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Abstract

In this thesis, we make progress on five long standing conjectures on path and cycle

decompositions of graphs and digraphs. Firstly, we confirm a conjecture of Jackson from

1981 by showing that the edges of any sufficiently large regular bipartite tournament

can be decomposed into Hamilton cycles. Along the way, we also prove several further

results, including a conjecture of Liebenau and Pehova on Hamilton decompositions of

dense bipartite digraphs.

Secondly, we determine the minimum number of paths required to decompose the

edges of any sufficiently large tournament of even order, thus resolving a conjecture of

Alspach, Mason, and Pullman from 1976. We also prove an asymptotically optimal result

for tournaments of odd order.

Finally, we give asymptotically best possible upper bounds on the minimum number of

paths, cycles, and cycles and edges required to decompose the edges of any sufficiently large

dense graph. This makes progress on three famous conjectures from the 1960s: Gallai’s

conjecture, Hajós’ conjecture, and the Erdős–Gallai conjecture, respectively.

This includes joint work with António Girão [40, 41], Daniela Kühn [40, 41], Allan

Lo [40], and Deryk Osthus [40,41].
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CHAPTER 1

INTRODUCTION

Given a (di)graph G, a decomposition of G is a set of edge-disjoint sub(di)graphs F1, . . . , Fℓ

of G which altogether cover all the edges of G. The study of decompositions has a long

history and encompasses a wide range of structures F1, . . . , Fℓ. For example, triangle

decompositions of complete graphs were studied by Kirkman [67] in 1847, while Walecki [88]

showed in 1883 that the complete graph on n vertices can be decomposed into Hamilton

cycles if n is odd and into Hamilton paths if n is even. In 1963, Ringel [101] conjectured that

the complete graph on 2n + 1 vertices can be decomposed into edge-disjoint copies of any

tree with n edges. (This was recently verified by Montgomery, Pokrovskiy, and Sudakov [90]

and Keevash and Staden [63] for large complete graphs.) Decompositions of general graphs

into complete graphs where considered in 1966 by Erdős, Goodman, and Pósa [28], who

showed that any graph on n vertices with no isolated vertex can be decomposed into at

most ⌊n2

4
⌋ complete graphs. In 1968, Lovász [87] studied decompositions into paths and

cycles.

Theorem 1.1 ([87]). Any graph on n vertices can be decomposed into at most
⌊
n
2

⌋
paths

and cycles.

Observe that Theorem 1.1 is tight. Indeed, let G be graph on n vertices and let D be

a decomposition of G into paths and cycles. Then, observe that any vertex of odd degree

in G must be the endpoint of a path in D, so |D| ≥ odd(G)
2

(where odd(G) denotes the

number of odd-degree vertices of G).

3



1.1 Hamilton decompositions

One of the most natural and most extensively studied type of decomposition is a Hamilton

decomposition, that is, a decomposition into Hamilton cycles. (Here and throughout this

thesis, a Hamilton cycle in a digraph is always assumed to have all its edges consistently

oriented.)

Note that in a graph G, any set of edge-disjoint Hamilton cycles of G induce an

even-regular subgraph of G, so G must be regular of even degree to admit a Hamilton

decomposition. However, even-regularity is not a sufficient condition for the existence of a

Hamilton decomposition. For example, the graph in Figure 1.1 is 4-regular but cannot be

decomposed into Hamilton cycles since any Hamilton cycle must contain the two dashed

edges.

Figure 1.1: Example of an even-regular graph which cannot be decomposed into Hamilton
cycles.

Similarly, a digraph D which can be decomposed into Hamilton cycles must be regular.

(Here, a digraph D is regular if there exists r such that every vertex v ∈ V (D) has both its

indegree d−D(v) and its outdegree d+D(v) equal to r.) As for the undirected case, regularity

does not guarantee the existence of a Hamilton decomposition of a digraph. For example,

it was verified by Bermond and Faber [8] that the complete digraphs on 4 and 6 vertices

cannot be decomposed into Hamilton cycles.

Extensive research has been done into classifying the (di)graphs which admit a Hamilton

decomposition.

Problem 1.2. Given a (di)graph G, can G be decomposed into Hamilton cycles?

4



A well-known result of Karp, Lawler, and Tarjan [61] states that the problem of

determining whether a (di)graph G has a Hamilton cycle is NP-complete. Péroche [97]

showed that Problem 1.2 is also NP-complete and so, since it is expected that P ̸= NP, a

general solution to Problem 1.2 cannot be expected.

1.1.1 Hamilton decompositions of dense graphs and digraphs

As mentioned at the start of this chapter, constructions of Hamilton decompositions of

complete graphs of odd order date back to the 19th century [88] (see also [4] for an English

description of Walecki’s construction). More than 130 years later, Walecki’s result was

extended by Csaba, Kühn, Lo, Osthus, and Treglown [20], who gave an exact minimum

degree threshold for the existence of a Hamilton decomposition in sufficiently large graphs.

Theorem 1.3 ([20]). There exists n0 ∈ N for which the following holds. Let G be a graph

on n ≥ n0 vertices and suppose that G is r-regular for some r ≥ ⌊n
2
⌋. Then, G can be

decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

Analogous results can be obtained for directed graphs. Bermond and Faber [8]

observed that Walecki’s result [88] implies that complete digraphs of odd order have a

Hamilton decomposition. In 1980, Tillson [107] showed that complete digraphs on 2n ≥ 8

vertices can be decomposed into Hamilton cycles. (Bermond and Faber [8] verified that

such decompositions do not exist for 2n ∈ {4, 6}.) The analogous question for regular

tournaments was posed by Kelly in 1968 (see [91]).

Conjecture 1.4 (Kelly). Any regular tournament can be decomposed into Hamilton cycles.

Kelly’s conjecture was first proved approximately for large tournaments by Kühn,

Osthus, and Treglown [78] and later resolved for such tournaments by Kühn and Osthus [76]

in 2013. In fact, the methods in [76] are more general and apply to “robust outexpanders”.

Roughly speaking, a robust outexpander is a digraph D such that for any S ⊆ V (D) which

is neither too small nor too large, there are significantly many more than |S| vertices

of D which have a linear number of inneighbours in S. Robust outexpanders were first

5



introduced in [79] by Kühn, Osthus, and Treglown and have since then been used to prove

a wide range of results (see e.g. [48,74]).

More precisely, given a digraph D on n vertices and S ⊆ V (D), the ν-robust outneigh-

bourhood of S, denoted by RN+
ν,D(S), consists of all the vertices of D which have at least

νn inneighbours in S. A digraph D on n vertices is called a robust (ν, τ)-outexpander if

|RN+
ν,D(S)| ≥ |S|+ νn for every S ⊆ V (D) satisfying τn ≤ |S| ≤ (1− τ)n.

Theorem 1.5 ([76]). For any δ > 0, there exists τ > 0 such that, for all ν > 0, there

exists n0 ∈ N for which the following holds. Let D be a robust (ν, τ)-outexpander on

n ≥ n0 vertices and suppose that D is r-regular for some r ≥ δn. Then, D has a Hamilton

decomposition.

One can show that sufficiently dense digraphs and oriented graphs are robust outex-

panders. (Throughout this thesis, a digraph refers to a directed graph which contains at

most one edge of each direction between any two distinct vertices, while an oriented graph

refers to a directed graph which contains at most one edge between any two distinct ver-

tices.) Thus, Theorem 1.5 can be used to obtain an approximate analogue of Theorem 1.3

for digraphs and oriented graphs. In particular, this implies that Kelly’s conjecture holds

for sufficiently large tournaments.

Theorem 1.6 ([76]). For any ε > 0, there exists n0 ∈ N for which the following hold.

(i) Let D be a digraph on n vertices and suppose that D is r-regular for some

r ≥
(
1
2

+ ε
)
n. Then, D has a Hamilton decomposition.

(ii) Let D be an oriented graph on n vertices and suppose that D is r-regular for some

r ≥
(
3
8

+ ε
)
n. Then, D has a Hamilton decomposition.

Although Theorem 1.6(i) is asymptotically best possible (there exist disconnected

(⌊n
2
⌋ − 1)-regular digraphs on n vertices), it is not clear whether Theorem 1.6(ii) is

(asymptotically) best possible. On the one hand, there exist oriented graphs on n vertices

which are very close to being 3n
8

-regular but are not Hamiltonian (see e.g. [76]). On the

6



other hand, Jackson [56] conjectured that any r-regular oriented graph on n vertices with

r > 2 and r ≥ n−1
4

is Hamiltonian. This conjecture was recently confirmed approximately

for large oriented graphs by Lo, Patel, and Yıldız [86]. See the survey [75] for a further

discussion.

Beyond Kelly’s conjecture, Theorem 1.5 has had a wide range of applications (see e.g.

[20,35,42,77], which are discussed in more detail below). In particular, all the results in

this thesis either use Theorem 1.5 or the main tool of [76] which was used to prove it.

1.1.2 Hamilton decompositions of partite graphs and digraphs

Hamilton decompositions of partite (di)graphs also have a long history. Walecki [88]

used their construction for complete graphs to show that a complete bipartite graph on

vertex classes of size 2n can also be decomposed into Hamilton cycles. This was extended

in 1972 by Dirac [25], who showed that a complete bipartite graph on vertex classes of

size 2n + 1 can be decomposed into n Hamilton cycles and one perfect matching. More

generally, Hetyei [53] and Laskar and Auerbach [82] independently showed in the 1970’s

that complete r-partite graphs on vertex classes of size n can be decomposed into ⌊n(r−1)
2
⌋

Hamilton cycles and at most one perfect matching (depending on the parity of n(r − 1)).

In 1997, Ng [93] showed that complete r-partite digraphs on vertex classes of size n have a

Hamilton decomposition if and only if (r, n) /∈ {(4, 1), (6, 1)}.

An r-partite tournament is a digraph which is obtained by orienting the edges of a

complete r-partite graph. For r ≥ 4, Kühn and Osthus [77] showed that sufficiently large

regular r-partite tournaments are in fact robust outexpanders and so, by Theorem 1.5,

can be decomposed into Hamilton cycles. They also conjectured that regular tripartite

tournaments have a Hamilton decomposition [77]. However, we observe that this conjecture

is false. Indeed, we will see in Section 6.1 that a regular tripartite tournament obtained by

flipping the orientation of precisely one triangle in a consistently oriented blow-up of a

triangle cannot be decomposed into Hamilton cycles.

7



Proposition 1.7. For any integer n ≥ 2, there exists a regular tripartite tournament on

vertex classes of size n which does not have a Hamilton decomposition.

In 1981, Jackson [56] showed than any regular bipartite tournament is Hamiltonian

and conjectured that such digraphs have a Hamilton decomposition.

Conjecture 1.8 (Jackson). Any regular bipartite tournament can be decomposed into

Hamilton cycles.

Some progress on this conjecture was made by Liebenau and Pehova [84], who showed

that any sufficiently large regular bipartite digraph of sufficiently large degree has an

approximate Hamilton decomposition.

Theorem 1.9 ([84]). For any δ > 1
2
and ε > 0, there exists n0 ∈ N such that any

δn-regular bipartite digraph on 2n ≥ n0 vertices contains at least (1− ε)δn edge-disjoint

Hamilton cycles.

Note however that Theorem 1.9 does not actually apply to regular bipartite tournaments,

i.e. even the existence of an approximate Hamilton decomposition of regular bipartite

tournaments was not known so far. The main result of this thesis consists of a proof

of Conjecture 1.8 for sufficiently large bipartite tournaments. (Note that the number of

vertices in Theorem 1.10 is a multiple of 4 since any regular bipartite tournament must

necessarily have vertex classes of the same even size.)

Theorem 1.10. There exists n0 ∈ N such that any regular bipartite tournament T on

4n ≥ n0 vertices has a Hamilton decomposition.

Our proof of Theorem 1.10 is split into two cases: T is a “bipartite robust outexpander”

and T is “close to the complete blow-up C4”. (This is discussed more thoroughly in

Chapter 4.) Along the way, we also prove a bipartite analogue of Theorem 1.5. In

particular, this allows us to extend Theorem 1.9 and fully decompose sufficiently large

dense bipartite digraphs into edge-disjoint Hamilton cycles. This resolves a conjecture of

Liebenau and Pehova [84].
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Theorem 1.11. For any δ > 1
2
, there exists n0 ∈ N for which the following holds. Let D

be a bipartite digraph on vertex classes of size n ≥ n0 and suppose that D is r-regular for

some r ≥ δn. Then, D has a Hamilton decomposition.

1.1.3 Some related problems

One may consider the following generalisation of Problem 1.2.

Problem 1.12. Given a (di)graph G, how many edge-disjoint Hamilton cycles does G

contain?

Given a (di)graph G, a packing of Hamilton cycles in G is a set of edge-disjoint Hamilton

cycles of G. A packing is optimal if it has maximum size. Given a graph G, denote by

regeven(G) the maximum degree of an even-regular spanning subgraph of G. Given a

digraph D, denote by reg(D) the maximum degree of a regular spanning subdigraph of

D. Clearly, regeven(G)
2

and reg(D) provide natural upper bounds on the size of an optimal

packing of Hamilton cycles in a graph G and a digraph D, respectively. Kühn, Lapinskas,

and Osthus [73] conjectured that a graph G of sufficiently large minimum degree contains

regeven(G)
2

edge-disjoint Hamilton cycles.

Conjecture 1.13 (Kühn, Lapinskas, and Osthus). Let G be a graph on n vertices. If

δ(G) ≥ n
2
, then G contains regeven(G)

2
edge-disjoint Hamilton cycles.

Partial results towards Conjecture 1.13 were obtained by Kühn, Lapinskas, and Osthus

[73] and Csaba, Kühn, Lo, Osthus, and Treglown [20]. Moreover, Kühn and Osthus [77]

verified this conjecture when n is sufficiently large and the minimum degree is at least

(2−
√

2)n+o(n), while Ferber, Krivelevich, and Sudakov [34] proved an approximate version

of Conjecture 1.13. Joos, Kühn, and Schülke [60] recently extended this approximate

result to k-uniform hypergraphs.

Given a digraph D, denote by δ0(D) := min{d+D(v), d−D(v) | v ∈ V (D)} the minimum

semidegree of D. Based on Theorem 1.5, Kühn and Osthus [77] confirmed a conjecture

of Erdős (see [106]) which states that a random tournament T contains reg(T ) = δ0(T )

9



edge-disjoint Hamilton cycles with high probability. Together, results of Knox, Kühn,

and Osthus [69], Krivelevich and Samotij [72], and Kühn and Osthus [77] imply that an

analogous result holds for the binomial random graph Gn,p for arbitrary p, i.e. Gn,p contains

regeven(Gn,p)

2
=
⌊
δ(Gn,p)

2

⌋
Hamilton cycles with high probability. (Here and throughout this

thesis, δ(G) denotes the minimum degree of a graph G.) This resolves a conjecture of

Frieze and Krivelevich [37]. For Hamilton decompositions of random regular graphs, see

e.g. [65]. Note that [69] introduced the method of “iterative absorption”, which was used

and further developed to prove Theorem 1.5. For further uses of this proof technique, see

e.g. [44, 80,98].

Progress on Problem 1.12 was also obtained by Frieze and Krivelevich [36] for ε-regular

graphs of linear minimum degree. A bipartite graph G on vertex classes A and B of size n

is ε-regular if for any A′ ⊆ A and B′ ⊆ B of size at least εn, we have

∣∣∣∣eG(A,B)

|A||B|
− eG(A′, B′)

|A′||B′|

∣∣∣∣ < ε.

Similarly, a bipartite digraph D on vertex classes A and B of size n is ε-regular if for any

A′ ⊆ A and B′ ⊆ B of size at least εn, we have both

∣∣∣∣eD(A,B)

|A||B|
− eD(A′, B′)

|A′||B′|

∣∣∣∣ < ε and

∣∣∣∣eD(B,A)

|A||B|
− eD(B′, A′)

|A′||B′|

∣∣∣∣ < ε.

(Here and throughout this thesis, given a digraph D and disjoint A,B ⊆ V (D), eD(A,B)

denotes the number of edges which start in A and end in B.)

Theorem 1.14 ([36]). For any 0 < δ < 1, there exist 0 < ε < δ and n0 ∈ N for which

the following hold. Let G be an ε-regular balanced bipartite graph on vertex classes of size

n ≥ n0 with minimum degree δ(G) ≥ δn. Then, G contains δ(G)
2
−O(ε)n ≥ regeven(G)

2
−O(ε)n

edge-disjoint Hamilton cycles.

Frieze and Krivelevich [36] also proved a non-bipartite analogue of Theorem 1.14

for graphs and digraphs. Using our bipartite analogue of Theorem 1.5 (see Chapter 4

10



for details), we improve Theorem 1.14 to best possible bounds and prove a directed

analogue. We also deduce that the binomial bipartite graph Gn,n,p and the binomial

bipartite digraph Dn,n,p contain, with high probability, respectively regeven(G)
2

and reg(D)

edge-disjoint Hamilton cycles. An analogous result can be obtained for random bipartite

tournaments.

Corollary 1.15. For any 0 < p ≤ 1, there exist ε > 0 and n0 ∈ N for which the following

hold.

(i) Let G be a bipartite ε-regular graph on vertex classes of size n and suppose that

δ(G) ≥ pn. Then, G contains regeven(G)
2

edge-disjoint Hamilton cycles.

(ii) Let D be a bipartite ε-regular digraph on vertex classes of size n and suppose that

δ0(D) ≥ pn. Then, D contains reg(D) edge-disjoint Hamilton cycles.

(iii) With high probability, Gn,n,p contains regeven(Gn,n,p)

2
edge-disjoint Hamilton cycles.

(iv) With high probability, Dn,n,p contains reg(Dn,n,p) edge-disjoint Hamilton cycles.

(v) Let T be chosen uniformly at random among the bipartite tournaments on vertex

classes of size n. Then, T contains reg(T ) edge-disjoint Hamilton cycles with high

probability.

Another related line of research has been to count Hamilton decompositions. For

example, Glebov, Luria, and Sudakov [42] showed that, for any c > 1
2

and any sufficiently

large even r = cn, any r-regular graph on n vertices contains r
(1+o(n))nr

2 distinct Hamilton

cycles. Similarly, Ferber, Long, and Sudakov [35] showed that, for any c > 3
8
, any

sufficiently large cn-regular oriented graph on n vertices contains n(1−o(1))cn2
distinct

Hamilton decompositions. Both proofs are based on Theorem 1.5.
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1.2 Cycle decompositions

More generally, one can consider cycle decompositions, that is, decompositions into (not

necessarily Hamilton) cycles. (Here and throughout this thesis, a cycle in a digraph is always

assumed to have all its edges consistently oriented.) Unlike Hamilton decompositions, the

class of (di)graphs which admit a cycle decomposition has a simple characterisation: a

(di)graph can be decomposed into cycles if and only if it is Eulerian. (Here and throughout

this thesis, a digraph D is called Eulerian if each vertex v ∈ V (D) satisfies d+D(v) = d−D(v).)

So instead, the main line of research focuses on decomposing Eulerian (di)graphs into as

few cycles as possible.

Problem 1.16. Given an Eulerian (di)graph G, what is the minimum size of a cycle

decomposition of G?

The answer to Problem 1.16 is called the cycle number of G and denoted by cn(G).

Note that a Hamilton decomposition of an n-vertex (di)graph G is a cycle decomposition

of size e(G)
n

and so since Problem 1.2 is already NP-complete, determining the cycle number

of a (di)graph is also an NP-complete problem. Thus, a general solution to Problem 1.16

cannot be expected.

1.2.1 Cycle decompositions of graphs

Let G be an Eulerian graph on n vertices. A natural lower bound on the cycle number of

G can be expressed in terms of the maximum degree ∆(G) of G. That is,

cn(G) ≥ ∆(G)

2
. (1.1)

In general, ∆(G)
2

cycles may not suffice to decompose G. For example, it is easy to see that

the graph in Figure 1.2 has maximum degree 4, but has a unique cycle decomposition of

size 3.

12



G

Figure 1.2: Example of a graph G which satisfies cn(G) > ∆(G)
2

.

By considering the maximum possible value for ∆(G) in (1.1), one can deduce that

there exist n-vertex graphs which cannot be decomposed into fewer than ⌊n−1
2
⌋ cycles.

Hajós (see [87]) conjectured that ⌊n−1
2
⌋ cycles are actually sufficient.

Conjecture 1.17 (Hajós). Any Eulerian graph on n vertices satisfies cn(G) ≤
⌊
n−1
2

⌋
.

(Note that Hajós originally asked for a decomposition of Eulerian n-vertex graphs into

at most
⌊
n
2

⌋
cycles, but Dean [22] observed that this is equivalent to Conjecture 1.17.)

Hajós’ conjecture is still open but has been verified for some specific classes of graphs.

First, note that a Hamilton decomposition of a (di)graph G on n vertices is a cycle

decomposition of size e(G)
n
≤ ⌊n−1

2
⌋, so Conjecture 1.17 holds for all the classes of (di)graphs

which have a Hamilton decomposition (see Section 1.1 for some examples). Moreover,

Hajós’ conjecture has been verified for graphs on at most 12 vertices by Heinrich, Natale,

and Streicher [52], as well as for planar graphs by Jiang [58] and Seyffarth [102]. Favaron

and Kouider [32] and Granville and Moisiadis [47] independently proved Conjecture 1.17

for graphs of maximum degree at most 4. Favaron and Kouider [32] also verified Hajós’

conjecture for minimally 2-connected and minimally 2-edge-connected graphs. Other lines

of investigation on Hajós’ conjecture include K−6 -minor free graphs by Fan and Xu [31],

graphs of treewidth at most 3 by Botler, Sambinelli, Coelho, and Lee [16], graphs of

pathwidth at most 6 by Fuchs, Gellert, and Heinrich [38], projective graphs by Fan and

Xu [31], and (quasi)random graphs by Glock, Kühn, and Osthus [45].

Together with Girão, Kühn, and Osthus [41], we prove an approximate version of

Conjecture 1.17 for sufficiently large graphs of linear minimum degree.

Theorem 1.18 ([41]). For any α, δ > 0, there exists n0 ∈ N such that the following holds.

Let G be an Eulerian graph on n ≥ n0 vertices of minimum degree δ(G) ≥ αn. Then,
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cn(G) ≤ n
2

+ δn.

In fact, our methods allow us to show that the bound in (1.1) is asymptotically the

correct value when G also a satisfies weak quasirandom property. (This is discussed

more thoroughly in Chapter 2.) In particular, these refined bounds settle Conjecture 1.17

for sufficiently large graphs of sufficiently large minimum degree and sufficiently small

maximum degree.

Theorem 1.19 ([41]). For any ε > 0, there exists n0 ∈ N such that the following holds. Let

G be an Eulerian graph on n ≥ n0 vertices satisfying
(
1
2

+ ε
)
n ≤ δ(G) ≤ ∆(G) ≤ (1− ε)n.

Then, cn(G) ≤
⌊
n−1
2

⌋
.

1.2.2 Cycle and edge decompositions of graphs

As discussed above, Hajós’ conjecture has been verified for some specific classes of graphs,

but very little progress has been made for general graphs. In fact, the related problem

of decomposing Eulerian graphs into O(n) cycles is still open. This is equivalent to a

problem posed in [28], which is known as the Erdős-Gallai conjecture (see [27]).

Conjecture 1.20 (Erdős-Gallai). Any graph on n vertices can be decomposed into O(n)

cycles and edges.

To see why the Erdős-Gallai conjecture is equivalent to decomposing Eulerian graphs

into a linear number of cycles, let G be an Eulerian graph on n vertices and suppose that

D is a decomposition of G into O(n) cycles and edges. Denote by C the set of cycles in D

and by E the set of edges in D. Since G is Eulerian and all the cycles in C are edge-disjoint,

E induces an Eulerian subgraph G′ of G. Thus, G′ can be greedily decomposed into a set

C ′ of at most |E| edge-disjoint cycles. Then, C ∪ C ′ is a cycle decomposition of G of size

at most |D| = O(n), as desired. Conversely, suppose that G is a graph on n vertices. By

greedily removing cycles from G, partition the edges of G into an Eulerian subgraph G′

and a forest F . Note that F contains at most n− 1 = O(n) edges. Thus, a decomposition

of G′ into O(n) cycles would induce a decomposition of G into O(n) cycles and edges.
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Some progress toward Conjecture 1.20 was made by Conlon, Fox, and Sudakov [19],

who showed that O(n log log n) cycles and edges are sufficient to decompose any graph on

n vertices. Moreover, they verified Conjecture 1.20 for graphs of linear minimum degree.

Theorem 1.21 ([19]). For any α > 0, the following holds. Let G be a graph on n vertices

of minimum degree δ(G) ≥ αn. Then, G can be decomposed into O(α−12n) cycles and

edges.

Together with Girão, Kühn, and Osthus [41], we observe that Theorem 1.18 can be

used to improve the bounds in Theorem 1.21.

Theorem 1.22 ([41]). For any α, δ > 0, there exists n0 ∈ N such that the following holds.

Let G be a graph on n ≥ n0 vertices of minimum degree δ(G) ≥ αn. Then, G can be

decomposed into at most 3n
2

+ δn cycles and edges.

There exist graphs on n vertices which cannot be decomposed into fewer than 3n
2
− o(n)

cycles and edges, so Theorem 1.22 gives the asymptotically best possible constant. Indeed,

let ε > 0 and fix a natural number n ≥ 1−ε
ε2

such that εn is odd. Let G be the complete

bipartite graph on vertex classes A and B of size εn and (1− ε)n, respectively. We show

that G cannot be decomposed into fewer than
(
3
2
− 2ε

)
n cycles and edges. Let D be a

decomposition of G into cycles and edges. By assumption, every vertex of B has odd

degree in G and so must be adjacent to at least one edge in D. Thus, there exists E ⊆ D

which consists of (1− ε)n edges. Then, there exists v ∈ A which is adjacent to at most

1−ε
ε

edges in E and so |D| ≥ |E|+ 1
2

(
dG(v)− 1−ε

ε

)
≥
(
3
2
− 2ε

)
n, as desired.

1.2.3 Cycle decompositions of digraphs

Jackson [55] conjectured that the analogue of Hajós’ conjecture holds for Eulerian oriented

graphs, that is, any Eulerian oriented graph on n vertices can be decomposed into at most

⌊n
2
⌋ cycles. However, Dean [22] observed that this conjecture is false and proposed the

following alternative.
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Conjecture 1.23 (Dean). Any Eulerian oriented graph D on n vertices satisfies cn(D) ≤⌊
2n
3

⌋
.

More generally, Bienia and Meyniel [9] conjectured that Eulerian digraphs can be

decomposed into linearly many cycles.

Conjecture 1.24 (Bienia and Meyniel). There exists α > 0 such that any Eulerian

digraph D on n vertices satisfies cn(D) ≤ αn.

As mentioned in [9,22], unions of complete digraphs on 4 vertices which are all sharing

a common vertex show that, if Conjecture 1.24 is true, then α ≥ 4
3
. On the other hand,

Dean [22] conjectured that α ≤ 8
3
.

Conjecture 1.25 (Dean). Any Eulerian digraph D on n > 1 vertices satisfies cn(D) ≤
8n
3
− 3.

These conjectures are still open, but some progress was recently made by Knierim,

Larcher, Martinsson, and Noever [68].

Theorem 1.26 ([68]). Any Eulerian digraph D on n vertices with maximum degree ∆

satisfies cn(D) = O(n log ∆).

1.2.4 Some related problems

A related line of research consists in finding decompositions into cycles of prescribed lengths.

For example, we already discussed Hamilton decompositions in Section 1.1. Asymptotically

best possible minimum degree thresholds for the existence of C2ℓ-decompositions were

obtained by Barber, Kühn, Lo, and Osthus [7]. The study of triangle decompositions

has also attracted a lot of attention. Kirkman [67] showed that the complete graph on

n vertices can be decomposed into triangles if and only if n ≡ 1 or 3 (mod 6). More

generally, Nash-Williams [92] conjectured that any sufficiently large Eulerian graph G

on n vertices which satisfies e(G) ≡ 0 (mod 3) and δ(G) ≥ 3n
4

can be decomposed into

triangles. Delcourt and Postle [24] showed that the minimum degree threshold for a
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fractional triangle decomposition is at most
(

7+
√
21

14

)
n + o(n). Together with previous

results of Barber, Kühn, Lo, and Osthus [7], this implies that the currently best known

minimum degree threshold for triangle decompositions is equal to
(

7+
√
21

14

)
n + o(n). For

further details on the history of Nash-Williams’ conjecture, see e.g. the survey [46].

Another line of research consists of decompositions into cycle factors. The Oberwolfach

problem, due to Ringel (see e.g. [83]), asks whether the complete graph on an odd number

of vertices can be decomposed into edge-disjoint copies of a given cycle factor F . This was

answered positively for large complete graphs by Glock, Joos, Kim, Kühn, and Osthus [43].

Subsequently, another proof was given by Keevash and Staden [64]. In fact, both results are

more general and cover analogues of the Oberwolfach problem for almost complete graphs

[43], dense quasirandom graphs [64], and digraphs [64]. They also allow for decompositions

into a prescribed set of cycles factor rather than copies of the same cycle factor F . In

particular, this resolves several variants of the Oberwolfach problem. For further details,

we direct the readers to the introductions of [43,64].

1.3 Path decompositions

Finally, we consider path decompositions, that is, decompositions which consist of paths.

(Here and throughout this thesis, a path in a digraph is always assumed to have all its

edges consistently oriented.) For any (di)graph G, it is easy to see that the set E(G) of

edges of G forms a path decomposition of G. Thus, as for cycle decompositions, we are

interested in decomposing (di)graphs into as few paths as possible.

Problem 1.27. Given a (di)graph G, what is the minimum size of a path decomposition

of G?

The answer to Problem 1.27 is called the path number of G and denoted by pn(G).

Péroche [97] showed that Problem 1.27 is an NP-complete problem, so a general solution

cannot be expected.
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1.3.1 Path decompositions of graphs

Let G be a graph on n vertices. As for cycle decompositions (recall (1.1)), ∆(G)
2

provides a

natural lower bound on pn(G). However, this lower bound can be refined by considering

vertices of odd degree. Indeed, note that any vertex of odd degree in G must be the

endpoint of a path in a path decomposition of G. Thus,

pn(G) ≥ max

{
∆(G)

2
,
odd(G)

2

}
. (1.2)

(Recall that odd(G) denotes the number of odd-degree vertices in G.) In general,

max
{

∆(G)
2

, odd(G)
2

}
paths may not suffice to decompose G. For example, a cycle is a

2-regular graph but can only be decomposed into at least two paths. (Further examples

are discussed in Chapter 2, see Propositions 2.4 and 2.5.)

On the other hand, a linear upper bound on the path number can be obtained from

Lovász’ result on path and cycle decompositions. Indeed, let G be a graph on n vertices

and recall that Theorem 1.1 guarantees a decomposition D of G into ⌊n
2
⌋ paths and cycles.

Thus, by splitting each cycle in D into two paths, we obtain a path decomposition of G of

size at most n, that is, pn(G) ≤ n. In fact, Lovász’ main result [87] is slightly more general

than Theorem 1.1 and implies that any graph G on n vertices satisfies pn(G) ≤ n − 1.

This was later improved by Donald [26], who showed that
⌊
3n
4

⌋
paths suffice to decompose

a graph of order n. Subsequently, Dean and Kouider [23] and Yan [109] independently

refined this bound.

Theorem 1.28 ([23,109]). Any graph G on n vertices satisfies pn(G) ≤
⌊
2n
3

⌋
.

By considering a disjoint union of triangles (and at most one isolated vertex or edge

if n ≡ 1 or 2 (mod 3)), one can see that the bound in Theorem 1.28 is best possible

for general graphs. However, Gallai (see [87]) conjectured that it can be improved for

connected graphs.

Conjecture 1.29 (Gallai). Any connected graph G on n vertices satisfies pn(G) ≤
⌈
n
2

⌉
.
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By considering complete graphs, one can show that Gallai’s conjecture would be

best possible. Similarly to Hajós’ conjecture, Conjecture 1.29 is still open but has been

verified for some specific classes of graphs. For example, Stanton, Cowan, and James [103]

and Harary and Schwenk [50] proved Gallai’s conjecture for complete graphs, complete

bipartite graphs, trees, and 3-regular graphs. Gallai’s conjecture has been verified for

graphs of maximum degree at most 4 by Favaron and Kouider [32] and at most 5 by

Bonamy and Perrett [11]. Partial results for graphs of maximum degree 6 were obtained

by Chu, Fan, and Liu [18]. Gallai’s conjecture for planar graphs has also attracted a

lot of attention (see e.g. [14,16,39]) and was recently resolved by Blanché, Bonamy, and

Bonichon [10]. Much work has been done on families of graphs which impose conditions

on the vertices of even degree (see e.g. [15, 30, 32, 87, 100]) or on the girth (see e.g.

[13,16,51]). Other lines of investigation on Gallai’s conjecture include series-parallel graphs

by Kindermann, Schlipf, and Schulz [66], families of sparse triangle-free graphs by Jiménez

and Wakabayashi [59], graphs of treewidth at most 3 by Botler, Sambinelli, Coelho, and

Lee [16], and (quasi)random graphs by Glock, Kühn, and Osthus [45].

Together with Girão, Kühn, and Osthus [41], we prove an approximate version of

Conjecture 1.29 for sufficiently large graphs of linear minimum degree.

Theorem 1.30 ([41]). For any α, δ > 0, there exists n0 ∈ N such that the following holds.

Let G be a graph on n ≥ n0 vertices of minimum degree δ(G) ≥ αn. Then, pn(G) ≤ n
2

+δn.

In fact, our methods allow us to show that the bound in (1.2) is asymptotically the

correct value when G also satisfies a weak quasirandom property. (This is discussed more

thoroughly in Chapter 2.)

1.3.2 Path decompositions of tournaments

While undirected graphs have a linear or sublinear path number (recall Theorem 1.28), the

path number of a digraph may be quadratic on the number of vertices. Indeed, Alspach

and Pullman [6] proved that an oriented graph D on n vertices satisfies pn(D) ≤ n2

4
, with
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equality holding for transitive tournaments. This was then generalised to digraphs on at

least 4 vertices by O’Brien [95].

Theorem 1.31 ([95]). Let D be a digraph on n ≥ 4 vertices. Then, pn(D) ≤ n2

4
.

Let D be a digraph. To derive a lower bound on pn(D), we need to introduce some

notation. Let v ∈ V (D) and define the excess at v as exD(v) := d+D(v) − d−D(v). Let

ex+
D(v) := max{0, exD(v)} and ex−D(v) := max{0,− exD(v)} be the positive excess and

negative excess at v, respectively. Then, as observed in [6], if d+D(v) > d−D(v), then a path

decomposition of D contains at most d−D(v) paths which have v as an internal vertex, and

thus at least d+D(v)− d−D(v) = ex+
D(v) paths starting at v. Similarly, a path decomposition

of D will contain at least ex−D(v) paths ending at v. Thus, the excess of D, defined as

ex(D) :=
∑

v∈V (D)

ex+
D(v) =

∑
v∈V (D)

ex−D(v) =
1

2

∑
v∈V (D)

| exD(v)|, (1.3)

provides a natural lower bound for the path number of D. That is, any digraph D satisfies

pn(D) ≥ ex(D). (1.4)

It was shown in [6] that equality is satisfied for acyclic digraphs. A digraph satisfying

equality in (1.4) is called consistent. Clearly, not all digraphs are consistent (e.g. regular

digraphs have excess 0). However, Alspach, Mason, and Pullman [5] conjectured in 1976

that tournaments of even order are consistent.

Conjecture 1.32 (Alspach, Mason, and Pullman). Any tournament T of even order

satisfies pn(T ) = ex(T ).

By Theorem 1.31 and (1.4), Conjecture 1.32 holds for tournaments of excess n2

4
.

Moreover, Lo, Patel, Skokan, and Talbot [85] observed that Conjecture 1.32 for tournaments

of excess n
2

is equivalent to Kelly’s conjecture on Hamilton decompositions of regular

tournaments (see Conjecture 1.4). Indeed, suppose that T is a regular tournament on n

vertices and let v ∈ V (T ). Then, one can verify that n is odd and T −{v} is a tournament
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of excess n−1
2

. Thus, Conjecture 1.32 would imply that T − {v} has a path decomposition

D of size n−1
2

. This decomposition D would thus have to consist of Hamilton paths and

every vertex of T −{v} would have to be the starting point of precisely one path in D and

the ending point of precisely one path in D. A Hamilton decomposition of T could thus

be obtained by incorporating v in each of the Hamilton paths in D. Conversely, suppose

that T is a tournament of excess n
2
. Then, one can verify that there exists a partition

U+∪U− of V (T ) such that U+ consists of n
2

vertices satisfying ex+
T (v) = d+T (v)−d−T (v) = 1

and U− consists of n
2

vertices satisfying ex−T (v) = d−T (v) − d+T (v) = 1. Let T ′ be the

tournament obtained from T by adding a new vertex w with outneighbourhood U+ and

inneighbourhood U−. Then, T ′ is regular and so Kelly’s conjecture would imply that

T ′ has a decomposition D which consists of n
2

Hamilton cycles. Removing w from each

Hamilton cycle in D gives a decomposition of T into n
2

= ex(T ) (Hamilton) paths.

Recently, Lo, Patel, Skokan, and Talbot [85] verified Conjecture 1.32 for sufficiently

large tournaments of sufficiently large excess. Moreover, they extended this result to

tournaments of odd order n whose excess is at least n2− 1
18 .

Theorem 1.33 ([85]). The following hold.

(i) There exists C ∈ N for which the following holds. Let T be a tournament of even

order n and suppose that ex(T ) ≥ Cn. Then, pn(T ) = ex(T ).

(ii) There exists n0 ∈ N for which the following holds. Let T be a tournament on

n ≥ n0 vertices satisfying ex(T ) ≥ n2− 1
18 . Then, pn(T ) = ex(T ).

With Girão, Kühn, Lo, and Osthus [40], we build on the results and methods of [76,85]

to prove Conjecture 1.32 for large tournaments.

Theorem 1.34 ([40]). There exists n0 ∈ N such that any tournament T of even order

n ≥ n0 satisfies pn(T ) = ex(T ).

In fact, our methods are more general and allow us to study tournaments of odd

order. In particular, we obtain asymptotically best possible bounds on the path number
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of sufficiently large tournaments of odd order, as well as exact bounds for almost all such

tournaments. (This is discussed more thoroughly in Chapter 3.) We also determine the

path number of regular tournaments, which resolves a conjecture of Alspach, Mason, and

Pullman [5].

Theorem 1.35 ([40]). There exists n0 ∈ N such that any regular tournament T on n ≥ n0

vertices satisfies pn(T ) = n+1
2
.

More generally, one may consider the path number of general digraphs. The arguments

of Péroche [97] can be adapted to show that determining whether a digraph is consistent

or not is an NP-complete problem (see e.g. [21]), so one cannot expect to fully characterise

consistent digraphs. Nevertheless, this line of study was recently initiated by Espuny

Dı́az, Patel, and Stroh [29], who proved that, for a wide range of densities p, the random

binomial digraph Dn,p is consistent with high probability.

1.3.3 Some related problems

Instead of decomposing graphs into paths, one may consider the related problem of finding

a decomposition into linear forests, that is, forests whose components are all paths. The

linear arboricity conjecture, due to Akiyama, Exoo, and Harary [1], states that any graph

G can be decomposed into at most
⌈
∆(G)+1

2

⌉
linear forests. An approximate version of this

conjecture was verified by Alon [2] for graphs of sufficiently large maximum degree. The

best current bound, due to Lang and Postle [81], states that ∆(G)
2

+ 3
√

∆(G) log4(∆(G))

linear forests suffice provided that ∆(G) is sufficiently large. For further details on the

history of the linear arboricity conjecture, see e.g. [33].

Instead of considering general linear forests, with components of any length, one may

consider matching decompositions, that is, edge-colourings. Vizing’s theorem states that

the chromatic index χ′(G) of any graph G satisfies χ′(G) ∈ {∆(G),∆(G) + 1}. An active

line of research consists in classifying graphs in terms of their chromatic index. Given a

graph G on n vertices and a subgraph H of G on m vertices, we say that H is overfull if H
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has more than ∆(G)⌊m
2
⌋ edges. The overfull subgraph conjecture, due to Chetwynd and

Hilton [17], states that a graph G on n vertices with ∆(G) > n
3

satisfies χ′(G) = ∆(G) + 1

if and only if G contains an overfull subgraph. Niessen and Volkmann [94], Plantholt [99],

and Bongard, Hoffmann, and Volkmann [12] considered minimum degree conditions for

which the overfull subgraph conjecture holds. Some results on the overfull conjecture when

the maximum degree is large are surveyed in [54]. Moreover, Glock, Kühn, and Osthus [45]

verified this conjecture for sufficiently large almost regular quasirandom graphs with linear

minimum degree.

One can show that the overfull subgraph conjecture is a generalisation of the 1-

factorisation conjecture, which states that any sufficiently dense regular graph on an even

number of vertices can be decomposed into perfect matchings. This latter conjecture was

verified for sufficiently large graphs by Csaba, Kühn, Lo, Osthus, and Treglown [20]. For

further discussions on the overfull and 1-factorisation conjectures, see e.g. [104].

1.4 Organisation

This thesis is organised as follows. First, we give a detailed overview of our main results:

in Chapter 2, we discuss our results on path and cycle decompositions of dense graphs;

in Chapter 3, we discuss our results on path decompositions of tournaments; and in

Chapter 4, we discuss our results on Hamilton decompositions of bipartite tournaments.

Due to space constraints, we will only provide a proof of Jackson’s conjecture (and some

easy applications). This is achieved in Chapters 5–18. We give a more detailed overview

of these chapters at the start of Chapter 5.

23





CHAPTER 2

PATH AND CYCLE DECOMPOSITIONS OF
DENSE GRAPHS

This chapter summarises the results from [41], which are joint work with António Girão,

Daniela Kühn, and Deryk Osthus.

In this chapter, we discuss our results on path and cycle decompositions of dense graphs

more thoroughly. Recall that given a graph G, we denote by pn(G) the path number

of G (that is, the minimum number of paths in a path decomposition of G) and, if G

is Eulerian, we denote by cn(G) the cycle number of G (that is, the minimum number

of cycles in a cycle decomposition of G). As mentioned in the introduction, we obtain

asymptotically best possible upper bounds on the path number (Theorem 1.30) and cycle

number (Theorem 1.18) of dense graphs, as well as improve previously known bounds on

the number of cycles and edges required to decompose such graphs (Theorem 1.22). For

convenience, we restate these theorems here.

Theorem 2.1. For any α, δ > 0, there exists n0 ∈ N such that if G is a graph on n ≥ n0

vertices of minimum degree δ(G) ≥ αn, then the following hold.

(i) pn(G) ≤ n
2

+ δn.

(ii) If G is Eulerian, then cn(G) ≤ n
2

+ δn.

(iii) G can be decomposed into at most 3n
2

+ δn cycles and edges.
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Due to space constraints we will omit the proof of Theorem 2.1. However, a proof

overview can be found in Section 2.2.

2.1 Weak quasirandomness

As briefly mentioned in the introduction, we can improve the bounds in Theorem 2.1(i)

and (ii) when G also satisfies a weak quasirandom property.

More precisely, we say that an n-vertex graph G is weakly-(ε, p)-quasirandom if for

any partition A ∪B of V (G) with |A|, |B| ≥ εn we have eG(A,B) ≥ p|A||B|. This notion

of weak quasirandomness implies that the reduced graph obtained after applying the

regularity lemma to a dense graph is connected. This is the only property required to

obtain the bounds in the following theorem.

Theorem 2.2. For any α, δ, p > 0, there exists n0 ∈ N such that if G is a weakly-

(α
2
, p)-quasirandom graph on n ≥ n0 vertices with δ(G) ≥ αn, then the following hold.

(i) pn(G) ≤ max
{

odd(G)
2

, ∆(G)
2

}
+ δn.

(ii) If G is Eulerian, then cn(G) ≤ ∆(G)
2

+ δn.

Note that n-vertex graphs with minimum degree at least n
2

+ o(n) are easily seen to be

weakly quasirandom, so the following holds.

Corollary 2.3. For any δ, ε > 0, there exists n0 ∈ N such that if G is a graph on n ≥ n0

vertices with δ(G) ≥ n
2

+ εn, then the following hold.

(i) pn(G) ≤ max
{

odd(G)
2

, ∆(G)
2

}
+ δn.

(ii) If G is Eulerian, then cn(G) ≤ ∆(G)
2

+ δn.

Note that, if in addition G is regular, then the error terms of εn and δn can be removed

in Corollary 2.3(ii) (see Theorem 1.3). Moreover, Corollary 2.3(ii) automatically implies

that Hajós’ conjecture (Conjecture 1.17) holds for very dense n-vertex graphs whose

maximum degree is bounded away from n (see Theorem 1.19). In fact, Theorem 2.2(ii)
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implies that Theorem 1.19 holds more generally for sufficiently large weakly-quasirandom

graphs on n vertices with maximum degree bounded away from n.

For Theorem 2.1, the linear minimum degree condition is likely to be an artefact of our

proof. On the other hand, the next results show that neither the linear minimum degree

condition (or even the stronger assumption of linear connectivity), nor the weakly-
(
α
2
, p
)
-

quasirandom property is sufficient on its own to obtain the bounds in Theorem 2.2.

Proposition 2.4. For any odd integer n ≥ 20, there exists an
⌊

n
10

⌋
-connected Eulerian

graph G on 2n vertices such that the following hold.

(i) pn(G) ≥ max
{

odd(G)
2

, ∆(G)
2

}
+ n

10
.

(ii) cn(G) ≥ ∆(G)
2

+ n
10
.

Proposition 2.5. For any 0 < α ≤ 1 and n0 ∈ N, the following hold.

(i) There exists a weakly-
(

α
2
, α2

100

)
-quasirandom graph G on n ≥ n0 vertices such that

pn(G) ≥ max
{

odd(G)
2

, ∆(G)
2

}
+ αn

10
.

(ii) There exists an Eulerian weakly-
(

α
2
, α2

100

)
-quasirandom graph G on n ≥ n0 vertices

such that cn(G) ≥ ∆(G)
2

+ αn
10
.

On the other hand, the next result shows that one can drop the linear minimum degree

condition in Theorem 2.2(i) if the quasirandomness covers a larger range of partition class

sizes.

Theorem 2.6. For any δ, p > 0, there exist ε > 0 and n0 ∈ N such that any weakly-(ε, p)-

quasirandom graph G on n ≥ n0 vertices satisfies pn(G) ≤ max
{

odd(G)
2

, ∆(G)
2

}
+ δn.

Surprisingly, it turns out that the Erdős-Gallai conjecture (Conjecture 1.20) is equivalent

to the following analogue of Theorem 2.6 for cycle decompositions of Eulerian graphs.

Conjecture 2.7. For any δ, p > 0, there exist ε > 0 and n0 ∈ N such that any Eulerian

weakly-(ε, p)-quasirandom graph G on n ≥ n0 vertices satisfies cn(G) ≤ ∆(G)
2

+ δn.
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We can prove Conjecture 2.7 if weak-(ε, p)-quasirandomness is replaced by weak-

( ε
log logn

, p)-quasirandomness.

Proposition 2.8. For any δ, p > 0, there exist ε > 0 and n0 ∈ N such that any Eulerian

weakly-( ε
log logn

, p)-quasirandom graph G on n ≥ n0 vertices satisfies cn(G) ≤ ∆(G)
2

+ δn.

2.2 Proof overview

The proofs of Theorems 2.2 and 2.6 follow a similar strategy as those of Theorem 2.1(i)

and (ii), and so, for simplicity, we only sketch the proof of Theorem 2.1.

2.2.1 Cycle and edge decompositions: proof overview of Theo-

rem 2.1(iii)

First, we observe that Theorem 2.1(iii) can be derived from Theorem 2.1(ii) as follows.

Fix an additional constant n0 such that 0 < 1
n0
≪ α, δ ≤ 1. Let G be a graph on n ≥ n0

vertices with minimum degree δ(G) ≥ αn. Using the minimum degree condition of G, we

construct a set P which consists of odd(G)
2

edge-disjoint short paths of G such that every

vertex of odd degree in G is an endpoint of precisely one path in P. We do so in such

a way that P covers at most n + δn
2

edges of G and at most αn
2

edges incident to each

vertex of G. Thus, G \ E(P) is an Eulerian graph of minimum degree at least αn
2

and

so we can use Theorem 2.1(ii) (with α
2

and δ
2

playing the roles of α and δ) to decompose

it into at most n
2

+ δn
2

cycles. Altogether, we obtain a decomposition of G into at most

3n
2

+ δn cycles and edges, as desired.

2.2.2 Cycle decompositions: proof overview of Theorem 2.1(ii)

Fix additional constants ε, ζ, β, and n0 such that 0 < 1
n0
≪ ε≪ ζ ≪ β ≪ α, δ ≤ 1. Let G

be an Eulerian graph on n ≥ n0 vertices with δ(G) ≥ αn. We decompose G by repeatedly

constructing cycles. For simplicity, whenever edges are used to form a cycle, they are
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implicitly deleted from the graph (so all the cycles constructed below are edge-disjoint, as

desired). We obtain the bulk of our cycles in Step 3, all other cycles will contribute to the

error term. In Step 3, we need to be very efficient (i.e. the average length of the cycles

needs to be large), while there is room to spare in the other steps.

Step 1: Applying Szemerédi’s regularity lemma and setting aside some

random subgraphs Γ and Γ′. We start by applying Szemerédi’s regularity lemma and

a cleaning procedure similar to the one used to prove the degree form of the regularity

lemma. From this application, we obtain a subgraph H ⊆ G of small maximum degree

and a partition of V (G) into k clusters V1, . . . , Vk and an exceptional set V0. Moreover,

in each non-empty pair of clusters of G \H, almost all vertices have degree close to the

density of the pair, while the few other vertices are isolated. Moreover, in each pair, the

vertices of positive degree span an ε-regular bipartite graph.

We also set aside two sparse edge-disjoint random spanning subgraphs Γ,Γ′ ⊆ G \H

such that, in Γ, each non-empty pair of clusters has density close to β, while in Γ′ each

such pair has density close to ζ. By Theorem 1.1 and by splitting clusters if necessary,

we may assume that the reduced graph R′ of Γ can be decomposed into at most |R
′|

2
= k

2

cycles of even length (this will be needed in Step 5). Let G∗ := G \ (H ∪ Γ ∪ Γ′). Denote

by G∗ij the ε-regular (almost spanning) subgraph of the pair G∗[Vi, Vj], and define Γij

similarly. The random subgraphs Γ and Γ′ will be used to tie together given sets of paths

of G∗ into cycles.

Step 2: Covering the edges of G[V0]. Apply Theorem 1.1 to G[V0]. The paths

obtained are extended to paths with endpoints in V (G) \ V0 and then closed into cycles

using edges of Γ. Since V0 is small, this results in only a few cycles and we can use edges

of Γ sparingly so that its properties are not destroyed.

Step 3: Covering most of G∗ with at most roughly n
2
cycles. The idea is to

decompose the edges of G∗ into paths and then link some of these paths together using the

edges in Γ ∪ Γ′ to form cycles. The bipartite graph G∗[V0, V (G) \ V0] is decomposed into

29



paths of length 2 with midpoints in V0, called exceptional paths, while ε-regular pairs G∗ij

are approximately decomposed into long but not spanning paths, so that a few vertices

are set aside for tying up paths. We then use edges of Γ ∪ Γ′ to link these paths into

cycles. More precisely, we proceed as follows. Suppose first that the reduced graph R of G

is connected. We construct an auxiliary reduced graph R̂ such that the multiplicity of the

edges between Vi and Vj in R̂ is proportional to the density of corresponding pair G∗ij of

G∗. We optimally decompose R̂ into matchings. Given a matching M of R̂, we form sets P

of paths consisting of exactly one path of G∗ij for each ViVj ∈M , and of exceptional paths

which cover vertices of V0 with highest degree. Since M is a matching of clusters and our

non-exceptional paths do not span entire clusters, we can ensure that each set P of paths

obtained in this way consists of vertex-disjoint paths and does not span entire clusters.

Thus, after this step, we still have some uncovered vertices, called reservoir vertices, which

can be used to link the paths in each set P into a cycle using edges of Γ ∪ Γ′.

Since the edge multiplicity between two clusters in R̂ is proportional to the density of

the corresponding pair of G∗ and at each stage we cover exceptional vertices of highest

degree, we obtain an upper bound of roughly ∆(G∗)
2

cycles in total. In general, R may

be disconnected and, by construction, Γ ∪ Γ′ contains no edges between the different

components of R. Thus, we cannot tie together paths from different components and

we need to apply the above argument to each component of R separately. But, if a

component of R contains n′ vertices of G∗ (say), then the subgraph of G∗ induced by this

component has maximum degree at most n′ and we obtain at most roughly n′

2
cycles from

that component. Thus, we get an upper bound of roughly n
2

cycles in total.

By alternating which vertices are used as reservoir vertices, we ensure that the leftover

graph H ′ has small maximum degree. Moreover, we use edges of Γ sparingly so that the

properties of Γ are maintained. Since the density ζ of Γ′ is small, we can add the remaining

edges of Γ′ to H ′ without significantly increasing the maximum degree of H ′.

We remark that in Step 2 it was possible to tie together paths using only Γ because we

had some room to spare (in the sense that the number of cycles produced might be fairly
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large compared to the number of edges covered). But in Step 3, we need to use edges

of both Γ and Γ′ in order to be efficient and obtain the desired number of cycles. (The

reason that using Γ ∪ Γ′ is more efficient is that the reduced graph of Γ ∪ Γ′ equals that of

G∗. We cannot guarantee this property for Γ alone since for Step 4 the non-empty pairs

Γij of Γ need to be fairly dense.)

Step 4: Covering the leftovers. By construction, H ∪ H ′ has small maximum

degree and so can be decomposed into few small matchings. We tie the edges of each

matching into a cycle using edges of Γ. Once again, we make sure that the relevant

properties of Γ are preserved.

Step 5: Fully decomposing Γ. It only remains to decompose (the remainder of) Γ.

The idea is to initially decompose the reduced graph of Γ into k
2

cycles of even length (as

discussed in Step 1). For each such cycle C, the subgraph ΓC of Γ corresponding to the

blow-up of C is first approximately decomposed into Hamilton cycles of ΓC that “wind

around” C. The leftover is then decomposed using the main technical result of [76] as

follows.

The cycle C is initially decomposed into a pair (M,M ′) of matchings. For each

ViVj ∈M ∪M ′, we first set aside a small set Eij of edges of Γij and then decompose the

remaining edges into a set Hij of Hamilton paths. We make sure the set of endpoints of the

paths in
⋃

ViVj∈M Hij equals the set of endpoints of the edges in
⋃

ViVj∈M ′ Eij , and similarly

for M and M ′ exchanged. Thus we can tie together a path of Hij for each ViVj ∈ M

using exactly one edge of Ei′j′ for each Vi′Vj′ ∈M ′. We proceed similarly to tie paths of⋃
ViVj∈M ′Hij into cycles. We thus obtain a Hamilton decomposition of ΓC .

In order to prescribe the endpoints of the Hamilton paths, we add some suitable edges

to ΓC , called fictive edges, and then actually find a Hamilton decomposition of each pair

Γij \ Eij such that each cycle in the decomposition contains exactly one fictive edge (see

Figure 2.1). Such decompositions are guaranteed by the “robust decomposition lemma”

of [76]. Since by construction all pairs of Γ have density close to β, we obtain, in total,
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M
′

M
′

M

(A) Pair of matchings (M,M ′) in the
reduced graph.

w z

x y

M ′

M ′

(B) We set aside an edge from each
pair in M ′ (dashed grey) and replace
them by a fictive edge in each pair of
M (dashed black).

w

x

z

y

M ′

M ′

(C) We find a Hamilton cycle of each
pair of M containing a single fictive
edge (dashed black).

w

x

z

y

M ′

M ′

(D) We remove the fictive edges from
the cycles of pairs of M and insert back
the edges set aside from pairs of M ′

(dashed grey).

Figure 2.1: Construction of a cycle of Γ.

about βn
2
≪ δn cycles.

2.2.3 Path decompositions: proof overview of Theorem 2.1(i)

We will find the required path decomposition by applying the previous arguments to

a suitable auxiliary graph. More precisely, fix an additional constant n0 such that

0 < 1
n0
≪ α, δ ≤ 1. Let G be a graph on n ≥ n0 vertices of minimum degree δ(G) ≥ αn.

Our strategy consists in adding to G a (multi)set Efict of at most roughly n
2

fictive edges

in such a way that the (multi)graph G ∪ Efict is Eulerian. Then, we apply the arguments

of Theorem 2.1(ii) to find a cycle decomposition D of G ∪Efict of size at most n
2

+ δn
2

. We

do this in such a way that D has a partition D1 ∪ D2 where each cycle in D1 contains

precisely one fictive edge from Efict and D2 is a set of at most δn
2

cycles which do not

contain any fictive edge. (Roughly speaking, the cycles in D1 are those constructed in
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Step 3 of the above proof overview, while D2 consists of all the other cycles.) Observe that

D1 induces a set D′1 of edge-disjoint paths of G. Let D′2 be obtained from D2 by splitting

each cycle into two paths. Then, D′1 ∪ D′2 is a path decomposition of G of size at most

|D|+ δn
2
≤ n

2
+ δn, as desired.
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CHAPTER 3

PATH DECOMPOSITIONS OF TOURNAMENTS

This chapter summarises the results from [40], which are joint work with António Girão,

Daniela Kühn, Allan Lo, and Deryk Osthus.

In this chapter, we discuss our results on path decompositions of tournaments. Recall

from (1.4), that the excess ex(D) = 1
2

∑
v∈V (D) |d

+
D(v)− d−D(v)| of a digraph D provides a

natural lower bound on the path number pn(D). Our main contribution (Theorem 1.34)

consists of a proof of Alspach, Mason, and Pullman’s conjecture (Conjecture 1.32), which

states any tournament T of even order satisfies pn(T ) = ex(T ). For simplicity, we restate

this theorem here.

Theorem 3.1. There exists n0 ∈ N such that any tournament T of even order n ≥ n0

satisfies pn(T ) = ex(T ).

Due to space constraints, we will omit the proof of Theorem 3.1. However, a proof

overview can be found in Section 3.2.

3.1 Tournaments of odd order

As briefly mentioned in the introduction, our methods also apply to tournaments of odd

order. We now discuss this more thoroughly.

Let D be a digraph. Let ∆0(D) denote the maximum semidegree of D, that is

∆0(D) := max{d+(v), d−(v) | v ∈ V (D)}. Note that ∆0(D) is a natural lower bound for
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pn(D) as every vertex v ∈ V (D) must be in at least max{d+(v), d−(v)} paths. This leads

to the notion of the modified excess of a digraph D, which is defined as

ẽx(D) := max{ex(D),∆0(D)}.

This provides a natural lower bound for the path number of any digraph D. That is, any

digraph D satisfies

pn(D) ≥ ẽx(D). (3.1)

(Note that one can easily verify that any tournament T of even order satisfies ẽx(T ) = ex(T ),

so (3.1) is consistent with Conjecture 1.32.)

Observe that, by Theorem 1.33(ii), equality holds in (3.1) for large tournaments of

excess at least n2− 1
18 . However, note that equality does not hold for regular digraphs.

Indeed, by considering the number of edges, one can show that any path decomposition of

an r-regular digraph will contain at least r + 1 paths. Thus, any r-regular digraph satisfies

pn(D) ≥ r + 1 = ẽx(D) + 1.

Alspach, Mason, and Pullman [5] conjectured that equality holds in this inequality whenever

D is a regular tournament. We verify this conjecture for sufficiently large tournaments

(see Theorem 1.35). In fact, our argument also applies to regular oriented graphs of large

enough degree.

Theorem 3.2. For any ε > 0, there exists n0 ∈ N such that, if D is an r-regular oriented

graph on n ≥ n0 vertices satisfying r ≥
(
3
8

+ ε
)
n, then pn(D) = r + 1 = ẽx(D) + 1.

Recall from Section 1.1.1 that a robust (ν, τ )-outexpander is a digraph D on n vertices

such that |RN+
ν,D(S)| ≥ |S| + νn for every S ⊆ V (D) satisfying τn ≤ |S| ≤ (1 − τ)n

(where RN+
ν,D(S) denotes the set of vertices of D which have at least νn inneighbours in

S). Theorem 3.2 can be extended to regular digraphs of linear degree which are robust

outexpanders.
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Theorem 3.3. For any δ > 0, there exists τ > 0 such that, for all ν > 0, there exists

n0 ∈ N for which the following holds. Let D be a robust (ν, τ)-outexpander on n ≥ n0

vertices and suppose that D is r-regular for some r ≥ δn. Then, pn(D) = ẽx(D)+1 = r+1.

There also exist non-regular tournaments for which equality does not hold in (3.1).

Indeed, let Tapex be the set of tournaments T on n ≥ 5 vertices for which there exists

a partition V (T ) = V0 ∪ {v+} ∪ {v−} such that T [V0] is a regular tournament on n − 2

vertices (and so n is odd), N+
T (v+) = V0 = N−T (v−), N−T (v+) = {v−}, and N+

T (v−) = {v+}.

The tournaments in Tapex are called apex tournaments.

Theorem 3.4. There exists n0 ∈ N such that any tournament T ∈ Tapex satisfies pn(T ) =

ẽx(T ) + 1.

Denote by Treg the class of regular tournaments and let Texcep := Tapex ∪ Treg. The

tournaments in Texcep are called exceptional. We conjecture that the tournaments in Texcep

are the only ones which do not satisfy equality in (3.1).

Conjecture 3.5. There exists n0 ∈ N such that any tournament T /∈ Texcep on n ≥ n0

vertices satisfies pn(T ) = ẽx(T ).

We prove an approximate version of this conjecture (see Corollary 3.7). Moreover, in

Theorem 3.6, we prove Conjecture 3.5 exactly unless n is odd and T is extremely close to

being a regular tournament.

Theorem 3.6. For all β > 0, there exists n0 ∈ N such that the following holds. If T is a

tournament on n ≥ n0 vertices such that T /∈ Texcep and

(i) ẽx(T ) ≥ n
2

+ βn, or

(ii) N+(T ), N−(T ) ≥ βn, where N+(T ) := |{v ∈ V (T ) | ex+
T (v) > 0}|+ ẽx(T )− ex(T )

and N−(T ) := |{v ∈ V (T ) | ex−T (v) > 0}|+ ẽx(T )− ex(T ),

then pn(T ) = ẽx(T ).
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One can verify that a tournament T of even order satisfies ẽx(T ) = ex(T ) and so

Theorem 3.1 (i.e. the exact solution when n is even) can be derived from Theorem 3.6.

We also derive an approximate version of Conjecture 3.5 from Theorem 3.6.

Corollary 3.7. For all β > 0, there exists n0 ∈ N such that, for any tournament T on

n ≥ n0 vertices, pn(T ) ≤ ẽx(T ) + βn.

Note that Theorem 3.6(ii) corresponds to the case where linearly many different vertices

can be used as endpoints of paths in a path decomposition of size ẽx(T ). Indeed, let

T be a tournament and P be a path decomposition of T . Then, as mentioned above,

each v ∈ V (T ) must be the starting point of at least ex+
T (v) paths in P. Thus, for any

tournament T , N+(T ) is the maximum number of distinct vertices which can be a starting

point of a path in a path decomposition of T of size ẽx(T ) and similarly for N−(T ) and

the ending points of paths.

One can show that almost all large tournaments satisfy ex(T ) = n
3
2
+o(1). Indeed,

consider a tournament T on n vertices, where the orientation of each edge is chosen

uniformly at random, independently of all other orientations. For the upper bound

on ex(T ), one can simply apply a Chernoff bound to show that for a given vertex v

and ε > 0, we have ex+
T (v) ≤ n

1
2
+ε with probability 1 − o

(
1
n

)
. The result follows by

a union bound over all vertices. For the lower bound, let X denote the number of

vertices v with d−T (v) ∈
[
n
2
− 2
√
n, n

2
−
√
n
]
. Then it is easy to see that, for large enough

n, we have E[X] ≥ n
104

, say. Moreover, Chebyshev’s inequality can be used to show

that, with probability 1 − o(1), we have X ≥ n
2·104 , again with room to spare. Thus,

Theorem 3.6 implies the following. (Note that the case when n is even already follows

from Theorem 1.33(i).)

Corollary 3.8. As n → ∞, the proportion of tournaments T on n vertices satisfying

pn(T ) = ẽx(T ) tends to 1.

Finally, we observe that our methods give a short proof of (a stronger version of)

a result of Osthus and Staden [96], which guarantees an approximate decomposition of
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regular robust outexpanders of linear degree into Hamilton cycles and which was used as

a tool in the proof of Kelly’s conjecture [76]. This new approximate decomposition result

will play an important role in our proof of Jackson’s conjecture (see Chapter 4 for more

details).

Theorem 3.9. For all δ > 0, there exists τ > 0 such that, for all ν, η > 0, there exists

ε > 0 such that there exists n0 ∈ N for which the following holds. Let ℓ ≤ (δ − η)n. Let

D be a robust (ν, τ)-outexpander on n ≥ n0 vertices and suppose that every v ∈ V (D)

satisfies (δ − ε)n ≤ d+D(v), d−D(v) ≤ (δ + ε)n. Suppose that F1, . . . , Fℓ are linear forests on

V (D) satisfying the following properties.

(i) For each i ∈ [ℓ], e(Fi) ≤ εn.

(ii) For each v ∈ V (D), there exist at most εn indices i ∈ [ℓ] such that v ∈ V (Fi).

Define a multidigraph F by F :=
⋃

i∈[ℓ] Fi. Then, the multidigraph D ∪ F contains

edge-disjoint Hamilton cycles C1, . . . , Cℓ such that Fi ⊆ Ci for each i ∈ [ℓ].

3.2 Proof overview

We now give a brief proof overview of (a simplified case of) Theorem 3.6. (Recall that

Theorem 3.1 follows from Theorem 3.6.)

3.2.1 Robust outexpanders

Recall from Theorem 1.5 that any regular robust outexpander of linear degree has a

Hamilton decomposition. We can apply this to obtain an optimal path decomposition

in the following setting. Let D be a digraph on n vertices, 0 < η < 1, and suppose that

X+ ∪X− ∪X0 is a partition of V (D) such that |X+| = |X−| = ηn and the following hold.

Each v ∈ X0 satisfies d+D(v) = ηn = d−D(v).

Each v ∈ X+ satisfies d+D(v) = ηn and d−D(v) = ηn− 1.

Each v ∈ X− satisfies d+D(v) = ηn− 1 and d−D(v) = ηn.

(†)
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Then, the digraph D′ obtained from D by adding a new vertex v with N+
D′(v) = X+ and

N−D′(v) = X− is ηn-regular. Thus, if D is a robust outexpander, then so is D′ and there

exists a decomposition of D′ into Hamilton cycles. This induces a decomposition P of

D into ηn Hamilton paths, where each vertex in X+ is the starting point of exactly one

path in P and each vertex in X− is the ending point of exactly one path in P . (A similar

observation was already made and used in [85].) Our main strategy will be to reduce our

tournament to a digraph of the above form. This will be achieved as follows.

3.2.2 Simplified approach for well-behaved tournaments

Let β > 0 and fix additional constants such that 0 < 1
n0
≪ ε≪ γ ≪ η ≪ β. Let T be a

tournament on n ≥ n0 vertices. For simplicity, we assume that each v ∈ V (T ) satisfies

| exT (v)| ≤ εn (i.e. T is almost regular), ẽx(T ) = ex(T ), and both |{v ∈ V (T ) | ex+
T (v) >

0}|, |{v ∈ V (T ) | ex−T (v) > 0}| ≥ ηn. (Further details on how the argument can be

generalised if any of these conditions is not satisfied can be found in [40].)

Since T is almost regular, it is a robust outexpander. Let Γ be obtained by including

each edge of T with probability γ. Using Chernoff bounds, we may assume that Γ is a

robust outexpander of density almost γ and D := T \ Γ is almost regular. The digraph

Γ will serve two purposes. Firstly, its robust outexpansion properties will be used to

construct an approximate path decomposition of T . Secondly, provided few edges of Γ

are used throughout this approximate decomposition, it will guarantee that the leftover

(consisting of all of those edges of T not covered by the approximate path decomposition)

is still a robust outexpander, as required to complete our decomposition of T in the way

described in Section 3.2.1.

Fix X+ ⊆ {v ∈ V (T ) | ex+
T (v) > 0} and X− ⊆ {v ∈ V (T ) | ex−T (v) > 0}, both of size

ηn and denote X0 := V (T ) \ (X+ ∪X−). Our goal is then to find an approximate path

decomposition P of T such that |P| = ẽx(T ) − ηn and such that the leftover T \ E(P)

satisfies the degree conditions in (†). Thus, it suffices to show that P satisfies the following.

(i) Each v ∈ X+ is the starting point of exactly ex+
T (v)− 1 paths in P, while each
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v ∈ V (T ) \ X+ is the starting point of exactly ex+
T (v) paths in P. Similarly,

each v ∈ X− is the ending point of exactly ex−T (v) − 1 paths in P, while each

v ∈ V (T ) \X− is the ending point of exactly ex−T (v) paths in P .

(ii) Each v ∈ V (T )\(X+∪X−) is the internal vertex of exactly (n−1)−| exT (v)|
2

−ηn paths

in P , while each v ∈ X+∪X− is the internal vertex of exactly (n−1)−| exT (v)|
2

−ηn+1

paths in P .

Indeed, (i) ensures that |P| = ex(T )−ηn and each vertex has the desired excess in T \E(P),

namely exT\E(P)(v) = +1 if v ∈ X+, exT\E(P)(v) = −1 if v ∈ X−, and exT\E(P)(v) = 0

otherwise. In addition, (ii) ensures that the degrees in T \ E(P) satisfy (†).

Recall that, by assumption, T is almost regular. Thus, in a nutshell, (i) and (ii)

state that we need to construct edge-disjoint paths with specific endpoints and such that

each vertex is covered by about (1
2
− η)n paths. To ensure the latter, we will in fact

approximately decompose T into about (1
2
− η)n spanning sets of internally vertex-disjoint

paths. To ensure the former, we will start by constructing (1
2
− η)n auxiliary digraphs on

V (T ) such that, for each v ∈ V (T ), the total number of edges starting (and ending) at v

is the number of paths that we want to start (and end, respectively) at v. These auxiliary

digraphs will be called layouts. Then, it will be enough to construct, for each layout L, a

spanning set PL of paths, called a spanning configuration of shape L, such that each path

P ∈ PL corresponds to some edge e ∈ E(L) and such that the starting and ending points

of P equal those of e. Roughly speaking, a spanning configuration PL is a set of internally

vertex-disjoint paths and L indicates the starting and ending points of these paths.

These spanning configurations will be constructed one by one as follows. (See also

Figure 3.1.) At each stage, given a layout L, fix an edge yz ∈ E(L). Then, using the

robust outexpansion properties of (the remainder of) Γ, find short internally vertex-disjoint

paths with endpoints corresponding to the endpoints of the edges in L \ {yz}. Denote by

P ′L the set containing these paths. Then, it only remains to construct a path from y to z

spanning V (T ) \ V (P ′L). We achieve this as follows.

Let D′ and Γ′ be obtained from (the remainders of) D − V (P ′L) and Γ − V (P ′L)

41



by merging the vertices y and z into a new vertex vyz whose outneighbourhood is the

outneighbourhood of y and whose inneighbourhood is the inneighbourhood of z. Then,

observe that a Hamilton cycle of D′∪Γ′ corresponds to a path from y to z of T which spans

V (T ) \ V (P ′L). To construct such a Hamilton cycle of D′ ∪ Γ′, one can simply use the fact

that Γ′ is a robust outexpander to find a Hamilton cycle. However, if we proceed in this

way, then the robust outexpansion property of Γ′ might be destroyed before constructing

all the desired spanning configurations.

So instead we construct a Hamilton cycle of D′ ∪ Γ′ with only few edges in Γ′ as

follows. As a preparatory step in advance of choosing the spanning configurations, we

consider a random partition of V (T ) into A1, . . . , Aa each of size n
a
. We choose one Ai

for the current layout. We restrict ourselves to use Γ′ inside Ai only. Note that Γ′[Ai] is

a robust outexpander and D′ − Ai is a dense almost regular digraph. The latter means

that we can find a spanning linear forest F in D′ − Ai which has few components. Since

F has few components, we can then greedily extend the components of F to obtain a

linear forest F ′ ⊆ D′ which covers all the vertices in V (D′) \ Ai and whose endpoints are

all in Ai. Finally, we use the robust outexpansion properties of Γ′[Ai] to close F ′ in to

a Hamilton cycle of D′ ∪ Γ′. None of the Ai will be used too often when constructing

the spanning configurations, which will mean that Γ′[Ai] is always a robust outexpander.

When the desired spanning configuration is a Hamilton cycle, this approach of finding

many edge-disjoint spanning configurations by first finding a suitable linear forest F , and

then tying F together together via some small set Ai (with varying Ai in order to avoid

over-using a particular set of vertices) has been used successfully in several earlier papers

(e.g. [35, 76]).

We illustrate this argument with the following example. Suppose that L is a layout

consisting of three edges uv, wx, and yz (Figure 3.1(A)). We want to construct a spanning

configuration of shape L, that is, a set of paths which consists of a path from u to v, a

path from w to x, and a path from y to z such that these three paths are vertex-disjoint

and altogether cover all the vertices of T . First, we use robust outexpansion to construct
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Figure 3.1: Constructing a spanning set of vertex-disjoint paths in D ∪ Γ with prescribed
endpoints and few edges of Γ. Dashed edges represent auxiliary edges, full black edges
represent edges of D, and grey edges represent edges of Γ. Wavy black edges represent
paths in D and wavy grey edges represent paths in Γ.

a short path P1 from u to v and a short path P2 from w to x in Γ (Figure 3.1(B)). Denote

V ′ := V (T ) \ (V (P1) ∪ V (P2) ∪ {y, z}). The goal is now to construct a path from y to z

which covers all the vertices in V ′. To do so, we replace y and z by an auxiliary vertex

vyz whose outneighbourhood is N+(vyz) := N+
D(y) ∩ V ′ and whose inneighbourhood is

N−(vyz) := N−D (z) ∩ V ′ (Figure 3.1(B)) and we consider a small preselected random set of

vertices Ai ⊆ V ′. It is then enough to find a cycle on V ′∪{vyz} which uses Γ inside Ai only.

Denote V ′′ := (V ′ ∪ {vyz}) \ Ai. Firstly, we use almost regularity of D to find a spanning

linear forest on V ′′ which consists of few components (Figure 3.1(C)). Secondly, we use

the large degree of D to extend the endpoints of the linear forest to Ai (Figure 3.1(D)).
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Finally, we use the robust outexpansion of Γ to close the linear forest into a cycle which

covers all the vertices in Ai (Figure 3.1(E)). This gives a cycle on V ′ ∪ {vyz}. Replacing

the auxiliary vertex vyz by the original vertices y and z, we obtain a path from y to z

which covers all the vertices in V ′, as desired (Figure 3.1(F)).
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CHAPTER 4

HAMILTON DECOMPOSITIONS OF REGULAR
BIPARTITE TOURNAMENTS

In this chapter, we discuss our results on Hamilton decompositions of regular bipartite

tournaments. Our main contribution consists of a proof of Jackson’s conjecture (Conjec-

ture 1.8), which states any regular bipartite tournament can be decomposed into Hamilton

cycles.

Theorem 1.10. There exists n0 ∈ N such that any regular bipartite tournament T on

4n ≥ n0 vertices has a Hamilton decomposition.

Along the way, we also prove a conjecture of Liebenau and Pehova [84] on Hamilton

decompositions of dense regular bipartite digraphs.

Theorem 1.11. For any δ > 1
2
, there exists n0 ∈ N for which the following holds. Let D

be a bipartite digraph on vertex classes of size n ≥ n0 and suppose that D is r-regular for

some r ≥ δn. Then, D has a Hamilton decomposition.

Recall from Section 1.1.2 that the analogue of Theorem 1.10 when T is an r-partite

tournament for some r ≥ 4 was already proven in [77]. In Section 6.1, we will construct

a family of regular tripartite tournaments which cannot be decomposed into Hamilton

cycles.

Proposition 1.7. For any integer n ≥ 2, there exists a regular tripartite tournament on

vertex classes of size n which does not have a Hamilton decomposition.

45



Thus, Theorem 1.10 completes the study of Hamilton decompositions of partite tour-

naments. As briefly mentioned in the introduction, our proof will be split into two cases:

T is a “bipartite robust outexpander” and T is “close to the complete blow-up C4”. We

now discuss this more thoroughly.

4.1 Bipartite robust outexpanders

Recall from Section 1.1.1 that a robust (ν, τ)-outexpander is a digraph D on n vertices

such that |RN+
ν,D(S)| ≥ |S| + νn for every S ⊆ V (D) satisfying τn ≤ |S| ≤ (1 − τ)n

(where RN+
ν,D(S) denotes the set of vertices of D which have at least νn inneighbours

in S). One can check that bipartite digraphs are not robust outexpanders (the largest

vertex class does not expand). However, we can easily define a bipartite analogue of robust

outexpansion as follows. (Note that an undirected version of bipartite robust outexpansion

was introduced in [74] by Kühn, Lo, Osthus, and Staden.) A balanced bipartite digraph

D on vertex classes A and B of size n is called a bipartite robust (ν, τ)-outexpander with

bipartition (A,B) if the following holds. Let S ⊆ V (D) satisfy τn ≤ |S| ≤ (1 − τ)n. If

S ⊆ A or S ⊆ B, then |RN+
ν,D(S)| ≥ |S|+ νn.

Recall that in Theorem 3.9 we approximately decomposed almost regular robust

outexpanders into Hamilton cycles. We will see that these arguments can easily be adapted

to the bipartite case. Then, the leftovers can be covered using tools of [76] to obtain the

following bipartite version of Theorem 1.5.

Theorem 4.1. For any δ > 0, there exists τ > 0 such that, for all ν > 0, there exists

n0 ∈ N for which the following holds. Let D be a balanced bipartite digraph on vertex

classes A and B of size n ≥ n0. Suppose that D is a bipartite robust (ν, τ)-outexpander

with bipartition (A,B) and that D is r-regular for some r ≥ δn. Then, D has a Hamilton

decomposition.

Theorem 4.1 can be used to prove an analogous result for undirected graphs. Given

a graph G on n vertices and S ⊆ V (G), the ν-robust neighbourhood of S, denoted by
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RNν,G(S), consists of all the vertices of G which have at least νn neighbours in S. A

balanced bipartite graph G on vertex classes A and B of size n is called a bipartite robust

(ν, τ)-expander with bipartition (A,B) if, for any S ⊆ A which satisfies τ |A| ≤ |S| ≤

(1− τ)|A|, we have |RNν,G(S)| ≥ |S|+ νn. (Note that the ordering of A and B matters

here.)

Corollary 4.2. For any δ > 0, there exists τ > 0 such that, for all ν > 0, there exists

n0 ∈ N for which the following holds. Let G be a bipartite graph on vertex classes A and B

of size n ≥ n0. Suppose that G is a bipartite robust (ν, τ )-expander with bipartition (A,B),

as well as with bipartition (B,A), and that G is r-regular for some even r ≥ δn. Then, G

has a Hamilton decomposition.

Moreover, it turns out that regular digraphs of sufficiently large degree are bipartite

robust outexpanders, so Theorem 1.11 is an immediate corollary of Theorem 4.1. One can

also derive Corollary 1.15 from Theorem 4.1 and Corollary 4.2. (See Chapter 6 for more

details.)

4.2 The complete blow-up C4 case

The complete blow-up C4 with vertex classes of size n is the n-fold blow-up of the directed

C4. We say that a regular bipartite tournament is ε-close to the complete blow-up C4 on

vertex classes on size n if it can be obtained from the complete blow-up C4 with vertex

classes of size n by flipping the direction of at most 4εn2 edges.

As discussed in the introduction, a regular tournament is a robust outexpander and so

Theorem 1.5 directly implies Kelly’s conjecture on Hamilton decompositions of regular

tournaments (Conjecture 1.4). However, regular bipartite tournaments are not necessarily

bipartite robust outexpanders: for example, the vertex classes of the complete blow-up

C4 do not expand. It is thus much more difficult to prove the existence of a Hamilton

decomposition in the bipartite case. However, from the definition of a bipartite robust

outexpander, one can easily verify that a regular bipartite tournament is either a bipartite
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robust outexpander or close to the complete blow-up C4.

Lemma 4.3. For any τ > 0, there exists ν > 0 such that, for all 0 < ν ′ ≤ ν, there exists

n0 ∈ N for which the following holds. Let T be a regular bipartite tournament on vertex

classes A and B of size 2n ≥ n0. Then, one of the following holds.

(i) T is a bipartite robust (ν ′, τ)-outexpander with bipartition (A,B).

(ii) T is
√
ν ′-close to the complete blow-up C4 on vertex classes of size n.

Thus, Theorem 1.10 follows from Theorem 4.1, Lemma 4.3, and the following.

Theorem 4.4. There exist ε > 0 and n0 ∈ N for which the following holds. Let T be a

regular bipartite tournament on vertex classes of size 2n ≥ n0. Suppose that T is ε-close to

the complete blow-up C4 on vertex classes of size n. Then, T has a Hamilton decomposition.

Proof of Theorem 1.10. Define δ := 1
2
. Let τ > 0 be the constant obtained by applying

Theorem 4.1, let ν > 0 be the constant obtained by applying Lemma 4.3, and let ε > 0

be the constant obtained by applying Theorem 4.4. Define ν ′ := min{ν, ε2}. Let n′0 the

largest of the constants obtained by applying Theorems 4.1 and 4.4 and Lemma 4.3. Define

n0 := 2n′0. Let T be a regular bipartite tournament on 4n ≥ n0 vertices. Denote by A

and B the vertex classes of T . By definition of a regular bipartite tournament, we have

|A| = |B| = 2n ≥ n′0 and T is n-regular. If T is a bipartite robust (ν, τ)-outexpander

with bipartition (A,B), then Theorem 4.1 (applied with T and 2n playing the roles of D

and n) implies that T has a Hamilton decomposition, as desired. Otherwise, Lemma 4.3

implies that T is ε-close to the complete blow-up C4 on vertex classes of size n and so

Theorem 4.4 implies that T also has a Hamilton decomposition.

Most of this thesis will be devoted to the proof of Theorem 4.4. The core of the

proof will be to decompose and incorporate the few edges with reversed direction. The

approximate decomposition will be constructed using the bipartite analogue of Theorem 3.9.

To decompose the leftovers, we will use the “robust decomposition lemma” of [76]. Roughly

speaking, this tool states that a robust outexpander D contains an absorber Drob ⊆ D
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which can decompose any sparse regular leftover of D. In this thesis, we derive an analogue

of this lemma for blow-up cycles.

4.3 Proof overview

First, we give a proof overview of our main theorems, that is, Theorems 4.1 and 4.4. Given

a bipartite digraph D on vertex classes A and B, we denote by ED(A,B) the set of edges

of D which are oriented from A to B and by D[A,B] the bipartite (undirected) graph

induced by ED(A,B).

4.3.1 Constructing a Hamilton cycle in a bipartite digraph

Most of our Hamilton cycles will be constructed using the following procedure. (See also

Figure 4.1.) Let D be a balanced bipartite digraph on vertex classes A and B. First, we

find a perfect matching M of D whose edges are all oriented from B to A. (For example, if

D is regular, then we can simply obtain M by applying Hall’s theorem in D[B,A].) Then,

we restrict ourselves to constructing a Hamilton cycle which contains M . That is, we need

to find a perfect matching M ′ of D whose edges are all oriented from A to B and such

that M ∪M ′ forms a Hamilton cycle. To do so, we construct an auxiliary digraph DM on

A whose edge set is obtained from ED(A,B) by identifying the vertices which are matched

in M . (This digraph will be called the M -contraction of D[A,B], see Definition 7.25(i) for

a formal definition.) Then, we find a Hamilton cycle C in DM . Finally, we observe that C

corresponds to a perfect matching M ′ of D whose edges are all oriented from A to B and

such that M ∪M ′ forms a Hamilton cycle, as desired.

4.3.2 The bipartite robust expander case: proof overview of

Theorem 4.1

Let T be a regular bipartite tournament on vertex classes A and B of size n and suppose

that T is a bipartite robust outexpander with bipartition (A,B). (The same arguments
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a1 a2 a3 a4

b1 b2 b3 b4

(A) A bipartite digraph
D on vertex classes A =
{a1, a2, a3, a4} and B =
{b1, b2, b3, b4} which con-
tains a perfect matching
M (dashed edges) whose
edges are all oriented from
B to A.

a1

a2

a3

a4

(B) The digraph DM on
A = {a1, a2, a3, a4} whose
edge set is obtained from
ED(A,B) by identifying
the vertices which are
matched in M . The dot-
ted edges form a Hamilton
cycle C of DM .

a1 a2 a3 a4

b1 b2 b3 b4

(C) The Hamilton cycle
C of DM induces a per-
fect matching M ′ (dotted
edges) ofD whose edges are
all oriented from A to B
and such thatM∪M ′ forms
a Hamilton cycle of D.

Figure 4.1: Constructing a Hamilton cycle in a bipartite digraph.

hold for a regular bipartite robust outexpander of linear degree.)

Step 1: Constructing an absorber. First, we apply Szemerédi’s regularity lemma to

exhibit the structure required to apply (the bipartite version of) the robust decomposition

lemma of [76]. This then guarantees a sparse regular absorber Dabs ⊆ T which satisfies

the following property: for any sparse regular leftover H ⊆ T \Dabs, the digraph H ∪Dabs

has a Hamilton decomposition.

Step 2: Approximate decomposition. Denote D := T \Dabs and note that since

Dabs is regular and sparse, D is still a very dense regular bipartite robust outexpander.

We approximately decompose D into Hamilton cycles using the procedure described in

Section 4.3.1. More precisely, we can construct a Hamilton cycle of D as follows. Since

D is regular, we can obtain a perfect matching M of D whose edges are all oriented

from B to A simply by applying Hall’s theorem in D[B,A]. Denote by DM the auxiliary

digraph as defined in Section 4.3.1. Since D is a regular bipartite robust outexpander, one

can verify that DM is a regular robust outexpander. Then, we use arguments of [40] to

construct a Hamilton cycle C of DM . Let M ′ be the perfect matching of D induced by C.

As explained in Section 4.3.1, M ∪M ′ is Hamilton cycle of D.
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Of course, removing the edges of M ∪M ′ from D affects the bipartite robust outexpan-

sion and, in general, we would not be be able to repeat this argument sufficiently many

times to obtain an approximate decomposition. However, the arguments of [40] allow us

to preserve bipartite robust outexpansion in a sufficiently strong way that we can repeat

the above arguments to construct many edge-disjoint Hamilton cycles C1, . . . , C (1−ε)n
2

of D.

(For more details, see the second half of Section 3.2.2, which describes the arguments used

in [40] to repeatedly construct spanning linear forests in a robust outexpander without

affecting the robust outexpansion too much. One can proceed analogously to approximately

decompose a robust outexpander into Hamilton cycles.)

Step 3: Decomposing the leftovers. Let H := D\
⋃

i∈[ (1−ε)n
2

]
E(Ci). Note that H is

sparse and regular. Thus, the absorbing property described in Step 1 implies that H ∪Dabs

can be decomposed into edge-disjoint Hamilton cycles. Together with C1, . . . , C (1−ε)n
2

, this

gives us a Hamilton decomposition of T , as desired.

Note that Theorem 4.1 is proved in Chapter 9. The tools for constructing the absorber

are introduced in Sections 8.2 and 8.3. The approximate decomposition step is discussed

more thoroughly in Section 8.1.

4.3.3 The complete blow-up C4 case: proof overview of a special

case of Theorem 4.4

Let T be the complete blow-up C4 with vertex classes of size n. That is, there is a partition

of V (T ) into vertex classes U1, . . . , U4 of size n such that E(T ) consists of all the edges

which start in Ui and end in Ui+1 for some i ∈ [4] (where U5 := U1).

Note that the vertex classes U1, . . . , U4 do not expand, so T is not a bipartite robust

outexpander and we cannot apply the above arguments. (Recall that robust outexpansion

was key to construct the approximate decomposition. It is also needed to apply the robust

decomposition lemma.) However, we can (roughly) reduce the decomposition of T to the

bipartite robust outexpander case as follows.
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First, we discuss how to construct a single Hamilton cycle. (See also Figure 4.2.) For

each i ∈ [3], observe that T [Ui, Ui+1] is a complete balanced bipartite graph and so Hall’s

theorem implies that it contains a perfect matching Mi. Then, M1 ∪M2 ∪M3 induces a

set P of n vertex-disjoint paths of T , each starting in U1 and ending in U4. Moreover, P

covers all of the vertices of T . We restrict ourselves to constructing a Hamilton cycle of T

which contains E(P). Let M be the auxiliary perfect matching from U1 to U4 obtained

by replacing each path in P by an edge from its starting point to its ending point. Then,

it suffices to find a perfect matching M ′ ⊆ ET (U4, U1) such that M ∪M ′ forms a Hamilton

cycle on U4 ∪ U1. This can be done using the arguments of Section 4.3.1 (with A = U4,

B = U1, and E(D) = M ∪ ET (U4, U1)).

u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

u3,1

u3,2

u3,3u4,3

u4,2

u4,1

(A) A spanning set P of
n vertex-disjoint paths
which start in U1 and
end in U4.

u1,1 u1,2 u1,3

u4,1 u4,2 u4,3

(B) The auxiliary
perfect matching
M from U1 to
U4 obtained by
replacing each path
in P by an edge
from its starting to
its ending point.

u1,1 u1,2 u1,3

u4,1 u4,2 u4,3

(C) A Hamilton cy-
cle on U1 ∪ U4

which consists ofM
(dashed edges) and
a perfect matching
M ′ (dotted edges)
whose edges are all
oriented from U4

to U1.

u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

u3,1

u3,2

u3,3u4,3

u4,2

u4,1

(D) The edges of P and
M ′ induce a Hamilton
cycle on U1∪U2∪U3∪U4.

Figure 4.2: Constructing a Hamilton cycle in the complete blow-up C4 on vertex classes of
size n = 3, where Ui = {ui,1, ui,2, ui,3} for each i ∈ [4].

In fact, the above argument can be repeated to obtain an approximate decomposition

of T into Hamilton cycles. Indeed, for each i ∈ [3], T [Ui, Ui+1] is a complete bipartite

graph and so Hall’s theorem can be applied repeatedly to (approximately) decompose

it into perfect matchings. Moreover, T [U4, U1] is also a complete bipartite graph and
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so one can verify that it is a bipartite robust expander. Thus, it can be approximately

decomposed into suitable perfect matchings using the same arguments as in the bipartite

robust outexpander case.

To obtain a full Hamilton decomposition of T , one needs to find an absorber Dabs

which will decompose the edges which are leftover after the approximate decomposition.

Unfortunately, we cannot directly apply the tools of [76] in T since it is not a robust

outexpander. However, we will derive an analogue of the robust decomposition lemma

which can be applied in a blow-up C4. This argument is discussed in Chapter 11 (a detailed

proof overview is given in Section 11.1).

4.3.4 The ε-close to the complete blow-up C4 case: proof overview

of Theorem 4.4

Let T be a regular bipartite tournament and suppose that T is ε-close to the complete blow-

up C4 on vertex classes of size n. That is, there is a partition of V (T ) into vertex classes

U1, . . . , U4 of size n such that E(T ) satisfies the following properties (where U5 := U1).

– For each i ∈ [4], u ∈ Ui, and v ∈ Ui+1, E(T ) contains either the edge uv from u to v

or the edge vu from v to u (but not both).

– E(T ) does not contain any other edges.

–
∑

i∈[4] |ET (Ui+1, Ui)| ≤ 4εn2.

Note that if ET (Ui+1, Ui) = ∅ for each i ∈ [4], then T is in fact the complete blow-up C4

on vertex classes of size n and so it can be decomposed using the arguments presented in

Section 4.3.3. In general, the sets ET (Ui+1, Ui) will be non-empty and the main difficulty

will be to incorporate these edges, which we call backward edges.

Our overall strategy is the following. First, we decompose all the backward edges

into n small digraphs F1, . . . ,Fn. Then, we restrict ourselves to constructing a Hamilton

decomposition of T where each Hamilton cycle contains precisely one of the Fi’s.
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For this to be possible, F1, . . . ,Fn will need to have a very specific structure. First,

each Fi will have to be a linear forest (any proper subdigraph of a Hamilton cycle is a

linear forest). Moreover, each Fi will need to contain a “balanced” number of backward

edges. To see this, suppose that C is cycle of T such that C contains a backward edge, say

from U1 to U4, and all other edges of C are from Ui to Ui+1 for some i ∈ [4]. Then, one

can verify that C covers one more vertex from each of U1 and U4 than from each of U2

and U3. Thus, C cannot be a Hamilton cycle of T (recall that U1, . . . , U4 are equal sized

vertex classes which partition V (T )). This example shows no Fi can consist of a single

backward edge.

More generally, we will have restrictions on the number of backward edges contained in

each Fi. (Formally, each Fi will have to be a feasible system, as defined in Section 13.1.) To

illustrate this further, consider the simple example where T is obtained from the complete

blow-up C4 on vertex classes of size n by flipping the orientation of precisely one C4. Then,

T contains precisely four backward edges and since these form a small cycle, they cannot

all be included into a common Hamilton cycle. As discussed above, they also cannot be

spread across four different Hamilton cycles. Thus, they will be incorporated two by two

as follows:

– F1 will consist of the backward edge from U2 to U1 and the backward edge from U4

to U3,

– F2 will consist of the backward edge from U1 to U4 and the backward edge from U3

to U2, and

– F3, . . . ,Fn will be empty.

We will see that this decomposition of backward edges will ensure that the vertex classes

U1, . . . , U4 can be covered in a “balanced” way (as opposed to the previous example where

C covered more vertices from U1 and U4 than from U2 and U3).

Decomposing the backward edges of T into suitable digraphs F1, . . . ,Fn will be the

core of the proof and the sole focus of Chapters 13 and 15–18. We defer further discussions
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about how to decompose backward edges to these chapters, which contain further intuition

and motivation.

Once we have constructed suitable digraphs F1, . . . ,Fn, the Hamilton decomposition

will be constructed using the arguments presented in Section 4.3.3. However, the backward

edges will introduce additional problems. In particular, recall that in Section 4.3.3 we

decomposed T [U1, U2], T [U2, U3], and T [U3, U4] into perfect matchings by applying Hall’s

theorem. But, this is no longer possible since T [U1, U2], T [U2, U3], and T [U3, U4] may no

longer be regular bipartite graphs. Moreover, the matchings will now have to incorporate

some of the backward edges, as prescribed by F1, . . . ,Fn. Thus, T [U1, U2], T [U2, U3], and

T [U3, U4] will now need to be decomposed building on methods from [40]. (For more

detail on how construct an approximate decomposition which incorporates given Fi’s, see

Section 14.1.)

As mentioned in Section 4.3.3, the absorber required to decompose the leftovers will

be constructed using an analogue of the robust decomposition lemma for blow-up cycles

(see Chapter 11 for more detail). The decomposition properties of this absorber will be

robust enough to allow us to prescribe the backward edges of the Fi’s left over by the

approximate decomposition.
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PART II

PROOF OF JACKSON’S CONJECTURE





CHAPTER 5

ORGANISATION AND NOTATION

In this chapter, we give a brief overview of the remainder of this thesis and introduce some

key notation and concepts that will be used throughout the next chapters.

5.1 Organisation

The rest of this thesis is organised as follows. In Chapter 6, we prove Proposition 1.7,

Theorem 1.11, and Corollaries 1.15 and 4.2. All other chapters are dedicated to the proofs

of Theorems 4.1 and 4.4 and Lemma 4.3. More precisely, useful tools and preliminary

results are collected in Chapter 7, while our main tools for constructing approximate de-

compositions and leftovers are collected in Chapter 8. In Chapter 9, we prove Theorem 4.1,

while Chapters 10–18 are devoted to proving Lemma 4.3 and Theorem 4.4 (which are

derived in Chapters 10 and 14, respectively).

5.2 Notation

For simplicity, we collect the key notation and concepts that will be used throughout the

rest of this thesis. The core definitions will be defined when first needed and are indexed

in the glossary at the end of this thesis. Given n ∈ N, we define [n] := {1, . . . , n}. Given

a, b, c ∈ R, we write a = b± c to mean that b− c ≤ a ≤ b + c.
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5.2.1 Graphs and digraphs

In this thesis, all (directed) graphs are without loops and, unless otherwise specified,

without multiple edges. A digraph is a directed graph which contains at most two edges

between any pair of distinct vertices and at most one in each direction. An oriented graph

is a digraph which contains at most one edge between any pair of distinct vertices. Given

a (di)graph G, a sub(di)graph of G is a (di)graph whose vertex and edge sets are subsets

of those of G. Let G be an undirected graph. An orientation of G is an oriented graph

which can be obtained by orienting the edges of G. Given an orientation D of G, we say

that G is the undirected graph underlying D. A directed edge from a vertex u to a vertex

v is denoted by uv. If e is the directed edge uv, we say that u and v are the starting and

ending points of e, respectively.

A multigraph is an undirected graph without loops which may contain multiple edges

between the same pair of distinct vertices. Similarly, a multidigraph is a directed graph

without loops which may contain multiple edges of the same direction between the same pair

of distinct vertices. Given a multi(di)graph G, a submulti(di)graph of G is a multi(di)graph

whose vertex set is a subset of the vertex set of G and whose edge multiset is a submultiset

of the edge multiset of G. The edges of a multi(di)graph are always considered to be

distinct. More precisely, given a multi(di)graph G and distinct vertices u and v, denote

by µG(uv) the multiplicity of the edge uv in G (that is, µG(uv) is the number of edges

between u and v if G is undirected and the number of edges from u to v if G is directed).

Then, given a multi(di)graph G and submulti(di)graphs G1 and G2 of G, we say that G1

and G2 are edge-disjoint if µG1(uv) + µG2(uv) ≤ µG(uv) for any distinct vertices u and v

of G.

5.2.2 Edge sets

Let G be a (di)graph. We denote by V (G) and E(G) the vertex and edge sets of G,

respectively. The order of G is |V (G)| and we define the size of G as e(G) := |E(G)|. We
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say that G is empty if E(G) = ∅.

Let G be a (di)graph and let A,B ⊆ V (G) be disjoint. If G is undirected, we denote by

EG(A,B) the set of undirected edges of G which have an endpoint in A and an endpoint

in B. If G is directed, we denote by EG(A,B) the set of directed edges of G which start

in A and end in B. Define eG(A,B) := |EG(A,B)|. Given any disjoint vertex sets A′ and

B′ which are not necessarily contained in V (G), we sometimes abuse the above notation

and write EG(A′, B′) := EG(A′ ∩ V (G), B′ ∩ V (G)) and eG(A′, B′) := |EG(A′, B′)|.

Let G be a (di)graph and let A and B be any disjoint vertex sets. We denote by

G[A,B] the undirected bipartite graph on vertex classes A and B induced by EG(A,B)

and, if G is directed, we denote by G(A,B) the directed bipartite graph on vertex classes

A and B induced by EG(A,B). (Thus, if G is directed, then G[A,B] is the undirected

graph underlying G(A,B).)

All the above definitions from this subsection extend naturally to multi(di)graphs.

That is, if G is a multi(di)graph and A and B are disjoint vertex sets, then E(G) and

EG(A,B) are now multisets of edges, while G[A,B], as well as G(A,B) if G is directed,

are now multi(di)graphs. The vertex set V (G) of a multi(di)graph is still a set rather than

a multiset.

We sometime abuse notation and consider a set of (directed) edges as a (di)graph. In

particular, given a set of edges E, we write V (E) for the set of vertices which are incident

to an edge in E.

5.2.3 Subgraphs

Let G and H be (di)graphs and let F be a sub(di)graph of G. We write F ⊆ G, and,

if V (F ) = V (G), we say that F is spanning. Given S ⊆ V (G), we write G[S] for the

sub(di)graph of G induced by S and define G− S := G[V (G) \ S]. We denote by G \H

the (di)graph obtained from G by deleting all the edges in E(G) ∩ E(H), we denote by

G ∪H the (di)graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H), and we

denote by G ∩H the (di)graph with vertex set V (G) ∩ V (H) and edge set E(G) ∩ E(H).
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Given a set of (directed) edges E, we sometimes abuse the above notation and write G \E,

G ∪ E, and G ∩ E for the (di)graphs obtained as above when E is viewed as a (di)graph.

All the above definitions from this subsection extend naturally to multi(di)graphs,

with unions and differences now considered as multiset unions and differences. More

precisely, let G and H be multi(di)graphs. We denote by G \ H the multi(di)graph

with vertex set V (G) where µG\H(uv) := max{µG(uv) − µH(uv), 0} for any distinct

u, v ∈ V (G), we denote by G ∪H the multi(di)graph with vertex set V (G) ∪ V (H) where

µG∪H(uv) := µG(uv)+µH(uv) for any distinct u, v ∈ V (G)∪V (H), and we denote by G∩H

the multi(di)graph with vertex set V (G)∩V (H) where µG∩H(uv) := min{µG(uv), µH(uv)}

for any distinct u, v ∈ V (G) ∩ V (H).

5.2.4 Neighbourhoods and degrees

We use standard notation for neighbourhoods and degrees. More precisely, let G be an

undirected graph. Given v ∈ V (G), we denote by NG(v) the neighbourhood of v in G

and by dG(v) := |NG(v)| the degree of v in G. The maximum degree of G is ∆(G) :=

max{dG(v) | v ∈ V (G)} and the minimum degree of G is δ(G) := min{dG(v) | v ∈ V (G)}.

Similarly, let D be a digraph. Given v ∈ V (D), we denote by N+
D(v) and N−D(v)

the outneighbourhood and inneighbourhood of v in D, respectively, and by d+D(v) :=

|N+
D(v)| and d−D(v) := |N−D(v)| the outdegree and indegree of v in D, respectively. The

neighbourhood of a vertex v ∈ V (D) is the set ND(v) := N+
D(v) ∪N−D(v) and the degree

of a vertex v ∈ V (D) is dD(v) := d+D(v) + d−D(v). The maximum and minimum outdegree

of D are ∆+(D) := max{d+D(v) | v ∈ V (G)} and δ+(D) := min{d+D(v) | v ∈ V (G)},

respectively. The maximum/minimum indegree and maximum/minimum degree of D

are defined analogously and denoted by ∆−(D), δ−(D), ∆(D), and δ(D), respectively.

We denote by ∆0(D) := max{∆+(D),∆−(D)} the maximum semidegree of D and by

δ0(D) := min{δ+(D), δ−(D)} the minimum semidegree of D.

Let G be a (di)graph and S ⊆ V (G). The neighbourhood of S in G is the set

NG(S) :=
⋃

v∈S NG(v). If G is directed, the outneighbourhood N+
G (S) and inneighbourhood

62



N−G (S) of S in G are defined analogously.

5.2.5 Regularity

An undirected graph G is r-regular if dG(v) = r for all v ∈ V (G) and a digraph D is

r-regular if d+D(v) = r = d−D(v) for all v ∈ V (D). A (di)graph is regular if it is r-regular for

some r ∈ N. An undirected graph G on n vertices is (δ, ε)-almost regular if dG(v) = (δ±ε)n

for all v ∈ V (G) and a digraph D is (δ, ε)-almost regular if both d+D(v), d−D(v) = (δ ± ε)n

for all v ∈ V (D).

5.2.6 Matchings

A matching is a set of pairwise non-adjacent edges. Given a vertex set V , a matching M

is called perfect if V (M) = V .

Let M be a directed matching. We say that M is a matching from A to B if V (M) ⊆

A ∪ B and all the edges of M are directed from A to B. We say that M is a perfect

matching from A to B if M is a matching from A to B satisfying V (M) = A ∪B.

5.2.7 Blow-ups

Let D be a digraph and r ∈ N. The r-fold blow-up of D is the digraph D′ defined as

follows. The vertex set V (D′) consists of r copies of v for each v ∈ V (D). Let u, v ∈ V (D)

and u′, v′ ∈ V (D′). Suppose that u′ is a copy of u and v′ is a copy of v. Then, u′v′ ∈ E(D′)

if and only if uv ∈ E(D). For each v ∈ V (D), the set of r copies of v in V (D′) is called a

vertex class of D′.

5.2.8 Paths and cycles

Throughout this thesis, all paths and cycles are directed, with consistently oriented edges.

The number of edges contained in a path/cycle P is called the length of P and denoted by

e(P ). A path P is trivial if e(P ) = 0. Given a vertex set V , a Hamilton cycle is a cycle C
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satisfying V (C) = V .

Let P = v1 . . . vℓ be a path. The starting point of P is v1, the ending point of P is

vℓ, the endpoints of P are v1 and vℓ, and the internal vertices of P are v2, . . . , vℓ−1. We

denote V +(P ) := {v1}, V −(P ) := {vℓ}, and V 0(P ) := {v2, . . . , vℓ}. A (u, v)-path is a path

which starts at u and ends at v. Given 1 ≤ i ≤ j ≤ ℓ, denote by viPvj := vivi+1 . . . vj the

(vi, vj)-path induced by P .

A set of vertex-disjoint paths is sometimes called a linear forest. Given a set P of (not

necessarily disjoint) paths, we denote by V +(P) the set
⋃

P∈P V +(P ) of vertices which

are the starting point of a path in P . Define V −(P) and V 0(P) analogously. Note that

V +(P), V −(P), and V 0(P) are always sets rather than multisets.

Let P be a set of (not necessarily disjoint) paths. We sometimes abuse notation

and view P as a multidigraph. In particular, we denote by V (P) the set
⋃

P∈P V (P )

and by E(P) the multiset
⋃

P∈P E(P ). For any vertex v ∈ V (P), we denote dP(v) =∑
P∈P dP (v), and define the out- and indegrees d+P(v) and d−P(v) of v in P analogously.

Given a digraph D, we write D \P := D \ E(P).

5.2.9 Decompositions

Given a (di)graph G, a decomposition of G is a set of edge-disjoint sub(di)graphs of G

which altogether cover all the edges of G. A Hamilton decomposition is a decomposition

into Hamilton cycles.

Recall that the edges of a multi(di)graph are considered to be distinct. Thus, a

decomposition of a multi(di)graph G is a set {H1, . . . , Hℓ} of submulti(di)graphs of G such

that µG(uv) =
∑

i∈[ℓ] µHi
(uv) for any distinct u, v ∈ V (G).

5.2.10 Hierarchies

In a statement, the hierarchy 0 < a≪ b≪ c ≤ 1 means that there exist non-decreasing

functions f : (0, 1] −→ (0, 1] and g : (0, 1] −→ (0, 1] for which the statement holds for all

0 < a, b, c ≤ 1 satisfying b ≤ f(c) and a ≤ g(b). Hierarchies with more constants are
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defined analogously and should always be read from right to left. Whenever a constant

appears in the form 1
a

in a hierarchy, we implicit assume that a ∈ N.

5.2.11 ±-notation

To avoid repetitions, we sometime write statements of the form C± to mean that the

statements C+ and C− both hold. In particular, if C± is a statement of the form “A±

implies B±”, then we mean that “A+ implies B+” and “A− implies B−”. Similarly, a

statement of the form “A± implies B∓” means that “A+ implies B−” and “A− implies

B+”.
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CHAPTER 6

TRIPARTITE TOURNAMENTS AND SOME
APPLICATIONS OF THEOREM 4.1

In this section, we construct a family of regular tripartite tournaments which cannot be

decomposed into Hamilton cycles and derive several consequences of Theorem 4.1. In

particular, we prove Proposition 1.7, Theorem 1.11, and Corollaries 1.15 and 4.2.

6.1 Tripartite tournaments: proof of Proposition 1.7

Let n ≥ 2. We show that if T is obtained from the n-fold blow-up of the directed C3

by flipping the orientation of precisely one triangle, then T does not have a Hamilton

decomposition.

Proof of Proposition 1.7. Let U1, U2, and U3 be disjoint vertex sets of size n ≥ 2. For

each i ∈ [3], let ui ∈ Ui. Denote E := {u1u3, u3u2, u2u1} and let T be the digraph on

U1 ∪ U2 ∪ U3 defined by

E(T ) := E ∪ ({uv | i ∈ [3], u ∈ Ui, v ∈ Ui+1} \ {u1u2, u2u3, u3u1})

(where U4 := U1). Note that E(T [Ui]) = ∅ for each i ∈ [3].

Suppose for a contradiction that C is a Hamilton decomposition of T . Since u1u3u2

is a non-spanning cycle of T , the edges u1u3, u3u2, and u2u1 do not all lie on a common

Hamilton cycle in C . By the pigeon-hole principle, there exists i ∈ [3] and C ∈ C such
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that E(C) ∩ E = {uiui−1} (where u0 := u3). Denote C = uiui−1v1 . . . v3n−2. Then, for

each j ∈ [3n− 2], we have vj ∈ Ui−1+j (where the index i− 1 + j is taken modulo 3). In

particular, v3n−2 ∈ Ui. But ui ∈ Ui and so v3n−2ui /∈ E(T ), a contradiction.

Note that the above arguments can easily be extended to show that none of the edges

in E lie on a Hamilton cycle.

Moreover, the same arguments can be used to show that, if T is obtained from the

complete blow-up C4 on vertex classes of size n by flipping the orientation of a set E ′ of

edges, then no Hamilton cycle of T contains a single edge from E ′. This illustrates the fact

that the edges of T with reversed direction in Theorem 4.4 will have to be decomposed in

a “balanced” way.

6.2 Bipartite robust expanders: proof of Corollary 4.2

The arguments of [77, Lemma 3.6] can be easily adapted to the bipartite case to show

that the edges of a regular bipartite robust expander can be oriented to form a regular

bipartite robust outexpander.

Lemma 6.1. Let 0 < 1
n
≪ ν ′ ≪ ν ≤ τ ≪ δ ≤ 1 and let r ≥ δn be even. Let G be

an r-regular bipartite graph on vertex classes A and B of size n. Suppose that G is a

bipartite robust (ν, τ)-expander with bipartition (A,B), as well as with bipartition (B,A).

Then, there exists an r
2
-regular orientation D of G such that D is a bipartite robust

(ν ′, τ)-outexpander with bipartition (A,B).

This can be proved by considering a random orientation of the edges of G and then

adjusting the orientations of a small proportion of edges to ensure that D is r
2
-regular.

Proof of Corollary 4.2. Let δ > 0 and let τ ′ be the constant obtained by applying Theo-

rem 4.1. We may assume without loss of generality that δ ≪ 1. Fix additional constants

such that 0 < 1
n0
≪ τ ≪ τ ′, δ and 1

n0
≪ ν. Let n ≥ n0 and r ≥ δn. Suppose that r is

even. Let G be an r-regular balanced bipartite graph on vertex classes A and B of size n.
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Suppose that G is a bipartite robust (ν, τ)-expander with bipartition (A,B), as well as

with bipartition (B,A). By definition of a bipartite robust expander, we have ν ≤ τ . Fix

an additional constant such that 1
n
≪ ν ′ ≪ ν.

By Lemma 6.1, there exists an r
2
-regular orientation D of G such that D is a bipartite

robust (ν ′, τ)-outexpander with bipartition (A,B). By definition, D is also a bipartite

robust (ν ′, τ ′)-outexpander with bipartition (A,B). Apply Theorem 4.1 (with ν ′ and

τ ′ playing the roles of ν and τ) to obtain a Hamilton decomposition C of D. Let C ′

be obtained from C by replacing each directed edge uv ∈ E(C ) by an undirected edge

between u and v. By construction, C ′ is a Hamilton decomposition of G.

6.3 Dense bipartite digraphs: proof of Theorem 1.11

We show that any bipartite digraph of sufficiently large minimum semidegree is a bipartite

robust outexpander.

Lemma 6.2. Let 0 < ν ≤ τ ≪ ε < 1. Let D be a bipartite digraph on vertex classes

A and B of size n. Suppose that δ0(D) ≥ (1
2

+ ε)n. Then, D is a bipartite robust

(ν, τ)-outexpander with bipartition (A,B).

Proof. Let S ⊆ A satisfy τn ≤ |S| ≤ (1− τ)n and denote T := RN+
ν,D(S). We show that

|T | ≥ |S|+ νn. If |S| ≥ n
2
, then each v ∈ B satisfies |N−D (v) ∩ S| ≥ εn and so T = B. We

may therefore assume that |S| ≤ n
2
. Then,

(
1

2
+ ε

)
n|S| ≤ eD(S,B) ≤ νn2 + |S||T | ≤ νn

τ
|S|+ |S||T |

and so |T | ≥ (1
2

+ ε− ν
τ
)n ≥ |S|+ νn.

Similarly, if S ⊆ B satisfies τn ≤ |S| ≤ (1− τ)n, then |RN+
ν,D(S)| ≥ |S|+ νn. Thus,

D is a bipartite robust (ν, τ)-outexpander with bipartition (A,B).

Proof of Theorem 1.11. Let δ > 1
2

and let τ > 0 be the constant obtained by applying

Theorem 4.1. Let 0 < ν ≪ τ, δ and let n0 ∈ N be the constant obtained by applying
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Theorem 4.1. Let D be a bipartite digraph on vertex classes A and B of size n ≥ n0.

Suppose that D is r-regular for some r ≥ δn. Denote ε := r
n
− 1

2
. By assumption,

0 < δ − 1
2
≤ ε ≤ n−1

n
− 1

2
≤ 1. Fix an additional constant τ ′ such that 0 < ν ≤

τ ′ ≪ ε, τ . By Lemma 6.2, D is a bipartite robust (ν, τ ′)-outexpander with bipartition

(A,B). By definition of a bipartite robust outexpander, D is also a bipartite robust (ν, τ )-

outexpander with bipartition (A,B) and so Theorem 4.1 implies that D has a Hamilton

decomposition.

6.4 Optimal packings of Hamilton cycles: proof of

Corollary 1.15

The proof of Corollary 1.15 is standard, so we only give a brief proof overview. (Full details

can be found in Appendix A.) Let G,D, and T be defined as in Corollary 1.15. Observe

that by Theorem 4.1 and Corollary 4.2, it is enough to show that each of G, D, Gn,n,p,

Dn,n,p, and T contain, with high probability, a spanning regular sub(di)graph of degree

regeven(G)
2

, reg(D), regeven(Gn,n,p)

2
, reg(Dn,n,p), and reg(T ), respectively, which is a bipartite

robust (out)expander.

Arguments of [36] imply that regeven(G) ≥ (p−2ε)n. Thus, one can use basic properties

of ε-regular bipartite graphs to show that any regeven(G)-regular spanning subgraph of G

is still ε-regular. It is also easy to see that any ε-regular bipartite graph is also a bipartite

robust expander. Thus, Corollary 1.15(i) holds. Similar arguments hold for the directed

case and so Corollary 1.15(ii) is satisfied.

A simple Chernoff bound can be used to show that Gn,n,p is an ε-regular bipartite graph

of minimum degree at least (p− ε)n with high probability. Thus, Corollary 1.15(iii) follows

from Corollary 1.15(i). Similarly, Corollary 1.15(iv) and (v) follow from Corollary 1.15(ii).
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CHAPTER 7

PRELIMINARIES

We now introduce some preliminary tools and results which will be used throughout this

thesis.

7.1 (Bipartite) robust (out)expanders

In Sections 1.1.1 and 4.1, we introduced the concept of (bipartite) robust (out)expansion.

We start that by recalling and expanding on these definitions.

7.1.1 Definitions

Let D be a digraph on n vertices. Recall that for any S ⊆ V (D), we denote by RN+
ν,D(S)

the set of vertices v ∈ V (D) which satisfy |N−D(v) ∩ S| ≥ νn. Then, we say that D is a

robust (ν, τ)-outexpander if, for any S ⊆ V (D) satisfying τn ≤ |S| ≤ (1 − τ)n, we have

|RN+
ν,D(S)| ≥ |S|+ νn.

Let G be a graph on n vertices. Recall that for any S ⊆ V (G), we denote by RNν,G(S)

the set of vertices v ∈ V (G) which satisfy |ND(v) ∩ S| ≥ νn. Then, we say that G is

a robust (ν, τ)-expander if, for any S ⊆ V (G) satisfying τn ≤ |S| ≤ (1 − τ)n, we have

|RNν,G(S)| ≥ |S|+ νn. Let G be a bipartite graph on vertex classes A and B of size n.

We say that G is a bipartite robust (ν, τ )-expander with bipartition (A,B) if, for any S ⊆ A

satisfying τn ≤ |S| ≤ (1− τ)n, we have |RNν,G(S)| ≥ |S|+ νn. Note that the order of A
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and B matters.

In Section 4.1, we defined an analogue of bipartite robust expanders for digraphs. Let

D be a bipartite digraph on vertex classes A and B of size n. We say that D is a bipartite

robust (ν, τ)-outexpander with bipartition (A,B) if

– for any S ⊆ A such that τn ≤ |S| ≤ (1− τ)n, we have |RN+
ν,D(S)| ≥ |S|+ νn; and

– for any S ⊆ B such that τn ≤ |S| ≤ (1− τ)n, we have |RN+
ν,D(S)| ≥ |S|+ νn.

Note that, here, the order of A and B does not matter.

7.1.2 Basic properties of (bipartite) robust (out)expanders

The following facts hold by definition.

Fact 7.1. A digraph D is a bipartite robust (ν, τ)-outexpander with bipartition (A,B)

if and only if D[A,B] is a bipartite robust (ν, τ)-expander with bipartition (A,B) and

D[B,A] is a robust (ν, τ)-expander with bipartition (B,A).

Fact 7.2. Suppose that G is a bipartite robust (ν, τ)-expander with bipartition (A,B).

Then, for any ν ′ ≤ ν and τ ′ ≥ τ , G is a bipartite robust (ν ′, τ ′)-expander with bipartition

(A,B).

By definition, bipartite robust outexpansion is preserved when only a few edges are

removed at each vertex.

Lemma 7.3. Let 0 < 1
n
≪ ε ≤ ν ≤ 1. Let D be a bipartite digraph on vertex classes A

and B of size n. Suppose that D is a bipartite robust (ν, τ)-outexpander with bipartition

(A,B). If D′ is obtained from D by removing at most εn inedges and εn outedges at each

vertex, then D′ is a bipartite robust (ν − ε, τ)-expander with bipartition (A,B).

In [62,79], Keevash, Kühn, Osthus, and Treglown showed that a robust outexpander of

linear minimum degree is Hamiltonian.

Theorem 7.4 ([79, Theorem 16]). Let 0 < 1
n
≪ ν ≪ τ ≤ δ

2
≤ 1. Let D be a robust (ν, τ)-

outexpander on n vertices with δ0(D) ≥ δn. Then, D is Hamiltonian.
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The analogue of Theorem 7.4 holds for bipartite robust outexpanders. This can be

derived from Theorem 7.4 using the procedure presented in Section 4.3.1. The formal

proof is deferred to the end of Section 7.5, where we introduce the required definitions.

Corollary 7.5. Let 0 < 1
n
≪ ν ≪ τ ≤ δ ≤ 1. Let D be a balanced bipartite digraph on

vertex classes A and B of size n. Suppose that D is a bipartite robust (ν, τ)-outexpander

with bipartition (A,B) and that δ0(D) ≥ δn. Then, D is Hamiltonian.

Almost complete bipartite graphs are bipartite robust expanders.

Proposition 7.6. Let 0 < 1
n
≪ ε ≪ ν ≪ τ ≪ 1. Let G be a bipartite graph on vertex

classes A and B of size n. If δ(G) ≥ (1− ε)n, then G is a bipartite robust (ν, τ )-expander

with bipartition (A,B).

Proof. Let S ⊆ A satisfy τn ≤ |S| ≤ (1 − τ)n. Each v ∈ B satisfies |NG(v) ∩ S| ≥

(1 − ε)n − |A \ S| ≥ (τ − ε)n ≥ νn. Thus, |RNν,G(S)| = |B| ≥ |S| + τn ≥ |S| + νn.

Similarly, if S ′ ⊆ B satisfies τn ≤ |S ′| ≤ (1− τ)n, then |RNν,G(S ′)| ≥ |S ′|+ νn.

Recall the definition of an r-fold blow-up from Section 5.2.7. The next lemma states

that bipartite robust outexpansion is preserved when taking r-fold blow-ups. The proof is

very similar to that of its non-bipartite analogue (see [76, Lemma 5.3]), so we omit the

details.

Lemma 7.7. Let 0 < 3ν ≤ τ < 1 and r ≥ 3. Let D be a balanced bipartite robust

(ν, τ )-outexpander with bipartition (A,B). Let D′ be the r-fold blow-up of D. Let A′ be the

set of vertices in V (D′) which are a copy of a vertex in A. Let B′ := V (D′) \ A′. Then,

D′ is a bipartite robust (ν3, 2τ)-outexpander with bipartition (A′, B′).

7.2 (Super)regularity

In Section 1.1.3, we introduced the concept of ε-regular (di)graphs. We start by recalling

and expanding on these definitions.
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7.2.1 Definitions

Suppose that G is an undirected bipartite graph on vertex classes A and B. The density

of G is defined as

dG(A,B) :=
eG(A,B)

|A||B|
.

Let ε > 0. We say that G is ε-regular if, for any A′ ⊆ A and B′ ⊆ B satisfying |A′| ≥ ε|A|

and |B′| ≥ ε|B|, we have |dG(A,B) − dG(A′, B′)| < ε. Let 0 ≤ d ≤ 1. We say that

G is (ε, d)-regular if G is ε-regular and has density dG(A,B) = d. We say that G is

(ε,≥ d)-regular if there exists d′ ≥ d such that G is (ε, d′)-regular. We say that G is

[ε, d]-superregular if G is ε-regular, each a ∈ A satisfies dG(a) = (d± ε)|B|, and each b ∈ B

satisfies dG(b) = (d± ε)|A|. We say that G is [ε,≥ d]-superregular if there exists d′ ≥ d

such that G is [ε, d′]-superregular.

7.2.2 Basic properties of (super)regular pairs

The next proposition states that (super)regularity is preserved when few vertices and edges

are removed and/or added to a bipartite graph. This follows easily from the definitions

and a similar observation was already made (and proved) in [76, Proposition 4.3], so we

omit its proof here.

Proposition 7.8. Let 0 < 1
m
≪ ε ≤ ε′ ≤ d ≤ 1. Let G be a bipartite graph on vertex

classes A and B of size at least m. Let A′ and B′ be disjoint vertex sets satisfying

|A△A′| ≤ ε|A′| and |B△B′| ≤ ε|B′|. Let G′ be a bipartite graph on vertex classes A′ and

B′ and suppose that G′[A′ ∩ A,B′ ∩ B] is obtained from G[A′ ∩ A,B′ ∩ B] by removing

and adding at most ε′|B′| edges incident to each vertex in A′ ∩ A and at most ε′|A′| edges

incident to each vertex in B′ ∩B.

(i) If G is (ε,≥ d)-regular, then G′ is (3
√
ε′,≥ d− 3

√
ε′)-regular.

(ii) Suppose that A′ ⊆ A and B′ ⊆ B. If G is [ε, d]-superregular, then G′ is [3
√
ε′, d]-

superregular.
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Lemma 7.9 ([76, Proposition 4.14]). Let 0 < 1
m
≪ ε ≪ δ ≤ 1. Let G be a balanced

bipartite graph on vertex classes of size m. Suppose that G is ε-regular and δ(G) ≥ δm.

Then, G contains a perfect matching.

One can easily verify from the definition of superregularity that bipartite graphs of

very high minimum degree are superregular.

Proposition 7.10. Let 0 < 1
m
≪ ε≪ ε′ ≪ 1. Let G be a bipartite graph on vertex classes

A and B of size at least m. Suppose that each a ∈ A satisfies dG(a) ≥ (1− ε)|B| and each

b ∈ B satisfies dG(b) ≥ (1− ε)|A|. Then, G is [ε′,≥ 1− ε′]-superregular.

Lemma 7.11 ([76, Corollary 4.15]). Let 0 < 1
m
≪ ε ≪ d ≤ 1 and k ≥ 4. Let D be

a digraph and V1 ∪ · · · ∪ Vk be a partition of V (D) into k clusters of size m. Suppose

that D[Vi, Vi+1] is [ε,≥ d]-superregular for each i ∈ [k − 1]. Let u1, . . . , um and v1, . . . , vm

be enumerations of V1 and Vk, respectively. Then, D contains a spanning set P of m

vertex-disjoint paths, one (ui, vi)-path for each i ∈ [m].

If the pair D[Vk, V1] is also superregular, one can find a matching in D(Vk, V1) to tie

the paths obtained with Lemma 7.11 into a Hamilton path.

Corollary 7.12. Let 0 < 1
m
≪ ε≪ d ≤ 1 and k ≥ 4. Let D be a digraph and V1∪ · · · ∪Vk

be a partition of V (D) into k clusters of size m. Suppose that D[Vi, Vi+1] is [ε,≥ d]-

superregular for each i ∈ [k] (where Vk+1 := V1). Let u ∈ V1 and v ∈ Vk. Then, D contains

a Hamilton (u, v)-path.

Proof. By Proposition 7.8, D[Vk \ {v}, V1 \ {u}] is still [3
√
ε,≥ d]-superregular and so

Lemma 7.9 implies that there exists a perfect matching M ⊆ ED(Vk \ {v}, V1 \ {u}). Let

v1u1, . . . , vm−1um−1 be an enumeration of M . Denote u0 := u and vm := v. Let P be the

spanning set of vertex-disjoint paths obtained by applying Lemma 7.11 with u, u1, . . . , um−1

and v1, . . . , vm−1, v playing the roles of u1, . . . , um and v1, . . . , vm. For each i ∈ [m], let Pi

denote the (ui−1, vi)-path contained in P . Then, uP1v1u1P2v2 . . . um−1Pmv is a Hamilton

(u, v)-path of D.
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Let D be a digraph and suppose that V (D) is partitioned into clusters which form

superregular pairs. Then, one can adjust this partition in such a way that superregularity

is preserved and all the vertices of a small given set S are concentrated into few of the

clusters.

Lemma 7.13. Let 0 < 1
n
≪ ε≪ 1

k
≪ ε′ ≪ ε′′ ≪ 1. Let U1, . . . , U4 be disjoint vertex sets

of size n. Let D be a digraph on U1 ∪ · · · ∪ U4. For each i ∈ [4], let Pi be a partition of Ui

into k clusters of size n
k
. Suppose that for each i ∈ [4], D[V,W ] is [ε′,≥ 1−ε′]-superregular

whenever V ⊆ Ui and W ⊆ Ui+1 are unions of clusters in Pi and Pi+1, respectively (where

U5 := U1 and P5 := P1). Let S ⊆ V (D) satisfy |S| ≤ εn. Define P ′3 := P3 and P ′4 := P4.

Then, there exists, for each i ∈ [2], a partition P ′i of Ui into k clusters of size n
k
such that

the following hold.

(i) For each i ∈ [4], D[V,W ] is [ε′′,≥ 1 − ε′′]-superregular whenever V ⊆ Ui and

W ⊆ Ui+1 are unions of clusters in P ′i and P ′i+1, respectively (where P ′5 := P ′1).

(ii) For each i ∈ [2], there exists a cluster V ∈ P ′i for which S ∩ Ui ⊆ V .

Proof. For each i ∈ [2], denote by Vi,1, . . . , Vi,k the clusters in Pi and observe that since

|S ∩ Ui| ≤ |Vi,k|, one can greedily swap each vertex in S ∩ (Ui \ Vi,k) with a distinct vertex

in Vi,k \S to obtain a partition P ′i of Ui into k clusters V ′i,1, . . . , V
′
i,k such that S ∩Ui ⊆ V ′i,k

and

|Vi,j△V ′i,j| ≤ |S ∩ Ui| ≤
ε′n

k

for each j ∈ [k]. Then, (ii) holds. Moreover, (i) follows easily from Proposition 7.8.

7.2.3 The regularity lemma

We now state a degree form of Szemerédi’s regularity lemma for balanced bipartite digraphs.

In [3], Alon and Shapira proved a regularity lemma for digraphs. A degree form can be

derived using similar arguments as the undirected version (see e.g. [105]). The bipartite

version stated below can easily be obtained by adjusting the partition obtained with the

degree form regularity lemma for digraphs.

76



Lemma 7.14 (Degree form regularity lemma for balanced bipartite digraphs). For all

ε > 0 and M ′ ∈ N, there exist M,n0 ∈ N such that, if D is a balanced bipartite digraph on

vertex classes A and B of size n ≥ n0 and d ∈ [0, 1], then there exist a spanning subdigraph

D′ ⊆ D and a partition of V (D) into an exceptional set V0 and 2k clusters V1, . . . , V2k

such that the following hold.

(i) M ′ ≤ 2k ≤M .

(ii) |V0 ∩ A| = |V0 ∩B| ≤ εn.

(iii) For each i ∈ [2k], either Vi ⊆ A or Vi ⊆ B.

(iv) |V1| = · · · = |V2k| =: m. In particular, there are precisely k indices i ∈ [2k] such

that Vi ⊆ A and precisely k indices i ∈ [2k] such that Vi ⊆ B.

(v) For each v ∈ V (D), d±D′(v) > d±D(v)− (d + ε)n.

(vi) For each i ∈ [2k], D′[Vi] is empty.

(vii) Let i, j ∈ [2k] be distinct. Then, D′[Vi, Vj] is either empty or (ε,≥ d)-regular.

Moreover, if D′[Vi, Vj] is non-empty, then D′[Vi, Vj] = D[Vi, Vj].

Let ε > 0, M ′ ∈ N, and d ∈ [0, 1]. Let D be a balanced bipartite digraph. The bipartite

pure digraph of D with parameters ε, d, and M ′ is the digraph D′ ⊆ D obtained by applying

Lemma 7.14 with these parameters. The bipartite reduced digraph of D with parameters

ε, d, and M ′ is the digraph R defined as follows. Let V0, V1, . . . , V2k be the partition of

V (D) obtained by applying Lemma 7.14 with parameters ε, d, and M ′. Denote by D′ the

bipartite pure digraph of D with parameters ε, d, and M ′. Then, V (R) := {Vi | i ∈ [2k]}

and, for any distinct U, V ∈ V (R), UV ∈ E(R) if and only if D′[U, V ] is non-empty.

Note that Lemma 7.14(vii) implies that D′[U, V ] = D[U, V ] is (ε,≥ d)-regular for any

UV ∈ E(R) and Lemma 7.14(iii) implies that R is a bipartite digraph on vertex classes

{V ∈ V (R) | V ⊆ A} and {V ∈ V (R) | V ⊆ B}.

The following lemma states that if a balanced bipartite digraph D is a robust outex-

77



pander, then so is its corresponding bipartite reduced digraph. The proof is very similar

to that of its non-bipartite analogue (see [79, Lemma 14]) and is therefore omitted.

Lemma 7.15. Let 0 < 1
n
≪ ε ≪ d ≪ ν, τ, δ ≤ 1 and M ′

n
≪ 1. Let D be a balanced

bipartite digraph on vertex classes A and B of size n. Suppose that D is a bipartite robust

(ν, τ)-outexpander and that δ0(D) ≥ δn. Let R be the bipartite reduced digraph of D with

parameters ε, d, and M ′. Then, δ0(R) ≥ δ|R|
4

and R is a bipartite robust (ν
2
, 2τ)-outexpander

with bipartition (A,B), where A := {V ∈ V (R) | V ⊆ A} and B := {V ∈ V (R) | V ⊆ B}.

7.3 Probabilistic estimates

Let X be a random variable. We write X ∼ Bin(n, p) if X follows a binomial distribution

with parameters n and p. Let N, n,m ∈ N be such that max{n,m} ≤ N . Let Γ be a set

of size N and Γ′ ⊆ Γ be of size m. Recall that X has a hypergeometric distribution with

parameters N, n, and m if X = |Γn ∩ Γ′|, where Γn is a random subset of Γ with |Γn| = n

(i.e. Γn is obtained by drawing n elements of Γ without replacement). We will denote this

by X ∼ Hyp(N, n,m).

7.3.1 Chernoff’s bound

First, we will need Chernoff’s bound.

Lemma 7.16 (Chernoff’s bound, see e.g. [57, Theorems 2.1 and 2.10]). Assume X ∼

Bin(n, p) or X ∼ Hyp(N, n,m). Then, for any 0 < ε ≤ 1, the following hold.

(i) P [X ≤ (1− ε)E[X]] ≤ exp
(
− ε2

3
E[X]

)
.

(ii) P [X ≥ (1 + ε)E[X]] ≤ exp
(
− ε2

3
E[X]

)
.

One can use Lemma 7.16 to show that (super)regularity is preserved with high proba-

bility when taking a random edge-slice, i.e. when selecting a random spanning subgraph

by including each edge independently with some fixed probability p. This was already

observed in (the proof of) [76, Lemma 4.10(iv)] and so we omit the details here.

78



Lemma 7.17. Let 0 < 1
n
≪ ε ≪ ε′ ≪ d ≤ 1 and let ε ≪ p ≤ 1. Let G be a bipartite

graph on vertex classes of size n and let G′ be obtained from G by selecting each edge

independently with probability p.

(i) If G is (ε,≥ d)-regular, then G′ is (ε′,≥ pd− ε)-regular with high probability.

(ii) If G is [ε, d]-superregular, then G′ is [ε′, pd]-superregular with high probability.

Corollary 7.18. Let 0 < 1
n
≪ ε≪ ε′ ≪ 1

k
≪ d≪ 1. Let U1, . . . , U4 be disjoint vertex sets

of size n. Let D be a digraph on U1 ∪ · · · ∪ U4. For each i ∈ [4], let P be a partition of Ui

into k clusters of size n
k
. Suppose that for each i ∈ [4], D[V,W ] is [ε,≥ 1− ε]-superregular

whenever V and W are unions of clusters in Pi and Pi+1, respectively (where P5 := P1).

Let D1 be obtained by selecting each edge of D independently with probability 1− 2d. Let

D2 := D \D1. Then, the following holds with high probability. For each i ∈ [4], D1[V,W ]

is [ε′,≥ 1− 3d]-superregular and D2[V,W ] is [ε′,≥ d + ε′]-superregular whenever V and

W are unions of clusters in Pi and Pi+1, respectively.

One can also use Lemma 7.16 to show that bipartite robust outexpansion is preserved

with high probability when taking random edge-slices. The arguments are similar to those

used in the proof of [77, Lemma 3.2(ii)] and are therefore omitted.

Lemma 7.19. Let 0 < 1
n
≪ ν ≪ τ ≤ 1. Let D be a balanced bipartite digraph on

vertex classes A and B of size n. Suppose that D is a bipartite robust (ν, τ)-outexpander

with bipartition (A,B). Let D′ be obtained from D by taking each edge independently

with probability 1
2
. Then, with high probability, both D′ and D \ D′ are bipartite robust

(ν
4
, τ)-outexpanders with bipartition (A,B).

7.3.2 McDiarmid’s inequality

We will also need McDiarmid’s inequality.

Lemma 7.20 (McDiarmid’s inequality [89]). Let X1, . . . , Xn be independent random

variables, each taking values in {0, 1}. Let c1, . . . , cn ∈ R and let f : {0, 1}n −→ R be a
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measurable function. Suppose that for any i ∈ [n] and x1, . . . , xn, x
′
i ∈ {0, 1}, we have

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci.

Then, for any t > 0,

P[|f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| > t] ≤ 2 exp

(
− 2t2∑

i∈[n] c
2
i

)
.

Lemma 7.21. Let 0 < 1
n
≪ ε ≪ 1

k
≪ 1. Let G be a bipartite graph on vertex classes

A and B of size n. Suppose that ∆(G) ≤ εn and e(G) ≥ n
2
. Let A1 ∪ · · · ∪ Ak be a

random partition of A such that, for each i ∈ [k] and v ∈ A, v ∈ Ai with probability 1
k

independently of all other vertices. Similarly, let B1 ∪ · · · ∪Bk be a random partition of B

such that, for each i ∈ [k] and v ∈ B, v ∈ Bi with probability 1
k
independently of all other

vertices. Then, with probability at least 4
5
, we have eG(Ai, Bj) ≥ e(G)

2k2
for all i, j ∈ [k].

Proof. Denote A = {a1, . . . , an} and B = {b1, . . . , bn}. Let i, j ∈ [k]. For each ℓ ∈ [n], let

Xℓ :=


1 if aℓ ∈ Ai;

0 otherwise;

and X2n+1−ℓ :=


1 if bℓ ∈ Bj;

0 otherwise.

Let f(X1, . . . , X2n) := eG(Ai, Bj). Then, E[f(X1, . . . , X2n)] = e(G)
k2

. Observe that, for each

ℓ ∈ [n], we have

f(X1, . . . , Xℓ−1, 1, Xℓ+1, . . . , X2n)− f(X1, . . . , Xℓ−1, 0, Xℓ+1, . . . , X2n) ≤ dG(aℓ)

and

f(X1, . . . , X2n−ℓ, 1, X2n−ℓ+2, . . . , X2n)− f(X1, . . . , X2n−ℓ, 0, X2n−ℓ+2, . . . , X2n) ≤ dG(bℓ).

Moreover,
∑

ℓ∈[n]((dG(aℓ))
2 + (dG(bℓ))

2) ≤ 2 e(G)
∆(G)

(∆(G))2 ≤ 2e(G)εn. Thus, Lemma 7.20
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implies that

P
[
eG(Ai, Bj) <

e(G)

2k2

]
≤ P

[
|f(X1, . . . , X2n)− E[f(X1, . . . , X2n)]| > e(G)

2k2

]
≤ 2 exp

(
− e(G)

4k4εn

)
≤ 2 exp

(
− 1

8εk4

)
.

Therefore, a union bound implies that, with probability at least 1− 2k2 exp
(
− 1

8εk4

)
≥ 4

5
,

we have eG(Ai, Bj) ≥ e(G)
2k2

for all i, j ∈ [k].

7.4 Matchings

In this section, we collect tools for constructing and working with matchings. First, we

need the following two propositions, which follow from König’s theorem [70] (see also [71]

for a German translation).

Proposition 7.22. Let G be a bipartite graph with maximum degree at most ∆. Then, G

contains a matching of size e(G)
∆

.

Proposition 7.23 (see e.g. [108, Exercise 7.1.33]). Let G be a bipartite graph with maximum

degree at most ∆. Then, G can be decomposed into edge-disjoint matchings M1, . . . ,M∆

such that, for any i, j ∈ [∆], ||Mi| − |Mj|| ≤ 1.

We will also need the following corollary of Hall’s theorem [49].

Proposition 7.24. Let G be a bipartite graph on vertex classes A and B with |A| ≤ |B|.

Suppose that, for each a ∈ A, dG(a) ≥ |B|
2

and, for each b ∈ B, dG(b) ≥ |A|− |B|
2
. Then, G

contains a matching covering A.

7.5 Matching contractions

Note that the concepts introduced in this section will not be used formally until Chap-

ter 11. However, we introduce them here as they will help us to explain the approximate

decomposition strategy presented in Section 8.1.
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As discussed in the proof overview, most of our Hamilton cycles will be formed by

first constructing a perfect matching, which is then extended to a Hamilton cycle by

constructing a Hamilton cycle in an auxiliary digraph which is, roughly speaking, obtained

by contracting the edges of M . In this section, we give a formal definition of this auxiliary

digraph and state its main properties.

Definition 7.25 (Matching contraction and matching expansion). Let A and B be disjoint

vertex sets of equal size. Let M be an auxiliary directed perfect matching from B to A.

(i) Let G be a bipartite graph on vertex classes A and B. The M -contraction of G is

the digraph GM on vertex set A defined as follows. Let a, a′ ∈ A be distinct and

denote by b the (unique) neighbour of a in M . Then, a′a ∈ E(GM) if and only if

a′b ∈ E(G).

(ii) Let D be a digraph on vertex set A. The M -expansion of D is the bipartite graph

DM on vertex classes A and B defined as follows. Let b ∈ B and let a be the

(unique) neighbour of b in M . Then, for any a′ ∈ A, a′b ∈ E(DM) if and only if

a′a ∈ E(D).

(Recall that Definition 7.25 and all other main definitions are indexed in the glossary

at the end of this thesis.)

The condition that a and a′ have to be distinct in Definition 7.25(i) ensures that the

resulting digraph GM does not contain any loop. However, this implies that the edges

lying along M are lost in the process of contraction and expansion. (Of course, one could

slightly change Definition 7.25(i) to allow M -contractions to have loops. In this way, the

M -expansion would the exact reverse operation of the M -contraction. But working with

loops is impractical for our purposes.)

Fact 7.26. Let A and B be disjoint vertex sets of equal size. Let M be a directed perfect

matching from B to A. Let G be a bipartite graph on vertex classes A and B. Denote by D

the M-contraction of G and by G′ the M-expansion of D. Then, e(D) = e(G \M [B,A])

and G′ = G \M [B,A].
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Let A,B,M,G, and D be as in Fact 7.26. By Definition 7.25(i), the outneighbourhood of

a vertex a ∈ A in D corresponds to the neighbourhood of a in G, while the inneighbourhood

of a in D corresponds to the neighbourhood of NM(a) in G. We also observe for later

use that there is a one-to-one correspondence between the connected components of

G ∪M [B,A] and D.

Fact 7.27. Let A,B,M,G, and D be as in Fact 7.26. Then, the following hold.

(i) Each a ∈ A satisfies N+
D (a) = NM(NG(a)) \ {a} and N−D (a) = NG(NM(a)) \ {a}.

(ii) Any a, a′ ∈ A belong to a common connected component of D if and only if they

belong to a common connected component of G ∪M [B,A].

Let A,B, and M be as in Fact 7.26. Let D be a digraph on A and denote by G the

M -expansion of D. By Definition 7.25(ii), the neighbourhood of a vertex a ∈ A in G

corresponds to the outneighbourhood of a in D, while the neighbourhood of NM(a) in G

corresponds to the inneighbourhood of a in D.

Fact 7.28. Let A,B, and M be as in Fact 7.26. Let D be a digraph on A and denote by

G the M-expansion of D. Then, the following hold.

(i) Each a ∈ A satisfies NG(a) = NM(N+
D (a)).

(ii) Each b ∈ B satisfies NG(b) = N−D (NM(b)).

We now state our key property of matching contractions and matching expansions:

finding a Hamilton cycle in a bipartite digraph D on vertex classes A and B is equivalent

to finding a perfect matching M from B to A in D and then finding a Hamilton cycle in

the M -contraction of D[A,B].

Fact 7.29. Let A and B be disjoint vertex sets of equal size. Let M be a directed perfect

matching from B to A. Let H be a directed Hamilton cycle on A. Let G be obtained by

orienting from A to B all the edges in the M -expansion of H. Then, G is a directed perfect

matching from A to B and G ∪M is a directed Hamilton cycle on A ∪B.
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To construct Hamilton cycles in matching contractions, we will use the following

proposition, which states that almost regularity, superregularity, and robust outexpansion

are preserved in contracted digraphs. Its proof follows easily from definitions and is

therefore omitted. (Similar observations were also made and proved in [74].)

Proposition 7.30. Let 0 < 1
n
≪ ε ≪ ν ≪ τ ≪ δ, d ≤ 1. Let G be a bipartite graph on

vertex classes A and B of size n and M be a directed perfect matching from B to A. Then,

the M-contraction D of G satisfies the following properties.

(i) If G is (δ, ε)-almost regular, then D is (2δ, 2ε)-almost regular.

(ii) Let A1, A2 ⊆ A be disjoint. If G[A1, NM (A2)] is [ε, d]-superregular, then D[A1, A2]

is [ε, d]-superregular.

(iii) If G is a bipartite robust (ν, τ )-expander with bipartition (A,B), then D is a robust

(ν
2
, τ)-outexpander.

Note that Corollary 7.5 follows from Theorem 7.4 and Proposition 7.30(iii).

Proof of Corollary 7.5. First, we find a perfect matching from A to B as follows. Let M

be an arbitrary perfect matching from B to A. Let DM be the M -contraction of D[A,B].

By Proposition 7.30(iii), DM is a robust (ν
2
, τ)-outexpander. Moreover, Fact 7.27(i) implies

that δ0(DM ) ≥ δn
2

. Thus, Theorem 7.4 implies that DM contains a Hamilton cycle H. Let

M ′ be obtained by orienting from A to B all the edges in the M -expansion of H. Then,

Facts 7.27(i), 7.28, and 7.29 imply that M ′ is a perfect matching of D from A to B.

We close M ′ into a Hamilton cycle as follows. Let DM ′ be the M ′-contraction of

D[B,A]. By the same arguments as above, DM ′ contains a Hamilton cycle H ′. Let M ′′ be

obtained by orienting from B to A all the edges in the M ′-expansion of H ′. By the same

arguments as above, M ′′ is a perfect matching of D from B to A. Moreover, Fact 7.29

implies that M ′ ∪M ′′ is a Hamilton cycle.

Finally, observe that contracting a linear forest F gives a linear forest with endpoints

corresponding to those of F . This follows easily from Fact 7.27 and so we omit the details.
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Proposition 7.31. Let F be a balanced bipartite directed linear forest on vertex classes A

and B. Suppose that F [B,A] is a perfect matching and let M := EF (B,A). Denote by D

the M-contraction of F [A,B]. Then, D is a linear forest satisfying

V +(D) = NM(V +(F )), V −(D) = V −(F ), and V 0(D) = (V 0(F )∩A) \NM(V +(F )).
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CHAPTER 8

MAIN TOOLS

We now introduce our main tools for constructing approximate decompositions and

decomposing leftovers. These will be used in the proofs of Theorems 4.1 and 4.4.

8.1 Approximate decomposition tools

As mentioned in Section 4.3, we adapt arguments of [40] using the concept of matching

contraction. We now discuss this in more detail. In [40], we showed that any dense almost

regular robust outexpander D can be approximately decomposed into Hamilton cycles

(see Theorem 3.9). (Moreover, one can ensure that each Hamilton cycle contains a small

set of prescribed edges.) The key idea behind the proof is to reserve a sparse random

edge-slice Γ ⊆ D and then construct, one by one, edge-disjoint Hamilton cycles which use

very few edges of Γ. This ensures that robust outexpansion is preserved throughout the

approximate decomposition.

Let D be a bipartite digraph on vertex classes A and B and suppose that D[A,B]

is an almost regular bipartite robust expander. Let M1, . . . ,Mℓ be edge-disjoint perfect

matchings whose edges are all oriented from B to A. Then, we can extend M1, . . . ,Mℓ into

edge-disjoint Hamilton cycles as follows. For each i ∈ [ℓ], denote by Di the Mi-contraction

of D and note that, by Proposition 7.30, Di is an almost regular robust outexpander. By

Fact 7.29, it is enough to find, for each i ∈ [ℓ], a Hamilton cycle of Di. Since the Di’s

are distinct, we cannot apply Theorem 3.9 directly. However, we can adapt the strategy
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discussed above as follows. We initially reserve a randomly chosen edge-slice Γ ⊆ D[A,B]

and denote, for each i ∈ [ℓ], by Γi the corresponding random edge-slice of Di. At each stage

i ∈ [ℓ], we use the arguments of Theorem 3.9 to construct a Hamilton cycle of Di which

uses very few edges of Γi. This ensures that, overall, very few edges of Γ are used and so

D[A,B] remains a bipartite robust expander throughout the approximate decomposition.

By Proposition 7.30, this implies that, at each stage i ∈ [ℓ], Di is still a robust outexpander

and so the approximate decomposition can be completed. (See Appendix B for details.)

Recall from Section 5.2.5 that a balanced bipartite digraph D on vertex classes of

size n is (δ, ε)-regular if all its vertices have in- and outdegree both roughly equal to

δ|V (D)| = 2δn. This justifies the factor of 2 in the upper bound on ℓ in Theorem 8.1.

Moreover, recall from Section 5.2.1 that the parallel edges of a multi(di)graph are considered

to be distinct. Thus, we do not require the linear forests F1, . . . , Fℓ in Theorem 8.1 to be

edge-disjoint and the theorem states that each edge of D is covered by at most one of the

resulting Hamilton cycles C1, . . . , Cℓ (while each linear forest Fi is fully incorporated into

its corresponding cycle Ci).

Theorem 8.1 (Extending an approximate perfect matching decomposition into an ap-

proximate Hamilton decomposition). Let 0 < 1
n
≪ τ ≪ δ ≤ 1 and 0 < 1

n
≪ ε≪ η, ν ≤ 1.

Let ℓ ≤ 2(δ − η)n. Let D be a balanced bipartite digraph on vertex classes A and B of

size n. Suppose that D[A,B] is a (δ, ε)-almost regular bipartite robust (ν, τ )-expander with

bipartition (A,B). Suppose that F1, . . . , Fℓ are bipartite directed linear forests on vertex

classes A and B satisfying the following properties.

(i) For each i ∈ [ℓ], eFi
(B,A) = n.

(ii) For each i ∈ [ℓ], eFi
(A,B) ≤ εn.

(iii) For each v ∈ V (D), there exist at most εn indices i ∈ [ℓ] such that dFi[A,B](v) = 1.

Define a multidigraph F by F :=
⋃

i∈[ℓ] Fi. Then, the multidigraph D ∪ F contains

edge-disjoint Hamilton cycles C1, . . . , Cℓ such that Fi ⊆ Ci for each i ∈ [ℓ]. Moreover,

D[A,B] \
⋃

i∈[ℓ] Ci is still a bipartite robust (ν
2
, τ)-expander with bipartition (A,B).
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If D is a bipartite robust outexpander (i.e. if both D[A,B] and D[B,A] are bipartite

robust expanders (recall Fact 7.1)), then we can apply Theorem 8.1 twice in a row to

construct an approximate Hamilton decomposition of D: first, we apply Theorem 8.1 with

arbitrary perfect matchings from B to A to approximately decompose the edges of D from

A to B into edge-disjoint perfect matchings, and then we apply Theorem 8.1 a second

time to extend these perfect matchings into edge-disjoint Hamilton cycles of D.

Corollary 8.2 (Approximate Hamilton decomposition). Let 0 < 1
n
≪ τ ≪ δ ≤ 1 and

0 < 1
n
≪ ε ≪ η, ν ≤ 1. Let ℓ ≤ 2(δ − η)n. Let D be a balanced bipartite digraph on

vertex classes A and B of size n. Suppose that D is a (δ, ε)-almost regular bipartite robust

(ν, τ)-outexpander with bipartition (A,B). Suppose that F1, . . . , Fℓ are bipartite directed

linear forests on vertex classes A and B satisfying the following properties.

(i) For each i ∈ [ℓ], e(Fi) ≤ εn.

(ii) For each v ∈ V (D), there exist at most εn indices i ∈ [ℓ] such that v ∈ V (Fi).

Define a multidigraph F by F :=
⋃

i∈[ℓ] Fi. Then, the multidigraph D ∪ F contains

edge-disjoint Hamilton cycles C1, . . . , Cℓ such that Fi ⊆ Ci for each i ∈ [ℓ]. Moreover,

D \
⋃

i∈[ℓ] Ci is still a bipartite robust (ν
2
, τ)-outexpander with bipartition (A,B).

Proof. First, we extend F1, . . . , Fℓ to auxiliary linear forests which satisfy Theorem 8.1(i)–

(iii).

Claim 1. For each i ∈ [ℓ], there exists a bipartite linear forest F ′i on vertex classes A and

B such that F ′i [A,B] = Fi[A,B] and F ′i [B,A] is a perfect matching containing Fi[B,A].

Proof of Claim. Let i ∈ [ℓ].

– Denote by a1, . . . , aq the vertices v ∈ A satisfying d−Fi
(v) = 0 and d+Fi

(v) = 1.

– Denote by aq+1, . . . , aq+r the vertices v ∈ A satisfying d−Fi
(v) = 0 and d+Fi

(v) = 0.

– Denote by b1, . . . , bs the vertices v ∈ B satisfying d−Fi
(v) = 1 and d+Fi

(v) = 0.

– Denote by bs+1, . . . , bs+t the vertices v ∈ B satisfying d−Fi
(v) = 0 and d+Fi

(v) = 0.
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Observe that there exist exactly r vertices in A which have degree 0 in Fi. Therefore,

r ≥ |A| − e(Fi)
(i)

≥ (1− ε)n > 0.

Note that a1, . . . , aq is an enumeration of V +(Fi) ∩ A and b1, . . . , bs is an enumeration

of V −(Fi) ∩ B. Since Fi is a linear forest, we may therefore assume without loss of

generality that, if Fi contains an (aj, bk)-path for some j ∈ [q] and k ∈ [s], then j = k.

Note that e(Fi[B,A]) = |A| − (q + r) = |B| − (s + t) and so q + r = s + t. Let

F ′i := Fi ∪ {biai+1 | i ∈ [q + r]} (where aq+r+1 := a1). Then, Fi is a bipartite digraph on

vertex classes A and B such that F ′i [A,B] = Fi[A,B] and F ′i [B,A] is a perfect matching

which contains Fi[B,A]. It is easy to check that Fi is a linear forest. □

Let F ′1, . . . , F
′
ℓ be the linear forests obtained by applying Claim 1. Observe that

Theorem 8.1(i)–(iii) are satisfied with F ′1, . . . , F
′
ℓ playing the roles of F1, . . . , Fℓ. Define

a multidigraph F ′ by F ′ :=
⋃

i∈[ℓ] F
′
i . By Theorem 8.1 (applied with F ′1, . . . , F

′
ℓ playing

the roles of F1, . . . , Fℓ), the multidigraph D ∪ F ′ contains edge-disjoint Hamilton cycles

C ′1, . . . , C
′
ℓ such that F ′i ⊆ C ′i for each i ∈ [ℓ]. For each i ∈ [ℓ], let F ′′i := C ′i[A,B] ∪

Fi[B,A] ⊊ C ′i and note that Fi ⊆ F ′′i ⊆ F ∪D[A,B]. Moreover, Theorem 8.1(i)–(iii) are

satisfied with B,A, and F ′′1 , . . . , F
′′
ℓ playing the roles of A,B, and F1, . . . , Fℓ. Define a

multidigraph F ′′ by F ′′ :=
⋃

i∈[ℓ] F
′′
i . Let D′ := D \ F ′′. Note that D′[B,A] = D[B,A]

and, by the “moreover part” of Theorem 8.1, D′[A,B] is a bipartite robust (ν
2
, τ)-expander

with bipartition (A,B).

By Theorem 8.1 (applied with D′, B,A, and F ′′1 , . . . , F
′′
ℓ playing the roles of D,A,B,

and F1, . . . , Fℓ), the multidigraph D′ ∪ F ′′ = D ∪ F contains edge-disjoint Hamilton

cycles C1, . . . , Cℓ such that Fi ⊆ F ′′i ⊆ Ci for each i ∈ [ℓ]. Let D′′ := D \
⋃

i∈[ℓ] Ci.

By the “moreover part” of Theorem 8.1, D′′[B,A] is a bipartite robust (ν
2
, τ)-expander

with bipartition (B,A). By construction, D′′[A,B] = D′[A,B] and so D′′[A,B] is also a

bipartite robust (ν
2
, τ)-expander with bipartition (A,B). Therefore, Fact 7.1 implies that

D′′ is a bipartite robust (ν
2
, τ)-outexpander with bipartition (A,B).
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Note that the “moreover part” of Corollary 8.2 implies that we can prescribe some

edges to most of the Hamilton cycles in the decomposition given by Theorem 4.1.

Similarly, one can apply Theorem 8.1 with auxiliary perfect matchings from B to

A to obtain an approximate decomposition of a bipartite robust expander into perfect

matchings which extend given small matchings.

Corollary 8.3 (Approximate perfect matching decomposition). Let 0 < 1
n
≪ τ ≪ δ ≤ 1

and 0 < 1
n
≪ ε≪ η, ν ≤ 1. Let ℓ ≤ 2(δ−η)n. Let G be a balanced bipartite graph on vertex

classes A and B of size n. Suppose that G is a (δ, ε)-almost regular bipartite robust (ν, τ)-

expander with bipartition (A,B). Suppose that F1, . . . , Fℓ are bipartite matchings on vertex

classes A and B satisfying the following properties.

(i) For each i ∈ [ℓ], e(Fi) ≤ εn.

(ii) For each v ∈ V (G), there exist at most εn indices i ∈ [ℓ] such that v ∈ V (Fi).

Define a multigraph F by F :=
⋃

i∈[ℓ] Fi. Then, the multigraph G∪F contains edge-disjoint

perfect matchings M1, . . . ,Mℓ such that Fi ⊆Mi for each i ∈ [ℓ]. Moreover, G \
⋃

i∈[ℓ] Mi

is still a bipartite robust (ν
2
, τ)-expander with bipartition (A,B).

8.2 The robust decomposition lemma

In this section, we state (a modified version of) the robust decomposition lemma of [76].

Roughly speaking, this result guarantees the existence of a sparse absorber Drob which can

decompose any sparse leftover H into Hamilton cycles. To state this lemma, we need some

definitions. These are needed in order to describe the structure within which the sparse

absorber Drob can be found. Roughly speaking, the structure consists of a “quasirandom”

blow-up of a graph consisting of a cycle and a suitable set of chords on this cycle.

8.2.1 Equivalent linear forests

We start with a simple concept which will enable us to simplify some arguments.
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Definition 8.4 (Equivalent linear forests). Two linear forests F and F ′ are equivalent if

V (F ) = V (F ′) and there exist enumerations P1, . . . , Pℓ and P ′1, . . . , P
′
ℓ of the components

of F and F ′ such for each i ∈ [ℓ], Pi and P ′i have the same starting and ending points.

Fact 8.5. Let V be a vertex set and D be a digraph with V (D) ⊆ V . Let F and F ′ be two

equivalent linear forests. Then, D ∪ F is a Hamilton cycle on V if and only if D ∪ F ′ is a

Hamilton cycle on V .

Roughly speaking, Fact 8.5 states that, if F is a linear forest that we want to extend into

a Hamilton cycle, then the internal structure of F is irrelevant. This simple observation

will enable us to simplify the statement and application of the robust decomposition lemma

of [76].

8.2.2 Refinements

Let D be a digraph and P be a partition of V (D) into an exceptional set V0 and k clusters

V1, . . . , Vk of size m. Let P ′ be a partition of V (D). We say that P ′ is an ℓ-refinement of

P if P ′ is obtained by splitting each cluster in P into ℓ subclusters of size m
ℓ

. (Thus, P ′

consists of the exceptional set V0 and ℓk clusters.)

Definition 8.6 (Uniform refinement). Let D be a digraph and P be a partition of V (D)

into an exceptional set V0 and k clusters V1, . . . , Vk of size m. An ℓ-refinement P ′ of P

is ε-uniform (with respect to D) if the following condition holds, where for each i ∈ [k],

Vi,1 ∪ · · · ∪ Vi,ℓ denotes the partition of Vi induced by P ′.

(URef) Let v ∈ V (D), i ∈ [k], j ∈ [ℓ], and ⋄ ∈ {+,−}. If |N⋄D(v) ∩ Vi| ≥ εm, then

|N⋄D(v) ∩ Vi,j| = (1± ε)
|N⋄

D(v)∩Vi|
ℓ

.

Given a partition P and a random ℓ-refinement P ′ of P, one can use Lemma 7.16 to

show that P ′ is ε-uniform with high probability.

Lemma 8.7 ([76, Lemma 4.7]). Let 0 < 1
m
≪ 1

k
, ε≪ 1

ℓ
≤ 1 and suppose that m

ℓ
∈ N. Let

D be a digraph on n ≤ 2km vertices and let P be a partition of V (D) into an exceptional

set V0 and k clusters of size m. Then, there exists an ε-uniform ℓ-refinement of P.
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Using the definition of ε-regularity, one can easily verify that (super)regularity is

preserved under taking uniform refinements.

Lemma 8.8 ([76, Lemma 4.7]). Let 0 < 1
m
≪ 1

k
, ε≪ d, 1

ℓ
≤ 1 and ε≪ ε′ ≤ 1. Suppose

that m
ℓ
∈ N. Let D be a digraph on n ≤ 2km vertices and let P be a partition of V (D)

into an exceptional set V0 and k clusters of size m. Let P ′ is an ε-uniform ℓ-refinement of

P and let V,W ∈ P and V ′,W ′ ∈ P ′ be distinct clusters satisfying V ′ ⊆ V and W ′ ⊆ W .

(i) If D[V,W ] is (ε,≥ d)-regular, then D[V ′,W ′] is (ε′,≥ d− ε)-regular.

(ii) If D[V,W ] is [ε,≥ d]-superregular, then D[V ′,W ′] is [ε′,≥ d]-superregular.

Using Lemma 7.16, one can easily verify that the uniformity of a refinement is preserved

with high probability when considering edge-slices.

Lemma 8.9. Let 0 < 1
m
≪ 1

k
, ε≪ 1

ℓ
, p ≤ 1. Let D be a digraph on n ≤ 2km vertices and

let P be a partition of V (D) into an exceptional set V0 and k clusters of size m. Let P ′ be

an ε-uniform ℓ-refinement of P with respect to D. Let D′ be obtained from D by selecting

each edge independently with probability p. Then, with high probability, P ′ is 2ε-uniform

with respect to both D′ and D \D′.

Finally, observe that refinements are always uniform in digraphs of very high minimum

degree.

Lemma 8.10. Let 0 < 1
m
≪ ε≪ 1

k
, 1
ℓ
≤ 1 and suppose that m

ℓ
∈ N. Let D be a digraph on

n ≤ 2km vertices and suppose that δ0(D) ≥ (1− ε)n. Let P be a partition of V (D) into

an exceptional set V0 and k clusters of size m. Then, any ℓ-refinement of P is
√
ε-uniform

with respect to D.

Proof. Let P ′ be an ℓ-refinement of P . Let v ∈ V (D) and fix clusters V ∈ P and W ∈ P ′

satisfying W ⊆ V . By assumption, both

|N±(v) ∩W | ≤ m

ℓ
≤ |N

±(v) ∩ V |+ εn

ℓ
≤ (1 +

√
ε)
|N±(v) ∩ V |

ℓ
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and

|N±(v) ∩W | ≥ m

ℓ
− εn ≥ |N

±(v) ∩ V |
ℓ

− εℓn

ℓ
≥ (1−

√
ε)
|N±(v) ∩ V |

ℓ
.

Thus, (URef) holds and we are done.

8.2.3 (Bi)-universal walks

Let R be a digraph whose vertices are V1, . . . , Vk and suppose that C = V1 . . . Vk is a

Hamilton cycle of R. Let i, j ∈ [k]. A chord sequence CS(Vi, Vj) from Vi to Vj in R is an

ordered sequence of edges of the form

CS(Vi, Vj) = (Vi1−1Vi2 , Vi2−1Vi3 , . . . , Vit−1Vit+1),

where Vi1 := Vi, Vit+1
:= Vj and, for each s ∈ [t], Vis−1Vis+1 ∈ E(R). Thus, the simplest

example of a chord sequence CS(Vi, Vj) is simply (Vi−1Vj). Chord sequences are used in

the proof of the robust decomposition lemma in [76] to extend arbitrary edges into cycles

which meet each cluster Vi the same number of times.

Definition 8.11 (Universal walk). Suppose that R is a digraph whose vertices are k

clusters V1, . . . , Vk and that C := V1 . . . Vk is a Hamilton cycle of R. A closed walk U in R

is a universal walk for C with parameter ℓ′ if the following conditions hold.

(U1) For every i ∈ [k], U contains a chord sequence CS(Vi, Vi+1) from Vi to Vi+1 (where

Vk+1 := V1) such that (U2), (U3), and the following hold. All the remaining edges

of U lie on C.

(U2) For each i ∈ [k], CS(Vi, Vi+1) consists of at most
√
ℓ′

2
edges.

(U3) For each i ∈ [k], both d±U(Vi) = ℓ′.

(Recall that Definition 8.11, as well as all the core definitions and their main properties

are indexed in the glossary at the end of this thesis.)
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Lemma 8.12 ([20, Lemma 2.9.1]). Let R be a complete digraph and C be a Hamilton

cycle of R. For any ℓ′ ≥ 4, R contains a universal walk for C with parameter ℓ′.

We will also need the bipartite analogue of a universal walk.

Definition 8.13 (Bi-universal walk). Suppose that R is a digraph whose vertices are k

clusters V1, . . . , Vk, where k is even, and that C := V1 . . . Vk is a Hamilton cycle of R. A

closed walk U in R is a bi-universal walk for C with parameter ℓ′ if the following conditions

hold.

(BU1) The edge set of U has a partition into Uodd and Ueven and, for every i ∈ [k], U

contains a chord sequence CS(Vi, Vi+2) from Vi to Vi+2 (where Vk+1 := V1 and

Vk+2 := V2) such that (BU2), (BU3), and the following hold. All of the edges

in the multiset
⋃
{CS(Vi, Vi+2) | i ∈ [k] is odd} are contained in Uodd, all of the

edges in the multiset
⋃
{CS(Vi, Vi+2) | i ∈ [k] is even} are contained in Ueven,

and all the remaining edges of U lie on C.

(BU2) For each i ∈ [k], CS(Vi, Vi+2) consists of at most
√
ℓ′

2
edges.

(BU3) For each i ∈ [k], both d±Uodd
(Vi) = ℓ′

2
and both d±Ueven

(Vi) = ℓ′

2

8.2.4 (Bi)-setups

We introduce the key structures required to construct the absorber in the robust decompo-

sition lemma.

Definition 8.14 (Setup). We say that (D,P ,P ′,P∗, R, C, U, U ′) is an (ℓ′, ℓ∗, k,m, ε, d)-

setup if the following properties are satisfied.

(ST1) D is a digraph. P is a partition of V (D) into an exceptional set V0 of size

|V0| ≤ ε|V (D)| and k clusters V1, . . . , Vk of size m.

(ST2) R is a digraph on the clusters in P, that is, V (R) = {Vi | i ∈ [k]}. For each

VW ∈ E(R), the corresponding pair D[V,W ] is (ε,≥ d)-regular.
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(ST3) C is a Hamilton cycle of R and, for each VW ∈ E(C), the corresponding pair

D[V,W ] is [ε,≥ d]-superregular.

(ST4) U is a universal walk for C in R with parameter ℓ′.

(ST5) P ′ is an ε-uniform ℓ′-refinement of P .

(ST6) For each i ∈ [k], let Vi,1, . . . , Vi,ℓ′ denote the subclusters of Vi contained in P ′.

Then, U ′ is a closed walk on the clusters in P ′ which is obtained from U as

follows. For each i ∈ [k] and j ∈ [ℓ′], when U visits Vi for the jth time, U ′ visits

the subcluster Vi,j.

(ST7) For each VW ∈ E(U ′), the corresponding pair D[V,W ] is [ε,≥ d]-superregular.

(ST8) P∗ is an ε-uniform ℓ∗-refinement of P .

We will also need the bipartite analogue of a setup.

Definition 8.15 (Bi-setup). We say that (D,P ,P ′,P∗, R, C, U, U ′) is an (ℓ′, ℓ∗, 2k,m, ε, d)-

bi-setup if k ∈ N and the following properties are satisfied.

(BST1) D is a balanced bipartite digraph on vertex classes A and B. P is a partition of

V (D) into an exceptional set V0 which satisfies |V0∩A| = |V0∩B| ≤ ε|A| = ε|B|,

and 2k clusters V1, . . . , V2k of size m. Let A be the set of clusters V ∈ P such

that V ⊆ A. Define B analogously. Then, A \ V0 =
⋃
A and B \ V0 =

⋃
B.

(In particular, each cluster V ∈ P satisfies V ⊆ A or V ⊆ B.)

(BST2) R is a balanced bipartite digraph on vertex classes A and B. For each VW ∈

E(R), the corresponding pair D[V,W ] is (ε,≥ d)-regular.

(BST3) C is a Hamilton cycle of R and for each VW ∈ E(C) the corresponding pair

D[V,W ] is [ε,≥ d]-superregular.

(BST4) U is a bi-universal walk for C in R with parameter ℓ′.

(BST5) P ′ is an ε-uniform ℓ′-refinement of P .
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(BST6) For each i ∈ [2k], let Vi,1, . . . , Vi,ℓ′ denote the subclusters of Vi contained in P ′.

Then, U ′ is a closed walk on the clusters in P ′ which is obtained from U as

follows. For each i ∈ [2k] and j ∈ [ℓ′], when U visits Vi for the jth time, U ′

visits the subcluster Vi,j.

(BST7) For each VW ∈ E(U ′), the corresponding pair D[V,W ] is [ε,≥ d]-superregular.

(BST8) P∗ is an ε-uniform ℓ∗-refinement of P .

Note that these definitions of a setup and a bi-setup are slightly different to that

of [76]. The original definitions required the exceptional set V0 to form an independent set

in D. Here, we only need the definition of a (bi)-setup within the setting of the robust

decomposition lemma (Lemma 8.23 below), where V0 is empty. The independent set

condition is therefore redundant and we omit it. In [76], the refinement P∗ is added in the

statement of the robust decomposition lemma directly. For convenience, we incorporate

P∗ into the definition of a (bi)-setup and, for technical reasons, we also require that P∗ is

ε-uniform. Finally, the definition of a bi-setup in [76] did not require D to be a bipartite

digraph. We add this constraint here for convenience. For clarity, we also specify that the

clusters in P must be a subset of one of the vertex classes of D (this actually follows from

(BST3) and the fact that D is bipartite).

By Proposition 7.8, a (bi)-setup remains a (bi)-setup (with slightly worse parameters)

if only a few edges are removed and added at each vertex. A similar observation was

already made (and proved) in [76, Lemma 9.2], so we omit the details here.

Proposition 8.16. Let 0 < 1
m
≪ 1

k
, ε ≤ ε′ ≪ d ≪ 1

ℓ′
≪ 1 and ε′ ≪ 1

ℓ∗
. Let D be a

digraph and suppose that D′ is obtained from D by removing and adding at most ε′m

inedges and at most ε′m outedges incident to each vertex. If (D,P ,P ′,P∗, R, C, U, U ′) is

an (ℓ′, ℓ∗, k,m, ε, d)-(bi)-setup, then (D′,P ,P ′,P∗, R, C, U, U ′) is an (ℓ′, ℓ∗, k,m, (ε′)
1
3 , d

2
)-

(bi)-setup.

Note that any partition is an ε-uniform 1-refinement of itself.
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Fact 8.17. Suppose that (D,P ,P ′,P∗, R, C, U, U ′) is an (ℓ′, ℓ∗, 2k,m, ε, d)-(bi)-setup.

Then, (D,P ,P ′,P , R, C, U, U ′) is an (ℓ′, 1, 2k,m, ε, d)-(bi)-setup.

By definition, one can delete the exceptional vertices of a (bi)-setup.

Fact 8.18. Let (D,P ,P ′,P∗, R, C, U, U ′) be an (ℓ′, ℓ∗, 2k,m, ε, d)-(bi)-setup. Denote by

V0 the exceptional set contained in P. Let P∅,P ′∅, and P∗∅ be obtained from P ,P ′, and P∗

by replacing the exceptional set V0 by the empty set. Then, (D− V0,P∅,P ′∅,P∗∅ , R, C, U, U ′)

is an (ℓ′, ℓ∗, 2k,m, ε, d)-(bi)-setup.

Finally, observe that if D forms a (bi)-setup, then the edges of D can be randomly

partitioned to obtain, with high probability, two edge-disjoint digraphs which both form a

(bi)-setup. Indeed, properties (ST1), (ST4), and (ST6) of a setup and properties (BST1),

(BST4), and (BST6) of a bi-setup are automatically preserved. Moreover, Lemma 8.9

implies that properties (ST5) and (ST8) of a setup and properties (BST5) and (BST8) of

a bi-setup hold with high probability. Finally, Lemma 7.17 implies that (super)regularity

is preserved with high probability, as desired for properties (ST2), (ST3), and (ST7) of a

setup and properties (BST2), (BST3), and (BST7) of a bi-setup.

Lemma 8.19. Let 0 < 1
m
≪ 1

k
≪ ε ≪ ε′ ≪ d ≪ 1

ℓ′
≪ 1 and ε ≪ 1

ℓ∗
. Let D be a

digraph and suppose that D′ is obtained from D by selecting each edge independently with

probability 1
2
. If (D,P ,P ′,P∗, R, C, U, U ′) is an (ℓ′, ℓ∗, k,m, ε, d)-(bi)-setup, then, with

high probability, both (D′,P ,P ′,P∗, R, C, U, U ′) and (D \ D′,P ,P ′,P∗, R, C, U, U ′) are

(ℓ′, ℓ∗, k,m, ε′, d
2
)-(bi)-setups.

8.2.5 Special path systems and special factors

Roughly speaking, special path systems can be viewed as blocks of prescribed edges for our

Hamilton cycles; in the robust decomposition lemma (Lemma 8.23 below), each special

path system will be extended to a distinct Hamilton cycle. Special path systems are then

organised into special factors to provide a convenient way of finding them and incorporating

them into Hamilton cycles in a balanced way.
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Definition 8.20 (Canonical interval partition). Let V be a vertex set and P be a partition

of V into an exceptional set and k clusters. Suppose that C = V1 . . . Vk is a Hamilton

cycle on the clusters in P . Suppose that k
f
∈ N. The canonical interval partition of C into

f intervals is I = {I1, . . . , If}, where

Ii = V(i−1) k
f
+1V(i−1) k

f
+2 . . . Vi k

f
+1

for each i ∈ [f ]. For each i ∈ [f ], the clusters V(i−1) k
f
+2, V(i−1) k

f
+3 . . . , Vi k

f
are called the

internal clusters of the interval Ii.

Definition 8.21 (Special path system). Let V be a vertex set and P be a partition of

V into an exceptional set V0 and k clusters of size m. Suppose that C = V1 . . . Vk is a

Hamilton cycle on the clusters in P. Suppose that k
f
∈ N. Suppose that P∗ is an ℓ∗-

refinement of P . For each i ∈ [k], let Vi,1, . . . , Vi,ℓ∗ be an enumeration of the subclusters of

Vi contained in P∗. For any (h, j) ∈ [ℓ∗]× [f ], an (ℓ∗, f, h, j)-special path system SPS with

respect to P∗ and C is a set of m
ℓ∗

vertex-disjoint paths satisfying the following conditions.

(SPS1) V +(SPS) = V(j−1) k
f
+1,h and V −(SPS) = Vj k

f
+1,h.

(SPS2) V 0(SPS) = V(j−1) k
f
+2,h ∪ · · · ∪ Vj k

f
,h.

Roughly speaking, an (ℓ∗, f, h, j)-special path system with respect to P∗ and C is a

set of vertex-disjoint paths which lies along the “hth refinement” of the jth interval in the

canonical interval partition of C into f intervals (see also Figure 8.1).

Definition 8.22 (Special factor). Let V,P∗, C, and V0 be as in Definition 8.21. An

(ℓ∗, f)-special factor SF with respect to P∗ and C is a 1-regular digraph on V \ V0 which

has a decomposition {SPSh,j | (h, j) ∈ [ℓ∗]× [f ]} where, for each (h, j) ∈ [ℓ∗]× [f ], SPSh,j

induces an (ℓ∗, f, h, j)-special path system in D.

Observe that in the original definition of a special path system in [76], most of the

edges belonged to a host digraph D and the other edges, called “fictive edges”, had to

satisfy some additional properties. Thanks to Fact 8.5, we can omit these conditions.
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Indeed, suppose that we want to construct a Hamilton cycle which contains a special

path system SPS, but SPS does not satisfy all the desired internal conditions. Then, we

can temporarily consider a suitable equivalent special path system SPS ′ and construct

a Hamilton cycle H containing SPS ′ instead of SPS since, by Fact 8.5, H induces a

Hamilton cycle containing SPS, as desired.

V1�1 V2�1 � V3�1 � V4�1

V1�2

V16�2 � V15�2 � V14�2 V13�2 V12�2 � V11�2 � V1��2 V9�2

V2�2 � V3�2 � V4�2 V5�2 V6�2 � V7�2 � V8�2

V5�1 V6�1 � V7�1 � V8�1

V9�1V12�1 � V11�1 � V1��1V13�1V16�1 � V15�1 � V14�1

Figure 8.1: A (2, 4)-special factor with respect to P∗ = {V0, V1,1, V1,2, V2,1, . . . , V16,2} and
C = V1 . . . V16. The grey edges form a (2, 4, 2, 1)-special path system with respect to P∗ and C.

8.2.6 Statement of the robust decomposition lemma

We are now ready to state a modified version of the robust decomposition lemma of [76]. We

discuss the differences from the original version after the statement. (A formal derivation

of Lemma 8.23 is available in Appendix C.)

Observe that SF and SF ′ may have edges with common starting and ending points in

Lemma 8.23. Indeed, recall our convention that the edges of a multidigraph are all distinct

(see Section 5.2.1) and that, in particular, a decomposition of a multidigraph covers each

edge according to its multiplicity (see Section 5.2.9). Thus, Lemma 8.23 simply states that

each occurrence of an edge in each of H,Drob,SF , and SF ′ is covered by precisely one of

the Hamilton cycles in C .

Lemma 8.23 (Modified robust decomposition lemma [76]). Let 0 < 1
m
≪ 1

k
≪ ε≪ 1

q
≪
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1
f
≪ r1

m
≪ d≪ 1

ℓ′
, 1
g
≪ 1 and suppose that rk2 ≤ m. Let

r2 := 96ℓ′g2kr, r3 :=
rfk

q
, r⋄ := r1 + r2 + r − (q − 1)r3, s′ := rfk + 7r⋄,

and suppose that k
14
, k
f
, k
g
, q
f
, m
4ℓ′
, fm

q
, 2fk
3g(g−1) ∈ N. Suppose that (D,P ,P ′,P∗, R, C, U, U ′) is

an (ℓ′, q
f
, k,m, ε, d)-setup with empty exceptional set V0. Let SF be a multidigraph which

consists of the union of r3 ( q
f
, f)-special factors with respect to P∗ and C and let SF ′ be

a multidigraph which consists of the union of r⋄ (1, 7)-special factors with respect to P

and C.

Then, D contains an (r1+r2+5r⋄)-regular spanning subdigraph Drob for which the holds.

For any r-regular digraph H on V (D) which is edge-disjoint from Drob, the multidigraph

H ∪Drob ∪ SF ∪ SF ′ has a decomposition C into s′ Hamilton cycles such that each cycle

in C contains precisely one of the special path systems in the multidigraph SF ∪ SF ′.

The analogue holds if (D,P ,P ′,P∗, R, C, U, U ′) is an (ℓ′, q
f
, k,m, ε, d)-bi-setup and H

is an r-regular bipartite digraph on the same vertex classes as D.

Lemma 8.23 differs from [76, Lemma 12.1] in four minor points. (i) As discussed

in Section 8.2.5, our definition of special factor is more general: there is no restriction

on how many edges can lie outside D. (ii) SF and SF ′ are multidigraphs rather than

digraphs. (iii) The robustly decomposable digraph Drob is now constructed in only one

stage. In [76, Lemma 12.1], we first input a set of r3 (edge-disjoint) ( q
f
, f)-special factors

to obtain a subdigraph CA⋄(r) ⊆ D and then, in a second stage, we input a set of r⋄

(edge-disjoint) (1, 7)-special factors to obtain a second subdigraph PCA⋄(r) ⊆ D. In

Lemma 8.23, these two stages are condensed into one: Drob from Lemma 8.23 corresponds

to CA⋄(r) ∪ PCA⋄(r) from [76, Lemma 12.1]. (iv) H only needs to be edge-disjoint from

Drob.

Using the concept of equivalent sets of vertex-disjoint paths, modifications (i)–(iii) can

be derived immediately from [76, Lemma 12.1]. Indeed, since each special path system

goes into a different Hamilton cycle, Fact 8.5 implies that it is enough to apply [76, Lemma
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12.1] with special path systems which are equivalent to those in the multidigraph SF ∪SF ′.

In both stages of the application of [76, Lemma 12.1], one can use the superregular pairs

in D (which exist by (ST3) an (BST3)) to find suitable special path systems in D which

are equivalent to those contained in the multidigraph SF ∪ SF ′ and edge-disjoint from

each other (as well as from CA⋄(r) in the second stage).

Modification (iv) cannot be derived immediately from the statement of [76, Lemma 12.1]

but follows easily from its proof and Fact 8.5. More precisely, using the equivalent special

path system approach described above, [76, Lemma 12.1] requires that H is edge-disjoint

from Drob as well as the auxiliary special path systems we used to apply [76, Lemma 12.1].

But, the proof of [76, Lemma 12.1] implies that the relevant absorbing properties come

from CA⋄(r) and PCA⋄(r). Thus, if H is not edge-disjoint from the auxiliary special path

systems used to apply [76, Lemma 12.1], then Fact 8.5 implies that we can simply replace

these special path systems by equivalent ones which are edge-disjoint from H. (More

details on how to obtain these modifications can be found in Appendix C.)

8.2.7 Incorporating the exceptional vertices

Recall that (Lemma 8.23) can only be applied with an empty exceptional set V0. In general,

V0 will be non-empty and so we will have to apply Lemma 8.23 with D − V0 playing the

role of D. As a result, the cycles obtained via Lemma 8.23 will not be Hamilton cycles

on V (D), they will only span V (D) \ V0. We will incorporate the exceptional vertices

into these almost spanning cycles using the special path systems as follows. (Note that

a special cover as defined below is a generalisation of an exceptional cover as defined in

[76], while a complete special sequence as defined below is the analogue of a complete

exceptional sequence as defined in [76].)

Definition 8.24 (Special cover). Let D be a digraph and V0 ⊆ V (D) be an exceptional set.

A special cover in D (with respect to V0) is a linear forest SC ⊆ D such that V 0(SC) = V0.

Definition 8.25 (Complete special sequence). Let D be a digraph and V0 ⊆ V (D) be an

exceptional set. Suppose that SC is a special cover in D. Let P1, . . . , Pℓ be an enumeration
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of the components of SC which are not isolated vertices. For each i ∈ [ℓ], denote by ui

and vi the starting and ending points of Pi. The complete special sequence associated to

SC is the directed matching MSC := {uivi | i ∈ [ℓ]}.

Then, observe that the following holds.

Fact 8.26. Let D be a digraph and V0 ⊆ V (D) be an exceptional set. Let SC be a special

cover in D with respect to V0 and denote by MSC the complete special sequence associated

to SC. Suppose that C is a spanning cycle on V (D) \ V0 satisfying MSC ⊆ C ⊆ D ∪MSC .

Then, (C \MSC) ∪ SC is a Hamilton cycle of D.

Our strategy for incorporating the exceptional vertices into the cycles obtained via

the robust decomposition lemma will thus be as follows. Before applying the robust

decomposition lemma, we will reserve the edges from s′ special covers in D with respect

to V0. Then, we will construct the special factors for Lemma 8.23 in such a way that each

of the s′ special path systems contains the complete special sequence associated to one of

the reserved special covers. Since each cycle obtained via the robust decomposition lemma

will contain precisely one of these special path systems, these cycles will contain precisely

one of these complete special sequences. Using Fact 8.26 and the reserved special covers,

we will thus be able to transform the cycles from the robust decomposition lemma into

Hamilton cycles on V (D). We discuss how to find these special sequences in Section 9.1.

8.3 The preprocessing step

Recall that in the robust decomposition lemma (Lemma 8.23), the exceptional set must

be empty. In the proof of Theorem 4.1, the partition P in the bi-setup will be obtained

via the regularity lemma (Lemma 7.14) and so we will have a non-empty exceptional set

V0. Thus, we will only be able to apply the (bipartite) robust decomposition lemma in

D − V0 rather than D. This means that the absorber Drob will only be able to decompose

leftovers on V (D) \ V0 and so we need an additional absorber to cover the leftover edges

incident to V0. This absorber will be constructed by adapting the preprocessing step of [76]
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to the bipartite case. Roughly speaking, the preprocessing lemma (Lemma 8.30 below)

says that given a bipartite digraph D and an exceptional set V0, one can find a sparse

absorber PG ⊆ D (called a preprocessing graph in [76]) such that for any very sparse

leftover H which is edge-disjoint from PG, the digraph H ∪ PG contains edge-disjoint

Hamilton cycles which cover all the edges incident to V0.

8.3.1 Consistent bi-systems

First, we need a bipartite analogue of a consistent system defined in [76]. This is the key

structure required to construct the absorber in the preprocessing lemma. It is similar to a

bi-setup.

Definition 8.27 (Consistent bi-system). We say that (D,P0, R0, C0,P , R, C) is a consis-

tent (ℓ∗, k,m, ε, d, ν, τ, δ, θ)-bi-system if the following properties are satisfied.

(CBSys1) D, R0, and R are balanced bipartite digraphs on vertex classes A and B, A0

and B0, and A and B, respectively. Moreover, D, R0, and R are bipartite

robust (ν, τ)-outexpanders with bipartitions (A,B), (A0,B0), and (A,B),

respectively. Furthermore, δ0(D) ≥ δ|D|, δ0(R0) ≥ δ|R0|, and δ0(R) ≥ δ|R|.

(CBSys2) P0 is a partition of V (D) into an exceptional set V0 which satisfies |V0∩A| =

|V0 ∩ B| ≤ ε|A| = ε|B|, and k
ℓ∗

clusters of size mℓ∗. The vertex set of R0

consists of these clusters. (Thus, |R0| = k
ℓ∗

.)

(CBSys3) P is an ℓ∗-refinement of P0 (and so the clusters in P have size m). The

vertex set of R consists of the clusters in P . (Thus, |R| = k.)

(CBSys4) For each VW ∈ E(R), the corresponding pair D[V,W ] is (ε,≥ d)-regular.

(CBSys5) C0 is a Hamilton cycle in R0 and C is a Hamilton cycle in R. For each

VW ∈ E(C), the corresponding pair D[V,W ] is [ε,≥ d]-superregular.

(CBSys6) Suppose that W,W ′ ∈ V (R0) and V, V ′ ∈ E(R) satisfy V ⊆ W and V ′ ⊆ W ′.

Then, WW ′ ∈ E(R0) if and only if V V ′ ∈ E(R).
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(CBSys7) C can be viewed as obtained by winding ℓ∗ times around C0, i.e. for every

edge WW ′ ∈ E(C0), there are precisely ℓ∗ edges V V ′ ∈ E(C) such that

V ⊆ W and V ′ ⊆ W ′.

(CBSys8) Let V be a cluster in P0 and W ⊆ V be a cluster in P. Let v ∈ V (D) and

⋄ ∈ {+,−}. If |N⋄D(v) ∩ V | ≥ τ |V |, then |N⋄D(v) ∩W | ≥ θ|N⋄
D(v)∩V |
ℓ∗

.

Observe that the original definition of a consistent bi-system in [76] also required the

exceptional set V0 to be an independent set. However, we will see that this condition is

not necessary for our purposes and so we omit it here for convenience.

By Lemma 7.3 and Proposition 7.8, a consistent bi-system remains a consistent bi-

system (with slightly worse parameters) if only a few edges are removed at each vertex.

An analogous observation was made (and proved) in [76, Lemma 7.1], so we omit the

details here.

Proposition 8.28. Let 0 < 1
m
≪ 1

k
≪ ε ≤ ε′ ≪ d ≪ ν ≪ τ ≪ δ, θ ≤ 1. Let D

be a digraph and suppose that D′ is obtained from D by removing at most ε′m inedges

and at most ε′m outedges incident to each vertex. If (D,P0, R0, C0,P , R, C) is a con-

sistent (ℓ∗, k,m, ε, d, ν, τ, δ, θ)-bi-system, then (D′,P0, R0, C0,P , R, C) is still a consistent

(ℓ∗, k,m, 3
√
ε′, d

2
, ν
2
, τ, δ

2
, θ
2
)-bi-system.

Finally, we observe that if D forms a consistent bi-system, then the edges of D can be

randomly partitioned to obtain, with high probability, two edge-disjoint digraphs which

both form a consistent bi-system. Indeed, (CBSys2), (CBSys3), (CBSys6), and (CB-

Sys7) are automatically preserved and, by Lemma 7.19, bipartite robust outexpansion

is preserved with high probability, as desired for (CBSys1). Moreover, a simple appli-

cation of Lemma 7.16 can guarantee suitable minimum degree conditions for (CBSys1)

and (CBSys8). Finally, Lemma 7.17 implies that (super)regularity is preserved with high

probability, as desired for (CBSys4) and (CBSys5).

Lemma 8.29. Let 0 < 1
m
≪ 1

k
≪ ε ≪ ε′ ≪ d ≪ ν ≪ τ ≪ δ, θ ≤ 1. Suppose

that (D,P0, R0, C0,P , R, C) is a consistent (ℓ∗, k,m, ε, d, ν, τ, δ, θ)-bi-system. Let D′ be
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obtained from D by selecting each edge independently with probability 1
2
. Then, with high

probability, both (D′,P0, R0, C0,P , R, C) and (D \D′,P0, R0, C0,P , R, C) are consistent

(ℓ∗, k,m, ε′, d
2
, ν
4
, τ, δ

3
, θ
3
)-bi-systems.

8.3.2 Statement of the preprocessing lemma for bipartite di-

graphs

The following lemma is a bipartite analogue of [76, Corollary 8.5 and Lemma 8.6]. Since

it can be proved using very similar arguments as those of [76], we omit its proof here.

(A detailed explanation on how to derive Lemma 8.30 can be found in Appendix D.) As

mentioned at the beginning of Section 8.3, Lemma 8.30 states that a consistent bi-system

contains a sparse absorber PG which can cover all the exceptional edges of a very sparse

leftover H with edge-disjoint Hamilton cycles.

Lemma 8.30 (Preprocessing lemma for bipartite digraphs [76]). Let 0 < 1
m
≪ r

m
≪ r′

m
≪

1
k
≪ ε ≪ 1

ℓ∗
≪ d ≪ ν ≪ τ ≪ δ, θ ≤ 1. Denote s := 107

ν2
and suppose that m

50
, 50ℓ

∗

s−1 ∈ N.

Let (D,P0, R0, C0,P , R, C) be a consistent (ℓ∗, k,m, ε, d, ν, τ, δ, θ)-bi-system. Then, there

exists a spanning subdigraph PG ⊆ D such that the following hold.

(i) Each v ∈ V0 satisfies d±PG(v) = r(s − 1) and each w ∈ V (D) \ V0 satisfies

d±PG(w) = r′.

(ii) Let H be an r-regular bipartite digraph on the same vertex classes as D. If H

is edge-disjoint from PG and satisfies e(H[V0]) = 0, then H ∪ PG contains rs

edge-disjoint Hamilton cycles C1, . . . , Crs such that the following hold.

(a) H ⊆
⋃

i∈[rs] Ci ⊆ H ∪ PG.

(b) Let PG′ := PG \
⋃

i∈[rs] Ci. Then, each v ∈ V0 satisfies d±PG′(v) = 0 and

each w ∈ V (D) \ V0 satisfies d±PG′(w) = r′ − r(s− 1).

Note that in [76, Corollary 8.5], H must be a spanning subdigraph of the host digraph

D. However, this condition is not necessary since, as H is very sparse, its edges could
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be added to the host digraph without affecting the parameters of the consistent system

significantly. This is why, in our bipartite version of the preprocessing lemma (Lemma 8.30),

we may omit the condition that H is a spanning subdigraph of D. Moreover, [76, Corollary

8.5] requires the exceptional set V0 to form an independent set in D. But, Proposition 8.28

implies that D\D[V0] also contains a consistent bi-system (with slightly worse parameters).

Thus, this condition can be omitted in Lemma 8.30.

Since PG′ is a regular digraph on V (D) \ V0, we can use Drob from the robust

decomposition lemma (Lemma 8.23) to decompose it into Hamilton cycles on V (D) \ V0.

(The vertices in V0 will later be incorporated into these cycles via the special path systems

as discussed in Section 8.2.7.) Thus, we can combine PG and Drob to form an absorber

Dabs which can decompose a sparse leftover digraph H which have edges incident to V0.

This is made precise in the following corollary.

Corollary 8.31. Let 0 < 1
m
≪ r

m
≪ r′

m
≪ 1

k
≪ ε ≪ 1

q
≪ 1

ℓ∗
, 1
f
≪ r1

m
≪ d ≪ ν, 1

ℓ′
, 1
g
≪

τ ≪ δ, θ ≤ 1. Let

s :=
107

ν2
, r∗ := r′ − (s− 1)r,

r2 := 96ℓ′g2kr∗, r3 :=
r∗fk

q
, r⋄ := r1 + r2 + r∗ − (q − 1)r3, s′ := r∗fk + 7r⋄.

Suppose that k
14
, k
f
, k
g
, q
f
, m
50
, m
4ℓ′
, fm

q
, 2fk
3g(g−1) ,

50ℓ∗

s−1 ∈ N. Suppose that (D,P0, R0, C0,P , R, C)

is a consistent (ℓ∗, k,m, ε, d, ν, τ, δ, θ)-bi-system and suppose that (D,P ,P ′,P∗, R, C, U, U ′)

is an (ℓ′, q
f
, k,m, ε, d)-bi-setup. Suppose that the exceptional set V0 forms an independent

set in D. Let SF be a multidigraph which consists of the union of r3 ( q
f
, f)-special factors

with respect to P∗ and C and let SF ′ be a multidigraph which consists of the union of r⋄

(1, 7)-special factors with respect to P and C. Then, D contains a spanning subdigraph

Dabs for which the following hold.

(i) Each v ∈ V0 satisfies d±
Dabs(v) = r(s − 1) and each w ∈ V (D) \ V0 satisfies

d±
Dabs(w) = r′ + r1 + r2 + 5r⋄.

(ii) Let H be an r-regular bipartite digraph on the same vertex classes as D. If
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H is edge-disjoint from Dabs and satisfies e(H[V0]) = 0, then the multidigraph

H ∪Dabs ∪SF ∪SF ′ has a decomposition C ∪C ′ into rs+ s′ edge-disjoint cycles

satisfying the following properties.

(a) C ⊆ H ∪Dabs and consists of rs edge-disjoint Hamilton cycles on V (D).

(b) C ′ consist of s′ edge-disjoint Hamilton cycles on V (D) \ V0 such that

each cycle in C ′ contains precisely one of the special path systems in the

multidigraph SF ∪ SF ′.

Proof. First, let PG be the spanning subdigraph of D obtained by applying Lemma 8.30.

Define D′ := D \ PG and let P∅,P ′∅, and P∗∅ be obtained by replacing the exceptional set

V0 by the empty set in P ,P ′, and P∗, respectively. By Lemma 8.30(i), Proposition 8.16,

and Fact 8.18, (D′−V0,P∅,P ′∅,P∗∅ , R, C, U, U ′) is an (ℓ′, q
f
, k,m, ε

1
3 , d

2
)-bi-setup with empty

exceptional set. Let Drob be the spanning subdigraph of D′ − V0 obtained by applying

Lemma 8.23 with D′ − V0,P∅,P ′∅,P∗∅ , ε
1
3 , d

2
, and r∗ playing the roles of D,P ,P ′,P∗, ε, d,

and r.

Define Dabs := PG∪Drob. Then, (i) follows from Lemma 8.30(i) and Lemma 8.23. For

(ii), let H be an r-regular bipartite digraph on the same vertex classes as D. Suppose

that H is edge-disjoint from Dabs and satisfies e(H[V0]) = 0. Let C be the set of rs

Hamilton cycles obtained by applying Lemma 8.30(ii). In particular, (ii.a) holds and

Lemma 8.30(ii.a) implies that E(H) ⊆ E(C ) ⊆ E(H) ∪ E(PG). Let PG′ := PG \ C .

Then, Lemma 8.30(ii.b) implies that E(PG′) = E(PG′ − V0) and PG′ − V0 is r∗-regular.

Let C ′ be the set Hamilton cycles on V (D) \ V0 obtained by applying Lemma 8.23 with

PG′ and r∗ playing the roles of H and r. Then, (ii.b) holds and we are done.
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CHAPTER 9

THE BIPARTITE ROBUST OUTEXPANDER CASE:
PROOF OF THEOREM 4.1

In this section, we combine the approximate decomposition (Corollary 8.2) and the

absorption step (Corollary 8.31) to derive Theorem 4.1.

9.1 Applying the robust decomposition lemma in a

bipartite robust outexpander

In order to apply Corollary 8.31, we will need to find a consistent bi-system, a bi-setup,

and special factors. In this section, we discuss how these can be found in a bipartite robust

outexpander.

First, we explain how to form the special factors required for Corollary 8.31. As

discussed in Section 8.2.7, their role is to incorporate the exceptional vertices into the

cycles obtained via the robust decomposition lemma. By Fact 8.26, we would like each

special path system to consist of a complete special sequence (recall Definition 8.25) and

edges of D. (Note that such special path systems were called complete exceptional path

systems in [76].) One can achieve this by adapting the arguments of [76, Lemma 7.6] to

the bipartite case (see Appendix D for more details).

Lemma 9.1 (Constructing special covers and special factors). Let 0 < 1
m
≪ 1

k
≪ ε ≪

d≪ ν ≪ τ ≪ δ, θ ≤ 1 and ε≪ 1
ℓ′
, 1
f
and ℓ′r

m
≪ d. Suppose that ℓ∗

f
, m
ℓ′
∈ N and f

ℓ∗
≪ 1. Let
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(D,P0, R0, C0,P , R, C) be a consistent (ℓ∗, k,m, ε, d, ν, τ, δ, θ)-bi-system with exceptional

set V0. Let P ′ be an ε-uniform ℓ′-refinement of P. Then, there exist

(i) a set SC = {SCi,h,j | (i, h, j) ∈ [r]× [ℓ′]× [f ]} of rℓ′f edge-disjoint special covers

in D with respect to V0 and

(ii) r (ℓ′, f)-special factors SF1, . . . , SFr with respect to P ′ and C

such that the following hold, where for each (i, h, j) ∈ [r] × [ℓ′] × [f ], Mi,h,j denotes the

complete special sequence associated to SCi,h,j and SPSi,h,j denotes the (ℓ′, f, h, j)-special

path system contained in SFi.

(iii) For each (i, h, j) ∈ [r]× [ℓ′]× [f ], we have Mi,h,j ⊆ SPSi,h,j ⊆ (D \ SC) ∪Mi,h,j.

(iv) Let (i, h, j), (i′, h′, j′) ∈ [r] × [ℓ′] × [f ] be distinct. Then, we have (SPSi,h,j \

Mi,h,j) ∩ (SPSi′,h′,j′ \Mi′,h′,j′) = ∅.

Roughly speaking, Lemma 9.1(iii) means that each complete special sequence is

incorporated into a distinct special path system, while Lemma 9.1(iv) states that each

edge of D \ SC is incorporated into at most one of the special path systems. Note that

in [76, Lemma 7.6], the exceptional set V0 must form an independent set in D. But,

Proposition 8.28 implies that D \D[V0] also contains a consistent bi-system (with slightly

worse parameters). Thus, this condition can be omitted in Lemma 9.1.

Consistent bi-systems and bi-setups can be constructed from Szemerédi’s regularity

lemma (Lemma 7.14) as follows. Recall that, by Lemma 7.15, the reduced digraph R0

obtained by applying the regularity lemma (Lemma 7.14) to a bipartite robust outexpander

D is also a bipartite robust outexpander. By Lemma 7.7, this property is also preserved

when taking refinements. Thus, one can obtain a consistent bi-system by applying the

regularity lemma to obtain a partition P0 of V (D), then selecting a uniform refinement P

of P0 using Lemma 8.7, and finally using Corollary 7.5 to find the desired Hamilton cycles

C0 and C.

The additional refinements P ′ and P∗ of P required to form a bi-setup can also be

obtained by applying Lemma 8.7 (the superregular pairs required for (BST7) can be
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obtained using Lemma 8.8). The next lemma gives the bi-universal walk required for

(BST4). (Lemma 9.2 is easily proved by adapting the arguments of [76, Lemma 9.1] to the

bipartite case, so we defer its proof to Appendix D.)

Lemma 9.2. Let 0 < 1
k
≪ ν ≪ τ ≪ δ < 1 and let ℓ′ be an even integer satisfying

ℓ′ ≥ 36ν−2. Suppose that R a balanced bipartite robust (ν, τ)-outexpander with bipartition

(A,B), where |A| = |B| = k. Suppose that δ0(R) ≥ δk. Let C be a Hamilton cycle in R.

Then, there exists a bi-universal walk U for C with parameter ℓ′.

Altogether, we obtain a consistent bi-system and a bi-setup (as defined in Defini-

tions 8.15 and 8.27). Then, we apply Lemmas 8.19 and 8.29 to partition the edges of D

into two edge-disjoint subdigraphs D1 and D2 which each form a consistent bi-system

and a bi-setup. We will use D1 to construct the special factors (Lemma 9.1) and D2 to

construct the absorber (Corollary 8.31). This is necessary because, after constructing all

the special factors, the clusters in P and P ′ may no longer form suitable (super)regular

pairs (that is, properties (CBSys4) and (CBSys5) of a consistent bi-system and properties

(BST2), (BST3), and (BST7) of a bi-setup might not hold anymore), so we cannot apply

Corollary 8.31 directly after Lemma 9.1.

Lemma 9.3. Let 0 < 1
M ′ ≪ ε. Then, there exist M ′′, n0 ∈ N such that the following holds.

Suppose that ε ≪ 1
q
≪ 1

f
, 1
ℓ∗
≪ d ≪ ν ≪ τ ≪ δ, θ ≪ 1 and d ≪ 1

g
≪ 1. Moreover, let

ℓ′ ≥ 324ν−2 be even. Let D be a balanced bipartite digraph on vertex classes A and B of

size n ≥ n0. Suppose that D is a bipartite robust (ν, τ )-outexpander with bipartition (A,B)

and that δ0(D) ≥ δn. Then, there exist m, k ∈ N and edge-disjoint D1, D2 ⊆ D such that

the following conditions are satisfied.

(i) M ′ ≤ k ≤M ′′ and k
7
, k
f
, k
g
, m
50
, m
4ℓ′
, fm

q
, 2fk
3g(g−1) ∈ N.

(ii) There exist P0,P ,P ′,P∗, R0, R, C0, C, U , and U ′ which satisfy the following con-

ditions for each i ∈ [2].

– (Di,P0, R0, C0,P , R, C) is a consistent (ℓ∗, 2k,m, ε, d, ν4, 8τ, δ
9
, θ)-bi-system.
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– (Di,P ,P ′,P∗, R, C, U, U ′) is an (ℓ′, q
f
, 2k,m, ε, d)-bi-setup.

Note that in order to apply Corollary 8.31, we need a constant g which divides k. We

also require that this constant g is sufficiently large but sufficiently small compared to k

and f . We would not be able to fix such a parameter if, for instance, f is a prime number

and k = 7f . It is therefore necessary to introduce g in Lemma 9.3 even though it does not

explicitly appear in Lemma 9.3(ii).

For a formal proof of Lemma 9.3, see Appendix E.

9.2 Proof of Theorem 4.1

We are now ready to derive Theorem 4.1. Our strategy is as follows. In Step 1, we

construct consistent bi-systems and bi-setups using Lemma 9.3. In Step 2, we construct

an absorber Dabs using Corollary 8.31 (the required special factors are constructed with

Lemma 9.1). In Step 3, we approximately decompose D using Corollary 8.2. In Step 4,

we decompose the leftover using Dabs.

Proof of Theorem 4.1. We may assume without loss of generality that δ ≪ 1. Let 0 <

1
n0
≪ τ ≪ δ and 1

n0
≪ ν. By Fact 7.2, we may assume that ν ≪ τ . Let n ≥ n0 and r ≥ δn.

Let D be an r-regular bipartite digraph on vertex classes A and B of size n. Suppose that

D is a bipartite robust (ν, τ)-outexpander with bipartition (A,B). Let s := 107ν−8. Fix

additional parameters such that

0 <
1

n
≪ 1

M ′′ ≪
1

M ′ ≪ ε≪ 1

q
≪ 1

f
≪ d≪ ν,

1

g
≪ τ ≪ δ, θ ≪ 1

and q
f
, f

2

7
, 50f

2

s−1 ∈ N. Let ℓ′ be the smallest even integer satisfying ℓ′ ≥ 324ν−2. Denote

ℓ∗ := f 2 and observe that ℓ∗

7
, 50ℓ

∗

s−1 ∈ N and f
ℓ∗

= 1
f
≪ 1.

Step 1: Constructing consistent bi-systems and bi-setups. Apply Lemma 9.3

to obtain m, k,D1, D2,P0,P ,P ′,P∗, R0, R, C0, C, U , and U ′ such that the following hold

for each i ∈ [2].
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(i) M ′ ≤ k ≤M ′′ and k
7
, k
f
, k
g
, m
50
, m
4ℓ′
, fm

q
, 2fk
3g(g−1) ∈ N.

(ii) (Di,P0, R0, C0,P , R, C) is a consistent (ℓ∗, 2k,m, ε, d, ν4, 8τ, δ
9
, θ)-bi-system.

(iii) (Di,P ,P ′,P∗, R, C, U, U ′) is an (ℓ′, q
f
, 2k,m, ε, d)-bi-setup.

Fix additional constants ε′, r0, r
′
0, and r1 such that 1

n
≪ ε′ ≪ r0

m
≪ r′0

m
≪ 1

M ′′ and

1
f
≪ r1

m
≪ d. Let

r∗ := r′0 − (s− 1)r0, r2 := 192ℓ′g2kr∗, r3 :=
2r∗fk

q
,

r⋄ := r1 + r2 + r∗ − (q − 1)r3, s′ := 2r∗fk + 7r⋄.

Let V0 denote the exceptional set in P .

Step 2: Constructing the absorber. We will use Corollary 8.31. First, we construct

the required special factors in D1.

Note that (iii) and (BST8) imply that P∗ is an ε-uniform q
f
-refinement of P with

respect to D1. Apply Lemma 9.1 with D1, r3, 2k, ν
4, 8τ, δ

9
,P∗, and q

f
playing the roles of

D, r, k, ν, τ, δ,P ′, and ℓ′ to obtain

(a) a set SC = {SCi,h,j | (i, h, j) ∈ [r3]× [ q
f
]× [f ]} of qr3 edge-disjoint special covers

in D1 ⊆ D with respect to V0 and

(b) r3 ( q
f
, f)-special factors SF1, . . . , SFr3 with respect to P∗ and C

for which the following hold, where for each (i, h, j) ∈ [r3]× [ q
f
]× [f ], Mi,h,j denotes the

complete special sequence associated to SCi,h,j and SPSi,h,j denotes the ( q
f
, f, h, j)-special

path system contained in SFi.

(c) For each (i, h, j) ∈ [r3]× [ q
f
]× [f ], we have Mi,h,j ⊆ SPSi,h,j ⊆ (D1 \ SC) ∪Mi,h,j .

(d) Let (i, h, j), (i′, h′, j′) ∈ [r3] × [ q
f
] × [f ] be distinct. Then, we have (SPSi,h,j \

Mi,h,j) ∩ (SPSi′,h′,j′ \Mi′,h′,j′) = ∅.

Define a multiset M by M := {Mi,h,j | (i, h, j) ∈ [r3] × [ q
f
] × [f ]} and a multidi-
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graph SF by SF := SF1 ∪ · · · ∪ SFr3 . Let D′1 := D1 \ (SC ∪ SF). Observe that

SC consists of r3q linear forests and SF consists of r3 digraphs of maximum semidegree

1. Thus, Proposition 8.28 and (ii) imply that (D′1,P0, R0, C0,P , R, C) is a consistent

(ℓ∗, 2k,m, 3
√
ε, d

2
, ν

4

2
, 8τ, δ

18
, θ
2
)-bi-system. Note that P is a 3

√
ε-uniform refinement of itself

with respect to D′1. Apply Lemma 9.1 with D′1, r
⋄, 2k, 3

√
ε, d

2
, ν

4

2
, 8τ, δ

18
, θ
2
,P , 1, and 7

playing the roles of D, r, k, ε, d, ν, τ, δ, θ,P ′, ℓ′, and f to obtain

(a′) a set SC ′ = {SC ′i,h,j | (i, h, j) ∈ [r⋄]× [1]× [7]} of 7r⋄ edge-disjoint special covers

in D′1 ⊆ D with respect to V0 and

(b′) r⋄ (1, 7)-special factors SF ′1, . . . , SF
′
r⋄ with respect to P and C

for which the following hold, where for each (i, h, j) ∈ [r⋄]× [1]× [7], M ′
i,h,j denotes the

complete special sequence associated to SC ′i,h,j and SPS ′i,h,j denotes the (1, 7, h, j)-special

path system contained in SF ′i .

(c′) For each (i, h, j) ∈ [r⋄]× [1]× [7], we have M ′
i,h,j ⊆ SPS ′i,h,j ⊆ (D′1 \ SC ′) ∪M ′

i,h,j .

(d′) Let (i, h, j), (i′, h′, j′) ∈ [r⋄] × [1] × [7] be distinct. Then, we have (SPS ′i,h,j \

M ′
i,h,j) ∩ (SPS ′i′,h′,j′ \M ′

i′,h′,j′) = ∅.

Define a multisetM′ byM′ := {M ′
i,h,j | (i, h, j) ∈ [r⋄]× [1]× [7]} and a multidigraph SF ′

by SF ′ := SF ′1 ∪ · · · ∪ SF ′r⋄ .

By (ii) and (iii), we can let Dabs be the absorber obtained by applying Corollary 8.31

with D2, r0, r
′
0, 2k, ν

4, 8τ , and δ
9

playing the roles of D, r, r′, k, ν, τ , and δ.

Step 3: Approximate decomposition. In this step, we approximately decompose

D′ := D \ (SC ∪ SC ′ ∪ SF ∪ SF ′ ∪Dabs) into Hamilton cycles, with a sparse leftover. Let

r′ := r − r0(s− 1)− s′.

Claim 1. D′ is an r′-regular bipartite robust (ν
2
, τ)-outexpander with bipartition (A,B).

Proof of Claim. By Lemma 7.3, it is enough to show that D′ is r′-regular. By Corol-
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lary 8.31(i), each v ∈ V (D) satisfies

d±
Dabs(v) =


r0(s− 1) if v ∈ V0;

r′0 + r1 + r2 + 5r⋄ otherwise.

By (a) and (a′), SC and SC ′ are edge-disjoint sets of edge-disjoint special covers in D with

respect to V0 and so Definitions 8.24 and 8.25 imply that each v ∈ V (D) satisfies

d±SC∪SC′(v) = d±SC(v) + d±SC′(v) =


qr3 + 7r⋄ if v ∈ V0;

d±M(v) + d±M′(v) otherwise.

By Definition 8.22, (b), and (b′), each v ∈ V (D) satisfies

d±SF(v) + d±SF ′(v) =


0 if v ∈ V0;

r3 + r⋄ otherwise.

By construction, Dabs and SC∪SC ′ are edge-disjoint. By (c), (d), (c′), and (d′), SF∩D and

SF ′ ∩D are edge-disjoint digraphs (rather than multidigraphs) and are both subdigraphs

of D \ (SC ∪ SC ′ ∪Dabs). Thus, each v ∈ V0 satisfies

d±D′(v) = d±D(v)− d±
Dabs(v)− d±SC∪SC′(v)− d±SF∩D(v)− d±SF ′∩D(v)

= r − r0(s− 1)− (qr3 + 7r⋄)− 0− 0 = r′.

Moreover, (c) and (c′) imply that each v ∈ V (D) \ V0 satisfies

d±D′(v) = d±D(v)− d±
Dabs(v)− d±SC∪SC′(v)− d±SF∩D(v)− d±SF ′∩D(v)

= r − d±
Dabs(v)− d±SC∪SC′(v)− (d±SF(v)− d±M(v))− (d±SF ′(v)− d±M′(v))

= r − (r′0 + r1 + r2 + 5r⋄)− (r3 + r⋄) = r′.
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Thus, D′ is r′-regular, as desired. □

Note that by Corollary 8.31(ii), Dabs cannot absorb any edges which entirely lie in V0.

Thus, we start by covering the edges of D′[V0] with a small number Hamilton cycles as

follows. By (iii) and (BST1),

ℓ0 := |V0 ∩ A| = |V0 ∩B| ≤ εn ≤ r′ − 2νn.

Apply König’s theorem to decompose D′[V0] into ℓ0 edge-disjoint matchings M1, . . . ,Mℓ0

and observe that Claim 1 and Lemma 7.3 imply that D′ \
⋃

i∈[ℓ0] Mi is an ( r′

2n
, ε)-almost reg-

ular bipartite robust (ν
3
, τ)-outexpander with bipartition (A,B). Note that Corollary 8.2(i)

and (ii) hold with M1, . . . ,Mℓ0 playing the roles of F1, . . . , Fℓ. Apply Corollary 8.2 with

D′ \
⋃

i∈[ℓ0] Mi, ℓ0,
r′

2n
, ν, ν

3
, and M1, . . . ,Mℓ0 playing the roles of D, ℓ, δ, η, ν, and F1, . . . , Fℓ

to obtain a set C0 of ℓ0 edge-disjoint Hamilton cycles of D′ such that D′[V0] ⊆ E(C0) and

D′′ := D′ \ E(C0) is a bipartite robust (ν
6
, τ)-outexpander with bipartition (A,B). Note

that D′′ is regular of degree r′′ := r′ − ℓ0.

We now approximately decompose D′′ as follows. For each i ∈ [r′′ − r0], let Fi be

the empty digraph (so Corollary 8.2(i) and (ii) are satisfied). Apply Corollary 8.2 with

D′′, r′′ − r0,
r′′

2n
, ε′, r0

2n
, and ν

6
playing the roles of D, ℓ, δ, ε, η, and ν to obtain a set Capprox

of r′′ − r0 edge-disjoint Hamilton cycles of D′′.

Step 4: Absorbing the leftovers. Finally, we decompose H := D′′ \ Capprox =

D′ \ (C0 ∪ Capprox) using the absorber Dabs constructed in Step 2. Note that H is an r0-

regular subdigraph of D′ \D′[V0] (by Claim 1, H is obtained from the r′-regular digraph D′

by removing the edges of r′−r0 edge-disjoint Hamilton cycles of D′). Define a multidigraph

D′′′ by D′′′ := H ∪Dabs ∪ SF ∪ SF ′.

Claim 2. D′′′ \ (M∪M′) is a digraph (rather than a multidigraph) and satisfies D′′′ \

(M∪M′) = D \ (SC ∪ SC ′ ∪ C0 ∪ Capprox).

Proof of Claim. By (c), (d), (c′), and (d′), SF \M and SF ′ \M′ are digraphs rather
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than multidigraphs and are edge-disjoint subdigraphs of D \ (SC ∪ SC ′). By Step 2,

Dabs ⊆ D \ (SC ∪ SF ∪ SC ′ ∪ SF ′) and, by definition,

H = D′′ \ Capprox = D \ (SC ∪ SC ′ ∪ SF ∪ SF ′ ∪Dabs ∪ C0 ∪ Capprox). (9.1)

Thus, SF \M, SF ′ \M′, Dabs, and H are all pairwise edge-disjoint subdigraphs of D.

Therefore, D′′′ \ (M∪M′) is a digraph. Moreover, recall from Step 3 that C0 ∪ Capprox ⊆

D′ ⊆ D \ (SF ∪ SF ′ ∪Dabs). Thus, (9.1) implies that D′′′ \ (M∪M′) = D \ (SC ∪ SC ′ ∪

C0 ∪ Capprox), as desired. □

Let C ∪ C ′ be the decomposition of D′′′ obtained by applying Corollary 8.31(ii) (with

r0 and r′0 playing the roles of r and r′). By Corollary 8.31(ii.b), C ′ is a set of s′ Hamilton

cycles on V (D) \ V0, each containing precisely one of the special path systems in the

multidigraph SF ∪ SF ′. That is, there exists an enumeration

{Ci,h,j | (i, h, j) ∈ [r3]× [ q
f
]× [f ]} ∪ {C ′i,h,j | (i, h, j) ∈ [r⋄]× [1]× [7]}

of C ′ such that Ci,h,j ∩ (SF ∪ SF ′) = SPSi,h,j for each (i, h, j) ∈ [r3] × [ q
f
] × [f ] and

C ′i′,h′,j′ ∩ (SF ∪ SF ′) = SPS ′i′,h′,j′ for each (i′, h′, j′) ∈ [r⋄]× [1]× [7].

For each (i, h, j) ∈ [r3]× [ q
f
]× [f ], define C∗i,h,j := (Ci,h,j \Mi,h,j)∪SCi,h,j and note that

(c) and Fact 8.26 imply that C∗i,h,j is a Hamilton cycle of D. For each (i, h, j) ∈ [r⋄]×[1]×[7],

define C ′′i,h,j := (C ′i,h,j \M ′
i,h,j) ∪ SC ′i,h,j and note that (c′) and Fact 8.26 imply that C ′′i,h,j

is a Hamilton cycle of D. Let

C ′′ := {C∗i,h,j | (i, h, j) ∈ [r3]× [ q
f
]× [f ]} ∪ {C ′′i,h,j | (i, h, j) ∈ [r⋄]× [1]× [7]}.

By (a), (a′), and Step 3, SC, SC ′, and C0 ∪ Capprox are all pairwise edge-disjoint. Thus,

Claim 2 implies that C ′′ is a Hamilton decomposition of

(D′′′ \ (M∪M′ ∪ C )) ∪ (SC ∪ SC ′) = D \ (C0 ∪ Capprox ∪ C ).
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By Step 3, C0 ∪ Capprox is a set of edge-disjoint Hamilton cycles of D and, by Corol-

lary 8.31(ii.a) and Claim 2, C is a set of edge-disjoint Hamilton cycles of H ∪ Dabs ⊆

D \ (C0 ∪ Capprox). Thus, C0 ∪ Capprox ∪ C ∪ C ′′ is a Hamilton decomposition of D. This

completes the proof of Theorem 4.1.
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CHAPTER 10

BLOW-UP CYCLES: DEFINITIONS AND PROOF
OF LEMMA 4.3

The remainder of this thesis is devoted to the proofs of Lemma 4.3 and Theorem 4.4. In

this section, we recall and expand on the definitions of the complete blow-up C4 and a

digraph which is ε-close to the complete blow-up C4. We also state a few properties of

blow-up cycles and prove Lemma 4.3.

10.1 Blow-up cycles

We now generalise the concept of complete blow-up C4 introduced in Section 4.2. Let

K ≥ 3. The complete blow-up CK on vertex classes of size n is the n-fold blow-up of

the consistently directed CK . Any spanning subdigraph of the n-fold blow-up of the

directed CK is called a blow-up CK on vertex classes of size n. Recall from Section 4.2

that a digraph is ε-close to the complete blow-up C4 on vertex classes of size n if it can be

obtained from the complete blow-up C4 on vertex classes of size n by flipping the direction

of at most 4ε2n edges.

Let K ≥ 3. It will sometimes be convenient to label the vertex classes of the (complete)

blow-up CK . This motivates the following variants of the above definitions. Let U1, . . . , UK

be disjoint vertex sets of size n and let U := (U1, . . . , UK). The complete blow-up CK

with vertex partition U is the digraph D on
⋃
U =

⋃
i∈[K] Ui defined by E(D) := {uv |

u ∈ Ui, v ∈ Ui+1, i ∈ [K]} (where UK+1 := U1). Note that the ordering of U1, . . . , UK
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matters. The vertex sets U1, . . . , UK are the vertex classes of D. In informal discussions,

we sometime refer to (U1, U2), . . . , (UK , U1) as the pairs of the blow-up CK . (In other

words, D is the n-fold blow-up of the directed CK whose vertex classes are denoted by

U1, . . . , UK and ordered according to the ordering of the vertices in the directed CK .) Let

D′ be a digraph on
⋃
U . We say that D′ is a blow-up CK with vertex partition U if D′ is a

spanning subdigraph of D. If K = 4, we say that D′ is ε-close to the complete blow-up C4

with vertex partition U if D′ can be obtained from D by flipping the direction of at most

4εn2 edges of D.

Definition 10.1 ((ε, 4)-partition). Let U1, . . . , U4 be disjoint vertex sets of size n and

denote U := (U1, . . . , U4). Let D be a digraph on
⋃
U . We say that U is an (ε, 4)-partition

for D if D is ε-close to the complete blow-up C4 with vertex partition U .

Note that while the ordering of U1, . . . , UK in the above definitions matters, this

ordering can be shifted without effect. We also emphasise that, in the above definitions,

we assume that the vertex classes U1, . . . , UK are equally sized.

Fact 10.2. Let D be a digraph on 4n vertices and suppose that U = (U1, . . . , U4) is an

(ε, 4)-partition for D. Then, the following hold.

(i) |U1| = · · · = |U4| = n.

(ii) For each i ∈ [4], (Ui, . . . , Ui+3) is an (ε, 4)-partition for D.

Throughout this thesis, when we work with a vertex partition U = (U1, . . . , UK), the

subscripts in U1, . . . , UK are always taken modulo K (so UK+1 := U1 for example).

10.2 Forward and backward edges

Let U1, . . . , UK be disjoint vertex sets (not necessarily of the same size) and denote

U := (U1, . . . , UK). Let u, v ∈
⋃
U be distinct. We say that uv is a forward edge (with

respect to U) if there exists i ∈ [K] such that u ∈ Ui and v ∈ Ui+1. We say that uv is a

backward edge (with respect to U) if there exists i ∈ [K] such that u ∈ Ui+1 and v ∈ Ui. Let
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D be a digraph on
⋃
U . We denote by

−→
DU the subdigraph of D induced by the forward

edges of D with respect to U and by
←−
DU the subdigraph of D induced by the backward

edges of D with respect to U . Let v ∈ V (D). The forward (in/out)degree of v in D (with

respect to U) is the (in/out)degree of v in
−→
DU and the backward (in/out)degree of v in D

(with respect to U) is the (in/out)degree of v in
←−
DU . These are denoted by

−→
d D,U(v) := d−→

DU
(v),

−→
d ±D,U(v) := d±−→

DU
(v),

←−
d D,U(v) := d←−

DU
(v),

←−
d ±D,U(v) := d±←−

DU
(v).

Similarly, the forward (in/out)neighbourhood of v in D (with respect to U) is the (in/out)-

neighbourhood of v in
−→
DU and the backward (in/out)neighbourhood of v in D (with respect

to U) is the (in/out)neighbourhood of v in
←−
DU . These are denoted by

−→
ND,U(v) := N−→

DU
(v),

−→
N±D,U(v) := N±−→

DU
(v),

←−
ND,U(v) := N←−

DU
(v),

←−
N±D,U(v) := N±←−

DU
(v).

10.3 Regular bipartite tournaments

We now make a few observations about regular bipartite tournaments. Let U1, . . . , U4 be

disjoint vertex sets of size n and denote U := (U1, . . . , U4). Let T be a bipartite tournament

and suppose that U is an (ε, 4)-partition for T . Then, it is easy to see that T is a bipartite

tournament on vertex classes U1 ∪ U3 and U2 ∪ U4. Moreover, note that the complete

blow-up C4 with vertex partition U is a regular digraph. Thus, T must be obtained by

changing, for each v ∈
⋃
U , the direction of the same number of in- and outedges incident

to v.

Fact 10.3. Let U1, . . . , U4 be disjoint vertex sets and U := (U1, . . . , U4). Let T be a regular

bipartite tournament on vertex classes U1 ∪U3 and U2 ∪U4. Then, each v ∈ V (T ) satisfies

−→
d +

T,U(v) =
−→
d −T,U(v) and

←−
d +

T,U(v) =
←−
d −T,U(v).

In particular, this implies that the number of forward/backward edges is the same in
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each pair of the blow-up C4.

Fact 10.4. Let U1, . . . , U4 be disjoint vertex sets and denote U := (U1, . . . , U4). Let T be

a regular bipartite tournament on vertex classes U1 ∪ U3 and U2 ∪ U4. Then,

eT (U1, U2) = eT (U2, U3) = eT (U3, U4) = eT (U4, U1)

and

eT (U1, U4) = eT (U4, U3) = eT (U3, U2) = eT (U2, U1).

Thus, we may use the following alternative definition of an (ε, 4)-partition.

Fact 10.5. Let U1, . . . , U4 be disjoint vertex sets and U := (U1, . . . , U4). Let T be a regular

bipartite tournament on vertex classes U1 ∪ U3 and U2 ∪ U4. Then, U is an (ε, 4)-partition

for T if and only if eT (Ui, Ui−1) ≤ εn2 for each i ∈ [4].

10.4 Proof of Lemma 4.3

We are now ready to prove Lemma 4.3, which states that if a regular bipartite tournament

T is not a bipartite robust outexpander, then T is close to the complete blow-up C4.

Proof of Lemma 4.3. Let 0 < 1
n0
≪ ν ′ ≤ ν ≪ τ and let T be a regular bipartite tournament

on vertex classes A and B of size 2n ≥ n0. Note that T is n-regular. Suppose that T

is not a bipartite robust (ν ′, τ)-outexpander with bipartition (A,B). We show that T is
√
ν ′-close to the complete blow-up C4 on vertex classes of size n.

We may assume without loss of generality that there exists A′ ⊆ A satisfying 2τn ≤

|A′| ≤ 2(1− τ)n for which

|RN+
ν′,T (A′)| < |A′|+ 2ν ′n. (10.1)

Denote B′ := RN+
ν′,T (A′). By definition of a bipartite robust outexpander, we have

eT (A′, B \B′) < 2ν ′n|B \B′| ≤ 4ν ′n2. (10.2)
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Thus,

|A′||B′| ≥ eT (A′, B′) = eT (A′, B)− eT (A′, B \B′)
(10.2)

≥ n|A′| − 4ν ′n2 ≥
(

1− 2ν ′

τ

)
n|A′|.

Therefore,

|B′| ≥
(

1− 2ν ′

τ

)
n (10.3)

and so

|A′|
(10.1),(10.3)

≥

(
1− 3

√
ν ′

4

)
n. (10.4)

Moreover,

n|B \B′| ≥ eT (B \B′, A′) = |B \B′||A′| − eT (A′, B \B′)
(10.2)

≥ |B \B′|(|A′| − 2ν ′n).

Therefore,

|A′| ≤ (1 + 2ν ′)n (10.5)

and so

|B′|
(10.1),(10.5)

≤ (1 + 4ν ′)n. (10.6)

Let U1 ∪ U3 be a partition of A such that |U1| = n = |U3| and |U1 △ A′| = |n − |A′||.

Similarly, let U2∪U4 be a partition of B such that |U2| = n = |U4| and |U2△B′| = |n−|B′||.

Note that

|U1△ A′|
(10.4),(10.5)

≤ 3
√
ν ′n

4
and |U2△B′|

(10.3),(10.6)

≤ 3
√
ν ′n

4
. (10.7)

By Facts 10.4 and 10.5, it is enough to show that eT (U1, U4) ≤ 4
√
ν ′n2. We have

eT (U1, U4) ≤ eT (A′ ∩ U1, U4 \B′) + eT (U1 \ A′, U4) + eT (U1, B
′ ∩ U4)

(10.2),(10.7)

≤ 4ν ′n2 +
6
√
ν ′n2

4
+

6
√
ν ′n2

4
≤ 4
√
ν ′n2,
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as desired.
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CHAPTER 11

A ROBUST DECOMPOSITION LEMMA FOR
BLOW-UP CYCLES

In this section, we introduce a robust decomposition lemma for blow-up cycles. This

result will be used in the proof of Theorem 4.4 to decompose the edges leftover after the

approximate decomposition. (See Section 4.3 for a proof overview of Theorem 4.4.)

First, observe that the standard robust decomposition lemma (Lemma 8.23) cannot be

directly applied when T is (ε-close to) the complete blow-up C4 because we cannot find a

setup or a bi-setup: since (almost) all the edges lie along a blow-up cycle, we cannot find

the necessary chord edges to form a universal or bi-universal walk. Thus, we will need to

derive an analogue of Lemma 8.23 which holds for blow-up C4’s.

11.1 Aim and strategy

Let D be a blow-up C4 with vertex partition U = (U1, . . . , U4). (In the proof of Theorem 4.4,

D will be (a subdigraph of)
−→
T U , that is, D will consist of (some of) the forward edges

of T .) We want to find an absorber Drob ⊆ D such that for any sparse regular leftover

H ⊆ D \Drob, the digraph H ∪Drob has a Hamilton decomposition.

Roughly speaking, the overall strategy is as follows. Recall the notion of matching

contractions from Section 7.5. For each i ∈ [4] in turn, we apply the standard robust

decomposition lemma in a suitable auxiliary “contracted” digraph corresponding to the

pair (Ui, Ui+1) of the blow-up C4. This enables us to decompose small leftovers into suitable
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auxiliary “contracted” Hamilton cycles spanning Ui. These are then “expanded” into full

Hamilton cycles of D. (See also Section 4.3.3 for an informal discussion about how to

construct a Hamilton cycle in a blow-up C4.)

We now explain this strategy in more detail. Note that it is enough to consider

each pair (Ui, Ui+1) of the blow-up C4 in turn. Indeed, suppose that for each i ∈ [4],

we have constructed an absorber Drob
i ⊆ D such that for any sparse leftover Hi ⊆

D(Ui, Ui+1) \ Drob
i , the digraph Hi ∪ Drob

i has a decomposition into Hamilton cycles of

D. Let Drob :=
⋃

i∈[4]D
rob
i . Then, for any sparse leftover H ⊆ D \Drob, we can use each

Drob
i in turn to decompose the edges of H(Ui, Ui+1). Altogether, this induces a Hamilton

decomposition of H ∪Drob (recall that D, and so H, only contains edges which lie in one

of the pairs (Ui, Ui+1)).

Let i ∈ [4]. We now explain our strategy for constructing the absorber Drob
i . First, as

mentioned above, observe that the problem of constructing Hamilton cycles of D can be

reduced to constructing Hamilton cycles on Ui ∪ Ui+1. Then, the following holds.

Fact 11.1. Fix an auxiliary perfect matching Mi from Ui+1 to Ui. Let M be a perfect

matching from Ui to Ui+1 and suppose that M ∪Mi forms a Hamilton cycle on Ui ∪ Ui+1.

Let P be a spanning set of vertex-disjoint paths on
⋃
U which consists of a (u, v)-path for

each uv ∈Mi. Then, M ∪P forms a Hamilton cycle on
⋃
U .

In our robust decomposition lemma for blow-up cycles, we will input such spanning

sets of vertex-disjoint paths (these will be incorporated into the special factors). Thus,

we have reduced the original problem to that of finding an absorber Drob
i such that the

following holds: for any sparse leftover Hi ⊆ D(Ui, Ui+1) \Drob
i , the digraph Hi ∪Drob

i has

a decomposition into perfect matchings from Ui to Ui+1, each of which forms a Hamilton

cycle on Ui ∪ Ui+1 with a fixed auxiliary matching Mi.

We now discuss the construction of Drob
i . We have already discussed (e.g. in Sec-

tions 4.3.1, 7.5, and 8.1) that one can construct Hamilton cycles which contain a prescribed

perfect matching by considering contracted digraphs. More precisely, fix an auxiliary

perfect matching Mi from Ui+1 to Ui and let D̃i be the Mi-contraction of D[Ui, Ui+1]
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(recall Definition 7.25(i)). Then, as seen in Fact 7.29, a Hamilton cycle in D̃i induces a

perfect matching from Ui to Ui+1 in D which forms a Hamilton cycle on Ui ∪ Ui+1 with

Mi. Thus, we can let Drob
i be the Mi-expansion of the absorber D̃rob

i obtained by applying

the robust decomposition lemma in D̃i. Indeed, suppose that Hi ⊆ D(Ui, Ui+1) \Drob
i is a

sparse leftover. Denote by H̃i the Mi-contraction of Hi. Then, Lemma 8.23 implies that

H̃i ∪ D̃rob
i has a decomposition into Hamilton cycles on Ui. By Fact 7.29, this induces a

decomposition of Hi ∪Drob
i into perfect matchings from Ui to Ui+1 which form Hamilton

cycles on Ui ∪ Ui+1 with Mi, as desired.

Note that since we consider each pair (Ui, Ui+1) of the blow-up C4 in turn, our methods

hold for more general blow-up cycles of any length. Thus, we write the rest of this section

for general blow-up CK ’s for possible future use. In this thesis, we will only need the case

K = 4 (to prove Theorem 4.4).

11.2 Definitions

First, we introduce the cycle analogues of setups, special path systems, and special factors

(which were defined in Sections 8.2.4 and 8.2.5).

11.2.1 Cycle-setups

Let D be a blow-up CK with vertex partition U = (U1, . . . , UK). For each i ∈ [K], let

Mi be an auxiliary perfect matching from Ui+1 to Ui and let D̃i be the Mi-contraction of

D[Ui, Ui+1]. As discussed in Section 11.1, we aim to apply the standard robust decomposi-

tion lemma (Lemma 8.23) in each D̃i in turn and so we will need a setup in each D̃i. This

motivates the next definition: roughly speaking, a cycle-setup consists of K setups, one in

each D̃i.

Definition 11.2 (Cycle-setup). (D,U ,P ,P ′,P∗,R, C,U ,U ′,M) is a (K, ℓ′, ℓ∗, k,m, ε, d)-

cycle-setup if the following properties are satisfied.

(CST1) D is a blow-up CK with vertex partition U = (U1, . . . , UK).
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(CST2) M = (M1, . . . ,MK) where, for each i ∈ [K], Mi is an auxiliary directed perfect

matching from Ui+1 to Ui.

(CST3) P = (P1, . . . ,PK), P ′ = (P ′1, . . . ,P ′K), P∗ = (P∗1 , . . . ,P∗K), C = (C1, . . . , CK),

R = (R1, . . . , RK), U = (U1, . . . , UK), and U ′ = (U ′1, . . . , U ′K) are such

that the following holds for each i ∈ [K]. Let D̃i be the Mi-contraction of

D[Ui, Ui+1]. Then, (D̃i,Pi,P ′i,P∗i , Ri, C
i, U i, U ′i) is an (ℓ′, ℓ∗, k,m, ε, d)-setup

with an empty exceptional set.

Whenever (D,U ,P ,P ′,P∗,R, C,U ,U ′,M) is a (K, ℓ′, ℓ∗, k,m, ε, d)-cycle-setup, we

implicitly use the notation U = (U1, . . . , UK), P = (P1, . . . ,PK), P ′ = (P ′1, . . . ,P ′K),

P∗ = (P∗1 , . . . ,P∗K), R = (R1, . . . , RK), C = (C1, . . . , CK), U = (U1, . . . , UK), U ′ =

(U ′1, . . . , U ′K), and M = (M1, . . . ,MK).

Definition 11.3 (Cycle-framework). To avoid repetitions, we say that (U ,P ,P∗, C,M) is

a (K, ℓ∗, k, n)-cycle-framework if U = (U1, . . . , UK), P = (P1, . . . ,PK), P∗ = (P∗1 , . . . ,P∗K),

C = (C1, . . . , CK), and M = (M1, . . . ,MK) satisfy the following properties for each

i ∈ [K].

(CF1) Ui is a vertex set of size n which is disjoint from the other sets in U .

(CF2) Pi is a partition of Ui into an empty exceptional set and k clusters of size n
k
.

(CF3) P∗i is an ℓ∗-refinement of Pi.

(CF4) Ci is a Hamilton cycle on the clusters in Pi.

(CF5) Mi is an auxiliary perfect matching from Ui+1 to Ui.

Whenever we say that (U ,P ,P∗, C,M) is a (K, ℓ∗, k, n)-cycle-framework, we im-

plicitly use the notation U = (U1, . . . , UK), P = (P1, . . . ,PK), P∗ = (P∗1 , . . . ,P∗K),

C = (C1, . . . , CK), and M = (M1, . . . ,MK).

One can easily verify that a cycle-setup induces a cycle-framework.
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Fact 11.4. Let (D,U ,P ,P ′,P∗,R, C,U ,U ′,M) be a (K, ℓ′, ℓ∗, k,m, ε, d)-cycle-setup.

Then, (U ,P ,P∗, C,M) is a (K, ℓ∗, k, n)-cycle-framework where n := |U1|.

Any partition is a 1-refinement of itself, so the following holds.

Fact 11.5. Let (U ,P ,P∗, C,M) be a (K, ℓ∗, k, n)-cycle-framework. Then, (U ,P ,P , C,M)

is a (K, 1, k, n)-cycle-framework.

Recall from Proposition 8.16 that a setup remains a setup (with slightly worse parame-

ters) after removing a few edges incident to each vertex. Using similar arguments, one can

show that the analogue holds for a cycle-setup.

Proposition 11.6. Let 0 < 1
m
≪ 1

k
, ε ≤ ε′ ≪ d≪ 1

ℓ′
≪ 1 and ε′ ≪ 1

ℓ∗
. Let D be a digraph

and let D′ be obtained from D by removing at most ε′m inedges and ε′m outedges incident

to each vertex. If (D,U ,P ,P ′,P∗,R, C,U ,U ′,M) is a (K, ℓ′, ℓ∗, k,m, ε, d)-cycle-setup,

then (D′,U ,P ,P ′,P∗,R, C,U ,U ′,M) is a (K, ℓ′, ℓ∗, k,m, (ε′)
1
3 , d

2
)-cycle-setup.

11.2.2 Extended special path systems and extended special fac-

tors

We will now introduce the concept of extended special path systems. Roughly speaking,

these can be viewed as the analogues of the special path systems for blow-up CK ’s. As

discussed in Section 8.2.5, special path systems can viewed as building blocks for Hamilton

cycles; in Lemma 8.23, each special path system that we input gives rise to a distinct

Hamilton cycle. Analogously, extended special path systems (defined formally below) will

be building blocks for constructing Hamilton cycles in a blow-up cycle; in the blow-up

cycle version of the robust decomposition lemma (Lemma 11.10 below), each extended

special path system that we input will give rise to a distinct Hamilton cycle.

The structure of an extended special path system follows naturally from the proof idea

described in Section 11.1. More precisely, let D be a blow-up CK with vertex partition

U = (U1, . . . , UK). For each i ∈ [K], let Mi be an auxiliary perfect matching from Ui+1
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to Ui and let D̃i be the Mi-contraction of D[Ui, Ui+1]. As discussed in Section 11.1, the

leftovers in each of the pairs (Ui, Ui+1) will be decomposed in two steps. First, we use the

robust decomposition lemma in D̃i to decompose the leftovers into Hamilton cycles in

the contracted pair (Ui, Ui+1). Then, we expand each of these contracted Hamilton cycles

using a spanning set of vertex-disjoint paths whose endpoints are prescribed by Mi (see

Fact 11.1). Thus, an extended special path system will consist of two parts: a special path

system SPS in the contracted pair (Ui, Ui+1) (which will be used to apply Lemma 8.23 in

D̃i) and a spanning set of paths with prescribed endpoints (which will be used to expand

the contracted Hamilton cycle containing SPS). (Recall that special path systems were

introduced in Definition 8.21.)

Definition 11.7 (Friendly extended special path system). Let (U ,P ,P∗, C,M) be a

(K, ℓ∗, k, n)-cycle-framework and suppose that k
f
∈ N. For any (h, i, j) ∈ [ℓ∗]× [K]× [f ], a

friendly (ℓ∗, K, f, h, i, j)-extended special path system with respect to U ,P∗, C, andM is a

linear forest FESPS for which the following hold.

(FESPS1) The digraph obtained by deleting all the isolated vertices in the Mi-contrac-

tion of FESPS[Ui, Ui+1] is an (ℓ∗, f, h, j)-special path system with respect

to P∗i and Ci.

(FESPS2) FESPS \EFESPS(Ui, Ui+1) is a spanning linear forest on
⋃
U which consists

of n components, one (u, v)-path for each uv ∈Mi.

Recall that the main purpose of special path systems is to prescribe edges in our

Hamilton decompositions. In particular, in the ε-close to the blow-up C4 case (Theorem 4.4),

we will need to incorporate prescribed sets of backward edges. It turns out that the concept

of friendly extended special path systems is very inconvenient for doing so. However, as

discussed in Section 8.2.1, if we want to incorporate a linear forest F into a Hamilton cycle,

then the internal structure of F is not important; we can always consider an equivalent

linear forest instead (recall Definition 8.4). Thus, we can generalise the concept of friendly

extended special path systems as follows.
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Definition 11.8 (Extended special path system). Let (U ,P ,P∗, C,M) be a (K, ℓ∗, k, n)-

cycle-framework and suppose that k
f
∈ N. For any (h, i, j) ∈ [ℓ∗]× [K]× [f ], a linear forest

is an (ℓ∗, K, f, h, i, j)-extended special path system with respect to U ,P∗, C, and M if it

is equivalent to a friendly (ℓ∗, K, f, h, i, j)-extended special path system with respect to

U ,P∗, C, and M.

Note that since a linear forest is equivalent to itself, a friendly extended special path

system is indeed an extended special path system.

Definition 11.9 (Extended special factor). Let (U ,P ,P∗, C,M) be a (K, ℓ∗, k, n)-cycle-

framework and suppose that k
f
∈ N. An (ℓ∗, K, f)-extended special factor with respect

to U ,P∗, C, andM is a multidigraph which has a decomposition {ESPSh,i,j | (h, i, j) ∈

[ℓ∗]× [K]× [f ]} where, for each (h, i, j) ∈ [ℓ∗]× [K]× [f ], ESPSh,i,j is an (ℓ∗, K, f, h, i, j)-

extended special path system with respect to U ,P∗, C, and M.

11.3 Statement of the robust decomposition lemma

for blow-up cycles

We are now ready to state a blow-up cycle version of the robust decomposition lemma.

Lemma 11.10 (Robust decomposition lemma for blow-up cycles). Let 0 < 1
m
≪ 1

k
≪

ε≪ 1
q
≪ 1

f
≪ r1

m
≪ d≪ 1

ℓ′
, 1
g
≪ 1 and suppose that rk2 ≤ m. Let

r2 := 96ℓ′g2kr, r3 :=
rfk

q
, r⋄ := r1 + r2 + r − (q − 1)r3, s′ := rfk + 7r⋄,

and suppose that k
14
, k
f
, k
g
, q
f
, m
4ℓ′
, fm

q
, 2fk
3g(g−1) ∈ N. Let (D,U ,P ,P ′,P∗,R, C,U ,U ′,M) be

a (K, ℓ′, q
f
, k,m, ε, d)-cycle-setup. Let ESF be a multidigraph which consists of the union

of r3 ( q
f
, K, f)-extended special factors with respect to U ,P∗, C, andM and let ESF ′ be a

multidigraph which consists of the union of r⋄ (1, K, 7)-extended special factors with respect

to U ,P , C, andM. Then, D contains an (r1 + r2 + 5r⋄)-regular spanning subdigraph Drob

131



for which the following holds. Let H be an r-regular blow-up CK with vertex partition U .

Suppose that H is edge-disjoint from Drob and that E(H) ∩ {uv | vu ∈
⋃
M} = ∅. Then,

the multidigraph H ∪Drob ∪ ESF ∪ ESF ′ has a decomposition C into Ks′ edge-disjoint

Hamilton cycles such that each cycle in C contains precisely one of the extended special

path systems in the multidigraph ESF ∪ ESF ′.

By Fact 8.5, we may assume without loss of generality that all extended special

path systems contained in ESF ∪ ESF ′ are friendly. Thus, as discussed in Section 11.1,

Lemma 11.10 can be obtained by applying the original robust decomposition lemma

(Lemma 8.23) to each contracted pair (Ui, Ui+1) of the blow-up cycle in turn. (A formal

derivation is available in Appendix C.)
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CHAPTER 12

APPLYING THE ROBUST DECOMPOSITION
LEMMA IN A VERY DENSE BLOW-UP C4

In this section, we discuss how to apply Lemma 11.10 in the context of Theorem 4.4. Let

T be a bipartite tournament which is ε-close to a blow-up C4 with vertex partition U .

Then, observe that
−→
T U (that is, the subdigraph of T induced by the forward edges of T

(see Section 10.2)) is a very dense blow-up C4 with vertex partition U (only at most an

ε proportion of the edges are missing for
−→
T U to be the complete blow-up C4). We will

find our absorber Drob by applying the robust decomposition lemma for blow-up cycles

(Lemma 11.10) to (a subdigraph of)
−→
T U . In this section, we show how to construct, in a

very dense blow-up C4, the extended special factors and the cycle-setup required to apply

Lemma 11.10.

12.1 An alternative description of extended special

path systems

To construct extended special path systems, it will be convenient to consider the following

alternative description of extended special path systems.

Proposition 12.1. Let (U ,P ,P∗, C,M) be a (K, ℓ∗, k, n)-cycle-framework and suppose

that k
f
∈ N. Let (h, i, j) ∈ [ℓ∗]× [K]× [f ] and denote k′ := k

f
+ 1. Denote by I = W1 . . .Wk′

the jth interval in the canonical interval partition of Ci into f intervals. Let W1,h, . . . ,Wk′,h
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denote the hth subclusters of W1, . . . ,Wk′ contained in P∗i , respectively. Then, a linear

forest ESPS is an (ℓ∗, K, f, h, i, j)-extended special path system if and only if the following

properties are satisfied.

(i) V (ESPS) =
⋃
U .

(ii) V +(ESPS) = Ui+1 \NMi
(W2,h ∪ · · · ∪Wk′,h).

(iii) V −(ESPS) = Ui \ (W1,h ∪ · · · ∪Wk′−1,h).

(iv) If uv ∈ Mi − (W1,h ∪ · · · ∪ Wk′,h), then ESPS has a component which is a

(u, v)-path.

We now give a brief overview of the idea behind Proposition 12.1. Recall from

Definition 8.21 that a special path system is a linear forest which covers a given interval

of Ci. By Fact 7.28, the Mi-expansion of a special path system is thus a matching which

covers a given interval. Thus, Definition 11.7 implies that a friendly extended special path

system is a spanning linear forest whose components have endpoints which avoid a given

interval and which are matched according to the auxiliary matching Mi. By Definition 8.4,

these properties are shared by any linear forest which is equivalent to a friendly extended

special path system, that is, by any extended special path system (recall Definition 11.8).

Thus, an extended special path system is simply a spanning linear forest with suitably

prescribed endpoints.

Proof of Proposition 12.1. (⇒) Firstly, assume that ESPS is an (ℓ∗, K, f, h, i, j)-extended

special path system. We need to show that (i)–(iv) are satisfied. By Definition 8.4, we

may assume without loss of generality that ESPS is friendly. Denote D1 := ESPS \

ESPS(Ui, Ui+1) and D2 := ESPS \D1 (i.e. E(D2) = EESPS(Ui, Ui+1)). Then, (FESPS2)

implies that each v ∈
⋃
U satisfies

d+D1
(v) =


1 if v ∈

⋃
U \ Ui;

0 if v ∈ Ui;

and d−D1
(v) =


1 if v ∈

⋃
U \ Ui+1;

0 if v ∈ Ui+1.
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In particular, (i) holds. Let SPS be the Mi-contraction of ESPS[Ui, Ui+1]. By (FESPS1)

and Definition 8.21, each v ∈ Ui ∪ Ui+1 satisfies

d+SPS(v) =


1 if v ∈

⋃
j′∈[k′−1]Wj′,h;

0 otherwise;

and d−SPS(v) =


1 if v ∈

⋃
j′∈[k′−1]Wj′+1,h;

0 otherwise.

By (FESPS2), ESPS contains a (u, v)-path for each uv ∈ Mi. Since ESPS is a linear

forest, this implies that E(ESPS)∩{uv | vu ∈Mi} = ∅. Therefore, Fact 7.26 implies that

ESPS[Ui, Ui+1] is the Mi-expansion of SPS. Thus, Fact 7.28 implies that each v ∈ U

satisfies

d+D2
(v) =


1 if v ∈

⋃
j′∈[k′−1]Wj′,h;

0 otherwise;

and d−D2
(v) =


1 if v ∈

⋃
j′∈[k′−1] NMi

(Wj′+1,h);

0 otherwise.

Therefore, (ii) and (iii) are satisfied. For (iv), suppose that uv ∈Mi−(W1,h∪· · ·∪Wk′,h). By

(FESPS2), D1 has a component Puv which is a (u, v)-path. Moreover, dD2(u) = 0 = dD2(v).

Thus, Puv is also a component of ESPS and so (iv) holds.

(⇐) Secondly, suppose that ESPS is a linear forest which satisfies (i)–(iv). We need to

show that ESPS is an (ℓ∗, K, f, h, i, j)-extended special path system. By Definition 11.8,

it is enough to construct a friendly (ℓ∗, K, f, h, i, j)-extended special path system FESPS

which is equivalent to ESPS.

In order to satisfy (FESPS2), our friendly extended special path system will need to

contain a spanning set of vertex-disjoint paths whose endpoints “correspond” to the edges

of Mi. We construct this set of paths as follows. For each i′ ∈ [K], let ui′,1, . . . , ui′,n be an

enumeration of Ui′ . Suppose without loss of generality that Mi = {ui+1,j′ui,j′ | j′ ∈ [n]}.

Let P := {ui+1,j′ui+2,j′ . . . ui+K−1,j′ui,j′ | j′ ∈ [n]}. Note that (FESPS2) holds with P

playing the role of FESPS \ EFESPS(Ui, Ui+1).

We now list the components of ESPS and specify their endpoints. (This will enable

to us to construct a friendly extended special path system which is equivalent to ESPS.)
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For each uv ∈ Mi − (W1,h ∪ · · · ∪Wk′,h), denote by Puv the component of ESPS which

is a (u, v)-path (Puv exists by (iv) and is unique since ESPS is a linear forest). Let

P1 := {Puv | uv ∈ Mi − (W1,h ∪ · · · ∪ Wk′,h)}. Let P2 be the set of components of

ESPS \P1. By (ii) and (iii), P2 consists of m′ := |W1,h| paths, each of which starts in

NMi
(W1,h) and ends in Wk′,h.

We are now ready to select the edges from Ui to Ui+1. For each j′ ∈ [k′], let

vj′,1, . . . , vj′,m′ be an enumeration of Wj′,h and denote by wj′,1, . . . , wj′,m′ the (unique)

neighbours of vj′,1, . . . , vj′,m′ in Mi, respectively. Suppose without loss of generality that

P2 consists of a (w1,j′ , vk′,j′)-path Pj′ for each j′ ∈ [m′]. For each j′ ∈ [k′ − 1], let

M ′
j′ := {vj′,1wj′+1,1, . . . , vj′,m′wj′+1,m′}. Let M ′ := M ′

1 ∪ · · · ∪M ′
k′−1.

Let FESPS be the digraph on
⋃
U defined by E(FESPS) := E(P) ∪M ′. Observe

that FESPS \FESPS(Ui, Ui+1) = P and so (FESPS2) holds. Thus, it remains to prove

that FESPS is a spanning linear forest which is equivalent to ESPS and that (FESPS1)

holds.

Claim 1. FESPS is a spanning linear forest satisfying both V ±(FESPS) = V ±(ESPS).

Proof of Claim. By construction of P, each v ∈
⋃
U satisfies

d+P(v) =


1 if v ∈

⋃
U \ Ui;

0 if v ∈ Ui;

and d−P(v) =


1 if v ∈

⋃
U \ Ui+1;

0 if v ∈ Ui+1.

By definition of M ′, each v ∈
⋃
U satisfies

d+M ′(v) =


1 if v ∈

⋃
j′∈[k′−1]Wj′,h;

0 otherwise;

and d−M ′(v) =


1 if v ∈

⋃
j′∈[k′−1]NMi

(Wj′+1,h);

0 otherwise.

Thus, FESPS is spanning and ∆0(FESPS) = 1. Moreover, (ii) and (iii) imply that both

V ±(FESPS) = V ±(ESPS).

Suppose for a contradiction that FESPS contains a cycle C. Since P is a linear
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forest, E(C) ∩M ′ ̸= ∅. Let j′ ∈ [k′ − 1] be the largest index such that E(C) ∩M ′
j′ ̸= ∅

and let vw ∈ E(C) ∩M ′
j′ . By construction of M ′

j′ , we have w ∈ NMi
(Wj′+1,h). Let w′ be

the (unique) neighbour of w in Mi. Note that w′ ∈ Wj′+1,h ⊆ Ui. By definition of P, we

have w′ ∈ V (C) and d+P(w′) = 0. Therefore, there exists e ∈ E(C) ∩M ′ which starts at

w′. By construction of M ′, we have j′ < k′ − 1 and e ∈ M ′
j′+1. But this contradicts the

maximality of j′ and so FESPS does not contain a cycle. □

Claim 2. ESPS and FESPS are equivalent.

Proof of Claim. Recall Definition 8.4. By Claim 1 and (i), we have V (ESPS) =
⋃
U =

V (FESPS). Thus, it remains to find a bijection ϕ from the components of ESPS to the

components of FESPS such that for each component P of ESPS, the paths P and ϕ(P )

have the same starting and ending points.

Recall that P1 ∪P2 denotes the set of components of ESPS, where P1 consists of a

(u, v)-path Puv for each uv ∈Mi−(W1,h∪· · ·∪Wk′,h) and P2 consists of a (w1,j′ , vk′,j′)-path

Pj′ for each j′ ∈ [m′].

Let uv ∈ Mi − (W1,h ∪ · · · ∪Wk′,h). Let P ′uv be the (u, v)-path contained in P. By

construction of M ′, both u, v /∈ V (M ′). Thus, P ′uv is a component of FESPS and so we

can let ϕ(Puv) := P ′uv.

Let j′ ∈ [m′]. By definition of M ′, we have both w1,j′ , vk′,j′ /∈ V (M ′). Moreover,

v1,j′w2,j′ , v2,j′w3,j′ , . . . , vk′−1,j′wk′,j′ ∈M ′.

For each i′ ∈ [k′], let Qi′ be the (wi′,j′ , vi′,j′)-path contained in P. Then,

P ′j′ := w1,j′Q1v1,j′w2,j′Q2v2,j′w3,j′ . . . wk′−1,j′Qk′−1vk′−1,j′wk′,j′

is a component of FESPS and so we can let ϕ(Pj′) := P ′j′ .

By construction, ϕ is an injection from the components of ESPS to the components

of FESPS such that for each component P of ESPS, the paths P and ϕ(P ) have
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the same starting and ending points. Since FESPS is a linear forest satisfying both

V ±(FESPS) = V ±(ESPS), ϕ is also a surjection. □

Claim 3. (FESPS1) is satisfied.

Proof of Claim. Let D be the Mi-contraction of FESPS[Ui, Ui+1] = M ′[Ui, Ui+1] and let

SPS be obtained from D by deleting all the isolated vertices. We need to show that

SPS is an (ℓ∗, f, h, j)-special path system with respect to P∗i and Ci. By (FESPS2),

F := M ′ ∪Mi is obtained from FESPS by contracting each path in P into an edge from

its starting point to its ending point. Together with Claim 1, (ii), and (iii), this implies

that F is a linear forest satisfying the following properties.

– V +(F ) = V +(FESPS) = V +(ESPS) = Ui+1 \NMi
(W2,h ∪ · · · ∪Wk′,h).

– V −(F ) = V −(FESPS) = V −(ESPS) = Ui \ (W1,h ∪ · · · ∪Wk′−1,h).

– V 0(F ) ∩ Ui = Ui \ (V +(F ) ∪ V −(F )) = W1,h ∪ · · · ∪Wk′−1,h.

Thus, Proposition 7.31 (applied with Ui, Ui+1, and Mi playing the roles of A,B, and M)

implies that D is a linear forest satisfying the following properties.

– V +(D) = NMi
(V +(F )) = Ui \ (W2,h ∪ · · · ∪Wk′,h).

– V −(D) = V −(F ) = Ui \ (W1,h ∪ · · · ∪Wk′−1,h).

– V 0(D) = (V 0(F ) ∩ Ui) \NMi
(V +(F )) = W2,h ∪ · · · ∪Wk′−1,h.

In particular, SPS is a linear forest satisfying V 0(SPS) = V 0(D) = W2,h ∪ · · · ∪Wk′−1,h

and so (SPS2) holds. Note that the set of isolated vertices in D is precisely V +(D)∩V −(D).

Thus, V +(SPS) = V +(D) \ V −(D) = W1,h and V −(SPS) = V −(D) \ V +(D) = Wk′,h, so

(SPS1) holds. Therefore, SPS is an (ℓ∗, f, h, j)-special path system and so (FESPS1) is

satisfied. □

This concludes the proof of Proposition 12.1.

Corollary 12.2. Let (U ,P ,P∗, C,M) be a (K, ℓ∗, k, n)-cycle-framework and suppose that

k
f
∈ N. An (ℓ∗, K, f)-extended special factor ESF is a (1+ℓ∗(K−1)f)-regular multidigraph.
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Proof. Let {ESPSh,i,j | (h, i, j) ∈ [ℓ∗]× [K]× [f ]} be the decomposition of ESF which

witnesses that ESF is an (ℓ∗, K, f)-extended special factor. Let i ∈ [K] and v ∈ Ui.

By Proposition 12.1, there is a pair (h, j) ∈ [ℓ∗] × [f ] such that v /∈ V −(ESPSh,i,j) but

v ∈ V −(ESPSh′,i,j′) for all (h′, j′) ∈ ([ℓ∗]× [f ]) \ {(h, j)}. Moreover, v /∈ V −(ESPSh′,i′,j′)

for each (h′, i′, j′) ∈ [ℓ∗] × ([K] \ {i}) × [f ]. By Proposition 12.1(i), ESPS is spanning

linear forest on
⋃
U and so

d+ESF (v) = d+ESPSh,i,j
(v) +

∑
(h′,j′)∈([ℓ∗]×[f ])\{(h,j)}

d+ESPSh′,i,j′
(v)

+
∑

(h′,i′,j′)∈[ℓ∗]×([K]\{i})×[f ]

d+ESPSh′,i′,j′
(v)

= 1 + (ℓ∗f − 1) · 0 + ℓ∗(K − 1)f · 1 = 1 + ℓ∗(K − 1)f.

Since Mi−1 is a perfect matching from Ui to Ui−1, one can apply similar arguments to show

that there are precisely ℓ∗f − 1 tuples (h, i′, j) ∈ [ℓ∗]× [K]× [f ] for which v ∈ V +(ESF )

and so d−ESF (v) = 1 + ℓ∗(K − 1)f .

12.2 Constructing extended special factors

Recall that the blow-up cycle version of the robust decomposition lemma (Lemma 11.10)

can only be applied when there are no exceptional vertices (see (CST3)). In general, we

will have a non-empty exceptional set U∗ ⊆ V (D) and so we will apply Lemma 11.10

with D − U∗ playing the role of D. As a result, the cycles obtained via Lemma 11.10 will

not be Hamilton cycles on V (D), but will only span V (D) \ U∗. We will incorporate the

exceptional vertices into these cycles using the strategy described in Section 8.2.7: we

will initially reserve 4s′ special covers in D (see Definition 8.24) and then construct the

extended special factors for Lemma 11.10 in such a way that each extended special path

system contains the complete special sequence (see Definition 8.25) associated to one of

the reserved special covers.

However, as described in Proposition 12.1, an extended special path system is a linear
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forest whose components have prescribed endpoints. Thus, our special covers will need

to satisfy certain constraints. More precisely, let SC be a special cover and denote by

MSC the associated complete special sequence. Suppose that we want to construct an

extended special path system which contains MSC . Let P be a component of SC which

is not an isolated vertex. By definition, MSC contains an edge from the starting point

u of P to the ending point v of P and so for any linear forest F ⊇ MSC , we have

u /∈ V −(F ) and v /∈ V +(F ). Thus, Proposition 12.1(ii) and (iii) imply that we require

u /∈ Ui \ (W1,h ∪ · · · ∪Wk′−1,h) and v /∈ Ui+1 \NMi
(W2,h ∪ · · · ∪Wk′,h). Moreover, u and v

will lie in a common connected component of F , so Proposition 12.1(iv) implies that we

cannot have u and v lying in different edges of Mi − (W1,h ∪ · · · ∪Wk′,h). For convenience,

we will require that u and v completely avoid the vertices of Mi − (W1,h ∪ · · · ∪Wk′,h).

Altogether, this motivates the following definition.

Definition 12.3 (Localised special cover). Let (U ,P ,P∗, C,M) be a (4, ℓ∗, k, n)-cycle-

framework. Let D be a digraph with V (D) ⊇
⋃
U and denote by U∗ := V (D) \

⋃
U the

exceptional set of D. Suppose that k
f
∈ N and denote k′ := k

f
+1. Let (h, i, j) ∈ [ℓ∗]×[4]×[f ]

and let W1,h, . . . ,Wk′,h be defined as in Proposition 12.1. A special cover SC in D with

respect to U∗ is (ℓ∗, 4, f, h, i, j)-localised (with respect to P∗, C, and M) if the following

holds.

(V +(SC) ∪ V −(SC)) ∩ (Ui ∪ Ui+1) ⊆ (W1,h ∪ · · · ∪Wk′−1,h) ∪NMi
(W2,h ∪ · · · ∪Wk′,h).

The next fact follows immediately from Definition 8.25.

Fact 12.4. Let (U ,P ,P∗, C,M) be a (4, ℓ∗, k, n)-cycle-framework. Let D be a digraph

with V (D) ⊇
⋃
U and denote by U∗ := V (D) \

⋃
U the exceptional set of D. Suppose

that k
f
∈ N and denote k′ := k

f
+ 1. Let (h, i, j) ∈ [ℓ∗] × [4] × [f ] and let W1,h, . . . ,Wk′,h

be defined as in Proposition 12.1. Suppose that SC is an (ℓ∗, 4, f, h, i, j)-localised special

cover in D with respect to U∗. Then, the complete special sequence MSC associated to SC
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satisfies

V (MSC) ∩ (Ui ∪ Ui+1) ⊆ (W1,h ∪ · · · ∪Wk′−1,h) ∪NMi
(W2,h ∪ · · · ∪Wk′,h).

Our strategy for incorporating the complete special sequence MSC into an extended

special path system will be to extend each edge of MSC into a longer path by “winding

around” U . This can be done greedily, with room to spare, so it will be possible to ensure

that these paths all start and end in given small sets of vertices X and Y and avoid the

vertices of a small set Z.

Lemma 12.5. Let 0 < 1
n
≪ ε≪ 1. Let D be a digraph and U1 ∪ · · · ∪U4 be a partition of

V (D) into vertex classes of size n. Suppose that δ(D[Ui, Ui+1]) ≥ (1− ε)n for each i ∈ [4]

(where U5 := U1). Let X ⊆ U1 and Y ⊆ U4. Let Z ⊆ V (D)\ (X ∪Y ) satisfy |Z| ≤ εn. Let

M be a matching on V (D) \ (X ∪ Y ∪ Z). Suppose that |M | ≤ |X| = |Y | ≤ εn. For each

i ∈ [4], let n+
i and n−i be the number of edges in M which start and end in Ui, respectively.

Suppose that n+
i = n−i+1 for each i ∈ [4] (where n−5 := n−1 ). Then, there exists a set P of

|M | vertex-disjoint paths for which the following hold.

(i) M ⊆P ⊆ D ∪M .

(ii) V +(P) ⊆ X, V −(P) ⊆ Y , and V 0(P) ⊆ V (D) \ (X ∪ Y ∪ Z).

(iii) |V (P) ∩ U1| = · · · = |V (P) ∩ U4| ≤ 4|M |.

Proof. Let u1v1, . . . , umvm be an enumeration of M . Let x1, . . . , xm ∈ X and y1, . . . , ym ∈

Y be distinct. For each j ∈ [m], we will construct a path xjP
′
jujvjQ

′
jyj such that P ′j and

Q′j are paths of length between 4 and 8 which “wind around” U .

For each j ∈ [m], let j+, j− ∈ [4] be such that uj ∈ Uj+ and vj ∈ Uj− . For each i ∈ [4],

let U ′i := Ui \ (X ∪ Y ∪ Z ∪ V (M)). Note that each i ∈ [4] and v ∈ Ui satisfy

|N−D (v) ∩ U ′i−1| ≥ (1− ε)n− |X| − |Y | − |Z| − 2|M | ≥ (1− 6ε)n >
n

2
+ 4m (12.1)
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and, similarly,

|N+
D (v) ∩ U ′i+1| >

n

2
+ 4m. (12.2)

Thus, one can greedily construct vertex-disjoint paths P1, . . . , Pm, Q1, . . . , Qm ⊆ D such

that for each j ∈ [m], Pj = uj,3uj,4u
′
j,1 . . . u

′
j,j+−1uj for some uj,3 ∈ U ′3, uj,4 ∈ U ′4, u

′
j,1 ∈

U ′1, . . . , u′j,j+−1 ∈ U ′j+−1 and, similarly, Qj = vjv
′
j,j−+1 . . . v

′
j,4vj,1vj,2 for some v′j,j−+1 ∈

U ′j−+1, . . . , v
′
j,4 ∈ U ′4, vj,1 ∈ U ′1, vj,2 ∈ U ′2. Then, (12.1) and (12.2) imply that there exist

distinct u1,2, . . . , um,2 ∈ U ′2\
⋃

j∈[m] V (Pm∪Qm) and v1,3, . . . , vm,3 ∈ U ′3\
⋃

j∈[m] V (Pm∪Qm)

such that, for each j ∈ [m], uj,2 ∈ N+
D (xj)∩N−D (uj,3) and vj,3 ∈ N+

D (vj,2)∩N−D (yj). For each

j ∈ [m], denote P ′j := xjuj,2uj,3Pjuj and Q′j := vjQjvj,2vj,3yj. Let P := {xjP
′
jujvjQ

′
jyj |

j ∈ [m]}. By construction, P is a set of vertex-disjoint paths satisfying (i) and (ii). It

remains to verify (iii). For each i ∈ [4] and j ∈ [m], we have

|V (P ′j) ∩ Ui| =


2 if i ≤ j+;

1 otherwise;

and |V (Q′j) ∩ Ui| =


2 if i ≥ j−;

1 otherwise.

(12.3)

Recall that for each i ∈ [4], n+
i denotes the number of indices j ∈ [m] for which j+ = i and

n−i denotes the number of indices j ∈ [m] for which j− = i. Therefore, each i ∈ [4] satisfies

|V (P) ∩ Ui| =
∑
j∈[m]

|V (P ′j) ∩ Ui|+
∑
j∈[m]

|V (Q′j) ∩ Ui|

(12.3)
= (m + n+

i + · · ·+ n+
4 ) + (m + n−1 + · · ·+ n−i )

= 2m + (n−i+1 + · · ·+ n−5 ) + (n−1 + · · ·+ n−i ) = 3m + n−1 .

Thus, (iii) holds.

Note that in the proof of Lemma 12.5 the conditions on the number of paths starting

and ending in each vertex class was necessary to obtain a set P of vertex-disjoint paths

which covers the same number of vertices from each vertex class (see Lemma 12.5(iii)).

Eventually, we will want to extend P to a full extended special path system. The number
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of vertices covered by P will thus be of particular importance since, by Proposition 12.1(i),

an extended special path system needs to span all the vertex classes U1, . . . , U4, which are

all of the same size (see (CF1)). This motivates the following definition.

Definition 12.6 (Balanced special cover). Let (U ,P ,P∗, C,M) be a (4, ℓ∗, k, n)-cycle-

framework. Let D be a digraph with V (D) ⊇
⋃
U and denote by U∗ := V (D) \

⋃
U the

exceptional set of D. Let SC be a special cover in D with respect to U∗. For each i ∈ [4],

let n+
i and n−i be the number of components of SC which are not isolated vertices and

start and end in Ui, respectively. We say that SC is U-balanced if n+
i = n−i+1 for each

i ∈ [4] (where n−5 := n−1 ).

The next lemma states that given small special covers which are localised and balanced,

one can incorporate the associated complete special sequences into extended special path

systems. (Note that Lemma 12.7 below is the analogue of Lemma 9.1 from the bipartite

robust outexpander case. The only difference is that, in Lemma 9.1, we also constructed

the special covers at the same time. In the context of Theorem 4.4, constructing the

special covers is much more difficult because of the backward edges and so this will be

done separately at a later stage.)

Lemma 12.7 (Constructing extended special path systems and factors from special

covers). Let 0 < 1
n
≪ ε≪ 1

k
≪ ε′ ≪ 1 and 1

k
≪ 1

f
, 1
ℓ∗
≤ 1. Let r be an integer satisfying

f(ℓ∗)2rk
n
≪ 1. Suppose that ℓ∗f ≥ 2 and k

f
∈ N. Let (U ,P ,P∗, C,M) be a (4, ℓ∗, k, n)-cycle-

framework. Let D be a digraph with V (D) ⊇
⋃
U and denote by U∗ := V (D) \

⋃
U the

exceptional set of D. Suppose that the following hold for each i ∈ [4].

(i) For any cluster V ∈ P∗i , the set NMi
(V ) is a cluster in P∗i+1 (where P∗5 := P∗1 ).

(ii) D[V,W ] is [ε′,≥ 1− ε′]-superregular whenever V ⊆ Ui and W ⊆ Ui+1 are unions

of clusters in P∗i and P∗i+1, respectively.

Let SC = {SCℓ,h,i,j | (ℓ, h, i, j) ∈ [r]× [ℓ∗]× [4]× [f ]} be a set of edge-disjoint special covers

in D with respect to U∗ such that the following hold for each (ℓ, h, i, j) ∈ [r]× [ℓ∗]× [4]× [f ].
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(iii) |SCℓ,h,i,j| ≤ εn. In particular, Definition 8.25 implies that the complete special

sequence Mℓ,h,i,j associated to SCℓ,h,i,j satisfies |Mℓ,h,i,j| ≤ εn.

(iv) SCℓ,h,i,j is (ℓ∗, 4, f, h, i, j)-localised.

(v) SCℓ,h,i,j is U-balanced.

Then, there exist r (ℓ∗, 4, f)-extended special factors ESF1, . . . , ESFr with respect to

U ,P∗, C, andM such that the following hold, where for each (ℓ, h, i, j) ∈ [r]× [ℓ∗]× [4]× [f ],

ESPSℓ,h,i,j denotes the (ℓ∗, 4, f, h, i, j)-special path system contained in ESFℓ.

(a) For each (ℓ, h, i, j) ∈ [r] × [ℓ∗] × [4] × [f ], we have Mℓ,h,i,j ⊆ ESPSℓ,h,i,j ⊆

(D \ SC) ∪Mℓ,h,i,j.

(b) Let (ℓ, h, i, j), (ℓ′, h′, i′, j′) ∈ [r] × [ℓ∗] × [4] × [f ] be distinct. Then, we have

(ESPSℓ,h,i,j \Mℓ,h,i,j) ∩ (ESPSℓ′,h′,i′,j′ \Mℓ′,h′,i′,j′) = ∅.

Roughly speaking, Lemma 12.7(a) means that each complete special sequence is

incorporated into a distinct extended special path system, while Lemma 12.7(b) states

that each edge of D \ SC is incorporated into at most one of the extended special path

systems.

Proof of Lemma 12.7. First, recall from (CF2) and (CF3) that for each i ∈ [4], Ui is the

union of the clusters in P∗i . Thus, (ii) implies that each i ∈ [4] satisfies

δ(D[Ui, Ui+1]) ≥ (1− 2ε′)n. (12.4)

Fix additional constants ε1 and ε2 such that f(ℓ∗)2rk
n

, ε′ ≪ ε1 ≪ ε2 ≪ 1. Suppose

inductively that for some 0 ≤ t ≤ 4rℓ∗f we have constructed a set Tt ⊆ [r]×[ℓ∗]×[4]×[f ] of

size t and a set ESPSt = {ESPSℓ,h,i,j | (ℓ, h, i, j) ∈ Tt} such that the following properties

hold.

(a′) For each (ℓ, h, i, j) ∈ Tt, we have Mℓ,h,i,j ⊆ ESPSℓ,h,i,j ⊆ (D \ SC) ∪Mℓ,h,i,j.
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(b′) Let (ℓ, h, i, j), (ℓ′, h′, i′, j′) ∈ Tt be distinct. Then, we have (ESPSℓ,h,i,j \Mℓ,h,i,j)∩

(ESPSℓ′,h′,i′,j′ \Mℓ′,h′,i′,j′) = ∅.

(c′) For each (ℓ, h, i, j) ∈ Tt, ESPSℓ,h,i,j is an (ℓ∗, 4, f, h, i, j)-extended special path

system with respect to U ,P∗, C, and M.

First, suppose that t = 4rℓ∗f . Then, define ESFℓ :=
⋃

(h,i,j)∈[ℓ∗]×[4]×[f ] ESPSℓ,h,i,j for each

ℓ ∈ [r]. By (c′), ESF1, . . . , ESFr are (ℓ∗, 4, f)-extended special factors. Moreover, (a)

and (b) follow from (a′) and (b′).

We may therefore assume that t < 4rℓ∗f . Let (ℓ, h, i, j) ∈ ([r] × [ℓ∗] × [4] × [f ]) \ Tt

and define Tt+1 := Tt ∪ {(ℓ, h, i, j)}. We will now construct ESPSℓ,h,i,j as follows. Let

D′ := D \ (SC ∪ ESPSt). Since SC consists of 4rℓ∗f linear forests and ESPSt consists of

t linear forests, we have

∆0(D \D′) ≤ 4rℓ∗f + t ≤ ε1n

kℓ∗
. (12.5)

By (iii) and Lemma 7.13 (applied with 2ε, Ui−2, Ui−1, Ui, Ui+1,P∗i−2, . . . ,P∗i+1, and

V (Mℓ,h,i,j) playing the roles of ε, U1, . . . , U4,P1, . . . ,P4, and S), we may assume with-

out loss of generality that there exists, for each i′ ∈ [4] \ {i, i+ 1}, a cluster Vi′ ∈ P∗i′ which

satisfies

V (Mℓ,h,i,j) ∩ Ui′ ⊆ Vi′ . (12.6)

(Otherwise, we may simply apply the arguments below with the partitions P ′i−2, . . . ,P ′i+1

guaranteed by Lemma 7.13 playing the roles of P∗i−2, . . . ,P∗i+1. This is possible since these

satisfy (ii) up to a slightly worse ε′-parameter.)

To ensure that (c′) is satisfied, we will use Proposition 12.1 and construct a linear forest

which satisfies Proposition 12.1(i)–(iv). Let W1,h, . . . ,Wk′,h be defined as in Proposition 12.1

and denote M ′
i := Mi − (W1,h ∪ · · · ∪Wk′,h). Let

Xi := Wk′,h and Xi+1 := NMi
(W1,h). (12.7)
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By (iv) and Fact 12.4, we have

V (Mℓ,h,i,j) ∩ (Xi ∪Xi+1) = ∅. (12.8)

For each i′ ∈ [4] \ {i, i + 1}, fix a cluster

Xi′ ∈ P∗i′ \ {Vi′}. (12.9)

By (12.6), we have

V (Mℓ,h,i,j) ∩Xi′ = ∅. (12.10)

By (ii), D[Xi′ , Xi′+1] is [ε′,≥ 1− ε′]-superregular for each i′ ∈ [4] (where X5 := X1). We

will reserve these superregular pairs to finish off the construction of ESPSℓ,h,i,j.

Step 1: Constructing the components for Proposition 12.1(iv). In this step,

we will use Lemma 7.11 to construct a set P1 of vertex-disjoint paths which consists of

one (u, v)-path for each uv ∈ M ′
i . The paths in P1 will eventually be incorporated as

components of ESPSℓ,h,i,j to ensure that Proposition 12.1(iv) is satisfied.

Let

U ′i := Ui ∩ V (M ′
i) and U ′i+1 := Ui+1 ∩ V (M ′

i). (12.11)

By (CF2), (CF3), (CF5), and (i), U ′i and U ′i+1 are unions of kℓ∗ − k′ clusters in P∗i and

P∗i+1, respectively. Moreover, note for later that (iv) and Fact 12.4 imply that

V (Mℓ,h,i,j) ∩ (U ′i ∪ U ′i+1) = ∅. (12.12)

For each i′ ∈ [4] \ {i, i + 1}, let U ′i′ ⊆ Ui be the union of kℓ∗ − k′ clusters in P∗i′ \ {Vi′ , Xi′}

and note for later that, by (12.6), we have

V (Mℓ,h,i,j) ∩ U ′i′ = ∅. (12.13)
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By (CF1)–(CF3), we have

n′ := |U ′1| = · · · = |U ′4| = n− k′n

kℓ∗
. (12.14)

Denote U ′ := (U ′1, . . . , U
′
4). By (ii), (12.5), and Proposition 7.8(ii), D′[U ′i′ , U

′
i′+1] is [ε2,≥

1−ε2]-superregular for each i′ ∈ [4]. Let P1 be the set of vertex-disjoint paths obtained by

applying Lemma 7.11 with D′[
⋃
U ′], U ′i+1, . . . , U

′
i , 4, n

′, ε2, 1− ε2, and M ′
i playing the roles

of D, V1, . . . , Vk, k,m, ε, d, and {u1v1, . . . , umvm}. Then, V (P1) =
⋃
U ′ and P1 consists

of a (u, v)-path for each uv ∈M ′
i , as desired.

Step 2: Incorporating Mℓ,h,i,j. In order to satisfy (a′), we will now use Lemma 12.5

to construct a set P2 of vertex-disjoint paths which cover all the edges in Mℓ,h,i,j.

Recall from Step 1, (12.7), and (12.9) that, for each i′ ∈ [4], U ′i′ is the union of kℓ∗− k′

clusters in P∗i′ and Xi′ ⊆ Ui′ \ U ′i′ is a cluster in P∗i′ . In particular, (CF2) and (CF3) imply

that for each i′ ∈ [4], Ui′ \ U ′i′ is the union of k′ clusters in P∗i′ , so

|U1 \ U ′1| = · · · = |U4 \ U ′4| =
k′n

kℓ∗
(12.15)

and Z :=
⋃

i′∈[4]\{i,i+1}Xi′ satisfies

|Mℓ,h,i,j|
ε2

(iii)

≤ n

kℓ∗
= |X1| = · · · = |X4| ≤ |Z| ≤

ε1k
′n

kℓ∗
. (12.16)

By (ii), (12.5), and (12.15), each i′ ∈ [4] satisfies

δ(D′[Ui′ \ U ′i′ , Ui′+1 \ U ′i′+1]) ≥ (1− 2ε′)
k′n

kℓ∗
− ε1n

kℓ∗
≥ (1− ε1)

k′n

kℓ∗
.

Moreover, (12.8), (12.10), (12.12), and (12.13) imply that

V (Mℓ,h,i,j) ⊆
⋃
U \

⋃
i′∈[4]

Xi′ ∪
⋃
U ′
 .
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For each i′ ∈ [4], let n+
i′ and n−i′ be the number of edges of Mℓ,h,i,j which start and end

in Ui′ , respectively. Since by (v) SCℓ,h,i,j is U-balanced, Definitions 8.25 and 12.6 imply

that n+
i′ = n−i′+1 for each i′ ∈ [4]. Thus, we can let P2 be the set of vertex-disjoint paths

obtained by applying Lemma 12.5 with D′−
⋃
U ′, Ui+1\U ′i+1, Ui+2\U ′i+2, . . . , Ui−1\U ′i−1, Ui\

U ′i , Xi+1, Xi, ε1,
k′n
kℓ∗

, and Mℓ,h,i,j playing the roles of D,U1, . . . , U4, X, Y, ε, n, and M .

Step 3: Covering the remaining vertices. In order to satisfy Proposition 12.1(i),

we will now use Lemma 7.11 and Corollary 7.12 to construct a set P3 of vertex-disjoint

paths which cover all the vertices in
⋃
U \ V (P1 ∪P2).

By (12.16) and Lemma 12.5(ii), there exist x ∈ Xi+1 \ V (P2) and y ∈ Xi \ V (P2).

Denote U ′′i+1 := Xi+1 \ (V (P2) ∪ {x}) and U ′′i := Xi \ (V (P2) ∪ {y}). Let U∗i+1 :=

Ui+1\(V (P1∪P2)∪U ′′i+1) and U∗i := Ui\(V (P1∪P2)∪U ′′i ). By Step 1 and Lemma 12.5(ii)

and (iii), we have

n′′ := |U ′′i+1| = |U ′′i | = |Xi| − |Mℓ,h,i,j| − 1
(12.16),(iii)

≥ n

kℓ∗
− εn− 1 ≥ (1− ε1)

n

kℓ∗
(12.17)

and

n∗ := |U∗i+1| = |U∗i | = n− n′ − |Xi|+ 1
(12.14),(12.16)

≥ (1− ε1)
k′n

kℓ∗
. (12.18)

For each i′ ∈ [4] \ {i, i + 1}, Step 1 and Lemma 12.5(ii) imply that Xi′ ∩ V (P1 ∪P2) = ∅

and so we can let U ′′i′ ⊆ Xi′ satisfy |U ′′i′ | = n′′. For each i′ ∈ [4] \ {i, i + 1}, let U∗i′ :=

Ui′ \V (P1∪P2∪U ′′i′) and observe that, by Step 1 and Lemma 12.5(iii), we have |U∗i′ | = n∗.

Denote U ′′ := (U ′′1 , . . . , U
′′
4 ) and U∗ := (U∗1 , . . . , U

∗
4 ).

Claim 1. For each i′ ∈ [4], D′[U ′′i′ , U
′′
i′+1] and D′[U∗i′ , U

∗
i′+1] are both [ε2,≥ 1 − ε2]-

superregular.

Proof of Claim. Let i′ ∈ [4]. Recall that Xi′ and Xi′+1 are clusters of size n
kℓ∗

in P∗i′ and

P∗i′+1, respectively. Thus, (ii) implies that D[Xi′ , Xi′+1] is [ε′,≥ 1− ε′]-superregular. By

(12.17), U ′′i′ and U ′′i′+1 are obtained from Xi′ and Xi′+1 by deleting at most ε1|Xi′| = ε1|Xi′+1|
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vertices. Thus, (12.5) and Proposition 7.8(ii) imply that D′[U ′′i′ , U
′′
i′+1] is still [ε2,≥ 1− ε2]-

superregular.

Similarly, recall from Step 1 that Ui′ \ V (P1) and Ui′+1 \ V (P1) are the unions

of k′ clusters of size n
kℓ∗

in P∗i′ and P∗i′+1, respectively. Thus, (ii) implies that D[Ui′ \

V (P1), Ui′+1 \ V (P1)] is [ε′,≥ 1− ε′]-superregular. By (12.18), U∗i′ and U∗i′+1 are obtained

from Ui′ \V (P1) and Ui′+1\V (P1) by deleting at most ε1|Ui′ \V (P1)| = ε1|Ui′+1\V (P1)|

vertices. Thus, (12.5) and Proposition 7.8(ii) imply that D′[U∗i′ , U
∗
i′+1] is still [ε2,≥ 1− ε2]-

superregular. □

Let u1, . . . , un′′ and v1, . . . , vn′′ be enumerations of U ′′i+1 and U ′′i . Let P ′
3 be the set of

vertex-disjoint paths obtained by applying Lemma 7.11 with D′[
⋃
U ′′], U ′′i+1, . . . , U

′′
i , 4, n

′′,

ε2, and 1− ε2 playing the roles of D, V1, . . . , Vk, k,m, ε, and d. Apply Corollary 7.12 with

D′[
⋃
U∗], U∗i+1, . . . , U

∗
i , 4, n

∗, ε2, 1− ε2, x, and y playing the roles of D, V1, . . . , Vk, k,m, ε, d,

u, and v to obtain a Hamilton (x, y)-path P of D′[
⋃
U∗]. Denote P3 := P ′

3 ∪ {P}. By

Lemma 7.11 and Corollary 7.12, P3 is a set of vertex-disjoint paths satisfying V (P3) =⋃
U \ V (P1 ∪P2), V

+(P3) = Xi+1 \ V (P2) and V −(P3) = Xi \ V (P2).

Let ESPSℓ,h,i,j := P1 ∪P2 ∪P3 and denote ESPSt+1 := ESPSt ∪ {ESPSℓ,h,i,j}.

Then, (a′) holds by Lemma 12.5(i) and definition of D′, while (b′) holds by definition

of D′. It remains to show that (c′) holds. By construction, ESPSℓ,h,i,j is a linear

forest and so Proposition 12.1 implies that it is enough to verify that ESPSℓ,h,i,j sat-

isfies Proposition 12.1(i)–(iv). Note that Proposition 12.1(i) follows from Step 3 and

Proposition 12.1(iv) follows from Step 1. By construction, (12.7), and (12.11), we have

V +(ESPSℓ,h,i,j) = U ′i+1 ∪Xi+1 = Ui+1 \ NMi
(W2,h ∪ · · · ∪Wk′,h) and V −(ESPSℓ,h,i,j) =

U ′i ∪Xi = Ui \ (W1,h ∪ · · · ∪Wk′−1,h). Thus, Proposition 12.1(ii) and (iii) hold and we are

done.
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12.3 Constructing a cycle-setup

Finally, we build the cycle-setup required for the robust decomposition lemma for blow-up

cycles (Lemma 11.10). Given a very dense blow-up C4, say D, one could of course construct

a cycle-setup by first randomly partitioning the vertices of D and then use Lemma 7.16 to

exhibit the desired (super)regular pairs for (CST3). However, our cycle-setup will need to

satisfy additional properties.

– To construct the extended special factors, P∗ and M need to satisfy Lemma 12.7(i)

and (ii). (This motivates Lemma 12.10(i) and (ii) below.)

– After constructing the extended special factors, the clusters in
⋃
P and

⋃
P ′ may

no longer form suitable (super)regular pairs. To solve this problem, we randomly

partition the edges of D into a dense digraph D1 and a sparse digraph D2. We

will only use D1 to construct the extended special factors and reserve D2 for the

application of Lemma 11.10. (This motivates Lemma 12.10(iii) below.) (Recall that

a similar strategy was used in the robust outexpander case, see Chapter 9.)

– To be able to construct the localised and balanced special covers required for

Lemma 12.7, we will need the backward edges of our bipartite tournament T to be

well distributed across the clusters in P and P∗. Since there may be relatively few

backward edges, this cannot be guaranteed via a simple application of Lemma 7.16.

This explains why, in Lemma 12.10, we construct a cycle-setup with respect to given

sets of partitions P and P∗. (To help the reader gain intuition for this step, we will

only detail the construction of P and P∗ after we have discussed our strategy for

decomposing backward edges.)

Note that in Lemma 12.10, we assume that the minimum semidegree of D is very large.

While
−→
T U (that is, the digraph which consists of all the forward edges of T (see Sec-

tion 10.2)) is very dense, its minimum semidegree may be low (the backward edges may

be concentrated on a few vertices). To solve this problem, we will assign the few vertices
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of large backward degree into the exceptional set U∗ and then apply Lemma 12.10 with

−→
T U − U∗ playing the role of D. This will ensure that the minimum semidegree condition

in Lemma 12.10 is satisfied.

For technical reasons, we will need the matchings in M to satisfy a stronger property

than Lemma 12.7(i). Roughly speaking, Lemma 12.7(i) states that, for each i ∈ [4],

Mi matches the clusters in P∗i and P∗i+1. It will be convenient that each Mi matches

“corresponding” clusters together.

Definition 12.8 (Consistent cycle-framework). We say that a (4, ℓ∗, k, n)-cycle-framework

(U ,P ,P∗, C,M) is consistent if the following holds for each (h, i, j) ∈ [ℓ∗]× [4]× [k]. Let

Vi,j and Vi+1,j denote the jth clusters in Pi and Pi+1, respectively. Let Vi,j,h and Vi+1,j,h

denote the hth subclusters of Vi,j and Vi+1,j contained in P∗i and P∗i+1, respectively. Then,

NMi
(Vi,j,h) = Vi+1,j,h.

Recall from Fact 11.5 that a cycle-framework remains a cycle-framework when P∗ is

replaced by P . Observe that consistency is also preserved.

Fact 12.9. Suppose that (U ,P ,P∗, C,M) is a consistent (4, ℓ∗, k, n)-cycle-framework.

Then, (U ,P ,P , C,M) is also a consistent (4, 1, k, n)-cycle-framework.

We are now ready to construct our cycle-setup.

Lemma 12.10. Let 0 < 1
n
≪ ε ≪ ε′ ≪ 1

k
≪ 1

ℓ′
, 1
ℓ∗
, d ≪ 1 and denote m := n

k
. Suppose

that m
ℓ′
, m
ℓ∗
∈ N. Let U1, . . . , U4 be disjoint vertex sets of size n and denote U := (U1, . . . , U4).

Let D be a blow-up C4 with vertex partition U . Suppose that δ0(D) ≥ (1− ε)n. For each

i ∈ [4], let Pi be a partition of Ui into an empty exceptional set and k clusters of size m,

let P∗i be an ℓ∗-refinement of Pi, and let Ci be a Hamilton cycle on the clusters in Pi.

Denote P := (P1, . . . ,P4), P∗ := (P∗1 , . . . ,P∗4 ), and C := (C1, . . . , C4). Then, there exist

D1,P ′,R,U ,U ′, andM for which the following hold, where D2 := D \D1.

(i) (U ,P ,P∗, C,M) is a consistent (4, ℓ∗, k, n)-cycle-framework. In particular, the

following hold. For any i ∈ [4] and any cluster V ∈ Pi, the set NMi
(V ) is a cluster

in Pi+1 (where P5 := P1). The analogue holds for the partitions in P∗.
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(ii) For each i ∈ [4], D1[V,W ] is [ε′,≥ 1 − 3d]-superregular whenever V ⊆ Ui and

W ⊆ Ui+1 are unions of clusters in P∗i and P∗i+1, respectively. In particular, since

P∗i is a refinement of Pi for each i ∈ [4], the analogue holds for the partitions

in P.

(iii) (D2,U ,P ,P ′,P∗,R, C,U ,U ′,M) is a (4, ℓ′, ℓ∗, k,m, ε′, d)-cycle-setup.

Proof. Fix additional constants ε1, ε2, and ε3 satisfying ε ≪ ε1 ≪ ε2 ≪ ε3 ≪ ε′. First,

we construct the matchings in M. For each i ∈ [4], let Vi,1, . . . , Vi,k be an enumeration

of the clusters in Pi and, for each (h, j) ∈ [ℓ∗]× [k], denote by Vi,j,h the hth subcluster of

Vi,j contained in P∗i . For each (h, i, j) ∈ [ q
f
]× [4]× [k], let Mh,i,j be an auxiliary perfect

matching from Vi+1,j,h to Vi,j,h. For each i ∈ [4], define Mi :=
⋃

(h,j)∈[ q
f
]×[k] Mh,i,j. Let

M := (M1, . . . ,M4) and observe that (i) and (CST2) hold.

Let i ∈ [4]. Denote by D̃i the Mi-contraction of D[Ui, Ui+1]. By Fact 7.27(i), δ0(D̃i) ≥

(1 − 2ε)n and so Lemma 8.10 implies that P∗i is an
√

2ε-uniform refinement of Pi with

respect to D̃i.

Let i ∈ [4] and let V ⊆ Ui and W ⊆ Ui+1 be unions of clusters in P∗i and P∗i+1,

respectively. Then, observe that each v ∈ V satisfies |N+
D (v)∩W | ≥ |W |−εn ≥ (1−ε1)|W |

and, similarly, each w ∈ W satisfies |N−D(v) ∩ V | ≥ |V | − εn ≥ (1 − ε1)|V |. Thus,

Proposition 7.10 implies that D[V,W ] is [ε2,≥ 1− ε2]-superregular.

Let D1 be obtained from D by selecting each edge independently with probability

1 − 2d. Denote D2 := D \ D1. For each i ∈ [4], denote by D̃′i the Mi-contraction of

D2[Ui, Ui+1] and observe that, by definition, D̃′i is obtained from D̃i by selecting each edge

independently with probability 2d. Thus, Corollary 7.18 and Lemma 8.9 imply that we

may assume that the following hold.

(ii′) For each i ∈ [4], D1[V,W ] is [ε3,≥ 1 − 3d]-superregular and D2[V,W ] is [ε3,≥

d + ε3]-superregular whenever V ⊆ Ui and W ⊆ Ui+1 are unions of clusters in P∗i

and P∗i+1, respectively.

(iii′) For each i ∈ [4], P∗i is an ε′-uniform ℓ∗-refinement of Pi with respect to D̃′i.
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In particular, (ii) is satisfied.

We now construct the cycle-setup. First, observe that since D is a blow-up C4 with

vertex partition U , D2 satisfies (CST1). Let P ′i be the ε-uniform ℓ′-refinement of Pi

obtained by applying Lemma 8.7 with D̃′i,Pi, and ℓ′ playing the roles of D,P , and ℓ. Let

Ri be the complete digraph on the clusters in Pi and note that Ci is a Hamilton cycle of Ri.

Let U i be the universal walk for Ci with parameter ℓ′ obtained by applying Lemma 8.12

with Ri and Ci playing the roles of R and C. Let U ′i be the closed walk on the clusters in

P ′i obtained from U i as described in (ST6).

Denote P ′ := (P ′1, . . . ,P ′4), R := (R1, . . . , R4), U := (U1, . . . , U4), and U ′ :=

(U ′1, . . . , U ′4). Let i ∈ [4]. We need to show that (D̃′i,Pi,P ′i,P∗i , Ri, C
i, U i, U ′i) is

an (ℓ′, ℓ∗, k,m, ε′, d)-setup. By construction and (iii′), properties (ST1), (ST4)–(ST6),

and (ST8) are satisfied. Moreover, (ii′) and Proposition 7.30(ii) imply that D̃′i[V,W ] is

[ε3,≥ d + ε3]-superregular for any distinct clusters V,W ∈ Pi. Thus, (ST2) and (ST3) are

satisfied. Moreover, Lemma 8.8(ii) implies that D̃′i[V,W ] is [ε′,≥ d]-superregular for any

distinct clusters V,W ∈ P ′i. Therefore, (ST7) holds and so (D̃′i,Pi,P ′i,P∗i , Ri, C
i, U i, U ′i) is

an (ℓ′, ℓ∗, k,m, ε′, d)-setup. By construction, the exceptional set in Pi,P ′i, and P∗i is empty

and so (CST3) holds. Thus, (D2,U ,P ,P ′,P∗,R, C,U ,U ′,M) is a (4, ℓ′, ℓ∗, k,m, ε′, d)-

cycle-setup and so (iii) is satisfied.
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CHAPTER 13

DECOMPOSING BACKWARD EDGES

As briefly mentioned in the proof overview, the backward edges of T will be decomposed

separately at the beginning of the proof of Theorem 4.4. We now discuss this in more

detail.

13.1 Feasible systems

The strategy for Theorem 4.4 will be to first decompose all the backward edges into n

edge-disjoint subdigraphs F1, . . . ,Fn and then incorporate each Fi into a distinct Hamilton

cycle of the decomposition of T . Each Fi will need to have a very specific structure, which

will be called a feasible system; otherwise we would not be able to incorporate it into a

Hamilton cycle. (See Definition 13.2 below for a formal definition.) To gain intuition, we

start by giving some informal motivation.

First, each Fi will have to be linear forest (since any proper subdigraph of a Hamilton

cycle is a linear forest). This is property (F3) below. Moreover, we will show that for any

Hamilton cycle of T , the set of backward edges satisfy the following “balance property”.

(To gain intuition behind Proposition 13.1, observe that in the proof of Proposition 1.7,

we in fact showed that, in a tripartite tournament, one cannot construct a Hamilton cycle

which contains a single backward edge. The analogue holds in the blow-up C4 case: a

cycle which does not contain a “balanced” number of backward edges will not cover all

the vertex classes equitably.) Recall Definition 10.1.
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Proposition 13.1. Let T be a bipartite tournament on 4n vertices and suppose that

U = (U1, . . . , U4) is an (ε, 4)-partition for T . Then, any Hamilton cycle C of T satisfies

eC(U1, U4) = eC(U3, U2) and eC(U4, U3) = eC(U2, U1).

Thus, we will need to make sure that each Fi contains the same number of backward

edges in non-adjacent pairs of the blow-up C4. This is property (F1) below. For convenience,

we will also allow each Fi to contain a few forward edges to ensure that all the exceptional

vertices are covered. This is property (F2) below. Roughly speaking, this means that we

will decompose all the exceptional edges at the same time as the backward edges, which

will enable us to “ignore” the exceptional vertices when constructing our Hamilton cycles.

Altogether, this motivates the next definition.

Definition 13.2 (Feasible system). Let U1, . . . , U4 be disjoint vertex sets and denote

U := (U1, . . . , U4). Let U∗ ⊆
⋃

i∈[4] Ui be an exceptional set. We say that F is a feasible

system (with respect to U and U∗) if the following hold.

(F1) eF(U1, U4) = eF(U3, U2) and eF(U4, U3) = eF(U2, U1).

(F2) For each v ∈ U∗, d+F(v) = 1 = d−F(v).

(F3) F is a linear forest.

Note that Proposition 13.1 follows immediately from Fact 10.2(i) and the next result

(which will also be used in the proof of Lemma 13.6 below).

Proposition 13.3. Let U1, . . . , U4 be disjoint vertex sets (not necessarily of the same size)

and let C be a bipartite cycle on vertex classes U1 ∪ U3 and U2 ∪ U4. Then, there exists

ℓ ∈ Z such that, for each i ∈ [4], |Ui| = ℓ + eC(Ui+1, Ui) + eC(Ui, Ui−1).

Proof. We proceed by induction on |C|. For the base case, suppose that |C| = 4. If

|Ui| = 1 and eC(Ui+1, Ui) = 0 for each i ∈ [4], then we can let ℓ := 1 and we are done. If

|Ui| = 1 and eC(Ui+1, Ui) = 1 for each i ∈ [4], then we can let ℓ := −1 and we are done.

Suppose that there exists i ∈ [4] such that C = v1v2v3v4 for some v1 ∈ Ui, v2, v4 ∈ Ui+1,
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and v3 ∈ Ui+2. Then, each j ∈ [4] satisfies

|Uj| =


2 if j = i + 1;

1 if j ∈ {i, i + 2};

0 otherwise;

and eC(Uj+1, Uj) =


1 if j ∈ {i, i + 1};

0 otherwise.

Thus, we can let ℓ := 0 and we are done. We may therefore assume that there exists i ∈ [4]

such that C = v1v2v3v4 for some v1, v3 ∈ Ui and v2, v4 ∈ Ui+1. Then, each j ∈ [4] satisfies

|Uj| =


2 if j ∈ {i, i + 1};

0 otherwise;

and eC(Uj+1, Uj) =


2 if j = i;

0 otherwise.

Thus, we can let ℓ := 0 and we are done.

For the induction step, let k > 2 and suppose that the proposition holds for any cycle

of length 2(k − 1). Assume that |C| = 2k and denote C = v1v2 . . . v2k. Suppose without

loss of generality that v1 ∈ U1. Then, observe that v2k−2, v2k ∈ U2∪U4 and v2k−1 ∈ U1∪U3.

For each i ∈ [4], let U ′i := Ui \ {v2k−1, v2k}. Define a cycle C ′ := v1 . . . v2k−2. Then,

|C ′| = 2(k− 1) and C ′ is a bipartite cycle on vertex classes U ′1 ∪U ′3 and U ′2 ∪U ′4. Thus, by

the induction hypothesis, there exists ℓ′ ∈ Z such that |U ′i | = ℓ′+eC′(U ′i+1, U
′
i)+eC′(U ′i , U

′
i−1)

for each i ∈ [4]. If v2k−2v2k−1, v2k−1v2k, and v2kv1 are all forward edges with respect to

U := (U1, . . . , U4), then let ℓ := ℓ′ + 1. If v2k−2v2k−1, v2k−1v2k, and v2kv1 are all backward

edges with respect to U , then let ℓ := ℓ′ − 1. Otherwise, let ℓ := ℓ′.

We now verify that |Ui| = ℓ + eC(Ui+1, Ui) + eC(Ui, Ui−1) for each i ∈ [4]. We consider

the case where v2k−2v2k−1, v2k−1v2k, and v2kv1 are all forward edges with respect to U (the

other cases can be verified with similar arguments). Note that v2k ∈ U4, v2k−1 ∈ U3, and

v2k−2 ∈ U2. Then,

|U ′i | =


|Ui| if i ∈ [2];

|Ui| − 1 otherwise;

and eC′(U ′i+1, U
′
i) =


eC(Ui+1, Ui) + 1 if i = 1;

eC(Ui+1, Ui) otherwise.
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Then, for each i ∈ [2],

|Ui| = |U ′i | = ℓ′ + eC′(U ′i+1, U
′
i) + eC′(U ′i , U

′
i−1)

= ℓ− 1 + eC′(U ′i+1, U
′
i) + eC′(U ′i , U

′
i−1) = ℓ + eC(Ui+1, Ui) + eC(Ui, Ui−1).

Moreover, for each i ∈ [4] \ [2],

|Ui| = |U ′i |+ 1 = ℓ′ + 1 + eC′(U ′i+1, U
′
i) + eC′(U ′i , U

′
i−1)

= ℓ + eC(Ui+1, Ui) + eC(Ui, Ui−1),

so we are done.

We now state a few useful properties of feasible systems. Observe that forward edges

are only required to cover the exceptional set U∗, so any forward edge which is not incident

to U∗ may be deleted or added from a feasible system.

Fact 13.4. Let U1, . . . , U4 be disjoint vertex sets. Denote U := (U1, . . . , U4) and let

U∗ ⊆
⋃

i∈[4] Ui. Let F be a feasible system with respect to U and U∗. Let e be a forward

edge with respect to U which satisfies V (e) ∩ U∗ = ∅. Then, F \ {e} is a feasible system

and, if F ∪ {e} is a linear forest, then F ∪ {e} is also a feasible system.

Note that isolated vertices play no role in a feasible system and so may be deleted.

Fact 13.5. Let U , U∗, and F be as in Fact 13.4. Let F ′ be obtained from F by deleting

all isolated vertices. Then, F ′ is also a feasible system with respect to U and U∗.

As discussed above, we will decompose the backward and exceptional edges into n

feasible systems and then restrict ourselves to construct a Hamilton decomposition where

each Hamilton cycle contains precisely one of the feasible systems. The incorporation

of feasible systems into the approximate decomposition is discussed in Section 14.1. To

decompose the leftovers, recall that we will be using the robust decomposition lemma for

blow-up cycles (Lemma 11.10) and, as discussed in Section 12.2, all the cycles obtained
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via Lemma 11.10 will be turned into Hamilton cycles of T by incorporating a special cover.

Thus, we will require some of our feasible systems to form special covers. For Lemma 12.7,

these will also need to be balanced (recall Definition 12.6). In the next lemma, we verify

that feasible systems can induce balanced special covers.

Lemma 13.6. Let D be a digraph and U1, . . . , U4 be a partition of V (D). Denote U :=

(U1, . . . , U4) and let U∗ ⊆
⋃

i∈[4] Ui be an exceptional set satisfying |U∗ ∩ U1| = · · · =

|U∗ ∩ U4|. Let F ⊆ D be a feasible system with respect to U and U∗. If V 0(F) = U∗, then

F is a U-balanced special cover in D with respect to U∗. In particular, F is U ′-balanced,

where U ′ := (U1 \ U∗, . . . , U4 \ U∗).

Proof. Clearly, F is a special cover in D with respect to U∗ and the “in particular part”

holds since all the endpoints of the components of F lie in
⋃
U ′. We show that F is

U -balanced. By Definition 12.6 and Fact 13.5, we may assume without loss of generality

that F does not contain any isolated vertex. For each i ∈ [4], let n±i := |V ±(F) ∩ Ui|. By

symmetry, it is enough to show that n+
1 = n−2 . Using new vertices and edges, extend each

component of F to obtain a linear forest F ′ ⊇ F and vertex sets U ′1 ⊇ U1, . . . , U
′
4 ⊇ U4

such that the following hold, where U ′′ := (U ′1, . . . , U
′
4).

(a) F ′ is a bipartite linear forest on vertex classes U ′1 ∪ U ′3 and U ′2 ∪ U ′4.

(b) E(
←−
F ′U ′′) = E(

←−
F U).

(c) Each component of F ′ is a path which starts in U ′1 and ends in U ′4.

(d) Each component of F ′ \ F is a path of length at most 3.

Let F ′′ be obtained from F ′ by adding an edge from the ending point to the starting point

of each component of F ′. By (a)–(c), the following hold.

(a′) F ′′ is a bipartite 1-factor on vertex classes U ′1 ∪ U ′3 and U ′2 ∪ U ′4.

(b′) E(
←−
F ′′U ′′) = E(

←−
F U).

Let C be the set of components of F ′′. For each C ∈ C , let ℓC ∈ Z be the constant
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obtained by applying Proposition 13.3 with V (C)∩ U ′1, . . . , V (C) ∩ U ′4 playing the roles of

U1, . . . , U4. Then,

|U ′1| =
∑
C∈C

|V (C) ∩ U1|
Proposition 13.3

=
∑
C∈C

(ℓC + eC(U ′2, U
′
1) + eC(U ′1, U

′
4))

=
∑
C∈C

ℓC + eF ′′(U ′2, U
′
1) + eF ′′(U ′1, U

′
4)

(b′)
=
∑
C∈C

ℓC + eF ′′(U ′2, U
′
1) + eF(U1, U4)

(F1)
=
∑
C∈C

ℓC + eF ′′(U ′2, U
′
1) + eF(U3, U2)

(b′)
=
∑
C∈C

ℓC + eF ′′(U ′2, U
′
1) + eF ′′(U ′3, U

′
2)

=
∑
C∈C

(ℓC + eC(U ′2, U
′
1) + eC(U ′3, U

′
2))

Proposition 13.3
=

∑
C∈C

|V (C) ∩ U ′2|

= |U ′2|. (13.1)

Therefore,

(|V 0(F) ∩ U1|+ n+
1 + n−1 ) + (n+

2 + n+
3 + n+

4 )

(b)–(d)
= |U1|+ |U ′1 \ U1| = |U ′1|

(13.1)
= |U ′2| = |U2|+ |U ′2 \ U2|

(b)–(d)
= (|V 0(F) ∩ U2|+ n+

2 + n−2 ) + (n−1 + n+
3 + n+

4 ).

Thus, n+
1 = n−2 , as desired.

13.2 Optimal partitions

We now introduce our main tool for decomposing the backward and exceptional edges

into feasible systems. Suppose that T is ε-close to the complete blow-up C4 with vertex

partition U = (U1, . . . , U4). As observed in Section 10.3, T is a bipartite tournament on

vertex classes U1 ∪U3 and U2 ∪U4. Thus, the partition U is not fixed (one may swap some

vertices between U1 and U3, as well as some vertices between U2 and U4). We will consider

a partition U which minimises the number of backward edges.

Definition 13.7 (Optimal partition). Let T be a bipartite tournament. An (ε, 4)-partition
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U for T is optimal if it minimises the number of backward edges in T , that is, if

|E(
←−
T U)| = min{|E(

←−
T U ′)| | U ′ is an (ε, 4)-partition for T}.

Roughly speaking, an optimal (ε, 4)-exceptional partition of T will guarantee the

existence of a subdigraph H ⊆ T of small maximum degree which contains many backward

edges. This will enable us to apply König’s theorem (Proposition 7.22) to find large

matchings of backward edges. This is Lemma 13.8 below. To state and prove this lemma,

we need some additional notation.

Let U1, . . . , U4 be disjoint vertex sets of size n and denote U := (U1, . . . , U4). Let T

be a regular bipartite tournament on vertex classes U1 ∪ U3 and U2 ∪ U4. Recall from

Fact 10.3 that
←−
d +

T,U(v) =
←−
d −T,U(v) for each v ∈ V (T ). For each i ∈ [4] and 0 ≤ γ < 1,

denote by

Uγ,U
i (T ) :=

{
v ∈ Ui |

←−
d +

T,U(v) =
←−
d −T,U(v) > γn

}
(13.2)

the set of vertices in Ui whose backward out- and indegree is greater that γn. Define

Uγ,U(T ) :=
⋃

i∈[4] U
γ,U
i (T ). In practice, U will always be clear from the context and so

we will omit the second superscript. That is, we will write Uγ
i (T ) and Uγ(T ) instead of

Uγ,U
i (T ) and Uγ,U(T ). Throughout the rest of this thesis, the subscript i in the above

notation will always be taken modulo 4, so Uγ
5 (T ) := Uγ

1 (T ) for example.

Lemma 13.8. Let 0 < 1
n
≪ ε≪ γ ≤ 1

2
. Let T be a regular bipartite tournament on 4n

vertices and let U = (U1, . . . , U4) be an optimal (ε, 4)-partition for T . Then, there exists

H ⊆
←−
T U satisfying the following properties.

(i) ∆0(H) ≤ γn.

(ii) For each v ∈ U1−γ(T ), dH(v) = 0.

(iii) For each i ∈ [4], eH−U1−γ(T )(Ui, Ui−1) ≥ (1− 2γ)n|U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|.

Note that Lemma 13.8(ii) implies that H − U1−γ(T ) is simply H in Lemma 13.8(iii).

However, we emphasise for later applications that none the edges are incident to U1−γ(T ).
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Indeed, H will be used in conjunction with other sets of edges incident to U1−γ(T ) to

construct feasible systems and the role of H will be to balance out the number of backward

edges chosen incident to U1−γ(T ) (recall property (F1) of a feasible system). At this stage,

it will be crucial that there are many edges which are not incident to U1−γ(T ).

To prove Lemma 13.8, we will need the next two results.

Fact 13.9. Let U1, . . . , U4 be disjoint vertex sets of size n and denote U := (U1, . . . , U4).

Let T be a regular bipartite tournament on vertex classes U1 ∪ U3 and U2 ∪ U4. For any

0 ≤ γ ≤ γ′ < 1, Uγ′
(T ) ⊆ Uγ(T ).

Lemma 13.10. Let 0 < ε ≤ 1 and 0 < γ ≤ 1
2
. Let T be a bipartite tournament and let

U = (U1, . . . , U4) be an optimal (ε, 4)-partition for T . Then, for each i ∈ [2], there exists

ji ∈ {i, i + 2} such that

U1−γ
i (T ) = ∅ = U1−γ

i+2 (T ) or Uγ
ji

(T ) = ∅.

In particular,

U1−γ
j1

(T ) = ∅ = U1−γ
j2

(T ).

Proof. The “in particular part” follows immediately from Fact 13.9. By symmetry, it

suffices to show that the lemma holds for i = 1. Let j1 ∈ {1, 3} minimise maxv∈Uj1

←−
d T,U(v).

Suppose for a contradiction that there exist u ∈ U1−γ
j1+2(T ) and v ∈ Uγ

j1
(T ). We claim

that swapping u and v decreases the number of backward edges and so U is not optimal.

Indeed, let U ′2 := U2, U
′
4 := U4, U

′
j1

:= (Uj1 \ {v}) ∪ {u}, and U ′j1+2 := (Uj1+2 \ {u}) ∪ {v}.

Define U ′ := (U ′1, . . . , U
′
4). Then,

eT (U ′j1 , U
′
j1−1) =

←−
d +

T,U ′(u) +
∑

w∈Uj1
\{v}

←−
d +

T,U ′(w) =
−→
d +

T,U(u) +
∑

w∈Uj1
\{v}

←−
d +

T,U(w)

< γn +
∑

w∈Uj1
\{v}

←−
d +

T,U(w) <
←−
d +

T,U(v) +
∑

w∈Uj1
\{v}

←−
d +

T,U(w) = eT (Uj1 , Uj1−1).

Thus, Facts 10.4 and 10.5 imply that U ′ is an (ε, 4)-partition for T which satisfies
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|E(
←−
T U ′)| < |E(

←−
T U)|. This contradicts the fact that U is optimal and so

U1−γ
j1+2(T ) = ∅ or Uγ

j1
(T ) = ∅.

Thus, it suffices to prove that if U1−γ
j1+2(T ) = ∅, then U1−γ

j1
(T ) = ∅. Suppose not. Then,

maxw∈Uj1+2

←−
d T,U(w) ≤ (1 − γ)n < maxw∈Uj1

←−
d T,U(w), a contradiction to the definition

of j1.

Proof of Lemma 13.8. By Fact 10.2(ii) and Lemma 13.10, we may assume without loss of

generality that, for each i ∈ [2],

U1−γ
i (T ) = ∅ = U1−γ

i+2 (T ) or Uγ
i+2(T ) = ∅. (13.3)

In particular, we have

U1−γ
3 (T ) = ∅ and U1−γ

4 (T ) = ∅. (13.4)

For each i ∈ {1, 4} and v ∈ Ui \ U1−γ(T ), let Ev ⊆ ET ({v}, Ui−1) ⊆ E(
←−
T U) satisfy

|Ev| = |N−T (v)∩U1−γ
i+1 (T )| (this is possible by Fact 10.3). Similarly, for each i ∈ {2, 3} and

v ∈ Ui \U1−γ(T ), let Ev ⊆ ET (Ui+1, {v}) ⊆ E(
←−
T U) satisfy |Ev| = |N+

T (v)∩U1−γ
i−1 (T )|. Let

E14 :=
⋃

v∈U1\U1−γ(T )Ev and E32 :=
⋃

v∈U2\U1−γ(T ) Ev. Define

E43 :=



∅ if U1−γ
1 (T ) = ∅ = U1−γ

2 (T );

ET (U4, U3) if U1−γ
1 (T ) ̸= ∅ ≠ U1−γ

2 (T );⋃
v∈U4\U1−γ(T ) Ev if U1−γ

1 ̸= ∅ = U1−γ
2 (T );⋃

v∈U3\U1−γ(T ) Ev if U1−γ
1 = ∅ ≠ U1−γ

2 (T ).

Let H be the digraph on V (T ) defined by E(H) := E14 ∪ E32 ∪ E43.

By definition, H ⊆
←−
T U . We verify that (i)–(iii) are satisfied. One can easily verify

that, for each v ∈ V (T ) \ U1−γ(T ) and e ∈ Ev, we have V (e) \ {v} ⊆ U3 ∪ U4. Together

with (13.4) and the fact that E(H) ⊆ ET (U4, U3) ∪
⋃

v∈V (T )\U1−γ(T )Ev, this implies that
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(ii) holds.

For (i), it only remains to check that d±H(v) ≤ γn for each v ∈ V (T ) \ U1−γ(T ). By

Fact 10.5, the following holds for each i ∈ [4].

|U1−γ
i (T )| ≤ εn2

(1− γ)n
≤ γn. (13.5)

Thus, for each v ∈ U1 \ U1−γ(T ), we have

dH(v) = dE14(v) = |Ev| ≤ |U1−γ
2 (T )|

(13.5)

≤ γn,

as desired. Similarly, each v ∈ U2 \ U1−γ(T ) satisfies dH(v) ≤ γn. It remains to verify

that d±H(v) ≤ γn for each v ∈ (U3 ∪ U4) \ U1−γ(T ). If Uγ
3 (T ) = ∅ = Uγ

4 (T ), then we

have d±H(v) ≤
←−
d ±T,U(v) ≤ γn for each v ∈ U3 ∪ U4, as desired. Moreover, (13.3) implies

that if Uγ
3 (T ) ̸= ∅ ≠ Uγ

4 (T ), then U1−γ
i (T ) = ∅ for each i ∈ [4] and so E(H) = ∅.

Thus, by symmetry, we may assume that Uγ
3 (T ) = ∅ ≠ Uγ

4 (T ). Then, each v ∈ U3

satisfies d±H(v) ≤
←−
d ±T,U(v) ≤ γn, as desired. By (13.3), we have U1−γ

2 (T ) = ∅. Therefore,

E14 = ∅ and so each v ∈ U4 \ U1−γ(T ) satisfies d−H(v) = dE14(v) = 0. Moreover, each

v ∈ U4 \ U1−γ(T ) satisfies

d+H(v) = dE43(v) ≤ |Ev| ≤ |U1−γ
1 (T )|

(13.5)

≤ γn.

Thus, (i) is satisfied.

Finally, we verify (iii). By (13.4), (iii) holds for i = 2. Moreover,

eH−U1−γ(T )(U1, U4) = |E14| =
∑

v∈U1\U1−γ(T )

|N−T (v) ∩ U1−γ
2 (T )|

= eT (U1−γ
2 (T ), U1 \ U1−γ(T )) ≥

∑
v∈U1−γ

2 (T )

(
←−
d +

T (v)− |U1−γ
1 (T )|)

≥ |U1−γ
2 (T )|((1− γ)n− |U1−γ

1 (T )|)
(13.5)

≥ (1− 2γ)n|U1−γ
2 (T )|

(13.4)
= (1− 2γ)n(|U1−γ

2 (T )|+ |U1−γ
3 (T )|).
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Thus, (iii) holds for i = 1. Similarly, (iii) holds for i = 3. If U1−γ
1 (T ) = ∅ = U1−γ

2 (T ), then

(iii) is clearly satisfied for i = 4. If U1−γ
1 (T ) ̸= ∅ ≠ U1−γ

2 (T ), then

eH−U1−γ(T )(U4, U3) = |E43| = eT (U4, U3)
Fact 10.4

= eT (U2, U1)

≥ (|U1−γ
1 (T )|+ |U1−γ

2 (T )|)(1− γ)n− |U1−γ
1 (T )||U1−γ

2 (T )|
(13.5)

≥ (1− 2γ)n(|U1−γ
1 (T )|+ |U1−γ

2 (T )|)

and so (iii) holds for i = 4. If U1−γ
1 (T ) ̸= ∅ = U1−γ

2 (T ), then

eH−U1−γ(T )(U4, U3) = |E43| =
∑

v∈U4\U1−γ(T )

|N−T (v) ∩ U1−γ
1 (T )| (13.4)= eT (U1−γ

1 (T ), U4)

≥ (1− γ)n|U1−γ
1 (T )| = (1− γ)n(|U1−γ

1 (T )|+ |U1−γ
2 (T )|)

and so (iii) holds for i = 4. Similarly, (iii) holds for i = 4 if U1−γ
1 (T ) = ∅ ̸= U1−γ

2 (T ).

Therefore, (iii) is satisfied.

13.3 Decomposing backward and exceptional edges

into feasible systems

Finally, we state and motivate our main decomposition lemma. First, we need an additional

definition. As discussed in Section 12.3, the exceptional set U∗ will have to contain all

the vertices of high backward degree (otherwise we would not be able to construct the

cycle-setup required for the robust decomposition lemma). This motivates (ES1) below.

To facilitate the incorporation of the exceptional vertices into the Hamilton decomposition,

we also require that U∗ is small and contain the same number of vertices from each vertex

class. This is (ES2) below.

Definition 13.11 ((ε,U)-exceptional set). Let T be a regular bipartite tournament on 4n

vertices. Suppose that U = (U1, . . . , U4) is an (ε, 4)-partition for T . We say that U∗ is an
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(ε′,U)-exceptional set for T if the following hold, where U∗i := Ui ∩ U∗ for each i ∈ [4].

(ES1) U ε′(T ) ⊆ U∗ ⊆ V (T ).

(ES2) |U∗1 | = · · · = |U∗4 | ≤ ε′n.

Let T be a bipartite tournament on 4n vertices. Let U be an optimal (ε, 4)-partition

for T and let U∗ be an (ε′,U)-exceptional set for T . Then, Lemma 13.12 states that T

contains n edge-disjoint feasible systems F1, . . . ,Fn which contain all the backward edges

of T (see Lemma 13.12(a)). By Lemma 13.12(b), all these feasible systems are small,

which will enable us to incorporate them into our Hamilton cycles. The first t feasible

systems will be those which will be incorporated into the Hamilton cycles given by the

robust decomposition lemma (Lemma 11.10) and so we will require those to form special

covers which are localised and balanced (see Lemma 12.7). Together with Lemma 13.6,

Lemma 13.12(c) will imply that F1, . . . ,Ft are balanced special covers, as required for

Lemma 12.7. Additionally, Lemma 13.12(d) ensures that F1, . . . ,Ft are constructed out

of prescribed sets H1, . . . , Hs of edges of T . These edges will be chosen in such a way

that F1, . . . ,Ft form localised special covers, as desired for Lemma 12.7. The last n− t

feasible systems will be incorporated into the approximate decomposition. For simplicity,

we require that all of the components of these feasible systems are paths which start in U1

and end in U4 (see Lemma 13.12(e)). Finally, Lemma 13.12(a) will allow us to incorporate

a small prescribed set E of forward edges of T into the feasible systems. In practice, E will

consists of all the edges of T which cannot be decomposed via the robust decomposition

lemma. (Recall from Lemma 11.10 that the robustly decomposable digraph Drob cannot

decompose the edges which are lying along the auxiliary matchings in M.) This will

ensure that they are not left over at the end of the approximate decomposition.

Roughly speaking, Lemma 13.12(i)–(iv) ensure that H1, . . . , Hs contain many well

distributed backward and exceptional edges. This is necessary, for otherwise we may

not be able to construct the feasible systems satisfying Lemma 13.12(d). More precisely,

Lemma 13.12(i) and (ii) ensure that each exceptional vertex in U∗ has many in- and
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outneighbours in each Hi (recall from (F2) that a feasible system has to cover U∗).

Additionally, Lemma 13.12(iii) and (iv) ensure that there are many backward edges and

that these are evenly distributed across the non-exceptional vertices. This will enable us to

use König’s theorem to find large matchings of backward edges, which will be convenient

for adjusting the number of backward edges in each feasible system (recall from (F1) that

a feasible system must contain a balanced number of backward edges).

Note that H1, . . . , Hs will be constructed using Lemma 13.8. (Compare the bounds in

Lemma 13.12(iii) and (iv) to those in Lemma 13.8(i) and (iii).) This is a point where we

make crucial use of the concept of optimal partitions.

Finally, observe that H1, . . . , Hs need not be edge-disjoint in Lemma 13.12. The upper

bound on t will be sufficient to ensure that there are, overall, sufficiently many edges

in H1, . . . , Hs to construct the edge-disjoint feasible systems F1, . . . ,Ft, each within its

prescribed Hi.

Lemma 13.12 (Decomposing the backward and exceptional edges into feasible systems).

Let 0 < 1
n
≪ ε ≪ ε′ ≪ η ≪ γ ≪ 1 and s ∈ N. Let T be a regular bipartite tournament

on 4n vertices. Let U = (U1, . . . , U4) be an optimal (ε, 4)-partition for T and U∗ be an

(ε,U)-exceptional set for T . Suppose that, for each j ∈ [s], Hj ⊆ T satisfies the following.

(i) For each v ∈ U1−γ(T ),
←−
d ±Hj ,U(v) ≥ 3γn.

(ii) For each v ∈ U∗ \ U1−γ(T ),
−→
d ±Hj ,U(v) ≥ γ2n.

(iii) For each v ∈ V (T ) \ U1−γ(T ),
←−
d ±Hj ,U(v) ≤ 2γn.

(iv) For each i ∈ [4], eHj−U1−γ(T )(Ui, Ui−1) ≥ 110γn|U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|.

For each i ∈ [s], let si ∈ N and ti :=
∑

j∈[i−1] sj. Let t :=
∑

i∈[s] si and suppose that t ≤ ηn.

Let E ⊆ E(T ) be such that the following hold.

(v) E ⊆ E(
−→
T U − U∗).

(vi) For each v ∈ V (T ) \ U∗, d±E(v) ≤ 1.

Then, there exist edge-disjoint feasible systems F1, . . . ,Fn such that the following hold.
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(a) E(
←−
T U) ∪ E ⊆

⋃
i∈[n] E(Fi) ⊆ E(T ).

(b) For each i ∈ [n], e(Fi) ≤ ε′n.

(c) For each i ∈ [t], V 0(Fi) = U∗.

(d) For each i ∈ [s] and j ∈ [si], Fti+j ⊆ Hi \ E.

(e) For each i ∈ [n− t], we have V +(Ft+i) ⊆ U1 and V −(Ft+i) ⊆ U4.

To provide intuition into its formulation, we will first assume that Lemma 13.12 holds

and derive Theorem 4.4. The proof of Lemma 13.12 is spread over Chapters 15–18. These

chapters also include a detailed proof overview of Lemma 13.12.
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CHAPTER 14

THE ε-CLOSE TO THE COMPLETE BLOW-UP C4

CASE: PROOF OF THEOREM 4.4

We will now prove Theorem 4.4. First, we use our tools from Section 8.1 to incorpo-

rate feasible systems into an approximate Hamilton decomposition (see Lemma 14.1

below). Then, we derive Theorem 4.4 from the robust decomposition lemma for blow-up

cycles (Lemma 11.10), the decomposition lemma for backward and exceptional edges

(Lemma 13.12), and the approximate decomposition lemma (Lemma 14.1).

14.1 Approximate decomposition

Let T be a regular bipartite tournament on 4n vertices and suppose that T is ε-close to

the complete blow-up C4 with vertex partition U = (U1, . . . , U4). Our strategy for approx-

imately decomposing T is the following (see also Figure 4.2). First, we use Corollary 8.3

to approximately decompose T [U1, U2], T [U2, U3], and T [U3, U4] into perfect matchings.

Combining a matching from each pair, we obtain an approximate decomposition of

T [U1, U2]∪ T [U2, U3]∪ T [U3, U4] into linear forests, each consisting of n components which

start in U1 and end in U4. Finally, using Theorem 8.1, we close each of these linear forests

into a Hamilton cycle by approximately decomposing T [U4, U1] into “suitable” perfect

matchings.

Recall that in Theorem 8.1 and Corollary 8.3, there is the flexibility of prescribing a few

edges. This enables us to construct an approximate decomposition of T which incorporates
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given feasible systems.

Lemma 14.1 (Incorporating feasible systems into an approximate Hamilton decomposi-

tion). Let 0 < 1
n
≪ τ ≪ δ ≤ 1 and 0 < 1

n
≪ ε ≪ η, ν ≤ 1. Let T be a regular bipartite

tournament on 4n vertices. Let U = (U1, . . . , U4) be an (ε, 4)-partition for T and U∗

be an (ε,U)-exceptional set for T . Let ℓ ≤ 2(δ − η)
(
n− |U

∗|
4

)
. Let F1, . . . ,Fℓ ⊆ T be

edge-disjoint feasible systems and D ⊆ T \
⋃

i∈[ℓ]Fi. Suppose that the following hold.

(i) For each i ∈ [4], D[Ui \ U∗, Ui+1 \ U∗] is (δ, ε)-almost regular.

(ii) For each i ∈ [4], D[Ui \ U∗, Ui+1 \ U∗] is a bipartite robust (ν, τ)-expander with

bipartition (Ui \ U∗, Ui+1 \ U∗).

(iii) For each i ∈ [ℓ], e(Fi) ≤ εn.

(iv) For each v ∈ V (T ) \U∗, there exist at most εn indices i ∈ [ℓ] such that v ∈ V (Fi).

(v) For each i ∈ [ℓ], V +(Fi) ⊆ U1 and V −(Fi) ⊆ U4.

Then, there exist edge-disjoint Hamilton cycles C1, . . . , Cℓ of T such that Fi ⊆ Ci ⊆ D∪Fi

for each i ∈ [ℓ].

Given two digraphs D and D′, we say that D′ is a subdivision of D if D′ can be

obtained from D by replacing some edges by internally vertex-disjoint paths.

Proof of Lemma 14.1. For each i ∈ [4], define U∗i := U∗ ∩ Ui. Let A := U4 \ U∗ and

B := U1 \ U∗. By Fact 10.2(i) and (ES2), we have

|A| = |B| ≥ (1− ε)n. (14.1)

Step 1: Approximately decomposing D[U1, U2] ∪D[U2, U3] ∪D[U3, U4]. For each

i ∈ [3] in turn, we will use Corollary 8.3 to approximately decompose D[Ui, Ui+1] into

matchings. We will then combine a matching from each pair to get an approximate

decomposition of D[U1, U2] ∪D[U2, U3] ∪D[U3, U4] into spanning linear forests.
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Let i ∈ [3] and j ∈ [ℓ]. Denote by S+
i,j the set of vertices v ∈ Ui\U∗ such that d+Fj

(v) = 1

and let S−i+1,j be the set of vertices v ∈ Ui+1 \U∗ such that d−Fj
(v) = 1. (Thus, S+

i,j ∪ S−i+1,j

is the set of vertices which are already covered by Fj and so need to be avoided by the jth

matching of D[Ui, Ui+1].) Note that

|S+
i,j|

(F2),(F3)
= eFj

(Ui, Ui+1) + eFj
(Ui, Ui−1)− |U∗i | (14.2)

(F1),(ES2)
= eFj

(Ui, Ui+1) + eFj
(Ui+2, Ui+1)− |U∗i+1|

(F2),(F3)
= |S−i+1,j|.

Let Fi,j be an auxiliary perfect matching between S+
i,j and S−i+1,j. Then,

e(Fi,j)
(14.2)

≤ e(Fj)
(iii)

≤ εn
(ES2)

≤ 2ε(n− |U∗i |)

and so Corollary 8.3(i) holds with n− |U∗i |, Fi,j, and 2ε playing the roles of n, Fi, and ε.

Let i ∈ [3]. For each j ∈ [ℓ], we have V (Fi,j) ⊆ V (Fj). Thus, (iv) implies that

Corollary 8.3(ii) holds with D[Ui \ U∗, Ui+1 \ U∗] and Fi,1, . . . , Fi,ℓ playing the roles of G

and F1, . . . , Fℓ. Let Mi,1, . . . ,Mi,ℓ be the matchings obtained by applying Corollary 8.3

with D[Ui \ U∗, Ui+1 \ U∗], n− |U∗i |, 2ε, and Fi,1, . . . , Fi,ℓ playing the roles of G, n, ε, and

F1, . . . , Fℓ. For each j ∈ [ℓ], let F ′i,j be obtained from Mi,j \ Fi,j by orienting all the edges

from Ui to Ui+1 and observe that F ′i,j ⊆ D(Ui \ U∗, Ui+1 \ U∗).

For each j ∈ [ℓ], let F ′j := Fj ∪
⋃

i∈[3] F
′
i,j. We claim that F ′1, . . . ,F ′ℓ are edge-disjoint

spanning linear forests whose components are paths which start in B = U1 \ U∗ and end

in A = U4 \ U∗.

Claim 1. F ′1, . . . ,F ′ℓ are edge-disjoint linear forests such that the following hold for each

i ∈ [ℓ].

(a) E(F ′i) ∩ ED(A,B) = ∅.

(b) V (F ′i) = V (T ).

(c) |V 0(F ′i) ∩ (A ∪B)| ≤ 3ε|A|.
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(d) V +(F ′i) ⊆ B and V −(F ′i) ⊆ A.

Proof of Claim. By assumption, F1, . . . ,Fℓ are edge-disjoint. For each i ∈ [3], Corollary 8.3

implies that F ′i,1, . . . , F
′
i,ℓ are edge-disjoint matchings in ED(Ui, Ui+1). Therefore, F ′1, . . . ,F ′ℓ

are edge-disjoint, as desired.

Let j ∈ [ℓ]. Suppose for a contradiction that F ′j is not a linear forest. By (F3) and

construction, each v ∈ V (T ) satisfies both d±F ′
j
(v) ≤ 1. Thus, F ′j contains a cycle C.

Clearly,
⋃

i∈[3] F
′
i,j is a linear forest. Thus, there exists e ∈ E(Fj) ∩ E(C). Let v be the

starting point of the component of Fj which contains e. Then, v ∈ V (C). Let u be the

inneighbour of v in C. By assumption, uv /∈ E(Fj) (otherwise v would not be the starting

point of one of the components of Fj). Thus, uv ∈
⋃

i∈[3] E(F ′i,j) and so v ∈ U2 ∪ U3 ∪ U4,

which contradicts (v). Therefore, F ′j is a linear forest, as desired.

Let j ∈ [ℓ]. We show that (a)–(d) are satisfied. By construction and since E(Fj) ∩

E(D) = ∅, (a) holds. By (F2), U∗ ⊆ V (Fj) ⊆ V (F ′j) and, by construction, (Ui ∪ Ui+1) \

(V (Fj) ∪ U∗) ⊆ V (F ′i,j) ⊆ V (F ′j) for each i ∈ [3]. Thus, (b) holds. By construction,⋃
i∈[3] Fi,j does not contain any edge which starts in A = U4 \ U∗ or ends in B = U1 \ U∗.

Thus,

V 0(F ′j) ∩ A ⊆ (V 0(Fj) ∩ A) ∪ (V +(Fj) ∩ A)

and

V 0(F ′j) ∩B ⊆ (V 0(Fj) ∩B) ∪ (V −(Fj) ∩B).

Therefore,

|V 0(F ′j) ∩ (A ∪B)| ≤ |V (Fj)|
(iii)

≤ 2εn
(14.1)

≤ 3ε|A|

and so (c) holds. Finally, we verify that V +(F ′j) ⊆ B and V −(F ′j) ⊆ A. By (F2), each

v ∈ U∗ satisfies d+F ′
j
(v) = 1 = d−F ′

j
(v) and so V +(F ′j) ∩ U∗ = ∅ = V −(F ′j) ∩ U∗. Let

i ∈ [3]. Suppose that v ∈ Ui \ U∗. If v ∈ S+
i,j, then d+Fj

(v) = 1; otherwise, v ∈ V (F ′i,j).

Thus, d+F ′
j
(v) = 1 and so v /∈ V −(F ′j). Therefore, V −(F ′j) ⊆ U4 \ U∗ = A. Similarly,
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if w ∈ Ui+1 \ U∗, then either d−Fj
(w) = 1 or w ∈ V (F ′i,j). Thus, d−F ′

j
(w) = 1 for each

w ∈ Ui+1 \ U∗ and so V +(F ′j) ⊆ U1 \ U∗ = B. Therefore, (d) is satisfied. □

Step 2: Approximately decomposing D[U4, U1]. In this step, we use Theorem 8.1

to approximately decompose D[U4, U1] into matchings which close F ′1, . . . ,F ′ℓ into Hamilton

cycles of T .

To apply Theorem 8.1, we first need to contract F ′1, . . . ,F ′ℓ into auxiliary linear forests

on A ∪ B. For each j ∈ [ℓ], let F̃j be the digraph on A ∪ B defined as follows. For any

distinct u, v ∈ A ∪ B, we let uv ∈ E(F̃j) if and only if F ′j contains a (u, v)-subpath P

which satisfies V 0(P ) ⊆ (U2 ∪ U3 ∪ U∗).

Claim 2. Let i ∈ [ℓ]. Then, F ′i is a subdivision of F̃i. In particular, F̃i is a linear forest

satisfying the following properties.

(α) V 0(F̃i) = V 0(F ′i) ∩ (A ∪B) = (A \ V −(F ′i)) ∪ (B \ V +(F ′i)).

(β) V +(F̃i) = V +(F ′i) ⊆ B and V −(F̃i) = V −(F ′i) ⊆ A.

Proof of Claim. Let i ∈ [ℓ]. Using Claim 1, it is easy to check that F ′i is a subdivision of

F̃i. Then, each v ∈ V (F̃i) satisfies both d±
F̃i

(v) = d±F ′
i
(v). Moreover, each cycle in F̃i would

induce a cycle in F ′i . Recall from Claim 1 that F ′i is a linear forest. Thus, F̃i is also a

linear forest and (α) and (β) follow from (b) and (d). □

Since F̃1, . . . , F̃ℓ may not be bipartite on vertex classes A and B, we cannot apply

Theorem 8.1 directly and need to consider equivalent linear forests (recall Definition 8.4).

Claim 3. There exist bipartite linear forests F̃ ′1, . . . , F̃ ′ℓ on vertex classes A and B such

that F̃i and F̃ ′i are equivalent for each i ∈ [ℓ]. In particular, the following hold for each

i ∈ [ℓ].

(α′) V 0(F̃ ′i) = V 0(F̃i) = V 0(F ′i) ∩ (A ∪B) = (A \ V −(F ′i)) ∪ (B \ V +(F ′i)).

(β′) V +(F̃ ′i) = V +(F̃i) = V +(F ′i) ⊆ B and V −(F̃ ′i) = V −(F̃i) = V −(F ′i) ⊆ A.
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Proof of Claim. Let i ∈ [ℓ]. By Claim 2, F̃i is a linear forest which spans A∪B and whose

components are all paths which start in B and end in A. Recall from (14.1) that |A| = |B|.

Thus, one can easily construct an auxiliary bipartite linear forest F̃ ′i which is equivalent

to F̃i. Then, (α′) and (β′) follow from (α) and (β). □

Let F̃ ′1, . . . , F̃ ′ℓ be the linear forests obtained by applying Claim 3. We now verify that

Theorem 8.1(i)–(iii) hold for F̃ ′1, . . . , F̃ ′ℓ. Let i ∈ [ℓ]. Since F̃ ′i is a spanning bipartite linear

forest on vertex classes A and B, we have

e(F̃ ′i [B,A]) =
∑
v∈B

d+
F̃ ′

i

(v) = |B \ V −(F̃ ′i)|
(β′)
= |B| (14.1)= |A|

and

e(F̃ ′i [A,B]) =
∑
v∈A

d+
F̃ ′

i

(v) = |A \ V −(F̃ ′i)|
(β′)
= |V 0(F̃i) ∩ A|

(c),(α′)

≤ 3ε|A|.

Thus, Theorem 8.1(i) and (ii) hold with F̃ ′i , |A|, and 3ε playing the roles of Fi, n, and ε.

Moreover, each v ∈ A satisfies

dF̃ ′
i [A,B](v) = d+

F̃ ′
i

(v)
(α′),(β′)

= d+F ′
i
(v)

(a)
= d+Fi

(v) = dFi[A,B](v)

and, similarly, each w ∈ B satisfies dF̃ ′
i [A,B](w) = dFi[A,B](w). Thus, (iv) and (14.1) imply

that Theorem 8.1(iii) holds with F̃ ′i , |A|, and 3ε playing the roles of Fi, n, and ε.

Apply Theorem 8.1 with D[A ∪B], |A|, 3ε, and F̃ ′1, . . . , F̃ ′ℓ playing the roles of D,n, ε,

and F1, . . . , Fℓ to obtain edge-disjoint cycles C̃1, . . . , C̃ℓ such that, for each i ∈ [ℓ], V (C̃i) =

A ∪ B and F̃ ′i ⊆ C̃i ⊆ D(A,B) ∪ F̃ ′i . For each i ∈ [ℓ], let C̃ ′i := (C̃i \ F̃ ′i) ∪ F̃i and

Ci := (C̃ ′i \ F̃i) ∪ F ′i = (C̃i \ F̃ ′i) ∪ F ′i .

Step 3: Verifying the conclusions of the lemma. We now verify that C1, . . . , Cℓ

are edge-disjoint Hamilton cycles of T such that, for each i ∈ [ℓ], Fi ⊆ Ci ⊆ D ∪ Fi.

Recall from Claim 1 that F ′1, . . . ,F ′ℓ are edge-disjoint. Thus, (a) and Theorem 8.1
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imply that C1, . . . , Cℓ are edge-disjoint. Let i ∈ [ℓ]. By construction, F ′i ⊆ D ∪ Fi and

C̃i \ F̃ ′i ⊆ D. Thus, Ci = (C̃i \ F̃ ′i) ∪ F ′i ⊆ D ∪ Fi. Moreover, Fi ⊆ F ′i ⊆ Ci, as desired.

Let i ∈ [ℓ] and recall from Claim 3 that F̃i and F̃ ′i are equivalent. Thus, Fact 8.5

implies that C̃ ′i is also a Hamilton cycle on A ∪B. By Claim 2, F ′i is a subdivision of F̃i

and so Ci is a subdivision of C̃ ′i. In particular, Ci is a cycle satisfying

V (T ) ⊇ V (Ci) = V (C̃ ′i) ∪ V (F ′i)
(b)

⊇ V (T ).

That is, Ci is a Hamilton cycle of T .

14.2 Proof of Theorem 4.4

We are now ready to derive Theorem 4.4. Our strategy is as follows. In Step 1, we use

Lemma 12.10 to construct a cycle-setup for the robust decomposition lemma (Lemma 11.10).

In Step 2, we decompose the backward edges and exceptional edges into feasible systems

using Lemma 13.12. In Step 3, we apply the robust decomposition lemma (Lemma 11.10)

to obtain an absorber Drob (the required extended special factors are constructed using

Lemma 12.7). In Step 4, we construct an approximate Hamilton decomposition using

Lemma 14.1. In Step 5, we decompose the leftovers using Drob.

Proof of Theorem 4.4. Fix additional constants such that

0 <
1

n0

≪ ε≪ ε1 ≪ ε2 ≪ η ≪ 1

k
≪ ε3 ≪ γ ≪ 1

q
≪ 1

f
≪ d≪ 1

ℓ′
,

1

g
, ν ≪ τ ≪ 1

and k
14
, k
f
, k
g
, q
f
, 2fk
3g(g−1) ∈ N. Let m0 ∈ N be such that ε21n ≤ m0 ≤ ε1n and m :=

n−m0

k
, m
4ℓ′
, fm

q
∈ N. Fix additional constants such that 1

f
≪ r1

m
≪ d and η ≪ r

m
≪ 1

k
.

Define

r2 := 96ℓ′g2kr, r3 :=
rfk

q
, r⋄ := r1 + r2 + r − (q − 1)r3, s′ := rfk + 7r⋄. (14.3)
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For simplicity, we denote

Q := [r3]× [ q
f
]× [4]× [f ] and Q′ := [r⋄]× [1]× [4]× [7]. (14.4)

Let T be a regular bipartite tournament which is ε-close to the complete blow-up C4 on

vertex classes of size n ≥ n0. Let U = (U1, . . . , U4) be an optimal (ε, 4)-partition for T

and denote by H ⊆
←−
T U the digraph obtained by applying Lemma 13.8.

Step 1: Constructing a cycle-setup. We will use Lemma 12.10. We first construct

the partitions in P∗ randomly, to ensure that the edges of H are well distributed across

the clusters. More precisely, for each (h, i, j) ∈ [ q
f
]× [4]× [k], let Vi,j,h ⊆ Ui be obtained

by including each v ∈ Ui with probability f
kq

independently of all other vertices. For each

(i, j) ∈ [4]× [k], denote Vi,j :=
⋃

h∈[ q
f
] Vi,j,h. For each i ∈ [4], let C̃i := Vi,1 . . . Vi,k and let

Ii := {I1, . . . , If} denote the canonical interval partition of C̃i into f interval, that is,

Ij := Vi,(j−1) k
f
+1Vi,(j−1) k

f
+2 . . . Vi,j k

f
+1

for each j ∈ [f ] (see Definition 8.20). For each (h, i, j) ∈ [ q
f
]× [4]× [f ], define

Sh,i,j := Vi,(j−1) k
f
+2,h ∪ Vi,(j−1) k

f
+3,h ∪ · · · ∪ Vi,j k

f
,h, (14.5)

that is, Sh,i,j is the union of the hth subclusters of the internal clusters in the jth interval

in the canonical interval partition of C̃i into f intervals.

Claim 1. With positive probability, all of the following hold.

(i) For each (h, i, j) ∈ [ q
f
]× [4]× [k], we have |Vi,j,h| ≥ (1−ε)fn

kq
.

(ii) For each (h, i, j) ∈ [ q
f
] × [4] × [k] and v ∈ V (T ), we have |N±T (v) ∩ Vi,j,h| ≥

f |N±
T (v)∩Ui|
kq

− εn.
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(iii) For each h, h′ ∈ [ q
f
], i ∈ [4], and j, j′ ∈ [f ], we have

eH−U1−γ(T )(Sh,i,j, Sh′,i−1,j′) ≥ 110γn|U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|.

Proof of Claim. By Lemma 7.16 and a union bound, (i) and (ii) hold with probability at

least 1− 1
n
.

Let i ∈ [4]. If |U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )| = 0, then (iii) holds for i with probability 1.

Suppose that |U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )| ≥ 1. Denote G := H[Ui, Ui−1]. By Lemma 13.8(i)

and (iii), ∆(G) ≤ γn and e(G) ≥ n
2
. Also observe that, for each i′ ∈ [4], the q sets

S1,i′,1, . . . , S q
f
,i′,1, S1,i′,2, . . . , S q

f
,i′,f randomly partition Ui′ . Thus, Lemma 7.21 (applied

with q, γ, Ui, Ui−1, S1,i,1, . . . , S q
f
,i,f , and S1,i−1,1, . . . , S q

f
,i−1,f playing the roles of k, ε, A,B,

A1, . . . , Ak, and B1, . . . , Bk) implies that, with probability at least 4
5
, all h, h′ ∈ [ q

f
] and

j, j′ ∈ [f ] satisfy

eH(Sh,i,j, Sh′,i−1,j′) ≥
eH(Ui, Ui−1)

2q2

Lemma 13.8(iii)

≥ 110γn|U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|.

Thus, Lemma 13.8(ii) implies that (iii) holds for i with probability at least 4
5
.

Therefore, a union bound over all i ∈ [4] implies that (iii) holds with probability

at least 1
5
. Then, a union bound implies that, with positive probability, (i)–(iii) are all

satisfied. □

We may therefore assume that (i)–(iii) are all satisfied. We now equalise the partition

classes to achieve (i′) below, without affecting the bounds in (ii) and (iii) too much. For

this, note that

|U ε1
i (T )|

(13.2)

≤ eT (Ui, Ui−1)

ε1n

Fact 10.5

≤ εn2

ε1n
≤ ε31n

for each i ∈ [4]. Moreover, (i) implies that

|Vi,j,h| ≥
fm

q
+

f(m0 − εn)

kq
≥ fm

q
+

(ε21 − ε)fn

kq
≥ fm

q
+ |U ε1

i (T )|
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for each (h, i, j) ∈ [ q
f
]× [4]× [k]. Thus, for each i ∈ [4], we can let U∗i be obtained from

U ε1
i (T ) by adding, for each (h, j) ∈ [ q

f
] × [k], precisely |Vi,j,h \ U ε1

i (T )| − fm
q

vertices of

Vi,j,h\U ε1
i (T ). For each (h, i, j) ∈ [ q

f
]×[4]×[k], let V ′i,j,h := Vi,j,h\U∗i and V ′i,j := Vi,j\U∗i . For

each i ∈ [4], define Ci := V ′i,1 . . . V
′
i,k. For each (h, i, j) ∈ [ q

f
]× [4]× [f ], let S ′h,i,j := Sh,i,j \U∗i

and observe that S ′h,i,j is the union of the hth subclusters of the internal clusters in the jth

interval in the canonical interval partition of Ci into f intervals. Then, (i)–(iii) imply that

the following properties are satisfied.

(i′) For each (h, i, j) ∈ [ q
f
]× [4]× [k], we have |V ′i,j,h| =

fm
q

and |U∗i | = m0.

(ii′) For each (h, i, j) ∈ [ q
f
]× [4]× [f ] and v ∈ V (T ), we have

∣∣N±T (v) ∩
(
U∗i ∪ S ′h,i,j

)∣∣ ≥ (k

f
− 1

)
·
(
f |N±T (v) ∩ Ui|

kq
− εn

)
≥ |N

±
T (v) ∩ Ui|

2q
− ε1n.

(iii′) For each h, h′ ∈ [ q
f
], i ∈ [4], and j, j′ ∈ [f ], we have

eH−U1−γ(T )

(
U∗i ∪ S ′h,i,j, U

∗
i−1 ∪ S ′h′,i−1,j′

)
≥ 110γn|U1−γ

i−2 (T ) ∪ U1−γ
i−3 (T )|.

By (i′) and construction, U∗ :=
⋃

i∈[4] U
∗
i is an (ε1,U)-exceptional set for T (see Defini-

tion 13.11). Thus, Fact 10.2(i) and (ES2) imply that

n′ := |U1 \ U∗| = · · · = |U4 \ U∗| = n− |U
∗|

4
≥ (1− ε1)n. (14.6)

Therefore, each i ∈ [4] satisfies

δ(T [Ui \ U∗, Ui+1 \ U∗]) ≥ n′ − ε1n ≥ (1−
√
ε1)n

′.

Define

U ′ := (U1 \ U∗, . . . , U4 \ U∗).
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For each i ∈ [4], let Pi be the partition of Ui \ U∗ into an empty exceptional set and the

k clusters V ′i,1, . . . , V
′
i,k and let P∗i be the partition of Ui \ U∗ into an empty exceptional

set and the kq
f

clusters V ′i,1,1, . . . , V
′
i,1, q

f
, V ′i,2,1, . . . , V

′
i,k, q

f
. Denote P := (P1, . . . ,P4), P∗ :=

(P∗1 , . . . ,P∗4 ), and C := (C1, . . . , C4). For each i ∈ [4], note that P∗i is a q
f
-refinement of

Pi and Ci is a Hamilton cycle on the clusters in Pi. Let D1, D2,P ′,R,U ,U ′, and M be

obtained by applying Lemma 12.10 with
−→
T U − U∗,U ′, n′, q

f
,
√
ε1, and ε2 playing the roles

of D,U , n, ℓ∗, ε, and ε′. Let D′1 := T \ D2 and observe that D′1 is obtained from D1 by

adding backward and exceptional edges only. Thus, Lemma 12.10(i)–(iii) are still satisfied

with D′1 playing the role of D1. That is, the following hold.

(iv) (U ′,P ,P∗, C,M) is a consistent (4, ℓ∗, k, n′)-cycle-framework. In particular, the

following hold.

– By Fact 12.9, (U ′,P ,P , C,M) is a consistent (4, ℓ∗, k, n′)-cycle-framework.

– For any i ∈ [4] and any cluster V ∈ Pi, the set NMi
(V ) is a cluster in Pi+1

(where P5 := P1).

– The analogue holds for the partitions in P∗.

(v) For any i ∈ [4], D′1[V,W ] is [ε2,≥ 1− 3d]-superregular whenever V ⊆ Ui \U∗ and

W ⊆ Ui+1 \ U∗ are unions of clusters in P∗i and P∗i+1, respectively. In particular,

since P∗i is a refinement of Pi for each i ∈ [4], the analogue holds for the partitions

in P .

(vi) (D2,U ′,P ,P ′,P∗,R, C,U ,U ′,M) is a (4, ℓ′, q
f
, k,m, ε2, d)-cycle-setup. In par-

ticular, Facts 11.4 and 11.5 imply that (U ′,P ,P∗, C,M) is a (4, q
f
, k, n′)-cycle-

framework and (U ′,P ,P , C,M) is a (4, 1, k, n′)-cycle-framework.

As discussed in Section 12.3, we will use D′1 to construct the required extended special

factors (via Lemma 12.7), while D2 will be reserved for the application of the robust

decomposition lemma for blow-up cycles (Lemma 11.10).

Step 2: Decomposing the backward and exceptional edges. We will use
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Lemma 13.12, so we start by building digraphs H1, . . . , Hs which satisfy Lemma 13.12(i)–

(iv).

First, observe that if we apply Lemma 13.8, then H satisfies Lemma 13.12(iii) and (iv),

but not Lemma 13.12(i) and (ii). To achieve the latter, we add edges as follows. Let H̃ be

the spanning subdigraph of
←−
T U which consists of all the edges incident to U1−γ(T ). Let Ĥ

be the spanning subdigraph of
−→
T U which consists of all the edges incident to U∗ \U1−γ(T ).

By (13.2), we see that H ∪ H̃ ∪ Ĥ now satisfies all the bounds in Lemma 13.12(i)–(iv).

However, as discussed in Section 13.3, the feasible systems F1, . . . ,Ft constructed

within H1, . . . , Hs will form the special covers required for Lemma 12.7. By Lemmas 13.6

and 13.12(c), these feasible systems F1, . . . ,Ft will automatically form balanced special

covers. Additionally, Lemma 12.7 requires F1, . . . ,Ft to be localised (recall Definition 12.3).

To achieve this, each Hℓ will be associated to one set of “locality parameters” (that is,

a choice of (h, i, j) in Definition 12.3) and then obtained from H ∪ H̃ ∪ Ĥ by removing

all the edges which are forbidden with respect to this set of parameters. In Claim 2

below, we will verify that not too many edges are removed and so H1, . . . , Hs still satisfy

Lemma 13.12(i)–(iv). Moreover, each of the Fi ⊆ Hℓ will automatically be localised.

Recall from Lemma 11.10 that we need two types of extended special factors: some

( q
f
, 4, f)-extended special factors with respect to U ′,P∗, C, and M and some (1, 4, 7)-

extended special factors with respect to U ′,P , C, and M. These will be constructed

separately by applying Lemma 12.7 successively. First, we construct the Hℓ’s for the first

application of Lemma 12.7, that is, for the construction of the ( q
f
, 4, f)-extended special

factors with respect to U ′,P∗, C, and M.

More precisely, let (h, i, j) ∈ [ q
f
]× [4]× [f ]. Let k′ := k

f
+ 1 and denote by W1 . . .Wk′

the jth interval in the canonical interval partition of Ci into f intervals. Denote by

W1,h, . . . ,Wk′,h the hth subclusters of W1, . . . ,Wk′ contained in P∗i . Let Eh,i,j be the set of

edges e ∈ E(T ) such that

V (e) ∩ (Ui ∪ Ui+1) ̸⊆ U∗ ∪ (W1,h ∪ · · · ∪Wk′−1,h) ∪NMi
(W2,h ∪ · · · ∪Wk′,h). (14.7)
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(Roughly speaking, the set Eh,i,j consists of all the edges of T which cannot be included in

a ( q
f
, 4, f, h, i, j)-localised special cover. See the proof of Claim 2(a) below for details.) Let

Hh,i,j := (H∪H̃∪Ĥ)\Eh,i,j . We now claim that any special cover in Hh,i,j is ( q
f
, 4, f, h, i, j)-

localised with respect to P∗, C, and M, and that Hh,i,j satisfies Lemma 13.12(i)–(iv).

Claim 2. For each (h, i, j) ∈ [ q
f
]× [4]× [f ], the following properties are satisfied.

(a) Let SC be a special cover in T with respect to U∗. If SC ⊆ Hh,i,j, then SC is

( q
f
, 4, f, h, i, j)-localised with respect to P∗, C, andM.

(b) For each v ∈ U1−γ(T ),
←−
d ±Hh,i,j ,U(v) ≥ 3γn.

(c) For each v ∈ U∗ \ U1−γ(T ),
−→
d ±Hh,i,j ,U(v) ≥ γ2n.

(d) For each v ∈ V (T ) \ U1−γ(T ),
←−
d ±Hh,i,j ,U(v) ≤ 2γn.

(e) For each i′ ∈ [4], eHh,i,j−U1−γ(T )(Ui′ , Ui′−1) ≥ 110γn|U1−γ
i′−2(T ) ∪ U1−γ

i′−3(T )|.

Proof of Claim. Let (h, i, j) ∈ [ q
f
] × [4] × [f ]. Denote by W1 . . .Wk′ the jth interval in

the canonical interval partition of Ci into f intervals. Denote by W1,h, . . . ,Wk′,h the hth

subclusters of W1, . . . ,Wk′ contained in P∗i . Note that Si := S ′h,i,j = W2,h ∪ · · · ∪Wk′−1,h

and, by (iv), Si+1 := S ′h,i+1,j = NMi
(W2,h ∪ · · · ∪Wk′−1,h). For each i′ ∈ [4] \ {i, i + 1}, let

Si′ := S ′1,i′,1.

Let SC ⊆ Hh,i,j be a special cover in T with respect to U∗. By Definition 8.24,

V +(SC) ∪ V −(SC) ⊆ V (T ) \ U∗ and so (14.7) implies that

(V +(SC) ∪ V −(SC)) ∩ (Ui ∪ Ui+1) ⊆ (W1,h ∪ · · · ∪Wk′−1,h) ∪NMi
(W2,h ∪ · · · ∪Wk′,h).

Thus, SC is ( q
f
, 4, f, h, i, j)-localised with respect to P∗, C, and M, and so (a) holds.

Let i′ ∈ [4] and v ∈ U1−γ
i′ (T ). By Fact 13.9 and (ES1), v ∈ U∗ and so (14.7) implies

that Eh,i,j does not contain any edge from v to U∗i′−1 ∪ Si′−1. Thus,

←−
d +

Hh,i,j ,U(v) ≥ d+
H̃\Eh,i,j

(v) ≥ |N+
T (v) ∩ (U∗i′−1 ∪ Si′−1)|

(ii′)

≥ (1− γ)n

2q
− ε1n ≥ 3γn.
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Similarly,
←−
d −Hh,i,j ,U(v) ≥ 3γn and so (b) is satisfied.

Let i′ ∈ [4] and v ∈ U∗i′ \ U1−γ(T ). Since v ∈ U∗, (14.7) implies that Eh,i,j does not

contain any edge from U∗i′−1 ∪ Si′−1 to v. Thus,

−→
d −Hh,i,j ,U(v) ≥ d−

Ĥ\Eh,i,j
(v) ≥ |N−T (v) ∩ (U∗i′−1 ∪ Si′−1)|

(ii′)

≥ γn

2q
− ε1n ≥ γ2n.

Similarly,
−→
d +

Hh,i,j ,U(v) ≥ γ2n and so (c) holds.

For any v ∈ V (T ) \ U1−γ(T ), we have

←−
d ±Hh,i,j ,U(v) ≤ d±H(v) + d±

H̃
(v)

Lemma 13.8(i)

≤ γn + |U1−γ(T )|
Fact 13.9,Definition 13.11

≤ γn + 4ε1n ≤ 2γn

and so (d) holds.

Let i′ ∈ [4]. By (14.7), Eh,i,j does not contain any edge from U∗i′ ∪ Si′ to U∗i′−1 ∪ Si′−1.

Thus,

eHh,i,j−U1−γ(T )(Ui′ , Ui′−1) ≥ e(H\Eh,i,j)−U1−γ(T )(Ui′ , Ui′−1)

≥ eH−U1−γ(T )(U
∗
i′ ∪ Si′ , U

∗
i′−1 ∪ Si′−1)

(iii′)

≥ 110γn|U1−γ
i′−2(T ) ∪ U1−γ

i′−3(T )|

and so (e) is satisfied. □

The Hℓ’s for the second application of Lemma 12.7, that is, for the construction of

the (1, 4, 7)-extended special factors with respect to U ′,P , C, and M, can be constructed

analogously. More precisely, let (h, i, j) ∈ [1]× [4]× [7]. Let k′′ := k
7

+ 1 and denote by

W ′
1 . . .W

′
k′′ the jth interval in the canonical interval partition of Ci into 7 intervals. Let

E ′h,i,j be the set of edges e ∈ E(T ) such that

V (e) ∩ (Ui ∪ Ui+1) ̸⊆ U∗ ∪ (W ′
1 ∪ · · · ∪W ′

k′′−1) ∪NMi
(W ′

2 ∪ · · · ∪W ′
k′′).
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Let H ′h,i,j := (H ∪ H̃ ∪ Ĥ) \ E ′h,i,j. Since f > 14, note that every interval in the canonical

interval partition of Ci into 7 intervals contains, as a subinterval, an interval from the

canonical interval partition of Ci into f intervals. That is, there exists (h′, j′) ∈ [ q
f
]× [f ]

such that S ′h′,i,j′ ⊆ W ′
2 ∪ · · · ∪W ′

k′′−1. Thus, we can apply similar arguments as in Claim 2,

to show that the following hold.

(a′) Let SC be a special cover in T with respect to U∗. If SC ⊆ H ′h,i,j, then SC is

(1, 4, 7, h, i, j)-localised with respect to P , C, and M.

(b′) For each v ∈ U1−γ(T ),
←−
d ±H′

h,i,j ,U
(v) ≥ 3γn.

(c′) For each v ∈ U∗ \ U1−γ(T ),
−→
d ±H′

h,i,j ,U
(v) ≥ γ2n.

(d′) For each v ∈ V (T ) \ U1−γ(T ),
←−
d ±H′

h,i,j ,U
(v) ≤ 2γn.

(e′) For each i′ ∈ [4], eH′
h,i,j−U1−γ(T )(Ui′ , Ui′−1) ≥ 110γn|U1−γ

i′−2(T ) ∪ U1−γ
i′−3(T )|.

DenoteH := {Hh,i,j | (h, i, j) ∈ [ q
f
]×[4]×[f ]} andH′ := {H ′h,i,j | (h, i, j) ∈ [1]×[4]×[7]}.

Let s := 4q+28 and let H1, . . . , Hs be an enumeration of H∪H′. Recall from Lemma 11.10

that we need to construct r3 ( q
f
, 4, f)-extended special factors with respect to U ′,P∗, C, and

M, as well as r⋄ (1, 4, 7)-extended special factors with respect to U ′,P , C, and M. Also

recall that in Lemma 13.12, s1, . . . , ss denote the number of feasible systems constructed

within H1, . . . , Hs, respectively. Thus, for each i ∈ [s], define

si :=


r3 if Hi ∈ H;

r⋄ if Hi ∈ H′.

Note that
∑

i∈[s] si = 4qr3 + 28r⋄ = 4s′ ≤ ε3n (see (14.3) for the definition of s′). By

(b)–(e) and (b′)–(e′), Lemma 13.12(i)–(iv) hold.

Let E := {uv ∈ E(T ) | vu ∈
⋃
M} (this is precisely the set of edges which cannot be

decomposed via Lemma 11.10). By (vi) and (CF5), Lemma 13.12(v) and (vi) hold. Recall

the notation introduced in (14.4). By Lemma 13.12 (applied with ε1, ε2, and ε3 playing
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the roles of ε, ε′, and η), there exist disjoint sets

S = {Fℓ,h,i,j | (ℓ, h, i, j) ∈ Q}, S ′ = {F ′ℓ,h,i,j | (ℓ, h, i, j) ∈ Q′}, S ′′ = {Fi | i ∈ [n− 4s′]}

such that S∗ := S ∪ S ′ ∪ S ′′ is a set of n edge-disjoint feasible systems which satisfy the

following properties.

(α) E(
←−
T U) ∪ E ⊆ E(S∗) ⊆ E(T ).

(β) For each F ∈ S∗, e(F) ≤ ε2n.

(γ) For each F ∈ S ∪ S ′, V 0(F) = U∗.

(δ) For each (ℓ, h, i, j) ∈ Q, we have Fℓ,h,i,j ⊆ Hh,i,j \ E.

(ε) For each (ℓ, h, i, j) ∈ Q′, we have F ′ℓ,h,i,j ⊆ H ′h,i,j \ E.

(ζ) For each F ∈ S ′′, we have V +(F) ⊆ U1 and V −(F) ⊆ U4.

By Fact 13.4, we may assume without loss of generality that all the forward edges in E(S∗)

are either edges of E or incident to U∗. Thus, Lemma 13.12(vi) implies that the following

holds.

(η) For each v ∈ V (T ) \ U∗, we have |
−→
N±S∗(v) \ U∗| ≤ 1.

We next observe that the feasible systems in S ∪ S ′ are localised and balanced special

covers.

Claim 3. The following hold.

(γ′) Each F ∈ S ∪ S ′ is a U ′-balanced special cover in D′1 with respect to U∗.

(δ′) For each (ℓ, h, i, j) ∈ Q, Fℓ,h,i,j is ( q
f
, 4, f, h, i, j)-localised with respect to P∗, C,

andM.

(ε′) For each (ℓ, h, i, j) ∈ Q′, F ′ℓ,h,i,j is (1, 4, 7, h, i, j)-localised with respect to P , C,

andM.

Proof of Claim. By assumption, (δ), and (ε), all the forward edges in E(S∪S ′) are incident
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to U∗. Since by Step 1 D2 = T \D′1 ⊆
−→
T U − U∗, this implies that E(S ∪ S ′) ⊆ E(D′1).

Moreover, (ES2) implies that |U∗1 | = · · · = |U∗4 | and so Lemma 13.6 and (γ) imply that

each F ∈ S ∪S ′ is a U ′-balanced special cover in D′1 with respect to U∗. In particular, (γ′)

holds. Then, (δ′) follows from (a) and (δ) and, similarly, (ε′) holds by (a′) and (ε). □

Step 3: Applying the robust decomposition lemma. In this step, we will apply

the robust decomposition lemma (Lemma 11.10) to obtain a robustly decomposable digraph

Drob which will enable us to decompose the leftovers after the approximate decomposition.

First, we use Lemma 12.7 to construct the required extended special factors.

Recall from Claim 3 that S ∪ S ′ consists of special covers in D′1 with respect to U∗.

For each (ℓ, h, i, j) ∈ Q, let Mℓ,h,i,j denote the complete special sequence associated to

Fℓ,h,i,j ∈ S (see Definition 8.25). Define a multiset M by M := {Mℓ,h,i,j | (ℓ, h, i, j) ∈ Q}.

For each (ℓ, h, i, j) ∈ Q′, let M ′
ℓ,h,i,j denote the complete special sequence associated to

F ′ℓ,h,i,j ∈ S ′. Define a multiset M ′ by M ′ := {Mℓ,h,i,j | (ℓ, h, i, j) ∈ Q′}.

First, we construct the ( q
f
, 4, f)-extended special factors with respect to U ′,P∗, C, and

M required for Lemma 11.10. By (β), (γ′), and (δ′), Lemma 12.7(iii)–(v) hold with

Fℓ,h,i,j,
q
f
, ε2, and U ′ playing the roles of SCℓ,h,i,j, ℓ

∗, ε, and U . Moreover, Lemma 12.7(i)

follows immediately from (iv). Let D′′1 := D′1 \ (S ′ ∪ S ′′). By Proposition 7.8(ii), (v), and

(η), Lemma 12.7(ii) holds with D′′1 and 3d playing the roles of D and ε′. Apply Lemma 12.7

with D′′1 ,U ′, r3,
q
f
, n′, ε2, 3d, and S playing the roles of D,U , r, ℓ∗, n, ε, ε′, and SC to obtain

r3 ( q
f
, 4, f)-extended special factors ESF1, . . . , ESFr3 with respect to U ′,P∗, C, and M

which satisfy the following properties, where for each (ℓ, h, i, j) ∈ Q, ESPSℓ,h,i,j denotes

the ( q
f
, 4, f, h, i, j)-extended special path system contained in ESFℓ.

(I) For each (ℓ, h, i, j) ∈ Q, we have Mℓ,h,i,j ⊆ ESPSℓ,h,i,j ⊆ (D′′1 \ S) ∪Mℓ,h,i,j.

(II) Let (ℓ, h, i, j), (ℓ′, h′, i′, j′) ∈ Q be distinct. Then, we have (ESPSℓ,h,i,j \Mℓ,h,i,j)∩

(ESPSℓ′,h′,i′,j′ \Mℓ′,h′,i′,j′) = ∅.

Define a multidigraph ESF by ESF := ESF1 ∪ · · · ∪ ESFr3 .

Next, we construct the (1, 4, 7)-extended special factors with respect to U ′,P , C, and
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M required for Lemma 11.10. By (β), (γ′), and (ε′), Lemma 12.7(iii)–(v) hold with

F ′ℓ,h,i,j, 1, 7, ε2, and U ′ playing the roles of SCℓ,h,i,j, ℓ
∗, f, ε, and U . By (iv), Lemma 12.7(i)

holds with P playing the role of P∗. Let D′′′1 := D′1\(S∪S ′′∪ESF). By Proposition 7.8(ii),

(v), (η), and Corollary 12.2, Lemma 12.7(ii) holds with D′′′1 ,P, and 3d playing the roles

of D,P∗, and ε′. Apply Lemma 12.7 with D′′′1 ,U ′,P , r⋄, 1, 7, n′, ε2, 3d, and S ′ playing

the roles of D,U ,P∗, r, ℓ∗, f, n, ε, ε′, and SC to obtain r⋄ (1, 4, 7)-extended special factors

ESF ′1, . . . , ESF ′r⋄ with respect to U ′,P , C, and M which satisfy the following properties,

where for each (ℓ, h, i, j) ∈ Q′, ESPS ′ℓ,h,i,j denotes the (1, 4, 7, h, i, j)-extended special path

system contained in ESF ′ℓ.

(I′) For each (ℓ, h, i, j) ∈ Q′, we have M ′
ℓ,h,i,j ⊆ ESPS ′ℓ,h,i,j ⊆ (D′′′1 \ S ′) ∪M ′

ℓ,h,i,j.

(II′) Let (ℓ, h, i, j), (ℓ′, h′, i′, j′) ∈ Q′ be distinct. Then, we have (ESPS ′ℓ,h,i,j \M ′
ℓ,h,i,j)∩

(ESPS ′ℓ′,h′,i′,j′ \M ′
ℓ′,h′,i′,j′) = ∅.

Define a multidigraph ESF ′ by ESF ′ := ESF ′1 ∪ · · · ∪ ESF ′r⋄ .

We are now ready to apply the robust decomposition lemma. Let D′2 := D2 \ S∗

and recall from Step 1 that D2 ⊆
−→
T U − U∗. By (vi), (η), and Proposition 11.6,

(D′2,U ′,P ,P ′,P∗,R, C,U ,U ′,M) is a (4, ℓ′, q
f
, k,m, ε3,

d
2
)-cycle-setup. Let Drob be the

robustly decomposable digraph obtained by applying Lemma 11.10 with D′2,U ′, 4, ε3, and

d
2

playing the roles of D,U , K, ε, and d.

Step 4: Approximate decomposition. Let D := T \ (S∗ ∪ ESF ∪ ESF ′ ∪Drob).

In this step, we will approximately decompose D ∪ S ′′ using Lemma 14.1. By (β) and (ζ),

Lemma 14.1(iii) and (v) hold with S ′′, n− t, and ε2 playing the roles of {F1, . . . ,Fℓ}, ℓ,

and ε. Moreover, (η) implies that each v ∈ V (T ) \ U∗ satisfies

dS′′(v) ≤
←−
d T,U(v) + |U∗|+ 2

Definition 13.11

≤ 2ε1n + 4ε1n + 2 ≤ ε2n (14.8)

and so Lemma 14.1(iv) holds with S ′′, n − t, and ε2 playing the roles of {F1, . . . ,Fℓ}, ℓ,

and ε. It remains to show that D[Ui \ U∗, Ui+1 \ U∗] is an almost regular bipartite robust
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expander for each i ∈ [4].

Claim 4. Each v ∈ V (T ) satisfies

d±D(v) =


0 if v ∈ U∗;

n− (4s′ − r)− d±S′′(v) otherwise.

(14.9)

Proof of Claim. By (F2) and since the feasible systems in S∗ are edge-disjoint, each v ∈ U∗

satisfies d±S∗(v) = n and so d±D(v) = 0, as desired. Let v ∈ V (T ) \ U∗. First, note that

|N±ESF(v) \N±T (v)| (I)= d±M (v)
Definitions 8.24 and 8.25

= d±S (v) (14.10)

and, similarly,

|N±ESF ′(v) \N±T (v)| (I
′)

= d±M ′(v)
Definitions 8.24 and 8.25

= d±S′(v). (14.11)

Moreover, Corollary 12.2 implies that

d±ESF(v) = (1 + 3q)r3 and d±ESF ′(v) = 22r⋄. (14.12)

By (I), (II), (I′), and (II′), ESF \M and ESF ′ \M ′ are edge-disjoint subdigraphs

of D′1 \ S∗ ⊆ T \ S∗. Moreover, Step 3 and Lemma 11.10 imply that Drob ⊆ D′2 ⊆

T \ (S∗ ∪ ESF ∪ ESF ′). Therefore, Lemma 11.10 implies that

d±D(v) = d±T (v)− d±
Drob(v)− d±ESF\M (v)− d±ESF ′\M ′(v)− d±S∗(v)

(14.10),(14.11)
= n− d±

Drob(v)− d±ESF(v)− d±ESF ′(v)− d±S′′(v)

(14.12)
= n− (r1 + r2 + 5r⋄)− (1 + 3q)r3 − 22r⋄ − d±S′′(v)

(14.3)
= n− (4s′ − r)− d±S′′(v),

as desired. □
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Let δ := 1
2

(
1− 4s′−r

n

)
. By Claim 4, (14.6), and (14.8), each v ∈ V (T ) \ U∗ satisfies

d±D(v) = 2δn± ε2n = 2(δ± ε2)n
′. Since by (α) D only contains forward edges, this implies

that D[Ui \ U∗, Ui+1 \ U∗] is (δ, ε2)-almost regular for each i ∈ [4]. Thus, Lemma 14.1(i)

holds with ε2 playing the role of ε. Moreover, Proposition 7.6 (applied with 4s′−r
n

+ ε2

playing the role of ε) implies that Lemma 14.1(ii) is satisfied. By (14.6), we have

n− 4s′ = 2δn− r ≤ 2δn′ + 2ε1n
′ − r ≤ 2(δ − η)n′.

Finally, recall that U∗ is an (ε1,U)-exceptional set for T . Thus, Fact 13.9 implies that U∗

is also an (ε2,U)-exceptional set for T . Let Capprox be the set of n− 4s′ Hamilton cycles

of T obtained by applying Lemma 14.1 with n− 4s′, ε2, and S ′′ playing the roles of ℓ, ε,

and {F1, . . . ,Fℓ}.

Step 5: Absorbing the leftovers. Finally, we decompose H := D \ Capprox using

the robustly decomposable digraph Drob. Define a multidigraph D′ by D′ := (H − U∗) ∪

Drob ∪ ESF ∪ ESF ′.

Claim 5. D′ \ (M ∪M ′) is a digraph (rather than a multidigraph) and satisfies E(D′ \

(M ∪M ′)) = E(T \ (S ∪ S ′ ∪ Capprox)).

Proof of Claim. By (I), (II), (I′), and (II′), ESF \M and ESF ′ \M ′ are digraphs (rather

than multidigraphs) and are edge-disjoint subdigraphs of D′1 \ S∗ ⊆ D′1 \ (S ∪ S ′). By

Step 3, Drob ⊆ D2 \ S∗ ⊆ T \ (D′1 ∪ S ∪ S ′). By definition,

H = D \ Capprox = T \ (S∗ ∪ ESF ∪ ESF ′ ∪Drob ∪ Capprox). (14.13)

Thus, ESF \M , ESF ′ \M ′, Drob, and H − U∗ are pairwise edge-disjoint subdigraphs

of T . Therefore, D′ \ (M ∪M′) is a digraph. Moreover, Lemma 14.1 implies that

S ′′ ⊆ Capprox ⊆ D ∪ S ′′ ⊆ T \ (S ∪ S ′ ∪ ESF ∪ ESF ′ ∪Drob). Thus, (14.13) implies that

D′ \ (M ∪M ′) = T \ (S ∪ S ′ ∪ Capprox), as desired. □

We are now ready to decompose D′. By Lemma 14.1, Capprox is a set of n − 4s′
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edge-disjoint Hamilton cycles of D ∪ S ′′ which altogether cover S ′′ and so Claim 4 implies

that each v ∈ V (T ) satisfies

d±H(v) =


0 if v ∈ U∗;

r otherwise.

In particular, H − U∗ is r-regular. Moreover, (α) implies that H only consists of forward

edges and avoids the edges in E = {uv ∈ E(T ) | vu ∈
⋃
M}. In particular, H − U∗ is a

blow-up C4 with vertex partition U ′. By definition, H ⊆ D ⊆ T \Drob. Thus, Lemma 11.10

implies that the multidigraph D′ has a decomposition Crob into 4s′ edge-disjoint Hamilton

cycles on V (T ) \ U∗ such that each cycle in Crob contains precisely one of the extended

special path systems in the multidigraph ESF ∪ ESF ′. That is, there is an enumeration

{Cℓ,h,i,j | (ℓ, h, i, j) ∈ Q} ∪ {C ′ℓ,h,i,j | (ℓ, h, i, j) ∈ Q′}

of Crob such that Cℓ,h,i,j ∩ (ESF ∪ ESF ′) = ESPSℓ,h,i,j for each (ℓ, h, i, j) ∈ Q and

C ′ℓ′,h′,i′,j′ ∩ (ESF ∪ ESF ′) = ESPS ′ℓ′,h′,i′,j′ for each (ℓ′, h′, i′, j′) ∈ Q′.

Recall from (γ′) that S = {Fℓ,h,i,j | (ℓ, h, i, j) ∈ Q} and S ′ = {F ′ℓ,h,i,j | (ℓ, h, i, j) ∈ Q′}

are edge-disjoint sets of edge-disjoint special covers in D′1 with respect to U∗. By Step 3,

M andM′ are multisets which consist of the complete special sequences associated to the

special covers in S and S ′, respectively.

For each (ℓ, h, i, j) ∈ Q, define C∗ℓ,h,i,j := (Cℓ,h,i,j \Mℓ,h,i,j) ∪ Fℓ,h,i,j and observe that,

by (I) and Fact 8.26, C∗ℓ,h,i,j is a Hamilton cycle of T . For each (ℓ, h, i, j) ∈ Q′, define

C ′′ℓ,h,i,j := (C ′ℓ,h,i,j \M ′
ℓ,h,i,j) ∪ F ′ℓ,h,i,j and observe that, by (I′) and Fact 8.26, C ′′ℓ,h,i,j is a

Hamilton cycle of T . Let

C ′rob := {C∗ℓ,h,i,j | (ℓ, h, i, j) ∈ Q} ∪ {C ′′ℓ,h,i,j | (ℓ, h, i, j) ∈ Q′}.

By Steps 2 and 4, S, S ′, and Capprox are pairwise edge-disjoint. Thus, Claim 5 implies that
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C ′rob is a Hamilton decomposition of (D′ \ (M ∪M ′))∪ (S ∪S ′) = T \Capprox. Recall from

Step 4 that Capprox is a set of edge-disjoint Hamilton cycles of T . Therefore, Capprox ∪ C ′rob

is a Hamilton decomposition of T . This completes the proof of Theorem 4.4.
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CHAPTER 15

PSEUDO-FEASIBLE SYSTEMS

It remains to prove Lemma 13.12. First, we observe that one can initially decompose the

backward and exceptional edges into structures (called pseudo-feasible systems) which are

slightly more general than feasible systems.

15.1 Definitions

We now define the concept of a placeholder (defined formally below). Roughly speaking,

an edge e with precisely one endpoint v ∈ U∗ is called a placeholder if T contains many

edges of the same type: if e is a forward in/outedge at v, then e is a placeholder if T has

many forward in/outedges at v; similarly, if e is a backward in/outedge at v, then e is a

placeholder if T has many backward in/outedges at v. A placeholder will be used to hold

the place for an edge e′ of the same type as e. A suitable e′ will exist since, by definition

of a placeholder, there exist many edges which are of the same type as e.

Definition 15.1 (Placeholder). Let T be a regular bipartite tournament on 4n vertices.

Let U = (U1, . . . , U4) be an (ε, 4)-partition for T and let U∗ be an (ε,U)-exceptional set

for T . For each i ∈ [4], denote U∗i := Ui ∩ U∗. Let uv ∈ E(T ) and denote by i, j ∈ [4] the

unique indices such that u ∈ Ui and v ∈ Uj. We say that uv is a (γ, T )-placeholder (with

respect to U and U∗) if one of the following holds.

– u ∈ U∗i , v ∈ Uj \ U∗j , and |N+
T (u) ∩ Uj| > γn.

191



– u ∈ Ui \ U∗i , v ∈ U∗j , and |N−T (v) ∩ Ui| > γn.

Fact 15.2. Let 0 ≤ ε ≪ γ ≤ 1. Let T be a regular bipartite tournament. Let U =

(U1, . . . , U4) be an (ε, 4)-partition for T and U∗ be an (ε,U)-exceptional set for T . Suppose

that e ∈ E(
−→
T ) is a (γ, T )-placeholder. Then, V (e) ∩ U1−γ(T ) = ∅.

Recall from Definition 13.2 that a feasible system is a linear forest which contains

an appropriate number of backward and exceptional edges. Roughly speaking, we say

that F is a pseudo-feasible system (defined formally below) if the only obstructions to

F being a feasible system are caused by placeholders. More precisely, a pseudo-feasible

system F may not form a linear forest (that is, F may not satisfy property (F3) of a

feasible system), but all of the cycles in F contain a placeholder (see (F4′) below) and all

of the excess degree can be accounted for by placeholders (see (F3′) below). Additionally,

a pseudo-feasible system F may not cover all of the vertices in U∗ (that is, F may not

satisfy property (F2)), but the uncovered vertices in U∗ have high forward degree and so

the missing edges at U∗ are forward placeholders (see (F2′) below).

Definition 15.3 (Pseudo-feasible system). We say that F is a (γ, T )-pseudo-feasible

system (with respect to U and U∗) if F ⊆ T , (F1) is satisfied, and the following hold.

(F2′) For each v ∈ U∗, both d±F(v) ≤ 1 and, if v ∈ U1−γ(T ), then both d±F(v) = 1.

(F3′) Let v ∈ V (T ) \ U∗. Then, F contains at most one edge which starts at v and is

not a (γ, T )-placeholder. Similarly, F contains at most one edge which ends at v

and is not a (γ, T )-placeholder.

(F4′) Each cycle in F contains a (γ, T )-placeholder.

As for feasible systems (recall Fact 13.4), forward edges which are not incident to U∗

play no role in a pseudo-feasible system. Additionally, Fact 15.2 implies that all of the

forward placeholders can be deleted.

Fact 15.4. Let 0 ≤ ε ≪ γ ≤ 1. Let T be a regular bipartite tournament. Let U =

(U1, . . . , U4) be an (ε, 4)-partition for T and U∗ be an (ε,U)-exceptional set for T . Let
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F be a (γ, T )-pseudo-feasible system and e ∈ E(
−→
F U). If V (e) ∩ U∗ = ∅ or e is a (γ, T )-

placeholder, then F \ {e} is a (γ, T )-pseudo-feasible system.

15.2 Transforming pseudo-feasible systems into feasi-

ble systems: proof overview

The next lemma states that pseudo-feasible systems can be transformed into feasible

systems. The idea behind the proof of Lemma 15.5 is to replace the placeholders with

edges of the same type to form linear forests and then add forward edges to cover

U∗ \ U1−γ(T ).

More precisely, let T be a regular bipartite tournament on 4n vertices. Let U be an

(ε, 4)-partition for T and let U∗ be an (ε,U)-exceptional set for T . Suppose that F is

a (γ, T )-pseudo-feasible system. We can transform F into a feasible system as follows.

Suppose that F contains a cycle C. By (F4′), C contains a (γ, T )-placeholder e, say e is a

backward edge from u ∈ U∗ to v /∈ U∗ for instance. Then, by definition of a placeholder, T

contains many backward edges which start at u and end in V (T ) \ U∗. Therefore, we can

find a backward edge e′ = uv′ with v′ ∈ V (T ) \ (U∗ ∪ V (F)). Then, replacing e by e′ in F

breaks the cycle C without affecting (F1) and (F2′)–(F4′). Repeating this argument, we

can eventually remove all cycles in F . By (F2′) and (F3′), we can use similar arguments

to ensure that ∆0(F) ≤ 1. Then, F satisfies (F3). Finally, we add forward edges to ensure

that (F2) holds as follows. Suppose that x ∈ U∗ satisfies d+F(x) = 0. Then, (F2′) implies

that x /∈ U1−γ(T ) and so T contains many forward outedges at x. Thus, we can find

a forward edge e′′ = xy with y ∈ V (T ) \ V (F). Then, adding e′′ to F does not affect

(F1) and (F3). Repeating this argument, F eventually satisfies (F2) and so F becomes a

feasible system.

Additionally, we will add forward edges to incorporate a given suitable set of edges E

(see Lemma 13.12(a)) and to ensure that all the components of the feasible systems start

in U1 and end in U4 (see Lemma 13.12(e)).
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Lemma 15.5 (Transforming pseudo-feasible systems into feasible ones). Let 0 < 1
n
≪

ε ≪ η ≪ γ ≪ 1 and (1 − η)n ≤ r ≤ n. Let T be a regular bipartite tournament on 4n

vertices. Let U = (U1, . . . , U4) be an (ε, 4)-partition for T and U∗ be an (ε,U)-exceptional

set for T . Suppose that D ⊆ T satisfies δ0(D) ≥ r. Let F1, . . . ,Fr be edge-disjoint

(γ, T )-pseudo-feasible systems satisfying the following properties.

(i) E(
←−
DU) ∪ E(D[U∗]) ⊆

⋃
i∈[r] E(Fi) ⊆ E(D).

(ii) For each i ∈ [r], e(Fi) ≤ εn.

Let E ⊆ E(D) be such that the following hold.

(iii) E ⊆ E(
−→
DU − U∗).

(iv) For each v ∈ V (T ) \ U∗, d±E(v) ≤ 1.

Then, there exist edge-disjoint feasible systems F ′1, . . . ,F ′r such that the following hold.

(a) E(
←−
DU) ∪ E ⊆

⋃
i∈[r] E(F ′i) ⊆ E(D).

(b) For each i ∈ [r], e(F ′i) ≤ ε
1
3n.

(c) For each v ∈ V (T )\U∗, there exist at most ε
1
3n indices i ∈ [r] such that v ∈ V (F ′i).

(d) For each i ∈ [r], V +(F ′i) ⊆ U1 and V −(F ′i) ⊆ U4.

Note that E(D[U∗]) appears in Lemma 15.5(i) for technical reasons (this ensures that

all the edges available for transforming the pseudo-feasible systems into feasible ones do

not entirely lie in the exceptional set U∗). On the other hand, E(D[U∗]) does not need

to explicitly appear in Lemma 15.5(a) since these edges will automatically be covered by

definition of a feasible system. Indeed, recall from Lemma 13.12 that we aim to construct

n edge-disjoint feasible systems. But property (F2) of a feasible system states that each

exceptional vertex is covered by both an in- and an outedge, so any set of n edge-disjoint

feasible systems automatically covers all the edges incident to U∗.

In practice, the above argument needs to be carried out to all of the pseudo-feasible

systems in parallel. To gain intuition, we first derive Lemma 13.12 and defer the proof of
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Lemma 15.5 to Chapter 16.

15.3 Proof of Lemma 13.12

By Lemma 15.5, it is enough to decompose the backward edges into pseudo-feasible

systems (rather than feasible ones). However, recall from Lemma 13.12(d) that we require

a few of the feasible systems to be constructed out of prescribed sets H1, . . . , Hs of edges

of T . It is therefore more convenient to construct these feasible systems straight away.

Thus, it is most convenient to prove the following pseudo-feasible system analogue of

Lemma 13.12. (The proof of Lemma 15.6, as well as a detailed proof overview, can be

found in Chapter 17.)

Lemma 15.6 (Decomposing the backward and exceptional edges into pseudo-feasible

systems). Let 0 < 1
n
≪ ε ≪ η ≪ γ ≪ 1 and s ∈ N. Let T be a regular bipartite

tournament on 4n vertices. Let U = (U1, . . . , U4) be an optimal (ε, 4)-partition for T and

U∗ be an (ε,U)-exceptional set for T . Suppose that, for each i ∈ [s], Hi ⊆ T satisfies

Lemma 13.12(i)–(iv). For each i ∈ [s], let si ∈ N and ti :=
∑

j∈[i−1] sj. Let t :=
∑

i∈[s] si

and suppose that t ≤ ηn. Then, there exist edge-disjoint (γ, T )-pseudo-feasible systems

F1, . . . ,Fn for which the following hold.

(a) E(
←−
T U) ∪ E(T [U∗]) ⊆

⋃
i∈[n] E(Fi) ⊆ E(T ).

(b) For each i ∈ [n], e(Fi) ≤
√
εn.

(c) For each i ∈ [t], Fi is a feasible system with V 0(Fi) = U∗.

(d) For each i ∈ [s] and j ∈ [si], Fti+j ⊆ Hi.

Proof of Lemma 13.12. Let F∗1 , . . . ,F∗n be the (γ, T )-pseudo-feasible systems obtained

by applying Lemma 15.6. For each i ∈ [t], let Fi := F∗i \ E. By (v), Fact 13.4, and

Lemma 15.6(c) and (d), F1, . . . ,Ft are feasible systems which satisfy (c) and (d).

We transform F∗t+1, . . . ,F∗n into feasible systems using Lemma 15.5 as follows. Let

r := n − t and D := T \
⋃

i∈[t]Fi. By (F3), δ0(D) ≥ r and, by Lemma 15.6(a) and (b),
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Lemma 15.5(i) and (ii) hold with F∗t+1, . . . ,F∗n, and
√
ε playing the roles of F1, . . . ,Fr, and

ε. By construction, E ⊆ E(D) and so Lemma 15.5(iii) and (iv) follow from (v) and (vi). Let

Ft+1, . . . ,Fn be the feasible systems obtained by applying Lemma 15.5 with F∗t+1, . . . ,F∗n,

and
√
ε playing the roles of F1, . . . ,Fr, and ε. Then, (a) follows from Lemma 15.5(a) and

Lemma 15.6(a), while (b) follows from Lemma 15.5(b) and Lemma 15.6(b). Finally, (e)

holds by Lemma 15.5(d).
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CHAPTER 16

TRANSFORMING PSEUDO-FEASIBLE SYSTEMS
INTO FEASIBLE SYSTEMS: PROOF OF

LEMMA 15.5

We proceed as described in Section 15.2. First, we redistribute all the placeholders

contained in F1, . . . ,Fr to break all the cycles and reduce the maximum semidegree to 1

(Lemma 16.2). Then, we add some forward edges to cover U∗ and thus form feasible

systems (Lemma 16.3). Next, we incorporate the set E of prescribed edges (Lemma 16.4).

Finally, we add some additional forward edges to ensure that each component of the

feasible systems have its endpoints in the desired vertex classes (Lemma 16.6).

16.1 Extending linear forests

As mentioned above, the feasible systems will be constructed in stages. At each stage, we

will consider linear forests and need to extend them in a prescribed way (e.g. in Lemma 16.3

we will need to cover precisely the uncovered vertices in U∗). Most of the time, this will

be done using the next lemma.

Roughly speaking, Lemma 16.1 states that a sufficiently dense bipartite digraph D

on vertex classes A and B contains edge-disjoint linear forests Q1, . . . ,Qℓ, where each

Qi covers a prescribed set S+
i ⊆ A with outedges, covers a prescribed set S−i ⊆ A with

inedges, and avoids a prescribed set Ti ⊆ B (see Lemma 16.1(a) below). Moreover, these
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linear forests can be constructed in such a way that every vertex of B is not covered by

too many of the linear forests (see Lemma 16.1(b)) and is adjacent to at most one edge in

each linear forest (see Lemma 16.1(c)).

In general, given linear forests F1, . . . ,Fℓ that we want to extend, we will apply

Lemma 16.1 with Ti = V (E(Fi)) ∩ B for each i ∈ [ℓ]. This will ensure that the linear

forests Q1, . . . ,Qℓ guaranteed by Lemma 16.1 can be incorporated into F1, . . . ,Fℓ to

form larger linear forests. For each i ∈ [ℓ], the sets S+
i and S−i will correspond to the

sets of vertices that need to be covered in Fi with out- and inedges (e.g. in the proof of

Lemma 16.3 we will apply this to the vertices of U∗ which are not yet covered with out-

and inedges by Fi).

Note that Lemma 16.1(c) will not be used until Chapter 18.

Lemma 16.1. Let D be a bipartite digraph on vertex classes A and B. For each i ∈ [ℓ],

let S+
i , S

−
i ⊆ A and Ti ⊆ B. For each v ∈ B, let nv denote the number of indices i ∈ [ℓ]

such that v ∈ Ti. Let 1 ≤ N ≤ 2|A|. For each i ∈ [ℓ], ⋄ ∈ {+,−}, and v ∈ S⋄i , denote

ci,⋄,v := max{|{i′ ∈ [ℓ] | v ∈ S⋄i′}|, 2(|S+
i |+ |S−i |+ |Ti|), 2(max

w∈B
nw + N)}

and suppose that

d⋄D(v) ≥


ci,⋄,v if N = 2|A|;

1
⌊N⌋
∑

i′∈[ℓ](|S
+
i′ |+ |S

−
i′ |) + ci,⋄,v if N < 2|A|.

(16.1)

Then, D contains edge-disjoint linear forests Q1, . . . ,Qℓ such that the following hold.

(a) For each i ∈ [ℓ], Qi consists of a matching of D(B \ Ti, S
−
i ) of size |S−i | and a

matching of D(S+
i , B \ Ti) of size |S+

i |.

(b) For each v ∈ B, there exists at most N indices i ∈ [ℓ] such that v ∈ V (Qi).

(c) For each i ∈ [ℓ] and v ∈ B, we have dQi
(v) ≤ 1 (i.e. the two matchings in (a) do

not intersect in B).
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In particular, if F1, . . . ,Fℓ are linear forests which are edge-disjoint from each other and

from D such that both

S±i ∩ V (Fi) ⊆ V ∓(Fi) and V (E(Fi)) ∩B ⊆ Ti

for each i ∈ [ℓ], then F1 ∪Q1, . . . ,Fℓ ∪Qℓ are edge-disjoint linear forests.

Proof. Note that the “in particular part” follows immediately from (a) and (c). Thus,

it suffices to construct edge-disjoint linear forests Q1, . . . ,Qℓ which satisfy (a)–(c). Let

S± :=
⋃

i∈[ℓ] S
±
i and denote S := {(+, v) | v ∈ S+} ∪ {(−, v) | v ∈ S−}. We will consider

each tuple (⋄, v) ∈ S in turn and, at each stage, choose all the edges corresponding to the

current tuple (⋄, v) ∈ S (that is, all the outedges at v if ⋄ = + and all the inedges at v if

⋄ = −).

Suppose inductively that, for some 0 ≤ k ≤ |S|, there exist Sk ⊆ S of size k and

edge-disjoint linear forests Qk
1, . . . ,Qk

ℓ such that the following hold, where S±,k := {v |

(±, v) ∈ Sk}.

(α) For each i ∈ [ℓ], Qk
i consists of a matching of D(B\Ti, S

−
i ∩S−,k) of size |S−i ∩S−,k|

and a matching of D(S+
i ∩ S+,k, B \ Ti) of size |S+

i ∩ S+,k|.

(β) For each v ∈ B, there exist at most N indices i ∈ [ℓ] such that v ∈ V (Qk
i ).

(γ) For each i ∈ [ℓ] and v ∈ B, we have dQk
i
(v) ≤ 1 (i.e. the two matchings in (α) do

not intersect in B).

First, suppose that k = |S|. Let Qi := Qk
i for each i ∈ [ℓ]. Then, (a)–(c) follow from

(α)–(γ).

We may therefore assume that k < |S|. Let (⋄, v) ∈ S \ Sk and define Sk+1 :=

Sk ∪ {(⋄, v)}. Let X be the set of vertices w ∈ B such that there exist ⌊N⌋ indices i ∈ [ℓ]

such that w ∈ V (Qk
i ) (so X is the set of vertices of B that cannot be used anymore). Let

Y := {i ∈ [ℓ] | v ∈ S⋄i } (so Y lists the Qk
i ’s to which we need to add an edge incident to v

in this step).
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Claim 1. For each i ∈ Y , the following hold.

(I) d⋄D(v) ≥ |X|+ |Y |.

(II) d⋄D(v) ≥ |X|+ 2(|S+
i |+ |S−i |+ |Ti|).

(III) d⋄D(v) ≥ |X|+ 2(maxw∈B nw + N).

Proof of Claim. If N = 2|A|, then N ≥ |S| > k and so X = ∅. Thus, (I)–(III) follow

immediately from (16.1). We may therefore assume that N < 2|A|. Since D is a bipartite

graph on vertex classes A and B, we have

|X| ≤
∑

i∈[ℓ] e(Qk
i )

⌊N⌋
(α)

≤ 1

⌊N⌋
∑
i′∈[ℓ]

(|S+
i′ |+ |S

−
i′ |).

Therefore, (I)–(III) follow from (16.1). □

If ⋄ = +, then let Z := {vw ∈ E(D) | w /∈ X}; otherwise, let Z := {wv ∈ E(D) | w /∈

X} (so Z consists of the edges of D that we may use to extend Qk
1, . . . ,Qk

ℓ in this step).

Let G be the auxiliary bipartite graph on vertex classes Y and Z defined as follows. For

each i ∈ Y and e ∈ Z, ie ∈ E(G) if and only if V (e) ∩B ∩ (V (Qk
i ) ∪ Ti) = ∅. Note that

|Z| ≥ d⋄D(v)− |X| (16.2)

(I)

≥ |Y |.

Then, each i ∈ Y satisfies

dG(i) ≥ |Z| − |V (Qk
i ) ∩B| − |Ti|

(α)

≥ |Z| − (|S+
i |+ |S−i |)− |Ti|

(II)

≥ |Z| − d⋄D(v)− |X|
2

(16.2)

≥ |Z|
2
.

Let e ∈ Z and denote by w the (unique) vertex w ∈ V (e) ∩B. Let n′w be the number of
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indices i ∈ [ℓ] such that w ∈ V (Qk
i ) ∪ Ti. Then,

dG(e) ≥ |Y | − n′w
(β)

≥ |Y | − (nw + N)
(III)

≥ |Y | − d⋄D(v)− |X|
2

(16.2)

≥ |Y | − |Z|
2
.

Apply Proposition 7.24 with Y and Z playing the roles of A and B to obtain a matching

M of G which covers Y . For each i ∈ Y , let ei denote the (unique) neighbour of i in M

and let Qk+1
i := Qk

i ∪ {ei}. For each i ∈ [ℓ] \ Y , let Qk+1
i := Qk

i .

Since M is a matching, Qk+1
1 , . . . ,Qk+1

ℓ are pairwise edge-disjoint. Moreover, the

definition of G and the induction hypothesis imply that (γ) holds with k + 1 playing the

role of k and Qk+1
i is a linear forest for each i ∈ [ℓ]. By definition of Y and G and the

induction hypothesis, (α) holds with k + 1 playing the role of k. Finally, (β) holds with

k + 1 playing the role of k by definition of X and Z and the induction hypothesis.

16.2 Proof of Lemma 15.5

We are now ready to prove Lemma 15.5, which states that edge-disjoint pseudo-feasible

systems can be transformed into edge-disjoint feasible systems. As discussed at the start

of Chapter 16, we spilt the proof into several lemmas. First, we redistribute placeholders

to break all the cycles and reduce the maximum semidegree to 1.

Lemma 16.2 (Redistributing placeholders). Let 0 < 1
n
≪ ε≪ η ≪ γ ≪ 1 and (1−η)n ≤

r ≤ n. Let T be a regular bipartite tournament on 4n vertices. Let U = (U1, . . . , U4) be

an (ε, 4)-partition for T and U∗ be an (ε,U)-exceptional set for T . Suppose that D ⊆ T

satisfies δ0(D) ≥ r. Let F1, . . . ,Fr be edge-disjoint (γ, T )-pseudo-feasible systems which

satisfy the following properties.

(i) E(
←−
DU) ∪ E(D[U∗]) ⊆

⋃
i∈[r] E(Fi) ⊆ E(D).

(ii) For each i ∈ [r], e(Fi) ≤ εn.

(iii) Suppose that e ∈
⋃

i∈[r] E(Fi) is a forward edge. Then, V (e) ∩ U∗ ̸= ∅ and e is

not a (γ, T )-placeholder.
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Then, there exist edge-disjoint (γ, T )-pseudo-feasible systems F ′1, . . . ,F ′r such that the

following hold.

(a)
⋃

i∈[r] E(F ′i) =
⋃

i∈[r] E(Fi). In particular, E(
←−
DU) ∪ E(D[U∗]) ⊆

⋃
i∈[r] E(F ′i) ⊆

E(D).

(b) For each i ∈ [r], e(F ′i) = e(Fi) ≤ εn.

(c) For each i ∈ [r], F ′i is a linear forest.

Proof. Let E be the set of (γ, T )-placeholders contained in
⋃

i∈[ℓ] E(Fi). For each i ∈ [r],

let F̃i be obtained from Fi\E by removing all isolated vertices and denote Ei := E∩E(Fi).

Note that, by (F2′)–(F4′), F̃1, . . . , F̃r are linear forests. Thus, we may assume without

loss of generality that E ̸= ∅ and so, by Definition 15.1, U∗ ̸= ∅.

We will redistribute the placeholders in E into the linear forests F̃1, . . . , F̃r using

Lemma 16.1. More precisely, we will add, for each v ∈ U∗ and i ∈ [r], an in/outedge at v

from E to F̃i if and only if Fi contains a placeholder which is an in/outedge at v.

Let A := U∗ and B := V (T )\U∗. Let D′ be the digraph on V (T ) defined by E(D′) := E.

By Definition 15.1, D′ is a bipartite digraph on vertex classes A and B. For each i ∈ [r], let

S+
i , S

−
i ⊆ U∗ be the sets of vertices which are incident to an out/inedge in Ei, respectively

(so S+
i and S−i list the vertices in U∗ which we need to cover with an out/inedge from E)

and define Ti := V (E(F̃i)) ∩B. Note for later that (F2′) implies that both

S±i ∩ V (F̃i) ⊆ V ∓(F̃i) and V (E(F̃i)) ∩B ⊆ Ti (16.3)

for each i ∈ [r]. Define N := 2|U∗|. For each v ∈ B, let nv denote the number of indices

i ∈ [r] such that v ∈ Ti.

We verify that (16.1) holds with D′ and r playing the roles of D and ℓ. By Definition 15.1,
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each i ∈ [r] satisfies

|S+
i |+ |S−i | = |Ei| (16.4)

(F2′)

≤ 2|U∗|
(ES2)

≤ 8εn (16.5)

and

|Ti| ≤ |V (E(Fi))|
(ii)

≤ 2εn. (16.6)

Moreover, each v ∈ B = V (T ) \ U∗ satisfies

nv ≤
∑
i∈[r]

dFi
(v)

(i),(iii)

≤
←−
d D,U(v) + |

−→
ND,U(v) ∩ U∗|

(ES1)

≤ 2εn + |U∗|
(ES2)

≤ 6εn. (16.7)

Therefore, each v ∈ Uγ(T ) ⊆ U∗ satisfies

d±D′(v) = d±E(v) = |{i ∈ [r] | v ∈ S±i }| (16.8)

Definition 15.1,(i)
=

←−
d ±D,U(v)− |

←−
N±D,U(v) ∩ U∗|

≥
←−
d ±T,U(v)−∆0(T \D)− |

←−
N±T,U(v) ∩ U∗| ≥ γn− (n− r)− |U∗|

(ES2),(16.5)–(16.7)

≥ 2 max
i∈[r]

(|S+
i |+ |S−i |+ |Ti|) + 2(max

w∈B
nw + N). (16.9)

By (iii), all the edges in E are backward edges and so Definition 15.1 implies that each

edge in E is incident to a vertex in Uγ(T ) ⊆ U∗. Thus, S+
i ∪ S−i ⊆ Uγ(T ) for each i ∈ [r]

and so (16.1) follows from (16.8) and (16.9).

Let Q1, . . . ,Qr be the edge-disjoint linear forests obtained by applying Lemma 16.1

with D′ and r playing the roles of D and ℓ. For each i ∈ [r], denote F ′i := F̃i ∪ Qi. We

claim that F ′1, . . . ,F ′r are edge-disjoint (γ, T )-pseudo-feasible systems which satisfy (a)–(c).

By construction, F̃1, . . . , F̃r are edge-disjoint from each other and from D′. Thus, (16.3)

and the “in particular part” of Lemma 16.1 imply that F ′1, . . . ,F ′r are edge-disjoint linear

forests. In particular, (c), (F3′), and (F4′) are satisfied.
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By Lemma 16.1(a),
⋃

i∈[r] E(F ′i) ⊆
⋃

i∈[r] E(F̃i) ∪ E =
⋃

i∈[r] E(Fi). Moreover,

∑
i∈[r]

e(F ′i \ F̃i)
Lemma 16.1(a)

=
∑
i∈[r]

(|S+
i |+ |S−i |)

(16.4)
=
∑
i∈[r]

e(Fi \ F̃i).

Thus, (a) is satisfied. For each i ∈ [r],

e(F ′i)
Lemma 16.1(a)

= e(F̃i) + |S+
i |+ |S−i |

(16.4)
= e(Fi)

(ii)

≤ εn,

so (b) is satisfied. Let j ∈ [r]. By Lemma 16.1(a) and definition of S±j , each v ∈ U∗

satisfies

←−
d ±F ′

j ,U
(v) =

←−
d ±Fj ,U(v). (16.10)

Thus, (F2′) follows from the fact that Fj is a (γ, T )-pseudo-feasible system. Recall that

E(F ′j \ F̃j)∪E(Fj \ F̃j) ⊆ E and so, by Definition 15.1 and (iii), E(F ′j \ F̃j)∪E(Fj \ F̃j)

is a set of backward edges which have one endpoint in Uγ(T ) ⊆ U∗ and one endpoint in

V (T ) \ U∗. Thus, the following holds for each i ∈ [4].

eF ′
j
(Ui, Ui−1) = eF̃j

(Ui, Ui−1) +
∑

v∈Uγ
i (T )

(←−
d +
F ′

j ,U
(v)−

←−
d +

F̃j ,U
(v)
)

+
∑

v∈Uγ
i−1(T )

(←−
d −F ′

j ,U
(v)−

←−
d −
F̃j ,U

(v)
)

(16.10)
= eF̃j

(Ui, Ui−1) +
∑

v∈Uγ
i (T )

(←−
d +
Fj ,U(v)−

←−
d +

F̃j ,U
(v)
)

+
∑

v∈Uγ
i−1(T )

(←−
d −Fj ,U(v)−

←−
d −
F̃j ,U

(v)
)

= eFj
(Ui, Ui−1).

Thus, (F1) follows from the fact that Fj is a (γ, T )-pseudo-feasible system. Therefore, F ′j

is a (γ, T )-pseudo-feasible system, as desired.

Lemma 16.3 (Covering U∗). Let 0 < 1
n
≪ ε≪ η ≪ γ ≪ 1 and (1− η)n ≤ r ≤ n. Let T

be a regular bipartite tournament on 4n vertices. Let U = (U1, . . . , U4) be an (ε, 4)-partition
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for T and U∗ be an (ε,U)-exceptional set for T . Suppose that D ⊆ T satisfies δ0(D) ≥ r.

Let F1, . . . ,Fr be edge-disjoint (γ, T )-pseudo-feasible systems which satisfy the following.

(i) E(
←−
DU) ∪ E(D[U∗]) ⊆

⋃
i∈[r] E(Fi) ⊆ E(D).

(ii) For each i ∈ [r], e(Fi) ≤ εn.

(iii) Suppose that e ∈
⋃

i∈[r] E(Fi) is a forward edge. Then, V (e) ∩ U∗ ̸= ∅ and e is

not a (γ, T )-placeholder.

(iv) For each i ∈ [r], Fi is a linear forest.

Then, there exist edge-disjoint feasible systems F ′1, . . . ,F ′r such that the following hold.

(a)
⋃

i∈[r] E(Fi) ⊆
⋃

i∈[r] E(F ′i) ⊆ E(D). In particular, E(
←−
DU) ∪ E(D[U∗]) ⊆⋃

i∈[r] E(F ′i) ⊆ E(D).

(b) For each i ∈ [r], e(F ′i) ≤ 9εn.

(c) For each v ∈ V (T )\U∗, there exist at most 6εn indices i ∈ [r] such that v ∈ V (F ′i).

Proof. First, note that we may assume without loss of generality that U∗ ̸= ∅. Indeed, if

U∗ = ∅, then (F2) holds automatically and so F1, . . . ,Fr are already feasible systems.

We extend the linear forests F1, . . . ,Fr into larger linear forests which cover U∗ (and

so satisfy (F2)) using Lemma 16.1. Let A := U∗ and B := V (T ) \ U∗. Let D′ be the

bipartite digraph on vertex classes A and B induced by
−→
DU − U1−γ(T ). Note for later

that E(D′) is a set of (γ, T )-placeholders, so (iii) implies that

E(D′) ∩
⋃
i∈[r]

E(Fi) = ∅. (16.11)

For each i ∈ [r], let S±i be the set of vertices v ∈ U∗ which satisfy d±Fi
(v) = 0 (so S+

i and

S−i list the vertices in U∗ which are not yet covered with an out/inedge in Fi) and define

Ti := V (E(Fi)) ∩B. Note for later that both

S±i ∩ V (Fi) ⊆ V ∓(Fi) and V (E(Fi)) ∩B ⊆ Ti (16.12)
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for each i ∈ [r]. Define N := 2|U∗|. For each v ∈ B, let nv denote the number of indices

i ∈ [ℓ] such that v ∈ Ti.

We verify that (16.1) holds with D′ and r playing the roles of D and ℓ. For each i ∈ [r],

we have

|S+
i |+ |S−i | ≤ 2|U∗|

(ES2)

≤ 8εn (16.13)

and

|Ti| ≤ |V (E(Fi))|
(ii)

≤ 2εn. (16.14)

Moreover, each v ∈ B = V (T ) \ U∗ satisfies

nv ≤
∑
i∈[r]

dFi
(v)

(i),(iii)

≤
←−
d D,U(v) + |

−→
ND,U(v) ∩ U∗|

(ES1)

≤ 2εn + |U∗|
(ES2)

≤ 6εn. (16.15)

Therefore, each v ∈ U∗ \ U1−γ(T ) satisfies

d±D′(v) = |
−→
N±D,U(v) \ U∗| ≥ γn− |U∗|

(ES2),(16.13)–(16.15)

≥ 2 max
i∈[r]

(|S+
i |+ |S−i |+ |Ti|) + 2(max

w∈B
nw + N) (16.16)

and

d±D′(v) = |
−→
N±D,U(v) \ U∗|

δ0(D)≥r
≥ r −

←−
d ±D,U(v)− |

−→
N±D,U(v) ∩ U∗|

(i)

≥ r −
∑
i∈[r]

d±Fi
(v)

(iv)
= |{i ∈ [r] | v ∈ S±i }|. (16.17)

By (F2′), the vertices in U1−γ(T ) are already covered with both an in- and outedge in

each of the pseudo-feasible systems F1, . . . ,Fr, so S+
i ∪S−i ⊆ U∗ \U1−γ(T ) for each i ∈ [r].

Thus, (16.1) follows from (16.16) and (16.17).

Let Q1, . . . ,Qr be the edge-disjoint linear forests obtained by applying Lemma 16.1

with D′ and r playing the roles of D and ℓ. For each i ∈ [r], denote F ′i := Fi ∪ Qi.

We claim that F ′1, . . . ,F ′r are edge-disjoint feasible systems which satisfy (a)–(c). By
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assumption, F1, . . . ,Fr are edge-disjoint. Thus, (16.11), (16.12), and the “in particular

part” of Lemma 16.1 imply that F ′1, . . . ,F ′r are edge-disjoint linear forests. In particular,

(F3) is satisfied. By construction and Lemma 16.1(a), each i ∈ [r] satisfies

E(Fi) ⊆ E(F ′i) ⊆ E(Fi) ∪ {e ∈ E(
−→
DU) | V (e) ∩ U∗ ̸= ∅}. (16.18)

In particular, (a) follows from (i), while (b) follows from (ii), (16.13), and Lemma 16.1(a).

For each v ∈ V (T ) \ U∗, we have

∑
i∈[r]

dF ′
i
(v)

(i),(iii),(16.18)

≤
←−
d D,U(v) + |

−→
ND,U(v) ∩ U∗|

(ES1)

≤ 2εn + |U∗|
(ES2)

≤ 6εn.

Thus, (c) holds. Let i ∈ [r]. By (16.18), F ′i is obtained from Fi by adding forward edges,

so (F1) follows from the fact that Fi is a (γ, T )-pseudo-feasible system. By definition

of S+
i and S−i , Lemma 16.1(a) implies that (F2) is satisfied. Therefore, F ′i is a feasible

system, as desired.

Lemma 16.4 (Incorporating E). Let 0 < 1
n
≪ ε ≪ η ≪ γ ≪ 1 and (1 − η)n ≤ r ≤ n.

Let T be a regular bipartite tournament on 4n vertices. Let U = (U1, . . . , U4) be an (ε, 4)-

partition for T and U∗ be an (ε,U)-exceptional set for T . Suppose that D ⊆ T satisfies

δ0(D) ≥ r. Let F1, . . . ,Fr be edge-disjoint feasible systems which satisfy the following.

(i) E(
←−
DU) ∪ E(D[U∗]) ⊆

⋃
i∈[r] E(Fi) ⊆ E(D).

(ii) For each i ∈ [r], e(Fi) ≤ εn.

(iii) For each v ∈ V (T ) \U∗, there exist at most εn indices i ∈ [r] such that v ∈ V (Fi).

Let E ⊆ E(D) satisfy the following properties.

(iv) E ⊆ E(
−→
DU − U∗).

(v) For each v ∈ V (T ) \ U∗, d±E(v) ≤ 1.

Then, there exist edge-disjoint feasible systems F ′1, . . . ,F ′r such that the following hold.
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(a)
⋃

i∈[r] E(F ′i) =
⋃

i∈[r] E(Fi) ∪ E. In particular, E(
←−
DU) ∪ E(D[U∗]) ∪ E ⊆⋃

i∈[r] E(F ′i) ⊆ E(D).

(b) For each i ∈ [r], e(F ′i) ≤ e(Fi) + 5 ≤ 2εn.

Proof. To ensure that we do not create any cycle when adding the edges in E, we will

separate the feasible systems F1, . . . ,Fr into four groups. For each i ∈ [4], the edges of E

from Ui to Ui+1 will be distributed among the feasible systems from the ith group. In this

way, each F ′j will be obtained from Fj by adding a matching of forward edges. The edges

of E will be distributed using Hall’s theorem (Proposition 7.24).

For each i ∈ [4], let Ai := EE(Ui, Ui+1) \
⋃

j∈[r] E(Fj). Let B1 ∪ · · · ∪B4 be a partition

of [r] such that |Bi| ≥
⌊
r
4

⌋
=: r′ for each i ∈ [4]. For each i ∈ [4], let B′i be the multiset

which consists of 5 copies of each j ∈ Bi and let Gi be the auxiliary bipartite graph on

vertex classes Ai and B′i defined as follows. For each e ∈ Ai and each (copy of) j ∈ B′i,

ej ∈ E(G) if and only if V (e) ∩ V (E(Fj)) = ∅.

Let i ∈ [4]. By (v) and Fact 10.2(i), |Ai| ≤ n ≤ 5r′ ≤ |B′i|. For each e ∈ Ai, we have

dG(e)
(iii)

≥ 5(r′ − 2εn) ≥ |B
′
i|

2
.

Moreover, each (copy of) j ∈ B′i satisfies

dGi
(j)

(v)

≥ |Ai| − |V (E(Fj))| ≥ |Ai| − 2e(Fj)
(ii)

≥ |Ai| −
|B′i|

2
.

Apply Proposition 7.24 to obtain a matching Mi of Gi which covers Ai.

Denote A :=
⋃

i∈[4]Ai and M :=
⋃

i∈[4] Mi. For each j ∈ [r], let F ′j be obtained from

Fj by adding all the edges e ∈ A such that e is adjacent to a copy of j in M . We now

verify that F ′1, . . . ,F ′r are edge-disjoint feasible systems for which (a) and (b) are satisfied.

By construction, M is a matching covering A and (iv) implies that A = E \
⋃

j∈[r] E(Fj).

Therefore, F ′1, . . . ,F ′r are edge-disjoint and (a) holds. Moreover, (b) holds by (ii) and

definition of B′1, . . . , B
′
4.
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Let j ∈ [r]. Recall that Fj is a feasible system. In particular, (F3) implies that Fj

is a linear forest. By definition of G1, . . . , G4, we have V (E(F ′j \ Fj)) ∩ V (E(Fj)) = ∅.

Moreover, (v) implies that A1, . . . , A4 are all matchings, so, by construction, E(F ′j \ Fj) is

a matching. Thus, F ′j is also a linear forest and so Fact 13.4 and (iv) imply that F ′j is also

a feasible system.

In the following lemma, we add forward edges to ensure that all the components of

each feasible system have their ending point in U4.

Lemma 16.5 (Extending the ending points of feasible systems into U4). Let 0 < 1
n
≪

ε ≪ η ≪ γ ≪ 1 and (1 − η)n ≤ r ≤ n. Let T be a regular bipartite tournament on 4n

vertices. Let U = (U1, . . . , U4) be an (ε, 4)-partition for T and U∗ be an (ε,U)-exceptional

set for T . Suppose that D ⊆ T satisfies δ0(D) ≥ r. Let F1, . . . ,Fr be edge-disjoint feasible

systems which satisfy the following.

(i) E(
←−
DU) ∪ E(D[U∗]) ⊆

⋃
i∈[r] E(Fi) ⊆ E(D).

(ii) For each i ∈ [r], e(Fi) ≤ εn.

(iii) For each v ∈ V (T ) \U∗, there exist at most εn indices i ∈ [r] such that v ∈ V (Fi).

Then, there exist edge-disjoint feasible systems F ′1, . . . ,F ′r such that the following hold.

(a)
⋃

i∈[r] E(Fi) ⊆
⋃

i∈[r] E(F ′i) ⊆ E(D). In particular, E(
←−
DU) ∪ E(D[U∗]) ⊆⋃

i∈[r] E(F ′i) ⊆ E(D).

(b) For each i ∈ [r], e(F ′i) ≤ 4e(Fi) ≤ 4εn.

(c) For each v ∈ V (T ) \ U∗, there exist at most 4
√
εn indices i ∈ [r] such that

v ∈ V (F ′i).

(d) For each i ∈ [r], V +(F ′i) = V +(Fi) and V −(F ′i) ⊆ U4.

Proof. We extend the components of the feasible systems in three stages as follows. At

each stage i ∈ [3], we use edges of D(Ui, Ui+1) to extend the components of the feasible

209



systems which currently end in Ui into components which end in Ui+1. This is achieved

via Lemma 16.1.

By Fact 13.5, we may assume without loss of generality that F1, . . . ,Fr do not contain

any isolated vertices. For each i ∈ [r], let F0
i := Fi. Suppose inductively that, for some

0 ≤ i ≤ 3, we have constructed edge-disjoint feasible systems F i
1, . . . ,F i

r such that the

following hold.

(a′) For each j ∈ [r], E(Fj) ⊆ E(F i
j) ⊆ E(D).

(b′) For each j ∈ [r], e(F i
j) ≤ (i + 1)e(Fj) ≤ (i + 1)εn.

(c′) For each v ∈ V (T ) \ U∗, there exist at most (i + 1)
√
εn indices j ∈ [r] such that

v ∈ V (F i
j).

(d′) For each j ∈ [r], V +(F i
j) = V +(Fj).

(e′) For each j ∈ [r], V −(F i
j) ⊆ V (T ) \

⋃
i′∈[i] Ui′ .

(f′) For each j ∈ [r], F i
j does not contain any isolated vertex.

First, assume that i = 3. For each j ∈ [r], let F ′j := F i
j . Then, (a)–(d) follow from (a′)–(e′).

We may therefore assume that i < 3. We construct F i+1
1 , . . . ,F i+1

r using Lemma 16.1

as follows. Let A := Ui+1 \ U∗ and B := Ui+2 \ U∗. Let D′ be the bipartite digraph

on vertex classes A and B which is induced by (
−→
DU \

⋃
j∈[r]F i

j) − U∗. For each j ∈ [r],

let S−j := ∅, let S+
j := V −(F i

j) ∩ A (so S+
j lists the ending points of the components

that currently end in Ui+1 \ U∗ and which we want to extend in this step), and define

Tj := V (E(F i
j)) ∩B. Note for later that both

S±j ∩ V (F i
j) ⊆ V ∓(F i

j) and V (E(F i
j)) ∩B ⊆ Tj (16.19)

for each j ∈ [r]. Define N :=
√
εn. For each v ∈ A ∪ B, let nv denote the number of
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indices j ∈ [r] such that v ∈ V (F i
j) and observe that

|{j ∈ [r] | v ∈ S+
j }| ≤ nv

(c′)

≤ 4
√
εn. (16.20)

We verify that (16.1) holds with D′ and r playing the roles of D and ℓ. Recall that

F1, . . . ,Fr do not contain any isolated vertices. Thus, each j ∈ [r] satisfies

|S+
j |+ |S−j | ≤ |V −(F i

j)| = |V +(F i
j)|

(d′)
= |V +(Fj)| ≤ e(Fj) (16.21)

(ii)

≤ εn (16.22)

and

|Tj| ≤ |V (E(F i
j))|

(b′)

≤ 8εn. (16.23)

Then,

1

⌊N⌋
∑
j∈[r]

(|S+
j |+ |S−j |)

(16.22)

≤ εnr

⌊
√
εn⌋
≤ 2
√
εn. (16.24)

For each v ∈ Ui+1 \ U∗ = A, we have

d+D′(v) ≥ |N+
D (v) ∩ Ui+2| − |N+

D (v) ∩ U∗| −
∑
j∈[r]

d+F i
j
(v)

(F3)

≥
−→
d +

D,U(v)− |U∗| − nv

≥
(−→
d +

T,U(v)− (n− r)
)
− |U∗| − nv

Definition 13.11,(16.20)

≥ (1− 2η)n− 4εn− 4
√
εn

(16.20),(16.22)–(16.24)

≥ 1

⌊N⌋
∑
j∈[r]

(|S+
j |+ |S−j |) + |{j ∈ [r] | v ∈ S+

j }|

+ 2 max
j∈[r]

(|S+
j |+ |S−j |+ |Tj|) + 2(max

w∈B
nw + N).

Therefore, (16.1) is satisfied.

LetQ1, . . . ,Qr be the edge-disjoint linear forests obtained by applying Lemma 16.1 with

D′ and r playing the roles of D and ℓ. For each j ∈ [r], denote F i+1
j := F i

j ∪Qj . We claim
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that F i+1
1 , . . . ,F i+1

r are edge-disjoint feasible systems such that (a′)–(f′) are satisfied with

i+ 1 playing the role of i. By assumption and definition of D′, F i
1, . . . ,F i

r are edge-disjoint

from each other and from D′. Thus, (16.19) and the “in particular part” of Lemma 16.1

imply that F i+1
1 , . . . ,F i+1

r are edge-disjoint linear forests. Moreover, (f′) follows from

Lemma 16.1(a) and the induction hypothesis, while (c′) holds by Lemma 16.1(b) and the

induction hypothesis. Furthermore, (b′) follows from (ii), (16.21), Lemma 16.1(a), and the

induction hypothesis. By Lemma 16.1(a), each j ∈ [r] satisfies

E(F i
j) ⊆ E(F i+1

j ) ⊆ E(F i
j) ∪ E(

−→
DU − U∗).

Therefore, (a′) follows from the induction hypothesis and, by Fact 13.4, F i+1
j is still a

feasible system for each j ∈ [r]. For each j ∈ [r], the definition of S+
j and S−j and

Lemma 16.1(a) imply that all the edges of F i+1
j \ F i

j = Qj start at a vertex in V −(F i
j).

Thus, (d′) holds. By Lemma 16.1(a), each j ∈ [r] satisfies

V −(F i+1
j ) ⊆ (V −(F i

j) \ A) ∪B ⊆ (V −(F i
j) \ Ui+1) ∪ (V −(F i

j) ∩ U∗) ∪ Ui+2

(F2)
= (V −(F i

j) \ Ui+1) ∪ Ui+2
(e′)
=

V (T ) \

⋃
i′∈[i]

Ui′ ∪ Ui+1

 ∪ Ui+2

= V (T ) \
⋃

i′∈[i+1]

Ui′ .

Therefore, (e′) holds.

By symmetry, we can proceed analogously to ensure that the starting point of each

component of the feasible systems also lies in the correct vertex class.

Lemma 16.6 (Extending the starting points of feasible systems into U1). Under the

conditions of Lemma 16.5, there exist edge-disjoint feasible systems F ′1, . . . ,F ′r such that

the following hold.

(a)
⋃

i∈[r] E(Fi) ⊆
⋃

i∈[r]E(F ′i) ⊆ E(D). In particular, E(
←−
DU) ∪ E(D[U∗]) ⊆⋃

i∈[r] E(F ′i) ⊆ E(D).
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(b) For each i ∈ [r], e(F ′i) ≤ 7e(Fi) ≤ 7εn.

(c) For each v ∈ V (T ) \ U∗, there exist at most 7
√
εn indices i ∈ [r] such that

v ∈ V (F ′i).

(d) For each i ∈ [r], V +(F ′i) ⊆ U1 and V −(F ′i) ⊆ U4.

We are now ready to derive Lemma 15.5.

Proof of Lemma 15.5. Let i ∈ [r]. Suppose that e ∈ E(Fi) is a forward edge such that

V (e)∩U∗ = ∅ or e is a (γ, T )-placeholder. Then, (i)–(iv) are still satisfied if we replace Fi

by Fi\{e}. Moreover, Fact 15.4 implies that Fi\{e} is still a (γ, T )-pseudo-feasible system.

Thus, by deleting edges if necessary, we may assume that Lemma 16.2(iii) is satisfied.

Moreover, Lemma 16.2(i) and (ii) follow from (i) and (ii). Apply Lemma 16.2 to obtain

edge-disjoint (γ, T )-pseudo-feasible systems F1
1 , . . . ,F1

r satisfying Lemma 16.2(a)–(c).

By Lemma 16.2(a)–(c), Lemma 16.3(i)–(iv) are satisfied with F1
1 , . . . ,F1

r playing the

roles of F1, . . . ,Fr. Apply Lemma 16.3 with F1
1 , . . . ,F1

r playing the roles of F1, . . . ,Fr to

obtain edge-disjoint feasible systems F2
1 , . . . ,F2

r satisfying Lemma 16.3(a)–(c).

By Lemma 16.3(a)–(c), Lemma 16.4(i)–(iii) are satisfied with F2
1 , . . . ,F2

r , and 9ε

playing the roles of F1, . . . ,Fr, and ε. By (iii) and (iv), Lemma 16.4(iv) and (v) are

satisfied. Apply Lemma 16.4 with F2
1 , . . . ,F2

r , and 9ε playing the roles of F1, . . . ,Fr, and

ε to obtain edge-disjoint feasible systems F3
1 , . . . ,F3

r for which Lemma 16.4(a) and (b) are

satisfied (with 9ε playing the role of ε).

By (iv), Lemma 16.3(c), and Lemma 16.4(a) and (b), Lemma 16.5(i)–(iii) are satisfied

with F3
1 , . . . ,F3

r , and 18ε playing the roles of F1, . . . ,Fr, and ε. Apply Lemma 16.6

with F3
1 , . . . ,F3

r , and 18ε playing the roles of F1, . . . ,Fr, and ε to obtain edge-disjoint

feasible systems F ′1, . . . ,F ′r satisfying Lemma 16.6(a)–(d) (with 18ε playing the role of ε).

Then, (a) follows from Lemma 16.4(a) and Lemma 16.6(a). Moreover, (b)–(d) follow from

Lemma 16.6(b)–(d), respectively.

213





CHAPTER 17

CONSTRUCTING PSEUDO-FEASIBLE SYSTEMS:
PROOF OF LEMMA 15.6

In this section, we prove Lemma 15.6, which states that the backward and exceptional

edges of a regular bipartite tournament can be decomposed into pseudo-feasible systems.

17.1 Proof overview

Let T be a bipartite tournament on 4n vertices. Let U = (U1, . . . , U4) be an (ε, 4)-partition

for T and U∗ be an (ε,U)-exceptional set for T . Suppose that we want to decompose the

backward edges of T into n pseudo-feasible systems. The main difficulty is to construct

linear forests (up to placeholders) which have a balanced number of backward edges (recall

(F1)).

17.1.1 Simplified argument

For simplicity, first assume that ∆0(
←−
T U) ≤ n

2
. The idea is to decompose each pair

ET (Ui, Ui−1) into n
2

matchings (which is possible by König’s theorem) and then construct

pseudo-feasible systems from these matchings as follows. First, we pair each of the n
2

matchings from ET (U1, U4) with a distinct matching from ET (U3, U2). Overall, we obtain

a decomposition of ED(U1, U4) ∪ ED(U3, U2) into n
2

matchings F1, . . . ,Fn
2
. Similarly, we

pair each of the n
2

matchings from ET (U4, U3) with a distinct matching from ET (U2, U1)
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to obtain a decomposition of ET (U4, U3) ∪ ET (U2, U1) into n
2

matchings Fn
2
+1, . . . ,Fn. In

particular, F1, . . . ,Fn are linear forests and so satisfy (F3′) and (F4′). By assumption, T

does not contain any vertex of very high backward degree and so (F2′) also holds. Thus,

for F1, . . . ,Fn to be pseudo-feasible systems, we only need them to contain a balanced

number of backward edges (see (F1)). More precisely, each of F1, . . . ,Fn
2

must contain

the same number of edges from ET (U1, U4) and ET (U3, U2) and each of Fn
2
+1, . . . ,Fn must

contain the same number of edges from ET (U4, U3) and ET (U2, U1). Since T contains the

same number of backward edges in each pair of the blow-up C4 (recall Fact 10.4), this can

be easily achieved by using Proposition 7.23 to initially decompose each ET (Ui, Ui−1) into

n
2

matchings of (almost) the same size.

17.1.2 General argument

In general, ∆0(
←−
T U) may be larger than n

2
and so the above strategy does not work (we

cannot decompose each pair into n
2

matchings of backward edges). However, we adapt

the above argument by constructing n
2

pseudo-feasible systems which mostly consist of

edges from ET (U1, U4) ∪ ET (U3, U2) and n
2

pseudo-feasible systems which mostly consist

of edges from ET (U4, U3) ∪ ET (U2, U1).

To do so, we consider an auxiliary digraph D obtained from
←−
T U as follows. For each

v ∈ U
1
2 (T ) (that is, for each v ∈ V (T ) satisfying

←−
d +

T,U(v) =
←−
d −T,U(v) > n

2
(recall Fact 10.3

and (13.2))), we replace v by two copies v and replace all the edges incident to v by an

edge incident to one of the copies of v. By splitting neighbourhoods evenly between the

two copies of each vertex in U
1
2 (T ), we can ensure that ∆0(D) ≤ n

2
. Then, we can proceed

as above to partition ED(U1, U4) ∪ ED(U3, U2) into n
2

pseudo-feasible systems F1, . . . ,Fn
2

and partition ED(U4, U3) ∪ ED(U2, U1) into n
2

pseudo-feasible systems Fn
2
+1, . . . ,Fn.

Denote by F ′1, . . . ,F ′n the decomposition of
←−
T U induced by F1, . . . ,Fn. Then, F ′1, . . . ,

F ′n each contain a balanced number of backward edges but may contain up to two edges

(of the same direction) incident to the vertices in U
1
2 (T ) (all the other vertices have degree

at most one). We solve this problem as follows. For each i ∈ [n], we move an edge of
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F ′i at each vertex of degree two to F ′n
2
+i (where the index n

2
+ i is taken modulo n). By

construction, F ′i and F ′n
2
+i are constructed from different pairs of the blow-up C4. Thus, we

do not create additional vertices of semidegree at least two and so we now have ∆0(F ′i) = 1

for each i ∈ [n]. In particular, (F3′) is now satisfied. Of course, some cycles may be created

in the process. However, each cycle will contain one of the moved edges and so will contain

a backward edge incident to vertex of very high backward degree, that is, a placeholder.

Thus, (F4′) is also satisfied. We may have unbalanced the number of backward edges in

each F ′i in the process but, by moving a few additional edges, we will be able to satisfy

(F1) without affecting (F3′) and (F4′). This latter step will be achieved using Lemma 17.4

below. The overall argument corresponds to Lemma 17.3 below.

17.1.3 Limitations

To sum up, we have so far decomposed the edges of
←−
T U into digraphs F ′1, . . . ,F ′n satisfying

(F1), (F3′), and (F4′). Moreover, ∆0(F ′i) = 1 for each i ∈ [n]. Thus, F ′1, . . . ,F ′n are

almost pseudo-feasible systems and it only remains to cover U1−γ(T ) to ensure that (F2′)

is satisfied. Unfortunately, this may not be possible. Indeed, suppose that v ∈ U1−γ(T )

satisfies
←−
d +

T,U(v) = n − 1. Then, there is precisely one F ′i which does not contain an

outedge at v and so, to turn this F ′i into a pseudo-feasible system, we would have to add

the unique forward outedge at v in T to F ′i (so that we satisfy (F2′)). However, this edge

is not a placeholder and so we may break (F3′) and/or (F4′) in the process. More generally,

we may not be able to cover the vertices in U1−γ(T ) which are incident to at least one

forward edge. (The vertices v ∈ U1−γ(T ) with no forward edges are not a problem because

the n backward in- and outedges at v are already entirely covering v in each F ′i .)

This why, in Lemma 17.3, we will assume that none of the vertices in U1−γ(T ) are

adjacent to a forward edge (see Lemma 17.3(ii) and (iii)). Before applying Lemma 17.3,

we will thus have to construct a few pseudo-feasible systems which cover all the forward

edges incident to U1−γ(T ). This is achieved in Lemma 17.2 below.

In Lemma 17.2, we also cover all the forward edges which entirely lie in U∗. Recall
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from Lemma 15.6(a) that we will have to incorporate these edges into our pseudo-feasible

systems. But, it may not be possible to incorporate them into the pseudo-feasible systems

constructed with the above arguments. Indeed, the edges which lie entirely in U∗ are not

placeholders and so incorporating them may break (F3′) and/or (F4′). Thus, we will cover

them separately with a few pseudo-feasible systems in Lemma 17.2.

Finally, observe that, with the above arguments, we are only constructing pseudo-

feasible systems (rather than feasible systems) and we have no control on which edges are

used in each of the pseudo-feasible system. Thus, we will have to construct the t feasible

systems satisfying Lemma 15.6(c) and (d) separately. This is achieved in Lemma 17.1

below.

17.2 Proof of Lemma 15.6

First, we build the t feasible systems which satisfy Lemma 15.6(c) and (d).

Lemma 17.1 (Constructing the few feasible systems). Let 0 < 1
n
≪ ε≪ η ≪ γ ≪ 1 and

s ∈ N. Let T be a regular bipartite tournament on 4n vertices. Let U = (U1, . . . , U4) be

an optimal (ε, 4)-partition for T and U∗ be an (ε,U)-exceptional set for T . Suppose that,

for each i ∈ [s], Hi ⊆ T satisfies Lemma 13.12(i)–(iv). For each i ∈ [s], let si ∈ N and

ti :=
∑

j∈[i−1] sj. Let t :=
∑

i∈[s] si and suppose that t ≤ ηn. Then, there exist edge-disjoint

feasible systems F1, . . . ,Ft ⊆ T for which the following hold, where F :=
⋃

i∈[t]Fi.

(a) For each i ∈ [4], we have eF−U1−γ(T )(Ui, Ui−1) = t|U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|.

(b) For each i ∈ [t], we have e(Fi) ≤
√
εn.

(c) For each i ∈ [t], we have V 0(Fi) = U∗.

(d) For each i ∈ [s] and j ∈ [si], we have Fti+j ⊆ Hi.

Note that Lemma 17.1(c) and (d) will automatically imply Lemma 15.6(c) and (d);

while Lemma 17.1(b) corresponds to Lemma 15.6(b).

218



Then, we construct a few pseudo-feasible systems which cover all the forward edges in

U∗ and all the forward edges incident to U1−γ(T ).

Lemma 17.2 (Covering the forward edges in U∗ and incident to U1−γ(T )). Let 0 < 1
n
≪

ε ≪ η ≪ γ ≪ 1. Let t ≤ ηn and t′ ∈ {⌊γn⌋, ⌊γn⌋ + 1}. Let T be a regular bipartite

tournament on 4n vertices. Let U be an optimal (ε, 4)-partition for T and U∗ be an

(ε,U)-exceptional set for T . Let D ⊆ T and suppose that the following hold.

(i) ∆0(T \D) ≤ t.

(ii) For each i ∈ [4], we have e(T\D)−U1−γ(T )(Ui, Ui−1) ≤ t|U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|.

Then, there exist edge-disjoint (γ, T )-pseudo-feasible systems F1, . . . ,Ft′ such that the

following hold, where F :=
⋃

i∈[t′]Fi.

(a) E(
−→
DU [U∗]) ⊆ E(F) ⊆ E(D).

(b) For each i ∈ [t′], we have e(Fi) ≤
√
εn.

(c) For each v ∈ U1−γ(T ), we have
−→
d ±F ,U(v) =

−→
d ±D,U(v).

(d) For each v ∈ U1−2γ(T ) \ U1−γ(T ), we have
←−
d ±F ,U(v) ≥ t′ − 4εn.

Finally, we use the arguments outlined in Section 17.1.2 to construct the remaining

pseudo-feasible systems using all the leftover backward edges of T .

Lemma 17.3 (Decomposing the backward edges). Let 0 < 1
n
≪ ε ≪ γ ≪ 1 and

γn < r ≤ n
2
. Let T be a regular bipartite tournament on 4n vertices. Let U be an

(ε, 4)-partition for T and U∗ be an (ε,U)-exceptional set for T . Let D ⊆
←−
T U satisfy the

following.

(i) eD(U1, U4) = eD(U3, U2) and eD(U4, U3) = eD(U2, U1).

(ii) ∆0(D) ≤ 2r.

(iii) For each v ∈ U1−γ(T ), d±D(v) = 2r.
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Then, there exist edge-disjoint (γ, T )-pseudo-feasible systems F1, . . . ,F2r such that D =⋃
i∈[2r]Fi and e(Fi) ≤

√
εn for each i ∈ [2r].

We first assume that Lemmas 17.1–17.3 hold and derive Lemma 15.6 as follows.

Lemmas 17.1 and 17.2 will be proved in Chapter 18.

Proof of Lemma 15.6. Apply Lemma 17.1 to obtain edge-disjoint feasible systems F1, . . . ,

Ft ⊆ T which satisfy Lemma 17.1(a)–(d). In particular, (c) and (d) hold.

Let D := T \
⋃

i∈[t]Fi. Then, Lemma 17.2(i) follows from (F3) and Lemma 17.2(ii)

follows from Lemma 17.1(a). Let t′ ∈ {⌊γn⌋, ⌊γn⌋+ 1} be such that n− t− t′ is even. Let

Ft+1, . . . ,Ft+t′ be the edge-disjoint (γ, T )-pseudo-feasible systems obtained by applying

Lemma 17.2.

Let D′ := D \
⋃

i∈[t′]Ft+i = T \
⋃

i∈[t+t′]Fi. Let r := n−t−t′
2

and note that r ∈ N.

We claim that Lemma 17.3(i)–(iii) are satisfied with
←−
D′U playing the role of D. Indeed,

Lemma 17.3(i) holds by Fact 10.4 and (F1). By (13.2), each v ∈ V (T ) \ U1−2γ(T ) satisfies

←−
d ±D′,U(v) ≤

←−
d ±T,U(v) ≤ (1− 2γ)n ≤ 2r. Moreover, each v ∈ U1−2γ(T ) \ U1−γ(T ) satisfies

←−
d ±D′,U(v) =

←−
d ±T,U(v)−

∑
i∈[t+t′]

←−
d ±Fi,U(v)

Lemma 17.2(d)

≤ (1− γ)n− (t′ − 4εn) ≤ 2r.

Similarly, each v ∈ U1−γ(T ) satisfies

←−
d ±D′,U(v) =

←−
d ±T,U(v)−

∑
i∈[t+t′]

←−
d ±Fi,U(v)

(F2),(F2′),Lemma 17.2(c)
=

←−
d ±T,U(v)−(t+t′−

−→
d ±T,U(v)) = 2r.

Thus, Lemma 17.3(ii) and (iii) are satisfied. Apply Lemma 17.3 with
←−
D′U playing the role

of D to obtain 2r edge-disjoint (γ, T )-pseudo-feasible systems Ft+t′+1, . . . ,Fn such that

←−
D′U =

⋃
i∈[2r]Ft+t′+i and e(Ft+t′+i) ≤

√
εn for each i ∈ [2r].

Then, (a) follows from Lemma 17.1, Lemma 17.2(a), and Lemma 17.3. Moreover, (b)

holds by Lemma 17.1(b), Lemma 17.2(b), and Lemma 17.3. Finally, (c) and (d) follow

from Lemma 17.1(c) and (d).
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17.3 Proof of Lemma 17.3

We use the arguments presented in Section 17.1.2. To keep the number of backward

edges balanced in each pseudo-feasible system, we will use the following lemma. Roughly

speaking, Lemma 17.4 states that if we have two equal sized matchings M1 and M2 in

an auxiliary digraph where a set W of vertices is replaced by two copies W 1 and W 2 of

W , then there exist equal sized M ′
1 ⊆M1 and M ′

2 ⊆M2 (see Lemma 17.4(a)) such that

each of M ′
1,M1 \M ′

1,M
′
2, and M2 \M ′

2 cover at most one copy of each vertex in W (see

Lemma 17.4(c)) and all edges in M ′
1 or M ′

2 are incident to W 2 (see Lemma 17.4(b)). In the

proof of Lemma 17.3, we will move the matchings M ′
1 and M ′

2 from F ′i to F ′n
2
+i (as discussed

in Section 17.1.2) and so Lemma 17.4(c) will ensure that the maximum semidegree is

reduced to 1. Moreover, we will construct our auxiliary digraph (see Section 17.1.2) in

such a way that all the edges incident to the second copy W 2 of W := U
1
2 (T ) correspond

to placeholders. Thus, Lemma 17.4(b) will ensure that no problematic cycle is created (i.e.

every cycle will contain a placeholder). Since |M ′
1| = |M ′

2| and |M1 \M ′
1| = |M2 \M ′

2|, the

number of backward edges will remain balanced.

Lemma 17.4. Let W and V ′ be disjoint vertex sets and suppose that W 1 and W 2 are two

copies of W . Let M1 and M2 be undirected matchings satisfying the following properties.

(i) |M1| = |M2|.

(ii) V (M1 ∪M2) ⊆ V ′ ∪W 1 ∪W 2.

(iii) eM1∪M2(W
2,W 1 ∪W 2) = 0.

Then, there exist M ′
1 ⊆M1 and M ′

2 ⊆M2 such that the following hold.

(a) |M ′
1| = |M ′

2|.

(b) There exists i ∈ [2] such that all the edges in M ′
i are incident to W 2.

(c) For each i ∈ [2] and w ∈ W , both V (M ′
i) and V (Mi \M ′

i) contain at most one

copy of w.
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Proof. By induction on m := |M1| = |M2|. If m ∈ {0, 1}, then we let M ′
1 := ∅ =: M ′

2 and

we are done. For the induction step, suppose that m ≥ 2 and that the lemma holds for

any matchings of size less than m which satisfy (i)–(iii).

For any w ∈ W , denote by w1 ∈ W 1 and w2 ∈ W 2 the copies of w. For each i ∈ [2],

denote by X1
i := {w1 ∈ W 1 | w1, w2 ∈ V (Mi)} the set of vertices w1 ∈ W 1 such that

Mi covers both w1 and its corresponding vertex w2 ∈ W 2. Note that if X1
1 = ∅ = X1

2 ,

then we may simply set M ′
1 = ∅ = M ′

2 and we are done. Thus, we may view X1
1 and X1

2

as the set of (first copies of the) problematic vertices in M1 and M2. For each i ∈ [2],

let Y 1
i := {w1 ∈ X1

i | NMi
(w1) ⊆ X1

i }, define Z1
i := X1

i \ Y 1
i , and note that Mi[Y

1
i ] is a

matching of size
|Y 1

i |
2

.

Case 1: min{|Y 1
1 |, |Y 1

2 |} ̸= 0. Then, there exist v11w
1
1 ∈ M1[Y

1
1 ] and v12w

1
2 ∈ M2[Y

1
2 ].

For each i ∈ [2], denote by ei and e′i the edges of Mi which are incident to v2i and w2
i ,

respectively (ei and e′i exist by definition of X1
i ⊇ Y 1

i ). Note that (iii) implies that ei ̸= e′i

for each i ∈ [2]. Then, observe that M̃1 := M1 \ {v11w1
1, e1, e

′
1} and M2 \ {v12w1

2, e2, e
′
2} are

matchings of size m− 3 which still satisfy (i)–(iii). Thus, the induction hypothesis implies

that there exist M̃ ′
1 ⊆ M̃1 and M̃ ′

2 ⊆ M̃2 such that (a)–(c) hold with M̃1, M̃
′
1, M̃2, and M̃ ′

2

playing the roles of M1,M
′
1,M2, and M ′

2. Let M ′
1 := M̃ ′

1∪{e1, e′1} and M ′
2 := M̃ ′

2∪{e2, e′2}.

Since (a) and (b) hold with M̃1, M̃
′
1, M̃2, and M̃ ′

2 playing the roles of M1,M
′
1,M2, and M ′

2

and since e1, e
′
1, e2, and e′2 are all incident to W 2, (a) and (b) hold. For (c), let i ∈ [2]. By

construction, (c) holds for vi and wi. Let w ∈ W \ {vi, wi}. By definition, v1iw
1
i does not

cover a copy of w and, by (iii), neither ei nor e′i covers a copy of w. Therefore, since (c)

holds with M̃i and M̃ ′
i playing the roles of Mi and M ′

i , we have

|V (Mi \M ′
i) ∩ {w1, w2}| = |V (M̃i \ M̃ ′

i) ∩ {w1, w2}| ≤ 1

and

|V (M ′
i) ∩ {w1, w2}| = |V (M̃ ′

i) ∩ {w1, w2}| ≤ 1.

Thus, (c) holds and we are done.
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Case 2: min{|Z1
1 |, |Z1

2 |} ≠ 0. Then, there exist w1
1 ∈ Z1

1 and w1
2 ∈ Z1

2 . For each i ∈ [2],

denote by e1i and e2i the edges of Mi which are incident to w1
i and w2

i , respectively (e1i and

e2i exist by definition of X1
i ⊇ Z1

i ). Note that, by (iii), e1i and e2i are distinct. Moreover,

M̂1 := M1 \ {e11, e21} and M̂2 := M2 \ {e12, e22} are matchings of size m− 2 and still satisfy

(i)–(iii). Thus, the induction hypothesis implies that there exist M̂ ′
1 ⊆ M̂1 and M̂ ′

2 ⊆ M̂2

such that (a)–(c) hold with M̂1, M̂
′
1, M̂2, and M̂ ′

2 playing the roles of M1,M
′
1,M2, and

M ′
2. Let M ′

1 := M̂ ′
1 ∪ {e21} and M ′

2 := M̂ ′
2 ∪ {e22}. Since (a) and (b) hold with M̂1, M̂

′
1, M̂2,

and M̂ ′
2 playing the roles of M1,M

′
1,M2, and M ′

2 and since e21 and e22 are both incident

to W 2, (a) and (b) hold. For (c), let i ∈ [2]. By construction, (c) holds for wi. Suppose

that w ∈ W \ {wi}. If w1 /∈ X1
i , then V (Mi) contains at most one copy of w and so (c)

holds for w. We may therefore assume that w1 ∈ X1
i . By (iii), e2i does not cover a copy of

w and, by definition of Z1
i , neither does e1i . Therefore, since (c) holds with M̂i and M̂ ′

i

playing the roles of Mi and M ′
i , we have

|V (Mi \M ′
i) ∩ {w1, w2}| = |V (M̂i \ M̂ ′

i) ∩ {w1, w2}| ≤ 1

and

|V (M ′
i) ∩ {w1, w2}| = |V (M̂ ′

i) ∩ {w1, w2}| ≤ 1.

Thus, (c) holds and we are done.

Case 3: min{|Y 1
1 |, |Y 1

2 |} = 0 = min{|Z1
1 |, |Z1

2 |}. Define y := max{|Y 1
1 |, |Y 1

2 |} and

z := max{|Z1
1 |, |Z1

2 |}. For each i ∈ [2], denote X2
i := {w2 | w1 ∈ X1

i } and recall that

Mi[Y
1
i ] is a matching of size

|Y 1
i |
2

. Thus, (iii) implies that each i ∈ [2] and S2 ⊆ X2
i satisfies

|{e ∈Mi | V (e) ∩ S2 ̸= ∅}| = |S2| (17.1)
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and

|{e ∈Mi | V (e) ∩ (X1
i ∪X2

i ) ̸= ∅}| = |{e ∈Mi | V (e) ∩ Y 1
i ̸= ∅}|

+ |{e ∈Mi | V (e) ∩ Z1
i ̸= ∅}|

+ |{e ∈Mi | V (e) ∩X2
i ̸= ∅}|

(17.1)
=

|Y 1
i |
2

+ |Z1
i |+ |X2

i | =
3|Y 1

i |
2

+ 2|Z1
i |. (17.2)

We proceed as follows.

Case 3.1: There exists i ∈ [2] such that |Y 1
i | = 0 = |Z1

i |. Suppose without loss of

generality that |Y 1
1 | = 0 = |Z1

1 |, |Y 1
2 | = y, and |Z1

2 | = z. Then,

|M1|
(i)
= |M2|

(17.2)

≥ 3y

2
+ 2z ≥ y + z.

Let M ′
1 ⊆ M1 satisfy |M ′

1| = y + z and let M ′
2 consists of all the edges of M2 which are

incident to X2
2 . Then, all the edges of M ′

2 are incident to W 2 and so (b) holds. Moreover,

|M ′
2|

(17.1)
= y + z = |M ′

1|.

Thus, (a) holds. Recall that X1
1 = ∅ = X2

1 . By construction, X2
2 ⊆ V (M ′

2) and, by (iii),

V (M ′
2) ∩X1

2 = ∅. Therefore, (c) holds and we are done.

Case 3.2: z ≥ y. By Case 3.1, we may assume without loss of generality that |Y 1
1 | = y,

|Z1
1 | = 0 = |Y 1

2 |, and |Z1
2 | = z. Then,

|M1 − (X1
1 ∪X2

1 )| (17.2)= |M1| −
3y

2

(i)
= |M2| −

3y

2

(17.2)

≥ 2z − 3y

2
≥ z − y.

Let M ′
1 consist of all the edges of M1 which are incident to X2

1 plus z − y edges of

M1 − (X1
1 ∪X2

1 ). Let M ′
2 consist of all the edges of M2 which are incident to X2

2 . Then,
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all the edges in M ′
2 are incident to W 2 and so (b) holds. Moreover,

|M ′
1|

(17.1)
= y + (z − y) = z

(17.1)
= |M ′

2|.

Thus, (a) holds. Let i ∈ [2]. By construction, X2
i ⊆ V (M ′

i) and, by (iii), V (M ′
i) ∩X1

i = ∅.

Thus, (c) holds and we are done.

Case 3.3: y ≥ 2z. By Case 3.1, we may assume without loss of generality that

|Y 1
1 | = y, |Z1

1 | = 0 = |Y 1
2 |, and |Z1

2 | = z. Then,

|M2 − (X1
2 ∪X2

2 )| (17.2)= |M2| − 2z
(i)
= |M1| − 2z

(17.2)

≥ 3y

2
− 2z ≥ y − z.

Let M ′
1 consist of all the edges of M1 which are incident to X2

1 . Let M ′
2 consist of all the

edges of M2 which are incident to X2
2 plus y − z edges of M2 − (X1

2 ∪X2
2 ). Then, all the

edges in M ′
1 are incident to W 2 and so (b) holds. Moreover,

|M ′
1|

(17.1)
= y = z + (y − z)

(17.1)
= |M ′

2|.

Thus, (a) holds. Let i ∈ [2]. By construction, X2
i ⊆ V (M ′

i) and, by (iii), V (M ′
i) ∩X1

i = ∅.

Thus, (c) holds and we are done.

Case 3.4: 2z ≥ y ≥ z. By Case 3.1, we may assume without loss of generality that

|Y 1
1 | = y, |Z1

1 | = 0 = |Y 1
2 |, and |Z1

2 | = z. Then, M1[Y
1
1 ] is a matching of size y

2
≥ y − z.

Let S1 ⊆ M1[Y
1
1 ] satisfy |S1| = y − z and define S2 := {w2 | w1 ∈ V (S1)}. Let M ′

1 be

obtained from S1 by adding all the edges M1 which are incident to X2
1 \S2. Let M ′

2 consist

of all the edges of M2 which are incident to X2
2 . Then, all the edges in M ′

2 are incident to

W 2 and so (b) holds. Note that

|M ′
1|

(17.1)
= |S1|+ (y − 2|S1|) = z

(17.1)
= |M ′

2|.

Thus, (a) holds. By construction, X2
2 ⊆ V (M ′

2) and, by (iii), V (M ′
2) ∩X1

2 = ∅. Moreover,
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(iii) implies that V (M ′
1) ∩X2

1 = X2
1 \ S2 and V (M ′

1) ∩X1
1 = V (S1). Thus, (c) holds and

we are done.

Proof of Lemma 17.3. We proceed as follows.

Step 1: Constructing auxiliary graphs. For each i ∈ [4], we construct an auxiliary

(undirected) graph Hi as follows. Let i ∈ [4]. Let Wi be the set of vertices w ∈ Ui ∪ Ui−1

such that dD[Ui,Ui−1](w) ≥ r. Observe that

Wi ⊆ Uγ(T )
(ES1),Fact 13.9

⊆ U∗. (17.3)

Let W 1
i and W 2

i be two copies of Wi. For each w ∈ Wi, we denote by w1 ∈ W 1
i and

w2 ∈ W 2
i the copies of w. For each w ∈ Wi, let N1

i (w) ∪ N2
i (w) be a partition of

ND[Ui,Ui−1](w) satisfying |N j
i (w)| ≤ r for each j ∈ [2] (this is possible by (ii)). By (ES2),

|U∗| ≤ r and so we may assume that

U∗ ∩N2
i (w) = ∅ (17.4)

for each w ∈ Wi.

For each i ∈ [4], let Hi be the (undirected) graph on ((Ui ∪ Ui−1) \Wi) ∪ (W 1
i ∪W 2

i )

which contains all of the following edges, and no other edges.

– If uv ∈ E(D[Ui \Wi, Ui−1 \Wi]), then uv ∈ E(Hi).

– If uv ∈ E(D[Ui ∩Wi, Ui−1 ∩Wi]), then u1v1 ∈ E(Hi).

– Suppose that uv ∈ E(D[Ui ∩ Wi, Ui−1 \ Wi]). If v ∈ N1
i (u), then u1v ∈ E(Hi).

Otherwise, v ∈ N2
i (u) and u2v ∈ E(Hi).

– Suppose that uv ∈ E(D[Ui \ Wi, Ui−1 ∩ Wi]). If u ∈ N1
i (v), then uv1 ∈ E(Hi).

Otherwise, u ∈ N2
i (v) and uv2 ∈ E(Hi).

Claim 1. For each i ∈ [4], Hi is a bipartite graph which satisfies the following properties.

(a) V (Hi) = ((Ui ∪ Ui−1) \Wi) ∪ (W 1
i ∪W 2

i ).
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(b) e(Hi) = eD(Ui, Ui−1).

(c) ∆(Hi) ≤ r.

(d) eHi
(W 2

i ,W
1
i ∪W 2

i ) = 0.

Proof of Claim. Let i ∈ [4]. One can easily verify that Hi is a bipartite graph on vertex

classes (Ui\Wi)∪{wj | j ∈ [2], w ∈ Wi∩Ui} and (Ui−1\Wi)∪{wj | j ∈ [2], w ∈ Wi∩Ui−1}.

In particular, (a) holds. Moreover, there is a one-to-one correspondence between the edges

of D[Ui, Ui−1] and Hi and so (b) holds. For (c), observe that each v ∈ (Ui ∪ Ui−1) \Wi

satisfies dHi
(v) = dD[Ui,Ui−1](v) ≤ r, while each w1 ∈ W 1

i satisfies

dHi
(w1) = |ND[Ui,Ui−1](w) ∩Wi|+ |N1

i (w) \Wi|
(17.3),(17.4)

= |N1
i (w)| ≤ r.

Moreover, each w2 ∈ W 2
i satisfies NHi

(w2) = N2
i (w) \Wi and so dHi

(w2) ≤ r. Thus, (c)

and (d) hold. □

Step 2: Decomposing the auxiliary graphs. For each i ∈ [4], apply Proposi-

tion 7.23 to decompose Hi into r edge-disjoint (undirected) matchings Mi,1, . . . ,Mi,r such

that, for any j, j′ ∈ [r], ||Mi,j| − |Mi,j′|| ≤ 1 (this is possible by (c)). By (i) and (b), we

may assume without loss of generality that, for each i ∈ [r], we have

|M1,i| = |M3,i| and |M4,i| = |M2,i|. (17.5)

Moreover, each i ∈ [4] and j ∈ [r] satisfy

|Mi,j|
Fact 10.5

≤
⌈
εn2

r

⌉
≤
√
εn

4
. (17.6)

Step 3: Decomposing D. Let i ∈ [2] and j ∈ [r]. Define W := Wi ∪ Wi+2,

W 1 := W 1
i ∪W 1

i+2, and W 2 := W 2
i ∪W 2

i+2. Let V ′ := V (T ) \W . Note that Lemma 17.4(i)–

(iii) are satisfied with Mi,j and Mi+2,j playing the roles of M1 and M2. Indeed, Lemma 17.4(i)

follows from (17.5), while Lemma 17.4(ii) holds by (a). Moreover, Lemma 17.4(iii)
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follows from (a) and (d). Apply Lemma 17.4 with Mi,j and Mi+2,j playing the roles

of M1 and M2 to obtain M ′
i,j ⊆ Mi,j and M ′

i+2,j ⊆ Mi+2,j satisfying Lemma 17.4(a)–

(c). For each i′ ∈ {i, i + 2}, let M̃i′,j and M̃ ′
i′,j be obtained from Mi′,j and M ′

i′,j by

replacing, for each j ∈ [2], each wj ∈ W j
i′ by w, and then orienting all the edges from

Ui′ to Ui′−1. By definition of Hi and Hi+2, we have M̃ ′
i,j ⊆ M̃i,j ⊆ ED(Ui, Ui−1) and

M̃ ′
i+2,j ⊆ M̃i+2,j ⊆ ED(Ui+2, Ui+1).

For each i ∈ [r], let

– Fi := (M̃1,i \ M̃ ′
1,i) ∪ M̃ ′

2,i ∪ (M̃3,i \ M̃ ′
3,i) ∪ M̃ ′

4,i and

– Fr+i := M̃ ′
1,i ∪ (M̃2,i \ M̃ ′

2,i) ∪ M̃ ′
3,i ∪ (M̃4,i \ M̃ ′

4,i).

By definition, there is a one-to-one correspondence between the edges of H1 ∪ · · · ∪H4

and D. Thus, F1, . . . ,F2r are edge-disjoint and D =
⋃

i∈[2r]Fi. By (17.6), we have

e(Fi) ≤
√
εn for each i ∈ [2r].

Step 4: Verifying (F1) and (F2′)–(F4′). Finally, we verify that F1, . . . ,F2r are

(γ, T )-pseudo-feasible systems. Let j ∈ [r]. First, observe that

eFj
(U1, U4) = |M̃1,j| − |M̃ ′

1,j|
(17.5),Lemma 17.4(a)

= |M̃3,j| − |M̃ ′
3,j| = eFj

(U3, U2)

and

eFj
(U4, U3) = |M̃ ′

4,j|
Lemma 17.4(a)

= |M̃ ′
2,j| = eFj

(U2, U1).

Thus, (F1) holds. By Lemma 17.4(c), M̃ ′
i,j′ and M̃i,j′ \ M̃ ′

i,j′ are matchings for each i ∈ [4]

and j′ ∈ [r]. Therefore, ∆0(Fj′) ≤ 1 for each j′ ∈ [2r]. In particular, (F3′) holds for

Fj. Moreover, (iii) implies that each v ∈ U1−γ(T ) satisfies d+Fj′
(v) = 1 = d−Fj′

(v) for each

j′ ∈ [2r]. In particular, (F2′) holds for Fj. For (F4′), suppose that C is a cycle in Fj. By

Lemma 17.4(b), there exists i ∈ {2, 4} such that all the edges in M ′
i,j are incident to W 2

i .

Since C ⊆ D ⊆
←−
T U , there exists e ∈ EC(Ui, Ui−1) ⊆ M̃ ′

i,j. Denote by e′ the edge of M ′
i,j

which witnesses that e ∈ M̃ ′
i,j . By assumption, e′ is incident to W 2

i , say e′ = w2v for some
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w2 ∈ W 2
i (similar arguments hold if the ending point of e′ is in W 2

i ). By (d), we have

v ∈ Ui−1 \Wi and so, by construction, e = wv with w ∈ Wi∩Ui and v ∈ N2
i (w). Therefore,

(17.3) and (17.4) imply that e is a backward edge from Uγ(T ) ∩ U∗ to V (T ) \ U∗. Thus, e

is a (γ, T )-placeholder and so (F4′) holds. Therefore, Fj is a (γ, T )-pseudo-feasible system

and, by similar arguments, Fr+j is also a (γ, T )-pseudo-feasible system.
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CHAPTER 18

CONSTRUCTING A FEW SPECIAL
(PSEUDO)-FEASIBLE SYSTEMS: PROOFS OF

LEMMAS 17.1 AND 17.2

Finally, we show how to construct a few (pseudo)-feasible systems which satisfy some

special properties: in Lemma 17.1, we construct a few feasible systems out of prescribed

sets of edges and, in Lemma 17.2, we construct a few pseudo-feasible systems which

incorporate a given set of exceptional edges.

18.1 Proof overview

Each (pseudo)-feasible system F in Lemmas 17.1 and 17.2 will be constructed using the

following approach. Let T be a regular bipartite tournament. Let U = (U1, . . . , U4) be an

optimal (ε, 4)-partition for T and let U∗ be an (ε,U)-exceptional set for T .

Step 1: Selecting the forward edges which are incident to U1−γ(T ). First,

we fix the forward edges incident to U1−γ(T ) that we want F to cover. We make sure

that these edges form a linear forest F1. (Note that this step will be void in the proof of

Lemma 17.1, all these forward edges will be covered in Lemma 17.2.)

Step 2: Covering U1−γ(T ). Then, to ensure that (F2′) is satisfied, we add backward

edges to F1 to cover all the uncovered vertices in U1−γ(T ). Since the vertices in U1−γ(T )

have, by definition, very high backward degree, we can do so greedily and in such a way
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that we still have a linear forest F2.

Step 3: Balancing the number of backward edges. Next, we construct a linear

forest F3 by adding to F2 precisely mi↓ := eF2(Ui−2, Ui−3) additional backward edges

of T (Ui, Ui−1) for each i ∈ [4] (where the superscript i is taken modulo 4). Then,

eF3(Ui, Ui−1) = m(i+2)↓ + mi↓ for each i ∈ [4] and so (F1) holds.

These new edges will be selected using König’s theorem as follows. First, we find

a subdigraph H ⊆
←−
T U − U1−γ(T ) which contains many edges but has small maximum

degree. (In practice, H is already given in Lemma 17.1 (see Lemma 13.12(iii) and (iv)). For

Lemma 17.2, H will be constructed using Lemma 13.8.) Then, we can use Proposition 7.22

to find, for each i ∈ [4], a matching of size mi↓ in H(Ui, Ui−1) which avoids all the vertices

in F2.

Step 4: Adding forward edges incident to U∗ \ U1−γ(T ). Finally, we add to F3

a few extra forward edges incident to U∗ \ U1−γ(T ). We do this in such a way that the

resulting digraph F is still a linear forest.

For Lemma 17.1, this is necessary because we want F to be a feasible system and so

U∗ needs to be entirely covered by in- and outedges (see (F2)). This can be done greedily

since the vertices in U∗ \ U1−γ(T ) have high forward degree (see Lemma 13.12(ii)).

For Lemma 17.2, we only need a pseudo-feasible system and so U∗ need not be entirely

covered (see (F2′)). However, recall that we will need to incorporate all the forward edges

of T which lie inside U∗ (see Lemma 17.2(a)). We will thus add a few of these to F3 at

this stage (and distribute the remaining such edges to the other pseudo-feasible systems).

In practice, all the (pseudo)-feasible systems in Lemmas 17.1 and 17.2 will be con-

structed in parallel. In particular, for Lemma 17.2, we will decompose all the forward

edges of T which are incident to U1−γ(T ) at the start of the proof (this corresponds to

Step 1 above) and the other exceptional forward edges of T will be distributed greedily at

the end of the proof (this corresponds to Step 4).
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18.2 Selecting backward edges

Steps 2 and 3 from Section 18.1 are combined into the following lemma. Let T be a

regular bipartite tournament. Let U = (U1, . . . , U4) be an optimal (ε, 4)-partition for T

and let U∗ be an (ε,U)-exceptional set for T . Let H ⊆
←−
T U contain many well distributed

backward edges. Roughly speaking, Lemma 18.1 states that H contains edge-disjoint

linear forests F1, . . . ,Fℓ, where each Fj(Ui, Ui−1) covers all vertices of U1−γ
i (T ) ∪ U1−γ

i−1 (T )

apart from those in a given prescribed set Si↓
j of vertices to avoid and contains a prescribed

number mi↓
j of additional edges (see Lemma 18.1(a)). Moreover, these linear forests can

be constructed in such a way that every vertex of V (T ) \ U1−γ(T ) is not covered by too

many of the linear forests (see Lemma 18.1(b)) and is adjacent to at most one edge in

each linear forest (see Lemma 18.1(c)).

In our applications, the sets Si↓
j of vertices to avoid will consist of the vertices which

are already covered at the end of Step 1 from Section 18.1 and the constants mi↓
j will

be chosen as described in Step 3 from Section 18.1 in order to balance the number of

backward edges in each pair of the blow-up C4.

As explained in Section 18.1, the backward edges will be chosen in two stages, depending

on whether they are incident to U1−γ(T ) or not. However, we will swap the order of

Steps 2 and 3. That is, we will select the backward edges incident to U1−γ(T ) only after

the other backward edges have been selected. This is because it is much easier to select

backward edges incident to U1−γ(T ) (the vertices in U1−γ(T ) have high backward degree

and so can be covered greedily).

Lemma 18.1 (Selecting backward edges). Let 0 < 1
n
≪ ε≪ γ ≪ 1 and ℓ ≤ γn. Let T be

a regular bipartite tournament on 4n vertices and U = (U1, . . . , U4) be an (ε, 4)-partition

for T . Suppose that H ⊆
←−
T satisfies the following.

(i) For each v ∈ U1−γ(T ), d±H(v) ≥ 2γn.

(ii) For each v ∈ V (T ) \ U1−γ(T ), d±H(v) ≤ 2γn.
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(iii) For each i ∈ [4], eH−U1−γ(T )(Ui, Ui−1) ≥ 109γn|U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|.

For each i ∈ [4] and j ∈ [ℓ], let Si↓
j ⊆ Ui ∪ Ui−1 and mi↓

j ∈ N satisfy the following.

(iv) |Si↓
j \ U1−γ(T )| ≤ |U1−γ

i−2 (T ) ∪ U1−γ
i−3 (T )|.

(v) mi↓
j ≤ |U

1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|.

Then, H contains edge-disjoint linear forests F1, . . . ,Fℓ such that the following hold, where

F :=
⋃

i∈[ℓ]Fi.

(a) For each j ∈ [ℓ], Fj consists of

(α) a matching of H i↓
j := H(Ui \ (U1−γ(T ) ∪ Si↓

j ), Ui−1 \ (U1−γ(T ) ∪ Si↓
j )) of

size mi↓
j for each i ∈ [4];

(β) a matching of H(U1−γ
i (T )\Si↓

j , Ui−1\(U1−γ(T )∪Si↓
j )) of size |U1−γ

i (T )\Si↓
j |

for each i ∈ [4]; and

(γ) a matching of H(Ui\(U1−γ(T )∪Si↓
j ), U1−γ

i−1 (T )\Si↓
j ) of size |U1−γ

i−1 (T )\Si↓
j |

for each i ∈ [4].

(b) For each v ∈ V (T ) \ U1−γ(T ), we have dF(v) ≤ γn
6
.

(c) For each i ∈ [ℓ] and v ∈ V (T ) \ U1−γ(T ), we have dFi
(v) ≤ 1.

Proof. We will first select the edges which are not incident to U1−γ(T ) (i.e. those in (a.α))

as follows.

Claim 1. H contains edge-disjoint linear forests Q1, . . . ,Qℓ such that the following hold,

where Q :=
⋃

i∈[ℓ]Qi.

(a′) For each j ∈ [ℓ], Qj consists of a matching of H i↓
j of size mi↓

j for each i ∈ [4].

(b′) For each v ∈ V (T ) \ U1−γ(T ), we have dQ(v) ≤ γn
6
.

(c′) For each i ∈ [ℓ] and v ∈ V (T ) \ U1−γ(T ), we have dQi
(v) ≤ 1.

First, we assume that Claim 1 holds and select the edges incident to U1−γ(T ) (i.e.

those in (a.β) and (a.γ)) using Lemma 16.1 as follows. Let Q1, . . . ,Qℓ be the edge-disjoint
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linear forests obtained by applying Claim 1 and denote Q :=
⋃

i∈[ℓ]Qi. If U1−γ(T ) = ∅,

then let Fi := Qi for each i ∈ [ℓ] and observe that (a)–(c) follow from (a′)–(c′). We may

therefore assume that U1−γ(T ) ̸= ∅.

First, note that each i ∈ [ℓ] satisfies

|Qi| ≤ 2e(Qi)
(v),(a′)

≤ 4|U1−γ(T )|
Fact 13.9,Definition 13.11

≤ 16εn. (18.1)

Let X be the set of vertices v ∈ V (T ) \ U1−γ(T ) such that dQ(v) ≥ γn
7

(so X is the set of

vertices which are already covered by many of the linear forests Q1, . . . ,Qℓ). Note that

|X|
(18.1),(c′)

≤ 7 · 16εnℓ

γn
≤ 112εn. (18.2)

For each j ∈ [ℓ], denote by

Sj :=
⋃
i∈[4]

(Si↓
j \ U1−γ(T ))

the set of vertices outside U1−γ(T ) that need to be avoided by Fj and observe that

|Sj| ≤
∑
i∈[4]

|Si↓
j \ U1−γ(T )|

(iv)

≤ 2|U1−γ(T )|
Fact 13.9,Definition 13.11

≤ 8εn. (18.3)

Let Y be the set of vertices v ∈ V (T ) \ U1−γ(T ) for which there exist at least γn
7

indices

i ∈ [ℓ] such that v ∈ Si (so Y is the set vertices which need to be avoided by many of the

linear forests F1, . . . ,Fℓ). Note that

|Y |
(18.3)

≤ 7 · 8εnℓ
γn

≤ 56εn. (18.4)

Let A := U1−γ(T ) and B := V (T ) \ (A∪X ∪Y ). Let D be the bipartite digraph on vertex

classes A and B induced by H. For each j ∈ [ℓ], let S ′j := V (E(Qj)) ∪ Sj and define

T+
j :=

⋃
i∈[4]

U1−γ
i (T ) \ Si↓

j and T−j :=
⋃
i∈[4]

U1−γ
i−1 (T ) \ Si↓

j .
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By (a′), V (Qi) ∩ U1−γ(T ) = ∅ for each i ∈ [ℓ]. Thus, note for later that both

T±i ∩ V (Qi) = ∅ and V (E(Qi)) ∩B ⊆ S ′i (18.5)

for each i ∈ [ℓ]. Define N := 2|U1−γ(T )| = 2|A|. For each v ∈ B, let nv denote the number

of indices i ∈ [ℓ] such that v ∈ S ′i.

We verify that (16.1) holds with T+
1 , . . . , T+

ℓ , T−1 , . . . , T−ℓ , and S ′1, . . . , S
′
ℓ playing the

roles of S+
1 , . . . , S

+
ℓ , S

−
1 , . . . , S

−
ℓ , and T1, . . . , Tℓ. For each i ∈ [ℓ], we have

|T+
i |+ |T−i | ≤ 2|U1−γ(T )|

Fact 13.9,Definition 13.11

≤ 8εn (18.6)

and

|S ′i| ≤ |Qi|+ |Si|
(18.1),(18.3)

≤ 24εn. (18.7)

By definition of X and Y , each v ∈ B ⊆ V (T ) \ (U1−γ(T ) ∪X ∪ Y ) satisfies

nv ≤ dQ(v) + |{i ∈ [ℓ] | v ∈ Si}| ≤
γn

7
+

γn

7
=

2γn

7
. (18.8)

Thus, (18.2), (18.4), and (18.6)–(18.8) imply that each v ∈ U1−γ(T ) satisfies

d±D(v)
(i)

≥ 2γn− |U1−γ(T )| − |X| − |Y |
Fact 13.9,Definition 13.11

≥ ℓ + 2 max
j∈[ℓ]

(|T+
j |+ |T−j |+ |S ′j|) + 2(max

w∈B
nw + N).

Thus, (16.1) holds with T+
1 , . . . , T+

ℓ , T−1 , . . . , T−ℓ , and S ′1, . . . , S
′
ℓ playing the roles of

S+
1 , . . . , S

+
ℓ , S

−
1 , . . . , S

−
ℓ , and T1, . . . , Tℓ.

Let Q′1, . . . ,Q′ℓ be the edge-disjoint linear forests obtained by applying Lemma 16.1

with T+
1 , . . . , T+

ℓ , T−1 , . . . , T−ℓ , and S ′1, . . . , S
′
ℓ playing the roles of S+

1 , . . . , S
+
ℓ , S

−
1 , . . . , S

−
ℓ ,

and T1, . . . , Tℓ. For each i ∈ [ℓ], denote Fi := Qi ∪Q′i. Let F :=
⋃

i∈[ℓ]Fi. We claim that

F1, . . . ,Fℓ are edge-disjoint linear forests which satisfy (a)–(c). By Claim 1, Q1, . . . ,Qℓ

are edge-disjoint linear forests. By (a′), their edges are not adjacent to U1−γ(T ) and so
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Q1, . . . ,Qℓ are edge-disjoint from D. Therefore, (18.5) and the “in particular part” of

Lemma 16.1 implies that F1, . . . ,Fℓ are edge-disjoint linear forests. Moreover, (a) holds

by (a′) and Lemma 16.1(a). For (b), let v ∈ V (T ) \ U1−γ(T ). If v ∈ X, then recall that

X ∩ V (D) = ∅ and so (b′) implies that dF(v) = dQ(v) ≤ γn
6

, as desired. Otherwise, the

definition of X implies that

dF(v) ≤ dQ(v) + dD(v) ≤ γn

7
+ 2|U1−γ(T )|

Fact 13.9,Definition 13.11

≤ γn

7
+ 8εn ≤ γn

6
,

so (b) holds. For (c), let i ∈ [ℓ] and v ∈ V (T )\U1−γ(T ). If dQi
(v) = 0, then Lemma 16.1(c)

implies that dFi
(v) ≤ 1. Otherwise, Lemma 16.1(a) and the definition of S ′i imply that

dQ′
i
(v) = 0 and so (c′) implies that dFi

(v) ≤ 1. Thus, (c) holds.

Proof of Claim 1. We will construct, for each i ∈ [4] and j ∈ [ℓ], a matching M i↓
j ⊆ H i↓

j

of size mi↓
j . Then, we will let each Qj consist of the union

⋃
i∈[4]M

i↓
j . In this way, (a′) will

be automatically satisfied.

These matchings will be constructed one by one using Proposition 7.22 as follows.

Suppose that we want to construct M i↓
j for some i ∈ [4] and j ∈ [ℓ], and suppose

furthermore that we have already constructed M i′↓
j for some i′ ∈ [4] \ {i}. Then, in order

to satisfy (c′), we need to avoid the vertices in V (M i′↓
j ). Thus, in order to minimise the

number of vertices we have to avoid at each stage (and thus maximise the number of

available edges for each matching), we will construct the matchings in ascending size order.

Let ∅ =: X0 ⊊ X1 ⊊ · · · ⊊ X4ℓ := [4] × [ℓ] be such that, for each k ∈ [4ℓ], (i, j) ∈

Xk \Xk−1, and (i′, j′) ∈ Xk−1, we have mi′↓
j′ ≤ mi↓

j . Note that |Xk \Xk−1| = 1 for each

k ∈ [4ℓ].

Suppose inductively that, for some 0 ≤ k ≤ 4ℓ, we have constructed a setMk = {M i↓
j |

(i, j) ∈ Xk} of edge-disjoint matchings such that the following hold.

(a′′) For each (i, j) ∈ Xk, M i↓
j is a matching of H i↓

j of size mi↓
j .

(b′′) For each v ∈ V (T ), we have
∑

(i,j)∈Xk
dM i↓

j
(v) ≤ γn

6
.
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(c′′) For each j ∈ [ℓ] and v ∈ V (T ) \ U1−γ(T ), we have
∑

i : (i,j)∈Xk
dM i↓

j
(v) ≤ 1.

First, suppose that k = 4ℓ. For each j ∈ [ℓ], let Qj :=
⋃

i∈[4]M
i↓
j . Then, (a′)–(c′) follow

from (a′′)–(c′′).

We may therefore assume that k < 4ℓ. Let (i, j) ∈ Xk+1 \Xk and let H ′ be obtained

from H(Ui \ U1−γ(T ), Ui−1 \ U1−γ(T )) by deleting all the edges in
⋃
Mk. The matching

M i↓
j will be constructed in H ′ using Proposition 7.22. By definition of X0, . . . , X4ℓ, we

have

e(H ′)
(a′′)
= eH−U1−γ(T )(Ui, Ui−1)−

∑
j′ : (i,j′)∈Xk

|M i↓
j′ |

(a′′)
= eH−U1−γ(T )(Ui, Ui−1)−

∑
j′ : (i,j′)∈Xk

mi↓
j′ ≥ eH−U1−γ(T )(Ui, Ui−1)− ℓmi↓

j

(iii),(v)

≥ 108γn|U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|. (18.9)

We will now list and count all the vertices that M i↓
j needs to avoid. For (a′′), we will need

to avoid the vertices in Si↓
j \ U1−γ(T ), where

|Si↓
j \ U1−γ(T )|

(iv)

≤ |U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|. (18.10)

(The vertices in Si↓
j ∩ U1−γ(T ) will automatically be avoided since V (H ′) ∩ U1−γ(T ) = ∅.)

For (b′′), we will need to avoid the set of vertices Y i↓
j of vertices v ∈ V (H ′) for which∑

(i′,j′)∈Xk
d
M i′↓

j′
(v) =

⌊
γn
6

⌋
where, by definition of X0, . . . , X4ℓ,

|Y i↓
j | ≤

∑
(i′,j′)∈Xk

|V (M i′↓
j′ )|⌊

γn
6

⌋ (a′′)
=

2
∑

(i′,j′)∈Xk
mi′↓

j′⌊
γn
6

⌋ ≤
2 · 4ℓ ·mi↓

j⌊
γn
6

⌋
(v)

≤ 49|U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|. (18.11)

Finally, for (c′′), we will need to avoid all the vertices in Zi↓
j :=

⋃
i′ : (i′,j)∈Xk

(V (M i′↓
j )∩V (H ′))
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where, by definition of X0, . . . , X4ℓ,

|Zi↓
j | ≤

∑
i′ : (i′,j)∈Xk

∣∣∣V (M i′↓
j ) ∩ (Ui ∪ Ui−1)

∣∣∣ (a′′)≤ ∑
i′ : (i′,j)∈Xk

mi′↓
j ≤ 3mi↓

j

(v)

≤ 3|U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|. (18.12)

Let S̃i↓
j consist of all the above mentioned vertices, that is, let

S̃i↓
j := (Si↓

j \ U1−γ(T )) ∪ Y i↓
j ∪ Zi↓

j .

Let H̃ i↓
j := H ′ − S̃i↓

j ⊆ H i↓
j . By (18.10)–(18.12), we have |S̃i↓

j | ≤ 53|U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|

and so

e(H̃ i↓
j ) ≥ e(H ′)−∆(H ′)|S̃i↓

j |
(ii),(18.9)

≥ 2γn|U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|
(ii),(v)

≥ ∆(H̃ i↓
j )mi↓

j .

Thus, Proposition 7.22 (applied with the undirected graph underlying H̃ i↓
j playing the role

of G) implies that H̃ i↓
j contains a matching M i↓

j of size mi↓
j . One can easily verify that

(a′′)–(c′′) hold with k + 1 playing the role of k. □

This completes the proof of Lemma 18.1.

18.3 Proofs of Lemmas 17.1 and 17.2

We are now ready to prove Lemmas 17.1 and 17.2, using the arguments described in

Section 18.1.

Proof of Lemma 17.1. Denote t0 := 0 =: s0. Suppose inductively that, for some 0 ≤ k ≤ s,

we have constructed edge-disjoint feasible systems F1, . . . ,Ftk+sk such that the following

hold.

(α) For each i ∈ [4] and j ∈ [tk + sk], we have eFj−U1−γ(T )(Ui, Ui−1) = |U1−γ
i−2 (T ) ∪

U1−γ
i−3 (T )|.
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(β) For each i ∈ [tk + sk], e(Fi) ≤
√
εn.

(γ) For each i ∈ [tk + sk] and v ∈ V (T ) \ U∗, dFi
(v) ≤ 1.

(δ) For each i ∈ [k] and j ∈ [si], Fti+j ⊆ Hi.

First, suppose that k = s. Then, (a), (b), and (d) follow from (α), (β), and (δ), respectively.

Let i ∈ [t]. By (F2), U∗ ⊆ V 0(Fi) and, by (γ), V 0(Fi) ⊆ U∗. Therefore, (c) holds.

We may therefore assume that k < s. Note that tk + sk = tk+1. We will now construct

Ftk+1+1, . . . ,Ftk+1+sk+1
. Let H := Hk+1 \ (Hk+1[U

1−γ(T )] ∪
⋃

i∈[tk+1]
Fi).

Step 1: Selecting backward edges. First, we show that Lemma 18.1(i)–(iii) hold

with
←−
H U playing the role of H. Note that Lemma 18.1(ii) follows immediately from

Lemma 13.12(iii). For each v ∈ U1−γ(T ), we have

←−
d ±H,U(v)

(F3)

≥
←−
d ±Hk+1,U(v)− |

←−
N±Hk+1,U(v) ∩ U1−γ(T )| − tk+1

Lemma 13.12(i)

≥ 3γn− |U1−γ(T )| − ηn
Fact 13.9,Definition 13.11

≥ 2γn.

Thus, Lemma 18.1(i) holds. For each i ∈ [4], we have

eH−U1−γ(T )(Ui, Ui−1) = eHk+1−U1−γ(T )(Ui, Ui−1)

−
∑

j∈[tk+1]

eFj−U1−γ(T )(Ui, Ui−1)

(α),Lemma 13.12(iv)

≥ 109γn|U1−γ
i−2 (T ) ∪ U1−γ

i−3 (T )|.

Thus, Lemma 18.1(iii) is satisfied.

For each i ∈ [4] and j ∈ [sk+1], let Si↓
j := ∅ and

mi↓
j := |U1−γ

i−2 (T ) ∪ U1−γ
i−3 (T )|

Fact 13.9,Definition 13.11

≤ 2εn. (18.13)

Then, Lemma 18.1(iv) and (v) hold with sk+1 playing the role of ℓ. Let F ′tk+1+1, . . . ,

F ′tk+1+sk+1
be the edge-disjoint linear forests obtained by applying Lemma 18.1 with

←−
H U
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and sk+1 playing the roles of H and ℓ.

Step 2: Covering U∗. We now add forward edges to F ′tk+1+1, . . . ,F ′tk+1+sk+1
to ensure

that (F2) is satisfied. We will use Lemma 16.1 as follows. Let A := U∗ and B := V (T )\U∗.

Let D be the bipartite digraph on vertex classes A and B induced by
−→
H U . For each

i ∈ [sk+1], let S±i be the set of vertices v ∈ U∗ which satisfy d±F ′
tk+1+i

(v) = 0 (so S+
i and

S−i list the vertices in U∗ which are not yet covered with an out/inedge in F ′tk+1+i) and

define Ti := V (E(F ′tk+1+i)) ∩B. Note for later that both

S±i ∩ V (F ′tk+1+i) ⊆ V ∓(F ′tk+1+i) and V (E(F ′tk+1+i) ∩B ⊆ Ti (18.14)

for each i ∈ [sk+1]. Define N := 2|U∗| = 2|A|. For each v ∈ B, let nv denote the number

of indices i ∈ [sk+1] such that v ∈ Ti.

We verify that (16.1) holds with sk+1 playing the role of ℓ. For each i ∈ [sk+1], we have

|S+
i |+ |S−i | ≤ 2|U∗|

(ES2)

≤ 8εn (18.15)

and

|Ti| ≤ |V (E(F ′tk+1+i))|
Lemma 18.1(a),(18.13)

≤ 4|U1−γ(T )|
Fact 13.9,Definition 13.11

≤ 16εn. (18.16)

Moreover, each v ∈ B = V (T ) \ U∗ satisfies

nv ≤
∑

i∈[sk+1]

dF ′
tk+1+i

(v)
Lemma 18.1(a)

≤
←−
d H,U(v)

(ES1)

≤ 2εn. (18.17)
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Therefore, each v ∈ U∗ \ U1−γ(T ) satisfies

d±D(v) =
−→
d ±Hk+1,U(v)− |

−→
N±Hk+1,U(v) ∩ U∗| −

∑
j∈[tk+1]

−→
d ±Fj

(v)

Lemma 13.12(ii),(F3)

≥ γ2n− |U∗| − tk+1

(ES2)

≥ γ3n

(ES2),(18.15)–(18.17)

≥ sk+1 + 2 max
i∈[sk+1]

(|S+
i |+ |S−i |+ |Ti|)

+ 2(max
w∈B

nw + N). (18.18)

By Lemma 18.1(a.β) and (a.γ), each vertex in U1−γ(T ) is already covered with both an

in- and an outedge in each of the linear forests F ′tk+1+1, . . . ,F ′tk+1+sk+1
, so S+

i ∪ S−i ⊆

U∗ \ U1−γ(T ) for each i ∈ [sk+1]. Thus, (16.1) follows from (18.18).

Let Q1, . . . ,Qsk+1
be the edge-disjoint linear forests obtained by applying Lemma 16.1

with sk+1 playing the role of ℓ. For each i ∈ [sk+1], denote Ftk+1+i := F ′tk+1+i ∪Qi.

Step 3: Verifying (α)–(δ). We now check that Ftk+1+1, . . . ,Ftk+1+sk+1
are edge-

disjoint feasible systems and that (α)–(δ) hold with k + 1 playing the role of k. By

Lemma 18.1, F ′tk+1+1, . . . ,F ′tk+1+sk+1
are edge-disjoint linear forests and, by Lemma 18.1(a),

F ′tk+1+1, . . . ,F ′tk+1+sk+1
consist of backward edges and so are edge-disjoint from D. Thus,

(18.14) and the “in particular part” of Lemma 16.1 imply that Ftk+1+1, . . . ,Ftk+1+sk+1
are

edge-disjoint linear forests. Moreover, (α) holds by Lemma 18.1(a), (18.13), and the fact

that Step 2 involves only forward edges. Note that each j ∈ [sk+1] satisfies

e(Ftk+1+j) ≤ e(F ′tk+1+j) + e(Qj)

Lemma 18.1(a),Lemma 16.1(a)

≤

∑
i∈[4]

mi↓
j + 2|U1−γ(T )|

+ (|S+
j |+ |S−j |)

(18.13),(18.15)

≤ 4|U1−γ(T )|+ 2|U∗|
Fact 13.9,Definition 13.11

≤
√
εn,

so (β) holds. Recall from Fact 13.9 and Definition 13.11 that U1−γ(T ) ⊆ U∗. Thus,

Lemmas 18.1(c) and 16.1(c) imply that each v ∈ V (T ) \ U∗ and i ∈ [sk+1] satisfy
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both dFtk+1+i
(v) ≤ 1 and dQi

(v) ≤ 1. Therefore, Lemma 16.1(a) and the definition

of T1, . . . , Tsk+1
imply that (γ) holds. Moreover, (δ) follows from Lemma 18.1(a) and

Lemma 16.1(a).

Let j ∈ [sk+1]. We now check that Ftk+1+j is a feasible system. We have already

verified that (F3) holds. By Lemma 18.1(a) and since Step 2 only involves forward edges,

each i ∈ [4] satisfies

eFtk+1+j
(Ui, Ui−1) = eF ′

tk+1+j
(Ui, Ui−1) = mi↓

j + |U1−γ
i (T )|+ |U1−γ

i−1 (T )| (18.13)= |U1−γ(T )|.

Thus, (F1) is satisfied. By Lemma 16.1(a), (F2) is satisfied. Therefore, Ftk+1+j is a feasible

system, as desired.

Let D be a digraph. For each e ∈ E(D), let L(e) be a list of colours. A proper list

edge-colouring of D is a colouring of the edges of D such that each edge e ∈ E(D) is

coloured with one of the colours in its list L(e) and no two adjacent edges receive the same

colour. The next proposition states that if the lists are all sufficiently large, then a proper

list edge-colouring exists. Its proof follows from a simple greedy colouring argument and

is therefore omitted.

Proposition 18.2. Let D be a digraph. For each e = uv ∈ E(D), let L(e) be a list of

colours satisfying |L(e)| ≥ dD(u) + dD(v) + 1. Then, D has a proper list edge-colouring.

Proof of Lemma 17.2. For each i ∈ [4], denote U∗i := U∗ ∩Ui. By Fact 10.2(ii) and the “in

particular part” of Lemma 13.10 (applied with 2γ playing the role of γ), we may assume

without loss of generality that

U1−2γ
3 (T ) = ∅ = U1−2γ

4 (T ). (18.19)

Step 1: Decomposing the forward edges of D which are incident to U1−γ(T )

and the forward edges of D[U∗] which are incident to U1−2γ(T ). By (13.2), each
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v ∈ U1−γ(T ) satisfies

−→
d ±D,U(v) ≤

−→
d ±T,U(v) ≤ ⌊γn⌋ ≤ t′.

Moreover, each v ∈ U1−2γ(T ) satisfies

|
−→
N±D,U(v) ∩ U∗| ≤ |U∗|

(ES2)

≤ t′.

Also recall from Fact 13.9 and Definition 13.11 that |U1−γ(T )| ≤ |U1−2γ(T )| ≤ t′. For each

i ∈ [4], Proposition 7.23 (applied with the corresponding underlying undirected graph

playing the role of G) implies that the digraph

D(U1−γ
i (T ), Ui+1) ∪D(Ui, U

1−γ
i+1 (T )) ∪D(U1−2γ

i (T ), U∗i+1) ∪D(U∗i , U
1−2γ
i+1 (T ))

can be decomposed into t′ edge-disjoint matchings M i↑
1 , . . . ,M i↑

t′ . Observe that the following

hold.

(α) For each i ∈ [4] and j ∈ [t′], M i↑
j ⊆ ED(Ui, Ui+1).

(β)
⋃

(i,j)∈[4]×[t′] M
i↑
j = {e ∈ E(

−→
DU) | V (e)∩U1−γ(T ) ̸= ∅}∪{e ∈ E(

−→
DU [U∗]) | V (e)∩

U1−2γ(T ) ̸= ∅}. In particular, Fact 13.9 implies that each edge in
⋃

(i,j)∈[4]×[t′] M
i↑
j

is incident to U1−2γ(T ).

Step 2: Selecting backward edges. In this step, we use backward edges to ensure

that each vertex in U1−2γ(T ) is covered by both an in- and an outedge in each of the

feasible system. Covering U1−γ(T ) is necessary for (F2′) to be satisfied, while covering

U1−2γ(T ) \ U1−γ(T ) will ensure that (d) is satisfied. We will also balance the number

of backward edges using edges which are not incident to U1−2γ(T ). This corresponds to

Steps 2 and 3 of the proof overview presented in Section 18.1 and will be carried out using

Lemma 18.1.

Let H ⊆
←−
T U be the digraph obtained by applying Lemma 13.8 with 2γ playing the

role of γ. Note that the following hold.

244



(I) ∆0(H) ≤ 2γn.

(II) For each v ∈ U1−2γ(T ), dH(v) = 0.

(III) For each i ∈ [4], eH−U1−2γ(T )(Ui, Ui−1) ≥ (1− 4γ)n|U1−2γ
i−2 (T ) ∪ U1−2γ

i−3 (T )|.

Let H ′ be obtained from H ∩D by adding all the edges of
←−
DU which have precisely one

endpoint in U1−2γ(T ) and precisely one endpoint in V (T ) \ U∗. Note that

eH′(U1−2γ(T ), U∗) + eH′(U∗, U1−2γ(T ))
(II)
= 0. (18.20)

We now verify that Lemma 18.1(i)–(iii) hold with H ′ and 2γ playing the roles of H and γ.

For each v ∈ U1−2γ(T ),

d±H′(v)
(II)
= |
←−
N±D,U(v) \ U∗| ≥

←−
d ±T,U(v)−∆0(T \D)− |U∗|

(i)

≥ (1− 2γ)n− t− |U∗|
(ES2)

≥ (1− 3γ)n.

Therefore, Lemma 18.1(i) is satisfied, with room to spare. For each v ∈ V (T ) \ U1−2γ(T ),

d±H′(v) ≤ d±H(v) + |U1−2γ(T )|
(I),Fact 13.9,Definition 13.11

≤ 3γn.

Thus, Lemma 18.1(ii) is satisfied, with room to spare. For each i ∈ [4],

eH′−U1−2γ(T )(Ui, Ui−1)
(ii),(III)

≥ (1− 5γ)n|U1−2γ
i−2 (T ) ∪ U1−2γ

i−3 (T )|.

Therefore, Lemma 18.1(iii) holds, with room to spare.

Let i ∈ [4] and j ∈ [t′]. Recall from Lemma 18.1(a) that, when applying Lemma 18.1,

Si↓
j denotes the set of vertices that need to be avoided by the edges from Ui to Ui−1. Here,

we need to avoid the vertices in Ui which are already covered with an outedge and the

vertices in Ui−1 which are already covered with an inedge. By (α), these are precisely the

vertices in

Si↓
j := (V (M i↑

j ) ∪ V (M
(i−2)↑
j )) ∩ (Ui ∪ Ui−1). (18.21)
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Then,

|Si↓
j \ U1−2γ(T )| (α)

= |V (M i↑
j ) ∩ (Ui \ U1−2γ(T ))|+ |V (M

(i−2)↑
j ) ∩ (Ui−1 \ U1−2γ(T ))|

(α),(β)

≤ |V (M i↑
j ) ∩ U1−2γ

i+1 (T )|+ |V (M
(i−2)↑
j ) ∩ U1−2γ

i−2 (T )|

≤ |U1−2γ
i+1 (T )|+ |U1−2γ

i−2 (T )|.

Therefore, Lemma 18.1(iv) is satisfied with 2γ playing the role of γ. Let

mi↓
j :=

∣∣∣(U1−2γ
i−2 (T ) ∪ U1−2γ

i−3 (T )
)
\ S(i−2)↓

j

∣∣∣ . (18.22)

Then, Lemma 18.1(v) holds with 2γ playing the role of γ.

Let F ′1, . . . ,F ′t′ be the edge-disjoint linear forests obtained by applying Lemma 18.1

with H ′, t′, and 2γ playing the roles of H, ℓ, and γ. For each j ∈ [t′], note that

F ′j ⊆
←−
DU ⊆

←−
T U (18.23)

and let F ′′j :=
⋃

i∈[4] M
i↑
j ∪ F ′j. Denote F ′′ :=

⋃
j∈[t′]F ′′j .

Claim 1. F ′′1 , . . . ,F ′′t′ are edge-disjoint and satisfy the following properties.

(A) For each j ∈ [t′], F ′′j is a (γ, T )-pseudo-feasible system.

(B) For each j ∈ [t′], e(F ′′j ) ≤ 24εn.

(C) For each v ∈ U1−γ(T ),
−→
d ±F ′′,U(v) =

−→
d ±D,U(v).

(D) For each v ∈ U1−2γ(T ) \ U1−γ(T ),
←−
d ±F ′′,U(v) ≥ t′ − 4εn.

(E) For each v ∈ V (T ) \ U1−2γ(T ), dF ′′(v) ≤ 2γn
5
.

(F) E(
−→
F ′′U) = {e ∈ E(

−→
DU) | V (e) ∩ U1−γ(T ) ̸= ∅} ∪ {e ∈ E(

−→
DU [U∗]) | V (e) ∩

U1−2γ(T ) ̸= ∅}. In particular, E(
−→
F ′′U [U∗ \ U1−2γ(T )]) = ∅.

Proof of Claim. By (α) and (18.23), E(F ′j)∩M
i↑
j′ = ∅ for any i ∈ [4] and j, j′ ∈ [t′]. Thus,

F ′′1 , . . . ,F ′′t′ are edge-disjoint. Moreover, (18.23) implies that
−→
F ′′U =

⋃
(i,j)∈[4]×[t′] M

i↑
j . Thus,
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(C) and (F) follow from (β). Moreover, note for later that each v ∈ U1−2γ(T ) \ U1−γ(T )

satisfies

−→
d ±F ′′,U(v)

(β)
= |
−→
N±D,U(v) ∩ U∗|

(ES2)

≤ 4εn. (18.24)

For each j ∈ [t′],

e(F ′′j ) =
∑
i∈[4]

|M i↑
j |+ e(F ′j)

(α),(β),Lemma 18.1(a)

≤ 2|U1−2γ(T )|+

∑
i∈[4]

mi↓
j + 2|U1−2γ(T )|


(18.22)

≤ 6|U1−2γ(T )|
Fact 13.9,Definition 13.11

≤ 24εn,

so (B) holds. For each i ∈ [4] and v ∈ Ui \ U1−2γ(T ), we have

dF ′′(v)
(α)
=

∑
j∈[t′]

((
dM i↑

j
(v) + d

M
(i−1)↑
j

(v)
)

+ dF ′
j
(v)
)

(β),Lemma 18.1(b)

≤ 2|U1−2γ(T )|+ γn

3

Fact 13.9,Definition 13.11

≤ 2γn

5
,

so (E) holds. Let j ∈ [t′]. We show that F ′′j is a (γ, T )-pseudo-feasible system. First, note

that

eF ′′
j
(U1, U4)

(α)
= eF ′

j
(U1, U4)

Lemma 18.1(a)
= m1↓

j + |(U1−2γ
1 (T ) ∪ U1−2γ

4 (T )) \ S1↓
j |

(18.22)
= |(U1−2γ

3 (T ) ∪ U1−2γ
2 (T )) \ S3↓

j |+ m3↓
j

Lemma 18.1(a)
= eF ′

j
(U3, U2)

(α)
= eF ′′

j
(U3, U2).

Similarly, eF ′′
j
(U4, U3) = eF ′′

j
(U2, U1) and so (F1) is satisfied. For each i ∈ [4] and v ∈ Ui,

d+F ′′
j
(v)

(α),(18.23)
= dM i↑

j
(v) + dF ′

j(Ui,Ui−1)(v)
(18.21),Lemma 18.1(a)

≤ 1.

Similarly, each v ∈ V (T ) satisfies d−F ′′
j
(v) ≤ 1. Thus, (F3′) holds. Moreover, each i ∈ [4]
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and v ∈ U1−2γ
i (T ) satisfy

d+F ′′
j
(v)

(α),(18.23)
= dM i↑

j
(v) + dF ′

j(Ui,Ui−1)(v)
(18.21),Lemma 18.1(a)

= 1.

Similarly, each v ∈ U1−2γ(T ) satisfies d−F ′′
j
(v) = 1. Thus, (F2′) holds and (D) follows from

(18.24).

Finally, to verify (F4′), suppose that C is a cycle in F ′′j . We show that C contains a

(γ, T )-placeholder. By (18.19), (β), and (18.23),

eF ′′
j
(U3, U4) + eF ′′

j
(U1−2γ

4 (T ), U3) + eF ′′
j
(U4, U

1−2γ
3 (T )) = 0.

Therefore, Lemma 18.1(c) implies that each edge in EF ′′
j
(U4, U3) forms a component in

F ′′j . Altogether, we have

eC(U3, U4) + eC(U4, U3) = 0. (18.25)

Suppose that there exists e ∈ EC(U2, U1) ⊆ EF ′′
j
(U2, U1). By (α), e ∈ E(F ′j) and, by

(18.19) and (18.22), m2↓
j = 0. Thus, Lemma 18.1(a) implies that V (e) ∩ U1−2γ(T ) ̸= ∅. By

Lemma 18.1(a), (18.20), Fact 13.9, and (ES1), e is a backward edge with precisely one

endpoint in U1−2γ(T ) ⊆ U∗ and one endpoint in V (T )\U∗. Thus, e is a (γ, T )-placeholder,

as desired.

We may therefore assume that eC(U2, U1) = 0. Then, (α), (18.23), and (18.25) imply

that either V (C) ⊆ U4 ∪ U1 or V (C) ⊆ U3 ∪ U2. Suppose the former (similar arguments

hold in the other case). By Lemma 18.1, F ′j is a linear forest and so (α) implies that

there exists uv ∈M4↑
j ∩ E(C). By (18.19), (α), and (β), v ∈ U1−2γ

1 (T ). Let w denote the

outneighbour of v on C. By assumption, (α), and (18.23), w ∈ U4. In particular, vw is

a backward edge and so (α) and Lemma 18.1(a) imply that vw ∈ E(H ′). Thus, (18.20)

implies that w ∈ V (T ) \ U∗ and so vw is a (γ, T )-placeholder, as desired. Therefore, (F4′)

holds and so F ′′j is a (γ, T )-pseudo-feasible system. Thus, (A) holds. □

Step 3: Covering the edges of
−→
D [U∗ \ U1−2γ(T )]. We will use Proposition 18.2 as
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follows. For each e ∈ E(
−→
DU [U∗ \ U1−2γ(T )]), let L(e) be the set of colours i ∈ [t′] such

that V (e) ∩ V (E(F ′′i )) = ∅. For each e = uv ∈ E(
−→
DU [U∗ \ U1−2γ(T )]), we have

|L(e)| ≥ t′ − dF ′′(u)− dF ′′(v)
(E)

≥ γn

6

(ES2)

≥ |
−→
ND,U(u) ∩ U∗|+ |

−→
ND,U(v) ∩ U∗|+ 1.

Thus, Proposition 18.2 implies that
−→
DU [U∗ \ U1−2γ(T )] has a proper list edge-colouring

ϕ : E(
−→
DU [U∗ \ U1−2γ(T )]) −→ [t′]. For each i ∈ [t′], let Fi := F ′′i ∪ ϕ−1(i). Since ϕ is an

edge-colouring of
−→
DU [U∗ \ U1−2γ(T )], any distinct i, i′ ∈ [t′] satisfy

E(Fi \ F ′′i ) ∩ E(Fi′ \ F ′′i′) = ∅. (18.26)

Denote F :=
⋃

i∈[t′]Fi and note that

E(F \ F ′′) (F)
= E(

−→
DU [U∗ \ U1−2γ(T )]). (18.27)

Step 4: Verifying (a)–(d). We claim that F1, . . . ,Ft′ are edge-disjoint (γ, T )-pseudo-

feasible systems satisfying (a)–(d). Recall from Claim 1 that E(F ′′i ) ∩ E(F ′′i′) = ∅ for any

distinct i, i′ ∈ [t′]. Thus, (18.26), (18.27), and the “in particular part” of (F) imply that

F1, . . . ,Ft′ are edge-disjoint.

Let i ∈ [t′]. We now show that Fi is a (γ, T )-pseudo-feasible system. By construction,

E(Fi) \ E(F ′′i ) ⊆ E(
−→
T U). Thus, (F1) follows from (A). By construction of the lists of

colours, we have V (E(Fi\F ′′i ))∩V (E(F ′′i )) = ∅ and, since ϕ is proper, ϕ−1(i) is a matching

for each i ∈ [t′]. Thus, (F2′) and (F3′) follow from (A). Moreover, each cycle in Fi is a

cycle in F ′′i . Thus, (F4′) also follows from (A). Therefore, Fi is a (γ, T )-pseudo-feasible

system, as desired.

Moreover, (a) follows from (F) and (18.27), (c) follows from (C) and (18.27), and (d)

follows from (D). Finally, the fact that ϕ−1(i) is a matching implies that

e(Fi) = e(F ′′i ) + |ϕ−1(i)|
(B)

≤ 24εn + |U∗ \ U1−2γ(T )|
(ES2)

≤
√
εn
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and so (b) holds.
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APPENDIX A

OPTIMAL PACKINGS OF HAMILTON CYCLES:
PROOF OF COROLLARY 1.15

In this appendix, we prove Corollary 1.15. First, we will need the following properties of

(ε, d)-regular bipartite graphs. (Recall that those were defined in Section 7.2.) The next

two lemmas hold by definition (and so their proofs are omitted).

Lemma A.1. Let 0 < 1
m
≪ ε ≪ d < 1 and ε ≤ η ≪ 1. Let G be a bipartite graph on

vertex classes A and B of size m. Suppose that G is (ε, d)-regular. Let A′ ⊆ A and B′ ⊆ B

satisfy |A′|, |B′| ≥ ηm. Then, G[A′, B′] is ( ε
η
,≥ d− ε)-regular.

Lemma A.2 ([76, Proposition 4.2]). Let 0 < ε ≤ d ≤ 1. Let G be an (ε, d)-regular

bipartite graph on vertex classes A and B. Then, fewer than ε|A| vertices a ∈ A satisfy

dG(a) ≥ (d + ε)|B| and fewer than ε|A| vertices a ∈ A satisfy dG(a) ≤ (d− ε)|B|.

One can easily deduce that ε-regular bipartite graphs of linear minimum degree are

also bipartite robust expanders.

Lemma A.3. Let 0 < 1
n
≪ ε ≪ ν ≪ τ ≪ δ ≤ 1. Let G be a bipartite graph on vertex

classes A and B of size n. Suppose that G is ε-regular and δ(G) ≥ δn. Then, G is a

bipartite robust (ν, τ)-expander with bipartition (A,B).

Proof. Note that G is (ε,≥ δ)-regular. Let S ⊆ A satisfy τn ≤ |S| ≤ (1 − τ)n. If

suffices to show that |RNν,G(S)| ≥ |S| + νn. By Lemma A.1, G[S,B] is (
√
ε,≥ δ − ε)-

regular and so Lemma A.2 implies that all but at most
√
εn vertices v ∈ B satisfy
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|NG(v) ∩ S| ≥ (δ − ε−
√
ε)|S| ≥ δτn

2
≥ νn. Thus, |RNν,G(S)| ≥ (1−

√
ε)n ≥ |S|+ νn, as

desired.

Using the max-flow min-cut theorem, Frieze and Krivelevich [36] showed that ε-regular

bipartite graphs of linear minimum degree contain a dense regular spanning subgraph.

Lemma A.4 ([36]). Let 0 < 1
n
≪ ε ≪ δ ≤ 1. Let G be an ε-regular bipartite graph on

vertex classes of size n. Suppose that δ(G) ≥ δn. Then, regeven(G) ≥ (δ − 2ε)n.

By Proposition 7.10, the complete bipartite graph Kn,n is [ε, 1]-superregular. Therefore,

Lemma 7.17 implies that Gn,n,p is also superregular with high probability.

Corollary A.5. Let 0 < 1
n
≪ ε≪ p ≤ 1. With high probability, Gn,n,p is ε-regular and

δ(Gn,n,p) ≥ (p− ε)n.

We are now ready to prove Corollary 1.15.

Proof of Corollary 1.15. Let 0 < p ≤ 1. Fix additional constants such that 0 < 1
n0
≪ ε≪

ε1 ≪ ε2 ≪ ε3 ≪ ν ≪ τ ≪ p. By Corollary A.5, (iii) follows immediately from (i) (with

p− ε playing the role of p).

For (iv), denote by A and B the vertex classes of Dn,n,p. Observe that Dn,n,p[A,B] ∼

Gn,n,p and Dn,n,p[B,A] ∼ Gn,n,p. Thus, Corollary A.5 implies that Dn,n,p is ε-regular

of minimum semidegree δ0(Dn,n,p) ≥ (p − ε)n with high probability and so (iv) follows

from (ii) (with p− ε playing the role of p).

For (v), let T be chosen uniformly at random among the bipartite tournaments on

vertex classes A and B of size n. Observe that T [A,B] ∼ Gn,n, 1
2

and T [B,A] ∼ Gn,n, 1
2
.

Thus, Corollary A.5 implies that T is ε-regular of minimum semidegree δ0(T ) ≥ (1
2
− ε)n

with high probability and so (v) also follows from (ii) (with 1
2
− ε playing the role of p).

For (i), let G be an ε-regular bipartite graph on vertex classes A and B of size n

and suppose that δ(G) ≥ pn. Note that G is (ε, d)-regular for some d ≥ p. Let S be

the set of vertices v ∈ V (G) which satisfy dG(v) ≥ (d + ε)n. By Lemma A.2, |S| ≤ εn

and so Proposition 7.8(i) implies that G − S is still ε1-regular. Let G′ be a spanning
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regeven(G)-regular subgraph of G. By Lemma A.4, G′ − S is obtained from G − S by

deleting at most 2εn edges incident to each vertex and so Proposition 7.8(i) implies that

G′−S is ε2-regular. Another application of Proposition 7.8(i) implies that G′ is ε3-regular.

Thus, Lemma A.3 implies that G′ is a bipartite robust (ν, τ)-expander with bipartition

(A,B), as well as with bipartition (B,A). Apply Corollary 4.2 to decompose G′ into

regeven(G)
2

edge-disjoint Hamilton cycles.

For (ii), let D be an ε-regular bipartite digraph on vertex classes A and B of size n and

suppose that δ0(D) ≥ pn. Let D′ be a reg(D)-regular spanning subdigraph of D. Observe

that Lemma A.4 implies that reg(D) ≥ (p− 2ε)n and so, by similar arguments as above,

D′ is a bipartite robust (ν, τ )-outexpander with bipartition (A,B). Apply Theorem 4.1 to

decompose D′ into reg(D) edge-disjoint Hamilton cycles.

255





APPENDIX B

APPROXIMATE DECOMPOSITION: PROOF OF
THEOREM 8.1

In this appendix, we adapt the arguments of [40] to prove Theorem 8.1.

B.1 Preliminaries

We will need some additional preliminary results.

B.1.1 Regularity

Recall the definition of an (ε, d)-regular bipartite graph from Section 7.2. We need the

(non-bipartite version of the) degree form regularity lemma for digraphs.

Lemma B.1 (Degree form regularity lemma for digraphs). For all ε > 0 and M ′ ∈ N,

there exist M,n0 ∈ N such that if D is a digraph on n ≥ n0 vertices and d ∈ [0, 1], then

there exist a spanning subdigraph D′ ⊆ D and a partition of V (D) into an exceptional set

V0 and k clusters V1, . . . , Vk such that the following hold.

(i) M ′ ≤ k ≤M .

(ii) |V0| ≤ εn.

(iii) |V1| = · · · = |Vk| =: m.

(iv) For each v ∈ V (D), both d±D′(v) > d±D(v)− (d + ε)n.
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(v) For each i ∈ [k], D′[Vi] is empty.

(vi) Let i, j ∈ [k] be distinct. Then, D′[Vi, Vj] is either empty or (ε,≥ d)-regular.

Moreover, if D′[Vi, Vj] is non-empty, then D′[Vi, Vj] = D[Vi, Vj].

Let ε > 0, M ′ ∈ N, and d ∈ [0, 1]. Let D be a digraph. The pure digraph of D

with parameters ε, d, and M ′ is the digraph D′ ⊆ D obtained by applying Lemma B.1

with these parameters. The reduced digraph of D with parameters ε, d, and M ′ is the

digraph R defined as follows. Let V0, V1, . . . , Vk be the partition obtained by applying

Lemma B.1 with parameters ε, d, and M ′. Denote by D′ the pure digraph of D with

parameters ε, d, and M ′. Then, V (R) := {Vi | i ∈ [k]} and, for any distinct U, V ∈ V (R),

UV ∈ E(R) if and only if D′[U, V ] is non-empty. Note that Lemma B.1(vi) implies that

D′[U, V ] = D[U, V ] is (ε,≥ d)-regular for any UV ∈ E(R).

The following result states that robust outexpansion is inherited by the reduced digraph.

Lemma B.2 ([79, Lemma 14]). Let 0 < 1
n
≪ ε ≪ d ≪ ν, τ, δ ≤ 1 and M ′

n
≪ 1. Let

D be a robust (ν, τ)-outexpander on n vertices. Suppose that δ0(D) ≥ δn. Let R be the

reduced digraph of D with parameters ε, d, and M ′. Then, δ0(R) ≥ δ|R|
2

and R is a robust

(ν
2
, 2τ)-outexpander.

B.1.2 Robust outexpanders

By definition of a bipartite robust outexpander, the τ -parameter can be made arbitrarily

small. An analogous observation for the non-bipartite setting was made (and proved) in

[40, Lemma 4.3], so we omit the details here.

Lemma B.3. Let 0 < 1
n
≪ ν ≪ τ ≤ δ

2
≤ 1. Let D be a bipartite digraph on vertex

classes A and B of size n. Suppose that D is a bipartite robust (ν, δ
2
)-outexpander with

bipartition (A,B). Suppose furthermore that δ0(D) ≥ δn. Then, D is a bipartite robust

(ν, τ)-outexpander with bipartition (A,B).

Lemma B.4 ([40, Lemma 4.2]). Let 0 < ε ≤ ν ≪ τ ≤ 1. Let D be a robust (ν, τ)-

outexpander on n vertices.
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(i) If D′ is obtained from D by removing at most εn inedges and at most εn outedges

at each vertex, then D′ is a robust (ν − ε, τ)-outexpander.

(ii) If D′ is obtained from D by adding or removing at most εn vertices, then D′ is a

robust (ν − ε, 2τ)-outexpander.

We will need [40, Lemma 14.3], which states that robust outexpansion is inherited

by random vertex subsets with high probability. Note that we only gave a brief proof

overview of this lemma in [40] as it was only used to sketch a new shorter proof of the

main result of [96]. Thus, for completeness, we include its proof here.

Lemma B.5 ([40, Lemma 14.3]). Let 0 < 1
n
≪ ε ≪ ν ′ ≪ δ, ν, τ ≪ 1. Fix a positive

integer n′ ≥ εn. Suppose that D is a robust (ν, τ)-outexpander on n vertices satisfying

δ0(D) ≥ δn. Suppose that V is chosen uniformly at random among the subsets of V (D)

of size n′. Then, D[V ] is a robust (ν ′, 4τ)-outexpander with probability at least 1− n−2.

Proof. Fix additional constants such that 1
n
≪ ε′ ≪ ε≪ ν ′ ≪ d≪ ν, τ and M ′

n
≪ 1. Let

V0, V1, . . . , Vk be the partition of V (D) obtained by applying Lemma B.1 with ε′ playing

the role of ε and define m := |V1| = · · · = |Vk|. Denote by R the reduced digraph of D

with parameters ε′, d, and M ′. By Lemma B.2, R is a robust (ν
2
, 2τ)-outexpander. Let

n′ ≥ εn and suppose that V is chosen uniformly at random among the subsets of V (D)

of size n′. We show that D′ := D[V ] is a robust (ν ′, 4τ)-outexpander with probability at

least 1− n−2.

For each i ∈ [k], denote V ′i := Vi ∩V (D′). Let i ∈ [k]. Then, E[|V ′i |] = n′m
n

=: m′ ≥ εm.

Then, Lemma 7.16 implies that

P[|V ′i | ≠ (1± ε)m′] ≤ 2 exp

(
−ε3m

3

)
.

Thus, a union bound implies that |V ′i | = (1 ± ε)m′ for each i ∈ [k] with probability at

least 1− n−2. Therefore, we assume that |V ′i | = (1± ε)m′ for each i ∈ [k] and show that

D′ is a robust (ν ′, 4τ)-outexpander.
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Note that Lemma A.1 (with ε′ and ε2 playing the roles of ε and η) implies that, for

each ViVj ∈ E(R) and S ⊆ V ′i satisfying |S| ≥ εm′ ≥ ε2m, the pair D′[S, V ′j ] is still

(ε,≥ d − ε′)-regular. Let S ⊆ V (D′) satisfy 4τn′ ≤ |S| ≤ (1 − 4τ)n′. We need to show

that |RN+
ν′,D′(S)| ≥ |S|+ ν ′n′. Let S ′ := {Vi | i ∈ [k], |S ∩ Vi| = |S ∩ V ′i | ≥ dm′}. Then,

|S ′| ≥ |S| − dm′k

m′
(B.1)

≥ 4τn′

m′
− dk =

4τn

m
− dk ≥ 2τk.

If |S ′| ≤ (1− 2τ)k, then let S ′′ := S ′; otherwise, choose S ′′ ⊆ S ′ of size (1− 2τ)k. Then,

|RN+
ν
2
,R(S ′′)| ≥ |S ′′|+ νk

2
.

Let Vi ∈ S ′′ and Si := V ′i ∩ S = Vi ∩ S. By definition of S ′, we have |Si| ≥ dm′ and

so D′[Si, V
′
j ] is (ε,≥ d − ε′)-regular for each ViVj ∈ E(R). Then, Lemma A.2 implies

that, for each ViVj ∈ E(R), all but at most ε(1 + ε)m′ ≤ 2εm′ vertices v ∈ V ′j satisfy

dD′[Si,V ′
j ]

(v) ≥ (d− ε′ − ε)|Si| ≥ (d− 2ε)dm′.

Thus, for each Vi ∈ RN+
ν
2
,R(S ′′), all but at most 2εm′·k

2
√
εk

=
√
εm′ vertices v ∈ V ′i satisfy

|N−D′(v) ∩ S| ≥
(ν

2
− 2
√
ε
)
k · (d− 2ε)dm′ ≥

(
νd2

2
− 2
√
εd2 − νεd

)
km′

Lemma B.1(ii)

≥ ν ′n′.

Therefore,

|RN+
ν′,D′(S)| ≥ |RN+

ν
2
,R(S ′′)|

(
1− ε−

√
ε
)
m′ ≥

(
|S ′′|+ νk

2

)
(1− 2

√
ε)m′

Lemma B.1(ii)

≥ |S ′′|m′ + νn′

3
.

If |S ′′| = (1 − 2τ)k, then Lemma B.1(ii) implies that |S ′′|m′ ≥ (1 − 4τ)n′ ≥ |S| and so

|RN+
ν′,D′(S)| ≥ |S|+ ν ′n′, as desired. We may therefore assume that S ′′ = S ′. Then, (B.1)

implies that |S ′′|m′ ≥ |S| − dn′ and so |RN+
ν′,D′(S)| ≥ |S|+ ν ′n′, as desired.
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B.1.3 Probabilistic estimates

The following lemmas are easy consequences of Lemma 7.16.

Lemma B.6. Let 0 < 1
n
≪ ε≪ ν ≪ τ ≪ γ ≪ δ ≤ 1. Let G be a balanced bipartite graph

on vertex classes A and B of size n. Suppose that G is a (δ, ε)-almost regular bipartite

robust (ν, τ)-expander with bipartition (A,B). Let Γ be obtained from G by taking each

edge independently with probability γ
δ
. Then, with positive probability, all of the following

hold.

(i) G \ Γ is (δ − γ, ε)-almost regular.

(ii) Γ is (γ, ε)-almost regular.

(iii) Γ is a bipartite robust (γν
2δ
, τ)-expander with bipartition (A,B).

Lemma B.7. Let 0 < 1
n
≪ ε ≤ 1 and fix positive integers k, ℓ ≥ εn. Let A and B be

disjoint vertex sets of size n. Suppose that M1, . . . ,Mℓ are bipartite perfect matchings on

vertex classes A and B. Suppose that A1, . . . , Aℓ are chosen independently and uniformly

at random among subsets of A of size k. Then, with probability at least 1− n−1, both of

the following hold.

(i) For each v ∈ A, there exist at most (1+ε)ℓk
n

indices i ∈ [ℓ] such that v ∈ Ai.

(ii) For each v ∈ B, there exist at most (1+ε)ℓk
n

indices i ∈ [ℓ] such that v ∈ NMi
(Ai).

Lemma B.8. Let 0 < 1
n
≪ ε ≪ δ ≤ 1 and fix a positive integer k ≥ εn. Let D be a

(δ, ε)-almost regular digraph on n vertices. Let A be chosen uniformly at random among

subsets of V (D) of size k. Then, the following hold with probability at least 1− n−2.

(i) D[A] and D − A are (δ, 3ε)-almost regular.

(ii) Each v ∈ V (D) \ A satisfies |N±D (v) ∩ A| ≥ (δ − 3ε)|A|.
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B.1.4 Matching contractions

Let G be a bipartite graph on vertex classes A and B and let D be a digraph on A. Let M

be an auxiliary perfect matching from B to A. Recall Definition 7.25 and note that there is

a one-to-one correspondence between the edges of G\M [B,A] and the M -contraction of G,

as well as between the edges of D and the M -expansion of D. Thus, edge-disjointness and

sub(di)graph relations are preserved when considering M -contractions and M -expansions.

Fact B.9. Let A and B be disjoint vertex sets of equal size. Let M be a directed perfect

matching from B to A. Let G and G′ be bipartite graphs on vertex classes A and B and

denote by GM and G′M the M-contractions of G and G′, respectively. Let D and D′ be

digraphs on A and let DM and D′M be the M -expansions of D and D′, respectively. Then,

the following hold.

(i) If G′ ⊆ G, then G′M ⊆ GM .

(ii) If G and G′ are edge-disjoint, then GM and G′M are edge-disjoint.

(iii) If D′ ⊆ D, then D′M ⊆ DM .

(iv) If D and D′ are edge-disjoint, then DM and D′M are edge-disjoint.

B.2 Proof of Theorem 8.1

We need a (simplified) bipartite analogue of [40, Lemma 7.3].

Lemma B.10. Let 0 < 1
n
≪ ε≪ ν ′ ≪ ν ≪ τ ≪ γ ≪ η, δ ≤ 1 and ℓ ≤ 2(δ − η)n. Let D

and Γ be edge-disjoint balanced bipartite digraphs on common vertex classes A and B of

size n. Suppose that D[A,B] is (δ, ε)-almost regular and Γ[A,B] is (γ, ε)-almost regular.

Suppose that Γ[A,B] is a bipartite robust (ν, τ)-expander with bipartition (A,B). Suppose

that, for each i ∈ [ℓ], Fi is a bipartite directed linear forest on vertex classes A and B such

that the following hold.

(i) For each i ∈ [ℓ], eFi
(B,A) = n.
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(ii) For each i ∈ [ℓ], eFi
(A,B) ≤ ε4n.

(iii) For each v ∈ V (D), there exist at most ε3n indices i ∈ [ℓ] such that dFi[A,B](v) > 0.

Define a multidigraph F by F :=
⋃

i∈[ℓ] Fi. Then, the multidigraph D ∪ Γ ∪ F contains

edge-disjoint Hamilton cycles C1, . . . , Cℓ such that Fi ⊆ Ci for each i ∈ [ℓ] and the following

hold, where D′ := D \
⋃

i∈[ℓ] Ci and Γ′ := Γ \
⋃

i∈[ℓ]Ci.

(a) If ℓ ≤ ε2n, then Γ′[A,B] is obtained from Γ[A,B] by removing at most 3ε3(ν ′)−4n

edges incident to each vertex.

(b) If ℓ ≤ (ν ′)5n, then D′[A,B] is (δ − ℓ
2n
, 2ε)-almost regular and Γ′[A,B] is (γ, 2ε)-

almost regular. Moreover, Γ′[A,B] is a bipartite robust (ν − ε, τ)-expander with

bipartition (A,B).

(c) D′[A,B] ∪ Γ′[A,B] is a bipartite robust (ν
2
, τ)-expander with bipartition (A,B).

We first derive Theorem 8.1 from Lemma B.10(c).

Proof of Theorem 8.1. By Fact 7.2 and Lemma B.3, we may assume without loss of

generality that ε≪ ν ≪ τ ≪ η, δ. Define additional constants such that ε≪ ν ′ ≪ ν and

τ ≪ γ ≪ η, δ. By Lemma B.6, there exists Γ ⊆ D such that (D \ Γ)[A,B] is (δ − γ, ε)-

almost regular and Γ[A,B] is a (γ, ε)-almost regular bipartite robust (γν
2δ
, τ)-expander with

bipartition (A,B). Apply Lemma B.10(c) with D \ Γ, δ − γ, γν
2δ

, and ε
1
4 playing the roles

of D, δ, ν, and ε. This completes the proof of Theorem 8.1.

We now prove Lemma B.10. First, Lemma B.10(b) follows by repeated applications of

Lemma B.10(a) and Lemma B.10(c) follows by repeated applications of Lemma B.10(b).

The arguments are the same as in [40], so we omit these proofs here. It remains to prove

Lemma B.10(a).

Proof of Lemma B.10(a). Let i ∈ [ℓ]. Define Mi := EFi
(B,A) and note that (i) implies

that Mi is a perfect matching from B to A. Let D̃i, Γ̃i, and F̃i be the Mi-contractions of

D[A,B], Γ[A,B], and Fi[A,B], respectively. (In the rest of the proof, tildes will be used
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to denote “contracted” digraphs on vertex set A.) By Proposition 7.30(i) and (iii), D̃i is

(2δ, 2ε)-regular and Γ̃i is a (2γ, 2ε)-regular robust (ν
2
, τ)-outexpander. By Proposition 7.31,

F̃i is a linear forest. Let P̃i,1, . . . , P̃i,ki be an enumeration of the non-trivial components of

F̃i. For each j ∈ [ki], denote by x+
i,j and x−i,j the starting and ending points of P̃i,j. Let Si

be the set of vertices v ∈ A which are not isolated in F̃i. Note that

ki ≤ e(F̃i)
Fact 7.26

≤ e(Fi[A,B])
(ii)

≤ ε4n (B.2)

and

|Si| ≤ 2e(F̃i)
Fact 7.26

≤ 2e(Fi[A,B])
(ii)

≤ 2ε4n. (B.3)

By Lemmas B.5, B.7, and B.8, there exist A1, . . . , Aℓ ⊆ A such that the following hold.

(α) For each v ∈ A, there exist at most 2ε3(ν ′)−4n indices i ∈ [ℓ] such that v ∈ Ai.

(β) For each v ∈ B, there exist at most 2ε3(ν ′)−4n indices i ∈ [ℓ] such that v ∈

NFi[B,A](Ai).

(γ) For each i ∈ [ℓ], |Ai| = ⌊ε(ν ′)−4n⌋.

(δ) For each i ∈ [ℓ], D̃i − Ai is (2δ, 6ε)-almost regular.

(ε) For each i ∈ [ℓ] and v ∈ A \ Ai, |N±D̃i
(v) ∩ Ai| ≥ εδn

(ν′)4
.

(ζ) For each i ∈ [ℓ], Γ̃i[Ai] and Γ̃i − Ai are (2γ, 6ε)-almost regular.

(η) For each i ∈ [ℓ], Γ̃i[Ai] is a robust (ν ′, 4τ)-outexpander.

For each i ∈ [ℓ], let A′i := Ai \ Si. By (B.3), we have |A′i| ≥ |Ai| − 2ε4n. Therefore,

Lemma B.4(ii) and (α)–(η) imply that the following hold for each i ∈ [ℓ].

(α′) For each v ∈ A, there exist at most 2ε3(ν ′)−4n indices i ∈ [ℓ] such that v ∈ A′i.

(β′) For each v ∈ B, there exist at most 2ε3(ν ′)−4n indices i ∈ [ℓ] such that v ∈

NFi[B,A](A
′
i).
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(γ′) |A′i| = ε((ν ′)−4 ± 1)n.

(δ′) D̃i − A′i is (2δ, 7ε)-almost regular.

(ε′) For each v ∈ A \ A′i, |N±D̃i
(v) ∩ A′i| ≥ εδn

2(ν′)4
.

(ζ ′) Γ̃i[A
′
i] and Γ̃i − A′i are both (2γ, 7ε)-almost regular.

(η′) Γ̃i[A
′
i] and Γ̃i − A′i are both robust (ν

′

2
, 8τ)-outexpanders.

Assume inductively that for some 0 ≤ m ≤ ℓ we have constructed, for each i ∈ [m], a

set Q̃i = {Q̃i,j | j ∈ [ki]} of paths in D̃i ∪ Γ̃i such that the following hold, where, for each

i ∈ [m], Qi is obtained from the Mi-expansion of Q̃i by orienting all the edges from A

to B.

(A) Q1, . . . ,Qm are edge-disjoint.

(B) Let i ∈ [m]. For each j ∈ [ki], Q̃i,j is an (x−i,j, x
+
i,j+1)-path (where x+

i,ki+1 := x+
i,1).

Moreover, the paths in Q̃i ∪ {P̃i,1, . . . , P̃i,ki} are internally vertex-disjoint and

span A. In particular, C̃i := Q̃i ∪ F̃i is a Hamilton cycle on A.

(C) For each i ∈ [m] and j ∈ [ki − 1], V (Q̃i,j) ∩ A′i = ∅ and e(Q̃i,j) ≤ 9(ν ′)−1.

Moreover, for each v ∈ A, there exist at most ε3n indices i ∈ [m] such that

v ∈ V (E(Q̃i \{Q̃i,ki})∩E(Γ̃i)) and for each v ∈ B, there exist at most ε3n indices

i ∈ [m] such that v ∈ NFi[B,A](V (E(Q̃i \ {Q̃i,ki}) ∩ E(Γ̃i))).

(D) For each i ∈ [m], E(Q̃i,ki) ∩ E(Γ̃i) ⊆ E(Γ̃i[A
′
i]).

Denote Dm+1 := D \
⋃

i∈[m]Qi and Γm+1 := Γ \
⋃

i∈[m]Qi.

Claim 1. Γm+1[A,B] is obtained from Γ[A,B] by removing at most 3ε3(ν ′)−4n edges

incident to each vertex and Dm+1[A,B] is obtained from D[A,B] by removing at most m

and at least m− 4ε3(ν ′)−4n edges incident to each vertex.
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Proof of Claim. Let v ∈ A. By (B), d+
Q̃i

(v) ≤ 1 for each i ∈ [m] and so

|ND[A,B](v) \NDm+1[A,B](v)| =
∑
i∈[m]

|ND[A,B](v) ∩NQi[A,B](v)|

Fact 7.28(i)
=

∑
i∈[m]

|N+

D̃i
(v) ∩N+

Q̃i
(v)| (B.4)

≤ m.

Moreover, (C) implies that there are at most ε3n indices i ∈ [m] such that v ∈ V (E(Q̃i \

{Q̃i,ki}) ∩ E(Γ̃i)) and, by (α′) and (D), there are at most 2ε3(ν ′)−4n indices i ∈ [m] such

that v ∈ V (E(Q̃i,ki) ∩ E(Γ̃i)). Thus,

|NΓ[A,B](v) \NΓm+1[A,B](v)| =
∑
i∈[m]

|NΓ[A,B](v) ∩NQi[A,B](v)|

Fact 7.28(i)
=

∑
i∈[m]

|N+

Γ̃i
(v) ∩N+

Q̃i
(v)|

≤ ε3n + 2ε3(ν ′)−4n

≤ 3ε3(ν ′)−4n. (B.5)

Moreover, Proposition 7.31 implies that, for each i ∈ [m], we have d+
F̃i

(v) > 0 if and only

if d+Fi[A,B](v) > 0. Thus, (iii) implies that there are at most ε3n indices i ∈ [m] such that

d+
F̃i

(v) > 0 and so

|ND[A,B](v) \NDm+1[A,B](v)| (B.4)
=

∑
i∈[m]

|N+

D̃i
(v) ∩N+

Q̃i
(v)|

(B)
= m−

∑
i∈[m]

|N+

Γ̃i
(v) ∩N+

Q̃i
(v)| −

∑
i∈[m]

|N+

F̃i
(v)|

(B.5)

≥ m− 3ε3(ν ′)−4n− ε3n ≥ m− 4ε3(ν ′)−4n.

Similarly, let v ∈ B. For each i ∈ [m], denote by vi the unique vertex of A such that
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vvi ∈ Fi[B,A] (vi exists by (i)). By (B), d−
Q̃i

(vi) ≤ 1 for each i ∈ [m] and so

|ND[A,B](v) \NDm+1[A,B](v)| =
∑
i∈[m]

|ND[A,B](v) ∩NQi[A,B](v)|

Fact 7.28(ii)
=

∑
i∈[m]

|N−
D̃i

(vi) ∩N−
Q̃i

(vi)| (B.6)

≤ m.

Moreover, (C) implies that there are at most ε3n indices i ∈ [m] such that vi ∈ V (E(Q̃i \

{Q̃i,ki}) ∩ E(Γ̃i)) and, by (β′) and (D), there are at most 2ε3(ν ′)−4n indices i ∈ [m] such

that vi ∈ V (E(Q̃i,ki) ∩ E(Γ̃i)). Thus,

|NΓ[A,B](v) \NΓm+1[A,B](v)| =
∑
i∈[m]

|NΓ[A,B](v) ∩NQi[A,B](v)|

Fact 7.28(ii)
=

∑
i∈[m]

|N−
Γ̃i

(vi) ∩N−
Q̃i

(vi)|

≤ ε3n + 2ε3(ν ′)−4n

≤ 3ε3(ν ′)−4n. (B.7)

Moreover, Proposition 7.31 implies that, for each i ∈ [m], we have d−
F̃i

(vi) > 0 if and only

if d−Fi[A,B](v) > 0. Thus, (iii) implies that there are at most ε3n indices i ∈ [m] such that

d−
F̃i

(vi) > 0 and so

|ND[A,B](v) \NDm+1[A,B](v)| (B.6)
=

∑
i∈[m]

|N−
D̃i

(vi) ∩N−
Q̃i

(vi)|

(B)
= m−

∑
i∈[m]

|N−
Γ̃i

(vi) ∩N−
Q̃i

(vi)| −
∑
i∈[m]

|N−
F̃i

(vi)|

(B.7)

≥ m− 3ε3(ν ′)−4n− ε3n ≥ m− 4ε3(ν ′)−4n.

This completes the proof of Claim 1. □

Suppose that m = ℓ. For each i ∈ [ℓ], let Ci := Qi ∪ Fi. By (A), C1, . . . , Cℓ are

267



edge-disjoint. Let i ∈ [ℓ]. Note that Fact 7.26 implies that Fi[A,B] is the Mi-expansion of

F̃i. Thus, (B) implies that Ci is obtained from the Mi-expansion of C̃i by orienting all the

edges from A to B, and then adding the edges in EFi
(B,A) = Mi. In particular, Fact 7.29

and (B) imply that Ci is a Hamilton cycle on V (D). Moreover, (a) follows from Claim 1.

It remains to show that Fi ⊆ Ci ⊆ D ∪ Γ ∪ Fi. By (B), F̃i ⊆ C̃i ⊆ D̃i ∪ Γ̃i ∪ F̃i and, by

Fact 7.26, the Mi-expansions of D̃i and Γ̃i are subgraphs of D[A,B] and Γ[A,B]. Thus,

Fact B.9(iii) implies that Fi ⊆ Ci ⊆ D ∪ Γ ∪ Fi and so we are done.

Assume that m < ℓ. Let D̃′m+1 and Γ̃′m+1 be the Mm+1-contractions of Dm+1 and

Γm+1, respectively. By Fact B.9(i), D̃′m+1 ⊆ D̃m+1 and Γ̃′m+1 ⊆ Γ̃m+1. By Fact 7.27(i) and

Claim 1, Γ̃′m+1 is obtained from Γ̃m+1 by removing at most 3ε3(ν ′)−4n inedges incident to

each vertex and at most 3ε3(ν ′)−4n outedges incident to each vertex. Similarly, D̃′m+1 is

obtained from D̃m+1 by removing at most m and at least m− 4ε3(ν ′)−4n inedges incident

to each vertex, as well as at most m and at least m− 4ε3(ν ′)−4n outedges incident to each

vertex. Thus, using (γ′)–(η′) and Lemma B.4(i), it is easy to check that the following hold.

(I) D̃′m+1 − A′m+1 is (2δ − m
n
, 8ε)-almost regular.

(II) For each v ∈ A \ A′m+1, |N±D̃′
m+1

(v) ∩ A′m+1| ≥ εδn
3(ν′)4

.

(III) Γ̃′m+1[A
′
m+1] and Γ̃′m+1 − A′m+1 are both (2γ, 8ε)-almost regular.

(IV) Γ̃′m+1[A
′
m+1] and Γ̃′m+1 − A′m+1 are robust (ν

′

4
, 8τ)-outexpanders.

Let SA be the set of vertices v ∈ A for which there exist ⌊ε3n⌋ indices i ∈ [m] such

that v ∈ V (E(Q̃i \ {Q̃i,ki}) ∩ E(Γ̃i)). Observe that, by (B.2), (γ′), and (C), |SA| ≤
(9(ν′)−1+1)·ε4n·m

⌊ε3n⌋ ≤ ε|A \ A′m+1|. Let SB be the set of vertices v ∈ B such that there

exist ⌊ε3n⌋ indices i ∈ [m] such that v ∈ NFi[B,A](V (E(Q̃i \ {Q̃i,ki}) ∩ E(Γ̃i))). Let

S ′B := NFm+1[B,A](SB). Then, by similar arguments as above, |S ′B| = |SB| ≤ ε|A \ A′m+1|.

Recall that Sm+1 denotes the set of vertices v ∈ A which are not isolated in F̃m+1 (and so

{x+
m+1,i, x

−
m+1,i | i ∈ [km+1]} ⊆ Sm+1). Moreover, Sm+1∩A′m+1 = ∅. By (B.3), (γ′), and the

above, |SA∪S ′B∪Sm+1| ≤ 3ε|A\A′m+1|. By (B.2) and (γ′), ki ≤ ε4n ≤ ε3|A\A′m+1|. Thus,

(I) implies that there exist distinct y−m+1,1, . . . , y
−
m+1,km+1−1, y

+
m+1,2, . . . , y

+
m+1,km+1

∈ A \
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(A′m+1∪SA∪S ′B∪Sm+1) such that y−m+1,i ∈ N+

D̃′
m+1

(x−m+1,i) and y+m+1,i+1 ∈ N−
D̃′

m+1

(x+
m+1,i+1)

for each i ∈ [km+1 − 1] and we can apply the arguments of [40] to construct vertex-disjoint

paths Q̃′m+1,1, . . . , Q̃
′
m+1,km+1−1 ⊆ Γ̃m+1 − A′m+1 such that the following hold for each

i ∈ [km+1 − 1].

– Q̃′m+1,i is a (y−m+1,i, y
+
m+1,i+1)-path of length at most 8(ν ′)−1.

– V (Q̃′m+1,i) ⊆ A \ (A′m+1 ∪ SA ∪ S ′B ∪ Sm+1).

(Roughly speaking, the paths Q̃′m+1,1, . . . , Q̃
′
m+1,km+1−1 are constructed greedily by applying

the definition of robust outexpansion.) For each i ∈ [km+1 − 1], define

Q̃m+1,i := x−m+1,iy
−
m+1,iQ̃

′
m+1,iy

+
m+1,i+1x

+
m+1,i+1.

Let Q̃′m+1 := {Q̃m+1,i | i ∈ [km+1−1]} and proceed as in [40] to build an (x−m+1,km+1
, x+

m+1,1)-

path Q̃m+1,km+1 satisfying the following.

– V 0(Q̃m+1,km+1) = A \ (V (Q̃′m+1) ∪ Sm+1).

– Q̃m+1,km+1 [A
′
m+1] ⊆ Γ̃′m+1.

– Q̃m+1,km+1 \ Q̃m+1,km+1 [A
′
m+1] ⊆ D̃′m+1.

(Roughly speaking, Q̃m+1,km+1 is constructed by applying Theorem 7.4 to find a Hamilton

cycle in a suitable auxiliary digraph.) Let Q̃m+1 := Q̃′m+1 ∪ {Q̃m+1,km+1}. Then, (A)–(D)

hold with m + 1 playing the role of m.
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APPENDIX C

THE ROBUST DECOMPOSITION LEMMAS:
PROOFS OF LEMMAS 8.23 AND 11.10

In this appendix, we derive the modified robust decomposition lemma (Lemma 8.23) and

the robust decomposition lemma for blow-up cycles (Lemma 11.10).

C.1 Proof of Lemma 8.23

We need the following version of the robust decomposition lemma, which follows immedi-

ately from the proof of [76, Lemma 12.1] and the definition of a “chord absorber” in [76].

(Note that [76, Lemma 12.1] is not explicitly proven because its proof is identical to that

of [76, Lemma 11.2]. See the paragraph before [76, Lemma 12.1] for more details.)

Lemma C.1 (Robust decomposition lemma [76]). Let 0 < 1
m
≪ 1

k
≪ ε≪ 1

q
≪ 1

f
≪ r1

m
≪

d≪ 1
ℓ′
, 1
g
≪ 1 and suppose that rk2 ≤ m. Let

r2 := 96ℓ′g2kr, r3 :=
rfk

q
, r⋄ := r1 + r2 + r − (q − 1)r3,

and suppose that k
14
, k
f
, k
g
, q
f
, m
4ℓ′
, fm

q
, 2fk
3g(g−1) ∈ N. Suppose that (D,P ,P ′,P∗, R, C, U, U ′) is

an (ℓ′, q
f
, k,m, ε, d)-setup with empty exceptional set V0. Suppose that SF ⊆ D consists

of r3 edge-disjoint ( q
f
, f)-special factors with respect to P∗ and C. Then, there exists a

spanning subdigraph CA⋄(r) ⊆ D for which the following hold.
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(i) CA⋄(r) is an (r1 + r2)-regular spanning subdigraph of D which is edge-disjoint

from SF .

(ii) Let H be an r-regular digraph on V (D) which is edge-disjoint from CA⋄(r).

Suppose that SF∗ consists of r3 edge-disjoint ( q
f
, f)-special factors with respect

to P∗ and C which are edge-disjoint from CA⋄(r) ∪ H. (Note that SF∗ is not

necessarily a subdigraph of D here.) Then, there exists a set C1 of rfk edge-disjoint

Hamilton cycles such that E(H)∪E(SF∗) ⊆ E(C1) ⊆ E(CA⋄(r))∪E(H)∪E(SF∗)

and each cycle in C1 contains precisely one of the special path systems contained

in SF∗. Denote H ′ := CA⋄(r) \ E(C1).

(iii) Suppose that SF ′ ⊆ D \ (CA⋄(r) ∪ SF) consists of r⋄ edge-disjoint (1, 7)-special

factors with respect to P and C. Then, there exists a spanning subdigraph

PCA⋄(r) ⊆ D for which the following hold.

(a) PCA⋄(r) is a 5r⋄-regular spanning subdigraph of D which is edge-disjoint

from CA⋄(r) ∪ SF ∪ SF ′.

(b) H ′∪PCA⋄(r)∪SF ′ has a decomposition C2 into 7r⋄ edge-disjoint Hamil-

ton cycles such that each cycle in C2 contains precisely one of the special

path systems in SF ′.

The analogue holds if (D,P ,P ′,P∗, R, C, U, U ′) is an (ℓ′, q
f
, k,m, ε, d)-bi-setup and H is

an r-regular bipartite digraph on the same vertex classes as D.

Note that (i) and (iii.a) correspond to [76, Lemma 12.1(i) and (ii.a)]. To see (ii),

observe that by the proof of [76, Lemma 12.1] (see the proof of [76, Lemma 11.2]),

CA⋄(r) ∪ SF is a “chord absorber”. By definition, CA⋄(r) ∪ SF∗ is also a “chord

absorber” in D ∪ SF∗. Moreover, since r3 is very small, Proposition 8.16 implies that

(D ∪ SF∗,P ,P ′,P∗, R, C, U, U ′) also forms a (bi)-setup (with slightly worse parameters).

Thus, C1 in (ii) can be obtained by applying the arguments of [76, Lemma 11.2] with

D ∪SF∗ and CA⋄(r)∪SF∗ playing the role of G and CA⋄(r)∪SF . Then, C2 in (iii.b) is
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the set of Hamilton cycles obtained by applying the arguments of [76, Lemma 11.2] with

H ′ playing the role of H1.

Here, Lemma C.1 is stated in terms of our simplified definition of a special factors (see

Section 8.2.5). The fact that SF ∪ SF ′ ⊆ D ensures that the special factors in SF ∪ SF ′

are indeed special factors in the stronger sense of [76] (the set of fictive edges is empty). As

discussed above, the special factors in SF∗ will be considered within the digraph D∪SF∗,

so they also satisfy the original definition of special factors [76] with D ∪ SF∗ playing the

role of G (once again, with an empty set of fictive edges).

As discussed in Section 8.2.6, the key idea for deriving Lemma 8.23 from Lemma C.1

is to consider equivalent special path systems. These will be constructed using the

superregular pairs of the (bi)-setup.

Lemma C.2. Let 0 < 1
m
≪ 1

k
≪ ε ≪ d ≤ 1 and 1

k
≪ 1

f
, 1
ℓ∗
≤ 1 and rℓ∗

m
≪ d. Let

(D,P ,P ′,P∗, R, C, U, U ′) be an (ℓ′, ℓ∗, k,m, ε, d)-(bi)-setup and suppose that P∗ is an ε-

uniform ℓ∗-refinement of P. Let (h, j) ∈ [ℓ∗]× [f ] and suppose that SPS1, . . . , SPSr are

(ℓ∗, f, h, j)-special path systems with respect to P∗ and C. Then, there exist edge-disjoint

(ℓ∗, f, h, j)-special path systems SPS ′1, . . . , SPS ′r ⊆ D with respect to P∗ and C such that

SPSi and SPS ′i are equivalent for each i ∈ [r].

Proof. Fix additional constants such that rℓ∗

m
, ε ≪ ε1 ≪ ε2 ≪ d. Denote by I =

V1 . . . Vk′ the jth interval in the canonical interval partition of C into f intervals. For

each i ∈ [k′], denote by Vi,h the hth subcluster of Vi contained in P∗ and observe that

(ST1), (ST8), (BST1), and (BST8) imply that |Vi,h| = m
ℓ∗

. Suppose inductively that, for

some ℓ ∈ [r], we have already constructed edge-disjoint (ℓ∗, f, h, j)-special path systems

SPS ′1, . . . , SPS ′ℓ−1 ⊆ D with respect to P∗ and C such that SPSi and SPS ′i are equivalent

for each i ∈ [ℓ− 1]. We construct SPS ′ℓ using Lemma 7.11 as follows.

Let D′ := D \
⋃

i∈[ℓ−1] SPSi. We claim that D′[Vi,h, Vi+1,h] is [3
√
ε2,≥ d]-superregular

for each i ∈ [k′ − 1]. Indeed, (ST3), (BST3), and Lemma 8.8(ii) imply that D[Vi,h, Vi+1,h]

is [ε1,≥ d]-superregular for each i ∈ [k′ − 1]. Since D′ is obtained from D by removing

at most r ≤ ε2m
ℓ∗

in- and outedges incident to each vertex, Proposition 7.8(ii) implies
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that D′[Vi,h, Vi+1,h] is [3
√
ε2,≥ d]-superregular for each i ∈ [k′ − 1]. Let u1, . . . , um

ℓ∗
be an

enumeration of V +(SPSℓ). For each i ∈ [m
ℓ∗

], let vi denote the ending point of the path in

SPSℓ which starts at ui. By (SPS1), u1, . . . , um
ℓ∗

and v1, . . . , vm
ℓ∗

are enumerations of V1,h

and Vk′,h, respectively. Let SPS ′ℓ be the set of paths obtained by applying Lemma 7.11

with D′[
⋃

i∈[k′] Vi,h], m
ℓ∗
, k′, 3

√
ε2, and V1,h, . . . , Vk′,h playing the roles of D,m, k, ε, and

V1, . . . , Vk. Then, SPS ′ℓ is an (ℓ∗, f, h, j)-special path system with respect to P∗ and C

and, by construction, it is equivalent to SPSℓ, as desired.

Proof of Lemma 8.23. We prove the setup and bi-setup versions of Lemma 8.23 in parallel.

Fix additional constants such that ε≪ ε1 ≪ ε2 ≪ 1
q

and r1
m
≪ ε3 ≪ d. By Lemmas 8.9

and 8.19, there exist edge-disjoint D1, D2 ⊆ D such that both (D1,P ,P ′,P∗, R, C, U, U ′)

and (D2,P ,P ′,P∗, R, C, U, U ′) are (ℓ′, q
f
, k,m, ε1,

d
2
)-(bi)-setups.

Since SF consists of special factors which are not necessarily edge-disjoint, we need

to construct auxiliary special path systems which are edge-disjoint from each other and

equivalent to those in SF . For each (h, j) ∈ [ q
f
]× [f ], denote by SPS1,h,j, . . . , SPSr3,h,j

the ( q
f
, f, h, j)-special path systems contained in SF .

Claim 1. For each (h, j) ∈ [ q
f
] × [f ], there exist edge-disjoint ( q

f
, f, h, j)-special path

systems SPS⋄1,h,j, . . . , SPS⋄r3,h,j with respect to P∗ and C such that SPSi,h,j and SPS⋄i,h,j

are equivalent for each i ∈ [r3]. In particular, SF ⋄i :=
⋃

(h,j)∈[ q
f
]×[f ] SPS⋄i,h,j is a ( q

f
, f)-

special factor with respect to P∗ and C for each i ∈ [r3].

Proof of Claim. For the setup version of Lemma 8.23, let K be the complete graph on

V (D); for the bi-setup version, let K be the complete bipartite graph on the vertex

classes of D. One can easily verify that (K,P ,P ′,P∗, R, C, U, U ′) is an (ℓ′, q
f
, k,m, ε, d)-

(bi)-setup ((super)regular pairs exist by Proposition 7.10). For each (h, j) ∈ [ q
f
]× [f ], let

SPS⋄1,h,j, . . . , SPS⋄r3,h,j be the special path systems obtained by applying Lemma C.2 with

K, q
f
, r3, and SPS1,h,j, . . . , SPSr3,h,j playing the roles of D, ℓ∗, r, and SPS1, . . . , SPSr. □

Let SF⋄ be the union of the r3 edge-disjoint ( q
f
, f)-special factors with respect to

P∗ and C obtained by applying Claim 1. Let D′1 := D1 ∪ SF⋄ and observe that D′1 is
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obtained from D1 by adding at most r3 in- and outedges incident to each vertex (recall

from Definition 8.22 that special factors are digraphs of maximum semidegree 1). Thus,

Proposition 8.16 implies that (D′1,P ,P ′,P∗, R, C, U, U ′) is still an (ℓ′, q
f
, k,m, ε2,

d
4
)-(bi)-

setup. Let CA⋄(r) be the spanning subdigraph of D′1 obtained by applying Lemma C.1

with D′1,SF⋄, ε2, and d
4

playing the roles of D,SF , ε, and d. Note that Lemma C.1(i)

implies that CA⋄(r) ⊆ D1 ⊆ D.

Since the special factors in SF ′ may not be edge-disjoint subdigraphs of D′′1 :=

D′1 \ (CA⋄(r) ∪ SF⋄) = D1 \ (CA⋄(r) ∪ SF⋄), we need to construct auxiliary special

path systems which are equivalent to those in SF ′. For each (h, j) ∈ [1] × [7], let

SPS ′1,h,j, . . . , SPS ′r⋄,h,j denote the (1, 7, h, j)-special path systems contained in SF ′.

Claim 2. For each (h, j) ∈ [1]× [7], there exist edge-disjoint (1, 7, h, j)-special path systems

SPS ′′1,h,j, . . . , SPS ′′r⋄,h,j ⊆ D′′1 with respect to P and C such that SPS ′i,h,j and SPS ′′i,h,j are

equivalent for each i ∈ [r⋄]. In particular, SF ′′i :=
⋃

(h,j)∈[1]×[7] SPSi,h,j is a (1, 7)-special

factor with respect to P and C for each i ∈ [r⋄].

Proof of Claim. By Fact 8.17, (D1,P ,P ′,P , R, C, U, U ′) is an (ℓ′, 1, k,m, ε1,
d
2
)-(bi)-setup.

By Lemma C.1(i) and Definition 8.22, D′′1 is obtained from D1 removing at most r1+r2+r3

in- and outedges at each vertex, so Proposition 8.16 implies that (D′′1 ,P ,P ′,P , R, C, U, U ′)

is still an (ℓ′, 1, k,m, ε3,
d
4
)-(bi)-setup. For each (h, j) ∈ [1]× [7], let SPS ′′1,h,j, . . . , SPS ′′r⋄,h,j

be the special path systems obtained by applying Lemma C.2 with D′′1 ,P , ε3, d4 , 1, 7, r
⋄, and

SPS ′1,1,j, . . . , SPS ′r⋄,1,j playing the roles of D,P∗, ε, d, ℓ∗, f, r, and SPS1, . . . , SPSr. □

Let SF ′′ be the union of the r⋄ edge-disjoint (1, 7)-special factors with respect to P and

C obtained by applying Claim 2. Let PCA⋄(r) be the spanning subdigraph of D1 obtained

by applying Lemma C.1(iii) with SF ′′ playing the role of SF ′. By Lemma C.1(iii.a),

PCA⋄(r) ⊆ D′′1 \ SF ′′ ⊆ D1 ⊆ D. Define Drob := CA⋄(r) ∪ PCA⋄(r) ⊆ D and observe

that Lemma C.1(i) and (iii.a) imply that Drob is (r1 + r2 + 5r⋄)-regular, as desired.

Let H be an r-regular digraph on V (D). For the bi-setup version of Lemma 8.23,

suppose furthermore that H is a bipartite digraph on the same vertex classes as D. It
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remains to show that the multidigraph H ∪Drob ∪ SF ∪ SF ′ has a decomposition C into

s′ edge-disjoint Hamilton cycles such that each Hamilton cycle in C contains precisely one

of the special path systems in the multidigraph SF ∪ SF ′. We will use Lemma C.1(ii)

and (iii.b).

Claim 3. For each (h, j) ∈ [ q
f
] × [f ], there exist edge-disjoint ( q

f
, f, h, j)-special path

systems SPS∗1,h,j, . . . , SPS∗r3,h,j with respect to P∗ and C which are edge-disjoint from

CA⋄(r) ∪ H and such that SPSi,h,j and SPS∗i,h,j are equivalent for each i ∈ [r3]. In

particular, SF ∗i :=
⋃

(h,j)∈[ q
f
]×[f ] SPS∗i,h,j is a ( q

f
, f)-special factor with respect to P∗ and C

for each i ∈ [r3].

Proof of Claim. Let D′2 := D2 \H. Since CA⋄(r) ⊆ D1, note that D′2 is edge-disjoint from

CA⋄(r) ∪H. By Proposition 8.16, (D′2,P ,P ′,P∗, R, C, U, U ′) is an (ℓ′, q
f
, k,m, ε2,

d
4
)-(bi)-

setup. For each (h, j) ∈ [ q
f
] × [f ], let SPS∗1,h,j, . . . , SPS∗r3,h,j be the ( q

f
, f)-special path

systems with respect to P∗ and C obtained by applying Lemma C.2 with D′2, ε2,
d
4
, q
f
, and

r3 playing the roles of D, ε, d, ℓ∗, and r. □

Let SF∗ be the union of the r3 edge-disjoint ( q
f
, f)-special factors with respect to P∗

and C obtained by applying Claim 3. By Lemma C.1(ii), there exists a set C1 of rfk edge-

disjoint Hamilton cycles such that E(H)∪E(SF∗) ⊆ E(C1) ⊆ E(CA⋄(r))∪E(H)∪E(SF∗)

and each cycle in C1 contains precisely one of the special path systems contained in

SF∗. Denote H ′ := CA⋄(r) \ E(C1). By Lemma C.1(iii.b), H ′ ∪ PCA⋄(r) ∪ SF ′′ has

a decomposition C2 into 7r⋄ edge-disjoint Hamilton cycles such that each cycle in C2

contains precisely one of the special path systems in SF ′′. Altogether, C1 ∪ C2 forms a

decomposition of the multidigraph H ∪Drob ∪ SF∗ ∪ SF ′′ into s′ Hamilton cycles such

that each cycle in C1 ∪C2 contains precisely one of the special path systems in SF∗ ∪SF ′′.

By Claims 2 and 3 and Fact 8.5, C1 ∪ C2 induces a decomposition C of the multidigraph

H ∪Drob ∪ SF ∪ SF ′ into s′ edge-disjoint Hamilton cycles such that each Hamilton cycle

in C contains precisely one of the special path systems contained in the multidigraph

SF ∪ SF ′.
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C.2 Proof of Lemma 11.10

We know derive the blow-up cycle version of the robust decomposition lemma using the

strategy presented in Section 11.1.

Proof of Lemma 11.10. By Fact 8.5 and Definition 11.8, we may assume without loss of

generality that all extended special path systems contained in the multidigraph ESF∪ESF ′

are friendly. For each (h, i, j) ∈ [ q
f
] × [K] × [f ], denote by ESPS1,h,i,j, . . . , ESPSr3,h,i,j

the r3 friendly ( q
f
, K, f, h, i, j)-extended special path systems contained in ESF . For

each (h, i, j) ∈ [1] × [K] × [7], denote by ESPS ′1,h,i,j, . . . , ESPS ′r⋄,h,i,j the r⋄ friendly

( q
f
, K, f, h, i, j)-extended special path systems contained in ESF ′. For each i ∈ [K], define

ESF i :=
⋃

(ℓ,h,j)∈[r3]×[ qf ]×[f ]

ESPSℓ,h,i,j and ESF ′i :=
⋃

(ℓ,h,j)∈[r⋄]×[1]×[7]

ESPS ′ℓ,h,i,j.

Step 1: Applying the robust decomposition lemma in each contracted

pair. Let i ∈ [K]. Denote by D̃i the Mi-contraction of D[Ui, Ui+1]. By (CST3),

(D̃i,Pi,P ′i,P∗i , Ri, C
i, U i, U ′i) is an (ℓ′, q

f
, k,m, ε, d)-setup with an empty exceptional set.

We construct the required special factors for applying the robust decomposition lemma in

D̃i as follows. For each (h, j) ∈ [ q
f
]× [f ], let SPS1,h,i,j, . . . , SPSr3,h,i,j be obtained from the

Mi-contractions of ESPS1,h,i,j[Ui, Ui+1], . . . , ESPSr3,h,i,j[Ui, Ui+1] by deleting all isolated

vertices. For each (h, j) ∈ [ q
f
] × [f ], (FESPS1) implies that SPS1,h,i,j, . . . , SPSr3,h,i,j

are ( q
f
, f, h, j)-special path systems with respect to P∗i and Ci. For each ℓ ∈ [r3], let

SFℓ,i :=
⋃

(h,j)∈[ q
f
]×[f ] SPSℓ,h,i,j and observe that SFℓ,i is a ( q

f
, f)-special factor with respect

to P∗i and Ci. Define a multidigraph SF i by SF i :=
⋃

ℓ∈[r3] SFℓ,i. Define SF ′i analo-

gously. Let D̃rob
i be the spanning subdigraph of D̃i obtained by applying Lemma 8.23 with

D̃i,Pi,P ′i,P∗i , Ri, C
i, U i, U ′i,SF i, and SF ′i playing the roles of D,P ,P ′,P∗, R, C, U, U ′,

SF , and SF ′.

Step 2: Constructing the robustly decomposable digraph. For each i ∈ [K], let
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Drob
i be obtained from the Mi-expansion of D̃rob

i by orienting all the edges from Ui to Ui+1.

Define Drob :=
⋃

i∈[K] D
rob
i . First, observe that Drob is a regular spanning subdigraph of D.

Claim 1. Drob is an (r1 + r2 + 5r⋄)-regular spanning subdigraph of D.

Proof of Claim. By definition, V (Drob
i ) = Ui ∪ Ui+1 for each i ∈ [K] and so Drob is

spanning. For each i ∈ [K], D̃rob
i ⊆ D̃i and Fact 7.26 implies that the Mi-expansion of D̃i

is a subdigraph of D[Ui, Ui+1]. Thus, Fact B.9(iii) implies that Drob
i [Ui, Ui+1] ⊆ D[Ui, Ui+1]

for each i ∈ [K] and so Drob ⊆ D. Let i ∈ [K] and v ∈ Ui. By construction,

d+
Drob(v) = d+

Drob
i

(v)
Fact 7.28(i)

= d+
D̃rob

i

(v)
Lemma 8.23

= r1 + r2 + 5r⋄.

Let v′ be the unique neighbour of v in Mi−1. Then,

d−
Drob(v) = d−

Drob
i−1

(v)
Fact 7.28(ii)

= d−
D̃rob

i−1

(v′)
Lemma 8.23

= r1 + r2 + 5r⋄.

Thus, Drob is (r1 + r2 + 5r⋄)-regular. □

Moreover, observe that each Drob
i can decompose a sparse digraph in the pair (Ui, Ui+1)

into perfect matchings.

Claim 2. Let i ∈ [K]. Let Hi be a bipartite digraph on vertex classes Ui and Ui+1 which

is edge-disjoint from Drob
i and such that E(Hi) ∩ {uv | vu ∈ Mi} = ∅. Suppose that

Hi[Ui, Ui+1] is r-regular and Hi[Ui+1, Ui] is empty. Denote by H̃i the Mi-contraction of

Hi[Ui, Ui+1]. Define a multidigraph Hi by Hi := Hi∪Drob
i ∪ESF i(Ui, Ui+1)∪ESF ′i(Ui, Ui+1)

and define a multidigraph H̃i by H̃i := H̃i ∪ D̃rob
i ∪ SF i ∪ SF ′i. Then, the following hold.

(i) The multidigraph Hi can be obtained from the Mi-expansion of the multidigraph

H′i by orienting all the edges from Ui to Ui+1.

(ii) The multidigraph Hi has a decomposition Mi into s′ perfect matchings from Ui to

Ui+1 such that the following hold for each M ∈Mi.

(a) M ∪Mi forms a Hamilton cycle on Ui ∪ Ui+1.
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(b) There exists an extended special path system ESPSM in the multidigraph

ESF i ∪ ESF ′i such that M ∩ (E(ESF) ∪ E(ESF ′)) = EESPSM
(Ui, Ui+1).

(I.e. M contains precisely one of the “special path system parts” in ESF ∪

ESF ′.)

Proof of Claim. First, we show (i). By Fact 7.26 and assumption, Hi[Ui, Ui+1] is the

Mi-expansion of H̃i. Moreover, recall that H[Ui+1, Ui] is empty, so Hi can be obtained

from the Mi-expansion of H̃i by orienting all the edges from Ui to Ui+1. By definition,

Drob
i is obtained from the Mi-expansion of D̃rob

i by orienting all the edges from Ui to

Ui+1. By Definition 11.7, each extended special path system ESPS in the multidigraph

ESF i ∪ ESF ′i satisfies ESPS[Ui, Ui+1] ∩Mi[Ui+1, Ui] = ∅ (otherwise, (FESPS2) would

imply that ESPS is not a linear forest). Thus, Fact 7.26 implies that the Mi-expansions

of SF i and SF ′i are ESF i[Ui, Ui+1] and ESF ′i[Ui, Ui+1]. Altogether, this implies that the

multidigraph Hi can indeed be obtained from the Mi-expansion of the multidigraph H̃i by

orienting all the edges from Ui to Ui+1, as desired.

For (ii), we decompose the multidigraph Hi as follows. By Fact 7.27(i), H̃i is an r-

regular digraph on Ui and, by Fact B.9(ii), H̃i is edge-disjoint from D̃rob
i . Thus, Lemma 8.23

implies that the multidigraph H̃i has a decomposition C̃i into s′ Hamilton cycles on Ui

such that each cycle in C̃i contains precisely one of the special path systems contained in

the multidigraph SF i ∪ SF ′i. Let Mi consist of the digraphs obtained by orienting all the

edges from Ui to Ui+1 in the Mi-expansions of the cycles in C̃i.

Then, Fact 7.29 implies that (ii.a) holds and Mi is a set of s′ perfect matchings from

Ui to Ui+1. By Fact B.9(iv), the matchings in Mi are edge-disjoint. Thus, (i) implies that

Mi is a decomposition of Hi, as desired.

For (ii.b), let M ∈Mi and denote by C ∈ C̃i its corresponding cycle. By Lemma 8.23,

the multidigraph SF i ∪ SF ′i contains a special path system SPS such that E(C̃i) ∩

(E(SF i) ∪E(SF ′i)) = E(SPS). Let SPS ′ be obtained from the Mi-expansion of SPS by

orienting all the edges from Ui to Ui+1. By Fact B.9(iv), M ∩ (E(ESF) ∪ E(ESF ′)) =

E(SPS ′). By construction, there exists an extended special path system ESPS in
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the multidigraph ESF ∪ ESF ′ such that SPS is obtained from the Mi-contraction

of ESPS[Ui, Ui+1] by deleting isolated vertices. By Definition 11.7, ESPS[Ui, Ui+1] ∩

Mi[Ui+1, Ui] = ∅ and so Fact 7.26 implies that E(SPS ′) = EESPS(Ui, Ui+1) and so (ii.b)

holds. □

Step 3: Decomposing H ∪Drob ∪ ESF ∪ ESF ′. For each i ∈ [K], let Hi be digraph

on Ui ∪ Ui+1 defined by E(Hi) := EH(Ui, Ui+1). Since H is a blow-up CK with vertex

partition U , we have H =
⋃

i∈[K] Hi and so it is enough to show that, for each i ∈ [K], the

multidigraph Hi ∪Drob
i ∪ ESF i ∪ ESF ′i has a decomposition Ci into s′ Hamilton cycles

such that each cycle in Ci contains precisely one of the extended special path systems in

the multidigraph ESF i ∪ ESF ′i.

Let i ∈ [K]. Denote by Mi the decomposition of the multidigraph Hi ∪ Drob
i ∪

ESF i(Ui, Ui+1) ∪ ESF ′i(Ui, Ui+1) obtained by applying Claim 2(ii). Let Ci be obtained

from Mi by replacing each M ∈Mi by the digraph M ∪ ESPSM (recall that ESPSM

was defined in Claim 2(ii.b)). Then, Fact 11.1, (FESPS2), and Claim 2(ii.a) imply that

Ci is a Hamilton decomposition of the multidigraph Hi ∪ Drob
i ∪ ESF i ∪ ESF ′i. By

Claim 2(ii.b), each cycle in Ci contains precisely one of the extended special path systems

in the multidigraph ESF i ∪ ESF ′i.

280



APPENDIX D

THE PREPROCESSING STEP: PROOF OF
LEMMA 8.30

In this appendix, we discuss how to derive the preprocessing lemma for bipartite digraphs

(Lemma 8.30). First, note that Lemma 8.30 is a direct corollary of the bipartite versions

of [76, Lemma 8.6] (which guarantees the existence of PG) and [76, Corollary 8.5] (which

verifies the properties of PG). Figure D.1 illustrates the overall structure of the proofs of

[76, Corollary 8.5 and Lemma 8.6]. In this appendix, we will discuss the bipartite versions

of the dark grey lemmas from Figure D.1. The white lemmas from Figure D.1 can be

used in their original versions. The statements of the light grey lemmas from Figure D.1

can be adapted simply by replacing a consistent system by a consistent bi-system whose

exceptional set forms an independent set, while their proofs follow immediately from

the white lemmas from Figure D.1 and the bipartite versions of the grey lemmas from

Figure D.1.

Note that Lemma 9.1 corresponds to the bipartite version of [76, Lemma 7.6] and

Lemma 7.7 is the bipartite version of [76, Lemma 5.3]. As already mentioned, Lemma 7.7

can be proven using the same arguments as in the proof of [76, Lemma 5.3], so we omit the

details. Finally, note that we will use the bipartite version of [76, Lemma 7.2] (Lemma D.2

below) to derive Lemma 9.2 (that is, the bipartite version of [76, Lemma 9.1]) at the end

of this appendix.

Lemma D.1 (Bipartite version of [76, Lemma 5.2]). Let 0 < 1
n
≪ ε ≪ ν ≤ τ ≪ δ < 1
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Lemma 5.3

Lemma 4.7 Lemma 7.5

Proposition 4.3

Lemma 7.6

Lemma 7.1

Lemma 8.2

Lemma 5.2

Lemma 8.6

Proposition 4.14

Lemma 6.5

Lemma 7.2 Proposition 7.3

Observation 7.4

Lemma 4.12

Lemma 6.4

Lemma 8.3

Lemma 8.1

Lemma 8.4 Corollary 8.5

Proposition 4.8Proposition 6.1

Figure D.1: The structure of the proofs of [76, Corollary 8.5 and Lemma 8.6].

and 1
n
≪ ξ ≤ ν2

3
. Let D be a balanced bipartite digraph on vertex classes A and B of size n.

Suppose that δ0(D) ≥ δn and that D is a bipartite robust (ν, τ )-outexpander with bipartition

(A,B). For each v ∈ V (D), let n+
v , n

−
v ∈ N be such that (1− ε)ξn ≤ n+

v , n
−
v ≤ (1 + ε)ξn

and such that both
∑

v∈A n±v =
∑

v∈B n∓v . Then, D contains a spanning subdigraph D′ such

that d+D′(v) = n+
v and d−D′(v) = n−v for each v ∈ V (D).

Proof. By symmetry, it is enough to find a spanning subgraph H ⊆ D[A,B] satisfying

dD(a) = n+
a for each a ∈ A and dH(b) = n−b for each b ∈ B. Let N be the flow network

obtained from D(A,B) by giving each edge of D(A,B) capacity 1, by adding a source

s which is joined to every vertex a ∈ A with an outedge of capacity n+
a , and by adding

a sink t which is joined to every vertex b ∈ B with an inedge of capacity n−b . Let

r :=
∑

v∈A n+
v =

∑
v∈B n−v . Using similar arguments as in [76, Lemma 5.2], one can show

that any s − t cut in N has capacity at least r. Thus, the max-flow min-cut theorem

implies that N has an s− t flow of value r. This flow corresponds to the desired spanning

subgraph H ⊆ D[A,B].

282



By definition, a bipartite digraph R can only contain a chord sequence between clusters

which belong to a common vertex class of R. Such chord sequences can be constructed

using the same arguments as in [76, Lemma 7.2], so we omit the details.

Lemma D.2 (Bipartite version of [76, Lemma 7.2]). Let 0 < 1
k
≪ ν ≪ τ ≪ δ < 1. Let R

be a balanced bipartite digraph on vertex classes A and B of size k. Suppose that R is a

bipartite robust (ν, τ)-outexpander with bipartition (A,B) and that δ0(R) ≥ δk. Let C be

a Hamilton cycle in R. Let V ⊆ V (R) satisfy |V| ≤ νk
4
. Suppose that A1, A2 ∈ A. Then,

there exists a chord sequence CS(A1, A2) ⊆ ER(B,A) containing at most 3ν−1 edges and

such that V (CS(A1, A2)) ∩ V ⊆ {A−1 , A2}, where A−1 denote the predecessor of A1 on C.

Since we can no longer construct chord sequences between any pair of clusters, we will

need to be more careful and adapt the proofs of the lemmas which use [76, Lemma 7.2]

(that is, [76, Lemmas 7.5 and 8.3]).

Define a path system extender PE for C and R with parameters (ε, d, d′, ζ) as in [76].

(The precise definition is not relevant for our purposes and so we omit it here.)

Lemma D.3 (Bipartite version of [76, Lemma 8.3]). Let 0 < 1
n
≪ d′ ≪ 1

k
≪ ε≪ 1

ℓ∗
≪

d≪ ν ≪ τ ≪ δ, θ ≤ 1 and d≪ ζ ≤ 1
2
. Suppose that m

50
∈ N. Let (D,P0, R0, C0,P , R, C)

be a consistent (ℓ∗, k,m, ε, d, ν, τ, δ, θ)-bi-system with |D| = n and exceptional set V0. Let P ′

be a (d′)2-uniform 50-refinement of P. Let PE be a path system extender with parameters

(ε, d, d′, ζ) for C and R. Let s := 107

ν2
and suppose that Q is a set of vertex-disjoint paths

of D such that the following hold.

(i) Q and PE are edge-disjoint.

(ii) Q contains a special cover SC in D with respect to V0 such that each component

of SC is a path of length 2.

(iii) There exists a set V of five clusters of P ′ such that each e ∈ E(Q) satisfies

V (e) ⊆ V0 ∪
⋃
V.

(iv) |E(Q)| ≤ 1230n
s

.

283



Then, D contains a Hamilton cycle H such that Q ⊆ H ⊆ PE ∪Q.

Proof. Let MSC be the complete special sequence associated to SC and denote by E

the edge set of (Q \ SC) ∪MSC . (Note that E is precisely E(Qbasic) with respect to the

notation of [76]). For any cluster V ∈ P, denote by V − and V + the predecessor and

successor of V on C. For any vertex v ∈ V (D) \ V0, denote by Vv the cluster in P which

contains v.

Claim 1. There exist chord sequences CS(W1, W̃
+
1 ), . . . , CS(W|E|, W̃

+
|E|) in R for which

the following hold.

(a) There exists an enumeration u1, . . . , u|E| of the starting points of the edges in E

such that W̃i = Vui
for each i ∈ [|E|].

(b) There exists an enumeration v1, . . . , v|E| of the ending points of the edges in E

such that Wi = Vui
for each i ∈ [|E|].

(c) Altogether, CS(W1, W̃
+
1 ), . . . , CS(W|E|, W̃

+
|E|) contain at most 21m

100
edges incident

to each cluster in P and at most m
50

occurrences of every edge of R.

If Claim 1 holds, one can conclude the proof of Lemma D.3 using the arguments of

[76, Lemma 8.3]. Thus, it suffices to prove Claim 1.

Proof of Claim 1. In the proof of [76, Lemma 8.3], [76, Lemma 7.2] is used to construct,

for each edge uv ∈ E, a chord sequence CS(Vv, V
+
u ) in R. This is not possible here because

(CBSys1) and (ii) imply that, for any uv ∈MSC ⊆ E, u and v belong to a common vertex

class of D and so Vv and V +
u belong to distinct vertex classes of C ⊆ R.

We circumvent this problem as follows. Recall from (CBSys1) that D is a balanced

bipartite digraph. Denote by A and B the vertex classes of D. Let MSC,A := {e ∈

V (MSC) | V (e) ⊆ A} and MSC,B := {e ∈ V (MSC) | V (e) ⊆ B}. By (ii) and since

D is bipartite, MSC,A and MSC,B partition MSC . By (CBSys2), we have |V0 ∩ A| =

|V0 ∩ B| and so |MSC,A| = |MSC,B|. Fix a bijection ϕ : MSC,A −→ MSC,B and define

E ′ := (Q \ SC) ∪ {ab′, ba′ | aa′ ∈ MSC,A, bb
′ = ϕ(aa′)}. By construction, each edge in E ′
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has precisely one endpoint in A and one endpoint in B. Using Lemma D.2 instead of its

non-bipartite analogue [76, Lemma 7.2], one can apply the arguments of [76, Lemma 8.3]

to construct, for each uv ∈ E ′, a chord sequence CS(Vv, V
+
u ) in R such that, altogether,

(c) holds. Then, (a) and (b) hold by definition of E ′. □

This completes the proof of Lemma D.3.

A similar problem arises when adapting [76, Lemma 7.5] to the bipartite case. Roughly

speaking, [76, Lemma 7.5] guarantees the existence of a special cover SC whose components

are paths of length 2, and chord sequences from Vv to V +
u for each edge uv of the complete

special sequence MSC associated to SC (where Vv denotes the cluster in P which contains

v and V +
u denotes the successor on C of the cluster in P which contains u). As discussed

in the proof of Lemma D.3, such chord sequences do not exist. We can only guarantee that

the number of times a cluster is at the start/end of a chord sequence equals the number of

edges in MSC which start/end in that cluster. This is sufficient for proving the bipartite

version of [76, Lemma 7.6] (that is, Lemma 9.1).

Lemma D.4 (Bipartite version of [76, Lemma 7.5]). Let 0 < 1
n
≪ 1

k
≪ ε ≪ ε′ ≪

d ≪ ν ≪ τ ≪ δ, θ ≤ 1 and f
ℓ∗
≪ 1 and ε ≪ 1

ℓ′
, 1
f
. Suppose that ℓ∗

f
, m
ℓ′
∈ N. Let

(D,P0, R0, C0,P , R, C) be a consistent (ℓ∗, k,m, ε, d, ν, τ, δ, θ)-bi-system with |D| = n and

exceptional set V0. Suppose that D′ is a spanning subdigraph of D and that P ′ is a partition

of V (D) such that the following conditions are satisfied.

(i) P ′ is an ε-uniform ℓ′-refinement of P.

(ii) For any v ∈ V0, we have d±D(x)− d±D′(x) ≤ εn.

(iii) For any v ∈ V (D) \ V0, we have d±D(v)− d±D′(v) ≤ (ε′)3m
ℓ′

.

For any cluster V ∈ P, denote by V − and V + the predecessor and successor of V on

C. For any vertex v ∈ V (D) \ V0, denote by Vv the cluster in P which contains v. Let

(h, j) ∈ [ℓ′]× [f ] and let I = W1 . . .Wk′ denote the jth interval in the canonical interval

partition of C into f intervals. For any cluster V ∈ P, denote by V h the hth subcluster of
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V in P ′. In particular, let W h
1 , . . . ,W

h
k′ denote the hth subclusters of W1, . . . ,Wk′ in P ′.

Then, the following hold.

(a) There exists a special cover SC in D′ with respect to V0 which satisfies the following

properties.

– Each component of SC is a path of length 2.

– V (SC) ⊆ V0 ∪W h
3 ∪ . . .W h

k′−2.

– Each cluster V ∈ P satisfies |V ∩ V (SC)| ≤ ε
1
4m.

(b) There exist chord sequences CS(W̃1, Ŵ
+
1 ), . . . , CS(W̃|V0|, Ŵ

+
|V0|) in R for which the

following hold.

– There exists an enumeration u1, . . . , u|V0| of the starting points of the compo-

nents of SC such that Ŵi = Vui
for each i ∈ [|V0|].

– There exists an enumeration v1, . . . , v|V0| of the ending points of the compo-

nents of SC such that W̃i = Vvi for each i ∈ [|V0|].

– For each i ∈ [|V0|], CS(W̃i, Ŵ
+
i ) contains at most 3ν−3 edges and all its

vertices lie in W2 ∪ · · · ∪Wk′−1.

– Altogether, CS(W̃1, Ŵ
+
1 ), . . . , CS(W̃|V0|, Ŵ

+
|V0|) contain at most 4ε

1
4m edges

incident to each cluster in P.

(c) D′ contains a matching M which satisfies the following properties.

– M can be obtained by replacing, for each i ∈ [|V0|], each edge UV of

CS(W̃i, Ŵ
+
i ) by an edge of D′(Uh, V h).

– V (M) ∩ V (SC) = ∅.

(d) For each UV ∈ E(C), the pair D′[Uh, V h] is [ε′,≥ d]-superregular.

Lemma D.4 can be proven using the same arguments as in [76, Lemma 7.5], with

Lemma 7.7 and Lemma D.2 playing the roles of [76, Lemmas 5.3 and 7.2] and using the
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arguments of Claim 1 of the proof of Lemma D.3 to choose the endpoints of the chord

sequences in Lemma D.4(b). Therefore, we omit the details here.

Finally, we use Lemma D.2 and adapt the arguments of [76, Lemma 9.1] to derive

Lemma 9.2.

Proof of Lemma 9.2. Denote C = V1 . . . V2k. Since R is bipartite, we may assume without

loss of generality that A = {Vi | i ∈ [2k] is odd} and B = {Vi | i ∈ [2k] is even}. Denote

V2k+1 := V1 and V2k+2 := V2. For simplicity, split (BU1) into two parts as follows.

(BU1a) The edge set of U has a partition into Uodd and Ueven and, for every i ∈ [2k], U

contains a chord sequence CS(Vi, Vi+2) from Vi to Vi+2 such that (BU2), (BU3),

and the following hold. All of the edges in the multiset
⋃
{CS(Vi, Vi+2) | i ∈

[2k] is odd} are contained in Uodd, all of the edges in the multiset
⋃
{CS(Vi, Vi+2) |

i ∈ [2k] is even} are contained in Ueven, and

(BU1b) all the remaining edges of U lie on C.

Apply the arguments of [76, Lemma 9.1] with Lemma D.2 playing the role of [76, Lemma

7.2] to obtain chord sequences CS(V1, V3), CS(V2, V4), . . . , CS(V2k, V2k+2) which satisfy

the following properties, where U ′odd denotes the multiset of edges defined by

U ′odd := E(CS(V1, V3)) ∪ E(CS(V3, V5)) ∪ · · · ∪ E(CS(V2k−1, V2k+1))

and U ′even denotes the multiset of edges defined by

U ′even := E(CS(V2, V4)) ∪ E(CS(V4, V6)) ∪ · · · ∪ E(CS(V2k, V2k+2)).

(i) For each i ∈ [2k], CS(Vi, Vi+2) contains at most 3ν−1 ≤
√
ℓ′

2
edges.

(ii) For each i ∈ [2k], we have dU ′
odd

(Vi) ≤ 2ℓ′

5
and dU ′

even
(Vi) ≤ 2ℓ′

5
.

Let U ′ be the multidigraph on V (R) whose multiset of edges is defined by E(U ′) :=

U ′odd ∪ U ′even =
⋃

i∈[2k] E(CS(Vi, Vi+2)). By (i) and construction, U ′ satisfies (BU1a) and
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(BU2).

For each i ∈ [2k], let n±i,odd := d±U ′
odd

(Vi) and n±i,even := d±U ′
even

(Vi). By similar arguments

as in the proof of [76, Lemma 9.1], we have n−i+1,odd = n+
i,odd and n−i+1,even = n+

i,even for

each i ∈ [2k] (where n−2k+1,odd := n−1,odd and n−2k+1,even := n−1,even). For each i ∈ [2k], let

ℓi,odd := ℓ′

2
−n−i,odd and ℓi,even := ℓ′

2
−n−i,even. Let U be obtained from U ′ by adding, for each

i ∈ [2k], exactly ℓi,odd + ℓi,even copies of the edge Vi−1Vi. Let Uodd be obtained from U ′odd

by adding exactly ℓi,odd copies of the edge Vi−1Vi and let Ueven be obtained from U ′even by

adding exactly ℓi,even copies of the edge Vi−1Vi. Note that Uodd and Ueven partition the

edges of U . Since U ′ satisfies (BU1a) and (BU2), U also satisfies (BU1a) and (BU2). By

construction, (BU1b) also holds.

For each i ∈ [2k], we have d−Uodd
(Vi) = n−i,odd + ℓi,odd = ℓ′

2
and

d+Uodd
(Vi) = n+

i,odd + ℓi+1,odd = n−i+1,odd + ℓi+1,odd =
ℓ′

2
.

Similarly, both d±Ueven
(Vi) = ℓ′

2
for each i ∈ [2k] and so (BU3) holds. One can show that U

forms a closed walk in R using similar arguments as in [76, Lemma 9.1].
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APPENDIX E

APPLYING THE REGULARITY LEMMA: PROOF
OF LEMMA 9.3

In this appendix, we will prove Lemma 9.3, which guarantees the existence of consistent

bi-systems and bi-setups in a bipartite robust outexpander. We will need the bipartite

analogue of Lemma B.4(ii). The proof follows easily from the definition of a bipartite

robust outexpander and is therefore omitted.

Lemma E.1. Let 0 < 1
n
≪ ε ≤ ν ≪ τ ≤ 1. Let D be a bipartite digraph on vertex

classes A and B of size n and suppose that D is a bipartite robust (ν, τ)-outexpander with

bipartition (A,B). Let A′ ⊆ A and B′ ⊆ B satisfy |A′| = |B′| ≥ (1− ε)n. Then, D(A′, B′)

is a bipartite robust (ν − ε, 2τ)-outexpander with bipartition (A′, B′).

Proof of Lemma 9.3. Let 0 < 1
M ′ ≪ ε. Fix additional constants such that 1

M ′ ≪ ε1 ≪

ε2 ≪ ε3 ≪ ε4 ≪ ε.

Step 1: Applying the regularity lemma. Let M and n0 be the constants obtained

by applying Lemma 7.14 with ε1 playing the role of ε. By Lemma 7.14(i), we may assume

without loss of generality that 0 < 1
n0
≪ 1

M
≤ 1

M ′ ≪ ε1. Fix additional constants such that

ε ≪ 1
q
≪ 1

f
, 1
ℓ∗
≪ d ≪ ν ≪ τ ≪ δ, θ ≪ 1 and d ≪ 1

g
≪ 1. Moreover, let ℓ′ ≥ 324ν−2 be

even. Let D be a balanced bipartite on vertex classes A and B of size n ≥ n0. Suppose that

D is a bipartite robust (ν, τ)-outexpander with bipartition (A,B) and that δ0(D) ≥ δn.

Apply Lemma 7.14 with ε1 and 4d playing the roles of ε and d to obtain a spanning
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subdigraph D′ ⊆ D and a partition P̃ = {Ṽ0, Ṽ1, . . . , Ṽ2k̃} of V (D) such that Lemma 7.14(i)–

(vii) hold with 2k̃, m̃, Ṽ0, Ṽ1, . . . , Ṽ2k̃ playing the roles of k,m, V0, V1, . . . , V2k. Denote

Ã := {Ṽi | i ∈ [2k̃], Ṽi ⊆ A} and B̃ := {Ṽi | i ∈ [2k̃], Ṽi ⊆ B}. We may assume without loss

of generality that Ã := {V2i−1 | i ∈ [k̃]} and B̃ := {Ṽ2i | i ∈ [k̃]}. Let R̃ be the bipartite

reduced digraph of D with parameters ε1, 4d, and M ′. By Lemma 7.15, δ0(R̃) ≥ δk̃
2

and

R̃ is a bipartite robust (ν
2
, 2τ)-outexpander with bipartition (Ã, B̃). Observe that, by

Lemma 7.14(vii), D[U, V ] is (ε1,≥ 4d)-regular for each UV ∈ E(R̃).

Step 2: Ensuring the desired divisibility conditions. Let k̂ be the largest integer

satisfying k̂ ≤ k̃ and k̂
21fg(g−1) ∈ N. Let V̂0 := Ṽ0 ∪

⋃
i∈[2k̃−2k̂] Ṽ2k̂+i. By Lemma 7.14(i), (ii),

and (iv),

|V̂0 ∩ A| = |V̂0 ∩B| ≤ ε1n + 21fg(g − 1)m̃ ≤ 2ε1n. (E.1)

Let P̂ := {V̂0, Ṽ1, . . . , Ṽ2k̂} and let V̂1, . . . , V̂2k̂ be a relabelling of Ṽ1, . . . , Ṽ2k̂. Let R̂ :=

R̃− {Ṽ2k̂+i | i ∈ [2k̃ − 2k̂]}. Denote Â := Ã \ {Ṽ2k̂+i | i ∈ [2k̃ − 2k̂]} and B̂ := B̃ \ {Ṽ2k̂+i |

i ∈ [2k̃ − 2k̂]}. Then, δ0(R̂) ≥ δk̃
2
− 21fg(g − 1) ≥ δk̂

3
and, by Lemma E.1, R̂ is a bipartite

robust (ν
3
, 4τ)-outexpander with bipartition (Â, B̂).

Step 3: Finding a Hamilton cycle and a bi-universal walk in the reduced

graph. Apply Corollary 7.5 with R̂, Â, B̂, k̂, ν
3
, 4τ , and δ

3
playing the roles of D,A,B, n, ν, τ ,

and δ to obtain a Hamilton cycle Ĉ of R̂. We may assume without loss of generality

that Ĉ = V̂1 . . . V̂2k̂. Apply Lemma 9.2 with R̂, Ĉ, k̂, ν
3
, 4τ , and δ

3
playing the roles of

R,C, k, ν, τ , and δ to obtain a universal walk Û for Ĉ in R̂ with parameter ℓ′. Denote

Û = V̂i1 . . . V̂i
2ℓ′k̂

.

Step 4: Forming superregular pairs. Let E := {e ∈ E(Ĉ) ∪ E(Û)}. We adjust

the partition P̂ to ensure that each edge in E corresponds to a superregular pair in D.

By (BU3), each V ∈ V (R̂) satisfies d±E(V ) ≤ ℓ′ + 1. For each e = UV ∈ E, denote

de := dD(U, V ) and observe that, by Step 1, de ≥ 4d. Fix an integer m0 such that

(1 − 2
√
ε1)m̃ ≤ m0 ≤ (1 − √ε1)m̃ and fm0

200qℓ′ℓ∗
∈ N. Let i ∈ [2k̂]. Let V̂ ′i consist of
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all the vertices v ∈ V̂i such that there exists j ∈ [2k̂] \ {i} such that e = V̂iV̂j ∈ E but

|N+
D (v)∩V̂j| ≠ (de±ε1)m̃ or, e′ = V̂jV̂i ∈ E but |N−D (v)∩V̂j| ≠ (de′±ε1)m̃. By Lemma A.2,

|V̂ ′i | ≤ 2ε1m̃dE(V̂i) ≤ 4ε1m̃(ℓ′+ 1) ≤ √ε1m̃. Let V̂ ′i ⊆ V̂ ′′i ⊆ V̂i satisfy |V̂ ′′i | = m̃−m0. Let

V0 := V̂0 ∪
⋃

i∈[2k̂] V̂
′′
i . By (E.1),

|V0 ∩ A| = |V0 ∩B| ≤ 2ε1n + 2
√
ε1m̃ · 2k̂ ≤ εn.

For each i ∈ [2k̂], let V 0
i := V̂i \ V̂ ′′i . By construction, |V 0

1 | = · · · = |V 0
2k̂
| = m0. Let

P0 := {V0, V
0
1 , . . . , V

0
2k̂
}. Denote A0 := {V 0

i ∈ P0 | V̂i ∈ Â} and B0 := {V 0
i ∈ P0 | V̂i ∈ B̂}.

Let R0 be the digraph on A0 ∪ B0 which is induced by R̂, i.e. defined as follows. For

any i, j ∈ [2k̂], V 0
i V

0
j ∈ E(R0) if and only if V̂iV̂j ∈ E(R̂). By Lemma A.1, D[U, V ] is

(ε2,≥ 3d)-regular for each UV ∈ E(R0). Moreover, δ0(R0) ≥ δk̂
3

and R0 is a bipartite robust

(ν
3
, 4τ)-outexpander with bipartition (A0,B0). Let C0 := V 0

1 . . . V 0
2k̂

and U0 = V 0
i1
. . . V 0

i
2ℓ′k̂

.

By construction, C0 is Hamilton cycle of R0 and U0 is a universal walk for C0 in R0 with

parameter ℓ′. Moreover, D[U, V ] is [ε2,≥ 3d]-superregular for each UV ∈ E(C0) ∪ E(U0).

Step 5: Finding the refinements. Apply Lemma 8.7 with 2n,m0, 2k̂,P0, ε2, and

ℓ∗ playing the roles of n,m, k,P , ε, and ℓ to obtain an ε2-uniform ℓ∗-refinement P of

P0. Let A be the set of clusters V ∈ P such that V ⊆ W for some W ∈ A0. Let

B be the set of clusters in P \ A. Let k := ℓ∗k̂ and m := m0

ℓ∗
. Let R be the ℓ∗-fold

blow-up of R0 induced by P. Then, δ0(R) = ℓ∗δ0(R0) ≥ δk
3

. By Lemma 7.7, R is a

bipartite robust (4ν4, 8τ)-outexpander with bipartition (A,B). By Lemma 8.8(i) and

Step 4, D[U, V ] is (ε3,≥ 2d)-regular for each UV ∈ E(R). For each i ∈ [2k̂], denote by

V 0
i,1, . . . , V

0
i,ℓ∗ the subclusters of V 0

i contained in P. Let C := V 0
1,1V

0
2,1 . . . V

0
2k̂,1

V 0
1,2 . . . V

0
2k̂,ℓ∗

and U := V 0
i1,1

V 0
i2,1

. . . V 0
i
2ℓ′k̂,1

V 0
1,2 . . . V

0
i
2ℓ′k̂,ℓ

∗ . Then, C is a Hamilton cycle of R and U is a

bi-universal walk for C in R with parameter ℓ′. Moreover, by Lemma 8.8(ii) and Step 4,

D[U, V ] is [ε3,≥ 2d]-superregular for each UV ∈ E(C) ∪ E(U).

Apply Lemma 8.7 with 2n, ε3, and ℓ′ playing the roles of n, ε, and ℓ to obtain an

ε3-uniform ℓ′-refinement P ′ of P. Let V1, . . . , V2k be a relabelling of the clusters in
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P such that C = V1 . . . V2k and let i′1, . . . , i
′
2ℓ′k be such that U = Vi′1

. . . Vi′
2ℓ′k

. For

each i ∈ [2k], denote by Vi,1, . . . , Vi,ℓ′ the subclusters of Vi contained in P ′. Let U ′ :=

Vi′1,1
Vi′2,1

. . . Vi′
2ℓ′k,1

Vi′1,2
. . . Vi′

2ℓ′k,ℓ
′ . By Lemma 8.8(ii), D[U, V ] is [ε4,≥ 2d]-superregular for

each UV ∈ E(U ′).

Apply Lemma 8.7 with 2n, ε3, and q
f

playing the roles of n, ε, and ℓ to obtain an

ε3-uniform q
f
-refinement P∗ of P .

Step 6: Verifying (i) and (ii). Let M ′′ := ℓ∗M . By our choice of k̂ in Step 2 and

definition of k in Step 5, we have ℓ∗k̃
2
≤ ℓ∗k̂ = k ≤ ℓ∗k̃. Then, Lemma 7.14(i) (with

k̃ playing the role of k) implies that M ′ ≤ k ≤ M ′′. Moreover, Step 2 implies that

k
7
, k
f
, k
g
, 2fk
3g(g−1) ∈ N. By our choice of m0 in Step 4 and definition of m in Step 5, we have

m
50
, m
4ℓ′
, fm

q
∈ N. Thus, (i) is satisfied.

Let D1 be obtained from D by taking each edge independently with probability 1
2
.

Define D2 := D \ D1. We need to show that (ii) holds with positive probability. By

Lemmas 8.19 and 8.29, it suffices to show that the following properties are satisfied.

(a) (D,P0, R0, C0,P , R, C) is a consistent (ℓ∗, 2k,m, ε4, 2d, 4ν
4, 8τ, δ

3
, 3θ)-bi-system.

(b) (D,P ,P ′,P∗, R, C, U, U ′) is an (ℓ′, q
f
, 2k,m, ε4, 2d)-bi-setup.

By Lemma 7.14(iii) and Steps 4 and 5, (BST1) holds. Moreover, (BST2)–(BST8) follow

from Step 5. Thus, (b) holds. By Step 4 and definition of k and m in Step 5, (CBSys2)

holds. By Step 5, (CBSys3), (CBSys4), and (CBSys6) are satisfied and (CBSys8) follows

from (URef). Moreover, (CBSys1), (CBSys5), and (CBSys7) follow from Steps 4 and 5.

Therefore (a) holds.
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GLOSSARY

(ε, 4)-partition Definition 10.1.

(ε,U)-exceptional set Definition 13.11: (ES1) and (ES2).

balanced special cover Definition 12.6.

bi-setup Definition 8.15: (BST1)–(BST8).

bi-universal walk Definition 8.13: (BU1)–(BU3).

canonical interval partition Definition 8.20.

complete special sequence Definition 8.25.

consistent bi-system Definition 8.27: (CBSys1)–(CBSys8).

consistent cycle-framework Definition 12.8.

cycle-framework Definition 11.3: (CF1)–(CF5).

cycle-setup Definition 11.2: (CST1)–(CST3).

equivalent linear forests Definition 8.4.

extended special factor Definition 11.9.

extended special path system Definition 11.8.

feasible system Definition 13.2: (F1)–(F3).
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friendly extended special path system Definition 11.7: (FESPS1) and (FESPS2).

localised special cover Definition 12.3.

matching contraction Definition 7.25(i).

matching expansion Definition 7.25(ii).

optimal partition Definition 13.7.

placeholder Definition 15.1.

pseudo-feasible system Definition 15.3: (F1) and (F2′)–(F4′).

setup Definition 8.14: (ST1)–(ST8).

special cover Definition 8.24.

special factor Definition 8.22.

special path system Definition 8.21: (SPS1) and (SPS2).

uniform refinement Definition 8.6: (URef).

universal walk Definition 8.11: (U1)–(U3).
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