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ABSTRACT

Evolutionary dynamic optimisation (EDQ), or the study of applying evolutionary algorithms to
dynamic optimisation problems (DOPs) is the focus of this thesis.

Based on two comprehensive literature reviews on existing academic EDO research and real-
world DOPs, this thesis for the first time identifies some important gaps in current academic
research where some common types of problems and problem characteristics have not been
covered. In an attempt to close some of these gaps, the thesis makes the following contributions:

First, the thesis helps to characterise DOPs better by providing a new definition framework,
two new sets of benchmark problems (for certain classes of continuous DOPs) and several new
sets of performance measures (for certain classes of continuous DOPs).

Second, the thesis studies continuous dynamic constrained optimisation problems (DCOPs),
an important and common class of DOPs that have not been studied in EDO research. Contribu-
tions include developing novel optimisation approaches (with superior results to existing meth-
ods), analysing representative characteristics of DCOPs, identifying the strengths/weaknesses
of existing methods and suggesting requirements for an algorithm to solve DCOPs effectively.

Third, the thesis studies dynamic time-linkage optimisation problems (DTPs), another im-
portant and common class of DOPs that have not been well-studied in EDO research. Con-
tributions include developing a new optimisation approach (with better results than existing
methods in certain classes of DTPs), analysing the characteristics of DTPs and the strengths

and weaknesses of existing EDO methods in solving certain classes of DTPs.
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CHAPTER 1

INTRODUCTION

Evolutionary dynamic optimisation (EDO), or the study of applying evolutionary algorithms
(EA) to dynamic optimisation problems (DOPs), is an active research topic and has increasingly
attracted interest from the evolutionary computation (EC) community. The field is relatively
young as most of the studies have been made in the last 20 years with the exception of a few
early works such as (Fogel et al. 1966, Goldberg & Smith 1987) . Due to its relatively young
age, the field still has a lot of open areas with open research questions, of which perhaps one
of the most important questions is about how well academic EDO research reflects the common
characteristics of DOPs and if there are any types of DOPs that have not been covered by current
academic research. The main purpose of this thesis is to investigate this important question and

to propose solutions to close some of the gaps in this issue.

1.1 Dynamic problems and dynamic optimisation problems

It is necessary to distinguish between dynamic problems (also called dynamic environments or
time-dependent problems), which are problems that change over time, and dynamic optimisation
problems (DOPs), which belong to a special class of dynamic problems that are solved online
by an optimisation algorithm as time goes by. Of these two types of problems, only DOPs are
of interest to EDO research. This is because, no matter how the problem changes, from the
perspective of an EA or an optimisation algorithm in general, a time-dependent problem is only
different from a static problem if it is solved in a dynamic way, i.e. new solutions are produced
to react to changes as time goes by. Otherwise, if future changes can be completely integrated
into a static objective function, or if a single robust-to-changes solution can be provided, or if

only the current static instance of the time-dependent problem is taken into account, then the
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problem can be solved using static optimisation techniques and hence is no longer of interest to
EDO.

In spite of this difference between dynamic problems and DOPs, in many EDO studies the
terms "dynamic problem" and "dynamic optimisation problem" are not distinguished or are used
interchangeably. In fact, many EDO studies use the definitions of dynamic problems, especially
the formal definitions, to define DOPs. In these studies, DOPs are either defined as a sequence of
static problems linked up by some dynamic rules (Weicker 2000, Weicker 2003, Aragon & Esquivel
2004, Rohlfshagen & Yao 2008, Rohlfshagen & Yao 2010) or as a problem that have time-
dependent parameters in its mathematical expression (Bick 1998, Bosman 2007, Woldesenbet
& Yen 2009) without mentioning whether the problems are solved online by an optimisation
algorithm or not. For example, below is a formal definition (Bosman 2007) for a DOP with the

time variable t € T = [0, te”d] (e >0

max {Fy (z (t))} subject to C, (z (t)) = feasible with

= o (@ (1) at

C, (1)) = feasible if vt € [0, ] C, (@ (1)) = feasible
infeasible otherwise

where f is a function of x (¢) with time-dependent parameters v and C'is the constraint function.

Although definitions like those cited above can be used to effectively represent time-dependent
problems, they do not however show whether a time-dependent problem is different from a static
problem from the perspective of an optimisation algorithm and hence are not able to distinguish
a DOP from the general time-dependent problems.

Some recent EDO studies have taken into account this difference between static optimisation
and dynamic optimisation when specifying the scope of the dynamic problems to be studied.
Branke (2001b) considered time-dependent problems as dynamic only if "the EA has to cope
with these dynamics", Morrison (2004) restricted the DOPs studied in his book to those in which
"the underlying fitness landscape changes during the operation of the EA", and Bosman (2007)
considered DOPs that "must be solved as time goes by" as "the most practical variant of dynamic
optimization". Finally, Jin & Branke (2005) considered time-dependent problems "dynamic"

only if the dynamics "are to be taken into account in the optimization process". Problems
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satisfying this condition are categorised by the authors as "dynamic fitness functions".

The implication of the cited remarks above is that a time-dependent problem is a dynamic
optimisation problem (DOP) only if it is solved online by an optimisation algorithm as time goes
by. To make it clearer and to distinguish DOPs from other types of time-dependent problems,

I propose the following definition for DOPs:

Definition 1.2 (Dynamic optimisation problem) Given a dynamic problem f;, an optimi-

sation algorithm G to solve f;, and a given optimisation period [tbegm,te”d] , ft is called a

dynamic optimisation problem in the period [tbegi”, te”d] if during [tbegi”, t‘md] the underly-

ing fitness landscape that G uses to represent f; changes and G has to react to this change by

providing new optimal solutions.'

From now on, in this thesis we will use the term dynamic optimisation problems (DOPs)
to refer to any problems defined by the above definition. A more formal and detailed DOP
definition, which takes into account the common characteristics of DOPs, will be provided later
in Chapter 4.

The definition above distinguishes DOPs from the other two types of time-dependent prob-

lems, which are solved using different approaches as follows:

1. Time-dependent problems that are solved by static optimisation approaches: These time-
dependent problems are formulated as a static problem by the optimisation algorithm.
This is because either all future changes are known and hence can be completely integrated
into a static objective function, or only the current static instance of the time-dependent
problem is taken into account. In this case the goal is to find a single, static solution using

a static optimisation approach

2. Time-dependent problems that are solved by robust optimisation approaches: In these prob-
lems future changes are normally not completely known but in most cases the problem
is still formulated as a static problem with an expected fitness function. The goal is to
find a single solution that is less sensitive under future disturbances such as production

tolerances, operating conditions or modelling inaccuracies. A recent review of robust op-

"This definition also covers the robust-optimisation-over-time situation described in (Yu et al. 2010) where a
sequence of (S, ...Sk) robust solutions is found provided that k > 1.
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timisation can be found in (Beyer & Sendhoff 2007). Another summary of evolutionary

robust optimisation approaches is presented in (Jin & Branke 2005).

1.2 Scope of the thesis

The range of dynamic optimisation problems is large and diversified. In Chapter 3 I will try to
cover a wide range of DOPs (including continuous/combinatorial and single/multiple-objective
problems) to investigate the characteristics of DOPs and to provide a formal definition for
DOPs. However, in other chapters, I will focus only on the empirical /experimental aspects of
EDO and on solving only some specific subsets of DOPs. Specifically, in Chapters 5 and 6 I am
interested in solving single-objective continuous dynamic constrained problems (DCOPs) and in
Chapter 7 I am interested in solving single-objective continuous dynamic time-linkage problems
(DTPs) (descriptions of these classes of problems will be provided in details in the corresponding

chapters).

1.3 General research questions

The approach of this thesis is to start from some very general questions to get an overview of
the important gaps in the field. Once the gaps have been identified, more specific questions will
be raised and the thesis will focus on finding the answers to these specific questions.

The general questions that I am interested in finding the answer are:

What are the links between academic EDO research and real-world scenarios? Is
there any type of problem, or any types of problem characteristics that are common

in practical situations but have not been studied in EDO academic research?

Answering the questions above requires us to carry out comprehensive literature review of
the methods, performance measures, benchmark problems, and definitions on not only existing
academic research in EDO, but also on real-world problems. These tasks will be dedicated to
the next two chapters. Such a detailed literature review will provide us with knowledge about

current gaps in EDO academic research to ask more specific questions such as:

If we have indeed found some classes of problems and problem characteristics that
have not been considered in academic EDO research, what are the most important

ones that we should study and why?



1. Introduction 1.4. Outline of the thesis

The answers to such questions will help me to choose some of the most important type of
problem /characteristics to study further in the thesis. For each problem/problem characteristic,

further questions are asked in Subsection 3.1:

How can we capture these problems and characteristics in academic benchmark
problems? What would be the performance of existing methods on these problems?
How can we evaluate the performance of existing methods? What can we do to
improve the performance?

More importantly, how can we effectively solve these problems, which have not

been solved by EDO before?

These specific questions show us the research directions to be done in the rest of the thesis.

1.4 QOutline of the thesis

This thesis is an attempt to answer the questions above. It is organised as follow:

Chapter 2 reviews and categorises existing EDO research about the solving methods, per-
formance measures, and benchmark problems from the literature. The purpose of the chapter
is to discuss the strengths and weaknesses of each method and more importantly to identify the
current assumptions of the community about the characteristics of DOPs.

Chapter 3 follows by reviewing a large, representative set of recent real-world DOPs. The
purpose of this chapter is to investigate for the first time some insights about the link between
academic EDO research and certain classes of real-world DOPs and from that identify any gap
between EDO academic research and real-world problems. Based on the review, in this chapter
I will discuss the necessity and possibility to extend current EDO research to better reflect
the common characteristics of DOPs and to solve wider ranges of DOPs more effectively. The
chapter also sets out the research topics (for the rest of the thesis) to close some of the gaps that
it has found: problem definition, continuous dynamic constrained optimisation, and dynamic
time-linkage optimisation.

One of the gaps identified in Chapter 3: the lack of a formal definition to fully represent
DOPs, is addressed in Chapter 4. In this chapter a new definition framework is proposed to (i)
distinguish DOPs from other types of time-dependent problems; (ii) encapsulate the behaviours

and types of dynamics; (iii) encapsulate the changing factors; and (iv) separate the static factors
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from the dynamic factors.

Chapter 5 investigates one of the important but not yet well-studied classes of DOPs: dy-
namic constrained optimisation problems (DCOPs). In this chapter I will firstly present my
investigations on the characteristics that might make dynamic constrained problems difficult
to solve by some of the existing dynamic optimisation (DO) and constraint handling (CH) al-
gorithms. I will then introduce a set of numerical dynamic benchmark problems with these
characteristics and a set of performance measures to evaluate the performance of algorithms
in DOPs/DCOPs. To verify my hypothesis about the difficulty of DCOPs, T will test several
representative DO and CH strategies on the proposed benchmark problems. Based on the ex-
periments I will also study some interesting observations where the presence or combination of
different types of dynamics and constraints might make the problems easier to solve for cer-
tain types of algorithms. Based on the analysis of the results, I will propose a list of possible
requirements that an algorithm should meet to solve DCOPs effectively.

Based on the results from Chapter 5, in Chapter 6 I will propose a set of new mechanisms
to effectively handle dynamics in DCOPs and use them to develop new algorithms for solving
DCOPs. The goal is to combine the advantages of DO and CH strategies while overcoming
the drawbacks of these methods in solving DCOPs. To evaluate the performance of the new
algorithms, I will compare them against several representative DO and CH algorithms using the
set of benchmark problems proposed in Chapter 5. In this chapter I will also (i) carry out detailed
analyses of how and why the newly proposed mechanisms/algorithms work better in DCOPs, (ii)
investigate the contribution of each of the proposed mechanisms and (iii) study the influence of
different parameter values on algorithm performance in solving DCOPs. These analyses reveal
some interesting and counter-intuitive findings about the characteristics of DCOPs and the way
we can solve DCOPs.

Chapter 7 focuses on another important but not yet well-studied classes of DOPs: dynamic
time-linkage problems (DTPs). In this chapter I will identify a new and challenging class of
DTPs where it might not be possible to solve the problems using the traditional methods.
An approach to solve this class of problem under certain circumstances will be suggested and
experiments to verify the hypothesis will be carried out. Two time-linkage benchmark problems
will also be proposed to simulate the property of this new class of DTPs.

Chapter 8 concludes the thesis. Contributions of the thesis are summarised and future
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research directions are also suggested.

1.5

Publications resulting from this thesis

Refereed or submitted journal papers

1.

2.

T. T. Nguyen and X. Yao (2010). Continuous Dynamic Constrained Optimisation - The
Challenges, submitted to IEEE Transactions on Evolutionary Computation. (given the
option to revise for acceptance).

T. T. Nguyen and X. Yao (2010). Solving Dynamic Constrained Optimisation Problems
Using Repair Methods, submitted to IEEE Transactions on FEvolutionary Computation.
(given the option to revise for acceptance).

In-preparation journal papers

3.

T. T. Nguyen, J. Branke, T. Ray and X. Yao (2010). Characteristics of dynamic opti-
misation problems: from academic evolutionary research to real-world problems. To be
submitted to IEEE Transactions on Evolutionary Computation in October.

T. T. Nguyen, J. Branke and S. Yang (2010). Evolutionary Optimisation in Dynamic
and Uncertain Environments: A Survey. (invited paper). To be submitted to Swarm and
Evolutionary Computation in October

Refereed conference papers
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T. T. Nguyen and X. Yao (2009). Benchmarking and Solving Dynamic Constrained Prob-
lems, Proceedings of the IEEE Congress on Evolutionary Computation CEC2009, Trond-
heim, Norway, 18-21 May 2009, IEEE Press, pp.690-697.

T. T. Nguyen and X. Yao (2009). Dynamic Time-linkage Problems Revisited. In M.
Giacobini et al (Eds.), Proceedings of the 2009 European Workshops on Applications of
Evolutionary Computation, EvoWorkshops 2009, Lecture Notes in Computer Science, Vol.
5484, Springer, pp.735-744.

H. K. Singh, A. Isaacs, T. T. Nguyen, T. Ray and X. Yao (2009). Performance of Infeasi-
bility Driven Evolutionary Algorithm (IDEA) on Constrained Dynamic Single Objective
Optimization Problems, Proceedings of the IEEE Congress on Evolutionary Computation
CEC2009, Trondheim, Norway, 18-21 May 2009, IEEE Press, pp.3127-3134.

Technical report for the CEC’2009 competition on dynamic optimisation
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(2008). Benchmark Generator for CEC 2009 Competition on Dynamic Optimization,
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CHAPTER 2
LITERATURE REVIEW ON
EVOLUTIONARY DYNAMIC OPTIMISATION

RESEARCH

In this chapter I will focus on the empirical/experimental aspects of EDO research, covering some
representative approaches (especially those in the continuous domain) in developing algorithms,
generating benchmark problems and measuring algorithm performance. The purpose of the
chapter is to discuss the strengths and weaknesses of each method and more importantly to
identify the current assumptions of the community about the characteristics of DOPs.

Because the topics in EDO are very broad and diverse, it is impossible to cover everything in a
chapter but only the topics that are most relevant to my research questions. The topics that will
not be fully covered in this chapter are the classifications of DOPs and theoretical works. For a
detailed literature review on classification methods for DOPs, readers are referred to my technical
report in (Nguyen 2007). For details of theoretical works in the field, readers are referred to
the works in (Wolpert & Macready 1997, Stanhope & Daida 1999, Rowe 1999, Ronnewinkel
et al. 2000, Rowe 2001, Droste 2002, Droste 2003, Liekens et al. 2003, Liekens 2005, Rowe 2005,
Arnold & Beyer 2006, Rohlfshagen et al. 2009, Tinos & Yang 2010).
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2.1 Optimisation approaches

2.1.1 The goals of dynamic evolutionary algorithms

In stationary optimisation, in most cases the only goal of optimisation algorithms is to find the
global optimum as fast as possible. However, in current EDO research where the considered
problems are time-varying, the goal of an algorithm turns from finding the global optimum
to firstly detecting the changes and secondly tracking the changing optima (local optima or
ideally the global optimum) over time. In addition, in case the problem-after-change somehow
correlates with the problem-before-change, an optimisation algorithm also needs to learn from its
previous search experience as much as possible to hopefully advance the search more effectively.
Otherwise, the optimisation process after each change will simply become the process of solving
a different problem starting with the old population/structure.

The following sections will briefly review typical approaches in EDO that have been proposed
to satisfy the goals above. We will discuss the strengths and weaknesses of the approaches and

their suitability for different types of problems.
2.1.2 Introducing diversity when changes occur
Overview

In stationary optimisation, the convergence of an evolutionary algorithm is required so that the
algorithm can focus on finding the best solution in the promising area that it has already found.
In dynamic optimisation, however, convergence may result in negative effects. This is because
if the dynamic landscape changes in one area and there is no member of the algorithm in this
area, the change will become undetected. As a result, it is impossible for a normal EA to detect
a change once it has already converged.

Intuitively one simple solution to this drawback is to increase the diversity of an EA after a
change has been detected. This solution is described in the pseudocode of Algorithm 1.

Pioneer studies following this solution are Hyper-mutation (Cobb 1990) and Variable Local
Search (VLS) (Vavak et al. 1997b, Vavak et al. 1998). They are different mostly in the step 2c
(Algorithm 1) where different strategies were used to introduce diversity to the population. In
his research, Cobb (1990) proposed an adaptive mutation operator called hyper-mutation whose

mutation rate is a multiplication of the normal mutation rate and a hyper-mutation factor. The
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Algorithm 1 Introducing diversity after detecting a change

1. Initialise:: Initialise the population

2. For each generation

(a) Fwvaluate::Evaluate each member of the population

(b) Check for changes: Detect changes in the landscape by monitoring possible signs of
changes, for example a reduction in the fitness of the best individuals

(¢) Increase diversity: If there is any change, increase the diversity of the population by
adaptively change the mutations (sizes or rates) or relocate individuals

(d) Reproduce: Reproduce a mnew population using the adjusted muta-
tion/learning/adaptation rate

(e) Return to step 2a

hyper-mutation is invoked only after a change is detected.

In the Hyper-mutation method, the fact that the step size of the mutation size is not adaptive
may decrease the performance of the EA. To improve this, in Variable Local Search Vavak et al.
(1996) provided a mechanism to control the size of mutation by defining a variable local search

2BITS _ 1) where BITS is a value adjustable

range. This range is determined by the formula (
during the search.

In their consecutive paper Vavak et al. (1997b) improved VLS by making it adaptive using a
learning strategy borrowed from the feature partitioning algorithm Guvenir and Sirin (1993). For
each individual, the learning strategy learns to map the severity of the change with a suitable
local search range selected from a pre-defined set, then classify individuals into disjoint sets
according to their local search range (see Figure 2.1).

An interesting way of introducing diversity was proposed in (Yu & Suganthan 2009) where
the individuals to be introduced to increase diversity are not randomised ones but some previous
good solutions (which have been specifically chosen so that they either are most diversified (to
be used when the algorithm prematurely converged) or represent different parts of the search
space instead of getting crowded in one area (to be used when a change is detected)). In other
words, in this work the diversity-introducing and memory approaches are combined into one to
increase diversity while still be able to recall previous good solutions.

Recently diversity-introducing has been used to handle dynamic constraints. In (Nguyen

& Yao 20100), hyper-mutation was used with a change detection method in an EA to solve

10
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Figure 2.1: This figure (reproduced from (Vavak et al. 1998)) shows an example of applying
VLS operator to a population of 100 individuals. Assume that before the change the first 98
individuals of the population converged to the global optimum. After invoking the VLS operator,
the search range of individuals are restricted to only the hypercubes marked A. If the search
is not successful the search range may be extended to the hypercubes B. Note that the search
range of each group of individuals might be different from each other

dynamic constraint problems. Detectors are placed near the boundary of feasible regions and
when the feasibility of these detectors change, the EA increases its mutation rate to raise the
diversity level to track the moving feasible regions. The mutation rate is decreased once the
moving feasible regions is tracked successfully.

Diversity-introducing approach is also used in dynamic multi-objective optimisation (DMO).
For example, in a multi-population algorithm for DMO (Goh & Tan 2009a), when a change is
detected stochastic individuals and some competitor individuals from other sub-populations are
introduced to each sub-population to increase diversity.

The approach of introducing diversity after changes is also used in Particle Swarm Opti-
misation (PSO). Hu & Eberhart (2002) introduced a simple mechanism in which a part of the
swarm or the whole swarm will be re-diversified using randomization after a change is detected.
Janson & Middendorf (2005) and Janson & Middendorf (2006) followed a more sophisticated
mechanism where after each change the swarm is divided into a hierarchy of several sub-swarms
for a certain number of generations. The purpose of this hierarchy is to prevent the swarm from
converging to the old position of the global optimum, which might have been moved since the
last change.

Recently Woldesenbet & Yen (2009) proposed a new adaptive method named "relocation

11
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variable", which can be considered belonging to the class of introducing diversity /adaptability
approaches. In this method, after a change individuals are relocated based on the changes in
their function values and on the sensitivities of their coordinations to changes. Specifically, based
on the history of their performance a relocation radius is estimated for each individual. The
individuals will be relocated (mutated) to a position within this radius for a number of times
and the best fit position will be used as a member for the new population. The size of each
relocation radius depends on the sensitivity of the individual to changes in the environment.
The more sensitive the individual is, the larger the radius.

The introducing-diversity approach is still commonly used in many recent EDO algorithms,
for example (Parrott & Li 2006, Moser & Hendtlass 2007a, Richter 2009, Richter & Yang 2009,
Richter 2010, Nguyen & Yao 20100).

Strengths and weaknesses

In general methods following this approach appear to be good in solving problems with con-
tinuous changes where changes are small and medium. This is because invoking mutations or
distributing individuals around an optimum resembles a type of "local search", which is useful to
observe the nearby places of this optimum. Thus if the optimum continuously moves to nearby
places, it might be tracked (Vavak et al. 1996, Vavak et al. 1997b).

However, this approach has some drawbacks that might make it not so suitable for certain

type of problem. They are listed bellows:

e Dependence on whether changes are known / easy to detect or not: Because most methods
following this approach detect changes by observing the reduction of fitness of some best
performers and/or the population as an indication of changes, if a change appears in a place
where no individual exist, it will go undetected (Morrison 2004). For example, it has been
shown that in dynamic constrained problems, the diversity-introducing strategy cannot
detect changes when the dynamic constraints expose new global optima without changing

the fitness value of the previous optima (Nguyen & Yao 2009a, Nguyen & Yao 2010a)

e Difficulty in identifying the correct mutation size (in case of Hyper-mutation and VLS) or
the number of sub-swarms (in case of Hierarchy PSO): too small steps will resemble local

search while too large steps will result in random search (Jin & Branke 2005).

12
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e Not being effective for solving problems with random changes or large changes (changes
are severe): Because many diversity-introducing methods have their mutation/ relocation
size restricted to a specific range, it is obvious that they are not effective if either the
changes are larger than this range or the changes are random. For example, experiments
show that Hierarchy PSO may not perform as good as traditional PSO in tested problems
with large changes (Janson & Middendorf 2006).

e Not being effective for solving problems with fast changes: After introducing diversity,
methods following this approach need time to converge again. As a result, if the change

is fast, they may not be able to find the global optimum (Cobb 1990).

2.1.3 Maintaining diversity during the search

Overview

Another approach in solving dynamic problems is to maintain population diversity throughout
the search process to avoid the possibility that the whole population converge into one place,
hence unable to either track the moving optimum or detect a new competing peak (see Algorithm

2).

Algorithm 2 Pseudo code for algorithms that maintain diversity

1. Initialise:: Initialise the population

2. For each generation

(a) Fwvaluate::Evaluate each member of the population

(b) Maintain diversity: Add a number of new, diversified individuals to the current
population to increase diversity

(¢) Reproduce: Reproduce a new population

(d) Return to step 2a

Methods following this approach do not detect changes explicitly. Instead they rely on their
diversity to adaptively cope with the changes. Typical examples of this approach are Random
Immigrants (Grefenstette 1992), fitness sharing (Andersen 1991), Thermo-Dynamical GA(Mori
et al. 1996), Sentinel Placement (Morrison 2004), Population-Based Incremental Learning (Yang
& Yao 2005), several Particle Swarm Optimisation variants (Janson & Middendorf 2005, Black-

well & Bentley 2002, Blackwell & Branke 2006, Blackwell 2007) and dynamic Evolutionary

13
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Multiobjective optimisation (Bui et al. 2005, Abbass & Deb 2003, Toffolo & Benini 2003).

In the Random Immigrants method, in every generation a number of generated random
individuals are added to the population to maintain diversity. Experimental results show that
the method is more effective in handling dynamics than the regular EA (Grefenstette 1992). It
is reported that the high diversity level brought by random immigrants also helps in handling
constraints. In (Nguyen & Yao 2010b) it was shown that when combined with the constraint-
handling repair method, random-immigrant significantly improve the performance of the tested
EA.

Morrison (2004) follows a slightly different mechanism in which instead of generating random
individuals, his Sentinel Placement method initialises a number of sentinels which are specifically
distributed throughout the search space. These sentinels can still participate in the reproduce
process of the population (to maintain diversity) but will never be removed (so that they can
always track possible coming changes). Experiments show that this method might get better re-
sults than Random Immigrants and Hyper-mutation in problems with large and chaotic changes
(Morrison 2004).

Two other approaches - Parallel PBIL (PPBIL2) and Dual PBIL (DPBIL) were proposed
by Yang & Yao (2005). These methods are based on the Population-based Incremental Learn-
ing (PBIL) algorithm, which is a simple combination of population-based EA and incremental
learning. PBIL has an adjustable probability vector which is used to generate individuals. After
each generation the probability vector is updated based on the best found solutions. It ensures
that the vector will gradually "learn" the appropriate value to generate high quality individuals.
A pseudo code of PBIL was shown in Algorithm 3.

In PPBIL2, Yang & Yao (2005) improved PBIL for dynamic optimisation by maintaining two
parallel probability vectors. The first one is a central initialised probability vector similar to that
of normal PBIL. The second one is a random initialised probability dedicated to maintaining
diversity during the search. The two vectors are sampled and updated independently. On initial
they have the same sample size. However, throughout the search their sample sizes might be
adjusted based on their relative performance.

Although PPBIL2 might offer better diversity than its original version PBIL, in certain cases
where the intervals between changes are large, the two populations may still end up in conver-

gence and the algorithm still lose diversity. As a result, Yang & Yao (2005) proposed another

14
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Algorithm 3 Population-based Incremental Learning

1. Initialise:: Initialise P, the probability vector: P[i] = 0.5, i = 1,...n where n is the
number of variables

2. For each generation:

(a) Generate: Generate each individual by sampling the space using the probability
vector P

(b) FEwvaluate: Evaluate each member, assign B to the best individual found

(c) Update P: Update the vector P based on the best individual B: P [i] = (1 — «) P [i]+
aB [i] where « is the pre-defined learning rate.

(d) Return to step 2a

improved version of PBIL, the DPBIL. Similar to PPBIL2, DPBIL also has two probability
vectors. However these vectors are dual with each other, which means that given the first vec-
tor Py, the second vector P» is determined by Py [i] = 1 — Py [i] , ¢ = 1,...,n where n is the
number of variables. During the search only P; needs to learn from the best generated solution
because P2 will change with P; automatically. PBIL and dual PBIL were also combined with
random-immigrants in (Yang & Yao 2008) with better results than the original algorithms.

The approach of maintaining diversity is also used in Particle Swarm Optimisation (PSO) to
solve dynamic continuous problems. In their charged PSOs (Blackwell & Bentley 2002, Blackwell
& Branke 2006, Blackwell 2007), Blackwell et al. applied a repulsion mechanism, which is
inspired by the atom field, to prevent particles/swarms to get too closed to each other. In this
mechanism, each swarm is comprised of a nucleus and a cloud of charged particles which are
responsible to maintain diversity. There is a repulsion among these particles to keep particles
from approaching near to each other.

Bui et al. (2005) proposed another interesting way to maintain diversity in dynamic optimisa-
tion: using multi-objective approaches. The dynamic problem is represented as a two-objective
function. The first one is the original single objective, and the second is a special objective
created to maintain diversity. Other examples of using multiple objectives to maintain diversity
can be found in Abbass & Deb (2003) and Toffolo & Benini (2003), where six different following

types of objectives were proposed:
e Retain more old solutions (favour old individuals based on an attached time stamp)

e Retain more random solutions

15



2. Literature review on EDO 2.1. Optimisation approaches

Slow down the convergence by reversing the optimisation of the first objective

Keep a distance from the closest neighbor

Keep a distance from all individuals

Keep a distance from the best individual of the population

The diversity-maintaining strategy is still the main strategy in many recent approaches, for
example (Janson & Middendorf 2005, Yang & Yao 2005, Blackwell & Branke 2006, Blackwell
2007, Yang & Yao 2008, Deb et al. 2007, Riekert et al. 2009, de Franca & Von Zuben 2009, Cheng
& Yang 2010).

Strengths and weaknesses

Methods following this approach can bring the following advantages:

e May be good for solving problems with severe changes: Thanks to its good diversity, in
certain situations the approach is good to solve problem with large changes (for example in
(Nguyen & Yao 2009a, Nguyen & Yao 20106, Nguyen & Yao 2010q) it has been shown that
random-immigrants help significantly improve the performance in dynamic constrained

problems where changes are severe due to the presence of disconnected feasible regions)

e May be good for solving problem with slow changes (as shown in e.g. (Andersen 1991, Yang
& Yao 2005)). This is because for slow changes an algorithm with high diversity may have

enough time to converge.

e May be effective in solving problems with competing peaks (as reported in (Cedeno &

Vemuri 1997))

However, methods that maintain diversity through out the search also have some disadvan-

tages as follow:

e Slow: Continuously focusing on diversity may slows down, or even distract the optimisation

process (Jin & Branke 2005).

e Not effective when the changes are small: Most methods following this approach maintain

their diversity by adding some stochastic element through out the search space. Obviously
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it will make the algorithm harder to track small changes where the optima just take a

slight move away from their previous places (Cobb & Grefenstette 1993).

2.1.4 Memory Approaches

When changes in dynamic problems are periodical or recurrent, i.e. the optima may return to
the regions near their previous locations, it might be useful to re-use previous found solutions to
save computational time and to bias the search process. To re-use old solutions in this manner,
many researchers decide to add some types of memory components to their EAs to make it more
effective in tracking periodical changes. The memory can also play the role as a reserved place
storing old solutions for maintaining diversity when needed. The memory can be integrated
implicitly as a redundant representation in the EAs, or it could be maintained explicitly as a

separate memory component.
Implicit memory

Redundant coding using diploid genomes are the most common implicit memory used in EAs
for solving dynamic problems e.g. (Goldberg & Smith 1987, Ng & Wong 1995, Lewis et al. 1998,
Uyar & Harmanci 2005, Yang 2006¢). A diploid EA is usually an algorithm whose chromosomes
contain two alleles at each locus. Although most normal EAs for stationary are haploid, it is
believed that diploid, and other multiploid approaches, are suitable for solving non-stationary
problems (Lewis et al. 1998). A pseudo code for multiploid approaches for dynamic environments

is described in Algorithm 4.

Algorithm 4 Multiploid EA for dynamic optimisation

1. Initialise:: Initialise the population and the multiploid representation

2. For each generation

(a) Ewaluate: Evaluate each member of the population
(b) For each individual:
i. Check for changes: detect any change in the fitness that may be caused by a
change in the landscape

ii. Adjust the dominance level of each allele : If there is any change, adjust the
dominance to accommodate the current change

iii. Select the dominant alleles according to their dominance level
(¢) Reproduce: Reproduce a new population using the adjusted mutations

(d) Return to step 2a
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As can be seen in Algorithm 4, in order to design a multiploid EA, we need to take into

account three tasks:

1. represent the redundant code;
2. represent/adjust the dominance of alleles; and

3. check for changes in the landscape.

One typical way to represent the dominance of alleles is to use a table (Ng & Wong 1995,
Ryan 1996) or a mask (Collingwood et al. 1996) mapping between genotypes and phenotypes.
The dominance then can be changed adaptively among alleles depending on the detection of
changes in the landscape. To detect changes, we can use several methods, for example checking
the change in the fitness of an individual (Ng & Wong 1995, Lewis et al. 1998); or using an
incremental learning probability (Yang 2006¢).

Some other examples of algorithms following the approach of using the environment as
implicit memory are the studies of (Guntsch & Middendorf 2002), (Guntsch et al. 2000) and

(Randall, 2005).
Explicit memory

Methods that maintain the memory explicitly are described by the pseudo code in Algorithm 5:

Algorithm 5 EA for dynamic optimisation with explicit memory

1. Initialise::

(a) Initialise the population

(b) Initialise the explicit memory
2. For each generation

a) Evaluate each member of the population

(a)
(b) Update the memory
(c) Reproduce a new population
(d)

)

d
(e) Return to step 2a

Use information from the memory to update the new population

Methods following the approach of using explicit memory need to accomplish four tasks:

1. Decide the content of the explicit memory: The content of the memory can be either:
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(a)

Direct memory: In most cases the direct memories are the previous good solutions
(Louis & Xu 1996, Mori et al. 1998, Branke 1999, Bendtsen & Krink 2002, Yang
2005a, Yang 2006a, Zeng et al. 2007, Yang & Yao 2008, Yu & Suganthan 2009). In
(Yu & Suganthan 2009) for certain circumstances the most diversified solutions (in

term of standard deviation of fitness) are also selected for the memory.

Associative memory: Various type of information can be included in the associative
memory, for example the information about the environment at the considered time
(Ramsey & Grefenstette 1993), (Eggermont et al. 2001); the list of environmental
states and state transition probabilities (Simoes & Costa 2008); the probability vec-
tor that created the best solutions (Yang & Yao 2008); the distribution statistics
information of the population at the considered time (Yang 2006a); the probability of
the occurrence of good solutions in each area of the landscape (Richter & Yang 2008)

(Richter & Yang 2009); or the probability of likely feasible regions (Richter 2010)

2. Decide how to update the memory: Generally the best found elements (direct or asso-

ciative) of the current generation will be updated to the memory. These newly found

elements will replace some existing elements in the memory, which can be one or some of

the followings:

(a)

(b)

()

The oldest member in the memory (Trojanowski & Michalewicz 1999, Eggermont
et al. 2001, Simoes & Costa 2007, Woldesenbet & Yen 2009)

The one with the least contributions to the diversity of the population (Branke 1999,
Eggermont et al. 2001, Yang 2005a, Simoes & Costa 2007, Yang & Yao 2008). One
common way to evaluate this criterion is to examine the similarity of elements in the
memory, for example evaluating the minimum distance among all pairs of memory
elements (Branke 1999, Simédes & Costa 2007). In this case the less fit one of a pair

will be replaced.

The one with least contribution to fitness (Eggermont et al. 2001)

3. Decide when to update the memory: Ideally if we know exactly when a change happens,

then the most suitable time to update the memory is right after the time the change

happens. However in general it might not always be possible to know exactly when a
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change happens. As a result the memory may also be updated after each generation or
after a certain number of generations. Doing so might also favour diversity, for example

see (Branke 2001a, Branke 2003, Yu & Suganthan 2009).

4. Decide how to use the memory: Usually the best elements in the memory (i.e. the ones
that show the best results when being re-evaluated) will be used to replace the worst
individuals in the population. Replacement can take place after each generation or after
a certain number of generations, or it can be done after each change if the change can be

recognised.

Memory is used not only in the EA and swarm-based methods as mentioned above, but also
in Artificial Immune Systems (AIS) (Simoes & Costa 2003), (Yang 2006b). This approach is
inspired by the biological immune systems, which are able to identify the correct types of harmful
antigens, hence produce the appropriate antibodies to destroy the antigens. In AIS approaches,
changes in the dynamic environments are usually viewed as antigens and the "building blocks"
(gene segments) from successful individuals in the past are considered as antibodies. The gene
segments are stored in a gene library so that they can be recalled whenever a change occurs.
To identify which gene segments (antibodies) should match with a particular antigen (change
in the environment), each individual in the gene library is associated with the average fitness of
the population at the moment it was stored. This value is used as an identification tag to know
which element from the library should be used when a change is discovered. The one whose
attached fitness value is most similar to the current averaged fitness will be chosen (Simées &
Costa 2003). The previous memory-based AIS studies have been made only on the 0/1 dynamic

knapsack problem (Simoes & Costa 2003) and the binary encoded test problems (Yang 2006b).
Strengths and weaknesses

Here are the advantages of using memory-based approaches:

1. Effective for solving problems with periodically changing environments. Thanks to their
ability to recall old solutions from the memory, memory-based approaches are especially
suitable for solving problems with periodical changes. For example, Yang (2008) showed
that the memory-based versions of GA and random-immigrant significantly outperform

the original algorithms in cyclic dynamic environments.
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2. May be good in slowing down convergence and favour diversity (Branke 2001a), (Branke

2003).

Memory approaches, however, also have some disadvantages that may require them to be

integrated with some other methods for the best results:

1. Might be useful only when optima reappear at their previous locations or if the environment
returns to its previous states. This might be the most significant disadvantage of memory-
based approaches. In his experiments Lewis et al. (1998) showed that redundant coding
does not ensure enough diversity to adaptively for random changes or oscillated changes
with one or more target has been changed during the search. Branke (1999) also generalized
the same weakness in some explicit memory approaches, pointing out that the memory
might no longer be effective if the oscillation does not bring the global optimum to the
exact previous location but a slightly different one (Branke 2001a). He then concluded
that memory alone could not be enough for dynamic optimisation. It should be combined

with some type of diversity methods.

2. Might not be good emough to maintain diversity for the population, as pointed out by
(Branke 1999). Recently some studies have tried to improve this disadvantage by com-
bining memory-based approaches with diversity schemes e.g. (Simoes & Costa 2007)

(Yang 2008).

3. Redundant coding approaches might not be good for cases where the number of oscillating

states is large. There are two reasons for this:

(a) Firstly, the redundant code might become too large, hence reduce the performance
of the algorithm. In order to recover information about a previous state of the
environment, redundant coding approaches need to encode the information about
this state into the representation. The larger the number of changing states that a
problem has, the larger the number of codes needed for representing the changing
states. For example, if an environment oscillates between two states, we need a
diploidy solution. If there are three states, then we may need a triploid solution.

Experiments (Lewis et al. 1998) also shows that a diploid approach may be able to

21



2. Literature review on EDO 2.1. Optimisation approaches

adapt and switch between only two states. If there are more than two states, the

approach may fail (Branke 2001a).

(b) Secondly, in practice it might not always be possible to know the number of oscillating
states before hand. Without this information, it is impossible to design an appropriate

representation for the redundant code.

4. The information stored in the memory might become redundant (and obsolete) when the
environment changes. This redundancy may affect the performance of the algorithm. For
example, Branke (20010) empirically showed that memories are of no use if there is no

recurrence in the environments.

2.1.5 Prediction Approaches

In certain cases, changes in dynamic environments may exhibit some patterns that are pre-
dictable. In this case, it might be sensible to try to learn these types of patterns from the
previous search experience and based on these patterns try to predict changes in the future.
Some studies has been made following this idea to exploit the predictability of dynamic envi-
ronments. Obviously, memory approaches, which are proposed to deal with periodical changes,
can also be considered a special type of prediction approaches. However, generally methods
following the prediction approach are able to use their memory to cope with more various types
of changes than only cyclic/recurrent changes. A pseudo code describing prediction approaches
is shown in Algorithm 6.

One of the first research on predicting changes might be the study of Ramsey & Grefenstette
(1993). The authors proposed a method to represent the characteristics of the environment in
several variables so that a learning method (case-based reasoning) can be used to map between
these variables and the found optima. The mapping information is then used by the algorithm
to identify the type of the landscape after a change and introduce the suitable old solutions
accordingly to the population. A similar learning/classification approach was also carried out
by Eggermont et al. (2001).

A common prediction approach is to predict the movement of the moving optima. Hatzakis &
Wallace (2006) combined a forecasting technique (Autoregressive) with an EA. This forecasting
technique is used to predict the location of the next optimal solution after a change is detected.

The forecasting model (time series model) is created using a sequence of optimum positions
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Algorithm 6 EA following the prediction approach to solve dynamic problems

1. Initialise phase:

(a) Initialise the population

(b) Initialise the learning model and training set

2. Search for optimum solutions and detect changes

3. If a change is detected

(a) Use the current environment state as the input for the learning model

(b) Use the learning model to estimate the type of this current change and/or how the
next change should be

(c) Generate new individuals/recall old individuals that best matches with the estimation
(d) Search for the new optimum using the new population

(e) Update the training set based on the search results

4. Return to step 2

found in the past. Experimental results show that if this algorithm can predict the movements
of optima correctly, it can work well with very fast changes. A similar research was proposed
in (Rossi et al. 2008) where the movement of optima was predicted using Kalman filters. The
predicted information (the next location of the optimum) is incorporated into an EA in three
ways: First, the mutation operator is modified by introducing some bias so that individuals’
exploration is directed toward the predicted region. Second, the fitness function is modified
so that individuals close to the estimated future position are rewarded. Third, some "gift"
individuals, which are generated at the predicted positions, are introduced to the population to
guide the search. Experiments on a visual tracking benchmark problem show that the proposed
method does improve the tracking of the optimum, both in terms of distance to the real position
and smoothness of the tracking.

Another approach is to predict the locations that individuals should be re-initialised when a
change occurs. In (Zhou et al. 2007) this approach is used to solve two dynamic multi-objective
optimisation benchmark problems in two ways: First, the solutions in the Pareto set from the
previous change periods were used as a time series to predict the next re-initialisation locations.
Second, to improve the chance of the initial population to cover the new Pareto set, the predicted

re-initialisation population is perturbed with a Gaussian noise whose variance is estimated based
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on history data. Compared with random-initialisation, the approach was able to achieve better
results on the two tested problems. Another approach to estimate the areas to re-initialise
individuals after a change occurs is the relocation variable method (Woldesenbet & Yen 2009)
described in Subsection 2.1.2. This method to some extent can also be considered a prediction
method.

Another interesting approach is to predict the future moment when the next change will occur
and which possible environments will appear in the next change (Simoes & Costa 2008, Simoes
& Costa 2009). In these work, the authors used two prediction modules to predict two different
factors. The first module, which uses either linear regression (Simées & Costa 2008) or non-
linear regression(Simoes & Costa 2009), is used to estimate the generation when the next change
will occur. The second module, which uses a Markov chain, monitors the transitions of previous
environments and based on this data provides estimations of which environment will appear in
the next change. Experimental results show that an EA with the proposed predictor is able to
perform better than a regular EA in cyclic/periodic environments.

Relating to prediction approaches, recently there are also some studies (Bosman 2005,
Bosman 2007, Bosman & Poutré 2007, Nguyen & Yao 2009b) on time-linkage problems, i.e.
problems where the current solutions made by the algorithms can influence the future dynam-
ics. In such problems, it was suggested that the only way to solve the problems effectively is
to predict future changes and take into account the possible future outcomes when solving the
problems online. Another related study is the anticipation approach (Branke & Mattfeld 2005)
in solving dynamic scheduling problems where in addition to finding good solutions, the solver
also tries to move the system "into a flexible state" where adaptation to changes can be done
more easily. Specifically, because it is observed that in the tested dynamic job-shop scheduling
problem, the flexibility of the system can be increased by avoiding early machine idle times,
the authors proposed a scheduling approach where in addition to the main optimality objec-
tive, solutions with early idle time are penalised. The experimental results show that such an

anticipation approach significantly improved the performance of the system.
Strengths and weaknesses

Methods following the prediction approach may become very effective if their predictions are

correct. In this case, the algorithms can detect/track/find the global optima quickly, as shown
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in (Hatzakis & Wallace 2006), (Yang 2006b) and (Simdes & Costa 2003).
However, prediction-based algorithms also have their own disadvantages, mostly due to train-

ing errors. These errors might be resulted from:

1. Wrong training data: If the algorithm has not performed successfully in the previous
change periods, the history data collected by the algorithm might not be helpful for the

prediction or might even provide the wrong training data.

2. Lack of training data: As in the case of any learning/predicting/forecasting model, the
algorithms may need a large enough amount of training data to produce the best results.
It also means that the prediction can only be started after a certain amount of time when
the training data has been collected. For example, in the prediction-based methods e.g.
(Simoes & Costa 2008, Simoes & Costa 2009, Bosman 2005, Bosman 2007), the prediction
should only be done once the algorithms get enough training data. In the case of dynamic
optimisation where there is a need of finding/tracking the optima as quick as possible, this

might be a disadvantage.

3. The nature of the dynamic problems:

e If changes in the dynamic environment are easily predictable (e.g. linear, periodical
or deterministic), the result is expected to be good, as can be seen in (Hatzakis &

Wallace 2006, Rossi et al. 2008).

e However, if the changes are stochastic, then prediction approaches might not get
satisfiable results. For example, Nguyen & Yao (20090) illustrated a situation where
historical data are actually inappropriate for the prediction and might even mislead

the predictor to get worse results.

2.1.6 Making use of the self-adaptive mechanism of EAs

Another approach is to make use of the self-adaptive mechanisms of EAs to cope with changes.
To some extent this approach closely relates to the prediction approach, because deep down
self-adaptation is the outcome of a process involving learning and evolving based on history
data.

One example is the GA with Genetic Mutation Rate (Grefenstette 1999), which allows the

algorithm to evolve its own mutation strategy parameters during the search based on the fitness
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of the population. In this method, the mutation rate is encoded in genes and is influenced by the
selection process. The algorithm was tested in both gradual and abrupt dynamic landscapes.
The results show that the algorithm have better performance than normal GA. However, it
is still not better than hyper-mutation (see section 2.1.2 and (Cobb 1990)) - a method that
increases its mutation rate after each change.

A similar method was proposed by Ursem in his Multinational Genetic Algorithm (MGA)
(Ursem 2000). Five different parameters: probability for mutation, probability for crossover,
selection ratio, mutation variance and distance are encoded in the genomes of his MGA for
self-adaptation. The self-adaptation mechanism works well in simple cases where the velocity
of moving peaks is constant. However, in cases where the velocity is not constant, the self-
adaptation seems to be not fast enough. These two results show the difficulty of applying
self-adaptive parameter tuning to complex dynamic optimisation.

Methods that adaptively evolve their strategies by learning from the environments to handle
dynamics, like the VLS (Vavak et al. 1998), PBIL (Yang & Yao 2005) and variable reloca-
tion (Woldesenbet & Yen 2009) variants mentioned in the previous subsections, can also be
categorised into this group of self-adaptive approaches.

Some researchers also express their interests in using the self-adaptive mechanism of such
EAs as Evolution Strategy (ES) or EP (Evolutionary Programming) in dynamic optimisation.
However, it has not been clear of whether the original self-adaptation mechanism of ES/EP alone
can be used effectively in dynamic optimisation. Empirical experiments show mixed results.
Angeline (1997) examined self-adaptive EP (saEP) and showed that the strategy is not effective
for all types of tested problems. Bick (1998) showed that the log-normal self-adaptation in ES
may perform better than saEP in the same problems, however experiments also pointed out
that the sensitivity of ES in dynamic environments is worse than its sensitivity in stationary
environment (Salomon & Eggenberger 1997) and that ES might be unreliable in rapidly changing
environment (Weicker & Weicker 1999). Weicker (2003) also argued that it is possible that the
Gaussian mutation in the standard ES self-adaptation might not be appropriate for dynamic
optimisation.

There are some mathematical analyses on the performance of self-adaptive ES on dynamic
environments. Arnold & Beyer (2002) pointed out that the cumulative mutation strength adap-

tation of ES can work well on a variant of the sphere model with random dynamics of the
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target. The strategy can realise optimal mutation strengths for the model. However, in the
sphere modal with linear dynamics, another research of Arnold & Beyer (2006) revealed that
the mutation strength realised by ES is not the optimal one (but the adaptation still ensures
that the target can be tracked).

Wang & Wineberg (2006) proposed a different approach, which can also be considered as
a self-adaptive variant of EA. In this approach, the algorithm comprises of three types of pop-
ulations: a population to search, a population to measure the efficiency of exploration (based
on genotypic changes) and a population to measure the efficiency of exploitation (based on fit-
ness improvements). By observing the two later populations, the algorithm will dynamically
adjust the selection pressure to balance exploration and exploitation. Experiments in (Wang
& Wineberg 2006) show that the new approach can track the global optimum better than GA
with random immigrants in problems with optima moving linearly. There is however no report
of whether the algorithm can work well in problems with periodical change or problems with
random changes.

Another recent adaptability-introducing approach is the work of Yang & Richter (2009)
where a mechanism to increase the learning rate of the Population-based Incremental Learning
(PBIL) algorithm was proposed. As mentioned in Subsection 2.1.3, PBIL has an adjustable
probability vector which is used to generate individuals. After each generation the probability
vector is updated based on the best found solutions to make sure that the vector will gradually
"learn" the appropriate value to generate good solutions. A high learning rate after a change
as implemented in (Yang & Richter 2009) will help the algorithm to learn the suitable value
for the vector faster and hence will be able to adapt to the new environment faster. After
some generations the learning rate will be resumed to the normal value to make sure that the
algorithm converges properly.

Recently Riekert et al. (2009) proposed an adaptive Genetic Programming to solve dynamic
classification problems. The algorithm is made adaptive in several ways. First, the elitist
proportion is adaptively increased when fitness is improved and vice versa. Second, the crossover
rate is decreased to save computational effort when the performance is satisfactory. Otherwise
the crossover rate is increased to generate more solutions. Third, when a change occurs the

mutation rate is continually modified until it succeeded in finding good solutions.
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2.1.7 Multi-population approaches

Overview

Another approach, which to some extent can be seen as a combination of diversity maintain-
ing/introducing, memory and self-adaptation, is to implement multiple sub-populations concur-
rently. Each sub-population may handle a separate area of the search space. Each of them may
also take responsibility for a separate task. For example, some sub-populations may focus on
searching for the global optimum while some others may concentrate on tracking any possible
changes. These two types of populations then may communicate with each other to bias the

search. A pseudo code of multi-population approaches is listed out in Algorithm 7

Algorithm 7 Multi-population approach

1. Initialise::

(a) Initialise the setPseqrcn of sub populations searching for the global optima

(b) Initialise the set Pi.qq of sub populations tracking changes in the landscape
2. For each generation:

(a) Search for optima: the sub-populations in Pgeucn, search for the global optima
(b) Track changes: the sub-populations in P4 track any changes

(¢) Maintain diversity::Re-allocate/split/merge the sub-populations so that they are not
overlapped and can cover a larger area of the search space

(d) Adjust: Re-adjust each sub-population in Pse..cr, based on the experience from sub-
populations in Pi.qck

(e) Reproduce each sub-population
(f) Return to step 2a

As can be seen from the pseudo code in Algorithm 7, methods following the approach of
using multiple populations usually need to accomplish two goals: First, they may need to assign
different types of tasks to different sub-populations, for example Pseqren, to search and Piqcr
to track, so that the search can be done effectively. Second, they need to divide the sub-
populations appropriately and make sure that the sub-populations are not overlapped to have
the best diversity and also to avoid the situation where many sub-populations finding the same
peak.

For the first goal, assigning different tasks to the sub-populations, different methods have
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different approaches. One approach was proposed by Oppacher & Wineberg (1999) in their
Shifting Balance Genetic Algorithm (SBGA). In SBGA, there are a number of small populations
in Pseqren searching for new solutions and there is only one large population in Pj..cr to track
changing peaks.

Another method, the Self-Organizing Scouts (SOS) (Branke et al. 2000), follows a different
direction where using the main large population to search for optima (Pseqren) and dedicat-
ing several small populations to track any change of each optimum that the algorithm has
found so far (Pirqcr). Whenever the main population finds a new peak, it creates a new sub-
population to track changes in this peak. This approach was adopted in different types of EAs
and meta-heuristics, for example GA (Cheng & Yang 2010), DE (Mendes & Mohais 2005, Lung
& Dumitrescu 2007) and PSO (Blackwell 2007, Ferndandez & Arcos 2010). Relating to using one
large population to search and a smaller to track changes, an algorithm named RepairGA for
solving dynamic constrained problems was proposed in (Nguyen & Yao 2009a). In this method
a large sub-population is dedicated to searching and one smaller sub-population is dedicated to
tracking the moving feasible regions. The difference between RepairGA and previous approaches
is that in RepairGA the two sub-populations are allowed to overlap in the search space because
their main purpose is not to maintain diversity. What distinguishes the two sub-populations
in this work is that the earlier accepts both infeasible and feasible solutions while the other
contains only feasible solutions.

Another approach, the Multinational GA (MGA) introduced by Ursem (2000), integrates the
functions of Pseqren, and Pipqer into each sub-population. It means that each population can both
search for new solutions and track changes. Whenever a sub-population detects a new optimum,
it will split into two sub-populations to make sure that each sub-population only tracks one
optimum at a time. This approach has been used not only in EAs but also in Artificial Immune
algorithms, for example (de Franga & Von Zuben 2009). The approach is also used by PSO-
based algorithms for dynamic optimisation. One example is the Speciation PSO (Li et al. 2006)
whose each sub-population, or species, is a hyper-sphere defined by the best fit individual and
a specific radius. Another recent PSO example that also have multi swarms with equal roles is
the Clustering PSO in (Li & Yang 2009).

Also relating to the goal of assigning the tasks to sub-populations, it should be noted that

in dynamic optimisation multiple populations are used not only for the purpose of exploring
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different parts of the search space, but also for the purpose of co-evolution. In (Nguyen &
Yao 2009a), a co-operative coevolution model was implemented where two sub-populations are
maintained. One sub-population named reference population focuses on tracking the moving
feasible regions while the other focuses on finding the global optimum. The two sub-populations
co-evolve in a way that the former attracts the latter to promising regions while the latter informs
the former about the appearance of any new feasible region. In (Goh & Tan 2009a), another
co-evolution model was used. However, in this study the multiple populations were not used to
explore different areas but to optimise different subcomponents, which are the decompositions
of the solution vector.

For the second goal, dividing the sub-populations and making sure that the sub-populations are
not overlapped, there are also different approaches. The most common approach is the clustering
approach: choosing some solutions in the population as the centres of the future clusters, then
defining each sub-population as a hyper-cube or sphere with a given size. All individuals within
the range of a hyper-cube/sphere will belong to the corresponding sub-population of that hyper-
cube/sphere. (Branke et al. 2000) is one the earliest methods that adopt this approach. SOS
(Branke et al. 2000) keeps the sub-populations from overlapping by using an idea borrowed from
the Forking Genetic Algorithm (FGA) (Tsutsui et al. 1997) to divide up the space. According
to this idea, whenever the main population in Pisegrep find a new optimum, it creates a new
population in Py, and assign this new population to the optimum. To separate the sub-
populations, Branke et al. (2000) provided each sub-population with a boundary containing all
individuals of the population. This boundary is a hyper-cube determined by a centre (the most fit
individual in the population) and a pre-defined range. To make sure that all individuals are inside
the boundary, each sub-population is equipped with a different mutation step size relevant to
the boundary. If an individual of one sub-population ventures to the area monitored by another
sub-population, this individual will simply be discarded and re-initialised (this process is called
exclusion). The same forking approach is also used in other EAs, for example DE (Mendes
& Mohais 2005), (Lung & Dumitrescu 2007) . Similar approaches are also used in PSO. For
example, in Multi-swarm charged PSO (mCPSO) (Blackwell 2007), swarms are also divided into
sub-swarm in the same way as in SOS so that each swarm watches a different peak. In addition,
mCPSO also maintain a similar mechanism (named anti-convergence) to the Pseqren in SOS so

that there is always one free swarm to continue exploring the search space. Another example is
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in Speciation PSO (Li et al. 2006) where each species is a hyper-sphere whose the centre is the
best-fit individual in the species. Each species can be used to track a peak. To construct and
separate species, periodically particles are regrouped according to their distance to each other.
For clustering approaches, it is not always necessary to choose the best solutions as the centres
of the clusters. In recent approaches (Li & Yang 2009, Woldesenbet & Yen 2009), density-
based clustering methods are also used to divide/separate the sub-populations and to allow the
algorithms explore different parts of the search landscape . It was reported that these density-
based clustering techniques do help to improve the performance, but at the expense of additional
computational cost to calculate the pair-wise distance among particles. The clustering-based
approach is still widely used in recent EDO studies, for example in (Cheng & Yang 2010) to
optimise the dynamic network routing problems.

The second approach is to incorporate some mechanism of penalty /rewarding to keep the sub-
populations apart, of which SBGA Oppacher & Wineberg (1999) is a typical example. SBGA
maintains the separation of populations by selecting individuals in Pseqrep, for reproduction
according to their distance from the core in Py, rather than according to their original fitness
values. The further an individual is from the core, the more likely that it will be reproduced.

The third approach is to estimate the basins of attractions of peaks and use these basins as
the separate regions for each sub-population. MGA (Ursem 2000) is the first work following this
approach. The authors provided a mechanism called hill-valley detection: given two individuals
in the search spaces, they calculate the fitness of several random samples on the line between
these two individuals. If the fitness in a sample point is lower than that of the two individuals,
then a valley is detected. If a sub-population contains more than one valley, it will be split. A
similar idea was implemented in a technical report in (Nguyen 2008b). Here firstly the basin of
attraction of each peak is estimated using some simple sampling methods, then the search space
is divided into hypercubes using a binary tree structure (KD-tree) in which each hypercube
approximately covers the estimated basin-of-attractions. Each sub-population is then assigned
to a hypercube. When a part of the landscape changes, the node covering the changing peak will
adjust its structure and its hypercubes to make sure that the sub-populations are not overlapped.
The advantage is the low computational cost (O(log N)) to identify where an individual belongs
to. Initial results on the scenario 2 of the MPB benchmark (Branke 20014) show that the

proposed method can provide equal or better results than state-of-the-art methods.
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Strengths and weaknesses

Methods following the multi-population approach have the following advantages:

1. Can maintain enough diversity for the algorithm to adaptively start a new search whenever
a new change appears. Examples can be seen in the experiments in (Branke 20016) where
the proposed multi-population algorithm (SOS) was able to cover most of the peaks if

given enough time while the non-multi-population GA could not.

2. Able to recall some information from the previous generation thanks to one (or several)
population(s) dedicated for tracking and retaining previous solutions. This makes multi-
population approaches usable in solving certain recurrent dynamic problems. For example,
Ursem (2000) and Branke (1999) showed that the multi-population MGA and memory-
based EA were able to recall good old solutions to deal with recurrent problems and hence

outperformed normal EAs.

3. Can search/ track the moves of multiple optima, as analysed in many existing studies on

multi-population, for example (Ursem 2000) and (Branke 2001b).

4. Can be very effective for solving problems with competing peaks or multimodal problems.
(A survey of Moser (2007) showed that among 19 surveyed algorithms that are designed
to solve the multimodal competing peaks benchmark Moving Peaks, a majory (15 out of

19) follow the multi-population approach).
The multi-population approach also has some disadvantages. They are:

1. Too many sub-populations may slow down the search. For example, Blackwell & Branke
(2006) showed that for their multi-swarm PSO algorithm, if the number of sub-populations

(swarms) is larger than the number of peaks, the performance of the algorithm decreases.

2. The need of calculating the distance/similarity/regional metrics to separate the sub-
populations might also affect the performance. This cost has not been taken into account

in most existing studies on multi-population approaches.

3. Lack of efficient memory for recurrent changes (keeping multiple populations does not

guarantee an effective memory)
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2.1.8 Summary about the strengths and weaknesses of current EAs for dy-

namic optimisation

From the literature review above we can conclude that each EDO approach seems to be suitable
only for certain type of problem, which conforms to the No Free Lunch theorem (Wolpert &
Macready 1997). The fact that each approach is likely to be suitable to some particular classes
of problems is also the reason why many recent studies try to combine different approaches into
one single algorithm to solve the problems better. The survey also shows that most existing
methods were tested and evaluated only on academic problems. The question then is to find
out (i) what are the common characteristics of existing academic problems; (ii) what are the
common criteria to evaluate EDO algorithms; and more importantly (iii) whether these common
characteristics and evaluation criteria reflect the common situations in real-world scenarios. In

the next sections further investigations will be made to find the answers for these questions.

2.2 Performance measures

Properly measuring the performance of algorithms is vital in EDO. In this section I will (i)
review existing studies to identify the most common criteria used to evaluate EDO algorithms,
(ii) analyse the strengths and weaknesses of each measure, and (iii) discuss the possibility to
improve the disadvantages (if there are any) of current performance measures. Performance
measures in EDO can be classified into two main groups: optimality-based and behaviour-based.

The subsections below will discuss each groups of measures in details.
2.2.1 Optimality-based performance measures

Optimality-based performance measures are measures that evaluate the ability of algorithms in
finding the solutions with the best objective/fitness values (fitness-based measures) or finding
the solutions that are closest to the global optimum (distance-based measures). This type of
measure is by far the most common in EDO. The measures can be categorised into groups as

follow:
Best-of-generation

This measure is calculated as the averages for many runs of the best values at each generation
on the same problem. This performance measures is usually used in two ways: First, the

best value in each generation is plotted against the time axis to create a performance curve.
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This measure has been used since the early research in (Cobb 1990, Grefenstette 1992) as the
best-of-generation | best of population in each generation and then as the best objective value
(Béck 1998), best fitness in each generation (Gaspar & Collard 1999) and best-of-generation
(BOG) (Grefenstette 1999). This measure is still one of the most commonly used measures
in the literature. The advantage of such performance curves is that they can show the whole
picture of how the tested algorithm has performed. However, because the performance curve is
not quantitative, it is difficult to compare the final outcome of different algorithms and to see if
the difference between two algorithms is statistically significant (Morrison 2003).

To improve the above disadvantage, a variation of the measure is proposed where the BOG

values is averaged over all generations (Yang & Yao 2003). The measure is described below:

— 1 i=G (1 Jj=N
Fooo = xS0y (3% X021 Fuoc, ) (21)

where Fpog is the mean best-of-generation fitness, G’ is the number of generations, N is the
total number of runs, and Fpog,; is the best-of-generation fitness of generation ¢ of run j of an
algorithm on a particular problem.

An identical measure to the Fpog, but with a different name, the collective mean fitness

1 =N /1 -G
o=tk 3 (G oy FBOGU) (22)

was proposed by Morrison (2003)at the same time. Morrison (2003) emphasized that the col-
lective mean fitness should be calculated based on a sufficiently large number of generations to
ensure that the final score is representative.

Recently the idea of calculating Fpog and using Fpog to plot performance curves was
adapted in (Alba & Sarasola 2010a) to create two measures: the area below a curve, which
is calculated as the definite integral of Fpog (or other measures such as Fr or offline er-
ror/performance) over the optimisation process; and the area between curves, which is the area
spanned between the performance curves of two algorithms.

The Fpog is one of the most commonly used measures. The advantage of this measure, as
mentioned above, is to enable algorithm designers to quantitatively compare the performance of

algorithms. The disadvantage of the measure and its variants is that they are not normalised,
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hence can be biased by the difference of the fitness landscapes at different periods of change. For
example, if at a certain period of change the overall fitness values of the landscape is particularly
higher than those at other periods of changes, or if an algorithm is able to get particular high
fitness value at a certain period of change, the final Fzog or Fc might be biased toward the
high fitness values in this particular period and hence might not correctly reflect the overall

performance of the algorithm.
Best-error-before-change

Proposed in (Trojanowski & Michalewicz 1999) and named Accuracy by the authors, this mea-
sure is calculated as the average of the best errors (the difference between the optimum value
and the value of the best individual) achieved at the end of each change period (right before the

moment of change).

By= 3" ep (i) (23)

m

where ep (7) is the best error just before the ith change happens; m is the number of changes.

This measure is useful in situations where we are interested in the final solution that the
algorithm achieved before the change. The measure also makes it possible to compare the final
outcome of different algorithms. However, the measure also has three important disadvantages.
First, it does not say anything about what the algorithms have done to achieve the current
performance. Using this measure all algorithms that have the same final solutions before change
will have the same score, regardless of how quick an algorithm recover from the last change and
how fast it approaches the global solution. As a result, the measure is not suitable if what users
are interested in is the overall performance or behaviours of the algorithms. Second, similar to
the best-of-generation measure, this measure is also not normalised and hence can be biased
toward periods where the errors are relatively very large. Third, the measure requires that the
global optimum value at each change is known. Fourth, the measure requires that the time a
change occurs is known.

This measures is adapted as the basis for one of the complementary performance measures

in the CEC’09 competition on dynamic optimisation (Li et al. 2008).
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Modified offline error and offline performance

Proposed in (Branke 20015) and (Branke & Schmeck 2003), the modified offline error is measured
as the average over, at every evaluation, the error of the best solution found since the last change
of the environment. This measure is always greater than or equal to zero and would be zero for

a perfect performance.

Eyo = % Zil eno (J) (2.4)

where n is the number of generations so far, and epso (j) is the best error since the last change
gained by the algorithm at the generation j.
A similar measure, the modified offline performance, is also proposed in the same reference

to evaluate algorithm performance in case the exact values of the global optima are not known

Pro = %Z:zl Fao (j) (2.5)

where n is the number of generations so far, and Fyso (j) is the best performance since the last
change gained by the algorithm at the generation j.

With this type of measure, the faster the algorithm to find a good solution, the higher the
score. Similar to the F go¢, the offline error /performance are also useful in evaluating the overall
performance of an algorithm and to compare the final outcomes of different algorithms. These
measures however have some disadvantages. First, it requires that the time a change occurs
is known. Second, similar to Fgog, these measures are also not normalised and hence can be
biased under certain circumstances.

Recently based on the modified offline error a new measure named best known peak error
(BKPE) (Bird & Li 2007) was proposed to measure the convergence speed of the algorithm in
tracking optima. The BKPE is calculated to every known peak. Immediately before a change,
the error of the best individual on a known peak is added to the total error for the run. Similar

to the offline error, after a change all current peak errors are reset to zero.
Relative-ratio-of-best-value

In the technical reports which defines the bechmark problems for the CEC’09 competition on
dynamic optimisation (Li et al. 2008), a new performance measure was proposed based on the

relative ratio between the best value gained by an algorithm and the global optimum value. The
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performance is calculated as follows:

runs num__change
performance = E - g rij/ (num_change X runs);

rij = last < —|—Z 1—7" /S)
iy = [i (@best (5)) /fj (27)
Ti?St = [ (wpest (last)) / fj (%)

where S is the total number of sampling steps at each change period, f; (Zpest (5)) is the best
value the algorithm achieves at the s-th sampling step of the j-th change period, f; (z*) is the
global optimum value at the j-th change period, and last is the moment just before the next
change happens.

This measure is similar to the measures Fjso and Fpog in the way it takes into account the
overall optimisation process and rewards algorithms that recover more quickly and hence it also

has the same advantages and disadvantages as the other two measures.
Optimisation accuracy
The optimisation accuracy measure (also known as the relative error) was initially proposed in

(Feng et al. 1997) and was adopted in (Weicker 2002) for the dynamic case:

(t) . (t)
accumcy( ) (best ) Ming
REA ™= Max%) — Ming)

(2.6)

where best%i4 is the best solution in the population at time ¢, M axgi) € M is the best fitness

(t)

value of the search space and Miny’ € M is the worst fitness value of the search space. The
range of the accuracy measure ranges from 0 to 1, with a value of 1 and 0 represents the best
and worst possible values, respectively.

The optimisation accuracy have the same advantages as the Fgog and Ejro in providing
quantitative value and in evaluating the overall performance of algorithms. The measure has an
advantage over Fpog and Ejo: it is independent to fitness rescalings and hence become less
biased to those change periods where the difference in fitness becomes particularly large. The

measure, however, has a disadvantage: it requires information about the absolute best and worst

fitness values in the search space, which might not always be available in practical situations. In
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addition, as pointed by the author himself (Weicker 2002), the optimisation accuracy measure
is only well-defined if the complete search space is not a plateau at any generation ¢, because

otherwise the denominator of Eq.2.6 at ¢ would be equal to zero.
Distance-based measures

Although most of the optimality-based measures are fitness-based, some performance measures
do rely on the distances from the current solutions to the global optimum to evaluate algo-
rithm performance. In (Weicker & Weicker 1999), a performance measure, which is calculated
as the minimum distance from the individuals in the population to the global optimum, was
proposed. In (Salomon & Eggenberger 1997), another distance-based measure was introduced.
This measure is calculated as the distance from the mass centre of the population to the global
optimum.

Euclidean distance-based measures are also commonly used to evaluate the performance of
dynamic multi-objective (DMO) optimisation algorithms. In (Zeng et al. 2006) the performance
of DMO algorithms are evaluated based on the generational distance (GD) (Van Veldhuizen
1999) between the approximated front (which contains the current best function values) and the
Pareto optimal front at the moment just before a change occurs. In (Farina et al. 2004) two
measures, one is based on the minimum Euclidean distance between members of the approxi-
mated front and the Pareto front, and the other is based on the minimum Euclidean distance
between members of the approximated set and the Pareto set, were proposed. In (Hatzakis &
Wallace 2006), these two measures were extended using the idea of modified offline-error. In
(Li et al. 2007), a modified version of the original GD named reversed GD was proposed for the
dynamic case. The reversed GD is different from the dynamic GD in (Zeng et al. 2006) in that
the distance between the Pareto front and the approximated front is calculated in a "reversed"
direction, i.e. the calculation starts from each sampling point in the Pareto front and then find
the closest solution in the approximated front, not the other way round as usual. In (Goh &
Tan 2009a), an offline measure named variable space generational distance was also proposed
and was calculated based on the distance between the approximated set and the Pareto set at
each time step.

The advantage of distance-based measures is that they are independent to fitness rescalings

and hence are less affected by possible biases caused by the difference in fitness of the landscapes
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in different change periods. The disadvantages of these measures are that they require knowledge
about the exact position of the global optimum, which is not always available in practical
situation. In addition, compared to some other measures this type of measure might not always
correctly approximate the exact adaptation characteristics of the algorithm under evaluated, as

shown in an analysis in (Weicker 2002).
2.2.2 Behaviour-based performance measures

Behaviour-based performance measures are those that evaluate whether EDO algorithms exhibit
certain behaviours that are believed to be useful in dynamic environments. Example of such
behaviours are maintaining high diversity through out the run; quickly recovering from a drop
in performance when a change happens, and limiting the fitness drops when changes happen.
These measures are usually used complementarily with optimality-based measures to study the

behaviour of algorithms. They can be categorised into the following groups:
Diversity

Diversity-based measures, as their name imply, are used to evaluate the ability of algorithms
in maintaining diversity to deal with environmental dynamics. There are many diversity-based
measures, e.g. entropy (Mori et al. 1997), Hamming distance (Oppacher & Wineberg 1999,
Rand & Riolo 2005a, Yang 2008), moment-of-inertia (Morrison & De Jong 2002), peak cover
(Branke 20010), and mazimum spread (Goh & Tan 2009a) of which Hamming distance-based
measures are the most common.

Hamming distance-based measures for diversity have been widely used in static evolutionary
optimisation and one of the first EDO research to use this measure for dynamic environments
is the study of (Oppacher & Wineberg 1999) where the all possible pair-wise Hamming distance
among all individuals of the population was used as the diversity measure. In (Rand & Riolo
2005a) the measure was modified so that only the Hamming distances among the best individuals
are taken into account.

A different and interesting diversity measure is the moment-of-inertia proposed by Morrison
& De Jong (2002). This measure is inspired by the fact that in engineering problems, in case
an object rotates around its centroid (centre of mass), the moment of inertia can be used to
measure how far the mass of the object is distributed from the centroid. Morrison & De Jong

(2002) applied this idea to measuring the diversity of EA population. Given a population of
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P individuals in N-dimensional space, the coordinates C' = (ci,...,cn) of the centroid of the
population can be computed as follows:

P
Zj:l Lij
P

C; =

where z;; is the ith coordinate of the j individual and ¢; is the ith coordinate of the centroid.
Given the computed centroid above, the measure of diversity, named moment-of-inertia, of

the population is:

(zij — ¢;)?
1

=y

P
i=1 j=

In (Morrison & De Jong 2002), the authors proved that the moment-of-inertia measure
is equal to the pair-wise Hamming distance measure. The moment-of-inertia, however, has
an advantage over the Hamming distance measure: it is more computationally efficient. The
complexity of computing the moment-of-inertia is only linear with the population size P while
the complexity of the pair-wise diversity computation is quadratic.

Another interesting, but less common diversity measure is the peak cover (Branke 2001b),
which counts the number of peaks covered by the algorithms over all peaks. This measure
requires full information about the peaks in the landscape and hence is only suitable in academic
environment.

Diversity measures are also used in dynamic multi-objective approaches. In (Goh & Tan
2009a) the mazimum spread commonly used in static MO was modified for the dynamic case by
calculating the average value of the maximum spread over all generations as time goes by. In (Li
et al. 2007), the diversity-based hypervolume (HV) measure (Van Veldhuizen 1999) commonly
used in static MO was extended to a dynamic measure HVR(t), which is the ratio between the

dynamic HV of the approximated front and the Pareto front.
Drops in performance after changes

Some EDO studies also develop measures to evaluate the ability of algorithms in restricting
the drop of fitness when a change occurs. Of which, the most representative measures are the
measures stability (Weicker 2002), satisficability and robustness (Rand & Riolo 2005a).

The measure stability is evaluated by calculating the difference in the fitness-based accuracy
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measure (see Eq. 2.6) of the considered algorithm between each two time steps

stabg)EA = maz{0, accuracygfg - accuracyg)EA} (2.7)

where accuracyg)E 4 has already been defined in Eq. 2.6.

The robustness measure is similar to the measure stability in that it also determines how
much the fitness of the next generation of the GA can drop, given the current generation’s
fitness. The measure is calculated as the ratio of the fitness values of the best solutions (or the
average fitness of the population) between each two consecutive generations.

The satisficability measure focuses on a slightly different aspect. It determines how well the
system is in maintaining a certain level of fitness and not dropping below a pre-set threshold.
The measure is calculated by counting how many times the algorithm is able to exceed a given

threshold in fitness value.
Convergence speed after changes

Convergence speed after changes, or the ability of the algorithm to recover quickly after a change,
is also an aspect that attracts the attention of various studies in EDO. In fact many of the
optimality-based measures, such as the offline error/performance, best-of-generation, relative-
ratio-of-best-value discussed previously can be used to indirectly evaluate the convergence speed.
In addition, in (Weicker 2002) the author also proposed a measure dedicated to evaluating the
ability of an adaptive algorithm to react quickly to changes. The measure is named reactivity

and is defined as follows:

(t")
accuracyp y

(t)

ACCUTacyp 5

)

7“6@6153;27147e =min t' —t|t <t < mazgen,t’ €N, > (1 —¢) pU{mazxgen—t} (2.8)
where maxgen is the number of generations. It should be noted that this measure is only
meaningful if there is actually a drop in performance when a change occurs. Otherwise, the
value of the measure reactivity is always zero and nothing can be said about how well the
algorithm reacts to changes. In situations like the dynamic constrained benchmark problems in
(Nguyen & Yao 2009a) where the total fitness level of the search space increases after a change,

the measure reactivity cannot be used.
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Fitness degradation over time

A recent experimental observation (Alba & Sarasola 2010b6) showed that in dynamic optimisation
environments the performance of an algorithm might degrade over time due to the fact that the
algorithm fails to follow the optima after some changes have occured. To measure how an
algorithm degrades as the search advances due to the above reason, in (Alba & Sarasola 20100)
a measure named S—degradation was proposed. The measure is calculated by firstly using linear
regression (over the accuracy values achieved at each change period) to create a regression line,
then evaluate the measure as the slope of the regression line. A positive S—degradation value
might indicate that the algorithm is able to keep track with the moving optima. This measure
is among the first to consider the impact of tracking-performance degradation over the long
term in DO. The measure however does not indicate whether the degradation in performance is
really caused by the long-term impact of DOP, or simply by an increase in the difficulty level of
the problem after a change. In addition, a positive 5—degradation value might also not always
an indication that the algorithm is able to keep track with the moving optima. In problems
where the total fitness level increases, like in the dynamic constrained benchmark problems in
(Nguyen & Yao 2009a) mentioned above, a positive 5—degradation can be achieved even when

the algorithm stays at the same place.
Robustness over time

Recently Yu et al. (2010) discussed some interesting evaluation criteria to measure the ability
of algorithms in finding optimal solutions that are robust over time. According to Yu et al.
(2010) a solution is called robust over time when it is used for at least two consecutive changing
periods. When the solution quality becomes unsatisfactory, a new robust solution must be found.
Some evaluation criteria to evaluate robust over time were suggested based on the quality of a
solution from: (i) the perspective of a single solution; (ii) the perspective of the whole sequence
of solution; and (iii) the perspective of the search efficiency of the algorithm. However, no
experimental examples were provided to show how the criteria can be applied to a concrete

problem.
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2.2.3 Discussion

There are some open questions about performance measures in EDO. First, it is not clear if
optimality is the only goal of real-world DOPs and if existing performance measures really
reflect what practitioners would expect from optimisation algorithms. So far only a few studies
e.g. (Rand & Riolo 2005a, Yu et al. 2010) tried to justify the meaning of the measures by
suggesting some possible real-world examples where the measures can be applicable. It would
be interesting to find the answer for the question of what are the main goals of real-world DOPs,
how existing performance measures reflect these goals and from that investigate if it is possible
to make the performance measures to be more specific (if needed) to suit practical requirements.
In Chapter 3 an attempt will be made to find out more about the main optimisation goals of
real-world DOPs and the link between existing performance measures and the goals of real-world
applications.

Second, as shown in the literature review in this section, many optimality-based measures
are not normalised and hence might be biased by fitness rescalings and other disproportionate
factors caused by the changing landscapes. The accuracy measure (Weicker 2002) is among the
few studies that tried to overcome this disadvantage by normalising the fitness values at each
change period using a window of the maximum and minimum possible values. This approach
however requires full knowledge of the maximum and minimum possible values at each change
period, which might not be available in practical situations. In Subsection 6.4.1, a new measure,
the normalised score, will be provided to facilitate comparing the performance of algorithms in
a normalised way without using problem-specific knowledge.

Third, although the behaviour-based measures are usually used complementary with the
optimality-based measures, it is not clear if the former really correlate with the latter. Recent
studies(Alba & Sarasola 20100) have shown that the behaviour-based measure stability does not
directly relate to the quality of solutions and the results of the behaviour-based measure reactivity
are "usually insignificant" (Alba et al. 2007, Alba & Sarasola 2010b). It would be interesting to
systematically study the relationship between behaviour-based measures and optimality-based
measures, and more importantly the relationship between the quality of solutions and the as-

sumptions of the community about the expected behaviours of DO algorithms.
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2.3 Benchmark problems

2.3.1 Properties of a good benchmark problem

The use of benchmark problems is crucial in the process of developing, evaluating, and comparing
EDO algorithms. According to (Branke 20015, Yang 2004, Morrison 2004, Younes 2006), a good

benchmark problem is one that has the following characteristics:

1. Flexibility: Configurable under different dynamic settings (change severity, frequency, pe-
riodicity) and different scales (number of optima, dimensions, domain ranges etc)

2. Simplicity and efficiency: Simple to implement/analyse/evaluate and computationally ef-
ficient

3. Generalisation: Possible to represent different schenarios or different types of problems.

In other words, the benchmark problem should not be very specific.

In addition, because the ultimate goal of any optimisation algorithm is to be applicable

to real-world situations, a good benchmark problem needs to satisfy the following important

property:

4. Allow conjectures to real-world problems or resemble real-world problems to some extents.

(Branke 20015, Goh & Tan 2009b)

2.3.2 Reviewing existing general-purpose benchmark generators/problems

In this section, I will review the commonly used general-purpose dynamic optimisation bench-
mark generators/problems in the literature based on the above criteria. The purpose is to
identify the common characteristics of benchmark problems, and from that in the next chapter
we will see if these characteristics reflect the properties of real-world problems.

When reviewing existing benchmark generators/problems, we can either categorise problems
based on the ways they are generated, or based on the characteristics of the generated problems.
In this section I choose the second way of categorisation because (i) it better suits the purpose of
identifying the common characteristics of benchmark problems and (ii) it helps users in choosing
the suitable benchmark for their applications. In the end what users look for in selecting a
benchmark problem is not how they are generated but what types of dynamics they represent

and what characteristics they have.
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The characteristics of each general-purpose benchmark generator/problem are identified and

the problems are classified into different groups based on the following different criteria:

1. Time-linkage: Whether the future behaviour of the problem depends on the current solu-

tion found by the algorithm or not.
2. Predictability: Whether the generated changes are predictable or not

3. Visibility: Whether the changes are visible to the optimisation algorithm and if so whether

changes can be detectable by using just a few detectors
4. Constrained problem: Whether the problem is constrained or not
5. Single/multiple objective
6. Type of changes: Detailed explanation of how changes occur in the search space
7. Changes are cyclic/periodical /recurrent or not?

8. Factors that change: Parameter of objective functions / Domain of variables / Number of

variables / Constraints / Other parameters

Tables 2.1 and 2.2 provides the detailed information of each benchmark problem in the

continuous and combinatorial domains, respectively, and their characteristics.
2.3.3 The common characteristics of existing benchmark generators/problems

From tables 2.1 and 2.2, we can see that the common characteristics of academic benchmark

problems are as follow:

o All of the reviewed general-purpose benchmark generators/problems are non time-linkage
problems. There are a couple of general-purpose benchmark problems with the time-
linkage property (Bosman 2005, Nguyen & Yao 2009b), but they are proposed as a proof

of principle rather than a complete set of benchmark problems.

e Most of the reviewed benchmark generators/problems are unconstrained or domain con-

strained, except the two most recent studies (Nguyen & Yao 2009a, Richter 2010)

45



e [n the default settings of most of the review benchmark generators/problems, changes are
detectable by using just a few detectors. Exceptions are some problem instances in (Cobb
& Grefenstette 1993, Trojanowski & Michalewicz 1999) where only one or some peaks
move, and in (Weicker 2000, Nguyen & Yao 2009a, Richter 2010) where the presences of
the visibility mask or constraints make only some parts of the landscapes change. Due to
their highly configurable property some benchmark generators can be configured to create

scenarios where changes are more difficult to detect.

e In most cases the factors that change are the objective functions. Exceptions are one
instance in (Li et al. 2008) where the dimension also changes and the problems in (Nguyen

& Yao 2009a, Richter 2010) where the constraints also change.

e Many generators/problems have unpredictable changes in their default settings, but due to
their flexibility some of the generators/problems can be configured to allow predictable

changes, at least in the frequency and periodicity of changes
o A majority of benchmark generators/problems have cyclic/periodical/recurrent changes

e Most generators/problems are single-objective except the problems in (Jin & Sendhoff 2004)
and (Farina et al. 2004). Recently there are some new dynamic multi-objective problems

e.g. (Zhou et al. 2007), but most of them are based on the two papers mentioned above.

The common characteristics of academic benchmark problems above reflect the current main
assumptions of the EDO community about the characteristics of DOPs. In the next chapter we
will identify if these characteristics are also common in real-world applications and if there is

any characteristic that has not been covered in existing research.
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2. Literature review on EDO 2.4. Summary: the assumptions in EDO academic research

2.4 Summary: the assumptions in EDO academic research

In this chapter we have reviewed and categorised existing EDO studies on the solving methods
(Section 2.1), performance measures (Section 2.2), and benchmark problems (2.3). The re-
views showed us the strengths and weaknesses of each method and more importantly identified
the common assumptions of the community about the characteristics of DOPs, which can be

summarised as follow:

e Optimisation goals: Optimality is the primary goal or the only goal in a majority of acad-
emic EDO studies, as evidently shown by the large number of optimality-based measures
reviewed in Section 2.2. Some studies do pay attention to developing other complementary
measures (e.g. the behaviour-based measures in Subsection 2.2.2), but these complemen-
tary measures mainly focus on analysing the behaviours of the algorithms rather than

checking if the algorithms satisfy users requirements.

e The time-linkage property: Non time-linkage (the algorithm does not influence the future
dynamics) is the main focus of academic EDO research, as evidently shown by the fact

that all commonly used general-purpose benchmark problems are non-time-linkage.

o (Constraints: Unconstrained problems are the main focus of academic research, especially

in the continuous domain, as shown by the majority of academic benchmark problems.

o Visibility and detectability of changes: Current EDO methods assume that changes either

are known or can be easily detected using a few detectors.

e Fuactors that change: The common factors that change in academic problems is the objec-

tive function.

e Reason for tracking: The main assumption is that the optima (local or global) after
change is close to the optima (local or global) before change, as shown in a majority
of benchmark problems (although in the Moving peaks (Branke 1999) and DF1 (Morrison
& DeJong 1999) benchmarks the new global optima are not close to the previous global
optima, they are still close to a previous local optima). Due to that, tracking is preferred

to restarting.
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2. Literature review on EDO 2.4. Summary: the assumptions in EDO academic research

e Predictability: The predictability of changes has increasingly attracted the attention of the
community. However, the number of studies in this topic is relatively still small compared

to the unpredictable case

e Periodicity: The periodicity of changes is a given assumption in many mainstream ap-

proaches as memory and prediction.

The literature review also shows that not many of the assumptions above are backed up by
evidence from real-world applications. This leads to the question of whether these academic
assumptions still hold in real-world DOPs and if yes then whether these assumptions are repre-
sentative in real-world applications and in what type of applications do they hold. In an effort to
answer this question, in the next chapter I will carry out a detailed review of the characteristics
of real-world DOPs, from that I will identify the overlaps and gaps between academic EDO

research and real-world DOPs.
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CHAPTER 3
IDENTIFYING THE CHARACTERISTICS OF
DYNAMIC OPTIMISATION PROBLEMS:
FROM ACADEMIC EVOLUTIONARY

RESEARCH TO REAL-WORLD PROBLEMS

3.1 Motivation and research questions

As shown in the literature review in Chapter 2, many current evolutionary dynamic optimisation
(EDO) studies focus on academic problems where certain assumptions are given and certain
characteristics are investigated. However, it is unclear of whether these academic assumptions
still hold in real-world dynamic optimisation problems (DOPs) and whether the considered
characteristics are representative in real-world applications.

The lack of a clear link between EDO academic research and real-world scenarios has lead to
some criticisms on how realistic current academic problems are. Ursem et al. (2002) downplayed
the importance of current academic benchmarks by stating that "no research has been conducted
to thoroughly evaluate how well they reflect characteristic dynamics of real-world problems";
Branke et al. (2005) pointed out that "little has been done to characterize and understand the
nature of a change in real-world problems"; Rohlfshagen & Yao (2008) criticised that "a large
amount of effort is directed at an academic problem that may only have little relevance in the

real world."; and in (Nguyen & Yao 2009a, Nguyen & Yao 2009b) we showed that there are
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3. Identifying the gaps 3.2. A survey of real-world problems with. . .

some classes of real-world problems whose characteristics have not been captured by existing
academic research yet.
Criticisms from the cited references above motivated me to investigate the following research

questions about the gaps between real-world problems and academic research:

In which problems the current assumptions of EDO academic research about DOPs (as

listed in Subsection 2.4) hold?

Is there any real-world characteristic not covered in EDO academic research?

Is there any type of problem that has not yet received attention from the EC community?

The distribution/popularity of different types of real-world problems?

Current approaches used to solve real-world problems? Which types of problems are solved

by EAs and which are not?

I believe that answering the questions above is vital in bridging the gap between academic
research and real-world applications. To contribute to the task of answering this question,
in this chapter I will carry out a review of a set of recent real-world dynamic optimisation
references. From the review I will investigate for the first time some insights about the link
between academic EDO research and certain classes of real-world DOPs. Details of the review,

and the corresponding investigations will be described in the next sections.

3.2 A survey of real-world problems with dynamic/uncertainty

environments

3.2.1 Survey purpose and methods

To help answering the research questions mentioned in section 3.1 above we took a detailed
survey of recent references (from different disciplines) published in English (mostly from 2006-
2008) from Inspec / Compendex / GeoBase / Referex that have real-world problems with
dynamic/uncertain/non-stationary environments and are solved using evolutionary algorithms
or other stochastic / approximation optimisation techniques in an online way (i.e. we surveyed

those problems that are DOPs). The goal of the survey is not to cover the characteristics of
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3. Identifying the gaps 3.2. A survey of real-world problems with. . .

all types of real-world dynamic optimisation problems, but only to summarise some representa-
tive characteristics of dynamic real-world problems that have been studied recently. To narrow
down the search space to a manageable scope, the survey does not cover all sub-field/topics
listed out in the reference database. References using exact methods and other deterministic /
non-approximate methods; and many references relating to neural networks, fuzzy set, power
systems and image processing are not considered due to the way the search syntax (to be shown
below) has been chosen. The characteristics of each real-world problem are identified and the

problems are classified into different groups based on the following different criteria:

1. Time-linkage: Whether the future behaviour of the problem depends on the current solu-
tion found by the algorithm or not. We recognise a real-world problem from a particular
reference as having the time-linkage property if this property is mentioned as existing in
the problem (by the authors of the corresponding reference), regardless of whether the
time-linkage property is handled by the authors of the reference or not. There might be
cases where it is not clear if the time-linkage property exists in a problem. In such cases

the corresponding problems are categorised in the "no information" group.
2. Solved by EA or other meta-heuristics or not
3. Continuous/discrete: Whether the changes happen in continuous or discrete time
4. Predictability: Whether the changes are predictable or not

5. Visibility: Whether the changes are visible to the optimisation algorithm or the algorithm
needs to detect changes or adapt with changes by itself and whether the changes only

occur in a part of the search space
6. Frequency of changes: Whether the frequency of changes is fixed or variable
7. Constrained problem: Whether the problem is constrained or not
8. Single/multiple objective
9. Optimisation goals

10. Factors that change: Parameter of objective functions / Domain of variables / Number of

variables / Constraints / Other parameters

o6



3. Identifying the gaps 3.2. A survey of real-world problems with. . .

11. Type of dynamics (e.g. recurrent/cyclic, linear, non-linear, distribution etc.)

12. Restart/Tracking: whether the restart or tracking (re-using previous knowledge) approach

is chosen and why
13. Origin of real-world data

14. Types of applications and disciplines

Method: The survey was mostly based on a search made on Inspec / Compendex / GeoBase

/ Referex on 04/2008 and updated on 07/2010 with the following syntax:

(((((((((((dynamic wn KY OR uncertain® wn KY OR non-stationary wn KY
OR online wn KY OR predict* wn KY) AND (optim* wn KY OR evolution* wn
KY)AND (algorithm wn KY OR method wn KY OR technique wn KY)) AND
(({optimization} OR {algorithms} OR {genetic algorithms} OR {optimisation}) WN
CV)) AND (({921.5} OR {c1180}) WN CL)) NOT (({computational fluid dynam-
ics} OR {constraint theory} OR {finite element method} OR {neural networks}
OR {convergence of numerical methods} OR {iterative methods} OR {linear ma-
trix inequalities} OR {fuzzy control} OR {control system synthesis} OR {monte
carlo methods} OR {error analysis} OR {sensitivity analysis} OR {fuzzy sets}) WN
CV)) NOT (({dynamic programming} OR {decision making} OR {numerical meth-
ods} OR {graph theory} OR {approximation theory} OR {distributed computer
systems} OR {trees (mathematics)} OR {integer programming} OR {fuzzy set the-
ory} OR {neural nets} OR {matrix algebra}) WN CV)) NOT (({mobile robots} OR
{embedded systems} OR {bandwidth} OR {computation theory}) WN CV)) NOT
({921} OR {912.2} OR {922.1} OR {721.1} OR {722.4} OR {716.1} OR {c1140z})
WN CL)) NOT (({723.2} OR {922.2} OR {701.1} OR {c1160} OR {714.2}) WN
CL)) NOT ({computer simulation} WN CV)) AND ({english} WN LA))

It should be noted that in this survey we only consider papers that use real-world data or
solve problems originating from real-world situations. In case a reference takes real-world data
to do the simulation, we will only consider it if the simulation can show how the method works

in a real-world situation, i.e. how it can run in real-time and deal with different changes and the
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optimisation goals are set clear. References, e.g. (Kiselev & Alhajj 2008, Ko et al. 2008, Huang
& Wu 2008, Chaer & Monzon 2008) that do use real-world data but do not provide enough
information about the characteristics of the data; or how the dynamics affect the proposed
method and how the proposed method deal with the dynamics, are not considered. Real-world
references where the problems are solved offline or where there is not enough information of
whether and how the proposed method can be applied online e.g. (Takagi et al. 2008, Gao
& Sheng 2008) are also not considered. Especially, for references of control systems, we only
consider those that really use real-world data from hardware/physical systems or have hard-
ware/physical implementations because in many control systems the dynamics come from the
errors of real-world equipments and disturbances. Benchmark problems, even if designed to sim-
ulate real-world applications, are not considered unless there is evidence that the data used to
create the benchmark are taken from real-world applications. Because of that, many references
that use such common benchmark problems (e.g. dynamic modifications of the Solomon set for
VRPTW (Solomon 1987)) will not be considered.

It is also worth noting that in many selected references, e.g. (Deb et al. 2007, Soga et al.
2008, Wang, Wu & Liu 2008, Ahmad & Liu 2008, Ngo et al. 2006, Kanoh 2007), the real-world
data is used only as a framework on which the authors test different artificial dynamic scenarios.
In such case we will only consider the parts that evidently originate from real-world applications.

Such strict criteria in selecting references are needed because the purpose of the survey is
not to list all real-world references that we found using the above syntax, but to investigate
the characteristics of real-world problems and their effects on optimisation algorithms. Such
strict criteria, however, certainly cannot cover all relevant real-world references in the period
2006-2008. First, the survey might omit many references (particularly the scheduling problems
and control problems) that actually originate from real-world situations, or actually use real-
world data just because the authors of these references do not explicitly state so in their papers.
Second, the survey is not able to cover real-world situations from certain disciplines where it is
prohibited to disclose the source of real-world data (e.g. in commercial applications) or where it
is only possible to simulate real-world situations using simulations (e.g. in military applications
or space applications). Third, the survey only focuses on references that satisfy the search syntax
and the time frame described above. Fourth, although we did our best to judge the relevance

of the filtered references, the selections and classifications only reflect our views of real-world
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3. Identifying the gaps 3.2. A survey of real-world problems with. . .

problems, which might not cover all types of applications that are of interest. However, even
with such limitations, it is hoped that the outcome of the survey will still be useful to reveal for
the first time the common characteristics of a set of representative real-world DOPs, and the
links between these problems and academic EDO research.

From the 2394 filtered references, we selected the references that are most relevant according
to the selection criteria above. We also looked at the list of papers cited by the selected references
and read those that seem to be relevant. Eventually, 56 most relevant problems (which are
problems that satisfy the definition of DOPs in Chapter 1 and have enough detailed information
about their characteristics) are selected for a detailed survey.

To the best of our knowledge, there has been no similar survey on real-world DOP references
to investigate the links between EDO academic research and real-world applications. The only
related study is the work of Andrews & Tuson (2005). This research does not survey existing
references in the literature, but reports questionnaires and interviews of the authors with four
practitioners to investigate their views on the characteristics of some real-world applications that
they have experienced. Although the research in (Andrews & Tuson 2005) does not directly solve
any real-world DOPs, it does provide important information on some characteristics of the real-
world problems that the four practitioners have worked with. Due to that, in this survey we
will also include these reported characteristics in our classification.

Tables 1, 2, 3, 4 and 5 in the Appendix (page 246) list the references we selected with brief
information about their characteristics based on the criteria above. The tables are divided into
four groups: combinatorial applications solved by EAs and other meta-heuristics; continuous
applications solved by EAs and other meta-heuristics; combinatorial applications solved by
other methods; and continuous applications solved by other methods. These tables contain the
most relevant details of the characteristics of the surveyed problems. For all information that
I classified using the criteria above, please see the online report at http://www.cs.bham.ac.uk/
“txn/reports/classified_apps.pdf.

In the next subsections I will summarise our findings from the survey on different aspects.
3.2.2 General observations

In this subsection I will summarise the general characteristics of the surveyed applications and

how they match with existing EA academic research.
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Distribution of applications

Distribution of combinatorial applications
Path finding
Parameter 5%

Optimal estimation

3%
Scheduling
35%

Assignment Routing
24% 1%

Others
5%

control
(hybrid
system)
3%

Strategic
planning
11%

Pattern
classifcation/
recognition

Figure 3.1: Distribution of 29 combinatorial applications in the surveyed references

Distributions of continuous applications
Source Pattern
identification classifcation/

7% recognition .
4% Strategic

planning
4%

Parameter
estimation
7%

Optimal Optimal

control control
(hybrid (dynamical
system) system)

30% 48%

Figure 3.2: Distributions of 27 continuous applications in the surveyed references

The first aspect to be analysed is the distributions of different types of applications in the
surveyed references, which hopefully will provide EDO researchers with a better view of what
are the more common types of applications among real-world DOPs.

For this analysis the applications are grouped into two categories: Applications where the
decision variables are in the combinatorial domain (Figure 3.1) and applications where the
decision variables are in the continuous domain (Figure 3.2). It should be noted that there are

real-world systems that have both continuous and combinatorial decision variables. Especially,
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most hybrid systems that we surveyed have both continuous and combinatorial decision variables,
and hence they can be classified into both the continuous applications and the combinatorial
applications. In this survey such systems are classified into the continuous group due to their
similarity to the continuous dynamical systems. Of course they can also be classified into a third
different category.

The analysis results show that for the combinatorial domain, the most common types of
DOPs are scheduling (35%), allocation/layout/assignment (24%), routing and planning (both
11%). They are also among the most common types of problems considered in EA combinato-
rial research. For applications in the continuous domain, a majority of the surveyed problems
are optimal control problems (including normal dynamical systems (48%) and hybrid systems
(30%)), which have not yet attracted much interest from the EA community. The other types

of problems are parameter estimation, source identification, pattern classification and planning.
The coverage of EAs and other meta-heuristics

Because the focus of this chapter is on EDO research, it might be more of interest to investigate
the coverage of EAs and other meta-heuristics on the surveyed applications. Analyses on the
distribution of applications that are solved by EAs and other meta-heuristics in the combinato-
rial/continuous domains are given in Figures 3.3, 3.4, respectively, and analyses on the way EAs
and other meta-heuristics are used to solve the applications in the combinatorial/continuous
domains are given in Figures 3.5, and 3.6, respectively.

The results show that EA and other meta-heuristics are used to solve 36% of the surveyed
applications, confirming the popularity of these methods in solving online applications. Among

these applications, EAs/meta-heuristics are used in one of the following three ways:

e EAs/meta-heuristics are used as the main dynamic solvers to produce the dynamic so-
lutions for the problem (24% in the combinatorial domain and 28% in the continuous

domain)

e EAs/meta-heuristics are not the main/only dynamic solvers (10% in the combinatorial
domain and 4% in the continuous domain). Instead they are used to optimise a part of
the problem (e.g. in the airport-scheduling problem (Atkin et al. 2008), a meta-heuristic
(Tabu search) is used for the initial search of the schedules), or used to optimise the

parameters/settings of the main dynamic solver (e.g. in the supply-chain problem (Akanle
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Distribution of combinatorial applications
solved by EAs and other meta-heuristics
Others
Strategic 7%
planning
7%

Pattern
classifcation/
recognition
7%

Scheduling
37%

Allocation/
Layout/
Assignment

21% Routing
21%

Figure 3.3: Distribution of combinatorial applications that are solved by EAs/metaheuristics.

& Zhang 2008), GA is used to optimise the parameters of the models that are used to

coordinate the distributed decision-making process).

e EAs/meta-heuristics are used in an offline way (3% in the combinatorial domain and 4% in
the continuous domain) to find some optimal policies/rules, which then will be used during
the online optimisation process. One example is the problem of dimensioning and load
balancing for multi-topology Interior Gateway Protocol traffic (Wang, Ho & Pavlou 2008).
In this problem, GA is used to find the optimal link weights before the online optimisation
process starts. These optimal link weights then will be used as the basis for the main
solver to adjust the network topologies online as time goes by to react to environmental
changes. It should be noted that in this group we only consider applications where online
optimisation does exist, i.e. beside the offline policies/rules found by EAs/meta-heuristics,
the solver still needs to optimise its solution to react to changes (like the example of (Wang,
Ho & Pavlou 2008) above). Applications where the offline rules found by EAs are used
online without any further optimisation, e.g. in (Huang & Wu 2008, Xiong 2008), will not

be considered.

3.3 Coverage and Gaps in current EDO academic research

In this section I will discuss some findings, which show that current academic research has not yet
covered all common types of DOPs and that there are many real-world DOPs where the current

assumptions do not hold. The section will also identify the type of problem and characteristics
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Distribution of continuous applications solved
by EAs and other meta-heuristics
Pattern
Source classifcation/
identification recognition
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11%

Optimal

Optimal control
Contrgl (dynamical
(hybrid system)
system) 34%

11%

Figure 3.4: Distribution of continuous applications that are solved by EAs/metaheuristics.

Percentage of applications solved by EAs and
other meta-heuristics in combinatorial domain
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applicable 24% process
28%

10%

Solved by

other
e EAs /. M.eta—
35% heuristics
are used
offline
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Figure 3.5: Percentage of applications solved by EAs and other meta-heuristics in the combina-
torial domain

that have been covered by existing EDO academic research.
3.3.1 Continuous constrained problems

The first important class of problems that I found very common in the survey, but is not covered
by most current EDO academic research, is the class of continuous constrained problems.

As can be seen in Figures 3.7 and 3.8, a majority of the surveyed applications are constrained
problems (73% in the combinatorial domain and 74% in the continuous domain). The survey
results in these two figures also show that a large number of constrained applications have

dynamic constraints.
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Percentage of applications solved by EAs and
other meta-heuristics in continuous domain

EAs / Meta-
Solved heuristics
totally by are used as
EAs / Meta- a p_art_ of t.he
Esies optimisation
Solved by 28% process
other 4%

methods
64%

EAs / Meta-
heuristics
are used

offline
4%

Figure 3.6: Percentage of applications solved by EAs and other meta-heuristics in the continuous
domain

The type of continuous dynamic constrained problems, however, has almost not been studied
in EDO continuous benchmark problems, as already reviewed in Section 2.3. Although almost
all existing general-purpose EDO academic benchmark problems are unconstrained and domain
constraint problems according to the literature review in Section 2.3, the survey results in Figures
3.7 and 3.8 show that, this type of problem occupies only 15% of the continuous surveyed
applications and 0% of the combinatorial applications.

This lack of attention of current EDO research on continuous constrained problems can be
considered an important research gap, which might question the usefulness of existing continuous
dynamic optimisation algorithms in solving dynamic constrained problems, as they have been
designed and tested in the unconstrained /domain constraint cases only. This issue will be further

discussed at the end of this chapter and will be investigated further later in this thesis.
3.3.2 Time-linkage problems

Another important class of problems, which is very common in the surveyed real-world applica-
tions but has not received enough attention from current EDO academic research, is the class
of time-linkage problems. As already mentioned in Subsection 2.1, a DOP is a time-linkage
problem if its future dynamics depend on the decision made earlier by the solvers. In other
words, a time-linkage problem is an online control problem where the algorithm is the actual
controller to control the future behaviour of the system. Our survey results (Figures 3.9 and

3.10) show that a large number of the problems in the surveyed references were mentioned by
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Figure 3.7: Percentage of constrained combinatorial problems
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Figure 3.8: Percentage of constrained continuous problems

the authors as having the time-linkage properties (45% in the combinatorial domain, and 81%
in the continuous domain).

Despite the popularity of time-linkage problems (as illustrated by the large number of appli-
cations found in our surveys - Figures 3.9 and 3.10), as mentioned in Subsections 2.1 and 2.3 this
type of problem still has not attracted much attention from the EDO academic research com-
munity. Only very few recent studies proposed using EA to solve time-linkage problems (Branke
& Mattfeld 2005, Bosman 2005, Bosman & Poutré 2007, Nguyen & Yao 2009b). There are also

only few test problems with the time-linkage property in EA research (Ursem et al. 2002, Branke
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& Mattfeld 2005, Bosman 2005, Bosman & Poutré 2007, Nguyen & Yao 2009b). This lack of at-
tention creates an important gap, which should be addressed if we want to apply EAs effectively
to solving real-world DOPs.

From the practical side, the time-linkage property has also not been studied sufficiently in
evolutionary research. In the survey we found an interesting fact that although some references
using EAs/meta-heuristics do mention the time-linkage property when solving real-world prob-
lems online (Kanoh 2007, Atkin et al. 2008, Moser & Hendtlass 2007b, Ngo et al. 2006, Wang, Ho
& Pavlou 2008, Akanle & Zhang 2008, Jin et al. 2007, Rocha et al. 2005, Morimoto et al. 2007,
Wang, Tao & Cho 2008, Sonntag et al. 2008), none of them equip their EAs with the ability to
handle the time-linkage property online. In these references, the time-linkage property is either
ignored, e.g. in (Jin et al. 2007, Kanoh 2007, Ngo et al. 2006, Moser & Hendtlass 2007b), or han-
dled using a separate component/heuristics, e.g. in (Atkin et al. 2008, Akanle & Zhang 2008),
or handled by EAs in an offline way, e.g. in (Wang, Ho & Pavlou 2008, Sonntag et al. 2008).
The fact that all EA approaches from our surveyed real-world references do not handle the
time-linkage property online demonstrates that applying EAs to solving real-world DOPs is still

a challenge for the community.

Percentage of
time-linkage combinatorial problems

Time-
linkage
45%

No info
55%

on time-
linkage
0%

Figure 3.9: Percentage of time-linkage combinatorial problems

3.3.3 Optimisation goals

One of the possible gaps that I found between the current EDO research and the surveyed real-

world DOPs is that some optimisation goals found in real-world problems might not entirely be
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Percentage of
time-linkage continuous problems

Figure 3.10: Percentage of time-linkage continuous problems

covered by academic EDO research.

Our survey shows that real-world DOPs can have many different optimisation goals:

e Optimality: Find the solutions with the best objective values

o Quick recovery: Find a decent solution as quick as possible or before a certain deadline.
Because real-world DOPs are solved in real-time, this is an important goal for many
different types of applications where there is a restriction in the amount of time that the
solvers can use to produce a solution. It should be noted that although time restrictions
have already been deployed in most current academic benchmark problems in the form of
change frequency, this is not always the same as the deadlines to produce a good solution
required in many real-world applications because such deadlines may occur before the next
change. For example, for the airline schedule recover problem (Liu et al. 2007), the faster
the algorithm to provide a new schedule, the more preferred it is regardless of the frequency
of change; for the supply-chain configuration problem (Akanle & Zhang 2008), customer
orders need to be complete before a given deadline regardless of when will the next change
occurs. Many other examples can be found in Tables 1, 2, 3, 4 and 5 in the Appendix
(page 246). To capture this optimisation goal benchmark problems might need a deadline

parameter in addition to the change-frequency parameter.

e Specification/requirement satisfaction: Find the solution s (0, ) so that future solutions

S (tnow +1) € S (tnow +1) ¥i = 1 : N. This is a broad class of optimisation goals, of

67



3. Identifying the gaps 3.3. Coverage and Gaps in current EDO academic research

which some can be encapsulated in the constraints of each static instance of the DOPs
under certain circumstances. However, as will be discussed later it is not always possible
to incorporate this type of optimisation goals as constraints of DOPs’ static instances.

Common examples of specification/requirement satisfaction goals are:

— Previous-solution displacement restriction : Find a new solution that is not much
different from the old one from the previous time step. For example, in the aircraft
taking-off/landing scheduling problems (Atkin et al. 2008, Bianco et al. 2006, Moser
& Hendtlass 2007b, Wilkins et al. 2008), whenever an environmental change occurs
and it is necessary to re-schedule the orders of aircrafts, the new schedule needs to
be as close to the previous one as possible to minimise disruptions to the operations
of other aircrafts. This goal is particularly common in combinatorial problems in the
field of scheduling and routing. This is usually a secondary goal and is used alongside

with the optimality goal.

— Reference-solution displacement restriction : as time goes by, find dynamic solutions
so that the actual trajectory of solutions is not much different from a given reference
trajectory. This goal is particularly common in control problems where a reference
trajectory of solutions has been provided offline based on simulation, and the task of
the online controller is to provide control decisions in real-time so that the system
can follow the reference trajectory as closely as possible. For example, in the problem
of controlling an electric ship power system (Mitra & Venayagamoorthy 2008), the
solver needs to keep finding optimal solutions (control decisions) as time goes by to

regulate the system’s bus voltage to a pre-defined voltage value.

— Reaching a specific target: Online solutions need to be provided at each time step
so that eventually the system will reach a specific target. This goal is common in
path-finding problems where the task is to accumulatively create a route in real-
time so that the route can finally reach a given destination (e.g. the robot planning
problem (Mills-Tettey et al. 2008) or the real-time heuristic-search problem in Al
games (Bulitko et al. 2007)). The goal is also common in dynamical systems (e.g.
many chemical processes listed in Table 5 (page 263)) where a specified state is given

as the target.
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— Ensuring that future solutions are within certain bounds: Online solutions need to be
calculated at each time step in a special way so that they will NOT lead to future
situations where all possible solutions are beyond certain bounds. For example, in
the problem of controlling the vehicle speed of a Silverstone F1 racing car (Velenis &
Tsiotras 2008), the solver needs to choose the appropriate solutions (control variables)
so that (i) the F1 velocity will not exceed a "critical value" at any point in time, (ii)
at the end of the current planning horizon the vehicle is guaranteed to come to a
complete stop, and (iii) in case an obstacle exists after the current planning horizon,
the vehicle can follow an "escape trajectory" to avoid collision. Other examples can
be found in many control problems where the stability of the systems need to be
maintained and in scheduling problems where the scheduler needs to make sure that
the current schedule will not lead to future schedules where some of the tasks are
infeasible to implement (see Tables 1, 2, 3, 4 and 5, page 246, for details). Usually

this goal is used as a secondary goal alongside with another goal.

o Combination of different goals. In many real-world DOPs there might be more than one
optimisation goal. Our survey results (Figure 3.11) show that at least 65% of the surveyed

applications have more than one goal.

Figure 3.12 shows the high variety of different optimisation goals and the distribution of
the goals in the surveyed applications. As can be seen in the figure, optimisation goals such
as optimality, quick recovery, displacement restriction, specification satisfaction etc. are all
important and they exist in a significant number of surveyed applications (Details of problems
with the above optimisation goals can be found in the column "Optimisation goal" of Tables 1,
2, 3,4 and 5 , page 246).

Despite this high variety of optimisation goals in real-world DOPs, it is unclear if current
EDO academic research has covered all these goals. It seems that currently the main focus
of EDO research is only on finding the optimum solutions/ optimum trajectory, which might
not entirely reflect the aforementioned goals except the goal optimality and to some extent the
goal quick recovery. For example, as already discussed in Section 2.2 most existing performance
measures only evaluate the performance of the algorithm based on the fitness values of the

solutions without considering how different the new solution is from the previous one; if there is
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Figure 3.11: Distribution of applications with multiple optimisation goals
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Figure 3.12: Distribution of different optimisation goals in the surveyed applications

any restriction /requirement for the future objective values; or whether the algorithm has met the
deadline and how good is the performance before the deadline. Most current EDO benchmark
problems, as reviewed in Section 2.3, also do not have any specification/requirements to support
the goal Specification/requirement satisfaction and do not have any specific deadline except the
change frequency to support the goal quick recovery.

One might argue that the goal quick recovery can be covered by some of the existing EDO
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performance measures, for example the reactivity measures (Weicker 2003), which is aimed
at evaluating the ability of algorithms to react quickly to changes and hence to some extent
relates to the quick recovery optimisation goal that we have discussed above. However, even
this measure might not be able to fully evaluate the performance of algorithms in satisfying
the goal of quick adaptation in real-world problems. Firstly, this is because the measure is
based on the assumption that there must be a drop in performance after a change, which might
not be true in real-world situations. Secondly, the measure only evaluates how long it takes
for an algorithm to recover to a certain level from a performance drop after change, while in
many real-world situations that we surveyed it is required to evaluate how well the algorithms
can adapt before a certain deadline. For this type of optimisation goal, the commonly used
modified offline error/performance measure (Branke 20015, Branke & Schmeck 2003) or the
best-of-generation (Yang & Yao 2003) measure might still be useful, but it might be necessary
to modify the measure by adding some deadline parameters, which are not necessarily the same
as the frequency of changes.

This lack of focus on other optimisation goals in EDO research might create a gap between
academic research and real-world applications because it would be difficult to evaluate whether
existing academic DO methods can satisfy other optimisation goals beside the goal optimality.
Of course in certain cases it might be possible to integrate the other optimisation goals into
the objective/fitness function or as some type of constraints, and hence the problem can be
solved with a single goal: optimality. However, such situations have also not been captured in
existing benchmark problems and performance measures as shown in the review in Chapter 2.
In addition, it might not always be possible to integrate multiple goals into the objective/fitness
function, as will be discussed below.

The gaps between academic research and real-world applications in optimisation goals exist
not only in the way academic performance measures/benchmark problems are proposed, but also
in the way EAs are designed. Currently most dynamic optimisation EAs are designed to work
well with the current measures/benchmark problems, i.e. to find the best objective values. Such
design approaches, however, might not work well to entirely satisfy the other optimisation goals
in real-world problems. For example, the best solution an algorithm achieves after a change to
meet the optimality goal might be totally different from the solution found before change. In

this case the displacement restriction goal would not be achieved.
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The need to fill the gaps in dealing with such optimisation goals as displacement restriction
and specification satisfaction is even more important in solving time-linkage problems. The
detailed survey results in Tables 1, 2, 3, 4 and 5 show that these optimisation goals are very
common in time-linkage problems. It is also much more challenging to satisfy these two goals
in the time-linkage case. In the non-time-linkage case these two goals above can be integrated
into the objective function as constraints and algorithms only need to take into account the
constrained objective value at the current time step to find a satisfiable solution. In the time-
linkage case, however, it is much harder because algorithms need to not only calculate the current
objective value but also to predict the outcome of the system in the future given the current
solutions.

The points above show us that the lack of appropriate tools to satisfy the aforementioned
optimisation goals, at least as secondary optimisation goals or constraints beside optimality,
might be a challenge for EA research to solve real-world DOPs. It also shows the necessity to
pay more attention on designing new algorithms/performance measures to deal with these newly

identified goals.
3.3.4 Factors that change

Other real-world DOP characteristics that have not been fully captured in existing EDO re-
search are the factors that change. As shown in Subsection 2.3, most existing general-purpose
academic benchmark in current EDO research only represent changes in the objective function.
However, our survey results (Figure 3.13) show that in real-world DOPs there are also other
factors that change. They are changes in constraint functions, changes in number of variables,
changes in domain range, and switch-mode changes. Of these, constraint changes are the most
common, followed by changes in number of variables and switch-mode (the system switches from
one mode/dynamic model to another) changes. Changes in objective functions and constraints
are common in both the continuous and combinatorial references and occur in a wide range of
applications. Changes in number of variables (dimensional changes) are more common in the
combinatorial problems (account for two-third of the total number of applications with dimen-
sional changes) and also occur in a wide range of applications. In the continuous domain, changes
in number of variables occur mainly in the hybrid systems, which are also the applications where

all of the switch-mode and domain-range changes take place.
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The fact that beside objective-function changes, other type of changes are also common
suggest that more research should be focused on designing benchmark problems with changes
in constraints, number of variables and domain ranges. Benchmarks simulating hybrid systems

might also be necessary to solve this type of applications effectively.
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Figure 3.13: Distribution of typical changing factors in the surveyed applications

3.3.5 Problem information

In EDO academic research, beside the general assumption that there are some correlations
between the environment before and after a change, different research have different assumptions
about whether changes are visible; whether it is easy to detect changes; if changes are predictable
and if the changes are recurrent. However, as we have discussed in Chapter 2 there is not much
evidence of whether these assumptions are true in real-world scenarios, and if these assumptions
are true, how common they are in real-world applications. In this section I will investigate the
existence and popularity of these assumptions in the set of real-world applications we selected

for the survey.
Visibility and detectability of changes

The first two characteristics to be investigated are the visibility and detectability of changes
from the perspective of the optimisation algorithms. The visibility and detectability of changes
are important factors which determine the performance of an algorithm if this algorithm is
reactive, i.e. if it relies on change detection to respond to changes. For example, algorithms

following the diversity-introducing and memory-introducing strategies as reviewed in Subsection
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2.1 will not be able to do well if a change is not visible or detectable. It should be noted that
the terms "visibility of changes" and "detectability of changes" that we use here are viewed
from the perspective of the optimisation algorithm only. They show whether the algorithm
is informed about a change in the fitness landscape and whether it is easy to detect changes
in the fitness landscape. These visibility and detectability of changes in fitness landscapes
might, or might not, relate to the actual visibility and detectability of real-world environmental
changes from the perspective of the real-world system. For example, from the perspective of the
solar powered rover robot (the real-world system) in (Mills-Tettey et al. 2008), changes in the
real-world dynamic environment (unexpected obstacles in the pre-planned path) are not known
(invisible) and hence the robot needs to detect those changes using its sensors. However, from
the perspective of the optimisation algorithm (the built-in navigator software), which is a part
of the robot system, corresponding changes in the fitness landscape are known and hence there
is no need to detect, because information about external environmental changes were transferred
directly from the sensors to the fitness landscape of software.

Regarding to these two characteristics, currently in EDO research the main assumption
adopted by many existing EDO academic research is that changes either are known (visible)
or are easy to be detected by using just one or a few or a fixed set of detectors. As a result,
many current reactive dynamic optimisation algorithms (algorithms that only respond when
they knows a change occurs) are designed without a change detection scheme or with a simple
change detection scheme which monitors the changes in values of average best-performance e.g.
(Cobb 1990, Vavak et al. 1997a), or some members of the population e.g. (Branke 1999, Hu &
Eberhart 2002) or members of the memory set e.g. (Yang 2005a, Simoes & Costa 2007), or a
fixed point e.g. (Carlisle & Dozier 2000) or of a random solution e.g. (Singh et al. 2009). Only
very few studies (Morrison 2004, Richter 2009) take into account the situations where it might
not be possible to detect changes using a few detectors because changes might occur only in a
part of the search space.

Despite its popularity, there is no clear explanation of why the assumption that changes
can be easily detected is accepted in most EDO academic research and whether the assumption
is true in real-world situations. One of the possible reasons might be that this assumption is
true in almost all existing artificial benchmark problems, except a few benchmark sets proposed

recently (Nguyen & Yao 2009a, Richter 2009, Richter 2010).

74



3. Identifying the gaps 3.3. Coverage and Gaps in current EDO academic research

To verify if the considered assumption is really true in real-world situations, at least in the
surveyed set of applications, in this subsection I will analyse the visibility and detectability of
changes in the fitness landscapes of the surveyed applications. It is hoped that the analysis will
give a better justification on the use of the assumption above. It is also hoped that the analysis
will provide us with a better understanding of how changes are handled in real-world applications
and whether there is any type of changes not covered by the current assumption. Results of my
analysis on the visibility of changes in the surveyed applications are shown in Figure 3.14, and
results of my analysis on the detectability of changes in these applications are shown in Figure
3.15. Details of the visibility and detectability of each of the surveyed applications can be found
in Tables 1, 2, 3, 4 and 5 in the Appendix.
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Figure 3.14: The visibility of changes (from the perspective of optimisation algorithms) in the
surveyed applications

Figure 3.14 shows that for a majority of the surveyed applications, it is indeed not necessary
to detect changes constantly. In many cases (16/56 applications) changes are known by the
optimisation algorithms. In many other cases (25/56 applications), the optimisation process are
divided into time-windows where during each time-window the environment is considered static.
Due to that, in time-window approaches the dynamic problems are transformed into a sequence
of static problems, each starts at the beginning of a time-window and hence changes detection
are also not needed.

However, in the cases where it is necessary for the optimisation algorithm to detect changes,
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Figure 3.15: The detectability of changes in the search landscape (from the perspective of
optimisation algorithms) in the surveyed applications

Figure 3.15 shows that it is not always possible to detect changes using just one or a few detectors.
Among nine applications where optimisation algorithms need to detect changes, only two use
one single detector for change detection. The data from Figure 3.15 suggests that the reason
for many applications not to use only one single detector might be that in many applications
changes might occur in only a part of the search space. As can be seen in Figure 3.15 there
are 21 applications where changes might occur in a part of the search space, of which five have
changes that the optimisation algorithms need to detect.

The survey results suggest that although in a majority of cases a simple change detection
method is sufficient, for certain applications it might be necessary to have a sophisticated change
detection method to detect changes effectively. Because complicated change detection method
might also add unnecessary cost to the algorithm when it is used to solve problems where changes
are known (there are many problems like this in the survey), in designing future algorithms it
would be better to separate the change detection mechanism from the search mechanism so
that in case changes are visible the algorithms do not need to spend any unnecessary effort on

detecting changes.
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Predictability of changes

The third characteristic to be investigated in this subsection is the predictability of changes.
This characteristics has not been studied well in EDO academic research. As can be seen in the
review in Section 2.3, many current academic research with artificial benchmarks either assume
that changes are not predictable or do not take into account the predictability of changes in their
default settings. There are only a few studies (Bosman 2005, Hatzakis & Wallace 2006, Rossi
et al. 2008, Zhou et al. 2007, Simoes & Costa 2009) on the predictability of changes in EDO
academic problems. However, the survey (Figure 3.16) shows that a large number of applications
(61%) have at least a part of their changes predictable. This large proportion of predictable
changes suggest that the predictability property should be taken into account when designing
dynamic optimisation algorithms and benchmark problems. Because many of the predictable
changes in the surveyed applications are problem-specific, it would also be useful to design

predictable changes that are tailored to specific applications.
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Figure 3.16: The predictability of changes in the surveyed applications

Recurrence of changes

Another important characteristic, which is believed to be common in DOPs, is the recurrence
of changes. The assumption that changes might some how re-occur in dynamic environments is

the key point leading to the development of algorithms following the memory-based approach,
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one of the major approaches in EDO, and the development of some prediction methods, e.g.
(Simoes & Costa 2009) to anticipate the recurrence of changes. Because of that, it is important
to investigate how common this characteristic is in real-world applications. In the set of surveyed
application, the survey results (Figure 3.17) show that 25% of the applications have some kind
of recurrent /periodical/cyclic changes. It means that the use of memory might be suitable for
these types of problems and confirms the usefulness of memory-based approaches in solving

certain types of real-world applications.
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Figure 3.17: Percentage of applicatins with recurrent changes

3.3.6 The way problems are solved

When to solve a problem online

The survey provides interesting observations about the two types of situations where real-world
dynamic problems are solved online. First, problems are solved online when it is not possible to
provide a complete model to represent the dynamic of the system due to the lack of knowledge
about the system’s future behaviours (e.g. if there is any change in parameter values compared
to the designed values, of if there is any unexpected event etc.). Instead it is only possible to
model the current state of the system given the available knowledge and to provide an optimal
solution for this current state. In such case, it is necessary to solve the problem online as time

goes by, so that whenever the system changes its state, we can provide a new optimal solution for
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the newly changed state. This is the most common case that we found in real-world applications.
This situation correlates to the definition of Bosman (2007), which states that a DOP is said to
be online "if the dynamic optimization function cannot be evaluated for all future times ¢ > "%
and the dynamic optimization problem must therefore be solved as time goes by".

Second, problems are also solved online when there is a complete model to represent the
dynamic of the real-world system but it is either computationally expensive to solve the problem
offline given the complete model, or there is some rules/regulations that prevent the solver
from solving the problem offline. In such cases, the solver needs to solve the problem online,
either to save the computational cost, or to satisfy some regulations although theoretically given
enough time the problem can be solved offline. This situation is very common in virtual reality
applications where although complete information about the virtual environment are available,
the problems are still needed to be solved online for some reasons: first, revealing complete
environment information to optimisers (virtual agents in this case) is considered cheating in
virtual reality applications like commercial games (Bulitko et al. 2007); second, allowing virtual
agents to know the complete environment might lead them to do actions beyond the designed
ability of the roles they play (Dini et al. 2006); third, the optimisation problem with complete
information may become too complex and hence too computationally expensive to satisfy the
time constraint in real-time games (Orkin 2006). Another interesting example of problems
being solved online even when it is possible for them to be solved offline is the problem of
planning future farming strategies (Jin et al. 2007). In this case, although the complete model
to represent future dynamics can be theoretically created, the problem is solved online to study

how the dynamic environment affects the outcomes of different solutions.
When to re-use previous knowledge and when to restart

It has been shown that the knowledge re-using (tracking) approach, or specifically "somehow
use knowledge about the previous search space to advance the search after a change" (Jin &
Branke 2005), can be used to speed up optimisation in dynamic problems. The survey confirms
that the knowledge re-using approach is indeed very common in real-world DOPs (72% as shown
in Figure 3.18).

The survey also shows an interesting observation about the reason for knowledge re-using

to be chosen over restarting. Although in most academic evolutionary research on artificial
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Figure 3.18: Percentage of applications that adopt the tracking approach, compared to those
adopting the restarting approach.
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Figure 3.19: The reasons for the surveyed applications to use the tracking approach.

benchmark problems, knowledge re-using is chosen over restarting because the global optimum
after a change is closed to the global optimum or another local optimum before the change
(which is a property of most academic benchmark problems), the survey shows that this is not
the only reason for choosing the knowledge re-using approach. In fact, as can be seen in Figure
3.19, among all applications that follow the knowledge re-using approach, only 8.33% clearly

state that knowledge-reusing is chosen because it is hoped that the new global optimum is close
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to the old one. Other reasons for real-world practitioners to choose the knowledge re-using
approach over the restart approach (even when the restart approach may produce better quality
solutions as mentioned in (Araujo & Merelo 2007, Mertens et al. 2006)) are as follows (note that

one application can have more than one reasons):

1. Knowledge re-using is chosen because it helps producing new solutions more quickly:

16.67%

2. Knowledge re-using is chosen because there is a displacement restriction (new solution

needs to be similar to the old one): 27.08%

3. Knowledge re-using is chosen because previous knowledge can be used to learn dynamic

behaviours: 45.83%

Three reasons above correlate to my previous findings of the uncaptured optimisation goals
mentioned in Subsection 3.3.3. The popularity of these optimisation goals and the corresponding
reasons for re-using knowledge suggest that more attention might be needed in academic EDO
research to address this issue. Particularly, more benchmark problems and performance measures
should be developed to reflect the new optimisation goals and to evaluate the performance of
optimisation methods that re-use previous knowledge for other reasons than the possible close

distance between the old and the new global optimum.
Single-objective vs multi-objective

The final observation that I got from the survey is the more popularity of single-objective
approaches compared to multiple-objective approaches. Although a large number of applications
have more than one optimisation goals (as shown in Subsection 3.3.3), it is interesting to see
that only 11% of the applications are solved as multi-objective problems, compared to 73%
solved as single-objective problems. There might be different reasons for this, but as shown
in (Atkin et al. 2008), one interesting reason for single-objective approaches to be preferred is
that it simplifies users’ tasks (they do not need to choose between multiple optimal solutions).
This might give algorithm designers some ideas of whether and how multi-objective approaches
should be used in practical applications. It should be noted that in our survey, we categorise
as single-objective applications those applications that combine multiple objectives into a single

one using aggregation methods e.g. (Morimoto et al. 2007, Atkin et al. 2008).
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Figure 3.20: Percentage of applications that adopt the single-objective approach, compared to
those adopting the multiple-objective approach.

3.4 Summary

The literature reviews in Chapter 2 have shown that current EDO academic research focuses on
certain classes of DOPs, which are assumed to have some special characteristics. The literature
reviews also showed that it however remains a question of whether these special characteris-
tics fully represent real-world applications, and if they do not, what are the other real-world
characteristics that have not been captured in EDO academic research.

This chapter contributes to answering the above question by comprehensively reviewing
a large set of recent real-world dynamic optimisation references. Based on the results of this
review, which has never been done before, I have investigated for the first time the links between
EDO academic research and real-world DOPs. First, I recognised the areas of applications where
the current EDO assumptions hold. Second, I pointed out certain gaps between academic EDO
research and real-world DOPs. These gaps include (a) common classes of real-world problems
that have not attracted much interest from the community and (b) common aspects in real-
world dynamic optimisation that have not been captured in the current assumptions of academic
EDO. Based on this review, I also discussed the necessity and possibility to extend current EDO
research to better reflect the characteristics of real-world problems and to solve real-world DOPs

more effectively.
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The contributions of this chapter can be summarised into three groups as follows:

1. Identifying the common types of real-world problems, the coverage (or the lack thereof)

of current EDO academic research on each type of problem, and providing suggestions

on how to close the gaps: Current studies in academic EDO do not cover all types of

common dynamic optimisation problems yet. The most common type of DOPs that current

academic research considers are unconstrained, non-time-linkage problems. However, this

type of problem occupies only a small part of the surveyed applications. I found that

there are two other types of problems that are very common in real-world applications but

received very little attention from the community:

(a)

(b)

Continuous constrained problems: A major number of surveyed problems are con-
strained problems. However constrained problems have not been considered in the

majority of current continuous dynamic optimisation research.

Time-linkage problems: A large number of surveyed problems are time-linkage prob-
lems. However there is very little research on this type of problem in EDO academic

research.

2. Identifying the representative characteristics of real-world DOPs, whether they have been

captured by EDO academic research and providing suggestions on how to close the gaps

(a)

Optimisation goals: Although many of current EDO academic research works only
focus on one single optimisation goal: optimality, in the surveyed applications there
are many other common optimisation goals as quick recovery, previous-solution dis-
placement restriction, reference-solution displacement restriction, reaching a specific
target, ensuring that future solutions are in certain bounds, etc. In order to solve
real-world DOPs better, EDO research should take into account these optimisation
goals, at least as secondary goals or special types of constraints when designing per-

formance measures, benchmark problems and algorithms for solving certain types of

DOPs.

Factors that change: Although most current EDO artificial benchmark problems have
only one changing factor: the (parameters of) objective function, the survey shows

that there are also other common types of changing factors: constraints, number of
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variables, domain ranges and switch-mode changes. The analysis in this chapter also
shows the distribution of each changing factor and the type of applications where the

changing factors are common.

(c) Problem information: The chapter also investigates the types of real-world DOP’s
information that can be used by the optimisation algorithm to advance the search.
These types of information include the wvisibility, detectability, predictability and re-
currence of changes. For each type of information we also analysed their properties,
their popularity, and whether the type of information has been studied in academic

research.

3. Identifying the ways real-world DOPs are solved, whether they are the same as in academic
research, and providing suggestions on how to close the gaps. The review and analysis was

focused on three aspects

(a) When to solve the problem online,
(b) When to re-use previous knowledge, and why,

(¢) The proportion of single-objective approaches compared to multi-objective approaches

Summarising, the review in this chapter shows that besides the characteristics and assump-
tions commonly used in EDO academic research, real-world DOPs also have other important
types of problems and problem characteristics that have not been studied extensively by the
EDO community. In order to solve real-world DOPs more effectively, it is necessary to take
these characteristics and problem types into account when designing new algorithms, perfor-

mance measures and benchmark problems.

3.5 The gaps to be studied in this thesis

The review and analysis in this chapter shows that there are many open topics and gaps in EDO
where further studies can be made to advance knowledge in the field. Within the scope of this
thesis, I would like to focus my study on two main topics: dynamic constrained optimisation
and time-linkage optimisation. As shown in the review of real-world applications, dynamic
constrained optimisation problems (DCOPs) and dynamic time-linkage problems (DTPs) are

the two most common types of problems among the surveyed applications, but they have not
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attracted much attention from the community. In order to make these important classes of
problems more accessible to the community, it is necessary to study the characteristics of the
problems, the suitability of EAs in solving them and developing new EA techniques. It is hoped
that my investigations on the characteristics of these two types of problems and my development
of new algorithms to solve these two types of problems will contribute to closing the related gaps
between academic research and real-world applications. The outcomes of the investigations
are new benchmark problems and measures to reflect the uncaptured characteristics, and new
algorithms to solve DCOPs and DTPs more effectively.

In addition, the reviews in this chapter and in Chapter 2 show that existing definitions of
DOPs might not be sufficient to fully represent the characteristics of real-world DOPs. First,
with the identifications of the not-well-studied types of problems as DCOPs and DTPs, and
with the identifications of other changing factors as constraints, domain ranges, number of
variables, it becomes clear that existing definitions (briefly reviewed in Chapter 1) might not
be detailed enough to cover the newly identified problems and problem characteristics. Second,
as analysed in Chapter 1, most formal definitions of DOPs do not clearly distinguish between
a time-dependent problem and a DOP, which is a time-dependent problem that is solved in a
dynamic way. Third, existing definitions do not take into account the fact that in many DOPs,
the dynamic behaviours of the problem is influenced or decided by the optimisation algorithm,
and hence defining/describing a problem without considering the solver might not sufficiently
reflect the dynamics of the problem. These three reasons motivate me to develop a new definition
framework to better represent DOPs. This definition framework also forms a part of this thesis.

Another related research that I have made during my PhD study to close the gap between
real-world DOPs and academic research is to develop new algorithms specifically for the situa-
tions where changes cannot be detected easily (this situation has been discussed in Subsection
3.3.5). A new algorithm with promising initial results (equal to the best results from state-of-

the-art methods) has been developed and described in (Nguyen 20080, pp. 4-12).
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CHAPTER 4

A DEFINITION FRAMEWORK FOR DOPS

4.1 Research gaps and motivations

Although the importance of DOPs has been shown through their presence in a broad range of
real-world applications, due to the lack of research attention there are still many aspects that
we do not fully know about this class of problems. One of the remaining questions is how should
we define DOPs in detail to (i) distinguish DOPs from other types of time-dependent problems;
(ii) encapsulate the behaviours of the dynamics and the types of dynamics (e.g. time-linkage
vs non-time-linkage) in DOPs; (iii) encapsulate the changing factors (e.g. changes in objective
function, constraints, domain range, dimension); and (iv) separate the static factors from the
dynamic factors.

In Chapter 1, we have briefly discussed existing formal definitions for DOPs and cate-
gorised them into two types. The first type of definition defines a DOP as a sequence of
static problems linked up by some dynamic rules (Weicker 2000, Weicker 2003, Aragon &
Esquivel 2004, Rohlfshagen & Yao 2008, Rohlfshagen & Yao 2010). The second type of def-
initions defines a DOP as a problem that have time-dependent parameters in its mathematical
expression (Bick 1998, Bosman 2007, Woldesenbet & Yen 2009, Yu et al. 2010). A description
of one such definition has also been given in Equation 1.1 (page 2, the definition of Bosman
(2007)).

My reviews in the previous chapters, especially in Chapter 3, however have shown that the
existing definitions of DOPs as cited above might not be detailed enough to fully represent the

common characteristics of DOPs because of the following reasons:
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1. FEzisting formal definitions do not distinguish DOPs from other time-dependent problems:
As discussed in Chapter 1, although in some general (and hence less formal) definitions
(Jin & Branke 2005, Morrison 2004, Branke 2001b) additional explanations are given to
properly restrict the scope of DOPs from other time-dependent problems, most existing
formal definitions of DOPs consider DOPs and time-dependent problems the same. In
fact these formal definitions do represent time-dependent problems rather than DOPs. To
avoid ambiguity and to define DOPs precisely, it is necessary to provide a formal definition
which properly and clearly define DOPs as time-dependent problems that are solved online

n a dynamic way.

2. Ezisting formal definitions might not be detailed enough to represent different changing
factors found in real-world applications: Both groups of existing formal definitions that
we mentioned above are not detailed enough to specify what are the changing factors in
DOPs. In the group of definitions where DOPs are defined as sequences of static problems,
there is no detailed specification of how a static problem can transform into another (as
in (Weicker 2000, Weicker 2003, Aragon & Esquivel 2004, Rohlfshagen & Yao 2008, Rohlf-
shagen & Yao 2010), or the specifications are unrealistic (e.g. there is no evidence that
the dynamic rules specified in (Weicker 2003) such as coordinate transformations, fit-
ness rescales and coordinate stretchings are representative in real-world applications). In
the group of definitions where DOPs are defined as problems that have time-dependent
parameters in their mathematical expression (Béck 1998, Bosman 2007, Woldesenbet &
Yen 2009, Yu et al. 2010), the dynamics of the problem are just generally captured by
including an additional parameter ¢ (the time) in the static expression of the objective
function (e.g. see Equation 1.1, page 2). Such a representation of dynamics might not be
detailed enough to identify what factors are changed, how frequent the changes are, and

what are the rules of changes.

3. FExisting formal definitions might not be detailed enough to encapsulate the time-linkage
property of real-world applications: Although the time-linkage property is very common
in real-world problems (Subsection 3.3.2 shows that a majority of the surveyed problems
have this property), most existing definitions of DOPs in academic evolutionary research

do not consider this property. The only EC study where this property is described is the
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research of Bosman (Bosman 2005, Bosman 2007). However, even in the DOP definitions
in these references, the time-linkage feature is not explicitly expressed (see Equation 1.1,
page 2). Instead, that feature is encapsulated in the expression of Jo()- 1t would be better
if the time-linkage property can be captured explicitly in the definition. In addition, none
of the existing definitions encapsulates the important property of dynamic time-linkage
problems (DTPs): algorithm-dependent. We consider DTPs algorithm-dependent because
the structure of a DTP in the future may depend on the current value of z(t), which in
turn depends on the algorithm used to solve the problem. Because of this property, we
believe that in order to define a DTP in an unambiguous way, the algorithm used to solve

a problem instance should be considered a part of the problem instance itself.

To contribute in closing the gaps above, in this chapter I will propose a new definition
framework which describes DOPs in a more detailed level. It is hope that the framework will
help defining and characterising DOPs better and can be used as a basis for future theoretical
works. The definition framework can also help generating benchmark problems that are able to
capture the characteristics of DOPs, as I will describe in the next chapter. Within this chapter I
will focus on the single-objective case only. Details of the definition framework will be described

below.

4.2 A definition framework for DOPs

Definition 4.1 (Full-description form) Given a finite set of functions F' = {f1 (z), ..., fn ()};

a full-description form of F' is a tuple
(Fy (@) fer,renl)

where ]/"; (x) is a mathematical expression with its set of parametersy € R™, and {cy,...,cp},c; €

R™ s a set of vectors; so that:
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FEach function f; (z),i=1:n € N7 is called an instance of the full-description form at v = c;.

From now on we will refer to the full-description form <j‘?7 (z),{c1, ..., cn}> as f

Example 4.4 The combination of the expression f: ax +b and the following set of parameter
values for a and b: {{a=1,b=0},{a=0,b=1},{a=1,b=1}} is the full-description form

of the following set of functions: {fi = x; fa =1;fs =z + 1}.

The implication of a full-description form is that it can be used to represent different func-
tions at different times by changing the parameters. It should be noted that, however, a
full-description form is not unique: one set of functions can be represetend by multiple full-
description forms and one full-description form can be used to represent mulitple set of functions.
What is unique is a combination of (a) a full-description form I (b) a given set of functions
{fi(x),..., fn ()} represented by f; and (c) the way the parameters of fcan be changed to
tranform f; to f; Vi,5 = 1 : n. In real-world problems, changes in the parameters are usually
controlled by some specific time-dependent rules or functions. For example, in dynamical sys-
tems changes of parameters can be represented by a linear, chaotic or other non-linear equations
of the time variable t. The dynamic rules that govern how the parameters of a full-description

form change can be defined mathematically as follows.

Definition 4.5 (Dynamic driver) Given a tuple <]?, %,t> where t is a time variable, f s a
full-description form of the set of functions F = {f1(x),..., fn (z)} with respect to the set of
m-element vectors {ci,...,cp},c; € R™, and v, € R™ is an m-element vector containing all m
parameters of ]? at the time t;

we call & mapping D (v,,t) : R™ x Nt — R™ g dynamic driver of f if
Y1 =D (v,t) € {c1, e} VE € NT (4.6)

and

Va1 95 used as the set of parameters off at the time t + 1

Definition 4.7 (Time-dependent problem) Given a tuple <]?,D (fyt,t)> where t is a time
variable, f is a full-description form of the set of functions F = {fi(x),..., fn (x)} with respect

to the set of m-element vectors {cy,...,cn},c; € R™, v, € R™ is the parameter-vector of f at
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the time t, and D (v,;,t) is a dynamic driver of f,
we call fD(%) = <f, D (vt,t)> a time-dependent problem with respect to the time variable t.
In this problem changes can be represented as changes in the parameter space and are controlled

by the dynamic driver D (vy,,t).

The inclusion of dynamic drivers and full-description form in the above definition distin-
guishes the definition from existing definitions of time-dependent problems. As discussed ear-
lier, many existing definitions represent a time-dependent problem as a sequence of multiple
static problems. These definitions might be ambiguous because there might be multiple ways
to transfrom one static problem to another and hence it is not clear what type of dynamic the
considered time-dependent problem has. The dynamic driver in Definition 4.7 represents the
actual dynamic of the problem and hence it helps distinguish one time-dependent problem from
another.

In some existing definitions (Rohlfshagen & Yao 2008, Bosman 2007), it has already been
implied that changes in time-dependent problems can be represented as changes in the parameter
space. In this chapter this concept will be formulated in a more detailed level and will be
explicitly defined: most common types of changes in time-dependent problems can be represented
as changes in the parameter space if we can formulate the problem in a general enough full-
description form. This is true even in extreme cases where there is no correlation between the
functions before and after a change. For example, a function-switching change from f (z) at
t=0tog(z)att>1,teNT can be expressed as f(m) =a(t) f(x)+b(t) g(x) where a (t) and

b(t) are two time-dependent parameters given by

a(t)=1andb(t)=0 ift=0

a(t)=0and b(t) =1 otherwise

Dimensional changes, as found in some real-world systems, can also be represented as changes
in the parameter given that the maximum number of variables is taken into account in the full-
description form. For example, the function ) ;" CL’ZQ with dimension n varies from 1 to 2 can

be represented as the full-description form 2 b; (t) 22 with b; (t) € {0,1} depending on t.

Definition 4.8 (Time unit) When a time-dependent problem is being solved, a time unit, or a

unit for measuring time periods in the problem, represents the time durations needed to complete
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1

one function evaluation of that problem.” The number of evaluations (or time units) that have

been evaluated so far since we started solving the problem is measured by the variable T € NT.

Definition 4.9 (Change step and frequency of change) When a time-dependent problem
18 being solved, a change step represents the moment when the problem changes. The number of
change steps that have occured so far in a time-dependent problem is measured by the variable
t € NT. Obviously t is a time-dependent function of T- the number of evaluations made so
far since we started solving the problem; t (1) : N* — Nt . [ts dynamic is controlled by a

problem-specific time-based dynamic driver:
t(r+1)=Dp(t(r),7) (4.10)

where Dp (t (1), 7) is the problem-specific time-based dynamic driver. It decides the frequency

of change of the problem and can be described as follows:

Dr(t(r),7)=t(r)+1 when a change occurs
r(t(r),7) =) g i

Dy (t(r),7)=1t(7) otherwise
Definition 4.12 (Optimisation algorithms and dynamic solutions) Given a time-dependent
problem fD(%) = <f,D (yt,t)> at the change step t (see Definition 4.7) and a set P; of ki solu-
tions X1, ...,Xp, € Sy where Sy C R? is the search space?,

an optimisation algorithm G to solve fD(%) can be seen as a mapping
Gy : Rk Réxka1 (4.13)

capable of producing a solution set P11 of kiy1 optimised solutions X?, ""th+1 at the next
change step t + 1:
Pi1=Gi(P) . (4.14)

[t

Gy e
Generally, at a change step t¢ € N the set of dynamic solutions Xft " that we get by applying

an algorithm G to solve ]?D(%) with a gien initial population Pu_; during the period [tb,te] ,

' As mentioned in (Bick 1998) and (Rohlfshagen & Yao 2008), from the perspective of optimisation algorithms
time is descrete and the smallest time unit is one function evaluation.

2Here we are considering search spaces C R%. However the definition can be generalized for other non-numerical
encoding algorithms by replacing R? with the appropriate encoding space.
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t* > 1 is given by:

te te
G b e
XM= JR=G(P) (4.15)
t=tb t=tb

In real-world time-dependent problems, some time-dependent rules that change the problems’
parameters may have the time-linkage feature, i.e. they take solutions found by the algorithm
up to the current time step as their parameters. In such cases, the time-linkage dynamic rules

can be defined mathematically as follows.

Definition 4.16 (Time-linkage dynamic driver) Given a tuple <_]?, Yis t,XfG[l’t]> where t s
a time variable, f is a full-description form of the set of functions F = {f1 (x),..., fn (z)} with
respect to the set of m-element vectors {c1,...,cn},c; € R™, v, € R™ is an m-element vector
containing all m parameters off at the time t, ; and XJ?G[”] is a set of k d-dimensional solutions
achieved by applying an algorithm G to solve f during the period [1,t];
we call a mapping D (’yt, X?[l’t],t> : R™ x Rk 5 Nt — R™ @ time-linkage dynamic driver of
fif

Ypoa =D (%,X?“’”,t> € {c1,...,ca} Vt € NT (4.17)

and

Yev1 98 used as the set of parameters of f at the time t + 1

G ] N
There are cases where Xf[l’t] does not have any influence on the future of f. In these cases

G . . . . .
D ('yt, f[l’t] , t) becomes a regular dynamic driver with no time-linkage feature.

Definition 4.18 (Dynamic optimisation problem) Given a tuple

<ﬁ 6, Dp,Dp, Dr, G> , a dynamic optimisation problem in the period [1,76”d]

function eval-

uations, 7" € NT can be defined as

optimise 7 ( G[Lt]) (x¢) (4.19)
g
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. N 1. G
subject to C’?'keé\gﬂ> (x¢,tr) < 0; and 1 (tT, Xf“’t]> <x<u <tT,XA : ) where
y(tr, X
7

f s the full-description form of the objective function

CL...C* are the full-description forms of k dynamic constraints®

Dp is the dynamic driver for parameters in objective and constraint (see below)

Dp is the dynamic driver for domain constraints (see below)

D is the dynamic driver for times and frequency of changes(Equation 4.11)

G is the algorithm used to solve the problem

TE [1,Te”d] NN is the number of function evaluations done so far

tr, ort(r) € Nt is the current change step; t (T) is controlled by Dy (Equation 4.11)

X?l’t] is the set of solutions achieved by applying the algorithm G to solve f during [1,t]

V¢, € RP is the time-dependant parameters off and 6’i;’yt7+1 = Dp (’ytT, X?[l’t],t>
1(t-+1)=Dp (1(t7),xf[1’ﬂ ,tT)

1(t;),u(t;) € R™ are domain constraints; { o
u(t7—+1):DD (u(tT)7Xf (L] 7t7)

The new definition brings us some advantages. First, with the introduction of the change
step, the optimisation algorithm and the dynamic solutions produced by the algorithm at each
change step, the definition clearly defines DOPs as time-dependent problems that are solved
online in a dynamic way, and hence distinguishes DOPs from other time-dependent problems.
Second, we can now classify DOPs based on three distinguished components: the full-description
forms, the dynamic drivers, and the algorithm. This separation facilitates us in characterising
DOPs and evaluating the impact of each components on the difficulty of the problems. Third,
the definition supports an important feature of dynamic time-linkage problems that has not
been fully considered before: algorithm-dependent. Fourth, the definition encapsulates different
aspects of DOPs such as dynamic rules, change frequencies, changes in constraints, changes in

domain range, changes in objective functions in details.

% These also include equality constraints because any equality constraint ¢(z) = 0 can be transformed into an
inequality |c¢(z)| — e < 0 with a small value €.
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4.3 Summary of contributions

The contribution of this chapter is to provide a new definition framework, which is expected
to help to close some gaps that existing formal definitions of DOPs have not addressed. The

contributions can be categories as follows:

1. Distinguishing DOPs from other time-dependent problems.
2. Taking into account the algorithm-dependence property.

3. Covering many aspects of a DOP that has not been considered in details in previous
DOP definitions: time unit, change step, frequency of changes, changes in constraints

and changes in domain range.

4. Representing DOPs based on three distinguished components: the full-description forms,
the dynamic drivers, and the algorithm to make it easier to study the behaviour of DOPs.
The idea of separating the dynamic drivers from the static description forms will also help
in generating DOP benchmarks from existing well-studied static benchmarks. In the next
chapter, we will use this principle to design a set of benchmark problems for dynamic
constrained optimisation. This principle was also used to generate the dynamics for the
dynamic benchmark problems in the CEC’2009 Competition on Dynamic Optimization
(Li et al. 2008).
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CHAPTER 5
ANALYSING THE DIFFICULTIES OF
EXISTING DYNAMIC OPTIMISATION AND
CONSTRAINT HANDLING ALGORITHMS IN

SOLVING DCOPs

The research in this chapter aims to answer some open questions about the characteristics,
difficulty and solution methods of a very common class of problems - dynamic constrained op-
timisation problems (DCOPs). DCOPs are constrained optimisation problems that have two
properties: First, the objective functions, the constraints, or both, may change over time, and
second, the changes are taken into account in the optimisation process'. The review in Chapter
3 has shown that a majority of the surveyed real-world dynamic problems are DCOPs. How-
ever, there are few studies on continuous dynamic constrained optimisation (DCO). Specifically,
there is little research on whether current numerical dynamic optimisation (DO) algorithms and
numerical constraint handling (CH) algorithms would work well in DCOPs. There is also no
numerical dynamic constrained benchmark problem that reflects the common characteristics
of DCOPs. Existing studies in continuous DO only focus on the unconstrained or domain con-
straint dynamic cases (which in this thesis I regard both as "unconstrained" problems). Likewise,

existing research in CH only focuses on the stationary constrained problems.

"This definition is derived from the (more general) definition of dynamic optimisation problems in (Jin &
Branke 2005, section V).
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This lack of attention on DCOPs in the continuous domain raises some important research
questions. First, what are the essential characteristics of DCOPs? Second, how well would
existing DO and CH strategies perform in DCOPs if most of them are designed for and tested
in either unconstrained dynamic problems or stationary constrained problems only? And why
do they work well or not well? Third, how can we evaluate if an algorithm works well or not
in DCOPs? And fourth, what are the requirements for a "good" algorithm to effectively solve
DCOPs?

As a large number of real-world applications are DCOPs, I believe that finding the answers
to the questions above is essential. This is because such answers would help us to have more
understanding about the practical issues of the problems and to solve this class of problems
more effectively.

This chapter contributes to the task of finding such answers. First, in section 5.1, I will
identify the special characteristics of DCOPs from real-world references. I will also discuss how
these characteristics make DCOPs different from unconstrained dynamic optimisation problems
(DOPs). Then in Section 5.2, T will firstly review related literature about continuous DCO
benchmark problems, and identify the gaps between them and common DCOPs. Then I will
propose a new method to generate general dynamic benchmark problems. That method will
then be used to introduce a new set of DCO benchmark problems, which are able to represent
the characteristics identified in section 5.1. In the next section (Section 5.3), I will investigate the
possibility of solving DCOPs using some representative DO strategies. Experimental analyses
about the strengths and weaknesses of existing DO strategies, and the effect of the mentioned
characteristics on each strategy will also be undertaken. Based on the experimental results, I will
then suggest a list of requirements that a DO algorithm should meet to solve DCOPs effectively.
In section 5.4, similar literature reviews and experimental analyses about the possibility of
solving DCOPs will again be carried out, but now under the perspective of existing CH strategies.
Similar to the previous section, in this section I will also suggest a list of possible requirements
that a CH algorithm should meet to solve DCOPs effectively. The chapter finishes with Section

5.5, where some conclusions and future directions will be discussed.
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5.1 The common characteristics of dynamic constrained prob-

lems

The presence of constraints in DCOPs make them very different from the unconstrained or
domain constraint problems (problems where the only constraints are the bounds of decision
variables) considered in academic research (in this chapter we conventionally name both un-
constrained problems and domain constraint problems as "unconstrained problems"). Different
from the unconstrained problems where there is only one objective function with no constraint
or with domain constraints only, a DCOP is a combination of the objective function and one
or many constraint functions, in which at least one of these objective/constraint functions is
dynamic. In real-world DCOPs the objective function and constraint functions can be com-
bined in three different types. The first type of combination is the case where both the ob-
jective function and the constraints are dynamic, as in scheduling/resource allocation problems
(Andrews & Tuson 2005), aerodynamic/structural design problems (Padula et al. 2006), or in
many optimal control problems (Schlegel & Marquardt 2006, Wang & Wineberg 2006, Prata
et al. 2006). The second type of combination is the case where only the objective function is
dynamic while the constraints are static, for example the document stream modelling problem
(Araujo & Merelo 2007), the evolvable hardware designing problem (Tawdross et al. 2006) or
the optimal control problem of fermentation processes (Rocha et al. 2005). In the third type
of combination, the objective function is static and the constraints are dynamic, as can be
seen in the hydrothermal scheduling problem (Deb et al. 2007), the cargo movement problem
(Ioannou et al. 2002) and the ship scheduling problem (Mertens et al. 2006). In all three types
of combination, the presence of infeasible areas can affect the way the global optimum moves,
or appears after each change. This leads to some special characteristics which cannot be found
in the unconstrained cases and fixed constrained cases.

The first special characteristic is the fact that the dynamic of constraints can lead to changes
in the shape/size/structure of the feasible/infeasible areas. Examples of this behaviour can be
found in the problems with dynamic constraints from the real-world applications mentioned
above (Andrews & Tuson 2005, Schlegel & Marquardt 2006, Wang & Wineberg 2006, Prata
et al. 2006, Deb et al. 2007, Ioannou et al. 2002, Padula et al. 2006, Mertens et al. 2006).

The second special characteristic is the fact that a dynamic objective function might cause
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the global optima to switch from one disconnected feasible region to another in problems with
disconnected feasible regions. Disconnected feasible regions are very common in real-world
constrained problems, especially the scheduling problems. Some examples are the examination
timetabling problems (Thompson & Dowsland 1998, Thompson & Dowsland 1996), the nurse
rostering problems (Dowsland 1998, Aickelin & Dowsland 2000), the enterprise-driven multilevel
product design problems (Kim 2006), and the video-based motion capture problems (Gleicher
& Ferrier 2002). Bartusch et al. (Bartusch et al. 1988) have mathematically shown that the
feasible regions of project scheduling problems with general temporal and resource constraints are
generally disconnected. In such problems, the global optima might switch from one disconnected
feasible region to another if the objective function is dynamic and the constraints are fixed. In
this case, because the number, locations and sizes of disconnected feasible regions are still the
same, after a change the new global optimum can only either (1) stay in the previous disconnected
region or (2) move to another disconnected region.

The third special characteristic of DCOPs is that in problems with fixed objective functions
and dynamic constraints, the changing infeasible areas might expose new, better global optima
without changing the existing optima. One example can be found in the Dynamic 0-1 Knapsack
Problem: significantly decreasing the weight of a high-value object that is not included in the
current global optimal solution might create a new global optimal solution without changing
the value of the existing one. Similarly, significantly increasing the capacity of the knapsack
might also create a new global optimum without changing the value of the existing optimum.
As shown later, such types of changes might make the problem difficult to some of the existing
dynamic optimisation strategies because these strategies only focus on tracking the existing
global optimum.

In addition to the three special characteristics above, DCOPs might also have the common
characteristics of constrained problems as global optima in the boundaries of feasible regions,
global optima in search boundary, and multiple disconnected feasible regions. Similar to the
three special characteristics of DCOPs above, these characteristics also are widely regarded as
being common in real-world applications. Another common characteristic of DCOPs from real-
world applications, as I found in my review in Chapter 3, is that the dynamic of the objective
functions or constraints usually follow some time-dependant functions or rules rather than just

behaving randomly.
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Although the characteristics mentioned above are common in real-world applications in both
combinatorial and continuous domains, they have only been considered mostly in the combina-
torial domain. Particularly, in the continuous domain these characteristics have never been
captured in existing standard DO benchmark problems, as shown by the list of available bench-
mark generators in Section 2.3. In the next section I will describe a set of DCOP benchmark

problems to overcome this issue.

5.2 A set of real-valued benchmark problems to simulate DCOPs

characteristics

5.2.1 Related literature

In the continuous domain, to the best of my knowledge, besides this research there is no existing
continuous benchmark that fully reflects the characteristics of DCOPs listed in Section 5.1.
Among the existing continuous benchmarks, there are only two recent studies that closely relate
to dynamic constraint problems (many existing continuous dynamic benchmark do have domain
constraints, but as mentioned earlier in this chapter we consider domain constraint problems
"unconstrained problems"). The first study is the recent paper reported by Liu (2008a) in which
two test problems (DCT2 and DCT3) are proposed. These problems are two simple unimodal
constrained problems which take the time variable ¢ as their only time-dependant parameter.
Because of that, the dynamic is created by the increase over time of t.

Although these two problems are indeed dynamic constrained problems, they have some
important disadvantages which prevent us from using them to capture/simulate the properties
of DCOPs mentioned in Section 5.1. First, it is impossible to realistically simulate the dynamic
rules/functions from DO applications using these problems because they only capture a simple
linear change, while many real-world applications may have different types of non-linear changes..
Second, there is no evidence that the two problems can convey any common properties of DCOPs
such as optima in the boundary; disconnected feasible regions; and moving constraints exposing
optima. Third, the two problems do not reflect common situations like dynamic objective + fixed
constraints or fixed objective + dynamic constraints. Finally, the small number of test functions
in (Liu 2008a) (two functions) might not be enough to evaluate algorithms under different

situations. In order to evaluate the performance of algorithms in DCOPs, a large variety of test
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problems should be used to study the strengths and weakness of the tested algorithms.

The second study, which was just published at the time this thesis was being prepared for
submission, is the research by Richter (2010). In this work, a dynamic constrained benchmark
problem was proposed by combining an existing "field of cones on a zero plane" dynamic fitness
function with four dynamic norm-based constraints with square/diamond/sphere-like shapes
(see Figure 2 in (Richter 2010)). The framework used to generate this benchmark problem is
highly configurable because it allows designers to control the geometrical shapes, positions and
sizes of constrained areas as well as the position and shapes of the fitness landscape. We believe
that with further extensions and careful designs that framework can be used to generate different
benchmark problems that are able to capture some of the common characteristics of DCOPs
mentioned in Section 5.1. The current single benchmark problem generated by the framework
in (Richter 2010), however, was designed for a different purpose and hence does not serve the
purpose of simulating the properties mentioned in Section 5.1 yet. For example, the problem
might not be able to simulate such properties of common DCOPs such as optima in boundary;
disconnected feasible regions; and moving constraints exposing optima in a controllable way. In
addition, there is only one single benchmark problem and hence it might be difficult to use the
problem to evaluate the performance of algorithms under different situations.

Another research which somehow involves changing constraints is the work of Jin et al. (2010).
However, the study in (Jin et al. 2010) is very different from the work in this chapter because in
(Jin et al. 2010) the considered constrained problems are stationary and the authors only change
the original constraint functions purposely during the optimisation process to make it easier for
the algorithm to find its way to the global optimum. In other words, in (Jin et al. 2010) the
actual constrained functions are not time-dependent and hence the problems are not DOPs.

The lack of a set of benchmark problems to capture the common characteristics of DCOPs
(mentioned in Section 5.1) makes it difficult to evaluate how well existing DO algorithms would
work in DCOPs, as they have been designed and tested in unconstrained/domain constrained
problems only. This lack of an appropriate benchmark would also pose some difficulties in de-
signing /developing new algorithms specialising for DCOPs because algorithm designers would
not be able to know if their algorithms work well in DCOPs. Given the fact that a majority of
recent real-world dynamic optimisation problems are constrained problems as shown in Subsec-

tion 3.3.1, the lack of an appropriate set of benchmark problems can be considered an important
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gap in current dynamic optimisation research.

This gap motivates me to develop a full set of benchmark problems to capture the special
characteristics of DCOPs. Some initial results involving five benchmark problems, which were
able to capture some characteristics of DCOPs, have been reported in an earlier study (Nguyen
& Yao 2009a). In this chapter I will extend this framework to develop full sets of benchmark
problems, which are able to capture all characteristics mentioned in the previous section. The
problems can also be incorporated with different types of dynamic rules to better simulate differ-
ent dynamic constrained applications. Two sets of benchmark problems, one with multimodal,
scalable objective functions and one with unimodal objective functions, have been developed for
this research. In this chapter I will discuss in detail the benchmark set with unimodal objective
function (in spite of the fact that the objective function is unimodal, many problems in the set
still have multiple optima due to the constraints). I choose the unimodal benchmark for the
analyses in this chapter because they are less complicated and hence can facilitate us better in
analysing the behaviours of algorithms. Details of the multimodal, scalable set can be found in

our technical report (Nguyen 2008a).
5.2.2 Generating dynamic constrained benchmark problems

In chapter 4 we have discussed that most dynamic problems can be represented as a combination
of a static full-description function form and a dynamic driver, which represent changes in the
parameter space. Here we can use this procedure to create new dynamic benchmark problems
by combining (a) an existing static benchmark problem (which represent the full-description
function forms) fp (x) where P = {p1,...px} is the set of static parameters with (b) some time-
dependent parameters p; (t) (which represents the dynamic drivers). The resulting dynamic
benchmark problem fp, (z,t) is generated by replacing each static parameter p; € P with a
corresponding time-dependent expression p; (¢). The dynamic of the dynamic problem then
depends on how p; (t) varies over time. We can use any type of dynamic rule from practical
problems to represent p; (t) and hence we can create any type of dynamic problem we want.
Detail of applying the idea above to generating a comprehensive set of DCOP benchmark

will be described in the next subsection.
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5.2.3 A dynamic constrained benchmark set

Using the new procedure described in the previous subsection, in this chapter I introduce a
set of benchmark problems named G24. The set contains 18 problems, each with a unimodal
objective function (despite that the objective function is unimodal, many problems in the set
still have multiple feasible optima due to the presence of multiple disconnected feasible regions).
Most problems in the set are modified from one of the static functions proposed in (Floudas
et al. 1999). Some others, however, have entirely new constraint functions (G24 6a, G24 6b,
G24 6¢ and G24_6d) or new objective functions (G24 8a and G24 8b) specifically designed
in our research to simulate some special characteristics of DCOPs. The objective functions and
constraint functions of all problems are then combined with our newly proposed dynamic rules,
which are specifically designed to reflect the different properties of DCOPs as mentioned in
Section 5.1.

The general form for each problem in the G24 set is as follows:

minimise f(x)

subject to ¢; (x) <0, g:(x) €G,i=1,.,n

where the objective function f(x) can be one of the full-description function forms set out in
equation (5.1), each constraint g; (x) can be one of the full-description function forms given
in equation (5.2), and G is the set of n constraint functions for that particular benchmark
problem in the G24 set. The detailed description of f(x) and g; (x) for each problem in the G24
benchmark set are described in Table 5.1 (page 103) and Table 5.2 (page 103).

Equation (5.1) below describes the general function forms from which I will develop the
objective functions for each benchmark problem in G24 set. Of these function forms, f®is used
to design the objective function for G24 8a and G24 8b, and f(1) is used to design the objective
functions for all other problems. f() is modified from a static function proposed in (Floudas
et al. 1999) and f @is a newly designed function. It should be noted that in the expression of
@ the (—3) factor was used to scale the function values to the same range as used in f 1) and

the square roots in f?) were used to make the basin of attraction become narrower and hence
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Table 5.1: The objective function form of each benchmark problem in the G24 benchmark set
Benchmark problem objective function
G24 8a & G24 8b f(x) = f®
All other problems  f (z) = f

Table 5.2: The set of constraint function forms for each benchmark problem in the G24 bench-
mark set

Benchmark problem Set G of constraints
G24 u; G24 uf; G24 2u; G24 8a G = {0}

G24 6a G = {9(3),9(6)}
G24_6b G={g®}

G24 6¢ G= {9(3),9(4)}
G24 6d G = {9(5),9(6)}

All other problems G = {g(l), 9(2)}

more difficult to find the global optimum (the more square roots the narrower the basin).

fY = —(Xy (21,t) + X2 (2,1)) (5.1)

f(2) = —3exp (—\/\/(Xl (l‘l,t))z + (X2 (xg,t))2)

where

Xi(z,t)=pi(t) (x4 ¢ (t);0 <21 <3;0< 29 < 4

with p; (t) and ¢; (t) (i = 1,2) as the dynamic parameters, which determine how the dynamic
objective function of each benchmark problem changes over time. Each benchmark problem may
have a different mathematical expression for p; (t) and ¢; (). It should be noted that although
many benchmark problems share the same general full-description function form in equation
(5.1), their individual expressions for p; (¢) and ¢; (t) make their actual dynamic objective func-
tions very different. The individual expressions of p; (¢) and g; () for each benchmark function
are described in Table 5.3 (page 105).

Equation (5.2) below describes the general function forms from which I will develop the
constraint functions for each benchmark problem in the G24 set. Of these function forms, ¢V and
gPare modified from two static functions proposed in (Floudas et al. 1999) and g®), ¢®Wand
g® are newly designed functions. Each benchmark problem may use only a subset of constraint

functions from equation (5.2). Details of which constraint function is used in which benchmark
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problem are given in Table 5.2 (page 103).

gM = —2Y; (x1,8)" + 8Y1 (z1,1) — 8Y1 (21,1)* + Yo (22, 1) — 2 (5.2)
g® = —4Y; (z1, )" 4 32V (21,1) — 88Y] (21,t) + 96Y7 (21, 1) + Ya (22,1) — 36
g(g) = 2 (acl,t) + 3Y, (wz,t) -9

-1 if (0<Yy(21,t) <1)or (2<Y](21,t) <3)

9(4) —
1 otherwise
) —1 if(0< Yy (21,t) <0.5) or (2< Y7 (21,t) <2.5)
g =
1 otherwise
©) -1 if[(0<Y](z1,t) <1)and (2 <Ya(xe,t) <3)]or (2<Y(x1,t) <3)
g pr
1 otherwise
where

Yi(z,t) =ri(t)(x+5(t);0<21 <3;0< 22 <4

with r; (t) and s; (t) (i = 1,2) as the dynamic parameters, which determine how the constraint
functions of each benchmark problem change over time. Each benchmark problem may have
a different mathematical expression for 7; (t) and s; (t). It should be noted that although the
constraint functions of many benchmark problems might share the same general full-description
function form in equation (5.2), their individual expressions for r; (t) and s; (¢) make their actual
dynamic constraint functions very different. The individual expression of 7; (t) and s; () for each
benchmark function are described in Table 5.3 (page 105).

To design the test problems, I follow two design guidelines. First, although we can create any
arbitrary number of test problems based on the basic function forms given in Table 5.1 (page
103) and Table 5.2 (page 103), we are only interested in creating problems that can simulate
the properties of common DCOPs as mentioned in Section 5.1 because they have not been
captured in existing continuous dynamic benchmark problems. These problems will be used as
the benchmark to answer the question of whether existing dynamic optimisation strategies and
constraint handling strategies would work well in DCOPs.

Second, to make it easy to analyse the effect of each characteristic of DCOPs on the perfor-
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Table 5.3: Dynamic parameters for all test problems in the benchmark set G24. Each dynamic
parameter is a time-dependant rule/function which governs the way the problems change

Prob Parameter settings
G24 u p1(t) =sin (krt + 5) ;p2 (t) = 15, (¢) = 0
G24_1 pZ(t):Tz()_l QZ() S():
p1 (t) =sin (krt + 5)
G24 f pi(t)=ri(t)=1; ¢;(t)=s;(t) =0
G24_uf pi(t)=1; ¢i(t)=1
d

=73
{pg(tfl) it t>0

G24_2 if (tmod2=0) { * m
p2(0)=0 if t=0

) (t)=sin( Ext 4
if (tmod2 # 0) {p;;zsm<k(w(f 1)+) )
2 2

qi(t)=s;(t)=0;r; (t) =1
krt
G24 2u if (tmod2=0) { "7 sin(*3"+3)

po(t—1) if t>0
2(t)= p2(0)=0 if t=0

pr(t)=sin(*51+5)
pg(t):sin(ilm(gfl) +g)

if (¢tmod2 #0) {

qi(t)=0
G243 pi(t)=ri(t)=1gi(t)=s1(t) =0
32 (t) 2 + t T2 Max —I min
G24 3b p1(t) =sin(krt+35); pa(t)=1
qi (t) = 51 (t) = 05 7“z()—l;
So (t) 24t 9o max —ro min
G24 3f pi(t)=m1i(t) =1;q; (t) = s1(t) = 0;52 (t) =2
G24 4 pe(t)=r;(t)=1; ¢ (t) =s1(t) =0 .
p1 (t) = sin (krt + 5 ) 5 55 (¢) = ¢ E2max_ramin
. (t)=sin kat 7w
G24_5 if (tmod2 = 0) {pzz@: ,,25};) 5,

po(0) if t=0
pi(t)=sin( 43t +5)

if (tmod2 #0) {pz(t)zsm(w_s_%)

qi(t) =s1(t) =0; ri (1) = L;
PR (t) — ¢ %2 max —To min
G24 6a/b/c/d p1 (t) = sin (7t + ) sp2 (t) =
qi (t) = si (t) = 0; m() 1
G24_7 pi(t):rz()_lv %():Sl(t):();
59 (t) — ¢ L2 max —rp min
G24 8a pi(t) = —1;q1 (t) = — (c1 + 7q. cos (kmt))
g2 (t) = — (c2 + rq.sin (kmt)) ;
G24_8b pi(t) = —1;q1 (t) = — (c1 + 7rq. cos (kmt))
g2 (t) = —(c2 + T‘a.bln(k‘ﬂ't)), (t)=1; s, () =0
k k determines the severity of function changes.
k=1 ~large; k = 0.5 ~ medium; k = 0.25 ~ small
S S determines the severity of constraint changes

S =10 ~large; S = 20 ~ medium; S = 50 ~ small
c1,02,7q4 (G24_8a/b only) ¢; = 1.4706;co = 3.442;7, = 0.859
] 1 is the variable index, ¢ = 1,2
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mance of the tested algorithms, there should always be a pair of problems for each characteristic.
The two problems in this pair should be almost identical except for that one has a particular
characteristic (e.g. fixed constraints) and the other does not. By comparing the performance of
an algorithm on one problem with its performance on the other problem in the pair, we will be
able to analyse whether the considered characteristic has any effect on the tested algorithm and
to what extent is the effect significant.

Based on the two guidelines above, I have designed 18 different sets of dynamic parameters
to create 18 different test problems for the dynamic constrained benchmark set G24 (Table 5.3,
page 105). Each test problem is able to capture one or several characteristics of DCOPs, as
shown in table 5.4 (page 107). In addition, the problems and their relationships are carefully
designed so that they can be arranged in 21 pairs, of which each pair is a different test case to
test a single characteristic of DCOPs (Table 5.5, page 108). An example showing the landscape

in different change steps of one problem in the set (G24_4) can be seen in Figure 5.1 (page 106).

Change 0 Change 2

- --zuflﬂlﬂ(ﬁh ||| ’U iv
J

e

Figure 5.1: This figure illustrates the feasible search landscapes of one problem of G24 - the
G244, at four different change periods: before the first change and at the second/seventh /tenth
changes, respectively. The z axis represents objective values. The shaded areas in the figures
are the projections of infeasible regions to the plane z = 2.5 (for illustration purpose). We can
see that both the dynamic objective function and the constraints change over time. The size
and shape of the feasible areas, and the number of disconnected regions also change accordingly.
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Table 5.4: Properties of each test problem in the G24 benchmark set
Problem ObjFunc Constr DFR SwO bNAO OICB OISB Path

G24 u  Dynamic NoC 1 No No No Yes N/A
G24 1 Dynamic Fixed 2 Yes No Yes No N/A
G24 f Fixed Fixed 2 No  No Yes No N/A
G24 uf Fixed NoC 1 No  No No Yes N/A
G24 2* Dynamic Fixed 2 Yes No Yes&No  Yes&No N/A
G24 2u  Dynamic NoC 1 No  No No Yes N/A
G24 3 Fixed Dynamic 2-3 No Yes Yes No N/A
G24 3b Dynamic Dynamic 2-3 Yes No Yes No N/A
G24 3f  Fixed Fixed 1 No  No Yes No N/A
G24 4 Dynamic Dynamic 2-3 Yes No Yes No N/A
G24 5% Dynamic Dynamic 2-3  Yes No Yes&No  Yes&No N/A
G24 6a Dynamic Fixed 2 Yes No No Yes Hard
G24_6b  Dynamic NoC 1 No  No No Yes N/A
G24 6¢c  Dynamic Fixed 2 Yes No No Yes Easy
G24 6d Dynamic Fixed 2 Yes No No Yes Hard
G24 7  Fixed Dynamic 2 No  No Yes No N/A
G24 8a  Dynamic NoC 1 No  No No No N/A
G24 8b Dynamic Fixed 2 Yes No Yes No N/A
DFR number of Disconnected Feasible Regions

SwO Switched global Optimum between disconnected regions

bNAO better Newly Appear Optimum without changing existing ones

OICB global Optimum is In the Constraint Boundary

OISB global Optimum is In the Search Boundary

Path Indicate if it is easy or difficult to use mutation to travel
between feasible regions

Dynamic The function is dynamic

Fixed There is no change

NoC There is no constraint

* In some change periods, the landscape either is a plateau or
contains infinite number of optima and all optima (including
the existing optimum) lie in a line parallel to one of the axes
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5.3 Difficulties of applying current dynamic optimisation strate-

gies directly to solving DCOPs - an analysis

Table 5.5: This table shows the 21 test cases (pairs) to be used in this chapter. It should
be noted that there is one situation where two test cases (10 and 14) use the same pair of
problems. However, there is no redundancy because the two test cases are used to analyse
different characteristics.

Static problems: Unconstrained vs Fixed constraints

1 G24 uf (fF, noC) Vs G24 f (fF, {fC)

Fixed objectives vs Dynamic objectives

2 G24 uf (fF, noC) \& G24 u (dF, noC)

3 G24_f (fF, fC, OICB) Vs G24 1 (dF, fC, OICB)

4 G24 _f (fF, fC, OICB) Vs G24 2 (dF, fC, ONICB)

Dynamic objectives: Unconstrained vs Fixed constraints

5 G24 u (dF, noC) Vs G24 1 (dF, fC, OICB)

6 G24 2u (dF, noC) Vs G24 2 (dF, fC, ONICB)

Fixed constraints vs Dynamic constraints

7 G24 1 (dF, fC, OICB) Vs G24 4 (dF, dC, OICB)

8 G24 2 (dF, fC, ONICB) Vs G245 (dF, dC, ONICB)

9 G24 f (fF, {fC) Vs G24 7 (fF, dC, NNAO)

10 G24 3f (fF, fC) Vs G243 (fF, dC, NAO)

No constraint vs Dynamic constraints

11 G24 u (dF, noC) VS G24 4 (dF, dC, OICB)

12 G24 2u (dF, noC) Vs G24 5 (dF, dC, ONICB)

13 G24 uf (fF, noC) Vs G24 7 (fF, dC)

Moving constraints expose better optima vs not expose optima

14 G24_3f (fF, fC) Vs G24 3 (fF, dC, NAO)

15 G243 (fF, dC, NAO) Vs G24 3b (dF, dC, NAO)

Connected feasible regions vs Disconnected feasible regions

16 G24 6b (1R) Vs G24 6a (2DR, hard)

17 G24 6b (1R) Vs G24 6d (2DR, hard)

18 G24 6¢ (2DR, easy) Vs G24 6d (2DR, hard)

Optima in constraint boundary vs Optima NOT in constr boundary

19 G24 1 (dF, {C, OICB) Vs G24 2 (dF, fC, ONICB)

20 G24 4 (dF, dC, OICB) Vs G24 5 (dF, dC, ONICB)

21 G24 8b (dF, fC, OICB) Vs G24 8a (dF, noC, ONISB)

dF dynamic objective func fF fixed objective function

dC dynamic constraints fC fixed constraints

OICB optima in constraint bound ONICB opt. not in constraint bound

OISB optima in search bound ONISB optima not in search bound

NAO  better newly appear optima NNAO No better newly appear opt

2DR 2 Disconn. feasible regions 1R One single feasible region

Fasy  easy for mutation to travel between Hard less easy to travel among regions
disconn. regions

noC unconstrained problem SwO Switched optimum between discon-

nected regions
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5.3.1 Analysing the performance of some dynamic optimisation strategies in

solving DCOPs

As discussed in Section 5.1, common DCOPs might have some special characteristics which
have not been considered in existing academic research on continuous dynamic optimisation.
This raises the question of whether existing dynamic optimisation strategies, which have been
designed and tested in unconstrained /domain constrained problems only, can be applied directly
to solving DCOPs, and whether the special characteristics of DCOPs might have any effect on
the performance of these algorithms. It should be noted that, in order to apply existing dynamic
optimisation algorithms directly to solving DCOPs without changing anything, the constraint
handling task must be made transparent to the DO algorithms by using methods like penalty
functions.

The purpose of this section is to investigate whether the dynamic optimisation strategies
commonly used in existing literature can be applied directly to solving DCOPs. I also study
whether the special characteristics of DCOPs might have any effect on the performance of these
strategies. If there are such effects, we will analyse to see which effects are caused by the
combined constraint handling techniques, and which are caused by the nature of the dynamic
optimisation strategies regardless of the use of constraint handling. The results of the analysis
will also give us insight understanding of how to design suitable algorithms for solving DCOPs.

The strategies that we are going to consider are (1) introducing diversity, (2) maintaining
diversity and (3) tracking the previous optima. These three are among the four most commonly
used strategies (the other is memory-based strategy) to solve dynamic optimisation problems.
The diversity-introducing strategy was proposed based on the assumption that by the time a
change happens in the environment, an evolutionary algorithm might have already converged
on a specific area and hence would lose its ability to deal with changes in other areas of the
landscape. Because of that, it is necessary to increase the diversity level in the population, either
by increasing the mutation rate or re-initialising/re-locating the individuals. This strategy has
been reviewed in details in Subsection 2.1.2.

The diversity-introducing strategy above requires that changes must be detectable. To avoid
this disadvantage, the diversity-maintaining strategy was introduced by which the diversity

of the population is always maintained to deal with any possible dynamic without explicitly
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detecting changes. This strategy has been reviewed in details in Subsection 2.1.3.

The third strategy, tracking-previous-optima, is found in various approaches reviewed in
Section 2.1. It is used in situations where it is assumed that the optima might just slightly change
and hence it would be better to focus on observing the nearby places of the current optima to
detect changes and "track" the movement of these optima. Similar to the two strategies above,
the tracking strategy has also been used since the very early days of dynamic optimisation (Cobb
1990, Vavak et al. 1995) and it has always been one of the main strategies for solving DOPs.
Recently this strategy has usually been combined with the diversity maintaining/introducing
strategy to achieve better performance. Typical examples are the multi-population/multi-swarm
approaches (firstly proposed in (Oppacher & Wineberg 1999, Branke et al. 2000, Ursem 2000)),
where multiple sub-populations are used to maintain diversity and each sub-population/sub-
swarm focuses on tracking one singe optimum.

Another strategy that is also commonly used in dynamic optimisation algorithms is the
memory-based strategy. In this chapter I do not carry out any experiment directly on the
performance of this strategy but leave this task for a future investigation. However, that omission
does not mean that we cannot draw any implication about the performance of memory-based in
solving DCOPs. The focus of this chapter on the diversity-maintaining/introducing strategies
alone would still be beneficial to evaluating how effective a memory-based approach can be in
solving a DCOP. This is because, as pointed out by Branke (Branke 2001b), in memory-based
approaches the memory strategy cannot be used alone but needs to be integrated with some
diversity-maintaining/introducing strategies. As a result, if an integrated diversity strategy used
in a memory-based algorithm is affected by the characteristics of DCOPs, we can conclude that

the memory-based algorithm itself would also be affected.
5.3.2 Chosen algorithms and experimental settings
Chosen algorithms

To evaluate the performance of the three strategies mentioned above in DCOPs, I choose to test
two canonical algorithms: triggered hyper-mutation GA (HyperM (Cobb 1990)) and random-
immigrant GA (RIGA (Grefenstette 1992)). HyperM represents the "introducing diversity" and
"tracking previous optima" strategies and RIGA represents the "maintaining diversity" strategy.

HyperM is basically a basic GA with an adaptive mechanism to switch from a low mutation rate
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(standard-mutation-rate) to a high mutation rate (hyper-mutation-rate) depending on whether
there is a degradation of the best solution in the population or not. When there is no degradation
of the best solution, the algorithm uses the standard-mutation-rate as basic GA. However, when
a drop in value of the best solution (possibly caused by an environmental change) is detected, the
algorithm temporarily increases the mutation rate to the high hyper-mutation-rate to cope with
the change. Because it firstly focuses on observing the current optimum to detect any possible
changes and then it increases the level of diversity to "track" the movement when a change
is detected, the HyperM algorithm represents the "tracking-previous-optima strategy". The
algorithm also represents the "diversity introducing strategy” because it increases its mutation
rate whenever it knows that a change happens.

Different from HyperM, RIGA represents the "diversity-maintaining" strategy. This algo-
rithm is also a derivative of basic GA in which in addition to using the standard mutation rate,
after the mutation step a fraction of the population is replaced by randomly generated individuals
in every generation. That fraction of the population is determined by a random-immigrant-rate
(also named replacement rate). By continuously replacing a part of the population with random
solutions, the algorithm is able to maintain diversity throughout the search process to cope with
dynamic environments.

There are four reasons for me to choose these two algorithms to test. First, the strate-
gies/mechanisms used in these two algorithms are still commonly used in most current state-
of-the-art dynamic optimisation algorithms. As a result, it might be possible to generalise the
conclusions we get from testing these two algorithms to many other algorithms. Second, the
diversity maintaining/introducing and tracking implementation used in these two algorithms
are very simple and straightforward, making it easy to test and analyse the behaviours of the
algorithms. Third, because these two algorithms are very well studied, using them in the ex-
periment would facilitate us in comparing new experimental data with existing results. Finally,
because both algorithms are developed from basic GA (actually the only difference between
HyperM/RIGA and basic GA is the mutation strategy), it would be easier to compare/analyse
their performance against each other. Basic GA can also be used as the foundation to develop
other strategies to work with DCOPs, then compare their performance with HyperM and RIGA.

To discover if HyperM and RIGA work well on the tested problems, I also compare their

performance with basic GA in our experiments. With the slightly higher than normal mutation
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rate that I chose (rate=0.15; see next subsection for detail of parameter settings and reasons
to choose the settings), to some extent the basic GA and HyperM can also be considered as
representatives of the diversity-maintaining strategy. The three algorithms HyperM, RIGA and
GA will be evaluated on the G24 benchmark set described in Section 5.2.

In the next subsections readers might notice that in some tables/figures in this section we
include not only the three algorithms GA/RIGA /HyperM but also another algorithm which have
not been introduced yet. That algorithm will be introduced and analysed in the later sections.
For now, in this section we will only focus on the data relating to the elitism and non-elitism
versions of GA, RIGA and HyperM.

Another point to be noted in the following experiments is that, although the full standard
deviation data is provided in Table 5.7 (page 120), the test results in most of the following
graphs are presented with the mean values only. The reason for not presenting the standard
deviations in these graphs is due to the technical difficulties in presenting them in the graphs
while still maintaining the purpose of allowing readers to compare the performance of all seven
algorithms. However, given the data we got, we believe it is sufficient to just compare algorithms
using the mean values because in most cases the standard deviations are very small compared
to the mean values, and hence should not have any significant impact on deciding the difference
between algorithms. In the few cases where an algorithm’s error has large standard deviations,
its corresponding mean values are also significantly worse than that of other algorithms and

hence it is obvious that in these cases the considered algorithm also has worse performance.

112



5. Analysing DCOPs 5.3. Difficulties of applying current dynamic optimisation. . .

Parameter settings

Table 5.6: Test settings for all algorithms used in the paper.

All Pop size 25
algorithms  Elitism Elitism & non-elitism if applicable
(exceptions  Selection method Non-linear ranking as in (Michalewicz n.d.)
below) Mutation method Uniform, P = 0.15

Crossover method Arithmetic, P = 0.1
HyperM Triggered mutation rate  Uniform, P = 0.5 as in (Cobb 1990)
RIGA Random-immigrant rate P = 0.3 as in (Grefenstette 1992)
GA+Repair  Search pop size 20

Reference pop size 5

Replacement rate 0 (default is 0.25 as in (Michalewicz n.d.))
Benchmark  Number of runs 50
problem Number of changes 10
settings Change frequency 1000 function evaluations

ObjFunc severity k 0.5 (medium), except G24 6a/b/c/d

where k = 1 (large severity)
Constr. severity S 20 (medium)

Table 5.6 (page 113) shows the detailed parameter settings for HyperM, RIGA and GA. To create
a fair testing environment, the parameters of all tested algorithms are set to similar values or
the best known values if possible. All algorithms use real-valued representation. For the base
mutation rate of the algorithms, I use a mutation rate of 0.15, which is the average value of the
best mutation rates commonly used (for medium to high severity level of changes) for GA-based
algorithms in various existing studies on continuous dynamic optimisation, which are 0.1 (Cobb
& Grefenstette 1993, Richter 2009, Richter & Yang 2009), 0.15 (Cobb & Grefenstette 1993) and
0.2 (Branke et al. 2000, Branke 1999, Ayvaz et al. 2006). For HyperM and RIGA, I use the
best hyper-mutation-rate and random-immigrant-rate parameter values observed in the original
papers (Cobb 1990) (Grefenstette 1992) for this experiment. I also use the same implementations
as described in (Cobb 1990) and (Grefenstette 1992) to reproduce these two algorithms. The
crossover rate of 0.1 is chosen for all algorithms because according to our analysis this is one
of the few settings where all tested algorithms perform well in the G24 benchmark set (see
Chapter 6 for more details). All algorithms have a population size of 25. This population size is
chosen based on the hardness level of the tested problems. The population size of 25 would also
facilitates us in comparing the algorithms with some existing constraint-handling algorithms

which also have the default population size of 25.
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The algorithms were tested in 18 benchmark problems described in section 5.2 in two levels
of change severity: medium and high except in G24 6a/b/c/d where the severity is always high
(high severity is a property of these four problems). Because the observed behaviours of the
tested algorithms are the same for both cases of severity, in this chapter I will only present
results for the medium severity case.

It might be interesting to investigate if the default/best parameter values from previous
literature are also the most suitable parameter values for solving the problems in this benchmark
set. Because of that, in addition to the experiments in this chapter I also carry out a further
study of the effect of different parameter values of the base mutation rates, hyper-mutation
rates, random-immigrant rates and crossover rates on algorithm performance. The experimental

results and discussion for this analysis can be found in Section 6.4.
Constraint handling

To apply existing dynamic optimisation algorithms directly to solving DCOPs, we also need
to integrate them with a constraint handling mechanism. That constraint handling mechanism
should not interfere with or change the original dynamic optimisation strategies in any way so
that we can correctly evaluate whether the original dynamic optimisation strategies would still
be effective in solving DCOPs. To satisfy that requirement, I chose to use the penalty function
approach because it is the simplest and easiest way to apply existing unconstrained dynamic
optimisation algorithms directly to solving DCOPs without changing anything in the algorithms.
In this chapter I present the test results using the penalty function proposed in (Morales &
Quezada 1998). I chose this penalty function because it is reportedly effective in solving difficult
numerical problems and more importantly because it does not require users to choose any penalty
factor or other parameter. This allows us to apply existing dynamic optimisation algorithms
directly to solving DCOPs without any additional effort. There are more sophisticated and
better penalty methods in the literature, but because such methods might require additional
tasks to choose the appropriate penalty factors/parameters or to choose the appropriate dynamic
penalty techniques, they might prevent algorithm users from applying existing DO strategies
directly and quickly to solving DCOPs. I also tested the algorithms in cases where the infeasible
solutions are penalised with various penalty values which are specifically chosen so that the

fitness values of infeasible solutions are always worse than or equal to that of feasible solutions.
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The experimental results in these cases, however, are not shown because there is no significant
difference in the test results compared to the case of using the penalty function proposed in

(Morales & Quezada 1998).
Performance measures

To measure the performance of the algorithms in this particular experiment, I firstly modify
an existing measure: the modified offline error proposed in (Branke & Schmeck 2003). The
modified offline error is measured as the average over, at every evaluation, the error of the best
solution found since the last change of the environment. This measure is always greater than or
equal to zero and would be equal to zero for a perfect performance.

Because the measure above is designed for unconstrained environments, we need to modify it
to evaluate algorithm performance in constrained environments. This is because in constrained
environments we are interested in evaluating the ability of algorithms in finding not every good
solutions but only good feasible solutions. The modification is simple. At every generation,
instead of considering the best errors/fitness values of any solutions regardless of feasibility as
implemented in the original measure, in my modification I only consider the best fitness values /
best errors of feasible solutions at each generation. The fitness and errors of infeasible solutions
will not be counted, regardless of their values. If in any generation there is no feasible solution,
the measure will take the worst possible value that a feasible solution can have for that particular
generation. The formula of the modification for the offline error measure is given in equation
(5.3). We call this measure modified offline error for DCOPs, or offline error for short.

Fao = & S eao () (5.3)

n

where n is the number of generations so far, and epso (j) is the best feasible error since the last
change gained by the algorithm at the generation j.

The measure that I have modified above is useful in evaluating the overall performance of
the tested algorithms to see if they work well in the tested problems. However, it does not
provide us with enough detailed information to analyse why a particular algorithm works well
or not well in a particular problem. This gap motivates me to propose some new performance
measures to assist algorithm designers in analysing the behaviours of dynamic optimisation

algorithms. Among these new measures, five will be introduced in this section and other two
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algorithm-specific measures will be introduced in Section 5.4.

For this section, I propose five new measures. The first two measures are the recovery rate
(RR) and the absolute recovery rate (ARR) to analyse the convergence behaviour of algorithms
in dynamic environments. The recovery rate (RR) measure is used to analyse how quick it is for
an algorithm to recover from a performance drop when a change happens and to start converging
to a new solution before the next change happens. The new solution is not necessarily the global
optimum.

RR =

(i) . .
1 m j=1 [fbest (7/7.7) - fbest (Z7 1)]
Zi:l p (Z) [fbest (iap (7’)) - fbest (Za )]

where fpest (4,7) is the fitness value of the best feasible solution since the last change found by

- (5.4)
the tested algorithm until the jth generation of the change period 7 , m is the number of changes
and p (i),7 = 1 : m is the number of generations at each change period i. The RR score would
be equal to 1 in the best case where the algorithm is able to recover and converge to a solution
immediately after a change, and would be equal to zero in case the algorithm is unable to recover
from the drop at all.

The RR measure only tells us if the considered algorithm converges to a solution and if it
converges quickly. It does not indicate whether the converged solution is the global optimum.
For example, RR can still be equal to 1 if the algorithm does nothing but keep re-evaluating the
same solution. Because of that, we need another measure: the absolute recovery rate (ARR).
This measure is very similar to the RR but is used to analyse how quick it is for an algorithm

to start converging to the global optimum before the next change happens:

ARR — %Zm Zj:l [fbest( aj) fbest( 71)] (55)

=1 p (i) [f* (1) = foest (i,1)]
where fpest (4,7) is the best solution since the last change found by the tested algorithm until
the jth generation of the change period i , f* (i) is the global optimal value of the landscape at
the ith change, m is the number of changes and p (i) ,7 = 1 : m is the number of generations at
each change period i. The ARR score would be equal to 1 in the best case when the algorithm
is able to recover and converge to the global optimum immediately after a change, and would
be equal to zero in case the algorithm is unable to recover from the drop at all. It should be

noted that the score of ARR should always be less than or equal to that of RR. In the ideal case
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(converged to global optimum), ARR should be equal to RR.

The RR and ARR measures can be used together to indicate if an algorithm is able to con-
verge to the global optimum within the given time frame between changes and if so how fast it
takes to converge. The combination can also be used to analyse if the cause for an algorithm to
work not well is slow convergence or pre-mature convergence. The RR-ARR diagram in Figure
5.2 (page 118) shows some guidelines to analyse the behaviours of tested algorithms given the
scores of ARR and RR. In this diagram the RR and ARR scores can be represented as the x
and y coordinations of a point, which always lies on the diagonal thick line or inside the shaded
area.

By looking at the position of the point, we will be able to analyse the behaviour of the corre-
sponding algorithm. First, if the point lies on the thick diagonal line (where RR = ARR) like
point A, we can conclude that the algorithm A has been able to recover from the change and
converged to the new global optimum. Along that line, the closer the point is to the right, the
faster the algorithm was in recovering and re-converging, and vice versa. Second, if the point
lies inside the shaded area (e.g. point B, C, D), the algorithm either has converged to a local
solution or has not been converged yet. In addition, the closer the point is to the optimum line,
the closer the algorithm is to the global optimum. Third, points in the top right corner of the
shaded area (like point B) show that the algorithm has been able to recover fast and was able
to achieve a good performance (although not yet found the global optimum). The closer the
point is to the top right corner, the better the performance and the faster the recovery speed.
Fourth, points in the bottom-right corner (like point C) shows that the algorithm has been likely
converged to a local solution. In this case the algorithm recover fast but then was trapped in a
local solution far from the global optimum. The closer a point is to the bottom-right corner, the
more likely that the algorithm is trapped. Fifth, points near the bottom-left corner (like point
D) show that the algorithm has recovered slowly and has likely not converged yet.

We can also use the diagram to compare and analyse the behaviour of different algorithms. For
example in this figure we can see that algorithm A found the best solution after change, following
by algorithms B, D, C while algorithm B was able to recover and converge fastest, following by
algorithm C, A, and D. In case we need the best solution after change with no limit in time, we
can choose algorithm A over B. However, if we need a good solution quickly, then algorithm B

might be more preferrable.
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Figure 5.2: The RR-ARR diagram to analyse the convergence behaviour/recovery speed of
an algorithm given its RR and ARR scores. In this diagram the RR and ARR scores can be
represented as the x and y coordinations of a point, which always lies on the diagonal thick line
or inside the shaded area.

It should be noted however that in order to use the measure ARR we need to know the
global optimum value at each change period.

To analyse the ability to balance feasibility/infeasibility of algorithms using the diversity
maintaining /introducing strategies as RIGA /HyperM in DCOPs, I propose a third measure:
percentage of selected infeasible individuals. Among the individuals selected for the next gen-
eration, this measure counts the percentage of those that are infeasible. The average score of
this measure (over all tested generations) is then compared with the percentage of infeasible
areas over the total search area of the landscape. If the considered algorithm is able to treat
infeasible diversified individuals and feasible diversified individuals on an equal basis (and hence
to maintain diversity effectively), the two percentage values should be equal.

To analyse the behaviour of algorithms using triggered-mutation mechanism as HyperM,
I also propose a fourth measure: triggered-time count, which counts the number of times the
hyper-mutation-rate is triggered by the algorithm, and a fifth measure: detected-change count,

which counts the number of triggers actually associated with a change. For HyperM, triggers
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associated with a change are those that are invoked by the algorithm within v generations after
a change, with v is the maximum number of generations (five in our implementation) needed
for HyperM to detect a drop in performance. These two measures indicate how many times an
algorithm triggers its hyper-mutation; whether each trigger time corresponds to a new change;
and if there is any change goes undetected during the search process.

It should also be noted that all the measures used in this chapter are designed specifically for
dynamic problems. This creates an issue for our experiments because in the G24 benchmark set
there are not only dynamic problems, but also stationary problems. To overcome this issue and
to create a fair, normalised testing environment, in the experiments in this chapter we consider
stationary problems a special type of dynamic problem which still have "changes" after each 1000
function evaluations as other dynamic problems. However, in stationary problems the "changes"
do not alter the search landscape. That way we can apply the dynamic optimisation measures
to both stationary and dynamic problems and can compare the performance of algorithms fairly

in both types of problems.
5.3.3 Experimental results and analyses

The full results of the tested algorithms in all 18 benchmark problems are presented in Table 5.7
(page 120). The data in this table is provided for reference purpose only because to achieve a
better understanding of how existing dynamic optimisation strategies work in DCOPs and how
each characteristic of DCOPs would affect the performance of existing dynamic optimisation
algorithms, we further analyse the results by studying them from different perspectives. First,
we summarise the average performance of the tested algorithms in each major group of problems
(see test results in Figure 5.3, page 121) to have an overall picture of the behaviours of each
algorithm in different types of problems. Second, we investigate the effect of each problem
characteristic on each algorithm by analysing their performance in 21 test cases (pair of almost
identical problems, one with a particular characteristic and one without) as shown in Table
5.5 of Section 5.2 (see test results in Figure 5.4, page 122 and Figure 5.5, page 123). For
each particular algorithm, I also carry out some further analyses using the five newly proposed

measures mentioned above. Details of these analyses will be described in the next subsections.
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Table 5.7: Averaged modified offline errors of all tested algorithms in all 18 problems after 50
runs.

G24-u (dF,noC)

G24-1 (dF, fC)

G24- (fF, IC)

Algorithm mean stdDev mean stdDev mean stdDev
.GA-noElit 0.298 0.051 0.609 0.064 0.676 0.085
.RIGA-noElit 0.221 0.025 0.493 0.045 0.546 0.072
.HyperM-noElit 0.206 0.035 0.361 0.065 0.226 0.056
.GA-elit 0.106 0.035 0.459 0.057 0.154 0.083
.RIGA-elit 0.149 0.025 0.346 0.046 0.178 0.051
.HyperM-elit 0.111 0.026 0.384 0.065 0.149 0.053
.GA+Repair 0.468 0.059 0.226 0.024 0.041 0.011

G24-uf (fF, noC) G24-2 (dF, fC) G24-2u (dF,noC)

Algorithm mean stdDev mean stdDev mean stdDev
.GA-noElit 0.464 0.064 0.356 0.049 0.159 0.041
.RIGA-noElit 0.342 0.032 0.264 0.035 0.107 0.019
.HyperM-noElit 0.124 0.041 0.257 0.045 0.130 0.022
.GA-elit 0.063 0.022 0.288 0.050 0.073 0.017
.RIGA-elit 0.069 0.020 0.246 0.037 0.091 0.024
.HyperM-elit 0.053 0.012 0.253 0.043 0.068 0.016
.GA+Repair 0.218 0.018 0.281 0.036 0.294 0.029

G24-3 (fF,dC) G24-3b (dF,dC) G24-3f (fF, fC)

Algorithm mean stdDev mean stdDev mean stdDev
.GA-noElit 0.760 0.099 0.657 0.097 0.886 0.179
.RIGA-noElit 0.538 0.047 0.500 0.038 0.651 0.055
.HyperM-noElit 0.411 0.052 0.459 0.069 0.256 0.057
.GA-elit 0.289 0.049 0.457 0.084 0.158 0.058
.RIGA-elit 0.308 0.048 0.386 0.051 0.167 0.048
.HyperM-elit 0.243 0.050 0.394 0.088 0.128 0.051
.GA+Repair 0.156 0.008 0.171 0.019 0.025 0.008
G24-4 (dF, dC) G24-5 (dF,dC) G24-6a(dF 2DR,hard)

Algorithm mean stdDev mean stdDev mean stdDev
.GA-noElit 0.621 0.101 0.379 0.067 0.529 0.108
.RIGA-noElit 0.490 0.053 0.293 0.046 0.366 0.030
.HyperM-noElit 0.469 0.057 0.275 0.034 0.383 0.051
.GA-elit 0.453 0.075 0.266 0.029 0.674 0.157
.RIGA-elit 0.421 0.047 0.240 0.035 0.333 0.050
.HyperM-elit 0.426 0.075 0.248 0.039 0.491 0.071
.GA+Repair 0.211 0.015 0.236 0.024 0.431 0.074
G24-6b (dF,fC 1R) G24-6¢(dF 2DR,easy) G24-6d(dF 2DR,hard)

Algorithm mean stdDev mean stdDev mean stdDev
.GA-noElit 0.448 0.054 0.446 0.041 0.543 0.127
.RIGA-noElit 0.331 0.035 0.329 0.039 0.366 0.040
.HyperM-noElit 0.340 0.046 0.323 0.037 0.370 0.046
.GA-elit 0.408 0.057 0.441 0.052 0.510 0.075
.RIGA-elit 0.309 0.039 0.325 0.029 0.342 0.057
.HyperM-elit 0.390 0.039 0.394 0.051 0.456 0.041
.GA+Repair 0.427 0.048 0.390 0.038 0.354 0.038
G24-7 (fF, dC) G24-8a(dFnC,ONISB) G24-8b (dFfC,0ICB)

Algorithm mean stdDev mean stdDev mean stdDev
.GA-noElit 0.721 0.088 0.426 0.050 0.835 0.068
.RIGA-noElit 0.543 0.059 0.346 0.031 0.719 0.071
.HyperM-noElit 0.495 0.053 0.374 0.043 0.681 0.072
.GA-elit 0.316 0.053 0.266 0.028 0.662 0.056
.RIGA-elit 0.416 0.068 0.304 0.028 0.598 0.064
.HyperM-elit 0.315 0.062 0.279 0.028 0.608 0.071
.GA+Repair 0.181 0.017 0.300 0.033 0.251 0.051
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Figure 5.3: This figure shows the performance of the elitism (-elit) and non-elitism (-
noElit)versions of existing dynamic optimisation algorithms (GA, RIGA and hyperM) in
different groups of problems. This figure shows us not only how each algorithm perform in
each particular group of problems, but also in which group do the algorithms perform better or
worse. Algorithms’ performance is evaluated based on their modified offline error (or "error"
in short) as follows. First, the worst (largest) error among all algorithms is recorded as the
base line error. Then we calculate the ratio between the base line error and the error of each
algorithm in each problem to see how many times their performance is better (smaller) than
the base line error. This ratio is represented in the vertical axis. The horizontal axis shows
different group of problems. Explanations for the abbreviations in this figure and all other
figures in this paper are as follow: noC: No Constraint; fC: fixed Constraint; fF: fixed objective
Function; dC: dynamic Constraint; dF: dynamic objective Function. O(N)ICB: Optimum (Not)
In Constraint Boundary; (N)NAO: (No) Newly Appearing Optimum; ONISB: Optimum (Not)
In Search Boundary; 1R: One single feasible region; 2DR: Two Disconnected feasible Regions;
easy/hard: Easy/difficult path between disconnected regions; SwO: Switched global Optimum
between disconnected regions.

The experiments and analysis results show some interesting and in some cases even surprising

or counter-intuitive findings, which will be shown in the following subsections.
The effect of elitism on algorithm performance

The summarised results in groups of problems (Figure 5.3) and the pair-wise comparisons in
Figure 5.4 (page 122) and Figure 5.5 (page 123) reveal an interesting effect of elitism on both
unconstrained and constrained dynamic cases in our test. This is the fact that, the elitism
versions of GA/RIGA /HyperM perform better than their non-elitism counterparts in most tested

problems. The reason for this effect (with evidence shown in the next paragraph) is that elitism
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Figure 5.4: This figure summarises the effect of twelve different problem characteristics on
the performance of the non-elitism and elitism versions of GA, RIGA, and HyperM, and the
repair-based algorithm GA+Repair (to be introduced later in Subsection 5.4.4). Each subplot
represents algorithm performance in a pair of almost identical problems (one has a special
characteristic and the other does not). The heights of the bars in each subplot indicate how well
the tested algorithms perform in solving the pair of problems. The higher the bars, the better
the performance. Each pair of adjacent bars represent the performance of one algorithm in a
pair of problems. The larger the difference between the bar heights, the larger the difference
in performance, and hence the greater the impact of the corresponding DCOP characteristic on
algorithm performance. It should be noted that pair (10) is not included in this figure because
it is identical to pair (14) in Figure 5.5. Algorithms’ performance is evaluated based on the
ratio between the base line error (as described in the caption of Figure 5.3) and the error of each
algorithm. This is to see how many times their performance is better (smaller) than the base line
error. This ratio is represented in the vertical axis. The title of each subplot represents the test
case number (in brackets) followed by an abbreviated description of the test case. Explanations
for the abbreviations can be found in the caption of Figure 5.3.

helps algorithms with diversity-maintaining strategies to converge faster. This effect is caused by
the nature of the dynamic optimisation strategies, i.e. is independent of the combined constraint
handling techniques.

It should be noted that our detailed analysis (not shown) also pointed out that for HyperM,
elitism only has positive effect in case the base mutation rate of HyperM is large enough (0.15

or larger), i.e. only in cases where the diversity-introducing strategy (high base mutation rate)
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Figure 5.5: This figure summarises the effect of the other eight different problem properties on
the performance of GA, RIGA, HyperM (elitism and non-elitism versions) and GA+Repair.
Instruction to read this figure can be found in the caption of Figure 5.4.

is combined with the diversity-maintaining strategy. In cases where the base mutation rate
of HyperM is lower (smaller than 0.15), elitism actually has a negative effect and makes the
algorithm become more prone to pre-mature convergence. This negative effect of HyperM is
also caused by the nature of this strategy.

To study the reasons for the inefficiency of GA/RIGA /HyperM in the non-elitism case com-
pared to the elitism case, I use the two measures proposed in Subsection 5.3.2: recovery rate
(RR) and absolute recovery rate (ARR). The scores of the tested algorithms on these measures
are shown and analysed in Figure 5.6 (page 125). Based on the guidelines in Figure 5.2 (page
118), we can use the coordinations of the RR/ARR scores in the diagram to analyse the con-
vergence behaviour of the algorithms as well as the reasons behind the impact of elitism on the
performance of GA/RIGA and HyperM. First, the diagram shows us that none of the algorithms
are close to the optimum line, meaning that overally there are problems/ change periods where

the algorithms have not been able to converge to the global optimum. Second, for GA/RIGA, we
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can see that the elitism versions of the tested algorithms are closer to the top-right corner while
their non-elitism are closer to the bottom-left corner. Because in the RR-ARR diagram the top-
right corner represents faster/more accurate recovery/convergence and the bottom-left corner
represents the reverse thing, it means that non-elitism makes GA/RIGA converge slower/less
accurately. The diagram also shows that RIGA-elit has the best overall recovery speed an con-
vergence accuracy, following by RIGA-noElit, GA-elit and HyperM-elit, all three have almost
the same RR/ARR scores. Third, for HyperM, we see that its elitism version is also closer to
the top-right corner while its non-elitism version is closer to the bottom-right corner. Because
the bottom-right corner represents faster recovery but more liley to converge to local solutions,
the result here suggests that the non-elitism version of HyperM is more suceptible to premature
convergence.

The results hence show that the high diversity maintained by the random-immigrant rate
in RIGA and the high base mutation rate in GA and HyperM comes with a trade-off: the
convergence speed is affected. In such situation, elitism can be used to speed up the convergence
process. Elite members can guide the population to exploit the good regions faster while still

maintaining diversity.
Effect of infeasible areas on maintaining/introducing diversity

Another interesting observation from our experiments is that the presence of constraints makes
the performance of diversity-maintaining/introducing strategies less effective when they are used
in combination with the tested penalty functions. This behaviour can be seen in Figure 5.3 where
the performance of all algorithms in the unconstrained dynamic case (dF+noC) is significantly
better than their performance in all dynamic constrained cases (dF+f{C, fF4+-dC, dF+dC). This
behaviour can also be seen in the more accurate comparisons from the pair-wise comparisons
in Figure 5.4 (page 122) and Figure 5.5 (page 123), for each pair of problems in which one
has constraints and the other does not, GA, RIGA and HyperM always perform worse in the
problem with constraints (see subplots a, e, f, j, k, 1 in Figure 5.4 and subplot h in Figure 5.5).

The reason for this inefficiency of diversity-maintaining/introducing strategies in solving
problems with constraints is that the use of the tested penalty functions prevents the diversity-
maintaining/introducing mechanisms from working effectively. In solving unconstrained dy-

namic problems, all diversified individuals generated by the diversity maintaining strategy or
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Figure 5.6: This figure shows the mapping of the RR/ARR scores of GA, RIGA, and HyperM
to the RR-ARR diagram. The scores are averaged from the results of the above algorithms on
all 18 tested problems. Both elitism and non-elitism versions of these algorithms are tested.

the diversity introducing strategy are useful because they contribute to either (1) detecting new
appearing optima or (2) finding the new place of the moving optima. In DCOPs, however, I
found that only the diversified individuals that are feasible can become fully beneficial to the
combination of GA/RIGA/HyperM and penalty methods. The reasons for this behaviour are
explained below.

For infeasible diversified individuals, there are two difficulties that prevent them from being
useful in existing dynamic optimisation strategies. First, many diversified but infeasible individ-
uals might not be selected for the next generation population because they are penalised with
lower fitness values by the penalty functions. Without being selected for the next generation,
diversified individuals will not be able to meet the purpose of maintaining/introducing diversity
unless they are re-introduced again in the next generation. To demonstrate this drawback, I use
the measure percentage of selected infeasible individuals proposed in subsection 5.3.2. This mea-
sure is used to analyse the relationship between the percentage of infeasible areas over the total
search area and the actual percentage of infeasible solutions over the total number of solutions

selected for the next generation. If an algorithm is able to treat infeasible diversified individuals
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and feasible diversified individuals on an equal basis (and hence to maintain diversity effectively),
the latter percentage should be close to the former percentage. However, as can be seen in table
5.8 (page 126), we can see that in the elitism case the percentage of infeasible solutions in the
population (12.5 - 26.3%) is much smaller than the percentage of infeasible areas over the total
landscape (60.8%). It means that only a few of diversified, infeasible solutions are retained and
hence the algorithms are not able to maintain diversity in the infeasible regions. As a result, if
after a change, a new feasible region occurs inside or near the infeasible regions, the algorithms
might not be able to react effectively unless diversified individuals are re-introduced at every
generation as in the case of RIGA. In the non-elitism case, the percentage of selected infeasible
individuals is better than in the elitism case, meaning that these algorithms are able to retain
more infeasible individuals, of which some might be diversified solutions. However, in the non-
elitism case this higher percentage of infeasible individuals comes with a trade-off of slower /less
accurate convergence as shown in the previous subsection 5.3.3. As shown in subsection 5.3.3,
this slow convergence leads to the generally poorer performance of the non-elitism algorithms

in the test.

Table 5.8: This table shows the average percentage of selected infeasible individuals over all 18
problems for each tested algorithm (see Subsection 5.3.2 for descriptions). The last row shows
the average percentage of infeasible areas over all 18 problems. If an algorithm is able to maintain
diversity effectively, its average percentage of selected infeasible individuals score should be close
to the average percentage of infeasible areas.

Algorithms Percent of infeasible solutions
.GA-elit 12.5%
.RIGA-elit 26.3%
.HyperM-elit 14.8%
.GA-noElit 41.8%
.RIGA-noElit 46.8%
.HyperM-noElit 42.8%
Percentage of infeasible areas 60.8%

Second, even if a diversified but infeasible individual is accepted for the next generation,
it might still not be able to contribute to the two purposes they are designed for: detecting
changes and tracking changes. This inefficiency is also due to the fact that infeasible individuals
no longer have their actual fitness value but only penalised fitness values. These penalised fitness
values might not accurately reflect the dynamic from environments and hence might not help in

detecting and tracking changes. In other words, in the tested dynamic optimisation algorithms
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more diversity does not necessarily mean more adaptability.

Effect of switching global optima (between disconnected feasible regions) on strate-

gies that use penalty functions/values

The third finding that I observe from our experiments is the inefficiency of existing dynamic
optimisation methods when they are used in combination with the tested penalty functions to
solve a special class of DCOPs. This is the class of problems with disconnected feasible regions
where the global optimum switches from one region to another whenever a change happens (this
is one of the common characteristics of DCOPs as already discussed in section 5.1). In addition,
the more separated the disconnected regions are, the more difficult it is for algorithms using
penalty functions to solve.

The reason for this behaviour is as follows. In problems with disconnected feasible regions,
in order to track the moving optimum from one region to another, it is necessary to have a
path going through the infeasible areas that separate the disconnected regions. This path might
not be available if we use penalty functions because penalties make it unlikely that infeasible
individuals are accepted. Obviously the larger the infeasible areas between disconnected regions,
the harder it is to establish the path using penalty methods.

To verify the statement above, I use three test cases (pairs of almost identical problems)
provided in Table 5.5 (page 108). They are test cases 16, 17, and 18. In all three test cases
the objective functions are the same and the global optimum keeps switching between two
feasible regions whenever a change happens. However, the infeasible areas in the problems of
each test case are different and hence each test case represents a different dynamic situation.
Test case 16 tests the situation where in one problem of the pair (G24 6b) there is a feasible
path connecting the two regions and in the other problem (G24 6a) the path now is infeasible,
i.e. there is an infeasible area separating two feasible regions. Except for this detail the two
problems of the pair are identical. If the use of the tested penalty functions really prevents an
algorithm from travelling through the infeasible area, the performance of that algorithm will
become worse when the path is infeasible. Test case 17 is the same as test case 16 except that
the infeasible area separating two feasible regions has a different shape. Test case 18 tests a
different situation where two problems of the pair are almost identical except that in one problem

(G24_6¢) the infeasible area separating the two feasible regions is small whereas in the other
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problem (G24 6d) that infeasible area is large. Again, if the use of the tested penalty functions
really prevents an algorithm from searching through infeasible areas, the performance of that
algorithm will become worse in the case the infeasible area is larger.

The experimental results in these three test cases (subplot ¢, d, e in Figure 5.5, page 123)
confirm that the hypotheses stated in the beginning of this subsection are true. In subplot c
and d, the tested algorithms do suffer when the path between the two regions is infeasible. In
subplot e, the larger the infeasible area separating the two regions, the worse the performance
of the tested algorithms. All in all, the results prove that the combination of existing dynamic
optimisation strategies with the tested penalty functions might be less effective in problems with

disconnected regions and switching optima.

Effect of moving infeasible areas on strategies that track the previous global opti-

muim

The fourth interesting finding is the fact that, algorithms that rely on tracking previous global
optimum as HyperM might become less effective when solving DCOPs where the moving con-
straints expose new, better optima without changing the existing optima. The reason is that
they might not be able to detect changes in such type of DCOPs. As shown below, this behav-
iour of tracking-previous-optimum algorithms also leads to an interesting counter-intuitive fact:
for this type of algorithm, some DCOPs with dynamic objective functions might become easier
to solve than some DCOPs with fixed objective functions. Similar to the case of elitism, the
effect of moving infeasible areas on tracking-previous optimum strategies is also caused by the
nature of the strategies, i.e. it is independent of the combined constraint handling techniques.
Evidence of this behaviour can be found when we tested the algorithms in the test case 15
(Table 5.5), which is a pair of problems with newly better optima exposed by moving constraints.
The two problems in the pair, G24 3 and G24 3b, are almost identical except for that the
former has a fixed objective function while the latter has a dynamic objective function which
changes whenever the environment changes. In other words, the only difference between the two
problems is that in G24 3 the existing optima remain intact after each change while in G24 3b
these existing optima change due to the dynamic of the objective function. This characteristic
makes G24 3 supposedly more easier to solve than G23 3b because it has fewer dynamic

elements.
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However, experimental results in subplot b, Figure 5.5 and in Table 5.7 show that this is
only true with RIGA and GA. In the case of HyperM, the fixed objective function in G24 3
actually makes the problem more difficult for HyperM to solve than in G24 3b (in subplot b,
Figure 5.5 we can see that HyperM’s bar in G24 3b is higher than HyperM’s bar in G24 3).
The results show that the "stationary" of existing optima, which is the only difference between
the two problems, must be the reason for the decrease in performance of HyperM in G24 3.
This is an interesting example of how stationary can make the problems more difficult, or in
other words how dynamic can help to make the problems easier to solve for certain types of
algorithms.

Because the only difference between HyperM and RIGA /GA is its triggered-mutation strat-
egy, which is specifically for tracking the existing optimum, the decrease in performance of
HyperM must be due to its triggered-mutation strategy. To investigate why HyperM suffers
in problems like G24 3 and why the dynamic of existing optima in G24 3b can help the
algorithm to improve its performance, the newly proposed measures triggered-time count and
detected-change count (see subsection 5.3.2) are used to analyse how the triggered-hypermutation
mechanism works in these two problems. The analysis results indicate that the reason for the less
efficiency of HyperM in G24 3 is that the algorithm is unable to detect changes. The algorithm
is unable to detect changes because its tracking optima strategy only focuses on monitoring ex-
isting optima, and is hence unable to recognise the newly, better optima exposed by the moving
constraints. As can be seen in table 5.9 (page 131), the algorithm HyperM either is not able
to trigger its hyper-mutation rate to deal with changes (elitism case, triggered-time count=0
and detected-change count=0) or is not able to trigger its hyper-mutation rate correctly when
a change happens (non-elitism case, triggered-time count~164 and detected-change count~1.8).
It is interesting to observe that in the non-elitism case, the averaged number of trigger times is
relatively high (164.2) but almost none of these trigger times correlates to the changes in the
landscape, i.e. almost no change is detected. Instead, these trigger times are caused by the
selection process due to the fact that in non-elitism selection the best solution in the population
is not always selected for the next generation.

On the contrary, in problems with dynamic objective function like G24 3b, the analysis
results indicate that the reason why HyperM works well in this problem is that whenever a change

happens, the value of existing optima changes accordingly, hence prompting the algorithm to
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trigger its hyper-mutation rate accurately. As can be seen in table 5.9, after eleven changes the
number of triggered times correlated to a change is also eleven in both the elitism and non-elitism
cases.

Our detailed analysis (not shown) also indicates that the difference in performance of HyperM
between G24 3b and G24 3 becomes larger when the base mutation rate becomes smaller. This
is because, due to its inability to detect changes in solving problems like G24 3, HyperM is not
able to use its triggered hyper-mutation rate. In such case the base mutation rate is the only
option for HyperM to track the newly appearing optimum, and the smaller the base mutation
rate, the less likely that the algorithm is able to track that moving optimum.

All in all, the test results confirm that algorithms relying on tracking the existing optima
as HyperM might become less effective for solving DCOPs where the moving constraints expose
new, better optima without changing the existing optima. This is due to the fact that the
algorithms might not be able to detect changes.

In addition, the results show that for algorithms like HyperM, in certain cases DCOPs with
dynamic objective functions would become easier to solve than DCOPs with fixed objective
functions. In accordance with some recent studies, for example (Rand & Riolo 2005b) and
(Kashtan et al. 2007), the experiment in this subsection provides another evidence of cases
where the presence of dynamics might bring additional benefits to the evolutionary process.
However, in our experiment the role and impact of dynamics in speeding up the search process
are somewhat different from those in (Rand & Riolo 2005b) and (Kashtan et al. 2007). In (Rand
& Riolo 2005b) and (Kashtan et al. 2007), the static problems are deceptive and due to that the
algorithm might be trapped in a local optimum. When a change happens, the dynamic changes
the problems, making them non-deceptive and hence indirectly helps the algorithms to escape
from the current local optimum.

In our experiment, however, the static problem itself is not deceptive. The problem only
becomes deceptive when some dynamics (moving constraints in this case) were introduced,
changing the problem in a way that the changes go unnoticed by algorithms like HyperM. The
interesting part lies in the fact that, when some more dynamic elements are introduced (dynamic
objective function in this case) in addition to the existing dynamics, the problem becomes non-
deceptive again! This is because the new dynamic triggers the diversity-introducing mechanism

of HyperM, making the changes visible to HyperM to react. This experiment is an interesting
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example where while the presence of one dynamic element might make the problem harder to
solve, the occurrence of multiple dynamic elements might together make the problem easier to

solve.

Table 5.9: This table shows the triggered-time count scores and the detected-change count scores
of HyperM in a pair of problems with moving constraints exposing new optima after 11 changes
(see Subsection 5.3.2 for descriptions).

G243 (NAO+fF) G24_3b (NAO+dF)
. Trigger Count  Detected Change Trigger count Detected
Algorithms Count Change Count
Value stdDev Value stdDev Value stdDev Value stdDev
.HyperM-noElit 164.20 11.29 1.82 0.83 170.27 14.07 11.00 0.00
.HyperM_elit 0.00 0.00 0.00 0.00 30.00 0.00 11.00 0.00

NAO - Newly Appearing Optimum
fF / dF - fixed / dynamic objective Function

5.3.4 Possible suggestions to improve the drawbacks of current dynamic op-

timisation strategies in solving DCOPs

In the previous subsections, I have demonstrated that there are some difficulties when applying
existing dynamic optimisation algorithms directly to solving DCOPs by combining the algo-
rithms with the tested penalty methods. Some of the difficulties are caused by the use of
the penalty methods, hence we can seek improvements by using different constraint handling
techniques. However, others are caused by the nature of the dynamic optimisation strategies
themselves and hence the strategies need to be modified.

Observations from the experimental results also suggest some suggestions on how to address
the drawbacks listed in the previous subsections. First, based on our observation that elitism
is useful for diversity-maintaining strategies in solving DCOPs, it might be useful to develop
algorithms that support both elitism and diversity maintaining mechanism.

Second, given the fact that methods like HyperM are not able to detect changes because
they mainly use change detectors (the best solution in case of HyperM) in the feasible regions,
it might be useful to use change detectors in both feasible regions and infeasible regions.

Third, because experimental results show that tracking the existing optima might not be
effective in certain cases of DCOPs, it might be useful to track the moving feasible regions
instead. This is because after a change in DCOPs, the global optimum always either moves

along with the feasible areas, or appears in a new feasible area. As a result, if we are able
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to track feasible areas, we can increase the probability of tracking the actual global optimum.
In the static case where the feasible regions do not move, tracking feasible regions still works
because the algorithm can just focus on searching in the fixed feasible areas where the global
optimum is located.

Finally, it might be useful to search in both feasible and infeasible regions. One common
property of the penalty methods/values that I have tested in this section (see Subsection 5.3.2)
is that feasible solutions always have higher fitness values than infeasible solutions and hence
the algorithms might be biased more toward feasible solutions. It has been shown in the ex-
perimental results that such bias mechanism might make the algorithms less effective in solving
DCOPs. Because of that, a good research direction might be to investigate the efficiency of
other constraint handling techniques which are better in tolerating infeasible solutions. It would
be interesting to see how other penalty functions with less bias feasibility /infeasibility would
perform in solving DCOPs. Alternatively, it would also be interesting to study the performance
of other non-penalty constraint handling methods, especially those that allow searching in the
infeasible regions, in solving DCOPs.

One problem with choosing another existing constraint handling method for solving DCOPs
is that, similar to the case of the tested penalty methods, other constraint handling techniques
are also designed for stationary problems and have been tested in stationary problems only.
Again we have the research question of whether the special characteristics of DCOPs would
have any effect on these constraint-handling techniques and if there is, how can we improve
that.

In the next sections, I will investigate the effect of the characteristics of DCOPs on some

constraint handling techniques and then I will study how to improve any possible drawbacks.

5.4 Difficulties of some constraint handling strategies in solving

DCOPs - an analysis

Because existing constraint handling (CH) strategies are designed for solving stationary problems
and are tested in stationary problems only, there might be some difficulties in applying them to
solving DCOPs, even if it is possible to combine them with existing dynamic optimisation (DO)
strategies. The difficulties come from two main aspects: difficulties in handling environmental

dynamics and difficulties in handling constraints.
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In the following subsections, I will first review the two above types of difficulty in detail. After
that, I will analyse some of these difficulties in experiments using one typical constraint handling
technique - the repair method firstly proposed by Michalewicz and Nazhiyath (Michalewicz &
Nazhiyath 1995) and implemented in (Michalewicz n.d.). It should be noted that in this section I
do not attempt to provide a comprehensive review of existing constraint handling techniques (for
this purpose readers are referred to recent survey papers, for example the studies and reports in
(Michalewicz 1995, Back et al. 1997, Eiben 2001, Coello Coello 2002, Salcedo-Sanz 2009, Mezura-
Montes 2009)). Instead, I will only study the possible difficulties of certain classes of constraint
handling strategies, which are still widely used in recent applications, in solving continuous

DCOPs.
5.4.1 Difficulties in handling dynamics

The most obvious reason for the difficulties in applying existing constraint handling (CH) strate-
gies to solving DCOPs is the fact that these strategies are not designed to handle environmental
dynamics. Consequently, they will not be able do the required tasks in dynamic optimisation
such as detecting changes, tracking the moving optima, moving from one feasible region to
another following the switch of the optima, and finding newly appearing optima. One might
then raise the question of whether these difficulties can be overcome by combining existing CH
strategies with existing DO strategies to gain the advantages from the two approaches and to
alleviate the remaining disadvantages. Unfortunately, as will be shown below, not all difficulties
can be resolved by combining existing CH strategies with existing DO strategies. In addition,
that combination might also bring some new challenges due to the conflict of the optimisation
goals of the two types of strategies.

Because existing CH and DO strategies are designed to satisfy two different goals, it is
important to make sure that both goals are met when we combine a CH strategy with a DO
strategy to solve DCOPs. In many cases, however, to meet both goals in one combination is not
easy. This is because the goal of CH might conflict with the goal of DO and in some cases might
even prevent the goal of DO - handling dynamics - from being accomplished. In this subsection
I will discuss the possible difficulties that are caused by combining existing CH strategies with
the following existing DO strategies: maintaining diversity, introducing diversity, and detecting

changes based on performance drop.
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Impacts on maintaining/introducing diversity

As already discussed, one of the important strategies in dynamic optimisation is to maintain
or introduce diversity in the whole landscape to detect changes and to find newly-appearing
optima or moving optima. However, when being combined with certain constraint handling
techniques, the goal of diversity maintaining strategies may no longer be guaranteed. In other
words, diversity might not be maintained in the whole landscape.

One of the reasons for this inefficiency is that in many constraint handling techniques, the
original search space is specifically transformed so that the search algorithms only focus on
certain areas instead of the whole original search space. In such cases, even if we use a diversity-
introducing strategy such as HyperM to generate diversified individuals in the whole landscape,
those diversified individuals that are generated in the unfocused areas might be neglected by
the algorithms and hence do not contribute to the purpose of maintaining diversity. Typical
examples of constraint handling strategies that adopt this landscape transformation approach
are penalty methods where the constrained search space is transformed to an unconstrained
landscape with penalised fitness values. Another example can be found in some approaches that
use special representation/operators. In these approaches, the algorithms might be restricted to
search only in the feasible regions, in a transformed feasible landscape, or in the boundaries of
feasible regions. Detailed review and references for representative penalty approaches and special
representations/operators approaches can be found in (Back et al. 1997, Coello Coello 2002).

In some other constraint handling techniques, individuals are selected not exclusively based
on their actual fitness values but also on some special specifications. In such cases, the selection
process is biased so that some types of individuals might have more probability of being selected
than some others. For example, in Stochastic Ranking (Runarsson & Yao 2000) infeasible indi-
viduals might have more chances of being accepted depending on the given stochastic parameter.
A counter example can be found in Simple Multimembered ES (Mezura-Montes & Coello 2005)
where infeasible solutions are less likely to be accepted even if they have higher fitness values
than the feasible ones. Another example is in a CH multi-objective approach (Venkatraman &
Yen 2005) where individuals are ranked not entirely based on their original fitness values but also
on the number of violated constraints. In constraint handling techniques like these, diversified

individuals generated by dynamic optimisation strategies might not be selected in the same way
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as they were originally designed for, i.e. the number of diversified individuals that are infeasible
might become too large or too small. The way the diversity maintaining strategy work, as a
result, might not be the same as it is in the unconstrained case.

Experimental evidence for the inefficiency mentioned in the cases above has already been
shown in Subsection 5.3.3, where we can see that the diversity-maintaining/introducing strate-

gies become less effective when combined with the tested penalty methods.
Impacts on change detection

Another possible difficulty of combining CH strategies with DO strategies is that the use of some
existing constraint handling techniques might make change detection based on performance drop,
a common DO technique, less effective. As already mentioned in the Subsection 5.3.2, algorithms
like HyperM rely on the decrease in value of the fitness of the best solution over time to detect
changes and to determine if the change is worth dealing with. The algorithm assumes that during
the search process, if there is a degradation in the fitness values of the best solution found in
each generation, there might be a change in the landscape and the previous found optimum
might no longer the best optimum. However, when DO algorithms are combined with some CH
techniques to solve DCOPs, such degradation in best fitness values might no longer be caused
by an actual change in the landscape. Instead, the degradation might be caused either by an
increase in penalty values (as in some dynamic/adaptive penalty methods) or by the elimination
of the current good solutions from the population (as in some ranking-based methods). This
problem of course might affect not only HyperM, but also any other change detection method
that relies on monitoring the drop in fitness values of existing solutions.

One example can be found in some constraint handling techniques such as dynamic penalty
or adaptive penalty e.g. (Joines & Houck 1994, Hadj-Alouane & Bean 1997, Hamida & Petrowski
2000), where the degradation of (modified) fitness values is not caused by environmental changes
but by the increase over time of the penalty values. In these dynamic/adaptive penalty methods,
initially the penalty values are low to tolerate more infeasible solutions. However, over time,
based on the feedback of the algorithm or on the increased length of time, the penalty values
are gradually increased to improve the convergence speed of the algorithm. The consequence
of this dynamic/adaptive scheme is that if the detector solutions used by the change detection

method is infeasible or becomes infeasible, over time their fitness value will decrease. Of course,
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in penalty-based methods, if change detection is made on the original fitness values instead of on
the penalised fitness values, the increase of penalty values will not have any impact on detecting
changes. However, in this case, detecting changes based on the original fitness values might con-
sequently suffer from another problem: changes in constraint functions will go undetected unless
additional improvement is provided to make the method detect constraint changes explicitly.
In some other constraint handling techniques which use ranking-based methods (for example
(Runarsson & Yao 2000, Mezura-Montes & Coello 2005, Venkatraman & Yen 2005)), the degra-
dation of detectors’ fitness values might be caused by the fact that during the selection process
the current better solutions might be dropped in favour of other solutions. These solutions
might have worse fitness value but are more useful for the constraint handling process. In these
situations, there might also be a drop in the value of the best solutions at each generation.
The drop in fitness values of the detector solutions in both of the cases above might be
wrongly considered by DO strategies like HyperM to be a change in the environment and this

might consequently trigger the DO strategies to react inappropriately.
5.4.2 Difficulties in handling constraints

The difficulties of applying some existing CH strategies to solving DCOPs are caused not only
by their possible weaknesses in handling dynamics (even when combined with existing DO
strategies), but also by the fact that the ability of some CH strategies to handle constraints
might also become less effective in DCOPs. This possible inefficiency is due to two reasons.
First, the information that CH strategies have about the problem is not updated after each
change. Second, the strategies themselves also do not update in accordance with changes in the

environment. I will discuss these two reasons in detail below.
The issue of outdated information

One of the common difficulties for an algorithm to solve dynamic problems is that after a change
all existing information that the algorithm has achieved or has been given about the problem
might become outdated. If an algorithm continues to use its outdated knowledge about the
previous problem to solve the newly changed problem, its performance might become less ef-
fective. For example, in algorithms using strictly feasible reference individuals like Genocop
ITT (Michalewicz & Nazhiyath 1995, Michalewicz n.d.), after a change the population of feasi-

ble reference individuals found by the algorithm might no longer contain all feasible solutions
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because the change has made some feasible solutions infeasible. Similarly, in some "decoder"
methods the reference lists for ordinal representations (for example the ordered lists of cities
(TSP (Grefenstette et al. 1985))/ ordered lists of knapsack items (KSP (Michalewicz 1997)) /
order lists of tasks (scheduling (Syswerda 1991)) ) might no longer be in order after a change
because the cities/items/tasks have changed their values. Another example can be found in dy-
namic/adaptive penalty methods e.g. (Hadj-Alouane & Bean 1997, Hamida & Petrowski 2000)
where the penalty parameters learnt by the methods might no longer be suitable because the
balance between feasible solutions and infeasible solutions has changed.

In order to resolve this difficulty, algorithms solving dynamic problems might need to be
equipped with special mechanisms which allow them firstly to be able to detect the moment
when a change happens and secondly to update their knowledge about the problem whenever
a change happens. Because they are not specifically designed to handle dynamics, many of the
existing CH strategies obviously do not have the necessary tools either to detect changes or to
update their knowledge about the problem after changes. As already discussed in Subsection
5.4.1, one suggestion for improvement is to combine existing CH strategies with existing DO
strategies. However, even if such combination is possible, there are still two remaining problems.

First, as discussed in subsection 5.4.1, even if we combine existing CH strategies with existing
DO strategies, the task of detecting changes and updating problem information might still be
difficult due to the special characteristics of some existing CH strategies. As already shown
in Subsection 5.4.1, the implementation of some CH techniques might prevent existing DO
strategies from handling the environmental dynamics effectively. The experimental results in
Section 5.3.3 illustrate an example where the combination of existing DO strategies with penalty
methods suffers from many difficulties in solving the tested DCOPs.

Second, there might be cases where the problem-specific information is given by users/designers
and when a change happens, this information can only be updated by users/designers. The re-
quirement of information being updated by users/designers, however, might not be applicable
in many cases where the dynamic problems are solved online because users/designers might
not know when a change happens and how a change happens. Examples of CH algorithms
that require problem-specific information can be found in many decoder /repair/special-operator
methods reviewed in (Coello Coello 2002) and (Salcedo-Sanz 2009).

All in all, the discussion above shows that their original designs might make it difficult for
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some representative CH strategies to update their information/knowledge about the problem
after a change happens. This shortcoming, in turn, makes these strategies work less effectively
in handling the constraints in DCOPs. Later in subsection 5.4.4, I will analyse some experi-
mental results showing how the issue of outdated information can affect the performance of one
constraint handling technique - the repair method introduced in Genocop III (Michalewicz &

Nazhiyath 1995, Michalewicz n.d.).
The issue of outdated strategy

Another difficulty of applying some of the existing CH strategies to solving DCOPs is that,
even if they are able to update their knowledge/information about the problem after a change,
they might still not be able to work most effectively because the strategies themselves are also
outdated.

Strategy-being-outdated might occur when we use CH strategies that have problem-dependent
parameters, whose values might be tailored to work best in only one (class of) stationary envi-
ronment, to solve a DCOP. In such cases, if we fine-tune the parameter values for the problem
before change, the algorithm might only work well until the moment when a change happens. If
after a change the search landscape is represented by a problem of a different type, the strategy
no longer works effectively. Typical examples of CH strategies that use problem-dependent para-
meters are penalty methods with pre-defined penalty factors and/or other pre-defined parameter
that control how the penalty is defined (e.g. the target feasible ratio in the ASCHEA method
(Hamida & Schoenauer 2002)). It has been reported (Smith & Coit 1997, Coello Coello 2002)
that many penalty methods (static and dynamic) are sensitive to the values of penalty factors
and/or other parameters, and that a parameter value that works well for one stationary prob-
lem might not work for another. Because of that, if different stages of a dynamic environment
represent different problems, there might be no pre-defined penalty factor/parameter that can
help the mentioned penalty methods to work well in that dynamic environment. Other examples
of CH strategies that use problem-dependent parameters can be found in some combinatorial
repair methods, methods with special operators, and decoder methods. A detailed review of
these approaches can be found in (Coello Coello 2002) and (Salcedo-Sanz 2009)).

We believe that strategy-being-outdated might also occur with many adaptive CH strategies

that are not problem-dependent in spite of the fact that they are considered as robust and/or
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adaptive to solving different types of stationary constrained problems. As will be shown below,
the reason for these classes of strategies becoming outdated in solving DCOPs is that they
rely on some specific assumptions that are only true in stationary problems. In DCOPs these
assumptions might become outdated once a change happens and consequently the corresponding
strategies are also outdated.

Typical types of CH strategies in this class are self-adaptive fitness formulation (Farmani &
Wright 2003) and the state-of-the-art method stochastic ranking (Runarsson & Yao 2000). The
general approach of these strategies is to take feedbacks from the population during the search
process and try to balance feasibility /infeasibility based on the performance of the current pop-
ulation, assuming that because the landscape is static, the feedback from the population always
reflects a "memory" of information about the landscape and information about the convergence
of the search process. In stationary constrained problems where initially the population covers
the whole landscape and then gradually converges to specific areas, the above strategies can
help to guide the population to converge to the correct global optimum in the feasible region.
In dynamic environments, however, such strategies might become less effective because their
assumption that the population always carries correct information about the landscape might
no longer be true if a change happens. When a change happens, the search landscape might
change its shape and consequently the "memory" of the population no longer reflects the prop-
erty of the new landscape but only a small area where the population currently is. Even worse,
the population might have already converged to a certain area and consequently the algorithm
might not be able to explore other areas to find the new global optimum. Because strategies
such as self-adaptive fitness formulation and stochastic ranking rely on the current population to
handle constraints, if the current population cannot cover the search landscape properly these
strategies will become less effective, or in other words become outdated with respect to the
newly changed landscape.

Another type of CH strategies that rely on outdated assumptions are dynamic/adaptive
CH strategies that rely on the running time value (e.g. the number of generations so far) to
balance feasibility and infeasibility. CH strategies of this type e.g. (Joines & Houck 1994, Hadj-
Alouane & Bean 1997, Hamida & Schoenauer 2002) also assume that the population can capture
the information about the landscape. However, different from the strategies mentioned in the

previous paragraph, runtime-relying strategies handle constraints by increasingly rejecting more
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infeasible solutions as time goes by to increase the convergence speed to good regions. Again,
because the assumption that the population can capture the property of the search space might
no longer be true in dynamic environments, it follows that this approach might no longer be
effective due to the occurrence of changes. For example, after a change in the landscape, the
area to which the algorithm is converging might no longer contain the global optimum. In this
case, if the CH strategy still imposes its previous balancing mechanism to increase convergence
speed, the algorithm could end up converging to the wrong place and will not be able to track
the moving optima.

Later in Subsection 5.4.4, I will analyse some experimental results showing how the issue
of outdated strategy can affect the performance of a constraint handling technique, the repair

method introduced in Genocop III (Michalewicz & Nazhiyath 1995, Michalewicz n.d.).

5.4.3 Possible suggestions to improve the drawbacks of current constraint

handling strategies in solving DCOPs

The discussions in the two previous subsections show that, in order to handle constraints ef-
fectively in DCOPs, a constraint-handling strategy might also need to satisfy the requirements

below:

1. It is necessary to make sure that the goal of handing constraints is not affected by the goal

of handling dynamics. Particularly:

(a) Diversified individuals might need to be distributed in all areas of the search space.
In other words, CH strategies should not restrict those individuals generated for

diversity purpose to only certain areas of the search space

(b) Diversified solutions might need to be accepted at an acceptable rate or are introduced
frequently to maintain diversity. In other words, CH strategies should not reject

diversified individuals

(c) Special attention might need to be made if change detection is undertaken by mon-
itoring the fitness values of current individuals (when there is a drop of individual’s
performance, we need to check to see if the drop is really caused by an environmental

change).
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2. It is necessary to make sure that the algorithm is updated whenever a change happens.

Particularly:

(a) If an algorithm uses any knowledge about the problem to handle constraints, that
knowledge needs to be updated whenever a change happens. This requires that in case
the time of change is not known, an (implicit or explicit) change detection method

needs to be implemented.

(b) The constraint handling strategy might also need to be updated whenever a change

happens.

(c) The strategy should avoid using problem-dependent information because it might not

be possible to update this type of information.

In order to work well in DCOPs, an algorithm needs to handle both environmental dynamics
and constraints effectively. It means that a "good" algorithm for DCOPs needs to satisfy not
only the requirements for handling constraints above but also the four requirements for handling

dynamics identified in Subsection 5.3.4.
5.4.4 Experimental analyses

In this subsection I will carry out an experimental analysis to test the performance of the
repair method, a representative CH strategy, in the G24 benchmark set. The purpose of the
experimental study is to answer two questions. First, we would like to study the usefulness of
the repair method in solving DCOPs. Second, we would like to verify if our hypotheses about
the difficulties of DCOPs toward CH strategies, as mentioned in section 5.4.2, are true. In
case the hypotheses are true I also would like to investigate how significant these difficulties
would affect the performance of CH strategies (in particular the repair method in this case) in
solving DCOPs. The result will help us to gain more understanding about how to design better

algorithms to solve DCOPs.
Chosen constraint handling technique for the analysis

For this analysis I choose the repair method introduced by Michalewicz and Nazhiyath in
(Michalewicz & Nazhiyath 1995), revised and implemented in (Michalewicz n.d.). There are
four reasons to choose this CH technique. First, the method is representative. It represents

a broad class of current CH techniques that do not use penalty functions but take feedbacks

141



5. Analysing DCOPs 5.4. Difficulties of some constraint handling strategies in. . .

from the search process to adaptively balance feasibility /infeasibility. The repair method also
represents many current methods that use repair operators in solving constrained problems. I
suspect that the repair method also has the major two possible drawbacks shared by existing
CH strategies in handing constraints for DCOPs (as pointed out in section 5.3.2): outdated
information and outdated strategy (as shown in Table 5.10). By testing this method, we will
be able to verify whether these two drawbacks really bring any negative effect to existing CH
strategies, and how significant is the effect.

Second, we believe that the repair method has some traits that make it more robust than
some other CH techniques in solving DCOPs. Table 5.10 shows that the repair method satisfies
many of the requirements suggested for solving DCOPs, and especially it is possible to modify
the method to satisfy all requirements. I am interested in how the special characteristics of
DCOPs would affect such a robust CH technique. I am also interested in modifying robust
techniques like the repair method to work better in DCOPs. By choosing the repair method for
this experiment, we will have more knowledge to answer these two questions.

Third, the repair method is simple, easy to implement and is integrated with a GA-based
algorithm (Genocop III). Using the method makes it easier to compare its performance with the
existing DO algorithms: GA / RIGA / HyperM that I have tested in Subsection 5.3.3. Using
the method also makes it easier to integrate the method with other DO and CH strategies to
develop new algorithms for solving DCOPs.

Finally, different from most other repair mechanisms, the repair method proposed in (Michalewicz
n.d.) is problem-independent and is designed specifically for the continuous domain. This char-
acteristic makes the method perfectly suitable for our purpose of testing CH strategies in our
continuous benchmark set G24. The method also facilitates us in developing new algorithms to

solve continuous DCOPs in future research.
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Table 5.10: In order to solve DCOPs effectively, a constraing handling method might need
to satisfy a number of requirements as suggested in subsections 5.3.4 and 5.4.3. This table
shows us how many requirements have been satisfied by the repair method implemented in
(Michalewicz n.d.), and how many requirements can be satisfied if we modify the method.

Requirements

Satisfy? Modifi How does it satisfy? / Why is it modifi-

able?

able to satisfy?

Suggested requirements to handle dynamics in DCOPs (Subsection 5.3.4)

Elitism Yes Yes The reference population contains elitist
members

Diversity maintaining Partly Yes The method itself has good diversity. In
addition, its mutation can be modified to
increase diversity

Search in feasible and infeasi- Yes Yes The search population accepts both fea-

ble region sible and infeasible individuals provided
that they can offer good repaired solutions

Track the moving feasible re- Partly Yes The repairing process is able to pro-

gions duce feasible individuals for the tracking
process

Change detection in feasible No Yes The method can be integrated with a

and infeasible regions

change detection mechanism

Suggested requirements to handle constraints in DCOPs (Subsection 5.4.3)

Diversified individuals cover Partly Yes The method does not restrict its search
the whole search space operation to any specific area nor trans-
form the original landscape to a limited
search space
Diversified individuals are Partly Yes Diversified individuals are accepted re-
retained/ re-introduced gardless of their feasibility provided that
frequently they can offer good repaired solutions
Drop in best fitness values Yes Yes In the latest version (Michalewicz n.d.),
are caused by environmental best fitness values are also the best feasi-
changes only? ble objective values. Because of that, if
there is any drop in the best fitness val-
ues, it means that the objective function
changes.
Update problem information No Yes The algorithm takes feedback from the
after each change? population to update its information. By
appropriately updating the population we
will be able to update the algorithm
Update CH strategy after No Yes The method takes feedback from the pop-
each change? ulation to update its information. By up-
dating the population we will be able to
update the algorithm
Use problem-independent in- Yes Yes The method only use problem-

formation only?

independent information
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Repair algorithms & the repair method in Genocop III

General ideas Repairing infeasible solutions is a common approach widely used in many
different EAs to solve combinatorial and continuous constrained problems. The idea is that,
if it is possible to map (repair) an infeasible solution to a feasible solution, then instead of
searching the best feasible solution directly, it might be possible to look for an individual that
can potentially produce the best repaired solution. To implement such a type of search, it is
necessary to change the way the fitness value of an individual is calculated. Instead of being
based on its objective value, now the fitness value of an individual is calculated based on the
quality of the corresponding repaired solution. The better the repaired solution, the higher the
fitness value of an individual. In certain cases, the feasible solution created by the repair process
can also be used to replace some of the search individuals.

In general, a repair approach can be represented in three steps as follows:

1. If a newly created individual s (can be feasible or infeasible) needs repair, use a heuristic

repair () to repair s, mapping s to a new, feasible individual z.

2. The objective value f (z) of z then is used as input to calculate the fitness value of s, i.e.

eval (s) = h (f (z)) where h is the mapping from objective values to fitness values.

3. If the repair approach is Lamarckian, replace one or some search individuals by z

The repair method used in this experiment was firstly proposed in (Michalewicz & Nazhiyath
1995) and was integrated as a part of the Genocop III algorithm (Michalewicz n.d.), which is
designed for continuous domain. This method also follows the general three steps given above,

in which the repair () heuristic can be described as follows:

1. The population is divided into two sub-populations: a search population S containing
normally-evolving individuals, which can be fully feasible or only linearly feasible, and a

reference population R containing only fully feasible individuals.

2. During the search process, while each individual r in the reference population R is evalu-
ated using their objective function as usual, each individual s in the search population S
is considered to be repaired based on an individual from R. Detail of the repair routine

can be found in the prosecode of the routine Repair in Algorithm 9 (page 151).
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It is important to note that there are two possible variants of deciding whether a search
individual s needs to be repaired in Genocop III (step 2 above). In the first variant described
in (Michalewicz & Nazhiyath 1995), it is stated that a search individual s should be repaired
only if s is infeasible. In such case, after the repair process the fitness value of s will be equal to
the fitness value of the mapped solution z (see the three-step procedure above), i.e. eval (s) =
eval (z) = h(f(z)). If s is feasible, it will still have its original fitness value, i.e. eval(s) =
h(f (s)). However, in the latest version of Genocop III provided by the authors (Michalewicz
n.d.), the implementation of the algorithm shows that search individuals are repaired in any
case regardless of their feasibility. This difference in implementations leads to different ways
of selecting individuals in the two variants. In the first variant, search individuals have more
chance to be selected for the next generation if they either found a good feasible solution or
produced a good repaired solution. In the second variant, the way individuals are selected is
only based on their performance in producing good repaired solution.

In all experiments in this chapter, I choose to implement the second variant of the repair
method, i.e. to repair search individuals regardless of their feasibility. I choose this variant
because it is implemented in the official source code provided by the authors. In addition,
this variant is the latest version and hence should supposedly be better than the earlier ver-
sion. Experiments on the first variant of the repair method will be carried out in our future
investigations.

From now on, in this chapter unless stated otherwise we will use the term repair method to

refer to the continuous-based repair approach proposed in (Michalewicz n.d.).

Feasibility /infeasibility balancing strategy and problem knowledge in the repair
method Before taking analysis on the repair method, we need to understand the strategy
that the method uses to balance feasibility /infeasibility, and the type of problem information
that the method uses to guide the strategy in solving constrained problems.

Repair method and other repair approaches have the ability to adaptively balance feasibility
and infeasibility. This balance is achieved by two procedures. First, the method accepts both
infeasible individuals and feasible individuals, provided that they can produce good repaired
solutions. This is because individuals are evaluated not based on their actual objective values

or feasibility, but on how good the feasible, repaired solutions that they produce are. This is
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accomplished by updating the fitness value eval (s) of each search individual s with the objective
value f(z) of the repaired solution z i.e. eval(s) = h(f(z)). Second, by updating the fitness
values of search individuals like that, the repair method ensures that while infeasible solutions
are accepted, they cannot have better fitness value than the best feasible solution available.

In order to work effectively, the strategy above needs certain type of problem information,
which is provided by the reference population and the search population. The reference pop-
ulation is an essential source of information for the balancing strategy to direct the algorithm
toward promising feasible regions. This is because, during the repair process (see the Repair
routine in Algorithm 9, page 151), newly repaired solutions are always generated in the lines
toward reference individuals (for each search individual, repaired solutions are generated in the
segment between that search individual and a reference individual). The reference individuals
also provide the balancing strategy with information about the best feasible solution available
(via their fitness values) so that the strategy can make sure that no infeasible individual can
have better fitness values than that.

The search population is also an essential source of problem information for the balancing
strategy. This is because the fitness values of search individuals help to indicate which point in
the landscape would lead to the potentially promising feasible region (via the repair process). In
the selection phase the balancing strategy then uses that information to select those individuals

that would potentially lead to the most promising regions.

How can the characteristics of DCOPs affect repair method? As mentioned earlier,
although the repair method has some advantages in solving DCOPs as shown in Table 5.10, 1
suspect that the method still suffers from the problem of outdated information, which in turn
makes the feasibility /infeasibility balancing strategy become outdated.

The first type of information that might become outdated when a change happens is the
fitness values of search individuals. Because the fitness value of a search individual is always
based on the objective value of the feasible solution repaired by that individual, it is assumed that
the search population always offers a "memory" of good areas in the landscape and directions
toward these good areas. The direction can be interpreted as: the higher the fitness value of an
individual, the better the feasible region we can get by repairing that individual.

This assumption is true in stationary environment because the "memory" is never outdated.
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However, in dynamic environment, the memory, or fitness values of search individuals, can
become outdated right after a change if the objective values of the corresponding repaired
solutions change. Particularly, the high fitness values of existing individuals might no longer
lead to good repaired solutions and vice versa. Even worse, search individuals with high-but-
outdated fitness values might even wrongly bias the selection process and hence make the search
process less effective. Search individuals can only become updated if we keep repairing them
at every generation. However, in the repair method this is not always the case because not all
individuals are selected for the repairing process at each generation.

The second type of information that might become outdated when a change happens is the
reference individuals, which are used to repair all other search individuals. The key assumption
in the repair method is that all reference individuals are feasible and are the best in the pop-
ulation. This assumption is only true in stationary environments. In dynamic environments,
after a change happens, some existing reference individuals might no longer remain the best
in the population or might even become infeasible. These outdated reference individuals not
only violate the assumption named above but might also wrongly bias the search and drive
more individuals eway from the good regions, making the search process less effective. Be-
cause the reference individual only evolves after a certain period (100 function evaluations as in
(Michalewicz n.d.)), if there is any change occurs during that period, reference individuals are
likely to become outdated.

In the following experiments I will analyse if our hypotheses about the effects of DCOPs’
characteristics on repair methods are correct and how significant the effects are. The experiments
will also help us to verify if our hypothesis about the usefulness of the repair method in solving

DCOPs is true.
Test settings

Tested algorithms Although in (Michalewicz & Nazhiyath 1995) and (Michalewicz n.d.) the
repair method is integrated with Genocop III, this method is algorithm-independent and can
be integrated with many different continuous evolutionary optimisation algorithm. In the ex-
periment in this section, I choose to integrate the repair method with basic GA. The integrated
version is called GA+Repair and is described in detail in Algorithm 8 (page 150). There are two

reasons to choose GA+Repair as the tested algorithm in this experiment. First, GA+Repair
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makes it possible to analyse the strengths and weaknesses of the repair strategy. In the original
version (Genocop III), it is difficult to analyse if the reason for any increase/decrease in per-
formance is due to the repair method because Genocop III implements multiple CH strategies
(beside the repair operator, there are ten other specialised operators to handle linear constraints).
By integrating just only the repair operator with basic GA in GA+4Repair, it would be easier
to analyse the effect of the repair method: any difference in performance between GA-+Repair
and basic GA would be caused by the repair operation.

Second, GA+Repair makes it possible to compare the usefulness of the repair method in
solving DCOPs with other DO strategies previously tested in this chapter. Because all other
strategies are tested when they are integrated with basic GA, it is natural that in order to
compare the repair method with these strategies we should also integrate the method with GA.

Because the purpose of GA+Repair is to evaluate the repair operation only, the algorithm
is significantly simpler than Genocop III although both algorithms use exactly the same repair
operator. The differences between GA+Repair and Genocop III are: (1) GA+Repair does not
have any specialised method to handle linear constraints like Genocop III. Because of that, in-
dividuals in the search population are not required to satisfy linear constraints as in Genocop
III. GA+Repair also does not require that nonlinear and linear constraints have to be treated
differently as in Genocop III; (2) GA+Repair only has two normal GA operators: crossover
and mutation compared to ten specialised operators in Genocop III; and (3) while Genocop II1
allows about 25% of the repaired individuals to replace individuals in the population (Lamar-
ckian evolution), in GA+Repair none of the repaired individual is used to replace the original
individuals (Baldwinian evolution). The reason is that according to the study in Subsection
6.4.5 and in (Nguyen & Yao 20100), we found that the use of Lamarckian evolution does not
significantly increase or decrease the performance of Genocop III in solving DCOPs.

Despite the difference above between GA+Repair and Genocop III, T observe that both
algorithms have very similar behaviours when solving different groups of DCOPs in the G24
benchmark set. It means that Genocop III also shows the same advantages and disadvantages
as GA+Repair when solving DCOPs, except that Genocop III has an overall better performance
when handling constraints thanks to the additional CH methods. The similarity in behaviours
of GA+Repair and Genocop III suggests that the result tested with GA+Repair can be gener-

alised to other approaches that use the repair method. For a detailed results of Genocop III’s
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performance in the G24 benchmark set and a comparison of its performance with other existing
and new algorithms, readers are referred to our other study in Chapter 6 and in (Nguyen &

Yao 20100).

Parameter settings The tested algorithms use the same parameter settings as the previ-
ously tested GA, RIGA, and HyperM except that the population now is divided into a search
population and a reference population (see Table 5.6, page 113), as implemented in the original

Genocop IIT algorithm (Michalewicz n.d.).

Performance measures To carry out the analysis, I use three different types of measures.
The first measure, which is our modified version of the off-line error measure (see Subsection
5.3.2), is used to evaluate/compare the general performance of the GA+Repair. Similar to the
previous experiment, using this measure I will also firstly summarise the average performance
of GA+Repair in each major group of problems (see test results in Figure 5.7, page 151) and
secondly investigate the effect of each problem characteristic on GA-+Repair by analysing their
performance in 21 test cases shown in Table 5.5 of Section 5.2 (see test results in Figure 5.4,
page 122 and Figure 5.5, page 123).

The second and third measures, which are our newly proposed measures, are both used to
analyse the behaviour of the repair method in DCOPs. The second measure, named plot of
number of reference individuals that are feasible, is used to analyse the behaviour of the repair
method when some reference individuals become outdated due to environmental changes - see
Figure 5.8 (page 155). The third measure, named plot of number of feasible individuals in
each disconnected feasible region, is used to analyse the ability of repair methods to balance
feasibility and infeasibility in problems with optima switching between disconnected feasible
regions - see Figure 5.9 (page 156). Details of these two measures will be described in the

following subsections.

The impact of outdated information/strategy on the performance of the repair

method

Overall observation of performance in groups of problems To analyse the overall per-
formance of the repair method, I firstly study the average performance of GA+Repair in each
major group of problems (Figure 5.7) and then study the performance of the algorithm in pair

of problems with different characteristics (Figure 5.4, page 122 and Figure 5.5, page 123). The
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Algorithm 8 GA+Repair

Note: It is assumed that the problem is maximisation

1. Initialise:

(a) Randomly initialise m individuals in search pop S
(b) Initialise n individuals in the reference population R
i. Randomly generate points until a feasible r is found

ii. Update the fitness value of 7: eval (r) = f (r) and add r to R

iii. Repeat step 1(b)i until n individuals are found

2. Search: Fort=1:m

(a) pp=U(0,1);p2 =U(0,1)
(b) Crossover: If (p1 < Pxover)
i. Use nonlinear ranking selection to choose a pair of parents from S
ii. Crossover an offspring s from the chosen parents
iii. Evaluate s and repair s using the routine Repair (s)
iv. Use nonlinear ranking selection to replace one of the worst individuals in S by s
(¢) Mutation: If (p2 < Parutate)
i. Use nonlinear ranking selection to choose a parent from S
ii. Mutate an offspring s from the chosen parent
ili. Evaluate s and repair s using the routine Repair (s)
iv. Use nonlinear ranking selection to replace one of the worst individuals in S by s

(d) Otherwise: If (p1 = Pxover) and (p2 = Parutate)

i. Use nonlinear ranking selection to choose an individual s from S
ii. If s has not been evaluated since the last generation, evaluate s
iii. Repair s using the routine Repair (s)

iv. Using nonlinear ranking selection to replace one of the worst individuals in S by s
3. Evolve the reference population after each 100 evaluations: For i =1 :n

(a) Crossover: If (U (0,1) < Pxover)

i. Use nonlinear ranking selection to choose a pair of parents from R
ii. Crossover an offspring r from the parents

iii. If r is feasible
A. Evaluate r and x,the better of the two parents
B. If f(r) better than f (x) then x = r and fitness value eval (x) = f (r)
(b) Mutation: If (U (0,1) < Pyrutation)
i. Use nonlinear ranking selection to choose a parent X from R

ii. Mutate an offspring r from x

1i. If r is feasible
A. Evaluate r and x

B. If f(r) better than f (x) then x = r and fitness value eval (x) = f (r)

4. Return to step 2 150
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Algorithm 9 routine Repair(Indiv s)

1. Randomly pick an individual r € R

2. Generate individual z in the segment between s and r

(a) a=U(0,1)

(b) z=as+(1—a).r
(c)

(d)

While z is infeasible, back to step 2a

If a feasible z is not found after 100 trials, z = r and eval (z) = eval (r)

3. (a) Evaluate z
(b) If (f (z) better than f (r)) then r = z;eval (r) = f (z)
(c) Update the fitness value of s: eval (s) = f (z)

4. Return the individual s

50.0 - -
Y axis: Ratio

45.0 . .
pase_err/algo_err How many times the error of each tested algorithm

40.0 1 is smaller than the baseline error (worst error)
35.0
300 4 @ Worst of GA/RIGA/HyperM
250 4 W Best of GA/RIGA/HyperM
.GA+Repair
20.0
15.0
10.0
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fF,noC fFfC fFdC dFnoC dFfC dFdC OISB OICB ONICB NAO SwO

Group of problems

Figure 5.7: This figure shows the performance of GA+Repair compared with the worst and
best performance of existing dynamic optimisation algorithms (GA, RIGA and hyperM) in
different groups of problems. As in Figure 5.3, algorithms’ performance is evaluated based on
how many times they are better than the base-line error, which is the worst (largest) error
among all algorithms. This score is represented in the vertical axis. The horizontal axis shows
different group of problems. Explanations for the abbreviations of problem groups can be found
in the caption of Figure 5.3.

performance in groups generally confirm our hypotheses about the advantages and disadvantages
of the repair method in solving DCOPs.
In the group of stationary constrained problems (fF, fC), the results in Figure 5.7 show that as

expected, a specialised CH technique as the repair method in GA+Repair is much more useful
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than methods not designed for handling constraints as existing DO algorithms. GA-+Repair
performs significantly better than the existing DO algorithms by factors of 6.4 to 45.44. In
stationary unconstrained group (fF, noC), also as expected the repair method in GA+Repair is
no longer particularly useful. Figure 5.7 shows that GA+Repair also performs worse than all
other methods in dynamic, unconstrained problems (dF, noC).

In the groups of DCOPs (fF4+dC, dF+{C, dF+dC), things are different. Although GA+Repair
works very well in stationary constrained cases as mentioned above, the algorithm becomes less
successful in the dynamic cases. As can be seen in Figure 5.7, in DCOPs the difference between
GA+Repair and GA is no longer as significant as it is in the stationary constrained case, mean-
ing that the performance of GA+Repair significantly decreases (by factors of 5.2 to 41.3). This
happens in all three cases of DCOPs: where only the constraints are dynamic (fF, dC); where
only the objective functions are dynamic (dF, fC) and where both constraints and objective
functions are dynamic (dF, dC).

Details of the impact of dynamic objective function on the repair method can be seen in
the pair-wise comparisons in plot ¢ and plot d of Figure 5.4 where GA+Repair is tested in pair
of almost identical constrained problems except for that one has a fixed objective function and
the other has a dynamic objective function. As can be seen in these plots, the performance of
GA+Repair is significantly decreased in case the objective function is dynamic. The difference
in performance of GA+Repair between the two problems of each pair is significantly larger
than that of GA and existing DO algorithms, meaning that the presence of dynamic objective
function has a much greater impact on repair method than on GA and existing DO methods.

Details of the impact of dynamic constraints on the repair method can be seen in the pair-
wise comparisons in plot i of Figure 5.4 and plot a of Figure 5.5 where GA+Repair is tested
in pair of almost identical constrained problems except for that one has fixed constraints and
the other has dynamic constraints. Similar to the previous case, the results also show that the
performance of GA+4Repair is significantly decreased in case the constraints are dynamic and
that the presence of dynamic constraints has a much greater impact on repair method than on
GA and existing DO methods. This significant impact of DCOP’s environmental dynamics on
GA+Repair’s performance proves our hypothesis that repair method suffers from difficulties in
solving DCOPs.

However, although the presence of environmental dynamics does significantly degrade the
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performance of GA+Repair, in Figure 5.7 it is interesting to see that the algorithm still has
better performance than existing DO algorithms (only that the difference become significantly
smaller in the dynamic cases). This observation proves our hypothesis that the repair method
has some characteristics that make it very promising for solving DCOPs.

Another interesting, and somewhat counter-intuitive observation in our experiment is that
the presence of constraints do not make the problems more difficult to solve by GA-+Repair.
Instead, I found that the presence of constraints always help GA+Repair to work better. Evi-
dence can be found in the pair-wise comparison in plots a, e, f, j, k, | of Figure 5.4 and in plot h
of Figure 5.5 where GA+Repair always has better performance in the problem with constraints
than in the problem without constraints. The experiment also shows that GA+Repair has bet-
ter performance in case there is an infeasible barrier separating two feasible regions, and that
the larger the barrier, the better the performance of GA+Repair (see plot d, e in Figure 5.5).
I found that these two behaviours are due to the nature of the repair method in handling con-
straints. This is also one of the reasons why we believe that repair method has some advantages
in solving DCOPs. A detailed analysis of this behaviour will be provided in Chapter 6.

The experimental results above confirms that the presence of dynamic does have a significant
effect on the performance of the repair method. Now it would be interesting to see if that
effect is indeed caused by the outdated problem information (reference individuals and search
individuals) and by the outdated balancing strategy as suspected in our hypothesis. In order to

answer this question, I will undertake a further analysis as can be seen below.

Analyse the behaviours of outdated reference individuals As recalled in subsection
5.4.4, I suspected that the reason for GA+4Repair to work less effective in dynamic constrained
problems is that the algorithm might have outdated information and its strategy might also
become outdated. One type of outdated information is outdated reference individuals, in which
some members of the reference population might have their objective values changed or even
become infeasible after a change. Because the core idea of the repair method is based on the
reference individuals, if these individuals are not updated, the algorithm would not be able to
run correctly.

To test if the algorithm is able to update the reference individuals properly, I use our proposed

measure: plot of number of reference individuals that are feasible (mentioned in subsection 5.4.4).
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If the algorithm is able to update the reference individuals properly, it should be able to maintain
a reference population of all feasible individuals all the time during the search process.

The most suitable environments to test this behaviour of repair method are DCOPs with
dynamic constraints where after each change the previous best feasible solutions are hidden by
the moving infeasible region. In the G24 benchmark set, the problems that have this property
are the G24 4, G24 5 and G24 7. G24 4 and G24 5 belong to the problem group dF,dC
while G24 7 belongs to the problem group fF,dC (see Figure 5.7). As discussed earlier, in both
groups the performance of GA+Repair decreases significantly compared to the case where the
constraints are fixed (fF,fC).

In this analysis we will see if the moving infeasible region makes any of the reference individ-
uals to become infeasible. If no reference individual becomes infeasible, after each change the
total number of feasible reference individuals should remain to be five. If one or more individuals
do become infeasible, there should be a drop in the total number of feasible reference individuals.
In that case, it is likely that reference individuals being outdated is one of the reason that make
the repair method works less effectively in G24 4, G24 5 and G24 7.

The plot of number of reference individuals that are feasible of GA4Repair is given in Figure
5.8. The figure shows that, in all cases the original repair method is not able to keep all reference
individuals feasible during the search. When a change happens, the number of feasible reference
individuals drops to a very low level. Although the algorithm is able to slowly recover from
the drop (i.e. the number of individuals that are feasible increases over time), in most of the
time the number of feasible reference individuals is much lower than five. This violates the
requirement of the original repair method that the reference population needs to contain only
feasible solutions.

The results confirm our hypothesis that after a change, the algorithm’s problem information,
which in this case is the population of reference individuals, has become outdated and conse-
quently might wrongly bias the algorithm to wrong directions. The reason for this behaviour is
that after each change, the infeasible regions moves and hide the currently best region, which

contains most of the reference individuals. This makes these individuals become infeasible.

Analyse the behaviours of the outdated balancing strategy In Subsection 5.4.4, I also

suspected that individuals-being-outdated can also have a negative impact on the balancing
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Figure 5.8: This figure shows how GA+Repair maintains feasible reference individuals in prob-
lems with moving infeasible regions. The total number of reference individuals is five. The plot
in the figures shows, among these five reference individuals, how many are actually feasible dur-
ing the search process. As can be seen, GA+Repair is not able to keep all reference individuals
feasible during the search. Instead, after each change the number of feasible individuals drops
to a very low level.

strategy, which balances feasibility and infeasibility, of the repair method. To test if the algo-
rithm is still able to balance feasibility /infeasibility properly in dynamic environments, I use
our proposed measure: plot of number of feasible individuals in each disconnected feasible region
(mentioned in subsection 5.4.4) to monitor the number of feasible individuals in each discon-
nected feasible region and the ratio of feasibility /infeasibility. If the balancing mechanism works
well in the DCOP case, it should be able to manage a good distribution of individuals so that
the better feasible regions should have more feasible individuals.

The most suitable environments to test this behaviour of existing repair method are DCOPs
with two disconnected feasible regions where the global optimum keeps switching from one
region to another after each change or after some consecutive changes. In the G24 benchmark
set, the problems that have this property are the G24 1, G24 2, G24 3b, G24 4, G24 5,
G24 6a, G24 6¢, G24 6d, and G24 8b where the global optimum switches from one region
to another after each period of one or two changes. All these problems belong to the group SwO
in Figure 5.7 (page 151), where we can see that the performance of GA+Repair significantly
decreases compared to the stationary constrained case (fF, fC). In such SwO problems like
these, if the balancing mechanism of GA+Repair works well, at each period between changes
the algorithm should be able to focus most feasible individuals on the region where the global

optimum currently is while still maintain the same ratio of feasibility/infeasibility for diversity
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Figure 5.9: This figure shows how the balance strategy of GA+Repair distributes its feasible
individuals in disconnected feasible regions. The problems tested in this figure are those with
global optima switching between two disconnected feasible regions. The plot lines with circles
show the number of feasible individuals in region 1, and the plain plot lines show the number
of feasible individuals in region 2. If the balance strategy works well, most individuals should
be focused on the region where the global optimum is currently in. It means that when the
optimum switches to region 2, the number of individuals in region 2 should be high and the
number of individuals in region 1 should be low. When the optimum switches back to region 1,
the reverse thing should happen, i.e. number of individuals in region 1 should be high and that
number in region 2 should be low.

The result shows that GA+Repair is not able to focus most of its individuals to the appropriate
region. Instead, the majority of individuals still remained in one single region (region 2), which
is where the optimum firstly was.

purpose. Otherwise, the outdated balancing-strategy might be one of the reasons that make the
repair method become less effective in SwO problems.

The plot of number of feasible individuals in each disconnected feasible region of GA+Repair
in these functions is given in Figure 5.9. It should be noted that the measure scores of
GA+Repair in three problems: G24 2, and G24 6¢/d are not shown in Figure 5.9 because
they are the same as that of G24 5, and G24_6a, respectively.

Figure 5.9 shows that in all cases except G24 3b, the repair method is not able to focus

most feasible individuals on the region where the global optimum is currently in. Instead, the
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majority of feasible individuals still remained in one single region (region 2), which is where
the global optimum firstly was before the changes happen. The number of individuals in the
other region (region 1) remains low regardless of whether the global optimum has switched into
the region or not. These results show that, due to its outdated information and strategy, the
algorithm is not able to follow the switching optimum well.

The reason for this behaviour is that, initially most of the individuals were in region 2
because it is where the global optimum was firstly in. After the first change, although the global
optimum has switched to region 1, many individuals in region 2 were not updated, and hence
still had their old and outdated fitness values, which might be even higher than the new, after-
change global optimum fitness value. These incorrect but high fitness values cause the outdated
individuals to continue dominating the population and attract a large number of individuals to
the old feasible region 2 despite the lack of the actual global optimum there.

It should also be noted that in solving problems in the G24 benchmark set, individuals being
outdated might not always be totally harmful because the changes in many problems are cyclic.
It means that although many infeasible or poor reference individuals are retained due to their
outdated high fitness values, to some extent these outdated individuals might become useful in
future changes because the global optimum might re-appear in previous places. In such cases,
the outdated individuals might actually play the role as memory elements and hence might help
the algorithm to recall the previous good solutions in cyclic problems. However, it is not clear
of how much benefit such memory elements could bring, because our experiments show that
GA+Repair still becomes less effective in the presence of environmental dynamics. In addition,
it is obvious that such type of memory elements would not be useful in problems with no cyclic

dynamics.
Summary

In summary, the experiments in this section generally confirm our hypotheses about the advan-
tages and disadvantages of the repair method in solving DCOPs. First, the experimental results
show evidence that the repair method might be useful for solving dynamic constrained prob-
lems. Second, the results also show evidence that outdated information and outdated balancing

strategy can make such constraint handling strategies as the repair method less effective.
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5.5 Summary

5.5.1 Summary of contributions

The contributions of this chapter can be summarised as follow:

1. New investigations on the unknown characteristics of DCOPs: Some special, not-well-
studied characteristics of DCOPs that might cause significant difficulties to existing DO

and CH strategies were identified for the first time.

2. New developments of new benchmark problems and performance measures: 18 new bench-
mark problems (22 pairs) and seven new performance measures were developed. One

existing measure was also modified to be usable in DCOPs.

3. New investigations on the strengths and weaknesses of existing DO strategies (GA/RIGA /HyperM)
and CH strategies (repair methods) in solving DCOPs. The experimental analyses reveal

some interesting findings, which can be categorised in three groups as follows:

(a) The performance of existing DO strategies in DCOPs:

i. The use of elitism might have a positive impact on the performance of existing
diversity-maintaining strategies. Elitism however might also have a negative
impact on the performance of diversity-introducing strategies if they are not
used in combination with diversity-maintaining strategies.

ii. The presence of infeasible areas has a negative impact on the performance of
diversity-introducing/diversity-maintaining strategies.

iii. The presence of switching optima (between disconnected regions) has a negative
impact on the performance of DO strategies if they are combined with penalty
functions.

iv. The presence of moving infeasible areas has a negative impact on the performance
of tracking-previous-optima strategies.

(b) The performance of some existing CH strategies in DCOPs: Even if we can combine

CH strategies with DO strategies, there might be two types of difficulties:

i. Difficulties in handling dynamics, in particularly maintaining diversity and de-

tecting changes.
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ii. Difficulties in handling constraints, which are caused by the fact that algorithms’

problem-knowledge and CH strategies might become outdated.
(c) Some counter-intuitive observations:

i. The presence of constraints and dynamics in DCOPs might not always make the
problems harder to solve. Instead, for certain types of problems, the presence of
constraints and dynamics in DCOPs might actually make the problems easier to
solve for certain types of algorithms.

ii. Our experiments also show that the presence of constraints always helps algo-

rithms using the repair method like GA+Repair work better.

4. Suggestion of a list of possible requirements that DO and CH algorithms should meet to
solve DCOPs effectively. This list can be used as a guideline to design new algorithms
to solve DCOPs in future research. Details of the list will be summarised in the next

subsection.

The research in this chapter also has some limitations, which can be improved in future
research. A list of limitations and possible directions to extend this research will be presented

in Section 8.2.

5.5.2 Possible requirements for DO and CH algorithms to solve DCOPs ef-

fectively

Subsections 5.3.4 and 5.4.3 have suggested two groups of requirements for DO strategies and CH
strategies to handle dynamics and constraints effectively in DCOPs. The suggested requirements

to handle dynamics can be briefly summarised as follows:

1. If a diversity maintaining mechanism is used, it should be used with an elitism mechanism
2. It might be useful to detect changes in both feasible regions and infeasible regions

3. It might be useful to track the moving feasible regions instead of tracking the moving

existing optima.
4. It might be useful to search in both feasible and infeasible regions

The suggested requirements to handle constraints can be briefly summarised as follows:
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1. The CH strategies should not affect the way the algorithm handle dynamics. Particularly:

(a) The CH strategy should allows diversified individuals to be distributed in the whole

search space.

(b) The CH strategy should not reject diversified individuals even if they do not con-

tribute to the CH process.

(c) Special attention might need to be taken if change-detection is undertaken by mon-
itoring the fitness values of current individual (when there is a drop of individual’s
performance, we need to check to see if the drop is really caused by an environmental

change).

2. The CH strategy needs to get updated whenever a change happens. Particularly:

(a) The strategy’s knowledge about the problem needs to be updated
(b) The strategy might also need to be updated to deal with new environments

(c) The strategy should avoid using problem-dependent information because it might not

be possible to update this type of information.

In order to solve DCOPs, an algorithm needs to use both DO strategies and CH strategies.
As aresult, it needs to satisfy both groups of requirements mentioned above. In the next chapter,
I will discuss a possible approach of combining DO and CH strategies while still satisfying these
two groups requirements. I will then use that approach to develop a set of new algorithms

specifically designed to solve DCOPs.
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CHAPTER 6
A NEW CLASS OF ALGORITHMS TO

sOLVE DCOPs

The study in the previous chapter has shown that dynamic constrained optimisation prob-
lems (DCOPs) have some special characteristics that make them very different from uncon-
strained dynamic problems and stationary constrained problems. The aforementioned research
also shows that due to these different characteristics, some existing dynamic optimisation (DO)
and constraint handling (CH) algorithms might not work effectively in solving DCOPs. The
lack of knowledge about DCOPs, the ineffectiveness of existing algorithms in solving continuous
DCOPs, and the lack of algorithms specifically designed for solving continuous DCOPs creates
an important gap in current dynamic optimisation research.

This chapter contributes to the task of closing this research gap by developing new methods to
solve DCOPs more effectively. In this chapter, based on detailed studies in the previous chapter
about the common characteristics of DCOPs, the weaknesses of some existing algorithms in
solving DCOPs, and our suggested requirements for algorithms to solve DCOPs, I will propose
an approach to effectively handle dynamics in DCOPs. The goal is to combine the advantages
of DO and CH strategies while overcoming the drawbacks of these methods in solving DCOPs.
Specifically, we modify an existing CH technique, the repair method (Michalewicz & Nazhiyath
1995) (Michalewicz n.d.), to create a framework with special mechanisms to support solving
DCOPs, and then integrate two DO techniques, random-immigrant (Grefenstette 1992) and
hyper-mutation (Cobb 1990), into the framework to develop new algorithms able to solve DCOPs

better than the original DO and CH methods.
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I will also undertake a detailed analysis to study the behaviours and performance of some
existing DO and CH algorithms as well as the newly proposed algorithms in solving DCOPs.
Another analysis will also be carried out to investigate more about the characteristics of DCOPs
as well as the influence of each algorithmic component on algorithm performance in DCOPs.
Some new measures will also be developed to assist these two aforementioned analyses.

The structure of the chapter is as follows. First, in Section 6.1 I will develop a new set of
algorithms that are able to overcome the drawbacks of existing DO and CH algorithms. Then
detailed experiments and analyses are carried out in Section 6.2 to compare the new algorithms
with existing algorithms and to study under what conditions the new algorithms work well. In
the next section (Section 6.3), a further analysis will be made to investigate which factors have
made the proposed algorithms work well (and why) and whether these factors are the results of
our proposed ideas. I will also analyse the proportion of contribution that each of our proposed
mechanisms gives in improving algorithms’ performance in solving DCOPs. Section 6.4 follows
by providing an analysis of the impact of changing parameter values on the performance of
the proposed algorithms. Based on this observation I will suggest some recommendations on
choosing the suitable parameter values. Finally, in Section 6.5, I will discuss the advantages and

disadvantages of the proposed methods and outline future directions.

6.1 A new class of algorithms to solve DCOPs

As DCOPs have the properties of both DO problems and constrained problems, it is natural that
in order to solve DCOPs, an algorithm needs to use both DO and CH strategies. In addition,
to work effectively in DCOPs the DO and CH strategies chosen by the algorithm need to be
modified to satisfy the special requirements outlined in Subsection 5.5.2.

In this section I will firstly discuss the possible DO and CH strategies that we can combine,
the possibility to modify them to solve DCOPs effectively, and I will then describe our new
algorithms which combines the modified versions of existing DO and CH strategies to solve

DCOPs.
6.1.1 Choosing DO and CH strategies

For the experiments in this chapter, I chose the same representative DO and CH methods as used

in Chapter 5. They are the DO techniques triggered hyper-mutation GA (HyperM (Cobb 1990))
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and random-immigrant GA (RIGA (Grefenstette 1992)) and the CH technique repair method
(Michalewicz & Nazhiyath 1995). Because these methods were also used in the previous study
of analysing the strengths and weaknesses of DO and CH strategies in solving DCOPs (Chapter
5), using them in this chapter will facilitate us in extending our previous research to gain a
deeper understanding of DCOPs.

In order to combine the chosen strategies into a new algorithm to solve DCOPs, we can
choose between two approaches. The first approach is to start from DO strategies such as
RIGA /HyperM, modify them to create a framework which supports CH strategies and then add
CH strategies to the newly developed framework. Alternatively, in the second approach we can
start from CH strategies as the repair method, modify it to create a framework which supports
DO strategies and then add DO strategies to the framework. In this chapter I will follow the
second approach, in which I will modify GA+Repair to support DO strategies and I will then

add RIGA /HyperM to the newly created framework.
6.1.2 Potential directions to improve the repair method for solving DCOPs

As shown in the experiments in Subsection 5.4.4 and also in Table 5.10 (page 143), the re-
pair method has some advantages which I believe would make it one of the more suitable CH
methods to solve DCOPs. First, the operation of the repair method does not interfere with the
operation of such DO strategies as the diversity-maintaining/introducing mechanisms, meaning
that the method can be integrated with these DO strategies without too much difficulty. As
mentioned earlier in Subsection 5.4.2, some CH strategies may not work well with diversity-
maintaining/introducing strategies because these CH strategies select individuals based on their
feasibility, i.e. feasible individuals might have a different probability to be selected than infea-
sible individuals. Such a bias in selection might cause many diversified individuals to be lost
because of their infeasibility. The repair method to some extent avoids this drawback because
it accepts both feasible and infeasible individuals in the same way, or in other words it does
not care about the feasibility of an individual provided that this individual can provide a good
(repaired) solution.

Second, the repair method is naturally suitable for tracking the moving feasible due to
the way it works. In the repair operation, whenever a search individual is repaired, the newly

created repaired individuals will always be closer to existing reference individuals than the search
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individual is (see the Repair routine in Algorithm 9, page 151). As a result of that operation,
if the algorithm is able to have at least one reference individual in the moving feasible region
when changes happen, the repair method will have a chance to send more individuals toward
that reference individual and hence will have a chance to track that moving region.

Third, the repair method also naturally supports elitism because the best found feasible
solutions will always be stored in the reference population. This property helps the method
satisfy one important requirement set out in Subsection 5.5.2 for maintaining diversity effectively
in DCOPs.

The aforementioned advantages of the repair method have been empirically confirmed by
the experimental results in Subsection 5.4.4 and in (Nguyen & Yao 2010a) where although the
presence of environmental dynamics does significantly decrease the performance of GA+Repair,
the algorithm still has better performance than all other GA-based existing DO algorithms in
solving DCOPs. This observation proves that its special characteristics make the repair method
a promising approach for solving DCOPs.

However, Subsection 5.5.2 also shows that when solving DCOPs the repair method signif-
icantly suffers from the issue of being outdated, a problem that I suspect would affect many
existing CH strategies. To apply the repair method to solving DCOPs, we need to improve it
to resolve its current drawbacks. Subsection 5.5.2 and Table 5.10 indicate that there are three
major requirements that the repair method is not able to satisfy. They are the ability to detect
changes, the ability to update its knowledge about the problem and the ability to update the
strategy whenever a change happens.

Naturally, a possible direction to improve the performance of GA+Repair in solving DCOPs
would be to equip the algorithm with these three features. In the next subsections, I will discuss
our proposed method to modify GA+Repair into a framework that supports all three features:
detecting changes, updating problem knowledge and updating the CH strategy. I will then
discuss the possible way to integrate existing DO strategies into the framework to solve DCOPs

more effectively.
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6.1.3 Combining the advantages of current DO techniques and CH tech-

niques
Detecting changes

The first improvement that we need to make to the repair method is to develop a change-
detection method. Only after being able to detect changes, can we prevent problem information

and constraint-handling strategies from being outdated and hence can solve DCOPs better.

Types of changes that need to be detected We need to detect two types of changes that
can affect the repair method. The first type includes changes that make the repair method’s
current knowledge (i.e. the fitness values of search and reference individuals) outdated. Changes
of this type occur when the feasibility status or objective values of some special feasible solutions
called influential feasible solutions change. In repair methods, we call a solution influential if
its objective value has been used to calculate the fitness values of search individuals or reference
individuals in the population and hence there is a mapping between that solution and the
corresponding individuals. For example, in step 3c of Algorithm 9 (page 151), z is the influential
solution of the search individual s because eval (s) = f(z). Similarly, in step 3b of Algorithm
9, z is also the influential solution of the reference individual r because eval (r) = f(z). If a
change affects such an influential solution by changing its objective value or its feasibility, the
existing mapping between the solution and its corresponding individuals might no longer reflect
the new objective value or feasibility of the solution and consequently the repair method might
become outdated. The better the objective value of an influential solution is, the more influence
it has and we should at least detect the changes occurring in the most influential solutions. It
is of note that, in the repair method the most influential solutions, i.e. the ones with the best
objective values, are always retained as members of the reference population. For example, in
step 3b of Algorithm 9, page 151, the influential solution z is retained as a reference individual
(r = z). Due to that, in order to detect changes in the most influential solutions we only need
to monitor the changes in objective values and feasibility of reference individuals.

The second type of changes that need to be detected includes changes that occur in areas
not covered by the algorithm’s population. As these areas are not covered, in case a change
happens it would go unnoticed by the algorithm for a certain period. Changes of this type can

occur in two different forms: (a) changes in objective functions and (b) changes in feasibility
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(constraints). In case (a), changes in objective functions will only affect the repair method if they
are not covered by the current population and occur in feasible regions (for objective changes
in an infeasible region, all solutions in the region still remain infeasible and hence the change
would not affect the repair method). We can use existing unconstrained DO change detection
techniques to monitor these objective changes. In case (b), changes in constraints will only affect
the repair method if they alter the shape of feasible/infeasible regions so that the current global
optimum become infeasible or inversely an infeasible solution become the new global optimum.
The first case is caused by the extension of existing infeasible regions or the occurrence of a new
infeasible region, and the second case is caused by the shrink of existing infeasible regions or the
occurrence of a new feasible region. Due to that, in order to detect constraint changes of this

type we only need to monitor the shrink/extension/appearance of infeasible/feasible regions.

The proposed change-detection mechanisms To detect the two different types of changes
above, we need to use different change-detection methods. For changes in objective function,
we can adopt and modify the change-detection method originally used in HyperM (Cobb 1990):
monitor the drop of the average best fitness values over a certain period. Unlike the original
change-detection method in HyperM, here we will only monitor the drop of the average fitness
values of the best influential individuals, which are also the best individuals in the reference
population. If we detect a drop in the average best reference fitness values and the drop persists
over a certain period, we can assume that a change in the objective function has occurred and
that change might make the repair method outdated. Details of the procedure to detect changes
in objective function can be found in the prosecode of routine DetectChange() (Algorithm 10,
page 167).

For changes in constraints, we developed a new change-detection method. As discussed
above, because the only types of constraint changes that might affect the algorithms are the
extension, shrink, or appearance of infeasible/feasible areas, we can detect these types of changes
by monitoring the feasibility /infeasibility of individuals that are near the infeasible boundaries.
We also need to keep checking the feasibility /infeasibility of the best individual in the reference
population because it is the current most influential solution.

To detect the shrink of infeasible areas, at each generation I chose to monitor some infeasible

individuals that are near the feasible boundaries, i.e. those that satisfy the following conditions:
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Algorithm 10 routine DetectChange()

Notes
Inputs

Outputs

The routine needs to be called at each generation

k - index of the current generation

b* - the fitness value of best feasible solution at gen. k

ij_l - set of up to q unfeasible individuals that have smallest sum Y g; (X) at generation k — 1
Yﬁil - set of up to ¢ div 2 most diversified unfeasible individuals in X{f at generation k — 1
Yl;il - set of q feasible individuals that are closest to individuals in Yﬁ at generation k — 1
returnValue - whether a change is detected or not

~k -k . .
X, and X - for use in the next generation

. . . . ~k—
1. Detect changes near the boundaries of infeasible regions: For each x; € X, ~,

(a)
(b)

1

Re-evaluate the constraint functions g (x;)

If x; becomes feasible,returnValue=true,go to step 6

~k—1

2. Detect changes near the boundaries of feasible regions: For each x; € Xf ,

(a)
(b)

Re-evaluate the constraint functions g (x;)

If x; becomes unfeasible,returnValue=true,go to step 6

3. Detect the performance drop of the best feasible solution

(a)

if ZZ_4 (b/5) is worse than Zz:é (b'/5) returnValue=true, go to step 6

4. Detect feasibility change of best feasible solution: if it becomes infeasible, returnValue=true, go

to step 6

9. If nothing detected, returnValue=false, go to step 6

6. Update and return:

~k—1 ~k—1
Remove X, “and X; from the memory

Xk =Xr =X} ={0}

u

Initialise X*: Add up to q unfeasible individuals that have the smallest sum > g; (x)to X*

—k X <k .
Initialise X,,;: Move up to ¢ div 2 most diversified individuals from Xff to X,,;: For ¢ :1 to
qdiv?2

i. Select x; € X¥ that has the maximum total distances to all individuals in Y’;
ii. Remove x; from X{f and add x; to Yﬁ
Initialise ch : Add up to qdiv 2 feasible individuals, which are closest to the individuals in
<k <k
Xu, to Xf
Add Yﬁand ch to system’s memory

Return returnValue;
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e ¢ infeasible individuals x; that have the smallest sum ), g; (x;) where g; are the constraint
functions; j =1 : ¢ (for an individual x; , the smaller the sum » . g; (x;) , the more likely

that x; is close to the boundaries of the feasible regions)

e Among these individuals, select ¢ div2 most diversified individuals, which are those that
have the farthest distance to each other. This is to make sure that we are monitoring

different boundaries

To detect the extension of infeasible areas, in each generation I also chose to monitor ¢ div 2
feasible individuals that are closest to the qdiv 2 infeasible individuals chosen above.

The ¢div 2 infeasible individuals and ¢ div2 feasible individuals chosen above, along with
their current feasibility status, will then be stored in a temporary memory for one generation.
At the next generation, the constraint functions of these 2 x (¢div2) chosen individuals are
re-evaluated to see if they still have the same feasible/infeasible status. If any feasible individual
becomes infeasible and vice versa, we can assume that there is a change in the constraints and
this change might make the repair method outdated. After this feasibility-reevaluation process
finishes, the chosen individuals will be removed from the temporary memory. Details of the
procedure to detect changes in objective function can be found in the prosecode of routine
DetectChange() (Algorithm 10, page 167).

For this change-detection method, there is one parameter that we need to take into account.
This is g, the number of feasibility detectors used to detect constraint changes. The value of ¢q de-
termines the number of constraint function evaluations to be made at each generation. Although
it is generally assumed that the cost of constraint function evaluations is not as significant as the
cost of objective function evaluations, if the constraint functions are computationally expensive
or if there are many constraint functions, a large value of ¢ might affect the performance.

Due to this fact, an adaptation mechanism should be used to determine the value of ¢
depending on the size of the population, the number of constraint functions and the scale of
the objective function (possibly represented by its dimensionality). If the population-size, the
number-of-constraints, and the dimensionality are relatively small, then the value of ¢ can be
close to the population size. Otherwise, ¢ should only be equal to a fraction of the population size.
Following this guideline, in this chapter I will propose a semi-adaptive mechanism to calculate the

value of ¢ depending on the population size, the number of constraint functions and the number
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Figure 6.1: This figure shows how the feasibility-change-detection method would select the
appropriate number of feasibility detectors to maintain an efficient computational cost given
the population size P, the number of constraint functions N, the number of dimensions D and
the allowable limit of detectors L (in this graph the latter three are fixed for the purpose of
illustration). As can be seen in the figure, when the population size is small, most individuals
can be used as detectors. When the population size becomes larger, the number of detectors also
become larger until it reaches the upper-limit but the proportion between number of detectors
and population size and gradually becomes smaller to save computational costs.

of dimensions (variables). The mechanism is described in equation (6.1) and a graph showing
the value of ¢ calculated based on different population sizes/number-of-constraints/number-of-

dimensions is given in Figure 6.1. The following equation is used to calculate the value of

q

¢ = min (P, (1 — exp (—ozP\/m>> L) (6.1)

where P is the population size, N is the number of constraint functions, D is the number of
dimensions, L is the maximum number of detectors allowed by users (in this chapter L = 50),
and a = 0.007 is a constant. « is used to control the steepness of the "curve" of ¢ in Figure 6.1
when one or all the value of P, N and D increase. The larger the value of «, the steeper the

curve.

Advantages and disadvantages of the change-detection mechanism The first and most
obvious advantage of the newly proposed change-detection mechanism is that it helps the repair

method to react to environmental changes and to update any outdated information/strategy
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promptly. This consequently would help the repair method to satisfy a number of requirements
set out in Subsection 5.5.2.

Second, the new change-detection mechanism also does not require any additional objec-
tive function evaluation except at most one evaluation per generation to re-evaluate the best
individual in case it has not been evaluated in the repair process.

Third, although the change-detection mechanism requires a number of constraint function
evaluations to be taken, it makes sure that this number of evaluations is not too high and is in
proportion with the scale of the problem and with the size of the population.

Fourth, similar to other diversity-introducing methods, to some extent the change-detection
mechanism might help to save some computational cost dedicated to dealing with changes.
When being used with this mechanism, only until the time when a change is detected, do the
algorithms need to spend additional computational cost to react to the change.

It should be noted that because this change-detection mechanism is designed to work with
the repair method only and to detect only changes that make the repair method outdated,
the method might not be able to detect all other types of changes. As this proposed change-
detection method only select detectors from the population, if the algorithm converges on a
certain area, the algorithm might not be able to detect all other types of changes in other areas
of the landscape.

This disadvantage, however, can be improved by hybridising the newly proposed change-
detection mechanism with some diversity-maintaining mechanism to make the population more
diversified. That way it might be easier to detect changes that occur in other parts of the
landscape and thanks to that the new change-detection mechanism can be applied effectively to
other dynamic optimisation algorithms. As we will see later it turns out that actually GA+repair
itself already has a good diversity level and hence it is able to partly alleviate this disadvan-
tage. In Subsection 6.1.3 T will also discuss the possibility of hybridising GA+Repair with such
diversity-maintaining/introducing mechanisms as RIGA and HyperM to effectively overcome
the disadvantage.

Another disadvantage of the change-detection mechanism is the additional computational
cost. For each constraint function, at each generation the change-detection mechanism needs
to perform additional 2x (g div2) constraint evaluations. Although the adaptive mechanism in

Equation 6.1 has been proposed to makes sure that this number of evaluations is not too high and
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is in proportion with the scale of the problem and with the size of the population, the cost might
still negatively affect algorithm performance if the constraint functions are computationally

expensive.
Updating reference individuals

As been analysed in Subsection 5.4.4 and also in (Nguyen & Yao 2010a), one of the reasons for
the inefficiency of GA+4Repair and possibly other repair methods in solving DCOPs is that the
reference individuals might become outdated when a change happens. In order to resolve this
issue, we need to update those reference individuals that have become outdated so that they
can correctly reflect the new landscape after a change.

In this chapter, I propose a simple method to update the outdated reference individuals.
First, for each infeasible reference individual, we will try to replace it by a feasible individual
from the search population using non-linear ranking selection. If there is no feasible individual in
the search population, we will replace the infeasible reference individual with a feasible individual
from the reference population. If there is no such feasible individual, we will then replace the
infeasible reference individual with a randomly generated feasible solution. After all infeasible
reference individuals have been replaced by the feasible ones, we will then re-evaluate all reference
individuals if they have not been evaluated since the last change.

The update procedure for the reference population is described in the prosecode in Algorithm

11 (page 172).
Updating search individuals

As also been analysed in Subsection 5.4.4, another reason for the inefficiency of GA+Repair
and possibly other repair methods in solving DCOPs is that some search individuals might also
become outdated when a change happens if they are not selected for the repair process.

In order to resolve this issue, we need to update those search individuals that have become
outdated so that they can correctly reflect the new landscape after change.

The update mechanism that I use in this chapter is very simple. Whenever we detect a
change that affects the repair method, I firstly update the reference population and then use the
newly updated reference individuals to repair all search individuals that have not been repaired
since the last change. This is to make sure that the fitness values of all search individuals

correctly reflect the feasible regions of the newly changed landscape. The update procedure is
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Algorithm 11 routine UpdateReferencePop()

Variables: S - Search population
R - Reference population
ng - Number of feasible individuals in .S
ngr - Number of feasible individuals in R
mp - Number of unfeasible individuals in R

1. For i = 1 to min (ng, mg): Replace each unfeasible individual %, in R with a feasible one from

S

(a) Use non-linear ranking selection to choose a feasible individual x ffrom S

(b) Replace ziby z: zi, = z¢

2. If (mp > ng)then For j = ng + 1 to ng + min (mpr — ng,ngr): Replace each unfeasible
individual 27, in R with a feasible one from R

(a) Use non-linear ranking selection to choose a feasible individual « sfrom R

(b) Replace a7with Ty zl, = Tf

3. If (mp > ng + ng)then For k = ng + nr + 1 to mr — ng — nr: Replace each unfeasible
individual :L‘Z in R with a feasible, randomly generated individual

4. Re-evaluate all reference individuals that have not been evaluated since the last change

described in the prosecode in Algorithm 12 (page 172).

Algorithm 12 routine UpdateSearchPop()

Variables: S - Search population
Note: This routine needs to be called after the
routine UpdateReferencePop (Algorithm 11, page 172)

1. Create a set S1 € S which includes all search individuals that have not been selected for the repair
process since the last change

2. For each individual s in S7, update the fitness value of s by calling the routine Repair (s)

Maintaining/introducing diversity

Numerous previous studies have shown that maintaining/introducing diversity are necessary for
DO. In addition, as discussed earlier, maintaining a high level of diversity in the population so
that the algorithm is able to cover a large area or ideally the whole landscape would help the
change-detection methods proposed in Subsection 6.1.3 to work better.

To enhance diversity in the repair method, in this chapter I also hybridise the mutation

strategies of RIGA and HyperM with GA+Repair. The implementation is very simple: we just
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replace the normal GA mutation with the mutation strategies of RIGA and HyperM. Details of

the implementation will be described later in subsection 6.1.4.
Searching out of range

From our experiments I have found that the original repair method has another drawback: it
becomes less effective in solving problems with the global optimum in boundaries of the search
region. The reason for this is because the probability of the repair method finding the optimum
is smaller when the optimum is in the boundaries of the search region than when it is not.
One way to make repair methods work better in problems with optima in boundaries of
the search region is to allow the algorithm to search out of range and consider all out-of-range
solutions infeasible. In an extended search space like that, the actual global optimum now
is inside the search area, making it easier for the repair method to find the optimum. When
extending the search space like this, one question is how much should we extend the search space
to keep the algorithms working effectively. In this chapter, when the out-of-range mechanism is

tested we allow the algorithms to search 25% beyond the given search range.
6.1.4 The dRepairGA algorithm and other variants

In the previous subsections, I have proposed a set of different mechanisms which can be used
as a framework to improve the performance of the repair method in solving DCOPs. In this
subsection, I will apply these mechanisms to an algorithm, the GA+Repair, to evaluate how
effective the proposed mechanisms would be in solving DCOPs. The mechanisms are combined
with GA+Repair to create three different versions of new algorithms.

For the first version of the new algorithms, we integrate the change-detection and update
mechanisms to GA+Repair to create a new algorithm called dRepairGA. The purpose is to
see how the change-detection and update methods would help the repair method to cope with
DCOPs. The integration in dRepairGA is simple. In addition to all previous operations of
GA+Repair, at every generation we call the routine DetectChange () to detect any environ-
mental changes that may possibly affect the repair method. If a change is detected, we will
invoke the routine UpdateReferencePop(), followed by the routine UpdateSearchPop (), to up-
date the search population and the reference population to deal with the change. The prosecode
of the algorithm is described in Algorithm 13, page 175.

To investigate if the proposed mechanisms can be applied to other algorithms, I also de-
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velop an improved version of Genocop III by hybridising the original Genocop III algorithms
with our newly proposed mechanisms (routines DetectChange () ,UpdateReferencePop()and
UpdateSearchPop()) to handle dynamics and dynamic constraints. These routines are inte-
grated into Genocop in the same way as we do in dRepairGA in Algorithm 13, page 175. The
new algorithm is called dGenocop.

dRepairGA was then extended to a second version. In this second version, we hybridised
existing DO strategies such as RIGA and HyperM with dRepairGA. The purpose is to investigate
the usefulness of combining existing DO strategies with our CH strategies, and to see if our
proposed mechanisms can help to avoid the previously known drawbacks of RIGA and HyperM
in solving DCOPs. The new algorithms are called dRepairRIGA and dRepairHyperM.

These two algorithms are almost identical to dRepairGA except that they have the muta-
tion strategy of RIGA and HyperM instead of the basic GA’s mutation strategy. Specifically, in
dRepairRIGA, in addition to the normal GA mutation rate a fraction of the population (rep-
resented by the random-immigration rate) is replaced by random solutions at every generation.
In dRepairHyperM, the basic mutation rate of GA is still kept, but when a change is detected
that mutation rate will be replaced by the hyper-mutation rate of HyperM. The algorithm will
keep using the hyper-mutation rate until no performance drop is recognised. In that case the
algorithm will resume back to its normal base-mutation rate. It should be noted that there
is a difference in the mutation strategy of dRepairHyperM and HyperM. This is the fact that
dRepairHyperM can trigger its hyper-mutation not only when it detects a drop in performance
of the best individual like HyperM, but also when the DetectChange() routine returns true.

It is also worth noting that such repair-based algorithms as dRepairRIGA and dRepairHy-
perM always have a lower level of diversity than RIGA and HyperM given the same mutation /random-
immigrant rate. This can be attributed to the fact that, in repair-based algorithms the search
population and the reference population have different evolving period. While the search pop-
ulation evolves at every generation, the reference population only evolves after each 100 evalu-
ations. Due to that, during each 100-evaluation period no mutation is applied to the reference
individuals and consequently there is less diversity in repair-based methods given the same mu-
tation/replacement rate as GA-based algorithms. In addition, when the reference population
evolves, individuals generated by mutation or random-immigrant are only accepted if they are

feasible and better than their parents. With our current implementation, the number of in-
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dividuals that are mutated/replaced in dRepairHyperM /dRepairRIGA is only equal to about
less than 80% of those in RIGA /HyperM with the same hyper-mutation and random-immigrant
rate. In other words, a higher mutation rate of 0.8 in dRepairHyperM/dRepairRIGA would
only generate the same number of diversified individuals as a lower mutation rate of less than
0.64 in RIGA /HyperM.

In the third version of the algorithms, because I observed that the repair operator does not
work very well in problems with optima in boundaries of the search region, I also implement a
version of dRepairGA /RIGA /HyperM which can search 25% beyond the given search range using
the out-of-range (OOR) mechanism proposed previously in Subsection 6.1.3. All out-of-range
solutions are considered infeasible. The algorithms with the out-of-range search mechanism are

called dRepairGA OOR, dRepairRIGA OOR and dRepairHyperM OOR.

Algorithm 13 dRepairGA
Note: It is assumed that the problem is maximisation
Routines: DetectChange() - described in Algorithm 10, page 167
UpdateReferencePop() - described in Algorithm 11, page 172
UpdateSearchPop() - described in Algorithm 12, page 172

1. Initialise: same as step 1 of GA+Repair (Algorithm 8,page 150)
2. Search at each generation: same as step 2 of GA+Repair
3. FEwolve the reference population: same as step 3 of GA+Repair

4. Detect change and update search strategy:

(a) For each generation: If DetectChange()=true

i. Update reference pop.: UpdateReferencePop()
ii. Update the search pop.: UpdateSearchPop()

(b) Else do nothing

5. Return to step 2

6.1.5 Related research in the continuous domain

Only until very recently a few algorithms specially designed for DCOPs were proposed. In
(Nguyen & Yao 2009a), we made the first attempt to develop a GA-based algorithm named Re-
pairGA to solve DCOPs. The algorithm is also based on the repair method. It is a combination
of the algorithm GA-+Repair mentioned in Subsection 5.4.4 and a simple mechanism to update

reference individuals at every generation. Experimental results in (Nguyen & Yao 2009a) show
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that RepairGA performs better than existing DO algorithms such as GA/RIGA/HyperM in
the four tested problems. Compared to the new dRepairGA and its variants proposed in this
section, the repair-based algorithm in (Nguyen & Yao 2009a) is significantly different and less
efficient because it lacks the following mechanisms to handle DCOPs: (1) an explicit mechanism
to adaptively detect changes; (2) a mechanism to update outdated search individuals; (3) a
mechanism to maintain/introduce diversity in dynamic environments; and (4) a mechanism to
search out of range to find optima in boundaries of the search region more effectively. The newly
proposed dRepairGA and its variants can be seen as extensions of the old RepairGA algorithm
where the four mechanisms above are incorporated to solve DCOPs better. Our experimental
results (not shown) also show that dRepairGA perform significantly better than RepairGA in
solving DCOPs.

Using two of the benchmark problems proposed in (Nguyen & Yao 2009a), in (Singh et al.
2009) a static constraint optimisation algorithm (IDEA) was evaluated in DCOPs. IDEA is
an EA that uses a special ranking mechanism to select individuals: the algorithm explicitly
maintains some infeasible individuals during the search and ranks “good’ infeasible solutions
higher than feasible solutions. This algorithm, however, was not actually designed for solving
dynamic environments but static environments. In (Singh et al. 2009), to make it work in DCOPs
IDEA was modified by adding a simple change-detection method in which at each generation
a random individual is chosen to detect changes. Whenever a change is detected, the whole
population is re-evaluated to make sure that the information that the algorithm has is updated.
The simple change-detection method used in IDEA does not guarantee that changes are always
detectable because it assumes that changes can be detectable by re-evaluating any random
individual in the search space, which is not always the case. The IDEA algorithm is different
from the algorithms proposed in this chapter because (1) it uses a different method to handle
constraints; (2) it does not use any DO techniques except change-detection to handle changes;
and (3) its change-detection is simple and possibly insufficient in certain cases. Experimental
results show that IDEA perform betters than the chosen peer EA in the two tested problems.

The latest algorithm that was proposed specifically to solve DCOPs is the study of Richter
(Richter 2010), which was published at the time when this chapter was being prepared for sub-
mission. In this study, a special memory-scheme, abstract memory, was adapted for DCOPs.

Abstract memory is a special memory scheme which relies on a probabilistic model of the oc-
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currence of good solutions in the search space to memorise a "spatio—temporal cartographing"
(Richter & Yang 2009) of promising regions in the search space. In (Richter 2010), this scheme
was adapted for DCOPs by separately memorising the good candidates for solving the uncon-
strained objective function as well as the likely feasible regions. Elements from the two memories
then are processed using two different schemes: blending and censoring. The memory schemes
were then applied to an EA using a penalty function and an EA using the repair method to
solve one benchmark problem. The result show that the proposed memory schemes can help
improving the performance of the tested EA in certain situations. The blending and censor-
ing memory-based EAs proposed in (Richter 2010) are very different from the new algorithms
proposed in this chapter, especially in the following major points: (1) they follow a different
approach (using memory-based mechanisms); (2) to detect changes, they only use the HyperM’s
fitness-drop monitoring mechanism, which might not be effective in the case of newly-appearing-

optima DCOPs.

6.2 Comparing and analysing dRepairGA and its variants against
existing algorithms

6.2.1 Chosen algorithms

In this section the performance of different versions of dRepairGA and dGenocop (as described
in the previous section) will be compared with those of existing algorithms: GA, RIGA, HyperM,
GA+Repair and Genocop III. The purpose is to see if our newly proposed mechanisms can help
improving the drawbacks of existing methods. As these algorithms are all based on basic GA
and the only difference between them are the additional mutation strategy / change-detection
strategy that they use to handle dynamics, by comparing these algorithms we will be able to
identify if the strategies they employ are effective in solving DCOPs.

It should also be noted that dRepairGA/dRepairRIGA /dRepairHyperM and their out-of-
range enabling versions will be compared with the original GA/RIGA /HyperM /GA+Repair and
dGenocop will be compared with the original Genocop III. The reason why I do not compare
the performance of dRepairGA-based algorithms with that of Genocop III is that it is not easy
to see if the better or worse performance of dRepairGAs compared to Genocop III is due to our

proposed strategy or not. This is due to that Genocop III is very different from GA as already
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Table 6.1: Test settings for all algorithms used in the paper

All Pop size 25
algorithms Elitism Elitism & non-elitism if applicable
(exceptions  Selection method Non-linear ranking as in (Michalewicz n.d.)
below) Mutation method  Uniform, P = 0.15
Crossover method  Arithmetic, P = 0.1
HyperM Triggered mutate ~ Uniform, P = 0.5 as in (Cobb 1990)
& variants
RIGA Rand-immig. rate P = 0.3 as in (Grefenstette 1992)
& variants
GA+Repair, Search pop size 20
dRepairGA  Reference pop size 5
& variants Replacement rate 0 (default is 0.25 as in (Michalewicz n.d.))
Genocop Search pop size 20
& variants Reference pop size 5
Other parameters  Default as in (Michalewicz n.d.)
Benchmark  Number of runs 50
problem Number of changes 10
settings Change frequency 1000 objective-function evaluations

ObjFunc severity k

Constr. severity S

0.5 (medium), except G24 6a/b/c/d
where k =1 (large severity)
20 (medium)

explained in paragraph 4, Subsection 6.1.1.
6.2.2 Parameter settings

Table 6.1 (page 178) shows the detailed parameter settings for all algorithms tested in this
chapter. To create a fair testing environment, all algorithms, including the newly proposed
algorithms, use the same parameter values as in the previous experiments in Subsections 5.3.3
and 5.4.4. Existing DO algorithms (GA/RIGA /HyperM) also use the same penalty methods as
described in Subsection 5.3.3.

The algorithms were tested in 18 benchmark problems described in Section 5.2 at a change-

severity level of medium, except in G24 6a/b/c/d where the severity level is always high (high

severity is a property of these four problems).
6.2.3 Performance measures and analysis criteria

To measure the performance of the algorithms in this particular experiment, I use the modified
offtine error for DCOPs proposed in Subsection 5.3.2 (Eq. 5.3).
The full offline error scores of all algorithms in the test can be seen in Table 6.2 (page

181). The data in this table is provided mainly for reference purpose only because similar to
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the experiments in the previous chapter, to achieve a better understanding of how well the
newly proposed algorithms work in different types of problems and how each characteristic of
DCOPs would affect the performance of the new algorithms, we further analyse the results by
studying them from different perspectives. First, I summarise the average performance of the
tested algorithms in each major group of problems (see test results in Figure 6.2, page 182).
Then, I investigate the effect of each problem characteristic on each algorithm by analysing
their performance in 21 test cases (pair of almost identical problems, one with a particular
characteristic and one without, as shown in Table 5.5, page 108). The results of this pair-wise
analysis are shown in Figure 6.3, page 183 and Figure 6.4, page 184.

It should also be noted that, in the aforementioned Table 6.2, readers might notice that we
included not only the already-described algorithms such as GA, RIGA, HyperM, GA+Repair,
dRepairGA, dRepairRIGA, dRepairHyperM, dRepairGA _OOR, dRepairRIGA OOR, dRepairHy-
perM OOR, Genocop and dGenocop but also some other algorithms which have not been in-
troduced yet. These algorithms will be introduced and analysed in the later sections. For now,
in this section I will only focus on the data relating to the algorithms that I have described
previously.

In the following subsections, I will analyse the performance of dRepairGA-based algorithms
against existing algorithms in different classes of problems using the performance measure and
criteria above. I will test the algorithms in not only DCOPs, but also static (constrained and
unconstrained) problems and unconstrained dynamic problems. The purpose is to see how
robust each algorithm is in solving different types of problems. For each class of problems,
I will first compare the performance of dRepairGA-based algorithms with existing DO algo-
rithms (GA/RIGA/HyperM, both elitism (-elit) and non-elitism (-noElit) versions) and then
I will compare the performance of dRepairGA-based algorithms with existing CH algorithms
(GA+Repair/Genocop).

Overall performance

Overall, 6.2 shows that with a precision level of three significant digits, the newly proposed
dGenocop is the overall best algorithm. It achieves the top results in 9 out 18 problems, followed
by the newly proposed GenocopwUPCwNRR, which achieves the top results in 5/18 problems.

Our modified versions of HyperM: dRepairHyperM and its out-of-range dRepairHyperM-OOR
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also work well: each algorithm achieve top results in 3 problems, followed by dRepairRIGA /dRepairRIGA-
OOR (each has 2/18 best results) and dRepairGA (1/18 best result). It is interesting to note
that the original Genocop also work really well, achieving the top results in two static con-
strained problems and one dynamic constrained problem. This observation and the fact that
dGenocop perform better than dRepairGA suggest that the other existing contraint-handling
operators in Genocop are also very useful in handling dynamic constrained problems.

In the next subsections we will analyse in details the performance of each algorithm in

different group of problems.
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Figure 6.2: This figures shows the performance of dRepairGA-based variants compared with
existing dynamic optimisation algorithms (the worst and the best of GA/RIGA/HyperM)
and existing CH method combined with basic GA (Ga+Repair) in different group of prob-
lems. To avoid making the graph too cluttered we do not include dRepairGA OOR and
dRepairHyperM OOR in the figure because their behaviours/performance are roughly the same
as dRepairRIGA _OOR. We also do not include all versions of GA/RIGA /HyperM but only their
worst and best performance. Instructions of how to read this figure can be found in the caption
of Figure 5.3..

6.2.4 dRepairGA vs existing algorithms on unconstrained problems (dy-

namic and static)
dRepairGA-based algorithms vs existing DO algorithms

By comparing the bars of dRepairGA-based algorithms with the bars of existing DO algorithms
in the group of unconstrained static problems (fF4+noC) in Figure 6.2 (page 182), we can see
that the dRepairGA algorithm perform better than the worst version of GA/RIGA /HyperM,
but worse than the best version of GA/RIGA /HyperM by factors of 2.14 (dRepairGA vs RIGA-
Elit) to 1.55 (dRepairHyperM vs RIGA-Elit). This is due to that in each generation dRepairGAs
might need twice (or more) the number of evaluations than GA/RIGA /HyperM. This shows the
trade-off that we need to pay if we want to have better performance in DCOPs: the algorithm
might perform worse in unconstrained static problems.

In the group of unconstrained dynamic problems (dF+noC), the bar-comparison in Figure 6.2
also shows that dRepairGA algorithms perform worse than the best version of GA/RIGA /HyperM.

However, I found that the ineffectiveness of algorithms using repair method in these problems,
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Figure 6.3: This figure summarises the effect of twelve different problem characteristics on
the performance of existing DO algorithms (GA, RIGA, HyperM), existing CH algorithm
(GA+Repair), and the newly proposed dRepairGA and dRepairRIGA (we do not include
dRepairHyperM in the figure because its behaviour/performance is roughly the same as dRepair-
RIGA). Instruction to read this figure can be found in the caption of Figure 5.4 (page 122).

which have optima in boundaries of the search region, is due to the shortcomings of the repair
operator in finding optima in boundaries of the search region (as already explained in Sub-
section 6.1.3). When we resolved the drawback of repair method by allowing the algorithm
to search out-of-range (dRepairGA OOR, dRepairRIGA OOR, dRepairHyperM OOR), the
bar-comparison in Figure 6.2 shows that the out-of-range versions of dRepairGA perform better
than GA/RIGA /HyperM by a factor of 1.22 to 2.22. This shows that the proposed algorithms
are still useful when they are used to solve unconstrained dynamic problems. It is interest-
ing to know that although they may need twice (or more) the number of evaluations than
GA/RIGA /HyperM per generation, they are still able to perform better or equally in uncon-

strained dynamic problems.
dRepairGA-based algorithms vs existing CH algorithms

The bar-comparison in the group of unconstrained static problems (fF4+n0oC) in Figure 6.2 shows
that dRepairGA performs exactly the same as GA+Repair (their bars have almost the same

heights). The result proves that the newly proposed dynamic CH mechanisms do not affect the
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Figure 6.4: This figure summarises the effect of the other eight different problem properties on
the performance of GA, RIGA, HyperM, GA+Repair, dRepairGA and dRepairRIGA. Instruc-
tion to read this figure can be found in the caption of Figure 5.4 (page 122).

repair method in solving static unconstrained problems. The figure also shows that the bars
of dRepairRIGA /dRepairHyperM are slightly higher than that of dRepairGA, meaning that
the additions of the RIGA and HyperM mutation strategies to the new algorithm offer a slight
improvement on the performance of dRepairGA compared to the original GA+4Repair. This
shows that diversity has another usefulness for the repair method. When we apply out-of-range
search, the OOR version of dRepairGAs offers a slight positive effect on the performance of
dRepairRIGA (increase the performance by a factor of 1.29). This is due to some problems in
the group fF+noC having a condition suitable for out-of-range search: their global optima in
the boundaries of the search region.

The bar-comparison in the group of unconstrained dynamic problems (dF+noC) in Figure
6.2 shows that all versions of dRepairGA perform better than GA+Repair by an average factor
of at least 1.33. The results suggest that the proposed mechanisms are effective in helping the
algorithm to deal with the dynamics. The addition of RIGA and HyperM mutations for more
diversity proves to be even more useful (better than GA+Repair by an average factor of 1.57 and

1.48, respectively). The addition of the OOR mechanism also helps improve the performance
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because some problems in this group also have global optima in the boundaries of the search
region.

Our experimental results (Table 6.2 and Figure 6.10, page 204 - to be introduced later)
also shows that when being compared against Genocop III, our modified version dGenocop also
behaves the same as dRepairGA when dRepairGA is compared against GA+Repair. Specifically,
dGenocop also has the same performance as Genocop III in solving unconstrained static problems
(fF4+noC) and better performance than Genocop III in solving unconstrained dynamic problems
(dF+n0C). This result proves that the proposed mechanisms can be used effectively for solving

unconstrained problems in not only dRepairGA but also other algorithms.

6.2.5 dRepairGA-based algorithms vs existing algorithms on static problems

with constraints

When being compared with existing DO algorithms, the bar-comparison in Figure 6.2 shows that
the CH technique (repair operator) used in dRepairGA-based algorithms helps them to work
really well in the group of static constrained problems (fF+fC) and significantly outperforms
all the tested existing DO algorithms. Specifically, dRepairGA-based algorithms perform better
than basic GA by an average factor of 32.3 - 56.6, while the best results that GA/RIGA /HyperM
can get for this group of problems is only better than basic GA by a factor of 5.16 (RIGA-Elit).

When being compared with existing CH algorithm (GA+Repair), the bar-comparison in Fig-
ure 6.2 shows that the introduction of the change-detection mechanism and update mechanisms
in dRepairGA algorithms does not affect the efficiency of the repair method in solving static
constrained problems (fF+fC). dRepairGA and GA+Repair have almost identical performance
in this group of problems, with GA+Repair having an insignificantly better score (by a factor
of 1.02). The very slightly worse performance of dRepairGA compared to GA+Repair might be
due to the fact that dRepairGA might need to re-evaluate its best individual at every generation.

Similarly, the introduction of the change-detection mechanism and update mechanisms in
dGenocop also has little impact on the efficiency of the algorithm in solving static constrained
problems. The bar-comparison in Figure 6.10 (page 204) shows that dGenocop has almost the
same performance as the original Genocop III in solving static constrained problems (Genocop
IIT is slightly better by a factor of 1.06).

The introductions of a diversity-maintaining mechanisms (RIGA) into dRepairGA, again
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make the algorithm work better by a factor of 1.75. This means that high diversity is useful not
only for DO but also for CH techniques like the repair method. I will analyse this behaviour
later in Section 6.3.2. The introduction of HyperM, as expected, does not offer any improvement
because the hyper-mutation is not triggered in problems with static objective function and static

constraints.
6.2.6 dRepairGA-based algorithms vs existing algorithms in DCOPs

As the new dRepairGA-based algorithms are designed to solve DCOPs, the result that is of most
interest is the comparison between the new dRepairGA-based algorithms and existing algorithms

in solving the class of DCOPs (dF+{C, fF+dC, dF+dC, OICB, ONICB, NAO and SwO).
dRepairGA-based algorithms vs existing DO algorithms

The summary result (bar-comparison) in Figure 6.2 (page 182) shows that dRepairGA works
significantly better than all existing DO algorithms that I have tested in this chapter (by factors
from 1.75 to 56.6).

The group of problems where dRepairGA-based algorithms work best are problems with fixed
objective function and dynamic constraints (fF dC), especially those with moving constraints
which expose new, better optima (NAO). This might be due to the usefulness of the repair
method in tracking the moving feasible regions (I will have a more detailed analysis about this
in Section 6.3).

dRepairGA-based algorithms also work very well in problems with dynamic objective func-
tions and dynamic constraints (dF dC), again possibly due to its advantages in tracking the
moving feasible regions, compared to other GA-based algorithms

The performance gap between dRepairGA-based algorithms and existing GA-based DO al-
gorithms become smaller in the group of problems with fixed constraints and dynamic functions
(dF fC). However, here the difference is still significant: dRepairGA algorithms perform better
by factors from 1.75 to 3.11.

When we look at how the algorithms perform on problems with different characteristics, Fig-
ure 6.2 shows that the dRepairGA algorithms perform better than existing GA-based algorithms
in all of the tested DCOP characteristics, of which the gaps are particularly large in problems
with newly appearing optima (NAO), problems with optima in constraint boundaries (OICB)

and problems with switching optima (SwO). This suggest that as expected, the combination of
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repair method and our adaptive change-detection/update mechanism are useful at tracking the
moving feasible regions, finding optima in boundaries and distributing individuals effectively
when the optima switch between disconnected feasible regions.

There is one type of problem characteristic where the gap between dRepairGA algorithms
and existing GA-based algorithm is less significant (although the former are still better by factors
from 1.5 to 3.1). This is the group of problems where the optima are not in constraint boundaries
(ONICB). This decrease in efficiency is caused not by the newly proposed mechanisms, but by the
nature of the repair method because GA+Repair also show the same decrease in performance.
This result suggests that the repair method might become less effective in solving problems with
optima not in constraint boundaries. Nevertheless, the result shows that in spite of this decrease
in performance, dRepairGA-based algorithms still perform significantly better than existing DO
algorithms in the ONICB group.

It should be noted that there is another type of problem where the performance of dRepairGA-
based algorithms are roughly equal to existing algorithms. This is the group of problems with
optima in search boundaries (OISB). However, all problems in this group are not DCOPs but

either static unconstrained or static constrained problems.
dRepairGA vs existing CH algorithms

The bar-comparison in Figure 6.2 shows that dRepairGA-based algorithms also perform signif-
icantly better than GA+Repair in all DCOPs (by factors from 1.34 to 4.53). The results prove
that the proposed mechanisms work effectively in improving the drawbacks of GA+Repair in
solving DCOPs.

The group of problems where the difference between dRepairGA-based algorithms and
GA+Repair becomes largest are again problems with fixed objective function and dynamic
constraints (fF dC) (by factors of 2.67 - 4.53) especially those with moving constraints which
expose new, better optima (NAO). The difference between dRepairGA and GA+Repair in other
problem groups are smaller, but still significant(by factors of 1.34 - 2.96). A more detailed
analysis about the impact of each proposed mechanism on these improvements will be carried
out in Section 6.3).

The results also show that basically dRepairGA-based algorithms also have the same be-

haviour as GA+Repair in DCOPs, only that they are able to achieve better performance. This
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observation suggests that the efficiency of the original repair operator of GA+Repair in handling
constraints is not affected by the newly proposed mechanisms.

I also observed that the improvement in performance of dGenocop over Genocop is very
similar to the improvement of dRepairGA over GA+Repair. Specifically, dGenocop also has
better performance than Genocop III in all groups of DCOPs and the behaviour of dGenocop
is also the same as that of Genocop III. A detailed analysis about the advantages of dGenocop

over Genocop III will be provided in Section 6.3.3.
6.2.7 Other interesting characteristics of dRepair(GA-based algorithms

In this subsection I will take a further analysis of the behaviours of dRepairGA-based algorithms
by looking at how different problem characteristics would affect their performance. This analysis
was done based on observations on detailed results in Figure 6.3 and Figure 6.4 where the
algorithms were tested in pairs of problems, of which the two problems of each pair are almost
identical except that one has a particular characteristic and one does not.

The experimental results in these pairs of problems reveal some interesting behaviours of
dRepairGA-based algorithms as follows.

First, although the presence of constraints makes the problems more difficult for existing
DO algorithms, things are different for algorithms using repair methods. For these algorithms,
the presence of constraints actually makes the problems (both static and dynamic) easier to
solve. Evidence for this can be seen in all pairs that have two almost identical problems, one
with constraints and the other without constraints. They are pair 1 (plot a), pair 5 (plot e),
pair 6 (plot f), pair 11 (plot j), pair 12 (plot k) and pair 13 (plot 1) of Figure 6.3 and pair 21
(plot h) of Figure 6.4. In all these plots we can see a distinct difference between existing GA-
based DO algorithms and repair-based algorithms like GA+Repair and dRepairGA variants.
This is the fact that while the presence of constraints make existing GA-based DO algorithms
less effective compared to the unconstrained cases (in each of the aforementioned subplots their
"fC" or "dC" bars are always lower than their "noC" bars), it also make repair-based algorithms
become more effective in the constrained cases (in each of the aforementioned subplots the "fC"
or "dC" bars of repair-based algorithms are always higher than their "noC" bars). The reason
is that the presence of constraints helps increase selection pressures in the repair routine. This

routine selects newly repaired solutions only if they are feasible. Otherwise, the repair process
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is repeated until a feasible solution is produced (see step 2 of the Repair routine (Algorithm 9,
page 151)). Obviously this type of selection is only meaningful in case there are constraints. In
the unconstrained case, any repaired solutions will be accepted and hence there is no pressure
for selection in the repair process, leading to slower convergence speed.

Another interesting, counter-intuitive observation is found in problems where the global
optimum switches between disconnected feasible regions. Problems like these are supposedly
more difficult to solve than problems with no disconnected feasible regions and the test results
(to be explained in detail in Subsection 6.3.1) confirm that this assumption is true for existing
DO algorithms. However, for dRepairGA-based algorithms, I observe that the presence of
disconnected feasible regions does not always have any negative impacts on the performance.
Instead, it might even help the algorithms to travel from one region to another faster. In
addition, the larger the infeasible barrier between two feasible regions (supposedly harder to solve
for algorithms using normal mutations), the better the performance of repair-based algorithm.
Evidence can be seen in pair 17 (plot d) of figure 6.4 where repair-based algorithms have better
performance in the disconnected-feasible-region case than in the single-feasible-region case. More
evidence is given in pair 18 (plot ) of Figure 6.4 where the more isolated the disconnected feasible
regions, the better the performance of repair-based algorithms. It should be noted that repair-
based algorithms do not always perform better in problems with disconnected regions. One
example is in pair 16 (plot c) of Figure 6.4 where the performance of repair-based algorithms
in the disconnected-region case are only equal to or slightly worse than their performance in
the single-region case. However, even in this pair of problem, the impact of disconnected-region
on the performance of repair-based algorithms is much less than its impact on existing DO
algorithms.

The reason for the effectiveness of repair-based methods in solving problems with disconnected-

feasible regions will be analysed in Subsection 6.3.1.

6.3 What makes dRepair-based algorithms work well in DCOPs

- a further analysis

In this section I will carry out a detailed analysis to investigate which factors have made the
proposed algorithms work well in DCOPs (and why) and whether these factors are the results

of our proposed mechanisms.
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6.3.1 What makes dRepairGA-based algorithms better than GA /RIGA /HyperM
in solving DCOPs

Ability to retain diversified solutions even if they are infeasible

The experimental results show that one of the reasons for dRepairGA-based algorithms to work
better than GA/RIGA /HyperM (when these algorithms are combined with penalty functions) is
that diversified but infeasible solutions are accepted with a higher percentage thanks to the way
the repair method works. This helps dRepairGA-based algorithms maintain a higher level of
diversity and hence might be able to react to changes in or near infeasible regions more effectively.
This is one of the fundamental differences between the newly-proposed repair-based algorithms
and the tested existing DO algorithms+penalty functions, which have a disadvantage of not
being able to retain many diversified solutions if they are infeasible, as will be shown below.

Evidence for this advantage of dRepairGA-based algorithms can be seen in Table 6.3 (page
191) where I analysed the relationship between the percentage of infeasible areas over the total
search area and the actual percentage of infeasible solutions over the total number of solutions
selected for the next generation in the tested algorithms. To undertake this analysis I used a
measure, the percentage of selected infeasible individuals proposed in Subsection 5.3.2. Among
the individuals selected for the next generation, this measure counts the percentage of those
that are infeasible. The average score of this measure (over all tested generations) is then
compared with the percentage of infeasible areas over the total search area of the landscape. If
the considered algorithm is able to treat infeasible diversified individuals and feasible diversified
individuals on an equal basis (and hence to maintain diversity effectively), the two percentage
values should be equal.

As can be seen in Table 6.3, dRepairGA-based algorithms have much higher percentage of
infeasible individuals (43.8%-50.8%) than their GA-based elitism counterparts (12.5%-26.3%)
although they use the same elitism mechanism. This means that dRepairGA-based algorithms
is able to maintain more diversified but infeasible individuals. It should be noted that although
the non-elitism versions of GA/RIGA /HyperM also have a nearly as high percentage of infeasible
individuals as dRepairGA-based algorithms, as already discussed in Subsection 5.3.3, in non-
elitism GA/RIGA /HyperM, this high score comes with a trade-off of slower convergence which

eventually decrease the performance of the algorithms. The results in Table 6.2 (page 181) also
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Table 6.3: The average percentage of selected infeasible individuals over all problems for each
tested algorithm. The last row shows the average percentage of infeasible areas over all problems.

Algorithms Percent of
infeasible solutions
.GA-elit 12.5%
.RIGA-elit 26.3%
.HyperM-elit 14.8%
.GA-noElit 41.8%
.RIGA-noElit 46.8%
.HyperM-noElit 42.8%
.dRepairGA 43.8%
.dRepairRIGA 44.9%
.dRepairHyperM 48.0%
.dRepairGA-OOR 46.0%
.dRepairRIGA-OOR 48.3%
.dRepairHyperM-OOR 50.8%
.GA+Repair 47.0%
.GENOCOP 40.8%
.dGENOCOP 41.5%
Percentage of infeasible areas 60.8%

show that non-elitism GA-based algorithms have much worse performance than their elitism
counterparts.

It is also interesting to see that although not equipped with an enhanced diversity maintaining
mechanism such as random-immigrant or hyper-mutation, dRepairGA and GA+Repair still
achieve a percentage of infeasible individuals as high as dRepairRIGA and dRepairHyperM.
This confirms that the advantage of keeping infeasible solutions is due to that the repair method
accept both infeasible solutions and feasible solutions, provided that they can contribute to the

search.
Ability to track the moving feasible regions

Another reason for dRepairGA-based algorithms to perform better than GA/RIGA /HyperM is
that they are able to track the moving feasible regions. As been briefly mentioned in Subsection
5.5.2, in order to track the moving optima successfully, it might be necessary to track the moving
feasible regions where the optima are in first because in DCOPs the global optimum always either
move along with the feasible regions or appear in a new feasible region.

To compare the performance of dRepairGA-based algorithms against other algorithms in
tracking moving feasible regions, in this subsection I will analyse the ability of the tested al-
gorithms in tracking the optimal region, i.e. the feasible region where the global optimum is

currently in, and then evaluate the correlation between algorithms’ tracking ability and the
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Figure 6.5: This figure shows how well each of the tested algorithms does in tracking the moving
optimal feasible regions in different groups of DCOPs. The algorithms are evaluated using the
score optimal region tracking (ORT). The ORT measure would be equal to 1 in the best case
when the tested algorithm is able to track the region containing the global optimum at every
generation, and would be equal to zero in case the algorithm is not able to track this region
at all. This score is represented in the vertical axis. Explanations for the abbreviations in the
name of problem groups can be found in Table 5.5 (page 108). It should be noted that in this
figure we do not include the following groups of problems: (1) fF+fC because these problems
are static; and (2) fF/dF+noC because there is no constraint.

speed and accuracy of their convergence. To evaluate the ability to track the optimal region, 1
propose a new measure: the optimal region tracking measure (ORT), which is calculated as the
ratio between (a) the number of generations at which the algorithm has at least one individual

in the optimal region and (b) the total number of generations:

S S (i)
Zyil p (i)

where n (i,7) is equal to 1 if the tested algorithm has at least one individual in the optimal

ORT = (6.2)

region at the jth generation of the ith change and is equal to 0 otherwise; m is the number of
changes and p (7) is the number of generations at each change period 7.

The ORT measure would be equal to 1 in the best case when the tested algorithm is able to
track the region containing the global optimum at every generation, and would be equal to zero
in case the algorithm is not able to track that region at all.

The summarised ORT scores of some algorithms are given in Figure 6.5 (page 192). To
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avoid the graph to be too cluttered, I do not include the scores of the non-elitism versions of
GA /HyperM/RIGA because they are much worse than the elitism versions. I also do not include
the score of dRepairHyperM and the out-of-range (OOR) versions of dRepairGA-based because
these scores are similar to the score of dRepairRIGA.

As can be seen in Figure 6.5, the ORT scores of existing DO algorithms are lower than
that of dRepairGA-based algorithms, meaning that the latter are better in tracking the moving
feasible regions. The difference becomes more significant in two cases: problems where the
objective functions are dynamic (dF+fC, dF+dC and SwO) and problems where the moving
feasible regions expose new, better optima without changing the value of the existing optimum
(NAO). The reason for existing DO algorithms to not work well in the first case is that the
global optimum does not gradually move but jumps from one region to another and hence it is
difficult to track its movement using existing DO’s tracking methods. The reason for existing
DO algorithms to not work well in the second case is that the algorithms might not be aware of
the newly appearing optima.

It is also interesting to note that even when being used without such diversity-maintaining
mechanisms as random-immigrant or hyper-mutation, dRepairGA can still track the moving
feasible regions very well. Figure 6.5 shows that the score of dRepairGA is almost the same as
that of dRepairRIGA (only slightly lower in a few cases). It means that the repair operator and
our three repair-based routines proposed in Subsection 6.1.3 are those that plays the major role
in helping the algorithms to track the moving feasible regions. It also confirms our hypothesis
in Subsection 6.1.2 that the original repair operator can be modified to track moving feasible

regions.
Ability to travel between disconnected feasible regions

The third reason for the good performance of dRepairGA-based algorithms is that, different
from the tested DO algorithms+penalty functions, dRepairGAs can travel easily through the
infeasible areas separating disconnected feasible regions. This helps dRepairGAs to follow the
global optimum when it switches from one region to another.

Evidence for this advantage of repair-based methods over existing DO algorithms can be
found in the test cases 17, 18 (plots d, e) in Figure 6.4, page 184 that we have discussed

previously in Subsection 6.2.7. As can be seen in the plots, while GA/RIGA /HyperM perform
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Table 6.4: The triggered-time count scores and the detected-change count scores of algorithms
using the HyperM mechanism in problem G24 3.
G24_3 (NAO fF+dC)

Algorithms Trigger Count Detected Change Count
Value stdDev Value stdDev
.HyperM-noElit 164.20 11.29 1.82 0.83
.HyperM__elit 0.00 0.00 0.00 0.00
.dRepairHyperM 11.67 0.84 11.00 0.00
.dRepairHyperM-OOR 11.67 0.92 11.00 0.00

NAO - Newly Appearing Optimum
fF+dC - fixed objective Function, dynamic Constraints

worse (their bars become lower) in case there are more barriers separating the two disconnected
feasible regions, repair-based algorithms still achieve the same performance or even have a better
performance (their bars become higher) when there are barriers or when the barriers become
larger. This shows that the presence of such barriers do not have a negative impact on repair-
based algorithms or in other words repair-based algorithms can travel through the infeasible
path between feasible regions thanks to the way they accept infeasible solutions during their

search process.
Ability to detect changes occurring in the infeasible areas

Another possible reason for dRepairGA-based algorithms to perform better than change-detection
DO algorithms, which are originally designed to detect changes in feasible areas only, is that they
can detect changes in infeasible areas as well. Existing change-detection DO algorithms like Hy-
perM might not be able to detect changes in problems with moving feasible regions which expose
newly, better optima as G24 3 because HyperM only focuses on detecting changes happening
to the current global optimum in the feasible regions. In problems like G24 3 where a new,
better optimum appears due to changes in infeasible regions, the algorithm cannot detect the
changes and consequently underperforms. Hypothetically the new algorithms should do better
because they have detectors near the boundaries of infeasible regions to detect the situations
where the constrained region expands/shrinks/moves/appears/disappears.

To analyse if the newly proposed change-detection mechanism can help the algorithm to
work better than HyperM in this situation, we compared HyperM with its repair-based variant:
our newly proposed dRepairHyperM. In term of detecting changes, dRepairHyperM (and other
dRepair-based algorithms) is similar to HyperM in that it uses the same method to monitor

fitness drop to detect changes. However, dRepairHyperM also use our newly proposed mecha-
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nism to monitor the shrink and expansion of infeasible regions to detect changes in infeasible
areas. Details of this mechanism has been described in Subsection 6.1.3 and in the routine
DetectChange in Algorithm 10 (page 167). This DetectChange routine is also used in other
dRepair-based algorithms tested in this chapter.

To evaluate the ability of HyperM and dRepairHyperM in detecting changes, I used the
two measures proposed in Subsection 5.3.2: the measure triggered-time count, which counts
the number of times the hyper-mutation-rate is triggered by the algorithm, and the measure
detected-change count, which counts the number of triggers actually associated with a change.
For HyperM /dRepairHyperM, triggers associated with a change are those that are invoked by the
algorithm within v generations after a change, with v is the maximum number of generations (five
in our implementation) needed for HyperM /dRepairHyperM to detect a drop in performance.
These two measures indicate how many times an algorithm triggers its hyper-mutation; whether
each trigger time corresponds to a new change; and if there is any change goes undetected during
the search process.

Evidence for the advantage of dRepairGA-based algorithms as dRepairHyperM over HyperM
can be seen in Table 6.4 (page 194). The comparison results show that on the one hand, both
the elitism and non-elitism versions of HyperM are not able to detect changes in G24 3 (the
algorithm either is not able to trigger its hyper-mutation rate to deal with changes (elitism
case, triggered-time count=0 and detected-change count=0) or is not able to trigger its hyper-
mutation rate correctly when a change happens (non-elitism case, triggered-time count~164 and
detected-change count~1.8)). On the other hand, dRepairHyperM and dRepairHyperM-OOR
are able to detect all changes occurring during the search process (triggered-time count~11
and detected-change count=11). This shows the advantage of dRepairGA-based algorithms in

detecting changes.

6.3.2 What makes dRepairGAs/dGenocop better than GA+Repair/Genocop
in solving DCOPs?

Ability to update reference individuals when changes happen

In algorithms using the original repair method such as GA+Repair and Genocop III, after a
change the reference individuals might become out-of-date or even infeasible. These outdated

individuals might mislead the algorithms and consequently affect the search performance. Our
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hypothesis is that dRepairGAs/dGenocop might be better than GA+Repair/Genocop in this
aspect because they are able to repair their reference individuals whenever a change happens
thanks to the routine UpdateReferencePop. This advantage helps such algorithms as dRepair-
GAs/dGenocop to update their knowledge about the problem to react to the change better.

To analyse if the newly proposed change-detection mechanism can really help the algorithm
to work better than existing CH algorithms in this situation, we compared GA+Repair with
dRepairGA, where the original GA+Repair is combined with the newly proposed routines de-
scribed in Subsection 6.1.3: DetectChange and UpdateReferencePop. These two routines are
designed to adaptively update the reference population whenever a change happens.

To test if the algorithms are able to update the reference individuals properly, I used a
measure proposed in Subsection 5.3.2: the plot of number of reference individuals that are
feasible. If an algorithm is able to update the reference individuals properly, it should be able to
maintain a reference population of all feasible individuals all the time during the search process
and the plot diagram would show a flat, constant line.

The most suitable environments to test this behaviour of the two algorithms are DCOPs with
dynamic constraints where after each change the previous best feasible solutions are hidden by
the moving infeasible region. In the G24 benchmark set, the problems that have this property are
the G24 4, G24 5 and G24 7. G24 4 and G24 5 belong to the problem group dF,dC while
G247 belongs to the problem group fF,dC (see Figure 6.2). As can be seen in Figure 6.2, in
both groups the performance of GA+Repair decreases significantly compared to the case where
the constraints are fixed (fF,fC). In this analysis we will see if the moving infeasible region makes
any of the reference individuals become infeasible. If no reference individual becomes infeasible,
after each change the total number of feasible reference individuals should remain to be five (the
size of the reference population). If one or more individuals do become infeasible, there should
be a drop in the total number of feasible reference individuals.

The comparison results using the aforementioned measure are shown in Figure 6.6, page
197. The figure shows that, in all cases the original repair method (GA+Repair) is not able to
keep all reference individuals feasible during the search. When a change happens, the number of
feasible reference individuals drops to a very low level. The figure also shows that this drawback
has been overcome in dRepairGA. We can see in the dRepairGA plot that when GA+Repair

is combined with the UpdateReferencePop routine, all reference individuals are updated and

196



6. Solving DCOPs 6.3. What makes dRepair-based algorithms work well in. . .

T T T T T T T T T T T T T T T T T T
(al) GA+repair op. WITHOUT repaired reference indivs. in G24-4 (a2) GA+repair op. WITH repaired reference indivs. in:G24-4

GA+repair op. WITHOUT repaired reference indivs| |
—=6— GA+repair op. WITH repaired reference indivs.

T T T T T T T T T T T T T T T T T T
(b1) GA+repair op. WITHOUT repaired reference indivs. in G24-5 (b2) GA+repair op. WITH repaired reference indivs. in G24-5

number ot teasible reterence Individuals

T T T T T T T T T T T T T T T T T T
(cl) GA+repair op. WITHOUT repaired reference indivs. in G24-7 (c2) GA+repair op. WITH repaired reference indivs. in: G24-7

change no. change no.

Figure 6.6: This figure shows a comparison of GA+Repair and dRepairGA in maintaining
feasible reference individuals in problems with moving infeasible regions. The plot values (y-
axis) show the number of reference individuals that are feasible. If no reference individual
becomes infeasible, the plot should shows that after each change the total number of feasible
reference individuals still remains to be five. On the left hand side is GA+Repair. On the
right hand side is dRepairGA, which is the combination of GA+Repair and a special adaptive
mechanism (the UpdateReferencePop routine - introduced in Algorithm 11, page 172) to make
sure that the outdated reference individuals are updated whenever a change happens.

remained feasible through out the search process.
Later in Subsection 6.3.3 I will analyse the level of performance improvement that the use

of the routine UpdateReferencePop can bring to the original Genocop III and GA+Repair.
Ability to adaptively balance feasibility and infeasibility

Another reason that makes dRepairGAs/dGenocop better than GA+Repair/Genocop is that
they are able to adaptively balance feasibility and infeasibility better when changes happen.
As mentioned previously in Subsection 5.4.4, existing CH strategies like the repair method in
GA+Repair/Genocop might suffer from the outdated problem and hence might not be able to

balance feasibility /infeasibility well in DCOPs.

197



6. Solving DCOPs 6.3. What makes dRepair-based algorithms work well in. . .

To analyse if the newly proposed change-detection mechanism can really help improve bal-
ancing feasibility /infeasibility in DCOPs, we compared GA+Repair with the new dRepairGA
algorithm. As already described in Subsection 6.1.4, dRepairGA is a combination of GA+Repair
with the newly proposed change-detection (DetectChange) and update routines: UpdateSearch-
Pop and UpdateReferencePop. These routines are designed to adaptively balance feasibility and
infeasibility whenever a change happens.

To test if the performance of GA+Repair versus dRepairGA in balancing feasibility /infeasibility
in dynamic environments, I used a measure proposed in Subsection 5.3.2: the plot of number of
feasible individuals in each disconnected feasible region to monitor the number of feasible individ-
uals in each disconnected feasible region and the ratio of feasibility /infeasibility. If the balancing
mechanism works well in the DCOP case, it should be able to manage a good distribution of
individuals so that the better feasible regions should have more feasible individuals.

The most suitable environments to test this behaviour are DCOPs with two disconnected
feasible regions where the global optimum keeps switching from one region to another after each
change or after some consecutive changes. In the G24 benchmark set, the problems that have
this property are the G24 1, G24 2, G24 3b, G24 4,G24 5, G24 6a, G24 6¢, G24 6d, and
G24 8b where the global optimum switches from one region to another after each period of one
or two changes. All these problems belong to the group SwO in Figure 6.2 (page 182), where we
can see that the performance of GA+Repair significantly decreases compared to the stationary
constrained case (fF, fC). In such SwO problems like these, if the balancing mechanisms of the
tested algorithms work well, at each period between changes the algorithm should be able to
focus most feasible individuals on the region where the global optimum is currently in while still
maintaining the same ratio of feasibility /infeasibility for diversity purpose.

The plots of number of feasible individuals in each disconnected feasible region of GA+Repair
and dRepairGA in these functions are given in Figure 6.7 (page 200) and Figure 6.8 (page 201).
It should be noted that the measure scores of the tested algorithms in three problems: G24 2
and G24 6¢/d are not shown in because they are similar to that of G24 5, and G24 6a,
respectively.

The figures show that in all cases except G24 3b, the existing CH method GA+Repair is not
able to focus most feasible individuals on the region where the global optimum is currently in.

Instead, the majority of feasible individuals still remained in one single region (region 2), which
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is where the global optimum firstly was before the changes happen. The number of individuals
in the other region (region 1) remains low regardless of whether the global optimum has switched
into the region or not. These results show that, due to its outdated information and strategy,
the GA+Repair algorithm is not able to follow the switching optimum well.

Figures 6.7 and 6.8 also show that the drawback above has been resolved in the newly
proposed dRepairGA. As can be seen in the figures, the presence of the routines proposed in
Subsection 6.1.3 helps dRepairGA focus most of its feasible individuals to the region where the
global optimum has moved into whenever a change happens while still maintaining the same
ratio of feasibility/infeasibility for diversity purpose in all problems.

Later in Subsection 6.3.3 I will analyse the level of performance improvement that the rou-

tines UpdateSearchPop and DetectChange bring to the original Genocop III and GA+Repair.
More diversity helps the repair operator approach toward the global optimum faster

The third reason that might make the newly proposed algorithms as dRepairRIGA / dRepairHy-
perM perform better than existing repair-based methods is the high-level of diversity. The
summarised results in Figure 6.2 (page 182) shows that when being hybridised with diversity-
enhanced mutation strategies such as RIGA and HyperM, the performance of dRepairGA can
be significantly increased in all groups of problems.

This improvement is due to two factors. The first, and obvious factor is the benefit of
diversity in dealing with environmental dynamics. Evidence of this advantage can be seen in
the experiments in this chapter, for example in Table 6.2 where we can see that GA-based
algorithms with high diversity as RIGA and HyperM perform better than basic GA in most
dynamic problems.

I found that there is another interesting factor that helps dRepairRIGA /dRepairHyperM out-
perform dRepairGA. This is the fact that, besides its usefulness in handling dynamics, diversity
also improves the effectiveness of the repair method in handling constraints. Evidence for this ad-
vantage can be found in Figure 6.2, the group of static constrained problems (fF,fC). In this type
of problem, the performance of dRepairRIGA is significantly better than that of GA+Repair
and dRepairGA. As the only difference between dRepairRIGA and GA+Repair/dRepairGA
when solving static constrained problems is the level of diversity, the good performance of

dRepairRIGA must be brought by its high level of diversity. In addition, because there is no

199



6. Solving DCOPs 6.3. What makes dRepair-based algorithms work well in. . .

(al) GA+Repair in G24-1
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—&— no. of indivs in region 1
— no. of indivs in region 2

change no. change no.

Figure 6.7: This figure shows how the balance strategies of GA+Repair (left) and dRepairGA
(right) distribute their feasible individuals in the disconnected feasible regions of problems
G24 1, G24 3b and G24 4. The problems tested in this figure are those with global optima
switching between two disconnected feasible regions after each change or after a few changes.
e.g. in G24 1 and G24_3b the location of the global optimum is as follows: change 1: region
2, change 2-4: region 1, change 5: region 2 and so on. The plot lines with circles show the
number of feasible individuals in region 1, and the plain plot lines show the number of feasible
individuals in region 2. If the balance strategy works well, most individuals should be focused
on the region where the global optimum is currently in. It means that when the optimum
switches to region 2, the number of individuals in region 2 should be high and the number of
individuals in region 1 should be low. When the optimum switches back to region 1, the reverse
thing should happen, i.e. number of individuals in region 1 should be high and that number in
region 2 should be low.

environmental dynamic in static constrained problems, we can conclude that the benefit of high
diversity in this type of problem is not to handle dynamics but to help the repair method to be
more effective in handling constraints. The reason for the usefulness of diversity to the repair
process is possibly due to that higher diversity might allow the repair process to approach the

global optimum from more directions, and hence accelerate the search process.
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Figure 6.8: This figure shows how the balance strategies of GA+Repair (left) and dRepairGA
(right) distribute their feasible individuals in the disconnected feasible regions of the other three
problems: G24 6¢, G24 6d and G24 8b. Instructions to read the figure can be found in Figure
6.7.

Ability to search out of range to find optima in search boundary faster

The ability to search out of range (OOR) of dRepairGA _OOR, dRepairRIGA OOR, dRepairHy-
perM_OOR also brings them certain advantages to existing repair-based methods in solving
problems where the global optima is in the boundaries of the search region. Experimental re-
sults in Figure 6.2 and in Table 6.2 show that compared to the original algorithms, the OOR
versions achieve better performance in group of problems with optima in search boundaries
(OISB, fF+noC, dF+noC) while still having almost equal performance in other group of prob-
lems. It means that the 25% out-of-range search mechanism is useful to find in-boundary optima
and does not create any significant negative impact on the performance of algorithms in other

cases.
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6.3.3 The contribution of each component to the performance of dRepairGAs

and dGenocop

Because the proposed dRepairGAs and dGenocop algorithms combine different components
such as the four routines Repair, DetectChange, UpdateReferencePop, UpdateSearchPop; the
RIGA /HyperM mutation strategies; and the out-of-range mechanism OOR, it is of interest
to study the contribution of each component on the performance of the complete algorithms.
Among these components, I have already analysed the impacts of the Repair routine by com-
paring the performance of GA+4Repair with that of GA in Figure 6.2. I have also analysed
the impact of the RIGA /HyperM mutation strategies and the OOR mechanism on algorithms’
performance in Subsections 6.3.2 and 6.3.2, respectively.

In this subsection I will analyse the impacts of the rest of the proposed components - the
three routines DetectChange, UpdateReferencePop and UpdateSearchPop - on the performance
of GA+Repair and Genocop III. In order to carry out the analysis, I firstly integrated each of the
above routines with the original version of GA+Repair and Genocop I1I to create a corresponding
modified variation, then compared this modified variation with the original algorithm. The

following combinations were tested:

e GA+Repair/Genocop + wNUwNRR (No Update, No Repair Reference population): These
are the original versions of the constraint-handling algorithms. None of the newly proposed

routines is integrated.

e GA-+Repair/Genocop + wUPGwNRR (Update Per Generation, No Repair Reference pop-
ulation): No change-detection is made. Only the UpdateSearchPop routine is carried out

at every generation

e GA-+Repair/Genocop + wUPGwRR (Update Per Generation, Repair Reference popula-
tion): No change-detection is made. Both the UpdateSearchPop and UpdateReferencePop

routines are carried out at every generation

e GA-+Repair/Genocop + wUPCwNRR (Update Per Change, No Repair Reference popula-
tion): Change detection is enabled. The UpdateSearchPop routine is carried out adaptively

whenever a change is detected.
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e GA-+Repair/Genocop + wUPCwRR (Update Per Change, Repair Reference population):
Change detection is enabled. Both the UpdateSearchPop and UpdateReferecePop routines

are carried out adaptively whenever a change is detected.

Detailed comparisons on groups of problems for GA+4Repair-based algorithms is given in
Figure 6.9 and the same comparison for Genocop-based algorithms is given in Figure 6.10. It
should be noted that because all GA+Repair variants are developed from GA+Repair, in Figure
6.9 I chose the original GA+Repair as the baseline to compare all GA+Repair variants. Likewise,
because all Genocop-based algorithms are developed from Genocop III, in Figure 6.10 I chose

the original Genocop III as the baseline to compare all Genocop-based algorithms.

Y axis: Ratio How many times the error of each GA+Repair variant is smaller than
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Figure 6.9: This figure shows the effect of each of our proposed adaptive balancing/updating
mechanism on GA+Repair in solving DCOPs. Each algorithm in the graph represents a combi-
nation of each proposed mechanism and GA+Repair. The vertical axis show the ratio between
the average (modified offline) error of the original GA+Repair and that of each algorithm. This
ratio indicates how many times each algorithm performs better (ratio > 1) or worse (ratio < 1)
than the the original GA+Repair in term of modified offline error (a ratio score of 1 means that
there is no improvement nor decrease in performance). Explanations for the abbreviations in
the name of problem groups can be found in Table 5.5 (page 108).

Generally, the comparison results in Figures 6.9 and 6.10 are as expected, i.e. each of the
proposed components does have its own contribution to improve the performance of algorithms.
Detailed analysis shows some interesting observations about the contribution of each component.

First, the results suggest that the process of updating algorithms’ knowledge/strategy (as

done in the UpdateSearchPop and UpdateReferecePop routines) can only be effective if they
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Figure 6.10: This figures shows the effect of each of our proposed adaptive balancing/updating
mechanism on Genocop III in solving DCOPs. Each algorithm in the graph represents a combi-
nation of each proposed mechanism and Genocop III. The vertical axis show the ratio between
the average (modified offline) error of the original Genocop IIT and that of each algorithm. This
ratio indicates how many time each algorithm performs better (ratio > 1) or worse (ratio < 1)
than the the original Genocop III in term of modified offline error (a ratio score of 1 means that
there is no improvement nor decrease in performance). Explanations for the abbreviations in
the name of problem groups can be found in Table 5.5 (page 108).

are combined with the adaptive change-detection method (routine DetectChange). Figures 6.9
and 6.10 shows that when the algorithms update their knowledge/strategy at every generation
(GA+RepairwUPG and GENOCOPwUPG) instead of at the beginning of each appropriate
change period (GA+RepairwUPC and GENOCOPwUPC), algorithm performance is decreased.
This is due to that the update process requires additional function evaluations to be taken (in
the routine UpdateReferecePop (Algorithm 11, page 172) individuals are re-evaluated and in
the routine UpdateSearchPop (Algorithm 12, page 172) individuals are repaired and hence also
re-evaluated). If the update process is undertaken at every generation, it may take up too many
evaluations and hence prevent the algorithms from doing the search effectively.

Second, the results show that when the UpdateSearchPop routine is combined with the
adaptive change-detection method (as in GA+RepairwUPC and GENOCOPwUPC), the per-
formance of the tested algorithms improves in all dynamic cases (fF+dC, dF+noC, dF+{C,
dF+dC) and remains almost unchanged in the static cases (fF+fC, fF+noC). This proves that

detecting changes and updating the search population are very useful in handling environmental
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dynamics while not causing any negative impact on performance in the static cases.

Third, when comparing the performance of the -RR versions (Repair Reference population)
of the algorithms with the -NRR versions (No Repair Reference population), the results in the
two figures show that the process of updating reference individuals using the routine UpdateRef-
erecePop (denoted RR) is useful in dealing with problems with dynamic constraints (fF+dC,
where the moving constraints might make existing reference individuals feasible) and problems
with newly appearing optima (NAO, where existing reference individuals might not reflect the
best region in the search space). These two types of problems are those where the reference indi-
viduals are most likely to become outdated after each change and hence as expected they are the
types of problems where the performance has been improved most using the updateReference-
Pop routine. In other types of problems, there are improvements but slightly less significant (in
Genocop-based algorithms) or there is no improvement (in GA+Repair-based algorithms). In a
few cases the UpdateReferencePop routines may even decrease performance as in the problem
group dF4+noC (GA+Repair algorithms) and in the problem group fF+fC / OICB (Genocop

algorithms) but the impact is insignificant compared to the improvements in other cases.

6.4 A detailed analysis on parameter values

As mentioned in Subsection 6.2.2, to maintain a fair comparison environment, in all previous
experiments, if possible we set the parameters of all algorithms to the same values, which are
the default or best reported values given in the original research of RIGA (Grefenstette 1992),
HyperM (Cobb 1990) and Genocop III (Michalewicz n.d.).

However, it is unknown if these default or best reported parameter values are most suitable
for solving DCOPs. To answer this question, in this section I will carry out a detailed analysis to
investigate how different parameter values would affect the performance of all tested algorithms,
including existing DO/CH algorithms and the newly proposed algorithms in solving the problems
in the G24 benchmark set. The analysis will provide us with suggestions on how to choose the
best parameter values to solve DCOPs. As the problems in the G24 benchmark set include
not only DCOPs but also static unconstrained, dynamic unconstrained, and static constrained
problems, this analysis will also show how robust the tested algorithms are using different
parameter values.

It is also worth noting that for algorithms with both elitism and non-elitism versions as

205



6. Solving DCOPs 6.4. A detailed analysis on parameter values

GA/RIGA /HyperM, in this section I will only present the results of the elitism versions because
in our previous experiments the elitism versions have better performance than the non-elitism

versions.
6.4.1 Performance measures

In the previous experiments, it was possible to present the detailed performance of each algorithm
in every problems of the benchmark set as well as in groups of problems because I used only one
single set of parameter values. In the experiment in this section, however, it is impractical to
present the results in such a detailed level because the amount of data is very large due to the
fact that we are going to test the algorithms in all possible ranges of parameter values.

This limitation requires us to find a new type of measure which can accurately represent the
overall performance of each algorithm in all tested problems under different parameter settings.
To represent the overall performance of an algorithm in all tested problems, one solution is to
calculate the average value of the errors from all problems (or calculate the ratio between the
error and a fixed baseline error (baseline-error-ratio) as we did in our previous experiments), but
the result might be biased toward larger errors. For example, if an algorithm has a large error
of 1000 in problem A and a very small error of 1le-10 in problem B, the average value would be a
large error of 500+5e-11. This large error obviously does not reflect the good performance that
the algorithm has achieved in problem B. In cases where we only calculated the algorithm error
in each single problem (like the results in Figure 6.3 (page 183) and Figure 6.4 (page 184)) or
in groups of few problems with similar characteristics and similar problem structures (like the
results in Figure 6.2 (page 182)), there is little to no bias, so we can use the baseline-error-ratio
to evaluate algorithms performance. However, in cases where we want to evaluate the average
error of all 18 problems in the benchmark set, the bias in errors might be significant and this
bias will consequently make it very difficult to accurately evaluate the overall performance of
the tested algorithms.

To overcome this limitation, in this section I will use a newly proposed measure, the nor-
malised score, which evaluates the overall performance of an algorithm compared to other peer
algorithms in solving a group of problems in a normalised way. The idea is that, given a group
of n tested algorithms and m problems, for each problem j the performance of each algorithm is

normalised to the range (0, 1) so that the best algorithm in that problem j will have the score of
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1 and the worst algorithm will get the score of 0. The final overall score of each algorithm will
be calculated as the average of the normalised scores from each individual problem. According
to this calculation, if an algorithm is able perform best in all tested problems, it would get an
overall score of 1. Similarly, if an algorithm performs worst in all tested problems, it would get
an overall score of 0.

Given a group of n tested algorithms and m problems, a formal description of the the

normalised score of the ith algorithm is given in Equation 6.3:

N |emax () — € (2, 7) i—1:n
Snorm (71) =m Zj:l ’emaX (]) — (])|, M 1:n. (63)

where e (7, j) is the modified offline error of algorithm 4 in problem j; and epax (j) and epin ()
are the largest and smallest errors among all algorithms in solving problem j.

The advantage of the normalised score is that it is unbiased. The fact that an algorithm
might get a very large or very small error on a particular problem (like the example given
previously) would not bias the overall score as it does when we use the traditional mean value
of errors.

In the experiments in this section, to evaluate the behaviour of algorithms from different per-
spectives I will present the performance of algorithms using both measures: the baseline-error-
ratio used in previous experiments and the normalised score. The normalised score provides
more accurate evaluation on the overall performance but the baseline-error-ratio would also be
useful in highlighting the situations where an algorithm achieves a very good result with high

precision (and hence high ratio score) in certain problems.
6.4.2 Crossover rate

The first parameter that we are going to analyse is the crossover rate. Figure 6.11 shows our
analysis of how changing the crossover rate would affect the performance of the tested algorithms
when all other parameters are kept constant. It should be noted that in this analysis I do not
test the impact of changing crossover rate on Genocop III and dGenocop. The reason is that due
to the special design in Genocop I11/dGenocop changing the crossover rate would affect the rate
of nine other specialised operators. In that case, any impact in performance might be caused
by not only the change in crossover rate but also by the consequent changes in the probability

rates of other specialised operators.
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Figure 6.11: This figure shows an analysis of how changing the crossover rate would affect
the overall performance of the tested algorithms on all the 18 tested problems. The impact of
different crossover rates on algorithm performance is calculated using two performance measures.
On the left is the average of the baseline-error-ratio, which represents how many times the error
of an algorithm on a problem is smaller than the baseline error (the worst observed error). This
measure can be misleading because its score would be bias toward a few problems where an
algorithm has very small errors. However, the measure is somehow still useful because when we
see an algorithm with a high baseline-error-ratio, we know that the algorithm must have had
very small errors in at least one of the tested problems. On the right is the normalised score
(see Equation 6.3), which provides more accurate evaluation on the overall performance and
robustness of the tested algorithms. The higher the y-axis values, the better the performance.

Figure 6.11 shows both the average baseline-error-ratio scores (left) and the normalised scores
(right) under different crossover rates. Some observations can be seen from the results in the
figure. First, when being used to evaluate the overall performance in all problems, the baseline-
error-ratio score can be misleading. Based on the baseline-error-ratio score (left plot) it looks
as if (1) dRepairRIGA has the best overall performance and (2) the increase of crossover rate
helps algorithms as dRepairHyperM, dRepairGA and GA+Repair increase their performance.
However, the normalised scores (right plot) shows that these are not true. dRepairRIGA ac-
tually only has roughly the same overall performance as dRepairHyperM, and the increase of
crossover rate actually has negative effect on the performance of dRepairRIGA, dRepairHyperM,
dRepairGA and GA+Repair. Our detailed analysis (not shown) indicates that the high baseline-
error-ratio score of dRepairRIGA and the upward curves of dRepairHyperM, dRepairGA and
GA+Repair in the left plot are largely due to the exceptionally low error of these algorithms in
one single problem, the G24 3f problem. When solving this problem dRepairRIGA has very

low error at all crossover rates and dRepairHyperM, dRepairGA, GA+Repair have very low
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error when the crossover rate becomes higher.

Second, the newly proposed algorithms have better overall scores than tested existing DO
and CH algorithms in all cases regardless of the crossover rate, except the case of dRepairGA
at the extreme crossover rate of 1.0 where it has slightly worse performance than RIGA.

Third, the higher the crossover rate, the worse the performance of repair-based algorithms
like GA+Repair, dRepairGA, dRepairRIGA and dRepairHyperM (these algorithms perform
best in cases where there is no crossover!). It seems that the use of the normal arithmetic
crossover is not suitable for repair-based algorithms. Further analysis is needed to find out the
exact reason, but I suspect that, in solving DCOPs the arithmetic crossover operator might
reduce the benefit of the repair operator in tracking the moving feasible regions. The repair
operator, as described in step 2a of Algorithm 9 (page 151), can be considered a special crossover
operator because it is very similar to the normal arithmetic crossover except two differences.
First, while in the crossover operator both parents are from the search population, in the repair
operator one of the parent is from the search individual and the other is from the reference
population. Second, in the repair operator an offspring is only accepted if it is feasible. Due to
these two differences, in the repair operator the search outcome is biased so that individuals are
constantly pushed toward the feasible regions, and hence in DCOPs where the feasible regions
move, the population is able to track those movements. Such a bias cannot be provided by the
original arithmetic crossover operator. As a result, when the repair operator is combined with
the crossover operator, I suspect that the effect of tracking moving feasible regions might be
reduced or even be eliminated. The figure also shows that such algorithms with higher diversity
as dRepairRIGA and dRepairHyperM are less affected by the increase of crossover rate. One
possible reason might be that when the repair-operator becomes less effective in tracking moving
feasible regions due to the crossover operator, the higher diversity brought by the incorporated
RIGA and HyperM mechanisms might help alleviating this drawback. In particular, because the
RIGA /HyperM mechanisms send more diversified individuals to explore the search space, some
individuals will have the chance to be sent to the moving feasible regions, and hence improving
the process of tracking this moving region.

Fourth, up to a rate of 0.4, the higher the crossover rate the better the performance of GA,
HyperM and RIGA. The performance of these algorithms reach the peak at the rate of 0.4.

Beyond this rate the performances decrease but still remain relatively good. The result show
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that a crossover rate greater than or equal to 0.1 might be a good choice for existing GA-based
DO algorithms to solve DCOPs. The result also shows that compared to HyperM and GA, RIGA
is much less affected by the variation of the crossover rate and hence it is able to maintain a
relatively high performance regardless of the crossover rate. This result implies that compared
to other existing DO strategies, diversity-maintaining strategies like RIGA might be a better

choice in solving DCOPs thanks to its robustness under different crossover rates.
6.4.3 Hyper-mutation rate and random-immigrant rate

The second type of parameters to be analysed are the important hyper-mutation and random-
immigrant rates used for diversity maintaining/introducing in dynamic optimisation: the hyper-
mutation rate (Pp) and the random-immigrant rate (Pr). In this analysis different values of Py
and Pgr will be evaluated to see how they would affect the performance of the tested algorithms.

I chose algorithms that use the random-immigrant (RIGA /dRepairRIGA) and hyper-mutation
(HyperM /dRepairHyperM) mechanisms for this test. In addition, because HyperM at Py = 1.0
is equivalent to restart GA with elitism and RIGA at Pr = 1.0 is equivalent to random search
with elitism, in this experiment we will also be able to compare the performance of the tested
algorithms with random search and restart GA. It is also noteworthy that even in case Pg
and Pg are equal to 1, dRepairRIGA and dRepairHyperM are still not equivalent to random or
restart search because of two reasons. First, due to the way dRepairGA-based algorithms works,
the search population is not entirely random. This is because every randomised /re-initialised
individuals will have to be repaired (and hence are no longer random) before being added to the
search population. Second, the reference population is also not entirely randomised or restarted
whenever we apply Py = 1 or Pp = 1 to the dRepair-based algorithms. This is firstly because
the reference population still remains unevolved during each 100-evaluation period and secondly
because when the reference population evolves, random individuals are only accepted if they are
feasible and better than their parents (see step 3b in Algorithm 8 (page 150)).

In Figure 6.12 I present the results of the algorithms using the default parameters values
set out in Table 6.1 (page 178). For this experiment I also tested the algorithms under dif-
ferent crossover rates (from 0.0 to 1.0) and different base mutation values (from 0.0 up to the
chosen hyper-mutation/random-immigrant values), but these results are not shown because the

behaviours of the algorithms are roughly the same as in Figure 6.12.
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Among the observations we got from Figure 6.12, the following are most interesting. First,
in order to achieve the best performance the tested algorithms need to use very high mutation
rates, which are equivalent to very high levels of diversity. Figure 6.12 shows that algorithms
performance increase in accordance with the increase of Pr or Py until they reach their peaks
at the rate of 0.8-1.0. It is also worth noting that the Py rate where HyperM reaches its peak
performance slightly varies depend on the value of the crossover rate. Our detailed analyses (not
shown) indicate that the higher the crossover rate, the lower the hyper-mutation rate needed to
reach peak performance. For example, at the crossover rate from 0.1 to 0.4, HyperM reaches its
peak at Py = 1.0 or Py = 0.8, but at the higher crossover rate from 0.8 to 1.0, HyperM reaches
its peak performance at a lower mutation rate Py = 0.6. However, in any case, the results still
suggest that high Py and Pg are necessary to solve the tested problems more effectively.

Surprisingly, even with the highest possible diversity levels, the experimental results show
that algorithms such as RIGA and HyperM are still worse or not much better than restart
GA and random search. By comparing the performance of HyperM and RIGA at lower Pg
and Py rates with their performance at Py = 1.0 (equivalent to restart GA with elitism and
change-detection) and Pr = 1.0 (equivalent to random search with elitism) in subplots b and d
of Figure 6.12, we can see that HyperM is only able to perform slightly better than restart GA
(plus elitism and change-detection) at Py = 0.8 and RIGA is not even able to perform better
than random search (with elitism)!.

This observation suggests that, for existing DO algorithms like HyperM and RIGA, the levels
of change severity in the search spaces are so large that the DO techniques such as random-
immigrant or hyper-mutation seem not to bring much benefit to the algorithms. In other words,
toward RIGA and HyperM, there seems to be not much correlation between the environments
before and after a change in the tested DCOPs.

The suggestion that changes in the tested problems are very large, however, seems to be
contradicted with the actual level of change (medium) that I have set up for each dynamic
element in the tested problems (see Table 6.1, page 178). In the experiments, the objective
function and constraint functions only change moderately, meaning that there should be a
considerable amount of correlation in each function before and after each change, and hence it
should be possible to track the changes of objective function or constraint functions if they are

solved separately using RIGA and HyperM.
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This contradiction leads to the second interesting observation: I have found that the reason
for such a contradiction to exist is that although individually the objective function and con-
straint functions only change gradually, when they are combined to create a DCOP, they can
create much more severe changes in the combined constrained search space. One simple example
can be seen in the problem G24 4 illustrated in Figure 5.1, page 106. In that problem, if we
view the objective function and the constraint functions separately, we can see that both of them
change only moderately after each change step (the objective function gradually rotates and the
constrained areas gradually move). However, the constrained landscape in the figure shows that
the combination of these two types of small changes creates a much more sudden behaviour in
the search space: the global optimum moves from one disconnected region to another.

The fact that the small changes in each dynamic element can create larger, much more
sudden changes in the combined constrained search space is the reason why we see that the
tested algorithms need very high Py and Pr to get the best overall scores in solving the tested
DCOPs. Our detailed analysis (not fully shown due to lack of space) on pairs of problems from
the G24 set where one problem is unconstrained dynamic (dF+noC) and the other is constrained
dynamic (dF+fC or dF+dC), we always see that the tested algorithms need much higher Pr
or Py rates to get the best results in the constrained dynamic cases (dF+fC or dF+dC). This
result prove that the combination of constraints and objective function might make changes in
DCOPs much more severe than changes in unconstrained problems. Figure 6.13 provides an
illustrated example: the pair G24 8a (dF+noC, dynamic unconstrained) vs G24 8b (dF+{C,
dynamic constrained). As can be seen in the figure, to achieve their best performance the tested
algorithms need much smaller Pr and Pp rates (0.4-0.6) in the dynamic unconstrained case
(dF4noC) than in the dynamic constrained case (dF+fC) (where the required rates are from
0.8 to 1.0).

The fact that RIGA and HyperM perform no better or worse than random search and restart
GA, however, does not mean that there is no way to do better in solving DCOPs. This fact
is represented in our third observations from Figure 6.12. The figure shows that the newly
proposed algorithms - dRepairRIGA and dRepairHyperM - perform much better than both
RIGA /HyperM and restart GA /random-search, even when dRepairRIGA and dRepairHyperM
use their lowest possible Pr and Ppg rates. There are two reasons for the newly proposed

algorithms to always perform better regardless of the mutation rates. First, as already analysed
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in Subsection 6.3.1, dRepairGA-based algorithms utilise diversified individuals better than the
existing DO algorithms as GA/RIGA /HyperM and their corresponding restart/random-search
versions. While the aforementioned existing DO algorithms reject many diversified individuals
because they are infeasible, the newly proposed algorithms accept both feasible and infeasible
solutions, and hence are able to retain more diversified individuals to deal with environmental
dynamics. This is also the reason why although dRepairGA-based algorithms generate 20% fewer
diversified individuals than GA-based algorithms at the same Pr or Py rate (see paragraph 6 of
Subsection 6.1.4 for explanation), they still reach their peak performance at the same or lower
mutation rates than GA-based algorithms. Utilising diversified individuals more effectively is
also the reason why dRepairRIGA /dRepairHyperM are less affected by the variation of Pr and
Py rates than RIGA /HyperM, as can be seen from Figure 6.12.

The second, and more important reason for the better performance of dRepairGA-based
algorithms is that, while the existing DO algorithms consider the search space as a black box with
no available insight knowledge, dRepairGA-based algorithms uses their knowledge about the
objective function and constraint to handle dynamic objective function and dynamic constraints
differently. As discussed earlier, the sudden changes in the tested DCOPs are composed of less
severe elementary changes from the objective functions and constraints. If we only consider the
search space as a black box and try to deal with the compositional changes as a whole using
existing unconstrained DO techniques, then it is indeed difficult to do better than restart and
random-search because the changes are very severe and because as analysed in Chapter 5 it is
difficult to combine the goals of DO and CH effectively to satisfy the requirements mentioned
in Subsection 5.5.2. However, if we try to deal with objective changes and constraint changes
differently, e.g. tracking the moving unconstrained optima and tracking the moving feasible
regions separately, it might be possible to do better than restart and random search because
firstly elementary changes are usually less severe and secondly we can satisfy the goals of DO
and CH separately without any conflict. The fact that objective changes and constraint changes
might need to be handled differently is also reflected in our list of suggested requirements for
algorithms to solve DCOPs effectively (see Subsection 5.5.2).

As recalled in Subsection 6.1.3, the dRepairGA-based algorithms follow exactly this approach
of dealing with elementary changes differently and separately. First, these new algorithms

handle changes in the objective function separately by firstly detecting changes based on drops
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in objective values and then use RIGA /HyperM mutation to deal with the moving/appearing
optima. Second, these new algorithms also handle constraint changes separately by monitoring
the boundaries of feasible regions to detect movements and then track the possible movements
using the repair operator.

In sum, the results suggest that to solve the tested DCOPs effectively, high mutation /random-
immigrant rates are preferable because the levels of change severity are very high. The results
also suggest that, if an algorithm attempts to solve the tested DCOPs as black-box problems
using existing DO techniques, that algorithm would not be able to perform better than the sim-
ple restart and random approaches because the changes are very severe. However, if we follow
a "divide-and-conquer" approach to firstly decompose changes into objective changes and con-
straint changes and then handle the elementary changes differently using different techniques,
we will be able to solve the problems better because the elementary changes are generally less
severe. The efficiency of this "divide-and-conquer" approach is proved by the significantly better
overall performance of dRepairGA-based algorithms compare to existing DO and CH algorithms,

regardless of the chosen parameter values.
6.4.4 Base mutation rate

The third parameter that we are going to analyse is the base mutation rate (P,). Figure
6.14 shows our analysis of how changing the base mutation rate would affect the performance
of the tested algorithms when all other parameters are kept constant. This analysis will
help to answer two questions. The first question is about the effect of P, on the perfor-
mance of GA-based and repair-based algorithms in solving DCOPs. The second question
is about the effect and interaction between the base mutation and the hyper-mutation rate
in HyperM/dRepairHyperM and the interaction between the base mutation and the random-
immigrant rate in RIGA /dRepairRIGA. We can also compare the difference between HyperM/
dRepairHyperM, RIGA / dRepairRIGA and GA/ dRepairGA when the base mutation P, changes.

The algorithms selected for this analysis are GA, dRepairGA, HyperM, dRepairHyperM,
RIGA and dRepairRIGA. Algorithms like Genocop and dGenocop were not tested because,
similar to the case of crossover, due to the special design in Genocop III/dGenocop changing
the mutation rate P, would affect the rate of nine other specialised operators. In that case, any

impact in performance might be caused by not only the change in mutation rate but also by
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Figure 6.12: This figure shows an analysis on how changing the random-immigrant rate (subplots
a and b) and the hyper-mutation rate (subplots ¢ and d) would affect the overall performance of
RIGA/dRepairRIGA and HyperM/dRepairHyperM on all the 18 tested problems. The impact
of different hyper-mutation rates and random-immigrant rates on algorithm performance is
calculated using two performance measures: the baseline-error-ratio on the left-hand side and
the normalised score (see Equation 6.3) on the right-hand side. The higher the y-axis values,
the better the performance.

the consequent changes in the probability rates of other specialised operators. At the extreme
value P, = 1.0, the GA-based algorithms (GA/RIGA/HyperM) become random search with
elitism ( dRepair-based algorithms, however, are not equivalent to random search at this rate as
already mentioned in Subsection 6.4.3). Because of that fact in this experiment we will be able
to see how the existing algorithms and new algorithms perform compared to random search. In
this experiment I will also compare the tested algorithms with restart GA. Of course it is not
totally fair to compare the tested algorithms with restart GA because the former have to spend
computational cost to detect/adapt with changes automatically while in the latter we assume
that changes are known and hence we can restart the algorithm accordingly. In addition, the fact

that restart GA cannot reuse previous solutions might be a big disadvantage in many practical
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Figure 6.13: This figure shows the difference in the best random-immigrant/hyper-mutation
rates that the tested algorithms needed in the dynamic constrained case (G24 8b dF+{C),
compared to the dynamic unconstrained case (G24 8a dF+noC). We can see that the tested
algorithms need much smaller mutation rates (0.4-0.6) in the dF4+noC case than in the dF+fC
case (where the required rates are from 0.8 to 1.0) to achieve the best performance.

situations. However, the comparison will tell us how useful the algorithms are compared to
restart GA when changes are known and the users do not need to re-use existing solutions.

The result in Figure 6.14 shows that the algorithms have the same general behaviours, which
is as expected: algorithm performance is significantly worse at the smallest mutation rate P,
then the performance increases when P, increases until the performance reaches its peak at
mid-range P, values, and finally the performance decreases again (but only less slightly) when
P, reaches the extreme high values (P, > 0.7). At the extreme P, = 1.0 all GA-based algorithms
have the same normalised score and all repair-based algorithms have the same normalised score.

More detailed analysis on the result in Figure 6.14 reveals some interesting observations as
follows.

First, the top normalised scores are gained at high mutation rates (larger than 0.2), con-
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firming our previous finding that the overall levels of change severity in the tested problems are
high.

Second, the result shows that, similar to the case of testing random-immigrant/hyper-
mutation rates in the previous subsection, GA/RIGA/HM also do not perform significantly
better (and even worse in certain cases) than random search and restart GA. This ineffective-
ness of GA-based algorithms is also due to the fact that the tested DCOPs have high levels of
change severity although their elementary changes in objective function and constraints are only
moderate. Similar to the previous experiments in Subsection VI-C, our detailed analysis (not
fully shown due to the lack of space) on pairs of problems from the G24 set where one problem
is unconstrained dynamic (dF+noC) and the other is constrained dynamic (dF+fC or dF+dC)
also shows that the tested algorithms need much higher P, to get the best results in the con-
strained dynamic cases (dF+{fC or dF4dC) than in the unconstrained dynamic case (dF+noC).
An example, again on the pair G24 8a (dF+noC, dynamic unconstrained) vs G24 8b (dF+{C,
dynamic constrained), is given in Figure 6.15 . As can be seen in the figure, to achieve their best
performance the tested algorithms need smaller Py rates (0.5-0.6) in the dynamic unconstrained
case (dF+1n0C) than in the dynamic constrained case (dF+fC) (where the required rates are 0.8
to 0.9).

Third, the fact that GA/RIGA/HM are not able to perform much better than restartGA
and random search does not mean that there is no way to do better. Figure 6.14 shows that new
repair-based algorithms always perform significantly better than existing algorithms given the
same base mutation rate. Algorithms as dRepairHyperM and dRepairRIGA even perform better
than existing algorithms, including random search and restart GA, at any base mutation rate.
As discussed previously in Subsection 6.4.3, the better performance of dRepair-based algorithms
might be due to their "divide-and-conquer" approach to handle changes in objective functions
and constraints separately and differently.

Some other observations from the results are (1) The impact of base mutation become less
significant from the base mutation rate of 0.1; (2) Algorithms with diversity-maintaining strate-
gies (RIGA /HyperM /dRepairRIGA /dRepairHyperM) are more robust to deal with the variation
in base mutation rate and (3) Given an unknown problem dRepairRIGA should be the one to
be chosen for solving the problem. The result in Figure 6.14 shows that this algorithm has

both the highest overall normalised score (which proves that it is robust) and the highest overall
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Figure 6.14: This figure shows an analysis of how changing the base mutation rate would affect
the overall performance of the tested algorithms on all the 18 tested problems. The impact
of different base mutation rates on algorithm performance is calculated using two performance
measures: the baseline-error-ratio on the left-hand side and the normalised score (see Equation
6.3) on the right-hand side. The higher the y-axis values, the better the performance.
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Figure 6.15: This figure shows the difference in the best base-mutation rates that the tested
algorithms needed to solve a dynamic constrained problem (G24 8b dF+fC), compared to the
dynamic unconstrained case (G24 8a dF+noC). To avoid the graph being too cluttered, we
only included GA and dRepairGA, but the behaviours of other tested algorithms are similar.

baseline-error-ratio (which proves that it can gets highly precise results).
6.4.5 Replacement ratio and the effect of Lamarckian evolution

One of the important parameters for repair-based algorithms in solving static constrained prob-

lems is the replacement ratio. This parameter determines the percentage of repaired individuals
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Figure 6.16: This figure shows how changing the replacement rate would affect the performance
of the tested algorithms. The impact of different replacement rates is evaluated using two
measures: the baseline-error-ratio on the left-hand side and the normalised score (see Equation
6.3) on the right-hand side. The calculation is done as follows. First, the offline-error (left)
and the normalised-score (right) of algorithms with no replacement (Baldwinian, replacement
rate=0.0) are recorded as the baseline error/score. Then on the left-side figure we calculate the
ratio between the baseline-errors and the errors of each algorithm using differrent replacement
rates. On the right-side figure we calculate the ratio between the baseline normalised-score and
the normalised-scores of each algorithm using differrent replacement rates. These two ratios are
repesented in the vertical axes of the two figures on the left and right sides. The purpose is to
see if changing the replacement rates can make the algorithm perform better (y-axis value > 1)
or worse (y-axis value < 1).

(the individual z in the routine Repair, Algorithm 9, page 151) to replace individuals in the pop-
ulation. Any non-zero value of this parameter means that the algorithm follows a Lamarckian-
evolution approach because the outcome of learning (repaired individuals in this case) can be
applied directly to the evolution process by changing the chromosomes of individuals. In case the
value is zero, i.e. no repaired individual is used to replace the original individuals, the algorithm
follows a Baldwinian-evolution approach because learning can only affects evolution indirectly.

In this subsection I will investigate if Lamarckian evolution could bring any benefit to the
tested algorithms in solving the problems in the G24 benchmark set, and if yes, what would be
the most suitable replacement ratio. For this experiment I chose the original Genocop III, the
newly proposed dGenocop and dRepairGA as test algorithms.

Figure 6.16 shows our analysis of how changing the replacement ratio would affect the per-
formance of repair-based algorithms when all other parameters are kept constant.

The experimental results show that Lamarckian evolution has little effect on the performance
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of Genocop III and our dynamic constrained optimisation version dGenocop (the performance
was decreased by up to 7%), except that the performance of these two algorithms drop when
the replacement ratio becomes 100%.

Lamarckian learning, however, has positive effect on the performance of our GA-based repair
algorithms such as dRepairGA /dRepairRIGA /dRepairHyperM. Although in the previous exper-
iments we set the replacement ratio to zero (and hence disabled Lamarckian learning to maintain
a fair comparison with GA+Repair), Figure 6.16 shows that if we maintain a replacement ratio
from 0.05 to 0.8, the performance of dRepairGA can be improved by 20-28% (baseline error) or
7-15% (normalised score) of which the biggest improvement can be gained with a replacement
ratio of 0.05. The fact that a replacement ratio of 0.05 (5%) achieves the best performance also
conforms with the 5% heuristic rule suggested by Orvosh and Davis (Orvosh & Davis 1993) for
some static combinatorial problems.

The result also shows that Lamarckian evolution can also provide negative effect if overused.
As can be seen in Figure 6.16, when 100% of original individuals are replaced by the repaired
individuals, the performance of all three algorithms, especially dRepairGA, can be decreased

significantly.

6.5 Summary

6.5.1 Summary of contributions and findings

This chapter has made the following contributions.

1. Propose a new approach to solving DCOPs: combining existing DO techniques with CH
techniques to handle objective-function changes and constraint-function changes separately
and differently. The approach was applied to two EAs: GA and Genocop III to create
new algorithms named dRepairGA, dGenocop and variants (with better results than the

tested existing DO and CH algorithms in all groups of problems except the static cases).

(a) Modified an existing CH technique (the repair method) to track the moving con-
straints and combined it with existing DO techniques (RIGA and HyperM) to handle

objective-function changes.
(b) Used different techniques to detect objective-function changes and constraint-function

changes separately and differently.
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2. Offer a deeper understanding of the behaviours and characteristics of DCOPs. This include

the following interesting findings

(a) Changes in DCOPs are usually more sudden than the unconstrained case. Such
sudden changes might make existing DO algorithms like RIGA and HyperM perform

worse than restart and random search in solving DCOPs.

(b) In DCOPs the presence of (dynamic) constraints might not always make the prob-
lems more difficult (than the unconstrained case) as intuitively expected. For the
newly proposed algorithms, the presence of constraints actually makes some of the
tested problems easier to solve. Also for the new algorithms, the presence of multiple
disconnected feasible regions might make some of the tested DCOPs easier to solve

(the larger the barriers the easier).

3. Give an insight into how different algorithmic components influence algorithm performance

in DCOPs:

(a) Analyse the impact of evolutionary operators (crossover, base mutation, hyper-mutation,
random-immigrant), Lamarckian/Baldwinian learning, and the newly proposed rou-

tines DetectChange, UpdateSearchPop, UpdateReferencePop and OOR.

(b) Provide a guideline for choosing the ideal parameter settings for each algorithm to

solve DCOPs.

4. Propose two new performance measures for analysing the performance of algorithms in

DCOPs.

(a) The optimal region tracking score to evaluate the ability of algorithms to track the

moving feasible regions.

(b) The normalised score, to quantitatively evaluate the overall performance of algorithms
in groups of different problems in an unbiased way.

6.5.2 Advantages of the proposed methods

The first advantage of the proposed algorithms is that they are able to overcome the drawbacks

of existing DO and CH strategies in solving DCOPs. This advantage makes the proposed
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algorithms work significantly better than the tested existing algorithms in the tested DCOPs,
regardless of the used parameter values.

The second advantage of the proposed algorithms is that they are robust. The experimental
results show that, among the tested problems the new algorithms are able to work well not only
in DCOPs but also in most other types of the tested problems except in the group of static
problems.

The third advantage of the proposed methods is their generality. The methods can be
hybridised with any population-based continuous EA. In this chapter I have integrated them
with GA and Genocop III, both with good results.

The fourth advantage of the proposed methods is the ability to work without the need of
choosing many parameters. The only mandatory parameters are the population size and the
mutation/hyper-mutation rate or random-immigrant rate. Optional parameters are maximum
number of detectors and replacement ratio. There is also a crossover rate parameter but our
detailed analysis suggests that for the newly proposed algorithms no crossover would give the

best results.
6.5.3 Shortcomings of the proposed methods

The biggest disadvantage of the proposed methods, which is also the disadvantage of all repair-
based methods, is that they require a considerable number of feasibility checkings: during the
repair process of an individual, the constraint functions might be evaluated many times until a
feasible individual is found or until the number of iterations reaches a given limit. In addition,
the DetectChange routine also evaluates the constraint functions of detectors in every generation,
adding more cost to the total number of constraint evaluations. Due to this reason, the proposed
methods, and other repair-based methods, might not be suitable for solving problems with very
expensive constraint functions and problems with very small feasible areas (because the repair-
based methods would need to take a lot of feasibility checkings to find a feasible solution).
Adaptive method as in equation 6.1 can be used to give a balance between the number of
constraint function evaluations and computational cost, but the performance might be affected.

Another limitation is the ability of the proposed methods to detect objective changes that
increase the best fitness values. Because the hyper-mutation strategy used in the proposed

methods only relies on performance drops to detect changes, it will not be able to react to
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changes that "increases" the performance.
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CHAPTER 7

DYNAMIC TIME-LINKAGE OPTIMISATION

This chapter studies some unknown characteristics and the solvability of some classes of dy-
namic time-linkage problems (DTPs). As we have seen in the review in Subsection 3.3.2 DTP
is a common type of dynamic optimization problems (DOPs) in both real-world combinator-
ial and continuous domains but has not yet received enough attention from the Evolutionary

"...there exists at least one time

Computation research. They are defined as problems where
0 < t <t for which the dynamic optimization value at time ¢ is dependent on at least one
earlier solution..." (Bosman 2007).

Although the importance of DTPs have been shown through their presence in a broad range
of real-world applications, due to the lack of research attention there are still many characteristics
that we do not fully know about this type of problem. For example, how should we define and
classify DTPs in detail; is there any characteristics of DTPs that we do not know; with these
characteristics are DTPs still solvable; and what is the appropriate strategy to solve them.
Chapter 4 has already addressed the first issue: providing a formal definition for DTPs and
DOPs in general. Here in this chapter the other issues will be partially addressed. First,
although it is believed that DTPs can be solved to optimality with a perfect prediction method
to predict future function values (Bosman 2005, Bosman & Poutré 2007), in this chapter I will
discuss a new class of DTPs where it might not be possible to solve the time-linkage problems to
optimality because there is not always the possibility to perfectly predict the future. In addition,
in this type of DTPs if we try to predict the future based on information from the past, we may

even get worse results than not using a predictor at all. T will then carry out some experiments

to verify the finding and will also discuss under which situation can we solve this particular type
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of DTPs.

7.1 Time-deceptive and the anticipation approach

According to (Bosman 2007), a dynamic problem is said to be time-deceptive toward an optimiser
if the problem is time-linkage and the optimiser cannot efficiently take into account this time-
linkage feature during its optimization process.

Bosman(Bosman 2005) illustrates this property by proposing the following test problem:

tcnd

given n = 1; h(x) = e* — 1; r;lg;q {fo f(z(t),t) dt} (7.1)

—S (2 (1), — 1) o<t <1

f(l'tat) = )
=iy [(@(t); =)+ h(lz(t - 1)1|)} otherwise

The benchmark problem above is a DTP because for any ¢ > 1, the current value of f (x,t)
depends on z (t — 1) found at the previous time step.

An interesting property is revealed when we try to optimise the above problem using the
traditional approach: optimizing the present. That property is: the trajectory formed by opti-
mum solutions at each time step might not be the optimal trajectory. For example, in figure 7.1
we can see that the trajectory of f(z*,¢) when we optimise the present (with optimum solution
x* (t) = t at the time step t) is actually worse than the trajectory of a f(z°,t) with a simple
solution x° = 0 V¢. It means that the problem is deceptive because an optimiser following the
traditional approach is not able to take into account the time-linkage feature.

Bosman (Bosman 2005, Bosman 2007) suggested that DTPs can be solved to optimality by
estimating the values of the function for future times given a trajectory Ui~y {fi,t} of history
data and other previously evaluated solutions. From that estimation, we can choose a future
trajectory with optimal future function values. In other words, it is suggested that time-linkage
problems can be "solved to optimality" by prediction methods and the result could be "abitrarily
good" if we have a "perfect predictor"(Bosman 2005, Bosman & Poutré 2007, Bosman 2007) !.

The authors also made some experiments on the test problem mentioned in eq. 7.1 and on the

dynamic pickup problem, showing that under certain circumstances prediction methods do help

LA predictor, as defined in (Bosman 2007, line 8-12, pg 139), is "a learning algorithm that approxzimates either
the optimization function directly or several of its parameters... When called upon, the predictor returns either
the predicted function value directly or predicted values for parameters". Hence, perfect predictors should be ones
that can predict values exactly as the targets.
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Fix(t))
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Figure 7.1: This figure (reproduced from (Bosman 2005)) illustrates the time-deception property.
We can see that the trajectory of f(x;) when we optimize the present (dash line, with optimum
solution x(t) = t) is actually worse than the trajectory of f(x;) with a simple solution x(t) =0
(the solid line). To solve this problem to optimality, we need to use a predictor to predict the
trajectory of function values given different outcomes of current solutions, then choose the one
that give us the maximum profit in the future.

to improve the performance of the tested algorithms.

7.2 Can anticipation approaches solve all DTPs?

Contrary to existing belief, I will show below that there might be cases where the hypothesis
above does not hold: if during the predicted time span, the trajectory of the future function
values changes its function form, it might not be possible to solve the time-linkage problems to
optimality because there is not always the possibility to perfectly predict the future.

Let us consider the situation where predictors help achieving optimal results first. At the
current time "% > 1, in order to predict the values of f(x(t)) at a future time "%, a
predictor needs to take the history data, for example the previous trajectory of function values

gnow_1

AU Ui_oy  {fe,t}, as its input. Given that input, a perfect predictor would be able

to approximate correctly the function form of Z[%"*“~1 and hence would be able to predict

now gpred]| ... . _
£ P ie 4t has the same function form as Z10:6" =11,

precisely the future trajectory Z [
One example where predictors work is the problem in eq. 7.1. In that problem, for each
trajectory of x(¢) the trajectory of f (z (¢)) always remains the same. For example with z(¢t) = ¢

the trajectory is always 1 — e!~! or with x(t) = 0 the trajectory is always —t? (see figure 7.1).

As a result, that problem is predictable.
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Figure 7.2: This figure illustrates a situation where even the best predictor + the best algorithm
(A) still perform worse than the worst predictor + the worst algorithm (B) due to the prediction-
deceptive property of the problem in eq.7.2. Assume that we want to predict the trajectory of
F(z) from [0,2°"]. In case A, the best predictor allows us to predict F(x) ~ f(z) = x in just
only one time step [0,1]. With that perfect prediction the algorithm is able to find the best
solution x = 1, which is valid until £°>. Now at ¢ although the history data tells the predictor
that the trajectory must still be F'(x) ~ f(z) = z, according to eq.7.3 the actual F'(x) does
switch to g(x) = x 4+ (d — 2), which is the worst trajectory. In other words, the best predictor
chose the worst trajectory to follow. On the contrary, in the case B the worst predictor+worst
algorithm actually get benefit from the switch: the terrible solution (z = 0) they found during
[0,%°] does help them to switch to F'(z) ~ h(z) = d + =z, whose trajectory after ¢* is always
better than A regardless of the value of .

Now let us consider a different situation. If at any particular time step t* € [t""w, tp’"ed] , the

[tnow 7tp'red:l

function form of Z changes, the predicted trajectory made at t"°* to predict f (z (1))

at tP7? is no longer correct. This is because before ¢* there is no information about how the

now gpred
gnow grred] would change. Without such information, it is impossible to

the function form of ZI
predict the optimal trajectory of function values after the switch, regardless of how good the
predictor is. It means that the problem cannot be solved to optimality because it is not possible
to perfectly predict the future.

To illustrate this situation, let us consider the following simple problem where the trajectory
of function values changes over time (illustrated in figure 7.2).

~

F () = arf (2) +beg (w) +eth (7)) 0< a2 <1 (7.2)

227



7. Solving D'TPs 7.2. Can anticipation approaches solve all DT Ps?

where F (z) is the full-description form? of a dynamic function; f (z¢) = z¢; g (z¢) = @+ (d — 2) ;
h(z¢) = x¢+d; at, by and ¢; are the time-dependent parameters of F (z¢). Their dynamic drivers

are set out as follows:

atzl;bt:ct:() if(t<ts)

WV

a; =0;0, =1;¢, =0 if (¢t > t°) and (F\ts_l (ngl) 1) (7.3)

ay = O, by = O;Ct =1 if (t > ts) and (ﬁts,1 (.’Bth_l) < 1)

where t° > 1 is a pre-defined time step, d € R is a pre-defined constant, and xg_l is a single
solution produced at t* — 1 by an algorithm G. Eq. 7.3 means that with ¢t < ¢, the form of
F (z;) is always equal to f (z;); with ¢ > t*, depending on the solution of z& ; the form of
F (z;) would switch to either g (z;) or & (z;).

In the above problem, because at any ¢ > t* the values of at, by and ¢; (and consequently the
value of the function F ) depend on the solution found by G at t* — 1, according to the definition
in (Bosman 2007) the problem is considered time-linkage.

This problem has a special property: at any t < t® one can only predict the value of F up
to t® — 1. Before t°, history data does not reveal any clue about the switching rule in eq. 7.3,
hence it is impossible to predict (1) whether the function will switch at *; (2) which value 2,
should get to switch F (z;) to g (x) / h(z;) and (3) which form, g or h, would provide better
future trajectory.

Even worse, even a predictor that can perfectly learn the current function form of the system
might still be deceived to provide worse result than not using any predictor while solving this
time-linkage problem! Figure 7.2 illustrates the situations where the best predictor could provide
the worst result while the worst predictor could provide better results after ¢°!

Problems like this example, i.e. time-linkage problems with function forms switching from
one to another, is very common in real-world systems. One common class of problems with this
property is the class of hybrid systems. According to Tafazoli & Sun (2006), hybrid systems
are real-life systems that can evolve according to different dynamics at different times. At each
time step the behaviour of the system is controlled by only one dynamics (one mode), and

then depending on the behaviour of the system, at some point the system may switch from one

2The concepts like full-description forms, time-dependent parameters and dynamic drivers have been defined
and described in Chapter 4.
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dynamics to another (switch mode). Examples vary from simple systems like the bouncing ball
(where the state switches from falling to bouncing when it meets the ground and vice versa)
to complex systems like the autopilot programs in commercial airplanes (where the airplane
automatically switches from one flying mode to another). Our survey of real-world applications
also show that about 30% of the surveyed applications in the continuous domain are hybrid
systems, and all of them have the time-linkage properties (see Subsection 3.2.2). In these
applications, if we solve the problems completely online as a black-box without any knowledge,
we will not be able to solve them to optimality because it will not be possible to predict how the
systems will switch their function forms and how the function forms after the switch will be.

Summarising, the example problem I proposed in this section illustrates a common class of
DTPs (but has not been studied by the EC community yet) where it is not guaranteed to get
optimal results because it is impossible to find a perfect predictor to predict the function values
using history data. We call this class time-linkage problems with unpredictable optimal function
trajectories. The example illustrates a special case where any predictor that relies on past data
can be deceived and hence provide the worse results than not using predictor at certain time
steps. We call these types of problems the prediction-deceptive time-linkage problems.

In Section 7.4, I will carry out some experiments to demonstrate a prediction-deceptive
time-linkage problem and its effect on the performance of an algorithm that predicts the future

function values based on history data.

7.3 Solving prediction-deceptive time-linkage problems

Prediction-deceptive DTPs are challenging and only under limited circumstances can we solve
them to optimality. The answer of whether we can solve them to optimality or at least to
avoid being deceived would depend on whether we have to solve them totally online or partially
online, and whether do we have to solve the problem as a complete black box or can we get any
problem-specific information.

If we have to solve the problem online as a black box, there is not much thing that we
can do. Knowing that the problem is prediction-deceptive, we might try not to use anticipation
approaches to avoid being deceived. However, there is no guarantee that other approaches would
work better.

In real-world applications, however, it might be possible to solve the problem in a partially
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online way and also there might be some problem-specific information available so the problem
can be solved as a partial black-box. Our survey of real-world applications in Chapter 3 shows
that in most of the surveyed hybrid systems, the problems are not totally black box because
the mathematical function forms of the possible switch-modes and the switching rules have al-
ready been calculated offline based on observation data from real systems or from simulation
e.g. see : (Ahmad & Liu 2008, Houwing et al. 2007, Fiacchini et al. 2008, Long et al. 2007).
However, because there are modelling errors or disturbances, these mathematical function forms
might not exactly reflect the current status of the actual systems. Because of that, the prob-
lems still need to be solved online. During the online phase the actual function form of the
system will be learned/predicted based on history data to "correct" any mis-modelling due to
errors/disturbances. Another reason for certain real hybrid systems to be solved online even
when their mathematical model is known is that the initial state of the system is unknown and
hence it is unclear which dynamic mode the system is currently in or what are the correct values
of the system’s parameters when the system is started. Due to that reason, the problem is also
needed to be solved online and during the optimisation process the correct initial state/dynamic
mode of the system will be estimated.

In time-linkage problems with function forms switching from one to another and with the
knowledge about switching rules like these, I believe that it might still be possible to solve them
using prediction method while avoid being deceived. In order to do that, the solver needs to
take into account not only the current function value and the future consequent values of the
current function forms, but also the consequent function switches and the future values of the
new function after a switch has been made.

Specifically, given a time-linkage problem with switching function forms and the knowledge of
the switching rules, in order to solve the problem to optimality during the period [t""“’, te"d] , at

tnow )

the current moment ¢"°" an algorithms needs to find the solution x ( and a set of switching

time {71, ..., Tp—1,T,} where T, = t"d to optimise the future trajectory and future switches:

T Tn-1) Ttit1)
optimise ¢ f (z (t"°")) + Z fprea (z (t)) + Z Z Fswiten (z (t) 2 (1})) (7.4)
t=tnow 4 Ti=Ty t=T;+1

where fp.cq is the estimated function form of the current dynamic model of the system and

fswiten 1s the expected function form of the dynamic model that the system will switch into
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under the estimated value of x (7T;).

To make sure that the system does switch its mode at the chosen switching times {717, ..., T,,—1, 75, }
and does switch to the most suitable modes, the solver needs to produce the right the value of
x (T;), the solution produced at the switching time. In some cases, e.g. (Sonntag et al. 2008, Sum-
mers & Bewley 2007), the switching times are fixed or pre-determined and hence the solver does
not need to determine {77, ..., T,,—1 T}, } but just to estimate the current function form and then
choose the switch-modes that will provide the greatest benefits when the switching time comes.

In summary, for time-linkage problems with switching function forms where the knowledge
of the switching rules is available, it is possible to solve the problem more effectively if during
the optimisation process we take into account not only the current function value and the future
consequent values of the current function forms, but also the consequent function switches and
the future values of the new function after a switch has been made. In other words, it is possible
to solve the problem more effectively if the algorithm optimise the problem using the objective
function described in Equation 7.4. In the next section, I will carry out some experiments to
verify the efficiency of the method proposed in this section in solving time-linkage prediction-

deceptive problems.

7.4 Experiments

In this section I will carry out some experiments to verify

1. the impact of the time-deceptive property in time-linkage problems on optimisation algo-

rithms that follow the optimising-the-present approach;

2. the efficiency of the learning-the-current-function-form approach in solving time-deceptive

time-linkage problems;

3. the impact of prediction-deceptive property in time-linkage problems on optimisation al-

gorithms that follow the learning-the-current-function-form approach;

4. the efficiency of our proposed approach in solving prediction-deceptive time-linkage prob-

lems when information about switching rules is available

Points (1) and (2) have already been illustrated in (Bosman 2005, Bosman 2007), but here

the verification will be re-done again because these results will be needed for verifying points
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(3) and (4).
7.4.1 Test problems
Problem DTP1

In (Bosman 2005), a test time-linkage problem with the time-deceptive property has been pro-
posed. This problem will be used in this section to verify the points (1) and (2) above. The test
problem has been described in Equation 7.1, page 225). Here I will represent the problem (with
n = 1;h(z) = 2?) in a slightly different way to make it conform to our definition framework in

Chapter 4 and make the change severity adjustable:

ten(i
m(a§< {Zﬁ(zt)} (7.5)
x(t
where

ﬁ(az):flz _Z?:1 (fU(t)i—s.t)Q fog<t< |_1/5J
—2in [(x (t); — S-t)z + [z (t - U/SJ)JQ} otherwise

and s € R is the change severity, 0 < s < 1.
The problem is named DTP1. Experiments on this problem will be presented in Subsection

7.4.3.
Problem DTP2

To verify points (3) and (4), we need to create a problem with the prediction-deceptive property.
To maintain continuity and to re-use the results I got from the process of verifying points (1)
and (2), I modify the original Bosman problem in Equation 7.5 to make it a prediction-deceptive
problem. Particularly, up to the change step t*“*“" the problem is similar to DTP1, but at tswich
the problem switches its function form depending on the function value found by the algorithm
at twitch If the found function value is high, the problem switches to a low-value trajectory.
Vice versa, if the value found at t**#“" the problem switches to a high-value trajectory. Details

of the problem are as follow:

max {Z F (xt)} VF (20) = apft (20) + b f? (@) + cof® (x4) + def* (1) (7.6)
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where F (z) is the full-description form® of the mathematical descriptions f!, f2, f3, f* (given in
Equation 7.7); ay, by, ¢y, dy are the time-dependent parameters of F (z¢) (their dynamic drivers
are given in Equation 7.8).

Below are the descriptions of f! (the original Bosman function), f2, 3, and f*:

o) — =30 (@ (t), —st)? if 0 <t <|[1/s]
— S (t); = st)2 4 [z (t—[1/s])]*| otherwise
F2 (@1, t) = —60 (7.7)
f3(ze,t) = —40
fH (@, t) = —10

where s € R is the change severity, 0 < s < 1.

Below are the descriptions of the dynamic drivers of the time-dependent parameters a¢, by, ¢, dy:

atzl;bt:ct:dtzo if t<t$thCh

(

ar=0;b; =1;¢, =d; =0 if (t > ¢switch) an
(
(

ay = O, bt = O7 Ct = O7 dt - ]. lf t > tsttCh an (ﬁ xtswvh‘h) < 50)

( 36 < I (a:tmtch,))

)
d
) R (7.8)
t> tswmh) and ( 50 < F (xpswiten) < —36)
) and

ar =00, =0;¢, =1;d; =0 if

where V%" > 1 is a pre-defined change step, and z;switcn is a single solution produced at t5*#ch
by the solver. Equation 7.8 means that with ¢ < ¢t5¥®"_ the form of F (z¢) is always equal to
FY (x¢); with t > t*witeh depending on the solution of switer the form of F (z;) would switch to
either f2 (z;), f3 (x;) or f*(z;). In other words, the Equation 7.8 defines the switching rule of
the problem.

Because the sub-function f! of Equation 7.6 is a time-linkage problem and because at any
¢ > tswitch the the values of the function I depend on the solution found by the solver at tswitch,
the main problem in Equation 7.6 is also time-linkage. Equation 7.6 1is also a prediction-
deceptive problem because it will deceive any good predictor to choose a high-value trajectory

during the period [0, tsmtc’l] . After the change step t***“" however, such a high-value trajectory

3The concepts like full-description forms, time-dependent parameters and dynamic drivers have been defined
and described in Chapter 4.
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may lead the solver to the worst possible trajectory of f2(x;,t) = —60, which may eventually
affect the total score of the solver and make a solver with predictor to perform worse than a
solver without a predictor!

It should be noted that for the purpose of simplicity in this test problem I include only
one function-form switch and the switching time is assumed to be fixed (as found in the real-
world applications in (Sonntag et al. 2008, Summers & Bewley 2007)). In reality, there might
be more than one switch and the switching time might not be fixed but to be determined by
the solver or automatically by the dynamic behaviour of the system. However, the prediction-
deceptive property in these scenarios should still be the same as in the simple test problem we
are considering.

The problem is named DTP2. Experiments and discussions on this prediction-deceptive

problem will be presented in Subsection 7.4.3.
7.4.2 Test algorithms

To carry out the experiments, I developed three different versions of GA to represent the three
different approaches in solving time-linkage problems: first, a standard GA (Algorithm 14, page
235) to represent the tradition optimise-the-present approach; second, a combination of GA +
predictor (linear least-square regression) to represent the predict-the-future-based-on-history-
data approach proposed in (Bosman 2007) (Algorithm 15, page 235); and third, a combination
of GA + predictor + knowledge (about the switching rules) to represent the approach proposed
in Section 7.3 (Algorithm 16, page 236). It should be noted that, for the sake of simplicity
Algorithm 16 was designed to solve only the cases where the switching rules are known and the
switching time is also known. For GA+Predictor and GA+Predictor+Knowledge, I chose the
least-square fitting technique as the predictor method. The assumption for the method is that
the function to be estimated has a quadratic form. Of course in reality this assumption is not
always true and it might be necessary to estimate the form of the function as well. In such
case, powerful function approximation models like neural networks can be used to represent the
function to be predicted. Here I use the simple assumption that the function form is quadratic
because our purpose is not to propose a state-of-the-art or an efficient algorithm but just to
show aproof of principle that EAs with predictor can achieve better results than EAs without

predictor in normal DTPs, that EAs with predictor might be deceived in prediction-deceptive
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DTPs, and that by taking into account the future switching rules when predicting we can help

EAs to avoid being deceived.

Algorithm 14 Standard GA

1. Initialisation

2. Search: for each generation

Standard GA’s crossover

Standard GA’s mutation

(a)
(b)
(c)
(d) Standard GA’s selection

Evaluation: For each individual x (t0w), evaluate f (z (thow))

Algorithm 15 GA + Predictor

List of parameters:

Pred: A linear least-square regression to approximate quadratic functions
] Change severity
h'™  The length of the predicted future horizon

1. Initialisation

2. Prediction: After m generations, use the predictor Pred to estimate the current function
form based on history data

e Input:
(a) Solutions achieved in previous 1/s change steps: Va(t), ("% — [1/s]) < t < "V,

(b) All corresponding function values f (x (t)) and the corresponding change step t.

e Output: the estimated function form fp,cq
3. Search: for each generation

(a) Standard GA’s crossover
(b) Standard GA’s mutation

(c) Evaluation: For each individual x (t04), evaluate
tnoerhlen

Fitness (x (thow)) = {f (@ (™) + > forea(x (t))}

t=tmow 41
(d) Standard GA’s selection

To create a fair testing environment, all three algorithms use the same set of parameters.
Table 7.1 shows the detailed parameters of the algorithms and all other settings for the experi-
ment.

To evaluate the performance of the algorithms, I use two measures. The first one is perfor-
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Algorithm 16 GA + Predictor + Knowledge about the switching rules

List of parameters:

Pred: A linear least-square regression to approximate quadratic functions
S Change severity

hlen The length of the predicted future horizon

Fswiteh Expected full-description form of the switching rules

{T1,...,Th—1T} The set of switching times within the current horizon ¢"°% < T; < t"°% + hlen

1. Initialisation
2. Prediction: Same as step 2 in Algorithm 15.
3. Search: for each generation

(a) Standard GA’s crossover

(b) Standard GA’s mutation

(c) Evaluation: For each individual z (¢50u),

i. Calculate current function value: A = f (z (t"°"))

ii. Calculate the expected future function/variable values until the first switching

time:
T
B = Z fpred ({E (t))
t:tn011)+1

ili. Estimate the variable z(77) given the estimated outcome of f,.eq during the
period [t"" + 1,T]
iv. Calculate the expected future values after the first switching time:
Tin—1) T,
(i+1)

C = Z Z fswitch(x(t)7$(ﬂ))

T,=Ty t=T;+1
v. Calculate the fitness value of x (tnow) : Fitness (x (tnow)) = A+ B+ C

vi. Update: update the set of switching times for the next future horizon

(d) Standard GA’s selection

Table 7.1: Test settings for GA, GA+Predictor and GA+Predictor+Knowledge.

Algorithm  Pop size 25
parameters Elitism No
Selection method Non-linear ranking
Mutation method Uniform, P =0.15
Crossover method Arithmetic, P = 0.8
Prediction method Least-square regression
for quadratic function
Test Number of runs 50
problem Change frequency 25 function evaluations (one generation)
settings Change severity s 0.001
Learning frequency Every 10 generations
Number of change steps 11/s (11,000 change steps, t"? = 11,000)
Length of predicted future horizon h!*® 5/s
Switching time 8/s
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Fitness value trajectory: GAvs GA+predictor Variable value trajectory: GAvs GA+predictor
F(x®) in time-deceptive problem X(t) in time-deceptive problem
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Figure 7.3: Plots of the mean (and standard deviation) of highest function values over 50 runs:
GA without predictor vs GA with predictor in a time-deceptive problem (DTP1)

mance plot - the plot of the trajectory of the best function values that the algorithms achieved

at each change step. I also plotted the trajectory of the variable x as time goes by to study

the behaviours of the algorithms. The second measure is the total function values, which is cal-

culated as the summation of the best function values taken after each 1/s change steps (1,000
10

change steps): totalVal = ;0 f (z ("9 + |i/s])). Detailed experimental results are given

in the next subsection.
7.4.3 Experimental results
GA vs GA+Predictor in time-deceptive problems (DTP1)

Here I verify the suggestion of Bosman (2007) that in time-deceptive DTPs, learning from the
past to predict the future can be useful. Figure 7.3a, where the mean and standard deviation
of function values of GA and GA+Predictor in the problem DTP1 are shown, confirms the
advantage of this approach. The figure shows that although GA+Predictor has worse function
values in the first few change stages, in the longer run it perform much better (has higher total
values) than the traditional GA, which only focuses on optimising the present. The results
confirm the advantage of maximising future values over just optimising the present in this

particular problem.
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Figure 7.4: Plots of the mean (and standard deviation) of highest function values over 50 runs:
GA without predictor vs GA with predictor in the prediction-deceptive problem (DTP2)

GA vs GA+Predictor in prediction-deceptive problems (DTP2)

Predicting the future using data from the past, however, is not always beneficial in solving DTPs.
In problems like the DTP2 where a high function value might switch the system to a low-value
trajectory and vice versa, predicting future using data from the past might make the algorithm
perform worse than not using a predictor. This behaviour is confirmed in the experiment. Figure
7.4a shows that GA+Predictor actually has lower total values than GA. This is due to that,
since the eighth changing stage, the high-value trajectory that GA+Predictor predicted during

the period [0, ts“’mh] leads the algorithm to a worse trajectory than what GA achieves.

GA vs GA+Predictor vs GA+Predictor+Knowledge in prediction-deceptive prob-
lems (DTP2)

Here I verify the efficiency of our proposed approach described in Section 7.3, which suggests that
the knowledge of the switching rules, if available, should be taken into account when anticipating
the future. Figure 7.5a shows that the new approach does help improve the performance of the
algorithm (GA+Predictor+Knowledge) and avoid being deceived into the wrong trajectories.
As can be seen in Figure 7.5a, during the first six changing stages GA+Predictor+Knowledge
follows exact the same trajectory as GA+Predictor to maximise the function value trajectory
in the period when the system has not switched to the other mode yet. However, from the

sixth changing stage, GA-+Predictor+Knowledge follows a different route from the original
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GA+Predictor. At the sixth changing stage, GA+Predictor+Knowledge chose a slightly higher
function value, which leads it to a completely different route from GA+Predictor and normal
GA at the seventh changing stage. At this stage, the algorithms chose a very low function value,
which is achieved thanks to the high value it chose in the previous changing stage. Although
GA+Predictor+Knowledge has to sacrifice its current performance to achieve such a low func-
tion value, this low value helps the algorithm to reach to a better trajectory after the switch and
eventually it has a significantly higher total function values than GA and GA+Predictor. This
good result confirms the usefulness of anticipating future function-form switches when solving
DTPs. The behaviour of GA+Predictor+Knowledge in choosing the variables to achieve a high
total function value is also shown in Figure 7.5b.

Another note is that when taking into account the future, the problem becomes more complex
toward GAs and it is getting more difficult to get high precision results, as can be seen by looking
at the standard deviations of the results in Figures 7.3, 7.4, 7.5 . We can see that the traditional
GA (future ignored) achieves very consistent results (standard deviations of the mean best values
are almost zero) over 50 runs. However, when the algorithm has to predict the current function-
form (GA+Predictor) and hence has to optimise not only the present but also the future, the
problem becomes more complex and the standard deviations of the mean best values over 50
runs becomes higher. When the algorithm has to predict the current function-form and also has
to anticipate any possible future mode-switching, the problem becomes even more complex and
hence the level of inconsistency (standard deviation) increases even higher. This phenomenon

shows the trade-off in taking into account the future when solving DTPs.

7.5 Summary

Although it was believed that time-linkage problems can be solved to optimality by relying on
history data of the algorithm to predict the trajectory of future function values, in this chapter
I pointed out a challenging class of time-linkage problems where this prediction approach might
fail to find the optimal results. We named this class prediction-deceptive time-linkage problems.

I also suggested an approach to solve this class of problem under certain circumstances
and developed algorithms to implement this approach. Experiments were also made to verify
the advantage and disadvantage of the anticipation approach in solving DTPs, to illustrate

the impact of the prediction-deception property on algorithm performance, and to evaluate the
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Figure 7.5: Plots of the mean (and standard deviation) of highest function values over 50
runs: GA without predictor vs GA+predictor vs GA+predictor+switching knowledge in the
prediction-deceptive problem DTP2

efficiency of our proposed approach in solving prediction-deceptive time-linkage problems.

Two time-linkage benchmark problems were also proposed in this chapter (Section 7.2 and
Section 7.4.1). The benchmark problems are able to simulate the known (time-deceptive) and
unknown (prediction-deceptive) properties of time-linkage problems and can be configurable,
making it easier for researchers to test their existing algorithms.

Although the experiments (and the algorithms + test problems) in this chapter are over-
simplified, and the advantages of a predictor/ predictor+knowledge are expected, such simpli-
fications are necessary to proof the principle and to show the potentiality of EAs because this
research is just a beginning step and is the first EDO study in this topic. To the best of our
knowledge, previously this class of problems has not been taken into account in existing academic

EDO research despite their popularity in real-world scenarios (as shown in Chapter 3).
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

The thesis has at least partially provided answers for the questions raised in Section 1.3 about
what types of DOPs have been covered by existing EDO academic research and if there are
any missing links between academic EDO research and real-world applications. Based on these
answers this thesis has focused on studying some important issues to help close some of the
existing gaps in EDO academic research. These issues are defining DOPs and solving continuous
DCOPs and DTPs - two classes of problems commonly found in real-world scenarios but have
rarely been studied in EDO. The results of this thesis in continuous DCOPs and DTPs, which
are among the first in these areas, provide a deeper understanding of the unknown characteristics
and the solvability of these problems, and suggest some promising ways to solve these challenging

problems using EDO techniques.
8.1 Summary of Major Contributions
Detailed of the contributions in this thesis have been described at the end of each chapter. Here

the most significant contributions are summarised as follow:

1. Identify for the first time the important gaps between real-world DOPs and EDO academic
research, including the current coverage of EDO academic research, the types of problems
that have not been covered by the EC community, the characteristics and problem in-
formation that we can used to solve DOPs more effectively, and the way that DOPs are

solved in real-world scenarios.

2. Provide a new definition framework, new sets of benchmark problems (for DCOPs and
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DTPs) and new sets of performance measures (for DCOPs and DTPs) to better charac-

terise the unknown factors of DOPs.

3. Develop novel approaches to solve continuous DCOPs, an important and common class
of DOPs but have not been studied in EDO research. The new approaches are developed
based on detailed analyses (including some counter-intuitive findings) on the representa-
tive characteristics of DCOPs, the strengths/weaknesses of existing EDO/CH methods in
solving DCOPs, the influence of different algorithmic components on algorithm perfor-
mance, and on my proposed list of requirements that an algorithm should meet to solve

DCOPs effectively.

4. Develop a new approach to solve DTPs, another important and common class of DOPs
but have not been well-studied in EDO research. The approach is also developed based
on analyses on the characteristics of DTPs and the strengths and weaknesses of existing

EDO methods in solving DTPs.

8.2 Future Work

There are many related research topics that can be pursued in the future to improve and further
evaluate the results of this thesis. The survey of real-world applications in Chapter 3 shows
that there are many open research areas to bring academic EDO research closer to real-world

applications. Among these areas, some possible interesting future research directions are:

1. Focusing more on some particular types of problems such as DCOPs and DTPs, which
are common in real-world scenarios but have not attracted enough attention from the EC

community yet;

2. Re-defining the optimisation goals, performance measures and benchmark problems in

academic EDO research to better reflect real-world situations;

3. Studying those characteristics of real-world problems that have not received much interest
from the EC community. Examples of such characteristics are changes in constraints,
changes in number of variables, the predictability and detectability (or the lack thereof)

of changes.

4. Studying the efficiency and suitability of EAs in different types of real-world applications;
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As to the particular research topics that I have studied in this thesis, because the works that
I have done in the thesis are only among the first steps in these topics, there are a lot of future

works to be addressed. Some possible directions for future extensions are discussed below:

1. The definition framework: In this thesis the definition framework has mainly been used to
answer the question of how to characterise DOPs (i.e. how to distinguish DOPs, to encap-
sulate the dynamic behaviours and the changing factors in the definition and to separate
the static aspects from the dynamic aspects) and how to generate dynamic benchmark
problems. Because the definition framework facilitates the inclusion of optimisation algo-
rithms and the separation of dynamic components from the static ones, one of possible
future works might be to use the framework to study the difficulty of each dynamic/static
component and how the difficulty of each component affect the overall difficulty of the
problem toward a specific algorithm. Because the framework defines each aspect of a
DOP to a more detailed level, another future direction is to use the framework as a basis

for theoretical research in dynamic optimisation.

2. Benchmark problems: In this thesis a set of 18 benchmark problems for DCOPs (G24)
and two benchmark problems for DTPs have been proposed. Although these bench-
mark problems are effective in analysing the behaviours of the tested algorithms, they
are mostly based on unimodal static problem instances and this might limit their gen-
erality. A possible future direction is to integrate the existing benchmark problems in
this thesis with the multimodal, scalable benchmark problems that I have developed for

DCOPs (Nguyen 2008a) and DTPs (Nguyen 20085, pp. 26-29).

3. Analysis of the performance of existing methods in DCOPs: The analyses in Chapter 5
and Chapter 6 only considered some basic and representative DO and CH strategies. Fu-
ture extension of these analyses should consider a broader range of strategies, including
the memory-based approaches and the current state-of-the-art methods in DO and CH. In
addition, I plan on extending the dynamic settings of the analyses to test the algorithms in
different types of changes and different values of change frequency, change severity, popula-
tion size, and evolutionary parameters. Analyses on these wider ranges of parameters will
be included in the revised version of (Nguyen & Yao 2010a). It would also be interesting to

systematically study the situations where the presence of constraints and dynamics would
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make it easier for certain classes of algorithms to solve DCOPs.

4. New methods to solve DCOPs: One of the future directions is to test the algorithms
proposed in Chapter 6 on the multi-modal benchmark set in (Nguyen 2008a). I plan
to carry out more detailed analyses on the performance of the algorithms under a wider
range of test settings with different change frequency, change severity, population size, and
evolutionary parameter values. I am also interested in hybridising the proposed algorithms

with state-of-the-art constraint handling methods such as stochastic ranking (Runarsson

& Yao 2000).

5. Dynamic time-linkage optimisation: The work in this thesis is just an initial step in an
attempt to understand more about DTPs and to solve this class of problems effectively.
For future works we plan to do more experiments on more realistic scenarios with a more
powerful predictor integrated with state-of-the-art EAs. Especially, more research will be
carried out to investigate the situation where the algorithm needs to determine multiple
switching times during the optimisation process. The possibility of combining time-linkage
handling techniques with normal environmental dynamic handling techniques will also be
investigated. A further goal will be to carry out experiments on real-world problems like
hybrid systems. An investigation on the relationship between the time-linkage property

and co-evolution will also be carried out in the future.
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Table 1: Combinatorial real-world references that use EA/metaheuristic methods

Factors that change
References Origin of real- Notes Time-linkage Solved PredictableVisible Constr. Single/ Optimisation Types of Restart/ Parameters DomainNumber Other Constraints
world data by prob- Multi-obj goal dynamics Track of obj range of vari- pa-
EA / lems? func ables ra-
meta- me-
heuris- ters
tics?
Take-off Real data The problem here Yes. ((1) The ..Partly...Partly. Partly:.No. .. Yes.. .S.  (mul- Optimality .N/I. (the .Tracking. ..Yes.. .N/I. ..Yes.. .N/IL. ..Yes.. (the
runway of London is to find the current schedule of (solved (some (.INVIS- (mostly tiple & Previous- simulated (.DISP.: new (new (no detail soft con-
schedul- Heathrow air- optimal take-off aircrafts might af- by factors IBLE. - soft objectives solution dis- data fol- solutions are aircraft is  given straints
ing port, provided runway schedul- fect how the future Tabu like uncer- con- but  they placement lows a based on might but the depend on
(Atkin by National ing, taking into solution would be search  taxiing tainty, or straints) are pri- restriction linear dis- previous ones arrive number the val-
et al. Air Traffic account not only (2) The movement and time changes, oritised (deviation tribution, to avoid dis- and of  vari- ues of the
2008) Services aircrafts in the of  one aircraft heuris- can be occur due by weight from previous but it is turbances.) hence ables predicted
holding area but might block the tics) pre- to the mis- and then solution will not clear change (corre- take-off
also the taxiing way of another dicted) prediction combined be penalised) if this the ex- sponding time, take-
ones. Although (3) Changing the of aircraft’s together &  Quick re- would isting to the off timeslot,
real-world data take-off aircraft taxiing to create covery & Spec happen take-off number etc of each
is used in this position would time) a single Satisfaction in real- order) of air- aircraft.
problem, the data be harder if the &..Yes.. objective. (changing world crafts These  val-
is used as a static position is closer to (.VISI- The rea- the take-off situa- being ues would
benchmark in the take-off time. BLE. - the son is to aircraft  posi- tions) scheduled change
which the author The first type of system is provide tion becomes at one when a
tests several dy- time-linkage is not noticed users with harder when it time) new aircraft
namic scenarios taken into account whenever a only omne is the closer to should be arrives or
rather than to in- (UNHANDLE). new plane single so- take-off time, variable when an
vestigate the real The second is dealt arrives  or lution  to so they fix depend- existing air-
dynamics. In this with using some if more in- sim plify the aircraft ing on craft leaves.
reference we only heuristic rules and formation users’ poistion to be the ar- In addition,
consider those the third property becomes tasks) at least two rival and some of the
characteristics is dealt with by available minutes before taking constraint
) that evidently ex- fixing the aircraft (and hence take-off time) off of parame-
NG ists in real-world position to be at less uncer- are all men- aircrafts) ters are
=) situations least two minutes tainty)) tioned but it is uncertainty
before take-off time not clear about due to the
(HANDLED) the priority uncertain
of taxiing
time)
Ship Real static The problem here N/I. Yes. .N/IL. Yes. Yes. .S. (no Optimality N/I. .Tracking. .N/IL .N/I.  .N/IL N/I. .Yes. (ac-
Schedul- data of 7 is to find the op- (ACO) (.VISI- (69 detail  of Previous- (hybridised (ships cording  to
ing transport timal schedule for BLE.) vari- objective solution dis- with ran- might the pa-
(Mertens ships from ships. Although ables function is placement domising be de- per the
et al. Tractebel real-world data and 101 given) restriction (the best layed storm event
2006) Engineering is used in this con- (it is unclear results was due to changes the
company problem, the data straints, about their achieved storms constraints)
is used as a static of priority.) when or other
benchmark in which pheromone unex-
which the author 75 are quantities are pected
tests several dy- hard) set  to the events.
namic scenarios average of However
rather than to in- the previous it is not
vestigate the real pheromone clear
dynamics. In this quantity and how
problem we only the default does it
consider those quantity. affect
characteristics Tracking the obj
that evidently was used to func-
exists in  real- keep the new tion)
world situations. solution close
Another note is to the old one

that the use of
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(DynAWC) might
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Table 1 Combinatorial EA /metaheuristic references (cont.)

Factors that  change
References Origin of real- Notes Time-linkage Solved PredictableVisible Constr. Single/ Optimisation Types of Restart/ Parameters DomainNumber Other Constraints
world data by prob- Multi-obj goal dynamics Track of obj range of  vari- pa-
EA / lems? func ables ra-
meta- me-
heuris- ters
tics?
Document Document The problem here N/I. (Not men- Yes. .Partly. .No. (.IN- Yes., .S. (1) quick re- The  ar- .Tracking. to Yes. .No.  .Yes. .N/I. .No.
Stream streams  with is to search for tioned) (GA). (it VISIBLE. soft covery (2) Op- rival of provide a de- (changes (the
Mod- keyword the most suitable The might - the op- con- timality. document cent solution ~ drifts individ-
elling "gmail" from model to repre- mem- not be timisation straint stream is quickly using in the uals are
problem www.blogalia.com sent the current ory possi- process is (con- believed memory el- concept variable-
(Araujo (the comments trend in docu- ap- ble to divided straint to follow ement  from (topic length
& sent to all ment streams. proach predict into time is expo- previous run of docu- sequence)
Merelo blogs  hosted It is mentioned is 'when’ windows. repre- nential (.QUICK.). ments))
2007) in Blogalia that restart is also and Each time sented distri- The previous
from Jan 2002 the approach ap- ’how’ window as the bution. knowledge is
- Jan 2006) that provide the plied the represents penalty There are also used to
most accurate be- changes a segment cost of also other predict the
result, but mnot cause hap- of time transit changing trend of data
satisfiable in real- there pen, for  which from rules. (.LEARN.)
time  situations. are but enough one Changes
This shows that re- once a data are state to might be
tracking optima cur- change available). another recurrent.
is  chosen over rent hap- The algo- amd
restarting not changes pens, it rithm  still the
only because it might needs to penalty
might produce be pos- detect if cost
better results sible to a change is in-
(which might not approx- happens in cluded
always be the imate each time in  the
case) but also the window obj
because it can func- though. func-
produce good tion tion)
result in shorter form)
time
Evolvable An opera- The problem is N/I. (Not men- Yes. N/L .No. (.IN- Yes. .S. (1) Previous- One .Tracking. to Yes. .No. No. .N/I. .No. (the
hard- tional am- to  evolve  the tioned) (PSO) VISIBLE. ) (the solution dis- type of make sure (tem- chip  spec-
ware plifier in hardware struc- specifi- placement changes that the dis- perature ification
problem an environ- ture to make it cation restriction is noises. palcement changes should be
(Tawdross ment with as close to the are con- (more impor- There are property is lead to fixed re-
et al. changing heat specification as straints tant because also other maintained changes gardless  of
2006) (lab-control) possible. When a while the new hard- problem- (.DISP.) in the changes in
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The authors also func- trial standard. lead to
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tolerance or aging approach
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structures
which might

be difficult to
be accepted
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Table 1 Combinatorial EA /metaheuristic references (cont.)

Factors that  change
References Origin of real- Notes Time-linkage Solved PredictableVisible Constr. Single/ Optimisation Types of Restart/ Parameters DomainNumber Other Constraints
world data by prob- Multi-obj goal dynamics Track of obj range of  vari- pa-
EA / lems? func ables ra-
meta- me-
heuris- ters
tics?
Dynamic Real-world The problem here Yes. ( UNHAN- Yes. N/I Yes. Yes. .S. Quick recovery Changes .Tracking. Yes. N/I.  .Yes. .N/I. .No.
route map (Tsukuba is to find the DLE - in the (Virus (.VISI- (there &  Optimality. follow (.DISP. - (vehicle (the
planning city and optimal route context that the GA) BLE. ) are No priority is specific because the speed, individ-
for  car Northen (with least travel routing decision both clearly given rules such new solution road uals are
navi- Tokyo) from time) to a given might lead to a hard but for two as vehicle (new  route) informa- variable-
gation Navigation destination for new network with (traffic algorithms speed, need to be tion) length se-
system System Re- cars. Some of the more/less conges- rules) (AIS&DA) road based on a quence)?
(Kanoh searchers’ test data are arti- tion. This situation and with the same informa- part of the
2007, Association ficially generated was briefly men- soft optimal result, tion etc. existing solu-
Kanoh (www.naviken.jp) without evidence tioned in this con- the one with Changes tion (current
& Hara and the move- of whether they reference when the straints faster recovery might be route)..QUICK.
2008) ment of 28000 are  based on disadvantage of the (prefer (AIS) is chosen recurrent. - Also track-
cars from real-world data Dijkstra algorithm wide, That is ing helps to
Nagel & or not. For this was discussed (page large why some meet the re-
Rasmussen’s reference we only 70). However, it is road, part of quirement of
model (this consider the data not fully considered reduce the route quick recov-
model is not that evidently ex- in the paper except num- can be re- ery)..LEARN.
real-world, ist in real-world an effort made to ber of used  for - knowledge
only simu- situations avoid congestion by turns, the next from the past
lates some not applying the signals change by (some part of
behaviours same optimal deci- ete). using AIS the routes)
from certain, sion to all vehicles is also used to
rather simple in the road) learn/anticipate
situations). changes in
the future
Survival Real-world The problem here .Yes. ( UNHAN- Yes. .N/IL Partly:.Yes. Yes. .S. Optimality Changes .Tracking. Yes. .N/I. .N/IL .N/I. .Yes. (some
routing NSFNet topol- is to find the DLE - in the con- (ACO) (arrival (not all (routes with in con- (because the (new feasible
in dy- ogy; artificial optimal route text that the rout- connection links minimal block- nection new solution arrival nodes might
namic distributions between a pair ing decision might requests are fea- ing probability request (new route) connec- become in-
DWM for changes. of nodes in the alter the existing are visible sible) are preferred) arrival need to be tion  or feasible and
network However DWM network free nodes/links of (.VISIBLE. and Quick follows based on existing vice versa
(Ngo those  distri- the network. This ) & .No.: recovery (the Poisson a  part of ones over time)
et al. butions are situation however is network algorithm distri- the existing discon-
2006) drawn from not considered by conges- needs to main- bution; solution (cur- nected;
real-world the authors.) tions are tain small Changes rent route) conges-
observations. not visible setup  delay). in session -.DISP.. Also tion;
(.INVISI- No clear indi- holding tracking link
BLE. ) and cation of the time helps to meet failures;
need to be priority for follows the require- etc)
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by having optimality  is nential recovery)-
the rout- the criteria distri- .QUICK.
ing table to asses algo- bution;
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continu- experiment. in place
ously by of request
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Factors that  change
References Origin of real- Notes Time-linkage Solved PredictableVisible Constr. Single/ Optimisation Types of Restart/ Parameters DomainNumber Other Constraints
world data by prob- Multi-obj goal dynamics Track of obj range of  vari- pa-
EA / lems? func ables ra-
meta- me-
heuris- ters
tics?
Airline Flight sched- The problem here N/L Yes. N/I Yes. Yes.. M. (1) Previous- N/IL .Tracking. Yes. .No.  .Yes. .No. .Yes. (Con-
Schedule ule of a is to find the opti- (EPGA) (.VISI- (There solution dis- (because the (one (the straints
Recover Taiwanese do- mal schedules for BLE.) are 6 placement new solution airport chro- 3-6 in page
Problem mestic MD90 the airline after con- restriction and needs to be closes mosome 2400 are
(recover fleet in  one a temporary clo- straints Optimality. based on tem- length dynamic. In
from day when sure of airports. de- Both  criteria a part of porarily is deter- addition  if
airport one airport is It is not clear if scribed are included the exist- for one mined we consider
tem- temporarily the change is gen- in page as  objectives ing solution hour). by the the "flight
porary closed in one erated artificially 2400. and are used -.DISP.) This number connection"
closure) hour. or if it is re- Some as measures would of air- and  "duty
(Liu ally a real-world other in  evaluating directly craft and swap" ob-
et al. event from exist- con- the algorithm. affect airport jectives  as
2007) ing data straints (2) Quick the simulta- constraints,
are recorvery: "flight neously. they are
repre- this goal s connec- If SO dynamic
sented cited as one tion" in case too.)
as con- of the goals objec- number
current in disruptive tive of airport
objec- management. and the changes,
tives It is also used "duty dimen-
in  the as one of the swap" sion
prob- criteria to objec- should
lem evaluate the tive change
formu- algorithm. accord-
lation) ingly)
Dimen- The proposed The optimisa- Yes. , partly .Offline. .Partly. Yes. Yes. .S. Optimality The traf- .Tracking. Yes. .N/I. .N/L .N/I. .N/L
sioning method was tion include two (HANDLED - it only (con- (\WIN- (there (minimising fic data (not all traf-
and load tested using phases:  the of- is showed that (GA gestion DOW. are con- congestion) shows fic flows are
balanc- real-world fline phase is the decision of is can be - time- straints Previous- that reset but
ing for topology and carried out on a changing link used partly window for solution dis- traffic only the most
multi- traffic data weekly or montly weights influences for pre- approach) links, placement peaks are utilised  link
topology from GEANT timescale to set future potential the dicted nodes, restriction periodical is chosen and
Interior and Abilene up the network of congestion. of- and topolo- (the aim  of the load in
Gateway networks link weights to This  time-linkage fline con- gies the method that link will
Protocol maximise the effect is handled phase trolled and is to avoid be lighten
traffic intra-domain offlineby  choosing to by band- frequent and gradually
(Wang, path diversity the optimal link find choos- with on-demand by shifting
Ho & across multiple weights to avoid the ing the capac- reassignment some traffic
Pavlou routing topolo- future congestions. opti- optimal ity) of link weights, flows in that
2008) gies, and  the The dynamic bal- mal link hence min- link to other
online phase ance mechanism link weight imising large alternative
to dynamically (main topic of weights. and difference in less-utilised
balance the load the paper) also The dynam- the solution paths. The
based on the influence the fu- on- ically before and purpose of
pre-defined  link ture problem by line balance after ecach tracking is
weights to deal controlling and phase the change) to avoid sud-
with changes avoiding future is traffic den changes
congestions.) solved load) to existing
us- connections
ing a -.DISP..)
special-
purpose
heuris-

tic)



Table 1 Combinatorial EA /metaheuristic references (cont.)

Factors that  change
References Origin of real- Notes Time-linkage Solved PredictableVisible Constr. Single/ Optimisation Types of Restart/ Parameters DomainNumber Other Constraints
world data by prob- Multi-obj goal dynamics Track of obj range of  vari- pa-
EA / lems? func ables ra-
meta- me-
heuris- ters
tics?
Aircraft A set of air- The displace- Yes. ( Decision Partly. .No. Yes. Yes. S 1:  Quick re- The ar- .Tracking. Yes. No. Yes. No. .No.
landing craft landing ment cost is of which aircraft (solved (\WIN- covery (to rival of intial solu-
problem benchmark incorporated into to land first would by DOW. - meet the aircrafts tion at each
(Moser problems the objective change the problem Ex- the whole limit  of the follows a time window
& from (Beasley function. In in the next time tremal optimi- time window); negative is created
Hendtlass et al. 2004). this problem step, but that Op- sation 2: Previous- expo- by adjusting
2007b) Although quick recovery property is  not ti- process solution dis- nential the previous
the problems is possibly the taken into account miza- is  divided placement distri- found solu-
are artificial most preferred when solving the tion into smaller restriction & bution. tion, plus
benchmark, optimisation goal problem - UNHAN- and time  win- Optimality There are any newly
it seems that because the pa- DLE. In addition, other dows. The (these two also other appearing
they have the per shows some there is a "displace- heuris- problem is costs are all problem- airplane. No
characteris- examples where ment resitriction" tics) considered integrated  in specific clear reason
tics widely more powerful (see Beasley et al. changed the obj func); changing why tracking
believed to algorithms are (2004))"  of how after each 3. Spec Sat- rules. is chosen,
belong to discarded due to the mnext solution time  win- isfaction: all but as stated
real-world their disadvan- should be given the dow) planes need in the used
scenarios. For tages in meeting current solution to land within benchmark,
example, the certain time so that the next a specific previous-
arrivals of air- limit). solution is not time-frame. solution
crafts  follow too different from displacement
a negative the current one - restriction is
exponetial HANDLED ) a requirement
distribution; for problems
the speed of this type
L) of aircraft is -.DISP.)
Tt similar to real-
> world ones,
separation dis-
tances/times
on land-
ing were
calculated
from real-
world data
of  Heathrow
airport, etc.
Hydro- The static The problem here N/I. (Not men- Yes., N/IL Yes. Yes. M. (cost Optimality H N/L .Tracking. None None None None .Yes.
thermal part is from is to find the tioned in the RI (data (\WIN- of thermal Quick  recov- (although (.QUICK. (power
Schedul- a problem optimal alloca- paper.) and are DOW. genera- ery (because changes - to get a demand)
ing claimed by the tion of power Hy- gener- Pseudo vis- tion  and it is men- in the good solution
Problem authors as a to electricity perM ated ible - the thermal tioned that tested quickly)
(Deb "real-world" generators to with artifi- whole op- emission) the optimal so- problem
et al. problem. It is minimise the fuel NSGA- cially) timisation lution  should is re-
2007) described in cost of thermal 11 process be tracked current,
(Basu 2005) generation and is  divided as quick as data are
and originates emission prop- into smaller possible) generated
from a PhD erties. For this time  win- artifi-
thesis that reference we only dow. The cially.
we do not consider those problem is This type
have access. characteristics considered of change
However, that evidently ex- changed is  likely
the dynamic ists in real-world after each realistic
(changes in situations time  win- though)
the demand) dow)
is simulated

artificially
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Table 1 Combinatorial EA /metaheuristic references (cont.)

Factors that  change
References Origin of real- Notes Time-linkage Solved PredictableVisible Constr. Single/ Optimisation Types of Restart/ Parameters DomainNumber Other Constraints
world data by prob- Multi-obj goal dynamics Track of obj range of  vari- pa-
EA / lems? func ables ra-
meta- me-
heuris- ters
tics?
Optimising The consid- This approach .Yes. (HANDLED) Partly. .Partly. Yes.? (.IN- Yes M. (the Optimality ; N/IL .Tracking. Yes. (it N/I. Yes. ((it N/I. Yes. ((it is
supply- ered problem does mnot try to (GA (It is VISIBLE. objec- Quick recovery (in the sense is men- is men- mentioned
chain was  adapted deal with each to as- - change tive is to (it is required that previous tioned tioned that the
configu- from real- single order indi- tune sumed must be find the that the or- knowledge is that the that the capacity
rations world supply- vidually (provide the that detected. minimum der mneed to used to learn num- num- and feasibil-
(Akanle chain data of optimal supply op- future However, number of be complete the optimal ber of ber of ity of each
& Zhang a Fortune 100 chain for each era- de- it is  de- tardy or- before a given chain  struc- feasible feasible resource
2008) corporation, order) but  to tional mand tected by ders at the deadline Te- ture for the resource options node may
described in provide a stable pa- could other com- minimum quired by near future option of each change over
(Graves & supply chain for ra- be ponents cost) customers); -.LEARN.) as  well node, time. The
Willems 2005) a number of or- me- mod- (agents), Spec Satisfac- as the and  the processing
ders in a certain ters elled; not by tion (in  the cost  of number time for
period of time in for and the opti- sense that the each of mnodes each type of
the near future. each varia- miser itself. solver aim feasible may order may
It does that by indi- tions in In other at provide resource change also change.
looking at the vid- costs words, to- supply-chain option over However,
optimum  supply ual and ward the structure to may time. most of
chain for each of or- lead- optimiser keep up with change However, these
a set of sequence der) times changes are expected re- over most  of changes
orders, then of  re- visible) quirements time. these are not con-
try to extract soruces and  capacity How- changes sidered in
their common could in the future) ever, are not the current
properties and be pre- most of con- experiment)
design a main dicted) these sidered
supply chain for changes in the
these common are not current
properties) con- experi-
sidered ment)
in the
current
experi-

ment)




Table 2: Continuous real-world references that use EA/metaheuristics

Factors that change

G456

References Origin  of real- Notes Time-linkage Solved by Predictabld/isible ConstiS /M- Optimisation Types of dy- Restart/ ParametersDomaimlNumber Other Constraints
world data EA / meta- prob- obj goal namics Track of obj range of vari- prm
heuristics? lems? func ables
Adaptive UK Farming The problem here is Yes., partly Yes. (GA Yes. Optimality The price of .Tracking. Yes. .Yes.
Farming Data and UK to maximise income by (UNHANDLE with  differ- (.VISI- only (Max- farm  products (.CLOSE. - (gov-
Strate- agriculture sub- appropriately choosing - time-linkage ent strate- BLE.) imise income changes lin- The authors ern-
gies (Jin sidy policy are mixed grazing strategy. is mentioned gies) by appropri- carly. This type choose track- ment
et al. used in the simu- The pattern of change is in real-world ately choosing of change is ing based on sub-
2007) lation to forecast observed from real-world scenarios mixed grazing observed from the believe sidy
future land-use data. However, there (section  VII, strategy) real-world data, that it would policy
decisions. are a certain number of page 1219) but no inflation be better will
assumptions to simplify but not con- was taken into when solv- change
the problem sidered in the account. There ing problem in the
context of the are recurrent with gradual future)
paper) changes. Some parameter
other changes change)
in this problem
follow problem-
specific rules
(Government
subsidy reform
and the dy-
namic of grouse
population)
Dynamic Ecoli Fermen- The problem here is to Yes. (UN- Yes. (white- Yes. .S. Optimality It is reported .Tracking. .N/I. .No.
Opti- tation process find an optimal control KNOWN box EA (.VISI- (Fermentation that "several (.QUICK.
mization (Refers to refer- trajectory for the fermen- - it is not which up- BLE. - Productivity) sources of noise - when a
of Fed- ence [4] where it tation process. Note that clear if the dates the changes & quick  re- can contribute change hap-
batch has been used for this problem is solved time-linkage population need to be covery (the to the changes pens the EA
Fermen- a real problem) in a combined way of property is with the new detected algorithm is in the observed takes the last
tation both offline and online taken into ac- values of but they required to values of the population
Processes approaches.  The offline count during parameters. are de- provide  solu- state values". and adjust it
(Rocha phase is to create solution the optimisa- EA does tected by tions after a However, the to create new
et al. according to the known tion process) not handle a separate certain period tested dynamics solutions.
2005) numerical problem while change  but sensor, of time) & are artificially The purpose
the online phase is to deal process what not by Reference- generated and of tracking is

with any noise in real-
time. In addition, the
"dynamic" part (noise) is
artificially generated. It is
not clear if noises in real-
world situations would fol-
low the same distribution
as the simulated problem.

users give it)

the solver
itself)

solution dis-
placement
restriction
(online so-
lutions need

not to be very
different from
the reference
solution).

might not re-
flect real-world
situations.

to produce
good solution
in a short
period of
time)
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Table 2 Continuous EA /metaheuristic references (cont.)

Factors that change

References Origin  of real- Notes Time-linkage Solved by Predictabl&/isible ConstiS/M- Optimisation Types of dy- Restart/ ParametersDomaimlNumber Other Constraints
world data EA / meta- prob- obj goal namics Track of obj range of vari- prm
heuristics? lems? func ables
Dynamic Real data from The problem here is to in- Yes. (UN- Yes. (GA Partly. Yes. No. .S. Optimality Changes are .N/I. (Solved Yes. No. .No. .No. .No.
opti- Japan crease the sugar content KNOWN - the to find the (Changes (.VISI- (Ag- (Increase  the seasonal offline, may (sun
mization and decrease in citric acid output of the optimal tra- are BLE.) gre- sugar content be restarted shine
of wa- content. It is not clear if algorithm  is jectory of the peri- tated and  decrease for the mnext dura-
tering the procedure described in the required control para- odical Ob- in citric acid cycle) tion is
man- diagram in Fig.1 is carried amount of meter u for and jec- content) time-
darins out only once (i.e. fin- water, which watering the sea- tive dependent
(Morimoto ish after one year) or will could in turn mandarins. sonal) Func- but its
et al. it be carried out over and affect the The dynamic tion) dy-
2007) over in an open-ending cy- quality of model is namic
cle. In the earlier case the mandarin  in formulated is
problem is solved offline, the future) using a known
and in the latter case it neural  net- before
is possible to classify the work  based hand
problem as an online prob- on historical due
lem with time-window. data.) to the
way
the
prob-
lem is
solved)
Training Fixed Wing The problem here is to to No. Partly. No. .No. (.IN- N/I. .M. 1.  Quick re- Changes are .Tracking. Yes. N/I. .N/IL .N/I. .N/I.
a neural Multi-Input minimise the learning er- (Memetic VISIBLE. covery (solving noises. (.QUICK. - (out-
net- Multi-Output ror of the neural network, Algorithm) - the al- and training the reason is puts
work to Unmanned Aerial which is used to repre- gorithm time must because the of the
approxi- Vehicle system. sent the dynamic model of detects be less than authors  be- UAV
mate the UAV systems. The reason changes the sample lieve that the lon-
dynamic why the neural network by Te- time so that time needed gitu-
model needs to be trained on- evaluating the algorithm to find new dinal
of un- line is because of the sig- a random can predict Pareto set sys-
manned nificance of environmental solution) ahead of time) from the tem:
aerial noises. These noises might 2. Optimality previously pitch
vehicles make offline training inef- (Train a NN converged rate,
(UAV) fective. with minimum Pareto set is for-
(Isaacs error) smaller) ward
et al. veloc-
2008) ity and
ver-
tical
veloc-
ity)
The Hardware (to be The problem here is to lo- No. Yes. No. .No. (.IN- .No. .S. Optimality Odor dynamic .Tracking. Yes. .No. .No. .No. .No.
Odor implemented) cate the source of chemi- (Charged VISIBLE.) (Locate and is simulated (.CLOSE. -
Source and Software cal odour using mobile ro- PSO) move to the using the Odor due to the
Local- Simulation En- bots. The environment is odour source) Gaussian  Dis- fact that a
ization vironment with changing overtime due to & Quick tribution, wind large part of
problem Robots (although the wind and the diffusion recovery (con- turbulence and the problem
(Jatmiko the environment of the odor. vergence time chemical dif- might still
et al. is a lab-based to reach a fusion. Wind remain the
2008, one, the authors certain value is turbulence same after
Jatmiko did  link  each measured) is chaotic, the change
et al. property of the diffiusion is and hence the
2006) environment to non-linear and new global
properties that there are also optimum

are commonly
seen in real-life
situations)

sensor noises.

might not be
far from the
previous one)
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Table 2 Continuous EA /metaheuristic references (cont.)

Factors that

change

References Origin  of real- Notes Time-linkage Solved by Predictabl&/isible ConstiS/M- Optimisation Types of dy- Restart/ ParametersDomaimlNumber Other Constraints
world data EA / meta- prob- obj goal namics Track of obj range of vari- prm
heuristics? lems? func ables
Adaptive Data from The problem here is to No. Yes. (multi- N/A. Yes. No. .S. Optimality There are .Tracking. Yes. .No. .No. .N/I. .N/I.
contam- the U.S. identify the origin of con- population (.VISI- (minimise the problem- multiple good (dy-
ination Environmen- tamination in the wa- GA-based BLE. - error between specific chang- solutions. namic
source tal Protection ter network. This case approach) through a the predicted ing rules: The reason is para-
identi- Agency and data is an interesting example system  of value and the over time the because when me-
fication of the virtual city of how inverse modelling observers observed value observed  con- time goes by ters:
(Liu Micropolis  from can be represented as dy- in the & choose the centration one of those ob-
et al. Georgia Institute namic optimisation prob- network) correct origin of Sensors good solu- served
2006, of Technology. lem! (the search space of contamina- changes, re- tions  might con-
Liu The real-world changes because the infor- tion) & Quick vealing the become  the cen-
2008b) data is used to mation about the problem recovery (it necessary data optimal one tration
represent the is not fully known and can is  mentioned to find the (.CLOSE.). of sen-
static network only be gradually revealed that solu- contamination S0TS)
structure. The when time goes by) tions need to origins.
dynamic (con- be produced
tamination) is before new
simulated artifi- observations
cially but it does are received)
follow the (sim-
plified) hydraulic
condition  found
in real-world
cases
Multi- Two real-world The problem here is to to No. Partly (Scat- Partly. Yes. Yes. .S. Optimality (to There are .Tracking. Yes. No. .No. .N/I. .N/IL.
dimensional case studies: optimise the precision of ter Search (the (.VISI- optimise track- problem- multiple for  the
visual "jump" and the visual tracking system (used with pose BLE.) ing precision) specific chang- solutions tested
tracking "run" were tested in tracking animation ob- particle of the and Quick re- ing rules: the (.CLOSE. problem
(Pantrigo for articulated jects filter)) geo- covery type of dynamic - to use
et al. object tracking. metric depends on the previous
2008) In addition, the model type of object knowledge
real-world video for the movement. because  ob-
from CVBase’06 next jects only
dataset were used frame move gradu-
to test multiple can be ally;.LEARN.
object tracking pre- - the previous
dicted) knowledge
(previous
positions  of
object) is
also used to
predict future
changes)
Controller A hardware setup The problem here is to N/I. (This Yes. (PSO .N/IL. .No. (.IN- Yes. .S. Reference- Changes are .Tracking. N/IL .N/I. .N/L .N/I. .N/I
for a (simplified model maintain regulation to a property is to find the VISIBLE. - solution dis- noises during (.LEARN. - (there
DSTAT- of the ship sys- reference value for bus not men- initial static the solver placement the operation partly: the is no
COM in tem) was tested voltage in a ship power tioned and solution, and in the DSP restriction of the control feedback rule detail
an elec- in the lab system. Here the devi- is mnot taken AIS to ad- does not (maintain system) does use about
tric ship ation of voltage is kept into account just the solu- know about regulation information the
power minimum during the real- by AIS during tion online to the errors to a refer- from the past math-
system time process using AIS. the optimisa- minimise dis- (changes) ence value for (previous emat-
(Mitra & This approach works be- tion process. turbances) before- bus  voltage); error) to ical
Venayagamoorthy cause a robust solution The mathe- hand. Spec Satisfac- calculate the model
2008) has already been devised matical model Signals tion (Stability new solution) of the
during the offline phase, of the control will be - make sure control
and the task of AIS is to system is sent to the that future Sys-
try to keep deviation from not provided solver and solutions  are tem)
this robust solution to a so it is not the solver within the
minimum level clear whether has to allowable
and how the adaptively regulation
time-linkage deal  with range during
property be- changes if the real-time
haves in the there is) process)

system)
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Table 2 Continuous EA /metaheuristic references (cont.)

Factors that change
References Origin  of real- Notes Time-linkage Solved by Predictabl&/isible ConstiS/M- Optimisation Types of dy- Restart/ ParametersDomaimlNumber Other Constraints
world data EA / meta- prob- obj goal namics Track of obj range of vari- prm
heuristics? lems? func ables
Optimal Experiments with The problem here is to Yes. (UN- Yes. (GA to .No. Yes. Yes. .S. Reference- Changes are lin- .N/I.  (.UN- Yes. .N/I. .No. N/I. Yes.
visual a physical system minimise the deviation KNOWN - minimise the (the (.WIN- solution dis- ear KNOWN. -
propor- was done of the actual robot tra- mainly offline errors of the er- DOW. - At placement for each time
tional jectory from a reference, because the control para- rors/ the begin- restriction step the new
differ- pre-planned trajectory. mathematical meters) distur- ning of a (minimise the control values
ential The mathematical model model was bances new time- deviation of is calculated
con- has already been setup of- calculated of- are window, the actual based on
troller fline, but the optimisation fline. It is not not the visual robot tra- the previous
(Wang, process (parameter tun- clear if during pre- tracker jectory from solutions in
Tao & ing) is assumingly be done the offline dictable) send in- a reference, the past. It
Cho online via experiments! process the formation pre-planned is however
2008) time-linkage about the trajectory); not clear
property is current Quick recov- if  the EA
taken into position of ery; also  follows
account) the object the tracking
to create approach or
a new is  restarted
objective at each time
function step)
for the GA
to solve)
Evaporator A rigorious sim- The problem  here is Yes .Offline. only Partly. Yes. Yes. .S. Spec satisfac- Changes are .Tracking. Yes. No. .Yes. N/I. .Yes.
system ulation model to provide an optimal (Lookahead (the (.WIN- tion non-linear (.LEARN. - (the (Combi-
(Sonntag of an evapora- trajectory of states for minimisation dy- DOW. - the principle dy- nation of
et al. tor  system is an evaporator system. is performed namic after being of predictive nam- binary
2008) developed in Note that the EA ap- via nonlinear behav- detected control re- ical and real
accordance with proach can only be optmization iour is by sensors, quires that at system variables
Bayer Technology applied in an offline way and EA. The pre- changes are each reced- also means
Services (the time and rule of EA approach dictable made visi- ing horizon switches that
switching are all known!). can only be but ble to the solutions be- when
applied in an the optimiser from the tween the
offline way errors at the be- past are used dif- system
(the time are ginning  of to predict ferent switches
and rule of not). each time the future modes) mode,
switching are window behaviour. ). the
all known!)) using  the number
feedback of vari-
mecha- ables
nism) might

change)
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Table 3: Combinatorial real-world references that use non-metaheuristic methods

Factors that change
References Origin  of Notes Time-linkage Solved Predictabldisible Constr. S/M- Optimisation Types of dy- Restart/Track Parameters DomailNumber Other Constraints
real-world by EA prob- obj goal namics of obj range of vari- prm
data / meta- lems? func ables
heuris-
tics?
Air Real-data The problem here is to .Yes. (Decision No., No. Yes. Yes. .S. 1: quick recov- There are non- .Tracking. Yes No. .Yes No. .No.
traffic from two find the optimal land- of which aircraft solved (.VISI- (e.g. ery (to meet linear changes (.DISP. - The
control airports in ing/taking off schedules to land/takeoff by BLE. - the the the limit of caused by the new schedule is
in ter- Milan and for all airplanes in the air- first would heuris- system is specifi- the time win- increase of adjusted from
minal Rome port in real-time to meet change the tics informed cation dow - less than throughputs. the previous
areas the specifications, time problem in whenever in land- one second); There are one. There
(Bianco limit and requirements of the next time a new ing/taking 2: Previous- also problem- are heuristic
et al the airport. Note that the step. However aircraft off of solution dis- specific chang- rules to keep
2006) time limit in this type of the property is arrives) each placement ing rules, which certain aircraft
problems is usually mod- not fully taken type of restriction & are  controlled positions almost
elled as a specific type of into account aircraft Optimality by air regula- fixed and to
constraints. (HANDLED & and the (these two are tions and other prevent aircraft
UNHANDLE). require- all integrated in restrictions to shift position
There is also ments the obj func); too much.)
the previous- in rese- Spec Satisfac-
solution dis- quenc- tion: each type
placement ing of airplane has a
restriction) air- specification in
crafts) landing/taking
off.
Optimal The use The problem here is to .N/I. (No men- No., the Partly.& .NYks. Yes. .S. Optimality (op- Emprical data .Restart. (ap- Yes. .No. .No. .N/I. .No.
ambu- of the find the optimal ambu- tion to the time- authors (-Yes. (a) Un- (max- timal ambulance of pre-travel plicable because (changes (the
lance proposed lance locations in urban linkage property. use for the certainty in imum deployment to delays  follows the period be- in the num-
loca- model areas and adjust the However, hypo- heuris- changes each time num- maximise the a lognormal tween each time- travel ber of
tion in (for cities solutions to cope with thetically that tics + in each window: ber of coverage  given distribution window is long) time sta-
urban with  one changes. The problem can happen. branch- time solved ambu- the number (speed of tion is
areas million is solved in both offline For example and- win- offline lance) of ambulance vehicles; fixed)
(Ingolfssonpopula- and online ways: Offline the quality of bound dow;.N/I. (b) De- available) routes etc
et al. tion) is for each time window current services methods for de- mand: ), delays
2008) illustrated (knowledge about  the might affect the mand pseudo- prior  to
using dynamics from previous demand in the change)  visible the trip,
the real- data is incorporate into future etc) (.WIN- changes
world data the algorithm.); and DOW. in the
of Ed- online in the long run - after availabil-
monton. (The authors did mention each time- ity of
Data from the case of solving the window) ambu-
three problem online when de- lance and
real-world mand varies, using time- changes
ambu- window approach with in de-
lation 168h for each window). mand
location It should be noted that
projects is in the proposed model,

also used
for inves-
tigation

the arrival rate of calls is
artificially modelled using
Poisson distribution. This
distribution however is
widely believed to ac-
curately represent the
distribution of real-world
calls.
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Table 3 Combinatorial non-metaheuristic references (cont.)

Factors that change
References Origin  of Notes Time-linkage Solved Predictabl&/isible Constr. S/M- Optimisation Types of dy- Restart/Track Parameters DomailNumber Other Constraints
real-world by EA prob- obj goal namics of obj range of vari- prm
data / meta- lems? func ables
heuris-
tics?
Airlift Actual The problem here is Yes. (HAN- N/L Partly.  .Yes. Yes. N/IL Optimality; N/I. .Tracking. N/L N/I. .N/IL N/I. .Yes.
mis- (full-sclae) to effectively  schedule DLED - it is (the (.VISI- (mis- Previous- (.DISP. - to (there (mission’s
sion schedules and reschedule the air- recognised that conse- BLE. - sion’s solution dis- minimise dis- is no require-
moni- from  the lift missions of the US rescheduling quence changes require- placement ruption to other detailed ments,
toring USAF Air Air Force under chang- options have po- of a need to be ments, restriction actions) mathe- resource
and Mobility ing environments. The tential impacts reschedul- detected re- (to minimise matical availabil-
dy- Command proposed system is a on future opera- ing de- automati- source disruption to descrip- ity and
namic and  sim- decision-support  system tions, and that cision cally but avail- other actions); tion of usage con-
reschedul- ulated which comprises multi- it is necessary to can be this is not ability Quick recovery; the ob- straints
ing data feeds ple components to do take into acount pre- the task of , usage Spec Satis- jective can all
(Wilkins by the different tasks as moni- this time-linkage dicted. the opti- con- faction: Each function) change
et al Airforce toring changes; evaluating property (im- Envi- miser (the straints mission might over time.
2008) Research costs; finding optimal pacts on future ron- Scheduler) and op- have a restricted In addi-
Labora- rescheduling options; and operations) to mental because eration time frame to tion, in
tory were interacting with users. solve the prob- changes there is a regula- fulfill. certain
claimed The system is still under lem effectively cannot separate tions) cases con-
to be "as development/testing and be pre- component straints
similar has not been fully inte- dicted) to moni- can be re-
to actual grated into action yet. tor/detect laxed (i.e.
data feeds changes) some con-
as pos- straints
sible". are re-
moved) so
that some
missions
can be
executable
in time)
Managing a medium- The table management Yes. (HAN- No. Partly. Yes. Yes .S. Quick recovery N/I. .Tracking. Yes. No. .Yes. N/I. .Yes.
restau- size problem is modelled as DLED - it (the (the (.VISI- (there is a limit (.DISP. - to (many (num- (the (some
rant restau- a dynamic scheduling is recognised problem conse- BLE.) in the time to minimise dis- factors ber num- con-
tables rant in problem , where tables that the cur- is solved quence find a solution. ruption to other can of ber of straints
using Douglas, are resources and parties rent book- using of a Any solution actions) change, ta- parties changes
con- Cork City, are tasks (with start/end ing/planning some book- that takes longer e.g. the bles changes due to the
straints Ireland times and a size). Parties decision will heuris- ing than the limit number and over change in
(Vidotto are modelled as decision affect the fu- tics) deci- will not be of people types time) number of
et al variables and tables are ture problem sion accepted); in each of variables)
2007) values to be assigned. (future coverage can be Previous- party ta-
of tables).) The partly solution dis- and  the bles
authors also pre- placement starting are
try to handle dicted. restriction (dis- and end- fixed)
the time-linkage Other ruption must be ing time
feature by pre- changes minimised by of ecach
dicting the (fu- not only limiting party)
future coverage ture the amount of
of the current book- changes to pre-
tables given the ing vious solution
current booking. re- but also limiting
quests, the number of
future changes); Op-
walk- timality; Spec
in Satisfaction
cus- (schedules made
tomers now need  to
etc) be ensured not
cannot conflict with the
be pre- allocation and
dicted) time of other
pre-booked

schedules)
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Table 3 Combinatorial non-metaheuristic references (cont.)

Factors that change
References Origin  of Notes Time-linkage Solved Predictabl&/isible Constr. S/M- Optimisation Types of dy- Restart/Track Parameters DomailNumber Other Constraints
real-world by EA prob- obj goal namics of obj range of vari- prm
data / meta- lems? func ables
heuris-
tics?
Dynamic A 500m2 The problem here is to ef- .N/I. (Not men- No. (a N/L Yes. Yes. .S. Optimality; N/I. (it is .Restart. (there N/L N/I. .N/IL N/I. N/L
Chan- testbed ficiently adapts the chan- tioned) semi- (\WIN- (but Quick recovery observed  that is  no  expla- (there (there (there (there(there s
nel for the nel assignments in the definite DOW. - not ex- (the solution trafic is "often nation why is no is is  no is no de-
As- wireless wireless network to deal pro- the opti- plicitly need to be deliv- not uniform restarting is detailed no de- no tailed
sign- network with variations in traffic. gram- misation spec- ered before the among chan- chosen over descrip- de- tailed de- descrip-
ment was setup It should be noted that ming process is ified end of the time nels". However, tracking in tion of tailed de- tailed tion of the
in in the of- this application is an relax- divided in  the window) the tested this  lab-based the ob- de- scrip- de-  objective
Wire- fice, under example where mnot all ation into equal paper) dynamics are experiment. It jective scrip- tion of scrip- function
less different changes are reacted. Only tech- time- artificially should be noted function tion  the ob- tion and de-
LANs changes in "significant changes" are nique is windows. generated) that restart and  de- of jective of cision
(Wang, the envi- considered. used) However, is carried out cision the func- the variables)
Wu & ronment the solver only if changes variables) ob- tion ob-
Liu still  needs are considered jec- and jec-
2008) a separate "significant") tive  deci- tive
component func- sion func-
to evaluate tion  vari- tion
the mag- and ables) and
nitude of de- de-
changes to ci- ci-
determine sion sion
if it is vari- vari-
necessary ables) ables)
to react to
changes)
Dynamic The dy- The problem here is a Yes. (HAN- .No. Partly. .Yes. Yes. .S. Optimality N/I. .Tracking. (at N/L .N/I. .N/IL .N/I. .N/L
assign- namics dynamic assignment prob- DLED - it is (solved (it is (.WIN- (there (it is not clear the beginning (there (there (there (there
ment of the lem in a P2P network de- recognised that by a argued DOW. - are if other optimi- of each time- is not is  not is is not
in P2P peer con- signed for sending real- the current as- GRASP that the opti- restric- sation goals are window the enough enough not enough
net- nection/ time video over the In- signment might meta- the misation tions also taken into GRASP heuris- details details enougldetails to
works discon- ternet in a highly dy- influence the heuris- con- process is for the account) tics is started to for us to for de- for wus to
(Martinez nection is namic environment where appearance of tic) nec- divided up- from the pre- to decide us  to tails decide  if
et al. based on connections and discon- connections and tion/disconntetiofixed stream vious found if this decide to this factor
2008) a the logs nections occur frequently. disconnections behav- time- and solution. Newly factor if this for changes)
of user’s The purpose is to pe- in  the future. iours windows) down- connected and changes) factor us
behav- riodically eassigning net- This feature of a stream newly discon- changes) to
iour of a work connections to max- is  taken into par- band- nected nodes de-
live-video imise the global expected account and is ticular widths will be added to cide
service of Quality-of-Experience to used as criteria client of / removed from if
a medium- clients. to evaluate the is pre- nodes the existing this
size ISP solution quality dictable and solution. The fac-
(Subsection 3.1). and servers. authors do not tor
However, there the There clearly state changes)
is no detail pro- are also why the track-
about how this posed other ing approach is
procedure is method network- chosen. How-
implemented) rely related ever, it can be
on this con- assumed that
as- straints) tracking is the
sump- only viable
tion option because
to im- otherwise all
prove existing con-
the nections will be
perfor- reset -.DISP.)

mance)
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Table 3 Combinatorial non-metaheuristic references (cont.)

Factors that change
References Origin  of Notes Time-linkage Solved Predictabl&/isible Constr. S/M- Optimisation Types of dy- Restart/Track Parameters DomailNumber Other Constraints
real-world by EA prob- obj goal namics of obj range of vari- prm
data / meta- lems? func ables
heuris-
tics?
Optimal Experiments The problem here is to dy- N/I No. No. No. (.IN- N/I N/I Optimality N/I. (dy- .Tracking. (the N/I. (no N/I. .N/IL .N/I. .N/I. (no
load were done namically adjust the im- (solved VISI- (no de- (no (minimise namic data order of some detail (no (no (no  detail  of
bal- in a plementation of Broadcast by a pro- BLE. The tail  of detail the wait time are generated messages in the of the de- detail de- the objec-
ancing real-life operation, one of the most posed changes the ob- of the caused by load- artificially) Broadcast  will objective tail of the tail  tive and
(Soga computing popular collective commu- heuris- (load- jective objec- imbalance) be adjusted and con- of objec- of constraint
et al. cluster in nications in parallel appli- tic) imbalance and tive to handle the straint the tive the  func-
2008) Japan cations to avoid waiting of the sys- con- and change. The func- ob- and ob-  tions is
time in parallel processes. tem) is straint con- authors do not tions is jec- con- jec-  provided)
The dynamic in this prob- detected func- straint clearly state provided) tive straint tive
lem is caused by the fact by mea- tions func- why the track- and func- and
that although theoreti- suring the is pro- tions ing approach is con- tions con-
cally all parallel processes wait  time vided) is pro- chosen. How- straint is pro- straint
should begin their tasks of  receive vided) ever, it can be func- vided) func-
at the same time, in operations assumed that tions tions
reality due to the im- in  Broad- tracking is the is is
balance of workload of casts.). only viable pro- pro-
each process, processes It also option because vided) vided)
may start their operations means that otherwise all
at different times. Be- changes existing paral-
cause of that, it might cannot be lel tasks will
be necessary to re-order detected be  terminated
the processes to minimise just by re- -.DISP.)
the wait time caused by evaluating
under-load processes. a few
solution
Path- Maps from The problem here is to Yes. (in the .No. Partly. Yes. Yes M. Optimality; N/I. .Tracking. Yes Yes .No. Yes. .Yes.
finding real com- cumulatively build a path sense that the (solved (a (\WIN- (The Quick recovery (.LEARN. - the (the
for mercial for an intelligent agent outcome of the by a small DOW. - single- (there is a time- search agent num-
intel- games (in real-time AI games) to algorithm at one special seg- because objective per-action limit re-uses (and ber of
ligent travel from one place to time-window heuris- ment the opti- case in computer starts from) the actions
agents another when time goes will decide the tics) of the misation was games regardless knowledge that in one
in AT by. In this type of prob- starting point map process is also of problem size); it  has learnt time-
games lems (path-finding), the (and hence the can be divided tested) Spec Satisfac- from the past window
(Bulitko search space (terrain map) search space) of pre- into fixed tion (the search to initiate its is
et al. is initially unknown to the the algorithm dictable time- agent needs search at the fixed)
2007) search agent. Over time, in the next based windows) to eventually beginning of
when the search agent time-window. on reach a goal/ each new time
moves around the land- The time-linkage cur- destination) step. The pur-
scape, it will realise more property is rent pose of tracking
and more about the land- handled in the knowl- might not be
scape. Because at each sense that at edge) that the global

time step the search agent
is restricted to discover
only a limited area of the
search space, we can con-
sider the problem as a dy-
namic problem in which at
each time step the algo-
rithm need to deal with a
slightly different objective
function. This is an ex-
ample of cases where al-
though the objective func-
tion is completely known,
it is too expensive to solve
offline or there is some
strict rules preventing it
from being solve offline,
and hence it needs to be
solved online

the current time
the solver plans
n actions away
into the future.
HANDLED)

optimum of the
new problem is
close to the old
one, but that
tracking enable
the continuity of
the path-finding

approach and
also  to learn
more about
the surround-
ing map. It
may also facili-
tate producing
a solution
more quickly
(..QUICK..))



Table 4: Combinatorial non-metaheuristic references (cont.)

096

Factors that change
References Origin  of Notes Time-linkage Solved Predictabld/isible Constr. S/M- Optimisation Types of dy- Restart/Track Parameters DomaimNumber Other Constraints
real-world by EA prob- obj goal namics of obj range of vari- prm
data / meta- lems? func ables
heuris-
tics?
ContinuousFwo real- The problem here is to cu- Yes. (in the No. Partly. .Yes. Yes. .S. Optimality N/I. .Tracking. (to Yes. .N/I. .N/L .N/I. .Yes. (
field world  ro- mulatively build an opti- sense that the (some (.VISI- (minimising get a mnew so- (at each the  con-
path- bots were mal path for a robot to outcome of the prop- BLE. - the traversal cost); lution quickly time-step straints
planning tested move from one place to algorithm at erties, robot needs Quick recovery (.QUICK.) and when the will  also
for ro- another when time goes one time-step e.g. to detect (there is a time- to use knowl- robot change
bots by. An offline path might will decide the the changes per-action limit edge from the moves because
(Mills- have already been set up, starting  point, domi- itself  but for the robot); past to learn to a new the total
Tettey but because the actual energy, and stor- nance it uses Spec Satis- more about place, available
et al. terrain might be different age data (and of a dedicated faction (the the environ- its sen- energy
2008) from the pre-planned path hence the objec- cell sensors for robot needs ment and how sor may and the
due to unknown obstacles, tive function and com- this pur- to eventually to handle the discover data stor-
the robot needs to adjust constraints) of pared pose. The reach a destina- environment some age also
its path to get the des- the robot in the to an- solver does tion position); (.LEARN.) ) discrep- changes
tination. Because of the next time-step. other, not need Reference- ancies over time
unknown factors along the The time-linkage can be to detect solution dis- between depending
path and because of the property is han- pre- changes) placement re- this new on the
fact that the robot needs dled in the sense dicted) striction (there environ- position
to find the actual path on- that the restric- might also be ment of the
line, the problem is a dy- tion of robot a pre-planned and  the robot and
namic optimisation prob- movement is re- path that the planned the time
lem. laxed to ensure robot should map. the robot
that its future follow as close as In such takes to
path can lead to possible) case the get to that
the destination objective position )
given the current function
level of energy - needs
HANDLED) to be
adjusted)
State The ex- This reference does not fo- Yes. (HAN- Partly.  .Yes. N/A. (state es- .N/A. (because Yes. Yes.
esti- periment cus on optimisation but on DLED - the (the (\WIN- timation, not op- the goal of the (the ob-
mation was done estimating the unknown current control time DOW. - timisation) research is to es- jective
in in a state of hybrid systems. value will deter- and the opti- timate the state, func-
three- AMIRA In this hybrid system the mine how the the misation not to find opti- tion also
tank DTS200 number of possible dis- current dynamic way a process  is mal solution) switches
system three- crete modes is known. system will be switch divided between
(Pina tanks in the future. occurs into time- different
& system In addition, is windows modes)
Botto the algorithm deter- and hence
2008) also  determine mined changes are
when and how by the assumed
a  switch-mode con- to occur
should happen troller, at the be-
in the future) but ginning of
the er- each time
rors/ window )
distur-
bances
are
not
pre-

dictable)
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Factors that change
References Origin  of Notes Time-linkage Solved Predictabl&/isible Constr. S/M- Optimisation Types of dy- Restart/Track Parameters DomailNumber Other Constraints
real-world by EA prob- obj goal namics of obj range of vari- prm
data / meta- lems? func ables
heuris-
tics?
Bus Bus Dynamic bus scheduling N/I N/L .Partly. Yes. Yes. M. 1: Optimality; Changes are N/I Yes. N/I. .N/IL N/I. .Yes.
Schedul- scheduling problem (the (.VISI- (the 2: Previous- stochastic  but (variable
ing in in London, level BLE.) ser- solution dis- it is not clear if in amount
Lon- interview of pre- vice placement it follows any of re-
don from prac- dictabil- needs restriction; distribution sources;
(Andrews titioners ity s to 3: Reliability due to the lack changes in
& ‘medium’) meet (.Other. goal) of information. the route
Tuson the Changes are map,
2005) stan- also periodical changes in
dard and the level of travelling
and periodicity is time)
the variable.
oper-
ating
cost
needs
to be
opti-
mised)
Courier Courier Dynamic scheduling for N/IL No.! Partly. N/IL N/I N/IL quick  recovery N/I. N/IL N/IL N/I. .N/IL N/I. .N/IL
Service service in courier service in London (solved (the is the most
in London, by level concern (It is
Lon- interview heuris- of pre- required that
don from prac- tic  and dictabil- the algorithm
(Andrews titioners neural ity s need to recover
& network) ‘medium’) quickly to a
Tuson ‘minimum stan-
2005) dard’ before any
improvement
can be made)
Peptide  Interview Peptide identification N/L N/L .Partly. .No. (.UN- .N/L .N/IL N/L Changes are .N/IL Yes. .N/I.  .Yes. .N/I. .N/IL
Iden- from prac- problem (the KNOWN. noises and (noisy
tifica- titioners level -it is not the level of obj func-
tion of pre- clear if the periodicity is tion)
(Andrews dictabil- algorithm "high".
& ity s needs to
Tuson ’high’) detect
2005) changes or
the  time-
window
approach
can be used
to  handle
changes)
Commu- Interview Communication middle- N/IL. N/I. .Partly. .No. (.UN- .N/IL .N/IL. N/I. Some changes .N/IL N/I. .Yes. .Yes. .N/I. .N/IL
nication from prac- ware problem (the KNOWN. are  periodical
Mid- titioners level -it is  not and the level of
dle- of pre- clear if the periodicity is
ware dictabil- algorithm low’
(Andrews ity is needs to
& low’) detect
Tuson changes or
2005) the  time-
window
approach

can be used
to  handle
changes)
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Table 4 Combinatorial non-metaheuristic references (cont.)

Factors that change
References Origin  of Notes Time-linkage Solved Predictabl&/isible Constr. S/M- Optimisation Types of dy- Restart/Track Parameters DomailNumber Other Constraints
real-world by EA prob- obj goal namics of obj range of vari- prm
data / meta- lems? func ables
heuris-
tics?

Dynamic Interview Dynamic resource alloca- N/I N/L No. No. (.UN- Yes. N/I. 1: Optimality & Some changes N/I Yes. No. .Yes. N/I. .Yes.
Re- from prac- tion problem KNOWN. quick recovery; are periodical (rarely) (available
source titioners -it is  not 3: Previous- and the level of resources)
Allo- clear if the solution dis- periodicity is
cation algorithm placement low’
(Andrews needs to restriction
& detect
Tuson changes or
2005) the time-

window

approach

can be used

to  handle

changes)
Dynamic Interview Dynamic scheduling prob- N/IL N/IL No. No. (.UN- Yes N/IL 1: Optimality & Some  changes N/IL Yes. No. .Yes. N/I. .Yes.
Schedul- from prac- lem KNOWN. quick recovery; are  periodical (fitness (rarely) ('num-
ing titioners -it is not 3: Previous- and the level of function ber and
(Andrews clear if the solution dis- periodicity is changes type of
& algorithm placement low’ as the scheduling
Tuson needs to restriction priorities elements
2005) detect change involved’)

changes or and  the

the  time- tolerant

window amount

approach changes)

can be used

to  handle

changes)
Risk Interview Risk Minimisation Prob- .N/IL. N/L No. .No. (.UN- Yes .N/IL 1: Optimality & Some changes .N/IL Yes. .No. .Yes. .N/I. .Yes.
Mini- from prac- lem KNOWN. quick recovery; are  periodical (fitness (rarely)
miza- titioners -it is  not 3: Previous- and the level of function
tion clear if the solution dis- periodicity is changes
Prob- algorithm placement low’ as the
lem needs to restriction risk types
(Andrews detect and risk
& changes or assess-
Tuson the  time- ments
2005) window change)

approach

can be used

to  handle

changes)
Travel Administrativél'his research does not N/A. N/A. Partly. .N/A. .N/A. N/A. N/A. Changes follow N/A. Yes. .N/A. N/A. Yes. .N/A.
time in data for solve the ambulance de- a leptokurtic (changes (changes
ambu- one year ployment and station lo- distribution in the in
lance of high caltion problem but in- with a co- speed of the
de- priority stead reveals the real- efficient of vehicles; speed
ploy- calls (7457 world dynamic properties variation  that changes of
ment calls) in of the problem. The sta- decreases in route; ve-
and Calgary, tistical analysis of history with dis- ) hi-
station Alberta. data can be used to assist tance. Changes cles;
loca- the planning of ambulance also depend changes
tion services more effectively on problem- in
prob- specific rules route;
lems such as  the )
(Budge time of day
et al and travel
2008) distances.
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Table 5: Continuous real-world references that use non-metaheuristic methods

Factors that change
References Origin of real- Notes Time-linkage Solved Predictable Visible Constr.S/M- Optimisation goal Types of dy- Restart/Track Parameters Domain Number Other Constraints
world data by EA prob- obj namics of obj range variables prm
/ meta- lems? func
heuris-
tics?
Parameter Dynamic data Yes., partly No. No. (the Yes. (\WIN- Yes .S. Reference-solution The measure- N/L Yes. No. No. N/I. .Yes.
esti- was observed (HANDLED - (special errors/ dis- DOW. - the displacement re- ment  fluctua- There
mation from a real- although not prm  es- turbances optimisation striction (minimise tions follow a are two
in life industrial directly, current timation cannot be process is  di- errors between normal distrib- types of
Poly- bulk propylene estimation result tech- predicted) vided into time- the reference tra- ution with zero dynamics
meri- polymerisation does influence nique windows and jectory and the means. The in the
sation process for six the value of the is  used hence changes observed solution.); dynamic system objective
process months chosen control and is are assumed Quick recovery also changes function.
(Prata variable for next restarted to occur at the (the algorithm is non-linearly. The first
et al. step, which in after beginning of each required to provide is data
2006) turn influence each time window ) solution in a sorter error  at
the problem in time time than the each time
the next step.) window) sampling period) window.
The sec-
ond is the
dynamic
of the
control
system
Building Building  con- Yes. (HAN- .No. (a .N/IL .Yes. (.VISIBLE. Yes .S. Spec  Satisfaction Some changes .Tracking. Yes. .No. .No. N/I. .Yes.
de- struction is DLED - the special - environmental (maintain stability) are linear. (.LEARN. - the
mand taken from considered plant MPC changes are visi- Optimality (min- The data also principle of predic-
control real-world  ex- controls the tech- ble, and control imise the electric show that tive control requires
prob- amples, solar room temper- nique is changes are con- utility cost); some changes that at each reced-
lem loads and ambi- ature and the used) trolled by the al- (outside air ing horizon solutions
(Sane ent conditions performance of gorithm) temperature from the past are
& are achieved other related and solar irra- used to predict the
Guay from the TMY equipments, diation) have future behaviour)
2008) database for which in turn a periodical
Hartford, cT influences the property.
in the months dynamic of the
of July, load problem in the
schedule are future)
chosen to cor-
respond to
typical office
application
Minimum- The  proposed One interest- Yes. (HAN- .No. (a .Partly. Yes. (\WIN- .Yes. .S. Spec Satisfaction .N/IL .N/IL. Yes .No. .N/IL N/I. .Yes.
time method was ing note in DLED - the receding (the future DOW. - the (Stability - make
travel applied to an this research current value of horizon dynamic optimisation sure that the speed
for a actual road is  that the control variable ap- can be process is  di- will not exceed the
vehicle track to gener- size of the would influence proach predicted, vided into time- "critical value" at
with ate the velocity time-window the future dy- is used) but the windows and any time step and
accel- profile of a is also op- namic of the errors/ dis- hence changes there is an "escape
eration Silverstone F1 timised to system) turbances are assumed plan" at the end of
limits circuit maintain are not) to occur at the each time window);
(Velenis stability. beginning of each Optimality (min-
& time window ) imise lap time
Tsiotras of the F1 car);
2008) Quick recovery

(the computation
time needs to be
short to finish
within the current
time window)
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Table 5 Continuous non-metaheuristic references (cont.)

Factors that change
References Origin of real- Notes Time-linkage Solved Predictable Visible Constr.S/M- Optimisation goal Types of dy- Restart/Track Parameters Domain Number of Other Constraint:
world data by EA prob- obj namics of obj range variables prm
/ meta- lems? func
heuris-
tics?
Control  Only simulation Yes. (HAN- .No. .Partly. Yes. (\WIN- No. .S.  Reference-solution N/I (the .Tracking. Yes. No. .No. .N/I. .N/A.
DC- was shown but DLED - the ("all  pos- DOW. - Al- displacement re- environmen- (.LEARN. - The (the dy-
DC the authors current  control sible  state though distur- striction (minimise tal changes past knowledge is namical
con- claim that value will deter- trajectories bances changes the deviation of were generated used by the MPC system
verters the method mine how the can be are not visible, output voltage artificially) to  predict future also
based has been ap- current dynamic predicted the optimisation from a reference behaviour of the switches
on plied directly system will be on-line process is  di- value) system) between
combi- to hardware in the future. since the vided into time- different
natory equipments In addition, number windows and modes)
opti- the algorithm of modes hence changes
miza- also determine is finite, are assumed
tion when and how the dynam- to occur at the
(Ahmad a switch-mode ics is affine beginning of each
& Liu event should and au- time window )
2008) happen in the tonomous
future) ", but the
errors/ dis-
turbances
are not)
Constant- Industrial Nonlinear Yes No. Partly. Yes. (.WIN- Yes .S. Reference- The dynamics .Tracking. Yes No. Yes. (The N/I. .Yes.
pressure constant- Model pre- (the dy- DOW. - after displacement of the system (.LEARN. - the number
water pressure water dictive namic being detected restriction; and are non-linear. principle of predic- of such
supply supply system control behaviour by Sensors, Spec Satisfaction There is no tive control requires variables
system is pre- changes are (Stability (con- detailed infor- that at each reced- of the op-
(Zhang dictable made visible to trol the plant mation about ing horizon solutions timization
& Li but the the optimiser at for desired out- the types of from the past are problem
2007) errors are the beginning put) and other other changes.. used to predict the at each
not). of each  time specifications) future behaviour. step would
window using In addition the change de-
the feedback NLP optimiser also pending on
mechanism) starts from the past how mant
solution). number
of past
inputs and
outputs is
necessary.)
A a continuous Simulation of Yes. No. Partly. Yes. (\WIN- Yes .S. Reference- The dynamics .Tracking. Yes No. No. N/I. Yes.
contin- stirred tank a real system (the dy- DOW. - after displacement of the system (.LEARN. - the
uous heater pilot for teaching. namic being detected restriction; and are non-linear. principle of predic-
stirred plant at the behaviour by Sensors, Spec Satisfaction There is no tive control requires
tank University of is pre- changes are (Stability (plant detailed infor- that at each reced-
heater Alberta is used dictable made visible to control) and other mation about ing horizon solutions
mod- to validate the but the the optimiser at specifications) the types of from the past are
elling model errors are the beginning other changes. used to predict the
(Thornhill not). of each  time future behaviour.
et al. window using In addition the
2008) the feedback NLP optimiser also

mechanism)

starts from the past
solution).
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Table 5 Continuous non-metaheuristic references (cont.)

Factors that change
References Origin of real- Notes Time-linkage Solved Predictable Visible Constr.S/M- Optimisation goal Types of dy- Restart/Track Parameters Domain Number of Other Constraint:
world data by EA prob- obj namics of obj range variables prm
/ meta- lems? func
heuris-
tics?
Heater- a heater-mixer Simulation Yes. No. Partly. Yes. (\WIN- Yes. .S. Reference- The dynamics .Tracking. Yes. No. No. N/I. Yes.
mixer setup devel- of continuous (the dy- DOW. - after displacement of the system (.LEARN. - the
setup oped at the fermentation namic being detected restriction; and are non-linear. principle of predic-
(Srinivasarbepartment of benchmark behaviour by Sensors, Spec Satisfaction There are also tive control requires
et al. Chemical Engi- problem. is pre- changes are (Stability (plant noises caused that at each reced-
2007) neering, [L.I.T. dictable made visible to control) and other by errors and ing horizon solutions
Bombay is used but the the optimiser at specifications) disturbances. from the past are
to validate the errors  are the beginning used to predict the
model not). of each  time future behaviour.
window using In addition the
the feedback NLP optimiser also
mechanism) starts from the past
solution).
Industrial Real data Experimental Yes. No .Partly. Yes. (\WIN- Yes .S. Reference- The dynamics .Tracking. Yes No. Yes. (Yes N/I. .Yes.
fer- modeling rig (the dy- DOW. - after displacement of the system (.LEARN. - the as the
men- of a three- namic being detected restriction; and are non-linear. principle of predic- structure
tation input three- behaviour by Sensors, Spec Satisfaction There is no tive control requires of the
process output chemical is pre- changes are (Stability (plant detailed infor- that at each reced- regressor
(Yu process rig s dictable made visible to control) and other mation about ing horizon solutions changes i.e.
et al. used to evaluate but the the optimiser at specifications) the types of from the past are number of
2006) the model errors  are the beginning other changes. used to predict the past inputs
not). of each  time future behaviour. ). and out-
window using puts could
the feedback change.)
mechanism)
Control  Residential Yes No. Partly. Yes. (\WIN- Yes .S. Optimality (House- The dynamics .Tracking. Yes. No. Yes. N/I. .Yes.
of electricity and (the dy- DOW. - after hold energy sourc- of the system (.LEARN. - the (the dy- (Combi-
Resi- aggregated heat namic being detected ing for minimum are linear. principle of predic- namical nation of
dential demand data in behaviour by Sensors, cost) There is  no tive control requires system binary
Energy 2006 from En- is pre- changes are detailed  infor- that at each reced- also and real
Re- ergieNed, the dictable made visible to mation about ing horizon solutions switches variables
sources Dutch Federa- but the the optimiser at the types of from the past are between means that
(Houwing tion of Energy errors  are the beginning other changes. used to predict the different when the
et al Companies is not; the of  each time future behaviour. In modes) system
2007) used as input buying window using addition the MILP switches
for the model. price of the feedback optimiser might also mode, the
electricity mechanism) start from the past number
is known solution). of vari-
a day in ables might
advance). change?)
Solar Tested in a Hybrid Yes No. Partly. Yes. (\WIN- Yes .S. Spec Satisfaction The dynamics .Tracking. Yes. No. Yes. N/I. .Yes.
Air solar air con- systems con- (the dy- DOW. - after (Closed loop sta- of the system (.LEARN. - the (the dy- (it (Combi-
Condi- ditioning plant trolling  the namic being detected bility and other are non-linear. principle of predic- namical should nation of
tioning in University of operating behaviour by sensors, specifications); There is no tive control requires system be binary
Plant Seville, Spain. modes of is pre- changes are Robustness of the detailed infor- that at each reced- also noted and real
(Menchinelli the solar dictable made visible to approach (.Other. mation about ing horizon solutions switches that variables)
& controller but the the optimiser at Goal) the types of from the past are between bi-
Bemporad errors  are the beginning other changes. used to predict the different nary
2008) not). of  each time future behaviour. modes) vari-
window using ). The optimisation ables
the feedback method is Mixed are
mechanism) Integer Quadratic also

Programming

in-
volved)
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Table 5 Continuous non-metaheuristic references (cont.)

Factors that change
References Origin of real- Notes Time-linkage Solved Predictable Visible Constr.S/M- Optimisation goal Types of dy- Restart/Track Parameters Domain Number of Other Constraint:
world data by EA prob- obj namics of obj range variables prm
/ meta- lems? func
heuris-
tics?
Control An  integrated Hybrid Yes. No. Partly. .N/A. The re- Yes. .S. Spec Satisfaction The dynamics N.A. Track op- .Yes. No. Yes. N/I. .Yes.
of DC- DC-DC con- systems (the dy- gressor is trained (Closed loop sta- of the system timum is used (the dy- (Combi-
DC verter through with model namic using offline bility and other are non-linear. in the offline namical nation of
Switched a fixed-point switching. behaviour data. specifications); There is no phase.Tracking system binary
Mode DSP is devel- The problem is pre- Robustness of the detailed infor- is not choosen in also and real
Power oped to validate is not solved dictable approach (.Other. mation about online implementa- switches variables)
Sup- the model totally on- but the Goal) the types of tion. For training between
plies line. The errors  are other changes. the model offline, different
(Beccuti problem is not). receeding approach. modes)
et al pre-solved
2009) off-line. The
on-line part
is to search
in the result-
ing look-up
table
Control A laboratory Hybrid sys- Yes No. Partly. Yes. (.WIN- Yes .S. Spec satisfaction The dynamics .Tracking. Yes. No. N/IL N/I. Yes.
of two- prototype is tems with (the dy- DOW. - after of the system (.LEARN. - the (the dy-
stage developed to alternative namic being detected are non-linear. principle of predic- namical
matrix validate the toplogy behaviour by Sensors, There are also tive control requires system
con- model switching is pre- changes are noises caused that at each reced- also
verter dictable made visible to by errors and ing horizon solutions switches
(Marié¢thoz but the the optimiser at disturbances. from the past are between
et al. errors  are the beginning used to predict the different
2008) not). of each  time future behaviour. ). modes)
window using
the feedback
mechanism)
Heat The experiment High rate of Yes. No. Partly. Yes. (.WIN- Yes .S. Spec Satisfaction The dynamics .Tracking. Yes No. No. N/I. .Yes.
Ex- is done in a real conversion (the dy- DOW. - after (Stability and of the system (.LEARN. - the
change chemical reac- and temper- namic being detected other specifica- are non-linear. principle of predic-
Re- tor, the Open ature control behaviour by Sensors, tions); Robustness There are also tive control requires
actor Plate Reactor, needs to be is pre- changes are (.Other. Goal); noises caused that at each reced-
(Haugwitz developed by achieved dictable made visible to Safe, High rate of by errors and ing horizon solutions
et al Alfa Laval AB. but the the optimiser at conversion  within disturbances. from the past are
2007) errors  are the beginning limits of reac- used to predict the

not).

of  each time
window using
the feedback

mechanism)

tion temperatures
(.Other. Goal)

future behaviour. ).
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Table 5 Continuous non-metaheuristic references (cont.)

Factors that change
References Origin of real- Notes Time-linkage Solved Predictable Visible Constr.S/M- Optimisation goal Types of dy- Restart/Track Parameters Domain Number of Other Constraint:
world data by EA prob- obj namics of obj range variables prm
/ meta- lems? func
heuris-
tics?
Polymer Use a dynamic Validated Yes. No. Partly. Yes. (\WIN- Yes. .S. Spec satisfaction The dynamics .Tracking. .Yes. No. Yes. N/I. Yes.
Elec- model, which against a (the dy- DOW. - after (Safe  region  of of the system (.LEARN. - the (the dy- (Combi-
trolyte was validated real model namic being detected operation) are non-linear. principle of predic- namical nation of
Mem- in a real plant data behaviour by Sensors, tive control requires system binary
brane in (del Real is pre- changes are that at each reced- also and real
fuel et al. 2007) dictable made visible to ing horizon solutions switches variables
cell but the the optimiser at from the past are between means that
system errors  are the beginning used to predict the different when the
(Fiacchini not). of each time future behaviour. ). modes) system
et al window using switches
2008) the feedback mode, the
mechanism. The number
algorithm can of vari-
also control some ables might
changes (model change)
switching). The
model switch-
ing happens
when the oper-
ating ranges is
different)
Control  Use a full Validated Yes. No. Partly. Yes. (.WIN- Yes .S. Optimality (con- The dynamics .Tracking. Yes. No. Yes. N/I. .Yes.
of a scale simula- against a (the dy- DOW. - after tinuous control of the system (.LEARN. - the (the dy- (Combi-
sugar tor of a real real model namic being detected and  batch units are non-linear. principle of predic- namical nation of
factory sugar factory. data behaviour by Sensors, scheduling) tive control requires system integer
(de Prada The simulator is pre- changes are that at each reced- also and real
et al is described dictable made visible to ing horizon solutions switches variables
2008) in (Merino but the the optimiser at from the past are between means that
et al. 2006) errors are the beginning used to predict the different when the
not). of each  time future behaviour. ). modes) system
window using switches
the feedback mode, the
mechanism. The number
algorithm can of vari-
also control some ables might
changes (model change)
switching))
Chaotic  Dynamic model Yes. (HAN- No. Partly. Yes. (\WIN- Yes .S. Spec Satisfac- The dynamics .Tracking. Yes. No. No. N/I. .Yes.
Con- of a Contin- DLED) (the future DOW. - the tion (Maintain of the system (.LEARN. - at (para-
tin- uous Stirred dynamic algorithm would stability) are non-linear. each receding hori- meter of
uous Tank  Reactor can be decide how the Depending on zon solutions from dynamic
Stirred (Morningred predicted, problem change the previous the past are used to systems)
Tank et al. 1990). In but the in the future) solutions the predict the future
Re- Lightbody & errors/ dis- future state behaviour. Here the
actor Irwin (1997) turbances of the system sense of tracking is
(Wang it is described are not) might be stable applied in a greater
et al. as a realistic or unstable or extent: the opti-
2007) non-linear case chaotic. In miser (parameter
study. We certain situ- estimator) might not
cannot get the ations due to use solutions from
original paper the chaotic the previous step,
to verify the dynamic there but the predictor
claim. are oscillations needs to wuse past
(although  not solution and hence

cyclic)

the whole dynamic
control system fol-
lows the tracking
approach)
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Table 5 Continuous non-metaheuristic references (cont.)

Factors that change
References Origin of real- Notes Time-linkage Solved Predictable Visible Constr.S/M- Optimisation goal Types of dy- Restart/Track Parameters Domain Number of Other Constraint:
world data by EA prob- obj namics of obj range variables prm

/ meta- lems? func

heuris-

tics?
Zymomona¥he dynamic .Yes. (HAN- No. Partly. Yes. (\WIN- Yes. .S. Spec Satisfac- The dynamics .Tracking. Yes. No. No. N/I. .Yes.
Mo- model is sim- DLED) (the future DOw. - the tion (Maintain of the system (.LEARN. - at (para-
bilis ulated from a dynamic optimisation stability) are non-linear. each receding hori- meter of
Re- real reactor sys- can be process is  di- Depending on zon solutions from dynamic
actor tem  described predicted, vided into time- the previous the past are used to systems)
(Wang in (Daugulis but the windows and solutions the predict the future
et al et al. 1997) errors/ dis- hence changes future state behaviour)
2007) turbances are assumed of the system

are not) to occur at the might be stable

beginning of each
time window )

or unstable or

chaotic. In
certain situ-
ations due to
the chaotic
dynamic there

are oscillations
(although  not
cyclic)
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