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Abstract 
 

Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease of the joints 

with predominant symptoms of pain, swelling and stiffness.  Patients with RA are at 

increased risk of cardiovascular disease (CVD).  The exact mechanism for this is 

unknown, but RA disease-related inflammation has been postulated to affect the 

vasculature and contribute to endothelial dysfunction.  The studies presented in this 

thesis examine vascular function in patients with RA and explore associations with 

disease-related inflammation as well as CVD risk factors.  A cross-sectional study was 

carried out with 99 RA patients and 32 healthy control participants who underwent 

assessments of microvascular endothelial function, macrovascular endothelial function 

and arterial stiffness (AIx).  Microvascular and macrovascular endothelial function 

were similar in RA patients and healthy control participants, but AIx was higher in the 

RA patients, as was global CVD risk.  RA disease-related inflammation was not 

associated with microvascular or macrovascular endothelial-dependent function, 

however, global CVD risk inversely correlated with microvascular endothelial-

dependent function and macrovascular endothelial-independent function.  A 

longitudinal study was conducted in 23 RA patients starting on anti-tumor necrosis 

factor-α (anti-TNF-α) treatment and all the above-mentioned assessments were 

repeated after 2 and 12 weeks of treatment.  Treatment, which was successful in 

reducing disease activity at 2 and 12 weeks, resulted in an improvement in 

microvascular endothelial-dependent function at 2 weeks, but not at 12 weeks.  There 

was no change in macrovascular endothelial-dependent function or arterial stiffness at 

any time point, nor in global CVD risk.  Finally, a systematic review of the literature 

pertaining to endothelial function in RA was performed.  This revealed that, on the 

whole, the evidence supporting a relationship between endothelial function and 

disease-related inflammation was not strong.  The findings of these studies suggest 

that classical CVD risk may be a better predictor of endothelial function in RA than 

disease-related inflammation.  
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Chapter 1 (Part I): General Introduction 
 

Rheumatoid Arthritis 
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease of the joints 

with predominant symptoms of pain, swelling and stiffness.  The pattern of 

disease activity often varies in patients, and can include periods of high disease 

activity (flares) interspersed with periods of low disease activity (remission).  Poor 

control of disease activity can result in erosive bone damage which can then lead 

to joint destruction and physical disability [1]. The precise aetiology of RA is not 

known, however, recent concepts support the ‘gene-environment interaction 

hypotheses’, where a combination of environmental factors (such as smoking) 

and genetic factors (such as the shared epitope) can contribute to the onset of 

disease [2].  Patients with RA have a high mortality rate when compared to the 

general population, with cardiovascular disease contributing up to 50% of all 

deaths [3].  Currently, there is no cure for RA and so the goal of treatment is to 

suppress disease activity, reduce disease progression and adequately treat co-

morbidities.  The continuous development of new medications is enhancing the 

effective treatment of this condition.  

 

Epidemiology 

RA affects ~0.8% of the adult population of the United Kingdom (UK) and is more 

common in females than males [4].  The prevalence in some European countries 

appears to be lower than that in the UK (range 0.1 -0.5%)  [5,6].  In other parts of 

the world the prevalence of RA also varies.  For example, RA was found to be 

virtually absent in a rural population in Nigeria [7].  Interestingly, studies 

conducted in South Africa showed that the prevalence of RA was low amongst 

Bhantu-speaking people living in their traditional rural environments; however, 

the prevalence increased when this group of people migrated to the modern and 

industrialized town of Soweto [8,9].  This change in RA prevalence, along with 

the low incidence of RA in rural Nigeria, suggests that RA might be associated to 

lifestyle habits of industrialised areas.  However, comparisons of the prevalence 
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between different countries must be interpreted with caution, as not all 

epidemiological studies use the same criteria to classify RA, and populations can 

differ on age and gender [4]. 

 

Aetiology 

At present, the exact aetiopathogenesis of RA is not known, although current 

evidence suggests that the onset of RA may be triggered via an interaction 

between genetic, environmental and lifestyle factors.  A discussion on these 

follows below. 

  

a) Genetic Factors 

There is evidence suggesting the cause of RA has a genetic basis.  For example, 

population studies have shown that the prevalence of RA is greater in first 

degree relatives of patients with RA [10,11].  Furthermore, there is greater 

disease concordance in identical twins (15%) than in non-identical twins (4%) 

[12].  Alleles of the major histocompatibility complex class II (MHC II) have been 

identified as risk alleles for RA [13].  One of the most widely characterised genes 

is the Human Leukocyte Antigen (HLA) DRB1 gene [14].  The primary function of 

HLA is to encode viral peptides (produced when antigen-presenting cells engulf 

foreign pathogens) so that they can be identified by T-cells (which are released 

by the immune system to destroy virally-infected cells) [14].  RA susceptibility is 

dependent on multiple risk alleles of the HLA-DRB1 gene, and all share a 

conserved amino acid sequence, known as the rheumatoid epitope and are an 

integral part of the ‘shared epitope hypothesis’ [15].  RA risk alleles may also be 

located outside of the MHC, as a number of non-MHC alleles have recently been 

identified.  Examples include PTPN22 [16], STAT4 [17], and TRAF1-C5 [18] 

amongst several others.  However, alleles located on the MHC contribute to 30% 

of the genetic burden of RA as opposed to 3-5% of non-MHC alleles [19-21].  

Interestingly, from the non-MHC risk alleles, PTNPN22 locus appears to confer 

the strongest risk for RA in European populations [16].  Another important finding 

is that both HLA-DRB1 and PTPN22 risk alleles strongly associate with more 
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severe forms of RA [22,23].  This has potentially important implications as it 

could allow categorisation of patients into different subsets of disease severity 

[24,25]. 

 

b) Hormonal Factors 

The prevalence of RA varies between gender, with females 2-3 times more likely 

to develop RA than males [4].  Women who are nulliparous are at a much greater 

risk of RA [26], while pregnancy has a beneficial effect on RA [27].  Indeed, 

during pregnancy, there 

is development of alloantibodies against the paternal HLA [28].  These 

alloantibodies are believed to inhibit the function of all HLA-DR alleles, and so 

reduce disease severity [29].  Collectively, these findings suggest that hormonal 

factors play an important role in the development of RA, possibly by interacting 

with genetic factors.      

 

c) Infectious Agents 

Although a number of different infectious agents for the pathogenesis of RA have 

been investigated, the most extensively investigated infectious agent in the RA 

population is the Epstein-Barr virus [30].  This virus shares the same HLA-DRB 

epitopes with type II collagen which is found in the cartilage of the joints.  It is 

believed that exposure to the Epstein-Barr virus triggers a normal immunological 

response to the virus; however, due to similarities of the virus to type II collagen, 

an auto-immune response is triggered in the joints leading to increased 

inflammation in the synovium [31].  It is worthwhile to mention that rates of 

contracting Epstein-Barr virus are high in the general population, and one would 

therefore expect a similarly high prevalence of RA [32].  As this is not the case, 

the precise mechanisms of the cross-talk mentioned above need to be further 

elucidated.  
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d) Smoking 

HLA-DR shared epitope (SE) genes play a major role in the development of RA 

[15].  Smoking appears to be a key environmental factor in the aetiology of RA 

[33,34] and has been demonstrated to interact with HLA-DR SE in RA patients 

with seropositive disease [35].  The precise mechanism for this interaction has 

not yet been elucidated, but protein citrullination appears to be a strong factor 

[36].  Protein citrullination is the post-transcriptional modification of arginine into 

citrulline which results in significant alterations in the structure and function of 

various proteins [37].  Antibodies to citrullinated proteins, such as anti-cyclic 

citrullinated peptide (anti-CCP) antibody, are biomarkers of protein citrullination 

and have been shown to precede the development of RA [38-40], as well as 

being possibly involved in the causation of RA [41].  Smoking has been shown to 

increase peptidylarginine deiminases (an enzyme responsible for catalysing 

arginine into citrulline) in alveolar tissue of healthy smokers, and not surprisingly, 

these individuals subsequently displayed evidence of protein citrullination in their 

bronchial alveolar lavage cells [42].  Another study conducted in RA patients 

revealed that HLA-DR SE risk alleles and smoking increased the risk of 

developing RA only in anti-CCP positive patients [36].  Importantly, smoking was 

associated with a higher risk of developing anti-CCP positive RA in patients with 

double copies of HLA-DR SE genes, with the risk being significantly lower in non-

smokers with this pattern of SE gene expression [36].  Thus, exposure to 

cigarette smoke facilitates protein citrullination in the lungs, and the subsequent 

autoimmune response is more pronounced in individuals carrying the HLA-DR 

SE genes.  Interestingly, exposure to silica (found in sand and quartz) has been 

shown to increase the risk of developing anti-CCP positive RA, and the effect of 

silica is stronger in patients exposed to smoking as well [43].  This suggests that 

exposure to environmental factors via inhalation may be an important pathway in 

the development of RA and supports the findings of the earlier work showing 

protein citrullination in alveolar tissue [36,42]. 
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Pathogenesis 

RA is an autoimmune disease in which alterations in immune function result in 

joint degradation and destruction.  CD4+ T cells (also known as T helper cells) 

are regarded as major protagonists in initiating the inflammatory response in RA 

[44].  CD4+ T cells are not able to recognise antigens (a molecule that triggers an 

immune response) themselves and rely on antigen presentation by cells known 

as antigen presenting cells (APCs).  Examples of APC’s include macrophages, 

dendritic cells and B cells [44,45].  APC’s form complexes with MHC II proteins 

which then internalise antigens via endocytosis and display fragments of the 

antigen on a groove located on their surface.  Specialised T cell receptors 

located on CD4+ T cells which are specific to the endocytosed antigen recognise 

the antigens bound to MHC II proteins and the CD4+ T cell becomes activated 

[44].  

 

 CD4+ T cells can then stimulate the production of pro-inflammatory 

cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1, IL-6, and IL-

17 [44].  The recruitment of inflammatory cells is mediated by chemotactic 

molecules such as IL- 8, monocyte-chemoattractant protein-1 and macrophage 

inflammatory protein-α [46].  The next process is an increase in leucocyte-

endothelial interactions [47].  Complement 

factors such as C3a and C5 attract leucocytes (e.g. CD4+ T cells, B cells and 

macrophages) to the endothelium, after which adhesion molecules such as E-

selectin are involved in slow rolling of the leucocytes along the endothelial lining 

until firm adhesion occurs [48].  Intercellular adhesion molecules and vascular 

cell adhesion molecules then allow transmigration of leucocytes to the site of 

inflammation [48].  Pro-inflammatory cytokines play an active role in promoting 

leucocyte-endothelial interactions as they help to increase the expression of 

adhesion molecules [49].  These processes result in structural changes to the 

joint and are characterised by the formation of new blood vessels which increase 

delivery of more inflammatory cells to the synovium, hyperplasia of the synovial 

lining, and oedema [44].  Clinically, these processes result in pain and swelling of 
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the joint [47].  As inflammation continues there is further hyperplasia of the 

synovium which results in formation of thick, invasive tissue termed Pannus (see 

Figure 1) [44].  The formation of Pannus is a key event in the process of joint 

destruction as Pannus contains a high concentration of macrophages, T cells 

and B cells [47].  

 

 
Figure 1.  A joint affected by RA.  Printed with permission from Alphaflex.com.  

 

The macrophages that are present in the pannus release further pro-

inflammatory cytokines which in turn stimulate mesenchymal cells like synovial 

fibroblasts, osteoclasts and chondrocytes to cause severe erosion to cartilage 

and bone tissue [50].  TNF- α, IL-1 and IL-6 are the main cytokines involved in 

stimulating these cells [51,52], and also stimulate matrix metalloproteinases 

which degrade the extracellular matrix leading to further bone erosion [48].  

Another action of TNF- α and IL-1 involves blocking tissue-inhibitors of matrix 

metalloproteinases which perpetuates joint destruction [50].   
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 The chronic inflammatory nature of RA occurs as a result of continued 

activation of CD4+ T cells by APC’s, with B cells thought to be the most 

prominent APC in the synovium of RA patients [53].  Activated T cells also 

stimulate B cells to differentiate into plasma cells which then produce antibodies 

to specific antigens [1].  An example of one such antibody in RA is rheumatoid 

factor (RF), which is associated with severe articular disease [53].  In addition, 

RA patients who are seropositive for the RF antibody appear to be at a greater 

risk of mortality and morbidity form extra-articular manifestations such as 

cardiovascular disease [54].  Depletion of B cells using rituximab treatment has 

led to improvements in RA disease-severity [55], possibly due to reductions in T 

cell-mediated cytokine activity [45].  Thus, along with T cells, B cells also play an 

important role in regulating the immune response in RA, and may substantially 

contribute to chronic inflammation.  

 

Clinical Features of Rheumatoid Arthritis 

The symptoms of RA predominantly consist of pain, swelling and stiffness of the 

joints.  The onset of disease typically occurs over several weeks or months, 

however, in approximately a third of people, the disease has a very rapid onset, 

and may occur over a few days or weeks [56].  The most commonly affected 

joints are the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and 

metatarsophalangeal (MTP) joints as well as the wrists.  In some patients the 

shoulders, elbows, knees and ankles may also be affected.  An examination of 

the affected joints usually reveals the cardinal signs of inflammation (redness, 

tenderness, swelling and heat), and in early RA the MCP joints are typically 

affected first, although other joints can also be affected [56].   

 

As the disease progresses, damage to the joints leads to physical 

deformities and eventual disability [57].  In patients with a disease duration 

greater than 10 years, 16% are severely disabled, while, only 17% of patients are 

free from any kind of disability [58].  Examples of irreversible deformities to the 
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joints include pes planus (loss of foot arches), hammer and claw toes, and 

deformities in the MCP and MTP joints due to joint subluxation (dislocation) [56].   

 

 Extra-articular manifestations are present in 40% of patients [59] and 

appear to be most common in patients with the highest disease activity [60].  

Moreover, patients with extra-articular manifestations have increased morbidity 

and mortality [61].  Examples of such extra-articular manifestations include 

severe weight loss, osteoporosis and cardiovascular disease (CVD) [62-64].  

Table 1 shows the extra-articular manifestations in RA.  Due to its pertinence to 

the current project the discussion will focus only on CVD. 

 

Table 1.  The extra-articular manifestations of RA  

Organ System Extra-Articular Manifestation 

Cardiovascular Vasculitis, pericarditis, coronary artery disease, 

myocardial infarction 

Pulmonary Interstitial lung disease, pleural effusion, nodules,  

Blood Felty's syndrome, large granulocytic leukaemia, 

thrombocytosis, anaemia, splenomegaly, non-Hodgkin's 

lymphoma 

Nervous Neuropathy 

Muscle Rheumatoid cachexia 

Bone Osteopaenia and osteoporosis  

Salivary Gland Secondary Sjögren's syndrome with dry eyes and mouth 

Skin Cutaneous vasculitis, rheumatoid nodules 

Occular Scleritis, peripheral ulcerative keratitis, 

keratoconjunctivitis sicca, episcleritis 

                                                                                                 Turesson et al [59] 

Diagnosis 

The diagnosis of RA can be made using the patient’s medical history, symptom 

patterns, as well as laboratory and radiographic features [56].  In 1987 the 
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American College of Rheumatology (ACR) established guidelines for classifying 

patients with RA (shown in Table 2).  For patients to be diagnosed with RA, they 

must satisfy at least 4 out of 7 of the criteria, with criteria 1 - 4 being present for 

at least 6 weeks.  These criteria have 89% specificity, and 94% sensitivity in 

distinguishing RA from other forms of arthritis [65].   

 

Table 2.  The 1987 revised criteria for the classification of RA by the ACR [65] 

Criterion Description 

1. Morning Stiffness 
Morning stiffness in and around the joints, lasting at least 

one hour before maximal improvement 

2. Arthritis of 3 or 

more joint areas 

At least three joint areas (out of 14 possible; right or left 

PIP, MCP, wrist, elbow, ankle, MTP joints) simultaneously 

have had soft tissue swelling or fluid (not bony 

overgrowth) as observed by a physician  

3. Arthritis of hand 

joints 

At least one area swollen (as defined in criterion two) in a 

wrist, MCP, or PIP joint 

4. Symmetric 

arthritis 

Simultaneous involvement (as in criterion two) of the 

same joint areas on both sides of the body (bilateral 

involvement of PIP, MCP, or MTP joints without absolute 

symmetry is acceptable) 

5. Rheumatoid 

nodules 

Subcutaneous nodules over bony prominences or 

extensor surfaces, or in juxta-articular regions as 

observed by a physician 

6. Serum 

rheumatoid 

factor 

Demonstration of abnormal amounts of serum rheumatoid 

factor by any method for which the result has been 

positive in <5% of normal control subjects 

7. Radiographic 

changes 

Radiographic changes typical of rheumatoid arthritis on 

posteroanterior hand and wrist radiographs, which must 

include erosions or unequivocal body decalcification 

localised in, or most marked adjacent to, the involved 

joints (osteoarthritis changes alone do not qualify) 
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Imaging 

The use of newer imaging modalities such as ultrasonagraphy, magnetic 

resonance imaging (MRI) and computerised tomography (CT) are increasingly 

being used to diagnose RA much earlier than conventional radiology [66].   

These imaging methods offer greater sensitivity in detecting synovitis, effusion, 

joint subluxations, joint space narrowing and bone oedema [66].  Furthermore, 

when compared with conventional methods, the increasing use of ultrasound has 

allowed for a greater success rate when performing joint aspirations, and greater 

accuracy when injecting steroids into the affected joints [67].   

 

Assessment of Disease Activity 

At present there is no cure for RA, but the disease can be effectively managed by 

monitoring the state of the patient’s joints, and current levels of disease activity.  

The availability of validated assessment tools which are efficient and easy to 

perform allows the physician to adequately monitor the patient’s disease activity.  

In the United Kingdom, the most frequently used assessment tool for disease 

activity is the disease activity score in 28 joints (DAS28) [68].  The DAS28 takes 

into account the total number of tender and swollen joints from 28 joints (fingers, 

wrists, elbows, shoulders, knees).  In addition, it utilises a visual analogue scale 

(VAS) to indicate the patient’s global health, as well as the erythrocyte 

sedimentation rate (ESR) [69].  The change in disease activity over subsequent 

visits to the physician or in response to treatment can be monitored by using the 

ACR and the European League against Rheumatism (EULAR) response criteria 

[70,71].  The ACR response criteria incorporate the percentage improvement in 7 

variables (tenderness, swelling, physicians global disease activity, patients global 

disease activity, morning stiffness, pain and disability as well as the ESR score) 

and then categorises them into ACR20, ACR50 or ACR70 which correspond to a 

20, 50 or 70% improvement in at least 5 of the 7 variables [71].  The EULAR 

response criteria incorporate changes in the DAS28 score from baseline values.  

The responses are then categorised as good, moderate or non-responders [70].   
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The Stanford Health Assessment Questionnaire (HAQ) can be used to 

assess the effects of disease activity or severity on the patient’s functional ability.  

Patients rate their ability over the past week to carry out 20 activities within eight 

aspects of daily living (dressing/grooming, rising, eating, walking, hygiene, reach 

grip and errands/tasks) on a four point Likert scale ranging from ‘without any 

difficulty’ to ‘unable to do’.  For each aspect, patients also report whether they 

receive assistance from people or use specific devices (e.g. walking stick, stair-

lifts, and bath seats).  The scores are added together to give a single HAQ score, 

with a high HAQ score indicating reduced functional ability [72].      

 

Pharmacological Approaches in Rheumatoid Arthritis 

The management of RA involves the use of carefully selected pharmacological 

therapies which are based on the patient’s disease severity, symptoms and 

response to previous medications.  The aim of treatment is to reduce the 

inflammation in the joints and halt the destruction to the joints and bones, 

particularly if treatment is initiated early [73].  The most commonly used 

medications to treat RA are described in greater detail below.   

 

a) Non Steroidal Anti-inflammatory Drugs  

Traditional non steroidal anti-inflammatory drugs (tNSAIDs) were usually the first 

line of treatment administered by the physician [74].  There are a number of 

different tNSAIDs, with aspirin and ibuprofen being the better known types.  The 

therapeutic target of tNSAIDs is to reduce inflammation and its associated 

symptoms, but they are unable to reduce RA disease progression [75].  The 

mode of action of tNSAIDs involves inhibition of the cyclooxygenase (COX) 

pathways that are involved in platelet aggregation (COX-1) and inflammation 

(COX -2) [76].  tNSAIDs can irritate the gastric mucosa of the stomach causing 

considerable gastrointestinal (GI) disturbances [77].  COX-1 derived 

prostaglandins can protect the GI tract [77], and their inhibition by NSAIDs  

results in GI disturbances.  To counteract the GI disturbances, specific inhibitors 

of the COX-2 pathway were developed so that inflammation (and associated 
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pain) could still be reduced [78-81].  However, use of COX-2 inhibitors was 

reported to be linked with an increased risk of cardiac events [82].  The increased 

cardiac event risk was attributed to the ‘prostanoid hypotheses’, where inhibition 

of COX-2 (which is anti-thrombotic and promotes vasodilatation in the 

vasculature) would result in elevation of the COX-1 enzyme (which is pro-

thrombotic and causes vasoconstriction) [83].  Crucially, the ‘prostanoid 

hypotheses’ does not account for the fact that tNSAIDs are also associated with 

an increased risk of cardiac events, with the risk being equivalent to that of COX-

2 inhibitors [84,85].  Furthermore, tNSAID inhibit COX-2 to the same extent as 

COX-2 specific inhibitors when administered at standard doses [86].  At present, 

the exact mechanism for the increased risk of cardiac events with both tNSAIDs 

and COX-2 inhibitors has not been elucidated.  The deleterious effects off COX-2 

inhibitors may be more pronounced in conditions which are likely to have high 

inflammatory levels in the vasculature such as RA and CVD, and consequently 

they are not recommended for long-term use in these patients [87].   
 

b) Disease Modifying Anti-Rheumatic Drugs (DMARD) 

As mentioned earlier, NSAIDs are effective in reducing inflammatory symptoms 

but with limited effects on reducing disease progression.  In contrast, DMARD 

therapy greatly reduces, and in some cases completely suppresses disease 

progression [88].  The therapeutic benefit of DMARDs takes longer to occur, and 

so NSAIDs were prescribed first with DMARDs started later.  However, it is now 

known that radiological damage to the joints occurs very early in RA [89], and 

delaying DMARD therapy can result in greater loss of functional ability [90].  

Indeed, physicians are now prescribing DMARDs to treat early RA.  One of the 

limitations of DMARDs is that although there are a number of different types, not 

all are effective in the patients.  Thus, the dilemma for the physician is whether to 

start with combination DMARDs and then reduce one as the disease is 

adequately controlled or to start with one DMARD and progressively add other 

types until the disease is controlled [91,92].  The latter approach may have the 

benefit of limiting side effects of these medications but at the expense of early 
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control of disease activity, whilst the former approach has the opposite effect 

[93,94].  Current guidelines suggest that starting the patient on combination 

DMARD therapy is the way forward to halt disease progression early, but further 

research is still needed [91].  As stated previously there are a number of different 

DMARDs, with methotrexate, sulphasalazine and leflunomide being the most 

commonly prescribed, largely due to their superior benefit to side effect ratios 

over other DMARDs.  The mechanism of action of DMARDs is not clear, but 

methotrexate has been shown to inhibit the production of IL-6, TNF-α and various 

adhesion molecules as well as inducing apoptosis of activated T-cells [95].   

 

c) Biological Drugs 

The recent emergence of biologic therapies has greatly advanced the treatment 

options available to the RA patient.  Currently, the most common type of biologic 

drug being used to treat RA is anti-tumor necrosis factor-α (anti-TNF-α), which 

specifically inhibits the cytokine TNF-α [96].  TNF-α is mainly produced by CD4+ 

T-cells and macrophages in response to infections, however, overproduction can 

lead to deleterious effects [50,97].  It exerts potent pro-inflammatory affects by 

synthesising other pro-inflammatory cytokines such as IL-6, IL-1 and granulocyte 

colony-stimulating factor, as well as synthesizing adhesion molecules which 

attract leucocytes to the endothelium [98].  TNF-α is activated by TNF-α 

converting enzyme (TACE), and then binds to either p55 (also known as TNF-

R1) or p75 (also known as TNF-R20) receptors to mediate its effects [98].  In the 

UK, three types of TNF-α inhibitors are most widely prescribed; adalumimab (fully 

human anti-TNF-α monoclonal antibody which inhibits activity of the TNF-α 

cytokine), etanercept (fusion protein which inhibits TNF-α receptors) and 

infliximab (chimeric anti-TNF-α antibody which also inhibits activity of the TNF-α 

cytokine) [96].  Recently, newer TNF-α inhibitors such as certolizumab pegol 

(recombinant humanised Fab’ fragment which inhibits TNF-α activity) and 

golimumab (human monoclonal antibody which inhibits TNF-α activity) have been 

approved for treating RA.  These agents have a rapid onset of action, reduce 

disease progression, and are able to work in combination with DMARD’s such as 
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methotrexate [99-102].  Due to the large costs of this drug, prescription in the 

United Kingdom is governed by guidelines issued by the National Institute of 

Health and Clinical Excellence (NICE) which state that patients are only eligible 

for anti-TNF-α if they have severe disease and have had an inadequate response 

to at least two DMARDs (one of which must be methotrexate) [103].  Finally, anti-

TNF-α must be administered with caution as there are concerns over its safety 

with reports of malignancies, heart failure and repeated infections in patients on 

these medications [104].  Recently, newer types of biologic drugs have also 

appeared on the market including rituximab (anti-CD20 agent), abatacept 

(selective co-stimulation of T-cells modulator), IL-1 receptor (anakinra), and IL-6 

receptor (tocilizumab), and their effects are currently the subject of intense 

research [55,105-107].   

 

d) Glucocorticoids 

Glucocorticoids are another class of medication which are effective for the control 

of the inflammatory symptoms of RA, as well as for halting disease progression 

[108].  They can have systemic effects in the body when administered orally, 

intramuscularly and intravenously, or they may have local effects when 

administered directly into the joint using intra-articular injections [109].  However, 

glucocorticoids are not without side effects, some of which can be serious.  

Common side effects include osteoporosis, weight gain, muscle weakness, 

alopecia, cataracts and hypertension [110,111].  Interestingly, long-term 

glucocorticoid use does not associate with metabolic syndrome in RA patients, 

indicating that factors other than glucocorticoids, like disease activity, may 

elevate CVD risk in RA [112].  Due to their side-effects, glucocorticoids are 

typically prescribed on a short term basis to curtail a flare during active periods of 

the disease.    

 

Summary 

RA is a chronic inflammatory autoimmune disease which if not adequately 

controlled can lead to disability and a reduction in the quality of life.  The 
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pathogenesis of RA involves a complex interplay of various immune cells which 

initiate inflammation and joint damage directly and indirectly.  Treatment is 

targeted at reducing inflammatory symptoms and preventing radiological damage 

to the bones and cartilage with early treatment related to better prognosis.  RA 

patients are also at greater risk of extra-articular manifestations, with CVD being 

a major determinant of morbidity and mortality in this group.  The mechanisms 

which cause CVD need thorough investigation so that treatment can be targeted 

at effectively reducing CVD risk.  

 

Cardiovascular Risk in Rheumatoid Arthritis 
Data from recent meta-analyses have revealed that RA confers a 50-60% 

increased risk of mortality from CVD when compared to the general population 

[113-115].  Ischemic heart disease, cerebrovascular accidents and congestive 

heart failure appear to make the largest contribution to CVD mortality in RA 

[114,116,117].  Even patients with early RA (disease duration <2 years) appear 

to have increased cardiovascular morbidity [118,119], and there is evidence that 

atherosclerosis may occur before the diagnosis of RA is made [120].  Both 

classical CVD risk factors such as hypertension [121] and novel risk factors such 

as inflammation [122] are believed to accelerate atherosclerosis in RA [123,124] 

and contribute to CVD mortality.  The following section discusses the impact of 

classical CVD risk factors and inflammation in RA patients. 

 

Hypertension 

In the general population the atherogenic potential of hypertension has been 

clearly demonstrated [125], and hypertension also appears to be a strong 

contributor to CVD in RA patients [126,127].  Hypertension is prevalent in 52-

73% of RA patients [128], and in general, RA patients tend to exhibit higher blood 

pressures in comparison to healthy controls [129].  A multitude of inter-related 

factors may be contributing to the high prevalence including physical inactivity, 

which has been shown to strongly associate with the incidence of hypertension 

[130].  RA patients partake in significantly less physical activity than age and sex 
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matched individuals due to the pain, swelling and stiffness of the joints [131].  

The sedentary lifestyle can then result in further complications such as obesity 

[132], which in itself is an independent predictor for hypertension in RA [128].  

There is also strong evidence that inflammation may be a contributory factor for 

hypertension [133], with IL-6 and ICAM-1 being potential mediators of this link 

[134].  Medications used to treat RA may also confer a risk of developing 

hypertension as a systematic review of randomised control trials (RCTs) reported 

that patients on non-selective NSAIDs for at least 4 weeks showed a significant 

increase in systolic blood pressure (SBP) and diastolic blood pressure (DBP) 

when compared to baseline values [135].  Similarly, patients on selective COX-2  

inhibitors have higher relative risk of developing hypertension when compared 

with patients receiving non-selective NSAID’s albeit non-significantly [136].  

Some DMARDs may also contribute to hypertension in RA, as leflunomide may 

increase SBP and DBP [137], possibly due to increased sympathetic drive [138].  

Furthermore, ciclosporin use may also cause hypertension [139,140], as it can 

decrease vasodilatory molecules such as nitric oxide and prostacyclin, and 

increase vasoconstrictor molecules such as endothelin-1 [141].  In addition, 

ciclosporin increases sodium retention and vasoconstriction in the renal 

circulation leading to a reduction in glomerular filtration rate [141]. 

 

Dyslipidaemia 

Dyslipidaemia is a strong predictor for CVD in the general population as well as 

in patients with RA [142].  Abnormal lipid patterns consist of high levels of low-

density lipoprotein (LDL) and triglycerides (TG), and low levels of high-density 

lipoprotein (HDL) [143].  The prevalence of dyslipidaemia in RA varies between 

studies because of differences in population characteristics.  For example, the 

prevalence of dyslipidaemia is 55% in patients with a variety of inflammatory 

arthritis [144], 68% in a sample of male RA patients [145], and 51% in a series of 

400 patients from the Dudley Rheumatoid Arthritis Comorbidity Cohort 

(DRACCO) [146], when using United States National Cholesterol Education 

Program guidelines [147].  Adverse lipid profiles are evident in early [148] and 
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advanced RA [149], and it is thought that dyslipidaemia may precede the 

development of RA [150].  Similarly to hypertension, physical inactivity appears 

to have a major effect in altering the lipid profile, as patients undergoing exercise 

training programs often see large improvement in their lipid profile [151].  

Exercise specifically increases levels of HDL cholesterol as well as decreasing 

TG levels and the total cholesterol:HDL ratio [152,153].  Inflammation too has an 

effect on altering the lipid profile of RA patients [123].  IL-6 and TNF-α increase 

free fatty acid release from adipose tissue and the liver which results in increased 

levels of TG [154].  In addition, the activity of lipoprotein lipase which is a 

catabolic enzyme responsible for the breakdown of triglycerides is downregulated 

by these cytokines (104).  RA medications might also affect the lipid profile of RA 

patients.  In one study patients were randomised to receive sulphasalazine or a 

combination of methotrexate, sulphasalazine and tapered doses of prednisolone 

(starting with 60 mg/day then tapered in 6 weekly steps to 7.5 mg/day and 

stopped completely after 28 weeks).  The findings revealed that total cholesterol 

(TC) and HDL levels increased along with a reduction in the TC:HDL ratio in the 

group receiving the combination therapy [155].  Interestingly, improvements in 

the lipid profile were not observed after prednisolone was completely stopped 

(after 28 weeks) suggesting that glucocorticoid use may have more specific 

effects on lipids than all 3 treatments combined [155].  The favourable effect of 

glucocorticoids appears to be driven by increased HDL-C probably as a result of 

reduced disease-activity [149,155].  Despite the small effect of methotrexate and 

sulphaslazine on lipids mentioned in the above study, some specific DMARD’s 

may exhibit beneficial effects on lipids profiles in RA, in particular 

hydroxychloroquine [156,157].  Hydroxychloroquine improves lipid profile via 

inhibition of very low density lipoprotein secretion from the liver [158] and 

inhibition of cholesterol synthesis [159].  On the other hand, DMARD’s such a 

ciclosporin may have a negative impact on lipids.  Studies in transplant patients 

(for which ciclosporine was originally indicated) reveal increased TG levels and 

reduced HDL levels after ciclosporin administration [160].  There is no available 

evidence on the effect of ciclosporin on lipids in RA and consequently further 
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research is needed.  Newer biologic agents such as anti-TNF-α also appear to 

have a favourable impact on lipids in RA, as a systematic review of the literature 

revealed that, overall, TC and HDL-C were increased after treatment with anti-

TNF-α agents [142].  However, anti-TNF-α has also been linked with increased 

TG levels [161-163], so studies showing favourable lipid profiles after treatment 

need to be interpreted with caution.  

 

Insulin Resistance 

Insulin resistance (IR) occurs as a consequence of abnormal production of 

insulin which leads to increased release of stored TG in fat cells, decreased 

uptake of glucose in skeletal muscle, and overproduction of glucose in the liver 

[123].  Collectively, these changes promote a high-glucose state which may then 

predispose the patient to type II diabetes and CVD [164].  The prevalence of IR 

in RA is not yet known [165].  However, impaired glucose levels have been found 

in RA patients with active disease [166] and high disease activity associates with 

IR [167].  This suggests that patients with the greatest disease activity are at a 

greater risk of developing insulin resistance.  Indeed, inflammatory cytokines are 

involved in the process that leads to IR.  For example, TNF-α causes a reduced 

uptake of glucose in the skeletal muscle [168], and blockade of TNF-α can result 

in large improvements in IR [169,170].  Controlling inflammation with DMARDs 

such as hydroxycholoroquine has been reported to reduce IR and fasting glucose 

levels through currently undetermined mechanisms [171].  However, long-term 

glucocorticoid use may contribute to the development of insulin resistance in RA 

[172], by decreasing skeletal muscle tissue [169].  Due to the limited amount of 

literature on IR in RA, there is a clear need for longitudinal studies which assess 

the extent of IR in RA and the contribution it makes to CVD risk.   

 

Obesity 

Obesity is a low-grade inflammatory condition characterised by a body mass 

index (BMI) greater than 30kg/m2 [173] and is a major risk factor for CVD [174].  

It is also implicated in the underlying causes of other CVD risk factors such as 
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hypertension, dyslipidaemia, and insulin resistance [175] and significantly 

contributes to atherosclerosis [176].  The chronic inflammation in RA can induce 

metabolic abnormalities [177], resulting in a loss of fat free mass [62], which 

coupled with a sedentary lifestyle, leads to accumulation of body fat while weight 

remains stable [178].  Adipocytes (fat cells underneath the skin) can secrete a 

variety of pro-inflammatory molecules known as adipokines [179].  Increased 

adiposity increases production of pro-inflammatory molecules, with low adiposity 

having an opposite effect [179].  In particular, adipocytes produce IL-6 [180,181], 

which in turn increases production of C-reactive protein (CRP) [182], and may 

therefore contribute to RA disease-related inflammation.  Interestingly, obesity 

may be a risk factor for the development of RA [183,184], although this view has 

recently been challenged [185-187].  Obese RA patients with long disease 

duration (mean disease duration > 10 years) have higher disease activity and 

functional disability than normal weight patients, and this is perhaps due to the 

additional inflammatory load which is afforded by obesity [188].  Furthermore, 

obesity has been reported to contribute to the increased 10-year CVD risk 

probability [119], and associates with a number of other classical CVD risk 

factors [128,189].  Obesity may also affect the expression of pro-inflammatory 

genes that associate with CVD in RA [190].  Therefore, the impact of obesity on 

RA disease activity and CVD risk must be monitored carefully in these patients.  

Some medications used to treat RA, such as glucocorticoids, can contribute to 

the development of obesity [191].  In particular, glucocorticoids can redistribute 

fat so that there is greater central adiposity (relative to extremities) [192]. 

 

Inflammation 
Atherosclerosis is an inflammatory condition, with high inflammatory level 

implicated for developing CVD [193].  Inflammatory markers such as IL-6, CRP 

and fibrinogen are associated with a high frequency of cardiovascular events 

[194-196].  In particular, CRP has received large attention due to its ability to 

independently predict cardiovascular events in the general population [197], 

which may in part, be due to its ability to directly contribute to the onset of CVD 



36 
 

[198].  In RA patients, inflammatory markers such as the CRP and ESR  are 

elevated, and remain greater even in periods of low disease activity when 

compared to the general population [123].  In patients with inflammatory arthritis 

who were followed up for 10 years, CRP levels independently predicted CVD 

mortality [199].  The similarities between the inflammatory process of RA and 

atherosclerosis are remarkable.  In both diseases, concentrations of IL-6 , CRP 

and TNF-α are elevated, and both have similar patterns of activation for T-cells 

and macrophages [122,200].   

 

Inflammation in Atherosclerosis   
The endothelium is the innermost layer of the blood vessels and consists of 

highly specialised cells responsible for vascular homeostasis and 

atheroprotection [201].  When the endothelium is exposed to injurious stimuli, the 

endothelial cells become dysfunctional – a process called endothelial dysfunction 

(ED) [202] (Figure 2).  ED occurs in the initial stages of atherosclerosis and is 

characterised by increased vascular permeability.  This allows transmigration of 

monocytes, lipids and T-cells into the vascular wall which is aided by adhesion 

molecules such as ICAM-1 and E-selectin.  Differentiation of monocytes into 

macrophages helps retain LDL in the subendothelial space, which then forms 

into oxidised LDL.  At this point, monocytes transform into macrophages and 

scavenge the oxidised LDL leading to formation of foam cells, which can be seen 

on the vascular wall as fatty streaks (See Figure 2) [203].  
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Figure 2.  Progression of atherosclerosis in a coronary vessel. 

 

Once foam cells are formed they produce pro-inflammatory cytokines and 

mediators such as IL-6, CRP and TNF-α.  These inflammatory cells subsequently 

recruit further T-cells and macrophages which activate pro-inflammatory 

cytokines and contribute to continuously elevated inflammation in the vascular 

wall [204].  The next stage of atherosclerosis involves the migration of vascular 

smooth muscle cells (VSMC) towards the intima.  The VSMC secrete large 

amounts of collagen which expands the extracellular matrix and forms a tough 

fibrous plaque containing a lipid rich core.  This process occurs in the 

intermediate stage of plaque formation [203,205].   

 

CRP released by foam cells causes destabilisation of the atheromatous 

plaque in the later stages of atherosclerosis by upregulation of matrix 

metalloproteinases resulting in the fibrous cap over the plaque to erode [206].  

Erosion of the plaque results in increased platelet activity and leads to thrombus 

formation on the plaque [207].  This is largely mediated by the increased 

expression of tissue plasminogen activator inhibitor-1 which inhibits thrombolysis  
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[208].  As thrombosis increases, the plaque eventually progresses to an 

advanced stage and begins to intrude into the lumen causing stenosis and 

symptoms of myocardial ischemia [209].  Should the plaque rupture the thrombus 

could lead to complete occlusion of the vessels – a process which results in 

acute coronary syndromes [205]. 

 

Tumor Necrosis Factor-α 

The concentration of TNF-α is markedly raised in RA [46] and TNF-α contributes 

significantly to the atherosclerotic process [210].  Specifically, TNF-α is 

responsible for the upregulation of vascular cell adhesion molecule-1 [211], 

which plays a well established role in atherosclerosis [212].  Further, it precedes 

the development of thickened intima by allowing formation of the fatty streak 

[213].  In RA patients, TNF-α enhances pro-thrombotic states such as 

dyslipidaemia [214], and recent evidence also reveals that TNF-α is involved in 

the more advanced processes of atherosclerosis, specific to formation of an 

advanced lesion, via the inhibition of endothelial progenitor cells which are 

involved in repairing endothelial injury [215].  In RA patients, endothelial 

progenitor cell numbers are decreased compared to the normal population, a 

phenomenon which reverses after TNF-α blockade [216].  Despite the evidence 

of TNF-α role in atherosclerosis, a number of large studies have failed to find a 

link between ant-TNF-α and decreased CVD risk.  For example, analysis of the 

British Society of Rheumatology Biologics Register revealed that the occurrence 

of myocardial infarction did not differ between patients receiving anti-TNF-α and 

those that were anti-TNF-α naïve [217].  However, patients who showed a good 

clinical response after six months of anti-TNF-α treatment had a lower risk of 

myocardial infarction than patients who did not respond [217].  Another study 

revealed that biologic agents confer neither a higher or lower risk of developing a 

cardiac event when compared to patients receiving methotrexate only [218].  

These findings suggest that it may be an overall reduction in disease-related 

inflammation that confers a cardioprotective effect rather than any specific effect 

of anti-TNF-α.     



39 
 

Summary 

It is clear that CVD risk factors are highly prevalent in RA patients and result in a 

significant health burden.  Interestingly, RA patients who are rheumatoid factor 

positive have twice the risk of mortality from CVD than the general population 

[54], suggesting that a complex interplay exists between inflammation and CVD 

in RA [219].  Of importance is the finding that once traditional CVD risk factors 

are statistically controlled, an elevated risk of CVD still appears to remain and 

can be attributed to high levels of inflammation [220] 
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Chapter 1 (Part II): Physiology of the Endothelium 
 
Introduction 
Once considered as a simple barrier between the blood and vessel wall, the 

endothelium is now regarded as a dynamic organ which lines the entire vascular 

system [201].  The endothelium controls vascular function by responding to 

various hormones, neurotransmitters and vasoactive factors which affect 

vasomotion, thrombosis, platelet aggregation and inflammation [201].  The 

balanced production of these vasoactive factors is atheroprotective, whereas a 

damaged endothelium causes disrupted production of these factors.  The 

ensuing imbalance leads to endothelial dysfunction (ED), which is an early 

indicator of atherosclerosis [202].  Endothelial cells are located on the intima of 

all vessels (described in detail below), but display different structures and 

phenotypes depending on vessel type [221].  Endothelial cells in arteries and 

veins appear more continuous and thicker than those in capillaries which are 

fenestrated and thinner to allow for exchange of metabolites and gases [222].  In 

addition, endothelial cells can display heterogeneous responses to stimulation in 

different vascular beds, and even in different sections of the same vascular bed 

[223-225].  This suggests that ED may occur in selective vascular beds too [225]. 

 

Anatomy and Physiology of the Blood Vessels 
The blood vessels provide the main link between the heart and the tissues.  The 

vascular wall is made up of three layers; the intima (inner layer), the tunica 

medica (middle layer) and the tunica externa (outer layer) (see Figure 3).  The 

intima consists of endothelial cells which regulate the function of the vessel by 

continuously responding to stimuli and releasing different vasoactive factors 

accordingly.  The tunica media is a thick vascular layer consisting of smooth 

muscle cells, collagen and elastic tissue, which carry out functional tasks of the 

vessels such as vasodilatation, but also gives the vessel structural integrity.  The 

tunica externa comprises of loose connective tissue that anchors the vessel to 

surrounding organs (Levick, 2003).  The blood vessels are divided depending on 
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function, location and size into arteries, capillaries and veins.  A brief description 

of each is provided below.  

 
  Figure 3.  A cross-sectional view of an artery and vein 

 

 

Arteries 
The main function of the arteries is to supply the organs with blood.  Given the 

high pulse pressure in the arteries their walls are thicker than in other vessels.  

Arteries can be divided into conducting arteries, conduit arteries and resistance 

arteries based on their position in the arterial tree.  

 

Conducting (elastic) arteries 

These are the largest arteries in the body such as the aorta, pulmonary artery 

and carotid artery which branch from the heart.  Their walls contain a large 

amount of elastic tissue which allows the vessel to expand and recoil to dampen 

out the oscillatory changes in blood pressure as a result of intermittent ventricular 

contractions.  This ensures smooth bloodflow through the vessel which is 

distributed towards specific organs [226].  
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Conduit (muscular) arteries   

The conduit arteries are medium to small arteries which branch from conducting 

arteries to supply blood to a specific area of the body; examples are the brachial, 

radial and femoral arteries.  Conduit arteries contain more smooth muscle than 

conducting arteries which enables them to regulate bloodflow by varying the 

diameter of the artery in response to different stimuli such as mechanical forces 

on the vascular wall (i.e. shear stress which is the dragging, frictional force 

exerted on the vessel wall by laminar bloodflow) or sympathetic nervous system 

activation [227].  

 

Resistance arteries (arterioles)  

The conduit arteries divide into resistance arteries, the arterioles.  These are the 

smallest vessels of the arterial system and form part of the microcirculation.  

Resistance arteries are responsible for adequately perfusing the organ tissue 

with blood.  Arterioles also help in slowing the blood flow to prevent damage to 

the adjacent capillaries.  They consist mainly of smooth muscle cells which are 

highly innervated by sympathetic nerves, allowing the arterioles to regulate 

bloodflow to the tissue by dilating or constricting in response to sympathetic 

(de)activation [222].  Another stimulus that can cause dilation of arterioles is 

shear stress [228].      

 

Capillaries 

Capillaries are present in large numbers in nearly all tissues of the body, and like 

the arterioles are part of the microcirculation [222].  The passage of blood into 

the capillaries is controlled by pre-capillary sphincters which contain smooth 

muscle that allows them to contract or dilate (Figure 4).  The opening of the 

sphincters depends on metabolic demand so not all capillaries contain blood 

continuously [229].  The main function of the capillaries is to enhance the 

diffusion of gases, metabolites and nutrients between the blood and the tissue.  

This is achieved by thin capillary walls which consist of a single layer of 

endothelial cells, thus, shortening the diffusion pathway between the blood and 



43 
 

tissue fluid.  Efficiency of diffusion is further enhanced by the slow bloodflow 

which helps to increase the time available for diffusion [230].   

 

 
Figure 4.  The human capillary network 

 

Veins 
The main function of the venous system is to return the blood to the heart.  The 

capillaries flow into the venules, which are the microvessels of the venous 

system.  Additional exchange of gases and metabolites occurs here as the 

venules have single layered walls, like the adjoining capillaries.  The venules 

feed into the peripheral veins and then into the superior and inferior vena cavae, 

which are connected to the heart.  In general, veins that are in close proximity to 

the heart have larger diameters.  Given the lower blood pressure in the venous 

system compared to the arterial system, the vessel walls of veins are thinner and 

more compliant than arterial walls.  This means that veins can accommodate 

large volumes of blood with only small increases in pressure.  Mechanisms such 

as the skeletal muscle pump and respiratory pump as well as sympathetic 

nervous activation enable veins to return blood back to the heart.  In addition, 
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veins contain valves to prevent backflow of blood while smooth muscle cells in 

the vascular wall allow veins to constrict and increase the blood pressure, both of 

which increase venous return (Figure 3) [229].    

 

Regulation of Vascular Tone 
The endothelium releases various vasoactive factors.  These can be vasodilative 

such as nitric oxide (NO), prostacyclin (PGI2) and endothelium derived 

hyperpolarizing factor (EDHF) or vasoconstrictive such as thromboxane (TXA2) 

and endothelin-1 (ET-1).  These substances are discussed below. 

 

Nitric Oxide 

Nitric oxide (NO) is an endothelium-dependent vasodilator of the underlying 

smooth muscle and was first identified by Furchgott and Zawadzki [231].  NO has 

been shown to play an important role in the maintenance of basal vasodilator 

tone of the blood vessels [232].  NO is formed under the influence of the enzyme 

nitric oxide synthase (NOS), which converts the amino acid L-arginine to NO 

[233].  Three isoforms of NOS exist: neuronal isoform (nNOS) which produces 

NO to act as a neuronal messenger that regulates synaptic neurotransmitter 

release [234], macrophage or inducible isoform (iNOS) which is only expressed 

in cells that have been exposed to inflammatory mediators or other injurious 

stimuli that activate the macrophages [235], and endothelial NOS (eNOS) which 

produces nitric oxide in the vasculature [236].  The isoforms are classified by the 

cells they were originally found in, although, it is now known that expression of 

these isoforms also occurs in other cells, such as cardiac myocytes [237], 

skeletal muscle, blood platelets and the hippocampus [238].  Considering that the 

ability of a blood vessel to dilate is largely dependent upon the activity of eNOS, 

the present discussion will focus on this isoform.   

Inactive eNOS is bound to the protein caveolin and is located in small 

invaginations in the cell membrane called caveolae [239].  When intracellular 

levels of  Ca2+ increase, eNOS detaches from caveolin and is activated [239].  

NO agonists can influence the detachment of eNOS from caveolin by releasing 
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Ca2+ from the endoplasmic reticulum (Figure 2) [240].  Examples of such NO 

agonists include bradykinin (BK), acetylcholine (ACh), adenosine tri-phosphate 

(ATP), adenosine di-phosphate (ADP), substance P and thrombin [241].  Once 

intracellular Ca2+ stores are depleted a signal (thus far unidentified) is sent to the 

membrane receptors to open Ca2+ channels allowing extracellular Ca2+ into the 

cell [242-244].  This process of Ca2+ regulation is known as store-operated Ca2+ 

entry or capacitative Ca2+ entry [245].  Ca2+ attaches to the protein calmodulin in 

the cytoplasm of the cell, after which it undergoes structural changes which 

allows it to bind to eNOS [246].  eNOS then converts L-arginine into NO [233].  

This pathway of NO production is represented in Figure 5 below.  It is important 

to highlight that this mechanism of NO production is dependent on the levels of 

intracellular Ca2+ in the endoplasmic reticulum as well as Ca2+ which diffuses into 

the cell from extracellular stores.  A reduction in Ca2+ causes the calcium-

calmodulin complex to dissociate from eNOS, which in turn binds with caveolin 

and becomes inactivated [246].   

 

   The short term increase in NO is dependent on the intracellular Ca2+ but 

once this decreases additional mechanisms are activated to regulate NO 

production.  One such mechanism is the phosphorylation of eNOS [247].  

Phosphorylation of eNOS occurs via protein kinases [235], such as protein 

kinase A [240] and cyclic guanosine-3’, 5-monophosphate (cGMP) protein kinase 

dependent II [247].  Shear stress initiates eNOS phosphorylation by the actions 

of protein kinase B (Akt) [248].   

 

Shear stress results from increased bloodflow in the vessel and can 

increase NO production by eNOS phosphorylation but also through stimulating 

endothelial cell receptors [249] by allowing the transfer of blood-borne agonists to 

attach to endothelial cell receptors and increase intracellular Ca2+ [250].  In 

particular, shear stress activates specialised Ca2+-activated K+ channels on the 

endothelial cell surface, causing K+ efflux and Ca2+ influx into the cell [251] 

(Figure 5).  The contribution of Ca2+ and eNOS phosphorylation to NO production 
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is dependent on the duration of the shear stress.  For example, intracellular Ca2+ 

release is dependent on shear stress of short durations [252], whereas shear 

stress of longer durations (>30 minutes) can deplete intracellular Ca2+ stores, and 

so NO production is dependent on eNOS phosphorylation [253].   

 

 
                                                                                                                                                             
Figure 5.  Endothelial nitric oxide production and it actions in the vascular smooth 

muscle cell.  ACh= acetylcholine; BK= bradykinin; ATP= adenosine triphosphate; ADP= 

adenosine diphosphate; SP= substance P; SOCa2+= store-operated Ca2+ channel; ER= 

endoplasmic reticulum; NO= nitric oxide; sGC= soluble guanylyl cyclase; cGMP= cyclic 

guanosine-3’, 5-monophosphate; MLCK= myosin light chain kinase.  *When Ca2+ stores 

of the endoplasmic reticulum are depleted a signal is sent to SOCa2+ channel which 

allows extracellular Ca2+ into the endothelial cell.  

 

Once synthesized, NO diffuses across the endothelial cell into the 

adjacent smooth muscle [254] (Figure 5), where it binds to the enzyme soluble 

guanylyl cyclase (sGC) [254].  The now activated enzyme increases the 
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conversion rate of guanosine triphosphate (GTP) to cGMP [255], which 

decreases smooth muscle tension [256].  Further, cGMP reduces Ca2+ release 

from the sarcoplasmic reticulum in the smooth muscle cell [257], and also helps 

to restore Ca2+ to the sarcoplasmic reticulum [258].  Both actions reduce the 

contraction of smooth muscle cells. 

     

The mechanisms described above are continuously active and produce 

NO to maintain basal vasodilator tone [259].  By inhibiting NO activity using NG 

monomethyl-L-arginine (L-NMMA), a dose dependent increase in blood pressure 

was found due to the vessels constricting [260,261].  The constriction was 

reversed when NO was administered [260,262], highlighting the importance of 

NO release in maintaining resting vasodilator tone.  However, the vessel is also 

capable of dilating in the absence of NO.  After removal of or damage to the 

endothelium, administration of glyceryl trinitrate (GTN) can still result in 

vasodilatation [232].   

 

The mechanism by which GTN causes vasodilatation is not clear.  Several 

researchers have suggested that GTN undergoes bioconversion to NO [232,263-

265], but not all agree, as GTN has been found to cause vasodilatation without 

increasing NO [266-270].  Further, the breakdown products of GTN have been 

shown to activate sGC [271,272].  It is worth noting that other vasoactive agents 

such as calcium ionophore A23187 and isosorbide-dinitrate induce 

vasorelaxation without an increase in NO concentration [241].  Therefore, NO 

does not seem to be the only agent that can activate the sGC-cGMP pathway.  

Further research is needed to identify the precise mechanism of the agents, in 

particular, more research is needed in vivo due to the differences in response 

between intact or a denuded endothelium [201].  

     

Aside from vasodilatation, NO is also involved in preventing platelet and 

leukocyte activation and adhesion to the vessel wall [273-276].  When the 

endothelium is damaged, the subsequent inflammation causes an increase in 
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leucocytes at the damaged site [277].  Inflammatory mediators such as TNF-α, 

interleukin-1 (IL-1) and chemokines stimulate the release of iNOS [278], which 

prevents leucocytes from adhering to the endothelium and reduces inflammatory 

mediators [279], as well as down-regulating and reducing the expression of 

adhesion molecules [276]. 

 

Prostacyclin and Thromboxane A2 

The synergistic actions of two prostanoids, prostacyclin (PGI2) and thromboxane 

(TXA2) also regulate vascular function [83].  Their production is catalysed by 

cyclooxygenase (COX) enzymes, of which there are two isoforms COX-1 and 

COX-2 [280].  COX-1 is expressed continuously in endothelial cells, whereas 

COX-2 is only expressed when the endothelium is damaged and exposed to 

inflammatory cytokines [281-283].  

     

COX-2 converts arachidonic acid to prostaglandin H2 (PGH2), which is 

then synthesised into PGI2 by prostacyclin synthase [284].  PGI2 binds to the 

prostacyclin receptors (IP) [285], which are located on both platelets and 

vascular smooth muscle cells [286].  Activation of platelet IP receptors leads to 

inhibition of platelet aggregation [287-289].  PGI2 binding to the smooth muscle 

cell IP receptor activates adenylate cyclase which induces the synthesis of cyclic 

adenosine monophosphate (cAMP) [290].  cAMP then activates protein kinase A 

[289], which allows relaxation of the smooth muscle in the same way as it does 

for NO [291,292].  It is worth noting that in the presence of NO, blocking PGI2 

production has no effect on vasodilatation [293,294].  However, when NO is 

blocked, the residual dilation is due to increased PGI2 synthesis [295,296], 

suggesting that PGI2 plays a compensatory role in dilation of the vessel when NO 

is reduced. 

     

 In contrast to PGI2, TxA2 causes platelet aggregation and vasoconstriction 

[297,298].  COX-1 converts arachidonic acid to PGH2, after which TxA2 is 

synthesised by thromboxane synthase [83,299].  TxA2 mediates its effects by its 
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actions on thromboxane-prostanoid (TP) receptors which are located on platelets 

and their activation causes platelet aggregation [281,300].  The TP receptor is 

also found on smooth muscle cells, and activate phospholipase C [301].  This 

allows an increase in intracellular Ca2+ levels in the smooth muscle, leading to 

vasoconstriction [302]. 

 

     The balance in the activity of PGI2 and TxA2 helps to maintain 

homeostasis in the healthy vessel.  The importance of this balance becomes 

evident when using selective COX-2 inhibitors to reduce inflammation, which 

decreases the production of PGI2 without affecting the production of TXA2 [303].  

However, administration of COX-2 inhibitors to patients with established CVD 

who are already receiving aspirin has been reported to improve endothelial 

function [304], although the authors of this study suggested that the improvement 

in endothelial function may have been due to the affects of aspirin on reducing 

platelet aggregation [304].  Further research is necessary to establish 

mechanisms by which COX-2 inhibitors may or may not increase CVD risk.    

 

Endothelin-1 

Endothelin (ET) is a vasoconstrictor which is expressed in the body in three 

isoforms, ET-1, ET-2, and ET-3 [305].  Endothelial cells only release ET-1 [306], 

thus the present discussion will focus only on this isoform.  ET-1 is produced by 

converting Big ET-1 to ET-1 by endothelin converting enzyme [307].  Regulation 

of ET-1 production as well as its release is stimulated by inflammatory cells such 

as interleukins and TNF-α and decreased by NO and PGI2 [305].  Shear stress 

causes a decrease in ET-1 expression, after initially promoting it (for review see 

Kedzierski & Yanagisawa [308]).  ET-1 receptors have been identified both on 

smooth muscle cells (ETA and ET-B2) and endothelial cells (ET-B1) [309,310].  

The distribution of the different ET-1 receptors is dependent on the type of 

vascular bed, as veins show a reduced ETA:ETB receptor ratio compared with 

arteries [308].  When ET-1 binds to ETA or ET-B2 receptors, smooth muscle Ca2+ 

channels open allowing extracellular Ca2+ into the cell.  This causes 
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vasoconstriction in a similar way as TxA2.  Activation of ET-B1 receptors on the 

endothelium causes vasodilatation by inducing the release of NO and PGI2 [311-

314].  In ED, ET-B1 receptors on the endothelial cells are downregulated, while 

ET-B2 receptors on smooth muscle cells are upregulated, thus enhancing 

vasoconstriction [315,316].   

      

The effect of each receptor on the vasculature has been explored in 

patients with heart disease and in healthy participants.  Selectively blocking ETA 

receptors in participants with ED reliably leads to vasodilatation [316-320].  

However, blocking both ETA and ETB receptors in participants with ED results in 

greater vasodilatation than blocking ETA receptors only [316].  This finding 

suggests that the upregulation of smooth muscle ETB receptors has an additive 

effect on vasoconstriction in individuals with ED [315,316].  In healthy 

participants blocking ETB receptors leads to vasoconstriction [313,316,320,321], 

therefore, ETB receptors located on the endothelium predominantly regulate 

endothelial function in this group.   

         

Apart from its vasoactive effects, ET-1 also causes inflammation and 

smooth muscle cell proliferation in the vessel.  Binding of ET-1 to ETA receptors 

activates macrophages, increases neutrophil-vessel wall interactions, and 

elevates free radical concentrations, all of which lead to ED [322].  ET-1 causes 

smooth muscle cell proliferation by binding to ET receptors [323,324] or 

activating other growth factors such as platelet-derived growth factor [325].  This 

results in an increase in the intima-media thickness of the vessel wall [326,327], 

which can be reduced by blocking ET-1 receptors [328].  In addition, inhibition of 

ETA receptors in diseased vessels can reduce atherosclerosis, which again 

suggests that ETA receptors are active during ED [329].   

                                                                                                                                                  

Endothelium-derived Hyperpolarising Factor 

Endothelium-derived hyperpolarising factor (EDHF) is a yet unidentified 

vasodilator substance which hyperpolarises the underlying smooth muscle by 
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making the membrane potential of the cell more negative [330-332].  EDHF is 

released when endothelial cells are activated by agonists such as BK and ACh 

[333].  NO and PGI2 can also dilate the vessel by hyperpolarising the smooth 

muscle cells, albeit for a short period before the mechanisms discussed above 

take over [334].  However, when NO and PGI2 are inhibited hyperpolarisation still 

occurs, suggesting the involvement of a third hyperpolarising factor 

[331,335,336].  A number of pathways have been implicated in causing the 

hyperpolarisation.  Although the exact pathway is still unknown, attention so far 

has been paid to three factors in particular.  

    

Activation of endothelial receptors and the subsequent increase in Ca2+ 

levels causes K+ efflux from the cell [337-339].  The smooth muscle cell responds 

to changes in the extracellular K+ levels and also releases K+ out of the smooth 

muscle cell causing hyperpolarisation [340,341].  The change in the membrane 

potential of the smooth muscle cell reduces intracellular Ca2+ levels, resulting in 

relaxation [339].    

      

Epoxyeicosatrienoic acids (EET) are products of arachidonic acid 

metabolism [342].  Although synthesised in the endothelial cell, they act by 

increasing K+ efflux from the smooth muscle cells resulting in hyperpolarisation 

and relaxation [343,344].  However, in vessels where EET activity is inhibited, 

hyperpolarisation still occurs [345], suggesting that other mechanisms must be 

involved in hyperpolarising the smooth muscle cells. 

     

Gap junctions are intercellular channels which can transfer signals from 

the endothelial cells to the smooth muscle cells [346,347].  In particular, gap 

junctions may transfer K+ ions from the smooth muscle cells into the endothelial 

cell [348].  However, since most studies have only transferred artificial dye 

between the two cells it is difficult to establish exactly what is transferred under 

normal conditions [347,349,350]. 
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Techniques to Assess Endothelial Function  
Endothelial function is most commonly assessed in the peripheral circulation as 

direct assessment of endothelial function in the coronary arteries is highly 

invasive and associated with considerable risk for the participant.  Several 

studies have reported close correlations between peripheral and coronary 

endothelial function [351-353].  In addition, assessments of endothelial function 

are good predictors of future cardiac events in individuals at risk of CVD and 

those with established CVD [354-358], and ED is common in individuals with 

CVD risk factors [359].  Most assessments of endothelial function involve the 

measurement of dilation in response to a stimulus, with impaired vasodilatation 

indicative of poor endothelial function.  However, impaired vasodilatation can be 

the result of either the endothelium not sending the signals to the smooth muscle 

or of the smooth muscle cells not being able to respond to the signal and dilate.  

Therefore, in order to distinguish between ED and smooth muscle dysfunction, 

endothelium-dependent and endothelium-independent vasodilatation are typically 

assessed.  Techniques that assess endothelial function in different vascular beds 

is shown in Figure 6 (presented on page 54) and described in more detail below.    

 
Assessment of Microvascular Endothelial Function 

 

Iontophoresis 

The assessment of NO bioavailability in the microvasculature is conducted using 

iontophoresis [360].  Iontophoresis uses a small electrical current to pass 

negatively and positively charged vasoactive agents through the skin into the 

resistance vessels on the basis that like charges repel each other [361].  The 

amount of the agent that is delivered to the vessel depends on the density and 

duration of the current.  The two most common agents used to test endothelial 

function are ACh and SNP [362].  The assessment is usually carried out in the 

forearm.  Laser Doppler techniques are used to assess the perfusion in response 

to iontophoresis.  Laser Doppler flowmetry (LDF) assesses perfusion of the 

vessel over a single point on the forearm [363].  Perfusion can also be assessed 
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by Laser Doppler imaging (LDI) which uses the same principles as LDF, but 

rather than scanning one point, a whole area of the forearm can be assessed 

[364] .   

  

     The ACh and SNP are administered in small chambers which are attached 

to the volar aspect of the forearm by watertight adhesive pads.  The anodal 

chamber contains ACh, while SNP is present in the cathodal chamber.  Both 

chambers are connected to an iontophoresis controller which delivers the current 

[363].  The vasoactive agents can be dissolved in fluid known as vehicles, e.g. 

deionised water or saline.  However, these vehicles can also increase skin 

perfusion [362,365-367].  It has been suggested that use of a lower current 

density reduces the vasodilatory effects of the vehicles, but drug administration is 

also reduced [368].  However, a higher current density can be used with 0.5% 

sodium chloride (NaCl), as it does not elicit a vasodilatory response at this 

concentration [367].  External factors such as time of day, and menstrual cycle 

can affect microvascular bloodflow [369,370].  Therefore, it is advisable to follow 

established guidelines when administering this test [371].  

 

Forearm Blood Flow and Venous Occlusion Plethysmography 

Endothelial function of the forearm resistance vessels can be assessed using 

venous occlusion plethysmography (VOP) [372].  This assessment stops venous 

return from the forearm, while allowing arterial inflow; blood can enter the 

forearm but cannot escape resulting in a linear increase in forearm volume with 

time which is proportional to the incoming arterial blood flow [372].  The halt in 

venous return is achieved by inflating a blood pressure cuff placed around the 

forearm to below the diastolic blood pressure (typically 40mmHg) for 10 seconds, 

followed by 5 seconds of cuff deflation.  The hand is excluded from the 

measurement by inflating a blood pressure cuff which is placed around the wrist 

to suprasystolic pressures.  This reduces the variation in blood volume due to a 

high proportion of skin blood vessels susceptible to temperature variations.  VOP 

can be assessed using automated equipment which can precisely control the 
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time for cuff inflation and deflation.  The increase in forearm volume is assessed 

by mercury in rubber strain-gauge plethysmograph placed around the widest part 

of forearm.  An increase in the length of the strain-gauge is detected by a change 

in electrical resistance and represents an increase in forearm blood flow (FBF).  

It is also important to assess FBF in the contra-lateral arm so that time-

dependent changes in basal blood flow due to arterial pressure fluctuations can 

be accounted for [372].  The FBF response can also be assessed in response to 

Intra-brachial infusion of various vasoactive agonists (ACh, substance P, 

bradykinin) or antagonists (L-NMMA, indomethacin) [373].   

 

Figure 6. An overview of the assessments for endothelial function and vascular morphology 

performed in different vascular beds. ACh = Acetylcholine, SNP = Sodium nitroprusside.      

       =Functional assessments         = Morphological assessments    

 

Nailfold capillaroscopy 

Nailfold capillaroscopy is a technique to assess capillary morphology [374].  The 

technique involves the application of immersion oil to the nailfold epidermis of all 
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ten fingers.  The nailfold is then placed under a microscope and abnormalities in 

the capillaries are characterised according to their size, number and 

morphological characteristics.  Capillaroscopic abnormalities can be classified 

into three stages (early, active and late).  The earliest change to capillary 

morphology is an enlargement in their size.  A reduction in capillary number and 

structural impairments are seen in the active and later stages of microangiopathy 

[374,375]. 

 

Assessments of Macrovascular Endothelial Function 
 

Flow-Mediated Dilatation 

Flow-mediated dilatation (FMD) is a technique that increases blood flow through 

an artery to cause vasodilatation on the principal that the increased bloodflow 

produces shear forces on the endothelium and subsequently stimulates 

endothelial cells to release NO [248].  As indicated previously, reduced 

vasodilatation following an increase in shear forces is representative of impaired 

NO bioavailability [376].  Therefore, FMD is a good surrogate marker of NO 

bioavailability [377-379].  The FMD protocol involves a 2 minute baseline 

ultrasound scan of the brachial artery, after which a cuff placed around the wrist 

is inflated to 300 mmHg for 5 minutes.  This causes tissue ischaemia and dilation 

of downstream resistance vessels via auto-regulatory mechanisms.  When the 

cuff is released a sudden increase in bloodflow (reactive hyperaemia) through 

the brachial artery fills the dilated resistance vessels and in doing so exerts shear 

stress on the endothelial cells [380].  The resulting dilation, which peaks at 60-90 

seconds after cuff release is dependent on NO activity [379].  FMD is expressed 

as the maximum percentage change in vessel diameter after cuff release relative 

to baseline vessel diameter [378], with a low percentage indicating poor 

endothelial function [373].  FMD is typically carried out in the brachial artery using 

high resolution ultrasound to assess the vessel diameter, but other arteries such 

as the radial and femoral artery have also been used to measure FMD [379,381].  

Another method to quantify the dilation is strain-gauge plethysmography, with the 
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strain-gauge detecting the change in arm circumference following an increase in 

blood flow [382].  

 

The protocol used for FMD is important as both occlusion duration and 

cuff placement have been shown to influence FMD.  Five minutes of limb 

occlusion is adequate to evoke endothelium-dependent dilatation, with longer 

cuff durations showing a non-NO response [383].  Similarly, the placement of the 

cuff around the wrist is dependent on NO, whereas cuff placement on the upper 

arm is only partially mediated by NO [384].  Further, FMD responses can be 

affected by external factors such as sleep deprivation [385],  

hyperhomocysteinemia [386], caffeine [387], smoking [388], antioxidant therapy 

[389], menstrual cycle [390] and time of day [391].  Accordingly, it is important to 

control these factors [380].   

 

Glyceryl Trinitrate  

As described earlier, GTN produces dilation of the vessel by acting directly on 

the smooth muscle cells [232].  As such, the vasodilatory response to activated 

smooth muscle cells can be assessed by GTN administration.  GTN is commonly 

administered as a vasodilator to cardiac patients presenting with angina as a 

tablet or oral spray, both of which are placed or sprayed directly under the tongue 

[392].  Typically, the assessment is carried out for 3-4 minutes, which is the time 

necessary for the vessels to reach peak dilatation  [393].  

 

Arterial Stiffness 

Each time the heart contracts pressure waves are sent throughout the 

vasculature and the compliant arterial wall serves to dampen pressure 

oscillations that stem from the aortic root to aid smooth delivery of bloodflow to 

the tissues [226].  When the pressure waves reach branch points in the 

vasculature they are reflected back towards the heart.  In a healthy individual the 

wave arrives during diastole to aid filling of the coronary vessels.  However, in 

individuals with reduced arterial elasticity the pressure wave returns to the heart 
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much quicker and arrives during the systolic phase of the cardiac cycle.  This 

serves to augment the afterload (the pressure the heart has to overcome to open 

the aortic semilunar valve) [332].  Some notable complications of arterial stiffness 

include insufficient myocardial perfusion leading to angina or a myocardial 

infarction, and left ventricular hypertrophy which may result in heart failure [394].  

It is therefore not surprising that assessments of arterial stiffness are associated 

with a number of CVD risk factors such as ageing, smoking, hypertension and 

dyslipidemia [394].  Stiffening of the vascular wall can occur due to a reduction in 

NO production from endothelial cells, loss of smooth muscle tone [395], as well 

as degeneration of elastin fibres and increased collagen deposition in the 

vascular wall [396].  Consequently, arterial stiffness depends on functional and 

morphological changes in the vasculature [397]. 

 

A number of techniques can be used to assess arterial stiffness non-

invasively from the peripheral circulation.  The most widely used techniques at 

present are pulse wave analysis (PWA) and pulse wave velocity (PWV) due to 

their good reproducibility and ease of use [398].  These assessments have been 

reported to associate with coronary microvascular endothelial function [399].  

PWA is the single measurement of radial artery pressure waveforms which are 

recorded using a transducer which flattens but not occludes the artery 

(applanation tonometery).  The waveforms are calibrated against the standard 

brachial blood pressure which gives the maximum (systolic) and minimum 

(diastolic) points of the pressure curve.  The pressure waveform is then 

mathematically transformed into a central aortic waveform which contains the 

first and second systolic peaks and displays the augmentation index (AIx).  AIx is 

calculated as the difference between the second and first systolic peaks and is 

expressed as a percentage of the pulse pressure, with a high value indicating 

greater arterial stiffness [400].  To obtain PWV readings, arterial pressure 

waveforms are simultaneously derived from two arteries, usually the carotid and 

radial arteries, using an applanation tonometer.  The distance between the two 

arteries is then measured and the wave transit time between these two points is 
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recorded to give a quantifiable PWV, with a greater PWV indicating quicker wave 

reflection back towards the heart and therefore greater arterial stiffness [401].   

 

Carotid Intima-media thickness 

Assessment of carotid-intima media thickness (cIMT) using B-mode ultrasound 

was first introduced in 1986 by Pignoli and colleagues [402].  The assessment 

detects thickening of the medial layer of the vascular wall and is a good predictor 

of cardiac events in patients with early atherosclerosis [403], and is also an 

important predictor for restenosis in patients who have undergone percutaneous 

coronary intervention [404].  In addition, increased cIMT has been reported to 

relate to a number of classical CVD risk factors such as ageing, hypertension, 

and dyslipidemia [405].  Changes in cIMT represents a sequence of events 

resulting from a decrease in NO bioavailability as well as an increase in ET-1 

levels, which over time increase production of inflammatory cytokines, free 

radicals, adhesion molecules and thrombotic factors leading to smooth muscle 

proliferation [406-408].  Assessment of cIMT is typically performed in the 

common carotid artery, internal carotid artery and at carotid bifurcation points 

[397], and each site has a similar ability to predict future cardiovascular events 

[409].  

 

Endothelial Dysfunction in Selected Clinical Populations 

 

Endothelial Dysfunction and Cardiovascular Disease  

Endothelial dysfunction is evident before the presentation of obstructive 

atherosclerotic lesions [193], and can even occur in children with a family history 

of cardiovascular disease [378].  The magnitude of ED increases in line with the 

accumulation of CVD risk factors [410].  Furthermore, endothelial function is a 

good prognostic marker of future cardiac events in patients with CVD [354-356].  

Administration of L-arginine can increase NO bioavailability and improve 

endothelial function in patients with CVD risk factors [411].  In addition, 

medications that control CVD risk factors like anti-hypertensives or statins may 
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also have beneficial effects on endothelial function primarily through decreasing 

oxidative stress and lipid accumulation [359].   

 

Endothelial Dysfunction and Hypertension  

In hypertension, the delicate balance between vasodilators and vasoconstrictors 

produced by the endothelium is disrupted, with disturbance in the NO pathway 

leading to predominance of vasoconstrictors like ET-1, which contribute to high 

blood pressure [412].  Even though it is still unclear whether ED is the cause 

[413] or the consequence of elevated blood pressure [414], it appears to be an 

essential factor in hypertension [415].  Studies in humans have reported a 

significant impairment of the vasodilator response of small resistance vessels to 

ACh, but not to SNP, in hypertensive patients [416,417].  Additionally, impaired 

FMD identifies hypertensive patients at increased risk for non-fatal and fatal 

cardiovascular events [418], whereas the AIx is a predictor of cardiovascular 

mortality in subjects with essential hypertension [419].  Treatment with 

angiotensin-converting enzyme (ACE) inhibitors have been shown to improve 

endothelial function [420].  ACE inhibitors reduce oxidative stress and stimulate 

bradykinin to help increase NO bioavailability [421]. 

 

Endothelial Dysfunction and Diabetes  

Individuals with type I and type II diabetes have evidence of both microvascular 

and macrovascular ED [362,422-424].  ED can even be evident in healthy 

individuals with a family history of diabetes [424], suggesting a genetic link.  

Patients with diabetes often have reduced NO bioavailability which results from 

increased oxidative stress [425], and oxidation of LDL due to hyperglycaemia 

[426].  Patients with type 1 diabetes have shown improved endothelial function 

when taking ACE inhibitors [427], through a reduction in oxidative stress, and an 

increase in NO bioavailability [421].   
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Endothelial Dysfunction and Rheumatoid Arthritis 

The most common cause of mortality in rheumatoid arthritis (RA) patients is 

cardiovascular disease [121,428].  The amount of ED can be impacted by the 

severity of RA disease-related inflammation [429].  In general, RA patients have 

poorer endothelial function in both the microvasculature and the 

macrovasculature when compared to healthy individuals [430-435].  The effects 

of anti-inflammatory medications can improve endothelial function in different 

vascular beds [431,436-438], suggesting that inflammation may be impacting on 

the vasculature in RA [124,439].  See Chapter 2 for a systematic review on 

endothelial function in patients with RA. 

 

Summary 

The endothelium is important in maintaining vascular homeostasis and 

preventing the development of atherosclerosis.  However, perturbation of its 

activity may lead to ED which, if left untreated, could progress to atherosclerotic 

lesion formation and subsequent cardiac events.  Therefore, assessing 

endothelial function in patients at risk of cardiovascular disease is important to 

identify vascular abnormalities and may help monitor strategies and interventions 

that can improve endothelial function and lower CVD risk. 

 

 

 

 

 

 

 

 

 

 

 



61 
 

Chapter 2: Rheumatoid Arthritis and Endothelial Dysfunction: A 
Systematic Review of the Literature 

 
 
Introduction 
 

Rheumatoid Arthritis and Cardiovascular Disease 

Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease of the joints 

with predominant symptoms of pain, swelling and stiffness [1].  Patients with RA 

also have a number of extra-articular manifestations, the most common of which 

is cardiovascular disease (CVD), accounting for up to 50% of all deaths 

[121,428].  RA patients have a worse outcome from acute CVD events than the 

general population [54,64].  The exact reasons for this remain undetermined.  

They may include a higher prevalence and severity of classical CVD risk factors 

such as hypertension [111,440], dyslipideamia [142,146], obesity [188] and 

physical inactivity [131] leading to metabolic abnormalities [441], but also a 

complex interplay between systemic inflammation, such CVD risk factors and 

vascular function in RA [219] [122,442].   

 

The similarities between the inflammatory process in RA and in the blood 

vessels of atherosclerotic CVD are remarkable.  In both conditions, 

concentrations of C-reactive protein (CRP), interleukin-6 (IL-6), and tumour 

necrosis factor-α (TNF-α) are elevated, and there are similar patterns of cellular 

activation consistent with chronic inflammation [122,200].  On the basis of this, 

and the observation that elevated inflammatory molecules such as CRP, IL-6 and 

TNF-α are associated with an increased risk for CVD events in the general 

population [194,195,443], it has been speculated that RA disease-related 

inflammation might be contributing to accelerated atherosclerosis [123,124].  Pro-

inflammatory molecules may exert deleterious effects on the vascular 

endothelium which subsequently reduces the synthesis of NO and promotes 

endothelial dysfunction (ED) – an early indicator of atherosclerosis [444].  Pro-
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inflammatory molecules may also have metabolic effects on adipose tissue, 

skeletal muscle, and the liver, that can contribute to the development of classical 

CVD risk factors such as dyslipidemia, insulin resistance, and obesity 

[168,188,445], which can also, in turn, contribute to ED [359].  Adequate control 

of disease-related inflammation can lead to improvements in CVD risk factors in 

RA [155,446].  Non-invasive assessments of vascular function and structure in 

patients with RA may provide an excellent means of disentangling these complex 

pathways and assess interventions that may reduce CVD risk in these patients. 

 

The aims of the present work are to systematically review the current 

literature pertaining to vascular function and structure in RA with the aim of 

answering: (a) whether there is sufficient evidence that patients with RA have 

impaired vascular function and structure compared to normal controls; (b) 

whether there is sufficient evidence to delineate if such changes relate to 

systemic inflammation or classical CVD risk factors; and (c) whether any vascular 

changes in RA can be modified with therapy.   

 

Methods 
 
Following an RA-specific evidence-based tool for searching the literature [447], 

five databases [Medline, Cochrane Library, Cumulative Index to Nursing & Allied 

Health (CINAHL) research database, Google Scholar, and Excerpta Medica 

database (EMBASE)] were searched to identify publications from 1974 to 

January 1st 2010 in English pertaining to vascular endothelial function and RA in 

human participants.  The Medical Subject Heading (MeSH) terms “rheumatoid 

arthritis” was employed in combination with specific terms related to 

assessments of the vasculature.  The following terms along with the number of 

articles that came up with each search (displayed in brackets) were used: 

“endothelial function” (176), “laser doppler flowmetry” (12), “laser doppler 

imaging” (7), “forearm blood flow” (2), “venous occlusion plethysmography” (3), 

“flow mediated dilation” (5), “augmentation index” (6), “pulse wave analysis”(8), 
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“pulse wave velocity” (6), “carotid intima-media thickness” (63), and 

“atherosclerosis” (51).  Full articles were retrieved for assessment if the 

information in the abstract fulfilled both of the following criteria: (i) involving RA 

patients and (ii) studying any of the above-mentioned factors relevant to 

cardiovascular endothelial function.  Studies incorporating only participants with 

other types of inflammatory arthritis, degenerative arthritis or other inflammatory 

or connective tissue diseases were excluded.  If the title and abstract did not 

provide sufficient information, the full-text manuscript was examined in order to 

evaluate if the article fitted the inclusion criteria.  Conference proceedings, 

letters, reviews, editorials and comments were not included in this review.  Initial 

searches identified 283 articles although many articles were duplicated when 

using the different keywords.  From these articles 55 individual articles matched 

the inclusion criteria and were thus included in the analysis.   

 

The reference lists of all of the identified articles were further examined in 

order to identify publications that were relevant to microvascular or 

macrovascular endothelial function, arterial stiffness or carotid intima-media 

thickness in RA; 22 additional articles met the inclusion criteria and were 

included into the analysis.  These additional articles along with those found from 

the initial searches brought the total number of articles in the present review to 

77.  These included cross-sectional and longitudinal observational studies and 

randomised controlled trials (RCTs).  The quality score of the cross-sectional and 

longitudinal studies was derived.  This score was based on the criteria related to 

study design (e.g., choice of patient and control population, inclusion/exclusion 

criteria, power analyses), adherence to published protocol guidelines (e.g., 

laboratory conditions, participant preparation/condition, reproducibility) and 

statistical analysis (e.g., adjustment for group differences).  A graded score was 

awarded depending on the adherence to these criteria, ranging from 2 points 

(mentioned in detail) to 0 points (not mentioned).  Given the differences in aims 

between the studies, the total score varied between studies, therefore the scores 

were converted into percentages.  The quality of the identified RCTs was 
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assessed using previously described procedures [447].  From the 77 

publications, 48 were cross-sectional studies [126,219,430,433,435,448-490], 21 

longitudinal studies without using randomisation 

[431,432,434,436,438,461,464,491-504], and eight were RCTs [496,505-511]. 

 

Results     
 
Cross-Sectional Studies 

Few data are available on microvascular function in RA patients (Table 1).  The 

studies reveal subtle abnormalities in nailfold capillary microscopy [450], an 

attenuated response to endothelium-dependent and endothelium-independent 

microvascular stimuli assessed with venous occlusion plethymsography [448], 

and an increased hyperaemic vasodilatory response [451] in RA patients 

compared to healthy control participants.  Microvascular endothelial function 

does not appear to be consistently associated with inflammatory markers, e.g., 

CRP was associated with endothelium-dependent function in some [448,449], 

but not all [451] studies.  Given the scarcity of available studies and variety of 

methods applied, more research is needed to characterise microvascular 

endothelial function in RA patients.   

 

All but one (74) of the interrogated studies of macrovascular endothelial 

function showed an attenuated endothelium-dependent macrovascular function 

in RA compared to control participants, whereas no differences in endothelium 

independent macrovascular function are reported [452,455] (Table 1).  The 

decreased endothelium-dependent function, assessed with FMD, appears to be 

already evident within 1 year of RA diagnosis [454], but does not appear to be 

further influenced by disease duration [433,435].  Out of the studies that 

assessed the relationship between measures of disease activity (i.e., CRP, ESR, 

DAS28), four studies did not report an association between any of these factors 

and FMD [435,452,455,458].  Those that did find associations between levels of 

disease activity and FMD were characterised by inconsistencies that are difficult 
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to reconcile [433,451,454].  For example, FMD was associated with CRP but not 

ESR in the same group of patients [433,451].  Therefore, there is no strong 

evidence that FMD is influenced by disease-related factors.   

 

In line with this, a comparison between RA and diabetes mellitus yielded 

no difference in FMD, even though CRP was significantly higher in RA [458].  In 

separate analyses, the same authors also reported that the presence of RA and 

the presence of diabetes were both independent predictors of poor FMD.  

However, in diabetes, this was shown to be due to classical CVD risk factors, 

which was not the case in RA [458].  Surprisingly few studies have examined the 

effects of classical CVD risk factors on macrovascular endothelial function in RA 

[433,455,456].  Associations were found for lipid levels in some [433,456], but not 

all studies [455].  Therefore, given the known associations between classical 

CVD risk factors and endothelial function, more research is necessary to explore 

these associations in RA.  It is worth noting that endothelium-dependent 

macrovascular function in RA was lower than controls even when patients were 

matched for CVD risk or the comparison was statistically adjusted for CVD risk 

[455,457,458].  Taken together these studies suggest that there is ample 

evidence that endothelium-dependent macrovascular function is compromised in 

RA, but this does not appear to be consistently related to disease activity, and 

the influence of CVD risk factors is not clear.     
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Table 1. Overview of cross-sectional studies on microvascular endothelial function, macrovascular endothelial function, arterial stiffness and 
intima-media thickness in patients with rheumatoid arthritis  
Authors RA 

patients  
Exclusion 
Criteria 

Controls Participants Vascular 
Assessment 

Findings Associations Quality  
Index (%) 

Microvascular Function       
Yki-Jarvinen  
et al 2003 

20 RA 
 

HD 33 healthy * 
 

FBF with ACh, 
SNP 

ESR, CRP ↑ in RA 
Vasodilatory response to ACh 
and SNP ↓ in RA  

RA: low SNP with TNF-α and CRP (not 
IL-6 or ESR) 
High ACh with TNF-α (not CRP, ESR, 
IL-6) 
Basal flow with CRP, ESR, and TNF-α, 
not IL-6 

67 

Galarraga et 
al 2008 

128 RA HD, RF, CM  Laser Doppler 
imaging, ACh 
and SNP (peak 
value) 

ACh ↓ in high CRP (> 10) 
SNP ↓ in high CRP (> 10) 
When patients split on basis of 
DAS28, no difference 

Peak ACh with age and logCRP 
(multivariate) 
 

61 

Altomonte et 
al 1995 

32 RA   32, age & sex matched Nailfold capillary 
microscopy 

Subtle abnormalities in RA Not reported 22 

Arosio et al 
2007 

65 RA HD, RF 40 healthy* LDF in response 
to hyperaemia 

ESR, CRP ↑ in RA 
% increase ↑ in RA 

No significant associations 96 

Macrovascular Function       
Van 
Doornum et 
al 2003 

25 RA HD, RF 25 healthy, age & sex 
matched 

FMD, GTN 
 

FMD and GTN not different 
 

No significant associations  96 

Gonzalez-
Juanatey et 
al 2003   

55 RA  HR, RF 31 healthy, age & sex 
matched 

FMD, GTN FMD ↓ in RA, GTN no difference No significant associations 73 

Gerli et al 
2004 

87 RA HD, RF, CM 33 (24 OA & 9 
fibromyalgia), age & 
sex matched 

FMD FMD ↓ in RA Not reported 50 

Vaudo et al 
2004 

32 RA HD, RF, CM 28 (8 fibromyalgia, 10 
knee Osteoarthritis, 10 
hand Osteoarthritis) 
age & sex matched 

FMD FMD ↓ in RA FMD associated with CRP, CRP 
duration, average CRP, but not with 
ESR 

75 

Pingiotti et 
al 2007 

50 RA HR, RF, CM  26 healthy FMD FMD ↓ in RA FMD associated with DAS28 32 

Arosio et al 
2007 

65 RA  HD, RF 40 healthy* FMD FMD ↓ in RA FMD associated with CRP 77 
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Kerekes et 
al 2008 

52 RA HD, RF, CM 40 healthy, age & sex 
matched 

FMD, GTN FMD ↓ in RA 
No difference in GTN 

No significant associations  
 

64 

Rojas-
Villarraga et 
al 2008 

140 RA HD  FMD FMD<5%: 31% 
 

Not reported  56 

Soltesz et al 
2009 

14 RA, 
(50APS, 
24SSc, 
13PM) 

HD, RF 36 healthy, age, sex & 
Framingham risk score 
matched 

FMD FMD ↓ in autoimmune disease Not reported 36 

Stamatelopo
ulos et al 
2009 

84 RA  
AND 
48 RA 

HD, RF, CM 84 healthy, age, sex & 
CV risk factor matched 
AND 
48 healthy & 48 DM 

FMD 
 

FMD ↓ in RA 
No difference between remission 
and active group 
AND 
No difference in FMD between 
RA & DM  

No significant associations 
AND 
Presence of RA independently 
associated with decreased FMD.  

75 

Arterial Stiffness       
Klocke et al 
2003 

14 RA HD, RF, CM 14 healthy, sex, age, 
BP, & height matched 

AIx AIx ↑ in RA No significant associations 
 

70 

Van 
Doornum et 
al 2003 

25 RA HD, RF 25 healthy, age & sex 
matched 

 SAC and LAC ↓ in RA No significant associations 96 

Wong et al 
2003 

53 RA (15 
CAD, no 
CAD) 

HD, CM 53 (15 CAD, 38 no 
CAD) age, sex, & CAD 
matched 

PWA: SAE, LAE SAE and LAE ↓ in RA 
No difference between CAD and 
no CAD 

No significant associations  80 

Roman et al 
2005 

80 RA HD, CM 101 SLE, 105 healthy* Arterial stiffness Arterial stiffness ↑ in RA and SLE RA and SLE patients only: arterial 
stiffness associated with CRP  

55 

Maki-Petaja 
et al 2006 

77 RA HD, RF, CM 142 healthy, age, sex, 
height & BMI matched  

AIx 
PWV (aortic and 
brachial) 

Aortic & brachial PWV↑ in RA  
No difference in AIx 

Aortic PWV associated with CRP, but 
Not (cumulative) ESR or DAS28  
No associations with brachial PWV or 
AIx 

75 

Arosio et al 
2007 

65 RA  HD, RF 40 healthy* PWV PWV ↑ in RA No significant associations 
 

77 

Avalos et al 
2007 

57 RA, 
DD<6 
years, 60 
RA, DD>10 
years 
 

 65 healthy, age, sex & 
race matched 

PWV, AIx  PWV no difference 
AIx ↑ in late RA compared to 
early RA and controls 

PWV & AIx not associated with CRP, 
ESR, DAS28 after adjustment for CVD 
risk 

63 
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Wallberg-
Jonsson et 
al 2008 

30 RA  30 healthy, age & sex 
matched 

AIx No difference in AIx  AIx associated with retrospective 
inflammatory activity 

44 

Stamatelopo
ulos et al 
2009 

84 RA  
AND 
48 RA 

HD, RF, CM 84 healthy, age, sex & 
CV risk matched 
AND 
48 healthy & 48 DM 

PWV  
 

PWV ↑ in RA  
AND 
No difference in PWV between 
RA and DM  

No significant associations 
 

75 

Soltesz et al 
2009 

14 RA, 
(50APS, 
24SSc, 
13PM) 

HD, RF 36 healthy, sex, age & 
Framingham risk score 
matched 

AIx 
PWV 

AIx and PWV ↑ autoimmune 
disease 
AIx ↑ in RA than SSc or PM 

Not reported 
 

36 

Galarraga et 
al 2009 

148 RA HD, RF, CM  AIx No difference in AIx  between 
high (>10) and low CRP groups  

AIx associated with CRP and DAS28 86 

Crilly et al 
2009 

114 RA HD  AIx AIx higher in women than men Increase in cumulative ESR positively 
associated with increase in AIx 

100 

Intima Medial Thickness      
Wallberg-
Jonsson et 
al 2001 

39 RA RF 39 healthy, age & sex 
matched  

carotid IMT 
femoral IMT 

Mean cIMT ↑ in RA  
fIMT not different 

No significant associations 60 

Kumeda et 
al 2002 

138 RA HD, RF 94 healthy* carotid IMT 
femoral IMT 

cIMT ↑ in RA 
fIMT ↑ in RA 

No significant associations 80 

Park et al 
2002 

53 RA HD, RF 53 healthy, age & post-
menopausal matched 

IMT 
 

IMT ↑ in RA 
 

No significant associations  
RA < 1 year, IMT ↓ 

90 

Alkaabi et al 
2003 

40 RA CM  40 healthy, age sex & 
postcode matched 

IMT 
 

IMT ↑ in RA No significant associations  46 

Gonzalez-
Juanatey et 
al 2003 

47 RA  HD, RF, CM 47 healthy, age & sex 
matched 

IMT IMT ↑ in RA 
 

No significant associations  82 

Del Rincon 
et al 2003 

204 RA 
 

RF, CM 102 healthy, age & sex 
matched   

IMT  No difference in IMT Significant associations with CRP and 
ESR in all participants  

65 

Wallberg-
Jonsson et 
al 2004 

39 RA  39 healthy, age & sex 
matched  

carotid IMT 
femoral IMT 

 No significant associations  
Presence of RA associated with 
increase in cIMT 

50 

Gerli et al 
2004 

87 RA HD, RF, CM 33 (24 OA & 9 
fibromyalgia), age & 
sex matched 
 

IMT IMT ↑ in RA Not reported 50 
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Dessein et 
al 2005 

74 RA RF  IMT 
 

N = 53 atherosclerosis 
N = 21 no atherosclerosis 

No significant associations 81 

Gerli et al 
2005 

101 RA HD 75 with degenerative 
joint disease or other 
non-inflammatory 
rheumatic disorder, 
age & sex matched 

IMT (8 
measures) 

Only mean Carotid Bifurcation-
IMT ↑ in RA  

No significant  associations  73 

Del Rincon 
et al 2005 

631 RA 
(328 with 
plaque & 
303 no 
plaque)  

  IMT No difference in IMT 
 

IMT associated with ESR  69 

Gonzalez-
Gay et al 
2005 

47 RA 
  

HD, RF, CM  IMT IMT greater in patients with 
highest quartile of CRP 

IMT associated with CRP max CRP, 
and proportion CRP>10, average CRP, 
but not current CRP 
No association between IMT and ESR 

88 

Roman et al 
2005 

80 RA HD, CM 101 SLE, 105 healthy* IMT No difference in IMT No significant associations 55 

Wada et al. 
2005 

50 RA HD, RF 30 healthy* IMT IMT ↑ in RA No significant associations 
CRP and ESR in healthy participants 
In all participants: RA status predictive  

59 

Dessein et 
al 2006 
 

74 RA RF  IMT No difference in IMT between 
with NCEP-MetSyn and those 
without WHOMetsyn IMT higher 
with than without 

Number of NCEP criteria not 
associated with IMT 
Number of WHO-MEtSyn associated 
with IMT 

29 

Grover et al 
2006 

57 RA HD, RF, CM 45 healthy, age & sex 
matched 

IMT  IMT ↑ in RA No significant associations  64 

Pahor et al 
2006 
Immunobiol
ogy 

70 RA HD, RF 40 healthy, age and 
sex matched 

IMT IMT ↑ in RA Not reported 50 

Pahor et al 
2006 
Rheumatol 
Int 

70 RA HD, RF 40 healthy, age & sex 
matched 

IMT IMT ↑ in RA Significant association with CRP 50 

Pamuk et al 
2006 

63 RA HD, RF, CM 34 OA, age & sex 
matched 

IMT IMT ↑ in RA 
 

No significant associations 
 
  

70 
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Daza et al 
2007 

55 RA 
 

RF 20 healthy* IMT IMT ↑ in RA No significant associations 80 
 
 

La 
Montagna et 
al 2007 

45 RA HD, RF 48 soft tissue disease 
patients* 

IMT IMT ↑ in RA Associated with DAS28  
IMT increases with 4 groups of DAS28 

75 

Surdacki et 
al 2007 

30 RA HD, RF, CM 20 healthy, age & sex 
matched 

IMT IMT ↑ in RA No significant associations 89 

Pingiotti et 
al 2007 

50 RA HR, RF, CM  26 healthy IMT IMT ↑ in RA Associated with DAS28 32 

Del Rincon 
et al 2007 

631 RA    IMT IMT ↑ in longest DD No significant associations  57 

Sherer et al 
2007 

100 RA HD 69 with degenerative 
joint disease or other 
non-inflammatory 
rheumatic disorder 

IMT (8 
measures)  

In RA: anti-HSP-65 positive RA 
lower mean and max CA-IMT 

 40 

Sherer et al 
2007 

82 RA HD None IMT (8 
measures) 

 No significant associations 86 

Coaccioli et 
al 2007 

38 RA HD, RF 30 healthy, age & sex 
matched, 42 DM, 37 
obese 

IMT IMT ↑ in RA compared to healthy, 
not different from DM or obese 

Not reported  35 

Rojas-
Villarraga et 
al 2008 

140 RA HD  IMT High IMT: 54% No significant associations  56 

Ciftci et al 
2008 

30 RA  HD, RF, CM 32 healthy* IMT  IMT ↑ in RA No significant associations  80 

Hannawi et 
al 2008 

40 RA  40 healthy, sex, & CV 
risk matched 

IMT IMT ↑ in RA  Associated with CRP, DAS4 60 

Kerekes et 
al 2008 

52 RA HD, RF, CM 40 healthy, age & sex 
matched 

IMT  IMT ↑ in RA No significant associations  64 

Soltesz et al 
2009 

14 RA, 
(50APS, 24 
SSc, 13PM) 

HD, RF 36 healthy, age, sex & 
Framingham risk score 
matched 

IMT  IMT ↑ in autoimmune disease Not reported 36 

Pereira et al 
2009 

71 RA HD, RF, CM 53 healthy, age & sex 
matched 
 
 

IMT  No difference in IMT No significant associations 70 
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Stamatelopo
ulos et al 
2009 

84 RA 
AND 
48 RA 

HD, RF, CM 84 healthy, age, sex & 
CV risk matched 
AND 
48 healthy & 48 DM 
 

IMT  
 

IMT ↑ in RA  
AND 
No difference in IMT between RA 
and DM  

No significant associations 75 

Schott et al 
2009 

93 RA   93 healthy, age, race & 
menopause matched 

IMT No difference in IMT No significant associations 64 

Note: RA: rheumatoid arthritis, FMD: flow-mediated dilatation, GTN: glycerine-trinitrate, CRP: C-reactive protein, ESR: erythrocyte sedimentation rate, DD, disease 
duration, HD: heart disease, which includes at least one of: hypertension, myocardial ischaemia, stroke, cerebrovascular disease, known/suspected CVD, 
atherosclerosis, peripheral vascular disease, cardiac arrhythmias, valvular heart disease.  RF: risk factor for cardiovascular disease, which includes at least one of: 
family history of CVD, smoking, diabetes mellitus, hyperlipideamia, obesity.  CM: comorbidity, which includes at least one of: renal disease, neoplasms, connective 
tissue disease, vasculitis, other inflammatory disease, recent surgery or illness, active infectious disease, hyperthyroidism malignancy.  DM: diabetes mellitus.   
*Populations not matched for age and sex, but age and sex do not differ between populations.  
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Overall, arterial stiffness was increased in RA compared to control 

participants (see table 1).  Similar to the functional assessments described 

above, no consistent association between arterial stiffness and markers of 

disease activity is apparent.  The number of studies that report an association 

between at least one disease activity measure and arterial stiffness is equal to 

the number of studies that do not find such an association.  It is possible that it is 

not current but continuous inflammatory activity over the course of the disease 

that impacts negatively on the vasculature [512].  However, whereas longitudinal 

inflammatory burden, indexed by ESR, joint assessments, and physicians’ global 

assessment since disease onset was predictive [463], cumulative assessment of 

ESR over the last 5 years was not [461].  This might imply that assessing disease 

activity only serologically, even when this is done longitudinally, is too simplistic 

to determine arterial stiffness.  Radiographic damage using the Sharp score, an 

indirect marker of cumulative inflammatory activity on the joints, was found to be 

related to arterial stiffness [435].  Therefore, other RA-related assessments such 

as joint and physician’s global assessment might provide a better reflection of the 

overall burden of RA.  However, research is necessary to explore this in more 

detail.  

 

  The majority of the cross-sectional studies assessed IMT (Table 1), and 

show that overall IMT is increased in RA patients compared to healthy controls.  

This is confirmed by a recent systematic review and meta-analysis [513].  Like 

the functional vascular measures described above, IMT does not appear to be 

consistently associated with markers of disease activity (Table 1).  Again, the 

majority of the studies reported current markers of inflammation, with a few 

exceptions [466,468,473].  Surprisingly, retrospective global disease activity was 

not associated with IMT [466], in contrast to the findings for arterial stiffness 

[463].   Longitudinal assessments of ESR and CRP revealed that CRP, but not 

ESR was related to IMT [473], despite a strong association between ESR and 

CRP.  Therefore, more research may be necessary to determine why only CRP 

was related to IMT.  Increased cIMT is already apparent in patients with a recent 
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diagnosis of RA [488].  However, whether IMT is further increased with disease 

duration is not clear from the available data.  Even though several studies 

provide evidence for greater IMT with longer disease duration [219,467,468,487], 

others do not find such an association [126,469,476].  Caution should be 

exercised when interpreting these findings, as the impact of age on this 

association remains to be determined.  IMT is known to increase with age in the 

general population [514], and is also the most consistent determinant in IMT in 

RA both in univariate and multivariate analyses 

[219,466,472,474,478,479,482,489,515].  Interestingly, in RA the age-induced 

increase in IMT was greater with longer disease duration [483].  However, the 

association between disease duration and IMT was no longer significant after 

correcting for age [490].  Therefore, more studies specifically looking at the 

changes over time are needed to clarify this.   

 

Unfortunately, the comparison between RA and control participants has 

largely been done without correction for any factors that could impact IMT, such 

as CVD risk or its individual components.  Various factors that are known to be 

associated with IMT in the general population have been explored in RA.  For 

example, global cardiovascular risk, using the Framingham Risk Score, was 

associated with a higher IMT [456,456].  Even though not systematically, several 

individual CVD risk factors have been explored in relation to IMT.  This showed 

that adverse lipid profile was related to IMT, not only in univariate 

[455,466,475,478] but also in multivariate analyses [475,479].  However, care 

should be taken when interpreting these results, as varying statistical analyses 

and multivariate models have been applied to assess the associations of 

individual risk factors in RA.   

 

It is possible that CVD risk factors play a role in the association between 

IMT and inflammation in RA, given that ESR was associated with IMT only in the 

presence of CVD risk factors [219].  Direct comparison between the associations 

found in healthy participants and those found in RA patients might determine 
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whether inflammation affects IMT (and other vascular parameters) in RA patients 

in a different manner.  This is likely given that the presence of RA has been 

reported to independently predict IMT [458,467,471,471,474].   

 

Taken together, the cross-sectional studies reveal ample evidence for 

attenuated vascular function in patients with RA.  Even though a large number of 

studies have been conducted in this area, the quality of these studies with 

regards to study design, adherence to published protocols, and appropriate 

statistical analyses, varies largely between studies (see Table 1).  Few studies 

conducted power analyses for the comparison between groups, however, no data 

is available on appropriate power to examine factors associated with vascular 

function in RA.  This has profound implications for the interpretation of the 

available data, and more research, specifically set out to explore the factors 

associated with vascular function in RA, is needed to understand the mechanism 

for vascular impairments in RA.  

 

Given that RA disease-related inflammation is widely assumed to 

contribute to the elevated CVD risk through its impact on the vasculature 

[123,124], it is surprising to find that direct evidence for such an association is still 

lacking.  In other populations, vascular function is associated with inflammation 

[516], although it is likely that the levels of inflammation that are generally seen in 

other populations are significantly lower than those in RA patients [458].  

Accordingly, it remains possible that low to moderate grade inflammation 

characteristic of these other populations, such as diabetic or cardiovascular 

patients, is a good predictor of endothelial function, whereas high grade 

inflammation in RA is not predictive of vascular function or structure.   

 

It is also possible that it is longstanding not current inflammation that 

impacts the vasculature in RA patients [512].  At present, the studies which have 

explored disease activity longitudinally have incorporated varying methods of 

quantifying accumulated disease activity, and also have varying results 
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[433,461,463,465-468,487].  Thus, even though RA has been shown to be 

predictive of greater arterial stiffness [458], as well as IMT [471,474], this does 

not seem to be due solely to current levels of disease-related inflammation.  A 

comparison of RA and diabetes patients, for example, revealed similar vascular 

status despite higher levels of inflammation in the RA patients [458,486].  As 

vascular impairments cannot be fully explained by current levels of inflammation, 

other factors must be contributing.  Unfortunately, to our knowledge, little 

attention has been paid to other potential influences.  There is however, 

preliminary evidence of an interaction between inflammation and CVD risk factors 

affecting vascular function in RA [219].  A direct comparison between the 

association between vascular function and a range of potential determinants in 

different patient groups might help illuminate precisely which factors are 

particularly important in RA. 

 

Longitudinal studies  

The majority of studies that explored vascular parameters longitudinally 

examined the effects of a change in medication regimes (in particular anti-TNF-α 

treatment) (See Table 2).  With one exception [434], microvascular endothelial 

function was shown to improve in response to successful treatment 

[432,436,492].  The effects of successful treatment on macrovascular endothelial 

function are similar [431,438,461,488,493-501].  Vascular function was no longer 

significantly different from control participants following treatment [432,436,461], 

even though markers of inflammation were still increased relative to controls 

[432].  Only two studies have reported the associations between change in 

disease activity (either assessed with DAS28, CRP, or ESR) and vascular 

function [488,499], with equivocal results.  Changes in CRP and FMD were 

associated in one [488] but not the other study [499].  However, care should be 

taken when interpreting the presence or absence of reported associations given 

the small sample sizes in these longitudinal studies.  In addition, only two studies 

reported a priori power calculations on the basis of changes in vascular 

parameters over time [496,498].  No power calculations, either a priori or post 
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hoc, were carried out for the associations between changes in disease activity 

and vascular function.   

 

Few longitudinal studies are available on structural changes in the 

vasculature in RA (see Table 2).  Most studies found that a reduction in disease 

activity as a result of anti-rheumatic treatment was not accompanied by an 

improvement in brachial arterial stiffness [461,492,496,517], even though an 

improvement was found in aortic arterial stiffness [461].  In contrast, one study 

reported that anti-TNF-α treatment, but not methotrexate, caused an 

improvement in arterial stiffness [464], and atorvastatin was reported to effect a 

decrease in arterial stiffness in the absence of changes in disease activity [518].  

Even fewer longitudinal data are available for IMT; there are only four published 

studies.  The results with regards to successful treatment are equivocal 

[499,501,504].  Nevertheless, change in IMT was found to be greater in RA 

patients compared to healthy control participants [503], as well as attenuated in 

patients on anti-TNF-α treatment compared to those on methotrexate [504].  

None of the structural longitudinal studies provide evidence for a direct 

association between vascular parameters and measures of disease activity.   

 

The influence of changes in classical CVD risk factors on changes in 

vascular function or structure has not received attention in the literature.  Even 

though changes in lipid profiles have been explored in response to treatment, the 

results are equivocal.  No reports are available on associations between changes 

in CVD risk factors and changes in vascular function or structure in RA.  

However, given the small sample sizes in the available studies, it remains 

possible that the studies are underpowered to analyse these associations.  In 

sum, the longitudinal studies reveal that the vascular response to successful 

treatment is not clearly defined, and there is no consistent evidence for an 

association between changes in vascular parameters and changes in disease 

activity.  However, given the small sample sizes of the studies and lack of 

appropriate power analyses, care should be taken when interpreting these data.  
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Table 2. Overview of longitudinal studies on microvascular endothelial function, macrovascular endothelial function, arterial stiffness and  
Intima-media thickness in patients with rheumatoid arthritis  

Authors RA 
patients  

Exclusion 
Criteria 

Intervention 
Assessment Time 
Points 

Vascular Assessment Findings Associations1  Quality 
Index  
(%) 

Microvascular function    

Bergholm et 
al  2002 

10 RA HD DMARDS 
 0 & 6 months  

FBF with ACh & SNP CRP & ESR ↓ 
ACh ↑  
SNP no change 

Not reported 58 

Hansel et al 
2003 
 

8 RA HD, RF, CM 1) 2-4 days after IV 
MTX  
2) etanercept  

2-4 days after MTX & 21 
days after etanercept 

FBF with ACh & GTN No change  Not reported 50 

Cardillo et al 
2006 

10 RA  HD, RF, CM Intra-arterial saline 
infusion & Infliximab  

Immediately following 
infusion 

FBF with ACh & SNP No change in CRP 
ACh ↑  
SNP: no change  

Not reported 59 

Datta et al 
2007 
 

8 RA HD, RF, CM Anti-inflammatory 
treatment (various) 

Pre & post acute 
treatment 

LDI with iontophoresis 
(ACh & SNP)  

CRP ↓ treatment 
ACh & SNP ↑ after treatment 

CRP not associated 
with change in ACh 
 

65 

Komai et al 
2007 

15 RA 
 

HD, CM Infliximab (0, 2 & 6 
weeks) 0, 2 & 6 weeks. 

FBF, FBF to GTN DAS28, CRP, ESR ↓ at 2 & 6 weeks 
FBF ↑ at 2 & 6 weeks. 
No change in GTN 

Not reported 25 

Macrovascular function    

Hurlimann et 
al 2002 

11 RA HR, RF Infliximab (0, 2 & 6 
weeks) 

0 & 12 weeks FMD GTN DAS28, ESR ↓ at 12 weeks, CRP no 
change 
FMD ↑ at 12 weeks 
GTN no change 

Not reported 46 

Irace et al 
2004 
 

10 RA  Infliximab (0, 2 & 6 
weeks) 0, 2, and 6 weeks (before 

and after each infusion) 

FMD, GTN  DAS28, ESR ↓ at 6 weeks, CRP no 
change 
FMD ↑ after each infusion 
FMD returned to baseline by next 
infusion.  

Not reported 50 

Gonzalez- 
Juanatey et al 
2004 

7 RA HD, RF At least 1 year anti-
TNF treatment 
(infusion/8 weeks) 

-2, +2, +7,+28 days  
 
 

FMD, GTN DAS28 ↑ at 7 days, CRP, ESR no 
change  
FMD ↑ at 2 and 7 days 
GTN no change 

Not reported 67 

Bilsborough 
et al 2006 

9 RA  3 RA: Infliximab 
6 RA: Etanercept  
 

0 & 36 weeks 
 DAS28 ↓ at 36 weeks 

FMD ↑ at 36 weeks 
GTN no change  

Not reported 41 
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Maki-Petaja 
et al 2006 

9 RA HD, RF, CM Etanercept (2/week) 
0, 4 & 12 weeks 

FMD, GTN DAS28, CRP, ESR ↓ at 4 & 12 weeks 
FMD↑ at 4 & 12 weeks 
GTN no change 

Not reported 23 

Gonzalez-
Juanatey et al 
2006 

8 RA HD, RF Adalumimab (1/2 
weeks) 0, +2 days, +2 weeks & 

+12 weeks 
 

FMD, GTN 
 
 

DAS28, CRP ↓ at 2 & 12 weeks. 
ESR ↓ at 12 weeks 
FMD ↑ +2day, +2week & +12 weeks 
GTN no change 

No association 
between change in 
CRP & FMD 

67 

Ikonomidis et 
al 2008 

23 RA HD, CM 23 RA: Anakinra 
19 RA: increase 
prednisone dose  

0 & 30 days 
FMD, GTN,  DAS28, CRP ↓ at 30 days, greater ↓ in 

anakinra than prednisone 
FMD ↑ at 30 days in anakinra 
GTN no change  

Not reported 88 

Gonzalez-
Juanatey et al 
2008 
 

6 RA  Rituximab 
0, 2 weeks & 6 months 
 
 

FMD, GTN 
 
 

DAS28, ESR, CRP ↓ 2 weeks & 6 
months  
FMD ↑ at 2 weeks & 6 months 
GTN ↑ at 2 weeks   

Not reported 50 

Syngle et al 
2008 

24 RA  HD, RF, CM Spironolactone 
0 & 12 weeks 

FMD, GTN DAS28, CRP, ESR ↓ at 12 weeks 
FMD ↑ at 12 weeks 
GTN no change  

Not reported 71 

Sidiropoulos 
et al 2008 
 
 

12 RA HD Anti-TNF 
0, 3 months & every 2 
months up-to 18months 
 

FMD, GTN  DAS28 ↓ at 3 & 18 months 
CRP ↓ at 18 months  
ESR no change 
FMD no change at 3 months, ↑ at 18 
months 

18 months: no 
association between 
change in FMD and 
change in ESR, 
CRP, or DAS28 

58 

Bosello et al 
2008 
 
 

10 RA HD, RF 
 

Infliximab (0, 2, 6 & 
14 weeks) 0, 2, 6 & 14 weeks (day 

before and after infusion) 
 

FMD, GTN DAS28 ↓ at 14 weeks 
ESR & CRP ↓ at 2 & 6 weeks 
FMD ↑ day after each infusion, but at 
baseline by next infusion 
GTN no change  

Not reported 59 

Kerekes et al 
2009 
 

5 RA HD, RF, CM Rituximab 
0, 2, 6 &16 weeks 
 

FMD, GTN  
 
 

FMD ↑ in 4/5 patients at week 2 and 
week 6, & 5/5 at week 16 

Change in FMD not 
associated with 
change in CRP 

55 

Hannawi et al 
2009 

31 RA  Combination 
DMARD  0 & 12 months 

FMD, GTN ESR & CRP ↓ at 12 months 
FMD and GTN↑ at 12months 

Change in FMD 
associated with 
change in CRP 
 
 

69 

Arterial Stiffness    
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Maki-Petaja 
et al 2006 
 

9 RA HD, RF, CM Etanercept (2/week) 
0, 4 & 12 weeks 

FMD, GTN DAS28, CRP, ESR ↓ at 4 and 12 weeks 
Aortic PWV ↓ at 4 & 12 weeks 
Brachial PWV no change 

Not reported 23 

Komai et al 
2007 

15 RA 
 

HD, CM Infliximab (0, 2 & 6 
weeks) 0, 2 & 6 weeks 

FBF, FBF to GTN DAS28, CRP, ESR ↓ at 2 & 6 weeks 
No change in PWV 

Not reported 25 

Galarraga et 
al 2009 

47 RA HD, RF, CM 21 Methotrexate  
26 Etanercept  (0, 2 and 4 months) 

AIx Methotrexate: DAS28 ↓ at 2 & 4 months 
Etanercept: DAS28, logCRP, HAQ ↓ at 2 
& 4 months 
AIx ↓ at 2 & 4 months in etanercept 
group only  

Not reported 75 

Intima media thickness    

Nagata-
Sakurai et al 
2003 

62 RA HD, RF Stable medication 
 0, 18 - 36mths 

IMT 
 

Greater change in IMT in RA compared 
to healthy controls   

Not reported 65 

Del Porto et al 
2007 

30 RA HD, RF, CM 14 RA: Infliximab  
16 RA: etanercept 

0 & 12 months 
 

IMT 
 

DAS44, CRP, ESR ↓ at 3 months & 12 
months 
IMT ↓ at 12months 

Not reported 77 

Sidiropoulos 
et al 2008 

12 RA HD Anti-TNF 
0, 3 months & every 2 
months up-to 18month 

IMT DAS28 ↓ at 3 & 18 months 
CRP ↓ at 18 months  
ESR no change 
IMT no change 

Not reported 58 

Kerekes et al 
2009 

5 RA HD, RF, CM Rituximab 
0, 2, 6 & 16 weeks 
 

IMT IMT ↓ in 5/5 patients at week 2, 4/5 
patients at week 6 & 3/5 patients at week 
16 

Change in IMT not 
associated with 
change in CRP 

55 

Note: RA: rheumatoid arthritis, FMD: flow-mediated dilatation, GTN: glycerine-trinitrate, IMT: intima-media thickness, AIx: augmentation index, PWV: pulse wave 
velocity, CRP: C-reactive protein, ESR: erythrocyte sedimentation rate, DAS28: Disease Activity Score, HD: heart disease, which includes at least one of: hypertension, 
myocardial ischaemia, stroke, cerebrovascular disease, known/suspected CVD, atherosclerosis, peripheral vascular disease, cardiac arrhythmias, valvular heart 
disease.  RF: risk factor for cardiovascular disease, which includes at least one of: family history of CVD, smoking, diabetes mellitus, hyperlipideamia, obesity.  CM: 
comorbidity, which includes at least one of: renal disease, neoplasms, connective tissue disease, vasculitis, other inflammatory disease, recent surgery or illness, active 
infectious disease, hyperthyroidism malignancy.  DM: diabetes mellitus, PM: postmenopausal, OA: osteoarthritis 1: associations with change in CRP, ESR and DAS28 
only reported here.
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Randomised Control Trials 

There were only a small number of RCTs on vascular function or structure (see 

table 3).  Briefly, IL-1ra antagonist was associated with an acute improvement in 

FMD [496], whereas 2 weeks of selective or non-selective COX inhibitors did not 

change FMD or AIx [506]; 56 weeks of anti-TNF-α decreased PWV, but not AIx 

or IMT [507].  Following 5 years of either prednisolone or no-prednisolone 

treatment, there was no difference in IMT or FMD between the treatment and no 

treatment arms of the trial [505].  However, due to the absence of baseline 

vascular assessment, this study does not provide information on changes in cIMT 

or FMD as a result of treatment.  Four studies examined the effects of either 

statins or ACE inhibitors over a period of 2 to 8 weeks and demonstrated, that 

overall, these medications improved FMD and arterial stiffness [508-511], which 

is in line with studies in other populations [519,520].  These last studies also 

emphasise the potential importance of classical CVD risk factors in vascular 

function in RA, in particular the influence of lipid profiles.  Statin treatment reliably 

results in an improvement in FMD [508,509,511], which can occur in the absence 

of a reduction in disease activity [509].  However, more detailed, and 

appropriately powered, studies are needed to explore the complex interplay 

between lipid profiles, disease activity and the vasculature in more detail.  In 

sum, given the paucity of RCTs with limited sample size and lack of power 

calculations particularly in those studies testing anti-rheumatic medication, it is 

not possible to draw firm conclusions at this stage.  
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Table 3: Overview of randomised controlled trials on macrovascular endothelial function, arterial stiffness and intima-media 
thickness in patients with rheumatoid arthritis  

Note: RA: rheumatoid arthritis, FMD: flow mediated dilatation, GTN: glycerine-trinitrate, IMT: intima media thickness, AIx: augmentation index, PWV: pulse 
wave velocity, CRP: C-reactive protein, ESR: erythrocyte sedimentation rate, DAS28: Disease Activity Score, HD: heart disease, which includes at least one 
of: hypertension, myocardial ischaemia, stroke, cerebrovascular disease, known/suspected CVD, atherosclerosis, peripheral vascular disease, cardiac 
arrhythmias, valvular heart disease.  RF: risk factor for cardiovascular disease, which includes at least one of: family history of CVD, smoking, diabetes 
mellitus, hyperlipideamia, obesity.  CM: comorbidity, which includes at least one of: renal disease, neoplasms, connective tissue disease, vasculitis, other 
inflammatory disease, recent surgery or illness, active infectious disease, hyperthyroidism malignancy.  1: associations with CRP, ESR and DAS28 only 
reported here.

Authors RA 
patients  

Exclusion 
Criteria 

Intervention 
Assessment 
Time Points 

Vascular 
Assessment 

Findings Associations1 Jadad 
Score 
[447] 

Anti rheumatic medication       
Hafstrom et 
al 2007 

67 RA  34 prednisone for 2 years, 
then 13 continue, 21 stop 
prednisone treatment 
33 no prednisone 

Assessments 
at 5.3 years, 
no baseline 
values 

IMT, FMD  IMT, FMD no difference between groups  
CRP, ESR no difference between groups 

Not reported  1 

Wong et al 
2007 

37 RA 
 

HD, RF, CM  Placebo (12), Rofecoxib 
(12), Indomethacin (11) 
2 weeks 

0 & 2 weeks FMD, GTN, 
AIx 
 

No difference in disease activity change 
between groups  
No change in FMD, GTN, Aix in any group 

Not reported 3 

Ikonomidis 
et al 2008 

23 RA HD, CM Anakinra or placebo  
48hrs cross over 

0 & 3 hours  FMD, GTN, 
PWV 

CRP no change 
FMD ↑ anakinra 
GTN, PWV no change 

Not reported 2 

Wong et al 
2009 

26 RA HD, RF Infliximab (17) for 54 
weeks or placebo (9) for 22 
weeks 

Baseline, 14 
& 56 weeks 
 

PWV, AIx. 
IMT, 

DAS28 & ESR ↓ 
PWV ↓ 56 weeks 
IMT, AIx no change 

Not reported 2 

Statin and ACE inhibitors       
Tikiz et al 
2005 

43 RA  HD, RF Placebo (15), Simvastatin 
(14), Quinapril (14) 
8 weeks 

 FMD, GTN Statin: CRP ↓  
Statin: FMD ↑ 
No change in GTN   

Not reported 2 

Hermann et 
al 2005 

20 RA  HD, RF, CM Simvastatin & placebo 
4 weeks crossover 

0 & 4 weeks FMD 
 

No change in disease activity 
Statin: FMD ↑  
GTN no change 

Not reported  2 

Flammer et 
al 2008 

11 RA HD, RF, CM Ramipril & placebo 
8 weeks crossover 

0 & 8 weeks FMD, GTN No change in CRP 
FMD ↑ after ramipril  
GTN  no change  

Not reported 2 

Maki-Petaja 
et al 2007 

20 RA HD, RF, CM Ezetimibe & simvastatin 6 
weeks crossover 

0 & 6 weeks, 
and 0 & 6 
weeks 

FMD, GTN, 
AIx, PWV  
 

DAS28, ESR & CRP ↓ 
PWV ↓ & FMD ↑ in both treatments 
AIx, GTN no change 

Not reported 
 

2 
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Summary 

 

The studies presented above provide clear evidence that vascular function 

and structure are impaired in patients with RA.  RA has been increasingly 

reported to be associated with accelerated atherosclerosis [124,521], based on 

the assumption that high grade inflammation associated with RA induces 

accelerated atherosclerosis [123,124,522].  This assumption draws heavily on 

data from cross-sectional studies, which, irrespective of intrinsic issues regarding 

direction of causality, when considered, afford less than wholly compelling 

evidence that IMT is related to current inflammation.  To our knowledge, there is 

only one study that assessed accelerated atherosclerosis.  The increase in IMT 

was greater in RA patients compared to age and sex-matched healthy controls 

[503].  Unfortunately, with disease activity only assessed at baseline, a direct link 

between change in inflammation and IMT could not be explored.  In addition, the 

study design did not allow for an assessment of the impact on IMT of variations in 

disease activity over the follow-up period.   

 

Longitudinal studies are necessary to examine the concept of accelerated 

atherosclerosis.  In order to determine how the fluctuations in disease activity 

influence vascular changes over time, measurements must be made over a 

protracted period.  The vascular assessments described in this review are 

generally considered to be associated with an increased risk for cardiovascular 

death.  There is evidence for this in the general population [523], but only one 

study with a small sample has reported that high levels of IMT are predictive of 

hard cardiac end-points in RA [524].  Therefore, in order to understand if and how 

vascular function is predictive for cardiovascular events, detailed longitudinal 

assessments are necessary.  These assessments should include multiple 

vascular parameters as well as multiple potential determining factors. Once it is 

known what determines the impaired vascular function, interventions, either 

through medication and/or behavioural change, can be developed to improve 

vascular function as well as structure in RA.   
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Overview of Thesis 

 
As explained earlier it is clear that rheumatoid arthritis (RA) is a condition 

associated with increased morbidity and mortality from cardiovascular disease 

(CVD).  A significant part of this increased CVD risk is thought to result from 

chronically high disease-related inflammation which can perturb endothelial cell 

homeostasis leading to endothelial dysfunction (ED), accelerated atherosclerosis 

and subsequent cardiac events.  The systematic review of the literature 

presented in Chapter 2 revealed that associations between disease-related 

inflammation and endothelial function may not be as strong as first thought.  

However, much of this research has focused on single vascular beds only with 

little attention being paid to assessing the effects of inflammation on endothelial 

function in different vascular beds (i.e. microvessels and macrovessels) in the 

same group of patients.  In addition, factors which affect endothelial function in 

the general population, such as CVD risk factors, have not been simultaneously 

explored in the microcirculation and the macrocirculation in this group of patients.  

Thus, the present work includes a series of studies which examined differences 

in microvascular and macrovascular endothelial function between RA patients 

and healthy control participants (Chapter 5), explored associations between 

disease-related inflammation, classical CVD risk and endothelial function in RA 

(Chapter 6), and assessed the longitudinal effects of anti-inflammatory treatment 

on microvascular and macrovascular endothelial function in RA (Chapter 7). 

 

Hypotheses 
 

Chapter 5 

The aim of the study presented in chapter 5 was to compare microvascular and 

macrovascular endothelial-dependent function between RA patients and healthy 

control participants.  It was hypothesised that RA patients would have worse 

endothelial function in the microvasculature and the macrovasculature when 

compared to healthy control participants.  A second aim of this study was to 
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examine the relationship between microvascular and macrovascular endothelial-

dependent function in RA patients as only a few studies have previously 

examined such associations in RA, and in vitro research suggests that these two 

vascular beds are distinct from each other.  It was hypothesised that these two 

vascular beds would be independent from each other in RA. 

 

Chapter 6 

The study presented in this chapter investigated predictors of endothelial function 

in RA.  The specific aims were to examine associations between disease-related 

inflammation and microvascular and macrovascular endothelial-dependent 

function in RA.  Similarly, associations between classical CVD risk factors and 

microvascular and macrovascular endothelial-dependent function in RA were 

also explored.  Chronically high levels of systemic inflammation would be 

expected to impair endothelial function, thus, it was hypothesised that 

inflammation would be associated with microvascular and macrovascular 

endothelial function in RA.  Classical CVD risk factors are strong predictors of 

endothelial function in the general population, and it was hypothesised that this 

association would remain for RA patients too.  

 

Chapter 7 

RA patients who were about to start anti-tumor necrosis factor-alpha (anti-TNF-α) 

therapy were followed up at 2 weeks and 12 weeks after treatment with 

simultaneous assessments of microvascular and macrovascular endothelial 

function.  The aim of this study was to examine the longitudinal effects of 

lowering inflammation on microvascular and macrovascular endothelial function.  

It was hypothesised that a reduction in disease activity with treatment would 

improve microvascular and macrovascular endothelial function.  
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Chapter 3: General Methods 
 

Participants 
 
Participant Details for Studies Presented in Chapter 5 and 6 

Ninety-nine rheumatoid arthritis (RA) patients were recruited from the 

rheumatology outpatient clinics of the Dudley Group of Hospitals NHS Trust, 

United Kingdom.  All patients met the retrospective application of the 1987 

revised RA criteria of the American College of Rheumatism [65].  Patients were 

excluded if they had previously confirmed acute coronary syndrome, established 

cardiovascular disease (CVD) or serious psychiatric disorder as indicated in their 

medical notes and/or on questioning during the initial consultation.  Thirty-two 

healthy control participants were recruited from hospital staff and their friends.  

The exclusion criteria were the same as for the RA patients.   

 

Participant Details for the study presented in Chapter 7 

Twenty-nine RA patients who were due to start anti-tumor necrosis factor-alpha 

(anti-TNF-α) treatment were recruited from the Rheumatology Outpatient Clinics 

of the Dudley Group of Hospitals NHS Foundation Trust, United Kingdom.  These 

patients were a subset of the ninety-nine RA patients that were recruited for the 

studies presented in chapters 6 and 7.  All RA patients satisfied the National 

Institute of Clinical Excellence guidelines which state that patients are eligible for 

anti-TNF-α treatment if they have severe disease and have had an inadequate 

response to at least two DMARD’s (one of which must be methotrexate).  All 

patients met the retrospective application of the 1987 revised RA criteria of the 

American College of Rheumatism [65].  The exclusion criteria were previously 

confirmed acute coronary syndrome, established CVD or serious psychiatric 

disorder.  From the 29 patients that were recruited, three patients withdrew from 

the study due to side-effects from the treatment, while three patients withdrew for 

personal reasons.  Therefore, data were analysed for the 23 remaining patients. 
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Protocol                        
Participants reported to the vascular laboratory after a 12 hour overnight fast 

between 7:00 am and 11:00 am.  They were asked to refrain from exercise 24 

hours before the session, and from smoking 12 hours before the session.  For 

ethical reasons, drug regimens were not interrupted.  The laboratory was kept at 

a constant temperature of 22oc.  All participants underwent a detailed clinical 

examination which included evaluation of their medical history and hospital 

records, and assessment of height, weight, body mass index (BMI) and body 

composition.  In addition, demographic information was collected from all the 

participants by questionnaire.  The disease activity score (DAS28) [68] and the 

Anglicised version of the Stanford Health Assessment Questionnaire (HAQ) [72] 

were also completed along with the patients global CVD risk scores.  Participants 

were then asked to lie semi-recumbent on an armchair for the remainder of the 

session.  Initially, patients were asked to lie quietly for 20 minutes, during which 

blood pressure measurements were taken.  A blood sample was obtained 

immediately after this initial rest period.  Participants then underwent 

assessments of arterial stiffness using pulse wave analysis and assessment of 

microvascular function using Laser Doppler imaging (LDI) with iontophoresis.  

This was followed by a further ten minutes rest.  After this, macrovasculature 

endothelial-dependent function was assessed using flow-mediated dilatation 

(FMD) and, following an additional ten minutes of rest, assessment of 

glyceryltrinitrate-mediated dilatation (GTN).  

 

Anthropometric and Body Composition 

Height was measured to the nearest centimetre using a standard height measure 

(Seca 214 Road Rod, USA).  Weight and body composition was assessed using 

a Tanita BC 418 MA Segmental Body Composition Analyser (Tanita Corporation, 

Tokyo, Japan).  For this assessment the participants stood on pressure-contact 

footpads on a scale platform while a small unnoticeable electrical current (50 

KHz, 800µA) was passed through the body.  The principle of bio-impedance 

analysis is dependent upon the resistance to the electrical current from the 
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tissues of the body.  Lean muscle tissue offers less resistance to the current due 

to high levels of water and electrolytes, whereas fat mass provides greater 

resistance to the electrical current.  Details of the participants age, height, gender 

and body type (standard or athletic) were entered in to the analyser, which 

subsequently produced readings for percentage body fat (%) and body mass 

index (kg/m2).  The measurements of the Tanita body composition analyser are 

within +/- 4 percentage points from measurements obtained from a dual energy 

x-ray absorptiometry scanner. 

 

Disease Activity Score 

A modified disease activity score incorporating a 28 joint count (DAS28) was 

used to assess the patient’s level of disease activity [68] (Appendix 1).  The 

DAS28 is the most commonly used disease activity score in the United Kingdom 

at present [525], and has good validity [526].  The DAS28 takes into account the 

total number of tender and swollen joints from 28 joints (fingers, wrists, elbows, 

shoulders, knees).  In addition, it utilises a visual analogue scale (VAS) with 

anchors of 0 (good health) and 100 (poor health) to indicate the patients global 

health on the morning of the test, as well as the erythrocyte sedimentation rate 

(ESR) [69].  All the variables are entered into the following equation to derive the 

DAS28 score: 

 

xVASESRxinswollenxtenderxDAS 0140700282802856028 .)(.)(.)(. +++=  

 
With Tender28 is the number of tender joints and Swollen28 is the number of swollen 

joints [68].  

 

Stanford Health Assessment Questionnaire 

The Anglicised version of the 40 item Stanford Health Assessment Questionnaire 

(HAQ) [72] was used to assess functional disability in the RA patients (see 

Appendix 2).  Patients rated their ability over the past week to carry out 20 

activities within eight aspects of daily living (dressing/grooming, rising, eating, 
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walking, hygiene, reach, grip and errands/tasks) on a four point Likert scale 

ranging from ‘without any difficulty’ to ‘unable to do’.  For each aspect, patients 

reported whether they received assistance from others or used specific devices 

(e.g. walking stick, stair-lifts or bath seats).  The highest scores from the eight 

areas were derived and increased by 2 if assistance was needed.  These eight 

scores were then averaged to yield the HAQ score.  A high HAQ score indicates 

greater functional disability.  There is good agreement between self reported 

ratings of HAQ with those reported by spouses and observations by 

physiotherapists in patients with RA [527].   

 
Global CVD Risk 

To calculate global CVD risk, two separate CVD risk algorithms were used.  The 

Framingham Risk Score (FRS) is a CVD risk calculator that incorporates a 

combination of CVD risk factors to estimate the likelihood of a fatal or non-fatal 

coronary heart disease (CHD) event (e.g. myocardial infarction) over the next 10-

years [528].  In contrast, the Systematic Coronary Risk Evaluation (SCORE) is a 

CVD risk prediction chart specifically for European populations and unlike FRS, is 

not limited to just coronary events as it provides the 10 year risk score of any first 

fatal CVD event (e.g. stroke or ruptured abdominal aneurysm) [529].  Participants 

were also screened for the presence of the metabolic syndrome.  The metabolic 

syndrome reflects an accumulation of several classical CVD risk factors, and 

confers a risk that is greater than the sum of its individual components [530].  All 

of these measures are described in detail below.  

 

Framingham Risk Score  

The risk factors used by the FRS are sex, age, total cholesterol level (TC), high 

density lipoprotein cholesterol (HDL-C) level, systolic blood pressure (SBP), 

diastolic blood pressure (DBP) as well as the presence of diabetes and smoking 

status [528].  All details were entered into an online FRS calculator 

(http://www.mdcalc.com/framingham-cardiac-risk-score) which used a scoring 

algorithm presented by Wilson and colleagues [528]. The level of CHD risk was 

http://www.mdcalc.com/framingham-cardiac-risk-score�
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categorised into the following three categories 1) low risk (<10% CHD risk at 10 

years), 2) intermediate risk (10-20% CHD risk in 10 years), 3) high risk (>20% 

CHD risk in 10 years) according to previously established criteria [531].  A high 

FRS has been shown to associate with coronary artery calcification in RA [532]. 

 

Systematic Coronary Risk Evaluation  

The SCORE was calculated using validated risk tables.  The variables 

incorporated into the table included age, sex, smoking, SBP, TC and HDL-C 

levels.  Several tables containing the above variables have been designed, 

allowing SCORE to be calculated specifically for TC levels (TC SCORE) and 

TC:HDL ratios (TC:HDL SCORE) for both high and low risk populations [529].  In 

the present study, the high risk table was utilised due to the UK being classified 

as a high risk country for CVD.  Participants can be classified at high risk of CVD 

if their 10 year risk of CVD mortality is ≥ 5% [529].  At present, there is no data on 

the validity of this utility in RA patients.   

 

Metabolic Syndrome  

Metabolic syndrome was classified according to World Health Organisation 

(WHO) criteria [533].  The mandatory criterion for diagnosis of metabolic 

syndrome is that the participants must have an impaired glucose tolerance test, 

or diabetes mellitus or insulin resistance.  In addition, at least two out of five of 

the following criteria must also be present: obesity (BMI > 30 kg/m2), 

hypertension (≥140/90 mmHg), low HDL cholesterol (men: < 0.9 mmol/l, women: 

< 1.0 mmol/l), high TG (≥ 1.7 mmol/l) and high albumin/creatinine ratio (≥ 30 

mg/l).   

 

Blood Pressure  

Four blood pressure measurements of SBP and DBP were taken during the initial 

rest period at minutes 14, 16, 18 and 20 using an automatic blood pressure 

monitor (Datascope Accutor, USA).  The four blood pressure measurements 
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were averaged to give a single resting value.  Pulse rate was also obtained from 

the blood pressure monitor.   

 
Endothelial Function 
 
Pulse Wave Analysis 

Non-invasive assessment of radial artery waveforms (pulse wave analysis) was 

recorded using an applanation tonometer (SphygmoCor Px Pulse Wave Analysis, 

ScanMed Medical Instruments, UK).  After the recording of brachial blood 

pressure, the right radial artery was palpated to identify a suitable pulse.  The 

applanation tonometer was positioned over the artery with enough pressure to 

flatten (but not occlude) the patient’s radial artery.  The applanation tonometer 

records the first and second systolic peaks and then displays the augmentation 

index (AIx).  The AIx is calculated as the difference between the first and second 

systolic peak and is expressed as a percentage of the pulse pressure [400].  The 

pressure waveforms in the radial artery were recorded for an 11 second period.  

The software integrated in the analyser displayed an operator index which 

reflects the quality of the recorded waveform.  If the operator index was low (< 

65), another reading was taken.  Three readings with an operator index > 65 

were used for analysis.  The average AIx of these three readings was calculated.         

 

Laser Doppler Imaging with Iontophoresis  

Endothelial function of the microvasculature was assessed non-invasively using 

Laser Doppler Imaging (Moor LDI 2 SIM, Moor Instruments Ltd, UK) by a single 

observer (AS).  The participants remained in a semi-recumbent position in the 

armchair and their right arm was comfortably strapped to a firm pillow to prevent 

movement during the assessment.  Two perspex chambers (internal diameter: 

22mm) with an internal platinum electrode (ION 6, Moor Instruments Ltd, UK) 

were connected to an iontophoresis controller (MIC-Ie, Moor Instruments Ltd, 

UK).  The chambers were attached to the volar aspect of the participant’s right 

forearm using double sided adhesive pads.  One chamber was connected to the 
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anodal connection of the iontophoresis controller and contained a 2.5ml dose of 

1% acetylcholine (ACh, endothelial-dependent) (Sigma Chemical Co, USA).  The 

second chamber was connected to the cathodal connection and contained a 

2.5ml dose of 1% sodium-nitroprusside (SNP, endothelial-independent) (Sigma 

Chemical Co, USA).  The vehicle for drug delivery was 0.5% sodium chloride.  

The chambers were covered by 32mm coverslips to prevent leakage of fluid.  

After a baseline scan, ten scans were recorded during iontophoresis of the 

vasoactive agents using a 30µA current, followed by two scans during recovery 

(i.e. when iontophoresis was stopped).  The total duration of the assessment was 

8 minutes 20 seconds.  Measurements of perfusion were carried out offline by a 

single observer (AS) who was blinded to the identification of the participants.   

 

The principles of LDI involve the reflection of a laser beam light from 

moving red blood cells (Doppler shift).  The reflected laser light is then detected 

by photodetectors in the scanner head which converts the signal into arbitrary 

perfusion units (PU) and displays a colour coded image of vessel perfusion [371].  

The distance of the laser beam from the site of iontophoresis was automatically 

measured by the Laser Doppler Imager.  The LDI image analysis software was 

used to mark a region of interest within the outer diameter of the two chambers.  

The median perfusion units for each of the scans were used to identify the level 

of perfusion of each scan.  Further analysis was conducted to identify the 

percentage increase in perfusion during iontophoresis relative to the baseline 

perfusion for ACh and SNP separately.  For this, the following formula was used: 

 

100×⎟⎟
⎠

⎞
⎜⎜
⎝
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Flow-Mediated Dilatation and Glyceryl-Trinitrate Medicated Dilatation 

Assessment of macrovascular endothelial function was assessed by imaging the 

left brachial artery by an experienced ultrasonographer (AS) using Doppler 
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ultrasound equipped with a 5 MHz linear array transducer (Acuson Antares 

ultrasound system and SieClear, BW SieScape Imaging software, Siemens 

PLC).  The assessment was conducted according to previously established 

guidelines [534].  Specifically, the brachial artery was scanned longitudinally 2-10 

cm above the antecubital fossa.  The depth and gain features were set to 

optimise the image and once a clear image had been obtained the ultrasound 

transducer was locked into place using a stereotactic clamp.  An external 

computer was connected to the ultrasound machine so that all images could be 

recorded using vessel image analysis software (VIA) at 25 frames per second.  

To allow the software to automatically record vessel diameter, a predetermined 

region of interest was marked to detect and track the anterior and posterior walls 

[535].  The protocol for flow-mediation dilatation (FMD, endothelial-dependent) 

involved a 2 minute baseline scan of the artery, after which a cuff placed around 

the wrist was inflated to 300 mmHg for 5 minutes.  The vessel was continuously 

scanned throughout the occlusion period.  At 5 minutes the cuff was released to 

induce reactive hyperaemia and the subsequent dilatation of the vessel was 

imaged for a further 2 minutes.  Then following ten minutes of rest, endothelial-

independent responses were examined by asking the participant to place a 500 

microgram GTN tablet (Alpharma, UK) under the tongue for five minutes while 

the vessel was imaged continuously.  Analysis of the brachial artery diameters 

were performed offline by the same ultrasonographer who was blinded to the 

identification of the participant.  The data were digitised at approximately 20 Hz, 

and were time stamped to the nearest second. These data were collapsed into 

one-second epochs and exported to a digital signal analysis package (Spike 2 

v6, CED) where they were filtered with a 3 second moving average filter.  The 

baseline diameter was established from the 120 seconds of data prior to the cuff-

inflation.  The baseline region was visually inspected and artefacts were 

excluded. The remaining baseline regions were averaged to produce the 

baseline diameter.  For the FMD analysis, the post cuff-deflation region was 

automatically scanned for peak dilation and this peak was marked for visual 

inspection.  If the peak had been misidentified, the operator had the opportunity 
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to select a more confined region within which the peak could then be identified.  

The peak value was then recorded as peak RH diameter.  For the GTN data, an 

identical procedure was adopted to that used with FMD, except that the search 

for peak dilation was made in the region following the five minutes of drug 

administration.  The equation used to calculate both FMD and GTN was as 

follows: 

 

 
100% ×⎟
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Blood Sample Analysis 
 

Blood sampling 

Blood was collected from the participant’s antecubital vein using a 23G butterfly 

needle (Greiner Bio One GMBH, Austria).  Two 4ml Z Serumsep Clot Activator 

Vacuette® tubes were collected for the assessment of C-reactive protein (CRP), 

TC, triglycerides (TG) and HDL-C.  Blood for glucose analysis was collected in 

2ml FE Sodium Flouride/K3 ethylenediaminetetraacetic acid (EDTA) tubes. One 

K2EDTA Vacuette® tube was collected to measure erythrocyte sedimentation 

rate (ESR).  A blood sample for measurement of insulin was collected in one 4ml 

Z Serumsep Clot Activator Vacuette® tube.  One 9NC Coagulation Sodium 

Citrate 3.2% Vacuette® tubes was collected to measure fibrinogen.  All samples 

were analysed immediately (see below for methods).  

 
Laboratory Methods 

A Vitros® 5.1 FS Chemistry system was used to measure TC, TG, HDL-C and 

glucose.  The system incorporates the use of a slide which is specific to each 

biochemical test.  The slide consists of multiple layers of analytical elements.  A 

small amount of the participant’s serum was placed on the slide and was then 

evenly spread so as to penetrate the underlying layers.  The serum sample was 
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then entered into a reagent layer containing specialised dye.  The dye attaches to 

the chemical to be measured from the serum.  Reflectance spectrophotometry 

was used to measure the colour-complex which was formed when the chemical 

attaches to the dye.  The amount of chemical bound dye is proportional to the 

concentration of the chemical which is being measured.  

 

Measurement of CRP was also carried out by the Vitros® 5.1 FS Chemistry 

system using a heterogeneous sandwich immunoassay format.  The format uses 

calcium as a capture agent, and a derivative of phosphorylchoine (PC) is 

covalently bound to polystyrene polymer beads.  A signal was generated using 

monoclonal anti-CRP antibody labelled with horseradish peroxidase.  The 

participant’s serum was placed on the slide and was spread to penetrate the 

underlying layers of the slide.  The CRP then binds to the PC-linked capture 

beads and the monoclonal anti-CRP antibody forming an insoluble sandwich 

complex.  The slide was then washed using specialised fluid.  The fluid also 

produces hydrogen peroxide needed for the enzyme-mediated oxidation of the 

lueco dye. The reflection density of the dye was measured and was proportional 

to the CRP concentration of the sample.   

 

ESR was measured using the Starrsed Compact (Mechatronics BV, 

Netherlands).  A total of 10ml of undiluted blood, anti-coagulated with EDTA is 

inserted in a vertical tube. The sedimentation (in millimetres) of the red blood 

cells at one hour gives the value of ESR. 

 

Insulin was estimated from serum stored at -20oC.  The Immunolite 2500 

insulin was used on the Immulite 2500 analyser (Diagnostic Products 

Corporation, USA).  A solid phase two-site chemi-luminescence immunometric 

assay was used to detect insulin.  Insulin sensitivity was assessed by calculating 

the Homeostasis Model Assessment Insulin Resistance (HOMA IR) and 

Quantitative Insulin Sensitivity Check Index (QUICKI), as previously described 

[536,537].   
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Fibrinogen was measured by photo-optical clot detection based on the 

Clauss quantitative fibrinogen method.  The measurement was performed in an 

automated coagulation analyser (ACL Futura Plus, Instrumentation Laboratory, 

UK).  In the Clauss method, thrombin is added at 50-100 µ/mL to the plasma and 

the time it takes for clot formation (reaction time) is recorded.  The rate of this clot 

formation is a function of fibrinogen concentration.  Using a comparison with a 

standard curve, the reaction time is converted to give a value of fibrinogen 

expressed in mg/dL. 

 
Rheumatoid Factor (RF) was determined using the manual particle 

agglutination method (MAST diagnostics, Merseyside, UK).  The test involves an 

immunological reaction between RF in the serum and matching human IgG 

antibodies which are coated onto polysterene latex particles.  Agglutination is 

observed when serum containing RF is mixed with the latex containing the 

human IgG antibodies.  This process allows for the detection of serum RF and 

positive tests are quantified using an Enzyme-Linked Immuno-Sorbent Assay 

(ELISA).  This involves the addition of diluted serum to wells which are coated in 

purified antigen allowing formation of antigen-antibody complexes.  The wells are 

incubated at room temperature and unbound material is washed away.  To 

immobilise the antibodies, horseradish peroxidase conjugated anti-IgG 

monoclonal antibody is added.  The wells are then incubated again and washed 

as before.  Following this, cycle tetra-methyl benzidine substrate is added to each 

well and change of the colour to dark blue confirms the presence of an antigen-

antibody complex.  Adding a stop solution turns the mixture yellow, the colour 

intensity measured by photospectrometry is proportional to the concentration of 

the antibodies in the original sample.  

 

Data Handling and Statistical Analysis 
 
All data entry and statistical analysis was performed using SPSS 15 (SPSS Inc, 

Chicago, Illinois).  Data was checked for normal distribution using the 
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Kolmogorov-Smirnov test, and non-normally distributed variables were log 

transformed. 

 

Chapter 4 

Analysis of all physiological measurements was performed using a series of 2 

Session (Session 1, Session 2) analyses of variance (ANOVA).  For endothelial 

function, Pearson correlations were conducted to examine relationships between 

session 1 and session 2 endothelial function.  In addition, coefficients of variation 

(CofV) were calculated for baseline and post-stimulus changes in perfusion (ACh 

and SNP) and vessel diameter (FMD% and GTN%) for session 1 and session 2 

(temporal reliability).  To calculate CofV the following equation was applied:  

 

100×⎟
⎠
⎞
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Chapter 5 

Differences between patients and healthy controls were tested using univariate 

analysis of co-variance (ANCOVA) for continuous variables and Chi Squared test 

for discontinuous variables.  The ANCOVA was preferred over the t-test as it 

allows factors that differ between groups to be co-varied in the analysis.  As the 

healthy control participants were significantly younger than the RA patients all 

analysis presented in this chapter 5 were corrected for age using ANCOVA.  

Pearson’s correlations were used to assess the relationships between 

microvascular and macrovascular endothelial-dependent function.   

 

Chapter 6 

To assess independent determinants of vascular function, linear regression 

(continuous variables) and logistic regression (discontinuous variables) were 

used.  Inflammatory markers, global CVD risk and CVD risk factors were entered 

as independent variables with each measure of vascular function entered 

separately as the dependent variable.  In addition, differences in general 
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characteristics and endothelial function between RA patients with low, moderate 

or high DAS28 were analysed using univariate ANOVA.  For this analysis RA 

patients were categorised according to their DAS28 score into low disease 

activity (DAS28 <3.2), or high-disease activity (>5.1) according to previously 

established criteria [538].  RA patients were also split according to their 

endothelial function scores into 3 equal groups: low endothelial function, 

moderate endothelial function and good endothelial function.  Univariate ANOVA 

was used to assess differences in general and disease-related characteristics 

between these three groups.  Chi squared test was used to examine differences 

in medication use between the categories of endothelial function.  Finally, the 

beta coefficients of all significant associations were compared to the 

corresponding beta coefficient in healthy controls.  The beta coefficients were 

transformed into z scores for this analysis (described in greater detail in Chapter 

6). 

 

Chapter 7 

Changes in each parameter of endothelial function, CVD risk and disease-related 

measurements were assessed using 3 X time (pre-treatment baseline, 2 weeks, 

and 12 weeks) repeated measures Analysis of Variance (ANOVA).  Fisher LSD 

post-hoc tests were used for pair-wise comparisons where appropriate. Pearson 

correlations were used to examine whether changes in endothelial function 

related to changes in disease-related inflammation.  The change in endothelial 

function and disease-related parameters at 2 and 12 weeks was calculated by 

subtracting the pre-treatment baseline values from the values obtained at 2 and 

12 weeks.   

 
 

 
 
 
 
 

 



98 
 

Chapter 4: Examining the Reliability of Microvascular and 
Macrovascular Endothelial Function Measurement 

 

 
Introduction 
The endothelium is the innermost lining of the vasculature and is involved in the 

maintenance of vascular homeostasis via the regulation of a multitude of 

vasoactive processes.  Disruption to these processes may predispose the vessel 

to atherosclerosis and increase the risk for cardiovascular disease (CVD) [539].  

Peripheral endothelial function is a good indicator of early abnormalities in the 

vascular wall [202].  Further, measures of peripheral endothelial function have 

been shown to reflect coronary endothelial function [351-353], and as such are 

regarded as good predictors of cardiovascular disease [356,357,540,541].  This 

is perhaps hardly surprising given that atherosclerosis is now broadly appreciated 

to be a systemic disorder [193].  Peripheral vascular assessment typically 

quantifies the vasodilatory response of the vessel to a specific stimulus, with an 

attenuation of the dilatory response indicative of endothelial dysfunction [542].  

Peripheral endothelial function can be measured in different vascular beds; Laser 

Doppler imaging (LDI) with iontophoresis of vasodilator agonists is used to 

assess microvascular endothelial function [371], whereas flow-mediated 

dilatation (FMD) in the brachial artery is used to assess macrovascular 

endothelial function [378].    

 

The use of LDI with iontophoresis of vasodilator agonists has increased in 

recent years, largely due to its non-invasive nature and ease of use.  

Iontophoresis propels charged vasoactive agents such as Acetylcholine (ACh) 

and Sodium Nitroprusside (SNP), which are used to assess endothelium-

dependent and endothelium-independent function respectively, into the skin 

using a weak electrical current [361].  Once through the skin, ACh binds to 

endothelial cell muscarinic receptors which release NO to cause vasodilatation.  

SNP directly activates smooth muscle cell receptors to allow for maximum 
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vasodilatation of the vessel [362].  Non-vasoactive substances such as sodium 

chloride (NaCl) or deionised water are used as vehicles for transporting the 

agents into the skin microvessels [367,543].  The LDI then simultaneously scans 

the iontophoresed areas to monitor changes in microvascular perfusion.  

Endothelial function is typically quantified as the percentage increase in perfusion 

in response to iontophoresis, relative to baseline perfusion.  The advantage of 

LDI is that it can simultaneously scan multiple points in a given area and can 

therefore account for cellular movement artefacts and spatial differences of skin 

blood flow, both of which can affect the perfusion of the vessel [544,545].  

Biological factors and behavioural factors have been reported to affect the 

reliability and repeatability of the technique.  For example, circadian variation and 

smoking have been shown to influence microvascular function [369,546].  

Controlling for such factors reduces the variability of the measurement and 

improves accuracy.  It is important for laboratories to assure the stability of their 

assessments and to demonstrate that adequate standards of reproducibility for 

their specific protocols are met  [371]. 

 

 In the macrovessels, flow-mediated dilatation (FMD) and glyceryl-trinitrate 

mediated dilatation (GTN) are performed to assess endothelium-dependent and 

endothelium-independent function respectively [378].  FMD is typically carried out 

in the brachial artery.  A cuff is used to occlude arterial blood flow for 5 minutes; 

release of this cuff causes a sudden increase in blood flow (reactive hyperaemia) 

through the brachial artery resulting in dilatation of the vessel.  FMD is expressed 

as the percentage increase in post-cuff release vessel diameter relative to the 

baseline diameter.  The baseline and post-cuff release diameter are quantified by 

ultrasound imaging of the vessel with subsequent assessments of the vessel 

diameter performed manually [378] or using automated edge detection software 

[535,547].  The use of GTN allows for assessment of the maximum vasodilator 

tone via GTN’s action on smooth muscle cells [232].  Similar to FMD, the GTN 

response is quantified by the percentage increase in brachial artery diameter in 

response to GTN relative to baseline values.  
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FMD is a highly sensitive measure of endothelial function, as small 

changes in vascular diameter can elicit large FMD responses.  For example, 

typical FMD values for healthy participants range from 5-10% [251], which 

corresponds to a 0.25-0.5mm change in arterial diameter for an artery with a 

diameter of 5mm.  Given such small changes to the arterial diameter, careful 

attention must be paid to technical and biological factors that may influence the 

measurement.  Recent technical advances include the use of automated wall 

tracking software which detect and calculate arterial diameters in real-time.  This 

greatly reduces the variability found with manually measuring arterial diameters 

[535,547], which can be anywhere between 1.8-50% [548,549].  A study by 

Hijmering et al. 2001 [550] showed that by using automated wall-tracking 

software the reproducibility of baseline brachial artery diameter was excellent 

(coefficient of variation (CofV): 1.1%), although reproducibility of FMD was less 

impressive (CofV: 13.9%)  The researchers suggested that the reproducibility of 

the baseline diameter was indicative of adequate control of technical factors, and 

that biological and behavioural factors may contribute to the larger variation 

observed with the FMD response.  Indeed, FMD can be affected by a variety of 

biologic and behavioural factors such as sympathetic activation [551], sleep 

deprivation [385], caffeine consumption [387], smoking [388], antioxidant therapy 

[389] and time of day [391] (Table 1).  Accordingly, it is important to control for 

these factors [380].   

 

 Table 1.  Factors which can affect endothelial function 

Authors Factor Vascular Bed 

Elherik et al. (2002) [369] Circadian variation Microvasculature 

Pellaton et al. (2002) [546] Cigarette smoking Microvasculature 

Hijmering et al. (2002) [551] Sympathetic activation Macrovasculature 

Takase et al. (2004) [385] Sleep deprivation Macrovasculature 
Papamichael et al. (2005) 
[387] 

Caffeine consumption Macrovasculature 

Lekakis et al. (1997) [388] Cigarette smoking Macrovasculature 
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Engler et al. (2003) [389] Antioxidant therapy Macrovasculature 
Etsdua et al. (1999) [391] Time of day Macrovasculature 

 

Although guidelines for both LDI and FMD have been established 

[371,380], normative data are yet to be published; this is mainly due to 

differences in methodology between studies [552] .  At present, the guidelines 

stipulate that each individual vascular laboratory conduct their own test-retest 

reliability studies which assess stability of the methods over time (temporal 

reliability) and between the different assessors of the study (inter-assessor 

reliability).  Thus, the aim of the present study was to assess the reliability of LDI 

and FMD assessments on two separate occasions as well as the reliability of the 

assessments between two assessors in a group of healthy participants who 

underwent measurement in conditions that carefully controlled for technical and 

biological factors.  

 
Methods 
 
Participants 
Twelve healthy adults (age: 31.2 ± 6.2 years, body mass index: 24.1 ± 0.3 kg/m2, 

7 females) were recruited from the staff of the Rheumatology Department of the 

Dudley Group of Hospitals NHS Trust, United Kingdom.  Participants had no 

known diseases and were not taking any vasoactive medication.  They were 

asked to refrain from exercise for 24 hours and smoking for 12 hours before each 

session. 

 

Study Protocol                        
All participants attended the vascular laboratory on two separate sessions after a 

12 hour fast between 7:00am and 11:00am.  The same observer conducted both 

sessions, with identical protocols.  The laboratory was kept at 22oC.  Upon arrival 

at the laboratory all procedures were explained.  Following this, height and 

weight were measured.  The participants were then asked to assume a semi-
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recumbent position on a bed where they remained for the rest of the session.  

They initially rested for ten minutes, during which blood pressure measurements 

were initiated at minutes 4, 6, 8 and 10.  At the end of the rest period a blood 

sample was taken (data not reported).  Subsequently, endothelial function was 

assessed in the microvasculature using LDI with iontophoresis, after which there 

was another ten minutes rest.  Subsequently, macrovascular endothelial function 

was measured using FMD and following a further 10 minutes rest; assessment of 

glyceryltrinitrate-mediated dilatation (GTN) was undertaken.  

 
Anthropometric Assessment 
Height was measured to the nearest 0.5cm using a standard height measure 

(Seca 214 Road Rod).  Weight was assessed using a Tanita BC 418 MA 

Segmental Body Composition Analyser (Tanita Corporation, Tokyo, Japan).  BMI 

was calculated as body weight divided by the square of the height (kg/m2). 

 
Blood Pressure  
Systolic and diastolic blood pressure and pulse rate was recorded using a 

standard cuff placement over the brachial artery and a semi-automatic blood 

pressure monitor (Datascope Accutor, USA).    

 

Assessment of Vascular Function 
Microvascular endothelial function was assessed using iontophoresis of 

acetylcholine (ACh) and sodium nitroprusside (SNP) along with Laser Doppler 

Imaging.  Flow-mediated dilatation (FMD) and glyceryl trinitrate-mediated 

dilatation (GTN) were used to assess macrovascular endothelial function.  These 

assessments are described in greater detail in the General Methods section (see 

Chapter 3). 

 
Statistical Analyses 

The blood pressure and pulse rate data were averaged separately to yield a 

mean value.  Subsequently, a series of 2 Session (Session 1, Session 2) 
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analyses of variance (ANOVA) was conducted on all physiological data.  For the 

vascular assessments only, correlations were computed between session 1 and 

session 2.  Coefficients of variation (CofV) were calculated for baseline and post-

stimulus changes in perfusion (ACh and SNP) and vessel diameter (FMD% and 

GTN%) for session 1 and session 2 (temporal reliability).  To calculate CofV the 

following equation was applied:  

 

100×⎟
⎠
⎞

⎜
⎝
⎛=

coresMeanofTwoS
nTwoScoresenceBetweeSDofDifferCofV  

 

In addition, to assess the agreement between the vascular assessments, Bland 

and Altman plots were constructed [553]. 

 

Results 
 
Participant Characteristics  

Participant characteristics are displayed in Table 2.  None of the variables varied 

over time (p > .05).  

 

Table 2.  Participant characteristics in each session 

Participant Characteristics  Session 1  Session 2 

Age (years)  31.2 ± 6.2   ‐‐‐‐‐‐‐‐‐ 

Height (cm)  171  ± 12  ‐‐‐‐‐‐‐‐‐ 

Weight (kg)  70.3 ± 8.9  70.2 ± 9.0 

Body Mass Index (kg/m2)  24.2 ± 3.0  24.3 ± 3.3 

Systolic Blood Pressure (mmHg)  118 ±  9  118 ± 8 

Diastolic Blood Pressure (mmHg)  71 ± 9  70 ± 9 

Heart Rate (bpm)  67 ± 10  64 ± 8 

Results are expressed as mean ± SD 
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Vascular Assessments 
 

Microvascular Endothelial Function 

 Baseline perfusion for ACh and SNP is displayed Table 3.  As can be seen, 2 

Session ANOVAs revealed that there were no Session effects for baseline ACh 

and SNP perfusion.  Correlational analyses showed strong positive associations 

between the two sessions in the baseline ACh and SNP perfusion for the 

assessor, r (10) = .97, p < .001, and r (10) = .99, p < .001 respectively,  

 

Table 3 also shows the percentage increase in perfusion in response to 

ACh and SNP.  For ACh% and SNP% no Session effects were evident. 

Correlational analyses yielded a strong positive association between the two  

sessions for percentage increase in response to ACh and SNP, r (10) = .99, p < 

.001, and r (10) = .99, p < .001 respectively.   

 

 

Macrovascular Endothelial Function 

Baseline FMD and GTN diameter are reported in Table 4.  ANOVA showed no 

Session effects for baseline FMD or GTN diameter.  Correlational analyses 

showed a strong positive association between the two sessions in the baseline 

FMD and GTN diameters r (10) = .99, p < .001 and r (10) = .96, p < .001, 

respectively.   

Table 3: Baseline perfusion and percentage increase in perfusion in response to ACh 

and SNP 

  Session 1  Session 2  Session Effect 

Endothelial Function      F (1, 11) = 

Baseline ACh Perfusion (PU)  40 ± 12  41 ± 9  0.19 

Baseline SNP Perfusion (PU)  41 ± 19  39 ± 19  4.22 

ACh (%)  584 ± 262  596 ± 266  2.89 

SNP (%)  482 ± 240  490 ± 230  1.04 

Results are expressed as mean ± SD 
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Percentage increase in the FMD and GTN sessions is displayed in Table 4.  No 

Session effects were found for FMD or GTN percentage increases.  Correlational 

analysis revealed strong associations between sessions in the FMD% and 

GTN% r (10) = .99, p < .001 and, r (10) = .95, p < .001, respectively.  

 

 

Co-efficient of Variation 

The intra-assessor CofV for baseline perfusion of the ACh and SNP assessments 

were 4.3% and 3.9% respectively.  For percentage change in perfusion in 

response to ACh and SNP, the intra-assessor CofV was 6.5% and 5.9% 

respectively.   

 

For baseline diameters in the FMD and GTN assessments, the intra-

assessor CofV was 2.5% and 5.0% respectively.  For FMD% and GTN%, the 

intra-assessor CofV was 10.7 and 8.11% respectively.   

 

Bland Altman Plots 
 

For the microvascular assessments, Bland Altman Plots did not show any 

systematic bias in the response to ACh and SNP, and most values were within 2 

standard deviations from the average (Figure 1a & b). 

Table 4: Baseline diameter and percentage increase in FMD and GTN diameters  

  Session 1  Session 2  Session Effect 

Endothelial Function      F (1,11) = 

Baseline FMD Diameter (mm)  3.9 ± 0.7  3.8 ± 0.6  0.80 

Baseline GTN Diameter (mm)  3.8 ± 0.6  3.7 ± 0.6  4.38 

FMD (%)  6.1 ± 5.2  6.0 ± 4.8  0.03 

GTN (%)  21.3 ± 5.8  21.0 ± 5.4  0.39 

Results are expressed as mean ± SD 
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a) 

 
 

b) 

 
Figure 1. Bland Altman scores for ACh (a) and SNP (b) responses for session 1 and 

session 2.   
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There was no systematic bias in the macrovascular assessments, as all values 

were within 2 standard deviations from the average (Figure 2a & b). 
 

a) 

 
 

b) 

Figure 2. Bland Altman Scores for FMD (c) and GTN (d) responses for session 1 and 

session 2.  
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Discussion 

Assessments of microvascular endothelial function using LDI with iontophoresis, 

and assessments of macrovascular endothelial function using FMD with Doppler 

Ultrasound demonstrated good intra-assessor reproducibility.  The day to day 

variation in LDI seen in the present study was comparable to other studies that 

had adequately controlled for factors known to affect vascular function [552,554-

556].  The findings of our study provide further support for the Standardisation 

Group of the European Society of Contact Dermatitis guidelines on assessment 

of microvascular blood flow using LDI [557], which stipulate that good intra-

observer reliability can be achieved when biological and environmental factors 

are adequately controlled.  Further, careful set up and management of equipment 

and use of validated protocols further reduces variability [367,371].   

      

FMD is also susceptible to environmental and biological variations [380], 

and in contrast to LDI, is highly user-dependent.  Reported CofV for FMD range 

from 1 – 84% [558], although not all studies calculate CofV in a uniform and 

consistent manner.  For example, some studies report the CofV as the mean 

difference between measurements, which results in lower values [535,559].  

However, even when the technique is performed by competent 

ultrasonographers with external factors controlled, there remains a high CofV.  

For example, the study by De Roos et al. [548] reported an intra-assessor CofV 

of 50.3%.  Similarly, Tyldum et al. [560] found an intra-assessor CofV of 29.1%.  

In both of these studies, the analyses of the brachial artery diameters were 

carried out by manually identifying the vascular wall.  Such analysis has been 

suggested to increase the variability seen with this technique, due to imaging 

artefacts such as false borders, noise from the ultrasound signal, and distorted 

vessels which all compromise the accuracy of the readings [547].  Recent 

developments in continuous automated edge-detection software have greatly 

improved the detection of the vascular wall boundaries [535,547].  In the present 

study, Vascular Image Analysis (VIA) software was used to measure the brachial 

artery diameter.  The VIA software was developed using artificial neural networks 
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which ‘learnt’ how to detect and differentiate between the vascular wall and non-

wall tissues from a series of ultrasound scans of the carotid artery.  The neural 

networks were able to correctly distinguish the vascular wall in 97% of the scans 

[561].   Additionally, the software takes continuous measurements to account for 

the cardiac cycle, allowing a more complete profile of the vessel diameter.   In the 

present study, we maintained adequate control of external factors, and used the 

VIA software.  This resulted in low CofV similar in magnitude to those observed in 

other studies that have used automated edge-detection software [550,562].  The 

actual contribution the VIA software makes to reproducibility does need further 

investigation in studies which incorporate repeated measurements of FMD, and 

compare the analysis of the diameters measured both manually and with the VIA 

software.   

 

In conclusion, we found high reproducibility for measurements of 

endothelial function in both the microvasculature and macrovasculature.  These 

techniques can therefore be usefully applied in clinical populations for diagnostic 

purposes and to predict risk for CVD [356,357,540,541]. 
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Chapter 5: Assessing Microvascular and Macrovascular 
Endothelial Function in Patients with Rheumatoid Arthritis 

 

Introduction 
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease of the joints 

with predominant symptoms of pain, swelling and stiffness [1].  Patients with RA 

also have a number of extra-articular manifestations such as vasculitis and 

Felty’s syndrome, which are associated with an increased risk of mortality [59].  

One of the most common extra-articular manifestations is cardiovascular disease 

(CVD), accounting for up to 50% of all deaths in RA [121,428].  Interestingly, 

cardiovascular co-morbidity is evident in both long and short disease durations 

[119,563].  At present, the exact mechanism for CVD in RA is not known, 

although a number of factors have been postulated, including RA-related 

inflammation [439] and the presence of traditional risk factors such as 

hypertension, dyslipidemia and insulin resistance  [149,167,440].   

 

One of the earliest manifestations of CVD is endothelial dysfunction (ED), 

which occurs when the endothelial cells are exposed to injurious stimuli such as 

reactive oxygen species or lipid deposits [202,539].  Once exposed to these 

stimuli, levels of the atheroprotective molecule nitric oxide (NO) are reduced, 

leading to a reduction in endothelial cell function [539].  Endothelial function can 

be assessed in both the microvasculature and macrovasculature of the peripheral 

circulation [382], which are reflective of coronary endothelial function [351-

353,379].  Peripheral assessments of endothelial function are thought to be good 

predictors of long-term cardiovascular events in individuals with atherosclerosis 

[354,356,404,564], peripheral vascular disease [540] and in healthy older 

participants [565].  ED has also been associated with a number of CVD risk 

factors such as hypertension, dyslipidemia, insulin resistance and obesity [359].  

In RA patients, studies have shown poorer endothelial function when compared 

with controls of a similar age and sex in both the microvasculature and 

macrovasculature [431,436,455,459], and this has largely been attributed to high 
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systemic levels of inflammation [439]  However, the majority of the studies have 

assessed endothelial function in a single vascular bed, with almost no studies 

investigating endothelial function in different vascular beds in the same 

participant.   

 

Studies that have assessed associations between microvascular and 

macrovascular endothelial-dependent function in healthy individuals have 

reported mixed findings, with some reporting an association between 

microvascular and macrovascular endothelial-dependent function [566,567], but 

others reporting no association [568,569].  For example, improvement in 

microvascular endothelial-dependent function was unrelated to improvements in 

macrovascular endothelial-dependent function after an exercise intervention in 

healthy participants and participants with CVD [570].  Collectively, these findings 

do not provide conclusive evidence that the endothelial function of one vascular 

bed is associated with function in another.  Further, there is evidence which 

suggests that endothelial cells in different segments of the vasculature respond 

differently to a given stimulus, and that the process of atherosclerosis is not the 

same in different vascular beds [571].  In diabetes, for example, it is known that 

vascular disease coexists in different sized vessels [572].  Initially, though, 

atherosclerotic changes occur primarily in the microvasculature [573], which may 

eventually contribute to the pathogenesis of macrovascular disease [574].   

 

As mentioned above, the majority of studies that have examined 

endothelial function in RA patients have restricted their assessments to a single 

vascular bed, focusing mainly on the macrovasculature.  To our knowledge, only 

one study has examined microvascular and macrovascular endothelial function at 

the same time in patients with RA [451].  Although endothelial function was 

reported to be impaired in both vascular beds, there was no association between 

the two vascular beds.  Interestingly, 50% of RA patients with evidence of 

myocardial perfusion defects in response to a pharmacological challenge showed 

angiographically “pristine” coronary arteries, suggesting that their ischaemia was 
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due to microvascular dysfunction rather than overt epicardial coronary artery 

disease [575].  Therefore, the inter-relationship between microvascular and 

macrovascular endothelial function warrants further investigation 

 

The first aim of the present study was to compare microvascular and 

macrovascular endothelial-dependent function between RA patients and healthy 

control participants.  Due to the characteristically high levels of systemic 

inflammation in RA it was hypothesised that RA patients would have worse 

endothelial function in the microvasculature and the macrovasculature when 

compared to healthy control participants.  The second aim was to examine 

relationships between microvascular and macrovascular endothelial-dependent 

function in RA, as only a few studies have previously examined such 

associations in RA, and in vitro research suggests that these two vascular beds 

are distinct from each other.  It was hypothesised that these two vascular beds 

would not be associated with each other. 

 

Methods 

 

Participants 
Ninety-nine patients with RA were recruited from the Rheumatology outpatient 

clinics of the Dudley Group of Hospitals NHS Foundation Trust, United Kingdom. 

Thirty-two healthy control participants were recruited from among the hospital 

staff.  The participants are described in greater detail in the General Methods 

Chapter (Chapter 3). The study received local Research Ethics Committee 

approval and all participants gave their written informed consent according to the 

Declaration of Helsinki.  

 

Study Protocol   
Participants reported to a temperature controlled vascular laboratory (22oC) after 

a 12 hour overnight fast.  All participants underwent a detailed clinical 

examination and demographic information was collected from all the participants 
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by questionnaire.  The disease activity score (DAS28) [68] and the Anglicised 

version of the Stanford Health Assessment Questionnaire (HAQ) [72] were also 

calculated.  Patients global CVD risk scores were measured using the 

Framingham Risk Score (FRS) and the Systematic Coronary Risk Evaluation for 

total cholesterol (TC SCORE) and total cholesterol high-density lipoprotein ratio 

(TC:HDL SCORE) [528,529].  Following this, the participants underwent 

assessments of arterial stiffness using pulse wave analysis and assessment of 

microvascular function using Laser Doppler imaging with iontophoresis, and 

assessment of macrovascular endothelial function using flow-mediated dilatation 

(FMD) and GTN-mediated dilatation (GTN).  All the above assessments are 

described in greater detail in the General Methods chapter (Chapter 3).     

 
Statistical analysis 
Statistical analysis was performed using SPSS15 (SPSS Inc, Chicago, Illinois).  

Variables were tested for normality by the Kolmogorov-Smirnov test.  Means and 

standard deviations (SD) were calculated for normally distributed continuous 

variables and proportions for categorical variables.  Log transformation was 

performed for positively skewed variables as appropriate.  Differences between 

patients and healthy controls were tested using univariate analysis of co-variance 

(ANCOVA) with age as the covariate for continuous variables and Chi Squared 

test for discontinuous variables.  Pearson’s correlations were used to assess the 

relationships between microvascular and macrovascular endothelial-dependent 

function.   

 
 Results 

 
Due to some loss of data, AIx was obtained for 11 healthy controls only.  In 

addition, due to occasional problems with phlebotomy blood could not be 

obtained for every participant.  Not all participants provided full demographic 

details in the questionnaire.  The number of data points available for each 

parameter is displayed in all the tables that appear below.  
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Participant Characteristics and General Demographics 

The general characteristics and demographic data are presented in Table 1 

Univariate ANOVA showed that age, body fat (p = .005, η2 = .062) and resting 

SBP (p = .001, η2 = .089) were greater in RA patients when compared to healthy 

controls, however, when correcting for age, these differences were no longer 

significant (Table 1).  None of the healthy control participants were on any 

medications.  All RA patients and healthy control participants were British 

Caucasians.   

 

Table 1.  The general characteristics of both groups 

       RA Patients N Healthy 
Controls 

N P value* Effect 
Size 

Participant Characteristics       

  Age (years) 56 ± 12 99 42 ± 12 32 .0001 η2 = .014 

  Sex female N (%) 72 (73) 99 22 (69) 32 .66 η2 = .038 

  Height (cm) 164 ± 9  99 168 ± 10 32 .18 η2 = .015 

  Weight (kg) 80 ± 19 99 78 ± 17 32 .72 η2 = .001 

  BMI (kg/m2) 30 ± 6 99 28 ± 7 32 .34 η2 = .008 

  Body Fat (%) 37 ± 9 99 31 ± 13 32 .07 η2 = .028 

  Resting SBP (mmHg) 133 ± 16 96 121 ± 14 32 .08 η2 = .025 

  Resting DBP (mmHg) 81 ± 10 96 77 ± 10 32 .46 η2 = .004 

  Resting HR (bpm) 74 ± 13 96 70 ± 10 32 .08 η2 = .025 

General Demographics       

 Employment N (%)       

    Full-time   22 (24) 90 12 (63)  19 .000 ------ 

Married or cohabiting N (%) 66 (68) 97 13 (72) 18 .73 ------ 

Disease Characteristics       

  RF Positive N (%) 70 (78) 90 ------    

  Disease duration (years) 11 ± 10 74 ------    

  DAS28 3.6 ± 1.3 93 ------    

  HAQ 1.7 ± .87  95 ------    
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RA Disease-Specific 

Medications 

      

  Methotrexate  59 (60%) 99 ------    

  Sulfasalazine  21 (21%) 99 ------    

  Hydroxychloroquine  26 (26%) 99 ------    

  Leflunomide  9 (9%) 99 ------    

  Prednisolone  22 (22%) 99 ------    

  NSAID  18 (18%) 99 ------    

  COX II Inhibitors  11 (11%) 99 ------    

  Analgesic  42 (42%) 99 ------    

  Folic Acid  54 (54%) 99 ------    

  Anti-TNF-α 11 (11%) 99 ------    

CVD Medications       

  Anti-Hypertensive  25 (25%) 99 ------    

  Statins/fibrate  12 (12%) 99 ------    

  Beta-blocker  7 (7%) 99 ------    

  Calcium-blocker  5 (5%) 99 ------    

Results are expressed as Number (percentage) or mean ± SD as appropriate.  *Analysis 

corrected for age.  BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic blood 

pressure; HR = heart rate; RF = rheumatoid factor; DAS28 = disease activity score in 28 joints; 

HAQ = health assessment questionnaire; NSAID = non-steroidal anti-inflammatory drug; COX II = 

cyclooxygenase II; Anti-TNF = anti-tumor necrosis factor- alpha.  

 

Serological Analysis 

Univariate ANOVA revealed higher levels of TG (p = .001 η2 = .082), insulin (p = 

.02 η2 = .045), HOMA IR (p = .03 η2 = .042), ESR (p = .000 η2 = .152), CRP (p = 

.002 η2 = .077), and fibrinogen (p = .000 η2 = .205) in RA patients.  QUICKI was 

found to be lower in RA patients (p = .02 η2 = .046).  When repeating the same 

analysis but controlling for age; insulin, HOMA and QUICKI were no longer 

different between the two groups (Table 2).   
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Table 2.  Biochemical and haematological tests  

 RA Patients N Healthy Controls N P value* Effect 
Size 

Biochemical Tests       

  Total Cholesterol (mmol/l) 5.1 ± 1.0 93 5.0 ± 1.0 32 .65 η2 = .002 

  HDL (mmol/l)  1.5 ± 0.3 93 1.4 ± 0.3 32 .95 η2 = .000 

  Triglycerides (mmol/l)  1.5 ± 0.7 93 1.1 ± 0.6 32 .01 η2 = .051 

  TC:HDL ratio 3.5 ± 8.5  93 3.6 ± 0.9 32 .84 η2 = .000 

  Glucose (mmol/l) 4.6 (4.3 – 4.9) 91 4.6 (4.3 – 4.9) 32 .40 η2 = .006 

   Insulin (pmol/l) 70.4 (40.6 – 105.5) 89 36.0 (27 – 82) 29 .23 η2 = .012 

   HOMA IR 2.1 (1.1 – 3.2) 87 1.1 (0.7 – 2.9) 29 .28 η2 = .010 

   QUICKI  0.35 ± 0.41 87 0.37 ± 0.05 29 .25 η2 = .012 

   ESR (mmhr) 17.0 (8.8 – 28.3) 90 5.0 (2 – 9) 32 .001 η2 = .088 

   CRP (mg/l) 5.0 (2.9 – 13.50) 93 2.9 (2.9 – 2.9) 32 .002 η2 = .075 

   Fibrinogen (g/dl) 4.7 ± 1.2 89 3.5 ± 0.8 32 .000 η2 = .159 

Results are expressed as median (25th to 75th percentile values) or mean ± SD as appropriate.  

*Analysis corrected for age.  HDL = high density lipoprotein; TC = total cholesterol; HOMA IR = 

homeostasis model assessment insulin resistance; QUICKI = quantitative insulin sensitivity check 

index; ESR = erythrocyte sedimentation rate; CRP = C-reactive protein.  

 

 

Presence of CVD risk factors 

For the majority of the CVD risk factors, RA patients did not differ from healthy 

controls (see Table 3).  However, Chi Squared test revealed a greater proportion 

of previous and current smokers, and a lower proportion of never smokers 

among the RA patients. 
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Table 3. CVD risk factors in RA patients and healthy controls 

Results are expressed as Number (%). Family history of CVD = self-report from demographic 

questionnaire; Diabetes = fasting glucose >7 mmol/l and/or oral hypoglycaemic medication or 

insulin use; hypertension = SBP >140mmHg, DBP >90mmHg or use of anti-hypertensive’s; high 

cholesterol = fasting cholesterol >4.1 mmol/l or use of anti-hypercholesterolemics; insulin 

resistance = homeostasis model assessment ≥ 2.5 or quantitative insulin sensitivity check index ≤ 

0.333; overweight: BMI ≥ 23-27.9; obese: BMI ≥ 28. 

 

Global CVD Risk 

The differences in the CVD risk scores between groups were analysed using 

univariate ANOVA and are shown in Table 4.  RA patients were at a greater risk 

of CVD according to the FRS and TC SCORE criteria; for TC:HDL SCORE the 

difference did not quite meet the conventional criterion for statistical significance.  

The percentage of RA patients and healthy controls with metabolic syndrome 

was not different. 

 

 

 

 

 RA Patients N Healthy 
Controls 

N P value Effect 
Size 

CVD Risk Factors       

  Family history of CVD  45 (50) 90 6 (32) 19 .14 ------ 

  Diabetes  5 (6) 90 0 19 .29 ------ 

  Hypertension  32 (36) 90 3 (16) 19 .94 ------ 

  High Cholesterol  19 (21) 90 1 (5) 19 .11 ------ 

  Insulin Resistance  34 (39) 87 7 (24) 29 .20 ------ 

  Overweight  27 (30) 91 11 (37) 30 .40 ------ 

  Obese  52 (57) 91 13 (43) 30 .34 ------ 

  Smoking Status       ------ 

    Never smoked  38 (42) 91 17 (90) 19 0.001  

    Previous smokers 36 (40) 91 2 (11) 19   

    Current smokers  17 (19) 91 0  19   
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Table 4. CVD risk scores in RA patients and healthy controls 

 RA Patients N Healthy 
Controls 

N P value Effect 
Size 

CVD Risk Score       

  Framingham Risk Score 5 (3 – 10) 87 3 (2 -5) 19 .02 η2 = .056 

  TC SCORE 1 (0 – 2) 64 1 (0 – 1) 18 .04 η2 = .051 

  TC:HDL SCORE 1 (0 – 2) 64 0.5 (0 – 1) 18 .06 η2 = .045 

  Metabolic Syndrome N (%) 13 (13) 89 3 (9) 32 .50 ------ 

Results are expressed as median (25th to 75th percentile values) and Number (%).  TC SCORE = 

total cholesterol systematic coronary risk evaluation; HDL = high density lipoprotein.  
 

Vascular Assessments 
 
Microvascular Endothelial function 

Univariate ANOVA showed that baseline ACh perfusion was greater in RA 

patients even after controlling for age (Table 5).  The peak ACh perfusion and the 

percentage increase in perfusion in response to ACh were lower in RA patients 

(p = .01, η2 = .049 and p = .000, η2 = .121 respectively), although these effects 

were no longer significant following adjustment for age.  Baseline SNP perfusion, 

peak SNP perfusion and percentage increase in perfusion in response to SNP 

did not differ between groups.  

 

Table 5. Microvascular endothelial function of RA patients and healthy controls 

 RA Patients N Healthy 
Controls 

N P value* Effect 
Size 

Microvascular Function       

  Baseline ACh Perfusion  (PU) 37 (30 – 55) 94 31 (26 – 35) 30 .003 η2 = .069  

  Peak ACh Perfusion (PU) 156 (93 – 210) 94 202 (140 – 257) 30 .92 η2 = .000 

  Increase in Perfusion (ACh %) 236 (152 – 407) 94 456 (316 – 668) 30 .06 η2 = .030 

  Baseline SNP Perfusion (PU) 36 (29 – 50) 94 33 (29 – 41) 30 .13 η2 = .019 

  Peak SNP Perfusion (PU) 153 (99 – 205) 94 183 (112 – 235) 30 .35 η2 = .007 

  Increase in Perfusion (SNP %) 261 (181 – 384) 94 386 (202 – 516) 30 .75 η2 = .001 
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Results are expressed as median (25th to 75th percentile values).  *Analysis corrected for age.  ACh = 

acetylcholine; SNP = sodium nitroprusside 

 

Macrovascular Endothelial Function 

Baseline and peak FMD diameters were lower in RA patients and this difference 

survived adjustment for age (Table 6).  There was no significant group difference 

in %FMD.  Baseline GTN diameter, peak GTN diameter and %GTN did not differ 

between RA patients and healthy controls.  For both groups, the baseline GTN 

diameter was similar to the baseline FMD diameter.  AIx was found to be greater 

in RA patients than healthy controls, and this difference remained significant after 

controlling for age.   

 

Table 6.  Macrovascular endothelial function of RA patients and healthy controls 

 RA Patients N Healthy Controls N P value* Effect 
Size 

Macrovascular Function       

  Baseline FMD Diameter (mm) 3.3 (3.0 – 4.0) 96 3.6 (3.2 – 4.1) 32 .02 η2 = .058 

  Peak FMD Diameter (mm) 3.6 (152 – 407) 96 4.0 (3.6 – 4.6) 32 .01 η2 = .051 

  FMD (%) 9.5 (4.8 – 13.5) 96 11.4 (8.3 –  14.0) 32 .61 η2 = .002 

  Baseline GTN Diameter (mm) 3.4 (3.0 – 3.8) 93 3.5 (3.2 – 4.2) 31 .06 η2 = .028 

  Peak GTN Diameter (mm) 4.2 (3.7 – 4.7) 93 4.3 (4.0 – 5.1) 31 .08 η2 = .025 

  GTN (%) 24.0 (16.3 – 30.4) 93 22.0 (19.4 – 29.0) 31 .30 η2 = .009 

  AIx 33 (25 – 38) 84 27 (16 -35) 11 .04 η2 = .044 

Results are expressed as median (25th to 75th percentile values).  *Analysis corrected for age.  FMD = 

flow-mediated-dilatation; GTN = glyceryl-trinitrate-mediated dilatation; AIx = augmentation index.    
 

Comparison of RA patients and Healthy Control Participants of Similar Ages 

As RA patients were much older than the healthy control participants, all of the 

above analysis was repeated in RA patients and healthy control participants who 

were aged between 35 – 61 years (N = 57 RA patients, N = 21 healthy control 

participants).  These age ranges were chosen as they allowed analysis of the 

maximum amount of participants in each group without there being a significant 
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difference in age between the two groups (RA patients age = 51 ± 7 years and 

healthy controls age = 49 ± 8 years, p = .29).  This analysis revealed the same 

findings as the age-corrected analysis presented above.   

 

Associations between Microvascular and Macrovascular Endothelial Function  

For RA patients Pearson correlations showed that microvascular endothelial-

dependent function (ACh) did not associate with macrovascular endothelial-

dependent function (FMD).  Similarly, microvascular endothelial-independent 

function (SNP) and macrovascular endothelial-independent function (GTN) were 

not associated with each other (see Table 7).  In addition, no significant 

associations were found between microvascular peak ACh and SNP perfusion 

and macrovascular peak FMD and GTN diameters (data not shown). 

 

Table 7. Correlations between the  microvasculature and macrovasculature 

  Macrovessels 
 Endothelial-dependent 

(FMD %) 
Endothelial-independent 

(GTN %) 
Endothelial-dependent (ACh %) r (90) = .12, p = .27 ---------- 

M
ic

ro
ve

ss
el

s 

Endothelial-independent (SNP %) ---------- r (89) = -.00, p = .94 

ACh = acetylcholine; SNP = sodium nitroprusside; FMD = flow-mediated dilatation; GTN = glyceryl-

trinitrate-mediated dilatation 
 

Discussion  
The present study found that microvascular and macrovascular endothelial 

function were similar in RA patients and healthy control participants after 

adjusting for age.  However, AIx was higher in RA patients, as was global CVD 

risk.  In addition, the assessments in the different vascular beds appeared to be 

independent of each other for both RA patients and healthy controls.    

 

 The finding that microvascular and macrovascular endothelial function is 

comparable between RA patients and healthy controls appears to contradict 

previous studies in RA patients which have shown impaired endothelial function 
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in the microvasculature [432,434,436,448,451,491] and in the macrovasculature 

[431,452,455,457,459,461,463,488,493,500].  However, these studies appear to 

differ to the present study in a variety of ways.  First, although the general 

characteristics, such as age and gender, appear to be consistent between 

studies, RA disease-related inflammation in the present study was lower than 

that reported in many of the earlier studies 

[431,432,436,448,459,461,488,493,500].  Thus, high levels of disease-related 

inflammation at the time of the assessments may have contributed to the 

impairments in endothelial function reported in the other studies, especially as 

there is evidence that in healthy participants, acute inflammation can result in 

transient impairments in endothelial function [576].  Interestingly, the current 

findings were similar to those of Van Doornum et al 2003 [435] whose RA 

population had similar disease-related inflammation to the patients in the present 

study.  It is noteworthy that the disease duration in the present study was 

comparable to other studies that reported impairments in endothelial function in 

RA relative to healthy participants  [434,500].  Moreover, endothelial function was 

impaired in newly diagnosed patients and patients with low disease duration, but 

these patients also had high disease-related inflammation [432,451,491].  This 

might suggest that disease duration has a lesser influence on endothelial function 

than current disease-related inflammation.      

 

In contrast to the present study, many of the previous studies had small 

samples [431,432,434,436,448,451,452,455,459,488,491,493,500].  It is now 

appreciated that small samples can increase the risk of type 1 as well as type 2 

errors [577].  Post hoc power analyses were conducted using GPower3 [578]  

with significance set at .05 to determine the power to detect differences in 

microvascular and macrovascular endothelial function between RA patients and 

healthy control participants.  On the basis of sample size, effect size, and the 

mean and standard deviation of the assessments of endothelial function in RA 

patients and healthy control participants, the obtained power to detect differences 

in microvascular endothelial-dependent function was .99 and for macrovascular 
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endothelial-dependent function .59.  Thus, the obtained power for the comparison 

of microvascular endothelial function seems to be sufficient, whereas the power 

for the comparison in macrovascular function was low.  It is important to highlight 

that the comparison of differences between measures were performed using 

analysis of co-variance with age as the covariate.  Since it is not possible to co-

vary when conducting power analyses, care should be taken when interpreting 

these power analyses. 

  

The present study also differed from others in regards to the exclusion 

criteria that were applied.  For example,  participants with CVD risk factors were 

not excluded in the present study, but were in others [451,455,459,461].  

Although CVD risk factors are known to impair endothelial function in the general 

population [202], their contribution to impairments in endothelial function in RA is 

not known.  Moreover, in the present study, despite comparable endothelial 

function and CVD risk factors between participant groups, global CVD risk was 

greater in the RA patients.  Thus, the extent of which CVD risk impairs 

endothelial function in RA requires further exploration.  The influence of classical 

CVD risk on endothelial function is particularly interesting to explore in the 

context of systemic inflammation, given that inflammation has been reported to 

independently contribute to CVD [220].   

 

 In RA patients, a variety of assessments for endothelial function have 

been employed.  For example, arterial stiffness can be assessed using AIx and 

pulse wave velocity, but these assessments are not always inter-correlated [461].  

In the microcirculation, the majority of studies have assessed endothelial function 

using forearm blood flow with venous occlusion plethysmography (VOP) 

[432,434], and although to our knowledge no study has compared VOP with LDI 

in RA, methodological differences between assessments of endothelial function 

might contribute to the contrasting findings observed between studies.  

Importantly, from the studies which have reported poorer endothelial function, 

many did not report controlling for methodological and physiological factors that 



123 
 

can affect endothelial function [371,380].  For example, it is not always clear 

whether assessments were conducted at the same time of day for each 

participant or if the participants were fasted [436].  In addition, the reliability data 

for the vascular assessments are not consistently reported 

[431,432,434,491,493].  This has potential implications in the accuracy of the 

data and the interpretation of findings [371,380].  The assessments used in the 

current study have good reproducibility (see Chapter 3). 

 

An interesting finding in the present study was that in the macrocirculation 

only AIx was impaired in RA patients.  Unfortunately, AIx could only be obtained 

for 11 healthy participants.  However, these 11 participants did not differ from the 

remaining healthy participants for known determinants of AIx such as HR, and 

SBP, although DBP was higher in those individuals where AIx had been obtained 

(p =.002) [400] .  Additional analyses showed no difference in the SBP, DBP and 

HR between those RA patients and healthy participants where AIx was obtained.  

It is possible that the higher AIx in RA patients might reflect the increased global 

CVD risk that was evident in this group [579,580].  However, even in RA patients 

who are free from CVD and CVD risk factors, AIx has been reported to be higher 

than age and sex matched healthy controls [435,459,581].  Further, AIx has been 

shown to be positively associated with measures of cumulative inflammation 

independently of CVD risk factors [465].  If global CVD is a contributor to AIx, 

then impairments in the other assessments of endothelial function would also 

have been expected, as these too are affected by CVD [202].  Therefore, further 

examination of specific determinants of the separate measures of endothelial 

function in patients with RA is required. 

 

   AIx and FMD both examine endothelial function in the macrocirculation, 

but the presence of impairments in one but not the other highlights the inherent 

differences between these two techniques.  FMD assesses vasodilatation in 

response to a stimulus (shear stress) and is fully dependent on NO [379], 

whereas AIx reflects resting vasomotor tone and compliance and is only partially 
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dependent on NO [582].  This suggests that along with NO, a number of other 

factors such as gene expression and smooth muscle integrity influence vascular 

compliance [401].  Indeed, no correlations between FMD and AIx in RA patients 

or healthy controls were found in the current study, which is in contrast to 

previous findings performed in non-RA patients with and without CVD [583].  In 

addition, at present it is not clear if impaired endothelial function results in arterial 

stiffness or vice-versa [226].  There is evidence that structural defects in the 

vessel as determined by carotid intima-media thickness are present in patients 

newly diagnosed with RA [488].  It is possible then that in RA patients free from 

overt CVD, impairments in vascular compliance might occur before ED of the 

brachial artery, but this requires further investigation. 

 

The present study incorporated assessments of both microvascular and 

macrovascular endothelial function and showed that function in these two 

vascular beds was independent from one another.  To our knowledge, only one 

other study has examined associations between small and large vessel 

endothelial function in RA patients, and reported, similarly to the current study, no 

associations [451].  Others studies in different populations have also found no 

correlation between microvascular and macrovascular beds [568-570].  In 

contrast, some studies have reported an association.  However, in one study the 

participants were considerably younger than the present study (median age: 27 

years) [566], and others tested a relatively small sample [567] or heterogeneous 

population [424]. 

 

The lack of association between microvascular and macrovascular 

endothelial function observed in the present study could be due to mechanistic 

differences between the assessments.  It has been shown that SNP, FMD and 

GTN predominantly evoke maximum NO release as inhibition of NO completely 

abrogates the vasodilatory response to these stimuli [379,584].  However, NO 

inhibition only reduces 30-40% of the microvascular vasodilatory response 

induced by ACh [585], suggesting that other factors such as endothelium-derived 



125 
 

hyperpolarizing factor may also contribute to vasodilatation in the resistance 

vessels [334].  Further, the different stimuli applied by LDI and FMD involve 

distinct pathways to stimulate NO; LDI uses a pharmacological stimulus to 

activate NO, whereby, FMD uses a physiologic stimulus [586,587].  It is worth 

noting that correlations between peripheral and coronary endothelial function are 

stronger when the same stimulus is applied [352,588] than when different stimuli 

are applied [351].  Therefore, the distinct pathways of NO release evoked by 

differential stimulation of microvessels and macrovessels may in part, explain the 

lack of association between vascular beds observed in the present study.  In 

addition, even when the same stimulus is applied to endothelial cells of different 

vascular beds, in vitro studies have reported that endothelial cells display 

heterogeneous responses, and this is even evident in different sections of the 

same vascular bed [223-225].  Moreover, in the context of RA, various disease-

related parameters may exert differential effects in different sized vessels but this 

notion requires further investigation.  

 

  In summary, the present study found comparable endothelial function in 

the microvasculature and macrovasculature of RA patients and healthy controls, 

despite greater CVD risk in RA patients.  In addition, microvascular and 

macrovascular endothelial function were independent of each other.  Further 

research is needed to identify individual determinants of microvascular and 

macrovascular endothelial function in RA patients.                
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Chapter 6: The Association between Inflammation, 
Cardiovascular Risk Factors and Microvascular and 

Macrovascular Endothelial Function in Patients with Rheumatoid 
Arthritis 

 

Introduction 
Rheumatoid arthritis (RA) is an inflammatory disease of the joints which is also 

associated with an increased risk for cardiovascular disease (CVD) [121,428].  

The inflammatory process of RA and CVD is remarkably similar [122,200], and 

on this basis, it has been speculated that RA disease-related inflammation might 

contribute to accelerated atherosclerosis [123,124].  Inflammation and classical 

CVD risk factors can both exert deleterious effects on the endothelium, leading to 

endothelial dysfunction (ED) in the general population [359,444].  However, 

studies that have examined associations between RA disease-related 

inflammation and microvascular or macrovascular endothelial function report 

equivocal findings; some find an association [430,448,449,463,498,500], 

whereas other do not [435,451,452,459].  To our knowledge only one study has 

examined associations between RA disease-related inflammation and 

endothelial-dependent function in different vascular beds; inflammation was 

associated with macrovascular but not with microvascular endothelial-dependent 

function [451].  There are no studies that have examined the correlation between 

classical CVD risk factors such as dyslipidemia and hypertension in the 

microcirculation and only a few studies have been conducted in the 

macrocirculation with inconsistent findings [433,455,456].  Therefore, the aims of 

the present study were a) to examine associations between disease-related 

inflammation and microvascular and macrovascular endothelial-dependent 

function in RA, b) to examine associations between classical CVD risk factors 

and microvascular and macrovascular endothelial-dependent function in RA, and 

c) to identify if any associations that were found were different in RA compared to 

healthy control participants. 
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Methods 
 
Participants and Study Protocol 
Ninety-nine patients with RA were recruited from the Rheumatology Outpatient 

Clinics of the Dudley Group of Hospitals NHS Foundation Trust, United Kingdom, 

and 32 healthy control participants were recruited from among hospital staff.  The 

general characteristics of the participants have been described in greater detail in 

the previous chapter (Chapter 5) and the inclusion and exclusion criteria have 

been previously presented in the General Methods section (Chapter 3).  The 

study protocol was identical to that of Chapter 5 and is therefore described in 

more detail in that chapter. 

    

Statistical analysis 
Statistical analysis was performed using SPSS15 (SPSS Inc, Chicago, Illinois).  

Variables were tested for normality using the Kolmogorov-Smirnov test.  Means 

and standard deviations (SD) were calculated for normally distributed continuous 

variables and proportions for categorical variables.  Log transformation was 

performed for positively skewed variables as appropriate.  Differences in 

characteristics between RA patients and healthy control participants were 

assessed with univariate analysis of variance (ANOVA) with for continuous 

variables and Chi Squared test for discontinuous variables.  To assess 

independent determinants of vascular function linear regression (continuous 

variables) and logistic regression (discontinuous variables) were used.  

Inflammatory markers, global CVD risk and CVD risk factors were entered as 

independent variables with each measure of vascular function entered separately 

as the dependent variable.  These analyses were then repeated with RA as an 

independent variable.  

 
 
 
 



128 
 

Results 

 

Participant Characteristics and Serological Analysis 

The participants’ general and disease-related characteristics along with serological 

and CVD risk factor analysis are presented in Chapter 5 (Tables 1 – 4).  

 
Endothelial Function and RA Disease-Related Inflammation 

Linear regression was performed with individual disease-specific parameters as 

independent variables and microvascular and macrovascular parameters entered 

separately as the dependent variables for RA.  These analyses revealed that 

logCRP, logESR, fibrinogen, DAS28, HAQ and disease duration were not 

associated with microvascular or macrovascular endothelial-dependent and 

endothelial-independent function (see Table 1).  No associations were found 

between arterial stiffness and individual disease-specific parameters. 

 

Endothelial Function and DAS28 Cut-off Points 

RA patients were categorised according to their DAS28 score into low disease 

activity (DAS28 <3.2, N= 36), or high-disease activity (>5.1, N = 12) according to 

established criteria [538].  Univariate ANOVA revealed that both groups were of a 

similar age, and from the vascular assessments, only microvascular endothelial-

dependent function was significantly greater in patients with high disease activity 

(low disease activity: 280 ± 173, high-disease activity: 438 ± 336, p = .04, η2 = 

.089).     

 

Endothelial Function and Medications 

The most commonly prescribed disease modifying anti-rheumatic drug (DMARD) 

was methotrexate (MTX).  Univariate ANOVA showed that only macrovascular 

endothelial-dependent function was greater in patients receiving MTX than those 

who were not (10.2 ± 6.1% vs. 7.3 ± 5.1% respectively, p =.02).  For all other RA 

medications and CVD medications (including NSAIDs) univariate ANOVA 
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revealed that microvascular and macrovascular endothelial function did not differ 

in patients receiving or not receiving these medications. 

 

Endothelial Function and CVD Risk Factors  

Linear regression was performed to examine associations between individual 

CVD risk factors (independent variables) and the separate measures of 

endothelial function (dependent variable) performed in the RA patients.  For 

microvascular endothelial-dependent function, no associations were found with 

any of the serological (Table 2) or CVD risk factors (Table 3).  Microvascular 

endothelial-independent function was positively associated with TC:HDL ratio, 

but not with any other CVD risk factor.  In the macrocirculation, endothelial-

independent function was negatively associated with SBP, insulin, HOMA, and 

positively associated with high cholesterol, hypertension and QUICKI.  AIx was 

positively associated with QUICKI (Table 2).  No other associations were found 

for macrovascular function.  When the same analyses were conducted in healthy 

control participants, microvascular endothelial-independent function was 

associated with glucose (β= -.41, t (28) = 2.35, p = .03, R2= .165), while 

macrovascular endothelial-independent function was associated with glucose (β= 

-.42, t (29) = 2.45, p = .02, R2= .172), HOMA (β= -.44, t (24) = 2.52, p = .02, R2= 

.196) and insulin resistance, (OR = 1.22 (1.00 – 1.47), p = .05).  

 

Low, Moderate and High Endothelial Function 

RA patients were split, according to their endothelial function scores in the 

microvasculature and the macrovasculature, into three equal groups: low 

endothelial function, moderate endothelial function and good endothelial function.  

Subsequent analysis with univariate ANOVA revealed that patients with lower 

microvascular endothelial-dependent and macrovascular endothelial-independent 

function were older than patients with moderate or high endothelial function (p = 

.007 and p = .004 respectively).  For microvascular and macrovascular 

endothelial-dependent and endothelial-independent function as well as arterial 
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stiffness there was no difference in logESR, logCRP, DAS28 and disease 

duration between the different categories of endothelial function.   

 

 Chi Squared analysis was run to identify whether the proportion of 

medications the patients were receiving differed between patients with low, 

moderate or high endothelial function.  This analysis revealed no differences in 

the proportion of patients receiving DMARDS, NSAIDs or CVD medications 

between the different categories of microvascular endothelial function.  However, 

patients categorised into the high macrovascular endothelial-dependent function 

group had a greater proportion of methotrexate users (p = .05) than those in the 

moderate and low endothelial function groups.  The proportion of patients on 

NSAIDs was greater in the low and high macrovascular endothelial-dependent 

function groups (p = .02).  There were no differences in medication use for the 

macrovascular endothelial-independent categories or for the categories of arterial 

stiffness.  
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General characteristics and RA disease-related characteristics were entered as independent variables, while microvascular and macrovascular 
endothelial function were entered as dependent variables in the regression analysis. SBP = systolic blood pressure; DBP = diastolic blood 
pressure; HR = heart rate; CRP = C-reactive protein; ESR = erythrocyte sedimentation rate; DAS28 = disease activity score in 28 joints.  * p < 
.05, ** p < .01, *** p < .001.  R2 value is shown for all significant associations only. 

Table 1.  Linear regression analysis for general and RA disease-related characteristics and endothelial function in RA 

 Microvascular Function Macrovascular Function 

 Endothelial- 
dependent 

Endothelial-
independent 

Endothelial-
dependent 

Endothelial-
independent 

Arterial Stiffness 

General 

Characteristics 

     

  Age β= -.37, R2= .135*** β= -.20, R2= .042* β =  -.24, R2= .055* β= -.36, R2= .126*** β= .02, p = .87 

  BMI β= .21, p = .05 β= .08, p = .41 β= -.12, p = .26 β= -.21, p = .05 β= -.11, p = .36 

  Resting SBP β =  -.11, p = .30 β= -.02, p = .88 β= -.11, p = .27 β= -.27, R2= .066** β= .04, p = .72 

  Resting DBP β= .04, p = .67 β= .08, p = .44 β= -.12, p = .25 β= -.05, p = .61 β= .17, p = .14 

  Resting HR  β= .14, p = .19 β= .28, R2= .078** β =  -.08, p = .40 β= .18, p = .08 β= .05, p = .65 

RA Disease-related  

Characteristics 

     

  Disease duration  β =  -.12, p = .29 β= .21, p = .07 β= -.04 p = .76 β=  -.12, p = .34 β= -.03, p = .84 

  LogCRP  β= -.61  p = .05 β= .10, p = .32 β= .15, p = .13 β=  -.00, p = .97 β= .04, p = .73 

  LogESR  β= -.09, p = .41 β= .18, p = .10 β= -.01, p = .95 β= -.08, p = .46 β= .02, p = .88 

  Fibrinogen  β= .25, p = .12 β= .32  p = .30 β= .06, p = .58 β= -.06, p = .56 β= -.04, p = .74 

  DAS28 β= .15, p = .15 β= .02, p = .84 β= .06, p = .59 β= -.01, p = .93 β= .06, p = .59 
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Serological factors were entered as independent variables and endothelial function entered as dependent variables in the regression analysis. 

HDL = high density lipoprotein; TC = total cholesterol; HOMA IR = homeostasis model assessment insulin resistance; QUICKI = quantitative 

insulin sensitivity check index. * p < .05, ** p < .01. R2 value is shown for all significant associations only.     

 
 
 
 
 
 
 

Table 2.  Linear regression between Serological factors and endothelial function in RA 

 Microvascular Function Macrovascular Function 

 Endothelial- 
dependent 

Endothelial-
independent 

Endothelial-
dependent 

Endothelial-
independent 

Arterial Stiffness 

Serological Factors      

  Total Cholesterol  β = .06, p = .55 β = .20, p = .05 β = -.05, p = .63 β = .09, p = .41 β = .20, p = .07 

  HDL   β = -.13, p = .21 β =- .06, p = .56 β = -.00, p = .97 β = .15, p = .16 β = .09, p = .43 

  Triglycerides  β = -.12, p = .26 β = -.10, p = .34 β = .14, p = .19 β = -.04, p = .69 β = .12, p = .31 

  TC:HDL ratio β = .19, p = .07 β = .24, R2 =.058* β = -.06, p = .55 β = -.09, p = .36 β = .09, p = .45 

  Glucose β = -.10, p = .33 β =- .09, p = .40 β = -.07, p = .52 β = .02, p = .85 β = -.03, p = .81 

   Insulin β = .13, p = .23 β = .04  p = .73 β = -.04, p = .71 β = -.25,   R2 =.065* β = -.15, p = .20 

   HOMA IR β = .09, p = .41 β =- .00, p = .95 β = .06, p = .61 β = -.23, R2 =.052* β = -.17, p = .15 

   QUICKI  β = -.07, p = .53 β = -.02, p = .88 β = .11, p = .30 β = .30, R2 =.095** β = .268,  R2 =.072* 



133 
 

 

CVD risk factors and global CVD risk scores were entered as independent variables and endothelial function as dependent variables in the 

linear and binary regression analysis.  Odd ratio (OR) with 95% confidence interval is presented for all binary regression analysis. CVD = 

cardiovascular disease; FRS = Framingham risk score; SCORE = systematic coronary risk evaluation; TC = total cholesterol; HDL = high 

density lipoprotein. * p < .05, ** p < .01. R2 value is shown for all significant associations only.     

Table 3.  Linear and binary regression between CVD risk factors and endothelial function in RA 

 Microvascular Function Macrovascular Function 

 Endothelial- 
dependent 

Endothelial-
independent 

Endothelial-
dependent 

Endothelial-
independent 

Arterial Stiffness 

CVD Risk Factors      

 Family history of  CVD  OR = 1.00 (0.99 -1.00) OR = 1.00 (0.99 -1.00) OR = 1.00 (0.93 -1.07) OR = 0.99 (0.94 -1.04) OR = 1.02 (0.97 -1.07) 

 Diabetes  OR = 1.00 (0.99 -1.00) OR = 1.00 (0.99 -1.00) OR = 0.98 (0.82 -1.17) OR = 1.08 (0.94 -1.23) OR = 1.08 (0.93 -1.25) 

 Hypertension  OR = 1.00 (1.00 -1.00) OR = 1.00 (0.99 -1.00) OR = 1.08 (0.99 -1.17) OR = 1.07 (1.01-1.14)* OR = 0.96 (0.92 -1.02) 

 High Cholesterol  OR = 1.00 (0.99 -1.00) OR = 1.00 (0.99 -1.00) OR = 1.04 (0.95 -1.14) OR = 1.09 (1.02-1.17)** OR = 1.04 (0.97 -1.11) 

 Insulin Resistance  OR = 1.00 (1.00 -1.00 OR = 1.00 (1.00 -1.00 OR = 1.01 (0.94 -1.10 OR = 1.05 (0.99 -1.11 OR = 1.03 (0.98 -1.09 

 Number of CVD Risk   

 Factors 

β = -.04, p = .69 β= -.06, p = .58 β= -.16, p = .11 β= -.29, R2=.082** 

 

β= -.03, p = .77 

Global CVD Risk      

 FRS β = -.26, R2=.068** β = -.18, p = .09 β = -.12, p = .26 β = -.32, R2=.101** β = -.07, p = .51 

 TC SCORE β = -.28, R2=.077* β = -.17, p = .18 β = -.23, p = .08 β = -.14, p = .30 β = -.11, p = .45 

 TC:HDL SCORE β = -.26, R2=.068* β = -.17, p = .19 β = -.25, p = .05 β = -.17, p = .18 β = -.08, p = .55 

 Metabolic Syndrome β = .10, p = .35 β = -.01 p = .89 β = .15, p = .16 OR: 1.17 (1.06 – 1.30)** β = .18, p = .11 
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Endothelial Function and Global CVD Risk 

Linear regression analyses revealed that the FRS was negatively associated with 

microvascular endothelial-dependent function and macrovascular endothelial-

independent function but not with any of the other vascular parameters (Table 5).  

TC SCORE and TC:HDL SCORE were only associated with microvascular 

endothelial-dependent function.  In addition, there was a trend towards an 

association between macrovascular endothelial-dependent function and TC 

SCORE and TC:HDL SCORE.  Logistic regression analysis revealed that 

macrovascular endothelial-independent function was associated with metabolic 

syndrome.  Univariate ANOVA showed that patients with metabolic syndrome 

had a lower response to GTN than those with absence of metabolic syndrome 

(14.9 ± 6.5 vs. 23.7 ± 8.0%, p = .001).  No associations were found between any 

of the above parameters when analysing data for healthy control participants 

only. 

 
Individual Components of Global CVD Risk and Endothelial Function 
 

Framingham Risk Score 

Stepwise multivariate regression was performed to examine the relationship 

between the individual components of the global CVD risk scores (independent 

variables) and each parameter of endothelial function (dependent variables) that 

showed an overall association in the analysis presented above.  The individual 

components that were entered for FRS were age, sex, TC, HDL-C, SBP, DBP, 

diabetes and smoking status.  The entry probability was .05 and none of the 

variables were forced back into the model.  This analysis showed that only age 

was significantly associated with microvascular endothelial-dependent function 

(Table 4).  Examining the specific components of the FRS and macrovascular 

endothelial-independent function, revealed that sex, SBP and DBP were 

significantly associated.   
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Systematic Coronary Risk Evaluation 

For the individual components of the TC SCORE, age, sex, smoking, SBP and 

TC were entered in a stepwise manner (see Table 5).  For TC:HDL SCORE, the 

same variables were re-entered with TC being substituted for TC:HDL.  In each 

analysis, microvascular endothelial-dependent function was entered as the 

dependent variable (as it was the only parameter that had shown an overall 

association with these risk scores in the previous analysis).  As before, the entry 

probability for each variable was .05 and none of the variables were forced back 

into the model.  This analysis revealed that only age was associated with TC 

SCORE and TC:HDL SCORE (β= -.36, t (83) = 3.49, p = .001, R2=.117 and β= -

.36, t (84) = 3.49, p = .001, R2=.117, respectively). 

 

 

 

Table 4.  Relationship between individual components of the FRS and endothelial function 

Multivariate 
Model 

Microvascular Endothelial-dependent 
Function 

Macrovascular Endothelial-
independent Function* 

 

Model 1   

Age β = -.36, t (82) = 3.45, p = .001, R2 = .127  

Sex  β=.36, t (78) = 3.66, p = .000   

TC   

HDL-C   

SBP  β= -.60, t (78) = 4.23, p = .000 

DBP  β= .44, t (78) = 3.06, p = .003 

Diabetes   

Smoking   

The entry probability was .05 and none of the variables were forced back into the model.  *The R2 

for this model was .272.  TC = total cholesterol; HDL-C = high density lipoprotein-cholesterol; SBP 

systolic blood pressure; DBP = diastolic blood pressure.   



136 
 

 Table 5. Relationship between individual components of the SCORE and endothelial function 

 

Endothelial Function and Number of CVD Risk Factors 
To examine whether endothelial function deteriorates as the number of CVD risk 

factors increase, the total number of CVD risk factors present for each participant 

were added together.  The CVD risk factors that were included in the analysis 

were family history of CVD, smoking, diabetes, hypertension, 

hypercholesterolemia, insulin resistance, and obesity.  Five per cent of patients 

had no CVD risk factors, 20% 1 CVD risk factor, 26% 2 CVD risk factors, 23% 3 

CVD risk factors, 20% 4 CVD risk factors, 3% 5 CVD risk factors, 4% 6 CVD risk 

factors, and 0% 7 CVD risk factors.  Linear regression revealed that for RA 

patients, macrovascular endothelial-independent function was inversely 

associated with the total number of CVD risk factors (Table 3).  No associations 

were found when examining only the healthy control participants.  

 

 

Multivariate Model Microvascular Endothelial-dependent Function 

Model 1: TC SCORE  

  Age β = -.36, t (83) = 3.49, p = .001, R2 =.117 

  Sex  

  Smoking  

  TC  

  SBP  

Model 1: TC:HDL SCORE  

  Age β = -.36, t (84) = 3.49, p = .001, R2=.117 

  Sex  

  Smoking  

  TC:HDL  

  SBP  

  

The entry probability was .05 and none of the variables were forced back into the model.  TC = total 

cholesterol; HDL-C = high density lipoprotein; SBP systolic blood pressure. 
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Comparison of Associations between RA Patients and Healthy Controls 
Additional analyses were done to determine if the associations with endothelial 

function that are reported above vary between RA patients and healthy control 

participants.  These analyses included the direct comparisons between beta-

coefficients (β) in RA patients and healthy control participants.  This comparison 

is done by transforming the  beta-coefficients into z scores using the Fisher z 

score equation [589].  The following equation was used to transform the beta-

coefficient into z scores: 

 

)/()log().( ββ −+= 1150z  

 

Once the z score was obtained for the RA patients and the healthy controls, the 

statistical difference of the z scores between groups was computed using the 

following equation, which takes differences in group sizes into account:  

 

3)-1/(N  3)-1/(N)/z -(z  z 2121 +=  

 
Where, z1 is the z score for RA patients, z2 is the z score for healthy controls, N1 is 

number of RA patients and N2 is number of healthy controls. 

 

The analyses showed that the associations present in RA patients were not 

different to the associations found in healthy controls (p > .40). 

 
Discussion 
 
The findings of the present study revealed that RA disease-related inflammation 

was not associated with microvascular or macrovascular endothelial function.  

Similarly, individual CVD risk factors did not consistently relate to microvascular 

or macrovascular endothelial function.  Global CVD risk, however, inversely 

correlated with microvascular endothelial-dependent function.  Finally, the 
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magnitude of the associations that were present in RA patients were not different 

from the magnitude of the associations in healthy controls. 

 

 RA is characterised by increased systemic inflammation which has been 

suggested to impact on the vasculature and contribute to accelerated 

atherosclerosis [123,590].  However, the present findings suggest that 

inflammation does not relate to endothelial function in two different vascular 

beds.  It is worth noting that there was a trend for an association between 

microvascular endothelial-dependent function and CRP.  However, given the 

number of associations that were examined, this could be a chance finding.  

There are accepted ways for overcoming multiple comparisons such as the 

Bonferroni method which adjusts alpha for the number of comparisons 

undertaken.  However, given that no significant associations were reported, the 

Bonferroni correction does not seem necessary.  In the microvasculature, studies 

have reported conflicting associations between endothelial function and disease-

related inflammation, as one study found an association with TNF-α but not with 

ESR or CRP [448], while in another endothelial function was associated with 

CRP only [449].  Further, some studies have not found any association [451].  

Similarly, a number of studies in the macrovasculature found no associations 

between disease-related inflammation and macrovascular endothelial-dependent 

function [435,452,455,458], and studies that have reported associations present 

an inconsistent picture.  For example, macrovascular endothelial function was 

reported to be associated with CRP but not ESR [433,461], while another study 

reported an association with DAS28 only [454].  Collectively, these findings 

suggest that the relationship between endothelial function and disease-related 

inflammation may not be as strong as has been previously suggested [123,590].  

 

It is possible that it is not current but continuous long-term high levels of 

inflammation that are important for endothelial function in RA.  It has been 

reported that CRP duration (average of 4 CRP measurements taken at separate 

times in a one year period x disease duration) is a better predictor of endothelial-
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dependent function in RA patients than current CRP and ESR levels [433]. In 

addition, arterial stiffness has been shown to associate with retrospective ESR 

and CRP, but not with current levels of ESR and CRP [463,465], and 

retrospective ESR values show better associations with more advanced 

measures of (still subclinical) atherosclerosis such as cIMT [467,468,487].  On 

the other hand, aortic arterial stiffness has been associated with current CRP but 

not cumulative ESR and DAS28 [461], whereas another study reported that cIMT 

was not related to retrospective disease-related inflammation [466].  These 

contrasting findings are difficult to reconcile as the majority of the above studies 

used different methods to determine retrospective or cumulative inflammation.  

Moreover, the importance of RA disease duration must also be considered as 

patients with long disease duration might also have greater frequency of 

inflammatory fluctuations which could impact on endothelial function.  It is worth 

mentioning that the present study and others have reported that endothelial 

function is independent from RA disease duration [433,435,461].  However, cIMT 

has been reported to be associated with disease duration [483,490], but this 

measure represents a later stage of atherosclerosis when the vasculature is 

more likely to be affected by continuous inflammatory insults over the course of 

the disease.  It is possible that cyclical fluctuations of high and low disease 

activity which could acutely impact on the vasculature [512] could be more critical 

than disease duration on impacting endothelial function.  Prospective studies that 

examine endothelial function and inflammatory levels over a longer period of time 

may provide greater insight on the interactions between inflammatory fluctuations 

and endothelial function in RA.  

 

Disease-related inflammation is most commonly assessed using systemic 

inflammatory markers, but these markers may not accurately reflect local 

inflammatory changes in the vasculature.  For example, Chia and colleagues 

[591] reported that infusion of TNF-α into the brachial artery induced a reduction 

in forearm blood flow in the infused arm, but not in the non-infused arm.  

Similarly, local inhibition of TNF-α in RA patients resulted in an immediate 
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improvement in endothelial function without affecting systemic inflammatory 

levels [491].  Thus, systemic markers of inflammation may be less sensitive to 

the local effects of inflammation on the vascular wall. 

 

The majority of individual classical CVD risk factors did not associate with 

endothelial function in RA.  In the general population the association between 

classical CVD risk factors and endothelial function has been well characterised 

[202,359].  To our knowledge, no study of RA patients has examined the impact 

of classical CVD risk factors on microvascular endothelial function, and only a 

few studies have examined the effects of classical CVD risk factors on 

macrovascular endothelial function [433,455,456].  Associations were present for 

lipid levels in some [433,456], but not all [455] studies.  Classical CVD risk 

factors can improve after controlling RA disease-related inflammation, which 

suggests that inflammation can contribute to the development of classical CVD 

risk factors in patients with RA [155,446].  Further, ESR was only found to 

associate with cIMT in the presence of classical CVD risk factors [219].  These 

findings reveal that inflammation and classical CVD risk factors may interact to 

cause macrovascular atherosclerosis.  In the present study, disease-related 

inflammation was not associated with any of the classical CVD risk factors (data 

not shown).  As disease activity was low in the current study it is possible that 

such associations are unlikely in RA patients with low disease-related 

inflammation. 

 

 When classical CVD risk factors were incorporated into global CVD risk 

algorithms, associations were found with microvascular endothelial-dependent 

function, but not with macrovascular endothelial-dependent function.  Further 

analysis revealed that age was the main contributor for these associations, and 

most likely accounted for the higher FRS and TC SCORE in RA patients relative 

to healthy controls.  Multivariate regression analysis revealed no other individual 

CVD risk factor that contributed to the association between global CVD risk and 

microvascular endothelial-dependent function.  This suggests that different CVD 
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risk factors may interact with each other to increase overall CVD risk rather than 

act independently in the vasculature.  Indeed, previous studies have 

demonstrated that individual classical CVD risk factors are associated with each 

other in both RA [128] and the general population [592].  In the present study, an 

association between the number of classical CVD risk factors and microvascular 

and macrovascular endothelial-dependent function was not present, although a 

previous study in participants with CVD risk factors in the absence of CVD, 

reported that macrovascular endothelial-dependent function was reduced as the 

number of CVD risk factors increased [410].  In that study only four CVD risk 

factors were entered into the analyses and endothelial function did not differ 

between those participants without CVD risk factors and those with only one 

CVD risk factor [410].  This indicates that there may be a threshold for the 

number of CVD risk factors that are required before endothelial function 

deteriorates.  Although seven CVD risk factors were entered in to the analyses in 

the current study, most patients had 1-4 CVD risk factors, with no patient having 

all 7 CVD risk factors.  It is therefore possible that in RA 1-4 CVD risk factors 

may not be sufficient to affect endothelial function.  Nevertheless, increased 

number of CVD risk factors may adversely affect the endothelium, but further 

research exploring the number of CVD risk factors that are required to impact 

different vascular beds in patients with RA is required.   

 

Global CVD risk algorithms may under-represent risk of future cardiac 

events in clinical conditions such as diabetes and systemic lupus erythematosus 

[593,594].  A limitation of global CVD risk is that they only incorporate classical 

CVD risk factors which limit their use in RA, as novel CVD risk factors like 

inflammation can amplify CVD risk independently of classical CVD risk factors 

[220].  For example, two studies that compared RA patients with healthy controls 

matched for FRS reported lower macrovascular endothelial-dependent function 

and greater arterial stiffness and cIMT in the RA patients [455,457].  It has also 

been suggested that incorporating coronary artery calcification into the FRS 

algorithm would increase the accuracy of estimating future risk of CVD, as high 
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FRS score independently associates with coronary artery calcification in RA 

[532].  In the present study FRS was used along with the SCORE risk algorithm, 

and although calculated using classical CVD risk factors, the risk algorithms were 

based on different combinations of risk factors, and the use of more than one 

CVD risk algorithm provides better information on future CVD risk in RA [532]. 

 

The observation that microvascular but not macrovascular endothelial-

dependent function was associated with FRS and SCORE risk algorithms 

highlights the importance of examining endothelial function in more than one 

vascular bed.  Microvessels make up a much larger proportion of the vasculature 

than macrovessels [595], and may therefore have greater exposure to injurious 

stimuli [574].  Consequently, it is possible that even small increases in global 

CVD risk could have a greater effect on microvascular endothelial-dependent 

function.  Microvascular abnormalities can occur before or occur alongside the 

development of CVD risk factors in healthy individuals and individuals with 

hypertension [596-598].  These findings are in line with the results from other 

clinical populations like diabetes, where microvascular dysfunction develops 

independently of macrovascular dysfunction [574], and may even contribute to 

the development of macrovascular disease [573].  Therefore, assessments which 

examine both vascular beds may provide more meaningful clinical information on 

vascular risk in RA.  Further research is necessary to identify if microvasculature 

or macro-vasculature ED is predictive of clinical endpoints, both in RA and in 

other populations.    

 

In the macrocirculation, endothelial-independent function was associated 

with the FRS, metabolic syndrome, parameters of insulin resistance, SBP, 

presence of high cholesterol and hypertension as well as the total number of 

CVD risk factors.  Smooth muscle dysfunction occurs independently of ED in 

healthy individuals with CVD risk factors [599].  Further, macrovascular 

endothelial-independent function, but not macrovascular endothelial-dependent 

function was related to a reduction in SBP after 12 and 24 weeks of treatment in 
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patients with hypertension [600].  These findings indicate that CVD risk factors 

may differentially affect endothelial cell and smooth muscle function.  In the 

current study, the endothelial-independent function was significantly lower in 

patients with hypertension, and there is some evidence that CVD risk factors like 

hypertension degrade cyclic guanosine monophosphate (cGMP) [601], a second 

messenger responsible for the relaxation of vascular smooth muscle cells [256].  

In addition, in vitro studies have shown that soluble guanylyl cyclase, an enzyme 

responsible for activating cGMP, has reduced sensitivity to NO in hypertensive 

rats [602].  This means that even if adequate NO is released from the endothelial 

cells, abnormalities in smooth muscle cell signalling could still lead to a reduced 

vasodilatory response.  The presence of insulin resistance is also thought to 

have direct effects on smooth muscle cells by promoting  the actions of 

endothelin-1 which can lead to the proliferation of vascular smooth muscle cells 

[603].  This is supported by a study in RA patients which reported that 

components of the metabolic syndrome such as insulin resistance, were strongly 

associated with cIMT [475].  However, further studies are required to corroborate 

these findings in patients with RA, especially as functional and structural changes 

occur at distinct phases of atherosclerosis [604].   

 

 It is important to note that all associations found in the present study were 

not different between RA and healthy control participants.  Thus, factors which 

affect endothelial function in the general population may have similar effects in 

RA.  However, the presence of RA is an independent predictor of poor FMD 

[458], but this may not necessarily be due to inflammation, as endothelial 

function and cIMT are similar between RA and type II diabetes [458,486], despite 

inflammatory levels being greater in RA.  Therefore, further research is needed to 

identify other RA specific factors such as physical inactivity [605], rheumatoid 

cachexia [606] and genes [452] that may also affect endothelial function in RA. 

 

In conclusion, the present findings show that disease-related inflammation 

and individual classical CVD risk factors were not associated with microvascular 
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and macrovascular endothelial function in RA patients with low disease-related 

inflammation.  Further longitudinal studies are needed to examine the effects of 

high disease-related inflammation and inflammatory fluctuations on 

microvascular and macrovascular endothelial function in patients with RA. 
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Chapter 7: The Effects of Anti-Tumor Necrosis Factor-alpha on 
Microvascular and Macrovascular Endothelial Function in 

Rheumatoid Arthritis 
 
Introduction 
Rheumatoid arthritis (RA) is characterised by an increased expression of pro-

inflammatory cytokines which are involved in propagating joint damage [46].  

Tumour necrosis alpha (TNF-a) is one such cytokine that plays a major role in 

the pathogenesis of RA due to its ability to regulate additional pro-inflammatory 

cytokines such as interleukin-1 (IL-1) and IL-6, as well as activating downstream 

inflammatory mediators like C-reactive protein (CRP) which then amplify the 

inflammatory response [98].  TNF-α also contributes to the inflammatory 

response in atherosclerosis [210], by direct deleterious effects on the 

endothelium [443].  For example, TNF-α can reduce nitric oxide (NO) 

bioavailability by down-regulating the expression of endothelial nitric oxide 

synthase (eNOS) [607].  TNF-α can also impair vascular regeneration by 

inhibiting the actions of endothelial progenitor cells (EPC) which are involved in 

repairing endothelial cell injury [215].  Indirect effects of TNF-α include alterations 

in the lipid profile which promote dyslipidemia [608,609], as well as impaired 

glucose metabolism leading to insulin resistance [610,611].  Inhibition of Tumor 

Necrosis Factor-α (anti-TNF- α) in RA patients with high disease-related 

inflammation can reduce disease activity and delay the progressive joint damage 

[612].  Preliminary evidence also suggests that anti-TNF-α therapy may cause a 

reduction of cardiovascular mortality in RA patients [613], via currently 

undetermined mechanisms.   

 

Intra-arterial infusion of TNF-α can cause acute endothelial dysfunction 

(ED) [591], whereas local infusion of anti-TNF-α can acutely improve ED [491].  

The effect of chronic anti-TNF-α treatment on microvascular and macrovascular 

endothelial function is not clear; some studies report long-term improvements 

[431,461,464,494,495,499], others report transient improvements 
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[438,492,493,500], or even no effect on endothelial function [434].  However, 

several studies included small sample sizes [438,461,493,499] and to our 

knowledge no studies have examined the longitudinal effects of anti-TNF-α on 

different sized vessels in the same group of patients with RA.  The latter point is 

particularly important as it is possible that effective control of disease-related 

inflammation may exert differential effects in the microvasculature and 

macrovasculature.   

 

  Although RA disease-related inflammation has been postulated to 

adversely affect endothelial function [123,124,461], the available evidence does 

not consistently support this.  Changes in disease-related inflammation are not 

related to changes in microvascular and macrovascular endothelial function in 

response to anti-inflammatory treatment [436,495,499,501].  Only one study 

actually found such a correlation [488].  Further, I reported that disease-related 

inflammation was not consistently associated with microvascular or 

macrovascular endothelial-dependent function in the previous chapter (Chapter 

6).  However, those findings need to be confirmed in a longitudinal study.  

Therefore, the aims of the present study were a) to examine the short-term 

effects of 2 and 12 weeks of treatment with anti-TNF-α on microvascular and 

macrovascular endothelial function, and b) to determine whether changes in 

microvascular and macrovascular endothelial function are associated with 

changes in disease-related inflammation in patients with RA. 

 

Methods 

 
Patients 
Twenty-three RA patients who were due to start anti-TNF-α treatment were 

recruited from the Rheumatology Outpatient Clinics of the Dudley Group of 

Hospitals NHS Foundation Trust, United Kingdom.  The patients are described in 

greater detail in Chapter 3.  The study received local Research Ethics Committee 
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approval and all patients gave their written informed consent according to the 

Declaration of Helsinki.  

 

Study Protocol   
Patients reported to the vascular laboratory after a 12 hour overnight fast 

between 7:00 am and 11:00 am for three separate visits.  The protocol was the 

same on each visit.  Patients were asked to refrain from exercise 24 hours before 

the session, and from smoking 12 hours before the session.  For ethical reasons, 

drug regimens were not interrupted prior to each assessment.  The laboratory 

was kept at a constant temperature (22 ± 0.9 oC).  Patients were assessed prior 

to starting anti-TNF-α therapy (pre-treatment) and were re-assessed at 2 weeks 

and 12 weeks after initiation of treatment.  For the 2 week assessment all 

patients had received a single dose of the medication.  The 3-month 

assessments were conducted one week after the patients had received their last 

dose of anti-TNF-α.  Fifteen patients were started on adalumimab, six on 

etanercept and 2 on Infliximab.     

 

All patients underwent a detailed clinical examination which included 

evaluation of their medical history and hospital records, examination of height 

(Seca 214 Road Rod), weight, body mass index (BMI) and body composition 

(Tanita BC 418 MA Segmental Body Composition Analyser).  Their disease 

activity score (DAS28) [68]  and their scores on the Anglicised version of the 

Stanford Health Assessment Questionnaire (HAQ) [72] were also assessed on 

each occasion.  In addition, demographic information was collected from all the 

patients by questionnaire.  Following this, patients were asked to sit on a semi-

recumbent armchair where they stayed for the remainder of the session.  Initially, 

patients were asked to sit quietly for 20 minutes, during which blood pressure 

measurements were taken.  A blood sample was obtained immediately after this 

initial rest period.  The patients then underwent assessments of arterial stiffness 

using pulse wave analysis and assessment of microvascular function using Laser 

Doppler imaging with iontophoresis.  This was followed by a further ten minutes 
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of rest.  After this, macrovasculature endothelial function was assessed using 

flow-mediated dilatation (FMD) and, following an additional ten minutes of rest, 

assessment of GTN-mediated dilatation (GTN).  These assessments are 

described in greater detail in the General Methods section (See Chapter 2). 

   

Statistical analysis 
Statistical analysis was performed using SPSS15 (SPSS Inc, Chicago, Illinois).  

Variables were tested for normality by the Kolmogorov-Smirnov test.  Means and 

standard deviations (SD) were calculated for normally distributed continuous 

variables and proportions for categorical variables.  Log transformation was 

performed for positively skewed variables as appropriate.  Changes in each 

parameter of endothelial function, CVD risk and disease-related measurements 

were assessed using 3 X time (pre-treatment baseline, 2 weeks, 12 weeks) 

repeated measures Analysis of Variance (ANOVA).  Where appropriate, Fisher 

LSD post-hoc tests were used for pair-wise comparisons.  Endothelial function 

did not differ between the three different types of anti-TNF-α treatment at any 

time point, therefore all treatments were analysed together.  The change in 

endothelial function and disease-related parameters at 2 and 12 weeks was 

calculated by subtracting the pre-treatment baseline values from the values 

obtained at 2 and 12 weeks.  Pearson correlations were used to examine 

whether changes in endothelial function related to changes in disease-related 

inflammation.  

 
Results  
  
RA Disease-Specific Characteristics  

The pre-treatment characteristics of the patients are presented in table 1.  The 

disease duration ranged from 2 – 43 years.  Fifteen (65.2%) of the patients were 

started on 40 mg of adalimumab, six (26.1%) on 50mg of etanercept and two 

(8.7%) on infliximab with a dosage of 3mg/kg.  Sixteen patients (69.6%) were on 

methotrexate, 4 (17.4%) on hydroxychloroquine and 7 (30.4%) on 
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sulphasalazine.  Six (26.1%) patients were on oral prednisolone up to a 

maximum dose of 7.5mg, 5 (21.7%) on oral anti-hypertensives, 6 (26.1%) on 

non-steroidal anti-inflammatory drugs (NSAIDs) and 1 (4.3%) on a cyclo-

oxygenase II inhibitor (Coxib).  There was no change in any of these medications 

or their doses during the follow-up period. 

 

Table 1.  The characteristics of the RA patients 

       RA Patients 

General Characteristics  

  Age (years) 54 ± 15 

  Sex female N (%) 15 (65) 

  Height (cm) 165 ± 8 

  BMI (kg/m2) 30 ± 6 

Disease-related  Characteristics  

  RF Positive N (%) 20 (87) 

  Disease duration (years) 11 ± 11 

CVD Risk Factors  

  Family history of CVD  12 (40) 

  Diabetes  1 (3) 

  Hypertension  6 (20) 

  High Cholesterol  6 (20) 

  Insulin Resistance  10 (33) 

  Overweight  7 (23) 

  Obese  13 (43) 

  Smoking Status   

    Never smoked  11 (48.8) 

    Previous smokers 7 (30) 

    Current smokers  5 (22) 

Results are expressed as Number (%).  Diabetes = fasting glucose >7 mmol/l and/or oral 

hypoglycaemic medication or insulin use; hypertension = SBP >140mmHg, DBP >90mmHg or 

use of anti-hypertensive’s; high cholesterol = fasting cholesterol >4.1 mmol/l or use of anti-

hypercholesterolemics; insulin resistance = homeostasis model assessment ≥ 2.5 or quantitative 
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insulin sensitivity check index ≤ 0.333; overweight: BMI ≥ 23-27.9; obese: BMI ≥ 28.  BMI: body 

mass index, RF: rheumatoid factor. 

 

Table 2 shows the RA disease-specific features at pre-treatment baseline, 

2 weeks and 12 weeks after commencing treatment.  The repeated measures 

(baseline, 2 weeks, 12 weeks) ANOVA revealed an overall effect for morning 

stiffness, CRP, ESR, fibrinogen, DAS28 and HAQ.  Post hoc analyses revealed 

that morning stiffness, CRP, fibrinogen, DAS28 and HAQ were reduced after 2 

weeks of treatment and remained so after 12 weeks of treatment.  ESR improved 

2 weeks after commencing treatment, but was similar to baseline levels at 12 

weeks.  None of the parameters differed between week 2 and week 12.  

 

Table 2.  Disease-related characteristics at baseline, 2 weeks and 12 weeks 

Results are expressed as median (25th to 75th percentile values) or mean ± standard deviation as 

appropriate.  a = different from baseline. CRP: C-reactive protein, ESR: erythrocyte sedimentation 

rate, DAS28: disease activity score, HAQ: health assessment questionnaire. 

 

Serological and Cardiovascular Parameters  
Serological and cardiovascular parameters are displayed in Table 3.  ANOVA 

revealed an overall time effect for HDL cholesterol, SBP and DBP.  Post hoc 

analysis showed that HDL cholesterol was higher at 2 weeks, but returned to 

baseline levels by 12 weeks.  There was no change in glucose, insulin, HOMA IR 

and QUICKI at any of the follow up periods.  SBP and DBP were lower at 2 and 

       Baseline 2 Weeks 12 Weeks Treatment Effect  
F (2,22) = 

   Morning     

   Stiffness (mins) 

116 ± 75 72 ± 81a    

 

55 ± 83 a     

 

4.33, p = .02 

   CRP (mg/l) 10 (4 – 14) 3 (2.9 – 6)a 5 (2.9 – 10)a 12.89, p = .000  

   ESR (mmhr) 16 (9 – 34) 10 (5 – 21)a    17 (5 – 27) 4.98, p = .01 

   Fibrinogen (g/L) 5.1 ± 1.0 4.2 ± .75 a 4.3 ± .91a 13.15, p = .000 

   DAS28  4.17± 0.96 2.74 ± 1.4a  2.64 ± 1.07 a 15.92, p = .000 

   HAQ 2.1 ± 0.5 1.3 ± 0.9 a   1.3 ± 0.9 a 17.18, p = .000 



151 
 

12 weeks relative to baseline, but there was no difference in HR at any of the 

time points.       

 

Table 3.  Serological factors and CV parameters during treatment 

 Baseline 2 Weeks 12 Weeks Treatment Effect Degrees 
of 

Freedom 

Serological Analysis      

  TC (mmol/l) 4.7 ± 0.9 5.0 ± 1.1 4.8 ± 0.9 F = 1.85, p =.46 2, 22 

  HDL (mmol/l)  1.4 ± 0.3 1.5 ± 0.3 a  1.4 ± 0.3b F = 4.98, p =.01 2, 22 

  Triglycerides (mmol/l)  1.4 ± 0.6 1.4 ± 0.7 1.6 ± 0.2 F = 1.73, p =.20 2, 22 

  TC:HDL ratio 3.4 ± 0.8 3.3 ± 0.7 3.6 ± 0.1 F = 2.39, p =.10 2, 22 

  Glucose (mmol/l) 4.5 ± 0.5 4.4 ± 0.4 4.5 ± 0.5 F = 0.84, p =.44 2, 22 

   Insulin (pmol/l) 105 ± 116 97 ± 76 91 ± 64 F = 0.40, p =.60 2, 17 

   HOMA IR 3.2 ± 4.0 2.9 ± 2.3 3.0 ± 2.2 F = 0.30, p =.70 2, 14 

   QUICKI  0.35 ± 0.1 0.35 ± 0.1 0.34 ± 0.0 F = 0.33, p =.72 2, 14 

CV Parameters      

  Resting SBP (mmHg) 127 ± 15 122 ± 15 a 119 ± 15 a F = 5.63, p =.007 2, 22 

  Resting DBP (mmHg) 80 ± 7 76 ± 7 a 75 ± 8 a F = 6.99, p =.002 2, 22 

  Resting HR (bpm) 73 ± 13 72 ± 10 71 ± 12 F = 0.91, p =.55 2, 22 

Results are expressed as mean ± standard deviation.   a = different from baseline, b = different 

from 2 weeks. TC: total cholesterol, HDL: high density lipoprotein, HOMA IR: homeostasis model 

assessment insulin resistance, QUICKI: quantitative insulin-sensitivity check index, SBP: systolic 

blood pressure, DBP: diastolic blood pressure, HR: heart rate. 

 
Endothelial Function 
 
Effect of Treatment 

For microvascular function, resting microvascular perfusion did not differ between 

any of the time points (Table 4).  ANOVA revealed an overall time effect for 

microvascular endothelial-dependent function.  Post hoc analysis confirmed that 

the microvascular endothelial-dependent function was increased at 2 weeks, but 

not different from pre-treatment baseline at 12 weeks.  In the macrocirculation, 
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the resting vessel diameters were the same across all the time points.  Similarly, 

no differences were found in macrovascular endothelial-dependent and 

endothelial-independent function at any of the time points.  Arterial stiffness 

remained similar to pre-treatment baseline at 2 weeks and at 12 weeks.  

 

Table 4.  Endothelial function during treatment 

 Baseline 2 Weeks 12 Weeks Treatment 
Effect 

Degrees 
of 

Freedom 

Microvascular Function      

  Resting ACh Perfusion  (PU) 41 ± 16 37 ± 11 38 ± 14 F =0.67, p =.51 2, 21 

  Increase in Perfusion ACh % 314 ± 214 423 ± 250a 348 ± 209b F = 5.09, p =.01 2, 21 

  Resting SNP Perfusion (PU) 41 ± 17 39 ± 11 38 ± 9 F = 0.11, p =.90 2, 21 

  Increase in Perfusion SNP % 247 ± 126 284 ± 147 261 ± 152 F = 1.18, p =.32 2, 21 

Macrovascular Function      

  Resting FMD Diameter (mm) 3.5 ± 0.6 3.5 ± 0.6 3.5 ± 0.6 F = 0.10, p =.91 2, 19 

  FMD (%) 9.4 ± 6.8 12.0 ± 10.0 12.0 ± 8.1 F = 1.60, p =.21 2, 19 

  Resting GTN Diameter (mm) 3.6 ± 0.6 3.6 ± 0.6 3.6 ± 0.6 F = 0.04, p =.81 2, 19 

  GTN (%) 22 ± 7.4 23 ± 7.2 24 ± 7.2 F = 0.31,  p =.74 2, 19 

  AIx 32 ± 9 31 ± 10 33 ± 9 F = 0.49,  p =.62 2, 18 

Results are expressed as mean ± standard deviation.  a= different from baseline, b = different from 2 

weeks.  ACh: acetylcholine, SNP: sodium nitroprusside, FMD: flow-mediated dilatation, GTN: glyceryl 

tri-nitrate mediated dilatation, AIx: augmentation index.  

 

Disease-related Inflammation and Endothelial Function 
Pearson correlations were performed to examine the relationship between 

disease related parameters and endothelial function.  This analysis revealed that 

absolute ESR and CRP were not related with any vascular parameter at any time 

point (p values > 07).  Similarly, absolute DAS28 was not associated with any 

parameter of microvascular function (p values > 06); however, it was associated 

with baseline macrovascular endothelial-dependent function (r (22) = .45, p = 

.03).  Changes (∆) in ESR, CRP and DAS28 relative to baseline were not 
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correlated with change in microvascular endothelial-dependent function at 2 

weeks or at 12 weeks (p values > .10) (Table 5).  Similarly, ∆ESR and ∆DAS28 

were not related with change in macrovascular endothelial-dependent function at 

2 and 12 weeks.  However, ∆CRP was associated change in macrovascular 

endothelial-dependent function at 2 weeks (r (22) = .52, p = .01).  

 

Baseline ESR associated with the change in microvascular endothelial-

dependent function at 2 weeks (r (22) = .48, p = .02) and baseline CRP was 

associated with change in microvascular endothelial-dependent function at 2 

weeks (r (22) = .47, p = .02) and at 12 weeks (r (21) = .42, p = .05).  Thus, those 

with high levels of disease-related inflammation at baseline showed the greatest 

improvement in microvascular function.  No other significant correlations 

emerged from these analyses.    
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Table 5.  Association between change in endothelial function and change in disease-related inflammation 

Change scores are expressed as mean ± standard deviation. * p = .01, **p = .002  
 

  Δ logESR 
2 weeks 

Δ logESR 
12 weeks 

Δ logCRP 
2 weeks 

Δ logCRP 
12 weeks 

Δ DAS28 
2 weeks 

Δ DAS28 
12 weeks 

 Change 

Score 

-0.25 ± 0.31 -0.11 ± 0.46 -0.67 ± 0.41 -0.49 ± 0.34 -1.50 ± 1.40 - 1.38 ± 1.28 

Δ ACh (%) 2 weeks 110 ± 126 r (22) = - 0.16 r (21) = - 0.04 r (21) = - 0.26 r (22) = - 0.23 r (22) = - 0.16 r (22) = 0.11 

Δ ACh (%) 12 weeks 29 ± 214 r (22) = - 0.22 r (20) = 0.03 r (21 = - 0.14 r (21) = 0.15 r (21) = 0.04 r (20) = 0.25 

Δ SNP (%) 2 weeks 38 ± 83 r (22) = 0.06 r (21) = - 0.02 r (22) = - 0.29 r (21) = - 0.14 r (22) = 0.15 r (21) = 0.12 

Δ SNP (%) 12 weeks 9 ± 120 r (21) = 0.04 r (20) = 0.10 r (21) = - 0.19 r (21) =- 0.22 r (21) = 0.14 r (21) = 0.18 

Δ FMD (%) 2 weeks 2.6 ± 8.8 r (22) = 0.28 r (21) = 0.27 r (22) = 0.52* r (22) = 0.26 r (22) = 0.23 r (21) = 0.24 

Δ FMD (%) 12 weeks 2.6  ± 7.2 r (22) = 0.09 r (21) = 0.19 r (22) = 0.34 r (22) = 0.14 r (22) = 0.16 r (21) = 0.24 

Δ GTN(%) 2 weeks 0.7 ± 6.7 r (22) = -0.13 r (21) = - 0.36 r (22) = 0.31 r (22) = - 0.17 r (22) = - 0.15 r (21) = - 0.02 

Δ GTN (%) 12 weeks 1.2 ± 6.2 r (19) = 0.09 r (18) = - 0.13 r (19) = 0.29 r (19) = 0.24 r (19) = 0.25 r (19) = 0.06 

Δ AIx 2 weeks -1.1 ± 7.5 r (18) = 0.67** r (17) = 0.30 r (18) = 0.27 r (18) = 0.04 r (18) = 0.24 r (17) = 0.11 

Δ AIx 12 weeks 1.5 ± 8.1 r (19) = 0.44 r (18) = 0.18 r (19) = 0.16 r (19) = 0.09 r (19) = 0.06 r (18) = - 0.34 
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Discussion 

 
The present analyses revealed an improvement in microvascular endothelial-dependent 

function after 2 weeks of treatment with anti-TNF-α which returned to baseline after 12 

weeks in RA patients who had newly started anti-TNF-α treatment.  There was no change 

in macrovascular endothelial function during the 12 week follow-up period.  In addition, 

microvascular and macrovascular endothelial function were not associated with disease-

related inflammation at baseline, nor were the changes in microvascular and 

macrovascular endothelial function related to the changes in disease related inflammation.  

However, those with higher levels of ESR and CRP showed greater change in 

microvascular endothelial-dependent function.    

 

 The present result for microvascular endothelial-dependent function resonates with 

the findings of a previous study.  Komai and colleagues [492] also found improvements 

after 2 weeks of treatment with anti-TNF-α when assessing microvascular endothelial-

dependent function using forearm blood flow (FBF) response to ACh.  In addition, although 

lower than that at 2 weeks, FBF was still increased after 6 weeks of treatment [492].  

Therefore, it is possible that after an initial improvement, a gradual decrease in 

microvascular endothelial function occurs between 6 weeks and 12 weeks.  Without a 6 

week assessment in the current study this must remain speculation.  In contrast, Hansel 

and colleagues [434] observed no change in microvascular endothelial-dependent function 

at 2 weeks in RA patients; however, these patients exhibited consistently lower disease-

related inflammation than the present cohort.  Given that elevated baseline inflammation 

was associated with greater change in endothelial function it is possible that change in 

endothelial function after treatment is unlikely in patients with low disease-related 

inflammation and this may explain the seemingly contrasting findings.  Another study that 

examined microvascular endothelial function in patients with high baseline disease-related 

inflammation also found an improvement after anti-inflammatory treatment [436].  However, 

that pilot study had a small sample size and inconsistent follow-up period.   
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 Macrovascular endothelial-dependent function did not change in response to anti-

TNF-α treatment, which is in contrast to previous research [431,438,493-495,500].  

Comparison of the patients included in all these studies revealed that baseline 

macrovascular endothelial-dependent function was better in the current study than in 

previous RA patient samples (9.4% vs. 2.8 – 7.0%, respectively).  Studies which included a 

healthy control group showed lower baseline macrovascular endothelial-dependent function 

in the RA patients [431,493,500].  However in the present study, the baseline 

macrovascular endothelial-dependent function of the RA patients was comparable to 

healthy control participants described in the previous chapter (p = .33), therefore making an 

improvement in response to treatment unlikely.  Furthermore, post hoc analyses were 

conducted using GPower3 [578] with significance set at .05 to determine the power to 

detect differences over time in microvascular and macrovascular endothelial function.  On 

the basis of sample size, effect size, and correlations between the assessments at different 

time points, this analysis revealed that the obtained power was .99 to detect differences in 

microvascular and .98 to detect differences in macrovascular endothelial function.  Thus, 

the obtained power in this study was sufficient to detect differences in endothelial function. 

  

 Arterial stiffness assessed with PWA remained unchanged throughout the study 

period which is a similar finding to a number of other studies that have examined PWA 

[461,517] and pulse wave velocity [492] in response to anti-TNF-α treatment in RA.  In 

contrast to the present findings, Galarraga and colleagues [464] found a sustained 

improvement in PWA after 2 and 4 months of treatment with anti-TNF-α.  However, their 

patients had greater disease-related inflammation at baseline than patients in the present 

study, and the subsequent improvement in disease-related inflammation might have 

contributed to the change in arterial stiffness.  The present findings showed that arterial 

stiffness was reduced at 2 weeks, albeit non-significantly, and this change correlated with 

the change in ESR at 2 weeks.  Therefore, it might be possible that anti-inflammatory 

treatment has an affect on arterial stiffness when baseline disease-related inflammation is 

high; an issue that warrants further investigation. 

 



 
 

157 
 

To our knowledge the current study was the first to examine the effect of anti-TNF-α 

on both microvascular and macrovascular endothelial function in the same patients.  The 

present findings extend the previous chapters in that changes in microvascular and 

macrovascular endothelial function appear to be differentially regulated and may be 

selectively affected by disease-related inflammation in RA.  Furthermore, there is 

increasing evidence that in early atherosclerosis, ED in the microvasculature may occur 

independently of ED in the macrovasculature [614,615].  It is well established that in type II 

diabetes the onset of microvascular disease occurs before macrovascular disease [572].  

The reason for this has not yet been fully elucidated, but a number of in vitro studies have 

indicated that oxidative stress, endothelial-leucocyte interactions, platelet recruitment and 

pro-inflammatory cytokines like TNF-α can originate in small resistance vessels [616-619].  

These molecules may subsequently spread to the macrovessels and initiate a pro-

inflammatory state which can lead to lesion development [574].  These findings suggest 

that microvascular inflammation may occur before inflammatory changes in the 

macrovessels.  Importantly, anti-TNF-α can ameliorate all the above factors in the vascular 

endothelium [443], and this translates into immediate reversal of microvascular ED when 

anti-TNF-α is infused into the brachial artery of RA patients with active disease [491].  

Interestingly in the present study, higher baseline ESR and CRP were associated with 

greater change in microvascular endothelial-dependent function in response to anti-TNF-α 

treatment.  Further, there was trend for lower microvascular endothelial-dependent function 

relative to previously assessed healthy controls (p = .07).  This suggests that effective 

control of disease-related inflammation in those patients with the most active disease had 

more profound effects on microvascular endothelial function, where some underlying 

dysfunction may have been present. 

 

 The transient improvement in microvascular endothelial function mirrored the 

change in HDL-C.  HDL-C associates with microvascular and macrovascular ED in healthy 

individuals and diabetics [620-622] as well as RA patients [466,471,477].  HDL-C prevents 

low density lipoprotein cholesterol (LDL-C) from oxidation and is involved in cellular efflux 

of accumulated LDL-C particles in the vasculature, which in turn prevents foam cell 

accumulation and subsequent ED [622].  In addition, HDL-C exerts very specific effects in 
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the vasculature including the reduction of TNF-α mediated superoxide release, stimulating 

production of EPC, and stimulation of NO in endothelial cells [623-626], all of which 

increase endothelial dependent vasodilatation of the vessel [623].  Given that both HDL-C 

levels as well as its anti-oxidant ability can increase with administration of anti-TNF-α in RA 

[142,627], it is possible that the improvement in microvascular endothelial function after 2 

weeks of treatment with anti-TNF-α was mediated by increased HDL-C levels.   

 

Treatment with anti-TNF-α effectively controlled CRP and DAS28 at all follow-up 

points in the current study, but disease-related inflammation was not associated with 

microvascular endothelial function and most parameters of macrovascular endothelial 

function.  Surprisingly, DAS28 positively associated with macrovascular endothelial-

dependent function at baseline.  This association was unexpected, and implied that 

patients with high disease activity had better macrovascular endothelial function.  It is 

possible that this association may have been a chance finding, given the number of 

associations that were performed.  Interestingly, the change in CRP associated with the 

change in macrovascular endothelial-dependent function at 2 weeks, thus suggesting that 

lower CRP at 2 weeks may have contributed to the non-significant increase in 

macrovascular endothelial-dependent function observed in response to treatment. 

 

  Although the link between disease-related inflammation and endothelial function 

has been hypothesised [123,124], a number of cross-sectional studies have reported that 

disease-related inflammation is not associated with microvascular endothelial-dependent 

function [451] or macrovascular endothelial-dependent function [435,452,455,458].  

Similarly, most longitudinal studies do not find correlations between change in disease-

related inflammation and change in microvascular and macrovascular endothelial function 

in response to anti-inflammatory treatment [436,495,499,501], with only one study actually 

reporting an association [488].  Surprisingly, several studies did not report associations 

between changes disease-related inflammation and changes in microvascular or 

macrovascular endothelial function [431,434,438,491,493,494,500].  Collectively, these 

findings do not support a relationship between disease-related inflammation and 
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endothelial function, but further studies with larger sample sizes are required to confirm 

these findings.   

 

The decrease in SBP and DBP after 2 and 12 weeks of treatment highlights the 

important role inflammation might play in regulating blood pressure in RA.  In previous 

studies in RA patients there has been speculation regarding the role of systemic 

inflammation in relation to blood pressure.  Patients on medium dose oral prednisolone 

(>=7.5mg) have been shown to have increased odds for hypertension even after 

adjustments for other risk factors [491].  However, it remains unclear whether this 

association reflects a deleterious side-effect of glucocorticoids or is due to increased 

systemic inflammation in patients who are on such treatment (channelling bias).  The 

present findings suggest that systemic inflammation could be at least partially responsible 

for raised blood pressure in these patients.  Indeed, the reduction in the blood pressure 

may have been a simple conditioning effect over time.  However, data from the reliability 

study presented in Chapter 3 showed that SBP and DBP remained stable in 12 healthy 

control participants followed up on 4 occasions over a six week period.  It is therefore likely 

that a reduction in TNF-α levels (reflected by the reduction in CRP and DAS28) contributed 

to the reductions in blood pressure, but further studies are needed to confirm these 

findings. 

 

 In conclusion, the present study revealed that treatment with anti-TNF-α resulted in a 

transient improvement in microvascular but not macrovascular endothelial function.  

Furthermore, the improvement could be mediated by a favourable effect of HDL-C on 

microvascular endothelial function.  In addition, the longitudinal design of the present study 

revealed that systemic markers of inflammation did not associate with endothelial function 

in patients with RA. 
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Chapter 8: General Discussion 
 
Summary 

This thesis focussed on endothelial function in patients with rheumatoid arthritis (RA).  

Laser Doppler Imaging (LDI) with iontophoresis of acetylcholine (ACh) and sodium 

nitroprusside (SNP) was used for the assessment of microvascular endothelial-dependent 

and endothelial-independent function respectively.  Macrovascular endothelial-dependent 

and endothelial independent function was measured using flow-mediated dilatation (FMD) 

and glyceryl-trinitrate-mediated dilatation (GTN) respectively.  In addition, pulse wave 

analysis was used to characterise arterial stiffness.  The work presented in Chapter 4 

revealed that microvascular and macrovascular endothelial function were not significantly 

different between RA patients and healthy controls, arterial stiffness, however, was greater 

in RA. This piece of work was also one of the first in RA to examine endothelial function in 

various vascular beds in the same patient: both the cross-sectional studies presented in 

Chapter 4 and the longitudinal studies presented in Chapter 5 suggested that 

microvascular and macrovascular endothelial function were independent from each other. 

 

One of the main hypotheses in this thesis was that disease-related systemic 

inflammation is a major determinant of microvascular and macrovascular endothelial 

function in RA.  The results obtained here however, do not support this hypothesis.  The 

relationship between endothelial function and disease-related inflammation has been 

largely assumed from data showing improvements in endothelial function after anti-

inflammatory treatment [431,494,497], along with a small number of studies that have 

reported associations between inflammation and endothelial function  [433,448,451,454], 

leading to the hypotheses that disease-related inflammation directly influences endothelial 

function [123,124].  The systematic review presented in Chapter 7 highlighted that the 

overwhelming majority of studies do not support the link between inflammation and 

endothelial function.  This finding was also observed in our cross-sectional study presented 

in Chapter 5, which included a large sample of patients with different ages, disease severity 

and treatments.  Furthermore, if disease-related inflammation does contribute to endothelial 

dysfunction (ED), then improvements in endothelial function after potent anti-inflammatory 
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treatment should be observed alongside lowered inflammatory markers, such as the ESR 

and CRP.  However, the longitudinal studies presented in Chapter 6 showed that this was 

not the case, as improvement in microvascular endothelial-dependent function after anti-

inflammatory treatment was not related to the change in disease-related inflammation.  This 

is consistent with a number of other studies [436,495,499,501].  Interestingly, RA patients 

with very high disease-related inflammation at baseline had greater change in 

microvascular endothelial function after anti-TNF-α treatment (Chapter 6) suggesting that 

inflammation might still play a role in ED, but this is likely to be modest, or alternatively that 

there may be drug-specific effects that require further investigation.  It is important to 

highlight that from the systematic literature review, it appears that the quality of studies that 

report no significant associations between disease-related inflammation and endothelial 

function is higher than studies which do find a significant association (See Table 1 of 

Chapter 7).  Therefore, the findings of the experimental part of this thesis and the 

systematic review collectively suggest that factors other than inflammation need to be 

examined to decipher their impact on endothelial function in RA.   

 

Microvascular endothelial-dependent function was not associated with individual 

CVD risk factors but was related with the Framingham Risk Score (FRS) and Systematic 

Coronary Risk Evaluation (SCORE).  Interestingly, the improvement that was found in the 

microvasculature following two weeks of anti-TNF-α treatment occurred with a concomitant 

improvement in high-density lipoprotein cholesterol (HDL-C) (Chapter 6), as well as an 

improvement in systolic blood pressure (SBP) and diastolic blood pressure (DBP) at 2 and 

12 weeks.  This might suggest an interaction between inflammation and classical CVD risk 

factors that may then impact upon the microvasculature in RA.  In contrast, macrovascular 

endothelial-dependent function was not linked either with markers of inflammation, or with 

classical CVD risk (either as individual CVD risk factors, or the FRS or SCORE risk 

algorithms), although classical CVD risk (FRS, the presence of the metabolic syndrome, 

along with individual CVD risk factors such as hypertension and hypercholesterolaemia) 

associated with macrovascular endothelial-independent function (Chapter 5).  Collectively, 

these findings suggest differential regulation and impacts by inflammation and classical 
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CVD risk on the functional responses of the microvasculature and macrovasculature in 

patients with RA.      

 
Implications   
 

Factors that May Affect Endothelial Function in RA 

As disease-related inflammation and endothelial function were not associated, other factors 

may be affecting the vasculature in RA.  The present thesis suggests that classical CVD 

risk may play a predominant role.  Classical CVD risk was associated with microvascular 

endothelial-dependent function and macrovascular endothelial-independent function in the 

analysis presented in Chapter 5.  Thus, this hypothesis seems very plausible, especially as 

there is an increased prevalence in a number of classical CVD risk factors in RA [628].  In 

particular, the prevalence of dyslipidaemia [142]  and hypertension [440]  is elevated, and 

their control is worse in RA patients [128,146] compared to the general population [629].  

Classical CVD risk factors can improve after controlling RA disease-related inflammation 

[155,446], which is indicative of a relationship between these two factors.  The present 

work showed that the improvement in microvascular endothelial function after anti-

inflammatory treatment was mirrored by an improvement in HDL-C (Chapter 6).  The 

significance of this finding is put into context by the fact that the most evident lipid 

abnormality in RA is a reduction in HDL-C levels particularly during active disease 

[148,630,631], which may directly impair the vasodilatory capacity of the vessels [623-

626,632].  Blood pressure was also lowered after anti-inflammatory treatment in the current 

work (Chapter 6), and several studies have suggested that inflammation may be an 

independent risk factor for hypertension in the general population [133,134,633].  

Moreover, the improvement in microvascular endothelial function may contribute to the 

improvement in the blood pressure as microvessels play a major role in regulating total 

peripheral resistance – a key determinant of blood pressure.  Importantly, inflammation 

associates with other measures of vascular function such as carotid intima-media thickness 

(cIMT) only in the presence of classical CVD risk factors [219].  Therefore, rather than 

inflammation exerting direct effects on the endothelium independently from other factors, 
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the magnitude of ED in RA may depend on subtle interactions between inflammation, 

classical CVD risk factors and endothelial function.   

 

 Factors other than classical CVD risk factors have also been postulated to affect 

endothelial function in RA.  The aetiology of RA has a considerable genetic component  

[634], in particular, certain Human Leukocyte Antigen (HLA) alleles have consistently been 

shown to associate with RA, and these also appear to associate with worse macrovascular 

endothelial-dependent function in this group of patients [452].  The precise mechanism for 

this association is not clear, but the shared epitope associates with worse RA disease 

severity [635,636], and consequently, patients with greater disease severity may be 

predisposed to impairments in the vasculature which result in ED [637].  Interestingly, 

recent work from our group has shown a clear link between the shared epitope (and 

whether one has a “single dose” or a “double dose”) with dyslipidaemia in patients with RA.  

We have also demonstrated the association of several polymorphisms, and their interplay 

with environmental factors, with hypertension or prevalent CVD in patients with RA 

[190,638-642].  Genetic polymorphisms may also impact directly on endothelial cell 

function.  For example, polymorphisms in the nitric oxide synthase 3 gene (NOS 3), which 

is responsible for regulating endothelial nitric oxide synthase (eNOS) can result in reduced 

nitric oxide (NO) bioavailability [643].  Polymorphisms of the NOS 3 gene has been 

identified in individuals presenting with coronary vasoconstriction [644], however, little is 

known about NOS 3 gene expression in RA patients and further studies are warranted.   

 

Limitations 
A number of in vitro studies have revealed that endothelial cells display heterogeneous 

responses to stimulation in different vascular beds [224,225,571].  In the present work no 

association was found between microvascular and macrovascular endothelial-dependent 

function in RA which seemingly supports these in vitro observations.  However, the 

techniques employed to examine microvascular and macrovascular endothelial-dependent 

function have a number of inherent differences.  LDI and FMD involve distinct pathways to 

stimulate NO; LDI uses a pharmacological stimulus (ACh and SNP) to activate NO, 

whereas FMD uses a physiological stimulus (shear stress) [586,587].  Consequently, these 
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stimulus profiles may differentially activate NO.  For example, FMD predominantly evokes 

maximum NO release as inhibition of NO completely abrogates the vasodilatory response 

to shear stress [379], but only 30-40% of the microvascular response to ACh is reduced by 

NO inhibition [585].  Thus, the independence of these vascular beds could be due to 

mechanistic differences in the techniques and it is therefore not possible to confirm if in vivo 

endothelial responses reflect in vitro observations [224,225,571].  Interestingly, correlations 

between peripheral and coronary endothelial function are stronger when the same stimulus 

is applied [352,588] than when different stimuli are applied [351], so use of a similar 

stimulus in the microvessels and the macrovessels may provide clearer information on the 

associations between these vascular beds.   The techniques employed in the present study 

were selected because they are widely used in the literature.  

  

Differences in methodology can make comparison of findings between studies 

difficult.  For example, manual methods to detect and mark out the vessel diameter during 

FMD is common in a variety of studies [493,499,501,505], but this can be less accurate 

when compared with automated wall tracking software which detects and calculates arterial 

diameters in real-time and greatly reduces the variability found in the measurements 

[535,547].  In addition, different techniques have been employed to assess microvascular 

endothelial function (forearm blood flow (FBF) vs. LDI).  FBF stimulates the vessels of the 

whole limb [372], whereas LDI only stimulates the tissues at the site of the iontophoresis 

chambers [371].  Therefore, it might be possible that recruitment of differing number of 

vessels elicit variable perfusion responses between the techniques.  However, to our 

knowledge, FBF and LDI have not been directly compared, and further studies are 

necessary to identify if each technique provides a similar characterisation of endothelial 

function.  Even studies that use only LDI to assess microvascular endothelial function have 

differences between each other.  Unlike the current studies, others have incrementally 

increased the iontophoresis charge to deliver vasoactive agents in a stepwise manner 

[436,449].  However, the iontophoresis protocol used in the present work was adapted to 

suit the patients who may have discomfort in keeping inflamed joints still for long periods of 

time.  Furthermore, initial pilot work showed that a plateau in the endothelial function 
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response could be achieved with the current protocol in healthy individuals (data not 

shown).  

 

Global CVD risk was evaluated using the FRS [528] and SCORE [529], while the 

presence of the metabolic syndrome was also assessed [533].  To our knowledge these 

measurement scales have never been validated in inflammatory conditions such as RA.  

Some evidence in the general population suggests that the FRS algorithms may 

underestimate risk in the elderly (e.g. > 75) [645], while both the FRS and SCORE can 

underestimate CVD risk in almost a third of at risk females [645].  This may have important 

implications for RA where the majority of patients are elderly and female.  Another limitation 

of these CVD risk algorithms is that they do not take into account novel CVD risk factors 

like disease-related inflammation which also contribute to the increased risk of CVD [220].  

For example, some of the classical CVD risk factors incorporated in the algorithms such as 

blood pressure, lipids and insulin resistance can be affected by RA-disease related 

inflammation [111,155,446].  Therefore, algorithms which incorporate inflammation may 

provide better prognostic information on CVD risk in populations like RA.  One such 

algorithm is the Reynolds risk score, which incorporates C-reactive protein (CRP) along 

with some of the classical CVD risk factors used for the FRS and SCORE [646].  Studies 

comparing conventional risk scores with Reynolds may give insight on whether Reynolds 

provides greater prognostic information on CVD risk than conventional risk utilities.  It is 

worth mentioning that even Reynolds may have limitations as inflammatory markers such 

as CRP can fluctuate with the course of disease in RA patients, and it may therefore be 

difficult to determine 10 year CVD risk from a single CRP measurement.  Alternatively, the 

recent recommendation by the European League Against Rheumatism (EULAR) 

cardiovascular group of multiplying the nationally recommended risk score by a factor of 

1.5 [647] (to account for the additional risk afforded by RA and all the mechanisms this may 

encompass) could also be used in this context.   

 

RA patients in the cross-sectional study were older than healthy control participants 

in the present work.  Unfortunately, it proved virtually impossible to recruit healthy age-

matched participants, as older people are likely to have clinical conditions that could affect 
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endothelial function.  The longitudinal study did not have a no-treatment RA control group, 

for obvious ethical reasons.  It is acknowledged that the inclusion of a patient group on 

stable medication could have strengthened the design of the study, as it would have 

allowed exploration of potential fluctuations in endothelial function.  However, such a 

control group is likely to have lower baseline levels of disease-related inflammation making 

comparisons to patients with active inflammation difficult.  

 

 In the current work, participants were not asked to withhold their anti-rheumatic 

treatment or vasoactive medications prior to the vascular assessments as examining 

patients while they maintain their normal medication regime may provide a better reflection 

of the patient’s arterial condition in an everyday setting.  Furthermore, many of the anti-

rheumatic medications have long half lives and would require a substantial period of 

abstinence to completely eradicate the drug and its effects from the system [1].  

Methotrexate was the most commonly used anti-rheumatic medication and patients 

receiving this treatment had greater FMD (Chapter 5).  No other analyses with anti-

rheumatic medications were conducted due to small number of patients on each 

medication regime.  It is therefore not possible to assess the effects of other anti-rheumatic 

medications on endothelial function.  Additional analyses of the effects of vasoactive 

medication revealed that microvascular and macrovascular endothelial-dependent 

responses in RA patients receiving such medications (N = 46) did not differ when compared 

to patients who were not on these medications (p’s >.36).  Moreover, none of the healthy 

control participants were receiving any vasoactive medication, and endothelial-dependent 

responses in the microcirculation and macrocirculation were similar between RA patients 

not on vasoactive medications (N = 53) and healthy controls participants (p’s >.06).  

Therefore, vasoactive medications appeared to have little impact on the current findings.  

 

Future research 
 

Current Inflammation versus Cumulative Inflammation 

Although acute bouts of inflammation are important, the inflammatory burden over a period 

of time may be more crucial for the progression of atherosclerosis [648].  Further, the 
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metabolic effects from long-term inflammation can lead to the development of several 

classical CVD risk factors [168,188,445].  In RA, inflammation levels constantly fluctuate 

[1], and the endothelium is exposed to varying inflammatory loads.  Patients with greater 

periods of elevated disease-related inflammation may develop more damage to the 

endothelium due to the higher cumulative inflammatory burden on the vasculature.  Thus, 

characterising the inflammatory fluctuations over a period of time (cumulative inflammatory 

burden) may be a better predictor for ED in RA.  Such an approach takes into account the 

inflammatory load during the course of the disease, with high inflammatory load likely to 

result in greater progression of atherosclerosis [648].  Chapter 4 revealed that arterial 

stiffness was greater in RA patients relative to healthy control participants but this was not 

related to current inflammatory levels.  A number of studies have shown that cumulative 

inflammation shows better association with arterial stiffness (and vasodilatory function) than 

current  inflammatory levels [433,463,465], and this is also evident for advanced measures 

of atherosclerosis like cIMT [467,468,487].  In line with this evidence it is tempting to 

speculate that continuous inflammatory insult may lead to higher arterial stiffness, but 

without recording cumulative inflammatory burden, this remains speculative.  Further 

studies that explore relationships between cumulative inflammation and vascular 

assessments representing different stages of atherosclerosis are warranted.   

 

Targeting Different Inflammatory Pathways 

Treatment of RA involves several medications including disease-modifying anti-rheumatic 

agents (DMARDs) such as methotrexate.  DMARDs are typically used early in the course 

of the disease and may exert beneficial effects both in terms of RA disease progression as 

well as CVD risk factors, endothelial function and eventual CVD outcome [118,142,441].  

However, in patients who do not respond sufficiently well to DMARDs, biologic agents such 

as the anti-TNF-α, anti-IL6 receptor, anti-CD20 and selective co-stimulation modulators are 

often used.  These agents exert their therapeutic effects by targeting different pathways of 

inflammation, and recent preliminary investigations have reported improvements in RA 

symptoms and endothelial function in response to some of these agents [496-498,501].  

One advantage of examining the effects of various medications is that they might help to 

characterise the contribution of different inflammatory pathways on ED in RA.  Such 
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findings could also be extended to patients with CVD, as RA and atherosclerosis share 

similar inflammatory pathogenic pathways [648].   

 

 CVD Risk Factors and Endothelial Function 

At present, only a minority of studies have examined the impact of classical CVD risk 

factors on endothelial function and have mainly focused on lipids; these studies report an 

association between endothelial function and lipid levels [433,456].  However to our 

knowledge, there are no studies that have explored associations for other classical CVD 

risk factors and endothelial function in RA.  Classical CVD risk factors substantially 

contribute to ED in the general population and in patients suspected of CVD [359], and as 

mentioned earlier, may be influencing the association between disease-related 

inflammation and ED in RA.  Furthermore, interventions that specifically reduce CVD risk 

such as exercise have been hypothesised to have a beneficial effect on RA disease-related 

inflammation and endothelial function [649], yet no study has assessed this in RA [131].  

Therefore, studies which look at the long-term effects of interventions such as exercise on 

disease-related inflammation and endothelial function might provide insight on the specific 

interactions present between inflammation, CVD risk and endothelial function.   

 

 Can Endothelial Function Predict Future Risk of Cardiac Events?  

Assessments of endothelial function are regarded as good surrogate markers of nitric oxide 

(NO) bioavailability [379,585].  NO regulates a number of atherosclerotic processes 

including inhibition of platelet and leukocyte activation as well as their adhesion to the 

vessel wall [273-276]; this helps to maintain a favourable environment in the vessel [241].  

Several studies in patients suspected of CVD and those with established CVD report that 

poor microvascular and macrovascular endothelial function at baseline are good predictors 

of atherosclerotic progression and future cardiac events [354-356].  In contrast, little is 

known about the prognostic value of endothelial function in RA, with only one study 

exploring the predictive value of cIMT for cardiac events [524].  After a follow up period of 5 

years, during which 8 patients experienced a cardiac event, it was shown that cIMT of 

those with cardiac event was significantly higher at the start of the study compared to those 

without a cardiac event.  [524].  However, even though these data are promising, they 
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should be interpreted with caution due to the small sample size of the study (47 patients in 

total), the significantly older age of the patients that had a cardiac event, and the lack of 

follow-up examination for cIMT [524].  A number of studies have reported impaired 

microvascular endothelial function in the coronary circulation of RA patients [575,650,651], 

which can be reversed with anti-inflammatory therapy [575,650], but these findings need to 

be supported with long-term studies that actually show a reduction in CVD morbidity and 

mortality as a result of an improvement in endothelial function. 

 

Conclusion 

The present work showed that in RA patients, classical CVD risk factors might have a 

greater impact than RA disease-related inflammation on the vasculature.  Furthermore, the 

effects of CVD risk factors and disease-related inflammation may differentially impact 

microvascular and macrovascular endothelial function.  Further studies are needed to 

confirm whether CVD risk factors affect vascular function, and if assessments of vascular 

function are predictive of long-term CV outcomes in RA. 
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Appendix 1: Disease Activity Score 
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Appendix 2: Health Assessment Questionnaire 
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