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Abstract 

Effective air quality policy is hindered by inaccurate estimates of precursor emissions, unvalidated, 

sparse or absent monitoring networks, and uncertain formation pathways of air pollution. Of particular 

concern are regions with severe air pollution, such as northern China and, large cities in South and 

Southeast Asia, and large cities in the world with high anthropogenic emissions. This work makes use 

of field campaign measurements, reference network measurements, satellite observations and a 

chemical transport model (CTM) to address these knowledge gaps in these regions.  

In the Beijing-Tianjin-Hebei region (BTH) in northern China, the Chinese government implemented 

strict emission control measures in autumn-winter 2017/2018 to address fine particulate matter (PM2 5) 

pollution. PM2 5 reduction targets were met, so these controls are now adopted in other parts of China, 

even though the relative role of emission controls and meteorology was not assessed. Surface 

observations of air quality from monitoring networks (validated against field campaign measurements) 

and the GEOS-Chem CTM were used after addressing large biases in the regional bottom-up 

anthropogenic emission inventory for China. According to the model, emission controls accounted for 

less than half (at most 43%) the decline in total PM2 5 while most (57%) was due to interannual 

variability in meteorology. Specifically, a deeper planetary boundary layer, stronger winds, and lower 

relative humidity during the emission control period. Emission controls alone would not achieve the 

PM2 5 reduction targets of 15-25% in this region.  

Cities in South and Southeast Asia are developing rapidly, but routine, up-to-date and publicly available 

inventories of emissions are lacking for this region. Nitrogen oxides (NOx) emissions in cities are 

important precursors to health-hazardous PM2 5 and tropospheric ozone (O3) where it is a greenhouse 

gas. NOx lifetimes and emissions over 10 large cities in South and Southeast Asia in 2019 were obtained 

by applying an exponentially modified Gaussian (EMG) approach with a wind rotation technique to the 

nitrogen dioxide (NO2) tropospheric vertical column densities (VCDs) from the high spatial resolution 

TROPOspheric Monitoring Instrument (TROPOMI). Annual averaged NOx emissions range from < 50 
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mol s-1 for Karachi, Ahmedabad, Mumbai, Lahore and Chennai, 50-100 mol s-1 for Manila and Jakarta, 

and > 100 mol s-1 for Delhi, Dhaka and Singapore. This is comparable to the range of emissions 

estimates for polluted cities in China. Bottom-up NOx emissions from a widely used publicly available 

global inventory exceed the top-down estimates for most cities. The discrepancy is >100% for Chennai, 

Singapore and Jakarta. It was only possible to estimate top-down monthly NOx estimates for 3 cities, 

due to issues with the line density fitting parameters at these fine temporal scales. These ranged from 

63 to 148 mol s-1 for Singapore (annual mean 114 mol s-1), 44 to 109 mol s-1 for Jakarta (68 mol s-1), 

and 26 to 67 mol s-1 for Manila (53 mol s-1). Month-to-month variability is absent in the bottom-up 

emission estimates. The discrepancies identified in this work need to be resolved to ensure the 

development of effective policies.  

Abrupt changes in air quality during COVID-19 lockdowns presented an opportunity to investigate 

changes in observed PM2 5, NOx and O3 pollution due to interventions. Surface observations of air 

quality in 11 cities worldwide were analysed. Observed NO2 decreased substantially at urban 

background and roadside sites in all the cities, by 10-60% at urban background sites, and by 29-53% at 

roadside sites. In contrast, observed O3 increased in all cities after the lockdowns, by 16-167% at urban 

background sites and by 20-156% at roadside sites. The percentage changes in observed PM2 5 are -39 

to 153% at urban background sites, -41 to 108% at roadside sites, and -34 to 165% at rural sites. But by 

comparing observations in 2020 to those in 2016-2019 during the equivalent periods, results here 

demonstrated that the observations of air quality alone cannot represent the changes in emissions due to 

COVID-19 lockdowns as the impact of meteorology should be considered.  

Findings in this thesis demonstrate the application of observations from multiple platforms, innovative 

analytical techniques, and an advanced chemical transport model to abrupt changes in air quality in time 

and space to better understand air pollution precursor emissions and formation pathways and to interpret 

the relative contribution from changes in emissions and meteorology. Such information is vital for 

developing well-informed environmental policies. 
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Thesis overview 

This thesis uses surface and satellite observations of air quality, meteorological reanalysis, emission 

inventories and a chemical transport model to interpret changes in emissions underlying abrupt changes 

in observed air quality in time and space at the local to regional scales. 

Chapter 1 is the introduction to the thesis. It describes the impact of air pollution on human health and 

the environment, sources and formation of outdoor air pollution, surface and space-based monitoring or 

air quality, the GEOS-Chem chemical transport model, and the research gaps identified in this thesis. 

Chapter 2 evaluates the relative role of strict seasonal air pollutant emission controls on improved air 

quality in the Beijing-Tianjin-Hebei region in northern China in autumn-winter 2017/2018. The work 

described in this chapter is under review in Atmospheric Environment as: 

G. Lu, E. A. Marais, T. V. Vu, J. Xu, Z. Shi, J. D. Lee, Q. Zhang, L. Shen, G. Luo, and F. Yu, Contribution 

of autumn-winter emission controls to air quality improvements in the Beijing-Tianjin-Hebei region 

Chapter 3 investigates the ability of satellite observations of NO2 in estimating NOx emissions from 
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CHAPTER 1:INTRODUCTION 

1.1 Impact of Air Pollution on Human Health and the Environment  

Ambient air pollution causes adverse impacts on public health and the environment. Associations 

between air pollution and premature mortality have been evidenced from cohort studies during the last 

few decades, starting with the Harvard Six Cities Study (Dockery et al., 1993). Extensive subsequent 

epidemiological studies have demonstrated that long-term exposure to outdoor air pollution is linked to 

a range of morbidities, such as respiratory diseases (Guan et al., 2016; Turner et al., 2011; Xing et al., 

2016), cardiovascular diseases (Lelieveld et al., 2019; Liang et al., 2020; Rajagopalan et al., 2018), 

increased risks of preterm birth (He et al., 2022; Qian et al., 2016), and loss of fertility (Li et al., 2021b). 

Long-term exposure to air pollution substantially reduces life expectancy (Apte et al., 2018; Lelieveld 

et al., 2015; Yin et al., 2020), particularly from endpoints such as ischemic heart disease, stroke, chronic 

obstructive pulmonary disease and lung cancer in adults, and acute respiratory lung infection in children 

under five years old (Apte et al., 2015). 3–9 million premature global deaths are attributed to exposure 

to outdoor air pollution each year (Burnett et al., 2018; Lelieveld et al., 2015; McDuffie et al., 2021; 

Murray et al., 2020), so air pollution is a leading risk factor for loss of life expectancy (Lelieveld et al., 

2020). Exposure to air pollution also leads to decline in cognitive function, particularly for elder people 

(Power et al., 2011; Weuve et al., 2012; Zhang et al., 2018) and mental health problems, such as 

depression and anxiety (Bakian et al., 2015; Braithwaite et al., 2019; Newbury et al., 2019). Short-term 

exposure to severe air pollution is associated with cardiovascular, respiratory, and type 2 diabetes 

mortalities (Meng et al., 2021; Wu et al., 2021a; Wu et al., 2016a). 

Major air pollutants that impact health directly or contribute to formation of health-hazardous pollutants 

include gaseous species such as nitrogen oxides (NOx  NO + NO2), sulfur dioxide (SO2), ammonia 

(NH3), carbon monoxide (CO), non-methane volatile organic compounds (NMVOCs), tropospheric 

ozone (O3), and fine particles with aerodynamic diameter ≤ 2.5 μm (PM2 5). Most NOx is emitted as 
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nitric oxide (NO), but this reacts rapidly with the atmospheric oxidants peroxy radicals (HO2 and RO2), 

the nitrate radical (NO3) and O3 to form nitrogen dioxide (NO2) (Monks, 2005). PM2 5 is a mixture of 

chemical components often dominated by organics (OA), sulfate, nitrate, ammonium, mineral dust, 

black carbon (BC) and bound water (Philip et al., 2014; Xu et al., 2021). PM2 5 has been strongly 

associated with adverse effects on human health (Apte et al., 2015; Feng et al., 2016; Kim et al., 2015; 

Lelieveld et al., 2015; McDuffie et al., 2021; Pope et al., 2009).  

Over 90% of the global population lives in areas where air pollution exceeds the recently updated 

stricter World Health Organization (WHO) air quality guidelines of 5 µg m-3 for annual mean PM2 5 and 

10 µg m-3 for annual mean NO2 (WHO, 2021). PM2 5 pollution is particularly severe in developing 

countries such as China (Song et al., 2017b) and India (Vohra et al., 2021a); made worse by large 

population exposure to air pollution and related mortality (Lelieveld et al., 2015; Song et al., 2017a; 

Yue et al., 2020). These adverse health impacts further lead to economic losses due to reduced Gross 

Domestic Production (GDP), increased health expenditure and loss in the value of statistical life (Matus 

et al., 2012; Xie et al., 2019). 

In addition to its adverse impacts on human health, ambient air pollution damages ecosystems. For 

example, exposure of plants to surface O3 leads to oxidation of plant cells, thus impairing leaf 

photosynthesis and vegetation productivity and reducing global crop yields (Ainsworth et al., 2012; 

Avnery et al., 2011; Feng et al., 2019; Tai and Martin, 2017). Exposure to O3 over decades may also 

alter the species composition of forests (Grulke and Heath, 2020). Ambient air pollution can also affect 

ecosystems indirectly through biogeochemical cycles, such as global nitrogen, sulfur and carbon cycles. 

For example, high levels of SO2 and NOx lead to formation of acid rain, which threatens the pH balance 

and vitality of aquatic ecosystems, soils and crops (Grennfelt et al., 2020). 

Air pollution can also affect regional climate depending on the radiative forcing of some air pollutants 

as well as chemical reactions with greenhouse gases of O3 and methane (CH4) that alters their 

atmospheric abundance and persistence (lifetime). Chemical components of PM2 5 also have opposite 

effects on climate: BC warms the atmosphere by absorbing sunlight (Peng et al., 2016). Sulfate, nitrate 
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and ammonium cool the atmosphere by scattering sunlight (Lin et al., 2022; Zheng et al., 2020). Organic 

aerosols (OA) cool the atmosphere by scattering visible radiation, but also absorb light, leading to 

warming (Lin et al., 2014). The net effect of NOx emissions on climate is complex, as NOx emissions 

increase the abundance of O3 in the troposphere where it is a greenhouse gas (Stevenson et al., 2013), 

but also form sunlight scattering PM and decrease abundance of CH4 by oxidation, which both cool the 

atmosphere (Fiore et al., 2012).  

1.2 Sources and Formation of Outdoor Air Pollution 

Determination of the true environmental effects of air pollution on health, ecosystem functioning, and 

regional climate requires accurate estimates of the sources that degrade air quality. Dominant 

anthropogenic sources typically include energy production, industry, transportation, agriculture, and 

residential/domestic sources (Crippa et al., 2018; Li et al., 2017b; McDuffie et al., 2020). Worldwide, 

NOx and SO2 are mostly from combustion of the fossil fuels coal, natural gas and oil for industrial 

processes energy production, on-road vehicles and ships (McDuffie et al., 2020). Anthropogenic NH3 

is overwhelmingly dominated by the agricultural fertilizers and manure use, and livestock waste (Huang 

et al., 2012; Marais et al., 2021; Paulot et al., 2014). In urban areas, vehicles with three-ways catalytic 

converters and selective catalytic reduction devices also emit NH3 (Cao et al., 2022; Farren et al., 2020; 

Liu et al., 2014; Perrino et al., 2002). Anthropogenic NMVOCs tend to be dominated by industrial 

solvent use, incomplete combustion of fossil fuels, open and domestic burning of biomass, and 

residential and commercial volatile chemical products (Li et al., 2019b; McDonald et al., 2018; Mo et 

al., 2021). Anthropogenic NMVOCs emissions may have increased in the last few decades according 

to both global and regional emission inventories (Li et al., 2019b; McDuffie et al., 2020), though 

estimates of these are uncertain and challenging to constrain. Primary CO is a ubiquitous product of 

inefficient combustion, so derives from all sources that burn fossil and biomass-based fuels (Goyal et 

al., 2013; Tang et al., 2016; Wei et al., 2012). Vehicles are also the dominant sources of BC in urban 

environments (Grivas et al., 2012; Joshi et al., 2021). Primary OA is also a consequence of inefficient 

combustion of fossil and biomass-based fuels (Jones and Harrison, 2005; Xu et al., 2021; Zhang et al., 

2021). Anthropogenic fugitive dust from combustion, industrial processes, construction, brake and tire 
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wear, and resuspended dust on roadways is likely underestimated in polluted regions (Philip et al., 2017). 

The contribution of different anthropogenic sources varies with time and location and is influenced by 

the emission controls imposed by governments (Zheng et al., 2018). Natural sources that influence air 

quality at a global scale include NOx from lightning (Schumann and Huntrieser, 2007; Tie et al., 2002), 

most pollutant precursors from wildfires (van der Werf et al., 2017), soil NOx from microbes in soils 

(Bertram et al., 2005; Huber et al., 2020), SO2 from volcanic eruptions and degassing (Carn et al., 2017), 

biogenic volatile organic compounds from vegetation (Guenther et al., 2012; Hu et al., 2015; Marais et 

al., 2012), sea salt, desert dust, seabird NH3, and marine DMS (Ginoux et al., 2004; Jaeglé et al., 2011). 

Secondary air pollutants formed via chemical reactions of precursor compounds include secondary 

inorganic and organic aerosols and O3 (Belis et al., 2013; Huang et al., 2014; Weagle et al., 2018; Zhang 

et al., 2017b). Secondary inorganic aerosols (SIA) include nitrate, sulfate and ammonium form as a 

result of chemical and physical processes. Sulfate aerosol is mainly formed via oxidation of SO2 by 

hydrogen peroxide (H2O2) or O3 to form sulfuric acid (H2SO4) (Khoder, 2002). NH3 is alkaline and 

neutralizes H2SO4 to form ammonium sulfate (NH4)2SO4 (Wang et al., 2013). Particulate nitrate is 

formed via two major pathways. During the daytime, NO2 is oxidized by the hydroxyl radical (OH) to 

form nitric acid (HNO3) that then reacts with NH3 to form ammonium nitrate (NH4NO3), which 

partitions to the aerosol phase (Chen et al., 2020; Wang et al., 2017). At night, NO2 is oxidized by O3 

to dinitrogen pentoxide (N2O5). N2O5 undergoes heterogeneous hydrolysis with water and chloride to 

form soluble nitrate including HNO3, particulate nitrate, and nitryl chloride (ClNO2) on chloride 

containing aerosol surface (Wang et al., 2020a). Secondary organic aerosols (SOA) are formed mainly 

via oxidation of NMVOCs by oxidizing agents such as OH, O3, and NO3 (Sun et al., 2016) or via 

aqueous aerosol-phase oxidation of primary OA (McNeill, 2015; Wang et al., 2021a). Detailed 

formation mechanisms of SOA remain unclear due to the large number of NMVOCs and pathways.  

Surface O3 pollution is mostly produced via photolysis of NO2, following a sequence of chemical 

reactions with VOCs, CO and OH. VOCs and CO react with OH and generate organic peroxy radicals 

(RO2) and hydroperoxy radicals (HO2) (R1 and R2). RO2 and HO2 can oxidize NO to NO2 (R3 and R4). 
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Then NO2 is photolyzed to from atomic oxygen, which reacts with oxygen (O2) to form O3 (R5 and R6) 

(Atkinson, 2000; Sillman, 1999). O3 chemistry is nonlinear and depends on the relative abundance of 

NOx and VOCs. In typical urban environments, there are large emissions of NOx, so O3 formation is  

most sensitive to perturbations in VOCs and O3 is titrated from prevalence of the reaction between NO 

with O3 (Sillman, 1999).  

VOCs + OH + O2 → RO2 + H2O                                                                                                        (R1) 

CO + OH + O2 → HO2 + CO2                                                                                                            (R2) 

RO2 + NO + O2 → secondary VOCs + HO2 + NO2                                                                           (R3) 

HO2 + NO → OH + NO2                                                                                                                    (R4) 

NO2 + hv ͢ → NO + O                                                                                                                         (R5) 

O + O2 + M → O3 + M                                                                                                                       (R6) 

Meteorology is also an important influencer of air pollution. In Northern China, for example, high daily 

mean PM2 5 ≥ 150 µg m-3 are associated with calm conditions, shallow planetary boundary layer, thermal 

inversion contributing to build up of pollution and cool conditions and high relative humidity promoting 

formation of secondary inorganic aerosols (Ding et al., 2021; Li et al., 2019c; Miao et al., 2019; Su et 

al., 2020; Wu et al., 2019).  

1.3 Surface and Space-based Monitoring of Air Quality 

National and regional surface air quality monitoring networks are extensively used to constrain air 

pollution sources, to understand the underlying factors that influence the spatial and temporal variability 

of air pollution, to assess compliance against air quality standards, and to quantify the environmental 

impacts of ambient air pollution (Boldo et al., 2014; Borge et al., 2019; Guerreiro et al., 2014; Hou and 

Wu, 2016; Jiang et al., 2020; Ju et al., 2018; Oftedal et al., 2009; Sicard et al., 2021; Wang et al., 2019). 

These surface monitoring networks normally provide measurements of criteria air pollutants including 

NOx, SO2, CO, O3, PM2 5 and PM10 (particulate matter with an aerodynamic diameter ≤10 μm). 
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Monitoring networks are well established in developed countries like the UK, European countries, and 

the US, providing long-term records of air quality for multiple pollutants since the 1990s (AQEG, 2015; 

Demerjian, 2000; Guerreiro et al., 2014; Liu and Peng, 2018). However, high costs associated with 

installation, maintenance, and quality control of in-situ reference measurement instruments contribute 

to limited global and temporal coverage of surface observations of air quality in many developing 

countries, hindering research on air quality and development of effective air quality policies to reduce 

air pollution. Many cities in South and Southeast Asia and Africa are devoid of reference monitors 

(Abera et al., 2021; Koplitz et al., 2016). On average in 2012-2014, there was one air quality monitoring 

station for every 30 million inhabitants in Pakistan, for every 25 million inhabitants in Indonesia, for 

every 3.8 million inhabitants in India, and for every 4.6 million inhabitants across the African continent 

(Carvalho, 2016). Significant premature deaths attributable to air pollution are found in highly populous 

countries with very poor air quality, such as China, India, and Nigeria (Lelieveld et al., 2015). Extensive 

and good quality surface network measurements are vital. To address severe air pollution in China, the 

China National Environmental Monitoring Network (CNEMN) was established in late 2013 to routinely 

monitor six criteria air pollutants (NO2, SO2, CO, O3, PM2 5 and PM10). CNEMN was quickly extended 

from 74 cities in 2013 to more than 1400 monitoring sites in over 300 cities in 2015 (Zhang et al., 

2020a). As a pioneer in local air quality monitoring in China, Beijing Municipal Environmental 

Monitoring Network (BJMEMN) was established to enhance the density of air quality measurements 

in Beijing (Wan et al., 2021).  

Figure 1.1 shows the spatial distribution of the current (2022) distribution of CNEMN and BJMEMN 

sites. Both CNEMN and BJMEMN measurements have now been widely used to quantify changes in 

surface air pollution in China (Chu et al., 2020; Shen et al., 2020; Wan et al., 2021; Wu et al., 2018b; 

Yuan et al., 2021; Zhao et al., 2016), but independent evaluation with research-grade instruments is 

lacking. A previous study developed statistical techniques based on the z-score method (Lanzante, 1996) 

and used intercomparison of measurements of different air pollutants, such as ratios of PM2 5 to PM10, 

to determine that the contribution of outliers to measurements in 2014–2016 is small (0.65%–5.68%) 

and mostly due to issues with measurements of PM10 (Wu et al., 2018a). Many studies have also 
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identified that reference measurements of NO2, obtained almost exclusively with the 

chemiluminescence technique, are susceptible to interference from thermal decomposition of thermally 

unstable NOx reservoir compounds, which may result in a positive bias of 6-22% (Dunlea et al., 2007; 

Reed et al., 2016; Shah et al., 2020).  

Despite rapid expansion of CNEMN, there are still limitations in air quality monitoring in China. Sites 

are mostly in eastern China, and all are in urban areas, with a bias toward developed areas (Zhang et al., 

2020a). Different from the well-established monitoring networks in the UK, information on site 

classification is not available for CNEMN, hindering assessment of representativeness of CNEMN 

measurements of urban air quality for comparison to models and satellite observations (Zhu et al., 2020). 

Measurements of the important aerosol precursor NH3 and of major PM2 5 components are covered with 

other networks that are proprietary. NH3 emissions are either constant or increasing in China and this is 

reducing the effectiveness of PM2 5  reductions achieved with emission controls targeting NOx and SO2 

sources (Fu et al., 2017; Wu et al., 2016b). Surface measurements of NH3 in China are limited to the 

proprietary Ammonia Monitoring Network in China (AMoN-China) (Pan et al., 2018), which started in 

September 2015 with 53 sites. Studies suggest there has been a persistent increase in anthropogenic 

NMVOCs emissions in China over the past thirty years (Li et al., 2019b; Shen et al., 2019), but there 

are no routine measurements of NMVOCs. Satellite observations of formaldehyde (HCHO), a 

commonly used proxy for NMVOCs due to ubiquitous and prompt formation of HCHO from oxidation 

of many NMVOCs (Souri et al., 2020), suggest there is a shift in the O3 formation regime in some 

Chinese cities, from the VOC-limited to a transitionary regime (Wang et al. (2021b)). This has been 

attributed to rapid decline in anthropogenic NOx emissions between 2016 and 2019 and further 

necessitates enhanced understanding of NMVOCs sources.  

To aid in developing strategies to address PM2 5 pollution in and around the very polluted Beijing-

Tianjin-Hebei region in northern China, the National Aerosol Composition Monitoring Network 

(NACMON) was established in 2017 with 31 sites in 28 cities (Dao et al., 2019). The NACMON 

measures PM2 5 components such as nitrate, sulfate, ammonium, OC, elemental carbon (EC), chloride, 

mineral dust, and trace elements (Dao et al., 2019). NACMON sites are only established in 28 cities in 
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northern China and the measurements are also proprietary. Limited access to these valuable datasets 

hinders their use by the wider research community.  

In addition to surface monitoring networks, intensive ground-based field campaigns have been 

conducted to obtain comprehensive measurements of atmospheric composition and meteorology, such 

as the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-Beijing) UK-China 

collaborative research programme (Shi et al., 2019). Though limited in time and space, these provide 

detailed insights into air pollution sources and composition, particularly when combined with numerical 

modelling tools such as trajectory models that track air parcels or chemical transport models that 

represent atmospheric chemistry in 3-dimensions.  

 

Figure 1.1: Map of CNEMN sites in 2022. Site list data source: https://quotsoft.net/air/ (last 

accessed: 1 April 2022)  

Instruments onboard satellite platforms provide global coverage over multiple years for long-term and 

consistent monitoring of air quality (Duncan et al., 2014; Martin, 2008; Streets et al., 2013)  In particular, 

satellite observations of tropospheric NO2 vertical column densities (VCDs)  have been extensively 

used  to identify surface NO2 pollution hotspots, to determine long-term trends in surface NO2 pollution, 

to assess uncertainties and biases in bottom-up emission inventories, to evaluate the effectiveness of air 

quality policies, and to detect and quantify rapid changes in NO2 pollution due to abrupt changes in 
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anthropogenic activity such as COVID-19 lockdowns  (Cooper et al., 2022; Lamsal et al., 2008; Li et 

al., 2021a; Martin et al., 2003; Silvern et al., 2019; Vohra et al., 2021a). For example, Liu et al. (2016) 

used NO2 column densities provided by the Ozone Monitoring Instrument (OMI) to estimate a 32% 

decline in OMI NO2 from 2011 to 2015 in China, which corresponds to a 21% decline in emissions. 

Vohra et al. (2022) has used OMI NO2 observations to report a rapid increase of 0.8-7.7 % a-1 in NO2 

concentrations in cities in South and Southeast Asia in 2005-2018.  

OMI is at relatively coarse resolution (13 × 24 km2 at nadir), has substantial data loss due to the row 

anomaly and has been in space since 2005, so is beyond its expected lifetime of 3-4 years (Schenkeveld 

et al., 2017). Following the success of OMI (Levelt et al., 2018), the TROPOspheric Monitoring 

Instrument (TROPOMI) was launched into sun synchronous orbit onboard the Copernicus Sentinel‐

5P satellite on 13 October 2017. TPOPOMI passes overhead at around 13:30 pm local time, providing 

daily global coverage with a swath width of ~2600 km. The ground pixel nadir resolution was 7 × 3.5 

km2 before 6 August 2019 and increased to 5.5 × 3.5 km2 afterwards (van Geffen et al., 2021; Veefkind 

et al., 2012). Tropospheric NO2 VCDs are retrieved from TROPOMI following three steps (van Geffen 

et al., 2021). The first step is to retrieve the total NO2 slant column density (SCD) (the concentrations 

of NO2 along the light path) (Figure 1.2) using the differential optical absorption spectroscopy (DOAS) 

technique in the wavelength range of 405-465 nm (Platt and Stutz, 2008). Then the NO2 tropospheric 

slant column is separated from the total slant NO2 column using a chemistry transport model (CTM) by 

way of data assimilation (Boersma et al., 2018). In the end, the tropospheric NO2 slant column densities 

are converted to physical tropospheric NO2 VCDs (Figure 1.2) using an air mass factor (AMF) 

estimated with a radiative transfer model (Boersma et al., 2018). TROPOMI NO2 shows improved data 

quality with lower uncertainties (noise) compared to OMI NO2 (van Geffen et al., 2020), and is highly 

correlated with surface and aircraft measurements of NO2 in time and space (Griffin et al., 2019; Judd 

et al., 2020; Tack et al., 2021; Verhoelst et al., 2021; Wang et al., 2022a; Zhao et al., 2020).  

TROPOMI NO2 has been extensively used to estimate changes in NO2 during worldwide lockdowns in 

response to the COVID-19 pandemic (Cooper et al., 2022; Goldberg et al., 2020; Le et al., 2020; Liu et 

al., 2020; Pazmiño et al., 2021; Potts et al., 2021; Qu et al., 2021; Solberg et al., 2021; Wang et al., 
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2021c). Zhang et al. (2020b) reported that NOx emissions in East China decreased by 50% compared to 

those before lockdowns in January 2020, and NOx emissions increased by 26% after the lockdowns in 

February-March 2020. Potts et al. (2021) reported that NOx emissions declined by ∼20% in the UK 

during the lockdown (23 March to 31 May 2020), ranging from 22-23% in the western portion of the 

country to 29% in the southeast and in Manchester, and >40% in London. 

 

Figure 1.2: Schematic of the light path from the sun to the instrument (the slant column) 

and the true vertical column. SCD = slant column density; VCD = vertical column density.  

The horizontal resolution of satellite instruments can be further improved using so-called oversampling. 

This technique represents each satellite observation as a sensitivity distribution on the ground, instead 

of a point or a polygon (Sun et al., 2018). For each satellite sensor, its sensitivity distribution is 

determined by its spatial response function. A generalized 2D super Gaussian function is proposed to 

characterize the spatial response functions of imaging grating spectrometers such as TROPOMI. Recent 

studies have applied this technique to TROPOMI NO2 to grid the data to very fine resolutions of 0.01° 

× 0.01° and 0.02° × 0.02° to further refine trace gas plumes over NO2 hotspots (Demetillo et al., 2021; 

Sun et al., 2021; Wang et al., 2022b). When this technique is applied to relatively coarse OMI 

instruments, averaging over long time periods (years) is required to accommodate low data coverage. 

The higher data density of TROPOMI can accommodate sampling over a relatively short period of time 
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of one month. The fine spatial resolution of oversampled TROPOMI NO2 VCDs is shown in Figure 1.3 

over ten cities in South and Southeast Asia at 0.05° × 0.05° in 2019. 

 

Figure 1.3: Oversampled TROPOMI NO2 over ten cities in South and Southeast Asia in 2019. 

The name of each city is shown at the top of each map. Coordinates (latitude, longitude) are 

provided for each city centre next to each city name. Each map is provided at 0.05° × 0.05° 

resolution over a 1° × 1° domain surrounding the city centre.  

NOx emissions can be estimated from satellite observations of tropospheric NO2 VCDs using a range 

of techniques, such as the mass balance approach using a CTM (Martin et al., 2003), the four-

dimensional variational (4D-Var) method (Chai et al., 2009; Cooper et al., 2017; Qu et al., 2022), and 

an Ensemble Kalman Filter (Ding et al., 2015; Hanea et al., 2004; Miyazaki et al., 2012; Wu et al., 

2020). For estimating NOx emissions from isolated cities, Beirle et al. (2011) first proposed an 

exponentially modified Gaussian (EMG) method using tropospheric NO2 VCDs and wind data from 

meteorology reanalysis. In brief, this method is based on the downwind decay of an NO2 plume from 

the city. As shown in Figure 1.4, the 2D map of satellite NO2 is converted to a 1D NO2 line density by 

integrating NO2 along the wind direction. The observed line densities show the distribution of NO2 near 

the point source as a function of distance to the source along the dominant wind direction (x). The 

values of observed line densities are obtained by integrating satellite NO2 in the across-wind direction 
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(y) over the interval b. City plume NOx emissions are then derived with parameters obtained from the 

EMG fit to the observed NO2 line densities and the city mean wind speed. Beirle et al. (2011) found 

that for isolated high polluting cities, NOx emissions derived by this method are in good agreement with 

bottom-up emission inventories. Many studies have since adopted similar methods to estimate city NOx 

emissions (Ialongo et al., 2014; Laughner and Cohen, 2019; Verstraeten et al., 2018; Xue et al., 2022). 

For example, Laughner and Cohen (2019) applied this method to OMI NO2 in 30 cities in the US and 

found that changes in NOx lifetime are of the same order as changes in NOx emissions over the study 

periods. Their results suggest that change in NOx lifetime must be accounted for when relating NOx 

emissions and concentrations. Verstraeten et al. (2018) selected 23 cities in  Europe and applied the 

EMG method to NO2 columns from OMI and the LOTOS-EUROS (Long Term Ozone Simulation-

European Ozone Simulation) CTM. Their results show that NOx emissions estimated by the EMG 

method are consistent with the bottom-up emission inventory and thus can be used for real-time updates 

of the bottom-up emission inventory over urban areas.  These studies normally need to average a long 

record of satellite NO2 observations along different wind directions and then estimate NOx emissions 

from the city under each wind direction.  
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Figure 1.4: Sketch of the definition of line densities. The averaged NO2 concentrations are mapped 

(red shade) for each wind direction sector. The white dot represents the location of the source 

(city centre). NO2 are integrated in across-wind direction (y) over the interval b (units: km), 

yielding the NO2 line densities (green) (artificial units (AU) can be used, such as moles m-1). The 

EMG fit is performed over the interval a (units: km). Source: (Beirle et al., 2011) 

The approach of Beirle et al. (2011) requires large dataset to average over multiple wind speeds. Valin 

et al. (2013) addressed this issue by developing a wind rotation technique that combines satellite 

observations under different wind directions and from different days by rotating NO2 observations about 

the source centre by –θ, where θ is the near-surface wind direction averaged over each satellite pixel, 

as illustrated in Figure 1.5. This preserves each satellite NO2 pixel, its distance to the source (city) centre 

and upwind-downwind character. After wind rotation is applied, all satellite NO2 pixels are oriented in 

the North to South direction. Based on the EMG approach proposed by Beirle et al. (2011) and the wind 

rotation technique proposed by Valin et al. (2013), following studies adopted similar approaches to 

estimate NOx emissions from large point sources such as cities and power plants (de Foy et al., 2015; 

Goldberg et al., 2021; Lange et al., 2022; Lu et al., 2015; Wu et al., 2021b). This wind rotation and 

EMG approach is yet to be applied across cities in South and Southeast Asia where constraints on air 

pollution sources are lacking. 
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Figure 1.5: Schematic diagram showing the wind rotation technique. If the wind direction at a 

certain satellite observation is θ, then each satellite pixel is rotated about the source centre with 

an angle of -θ. This approach preserves the relative location of the satellite pixel to the source. 

After rotation, the effective wind direction is North-South for all satellite observations. Source: 

(Fioletov et al., 2015) 

1.4 The Chemical Transport Model GEOS-Chem 

Information on air quality from observations provided by surface networks, field campaigns and space-

based instruments are substantially enhanced by interpretation with a detailed comprehensive chemical 

transport model (CTM) (Chen et al., 2019). The GEOS-Chem CTM (https://geos-

chem.seas.harvard.edu/; last accessed: 31 March 2022) is a global three-dimensional numerical model 

that simulates global and regional atmospheric composition. It was first described by Bey et al. (2001), 

and undergoes substantial and routine scientific and coding updates to keep pace with the state of the 

science (https://geos-chem.seas.harvard.edu/; last accessed: 31 March 2022). The model is driven with 

assimilated meteorology provided by the NASA Global Modeling and Assimilation Office (GMAO). 

Depending on the horizontal resolutions of input meteorology, the model is available at coarse 

resolution of 4° × 5° (latitude × longitude) and 2° × 2.5° for global simulations and at finer resolutions 
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of 0.5° × 0.625° and 0.25° × 0.3125° for regional nested simulations. The model includes vertical layers 

from the surface to the top of atmosphere.  

A wide selection of global and regional anthropogenic and natural emission inventories is available for 

use with GEOS-Chem. For example, the Multi-resolution Emission Inventory for China (MEIC) 

(http://www.meicmodel.org/; last accessed: 31 March 2022) provides monthly anthropogenic emissions 

for 2008-2017 in China. It includes emissions of SO2, NOx, CO, NMVOCs, NH3, and primary particles 

from ~700 anthropogenic sources (Li et al., 2017a; Zheng et al., 2018). GEOS-Chem uses the 

Harmonized Emissions Component (HEMCO) emission package to calculate and grid user-selected 

inventories to the same horizontal resolution for input to GEOS-Chem (Keller et al., 2014; Lin et al., 

2021). The model includes detailed coupled gas- and aerosol-phase chemistry to represent chemical 

formation and loss of air pollutants. Formation of secondary sulfate-nitrate-ammonium aerosols is 

computed with the ISORROPIA-II thermodynamic equilibrium model (Fountoukis and Nenes, 2007). 

SOA can be simulated by GEOS-Chem using two different schemes. The “simple scheme” simulates 

primary organic aerosols (POA) as non-volatile and takes a fixed-yield approach to SOA formation. 

The “complex scheme” simulates POA as semi-volatile and uses a more sophisticated volatility basis 

set approach for non-isoprene SOA, with an explicit aqueous uptake mechanism to model isoprene SOA 

(Pai et al., 2020). Physical loss processes include dry and wet deposition (Amos et al., 2012; Liu et al., 

2001; Wang et al., 1998). GEOS-Chem is widely used to assess health impact of regional and global 

air pollution (Paulot and Jacob, 2014; Vohra et al., 2021b; Zhang et al., 2017a), estimate emissions of 

air pollutants from satellite observations (Cooper et al., 2022; Marais et al., 2021; Martin et al., 2003; 

Qu et al., 2022; Streets et al., 2013), and interpret factors contributing to air pollution (Li et al., 2019a; 

Li et al., 2020; Potts et al., 2021; Zhai et al., 2021). The model has been demonstrated to capture the 

trends in air pollution and reproduce observed total PM2 5 mass measured by reference monitors (Dang 

and Liao, 2019; Weagle et al., 2018). Even so, the model still misses or misrepresents physical and 

chemical mechanisms leading to PM2 5 formation, includes errors in meteorological parameters in the 

assimilated meteorology, and uses emission inventories that are subject to large uncertainties and biases 
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and that are challenging to keep current (Bates et al., 2021; Li et al., 2018; Luo et al., 2019; Miao et al., 

2020; Wang et al., 2014; Yu et al., 2018).  

1.5 Research Gaps 

Surface monitoring networks have been extensively used to assess compliance with air quality standards 

and effectiveness of air quality policies. The Chinese government judges whether cities have met their 

emission reduction targets solely based on observations of PM2 5 from surface monitoring networks 

(MEE, 2018). This is not scientific, as factors such as meteorology can also affect the effectiveness of 

PM2 5 abatement measures and, hence the observed air quality. The challenge of achieving the same 

level of PM2 5 reduction varies from city to city. Incorrect assessment of the effectiveness of emissions 

controls hinders developing effective air quality policies. Effective air quality policies are also lacking 

in regions such as South and Southeast Asia, where there is limited understanding of surface air 

pollution due to sparse or missing surface monitoring networks. Satellite observations of air quality can 

be used to infer surface emissions. But the relationship between observations of air quality and actual 

emissions is complex. In addition to the importance to air quality policymaking, observations of air 

quality are also used to detect short-term changes in air quality and emissions due to interventions, for 

example the worldwide COVID-19 lockdowns. A common approach is to conduct a simple statistical 

analysis that compares air quality before and after the lockdowns began or during the lockdowns with 

the same periods in previous years (Fu et al., 2021; Sharma et al., 2020; Wang et al., 2020b). But year-

to-year changes in meteorology moderates the link between emissions and pollutant concentrations and 

is not accounted for in such studies. Scientific knowledge of anthropogenic emissions and changes in 

observed air quality is essential for developing effective emission control measures to reduce pollution 

and protect human health. This thesis seeks to address the following science questions and research 

gaps. 

1. What is the true efficacy of strict emission controls in addressing PM2 5 pollution? The Chinese 

government imposed strict emission controls in 28 cities in and around the Beijing-Tianjin-

Hebei region in northern China in autumn-winter 2017/2018. This approach is now adopted in 
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many regions in China, despite limited assessment of the relative contribution of emissions 

reductions and other factors like meteorology that is necessary for successful implementation 

of these control measures elsewhere (Chapter 2). 

2. NOx emissions in cities are important precursors to health-hazardous PM2 5 and tropospheric O3. 

Surface air quality monitoring is very limited in cities in South and Southeast Asia and estimates 

of NOx emissions from bottom-up emission inventories are under validated. This is addressed 

by applying the wind rotation and EMG fit method to TROPOMI tropospheric NO2 columns to 

estimate NOx emissions in 10 large cities in South and Southeast Asia and to evaluate widely 

used bottom-up inventories used to inform policies and assess the environmental impacts of air 

pollution (Chapter 3). 

3. Lessons learned about complex atmospheric processes affecting PM2 5, NOx and O3 pollution 

using abrupt changes in anthropogenic emissions during COVID-19 lockdowns. In response to 

the outbreak of COVID-19, governments worldwide imposed strict restrictions on a range of 

human activities or lockdowns, which led to an abrupt reduction in anthropogenic emissions of 

air pollutants. The rapid and unprecedented lockdowns provide a unique opportunity to assess 

the impact of intervention on air quality at 11 global air pollution hotspots (Chapter 4). 
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CHAPTER 2:CONTRIBUTION OF AUTUMN-WINTER 

EMISSION CONTROLS TO AIR QUALITY 

IMPROVEMENTS IN THE BEIJING-TIANJIN-HEBEI 

REGION 

2.1 Abstract 

Cold season emission controls are an increasingly popular strategy in China to address severe fine 

particulate matter (PM2 5) pollution. Here we evaluate the efficacy of such measures, focusing on the 

influence of emission controls imposed on pollution sources in 28 cities in and around the Beijing-

Tianjin-Hebei region (BTH) in autumn-winter 2017/2018 compared to the contribution from 

interannual variability in meteorology. For this, we use the GEOS-Chem chemical transport model 

driven with the Multi-resolution Emission Inventory for China (MEIC) after correcting underestimates 

in emissions (50% for NOx, >100% for point sources of SO2) using air pollutant observations from 

national and Beijing local monitoring network sites. Decline in observed PM2 5 averaged across all sites 

in BTH in autumn-winter 2017/2018 relative to the previous year is 29%, declining from 103 to 74 µg 

m-3 and surpassing the regional target of 15%. Decline in modelled PM2 5 is similar for grids coincident 

with the network sites (25%) and 20% across BTH. According to the model, pollution control measures 

led to decline in PM2 5 precursor emissions of 0.27 Tg NOx (as NO), 0.66 Tg sulfur dioxide (SO2), 70 

Gg organic carbon (OC), and 50 Gg black carbon (BC). These alone contribute less than half (at most 

43%) of the total decline in PM2 5 compared to a 57% contribution from interannual variability in 

meteorology. Specifically, stronger winds, deeper planetary boundary layer, and drier conditions in 

autumn-winter 2017/2018 than the previous year. The relative role of emissions and meteorology should 

be considered for successful application of future seasonal emissions controls in BTH and other polluted 

regions in China. 
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2.2 Introduction   

Cold season emission controls are an increasingly popular measure to reduce air pollution in China, in 

particular elevated concentrations of fine particles, or PM2 5. The Chinese government imposed such 

measures in 28 cities in and around the Beijing-Tianjin-Hebei region (BTH) (so-called “2+26” cities) 

in northern China in autumn-winter 2017/2018. Targets were set to reduce regional mean PM2 5 by 15% 

and city-specific PM2 5 by 10-25% relative to the previous year (MEE, 2017). The Chinese Ministry of 

Ecology and Environment (MEE) used national network observations of PM2 5 to determine that 

regional reduction targets were achieved and that only 3 of the 28 cities did not meet their city-specific 

targets (MEE, 2018). This approach is now adopted in many regions in China (MEE, 2020a, b), despite 

limited assessment of the relative contribution of emissions reductions and other factors like 

meteorology that is necessary for successful implementation of these control measures elsewhere. 

Severe air pollution persists in BTH, despite substantial decline in PM2 5 of ~40% from 2013 to 2017 

from enacting emission controls as part of the 5-year Action Plans (Zhang et al., 2019). Annual mean 

PM2 5 in BTH in 2017 was 64 µg m-3 (Wang et al., 2019); almost double the national standard of 35 µg 

m-3 (MEE, 2012) and 12 times the recently updated World Health Organization (WHO) guideline of 5 

µg m-3 (WHO, 2021). Severe PM2 5 pollution is due to a combination of primary emissions of particles 

and gas-phase precursors from multiple sources (Zhang et al., 2018), active heterogeneous chemistry 

enhancing formation of secondary inorganic and organic aerosols (Huang et al., 2014), and 

accumulation of pollution due to meteorological conditions such as low wind speeds, a shallow 

planetary boundary layer and high relative humidity (RH) (An et al., 2019; Bei et al., 2020; Le et al., 

2020; Wu et al., 2019). Dominant local PM2 5 sources in autumn-winter include sustained contributions 

from the energy sector and road traffic (Tong et al., 2020), seasonal industrial and residential 

combustion of coal and other solid fuels (Ma et al., 2017; Yun et al., 2020), and widespread burning of 

crop residue (Li et al., 2020). Mitigation measures in China have led to a nationwide decline in 

emissions of the primary PM2 5 components black carbon (BC) and organic carbon (OC) of 28 % for 

BC and 32 % for OC from 2013 to 2017 (Zheng et al., 2018). Emissions of the gas-phase PM2 5 

precursors nitrogen oxides (NOx  NO + NO2) and sulfur dioxide (SO2) have declined by 21% for NOx 
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and 59% for SO2 over the same period. Trends in other PM2 5 precursors are less certain. Emissions of 

ammonia (NH3), mostly from agriculture, have likely increased or remained constant (Liu et al., 2018; 

Zhang et al., 2017a; Zheng et al., 2018). Emissions of non-methane volatile organic compounds 

(NMVOCs), mostly from industrial activity and solvent use, are either stable or increasing (Li et al., 

2019b). Non-local sources also contribute to PM2 5 in BTH throughout the year. Dong et al. (2020) used 

a regional air quality model to estimate that, in 2017, transport of non-local PM2 5 accounted for 33-68% 

of total monthly mean PM2 5 in BTH.  

Many mitigation measures were implemented in autumn-winter 2017/2018. These are detailed in the 

“Air Pollution Action Plan in Autumn and Winter of 2017-2018 for the Beijing-Tianjin-Hebei Region 

and its Surrounding Areas” report by the MEE (MEE, 2017). Briefly, these include a sector-wide cap 

on total consumption of coal, phaseout of small inefficient and outdated industrial coal-fired boilers, 

reduction in production capacity of heavy industries such as iron and cement, switching from coal to 

cleaner fuels in homes, and mandated controls on construction site fugitive dust emissions. Other short-

term and reactionary measures included shutdown of intensive industries and construction sites 

throughout the emission control period and instantaneous shutdown of additional industrial plants in 

response to forecasts of elevated PM2 5. Tougher emission standards were imposed and higher quality 

vehicular fuel was mandated for on-road vehicles. Agricultural residue burning was banned and strictly 

enforced, and installation of emission control technologies was required for all large emitters of 

industrial NMVOCs.  

A recent regional modelling study by Zhang et al. (2021) has assessed changes in air quality in each of 

the 28 cities in 2017/2018 relative to the previous year. In that study, they used the high-resolution 

Community Multi-Scale Air Quality model coupled to the Weather Research and Forecasting Model 

for meteorology (CMAQ-WRF). The contribution of emission controls to the decrease in simulated 

PM2 5 in each city ranged from 2% to 82% and meteorology was often the dominant contributor, ranging 

from 18% to 98%. Their study used a regional bottom-up emission inventory that is susceptible to large 

biases. Error estimates of bottom-up inventories for China determined with satellite observations and 
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intercomparison of inventories are 12-31% for SO2, 13-37% for NOx, 18-86% for CO, and 17% to >100% 

for primary PM2 5 (Koukouli et al., 2018; Li et al., 2017). 

Similar control measures to those adopted in BTH in autumn-winter 2017/2018 are now widely used in 

China, necessitating evaluation of the efficacy of these policies. Here we use the extensive national and 

regional (Beijing) air quality monitoring networks, evaluated with independent measurements, to 

address biases in the Multi-resolution Emission Inventory for China (MEIC). We then implement the 

bias-corrected MEIC in the GEOS-Chem chemical transport model (CTM) to quantify the relative role 

of emission controls and meteorology in meeting the regional PM2 5 targets in BTH in autumn-winter 

2017/2018 to guide continued use of emission controls to address air pollution.     

2.3 Data and methods   

2.3.1 Surface measurements of air pollution in BTH   

Routine monitoring of ambient PM2 5 and trace gases in BTH occur at China National Environmental 

Monitoring Network (CNEMN) and local Beijing Municipal Environmental Monitoring Network 

(BJMEMN) sites (Zhang et al., 2020). We use observations of hourly SO2, NO2, CO, and PM2 5 for the 

autumn-winter emission reduction period (October 2017-March 2018) and the preceding year (October 

2016-March 2017) at sites operational in both years. These include 129 CNEMN sites and 35 BJMEMN 

sites within the BTH control region and 273 CNEMN sites in the surrounding area. Data from both 

networks are from the Sina Air Quality Data Platform (http://beijingair.sinaapp.com/; last accessed 17 

October 2020, now hosted at https://quotsoft.net/air/). CNEMN and BJMEMN trace gas measurements 

are obtained with chemiluminescence for NO2, UV fluorescence for SO2, and IR absorption for CO. 

Data from both networks have been widely used to quantify changes in surface air pollution (Li et al., 

2019a; Silver et al., 2018; Wan et al., 2021; Wang et al., 2014; Zhai et al., 2019), but independent 

evaluation is limited. A previous study used statistical techniques and intercomparison of measurements 

of different pollutants to determine that outliers are  1% of all measurements of air pollutants relevant 

to this work (Wu et al., 2018).    



48 

 

We assess CNEMN and BJMEMN network measurements with total PM2 5 concentration 

measurements from the US Embassy in Beijing and total PM2 5, PM2 5 components and trace gas (SO2, 

NO2, and CO) measurements from the winter portion of the intensive Atmospheric Pollution & Human 

Health in a Chinese Megacity (APHH) campaign (Table S2.1). US Embassy PM2 5 in Beijing is 

measured following US EPA quality control protocols (Martini et al., 2015). APHH included a 

comprehensive suite of aerosols and trace gases from the 325-m tower at the urban Institute of 

Atmospheric Physics (IAP) measurement site and a few air quality measurements at a rural site (Pinggu) 

located ~60 km from the Beijing city centre (Shi et al., 2019). APHH NO2 measurements are from a 

Teledyne T500U Cavity Attenuated Phase Shift (CAPS) analyser (Kebabian et al., 2005; Shi et al., 

2019). PM2 5 components are measured with thermal-optical carbon analyzers for OC and BC and ion 

chromatography for sulfate, nitrate, and ammonium (Srivastava et al., 2021) at 33% RH (Xu et al., 

2021).    

2.3.2 GEOS-Chem simulations of surface air pollution in BTH   

We use the GEOS-Chem model (version 12.0.0; https://doi.org/10.5281/zenodo.1343547) with the 

surface network measurements to quantify precursor emissions of PM2 5 in and around BTH and assess 

the relative role of emissions and meteorology to the observed changes in PM2 5 in AW2017 relative to 

the previous year. The model is nested over East Asia (11°S-55°N, 60-150°E) at a horizontal resolution 

of 0.5° × 0.625° (latitude × longitude). The model is driven with assimilated meteorology from the 

NASA Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2). These 

are updated hourly for 2D fields and every 3 hours for 3D fields. Dynamic (3-hourly) boundary 

conditions are from a global simulation at 4° × 5°. Monthly anthropogenic emissions for China in 

October 2016-March 2017 are from the regional bottom-up Multi-resolution Emission Inventory for 

China (MEIC) (http://www.meicmodel.org/; last accessed 04 March 2020) available for 2000-2017 at 

0.5° × 0.625°. The MEIC includes emissions of SO2, NOx, CO, NMVOCs, NH3, and primary particles 

from ~700 anthropogenic sources (Li et al., 2017; Zheng et al., 2018). In its implementation in GEOS-

Chem, MEIC emissions are lumped as five sectors: industry, power plants, transportation, agriculture 

and residential. Primary particles are emitted as hydrophobic and hydrophilic BC and OC, and speciated 
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NMVOCs are mapped to those in GEOS-Chem using the NMVOCs species mapping tables in Li et al. 

(2014).   

The model includes detailed coupled gas- and aerosol-phase chemistry to represent formation and loss 

of PM2 5. Individual aerosol components include sulfate, nitrate, ammonium (Park et al., 2004; Wang 

et al., 2013), OC (Heald et al., 2006), BC (Li et al., 2016), dust (Fairlie et al., 2007), and sea salt (Jaeglé 

et al., 2011). Formation of secondary sulfate-nitrate-ammonium aerosols is computed with the 

ISORROPIA-II thermodynamic equilibrium model (Fountoukis and Nenes, 2007). Physical loss 

processes include dry and wet deposition (Amos et al., 2012; Liu et al., 2001; Wang et al., 1998). We 

implement a revised treatment of wet scavenging described and first implemented in GEOS-Chem by 

Luo et al. (2019). This replaces fixed values of in-cloud condensation water used to calculate rainout of 

water-soluble aerosols and gases with dynamic values from MERRA-2. This increases wet deposition 

rates and reduces a positive bias in modelled nitrate and ammonium, in particular in winter, when 

compared to surface observations in China, Europe, and the US (Luo et al., 2020). We sample the model 

in AW2016 and AW2017 following two months spin-up before each period of interest for chemical 

initialization. We conduct multiple model simulations to address biases in the MEIC in the non-control 

period, estimate emissions for the control period, assess the importance of PM2 5 precursor emissions of 

NH3 and NMVOCs that lack observational constraints, and determine the relative contribution of 

emissions reductions and meteorology to changes in PM2 5 and trace gases. 

2.4 Results and discussion   

2.4.1 Air pollutant concentration changes detected with monitoring networks   

Figure 2.1 shows hourly CNEMN and BJMEMN PM2 5 against those from the APHH and US Embassy 

sites. PM2 5 from both networks are temporally consistent with APHH and US Embassy PM2 5 (r ≥ 0.96) 

and exhibit similar variance (slopes of 1.0-1.1). Network sites measure more PM2 5 than APHH by 10% 

for CNEMN and 17% for BJMEMN. Differences to US Embassy PM2 5 range from negligible (0.2% 

less) to 6.4% more. The larger discrepancies between BJMEMN and the independent measurements 

may be due to differences in local emissions influencing these sites, as these are further apart (~3 km) 
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than the CNEMN and independent measurement sites (~1 km) (Table S2.1). Decline in PM2 5 in the 

control period relative to the previous year is 43% according to US Embassy PM2 5, decreasing from 97 

to 55 µg m-3, and is similar at the nearby BJMEMN (43% decline) and CNEMN (42% decline) sites 

used in Figure 2.1. 

Figure 2.2 shows hourly trace gas measurements from CNEMN and BJMEMN to those from APHH. 

Though CO is not a PM2 5 precursor, its abundance affects and responds to the oxidative potential of 

the atmosphere. It also offers an indirect assessment of PM2 5 precursor emissions of NMVOCs that 

oxidize to form CO. Most network measurements exceed the instrument detection limit (indicated in 

Figure 2.2), except for SO2 (31% for CNEMN, 16% for BJMEMN). The surface networks are 

temporally consistent with APHH (r > 0.7) for all trace gases. CNEMN NO2 is ~5% more and BJMEMN 

NO2 ~17% more than APHH, as the chemiluminescence instruments used at network sites are 

susceptible to interference from thermal decomposition of thermally unstable NOx reservoir compounds 

(Dunlea et al., 2007; Reed et al., 2016). The APHH instrument is not susceptible to this interference, as 

it is a direct measurement (Kebabian et al., 2005). Shah et al. (2020) estimated a chemiluminescence 

bias of ~6% over eastern China in winter using GEOS-Chem. In other polluted locations, such as 

Mexico City, the bias from comparing chemiluminescence to collocated spectroscopic measurements 

is larger (22%) (Dunlea et al., 2007). Network measurements of SO2 are less than APHH for CNEMN 

(by 19%) and more than APHH for BJMEMN (also 19%). For CO, the networks are 16% more than 

APHH for CNEMN and 28% more for BJMEMN.    
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Figure 2.1: Evaluation of local and national network PM2.5 measurements in Beijing. Points are 

hourly PM2.5 measurements. The top row compares CNEMN to the APHH urban site (left), and 

CNEMN to the US Embassy in autumn-winter 2016/2017 (AW2016) (centre) and 2017/2018 

(AW2017) (right). The bottom row compares BJMEMN to the APHH urban site (left), and 

BJMEMN to the US Embassy in AW2016 (centre) and AW2017 (right). Reduced major axis 

(RMA) regression statistics, Pearson’s correlation coefficients (r), the percent difference (Diff = 

monitoring network minus independent measurement), and the number of points (n) are given. 

Lines are the RMA regression (red) and 1:1 line (blue dashed). 

To aid interpretation of the differences between the network sites and independent measurements, we 

also assess consistency between CNEMN and BMJEMN in coincidence with APHH for the sites in 

Figure 2.2. These two sites are ~5 km apart and the BJMEMN site is between two busy ring roads, 

while the CNEMN site is located in a park. The sites are strongly correlated for PM2 5 (r = 0.97) and all 

trace gases (r = 0.89-0.92), but CNEMN is less than BJMEMN by 11% for NO2, 33% for SO2, 9% for 

CO, and 6% for PM2 5 due to greater influence of road traffic at the BJMEMN site for NO2, CO and 

PM2 5. This is consistent with the generally larger positive differences between BJMEMN and the 
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independent APHH measurements in Figures 2.1 and 2.2. The larger difference in SO2  result from the 

large scatter of the data around the 1:1 line (Figure 2.2). 

Both networks also measure ozone, but ozone pollution is most severe in China in spring and summer 

(Yang et al., 2020). We estimate mean ozone of 15-19 µg m-3 at the two monitoring network sites in 

Figure 2.2. This is below the WHO seasonal mean ozone guideline of 60 µg m-3 (WHO, 2021) and 

almost an order of magnitude less than the summer mean ozone air quality metric, mean maximum 

daily 8h average ozone, of 120-160 µg m-3 in northern China (Li et al., 2019a). We do not consider 

ozone pollution further. 

We show in Figure 2.3 the spatial distribution of the network observed changes in PM2 5 and trace gas 

concentrations in and around BTH between the control period (autumn-winter 2017/2018) and the 

preceding year (autumn-winter 2016/2017). Hereafter, we refer to these time periods as AW2017 for 

autumn-winter 2017/2018 and AW2016 for autumn-winter 2016/2017. Decline in air pollutant 

concentrations in BTH is 16% for NO2, 44% for SO2, 31% for CO, and 29% for PM2 5, surpassing the 

15% PM2 5 reduction target for BTH. Smaller reductions of 0.5% for NO2, 31% for SO2, 13% for CO, 

and 10% for PM2 5 occurred in the surrounding area. Southeast of BTH, NO2 and PM2 5 increased by 5-

9% that may be due to an increase in emissions from industries in the non-control area (Fang et al., 

2019). In what follows, we use the network observations of trace gases in AW2016 to correct biases in 

the MEIC and the relative changes in PM2 5 and trace gases to quantify emissions changes from 

AW2016 to AW2017.  
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Figure 2.2: Evaluation of local and national network trace gas concentration measurements in 

Beijing. Points are hourly measurements. Panels compare CNEMN (top) and BJMEMN (bottom) 

NO2 (left), SO2 (centre) and CO (right) to the APHH urban site in November-December 2016. 

RMA regression statistics, Pearson’s correlation coefficients (r), the percent difference (Diff = 

monitoring network minus independent measurement), and the number of points (n) are given. 

Lines are the RMA regression (red) and 1:1 line (blue dashed). The green dashed line is the 

reported monitoring network instrument detection limit (MEE, 2012).  



54 

 

 

 

Figure 2.3: Change in observed surface air pollution in BTH and the surrounding area in AW2017 

relative to AW2016. Individual points are monitoring network site changes for the control region 

(triangles in area shaded grey) and the surrounding area (circles in the non-shaded area). Values 

inset give the percent change (AW2017 minus AW2016) for sites in the control region only.  
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2.4.2 Addressing biases in the MEIC   

Modelled surface concentrations in AW2016 driven with the MEIC are on average less than observed 

NO2 (by 48%), SO2 (by 42%), and CO (by 57%) from comparison of the model and the observations 

averaged onto the model grid covering the domain in Figure 2.3 (Figure S2.1). The underestimate for 

SO2 is up to a factor of 6.8 for gridded observed SO2 > 80 µg m-3. We attribute this to an underestimate 

in precursor emissions of these in the MEIC that may result from underestimates  in energy statistics 

(Hong et al., 2017; Zhi et al., 2017) and emission factors (Cheng et al., 2017). Previous studies reported 

that MEIC trends in NOx, SO2, and CO are consistent with those derived from satellite observations and 

from weather-normalised surface measurements (Vu et al., 2019; Zheng et al., 2018). Low biases in 

emissions of NOx (of -28% to -11%) and CO (of -76% to -52%) have been inferred from comparison 

of multiple models to the network measurements in the Northern China Plain (Feng et al., 2020; Kong 

et al., 2020). At a very local scale, Squires et al. (2020) determined that the MEIC over- rather than 

under-estimates NOx and CO emissions at the urban APHH site from comparison of MEIC to fluxes 

calculated using eddy-covariance, though the comparison used measurements for 2016 and the MEIC 

for 2013 over a time period of policy-driven decline in NOx and CO emissions (Zheng et al., 2018).    

We improve reliability of GEOS-Chem simulation of surface concentrations for AW2016 by 

minimizing biases in the MEIC. We do this by deriving correction factors from ratios of gridded 

network trace gas observations of NO2 (for NOx emissions), CO, and SO2 to those from GEOS-Chem 

driven with the original MEIC. These are relatively spatially uniform for NOx (mean ± standard 

deviation of 2.3 ± 1.4) and CO (2.6 ± 1.3). Given this and that there are potential measurement biases 

(Figure 2.2), errors in model chemistry, and non-linearities between concentrations and emissions, we 

simply apply a single scale factor over the whole domain in Figure 2.3 to MEIC NOx (of 1.5) and MEIC 

CO (of 2.4). These scaling factors are decided based on our initial comparison of the model and the 

observations (Figure S2.1), and on the model experiments we conducted where we incrementally 

increased scaling factors to 1.5 for NOx and 2.4 for CO. The 50% underestimate in modelled NO2 is 

more than can be explained by positive bias in the measurements (at most 22%) or a network sampling 

bias. NO2 measurements at roadside are generally higher than those at urban background sites due to 
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emissions from nearby traffic and are affected by its surrounding micro-environment which governs 

accumulation and dispersion of pollution. Due to its coarse spatial resolution, the model may not well 

reproduce measurements at roadside sites. But this has limited effects on underestimate in modelled 

NO2, as we find that average BJMEMN NO2 only decreases by 5-8% for all non-roadside sites 

compared to all sites. There is no site classification data for CNEMN. 

Kong et al. (2020) have also reported model underestimates in annual mean CO concentrations in the 

Northern China Plain by 52% to 76% when driven with the MEIC. Some of the low bias in simulated 

CO may be due to positive bias in the monitoring network (16-28%; Figure 2.2), though this assessment 

is limited to two nearby sites that may not be representative of the whole domain. CO includes 

contributions from primary emissions and secondary CO from oxidation of NMVOCs. MEIC NMVOCs 

are subject to uncertainties, due to poorly quantified industrial emissions (Li et al., 2017) and lack of 

reliable data for scattered sources such as residential coal burning (Li et al., 2019b; Peng et al., 2019; 

Shi et al., 2020). We find that modelled CO is relatively unaffected by NMVOCs emissions. A 50% 

increase in MEIC NMVOCs within the study area only increases GEOS-Chem surface CO 

concentrations by 0.2%. This suggests CO is mostly primary, though our sensitivity simulation results 

could be affected by model errors in NMVOCs oxidation pathways that form CO (Miller et al., 2016). 

Much of the low model bias for SO2 is due to seven model grids in Shanxi province west of BTH (Figure 

S2.1); a region with more than twenty coal-fired power plants with a collective generating capacity ≥ 1 

GW (https://globalenergymonitor.org/; last accessed 30 January 2022). We apply grid-specific scale 

factors ranging from 2.1 to 6.8 to MEIC SO2 over these seven grids only (indicated in Figure S2.1), 

which are the ratios of measured SO2 over modelled SO2 with default MEIC emissions in these grids. 

We do not adjust AW2016 MEIC primary BC and OC, due to limited observational constraints.  

Figure 2.4 compares surface concentrations of trace gases and PM2 5 from GEOS-Chem with bias-

corrected MEIC NOx, CO and SO2 to those from the monitoring networks averaged onto the GEOS-

Chem grid. Emissions scaling of NOx improves modelled variance in NO2 (slope increases from 0.87 

(Figure S2.1) to 0.93 (Figure 2.4)), but there is still an underestimate in modelled background NO2 

(intercept = -12.8 µg m-3). If we add the modelled reservoir compounds nitric acid (HNO3), peroxyacetyl 
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nitrates (PANs) and alky nitrates to modelled NO2 to capture interference from these in the 

chemiluminescence measurements, as suggested by Shah et al. (2020) and Dunlea et al. (2007), the 

model bias decreases from -33% to -13%. The remaining model bias is due to the non-linear relationship 

between NO2 concentrations and NOx emissions. This is shown in Figure S2.2, quantified by dividing 

the ratio of GEOS-Chem scaled-to-original surface concentrations by the MEIC correction factors 

(Equation (S1)). The change in NO2 concentrations in BTH (33%) is weaker than the 50% increase in 

NOx emissions. This is because NOx loss leading to formation of HNO3 increases with increase in NOx 

emissions where sources are large. The relative increase in GEOS-Chem surface concentrations of 

HNO3 (136%) exceeds the 50% increase in emissions. 

 

Figure 2.4: Evaluation of GEOS-Chem simulation of air pollutant concentrations in AW2016. 

Observations are averaged onto the GEOS-Chem grid. Points are simulated and observed NO2 

(top left), SO2 (top right), CO (bottom left) and PM2.5 (bottom right) in the entire domain in Figure 

2.3 for grid squares with at least three coincident surface sites. Points are coloured by the number 

of surface sites. The model uses scaled MEIC emissions (see text for details). RMA regression 

statistics, Pearson’s correlation coefficients (r), and model normalized mean biases (NMB) are 

given. Lines are the RMA regression (black) and 1:1 line (blue dashed). 
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The model underestimate in CO decreases from -57% to -14% and there is a small improvement in 

spatial correlation (r = 0.35 (Figure S2.1); r = 0.45 (Figure 2.4)). The remaining model bias is partially 

due to the non-linear response of CO concentrations to perturbations in emissions (Figure S2.2). Local 

primary emissions of CO are increased, but CO is also transported east and south of the domain shown 

in Figure S2.2. Also, CO emissions outside the model sampling domain are not scaled, so there is likely 

an underestimate in background CO concentrations. Given the relatively long lifetimes of CO of several 

months, CO can be transported from the background region to the study domain, a biased low CO 

background is expected to contribute to underestimate in the model sampling domain, which weakens 

the response of CO concentrations to perturbations in emissions. Emissions scaling of SO2 improves 

spatial consistency of SO2 from r = 0.54 (Figure S2.1) to r = 0.90 (Figure 2.4). There is still a model 

bias of -29%, as the increase in concentrations is less than the increase in emissions over the grids that 

are scaled (Figure S2.2), as SO2 is advected from the scaled grids with large point sources to adjacent 

grids.  

Scaling MEIC SO2 and NOx increases the PM2 5 bias from 8% (Figure S2.1) with the original MEIC to 

15% (Figure 2.4) with scaled MEIC. This bias in PM2 5 may be due to overestimates in MEIC primary 

PM2 5 emissions (BC + OC). BC fluxes estimated with eddy covariance during the winter APHH 

campaign suggest a large overestimate (59 times) in MEIC BC (Joshi et al., 2021), but this may be 

because local influence of traffic (~100 m) in the measurements is diluted at the spatial resolution of 

the MEIC (3 km) used in that study. To further assess modelled PM2 5 in BTH, we compare modelled 

PM2 5 components to those measured at the APHH urban and rural sites. This is shown in Figure 2.5. 

OC is compared instead of organic aerosol (OA), due to uncertainties in conversion of OC to OA (Xing 

et al., 2013). The model overestimates total PM2 5 by 10% at the urban site and 34% at the rural site. 

According to the observations, OC dominates, with a carbon mass contribution to total PM2 5 of 23% 

(urban) and 33% (rural). The contribution of the sum of secondary inorganic aerosols is similar (31%) 

at both sites and includes similar contributions from sulfate (8-9%), nitrate (13%), and ammonium (9-

10%). BC is 4% of total PM2 5 at both sites.  
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The model simulates similar contributions from each component at the two sites, but, compared to the 

observations, it underestimates OC (9-10% contribution to PM2 5) and sulfate (4%), overestimates 

nitrate (28-30%), and slightly overpredicts BC (4-5%). The relative contribution of ammonium is 

similar to the measurements (10%). Previous studies have reported similar biases in OC, sulfate and 

nitrate in China from GEOS-Chem (Miao et al., 2020) and other CTMs (Chen et al., 2019; Gao et al., 

2018). Miao et al. (2020) reported a year-round underestimate in OA that they attributed to biases in 

precursor emissions and lack of seasonality in fixed secondary OA (SOA) yields used to estimate SOA 

formation from NMVOCs. They also identified a year-round underestimate in sulfate that peaks at 54% 

in winter, similar to our 50% underestimate at the urban site. The model underestimate in sulfate may 

be due to remaining underestimate in MEIC SO2 (Figure 2.4), missing sulfate formation processes 

during haze events (Bloss et al., 2021; Wang et al., 2016; Wang et al., 2020), and measurement 

interference from hydroxymethane sulfonate (HMS) (Moch et al., 2018; Song et al., 2019). Model 

overestimate in nitrate is a known issue (Wang et al., 2013), but the cause remains elusive. Miao et al. 

(2020) suggest it could be caused by uncertainties in the formation and processing of nitrate. Despite 

biases in PM2 5 composition, the model reproduces temporal (day-to-day) variability in mean total PM2 5 

(r = 0.66-0.71) and its components (r = 0.50-0.78) at both sites. 
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Figure 2.5: Contribution of PM2.5 components to total PM2.5 during the APHH campaign. Panels 

are measured (left) and modelled (right) percent contribution for the urban IAP (top) and rural 

Pinggu (bottom) sites. Components are sulfate, nitrate, ammonium, OC, BC and Other. Other is 

the sum of trace metals, mineral dust and other ions, the non-carbon portion of OC, and aerosol 

water at 33% relative humidity (RH) for the measurements and 35% RH for the model. Values 

above the pies give total PM2.5.   

Here we use surface measurements from monitoring networks and APHH campaign to constrain and 

evaluate the model performance, but there are some caveats in comparing model to observations from 

surface sites. The model grids are at the coarse spatial resolution of 0.5° × 0.625°, the modelled 

concentrations of air pollutants represent the averaged values in the entire area covered by model grids. 

But surface measurements are collected from sparse points and are affected by local environments. For 

example, wind vortices in a street canyon can control measurements at the urban traffic site, as higher 

levels of pollution are measured when wind blows fresh emissions from the traffic to the monitoring 

site which is located on one side of the street (Harrison et al., 2019). Surface measurements do not fully 

represent the air pollution over the area. In addition, measurement sites are normally located on the 

ground or on the roof of buildings with a few metres high, while the surface layer in GEOS-Chem is 

the lowest layer where atmospheric pressure decreases from 1013.250 to 998.051 hPa, which roughly 



61 

 

corresponds to a height of 129-134 metres above sea level in the study domain. The difference in the 

elevation of measurement sites and the vertical range of surface layer in the model also contribute to 

discrepancies between model and observations if the lowest model layer is not well mixed. 

2.4.3 Influence of emissions and meteorology on air quality in AW2017   

The MEIC provides emissions estimates until the end of 2017, covering half the control period 

(AW2017) and limiting its direct use for the AW2017 simulation. This we address by deriving 

emissions for AW2017 using spatially varying scaling factors to apply to MEIC AW2016 emissions 

derived with observed relative concentration changes from AW2016 to AW2017. To do this for NOx, 

SO2 and CO emissions, we regrid the relative changes in trace gases in Figure 2.3 to a fixed 1° × 1.25° 

grid that is the best compromise between coverage and spatial resolution. We fill in missing grids (17% 

in the control region, 51% outside it), by interpolating across nearest neighbouring grids. The resultant 

scaling factors are in the supplementary (Figure S2.3). For OC and BC emissions, we use relative 

changes in total PM2 5 (Figure S2.3) as an initial guess, but this underestimates decline in total observed 

PM2 5 in BTH AW2017 by 9.7 %. This suggests that decline in primary PM2 5 exceeds decline in other 

sources that contribute to PM2 5 and is corroborated by greater decline in primary PM2 5 in the bottom-

up inventories used by Zhang et al. (2021) than the decline in measured total PM2 5 for around half the 

28 cities. This may be because regulations targeted sources with large primary PM2 5 emissions, such as 

coal combustion, industry, vehicles, construction and biomass burning (Zhang et al., 2017b; Zheng et 

al., 2017). We conduct multiple model simulations with incremental 10% increases in the scaling factors 

derived with observed relative changes in PM2 5 (Figure S2.3). We identify that emissions scaling 

factors of OC and BC that are 40% more than the values in Figure S2.3 best resolves this discrepancy.  

Figure 2.6 shows the spatial distribution of modelled and observed PM2 5 concentrations and relative 

changes in PM2 5 in and around BTH. The mean decline in observed PM2 5 is 27% in BTH, from 103 µg 

m-3 in AW2016 to 75 µg m-3 in AW2017. A similar decline occurs for model grids coincident with the 

observations (25% decrease from 112 to 85 µg m-3), despite a positive model bias in total and 

components of PM2 5 (Figures 2.4, 2.5). The decline in modelled PM2 5 is 20% for all BTH grids (104 to 

83 µg m-3) and 15% for the whole domain (71 to 60 µg m-3). In Beijing, observed PM2 5 decreases from 
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96 to 57 µg m-3, a 41% reduction. The decline in the model is more modest for coincident grids (33% 

decline of 78 to 52 µg m-3) and for all Beijing grids (33% decline of 75 to 50 µg m-3). All surpass the 

25% target for Beijing (MEE, 2017). Our emissions estimate for AW2017 only constrains sources in 

and near BTH, though this only affects model consistency with observations of NO2 and CO in the 

surrounding area (Figure S2.4). Regardless, the relative regional changes in PM2 5 surrounding BTH is 

similar for the observations (-10%) and coincident model grids (-11%). The change is -13% for all 

model grids. 

 

Figure 2.6: Spatial distribution of absolute and relative changes in observed and modelled PM2.5 

before and during the strict emission control period. The observed (shapes) and modelled 

(background) PM2.5 are shown for AW2016 (left) and AW2017 (centre). The right panel is the 

relative change in observed and modelled PM2.5 for GEOS-Chem PM2.5  20 µg m-3 (grey 

otherwise). The black boundary shows the thirteen Beijing grids. Observations are distinguished 

as within (triangles) and outside (circles) the emission control region (grey area in Figure 2.3). 

Inset values are the observed (OBS) and modelled (GC) means for sites and coincident grids in 

the emission control domain. Note the uneven colour scale in the right panel.   

Figure 2.7 shows the total anthropogenic emissions of gaseous PM2 5 precursors, primary PM2 5 (OC 

and BC), and CO we derive for BTH in AW2016 and AW2017. These are 2.4 Tg NOx as NO, 1.6 Tg 

SO2, 150 Gg BC, 240 Gg OC, and 41 Tg CO in AW2016. The non-linear relationship between surface 

concentrations and emissions (Figure S2.2) suggests the AW2016 emissions are 9% too low for NOx, 

13% too low for CO, and 8% too high for SO2. Still, this discrepancy is much less than the correction 

factors applied to the MEIC (50% for NOx, >100% for CO, and >100% for SO2 point sources). 

Emissions in BTH decline in AW2017 by 0.27 Tg NOx (11% reduction), 0.66 Tg SO2 (42%), 70 Gg 

OC (29%), 50 Gg BC (33%), and 9.7 Tg CO (24%). The relative decline is similar to what we infer 
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from Zhang et al. (2021) for NOx (~10%) and primary PM2 5 (~30%), but more than their SO2 (~30%). 

Our study focuses on the BTH region rather than individual cities, so is more influenced by point 

sources of SO2 located in nearby cities in Shanxi province. The major sector contributions to 

anthropogenic emissions in BTH is the same in both years and includes industry for NOx (44%), SO2 

(56%), and CO (39%), transport for NOx (34%), and residential fuel use for SO2 (28%), CO (42%), BC 

(47%) and OC (79%).  

Emissions of NH3 and NMVOCs are unchanged, due to limited constraints on these. There is an 

Ammonia Monitoring Network in China (AMoN-China), but there are only 8 sites in BTH, the data are 

not publicly available (Pan et al., 2018), and the relationship between NH3 emissions and concentrations 

is complicated by reversible partitioning of NH3 between the gas and aerosol phase to form ammonium 

(Fu et al., 2017; Marais et al., 2021) that depends on meteorology and abundance of acidic sulfate from 

SO2 and nitrate from NOx (Ge et al., 2019; Xia et al., 2016). According to GEOS-Chem, surface NH3 

concentrations in BTH increased by 14%, due in part to decline in SO2 and NOx emissions. No control 

measures targeted dominant NH3 sources such as fertilizer use and livestock excreta (Huang et al., 2012). 

These are also at a minimum in autumn-winter (Kong et al., 2019). Controls in AW2017 targeted 

industries that emit NMVOCs, but we find using GEOS-Chem that a 50% increase in NMVOCs 

emissions only increases total PM2 5 by 1%. In a recent study, Wang et al. (2021) propose that rapid 

aqueous-phase oxidation of primary OA rather than NMVOCs dominates SOA formation in Beijing 

and would resolve the decline in wintertime SOA while NMVOCs emissions have remained constant 

or increased. 

We quantify the contribution of meteorology to decline in PM2 5 in AW2017 to assess whether emissions 

reductions alone (Figure 2.7) are sufficient to achieve regional PM2 5 targets. We do this by comparing 

GEOS-Chem AW2017 PM2 5 (Figure 2.6) to GEOS-Chem PM2 5 obtained with the same emissions 

(AW2017), but driven with meteorology for AW2016. The results of the difference between these 

simulations are in Figure 2.8. The mean decline in PM2 5 in BTH due to meteorology is 12 µg m-3 or 

57% of the total. This suggests that emission controls caused at most a 9 µg m-3 decline in PM2 5 (43% 

of the total). This is a regional decline of ~9%; less than the 15% target. An air quality trends study 
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focusing on polluted regions in China used WRF-CMAQ to estimate that contrasting meteorology in 

BTH favourable for PM2 5 pollution in December 2016 and for PM2 5 dispersion in December 2017 was 

responsible for 70% of the total decline in PM2 5 in December 2017 relative to December 2016 (Zhang 

et al., 2019). The contribution of differences in December meteorology is similar (75%) according to 

GEOS-Chem. The meteorological factors responsible for decline in BTH PM2 5 in AW2017 in GEOS-

Chem are dilution and dispersion of pollution due to stronger south-easterly winds and a 7% higher 

planetary boundary layer in AW2017 than AW2016, and less efficient secondary inorganic aerosol 

formation due to 5% lower RH in AW2017 than AW2016. Interannual variability in RH was also the 

cause for sustained air pollution over BTH despite decline in precursor emissions from lockdown 

measures imposed to control the spread of the SARS-CoV-2 virus (Le et al., 2020) during January and 

February 2020.    

 

Figure 2.7: Total anthropogenic emissions in BTH in AW2016 and AW2017. Emissions are for 

grids covering the grey shaded area in Figure 2.3. Emissions are from the MEIC with scaling 

factors to address discrepancies between the model and observations for AW2016 and to 

reproduce the change in air pollutant concentrations in the AW2017 emission control period (see 

text for details). Vertical axes are emissions of NOx, BC, OC, and SO2 on the left axis and CO on 

the right. Horizontal black dashed lines show the original MEIC AW2016 emissions totals for 

NOx, SO2, and CO. 
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Figure 2.8: Response of PM2.5 to interannual variability in meteorology. The map shows the 

difference in GEOS-Chem PM2.5 obtained using AW2017 emissions and meteorology (Figure 2.6) 

and AW2017 emissions and AW2016 meteorology. Inset value is the mean decrease in BTH PM2.5. 

Note the colour scale is uneven. 

2.5 Conclusions   

Strict emission controls were implemented across 28 cities in and around the Beijing-Tianjin-Hebei 

region (BTH) in autumn-winter 2017/2018 to alleviate fine particulate matter (PM2 5) pollution. PM2 5 

reduction targets were met, leading to implementation of these seasonal control measures in other 

polluted regions in China. We used widespread network observations, evaluated against independent 

measurements, to address biases in the Multi-resolution Emission Inventory for China (MEIC) for 

implementation in the GEOS-Chem model to assess the efficacy of these emission controls by 

quantifying PM2 5 precursor emissions reductions and determining the relative contribution of these and 

meteorology to decline in PM2 5. 

PM2 5 and trace gases (NO2, SO2 and CO) from the surface networks are temporally consistent with 

independent measurements (r > 0.9 for PM2 5 and r > 0.7 for gases) and exhibit discrepancies that are 

due to variability in pollution sources in the urban environment and known instrument interferences. 

Across all network sites in BTH, PM2 5 decreased by 29% from 103 to 74 µg m-3 in the control period 

relative to the previous year, exceeding the regional target of 15%.  The model with MEIC emissions 

scaled to address underestimates in NOx (by 50%), CO (>100%), and point sources of SO2 (>100%) 
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reproduce the observed spatial distribution in PM2 5 (r = 0.68). Despite a 15% positive bias in total PM2 5 

and biases in the PM2 5 components organic aerosol, nitrate, and sulfate, the model simulates the 

observed relative decline in PM2 5 in BTH. According to the model, constrained with the network 

measurements, emissions in BTH declined by 0.27 Tg NOx as NO, 0.66 Tg SO2, 70 Gg OC, 50 Gg BC, 

and 9.7 Tg CO. These account for less than half (at most 43%) the decline in total PM2 5 and alone 

would not achieve the PM2 5 reduction targets. Most (57%) of the decline in PM2 5 was due to interannual 

variability in meteorology. Specifically, a deeper planetary boundary layer, stronger winds, and lower 

relative humidity during the control period between October 2017 and March 2018. The ability to 

achieve air pollution reduction targets is an insufficient measure of the success of emission controls. 

Also required is diagnosis of the relative role of the emissions reductions and other influential factors 

like meteorology to enhance the efficacy of these measures when applied to other regions. 
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2.7  Supplementary Information 

Supplementary Text 

Non-linear relationship between concentrations and emissions 

The non-linear relationship between changes in modelled concentrations and perturbations in emissions 

of NOx, SO2 and CO are quantified by dividing the ratio of GEOS-Chem scaled-to-original surface 

concentrations by the MEIC correction factors: 

 

Non­linear response =
Xscaled

Xoriginal  × (
Escaled

Eoriginal
)  

 
(S1) 

 

where X is the surface concentration of either NO2, SO2, or CO, (Escaled/Eoriginal) is the correction factor 

applied to the MEIC in AW2016 (see Section 3.2 of the main text for more details). 
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Supplementary Figures 

 

 

Figure S2.1: Initial comparison of observed and modelled NO2, SO2 and CO in AW2016. The 

model uses default MEIC emissions. The top row shows maps of observed (shapes) and modelled 

(background) NO2 (left), SO2 (centre) and CO (right). Shapes are means for grid squares with at 

least three coincident sites. Observations are distinguished as within (triangles) and outside 

(circles) the emission control region (grey shaded area in Figure 2.3). Inset values are the observed 

(OBS) and modelled (GC) means for sites and coincident grids in the emission control domain. 

The black boxes for SO2 highlight the seven grids with model underestimates ranging from a 

factor of 2.1 to 6.8. The bottom row shows regresses observed vs modelled NO2 (left), SO2 (middle) 

and CO (right). Points are coloured by the number of surface sites in each model grid. RMA 

regression statistics, Pearson’s correlation coefficients (r), and model normalized mean biases 

(NMB) are given. Lines are the RMA regression (black) and 1:1 line (blue dashed). 
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Figure S2.2: Non-linear relationship between air pollutant surface concentrations and emissions 

perturbations. Individual model grids are calculated using Equation (S1) in AW2016 for NO2 

concentrations and NOx emissions, SO2, and CO. Values of unity indicate non-linear effects are 

negligible.  
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Figure S2.3: Scale factors applied to MEIC emissions in AW2016 to estimate emissions in the 

control period (AW2017). See Section 3.3 of the main text for more details. 
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Figure S2.4: Evaluation of GEOS-Chem simulation of air pollutant concentrations in AW2017. 

Observations are averaged onto the GEOS-Chem grid. Panels show results for simulated and 

observed NO2 (top left), SO2 (top right), CO (bottom left) and PM2.5 (bottom right) in the entire 

domain in Figure 2.3 for grid squares with at least three coincident surface sites. Triangles 

indicate data in BTH (grey area in Figure 2.3) and circles indicate data outside BTH coloured by 

the number of sites in each grid. The model uses scaled MEIC emissions (see text for details). 

RMA regression statistics, Pearson’s correlation coefficients (r), and model normalized mean 

biases (NMB) are given for BTH grids (black text) and non-BTH grids (green text). Lines are the 

RMA regression lines (black for BTH grids and green for non-BTH grids) and 1:1 line (blue 

dashed).   



 

 

 

 

Table S2.1: Sites used to assess national and regional air quality monitoring networks in the Beijing-Tianjin-Hebei region (BTH). 

Network Site Independent Site Distances Comparison Period Air Pollutants 

Name Location Name Location    

CNEMN Aotizhongxina (39.98°N, 116.40°E) APHH IAPb (39.97°N, 116.37°E) ~3 km Oct-Nov 2016 
PM2 5 

SO2, NO2, CO 

CNEMN Nongzhanguana (39.94°N, 116.46°E) US Embassyc (39.95°N, 116.47°E) ~1 km 
Oct 2016-Mar 2017 

Oct 2017-Mar 2018 
PM2 5 

BJMEMN Xizhimenbeid (39.95°N, 116.35°E) APHH IAP  ~3 km Oct-Nov 2016 
PM2 5 

SO2, NO2, CO 

BJMEMN Dongsihuand (39.94°N, 116.48°E) US Embassy  ~1 km 
Oct 2016-Mar 2017 

Oct 2017-Mar 2018 
PM2 5 

a CNEMN site, data source: http://beijingair.sinaapp.com/ (last accessed 17 October 2020), now hosted at https://quotsoft.net/air; b APHH 

campaign at IAP, data source: National Environmental Research Council Centre for Environmental Data Archive (Fleming et al., 2017); c 

US Embassy PM2.5 measurements, data sources: http://www.stateair.net/ for October 2016-March 2017, http://www.openaq.org/ for October 

2017-March 2018; d BJMEMN site, data source: http://beijingair.sinaapp.com/ (last accessed: 17 October 2020), now hosted at 

https://quotsoft.net/air 

 

Fleming, Z. L., Lee, J. D., Liu, D., Acton, J., Huang, Z., Wang, X., Hewitt, N., Crilley, L., Kramer, L., Slater, E., Whalley, L., Ye, C., and Ingham, T.: 

APHH: Atmospheric measurements and model results for the Atmospheric Pollution & Human Health in a Chinese Megacity, available at: 

http://catalogue.ceda.ac.uk/uuid/648246d2bdc7460b8159a8f9daee7844 (last access: 04 March 2021), 2017. 
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CHAPTER 3:TOP-DOWN ESTIMATE OF NOX 

EMISSIONS IN CITIES IN SOUTH                              

AND SOUTHEAST ASIA 

3.1 Abstract 

Cities in South and Southeast Asia are developing rapidly, but routine, up-to-date and publicly available 

inventories of emissions are lacking for this region. Nitrogen oxides (NOx) emissions in cities are 

important precursors to health-hazardous fine particulate matter (PM2 5) and ozone (O3). Here we 

estimate NOx lifetimes and emissions over 10 large cities in South and Southeast Asia in 2019 by 

applying an exponentially modified Gaussian (EMG) approach with a wind rotation technique to the 

nitrogen dioxide (NO2) tropospheric vertical column densities (VCDs) from the high spatial resolution 

TROPOspheric Monitoring Instrument (TROPOMI). Annual averaged NOx emissions range from < 50 

mol s-1 for Karachi, Ahmedabad, Mumbai, Lahore and Chennai, 50-100 mol s-1 for Manila and Jakarta, 

and > 100 mol s-1 for Delhi, Dhaka and Singapore. This is comparable to the range of emissions 

estimates for polluted cities in China. Bottom-up NOx emissions from a widely used publicly available 

global inventory exceed the top-down estimates for most cities. The discrepancy is >100% for Chennai, 

Singapore and Jakarta. It was only possible to estimate top-down monthly NOx estimates for 3 cities, 

due to issues with the line density fitting parameters at these fine temporal scales. These ranged from 

63 to 148 mol s-1 for Singapore (annual mean 114 mol s-1), 44 to 109 mol s-1 for Jakarta (68 mol s-1), 

and 26 to 67 mol s-1 for Manila (53 mol s-1). Month-to-month variability is absent in the bottom-up 

emission estimates. The discrepancies identified in this work need to be resolved to ensure the 

development of effective policies. 
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3.2 Introduction 

Nitrogen oxides (NOx ≡ NO2 + NO) contribute to formation of particulate nitrate and ground-level 

ozone (Luo et al., 2019; Sillman, 1999), thus degrading air quality, causing adverse impacts on human 

health and the environment, and altering climate (Grulke and Heath, 2020; Lelieveld et al., 2015; Yue 

et al., 2017). Control measures have been extensively implemented to reduce NO2 concentrations in 

cities in Europe, the US and China (Curier et al., 2014; de Foy et al., 2016; Silvern et al., 2019). In cities 

in other parts of the world, NO2 is increasing due to fast economic development and absence of effective 

air quality policies. A recent study using satellite observations of NO2 from the Ozone Monitoring 

Instrument (OMI) for 2005-2018 estimated that NO2 in rapidly developing cities in South and Southeast 

Asia are increasing by 0.8 to 7.7 % a-1, except for Jakarta, where NO2 decreased due to emission controls 

(Vohra et al., 2022). Urban populations across large cities in South and Southeast Asia are projected to 

increase in this century to over 5 million by 2100 (Hoornweg and Pope, 2017). Controls on NOx 

emissions are important to curtail adverse effects of air pollution on public health.  

Bottom-up emission inventories can provide estimates of NOx emissions based on activity data and 

emission factors. The Regional Emission inventory in Asia (REAS) and the MIX inventory are 

developed for estimating anthropogenic emissions in Asia by incorporating a collection of inventories 

over Asia, but these are limited to anthropogenic emissions of NOx and are subject to uncertainties 

greater than ±30% in South and Southeast Asia (Kurokawa and Ohara, 2020; Li et al., 2017). Global 

bottom-up emission inventories such as Community Emissions Data System (CEDS) (McDuffie et al., 

2020) for anthropogenic sources and  the version 4 of Global Fire Emissions Database (GFED4s) for 

biomass burning (Randerson et al., 2017) are also used in models to understand NOx emissions and air 

pollution in South and Southeast Asia. In addition to large uncertainties in these bottom-up emission 

estimates, it is challenging to keep bottom-up emission inventories up to date. 

Top-down estimates of NOx emissions using satellite observations of tropospheric NO2 vertical column 

densities (VCDs) have been extensively developed. Beirle et al. (2011) first proposed an exponentially 

modified Gaussian (EMG) approach to estimate NOx emissions from isolated high polluting cities using 
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tropospheric NO2 vertical column densities observed by OMI and wind data from meteorology 

reanalysis. In this approach, cities are treated as large point sources so that this method accounts for 

advection of the city plume. Beirle et al. (2011) derived NOx emissions from 9 NO2 hotspots around the 

world and found that derived NOx emissions are generally in good agreement with bottom-up emission 

inventories, but are higher by a factor of 3 for Riyadh, the capital of Saudi Arabia. Many studies have 

since adopted similar methods to estimate city NOx emissions (Ialongo et al., 2014; Laughner and Cohen, 

2019; Verstraeten et al., 2018; Xue et al., 2022). For example, Laughner and Cohen (2019) applied this 

method to OM NO2 in 30 cities in the US and found that changes in NOx lifetime are of the same order 

as changes in NOx emissions over the study periods. Their results suggest that change in NOx lifetime 

must be accounted for when relating NOx emissions and concentrations. These studies normally average 

long-term satellite NO2 observations in different wind direction sections and then estimate NOx 

emissions from the city under each wind direction. Valin et al. (2013) proposed a wind rotation 

technique which allows satellite data under different wind directions and from different days to be used 

together to estimate NOx emissions from the same source. These top-down estimates of NOx emissions 

from isolated cities provide an opportunity to evaluate the bottom-up emission inventories which have 

large uncertainties. This is especially valuable for a region like South and Southeast Asia, where NOx 

emissions are poorly understood and constraints from surface measurements are lacking due to missing 

routine monitoring.  

Here we use the wind rotation approach and tropospheric NO2 VCDs from the high resolution 

TROPOspheric Monitoring Instrument (TROPOMI) to estimate annual NOx emissions from cities in 

South and Southeast Asia for 2019 and compare these to bottom-up emissions calculated with the 

Harmonized Emissions Component (HEMCO) software. 

3.3 Data and Method 

TROPOMI is onboard the Copernicus Sentinel‐5P satellite launched into sun synchronous orbit on 13 

October 2017. It provides daily global observations of NO2 at 7 × 3.5 km2 at nadir before 6 August 2019 

and 5.5 × 3.5 km2 afterwards. Its overpass time is around 13:30 pm local time. Here we use Level-2 
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data from the recently reprocessed TROPOMI NO2 provided by the Sentinel-5P Products Algorithm 

Laboratory (S5P-PAL) system (https://data-portal.s5p-pal.com/; last acquired: 30 January 2022), as this 

uses the same retrieval algorithm and so provides a consistent data record. We only use high-quality 

data by removing data with quality flag < 0.75. This removes cloud-covered scenes, part of the scenes 

covered by snow/ice, errors and problematic retrievals.  

As a validation for our estimates in NOx lifetimes and emissions, we apply all the steps to Riyadh first, 

as it is the city for which this EMG approach is most reported (Beirle et al., 2011; Lange et al., 2022; 

Valin et al., 2013). We apply a physics-based oversampling algorithm (Sun et al., 2018) to the original 

TROPOMI NO2 pixel data to obtain gridded annual mean tropospheric NO2 VCDs at 0.05° × 0.05° (~5 

km). This oversampling method represents each satellite observation as a sensitivity distribution on the 

ground, instead of a point or a polygon. This sensitivity distribution can be determined by the spatial 

response function of each satellite sensor. A generalized 2-D super Gaussian function is proposed to 

characterize the spatial response functions of TROPOMI in the along- and across-track directions. Then 

these sensitivity distributions are mapped over uniform latitude-longitude grids and applied to weight 

the TROPOMI pixel by the area of overlap. 

We select 10 cities from 6 countries with isolated NO2 hotspots in a 4° × 4° domain (Figure 3.1), as is 

required by the EMG approach (Beirle et al., 2011). We estimate NOx emissions and lifetimes for each 

city using the EMG approach with the wind rotation technique following previous studies (Jin et al., 

2021; Lange et al., 2022; Laughner and Cohen, 2019). Figure 3.2 shows an example of the three steps 

to derive NOx emissions from Delhi. We first sample TROPOMI NO2 data around each selected city 

within a 4° × 4° domain (Figure 3.2.a). Then we take wind data (u and v components) from the ERA-5 

reanalysis product (https://cds.climate.copernicus.eu/cdsapp#!/home; last acquired: 18 March 2022) at 

13:00 local time each day to coincide with the TROPOMI overpass around 13:30 pm. The ERA-5 data 

are at 0.25° × 0.25° horizontal resolution. At each TROPOMI NO2 pixel, we compute the averaged 

wind speed and wind direction using data across layers below 900 hpa pressure levels to represent the 

wind conditions for the dispersion of NO2 plumes. Then we rotate each TROPOMI NO2 data along the 

city centre by the angle of the computed wind direction so that all the TROPOMI NO2 observations are 
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aligned to have the same “upwind-down” wind direction, which effectively show up as “North-South” 

direction on the map. The distance of each TROPOMI NO2 observation to the city centre is kept the 

same after rotation. After rotating each satellite pixel, we regrid them to obtain the average 

concentrations at a consistent resolution of 0.05° × 0.05° resolution (Figure 3.2.b). Based on the 

regridded data, we integrate the TROPOMI NO2 within 1° in the across-wind direction. This converts 

the 2D map of TROPOMI NO2 to a 1D observed NO2 line density (Figure 3.2.c). The observed NO2 

line density is then fitted using the EMG model following Laughner and Cohen (2019), which is based 

on the convolution of a Gaussian-shaped emission and an exponential decay function, following Eq. 

(1): 

F(x|a, x0, μx, σx, B) =  
a

2x0
exp (

μx

x0
+

σx
2

2x0
2 −

x

x0
) erfc (−

1

√2
[

x−μx

σx
−

σx

x0
]) + B    (1) 

where a, x0, µx, σx and B are fitting parameters. a represents the total amount of observed NO2 molecules 

in the domain, x0 represents the e-folding distance which describes the length scale of the NO2 decay, 

µx is the distance of the apparent source to the city centre, σx represents the Gaussian smoothing length 

scale and B represents the background NO2 concentrations. We follow Laughner and Cohen (2019) to 

provide the best guesses of these five parameters at the beginning of the fitting. Instead of conducting 

a fixed number of fittings used in Laughner and Cohen (2019), we keep the fit results as our best fit if 

the averaged relative changes in fitted NO2 are smaller than 0.1% of the previous iteration. The effective 

NO2 lifetime (τEMG) and the NOx emissions can be calculated using the fitted parameters a and x0 with 

input of averaged wind speeds in the domain, following Eqs. (2) and (3): 

𝜏𝐸𝑀𝐺 =
𝑥0

𝜔
            (2) 

𝐸𝐸𝑀𝐺 = 𝛾 ×
𝑎

𝜏𝐸𝑀𝐺
           (3) 

where w is the averaged wind speed over the domain used for integrating NO2, γ is the ratio of NOx to 

NO2 and is assumed to be a fixed value of 1.32 following Beirle et al. (2011). Beirle et al. (2011) 

reported that uncertainties exist in satellite NO2 (about 30%), the assumed NOx to NO2 ratio of 1.32 

(10%), the distance for integration across the wind direction (10%), the selection of wind data (30%) 
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and the representation of background NO2 (10%). Here we calculate the uncertainties of NOx emission 

estimates based on error propagation of the above factors. Previous studies using the EMG approach 

usually sample data over long-terms of multiple months or years. Here we first estimate annual NOx 

emissions from each city, then we test the ability of this approach in estimating monthly NOx emissions 

from each city.  

We use the standalone emissions-only version of HEMCO 3.0 

(https://doi.org/10.5281/zenodo.4984639; last accessed: 20 March 2022) (Lin et al., 2021) to 

calculate bottom-up NOx emissions from natural and anthropogenic sources over South and Southeast 

Asia at 0.25° × 0.3125° (latitude × longitude) covering 47 layers throughout the atmosphere. HEMCO 

is used here due to its capacity to compute emissions from a user-selected ensemble of emission 

inventories and algorithms. Here, we use global emission inventories due to lack of up-to-date nested 

emission inventories in this region for the year 2019. Emission sources include anthropogenic emissions 

from energy production, industry, transportation, residential, solvents, agriculture, waste and shipping 

from the CEDS at 0.5° × 0.5° (McDuffie et al., 2020), open biomass burning emissions from the 

GFED4s at 0.25° × 0.25° (Randerson et al., 2017), natural lightning and soil NOx emissions from 

resolution-independent offline emissions generated by HEMCO at 0.25° × 0.3125°. All these emission 

inventories are for 2019 in this study and emissions for all cities are taken from the same selection of 

emission inventories mentioned above. We use HEMCO to process the input emission inventories at 

varying spatial resolutions and calculate  the sum of NOx emissions at 0.25° × 0.3125° over the grids 

coincident with the extent of the urban area for each target city. City coordinate limits are identified 

using coordinate limits from Google maps. These are then compared to top-down emissions. 



87 

 

 

Figure 3.1: Annual mean TROPOMI tropospheric NO2 VCDs over South and Southeast Asia in 

2019. The ten selected cities are: (1) Karachi (Pakistan); (2) Ahmedabad (India); (3) Mumbai 

(India); (4) Lahore (Pakistan); (5) Delhi (India); (6) Chennai (India); (7) Dhaka (Bangladesh); (8) 

Singapore; (9) Jakarta (Indonesia) and (10) Manila (Philippines). 

3.4 TROPOMI NO2 in South and Southeast Asia 

Figure 3.1 shows the annual mean TROPOMI tropospheric NO2 VCDs in South and Southeast Asia in 

2019 oversampled at 0.05° × 0.05°. Background NO2 concentrations over the ocean are < 2×1015 

molecules cm-2. Pollution hotspots associated with cities are discernible at a number of cities. Those 

with very low surrounding NO2 concentrations compared to that in the city that are ideal for deriving 

NOx emissions using the wind rotation and EMG approach (Beirle et al., 2011; Valin et al., 2013) 

include Karachi and Lahore in Pakistan, Ahmedabad, Mumbai, Chennai in India, Dhaka from 

Bangladesh, Jakarta in Indonesia and Manila in the Philippines and the sovereign city Singapore. 

Annual mean NO2 VCDs in these cities range from 2.3-3.8 × 1015 molecules cm-2 in Manila, Chennai, 

Karachi, Ahmedabad and Mumbai to 4.3-5.7 × 1015 molecules cm-2 in Lahore, Delhi, Dhaka, Singapore 

and Jakarta. TROPOMI NO2 exhibits seasonality in these cities (Figure S3.1), which may suggest 

seasonality in emissions or in the lifetime and wind speeds that influence NO2 abundance. Monthly NO2 

in Dhaka is lowest (3.0-3.2 × 1015 molecules cm-2) in July and August and highest (6.6-9.2 × 1015 

molecules cm-2) in November, December and January. In Singapore, the highest monthly NO2 columns 
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are observed in March and April (7.4-9.2 × 1015 molecules cm-2). Monthly NO2 in Chennai and Manila 

show little variation throughout the year. The relative standard deviation of monthly NO2 are 16-18% 

in Manila and Chennai, and 23-44% in others. 

3.5 NOx emissions estimates from TROPOMI 

 

Figure 3.2: Derivation of NOx emissions for Delhi using wind rotation and the EMG fit method. 

The main steps in each panel are (a) grid TROPOMI NO2 to 0.05° × 0.05° using oversampling; 

(b) wind rotated and regridded TROPOMI NO2 regridded to 0.05° × 0.05° (two black lines which 

are 1° away from the city centre define the area for integration across the upwind-downwind 

direction); and (c) TROPOMI NO2 (red) and fit (blue) line densities within 1° of the city centre 

(black vertical lines in panel (b)). Values in panel (c) give the goodness of fit (R2), Mean Absolute 

Error (MAE), NOx lifetime (obtained with Eq. (2)), ERA-5 wind speed within the black vertical 

lines in panel (b), and NOx emissions (Eq. (3)).  

Our estimates of NOx emissions over Riyadh in 2019 are 163.3 mol s-1,  which is 12.5% less than the 

186.1 mol s-1 reported by Lange et al. (2022). The difference in the estimates is mostly because we use 

a NOx to NO2 ratio of 1.32, which is 6% lower than the 1.41 used by Lang et al. (2022). Another 

potential cause for the discrepancy is that they used data from 360 days between March 2018 and 

November 2020, while here we use data from all days in 2019. The TROPOMI PAL product is reported 

to observe higher tropospheric NO2 VCDs, mainly in wintertime and over polluted northern midlatitude 

regions (Eskes. et al., 2021). Here we used both products and yield consistent NOx emission estimates 

for Riyadh.  

Table 3.1 summarizes the NOx lifetimes, emissions and averaged wind speeds in the selected cities in 

South and Southeast Asia obtained with the wind rotation and EMG approach for the selected cities 

identified in Figure 3.1. We evaluate the skill of the EMG fit (Eq. (1)) using goodness-of-fit (R2) and 
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Mean Absolute Error (MAE). For all cities, the fit explains at least 92% of the variability in the data 

(R2 ≥ 0.92). The MAEs are of ~0 for all cities. Annual averaged NOx lifetimes, obtained from the EMG 

fit, are 3.1-8.2 hours across the selected cities, with the shortest estimated at Dhaka, Singapore and 

Delhi (3.1-3.3 hours) and highest at Chennai (8.2 hours). Annual averaged wind speeds are 2.5-5.5 m 

s-1 across the selected cities, with the lowest at Lahore (2.5 m s-1) and the highest at Manila (5.5 m s-1). 

No clear relationships between NOx lifetimes and wind speeds are found, as NOx lifetimes during 

daytime are related to the rate of loss of NOx, which is mainly via the reaction of the hydroxyl radical 

(OH) with NO2 to form nitric acid (HNO3). The relationships are nonlinear and depending on NOx 

concentration (Valin et al., 2013). The estimated annual NOx emissions range from 21.0±9.6 mol s-1 in 

Chennai to 123.6±56.6 mol s-1 in Dhaka. Annual averaged NOx emissions are below 50 mol s-1 from 

Karachi, Ahmedabad, Mumbai, Lahore and Chennai, between 50-100 mol s-1 from Manila and Jakarta, 

and over 100 mol s-1 from Delhi, Dhaka and Singapore. This is comparable to the range of emissions 

estimates for polluted cities in China (Wu et al., 2021). 

Table 3.1: Annual mean top-down NOx emissions and NOx lifetimes and ERA-5 reanalysis surface 

wind speeds of target cities in South and Southeast Asia. 

City NOx 

emissionsa 

NOx 

lifetime 

Wind 

speed 

R2 MAE 

Number b Name (Country) [mol s-1] [h] [m s-1]  [mol m-1] 

1 Karachi (Pakistan) 48.9 ± 22.4 4.1 4.8 0.99 0.0 

2 Ahmedabad (India) 26.1 ± 12.0 6.8 3.7 0.93 0.0 

3 Mumbai (India) 46.1 ± 21.1 4.3 3.7 0.96 0.0 

4 Lahore (Pakistan) 37.5 ± 17.2 5.3 2.5 0.93 0.0 

5 Delhi (India) 106.0 ± 48.6 3.3 3.3 0.98 0.0 

6 Chennai (India) 21.0 ± 9.6 8.2 5.0 0.96 0.0 

7 Dhaka (Bangladesh) 123.6 ± 56.6 3.1 3.1 1.00 0.0 

8 Singapore  113.8 ± 52.1 3.1 4.8 0.99 0.0 

9 Jakarta (Indonesia) 68.2 ± 31.3 7.2 3.9 0.92 0.0 

10 Manila (Philippines) 52.8 ± 24.2 4.6 5.5 0.93 0.0 

a Errors in annual mean NOx emissions are calculated by propagating errors in satellite NO2, the NOx to 

NO2 ratio, the distance for integration across the wind direction, the selection of wind data and the 

representation of background NO2 (see text for details). 
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b As given in Figure 3.1. 

 

Figure 3.3 compares our top-down annual NOx emissions to bottom-up emissions calculated with 

HEMCO. The major anthropogenic sources of NOx are fossil fuel combustion in sectors such as energy 

production, transportation and residential heating. Natural sources of NOx include lightning, biomass 

burning and soils. We analysed HEMCO emissions at each city, anthropogenic sources contribute to 

over 90% of NOx at all cities except Lahore, where 84% of NOx emissions are anthropogenic and 12% 

from soils. Bottom-up emissions for most cities exceed top-down values. Bottom-up NOx emissions are 

17-32% lower than the top-down estimates for Lahore and Dhaka, and but are 15-65% more than the 

top-down estimates for Karachi, Ahmedabad, Mumbai, Delhi, and Manila, and much more (>140%) 

for Chennai, Singapore and Jakarta. The largest discrepancies occur for Singapore and Jakarta, where 

the TROPOMI-based NOx emissions and HEMCO-based NOx emissions are 113.8 and 274.6 mol s-1 

for Singapore, and 68.2 and 327.9 mol s-1 for Jakarta. Beirle et al. (2011) used OMI NO2 from 2005-

2009 and reported ~100 mol s-1 for Singapore and found stable estimated NOx emissions throughout the 

year. Due to TROPOMI’s high data density and the stable NOx emissions throughout the year at 

Singapore, Lange et al. (2022) reported 94.5±11.5 mol s-1 of NOx emissions for Singapore using 

TROPOMI data from 24 days in 2018-2020. The difference between our estimates and those reported 

are partially due to the differences in sampling period and selection of wind data. The differences are 

within the uncertainties associated with the EMG approach. Both Beirle et al. (2011) and Lange et al. 

(2022) found overestimates in bottom-up emissions by ~50% when comparing their estimates to 

EDGAR emissions at 0.1° × 0.1° (Crippa et al., 2018). The large discrepancy between our estimates for 

Singapore and HEMCO is likely due to the overestimates in bottom-up emission inventories caused by 

errors in activity data and emission factors. This may be the case for Jakarta and other cities as well, 

but the large discrepancies in HEMCO estimates of NOx emissions for Jakarta is also likely because 

CEDS does not capture policy-driven decline in emissions in Jakarta of -2.0 % a-1 from 2005 to 2018 

as determined with OMI tropospheric NO2 VCDs. According to CEDS NOx emissions have increased 

by 4.7% a-1 (Vohra et al., 2022).  
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But vertical sensitivities of TROPOMI NO2 can also affect top-down NOx emission estimates for the 

selected cities. In the standard TROPOMI NO2 products, tropospheric NO2 columns are separated from 

the total NO2 columns based on a-priori vertical profiles of NO2 that are obtained from daily global 

model simulations (TM5-MP) at the coarse spatial resolution of 1° × 1° (Eskes et al., 2022). Since we 

sample TROPOMI NO2 over cities which normally cover areas that are much smaller than a 1° × 1° 

domain, using vertical profiles of NO2 at high spatial resolution and recompute TROPOMI NO2 

tropospheric VCDs may reduce the discrepancies between top-down and bottom-up emission estimates 

shown in Figure 3.3. As detailed in Eskes et al. (2022), this can be done using the averaging kernel, 

which equals to the altitude-dependent air-mass factor (AMF) divided by the total AMF (Eskes and 

Boersma, 2003). For example, Jin et al. (2021) replaced vertical profiles of NO2 from the standard 

TROPOMI NO2 product with those computed by NASA GEOS-CF simulations at 0.25° resolution to 

estimate NOx emissions from wildfires. 

 

Figure 3.3: Annual average NOx emissions derived from TROPOMI NO2 observations compared 

to bottom-up emission inventories. Data points for Singapore and Jakarta are marked, 

TROPOMI NOx emission estimates and emission inventories show the largest discrepancies at 

these two cities. The dashed line is 1:1 line. 
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We further exploit the large data density of TROPOMI to estimate monthly NOx emissions for most 

(>10 months) of the year, limited to Singapore, Jakarta and Manila. Monthly estimated NOx emissions, 

lifetimes and ERA-5 reanalysis wind speeds for these three cities are presented in Table S3.1. Data gaps, 

unrecognized NO2 peak near the city centre, and a second but smaller NO2 peak in the downwind side 

in the other cities results in too few successful retrievals of monthly emissions for fewer than 8 months. 

Previous studies have demonstrated that the EMG method works best for an ideal point source, as it is 

proposed to model the average outflow pattern of the NO2 tropospheric VCDs with a decay of the signal 

with distance from a single point source. The EMG method reflects transport and nonlinear effects of 

atmospheric chemistry (Beirle et al., 2011; Lange et al., 2022; Lu et al., 2015). With the applications of 

high resolution TROPOMI NO2 products, plumes from different point sources are more distinctive 

compared to those detected by OMI NO2. So, with TROPOMI NO2, this EMG method is expected to 

be more sensitive to the interference of nearby sources. One possible solution to reduce the interference 

of nearby sources is to discard TROPOMI NO2 observations from certain wind directions during the 

plume rotation process (Lu et al., 2015). Another possible solution to this is to regrid TROPOMI NO2 

to coarser spatial resolutions so that multiple neighbouring sources may be captured as one single source. 

Degrading the spatial resolution of TROPOMI NO2 can also fill some of the data gaps that result from 

cloud coverage and problematic retrievals. For those data gaps with observations in adjacent grids, they 

could be filled by interpolation. 

Figure 3.4 compares monthly NOx emissions at Singapore, Jakarta and Manila for 2019 from the top-

down approach and from HEMCO. Consistent with the discrepancies in annual NOx emissions, large 

discrepancies (> 100%) exist between monthly TROPOMI-based estimates and HEMCO for Singapore 

and Jakarta. In addition to differences in magnitudes of NOx emissions estimates using these two 

approaches, HEMCO shows small month-to-month variability (< 1.5% at Singapore and Jakarta, 7.6% 

at Manila) in NOx emission throughout the year at each city, while TROPOMI NOx emission estimates 

range from 63.2 to 148.2 mol s-1 for Singapore, 43.6 to 108.5 mol s-1 for Jakarta, and 25.7 to 67.4 mol 

s-1 for Manila. Previous studies and our findings have shown that annual NOx emissions based on 

TROPOMI are comparable to bottom-up emission inventories while our results also point out that 
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monthly TROPOMI-based NOx estimates have the potential advantage of representing seasonal 

variability of NOx emissions from a city. But future research is needed to resolve challenges of deriving 

monthly NOx emissions using TROPOMI discussed in this study. Figure S3.2 compares all the derived 

monthly NOx emissions from all the cities in this study to bottom-up emission estimates. Similar to 

Figure 3.3, the derived monthly NOx emissions are generally lower than bottom-up emissions. The 

largest discrepancies are observed for Singapore and Jakarta. 

NOx is an important precursor of PM2 5 and O3 pollution, large overestimates of NOx emissions will lead 

to misinterpretation of PM2 5 and O3 pollution formation pathways in this region. This hinders 

developing effective air quality policies to protect human health and climate as tropospheric O3 is also 

a greenhouse gas. 

 

Figure 3.4: Monthly top-down and bottom-up NOx emissions for Singapore, Jakarta and Manila. 

Points show bottom- up (filled circles) and top-down (filled triangles) emissions estimates for 

Singapore (red), Jakarta (blue), and Manila (green). 

3.6 Conclusions 

Here we provide top-down NOx emission estimates over 10 large cities in South and Southeast Asia in 

2019, as the region is developing rapidly, surface observations are sparse, and NOx is an important 

precursor of ozone and PM2 5 pollution. These were obtained by applying the EMG method and wind 

rotation technique to NO2 tropospheric VCDs from TROPOMI and wind fields from the ERA-5 
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meteorology reanalysis product. Highest NO2 concentrations are observed at Delhi, Dhaka, Singapore 

and Jakarta with the annual averaged oversampled TROPOMI NO2 greater than 4.9 × 1015 molecules 

cm-2  Annual averaged NOx lifetimes, obtained from the EMG fit, are 3.1-8.2 hours across the selected 

cities, with the shortest estimated at Dhaka, Singapore and Delhi (3.1-3.3 hours) and highest at Chennai 

(8.2 hours). Annual averaged NOx emissions are below 50 mol s-1 from Karachi, Ahmedabad, Mumbai, 

Lahore and Chennai, between 50-100 mol s-1 from Manila and Jakarta, and over 100 mol s-1 from Delhi, 

Dhaka and Singapore. The relative error from satellite NO2 observations, uncertainty in across-wind 

integration distance, selection of wind data, the NOx:NO2 ratio, and the choice of input background NO2 

concentration is 10%-30%. Bottom-up NOx emissions, mostly (>85%) anthropogenic, are 17-32% 

lower than the top-down estimates for Lahore and Dhaka, and but are 15-65% more than the top-down 

estimates for Karachi, Ahmedabad, Mumbai, Delhi, and Manila, and much more (>140%) for Chennai, 

Singapore and Jakarta. This suggests potential errors in the activity rates or emission factors in the 

commonly used bottom-up emission inventories and the use of coarse emission inventories for 

estimating NOx from cities in South and Southeast Asia. The ability of the top-down method to derive 

monthly NOx emissions for most (>10 months) of the year is limited to Singapore, Jakarta and Manila, 

due to gaps in TROPOMI coverage, an indistinct peak in NO2 relative to the background, and nearby 

seasonal NO2 hotspots for the other cities. Monthly top-down NOx estimates range from 63 to 148 mol 

s-1 for Singapore, 44 to 109 mol s-1 for Jakarta, and 26 to 67 mol s-1 for Manila, whereas there is no 

month-to-month variability in these bottom-up emission inventories. Discrepancies between top-down 

and bottom-up NOx emissions point to errors in understanding the sources that contribute to 

anthropogenic NOx sources and hinders development of effective policies. 
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3.8  Supplementary Information 

 

 

Figure S3.1: Variations of monthly averaged oversampled TROPOMI tropospheric NO2 VCD in 

urban areas of selected cities in 2019.  
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Figure S3.2: Monthly NOx emissions derived from TROPOMI NO2 observations compared to 

bottom-up emission inventories. The dashed line is 1:1 line. 
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Table S3.1: Monthly mean top-down NOx emissions and NOx lifetimes and ERA reanalysis 

surface wind speeds of Singapore, Jakarta and Manila in 2019. 

City Month 
NOx emissionsa 

[mol s-1] 

NOx lifetime 

[h] 

Wind speed 

[m s-1] 
R2 

 MAE 

[mol m-1] 

Singapore 1 148 ± 67.9 1.8 6.7 0.95  0.0 

 2 119.6 ± 54.8 2.3 5.4 0.96  0.0 

 3 133.99 ± 61.4 2.7 4.0 0.97  0.0 

 4 84.0 ± 38.5 5.1 2.5 0.97  0.0 

 5 79.1 ± 36.2 4.1 3.8 0.99  0.0 

 6 74.6 ± 34.2 5.2 5.2 0.96  0.0 

 7 77.8 ± 35.7 4.3 5.8 0.97  0.0 

 8 91.3 ± 41.8 3.4 6.8 0.97  0.0 

 9 120.3 ± 55.1 2.5 5.1 0.97  0.0 

 10 63.2 ± 29.0 6.1 2.5 0.95  0.0 

 11 133.4 ± 61.1 3.0 2.8 0.97  0.0 

 12 NA NA NA NA  NA 

Jakarta 1 108.5 ± 49.7 3.0 4.7 0.92  0.0 

 2 63.4 ± 29.1 5.2 3.4 0.95  0.0 

 3 82.9 ± 38.0 5.0 3.3 0.91  0.0 

 4 69.4 ± 31.8 7.4 3.0 0.94  0.0 

 5 43.6 ± 20.0 13.8 3.7 0.90  0.0 

 6 54.1 ± 24.8 11.3 3.6 0.80  0.0 

 7 76.6 ± 35.1 6.7 4.4 0.88  0.0 

 8 82.3 ± 37.7 7.0 4.5 0.84  0.0 

 9 78.7 ± 36.1 6.3 4.6 0.90  0.0 

 10 95.6 ± 43.8 5.5 4.1 0.95  0.0 

 11 80.1 ± 36.7 5.9 2.8 0.94  0.0 

 12 76.2 ± 34.9 6.2 2.7 0.86  0.0 

Manila 1 67.4 ± 30.9 4.5 9.2 0.98  0.0 

 2 47.3 ± 21.7 5.6 6.0 0.97  0.0 

 3 39.6 ± 18.1 6.7 4.5 0.96  0.0 

 4 36.8 ± 16.9 9.2 4.1 0.96  0.0 

 5 42.9 ± 19.7 6.3 2.7 0.93  0.0 
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 6 55.6 ± 25.5 5.7 4.7 0.96  0.0 

 7 67.2 ± 30.8 2.9 4.1 0.92  0.0 

 8 25.7 ± 11.8 6.6 8.2 0.77  0.0 

 9 55.6 ± 25.5 3.2 5.0 0.96  0.0 

 10 42.3 ± 19.4 5.0 4.7 0.95  0.0 

 11 58.8 ± 26.9 4.2 6.0 0.93  0.0 

 12 56.5 ± 25.9 4.5 7.5 0.97  0.0 

a Errors in annual mean NOx emissions are calculated by propagating errors in satellite NO2, the NOx to 

NO2 ratio, the distance for integration across the wind direction, the selection of wind data and the 

representation of background NO2 (see text for details). 
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CHAPTER 4:CHANGES IN SURFACE AIR QUALITY 

DURING COVID-19 LOCKDOWNS 

Statement of Author Contribution  

This chapter is a component of Shi et al. (2021) which has been previously published as a research 

article on Science Advances (see Appendix at the end of this thesis). In Shi et al. (2021), a random 

forest machine learning technique is used to interpret changes in surface air quality due to COVID 

lockdowns in 2020 in 11 cities worldwide.  

In this project, I downloaded hourly observations of surface air quality (i.e., NO, NO2, NOx, O3, CO, 

SO2, PM2 5, and PM10) from monitoring networks in the studied cities with contributions from co-

authors on this paper. I followed the official data manual to conduct quality control of the raw datasets 

to remove filled values or data with bad quality flags. I determined the site types (i.e., urban background, 

roadside and rural) based on the official data manual and Google Maps. Then I identified and excluded 

sites with temporal coverage less than 75% (only if there are other available sites), or those with 

potential problems. For example, some sites were relocated during the sampling period, and this caused 

a change in site type and introduced inconsistencies. After selecting the sites, I calculated site type 

averaged hourly surface air quality data for each species in each city. Then I conducted analysis of the 

observations that I prepared. I also conducted data visualisation to support development of this research. 

At the time of this research project was conducted, air quality data for New York and Los Angeles were 

not available from the official data platform held by US EPA. So data for New York and Los Angeles 

were collected from a third party data platform OpenAQ. I conducted a validation of OpenAQ data 

against the measurements from US EPA, in response to reviewers’ comments. Also, the surface air 

quality data for London were not yet verified by the Department for Environment, Food and Rural 

Affairs (DEFRA) at the time of this research project. I compared the data used in this paper against 

verified London data upon completion of the formal analysis. 
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I downloaded hourly meteorological observations of temperature, relative humidity, atmospheric 

pressure, wind speed, and wind direction for each selected city from the nearest meteorological 

observation site from the NOAA (National Oceanic and Atmospheric Administration) Integrated 

Surface Database (ISD) using the “worldmet” R package. Then I combined the prepared hourly air 

quality data with these hourly meteorological data and prepared them for use in the machine learning 

algorithm in the paper. In addition to air quality and meteorological data, I processed the mobility data 

from Google Maps for the period starting from 5 weeks before till 5 weeks after the lockdowns in 2020 

for each city. 

In this chapter, the selection of study cities and sites and interpretation of observed surface air quality 

are presented. Meteorological data were used only to train the machine learning model. So they are not 

analysed and not presented here. Some of the below text in this chapter is taken from Shi et al. (2021). 

Figures used in this chapter have not been previously published. 
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4.1 Abstract 

The COVID-19 pandemic led to global lockdowns in early 2020, which resulted a sudden reduction in 

human activities and associated air pollution emissions. Here we use surface observations of air quality 

from monitoring networks in 11 cities worldwide to investigate the surface air quality before, during 

and after the COVID-19 lockdowns. Our results show that after the lockdowns, observed NO2 levels 

decreased substantially in all the cities. The decrease ranges from -10.1±36.6% in London to -60.2±14.8% 

in Delhi at urban background sites and from -29.3±33.1% in Berlin to -53.5±18.9% in London at 

roadside sites. In contrast, an increase in observed O3 is found in all cities after the lockdowns, which 

ranges from 16.2±16.1% in Madrid to 166.5±60.5% in Wuhan at urban background sites and from 

+19.5±21.0% in Madrid to +155.6±83.2% in Milan at roadside sites. As a result, smaller changes were 

found for total gaseous oxidant (i.e., Ox = NO2+O3), which range from a decrease of -3.6±8.1% in New 

York to an increase of 27.6±9.9% in Berlin. Unlike observed NO2 and O3, there is not a clear pattern 

for changes in observed PM2 5, which range from -38.6±17.2% in Madrid to +152.9±165.0% in London 

at urban background sites, from -40.8±28.4% in Los Angeles to +107.6±148.5% in London at roadside 

sites, and from -34.2±26.8% in Delhi to +164.5±148.7% in London at rural sites. We then compare 

observations in 2020 to those in 2016-2019 during the equivalent periods, our results show that the 

observations of air quality alone cannot represent the changes in emissions due to COVID-19 

lockdowns as the impact of meteorology should be considered. 

4.2 Introduction 

In response to the outbreak of COVID-19 in early 2020, governments around the world implemented 

strict lockdown measures to contain COVID-19. This led to a sudden reduction in human activities and 

associated emissions. Many studies have explored the impacts of COVID-19 lockdowns on air quality. 

Observations of air quality from surface monitoring networks and satellite platforms have been used to 

report abrupt changes in surface air quality due to the strict lockdown measures. Liu et al. (2020) found 

a 48% drop in satellite observations of tropospheric NO2 columns over China. Lee et al. (2020) used 

surface measurements to report a 42% decrease in NO2 in the UK. However, a lot of studies only focus 

on a limited air pollutant species or over limited spatial coverage, hindering the comprehensive 
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interpretation of COVID-19 lockdowns on air quality (Grange et al., 2021; Hammer et al., 2021; He et 

al., 2021; Peralta et al., 2021). The chemical effects of COVID-19 on air quality are complex (Kroll et 

al., 2020). To investigate the changes in surface air quality due to the interventions caused by COVID-

19 lockdowns under a range of contrasting pollution environments, we select 11 worldwide cities as 

our focus in this study. These are Beijing and Wuhan in China, Milan and Rome in Italy, Madrid in 

Spain, Paris in France, Berlin in Germany, London in the UK, New York and Los Angeles in the US, 

and Delhi in India. Eight of these are capitals. Wuhan was the first city to report COVID-19 and 

implement lockdown measures. Milan is added because it is in northern Italy, which was one of the 

most affected areas by COVID-19. New York was the most affected city in the US, while Los Angeles 

is added because a greater decline in surface air pollution levels was observed (Schiermeier, 2020). All 

the selected cities were significantly affected by COVID-19 and implemented strict lockdowns to 

contain the COVID-19 pandemic in early 2020. Lockdowns were implemented from 23 January 2020 

in Wuhan, 25 January 2020 in Beijing and the entire China, 23 January 2020 in northern Italy, 13 March 

2020 in the US, 14 March 2020 in Spain, 17 March 2020 in France, 22 March 2020 in Germany, 23 

March 2020 in the UK, 25 March 2020 in India. 

4.3 Method and data 

For each city, site-level hourly surface observations of six criteria pollutants (i.e., NO2, O3, CO, SO2, 

PM2 5, and PM10) from December 2015 to May 2020 are downloaded from local or national reference 

monitoring networks. Where available, NO and NOx are also downloaded. Most data are downloaded 

from official sources (Table S4.1). Data for New York and Los Angeles in the US are downloaded from 

OpenAQ data platform (https://openaq.org/; last accessed: 14 September 2020), due to the delay in the 

official release of data by the US EPA. A validation of OpenAQ data against the measurements from 

US EPA (https://www.epa.gov/outdoor-air-quality-data; last accessed: 14 September 2020) is 

conducted after the analysis. The OpenAQ measurements are found to be highly consistent with official 

data released by US EPA (slope  = ~1 and intercept = ~0) (see the example in Figure S4.1). 
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In this study, we group surface air quality monitoring sites by three types (i.e., urban background, 

roadside and rural), based on available data information from the official sources or using the site 

coordinates in Google Maps. Normally, data are available at multiple monitoring sites for each site for 

each city. In the case that rural sites are not available, we find the nearby rural site that is closest to the 

city. For example, we use data from Chilbolton Observatory to represent rural background air quality 

for London. Quality control of raw datasets are first conducted following the official data manuals to 

remove data with bad quality flags. In addition, sites with temporal coverage less than 75% are removed 

if there are other available sites of the same type for the selected city. Some sites meet the requirement 

of temporal coverage in the past few years, but relocation of the sites have occurred. These sites are 

excluded from the analysis, as the relocation may have caused a change in site type and introduced 

inconsistencies. Details of data source, site type, and site code for all selected sites are summarized in 

Table S4.1. Multiple years of air quality data are downloaded here for analysing observed air quality 

around the COVID-19 lockdowns in 2020, but also in equivalent periods in previous years when there 

were no lockdowns. Another motivation of using multiple years of data is to train the random forest 

machine learning model that is used in Shi et al. (2021).  

Although surface sites are classified to report air quality under different environment (i.e., urban 

background, roadside and rural), there are still variabilities in observations from sites of the same type 

within the same city. Here we average the observations from sites of the same site type within each city 

to reduce uncertainties caused by a single site. In cases that only one site is available, the observations 

may be subject to nearby emission sources. 

The percentage change (P) in the observed concentrations of air pollutants using the following equation: 

𝑃 = (𝐶𝑖 − 𝐶) 𝐶 × 100%⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (1) 

where C is the averaged concentration in the 2nd-3rd weeks before the lockdown date or equivalent, Ci 

is the average concentrations in the ith day (from 1st to 28th day) starting in the second week after the 

lockdown start date for each city and for each year. The week immediately before and after the 

lockdown date was considered a transition period so excluded in the calculations.  The transition period 
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may have started earlier than the announced lockdown date such as London. But this is highly uncertain 

for all the selected cities. For consistency, here we applied the same Eq. 1 for calculation for all cities. 

4.4 Results and discussions 

4.4.1 Changes in observed NO2, O3 and Ox 

Figure 4.1 shows the changes in observed daily concentrations of NO2 in early 2020 at all site types for 

each city. The dashed orange line in each timeseries plot represents the start of lockdown at each city. 

The daily urban background NO2 correlates well (r > 0.87 for all cities, except r = 0.54 for London) and 

is 2-51% lower than daily roadside NO2 for most of the cities, except for New York, where urban 

background NO2 is 1% higher than roadside NO2. The selected cities have varying observed NO2 levels. 

Based on the averaged NO2 during the period starting from 3 weeks before the lockdowns till 5 weeks 

after the start of the lockdowns, the highest urban background and roadside NO2 are observed at Milan 

(45.1 µg m-3
 for urban background; 53.7 µg m-3

 for roadside), while the lowest urban background and 

roadside NO2 are observed at Madrid (21.2 µg m-3
 for roadside; 26.8 µg m-3

 for roadside). Daily 

observed NO2 are highly variable during the whole time period in early 2020. High daily NO2 pollutions 

were observed even after the lockdowns in cities such as Beijing, Wuhan and Paris. In terms of averaged 

percentage change, observed urban background NO2 decreased substantially, with P ranging from -

10.1±36.6% in London to -60.2±14.8% in Delhi (Table S4.2). Observed roadside NO2 also decreased 

significantly, with P ranging from -29.3±33.1% in Berlin to -53.5±18.9% in London. Observed rural 

NO2 decreased in most cities, but increased in Paris (P = +99.2±66.7%) and London (P = 

+115.8±90.2%). 
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Figure 4.1: Observed daily NO2 concentrations in each selected cities before and after the 

lockdown start dates or equivalent in early 2020. Data for all available site types (i.e., urban 

background (red), roadside (blue) and rural (green)) are provided for each city. The orange 

dashed line in each plot represents the start of the lockdowns for each city. 
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Figure 4.2: Observed daily O3 concentrations in each selected cities before and after the lockdown 

start dates or equivalent in early 2020. Data for all available site types (i.e., urban background 

(red), roadside (blue) and rural (green)) are provided for each city. The orange dashed line in 

each plot represents the start of the lockdowns for each city. 

Figure 4.2 shows the changes in observed daily concentrations of O3 in early 2020 at all site types for 

each city. Due to a longer lifetime of O3 of a few days, daily observed O3 are consistent at all site types 

in most cities. The roadside O3 is lower than urban background due to the titration of O3 by NO that is 

emitted from vehicles (Sillman, 1999). In contrast to observed NO2, observed O3 increased at all sites 

in all cities, but with varying magnitudes. For the urban background O3, the highest increase is observed 

at Wuhan (P = 166.5±60.5%), the lowest increase is observed at Madrid (P = 16.2±16.1%). For roadside 
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O3, highest increase is observed at Milan (P = +155.6±83.2%) and the lowest increase is at Madrid (P 

= +19.5±21.0%). The increase in rural O3 ranges from 0.2±13.3% at Madrid to 102.3±43.4% at Wuhan. 

 

Figure 4.3: Observed daily Ox concentrations in each selected cities before and after the lockdown 

start dates or equivalent in early 2020. Data for all available site types (i.e., urban background 

(red), roadside (blue) and rural (green)) are provided for each city. The orange dashed line in 

each plot represents the start of lockdowns for each city. 

Due to the combined effects of reduction in observed NO2 and enhancements in observed O3, the 

observed total gaseous oxidant (Ox = NO2 + O3) remained relatively stable compared to changes in 

observed NO2 and O3. Figure 4.3 shows the daily observed Ox in each city in early 2020. After the 

lockdowns, percentage changes in observed Ox at the urban background range from a decrease of -

5.7±9.3% at Los Angeles to an increase of 27.6±9.9% at Berlin. The magnitudes of changes in observed 
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Ox at roadside are similar, ranging from -11.5±8.2% at Los Angeles to 23.5±10.5% at Berlin. However, 

most rural sites show increases of observed Ox up to 34.9±13.3% at Berlin. 

As reported here, dramatic changes in observed NO2 and O3 are found after the lockdowns in 2020. 

However, these observed changes cannot be used to represent the actual changes in NO2 and O3 due to 

the lockdowns in 2020. Other factors such as meteorology and nonlinear chemistry contribute to the 

nonlinear relationships between emissions and concentrations of air pollutants. Here we conduct the 

same analysis for the observations from previous years when there were no lockdowns. Results show 

that dramatic decreases in NO2 can also occur during the equivalent period in many of the selected cities. 

For example, during the equivalent periods in 2016-2019, observed NO2 at the urban background sites 

dropped by an average of -32.3±40.6% at Beijing, -26.7±44.6% at Madrid, -20.5±24.5% at Milan. 

Accordingly, observed O3 at urban sites increased by an average of 70.5±60.0% at Beijing, 28.3±35.9% 

at Madrid and 225.8±204.3% at Milan. Similar patterns are observed for roadside sites and rural sites. 

In addition, we conduct the reduced major axis regression (Ayers, 2001) to compare observed NO2 and 

observed O3 at all site types from all cities. The data are divided into three periods, before, during and 

after the lockdowns. Figure 4.4 shows the comparison of observed NO2 and O3 in each year in 2018-

2020. The results show that in the equivalent periods in 2018-2020, the relationships between observed 

NO2 and observed O3 are consistent. In each year, the observed NO2 and observed O3 are highly 

correlated (R2 > 0.5). The regression slopes show little differences from year to year (-0.81 in 2018, -

0.78 in 2019 and -0.87 in 2020), the intercepts are also consistent (+75.82 in 2018, + 75.93 in 2019 and 

++73.57 in 2020). The results show that relationships between observed NO2 and observed O3 are not 

affected by COVID-19 lockdowns. So the observed NO2 and O3 cannot be used directly to explain the 

impact of COVID-19 lockdowns on air quality in early 2020. 
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Figure 4.4: Averaged concentrations of NO2 and O3 before, during and after the lockdown start 

dates or equivalent in 2020 vs 2018 and 2019. Data are divided to three periods (“pre” for 2-5 

weeks before the lockdown start, “transition” for the 2 weeks during the lockdowns and “after” 

for 2-5 weeks after the lockdown start.) 

4.4.2 Observed changes in PM2.5 and PM10 

Figure 4.5 shows the changes in daily PM2.5 in early 2020. Berlin and Milan are not included 

as there were no PM2.5 measurements available at the time of research. The selected cities have 

varying PM2.5 levels. Daily PM2.5 can exceed 200 µg m-3 in polluted cities such as Beijing and 

Delhi, while they are normally below 60 µg m-3 in other cities. There are no clear patterns of 

observed PM2.5 after lockdowns. High PM2.5 episodes even occurred after the lockdowns in 

London and Paris. The P values vary from -38.6±17.2% in Madrid to +152.9±165.0% in London at 

urban background sites, from -40.8±28.4% in Los Angeles to +107.6±148.5% in London at roadside 

sites, and from -34.2±26.8% in Delhi to +164.5±148.7% in London at rural sites. 
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Figure 4.5: Observed daily PM2.5 concentrations in each selected cities before and after the 

lockdown start dates or equivalent in early 2020. Data for all available site types (i.e., urban 

background (red), roadside (blue), and rural (green)) are provided for each city. The orange 

dashed line in each plot represents the start of the lockdowns for each city. 

4.5 Conclusions 

As a result of the COVID-19 pandemic outbreak, governments around the world implemented strict 

lockdown measures to contain COVID-19. This led to a sudden reduction in human activities and 

associated air pollution emissions. Here we use observations of air quality from surface monitoring 

networks in 11 cities worldwide to investigate the changes in surface air quality due to COVID-19 
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lockdown measures. We group the monitoring sites by urban background, roadside and rural sites in 

each city. Our results show that after the lockdowns, observed NO2 levels decreased substantially at 

urban background and roadside sites in all the cities. The decrease in observed NO2 ranges from -

10.1±36.6% in London to -60.2±14.8% in Delhi at urban background sites and from -29.3±33.1% in 

Berlin to -53.5±18.9% in London at roadside sites. In contrast, observed O3 increased in all cities after 

the lockdowns, the observed increase ranges from 16.2±16.1% in Madrid to 166.5±60.5% in Wuhan at 

urban background sites and from +19.5±21.0% in Madrid to +155.6±83.2% in Milan at roadside sites. 

As a result, little changes were observed for total gaseous oxidant (i.e., Ox = NO2+O3), which range 

from a decrease of -3.6±8.1% in New York to an increase of 27.6±9.9% in Berlin. Unlike observed NO2 

and O3, there is not a clear pattern of changes in observed PM2 5, which range from -38.6±17.2% in 

Madrid to +152.9±165.0% in London at urban background sites, from -40.8±28.4% in Los Angeles to 

+107.6±148.5% in London at roadside sites, and from -34.2±26.8% in Delhi to +164.5±148.7% in 

London at rural sites. But by comparing observations in 2020 to those in 2016-2019 during the 

equivalent periods, our results show that the observations of air quality alone cannot represent the 

changes in emissions due to COVID-19 lockdowns as the impact of meteorology should be considered. 
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4.7 Supplementary Information 

 

Figure S4.1: Validation of hourly NO2 from OpenAQ against US EPA measurements.  Sites used 

here are from Los Angeles. 
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Table S4.1: Site selection and data sources. 

City Data 

source 

Weblink Site type Site name (or Site code) Quality assurance 

Beijing Official zx.bjmemc.com.cn/ Urban 

background 

“Dongsi", "Tiantan", "Guanyuan", "Wanshouxigong", "Aotizhongxin", "Nongzhanguan", 

"Wanliu", "Beibuxincun", "Zhiwuyuan", "Fengtaihuayuan", "Yungang", "Gucheng"  

Officially 

validated 

   Roadside "Qianmen", Yongdingmenbei", "Xizhimenbei", "Nansanhuan", Dongsihuan"  

   Rural "Fangshan", "Daxing", "Yizhuang", "Tongzhou", "Shunyi", "Chuangping", "Menkougou", 

"Pinggu", "Huairou", "Miyun", "Yanqing"  

Wuhan Official http://106.37.208.233:2

0035/ 

Urban 

background 

"1325A","1326A","1327A","1328A","1329A","1330A","1331A","1332A","1333A"  Officially 

validated 

   Rural "1334A"  

London Official https://uk-

air.defra.gov.uk/ 

data/data_selector_serv

ice?show=auto&submit

=Reset&f_limit_was=1 

Urban 

background 

"London Bloomsbury", "London Haringey Priory Park South", "London N Kensington", 

"London Teddington Bushy Park"  

Official validated 

  Roadside "London Marylebone Road"  

  Rural "Chilbolton Observatory"  

Madrid Official http://datos.comunidad.

madrid/catalogo/dataset

/calidad_aire_datoshist

orico 

Urban 

background 

"28007004"  Officially 

validated 

  Roadside "28065014", "28074007"  

  Rural "28016001", "28067001", "28102001", "28133002", "28171001"  

Rome Official http://www.arpalazio n

et/main/aria/sci/annoin

corso/chimici.php 

Urban 

background 

"2","8","15","39","48","49","56"  Officially 

validated 

  Roadside "3", "5", "45", "47", "55", "83", "84", "85"  

  Rural "14","40"  

Milan Official https://www.dati.lomba

rdia.it/browse?q=Dati+

sensori+aria&sortBy=r

elevance&page=1 

Urban 

background 

"5517", "5520", "5534", "5547", "5549", "5619", "5630", "5631", "5646", "5710", "5717", 

"5718", "5825", "5826", "5832", "6300", "6324", "6326", "6346", "6364", "10278", "10279", 

"10280", "10282"  

Officially 

validated 

  Roadside "5504", "5507", "5531",  "5532",  "5542",  "5551",  "5609",  "5725",  "5812",  "5823",  

"5827",  "5834",  "5835",  "6276",  "6320",  "6328",  "6354",  "6356",  "6366", "9999", 

"10001", "10002" 

  Rural "5548", "5554", "5707", "5721", "5814", "6288", "6338" 

Berlin Official https://luftdaten.berlin.

de/lqi 

Urban 

background 

"042 Neukolln"  Officially 

validated 

  Roadside "174 Frankfurter Allee"  

  Rural "032 Grunewald"  
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Paris Official https://www.airparif.as

so.fr/en/telechargement

/telechargement-station 

Urban 

background 

"ARG", "AUB", "BOB", "CERGY", "CHAMP", "DEF", "EVRY", "GEN", "LOGNES", 

"MONTG", "NEUIL", "NOGENT", "PA07", "PA12", "PA13", "PA15L", "PA18", "STDEN", 

"VILLEM", "VITRY" 

Officially 

validated 

  Roadside "A1", "AUT", "BASCH", "BONAP", "BP_EST", "CELES", "ELYS", "HAUS", "OPERA", 

"RD934", "RN2", "RN6","SOULT" 

  Rural "RUR-E", "RUR-NE", "RUR-NO", "RUR-SE", "RUR-SO", "RUR_N", "RUR_S" 

New York OpenAQ* https://openaq.org/#/?_

k=etobqa 

Urban 

background 

"Bayonne", "Newark Firehouse" Data originated from 

government- and 

research-grade 

sources, and 

validated with official 

sources  

 

   Roadside "Fort Lee Near Road" 

   Rural "Chester", "Flemington", "Rutgers University" 

Los Angeles OpenAQ https://openaq.org/#/?_

k=etobqa 

Urban 

background 

"Compton", "Lancaster-Division" 

   Roadside "Los Angeles - N. Mai" 

   Rural "Glendora - Laurel", "LAX-Hastings" 

Delhi Official https://app.cpcbccr.com

/ccr/#/caa 

qm-dashboard-

all/caaqm-landing 

Urban 

background 

"Nehru Nagar"  

 

Officially 

validated 

  Rural "Sonia Vihar", "Sri Aurobindo Marg"  

* OpenAQ data are from official sources although they are not necessarily validated before being released. We evaluated the officially released air quality data from Los Angeles (after the data 72 

analyses in this study) with OpenAQ data; they are highly correlated (both slope and correlation coefficient are either equal to or close to 1). This demonstrates that the sources of data are reliable



120 

 

Table S4.2: Percentage changes in observed air pollutant concentrations (2nd-5th weeks after the lockdown began vs. 2nd-3rd weeks before the lockdown 

start dates). 

 Beijing Wuhan Milan Rome Madrid London Paris Berlin New York Los 

Angeles 

Delhi 

Urban background           

NO N.A. N.A. N.A. -81.1±12.5 -74.5±8.5 -53.9±38.9 N.A. -39.2±61.8 N.A. N.A. -78.0±13.3 

NO2 -40.5±33.2 -47.3±17.4 -35.1±23.3 -42.2±17.3 -49.0±20.4 -10.1±36.6 -29.8±27.0 -28.1±34.2 -42.4±26.2 -49.5±21.2 -60.2±14.8 

NOx N.A. N.A. -56.7±18.4 -60.1±14.4 -57.3±15.7 -23.3±33.5 N.A. -30.0±37.0 N.A. N.A. -68.8±12.8 

O3 79.6±48.5 166.5±60.5 93.9±65.3 66.1±30.7 16.2±16.1 26.4±20.3 36.1±16.5 57.8±19.8 23.6±24.8 25.9±14.4 86.4±35.8 

Ox 2.3±18.3 21.3±25.2 0.6±11.1 6.0±10.7 -1.6±10.3 14.6±10.4 14.0±11.5 27.6±9.9 -3.6±8.1 -5.7±9.3 11.5±12.8 

CO 14.5±80.7 -16.3±17.9 -27.9±16.0 N.A. -60.9±10.1 -19.8±16.0 N.A. N.A. -27.6±24.2 -55.1±20.3 -28.3±25.3 

SO2 -24.9±44.4 24.3±35.6 -1.9±7.4 -17.4±43.5 -48.2±4.7 -31.0±18.3 90.6±94.6 N.A. N.A. N.A. -53.3±46.0 

PM2 5 19.2±108.6 -27.7±37.1 N.A. -30.8±37.9 -38.6±17.2 152.9±165.0 116.0±112.7 N.A. -30.7±33.0 -33.3±27.8 -19.1±30.3 

PM10 7.8±81.0 -29.9±32.2 N.A. -23.8±29.1 -54.1±18.9 116.5±110.3 67.0±75.6 35.3±49.8 N.A. -53.6±36.9 -18.6±30.8 

Roadside           

NO N.A. N.A. N.A. -71.8±15.4 -81.5±12.7 -87.6±7.1 N.A. -53.8±36.0 N.A. N.A. N.A. 

NO2 -30.8±35.5 N.A. -38.7±21.9 -41.4±17.4 -46.0±20.1 -53.5±18.9 -34.8±23.3 -29.3±33.1 -37.3±25.9 -50.3±19.7 N.A. 

NOx N.A. N.A. -52.8±20.8 -57.6±15.6 -65.0±13.4 -74.4±11.0 N.A. -41.3±33.8 N.A. N.A. N.A. 

O3 81.0±67.9 N.A. 155.6±83.2 20.7±11.2 19.5±21.0 134.7±49.8 N.A. 79.4±28.1 N.A. 27.6±19.0 N.A. 

Ox -2.6±18.2 N.A. 0.6±12.3 -5.4±7.3 -4.8±11.2 -6.1±8.6 N.A. 23.5±10.5 N.A. -11.5±8.2 N.A. 

CO 9.9±76.1 N.A. -28.6±16.0 -39.3±11.4 -14.5±28.3 N.A. N.A. -23.9±16.3 -22.0±23.7 N.A. N.A. 

SO2 -25.4±39.0 N.A. N.A. N.A. -4.1±4.5 -65.9±14.9 N.A. 1.7±75.9 N.A. N.A. N.A. 

PM2 5 3.4±94.6 N.A. N.A. -17.9±41.8 N.A. 107.6±148.5 45.6±69.9 N.A. -30.0±49.9 -40.8±28.4 N.A. 

PM10 -5.4±70.1 N.A. -40.0±21.2 -22.8±25.9 -61.8±9.5 48.4±74.4 25.7±47.4 21.6±48.7 N.A. -48.5±23.8 N.A. 

Rural           

NO N.A. N.A. N.A. -52.1±33.5 -34.7±3.5 161.4±66.5 N.A. -74.5±24.0 N.A. N.A. -72.4±15.8 

NO2 -41.7±28.2 -64.8±18.3 -33.9±19.9 -46.1±22.0 -50.7±9.5 115.8±90.2 99.2±66.7 -25.0±33.9 -40.2±37.6 -47.8±21.7 -43.1±21.0 

NOx N.A. N.A. -51.7±15.4 -54.1±19.8 -45.9±8.6 124.2±82.4 N.A. -29.9±32.0 N.A. N.A. -52.2±17.5 

O3 76.3±34.8 102.3±43.4 75.5±42.6 29.6±13.8 0.2±13.3 4.2±14.6 16.8±14.2 47.6±14.5 7.0±14.4 5.8±9.9 N.A. 

Ox 11.9±13.0 23.3±25.9 13.9±13.1 16.2±11.5 -4.2±12.4 11.2±14.9 20.3±13.5 34.9±13.3 0.6±9.2 -6.8±8.8 N.A. 

CO 9.1±69.7 -24.6±18.1 -12.7±16.5 N.A. -22.7±6.0 N.A. N.A. N.A. N.A. -31.2±12.9 -11.1±33.6 

SO2 -21.5±37.4 2.4±23.7 N.A. 38.6±85.5 0.8±5.3 326.1±129.7 N.A. N.A. N.A. N.A. 4.4±27.0 

PM2 5 9.7±86.3 -14.3±43.4 N.A. -0.1±61.6 -23.7±20.9 164.5±148.7 136.8±144.5 N.A. -28.0±28.4 -13.3±27.0 -34.2±26.8 

PM10 6.0±70.2 -26.8±34.2 N.A. 5.6±55.0 -57.3±13.4 161.5±121.9 93.1±90.0 34.0±43.8 N.A. -34.5±35.2 -22.5±23.9 

Note: N.A.: data not available.
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CHAPTER 5: SYNTHESIS 

5.1 Summary and Conclusions 

Observations of air quality have been extensively used to assess compliance with air quality standards, 

and to understand trends in air quality, effectiveness of air quality policies and impacts of air pollution 

on human health. But observations of air quality are not good indicators of emission changes due to 

limited spatial or temporal coverage, and the non-linearity between changes in observations of air 

quality and changes in emissions. Meteorological conditions such as wind speeds, boundary layer 

heights, and relative humidity are also important factors affecting the accumulation and dispersion of 

surface air pollution at local to regional scale. Effective air quality policy is hindered by inaccurate 

estimates of precursor emissions, unvalidated, sparse or absent monitoring networks, and complex 

causes of air pollution. The main objective of this thesis was to use a combination of surface and satellite 

observations and a chemical transport model to interpret changes in anthropogenic emissions underlying 

abrupt changes in observed air quality in time and space at local to regional scales. Findings in this 

thesis offer guidance on developing effective emission control measures to reduce pollution and protect 

human health.  

This thesis focused on three key research gaps identified in Chapter 1: 

• Characterising the true efficacy of strict emission controls in addressing PM2 5 pollution in and 

around the Beijing-Tianjin-Hebei region in northern China in autumn-winter 2017/2018. This 

approach is now adopted in many regions in China, despite limited assessment of the relative 

contribution of emissions reductions and other factors like meteorology that is necessary for 

successful implementation of these control measures elsewhere. 

• Estimating NOx emissions in 10 large cities in South and Southeast Asia and assessing under-

constrained bottom-up emission inventories using the now widely adopted wind rotation and 

EMG fit method with TROPOMI tropospheric NO2 columns. 
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• Gaining insight into complex atmospheric processes affecting 11 global PM2 5, NOx and O3 

pollution hotspots using surface observations during abrupt changes in anthropogenic 

emissions during COVID-19 lockdowns in response to the outbreak of COVID-19. 

Chapter 2 interpreted the contribution of autumn-winter emission controls to air quality improvements 

in and around the Beijing-Tianjin-Hebei region (BTH) in autumn-winter 2017/2018. Surface 

observations of air quality from China National Environmental Monitoring Network (CNEMN) and 

local Beijing Municipal Environmental Monitoring Network (BJMEMN) were evaluated against 

independent measurements from the intensive Atmospheric Pollution & Human Health in a Chinese 

Megacity (APHH) campaign in Beijing in November-December 2016. PM2 5 and trace gases (NO2, SO2 

and CO) from the surface networks are temporally consistent with independent measurements (r > 0.9 

for PM2 5 and r > 0.7 for gases). Any discrepancies are mostly due to spatial gradients in pollution 

sources in the urban environment and known instrument interferences. Results from the surface 

networks in BTH show that PM2 5 decreased by 29% from 103 to 74 µg m-3 in the control period relative 

to the previous year, exceeding the regional target of 15%. Large underestimates in NOx (by 50%), CO 

(>100%), and point sources of SO2 (>100%) in the monthly anthropogenic emissions from the Multi-

resolution Emission Inventory for China (MEIC) were addressed with constraints from surface 

measurements of air quality and the GEOS-Chem model. The model with scaled MEIC emissions 

reproduces the observed spatial distribution in PM2 5 (r = 0.68). Despite a 15% positive bias in modelled 

total PM2 5 and biases in the modelled PM2 5 components organic aerosol, nitrate, and sulfate, the model 

simulates the observed relative decline in PM2 5 in BTH. According to the model, emissions in BTH 

declined by 0.27 Tg NOx as NO, 0.66 Tg SO2, 70 Gg OC, 50 Gg BC, and 9.7 Tg CO. These account 

for less than half (at most 43%) the decline in total PM2 5 and alone would not achieve the PM2 5 

reduction targets. Most (57%) of the decline in PM2 5 was due to interannual variability in 

meteorological factors during the emission control period. Specifically, these included a deeper 

planetary boundary layer and stronger winds that enhanced dilution and dispersion of pollution, and 

lower relative humidity that reduced formation of secondary inorganic aerosols. The ability to achieve 

air pollution reduction targets is an insufficient measure of the success of emission controls. The relative 
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role of emissions reductions and other influential factors like meteorology should factor into decisions 

to extend similar emission control measures to other regions.     

Chapter 3 provides top-down NOx emission estimates over 10 large cities in South and Southeast Asia 

in 2019, as the region is developing rapidly, surface observations are sparse, and NOx is an important 

precursor of ozone and PM2 5 pollution. These were obtained by applying the EMG method and wind 

rotation technique to NO2 tropospheric VCDs from TROPOMI and wind fields from the ERA5 

meteorology reanalysis product. Highest NO2 concentrations are observed at Delhi, Dhaka, Singapore 

and Jakarta with the annual averaged oversampled TROPOMI NO2 greater than 4.9 × 1015 molec. Cm-

2  Annual averaged NOx lifetimes, obtained from the EMG fit, are 3.1-8.2 hours across the selected 

cities, with the shortest estimated at Dhaka, Singapore and Delhi (3.1-3.3 hours) and highest at Chennai 

(8.2 hours). Annual averaged NOx emissions are below 50 mol s-1 from Karachi, Ahmedabad, Mumbai, 

Lahore and Chennai, between 50-100 mol s-1 from Manila and Jakarta, and over 100 mol s-1 from Delhi, 

Dhaka and Singapore. The relative error from satellite NO2 observations, uncertainty in across-wind 

integration distance, selection of wind data, the NOx:NO2 ratio, and the choice of input background NO2 

concentration is 10%-30%. Bottom-up NOx emissions, mostly (>85%) anthropogenic, are 17-32% 

lower than the top-down estimates for Lahore and Dhaka, and but are 15-65% more than the top-down 

estimates for Karachi, Ahmedabad, Mumbai, Delhi, and Manila, and much more (>140%) for Chennai, 

Singapore and Jakarta. This suggests potential errors in the activity rates or emission factors in the 

commonly used bottom-up emission inventories and the use of coarse emission inventories for 

estimating NOx from cities in South and Southeast Asia. The ability of the top-down method to derive 

monthly NOx emissions for most (>10 months) of the year is limited to Singapore, Jakarta and Manila, 

due to gaps in TROPOMI coverage, an indistinct peak in NO2 relative to the background, and nearby 

seasonal NO2 hotspots for the other cities. Monthly top-down NOx estimates range from 63 to 148 mol 

s-1 for Singapore, 44 to 109 mol s-1 for Jakarta, and 26 to 67 mol s-1 for Manila, whereas there is no 

month-to-month variability in these bottom-up emission inventories. Discrepancies between top-down 

and bottom-up NOx emissions point to errors in understanding the sources that contribute to 

anthropogenic NOx sources and hinders development of effective policies. 
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Chapter 4 investigates surface observations of air quality in 11 cities worldwide before, during and after 

the COVID-19 lockdowns in 2020. Measurements of six criteria air pollutants (i.e., NO2, O3, CO, SO2, 

PM2 5 and PM10), auxiliary pollutants (NO and NOx), and the total gaseous oxidant (Ox) were analysed 

at urban background, roadside and rural sites in each city. Varying patterns were observed 

concentrations of these species. Observed NO2 decreased substantially at urban background and 

roadside sites in all the cities, by 10.1-60.2% at urban background sites, and by 29.3-53.5% at roadside 

sites. In contrast, observed O3 increased in all cities after the lockdowns, by 16.2-166.5% at urban 

background sites and by 19.5-155.6% at roadside sites. As a result, little changes were observed for Ox, 

which range from a decrease of -3.6% in New York to an increase of 27.6% in Berlin. Unlike observed 

NO2 and O3, there is not a clear pattern for PM2 5. The percentage changes in observed PM2 5 are -38.6-

152.9% at urban background sites, -40.8-107.6% at roadside sites, and -34.2-164.5% at rural sites. But 

by comparing observations in 2020 to those in 2016-2019 during the equivalent periods, results in this 

chapter show that the observations of air quality alone cannot represent the changes in emissions due to 

COVID-19 lockdowns as the impact of meteorology should be considered. 

This thesis integrated observations from surface monitoring networks, field campaigns and the 

TROPOMI satellite instrument. Observations of air quality, emission inventories, and meteorological 

reanalysis were used with a range of techniques including the GEOS-Chem chemical transport model, 

the oversampling technique, the EMG method and wind rotation technique. Findings in this thesis 

demonstrated that observations of air quality alone cannot be used to fully assess the compliance to air 

quality standards or air quality targets. The necessity of interpreting the relative role of emissions and 

meteorology on observed air quality is demonstrated through three research projects of different focuses 

and under different pollution environments. Bottom-up emission inventories can provide estimates of 

air pollution based on activity data and emission factors, but these are subject to large uncertainties. 

Surface and space-based measurements of air quality are used in this thesis to evaluate and correct 

biases in commonly used bottom-up emission inventories. 
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5.2 Limitations and Opportunities for Future Research 

Limitations in the work presented in this thesis present opportunities for future research. In Chapter 2, 

surface measurements of air quality from monitoring networks are used to correct bottom-up emission 

inventories and assess changes in emissions of NO2, SO2, CO and primary PM2 5. This is due to large 

biases in bottom-up emission inventory in China, and the missing of updated bottom-up emission 

inventory in the emission control period. But as discussed in Chapter 2, there is non-linearity between 

changes in scaled emissions and changes in modelled concentrations. Surface monitoring networks are 

sparse and unevenly distributed in the sampling region of the model, further hindering model’s ability 

to reproduce changes in emissions in grids where there are few or no monitoring sites. Also, precursors 

to PM2 5 such as NH3 and VOCs are missing from the surface monitoring networks. It was not possible 

to use the older generation of satellite observations to assess changes in surface NO2, SO2, VOCs, and 

CO for autumn-winter in northern China. TROPOMI observations are provided with high spatial 

resolutions, high data density and improved data quality. But it was not available for the time period of 

the work in Chapter 2. In the future research, TROPOMI NO2, SO2 and HCHO have the potential to 

detect changes in emissions of NO2, SO2 and VOCs from high polluted areas in China in autumn-winter 

with improved accuracy. These can be used together with Chinese surface monitoring networks and 

GEOS-Chem model to evaluate the efficacy of nationwide emission controls in China as similar 

emission controls are now implemented every autumn-winter. Comparisons of modelled and measured 

PM2 5 components are limited to comparisons using the APHH campaign measurements in Beijing, as 

measurements of PM2 5 in BTH are not publicly available. More comprehensive assessment of model’s 

ability in reproducing measured PM2 5 components can be conducted if more measurements become 

available in future research. 

Current studies using the EMG approach are limited to estimating NOx emissions during a long time 

period of multiple months or at least a year. A recent study (Lange et al., 2022) and Chapter 3 in this 

thesis have identified a few causes for the EMG method fail due to data gaps, unrecognized NO2 peak 

near the city centre, and a second but smaller NO2 peak in the downwind side. Future research is needed 



126 

 

to improve the EMG fitting approach, solve the known issues in estimating monthly NOx emissions 

from isolated point sources. 

Geostationary sensors such as the Geostationary Environment Monitoring Spectrometer (GEMS) over 

South Asia, launched in 2020 provide observations every one to two hours of air quality over East Asia 

during sunlight hours (Kim et al., 2020), improving on the single overpass time of TROPOMI and its 

predecessors. This will provide an unprecedent opportunity to monitor air quality and estimate 

emissions in South and Southeast Asia at different times of the day. Most crucially during morning and 

evening rush hours rather than at midday for TROPOMI when traffic density is at a daytime minimum. 

Future geostationary sensor include the Tropospheric Emissions: Monitoring of Pollution (TEMPO) to 

be launched in 2022 to provide observations over North America (Zoogman et al., 2017), and Sentinel-

4 to be launched over Europe (Courreges-Lacoste et al., 2017). 

In Chapter 4, surface observations of air quality are taken from monitoring sites that were built to 

represent the specific environment of each city (i.e., urban background, roadside, and rural). There may 

be some variabilities in the concentrations of air pollutants at different stations of the same type. This 

could cause potential uncertainties in our analyses if to represent the whole city.  Whenever possible, 

we use data from multiple stations for each site type to reduce this uncertainty. But where only one or 

few stations are available for a site type, the data may be subject to more influence from local emission 

sources.  Therefore, results in Chapter 4 should be treated in the context of the site availability. 
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Figure 5.1: Example of real-time hourly PM2.5 measured by low cost sensors in the Southeast UK. 

Source: https://www2.purpleair.com/; accessed 06 April 2022.  

As shown in Figure 5.1, low-cost sensors are an emerging method to monitor surface air quality under 

different environments. Calibrated and reliable low cost sensors complement standard surface 

monitoring networks operated by governments as mentioned in Chapters 2 and 4. They are portable so 

that they can be deployed to monitor air quality during short term emission controls events such as the 

COVID-19 lockdowns mentioned in Chapter 4. Future research can combine these measurements with 

meteorological inputs for use in the random forest machine learning technique as described in Shi et al. 

(2021) to aid in interpreting changes in emissions by providing greater spatial coverage than reference 

monitors. 
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C O R O N A V I R U S

Abrupt but smaller than expected changes in surface air 
quality attributable to COVID-19 lockdowns
Zongbo Shi1*†, Congbo Song1*†, Bowen Liu2, Gongda Lu1, Jingsha Xu1, Tuan Van Vu3,  
Robert J. R. Elliott2, Weijun Li4, William J. Bloss1, Roy M. Harrison1‡

The COVID-19 lockdowns led to major reductions in air pollutant emissions. Here, we quantitatively evaluate 
changes in ambient NO2, O3, and PM2.5 concentrations arising from these emission changes in 11 cities globally by 
applying a deweathering machine learning technique. Sudden decreases in deweathered NO2 concentrations 
and increases in O3 were observed in almost all cities. However, the decline in NO2 concentrations attributable to 
the lockdowns was not as large as expected, at reductions of 10 to 50%. Accordingly, O3 increased by 2 to 30% 
(except for London), the total gaseous oxidant (Ox = NO2 + O3) showed limited change, and PM2.5 concentrations 
decreased in most cities studied but increased in London and Paris. Our results demonstrate the need for a sophis-
ticated analysis to quantify air quality impacts of interventions and indicate that true air quality improvements 
were notably more limited than some earlier reports or observational data suggested.

INTRODUCTION
Air pollution (both indoor and outdoor) is the single largest envi-
ronmental risk to human health globally, contributing to 8.8 million 
deaths in 2015 (1). The World Bank estimated that air pollution costs 
the global economy $3 trillion in 2015 (2). It has been suggested that 
poor air quality is correlated with a higher mortality rate from 
COVID-19 infection (3). Although a causal relationship between the 
two is difficult to confirm, air pollution contributes to respiratory 
and cardiovascular diseases and thus has the potential to cause in-
creased COVID-19 death rates (4).

In response to the COVID-19 crisis, governments around the world 
introduced severe restrictions on behavior or lockdowns, which led 
to the cessation of a large swathe of economic activity and thus re-
duced air pollutant emissions (5). The rapid and unprecedented 
reduction in the economic activity provides a unique opportunity 
to study the impact of a global-scale natural intervention on air pollu-
tion, which offers insights for the prioritization of future clean air actions.

Many recent studies have explored impacts of the COVID-19 
lockdowns on air quality. The most common approach is to under-
take a simple statistical analysis that compares air quality before and 
after the lockdowns began or during the lockdowns with the same 
periods in previous years (6, 7). Some studies also compared the air 
quality before and after lockdown started for periods with similar 
meteorological conditions (8). Satellite observations of NO2 have 
also been used to estimate the reduction in column NO2 due to the 
lockdowns (3, 9–11).

A major caveat in a number of these studies is that meteorology 
moderates the link between emissions and pollutant concentrations, 
and so, weather changes can mask the changes in emissions on air 

quality (12–14). Such methods cannot explain the observed severe 
pollution events during the lockdowns in some cities (15–17). 
Comparisons of pollutant levels in 2020 with previous years may 
assume that air pollutant emissions have not changed over the past 
few years, which is often not the case, particularly in those cities 
where clean air policy actions are in place (14, 18). Furthermore, air 
pollutant emissions change substantially from winter to spring; thus, 
a direct comparison of air pollutant concentrations before and during 
the lockdowns could also give unreliable results. Venter et al. (9) de-
veloped statistical models (regression) to estimate the impact of 
lockdowns on air quality in several countries. However, the perfor-
mance of the regression was often limited with correlation coefficients 
as low as 0.2. He et al. (19) applied a “difference-in-difference” 
approach, which may provide a more accurate estimate of air quality 
improvement; this method assumes that the control cities are not 
subject to any impacts.

Air quality modeling can also decouple the effect of emission 
changes from meteorology (20, 21) and is often applied for scenario 
analysis. A major challenge in evaluating the impacts of short-term 
interventions on real-world air quality is to estimate emission 
changes (16, 20, 21).

Machine learning offers an alternative and reliable method in 
quantifying changes in air quality due to emissions and meteorological 
factors (12–14). Myllyvirta and Thieriot (22) used a random forest 
(RF) method (13), which was developed for assessing long-term air 
quality changes, to estimate the short-term changes in NO2 and 
PM10 in Europe due to the COVID-19 lockdowns (see Materials 
and Methods).

The purpose of this study was to evaluate the impacts and impli-
cations of the natural experiment of the COVID-19 lockdowns in 
spring 2020 on air quality. To do this, we optimized a weather nor-
malization technique based on Grange and Carslaw (13) and Vu et al. 
(14) to decouple the effects of meteorology from short-term emis-
sion changes on surface air quality monitoring data in 11 global cities 
that were subjected to extensive lockdown measures. The deweathered 
data allow us to quantitatively evaluate the real-world changes in air 
quality due to the lockdown measures in these cities (see Materials 
and Methods). These selected cities cover a range of air pollution 
climates, from highly to less polluted and from PM2.5- to NO2-dominated 
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that in Europe and the United States, electricity use reduced by 9 
and 5%, respectively. Note also that domestic emissions may have 
increased with an increase in people working or studying from home. 
We recognize that our methodology is unable to attribute the actual 
changes in emissions on a sector-by-sector basis. This could be re-
visited in the future when emission inventories for the spring 2020 
lockdown period are developed and evaluated against observations.

O3 is a secondary pollutant, and its variation is driven by several 
factors. Dominant among these is the NOx-O3 photochemical steady 
state. The decrease in NO (tables S1 and S2) led to reduced O3 titra-
tion, through which reductions in traffic-related NO emissions trans-
late directly into increases in O3, relative to the prelockdown period; 
the time constant for this NOx-O3 interaction in daylight is of the 
order of minutes. The fact that deweathered O3 increased suddenly 
after the lockdown began and that changes in deweathered NO 
were more pronounced than those in NOx and NO2, particularly at 
roadside sites (fig. S1 and table S2), support this well-understood 
atmospheric chemistry (28). This effect—of a reduced urban decre-
ment in O3—will be partially offset by reductions in primary NO2 
emissions from traffic and, on a much longer time scale (hours to 
days, rather than minutes), by net O3 production. Under an extreme 
condition, if all traffic-related NOx emissions are assumed to be NO, Ox 
would remain unchanged in response to lockdown-driven changes 
in traffic (but NO2 would decrease, and O3 would increase). In real-
ity, primary NO2 emissions from road traffic decreased during the 
lockdowns, so Ox should fall. Detrended Ox fell slightly at roadside 
and urban background sites in most of the cities (Table 1 and table S3). 
Detrended Ox increased at rural sites in some of the cities (table S3), 
which indicates an increase in net photochemical production of O3 
at some of the studied sites (28). The different pattern of changes in 
detrended O3 represents a nonlinear response of O3 formation rates to 
the (relative) changes in NOx and VOC emissions, depending on 
the prevailing O3 production regime at each location, but usually 
with a greater impact downwind of conurbation locations (29, 30).

Drivers of the response of PM2.5 levels to the lockdown measures 
are more complex since both primary emissions and secondary for-
mation contribute to PM2.5 in ambient air. Deweathered PM2.5 re-
duced after the lockdowns began at urban background sites in most 
of the cities, including Wuhan, Rome, New York, Los Angeles, and 
Delhi (fig. S2). This could be explained by (i) the expected reduc-
tions in primary emissions of PM2.5 and its gaseous precursors (e.g., 
NO2, SO2, and VOCs) during the lockdowns and (ii) limited change 
in the formation rate of secondary aerosol as shown by the small 
variation in PM2.5/CO ratio (fig. S5).

Deweathered PM2.5 increased in London and Paris for an extended 
period (more than 3 weeks) after the lockdowns began (Fig. 5). It 
also increased in Beijing after the lockdown began, although for a 
shorter period. One possible explanation for this unexpected result 
is that enhanced secondary aerosol formation overwhelmed the re-
duced primary PM2.5 emissions. In Chinese megacities, secondary 
particles typically contribute to >50% of PM2.5 mass (31, 32). In 
London, secondary aerosols contribute roughly half of PM2.5 at 
roadside sites, increasing to ~90% of PM2.5 at rural sites, with the 
contribution lying between these values at urban background sites 
(33). Such contributions are even larger during pollution events 
(15, 16, 31). Thus, changes in PM2.5 are often driven by variations in 
secondary aerosols, particularly during pollution events. In Beijing, 
Sun et al. (34) noted that primary aerosol decreased by 30 to 50%, 
while secondary inorganic aerosol and secondary organic aerosol 

(SOA) increased by 60 to 110% and 52 to 175%, respectively, during 
the early periods of the lockdown in 2020. The fact that substantial 
increases in PM2.5/PM10 (Paris) or PM2.5/CO (London; fig. S5) 
ratios accompanied the increase in deweathered PM2.5 (Fig. 5 and 
fig. S2) also supports the greater role of secondary aerosol during 
the study period in Paris and London. Zhao et al. (35) suggested 
that SOA formation depends nonlinearly on the ratio of VOCs to 
NOx; reduction in NOx emissions may lead to increased production 
of SOA given imbalanced emission abatement of NOx and VOCs. 
Le et al. (15) indicated that multiphase chemistry and enhanced atmo-
spheric oxidative capacity drove haze events in China during the 
lockdowns. Huang et al. (16) also suggested that increase in oxidative 
capacity during lockdown in China/Beijing caused the observed 
air pollution events; however, the changes in deweathered Ox levels 
(Pdew) at urban background sites are rather small: Beijing (−1.1 ± 2.0%), 
London (+4.2 ± 0.8%), and Paris (+2.1 ± 0.6%) (table S2).

Another possible explanation is associated with changes in long-
range transport, which brings air pollutants from nonlocal sources 
and thus contributes to the increase in deweathered PM2.5. In theo-
ry, the RF models should have normalized the impacts from long-
range transport by including back-trajectory clusters. However, the 
model may not be able to perfectly reproduce secondary formation 
processes arising from long-range transport if there were limited 
cases to learn from, especially as such events tend to be episodic in 
nature. In this case, the model will treat pollution events arising 
from long-range transport as if there are higher emissions; this at-
tribution will be retained during deweathering. This will cause un-
certainties in the model. More observational data and modeling are 
needed to fully understand the phenomenon of increases in PM2.5 
in London, Paris, and Beijing during the lockdowns. However, it is 
clear that a small reduction in primary PM2.5 emissions (e.g., from 
vehicular emission changes during lockdown) could be readily over-
whelmed by enhanced secondary formation and/or PM2.5 transported 
from more polluted regions.

In Wuhan, the deweathered PM2.5 decreased to a small degree 
during the 2 weeks after the lockdown began (Fig. 5). However, the 
deweathered PM2.5/CO increased during the lockdowns (fig. S5), 
which suggests that enhanced secondary pollution (36) offsets the 
benefits of the reduction in primary emissions during the first 2 weeks 
of the lockdown. Thereafter, the deweathered PM2.5 did decrease 
more significantly (Pdew = −27.0 ± 18.7%). Similarly, in Beijing, the 
deweathered PM2.5 decreased 2 weeks after the lockdown began, so 
overall Pdew is negative (−19.3 ± 9.6%). These results suggest that if 
the reduction in emissions of gaseous precursors is sufficiently 
large, it should eventually lead to an overall decline in PM2.5. Such a 
hypothesis should be tested with chemical transport models with 
up-to-date emission inventories when these are available.

Implications for future air pollution control
Our results demonstrate that restrictions on economic activities, 
particularly traffic, brought an immediate decline in detrended NO2 
in all the studied cities. If similar levels of restriction were to have 
remained in place, the annual average NO2 concentration would 
comply with the air quality guidelines from the World Health Organi-
zation (WHO) (i.e., 40 g m−3 for annual NO2) for the cities consid-
ered under average meteorological conditions, except for a limited 
number of roadside sites. However, the detrended percentage de-
cline (i.e., attributed to lockdown effects) in NO2 is mostly below 
30%. This is lower than the expected decline, partly due to the 
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NOx-O3 photochemical steady state (converting NO to NO2), along-
side seasonal effects, and partly due to the still important emissions of 
NOx from stationary and mobile pollution sources. Detrended O3 in-
creased in most cities. This adds to the complexity of air pollution 
control, considering the potentially adverse impacts of O3 on hu-
man (37, 38) and environmental health, including crop yields (39).

PM2.5 exhibited a more complex response to the lockdown mea-
sures. PM2.5 did not show an immediate decline to the lockdown 
measures except in Wuhan, Rome, and Los Angeles, even at the 
roadside sites. This is not too unexpected considering the relatively 
small contribution of road traffic to primary PM2.5 in most of the 
cities studied here and a large contribution from secondary sources 
(16, 31). In China, much of the recent decrease in PM2.5 came 
from the reductions in residential solid fuel use and industrial activ-
ity rather than traffic emissions (18, 40). Nevertheless, a decrease in 
deweathered PM2.5 is observed in most of the cities.

In Delhi, Wuhan, and Beijing, annual average PM2.5 concentra-
tions are so far in exceedance of the WHO guideline (10 g m−3) 
that the decline is far from sufficient to bring levels into compliance. 
Even in those cities where the annual average PM2.5 is close to 10 g 
m−3, such as London and Paris, emission reductions on the scale of 
the spring 2020 COVID-19 lockdown measures may still be insuffi-
cient to bring concentrations into compliance with the current WHO 
guidelines. In addition, the frequent PM2.5 pollution events during 
the lockdowns in some cities, such as Beijing, London, and Paris, 
showed that actions of a magnitude similar to the lockdown mea-
sures are far from sufficient to avoid episodic pollution events in 
these cities. The mechanisms driving such changes have been ex-
plored in more detail by recent studies (15–17, 20).

Li et al. (41) suggested that aggressive reductions in NOx and 
aromatic VOC emissions should be particularly effective for decreasing 
both PM2.5 and O3 in China. The huge reduction in NOx (fig. S3) 
and VOCs (16) in response to the COVID-19 lockdowns did reduce 
PM2.5 pollution in Beijing and Wuhan, but detrended O3 increased 
substantially (Table 1), at least up until mid-May. A slower pace of 
VOC emission reduction, relative to that for NOx, could risk a fur-
ther increase in O3 pollution.

In summary, emission changes associated with the early-2020 
COVID-19 lockdown restrictions led to complex and substantial 
changes in air pollutant levels, but the changes are smaller than 
expected. The decrease in NO2 will likely have benefits on public 
health, but the increase in O3 would counteract at least some of this 
effect (37, 38). The magnitude and even the sign of changes in PM2.5 
during the lockdowns differ significantly among the studied cities. 
Chemical processes of the mixed atmospheric system add complexity 
to efforts to abate secondary pollution (e.g., O3 and PM2.5) through 
reduction of precursor emissions (e.g., NOx and VOCs) (42). Future 
control measures will require a systematic approach toward NO2, 
O3, and PM2.5 tailored for specific cities, taking into account both 
primary emissions and secondary processes, to maximize the over-
all benefits to air quality and human health.

MATERIALS AND METHODS
Selected cities and data
Eleven cities were selected to ensure coverage of contrasting pollu-
tion climate: Beijing and Wuhan in China, Milan and Rome in Italy, 
Madrid in Spain, London in United Kingdom, Paris in France, 
Berlin in Germany, New York and Los Angeles in the United States, 

and Delhi in India. Of those, eight are capital cities. Wuhan was 
added because it was the first city where COVID-19 was reported 
and lockdown was first imposed. Milan was included because it is in 
northern Italy, one of the most seriously hit areas after Wuhan. In 
the United States, New York was the most seriously affected city, 
whereas Los Angeles was reported to have observed a greater decline 
in air pollution levels (43). All the study cities have been significantly 
affected by COVID-19 and implemented stringent lockdown mea-
sures to contain the COVID-19 pandemic in early 2020. Such measures 
were first implemented in Wuhan from 23 January 2020 and then 
2 days later in all provinces in China (including Beijing). Tightened 
restrictive measures were implemented from 23 January 2020 in 
northern Italy, 13 March 2020 in the United States, 14 March 2020 
in Spain, 17 March 2020 in France, 22 March 2020 in Germany, 
23 March 2020 in the United Kingdom, and 25 March 2020 in India.

Site-specific hourly concentration of six criteria pollutants (PM2.5, 
PM10, O3, NO2, CO, and SO2) and other auxiliary pollutants (NO 
and NOx) from December 2015 to May 2020 were obtained from 
websites of local or national environmental agency or accredited 
third parties (table S4). In most cases, data from multiple stations 
for each site type are available. The NO2 concentrations reported 
from local governments, typically performed by the widely used 
molybdenum conversion/chemiluminescence method, may slightly 
overestimate true NO2 levels due to conversion of other labile N 
species to NO in the convertor stage. This problem is usually small 
for polluted urban sites but is larger for rural sites where overestimates 
of 17 to 30% have been reported (44). This is due to the conversion 
of NOx from primary sources to secondary nitrogen compounds 
during its transport toward more rural locations. Hence, concentra-
tions reported as NO2 contain a small proportion of other NOy spe-
cies, and the “true” NO2 levels would be lower than those officially 
reported, particularly at rural locations. We note that such uncer-
tainties are effectively “built in” to monitor NO2 with respect to reg-
ulatory standards. NOx and NO data were obtained in cities where 
those data were publicly available. Data were usually downloaded from 
official sources, which are validated by the authorities. For those 
cities where data were not available from recognized official sources 
(i.e., Los Angeles and New York) at the time of access, we obtained 
the air quality data from the “OpenAQ” platform (https://openaq.org/). 
Data from Los Angeles were downloaded from the U.S. Environmental 
Protection Agency (USEPA) later (after the data analyses were done 
here), which were then compared with those from OpenAQ. We 
found that the site-specific data in Los Angeles from OpenAQ are 
highly correlated (slope = ~1, intercept = ~0) with those from USEPA. 
Air quality monitoring stations were selected to cover roadside, urban 
background, and rural sites when possible, and the site types were based 
on official classifications and maps. The downloaded data were screened 
and cleaned when necessary, following established methods (24).

The hourly temperature, relative humidity, atmospheric pressure, 
wind speed, and wind direction data for selected sites were obtained 
from the nearest meteorological observation site from the NOAA 
(National Oceanic and Atmospheric Administration) Integrated 
Surface Database (ISD) using the “worldmet” R package (https://
CRAN.R-project.org/package=worldmet). In addition, hourly data 
for boundary layer height, total cloud cover, surface net solar radia-
tion, and total precipitation at the selected sites were downloaded 
from the ERA5 reanalysis dataset (ERA5 hourly data on single levels 
from 1979 to present). For each site, 72-hour back trajectories at an 
hourly resolution were calculated using the Hybrid Single-Particle 
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Lagrangian Integrated Trajectory (HYSPLIT) model. The starting 
height was set as 100 m to ensure that the receptor was aloft but 
remained within the boundary layer throughout the study period. 
The back trajectories were then clustered into 12 clusters using the 
Euclidian distance by “openair” R package (https://CRAN.R-project.
org/package=openair). Those clusters were used to represent the 
common air masses that the sites were exposed to.

Observations at the air quality stations are used for official com-
pliance purpose. Although these stations were built to represent the 
specific environment of the city (i.e., roadside, urban background, 
and rural), there may be some variabilities in the concentrations of 
air pollutants at different stations of the same type. This could cause 
potential uncertainties in our analyses if to represent the whole city. 
In this study, wherever possible, we used data from multiple sta-
tions for each site type (table S4), which reduced this uncertainty. 
Where only one station is available for a site type, the data may be 
subject to more influence from local emission sources. Therefore, 
what we reported here should be treated in the context of the site 
availability (see table S4). Furthermore, we would like to emphasize 
that our analyses focus on the high-resolution temporal variations, 
and thus, the trend will be broadly representative.

RF model and weather normalization
Weather conditions change rapidly, causing variations in the con-
centration of air pollutants even when emissions do not change. Here, 
we applied a machine learning–based RF algorithm to decouple the 
effects of meteorological conditions. To do this, we first build an RF 
model for each pollutant and for each year (December to May). The 
RF model–based weather normalization technique was introduced 
in Grange et al. (12). Briefly, the RF model was built independently 
for each period (December 2015 to May 2016, December 2016 to 
May 2017, December 2017 to May 2018, December 2018 to May 2019, 
and December 2019 to May 2020), each pollutant, and each site type 
within a city. Seventy percent of the original data were randomly 
selected to build the model, which was then evaluated with the re-
mainder (30%) of the dataset. Model performance for each pollutant 
and each time period (i.e., 2016–2020) is illustrated in fig. S6. Similar 
to Grange et al. (12, 13) and Vu et al. (14), the performance of the 
models is usually very good, much better than that of regression 
models (9). The weather normalization was conducted using the 
“rmweather” R package, available at https://cran.r-project.org/web/
packages/rmweather/index.html.

In the Grange et al. (12) approach, a new dataset of input pre-
dictor features including time variables (day of the year, day of the 
week, and hour of the day, but not the Unix time) and meteorolog-
ical parameters (wind speed, wind direction, temperature, and relative 
humidity) is first resampled from the original observation dataset. 
Vu et al. (14) modified the default method to investigate the seasonal 
variations in trends for comparison with trends in primary emissions, 
by only resampling the weather variables (not the time variables). 
Specifically, weather variables at a specific hour of a particular day 
in the input datasets were generated by randomly selecting from the 
historical weather data (past 30 years) at the particular hour of dif-
ferent dates within a 4-week period (i.e., 2 weeks before and 2 weeks 
after that selected date). The two methods are fit for their own pur-
poses but were not used here because (i) Grange et al. (12) normal-
ized the diurnal and seasonal variations of the primary emissions, 
which is unrealistic in the real world, and (ii) although Vu et al. (14) 
provided diurnal and seasonal variations of the primary emissions, 

this is inappropriate in detecting short-term emission interventions 
because the normalized concentrations for a particular hour of a 
Julian day were not comparable with those from the different hour 
of a different Julian day, considering that they were resampled from 
different weather datasets, which would be affected by different sea-
sonal weather conditions.

To address those limitations and better investigate the impacts 
of short-term lockdown on air quality, we applied a mixed method. 
We only normalized the weather data but not time variables, similar 
to Vu et al. (14), and resampled from the whole study period, simi-
lar to Grange et al. (12). The improved method is more suitable for 
tracking emission changes. The input features for the model included 
time variables (i.e., Unix time, Julian day, day of the week, and hour 
of the day), meteorological data from surface observations (i.e., 
temperature, relative humidity, wind speed, wind direction, and 
atmospheric pressure), meteorological data from ERA5 reanalysis 
dataset (i.e., boundary layer height, total cloud cover, surface net 
solar radiation, and total precipitation), and air mass clusters based 
on the HYSPLIT back trajectories. The day of week and air mass 
clusters were categorical variables, while all others were numeric. 
Following Vu et al. (14), the parameters for the RF models are as follows: 
a forest of 300 trees, n_tree = 300; the number of variables that may 
split at each node, mtry = 3; and the minimum size of terminal 
nodes, min_node_size = 3. For every weather normalization, the 
explanatory variables were resampled (excluding the time variables) 
without replacement and randomly allocated to a dependent variable 
observation. The 1000 predictions were then aggregated using the 
arithmetic mean to obtain the deweathered concentration.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/3/eabd6696/DC1
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