 

results from the observations on the development set and formally assess them via 

statistical tests using completely independent test data, in order to see which results 

can be expected to generalise to novel data and are not due to idiosyncrasies during 

training and / or overfitting on the development set. The highest signal-to-noise ratio 

trial-averaged data is also included here, since effects can be more pronounced 

thanks to the boosted signal. Since we have shown that decoding is boosted by 
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optimised training methods, such as pretraining on higher SNR / trial-averaged data 

(Section 2.2), a focused attention on these results can help to inform machine 

learning approaches to decoding various linguistic features from EEG signals. For 

each of our variables of interest (word length, frequency and class) the sliding 

window decoding traces are given. The top traces refer to pseudotrials (pseudotrials 

consisting of averages of 10 single trials) and the bottom refer to single-trials. Each 

figure modulates the effect of baseline correction (blue = epoch baseline correction; 

red = sentence baseline correction; green = no baseline correction) for a specific 

setting of feature scaling and ICA correction. 

 

3.2.3.1 - Word length  
 

For the confound-corrected word length data, the temporal decoding traces that 

result from each setting of the preprocessing pipeline are given below in Figure 3.3. 
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Figure 3.3. Development set sliding window decoding traces for word-length decoding. The top three 
traces of each sub-figure refer to 10-averaged pseudotrials and the bottom three refer to single trials. 

Each figure modulates the baseline correction method over a specified setting of ICA correction 
(rows) and feature scaling (columns), i.e. the first column contains 3 plots which have all been scaled 

via MNN, and the second column, univariate scaling 

 

 

The decoding traces across both types of feature scaling (MNN vs univariate 

standardisation) are largely similar, with a noticeable effect being that with univariate 

standardisation, the confidence intervals around each mean decoding trace is tighter 

when compared with the corresponding traces using multivariate noise 

normalisation. For EEG data that has had a large number of ICs removed during 

preprocessing, sentence-level baseline correction appears to perform worst in the 

early peak around 200 ms. When no baseline correction is applied, there is higher 
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sensitivity to the length response of the following word, around 460 ms (stimulus 

SOA is approximately 240 ms and this response arises 200 ms afterwards). 

Subtracting the mean of each channel directly preceding stimulus onset appears to 

reduce the sensitivity of this response. Both decoding traces for single-trial data in 

this case are very similar. 

 

For weak ICA-corrected EEG data, no discernible difference arises between no 

baseline correction and sentence baseline correction, which both perform better than 

epoch baseline correction. The peak accuracy over both forms of feature scaling 

(middle row) is highest here, over all other combinations of scaling, baseline 

correction and ICA correction, with the exception of epoch baseline correction. When 

no ICA is applied to the data, the decoding traces are in line with the other plots, 

where again we see a sensitivity to the presumed decoding of the word length 

information of the following word. We also see that using epoch baseline correction 

reduces the sensitivity to this with respect to the other forms of baseline correction. A 

final observation is that when univariate standardisation is used, the peaks after 200 

ms decay more slowly, which is likely due to the fact that this form of feature scaling 

isn’t sensitive to noisy channels and might be fitting more to noise in the data as 

these results are reported on the development set. When channel noise is taken into 

account, as is the case with multivariate noise normalisation, the peaks drop off 

more rapidly.  

 

3.2.3.1.1 - Statistical analysis 

 

A number of formal hypotheses can be derived from observing the plots over the 

development set data, which lead directly to predictions we can make and then 
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assess on our independent test data set. The plots for temporal decoding of word 

length on the development set suggest the following: 

 

 

1. Over the main word length peak (180 - 250 ms) in weakly-corrected ICA, 

epoch baseline correction performs worse than either no baseline correction 

or sentence baseline correction 

2. When no ICA correction is applied, the period between 200-400 ms shows 

that no baseline correction outperforms sentence baseline correction overall 

3. For all levels of ICA correction, not using baseline correction results in the 

highest sensitivity to word length decoding of the following word between 450-

500 ms 

 

The corresponding decoding traces on the test set are given in Appendix B. 

 

3.2.3.1.2 - Pseudotrials 

 

180-250 ms 

 

For the 180-250 ms window, a significant interaction effect was found between ICA 

correction and baseline correction (F(4,15) = 26.9, p < 0.05, ηₚ² = .00082). Post-hoc 

tests (Tukey’s HSD, FWE = 0.05) confirmed that for weakly-corrected ICA, that 

contrasts involving epoch baseline correction with (i) sentence baseline correction 

and (ii) no baseline correction were significant also in the test data. This supports the 

hypothesis (1) from the development data. 
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200-400 ms 

 

A significant interaction between ICA type and baseline correction was found in this 

time window, as had been suggested by observing the development set data 

(F(2,15) = 25.84, p < 0.05, ηₚ² = .00092). Post-hoc tests verified that it was exactly 

the case when no ICA correction or baseline correction was applied. 

 

450-500 ms 

 

In the 450-500 ms time window, there were no significant interactions between ICA 

correction type, baseline correction type or feature scaling type, but the main effects 

of ICA correction and baseline correction types were statistically significant (ICA 

correction: F(2,15) = 148.7, p < 0.05, ηₚ² = .0034), baseline correction: F(2,15) = 

150.6, p < 0.05, ηₚ² = .0035). Post-hoc tests (Tukey’s HSD, FWE = 0.05) confirmed 

that the no baseline-correction condition was responsible for the significant 

difference between baseline correction group means. Similarly, for ICA-correction, 

the no-ICA condition was responsible for the significant difference between ICA-

correction group means. This result supports the observations made on the 

development set for this temporal window. 

 

3.2.3.1.3 - Single trials 

 

180-250 ms 

 

No significant interactions were found in this time window, but all main effects were 

significant: ICA (F(2,15) = 289.41, p < 0.05, ηₚ² = .00082), baseline correction 

(F(2,15) = 37.38, p < 0.05, ηₚ² = .00018), scaling (F(1,15) = 70.87, p < 0.05, ηₚ² = 

.00011). Post-hoc tests (Tukey’s HSD, FWE = 0.05) confirmed that the no-ICA 

condition was significantly different from both weak ICA correction and strong ICA 
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correction. For baseline correction, the contrast between no baseline correction and 

sentence baseline correction was the source of the significant effect. 

 

200-400 ms 

 

This time window revealed significant main effects for all three groups (ICA: F(2,15) 

= 560.14, p < 0.05, ηₚ² = .00043), baseline correction (F(2,15) = 67.09, p < 0.05, ηₚ² 

= .000052), scaling (F(1,15) = 59.35, p < 0.05, ηₚ² = .000023). During post-hoc 

testing with Tukey’s HSD, the pairwise contrasts for the baseline group did not 

provide sufficient evidence to reject the null hypothesis. For ICA-correction, it was 

found that the no ICA vs strong ICA contrast was significant, as well as the strong 

ICA vs weak ICA contrast. 

 

450-500 ms 

 

In the 450-500 ms time window, only the main effects of baseline correction and ICA 

correction type were significant: ICA (F(2,15) = 300.33, p < 0.05, ηₚ² = .00026), 

baseline correction (F(2,15) = 132.61, p < 0.05, ηₚ² = .00013). Post-hoc tests 

(Tukey’s HSD, FWE = 0.05) confirm that weak ICA correction versus the other types 

is a significant effect, as well as epoch baseline correction versus no baseline 

correction. 

 

3.2.3.2 - Word frequency 

 

For the confound-corrected word frequency data, the temporal decoding traces that 

result from each setting of the preprocessing pipeline are given below in Figure 3.4. 
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Figure 3.4. Development set sliding window decoding traces for word frequency decoding. The top 

three traces of each sub-figure refer to 10-averaged pseudotrials and the bottom three refer to single 
trials. Each figure modulates the baseline correction method over a specified setting of ICA correction 
(rows) and feature scaling (columns), i.e. the first column contains 3 plots which have all been scaled 

via MNN, and the second column, univariate scaling 

 

A result that appears across every combination of preprocessing settings is that not 

applying baseline correction results in the highest overall peak decoding, alongside 

highest sensitivity to either late effects or responses to the next word (which appear 

on screen ~ 240 ms). Across the three levels of ICA correction, when strong ICA 

correction was applied, peak decoding was a few percentage points lower than weak 

ICA correction or no ICA correction. Around the main decoding peak at 280-400 ms, 

for all baseline correction methods and across all ICA correction types, sentence 

baseline correction is very close to epoch baseline correction. For long sentences, 
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where the distance from each word to the pre-sentence baseline correction period is 

long, drifts can accumulate which give rise to similar patterns as if no baseline 

correction were applied at all. 

 

3.2.3.2.1 - Statistical analysis 

 

The plots for temporal decoding of word frequency on the development set suggest 

the following: 

 

1. Using multivariate noise normalisation results in higher peak decoding 

accuracy when there is no baseline correction over the peak response period 

to frequency (280-320 ms) 

2. In the same period as (1), the no baseline correction achieves the highest 

peak across all levels of ICA-correction type and feature scaling choice 

3. There is a differential sensitivity to decoding the following word in the 450-500 

ms time period across all levels of baseline correction when strong / no ICA-

correction is applied, but only between no baseline correction vs sentence-

based and epoch-based when the data is weakly corrected with ICA 

 

The corresponding decoding traces on the test set are given in Appendix C. 

 

3.2.3.2.2 - Pseudotrials 

 
280-320 ms 
 

All three possible interactions among groups showed that there a statistically 

significant effect present: ICA-baseline: (F(4,15) = 57.28, p < 0.05, ηₚ² =.00038), 

ICA-scaling (F(2,15) = 24.45, p < 0.05, ηₚ² = .0008), baseline-scaling (F(2,15) = 

12.44, p < 0.05, ηₚ² = .0004). Post-hoc tests (Tukey’s HSD, FWE = 0.05) confirmed 

that 5 out of the 6 pairwise contrasts involving MNN scaling paired with no baseline 
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correction were significant, supporting observation (1) above. Further tests on the 

interactions determined all pairwise contrasts in which no baseline correction was 

paired with another baseline correction method were statistically significant. 

 
450-550 ms 
 

A significant interaction effect was found for ICA-correction type and baseline 

correction type (F(4,15) = 8.99, p < 0.05, ηₚ² = .00024). The main effect of scaling, 

not present in this interaction, was found to be non-significant in this time window. 

The significant interaction is expected given observation (3) above. Pairwise post-

hoc tests (Tukey’s HSD) determined that the exact nature of the effects observed in 

(2) over the development set did not carry over to the test set, but various pairwise 

contrasts did show statistical differences with each other.  

 

3.2.3.2.3 - Single trials 

 
280-320 ms 
 

No interactions were significant that concerned feature scaling, which was significant 

as a main effect (F(1,15) = 33.82, p < 0.05, ηₚ² = .000063), which supports 

observation (1) above. There was a significant interaction between ICA-correction 

and baseline correction (F(4,15) = 12.03, p < 0.05, ηₚ² = .000089). Tukey’s HSD 

confirmed that the contrasts involving no ICA-correction and no baseline correction 

were largely behind the significant interaction. 

 

450-550 ms 
 

The main effects of baseline correction and ICA-correction were found to contain 

significant differences among their group means: ICA (F(2,15) = 184.32, p < 0.05, ηₚ² 

= .0003), baseline (F(2,15) = 172.99, p < 0.05, ηₚ² = .00028). Post-hoc tests (Tukey’s 
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HSD) revealed that all mutual pairwise contrasts of baseline correction were 

significant, while none of the ICA-correction contrasts were.  

 

3.2.3.3 - Word class 
 

For the confound-corrected word frequency data, the temporal decoding traces that 

result from each setting of the preprocessing pipeline are given below in Figure 3.5. 

 

 
Figure 3.5. Development set sliding window decoding traces for word class (open vs closed-class) 
decoding. The top three traces of each sub-figure refer to 10-averaged pseudotrials and the bottom 
three refer to single trials. Each figure modulates the baseline correction method over a specified 
setting of ICA correction (rows) and feature scaling (columns), i.e. the first column contains 3 plots 

which have all been scaled via MNN, and the second column, univariate scaling 

 

In all combinations of scaling, baseline correction and ICA-correction type, the 

response peak is centred around 250 ms. The decoding accuracy immediately after 
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this peak then drops away, more rapidly in the case of multivariate noise 

normalisation, while the response is sustained using univariate standardisation of the 

data. This could arise due to overfitting since early stopping during the training of the 

linear SVM selected the models that performed best on the development set. If 

multivariate noise normalisation is more sensitive to noisy channels and can correct 

them, this could indicate that perhaps scaling noisy channels in the data does lead to 

such overfitting. The period between 350-500 ms appears to indicate that epoch 

baseline correction results in the best decoding of the binary word class distinction 

after the main peak. With weakly ICA-corrected data, it appears that sentence 

baseline correction performs better than other forms of baseline correction. 

 

3.2.3.3.1 - Statistical Analysis 

 

The plots for temporal decoding of word class on the development set suggest the 

following: 

1. From 200-300 ms, there appears to be an interaction between ICA 

correction type and baseline correction type, specifically driven by 

weak ICA correction and sentence baseline correction. Epoch baseline 

correction during this peak appears to be lower in all other 

combinations except for weak ICA correction with univariate 

standardisation as the feature scaling procedure. 

2. The 300-500 ms varies quite a lot among different combinations of 

scaling, baseline and ICA settings, but most prominently there appears 

to be an effect of scaling that occurs over all combinations of ICA-

correction and baseline correction 

 

The corresponding decoding traces on the test set are given in Appendix E. 
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3.2.3.3.2 - Pseudotrials 

 

200-300 ms 

 

The only significant effects in this time period were the main effects of scaling and 

baseline correction: scaling (F(1,15) = 28.25 , p < 0.05, ηₚ² = .0014), baseline 

(F(2,15) = 9.50, p < 0.05, ηₚ² = .00094). Post-hoc tests of the three levels of baseline 

correction did not determine any statistically significant pairwise contrast. These 

results do not support any generalisation of the observed development set 

hypothesis referenced above in (1).   

 

300-500 ms 

 

A significant interaction of ICA correction and baseline correction was found in this 

time window (F(4,15) = 9.67, p < 0.05, ηₚ² = .0002), with a significant main effect of 

scaling, too (F(1,15) = 85.46, p < 0.05, ηₚ² = .0009). Post-hoc tests on the significant 

interaction revealed two pairwise contrasts supporting the effect: strong ICA with 

sentence baseline correction with (i) no ICA and epoch baseline correction and (ii) 

weak ICA and epoch baseline correction. The significant main effect of scaling 

supports (2) from the development set. 

 

3.2.3.3.3 - Single trials 

 

200-300 ms 

 

A significant interaction between ICA-correction and baseline correction exists in this 

time window (F(4,15) = 8.05, p < 0.05, ηₚ² = .000017). Post-hoc tests determined 

that the significant contrasts principally concerned strong ICA correction with 

sentence baseline correction. Furthermore, the main effect of scaling was found to 

be significant in this window (F(1,15) = 17.78, p < 0.05, ηₚ² = .000095). Similarly to 
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the pseudotrial case, these results do not support the hypotheses (1) referenced 

above.  

 

300-500 ms 

 

The same effects reported above for the pseudotrial results were also present for the 

single trial results in this time window, namely a significant interaction between ICA 

correction and baseline correction (F(4,15) = 7.39, p < 0.05, ηₚ² = .000082), with a 

significant main effect of scaling (F(1,15) = 139.21, p < 0.05, ηₚ² = .000039). Post-

hoc tests on the pairwise contrasts revealed only a single significant contrast, that 

between strong ICA with sentence baseline correction and no ICA correction with 

epoch baseline correction. This was also a significant pairwise contrast in the 

pseudotrial case. The significant main effect of scaling supports (2) from the 

observations on the development set. 

 

3.2.4 – Topographic analysis 
 
In order to gain further insight into the information content carried by the 

preprocessed EEG data under various preprocessing choices, this section will take a 

statistically significant finding from the sections relating to word length, frequency 

and class mentioned in the previous section, visualise the effects on the 

preprocessed EEG data for the relevant difference wave over a scalp topography. 

Each of the aforementioned linguistic features were previously divided into binary 

partitions (see Section 3.2.2.4). Each contrast therefore represents the average 

signal of one partition after subtracting the other, which if displayed as a topographic 

map, reveals the systematic differences among the processed EEG data and 

therefore allows for hypotheses to be made on how a linear classifier can take 
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advantage of differences in order to infer a correct prediction within a given window. 

2,500 samples per level of each binary contrast (length: short vs long, frequency: 

high vs low, class: open vs closed) was randomly sampled across the entire dataset 

and then averaged together to form a representative ERP. This number of samples 

was chosen in order to provide a reasonable generalisation across the entire 

dataset, without the danger of averaging out too many subtle distinctions that are not 

present in every sample. The EEG data used in decoding is often noisy and could 

contain systematic differences that are not visible if an average over too many 

samples is taken. A smaller number of samples might not be representative across 

the entire dataset, so approximately 5% of the data used in Section 2 (2,500 

samples) was used to create representative difference waves, which are mapped to 

electrode locations in order to visualise the respective topographic maps. 

 

3.2.4.1 – Word Length 
 

In the decoding window of 450–500 ms, two main effects were found in the test data 

(see Section 3.2.3.1.2), that were hypothesised to be present based on observations 

of the same temporal window in the development data results. These main effects 

were of ICA correction type and baseline correction type.  Figure 3.6 shows the 

topographic maps relating to each combination of ICA correction and baseline 

correction type.  
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Figure 3.6. Topographies of the difference wave (Long > Short) over the combination of possible 
settings of ICA correction and baseline correction 

 
 

Figure 3.6 demonstrates the lack of an interaction in between ICA and baseline 

preprocessing strategies, while highlighting the prominent differences between each 

type in the form of the main effect observed in the previous section. The lack of a 

complete removal of eye movement information (in the cases of no ICA or weak ICA 

correction) reveal that there is a clear negative frontal polarity that exists between 

the classes, likely influenced by high-magnitude early visual processing of word 

length features that take time to recover, over the frontal electrodes. A strong version 

of ICA correction removes this feature of the topographic maps. The effect of 

baseline correction in this window is less easy to discern visually in these 

topographic maps, but given the presence of visual responses to these features, 

which are typically between 80-150 ms, this (450-500 ms) is a relatively late window 
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that likely is affected by earlier word length effects that spill over into later time 

periods and interact in complex ways with the subsequent stimuli and / or with other 

confounds that are not directly modelled here. The effect of eye movements more 

generally, however, are expected to be different between long versus short words as 

longer words require more processing time and are fixated more extensively. Long 

words also typically require saccadic movements to fixate multiple points in a word, 

while shorter words are processed with more ease. These effects can lead to large 

discrepancies between these two classes with regard to strong activity at the frontal 

electrodes, which is demonstrated above in the cases where not all eye movement 

components were removed via ICA. 

 

3.2.4.2 – Word Frequency  
 

The classifier sliding-window accuracy trace in the previous section, when modelling 

high-frequency versus low-frequency words, suggested that the window between 

280-320 ms contained a region which was differentially affected by both ICA 

correction type and baseline correction type, which was verified by statistical testing. 

Post-hoc tests revealed that the interaction between ICA and baseline correction 

type were responsible for driving the effect. This window is also where the typical 

decoding peak of frequency information is seen, so a further investigation into what 

electrophysiological features are helpful in decoding frequency in this window is very 

useful, as frequency information is a strong signal that can be decoded and provides 

a lot of information that correlates with other linguistic features of words, such as 

part-of-speech. Figure 3.7 shows the topography of the 9 conditions in the average 

of this post-stimulus window (280-320 ms), namely, the topography of the difference 

wave by subtracting the ERP of high-frequency trials from low-frequency trials. 
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Figure 3.7. Topographies of the difference wave (Low > High) over the combination of possible 
settings of ICA correction and baseline correction 

 
 

The topographical distribution of the difference wave intuitively supports the effect of 

a significant interaction between these groups. An interesting pattern emerges 

relating to the effects of frontal eye movements. If strong ICA is used to correct the 

data, then the effect of baseline correction does not have a profound effect on the 

topographic difference wave (top row). However, in the case of weak ICA correction, 

it appears this preserves a pronounced difference between high and low frequency 

words in the frontal electrodes – unless corrected with a form of baseline correction. 

If no baseline correction is applied on weakly ICA corrected data (middle row, 

column three) then frontal negativity is preserved, which is removed when either 

sentence-level (first column) or epoch-level (second column) is applied to the EEG 

data during preprocessing. This interaction is however, not sufficient to account for 
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the other topographies. If no ICA correction of eye movements is applied, then 

sentence-level baseline correction preserves a strong frontal negativity between the 

two classes, yet epoch-level baseline correction, closer in temporal proximity, is 

effective at removing this effect, which classifiers can use in order to boost decoding 

performance.  The topographies in the third column of Figure 3.7 support the earlier 

observation in the decoding and statistical analysis (Section 3.2.3.2.1) that not 

applying baseline correction results in an increased capacity of a classifier to learn 

the difference between long and short words. As the Long > Short difference 

topography shows, this is supported by a large discrepancy in the frontal electrode 

polarity between the classes. 

 

3.2.4.3 – Word Class 
 

The temporal window between 300-500 ms for the closed versus open word levels of 

the word class distinction (Section 3.2.3.3.1) was observed (and statistically 

confirmed) to be differentially affected by the choices of ICA and baseline correction 

type, as well as more broadly by the type of normalisation. The latter point relates 

more to the processing of the data during the learning stage of the classifier and is 

less interpretable via ERPs or scalp topographies, but an examination of baseline 

correction and ICA correction types will likely shed further light on the effect these 

preprocessing steps have on decoding open versus closed class trials. The results 

are shown in Figure 3.8. 
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Figure 3.8. Topographies of the difference wave (Open > Closed class) over the combination of 
possible settings of ICA correction and baseline correction 

 

In comparison to the reported topography in Figure 2.6(B), where confound-

correction had been applied (see Section 2.1.6 for details), the topographies here 

are from samples across the dataset and therefore are not balanced with respect to 

word length and frequency. Therefore, it’s likely the confounding influence of these 

other factors, accounted for over the previous two sections, likely play a role here. 

The status of preprocessing with regards to the word class (open versus closed) 

distinction is relevant, however, for cases where it is not possible to carefully balance 

confounding dimensions, as is usually the case in naturalistic and likely future 

applications of such technology.  
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As can be seen in Figure 3.8 above, when applying strong ICA correction, baseline 

correction has no real effect, as sentence-level and epoch-level correction result in 

similar topographies as the case when none are applied. Conversely, when no ICA 

correction is applied, the principle difference between open and closed class words 

is centred around the frontal electrodes due to the electrophysiological effects of eye 

movements, whose ERP traces are magnitudes larger than the electrode traces from 

elsewhere across the head. This is not an ideal solution, because the data used for 

decoding is then primarily driven by the effects of confounding eye movements. 

When only weakly-correcting the EEG data during preprocessing with ICA, the 

topographies between the two classes are stronger across a broader range, 

revealing a visually-recognisable difference according to baseline correction method. 

The topographies for the cases where epoch-level and no baseline correction are 

applied look relatively similar, showing a dominant frontal distinction. However, when 

baseline correction happens at the sentence level, the magnitude of the positive 

frontal activity resembles more the case when strong ICA is applied, differing only by 

a more subtle positivity in frontal electrodes. This appears to be a stable medium, 

that would allow decoding to take advantages of the confounding eye movements 

without them dominating the rest of the signal, with relatively broad positivity down 

the midline of the head. The temporal decoding results reported in Figure 3.5 for 

weak ICA (middle row) show that it is exactly this combination of preprocessing, 

across both types of normalisation, that results in a higher peak value that is visually 

distinct from the other methods. An analysis of the resulting topographies between 

the classes, i.e. difference waves, allows introspection that can lead to good 

hypotheses to understand the nature of such large differences in decoding 

performance.  



113 
 

 

3.2.5 - Discussion 
 

For the binary decoding of word length and frequency, observations on the 

development set with regard to preprocessing decisions were borne out when tested 

on completely independent test data, showing that these decisions likely do have a 

true effect which can be used to inform decisions on data preprocessing if the end 

goal or principal tasks would benefit from decoding those features. It was more 

difficult to find robust effects for the generally weaker responses to word class. 

However, it did appear that there was a positive effect for feature scaling type, in 

which univariate scaling was significantly higher for decoding in the 300-500 ms 

post-stimulus period. A strong and reproducible response when discriminating 

between low and high frequency words was found for the condition of not applying 

baseline correction, irrespective of ICA correction type or feature scaling. For word 

length, the variable results showed a lot of significant interactions which requires 

more nuanced investigation in order to understand the interplay between these 

factors. 

 

A few limitations are important to consider for these results. Some significant main 

effects did not reveal any significant pairwise contrasts during post-hoc testing, but 

Tukey’s HSD’s method of controlling multiple comparisons can bring about 

nonsignificant effects if many contrasts are performed or if the results provide 

relatively weak evidence against the null hypothesis. Furthermore, visualising single 

trials on the same scale as highly-averaged pseudotrials hides a lot of the 

differences that were found in the statistical analysis and potentially underrepresents 

the effect size within the context of single-trial decoding effects due to the scale 

required of the y-axis to accommodate the increased decoding accuracy from data 
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with a higher signal-to-noise ratio. In order to understand the different decoding 

traces and the impact each preprocessing step has on those results, it is sensible to 

look at the effects on the preprocessed data itself that enters the model.  

 

By examining, for each of word length, frequency and class, a topographic map of a 

difference wave that was originally hypothesised and then statistically verified, one is 

afforded the opportunity to better understand the mechanisms by which a classifier 

can learn distinctions between a set of classes. This is the goal of the previous 

section, which provided support for the observations both in the statistical analysis, 

i.e. in the form of visually demonstrating the spatial profile of interaction effects, but 

also supporting the observations in the decoding traces of Sections 3.2.3.1-3.  

 

Strong ICA often results in fairly broad and consistent low-magnitude difference 

waves between the levels of the classes reported in this section. Frontal electrodes 

vary considerably in cases where eye movement information is available in the 

signal, and in some cases, the interaction between ICA correction and baseline 

correction can be explained by finding a middle ground between removing all high-

magnitude frontal eye movement artefacts and allowing the signal to be dominated 

by these, such that lower-magnitude reflections of linguistic processing are not 

detectable by a decoding classifier. These results show that it is not always best to 

remove all ICA activity from eye movements when the goal is that of decoding 

linguistic information from EEG signals. 
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3.3 - Visualisation of EEG Preprocessing Effects 

 

3.3.1 - Introduction 
 

The previous section analysed the effects of various preprocessing steps on the 

temporal decoding of three data sets, in which careful steps had been taken to 

balance a 2-class problem with respect to confounding variables. In this section, the 

main focus will be placed on visualising the EEG data that was used in the previous 

section. This involves both the channel-wise and spatially-distributed grand average 

potential over the time period of interest, as well as a selection of the topographies 

as they unfold dynamically. This aids a visual understanding both of (i) what 

differences in the data could lead to differences in the decoding accuracy, and (ii) the 

effects that preprocessing steps have (or don’t have) on such data.  

 

3.3.2 - Method 
 

ERP traces and topographies from the training sets of each of the 27 datasets was 

calculated, i.e. from each of (1) linguistic variable being examined (word length, 

frequency, class), (2) baseline correction method (epoch-based, sentence-based or 

none) and (3) ICA correction type (strong, weak, none). This resulted in grand-

averaged ERPs over 87,270 samples in the word length data, 51,940 samples in the 

word frequency data and 41,160 samples in the word class dataset. These results 

are organised by word length, frequency and class in order to better compare the 

visual effects of each preprocessing step. This is then used as supporting evidence 

to add further insight into explaining the set of results on the decoding traces 

presented in the previous section.  
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3.3.3 – Results 
 

3.3.3.1 - Word length 

 

Figures 3.9 – 3.11 show the grand averaged ERP over all trials used in the 

confound-corrected word length dataset (N = 87,270), where each figure contains 

the epoch-based baseline correction in the top row, sentence-based baseline 

correction in the middle row and no baseline correction last.  
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Figure 3.9. Grand average ERPs over all trials in the training portion of the word length dataset (N = 
87,270) which had strong ICA correction. Each row visualises a specific baseline setting (top: epoch 
baseline correction, middle: sentence baseline correction, bottom: no baseline correction) 
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Figure 3.10. Grand average ERPs over all trials in the training portion of the word length dataset (N = 
87,270) which had weak ICA correction. Each row visualises a specific baseline setting (top: epoch 
baseline correction, middle: sentence baseline correction, bottom: no baseline correction) 
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Figure 3.11. Grand average ERPs over all trials in the training portion of the word length dataset (N = 
87,270) which had no ICA correction. Each row visualises a specific baseline setting (top: epoch 
baseline correction, middle: sentence baseline correction, bottom: no baseline correction) 
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A clear observation is that the grand average ERP where no ICA correction has 

been applied, with no baseline correction, looks similar to the epoch-based baseline 

correction. This is undoubtedly because the average over random fluctuations seen 

in the single-trial data are inconsistent among trials and therefore disappear during 

the averaging process. In this regard, there is an underappreciation for these figures 

of how noisy the signals are at the single-trial level and at the pseudotrial level 

(averages of just 3 / 10 single trials). However, if sentence baseline correction is 

used, this has a systematic effect which is still present over large-scale averaging, in 

which there is stronger consistent frontal negativity typical of ocular signals present 

during reading, i.e. the saccadic eye movements (in left to right reading), in which the 

negative corneoretinal dipole projects a more negative polarity forwards and is 

detected by the frontal EEG electrodes. Strong ICA correction results in no 

discernible ocular effects as the primary purpose is to remove these effects. In weak 

ICA correction, using epoch baseline correction, a relative frontal negativity is 

present in the early post-stimulus period.  

 

3.3.3.2 - Word frequency 

 

Figures 3.12 – 3.14 show the grand averaged ERP over all trials used in the 

confound-corrected word frequency dataset (N = 51,940), where each figure 

contains the epoch-based baseline correction in the top row, sentence-based 

baseline correction in the middle row and no baseline correction last.  
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Figure 3.12. Grand average ERPs over all trials in the training portion of the word frequency dataset 
(N = 51,940) which had strong ICA correction. Each row visualises a specific baseline setting (top: 
epoch baseline correction, middle: sentence baseline correction, bottom: no baseline correction) 
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Figure 3.13. Grand average ERPs over all trials in the training portion of the word frequency dataset 
(N = 51,940) which had weak ICA correction. Each row visualises a specific baseline setting (top: 
epoch baseline correction, middle: sentence baseline correction, bottom: no baseline correction) 
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Figure 3.14. Grand average ERPs over all trials in the training portion of the word frequency dataset 
(N = 51,940) which had no ICA correction. Each row visualises a specific baseline setting (top: epoch 
baseline correction, middle: sentence baseline correction, bottom: no baseline correction) 
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The results are similar to word length in that strong ICA correction prevents frontal 

negativity seen due to eye movements, which manifests itself differentially in the 

cases where some of those signals remain (weak ICA & no ICA). The same caveats 

regarding averaging visualisations apply as were mentioned above.  

 

3.3.3.3 - Word class 

 

Figures 3.15 – 3.17 show the grand averaged ERP over all trials used in the 

confound-corrected word class dataset (N = 46,160), where each figure contains the 

epoch-based baseline correction in the top row, sentence-based baseline correction 

in the middle row and no baseline correction last.  
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Figure 3.15. Grand average ERPs over all trials in the training portion of the word class dataset (N = 
46,160) which had strong ICA correction. Each row visualises a specific baseline setting (top: epoch 

baseline correction, middle: sentence baseline correction, bottom: no baseline correction) 
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Figure 3.16. Grand average ERPs over all trials in the training portion of the word class dataset (N = 
46,160) which had weak ICA correction. Each row visualises a specific baseline setting (top: epoch 

baseline correction, middle: sentence baseline correction, bottom: no baseline correction) 
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Figure 3.17. Grand average ERPs over all trials in the training portion of the word class dataset (N = 
46,160) which had no ICA correction. Each row visualises a specific baseline setting (top: epoch 

baseline correction, middle: sentence baseline correction, bottom: no baseline correction) 
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3.3.4 - Discussion 
 

Various effects relating to the preprocessing of EEG data are visible both in the 

temporal decoding results and also the grand-average ERP effects. These results 

point to further interactions that could be expanded in future work. These results 

point to interesting hypotheses that help to further add detail to the emerging picture 

that when decoding linguistic stimuli, care and attention to the extracted windows of 

data, feature scaling, type of ICA and baseline correction can help to extract more 

useful signals used for downstream classification. The inference from decreased 

decoding performance can also be used to inspect what information is lost in the raw 

EEG data itself. A critical limitation here is that what can be observed at the macro 

scale after averaging with many thousands of other data samples. It’s possible that 

the interaction is more pronounced at a lower-level, but unfortunately one that would 

be prohibitively large to visually inspect. Broad trends can still be observed between 

the settings of each different EEG preprocessing pipeline; however it needs to be 

emphasised that at this scale, similarity of the butterfly plots displaying the ERPs 

does not imply similarity at the level of the single-trial or few-averaged trials, which is 

fed to the machine learning classifiers during model training. Overall, the ERPs 

across word length, frequency and class look remarkably similar, yet lead to very 

different decoding traces. A limitation of this analysis is that all trials across both 

classes are used to generate these plots, but separate plots for each condition 

across both classes could reveal more systematic differences that are lost during the 

averaging process here. 
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Chapter 4: General Discussion 

 

In this thesis, I introduce an EEG dataset, which is richly annotated with linguistic 

features and acquired multiple times by the same subject, which can be used in 

linguistic experiments and natural language processing tasks many diverse lines of 

enquiry (such as the stability of the neural response over multiple syntactic contexts) 

as well as for training models that can decode linguistic information from single-trials. 

This thesis has focused mainly on the latter, showing that part-of-speech information 

is present in the EEG response, as demonstrated when accounting for various 

confounds of word length and frequency. Neural signals can be used directly from 

recordings to predict up to 6 different part-of-speech classes as well as to decode 

bigrams, which require complex integration over the time series. I have suggested 

the self-attention mechanism of the Transformer is a capable tool, capable of 

modelling such complex interactions towards the goal of linguistic decoding of neural 

data. Having established this, following work will entail the joint modelling of EEG 

data with textual inputs to assess the extra contributions that EEG data provide when 

applied to sequence-based NLP tasks such as part-of-speech tagging or 

dependency-parsing. Furthermore, a large assessment of the EEG preprocessing 

pipeline with regard to the ability to decode word length, frequency and open vs 

closed class was also given in this thesis, under the working hypothesis that eye 

movements, which are typically removed via ICA correction, are informative of such 

features and are therefore useful when decoding linguistic information from EEG. 

The implications, limitations and future research of this work are now considered. 
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4.1 - Implications 
 

Linguistic status of PoS classes in the brain 

I have demonstrated in this thesis that there is a benefit to be conveyed in working 

with trial-averaged data during the training scheme of both neural network-based 

and traditional classifiers such as linear support vector machines. Higher signal-to-

noise, as measured by a boost in decoding accuracy, has been observed both when 

using carefully confound-controlled data (section 2.1.2) as well as data averaged 

from the naturalistic distribution of the text corpus (sections 2.3.2 and 2.3.3). In both 

of these cases, if responses to linguistic stimuli were primarily driven by confounded 

responses of word length and frequency, as has been claimed in the literature, then 

averages over multiple instances of varying word length and frequencies would likely 

balance out and result in a more noise-like signal that is not associated with a 

specific part-of-speech class. However, what has been demonstrated is that the 

signal is boosted in relation to the amount of averaging (trial-averaging from three 

single trials conveys better performance than single trials; trial-averaging from ten 

single trials conveys better decoding performance than trial-averages from three 

single trials). In these averages, across the variable distributions of the potential 

confounds, the identity of the morphosyntactic status of each part-of-speech remains 

intact and therefore when trial-averaging is performed over larger samples of single 

trials, the confounding distributions are expected to become noisy and interact 

destructively during the averaging procedure. While the claim can’t be made that 

machine learning classifiers are decoding exactly the morphosyntactic status of a 

single word, it can be assumed that there is more being detected than just neural 

responses to confounding variables. This opens up the possibility that EEG-based 

NLP mechanisms are able to detect linguistic responses on a finer-grained scale 
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than just detecting confounds and have sufficient scope to perform functions such as 

part-of-speech tagging and potentially parsing mechanisms, too, by identifying the 

neural responses to concurrent structure building.  

 

Emerging NLP technologies 

A major goal of this work was to lay a foundation upon which future research can be 

based, in terms of verifying what is reasonably decodable from EEG signals using 

the latest machine learning techniques, which are also used to train state-of-the-art 

NLP models. This was carefully considered by consistently comparing Transformer 

results with a linear SVM baseline, in order to dissociate what was linearly decodable 

in a more traditional fashion, versus what the expected gains were of employing 

computationally intensive classifiers such as the Transformer model. The key 

implications of this work with regard to the future of NLP, particularly as a new 

subfield emerges with cognitive neuroscience, are that linguistic information is 

decodable from EEG and the type of decodable information is congruent with what 

state-of-the-art text models extract from their own large corpora of training data. If 

both input sources are jointly modelled, then this could lead to breakthroughs that 

advance the field of NLP by incorporating brain signals into their inner workings. 

Adding EEG information directly to these models without a thorough analysis of the 

time scales, expected decoding performance and an investigation into what lies 

behind these effects leads to a situation where any gains are not directly associated 

with the specifics of EEG, making it unclear what information is being extracted. This 

thesis aims to specify this upfront, so that the next steps have a solid foundation. 
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4.2 - Limitations 
 

While it is important to recognise that analysing anything tangentially connected to 

language is inherently associated with numerous confounds, it is important that care 

be taken to try to correct for this whenever possible, if one aims to surmise a claim 

based on observed data. A lot of effort was put into the way I split text data and the 

neural recordings of these data in order to propose that observed effects, such as 

the detectability of morphosyntactic responses in EEG signals, whether single-trial or 

in trial-averaged data, is detectable using machine learning. This also applies when I 

analysed word length and frequency responses. A key limitation is that it is 

impossible to completely control for all confounds in an experimentally robust 

manner. This consideration is important because it leaves open the interpretation 

that the explained effects that were reported could in theory have been produced by 

a confound that I failed to properly take into account. A lot of effort was spent into 

ensuring this was not the case, but this is an important limitation that one cannot 

escape from. In some sections of this thesis, an engineering (rather than scientific) 

approach was taken, in which naturalistic confounds of language are welcome as 

long as they provide information towards helping to predict the correct class. In many 

sections, the aforementioned limitation does not apply because by demonstrating 

generalisation onto independent test data, with less of a focus on the causal 

contributions, this is the end goal.  

 

A related limitation is that we have left open the issue of semantics and aspects of 

conceptual structure and lexical access which could be causally contributing to some 

of the observed effects reported in this thesis. A large emphasis was placed on trial-

averaging over randomly sampled words such that pseudotrials used in the analyses 
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contain a wide range of different words relating to various semantic concepts, thus 

blurring any strong semantic signals in the dataset and highlighting commonalities 

relating to morphosyntactic status. However, since this was not addressed in as 

systematic a fashion as other known confounds which give rise to strong EEG 

responses during reading (word length and frequency), the effects of semantic 

confounding cannot be ruled out.  

 

A further limitation is that our analysis is performed from neural signals from a single 

subject. Care must be taken towards making generalising statements when a large 

cohort of multiple subjects isn’t present. The ability to recruit multi-subject data in 

order to expand on some of my earlier work was not achievable, due to global 

extenuating circumstances. However, given the spatial smoothness of EEG data, I 

highly suspect that what has been reported here is reproducible in other subjects. 

The initial portion of the first experimental chapter showed that I managed to 

replicate ERP responses already reported in the literature (Section 2.1.2) and this 

hints at the fact that it’s reasonable to hypothesise that the reported results reported 

in this thesis are not specifically unique to the subject used in the acquired EEG 

dataset reported within this thesis. 

 

4.3 - Future research 
 

The co-dependence of NLP and cognitive neuroscience is mutually beneficial, in that 

results from either domain can be translated into the other for scientific 

experimentation, model testing and hypothesis generation. A large component of this 

thesis has been centred on using EEG signals to set the stage for potential 

applications to improve NLP systems, but the reverse is also true. NLP methods are 

equally good testing grounds to develop and simulate neurolinguistic theories, 
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providing the assumed model is suitable to act as a proxy for neural processing. This 

point is contentious in the wider literature, but some novel research is beginning to 

show that this is possible (Toneva & Wehbe, 2019). The EEG dataset collected for 

this thesis contains a viable testing ground to further such ideas. For example, given 

the rich linguistic annotation, the temporal dynamics and scalp topographies can 

easily be inspected with respect to the linguistic status of classes of words, 

categorised according to either linguistic or semantic grounds and used to inform 

research into the cognitive neuroscience of language. 

 

The successful demonstration of decoding part-of-speech information from single-

trial EEG data shows that the combination of this data, along with traditional (state-

of-the-art) machine learning methods, such as Transformer-based neural networks, 

is a promising next step. This research entails training a system that jointly models 

the textual input features as well as the neural responses, as recorded by EEG, of a 

human subject reading the same textual inputs. It remains an open question how 

fine-grained the cardinality of the output classes can be, but successful 

demonstration of this then allows for experimental research where models of neural 

data over vocabulary sets can then replace neural signals specific to each textual 

input. This decoupling of textual input with neural responses is important to allow 

models to be aided by the inclusion of human neural signals during linguistic 

processing, without requiring accompanying signals for each textual input. The first 

steps of such an idea are emerging in the literature for the NLP tasks of relation 

extraction and named entity recognition. The continuation of the work presented in 

this thesis will go even further and move to NLP tasks such as part-of-speech 

tagging and dependency parsing, which contain a highly temporally dynamic feature 

set. 
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4.4 - Concluding remarks 
 

The worlds of cognitive neuroscience and NLP have been stepping into each other’s 

territory for many years, but now it appears that the fields are soon to give rise to a 

joint field of study, in which it is common practice to use neural network models as 

models of the brain in which hypotheses can be simulated, alongside neural network 

modelling of neural signals (with or without accompanying input sources such as 

text, images, audio etc.) This thesis has highlighted the potential for EEG-based NLP 

systems that can identify part-of-speech alongside showing that other features can 

be reliably decoded from single trial data. The modelling problem of neural signals is 

specialised and unlike other common input domains that neural networks are 

commonly used with, special considerations with regard to the signal-to-noise ratio 

need to be taken into account. To this end, I have demonstrated that neural networks 

can implement specialised training procedures to help aid the modellability of neural 

signals and improve generalisation performance on data not seen during testing. 

 

For the development of potential systems that aid in gold-standard corpus-

generation (i.e. fully labelled data which can be useful for model development) for 

low-resource languages, in which native speakers would read texts and online 

systems could help to correctly tag each word, a difficult impediment with traditional 

EEG preprocessing techniques is the computationally costly data decomposition into 

independent components, identification of noise components and/or ocular 

‘artefacts’, reassembling of the data matrix for use in downstream pipeline stages. I 

have shown that, depending on the end goal, such steps might not only be 

unnecessary, but decoding performance might be enhanced by not performing this 

step, under the working hypothesis that ocular information in the signal is correlated 
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with the type of variable being decoded. These results also apply equally to systems 

that do not suffer from issues with computational complexity, but also ones that have 

a high focus on maximum generalisation to new data.  

 

While the results presented in this thesis only scratch the surface of potential new 

directions which can be taken in the emerging world of integrating human signals 

with machine learning applications to language, it is my sincere hope that the 

presented results serve as a useful groundwork for future research in this direction. 
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Appendix A 

 

 
 
Figure 1. Joint histogram of confounding variables (word class, frequency) with respect to word length 
as the central variable, i.e. word length is equally balanced across open and closed-class words and 
word frequency, both equal with respect to the distributions of the confounds. This process is done 
internally to each data split, which is given by each row (train: blue, development: red, test: green). 

This process is also applied separately for each of three sentential positions (sentence-start, 
sentence-middle and sentence-end). Marginal distributions are given along the axes. 
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Appendix B 
 

 

 
 

Figure 1. Joint histogram of confounding variables of word length and class with respect to word 
frequency as the central variable, i.e. word frequency is equally balanced with respect to the 
distributions of the confounds. This process is done internally to each data split (train: blue, 

development: red, test: green), which is given by each row. This process is also applied separately for 
each of three sentential positions (sentence-start, sentence-middle and sentence-end). Marginal 

distributions are given along the axes. 
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Appendix C 
 

 

 
 

Figure 1. Test set sliding window decoding traces for word length decoding. The top three traces of 
each sub-figure refer to 10-averaged pseudotrials and the bottom three refer to single trials. Each 

figure modulates the baseline correction method over a specified setting of ICA correction (rows) and 
feature scaling (columns) 
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Appendix D 

 

 
 
Figure 1. Test set sliding window decoding traces for word frequency decoding. The top three traces 
of each sub-figure refer to 10-averaged pseudotrials and the bottom three refer to single trials. Each 
figure modulates the baseline correction method over a specified setting of ICA correction (rows) and 
feature scaling (columns) 
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Appendix E 

 

 
 

Figure 1. Test set sliding window decoding traces for word class (open vs closed-class) decoding. 
The top three traces of each sub-figure refer to 10-averaged pseudotrials and the bottom three refer 
to single trials. Each figure modulates the baseline correction method over a specified setting of ICA 
correction (rows) and feature scaling (columns) 
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