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Abstract

Evolutionary dynamic optimisation (EDO), or the study of applying evolutionary algorithms to

dynamic optimisation problems (DOPs) is the focus of this thesis.

Based on two comprehensive literature reviews on existing academic EDO research and real-

world DOPs, this thesis for the first time identifies some important gaps in current academic

research where some common types of problems and problem characteristics have not been

covered. In an attempt to close some of these gaps, the thesis makes the following contributions:

First, the thesis helps to characterise DOPs better by providing a new definition framework,

two new sets of benchmark problems (for certain classes of continuous DOPs) and several new

sets of performance measures (for certain classes of continuous DOPs).

Second, the thesis studies continuous dynamic constrained optimisation problems (DCOPs),

an important and common class of DOPs that have not been studied in EDO research. Contribu-

tions include developing novel optimisation approaches (with superior results to existing meth-

ods), analysing representative characteristics of DCOPs, identifying the strengths/weaknesses

of existing methods and suggesting requirements for an algorithm to solve DCOPs effectively.

Third, the thesis studies dynamic time-linkage optimisation problems (DTPs), another im-

portant and common class of DOPs that have not been well-studied in EDO research. Con-

tributions include developing a new optimisation approach (with better results than existing

methods in certain classes of DTPs), analysing the characteristics of DTPs and the strengths

and weaknesses of existing EDO methods in solving certain classes of DTPs.
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Chapter 1

Introduction

Evolutionary dynamic optimisation (EDO), or the study of applying evolutionary algorithms

(EA) to dynamic optimisation problems (DOPs), is an active research topic and has increasingly

attracted interest from the evolutionary computation (EC) community. The field is relatively

young as most of the studies have been made in the last 20 years with the exception of a few

early works such as (Fogel et al. 1966, Goldberg & Smith 1987) . Due to its relatively young

age, the field still has a lot of open areas with open research questions, of which perhaps one

of the most important questions is about how well academic EDO research reflects the common

characteristics of DOPs and if there are any types of DOPs that have not been covered by current

academic research. The main purpose of this thesis is to investigate this important question and

to propose solutions to close some of the gaps in this issue.

1.1 Dynamic problems and dynamic optimisation problems

It is necessary to distinguish between dynamic problems (also called dynamic environments or

time-dependent problems), which are problems that change over time, and dynamic optimisation

problems (DOPs), which belong to a special class of dynamic problems that are solved online

by an optimisation algorithm as time goes by. Of these two types of problems, only DOPs are

of interest to EDO research. This is because, no matter how the problem changes, from the

perspective of an EA or an optimisation algorithm in general, a time-dependent problem is only

different from a static problem if it is solved in a dynamic way, i.e. new solutions are produced

to react to changes as time goes by. Otherwise, if future changes can be completely integrated

into a static objective function, or if a single robust-to-changes solution can be provided, or if

only the current static instance of the time-dependent problem is taken into account, then the
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problem can be solved using static optimisation techniques and hence is no longer of interest to

EDO.

In spite of this difference between dynamic problems and DOPs, in many EDO studies the

terms "dynamic problem" and "dynamic optimisation problem" are not distinguished or are used

interchangeably. In fact, many EDO studies use the definitions of dynamic problems, especially

the formal definitions, to define DOPs. In these studies, DOPs are either defined as a sequence of

static problems linked up by some dynamic rules (Weicker 2000, Weicker 2003, Aragon & Esquivel

2004, Rohlfshagen & Yao 2008, Rohlfshagen & Yao 2010) or as a problem that have time-

dependent parameters in its mathematical expression (Bäck 1998, Bosman 2007, Woldesenbet

& Yen 2009) without mentioning whether the problems are solved online by an optimisation

algorithm or not. For example, below is a formal definition (Bosman 2007) for a DOP with the

time variable t ∈ T =
[
0, tend

]
, tend > 0 :

max {Fγ (x (t))} subject to Cγ (x (t)) = feasible with

Fγ (x (t)) =
∫ tend
0 fγ(t) (x (t)) dt

Cγ (x (t)) =

 feasible if ∀t ∈
[
0, tend

]
: C

γ(t)
(x (t)) = feasible

infeasible otherwise

(1.1)

where f is a function of x (t) with time-dependent parameters γ and C is the constraint function.

Although definitions like those cited above can be used to effectively represent time-dependent

problems, they do not however show whether a time-dependent problem is different from a static

problem from the perspective of an optimisation algorithm and hence are not able to distinguish

a DOP from the general time-dependent problems.

Some recent EDO studies have taken into account this difference between static optimisation

and dynamic optimisation when specifying the scope of the dynamic problems to be studied.

Branke (2001b) considered time-dependent problems as dynamic only if "the EA has to cope

with these dynamics", Morrison (2004) restricted the DOPs studied in his book to those in which

"the underlying fitness landscape changes during the operation of the EA", and Bosman (2007)

considered DOPs that "must be solved as time goes by" as "the most practical variant of dynamic

optimization". Finally, Jin & Branke (2005) considered time-dependent problems "dynamic"

only if the dynamics "are to be taken into account in the optimization process". Problems
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satisfying this condition are categorised by the authors as "dynamic fitness functions".

The implication of the cited remarks above is that a time-dependent problem is a dynamic

optimisation problem (DOP) only if it is solved online by an optimisation algorithm as time goes

by. To make it clearer and to distinguish DOPs from other types of time-dependent problems,

I propose the following definition for DOPs:

Definition 1.2 (Dynamic optimisation problem) Given a dynamic problem ft, an optimi-

sation algorithm G to solve ft, and a given optimisation period
[
tbegin, tend

]
, ft is called a

dynamic optimisation problem in the period
[
tbegin, tend

]
if during

[
tbegin, tend

]
the underly-

ing fitness landscape that G uses to represent ft changes and G has to react to this change by

providing new optimal solutions.1

From now on, in this thesis we will use the term dynamic optimisation problems (DOPs)

to refer to any problems defined by the above definition. A more formal and detailed DOP

definition, which takes into account the common characteristics of DOPs, will be provided later

in Chapter 4.

The definition above distinguishes DOPs from the other two types of time-dependent prob-

lems, which are solved using different approaches as follows:

1. Time-dependent problems that are solved by static optimisation approaches: These time-

dependent problems are formulated as a static problem by the optimisation algorithm.

This is because either all future changes are known and hence can be completely integrated

into a static objective function, or only the current static instance of the time-dependent

problem is taken into account. In this case the goal is to find a single, static solution using

a static optimisation approach

2. Time-dependent problems that are solved by robust optimisation approaches: In these prob-

lems future changes are normally not completely known but in most cases the problem

is still formulated as a static problem with an expected fitness function. The goal is to

find a single solution that is less sensitive under future disturbances such as production

tolerances, operating conditions or modelling inaccuracies. A recent review of robust op-

1This definition also covers the robust-optimisation-over-time situation described in (Yu et al. 2010) where a
sequence of 〈S1, ...Sk〉 robust solutions is found provided that k > 1.
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timisation can be found in (Beyer & Sendhoff 2007). Another summary of evolutionary

robust optimisation approaches is presented in (Jin & Branke 2005).

1.2 Scope of the thesis

The range of dynamic optimisation problems is large and diversified. In Chapter 3 I will try to

cover a wide range of DOPs (including continuous/combinatorial and single/multiple-objective

problems) to investigate the characteristics of DOPs and to provide a formal definition for

DOPs. However, in other chapters, I will focus only on the empirical/experimental aspects of

EDO and on solving only some specific subsets of DOPs. Specifically, in Chapters 5 and 6 I am

interested in solving single-objective continuous dynamic constrained problems (DCOPs) and in

Chapter 7 I am interested in solving single-objective continuous dynamic time-linkage problems

(DTPs) (descriptions of these classes of problems will be provided in details in the corresponding

chapters).

1.3 General research questions

The approach of this thesis is to start from some very general questions to get an overview of

the important gaps in the field. Once the gaps have been identified, more specific questions will

be raised and the thesis will focus on finding the answers to these specific questions.

The general questions that I am interested in finding the answer are:

What are the links between academic EDO research and real-world scenarios? Is

there any type of problem, or any types of problem characteristics that are common

in practical situations but have not been studied in EDO academic research?

Answering the questions above requires us to carry out comprehensive literature review of

the methods, performance measures, benchmark problems, and definitions on not only existing

academic research in EDO, but also on real-world problems. These tasks will be dedicated to

the next two chapters. Such a detailed literature review will provide us with knowledge about

current gaps in EDO academic research to ask more specific questions such as:

If we have indeed found some classes of problems and problem characteristics that

have not been considered in academic EDO research, what are the most important

ones that we should study and why?
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The answers to such questions will help me to choose some of the most important type of

problem/characteristics to study further in the thesis. For each problem/problem characteristic,

further questions are asked in Subsection 3.1:

How can we capture these problems and characteristics in academic benchmark

problems? What would be the performance of existing methods on these problems?

How can we evaluate the performance of existing methods? What can we do to

improve the performance?

More importantly, how can we effectively solve these problems, which have not

been solved by EDO before?

These specific questions show us the research directions to be done in the rest of the thesis.

1.4 Outline of the thesis

This thesis is an attempt to answer the questions above. It is organised as follow:

Chapter 2 reviews and categorises existing EDO research about the solving methods, per-

formance measures, and benchmark problems from the literature. The purpose of the chapter

is to discuss the strengths and weaknesses of each method and more importantly to identify the

current assumptions of the community about the characteristics of DOPs.

Chapter 3 follows by reviewing a large, representative set of recent real-world DOPs. The

purpose of this chapter is to investigate for the first time some insights about the link between

academic EDO research and certain classes of real-world DOPs and from that identify any gap

between EDO academic research and real-world problems. Based on the review, in this chapter

I will discuss the necessity and possibility to extend current EDO research to better reflect

the common characteristics of DOPs and to solve wider ranges of DOPs more effectively. The

chapter also sets out the research topics (for the rest of the thesis) to close some of the gaps that

it has found: problem definition, continuous dynamic constrained optimisation, and dynamic

time-linkage optimisation.

One of the gaps identified in Chapter 3: the lack of a formal definition to fully represent

DOPs, is addressed in Chapter 4. In this chapter a new definition framework is proposed to (i)

distinguish DOPs from other types of time-dependent problems; (ii) encapsulate the behaviours

and types of dynamics; (iii) encapsulate the changing factors; and (iv) separate the static factors
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from the dynamic factors.

Chapter 5 investigates one of the important but not yet well-studied classes of DOPs: dy-

namic constrained optimisation problems (DCOPs). In this chapter I will firstly present my

investigations on the characteristics that might make dynamic constrained problems diffi cult

to solve by some of the existing dynamic optimisation (DO) and constraint handling (CH) al-

gorithms. I will then introduce a set of numerical dynamic benchmark problems with these

characteristics and a set of performance measures to evaluate the performance of algorithms

in DOPs/DCOPs. To verify my hypothesis about the diffi culty of DCOPs, I will test several

representative DO and CH strategies on the proposed benchmark problems. Based on the ex-

periments I will also study some interesting observations where the presence or combination of

different types of dynamics and constraints might make the problems easier to solve for cer-

tain types of algorithms. Based on the analysis of the results, I will propose a list of possible

requirements that an algorithm should meet to solve DCOPs effectively.

Based on the results from Chapter 5, in Chapter 6 I will propose a set of new mechanisms

to effectively handle dynamics in DCOPs and use them to develop new algorithms for solving

DCOPs. The goal is to combine the advantages of DO and CH strategies while overcoming

the drawbacks of these methods in solving DCOPs. To evaluate the performance of the new

algorithms, I will compare them against several representative DO and CH algorithms using the

set of benchmark problems proposed in Chapter 5. In this chapter I will also (i) carry out detailed

analyses of how and why the newly proposed mechanisms/algorithms work better in DCOPs, (ii)

investigate the contribution of each of the proposed mechanisms and (iii) study the influence of

different parameter values on algorithm performance in solving DCOPs. These analyses reveal

some interesting and counter-intuitive findings about the characteristics of DCOPs and the way

we can solve DCOPs.

Chapter 7 focuses on another important but not yet well-studied classes of DOPs: dynamic

time-linkage problems (DTPs). In this chapter I will identify a new and challenging class of

DTPs where it might not be possible to solve the problems using the traditional methods.

An approach to solve this class of problem under certain circumstances will be suggested and

experiments to verify the hypothesis will be carried out. Two time-linkage benchmark problems

will also be proposed to simulate the property of this new class of DTPs.

Chapter 8 concludes the thesis. Contributions of the thesis are summarised and future
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research directions are also suggested.

1.5 Publications resulting from this thesis

Refereed or submitted journal papers

1. T. T. Nguyen and X. Yao (2010). Continuous Dynamic Constrained Optimisation - The
Challenges, submitted to IEEE Transactions on Evolutionary Computation. (given the
option to revise for acceptance).

2. T. T. Nguyen and X. Yao (2010). Solving Dynamic Constrained Optimisation Problems
Using Repair Methods, submitted to IEEE Transactions on Evolutionary Computation.
(given the option to revise for acceptance).

In-preparation journal papers

3. T. T. Nguyen, J. Branke, T. Ray and X. Yao (2010). Characteristics of dynamic opti-
misation problems: from academic evolutionary research to real-world problems. To be
submitted to IEEE Transactions on Evolutionary Computation in October.

4. T. T. Nguyen, J. Branke and S. Yang (2010). Evolutionary Optimisation in Dynamic
and Uncertain Environments: A Survey. (invited paper). To be submitted to Swarm and
Evolutionary Computation in October

Refereed conference papers

5. T. T. Nguyen and X. Yao (2009). Benchmarking and Solving Dynamic Constrained Prob-
lems, Proceedings of the IEEE Congress on Evolutionary Computation CEC2009, Trond-
heim, Norway, 18-21 May 2009, IEEE Press, pp.690-697.

6. T. T. Nguyen and X. Yao (2009). Dynamic Time-linkage Problems Revisited. In M.
Giacobini et al (Eds.), Proceedings of the 2009 European Workshops on Applications of
Evolutionary Computation, EvoWorkshops 2009, Lecture Notes in Computer Science, Vol.
5484, Springer, pp.735-744.

7. H. K. Singh, A. Isaacs, T. T. Nguyen, T. Ray and X. Yao (2009). Performance of Infeasi-
bility Driven Evolutionary Algorithm (IDEA) on Constrained Dynamic Single Objective
Optimization Problems, Proceedings of the IEEE Congress on Evolutionary Computation
CEC2009, Trondheim, Norway, 18-21 May 2009, IEEE Press, pp.3127-3134.

Technical report for the CEC’2009 competition on dynamic optimisation

8. Li C., Yang S., Nguyen T.T., Yu E.L., Yao X., Jin Y., Beyer H.-G. and Suganthan P.N.
(2008). Benchmark Generator for CEC 2009 Competition on Dynamic Optimization,
Technical report, University of Leicester and University of Birmingham, UK.

The following lists materials (or part) of the publications presented in the thesis:

• Chapter 2: publications [3, 4]

• Chapter 3: publication [3]

• Chapter 4: publications [6, 8]

• Chapter 5: publications [1, 5, 7]

• Chapter 6: publication [2]

• Chapter 7: publication [6]
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Chapter 2

Literature review on

evolutionary dynamic optimisation

research

In this chapter I will focus on the empirical/experimental aspects of EDO research, covering some

representative approaches (especially those in the continuous domain) in developing algorithms,

generating benchmark problems and measuring algorithm performance. The purpose of the

chapter is to discuss the strengths and weaknesses of each method and more importantly to

identify the current assumptions of the community about the characteristics of DOPs.

Because the topics in EDO are very broad and diverse, it is impossible to cover everything in a

chapter but only the topics that are most relevant to my research questions. The topics that will

not be fully covered in this chapter are the classifications of DOPs and theoretical works. For a

detailed literature review on classification methods for DOPs, readers are referred to my technical

report in (Nguyen 2007). For details of theoretical works in the field, readers are referred to

the works in (Wolpert & Macready 1997, Stanhope & Daida 1999, Rowe 1999, Ronnewinkel

et al. 2000, Rowe 2001, Droste 2002, Droste 2003, Liekens et al. 2003, Liekens 2005, Rowe 2005,

Arnold & Beyer 2006, Rohlfshagen et al. 2009, Tinos & Yang 2010).
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2.1 Optimisation approaches

2.1.1 The goals of dynamic evolutionary algorithms

In stationary optimisation, in most cases the only goal of optimisation algorithms is to find the

global optimum as fast as possible. However, in current EDO research where the considered

problems are time-varying, the goal of an algorithm turns from finding the global optimum

to firstly detecting the changes and secondly tracking the changing optima (local optima or

ideally the global optimum) over time. In addition, in case the problem-after-change somehow

correlates with the problem-before-change, an optimisation algorithm also needs to learn from its

previous search experience as much as possible to hopefully advance the search more effectively.

Otherwise, the optimisation process after each change will simply become the process of solving

a different problem starting with the old population/structure.

The following sections will briefly review typical approaches in EDO that have been proposed

to satisfy the goals above. We will discuss the strengths and weaknesses of the approaches and

their suitability for different types of problems.

2.1.2 Introducing diversity when changes occur

Overview

In stationary optimisation, the convergence of an evolutionary algorithm is required so that the

algorithm can focus on finding the best solution in the promising area that it has already found.

In dynamic optimisation, however, convergence may result in negative effects. This is because

if the dynamic landscape changes in one area and there is no member of the algorithm in this

area, the change will become undetected. As a result, it is impossible for a normal EA to detect

a change once it has already converged.

Intuitively one simple solution to this drawback is to increase the diversity of an EA after a

change has been detected. This solution is described in the pseudocode of Algorithm 1.

Pioneer studies following this solution are Hyper-mutation (Cobb 1990) and Variable Local

Search (VLS) (Vavak et al. 1997b, Vavak et al. 1998). They are different mostly in the step 2c

(Algorithm 1) where different strategies were used to introduce diversity to the population. In

his research, Cobb (1990) proposed an adaptive mutation operator called hyper-mutation whose

mutation rate is a multiplication of the normal mutation rate and a hyper-mutation factor. The

9
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Algorithm 1 Introducing diversity after detecting a change

1. Initialise:: Initialise the population

2. For each generation

(a) Evaluate::Evaluate each member of the population

(b) Check for changes: Detect changes in the landscape by monitoring possible signs of
changes, for example a reduction in the fitness of the best individuals

(c) Increase diversity : If there is any change, increase the diversity of the population by
adaptively change the mutations (sizes or rates) or relocate individuals

(d) Reproduce: Reproduce a new population using the adjusted muta-
tion/learning/adaptation rate

(e) Return to step 2a

hyper-mutation is invoked only after a change is detected.

In the Hyper-mutation method, the fact that the step size of the mutation size is not adaptive

may decrease the performance of the EA. To improve this, in Variable Local Search Vavak et al.

(1996) provided a mechanism to control the size of mutation by defining a variable local search

range. This range is determined by the formula (2BITS − 1) where BITS is a value adjustable

during the search.

In their consecutive paper Vavak et al. (1997b) improved VLS by making it adaptive using a

learning strategy borrowed from the feature partitioning algorithm Guvenir and Sirin (1993). For

each individual, the learning strategy learns to map the severity of the change with a suitable

local search range selected from a pre-defined set, then classify individuals into disjoint sets

according to their local search range (see Figure 2.1).

An interesting way of introducing diversity was proposed in (Yu & Suganthan 2009) where

the individuals to be introduced to increase diversity are not randomised ones but some previous

good solutions (which have been specifically chosen so that they either are most diversified (to

be used when the algorithm prematurely converged) or represent different parts of the search

space instead of getting crowded in one area (to be used when a change is detected)). In other

words, in this work the diversity-introducing and memory approaches are combined into one to

increase diversity while still be able to recall previous good solutions.

Recently diversity-introducing has been used to handle dynamic constraints. In (Nguyen

& Yao 2010b), hyper-mutation was used with a change detection method in an EA to solve
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Figure 2.1: This figure (reproduced from (Vavak et al. 1998)) shows an example of applying
VLS operator to a population of 100 individuals. Assume that before the change the first 98
individuals of the population converged to the global optimum. After invoking the VLS operator,
the search range of individuals are restricted to only the hypercubes marked A. If the search
is not successful the search range may be extended to the hypercubes B. Note that the search
range of each group of individuals might be different from each other

dynamic constraint problems. Detectors are placed near the boundary of feasible regions and

when the feasibility of these detectors change, the EA increases its mutation rate to raise the

diversity level to track the moving feasible regions. The mutation rate is decreased once the

moving feasible regions is tracked successfully.

Diversity-introducing approach is also used in dynamic multi-objective optimisation (DMO).

For example, in a multi-population algorithm for DMO (Goh & Tan 2009a), when a change is

detected stochastic individuals and some competitor individuals from other sub-populations are

introduced to each sub-population to increase diversity.

The approach of introducing diversity after changes is also used in Particle Swarm Opti-

misation (PSO). Hu & Eberhart (2002) introduced a simple mechanism in which a part of the

swarm or the whole swarm will be re-diversified using randomization after a change is detected.

Janson & Middendorf (2005) and Janson & Middendorf (2006) followed a more sophisticated

mechanism where after each change the swarm is divided into a hierarchy of several sub-swarms

for a certain number of generations. The purpose of this hierarchy is to prevent the swarm from

converging to the old position of the global optimum, which might have been moved since the

last change.

Recently Woldesenbet & Yen (2009) proposed a new adaptive method named "relocation
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variable", which can be considered belonging to the class of introducing diversity/adaptability

approaches. In this method, after a change individuals are relocated based on the changes in

their function values and on the sensitivities of their coordinations to changes. Specifically, based

on the history of their performance a relocation radius is estimated for each individual. The

individuals will be relocated (mutated) to a position within this radius for a number of times

and the best fit position will be used as a member for the new population. The size of each

relocation radius depends on the sensitivity of the individual to changes in the environment.

The more sensitive the individual is, the larger the radius.

The introducing-diversity approach is still commonly used in many recent EDO algorithms,

for example (Parrott & Li 2006, Moser & Hendtlass 2007a, Richter 2009, Richter & Yang 2009,

Richter 2010, Nguyen & Yao 2010b).

Strengths and weaknesses

In general methods following this approach appear to be good in solving problems with con-

tinuous changes where changes are small and medium. This is because invoking mutations or

distributing individuals around an optimum resembles a type of "local search", which is useful to

observe the nearby places of this optimum. Thus if the optimum continuously moves to nearby

places, it might be tracked (Vavak et al. 1996, Vavak et al. 1997b).

However, this approach has some drawbacks that might make it not so suitable for certain

type of problem. They are listed bellows:

• Dependence on whether changes are known / easy to detect or not : Because most methods

following this approach detect changes by observing the reduction of fitness of some best

performers and/or the population as an indication of changes, if a change appears in a place

where no individual exist, it will go undetected (Morrison 2004). For example, it has been

shown that in dynamic constrained problems, the diversity-introducing strategy cannot

detect changes when the dynamic constraints expose new global optima without changing

the fitness value of the previous optima (Nguyen & Yao 2009a, Nguyen & Yao 2010a)

• Diffi culty in identifying the correct mutation size (in case of Hyper-mutation and VLS) or

the number of sub-swarms (in case of Hierarchy PSO): too small steps will resemble local

search while too large steps will result in random search (Jin & Branke 2005).
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• Not being effective for solving problems with random changes or large changes (changes

are severe): Because many diversity-introducing methods have their mutation/ relocation

size restricted to a specific range, it is obvious that they are not effective if either the

changes are larger than this range or the changes are random. For example, experiments

show that Hierarchy PSO may not perform as good as traditional PSO in tested problems

with large changes (Janson & Middendorf 2006).

• Not being effective for solving problems with fast changes: After introducing diversity,

methods following this approach need time to converge again. As a result, if the change

is fast, they may not be able to find the global optimum (Cobb 1990).

2.1.3 Maintaining diversity during the search

Overview

Another approach in solving dynamic problems is to maintain population diversity throughout

the search process to avoid the possibility that the whole population converge into one place,

hence unable to either track the moving optimum or detect a new competing peak (see Algorithm

2).

Algorithm 2 Pseudo code for algorithms that maintain diversity

1. Initialise:: Initialise the population

2. For each generation

(a) Evaluate::Evaluate each member of the population

(b) Maintain diversity : Add a number of new, diversified individuals to the current
population to increase diversity

(c) Reproduce: Reproduce a new population

(d) Return to step 2a

Methods following this approach do not detect changes explicitly. Instead they rely on their

diversity to adaptively cope with the changes. Typical examples of this approach are Random

Immigrants (Grefenstette 1992), fitness sharing (Andersen 1991), Thermo-Dynamical GA(Mori

et al. 1996), Sentinel Placement (Morrison 2004), Population-Based Incremental Learning (Yang

& Yao 2005), several Particle Swarm Optimisation variants (Janson & Middendorf 2005, Black-

well & Bentley 2002, Blackwell & Branke 2006, Blackwell 2007) and dynamic Evolutionary
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Multiobjective optimisation (Bui et al. 2005, Abbass & Deb 2003, Toffolo & Benini 2003).

In the Random Immigrants method, in every generation a number of generated random

individuals are added to the population to maintain diversity. Experimental results show that

the method is more effective in handling dynamics than the regular EA (Grefenstette 1992). It

is reported that the high diversity level brought by random immigrants also helps in handling

constraints. In (Nguyen & Yao 2010b) it was shown that when combined with the constraint-

handling repair method, random-immigrant significantly improve the performance of the tested

EA.

Morrison (2004) follows a slightly different mechanism in which instead of generating random

individuals, his Sentinel Placement method initialises a number of sentinels which are specifically

distributed throughout the search space. These sentinels can still participate in the reproduce

process of the population (to maintain diversity) but will never be removed (so that they can

always track possible coming changes). Experiments show that this method might get better re-

sults than Random Immigrants and Hyper-mutation in problems with large and chaotic changes

(Morrison 2004).

Two other approaches - Parallel PBIL (PPBIL2) and Dual PBIL (DPBIL) were proposed

by Yang & Yao (2005). These methods are based on the Population-based Incremental Learn-

ing (PBIL) algorithm, which is a simple combination of population-based EA and incremental

learning. PBIL has an adjustable probability vector which is used to generate individuals. After

each generation the probability vector is updated based on the best found solutions. It ensures

that the vector will gradually "learn" the appropriate value to generate high quality individuals.

A pseudo code of PBIL was shown in Algorithm 3.

In PPBIL2, Yang & Yao (2005) improved PBIL for dynamic optimisation by maintaining two

parallel probability vectors. The first one is a central initialised probability vector similar to that

of normal PBIL. The second one is a random initialised probability dedicated to maintaining

diversity during the search. The two vectors are sampled and updated independently. On initial

they have the same sample size. However, throughout the search their sample sizes might be

adjusted based on their relative performance.

Although PPBIL2 might offer better diversity than its original version PBIL, in certain cases

where the intervals between changes are large, the two populations may still end up in conver-

gence and the algorithm still lose diversity. As a result, Yang & Yao (2005) proposed another
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Algorithm 3 Population-based Incremental Learning

1. Initialise:: Initialise P , the probability vector: P [i] = 0.5 , i = 1, ...n where n is the
number of variables

2. For each generation:

(a) Generate: Generate each individual by sampling the space using the probability
vector P

(b) Evaluate: Evaluate each member, assign B to the best individual found

(c) Update P: Update the vector P based on the best individual B: P [i] = (1− α)P [i]+
αB [i] where α is the pre-defined learning rate.

(d) Return to step 2a

improved version of PBIL, the DPBIL. Similar to PPBIL2, DPBIL also has two probability

vectors. However these vectors are dual with each other, which means that given the first vec-

tor P1, the second vector P2 is determined by P2 [i] = 1 − P1 [i] , i = 1, ..., n where n is the

number of variables. During the search only P1 needs to learn from the best generated solution

because P2 will change with P1 automatically. PBIL and dual PBIL were also combined with

random-immigrants in (Yang & Yao 2008) with better results than the original algorithms.

The approach of maintaining diversity is also used in Particle Swarm Optimisation (PSO) to

solve dynamic continuous problems. In their charged PSOs (Blackwell & Bentley 2002, Blackwell

& Branke 2006, Blackwell 2007), Blackwell et al. applied a repulsion mechanism, which is

inspired by the atom field, to prevent particles/swarms to get too closed to each other. In this

mechanism, each swarm is comprised of a nucleus and a cloud of charged particles which are

responsible to maintain diversity. There is a repulsion among these particles to keep particles

from approaching near to each other.

Bui et al. (2005) proposed another interesting way to maintain diversity in dynamic optimisa-

tion: using multi-objective approaches. The dynamic problem is represented as a two-objective

function. The first one is the original single objective, and the second is a special objective

created to maintain diversity. Other examples of using multiple objectives to maintain diversity

can be found in Abbass & Deb (2003) and Toffolo & Benini (2003), where six different following

types of objectives were proposed:

• Retain more old solutions (favour old individuals based on an attached time stamp)

• Retain more random solutions
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• Slow down the convergence by reversing the optimisation of the first objective

• Keep a distance from the closest neighbor

• Keep a distance from all individuals

• Keep a distance from the best individual of the population

The diversity-maintaining strategy is still the main strategy in many recent approaches, for

example (Janson & Middendorf 2005, Yang & Yao 2005, Blackwell & Branke 2006, Blackwell

2007, Yang & Yao 2008, Deb et al. 2007, Riekert et al. 2009, de França & Von Zuben 2009, Cheng

& Yang 2010).

Strengths and weaknesses

Methods following this approach can bring the following advantages:

• May be good for solving problems with severe changes: Thanks to its good diversity, in

certain situations the approach is good to solve problem with large changes (for example in

(Nguyen & Yao 2009a, Nguyen & Yao 2010b, Nguyen & Yao 2010a) it has been shown that

random-immigrants help significantly improve the performance in dynamic constrained

problems where changes are severe due to the presence of disconnected feasible regions)

• May be good for solving problem with slow changes (as shown in e.g. (Andersen 1991, Yang

& Yao 2005)). This is because for slow changes an algorithm with high diversity may have

enough time to converge.

• May be effective in solving problems with competing peaks (as reported in (Cedeno &

Vemuri 1997))

However, methods that maintain diversity through out the search also have some disadvan-

tages as follow:

• Slow : Continuously focusing on diversity may slows down, or even distract the optimisation

process (Jin & Branke 2005).

• Not effective when the changes are small : Most methods following this approach maintain

their diversity by adding some stochastic element through out the search space. Obviously
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it will make the algorithm harder to track small changes where the optima just take a

slight move away from their previous places (Cobb & Grefenstette 1993).

2.1.4 Memory Approaches

When changes in dynamic problems are periodical or recurrent, i.e. the optima may return to

the regions near their previous locations, it might be useful to re-use previous found solutions to

save computational time and to bias the search process. To re-use old solutions in this manner,

many researchers decide to add some types of memory components to their EAs to make it more

effective in tracking periodical changes. The memory can also play the role as a reserved place

storing old solutions for maintaining diversity when needed. The memory can be integrated

implicitly as a redundant representation in the EAs, or it could be maintained explicitly as a

separate memory component.

Implicit memory

Redundant coding using diploid genomes are the most common implicit memory used in EAs

for solving dynamic problems e.g. (Goldberg & Smith 1987, Ng & Wong 1995, Lewis et al. 1998,

Uyar & Harmanci 2005, Yang 2006c). A diploid EA is usually an algorithm whose chromosomes

contain two alleles at each locus. Although most normal EAs for stationary are haploid, it is

believed that diploid, and other multiploid approaches, are suitable for solving non-stationary

problems (Lewis et al. 1998). A pseudo code for multiploid approaches for dynamic environments

is described in Algorithm 4.

Algorithm 4 Multiploid EA for dynamic optimisation

1. Initialise:: Initialise the population and the multiploid representation

2. For each generation

(a) Evaluate: Evaluate each member of the population

(b) For each individual:

i. Check for changes: detect any change in the fitness that may be caused by a
change in the landscape

ii. Adjust the dominance level of each allele : If there is any change, adjust the
dominance to accommodate the current change

iii. Select the dominant alleles according to their dominance level

(c) Reproduce: Reproduce a new population using the adjusted mutations

(d) Return to step 2a
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As can be seen in Algorithm 4, in order to design a multiploid EA, we need to take into

account three tasks:

1. represent the redundant code;

2. represent/adjust the dominance of alleles; and

3. check for changes in the landscape.

One typical way to represent the dominance of alleles is to use a table (Ng & Wong 1995,

Ryan 1996) or a mask (Collingwood et al. 1996) mapping between genotypes and phenotypes.

The dominance then can be changed adaptively among alleles depending on the detection of

changes in the landscape. To detect changes, we can use several methods, for example checking

the change in the fitness of an individual (Ng & Wong 1995, Lewis et al. 1998); or using an

incremental learning probability (Yang 2006c).

Some other examples of algorithms following the approach of using the environment as

implicit memory are the studies of (Guntsch & Middendorf 2002), (Guntsch et al. 2000) and

(Randall, 2005).

Explicit memory

Methods that maintain the memory explicitly are described by the pseudo code in Algorithm 5:

Algorithm 5 EA for dynamic optimisation with explicit memory

1. Initialise::

(a) Initialise the population

(b) Initialise the explicit memory

2. For each generation

(a) Evaluate each member of the population

(b) Update the memory

(c) Reproduce a new population

(d) Use information from the memory to update the new population

(e) Return to step 2a

Methods following the approach of using explicit memory need to accomplish four tasks:

1. Decide the content of the explicit memory : The content of the memory can be either:
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(a) Direct memory: In most cases the direct memories are the previous good solutions

(Louis & Xu 1996, Mori et al. 1998, Branke 1999, Bendtsen & Krink 2002, Yang

2005a, Yang 2006a, Zeng et al. 2007, Yang & Yao 2008, Yu & Suganthan 2009). In

(Yu & Suganthan 2009) for certain circumstances the most diversified solutions (in

term of standard deviation of fitness) are also selected for the memory.

(b) Associative memory: Various type of information can be included in the associative

memory, for example the information about the environment at the considered time

(Ramsey & Grefenstette 1993), (Eggermont et al. 2001); the list of environmental

states and state transition probabilities (Simões & Costa 2008); the probability vec-

tor that created the best solutions (Yang & Yao 2008); the distribution statistics

information of the population at the considered time (Yang 2006a); the probability of

the occurrence of good solutions in each area of the landscape (Richter & Yang 2008)

(Richter & Yang 2009); or the probability of likely feasible regions (Richter 2010)

2. Decide how to update the memory: Generally the best found elements (direct or asso-

ciative) of the current generation will be updated to the memory. These newly found

elements will replace some existing elements in the memory, which can be one or some of

the followings:

(a) The oldest member in the memory (Trojanowski & Michalewicz 1999, Eggermont

et al. 2001, Simões & Costa 2007, Woldesenbet & Yen 2009)

(b) The one with the least contributions to the diversity of the population (Branke 1999,

Eggermont et al. 2001, Yang 2005a, Simões & Costa 2007, Yang & Yao 2008). One

common way to evaluate this criterion is to examine the similarity of elements in the

memory, for example evaluating the minimum distance among all pairs of memory

elements (Branke 1999, Simões & Costa 2007). In this case the less fit one of a pair

will be replaced.

(c) The one with least contribution to fitness (Eggermont et al. 2001)

3. Decide when to update the memory : Ideally if we know exactly when a change happens,

then the most suitable time to update the memory is right after the time the change

happens. However in general it might not always be possible to know exactly when a
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change happens. As a result the memory may also be updated after each generation or

after a certain number of generations. Doing so might also favour diversity, for example

see (Branke 2001a, Branke 2003, Yu & Suganthan 2009).

4. Decide how to use the memory : Usually the best elements in the memory (i.e. the ones

that show the best results when being re-evaluated) will be used to replace the worst

individuals in the population. Replacement can take place after each generation or after

a certain number of generations, or it can be done after each change if the change can be

recognised.

Memory is used not only in the EA and swarm-based methods as mentioned above, but also

in Artificial Immune Systems (AIS) (Simões & Costa 2003), (Yang 2006b). This approach is

inspired by the biological immune systems, which are able to identify the correct types of harmful

antigens, hence produce the appropriate antibodies to destroy the antigens. In AIS approaches,

changes in the dynamic environments are usually viewed as antigens and the "building blocks"

(gene segments) from successful individuals in the past are considered as antibodies. The gene

segments are stored in a gene library so that they can be recalled whenever a change occurs.

To identify which gene segments (antibodies) should match with a particular antigen (change

in the environment), each individual in the gene library is associated with the average fitness of

the population at the moment it was stored. This value is used as an identification tag to know

which element from the library should be used when a change is discovered. The one whose

attached fitness value is most similar to the current averaged fitness will be chosen (Simões &

Costa 2003). The previous memory-based AIS studies have been made only on the 0/1 dynamic

knapsack problem (Simões & Costa 2003) and the binary encoded test problems (Yang 2006b).

Strengths and weaknesses

Here are the advantages of using memory-based approaches:

1. Effective for solving problems with periodically changing environments. Thanks to their

ability to recall old solutions from the memory, memory-based approaches are especially

suitable for solving problems with periodical changes. For example, Yang (2008) showed

that the memory-based versions of GA and random-immigrant significantly outperform

the original algorithms in cyclic dynamic environments.
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2. May be good in slowing down convergence and favour diversity (Branke 2001a), (Branke

2003).

Memory approaches, however, also have some disadvantages that may require them to be

integrated with some other methods for the best results:

1. Might be useful only when optima reappear at their previous locations or if the environment

returns to its previous states. This might be the most significant disadvantage of memory-

based approaches. In his experiments Lewis et al. (1998) showed that redundant coding

does not ensure enough diversity to adaptively for random changes or oscillated changes

with one or more target has been changed during the search. Branke (1999) also generalized

the same weakness in some explicit memory approaches, pointing out that the memory

might no longer be effective if the oscillation does not bring the global optimum to the

exact previous location but a slightly different one (Branke 2001a). He then concluded

that memory alone could not be enough for dynamic optimisation. It should be combined

with some type of diversity methods.

2. Might not be good enough to maintain diversity for the population, as pointed out by

(Branke 1999). Recently some studies have tried to improve this disadvantage by com-

bining memory-based approaches with diversity schemes e.g. (Simões & Costa 2007)

(Yang 2008).

3. Redundant coding approaches might not be good for cases where the number of oscillating

states is large. There are two reasons for this:

(a) Firstly, the redundant code might become too large, hence reduce the performance

of the algorithm. In order to recover information about a previous state of the

environment, redundant coding approaches need to encode the information about

this state into the representation. The larger the number of changing states that a

problem has, the larger the number of codes needed for representing the changing

states. For example, if an environment oscillates between two states, we need a

diploidy solution. If there are three states, then we may need a triploid solution.

Experiments (Lewis et al. 1998) also shows that a diploid approach may be able to
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adapt and switch between only two states. If there are more than two states, the

approach may fail (Branke 2001a).

(b) Secondly, in practice it might not always be possible to know the number of oscillating

states before hand. Without this information, it is impossible to design an appropriate

representation for the redundant code.

4. The information stored in the memory might become redundant (and obsolete) when the

environment changes. This redundancy may affect the performance of the algorithm. For

example, Branke (2001b) empirically showed that memories are of no use if there is no

recurrence in the environments.

2.1.5 Prediction Approaches

In certain cases, changes in dynamic environments may exhibit some patterns that are pre-

dictable. In this case, it might be sensible to try to learn these types of patterns from the

previous search experience and based on these patterns try to predict changes in the future.

Some studies has been made following this idea to exploit the predictability of dynamic envi-

ronments. Obviously, memory approaches, which are proposed to deal with periodical changes,

can also be considered a special type of prediction approaches. However, generally methods

following the prediction approach are able to use their memory to cope with more various types

of changes than only cyclic/recurrent changes. A pseudo code describing prediction approaches

is shown in Algorithm 6.

One of the first research on predicting changes might be the study of Ramsey & Grefenstette

(1993). The authors proposed a method to represent the characteristics of the environment in

several variables so that a learning method (case-based reasoning) can be used to map between

these variables and the found optima. The mapping information is then used by the algorithm

to identify the type of the landscape after a change and introduce the suitable old solutions

accordingly to the population. A similar learning/classification approach was also carried out

by Eggermont et al. (2001).

A common prediction approach is to predict the movement of the moving optima. Hatzakis &

Wallace (2006) combined a forecasting technique (Autoregressive) with an EA. This forecasting

technique is used to predict the location of the next optimal solution after a change is detected.

The forecasting model (time series model) is created using a sequence of optimum positions
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Algorithm 6 EA following the prediction approach to solve dynamic problems

1. Initialise phase:

(a) Initialise the population

(b) Initialise the learning model and training set

2. Search for optimum solutions and detect changes

3. If a change is detected

(a) Use the current environment state as the input for the learning model

(b) Use the learning model to estimate the type of this current change and/or how the
next change should be

(c) Generate new individuals/recall old individuals that best matches with the estimation

(d) Search for the new optimum using the new population

(e) Update the training set based on the search results

4. Return to step 2

found in the past. Experimental results show that if this algorithm can predict the movements

of optima correctly, it can work well with very fast changes. A similar research was proposed

in (Rossi et al. 2008) where the movement of optima was predicted using Kalman filters. The

predicted information (the next location of the optimum) is incorporated into an EA in three

ways: First, the mutation operator is modified by introducing some bias so that individuals’

exploration is directed toward the predicted region. Second, the fitness function is modified

so that individuals close to the estimated future position are rewarded. Third, some "gift"

individuals, which are generated at the predicted positions, are introduced to the population to

guide the search. Experiments on a visual tracking benchmark problem show that the proposed

method does improve the tracking of the optimum, both in terms of distance to the real position

and smoothness of the tracking.

Another approach is to predict the locations that individuals should be re-initialised when a

change occurs. In (Zhou et al. 2007) this approach is used to solve two dynamic multi-objective

optimisation benchmark problems in two ways: First, the solutions in the Pareto set from the

previous change periods were used as a time series to predict the next re-initialisation locations.

Second, to improve the chance of the initial population to cover the new Pareto set, the predicted

re-initialisation population is perturbed with a Gaussian noise whose variance is estimated based
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on history data. Compared with random-initialisation, the approach was able to achieve better

results on the two tested problems. Another approach to estimate the areas to re-initialise

individuals after a change occurs is the relocation variable method (Woldesenbet & Yen 2009)

described in Subsection 2.1.2. This method to some extent can also be considered a prediction

method.

Another interesting approach is to predict the future moment when the next change will occur

and which possible environments will appear in the next change (Simões & Costa 2008, Simões

& Costa 2009). In these work, the authors used two prediction modules to predict two different

factors. The first module, which uses either linear regression (Simões & Costa 2008) or non-

linear regression(Simões & Costa 2009), is used to estimate the generation when the next change

will occur. The second module, which uses a Markov chain, monitors the transitions of previous

environments and based on this data provides estimations of which environment will appear in

the next change. Experimental results show that an EA with the proposed predictor is able to

perform better than a regular EA in cyclic/periodic environments.

Relating to prediction approaches, recently there are also some studies (Bosman 2005,

Bosman 2007, Bosman & Poutré 2007, Nguyen & Yao 2009b) on time-linkage problems, i.e.

problems where the current solutions made by the algorithms can influence the future dynam-

ics. In such problems, it was suggested that the only way to solve the problems effectively is

to predict future changes and take into account the possible future outcomes when solving the

problems online. Another related study is the anticipation approach (Branke & Mattfeld 2005)

in solving dynamic scheduling problems where in addition to finding good solutions, the solver

also tries to move the system "into a flexible state" where adaptation to changes can be done

more easily. Specifically, because it is observed that in the tested dynamic job-shop scheduling

problem, the flexibility of the system can be increased by avoiding early machine idle times,

the authors proposed a scheduling approach where in addition to the main optimality objec-

tive, solutions with early idle time are penalised. The experimental results show that such an

anticipation approach significantly improved the performance of the system.

Strengths and weaknesses

Methods following the prediction approach may become very effective if their predictions are

correct. In this case, the algorithms can detect/track/find the global optima quickly, as shown
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in (Hatzakis & Wallace 2006), (Yang 2006b) and (Simões & Costa 2003).

However, prediction-based algorithms also have their own disadvantages, mostly due to train-

ing errors. These errors might be resulted from:

1. Wrong training data: If the algorithm has not performed successfully in the previous

change periods, the history data collected by the algorithm might not be helpful for the

prediction or might even provide the wrong training data.

2. Lack of training data: As in the case of any learning/predicting/forecasting model, the

algorithms may need a large enough amount of training data to produce the best results.

It also means that the prediction can only be started after a certain amount of time when

the training data has been collected. For example, in the prediction-based methods e.g.

(Simões & Costa 2008, Simões & Costa 2009, Bosman 2005, Bosman 2007), the prediction

should only be done once the algorithms get enough training data. In the case of dynamic

optimisation where there is a need of finding/tracking the optima as quick as possible, this

might be a disadvantage.

3. The nature of the dynamic problems:

• If changes in the dynamic environment are easily predictable (e.g. linear, periodical

or deterministic), the result is expected to be good, as can be seen in (Hatzakis &

Wallace 2006, Rossi et al. 2008).

• However, if the changes are stochastic, then prediction approaches might not get

satisfiable results. For example, Nguyen & Yao (2009b) illustrated a situation where

historical data are actually inappropriate for the prediction and might even mislead

the predictor to get worse results.

2.1.6 Making use of the self-adaptive mechanism of EAs

Another approach is to make use of the self-adaptive mechanisms of EAs to cope with changes.

To some extent this approach closely relates to the prediction approach, because deep down

self-adaptation is the outcome of a process involving learning and evolving based on history

data.

One example is the GA with Genetic Mutation Rate (Grefenstette 1999), which allows the

algorithm to evolve its own mutation strategy parameters during the search based on the fitness
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of the population. In this method, the mutation rate is encoded in genes and is influenced by the

selection process. The algorithm was tested in both gradual and abrupt dynamic landscapes.

The results show that the algorithm have better performance than normal GA. However, it

is still not better than hyper-mutation (see section 2.1.2 and (Cobb 1990)) - a method that

increases its mutation rate after each change.

A similar method was proposed by Ursem in his Multinational Genetic Algorithm (MGA)

(Ursem 2000). Five different parameters: probability for mutation, probability for crossover,

selection ratio, mutation variance and distance are encoded in the genomes of his MGA for

self-adaptation. The self-adaptation mechanism works well in simple cases where the velocity

of moving peaks is constant. However, in cases where the velocity is not constant, the self-

adaptation seems to be not fast enough. These two results show the diffi culty of applying

self-adaptive parameter tuning to complex dynamic optimisation.

Methods that adaptively evolve their strategies by learning from the environments to handle

dynamics, like the VLS (Vavak et al. 1998), PBIL (Yang & Yao 2005) and variable reloca-

tion (Woldesenbet & Yen 2009) variants mentioned in the previous subsections, can also be

categorised into this group of self-adaptive approaches.

Some researchers also express their interests in using the self-adaptive mechanism of such

EAs as Evolution Strategy (ES) or EP (Evolutionary Programming) in dynamic optimisation.

However, it has not been clear of whether the original self-adaptation mechanism of ES/EP alone

can be used effectively in dynamic optimisation. Empirical experiments show mixed results.

Angeline (1997) examined self-adaptive EP (saEP) and showed that the strategy is not effective

for all types of tested problems. Bäck (1998) showed that the log-normal self-adaptation in ES

may perform better than saEP in the same problems, however experiments also pointed out

that the sensitivity of ES in dynamic environments is worse than its sensitivity in stationary

environment (Salomon & Eggenberger 1997) and that ES might be unreliable in rapidly changing

environment (Weicker & Weicker 1999). Weicker (2003) also argued that it is possible that the

Gaussian mutation in the standard ES self-adaptation might not be appropriate for dynamic

optimisation.

There are some mathematical analyses on the performance of self-adaptive ES on dynamic

environments. Arnold & Beyer (2002) pointed out that the cumulative mutation strength adap-

tation of ES can work well on a variant of the sphere model with random dynamics of the
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target. The strategy can realise optimal mutation strengths for the model. However, in the

sphere modal with linear dynamics, another research of Arnold & Beyer (2006) revealed that

the mutation strength realised by ES is not the optimal one (but the adaptation still ensures

that the target can be tracked).

Wang & Wineberg (2006) proposed a different approach, which can also be considered as

a self-adaptive variant of EA. In this approach, the algorithm comprises of three types of pop-

ulations: a population to search, a population to measure the effi ciency of exploration (based

on genotypic changes) and a population to measure the effi ciency of exploitation (based on fit-

ness improvements). By observing the two later populations, the algorithm will dynamically

adjust the selection pressure to balance exploration and exploitation. Experiments in (Wang

& Wineberg 2006) show that the new approach can track the global optimum better than GA

with random immigrants in problems with optima moving linearly. There is however no report

of whether the algorithm can work well in problems with periodical change or problems with

random changes.

Another recent adaptability-introducing approach is the work of Yang & Richter (2009)

where a mechanism to increase the learning rate of the Population-based Incremental Learning

(PBIL) algorithm was proposed. As mentioned in Subsection 2.1.3, PBIL has an adjustable

probability vector which is used to generate individuals. After each generation the probability

vector is updated based on the best found solutions to make sure that the vector will gradually

"learn" the appropriate value to generate good solutions. A high learning rate after a change

as implemented in (Yang & Richter 2009) will help the algorithm to learn the suitable value

for the vector faster and hence will be able to adapt to the new environment faster. After

some generations the learning rate will be resumed to the normal value to make sure that the

algorithm converges properly.

Recently Riekert et al. (2009) proposed an adaptive Genetic Programming to solve dynamic

classification problems. The algorithm is made adaptive in several ways. First, the elitist

proportion is adaptively increased when fitness is improved and vice versa. Second, the crossover

rate is decreased to save computational effort when the performance is satisfactory. Otherwise

the crossover rate is increased to generate more solutions. Third, when a change occurs the

mutation rate is continually modified until it succeeded in finding good solutions.
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2.1.7 Multi-population approaches

Overview

Another approach, which to some extent can be seen as a combination of diversity maintain-

ing/introducing, memory and self-adaptation, is to implement multiple sub-populations concur-

rently. Each sub-population may handle a separate area of the search space. Each of them may

also take responsibility for a separate task. For example, some sub-populations may focus on

searching for the global optimum while some others may concentrate on tracking any possible

changes. These two types of populations then may communicate with each other to bias the

search. A pseudo code of multi-population approaches is listed out in Algorithm 7

Algorithm 7 Multi-population approach

1. Initialise::

(a) Initialise the setPsearch of sub populations searching for the global optima

(b) Initialise the set Ptrack of sub populations tracking changes in the landscape

2. For each generation:

(a) Search for optima: the sub-populations in Psearch search for the global optima

(b) Track changes: the sub-populations in Ptrack track any changes

(c) Maintain diversity::Re-allocate/split/merge the sub-populations so that they are not
overlapped and can cover a larger area of the search space

(d) Adjust : Re-adjust each sub-population in Psearch based on the experience from sub-
populations in Ptrack

(e) Reproduce each sub-population

(f) Return to step 2a

As can be seen from the pseudo code in Algorithm 7, methods following the approach of

using multiple populations usually need to accomplish two goals: First, they may need to assign

different types of tasks to different sub-populations, for example Psearch to search and Ptrack

to track, so that the search can be done effectively. Second, they need to divide the sub-

populations appropriately and make sure that the sub-populations are not overlapped to have

the best diversity and also to avoid the situation where many sub-populations finding the same

peak.

For the first goal, assigning different tasks to the sub-populations, different methods have
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different approaches. One approach was proposed by Oppacher & Wineberg (1999) in their

Shifting Balance Genetic Algorithm (SBGA). In SBGA, there are a number of small populations

in Psearch searching for new solutions and there is only one large population in Ptrack to track

changing peaks.

Another method, the Self-Organizing Scouts (SOS) (Branke et al. 2000), follows a different

direction where using the main large population to search for optima (Psearch) and dedicat-

ing several small populations to track any change of each optimum that the algorithm has

found so far (Ptrack). Whenever the main population finds a new peak, it creates a new sub-

population to track changes in this peak. This approach was adopted in different types of EAs

and meta-heuristics, for example GA (Cheng & Yang 2010), DE (Mendes & Mohais 2005, Lung

& Dumitrescu 2007) and PSO (Blackwell 2007, Fernández & Arcos 2010). Relating to using one

large population to search and a smaller to track changes, an algorithm named RepairGA for

solving dynamic constrained problems was proposed in (Nguyen & Yao 2009a). In this method

a large sub-population is dedicated to searching and one smaller sub-population is dedicated to

tracking the moving feasible regions. The difference between RepairGA and previous approaches

is that in RepairGA the two sub-populations are allowed to overlap in the search space because

their main purpose is not to maintain diversity. What distinguishes the two sub-populations

in this work is that the earlier accepts both infeasible and feasible solutions while the other

contains only feasible solutions.

Another approach, the Multinational GA (MGA) introduced by Ursem (2000), integrates the

functions of Psearch and Ptrack into each sub-population. It means that each population can both

search for new solutions and track changes. Whenever a sub-population detects a new optimum,

it will split into two sub-populations to make sure that each sub-population only tracks one

optimum at a time. This approach has been used not only in EAs but also in Artificial Immune

algorithms, for example (de França & Von Zuben 2009). The approach is also used by PSO-

based algorithms for dynamic optimisation. One example is the Speciation PSO (Li et al. 2006)

whose each sub-population, or species, is a hyper-sphere defined by the best fit individual and

a specific radius. Another recent PSO example that also have multi swarms with equal roles is

the Clustering PSO in (Li & Yang 2009).

Also relating to the goal of assigning the tasks to sub-populations, it should be noted that

in dynamic optimisation multiple populations are used not only for the purpose of exploring
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different parts of the search space, but also for the purpose of co-evolution. In (Nguyen &

Yao 2009a), a co-operative coevolution model was implemented where two sub-populations are

maintained. One sub-population named reference population focuses on tracking the moving

feasible regions while the other focuses on finding the global optimum. The two sub-populations

co-evolve in a way that the former attracts the latter to promising regions while the latter informs

the former about the appearance of any new feasible region. In (Goh & Tan 2009a), another

co-evolution model was used. However, in this study the multiple populations were not used to

explore different areas but to optimise different subcomponents, which are the decompositions

of the solution vector.

For the second goal, dividing the sub-populations and making sure that the sub-populations are

not overlapped, there are also different approaches. The most common approach is the clustering

approach: choosing some solutions in the population as the centres of the future clusters, then

defining each sub-population as a hyper-cube or sphere with a given size. All individuals within

the range of a hyper-cube/sphere will belong to the corresponding sub-population of that hyper-

cube/sphere. (Branke et al. 2000) is one the earliest methods that adopt this approach. SOS

(Branke et al. 2000) keeps the sub-populations from overlapping by using an idea borrowed from

the Forking Genetic Algorithm (FGA) (Tsutsui et al. 1997) to divide up the space. According

to this idea, whenever the main population in Psearch find a new optimum, it creates a new

population in Ptrack and assign this new population to the optimum. To separate the sub-

populations, Branke et al. (2000) provided each sub-population with a boundary containing all

individuals of the population. This boundary is a hyper-cube determined by a centre (the most fit

individual in the population) and a pre-defined range. To make sure that all individuals are inside

the boundary, each sub-population is equipped with a different mutation step size relevant to

the boundary. If an individual of one sub-population ventures to the area monitored by another

sub-population, this individual will simply be discarded and re-initialised (this process is called

exclusion). The same forking approach is also used in other EAs, for example DE (Mendes

& Mohais 2005), (Lung & Dumitrescu 2007) . Similar approaches are also used in PSO. For

example, in Multi-swarm charged PSO (mCPSO) (Blackwell 2007), swarms are also divided into

sub-swarm in the same way as in SOS so that each swarm watches a different peak. In addition,

mCPSO also maintain a similar mechanism (named anti-convergence) to the Psearch in SOS so

that there is always one free swarm to continue exploring the search space. Another example is
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in Speciation PSO (Li et al. 2006) where each species is a hyper-sphere whose the centre is the

best-fit individual in the species. Each species can be used to track a peak. To construct and

separate species, periodically particles are regrouped according to their distance to each other.

For clustering approaches, it is not always necessary to choose the best solutions as the centres

of the clusters. In recent approaches (Li & Yang 2009, Woldesenbet & Yen 2009), density-

based clustering methods are also used to divide/separate the sub-populations and to allow the

algorithms explore different parts of the search landscape . It was reported that these density-

based clustering techniques do help to improve the performance, but at the expense of additional

computational cost to calculate the pair-wise distance among particles. The clustering-based

approach is still widely used in recent EDO studies, for example in (Cheng & Yang 2010) to

optimise the dynamic network routing problems.

The second approach is to incorporate some mechanism of penalty/rewarding to keep the sub-

populations apart, of which SBGA Oppacher & Wineberg (1999) is a typical example. SBGA

maintains the separation of populations by selecting individuals in Psearch for reproduction

according to their distance from the core in Ptrack rather than according to their original fitness

values. The further an individual is from the core, the more likely that it will be reproduced.

The third approach is to estimate the basins of attractions of peaks and use these basins as

the separate regions for each sub-population. MGA (Ursem 2000) is the first work following this

approach. The authors provided a mechanism called hill-valley detection: given two individuals

in the search spaces, they calculate the fitness of several random samples on the line between

these two individuals. If the fitness in a sample point is lower than that of the two individuals,

then a valley is detected. If a sub-population contains more than one valley, it will be split. A

similar idea was implemented in a technical report in (Nguyen 2008b). Here firstly the basin of

attraction of each peak is estimated using some simple sampling methods, then the search space

is divided into hypercubes using a binary tree structure (KD-tree) in which each hypercube

approximately covers the estimated basin-of-attractions. Each sub-population is then assigned

to a hypercube. When a part of the landscape changes, the node covering the changing peak will

adjust its structure and its hypercubes to make sure that the sub-populations are not overlapped.

The advantage is the low computational cost (O(log N)) to identify where an individual belongs

to. Initial results on the scenario 2 of the MPB benchmark (Branke 2001b) show that the

proposed method can provide equal or better results than state-of-the-art methods.
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Strengths and weaknesses

Methods following the multi-population approach have the following advantages:

1. Can maintain enough diversity for the algorithm to adaptively start a new search whenever

a new change appears. Examples can be seen in the experiments in (Branke 2001b) where

the proposed multi-population algorithm (SOS) was able to cover most of the peaks if

given enough time while the non-multi-population GA could not.

2. Able to recall some information from the previous generation thanks to one (or several)

population(s) dedicated for tracking and retaining previous solutions. This makes multi-

population approaches usable in solving certain recurrent dynamic problems. For example,

Ursem (2000) and Branke (1999) showed that the multi-population MGA and memory-

based EA were able to recall good old solutions to deal with recurrent problems and hence

outperformed normal EAs.

3. Can search/ track the moves of multiple optima, as analysed in many existing studies on

multi-population, for example (Ursem 2000) and (Branke 2001b).

4. Can be very effective for solving problems with competing peaks or multimodal problems.

(A survey of Moser (2007) showed that among 19 surveyed algorithms that are designed

to solve the multimodal competing peaks benchmark Moving Peaks, a majory (15 out of

19) follow the multi-population approach).

The multi-population approach also has some disadvantages. They are:

1. Too many sub-populations may slow down the search. For example, Blackwell & Branke

(2006) showed that for their multi-swarm PSO algorithm, if the number of sub-populations

(swarms) is larger than the number of peaks, the performance of the algorithm decreases.

2. The need of calculating the distance/similarity/regional metrics to separate the sub-

populations might also affect the performance. This cost has not been taken into account

in most existing studies on multi-population approaches.

3. Lack of effi cient memory for recurrent changes (keeping multiple populations does not

guarantee an effective memory)
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2.1.8 Summary about the strengths and weaknesses of current EAs for dy-

namic optimisation

From the literature review above we can conclude that each EDO approach seems to be suitable

only for certain type of problem, which conforms to the No Free Lunch theorem (Wolpert &

Macready 1997). The fact that each approach is likely to be suitable to some particular classes

of problems is also the reason why many recent studies try to combine different approaches into

one single algorithm to solve the problems better. The survey also shows that most existing

methods were tested and evaluated only on academic problems. The question then is to find

out (i) what are the common characteristics of existing academic problems; (ii) what are the

common criteria to evaluate EDO algorithms; and more importantly (iii) whether these common

characteristics and evaluation criteria reflect the common situations in real-world scenarios. In

the next sections further investigations will be made to find the answers for these questions.

2.2 Performance measures

Properly measuring the performance of algorithms is vital in EDO. In this section I will (i)

review existing studies to identify the most common criteria used to evaluate EDO algorithms,

(ii) analyse the strengths and weaknesses of each measure, and (iii) discuss the possibility to

improve the disadvantages (if there are any) of current performance measures. Performance

measures in EDO can be classified into two main groups: optimality-based and behaviour-based.

The subsections below will discuss each groups of measures in details.

2.2.1 Optimality-based performance measures

Optimality-based performance measures are measures that evaluate the ability of algorithms in

finding the solutions with the best objective/fitness values (fitness-based measures) or finding

the solutions that are closest to the global optimum (distance-based measures). This type of

measure is by far the most common in EDO. The measures can be categorised into groups as

follow:

Best-of-generation

This measure is calculated as the averages for many runs of the best values at each generation

on the same problem. This performance measures is usually used in two ways: First, the

best value in each generation is plotted against the time axis to create a performance curve.
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This measure has been used since the early research in (Cobb 1990, Grefenstette 1992) as the

best-of-generation / best of population in each generation and then as the best objective value

(Bäck 1998), best fitness in each generation (Gaspar & Collard 1999) and best-of-generation

(BOG) (Grefenstette 1999). This measure is still one of the most commonly used measures

in the literature. The advantage of such performance curves is that they can show the whole

picture of how the tested algorithm has performed. However, because the performance curve is

not quantitative, it is diffi cult to compare the final outcome of different algorithms and to see if

the difference between two algorithms is statistically significant (Morrison 2003).

To improve the above disadvantage, a variation of the measure is proposed where the BOG

values is averaged over all generations (Yang & Yao 2003). The measure is described below:

FBOG =
1

G
×
∑i=G

i=1

(
1

N
×
∑j=N

j=1
FBOGij

)
(2.1)

where FBOG is the mean best-of-generation fitness, G is the number of generations, N is the

total number of runs, and FBOGij is the best-of-generation fitness of generation i of run j of an

algorithm on a particular problem.

An identical measure to the FBOG, but with a different name, the collective mean fitness

FC =
1

N
×
∑j=N

j=1

(
1

G
×
∑i=G

i=1
FBOGij

)
(2.2)

was proposed by Morrison (2003)at the same time. Morrison (2003) emphasized that the col-

lective mean fitness should be calculated based on a suffi ciently large number of generations to

ensure that the final score is representative.

Recently the idea of calculating FBOG and using FBOG to plot performance curves was

adapted in (Alba & Sarasola 2010a) to create two measures: the area below a curve, which

is calculated as the definite integral of FBOG (or other measures such as FC or offl ine er-

ror/performance) over the optimisation process; and the area between curves, which is the area

spanned between the performance curves of two algorithms.

The FBOG is one of the most commonly used measures. The advantage of this measure, as

mentioned above, is to enable algorithm designers to quantitatively compare the performance of

algorithms. The disadvantage of the measure and its variants is that they are not normalised,
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hence can be biased by the difference of the fitness landscapes at different periods of change. For

example, if at a certain period of change the overall fitness values of the landscape is particularly

higher than those at other periods of changes, or if an algorithm is able to get particular high

fitness value at a certain period of change, the final FBOG or FC might be biased toward the

high fitness values in this particular period and hence might not correctly reflect the overall

performance of the algorithm.

Best-error-before-change

Proposed in (Trojanowski & Michalewicz 1999) and named Accuracy by the authors, this mea-

sure is calculated as the average of the best errors (the difference between the optimum value

and the value of the best individual) achieved at the end of each change period (right before the

moment of change).

EB =
1

m

∑m

i=1
eB (i) (2.3)

where eB (i) is the best error just before the ith change happens; m is the number of changes.

This measure is useful in situations where we are interested in the final solution that the

algorithm achieved before the change. The measure also makes it possible to compare the final

outcome of different algorithms. However, the measure also has three important disadvantages.

First, it does not say anything about what the algorithms have done to achieve the current

performance. Using this measure all algorithms that have the same final solutions before change

will have the same score, regardless of how quick an algorithm recover from the last change and

how fast it approaches the global solution. As a result, the measure is not suitable if what users

are interested in is the overall performance or behaviours of the algorithms. Second, similar to

the best-of-generation measure, this measure is also not normalised and hence can be biased

toward periods where the errors are relatively very large. Third, the measure requires that the

global optimum value at each change is known. Fourth, the measure requires that the time a

change occurs is known.

This measures is adapted as the basis for one of the complementary performance measures

in the CEC’09 competition on dynamic optimisation (Li et al. 2008).
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Modified offl ine error and offl ine performance

Proposed in (Branke 2001b) and (Branke & Schmeck 2003), themodified offl ine error is measured

as the average over, at every evaluation, the error of the best solution found since the last change

of the environment. This measure is always greater than or equal to zero and would be zero for

a perfect performance.

EMO =
1

n

∑n

j=1
eMO (j) (2.4)

where n is the number of generations so far, and eMO (j) is the best error since the last change

gained by the algorithm at the generation j.

A similar measure, the modified offl ine performance, is also proposed in the same reference

to evaluate algorithm performance in case the exact values of the global optima are not known

PMO =
1

n

∑n

j=1
FMO (j) (2.5)

where n is the number of generations so far, and FMO (j) is the best performance since the last

change gained by the algorithm at the generation j.

With this type of measure, the faster the algorithm to find a good solution, the higher the

score. Similar to the FBOG, the offl ine error/performance are also useful in evaluating the overall

performance of an algorithm and to compare the final outcomes of different algorithms. These

measures however have some disadvantages. First, it requires that the time a change occurs

is known. Second, similar to FBOG, these measures are also not normalised and hence can be

biased under certain circumstances.

Recently based on the modified offl ine error a new measure named best known peak error

(BKPE) (Bird & Li 2007) was proposed to measure the convergence speed of the algorithm in

tracking optima. The BKPE is calculated to every known peak. Immediately before a change,

the error of the best individual on a known peak is added to the total error for the run. Similar

to the offl ine error, after a change all current peak errors are reset to zero.

Relative-ratio-of-best-value

In the technical reports which defines the bechmark problems for the CEC’09 competition on

dynamic optimisation (Li et al. 2008), a new performance measure was proposed based on the

relative ratio between the best value gained by an algorithm and the global optimum value. The
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performance is calculated as follows:

performance =
∑runs

i=1

∑num_change

j=1
rij/ (num_change× runs) ;

rij = rlastij /

(
1 +

∑S

s=1

(
1− rsij

)
/S

)
rsij = fj (xbest (s)) /fj (x

∗)

rlastij = f (xbest (last)) /fj (x
∗)

where S is the total number of sampling steps at each change period, fj (xbest (s)) is the best

value the algorithm achieves at the s-th sampling step of the j-th change period, fj (x∗) is the

global optimum value at the j-th change period, and last is the moment just before the next

change happens.

This measure is similar to the measures EMO and FBOG in the way it takes into account the

overall optimisation process and rewards algorithms that recover more quickly and hence it also

has the same advantages and disadvantages as the other two measures.

Optimisation accuracy

The optimisation accuracy measure (also known as the relative error) was initially proposed in

(Feng et al. 1997) and was adopted in (Weicker 2002) for the dynamic case:

accuracy
(t)
F,EA =

F (best
(t)
EA)−Min

(t)
F

Max
(t)
F −Min

(t)
F

(2.6)

where best(t)EA is the best solution in the population at time t, Max
(t)
F ∈ M is the best fitness

value of the search space and Min
(t)
F ∈ M is the worst fitness value of the search space. The

range of the accuracy measure ranges from 0 to 1, with a value of 1 and 0 represents the best

and worst possible values, respectively.

The optimisation accuracy have the same advantages as the FBOG and EMO in providing

quantitative value and in evaluating the overall performance of algorithms. The measure has an

advantage over FBOG and EMO: it is independent to fitness rescalings and hence become less

biased to those change periods where the difference in fitness becomes particularly large. The

measure, however, has a disadvantage: it requires information about the absolute best and worst

fitness values in the search space, which might not always be available in practical situations. In
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addition, as pointed by the author himself (Weicker 2002), the optimisation accuracy measure

is only well-defined if the complete search space is not a plateau at any generation t, because

otherwise the denominator of Eq.2.6 at t would be equal to zero.

Distance-based measures

Although most of the optimality-based measures are fitness-based, some performance measures

do rely on the distances from the current solutions to the global optimum to evaluate algo-

rithm performance. In (Weicker & Weicker 1999), a performance measure, which is calculated

as the minimum distance from the individuals in the population to the global optimum, was

proposed. In (Salomon & Eggenberger 1997), another distance-based measure was introduced.

This measure is calculated as the distance from the mass centre of the population to the global

optimum.

Euclidean distance-based measures are also commonly used to evaluate the performance of

dynamic multi-objective (DMO) optimisation algorithms. In (Zeng et al. 2006) the performance

of DMO algorithms are evaluated based on the generational distance (GD) (Van Veldhuizen

1999) between the approximated front (which contains the current best function values) and the

Pareto optimal front at the moment just before a change occurs. In (Farina et al. 2004) two

measures, one is based on the minimum Euclidean distance between members of the approxi-

mated front and the Pareto front, and the other is based on the minimum Euclidean distance

between members of the approximated set and the Pareto set, were proposed. In (Hatzakis &

Wallace 2006), these two measures were extended using the idea of modified offl ine-error. In

(Li et al. 2007), a modified version of the original GD named reversed GD was proposed for the

dynamic case. The reversed GD is different from the dynamic GD in (Zeng et al. 2006) in that

the distance between the Pareto front and the approximated front is calculated in a "reversed"

direction, i.e. the calculation starts from each sampling point in the Pareto front and then find

the closest solution in the approximated front, not the other way round as usual. In (Goh &

Tan 2009a), an offl ine measure named variable space generational distance was also proposed

and was calculated based on the distance between the approximated set and the Pareto set at

each time step.

The advantage of distance-based measures is that they are independent to fitness rescalings

and hence are less affected by possible biases caused by the difference in fitness of the landscapes
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in different change periods. The disadvantages of these measures are that they require knowledge

about the exact position of the global optimum, which is not always available in practical

situation. In addition, compared to some other measures this type of measure might not always

correctly approximate the exact adaptation characteristics of the algorithm under evaluated, as

shown in an analysis in (Weicker 2002).

2.2.2 Behaviour-based performance measures

Behaviour-based performance measures are those that evaluate whether EDO algorithms exhibit

certain behaviours that are believed to be useful in dynamic environments. Example of such

behaviours are maintaining high diversity through out the run; quickly recovering from a drop

in performance when a change happens, and limiting the fitness drops when changes happen.

These measures are usually used complementarily with optimality-based measures to study the

behaviour of algorithms. They can be categorised into the following groups:

Diversity

Diversity-based measures, as their name imply, are used to evaluate the ability of algorithms

in maintaining diversity to deal with environmental dynamics. There are many diversity-based

measures, e.g. entropy (Mori et al. 1997), Hamming distance (Oppacher & Wineberg 1999,

Rand & Riolo 2005a, Yang 2008), moment-of-inertia (Morrison & De Jong 2002), peak cover

(Branke 2001b), and maximum spread (Goh & Tan 2009a) of which Hamming distance-based

measures are the most common.

Hamming distance-based measures for diversity have been widely used in static evolutionary

optimisation and one of the first EDO research to use this measure for dynamic environments

is the study of (Oppacher & Wineberg 1999) where the all possible pair-wise Hamming distance

among all individuals of the population was used as the diversity measure. In (Rand & Riolo

2005a) the measure was modified so that only the Hamming distances among the best individuals

are taken into account.

A different and interesting diversity measure is the moment-of-inertia proposed by Morrison

& De Jong (2002). This measure is inspired by the fact that in engineering problems, in case

an object rotates around its centroid (centre of mass), the moment of inertia can be used to

measure how far the mass of the object is distributed from the centroid. Morrison & De Jong

(2002) applied this idea to measuring the diversity of EA population. Given a population of
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P individuals in N -dimensional space, the coordinates C = (c1, ..., cN ) of the centroid of the

population can be computed as follows:

ci =

∑P
j=1 xij

P

where xij is the ith coordinate of the j individual and ci is the ith coordinate of the centroid.

Given the computed centroid above, the measure of diversity, named moment-of-inertia, of

the population is:

I =

N∑
i=1

P∑
j=1

(xij − ci)2

In (Morrison & De Jong 2002), the authors proved that the moment-of-inertia measure

is equal to the pair-wise Hamming distance measure. The moment-of-inertia, however, has

an advantage over the Hamming distance measure: it is more computationally effi cient. The

complexity of computing the moment-of-inertia is only linear with the population size P while

the complexity of the pair-wise diversity computation is quadratic.

Another interesting, but less common diversity measure is the peak cover (Branke 2001b),

which counts the number of peaks covered by the algorithms over all peaks. This measure

requires full information about the peaks in the landscape and hence is only suitable in academic

environment.

Diversity measures are also used in dynamic multi-objective approaches. In (Goh & Tan

2009a) the maximum spread commonly used in static MO was modified for the dynamic case by

calculating the average value of the maximum spread over all generations as time goes by. In (Li

et al. 2007), the diversity-based hypervolume (HV) measure (Van Veldhuizen 1999) commonly

used in static MO was extended to a dynamic measure HVR(t), which is the ratio between the

dynamic HV of the approximated front and the Pareto front.

Drops in performance after changes

Some EDO studies also develop measures to evaluate the ability of algorithms in restricting

the drop of fitness when a change occurs. Of which, the most representative measures are the

measures stability (Weicker 2002), satisficability and robustness (Rand & Riolo 2005a).

The measure stability is evaluated by calculating the difference in the fitness-based accuracy
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measure (see Eq. 2.6) of the considered algorithm between each two time steps

stab
(t)
F,EA = max{0, accuracy(t−1)F,EA − accuracy

(t)
F,EA} (2.7)

where accuracy(t)F,EA has already been defined in Eq. 2.6.

The robustness measure is similar to the measure stability in that it also determines how

much the fitness of the next generation of the GA can drop, given the current generation’s

fitness. The measure is calculated as the ratio of the fitness values of the best solutions (or the

average fitness of the population) between each two consecutive generations.

The satisficability measure focuses on a slightly different aspect. It determines how well the

system is in maintaining a certain level of fitness and not dropping below a pre-set threshold.

The measure is calculated by counting how many times the algorithm is able to exceed a given

threshold in fitness value.

Convergence speed after changes

Convergence speed after changes, or the ability of the algorithm to recover quickly after a change,

is also an aspect that attracts the attention of various studies in EDO. In fact many of the

optimality-based measures, such as the offl ine error/performance, best-of-generation, relative-

ratio-of-best-value discussed previously can be used to indirectly evaluate the convergence speed.

In addition, in (Weicker 2002) the author also proposed a measure dedicated to evaluating the

ability of an adaptive algorithm to react quickly to changes. The measure is named reactivity

and is defined as follows:

react
(t)
F,A,ε = min

t′ − t|t < t′ 6 maxgen, t′ ∈ N,
accuracy

(t′)
F,A

accuracy
(t)
F,A

> (1− ε)

∪{maxgen−t} (2.8)
where maxgen is the number of generations. It should be noted that this measure is only

meaningful if there is actually a drop in performance when a change occurs. Otherwise, the

value of the measure reactivity is always zero and nothing can be said about how well the

algorithm reacts to changes. In situations like the dynamic constrained benchmark problems in

(Nguyen & Yao 2009a) where the total fitness level of the search space increases after a change,

the measure reactivity cannot be used.
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Fitness degradation over time

A recent experimental observation (Alba & Sarasola 2010b) showed that in dynamic optimisation

environments the performance of an algorithm might degrade over time due to the fact that the

algorithm fails to follow the optima after some changes have occured. To measure how an

algorithm degrades as the search advances due to the above reason, in (Alba & Sarasola 2010b)

a measure named β−degradation was proposed. The measure is calculated by firstly using linear

regression (over the accuracy values achieved at each change period) to create a regression line,

then evaluate the measure as the slope of the regression line. A positive β−degradation value

might indicate that the algorithm is able to keep track with the moving optima. This measure

is among the first to consider the impact of tracking-performance degradation over the long

term in DO. The measure however does not indicate whether the degradation in performance is

really caused by the long-term impact of DOP, or simply by an increase in the diffi culty level of

the problem after a change. In addition, a positive β−degradation value might also not always

an indication that the algorithm is able to keep track with the moving optima. In problems

where the total fitness level increases, like in the dynamic constrained benchmark problems in

(Nguyen & Yao 2009a) mentioned above, a positive β−degradation can be achieved even when

the algorithm stays at the same place.

Robustness over time

Recently Yu et al. (2010) discussed some interesting evaluation criteria to measure the ability

of algorithms in finding optimal solutions that are robust over time. According to Yu et al.

(2010) a solution is called robust over time when it is used for at least two consecutive changing

periods. When the solution quality becomes unsatisfactory, a new robust solution must be found.

Some evaluation criteria to evaluate robust over time were suggested based on the quality of a

solution from: (i) the perspective of a single solution; (ii) the perspective of the whole sequence

of solution; and (iii) the perspective of the search effi ciency of the algorithm. However, no

experimental examples were provided to show how the criteria can be applied to a concrete

problem.
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2.2.3 Discussion

There are some open questions about performance measures in EDO. First, it is not clear if

optimality is the only goal of real-world DOPs and if existing performance measures really

reflect what practitioners would expect from optimisation algorithms. So far only a few studies

e.g. (Rand & Riolo 2005a, Yu et al. 2010) tried to justify the meaning of the measures by

suggesting some possible real-world examples where the measures can be applicable. It would

be interesting to find the answer for the question of what are the main goals of real-world DOPs,

how existing performance measures reflect these goals and from that investigate if it is possible

to make the performance measures to be more specific (if needed) to suit practical requirements.

In Chapter 3 an attempt will be made to find out more about the main optimisation goals of

real-world DOPs and the link between existing performance measures and the goals of real-world

applications.

Second, as shown in the literature review in this section, many optimality-based measures

are not normalised and hence might be biased by fitness rescalings and other disproportionate

factors caused by the changing landscapes. The accuracy measure (Weicker 2002) is among the

few studies that tried to overcome this disadvantage by normalising the fitness values at each

change period using a window of the maximum and minimum possible values. This approach

however requires full knowledge of the maximum and minimum possible values at each change

period, which might not be available in practical situations. In Subsection 6.4.1, a new measure,

the normalised score, will be provided to facilitate comparing the performance of algorithms in

a normalised way without using problem-specific knowledge.

Third, although the behaviour-based measures are usually used complementary with the

optimality-based measures, it is not clear if the former really correlate with the latter. Recent

studies(Alba & Sarasola 2010b) have shown that the behaviour-based measure stability does not

directly relate to the quality of solutions and the results of the behaviour-based measure reactivity

are "usually insignificant" (Alba et al. 2007, Alba & Sarasola 2010b). It would be interesting to

systematically study the relationship between behaviour-based measures and optimality-based

measures, and more importantly the relationship between the quality of solutions and the as-

sumptions of the community about the expected behaviours of DO algorithms.
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2.3 Benchmark problems

2.3.1 Properties of a good benchmark problem

The use of benchmark problems is crucial in the process of developing, evaluating, and comparing

EDO algorithms. According to (Branke 2001b, Yang 2004, Morrison 2004, Younes 2006), a good

benchmark problem is one that has the following characteristics:

1. Flexibility: Configurable under different dynamic settings (change severity, frequency, pe-

riodicity) and different scales (number of optima, dimensions, domain ranges etc)

2. Simplicity and effi ciency: Simple to implement/analyse/evaluate and computationally ef-

ficient

3. Generalisation: Possible to represent different schenarios or different types of problems.

In other words, the benchmark problem should not be very specific.

In addition, because the ultimate goal of any optimisation algorithm is to be applicable

to real-world situations, a good benchmark problem needs to satisfy the following important

property:

4. Allow conjectures to real-world problems or resemble real-world problems to some extents.

(Branke 2001b, Goh & Tan 2009b)

2.3.2 Reviewing existing general-purpose benchmark generators/problems

In this section, I will review the commonly used general-purpose dynamic optimisation bench-

mark generators/problems in the literature based on the above criteria. The purpose is to

identify the common characteristics of benchmark problems, and from that in the next chapter

we will see if these characteristics reflect the properties of real-world problems.

When reviewing existing benchmark generators/problems, we can either categorise problems

based on the ways they are generated, or based on the characteristics of the generated problems.

In this section I choose the second way of categorisation because (i) it better suits the purpose of

identifying the common characteristics of benchmark problems and (ii) it helps users in choosing

the suitable benchmark for their applications. In the end what users look for in selecting a

benchmark problem is not how they are generated but what types of dynamics they represent

and what characteristics they have.

44



2. Literature review on EDO 2.3. Benchmark problems

The characteristics of each general-purpose benchmark generator/problem are identified and

the problems are classified into different groups based on the following different criteria:

1. Time-linkage: Whether the future behaviour of the problem depends on the current solu-

tion found by the algorithm or not.

2. Predictability: Whether the generated changes are predictable or not

3. Visibility: Whether the changes are visible to the optimisation algorithm and if so whether

changes can be detectable by using just a few detectors

4. Constrained problem: Whether the problem is constrained or not

5. Single/multiple objective

6. Type of changes: Detailed explanation of how changes occur in the search space

7. Changes are cyclic/periodical/recurrent or not?

8. Factors that change: Parameter of objective functions / Domain of variables / Number of

variables / Constraints / Other parameters

Tables 2.1 and 2.2 provides the detailed information of each benchmark problem in the

continuous and combinatorial domains, respectively, and their characteristics.

2.3.3 The common characteristics of existing benchmark generators/problems

From tables 2.1 and 2.2, we can see that the common characteristics of academic benchmark

problems are as follow:

• All of the reviewed general-purpose benchmark generators/problems are non time-linkage

problems. There are a couple of general-purpose benchmark problems with the time-

linkage property (Bosman 2005, Nguyen & Yao 2009b), but they are proposed as a proof

of principle rather than a complete set of benchmark problems.

• Most of the reviewed benchmark generators/problems are unconstrained or domain con-

strained, except the two most recent studies (Nguyen & Yao 2009a, Richter 2010)
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• In the default settings of most of the review benchmark generators/problems, changes are

detectable by using just a few detectors. Exceptions are some problem instances in (Cobb

& Grefenstette 1993, Trojanowski & Michalewicz 1999) where only one or some peaks

move, and in (Weicker 2000, Nguyen & Yao 2009a, Richter 2010) where the presences of

the visibility mask or constraints make only some parts of the landscapes change. Due to

their highly configurable property some benchmark generators can be configured to create

scenarios where changes are more diffi cult to detect.

• In most cases the factors that change are the objective functions. Exceptions are one

instance in (Li et al. 2008) where the dimension also changes and the problems in (Nguyen

& Yao 2009a, Richter 2010) where the constraints also change.

• Many generators/problems have unpredictable changes in their default settings, but due to

their flexibility some of the generators/problems can be configured to allow predictable

changes, at least in the frequency and periodicity of changes

• A majority of benchmark generators/problems have cyclic/periodical/recurrent changes

• Most generators/problems are single-objective except the problems in (Jin & Sendhoff2004)

and (Farina et al. 2004). Recently there are some new dynamic multi-objective problems

e.g. (Zhou et al. 2007), but most of them are based on the two papers mentioned above.

The common characteristics of academic benchmark problems above reflect the current main

assumptions of the EDO community about the characteristics of DOPs. In the next chapter we

will identify if these characteristics are also common in real-world applications and if there is

any characteristic that has not been covered in existing research.
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2.4 Summary: the assumptions in EDO academic research

In this chapter we have reviewed and categorised existing EDO studies on the solving methods

(Section 2.1), performance measures (Section 2.2), and benchmark problems (2.3). The re-

views showed us the strengths and weaknesses of each method and more importantly identified

the common assumptions of the community about the characteristics of DOPs, which can be

summarised as follow:

• Optimisation goals: Optimality is the primary goal or the only goal in a majority of acad-

emic EDO studies, as evidently shown by the large number of optimality-based measures

reviewed in Section 2.2. Some studies do pay attention to developing other complementary

measures (e.g. the behaviour-based measures in Subsection 2.2.2), but these complemen-

tary measures mainly focus on analysing the behaviours of the algorithms rather than

checking if the algorithms satisfy users requirements.

• The time-linkage property : Non time-linkage (the algorithm does not influence the future

dynamics) is the main focus of academic EDO research, as evidently shown by the fact

that all commonly used general-purpose benchmark problems are non-time-linkage.

• Constraints: Unconstrained problems are the main focus of academic research, especially

in the continuous domain, as shown by the majority of academic benchmark problems.

• Visibility and detectability of changes: Current EDO methods assume that changes either

are known or can be easily detected using a few detectors.

• Factors that change: The common factors that change in academic problems is the objec-

tive function.

• Reason for tracking : The main assumption is that the optima (local or global) after

change is close to the optima (local or global) before change, as shown in a majority

of benchmark problems (although in the Moving peaks (Branke 1999) and DF1 (Morrison

& DeJong 1999) benchmarks the new global optima are not close to the previous global

optima, they are still close to a previous local optima). Due to that, tracking is preferred

to restarting.
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• Predictability : The predictability of changes has increasingly attracted the attention of the

community. However, the number of studies in this topic is relatively still small compared

to the unpredictable case

• Periodicity : The periodicity of changes is a given assumption in many mainstream ap-

proaches as memory and prediction.

The literature review also shows that not many of the assumptions above are backed up by

evidence from real-world applications. This leads to the question of whether these academic

assumptions still hold in real-world DOPs and if yes then whether these assumptions are repre-

sentative in real-world applications and in what type of applications do they hold. In an effort to

answer this question, in the next chapter I will carry out a detailed review of the characteristics

of real-world DOPs, from that I will identify the overlaps and gaps between academic EDO

research and real-world DOPs.
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Chapter 3

Identifying the characteristics of

dynamic optimisation problems:

from academic evolutionary

research to real-world problems

3.1 Motivation and research questions

As shown in the literature review in Chapter 2, many current evolutionary dynamic optimisation

(EDO) studies focus on academic problems where certain assumptions are given and certain

characteristics are investigated. However, it is unclear of whether these academic assumptions

still hold in real-world dynamic optimisation problems (DOPs) and whether the considered

characteristics are representative in real-world applications.

The lack of a clear link between EDO academic research and real-world scenarios has lead to

some criticisms on how realistic current academic problems are. Ursem et al. (2002) downplayed

the importance of current academic benchmarks by stating that "no research has been conducted

to thoroughly evaluate how well they reflect characteristic dynamics of real-world problems";

Branke et al. (2005) pointed out that "little has been done to characterize and understand the

nature of a change in real-world problems"; Rohlfshagen & Yao (2008) criticised that "a large

amount of effort is directed at an academic problem that may only have little relevance in the

real world."; and in (Nguyen & Yao 2009a, Nguyen & Yao 2009b) we showed that there are
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some classes of real-world problems whose characteristics have not been captured by existing

academic research yet.

Criticisms from the cited references above motivated me to investigate the following research

questions about the gaps between real-world problems and academic research:

• In which problems the current assumptions of EDO academic research about DOPs (as

listed in Subsection 2.4) hold?

• Is there any real-world characteristic not covered in EDO academic research?

• Is there any type of problem that has not yet received attention from the EC community?

• The distribution/popularity of different types of real-world problems?

• Current approaches used to solve real-world problems? Which types of problems are solved

by EAs and which are not?

I believe that answering the questions above is vital in bridging the gap between academic

research and real-world applications. To contribute to the task of answering this question,

in this chapter I will carry out a review of a set of recent real-world dynamic optimisation

references. From the review I will investigate for the first time some insights about the link

between academic EDO research and certain classes of real-world DOPs. Details of the review,

and the corresponding investigations will be described in the next sections.

3.2 A survey of real-world problems with dynamic/uncertainty

environments

3.2.1 Survey purpose and methods

To help answering the research questions mentioned in section 3.1 above we took a detailed

survey of recent references (from different disciplines) published in English (mostly from 2006-

2008) from Inspec / Compendex / GeoBase / Referex that have real-world problems with

dynamic/uncertain/non-stationary environments and are solved using evolutionary algorithms

or other stochastic / approximation optimisation techniques in an online way (i.e. we surveyed

those problems that are DOPs). The goal of the survey is not to cover the characteristics of
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all types of real-world dynamic optimisation problems, but only to summarise some representa-

tive characteristics of dynamic real-world problems that have been studied recently. To narrow

down the search space to a manageable scope, the survey does not cover all sub-field/topics

listed out in the reference database. References using exact methods and other deterministic /

non-approximate methods; and many references relating to neural networks, fuzzy set, power

systems and image processing are not considered due to the way the search syntax (to be shown

below) has been chosen. The characteristics of each real-world problem are identified and the

problems are classified into different groups based on the following different criteria:

1. Time-linkage: Whether the future behaviour of the problem depends on the current solu-

tion found by the algorithm or not. We recognise a real-world problem from a particular

reference as having the time-linkage property if this property is mentioned as existing in

the problem (by the authors of the corresponding reference), regardless of whether the

time-linkage property is handled by the authors of the reference or not. There might be

cases where it is not clear if the time-linkage property exists in a problem. In such cases

the corresponding problems are categorised in the "no information" group.

2. Solved by EA or other meta-heuristics or not

3. Continuous/discrete: Whether the changes happen in continuous or discrete time

4. Predictability: Whether the changes are predictable or not

5. Visibility: Whether the changes are visible to the optimisation algorithm or the algorithm

needs to detect changes or adapt with changes by itself and whether the changes only

occur in a part of the search space

6. Frequency of changes: Whether the frequency of changes is fixed or variable

7. Constrained problem: Whether the problem is constrained or not

8. Single/multiple objective

9. Optimisation goals

10. Factors that change: Parameter of objective functions / Domain of variables / Number of

variables / Constraints / Other parameters
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11. Type of dynamics (e.g. recurrent/cyclic, linear, non-linear, distribution etc.)

12. Restart/Tracking: whether the restart or tracking (re-using previous knowledge) approach

is chosen and why

13. Origin of real-world data

14. Types of applications and disciplines

Method: The survey was mostly based on a search made on Inspec / Compendex / GeoBase

/ Referex on 04/2008 and updated on 07/2010 with the following syntax:

(((((((((((dynamic wn KY OR uncertain* wn KY OR non-stationary wn KY

OR online wn KY OR predict* wn KY) AND (optim* wn KY OR evolution* wn

KY)AND (algorithm wn KY OR method wn KY OR technique wn KY)) AND

(({optimization} OR {algorithms} OR {genetic algorithms} OR {optimisation}) WN

CV)) AND (({921.5} OR {c1180}) WN CL)) NOT (({computational fluid dynam-

ics} OR {constraint theory} OR {finite element method} OR {neural networks}

OR {convergence of numerical methods} OR {iterative methods} OR {linear ma-

trix inequalities} OR {fuzzy control} OR {control system synthesis} OR {monte

carlo methods} OR {error analysis} OR {sensitivity analysis} OR {fuzzy sets}) WN

CV)) NOT (({dynamic programming} OR {decision making} OR {numerical meth-

ods} OR {graph theory} OR {approximation theory} OR {distributed computer

systems} OR {trees (mathematics)} OR {integer programming} OR {fuzzy set the-

ory} OR {neural nets} OR {matrix algebra}) WN CV)) NOT (({mobile robots} OR

{embedded systems} OR {bandwidth} OR {computation theory}) WN CV)) NOT

(({921} OR {912.2} OR {922.1} OR {721.1} OR {722.4} OR {716.1} OR {c1140z})

WN CL)) NOT (({723.2} OR {922.2} OR {701.1} OR {c1160} OR {714.2}) WN

CL)) NOT ({computer simulation} WN CV)) AND ({english} WN LA))

It should be noted that in this survey we only consider papers that use real-world data or

solve problems originating from real-world situations. In case a reference takes real-world data

to do the simulation, we will only consider it if the simulation can show how the method works

in a real-world situation, i.e. how it can run in real-time and deal with different changes and the
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optimisation goals are set clear. References, e.g. (Kiselev & Alhajj 2008, Ko et al. 2008, Huang

& Wu 2008, Chaer & Monzon 2008) that do use real-world data but do not provide enough

information about the characteristics of the data; or how the dynamics affect the proposed

method and how the proposed method deal with the dynamics, are not considered. Real-world

references where the problems are solved offl ine or where there is not enough information of

whether and how the proposed method can be applied online e.g. (Takagi et al. 2008, Gao

& Sheng 2008) are also not considered. Especially, for references of control systems, we only

consider those that really use real-world data from hardware/physical systems or have hard-

ware/physical implementations because in many control systems the dynamics come from the

errors of real-world equipments and disturbances. Benchmark problems, even if designed to sim-

ulate real-world applications, are not considered unless there is evidence that the data used to

create the benchmark are taken from real-world applications. Because of that, many references

that use such common benchmark problems (e.g. dynamic modifications of the Solomon set for

VRPTW (Solomon 1987)) will not be considered.

It is also worth noting that in many selected references, e.g. (Deb et al. 2007, Soga et al.

2008, Wang, Wu & Liu 2008, Ahmad & Liu 2008, Ngo et al. 2006, Kanoh 2007), the real-world

data is used only as a framework on which the authors test different artificial dynamic scenarios.

In such case we will only consider the parts that evidently originate from real-world applications.

Such strict criteria in selecting references are needed because the purpose of the survey is

not to list all real-world references that we found using the above syntax, but to investigate

the characteristics of real-world problems and their effects on optimisation algorithms. Such

strict criteria, however, certainly cannot cover all relevant real-world references in the period

2006-2008. First, the survey might omit many references (particularly the scheduling problems

and control problems) that actually originate from real-world situations, or actually use real-

world data just because the authors of these references do not explicitly state so in their papers.

Second, the survey is not able to cover real-world situations from certain disciplines where it is

prohibited to disclose the source of real-world data (e.g. in commercial applications) or where it

is only possible to simulate real-world situations using simulations (e.g. in military applications

or space applications). Third, the survey only focuses on references that satisfy the search syntax

and the time frame described above. Fourth, although we did our best to judge the relevance

of the filtered references, the selections and classifications only reflect our views of real-world
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problems, which might not cover all types of applications that are of interest. However, even

with such limitations, it is hoped that the outcome of the survey will still be useful to reveal for

the first time the common characteristics of a set of representative real-world DOPs, and the

links between these problems and academic EDO research.

From the 2394 filtered references, we selected the references that are most relevant according

to the selection criteria above. We also looked at the list of papers cited by the selected references

and read those that seem to be relevant. Eventually, 56 most relevant problems (which are

problems that satisfy the definition of DOPs in Chapter 1 and have enough detailed information

about their characteristics) are selected for a detailed survey.

To the best of our knowledge, there has been no similar survey on real-world DOP references

to investigate the links between EDO academic research and real-world applications. The only

related study is the work of Andrews & Tuson (2005). This research does not survey existing

references in the literature, but reports questionnaires and interviews of the authors with four

practitioners to investigate their views on the characteristics of some real-world applications that

they have experienced. Although the research in (Andrews & Tuson 2005) does not directly solve

any real-world DOPs, it does provide important information on some characteristics of the real-

world problems that the four practitioners have worked with. Due to that, in this survey we

will also include these reported characteristics in our classification.

Tables 1, 2, 3, 4 and 5 in the Appendix (page 246) list the references we selected with brief

information about their characteristics based on the criteria above. The tables are divided into

four groups: combinatorial applications solved by EAs and other meta-heuristics; continuous

applications solved by EAs and other meta-heuristics; combinatorial applications solved by

other methods; and continuous applications solved by other methods. These tables contain the

most relevant details of the characteristics of the surveyed problems. For all information that

I classified using the criteria above, please see the online report at http://www.cs.bham.ac.uk/

~txn/reports/classified_apps.pdf.

In the next subsections I will summarise our findings from the survey on different aspects.

3.2.2 General observations

In this subsection I will summarise the general characteristics of the surveyed applications and

how they match with existing EA academic research.
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Distribution of applications
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5%

Others
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Figure 3.1: Distribution of 29 combinatorial applications in the surveyed references

Distributions of continuous applications

Parameter
estimation
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Optimal
control
(hybrid

system)
30%

Optimal
control

(dynamical
system)

48%

Source
identification

7%

Pattern
classifcation/
recognition

4% Strategic
planning

4%

Figure 3.2: Distributions of 27 continuous applications in the surveyed references

The first aspect to be analysed is the distributions of different types of applications in the

surveyed references, which hopefully will provide EDO researchers with a better view of what

are the more common types of applications among real-world DOPs.

For this analysis the applications are grouped into two categories: Applications where the

decision variables are in the combinatorial domain (Figure 3.1) and applications where the

decision variables are in the continuous domain (Figure 3.2). It should be noted that there are

real-world systems that have both continuous and combinatorial decision variables. Especially,
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most hybrid systems that we surveyed have both continuous and combinatorial decision variables,

and hence they can be classified into both the continuous applications and the combinatorial

applications. In this survey such systems are classified into the continuous group due to their

similarity to the continuous dynamical systems. Of course they can also be classified into a third

different category.

The analysis results show that for the combinatorial domain, the most common types of

DOPs are scheduling (35%), allocation/layout/assignment (24%), routing and planning (both

11%). They are also among the most common types of problems considered in EA combinato-

rial research. For applications in the continuous domain, a majority of the surveyed problems

are optimal control problems (including normal dynamical systems (48%) and hybrid systems

(30%)), which have not yet attracted much interest from the EA community. The other types

of problems are parameter estimation, source identification, pattern classification and planning.

The coverage of EAs and other meta-heuristics

Because the focus of this chapter is on EDO research, it might be more of interest to investigate

the coverage of EAs and other meta-heuristics on the surveyed applications. Analyses on the

distribution of applications that are solved by EAs and other meta-heuristics in the combinato-

rial/continuous domains are given in Figures 3.3, 3.4, respectively, and analyses on the way EAs

and other meta-heuristics are used to solve the applications in the combinatorial/continuous

domains are given in Figures 3.5, and 3.6, respectively.

The results show that EA and other meta-heuristics are used to solve 36% of the surveyed

applications, confirming the popularity of these methods in solving online applications. Among

these applications, EAs/meta-heuristics are used in one of the following three ways:

• EAs/meta-heuristics are used as the main dynamic solvers to produce the dynamic so-

lutions for the problem (24% in the combinatorial domain and 28% in the continuous

domain)

• EAs/meta-heuristics are not the main/only dynamic solvers (10% in the combinatorial

domain and 4% in the continuous domain). Instead they are used to optimise a part of

the problem (e.g. in the airport-scheduling problem (Atkin et al. 2008), a meta-heuristic

(Tabu search) is used for the initial search of the schedules), or used to optimise the

parameters/settings of the main dynamic solver (e.g. in the supply-chain problem (Akanle
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Distribution of combinatorial applications
solved by EAs and other metaheuristics
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Figure 3.3: Distribution of combinatorial applications that are solved by EAs/metaheuristics.

& Zhang 2008), GA is used to optimise the parameters of the models that are used to

coordinate the distributed decision-making process).

• EAs/meta-heuristics are used in an offl ine way (3% in the combinatorial domain and 4% in

the continuous domain) to find some optimal policies/rules, which then will be used during

the online optimisation process. One example is the problem of dimensioning and load

balancing for multi-topology Interior Gateway Protocol traffi c (Wang, Ho & Pavlou 2008).

In this problem, GA is used to find the optimal link weights before the online optimisation

process starts. These optimal link weights then will be used as the basis for the main

solver to adjust the network topologies online as time goes by to react to environmental

changes. It should be noted that in this group we only consider applications where online

optimisation does exist, i.e. beside the offl ine policies/rules found by EAs/meta-heuristics,

the solver still needs to optimise its solution to react to changes (like the example of (Wang,

Ho & Pavlou 2008) above). Applications where the offl ine rules found by EAs are used

online without any further optimisation, e.g. in (Huang & Wu 2008, Xiong 2008), will not

be considered.

3.3 Coverage and Gaps in current EDO academic research

In this section I will discuss some findings, which show that current academic research has not yet

covered all common types of DOPs and that there are many real-world DOPs where the current

assumptions do not hold. The section will also identify the type of problem and characteristics

62



3. Identifying the gaps 3.3. Coverage and Gaps in current EDO academic research

Distribution of continuous applications solved
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Figure 3.4: Distribution of continuous applications that are solved by EAs/metaheuristics.
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Figure 3.5: Percentage of applications solved by EAs and other meta-heuristics in the combina-
torial domain

that have been covered by existing EDO academic research.

3.3.1 Continuous constrained problems

The first important class of problems that I found very common in the survey, but is not covered

by most current EDO academic research, is the class of continuous constrained problems.

As can be seen in Figures 3.7 and 3.8, a majority of the surveyed applications are constrained

problems (73% in the combinatorial domain and 74% in the continuous domain). The survey

results in these two figures also show that a large number of constrained applications have

dynamic constraints.
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Percentage of applications solved by EAs and
other metaheuristics in continuous domain
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Figure 3.6: Percentage of applications solved by EAs and other meta-heuristics in the continuous
domain

The type of continuous dynamic constrained problems, however, has almost not been studied

in EDO continuous benchmark problems, as already reviewed in Section 2.3. Although almost

all existing general-purpose EDO academic benchmark problems are unconstrained and domain

constraint problems according to the literature review in Section 2.3, the survey results in Figures

3.7 and 3.8 show that, this type of problem occupies only 15% of the continuous surveyed

applications and 0% of the combinatorial applications.

This lack of attention of current EDO research on continuous constrained problems can be

considered an important research gap, which might question the usefulness of existing continuous

dynamic optimisation algorithms in solving dynamic constrained problems, as they have been

designed and tested in the unconstrained/domain constraint cases only. This issue will be further

discussed at the end of this chapter and will be investigated further later in this thesis.

3.3.2 Time-linkage problems

Another important class of problems, which is very common in the surveyed real-world applica-

tions but has not received enough attention from current EDO academic research, is the class

of time-linkage problems. As already mentioned in Subsection 2.1, a DOP is a time-linkage

problem if its future dynamics depend on the decision made earlier by the solvers. In other

words, a time-linkage problem is an online control problem where the algorithm is the actual

controller to control the future behaviour of the system. Our survey results (Figures 3.9 and

3.10) show that a large number of the problems in the surveyed references were mentioned by
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Figure 3.8: Percentage of constrained continuous problems

the authors as having the time-linkage properties (45% in the combinatorial domain, and 81%

in the continuous domain).

Despite the popularity of time-linkage problems (as illustrated by the large number of appli-

cations found in our surveys - Figures 3.9 and 3.10), as mentioned in Subsections 2.1 and 2.3 this

type of problem still has not attracted much attention from the EDO academic research com-

munity. Only very few recent studies proposed using EA to solve time-linkage problems (Branke

& Mattfeld 2005, Bosman 2005, Bosman & Poutré 2007, Nguyen & Yao 2009b). There are also

only few test problems with the time-linkage property in EA research (Ursem et al. 2002, Branke
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& Mattfeld 2005, Bosman 2005, Bosman & Poutré 2007, Nguyen & Yao 2009b). This lack of at-

tention creates an important gap, which should be addressed if we want to apply EAs effectively

to solving real-world DOPs.

From the practical side, the time-linkage property has also not been studied suffi ciently in

evolutionary research. In the survey we found an interesting fact that although some references

using EAs/meta-heuristics do mention the time-linkage property when solving real-world prob-

lems online (Kanoh 2007, Atkin et al. 2008, Moser & Hendtlass 2007b, Ngo et al. 2006, Wang, Ho

& Pavlou 2008, Akanle & Zhang 2008, Jin et al. 2007, Rocha et al. 2005, Morimoto et al. 2007,

Wang, Tao & Cho 2008, Sonntag et al. 2008), none of them equip their EAs with the ability to

handle the time-linkage property online. In these references, the time-linkage property is either

ignored, e.g. in (Jin et al. 2007, Kanoh 2007, Ngo et al. 2006, Moser & Hendtlass 2007b), or han-

dled using a separate component/heuristics, e.g. in (Atkin et al. 2008, Akanle & Zhang 2008),

or handled by EAs in an offl ine way, e.g. in (Wang, Ho & Pavlou 2008, Sonntag et al. 2008).

The fact that all EA approaches from our surveyed real-world references do not handle the

time-linkage property online demonstrates that applying EAs to solving real-world DOPs is still

a challenge for the community.

Percentage of
timelinkage combinatorial problems

Non time
linkage

0%

No info
55%

Time
linkage

45%

Figure 3.9: Percentage of time-linkage combinatorial problems

3.3.3 Optimisation goals

One of the possible gaps that I found between the current EDO research and the surveyed real-

world DOPs is that some optimisation goals found in real-world problems might not entirely be
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covered by academic EDO research.

Our survey shows that real-world DOPs can have many different optimisation goals:

• Optimality : Find the solutions with the best objective values

• Quick recovery : Find a decent solution as quick as possible or before a certain deadline.

Because real-world DOPs are solved in real-time, this is an important goal for many

different types of applications where there is a restriction in the amount of time that the

solvers can use to produce a solution. It should be noted that although time restrictions

have already been deployed in most current academic benchmark problems in the form of

change frequency, this is not always the same as the deadlines to produce a good solution

required in many real-world applications because such deadlines may occur before the next

change. For example, for the airline schedule recover problem (Liu et al. 2007), the faster

the algorithm to provide a new schedule, the more preferred it is regardless of the frequency

of change; for the supply-chain configuration problem (Akanle & Zhang 2008), customer

orders need to be complete before a given deadline regardless of when will the next change

occurs. Many other examples can be found in Tables 1, 2, 3, 4 and 5 in the Appendix

(page 246). To capture this optimisation goal benchmark problems might need a deadline

parameter in addition to the change-frequency parameter.

• Specification/requirement satisfaction: Find the solution s (tnow) so that future solutions

s (tnow + i) ⊆ S (tnow + i) ∀i = 1 : N . This is a broad class of optimisation goals, of
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which some can be encapsulated in the constraints of each static instance of the DOPs

under certain circumstances. However, as will be discussed later it is not always possible

to incorporate this type of optimisation goals as constraints of DOPs’ static instances.

Common examples of specification/requirement satisfaction goals are:

—Previous-solution displacement restriction : Find a new solution that is not much

different from the old one from the previous time step. For example, in the aircraft

taking-off/landing scheduling problems (Atkin et al. 2008, Bianco et al. 2006, Moser

& Hendtlass 2007b, Wilkins et al. 2008), whenever an environmental change occurs

and it is necessary to re-schedule the orders of aircrafts, the new schedule needs to

be as close to the previous one as possible to minimise disruptions to the operations

of other aircrafts. This goal is particularly common in combinatorial problems in the

field of scheduling and routing. This is usually a secondary goal and is used alongside

with the optimality goal.

—Reference-solution displacement restriction : as time goes by, find dynamic solutions

so that the actual trajectory of solutions is not much different from a given reference

trajectory. This goal is particularly common in control problems where a reference

trajectory of solutions has been provided offl ine based on simulation, and the task of

the online controller is to provide control decisions in real-time so that the system

can follow the reference trajectory as closely as possible. For example, in the problem

of controlling an electric ship power system (Mitra & Venayagamoorthy 2008), the

solver needs to keep finding optimal solutions (control decisions) as time goes by to

regulate the system’s bus voltage to a pre-defined voltage value.

—Reaching a specific target : Online solutions need to be provided at each time step

so that eventually the system will reach a specific target. This goal is common in

path-finding problems where the task is to accumulatively create a route in real-

time so that the route can finally reach a given destination (e.g. the robot planning

problem (Mills-Tettey et al. 2008) or the real-time heuristic-search problem in AI

games (Bulitko et al. 2007)). The goal is also common in dynamical systems (e.g.

many chemical processes listed in Table 5 (page 263)) where a specified state is given

as the target.
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—Ensuring that future solutions are within certain bounds: Online solutions need to be

calculated at each time step in a special way so that they will NOT lead to future

situations where all possible solutions are beyond certain bounds. For example, in

the problem of controlling the vehicle speed of a Silverstone F1 racing car (Velenis &

Tsiotras 2008), the solver needs to choose the appropriate solutions (control variables)

so that (i) the F1 velocity will not exceed a "critical value" at any point in time, (ii)

at the end of the current planning horizon the vehicle is guaranteed to come to a

complete stop, and (iii) in case an obstacle exists after the current planning horizon,

the vehicle can follow an "escape trajectory" to avoid collision. Other examples can

be found in many control problems where the stability of the systems need to be

maintained and in scheduling problems where the scheduler needs to make sure that

the current schedule will not lead to future schedules where some of the tasks are

infeasible to implement (see Tables 1, 2, 3, 4 and 5, page 246, for details). Usually

this goal is used as a secondary goal alongside with another goal.

• Combination of different goals. In many real-world DOPs there might be more than one

optimisation goal. Our survey results (Figure 3.11) show that at least 65% of the surveyed

applications have more than one goal.

Figure 3.12 shows the high variety of different optimisation goals and the distribution of

the goals in the surveyed applications. As can be seen in the figure, optimisation goals such

as optimality, quick recovery, displacement restriction, specification satisfaction etc. are all

important and they exist in a significant number of surveyed applications (Details of problems

with the above optimisation goals can be found in the column "Optimisation goal" of Tables 1,

2, 3, 4 and 5 , page 246).

Despite this high variety of optimisation goals in real-world DOPs, it is unclear if current

EDO academic research has covered all these goals. It seems that currently the main focus

of EDO research is only on finding the optimum solutions/ optimum trajectory, which might

not entirely reflect the aforementioned goals except the goal optimality and to some extent the

goal quick recovery. For example, as already discussed in Section 2.2 most existing performance

measures only evaluate the performance of the algorithm based on the fitness values of the

solutions without considering how different the new solution is from the previous one; if there is
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Figure 3.12: Distribution of different optimisation goals in the surveyed applications

any restriction/requirement for the future objective values; or whether the algorithm has met the

deadline and how good is the performance before the deadline. Most current EDO benchmark

problems, as reviewed in Section 2.3, also do not have any specification/requirements to support

the goal Specification/requirement satisfaction and do not have any specific deadline except the

change frequency to support the goal quick recovery.

One might argue that the goal quick recovery can be covered by some of the existing EDO
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performance measures, for example the reactivity measures (Weicker 2003), which is aimed

at evaluating the ability of algorithms to react quickly to changes and hence to some extent

relates to the quick recovery optimisation goal that we have discussed above. However, even

this measure might not be able to fully evaluate the performance of algorithms in satisfying

the goal of quick adaptation in real-world problems. Firstly, this is because the measure is

based on the assumption that there must be a drop in performance after a change, which might

not be true in real-world situations. Secondly, the measure only evaluates how long it takes

for an algorithm to recover to a certain level from a performance drop after change, while in

many real-world situations that we surveyed it is required to evaluate how well the algorithms

can adapt before a certain deadline. For this type of optimisation goal, the commonly used

modified offl ine error/performance measure (Branke 2001b, Branke & Schmeck 2003) or the

best-of-generation (Yang & Yao 2003) measure might still be useful, but it might be necessary

to modify the measure by adding some deadline parameters, which are not necessarily the same

as the frequency of changes.

This lack of focus on other optimisation goals in EDO research might create a gap between

academic research and real-world applications because it would be diffi cult to evaluate whether

existing academic DO methods can satisfy other optimisation goals beside the goal optimality.

Of course in certain cases it might be possible to integrate the other optimisation goals into

the objective/fitness function or as some type of constraints, and hence the problem can be

solved with a single goal: optimality. However, such situations have also not been captured in

existing benchmark problems and performance measures as shown in the review in Chapter 2.

In addition, it might not always be possible to integrate multiple goals into the objective/fitness

function, as will be discussed below.

The gaps between academic research and real-world applications in optimisation goals exist

not only in the way academic performance measures/benchmark problems are proposed, but also

in the way EAs are designed. Currently most dynamic optimisation EAs are designed to work

well with the current measures/benchmark problems, i.e. to find the best objective values. Such

design approaches, however, might not work well to entirely satisfy the other optimisation goals

in real-world problems. For example, the best solution an algorithm achieves after a change to

meet the optimality goal might be totally different from the solution found before change. In

this case the displacement restriction goal would not be achieved.
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The need to fill the gaps in dealing with such optimisation goals as displacement restriction

and specification satisfaction is even more important in solving time-linkage problems. The

detailed survey results in Tables 1, 2, 3, 4 and 5 show that these optimisation goals are very

common in time-linkage problems. It is also much more challenging to satisfy these two goals

in the time-linkage case. In the non-time-linkage case these two goals above can be integrated

into the objective function as constraints and algorithms only need to take into account the

constrained objective value at the current time step to find a satisfiable solution. In the time-

linkage case, however, it is much harder because algorithms need to not only calculate the current

objective value but also to predict the outcome of the system in the future given the current

solutions.

The points above show us that the lack of appropriate tools to satisfy the aforementioned

optimisation goals, at least as secondary optimisation goals or constraints beside optimality,

might be a challenge for EA research to solve real-world DOPs. It also shows the necessity to

pay more attention on designing new algorithms/performance measures to deal with these newly

identified goals.

3.3.4 Factors that change

Other real-world DOP characteristics that have not been fully captured in existing EDO re-

search are the factors that change. As shown in Subsection 2.3, most existing general-purpose

academic benchmark in current EDO research only represent changes in the objective function.

However, our survey results (Figure 3.13) show that in real-world DOPs there are also other

factors that change. They are changes in constraint functions, changes in number of variables,

changes in domain range, and switch-mode changes. Of these, constraint changes are the most

common, followed by changes in number of variables and switch-mode (the system switches from

one mode/dynamic model to another) changes. Changes in objective functions and constraints

are common in both the continuous and combinatorial references and occur in a wide range of

applications. Changes in number of variables (dimensional changes) are more common in the

combinatorial problems (account for two-third of the total number of applications with dimen-

sional changes) and also occur in a wide range of applications. In the continuous domain, changes

in number of variables occur mainly in the hybrid systems, which are also the applications where

all of the switch-mode and domain-range changes take place.
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The fact that beside objective-function changes, other type of changes are also common

suggest that more research should be focused on designing benchmark problems with changes

in constraints, number of variables and domain ranges. Benchmarks simulating hybrid systems

might also be necessary to solve this type of applications effectively.
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Figure 3.13: Distribution of typical changing factors in the surveyed applications

3.3.5 Problem information

In EDO academic research, beside the general assumption that there are some correlations

between the environment before and after a change, different research have different assumptions

about whether changes are visible; whether it is easy to detect changes; if changes are predictable

and if the changes are recurrent. However, as we have discussed in Chapter 2 there is not much

evidence of whether these assumptions are true in real-world scenarios, and if these assumptions

are true, how common they are in real-world applications. In this section I will investigate the

existence and popularity of these assumptions in the set of real-world applications we selected

for the survey.

Visibility and detectability of changes

The first two characteristics to be investigated are the visibility and detectability of changes

from the perspective of the optimisation algorithms. The visibility and detectability of changes

are important factors which determine the performance of an algorithm if this algorithm is

reactive, i.e. if it relies on change detection to respond to changes. For example, algorithms

following the diversity-introducing and memory-introducing strategies as reviewed in Subsection
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2.1 will not be able to do well if a change is not visible or detectable. It should be noted that

the terms "visibility of changes" and "detectability of changes" that we use here are viewed

from the perspective of the optimisation algorithm only. They show whether the algorithm

is informed about a change in the fitness landscape and whether it is easy to detect changes

in the fitness landscape. These visibility and detectability of changes in fitness landscapes

might, or might not, relate to the actual visibility and detectability of real-world environmental

changes from the perspective of the real-world system. For example, from the perspective of the

solar powered rover robot (the real-world system) in (Mills-Tettey et al. 2008), changes in the

real-world dynamic environment (unexpected obstacles in the pre-planned path) are not known

(invisible) and hence the robot needs to detect those changes using its sensors. However, from

the perspective of the optimisation algorithm (the built-in navigator software), which is a part

of the robot system, corresponding changes in the fitness landscape are known and hence there

is no need to detect, because information about external environmental changes were transferred

directly from the sensors to the fitness landscape of software.

Regarding to these two characteristics, currently in EDO research the main assumption

adopted by many existing EDO academic research is that changes either are known (visible)

or are easy to be detected by using just one or a few or a fixed set of detectors. As a result,

many current reactive dynamic optimisation algorithms (algorithms that only respond when

they knows a change occurs) are designed without a change detection scheme or with a simple

change detection scheme which monitors the changes in values of average best-performance e.g.

(Cobb 1990, Vavak et al. 1997a), or some members of the population e.g. (Branke 1999, Hu &

Eberhart 2002) or members of the memory set e.g. (Yang 2005a, Simões & Costa 2007), or a

fixed point e.g. (Carlisle & Dozier 2000) or of a random solution e.g. (Singh et al. 2009). Only

very few studies (Morrison 2004, Richter 2009) take into account the situations where it might

not be possible to detect changes using a few detectors because changes might occur only in a

part of the search space.

Despite its popularity, there is no clear explanation of why the assumption that changes

can be easily detected is accepted in most EDO academic research and whether the assumption

is true in real-world situations. One of the possible reasons might be that this assumption is

true in almost all existing artificial benchmark problems, except a few benchmark sets proposed

recently (Nguyen & Yao 2009a, Richter 2009, Richter 2010).
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To verify if the considered assumption is really true in real-world situations, at least in the

surveyed set of applications, in this subsection I will analyse the visibility and detectability of

changes in the fitness landscapes of the surveyed applications. It is hoped that the analysis will

give a better justification on the use of the assumption above. It is also hoped that the analysis

will provide us with a better understanding of how changes are handled in real-world applications

and whether there is any type of changes not covered by the current assumption. Results of my

analysis on the visibility of changes in the surveyed applications are shown in Figure 3.14, and

results of my analysis on the detectability of changes in these applications are shown in Figure

3.15. Details of the visibility and detectability of each of the surveyed applications can be found

in Tables 1, 2, 3, 4 and 5 in the Appendix.
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Figure 3.14: The visibility of changes (from the perspective of optimisation algorithms) in the
surveyed applications

Figure 3.14 shows that for a majority of the surveyed applications, it is indeed not necessary

to detect changes constantly. In many cases (16/56 applications) changes are known by the

optimisation algorithms. In many other cases (25/56 applications), the optimisation process are

divided into time-windows where during each time-window the environment is considered static.

Due to that, in time-window approaches the dynamic problems are transformed into a sequence

of static problems, each starts at the beginning of a time-window and hence changes detection

are also not needed.

However, in the cases where it is necessary for the optimisation algorithm to detect changes,

75



3. Identifying the gaps 3.3. Coverage and Gaps in current EDO academic research

Detectability of changes in the search landsacpe

0

5

10

15

20

25

Changes may occur
in a part of the

search space but
the optimiser does
not need to detect

Changes may occur
in a part of the

search space and
the optimiser needs

to detect

Changes were
detected using just

one detector

Not enough
information or Not

applicable

N
um

be
ro

fa
pp

lic
at

io
ns

Figure 3.15: The detectability of changes in the search landscape (from the perspective of
optimisation algorithms) in the surveyed applications

Figure 3.15 shows that it is not always possible to detect changes using just one or a few detectors.

Among nine applications where optimisation algorithms need to detect changes, only two use

one single detector for change detection. The data from Figure 3.15 suggests that the reason

for many applications not to use only one single detector might be that in many applications

changes might occur in only a part of the search space. As can be seen in Figure 3.15 there

are 21 applications where changes might occur in a part of the search space, of which five have

changes that the optimisation algorithms need to detect.

The survey results suggest that although in a majority of cases a simple change detection

method is suffi cient, for certain applications it might be necessary to have a sophisticated change

detection method to detect changes effectively. Because complicated change detection method

might also add unnecessary cost to the algorithm when it is used to solve problems where changes

are known (there are many problems like this in the survey), in designing future algorithms it

would be better to separate the change detection mechanism from the search mechanism so

that in case changes are visible the algorithms do not need to spend any unnecessary effort on

detecting changes.
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Predictability of changes

The third characteristic to be investigated in this subsection is the predictability of changes.

This characteristics has not been studied well in EDO academic research. As can be seen in the

review in Section 2.3, many current academic research with artificial benchmarks either assume

that changes are not predictable or do not take into account the predictability of changes in their

default settings. There are only a few studies (Bosman 2005, Hatzakis & Wallace 2006, Rossi

et al. 2008, Zhou et al. 2007, Simões & Costa 2009) on the predictability of changes in EDO

academic problems. However, the survey (Figure 3.16) shows that a large number of applications

(61%) have at least a part of their changes predictable. This large proportion of predictable

changes suggest that the predictability property should be taken into account when designing

dynamic optimisation algorithms and benchmark problems. Because many of the predictable

changes in the surveyed applications are problem-specific, it would also be useful to design

predictable changes that are tailored to specific applications.
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Figure 3.16: The predictability of changes in the surveyed applications

Recurrence of changes

Another important characteristic, which is believed to be common in DOPs, is the recurrence

of changes. The assumption that changes might some how re-occur in dynamic environments is

the key point leading to the development of algorithms following the memory-based approach,
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one of the major approaches in EDO, and the development of some prediction methods, e.g.

(Simões & Costa 2009) to anticipate the recurrence of changes. Because of that, it is important

to investigate how common this characteristic is in real-world applications. In the set of surveyed

application, the survey results (Figure 3.17) show that 25% of the applications have some kind

of recurrent/periodical/cyclic changes. It means that the use of memory might be suitable for

these types of problems and confirms the usefulness of memory-based approaches in solving

certain types of real-world applications.
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Figure 3.17: Percentage of applicatins with recurrent changes

3.3.6 The way problems are solved

When to solve a problem online

The survey provides interesting observations about the two types of situations where real-world

dynamic problems are solved online. First, problems are solved online when it is not possible to

provide a complete model to represent the dynamic of the system due to the lack of knowledge

about the system’s future behaviours (e.g. if there is any change in parameter values compared

to the designed values, of if there is any unexpected event etc.). Instead it is only possible to

model the current state of the system given the available knowledge and to provide an optimal

solution for this current state. In such case, it is necessary to solve the problem online as time

goes by, so that whenever the system changes its state, we can provide a new optimal solution for
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the newly changed state. This is the most common case that we found in real-world applications.

This situation correlates to the definition of Bosman (2007), which states that a DOP is said to

be online "if the dynamic optimization function cannot be evaluated for all future times t > tnow

and the dynamic optimization problem must therefore be solved as time goes by".

Second, problems are also solved online when there is a complete model to represent the

dynamic of the real-world system but it is either computationally expensive to solve the problem

offl ine given the complete model, or there is some rules/regulations that prevent the solver

from solving the problem offl ine. In such cases, the solver needs to solve the problem online,

either to save the computational cost, or to satisfy some regulations although theoretically given

enough time the problem can be solved offl ine. This situation is very common in virtual reality

applications where although complete information about the virtual environment are available,

the problems are still needed to be solved online for some reasons: first, revealing complete

environment information to optimisers (virtual agents in this case) is considered cheating in

virtual reality applications like commercial games (Bulitko et al. 2007); second, allowing virtual

agents to know the complete environment might lead them to do actions beyond the designed

ability of the roles they play (Dini et al. 2006); third, the optimisation problem with complete

information may become too complex and hence too computationally expensive to satisfy the

time constraint in real-time games (Orkin 2006). Another interesting example of problems

being solved online even when it is possible for them to be solved offl ine is the problem of

planning future farming strategies (Jin et al. 2007). In this case, although the complete model

to represent future dynamics can be theoretically created, the problem is solved online to study

how the dynamic environment affects the outcomes of different solutions.

When to re-use previous knowledge and when to restart

It has been shown that the knowledge re-using (tracking) approach, or specifically "somehow

use knowledge about the previous search space to advance the search after a change" (Jin &

Branke 2005), can be used to speed up optimisation in dynamic problems. The survey confirms

that the knowledge re-using approach is indeed very common in real-world DOPs (72% as shown

in Figure 3.18).

The survey also shows an interesting observation about the reason for knowledge re-using

to be chosen over restarting. Although in most academic evolutionary research on artificial
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Figure 3.18: Percentage of applications that adopt the tracking approach, compared to those
adopting the restarting approach.
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Figure 3.19: The reasons for the surveyed applications to use the tracking approach.

benchmark problems, knowledge re-using is chosen over restarting because the global optimum

after a change is closed to the global optimum or another local optimum before the change

(which is a property of most academic benchmark problems), the survey shows that this is not

the only reason for choosing the knowledge re-using approach. In fact, as can be seen in Figure

3.19, among all applications that follow the knowledge re-using approach, only 8.33% clearly

state that knowledge-reusing is chosen because it is hoped that the new global optimum is close
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to the old one. Other reasons for real-world practitioners to choose the knowledge re-using

approach over the restart approach (even when the restart approach may produce better quality

solutions as mentioned in (Araujo & Merelo 2007, Mertens et al. 2006)) are as follows (note that

one application can have more than one reasons):

1. Knowledge re-using is chosen because it helps producing new solutions more quickly:

16.67%

2. Knowledge re-using is chosen because there is a displacement restriction (new solution

needs to be similar to the old one): 27.08%

3. Knowledge re-using is chosen because previous knowledge can be used to learn dynamic

behaviours: 45.83%

Three reasons above correlate to my previous findings of the uncaptured optimisation goals

mentioned in Subsection 3.3.3. The popularity of these optimisation goals and the corresponding

reasons for re-using knowledge suggest that more attention might be needed in academic EDO

research to address this issue. Particularly, more benchmark problems and performance measures

should be developed to reflect the new optimisation goals and to evaluate the performance of

optimisation methods that re-use previous knowledge for other reasons than the possible close

distance between the old and the new global optimum.

Single-objective vs multi-objective

The final observation that I got from the survey is the more popularity of single-objective

approaches compared to multiple-objective approaches. Although a large number of applications

have more than one optimisation goals (as shown in Subsection 3.3.3), it is interesting to see

that only 11% of the applications are solved as multi-objective problems, compared to 73%

solved as single-objective problems. There might be different reasons for this, but as shown

in (Atkin et al. 2008), one interesting reason for single-objective approaches to be preferred is

that it simplifies users’tasks (they do not need to choose between multiple optimal solutions).

This might give algorithm designers some ideas of whether and how multi-objective approaches

should be used in practical applications. It should be noted that in our survey, we categorise

as single-objective applications those applications that combine multiple objectives into a single

one using aggregation methods e.g. (Morimoto et al. 2007, Atkin et al. 2008).
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Single vs Multiple Objectives

Multiple
objectives

11%

Not enough
information

or Not
applicable

16%

Single
objective

73%

Figure 3.20: Percentage of applications that adopt the single-objective approach, compared to
those adopting the multiple-objective approach.

3.4 Summary

The literature reviews in Chapter 2 have shown that current EDO academic research focuses on

certain classes of DOPs, which are assumed to have some special characteristics. The literature

reviews also showed that it however remains a question of whether these special characteris-

tics fully represent real-world applications, and if they do not, what are the other real-world

characteristics that have not been captured in EDO academic research.

This chapter contributes to answering the above question by comprehensively reviewing

a large set of recent real-world dynamic optimisation references. Based on the results of this

review, which has never been done before, I have investigated for the first time the links between

EDO academic research and real-world DOPs. First, I recognised the areas of applications where

the current EDO assumptions hold. Second, I pointed out certain gaps between academic EDO

research and real-world DOPs. These gaps include (a) common classes of real-world problems

that have not attracted much interest from the community and (b) common aspects in real-

world dynamic optimisation that have not been captured in the current assumptions of academic

EDO. Based on this review, I also discussed the necessity and possibility to extend current EDO

research to better reflect the characteristics of real-world problems and to solve real-world DOPs

more effectively.
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The contributions of this chapter can be summarised into three groups as follows:

1. Identifying the common types of real-world problems, the coverage (or the lack thereof)

of current EDO academic research on each type of problem, and providing suggestions

on how to close the gaps: Current studies in academic EDO do not cover all types of

common dynamic optimisation problems yet. The most common type of DOPs that current

academic research considers are unconstrained, non-time-linkage problems. However, this

type of problem occupies only a small part of the surveyed applications. I found that

there are two other types of problems that are very common in real-world applications but

received very little attention from the community:

(a) Continuous constrained problems: A major number of surveyed problems are con-

strained problems. However constrained problems have not been considered in the

majority of current continuous dynamic optimisation research.

(b) Time-linkage problems: A large number of surveyed problems are time-linkage prob-

lems. However there is very little research on this type of problem in EDO academic

research.

2. Identifying the representative characteristics of real-world DOPs, whether they have been

captured by EDO academic research and providing suggestions on how to close the gaps

(a) Optimisation goals: Although many of current EDO academic research works only

focus on one single optimisation goal: optimality, in the surveyed applications there

are many other common optimisation goals as quick recovery, previous-solution dis-

placement restriction, reference-solution displacement restriction, reaching a specific

target, ensuring that future solutions are in certain bounds, etc. In order to solve

real-world DOPs better, EDO research should take into account these optimisation

goals, at least as secondary goals or special types of constraints when designing per-

formance measures, benchmark problems and algorithms for solving certain types of

DOPs.

(b) Factors that change: Although most current EDO artificial benchmark problems have

only one changing factor: the (parameters of) objective function, the survey shows

that there are also other common types of changing factors: constraints, number of
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variables, domain ranges and switch-mode changes. The analysis in this chapter also

shows the distribution of each changing factor and the type of applications where the

changing factors are common.

(c) Problem information: The chapter also investigates the types of real-world DOP’s

information that can be used by the optimisation algorithm to advance the search.

These types of information include the visibility, detectability, predictability and re-

currence of changes. For each type of information we also analysed their properties,

their popularity, and whether the type of information has been studied in academic

research.

3. Identifying the ways real-world DOPs are solved, whether they are the same as in academic

research, and providing suggestions on how to close the gaps. The review and analysis was

focused on three aspects

(a) When to solve the problem online,

(b) When to re-use previous knowledge, and why,

(c) The proportion of single-objective approaches compared to multi-objective approaches

Summarising, the review in this chapter shows that besides the characteristics and assump-

tions commonly used in EDO academic research, real-world DOPs also have other important

types of problems and problem characteristics that have not been studied extensively by the

EDO community. In order to solve real-world DOPs more effectively, it is necessary to take

these characteristics and problem types into account when designing new algorithms, perfor-

mance measures and benchmark problems.

3.5 The gaps to be studied in this thesis

The review and analysis in this chapter shows that there are many open topics and gaps in EDO

where further studies can be made to advance knowledge in the field. Within the scope of this

thesis, I would like to focus my study on two main topics: dynamic constrained optimisation

and time-linkage optimisation. As shown in the review of real-world applications, dynamic

constrained optimisation problems (DCOPs) and dynamic time-linkage problems (DTPs) are

the two most common types of problems among the surveyed applications, but they have not
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attracted much attention from the community. In order to make these important classes of

problems more accessible to the community, it is necessary to study the characteristics of the

problems, the suitability of EAs in solving them and developing new EA techniques. It is hoped

that my investigations on the characteristics of these two types of problems and my development

of new algorithms to solve these two types of problems will contribute to closing the related gaps

between academic research and real-world applications. The outcomes of the investigations

are new benchmark problems and measures to reflect the uncaptured characteristics, and new

algorithms to solve DCOPs and DTPs more effectively.

In addition, the reviews in this chapter and in Chapter 2 show that existing definitions of

DOPs might not be suffi cient to fully represent the characteristics of real-world DOPs. First,

with the identifications of the not-well-studied types of problems as DCOPs and DTPs, and

with the identifications of other changing factors as constraints, domain ranges, number of

variables, it becomes clear that existing definitions (briefly reviewed in Chapter 1) might not

be detailed enough to cover the newly identified problems and problem characteristics. Second,

as analysed in Chapter 1, most formal definitions of DOPs do not clearly distinguish between

a time-dependent problem and a DOP, which is a time-dependent problem that is solved in a

dynamic way. Third, existing definitions do not take into account the fact that in many DOPs,

the dynamic behaviours of the problem is influenced or decided by the optimisation algorithm,

and hence defining/describing a problem without considering the solver might not suffi ciently

reflect the dynamics of the problem. These three reasons motivate me to develop a new definition

framework to better represent DOPs. This definition framework also forms a part of this thesis.

Another related research that I have made during my PhD study to close the gap between

real-world DOPs and academic research is to develop new algorithms specifically for the situa-

tions where changes cannot be detected easily (this situation has been discussed in Subsection

3.3.5). A new algorithm with promising initial results (equal to the best results from state-of-

the-art methods) has been developed and described in (Nguyen 2008b, pp. 4-12).
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Chapter 4

A definition framework for DOPs

4.1 Research gaps and motivations

Although the importance of DOPs has been shown through their presence in a broad range of

real-world applications, due to the lack of research attention there are still many aspects that

we do not fully know about this class of problems. One of the remaining questions is how should

we define DOPs in detail to (i) distinguish DOPs from other types of time-dependent problems;

(ii) encapsulate the behaviours of the dynamics and the types of dynamics (e.g. time-linkage

vs non-time-linkage) in DOPs; (iii) encapsulate the changing factors (e.g. changes in objective

function, constraints, domain range, dimension); and (iv) separate the static factors from the

dynamic factors.

In Chapter 1, we have briefly discussed existing formal definitions for DOPs and cate-

gorised them into two types. The first type of definition defines a DOP as a sequence of

static problems linked up by some dynamic rules (Weicker 2000, Weicker 2003, Aragon &

Esquivel 2004, Rohlfshagen & Yao 2008, Rohlfshagen & Yao 2010). The second type of def-

initions defines a DOP as a problem that have time-dependent parameters in its mathematical

expression (Bäck 1998, Bosman 2007, Woldesenbet & Yen 2009, Yu et al. 2010). A description

of one such definition has also been given in Equation 1.1 (page 2, the definition of Bosman

(2007)).

My reviews in the previous chapters, especially in Chapter 3, however have shown that the

existing definitions of DOPs as cited above might not be detailed enough to fully represent the

common characteristics of DOPs because of the following reasons:
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1. Existing formal definitions do not distinguish DOPs from other time-dependent problems:

As discussed in Chapter 1, although in some general (and hence less formal) definitions

(Jin & Branke 2005, Morrison 2004, Branke 2001b) additional explanations are given to

properly restrict the scope of DOPs from other time-dependent problems, most existing

formal definitions of DOPs consider DOPs and time-dependent problems the same. In

fact these formal definitions do represent time-dependent problems rather than DOPs. To

avoid ambiguity and to define DOPs precisely, it is necessary to provide a formal definition

which properly and clearly define DOPs as time-dependent problems that are solved online

in a dynamic way.

2. Existing formal definitions might not be detailed enough to represent different changing

factors found in real-world applications: Both groups of existing formal definitions that

we mentioned above are not detailed enough to specify what are the changing factors in

DOPs. In the group of definitions where DOPs are defined as sequences of static problems,

there is no detailed specification of how a static problem can transform into another (as

in (Weicker 2000, Weicker 2003, Aragon & Esquivel 2004, Rohlfshagen & Yao 2008, Rohlf-

shagen & Yao 2010), or the specifications are unrealistic (e.g. there is no evidence that

the dynamic rules specified in (Weicker 2003) such as coordinate transformations, fit-

ness rescales and coordinate stretchings are representative in real-world applications). In

the group of definitions where DOPs are defined as problems that have time-dependent

parameters in their mathematical expression (Bäck 1998, Bosman 2007, Woldesenbet &

Yen 2009, Yu et al. 2010), the dynamics of the problem are just generally captured by

including an additional parameter t (the time) in the static expression of the objective

function (e.g. see Equation 1.1, page 2). Such a representation of dynamics might not be

detailed enough to identify what factors are changed, how frequent the changes are, and

what are the rules of changes.

3. Existing formal definitions might not be detailed enough to encapsulate the time-linkage

property of real-world applications: Although the time-linkage property is very common

in real-world problems (Subsection 3.3.2 shows that a majority of the surveyed problems

have this property), most existing definitions of DOPs in academic evolutionary research

do not consider this property. The only EC study where this property is described is the
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research of Bosman (Bosman 2005, Bosman 2007). However, even in the DOP definitions

in these references, the time-linkage feature is not explicitly expressed (see Equation 1.1,

page 2). Instead, that feature is encapsulated in the expression of fγ(t). It would be better

if the time-linkage property can be captured explicitly in the definition. In addition, none

of the existing definitions encapsulates the important property of dynamic time-linkage

problems (DTPs): algorithm-dependent. We consider DTPs algorithm-dependent because

the structure of a DTP in the future may depend on the current value of x(t), which in

turn depends on the algorithm used to solve the problem. Because of this property, we

believe that in order to define a DTP in an unambiguous way, the algorithm used to solve

a problem instance should be considered a part of the problem instance itself.

To contribute in closing the gaps above, in this chapter I will propose a new definition

framework which describes DOPs in a more detailed level. It is hope that the framework will

help defining and characterising DOPs better and can be used as a basis for future theoretical

works. The definition framework can also help generating benchmark problems that are able to

capture the characteristics of DOPs, as I will describe in the next chapter. Within this chapter I

will focus on the single-objective case only. Details of the definition framework will be described

below.

4.2 A definition framework for DOPs

Definition 4.1 (Full-description form) Given a finite set of functions F = {f1 (x) , ..., fn (x)};

a full-description form of F is a tuple

〈
f̂γ (x) , {c1, ..., cn}

〉

where f̂γ (x) is a mathematical expression with its set of parameters γ ∈ Rm, and {c1, ..., cn} , ci ∈

Rm is a set of vectors; so that:

f̂γ (x)
γ=c1→ f1 (x) (4.2)

... (4.3)

f̂γ (x)
γ=cn→ fn (x)
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Each function fi (x) , i = 1 : n ∈ N+ is called an instance of the full-description form at γ = ci.

From now on we will refer to the full-description form
〈
f̂γ (x) , {c1, ..., cn}

〉
as f̂ .

Example 4.4 The combination of the expression f̂ = ax+ b and the following set of parameter

values for a and b: {{a = 1, b = 0} , {a = 0, b = 1} , {a = 1, b = 1}} is the full-description form

of the following set of functions: {f1 = x; f2 = 1; f3 = x+ 1} .

The implication of a full-description form is that it can be used to represent different func-

tions at different times by changing the parameters. It should be noted that, however, a

full-description form is not unique: one set of functions can be represetend by multiple full-

description forms and one full-description form can be used to represent mulitple set of functions.

What is unique is a combination of (a) a full-description form f̂ ; (b) a given set of functions

{f1 (x) , ..., fn (x)} represented by f̂ ; and (c) the way the parameters of f̂ can be changed to

tranform fi to fj ∀i, j = 1 : n. In real-world problems, changes in the parameters are usually

controlled by some specific time-dependent rules or functions. For example, in dynamical sys-

tems changes of parameters can be represented by a linear, chaotic or other non-linear equations

of the time variable t. The dynamic rules that govern how the parameters of a full-description

form change can be defined mathematically as follows.

Definition 4.5 (Dynamic driver) Given a tuple
〈
f̂ , γt, t

〉
where t is a time variable, f̂ is a

full-description form of the set of functions F = {f1 (x) , ..., fn (x)} with respect to the set of

m-element vectors {c1, ..., cn} , ci ∈ Rm, and γt ∈ Rm is an m-element vector containing all m

parameters of f̂ at the time t;

we call a mapping D (γt, t) : Rm × N+ −→ Rm a dynamic driver of f̂ if

γt+1 = D (γt, t) ∈ {c1, ..., cn} ∀t ∈ N+ (4.6)

and

γt+1 is used as the set of parameters of f̂ at the time t+ 1

Definition 4.7 (Time-dependent problem) Given a tuple
〈
f̂ , D (γt, t)

〉
where t is a time

variable, f̂ is a full-description form of the set of functions F = {f1 (x) , ..., fn (x)} with respect

to the set of m-element vectors {c1, ..., cn} , ci ∈ Rm, γt ∈ Rm is the parameter-vector of f̂ at
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the time t, and D (γt, t) is a dynamic driver of f̂ ;

we call f̂D(γt) =
〈
f̂ , D (γt, t)

〉
a time-dependent problem with respect to the time variable t.

In this problem changes can be represented as changes in the parameter space and are controlled

by the dynamic driver D (γt, t).

The inclusion of dynamic drivers and full-description form in the above definition distin-

guishes the definition from existing definitions of time-dependent problems. As discussed ear-

lier, many existing definitions represent a time-dependent problem as a sequence of multiple

static problems. These definitions might be ambiguous because there might be multiple ways

to transfrom one static problem to another and hence it is not clear what type of dynamic the

considered time-dependent problem has. The dynamic driver in Definition 4.7 represents the

actual dynamic of the problem and hence it helps distinguish one time-dependent problem from

another.

In some existing definitions (Rohlfshagen & Yao 2008, Bosman 2007), it has already been

implied that changes in time-dependent problems can be represented as changes in the parameter

space. In this chapter this concept will be formulated in a more detailed level and will be

explicitly defined: most common types of changes in time-dependent problems can be represented

as changes in the parameter space if we can formulate the problem in a general enough full-

description form. This is true even in extreme cases where there is no correlation between the

functions before and after a change. For example, a function-switching change from f (x) at

t = 0 to g (x) at t > 1, t ∈ N+ can be expressed as f̂ (x) = a (t) f (x) + b (t) g(x) where a (t) and

b (t) are two time-dependent parameters given by

 a (t) = 1 and b (t) = 0 if t = 0

a (t) = 0 and b (t) = 1 otherwise

Dimensional changes, as found in some real-world systems, can also be represented as changes

in the parameter given that the maximum number of variables is taken into account in the full-

description form. For example, the function
∑n

i=1 x
2
i with dimension n varies from 1 to 2 can

be represented as the full-description form
∑2

i=1 bi (t)x
2
i with bi (t) ∈ {0, 1} depending on t.

Definition 4.8 (Time unit) When a time-dependent problem is being solved, a time unit, or a

unit for measuring time periods in the problem, represents the time durations needed to complete
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one function evaluation of that problem.1 The number of evaluations (or time units) that have

been evaluated so far since we started solving the problem is measured by the variable τ ∈ N+.

Definition 4.9 (Change step and frequency of change) When a time-dependent problem

is being solved, a change step represents the moment when the problem changes. The number of

change steps that have occured so far in a time-dependent problem is measured by the variable

t ∈ N+. Obviously t is a time-dependent function of τ - the number of evaluations made so

far since we started solving the problem; t (τ) : N+ −→ N+ . Its dynamic is controlled by a

problem-specific time-based dynamic driver:

t (τ + 1) = DT (t (τ) , τ) (4.10)

where DT (t (τ) , τ) is the problem-specific time-based dynamic driver. It decides the frequency

of change of the problem and can be described as follows:

 DT (t (τ) , τ) = t (τ) + 1 when a change occurs

DT (t (τ) , τ) = t (τ) otherwise
(4.11)

Definition 4.12 (Optimisation algorithms and dynamic solutions) Given a time-dependent

problem f̂D(γt) =
〈
f̂ , D (γt, t)

〉
at the change step t (see Definition 4.7) and a set Pt of kt solu-

tions x1, ...,xkt ∈ St where St ⊆ Rd is the search space2,

an optimisation algorithm G to solve f̂D(γt) can be seen as a mapping

Gt : Rd×kt → Rd×kt+1 (4.13)

capable of producing a solution set Pt+1 of kt+1 optimised solutions xG1 , ...,x
G
kt+1

at the next

change step t+ 1:

Pt+1 = Gt (Pt) . (4.14)

Generally, at a change step te ∈ N+ the set of dynamic solutions X
G[tb,te]
ft

that we get by applying

an algorithm G to solve f̂D(γt) with a given initial population Ptb−1 during the period
[
tb, te

]
,

1As mentioned in (Bäck 1998) and (Rohlfshagen & Yao 2008), from the perspective of optimisation algorithms
time is descrete and the smallest time unit is one function evaluation.

2Here we are considering search spaces ⊆ Rd. However the definition can be generalized for other non-numerical
encoding algorithms by replacing Rd with the appropriate encoding space.
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tb > 1 is given by:

X
G[tb,te]
ft

=
te⋃
t=tb

Pt =
te⋃
t=tb

Gt (Pt−1) . (4.15)

In real-world time-dependent problems, some time-dependent rules that change the problems’

parameters may have the time-linkage feature, i.e. they take solutions found by the algorithm

up to the current time step as their parameters. In such cases, the time-linkage dynamic rules

can be defined mathematically as follows.

Definition 4.16 (Time-linkage dynamic driver) Given a tuple
〈
f̂ , γt, t,X

G[1,t]

f̂

〉
where t is

a time variable, f̂ is a full-description form of the set of functions F = {f1 (x) , ..., fn (x)} with

respect to the set of m-element vectors {c1, ..., cn} , ci ∈ Rm, γt ∈ Rm is an m-element vector

containing all m parameters of f̂ at the time t, ; and X
G[1,t]

f̂
is a set of k d-dimensional solutions

achieved by applying an algorithm G to solve f̂ during the period [1, t];

we call a mapping D
(
γt, X

G[1,t]

f̂
, t
)
: Rm×Rd×k ×N+ −→ Rm a time-linkage dynamic driver of

f̂ if

γt+1 = D
(
γt, X

G[1,t]

f̂
, t
)
∈ {c1, ..., cn} ∀t ∈ N+ (4.17)

and

γt+1 is used as the set of parameters of f̂ at the time t+ 1

There are cases where X
G[1,t]

f̂
does not have any influence on the future of f̂ . In these cases

D
(
γt, X

G[1,t]

f̂
, t
)
becomes a regular dynamic driver with no time-linkage feature.

Definition 4.18 (Dynamic optimisation problem) Given a tuple〈
f̂ , Ĉ,DP , DD, DT , G

〉
, a dynamic optimisation problem in the period

[
1, τ end

]
function eval-

uations, τ end ∈ N+ can be defined as

optimise


τend∑
τ=1

f̂
γ

(
tτ ,X

G[1,t]

f̂

) (xt)
 (4.19)
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subject to Ĉi=1:k∈N
+

γ

(
tτ ,X

G[1,t]

f̂

) (xt, tτ ) 6 0; and l
(
tτ , X

G[1,t]

f̂

)
6 x 6 u

(
tτ , X

G[1,t]

f̂

)
where

f̂ is the full-description form of the objective function

Ĉ1...Ĉk are the full-description forms of k dynamic constraints3

DP is the dynamic driver for parameters in objective and constraint (see below)

DD is the dynamic driver for domain constraints (see below)

DT is the dynamic driver for times and frequency of changes(Equation 4.11)

G is the algorithm used to solve the problem

τ ∈
[
1, τ end

]
∩ N is the number of function evaluations done so far

tτ , or t (τ) ∈ N+ is the current change step; t (τ) is controlled by DT (Equation 4.11)

X
G[1,t]

f̂
is the set of solutions achieved by applying the algorithm G to solve f̂ during [1, t]

γtτ ∈ Rp is the time-dependant parameters of f̂ and Ĉi; γtτ+1 = DP

(
γtτ , X

G[1,t]

f̂
, t
)

l (tτ ) ,u (tτ ) ∈ Rn are domain constraints;
{ l(tτ+1)=DD(l(tτ ),XG[1,t]

f̂
,tτ

)
u(tτ+1)=DD

(
u(tτ ),X

G[1,t]

f̂
,tτ

)

�

The new definition brings us some advantages. First, with the introduction of the change

step, the optimisation algorithm and the dynamic solutions produced by the algorithm at each

change step, the definition clearly defines DOPs as time-dependent problems that are solved

online in a dynamic way, and hence distinguishes DOPs from other time-dependent problems.

Second, we can now classify DOPs based on three distinguished components: the full-description

forms, the dynamic drivers, and the algorithm. This separation facilitates us in characterising

DOPs and evaluating the impact of each components on the diffi culty of the problems. Third,

the definition supports an important feature of dynamic time-linkage problems that has not

been fully considered before: algorithm-dependent. Fourth, the definition encapsulates different

aspects of DOPs such as dynamic rules, change frequencies, changes in constraints, changes in

domain range, changes in objective functions in details.

3 These also include equality constraints because any equality constraint c(x) = 0 can be transformed into an
inequality |c(x)| − ε 6 0 with a small value ε.
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4.3 Summary of contributions

The contribution of this chapter is to provide a new definition framework, which is expected

to help to close some gaps that existing formal definitions of DOPs have not addressed. The

contributions can be categories as follows:

1. Distinguishing DOPs from other time-dependent problems.

2. Taking into account the algorithm-dependence property.

3. Covering many aspects of a DOP that has not been considered in details in previous

DOP definitions: time unit, change step, frequency of changes, changes in constraints

and changes in domain range.

4. Representing DOPs based on three distinguished components: the full-description forms,

the dynamic drivers, and the algorithm to make it easier to study the behaviour of DOPs.

The idea of separating the dynamic drivers from the static description forms will also help

in generating DOP benchmarks from existing well-studied static benchmarks. In the next

chapter, we will use this principle to design a set of benchmark problems for dynamic

constrained optimisation. This principle was also used to generate the dynamics for the

dynamic benchmark problems in the CEC’2009 Competition on Dynamic Optimization

(Li et al. 2008).
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Chapter 5

Analysing the difficulties of

existing dynamic optimisation and

constraint handling algorithms in

solving DCOPs

The research in this chapter aims to answer some open questions about the characteristics,

diffi culty and solution methods of a very common class of problems - dynamic constrained op-

timisation problems (DCOPs). DCOPs are constrained optimisation problems that have two

properties: First, the objective functions, the constraints, or both, may change over time, and

second, the changes are taken into account in the optimisation process1. The review in Chapter

3 has shown that a majority of the surveyed real-world dynamic problems are DCOPs. How-

ever, there are few studies on continuous dynamic constrained optimisation (DCO). Specifically,

there is little research on whether current numerical dynamic optimisation (DO) algorithms and

numerical constraint handling (CH) algorithms would work well in DCOPs. There is also no

numerical dynamic constrained benchmark problem that reflects the common characteristics

of DCOPs. Existing studies in continuous DO only focus on the unconstrained or domain con-

straint dynamic cases (which in this thesis I regard both as "unconstrained" problems). Likewise,

existing research in CH only focuses on the stationary constrained problems.

1This definition is derived from the (more general) definition of dynamic optimisation problems in (Jin &
Branke 2005, section V).
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5. Analysing DCOPs

This lack of attention on DCOPs in the continuous domain raises some important research

questions. First, what are the essential characteristics of DCOPs? Second, how well would

existing DO and CH strategies perform in DCOPs if most of them are designed for and tested

in either unconstrained dynamic problems or stationary constrained problems only? And why

do they work well or not well? Third, how can we evaluate if an algorithm works well or not

in DCOPs? And fourth, what are the requirements for a "good" algorithm to effectively solve

DCOPs?

As a large number of real-world applications are DCOPs, I believe that finding the answers

to the questions above is essential. This is because such answers would help us to have more

understanding about the practical issues of the problems and to solve this class of problems

more effectively.

This chapter contributes to the task of finding such answers. First, in section 5.1, I will

identify the special characteristics of DCOPs from real-world references. I will also discuss how

these characteristics make DCOPs different from unconstrained dynamic optimisation problems

(DOPs). Then in Section 5.2, I will firstly review related literature about continuous DCO

benchmark problems, and identify the gaps between them and common DCOPs. Then I will

propose a new method to generate general dynamic benchmark problems. That method will

then be used to introduce a new set of DCO benchmark problems, which are able to represent

the characteristics identified in section 5.1. In the next section (Section 5.3), I will investigate the

possibility of solving DCOPs using some representative DO strategies. Experimental analyses

about the strengths and weaknesses of existing DO strategies, and the effect of the mentioned

characteristics on each strategy will also be undertaken. Based on the experimental results, I will

then suggest a list of requirements that a DO algorithm should meet to solve DCOPs effectively.

In section 5.4, similar literature reviews and experimental analyses about the possibility of

solving DCOPs will again be carried out, but now under the perspective of existing CH strategies.

Similar to the previous section, in this section I will also suggest a list of possible requirements

that a CH algorithm should meet to solve DCOPs effectively. The chapter finishes with Section

5.5, where some conclusions and future directions will be discussed.
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5. Analysing DCOPs 5.1. The common characteristics of dynamic constrained problems

5.1 The common characteristics of dynamic constrained prob-

lems

The presence of constraints in DCOPs make them very different from the unconstrained or

domain constraint problems (problems where the only constraints are the bounds of decision

variables) considered in academic research (in this chapter we conventionally name both un-

constrained problems and domain constraint problems as "unconstrained problems"). Different

from the unconstrained problems where there is only one objective function with no constraint

or with domain constraints only, a DCOP is a combination of the objective function and one

or many constraint functions, in which at least one of these objective/constraint functions is

dynamic. In real-world DCOPs the objective function and constraint functions can be com-

bined in three different types. The first type of combination is the case where both the ob-

jective function and the constraints are dynamic, as in scheduling/resource allocation problems

(Andrews & Tuson 2005), aerodynamic/structural design problems (Padula et al. 2006), or in

many optimal control problems (Schlegel & Marquardt 2006, Wang & Wineberg 2006, Prata

et al. 2006). The second type of combination is the case where only the objective function is

dynamic while the constraints are static, for example the document stream modelling problem

(Araujo & Merelo 2007), the evolvable hardware designing problem (Tawdross et al. 2006) or

the optimal control problem of fermentation processes (Rocha et al. 2005). In the third type

of combination, the objective function is static and the constraints are dynamic, as can be

seen in the hydrothermal scheduling problem (Deb et al. 2007), the cargo movement problem

(Ioannou et al. 2002) and the ship scheduling problem (Mertens et al. 2006). In all three types

of combination, the presence of infeasible areas can affect the way the global optimum moves,

or appears after each change. This leads to some special characteristics which cannot be found

in the unconstrained cases and fixed constrained cases.

The first special characteristic is the fact that the dynamic of constraints can lead to changes

in the shape/size/structure of the feasible/infeasible areas. Examples of this behaviour can be

found in the problems with dynamic constraints from the real-world applications mentioned

above (Andrews & Tuson 2005, Schlegel & Marquardt 2006, Wang & Wineberg 2006, Prata

et al. 2006, Deb et al. 2007, Ioannou et al. 2002, Padula et al. 2006, Mertens et al. 2006).

The second special characteristic is the fact that a dynamic objective function might cause
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the global optima to switch from one disconnected feasible region to another in problems with

disconnected feasible regions. Disconnected feasible regions are very common in real-world

constrained problems, especially the scheduling problems. Some examples are the examination

timetabling problems (Thompson & Dowsland 1998, Thompson & Dowsland 1996), the nurse

rostering problems (Dowsland 1998, Aickelin & Dowsland 2000), the enterprise-driven multilevel

product design problems (Kim 2006), and the video-based motion capture problems (Gleicher

& Ferrier 2002). Bartusch et al. (Bartusch et al. 1988) have mathematically shown that the

feasible regions of project scheduling problems with general temporal and resource constraints are

generally disconnected. In such problems, the global optima might switch from one disconnected

feasible region to another if the objective function is dynamic and the constraints are fixed. In

this case, because the number, locations and sizes of disconnected feasible regions are still the

same, after a change the new global optimum can only either (1) stay in the previous disconnected

region or (2) move to another disconnected region.

The third special characteristic of DCOPs is that in problems with fixed objective functions

and dynamic constraints, the changing infeasible areas might expose new, better global optima

without changing the existing optima. One example can be found in the Dynamic 0-1 Knapsack

Problem: significantly decreasing the weight of a high-value object that is not included in the

current global optimal solution might create a new global optimal solution without changing

the value of the existing one. Similarly, significantly increasing the capacity of the knapsack

might also create a new global optimum without changing the value of the existing optimum.

As shown later, such types of changes might make the problem diffi cult to some of the existing

dynamic optimisation strategies because these strategies only focus on tracking the existing

global optimum.

In addition to the three special characteristics above, DCOPs might also have the common

characteristics of constrained problems as global optima in the boundaries of feasible regions,

global optima in search boundary, and multiple disconnected feasible regions. Similar to the

three special characteristics of DCOPs above, these characteristics also are widely regarded as

being common in real-world applications. Another common characteristic of DCOPs from real-

world applications, as I found in my review in Chapter 3, is that the dynamic of the objective

functions or constraints usually follow some time-dependant functions or rules rather than just

behaving randomly.
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Although the characteristics mentioned above are common in real-world applications in both

combinatorial and continuous domains, they have only been considered mostly in the combina-

torial domain. Particularly, in the continuous domain these characteristics have never been

captured in existing standard DO benchmark problems, as shown by the list of available bench-

mark generators in Section 2.3. In the next section I will describe a set of DCOP benchmark

problems to overcome this issue.

5.2 A set of real-valued benchmark problems to simulate DCOPs

characteristics

5.2.1 Related literature

In the continuous domain, to the best of my knowledge, besides this research there is no existing

continuous benchmark that fully reflects the characteristics of DCOPs listed in Section 5.1.

Among the existing continuous benchmarks, there are only two recent studies that closely relate

to dynamic constraint problems (many existing continuous dynamic benchmark do have domain

constraints, but as mentioned earlier in this chapter we consider domain constraint problems

"unconstrained problems"). The first study is the recent paper reported by Liu (2008a) in which

two test problems (DCT2 and DCT3) are proposed. These problems are two simple unimodal

constrained problems which take the time variable t as their only time-dependant parameter.

Because of that, the dynamic is created by the increase over time of t.

Although these two problems are indeed dynamic constrained problems, they have some

important disadvantages which prevent us from using them to capture/simulate the properties

of DCOPs mentioned in Section 5.1. First, it is impossible to realistically simulate the dynamic

rules/functions from DO applications using these problems because they only capture a simple

linear change, while many real-world applications may have different types of non-linear changes..

Second, there is no evidence that the two problems can convey any common properties of DCOPs

such as optima in the boundary; disconnected feasible regions; and moving constraints exposing

optima. Third, the two problems do not reflect common situations like dynamic objective + fixed

constraints or fixed objective + dynamic constraints. Finally, the small number of test functions

in (Liu 2008a) (two functions) might not be enough to evaluate algorithms under different

situations. In order to evaluate the performance of algorithms in DCOPs, a large variety of test
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problems should be used to study the strengths and weakness of the tested algorithms.

The second study, which was just published at the time this thesis was being prepared for

submission, is the research by Richter (2010). In this work, a dynamic constrained benchmark

problem was proposed by combining an existing "field of cones on a zero plane" dynamic fitness

function with four dynamic norm-based constraints with square/diamond/sphere-like shapes

(see Figure 2 in (Richter 2010)). The framework used to generate this benchmark problem is

highly configurable because it allows designers to control the geometrical shapes, positions and

sizes of constrained areas as well as the position and shapes of the fitness landscape. We believe

that with further extensions and careful designs that framework can be used to generate different

benchmark problems that are able to capture some of the common characteristics of DCOPs

mentioned in Section 5.1. The current single benchmark problem generated by the framework

in (Richter 2010), however, was designed for a different purpose and hence does not serve the

purpose of simulating the properties mentioned in Section 5.1 yet. For example, the problem

might not be able to simulate such properties of common DCOPs such as optima in boundary;

disconnected feasible regions; and moving constraints exposing optima in a controllable way. In

addition, there is only one single benchmark problem and hence it might be diffi cult to use the

problem to evaluate the performance of algorithms under different situations.

Another research which somehow involves changing constraints is the work of Jin et al. (2010).

However, the study in (Jin et al. 2010) is very different from the work in this chapter because in

(Jin et al. 2010) the considered constrained problems are stationary and the authors only change

the original constraint functions purposely during the optimisation process to make it easier for

the algorithm to find its way to the global optimum. In other words, in (Jin et al. 2010) the

actual constrained functions are not time-dependent and hence the problems are not DOPs.

The lack of a set of benchmark problems to capture the common characteristics of DCOPs

(mentioned in Section 5.1) makes it diffi cult to evaluate how well existing DO algorithms would

work in DCOPs, as they have been designed and tested in unconstrained/domain constrained

problems only. This lack of an appropriate benchmark would also pose some diffi culties in de-

signing/developing new algorithms specialising for DCOPs because algorithm designers would

not be able to know if their algorithms work well in DCOPs. Given the fact that a majority of

recent real-world dynamic optimisation problems are constrained problems as shown in Subsec-

tion 3.3.1, the lack of an appropriate set of benchmark problems can be considered an important
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gap in current dynamic optimisation research.

This gap motivates me to develop a full set of benchmark problems to capture the special

characteristics of DCOPs. Some initial results involving five benchmark problems, which were

able to capture some characteristics of DCOPs, have been reported in an earlier study (Nguyen

& Yao 2009a). In this chapter I will extend this framework to develop full sets of benchmark

problems, which are able to capture all characteristics mentioned in the previous section. The

problems can also be incorporated with different types of dynamic rules to better simulate differ-

ent dynamic constrained applications. Two sets of benchmark problems, one with multimodal,

scalable objective functions and one with unimodal objective functions, have been developed for

this research. In this chapter I will discuss in detail the benchmark set with unimodal objective

function (in spite of the fact that the objective function is unimodal, many problems in the set

still have multiple optima due to the constraints). I choose the unimodal benchmark for the

analyses in this chapter because they are less complicated and hence can facilitate us better in

analysing the behaviours of algorithms. Details of the multimodal, scalable set can be found in

our technical report (Nguyen 2008a).

5.2.2 Generating dynamic constrained benchmark problems

In chapter 4 we have discussed that most dynamic problems can be represented as a combination

of a static full-description function form and a dynamic driver, which represent changes in the

parameter space. Here we can use this procedure to create new dynamic benchmark problems

by combining (a) an existing static benchmark problem (which represent the full-description

function forms) fP (x) where P = {p1, ...pk} is the set of static parameters with (b) some time-

dependent parameters pi (t) (which represents the dynamic drivers). The resulting dynamic

benchmark problem fPt (x, t) is generated by replacing each static parameter pi ∈ P with a

corresponding time-dependent expression pi (t). The dynamic of the dynamic problem then

depends on how pi (t) varies over time. We can use any type of dynamic rule from practical

problems to represent pi (t) and hence we can create any type of dynamic problem we want.

Detail of applying the idea above to generating a comprehensive set of DCOP benchmark

will be described in the next subsection.
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5.2.3 A dynamic constrained benchmark set

Using the new procedure described in the previous subsection, in this chapter I introduce a

set of benchmark problems named G24. The set contains 18 problems, each with a unimodal

objective function (despite that the objective function is unimodal, many problems in the set

still have multiple feasible optima due to the presence of multiple disconnected feasible regions).

Most problems in the set are modified from one of the static functions proposed in (Floudas

et al. 1999). Some others, however, have entirely new constraint functions (G24_6a, G24_6b,

G24_6c and G24_6d) or new objective functions (G24_8a and G24_8b) specifically designed

in our research to simulate some special characteristics of DCOPs. The objective functions and

constraint functions of all problems are then combined with our newly proposed dynamic rules,

which are specifically designed to reflect the different properties of DCOPs as mentioned in

Section 5.1.

The general form for each problem in the G24 set is as follows:

minimise f(x)

subject to gi (x) 6 0, gi (x) ∈ G, i = 1, .., n

where the objective function f(x) can be one of the full-description function forms set out in

equation (5.1), each constraint gi (x) can be one of the full-description function forms given

in equation (5.2), and G is the set of n constraint functions for that particular benchmark

problem in the G24 set. The detailed description of f(x) and gi (x) for each problem in the G24

benchmark set are described in Table 5.1 (page 103) and Table 5.2 (page 103).

Equation (5.1) below describes the general function forms from which I will develop the

objective functions for each benchmark problem in G24 set. Of these function forms, f (2)is used

to design the objective function for G24_8a and G24_8b, and f (1) is used to design the objective

functions for all other problems. f (1) is modified from a static function proposed in (Floudas

et al. 1999) and f (2)is a newly designed function. It should be noted that in the expression of

f (2), the (−3) factor was used to scale the function values to the same range as used in f (1) and

the square roots in f (2) were used to make the basin of attraction become narrower and hence
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Table 5.1: The objective function form of each benchmark problem in the G24 benchmark set
Benchmark problem objective function
G24_8a & G24_8b f (x) = f (2)

All other problems f (x) = f (1)

Table 5.2: The set of constraint function forms for each benchmark problem in the G24 bench-
mark set

Benchmark problem Set G of constraints
G24_u; G24_uf; G24_2u; G24_8a G = {∅}
G24_6a G =

{
g(3), g(6)

}
G24_6b G =

{
g(3)
}

G24_6c G =
{
g(3), g(4)

}
G24_6d G =

{
g(5), g(6)

}
All other problems G =

{
g(1), g(2)

}
more diffi cult to find the global optimum (the more square roots the narrower the basin).

f (1) = − (X1 (x1, t) +X2 (x2, t)) (5.1)

f (2) = −3 exp
(
−
√√

(X1 (x1, t))
2 + (X2 (x2, t))

2

)

where

Xi (x, t) = pi (t) (x+ qi (t)) ; 0 6 x1 6 3; 0 6 x2 6 4

with pi (t) and qi (t) (i = 1, 2) as the dynamic parameters, which determine how the dynamic

objective function of each benchmark problem changes over time. Each benchmark problem may

have a different mathematical expression for pi (t) and qi (t). It should be noted that although

many benchmark problems share the same general full-description function form in equation

(5.1), their individual expressions for pi (t) and qi (t) make their actual dynamic objective func-

tions very different. The individual expressions of pi (t) and qi (t) for each benchmark function

are described in Table 5.3 (page 105).

Equation (5.2) below describes the general function forms from which I will develop the

constraint functions for each benchmark problem in the G24 set. Of these function forms, g(1)and

g(2)are modified from two static functions proposed in (Floudas et al. 1999) and g(3), g(4)and

g(5) are newly designed functions. Each benchmark problem may use only a subset of constraint

functions from equation (5.2). Details of which constraint function is used in which benchmark
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problem are given in Table 5.2 (page 103).

g(1) = −2Y1 (x1, t)4 + 8Y1 (x1, t)3 − 8Y1 (x1, t)2 + Y2 (x2, t)− 2 (5.2)

g(2) = −4Y1 (x1, t)4 + 32Y1 (x1, t)3 − 88Y1 (x1, t)2 + 96Y1 (x1, t) + Y2 (x2, t)− 36

g(3) = 2Y1 (x1, t) + 3Y2 (x2, t)− 9

g(4) =

 −1 if (0 6 Y1 (x1, t) 6 1) or (2 6 Y1 (x1, t) 6 3)

1 otherwise

g(5) =

 −1 if (0 6 Y1 (x1, t) 6 0.5) or (2 6 Y1 (x1, t) 6 2.5)

1 otherwise

g(6) =

 −1 if [(0 6 Y1 (x1, t) 6 1) and (2 6 Y2 (x2, t) 6 3)] or (2 6 Y1 (x1, t) 6 3)

1 otherwise

where

Yi (x, t) = ri (t) (x+ si (t)) ; 0 6 x1 6 3; 0 6 x2 6 4

with ri (t) and si (t) (i = 1, 2) as the dynamic parameters, which determine how the constraint

functions of each benchmark problem change over time. Each benchmark problem may have

a different mathematical expression for ri (t) and si (t). It should be noted that although the

constraint functions of many benchmark problems might share the same general full-description

function form in equation (5.2), their individual expressions for ri (t) and si (t) make their actual

dynamic constraint functions very different. The individual expression of ri (t) and si (t) for each

benchmark function are described in Table 5.3 (page 105).

To design the test problems, I follow two design guidelines. First, although we can create any

arbitrary number of test problems based on the basic function forms given in Table 5.1 (page

103) and Table 5.2 (page 103), we are only interested in creating problems that can simulate

the properties of common DCOPs as mentioned in Section 5.1 because they have not been

captured in existing continuous dynamic benchmark problems. These problems will be used as

the benchmark to answer the question of whether existing dynamic optimisation strategies and

constraint handling strategies would work well in DCOPs.

Second, to make it easy to analyse the effect of each characteristic of DCOPs on the perfor-
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Table 5.3: Dynamic parameters for all test problems in the benchmark set G24. Each dynamic
parameter is a time-dependant rule/function which governs the way the problems change

Prob Parameter settings
G24_u p1 (t) = sin

(
kπt+ π

2

)
; p2 (t) = 1; qi (t) = 0

G24_1 p2 (t) = ri (t) = 1; qi (t) = si (t) = 0
p1 (t) = sin

(
kπt+ π

2

)
G24_f pi (t) = ri (t) = 1; qi (t) = si (t) = 0

G24_uf pi (t) = 1; qi (t) = 1

G24_2 if (tmod2 = 0)
{ p1(t)=sin( kπt2 +π

2 )
p2(t)={p2(t−1) if t>0p2(0)=0 if t=0

if (tmod2 6= 0)
{ p1(t)=sin( kπt2 +π

2 )
p2(t)=sin

(
kπ(t−1)

2
+π
2

)
qi (t) = si (t) = 0; ri (t) = 1

G24_2u if (tmod2 = 0)
{ p1(t)=sin( kπt2 +π

2 )
p2(t)={p2(t−1) if t>0p2(0)=0 if t=0

if (tmod2 6= 0)
{ p1(t)=sin( kπt2 +π

2 )
p2(t)=sin

(
kπ(t−1)

2
+π
2

)
qi (t) = 0

G24_3 pi (t) = ri (t) = 1; qi (t) = s1 (t) = 0

s2 (t) = 2 + t.
x2max−x2min

S

G24_3b p1 (t) = sin
(
kπt+ π

2

)
; p2 (t) = 1

qi (t) = s1 (t) = 0; ri (t) = 1;

s2 (t) = 2 + t.
x2max−x2min

S

G24_3f pi (t) = ri (t) = 1; qi (t) = s1 (t) = 0; s2 (t) = 2

G24_4 p2 (t) = ri (t) = 1; qi (t) = s1 (t) = 0

p1 (t) = sin
(
kπt+ π

2

)
; s2 (t) = t.x2max−x2minS

G24_5 if (tmod2 = 0)
{ p1(t)=sin( kπt2 +π

2 )
p2(t)={p2(t−1) if t>0p2(0) if t=0

if (tmod2 6= 0)
{ p1(t)=sin( kπt2 +π

2 )
p2(t)=sin

(
kπ(t−1)

2
+π
2

)
qi (t) = s1 (t) = 0; ri (t) = 1;

s2 (t) = t.x2max−x2minS

G24_6a/b/c/d p1 (t) = sin
(
πt+ π

2

)
; p2 (t) = 1;

qi (t) = si (t) = 0; ri (t) = 1

G24_7 pi (t) = ri (t) = 1; qi (t) = s1 (t) = 0;

s2 (t) = t.x2max−x2minS

G24_8a pi (t) = −1; q1 (t) = − (c1 + ra. cos (kπt))
q2 (t) = − (c2 + ra. sin (kπt)) ;

G24_8b pi (t) = −1; q1 (t) = − (c1 + ra. cos (kπt))
q2 (t) = − (c2 + ra. sin (kπt)) ; ri (t) = 1; si (t) = 0

k k determines the severity of function changes.
k = 1 ∼large; k = 0.5 ∼ medium; k = 0.25 ∼ small

S S determines the severity of constraint changes
S = 10 ∼large; S = 20 ∼ medium; S = 50 ∼ small

c1, c2, ra (G24_8a/b only) c1 = 1.4706; c2 = 3.442; ra = 0.859
i i is the variable index, i = 1, 2
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mance of the tested algorithms, there should always be a pair of problems for each characteristic.

The two problems in this pair should be almost identical except for that one has a particular

characteristic (e.g. fixed constraints) and the other does not. By comparing the performance of

an algorithm on one problem with its performance on the other problem in the pair, we will be

able to analyse whether the considered characteristic has any effect on the tested algorithm and

to what extent is the effect significant.

Based on the two guidelines above, I have designed 18 different sets of dynamic parameters

to create 18 different test problems for the dynamic constrained benchmark set G24 (Table 5.3,

page 105). Each test problem is able to capture one or several characteristics of DCOPs, as

shown in table 5.4 (page 107). In addition, the problems and their relationships are carefully

designed so that they can be arranged in 21 pairs, of which each pair is a different test case to

test a single characteristic of DCOPs (Table 5.5, page 108). An example showing the landscape

in different change steps of one problem in the set (G24_4) can be seen in Figure 5.1 (page 106).

Figure 5.1: This figure illustrates the feasible search landscapes of one problem of G24 - the
G24_4, at four different change periods: before the first change and at the second/seventh/tenth
changes, respectively. The z axis represents objective values. The shaded areas in the figures
are the projections of infeasible regions to the plane z = 2.5 (for illustration purpose). We can
see that both the dynamic objective function and the constraints change over time. The size
and shape of the feasible areas, and the number of disconnected regions also change accordingly.
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Table 5.4: Properties of each test problem in the G24 benchmark set
Problem ObjFunc Constr DFR SwO bNAO OICB OISB Path
G24_u Dynamic NoC 1 No No No Yes N/A
G24_1 Dynamic Fixed 2 Yes No Yes No N/A
G24_f Fixed Fixed 2 No No Yes No N/A
G24_uf Fixed NoC 1 No No No Yes N/A
G24_2* Dynamic Fixed 2 Yes No Yes&No Yes&No N/A
G24_2u Dynamic NoC 1 No No No Yes N/A
G24_3 Fixed Dynamic 2-3 No Yes Yes No N/A
G24_3b Dynamic Dynamic 2-3 Yes No Yes No N/A
G24_3f Fixed Fixed 1 No No Yes No N/A
G24_4 Dynamic Dynamic 2-3 Yes No Yes No N/A
G24_5* Dynamic Dynamic 2-3 Yes No Yes&No Yes&No N/A
G24_6a Dynamic Fixed 2 Yes No No Yes Hard
G24_6b Dynamic NoC 1 No No No Yes N/A
G24_6c Dynamic Fixed 2 Yes No No Yes Easy
G24_6d Dynamic Fixed 2 Yes No No Yes Hard
G24_7 Fixed Dynamic 2 No No Yes No N/A
G24_8a Dynamic NoC 1 No No No No N/A
G24_8b Dynamic Fixed 2 Yes No Yes No N/A
DFR number of Disconnected Feasible Regions
SwO Switched global Optimum between disconnected regions
bNAO better Newly Appear Optimum without changing existing ones
OICB global Optimum is In the Constraint Boundary
OISB global Optimum is In the Search Boundary
Path Indicate if it is easy or diffi cult to use mutation to travel

between feasible regions
Dynamic The function is dynamic
Fixed There is no change
NoC There is no constraint
* In some change periods, the landscape either is a plateau or

contains infinite number of optima and all optima (including
the existing optimum) lie in a line parallel to one of the axes
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5.3 Diffi culties of applying current dynamic optimisation strate-

gies directly to solving DCOPs - an analysis

Table 5.5: This table shows the 21 test cases (pairs) to be used in this chapter. It should
be noted that there is one situation where two test cases (10 and 14) use the same pair of
problems. However, there is no redundancy because the two test cases are used to analyse
different characteristics.
Static problems: Unconstrained vs Fixed constraints
1 G24_uf (fF, noC) vs G24_f (fF, fC)
Fixed objectives vs Dynamic objectives
2 G24_uf (fF, noC) vs G24_u (dF, noC)
3 G24_f (fF, fC, OICB) vs G24_1 (dF, fC, OICB)
4 G24_f (fF, fC, OICB) vs G24_2 (dF, fC, ONICB)
Dynamic objectives: Unconstrained vs Fixed constraints
5 G24_u (dF, noC) vs G24_1 (dF, fC, OICB)
6 G24_2u (dF, noC) vs G24_2 (dF, fC, ONICB)
Fixed constraints vs Dynamic constraints
7 G24_1 (dF, fC, OICB) vs G24_4 (dF, dC, OICB)
8 G24_2 (dF, fC, ONICB) vs G24_5 (dF, dC, ONICB)
9 G24_f (fF, fC) vs G24_7 (fF, dC, NNAO)
10 G24_3f (fF, fC) vs G24_3 (fF, dC, NAO)
No constraint vs Dynamic constraints
11 G24_u (dF, noC) vs G24_4 (dF, dC, OICB)
12 G24_2u (dF, noC) vs G24_5 (dF, dC, ONICB)
13 G24_uf (fF, noC) vs G24_7 (fF, dC)
Moving constraints expose better optima vs not expose optima
14 G24_3f (fF, fC) vs G24_3 (fF, dC, NAO)
15 G24_3 (fF, dC, NAO) vs G24_3b (dF, dC, NAO)
Connected feasible regions vs Disconnected feasible regions
16 G24_6b (1R) vs G24_6a (2DR, hard)
17 G24_6b (1R) vs G24_6d (2DR, hard)
18 G24_6c (2DR, easy) vs G24_6d (2DR, hard)
Optima in constraint boundary vs Optima NOT in constr boundary
19 G24_1 (dF, fC, OICB) vs G24_2 (dF, fC, ONICB)
20 G24_4 (dF, dC, OICB) vs G24_5 (dF, dC, ONICB)
21 G24_8b (dF, fC, OICB) vs G24_8a (dF, noC, ONISB)

dF dynamic objective func fF fixed objective function
dC dynamic constraints fC fixed constraints
OICB optima in constraint bound ONICB opt. not in constraint bound
OISB optima in search bound ONISB optima not in search bound
NAO better newly appear optima NNAO No better newly appear opt
2DR 2 Disconn. feasible regions 1R One single feasible region
Easy easy for mutation to travel between

disconn. regions
Hard less easy to travel among regions

noC unconstrained problem SwO Switched optimum between discon-
nected regions
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5.3.1 Analysing the performance of some dynamic optimisation strategies in

solving DCOPs

As discussed in Section 5.1, common DCOPs might have some special characteristics which

have not been considered in existing academic research on continuous dynamic optimisation.

This raises the question of whether existing dynamic optimisation strategies, which have been

designed and tested in unconstrained/domain constrained problems only, can be applied directly

to solving DCOPs, and whether the special characteristics of DCOPs might have any effect on

the performance of these algorithms. It should be noted that, in order to apply existing dynamic

optimisation algorithms directly to solving DCOPs without changing anything, the constraint

handling task must be made transparent to the DO algorithms by using methods like penalty

functions.

The purpose of this section is to investigate whether the dynamic optimisation strategies

commonly used in existing literature can be applied directly to solving DCOPs. I also study

whether the special characteristics of DCOPs might have any effect on the performance of these

strategies. If there are such effects, we will analyse to see which effects are caused by the

combined constraint handling techniques, and which are caused by the nature of the dynamic

optimisation strategies regardless of the use of constraint handling. The results of the analysis

will also give us insight understanding of how to design suitable algorithms for solving DCOPs.

The strategies that we are going to consider are (1) introducing diversity, (2) maintaining

diversity and (3) tracking the previous optima. These three are among the four most commonly

used strategies (the other is memory-based strategy) to solve dynamic optimisation problems.

The diversity-introducing strategy was proposed based on the assumption that by the time a

change happens in the environment, an evolutionary algorithm might have already converged

on a specific area and hence would lose its ability to deal with changes in other areas of the

landscape. Because of that, it is necessary to increase the diversity level in the population, either

by increasing the mutation rate or re-initialising/re-locating the individuals. This strategy has

been reviewed in details in Subsection 2.1.2.

The diversity-introducing strategy above requires that changes must be detectable. To avoid

this disadvantage, the diversity-maintaining strategy was introduced by which the diversity

of the population is always maintained to deal with any possible dynamic without explicitly
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detecting changes. This strategy has been reviewed in details in Subsection 2.1.3.

The third strategy, tracking-previous-optima, is found in various approaches reviewed in

Section 2.1. It is used in situations where it is assumed that the optima might just slightly change

and hence it would be better to focus on observing the nearby places of the current optima to

detect changes and "track" the movement of these optima. Similar to the two strategies above,

the tracking strategy has also been used since the very early days of dynamic optimisation (Cobb

1990, Vavak et al. 1995) and it has always been one of the main strategies for solving DOPs.

Recently this strategy has usually been combined with the diversity maintaining/introducing

strategy to achieve better performance. Typical examples are the multi-population/multi-swarm

approaches (firstly proposed in (Oppacher & Wineberg 1999, Branke et al. 2000, Ursem 2000)),

where multiple sub-populations are used to maintain diversity and each sub-population/sub-

swarm focuses on tracking one singe optimum.

Another strategy that is also commonly used in dynamic optimisation algorithms is the

memory-based strategy. In this chapter I do not carry out any experiment directly on the

performance of this strategy but leave this task for a future investigation. However, that omission

does not mean that we cannot draw any implication about the performance of memory-based in

solving DCOPs. The focus of this chapter on the diversity-maintaining/introducing strategies

alone would still be beneficial to evaluating how effective a memory-based approach can be in

solving a DCOP. This is because, as pointed out by Branke (Branke 2001b), in memory-based

approaches the memory strategy cannot be used alone but needs to be integrated with some

diversity-maintaining/introducing strategies. As a result, if an integrated diversity strategy used

in a memory-based algorithm is affected by the characteristics of DCOPs, we can conclude that

the memory-based algorithm itself would also be affected.

5.3.2 Chosen algorithms and experimental settings

Chosen algorithms

To evaluate the performance of the three strategies mentioned above in DCOPs, I choose to test

two canonical algorithms: triggered hyper-mutation GA (HyperM (Cobb 1990)) and random-

immigrant GA (RIGA (Grefenstette 1992)). HyperM represents the "introducing diversity" and

"tracking previous optima" strategies and RIGA represents the "maintaining diversity" strategy.

HyperM is basically a basic GA with an adaptive mechanism to switch from a low mutation rate
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(standard-mutation-rate) to a high mutation rate (hyper-mutation-rate) depending on whether

there is a degradation of the best solution in the population or not. When there is no degradation

of the best solution, the algorithm uses the standard-mutation-rate as basic GA. However, when

a drop in value of the best solution (possibly caused by an environmental change) is detected, the

algorithm temporarily increases the mutation rate to the high hyper-mutation-rate to cope with

the change. Because it firstly focuses on observing the current optimum to detect any possible

changes and then it increases the level of diversity to "track" the movement when a change

is detected, the HyperM algorithm represents the "tracking-previous-optima strategy". The

algorithm also represents the "diversity introducing strategy" because it increases its mutation

rate whenever it knows that a change happens.

Different from HyperM, RIGA represents the "diversity-maintaining" strategy. This algo-

rithm is also a derivative of basic GA in which in addition to using the standard mutation rate,

after the mutation step a fraction of the population is replaced by randomly generated individuals

in every generation. That fraction of the population is determined by a random-immigrant-rate

(also named replacement rate). By continuously replacing a part of the population with random

solutions, the algorithm is able to maintain diversity throughout the search process to cope with

dynamic environments.

There are four reasons for me to choose these two algorithms to test. First, the strate-

gies/mechanisms used in these two algorithms are still commonly used in most current state-

of-the-art dynamic optimisation algorithms. As a result, it might be possible to generalise the

conclusions we get from testing these two algorithms to many other algorithms. Second, the

diversity maintaining/introducing and tracking implementation used in these two algorithms

are very simple and straightforward, making it easy to test and analyse the behaviours of the

algorithms. Third, because these two algorithms are very well studied, using them in the ex-

periment would facilitate us in comparing new experimental data with existing results. Finally,

because both algorithms are developed from basic GA (actually the only difference between

HyperM/RIGA and basic GA is the mutation strategy), it would be easier to compare/analyse

their performance against each other. Basic GA can also be used as the foundation to develop

other strategies to work with DCOPs, then compare their performance with HyperM and RIGA.

To discover if HyperM and RIGA work well on the tested problems, I also compare their

performance with basic GA in our experiments. With the slightly higher than normal mutation
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rate that I chose (rate=0.15; see next subsection for detail of parameter settings and reasons

to choose the settings), to some extent the basic GA and HyperM can also be considered as

representatives of the diversity-maintaining strategy. The three algorithms HyperM, RIGA and

GA will be evaluated on the G24 benchmark set described in Section 5.2.

In the next subsections readers might notice that in some tables/figures in this section we

include not only the three algorithms GA/RIGA/HyperM but also another algorithm which have

not been introduced yet. That algorithm will be introduced and analysed in the later sections.

For now, in this section we will only focus on the data relating to the elitism and non-elitism

versions of GA, RIGA and HyperM.

Another point to be noted in the following experiments is that, although the full standard

deviation data is provided in Table 5.7 (page 120), the test results in most of the following

graphs are presented with the mean values only. The reason for not presenting the standard

deviations in these graphs is due to the technical diffi culties in presenting them in the graphs

while still maintaining the purpose of allowing readers to compare the performance of all seven

algorithms. However, given the data we got, we believe it is suffi cient to just compare algorithms

using the mean values because in most cases the standard deviations are very small compared

to the mean values, and hence should not have any significant impact on deciding the difference

between algorithms. In the few cases where an algorithm’s error has large standard deviations,

its corresponding mean values are also significantly worse than that of other algorithms and

hence it is obvious that in these cases the considered algorithm also has worse performance.
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Parameter settings

Table 5.6: Test settings for all algorithms used in the paper.
All Pop size 25
algorithms Elitism Elitism & non-elitism if applicable
(exceptions Selection method Non-linear ranking as in (Michalewicz n.d.)
below) Mutation method Uniform, P = 0.15

Crossover method Arithmetic, P = 0.1
HyperM Triggered mutation rate Uniform, P = 0.5 as in (Cobb 1990)
RIGA Random-immigrant rate P = 0.3 as in (Grefenstette 1992)
GA+Repair Search pop size 20

Reference pop size 5
Replacement rate 0 (default is 0.25 as in (Michalewicz n.d.))

Benchmark Number of runs 50
problem Number of changes 10
settings Change frequency 1000 function evaluations

ObjFunc severity k 0.5 (medium), except G24_6a/b/c/d
where k = 1 (large severity)

Constr. severity S 20 (medium)

Table 5.6 (page 113) shows the detailed parameter settings for HyperM, RIGA and GA. To create

a fair testing environment, the parameters of all tested algorithms are set to similar values or

the best known values if possible. All algorithms use real-valued representation. For the base

mutation rate of the algorithms, I use a mutation rate of 0.15, which is the average value of the

best mutation rates commonly used (for medium to high severity level of changes) for GA-based

algorithms in various existing studies on continuous dynamic optimisation, which are 0.1 (Cobb

& Grefenstette 1993, Richter 2009, Richter & Yang 2009), 0.15 (Cobb & Grefenstette 1993) and

0.2 (Branke et al. 2000, Branke 1999, Ayvaz et al. 2006). For HyperM and RIGA, I use the

best hyper-mutation-rate and random-immigrant-rate parameter values observed in the original

papers (Cobb 1990) (Grefenstette 1992) for this experiment. I also use the same implementations

as described in (Cobb 1990) and (Grefenstette 1992) to reproduce these two algorithms. The

crossover rate of 0.1 is chosen for all algorithms because according to our analysis this is one

of the few settings where all tested algorithms perform well in the G24 benchmark set (see

Chapter 6 for more details). All algorithms have a population size of 25. This population size is

chosen based on the hardness level of the tested problems. The population size of 25 would also

facilitates us in comparing the algorithms with some existing constraint-handling algorithms

which also have the default population size of 25.
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The algorithms were tested in 18 benchmark problems described in section 5.2 in two levels

of change severity: medium and high except in G24_6a/b/c/d where the severity is always high

(high severity is a property of these four problems). Because the observed behaviours of the

tested algorithms are the same for both cases of severity, in this chapter I will only present

results for the medium severity case.

It might be interesting to investigate if the default/best parameter values from previous

literature are also the most suitable parameter values for solving the problems in this benchmark

set. Because of that, in addition to the experiments in this chapter I also carry out a further

study of the effect of different parameter values of the base mutation rates, hyper-mutation

rates, random-immigrant rates and crossover rates on algorithm performance. The experimental

results and discussion for this analysis can be found in Section 6.4.

Constraint handling

To apply existing dynamic optimisation algorithms directly to solving DCOPs, we also need

to integrate them with a constraint handling mechanism. That constraint handling mechanism

should not interfere with or change the original dynamic optimisation strategies in any way so

that we can correctly evaluate whether the original dynamic optimisation strategies would still

be effective in solving DCOPs. To satisfy that requirement, I chose to use the penalty function

approach because it is the simplest and easiest way to apply existing unconstrained dynamic

optimisation algorithms directly to solving DCOPs without changing anything in the algorithms.

In this chapter I present the test results using the penalty function proposed in (Morales &

Quezada 1998). I chose this penalty function because it is reportedly effective in solving diffi cult

numerical problems and more importantly because it does not require users to choose any penalty

factor or other parameter. This allows us to apply existing dynamic optimisation algorithms

directly to solving DCOPs without any additional effort. There are more sophisticated and

better penalty methods in the literature, but because such methods might require additional

tasks to choose the appropriate penalty factors/parameters or to choose the appropriate dynamic

penalty techniques, they might prevent algorithm users from applying existing DO strategies

directly and quickly to solving DCOPs. I also tested the algorithms in cases where the infeasible

solutions are penalised with various penalty values which are specifically chosen so that the

fitness values of infeasible solutions are always worse than or equal to that of feasible solutions.
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The experimental results in these cases, however, are not shown because there is no significant

difference in the test results compared to the case of using the penalty function proposed in

(Morales & Quezada 1998).

Performance measures

To measure the performance of the algorithms in this particular experiment, I firstly modify

an existing measure: the modified offl ine error proposed in (Branke & Schmeck 2003). The

modified offl ine error is measured as the average over, at every evaluation, the error of the best

solution found since the last change of the environment. This measure is always greater than or

equal to zero and would be equal to zero for a perfect performance.

Because the measure above is designed for unconstrained environments, we need to modify it

to evaluate algorithm performance in constrained environments. This is because in constrained

environments we are interested in evaluating the ability of algorithms in finding not every good

solutions but only good feasible solutions. The modification is simple. At every generation,

instead of considering the best errors/fitness values of any solutions regardless of feasibility as

implemented in the original measure, in my modification I only consider the best fitness values /

best errors of feasible solutions at each generation. The fitness and errors of infeasible solutions

will not be counted, regardless of their values. If in any generation there is no feasible solution,

the measure will take the worst possible value that a feasible solution can have for that particular

generation. The formula of the modification for the offl ine error measure is given in equation

(5.3). We call this measure modified offl ine error for DCOPs, or offl ine error for short.

EMO =
1

n

∑n

j=1
eMO (j) (5.3)

where n is the number of generations so far, and eMO (j) is the best feasible error since the last

change gained by the algorithm at the generation j.

The measure that I have modified above is useful in evaluating the overall performance of

the tested algorithms to see if they work well in the tested problems. However, it does not

provide us with enough detailed information to analyse why a particular algorithm works well

or not well in a particular problem. This gap motivates me to propose some new performance

measures to assist algorithm designers in analysing the behaviours of dynamic optimisation

algorithms. Among these new measures, five will be introduced in this section and other two
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algorithm-specific measures will be introduced in Section 5.4.

For this section, I propose five new measures. The first two measures are the recovery rate

(RR) and the absolute recovery rate (ARR) to analyse the convergence behaviour of algorithms

in dynamic environments. The recovery rate (RR) measure is used to analyse how quick it is for

an algorithm to recover from a performance drop when a change happens and to start converging

to a new solution before the next change happens. The new solution is not necessarily the global

optimum.

RR =
1

m

∑m

i=1

∑p(i)
j=1 [fbest (i, j)− fbest (i, 1)]

p (i) [fbest (i, p (i))− fbest (i, 1)]
(5.4)

where fbest (i, j) is the fitness value of the best feasible solution since the last change found by

the tested algorithm until the jth generation of the change period i , m is the number of changes

and p (i) , i = 1 : m is the number of generations at each change period i. The RR score would

be equal to 1 in the best case where the algorithm is able to recover and converge to a solution

immediately after a change, and would be equal to zero in case the algorithm is unable to recover

from the drop at all.

The RR measure only tells us if the considered algorithm converges to a solution and if it

converges quickly. It does not indicate whether the converged solution is the global optimum.

For example, RR can still be equal to 1 if the algorithm does nothing but keep re-evaluating the

same solution. Because of that, we need another measure: the absolute recovery rate (ARR).

This measure is very similar to the RR but is used to analyse how quick it is for an algorithm

to start converging to the global optimum before the next change happens:

ARR =
1

m

∑m

i=1

∑p(i)
j=1 [fbest (i, j)− fbest (i, 1)]
p (i) [f∗ (i)− fbest (i, 1)]

(5.5)

where fbest (i, j) is the best solution since the last change found by the tested algorithm until

the jth generation of the change period i , f∗ (i) is the global optimal value of the landscape at

the ith change, m is the number of changes and p (i) , i = 1 : m is the number of generations at

each change period i. The ARR score would be equal to 1 in the best case when the algorithm

is able to recover and converge to the global optimum immediately after a change, and would

be equal to zero in case the algorithm is unable to recover from the drop at all. It should be

noted that the score of ARR should always be less than or equal to that of RR. In the ideal case
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(converged to global optimum), ARR should be equal to RR.

The RR and ARR measures can be used together to indicate if an algorithm is able to con-

verge to the global optimum within the given time frame between changes and if so how fast it

takes to converge. The combination can also be used to analyse if the cause for an algorithm to

work not well is slow convergence or pre-mature convergence. The RR-ARR diagram in Figure

5.2 (page 118) shows some guidelines to analyse the behaviours of tested algorithms given the

scores of ARR and RR. In this diagram the RR and ARR scores can be represented as the x

and y coordinations of a point, which always lies on the diagonal thick line or inside the shaded

area.

By looking at the position of the point, we will be able to analyse the behaviour of the corre-

sponding algorithm. First, if the point lies on the thick diagonal line (where RR = ARR) like

point A, we can conclude that the algorithm A has been able to recover from the change and

converged to the new global optimum. Along that line, the closer the point is to the right, the

faster the algorithm was in recovering and re-converging, and vice versa. Second, if the point

lies inside the shaded area (e.g. point B, C, D), the algorithm either has converged to a local

solution or has not been converged yet. In addition, the closer the point is to the optimum line,

the closer the algorithm is to the global optimum. Third, points in the top right corner of the

shaded area (like point B) show that the algorithm has been able to recover fast and was able

to achieve a good performance (although not yet found the global optimum). The closer the

point is to the top right corner, the better the performance and the faster the recovery speed.

Fourth, points in the bottom-right corner (like point C) shows that the algorithm has been likely

converged to a local solution. In this case the algorithm recover fast but then was trapped in a

local solution far from the global optimum. The closer a point is to the bottom-right corner, the

more likely that the algorithm is trapped. Fifth, points near the bottom-left corner (like point

D) show that the algorithm has recovered slowly and has likely not converged yet.

We can also use the diagram to compare and analyse the behaviour of different algorithms. For

example in this figure we can see that algorithm A found the best solution after change, following

by algorithms B, D, C while algorithm B was able to recover and converge fastest, following by

algorithm C, A, and D. In case we need the best solution after change with no limit in time, we

can choose algorithm A over B. However, if we need a good solution quickly, then algorithm B

might be more preferrable.
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Figure 5.2: The RR-ARR diagram to analyse the convergence behaviour/recovery speed of
an algorithm given its RR and ARR scores. In this diagram the RR and ARR scores can be
represented as the x and y coordinations of a point, which always lies on the diagonal thick line
or inside the shaded area.

It should be noted however that in order to use the measure ARR we need to know the

global optimum value at each change period.

To analyse the ability to balance feasibility/infeasibility of algorithms using the diversity

maintaining/introducing strategies as RIGA/HyperM in DCOPs, I propose a third measure:

percentage of selected infeasible individuals. Among the individuals selected for the next gen-

eration, this measure counts the percentage of those that are infeasible. The average score of

this measure (over all tested generations) is then compared with the percentage of infeasible

areas over the total search area of the landscape. If the considered algorithm is able to treat

infeasible diversified individuals and feasible diversified individuals on an equal basis (and hence

to maintain diversity effectively), the two percentage values should be equal.

To analyse the behaviour of algorithms using triggered-mutation mechanism as HyperM,

I also propose a fourth measure: triggered-time count, which counts the number of times the

hyper-mutation-rate is triggered by the algorithm, and a fifth measure: detected-change count,

which counts the number of triggers actually associated with a change. For HyperM, triggers
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associated with a change are those that are invoked by the algorithm within ν generations after

a change, with ν is the maximum number of generations (five in our implementation) needed

for HyperM to detect a drop in performance. These two measures indicate how many times an

algorithm triggers its hyper-mutation; whether each trigger time corresponds to a new change;

and if there is any change goes undetected during the search process.

It should also be noted that all the measures used in this chapter are designed specifically for

dynamic problems. This creates an issue for our experiments because in the G24 benchmark set

there are not only dynamic problems, but also stationary problems. To overcome this issue and

to create a fair, normalised testing environment, in the experiments in this chapter we consider

stationary problems a special type of dynamic problem which still have "changes" after each 1000

function evaluations as other dynamic problems. However, in stationary problems the "changes"

do not alter the search landscape. That way we can apply the dynamic optimisation measures

to both stationary and dynamic problems and can compare the performance of algorithms fairly

in both types of problems.

5.3.3 Experimental results and analyses

The full results of the tested algorithms in all 18 benchmark problems are presented in Table 5.7

(page 120). The data in this table is provided for reference purpose only because to achieve a

better understanding of how existing dynamic optimisation strategies work in DCOPs and how

each characteristic of DCOPs would affect the performance of existing dynamic optimisation

algorithms, we further analyse the results by studying them from different perspectives. First,

we summarise the average performance of the tested algorithms in each major group of problems

(see test results in Figure 5.3, page 121) to have an overall picture of the behaviours of each

algorithm in different types of problems. Second, we investigate the effect of each problem

characteristic on each algorithm by analysing their performance in 21 test cases (pair of almost

identical problems, one with a particular characteristic and one without) as shown in Table

5.5 of Section 5.2 (see test results in Figure 5.4, page 122 and Figure 5.5, page 123). For

each particular algorithm, I also carry out some further analyses using the five newly proposed

measures mentioned above. Details of these analyses will be described in the next subsections.
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Table 5.7: Averaged modified offl ine errors of all tested algorithms in all 18 problems after 50
runs.

Algorithm mean stdDev mean stdDev mean stdDev
.GAnoElit 0.298 0.051 0.609 0.064 0.676 0.085
.RIGAnoElit 0.221 0.025 0.493 0.045 0.546 0.072
.HyperMnoElit 0.206 0.035 0.361 0.065 0.226 0.056
.GAelit 0.106 0.035 0.459 0.057 0.154 0.083
.RIGAelit 0.149 0.025 0.346 0.046 0.178 0.051
.HyperMelit 0.111 0.026 0.384 0.065 0.149 0.053
.GA+Repair 0.468 0.059 0.226 0.024 0.041 0.011

Algorithm mean stdDev mean stdDev mean stdDev
.GAnoElit 0.464 0.064 0.356 0.049 0.159 0.041
.RIGAnoElit 0.342 0.032 0.264 0.035 0.107 0.019
.HyperMnoElit 0.124 0.041 0.257 0.045 0.130 0.022
.GAelit 0.063 0.022 0.288 0.050 0.073 0.017
.RIGAelit 0.069 0.020 0.246 0.037 0.091 0.024
.HyperMelit 0.053 0.012 0.253 0.043 0.068 0.016
.GA+Repair 0.218 0.018 0.281 0.036 0.294 0.029

Algorithm mean stdDev mean stdDev mean stdDev
.GAnoElit 0.760 0.099 0.657 0.097 0.886 0.179
.RIGAnoElit 0.538 0.047 0.500 0.038 0.651 0.055
.HyperMnoElit 0.411 0.052 0.459 0.069 0.256 0.057
.GAelit 0.289 0.049 0.457 0.084 0.158 0.058
.RIGAelit 0.308 0.048 0.386 0.051 0.167 0.048
.HyperMelit 0.243 0.050 0.394 0.088 0.128 0.051
.GA+Repair 0.156 0.008 0.171 0.019 0.025 0.008

Algorithm mean stdDev mean stdDev mean stdDev
.GAnoElit 0.621 0.101 0.379 0.067 0.529 0.108
.RIGAnoElit 0.490 0.053 0.293 0.046 0.366 0.030
.HyperMnoElit 0.469 0.057 0.275 0.034 0.383 0.051
.GAelit 0.453 0.075 0.266 0.029 0.674 0.157
.RIGAelit 0.421 0.047 0.240 0.035 0.333 0.050
.HyperMelit 0.426 0.075 0.248 0.039 0.491 0.071
.GA+Repair 0.211 0.015 0.236 0.024 0.431 0.074

Algorithm mean stdDev mean stdDev mean stdDev
.GAnoElit 0.448 0.054 0.446 0.041 0.543 0.127
.RIGAnoElit 0.331 0.035 0.329 0.039 0.366 0.040
.HyperMnoElit 0.340 0.046 0.323 0.037 0.370 0.046
.GAelit 0.408 0.057 0.441 0.052 0.510 0.075
.RIGAelit 0.309 0.039 0.325 0.029 0.342 0.057
.HyperMelit 0.390 0.039 0.394 0.051 0.456 0.041
.GA+Repair 0.427 0.048 0.390 0.038 0.354 0.038

Algorithm mean stdDev mean stdDev mean stdDev
.GAnoElit 0.721 0.088 0.426 0.050 0.835 0.068
.RIGAnoElit 0.543 0.059 0.346 0.031 0.719 0.071
.HyperMnoElit 0.495 0.053 0.374 0.043 0.681 0.072
.GAelit 0.316 0.053 0.266 0.028 0.662 0.056
.RIGAelit 0.416 0.068 0.304 0.028 0.598 0.064
.HyperMelit 0.315 0.062 0.279 0.028 0.608 0.071
.GA+Repair 0.181 0.017 0.300 0.033 0.251 0.051

G246b (dF,fC 1R) G246c(dF 2DR,easy) G246d(dF 2DR,hard)

G247 (fF, dC) G248a(dFnC,ONISB) G248b (dFfC,OICB)

G243 (fF,dC) G243b (dF,dC) G243f (fF, fC)

G244 (dF, dC) G245 (dF,dC) G246a(dF 2DR,hard)

G24u (dF,noC) G241 (dF, fC) G24f  (fF, fC)

G24uf (fF, noC) G242 (dF, fC) G242u (dF,noC)
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Figure 5.3: This figure shows the performance of the elitism (-elit) and non-elitism (-
noElit)versions of existing dynamic optimisation algorithms (GA, RIGA and hyperM) in
different groups of problems. This figure shows us not only how each algorithm perform in
each particular group of problems, but also in which group do the algorithms perform better or
worse. Algorithms’performance is evaluated based on their modified offl ine error (or "error"
in short) as follows. First, the worst (largest) error among all algorithms is recorded as the
base line error. Then we calculate the ratio between the base line error and the error of each
algorithm in each problem to see how many times their performance is better (smaller) than
the base line error. This ratio is represented in the vertical axis. The horizontal axis shows
different group of problems. Explanations for the abbreviations in this figure and all other
figures in this paper are as follow: noC: No Constraint; fC: fixed Constraint; fF: fixed objective
Function; dC: dynamic Constraint; dF: dynamic objective Function. O(N)ICB: Optimum (Not)
In Constraint Boundary; (N)NAO: (No) Newly Appearing Optimum; ONISB: Optimum (Not)
In Search Boundary; 1R: One single feasible region; 2DR: Two Disconnected feasible Regions;
easy/hard: Easy/diffi cult path between disconnected regions; SwO: Switched global Optimum
between disconnected regions.

The experiments and analysis results show some interesting and in some cases even surprising

or counter-intuitive findings, which will be shown in the following subsections.

The effect of elitism on algorithm performance

The summarised results in groups of problems (Figure 5.3) and the pair-wise comparisons in

Figure 5.4 (page 122) and Figure 5.5 (page 123) reveal an interesting effect of elitism on both

unconstrained and constrained dynamic cases in our test. This is the fact that, the elitism

versions of GA/RIGA/HyperM perform better than their non-elitism counterparts in most tested

problems. The reason for this effect (with evidence shown in the next paragraph) is that elitism
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Figure 5.4: This figure summarises the effect of twelve different problem characteristics on
the performance of the non-elitism and elitism versions of GA, RIGA, and HyperM, and the
repair-based algorithm GA+Repair (to be introduced later in Subsection 5.4.4). Each subplot
represents algorithm performance in a pair of almost identical problems (one has a special
characteristic and the other does not). The heights of the bars in each subplot indicate how well
the tested algorithms perform in solving the pair of problems. The higher the bars, the better
the performance. Each pair of adjacent bars represent the performance of one algorithm in a
pair of problems. The larger the difference between the bar heights, the larger the difference
in performance, and hence the greater the impact of the corresponding DCOP characteristic on
algorithm performance. It should be noted that pair (10) is not included in this figure because
it is identical to pair (14) in Figure 5.5. Algorithms’performance is evaluated based on the
ratio between the base line error (as described in the caption of Figure 5.3) and the error of each
algorithm. This is to see how many times their performance is better (smaller) than the base line
error. This ratio is represented in the vertical axis. The title of each subplot represents the test
case number (in brackets) followed by an abbreviated description of the test case. Explanations
for the abbreviations can be found in the caption of Figure 5.3.

helps algorithms with diversity-maintaining strategies to converge faster. This effect is caused by

the nature of the dynamic optimisation strategies, i.e. is independent of the combined constraint

handling techniques.

It should be noted that our detailed analysis (not shown) also pointed out that for HyperM,

elitism only has positive effect in case the base mutation rate of HyperM is large enough (0.15

or larger), i.e. only in cases where the diversity-introducing strategy (high base mutation rate)
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Figure 5.5: This figure summarises the effect of the other eight different problem properties on
the performance of GA, RIGA, HyperM (elitism and non-elitism versions) and GA+Repair.
Instruction to read this figure can be found in the caption of Figure 5.4.

is combined with the diversity-maintaining strategy. In cases where the base mutation rate

of HyperM is lower (smaller than 0.15), elitism actually has a negative effect and makes the

algorithm become more prone to pre-mature convergence. This negative effect of HyperM is

also caused by the nature of this strategy.

To study the reasons for the ineffi ciency of GA/RIGA/HyperM in the non-elitism case com-

pared to the elitism case, I use the two measures proposed in Subsection 5.3.2: recovery rate

(RR) and absolute recovery rate (ARR). The scores of the tested algorithms on these measures

are shown and analysed in Figure 5.6 (page 125). Based on the guidelines in Figure 5.2 (page

118), we can use the coordinations of the RR/ARR scores in the diagram to analyse the con-

vergence behaviour of the algorithms as well as the reasons behind the impact of elitism on the

performance of GA/RIGA and HyperM. First, the diagram shows us that none of the algorithms

are close to the optimum line, meaning that overally there are problems/ change periods where

the algorithms have not been able to converge to the global optimum. Second, for GA/RIGA, we
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can see that the elitism versions of the tested algorithms are closer to the top-right corner while

their non-elitism are closer to the bottom-left corner. Because in the RR-ARR diagram the top-

right corner represents faster/more accurate recovery/convergence and the bottom-left corner

represents the reverse thing, it means that non-elitism makes GA/RIGA converge slower/less

accurately. The diagram also shows that RIGA-elit has the best overall recovery speed an con-

vergence accuracy, following by RIGA-noElit, GA-elit and HyperM-elit, all three have almost

the same RR/ARR scores. Third, for HyperM, we see that its elitism version is also closer to

the top-right corner while its non-elitism version is closer to the bottom-right corner. Because

the bottom-right corner represents faster recovery but more liley to converge to local solutions,

the result here suggests that the non-elitism version of HyperM is more suceptible to premature

convergence.

The results hence show that the high diversity maintained by the random-immigrant rate

in RIGA and the high base mutation rate in GA and HyperM comes with a trade-off: the

convergence speed is affected. In such situation, elitism can be used to speed up the convergence

process. Elite members can guide the population to exploit the good regions faster while still

maintaining diversity.

Effect of infeasible areas on maintaining/introducing diversity

Another interesting observation from our experiments is that the presence of constraints makes

the performance of diversity-maintaining/introducing strategies less effective when they are used

in combination with the tested penalty functions. This behaviour can be seen in Figure 5.3 where

the performance of all algorithms in the unconstrained dynamic case (dF+noC) is significantly

better than their performance in all dynamic constrained cases (dF+fC, fF+dC, dF+dC). This

behaviour can also be seen in the more accurate comparisons from the pair-wise comparisons

in Figure 5.4 (page 122) and Figure 5.5 (page 123), for each pair of problems in which one

has constraints and the other does not, GA, RIGA and HyperM always perform worse in the

problem with constraints (see subplots a, e, f, j, k, l in Figure 5.4 and subplot h in Figure 5.5).

The reason for this ineffi ciency of diversity-maintaining/introducing strategies in solving

problems with constraints is that the use of the tested penalty functions prevents the diversity-

maintaining/introducing mechanisms from working effectively. In solving unconstrained dy-

namic problems, all diversified individuals generated by the diversity maintaining strategy or
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Figure 5.6: This figure shows the mapping of the RR/ARR scores of GA, RIGA, and HyperM
to the RR-ARR diagram. The scores are averaged from the results of the above algorithms on
all 18 tested problems. Both elitism and non-elitism versions of these algorithms are tested.

the diversity introducing strategy are useful because they contribute to either (1) detecting new

appearing optima or (2) finding the new place of the moving optima. In DCOPs, however, I

found that only the diversified individuals that are feasible can become fully beneficial to the

combination of GA/RIGA/HyperM and penalty methods. The reasons for this behaviour are

explained below.

For infeasible diversified individuals, there are two diffi culties that prevent them from being

useful in existing dynamic optimisation strategies. First, many diversified but infeasible individ-

uals might not be selected for the next generation population because they are penalised with

lower fitness values by the penalty functions. Without being selected for the next generation,

diversified individuals will not be able to meet the purpose of maintaining/introducing diversity

unless they are re-introduced again in the next generation. To demonstrate this drawback, I use

the measure percentage of selected infeasible individuals proposed in subsection 5.3.2. This mea-

sure is used to analyse the relationship between the percentage of infeasible areas over the total

search area and the actual percentage of infeasible solutions over the total number of solutions

selected for the next generation. If an algorithm is able to treat infeasible diversified individuals
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and feasible diversified individuals on an equal basis (and hence to maintain diversity effectively),

the latter percentage should be close to the former percentage. However, as can be seen in table

5.8 (page 126), we can see that in the elitism case the percentage of infeasible solutions in the

population (12.5 - 26.3%) is much smaller than the percentage of infeasible areas over the total

landscape (60.8%). It means that only a few of diversified, infeasible solutions are retained and

hence the algorithms are not able to maintain diversity in the infeasible regions. As a result, if

after a change, a new feasible region occurs inside or near the infeasible regions, the algorithms

might not be able to react effectively unless diversified individuals are re-introduced at every

generation as in the case of RIGA. In the non-elitism case, the percentage of selected infeasible

individuals is better than in the elitism case, meaning that these algorithms are able to retain

more infeasible individuals, of which some might be diversified solutions. However, in the non-

elitism case this higher percentage of infeasible individuals comes with a trade-off of slower/less

accurate convergence as shown in the previous subsection 5.3.3. As shown in subsection 5.3.3,

this slow convergence leads to the generally poorer performance of the non-elitism algorithms

in the test.

Table 5.8: This table shows the average percentage of selected infeasible individuals over all 18
problems for each tested algorithm (see Subsection 5.3.2 for descriptions). The last row shows
the average percentage of infeasible areas over all 18 problems. If an algorithm is able to maintain
diversity effectively, its average percentage of selected infeasible individuals score should be close
to the average percentage of infeasible areas.

Algorithms Percent of infeasible solutions

.GAelit 12.5%

.RIGAelit 26.3%

.HyperMelit 14.8%

.GAnoElit 41.8%

.RIGAnoElit 46.8%

.HyperMnoElit 42.8%
Percentage of infeasible areas 60.8%

Second, even if a diversified but infeasible individual is accepted for the next generation,

it might still not be able to contribute to the two purposes they are designed for: detecting

changes and tracking changes. This ineffi ciency is also due to the fact that infeasible individuals

no longer have their actual fitness value but only penalised fitness values. These penalised fitness

values might not accurately reflect the dynamic from environments and hence might not help in

detecting and tracking changes. In other words, in the tested dynamic optimisation algorithms
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more diversity does not necessarily mean more adaptability.

Effect of switching global optima (between disconnected feasible regions) on strate-

gies that use penalty functions/values

The third finding that I observe from our experiments is the ineffi ciency of existing dynamic

optimisation methods when they are used in combination with the tested penalty functions to

solve a special class of DCOPs. This is the class of problems with disconnected feasible regions

where the global optimum switches from one region to another whenever a change happens (this

is one of the common characteristics of DCOPs as already discussed in section 5.1). In addition,

the more separated the disconnected regions are, the more diffi cult it is for algorithms using

penalty functions to solve.

The reason for this behaviour is as follows. In problems with disconnected feasible regions,

in order to track the moving optimum from one region to another, it is necessary to have a

path going through the infeasible areas that separate the disconnected regions. This path might

not be available if we use penalty functions because penalties make it unlikely that infeasible

individuals are accepted. Obviously the larger the infeasible areas between disconnected regions,

the harder it is to establish the path using penalty methods.

To verify the statement above, I use three test cases (pairs of almost identical problems)

provided in Table 5.5 (page 108). They are test cases 16, 17, and 18. In all three test cases

the objective functions are the same and the global optimum keeps switching between two

feasible regions whenever a change happens. However, the infeasible areas in the problems of

each test case are different and hence each test case represents a different dynamic situation.

Test case 16 tests the situation where in one problem of the pair (G24_6b) there is a feasible

path connecting the two regions and in the other problem (G24_6a) the path now is infeasible,

i.e. there is an infeasible area separating two feasible regions. Except for this detail the two

problems of the pair are identical. If the use of the tested penalty functions really prevents an

algorithm from travelling through the infeasible area, the performance of that algorithm will

become worse when the path is infeasible. Test case 17 is the same as test case 16 except that

the infeasible area separating two feasible regions has a different shape. Test case 18 tests a

different situation where two problems of the pair are almost identical except that in one problem

(G24_6c) the infeasible area separating the two feasible regions is small whereas in the other
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problem (G24_6d) that infeasible area is large. Again, if the use of the tested penalty functions

really prevents an algorithm from searching through infeasible areas, the performance of that

algorithm will become worse in the case the infeasible area is larger.

The experimental results in these three test cases (subplot c, d, e in Figure 5.5, page 123)

confirm that the hypotheses stated in the beginning of this subsection are true. In subplot c

and d, the tested algorithms do suffer when the path between the two regions is infeasible. In

subplot e, the larger the infeasible area separating the two regions, the worse the performance

of the tested algorithms. All in all, the results prove that the combination of existing dynamic

optimisation strategies with the tested penalty functions might be less effective in problems with

disconnected regions and switching optima.

Effect of moving infeasible areas on strategies that track the previous global opti-

mum

The fourth interesting finding is the fact that, algorithms that rely on tracking previous global

optimum as HyperM might become less effective when solving DCOPs where the moving con-

straints expose new, better optima without changing the existing optima. The reason is that

they might not be able to detect changes in such type of DCOPs. As shown below, this behav-

iour of tracking-previous-optimum algorithms also leads to an interesting counter-intuitive fact:

for this type of algorithm, some DCOPs with dynamic objective functions might become easier

to solve than some DCOPs with fixed objective functions. Similar to the case of elitism, the

effect of moving infeasible areas on tracking-previous optimum strategies is also caused by the

nature of the strategies, i.e. it is independent of the combined constraint handling techniques.

Evidence of this behaviour can be found when we tested the algorithms in the test case 15

(Table 5.5), which is a pair of problems with newly better optima exposed by moving constraints.

The two problems in the pair, G24_3 and G24_3b, are almost identical except for that the

former has a fixed objective function while the latter has a dynamic objective function which

changes whenever the environment changes. In other words, the only difference between the two

problems is that in G24_3 the existing optima remain intact after each change while in G24_3b

these existing optima change due to the dynamic of the objective function. This characteristic

makes G24_3 supposedly more easier to solve than G23_3b because it has fewer dynamic

elements.
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However, experimental results in subplot b, Figure 5.5 and in Table 5.7 show that this is

only true with RIGA and GA. In the case of HyperM, the fixed objective function in G24_3

actually makes the problem more diffi cult for HyperM to solve than in G24_3b (in subplot b,

Figure 5.5 we can see that HyperM’s bar in G24_3b is higher than HyperM’s bar in G24_3).

The results show that the "stationary" of existing optima, which is the only difference between

the two problems, must be the reason for the decrease in performance of HyperM in G24_3.

This is an interesting example of how stationary can make the problems more diffi cult, or in

other words how dynamic can help to make the problems easier to solve for certain types of

algorithms.

Because the only difference between HyperM and RIGA/GA is its triggered-mutation strat-

egy, which is specifically for tracking the existing optimum, the decrease in performance of

HyperM must be due to its triggered-mutation strategy. To investigate why HyperM suffers

in problems like G24_3 and why the dynamic of existing optima in G24_3b can help the

algorithm to improve its performance, the newly proposed measures triggered-time count and

detected-change count (see subsection 5.3.2) are used to analyse how the triggered-hypermutation

mechanism works in these two problems. The analysis results indicate that the reason for the less

effi ciency of HyperM in G24_3 is that the algorithm is unable to detect changes. The algorithm

is unable to detect changes because its tracking optima strategy only focuses on monitoring ex-

isting optima, and is hence unable to recognise the newly, better optima exposed by the moving

constraints. As can be seen in table 5.9 (page 131), the algorithm HyperM either is not able

to trigger its hyper-mutation rate to deal with changes (elitism case, triggered-time count=0

and detected-change count=0) or is not able to trigger its hyper-mutation rate correctly when

a change happens (non-elitism case, triggered-time count∼164 and detected-change count∼1.8).

It is interesting to observe that in the non-elitism case, the averaged number of trigger times is

relatively high (164.2) but almost none of these trigger times correlates to the changes in the

landscape, i.e. almost no change is detected. Instead, these trigger times are caused by the

selection process due to the fact that in non-elitism selection the best solution in the population

is not always selected for the next generation.

On the contrary, in problems with dynamic objective function like G24_3b, the analysis

results indicate that the reason why HyperM works well in this problem is that whenever a change

happens, the value of existing optima changes accordingly, hence prompting the algorithm to
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trigger its hyper-mutation rate accurately. As can be seen in table 5.9, after eleven changes the

number of triggered times correlated to a change is also eleven in both the elitism and non-elitism

cases.

Our detailed analysis (not shown) also indicates that the difference in performance of HyperM

between G24_3b and G24_3 becomes larger when the base mutation rate becomes smaller. This

is because, due to its inability to detect changes in solving problems like G24_3, HyperM is not

able to use its triggered hyper-mutation rate. In such case the base mutation rate is the only

option for HyperM to track the newly appearing optimum, and the smaller the base mutation

rate, the less likely that the algorithm is able to track that moving optimum.

All in all, the test results confirm that algorithms relying on tracking the existing optima

as HyperM might become less effective for solving DCOPs where the moving constraints expose

new, better optima without changing the existing optima. This is due to the fact that the

algorithms might not be able to detect changes.

In addition, the results show that for algorithms like HyperM, in certain cases DCOPs with

dynamic objective functions would become easier to solve than DCOPs with fixed objective

functions. In accordance with some recent studies, for example (Rand & Riolo 2005b) and

(Kashtan et al. 2007), the experiment in this subsection provides another evidence of cases

where the presence of dynamics might bring additional benefits to the evolutionary process.

However, in our experiment the role and impact of dynamics in speeding up the search process

are somewhat different from those in (Rand & Riolo 2005b) and (Kashtan et al. 2007). In (Rand

& Riolo 2005b) and (Kashtan et al. 2007), the static problems are deceptive and due to that the

algorithm might be trapped in a local optimum. When a change happens, the dynamic changes

the problems, making them non-deceptive and hence indirectly helps the algorithms to escape

from the current local optimum.

In our experiment, however, the static problem itself is not deceptive. The problem only

becomes deceptive when some dynamics (moving constraints in this case) were introduced,

changing the problem in a way that the changes go unnoticed by algorithms like HyperM. The

interesting part lies in the fact that, when some more dynamic elements are introduced (dynamic

objective function in this case) in addition to the existing dynamics, the problem becomes non-

deceptive again! This is because the new dynamic triggers the diversity-introducing mechanism

of HyperM, making the changes visible to HyperM to react. This experiment is an interesting
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example where while the presence of one dynamic element might make the problem harder to

solve, the occurrence of multiple dynamic elements might together make the problem easier to

solve.

Table 5.9: This table shows the triggered-time count scores and the detected-change count scores
of HyperM in a pair of problems with moving constraints exposing new optima after 11 changes
(see Subsection 5.3.2 for descriptions).

Value stdDev Value stdDev Value stdDev Value stdDev
.HyperMnoElit 164.20 11.29 1.82 0.83 170.27 14.07 11.00 0.00
.HyperM_elit 0.00 0.00 0.00 0.00 30.00 0.00 11.00 0.00
NAO  Newly Appearing Optimum
fF / dF  fixed / dynamic objective Function

Algorithms

G24_3 (NAO+fF) G24_3b (NAO+dF)
Trigger Count Detected Change

Count
Trigger count Detected

Change Count

5.3.4 Possible suggestions to improve the drawbacks of current dynamic op-

timisation strategies in solving DCOPs

In the previous subsections, I have demonstrated that there are some diffi culties when applying

existing dynamic optimisation algorithms directly to solving DCOPs by combining the algo-

rithms with the tested penalty methods. Some of the diffi culties are caused by the use of

the penalty methods, hence we can seek improvements by using different constraint handling

techniques. However, others are caused by the nature of the dynamic optimisation strategies

themselves and hence the strategies need to be modified.

Observations from the experimental results also suggest some suggestions on how to address

the drawbacks listed in the previous subsections. First, based on our observation that elitism

is useful for diversity-maintaining strategies in solving DCOPs, it might be useful to develop

algorithms that support both elitism and diversity maintaining mechanism.

Second, given the fact that methods like HyperM are not able to detect changes because

they mainly use change detectors (the best solution in case of HyperM) in the feasible regions,

it might be useful to use change detectors in both feasible regions and infeasible regions.

Third, because experimental results show that tracking the existing optima might not be

effective in certain cases of DCOPs, it might be useful to track the moving feasible regions

instead. This is because after a change in DCOPs, the global optimum always either moves

along with the feasible areas, or appears in a new feasible area. As a result, if we are able
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to track feasible areas, we can increase the probability of tracking the actual global optimum.

In the static case where the feasible regions do not move, tracking feasible regions still works

because the algorithm can just focus on searching in the fixed feasible areas where the global

optimum is located.

Finally, it might be useful to search in both feasible and infeasible regions. One common

property of the penalty methods/values that I have tested in this section (see Subsection 5.3.2)

is that feasible solutions always have higher fitness values than infeasible solutions and hence

the algorithms might be biased more toward feasible solutions. It has been shown in the ex-

perimental results that such bias mechanism might make the algorithms less effective in solving

DCOPs. Because of that, a good research direction might be to investigate the effi ciency of

other constraint handling techniques which are better in tolerating infeasible solutions. It would

be interesting to see how other penalty functions with less bias feasibility/infeasibility would

perform in solving DCOPs. Alternatively, it would also be interesting to study the performance

of other non-penalty constraint handling methods, especially those that allow searching in the

infeasible regions, in solving DCOPs.

One problem with choosing another existing constraint handling method for solving DCOPs

is that, similar to the case of the tested penalty methods, other constraint handling techniques

are also designed for stationary problems and have been tested in stationary problems only.

Again we have the research question of whether the special characteristics of DCOPs would

have any effect on these constraint-handling techniques and if there is, how can we improve

that.

In the next sections, I will investigate the effect of the characteristics of DCOPs on some

constraint handling techniques and then I will study how to improve any possible drawbacks.

5.4 Diffi culties of some constraint handling strategies in solving

DCOPs - an analysis

Because existing constraint handling (CH) strategies are designed for solving stationary problems

and are tested in stationary problems only, there might be some diffi culties in applying them to

solving DCOPs, even if it is possible to combine them with existing dynamic optimisation (DO)

strategies. The diffi culties come from two main aspects: diffi culties in handling environmental

dynamics and diffi culties in handling constraints.
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In the following subsections, I will first review the two above types of diffi culty in detail. After

that, I will analyse some of these diffi culties in experiments using one typical constraint handling

technique - the repair method firstly proposed by Michalewicz and Nazhiyath (Michalewicz &

Nazhiyath 1995) and implemented in (Michalewicz n.d.). It should be noted that in this section I

do not attempt to provide a comprehensive review of existing constraint handling techniques (for

this purpose readers are referred to recent survey papers, for example the studies and reports in

(Michalewicz 1995, Back et al. 1997, Eiben 2001, Coello Coello 2002, Salcedo-Sanz 2009, Mezura-

Montes 2009)). Instead, I will only study the possible diffi culties of certain classes of constraint

handling strategies, which are still widely used in recent applications, in solving continuous

DCOPs.

5.4.1 Diffi culties in handling dynamics

The most obvious reason for the diffi culties in applying existing constraint handling (CH) strate-

gies to solving DCOPs is the fact that these strategies are not designed to handle environmental

dynamics. Consequently, they will not be able do the required tasks in dynamic optimisation

such as detecting changes, tracking the moving optima, moving from one feasible region to

another following the switch of the optima, and finding newly appearing optima. One might

then raise the question of whether these diffi culties can be overcome by combining existing CH

strategies with existing DO strategies to gain the advantages from the two approaches and to

alleviate the remaining disadvantages. Unfortunately, as will be shown below, not all diffi culties

can be resolved by combining existing CH strategies with existing DO strategies. In addition,

that combination might also bring some new challenges due to the conflict of the optimisation

goals of the two types of strategies.

Because existing CH and DO strategies are designed to satisfy two different goals, it is

important to make sure that both goals are met when we combine a CH strategy with a DO

strategy to solve DCOPs. In many cases, however, to meet both goals in one combination is not

easy. This is because the goal of CH might conflict with the goal of DO and in some cases might

even prevent the goal of DO - handling dynamics - from being accomplished. In this subsection

I will discuss the possible diffi culties that are caused by combining existing CH strategies with

the following existing DO strategies: maintaining diversity, introducing diversity, and detecting

changes based on performance drop.
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Impacts on maintaining/introducing diversity

As already discussed, one of the important strategies in dynamic optimisation is to maintain

or introduce diversity in the whole landscape to detect changes and to find newly-appearing

optima or moving optima. However, when being combined with certain constraint handling

techniques, the goal of diversity maintaining strategies may no longer be guaranteed. In other

words, diversity might not be maintained in the whole landscape.

One of the reasons for this ineffi ciency is that in many constraint handling techniques, the

original search space is specifically transformed so that the search algorithms only focus on

certain areas instead of the whole original search space. In such cases, even if we use a diversity-

introducing strategy such as HyperM to generate diversified individuals in the whole landscape,

those diversified individuals that are generated in the unfocused areas might be neglected by

the algorithms and hence do not contribute to the purpose of maintaining diversity. Typical

examples of constraint handling strategies that adopt this landscape transformation approach

are penalty methods where the constrained search space is transformed to an unconstrained

landscape with penalised fitness values. Another example can be found in some approaches that

use special representation/operators. In these approaches, the algorithms might be restricted to

search only in the feasible regions, in a transformed feasible landscape, or in the boundaries of

feasible regions. Detailed review and references for representative penalty approaches and special

representations/operators approaches can be found in (Back et al. 1997, Coello Coello 2002).

In some other constraint handling techniques, individuals are selected not exclusively based

on their actual fitness values but also on some special specifications. In such cases, the selection

process is biased so that some types of individuals might have more probability of being selected

than some others. For example, in Stochastic Ranking (Runarsson & Yao 2000) infeasible indi-

viduals might have more chances of being accepted depending on the given stochastic parameter.

A counter example can be found in Simple Multimembered ES (Mezura-Montes & Coello 2005)

where infeasible solutions are less likely to be accepted even if they have higher fitness values

than the feasible ones. Another example is in a CH multi-objective approach (Venkatraman &

Yen 2005) where individuals are ranked not entirely based on their original fitness values but also

on the number of violated constraints. In constraint handling techniques like these, diversified

individuals generated by dynamic optimisation strategies might not be selected in the same way

134



5. Analysing DCOPs 5.4. Diffi culties of some constraint handling strategies in . . .

as they were originally designed for, i.e. the number of diversified individuals that are infeasible

might become too large or too small. The way the diversity maintaining strategy work, as a

result, might not be the same as it is in the unconstrained case.

Experimental evidence for the ineffi ciency mentioned in the cases above has already been

shown in Subsection 5.3.3, where we can see that the diversity-maintaining/introducing strate-

gies become less effective when combined with the tested penalty methods.

Impacts on change detection

Another possible diffi culty of combining CH strategies with DO strategies is that the use of some

existing constraint handling techniques might make change detection based on performance drop,

a common DO technique, less effective. As already mentioned in the Subsection 5.3.2, algorithms

like HyperM rely on the decrease in value of the fitness of the best solution over time to detect

changes and to determine if the change is worth dealing with. The algorithm assumes that during

the search process, if there is a degradation in the fitness values of the best solution found in

each generation, there might be a change in the landscape and the previous found optimum

might no longer the best optimum. However, when DO algorithms are combined with some CH

techniques to solve DCOPs, such degradation in best fitness values might no longer be caused

by an actual change in the landscape. Instead, the degradation might be caused either by an

increase in penalty values (as in some dynamic/adaptive penalty methods) or by the elimination

of the current good solutions from the population (as in some ranking-based methods). This

problem of course might affect not only HyperM, but also any other change detection method

that relies on monitoring the drop in fitness values of existing solutions.

One example can be found in some constraint handling techniques such as dynamic penalty

or adaptive penalty e.g. (Joines & Houck 1994, Hadj-Alouane & Bean 1997, Hamida & Petrowski

2000), where the degradation of (modified) fitness values is not caused by environmental changes

but by the increase over time of the penalty values. In these dynamic/adaptive penalty methods,

initially the penalty values are low to tolerate more infeasible solutions. However, over time,

based on the feedback of the algorithm or on the increased length of time, the penalty values

are gradually increased to improve the convergence speed of the algorithm. The consequence

of this dynamic/adaptive scheme is that if the detector solutions used by the change detection

method is infeasible or becomes infeasible, over time their fitness value will decrease. Of course,
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in penalty-based methods, if change detection is made on the original fitness values instead of on

the penalised fitness values, the increase of penalty values will not have any impact on detecting

changes. However, in this case, detecting changes based on the original fitness values might con-

sequently suffer from another problem: changes in constraint functions will go undetected unless

additional improvement is provided to make the method detect constraint changes explicitly.

In some other constraint handling techniques which use ranking-based methods (for example

(Runarsson & Yao 2000, Mezura-Montes & Coello 2005, Venkatraman & Yen 2005)), the degra-

dation of detectors’fitness values might be caused by the fact that during the selection process

the current better solutions might be dropped in favour of other solutions. These solutions

might have worse fitness value but are more useful for the constraint handling process. In these

situations, there might also be a drop in the value of the best solutions at each generation.

The drop in fitness values of the detector solutions in both of the cases above might be

wrongly considered by DO strategies like HyperM to be a change in the environment and this

might consequently trigger the DO strategies to react inappropriately.

5.4.2 Diffi culties in handling constraints

The diffi culties of applying some existing CH strategies to solving DCOPs are caused not only

by their possible weaknesses in handling dynamics (even when combined with existing DO

strategies), but also by the fact that the ability of some CH strategies to handle constraints

might also become less effective in DCOPs. This possible ineffi ciency is due to two reasons.

First, the information that CH strategies have about the problem is not updated after each

change. Second, the strategies themselves also do not update in accordance with changes in the

environment. I will discuss these two reasons in detail below.

The issue of outdated information

One of the common diffi culties for an algorithm to solve dynamic problems is that after a change

all existing information that the algorithm has achieved or has been given about the problem

might become outdated. If an algorithm continues to use its outdated knowledge about the

previous problem to solve the newly changed problem, its performance might become less ef-

fective. For example, in algorithms using strictly feasible reference individuals like Genocop

III (Michalewicz & Nazhiyath 1995, Michalewicz n.d.), after a change the population of feasi-

ble reference individuals found by the algorithm might no longer contain all feasible solutions
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because the change has made some feasible solutions infeasible. Similarly, in some "decoder"

methods the reference lists for ordinal representations (for example the ordered lists of cities

(TSP (Grefenstette et al. 1985))/ ordered lists of knapsack items (KSP (Michalewicz 1997)) /

order lists of tasks (scheduling (Syswerda 1991)) ) might no longer be in order after a change

because the cities/items/tasks have changed their values. Another example can be found in dy-

namic/adaptive penalty methods e.g. (Hadj-Alouane & Bean 1997, Hamida & Petrowski 2000)

where the penalty parameters learnt by the methods might no longer be suitable because the

balance between feasible solutions and infeasible solutions has changed.

In order to resolve this diffi culty, algorithms solving dynamic problems might need to be

equipped with special mechanisms which allow them firstly to be able to detect the moment

when a change happens and secondly to update their knowledge about the problem whenever

a change happens. Because they are not specifically designed to handle dynamics, many of the

existing CH strategies obviously do not have the necessary tools either to detect changes or to

update their knowledge about the problem after changes. As already discussed in Subsection

5.4.1, one suggestion for improvement is to combine existing CH strategies with existing DO

strategies. However, even if such combination is possible, there are still two remaining problems.

First, as discussed in subsection 5.4.1, even if we combine existing CH strategies with existing

DO strategies, the task of detecting changes and updating problem information might still be

diffi cult due to the special characteristics of some existing CH strategies. As already shown

in Subsection 5.4.1, the implementation of some CH techniques might prevent existing DO

strategies from handling the environmental dynamics effectively. The experimental results in

Section 5.3.3 illustrate an example where the combination of existing DO strategies with penalty

methods suffers from many diffi culties in solving the tested DCOPs.

Second, there might be cases where the problem-specific information is given by users/designers

and when a change happens, this information can only be updated by users/designers. The re-

quirement of information being updated by users/designers, however, might not be applicable

in many cases where the dynamic problems are solved online because users/designers might

not know when a change happens and how a change happens. Examples of CH algorithms

that require problem-specific information can be found in many decoder/repair/special-operator

methods reviewed in (Coello Coello 2002) and (Salcedo-Sanz 2009).

All in all, the discussion above shows that their original designs might make it diffi cult for
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some representative CH strategies to update their information/knowledge about the problem

after a change happens. This shortcoming, in turn, makes these strategies work less effectively

in handling the constraints in DCOPs. Later in subsection 5.4.4, I will analyse some experi-

mental results showing how the issue of outdated information can affect the performance of one

constraint handling technique - the repair method introduced in Genocop III (Michalewicz &

Nazhiyath 1995, Michalewicz n.d.).

The issue of outdated strategy

Another diffi culty of applying some of the existing CH strategies to solving DCOPs is that,

even if they are able to update their knowledge/information about the problem after a change,

they might still not be able to work most effectively because the strategies themselves are also

outdated.

Strategy-being-outdated might occur when we use CH strategies that have problem-dependent

parameters, whose values might be tailored to work best in only one (class of) stationary envi-

ronment, to solve a DCOP. In such cases, if we fine-tune the parameter values for the problem

before change, the algorithm might only work well until the moment when a change happens. If

after a change the search landscape is represented by a problem of a different type, the strategy

no longer works effectively. Typical examples of CH strategies that use problem-dependent para-

meters are penalty methods with pre-defined penalty factors and/or other pre-defined parameter

that control how the penalty is defined (e.g. the target feasible ratio in the ASCHEA method

(Hamida & Schoenauer 2002)). It has been reported (Smith & Coit 1997, Coello Coello 2002)

that many penalty methods (static and dynamic) are sensitive to the values of penalty factors

and/or other parameters, and that a parameter value that works well for one stationary prob-

lem might not work for another. Because of that, if different stages of a dynamic environment

represent different problems, there might be no pre-defined penalty factor/parameter that can

help the mentioned penalty methods to work well in that dynamic environment. Other examples

of CH strategies that use problem-dependent parameters can be found in some combinatorial

repair methods, methods with special operators, and decoder methods. A detailed review of

these approaches can be found in (Coello Coello 2002) and (Salcedo-Sanz 2009)).

We believe that strategy-being-outdated might also occur with many adaptive CH strategies

that are not problem-dependent in spite of the fact that they are considered as robust and/or
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adaptive to solving different types of stationary constrained problems. As will be shown below,

the reason for these classes of strategies becoming outdated in solving DCOPs is that they

rely on some specific assumptions that are only true in stationary problems. In DCOPs these

assumptions might become outdated once a change happens and consequently the corresponding

strategies are also outdated.

Typical types of CH strategies in this class are self-adaptive fitness formulation (Farmani &

Wright 2003) and the state-of-the-art method stochastic ranking (Runarsson & Yao 2000). The

general approach of these strategies is to take feedbacks from the population during the search

process and try to balance feasibility/infeasibility based on the performance of the current pop-

ulation, assuming that because the landscape is static, the feedback from the population always

reflects a "memory" of information about the landscape and information about the convergence

of the search process. In stationary constrained problems where initially the population covers

the whole landscape and then gradually converges to specific areas, the above strategies can

help to guide the population to converge to the correct global optimum in the feasible region.

In dynamic environments, however, such strategies might become less effective because their

assumption that the population always carries correct information about the landscape might

no longer be true if a change happens. When a change happens, the search landscape might

change its shape and consequently the "memory" of the population no longer reflects the prop-

erty of the new landscape but only a small area where the population currently is. Even worse,

the population might have already converged to a certain area and consequently the algorithm

might not be able to explore other areas to find the new global optimum. Because strategies

such as self-adaptive fitness formulation and stochastic ranking rely on the current population to

handle constraints, if the current population cannot cover the search landscape properly these

strategies will become less effective, or in other words become outdated with respect to the

newly changed landscape.

Another type of CH strategies that rely on outdated assumptions are dynamic/adaptive

CH strategies that rely on the running time value (e.g. the number of generations so far) to

balance feasibility and infeasibility. CH strategies of this type e.g. (Joines & Houck 1994, Hadj-

Alouane & Bean 1997, Hamida & Schoenauer 2002) also assume that the population can capture

the information about the landscape. However, different from the strategies mentioned in the

previous paragraph, runtime-relying strategies handle constraints by increasingly rejecting more
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infeasible solutions as time goes by to increase the convergence speed to good regions. Again,

because the assumption that the population can capture the property of the search space might

no longer be true in dynamic environments, it follows that this approach might no longer be

effective due to the occurrence of changes. For example, after a change in the landscape, the

area to which the algorithm is converging might no longer contain the global optimum. In this

case, if the CH strategy still imposes its previous balancing mechanism to increase convergence

speed, the algorithm could end up converging to the wrong place and will not be able to track

the moving optima.

Later in Subsection 5.4.4, I will analyse some experimental results showing how the issue

of outdated strategy can affect the performance of a constraint handling technique, the repair

method introduced in Genocop III (Michalewicz & Nazhiyath 1995, Michalewicz n.d.).

5.4.3 Possible suggestions to improve the drawbacks of current constraint

handling strategies in solving DCOPs

The discussions in the two previous subsections show that, in order to handle constraints ef-

fectively in DCOPs, a constraint-handling strategy might also need to satisfy the requirements

below:

1. It is necessary to make sure that the goal of handing constraints is not affected by the goal

of handling dynamics. Particularly:

(a) Diversified individuals might need to be distributed in all areas of the search space.

In other words, CH strategies should not restrict those individuals generated for

diversity purpose to only certain areas of the search space

(b) Diversified solutions might need to be accepted at an acceptable rate or are introduced

frequently to maintain diversity. In other words, CH strategies should not reject

diversified individuals

(c) Special attention might need to be made if change detection is undertaken by mon-

itoring the fitness values of current individuals (when there is a drop of individual’s

performance, we need to check to see if the drop is really caused by an environmental

change).
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2. It is necessary to make sure that the algorithm is updated whenever a change happens.

Particularly:

(a) If an algorithm uses any knowledge about the problem to handle constraints, that

knowledge needs to be updated whenever a change happens. This requires that in case

the time of change is not known, an (implicit or explicit) change detection method

needs to be implemented.

(b) The constraint handling strategy might also need to be updated whenever a change

happens.

(c) The strategy should avoid using problem-dependent information because it might not

be possible to update this type of information.

In order to work well in DCOPs, an algorithm needs to handle both environmental dynamics

and constraints effectively. It means that a "good" algorithm for DCOPs needs to satisfy not

only the requirements for handling constraints above but also the four requirements for handling

dynamics identified in Subsection 5.3.4.

5.4.4 Experimental analyses

In this subsection I will carry out an experimental analysis to test the performance of the

repair method, a representative CH strategy, in the G24 benchmark set. The purpose of the

experimental study is to answer two questions. First, we would like to study the usefulness of

the repair method in solving DCOPs. Second, we would like to verify if our hypotheses about

the diffi culties of DCOPs toward CH strategies, as mentioned in section 5.4.2, are true. In

case the hypotheses are true I also would like to investigate how significant these diffi culties

would affect the performance of CH strategies (in particular the repair method in this case) in

solving DCOPs. The result will help us to gain more understanding about how to design better

algorithms to solve DCOPs.

Chosen constraint handling technique for the analysis

For this analysis I choose the repair method introduced by Michalewicz and Nazhiyath in

(Michalewicz & Nazhiyath 1995), revised and implemented in (Michalewicz n.d.). There are

four reasons to choose this CH technique. First, the method is representative. It represents

a broad class of current CH techniques that do not use penalty functions but take feedbacks
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from the search process to adaptively balance feasibility/infeasibility. The repair method also

represents many current methods that use repair operators in solving constrained problems. I

suspect that the repair method also has the major two possible drawbacks shared by existing

CH strategies in handing constraints for DCOPs (as pointed out in section 5.3.2): outdated

information and outdated strategy (as shown in Table 5.10). By testing this method, we will

be able to verify whether these two drawbacks really bring any negative effect to existing CH

strategies, and how significant is the effect.

Second, we believe that the repair method has some traits that make it more robust than

some other CH techniques in solving DCOPs. Table 5.10 shows that the repair method satisfies

many of the requirements suggested for solving DCOPs, and especially it is possible to modify

the method to satisfy all requirements. I am interested in how the special characteristics of

DCOPs would affect such a robust CH technique. I am also interested in modifying robust

techniques like the repair method to work better in DCOPs. By choosing the repair method for

this experiment, we will have more knowledge to answer these two questions.

Third, the repair method is simple, easy to implement and is integrated with a GA-based

algorithm (Genocop III). Using the method makes it easier to compare its performance with the

existing DO algorithms: GA / RIGA / HyperM that I have tested in Subsection 5.3.3. Using

the method also makes it easier to integrate the method with other DO and CH strategies to

develop new algorithms for solving DCOPs.

Finally, different from most other repair mechanisms, the repair method proposed in (Michalewicz

n.d.) is problem-independent and is designed specifically for the continuous domain. This char-

acteristic makes the method perfectly suitable for our purpose of testing CH strategies in our

continuous benchmark set G24. The method also facilitates us in developing new algorithms to

solve continuous DCOPs in future research.

142



5. Analysing DCOPs 5.4. Diffi culties of some constraint handling strategies in . . .

Table 5.10: In order to solve DCOPs effectively, a constraing handling method might need
to satisfy a number of requirements as suggested in subsections 5.3.4 and 5.4.3. This table
shows us how many requirements have been satisfied by the repair method implemented in
(Michalewicz n.d.), and how many requirements can be satisfied if we modify the method.
Requirements Satisfy? Modifi

able?
How does it satisfy? / Why is it modifi-
able to satisfy?

Suggested requirements to handle dynamics in DCOPs (Subsection 5.3.4)

Elitism Yes Yes The reference population contains elitist
members

Diversity maintaining Partly Yes The method itself has good diversity. In
addition, its mutation can be modified to
increase diversity

Search in feasible and infeasi-
ble region

Yes Yes The search population accepts both fea-
sible and infeasible individuals provided
that they can offer good repaired solutions

Track the moving feasible re-
gions

Partly Yes The repairing process is able to pro-
duce feasible individuals for the tracking
process

Change detection in feasible
and infeasible regions

No Yes The method can be integrated with a
change detection mechanism

Suggested requirements to handle constraints in DCOPs (Subsection 5.4.3)

Diversified individuals cover
the whole search space

Partly Yes The method does not restrict its search
operation to any specific area nor trans-
form the original landscape to a limited
search space

Diversified individuals are
retained/ re-introduced
frequently

Partly Yes Diversified individuals are accepted re-
gardless of their feasibility provided that
they can offer good repaired solutions

Drop in best fitness values
are caused by environmental
changes only?

Yes Yes In the latest version (Michalewicz n.d.),
best fitness values are also the best feasi-
ble objective values. Because of that, if
there is any drop in the best fitness val-
ues, it means that the objective function
changes.

Update problem information
after each change?

No Yes The algorithm takes feedback from the
population to update its information. By
appropriately updating the population we
will be able to update the algorithm

Update CH strategy after
each change?

No Yes The method takes feedback from the pop-
ulation to update its information. By up-
dating the population we will be able to
update the algorithm

Use problem-independent in-
formation only?

Yes Yes The method only use problem-
independent information
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Repair algorithms & the repair method in Genocop III

General ideas Repairing infeasible solutions is a common approach widely used in many

different EAs to solve combinatorial and continuous constrained problems. The idea is that,

if it is possible to map (repair) an infeasible solution to a feasible solution, then instead of

searching the best feasible solution directly, it might be possible to look for an individual that

can potentially produce the best repaired solution. To implement such a type of search, it is

necessary to change the way the fitness value of an individual is calculated. Instead of being

based on its objective value, now the fitness value of an individual is calculated based on the

quality of the corresponding repaired solution. The better the repaired solution, the higher the

fitness value of an individual. In certain cases, the feasible solution created by the repair process

can also be used to replace some of the search individuals.

In general, a repair approach can be represented in three steps as follows:

1. If a newly created individual s (can be feasible or infeasible) needs repair, use a heuristic

repair () to repair s, mapping s to a new, feasible individual z.

2. The objective value f (z) of z then is used as input to calculate the fitness value of s, i.e.

eval (s) = h (f (z)) where h is the mapping from objective values to fitness values.

3. If the repair approach is Lamarckian, replace one or some search individuals by z

The repair method used in this experiment was firstly proposed in (Michalewicz & Nazhiyath

1995) and was integrated as a part of the Genocop III algorithm (Michalewicz n.d.), which is

designed for continuous domain. This method also follows the general three steps given above,

in which the repair () heuristic can be described as follows:

1. The population is divided into two sub-populations: a search population S containing

normally-evolving individuals, which can be fully feasible or only linearly feasible, and a

reference population R containing only fully feasible individuals.

2. During the search process, while each individual r in the reference population R is evalu-

ated using their objective function as usual, each individual s in the search population S

is considered to be repaired based on an individual from R. Detail of the repair routine

can be found in the prosecode of the routine Repair in Algorithm 9 (page 151).
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It is important to note that there are two possible variants of deciding whether a search

individual s needs to be repaired in Genocop III (step 2 above). In the first variant described

in (Michalewicz & Nazhiyath 1995), it is stated that a search individual s should be repaired

only if s is infeasible. In such case, after the repair process the fitness value of s will be equal to

the fitness value of the mapped solution z (see the three-step procedure above), i.e. eval (s) =

eval (z) = h (f (z)). If s is feasible, it will still have its original fitness value, i.e. eval (s) =

h (f (s)). However, in the latest version of Genocop III provided by the authors (Michalewicz

n.d.), the implementation of the algorithm shows that search individuals are repaired in any

case regardless of their feasibility. This difference in implementations leads to different ways

of selecting individuals in the two variants. In the first variant, search individuals have more

chance to be selected for the next generation if they either found a good feasible solution or

produced a good repaired solution. In the second variant, the way individuals are selected is

only based on their performance in producing good repaired solution.

In all experiments in this chapter, I choose to implement the second variant of the repair

method, i.e. to repair search individuals regardless of their feasibility. I choose this variant

because it is implemented in the offi cial source code provided by the authors. In addition,

this variant is the latest version and hence should supposedly be better than the earlier ver-

sion. Experiments on the first variant of the repair method will be carried out in our future

investigations.

From now on, in this chapter unless stated otherwise we will use the term repair method to

refer to the continuous-based repair approach proposed in (Michalewicz n.d.).

Feasibility/infeasibility balancing strategy and problem knowledge in the repair

method Before taking analysis on the repair method, we need to understand the strategy

that the method uses to balance feasibility/infeasibility, and the type of problem information

that the method uses to guide the strategy in solving constrained problems.

Repair method and other repair approaches have the ability to adaptively balance feasibility

and infeasibility. This balance is achieved by two procedures. First, the method accepts both

infeasible individuals and feasible individuals, provided that they can produce good repaired

solutions. This is because individuals are evaluated not based on their actual objective values

or feasibility, but on how good the feasible, repaired solutions that they produce are. This is
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accomplished by updating the fitness value eval (s) of each search individual s with the objective

value f (z) of the repaired solution z i.e. eval (s) = h (f (z)). Second, by updating the fitness

values of search individuals like that, the repair method ensures that while infeasible solutions

are accepted, they cannot have better fitness value than the best feasible solution available.

In order to work effectively, the strategy above needs certain type of problem information,

which is provided by the reference population and the search population. The reference pop-

ulation is an essential source of information for the balancing strategy to direct the algorithm

toward promising feasible regions. This is because, during the repair process (see the Repair

routine in Algorithm 9, page 151), newly repaired solutions are always generated in the lines

toward reference individuals (for each search individual, repaired solutions are generated in the

segment between that search individual and a reference individual). The reference individuals

also provide the balancing strategy with information about the best feasible solution available

(via their fitness values) so that the strategy can make sure that no infeasible individual can

have better fitness values than that.

The search population is also an essential source of problem information for the balancing

strategy. This is because the fitness values of search individuals help to indicate which point in

the landscape would lead to the potentially promising feasible region (via the repair process). In

the selection phase the balancing strategy then uses that information to select those individuals

that would potentially lead to the most promising regions.

How can the characteristics of DCOPs affect repair method? As mentioned earlier,

although the repair method has some advantages in solving DCOPs as shown in Table 5.10, I

suspect that the method still suffers from the problem of outdated information, which in turn

makes the feasibility/infeasibility balancing strategy become outdated.

The first type of information that might become outdated when a change happens is the

fitness values of search individuals. Because the fitness value of a search individual is always

based on the objective value of the feasible solution repaired by that individual, it is assumed that

the search population always offers a "memory" of good areas in the landscape and directions

toward these good areas. The direction can be interpreted as: the higher the fitness value of an

individual, the better the feasible region we can get by repairing that individual.

This assumption is true in stationary environment because the "memory" is never outdated.
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However, in dynamic environment, the memory, or fitness values of search individuals, can

become outdated right after a change if the objective values of the corresponding repaired

solutions change. Particularly, the high fitness values of existing individuals might no longer

lead to good repaired solutions and vice versa. Even worse, search individuals with high-but-

outdated fitness values might even wrongly bias the selection process and hence make the search

process less effective. Search individuals can only become updated if we keep repairing them

at every generation. However, in the repair method this is not always the case because not all

individuals are selected for the repairing process at each generation.

The second type of information that might become outdated when a change happens is the

reference individuals, which are used to repair all other search individuals. The key assumption

in the repair method is that all reference individuals are feasible and are the best in the pop-

ulation. This assumption is only true in stationary environments. In dynamic environments,

after a change happens, some existing reference individuals might no longer remain the best

in the population or might even become infeasible. These outdated reference individuals not

only violate the assumption named above but might also wrongly bias the search and drive

more individuals away from the good regions, making the search process less effective. Be-

cause the reference individual only evolves after a certain period (100 function evaluations as in

(Michalewicz n.d.)), if there is any change occurs during that period, reference individuals are

likely to become outdated.

In the following experiments I will analyse if our hypotheses about the effects of DCOPs’

characteristics on repair methods are correct and how significant the effects are. The experiments

will also help us to verify if our hypothesis about the usefulness of the repair method in solving

DCOPs is true.

Test settings

Tested algorithms Although in (Michalewicz & Nazhiyath 1995) and (Michalewicz n.d.) the

repair method is integrated with Genocop III, this method is algorithm-independent and can

be integrated with many different continuous evolutionary optimisation algorithm. In the ex-

periment in this section, I choose to integrate the repair method with basic GA. The integrated

version is called GA+Repair and is described in detail in Algorithm 8 (page 150). There are two

reasons to choose GA+Repair as the tested algorithm in this experiment. First, GA+Repair
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makes it possible to analyse the strengths and weaknesses of the repair strategy. In the original

version (Genocop III), it is diffi cult to analyse if the reason for any increase/decrease in per-

formance is due to the repair method because Genocop III implements multiple CH strategies

(beside the repair operator, there are ten other specialised operators to handle linear constraints).

By integrating just only the repair operator with basic GA in GA+Repair, it would be easier

to analyse the effect of the repair method: any difference in performance between GA+Repair

and basic GA would be caused by the repair operation.

Second, GA+Repair makes it possible to compare the usefulness of the repair method in

solving DCOPs with other DO strategies previously tested in this chapter. Because all other

strategies are tested when they are integrated with basic GA, it is natural that in order to

compare the repair method with these strategies we should also integrate the method with GA.

Because the purpose of GA+Repair is to evaluate the repair operation only, the algorithm

is significantly simpler than Genocop III although both algorithms use exactly the same repair

operator. The differences between GA+Repair and Genocop III are: (1) GA+Repair does not

have any specialised method to handle linear constraints like Genocop III. Because of that, in-

dividuals in the search population are not required to satisfy linear constraints as in Genocop

III. GA+Repair also does not require that nonlinear and linear constraints have to be treated

differently as in Genocop III; (2) GA+Repair only has two normal GA operators: crossover

and mutation compared to ten specialised operators in Genocop III; and (3) while Genocop III

allows about 25% of the repaired individuals to replace individuals in the population (Lamar-

ckian evolution), in GA+Repair none of the repaired individual is used to replace the original

individuals (Baldwinian evolution). The reason is that according to the study in Subsection

6.4.5 and in (Nguyen & Yao 2010b), we found that the use of Lamarckian evolution does not

significantly increase or decrease the performance of Genocop III in solving DCOPs.

Despite the difference above between GA+Repair and Genocop III, I observe that both

algorithms have very similar behaviours when solving different groups of DCOPs in the G24

benchmark set. It means that Genocop III also shows the same advantages and disadvantages

as GA+Repair when solving DCOPs, except that Genocop III has an overall better performance

when handling constraints thanks to the additional CH methods. The similarity in behaviours

of GA+Repair and Genocop III suggests that the result tested with GA+Repair can be gener-

alised to other approaches that use the repair method. For a detailed results of Genocop III’s
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performance in the G24 benchmark set and a comparison of its performance with other existing

and new algorithms, readers are referred to our other study in Chapter 6 and in (Nguyen &

Yao 2010b).

Parameter settings The tested algorithms use the same parameter settings as the previ-

ously tested GA, RIGA, and HyperM except that the population now is divided into a search

population and a reference population (see Table 5.6, page 113), as implemented in the original

Genocop III algorithm (Michalewicz n.d.).

Performance measures To carry out the analysis, I use three different types of measures.

The first measure, which is our modified version of the off-line error measure (see Subsection

5.3.2), is used to evaluate/compare the general performance of the GA+Repair. Similar to the

previous experiment, using this measure I will also firstly summarise the average performance

of GA+Repair in each major group of problems (see test results in Figure 5.7, page 151) and

secondly investigate the effect of each problem characteristic on GA+Repair by analysing their

performance in 21 test cases shown in Table 5.5 of Section 5.2 (see test results in Figure 5.4,

page 122 and Figure 5.5, page 123).

The second and third measures, which are our newly proposed measures, are both used to

analyse the behaviour of the repair method in DCOPs. The second measure, named plot of

number of reference individuals that are feasible, is used to analyse the behaviour of the repair

method when some reference individuals become outdated due to environmental changes - see

Figure 5.8 (page 155). The third measure, named plot of number of feasible individuals in

each disconnected feasible region, is used to analyse the ability of repair methods to balance

feasibility and infeasibility in problems with optima switching between disconnected feasible

regions - see Figure 5.9 (page 156). Details of these two measures will be described in the

following subsections.

The impact of outdated information/strategy on the performance of the repair

method

Overall observation of performance in groups of problems To analyse the overall per-

formance of the repair method, I firstly study the average performance of GA+Repair in each

major group of problems (Figure 5.7) and then study the performance of the algorithm in pair

of problems with different characteristics (Figure 5.4, page 122 and Figure 5.5, page 123). The
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Algorithm 8 GA+Repair
Note: It is assumed that the problem is maximisation

1. Initialise:

(a) Randomly initialise m individuals in search pop S

(b) Initialise n individuals in the reference population R

i. Randomly generate points until a feasible r is found
ii. Update the fitness value of r: eval (r) = f (r) and add r to R

iii. Repeat step 1(b)i until n individuals are found

2. Search: For i = 1 : m

(a) p1 = U (0, 1) ; p2 = U (0, 1)

(b) Crossover : If (p1 < PXover)

i. Use nonlinear ranking selection to choose a pair of parents from S

ii. Crossover an offspring s from the chosen parents

iii. Evaluate s and repair s using the routine Repair (s)
iv. Use nonlinear ranking selection to replace one of the worst individuals in S by s

(c) Mutation: If (p2 < PMutate)

i. Use nonlinear ranking selection to choose a parent from S

ii. Mutate an offspring s from the chosen parent

iii. Evaluate s and repair s using the routine Repair (s)
iv. Use nonlinear ranking selection to replace one of the worst individuals in S by s

(d) Otherwise: If (p1 > PXover) and (p2 > PMutate)

i. Use nonlinear ranking selection to choose an individual s from S

ii. If s has not been evaluated since the last generation, evaluate s
iii. Repair s using the routine Repair (s)
iv. Using nonlinear ranking selection to replace one of the worst individuals in S by s

3. Evolve the reference population after each 100 evaluations: For i = 1 : n

(a) Crossover : If (U (0, 1) < PXover)

i. Use nonlinear ranking selection to choose a pair of parents from R

ii. Crossover an offspring r from the parents

iii. If r is feasible

A. Evaluate r and x,the better of the two parents
B. If f (r) better than f (x) then x = r and fitness value eval (x) = f (r)

(b) Mutation: If (U (0, 1) < PMutation)

i. Use nonlinear ranking selection to choose a parent x from R

ii. Mutate an offspring r from x
iii. If r is feasible

A. Evaluate r and x
B. If f (r) better than f (x) then x = r and fitness value eval (x) = f (r)

4. Return to step 2 150
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Algorithm 9 routine Repair(Indiv s)

1. Randomly pick an individual r ∈ R

2. Generate individual z in the segment between s and r

(a) a = U (0, 1)

(b) z= a.s+(1− a) .r
(c) While z is infeasible, back to step 2a

(d) If a feasible z is not found after 100 trials, z = r and eval (z) = eval (r)

3. (a) Evaluate z

(b) If (f (z) better than f (r)) then r = z; eval (r) = f (z)

(c) Update the fitness value of s: eval (s) = f (z)

4. Return the individual s
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Figure 5.7: This figure shows the performance of GA+Repair compared with the worst and
best performance of existing dynamic optimisation algorithms (GA, RIGA and hyperM) in
different groups of problems. As in Figure 5.3, algorithms’performance is evaluated based on
how many times they are better than the base-line error, which is the worst (largest) error
among all algorithms. This score is represented in the vertical axis. The horizontal axis shows
different group of problems. Explanations for the abbreviations of problem groups can be found
in the caption of Figure 5.3.

performance in groups generally confirm our hypotheses about the advantages and disadvantages

of the repair method in solving DCOPs.

In the group of stationary constrained problems (fF, fC), the results in Figure 5.7 show that as

expected, a specialised CH technique as the repair method in GA+Repair is much more useful
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than methods not designed for handling constraints as existing DO algorithms. GA+Repair

performs significantly better than the existing DO algorithms by factors of 6.4 to 45.44. In

stationary unconstrained group (fF, noC), also as expected the repair method in GA+Repair is

no longer particularly useful. Figure 5.7 shows that GA+Repair also performs worse than all

other methods in dynamic, unconstrained problems (dF, noC).

In the groups of DCOPs (fF+dC, dF+fC, dF+dC), things are different. Although GA+Repair

works very well in stationary constrained cases as mentioned above, the algorithm becomes less

successful in the dynamic cases. As can be seen in Figure 5.7, in DCOPs the difference between

GA+Repair and GA is no longer as significant as it is in the stationary constrained case, mean-

ing that the performance of GA+Repair significantly decreases (by factors of 5.2 to 41.3). This

happens in all three cases of DCOPs: where only the constraints are dynamic (fF, dC); where

only the objective functions are dynamic (dF, fC) and where both constraints and objective

functions are dynamic (dF, dC).

Details of the impact of dynamic objective function on the repair method can be seen in

the pair-wise comparisons in plot c and plot d of Figure 5.4 where GA+Repair is tested in pair

of almost identical constrained problems except for that one has a fixed objective function and

the other has a dynamic objective function. As can be seen in these plots, the performance of

GA+Repair is significantly decreased in case the objective function is dynamic. The difference

in performance of GA+Repair between the two problems of each pair is significantly larger

than that of GA and existing DO algorithms, meaning that the presence of dynamic objective

function has a much greater impact on repair method than on GA and existing DO methods.

Details of the impact of dynamic constraints on the repair method can be seen in the pair-

wise comparisons in plot i of Figure 5.4 and plot a of Figure 5.5 where GA+Repair is tested

in pair of almost identical constrained problems except for that one has fixed constraints and

the other has dynamic constraints. Similar to the previous case, the results also show that the

performance of GA+Repair is significantly decreased in case the constraints are dynamic and

that the presence of dynamic constraints has a much greater impact on repair method than on

GA and existing DO methods. This significant impact of DCOP’s environmental dynamics on

GA+Repair’s performance proves our hypothesis that repair method suffers from diffi culties in

solving DCOPs.

However, although the presence of environmental dynamics does significantly degrade the
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performance of GA+Repair, in Figure 5.7 it is interesting to see that the algorithm still has

better performance than existing DO algorithms (only that the difference become significantly

smaller in the dynamic cases). This observation proves our hypothesis that the repair method

has some characteristics that make it very promising for solving DCOPs.

Another interesting, and somewhat counter-intuitive observation in our experiment is that

the presence of constraints do not make the problems more diffi cult to solve by GA+Repair.

Instead, I found that the presence of constraints always help GA+Repair to work better. Evi-

dence can be found in the pair-wise comparison in plots a, e, f, j, k, l of Figure 5.4 and in plot h

of Figure 5.5 where GA+Repair always has better performance in the problem with constraints

than in the problem without constraints. The experiment also shows that GA+Repair has bet-

ter performance in case there is an infeasible barrier separating two feasible regions, and that

the larger the barrier, the better the performance of GA+Repair (see plot d, e in Figure 5.5).

I found that these two behaviours are due to the nature of the repair method in handling con-

straints. This is also one of the reasons why we believe that repair method has some advantages

in solving DCOPs. A detailed analysis of this behaviour will be provided in Chapter 6.

The experimental results above confirms that the presence of dynamic does have a significant

effect on the performance of the repair method. Now it would be interesting to see if that

effect is indeed caused by the outdated problem information (reference individuals and search

individuals) and by the outdated balancing strategy as suspected in our hypothesis. In order to

answer this question, I will undertake a further analysis as can be seen below.

Analyse the behaviours of outdated reference individuals As recalled in subsection

5.4.4, I suspected that the reason for GA+Repair to work less effective in dynamic constrained

problems is that the algorithm might have outdated information and its strategy might also

become outdated. One type of outdated information is outdated reference individuals, in which

some members of the reference population might have their objective values changed or even

become infeasible after a change. Because the core idea of the repair method is based on the

reference individuals, if these individuals are not updated, the algorithm would not be able to

run correctly.

To test if the algorithm is able to update the reference individuals properly, I use our proposed

measure: plot of number of reference individuals that are feasible (mentioned in subsection 5.4.4).
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If the algorithm is able to update the reference individuals properly, it should be able to maintain

a reference population of all feasible individuals all the time during the search process.

The most suitable environments to test this behaviour of repair method are DCOPs with

dynamic constraints where after each change the previous best feasible solutions are hidden by

the moving infeasible region. In the G24 benchmark set, the problems that have this property

are the G24_4, G24_5 and G24_7. G24_4 and G24_5 belong to the problem group dF,dC

while G24_7 belongs to the problem group fF,dC (see Figure 5.7). As discussed earlier, in both

groups the performance of GA+Repair decreases significantly compared to the case where the

constraints are fixed (fF,fC).

In this analysis we will see if the moving infeasible region makes any of the reference individ-

uals to become infeasible. If no reference individual becomes infeasible, after each change the

total number of feasible reference individuals should remain to be five. If one or more individuals

do become infeasible, there should be a drop in the total number of feasible reference individuals.

In that case, it is likely that reference individuals being outdated is one of the reason that make

the repair method works less effectively in G24_4, G24_5 and G24_7.

The plot of number of reference individuals that are feasible of GA+Repair is given in Figure

5.8. The figure shows that, in all cases the original repair method is not able to keep all reference

individuals feasible during the search. When a change happens, the number of feasible reference

individuals drops to a very low level. Although the algorithm is able to slowly recover from

the drop (i.e. the number of individuals that are feasible increases over time), in most of the

time the number of feasible reference individuals is much lower than five. This violates the

requirement of the original repair method that the reference population needs to contain only

feasible solutions.

The results confirm our hypothesis that after a change, the algorithm’s problem information,

which in this case is the population of reference individuals, has become outdated and conse-

quently might wrongly bias the algorithm to wrong directions. The reason for this behaviour is

that after each change, the infeasible regions moves and hide the currently best region, which

contains most of the reference individuals. This makes these individuals become infeasible.

Analyse the behaviours of the outdated balancing strategy In Subsection 5.4.4, I also

suspected that individuals-being-outdated can also have a negative impact on the balancing
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Figure 5.8: This figure shows how GA+Repair maintains feasible reference individuals in prob-
lems with moving infeasible regions. The total number of reference individuals is five. The plot
in the figures shows, among these five reference individuals, how many are actually feasible dur-
ing the search process. As can be seen, GA+Repair is not able to keep all reference individuals
feasible during the search. Instead, after each change the number of feasible individuals drops
to a very low level.

strategy, which balances feasibility and infeasibility, of the repair method. To test if the algo-

rithm is still able to balance feasibility/infeasibility properly in dynamic environments, I use

our proposed measure: plot of number of feasible individuals in each disconnected feasible region

(mentioned in subsection 5.4.4) to monitor the number of feasible individuals in each discon-

nected feasible region and the ratio of feasibility/infeasibility. If the balancing mechanism works

well in the DCOP case, it should be able to manage a good distribution of individuals so that

the better feasible regions should have more feasible individuals.

The most suitable environments to test this behaviour of existing repair method are DCOPs

with two disconnected feasible regions where the global optimum keeps switching from one

region to another after each change or after some consecutive changes. In the G24 benchmark

set, the problems that have this property are the G24_1, G24_2, G24_3b, G24_4, G24_5,

G24_6a, G24_6c, G24_6d, and G24_8b where the global optimum switches from one region

to another after each period of one or two changes. All these problems belong to the group SwO

in Figure 5.7 (page 151), where we can see that the performance of GA+Repair significantly

decreases compared to the stationary constrained case (fF, fC). In such SwO problems like

these, if the balancing mechanism of GA+Repair works well, at each period between changes

the algorithm should be able to focus most feasible individuals on the region where the global

optimum currently is while still maintain the same ratio of feasibility/infeasibility for diversity
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Figure 5.9: This figure shows how the balance strategy of GA+Repair distributes its feasible
individuals in disconnected feasible regions. The problems tested in this figure are those with
global optima switching between two disconnected feasible regions. The plot lines with circles
show the number of feasible individuals in region 1, and the plain plot lines show the number
of feasible individuals in region 2. If the balance strategy works well, most individuals should
be focused on the region where the global optimum is currently in. It means that when the
optimum switches to region 2, the number of individuals in region 2 should be high and the
number of individuals in region 1 should be low. When the optimum switches back to region 1,
the reverse thing should happen, i.e. number of individuals in region 1 should be high and that
number in region 2 should be low.
The result shows that GA+Repair is not able to focus most of its individuals to the appropriate
region. Instead, the majority of individuals still remained in one single region (region 2), which
is where the optimum firstly was.

purpose. Otherwise, the outdated balancing-strategy might be one of the reasons that make the

repair method become less effective in SwO problems.

The plot of number of feasible individuals in each disconnected feasible region of GA+Repair

in these functions is given in Figure 5.9. It should be noted that the measure scores of

GA+Repair in three problems: G24_2, and G24_6c/d are not shown in Figure 5.9 because

they are the same as that of G24_5, and G24_6a, respectively.

Figure 5.9 shows that in all cases except G24_3b, the repair method is not able to focus

most feasible individuals on the region where the global optimum is currently in. Instead, the
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majority of feasible individuals still remained in one single region (region 2), which is where

the global optimum firstly was before the changes happen. The number of individuals in the

other region (region 1) remains low regardless of whether the global optimum has switched into

the region or not. These results show that, due to its outdated information and strategy, the

algorithm is not able to follow the switching optimum well.

The reason for this behaviour is that, initially most of the individuals were in region 2

because it is where the global optimum was firstly in. After the first change, although the global

optimum has switched to region 1, many individuals in region 2 were not updated, and hence

still had their old and outdated fitness values, which might be even higher than the new, after-

change global optimum fitness value. These incorrect but high fitness values cause the outdated

individuals to continue dominating the population and attract a large number of individuals to

the old feasible region 2 despite the lack of the actual global optimum there.

It should also be noted that in solving problems in the G24 benchmark set, individuals being

outdated might not always be totally harmful because the changes in many problems are cyclic.

It means that although many infeasible or poor reference individuals are retained due to their

outdated high fitness values, to some extent these outdated individuals might become useful in

future changes because the global optimum might re-appear in previous places. In such cases,

the outdated individuals might actually play the role as memory elements and hence might help

the algorithm to recall the previous good solutions in cyclic problems. However, it is not clear

of how much benefit such memory elements could bring, because our experiments show that

GA+Repair still becomes less effective in the presence of environmental dynamics. In addition,

it is obvious that such type of memory elements would not be useful in problems with no cyclic

dynamics.

Summary

In summary, the experiments in this section generally confirm our hypotheses about the advan-

tages and disadvantages of the repair method in solving DCOPs. First, the experimental results

show evidence that the repair method might be useful for solving dynamic constrained prob-

lems. Second, the results also show evidence that outdated information and outdated balancing

strategy can make such constraint handling strategies as the repair method less effective.
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5.5 Summary

5.5.1 Summary of contributions

The contributions of this chapter can be summarised as follow:

1. New investigations on the unknown characteristics of DCOPs: Some special, not-well-

studied characteristics of DCOPs that might cause significant diffi culties to existing DO

and CH strategies were identified for the first time.

2. New developments of new benchmark problems and performance measures: 18 new bench-

mark problems (22 pairs) and seven new performance measures were developed. One

existing measure was also modified to be usable in DCOPs.

3. New investigations on the strengths and weaknesses of existing DO strategies (GA/RIGA/HyperM)

and CH strategies (repair methods) in solving DCOPs. The experimental analyses reveal

some interesting findings, which can be categorised in three groups as follows:

(a) The performance of existing DO strategies in DCOPs:

i. The use of elitism might have a positive impact on the performance of existing

diversity-maintaining strategies. Elitism however might also have a negative

impact on the performance of diversity-introducing strategies if they are not

used in combination with diversity-maintaining strategies.

ii. The presence of infeasible areas has a negative impact on the performance of

diversity-introducing/diversity-maintaining strategies.

iii. The presence of switching optima (between disconnected regions) has a negative

impact on the performance of DO strategies if they are combined with penalty

functions.

iv. The presence of moving infeasible areas has a negative impact on the performance

of tracking-previous-optima strategies.

(b) The performance of some existing CH strategies in DCOPs: Even if we can combine

CH strategies with DO strategies, there might be two types of diffi culties:

i. Diffi culties in handling dynamics, in particularly maintaining diversity and de-

tecting changes.
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ii. Diffi culties in handling constraints, which are caused by the fact that algorithms’

problem-knowledge and CH strategies might become outdated.

(c) Some counter-intuitive observations:

i. The presence of constraints and dynamics in DCOPs might not always make the

problems harder to solve. Instead, for certain types of problems, the presence of

constraints and dynamics in DCOPs might actually make the problems easier to

solve for certain types of algorithms.

ii. Our experiments also show that the presence of constraints always helps algo-

rithms using the repair method like GA+Repair work better.

4. Suggestion of a list of possible requirements that DO and CH algorithms should meet to

solve DCOPs effectively. This list can be used as a guideline to design new algorithms

to solve DCOPs in future research. Details of the list will be summarised in the next

subsection.

The research in this chapter also has some limitations, which can be improved in future

research. A list of limitations and possible directions to extend this research will be presented

in Section 8.2.

5.5.2 Possible requirements for DO and CH algorithms to solve DCOPs ef-

fectively

Subsections 5.3.4 and 5.4.3 have suggested two groups of requirements for DO strategies and CH

strategies to handle dynamics and constraints effectively in DCOPs. The suggested requirements

to handle dynamics can be briefly summarised as follows:

1. If a diversity maintaining mechanism is used, it should be used with an elitism mechanism

2. It might be useful to detect changes in both feasible regions and infeasible regions

3. It might be useful to track the moving feasible regions instead of tracking the moving

existing optima.

4. It might be useful to search in both feasible and infeasible regions

The suggested requirements to handle constraints can be briefly summarised as follows:
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1. The CH strategies should not affect the way the algorithm handle dynamics. Particularly:

(a) The CH strategy should allows diversified individuals to be distributed in the whole

search space.

(b) The CH strategy should not reject diversified individuals even if they do not con-

tribute to the CH process.

(c) Special attention might need to be taken if change-detection is undertaken by mon-

itoring the fitness values of current individual (when there is a drop of individual’s

performance, we need to check to see if the drop is really caused by an environmental

change).

2. The CH strategy needs to get updated whenever a change happens. Particularly:

(a) The strategy’s knowledge about the problem needs to be updated

(b) The strategy might also need to be updated to deal with new environments

(c) The strategy should avoid using problem-dependent information because it might not

be possible to update this type of information.

In order to solve DCOPs, an algorithm needs to use both DO strategies and CH strategies.

As a result, it needs to satisfy both groups of requirements mentioned above. In the next chapter,

I will discuss a possible approach of combining DO and CH strategies while still satisfying these

two groups requirements. I will then use that approach to develop a set of new algorithms

specifically designed to solve DCOPs.
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Chapter 6

A new class of algorithms to

solve DCOPs

The study in the previous chapter has shown that dynamic constrained optimisation prob-

lems (DCOPs) have some special characteristics that make them very different from uncon-

strained dynamic problems and stationary constrained problems. The aforementioned research

also shows that due to these different characteristics, some existing dynamic optimisation (DO)

and constraint handling (CH) algorithms might not work effectively in solving DCOPs. The

lack of knowledge about DCOPs, the ineffectiveness of existing algorithms in solving continuous

DCOPs, and the lack of algorithms specifically designed for solving continuous DCOPs creates

an important gap in current dynamic optimisation research.

This chapter contributes to the task of closing this research gap by developing new methods to

solve DCOPs more effectively. In this chapter, based on detailed studies in the previous chapter

about the common characteristics of DCOPs, the weaknesses of some existing algorithms in

solving DCOPs, and our suggested requirements for algorithms to solve DCOPs, I will propose

an approach to effectively handle dynamics in DCOPs. The goal is to combine the advantages

of DO and CH strategies while overcoming the drawbacks of these methods in solving DCOPs.

Specifically, we modify an existing CH technique, the repair method (Michalewicz & Nazhiyath

1995) (Michalewicz n.d.), to create a framework with special mechanisms to support solving

DCOPs, and then integrate two DO techniques, random-immigrant (Grefenstette 1992) and

hyper-mutation (Cobb 1990), into the framework to develop new algorithms able to solve DCOPs

better than the original DO and CH methods.
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I will also undertake a detailed analysis to study the behaviours and performance of some

existing DO and CH algorithms as well as the newly proposed algorithms in solving DCOPs.

Another analysis will also be carried out to investigate more about the characteristics of DCOPs

as well as the influence of each algorithmic component on algorithm performance in DCOPs.

Some new measures will also be developed to assist these two aforementioned analyses.

The structure of the chapter is as follows. First, in Section 6.1 I will develop a new set of

algorithms that are able to overcome the drawbacks of existing DO and CH algorithms. Then

detailed experiments and analyses are carried out in Section 6.2 to compare the new algorithms

with existing algorithms and to study under what conditions the new algorithms work well. In

the next section (Section 6.3), a further analysis will be made to investigate which factors have

made the proposed algorithms work well (and why) and whether these factors are the results of

our proposed ideas. I will also analyse the proportion of contribution that each of our proposed

mechanisms gives in improving algorithms’performance in solving DCOPs. Section 6.4 follows

by providing an analysis of the impact of changing parameter values on the performance of

the proposed algorithms. Based on this observation I will suggest some recommendations on

choosing the suitable parameter values. Finally, in Section 6.5, I will discuss the advantages and

disadvantages of the proposed methods and outline future directions.

6.1 A new class of algorithms to solve DCOPs

As DCOPs have the properties of both DO problems and constrained problems, it is natural that

in order to solve DCOPs, an algorithm needs to use both DO and CH strategies. In addition,

to work effectively in DCOPs the DO and CH strategies chosen by the algorithm need to be

modified to satisfy the special requirements outlined in Subsection 5.5.2.

In this section I will firstly discuss the possible DO and CH strategies that we can combine,

the possibility to modify them to solve DCOPs effectively, and I will then describe our new

algorithms which combines the modified versions of existing DO and CH strategies to solve

DCOPs.

6.1.1 Choosing DO and CH strategies

For the experiments in this chapter, I chose the same representative DO and CH methods as used

in Chapter 5. They are the DO techniques triggered hyper-mutation GA (HyperM (Cobb 1990))
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and random-immigrant GA (RIGA (Grefenstette 1992)) and the CH technique repair method

(Michalewicz & Nazhiyath 1995). Because these methods were also used in the previous study

of analysing the strengths and weaknesses of DO and CH strategies in solving DCOPs (Chapter

5), using them in this chapter will facilitate us in extending our previous research to gain a

deeper understanding of DCOPs.

In order to combine the chosen strategies into a new algorithm to solve DCOPs, we can

choose between two approaches. The first approach is to start from DO strategies such as

RIGA/HyperM, modify them to create a framework which supports CH strategies and then add

CH strategies to the newly developed framework. Alternatively, in the second approach we can

start from CH strategies as the repair method, modify it to create a framework which supports

DO strategies and then add DO strategies to the framework. In this chapter I will follow the

second approach, in which I will modify GA+Repair to support DO strategies and I will then

add RIGA/HyperM to the newly created framework.

6.1.2 Potential directions to improve the repair method for solving DCOPs

As shown in the experiments in Subsection 5.4.4 and also in Table 5.10 (page 143), the re-

pair method has some advantages which I believe would make it one of the more suitable CH

methods to solve DCOPs. First, the operation of the repair method does not interfere with the

operation of such DO strategies as the diversity-maintaining/introducing mechanisms, meaning

that the method can be integrated with these DO strategies without too much diffi culty. As

mentioned earlier in Subsection 5.4.2, some CH strategies may not work well with diversity-

maintaining/introducing strategies because these CH strategies select individuals based on their

feasibility, i.e. feasible individuals might have a different probability to be selected than infea-

sible individuals. Such a bias in selection might cause many diversified individuals to be lost

because of their infeasibility. The repair method to some extent avoids this drawback because

it accepts both feasible and infeasible individuals in the same way, or in other words it does

not care about the feasibility of an individual provided that this individual can provide a good

(repaired) solution.

Second, the repair method is naturally suitable for tracking the moving feasible due to

the way it works. In the repair operation, whenever a search individual is repaired, the newly

created repaired individuals will always be closer to existing reference individuals than the search
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individual is (see the Repair routine in Algorithm 9, page 151). As a result of that operation,

if the algorithm is able to have at least one reference individual in the moving feasible region

when changes happen, the repair method will have a chance to send more individuals toward

that reference individual and hence will have a chance to track that moving region.

Third, the repair method also naturally supports elitism because the best found feasible

solutions will always be stored in the reference population. This property helps the method

satisfy one important requirement set out in Subsection 5.5.2 for maintaining diversity effectively

in DCOPs.

The aforementioned advantages of the repair method have been empirically confirmed by

the experimental results in Subsection 5.4.4 and in (Nguyen & Yao 2010a) where although the

presence of environmental dynamics does significantly decrease the performance of GA+Repair,

the algorithm still has better performance than all other GA-based existing DO algorithms in

solving DCOPs. This observation proves that its special characteristics make the repair method

a promising approach for solving DCOPs.

However, Subsection 5.5.2 also shows that when solving DCOPs the repair method signif-

icantly suffers from the issue of being outdated, a problem that I suspect would affect many

existing CH strategies. To apply the repair method to solving DCOPs, we need to improve it

to resolve its current drawbacks. Subsection 5.5.2 and Table 5.10 indicate that there are three

major requirements that the repair method is not able to satisfy. They are the ability to detect

changes, the ability to update its knowledge about the problem and the ability to update the

strategy whenever a change happens.

Naturally, a possible direction to improve the performance of GA+Repair in solving DCOPs

would be to equip the algorithm with these three features. In the next subsections, I will discuss

our proposed method to modify GA+Repair into a framework that supports all three features:

detecting changes, updating problem knowledge and updating the CH strategy. I will then

discuss the possible way to integrate existing DO strategies into the framework to solve DCOPs

more effectively.
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6.1.3 Combining the advantages of current DO techniques and CH tech-

niques

Detecting changes

The first improvement that we need to make to the repair method is to develop a change-

detection method. Only after being able to detect changes, can we prevent problem information

and constraint-handling strategies from being outdated and hence can solve DCOPs better.

Types of changes that need to be detected We need to detect two types of changes that

can affect the repair method. The first type includes changes that make the repair method’s

current knowledge (i.e. the fitness values of search and reference individuals) outdated. Changes

of this type occur when the feasibility status or objective values of some special feasible solutions

called influential feasible solutions change. In repair methods, we call a solution influential if

its objective value has been used to calculate the fitness values of search individuals or reference

individuals in the population and hence there is a mapping between that solution and the

corresponding individuals. For example, in step 3c of Algorithm 9 (page 151), z is the influential

solution of the search individual s because eval (s) = f (z). Similarly, in step 3b of Algorithm

9, z is also the influential solution of the reference individual r because eval (r) = f (z). If a

change affects such an influential solution by changing its objective value or its feasibility, the

existing mapping between the solution and its corresponding individuals might no longer reflect

the new objective value or feasibility of the solution and consequently the repair method might

become outdated. The better the objective value of an influential solution is, the more influence

it has and we should at least detect the changes occurring in the most influential solutions. It

is of note that, in the repair method the most influential solutions, i.e. the ones with the best

objective values, are always retained as members of the reference population. For example, in

step 3b of Algorithm 9, page 151, the influential solution z is retained as a reference individual

(r = z). Due to that, in order to detect changes in the most influential solutions we only need

to monitor the changes in objective values and feasibility of reference individuals.

The second type of changes that need to be detected includes changes that occur in areas

not covered by the algorithm’s population. As these areas are not covered, in case a change

happens it would go unnoticed by the algorithm for a certain period. Changes of this type can

occur in two different forms: (a) changes in objective functions and (b) changes in feasibility
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(constraints). In case (a), changes in objective functions will only affect the repair method if they

are not covered by the current population and occur in feasible regions (for objective changes

in an infeasible region, all solutions in the region still remain infeasible and hence the change

would not affect the repair method). We can use existing unconstrained DO change detection

techniques to monitor these objective changes. In case (b), changes in constraints will only affect

the repair method if they alter the shape of feasible/infeasible regions so that the current global

optimum become infeasible or inversely an infeasible solution become the new global optimum.

The first case is caused by the extension of existing infeasible regions or the occurrence of a new

infeasible region, and the second case is caused by the shrink of existing infeasible regions or the

occurrence of a new feasible region. Due to that, in order to detect constraint changes of this

type we only need to monitor the shrink/extension/appearance of infeasible/feasible regions.

The proposed change-detection mechanisms To detect the two different types of changes

above, we need to use different change-detection methods. For changes in objective function,

we can adopt and modify the change-detection method originally used in HyperM (Cobb 1990):

monitor the drop of the average best fitness values over a certain period. Unlike the original

change-detection method in HyperM, here we will only monitor the drop of the average fitness

values of the best influential individuals, which are also the best individuals in the reference

population. If we detect a drop in the average best reference fitness values and the drop persists

over a certain period, we can assume that a change in the objective function has occurred and

that change might make the repair method outdated. Details of the procedure to detect changes

in objective function can be found in the prosecode of routine DetectChange() (Algorithm 10,

page 167).

For changes in constraints, we developed a new change-detection method. As discussed

above, because the only types of constraint changes that might affect the algorithms are the

extension, shrink, or appearance of infeasible/feasible areas, we can detect these types of changes

by monitoring the feasibility/infeasibility of individuals that are near the infeasible boundaries.

We also need to keep checking the feasibility/infeasibility of the best individual in the reference

population because it is the current most influential solution.

To detect the shrink of infeasible areas, at each generation I chose to monitor some infeasible

individuals that are near the feasible boundaries, i.e. those that satisfy the following conditions:
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Algorithm 10 routine DetectChange()

Notes The routine needs to be called at each generation
Inputs k - index of the current generation

bk - the fitness value of best feasible solution at gen. k
Xk−1
u - set of up to q unfeasible individuals that have smallest sum

∑
gi (x) at generation k − 1

X
k−1
u - set of up to q div 2 most diversified unfeasible individuals in Xk

u at generation k − 1
X
k−1
f - set of q feasible individuals that are closest to individuals in X

k
u at generation k − 1

Outputs returnValue - whether a change is detected or not

X
k
u and X

k
f - for use in the next generation

1. Detect changes near the boundaries of infeasible regions: For each xi ∈ X
k−1
u ,

(a) Re-evaluate the constraint functions g (xi)

(b) If xi becomes feasible,returnValue=true,go to step 6

2. Detect changes near the boundaries of feasible regions: For each xi ∈ X
k−1
f ,

(a) Re-evaluate the constraint functions g (xi)

(b) If xi becomes unfeasible,returnValue=true,go to step 6

3. Detect the performance drop of the best feasible solution

(a) if
∑k

k−4
(
bi/5

)
is worse than

∑k−1
k−5

(
bi/5

)
returnValue=true, go to step 6

4. Detect feasibility change of best feasible solution: if it becomes infeasible, returnValue=true, go
to step 6

5. If nothing detected, returnValue=false, go to step 6

6. Update and return:

(a) Remove X
k−1
u and X

k−1
f from the memory

(b) Xk
u = X

k
u = X

k
f ={∅}

(c) Initialise Xk
u : Add up to q unfeasible individuals that have the smallest sum

∑
gi (x)to Xk

u

(d) Initialise X
k
u: Move up to q div 2 most diversified individuals from Xk

u to X
k
u: For i : 1 to

q div 2

i. Select xi ∈ Xk
u that has the maximum total distances to all individuals in X

k
u

ii. Remove xi from Xk
u and add xi to X

k
u

(e) Initialise X
k
f : Add up to q div 2 feasible individuals, which are closest to the individuals in

X
k
u, to X

k
f

(f) Add X
k
uand X

k
f to system’s memory

(g) Return returnValue;
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• q infeasible individuals xj that have the smallest sum
∑

i gi (xj) where gi are the constraint

functions; j = 1 : q (for an individual xj , the smaller the sum
∑

i gi (xj) , the more likely

that xj is close to the boundaries of the feasible regions)

• Among these individuals, select q div 2 most diversified individuals, which are those that

have the farthest distance to each other. This is to make sure that we are monitoring

different boundaries

To detect the extension of infeasible areas, in each generation I also chose to monitor q div 2

feasible individuals that are closest to the q div 2 infeasible individuals chosen above.

The q div 2 infeasible individuals and q div 2 feasible individuals chosen above, along with

their current feasibility status, will then be stored in a temporary memory for one generation.

At the next generation, the constraint functions of these 2 × (q div 2) chosen individuals are

re-evaluated to see if they still have the same feasible/infeasible status. If any feasible individual

becomes infeasible and vice versa, we can assume that there is a change in the constraints and

this change might make the repair method outdated. After this feasibility-reevaluation process

finishes, the chosen individuals will be removed from the temporary memory. Details of the

procedure to detect changes in objective function can be found in the prosecode of routine

DetectChange() (Algorithm 10, page 167).

For this change-detection method, there is one parameter that we need to take into account.

This is q, the number of feasibility detectors used to detect constraint changes. The value of q de-

termines the number of constraint function evaluations to be made at each generation. Although

it is generally assumed that the cost of constraint function evaluations is not as significant as the

cost of objective function evaluations, if the constraint functions are computationally expensive

or if there are many constraint functions, a large value of q might affect the performance.

Due to this fact, an adaptation mechanism should be used to determine the value of q

depending on the size of the population, the number of constraint functions and the scale of

the objective function (possibly represented by its dimensionality). If the population-size, the

number-of-constraints, and the dimensionality are relatively small, then the value of q can be

close to the population size. Otherwise, q should only be equal to a fraction of the population size.

Following this guideline, in this chapter I will propose a semi-adaptive mechanism to calculate the

value of q depending on the population size, the number of constraint functions and the number
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Figure 6.1: This figure shows how the feasibility-change-detection method would select the
appropriate number of feasibility detectors to maintain an effi cient computational cost given
the population size P , the number of constraint functions N , the number of dimensions D and
the allowable limit of detectors L (in this graph the latter three are fixed for the purpose of
illustration). As can be seen in the figure, when the population size is small, most individuals
can be used as detectors. When the population size becomes larger, the number of detectors also
become larger until it reaches the upper-limit but the proportion between number of detectors
and population size and gradually becomes smaller to save computational costs.

of dimensions (variables). The mechanism is described in equation (6.1) and a graph showing

the value of q calculated based on different population sizes/number-of-constraints/number-of-

dimensions is given in Figure 6.1. The following equation is used to calculate the value of

q

q = min
(
P,
(
1− exp

(
−αP

√
N +D

))
L
)

(6.1)

where P is the population size, N is the number of constraint functions, D is the number of

dimensions, L is the maximum number of detectors allowed by users (in this chapter L = 50),

and α = 0.007 is a constant. α is used to control the steepness of the "curve" of q in Figure 6.1

when one or all the value of P , N and D increase. The larger the value of α, the steeper the

curve.

Advantages and disadvantages of the change-detection mechanism The first and most

obvious advantage of the newly proposed change-detection mechanism is that it helps the repair

method to react to environmental changes and to update any outdated information/strategy
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promptly. This consequently would help the repair method to satisfy a number of requirements

set out in Subsection 5.5.2.

Second, the new change-detection mechanism also does not require any additional objec-

tive function evaluation except at most one evaluation per generation to re-evaluate the best

individual in case it has not been evaluated in the repair process.

Third, although the change-detection mechanism requires a number of constraint function

evaluations to be taken, it makes sure that this number of evaluations is not too high and is in

proportion with the scale of the problem and with the size of the population.

Fourth, similar to other diversity-introducing methods, to some extent the change-detection

mechanism might help to save some computational cost dedicated to dealing with changes.

When being used with this mechanism, only until the time when a change is detected, do the

algorithms need to spend additional computational cost to react to the change.

It should be noted that because this change-detection mechanism is designed to work with

the repair method only and to detect only changes that make the repair method outdated,

the method might not be able to detect all other types of changes. As this proposed change-

detection method only select detectors from the population, if the algorithm converges on a

certain area, the algorithm might not be able to detect all other types of changes in other areas

of the landscape.

This disadvantage, however, can be improved by hybridising the newly proposed change-

detection mechanism with some diversity-maintaining mechanism to make the population more

diversified. That way it might be easier to detect changes that occur in other parts of the

landscape and thanks to that the new change-detection mechanism can be applied effectively to

other dynamic optimisation algorithms. As we will see later it turns out that actually GA+repair

itself already has a good diversity level and hence it is able to partly alleviate this disadvan-

tage. In Subsection 6.1.3 I will also discuss the possibility of hybridising GA+Repair with such

diversity-maintaining/introducing mechanisms as RIGA and HyperM to effectively overcome

the disadvantage.

Another disadvantage of the change-detection mechanism is the additional computational

cost. For each constraint function, at each generation the change-detection mechanism needs

to perform additional 2× (q div 2) constraint evaluations. Although the adaptive mechanism in

Equation 6.1 has been proposed to makes sure that this number of evaluations is not too high and
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is in proportion with the scale of the problem and with the size of the population, the cost might

still negatively affect algorithm performance if the constraint functions are computationally

expensive.

Updating reference individuals

As been analysed in Subsection 5.4.4 and also in (Nguyen & Yao 2010a), one of the reasons for

the ineffi ciency of GA+Repair and possibly other repair methods in solving DCOPs is that the

reference individuals might become outdated when a change happens. In order to resolve this

issue, we need to update those reference individuals that have become outdated so that they

can correctly reflect the new landscape after a change.

In this chapter, I propose a simple method to update the outdated reference individuals.

First, for each infeasible reference individual, we will try to replace it by a feasible individual

from the search population using non-linear ranking selection. If there is no feasible individual in

the search population, we will replace the infeasible reference individual with a feasible individual

from the reference population. If there is no such feasible individual, we will then replace the

infeasible reference individual with a randomly generated feasible solution. After all infeasible

reference individuals have been replaced by the feasible ones, we will then re-evaluate all reference

individuals if they have not been evaluated since the last change.

The update procedure for the reference population is described in the prosecode in Algorithm

11 (page 172).

Updating search individuals

As also been analysed in Subsection 5.4.4, another reason for the ineffi ciency of GA+Repair

and possibly other repair methods in solving DCOPs is that some search individuals might also

become outdated when a change happens if they are not selected for the repair process.

In order to resolve this issue, we need to update those search individuals that have become

outdated so that they can correctly reflect the new landscape after change.

The update mechanism that I use in this chapter is very simple. Whenever we detect a

change that affects the repair method, I firstly update the reference population and then use the

newly updated reference individuals to repair all search individuals that have not been repaired

since the last change. This is to make sure that the fitness values of all search individuals

correctly reflect the feasible regions of the newly changed landscape. The update procedure is
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Algorithm 11 routine UpdateReferencePop()

Variables: S - Search population
R - Reference population
nS - Number of feasible individuals in S
nR - Number of feasible individuals in R
mR - Number of unfeasible individuals in R

1. For i = 1 to min (nS ,mR): Replace each unfeasible individual xiu in R with a feasible one from
S

(a) Use non-linear ranking selection to choose a feasible individual xf from S

(b) Replace xiuby xf : x
i
u = xf

2. If (mR > nS)then For j = nS + 1 to nS + min (mR − nS , nR): Replace each unfeasible
individual xju in R with a feasible one from R

(a) Use non-linear ranking selection to choose a feasible individual xf from R

(b) Replace xjuwith xf : x
j
u = xf

3. If (mR > nS + nR)then For k = nS + nR + 1 to mR − nS − nR: Replace each unfeasible
individual xku in R with a feasible, randomly generated individual

4. Re-evaluate all reference individuals that have not been evaluated since the last change

described in the prosecode in Algorithm 12 (page 172).

Algorithm 12 routine UpdateSearchPop()

Variables: S - Search population
Note: This routine needs to be called after the

routine UpdateReferencePop (Algorithm 11, page 172)

1. Create a set S1 ∈ S which includes all search individuals that have not been selected for the repair
process since the last change

2. For each individual s in S1, update the fitness value of s by calling the routine Repair (s)

Maintaining/introducing diversity

Numerous previous studies have shown that maintaining/introducing diversity are necessary for

DO. In addition, as discussed earlier, maintaining a high level of diversity in the population so

that the algorithm is able to cover a large area or ideally the whole landscape would help the

change-detection methods proposed in Subsection 6.1.3 to work better.

To enhance diversity in the repair method, in this chapter I also hybridise the mutation

strategies of RIGA and HyperM with GA+Repair. The implementation is very simple: we just
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replace the normal GA mutation with the mutation strategies of RIGA and HyperM. Details of

the implementation will be described later in subsection 6.1.4.

Searching out of range

From our experiments I have found that the original repair method has another drawback: it

becomes less effective in solving problems with the global optimum in boundaries of the search

region. The reason for this is because the probability of the repair method finding the optimum

is smaller when the optimum is in the boundaries of the search region than when it is not.

One way to make repair methods work better in problems with optima in boundaries of

the search region is to allow the algorithm to search out of range and consider all out-of-range

solutions infeasible. In an extended search space like that, the actual global optimum now

is inside the search area, making it easier for the repair method to find the optimum. When

extending the search space like this, one question is how much should we extend the search space

to keep the algorithms working effectively. In this chapter, when the out-of-range mechanism is

tested we allow the algorithms to search 25% beyond the given search range.

6.1.4 The dRepairGA algorithm and other variants

In the previous subsections, I have proposed a set of different mechanisms which can be used

as a framework to improve the performance of the repair method in solving DCOPs. In this

subsection, I will apply these mechanisms to an algorithm, the GA+Repair, to evaluate how

effective the proposed mechanisms would be in solving DCOPs. The mechanisms are combined

with GA+Repair to create three different versions of new algorithms.

For the first version of the new algorithms, we integrate the change-detection and update

mechanisms to GA+Repair to create a new algorithm called dRepairGA. The purpose is to

see how the change-detection and update methods would help the repair method to cope with

DCOPs. The integration in dRepairGA is simple. In addition to all previous operations of

GA+Repair, at every generation we call the routine DetectChange() to detect any environ-

mental changes that may possibly affect the repair method. If a change is detected, we will

invoke the routine UpdateReferencePop(), followed by the routine UpdateSearchPop(), to up-

date the search population and the reference population to deal with the change. The prosecode

of the algorithm is described in Algorithm 13, page 175.

To investigate if the proposed mechanisms can be applied to other algorithms, I also de-
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velop an improved version of Genocop III by hybridising the original Genocop III algorithms

with our newly proposed mechanisms (routines DetectChange(),UpdateReferencePop()and

UpdateSearchPop()) to handle dynamics and dynamic constraints. These routines are inte-

grated into Genocop in the same way as we do in dRepairGA in Algorithm 13, page 175. The

new algorithm is called dGenocop.

dRepairGA was then extended to a second version. In this second version, we hybridised

existing DO strategies such as RIGA and HyperM with dRepairGA. The purpose is to investigate

the usefulness of combining existing DO strategies with our CH strategies, and to see if our

proposed mechanisms can help to avoid the previously known drawbacks of RIGA and HyperM

in solving DCOPs. The new algorithms are called dRepairRIGA and dRepairHyperM.

These two algorithms are almost identical to dRepairGA except that they have the muta-

tion strategy of RIGA and HyperM instead of the basic GA’s mutation strategy. Specifically, in

dRepairRIGA, in addition to the normal GA mutation rate a fraction of the population (rep-

resented by the random-immigration rate) is replaced by random solutions at every generation.

In dRepairHyperM, the basic mutation rate of GA is still kept, but when a change is detected

that mutation rate will be replaced by the hyper-mutation rate of HyperM. The algorithm will

keep using the hyper-mutation rate until no performance drop is recognised. In that case the

algorithm will resume back to its normal base-mutation rate. It should be noted that there

is a difference in the mutation strategy of dRepairHyperM and HyperM. This is the fact that

dRepairHyperM can trigger its hyper-mutation not only when it detects a drop in performance

of the best individual like HyperM, but also when the DetectChange() routine returns true.

It is also worth noting that such repair-based algorithms as dRepairRIGA and dRepairHy-

perM always have a lower level of diversity than RIGA and HyperM given the same mutation/random-

immigrant rate. This can be attributed to the fact that, in repair-based algorithms the search

population and the reference population have different evolving period. While the search pop-

ulation evolves at every generation, the reference population only evolves after each 100 evalu-

ations. Due to that, during each 100-evaluation period no mutation is applied to the reference

individuals and consequently there is less diversity in repair-based methods given the same mu-

tation/replacement rate as GA-based algorithms. In addition, when the reference population

evolves, individuals generated by mutation or random-immigrant are only accepted if they are

feasible and better than their parents. With our current implementation, the number of in-
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dividuals that are mutated/replaced in dRepairHyperM/dRepairRIGA is only equal to about

less than 80% of those in RIGA/HyperM with the same hyper-mutation and random-immigrant

rate. In other words, a higher mutation rate of 0.8 in dRepairHyperM/dRepairRIGA would

only generate the same number of diversified individuals as a lower mutation rate of less than

0.64 in RIGA/HyperM.

In the third version of the algorithms, because I observed that the repair operator does not

work very well in problems with optima in boundaries of the search region, I also implement a

version of dRepairGA/RIGA/HyperM which can search 25% beyond the given search range using

the out-of-range (OOR) mechanism proposed previously in Subsection 6.1.3. All out-of-range

solutions are considered infeasible. The algorithms with the out-of-range search mechanism are

called dRepairGA_OOR, dRepairRIGA_OOR and dRepairHyperM_OOR.

Algorithm 13 dRepairGA
Note: It is assumed that the problem is maximisation
Routines: DetectChange() - described in Algorithm 10, page 167

UpdateReferencePop() - described in Algorithm 11, page 172
UpdateSearchPop() - described in Algorithm 12, page 172

1. Initialise: same as step 1 of GA+Repair (Algorithm 8,page 150)

2. Search at each generation: same as step 2 of GA+Repair

3. Evolve the reference population: same as step 3 of GA+Repair

4. Detect change and update search strategy :

(a) For each generation: If DetectChange()=true

i. Update reference pop.: UpdateReferencePop()
ii. Update the search pop.: UpdateSearchPop()

(b) Else do nothing

5. Return to step 2

6.1.5 Related research in the continuous domain

Only until very recently a few algorithms specially designed for DCOPs were proposed. In

(Nguyen & Yao 2009a), we made the first attempt to develop a GA-based algorithm named Re-

pairGA to solve DCOPs. The algorithm is also based on the repair method. It is a combination

of the algorithm GA+Repair mentioned in Subsection 5.4.4 and a simple mechanism to update

reference individuals at every generation. Experimental results in (Nguyen & Yao 2009a) show
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that RepairGA performs better than existing DO algorithms such as GA/RIGA/HyperM in

the four tested problems. Compared to the new dRepairGA and its variants proposed in this

section, the repair-based algorithm in (Nguyen & Yao 2009a) is significantly different and less

effi cient because it lacks the following mechanisms to handle DCOPs: (1) an explicit mechanism

to adaptively detect changes; (2) a mechanism to update outdated search individuals; (3) a

mechanism to maintain/introduce diversity in dynamic environments; and (4) a mechanism to

search out of range to find optima in boundaries of the search region more effectively. The newly

proposed dRepairGA and its variants can be seen as extensions of the old RepairGA algorithm

where the four mechanisms above are incorporated to solve DCOPs better. Our experimental

results (not shown) also show that dRepairGA perform significantly better than RepairGA in

solving DCOPs.

Using two of the benchmark problems proposed in (Nguyen & Yao 2009a), in (Singh et al.

2009) a static constraint optimisation algorithm (IDEA) was evaluated in DCOPs. IDEA is

an EA that uses a special ranking mechanism to select individuals: the algorithm explicitly

maintains some infeasible individuals during the search and ranks “good’ infeasible solutions

higher than feasible solutions. This algorithm, however, was not actually designed for solving

dynamic environments but static environments. In (Singh et al. 2009), to make it work in DCOPs

IDEA was modified by adding a simple change-detection method in which at each generation

a random individual is chosen to detect changes. Whenever a change is detected, the whole

population is re-evaluated to make sure that the information that the algorithm has is updated.

The simple change-detection method used in IDEA does not guarantee that changes are always

detectable because it assumes that changes can be detectable by re-evaluating any random

individual in the search space, which is not always the case. The IDEA algorithm is different

from the algorithms proposed in this chapter because (1) it uses a different method to handle

constraints; (2) it does not use any DO techniques except change-detection to handle changes;

and (3) its change-detection is simple and possibly insuffi cient in certain cases. Experimental

results show that IDEA perform betters than the chosen peer EA in the two tested problems.

The latest algorithm that was proposed specifically to solve DCOPs is the study of Richter

(Richter 2010), which was published at the time when this chapter was being prepared for sub-

mission. In this study, a special memory-scheme, abstract memory, was adapted for DCOPs.

Abstract memory is a special memory scheme which relies on a probabilistic model of the oc-
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currence of good solutions in the search space to memorise a "spatio—temporal cartographing"

(Richter & Yang 2009) of promising regions in the search space. In (Richter 2010), this scheme

was adapted for DCOPs by separately memorising the good candidates for solving the uncon-

strained objective function as well as the likely feasible regions. Elements from the two memories

then are processed using two different schemes: blending and censoring. The memory schemes

were then applied to an EA using a penalty function and an EA using the repair method to

solve one benchmark problem. The result show that the proposed memory schemes can help

improving the performance of the tested EA in certain situations. The blending and censor-

ing memory-based EAs proposed in (Richter 2010) are very different from the new algorithms

proposed in this chapter, especially in the following major points: (1) they follow a different

approach (using memory-based mechanisms); (2) to detect changes, they only use the HyperM’s

fitness-drop monitoring mechanism, which might not be effective in the case of newly-appearing-

optima DCOPs.

6.2 Comparing and analysing dRepairGA and its variants against

existing algorithms

6.2.1 Chosen algorithms

In this section the performance of different versions of dRepairGA and dGenocop (as described

in the previous section) will be compared with those of existing algorithms: GA, RIGA, HyperM,

GA+Repair and Genocop III. The purpose is to see if our newly proposed mechanisms can help

improving the drawbacks of existing methods. As these algorithms are all based on basic GA

and the only difference between them are the additional mutation strategy / change-detection

strategy that they use to handle dynamics, by comparing these algorithms we will be able to

identify if the strategies they employ are effective in solving DCOPs.

It should also be noted that dRepairGA/dRepairRIGA/dRepairHyperM and their out-of-

range enabling versions will be compared with the original GA/RIGA/HyperM/GA+Repair and

dGenocop will be compared with the original Genocop III. The reason why I do not compare

the performance of dRepairGA-based algorithms with that of Genocop III is that it is not easy

to see if the better or worse performance of dRepairGAs compared to Genocop III is due to our

proposed strategy or not. This is due to that Genocop III is very different from GA as already
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Table 6.1: Test settings for all algorithms used in the paper
All Pop size 25
algorithms Elitism Elitism & non-elitism if applicable
(exceptions Selection method Non-linear ranking as in (Michalewicz n.d.)
below) Mutation method Uniform, P = 0.15

Crossover method Arithmetic, P = 0.1
HyperM Triggered mutate Uniform, P = 0.5 as in (Cobb 1990)
& variants
RIGA Rand-immig. rate P = 0.3 as in (Grefenstette 1992)
& variants
GA+Repair, Search pop size 20
dRepairGA Reference pop size 5
& variants Replacement rate 0 (default is 0.25 as in (Michalewicz n.d.))
Genocop Search pop size 20
& variants Reference pop size 5

Other parameters Default as in (Michalewicz n.d.)
Benchmark Number of runs 50
problem Number of changes 10
settings Change frequency 1000 objective-function evaluations

ObjFunc severity k 0.5 (medium), except G24_6a/b/c/d
where k = 1 (large severity)

Constr. severity S 20 (medium)

explained in paragraph 4, Subsection 6.1.1.

6.2.2 Parameter settings

Table 6.1 (page 178) shows the detailed parameter settings for all algorithms tested in this

chapter. To create a fair testing environment, all algorithms, including the newly proposed

algorithms, use the same parameter values as in the previous experiments in Subsections 5.3.3

and 5.4.4. Existing DO algorithms (GA/RIGA/HyperM) also use the same penalty methods as

described in Subsection 5.3.3.

The algorithms were tested in 18 benchmark problems described in Section 5.2 at a change-

severity level of medium, except in G24_6a/b/c/d where the severity level is always high (high

severity is a property of these four problems).

6.2.3 Performance measures and analysis criteria

To measure the performance of the algorithms in this particular experiment, I use the modified

offl ine error for DCOPs proposed in Subsection 5.3.2 (Eq. 5.3).

The full offl ine error scores of all algorithms in the test can be seen in Table 6.2 (page

181). The data in this table is provided mainly for reference purpose only because similar to
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the experiments in the previous chapter, to achieve a better understanding of how well the

newly proposed algorithms work in different types of problems and how each characteristic of

DCOPs would affect the performance of the new algorithms, we further analyse the results by

studying them from different perspectives. First, I summarise the average performance of the

tested algorithms in each major group of problems (see test results in Figure 6.2, page 182).

Then, I investigate the effect of each problem characteristic on each algorithm by analysing

their performance in 21 test cases (pair of almost identical problems, one with a particular

characteristic and one without, as shown in Table 5.5, page 108). The results of this pair-wise

analysis are shown in Figure 6.3, page 183 and Figure 6.4, page 184.

It should also be noted that, in the aforementioned Table 6.2, readers might notice that we

included not only the already-described algorithms such as GA, RIGA, HyperM, GA+Repair,

dRepairGA, dRepairRIGA, dRepairHyperM, dRepairGA_OOR, dRepairRIGA_OOR, dRepairHy-

perM_OOR, Genocop and dGenocop but also some other algorithms which have not been in-

troduced yet. These algorithms will be introduced and analysed in the later sections. For now,

in this section I will only focus on the data relating to the algorithms that I have described

previously.

In the following subsections, I will analyse the performance of dRepairGA-based algorithms

against existing algorithms in different classes of problems using the performance measure and

criteria above. I will test the algorithms in not only DCOPs, but also static (constrained and

unconstrained) problems and unconstrained dynamic problems. The purpose is to see how

robust each algorithm is in solving different types of problems. For each class of problems,

I will first compare the performance of dRepairGA-based algorithms with existing DO algo-

rithms (GA/RIGA/HyperM, both elitism (-elit) and non-elitism (-noElit) versions) and then

I will compare the performance of dRepairGA-based algorithms with existing CH algorithms

(GA+Repair/Genocop).

Overall performance

Overall, 6.2 shows that with a precision level of three significant digits, the newly proposed

dGenocop is the overall best algorithm. It achieves the top results in 9 out 18 problems, followed

by the newly proposed GenocopwUPCwNRR, which achieves the top results in 5/18 problems.

Our modified versions of HyperM: dRepairHyperM and its out-of-range dRepairHyperM-OOR
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also work well: each algorithm achieve top results in 3 problems, followed by dRepairRIGA/dRepairRIGA-

OOR (each has 2/18 best results) and dRepairGA (1/18 best result). It is interesting to note

that the original Genocop also work really well, achieving the top results in two static con-

strained problems and one dynamic constrained problem. This observation and the fact that

dGenocop perform better than dRepairGA suggest that the other existing contraint-handling

operators in Genocop are also very useful in handling dynamic constrained problems.

In the next subsections we will analyse in details the performance of each algorithm in

different group of problems.
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Figure 6.2: This figures shows the performance of dRepairGA-based variants compared with
existing dynamic optimisation algorithms (the worst and the best of GA/RIGA/HyperM)
and existing CH method combined with basic GA (Ga+Repair) in different group of prob-
lems. To avoid making the graph too cluttered we do not include dRepairGA_OOR and
dRepairHyperM_OOR in the figure because their behaviours/performance are roughly the same
as dRepairRIGA_OOR. We also do not include all versions of GA/RIGA/HyperM but only their
worst and best performance. Instructions of how to read this figure can be found in the caption
of Figure 5.3..

6.2.4 dRepairGA vs existing algorithms on unconstrained problems (dy-

namic and static)

dRepairGA-based algorithms vs existing DO algorithms

By comparing the bars of dRepairGA-based algorithms with the bars of existing DO algorithms

in the group of unconstrained static problems (fF+noC) in Figure 6.2 (page 182), we can see

that the dRepairGA algorithm perform better than the worst version of GA/RIGA/HyperM,

but worse than the best version of GA/RIGA/HyperM by factors of 2.14 (dRepairGA vs RIGA-

Elit) to 1.55 (dRepairHyperM vs RIGA-Elit). This is due to that in each generation dRepairGAs

might need twice (or more) the number of evaluations than GA/RIGA/HyperM. This shows the

trade-off that we need to pay if we want to have better performance in DCOPs: the algorithm

might perform worse in unconstrained static problems.

In the group of unconstrained dynamic problems (dF+noC), the bar-comparison in Figure 6.2

also shows that dRepairGA algorithms perform worse than the best version of GA/RIGA/HyperM.

However, I found that the ineffectiveness of algorithms using repair method in these problems,
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Figure 6.3: This figure summarises the effect of twelve different problem characteristics on
the performance of existing DO algorithms (GA, RIGA, HyperM), existing CH algorithm
(GA+Repair), and the newly proposed dRepairGA and dRepairRIGA (we do not include
dRepairHyperM in the figure because its behaviour/performance is roughly the same as dRepair-
RIGA). Instruction to read this figure can be found in the caption of Figure 5.4 (page 122).

which have optima in boundaries of the search region, is due to the shortcomings of the repair

operator in finding optima in boundaries of the search region (as already explained in Sub-

section 6.1.3). When we resolved the drawback of repair method by allowing the algorithm

to search out-of-range (dRepairGA_OOR, dRepairRIGA_OOR, dRepairHyperM_OOR), the

bar-comparison in Figure 6.2 shows that the out-of-range versions of dRepairGA perform better

than GA/RIGA/HyperM by a factor of 1.22 to 2.22. This shows that the proposed algorithms

are still useful when they are used to solve unconstrained dynamic problems. It is interest-

ing to know that although they may need twice (or more) the number of evaluations than

GA/RIGA/HyperM per generation, they are still able to perform better or equally in uncon-

strained dynamic problems.

dRepairGA-based algorithms vs existing CH algorithms

The bar-comparison in the group of unconstrained static problems (fF+noC) in Figure 6.2 shows

that dRepairGA performs exactly the same as GA+Repair (their bars have almost the same

heights). The result proves that the newly proposed dynamic CH mechanisms do not affect the
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Figure 6.4: This figure summarises the effect of the other eight different problem properties on
the performance of GA, RIGA, HyperM, GA+Repair, dRepairGA and dRepairRIGA. Instruc-
tion to read this figure can be found in the caption of Figure 5.4 (page 122).

repair method in solving static unconstrained problems. The figure also shows that the bars

of dRepairRIGA/dRepairHyperM are slightly higher than that of dRepairGA, meaning that

the additions of the RIGA and HyperM mutation strategies to the new algorithm offer a slight

improvement on the performance of dRepairGA compared to the original GA+Repair. This

shows that diversity has another usefulness for the repair method. When we apply out-of-range

search, the OOR version of dRepairGAs offers a slight positive effect on the performance of

dRepairRIGA (increase the performance by a factor of 1.29). This is due to some problems in

the group fF+noC having a condition suitable for out-of-range search: their global optima in

the boundaries of the search region.

The bar-comparison in the group of unconstrained dynamic problems (dF+noC) in Figure

6.2 shows that all versions of dRepairGA perform better than GA+Repair by an average factor

of at least 1.33. The results suggest that the proposed mechanisms are effective in helping the

algorithm to deal with the dynamics. The addition of RIGA and HyperM mutations for more

diversity proves to be even more useful (better than GA+Repair by an average factor of 1.57 and

1.48, respectively). The addition of the OOR mechanism also helps improve the performance
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because some problems in this group also have global optima in the boundaries of the search

region.

Our experimental results (Table 6.2 and Figure 6.10, page 204 - to be introduced later)

also shows that when being compared against Genocop III, our modified version dGenocop also

behaves the same as dRepairGA when dRepairGA is compared against GA+Repair. Specifically,

dGenocop also has the same performance as Genocop III in solving unconstrained static problems

(fF+noC) and better performance than Genocop III in solving unconstrained dynamic problems

(dF+noC). This result proves that the proposed mechanisms can be used effectively for solving

unconstrained problems in not only dRepairGA but also other algorithms.

6.2.5 dRepairGA-based algorithms vs existing algorithms on static problems

with constraints

When being compared with existing DO algorithms, the bar-comparison in Figure 6.2 shows that

the CH technique (repair operator) used in dRepairGA-based algorithms helps them to work

really well in the group of static constrained problems (fF+fC) and significantly outperforms

all the tested existing DO algorithms. Specifically, dRepairGA-based algorithms perform better

than basic GA by an average factor of 32.3 - 56.6, while the best results that GA/RIGA/HyperM

can get for this group of problems is only better than basic GA by a factor of 5.16 (RIGA-Elit).

When being compared with existing CH algorithm (GA+Repair), the bar-comparison in Fig-

ure 6.2 shows that the introduction of the change-detection mechanism and update mechanisms

in dRepairGA algorithms does not affect the effi ciency of the repair method in solving static

constrained problems (fF+fC). dRepairGA and GA+Repair have almost identical performance

in this group of problems, with GA+Repair having an insignificantly better score (by a factor

of 1.02). The very slightly worse performance of dRepairGA compared to GA+Repair might be

due to the fact that dRepairGA might need to re-evaluate its best individual at every generation.

Similarly, the introduction of the change-detection mechanism and update mechanisms in

dGenocop also has little impact on the effi ciency of the algorithm in solving static constrained

problems. The bar-comparison in Figure 6.10 (page 204) shows that dGenocop has almost the

same performance as the original Genocop III in solving static constrained problems (Genocop

III is slightly better by a factor of 1.06).

The introductions of a diversity-maintaining mechanisms (RIGA) into dRepairGA, again
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make the algorithm work better by a factor of 1.75. This means that high diversity is useful not

only for DO but also for CH techniques like the repair method. I will analyse this behaviour

later in Section 6.3.2. The introduction of HyperM, as expected, does not offer any improvement

because the hyper-mutation is not triggered in problems with static objective function and static

constraints.

6.2.6 dRepairGA-based algorithms vs existing algorithms in DCOPs

As the new dRepairGA-based algorithms are designed to solve DCOPs, the result that is of most

interest is the comparison between the new dRepairGA-based algorithms and existing algorithms

in solving the class of DCOPs (dF+fC, fF+dC, dF+dC, OICB, ONICB, NAO and SwO).

dRepairGA-based algorithms vs existing DO algorithms

The summary result (bar-comparison) in Figure 6.2 (page 182) shows that dRepairGA works

significantly better than all existing DO algorithms that I have tested in this chapter (by factors

from 1.75 to 56.6).

The group of problems where dRepairGA-based algorithms work best are problems with fixed

objective function and dynamic constraints (fF dC), especially those with moving constraints

which expose new, better optima (NAO). This might be due to the usefulness of the repair

method in tracking the moving feasible regions (I will have a more detailed analysis about this

in Section 6.3).

dRepairGA-based algorithms also work very well in problems with dynamic objective func-

tions and dynamic constraints (dF dC), again possibly due to its advantages in tracking the

moving feasible regions, compared to other GA-based algorithms

The performance gap between dRepairGA-based algorithms and existing GA-based DO al-

gorithms become smaller in the group of problems with fixed constraints and dynamic functions

(dF fC). However, here the difference is still significant: dRepairGA algorithms perform better

by factors from 1.75 to 3.11.

When we look at how the algorithms perform on problems with different characteristics, Fig-

ure 6.2 shows that the dRepairGA algorithms perform better than existing GA-based algorithms

in all of the tested DCOP characteristics, of which the gaps are particularly large in problems

with newly appearing optima (NAO), problems with optima in constraint boundaries (OICB)

and problems with switching optima (SwO). This suggest that as expected, the combination of

186



6. Solving DCOPs 6.2. Comparing and analysing dRepairGA and its variants . . .

repair method and our adaptive change-detection/update mechanism are useful at tracking the

moving feasible regions, finding optima in boundaries and distributing individuals effectively

when the optima switch between disconnected feasible regions.

There is one type of problem characteristic where the gap between dRepairGA algorithms

and existing GA-based algorithm is less significant (although the former are still better by factors

from 1.5 to 3.1). This is the group of problems where the optima are not in constraint boundaries

(ONICB). This decrease in effi ciency is caused not by the newly proposed mechanisms, but by the

nature of the repair method because GA+Repair also show the same decrease in performance.

This result suggests that the repair method might become less effective in solving problems with

optima not in constraint boundaries. Nevertheless, the result shows that in spite of this decrease

in performance, dRepairGA-based algorithms still perform significantly better than existing DO

algorithms in the ONICB group.

It should be noted that there is another type of problem where the performance of dRepairGA-

based algorithms are roughly equal to existing algorithms. This is the group of problems with

optima in search boundaries (OISB). However, all problems in this group are not DCOPs but

either static unconstrained or static constrained problems.

dRepairGA vs existing CH algorithms

The bar-comparison in Figure 6.2 shows that dRepairGA-based algorithms also perform signif-

icantly better than GA+Repair in all DCOPs (by factors from 1.34 to 4.53). The results prove

that the proposed mechanisms work effectively in improving the drawbacks of GA+Repair in

solving DCOPs.

The group of problems where the difference between dRepairGA-based algorithms and

GA+Repair becomes largest are again problems with fixed objective function and dynamic

constraints (fF dC) (by factors of 2.67 - 4.53) especially those with moving constraints which

expose new, better optima (NAO). The difference between dRepairGA and GA+Repair in other

problem groups are smaller, but still significant(by factors of 1.34 - 2.96). A more detailed

analysis about the impact of each proposed mechanism on these improvements will be carried

out in Section 6.3).

The results also show that basically dRepairGA-based algorithms also have the same be-

haviour as GA+Repair in DCOPs, only that they are able to achieve better performance. This
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observation suggests that the effi ciency of the original repair operator of GA+Repair in handling

constraints is not affected by the newly proposed mechanisms.

I also observed that the improvement in performance of dGenocop over Genocop is very

similar to the improvement of dRepairGA over GA+Repair. Specifically, dGenocop also has

better performance than Genocop III in all groups of DCOPs and the behaviour of dGenocop

is also the same as that of Genocop III. A detailed analysis about the advantages of dGenocop

over Genocop III will be provided in Section 6.3.3.

6.2.7 Other interesting characteristics of dRepairGA-based algorithms

In this subsection I will take a further analysis of the behaviours of dRepairGA-based algorithms

by looking at how different problem characteristics would affect their performance. This analysis

was done based on observations on detailed results in Figure 6.3 and Figure 6.4 where the

algorithms were tested in pairs of problems, of which the two problems of each pair are almost

identical except that one has a particular characteristic and one does not.

The experimental results in these pairs of problems reveal some interesting behaviours of

dRepairGA-based algorithms as follows.

First, although the presence of constraints makes the problems more diffi cult for existing

DO algorithms, things are different for algorithms using repair methods. For these algorithms,

the presence of constraints actually makes the problems (both static and dynamic) easier to

solve. Evidence for this can be seen in all pairs that have two almost identical problems, one

with constraints and the other without constraints. They are pair 1 (plot a), pair 5 (plot e),

pair 6 (plot f), pair 11 (plot j), pair 12 (plot k) and pair 13 (plot l) of Figure 6.3 and pair 21

(plot h) of Figure 6.4. In all these plots we can see a distinct difference between existing GA-

based DO algorithms and repair-based algorithms like GA+Repair and dRepairGA variants.

This is the fact that while the presence of constraints make existing GA-based DO algorithms

less effective compared to the unconstrained cases (in each of the aforementioned subplots their

"fC" or "dC" bars are always lower than their "noC" bars), it also make repair-based algorithms

become more effective in the constrained cases (in each of the aforementioned subplots the "fC"

or "dC" bars of repair-based algorithms are always higher than their "noC" bars). The reason

is that the presence of constraints helps increase selection pressures in the repair routine. This

routine selects newly repaired solutions only if they are feasible. Otherwise, the repair process
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is repeated until a feasible solution is produced (see step 2 of the Repair routine (Algorithm 9,

page 151)). Obviously this type of selection is only meaningful in case there are constraints. In

the unconstrained case, any repaired solutions will be accepted and hence there is no pressure

for selection in the repair process, leading to slower convergence speed.

Another interesting, counter-intuitive observation is found in problems where the global

optimum switches between disconnected feasible regions. Problems like these are supposedly

more diffi cult to solve than problems with no disconnected feasible regions and the test results

(to be explained in detail in Subsection 6.3.1) confirm that this assumption is true for existing

DO algorithms. However, for dRepairGA-based algorithms, I observe that the presence of

disconnected feasible regions does not always have any negative impacts on the performance.

Instead, it might even help the algorithms to travel from one region to another faster. In

addition, the larger the infeasible barrier between two feasible regions (supposedly harder to solve

for algorithms using normal mutations), the better the performance of repair-based algorithm.

Evidence can be seen in pair 17 (plot d) of figure 6.4 where repair-based algorithms have better

performance in the disconnected-feasible-region case than in the single-feasible-region case. More

evidence is given in pair 18 (plot e) of Figure 6.4 where the more isolated the disconnected feasible

regions, the better the performance of repair-based algorithms. It should be noted that repair-

based algorithms do not always perform better in problems with disconnected regions. One

example is in pair 16 (plot c) of Figure 6.4 where the performance of repair-based algorithms

in the disconnected-region case are only equal to or slightly worse than their performance in

the single-region case. However, even in this pair of problem, the impact of disconnected-region

on the performance of repair-based algorithms is much less than its impact on existing DO

algorithms.

The reason for the effectiveness of repair-based methods in solving problems with disconnected-

feasible regions will be analysed in Subsection 6.3.1.

6.3 What makes dRepair-based algorithms work well in DCOPs

- a further analysis

In this section I will carry out a detailed analysis to investigate which factors have made the

proposed algorithms work well in DCOPs (and why) and whether these factors are the results

of our proposed mechanisms.
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6.3.1 What makes dRepairGA-based algorithms better than GA/RIGA/HyperM

in solving DCOPs

Ability to retain diversified solutions even if they are infeasible

The experimental results show that one of the reasons for dRepairGA-based algorithms to work

better than GA/RIGA/HyperM (when these algorithms are combined with penalty functions) is

that diversified but infeasible solutions are accepted with a higher percentage thanks to the way

the repair method works. This helps dRepairGA-based algorithms maintain a higher level of

diversity and hence might be able to react to changes in or near infeasible regions more effectively.

This is one of the fundamental differences between the newly-proposed repair-based algorithms

and the tested existing DO algorithms+penalty functions, which have a disadvantage of not

being able to retain many diversified solutions if they are infeasible, as will be shown below.

Evidence for this advantage of dRepairGA-based algorithms can be seen in Table 6.3 (page

191) where I analysed the relationship between the percentage of infeasible areas over the total

search area and the actual percentage of infeasible solutions over the total number of solutions

selected for the next generation in the tested algorithms. To undertake this analysis I used a

measure, the percentage of selected infeasible individuals proposed in Subsection 5.3.2. Among

the individuals selected for the next generation, this measure counts the percentage of those

that are infeasible. The average score of this measure (over all tested generations) is then

compared with the percentage of infeasible areas over the total search area of the landscape. If

the considered algorithm is able to treat infeasible diversified individuals and feasible diversified

individuals on an equal basis (and hence to maintain diversity effectively), the two percentage

values should be equal.

As can be seen in Table 6.3, dRepairGA-based algorithms have much higher percentage of

infeasible individuals (43.8%-50.8%) than their GA-based elitism counterparts (12.5%-26.3%)

although they use the same elitism mechanism. This means that dRepairGA-based algorithms

is able to maintain more diversified but infeasible individuals. It should be noted that although

the non-elitism versions of GA/RIGA/HyperM also have a nearly as high percentage of infeasible

individuals as dRepairGA-based algorithms, as already discussed in Subsection 5.3.3, in non-

elitism GA/RIGA/HyperM, this high score comes with a trade-off of slower convergence which

eventually decrease the performance of the algorithms. The results in Table 6.2 (page 181) also
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Table 6.3: The average percentage of selected infeasible individuals over all problems for each
tested algorithm. The last row shows the average percentage of infeasible areas over all problems.

Algorithms Percent of
infeasible solutions

.GAelit 12.5%

.RIGAelit 26.3%

.HyperMelit 14.8%

.GAnoElit 41.8%

.RIGAnoElit 46.8%

.HyperMnoElit 42.8%

.dRepairGA 43.8%

.dRepairRIGA 44.9%

.dRepairHyperM 48.0%

.dRepairGAOOR 46.0%

.dRepairRIGAOOR 48.3%

.dRepairHyperMOOR 50.8%

.GA+Repair 47.0%

.GENOCOP 40.8%

.dGENOCOP 41.5%
Percentage of infeasible areas 60.8%

show that non-elitism GA-based algorithms have much worse performance than their elitism

counterparts.

It is also interesting to see that although not equipped with an enhanced diversity maintaining

mechanism such as random-immigrant or hyper-mutation, dRepairGA and GA+Repair still

achieve a percentage of infeasible individuals as high as dRepairRIGA and dRepairHyperM.

This confirms that the advantage of keeping infeasible solutions is due to that the repair method

accept both infeasible solutions and feasible solutions, provided that they can contribute to the

search.

Ability to track the moving feasible regions

Another reason for dRepairGA-based algorithms to perform better than GA/RIGA/HyperM is

that they are able to track the moving feasible regions. As been briefly mentioned in Subsection

5.5.2, in order to track the moving optima successfully, it might be necessary to track the moving

feasible regions where the optima are in first because in DCOPs the global optimum always either

move along with the feasible regions or appear in a new feasible region.

To compare the performance of dRepairGA-based algorithms against other algorithms in

tracking moving feasible regions, in this subsection I will analyse the ability of the tested al-

gorithms in tracking the optimal region, i.e. the feasible region where the global optimum is

currently in, and then evaluate the correlation between algorithms’ tracking ability and the
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Figure 6.5: This figure shows how well each of the tested algorithms does in tracking the moving
optimal feasible regions in different groups of DCOPs. The algorithms are evaluated using the
score optimal region tracking (ORT). The ORT measure would be equal to 1 in the best case
when the tested algorithm is able to track the region containing the global optimum at every
generation, and would be equal to zero in case the algorithm is not able to track this region
at all. This score is represented in the vertical axis. Explanations for the abbreviations in the
name of problem groups can be found in Table 5.5 (page 108). It should be noted that in this
figure we do not include the following groups of problems: (1) fF+fC because these problems
are static; and (2) fF/dF+noC because there is no constraint.

speed and accuracy of their convergence. To evaluate the ability to track the optimal region, I

propose a new measure: the optimal region tracking measure (ORT), which is calculated as the

ratio between (a) the number of generations at which the algorithm has at least one individual

in the optimal region and (b) the total number of generations:

ORT =

∑m
i=1

∑p(i)
j=1 n (i, j)∑m

i=1 p (i)
(6.2)

where n (i, j) is equal to 1 if the tested algorithm has at least one individual in the optimal

region at the jth generation of the ith change and is equal to 0 otherwise; m is the number of

changes and p (i) is the number of generations at each change period i.

The ORT measure would be equal to 1 in the best case when the tested algorithm is able to

track the region containing the global optimum at every generation, and would be equal to zero

in case the algorithm is not able to track that region at all.

The summarised ORT scores of some algorithms are given in Figure 6.5 (page 192). To
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avoid the graph to be too cluttered, I do not include the scores of the non-elitism versions of

GA/HyperM/RIGA because they are much worse than the elitism versions. I also do not include

the score of dRepairHyperM and the out-of-range (OOR) versions of dRepairGA-based because

these scores are similar to the score of dRepairRIGA.

As can be seen in Figure 6.5, the ORT scores of existing DO algorithms are lower than

that of dRepairGA-based algorithms, meaning that the latter are better in tracking the moving

feasible regions. The difference becomes more significant in two cases: problems where the

objective functions are dynamic (dF+fC, dF+dC and SwO) and problems where the moving

feasible regions expose new, better optima without changing the value of the existing optimum

(NAO). The reason for existing DO algorithms to not work well in the first case is that the

global optimum does not gradually move but jumps from one region to another and hence it is

diffi cult to track its movement using existing DO’s tracking methods. The reason for existing

DO algorithms to not work well in the second case is that the algorithms might not be aware of

the newly appearing optima.

It is also interesting to note that even when being used without such diversity-maintaining

mechanisms as random-immigrant or hyper-mutation, dRepairGA can still track the moving

feasible regions very well. Figure 6.5 shows that the score of dRepairGA is almost the same as

that of dRepairRIGA (only slightly lower in a few cases). It means that the repair operator and

our three repair-based routines proposed in Subsection 6.1.3 are those that plays the major role

in helping the algorithms to track the moving feasible regions. It also confirms our hypothesis

in Subsection 6.1.2 that the original repair operator can be modified to track moving feasible

regions.

Ability to travel between disconnected feasible regions

The third reason for the good performance of dRepairGA-based algorithms is that, different

from the tested DO algorithms+penalty functions, dRepairGAs can travel easily through the

infeasible areas separating disconnected feasible regions. This helps dRepairGAs to follow the

global optimum when it switches from one region to another.

Evidence for this advantage of repair-based methods over existing DO algorithms can be

found in the test cases 17, 18 (plots d, e) in Figure 6.4, page 184 that we have discussed

previously in Subsection 6.2.7. As can be seen in the plots, while GA/RIGA/HyperM perform
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Table 6.4: The triggered-time count scores and the detected-change count scores of algorithms
using the HyperM mechanism in problem G24_3.

Value stdDev Value stdDev
.HyperMnoElit 164.20 11.29 1.82 0.83
.HyperM_elit 0.00 0.00 0.00 0.00
.dRepairHyperM 11.67 0.84 11.00 0.00
.dRepairHyperMOOR 11.67 0.92 11.00 0.00
NAO  Newly Appearing Optimum
fF+dC  fixed objective Function, dynamic Constraints

Algorithms
G24_3 (NAO fF+dC)

Trigger Count Detected Change Count

worse (their bars become lower) in case there are more barriers separating the two disconnected

feasible regions, repair-based algorithms still achieve the same performance or even have a better

performance (their bars become higher) when there are barriers or when the barriers become

larger. This shows that the presence of such barriers do not have a negative impact on repair-

based algorithms or in other words repair-based algorithms can travel through the infeasible

path between feasible regions thanks to the way they accept infeasible solutions during their

search process.

Ability to detect changes occurring in the infeasible areas

Another possible reason for dRepairGA-based algorithms to perform better than change-detection

DO algorithms, which are originally designed to detect changes in feasible areas only, is that they

can detect changes in infeasible areas as well. Existing change-detection DO algorithms like Hy-

perM might not be able to detect changes in problems with moving feasible regions which expose

newly, better optima as G24_3 because HyperM only focuses on detecting changes happening

to the current global optimum in the feasible regions. In problems like G24_3 where a new,

better optimum appears due to changes in infeasible regions, the algorithm cannot detect the

changes and consequently underperforms. Hypothetically the new algorithms should do better

because they have detectors near the boundaries of infeasible regions to detect the situations

where the constrained region expands/shrinks/moves/appears/disappears.

To analyse if the newly proposed change-detection mechanism can help the algorithm to

work better than HyperM in this situation, we compared HyperM with its repair-based variant:

our newly proposed dRepairHyperM. In term of detecting changes, dRepairHyperM (and other

dRepair-based algorithms) is similar to HyperM in that it uses the same method to monitor

fitness drop to detect changes. However, dRepairHyperM also use our newly proposed mecha-
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nism to monitor the shrink and expansion of infeasible regions to detect changes in infeasible

areas. Details of this mechanism has been described in Subsection 6.1.3 and in the routine

DetectChange in Algorithm 10 (page 167). This DetectChange routine is also used in other

dRepair-based algorithms tested in this chapter.

To evaluate the ability of HyperM and dRepairHyperM in detecting changes, I used the

two measures proposed in Subsection 5.3.2: the measure triggered-time count, which counts

the number of times the hyper-mutation-rate is triggered by the algorithm, and the measure

detected-change count, which counts the number of triggers actually associated with a change.

For HyperM/dRepairHyperM, triggers associated with a change are those that are invoked by the

algorithm within ν generations after a change, with ν is the maximum number of generations (five

in our implementation) needed for HyperM/dRepairHyperM to detect a drop in performance.

These two measures indicate how many times an algorithm triggers its hyper-mutation; whether

each trigger time corresponds to a new change; and if there is any change goes undetected during

the search process.

Evidence for the advantage of dRepairGA-based algorithms as dRepairHyperM over HyperM

can be seen in Table 6.4 (page 194). The comparison results show that on the one hand, both

the elitism and non-elitism versions of HyperM are not able to detect changes in G24_3 (the

algorithm either is not able to trigger its hyper-mutation rate to deal with changes (elitism

case, triggered-time count=0 and detected-change count=0) or is not able to trigger its hyper-

mutation rate correctly when a change happens (non-elitism case, triggered-time count'164 and

detected-change count'1.8)). On the other hand, dRepairHyperM and dRepairHyperM-OOR

are able to detect all changes occurring during the search process (triggered-time count'11

and detected-change count=11). This shows the advantage of dRepairGA-based algorithms in

detecting changes.

6.3.2 What makes dRepairGAs/dGenocop better than GA+Repair/Genocop

in solving DCOPs?

Ability to update reference individuals when changes happen

In algorithms using the original repair method such as GA+Repair and Genocop III, after a

change the reference individuals might become out-of-date or even infeasible. These outdated

individuals might mislead the algorithms and consequently affect the search performance. Our
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hypothesis is that dRepairGAs/dGenocop might be better than GA+Repair/Genocop in this

aspect because they are able to repair their reference individuals whenever a change happens

thanks to the routine UpdateReferencePop. This advantage helps such algorithms as dRepair-

GAs/dGenocop to update their knowledge about the problem to react to the change better.

To analyse if the newly proposed change-detection mechanism can really help the algorithm

to work better than existing CH algorithms in this situation, we compared GA+Repair with

dRepairGA, where the original GA+Repair is combined with the newly proposed routines de-

scribed in Subsection 6.1.3: DetectChange and UpdateReferencePop. These two routines are

designed to adaptively update the reference population whenever a change happens.

To test if the algorithms are able to update the reference individuals properly, I used a

measure proposed in Subsection 5.3.2: the plot of number of reference individuals that are

feasible. If an algorithm is able to update the reference individuals properly, it should be able to

maintain a reference population of all feasible individuals all the time during the search process

and the plot diagram would show a flat, constant line.

The most suitable environments to test this behaviour of the two algorithms are DCOPs with

dynamic constraints where after each change the previous best feasible solutions are hidden by

the moving infeasible region. In the G24 benchmark set, the problems that have this property are

the G24_4, G24_5 and G24_7. G24_4 and G24_5 belong to the problem group dF,dC while

G24_7 belongs to the problem group fF,dC (see Figure 6.2). As can be seen in Figure 6.2, in

both groups the performance of GA+Repair decreases significantly compared to the case where

the constraints are fixed (fF,fC). In this analysis we will see if the moving infeasible region makes

any of the reference individuals become infeasible. If no reference individual becomes infeasible,

after each change the total number of feasible reference individuals should remain to be five (the

size of the reference population). If one or more individuals do become infeasible, there should

be a drop in the total number of feasible reference individuals.

The comparison results using the aforementioned measure are shown in Figure 6.6, page

197. The figure shows that, in all cases the original repair method (GA+Repair) is not able to

keep all reference individuals feasible during the search. When a change happens, the number of

feasible reference individuals drops to a very low level. The figure also shows that this drawback

has been overcome in dRepairGA. We can see in the dRepairGA plot that when GA+Repair

is combined with the UpdateReferencePop routine, all reference individuals are updated and
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Figure 6.6: This figure shows a comparison of GA+Repair and dRepairGA in maintaining
feasible reference individuals in problems with moving infeasible regions. The plot values (y-
axis) show the number of reference individuals that are feasible. If no reference individual
becomes infeasible, the plot should shows that after each change the total number of feasible
reference individuals still remains to be five. On the left hand side is GA+Repair. On the
right hand side is dRepairGA, which is the combination of GA+Repair and a special adaptive
mechanism (the UpdateReferencePop routine - introduced in Algorithm 11, page 172) to make
sure that the outdated reference individuals are updated whenever a change happens.

remained feasible through out the search process.

Later in Subsection 6.3.3 I will analyse the level of performance improvement that the use

of the routine UpdateReferencePop can bring to the original Genocop III and GA+Repair.

Ability to adaptively balance feasibility and infeasibility

Another reason that makes dRepairGAs/dGenocop better than GA+Repair/Genocop is that

they are able to adaptively balance feasibility and infeasibility better when changes happen.

As mentioned previously in Subsection 5.4.4, existing CH strategies like the repair method in

GA+Repair/Genocop might suffer from the outdated problem and hence might not be able to

balance feasibility/infeasibility well in DCOPs.
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To analyse if the newly proposed change-detection mechanism can really help improve bal-

ancing feasibility/infeasibility in DCOPs, we compared GA+Repair with the new dRepairGA

algorithm. As already described in Subsection 6.1.4, dRepairGA is a combination of GA+Repair

with the newly proposed change-detection (DetectChange) and update routines: UpdateSearch-

Pop and UpdateReferencePop. These routines are designed to adaptively balance feasibility and

infeasibility whenever a change happens.

To test if the performance of GA+Repair versus dRepairGA in balancing feasibility/infeasibility

in dynamic environments, I used a measure proposed in Subsection 5.3.2: the plot of number of

feasible individuals in each disconnected feasible region to monitor the number of feasible individ-

uals in each disconnected feasible region and the ratio of feasibility/infeasibility. If the balancing

mechanism works well in the DCOP case, it should be able to manage a good distribution of

individuals so that the better feasible regions should have more feasible individuals.

The most suitable environments to test this behaviour are DCOPs with two disconnected

feasible regions where the global optimum keeps switching from one region to another after each

change or after some consecutive changes. In the G24 benchmark set, the problems that have

this property are the G24_1, G24_2, G24_3b, G24_4, G24_5, G24_6a, G24_6c, G24_6d, and

G24_8b where the global optimum switches from one region to another after each period of one

or two changes. All these problems belong to the group SwO in Figure 6.2 (page 182), where we

can see that the performance of GA+Repair significantly decreases compared to the stationary

constrained case (fF, fC). In such SwO problems like these, if the balancing mechanisms of the

tested algorithms work well, at each period between changes the algorithm should be able to

focus most feasible individuals on the region where the global optimum is currently in while still

maintaining the same ratio of feasibility/infeasibility for diversity purpose.

The plots of number of feasible individuals in each disconnected feasible region of GA+Repair

and dRepairGA in these functions are given in Figure 6.7 (page 200) and Figure 6.8 (page 201).

It should be noted that the measure scores of the tested algorithms in three problems: G24_2,

and G24_6c/d are not shown in because they are similar to that of G24_5, and G24_6a,

respectively.

The figures show that in all cases except G24_3b, the existing CH method GA+Repair is not

able to focus most feasible individuals on the region where the global optimum is currently in.

Instead, the majority of feasible individuals still remained in one single region (region 2), which
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is where the global optimum firstly was before the changes happen. The number of individuals

in the other region (region 1) remains low regardless of whether the global optimum has switched

into the region or not. These results show that, due to its outdated information and strategy,

the GA+Repair algorithm is not able to follow the switching optimum well.

Figures 6.7 and 6.8 also show that the drawback above has been resolved in the newly

proposed dRepairGA. As can be seen in the figures, the presence of the routines proposed in

Subsection 6.1.3 helps dRepairGA focus most of its feasible individuals to the region where the

global optimum has moved into whenever a change happens while still maintaining the same

ratio of feasibility/infeasibility for diversity purpose in all problems.

Later in Subsection 6.3.3 I will analyse the level of performance improvement that the rou-

tines UpdateSearchPop and DetectChange bring to the original Genocop III and GA+Repair.

More diversity helps the repair operator approach toward the global optimum faster

The third reason that might make the newly proposed algorithms as dRepairRIGA/ dRepairHy-

perM perform better than existing repair-based methods is the high-level of diversity. The

summarised results in Figure 6.2 (page 182) shows that when being hybridised with diversity-

enhanced mutation strategies such as RIGA and HyperM, the performance of dRepairGA can

be significantly increased in all groups of problems.

This improvement is due to two factors. The first, and obvious factor is the benefit of

diversity in dealing with environmental dynamics. Evidence of this advantage can be seen in

the experiments in this chapter, for example in Table 6.2 where we can see that GA-based

algorithms with high diversity as RIGA and HyperM perform better than basic GA in most

dynamic problems.

I found that there is another interesting factor that helps dRepairRIGA/dRepairHyperM out-

perform dRepairGA. This is the fact that, besides its usefulness in handling dynamics, diversity

also improves the effectiveness of the repair method in handling constraints. Evidence for this ad-

vantage can be found in Figure 6.2, the group of static constrained problems (fF,fC). In this type

of problem, the performance of dRepairRIGA is significantly better than that of GA+Repair

and dRepairGA. As the only difference between dRepairRIGA and GA+Repair/dRepairGA

when solving static constrained problems is the level of diversity, the good performance of

dRepairRIGA must be brought by its high level of diversity. In addition, because there is no
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Figure 6.7: This figure shows how the balance strategies of GA+Repair (left) and dRepairGA
(right) distribute their feasible individuals in the disconnected feasible regions of problems
G24_1, G24_3b and G24_4. The problems tested in this figure are those with global optima
switching between two disconnected feasible regions after each change or after a few changes.
e.g. in G24_1 and G24_3b the location of the global optimum is as follows: change 1: region
2, change 2-4: region 1, change 5: region 2 and so on. The plot lines with circles show the
number of feasible individuals in region 1, and the plain plot lines show the number of feasible
individuals in region 2. If the balance strategy works well, most individuals should be focused
on the region where the global optimum is currently in. It means that when the optimum
switches to region 2, the number of individuals in region 2 should be high and the number of
individuals in region 1 should be low. When the optimum switches back to region 1, the reverse
thing should happen, i.e. number of individuals in region 1 should be high and that number in
region 2 should be low.

environmental dynamic in static constrained problems, we can conclude that the benefit of high

diversity in this type of problem is not to handle dynamics but to help the repair method to be

more effective in handling constraints. The reason for the usefulness of diversity to the repair

process is possibly due to that higher diversity might allow the repair process to approach the

global optimum from more directions, and hence accelerate the search process.
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Figure 6.8: This figure shows how the balance strategies of GA+Repair (left) and dRepairGA
(right) distribute their feasible individuals in the disconnected feasible regions of the other three
problems: G24_6c, G24_6d and G24_8b. Instructions to read the figure can be found in Figure
6.7.

Ability to search out of range to find optima in search boundary faster

The ability to search out of range (OOR) of dRepairGA_OOR, dRepairRIGA_OOR, dRepairHy-

perM_OOR also brings them certain advantages to existing repair-based methods in solving

problems where the global optima is in the boundaries of the search region. Experimental re-

sults in Figure 6.2 and in Table 6.2 show that compared to the original algorithms, the OOR

versions achieve better performance in group of problems with optima in search boundaries

(OISB, fF+noC, dF+noC) while still having almost equal performance in other group of prob-

lems. It means that the 25% out-of-range search mechanism is useful to find in-boundary optima

and does not create any significant negative impact on the performance of algorithms in other

cases.
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6.3.3 The contribution of each component to the performance of dRepairGAs

and dGenocop

Because the proposed dRepairGAs and dGenocop algorithms combine different components

such as the four routines Repair, DetectChange, UpdateReferencePop, UpdateSearchPop; the

RIGA/HyperM mutation strategies; and the out-of-range mechanism OOR, it is of interest

to study the contribution of each component on the performance of the complete algorithms.

Among these components, I have already analysed the impacts of the Repair routine by com-

paring the performance of GA+Repair with that of GA in Figure 6.2. I have also analysed

the impact of the RIGA/HyperM mutation strategies and the OOR mechanism on algorithms’

performance in Subsections 6.3.2 and 6.3.2, respectively.

In this subsection I will analyse the impacts of the rest of the proposed components - the

three routines DetectChange, UpdateReferencePop and UpdateSearchPop - on the performance

of GA+Repair and Genocop III. In order to carry out the analysis, I firstly integrated each of the

above routines with the original version of GA+Repair and Genocop III to create a corresponding

modified variation, then compared this modified variation with the original algorithm. The

following combinations were tested:

• GA+Repair/Genocop + wNUwNRR (No Update, No Repair Reference population): These

are the original versions of the constraint-handling algorithms. None of the newly proposed

routines is integrated.

• GA+Repair/Genocop + wUPGwNRR (Update Per Generation, No Repair Reference pop-

ulation): No change-detection is made. Only the UpdateSearchPop routine is carried out

at every generation

• GA+Repair/Genocop + wUPGwRR (Update Per Generation, Repair Reference popula-

tion): No change-detection is made. Both the UpdateSearchPop and UpdateReferencePop

routines are carried out at every generation

• GA+Repair/Genocop + wUPCwNRR (Update Per Change, No Repair Reference popula-

tion): Change detection is enabled. The UpdateSearchPop routine is carried out adaptively

whenever a change is detected.
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• GA+Repair/Genocop + wUPCwRR (Update Per Change, Repair Reference population):

Change detection is enabled. Both the UpdateSearchPop and UpdateReferecePop routines

are carried out adaptively whenever a change is detected.

Detailed comparisons on groups of problems for GA+Repair-based algorithms is given in

Figure 6.9 and the same comparison for Genocop-based algorithms is given in Figure 6.10. It

should be noted that because all GA+Repair variants are developed from GA+Repair, in Figure

6.9 I chose the original GA+Repair as the baseline to compare all GA+Repair variants. Likewise,

because all Genocop-based algorithms are developed from Genocop III, in Figure 6.10 I chose

the original Genocop III as the baseline to compare all Genocop-based algorithms.

How many times the error of each GA+Repair variant is smaller than
that of the original GA+Repair
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Figure 6.9: This figure shows the effect of each of our proposed adaptive balancing/updating
mechanism on GA+Repair in solving DCOPs. Each algorithm in the graph represents a combi-
nation of each proposed mechanism and GA+Repair. The vertical axis show the ratio between
the average (modified offl ine) error of the original GA+Repair and that of each algorithm. This
ratio indicates how many times each algorithm performs better (ratio > 1) or worse (ratio < 1)
than the the original GA+Repair in term of modified offl ine error (a ratio score of 1 means that
there is no improvement nor decrease in performance). Explanations for the abbreviations in
the name of problem groups can be found in Table 5.5 (page 108).

Generally, the comparison results in Figures 6.9 and 6.10 are as expected, i.e. each of the

proposed components does have its own contribution to improve the performance of algorithms.

Detailed analysis shows some interesting observations about the contribution of each component.

First, the results suggest that the process of updating algorithms’knowledge/strategy (as

done in the UpdateSearchPop and UpdateReferecePop routines) can only be effective if they
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Figure 6.10: This figures shows the effect of each of our proposed adaptive balancing/updating
mechanism on Genocop III in solving DCOPs. Each algorithm in the graph represents a combi-
nation of each proposed mechanism and Genocop III. The vertical axis show the ratio between
the average (modified offl ine) error of the original Genocop III and that of each algorithm. This
ratio indicates how many time each algorithm performs better (ratio > 1) or worse (ratio < 1)
than the the original Genocop III in term of modified offl ine error (a ratio score of 1 means that
there is no improvement nor decrease in performance). Explanations for the abbreviations in
the name of problem groups can be found in Table 5.5 (page 108).

are combined with the adaptive change-detection method (routine DetectChange). Figures 6.9

and 6.10 shows that when the algorithms update their knowledge/strategy at every generation

(GA+RepairwUPG and GENOCOPwUPG) instead of at the beginning of each appropriate

change period (GA+RepairwUPC and GENOCOPwUPC), algorithm performance is decreased.

This is due to that the update process requires additional function evaluations to be taken (in

the routine UpdateReferecePop (Algorithm 11, page 172) individuals are re-evaluated and in

the routine UpdateSearchPop (Algorithm 12, page 172) individuals are repaired and hence also

re-evaluated). If the update process is undertaken at every generation, it may take up too many

evaluations and hence prevent the algorithms from doing the search effectively.

Second, the results show that when the UpdateSearchPop routine is combined with the

adaptive change-detection method (as in GA+RepairwUPC and GENOCOPwUPC), the per-

formance of the tested algorithms improves in all dynamic cases (fF+dC, dF+noC, dF+fC,

dF+dC) and remains almost unchanged in the static cases (fF+fC, fF+noC). This proves that

detecting changes and updating the search population are very useful in handling environmental

204



6. Solving DCOPs 6.4. A detailed analysis on parameter values

dynamics while not causing any negative impact on performance in the static cases.

Third, when comparing the performance of the -RR versions (Repair Reference population)

of the algorithms with the -NRR versions (No Repair Reference population), the results in the

two figures show that the process of updating reference individuals using the routine UpdateRef-

erecePop (denoted RR) is useful in dealing with problems with dynamic constraints (fF+dC,

where the moving constraints might make existing reference individuals feasible) and problems

with newly appearing optima (NAO, where existing reference individuals might not reflect the

best region in the search space). These two types of problems are those where the reference indi-

viduals are most likely to become outdated after each change and hence as expected they are the

types of problems where the performance has been improved most using the updateReference-

Pop routine. In other types of problems, there are improvements but slightly less significant (in

Genocop-based algorithms) or there is no improvement (in GA+Repair-based algorithms). In a

few cases the UpdateReferencePop routines may even decrease performance as in the problem

group dF+noC (GA+Repair algorithms) and in the problem group fF+fC / OICB (Genocop

algorithms) but the impact is insignificant compared to the improvements in other cases.

6.4 A detailed analysis on parameter values

As mentioned in Subsection 6.2.2, to maintain a fair comparison environment, in all previous

experiments, if possible we set the parameters of all algorithms to the same values, which are

the default or best reported values given in the original research of RIGA (Grefenstette 1992),

HyperM (Cobb 1990) and Genocop III (Michalewicz n.d.).

However, it is unknown if these default or best reported parameter values are most suitable

for solving DCOPs. To answer this question, in this section I will carry out a detailed analysis to

investigate how different parameter values would affect the performance of all tested algorithms,

including existing DO/CH algorithms and the newly proposed algorithms in solving the problems

in the G24 benchmark set. The analysis will provide us with suggestions on how to choose the

best parameter values to solve DCOPs. As the problems in the G24 benchmark set include

not only DCOPs but also static unconstrained, dynamic unconstrained, and static constrained

problems, this analysis will also show how robust the tested algorithms are using different

parameter values.

It is also worth noting that for algorithms with both elitism and non-elitism versions as
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GA/RIGA/HyperM, in this section I will only present the results of the elitism versions because

in our previous experiments the elitism versions have better performance than the non-elitism

versions.

6.4.1 Performance measures

In the previous experiments, it was possible to present the detailed performance of each algorithm

in every problems of the benchmark set as well as in groups of problems because I used only one

single set of parameter values. In the experiment in this section, however, it is impractical to

present the results in such a detailed level because the amount of data is very large due to the

fact that we are going to test the algorithms in all possible ranges of parameter values.

This limitation requires us to find a new type of measure which can accurately represent the

overall performance of each algorithm in all tested problems under different parameter settings.

To represent the overall performance of an algorithm in all tested problems, one solution is to

calculate the average value of the errors from all problems (or calculate the ratio between the

error and a fixed baseline error (baseline-error-ratio) as we did in our previous experiments), but

the result might be biased toward larger errors. For example, if an algorithm has a large error

of 1000 in problem A and a very small error of 1e-10 in problem B, the average value would be a

large error of 500+5e-11. This large error obviously does not reflect the good performance that

the algorithm has achieved in problem B. In cases where we only calculated the algorithm error

in each single problem (like the results in Figure 6.3 (page 183) and Figure 6.4 (page 184)) or

in groups of few problems with similar characteristics and similar problem structures (like the

results in Figure 6.2 (page 182)), there is little to no bias, so we can use the baseline-error-ratio

to evaluate algorithms performance. However, in cases where we want to evaluate the average

error of all 18 problems in the benchmark set, the bias in errors might be significant and this

bias will consequently make it very diffi cult to accurately evaluate the overall performance of

the tested algorithms.

To overcome this limitation, in this section I will use a newly proposed measure, the nor-

malised score, which evaluates the overall performance of an algorithm compared to other peer

algorithms in solving a group of problems in a normalised way. The idea is that, given a group

of n tested algorithms and m problems, for each problem j the performance of each algorithm is

normalised to the range (0, 1) so that the best algorithm in that problem j will have the score of
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1 and the worst algorithm will get the score of 0. The final overall score of each algorithm will

be calculated as the average of the normalised scores from each individual problem. According

to this calculation, if an algorithm is able perform best in all tested problems, it would get an

overall score of 1. Similarly, if an algorithm performs worst in all tested problems, it would get

an overall score of 0.

Given a group of n tested algorithms and m problems, a formal description of the the

normalised score of the ith algorithm is given in Equation 6.3:

Snorm (i) =
1

m

∑m

j=1

|emax (j)− e (i, j)|
|emax (j)− emin (j)|

, ∀i = 1 : n. (6.3)

where e (i, j) is the modified offl ine error of algorithm i in problem j; and emax (j) and emin (j)

are the largest and smallest errors among all algorithms in solving problem j.

The advantage of the normalised score is that it is unbiased. The fact that an algorithm

might get a very large or very small error on a particular problem (like the example given

previously) would not bias the overall score as it does when we use the traditional mean value

of errors.

In the experiments in this section, to evaluate the behaviour of algorithms from different per-

spectives I will present the performance of algorithms using both measures: the baseline-error-

ratio used in previous experiments and the normalised score. The normalised score provides

more accurate evaluation on the overall performance but the baseline-error-ratio would also be

useful in highlighting the situations where an algorithm achieves a very good result with high

precision (and hence high ratio score) in certain problems.

6.4.2 Crossover rate

The first parameter that we are going to analyse is the crossover rate. Figure 6.11 shows our

analysis of how changing the crossover rate would affect the performance of the tested algorithms

when all other parameters are kept constant. It should be noted that in this analysis I do not

test the impact of changing crossover rate on Genocop III and dGenocop. The reason is that due

to the special design in Genocop III/dGenocop changing the crossover rate would affect the rate

of nine other specialised operators. In that case, any impact in performance might be caused

by not only the change in crossover rate but also by the consequent changes in the probability

rates of other specialised operators.
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Figure 6.11: This figure shows an analysis of how changing the crossover rate would affect
the overall performance of the tested algorithms on all the 18 tested problems. The impact of
different crossover rates on algorithm performance is calculated using two performance measures.
On the left is the average of the baseline-error-ratio, which represents how many times the error
of an algorithm on a problem is smaller than the baseline error (the worst observed error). This
measure can be misleading because its score would be bias toward a few problems where an
algorithm has very small errors. However, the measure is somehow still useful because when we
see an algorithm with a high baseline-error-ratio, we know that the algorithm must have had
very small errors in at least one of the tested problems. On the right is the normalised score
(see Equation 6.3), which provides more accurate evaluation on the overall performance and
robustness of the tested algorithms. The higher the y-axis values, the better the performance.

Figure 6.11 shows both the average baseline-error-ratio scores (left) and the normalised scores

(right) under different crossover rates. Some observations can be seen from the results in the

figure. First, when being used to evaluate the overall performance in all problems, the baseline-

error-ratio score can be misleading. Based on the baseline-error-ratio score (left plot) it looks

as if (1) dRepairRIGA has the best overall performance and (2) the increase of crossover rate

helps algorithms as dRepairHyperM, dRepairGA and GA+Repair increase their performance.

However, the normalised scores (right plot) shows that these are not true. dRepairRIGA ac-

tually only has roughly the same overall performance as dRepairHyperM, and the increase of

crossover rate actually has negative effect on the performance of dRepairRIGA, dRepairHyperM,

dRepairGA and GA+Repair. Our detailed analysis (not shown) indicates that the high baseline-

error-ratio score of dRepairRIGA and the upward curves of dRepairHyperM, dRepairGA and

GA+Repair in the left plot are largely due to the exceptionally low error of these algorithms in

one single problem, the G24_3f problem. When solving this problem dRepairRIGA has very

low error at all crossover rates and dRepairHyperM, dRepairGA, GA+Repair have very low
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error when the crossover rate becomes higher.

Second, the newly proposed algorithms have better overall scores than tested existing DO

and CH algorithms in all cases regardless of the crossover rate, except the case of dRepairGA

at the extreme crossover rate of 1.0 where it has slightly worse performance than RIGA.

Third, the higher the crossover rate, the worse the performance of repair-based algorithms

like GA+Repair, dRepairGA, dRepairRIGA and dRepairHyperM (these algorithms perform

best in cases where there is no crossover!). It seems that the use of the normal arithmetic

crossover is not suitable for repair-based algorithms. Further analysis is needed to find out the

exact reason, but I suspect that, in solving DCOPs the arithmetic crossover operator might

reduce the benefit of the repair operator in tracking the moving feasible regions. The repair

operator, as described in step 2a of Algorithm 9 (page 151), can be considered a special crossover

operator because it is very similar to the normal arithmetic crossover except two differences.

First, while in the crossover operator both parents are from the search population, in the repair

operator one of the parent is from the search individual and the other is from the reference

population. Second, in the repair operator an offspring is only accepted if it is feasible. Due to

these two differences, in the repair operator the search outcome is biased so that individuals are

constantly pushed toward the feasible regions, and hence in DCOPs where the feasible regions

move, the population is able to track those movements. Such a bias cannot be provided by the

original arithmetic crossover operator. As a result, when the repair operator is combined with

the crossover operator, I suspect that the effect of tracking moving feasible regions might be

reduced or even be eliminated. The figure also shows that such algorithms with higher diversity

as dRepairRIGA and dRepairHyperM are less affected by the increase of crossover rate. One

possible reason might be that when the repair-operator becomes less effective in tracking moving

feasible regions due to the crossover operator, the higher diversity brought by the incorporated

RIGA and HyperM mechanisms might help alleviating this drawback. In particular, because the

RIGA/HyperM mechanisms send more diversified individuals to explore the search space, some

individuals will have the chance to be sent to the moving feasible regions, and hence improving

the process of tracking this moving region.

Fourth, up to a rate of 0.4, the higher the crossover rate the better the performance of GA,

HyperM and RIGA. The performance of these algorithms reach the peak at the rate of 0.4.

Beyond this rate the performances decrease but still remain relatively good. The result show

209



6. Solving DCOPs 6.4. A detailed analysis on parameter values

that a crossover rate greater than or equal to 0.1 might be a good choice for existing GA-based

DO algorithms to solve DCOPs. The result also shows that compared to HyperM and GA, RIGA

is much less affected by the variation of the crossover rate and hence it is able to maintain a

relatively high performance regardless of the crossover rate. This result implies that compared

to other existing DO strategies, diversity-maintaining strategies like RIGA might be a better

choice in solving DCOPs thanks to its robustness under different crossover rates.

6.4.3 Hyper-mutation rate and random-immigrant rate

The second type of parameters to be analysed are the important hyper-mutation and random-

immigrant rates used for diversity maintaining/introducing in dynamic optimisation: the hyper-

mutation rate (PH) and the random-immigrant rate (PR). In this analysis different values of PH

and PR will be evaluated to see how they would affect the performance of the tested algorithms.

I chose algorithms that use the random-immigrant (RIGA/dRepairRIGA) and hyper-mutation

(HyperM/dRepairHyperM) mechanisms for this test. In addition, because HyperM at PH = 1.0

is equivalent to restart GA with elitism and RIGA at PR = 1.0 is equivalent to random search

with elitism, in this experiment we will also be able to compare the performance of the tested

algorithms with random search and restart GA. It is also noteworthy that even in case PH

and PR are equal to 1, dRepairRIGA and dRepairHyperM are still not equivalent to random or

restart search because of two reasons. First, due to the way dRepairGA-based algorithms works,

the search population is not entirely random. This is because every randomised/re-initialised

individuals will have to be repaired (and hence are no longer random) before being added to the

search population. Second, the reference population is also not entirely randomised or restarted

whenever we apply PH = 1 or PR = 1 to the dRepair-based algorithms. This is firstly because

the reference population still remains unevolved during each 100-evaluation period and secondly

because when the reference population evolves, random individuals are only accepted if they are

feasible and better than their parents (see step 3b in Algorithm 8 (page 150)).

In Figure 6.12 I present the results of the algorithms using the default parameters values

set out in Table 6.1 (page 178). For this experiment I also tested the algorithms under dif-

ferent crossover rates (from 0.0 to 1.0) and different base mutation values (from 0.0 up to the

chosen hyper-mutation/random-immigrant values), but these results are not shown because the

behaviours of the algorithms are roughly the same as in Figure 6.12.
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Among the observations we got from Figure 6.12, the following are most interesting. First,

in order to achieve the best performance the tested algorithms need to use very high mutation

rates, which are equivalent to very high levels of diversity. Figure 6.12 shows that algorithms

performance increase in accordance with the increase of PR or PH until they reach their peaks

at the rate of 0.8-1.0. It is also worth noting that the PH rate where HyperM reaches its peak

performance slightly varies depend on the value of the crossover rate. Our detailed analyses (not

shown) indicate that the higher the crossover rate, the lower the hyper-mutation rate needed to

reach peak performance. For example, at the crossover rate from 0.1 to 0.4, HyperM reaches its

peak at PH = 1.0 or PH = 0.8, but at the higher crossover rate from 0.8 to 1.0, HyperM reaches

its peak performance at a lower mutation rate PH = 0.6. However, in any case, the results still

suggest that high PH and PR are necessary to solve the tested problems more effectively.

Surprisingly, even with the highest possible diversity levels, the experimental results show

that algorithms such as RIGA and HyperM are still worse or not much better than restart

GA and random search. By comparing the performance of HyperM and RIGA at lower PR

and PH rates with their performance at PH = 1.0 (equivalent to restart GA with elitism and

change-detection) and PR = 1.0 (equivalent to random search with elitism) in subplots b and d

of Figure 6.12, we can see that HyperM is only able to perform slightly better than restart GA

(plus elitism and change-detection) at PH = 0.8 and RIGA is not even able to perform better

than random search (with elitism)!.

This observation suggests that, for existing DO algorithms like HyperM and RIGA, the levels

of change severity in the search spaces are so large that the DO techniques such as random-

immigrant or hyper-mutation seem not to bring much benefit to the algorithms. In other words,

toward RIGA and HyperM, there seems to be not much correlation between the environments

before and after a change in the tested DCOPs.

The suggestion that changes in the tested problems are very large, however, seems to be

contradicted with the actual level of change (medium) that I have set up for each dynamic

element in the tested problems (see Table 6.1, page 178). In the experiments, the objective

function and constraint functions only change moderately, meaning that there should be a

considerable amount of correlation in each function before and after each change, and hence it

should be possible to track the changes of objective function or constraint functions if they are

solved separately using RIGA and HyperM.
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This contradiction leads to the second interesting observation: I have found that the reason

for such a contradiction to exist is that although individually the objective function and con-

straint functions only change gradually, when they are combined to create a DCOP, they can

create much more severe changes in the combined constrained search space. One simple example

can be seen in the problem G24_4 illustrated in Figure 5.1, page 106. In that problem, if we

view the objective function and the constraint functions separately, we can see that both of them

change only moderately after each change step (the objective function gradually rotates and the

constrained areas gradually move). However, the constrained landscape in the figure shows that

the combination of these two types of small changes creates a much more sudden behaviour in

the search space: the global optimum moves from one disconnected region to another.

The fact that the small changes in each dynamic element can create larger, much more

sudden changes in the combined constrained search space is the reason why we see that the

tested algorithms need very high PH and PR to get the best overall scores in solving the tested

DCOPs. Our detailed analysis (not fully shown due to lack of space) on pairs of problems from

the G24 set where one problem is unconstrained dynamic (dF+noC) and the other is constrained

dynamic (dF+fC or dF+dC), we always see that the tested algorithms need much higher PR

or PH rates to get the best results in the constrained dynamic cases (dF+fC or dF+dC). This

result prove that the combination of constraints and objective function might make changes in

DCOPs much more severe than changes in unconstrained problems. Figure 6.13 provides an

illustrated example: the pair G24_8a (dF+noC, dynamic unconstrained) vs G24_8b (dF+fC,

dynamic constrained). As can be seen in the figure, to achieve their best performance the tested

algorithms need much smaller PR and PH rates (0.4-0.6) in the dynamic unconstrained case

(dF+noC) than in the dynamic constrained case (dF+fC) (where the required rates are from

0.8 to 1.0).

The fact that RIGA and HyperM perform no better or worse than random search and restart

GA, however, does not mean that there is no way to do better in solving DCOPs. This fact

is represented in our third observations from Figure 6.12. The figure shows that the newly

proposed algorithms - dRepairRIGA and dRepairHyperM - perform much better than both

RIGA/HyperM and restart GA/random-search, even when dRepairRIGA and dRepairHyperM

use their lowest possible PR and PH rates. There are two reasons for the newly proposed

algorithms to always perform better regardless of the mutation rates. First, as already analysed
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in Subsection 6.3.1, dRepairGA-based algorithms utilise diversified individuals better than the

existing DO algorithms as GA/RIGA/HyperM and their corresponding restart/random-search

versions. While the aforementioned existing DO algorithms reject many diversified individuals

because they are infeasible, the newly proposed algorithms accept both feasible and infeasible

solutions, and hence are able to retain more diversified individuals to deal with environmental

dynamics. This is also the reason why although dRepairGA-based algorithms generate 20% fewer

diversified individuals than GA-based algorithms at the same PR or PH rate (see paragraph 6 of

Subsection 6.1.4 for explanation), they still reach their peak performance at the same or lower

mutation rates than GA-based algorithms. Utilising diversified individuals more effectively is

also the reason why dRepairRIGA/dRepairHyperM are less affected by the variation of PR and

PH rates than RIGA/HyperM, as can be seen from Figure 6.12.

The second, and more important reason for the better performance of dRepairGA-based

algorithms is that, while the existing DO algorithms consider the search space as a black box with

no available insight knowledge, dRepairGA-based algorithms uses their knowledge about the

objective function and constraint to handle dynamic objective function and dynamic constraints

differently. As discussed earlier, the sudden changes in the tested DCOPs are composed of less

severe elementary changes from the objective functions and constraints. If we only consider the

search space as a black box and try to deal with the compositional changes as a whole using

existing unconstrained DO techniques, then it is indeed diffi cult to do better than restart and

random-search because the changes are very severe and because as analysed in Chapter 5 it is

diffi cult to combine the goals of DO and CH effectively to satisfy the requirements mentioned

in Subsection 5.5.2. However, if we try to deal with objective changes and constraint changes

differently, e.g. tracking the moving unconstrained optima and tracking the moving feasible

regions separately, it might be possible to do better than restart and random search because

firstly elementary changes are usually less severe and secondly we can satisfy the goals of DO

and CH separately without any conflict. The fact that objective changes and constraint changes

might need to be handled differently is also reflected in our list of suggested requirements for

algorithms to solve DCOPs effectively (see Subsection 5.5.2).

As recalled in Subsection 6.1.3, the dRepairGA-based algorithms follow exactly this approach

of dealing with elementary changes differently and separately. First, these new algorithms

handle changes in the objective function separately by firstly detecting changes based on drops

213



6. Solving DCOPs 6.4. A detailed analysis on parameter values

in objective values and then use RIGA/HyperM mutation to deal with the moving/appearing

optima. Second, these new algorithms also handle constraint changes separately by monitoring

the boundaries of feasible regions to detect movements and then track the possible movements

using the repair operator.

In sum, the results suggest that to solve the tested DCOPs effectively, high mutation/random-

immigrant rates are preferable because the levels of change severity are very high. The results

also suggest that, if an algorithm attempts to solve the tested DCOPs as black-box problems

using existing DO techniques, that algorithm would not be able to perform better than the sim-

ple restart and random approaches because the changes are very severe. However, if we follow

a "divide-and-conquer" approach to firstly decompose changes into objective changes and con-

straint changes and then handle the elementary changes differently using different techniques,

we will be able to solve the problems better because the elementary changes are generally less

severe. The effi ciency of this "divide-and-conquer" approach is proved by the significantly better

overall performance of dRepairGA-based algorithms compare to existing DO and CH algorithms,

regardless of the chosen parameter values.

6.4.4 Base mutation rate

The third parameter that we are going to analyse is the base mutation rate (Pb). Figure

6.14 shows our analysis of how changing the base mutation rate would affect the performance

of the tested algorithms when all other parameters are kept constant. This analysis will

help to answer two questions. The first question is about the effect of Pb on the perfor-

mance of GA-based and repair-based algorithms in solving DCOPs. The second question

is about the effect and interaction between the base mutation and the hyper-mutation rate

in HyperM/dRepairHyperM and the interaction between the base mutation and the random-

immigrant rate in RIGA/dRepairRIGA. We can also compare the difference between HyperM/

dRepairHyperM, RIGA/ dRepairRIGA and GA/ dRepairGA when the base mutation Pb changes.

The algorithms selected for this analysis are GA, dRepairGA, HyperM, dRepairHyperM,

RIGA and dRepairRIGA. Algorithms like Genocop and dGenocop were not tested because,

similar to the case of crossover, due to the special design in Genocop III/dGenocop changing

the mutation rate Pb would affect the rate of nine other specialised operators. In that case, any

impact in performance might be caused by not only the change in mutation rate but also by
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Figure 6.12: This figure shows an analysis on how changing the random-immigrant rate (subplots
a and b) and the hyper-mutation rate (subplots c and d) would affect the overall performance of
RIGA/dRepairRIGA and HyperM/dRepairHyperM on all the 18 tested problems. The impact
of different hyper-mutation rates and random-immigrant rates on algorithm performance is
calculated using two performance measures: the baseline-error-ratio on the left-hand side and
the normalised score (see Equation 6.3) on the right-hand side. The higher the y-axis values,
the better the performance.

the consequent changes in the probability rates of other specialised operators. At the extreme

value Pb = 1.0, the GA-based algorithms (GA/RIGA/HyperM) become random search with

elitism ( dRepair-based algorithms, however, are not equivalent to random search at this rate as

already mentioned in Subsection 6.4.3). Because of that fact in this experiment we will be able

to see how the existing algorithms and new algorithms perform compared to random search. In

this experiment I will also compare the tested algorithms with restart GA. Of course it is not

totally fair to compare the tested algorithms with restart GA because the former have to spend

computational cost to detect/adapt with changes automatically while in the latter we assume

that changes are known and hence we can restart the algorithm accordingly. In addition, the fact

that restart GA cannot reuse previous solutions might be a big disadvantage in many practical
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Figure 6.13: This figure shows the difference in the best random-immigrant/hyper-mutation
rates that the tested algorithms needed in the dynamic constrained case (G24_8b dF+fC),
compared to the dynamic unconstrained case (G24_8a dF+noC). We can see that the tested
algorithms need much smaller mutation rates (0.4-0.6) in the dF+noC case than in the dF+fC
case (where the required rates are from 0.8 to 1.0) to achieve the best performance.

situations. However, the comparison will tell us how useful the algorithms are compared to

restart GA when changes are known and the users do not need to re-use existing solutions.

The result in Figure 6.14 shows that the algorithms have the same general behaviours, which

is as expected: algorithm performance is significantly worse at the smallest mutation rate Pb,

then the performance increases when Pb increases until the performance reaches its peak at

mid-range Pb values, and finally the performance decreases again (but only less slightly) when

Pb reaches the extreme high values (Pb > 0.7). At the extreme Pb = 1.0 all GA-based algorithms

have the same normalised score and all repair-based algorithms have the same normalised score.

More detailed analysis on the result in Figure 6.14 reveals some interesting observations as

follows.

First, the top normalised scores are gained at high mutation rates (larger than 0.2), con-
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firming our previous finding that the overall levels of change severity in the tested problems are

high.

Second, the result shows that, similar to the case of testing random-immigrant/hyper-

mutation rates in the previous subsection, GA/RIGA/HM also do not perform significantly

better (and even worse in certain cases) than random search and restart GA. This ineffective-

ness of GA-based algorithms is also due to the fact that the tested DCOPs have high levels of

change severity although their elementary changes in objective function and constraints are only

moderate. Similar to the previous experiments in Subsection VI-C, our detailed analysis (not

fully shown due to the lack of space) on pairs of problems from the G24 set where one problem

is unconstrained dynamic (dF+noC) and the other is constrained dynamic (dF+fC or dF+dC)

also shows that the tested algorithms need much higher Pb to get the best results in the con-

strained dynamic cases (dF+fC or dF+dC) than in the unconstrained dynamic case (dF+noC).

An example, again on the pair G24_8a (dF+noC, dynamic unconstrained) vs G24_8b (dF+fC,

dynamic constrained), is given in Figure 6.15 . As can be seen in the figure, to achieve their best

performance the tested algorithms need smaller Pb rates (0.5-0.6) in the dynamic unconstrained

case (dF+noC) than in the dynamic constrained case (dF+fC) (where the required rates are 0.8

to 0.9).

Third, the fact that GA/RIGA/HM are not able to perform much better than restartGA

and random search does not mean that there is no way to do better. Figure 6.14 shows that new

repair-based algorithms always perform significantly better than existing algorithms given the

same base mutation rate. Algorithms as dRepairHyperM and dRepairRIGA even perform better

than existing algorithms, including random search and restart GA, at any base mutation rate.

As discussed previously in Subsection 6.4.3, the better performance of dRepair-based algorithms

might be due to their "divide-and-conquer" approach to handle changes in objective functions

and constraints separately and differently.

Some other observations from the results are (1) The impact of base mutation become less

significant from the base mutation rate of 0.1; (2) Algorithms with diversity-maintaining strate-

gies (RIGA/HyperM/dRepairRIGA/dRepairHyperM) are more robust to deal with the variation

in base mutation rate and (3) Given an unknown problem dRepairRIGA should be the one to

be chosen for solving the problem. The result in Figure 6.14 shows that this algorithm has

both the highest overall normalised score (which proves that it is robust) and the highest overall
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Figure 6.14: This figure shows an analysis of how changing the base mutation rate would affect
the overall performance of the tested algorithms on all the 18 tested problems. The impact
of different base mutation rates on algorithm performance is calculated using two performance
measures: the baseline-error-ratio on the left-hand side and the normalised score (see Equation
6.3) on the right-hand side. The higher the y-axis values, the better the performance.
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Figure 6.15: This figure shows the difference in the best base-mutation rates that the tested
algorithms needed to solve a dynamic constrained problem (G24_8b dF+fC), compared to the
dynamic unconstrained case (G24_8a dF+noC). To avoid the graph being too cluttered, we
only included GA and dRepairGA, but the behaviours of other tested algorithms are similar.

baseline-error-ratio (which proves that it can gets highly precise results).

6.4.5 Replacement ratio and the effect of Lamarckian evolution

One of the important parameters for repair-based algorithms in solving static constrained prob-

lems is the replacement ratio. This parameter determines the percentage of repaired individuals
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Figure 6.16: This figure shows how changing the replacement rate would affect the performance
of the tested algorithms. The impact of different replacement rates is evaluated using two
measures: the baseline-error-ratio on the left-hand side and the normalised score (see Equation
6.3) on the right-hand side. The calculation is done as follows. First, the offl ine-error (left)
and the normalised-score (right) of algorithms with no replacement (Baldwinian, replacement
rate=0.0) are recorded as the baseline error/score. Then on the left-side figure we calculate the
ratio between the baseline-errors and the errors of each algorithm using differrent replacement
rates. On the right-side figure we calculate the ratio between the baseline normalised-score and
the normalised-scores of each algorithm using differrent replacement rates. These two ratios are
repesented in the vertical axes of the two figures on the left and right sides. The purpose is to
see if changing the replacement rates can make the algorithm perform better (y-axis value > 1)
or worse (y-axis value < 1).

(the individual z in the routine Repair, Algorithm 9, page 151) to replace individuals in the pop-

ulation. Any non-zero value of this parameter means that the algorithm follows a Lamarckian-

evolution approach because the outcome of learning (repaired individuals in this case) can be

applied directly to the evolution process by changing the chromosomes of individuals. In case the

value is zero, i.e. no repaired individual is used to replace the original individuals, the algorithm

follows a Baldwinian-evolution approach because learning can only affects evolution indirectly.

In this subsection I will investigate if Lamarckian evolution could bring any benefit to the

tested algorithms in solving the problems in the G24 benchmark set, and if yes, what would be

the most suitable replacement ratio. For this experiment I chose the original Genocop III, the

newly proposed dGenocop and dRepairGA as test algorithms.

Figure 6.16 shows our analysis of how changing the replacement ratio would affect the per-

formance of repair-based algorithms when all other parameters are kept constant.

The experimental results show that Lamarckian evolution has little effect on the performance
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of Genocop III and our dynamic constrained optimisation version dGenocop (the performance

was decreased by up to 7%), except that the performance of these two algorithms drop when

the replacement ratio becomes 100%.

Lamarckian learning, however, has positive effect on the performance of our GA-based repair

algorithms such as dRepairGA/dRepairRIGA/dRepairHyperM. Although in the previous exper-

iments we set the replacement ratio to zero (and hence disabled Lamarckian learning to maintain

a fair comparison with GA+Repair), Figure 6.16 shows that if we maintain a replacement ratio

from 0.05 to 0.8, the performance of dRepairGA can be improved by 20-28% (baseline error) or

7-15% (normalised score) of which the biggest improvement can be gained with a replacement

ratio of 0.05. The fact that a replacement ratio of 0.05 (5%) achieves the best performance also

conforms with the 5% heuristic rule suggested by Orvosh and Davis (Orvosh & Davis 1993) for

some static combinatorial problems.

The result also shows that Lamarckian evolution can also provide negative effect if overused.

As can be seen in Figure 6.16, when 100% of original individuals are replaced by the repaired

individuals, the performance of all three algorithms, especially dRepairGA, can be decreased

significantly.

6.5 Summary

6.5.1 Summary of contributions and findings

This chapter has made the following contributions.

1. Propose a new approach to solving DCOPs: combining existing DO techniques with CH

techniques to handle objective-function changes and constraint-function changes separately

and differently. The approach was applied to two EAs: GA and Genocop III to create

new algorithms named dRepairGA, dGenocop and variants (with better results than the

tested existing DO and CH algorithms in all groups of problems except the static cases).

(a) Modified an existing CH technique (the repair method) to track the moving con-

straints and combined it with existing DO techniques (RIGA and HyperM) to handle

objective-function changes.

(b) Used different techniques to detect objective-function changes and constraint-function

changes separately and differently.
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2. Offer a deeper understanding of the behaviours and characteristics of DCOPs. This include

the following interesting findings

(a) Changes in DCOPs are usually more sudden than the unconstrained case. Such

sudden changes might make existing DO algorithms like RIGA and HyperM perform

worse than restart and random search in solving DCOPs.

(b) In DCOPs the presence of (dynamic) constraints might not always make the prob-

lems more diffi cult (than the unconstrained case) as intuitively expected. For the

newly proposed algorithms, the presence of constraints actually makes some of the

tested problems easier to solve. Also for the new algorithms, the presence of multiple

disconnected feasible regions might make some of the tested DCOPs easier to solve

(the larger the barriers the easier).

3. Give an insight into how different algorithmic components influence algorithm performance

in DCOPs:

(a) Analyse the impact of evolutionary operators (crossover, base mutation, hyper-mutation,

random-immigrant), Lamarckian/Baldwinian learning, and the newly proposed rou-

tines DetectChange, UpdateSearchPop, UpdateReferencePop and OOR.

(b) Provide a guideline for choosing the ideal parameter settings for each algorithm to

solve DCOPs.

4. Propose two new performance measures for analysing the performance of algorithms in

DCOPs.

(a) The optimal region tracking score to evaluate the ability of algorithms to track the

moving feasible regions.

(b) The normalised score, to quantitatively evaluate the overall performance of algorithms

in groups of different problems in an unbiased way.

6.5.2 Advantages of the proposed methods

The first advantage of the proposed algorithms is that they are able to overcome the drawbacks

of existing DO and CH strategies in solving DCOPs. This advantage makes the proposed
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algorithms work significantly better than the tested existing algorithms in the tested DCOPs,

regardless of the used parameter values.

The second advantage of the proposed algorithms is that they are robust. The experimental

results show that, among the tested problems the new algorithms are able to work well not only

in DCOPs but also in most other types of the tested problems except in the group of static

problems.

The third advantage of the proposed methods is their generality. The methods can be

hybridised with any population-based continuous EA. In this chapter I have integrated them

with GA and Genocop III, both with good results.

The fourth advantage of the proposed methods is the ability to work without the need of

choosing many parameters. The only mandatory parameters are the population size and the

mutation/hyper-mutation rate or random-immigrant rate. Optional parameters are maximum

number of detectors and replacement ratio. There is also a crossover rate parameter but our

detailed analysis suggests that for the newly proposed algorithms no crossover would give the

best results.

6.5.3 Shortcomings of the proposed methods

The biggest disadvantage of the proposed methods, which is also the disadvantage of all repair-

based methods, is that they require a considerable number of feasibility checkings: during the

repair process of an individual, the constraint functions might be evaluated many times until a

feasible individual is found or until the number of iterations reaches a given limit. In addition,

the DetectChange routine also evaluates the constraint functions of detectors in every generation,

adding more cost to the total number of constraint evaluations. Due to this reason, the proposed

methods, and other repair-based methods, might not be suitable for solving problems with very

expensive constraint functions and problems with very small feasible areas (because the repair-

based methods would need to take a lot of feasibility checkings to find a feasible solution).

Adaptive method as in equation 6.1 can be used to give a balance between the number of

constraint function evaluations and computational cost, but the performance might be affected.

Another limitation is the ability of the proposed methods to detect objective changes that

increase the best fitness values. Because the hyper-mutation strategy used in the proposed

methods only relies on performance drops to detect changes, it will not be able to react to
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changes that "increases" the performance.

223



Chapter 7

Dynamic time-linkage optimisation

This chapter studies some unknown characteristics and the solvability of some classes of dy-

namic time-linkage problems (DTPs). As we have seen in the review in Subsection 3.3.2 DTP

is a common type of dynamic optimization problems (DOPs) in both real-world combinator-

ial and continuous domains but has not yet received enough attention from the Evolutionary

Computation research. They are defined as problems where "...there exists at least one time

0 6 t 6 tend for which the dynamic optimization value at time t is dependent on at least one

earlier solution..." (Bosman 2007).

Although the importance of DTPs have been shown through their presence in a broad range

of real-world applications, due to the lack of research attention there are still many characteristics

that we do not fully know about this type of problem. For example, how should we define and

classify DTPs in detail; is there any characteristics of DTPs that we do not know; with these

characteristics are DTPs still solvable; and what is the appropriate strategy to solve them.

Chapter 4 has already addressed the first issue: providing a formal definition for DTPs and

DOPs in general. Here in this chapter the other issues will be partially addressed. First,

although it is believed that DTPs can be solved to optimality with a perfect prediction method

to predict future function values (Bosman 2005, Bosman & Poutré 2007), in this chapter I will

discuss a new class of DTPs where it might not be possible to solve the time-linkage problems to

optimality because there is not always the possibility to perfectly predict the future. In addition,

in this type of DTPs if we try to predict the future based on information from the past, we may

even get worse results than not using a predictor at all. I will then carry out some experiments

to verify the finding and will also discuss under which situation can we solve this particular type
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of DTPs.

7.1 Time-deceptive and the anticipation approach

According to (Bosman 2007), a dynamic problem is said to be time-deceptive toward an optimiser

if the problem is time-linkage and the optimiser cannot effi ciently take into account this time-

linkage feature during its optimization process.

Bosman(Bosman 2005) illustrates this property by proposing the following test problem:

given n = 1;h(x) = ex − 1; max
x(t)

{∫ tend
0 f (x (t) , t) dt

}
(7.1)

f(xt, t) =

 −
∑n

i=1 (x (t)i − t)
2 if 0 6 t < 1

−
∑n

i=1

[
(x (t)i − t)

2 + h (|x (t− 1)i|)
]

otherwise

The benchmark problem above is a DTP because for any t > 1, the current value of f (x, t)

depends on x (t− 1) found at the previous time step.

An interesting property is revealed when we try to optimise the above problem using the

traditional approach: optimizing the present. That property is: the trajectory formed by opti-

mum solutions at each time step might not be the optimal trajectory. For example, in figure 7.1

we can see that the trajectory of f(x∗, t) when we optimise the present (with optimum solution

x∗ (t) = t at the time step t) is actually worse than the trajectory of a f(x0, t) with a simple

solution x0 = 0 ∀t. It means that the problem is deceptive because an optimiser following the

traditional approach is not able to take into account the time-linkage feature.

Bosman (Bosman 2005, Bosman 2007) suggested that DTPs can be solved to optimality by

estimating the values of the function for future times given a trajectory ∪tnowt=0 {ft, t} of history

data and other previously evaluated solutions. From that estimation, we can choose a future

trajectory with optimal future function values. In other words, it is suggested that time-linkage

problems can be "solved to optimality" by prediction methods and the result could be "abitrarily

good" if we have a "perfect predictor"(Bosman 2005, Bosman & Poutré 2007, Bosman 2007) 1.

The authors also made some experiments on the test problem mentioned in eq. 7.1 and on the

dynamic pickup problem, showing that under certain circumstances prediction methods do help

1A predictor, as defined in (Bosman 2007, line 8-12, pg 139), is "a learning algorithm that approximates either
the optimization function directly or several of its parameters... When called upon, the predictor returns either
the predicted function value directly or predicted values for parameters". Hence, perfect predictors should be ones
that can predict values exactly as the targets.
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Figure 7.1: This figure (reproduced from (Bosman 2005)) illustrates the time-deception property.
We can see that the trajectory of f(xt) when we optimize the present (dash line, with optimum
solution x(t) = t) is actually worse than the trajectory of f(xt) with a simple solution x(t) = 0
(the solid line). To solve this problem to optimality, we need to use a predictor to predict the
trajectory of function values given different outcomes of current solutions, then choose the one
that give us the maximum profit in the future.

to improve the performance of the tested algorithms.

7.2 Can anticipation approaches solve all DTPs?

Contrary to existing belief, I will show below that there might be cases where the hypothesis

above does not hold: if during the predicted time span, the trajectory of the future function

values changes its function form, it might not be possible to solve the time-linkage problems to

optimality because there is not always the possibility to perfectly predict the future.

Let us consider the situation where predictors help achieving optimal results first. At the

current time tnow > 1, in order to predict the values of f (x (t)) at a future time tpred, a

predictor needs to take the history data, for example the previous trajectory of function values

Z [0,t
now−1] = ∪tnow−1t=0 {ft, t} , as its input. Given that input, a perfect predictor would be able

to approximate correctly the function form of Z [0,t
now−1] and hence would be able to predict

precisely the future trajectory Z[t
now,tpred] if it has the same function form as Z [0,t

now−1].

One example where predictors work is the problem in eq. 7.1. In that problem, for each

trajectory of x(t) the trajectory of f (x (t)) always remains the same. For example with x(t) = t

the trajectory is always 1 − et−1 or with x(t) = 0 the trajectory is always −t2 (see figure 7.1).

As a result, that problem is predictable.

226



7. Solving DTPs 7.2. Can anticipation approaches solve all DTPs?

F(
x(

t))

ts ts+1

d

d1

t

F(x) ~ f(x)=x.at
trajectory x=1

0

F(x) ~ f(x)=x at
trajectory x=0

F(x) already switched to g(x)=x+(d2). Now even with the
best solution (x=1) the trajectory is still worse than B

1

F(x) already switched to h(x)=x+d. Now even with the
worst solution (x=0) the trajectory is still better than A

The best
possible

solution up
to this point

is x=1

The worst
possible

solution up
to this point

is x=0

tend

A

B

Figure 7.2: This figure illustrates a situation where even the best predictor + the best algorithm
(A) still perform worse than the worst predictor + the worst algorithm (B) due to the prediction-
deceptive property of the problem in eq.7.2. Assume that we want to predict the trajectory of
F (x) from [0, tend]. In case A, the best predictor allows us to predict F (x) ∼ f(x) = x in just
only one time step [0, 1]. With that perfect prediction the algorithm is able to find the best
solution x = 1, which is valid until ts. Now at ts although the history data tells the predictor
that the trajectory must still be F (x) ∼ f(x) = x, according to eq.7.3 the actual F (x) does
switch to g(x) = x + (d − 2), which is the worst trajectory. In other words, the best predictor
chose the worst trajectory to follow. On the contrary, in the case B the worst predictor+worst
algorithm actually get benefit from the switch: the terrible solution (x = 0) they found during
[0, ts] does help them to switch to F (x) ∼ h(x) = d + x, whose trajectory after ts is always
better than A regardless of the value of x.

Now let us consider a different situation. If at any particular time step ts ∈
[
tnow, tpred

]
, the

function form of Z[t
now,tpred] changes, the predicted trajectory made at tnow to predict f (x (t))

at tpred is no longer correct. This is because before ts there is no information about how the

the function form of Z[t
now,tpred] would change. Without such information, it is impossible to

predict the optimal trajectory of function values after the switch, regardless of how good the

predictor is. It means that the problem cannot be solved to optimality because it is not possible

to perfectly predict the future.

To illustrate this situation, let us consider the following simple problem where the trajectory

of function values changes over time (illustrated in figure 7.2).

F̂ (xt) = atf (xt) + btg (xt) + cth (xt) 0 6 xt 6 1 (7.2)

227



7. Solving DTPs 7.2. Can anticipation approaches solve all DTPs?

where F̂ (x) is the full-description form2 of a dynamic function; f (xt) = xt; g (xt) = xt+(d− 2) ;

h (xt) = xt+d; at, bt and ct are the time-dependent parameters of F̂ (xt). Their dynamic drivers

are set out as follows:
at = 1; bt = ct = 0 if (t < ts)

at = 0; bt = 1; ct = 0 if (t > ts) and
(
F̂ts−1

(
xGts−1

)
> 1
)

at = 0; bt = 0; ct = 1 if (t > ts) and
(
F̂ts−1

(
xGts−1

)
< 1
) (7.3)

where ts > 1 is a pre-defined time step, d ∈ R is a pre-defined constant, and xGts−1 is a single

solution produced at ts − 1 by an algorithm G. Eq. 7.3 means that with t < ts, the form of

F̂ (xt) is always equal to f (xt); with t > ts, depending on the solution of xGts−1 the form of

F̂ (xt) would switch to either g (xt) or h (xt).

In the above problem, because at any t > ts the values of at, bt and ct (and consequently the

value of the function F̂ ) depend on the solution found by G at ts−1, according to the definition

in (Bosman 2007) the problem is considered time-linkage.

This problem has a special property: at any t < ts one can only predict the value of F̂ up

to ts − 1. Before ts, history data does not reveal any clue about the switching rule in eq. 7.3,

hence it is impossible to predict (1) whether the function will switch at ts; (2) which value xGts−1

should get to switch F̂ (xt) to g (xt) / h (xt) and (3) which form, g or h, would provide better

future trajectory.

Even worse, even a predictor that can perfectly learn the current function form of the system

might still be deceived to provide worse result than not using any predictor while solving this

time-linkage problem! Figure 7.2 illustrates the situations where the best predictor could provide

the worst result while the worst predictor could provide better results after ts!

Problems like this example, i.e. time-linkage problems with function forms switching from

one to another, is very common in real-world systems. One common class of problems with this

property is the class of hybrid systems. According to Tafazoli & Sun (2006), hybrid systems

are real-life systems that can evolve according to different dynamics at different times. At each

time step the behaviour of the system is controlled by only one dynamics (one mode), and

then depending on the behaviour of the system, at some point the system may switch from one

2The concepts like full-description forms, time-dependent parameters and dynamic drivers have been defined
and described in Chapter 4.
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dynamics to another (switch mode). Examples vary from simple systems like the bouncing ball

(where the state switches from falling to bouncing when it meets the ground and vice versa)

to complex systems like the autopilot programs in commercial airplanes (where the airplane

automatically switches from one flying mode to another). Our survey of real-world applications

also show that about 30% of the surveyed applications in the continuous domain are hybrid

systems, and all of them have the time-linkage properties (see Subsection 3.2.2). In these

applications, if we solve the problems completely online as a black-box without any knowledge,

we will not be able to solve them to optimality because it will not be possible to predict how the

systems will switch their function forms and how the function forms after the switch will be.

Summarising, the example problem I proposed in this section illustrates a common class of

DTPs (but has not been studied by the EC community yet) where it is not guaranteed to get

optimal results because it is impossible to find a perfect predictor to predict the function values

using history data. We call this class time-linkage problems with unpredictable optimal function

trajectories. The example illustrates a special case where any predictor that relies on past data

can be deceived and hence provide the worse results than not using predictor at certain time

steps. We call these types of problems the prediction-deceptive time-linkage problems.

In Section 7.4, I will carry out some experiments to demonstrate a prediction-deceptive

time-linkage problem and its effect on the performance of an algorithm that predicts the future

function values based on history data.

7.3 Solving prediction-deceptive time-linkage problems

Prediction-deceptive DTPs are challenging and only under limited circumstances can we solve

them to optimality. The answer of whether we can solve them to optimality or at least to

avoid being deceived would depend on whether we have to solve them totally online or partially

online, and whether do we have to solve the problem as a complete black box or can we get any

problem-specific information.

If we have to solve the problem online as a black box, there is not much thing that we

can do. Knowing that the problem is prediction-deceptive, we might try not to use anticipation

approaches to avoid being deceived. However, there is no guarantee that other approaches would

work better.

In real-world applications, however, it might be possible to solve the problem in a partially
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online way and also there might be some problem-specific information available so the problem

can be solved as a partial black-box. Our survey of real-world applications in Chapter 3 shows

that in most of the surveyed hybrid systems, the problems are not totally black box because

the mathematical function forms of the possible switch-modes and the switching rules have al-

ready been calculated offl ine based on observation data from real systems or from simulation

e.g. see : (Ahmad & Liu 2008, Houwing et al. 2007, Fiacchini et al. 2008, Long et al. 2007).

However, because there are modelling errors or disturbances, these mathematical function forms

might not exactly reflect the current status of the actual systems. Because of that, the prob-

lems still need to be solved online. During the online phase the actual function form of the

system will be learned/predicted based on history data to "correct" any mis-modelling due to

errors/disturbances. Another reason for certain real hybrid systems to be solved online even

when their mathematical model is known is that the initial state of the system is unknown and

hence it is unclear which dynamic mode the system is currently in or what are the correct values

of the system’s parameters when the system is started. Due to that reason, the problem is also

needed to be solved online and during the optimisation process the correct initial state/dynamic

mode of the system will be estimated.

In time-linkage problems with function forms switching from one to another and with the

knowledge about switching rules like these, I believe that it might still be possible to solve them

using prediction method while avoid being deceived. In order to do that, the solver needs to

take into account not only the current function value and the future consequent values of the

current function forms, but also the consequent function switches and the future values of the

new function after a switch has been made.

Specifically, given a time-linkage problem with switching function forms and the knowledge of

the switching rules, in order to solve the problem to optimality during the period
[
tnow, tend

]
, at

the current moment tnow an algorithms needs to find the solution x (tnow) and a set of switching

time {T1, ..., Tn−1,Tn} where Tn = tend to optimise the future trajectory and future switches:

optimise

f (x (tnow)) +
T1∑

t=tnow+1

fpred (x (t)) +

T(n−1)∑
Ti=T1

T(i+1)∑
t=Ti+1

fswitch (x (t) , x (Ti))

 (7.4)

where fpred is the estimated function form of the current dynamic model of the system and

fswitch is the expected function form of the dynamic model that the system will switch into
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under the estimated value of x (Ti).

To make sure that the system does switch its mode at the chosen switching times {T1, ..., Tn−1,Tn}

and does switch to the most suitable modes, the solver needs to produce the right the value of

x (Ti), the solution produced at the switching time. In some cases, e.g. (Sonntag et al. 2008, Sum-

mers & Bewley 2007), the switching times are fixed or pre-determined and hence the solver does

not need to determine {T1, ..., Tn−1,Tn} but just to estimate the current function form and then

choose the switch-modes that will provide the greatest benefits when the switching time comes.

In summary, for time-linkage problems with switching function forms where the knowledge

of the switching rules is available, it is possible to solve the problem more effectively if during

the optimisation process we take into account not only the current function value and the future

consequent values of the current function forms, but also the consequent function switches and

the future values of the new function after a switch has been made. In other words, it is possible

to solve the problem more effectively if the algorithm optimise the problem using the objective

function described in Equation 7.4. In the next section, I will carry out some experiments to

verify the effi ciency of the method proposed in this section in solving time-linkage prediction-

deceptive problems.

7.4 Experiments

In this section I will carry out some experiments to verify

1. the impact of the time-deceptive property in time-linkage problems on optimisation algo-

rithms that follow the optimising-the-present approach;

2. the effi ciency of the learning-the-current-function-form approach in solving time-deceptive

time-linkage problems;

3. the impact of prediction-deceptive property in time-linkage problems on optimisation al-

gorithms that follow the learning-the-current-function-form approach;

4. the effi ciency of our proposed approach in solving prediction-deceptive time-linkage prob-

lems when information about switching rules is available

Points (1) and (2) have already been illustrated in (Bosman 2005, Bosman 2007), but here

the verification will be re-done again because these results will be needed for verifying points
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(3) and (4).

7.4.1 Test problems

Problem DTP1

In (Bosman 2005), a test time-linkage problem with the time-deceptive property has been pro-

posed. This problem will be used in this section to verify the points (1) and (2) above. The test

problem has been described in Equation 7.1, page 225). Here I will represent the problem (with

n = 1;h(x) = x2) in a slightly different way to make it conform to our definition framework in

Chapter 4 and make the change severity adjustable:

max
x(t)

{
tend∑
0

F̂ (xt)

}
(7.5)

where

F̂ (xt) = f1 =

 −
∑n

i=1 (x (t)i − s.t)
2

−
∑n

i=1

[
(x (t)i − s.t)

2 + [x (t− b1/sc)i]
2
] if 0 6 t < b1/sc

otherwise

and s ∈ R is the change severity, 0 < s 6 1.

The problem is named DTP1. Experiments on this problem will be presented in Subsection

7.4.3.

Problem DTP2

To verify points (3) and (4), we need to create a problem with the prediction-deceptive property.

To maintain continuity and to re-use the results I got from the process of verifying points (1)

and (2), I modify the original Bosman problem in Equation 7.5 to make it a prediction-deceptive

problem. Particularly, up to the change step tswitch the problem is similar to DTP1, but at tswitch

the problem switches its function form depending on the function value found by the algorithm

at tswitch. If the found function value is high, the problem switches to a low-value trajectory.

Vice versa, if the value found at tswitch, the problem switches to a high-value trajectory. Details

of the problem are as follow:

max
x(t)

{
tend∑
0

F̂ (xt)

}
, F̂ (xt) = atf

1 (xt) + btf
2 (xt) + ctf

3 (xt) + dtf
4 (xt) (7.6)
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where F̂ (x) is the full-description form3 of the mathematical descriptions f1, f2, f3, f4 (given in

Equation 7.7); at, bt, ct, dt are the time-dependent parameters of F̂ (xt) (their dynamic drivers

are given in Equation 7.8).

Below are the descriptions of f1 (the original Bosman function), f2, f3, and f4 :



f1(xt, t) =

 −
∑n

i=1 (x (t)i − s.t) 2

−
∑n

i=1

[
(x (t)i − s.t) 2 + [x (t− [1/s]) i]

2
] if 0 6 t < b1/sc

otherwise

f2(xt, t) = −60

f3(xt, t) = −40

f4(xt, t) = −10

(7.7)

where s ∈ R is the change severity, 0 < s 6 1.

Below are the descriptions of the dynamic drivers of the time-dependent parameters at, bt, ct, dt:



at = 1; bt = ct = dt = 0 if
(
t 6 tswitch

)
at = 0; bt = 1; ct = dt = 0 if

(
t > tswitch

)
and

(
−36 6 F̂ (xtswitch)

)
at = 0; bt = 0; ct = 1; dt = 0 if

(
t > tswitch

)
and

(
−50 6 F̂ (xtswitch) < −36

)
at = 0; bt = 0; ct = 0; dt = 1 if

(
t > tswitch

)
and

(
F̂ (xtswitch) < −50

)
(7.8)

where tswitch > 1 is a pre-defined change step, and xtswitch is a single solution produced at t
switch

by the solver. Equation 7.8 means that with t 6 tswitch, the form of F̂ (xt) is always equal to

f1 (xt); with t > tswitch, depending on the solution of xtswitch the form of F̂ (xt) would switch to

either f2 (xt) , f3 (xt) or f4 (xt). In other words, the Equation 7.8 defines the switching rule of

the problem.

Because the sub-function f1 of Equation 7.6 is a time-linkage problem and because at any

t > tswitch the the values of the function F̂ depend on the solution found by the solver at tswitch,

the main problem in Equation 7.6 is also time-linkage. Equation 7.6 is also a prediction-

deceptive problem because it will deceive any good predictor to choose a high-value trajectory

during the period
[
0, tswitch

]
. After the change step tswitch, however, such a high-value trajectory

3The concepts like full-description forms, time-dependent parameters and dynamic drivers have been defined
and described in Chapter 4.
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may lead the solver to the worst possible trajectory of f2(xt, t) = −60, which may eventually

affect the total score of the solver and make a solver with predictor to perform worse than a

solver without a predictor!

It should be noted that for the purpose of simplicity in this test problem I include only

one function-form switch and the switching time is assumed to be fixed (as found in the real-

world applications in (Sonntag et al. 2008, Summers & Bewley 2007)). In reality, there might

be more than one switch and the switching time might not be fixed but to be determined by

the solver or automatically by the dynamic behaviour of the system. However, the prediction-

deceptive property in these scenarios should still be the same as in the simple test problem we

are considering.

The problem is named DTP2. Experiments and discussions on this prediction-deceptive

problem will be presented in Subsection 7.4.3.

7.4.2 Test algorithms

To carry out the experiments, I developed three different versions of GA to represent the three

different approaches in solving time-linkage problems: first, a standard GA (Algorithm 14, page

235) to represent the tradition optimise-the-present approach; second, a combination of GA +

predictor (linear least-square regression) to represent the predict-the-future-based-on-history-

data approach proposed in (Bosman 2007) (Algorithm 15, page 235); and third, a combination

of GA + predictor + knowledge (about the switching rules) to represent the approach proposed

in Section 7.3 (Algorithm 16, page 236). It should be noted that, for the sake of simplicity

Algorithm 16 was designed to solve only the cases where the switching rules are known and the

switching time is also known. For GA+Predictor and GA+Predictor+Knowledge, I chose the

least-square fitting technique as the predictor method. The assumption for the method is that

the function to be estimated has a quadratic form. Of course in reality this assumption is not

always true and it might be necessary to estimate the form of the function as well. In such

case, powerful function approximation models like neural networks can be used to represent the

function to be predicted. Here I use the simple assumption that the function form is quadratic

because our purpose is not to propose a state-of-the-art or an effi cient algorithm but just to

show aproof of principle that EAs with predictor can achieve better results than EAs without

predictor in normal DTPs, that EAs with predictor might be deceived in prediction-deceptive
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DTPs, and that by taking into account the future switching rules when predicting we can help

EAs to avoid being deceived.

Algorithm 14 Standard GA

1. Initialisation

2. Search: for each generation

(a) Standard GA’s crossover

(b) Standard GA’s mutation

(c) Evaluation: For each individual x (tnow), evaluate f (x (tnow))

(d) Standard GA’s selection

Algorithm 15 GA + Predictor
List of parameters:
Pred: A linear least-square regression to approximate quadratic functions
s Change severity
hlen The length of the predicted future horizon

1. Initialisation

2. Prediction: After m generations, use the predictor Pred to estimate the current function
form based on history data

• Input:
(a) Solutions achieved in previous 1/s change steps: ∀x(t), (tnow − b1/sc) 6 t 6 tnow.
(b) All corresponding function values f (x (t)) and the corresponding change step t.

• Output: the estimated function form fpred

3. Search: for each generation

(a) Standard GA’s crossover

(b) Standard GA’s mutation

(c) Evaluation: For each individual x (tnow), evaluate

Fitness (x (tnow)) =

{
f (x (tnow)) +

tnow+hlen∑
t=tnow+1

fpred (x (t))

}
(d) Standard GA’s selection

To create a fair testing environment, all three algorithms use the same set of parameters.

Table 7.1 shows the detailed parameters of the algorithms and all other settings for the experi-

ment.

To evaluate the performance of the algorithms, I use two measures. The first one is perfor-
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Algorithm 16 GA + Predictor + Knowledge about the switching rules
List of parameters:
Pred: A linear least-square regression to approximate quadratic functions
s Change severity
hlen The length of the predicted future horizon
fswitch Expected full-description form of the switching rules
{T1, ..., Tn−1,Tn} The set of switching times within the current horizon tnow < Ti 6 tnow + hlen

1. Initialisation

2. Prediction: Same as step 2 in Algorithm 15.

3. Search: for each generation

(a) Standard GA’s crossover

(b) Standard GA’s mutation

(c) Evaluation: For each individual x (tnow),

i. Calculate current function value: A = f (x (tnow))

ii. Calculate the expected future function/variable values until the first switching
time:

B =
T1∑

t=tnow+1
fpred (x (t))

iii. Estimate the variable x(T1) given the estimated outcome of fpred during the
period [tnow + 1, T1]

iv. Calculate the expected future values after the first switching time:

C =

T(n−1)∑
Ti=T1

T(i+1)∑
t=Ti+1

fswitch (x (t) , x (Ti))

v. Calculate the fitness value of x (tnow) : Fitness (x (tnow)) = A+B + C

vi. Update: update the set of switching times for the next future horizon

(d) Standard GA’s selection

Table 7.1: Test settings for GA, GA+Predictor and GA+Predictor+Knowledge.
Algorithm Pop size 25
parameters Elitism No

Selection method Non-linear ranking
Mutation method Uniform, P = 0.15
Crossover method Arithmetic, P = 0.8
Prediction method Least-square regression

for quadratic function
Test Number of runs 50
problem Change frequency 25 function evaluations (one generation)
settings Change severity s 0.001

Learning frequency Every 10 generations
Number of change steps 11/s (11, 000 change steps, tend = 11, 000)
Length of predicted future horizon hlen 5/s
Switching time 8/s
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(a) (b)

Fitness value trajectory: GA vs GA+predictor
in timedeceptive problem
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Figure 7.3: Plots of the mean (and standard deviation) of highest function values over 50 runs:
GA without predictor vs GA with predictor in a time-deceptive problem (DTP1)

mance plot - the plot of the trajectory of the best function values that the algorithms achieved

at each change step. I also plotted the trajectory of the variable x as time goes by to study

the behaviours of the algorithms. The second measure is the total function values, which is cal-

culated as the summation of the best function values taken after each 1/s change steps (1, 000

change steps): totalVal =
∑10

i=1 f
(
x
(
tbegin + bi/sc

))
. Detailed experimental results are given

in the next subsection.

7.4.3 Experimental results

GA vs GA+Predictor in time-deceptive problems (DTP1)

Here I verify the suggestion of Bosman (2007) that in time-deceptive DTPs, learning from the

past to predict the future can be useful. Figure 7.3a, where the mean and standard deviation

of function values of GA and GA+Predictor in the problem DTP1 are shown, confirms the

advantage of this approach. The figure shows that although GA+Predictor has worse function

values in the first few change stages, in the longer run it perform much better (has higher total

values) than the traditional GA, which only focuses on optimising the present. The results

confirm the advantage of maximising future values over just optimising the present in this

particular problem.
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(a) (b)

Fitness value trajectory: GA vs GA+predictor
in predictiondeceptive problem
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Figure 7.4: Plots of the mean (and standard deviation) of highest function values over 50 runs:
GA without predictor vs GA with predictor in the prediction-deceptive problem (DTP2)

GA vs GA+Predictor in prediction-deceptive problems (DTP2)

Predicting the future using data from the past, however, is not always beneficial in solving DTPs.

In problems like the DTP2 where a high function value might switch the system to a low-value

trajectory and vice versa, predicting future using data from the past might make the algorithm

perform worse than not using a predictor. This behaviour is confirmed in the experiment. Figure

7.4a shows that GA+Predictor actually has lower total values than GA. This is due to that,

since the eighth changing stage, the high-value trajectory that GA+Predictor predicted during

the period
[
0, tswitch

]
leads the algorithm to a worse trajectory than what GA achieves.

GA vs GA+Predictor vs GA+Predictor+Knowledge in prediction-deceptive prob-

lems (DTP2)

Here I verify the effi ciency of our proposed approach described in Section 7.3, which suggests that

the knowledge of the switching rules, if available, should be taken into account when anticipating

the future. Figure 7.5a shows that the new approach does help improve the performance of the

algorithm (GA+Predictor+Knowledge) and avoid being deceived into the wrong trajectories.

As can be seen in Figure 7.5a, during the first six changing stages GA+Predictor+Knowledge

follows exact the same trajectory as GA+Predictor to maximise the function value trajectory

in the period when the system has not switched to the other mode yet. However, from the

sixth changing stage, GA+Predictor+Knowledge follows a different route from the original
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GA+Predictor. At the sixth changing stage, GA+Predictor+Knowledge chose a slightly higher

function value, which leads it to a completely different route from GA+Predictor and normal

GA at the seventh changing stage. At this stage, the algorithms chose a very low function value,

which is achieved thanks to the high value it chose in the previous changing stage. Although

GA+Predictor+Knowledge has to sacrifice its current performance to achieve such a low func-

tion value, this low value helps the algorithm to reach to a better trajectory after the switch and

eventually it has a significantly higher total function values than GA and GA+Predictor. This

good result confirms the usefulness of anticipating future function-form switches when solving

DTPs. The behaviour of GA+Predictor+Knowledge in choosing the variables to achieve a high

total function value is also shown in Figure 7.5b.

Another note is that when taking into account the future, the problem becomes more complex

toward GAs and it is getting more diffi cult to get high precision results, as can be seen by looking

at the standard deviations of the results in Figures 7.3, 7.4, 7.5 . We can see that the traditional

GA (future ignored) achieves very consistent results (standard deviations of the mean best values

are almost zero) over 50 runs. However, when the algorithm has to predict the current function-

form (GA+Predictor) and hence has to optimise not only the present but also the future, the

problem becomes more complex and the standard deviations of the mean best values over 50

runs becomes higher. When the algorithm has to predict the current function-form and also has

to anticipate any possible future mode-switching, the problem becomes even more complex and

hence the level of inconsistency (standard deviation) increases even higher. This phenomenon

shows the trade-off in taking into account the future when solving DTPs.

7.5 Summary

Although it was believed that time-linkage problems can be solved to optimality by relying on

history data of the algorithm to predict the trajectory of future function values, in this chapter

I pointed out a challenging class of time-linkage problems where this prediction approach might

fail to find the optimal results. We named this class prediction-deceptive time-linkage problems.

I also suggested an approach to solve this class of problem under certain circumstances

and developed algorithms to implement this approach. Experiments were also made to verify

the advantage and disadvantage of the anticipation approach in solving DTPs, to illustrate

the impact of the prediction-deception property on algorithm performance, and to evaluate the
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(a) (b)

Fitness value trajectory:
GA vs GA+predictor vs GA+predictor+knowledge
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Figure 7.5: Plots of the mean (and standard deviation) of highest function values over 50
runs: GA without predictor vs GA+predictor vs GA+predictor+switching_knowledge in the
prediction-deceptive problem DTP2

effi ciency of our proposed approach in solving prediction-deceptive time-linkage problems.

Two time-linkage benchmark problems were also proposed in this chapter (Section 7.2 and

Section 7.4.1). The benchmark problems are able to simulate the known (time-deceptive) and

unknown (prediction-deceptive) properties of time-linkage problems and can be configurable,

making it easier for researchers to test their existing algorithms.

Although the experiments (and the algorithms + test problems) in this chapter are over-

simplified, and the advantages of a predictor/ predictor+knowledge are expected, such simpli-

fications are necessary to proof the principle and to show the potentiality of EAs because this

research is just a beginning step and is the first EDO study in this topic. To the best of our

knowledge, previously this class of problems has not been taken into account in existing academic

EDO research despite their popularity in real-world scenarios (as shown in Chapter 3).
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Chapter 8

Conclusions and future work

The thesis has at least partially provided answers for the questions raised in Section 1.3 about

what types of DOPs have been covered by existing EDO academic research and if there are

any missing links between academic EDO research and real-world applications. Based on these

answers this thesis has focused on studying some important issues to help close some of the

existing gaps in EDO academic research. These issues are defining DOPs and solving continuous

DCOPs and DTPs - two classes of problems commonly found in real-world scenarios but have

rarely been studied in EDO. The results of this thesis in continuous DCOPs and DTPs, which

are among the first in these areas, provide a deeper understanding of the unknown characteristics

and the solvability of these problems, and suggest some promising ways to solve these challenging

problems using EDO techniques.

8.1 Summary of Major Contributions

Detailed of the contributions in this thesis have been described at the end of each chapter. Here

the most significant contributions are summarised as follow:

1. Identify for the first time the important gaps between real-world DOPs and EDO academic

research, including the current coverage of EDO academic research, the types of problems

that have not been covered by the EC community, the characteristics and problem in-

formation that we can used to solve DOPs more effectively, and the way that DOPs are

solved in real-world scenarios.

2. Provide a new definition framework, new sets of benchmark problems (for DCOPs and
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DTPs) and new sets of performance measures (for DCOPs and DTPs) to better charac-

terise the unknown factors of DOPs.

3. Develop novel approaches to solve continuous DCOPs, an important and common class

of DOPs but have not been studied in EDO research. The new approaches are developed

based on detailed analyses (including some counter-intuitive findings) on the representa-

tive characteristics of DCOPs, the strengths/weaknesses of existing EDO/CH methods in

solving DCOPs, the influence of different algorithmic components on algorithm perfor-

mance, and on my proposed list of requirements that an algorithm should meet to solve

DCOPs effectively.

4. Develop a new approach to solve DTPs, another important and common class of DOPs

but have not been well-studied in EDO research. The approach is also developed based

on analyses on the characteristics of DTPs and the strengths and weaknesses of existing

EDO methods in solving DTPs.

8.2 Future Work

There are many related research topics that can be pursued in the future to improve and further

evaluate the results of this thesis. The survey of real-world applications in Chapter 3 shows

that there are many open research areas to bring academic EDO research closer to real-world

applications. Among these areas, some possible interesting future research directions are:

1. Focusing more on some particular types of problems such as DCOPs and DTPs, which

are common in real-world scenarios but have not attracted enough attention from the EC

community yet;

2. Re-defining the optimisation goals, performance measures and benchmark problems in

academic EDO research to better reflect real-world situations;

3. Studying those characteristics of real-world problems that have not received much interest

from the EC community. Examples of such characteristics are changes in constraints,

changes in number of variables, the predictability and detectability (or the lack thereof)

of changes.

4. Studying the effi ciency and suitability of EAs in different types of real-world applications;
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As to the particular research topics that I have studied in this thesis, because the works that

I have done in the thesis are only among the first steps in these topics, there are a lot of future

works to be addressed. Some possible directions for future extensions are discussed below:

1. The definition framework : In this thesis the definition framework has mainly been used to

answer the question of how to characterise DOPs (i.e. how to distinguish DOPs, to encap-

sulate the dynamic behaviours and the changing factors in the definition and to separate

the static aspects from the dynamic aspects) and how to generate dynamic benchmark

problems. Because the definition framework facilitates the inclusion of optimisation algo-

rithms and the separation of dynamic components from the static ones, one of possible

future works might be to use the framework to study the diffi culty of each dynamic/static

component and how the diffi culty of each component affect the overall diffi culty of the

problem toward a specific algorithm. Because the framework defines each aspect of a

DOP to a more detailed level, another future direction is to use the framework as a basis

for theoretical research in dynamic optimisation.

2. Benchmark problems: In this thesis a set of 18 benchmark problems for DCOPs (G24)

and two benchmark problems for DTPs have been proposed. Although these bench-

mark problems are effective in analysing the behaviours of the tested algorithms, they

are mostly based on unimodal static problem instances and this might limit their gen-

erality. A possible future direction is to integrate the existing benchmark problems in

this thesis with the multimodal, scalable benchmark problems that I have developed for

DCOPs (Nguyen 2008a) and DTPs (Nguyen 2008b, pp. 26-29).

3. Analysis of the performance of existing methods in DCOPs: The analyses in Chapter 5

and Chapter 6 only considered some basic and representative DO and CH strategies. Fu-

ture extension of these analyses should consider a broader range of strategies, including

the memory-based approaches and the current state-of-the-art methods in DO and CH. In

addition, I plan on extending the dynamic settings of the analyses to test the algorithms in

different types of changes and different values of change frequency, change severity, popula-

tion size, and evolutionary parameters. Analyses on these wider ranges of parameters will

be included in the revised version of (Nguyen & Yao 2010a). It would also be interesting to

systematically study the situations where the presence of constraints and dynamics would
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make it easier for certain classes of algorithms to solve DCOPs.

4. New methods to solve DCOPs: One of the future directions is to test the algorithms

proposed in Chapter 6 on the multi-modal benchmark set in (Nguyen 2008a). I plan

to carry out more detailed analyses on the performance of the algorithms under a wider

range of test settings with different change frequency, change severity, population size, and

evolutionary parameter values. I am also interested in hybridising the proposed algorithms

with state-of-the-art constraint handling methods such as stochastic ranking (Runarsson

& Yao 2000).

5. Dynamic time-linkage optimisation: The work in this thesis is just an initial step in an

attempt to understand more about DTPs and to solve this class of problems effectively.

For future works we plan to do more experiments on more realistic scenarios with a more

powerful predictor integrated with state-of-the-art EAs. Especially, more research will be

carried out to investigate the situation where the algorithm needs to determine multiple

switching times during the optimisation process. The possibility of combining time-linkage

handling techniques with normal environmental dynamic handling techniques will also be

investigated. A further goal will be to carry out experiments on real-world problems like

hybrid systems. An investigation on the relationship between the time-linkage property

and co-evolution will also be carried out in the future.

244



Appendices

245



Table 1: Combinatoria l rea l-world references that use EA/metaheuristic m ethods

Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved
by
EA /
meta-
heuris-
tics?

Pred ictab le V isib le Constr.
prob-
lem s?

S ingle/
Multi-ob j

Optim isation
goal

Typ es of
dynam ics

Restart/
Track

Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
pa-
ra-
m e-
ters

Constra ints

Take-off
runway
schedul-
ing
(Atkin
et al.
2008)

Real data
of London
Heathrow air-
p ort, prov ided
by National
A ir Traffi c
Serv ices

The prob lem here
is to find the
optim al take-off
runway schedul-
ing, tak ing into
account not on ly
aircrafts in the
hold ing area but
also the taxiing
ones. A lthough
real-world data
is used in th is
prob lem , the data
is used as a static
b enchmark in
which the author
tests several dy-
nam ic scenarios
rather than to in -
vestigate the real
dynam ics. In th is
reference we only
consider those
characteristics
that ev idently ex-
ists in real-world
situations

.Yes. ((1) The
current schedule of
a ircrafts m ight af-
fect how the future
so lution would b e
(2) The movem ent
of one aircraft
m ight b lo ck the
way of another
(3) Changing the
take-off aircraft
p osition would
b e harder if the
p osition is closer to
the take-off tim e.
The first typ e of
tim e-linkage is not
taken into account
(UNHANDLE).
The second is dealt
w ith using som e
heuristic ru les and
the th ird prop erty
is dealt w ith by
fixing the aircraft
p osition to b e at
least two m inutes
b efore take-off tim e
(HANDLED)

..Partly..
(so lved
by
Tabu
search
and
heuris-
tics)

.Partly.
(som e
factors
like
taxiing
tim e
can b e
pre-
d icted)

Partly :.No.
(.INVIS-
IBLE . -
uncer-
ta inty, or
changes,
o ccur due
to the m is-
pred iction
of a ircraft’s
taxiing
tim e)
& ..Yes..
(.V ISI-
BLE . - the
system is
noticed
whenever a
new plane
arrives or
if m ore in -
formation
b ecom es
availab le
(and hence
less uncer-
ta inty))

..Yes..
(m ostly
soft
con-
stra ints)

.S . (mul-
tip le
ob jectives
but they
are pri-
oritised
by weight
and then
combined
together
to create
a single
ob jective.
The rea-
son is to
provide
users w ith
only one
single so-
lution to
simplify
users’
tasks)

Optim ality
& Previous-
so lution d is-
p lacem ent
restriction
(deviation
from previous
so lution w ill
b e p enalised)
& Quick re-
covery & Sp ec
Satisfaction
(changing
the take-off
aircraft p osi-
tion b ecom es
harder when it
is the closer to
take-off tim e,
so they fix
the aircraft
p oistion to b e
at least two
m inutes b efore
take-off tim e)
are all m en-
tioned but it is
not clear ab out
the priority

.N/I. (the
simulated
data fo l-
low s a
linear d is-
tribution ,
but it is
not clear
if th is
would
happ en
in real-
world
situa-
tions)

.Track ing.
(.D ISP.: new
solutions are
based on
prev ious ones
to avoid d is-
turbances.)

..Yes..
(new
aircraft
m ight
arrive
and
hence
change
the ex-
isting
take-off
order)

.N/I. ..Yes..
(no detail
is g iven
but the
number
of vari-
ab les
(corre-
sp onding
to the
number
of a ir-
crafts
b eing
scheduled
at one
tim e)
should b e
variab le
dep end-
ing on
the ar-
rival and
taking
off of
a ircrafts)

.N/I. ..Yes.. (the
soft con-
stra ints
dep end on
the val-
ues of the
pred icted
take-off
tim e, take-
off tim eslot,
etc of each
aircraft.
These val-
ues would
change
when a
new aircraft
arrives or
when an
existing air-
craft leaves.
In addition ,
som e of the
constra int
param e-
ters are
uncerta inty
due to the
uncerta in
of tax iing
tim e)

Ship
Schedul-
ing
(M ertens
et al.
2006)

Real static
data of 7
transp ort
sh ips from
Tracteb el
Engineering
company

The prob lem here
is to find the op-
tim al schedule for
sh ips. A lthough
real-world data
is used in th is
prob lem , the data
is used as a static
b enchmark in
which the author
tests several dy-
nam ic scenarios
rather than to in -
vestigate the real
dynam ics. In th is
prob lem we only
consider those
characteristics
that ev idently
ex ists in real-
world situations.
Another note is
that the use of
track ing/m emory
(DynAWC) m ight
not work well in
the case of dy-
nam ic constra int

.N/I. .Yes.
(ACO)

.N/I. .Yes.
(.V ISI-
BLE .)

.Yes.
(69
vari-
ab les
and 101
con-
stra ints,
o f
which
75 are
hard)

.S . (no
detail o f
ob jective
function is
g iven)

Optim ality
; P rev ious-
so lution dis-
p lacem ent
restriction
( it is unclear
ab out their
priority.)

.N/I. .Track ing.
(hybrid ised
w ith ran-
dom ising
(the b est
resu lts was
ach ieved
when
pheromone
quantities are
set to the
average of
the prev ious
pheromone
quantity and
the defau lt
quantity.
Tracking
was used to
keep the new
solution close
to the old one
-.D ISP.)

.N/I.
(sh ips
m ight
b e de-
layed
due to
storm s
or other
unex-
p ected
events.
However
it is not
clear
how
does it
affect
the ob j
func-
tion)

.N/I. .N/I. .N/I. .Yes. (ac-
cord ing to
the pa-
p er the
storm event
changes the
constra ints)
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Table 1 Combinatorial EA/metaheuristic references (cont.)
Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved
by
EA /
meta-
heuris-
tics?

Pred ictab le V isib le Constr.
prob-
lem s?

S ingle/
Multi-ob j

Optim isation
goal

Typ es of
dynam ics

Restart/
Track

Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
pa-
ra-
m e-
ters

Constra ints

Document
Stream
Mod-
elling
prob lem
(Araujo
&
Merelo
2007)

Document
stream s w ith
keyword
"gmail" from
www.b logalia .com
(the comments
sent to all
b logs hosted
in B logalia
from Jan 2002
- Jan 2006)

The prob lem here
is to search for
the most su itab le
model to repre-
sent the current
trend in do cu-
m ent stream s.
It is m entioned
that restart is
the approach
that provide the
most accurate
resu lt, but not
satisfiable in real-
tim e situations.
This shows that
track ing optim a
is chosen over
restarting not
on ly b ecause it
m ight produce
b etter resu lts
(which m ight not
always b e the
case) but also
b ecause it can
produce good
resu lt in shorter
tim e

.N/I. (Not m en-
tioned)

.Yes.
(GA).
The
m em -
ory
ap-
proach
is
a lso
ap-
p lied
b e-
cause
there
are
re-
cur-
rent
changes

.Partly.
(it
m ight
not b e
p ossi-
b le to
pred ict
’when’
and
’how’
the
changes
hap-
p en ,
but
once a
change
hap-
p ens, it
m ight
b e p os-
sib le to
approx-
im ate
the
func-
tion
form )

.No. (.IN -
V ISIBLE .
- the op-
tim isation
pro cess is
d iv ided
into tim e
w indows.
Each tim e
w indow
represents
a segm ent
of tim e
for which
enough
data are
availab le).
The algo-
rithm still
needs to
detect if
a change
happ ens in
each tim e
w indow
though.

.Yes.,
so ft
con-
stra int
(con-
stra int
is
repre-
sented
as the
p enalty
cost of
transit
from
one
state to
another
amd
the
p enalty
cost
is in -
cluded
in the
ob j
func-
tion)

.S . (1) qu ick re-
covery (2) Op-
tim ality.

The ar-
rival of
do cument
stream is
b elieved
to fo llow
expo-
nentia l
d istri-
bution .
There are
also other
changing
ru les.
Changes
m ight b e
recurrent.

.Track ing. to
provide a de-
cent so lution
quick ly using
m emory el-
em ent from
previous run
(.QUICK .).
The previous
know ledge is
a lso used to
pred ict the
trend of data
(.LEARN.)

.Yes.
(changes
∼ drifts
in the
concept
(top ic
of do cu-
m ents))

.No. .Yes.
(the
ind iv id -
uals are
variab le-
length
sequence)

.N/I. .No.

Evolvab le
hard-
ware
prob lem
(Tawdross
et al.
2006)

An op era-
tional am -
p lifier in
an environ-
m ent w ith
changing heat
(lab-contro l)

The prob lem is
to evolve the
hardware struc-
ture to make it
as close to the
sp ecification as
p ossib le. W hen a
change happ ens,
the hardware
structure needs
to b e evolved a
gain to match
the sp ecification .
The authors a lso
m entioned other
p ossib le dynam ic
factors in real-
world situations
as manufacture
to lerance or aging
of devices

.N/I. (Not m en-
tioned)

.Yes.
(PSO)

.N/I. .No. (.IN -
V ISIBLE . )

.Yes.
(the
sp ecifi-
cation
are con-
stra ints
while
the
error
func-
tion
is the
p enalty
func-
tion)

.S . (1) Prev ious-
so lution d is-
p lacem ent
restriction
(more impor-
tant b ecause
the new hard-
ware structure
need to b e
sim ilar to the
starting one
to comply
w ith indus-
tria l standard .
The authors
m ention that
so lutions
ach ieved using
the restart
approach
have arb itrary
structures
which m ight
b e d iffi cu lt to
b e accepted
by the indus-
try) and (2)
Optim ality ;

One
typ e of
changes
is noises.
There are
also other
prob lem -
sp ecific
changing
ru les:
(tem -
p erature
changes
lead to
changes
in the
state of
the ch ip)

.Track ing. to
make sure
that the d is-
palcem ent
prop erty is
m aintained
(.D ISP.)

.Yes.
(tem -
p erature
changes
lead to
changes
in the
state
of the
ch ip)

.No. .No. .N/I. .No. (the
ch ip sp ec-
ification
should b e
fixed re-
gard less of
changes in
the environ-
m ent)
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Table 1 Combinatorial EA/metaheuristic references (cont.)
Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved
by
EA /
meta-
heuris-
tics?

Pred ictab le V isib le Constr.
prob-
lem s?

S ingle/
Multi-ob j

Optim isation
goal

Typ es of
dynam ics

Restart/
Track

Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
pa-
ra-
m e-
ters

Constra ints

Dynam ic
route
p lanning
for car
navi-
gation
system
(Kanoh
2007,
Kanoh
& Hara
2008)

Real-world
map (Tsukuba
city and
Northen
Tokyo) from
Navigation
System Re-
searchers’
Asso ciation
(www .naviken .jp)
and the move-
m ent of 28000
cars from
Nagel &
Rasmussen’s
model (th is
m odel is not
real-world ,
on ly simu-
lates som e
b ehaviours
from certa in ,
rather simple
situations).

The prob lem here
is to find the
optim al route
(w ith least travel
tim e) to a given
destination for
cars. Som e of the
test data are arti-
ficia lly generated
w ithout ev idence
of whether they
are based on
real-world data
or not. For th is
reference we only
consider the data
that ev idently ex-
ist in real-world
situations

.Yes. ( UNHAN-
DLE - in the
context that the
routing decision
m ight lead to a
new network w ith
more/less conges-
tion . This situation
was briefly men-
tioned in th is
reference when the
d isadvantage of the
D ijkstra algorithm
was d iscussed (page
70). However, it is
not fu lly considered
in the pap er except
an effort made to
avoid congestion by
not apply ing the
sam e optim al deci-
sion to all veh icles
in the road)

.Yes.
(V irus
GA)

.N/I. .Yes.
(.V ISI-
BLE . )

.Yes.
(there
are
b oth
hard
(traffi c
ru les)
and
soft
con-
stra ints
(prefer
w ide,
large
road ,
reduce
num -
b er of
turns,
signals
etc).

.S . Quick recovery
& Optim ality.
No priority is
clearly given
but for two
algorithm s
(A IS&DA)
w ith the sam e
optim al resu lt,
the one w ith
faster recovery
(A IS) is chosen

Changes
fo llow
sp ecific
ru les such
as veh icle
sp eed ,
road
in forma-
tion etc.
Changes
m ight b e
recurrent.
That is
why som e
part of
the route
can b e re-
used for
the next
change by
using AIS

.Tracking.
(.D ISP. -
b ecause the
new solution
(new route)
need to b e
based on a
part of the
ex isting solu -
tion (current
route)..QUICK .
- A lso track-
ing helps to
m eet the re-
qu irem ent of
qu ick recov-
ery)..LEARN.
- know ledge
from the past
(som e part of
the routes)
is a lso used to
learn/anticipate
changes in
the future

.Yes.
(veh icle
sp eed ,
road
in forma-
tion)

.N/I. .Yes.
(the
ind iv id -
uals are
variab le-
length se-
quence)?

.N/I. .No.

Surv ival
routing
in dy-
nam ic
DWM
network
(Ngo
et al.
2006)

Real-world
NSFNet top ol-
ogy; artificia l
d istributions
for changes.
However
those d istri-
butions are
drawn from
real-world
observations.

The prob lem here
is to find the
optim al route
b etween a pair
of nodes in the
DWM network

.Yes. ( UNHAN-
DLE - in the con-
text that the rout-
ing decision m ight
alter the ex isting
free nodes/links of
the network. This
situation however is
not considered by
the authors.)

.Yes.
(ACO)

.N/I. Partly :.Yes.
(arrival
connection
requests
are v isib le
(.V ISIBLE .
) & .No.:
network
conges-
tions are
not v isib le
(.INVISI-
BLE . ) and
need to b e
detected
by having
the rout-
ing tab le
updated
continu-
ously by
mobile
agents)

.Yes.
(not all
links
are fea-
sib le)

.S . Optim ality
(routes w ith
m in imal b lo ck-
ing probability
are preferred)
and Quick
recovery (the
algorithm
needs to main-
ta in small
setup delay).
No clear ind i-
cation of the
priority for
each goal, but
optim ality is
the criteria
to asses a lgo-
rithm s in the
exp erim ent.

Changes
in con-
nection
request
arrival
fo llow s
Poisson
distri-
bution ;
Changes
in session
hold ing
tim e
fo llow s
expo-
nentia l
d istri-
bution ;
Changes
in p lace
of request
fo llow s
uniform
distri-
bution .

.Track ing.
(b ecause the
new solution
(new route)
need to b e
based on
a part of
the existing
so lution (cur-
rent route)
-.D ISP.. A lso
track ing
helps to m eet
the requ ire-
m ent of qu ick
recovery)-
.QUICK .

.Yes.
(new
arrival
connec-
tion or
ex isting
ones
d iscon-
nected ;
conges-
tion ;
link
fa ilures;
etc)

.N/I. .N/I. .N/I. .Yes. (som e
feasib le
nodes m ight
b ecom e in-
feasib le and
vice versa
over tim e)
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Table 1 Combinatorial EA/metaheuristic references (cont.)
Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved
by
EA /
meta-
heuris-
tics?

Pred ictab le V isib le Constr.
prob-
lem s?

S ingle/
Multi-ob j

Optim isation
goal

Typ es of
dynam ics

Restart/
Track

Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
pa-
ra-
m e-
ters

Constra ints

A irline
Schedule
Recover
Prob lem
(recover
from
airp ort
tem -
p orary
closure)
(L iu
et al.
2007)

F light sched-
u le of a
Taiwanese do-
m estic MD90
fleet in one
day when
one airp ort is
temporarily
closed in one
hour.

The prob lem here
is to find the opti-
m al schedules for
the airline after
a temporary clo-
sure of a irp orts.
It is not clear if
the change is gen-
erated artificia lly
or if it is re-
a lly a real-world
event from exist-
ing data

.N/I. .Yes.
(EPGA)

.N/I. .Yes.
(.V ISI-
BLE .)

.Yes..
(There
are 6
con-
stra ints
de-
scrib ed
in page
2400.
Som e
other
con-
stra ints
are
repre-
sented
as con-
current
ob jec-
tives
in the
prob-
lem
formu-
lation)

.M . (1) Prev ious-
so lution d is-
p lacem ent
restriction and
Optim ality.
Both criteria
are included
as ob jectives
and are used
as m easures
in evaluating
the algorithm .
(2) Quick
recorvery :
th is goal is
cited as one
of the goals
in d isruptive
managem ent.
It is a lso used
as one of the
criteria to
evaluate the
algorithm .

.N/I. .Track ing.
(b ecause the
new solution
needs to b e
based on
a part of
the exist-
ing solution
-.D ISP.)

.Yes.
(one
airp ort
closes
tem -
p orarily
for one
hour).
This
would
d irectly
affect
the
"flight
connec-
tion"
ob jec-
tive
and the
"duty
swap"
ob jec-
tive

.No. .Yes.
(the
chro-
mosom e
length
is deter-
m ined
by the
number
of a ir-
craft and
airp ort
simulta-
neously.
If so
in case
number
of a irp ort
changes,
d im en-
sion
should
change
accord-
ingly)

.No. .Yes. (Con-
stra ints
3-6 in page
2400 are
dynam ic. In
addition if
we consider
the "flight
connection"
and "duty
swap" ob-
jectives as
constra ints,
they are
dynam ic
too.)

D im en-
sion ing
and load
balanc-
ing for
multi-
top ology
Interior
Gateway
Proto col
traffi c
(Wang,
Ho &
Pavlou
2008)

The prop osed
m ethod was
tested using
real-world
top ology and
traffi c data
from GEANT
and Abilene
networks

The optim isa-
tion include two
phases: the of-
fline phase is
carried out on a
weekly or montly
tim escale to set
up the network
link weights to
maxim ise the
intra-domain
path diversity
across multip le
routing top olo-
g ies, and the
on line phase
to dynam ically
balance the load
based on the
pre-defined link
weights to deal
w ith changes

.Yes. , partly
(HANDLED - it
is showed that
the decision of
changing link
weights influences
future p otentia l
o f congestion .
This tim e-linkage
effect is handled
offl ineby choosing
the optim al link
weights to avoid
future congestions.
The dynam ic bal-
ance m echanism
(main top ic of
the pap er) a lso
influence the fu-
ture prob lem by
controlling and
avoid ing future
congestions.)

.Offl ine.
on ly
(GA
is
used
for
the
of-
fline
phase
to
find
the
opti-
m al
link
weights.
The
on-
line
phase
is
so lved
us-
ing a
sp ecia l-
purp ose
heuris-
tic)

.Partly.
(con-
gestion
can b e
partly
pre-
d icted
and
con-
tro lled
by
choos-
ing the
optim al
link
weight
and
dynam -
ica lly
balance
the
traffi c
load)

.Yes.
(.W IN -
DOW .
- tim e-
w indow
approach)

.Yes.
(there
are con-
stra ints
for
links,
nodes,
top olo-
g ies
and
band-
w ith
capac-
ity)

.S . Optim ality
(m in im ising
congestion)
Prev ious-
so lution d is-
p lacem ent
restriction
(the aim of
the m ethod
is to avoid
frequent and
on-demand
reassignm ent
of link weights,
hence m in-
im ising large
d ifference in
the solution
b efore and
after each
change)

The traf-
fic data
shows
that
traffi c
p eaks are
p eriod ica l

.Track ing.
(not a ll traf-
fic flows are
reset but
on ly the most
utilised link
is chosen and
the load in
that link w ill
b e lighten
gradually
by sh ifting
som e traffi c
flows in that
link to other
alternative
less-utilised
paths. The
purp ose of
track ing is
to avoid sud-
den changes
to ex isting
connections
-.D ISP..)

.Yes. .N/I. .N/I. .N/I. .N/I.

249



Table 1 Combinatorial EA/metaheuristic references (cont.)
Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved
by
EA /
meta-
heuris-
tics?

Pred ictab le V isib le Constr.
prob-
lem s?

S ingle/
Multi-ob j

Optim isation
goal

Typ es of
dynam ics

Restart/
Track

Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
pa-
ra-
m e-
ters

Constra ints

A ircraft
land ing
prob lem
(Moser
&
Hendtlass
2007b)

A set of a ir-
craft land ing
b enchmark
prob lem s
from (Beasley
et al. 2004).
A lthough
the prob lem s
are artificia l
b enchmark,
it seem s that
they have the
characteris-
tics w idely
b elieved to
b elong to
real-world
scenarios. For
example, the
arrivals of a ir-
crafts fo llow
a negative
exponetia l
d istribution ;
the sp eed
of a ircraft is
sim ilar to real-
world ones,
separation d is-
tances/tim es
on land-
ing were
calcu lated
from real-
world data
of Heathrow
airp ort, etc.

The disp lace-
m ent cost is
incorp orated into
the ob jective
function . In
th is prob lem
quick recovery
is p ossib ly the
most preferred
optim isation goal
b ecause the pa-
p er shows som e
examples where
more p owerfu l
a lgorithm s are
d iscarded due to
their d isadvan-
tages in m eeting
certa in tim e
lim it).

.Yes. ( D ecision
of which aircraft
to land first would
change the prob lem
in the next tim e
step , but that
prop erty is not
taken into account
when solv ing the
prob lem - UNHAN-
DLE. In addition ,
there is a "d isp lace-
m ent resitriction"
(see Beasley et al.
(2004))" of how
the next so lution
should b e given the
current so lution
so that the next
so lution is not
too d ifferent from
the current one -
HANDLED )

.Partly.
(so lved
by
Ex-
tremal
Op-
ti-
m iza-
tion
and
other
heuris-
tics)

.No. .Yes.
(.W IN -
DOW . -
the whole
optim i-
sation
pro cess
is d iv ided
into smaller
tim e w in-
dows. The
prob lem is
considered
changed
after each
tim e w in-
dow)

.Yes. .S . 1 : Quick re-
covery (to
m eet the
lim it of the
tim e w indow);
2 : P rev ious-
so lution d is-
p lacem ent
restriction &
Optim ality
(these two
costs are all
integrated in
the ob j func);
3 . Sp ec Sat-
isfaction : a ll
p lanes need
to land w ith in
a sp ecific
tim e-fram e.

The ar-
rival of
a ircrafts
fo llow s a
negative
expo-
nentia l
d istri-
bution .
There are
also other
prob lem -
sp ecific
changing
ru les.

.Track ing.
intia l so lu -
tion at each
tim e w indow
is created
by adjusting
the prev ious
found solu -
tion , p lus
any new ly
app earing
airp lane. No
clear reason
why track ing
is chosen ,
but as stated
in the used
b enchmark,
prev ious-
so lution
disp lacem ent
restriction is
a requ irem ent
for prob lem s
of th is typ e
-.D ISP.)

.Yes. .No. .Yes. .No. .No.

Hydro-
thermal
Schedul-
ing
Problem
(Deb
et al.
2007)

The static
part is from
a prob lem
cla im ed by the
authors as a
"real-world"
prob lem . It is
describ ed in
(Basu 2005)
and orig inates
from a PhD
thesis that
we do not
have access.
However,
the dynam ic
(changes in
the demand)
is simulated
artificia lly

The prob lem here
is to find the
optim al a llo ca-
tion of p ower
to electric ity
generators to
m in im ise the fuel
cost of thermal
generation and
em ission prop-
erties. For th is
reference we only
consider those
characteristics
that ev idently ex-
ists in real-world
situations

.N/I. (Not m en-
tioned in the
pap er.)

.Yes.,
R I
and
Hy-
p erM
w ith
NSGA-
II

.N/I.
(data
are
gener-
ated
artifi-
cia lly)

.Yes.
(.W IN -
DOW .
Pseudo vis-
ib le - the
whole op-
tim isation
pro cess
is d iv ided
into smaller
tim e w in-
dow . The
prob lem is
considered
changed
after each
tim e w in-
dow)

.Yes. .M . (cost
of thermal
genera-
tion and
thermal
em ission)

Optim ality ;
Quick recov-
ery (b ecause
it is m en-
tioned that
the optim al so-
lution should
b e tracked
as qu ick as
p ossib le)

.N/I.
(a lthough
changes
in the
tested
prob lem
is re-
current,
data are
generated
artifi-
cia lly.
This typ e
of change
is likely
realistic
though)

.Tracking.
(.QUICK .
- to get a
good solution
quick ly)

None None None None .Yes.
(p ower
demand)
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Table 1 Combinatorial EA/metaheuristic references (cont.)
Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved
by
EA /
meta-
heuris-
tics?

Pred ictab le V isib le Constr.
prob-
lem s?

S ingle/
Multi-ob j

Optim isation
goal

Typ es of
dynam ics

Restart/
Track

Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
pa-
ra-
m e-
ters

Constra ints

Optim ising
supply-
chain
configu-
rations
(Akanle
& Zhang
2008)

The consid -
ered prob lem
was adapted
from real-
world supply-
chain data of
a Fortune 100
corp oration ,
describ ed in
(G raves &
W illem s 2005)

This approach
does not try to
deal w ith each
single order ind i-
v idually (provide
optim al supply
chain for each
order) but to
provide a stab le
supply chain for
a number of or-
ders in a certa in
p eriod of tim e in
the near future.
It do es that by
lo oking at the
optimum supply
chain for each of
a set of sequence
orders, then
try to extract
their common
prop erties and
design a main
supply chain for
these common
prop erties)

.Yes. (HANDLED) .Partly.
(GA
to
tune
the
op-
era-
tional
pa-
ra-
m e-
ters
for
each
ind i-
v id -
ual
or-
der)

.Partly.
(It is
as-
sum ed
that
future
de-
mand
could
b e
mod-
elled ;
and
varia-
tions in
costs
and
lead-
tim es
of re-
soruces
cou ld
b e pre-
d icted)

.Yes.? (.IN -
V ISIBLE .
- change
must b e
detected .
However,
it is de-
tected by
other com -
ponents
(agents),
not by
the opti-
m iser itself.
In other
words, to-
ward the
optim iser
changes are
v isib le)

.Yes. .M . (the
ob jec-
tive is to
find the
m in imum
number of
tardy or-
ders at the
m in imum
cost)

Optim ality ;
Quick recovery
(it is requ ired
that the or-
der need to
b e complete
b efore a given
dead line re-
qu ired by
custom ers);
Sp ec Satisfac-
tion (in the
sense that the
so lver a im
at provide
supply-chain
structure to
keep up w ith
exp ected re-
qu irem ents
and capacity
in the future)

.N/I. .Track ing.
(in the sense
that prev ious
know ledge is
used to learn
the optim al
chain struc-
ture for the
near future
-.LEARN.)

.Yes. (it
is m en-
tioned
that the
num -
b er of
feasib le
resource
option
as well
as the
cost of
each
feasib le
resource
option
may
change
over
tim e.
How -
ever,
m ost of
these
changes
are not
con-
sidered
in the
current
exp eri-
m ent)

.N/I. .Yes. ((it
is m en-
tioned
that the
num -
b er of
feasib le
options
of each
node,
and the
number
of nodes
may
change
over
tim e.
However,
m ost of
these
changes
are not
con-
sidered
in the
current
exp eri-
m ent)

.N/I. .Yes. ((it is
m entioned
that the
capacity
and feasib il-
ity of each
resource
node may
change over
tim e. The
pro cessing
tim e for
each typ e of
order may
also change.
However,
m ost of
these
changes
are not con-
sidered in
the current
exp erim ent)
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Table 2: Continuous real-world references that use EA/metaheuristics

Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved by
EA / meta-
heuristics?

Pred ictab leV isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation
goal

Typ es of dy-
nam ics

Restart/
Track

Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
prm

Constra ints

Adaptive
Farm ing
Strate-
g ies (J in
et al.
2007)

UK Farm ing
Data and UK
agricu lture sub-
sidy policy are
used in the simu-
lation to forecast
future land-use
decisions.

The prob lem here is
to maxim ise incom e by
appropriately choosing
m ixed grazing strategy.
The pattern of change is
observed from real-world
data. However, there
are a certa in number of
assumptions to simplify
the prob lem

.Yes., partly
(UNHANDLE
- tim e-linkage
is m entioned
in real-world
scenarios
(section VII,
page 1219)
but not con-
sidered in the
context of the
pap er)

.Yes. (GA
w ith differ-
ent strate-
g ies)

.Partly. .Yes.
(.V ISI-
BLE .)

.Yes. .S . Optim ality
on ly (Max-
im ise incom e
by appropri-
ately choosing
m ixed grazing
strategy)

The price of
farm products
changes lin -
early. This typ e
of change is
observed from
real-world data,
but no inflation
was taken into
account. There
are recurrent
changes. Som e
other changes
in th is prob lem
follow prob lem -
sp ecific ru les
(Governm ent
subsidy reform
and the dy-
nam ic of grouse
p opulation)

.Tracking.
(.CLOSE. -
The authors
choose track-
ing based on
the b elieve
that it would
b e b etter
when solv-
ing prob lem
w ith gradual
param eter
change)

.Yes. .No. .No. .Yes. .Yes.
(gov-
ern-
m ent
sub-
sidy
policy
w ill
change
in the
future)

Dynam ic
Opti-
m ization
of Fed-
batch
Ferm en-
tation
Pro cesses
(Rocha
et al.
2005)

Ecoli Ferm en-
tation pro cess
(Refers to refer-
ence [4 ] where it
has b een used for
a real prob lem )

The prob lem here is to
find an optim al contro l
tra jectory for the ferm en-
tation pro cess. Note that
th is prob lem is so lved
in a combined way of
b oth offl ine and online
approaches. The offl ine
phase is to create so lution
accord ing to the known
numerica l prob lem while
the on line phase is to deal
w ith any noise in rea l-
tim e. In addition , the
"dynam ic" part (noise) is
artificia lly generated . It is
not clear if noises in real-
world situations would fo l-
low the sam e distribution
as the simulated prob lem .

.Yes. (UN-
KNOWN
- it is not
clear if the
tim e-linkage
prop erty is
taken into ac-
count during
the optim isa-
tion pro cess)

.Yes. (white-
b ox EA
which up-
dates the
p opulation
w ith the new
values of
param eters.
EA does
not handle
change but
pro cess what
users g ive it)

.N/I. .Yes.
(.V ISI-
BLE . -
changes
need to b e
detected
but they
are de-
tected by
a separate
sensor,
not by
the solver
itself )

.Yes. .S . Optim ality
(Ferm entation
Productiv ity)
& quick re-
covery (the
algorithm is
requ ired to
provide solu -
tions after a
certa in p eriod
of tim e) &
Reference-
so lution d is-
p lacem ent
restriction
(on line so-
lutions need
not to b e very
d ifferent from
the reference
so lution).

It is rep orted
that "several
sources of noise
can contribute
to the changes
in the observed
values of the
state values".
However, the
tested dynam ics
are artificia lly
generated and
m ight not re-
flect real-world
situations.

.Track ing.
(.QUICK .
- when a
change hap-
p ens the EA
takes the last
p opulation
and adjust it
to create new
solutions.
The purp ose
of track ing is
to produce
good solution
in a short
p eriod of
tim e)

.Yes. .No. .No. .N/I. .No.
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Table 2 Continuous EA/metaheuristic references (cont.)
Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved by
EA / meta-
heuristics?

Pred ictab leV isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation
goal

Typ es of dy-
nam ics

Restart/
Track

Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
prm

Constra ints

Dynam ic
opti-
m ization
of wa-
tering
man-
darins
(Morimoto
et al.
2007)

Real data from
Japan

The prob lem here is to in -
crease the sugar content
and decrease in citric acid
content. It is not clear if
the pro cedure describ ed in
d iagram in F ig.1 is carried
out on ly once (i.e . fin-
ish after one year) or w ill
it b e carried out over and
over in an op en-ending cy-
cle . In the earlier case the
prob lem is so lved offl ine,
and in the latter case it
is p ossib le to classify the
prob lem as an online prob-
lem w ith tim e-w indow .

.Yes. (UN-
KNOWN - the
output of the
algorithm is
the requ ired
amount of
water, which
cou ld in turn
affect the
quality of
m andarin in
the future)

.Yes. (GA
to find the
optim al tra-
jectory of the
contro l para-
m eter u for
watering the
mandarins.
The dynam ic
model is
formulated
using a
neural net-
work based
on historica l
data.)

.Partly.
(Changes
are
p eri-
od ica l
and
sea-
sonal)

.Yes.
(.V ISI-
BLE .)

.No. .S .
(Ag-
gre-
tated
Ob-
jec-
tive
Func-
tion)

Optim ality
(Increase the
sugar content
and decrease
in citric acid
content)

Changes are
seasonal

.N/I. (Solved
offl ine, m ay
b e restarted
for the next
cycle)

.Yes.
(sun
sh ine
dura-
tion is
tim e-
dep endent
but its
dy-
nam ic
is
known
b efore
hand
due
to the
way
the
prob-
lem is
so lved)

.No. .No. .No. .No.

Train ing
a neural
net-
work to
approxi-
m ate the
dynam ic
model
of un-
manned
aeria l
veh icles
(UAV)
(Isaacs
et al.
2008)

F ixed W ing
Multi-Input
Multi-Output
Unmanned Aeria l
Vehicle system .

The prob lem here is to to
m in im ise the learn ing er-
ror of the neural network,
which is used to repre-
sent the dynam ic model of
UAV system s. The reason
why the neural network
needs to b e tra ined on-
line is b ecause of the sig-
n ificance of environmental
noises. These noises m ight
make offl ine tra in ing inef-
fective.

.No. .Partly.
(M emetic
A lgorithm )

.No. .No. (.IN -
V ISIBLE .
- the al-
gorithm
detects
changes
by re-
evaluating
a random
solution)

.N/I. .M . 1. Quick re-
covery (so lv ing
and tra in ing
tim e must
b e less than
the sample
tim e so that
the algorithm
can pred ict
ahead of tim e)
2. Optim ality
(Train a NN
w ith m in imum
error)

Changes are
noises.

.Track ing.
(.QUICK . -
the reason is
b ecause the
authors b e-
lieve that the
tim e needed
to find new
Pareto set
from the
prev iously
converged
Pareto set is
sm aller)

.Yes.
(out-
puts
of the
UAV
lon-
gitu-
d inal
sys-
tem :
p itch
rate,
for-
ward
velo c-
ity and
ver-
tica l
velo c-
ity)

.N/I. .N/I. .N/I. .N/I.

The
Odor
Source
Local-
ization
prob lem
(Jatm iko
et al.
2008,
Jatm iko
et al.
2006)

Hardware (to b e
implem ented)
and Software
S imulation En-
v ironm ent w ith
Robots (a lthough
the environm ent
is a lab-based
one, the authors
d id link each
prop erty of the
environment to
prop erties that
are commonly
seen in real-life
situations)

The prob lem here is to lo-
cate the source of chem i-
ca l odour using mobile ro-
b ots. The environment is
changing overtim e due to
the w ind and the d iffusion
of the odor.

.No. .Yes.
(Charged
PSO)

.No. .No. (.IN -
V ISIBLE .)

.No. .S . Optim ality
(Lo cate and
move to the
odour source)
& Quick
recovery (con-
vergence tim e
to reach a
certa in value is
m easured)

Odor dynam ic
is simulated
using the Odor
Gaussian D is-
tribution , w ind
turbulence and
chem ical d if-
fusion . W ind
turbulence
is chaotic ,
d iffi usion is
non-linear and
there are also
sensor noises.

.Track ing.
(.CLOSE. -
due to the
fact that a
large part of
the prob lem
m ight still
remain the
sam e after
the change
and hence the
new global
optimum
m ight not b e
far from the
prev ious one)

.Yes. .No. .No. .No. .No.
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Table 2 Continuous EA/metaheuristic references (cont.)
Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved by
EA / meta-
heuristics?

Pred ictab leV isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation
goal

Typ es of dy-
nam ics

Restart/
Track

Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
prm

Constra ints

Adaptive
contam -
ination
source
identi-
fication
(L iu
et al.
2006,
L iu
2008b)

Data from
the U .S .
Environmen-
ta l P rotection
Agency and data
of the v irtual city
M icrop olis from
Georgia Institute
of Technology.
The real-world
data is used to
represent the
static network
structure. The
dynam ic (con-
tam ination) is
simulated artifi-
cia lly but it do es
fo llow the (sim -
p lified) hydrau lic
condition found
in real-world
cases

The prob lem here is to
identify the orig in of con-
tam ination in the wa-
ter network. This case
is an interesting example
of how inverse modelling
can b e represented as dy-
nam ic optim isation prob-
lem ! (the search space
changes b ecause the in for-
m ation about the prob lem
is not fu lly known and can
only b e gradually revealed
when tim e go es by)

.No. .Yes. (multi-
p opulation
GA-based
approach)

.N/A . .Yes.
(.V ISI-
BLE . -
through a
system of
observers
in the
network)

.No. .S . Optim ality
(m in im ise the
error b etween
the pred icted
value and the
observed value
& choose the
correct orig in
of contam ina-
tion) & Quick
recovery (it
is m entioned
that so lu -
tions need to
b e produced
b efore new
observations
are received)

There are
prob lem -
sp ecific chang-
ing ru les:
over tim e the
observed con-
centration
of sensors
changes, re-
vealing the
necessary data
to find the
contam ination
orig ins.

.Track ing.
multip le good
solutions.
The reason is
b ecause when
tim e go es by
one of those
good solu-
tions m ight
b ecom e the
optim al one
(.CLOSE.).

.Yes.
(dy-
nam ic
para-
m e-
ters:
ob-
served
con-
cen-
tration
of sen-
sors)

.No. .No. .N/I. .N/I.

Multi-
d im ensional
v isual
track ing
(Pantrigo
et al.
2008)

Two real-world
case stud ies:
" jump" and
"run" were tested
for articu lated
ob ject track ing.
In addition , the
real-world v ideo
from CVBase’06
dataset were used
to test multip le
ob ject track ing

The prob lem here is to to
optim ise the precision of
the visual track ing system
in track ing animation ob-
jects

.No. Partly (Scat-
ter Search
(used w ith
partic le
filter))

.Partly.
(the
p ose
of the
geo-
m etric
model
for the
next
fram e
can b e
pre-
d icted)

.Yes.
(.V ISI-
BLE .)

.Yes. .S . Optim ality (to
optim ise track-
ing precision)
and Quick re-
covery

There are
prob lem -
sp ecific chang-
ing ru les: the
typ e of dynam ic
dep ends on the
typ e of ob ject
movem ent.

.Track ing.
multip le
so lutions
(.CLOSE.
- to use
prev ious
know ledge
b ecause ob-
jects on ly
move gradu-
ally ;.LEARN.
- the prev ious
know ledge
(prev ious
p ositions of
ob ject) is
a lso used to
pred ict future
changes)

.Yes. .No. .No.
for the
tested
prob lem

.N/I. .N/I.

Controller
for a
DSTAT-
COM in
an elec-
tric sh ip
p ower
system
(M itra &
Venayagamoorthy
2008)

A hardware setup
(simplified model
of the sh ip sys-
tem ) was tested
in the lab

The prob lem here is to
maintain regu lation to a
reference value for bus
voltage in a sh ip p ower
system . Here the devi-
ation of voltage is kept
m in imum during the real-
tim e pro cess using A IS .
This approach works b e-
cause a robust so lution
has already b een devised
during the offl ine phase,
and the task of A IS is to
try to keep deviation from
this robust so lution to a
m in imum level

.N/I. (This
prop erty is
not m en-
tioned and
is not taken
into account
by AIS during
the optim isa-
tion pro cess.
The mathe-
matica l m odel
of the contro l
system is
not provided
so it is not
clear whether
and how the
tim e-linkage
prop erty b e-
haves in the
system )

.Yes. (PSO
to find the
in itia l static
so lution , and
AIS to ad-
just the solu -
tion on line to
m in im ise d is-
turbances)

.N/I. .No. (.IN -
V ISIBLE . -
the solver
in the DSP
does not
know about
the errors
(changes)
b efore-
hand.
S ignals
w ill b e
sent to the
solver and
the solver
has to
adaptively
deal w ith
changes if
there is)

.Yes. .S . Reference-
so lution d is-
p lacem ent
restriction
(maintain
regu lation
to a refer-
ence value for
bus voltage);
Sp ec Satisfac-
tion (Stab ility
- m ake sure
that future
so lutions are
w ith in the
allowable
regu lation
range during
the real-tim e
pro cess)

Changes are
noises during
the op eration
of the contro l
system )

.Tracking.
(.LEARN. -
partly : the
feedback ru le
do es use
in formation
from the past
(prev ious
error) to
calcu late the
new solution)

.N/I.
(there
is no
detail
ab out
the
math-
emat-
ica l
m odel
of the
contro l
sys-
tem )

.N/I. .N/I. .N/I. .N/I.
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Table 2 Continuous EA/metaheuristic references (cont.)
Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved by
EA / meta-
heuristics?

Pred ictab leV isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation
goal

Typ es of dy-
nam ics

Restart/
Track

Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
prm

Constra ints

Optim al
v isual
prop or-
tional
d iffer-
entia l
con-
tro ller
(Wang,
Tao &
Cho
2008)

Exp erim ents w ith
a physica l system
was done

The prob lem here is to
m in im ise the deviation
of the actual rob ot tra-
jectory from a reference,
pre-p lanned tra jectory.
The mathematica l m odel
has already b een setup of-
fline, but the optim isation
pro cess (param eter tun-
ing) is assum ingly b e done
online v ia exp erim ents!

.Yes. (UN-
KNOWN -
main ly offl ine
b ecause the
mathematica l
m odel was
calcu lated of-
fline. It is not
clear if during
the offl ine
pro cess the
tim e-linkage
prop erty is
taken into
account)

.Yes. (GA to
m in im ise the
errors of the
contro l para-
m eters)

.No.
(the
er-
rors/
d istur-
bances
are
not
pre-
d ictab le)

.Yes.
(.W IN -
DOW . - At
the b egin-
n ing of a
new tim e-
w indow ,
the visual
tracker
send in-
formation
about the
current
p osition of
the ob ject
to create
a new
ob jective
function
for the GA
to solve)

.Yes. .S . Reference-
so lution d is-
p lacem ent
restriction
(m in im ise the
deviation of
the actual
rob ot tra-
jectory from
a reference,
pre-p lanned
tra jectory);
Quick recov-
ery ;

Changes are lin -
ear

.N/I. (.UN -
KNOWN. -
for each tim e
step the new
control values
is ca lcu lated
based on
the prev ious
so lutions in
the past. It
is however
not clear
if the EA
also fo llow s
the track ing
approach or
is restarted
at each tim e
step)

.Yes. .N/I. .No. .N/I. .Yes.

Evaporator
system
(Sonntag
et al.
2008)

A rigorious sim -
u lation model
of an evapora-
tor system is
develop ed in
accordance w ith
Bayer Technology
Serv ices

The prob lem here is
to provide an optim al
tra jectory of states for
an evaporator system .
Note that the EA ap-
proach can only b e
applied in an offl ine way
(the tim e and ru le of
sw itch ing are all known!).

.Yes. .Offl ine. on ly
(Lookahead
m in im isation
is p erform ed
via nonlinear
optm ization
and EA . The
EA approach
can only b e
applied in an
offl ine way
(the tim e
and ru le of
sw itch ing are
all known!))

.Partly.
(the
dy-
nam ic
b ehav-
iour is
pre-
d ictab le
but
the
errors
are
not).

.Yes.
(.W IN -
DOW . -
after b eing
detected
by sensors,
changes are
made visi-
b le to the
optim iser
at the b e-
g inn ing of
each tim e
w indow
using the
feedback
m echa-
n ism )

.Yes. .S . Sp ec satisfac-
tion

Changes are
non-linear

.Track ing.
(.LEARN. -
the princip le
of pred ictive
contro l re-
qu ires that at
each reced-
ing horizon
solutions
from the
past are used
to pred ict
the future
b ehaviour. ).

.Yes.
(the
dy-
nam -
ica l
system
also
sw itches
b e-
tween
dif-
ferent
modes)

.No. .Yes.
(Combi-
nation of
b inary
and real
variab les
m eans
that
when
the
system
sw itches
mode,
the
number
of vari-
ab les
m ight
change)

.N/I. .Yes.
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Table 3: Combinatoria l rea l-world references that use non-m etaheuristic m ethods

Factors that change

References O rig in of
rea l-world
data

Notes T im e-linkage Solved
by EA
/ meta-
heuris-
tics?

Pred ictab leV isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation
goal

Typ es of dy-
nam ics

Restart/Track Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
prm

Constra ints

A ir
traffi c
contro l
in ter-
m inal
areas
(B ianco
et al.
2006)

Real-data
from two
airp orts in
M ilan and
Rome

The prob lem here is to
find the optim al land-
ing/taking off schedules
for a ll a irp lanes in the air-
p ort in real-tim e to m eet
the sp ecifications, tim e
lim it and requ irem ents of
the airp ort. Note that the
tim e lim it in th is typ e of
prob lem s is usually mod-
elled as a sp ecific typ e of
constra ints.

.Yes. (D ecision
of which aircraft
to land/takeoff
first would
change the
prob lem in
the next tim e
step . However
the prop erty is
not fu lly taken
into account
(HANDLED &
UNHANDLE).
There is a lso
the prev ious-
so lution dis-
p lacem ent
restriction)

.No.,
so lved
by
heuris-
tics

.No. .Yes.
(.V ISI-
BLE . - the
system is
in form ed
whenever
a new
aircraft
arrives)

.Yes.
(e.g .
the
sp ecifi-
cation
in land-
ing/taking
off of
each
typ e of
a ircraft
and the
requ ire-
m ents
in rese-
quenc-
ing
air-
crafts)

.S . 1 : qu ick recov-
ery (to m eet
the lim it of
the tim e w in-
dow - less than
one second);
2 : P rev ious-
so lution dis-
p lacem ent
restriction &
Optim ality
(these two are
all integrated in
the ob j func);
Sp ec Satisfac-
tion : each typ e
of a irp lane has a
sp ecification in
land ing/taking
off.

There are non-
linear changes
caused by the
increase of
throughputs.
There are
also prob lem -
sp ecific chang-
ing ru les, which
are contro lled
by air regu la-
tions and other
restrictions

.Tracking.
(.D ISP. - The
new schedule is
adjusted from
the prev ious
one. There
are heuristic
ru les to keep
certa in aircraft
p ositions alm ost
fixed and to
prevent aircraft
to sh ift p osition
too much.)

.Yes. .No. .Yes. .No. .No.

Optim al
ambu-
lance
lo ca-
tion in
urban
areas
(Ingolfsson
et al.
2008)

The use
of the
prop osed
model
(for cities
w ith one
m illion
p opula-
tion) is
illustrated
using
the real-
world data
of Ed-
monton .
Data from
three
real-world
ambu-
lation
lo cation
pro jects is
a lso used
for inves-
tigation

The prob lem here is to
find the optim al ambu-
lance lo cations in urban
areas and adjust the
solutions to cop e w ith
changes. The prob lem
is so lved in b oth offl ine
and online ways: Offl ine
for each tim e w indow
(know ledge about the
dynam ics from previous
data is incorp orate into
the algorithm .); and
online in the long run
(The authors d id m ention
the case of so lv ing the
prob lem online when de-
mand varies, using tim e-
w indow approach w ith
168h for each w indow).
It shou ld b e noted that
in the prop osed model,
the arrival rate of ca lls is
artificia lly modelled using
Poisson d istribution . This
d istribution however is
w idely b elieved to ac-
curately represent the
d istribution of rea l-world
calls.

.N/I. (No men-
tion to the tim e-
linkage prop erty.
However, hypo-
thetica lly that
can happ en .
For example
the quality of
current serv ices
m ight affect the
demand in the
future etc)

.No., the
authors
use
heuris-
tics +
branch-
and-
b ound
methods

.Partly.& .N/I.
(.Yes.
for the
changes
in each
tim e
w in-
dow ;.N/I.
for de-
mand
change)

.Yes.
(a) Un-
certa inty in
each tim e
w indow :
so lved
offl ine
(b) De-
mand:
pseudo-
v isib le
(.W IN -
DOW .
- after
each tim e-
w indow)

.Yes.
(m ax-
imum
num -
b er of
ambu-
lance)

.S . Optim ality (op-
tim al ambulance
dep loym ent to
maxim ise the
coverage given
the number
of ambulance
availab le)

Emprica l data
of pre-travel
delays fo llow s
a lognormal
d istribution

.Restart. (ap-
p licab le b ecause
the p eriod b e-
tween each tim e-
w indow is long)

.Yes.
(changes
in the
travel
tim e
(sp eed of
veh icles;
routes etc
), delays
prior to
the trip ,
changes
in the
availab il-
ity of
ambu-
lance and
changes
in de-
mand

.No. .No.
(the
num -
b er of
sta-
tion is
fixed)

.N/I. .No.
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Table 3 Combinatorial non-metaheuristic references (cont.)
Factors that change

References O rig in of
rea l-world
data

Notes T im e-linkage Solved
by EA
/ meta-
heuris-
tics?

Pred ictab leV isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation
goal

Typ es of dy-
nam ics

Restart/Track Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
prm

Constra ints

A irlift
m is-
sion
moni-
toring
and
dy-
nam ic
reschedul-
ing
(W ilk ins
et al.
2008)

Actual
(fu ll-sclae)
schedules
from the
USAF Air
Mobility
Command
and sim -
u lated
data feeds
by the
A irforce
Research
Labora-
tory were
cla im ed
to b e "as
sim ilar
to actual
data feeds
as p os-
sib le" .

The prob lem here is
to effectively schedule
and reschedule the air-
lift m issions of the US
A ir Force under chang-
ing environm ents. The
prop osed system is a
decision-support system
which comprises multi-
p le components to do
different tasks as moni-
toring changes; evaluating
costs; finding optim al
rescheduling options; and
interacting w ith users.
The system is still under
developm ent/testing and
has not b een fu lly inte-
grated into action yet.

.Yes. (HAN-
DLED - it is
recogn ised that
rescheduling
options have po-
tentia l impacts
on future op era-
tions, and that
it is necessary to
take into acount
th is tim e-linkage
prop erty (im -
pacts on future
op erations) to
so lve the prob-
lem effectively

.N/I. .Partly.
(the
conse-
quence
of a
reschedul-
ing de-
cision
can b e
pre-
d icted .
Envi-
ron-
m ental
changes
cannot
b e pre-
d icted)

.Yes.
(.V ISI-
BLE . -
changes
need to b e
detected
automati-
ca lly but
th is is not
the task of
the opti-
m iser (the
Scheduler)
b ecause
there is a
separate
component
to moni-
tor/detect
changes)

.Yes.
(m is-
sion’s
requ ire-
m ents,
re-
source
avail-
ab ility
, usage
con-
stra ints
and op-
eration
regu la-
tions)

.N/I. Optim ality ;
P rev ious-
so lution dis-
p lacem ent
restriction
(to m in im ise
d isruption to
other actions);
Quick recovery ;
Sp ec Satis-
faction : Each
m ission m ight
have a restricted
tim e fram e to
fu lfill.

.N/I. .Track ing.
(.D ISP. - to
m in im ise d is-
ruption to other
actions)

.N/I.
(there
is no
detailed
mathe-
matica l
descrip -
tion of
the ob-
jective
function)

.N/I. .N/I. .N/I. .Yes.
(m ission’s
requ ire-
m ents,
resource
availab il-
ity and
usage con-
stra ints
can all
change
over tim e.
In addi-
tion , in
certa in
cases con-
stra ints
can b e re-
laxed (i.e .
som e con-
stra ints
are re-
m oved) so
that som e
m issions
can b e
executab le
in tim e)

Managing
restau-
rant
tab les
using
con-
stra ints
(V idotto
et al.
2007)

a m edium -
size
restau-
rant in
Douglas,
Cork C ity,
Ireland

The tab le managem ent
prob lem is modelled as
a dynam ic scheduling
prob lem , where tab les
are resources and parties
are tasks (w ith start/end
tim es and a size). Parties
are modelled as decision
variab les and tab les are
values to b e assigned .

.Yes. (HAN-
DLED - it
is recogn ised
that the cur-
rent b ook-
ing/p lanning
decision w ill
affect the fu-
ture prob lem
(future coverage
of tab les).) The
authors a lso
try to handle
the tim e-linkage
feature by pre-
d icting the
future coverage
of the current
tab les g iven the
current b ooking.

.No.
(the
prob lem
is so lved
using
som e
heuris-
tics)

.Partly.
(the
conse-
quence
of a
b ook-
ing
deci-
sion
can b e
partly
pre-
d icted .
O ther
changes
(fu -
ture
b ook-
ing
re-
quests,
future
walk-
in
cus-
tom ers
etc)
cannot
b e pre-
d icted)

.Yes.
(.V ISI-
BLE .)

.Yes. .S . Quick recovery
(there is a lim it
in the tim e to
find a solution .
Any solution
that takes longer
than the lim it
w ill not b e
accepted);
P rev ious-
so lution dis-
p lacem ent
restriction (d is-
ruption must b e
m in im ised by
not on ly lim iting
the amount of
changes to pre-
v ious so lution
but also lim iting
the number of
changes); Op-
tim ality ; Sp ec
Satisfaction
(schedules made
now need to
b e ensured not
conflict w ith the
allo cation and
tim e of other
pre-b ooked
schedules)

.N/I. .Track ing.
(.D ISP. - to
m in im ise d is-
ruption to other
actions)

.Yes.
(m any
factors
can
change,
e.g . the
number
of p eop le
in each
party
and the
starting
and end-
ing tim e
of each
party)

.No.
(num -
b er
of
ta-
b les
and
typ es
of
ta-
b les
are
fixed)

.Yes.
(the
num -
b er of
parties
changes
over
tim e)

.N/I. .Yes.
(som e
con-
stra ints
changes
due to the
change in
number of
variab les)
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Table 3 Combinatorial non-metaheuristic references (cont.)
Factors that change

References O rig in of
rea l-world
data

Notes T im e-linkage Solved
by EA
/ meta-
heuris-
tics?

Pred ictab leV isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation
goal

Typ es of dy-
nam ics

Restart/Track Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
prm

Constra ints

Dynam ic
Chan-
nel
A s-
sign-
m ent
in
W ire-
less
LANs
(Wang,
Wu &
Liu
2008)

A 500m2
testb ed
for the
w ireless
network
was setup
in the of-
fice, under
d ifferent
changes in
the envi-
ronm ent

The prob lem here is to ef-
ficiently adapts the chan-
nel assignm ents in the
w ireless network to deal
w ith variations in traffi c.
It shou ld b e noted that
th is application is an
example where not all
changes are reacted . Only
"sign ificant changes" are
considered .

.N/I. (Not m en-
tioned)

.No. (a
sem i-
definite
pro-
gram -
m ing
relax-
ation
tech-
n ique is
used)

.N/I. .Yes.
(.W IN -
DOW . -
the opti-
m isation
pro cess is
d iv ided
into equal
tim e-
w indows.
However,
the so lver
still needs
a separate
component
to evaluate
the mag-
n itude of
changes to
determ ine
if it is
necessary
to react to
changes)

.Yes.
(but
not ex-
p lic itly
sp ec-
ified
in the
pap er)

.S . Optim ality ;
Quick recovery
(the solution
need to b e deliv -
ered b efore the
end of the tim e
w indow)

.N/I. (it is
observed that
trafic is "often
not uniform
among chan-
nels" . However,
the tested
dynam ics are
artificia lly
generated)

.Restart. (there
is no expla-
nation why
restarting is
chosen over
track ing in
th is lab-based
exp erim ent. It
shou ld b e noted
that restart
is carried out
on ly if changes
are considered
"sign ificant")

.N/I.
(there
is no
detailed
descrip -
tion of
the ob-
jective
function
and de-
cision
variab les)

.N/I.
(there
is
no
de-
ta iled
de-
scrip -
tion
of
the
ob-
jec-
tive
func-
tion
and
de-
ci-
sion
vari-
ab les)

.N/I.
(there
is no
de-
ta iled
de-
scrip -
tion of
the ob-
jective
func-
tion
and
deci-
sion
vari-
ab les)

.N/I.
(there
is
no
de-
ta iled
de-
scrip -
tion
of
the
ob-
jec-
tive
func-
tion
and
de-
ci-
sion
vari-
ab les)

.N/I.
(there is
no de-
ta iled
descrip -
tion of the
ob jective
function
and de-
cision
variab les)

Dynam ic
assign-
m ent
in P2P
net-
works
(Martinez
et al.
2008)

The dy-
nam ics
of the
p eer con-
nection/
discon-
nection is
based on
a the logs
of user’s
b ehav-
iour of a
live-v ideo
serv ice of
a m edium -
size ISP

The prob lem here is a
dynam ic assignm ent prob-
lem in a P2P network de-
signed for sending real-
tim e video over the In-
ternet in a h igh ly dy-
nam ic environment where
connections and discon-
nections o ccur frequently.
The purp ose is to p e-
riod ica lly eassign ing net-
work connections to max-
im ise the global exp ected
Quality-of-Exp erience to
clients.

.Yes. (HAN-
DLED - it is
recogn ised that
the current as-
signm ent m ight
influence the
app earance of
connections and
disconnections
in the future.
This feature
is taken into
account and is
used as criteria
to evaluate the
solution quality
(Subsection 3.1).
However, there
is no detail
ab out how th is
pro cedure is
implem ented)

.No.
(so lved
by a
GRASP
meta-
heuris-
tic)

.Partly.
(it is
argued
that
the
con-
nec-
tion/disconnection
b ehav-
iours
of a
par-
ticu lar
client
is pre-
d ictab le
and
the
pro-
p osed
m ethod
rely
on th is
as-
sump-
tion
to im -
prove
the
p erfor-
m ance)

.Yes.
(.W IN -
DOW . -
the opti-
m isation
pro cess is
d iv ided
into fixed
tim e-
w indows)

.Yes.
(there
are
restric-
tions
for the
up-
stream
and
down-
stream
band-
w idths
of
nodes
and
servers.
There
are also
other
network-
related
con-
stra ints)

.S . Optim ality
(it is not clear
if other optim i-
sation goals are
also taken into
account)

.N/I. .Track ing. (at
the b eginn ing
of each tim e-
w indow the
GRASP heuris-
tics is started
from the pre-
v ious found
solution . New ly
connected and
new ly d iscon-
nected nodes
w ill b e added to
/ removed from
the existing
solution . The
authors do not
clearly state
why the track-
ing approach is
chosen . How -
ever, it can b e
assum ed that
track ing is the
on ly viab le
option b ecause
otherw ise all
ex isting con-
nections w ill b e
reset -.D ISP.)

.N/I.
(there
is not
enough
details
to for us
to decide
if th is
factor
changes)

.N/I. .N/I.
(there
is not
enough
details
to for
us to
decide
if th is
factor
changes)

.N/I.
(there
is
not
enough
de-
ta ils
to
for
us
to
de-
cide
if
th is
fac-
tor
changes)

.N/I.
(there
is not
enough
details to
for us to
decide if
th is factor
changes)
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Table 3 Combinatorial non-metaheuristic references (cont.)
Factors that change

References O rig in of
rea l-world
data

Notes T im e-linkage Solved
by EA
/ meta-
heuris-
tics?

Pred ictab leV isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation
goal

Typ es of dy-
nam ics

Restart/Track Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
prm

Constra ints

Optim al
load
bal-
ancing
(Soga
et al.
2008)

Exp erim ents
were done
in a
real-life
computing
cluster in
Japan

The prob lem here is to dy-
nam ically adjust the im -
p lem entation of B roadcast
op eration , one of the most
p opular collective commu-
nications in paralle l app li-
cations to avoid waiting
tim e in paralle l pro cesses.
The dynam ic in th is prob-
lem is caused by the fact
that although theoreti-
ca lly a ll paralle l pro cesses
should b egin their tasks
at the sam e tim e, in
reality due to the im -
balance of workload of
each pro cess, pro cesses
may start their op erations
at d ifferent tim es. Be-
cause of that, it m ight
b e necessary to re-order
the pro cesses to m in im ise
the wait tim e caused by
under-load pro cesses.

.N/I. .No.
(so lved
by a pro-
p osed
heuris-
tic)

.No. .No. (.IN -
V ISI-
BLE . The
changes
(load-
imbalance
of the sys-
tem ) is
detected
by mea-
suring the
wait tim e
of receive
op erations
in Broad-
casts.).
It a lso
m eans that
changes
cannot b e
detected
just by re-
evaluating
a few
solution

.N/I.
(no de-
ta il o f
the ob-
jective
and
con-
stra int
func-
tions
is pro-
v ided)

.N/I.
(no
detail
o f the
ob jec-
tive
and
con-
stra int
func-
tions
is pro-
v ided)

Optim ality
(m in im ise
the wait tim e
caused by load-
imbalance)

.N/I. (dy-
nam ic data
are generated
artificia lly)

.Track ing. (the
order of som e
messages in the
Broadcast w ill
b e adjusted
to handle the
change. The
authors do not
clearly state
why the track-
ing approach is
chosen . How -
ever, it can b e
assum ed that
track ing is the
on ly viab le
option b ecause
otherw ise all
ex isting paral-
le l tasks w ill
b e term inated
-.D ISP.)

.N/I. (no
detail
o f the
ob jective
and con-
stra int
func-
tions is
provided)

.N/I.
(no
de-
ta il
o f
the
ob-
jec-
tive
and
con-
stra int
func-
tions
is
pro-
v ided)

.N/I.
(no
detail
o f the
ob jec-
tive
and
con-
stra int
func-
tions
is pro-
v ided)

.N/I.
(no
de-
ta il
o f
the
ob-
jec-
tive
and
con-
stra int
func-
tions
is
pro-
v ided)

.N/I. (no
detail o f
the ob jec-
tive and
constra int
func-
tions is
provided)

Path-
finding
for
intel-
ligent
agents
in A I
gam es
(Bulitko
et al.
2007)

Maps from
real com -
m ercia l
gam es

The prob lem here is to
cumulatively bu ild a path
for an intelligent agent
(in real-tim e AI gam es) to
travel from one place to
another when tim e go es
by. In th is typ e of prob-
lem s (path-finding), the
search space (terra in map)
is in itia lly unknown to the
search agent. Over tim e,
when the search agent
moves around the land-
scap e, it w ill rea lise more
and more ab out the land-
scap e. Because at each
tim e step the search agent
is restricted to d iscover
on ly a lim ited area of the
search space, we can con-
sider the prob lem as a dy-
nam ic prob lem in which at
each tim e step the algo-
rithm need to deal w ith a
slightly d ifferent ob jective
function . This is an ex-
ample of cases where al-
though the ob jective func-
tion is completely known,
it is to o exp ensive to solve
offl ine or there is som e
strict ru les preventing it
from being solve offl ine,
and hence it needs to b e
solved online

.Yes. (in the
sense that the
outcom e of the
algorithm at one
tim e-w indow
w ill decide the
starting p oint
(and hence the
search space) of
the algorithm
in the next
tim e-w indow .
The tim e-linkage
prop erty is
handled in the
sense that at
the current tim e
the solver p lans
n actions away
into the future.
HANDLED)

.No.
(so lved
by a
sp ecia l
heuris-
tics)

.Partly.
(a
small
seg-
m ent
of the
map
can b e
pre-
d ictab le
based
on
cur-
rent
know l-
edge)

.Yes.
(.W IN -
DOW . -
b ecause
the opti-
m isation
pro cess is
d iv ided
into fixed
tim e-
w indows)

.Yes. .M .
(The
single-
ob jective
case
was
also
tested)

Optim ality ;
Quick recovery
(there is a tim e-
p er-action lim it
in computer
gam es regard less
of prob lem size);
Sp ec Satisfac-
tion (the search
agent needs
to eventually
reach a goal/
destination)

.N/I. .Track ing.
(.LEARN. - the
search agent
re-uses (and
starts from ) the
know ledge that
it has learnt
from the past
to in itiate its
search at the
b eginn ing of
each new tim e
step . The pur-
p ose of track ing
m ight not b e
that the global
optimum of the
new prob lem is
close to the old
one, but that
track ing enable
the continu ity of
the path-finding
approach and
also to learn
more ab out
the surround-
ing map. It
m ay also facili-
tate producing
a solution
more quick ly
(..QUICK ..))

.Yes. .Yes. .No.
(the
num -
b er of
actions
in one
tim e-
w indow
is
fixed)

.Yes. .Yes.259



Table 4: Combinatoria l non-m etaheuristic references (cont.)

Factors that change

References O rig in of
rea l-world
data

Notes T im e-linkage Solved
by EA
/ meta-
heuris-
tics?

Pred ictab leV isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation
goal

Typ es of dy-
nam ics

Restart/Track Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
prm

Constra ints

Continuous-
field
path-
p lanning
for ro-
b ots
(M ills-
Tettey
et al.
2008)

Two real-
world ro-
b ots were
tested

The prob lem here is to cu-
mulatively bu ild an opti-
m al path for a rob ot to
move from one place to
another when tim e go es
by. An offl ine path m ight
have already b een set up ,
but b ecause the actual
terra in m ight b e d ifferent
from the pre-p lanned path
due to unknown obstacles,
the rob ot needs to adjust
its path to get the des-
tination . Because of the
unknown factors a long the
path and b ecause of the
fact that the rob ot needs
to find the actual path on-
line, the prob lem is a dy-
nam ic optim isation prob-
lem .

.Yes. (in the
sense that the
outcom e of the
algorithm at
one tim e-step
w ill decide the
starting p oint,
energy, and stor-
age data (and
hence the ob jec-
tive function and
constra ints) of
the rob ot in the
next tim e-step .
The tim e-linkage
prop erty is han-
d led in the sense
that the restric-
tion of rob ot
movement is re-
laxed to ensure
that its future
path can lead to
the destination
given the current
level o f energy -
HANDLED)

.No. .Partly.
(som e
prop-
erties,
e .g .
the
dom i-
nance
of a
cell
com -
pared
to an-
other,
can b e
pre-
d icted)

.Yes.
(.V ISI-
BLE . - the
rob ot needs
to detect
changes
itself but
it uses
ded icated
sensors for
th is pur-
p ose. The
solver do es
not need
to detect
changes)

.Yes. .S . Optim ality
(m in im ising
traversa l cost);
Quick recovery
(there is a tim e-
p er-action lim it
for the rob ot);
Sp ec Satis-
faction (the
rob ot needs
to eventually
reach a destina-
tion position);
Reference-
so lution dis-
p lacem ent re-
striction (there
m ight also b e
a pre-p lanned
path that the
rob ot shou ld
fo llow as close as
p ossib le)

.N/I. .Track ing. (to
get a new so-
lution quick ly
(.QUICK .) and
to use know l-
edge from the
past to learn
more ab out
the environ-
m ent and how
to handle the
environment
(.LEARN.) )

.Yes.
(at each
tim e-step
when the
rob ot
moves
to a new
place,
its sen-
sor may
discover
som e
discrep-
ancies
b etween
th is new
environ-
m ent
and the
p lanned
map.
In such
case the
ob jective
function
needs
to b e
adjusted)

.N/I. .N/I. .N/I. .Yes. (
the con-
stra ints
w ill a lso
change
b ecause
the total
availab le
energy
and the
data stor-
age also
changes
over tim e
dep ending
on the
p osition
of the
rob ot and
the tim e
the rob ot
takes to
get to that
p osition )

State
esti-
m ation
in
three-
tank
system
(P ina
&
Botto
2008)

The ex-
p erim ent
was done
in a
AM IRA
DTS200
three-
tanks
system

This reference do es not fo-
cus on optim isation but on
estim ating the unknown
state of hybrid system s.
In th is hybrid system the
number of p ossib le d is-
crete modes is known.

.Yes. (HAN-
DLED - the
current contro l
value w ill deter-
m ine how the
current dynam ic
system w ill b e
in the future.
In addition ,
the algorithm
also determ ine
when and how
a sw itch-mode
should happ en
in the future)

.No. .Partly.
(the
tim e
and
the
way a
sw itch
o ccurs
is
deter-
m ined
by the
con-
tro ller,
but
the er-
rors/
d istur-
bances
are
not
pre-
d ictab le)

.Yes.
(.W IN -
DOW . -
the opti-
m isation
pro cess is
d iv ided
into tim e-
w indows
and hence
changes are
assum ed
to o ccur
at the b e-
g inn ing of
each tim e
w indow )

.Yes. .S . .N/A . (state es-
tim ation , not op-
tim isation)

Changes are
non-linear

.N/A . (b ecause
the goal of the
research is to es-
tim ate the state,
not to find opti-
m al so lution)

.Yes.
(the ob-
jective
func-
tion also
sw itches
b etween
different
modes)

.N/I. .N/I. .N/I. .Yes.
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Table 4 Combinatorial non-metaheuristic references (cont.)
Factors that change

References O rig in of
rea l-world
data

Notes T im e-linkage Solved
by EA
/ meta-
heuris-
tics?

Pred ictab leV isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation
goal

Typ es of dy-
nam ics

Restart/Track Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
prm

Constra ints

Bus
Schedul-
ing in
Lon-
don
(Andrew s
&
Tuson
2005)

Bus
scheduling
in London,
interv iew
from prac-
titioners

Dynam ic bus scheduling
prob lem

.N/I. .N/I. .Partly.
(the
level
o f pre-
d ictab il-
ity is
’m edium’)

.Yes.
(.V ISI-
BLE .)

.Yes. .M .
(the
ser-
v ice
needs
to
m eet
the
stan-
dard
and
the
op er-
ating
cost
needs
to b e
opti-
m ised)

1: Optim ality ;
2 : P rev ious-
so lution dis-
p lacem ent
restriction ;
3 : Reliab ility
(.O ther. goal)

Changes are
sto chastic but
it is not clear if
it fo llow s any
distribution
due to the lack
of in formation .
Changes are
also p eriod ica l
and the level o f
p eriod icity is
variab le.

.N/I. .Yes. .N/I. .N/I. .N/I. .Yes.
(variab le
in amount
of re-
sources;
changes in
the route
map,
changes in
travelling
tim e)

Courier
Serv ice
in
Lon-
don
(Andrew s
&
Tuson
2005)

Courier
serv ice in
London,
interv iew
from prac-
titioners

Dynam ic scheduling for
courier serv ice in London

.N/I. .No.!
(so lved
by
heuris-
tic and
neural
network)

.Partly.
(the
level
o f pre-
d ictab il-
ity is
’m edium’)

.N/I. .N/I. .N/I. qu ick recovery
is the most
concern (It is
requ ired that
the algorithm
need to recover
qu ick ly to a
’m in imum stan-
dard’ b efore any
improvem ent
can b e made)

.N/I. .N/I. .N/I. .N/I. .N/I. .N/I. .N/I.

Peptide
Iden-
tifica-
tion
(Andrew s
&
Tuson
2005)

Interv iew
from prac-
titioners

Peptide identification
prob lem

.N/I. .N/I. .Partly.
(the
level
o f pre-
d ictab il-
ity is
’h igh’)

.No. (.UN-
KNOWN.
-it is not
clear if the
algorithm
needs to
detect
changes or
the tim e-
w indow
approach
can b e used
to handle
changes)

.N/I. .N/I. .N/I. Changes are
noises and
the level o f
p eriod icity is
"h igh".

.N/I. .Yes.
(noisy
ob j func-
tion)

.N/I. .Yes. .N/I. .N/I.

Commu-
nication
M id-
d le-
ware
(Andrew s
&
Tuson
2005)

Interv iew
from prac-
titioners

Communication m iddle-
ware prob lem

.N/I. .N/I. .Partly.
(the
level
o f pre-
d ictab il-
ity is
’low’)

.No. (.UN-
KNOWN.
-it is not
clear if the
algorithm
needs to
detect
changes or
the tim e-
w indow
approach
can b e used
to handle
changes)

.N/I. .N/I. .N/I. Som e changes
are p eriod ica l
and the level o f
p eriod icity is
’low’

.N/I. .N/I. .Yes. .Yes. .N/I. .N/I.
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Table 4 Combinatorial non-metaheuristic references (cont.)
Factors that change

References O rig in of
rea l-world
data

Notes T im e-linkage Solved
by EA
/ meta-
heuris-
tics?

Pred ictab leV isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation
goal

Typ es of dy-
nam ics

Restart/Track Param eters
of ob j
func

Domain
range

Number
of vari-
ab les

O ther
prm

Constra ints

Dynam ic
Re-
source
A llo-
cation
(Andrew s
&
Tuson
2005)

Interv iew
from prac-
titioners

Dynam ic resource allo ca-
tion prob lem

.N/I. .N/I. .No. .No. (.UN-
KNOWN.
-it is not
clear if the
algorithm
needs to
detect
changes or
the tim e-
w indow
approach
can b e used
to handle
changes)

.Yes. .N/I. 1 : Optim ality &
quick recovery ;
3 : P rev ious-
so lution dis-
p lacem ent
restriction

Some changes
are p eriod ica l
and the level o f
p eriod icity is
’low’

.N/I. .Yes. .No. .Yes.
(rarely)

.N/I. .Yes.
(availab le
resources)

Dynam ic
Schedul-
ing
(Andrew s
&
Tuson
2005)

Interv iew
from prac-
titioners

Dynam ic scheduling prob-
lem

.N/I. .N/I. .No. .No. (.UN-
KNOWN.
-it is not
clear if the
algorithm
needs to
detect
changes or
the tim e-
w indow
approach
can b e used
to handle
changes)

.Yes. .N/I. 1 : Optim ality &
quick recovery ;
3 : P rev ious-
so lution dis-
p lacem ent
restriction

Some changes
are p eriod ica l
and the level o f
p eriod icity is
’low’

.N/I. .Yes.
(fitness
function
changes
as the
priorities
change
and the
tolerant
amount
changes)

.No. .Yes.
(rarely)

.N/I. .Yes.
(’num -
b er and
typ e of
scheduling
elem ents
involved’)

R isk
M in i-
m iza-
tion
Prob-
lem
(Andrews
&
Tuson
2005)

Interv iew
from prac-
titioners

R isk M in im isation Prob-
lem

.N/I. .N/I. .No. .No. (.UN-
KNOWN.
-it is not
clear if the
algorithm
needs to
detect
changes or
the tim e-
w indow
approach
can b e used
to handle
changes)

.Yes. .N/I. 1 : Optim ality &
quick recovery ;
3 : P rev ious-
so lution dis-
p lacem ent
restriction

Some changes
are p eriod ica l
and the level o f
p eriod icity is
’low’

.N/I. .Yes.
(fitness
function
changes
as the
risk typ es
and risk
assess-
m ents
change)

.No. .Yes.
(rarely)

.N/I. .Yes.

Travel
tim e in
ambu-
lance
de-
p loy-
m ent
and
station
lo ca-
tion
prob-
lem s
(Budge
et al.
2008)

Adm in istrative
data for
one year
of h igh
priority
calls (7457
calls) in
Calgary,
A lb erta .

This research does not
so lve the ambulance de-
p loym ent and station lo-
ca ltion prob lem but in -
stead reveals the real-
world dynam ic prop erties
of the prob lem . The sta-
tistica l analysis of h istory
data can b e used to assist
the p lanning of ambulance
serv ices more effectively

.N/A . .N/A . .Partly. .N/A . .N/A . .N/A . .N/A . Changes fo llow
a leptokurtic
d istribution
w ith a co-
effi cient of
variation that
decreases
w ith d is-
tance. Changes
also dep end
on prob lem -
sp ecific ru les
such as the
tim e of day
and travel
d istances.

.N/A . .Yes.
(changes
in the
sp eed of
veh icles;
changes
in route;
)

.N/A . .N/A . .Yes.
(changes
in
the
sp eed
of
ve-
h i-
c les;
changes
in
route;
)

.N/A .
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Table 5: Continuous real-world references that use non-m etaheuristic m ethods

Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved
by EA
/ meta-
heuris-
tics?

Pred ictab le V isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation goal Typ es of dy-
nam ics

Restart/Track Param eters
of ob j
func

Domain
range

Number of
variab les

O ther
prm

Constra ints

Param eter
esti-
m ation
in
Poly-
m eri-
sation
pro cess
(Prata
et al.
2006)

Dynam ic data
was observed
from a real-
life industria l
bu lk propylene
p olym erisation
pro cess for six
months

.Yes., partly
(HANDLED -
although not
d irectly, current
estim ation resu lt
do es influence
the value of the
chosen contro l
variab le for next
step , which in
turn influence
the prob lem in
the next step .)

.No.
(sp ecia l
prm es-
tim ation
tech-
n ique
is used
and is
restarted
after
each
tim e
w indow)

.No. (the
errors/ d is-
turbances
cannot b e
pred icted)

.Yes. (.W IN -
DOW . - the
optim isation
pro cess is d i-
v ided into tim e-
w indows and
hence changes
are assum ed
to o ccur at the
b eginn ing of each
tim e w indow )

.Yes. .S . Reference-so lution
disp lacem ent re-
striction (m in im ise
errors b etween
the reference tra-
jectory and the
observed solution .);
Quick recovery
(the algorithm is
requ ired to provide
solution in a sorter
tim e than the
sampling p eriod)

The measure-
m ent fluctua-
tions fo llow a
normal d istrib -
ution w ith zero
m eans. The
dynam ic system
also changes
non-linearly.

.N/I. .Yes.
There
are two
typ es of
dynam ics
in the
ob jective
function .
The first
is data
error at
each tim e
w indow .
The sec-
ond is the
dynam ic
of the
contro l
system

.No. .No. .N/I. .Yes.

Build ing
de-
mand
control
prob-
lem
(Sane
&
Guay
2008)

Build ing con-
struction is
taken from
real-world ex-
amples, so lar
loads and ambi-
ent conditions
are ach ieved
from the TMY
database for
Hartford , CT
in the months
of Ju ly, load
schedule are
chosen to cor-
resp ond to
typ ica l offi ce
application

.Yes. (HAN-
DLED - the
considered p lant
contro ls the
room temper-
ature and the
p erformance of
other related
equipm ents,
which in turn
influences the
dynam ic of the
prob lem in the
future)

.No. (a
sp ecia l
MPC
tech-
n ique is
used)

.N/I. .Yes. (.V ISIBLE .
- environmental
changes are v isi-
b le, and contro l
changes are con-
tro lled by the al-
gorithm )

.Yes. .S . Sp ec Satisfaction
(maintain stab ility)
Optim ality (m in-
im ise the electric
utility cost);

Som e changes
are linear.
The data also
show that
som e changes
(outside air
temperature
and solar irra-
d iation) have
a p eriod ica l
prop erty.

.Track ing.
(.LEARN. - the
princip le of pred ic-
tive contro l requ ires
that at each reced-
ing horizon solutions
from the past are
used to pred ict the
future b ehaviour)

.Yes. .No. .No. .N/I. .Yes.

M in imum -
tim e
travel
for a
veh icle
w ith
accel-
eration
lim its
(Velen is
&
Tsiotras
2008)

The prop osed
m ethod was
applied to an
actual road
track to gener-
ate the velo city
profile of a
S ilverstone F1
circu it

One interest-
ing note in
th is research
is that the
size of the
tim e-w indow
is a lso op-
tim ised to
maintain
stab ility.

.Yes. (HAN-
DLED - the
current value of
contro l variab le
would influence
the future dy-
nam ic of the
system )

.No. (a
reced ing
horizon
ap-
proach
is used)

.Partly.
(the future
dynam ic
can b e
pred icted ,
but the
errors/ d is-
turbances
are not)

.Yes. (.W IN -
DOW . - the
optim isation
pro cess is d i-
v ided into tim e-
w indows and
hence changes
are assum ed
to o ccur at the
b eginn ing of each
tim e w indow )

.Yes. .S . Sp ec Satisfaction
(Stab ility - make
sure that the sp eed
w ill not exceed the
"critica l value" at
any tim e step and
there is an "escap e
p lan" at the end of
each tim e w indow);
Optim ality (m in-
im ise lap tim e
of the F1 car);
Quick recovery
(the computation
tim e needs to b e
short to finish
w ith in the current
tim e w indow)

.N/I. .N/I. .Yes. .No. .N/I. .N/I. .Yes.
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Table 5 Continuous non-metaheuristic references (cont.)
Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved
by EA
/ meta-
heuris-
tics?

Pred ictab le V isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation goal Typ es of dy-
nam ics

Restart/Track Param eters
of ob j
func

Domain
range

Number of
variab les

O ther
prm

Constra ints

Contro l
DC -
DC
con-
verters
based
on
combi-
natory
opti-
m iza-
tion
(Ahmad
& Liu
2008)

Only simulation
was shown but
the authors
cla im that
the m ethod
has b een ap-
p lied d irectly
to hardware
equipm ents

.Yes. (HAN-
DLED - the
current contro l
value w ill deter-
m ine how the
current dynam ic
system w ill b e
in the future.
In addition ,
the algorithm
also determ ine
when and how
a sw itch-mode
event should
happ en in the
future)

.No. .Partly.
("all p os-
sib le state
tra jectories
can b e
pred icted
on-line
since the
number
of modes
is finite,
the dynam -
ics is affi ne
and au-
tonomous
", but the
errors/ d is-
turbances
are not)

.Yes. (.W IN -
DOW . - A l-
though distur-
bances changes
are not v isib le,
the optim isation
pro cess is d i-
v ided into tim e-
w indows and
hence changes
are assum ed
to o ccur at the
b eginn ing of each
tim e w indow )

.No. .S . Reference-so lution
disp lacem ent re-
striction (m in im ise
the deviation of
output voltage
from a reference
value)

.N/I. (the
environmen-
ta l changes
were generated
artificia lly)

.Track ing.
(.LEARN. - The
past know ledge is
used by the MPC
to pred ict future
b ehaviour of the
system )

.Yes.
(the dy-
nam ical
system
also
sw itches
b etween
different
modes)

.No. .No. .N/I. .N/A .

Constant-
pressure
water
supply
system
(Zhang
& Li
2007)

Industria l
constant-
pressure water
supply system

Nonlinear
Model pre-
d ictive
contro l

.Yes. .No. .Partly.
(the dy-
nam ic
b ehaviour
is pre-
d ictab le
but the
errors are
not).

.Yes. (.W IN -
DOW . - after
b eing detected
by sensors,
changes are
made visib le to
the optim iser at
the b eginn ing
of each tim e
w indow using
the feedback
m echanism )

.Yes. .S . Reference-
d isp lacem ent
restriction ; and
Sp ec Satisfaction
(Stab ility (con-
tro l the p lant
for desired out-
put) and other
sp ecifications)

The dynam ics
of the system
are non-linear.
There is no
detailed in for-
m ation about
the typ es of
other changes..

.Track ing.
(.LEARN. - the
princip le of pred ic-
tive contro l requ ires
that at each reced-
ing horizon solutions
from the past are
used to pred ict the
future b ehaviour.
In addition the
NLP optim iser a lso
starts from the past
so lution).

.Yes. .No. .Yes. (The
number
of such
variab les
of the op-
tim ization
prob lem
at each
step would
change de-
p ending on
how mant
number
of past
inputs and
outputs is
necessary.)

.N/I. .Yes.

A
contin -
uous
stirred
tank
heater
mod-
elling
(Thornhill
et al.
2008)

a continuous
stirred tank
heater p ilot
p lant at the
University of
A lb erta is used
to validate the
model

S imulation of
a real system
for teach ing.

.Yes. .No. .Partly.
(the dy-
nam ic
b ehaviour
is pre-
d ictab le
but the
errors are
not).

.Yes. (.W IN -
DOW . - after
b eing detected
by sensors,
changes are
made visib le to
the optim iser at
the b eginn ing
of each tim e
w indow using
the feedback
m echanism )

.Yes. .S . Reference-
d isp lacem ent
restriction ; and
Sp ec Satisfaction
(Stab ility (p lant
contro l) and other
sp ecifications)

The dynam ics
of the system
are non-linear.
There is no
detailed in for-
m ation about
the typ es of
other changes.

.Track ing.
(.LEARN. - the
princip le of pred ic-
tive contro l requ ires
that at each reced-
ing horizon solutions
from the past are
used to pred ict the
future b ehaviour.
In addition the
NLP optim iser a lso
starts from the past
so lution).

.Yes. .No. .No. .N/I. .Yes.
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Table 5 Continuous non-metaheuristic references (cont.)
Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved
by EA
/ meta-
heuris-
tics?

Pred ictab le V isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation goal Typ es of dy-
nam ics

Restart/Track Param eters
of ob j
func

Domain
range

Number of
variab les

O ther
prm

Constra ints

Heater-
m ixer
setup
(Srin ivasarao
et al.
2007)

a heater-m ixer
setup devel-
op ed at the
Departm ent of
Chem ical Engi-
neering, I.I.T .
Bombay is used
to validate the
model

S imulation
of continuous
ferm entation
b enchmark
prob lem .

.Yes. .No. .Partly.
(the dy-
nam ic
b ehaviour
is pre-
d ictab le
but the
errors are
not).

.Yes. (.W IN -
DOW . - after
b eing detected
by sensors,
changes are
made visib le to
the optim iser at
the b eginn ing
of each tim e
w indow using
the feedback
m echanism )

.Yes. .S . Reference-
d isp lacem ent
restriction ; and
Sp ec Satisfaction
(Stab ility (p lant
contro l) and other
sp ecifications)

The dynam ics
of the system
are non-linear.
There are also
noises caused
by errors and
disturbances.

.Track ing.
(.LEARN. - the
princip le of pred ic-
tive contro l requ ires
that at each reced-
ing horizon solutions
from the past are
used to pred ict the
future b ehaviour.
In addition the
NLP optim iser a lso
starts from the past
so lution).

.Yes. .No. .No. .N/I. .Yes.

Industria l
fer-
m en-
tation
pro cess
(Yu
et al.
2006)

Real data
modeling
of a three-
input three-
output chem ical
pro cess rig is
used to evaluate
the model

Exp erim ental
rig

.Yes. No .Partly.
(the dy-
nam ic
b ehaviour
is pre-
d ictab le
but the
errors are
not).

.Yes. (.W IN -
DOW . - after
b eing detected
by sensors,
changes are
made visib le to
the optim iser at
the b eginn ing
of each tim e
w indow using
the feedback
m echanism )

.Yes. .S . Reference-
d isp lacem ent
restriction ; and
Sp ec Satisfaction
(Stab ility (p lant
contro l) and other
sp ecifications)

The dynam ics
of the system
are non-linear.
There is no
detailed in for-
m ation about
the typ es of
other changes.

.Track ing.
(.LEARN. - the
princip le of pred ic-
tive contro l requ ires
that at each reced-
ing horizon solutions
from the past are
used to pred ict the
future b ehaviour. ).

.Yes. .No. .Yes. (Yes
as the
structure
of the
regressor
changes i.e .
number of
past inputs
and out-
puts cou ld
change.)

.N/I. .Yes.

Contro l
of
Resi-
dentia l
Energy
Re-
sources
(Houw ing
et al.
2007)

Residentia l
e lectric ity and
aggregated heat
demand data in
2006 from En-
erg ieNed, the
Dutch Federa-
tion of Energy
Companies is
used as input
for the model.

.Yes. .No. .Partly.
(the dy-
nam ic
b ehaviour
is pre-
d ictab le
but the
errors are
not; the
buying
price of
electric ity
is known
a day in
advance).

.Yes. (.W IN -
DOW . - after
b eing detected
by sensors,
changes are
made visib le to
the optim iser at
the b eginn ing
of each tim e
w indow using
the feedback
m echanism )

.Yes. .S . Optim ality (House-
hold energy sourc-
ing for m in imum
cost)

The dynam ics
of the system
are linear.
There is no
detailed in for-
m ation about
the typ es of
other changes.

.Track ing.
(.LEARN. - the
princip le of pred ic-
tive contro l requ ires
that at each reced-
ing horizon solutions
from the past are
used to pred ict the
future b ehaviour. In
addition the M ILP
optim iser m ight also
start from the past
so lution).

.Yes.
(the dy-
nam ical
system
also
sw itches
b etween
different
modes)

.No. .Yes.
(Combi-
nation of
b inary
and real
variab les
m eans that
when the
system
sw itches
mode, the
number
of vari-
ab les m ight
change?)

.N/I. .Yes.

Solar
A ir
Condi-
tion ing
P lant
(M ench inelli
&
Bemporad
2008)

Tested in a
solar a ir con-
d ition ing p lant
in University of
Sev ille , Spain .

Hybrid
system s con-
tro lling the
op erating
modes of
the solar
contro ller

.Yes. .No. .Partly.
(the dy-
nam ic
b ehaviour
is pre-
d ictab le
but the
errors are
not).

.Yes. (.W IN -
DOW . - after
b eing detected
by sensors,
changes are
made visib le to
the optim iser at
the b eginn ing
of each tim e
w indow using
the feedback
m echanism )

.Yes. .S . Sp ec Satisfaction
(C losed lo op sta-
b ility and other
sp ecifications);
Robustness of the
approach (.O ther.
Goal)

The dynam ics
of the system
are non-linear.
There is no
detailed in for-
m ation about
the typ es of
other changes.

.Track ing.
(.LEARN. - the
princip le of pred ic-
tive contro l requ ires
that at each reced-
ing horizon solutions
from the past are
used to pred ict the
future b ehaviour.
). The optim isation
m ethod is M ixed
Integer Quadratic
Programm ing

.Yes.
(the dy-
nam ical
system
also
sw itches
b etween
different
modes)

.No.
(it
shou ld
b e
noted
that
b i-
nary
vari-
ab les
are
also
in -
volved)

.Yes.
(Combi-
nation of
b inary
and real
variab les)

.N/I. .Yes.
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Table 5 Continuous non-metaheuristic references (cont.)
Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved
by EA
/ meta-
heuris-
tics?

Pred ictab le V isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation goal Typ es of dy-
nam ics

Restart/Track Param eters
of ob j
func

Domain
range

Number of
variab les

O ther
prm

Constra ints

Contro l
of DC -
DC
Sw itched
Mode
Power
Sup-
p lies
(Beccuti
et al.
2009)

An integrated
DC-DC con-
verter through
a fixed-p oint
DSP is devel-
op ed to validate
the model

Hybrid
system s
w ith model
sw itch ing.
The prob lem
is not so lved
totally on-
line. The
prob lem is
pre-so lved
off-line. The
on-line part
is to search
in the resu lt-
ing lo ok-up
tab le

.Yes. .No. .Partly.
(the dy-
nam ic
b ehaviour
is pre-
d ictab le
but the
errors are
not).

.N/A . The re-
gressor is tra ined
using offl ine
data.

.Yes. .S . Sp ec Satisfaction
(C losed lo op sta-
b ility and other
sp ecifications);
Robustness of the
approach (.O ther.
Goal)

The dynam ics
of the system
are non-linear.
There is no
detailed in for-
m ation about
the typ es of
other changes.

.N .A . Track op-
timum is used
in the offl ine
phase.Tracking
is not choosen in
on line implem enta-
tion . For tra in ing
the model offl ine,
receed ing approach .

.Yes.
(the dy-
nam ical
system
also
sw itches
b etween
different
modes)

.No. .Yes.
(Combi-
nation of
b inary
and real
variab les)

.N/I. .Yes.

Contro l
of two-
stage
matrix
con-
verter
(M ariéthoz
et al.
2008)

A lab oratory
prototyp e is
develop ed to
validate the
model

Hybrid sys-
tem s w ith
alternative
top logy
sw itch ing

.Yes. .No. .Partly.
(the dy-
nam ic
b ehaviour
is pre-
d ictab le
but the
errors are
not).

.Yes. (.W IN -
DOW . - after
b eing detected
by sensors,
changes are
made visib le to
the optim iser at
the b eginn ing
of each tim e
w indow using
the feedback
m echanism )

.Yes. .S . Sp ec satisfaction The dynam ics
of the system
are non-linear.
There are also
noises caused
by errors and
disturbances.

.Track ing.
(.LEARN. - the
princip le of pred ic-
tive contro l requ ires
that at each reced-
ing horizon solutions
from the past are
used to pred ict the
future b ehaviour. ).

.Yes.
(the dy-
nam ical
system
also
sw itches
b etween
different
modes)

.No. .N/I. .N/I. .Yes.

Heat
Ex-
change
Re-
actor
(Haugw itz
et al.
2007)

The exp erim ent
is done in a real
chem ical reac-
tor, the Open
P late Reactor,
develop ed by
A lfa Laval AB .

H igh rate of
conversion
and temper-
ature contro l
needs to b e
ach ieved

.Yes. .No. .Partly.
(the dy-
nam ic
b ehaviour
is pre-
d ictab le
but the
errors are
not).

.Yes. (.W IN -
DOW . - after
b eing detected
by sensors,
changes are
made visib le to
the optim iser at
the b eginn ing
of each tim e
w indow using
the feedback
m echanism )

.Yes. .S . Sp ec Satisfaction
(Stab ility and
other sp ecifica-
tions); Robustness
(.O ther. Goal);
Safe, H igh rate of
conversion w ith in
lim its of reac-
tion temperatures
(.O ther. Goal)

The dynam ics
of the system
are non-linear.
There are also
noises caused
by errors and
disturbances.

.Track ing.
(.LEARN. - the
princip le of pred ic-
tive contro l requ ires
that at each reced-
ing horizon solutions
from the past are
used to pred ict the
future b ehaviour. ).

.Yes. .No. .No. .N/I. .Yes.
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Table 5 Continuous non-metaheuristic references (cont.)
Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved
by EA
/ meta-
heuris-
tics?

Pred ictab le V isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation goal Typ es of dy-
nam ics

Restart/Track Param eters
of ob j
func

Domain
range

Number of
variab les

O ther
prm

Constra ints

Polym er
E lec-
tro lyte
M em -
brane
fuel
cell
system
(F iacch in i
et al.
2008)

Use a dynam ic
model, which
was validated
in a real p lant
in (del Real
et al. 2007)

Validated
against a
real m odel
data

.Yes. .No. .Partly.
(the dy-
nam ic
b ehaviour
is pre-
d ictab le
but the
errors are
not).

.Yes. (.W IN -
DOW . - after
b eing detected
by sensors,
changes are
made visib le to
the optim iser at
the b eginn ing
of each tim e
w indow using
the feedback
m echanism . The
algorithm can
also contro l som e
changes (model
sw itch ing). The
model sw itch-
ing happ ens
when the op er-
ating ranges is
d ifferent)

.Yes. .S . Sp ec satisfaction
(Safe region of
op eration)

The dynam ics
of the system
are non-linear.

.Track ing.
(.LEARN. - the
princip le of pred ic-
tive contro l requ ires
that at each reced-
ing horizon solutions
from the past are
used to pred ict the
future b ehaviour. ).

.Yes.
(the dy-
nam ical
system
also
sw itches
b etween
different
modes)

.No. .Yes.
(Combi-
nation of
b inary
and real
variab les
m eans that
when the
system
sw itches
mode, the
number
of vari-
ab les m ight
change)

.N/I. .Yes.

Contro l
of a
sugar
factory
(de Prada
et al.
2008)

Use a fu ll
sca le simula-
tor of a real
sugar factory.
The simulator
is describ ed
in (M erino
et al. 2006)

Validated
against a
real m odel
data

.Yes. .No. .Partly.
(the dy-
nam ic
b ehaviour
is pre-
d ictab le
but the
errors are
not).

.Yes. (.W IN -
DOW . - after
b eing detected
by sensors,
changes are
made visib le to
the optim iser at
the b eginn ing
of each tim e
w indow using
the feedback
m echanism . The
algorithm can
also contro l som e
changes (model
sw itch ing))

.Yes. .S . Optim ality (con-
tinuous contro l
and batch units
scheduling)

The dynam ics
of the system
are non-linear.

.Track ing.
(.LEARN. - the
princip le of pred ic-
tive contro l requ ires
that at each reced-
ing horizon solutions
from the past are
used to pred ict the
future b ehaviour. ).

.Yes.
(the dy-
nam ical
system
also
sw itches
b etween
different
modes)

.No. .Yes.
(Combi-
nation of
integer
and real
variab les
m eans that
when the
system
sw itches
mode, the
number
of vari-
ab les m ight
change)

.N/I. .Yes.

Chaotic
Con-
tin -
uous
Stirred
Tank
Re-
actor
(Wang
et al.
2007)

Dynam ic model
of a Contin -
uous Stirred
Tank Reactor
(Morn ingred
et al. 1990). In
L ightb ody &
Irw in (1997)
it is describ ed
as a realistic
non-linear case
study. We
cannot get the
orig inal pap er
to verify the
cla im .

.Yes. (HAN-
DLED)

.No. .Partly.
(the future
dynam ic
can b e
pred icted ,
but the
errors/ d is-
turbances
are not)

.Yes. (.W IN -
DOW . - the
algorithm would
decide how the
prob lem change
in the future)

.Yes. .S . Sp ec Satisfac-
tion (Maintain
stab ility)

The dynam ics
of the system
are non-linear.
D ep ending on
the prev ious
so lutions the
future state
of the system
m ight b e stab le
or unstab le or
chaotic. In
certa in situ -
ations due to
the chaotic
dynam ic there
are oscillations
(a lthough not
cyclic)

.Track ing.
(.LEARN. - at
each reced ing hori-
zon solutions from
the past are used to
pred ict the future
b ehaviour. Here the
sense of track ing is
app lied in a greater
extent: the opti-
m iser (param eter
estim ator) m ight not
use so lutions from
the prev ious step ,
but the pred ictor
needs to use past
so lution and hence
the whole dynam ic
contro l system fol-
low s the track ing
approach)

.Yes.
(para-
m eter of
dynam ic
system s)

.No. .No. .N/I. .Yes.

267



Table 5 Continuous non-metaheuristic references (cont.)
Factors that change

References O rig in of rea l-
world data

Notes T im e-linkage Solved
by EA
/ meta-
heuris-
tics?

Pred ictab le V isib le Constr.
prob-
lem s?

S/M -
ob j

Optim isation goal Typ es of dy-
nam ics

Restart/Track Param eters
of ob j
func

Domain
range

Number of
variab les

O ther
prm

Constra ints

Zymomonas
Mo-
b ilis
Re-
actor
(Wang
et al.
2007)

The dynam ic
model is sim -
u lated from a
real reactor sys-
tem describ ed
in (Daugulis
et al. 1997)

.Yes. (HAN-
DLED)

.No. .Partly.
(the future
dynam ic
can b e
pred icted ,
but the
errors/ d is-
turbances
are not)

.Yes. (.W IN -
DOW . - the
optim isation
pro cess is d i-
v ided into tim e-
w indows and
hence changes
are assum ed
to o ccur at the
b eginn ing of each
tim e w indow )

.Yes. .S . Sp ec Satisfac-
tion (Maintain
stab ility)

The dynam ics
of the system
are non-linear.
D ep ending on
the prev ious
so lutions the
future state
of the system
m ight b e stab le
or unstab le or
chaotic. In
certa in situ -
ations due to
the chaotic
dynam ic there
are oscillations
(a lthough not
cyclic)

.Track ing.
(.LEARN. - at
each reced ing hori-
zon solutions from
the past are used to
pred ict the future
b ehaviour)

.Yes.
(para-
m eter of
dynam ic
system s)

.No. .No. .N/I. .Yes.

268



..

269



Bibliography

Abbass H A & Deb K (2003). Searching under Multi-evolutionary Pressures., in Proceedings
of the Evolutionary Multi-Criterion Optimization, Second International Conference, EMO
2003, pp. 391—404.

Ahmad A Z & Liu K Z (2008). A new model predictive control approach to DC-DC converters
based on combinatory optimization, in Proceedings - 34th Annual Conference of the IEEE
Industrial Electronics Society, IECON 2008, Orlando, FL, United states, pp. 460 —465.

Aickelin U & Dowsland K (2000). Exploiting Problem Structure in a Genetic Algorithm Ap-
proach to a Nurse Rostering Problem, Journal of Scheduling 3, 139—153.

Akanle O & Zhang D (2008). Agent-based model for optimising supply-chain configurations,
International Journal of Production Economics 115(2), 444 —60.

Alba E & Sarasola B (2010a). ABC, a New Performance Tool for Algorithms Solving Dynamic
Optimization Problems, in Proceedings of the 2010 IEEE World Congress on Computational
Intelligence (WCCI’10), pp. 734—740.

Alba E & Sarasola B (2010b). Measuring Fitness Degradation in Dynamic Optimization Prob-
lems, in Proceedings of the European Workshops on Applications of Evolutionary Compu-
tation, EvoApplicatons 2010, Part I, pp. 572—581.

Alba E, Saucedo Badia J & Luque G (2007). A Study of Canonical GAs for NSOPs, in Doerner et
al, ed., Metaheuristics, Vol. 39 of Operations Research/Computer Science Interfaces Series,
Springer US, pp. 245—260.

Andersen H C (1991), An Investigation into Genetic Algorithms, and the Relationship between
Speciation and the Tracking of Optima in Dynamic Functions, Honours thesis, Queensland
University of Technology, Brisbane, Australia.

Andrews M & Tuson A L (2005). Dynamic Optimisation: A Practitioner Requirements Study, in
Proceedings of the The 24th Annual Workshop of the UK Planning and Scheduling Special
Interest Group (PlanSIG 2005), London, UK.

Angeline P J (1997). Tracking extrema in dynamic environments, in P J Angeline, R G Reynolds,
J R McDonnell & R Eberhart, eds, Sixth International Conference on Evolutionary Pro-
gramming, Vol. 1213 of LNCS, Springer, pp. 335—345.

Aragon V S & Esquivel S C (2004). An evolutionary algorithm to track changes of optimum
value locations in dynamic environments, Journal of Computer Science and Technology
4(3), 127—134.

270



BIBLIOGRAPHY BIBLIOGRAPHY

Araujo L & Merelo J J (2007). A genetic algorithm for dynamic modelling and prediction of
activity in document streams, in GECCO ’07: Proceedings of the 9th annual conference on
Genetic and evolutionary computation, ACM, New York, NY, USA, pp. 1896—1903.

Arnold D V & Beyer H G (2002). Random Dynamics Optimum Tracking with Evolution Strate-
gies, in J Merelo, P Adamidis, H G Beyer, J Fernández-Villacañas & H P Schwefel, eds,
Parallel Problem Solving from Nature, Springer, Heidelberg, pp. 3—12.

Arnold D V & Beyer H G (2006). Optimum Tracking with Evolution Strategies, Evolutionary
Computation 14(3), 291—308.

Atkin J A D, Burke E K, Greenwood J S & Reeson D (2008). On-line decision support for
take-off runway scheduling with uncertain taxi times at London Heathrow airport, Journal
of Scheduling 11(5), 323—346.

Ayvaz D, Topcuoglu H & Gurgen F (2006). A comparative study of evolutionary optimiza-
tion techniques in dynamic environments, in GECCO ’06: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, ACM, pp. 1397—1398.

Bäck T (1998). On the Behavior of Evolutionary Algorithms in Dynamic Environments, in
IEEE International Conference on Evolutionary Computation, IEEE, pp. 446—451.

Back T, Fogel D B & Michalewicz Z, eds (1997). Handbook of Evolutionary Computation, IOP
Publishing Ltd., Bristol, UK, UK.

Bartusch M, Mohring R H & Radermacher F J (1988). Scheduling project networks with resource
constraints and time windows, Annals of Operations Research 16(1-4), 201—240.

Basu M (2005). A simulated annealing-based goal-attainment method for economic emission
load dispatch of fixed head hydrothermal power systems, International Journal of Electrical
Power & Energy Systems 27(2), 147 —153.

Beasley J E, Krishnamoorthy M, Sharaiha Y M & Abramson D (2004). Displacement problem
and dynamically scheduling aircraft landings, Journal of the Operational Research Society
55, 54—65.

Beccuti A, Mariéthoz S, Cliquennois S, Wang S & Morari M (2009). Explicit Model Predictive
Control of DC-DC Switched Mode Power Supplies with Extended Kalman Filtering, IEEE
Transactions on Industrial Electronics 56(6), 1864 —1874.

Bendtsen C N & Krink T (2002). Dynamic Memory Model for Non-Stationary Optimization,
in Congress on Evolutionary Computation, IEEE, pp. 145—150.

Beyer H G & Sendhoff B (2007). Robust optimization - A comprehensive survey, Computer
Methods in Applied Mechanics and Engineering 196(33-34), 3190—3218.

Bianco L, DellOlmo P & Giordani S (2006). Scheduling models for air traffi c control in terminal
areas, Journal of Scheduling 9(3), 223—253.

Bird S & Li X (2007). Informative performance metrics for dynamic optimisation problems,
in GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary
computation, ACM, New York, NY, USA, pp. 18—25.

Blackwell T (2007). Particle Swarm Optimization in Dynamic Environment, in S Yang, Y S
Ong & Y Jin, eds, Evolutionary Computation in Dynamic and Uncertain Environments,
Studies in Computational Intelligence, Springer-Verlag, NJ, USA, pp. 28—49.

271



BIBLIOGRAPHY BIBLIOGRAPHY

Blackwell T & Branke J (2006). Multiswarms, exclusion, and anti-convergence in dynamic
environments., IEEE Trans. Evolutionary Computation 10(4), 459—472.

Blackwell T M & Bentley P J (2002). Dynamic Search with Charged Swarms, in W B L et al.,
ed., Genetic and Evolutionary Computation Conference, Morgan Kaufmann, pp. 19—26.

Bosman P A N (2005). Learning, Anticipation and Time-Deception in Evolutionary Online
Dynamic Optimization, in S Yang & J Branke, eds, GECCO Workshop on Evolutionary
Algorithms for Dynamic Optimization.

Bosman P A N (2007). Learning and Anticipation in Online Dynamic Optimization, in S Yang,
Y S Ong & Y Jin, eds, Evolutionary Computation in Dynamic and Uncertain Environments,
Vol. 51 of Studies in Computational Intelligence, Springer, pp. 129—152.

Bosman P A N & Poutré H L (2007). Learning and anticipation in online dynamic optimization
with evolutionary algorithms: the stochastic case, in GECCO ’07: Proceedings of the 9th
annual conference on Genetic and evolutionary computation, ACM, New York, NY, USA,
pp. 1165—1172.

Branke J (1999). Memory Enhanced Evolutionary Algorithms for Changing Optimization Prob-
lems, in Congress on Evolutionary Computation CEC99, Vol. 3, IEEE, pp. 1875—1882.

Branke J (2001a). Evolutionary Approaches to Dynamic Environments - updated survey,
in GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems,
pp. 27—30.

Branke J (2001b). Evolutionary Optimization in Dynamic Environments, Kluwer.

Branke J (2003). Evolutionary Approaches to Dynamic Optimization Problems —Introduction
and Recent Trends, in J Branke, ed., GECCO Workshop on Evolutionary Algorithms for
Dynamic Optimization Problems, pp. 2—4.

Branke J, Kaußler T, Schmidt C & Schmeck H (2000). A multi-population approach to Dy-
namic Optimization Problems, in Adaptive Computing in Design and Manufacturing 2000,
Springer.

Branke J & Mattfeld D (2005). Anticipation and flexibility in dynamic scheduling, International
Journal of Production Research 43(15), 3103—3129.

Branke J, Salihoglu E & Uyar S (2005). Towards an Analysis of Dynamic Environments, in H G
Beyer & others, eds, Genetic and Evolutionary Computation Conference, ACM, pp. 1433—
1439.

Branke J & Schmeck H (2003). Designing Evolutionary Algorithms for Dynamic Optimization
Problems, in S Tsutsui & A Ghosh, eds, Theory and Application of Evolutionary Compu-
tation: Recent Trends, Springer, pp. 239—262.

Budge S, Ingolfsson A & Zerom D (2008). Empirical analysis of ambulance travel times: the case
of Calgary Emergency Medical Services, Technical report, School of Business, University
of Alberta, Canada. submitted to Management Science; manuscript no.MS-0001-1922.65.
Accessed 05/06/2009.

Bui L, Abbass H & Branke J (2005). Multiobjective optimization for dynamic environments, in
Congress on Evolutionary Computation, Vol. 3, IEEE press, pp. 2349 —2356.

272



BIBLIOGRAPHY BIBLIOGRAPHY

Bulitko V, Sturtevant N, Lu J & Yau T (2007). Graph abstraction in real-time heuristic search,
Journal of Artificial Intelligence Research 30(1), 51—100.

Carlisle A & Dozier G (2000). Adapting particle swarm optimisationto dynamic environments,
in Proceedings of the International Conference on Artificial Intelligence, pp. 429—434.

Cedeno W & Vemuri V R (1997). On the Use of Niching for Dynamic Landscapes, in Interna-
tional Conference on Evolutionary Computation, IEEE.

Chaer R & Monzon P (2008). Stability conditions for a stochastic dynamic optimizer for op-
timal dispatch policies in power systems with hydroelectrical generation, in IEEE/PES
Transmission and Distribution Conference and Exposition: Latin America, pp. 1—5.

Cheng H & Yang S (2010). Multi-population Genetic Algorithms with Immigrants Scheme for
Dynamic Shortest Path Routing Problems in Mobile Ad Hoc Networks, in Di Chio et al,
ed., Applications of Evolutionary Computation, Vol. 6024 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, pp. 562—571.

Cobb H G (1990). An Investigation into the Use of Hypermutation as an Adaptive Operator
in Genetic Algorithms Having Continuouis, Time-Dependent Nonstationary Environments,
Technical Report AIC-90-001, Naval Research Laboratory, Washington, USA.

Cobb H G & Grefenstette J J (1993). Genetic Algorithms for Tracking Changing Environments,
in International Conference on Genetic Algorithms, Morgan Kaufmann, pp. 523—530.

Coello Coello C A (2002). Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art, Computer Methods in Applied
Mechanics and Engineering 191(11-12), 1245—1287.

Collingwood E, Corne D & Ross P (1996). Useful diversity via multiploidy, in Proceedings of
IEEE International Conference on Evolutionary Computation, 1996, pp. 810 —813.

Daugulis A J, McLellan P J & Li J (1997). Experimental investigation and modeling of oscillatory
behavior in the continuous culture of Zymomonas mobilis, Biotechnology and Bioengineering
56(1), 99—105.

de França F O & Von Zuben F J (2009). A dynamic artificial immune algorithm applied
to challenging benchmarking problems, in Proceedings of the Eleventh IEEE Congress on
Evolutionary Computation, CEC’09, IEEE Press, Piscataway, NJ, USA, pp. 423—430.

de Prada C, Sarabia D, Cristea S & Mazaeda R (2008). Plant-wide Control of a Hybrid Process,
International Journal of Adaptive Control and Signal Processing 22(2), 124—141.

Deb K, Rao U B & Karthik S (2007). Dynamic Multi-objective Optimization and Decision-
Making Using Modified NSGA-II: A Case Study on Hydro-thermal Power Scheduling, in
Evolutionary Multi-Criterion Optimization, 4th International Conference, EMO 2007, Mat-
sushima, Japan, March 5-8, 2007, Proceedings, Vol. 4403 of Lecture Notes in Computer
Science, Springer, pp. 803—817.

del Real A J, Arce A & Bordons C (2007). Development and experimental validation of a PEM
fuel cell dynamic model, Journal of Power Sources 173(1), 310 —324.

Dini D, van Lent M, Carpenter P & Iyer K (2006). Building robust planning and execution
systems for virtual worlds, in Proceedings of the Artificial Intelligence and Interactive Digital
Entertainment converence (AIIDE), pp. 29—35.

273



BIBLIOGRAPHY BIBLIOGRAPHY

Dowsland K A (1998). Nurse scheduling with tabu search and strategic oscillation, European
Journal of Operational Research 106(2-3), 393 —407.

Droste S (2002). Analysis of the (1+1) EA for a dynamically changing OneMax-variant, in
Congress on Evolutionary Computation, IEEE Press, pp. 55—60.

Droste S (2003). Analysis of the (1+1) EA for a dynamically bitwise changing OneMax, in E
Cantu-Paz, ed., Genetic and Evolutionary Computation Conference, Vol. 2723 of LNCS,
Springer, pp. 909—921.

Eggermont J, Lenaerts T, Poyhonen S & Termier A (2001). Raising the Dead; Extending
Evolutionary Algorithms with a Case-based Memory, in J F Miller & others, eds, Genetic
Programming, Proceedings of EuroGP’2001, Vol. 2038, Springer, pp. 280—290.

Eiben A E (2001). Springer-Verlag, London, UK, chapter Evolutionary algorithms and constraint
satisfaction: definitions, survey, methodology, and research directions, pp. 13—30.

Farina M, Deb K & Amato P (2004). Dynamic multiobjective optimization problems: test
cases, approximations, and applications, IEEE Transactions on Evolutionary Computation
8(5), 425—442.

Farmani R & Wright J A (2003). Self-adaptive fitness formulation for constrained optimization,
IEEE Trans. Evolutionary Computation 7(5), 445—455.

Feng W, Brune T, Chan L, Chowdhury M, Kuek C & Li Y (1997). Benchmarks for testing
evolutionary algorithms, Technical report, Center for System and Control, University of
Glasgow.

Fernández J L & Arcos J L (2010). Adapting Particle Swarm Optimization in Dynamic and Noisy
Environments, in Proceedings of the 2010 IEEE Congress on Evolutionary Computation
CEC’2010, pp. 765—772.

Fiacchini M, Alamo T, Alvarado I & Camacho E F (2008). Safety Verification and Adaptive
Model Predictive Control of the Hybrid Dynamics of a Fuel Cell System, International
Journal of Adaptive Control and Signal Processing 22(3), 142—160.

Floudas C, Pardalos P, Adjiman C, Esposito W, Gumus Z, Harding S, Klepeis J, Meyer C &
Schweiger C (1999). Handbook of Test Problems in Local and Global Optimization, Vol. 33
of Noncovex Optimization and Its Applications, Kluwer Academic Publishers.

Fogel L, Owens A & Walsh M (1966). Artificial intelligence through simulated evolution, John
Wiley & Sons Inc,.

Gao J & Sheng Z (2008). Research for dynamic vehicle routing problem with time windows
in real city environment, in Proceedings of the 2008 IEEE International Conference on
Service Operations and Logistics, and Informatics (SOLI), Vol. vol.2, Piscataway, NJ, USA,
pp. 3052 —6.

Gaspar A & Collard P (1999). From GAs to Artificial Immune Systems: Improving Adaptation
in Time Dependent Optimization, in Congress on Evolutionary Computation, Vol. 3, IEEE,
pp. 1859 —1866.

Gleicher M & Ferrier N (2002). Evaluating Video-Based Motion Capture, in CA ’02: Proceedings
of the Computer Animation, IEEE Computer Society, Washington, DC, USA, pp. 75—80.

274



BIBLIOGRAPHY BIBLIOGRAPHY

Goh C K & Tan K C (2009a). A competitive-cooperative coevolutionary paradigm for dynamic
multiobjective optimization, IEEE Transactions on Evolutionary Computation 13(1), 103—
127.

Goh C K & Tan K C (2009b). Evolutionary Multi-objective Optimization in Uncertain Environ-
ments: Issues and Algorithms, Springer Publishing Company, Incorporated.

Goldberg D E & Smith R E (1987). Nonstationary Function Optimization using Genetic Algo-
rithms with Dominance and Diploidy, in J J Grefenstette, ed., International Conference on
Genetic Algorithms, Lawrence Erlbaum Associates, pp. 59—68.

Graves S C &Willems S P (2005). Optimizing the Supply Chain Configuration for New Products,
Management Science 51(8), 1165—1180.

Grefenstette J J (1992). Genetic algorithms for changing environments, in R Maenner & B
Manderick, eds, Parallel Problem Solving from Nature 2, North Holland, pp. 137—144.

Grefenstette J J (1999). Evolvability in Dynamic Fitness Landscapes: A Genetic Algorithm
Approach, in Congress on Evolutionary Computation, Vol. 3, IEEE, pp. 2031—2038.

Grefenstette J J, Gopal R, Rosmaita B & van Gucht D (1985). Genetic algorithm for the TSP,
in Proceedings of the First International Conference on Genetic Algorithms, pp. 160—168.

Guntsch M, Branke J, Middendorf M & Schmeck H (2000). AGO strategies for dynamic TSP,
in Proceedings of ANTS Workshop, pp. 59—62.

Guntsch M & Middendorf M (2002). Applying population-based AGO to dynamic optimization
problems, in Lecture Notes in ComputerScience, vol.2463, Procedings of ANTS Workshop,
pp. 111—122.

Hadj-Alouane A B & Bean J C (1997). A Genetic Algorithm for the Multiple-Choice Integer
Program, Operations Research 45, 92—101.

Hamida S B & Petrowski A (2000). The Need for Improving the Exploration Operators for
Constrained Optimization Problems, in Proceedings of the Congress on Evolutionary Com-
putation 2000, CEC’00, Vol. 2, pp. 1176—1183.

Hamida S B & Schoenauer M (2002). ASCHEA: new results using adaptive segregational con-
straint handling, in Proceedings of the 2002 Congress on Evolutionary Computation, 2002.
CEC’02., Vol. 1, IEEE Press, Los Alamitos, CA, USA, pp. 884—889.

Hatzakis I & Wallace D (2006). Dynamic multi-objective optimization with evolutionary al-
gorithms: a forward-looking approach, in GECCO ’06: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, ACM Press, New York, NY, USA,
pp. 1201—1208.

Haugwitz S, Hagander P & Norén T (2007). Modeling and control of a novel heat exchange
reactor, the Open Plate Reactor, Control Engineering Practice 15(7), 779 —792.

Houwing M, Negenborn R, Heijnen P, De Schutter B & Hellendoorn H (2007). Least-Cost Model
Predictive Control of Residential Energy Resources when Applying µCHP, in Proceedings
of the Power Tech 2007 conference, Lausanne, Switzerland. Paper 291.

Hu X & Eberhart R (2002). Adaptive particle swarm optimisation: detection and response
to dynamic systems, in Proceedings of the IEEE Congress on Evolutionary Computation,
CEC2002, pp. 1666—1670.

275



BIBLIOGRAPHY BIBLIOGRAPHY

Huang S C & Wu T K (2008). Integrating GA-based time-scale feature extractions with SVMs
for stock index forecasting, Expert Systems with Applications 35(4), 2080 —2088.

Ingolfsson A, Budge S & Erkut E (2008). Optimal ambulance location with random delays and
travel times, Health Care Management Science 11(3), 262—274.

Ioannou P, Chassiakos A, Jula H & Unglaub R (2002). Dynamic optimization of cargo move-
ment by trucks in metropolitan areas with adjacent ports, Technical report, METRANS
Transportation Center, University of Southern California, Los Angeles, CA 90089, USA.
URL: www.metrans.org/research/final/00-15_Final.htm

Isaacs A, Puttige V R, Ray T, Smith W & Anavatti S G (2008). Development of a memetic
algorithm for Dynamic Multi-Objective Optimization and its applications for online neural
network modeling of UAVs., in Proceedings of the International Joint Conference on Neural
Networks, IJCNN 2008, IEEE, pp. 548—554.

Janson S & Middendorf M (2005). A hierarchical particle swarm optimizer and its adaptive vari-
ant, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 35, 1272—
1282.

Janson S & Middendorf M (2006). A hierarchical particle swarm optimizer for noisy and dynamic
environments., Genetic Programming and Evolvable Machines 7(4), 329—354.

Jatmiko W, Mursanto P, Kusumoputro B, Sekiyama K & Fukuda T (2008). Modified PSO algo-
rithm based on flow of wind for odor source localization problems in dynamic environments,
WSEAS Transaction on Systems 7(2), 106—113.

Jatmiko W, Sekiyama K & Fukuda T (2006). A PSO-based Mobile Sensor Network for Odor
Source Localization in Dynamic Environment: Theory, Simulation and Measurement, in
IEEE Congress on Evolutionary Computation, 2006. CEC 2006., pp. 1036 —1043.

Jin N, Termansen M, Hubacek K, Holden J & Kirkby M (2007). Adaptive farming strategies
for dynamic economic environment, in Proceedings of the IEEE Congress on Evolutionary
Computation CEC2007, 2007, pp. 1213—1220.

Jin Y & Branke J (2005). Evolutionary Optimization in Uncertain Environments– A Survey,
IEEE Transactions on Evolutionary Computation 9(3), 303—317.

Jin Y, Oh S & Jeon M (2010). Incremental approximation of nonlinear constraint functions
for evolutionary constrained optimization, in Proceedings of the 2010 IEEE Congress on
Evolutionary Computation, CEC’2010, pp. 2966—2973.

Jin Y & Sendhoff B (2004). Constructing dynamic optimization test problems using the multi-
objective optimization concept, in G R Raidl, ed., Applications of evolutionary computing,
Vol. 3005 of LNCS, Springer, pp. 525—536.

Joines J & Houck C (1994). On the use of non-stationary penalty functions to solve nonlinear
constrained optimization problems with GAs, in D Fogel, ed., Proceedings of the first IEEE
Conference on Evolutionary Computation, IEEE Press, pp. 579—584.

Kanoh H (2007). Dynamic route planning for car navigation systems using virus genetic al-
gorithms, International Journal of Knowledge-based and Intelligent Engineering Systems
11(1), 65—78.

276



BIBLIOGRAPHY BIBLIOGRAPHY

Kanoh H & Hara K (2008). Hybrid genetic algorithm for dynamic multi-objective route planning
with predicted traffi c in a real-world road network, in GECCO ’08: Proceedings of the 10th
annual conference on Genetic and evolutionary computation, ACM, New York, NY, USA,
pp. 657—664.

Kashtan N, Noor E & Alon U (2007). Varying environments can speed up evolution, Proceedings
of the National Academy of Sciences 104(34), 13711—13716. in: "Population Structure and
Artificial Evolution".

Kim H (2006). Target Exploration for Disconnected Feasible Regions in Enterprise-Driven
Multilevel Product Design, American Institute of Aeronautics and Astronautics Journal
44(1), 67—77.

Kiselev I & Alhajj R (2008). An adaptive multi-agent system for continuous learning of streaming
data, in Proceedings of the 2008 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, Vol. vol.2, Piscataway, NJ, USA, pp. 148 —153.

Ko P C, Lin P C & Shih C S (2008). Stock valuation and dynamic asset allocation with genetic
algorithm and cubic spline, in Proceedings of the 2008 International Conference on Machine
Learning and Cybernetics (ICMLC), Vol. vol.7, Piscataway, NJ, USA, pp. 3997 —4000.

Lewis J, Hart E & Ritchie G (1998). A Comparison of Dominance Mechanisms and Simple
Mutation on Non-stationary Problems, in A E Eiben, T Bäck, M Schoenauer & H P
Schwefel, eds, Parallel Problem Solving from Nature, number 1498 in ‘LNCS’, Springer,
pp. 139—148.

Li C & Yang S (2009). A clustering particle swarm optimizer for dynamic optimization, in
Proceedings of the Eleventh IEEE Congress on Evolutionary Computation, CEC’09, IEEE
Press, Piscataway, NJ, USA, pp. 439—446.

Li C, Yang S, Nguyen T T, Yu E L, Yao X, Jin Y, Beyer H G & Suganthan P N (2008).
Benchmark Generator for CEC 2009 Competition on Dynamic Optimization, Technical
report, University of Leicester and University of Birmingham, UK.

Li X, Branke J & Blackwell T (2006). Particle swarm with speciation and adaptation in a
dynamic environment, in GECCO ’06: Proceedings of the 8th annual conference on Genetic
and evolutionary computation, ACM Press, New York, NY, USA, pp. 51—58.

Li X, Branke J & Kirley M (2007). On performance metrics and particle swarm methods for
dynamic multiobjective optimization problems, in Proceedings of the IEEE Congress on
Evolutionary Computation, CEC 2007, pp. 576—583.

Liekens A, Eikelder H & Hilbers P (2003). Finite Population Models of Dynamic Optimization
with Alternating Fitness Functions, in J Branke, ed., GECCO Workshop on Evolutionary
Algorithms for Dynamic Optimization Problems, pp. 19—23.

Liekens A M L (2005), Evolution of Finite Populations in Dynamic Environments, PhD thesis,
Technische Universität Eindhoven.

Lightbody G & Irwin G W (1997). Nonlinear Control Structures Based on Embedded Neural
System Models, IEEE Transactions on Neural Networks 8(3), 553—567.

Liu C A (2008a). New Dynamic Constrained Optimization PSO Algorithm, in ICNC ’08:
Proceedings of the 2008 Fourth International Conference on Natural Computation, IEEE
Computer Society, pp. 650—653.

277



BIBLIOGRAPHY BIBLIOGRAPHY

Liu L (2008b), Real-time contaminant source characterization in water distribution systems,
PhD thesis, North Carolina State University.

Liu L, Zechman E M, Brill E D, Mahinthakumar G, Ranjithan S & Uber J (2006). Adaptive
Contamination Source Identification in Water Distribution Systems Using an Evolutionary
Algorithm-based Dynamic Optimization Procedure, in Proceedings of the 8th Annual Water
Distribution Systems Analysis Symposium, Cincinnati, OH.

Liu T K, Liu Y T, Chen C H, Chou J H, Tsai J T & Ho W H (2007). Multi-objective opti-
mization on robust airline schedule recover problem by using evolutionary computation, in
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2007.
ISIC., pp. 2396—2401.

Long C E, Polisetty P K & Gatzke E P (2007). Deterministic global optimization for nonlinear
model predictive control of hybrid dynamic systems, International Journal of Robust and
Nonlinear Control 17(13), 1232 —1250.

Louis S J & Xu Z (1996). Genetic Algorithms for Open Shop Scheduling and Re-Scheduling, in
M E Cohen & D L Hudson, eds, ISCA Eleventh International Conference on Computers
and their Applications, pp. 99—102.

Lung R I & Dumitrescu D (2007). A new collaborative evolutionary-swarm optimization tech-
nique, in GECCO ’07: Proceedings of the 2007 GECCO conference companion on Genetic
and evolutionary computation, ACM, New York, NY, USA, pp. 2817—2820.

Mariéthoz S, Wijekoon T & Wheeler P (2008). Analysis, Control and Comparison of Hybrid
Two-stage Matrix Converters for Increased Voltage Transfer Ratio and Unity Power Factor,
IEEJ Transactions on Industry Applications 128-D(7), 892 —900.

Martinez M, Moron A, Robledo F, Rodriguez-Bocca P, Cancela H & Rubino G (2008). A GRASP
algorithm using RNN for solving dynamics in a P2P live video streaming network, in
Proceedings of the 2008 8th International Conference on Hybrid Intelligent Systems (HIS),
Piscataway, NJ, USA, pp. 447 —452.

Menchinelli P & Bemporad A (2008). Hybrid model predictive control of a solar air conditioning
plant., European Journal of Control 14(s6), 501—515.

Mendes R & Mohais A (2005). DynDE: a differential evolution for dynamic optimization prob-
lems, in Proceedings of the 2005 IEEE Congress on Evolutionary Computation, IEEE,
pp. 2808—2815.

Merino A, Mazaeda R, Alves R, Rueda A, Acebes L F & de Prada C (2006). Sugar Factory
Simulator For Operators Training, in Proceedings of the 7th Symposium on Advances in
Control Education ACE2006, 2006, Madrid.

Mertens K, Holvoet T & Berbers Y (2006). The DynCOAA algorithm for dynamic constraint op-
timization problems, in AAMAS ’06: Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, ACM, New York, NY, USA, pp. 1421—1423.

Mezura-Montes E & Coello C A C (2005). A simple multimembered evolution strategy to solve
constrained optimization problems, IEEE Trans. Evolutionary Computation 9(1), 1—17.

Mezura-Montes E, ed. (2009). Constraint-Handling in Evolutionary Optimization, Springer Pub-
lishing Company, Berlin.

278



BIBLIOGRAPHY BIBLIOGRAPHY

Michalewicz Z (1995). A Survey of Constraint Handling Techniques in Evolutionary Computa-
tion Methods, in Proceedings of the 4th Annual Conference on Evolutionary Programming,
MIT Press, pp. 135—155.

Michalewicz Z (1997). Oxford University Press, chapter Constraint-Handling Techniques : De-
coders., pp. C5.3:1—C5.3:3.

Michalewicz Z (n.d.), ‘The second version of Genocop III: a system which handles also nonlinear
constraints’. [Accessed February 2009].
URL: http://www.cs.adelaide.edu.au/ zbyszek/EvolSyst/gcopIII10.tar.Z

Michalewicz Z & Nazhiyath G (1995). Genocop III: A co-evolutionary algorithm for numeri-
cal optimization with nonlinear constraints, in D B Fogel, ed., Proceedings of the Second
IEEE International Conference on Evolutionary Computation, IEEE Press, Piscataway,
New Jersey, pp. 647—651.

Mills-Tettey G A, Stentz A & Dias M B (2008). Continuous-field path planning with constrained
path-dependent state variables, in ICRA 2008 Workshop on Path Planning on Costmaps.

Mitra P & Venayagamoorthy G K (2008). Real time implementation of an artificial immune
system based controller for a DSTATCOM in an electric ship power system, in Confer-
ence Record - IAS Annual Meeting (IEEE Industry Applications Society), Edmonton, AB,
Canada.

Morales K A & Quezada C (1998). A universal eclectic genetic algorithm for constrained op-
timization, in Proceedings 6th European Congress on Intelligent & Soft Computing, EU-
FIT’98, pp. 518—522.

Mori N, Imanishi S, Kita H & Nishikawa Y (1997). Adaptation to changing environments
by Means of the Memory Based Thermodynamical Genetic Algorithm, in T Bäck, ed.,
International Conference on Genetic Algorithms, Morgan Kaufmann, pp. 299—306.

Mori N, Kita H & Nishikawa Y (1996). Adaptation to a Changing Environment by Means of the
Thermodynamical Genetic Algorithm, in H M Voigt, ed., Parallel Problem Solving from
Nature, number 1141 in ‘LNCS’, Springer Verlag Berlin, pp. 513—522.

Mori N, Kita H & Nishikawa Y (1998). Adaptation to a Changing Environment by Means of the
Feedback Thermodynamical Genetic Algorithm, in A E Eiben, T Bäck, M Schoenauer &
H P Schwefel, eds, Parallel Problem Solving from Nature, number 1498 in ‘LNCS’, Springer,
pp. 149—158.

Morimoto T, Ouchi Y, Shimizu M & Baloch M (2007). Dynamic optimization of watering
Satsuma mandarin using neural networks and genetic algorithms, Agricultural Water Man-
agement 93(1-2), 1—10.

Morningred J, Paden B, Seborg D & Mellichamp D (1990). An adaptive non-linear predictive
control, in Proceedings of American control conference, p. 1614Ű1619.
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