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Abstract

In the 1980s, Ronan and Smith developed a homology theory to describe modules for

groups of Lie type, using sheaves constructed on geometries associated with such groups.

For a finite field k of characteristic π, they establish a one-to-one correspondence between

certain ‘fixed-point’ sheaves FV and the irreducible kG-modules for G a Chevalley group

defined over k. This correspondence is given by the irreducible kG-module V being

a unique irreducible quotient of the zero-homology module H0(FV ). In certain cases,

this homology module H0(FV ) is in fact isomorphic to the irreducible module V . The

question explored in this thesis is whether or not the Cayley module C for the group

G2(k) is isomorphic to H0(FC), as was speculated by Segev and Smith in 1986.
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Chapter 1

Introduction

In this thesis we present a partial answer to a speculation of Segev and Smith found in

their 1986 paper Apartments and the Cayley-Algebra Module for G2(k) [26]. Our main

result is as follows:

Theorem A Let k = Fq, where q = πa (π a prime) with π > 3 and 3 ∤ π − 1. Set

G = G2(k), and let ∆ be the building of G. Denote by C the Cayley module for G,

and let FC be the corresponding fixed-point sheaf on ∆. Then H0(∆,FC)
∼= C and so

dimH0(∆,FC) = 7.

In this chapter we will explain as briefly as possible the above statement, before reviewing

some related results from the literature. Finally, we will give a short summary of the

contents of each chapter to provide an overview of the thesis as a whole.

The Segev and Smith paper [26] builds on earlier work of Ronan and Smith. In a

series of three papers beginning with Sheaves on Buildings and Modular Representations

of Chevalley Groups [23] published in 1985, Ronan and Smith developed techniques to

study the representation theory of Chevalley groups using sheaf homology.

All groups of Lie type, including Chevalley groups, have an associated geometric struc-

ture called a building, on which they act in a nice manner (see Chapter 2 for details). The



theory of buildings was developed by Tits from the late 1950s onward, with the first thor-

ough treatment being given in Buildings of Spherical Type and Finite BN -pairs in 1974

[32]. Buildings can be considered as simplicial complexes: these are structures consisting

of simplices of various dimensions, along with face relations which identify one simplex

as being a face of another.

1.1 Sheaves on buildings
Ronan and Smith’s contribution begins by defining a sheaf on the building. Fix a finite

field k = Fq of characteristic π.1 If G is a Chevalley group with building ∆ = ∆(G), then

the stabiliser Pσ ≤ G of a simplex σ ∈ ∆ is called a parabolic subgroup of G. A sheaf F

is a coefficient system on ∆, in which each simplex in σ ∈ ∆ is assigned a coefficient in

the form of a kPσ-module Fσ. The sheaf F also contains connecting maps Fσ → Fτ

wherever τ is a face of σ. Finally, the G-action on ∆ is extended to a G-action on the

sheaf F . (See Chapter 5 for a much more complete exposition on Ronan and Smith’s

sheaves.)

One sheaf of particular interest is the fixed-point sheaf FV for a kG-module V . This

has coefficients given by

(FV )σ := CV (Uσ) = {v ∈ V | vg = v for all g ∈ Uσ},

where Uσ = Oπ(Pσ) is the unipotent radical of the parabolic Pσ. The connecting maps in

FV are simply restrictions of the identity map idV , since (FV )σ ⊆ (FV )τ whenever τ is a

face of σ. The motivation for the construction of this sheaf is Smith’s Lemma [28], which

implies that if V is an irreducible kG-module then each term (FV )σ is an irreducible

kPσ-module.
1We use π for the characteristic of the field, rather than the more traditional p, because the letter p

will be used throughout the thesis to denote a point in a geometry.
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A chain complex is, in our context, a sequence of kG-modules Ci along with boundary

maps δi : Ci → Ci−1 from each module into the previous one, such that the image of a

homomorphism δi lies inside the kernel of δi−1. Homology is the study of exactly how each

im(δi) embeds into ker(δi−1).

We can form a chain complex from F by taking each chain space Ci to be the direct

sum of the coefficients Fσ over all simplices σ of dimension i. The boundary maps δi are

then based on the connecting maps of the sheaf, with some sign modifiers (+/−) included.

The homology module Hi(∆,F ) is given by ker(δi)/ im(δi−1).

This brings us to the first of the main results of Ronan and Smith. Theorem 2.3 of

[24] states that, if V is an irreducible module, then H0(∆,FV ) contains a unique maximal

submodule K and H0(∆,FV )/K ∼= V .

For some choices of V , the kernel K is {0} and so we get an isomorphism H0(∆,FV ) ∼=

V . Corollary 2.4 of [23] states that if V is the Steinberg module for G (the irreducible

module L(λ) with weight λ = (π − 1, . . . , π − 1)), then H0(∆,FV ) ∼= V . The same is

true for the trivial module by [23, p.324, Lemma 1.1]. (To apply the lemma we first must

note that the ‘constant sheaf’ KV described by Ronan and Smith is isomorphic to the

fixed-point sheaf FV when V is the trivial module [23, p.322].)

1.2 The sheaf of the Cayley module for G2(k)

In their paper [26], Segev and Smith investigated the case G = G2(k) and V = C, the

7-dimensional Cayley module for G. Denote ∆ = ∆(G) and H = H0(∆,FC). A certain

subspace Dp ≤ C of dimension 3 is defined [26, p.495]. This subspace corresponds to

a particular subcomplex of the building, and the submodule of H spanned by the sheaf

terms on this subcomplex is denoted Dp ≤ H. Since C is a quotient of H, we have that

Dp maps onto Dp. Segev and Smith show the following [26, p.495, Theorem]:

Theorem Suppose that W is a quotient of H by some X ≤ H, such that dim(Dp +

3



X)/X = 3. Then dimW ≤ 7.

If the characteristic of k is not 2 then the module C is irreducible, and so dimW ≤ 7

implies W ∼= C [26, p.495]. Thus if dimDp = 3 and the characteristic of k is not 2 then

H ∼= C.

Ronan and Smith did some computations for G = G2(k) [23, p.335, Example 3.3]. In

particular, they showed that if k = F2 and V is the 6-dimensional irreducible quotient of

C, then dimH0(∆,FV ) = 14; and if k = F3 and V = C then dimH0(∆,FV ) = 14 as

well.

Segev and Smith note without proof that if k is a prime field Fπ, then dimDp ∈

{3, π + 2}. We provide a proof of this in Lemma 6.2.4. The consequence of this fact is

that if dimDp > 3 then dimH ≥ dimDp = π + 2. This is true over the fields F2 and F3

by the computations of Ronan and Smith, but Segev and Smith speculate that it is not

the case for an arbitrary finite field Fq, saying: ‘if it holds in general, the situation would

run counter to the intuition of many geometers’ [26, p.497].

Indeed, our proof of Theorem A shows that their speculation was correct. Although

we have not been able to prove the result for every q = πa, we have shown that H ∼= C

whenever π > 3 with 3 ∤ π−1. It seems plausible that the latter condition is unnecessary.

By computation using the computer algebra system Magma [5], we have shown that

H ∼= C if q ∈ {5, 7, 11}, the case q = 7 providing some evidence that the condition

3 ∤ π − 1 may be superfluous.

1.3 Related results in the literature
We give a brief survey of the literature concerning sheaves on buildings. Various au-

thors have explored the question of for which pairs (G, V ) we have H0(∆(G),FV ) ∼= V .

The final section of the first Ronan and Smith paper [23, p.337, Section 4] concerns

minimal-weight modules. A dominant weight λ is minimal if there does not exist any

4



other dominant weight µ 6= λ such that λ − µ is a non-negative linear combination of

fundamental roots. It turns out that a minimal weight λ is always equal to some funda-

mental dominant weight λi [15, p.72, Exercise 13].1 Write L(λ) for the unique irreducible

kG-module of highest weight λ.

For minimal weight modules, we get an isomorphism in nearly all cases [23, p.338,

Theorem 4.1]:

Theorem Suppose that G is a Chevalley group defined over k. If G is of type Cn then

suppose further that k does not have characteristic 2 (otherwise, we may take k to be any

finite field Fq). If M is a minimal weight kG-module then H0(∆(G),FM) ∼= M .

The root systems of types G2, F4 and E8 have no minimal weights, so this theory does

not help us in those cases.

Ronan shows that if V is the 14-dimensional adjoint module for G = G2(k) then

H0(∆(G),FV ) ∼= V in [20, p.184, Example 4].

Let us specialise for a moment to the case G = SLn+1(k) of type An. Here, all of the

fundamental dominant weights are minimal [15, p.72, Exercise 13], and so by the above

theorem of Ronan and Smith we have H0(∆(G),FL(λi))
∼= L(λi) for all 1 ≤ i ≤ n. In

1991, Fisher published an upper bound for the dimension of H0(∆(G),FL(λ)) in the case

that λ is a sum of two fundamental weights (with some exceptions) [12, p.119, Theorem]:

Theorem Let G = SLn+1(Fq), with fundamental dominant weights {λ1, . . . , λn}. Sup-

pose 1 ≤ i < j ≤ n, such that i+ j 6∈ {n, n+ 1, n+ 2}. Then

dimH0(∆(G),FL(λi+λj)) ≤ dimL(λi) · dimL(λj).

In 1990, Cohen and Smith provided an answer to the isomorphism question when V

is the 26-dimensional natural module for the group G = F4(Fq) [9, p.474, Theorem]. The
1See also Bourbaki [6, p.239-241, Exercises 24 and 5] where these are called minuscule weights.
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module V is irreducible whenever the characteristic of Fq is not 3, and in this situation

we have H0(∆(G),FV ) ∼= V . On the other hand, if the characteristic of the field is 3 then

V has a 25-dimensional irreducible quotient V ′, and we have H0(∆(G),FV ′) ∼= V ′.

Work has also been undertaken generalising the theory to fields other than Fq. The

adjoint module A for the group G = SL3(k) of type A2 is a minimal weight module, and

so by [23, p.338, Theorem 4.1] we have H = H0(∆(G),FA) ∼= A when k = Fq. Smith

and Volklein go further, finding the structure of H for any field k; in particular, we have

H ∼= A if and only if k is either an algebraic field extension of Q, or a perfect field of

prime characteristic [29, p.128, Corollary].

Ronan and Smith wrote two further joint papers on the subject. The first, Universal

Presheaves on Group Geometries and Modular Representations [24], generalises the theory

to geometries Γ other than the building of G. It also introduces the concept of a universal

presheaf : if F ′ is a sheaf defined only on a certain subgeometry of Γ (a stalk), an extension

U of F ′ can be constructed with some universal properties. The construction involves

recursively computing H0 of the partial sheaf to ‘fill in’ more of U . If F ′ is restriction of

a full sheaf F to some stalk Γ ′ ⊆ Γ , and U is its universal extension, then H0(Γ,F ) is

a quotient of H0(Γ,U ) [24, p.140, Theorem 2.1].

The final paper, Computation of 2-Modular Sheaves and Representations of L4(2),

A7, 3S6, and M24 [25] contains a lot of homology computations over a variety of different

geometries for the aforementioned groups defined over F2.

In [21], Ronan defines a dual sheaf F ∗ of a sheaf F , and presents a proof that

the top cohomology module Hn−1(∆,F ∗) of the dual sheaf is isomorphic to the bottom

homology module H0(∆,F ) of F [21, p.266, Theorem 2]. This result, applied to a

universal presheaf constructed from data at chambers (maximal simplices) and panels

(submaximal simplices), was employed when writing the Magma programs which we

have used to compute various homology modules throughout the writing of this thesis.

6



Sheaves on buildings continue to be an active topic of research. In 2015, Ward [34]

computed the zero-homology modules over k = F2 of all the ‘panel-irreducible’ sheaves

for the symmetric group S6 and for the Mathieu groups M11 and M22, on a particular

type of geometry called a minimal parabolic system. The irreducible quotients of the

zero-homology modules for Mathieu groups M12, M23 and M24 were also computed.

1.4 Chapters in this thesis
In Chapter 2 we present the required background material on buildings, discussing Coxeter

groups, chamber systems, apartments and buildings themselves. We also give our working

definition of a group of Lie type as a particular subgroup of the automorphism group of a

building.

Chapter 3 introduces the group G = G2(k). The group is given as the automorphism

group of the 8-dimensional Cayley algebra C+; we show that G preserves a 7-dimensional

subspace C ⊆ C+ called the Cayley module. This is the kG-module which we will use

to build our fixed-point sheaves. This chapter also introduces the building ∆ = ∆(G) in

the form of a generalised hexagon, a point-line geometry constructed using C+. We prove

some transitivity results and introduce the concept of an ideal line which will be key to

our proof of the main theorem.

In Chapter 4 we take a brief diversion to talk about weight theory. We introduce the

concept of a root system and present some of the more fundamental results, such as the

correspondence between the q-restricted weights λ and the irreducible kG-modules L(λ).

A result of Premet regarding the weights appearing in the module L(λ) will be crucial in

a later chapter when we want to bound the dimension of H0(∆,FC) from below.

Chapter 5 covers in detail the sheaves on buildings introduced in [23]. The relevant

objects are defined, we discuss how their homology is computed, and then we present the

important results from Ronan and Smith.

7



We finally reach the problem at hand in Chapter 6, where the result of Segev and Smith

is discussed. Since Segev and Smith have proved that H0(∆,FC)
∼= C if dimDp = 3, we

introduce the standing assumption that dimDp > 3 for the remainder of the thesis. We

also take the opportunity here to present some dimension data for small fields computed

using Magma.

The next five chapters contain the proof of the main theorem. We use a combination

of a weight-theoretic argument to determine which modules may be involved in H, and

combinatorial arguments in the building to bound the dimension of H from above. The

proof begins with an argument in Chapter 7 which allows us to concern ourselves only

with the case where k is a prime field; the proposition presented here gives us all the cases

q = πa for free, once q = π is dealt with.

In Chapter 8 we give a lower bound on the dimension of H0(∆,FC) when k is a prime

field, in the case that dimDp > 3. We begin by finding the weight of some quotient of H,

and then applying Premet’s result to bound its dimension from below.

Chapters 9 and 10 both contain upper bounds on the dimension of H. Chapter 9

presents a cubic bound, which is then refined to a quadratic bound in Chapter 10. Here

we introduce new terminology for parts of the generalised hexagon, defining pages, spines,

diagonals and crossbraces. The bound in Chapter 9 holds for all π > 3; it is in Chapter 10

that we hit a problem when 3 | π − 1.

Finally, Chapter 11 contains the proof of the main theorem, which merely amounts

to noting that the upper and lower bounds which we obtain when 3 ∤ π − 1 cannot hold

simultaneously if π > 3.
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Chapter 2

Buildings

One of the most informative ways to learn about a group is to study its action on some

kind of geometric structure. The types of geometries studied include graphs, as well as

their higher-dimensional analogues such as a simplicial complexes.

An important class of finite groups are the groups of Lie type. The geometries usually

associated with groups of Lie type are called buildings. The theory of buildings was

developed from the late 1950s onward by French mathematician Jacques Tits, culminating

in his 1974 book Buildings of Spherical Type and Finite BN -pairs [32]. In this chapter we

will introduce the buildings first, and then construct the group of Lie type G as a certain

subgroup of the automorphism group of the building.

We borrow notations from a variety of sources. Buildings by Abramenko and Brown

[1] is a very thorough treatment covering both Tits’ original simplicial approach, as well

as a more modern definition using a distance function taking values from a Weyl group

W . We follow Ronan’s Lectures on Buildings [22] for the preliminary material on chamber

systems, as well as the definitions of G and its subgroups. Points and Lines by Shult [27]

takes an approach based on point-line geometries and is our main reference for generalised

polygons. Other excellent books include Buildings and Classical Groups by Garrett [13],

and The Structure of Spherical Buildings by Weiss [35].



2.1 Simplicial complexes
In Tits’ original definition, a building is described as a type of structure called a simplicial

complex. A simplicial complex is often considered as the union of a collection of objects

called simplices, which are polytopes embedded into a Euclidean space. Initially, however,

we will take a purely combinatorial approach where we do not worry about the Euclidean

space in which the simplices lie, merely recording what the simplices are and how they

relate to one another. This definition is often called an abstract simplicial complex in the

literature.

Definition 2.1.1 (Simplicial complex) An (abstract) simplicial complex ∆ on a

vertex set V is a set of non-empty subsets of V such that:

(S1) If σ ∈ ∆ and τ is a non-empty subset of σ, then τ ∈ ∆.

(S2) {v} ∈ ∆ for every v ∈ V .

The elements of ∆ are called simplices; a simplex with n + 1 elements is called an

n-simplex.

If σ, τ ∈ ∆ with τ ⊆ σ then we say that ‘τ is a face of σ’, and we write τ ≺ σ. The

maximal faces of ∆ (those simplices which are not a face of any other simplex) are called

facets. The facets of a simplicial complex completely determine the entire complex, since

simplicial complexes are closed under taking subsets by axiom (S1).

We will borrow terminology from the traditional definition of a simplicial complex,

where an n-simplex is an n-dimensional analogue of a triangle. Hence we will often refer

to 0-simplices {v} as vertices, 1-simplices {v1, v2} as edges and 2-simplices {v1, v2, v3}

as triangles. (We refer to a simplex containing n+ 1 points as an ‘n-simplex’ because it

is an n-dimensional polytope — so the terminology is less unusual than it looks at first.)
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Also, when drawing figures we will often represent the simplices in this way, for improved

clarity over trying to depict subsets of a vertex set.

Since we will be investigating groups G acting on a simplicial complex ∆, we need to

define a simplicial isomorphism. First, a simplicial map:

Definition 2.1.2 (Simplicial map) Let ∆1 and ∆2 be simplicial complexes with vertex

sets V (∆1) and V (∆2) respectively. A map f : V (∆1) → V (∆2) is a simplicial map if

for every k-simplex σ ∈ ∆1 spanned by vertices {v0, . . . , vk}, the vertices {f(v0), . . . , f(vk)}

span a k-simplex f(σ) in ∆2.

A simplicial map takes simplices to other simplices; an isomorphism of simplicial com-

plexes requires this property in both directions:

Definition 2.1.3 (Simplicial isomorphism) Let f : V (∆1) → V (∆2) be a simplicial

map. If f is a bijection and f−1 is also a simplicial map then we say that f is a

simplicial isomorphism.

A simplicial isomorphism from ∆ to itself is called a simplicial automorphism. The

set of simplicial automorphisms of ∆ forms a group Aut(∆) under composition.

Let G be a group. We say that G acts (on the right) on a simplicial complex ∆ if

each g ∈ G corresponds to some simplicial automorphism g̃ : V (∆) → V (∆), such that

g̃1g̃2 = (g1g2)
∼ for all g1, g2 ∈ G.

2.2 Coxeter groups and chamber systems
Buildings are comprised of substructures called apartments, which are constructed from

groups called Coxeter groups.

2.2.1 Coxeter groups

We begin with a definition from [22, p.9].
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Definition 2.2.1 (Coxeter group) A Coxeter group is a finitely-presented group

which admits a presentation of the following form:

W = 〈s1, s2, . . . , sn | (sisj)mij = 1〉,

where each mii = 1 (so that all generators are involutions) and mij ≥ 2 for i 6= j. To

avoid redundancy, we assume that mij = mji for all 1 ≤ i, j ≤ n.

Examples of Coxeter groups include the finite dihedral group of order 2m

D2m := 〈s, t | s2 = t2 = (st)m = 1〉, (2.2.2)

and the infinite dihedral group

D∞ := 〈s, t | s2 = t2 = 1〉, (2.2.3)

in which the product (st) has infinite order. The symmetric group Sn (for n ≥ 2) is also

a Coxeter group, since

Sn+1
∼= 〈s1, . . . , sn | s2i = 1, (si, si+1)

3 = 1 ∀ i < n, (sisj)
2 = 1 ∀ |i− j| > 1〉, (2.2.4)

by the isomorphism (i, i+ 1) 7→ si.

A Coxeter system is a pair (W,S) consisting of a Coxeter group W and its identified

set of generating elements S [35, p.9]. (The choice of S is not necessarily unique for a

given Coxeter group W , but is specified in a Coxeter system.) The rank of the Coxeter

system (W,S) is the number of generators n in S.

This information can be encoded in a Coxeter diagram, which is a graph with one

vertex for each generator si, and the following rules for edges:
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• If mij ≥ 3, then join vertices i and j with an edge.

• If mij ≥ 4, then label the edge ij with mij.

Thus the Coxeter system for Sn+1 as shown in Equation 2.2.4 can be encoded with the

following diagram

where there are n nodes in total. We say that this Coxeter diagram is of type An. Similarly,

the diagrams of type Bn (for n ≥ 2)1

4

and of type Dn (for n ≥ 4)

both contain n nodes. In general, the subscript number refers to the rank of the Coxeter

system. The last example we will give is the Coxeter diagram of type I2(m) for m ≥ 3

m

which corresponds to the Coxeter group D2m (as per Equation 2.2.2).

The diagrams corresponding to finite Coxeter groups consist of three infinite families

An,Bn and Dn whose rank depends on n, one further infinite family I2(m) in which all

groups have rank 2, and six diagrams corresponding to exceptional groups E6, E7, E8, F4,

H3 and H4 [36, p.33, Table 2.1].

In Chapter 4 we will meet a kind of finite reflection group called a Weyl group, which is

a crystallographic Coxeter group (the stabiliser of a lattice). All Weyl groups are Coxeter
1The Coxeter type Bn is also called Cn in some sources. This due to the fact that two non-isomorphic

root systems Bn and Cn can be constructed (for n > 2), with identical angles between roots (and
hence identical Coxeter diagrams) but differing root lengths. We discuss root systems in more detail in
Chapter 4.
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groups, although the converse is not true; the Coxeter groups of type H3 and H4 are not

Weyl groups, and neither is the Coxeter group of type I2(m) for m 6∈ {3, 4, 6} [36, p.34,

Section 2.8.4].

Note that I2(3) = A2 and I2(4) = B2, so only it is only I2(6) which is not included in

one of the other infinite families. In the language of Weyl groups and groups of Lie type,

the diagram I2(6) is given the special name G2. The group of Lie type G2(k) is the main

focus of this thesis.

2.2.2 Chamber systems

Another way to graphically represent a Coxeter system is a Cayley graph. Here, the

graph vertices are the group elements, and two vertices g and h are joined by an edge

labelled i if g = sih. (Note that if this is the case then h = sig as well, since the generators

are involutions. So the edges are bi-directional.)

A Cayley graph is an example of a more general type of structure called a chamber

system [22, p.1], which is a set along with some indexed adjacency relations:

Definition 2.2.5 (Chamber system) Let I be an index set, and Σ be a set. We say

that Σ is a chamber system over I if each element i ∈ I determines a partition of Σ.

We refer to the elements of Σ as the chambers. If x, y ∈ Σ lie in the same i-partition

then we say that they are ‘i-adjacent’, and write x ∼
i
y.

The following example is very important.

Example 2.2.6 The Cayley graph of a Coxeter system (W,S) is a chamber system over

the index set S; take Σ = W , and say that g and h are i-adjacent if g = sih. Here,

the vertices represent chambers and the edges represent adjacency. (In this example each

1 ≤ i ≤ n partitions W into pairs.) We call this chamber system Σ(W,S).

Example 2.2.7 Suppose that W = 〈s1, s2 | s2i = 1, (s1s2)
6 = 1〉 so that W has type

I2(6) = G2. Then the Cayley graph of W is as depicted in Figure 2.1.
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Figure 2.1: The Cayley graph of W = 〈s1, s2 | s2i = 1, (s1s2)
6 = 1〉, the Coxeter group of

type I2(m) = G2. The vertex opposite id is the element s2s1s2s1s2s1 = s1s2s1s2s1s2.

Residues and connectedness

We say that two chambers are adjacent if they are i-adjacent for some i ∈ I. A gallery

is a sequence c1, . . . , cn+1 of chambers such that cj is adjacent to cj+1 for all 1 ≤ j ≤ n.

The gallery has type (i1, . . . , in), where cj is ij-adjacent to cj+1. (In an arbitrary chamber

system a gallery may have more than one type, but in the chamber system Σ(W,S) from

Example 2.2.6 this is not the case as it would imply si = sj for some i 6= j.) We say

that a chamber system is connected if there exists a gallery between any two chambers

x and y in C. (This is equivalent to Σ being a connected graph.) A minimal gallery is

a shortest gallery between two chambers.

We can also consider galleries using only adjacencies from some subset J ⊆ I. This

gives us the notion of a chamber system being ‘J-connected’. The J-connected components

are called J-residues, or residues of type J . The cotype of a J-residue is I \ J .

The rank of a chamber system is |I|; the rank of a J-residue is |J |, and its corank is

|I \ J |. Note that a residue of rank 0 (i.e. a residue of type ∅) is a chamber. We refer to
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a residue of rank 1 as a panel. (If it has type i, we may call it an i-panel.)

2.2.3 The geometric realisation of a chamber system

Given a chamber system Σ, we can construct a simplicial complex ∆(Σ) using its residues.

Let R and S be residues of Σ of types J and K respectively. We say that S is a face of R

if S ⊃ R and K ⊃ J . A residue R of corank r has r faces S of corank r− 1, as we obtain

one face from adding each element of the cotype of R into the type of S. Similarly, R has

has r faces S of corank 1; these are obtained by adding all but one elements of the cotype

of R into the type of S.

We use the following algorithm to obtain ∆ = ∆(Σ) from Σ.

Algorithm 2.2.8 (A1) Let the vertex set V = V (∆) contain one vertex v for each residue

R of corank 1. Then since ∆ is a simplicial complex, we have a 0-simplex {v} ∈ ∆

corresponding to each R by axiom (S2).

(A2) For each residue S of corank 2, let v1, v2 ∈ V be the vertices corresponding to the

two faces of S of corank 1, and add the simplex {v1, v2} to ∆ to correspond to S.

(A3) Continue in this way: for each residue T of corank r, add the (r − 1)-simplex

{v1, . . . , vr} to ∆, where v1, . . . , vr are the vertices corresponding to the faces of T

of corank 1.

We give two examples of this algorithm being used in practice.

Example 2.2.9 Figure 2.2 shows the result of Algorithm 2.2.8 applied to the Cayley graph

of S4 with Coxeter generators s1 = (1, 2), s2 = (2, 3) and s3 = (3, 4), where an n-simplex

is represented in the figure by an n-dimensional polytope. The vertices marked with stars

and circles correspond to resides of cotypes 1 and 3 respectively; the vertices marked with

squares correspond to residues of cotype 2. A maximal simplex is highlighted, and then

Figure 2.3 shows the stabiliser of each face of this maximal simplex in the group S4.
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Figure 2.2: The Coxeter complex of S4 with a maximal simplex (chamber) highlighted.
Vertices and edges on the underside and rear surfaces have been omitted for clarity.

S{2,3,4} S{1,2,3}

S{1,2} × S{3,4}

S{2,3}

S{1,2}S{3,4}

id

Figure 2.3: The stabilisers of each face of one of the maximal simplices (chambers) of the
Coxeter complex of S4.

17



id

s1

s2

Figure 2.4: The geometric realisation of the Cayley graph ofW = 〈s1, s2 | s2i = 1, (s1s2)
6 =

1〉.

Example 2.2.10 Figure 2.4 shows the result of Algorithm 2.2.8 applied to the Cayley

graph of type G2 from Example 2.2.7. Note that in rank 2, the geometric realisation is

merely a graph and can look very similar to the Cayley graph; however, the role of edges

and vertices are swapped, with the chambers being edges and the panels being vertices.

2.3 Apartments and buildings
A simplicial complex ∆ is called a Coxeter complex if it is isomorphic to ∆(Σ(W,S))

for some Coxeter system (W,S).

2.3.1 Buildings

We can now give our definition of a building:

Definition 2.3.1 (Building) A building ∆ is a simplicial complex which is the union

of subcomplexes called apartments, satisfying the following conditions:

(B1) Each apartment is a Coxeter complex.

(B2) Any two simplices in ∆ lie in some common apartment A.
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(B3) For any two simplices σ1 and σ2 in ∆, and two apartments A1 and A2 containing

them both, there exists a simplicial complex isomorphism A1 → A2 which fixes σ1

and σ2 pointwise. (By fixing a simplex pointwise, we mean that every vertex of the

simplex is fixed.)

Notice that the definition of a building does not specify the choice of system of apartments;

it is simply a simplicial complex ∆ which admits a system of apartments such that the

axioms hold. However, for any building ∆ there is a canonical choice of apartments, and

in the case where each apartment is a finite Coxeter complex, this choice is in fact unique

[1, p.174].

Condition (B3) implies that the apartments are pairwise isomorphic. Hence there is a

particular Coxeter complex (and thus Coxeter system (W,S)) associated with a building

∆.

A thick building is one where every simplex of codimension 1 is a face of at least three

maximal simplices. (Equivalently, every panel lies on at least three chambers.) All other

buildings are thin, and consist of a single apartment [22, p.29]. A building is spherical

if its apartments are finite Coxeter complexes. (The name comes from the fact that such

apartments are triangulations of a sphere [8, p.1245].) Finally, a building is irreducible

if the Coxeter diagram of its associated Coxeter system (W,S) is connected.

2.3.2 Roots and the Moufang property

Suppose that ∆ is a Coxeter complex for the Coxeter system (W,S), and let r = swi be a

W -conjugate of one of the elements of S. Since the generators si all have order 2, we have

that r is an involution. Define the wall corresponding to r as Mr := {σ ∈ ∆ | σ · r = σ}.

A wall contains no chambers (since only the identity of W fixes chambers), but does

contain panels because the involution r = swi swaps the two chambers w and siw which

form an i-panel. Thus in the Coxeter complex ∆, the subcomplex Mr has codimension 1
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[22, p.13].

Say that a gallery c1, . . . , cn crosses the wall Mr if r swaps consecutive chambers

ci and ci+1. A gallery may cross a wall multiple times, but a minimal gallery may not;

furthermore, the number of times a minimal gallery from c to c′ crosses Mr is independent

of the choice of gallery [22, p.13, Lemma 2.5 (i)]. Therefore, the wall Mr divides the

Coxeter complex ∆ into two halves called roots; choosing any initial chamber c, we have

the root containing those chambers c′ for which a minimal gallery c, . . . , c′ does not cross

the wall Mr, and the root containing chambers for which it does. If α is one root, let

the root on the other side of the wall be denoted −α. Roots are convex, meaning that

any minimal gallery between two chambers of a root α lies entirely within α [22, p.14,

Proposition 2.6 (i)].

Opposite chambers and opposite simplices

Let c, c′ be chambers in a Coxeter complex ∆. We say that c and c′ are opposite if the

length of a minimal gallery from c to c′ is equal to the diameter of ∆ (here, we mean the

graph diameter in the associated chamber system). If c and c′ are opposite then they do

not lie in any common root α, and so every wall Mr separates c and c′. Furthermore, for

any chamber d ∈ ∆ there exists a minimal gallery γ from c to c′ containing d. Finally,

every chamber of a Coxeter complex has a unique opposite [22, p.20, Theorem 2.15 (iii)].

Denote the map sending every chamber of ∆ to its opposite by op∆.

We would like to extend the notion of an ‘opposite’ to simplices of any dimen-

sion, rather than just chambers. In fact, for any k-simplex {v0, . . . , vk} we have that

{op∆(v0), . . . , op∆(vk)} is another k-simplex, and so we can define the map op∆ : ∆ → ∆

for simplices of any dimension.

In the more general case, when ∆ is a building, we write opA : A → A for the map

sending each simplex to its opposite in the apartment A. We say that two simplices σ1

and σ2 are opposite if they are opposite in some apartment A of ∆.
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Define Φ(A) to be the set of roots contained in A. For c a chamber in A, let Φ+
c (A)

be the set of roots of A containing the chamber c. These are called the positive roots

with respect to c. Then we define Φ−
c (A) := Φ+

c′(A), where c′ = opA(c) is the unique

chamber opposite c in A. Thus we have that

Φ(A) = Φ+
c (A) ∪ Φ−

c (A)

is a disjoint union.

The Moufang property

Now suppose that ∆ is an irreducible, spherical building whose apartments are isomorphic

to the Coxeter complex for (W,S). The following definition comes from [22, p.66]:

Definition 2.3.2 (Root group) Let A be an apartment of ∆, and let α be a root of A

corresponding to a reflection r ∈ W . Define the root group

Xα := {g ∈ Aut(∆) | g fixes every chamber with a panel in α \Mr}.

It follows from the definition that Xα fixes the root α pointwise [1, p.385]. We say that ∆

is Moufang if, for every root α, the root group Uα is transitive on the set of apartments

containing α [22, p.66]. The following theorem is due to Tits [32, p.274, (1)] (see also [22,

p.67, Corollary 6.7]).

Theorem 2.3.3 Suppose that ∆ is a thick, irreducible, spherical building of rank ≥ 3.

Then ∆ is Moufang.

In the rank 2 case, the situation is more complex. Rank 2 thick, irreducible, spherical

buildings are equivalent to generalised polygons, which will be defined in Chapter 3. The

Moufang generalised polygons have been classified by Tits and Weiss in [33]. In particular,
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Feit and Higman showed in [11] that they only exist for W of type I2(3) = A2 (the

generalised projective planes), I2(4) = B2 (the generalised quadrangles), I2(6) = G2 (the

generalised hexagons) and I2(8) (the generalised octagons).

2.4 The finite groups of Lie type
The precise definition of a group of Lie type varies between sources, with certain groups

being included by some authors but not by others. The collection of finite groups of Lie

type, however, is more widely agreed upon. We follow the exposition from [22, p.76], and

take the following definition from there.

Definition 2.4.1 (Finite group of Lie type) Suppose that ∆ is a thick, irreducible,

spherical building which satisfies the Moufang property, and fix once and for all an apart-

ment A0 of ∆. We define

G := 〈Xα | α ∈ Φ(A0)〉 ≤ Aut(∆),

and call G a finite group of Lie type.

Notice that by axioms (B2) and (B3), the group Aut(∆) is transitive on the set of apart-

ments. Therefore the choice of apartment A0 does not change the isomorphism class of

the group G.

Lemma 2.4.2 The action of G on ∆ is type-preserving.

Proof. By [1, p.175, Proposition 4.6], the building ∆ admits a type function, which means

that we can assign each vertex of ∆ a type i ∈ I such that every chamber has exactly one

vertex of each type. (The proof of this essentially uses the axiom (B3) to extend the types

of some apartment A to the entire building ∆.) A type function on a chamber complex

is unique up to some reordering of the index set I, since once the types are fixed on one
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chamber, these choices propagate automatically to any adjacent chamber [1, p.665]. So if

an automorphism g ∈ Aut(∆) fixes one chamber c ∈ ∆ pointwise, then it fixes the type

of every vertex v ∈ ∆. Every root group Xα fixes a root α (and thus a chamber c ∈ α)

pointwise, and so G is type-preserving. □

2.4.1 The subgroups U , B, T and N

Fix a chamber c0 ∈ A0, and define

U ε := 〈Xα | α ∈ Φε
c0
(A0)〉,

for ε ∈ {+,−}. We will often write U for U+. Notice that U = U+ fixes the chamber

c0 and U− fixes opA0
(c0), the unique chamber opposite c0 in A0. The following theorem

tells us about the structure of U ε when the building is finite [22, p.107, Theorem 8.7]:

Theorem 2.4.3 Suppose ∆ is a finite building. Then there is some fixed prime π such

that U ε is a Sylow π-subgroup of G.

Let T be the subgroup of G which fixes every chamber of A0. Now we define

Bε := 〈T, U ε〉,

for ε ∈ {+,−}. We will often write B for B+.

Theorem 2.4.4 Bε = U ε ⋊ T .

Proof. See [22, p.77, Theorem 6.17]. □

By [22, p.76, Proposition 6.16], the group B = B+ is the stabiliser in G of the chamber

c0.

Theorem 2.4.5 Suppose ∆ is finite. Then U ε = Oπ(B
ε).
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Proof. By Theorem 2.4.3, we have that U ε is a Sylow π-subgroup of G and hence of Bε.

Since U ε ⊴ Bε by Theorem 2.4.4, we have U ε = Oπ(B
ε). □

For α a root of A0, let r(α) be the reflection corresponding to the wall Mr separating

α and −α. Then we define

N := 〈T, r(α) | α ∈ Φ(A0)〉.

The names B and T come from the language of Lie groups, in which the corresponding

subgroups are called the Borel subgroup and the torus respectively. The subgroups B

and N generate G, and form a what is called a BN -pair [22, p.76, Proposition 6.16], or

a Tits system. This pair actually encodes all of the information required to construct the

building, and any group with a BN -pair has a corresponding building; see [22, Chapter

5] for details.

2.4.2 Parabolic subgroups

A subgroup of G which stabilises some simplex of ∆ is called a parabolic subgroup.

We write the parabolic subgroup stabilising a simplex σ ∈ ∆ as Pσ.

Lemma 2.4.6 Suppose that τ ≺ σ. Then Pσ ⊆ Pτ .

Proof. The action of G is type-preserving by Lemma 2.4.2, so if an element g ∈ G fixes a

simplex σ then it also fixes any τ ≺ σ, and so Pσ ⊆ Pτ . □

The minimal parabolics, therefore, are the stabilisers of maximal simplices (chambers)1.

Hence they are conjugates of the subgroup B.
1The use of the term ‘minimal parabolic’ in the literature is not consistent — sometimes it refers to

the stabiliser of a chamber, as we use it here, and sometimes to the stabiliser of a panel, which we will
call a ‘rank 1 parabolic’.
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Suppose that σ ∈ A0 is a face of c0. Let Θσ = {c ∈ A0 | c � σ, c a chamber} and

Φσ = {α ∈ Φ(A) | σ ∈Mr(α)}. We define

Uσ := 〈Xα | Θσ ⊂ α ∈ Φ(A)〉

and

Lσ := 〈T,Xα | α ∈ Φσ〉.

Note that c0 ∈ Θσ, so if α is a root of A0 containing every chamber in Θσ, then certainly

α contains c0. Hence Uσ ≤ U . Furthermore, we have 〈Uσ | σ ≺ c0, σ a panel〉 = U .

Also, note that the sets of root subgroups generating the groups Uσ and Lσ are disjoint:

if Xα is one of the generators of Uσ, then the root α contains every chamber on σ; but

if Xα is among the generators of Lσ, then σ is in the wall Mr(α) corresponding to α, and

hence there exist chambers on σ which lie in α as well as chambers on σ which lie in −α.

Corresponding subgroups Uσ, Lσ ≤ Pσ for arbitrary simplices σ ∈ ∆ can be found

via conjugation of the parabolics containing c0. Then we have the following theorem [22,

p.78, Theorem 6.18]

Theorem 2.4.7 Let ∆ be an irreducible, spherical building which satisfies the Moufang

property. Then for each simplex σ ∈ ∆, we have Pσ = Uσ ⋊ Lσ.

We call Lσ a Levi complement of the parabolic Pσ, and Uσ the unipotent radical of

Pσ. In general, a Levi complement of a parabolic Lσ is the intersection Pσ ∩ Pσ′ , where

σ′ is any simplex opposite σ. We then have Pσ = Uσ ⋊Lσ for any Levi complement Lσ of

Pσ.

Lemma 2.4.8 Suppose that τ ≺ σ, so that Pσ ⊆ Pτ . Then Uσ ⊇ Uτ .

Proof. Since τ ≺ σ, if a chamber c � σ then c � τ as well. Hence we have Θτ ⊇ Θσ.

Now, if α ⊃ Θτ then certainly we have α ⊃ Θσ. Therefore Uσ ⊇ Uτ . □
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2.5 The classification of finite, thick, irreducible build-

ings
If ∆ is a finite building then its apartments must also be finite, so ∆ is spherical and its

apartments are isomorphic to the Coxeter complex of a finite Coxeter group W . Moreover,

a theorem of Feit and Higman restricts the choice of W further. The version below is a

generalisation as stated in [1, p.337, Theorem 6.94] (see also [11]):

Theorem 2.5.1 (Feit-Higman Theorem) Suppose ∆ is a finite, thick, irreducible build-

ing, in which the apartments are Coxeter complexes for a Coxeter group W . Then W is

a Weyl group, and so must have type An, Bn, Dn, G2, F4, E6, E7 or E8.

The subgroup G ≤ Aut(∆) from Definition 2.4.1 has an associated root system Φ,

which may be of a different type to that of the building. (Root systems will be intro-

duced later on, in Chapter 4.) Indeed, a given Coxeter type may give rise to multiple

isomorphism classes of buildings, all with a different corresponding group of Lie type G.

The classification of finite, thick, irreducible buildings of rank ≥ 3 was given by Tits

in 1974 [32]. The rank 2 case is much harder, and indeed a full classification may not

be possible (see [1, p.500] for a discussion on this matter); but the Moufang buildings of

rank 2 have been classified by Tits and Weiss [33]. Note that a finite building of rank 1

is merely a finite set of vertices (that is, a permutation representation of G).

Table 2.5, condensed from [22, p.191, Appendix 6], contains all finite, thick, irreducible

buildings of rank ≥ 3, as well as all finite Moufang buildings of rank 2, and two further

buildings of rank 1. The second column shows the root system type of the corresponding

group of Lie type G ≤ Aut(∆) for each building.

The groups appearing in the table consist of the Chevalley groups, which include

the classical groups of types An, Bn, Cn and Dn as well as the exceptional groups of type
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Type of ∆ Type of G
An An(q)

Bn Bn(q)
Bn Cn(q)
Bn

2A2n−1(q)
Bn

2A2n(q)
Bn

2Dn+1(q)

Dn Dn(q)

E6 E6(q)
E7 E7(q)
E8 E8(q)

F4 F4(q)
F4

2E6(q)

G2 G2(q)
G2

3D4(q)

I2(8)
2F4(q), q = 22k+1

A1
2B2(q), q = 22k+1

A1
2G2(q), q = 32k+1

Table 2.1: A partial classification of finite, thick, irreducible buildings, with the corre-
sponding group of Lie type G ≤ Aut(∆). Condensed from [22, p.191, Appendix 6].

G2, F4, E6, E7 and E8; the Steinberg groups of types 2An, 2Dn, 3D4 and 2E6; and the

Suzuki-Ree groups of type 2B2, 2G2 and 2F4. Together, these are the finite groups of

Lie type.

The superscript 2 or 3 before a root system type indicates a modification to the con-

struction of the group, involving an automorphism (or order 2 or 3 respectively) of either

the Coxeter diagram (in the case of the Steinberg groups), or the field over which the

group is defined (in the case of the Suzuki-Ree groups). Details of the construction of

these groups are beyond the scope of this thesis; an excellent reference is The Finite

Simple Groups by Wilson [36, Chapters 3, 4 and 5].
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Chapter 3

G2(k): The Cayley Algebra and the

Generalised Hexagon

In this chapter we will introduce a construction of the group of Lie type G2(k), where k

is a field, as the automorphism group of an 8-dimensional algebra over k. We will also

use the algebra to construct the building of G2(k) in the form of a point-line geometry.

This construction is well-known, although the details seem to be somewhat hard to find

all in one place. (We borrow notation mostly from two sources, Wilson [36] and Segev

and Smith [26].)

3.1 The Cayley algebra
We begin with the definition of an alternative algebra; alternativity is a weakened version

of associativity.

Definition 3.1.1 (Alternative algebra) An algebra over a field k is a k-vector space

equipped with a bilinear product. An alternative algebra is an algebra A which further

satisfies the relations

(x · x) · y = x · (x · y)



and

(x · y) · y = x · (y · y)

for all x, y ∈ A.

We see that associative algebras are indeed alternative, since both alternativity relations

follow immediately from the associativity condition (x · y) · z = x · (y · z).

Let k be a finite field of order q = πa, for π a prime, and C+ be the Cayley algebra

defined over k (our description of this algebra below uses the basis from Wilson [36,

p.123]). This is an 8-dimensional alternative algebra with basis {e1, e2, . . . , e8}, for which

we often use the shorthand {1, . . . , 8}, and multiplication table as follows:

1 2 3 4 5 6 7 8

1 1 2 −3 −4

2 −1 2 −5 6

3 1 3 −5 −7

4 1 4 6 7

5 2 3 5 8

6 −2 −4 6 8

7 3 −4 7 −8

8 −5 −6 7 8

Here, a blank entry indicates that the product is 0. Notice that, whilst an arbitrary

element of C+ is a linear combination
∑8

i=1 λiei, this particular choice of basis gives us

a very neat multiplication table in which all the products are given by ±ei for some

1 ≤ i ≤ 8, rather than by linear combinations of multiple basis elements.

The light grey lines on the table are there as a visual aid, to highlight another key

property of this basis: adding together the fourth and fifth rows, or the fourth and fifth

columns, gives us the basis elements 1 to 8 in order. Hence the element e := 4+ 5 acts as
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the multiplicative identity from both sides. An algebra such as C+ with a multiplicative

identity is called unital. The identity element is necessarily unique; if e and f are both

multiplicative identity elements then e = ef = f .

We can immediately see from the multiplication table that C+ is not associative; for

example, we have

6 = (1 · 6) · 8 6= 1 · (6 · 8) = 0.

3.1.1 A bilinear form on C+

We will equip C+ with a symmetric bilinear form, as per [26, p.498]1. If x =
∑8

i=1 λiei is

an element of C+, we write xi for the coefficient λi for each 1 ≤ i ≤ 8.

Definition 3.1.2 (Bilinear form b(·, ·)) Let x, y ∈ C+. We define

b(x, y) := (x4y4 + x5y5)−
3∑
i=1

(
xiy9−i + x9−iyi

)
.

Studying the multiplication table reveals that b(x, y) is equal to the sum of the coefficients

of 4 and 5 in the product xy. Thus

b(x, y) = (xy)4 + (xy)5.

We have the following lemma:

Lemma 3.1.3 Let x, y ∈ C+. Then xy = 0 implies that b(x, y) = 0.

Proof. Suppose xy = 0. Then we have b(x, y) = (xy)4 + (xy)5 = 04 + 05 = 0. □

The form b(·, ·) is non-degenerate, meaning that there is no element x ∈ C+ \ {0}

such that b(x, y) = 0 for all y ∈ C+. Check this by setting x :=
∑8

i=1 λiei, an arbitrary
1The indices used in the form b(·, ·) have been altered from the version found in Segev and Smith’s

paper to match the basis we are using from Wilson’s book.
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element of C+. Then using the multiplication table, we can verify that for i ∈ {1, 2, 3} ∪

{6, 7, 8} we have b(x, ei) = −λ9−i, and for i ∈ {4, 5} we have b(x, ei) = λi. If b(x, ei) = 0

for all 1 ≤ i ≤ 8, then every λi is 0 and so x = 0.

Definition 3.1.4 (Isotropic vectors and totally isotropic subspaces) We say that

a vector x ∈ C+ is isotropic if b(x, x) = 0, and a subspace S ≤ C+ is totally isotropic

if b(x, y) = 0 for all x, y ∈ S.

Definition 3.1.5 (Automorphism group of an algebra) Let A be an algebra over k.

A k-linear bijection θ : A→ A which preserves multiplication is called an automorphism

of A. The group of all such maps under composition is the automorphism group of

A.

Lemma 3.1.6 Every automorphism of C+ fixes e.

Proof. Let G be the automorphism group of C+, and let θ ∈ G. Then for all x ∈ C+ we

have

xθ = (xe)θ = xθ · eθ.

Since θ is an bijection, the set {xθ | x ∈ C+} contains every element of C+, and so eθ

acts as a multiplicative identity. Hence eθ = e, and so every automorphism of C+ fixes

the identity. □

3.1.2 The Cayley module

With respect to the bilinear form b(·, ·), the orthogonal complement of 〈e〉 is given by

C := 〈1, 2, 3, 4− 5, 6, 7, 8〉.
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Since C+ = C⊕〈e〉, and every automorphism fixes 〈e〉, the group G also fixes C. Thus C

is in fact a 7-dimensional kG-module; it is called the Cayley module. (Note that C is

not a subalgebra of C+ since it is not closed under multiplication.) We will show in the

next section that the form is preserved by the action of G.

3.2 The group G = G2(k)

We define a matrix group G = G2(k) of automorphisms of C+; later, we will see that this

is isomorphic to the Chevalley group G2(k) as defined in Chapter 3. We will give matrix

generators for G taken from [36, p.124]. Firstly, we define:

rp :=



−1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1


, rℓ :=



0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 −1 0


.

Both rp and rℓ have order 2.

Let k× be the multiplicative group of the field k, containing all non-zero elements of

k. We also define

T1(λ) := diag(λ, 1, λ, 1, 1, λ−1, 1, λ−1)

and

T2(λ) := diag(1, λ, λ−1, 1, 1, λ, λ−1, 1)

for each λ ∈ k×. By inspecting the multiplication table of C+, we can see that

T := 〈Ti(λ) | λ ∈ k×, i ∈ {1, 2}〉
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is precisely the set of diagonal elements which preserve the multiplication of C+. (For

example, the equation 3 · 2 = 1 implies that if we scale 2 by a factor of λ then we either

have to scale 3 by a factor of λ−1, as in T2(λ), or scale 1 by a factor of λ, as in T1(λ).)

The subgroup T has order (q − 1)2 and is abelian, being a direct product of two cyclic

groups of order q − 1. Also let

N := 〈rp, rℓ, T 〉,

which has order 12(q − 1)2.

Again following [36, p.124], for each λ ∈ k we define the following elements of G:

A(λ) =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

−λ 0 0 0 0 0 1 0

0 λ 0 0 0 0 0 1


, B(λ) =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

−λ 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 λ 0 0 0 0 1


,

C(λ) =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

−λ 0 0 1 0 0 0 0

λ 0 0 0 1 0 0 0

0 −λ 0 0 0 1 0 0

0 0 λ 0 0 0 1 0

λ2 0 0 −λ λ 0 0 1


, D(λ) =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

−λ 0 1 0 0 0 0 0

0 −λ 0 1 0 0 0 0

0 λ 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 λ2 0 −λ λ 0 1 0

0 0 0 0 0 λ 0 1


,

E(λ) =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 −λ 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 λ 1 0

0 0 0 0 0 0 0 1


, F (λ) =



1 0 0 0 0 0 0 0

−λ 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 λ 1 0 0 0 0

0 0 −λ 0 1 0 0 0

0 0 λ2 λ −λ 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 λ 1


.
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Then we have

G := 〈T, rp, rℓ, A(λ), B(λ), . . . , F (λ) | λ ∈ k〉.

A point is a 1-dimensional subspace of C+ on which multiplication restricts to 0.

Similarly, a line is a 2-dimensional subspace of C+ on which multiplication restricts to

0. We will fix for the entirety of this thesis a designated point p := 〈1〉 and a designated

line ℓ := 〈1, 2〉. We use the letters p and ℓ to refer to other points and lines throughout,

but appearing in boldface p and ℓ refer to these designated subspaces.

Definition 3.2.1 Let U := 〈A(λ), B(λ), . . . , F (λ) | λ ∈ k〉 and B := 〈U, T 〉.

Definition 3.2.2 Define Gp := 〈B, rp〉 which is the stabiliser of the 1-space p, and

Gℓ := 〈B, rℓ〉 which is the stabiliser of the 2-space ℓ.

Definition 3.2.3 We define the Weyl group of G by W := N/T.

The Weyl group W is isomorphic to the dihedral group D12 of order 12. One element of

the Weyl group which we will use in particular is

w0 :=



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0


,

which is given by w0 = (rprℓ)
3.

We can extract the following lemmas from the text in Wilson’s book [36, p.124-125,

Equation (4.34) onwards]:

Lemma 3.2.4 The subgroup U is a Sylow π-subgroup of G, of order q6. The subgroup B

has order q6(q − 1)2, and we have B = NG(U). Finally, T ⊴ N .
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Lemma 3.2.5 Both Gp and Gℓ have order q6(q2 − 1)(q − 1). We have 〈Gp, Gℓ〉 = G,

and G has order q6(q6 − 1)(q2 − 1).

Now we can prove the following lemma:

Lemma 3.2.6 G preserves the bilinear form b(·, ·).

Proof. Let g ∈ G and x ∈ C+. We will show that the sum of the coefficients of 4 and 5

are the same in x and xg.

It suffices to check that this is true when g is one of the generators of G. The generators

rℓ, rp, T1(λ) and T2(λ) leave the coefficients of 4 and 5 unchanged, as do the generators

A(λ), B(λ) and E(λ). The generator C(λ) maps 8 7→ λ21 − λ4 + λ5 + 8, so the sum of

the coefficients of 4 and 5 is unchanged. The generators D(λ) and F (λ) behave similarly,

altering the coefficients of 4 and 5 when x has non-zero coefficients on 7 and 6 respectively,

but not affecting the sum. Hence x4 + x5 = (xg)4 + (xg)5.

Now, for y, z ∈ C+ we have

b(yg, zg) = (ygzg)4 + (ygzg)5 = (yzg)4 + (yzg)5 = (yz)4 + (yz)5 = b(y, z),

as required. □

The orthogonal group corresponding to a non-degenerate symmetric bilinear form

is the group of invertible linear transformations preserving the form. Thus Lemma 3.2.6

shows that G is a subgroup of the orthogonal group corresponding to the form b(·, ·).

Lemma 3.2.7 G acts transitively on the totally isotropic 1-spaces of C.

Proof. In a non-degenerate orthogonal space of dimension 2m+1 (such as C, for m = 3)

there are q2m − 1 non-zero isotropic vectors [36, p.71]. Since a scalar multiple of an

isotropic vector is also isotropic, the 7-dimensional space C contains (q6 − 1)/(q − 1)
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distinct 1-spaces containing only isotropic vectors; and since the form b(·, ·) is bilinear,

these subspaces are in fact totally isotropic. (There cannot be any more totally isotropic

subspaces than these, as there are no more isotropic vectors.)

Recall that Gp is the stabiliser of the (totally isotropic) 1-space p = 〈1〉. Now, the

index of Gp in G is given by

(
q6(q6 − 1)(q2 − 1)

)
/
(
q6(q2 − 1)(q − 1)

)
= (q6 − 1)/(q − 1).

Therefore, G acts transitively on the totally isotropic 1-spaces of C as required. □

Lemma 3.2.8 The totally isotropic 1-spaces of C are precisely the 1-spaces on which

multiplication restricts to 0.

Proof. Suppose S ≤ C and multiplication restricts to 0 on S. Then certainly S is totally

isotropic, because for any x, y ∈ S we have

b(x, y) = (xy)4 + (xy)5

= 04 + 05

= 0.

Now suppose that S ≤ C is a totally isotropic 1-space. Then S = 〈x〉 for some x ∈ C.

Write

x = λ11 + λ22 + λ33 + λ4−5(4− 5) + λ66 + λ77 + λ88.

We can modify the multiplication table of C+ to obtain the following table, which shows

how elements of C multiply with each other. (This is not a ‘multiplication table of C’,
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since C is not closed under multiplication.)

1 2 3 4− 5 6 7 8

1 −1 2 −3 −4

2 −1 2 −5 6

3 1 3 −5 −7

4− 5 1 4 + 5 6 7

6 −2 −4 −6 8

7 3 −4 −7 −8

8 −5 −6 7 8

(3.2.9)

Now, we have

x · x =
8∑
i=1

8∑
j=1

λiλj(ij)

=
8∑
i=1

λ2i (ii) +
8∑
i=1

8∑
j=i+1

λiλj(ij + ji).

Note that, other than the product (4−5) ·(4−5), all the products on the leading diagonal

of Table 3.2.9 are 0. Note also that the table is almost skew-symmetric; we have that

ij = −ji everywhere except for on the antidiagonal. Thus we can rewrite the product as

x · x = λ24−5(4 + 5) + (λ1λ8 + λ2λ7 + λ3λ6)(−4− 5)

= (λ24−5 − (λ1λ8 + λ2λ7 + λ3λ6))(4 + 5).

This shows that the only basis elements appearing in a square x · x, for x ∈ C, are 4 and

5. Furthermore, the coefficients of 4 and 5 are equal. Since we have assumed that S is

totally isotropic, therefore, we must have x · x = 0. □
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3.3 The generalised hexagon ∆ and the incidence graph

Γ

We can use the algebra C+ to construct a point-line geometry called a generalised

hexagon. This is in fact a G2(k) building, as we will see in this section.

Definition 3.3.1 (Point-line geometry) A point-line geometry is a structure con-

sisting of a set of points P and a set of lines L, along with an incidence relation

I ⊆ P × L. We interpret I as being the set of point-line pairs (p, ℓ) for which ℓ ‘goes

through’ p (or equivalently, p ‘lies on’ ℓ), and we write p ∈ ℓ as shorthand for this.

A point-line geometry can be considered as a rank 2 simplicial complex, in which the

0-simplices are the elements of P ∪ L and the 1-simplices are the elements of I, with the

face relations given by p, ℓ ≺ (p, ℓ).

Definition 3.3.2 (Incidence graph of a point-line geometry) The incidence graph

of a point-line geometry ∆ is a bipartite graph Γ = Γ (∆) with vertex set P ∪ L, where a

graph edge indicates incidence in the geometry. That is, the edge set of Γ is given by the

incidence relation I.

Let d(a, b) be the standard distance function on Γ . If a is a vertex in Γ and i ∈ N,

then we define Γi(a) to be the set of vertices at distance i from a. Finally, we write a ∼ b

to mean that there is a graph edge from a to b, and sometimes we will write a ∼n b to

indicate that there is a shortest path of length n from a to b (so, for example, if a, b ∈ P

then a ∼2 b means that a and b are collinear).

Recall that the girth of a graph is the length of a shortest cycle, and the diameter

is the length of a shortest path between two vertices of maximum distance apart.

Definition 3.3.3 (Generalised polygon) A generalised polygon is a point-line ge-

ometry for which the incidence graph Γ has diameter n and girth 2n.
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Definition 3.3.4 (Generalised hexagon) A generalised hexagon is a generalised

polygon with n = 6; that is, it has diameter 6 and girth 12.

A point-line geometry ∆ is in fact a rank 2 chamber system over index set {P,L}, where

the chambers are the pairs (p, ℓ) ∈ I, the P -adjacency is determined by chambers sharing a

point and the L-adjacency by chambers sharing a line. That is, we have (p, ℓ) ∼
P
(p, ℓ′) and

(p, ℓ) ∼
L
(p′, ℓ). Considered in this way, the incidence graph Γ = Γ (∆) is just the geometric

realisation of ∆, as per Algorithm 2.2.8. For more details about this correspondence, see

[27, p.335, Theorem 9.4.10].

3.3.1 The construction of ∆ and Γ

We use the Cayley algebra C+ to construct a point-line geometry ∆ as follows: the points

are the 1-subspaces of C for which multiplication restricts to 0, and the lines are the

2-subspaces of C for which multiplication restricts to 0. Say that a point p = 〈x〉 lies on

a line ℓ = 〈y, z〉 if and only if 〈x〉 ⊂ 〈y, z〉. Let Γ = Γ (∆) be the incidence graph of the

geometry ∆. We will show soon that ∆ is indeed a generalised hexagon.

Figure 3.1 shows a part of ∆ displayed as a collinearity hypergraph. Here, graph

vertices represent points and graph hyperedges represent lines (although we do not always

display all points on a given hyperedge). Note that this is not a portion of the graph Γ ,

because lines are represented by edges rather than vertices.

As the figures we are drawing get increasingly complex, drawing the incidence graph

Γ would result in a cluttered diagram, so this approach becomes clearer. However, care

must be taken to interpret these figures because each line has more than two incident

points, so potential ambiguity arises when interpreting a straight line segment with three

or more points on (is it one line, or multiple?) — later, we will introduce a convention to

mitigate this possible confusion.

In this thesis, we will always use the distance function d(·, ·) to mean distance in the
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〈3, 7〉〈2, 6〉

〈7, 8〉

〈1, 3〉〈1, 2〉

〈6, 8〉
〈8〉

〈7〉

〈3〉

〈1〉

〈2〉

〈6〉

Figure 3.1: A 12-circuit in Γ , represented as part of the collinearity hypergraph of ∆.

incidence graph Γ . Therefore the distance between 〈1〉 and 〈2〉 in Figure 3.1 is 2, via the

path 〈1〉, 〈1, 2〉, 〈1〉.

We will often use the following notation:

Definition 3.3.5 (⟨x1, x2⟩ for x1, x2 ∈ P ) Let x1, x2 ∈ P with d(x1, x2) = 2. Then

we define 〈x1, x2〉 to be the unique line collinear to both x1 and x2.

We continue with some basic lemmas regarding Γ .

Lemma 3.3.6 Let x1 and x2 be two distinct points in Γ , with x1 = 〈v1〉 and x2 = 〈v2〉.

Then d(x1, x2) = 2 if and only if v1 · v2 = 0.

Proof. Suppose d(x1, x2) = 2. Then there is a path x1, 〈x1, x2〉, x2, so we have 〈v1〉 ⊆

〈v1, v2〉 ⊇ 〈v2〉. Thus multiplication restricts to 0 on the subspace 〈v1, v2〉, and so v1·v2 = 0.

Now suppose that v1 · v2 = 0. Then the points x1 and x2 span a 2-space on which

multiplication restricts to zero, so 〈x1, x2〉 is a line. Hence there is a path x1, 〈x1, x2〉, x2.□

3.3.2 Transitivity on points and lines

We have the following lemmas.
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Lemma 3.3.7 G acts transitively on the set of points of Γ .

Proof. This follows immediately from Lemma 3.2.7 and Lemma 3.2.8. □

Lemma 3.3.8 Γ is (q + 1)-regular.

Proof. The valency of a line x is q + 1 because every 1-space contained in the 2-space

corresponding to x is a point; since multiplication restricts to 0 on the 2-space, it also

does so on each 1-dimensional subspace. There are q + 1 such subspaces in each 2-space,

and so each line is incident to q + 1 points.

To show that each point lies on q + 1 lines, we first consider the point p = 〈1〉. The

lines incident to p correspond to the 2-spaces in C containing 〈1〉 on which multiplication

restricts to 0. Using the multiplication table of C+, we can deduce that any such 2-space

must be contained within the span 〈1, 2, 3〉; the products 1 ·(4−5) = 1, 1 ·6 = −2, 1 ·7 = 3

and 1 · 8 = −5 are all non-zero and linearly independent, so any vector forming a 2-space

with 〈1〉, on which multiplication restricts to 0, cannot have any component from the set

{4− 5, 6, 7, 8}.

Now, the span 〈2, 3〉 contains q2− 1 non-zero vectors and thus (q2− 1)/(q− 1) = q+1

unique 1-spaces, each spanned by some vector v = α2 + β3. All of these 1-spaces are in

fact points, because v2 = α2(2 · 2) + αβ(2 · 3 + 3 · 2) + β2(3 · 3) = αβ(1− 1) = 0, and all

of the points form a line with p since 1 · 2 = 2 · 1 = 0 and 1 · 3 = 3 · 1 = 0. Thus p lies on

q + 1 lines.

Finally, the fact that G acts transitively on points due to Lemma 3.3.7 shows that all

points lie on q + 1 lines. □

Corollary 3.3.9 |P | = |L|.

Proof. By Lemma 3.3.8, we have that Γ is a regular bipartite graph with vertex partition

{P,L}. Hence |P | = |L|. □
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Lemma 3.3.10 G acts transitively on the set of lines of Γ .

Proof. The stabiliser of the line ℓ = 〈1, 2〉 is Gℓ and the stabiliser of the point p = 〈1〉 is

Gp. Furthermore, we have |Gℓ| = |Gp| as per Lemma 3.2.5. We use the orbit-stabiliser

theorem; we have

|P | = [G : Gp],

since G is transitive on points. Then the size of the orbit of ℓ under G is given by

|{ℓg | g ∈ G}| = [G : Gℓ] = [G : Gp] = |P | = |L|,

where the final equality is due to Lemma 3.3.9. Hence all lines lie in a single G-orbit,

proving transitivity. □

Lemmas 3.3.7 and 3.3.10, showing the transitivity of G on points and lines, allow us

to define parabolic subgroups of G, which are G-conjugates of Gp and Gℓ. These two

families of parabolic subgroups are the stabilisers of points and lines respectively. As

in Chapter 2, we write the Levi decompositions of the parabolics as Gp = 〈Up, Lp〉 and

Gℓ = 〈Uℓ, Lℓ〉, where Ux = Oπ(Gx) and Lx = Gx ∩Gx′ for some x′ opposite x.

For the point p, we have

Up = Oπ(Gp) = 〈A(λ), . . . , D(λ), F (λ) | λ ∈ k〉

of order q5, and

Lp = 〈T, rp, E(λ) | λ ∈ k〉 = Gp ∩G⟨8⟩

which has order q(q + 1)(q− 1)2 is a Levi complement of Gp. Similarly, for the line ℓ, we

have

Uℓ = Oπ(Gℓ) = 〈A(λ), . . . , E(λ) | λ ∈ k〉
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of order q5, and

Lℓ = 〈T, rℓ, F (λ) | λ ∈ k〉 = Gℓ ∩G⟨7,8⟩

which has order q(q + 1)(q − 1)2 is a Levi complement of Gℓ. Furthermore we have

Lp
∼= Lℓ

∼= GL2(k); a proof of this appears in Section 3.3.8.

We set up notation for intersections of parabolic subgroups as follows:

Definition 3.3.11 (Notation for stabilisers in G) Let Gx denote the stabiliser of x

in G, where x is either a point or a line. Furthermore, let Gx1,x2,... denote the intersection⋂
iGxi.

3.3.3 Arc transitivity

Let s ≥ 0. An s-arc is a sequence of s + 1 vertices x0, . . . , xs such that xi ∼ xi+1 for

each i = 0, . . . , s− 1, and xi−1 6= xi+1 for all i = 1, . . . , s− 1 (that is, the sequence never

immediately returns to the previous vertex). We say that a group action on a graph is

s-arc transitive if there exists a group element mapping any s-arc to any other.

Clearly the action of G on Γ cannot be s-arc transitive for any value of s, since G is

not transitive on vertices (preserving the partition P ∪L). But it may satisfy a modified,

weaker condition: a group G acts locally s-arc transitively if, for any given vertex y

and any two s-arcs γ, γ′ starting at y, there exists g ∈ G mapping γ to γ′. (See Figure 3.2.)

Note that since Γ is bipartite, such an element maps points to points and lines to lines,

so it is conceivable that G could act with this property.

Lemma 3.3.12 The action of G on Γ is locally 7-arc transitive.

Proof. Since G is transitive on points and lines, it is enough to show that G is transitive

on the 7-arcs beginning at the point p = 〈1〉, and on the 7-arcs beginning at the line

ℓ = 〈1, 2〉.
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g

g

Figure 3.2: A part of the graph Γ , with an element g ∈ G mapping a 2-arc starting at a
vertex y to another 2-arc starting at y.

We begin with the 7-arcs starting at 〈1〉, where we have G⟨1⟩ = Gp. Studying the

multiplication table of C+, we see that any point collinear with 〈1〉 is a linear combination

of 〈1〉, 〈2〉 and 〈3〉, and thus the lines incident to 〈1〉 are given by 〈1, σ2+µ3〉 for σ, µ ∈ k

not both equal to 0. A glance at the matrices rp and E(λ) shows us that G⟨1⟩ acts

transitively on these lines; the action of rp allows us to swap 2 for 3 if necessary to ensure

that the coefficient of 3 is non-zero, and then multiplication by E(λ) allows us to fix any

ratio of 2 and 3, all whilst fixing the point 〈1〉. Without loss of generality, therefore, we

may assume that our 7-arc emanating from 〈1〉 begins with the path 〈1〉, 〈1, 2〉.

The stabiliser G⟨1⟩,⟨1,2⟩ is the intersection Gp ∩ Gℓ = B. An s-arc is not allowed to

double back on itself, so the point following the line 〈1, 2〉 is not permitted to be the point

〈1〉. Therefore we must show that G⟨1⟩,⟨1,2⟩ is transitive on the remaining q points of 〈1, 2〉.

These are precisely 〈2 + µ1〉 for µ ∈ k. We see that

〈2 + µ1〉 · F (λ) = 〈2 + (µ− λ)1〉,

so by careful choice of λ we can map any such point to any other. Without loss of

generality, therefore, we may assume that the next point is 〈2〉.
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Now, it is easily checked that

G⟨1⟩,⟨1,2⟩,⟨2⟩ = 〈T,A(λ), B(λ), . . . , E(λ) | λ ∈ k〉,

and has order q5(q − 1)2. We continue in this manner; the lines incident to 〈2〉 which are

distinct from 〈1, 2〉 are given by 〈2, σ1+6〉 where σ ∈ k. Then G⟨1⟩,⟨1,2⟩,⟨2⟩ acts transitively

on the 1-spaces of the form 〈σ1+6〉 since we can multiply by B(λ), and so acts transitively

on these lines.

Without loss, we choose the line 〈2, 6〉 to continue our arc, and so our new stabiliser

is given by

G⟨1⟩,⟨1,2⟩,⟨2⟩,⟨2,6⟩ = 〈T,A(λ), C(λ), D(λ), E(λ) | λ ∈ k〉,

and has order q4(q−1)2. As before, the elements C(λ) give us transitivity on the remaining

points of 〈2, 6〉. Again, we may make any choice here, so we continue the arc with 〈6〉.

Then

G⟨1⟩,⟨1,2⟩,⟨2⟩,⟨2,6⟩,⟨6⟩ = 〈T,A(λ), D(λ), E(λ) | λ ∈ k〉,

of order q3(q − 1)2.

In the same fashion, we continue with the line 〈6, 8〉 (losing the generators A(λ) from

the stabiliser), then with the point 〈8〉 (losing the generators D(λ)), and finally with the

line 〈7, 8〉 (losing the generators E(λ)). We are left with the stabiliser

G⟨1⟩,⟨1,2⟩,⟨2⟩,⟨2,6⟩,⟨6⟩,⟨6,8⟩,⟨8⟩,⟨8,7⟩ = T,

so we can go no further at this point. This completes the proof of local 7-arc transitivity

of 7-arcs emanating from 〈1〉 (and therefore from all points by transitivity on points).

The other case to be considered, 7-arcs originating from lines rather than from points,
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can be treated almost identically. We can construct the stabiliser

G⟨2,1⟩,⟨1⟩,⟨1,3⟩,⟨3⟩,⟨3,7⟩,⟨7⟩,⟨7,8⟩ ⟨8⟩ = T,

step-by-step as before; in doing so we lose the generators A(λ), . . . , F (λ) in the reverse

order. □

Corollary 3.3.13 G acts transitively on ordered pairs of opposite points, and on ordered

pairs of opposite lines.

Proof. Suppose that x0, y0, x1, y1 ∈ P are points with x0 opposite y0 and x1 opposite y1.

We need to show that there exists some g ∈ G such that x0g = x1 and y0g = y1. By

Lemma 3.3.7, G is transitive on the points of Γ so there exists some h ∈ G such that

x0h = x1.

The points y0h and y1 are both opposite x1, and so the length of a geodesic from x1 to

either of them is 6. Therefore since G acts locally 7-arc transitively on Γ by Lemma 3.3.12,

there exists an f ∈ Gx1 such that (y0h)f = y1. Hence we may take g = hf , and then

(x0, y0)g = (x1, y1) as required.

For pairs of opposite lines the proof is identical, using Lemma 3.3.10 for transitivity

on lines. □

3.3.4 More properties of Γ

We can now deduce some more information about the graph Γ .

Lemma 3.3.14 The diameter of Γ is 6 and the girth of Γ is 12.

Proof. We begin by showing that d(〈1〉, 〈8〉) = 6. Figure 3.1 shows one path of length

6 from 〈1〉 to 〈8〉, so certainly d(〈1〉, 〈8〉) ≤ 6. Assume for a contradiction that there is

a shorter path. Then either 〈1〉 and 〈8〉 are collinear, which is not true by Lemma 3.3.6
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since 1 · 8 6= 0, or d(〈1〉, 〈8〉) = 4 and there is a point collinear to both. But the points

collinear with 〈1〉 lie in the space 〈1, 2, 3〉, and the points collinear with 〈8〉 lie in the

space 〈6, 7, 8〉, and these have trivial intersection. Therefore d(〈1〉, 〈8〉) = 6 and thus the

diameter of Γ is at least 6.

Suppose the diameter of Γ is greater than 6. Then by transitivity on points (Lemma 3.3.7),

there must be some line at distance 7 from the point 〈1〉.

Consider the 7-arc given by graph vertices 〈1〉, 〈1, 2〉, 〈2〉, 〈2, 6〉, 〈6〉, 〈6, 8〉, 〈8〉, 〈7, 8〉.

The final vertex of the arc, which is the line 〈7, 8〉, has distance at most 5 from 〈1〉,

via the path 〈1〉, 〈1, 3〉, 〈3〉, 〈3, 7〉, 〈7〉, 〈7, 8〉 (see Figure 3.1). By local 7-arc transitivity

(Lemma 3.3.12), this statement holds for the final line of any 7-arc beginning at 〈1〉. This

contradicts the existence of a line at distance 7 from the point 〈1〉, and so the diameter

of Γ is 6.

There is a 12-cycle in Figure 3.1, so the girth of Γ is at most 12. Suppose there is a

cycle γ of length less than 12 in Γ . Since the graph is bipartite, γ must alternate between

points and lines and thus includes at least one point. By the transitivity of G on points,

we may assume that γ contains the point 〈1〉 (if it does not, apply a graph automorphism

g ∈ G mapping one of the points on γ to the point 〈1〉).

Now, starting with 〈1〉 and moving round in a fixed direction, the first 8 graph vertices

in γ form a 7-arc γ′. Since G is locally 7-arc transitive there is an automorphism mapping

γ′ to the ‘standard’ 7-arc from 〈1〉 which goes through points 〈2〉, 〈6〉 and 〈8〉 and ends

at 〈7, 8〉, traversing a little over half-way around the 12-cycle from Figure 3.1.

This shows firstly that all the points and lines of γ′ are distinct and so the length of

γ is at least 8. But we may use the same argument as before to note that the distance

from 〈7, 8〉 back to 〈1〉 is at least 5, because no point on 〈7, 8〉 is collinear with 〈1〉. The

same must hold for the final line of γ′, and so γ cannot be any smaller than a 12-cycle.

Thus the girth of Γ is 12. □
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Corollary 3.3.15 ∆ is a generalised hexagon.

Proof. This follows immediately from Definition 3.3.4 and Lemma 3.3.14. □

3.3.5 Opposite vertices

We say that x and y in P ∪ L are opposite if d(x, y) = 6. Since Γ is bipartite and has

diameter 6, if we have two distinct points x, y ∈ Γ then d(x, y) ∈ {2, 4, 6}. The same is

true for any pair of distinct lines.

Lemma 3.3.16 Suppose x and y are points (resp. lines) and d(x, y) = 4. Then there is

a unique path of length 4 from x to y.

Proof. Suppose not. Then there are two paths γ and γ′ of length 4 from x to y. The

concatenation γ ◦ γ′ is therefore a closed walk of length 8, and since γ 6= γ′ it contains a

cycle of length at most 8; a contradiction since the girth of Γ is 12. □

Therefore we can introduce the following notation:

Definition 3.3.17 (x ∗ y) Let x and y be points (resp. lines) such d(x, y) = 4. We

define x ∗ y to be the unique point (resp. line) in Γ2(x) ∩ Γ2(y).

Lemma 3.3.18 Let x and x∗ be opposite vertices in Γ and y∗ be a vertex incident to x∗.

Then there is a unique neighbour r of y∗ with distance d(r, x) = 4.

Proof. Since x and x∗ are opposite, there is a path γ of length 6 from x∗ to x. Denote

the two vertices following x∗ in the path γ by y∗ and r, so that γ = (x∗, y∗, r, . . . , x) and

d(r, x) = 4. Let γ0 be the subpath of γ from r to x, of length 4.

Suppose that s is a neighbour of y∗ with s 6= r and d(s, x) = 4, and write ψ for the

path (r, y∗, s) of length 2. Then there is a path ρ from x to s of length 4, and therefore

the concatenation ρ ◦ ψ ◦ γ0 is a closed walk in Γ containing a circuit of length at most

10; a contradiction since the girth of Γ is 12. So the choice of r ∈ y∗ must be unique.
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Lemma 3.3.12 then implies that we can find such an r incident to any of the neighbours

y∗ of x∗, which concludes the proof. □

This motivates the following definition:

Definition 3.3.19 Let x, x∗ and y∗ be as in Lemma 3.3.18. We define r(x, y∗) to be the

unique neighbour r of y∗ with distance d(r, x) = 4.

For example, if p and p∗ are a pair of opposite points with ℓ∗ 3 p∗ then r(p, ℓ∗) is the

unique point on ℓ∗ at distance 4 from p.

Corollary 3.3.20 Let x, x∗ and y∗ be as in Lemma 3.3.18. Then there is a unique path

γ of length 5 from y∗ to x.

Proof. By Lemma 3.3.18, r = r(x, y∗) is the unique neighbour of y∗ at distance 4 from x,

so γ must start with (y∗, r, . . . ). Then by Lemma 3.3.16, there is a unique path of length

4 from r to x, so γ is unique. □

3.3.6 The generalised hexagon ∆ is the building of G

In Corollary 3.3.15 we showed that the geometry we have constructed is indeed a gen-

eralised hexagon according to Definition 3.3.4. It remains to show that it is in fact the

building of the Chevalley group G2(k).

Firstly we will show that Γ satisfies the axioms to be a building as per Definition 2.3.1.

Theorem 3.3.21 The graph Γ , considered as a simplicial complex, is a building whose

apartments are precisely the 12-cycles of Γ .

Before we prove this theorem, we require the following lemmas.

Lemma 3.3.22 Suppose e = (a1, a2) and e′ = (b1, b2) are two distinct edges of Γ , with

ai, bi ∈ P ∪L. Then either e and e′ are the first and last edges of a geodesic of Γ , or they

are antipodal edges in a 12-circuit in Γ .

49



Proof. Set d = min{d(ai, bj) | 1 ≤ i, j ≤ 2}. For ease of notation, we re-number the

vertices such that d(a1, b1) = d, if this is not already the case. Since Γ is a bipartite

graph, we must have d(a2, b1) = d(a1, b2) = d + 1. There are two options for d(a2, b2);

either it is d or d+ 2.

• Case 1: d(a2, b2) = d. Then there are geodesic paths γ1 from a1 to b1 and γ2 from

a2 to b2, both of length d. This means that ω = (a2, a1) ◦ γ1 ◦ (b1, b2) ◦ γ−1
2 is a

closed walk with at least two edges (namely e and e′) which are only used once, and

thus contains a cycle of positive length. Since the girth of Γ is 12, this cycle must

have length at least 12. Furthermore, the length of ω is given by 2d + 2. Hence

2d+ 2 ≥ 12, so d ≥ 5.

Conversely, we have d(a1, b2) = d+1 ≤ 6, since 6 is the diameter of the Γ , so d ≤ 5.

This forces d = 5 and |ω| = 12, so ω is a circuit of length 12 and the edges e and e′

are antipodal edges of ω.

• Case 2: d(a2, b2) = d + 2. Let γ be a geodesic path from a1 to b1. Then (a2, a1) ◦

γ ◦ (b1, b2) is a path of length d+ 2 from a2 to b2, and thus is a geodesic path with

the edges e and e′ at either end. □

Lemma 3.3.23 Any geodesic in Γ of length d < 6 can be extended to a geodesic of length

d+ 1.

Proof. Let γ be a geodesic of length d < 6 from u to v, and suppose that γ cannot be

extended to a geodesic of length d + 1. Let x1 be the penultimate vertex of γ. Since v

has q + 1 neighbours, we may choose another vertex x2 adjacent to v with x1 6= x2, and

d(u, x1) = d(u, x2) = d− 1 (or else γ could have been extended to visit x2 after v).

Let ε be a geodesic from u to x2. Then the closed walk ω = γ ◦ (v, x2)◦ε−1 includes at

least two distinct edges (those incident to v), and therefore contains a circuit of positive
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length. The girth of Γ is 12, so |ω| = 2d ≥ 12 and thus d ≥ 6, a contradiction. This

proves the lemma. □

Lemma 3.3.24 Any two distinct edges of Γ lie in a common 12-circuit.

Proof. Let e and e′ be two distinct edges of Γ as before. By Lemma 3.3.22, either e and

e′ are antipodal edges in a 12-circuit (in which case we are done), or they are the first

and last edges of some geodesic path γ. We suppose that we are in the second case.

By repeated application of Lemma 3.3.23, we may extend γ to a geodesic γ′ of length

6. Let the initial vertex of γ′ be denoted a2, followed by vertex a1 (so that e = (a1, a2)).

(The unusual choice of notation will soon make sense.) Denote the final vertex of γ′ by

b1.

Since b1 has q + 1 neighbours, we may choose a vertex b2 adjacent to b1 such that

b2 6∈ γ′. Let f = (b1, b2). Now, we have d(a1, b1) = 5 and d(a2, b1) = d(a1, b2) = 6. As

in the proof of Lemma 3.3.22, we have d(a2, b2) ∈ {5, 7}; but it cannot be 7 since the

diameter of Γ is 6. The remainder of the proof therefore follows Case 1 in the proof of

Lemma 3.3.22, and we find a 12-circuit of Γ containing γ′ (and therefore both e and e′).□

Now we can prove the theorem.

Proof (Proof of Theorem 3.3.21). We have to show that the axioms from Definition 2.3.1

are satisfied. By Example 2.2.10, the Coxeter complex of type G2 is a 12-circuit, so axiom

(B1) is satisfied.

Now, let x and y be two simplices (that is, vertices or edges) of Γ . We need to show

that there is some apartment (12-circuit) of Γ containing both x and y. If x and y are

edges, then this follows immediately from Lemma 3.3.24. If either x or y (or both) is a

vertex, then replace it with one of its q+1 incident edges, and then apply Lemma 3.3.24.

A 12-cycle containing an edge e certainly contains any vertex contained in e, so axiom

(B2) is satisfied.
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We turn our attention to axiom (B3). Let A,A′ be two apartments both containing

simplices x and y (which again can be vertices or edges). The relative positions of x and

y must be the same in the apartments A and A′; if a shorter path from x to y existed

in either one of the apartments, then this would result in Γ possessing a cycle shorter

than 12, a contradiction since the girth of Γ is 12. Hence we can form an isomorphism

A → A′ by ‘pairing up’ the vertices and edges of each 12-cycle in order, starting from x.

This isomorphism fixes x and y pointwise.

Hence all of the axioms are satisfied, and so Γ is indeed a building. □

In particular, the building Γ we have formed is the building for the group of Lie type

G2(k); the following is all by construction.

Theorem 3.3.25 The graph Γ is isomorphic (as a simplicial complex) to the building

for the group of Lie type G2(k). The chambers (1-simplices) in the building correspond

to edges in Γ , and are stabilised by conjugates of B. The panels (0-simplices) correspond

to vertices in Γ , and are stabilised by conjugates of the parabolic subgroups Gp and Gℓ.

The apartments of the building are precisely the 12-cycles in Γ , and they are stabilised by

conjugates of N .

Recall that we defined a group of Lie type as the subgroup of the automorphism group

of a building generated by the root groups Xα (see Definition 2.4.1). The group G is a

subgroup of the automorphism group of the generalised hexagon, which is the building

for the group of Lie type G2(k); in order to demonstrate that these groups are isomorphic

(and thus that the two definitions of ‘G2(k)’ are equivalent), it suffices to show that G is

also generated by the root groups. We refer to Wilson [36, Section 4.3.5] for this, noting

also that the group G defined in this chapter is simple for q 6= 2 [36, Section 4.3.7], as is

the Chevalley group G2(k) when |k| 6= 2 [30, p.33, Theorem 5].
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3.3.7 Subspaces of C

For a subspace X ≤ C, the orthogonal complement with respect to b(·, ·) is defined in the

usual way:

X
⊥
:= {v ∈ C | b(x, v) = 0, ∀ x ∈ X}.

We have the following lemma about pairs of opposite points:

Lemma 3.3.26 Let x1 = 〈v1〉, x2 = 〈v2〉 be distinct points of Γ . Then x1 is opposite x2

if and only if b(v1, v2) 6= 0.

Proof. By the transitivity of G on points and the local 7-arc transitivity of G, it suffices

to consider x1 = 〈1〉, x2 = 〈2〉, x3 = 〈6〉 and x4 = 〈8〉, which form a path x1 ∼2 x2 ∼2

x3 ∼2 x4 (see Figure 3.1). By direct calculation we have b(1, 2) = 0 = b(1, 6), and

b(1, 8) = −1 6= 0. By Lemma 3.2.6, the action of G preserves the form b(·, ·), so the result

follows immediately. □

In view of Lemma 3.3.26, therefore, we can define the orthogonal complement of a point:

Definition 3.3.27 (x⊥) If x ∈ Γ is a point then let x⊥ be the set of all points which are

not opposite x. For a set of points S = {x1, x2, . . . }, define

S⊥ :=
⋂
i≥1

x⊥i .

(It is a slight abuse of notation that we use the same notation for the orthogonal comple-

ment in C as we do for the set of points not opposite a point x. It should always be clear

from the context which we mean.)

Lemma 3.3.28 Suppose S is a set of points and T ⊆ S. Then T⊥ ⊇ S⊥.

Proof. This follows immediately from the definition. □
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Example 3.3.29 We calculate p⊥ and ℓ⊥. Note from Table 3.2.9 that the only basis

element x of C such that b(p, x) 6= 0 is x = 〈8〉. Hence p⊥ = 〈1, 2, 3, 4− 5, 6, 7〉.

The line ℓ is spanned by the points p and 〈2〉, so ℓ⊥ = p⊥∩〈2〉⊥ = 〈1, 2, 3, 4−5, 6, 7〉∩

〈1, 2, 3, 4− 5, 6, 8〉 = 〈1, 2, 3, 4− 5, 6〉.

We define some useful subspaces of C, which arise from subgraphs of Γ .

Definition 3.3.30 (Cp, Cℓ, Dp, Eℓ and Fp) Let p ∈ P be a point, and ℓ ∈ L be a line.

• Define Cp to be the 1-space of C corresponding to p.

• Define Cℓ to be the 2-space of C corresponding to ℓ.

• Set Dp := 〈Cℓ | ℓ 3 p〉. (In Γ , this corresponds to the subgraph Γ2(p).)

• Set Eℓ := 〈Dp | p ∈ ℓ〉. (In Γ , this corresponds to the subgraph Γ3(ℓ).)

• Set Fp := 〈Eℓ | ℓ 3 p〉. (In Γ , this corresponds to the subgraph Γ4(p).)

Due to the transitivity of the group action on points and lines, the dimensions of these

spaces do not depend on the choice of p and ℓ. By definition, dimCp = 1 and dimCℓ = 2.

The rest we can calculate.

Lemma 3.3.31 The dimension of Dp is 3.

Proof. We have already shown that all the lines incident to 〈1〉 span the subspace 〈1, 2, 3〉,

so by transitivity on points the result follows. □

Lemma 3.3.32 The dimension of Eℓ is 5.

Proof. We calculate in C. By the transitivity of G on lines, it suffices to work with

ℓ = 〈1, 2〉. By Example 3.3.29 we have ℓ⊥ = 〈1, 2, 3, 4 − 5, 6〉 which has dimension 5.

Take p = 〈1〉 ∈ ℓ. Then Dp = 〈1, 2, 3〉 which is a subspace of ℓ⊥, and because Gℓ acts
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transitively on the points in ℓ by Lemma 3.3.10, and leaves ℓ⊥ invariant, we have Dp ≤ ℓ⊥

for any p ∈ ℓ. Hence Eℓ ≤ ℓ⊥.

Since Eℓ contains D⟨1⟩ = 〈1, 2, 3〉, D⟨2⟩ = 〈1, 2, 6〉 and D⟨1+2⟩ = 〈1, 2, 3 + 6− (4− 5)〉,

we see that dimEℓ ≥ 5. Hence Eℓ = ℓ⊥ and dimEℓ = 5. □

Lemma 3.3.33 The dimension of Fp is 6.

Proof. Again by transitivity on points it suffices to show that dimFp = 6, where p = 〈1〉.

By definition, Fp contains precisely all those points which are not opposite to p. By

Lemma 3.3.26, this consists of all points 〈x〉 for which b(1, x) = 0. The subspace p⊥ =

〈x ∈ C | b(1, x) = 0〉 is a hyperplane of C and thus has dimension 7− 1 = 6. □

The following two observations will motivate the bounds we present in Chapters 9 and

10 respectively.

Lemma 3.3.34 Suppose that p† is opposite p. Then 〈Fp, Cp†〉 = C.

Proof. By Lemma 3.3.26 and Lemma 3.3.33 we have that Fp is the hyperplane of C

spanned by all points not opposite p. Furthermore, Cp† is a 1-space of C which is not

contained in Fp. Hence 〈Fp, Cp†〉 = C. □

Lemma 3.3.35 Suppose that p† is opposite p. Then 〈Eℓ, Eℓ†〉 = C.

Proof. By transitivity on ordered pairs of opposite lines (Corollary 3.3.13), it suffices to

take ℓ = ℓ = 〈1, 2〉 and ℓ† = 〈7, 8〉. From Figure 3.1 we see that 〈1, 2, 3, 6〉 ≤ Eℓ and

〈3, 6, 7, 8〉 ≤ Eℓ† . Therefore 〈Eℓ, Eℓ†〉 contains the 6-space 〈1, 2, 3, 6, 7, 8〉; it remains to

show that it also contains the vector 4− 5.

Let v = 3−4+5+6 and consider the point x = 〈v〉. We can see that x lies in both Eℓ

and Eℓ† , since it is collinear with both of the points 〈1 + 2〉 ∈ ℓ and 〈7− 8〉 ∈ ℓ†. Hence

4− 5 ∈ 〈Eℓ, Eℓ†〉 = C. □
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3.3.8 3-transitivity results

Let x ∈ P ∪ L. The parabolic Gx acts 3-transitively on the q + 1 lines or points incident

to x, as we will demonstrate in the following lemmas.

Lemma 3.3.36 Let ℓ ∈ L. The subgroup Gℓ acts as GL2(k) on the 2-space Cℓ. In

particular, Gℓ operates 3-transitively on the q + 1 points in ℓ.

Proof. Without loss of generality, we take ℓ = ℓ. Let Lℓ = 〈T, rℓ, F (λ) | λ ∈ k〉, which is

a Levi complement of Gℓ, being the stabiliser of ℓ = 〈1, 2〉 and an opposite line ℓ† = 〈7, 8〉.

Then Lℓ ≤ Gℓ and Gℓ = 〈Lℓ, Uℓ〉, where Uℓ = Oπ(Gℓ) = 〈A(λ), . . . , E(λ) | λ ∈ k〉.

We have that Uℓ fixes every vector in Cℓ. The generators of Lp|Cℓ
are found by

extracting a 2 × 2 block corresponding to row and column indices {1, 2} from each of

the generators of Lℓ. Thus, Lℓ acts as GL2(k) on Cℓ with F (λ)|Cℓ
= ( 1 0

−λ 1 ) for λ ∈ k,

T |Cℓ
= 〈diag(γ, µ) | γ, µ ∈ k×〉 and rℓ|Cℓ

=
(

0 −1
−1 0

)
. Hence, by [4, Theorem 2.6.2], Gℓ

acts 3-transitively on the points in ℓ. □

Lemma 3.3.37 Let p ∈ P . The subgroup Gp acts as GL2(k) on the 2-space Dp/Cp. In

particular, Gp acts 3-transitively on the q + 1 lines containing p.

Proof. Again we may just consider the case p = p by transitivity on points. For a line

h 3 p we have that Ch is contained in Dp, where Dp = 〈1, 2, 3〉. Moreover, Ch/Cp is a

1-subspace of the 2-space Dp/Cp.

Let Lp = 〈T, rp, E(λ) | λ ∈ k〉, which is a Levi complement of Gp being the stabiliser

of p = 〈1〉 and p† = 〈8〉, a point opposite p. The generators of Lp|Dp/Cp
are found by

extracting a 2 × 2 block corresponding to row and column indices {2, 3} from each of

the generators of Lp. Hence Lp|Dp/Cp
∼= GL2(k) is generated by E(λ)|Dp/Cp

= ( 1 0
−λ 1 ) for

λ ∈ k, T |Dp/Cp
= 〈diag(γ, γ−1µ) | γ, µ ∈ k∗〉 = 〈diag(γ, µ) | γ, µ ∈ k∗〉, and rp|Dp/Cp

=(
0 −1
−1 0

)
.
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Furthermore, Gp = 〈Lp, Up〉 where Up = Oπ(Gp) = 〈A(λ), . . . , D(λ), F (λ) | λ ∈ k〉

which fixes every vector in Dp/Cp. It follows that Gp acts on Dp/Cp as GL2(k). Again

using [4, Theorem 2.6.2], Gp acts 3-transitively on the q + 1 lines containing p. □

Corollary 3.3.38 Let Gx = 〈Ux, Lx〉 where x ∈ P ∪ L. Then the Levi complement

Lx ∼= GL2(k).

Proof. We showed in Lemma 3.3.36 and Lemma 3.3.37 that both Lℓ and Lp act as GL2(k)

on a 2-space. Furthermore, the subgroups Uℓ and Up fix these subspaces, and |Lℓ| = |Lp| =

|GL2(k)|. □

3.3.9 Ideal lines

In this section we define an ideal line and prove some results which will become important

later on.

Definition 3.3.39 (Ideal line Ix(y)) Let x, y be a pair of opposite points. We define

Ix(y) := Γ2(x) ∩ Γ4(y).

By Lemma 3.3.18 we have |Ix(y)| = q + 1, since every line incident to x contains exactly

one point at distance 4 from y. Like an ordinary line, the points of an ideal line span

a 2-space in C as we will demonstrate shortly. However, multiplication on an ideal line

does not restrict to 0, preventing it from being an ordinary line of Γ .

Lemma 3.3.40 Suppose that x = 〈x〉 and y = 〈y〉 are opposite points in Γ . Then

〈Ix(y)〉 = Dx ∩ y⊥ and has dimension 2.

Proof. We have Ix(y) ⊆ Γ2(x) and therefore 〈Ix(y)〉 ≤ Dx. Also we have 〈Ix(y)〉 ≤

Γ4(y) ≤ y⊥. Since dimDx = 3 by Lemma 3.3.31, and b(x, y) 6= 0, we have dim(Dx∩y⊥) ≤

57



2. On the other hand, |Ix(y)| = q + 1 and so dim〈Ix(y)〉 ≥ 2. Together these bounds

prove the lemma. □

Theorem 3.3.41 Suppose that x, y, z ∈ P with x opposite both y and z. If |Ix(y) ∩

Ix(z)| ≥ 2 then Ix(y) = Ix(z).

Proof. We have dim〈Ix(y) ∩ Ix(z)〉 ≥ 2 because it contains at least two points. Since

〈Ix(y)〉 ≥ 〈Ix(y) ∩ Ix(z)〉 ≤ 〈Ix(z)〉,

with dim〈Ix(y)〉 = dim〈Ix(z)〉 = 2 and dim〈Ix(y) ∩ Ix(z)〉 ≥ 2, we have that

〈Ix(y)〉 = 〈Ix(y) ∩ Ix(z)〉 = 〈Ix(z)〉.

But both Ix(y) and Ix(z) contain exactly q + 1 points, and so Ix(y) = Ix(z). □
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Chapter 4

Some Weight Theory of Groups of

Lie Type

We begin with some basic weight theory, consisting of a series of definitions and lemmas

which hold in the general case, for G any group of Lie type. Later on in the chapter we

will specialise to the particular case where G = G2(k), with k a finite field of order πa

where π is a prime.

The representation theory of Chevalley groups over algebraically closed fields of char-

acteristic π is governed by the abstract theory of weights, as described in Bourbaki ([6,

Chapter VI]). The representation theory of Lie algebras is also built upon this abstract

weight theory, and hence many of the results and proofs also appear in Humphreys’ book

on this subject [15] in a readily accessible form.

4.1 Preliminary material
Let G be a group of Lie type with a BN -pair, and let T = B ∩ N . The subgroup T is

abelian and has rank ℓ, and thus we can represent elements of T with vectors (t1, . . . , tℓ)

where each ti ∈ k×. Let X(T ) be the set of all homomorphisms from T to k×; we call

these homomorphisms characters. A character λ, being a homomorphism from T to



k×, must map (t1, . . . , tℓ) 7→
∏ℓ

i=1 t
ai
i for some choice of exponents ai ∈ Z. Hence we can

express λ as a vector λ = (a1, . . . , aℓ) in a free Z-module of rank ℓ.

For any kG-module V and any λ ∈ X(T ), we define the subspace

Vλ := {v ∈ V | v · t = (tλ)v, for all t ∈ T}.

If λ and V are such that Vλ 6= {0}, then we call λ a weight of V , and Vλ a weight space

[10, p.214]. The multiplicity of a weight λ is the dimension of the weight space Vλ.

We form an ℓ-dimensional Euclidean space E := R ⊗Z X(T ). Every group of Lie

type G has an associated Lie algebra, which can be considered as a kG-module, and its

weights are called the roots of G [10, p.214]. These roots form a root system [14, (A.2),

p.229], which is a set of vectors Φ, and a corresponding set of reflections

σα : E → E, given by (β)σα := β − 2(β, α)

(α, α)
α,

such that

(R1) Φ is finite, 〈Φ〉 = E, and 0 6∈ Φ,

(R2) α ∈ Φ implies −α ∈ Φ, and no other multiples of α are contained in Φ,

(R3) Φσα = Φ for all α ∈ Φ, and

(R4) 〈α, β〉 ∈ Z for all α, β ∈ Φ.

We can choose a base ∆, which is a subset of Φ such that

(B1) ∆ is a basis of E, and

(B2) each root β ∈ Φ can be expressed as an integral linear combination of the elements

of ∆, such that either all coefficients are non-negative, or all are non-positive.
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Every root system has a base [14, (A.4), p.229]. We fix a base ∆ and refer to the ℓ roots

contained in ∆ as the simple roots. With ∆ fixed, we call the reflections {σα | α ∈ ∆}

the simple reflections. The simple roots are the basis for a lattice Λr := Z∆ called the

root lattice.

(Recall the roots of an apartment A defined in Section 2.3.2. These are in one-to-one

correspondence with the roots of the root system Φ associated with the building. For a

root (half-apartment) γ ∈ A, the reflection σγ fixes the wall Mγ and maps γ to opA(γ).

Similarly, the root γ ∈ E is mapped by σγ to the root −γ ∈ E.)

4.1.1 The Weyl group

The reflections σα, for α ∈ Φ, generate a group called the Weyl group:

W := 〈σα | α ∈ Φ〉.

(Recall the Weyl group of G = G2(k) from Chapter 3, which was given by N/T where N =

〈rp, rℓ, T 〉. Here, the generating reflections σ1 and σ2 correspond to the elements rpT and

rℓT in some permutation – we we will determine which way round these are in Chapter 8.

In general, a Weyl group can always be formed as a quotient of its corresponding group

of Lie type in this way.)

In fact, for any choice of base ∆, the group W is generated by just the elements

{σα | α ∈ ∆} [14, (A.5), p.229]. Each σα is a reflection and thus fixes a hyperplane

Pα ⊂ E which is perpendicular to the root α. The collection of hyperplanes {Pα | α ∈ Φ}

partitions E into Weyl chambers; they are the connected components of E \ {Pα | α ∈

Φ}. For any γ ∈ E which does not lie on any hyperplane Pα, we define C(γ) to be the

(unique) Weyl chamber containing γ.

Two points φ1 and φ2 are in the same Weyl chamber if and only if they lie on the

same side of each hyperplane Pα, or in other words if and only if (φ1, α) and (φ2, α) have
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the same sign (+/−) for each α ∈ Φ. With ∆ fixed, there is one Weyl chamber, called

the fundamental Weyl chamber, for which all the inner products are positive:

C(∆) := {γ ∈ E | (γ, α) > 0, for all α ∈ ∆}.

The Weyl group acts transitively on the set of Weyl chambers [14, (A.4), p.229].

Furthermore, the closure of the fundamental chamber C(∆), which is defined as

C(∆) := {γ ∈ E | (γ, α) ≥ 0, for all α ∈ ∆},

is a fundamental domain for the action of the Weyl group W on E; that is, it contains

exactly one point from each W -orbit [6, p.166, Theorem 2 (ii)].

Note that no simple reflection fixes any γ ∈ C(∆), since (γ, α) > 0 for all α ∈ ∆. Thus

the stabiliser of a point γ ∈ C(∆) is trivial, and its W -orbit has length |W |. However,

points in C(∆)\C(∆) do have non-trivial stabilisers, and thus have shorter orbits. Clearly,

the point 0 ∈ E is fixed by all σα and so is in a W -orbit of length 1. In between these

examples are points lying on some, but not all, of the hyperplanes {Pα | α ∈ ∆}. The

stabiliser of such a point is a parabolic subgroup of W , i.e. a subgroup generated by some

subset of the generators {σα | α ∈ ∆}.

4.1.2 Theory of weights

Let

Λ := {λ ∈ E | 2(λ, α)
(α, α)

∈ Z for all α ∈ Φ}.

(Note that the quantity 2(λ,α)
(α,α)

is often denoted 〈λ, α〉. However, we will not adopt this

convention to avoid introducing an excessive amount of notation, as it will only be used

a limited number of times in this section.)

We call Λ the weight lattice, and the elements of Λ are abstract weights. The
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connection to the weights of a kG-module V is as follows: it turns out that, for any choice

of V , if Vλ 6= {0} then 2(λ,α)
(α,α)

is an integer for all roots α [10, p.214]. Hence all weights are

in fact elements of Λ. For brevity, we will use the term weights to mean elements of Λ;

when we use the term instead to describe the weights of a particular kG-module V , we

will make this explicit.

The root lattice Λr is a sublattice of the weight lattice Λ. A weight λ is dominant

if (λ, αi) is non-negative for all 1 ≤ i ≤ ℓ, and the set of all dominant weights is denoted

Λ+. Notice that Λ+ is the set of weights which lie in C(∆).

The simple roots {α1, . . . , αℓ} form a basis of E, but we can form a dual basis

{λ1, . . . , λℓ} such that
2(λi, αj)

(αj, αj)
= δij.

From the above relation we can see that the λi are all dominant weights, since

(αj, αj) > 0 and δij ≥ 0. We call λi the fundamental dominant weights. Any

weight λ ∈ Λ can be written as λ =
∑

imiλi for some choice of coefficients mi, and λ is

dominant if and only if all mi ≥ 0.

The fundamental dominant weights generate the weight lattice Λ, on which the Weyl

group W acts. To demonstrate this, note that

λiσαj
= λi −

2(λi, αj)

(αj, αj)
αj

= λi − δijαj,

and so elements of the Weyl group map weights to weights.

For a group of Lie type defined over a field k of order q = πa, where π is a prime, we

say that a dominant weight λ is π-restricted if λ =
∑

imiλi with 0 ≤ mi ≤ π− 1 for all

1 ≤ i ≤ ℓ. Similarly, λ is q-restricted if 0 ≤ mi ≤ q − 1 for all 1 ≤ i ≤ ℓ.
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Definition 4.1.1 (α ≺ β) We define a partial order ≺ on the set of weights. Let α, β ∈

Λ. We say that α ≺ β if and only if β − α is a sum of simple roots with non-negative

integer coefficients (including the case that α = β).

The set of dominant weights forms a set of orbit representatives of the action of W on Λ

[15, p.68, Lemma 13.2A] (see also [6, p.181]):

Lemma 4.1.2 Each W -orbit of weights contains precisely one dominant weight. Fur-

thermore, if λ is the dominant weight of a W -orbit then λw ≺ λ for all w ∈ W .

Definition 4.1.3 (Saturated set of weights) Let Θ ⊂ Λ. We say that Θ is a satu-

rated set of weights if, for every weight λ ∈ Θ, we have

{
λ− iα | α ∈ Φ and 0 ≤ i ≤ 2(λ, α)

(α, α)

}
⊆ Θ.

If λ ∈ Θ and µ ≺ λ for all µ ∈ Θ then we call λ the highest weight of Θ.

A saturated set of weights is necessarily stable underW . Each reflection σα is equivalent to

subtracting 2(λ,α)
(α,α)

α from a weight λ, the resulting weight being contained in the saturated

set by definition; these reflections generate W . Humphreys gives two lemmas about

saturated sets of weights [15, p.70, Lemmas 13.3A and 13.3B] (see also [6, p.239, Ex. 23]:

Lemma 4.1.4 If Θ is a saturated set of weights with a highest weight, then Θ is finite.

Lemma 4.1.5 Suppose Θ is a saturated set of weights with highest weight λ. Then any

dominant weight µ ∈ Λ+ such that µ ≺ λ is in Θ.

With these lemmas in hand, we can completely describe a saturated set of weights pos-

sessing a highest weight.
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Theorem 4.1.6 Suppose Θ is a saturated set of weights with highest weight λ. Then Θ

consists precisely of all the weights µ ∈ Λ+ with µ ≺ λ, and the conjugates of these weights

under W .

Furthermore, the cardinality of Θ is equal to the sum of the orbit lengths of all µ ∈ Λ+

such that µ ≺ λ.

Proof. By Lemma 4.1.5, all such µ ∈ Λ+ with µ ≺ λ lie in Θ, and since Θ is closed under

the action of W , all of their conjugates do as well.

Now let µ ∈ Θ. By Lemma 4.1.2, there is some w ∈ W such that µw is dominant,

and since Θ is closed under W , we have µw ∈ Θ. But since λ is the highest weight of Θ,

we have µw ≺ λ. □

4.1.3 The Weyl module V (λ) and its unique simple quotient L(λ)

For any kG-module M , the subgroup B ≤ G stabilises some 1-dimensional subspace of M

[10, p.215]. Let v be a non-zero vector in this subspace. The subgroup T , being a subgroup

of B, also fixes the 1-space. Thus for any t = (t1, . . . , tℓ) ∈ T , we have v · t = λ(t)v for

some scalar λ(t) ∈ k. Since M is a kG-module, and therefore a kT -module, the map

t 7→ λ(t) is a homomorphism T → k×, and is therefore a character. Hence v lies in the

weight space Vλ for some weight λ = (a1, . . . , aℓ). We call v a maximal vector of weight

λ.

Suppose there exists a maximal vector v of weight λ such that M = 〈v〉G. Then we

say that M is a highest weight module, and it has highest weight λ [10, p.215]. In

this case, we find that for all other weights µ of M , we have µ ≺ λ (hence the terminology

‘highest weight’) [14, p.189, Proposition 31.2].

Consider the set of isomorphism classes of kG-modules with highest weight λ. There

is a unique irreducible module denoted L(λ) which is a quotient of all the others, and a

unique module V (λ) (the Weyl module) of which all the others are quotients [10, p.215].
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If k has characteristic 0 then the Weyl module itself is irreducible, and so W (λ) =

L(λ). However, in positive characteristic V (λ) is often not irreducible, but does always

contain a unique simple quotient L(λ) [16, p.22]. The following statement can be found

in Humphreys [16, p.17, Theorem], but is originally due to Steinberg.

Theorem 4.1.7 (Isomorphism classes of kG-modules) Each of the q-restricted dom-

inant weights λ (of which there are qℓ) gives rise to a simple kG-module L(λ). These

modules are pairwise non-isomorphic, and every simple kG-module is isomorphic to L(λ)

for some dominant, q-restricted weight λ.

Weights of the Weyl module and its irreducible quotient

Define Π(M) to be the set of all weights of M (with their multiplicities ignored). The

weights of V (λ) are of the form

µ = λ−
ℓ∑
i=1

aiαi (ai ∈ Z+).

Therefore µ ≺ λ for all µ ∈ Π(V (λ)). Conversely, the following proposition of Humphreys

tells us that, for a Weyl module V (λ), the set Π(V (λ)) is as large as it can be [16, p.22,

Section 3.2] (see also [15, p.114, Proposition 21.3]):

Proposition 4.1.8 Let λ ∈ Λ+ be a dominant weight, and V (λ) be the corresponding

Weyl module. Then Π(V (λ)) is saturated.

This allows us to find a lower bound for the dimension of V (λ), since every weight

space must have dimension at least 1 and so dimV (λ) ≥ |Π(V (λ))|. Furthermore, if

we do not know the highest weight λ of a Weyl module V (λ), but we do know another

weight µ ≺ λ, we can use µ to determine a lower bound for dimV (λ) by the following

observation:

66



Lemma 4.1.9 Let λ ∈ Λ+ and assume that µ ∈ Λ+ with µ ≺ λ. Then

Π(V (µ)) ⊆ Π(V (λ)).

Proof. Every W -orbit of weights contains precisely one dominant weight by Lemma 4.1.2.

It suffices, therefore, to show that

{γ ∈ Λ+ | γ ≺ µ} ⊆ {γ ∈ Λ+ | γ ≺ λ}.

But this is trivial since ≺ is a partial order, so γ ≺ µ implies γ ≺ λ. □

All results thus far have concerned the weights appearing in V (λ), but we are often

interested in its unique simple quotient L(λ) instead. We will make use of a result from

Premet [19] which says that (in nearly all cases) every weight of V (λ) is also a weight of

L(λ). There are conditions on the characteristic of the field k, which are dependent on

the group of Lie type in question. For G = G2(k), the theorem can be stated as follows:

Theorem 4.1.10 (Premet) Let G = G2(k), with k of order q = πa and π > 3 (π a

prime). Then for all π-restricted dominant weights, Π(V (λ)) = Π(L(λ)).

(See also [17, p.139, Theorem 4.1].) This result tells us nothing about the multiplicities

of the weights, but since every weight space has dimension at least 1, it does allow us to

form a lower bound on dimL(λ).

4.2 An example for the group SL2(k)

Let k = Fπ for π a prime and set G = SL2(k). In this situation, we have one simple root

α, and so E is 1-dimensional. We calculate the fundamental dominant weight λ using

the formula 2(λ,α)
(α,α)

= 1, giving λ = α/2. The weight lattice Λ is spanned by λ, so the

π-restricted weights are mλ where 0 ≤ m < π. Thus by Theorem 4.1.7 the number of
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isomorphism classes of irreducible kG-modules is exactly π, one for each 0 ≤ m < π. We

will calculate the weights of each of the the Weyl modules for G.

Notice that W = 〈σα〉, where σα is the map given by λ 7→ −λ. Therefore the W -orbits

of weights have length 2, except for the orbit {0} of length 1. We can see that 0 ≺ mλ

if and only if m ∈ Z+ is even (and therefore m − 0 = 2n · λ = n · α for some n ∈ Z).

Hence V (mλ) contains an odd number of weights when m is even, and an even number

of weights when m is odd.

We have that V (0) is 1-dimensional and is the trivial module, V (λ) is 2-dimensional

and is the standard SL2(k)-module, V (2λ) = V (α) has dimension 3, and, in general,

V (mλ) is irreducible of dimension m+ 1 for 0 ≤ m < π.

In these cases, for π-restricted weights, we have V (mλ) = L(mλ). (We can use the

polynomial ring construction to make such a module of each dimension — see [2, p.14-16]

for details.)

The following technical lemma will become important later on.

Lemma 4.2.1 Suppose π > 3 and k = Fπ. Let H = SL2(k) and B = NH(S) where

S ∈ Sylπ(H). Let W be a 1-dimensional kB-module and V = IndHB (W ). Assume that V

has a quotient N isomorphic to the irreducible kH-module V (λ) of dimension 2. Then

V is a non-split extension of M by N , where M ∼= V ((π − 2)λ) is the unique irreducible

kH-module of dimension π − 1.

Proof. We begin by showing that V is an indecomposable kH-module.

The index [H : B] = (π(π + 1)(π − 1))/π(π − 1) = π + 1 so a transversal {g0 =

1, g1, . . . , gπ} of the right cosets {Bg | g ∈ H} has π + 1 elements. By definition, the

induced module IndHB (W ) acts on the vector space

V =
π⊕
i=0

Wgi, (4.2.2)
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which we consider as an internal direct sum. Since dimW = 1, therefore, we have

dimV = π+1. The crucial point is that H acts transitively on the summands. Hence no

proper kH-submodule M ⊂ V can contain W , since 〈W 〉kH = V ⊃M .

Consider the natural action of H on N . We may choose S to be the Sylow π-subgroup

S = 〈( 1 α
0 1 ) | α ∈ k〉, so that B = 〈

( γ α
0 γ−1

)
| α ∈ k, γ ∈ k×〉. Then B (and hence S ≤ B)

fixes the 1-space A := 〈(0, x) | x ∈ k〉. Since only the scalar matrices of GL2(k) leave

invariant every 1-space and the matrices in S are not scalar (other than the identity),

using |S| = π we obtain that S has orbits of length 1 and π on the 1-spaces in N .

Consider the restriction V |S. Since S ≤ B, the first summand W = Wg0 is a kS-

submodule of V |S. By the above argument, S acts transitively on the remaining π sum-

mands {Wgi | 1 ≤ i ≤ π}. Therefore V |S ∼= W ⊕R where W is the trivial 1-dimensional

kS-module and R = kS is the regular representation of S.

By hypothesis, there is a kH-submodule U ⊂ V such that V/U ∼= N . We know that

W 6⊆ U since W is not contained in any proper submodule of V . Hence (W + U)/U is

a 1-dimensional subspace of V/U . As W is a kB-module, B leaves (W + U)/U invariant

and so (W + U)/U is in fact a 1-dimensional kB-submodule of V/U . By the Second

Isomorphism Theorem,

(W + U)/U ∼=kB W/(W ∩ U) = W.

Now, in the 2-dimensional module N ∼= V/U , the subgroup B acts as 〈
( γ α
0 γ−1

)
| α ∈ k, γ ∈

k×〉. There are no non-zero subspaces of N centralised by B, so B does not centralise

(W + U)/U . Hence B does not centralise W .

Now suppose that U1 is a kH-submodule of V such that V/U1 is 1-dimensional. Again

we have W 6⊆ U1, and so V ∼=kB U1 ⊕W . Thus W ∼=kB V/U1. But V/U1 is a kH-module

of dimension 1, so is centralised by H and thus by B. This implies that W is centralised
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by B, a contradiction, so there is no such submodule U1.

Next, suppose that there exists U2, a kH-submodule of V such that V/U2
∼= N ⊕X

for some kH-submodule X. Using the correspondence theorem, let X̃ ⊇ U2 and Ñ ⊇ U2

be kH-submodules of V such that X̃/U2
∼= X and Ñ/U2

∼= N . Then

dimV/X̃ = dimN = 2, (4.2.3)

and dimV/Ñ = dimX. Furthermore, dimX ≥ 2, as otherwise V/Ñ is 1-dimensional

which contradicts the non-existence of a submodule U1 above.

Furthermore, W 6⊆ X̃ since X̃ 6= V and W 6⊆ Ñ since Ñ 6= V . Now, (W + X̃)/W and

(W + Ñ)/W are both kS-modules, and in fact are kS-submodules of V/W ∼= R.

As S is cyclic, the regular kS-module R is uniserial by [2, p. 26]. This means that

for any two submodules A1, A2 ⊆ R we have either A1 ⊆ A2 or vice-versa. In addition, R

has precisely one submodule of each dimension 0 ≤ d ≤ dimR. Now,

dim(W + X̃)/W = dim X̃ ≥ dim Ñ = dim(W + Ñ)/W,

so (W + X̃)/W ⊇ (W + Ñ)/W since R is uniserial. Therefore,

W + X̃ = W + X̃ + Ñ = V.

So dimV = 1+dim X̃, implying that dimV/X̃ = 1; a contradiction since we have already

shown that dimV/X̃ = 2 in (4.2.3). Therefore no such U2 exists. In particular, V has a

unique maximal kH-submodule M .

If V is decomposable, then V ∼= A ⊕ B for some proper non-zero kH-submodules A

and B. Then, as M is the unique maximal submodule, A ⊆ M and B ⊆ M . Hence

V = A + B ⊆ M ⊂ V , a contradiction. Hence V is indecomposable and V/M ∼=kH N .
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Therefore, by [2, p.33, Lemma 5.5], we have V ∼=kH P2/Y where P2 is the principal

indecomposable kH-module with P2/Rad(P2) ∼= N and Y is a kH-submodule of P2. The

structure of P2 is described in [2, p.78]. It has dimension 2π, and Rad(P2)/Soc(P2) ∼=

C⊕D, where C is irreducible of dimension π− 1 and D is irreducible of dimension π− 3.

As dimP2 = 2π and dimV = π+1, we have dimY = π− 1. Also, Y contains Soc(P2)

which has dimension 2 by [2, p.43, Theorem 6.6]. Thus, as dimY = π − 1 = (π − 3) + 2,

we see that Y is an extension of Soc(P2) by D. It follows that M ∼= C of dimension π− 1

as claimed.
□

4.3 An example for the group G2(k)

Let k = πa for π a prime and set G = G2(k). Here, the fundamental weights are given by

λ1 = (1, 0) and λ2 = (0, 1), and the simple roots are α1 = (2,−1) and α2 = (−3, 2) [15,

p.69, Table 1]. Rearranging, we obtain λ1 = 2α1 + α2 and λ2 = 3α1 + 2α2. For brevity,

we write σ1 and σ2 instead of σα1 and σα2 .

The following example, in which we calculate the number of distinct weights appearing

in the module V (tλ2), will prove very useful later on.

Example 4.3.1 Let G be as above, and let V (tλ2) be the Weyl module of highest weight

tλ2 for G. Then

dimV (tλ2) ≥ |Π(V (tλ2))| = 1 + 6

⌊
5t

2

⌋
+ 12

t−1∑
i=1

⌊
3i

2

⌋
.

Proof. Since every Weyl group orbit on the weights in Π(V (tλ2)) has a unique dominant

weight representative by Lemma 4.1.2, to construct Π(V (tλ2)) we should calculate the

dominant weights θ ∈ Λ+ with θ ≺ tλ2.
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Write θ = mλ1 + nλ2. We have θ ≺ tλ2 if and only if

tλ2 − θ = tλ2 − (mλ1 + nλ2)

= (t− n)λ2 −mλ1

is a non-negative integer combination of α1 and α2.

Substituting the expressions for λ1 and λ2 we get

(t− n)λ2 −mλ1 = (t− n)(3α1 + 2α2)−m(2α1 + α2)

= (3(t− n)− 2m)α1 + (2(t− n)−m)α2.

So we need to determine the pairs (m,n) of non-negative integers such that

3(t− n)− 2m ≥ 0 and 2(t− n)−m ≥ 0.

Rearranging these in terms of m, we see that the the second condition is in fact redundant:

m ≤ 3

2
(t− n) and m ≤ 2(t− n).

Figure 4.1 shows the pairs satisfying this condition for t ∈ {2, 3, 4}. The weight 0,

corresponding to pair (m,n) = (0, 0) and denoted by a star on the figure, is fixed by the

Weyl group W . Therefore it is in a W -orbit of length 1 and only contributes 1 to the

cardinality of Π(V (tλ2)).

Weights of the form mλ1 or nλ2 are marked with a white dot in the figure, and are

fixed by reflections σ1 and σ2 respectively. The stabilisers of these points are parabolic

subgroups of W , and thus both have order 2 being given by 〈σ1〉 and 〈σ2〉. These weights

are therefore inW -orbits of length 6, and each contribute 6 to the cardinality of Π(V (tλ2)).
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t = 3
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m
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3

4

5

6

0 1 2 3 4

Figure 4.1: Points labelled with a star lie in a W -orbit of length 1, those labelled with a
white dot lie in an orbit of length 6, and those with a black dot lie in an orbit of length
12.
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All other weights, marked by black dots in the figure, are not fixed by either of the

simple reflections. They are therefore in W -orbits of length 12, each contributing 12 to

the cardinality of Π(V (tλ2)).

The white dots are located at {(0, n) : 1 ≤ n ≤ t} and {(m, 0) : 1 ≤ m ≤ 3t/2}, for a

total of
⌊
5t
2

⌋
dots.

The black dots consist of t− 1 columns, which have heights given (from right-to-left)

by the sequence
⌊
3i
2

⌋
= (1, 3, 4, 6, 7, . . . ). The total number of black dots is therefore

t−1∑
i=1

⌊
3i

2

⌋
.

This means that the total number of weights is given by

B
(1)
t := 1 + 6

⌊
5t

2

⌋
+ 12

t−1∑
i=1

⌊
3i

2

⌋
.

Every weight space has dimension at least 1, and so dimV (tλ2) ≥ B
(1)
t as required. □

Making use of Theorem 4.1.10, we can find a bound for the dimension of L((π−2)λ2).

Example 4.3.2 Let G = G2(k), with k of order q = πa and π > 3 (π a prime), and let

L((π − 2)λ2) be the unique simple quotient of the Weyl module for G with highest weight

(π − 2)λ2. Then

dimL((π − 2)λ2) ≥ |Π(V ((π − 2)λ2))| = 1 + 6

⌊
5(π − 2)

2

⌋
+ 12

π−3∑
i=1

⌊
3i

2

⌋
.

Proof. The weight (π − 2)λ2 is π-restricted, so we can apply Theorem 4.1.10. Thus

Π(L((π − 2)λ2)) = Π(V ((π − 2)λ2)).
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Using the bound from Example 4.3.1, and setting t = π − 2, we obtain

|Π(V ((π − 2)λ2))| = 1 + 6

⌊
5(π − 2)

2

⌋
+ 12

π−3∑
i=1

⌊
3i

2

⌋
= B

(1)
π−2.

Every weight space has dimension at least 1, and so dimL((π−2)λ2) ≥ |Π(L((π−2)λ2))|

and the result follows. □
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Chapter 5

Sheaves on Buildings

In Chapter 2 we defined a building ∆ and a group of Lie type G ≤ Aut(∆). From this

chapter going forward, we now assume in addition that G is a Chevalley group, meaning

that G has type An,Bn,Cn,Dn,G2,F4,E6,E7 or E8. This allows us to directly cite the

theorems of Ronan and Smith, who also make this restriction (although they note that

many of their results hold in more general contexts, including for the twisted finite groups

of Lie type [23, p.321, (i)]). For our main theorems later on in this thesis we will specialise

further, taking G = G2(Fq).

We can make use of the building ∆ when studying the representation theory of G.

By associating to each simplex σ ∈ ∆ a representation of its stabiliser, the parabolic

subgroup Pσ, we form a sheaf F on the building ∆. Then we can use a technique called

sheaf homology to obtain a representation of the group G. This approach was first used

by Ronan and Smith in [23], with the theory developed further in [24] and [25].

To quote Segev and Smith [26, p.493], this technique is a ‘local approach’ to group

representation theory. Using sheaf homology it is possible to construct irreducible rep-

resentations of a group G algorithmically, from known irreducible representations of the

parabolic subgroups of G [23, p.320].



Fτ

Fσ

Fρ

φρτ
φρσ

φστ

Figure 5.1: The coefficient system must satisfy φρσ ◦ φστ = φρτ for all ρ � σ � τ .

5.1 Sheaves on buildings: definition and examples
Let k = Fq be a finite field of characteristic π. Take a universal Chevalley group G defined

over k and let ∆ be the building of G, considered as a simplicial complex on which G acts

on the right.

5.1.1 Definition

The following setup and notation is all taken from Ronan and Smith [23]. We define

a coefficient system F to be a set of k-vector spaces Fσ, one associated with each

simplex σ ∈ ∆, along with a linear map φστ : Fσ → Fτ for every face-relation σ � τ in

∆. For any triple ρ � σ � τ , our maps must satisfy the relation

φρσ ◦ φστ = φρτ , (5.1.1)

as shown in Figure 5.1. By a slight abuse of notation, we also write F for the direct sum

of all the vector spaces Fσ.

We define a right G-action on F , which therefore becomes a representation of G.

Denote the image of g in this representation by g̃. We require the action to satisfy the

following property: the restriction of g̃ to some Fσ is a linear map g̃σ : Fσ → Fσg, for
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all g ∈ G and σ ∈ ∆. In other words, the action of G on the coefficient system F must

follow the action of G on the simplicial complex ∆.

Finally, we require that the maps g̃σ must commute with the connecting maps φστ , so

that this diagram commutes whenever σ � τ :

Fσ Fτ

Fσg Fτg

φστ

g̃σ g̃τ

φσg,τg

(5.1.2)

This property is called G-equivariance.

Again, following the nomenclature of Ronan and Smith [23], we will refer to such a

coefficient system F along with connecting maps φστ and associated G-action as a sheaf.

Recall from Chapter 2 the subgroups B,N, T ≤ G. Let σ ∈ ∆ and denote the stabiliser

of σ in G as Pσ. We call Pσ a parabolic subgroup; if σ is a maximal simplex (chamber)

then Pσ is a conjugate of B and we call it a minimal or rank 0 parabolic; otherwise, Pσ

is a parabolic subgroup of higher rank and contains a conjugate of B. Note that:

(i) The set of elements {g̃σ : g ∈ Pσ} form a representation of Pσ, since each g̃σ ∈

End(Fσ).

(ii) If h ∈ Pσ then (hg)∼σg = (g−1hg)∼σg ∈ End(Fσg). This is because the action of g−1

maps Fσg to Fσ, the action of h leaves Fσ invariant, and then the action of g maps

Fσ back to Fσg.

Definition 5.1.3 (Subsheaf) Suppose G is a sheaf on ∆ such that each Gσ ⊆ Fσ, and

the connecting maps ψστ of G are the restrictions of the connecting maps φστ of F , so

ψστ = φστ |Gσ . Then we say G is a subsheaf of F and write G ⊆ F . Also, we say that

G is a proper subsheaf of F if G ⊆ F and G 6= F .

Let V be some kG-module. As we will see over the next sections, we can create a

78



sheaf on ∆ by taking certain ‘compatible’ submodules of V at each simplex, and using

corresponding restrictions of the identity map id : V → V as the connecting maps.

5.1.2 The constant sheaf

Our first example is the constant sheaf denoted KV , which we define to be the sheaf

with the module V at each simplex and where each homomorphism φστ is the identity

map V → V .

The G-action on KV can be formed as follows. Fix a chamber (maximal simplex) c.

Like any maximal simplex in a building, c contains one face of each cotype. We use c

and its faces as orbit representatives; every G-orbit of simplices contains either c or one

of its faces. Suppose σ ≺ c with stabiliser Pσ. Let {g1, . . . , gr} be a set of representatives

for the right cosets of G/Pσ, and induce the module V from Pσ up to G. The induced

representation acts on the space
⊕r

i=1 V gi, so we have a copy of V for each simplex in

the orbit, and the G-action on the direct sum follows the action on the building.

We do the same for all the other faces, including c itself. Then KV is the direct sum

of the induced modules over all simplex cotypes.

5.1.3 The fixed-point sheaf

The fixed-point sheaf FV is a particular subsheaf of the constant sheaf KV , and will be

the main object of study in this thesis. In order to describe it, we need some preliminary

definitions.

Preliminary definitions and lemmas

For M a kG-module and H ≤ G, there are two vector subspaces of M which we will use

frequently.

Definition 5.1.4 (Centraliser CM(H)) Let M be a kG-module and H ≤ G. Then we
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define the centraliser

CM(H) := {v ∈M | vg = v for all g ∈ H}.

Definition 5.1.5 (Commutator [M,H]) Let M be a kG-module and H ≤ G. The

commutator [M,H] is defined as the vector span

[M,H] := 〈vg − v | v ∈M, g ∈ H〉.

Some standard theory of commutators and centralisers follows:

Lemma 5.1.6 Let M be a kG-module and U be a subspace of M . Then U is a a kG-

submodule of M if and only if [U,G] ≤ U .

Proof. Assume U is a kG-submodule of M . Let g ∈ G. Then ug ∈ U , so ug−u ∈ U , and

therefore [U,G] ≤ U .

Now assume that [U,G] ≤ U and let g ∈ G. Then w := ug−u ∈ U , so ug = u+w ∈ U.

Thus U is a kG-submodule of M . □

Lemma 5.1.7 Suppose U ≤M , H ≤ G and [U,H] = {0}. Then U ≤ CM(H).

Proof. Since [U,H] = {0}, we have ug − u = 0 for all u ∈ U, g ∈ H. Thus ug = u for all

u ∈ U, g ∈ H, and so U ≤ CM(H). □

Lemma 5.1.8 Suppose {M1, . . . ,Mn} is a set of kG-submodules of M and H ≤ G. Then

[
n∑
i=1

Mi, H

]
=

n∑
i=1

[Mi, H].
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Proof. We have

[
n∑
i=1

Mi, H

]
= 〈vh− v | v ∈

n∑
i=1

Mi, h ∈ H〉

=
n∑
i=1

〈vh− v | v ∈Mi, h ∈ H〉. □

In [28, Proposition and Corollary, p.286], Smith gives a version of the following result

which is now known as Smith’s Lemma. For our specific statement and a more con-

cise proof, in particular of the second part, see Timmesfeld [31] or Meierfrankenfeld and

Stellmacher [18, p.21, Lemma 4.1]. Recall that for X a finite group,

Oπ′
(X) := 〈Sylπ(X)〉.

In the case that L is a Levi complement in a Chevalley group G, we have that Oπ′
(L) is

a Chevalley group as well.

Lemma 5.1.9 (Smith’s Lemma) Let G be a Chevalley group over a finite field k, P

a parabolic subgroup with unipotent radical U and Levi complement L, and V a finite-

dimensional irreducible kG-module. Then the centraliser CV (U) affords an irreducible

kL-module as well as an irreducible kOπ′
(L)-module.

Furthermore, if V is the irreducible kG-module of highest weight λ : T → k×, then

CV (U) (considered as a kOπ′
(L)-module) is the unique irreducible kOπ′

(L)-module with

highest weight λ|T∩Oπ′ (L).

Definition of the fixed-point sheaf

Let V be an irreducible kG-module. Then the fixed-point sheaf FV is the subsheaf

of KV having sheaf terms given by Fσ := CV (Uσ), with connecting maps φστ given by

inclusion. We will check that FV is indeed a sheaf as per our definition.
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(i) Firstly, we need to verify that the subspace CV (Uσ) is indeed a kPσ-module, so that

g̃σ ∈ End(Fσ). By definition, CV (Uσ) is fixed pointwise by Uσ. By Smith’s Lemma

(Lemma 5.1.9), CV (Uσ) affords an irreducible kLσ-module, and is therefore also

fixed (not necessarily pointwise) by Lσ. Since Pσ = 〈Uσ, Lσ〉 we have that CV (Uσ)

is fixed by Pσ, so is a kPσ-module. Hence for g ∈ Pσ we have g̃σ ∈ End(Fσ), as

required.

(ii) Also we must check that the inclusion behaves as desired; that is, if τ ≺ σ then

Fσ ⊆ Fτ so that φστ : Fσ → Fτ given by v 7→ v makes sense. By Lemma 2.4.6,

τ ≺ σ implies that Pσ ⊆ Pτ . Then by Lemma 2.4.8, Pσ ⊆ Pτ implies that Uσ ⊇ Uτ ,

and so CV (Uσ) ⊆ CV (Uτ ) as required.

(iii) Finally, the G-equivariance property follows immediately from the fact that all the

maps φστ are just restrictions of the identity map.

In relation to the fixed-point sheaves we have defined, Smith’s Lemma tells us that if

V is an irreducible kG-module, then the kPσ-modules we have defined at each simplex

are irreducible when considered as kLσ-modules (and thus as kPσ-modules).

The following theorem of Steinberg [16, p.42, Theorem] allows us to prove a lemma

regarding the dimension of terms at chambers in a fixed-point sheaf.

Theorem 5.1.10 Suppose that G is a Chevalley group defined over k. Then k is a

splitting field for every irreducible kG-module.

When we say that k is a splitting field for an irreducible kG-module V , we mean that V

remains irreducible as a KG-module, where K is any field extension of k.

Lemma 5.1.11 Let V be an irreducible kG-module and σ ∈ ∆ be a chamber. Then

(FV )σ is an irreducible kT -module. In particular, dim(FV )σ = 1.
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Proof. The stabiliser of a chamber is a conjugate of B, and so the term (FV )σ is given

by CV (U) where U = Oπ(B). By Smith’s Lemma (Lemma 5.1.9), we have that (FV )σ is

an irreducible representation of T , the Levi complement of B.

The subgroup T is itself a Chevalley group defined over k, so k is a splitting field for

the kT -module (FV )σ by Theorem 5.1.10, and thus (FV )σ is irreducible as a KT -module

where K is the algebraic closure of k. Hence, as T is abelian, dim(FV )σ = 1 by Schur’s

Lemma. □

5.2 Sheaf morphisms
Let F and G be sheaves on ∆ with connecting maps φστ and ψστ respectively. We can

define a map m : F → G by choosing a linear map mσ : Fσ → Gσ for each σ ∈ ∆ such that

each mσ ∈ End(Fσ,Gσ). This map is called a sheaf morphism if the following diagrams

commute:
Fσ Gσ

Fσg Gσg

mσ

g̃σ g̃σ

mσg

(5.2.1)

for all g ∈ G, and
Fσ Gσ

Fτ Gτ

mσ

φστ ψστ

mτ

(5.2.2)

for all σ � τ ∈ ∆.

Since sheaf maps F → G are defined as collections of k-linear maps from each term

Fσ to Gσ, we can add them and multiply by scalars from k in the natural way. Hence we

may form a k-vector space Homk(F ,G ) consisting of all the sheaf maps from F to G .

5.2.1 Kernels and images

Let F and G be sheaves on ∆ and m : F → G be a sheaf morphism. We can define

the kernel of m, denoted Km, to be the sheaf consisting of terms ker(mσ), where the
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connecting maps and G-action are inherited from F . Similarly, we define the image Im

to consist of terms im(mσ), where connecting maps and G-action are inherited from G .

We have the usual notions of injectivity (ker(m) has a 0-dimensional vector space at

each simplex) and surjectivity (im(m) = G ); an injective and surjective sheaf morphism

is called a sheaf isomorphism.

5.3 Sheaf homology
Suppose ∆ has rank n. In the same way that we consider F as the formal direct sum

of all terms Fσ, we can define a chain complex consisting of chain spaces Cr(∆,F ),

for 0 ≤ r < n, which are the formal direct sum of terms at all simplices of dimension

r, and boundary maps between adjacent chain spaces, going from each Cr(∆,F ) into

Cr−1(∆,F ). Having done this, we we can write

F =
n⊕
r=0

Cr(∆,F ).

Thus we define C0(∆,F ) to be the formal direct sum of all terms at 0-simplices

(vertices) in ∆; define C1(∆,F ) to be the formal direct sum of all terms at 1-simplices

(edges) in ∆, and so on, until we reach Cn−1(∆,F ) which is the formal direct sum of all

terms at maximal simplices (chambers) of ∆.

To form the boundary maps, we make use of the connecting maps φστ . We modify

these slightly by choosing a sign (+/−) for each in the following manner.

Recall that each 0-simplex (vertex) in ∆ is of cotype {i} for some i ∈ {1, . . . , n}; every

1-simplex (edge) is of cotype {i0, i1} ⊆ {1, . . . , n} with i0 < i1, and so on, up to (maximal)

(n− 1)-simplices with cotype {1, . . . , n}.

In general, if a simplex σ has dimension r then its cotype has r + 1 elements; J :=

{i0, . . . , ir}. Furthermore, for each face τ ≺ σ of dimension r − 1, the cotype of τ is
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precisely the cotype of σ with one element removed: J \ {ij}. Note that σ has exactly

r + 1 such maximal faces, one corresponding to each ij. Let us denote the maximal face

corresponding to the removal of ij by τj, and define

δστj := (−1)jφστj .

Take the sum of all these r + 1 maps emanating from σ, to form a map

δσ :=
r∑
j=0

δστj .

Then, take the sum of all of these maps over every simplex of dimension r, to obtain

δr :=
∑

dimσ=r

δσ.

For 0 < r < n, this is the boundary map δr : Cr(∆,F ) → Cr−1(∆,F ). Finally, define

δ0 to be the map sending every vector to 0. We write δ for the sum of all the boundary

maps, so

δ =
n−1∑
r=0

δr

maps a vector in any chain space to a vector in the chain space below.

A chain complex must have the property δ2 = 0; that is, the composition of two

consecutive boundary maps gives the zero map. (In other words, the image of each

boundary map is in the kernel of the next one.) We need to check that the complex we

have defined has this property; it suffices to show this holds locally, so that for any v ∈ Fσ

(where dim σ = r) we have vδσδr−1 = 0.

As an example, consider some 2-simplex ρ, with 1-faces σ1, σ2 and σ3 and 0-faces τ1, τ2

and τ3, with face-relations as shown in Figure 5.2. Suppose ρ has cotype I = {1, 2, 3},

each 1-simplex σi has cotype I \ {i} and each 0-simplex τj has cotype {j}. The δ-maps
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τ3
{3}

τ2
{2}

τ1
{1}

σ1
{2, 3}

σ2
{1, 3}

σ3
{1, 2}

ρ
{1, 2, 3}

Figure 5.2: Example of simplex cotypes on a 2-simplex.

ρ→ σi σi → τj

δρσ1 = φρσ1 δσ1τ2 = φσ1τ2
δσ1τ3 = −φσ1τ3

δρσ2 = −φρσ2 δσ2τ1 = φσ2τ1
δσ2τ3 = −φσ2τ3

δρσ3 = φρσ3 δσ3τ1 = φσ3τ1
δσ3τ2 = −φσ3τ2

Table 5.1: The δ maps for Figure 5.2.
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are therefore as shown in Table 5.1. Then the restriction of the boundary map to the

simplex ρ is given by

δρ = φρσ1 ◦ (φσ1τ2 − φσ1τ3)− φρσ2 ◦ (φσ2τ1 − φσ2τ3) + φρσ3 ◦ (φσ3τ1 − φσ3τ2).

We can compose the maps using (5.1.1) to obtain

δρ = (φρτ1 − φρτ1) + (φρτ2 − φρτ2) + (φρτ3 − φρτ3) = 0,

as required.

It is not difficult to see that this works in general. For each (r − 2)-dimensional face

τ of an r-simplex ρ, there are two elements ia and ib (with a < b) in the cotype of ρ but

not of τ . We can either remove ia first, and follow the path corresponding to cotypes

J → J \ {ia} → J \ {ia, ib}; or we can remove ib first, following the path corresponding

to J → J \ {ib} → J \ {ia, ib}. Suppose the first path goes through (r − 1)-simplex

σ1 and the second through σ2. If ia and ib both have an even-numbered position in J

(indexed counting from 0), then δρσ1 has positive sign (i.e. δρσ1 = +φρσ1); but with ia

removed, ib now has odd index in the cotype of σ1, so δσ1τ has negative sign, and so does

the composition. The map δρσ2 has positive sign, and ia has even index in the cotype of

σ2 (since ib > ia so the order is unaffected), so this composition has positive sign. Thus

the compositions sum to the zero map.

The other three parity cases can be computed similarly and all result in zero maps,

which is a nice exercise.

Satisfied that δ2 = 0, we are now able to define the cycles Zr(∆,F ) := ker(δr) and

boundaries Br(∆,F ) := im(δr+1), and the homology spaces which are the quotients

Hr(∆,F ) := Zr(∆,F )/Br(∆,F ).
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Note that each g ∈ G acts on the simplicial complex whilst preserving simplex cotype,

and hence rank. Thus Cr(∆,F ) · g = Cr(∆,F ) for all g ∈ G and 0 ≤ r < n. Since

the G-action commutes with each φστ , it must also commute with the boundary maps

δr. Hence the kernels Zr(∆,F ), images Br(∆,F ) and homology spaces Hr(∆,F ) are all

stabilised by G, which implies that they are all kG-modules.

Notation: Where the building ∆ in question is clear, we may omit it from the notation

and simply write H0(F ), for example.

5.3.1 Results of Ronan and Smith

We now present some key results of Ronan and Smith. The following lemma is one of the

most fundamental results about sheaf homology on ∆.

Lemma 5.3.1 Let V be some kG-module. Then H0(KV ) ∼= V .

Proof. See [23, p.324, Lemma 1.1]. □

The rest of the results we present are working towards the following theorem ([23,

p.331, Theorem 2.3]) which will be crucial later on in this thesis.

Theorem 5.3.2 Suppose V is an irreducible kG-module. Then H := H0(FV ) contains

a unique maximal kG-submodule K, and we have H/K ∼= V . In particular, H is inde-

composable.

We require three intermediate results before we are able to prove Theorem 5.3.2. Recall the

Frobenius-Nakayama formula, relating the operations of module induction and restriction:

if H ≤ G, for any kH-module M and any kG-module N , we have

HomkG

(
N, IndGH(M)

) ∼= HomkH

(
ResGH(N),M

)
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[3, p.60]. Theorem 5.3.3, due to Ronan and Smith [23, p.325, Theorem 1.2], is an analogue

of this correspondence. In place of induction, we use the operation of forming the constant

sheaf KW from a module W . Taking the place of restriction we have H0.

Theorem 5.3.3 Let W be a kG-module, KW be the constant sheaf of W on ∆, and F

be an arbitrary sheaf on ∆. Then Hom (F ,KW ) ∼=k Hom (H0(F ),W ).

Proof. We begin by defining a map φσ : Fσ → H0(F ) for each simplex σ ∈ ∆. If σ is

a vertex, then we define φσ to be the restriction to Fσ of the natural map φ : C0(F ) →

H0(F ). If σ is not a vertex, we choose any of its vertices (0-faces) τ and compose φτ

through the connecting map φστ .

This map is well-defined because the choice of τ does not matter: if τ ′ is another

vertex of σ then there is an edge (1-simplex) e connecting τ with τ ′, since they are both

faces of σ. The map φ has kernel B0(F ), and the image of δe is contained in B0(F ), so

δe ◦ φ = 0. Recall that δe = ±(φeτ − φeτ ′), the sign depending on the respective cotypes

of τ and τ ′. In either case we obtain φeτ ◦ φτ = φeτ ′ ◦ φτ ′ , and so

φστ ◦ φτ = φσe ◦ (φeτ ◦ φτ )

= φσe ◦ (φeτ ′ ◦ φτ ′)

= φστ ′ ◦ φτ ′ .

Hence we may set φσ := φστ ◦ φτ , and this is well-defined. These maps have two nice

properties.

(i) Firstly, if ρ � σ then we have φρσ◦φσ = φρ. If σ is a vertex then this is by definition,

so assume not. Then there is a vertex τ such that ρ � σ � τ , and

φρ = φρτ ◦ φτ = (φρσ ◦ φστ ) ◦ φτ = φρσ ◦ φσ,
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as required.

(ii) Secondly, for any g ∈ G and any σ ∈ ∆, we have g ◦ φσg = φσ ◦ g. This is due

to the G-equivariance (see Diagram 5.1.2) of the connecting maps and hence of the

homology spaces.

With this notation in hand, we can prove the theorem. We will begin by taking an

arbitrary kG-module homomorphism α : H0(F ) → W and using it form a sheaf morphism

α : F → KW . For each σ ∈ ∆, set ασ = φσ◦α. Since the mapping from α to α is k-linear,

it just remains to check the two conditions for a sheaf morphism from Section 5.2. The

first condition, that α commutes with G (Diagram 5.2.1) is satisfied by property (ii) of

the φσ maps above. The second condition, that α commutes with the connecting maps

φστ (Diagram 5.2.2) follows due to property (i) above.

Going in the other direction, we will start with an arbitrary sheaf morphism β : F →

KW , and use it to form a kG-module homomorphism β̂ : H0(F ) → W. Note that for

σ ∈ ∆, the restriction βσ is a kG-module homomorphism Fσ → W . Hence any v ∈ Fτ

where τ is a vertex we define (v)β̂ := (v)βτ . This is in fact a map from C0(F ) to W , but

it is easy to check that it vanishes on B0(F ). Consider an edge e and v ∈ Fe; we have

(v)δe ◦ β̂ = (v)φeτ ◦ βτ − (v)φeτ ′ ◦ βτ ′ = (v)βe − (v)βe = 0,

and so (B0(F )) β̂ = 0 as required. Clearly β̂ is k-linear, and for a vertex σ, a vector

v ∈ Fσ, and any g ∈ G we have

(v)gβ̂ = (v)gβσg = (v)βσg = (v)β̂g,

so β̂ : H0(F ) → W is a kG-module homomorphism as required.

That α̂ = α and β̂ = β follows from their definitions, which completes the proof. □
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The following definitions are also due to Ronan and Smith [23, p.323-324].

Definition 5.3.4 (Chamber-generated sheaf) Recall that a chamber σ is a maximal

simplex of ∆. We say that a sheaf F is chamber-generated if, for any simplex τ ∈ ∆,

we have

Fτ =
∑

σ a chamber
σ≻τ

(Fσ)φστ .

Definition 5.3.5 (Irreducible sheaf) Suppose F is a chamber-generated sheaf. We

say that F is irreducible if it does not contain a non-zero, proper, chamber-generated

subsheaf.

The next two results appear as Theorem 2.1 and Lemma 2.2 in Ronan and Smith [23,

p.330].

Theorem 5.3.6 Suppose V is an irreducible kG-module. Then FV is an irreducible

sheaf.

Proof. Let F = FV . We begin by showing that F is chamber generated. This is

equivalent to showing that ∑
σ∈∆

σ a chamber

CV (Uσ) = V.

Indeed, let σ be a chamber of ∆. Then σg is a chamber of ∆ and CV (Uσ)g = CV (Uσg).

Hence this sum is G-invariant. Since V is irreducible, and CV (Uσ) 6= {0}, the sum is equal

to V .

Now suppose G ⊆ F with G a non-zero, chamber-generated sheaf. Let τ ∈ ∆ with

stabiliser Pτ = 〈Uτ , Lτ 〉. By Lemma 5.1.9, each module Fτ = CV (Uτ ) is an irreducible

kLτ -module, and therefore is also irreducible as a kPτ -module because Lτ ≤ Pτ . Since

G ⊆ F then Gτ ⊆ Fτ , and so Gτ ∈ {Fτ , 0}.
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Suppose that Gσ = 0 for some chamber (maximal simplex) σ ∈ ∆. Then all chambers

have a 0-dimensional module in G , since they all lie in the same orbit under G. Therefore

for any τ ∈ ∆, we have ∑
σ a chamber

σ≻τ

(Gσ)φστ = 0,

so since G is chamber-generated, all coefficients Gτ are 0. But this means that G is the

zero sheaf, a contradiction to the choice of G .

Now suppose that Gτ = 0 for some (non-maximal) simplex σ ∈ ∆. We know that

Gσ ⊆ Gτ for all τ ≺ σ, because the connecting maps are restrictions of the identity map

inherited from FV , and they could not be defined otherwise. So therefore Gσ = 0 for

any σ � τ , which includes at least one chamber. Thus all chambers have 0-dimensional

modules in G and we reach the same contradiction as before. So we must have G = F ,

and so F is irreducible. □

Lemma 5.3.7 Suppose V and W are irreducible kG-modules and FV
∼= FW . Then

V ∼= W .

Proof. Both V and W are irreducible kG-modules, so they each correspond to a q-

restricted weight λv and λw. Suppose for a contradiction that V are W are not isomorphic;

then λv 6= λw by Theorem 4.1.7.

Suppose that G has simple roots {α1, . . . , αn}. Now, if we let λv =
∑n

i=1 βiλi and

λw =
∑n

i=1 γiλi then there is some 1 ≤ i ≤ n such that βi 6= γi.

Recall that Pi = 〈Ui, Li〉 is a parabolic subgroup stabilising an i-panel of ∆. By

Lemma 5.1.9, the module (FV )σ = CV (Uσ) is the irreducible kLi-module with weight βi,

and the module (FW )σ = CW (Uσ) is the irreducible kLi-module with weight γi. Since

βi 6= γi, these irreducible kLi modules cannot be isomorphic. But by assumption, since

the sheaves are isomorphic, we have (FV )σ ∼= (FW )σ, a contradiction. □
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With these results in hand, we are now able to prove Theorem 5.3.2, which we restate

below for convenience.

Theorem Suppose V is an irreducible kG-module. Then H := H0(FV ) contains a

unique maximal kG-submodule K, and we have H/K ∼= V . In particular, H is indecom-

posable.

Proof. Let W 6= 0 be an irreducible quotient of H0(FV ) by some maximal submodule X,

so we have a surjective kG-homomorphism α : H0(FV ) → W . Using the procedure from

the proof of Theorem 5.3.3, we form the associated sheaf morphism α : FV → KW .

Now, fix a simplex σ ∈ ∆ with stabiliser Pσ = 〈Uσ, Lσ〉, and let g ∈ Uσ so that vg̃ = v

for all v ∈ (FV )σ, and σg = σ. By Diagram 5.2.2, we have that vασg̃ must be equal

to vg̃ασg = vασ; and so in fact im(α) must lie in FW , since each vασ is fixed by all

{g̃ | g ∈ Uσ}. So we have α : FV → FW , where FW is a quotient of FV .

By Theorem 5.3.6, the fact that W is irreducible implies that FW is an irreducible

sheaf, so im(α) is either FW or the zero sheaf. But since the image of α is non-zero, the

image of α is non-zero by construction, and so im(α) = FW and hence α : FV → FW is

surjective.

Next we want to show that the kernel of α is the zero sheaf. This follows from the

fact that FV and FW are irreducible sheaves; they are both chamber-generated, so kerα

must be a chamber-generated subsheaf of FV , and thus equal to either the zero sheaf or

FV itself. But if kerα = FV then α is not surjective, a contradiction. So kerα = {0}.

Therefore α is an isomorphism and so FV
∼= FW . Thus by Lemma 5.3.7 we have

V ∼= W . So any non-zero irreducible quotient of H0(FV ) is isomorphic to V itself. It

remains to show that the choice of maximal submodule X ⊂ H0(FV ) is unique.

The terms of FV at chambers are 1-dimensional by Lemma 5.1.11, and so EndkPσ((FV )σ)

is 1-dimensional for any chamber σ. But byG-equivariance, this implies that Endk(Cn−1(FV ))
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is 1-dimensional. Then since FV is chamber-generated we have that Endk(FV ) is 1-

dimensional as well.

The proof above that a sheaf map from FV → KW has FW as its image also holds for

maps FV → KV ; hence Homk(FV ,KV ) = Endk(FV ) is 1-dimensional. Thus by Theo-

rem 5.3.3, Homk(H0(FV ), V ) is 1-dimensional, and therefore the maximal kG-submodule

X is unique. □

A consequence of Theorem 5.3.2 is that it facilitates a recursive construction of any

irreducible kG-module V from modules for the parabolic subgroups, without prior knowl-

edge of V itself [23, p.320]. By Smith’s Lemma (Lemma 5.1.9), the sheaf terms (FV )σ are

all irreducible — therefore we can enumerate all possible sheaves, since there are a finite

number of choices for each simplex type. An algorithm for obtaining V from H0(∆,FV )

is given in [23, p.334, Algorithm 3.2]. It is preceded by a discussion on how the connecting

maps φστ may be formed without prior knowledge of V .
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Chapter 6

Sheaves on the Building of G2(k)

Having introduced the group G2(k) and its associated building (the generalised hexagon)

in Chapter 3, and sheaves on buildings in Chapter 5, we can now turn our attention to

the specific problem at hand. The fixed-point sheaf FC on the building of G2(k), where

C is the Cayley module, is investigated by Ronan and Smith in [23, Example 3.3] and by

Segev and Smith in [26]. Their results and discussions are summarised below.

Using computer calculation, Ronan and Smith provide dimension data for H0(FC)

over fields of order q = 2, 3. Using the computer algebra system Magma we have com-

puted data for finite fields of order up to 11.

6.1 Data for some small fields
Uniquely in characteristic 2, the module C is not irreducible but contains a 1-dimensional

irreducible submodule X. Taking instead the irreducible 6-dimensional quotient C/X,

the dimension of H0(FC/X) for the field k = F2 was calculated by Ronan and Smith to

be 14 [23, p.335, Section (3.3)]. For k = F3, the 7-dimensional module C is irreducible.

In this case, Ronan and Smith also obtained dimH0(FC) = 14.

Using the computer algebra system Magma [5], results for some larger fields were

obtained which are displayed in Table 6.1.



q = |k| V dimV dimH0(FV )

2 C/X 6 14

3 C 7 14
9 C 7 14

5 C 7 7

7 C 7 7

11 C 7 7

Table 6.1: Dimensions of H0(FV ) for some small fields, all calculated using Magma
except for q = 2 which is from Ronan and Smith [23, p.335, Section (3.3)].

Segev and Smith note that, in the calculated examples available to them (i.e. for

q = 2, 3), we have dimH0(FC) > q — but that ‘if [this] holds in general, the situation

would run counter to the intuition of many geometers’ [26, p.497]. Indeed, the calculations

for q = 7 and q = 11 have demonstrated that dimH0(FC) > q does not hold in general.

Table 6.1 hints at a possible conjecture: that dimH0(FC) = 7 if π > 3 (where q = πa).

With this in mind, we introduce the following standing assumption:

Assumption 6.1.1 The order of k is q = πa for some π > 3.

6.2 Setting up notation
Denote C0 := C0(FC) = Z0(FC) and H := H0(FC). The module H is defined as a

quotient of C0, and by Theorem 5.3.2 we know that C is a quotient of H. Hence we have

a sequence of kG-modules with natural maps between them given by

C0
α−→ H

θ−→ C.

We will use the following notational convention. Subspaces of C0 will be written with

an underline , and subspaces of the Cayley module C with an overline . Thus we will
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write, for example, (X)α = X and (X)θ = X.

6.2.1 Subspaces of C0, H and C

Recall that C0 is the direct sum of the subspaces corresponding to points and lines of the

geometry. For a point p in the geometry, denote by Cp the subspace of C0 corresponding

to p, so Cp := (FC)p. Now, the sheaf term corresponding to p is given by

(FC)p = CC(Up),

where Gp = 〈Up, Lp〉 is a Levi decomposition of the point stabiliser of p.

Let us compute the dimension of Cp, which is independent of the choice of p. Without

loss of generality, therefore, we may take p = p = 〈1〉. As calculated in Chapter 3, we

have Up = 〈A(λ), . . . , D(λ), F (λ) | λ ∈ k〉. Inspecting the matrices of these generators,

we see that they fix pointwise only the 1-space 〈1〉 and so dimCp = dim(FC)p = 1.

Similarly, in FC we have a sheaf term associated to the line ℓ, given by

(FC)ℓ = CC(Uℓ),

where Gℓ = 〈Uℓ, Lℓ〉. Without loss of generality, take ℓ = ℓ = 〈1, 2〉. Again we have

already calculated Uℓ = 〈A(λ), . . . , E(λ) | λ ∈ k〉, which fixes the 2-space 〈1, 2〉 pointwise

and so dim(FC)ℓ = 2. We define Cℓ as the subspace of C0 spanned by not only the sheaf

term at ℓ, but also the sheaf terms corresponding to all q + 1 points p ∈ ℓ. Thus

Cℓ := 〈(FC)ℓ, (FC)p | p ∈ ℓ〉

and dimCℓ = q + 3.

Recall the subspaces Cp, Cℓ, Dp, Eℓ, Fp ≤ C we introduced in Definition 3.3.30, and
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the associated balls in the graph Γ centred at p or ℓ. Let us define equivalent subspaces

of C0 and H:

Definition 6.2.1 Let p be a point and ℓ be a line. Define

Dp := 〈Cℓ | ℓ 3 p〉,

Eℓ := 〈Dp | p ∈ ℓ〉, and

Fp := 〈Eℓ | ℓ 3 p〉.

The images under the natural map α : C0 → H of Cp, Cℓ, and the spaces defined above

are denoted Cp, Cℓ, Dp, Eℓ and Fp respectively.

Because of the transitivity of G on the points and lines of Γ , the dimensions of these

subspaces are independent of the choice of p or ℓ. Indeed, for any p ∈ P or ℓ ∈ L, and

any g ∈ G, we have Xpg = Xpg and Yℓg = Yℓg for X ∈ {C,D, F} and Y ∈ {C,E}.

Recall that we have the map θ : H → C from Theorem 5.3.2. It follows from the

definition of θ that θ(Cp) = Cp, so we have a sequence of surjective maps

Cp
α−→ Cp

θ−→ Cp.

We showed above that dimCp = dimCp = 1 by definition, which therefore forces dimCp =

1. Thus (α ◦ θ) |Cp is an isomorphism.

The situation for Cℓ is a little more complex. Again from the definition of θ we have

that θ(Cℓ) = Cℓ, so we have a sequence of surjections

Cℓ
α−→ Cℓ

θ−→ Cℓ.

We have shown that dimCℓ = q + 3 and dimCℓ = 2, so we have 2 ≤ dimCℓ ≤ q + 3. For
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all p ∈ ℓ we have a 1-simplex (p, ℓ) with boundary map δ(p,ℓ) = ±
(
φ(p,ℓ),p − φ(p,ℓ),ℓ

)
from

(FC)(p,ℓ) into C0(FC). Lemma 5.1.11 tells us that the term (FC)(p,ℓ) is 1-dimensional,

and is therefore isomorphic to the term (FC)p with the map φ(p,ℓ),p being the identity; the

map φ(p,ℓ),ℓ is the embedding of this 1-space into the 2-space (FC)ℓ. Therefore when we

take the quotient H = C0(FC)/B0(FC), each 1-space Cp corresponding to a point p ∈ ℓ

is identified with part of the 2-space Cℓ, and so dimCℓ = 2.

This leads us to the following lemmas:

Lemma 6.2.2 H = 〈Cℓ | ℓ ∈ L〉.

Proof. By the argument above, each point space Cp is identified with a 1-dimensional

subspace of Cℓ for each ℓ 3 p. So H = 〈Cp, Cℓ | p ∈ P, ℓ ∈ L〉 = 〈Cℓ | ℓ ∈ L〉. □

Lemma 6.2.3 H = 〈Cp | p ∈ P 〉.

Proof. For any ℓ ∈ L, we have Cℓ = 〈Cp | p ∈ ℓ〉. So 〈Cp | p ∈ P 〉 = 〈Cℓ | ℓ ∈ L〉 = H by

Lemma 6.2.2. □

The spaces Dp, Eℓ and Fp are spanned by copies of Cx corresponding to points and

lines in a ball centred at p or ℓ, so the above arguments also imply that θ(Dp) = Dp,

θ(Eℓ) = Eℓ and θ(Fp) = Fp.

Calculating the dimension of Dp is rather more difficult. We have dimDp = 3, so

this is a lower bound on dimDp. By the argument above, we can ignore the dimension

contribution of the point spaces Cp, as they are identified with parts of the line spaces

Cℓ. Furthermore, all q + 1 of the 2-spaces {Cℓ | l 3 p} intersect in the 1-space Cp, so

dimDp ⩽ 1 + (q + 1) = q + 2.

Segev and Smith comment without proof that, over a prime field, the dimension of

Dp is either 3 or q + 2 [26, p.497]. We prove this here.

99



Lemma 6.2.4 Suppose that k is a prime field, so q = π. Then dimDp ∈ {3, π + 2}.

Furthermore, if dimDp = π + 2 then Dp/Cp is a non-split extension of the natural 2-

dimensional module for SL2(k) by a π−1-dimensional module isomorphic to V ((π−2)λ),

where λ is the fundamental weight for SL2(k).

Proof. Since G is transitive on points, it is sufficient to consider the case p = p. From

Lemma 3.3.37 we have that Gp = 〈Up, Lp〉 acts on the 2-space Dp/Cp as GL2(k), with

Up fixing every vector in the 2-space and Lp = 〈T, rp, E(λ) | λ ∈ k〉 ∼= GL2(k).

Set H := 〈E(λ), E(λ)rp | λ ∈ k〉. Notice that S := 〈E(λ) | λ ∈ k〉 is a Sy-

low π-subgroup of Lp, and any two distinct Sylow π-subgroups of GL2(k) generate

SL2(k). Therefore H ∼= SL2(k). Now S is also a Sylow π-subgroup of H, and NH(S) =

〈T2(µ), E(λ) | µ ∈ k×, λ ∈ k〉 which has order π(π − 1). Thus we may regard Dp/Cp as a

k SL2(k)-module.

Notice that NH(S) leaves invariant the line ℓ = 〈1, 2〉, so on restriction to NH(S), the

module Dp/Cp certainly contains the 1-dimensional kNH(S)-submodule W := Cℓ/Cp.

Hence, as a kH-module, Dp/Cp is a quotient of the induced module V := IndHNH(S)(W ).

This induced module has a 2-dimensional irreducible quotient Dp/Cp, so we can apply

Lemma 4.2.1 to conclude that V is a non-split extension of M by Dp/Cp, where M is the

unique irreducible kH-module of dimension π − 1 = q − 1.

This leaves us with two possibilities: either dimDp/Cp = 2, or dimDp/Cp = 2+ (q−

1) = q+1. Since Cp is 1-dimensional, we therefore have dimDp ∈ {3, q+2} as required.□

6.3 Segev and Smith’s Theorem
The main result of Segev and Smith is as follows [26, Theorem on p.495].

Theorem 6.3.1 Suppose π > 2. Let M be a submodule of H, and V the quotient

V = H/M . If dim(Dp +M)/M = 3, then dimV = 7, and therefore V ∼= C.
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We may take M = 0, and so dimDp = 3 implies that H ∼= C.

Corollary 6.3.2 Suppose M ≤ H such that dim(Dp +M)/M = 3. Then M = ker θ.

Proof. Since dim(Dp + M)/M = 3, then by Theorem 6.3.1 we have H/M ∼= C. But

by Theorem 5.3.2, H contains a unique maximal submodule K and H/K ∼= C. Thus

M = K = ker θ. □

For the remainder of the thesis we make the following standing assumption, and at-

tempt to arrive at a contradiction:

Assumption 6.3.3 H 6∼= C.

This immediately gives us some further information. Let K be the maximal submodule

of H.

Corollary 6.3.4 K is non-zero.

Proof. The module H maps onto C via the map θ, and since H 6∼= C by Assumption 6.3.3

there must be a non-zero kernel ker θ ≤ H. Furthermore, C ∼= H/ ker θ is irreducible since

π > 3 by Assumption 6.1.1, so K = ker θ. □

Corollary 6.3.5 We have dimH = dimK + 7.

Proof. This follows immediately from the fact that K = ker θ, where θ : H → C is

surjective, and dimC = 7. □

Corollary 6.3.6 Suppose k is a prime field, so that q = π. Then the dimension of Dp is

q + 2.

Proof. By Lemma 6.2.4 we have dimDp ∈ {3, q + 2} if q = π. But by Theorem 6.3.1,

dimDp = 3 implies H ∼= C, contradicting Assumption 6.3.3. Therefore dimDp = q+2.□
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Chapter 7

Restriction to the Prime Subfield

Since Lemma 6.2.4, and therefore Corollary 6.3.6, only hold for prime fields, we will need

an alternative method to deal with other finite fields k. In this chapter we develop some

theory to achieve this, working towards a proof that if H ∼= C over a prime field k0 of

order π, then in fact H ∼= C over any finite field k of order q = πa.

Lemma 7.0.1 Suppose that ℓ1, ℓ2, ℓ3 are three distinct lines of ∆ all containing a point

p. If Cℓ3 ≤ Cℓ1 + Cℓ2, then dimDp = 3 and dimH = 7.

Proof. We have Cℓ1 + Cℓ2 ≤ Dp and dim(Cℓ1 + Cℓ2) = 3. Hence Cℓ1 + Cℓ2 = Cℓ1 + Cℓ3 =

Cℓ2 +Cℓ3 . Let ℓ4 be a line containing p. Then, by Lemma 3.3.37, there exists x ∈ Gp such

that ℓ1x = ℓ1, ℓ2x = ℓ2 and ℓ3x = ℓ4. But then Cℓ1 + Cℓ2 is x-invariant, and Cℓ3x = Cℓ4

from which we deduce that Cℓ4 ≤ Cℓ1 + Cℓ2 . Therefore Dp = Cℓ1 + Cℓ2 as claimed. That

dimH = 7 now follows from Theorem 6.3.1. □

If k0 is a subfield of k, then G2(k0) is a subgroup of G2(k). Furthermore, considered

as a simplicial complex, the building ∆0 of G2(k0) is a subcomplex of the building ∆ of

G2(k) [1, p.194]. This motivates the following definitions:

Definition 7.0.2 (Subfield building) Suppose G is a group of Lie type defined over a

finite field k with building ∆, and k0 is a subfield of k. Let G0 ≤ G be the subgroup of



G defined over k0 instead of k. The subfield building ∆0 of G0 is the building of G0,

considered as a subcomplex of ∆.

Definition 7.0.3 (Restricted sheaf F 0) Let G be a group of Lie type defined over a

finite field k, let ∆ be the building of G, and suppose that F is a sheaf on ∆ defined over

k. Let k0 be a subfield of k with corresponding subfield building ∆0 ⊆ ∆. We define the

restricted sheaf F 0 to be the sheaf on the subfield building ∆0 for which F 0
σ := Fσ for

all σ ∈ ∆0, with connecting maps φστ inherited from F .

Notice that, whilst the building ∆0 is a geometry for a group defined over k0, the restricted

sheaf F 0 is defined over k.

Lemma 7.0.4 Assume that ∆0 is a subfield building of ∆, and let F 0 be the restricted

sheaf on ∆0 of the ∆-sheaf FC. Denote H = H0(∆,FC). Then J := 〈Cp, Cℓ | p, ℓ ∈

∆0〉 ≤ H is a quotient of H0(∆
0,F 0).

Proof. We regard C0(∆
0,F 0) as a subspace of the chain space C0(∆,FC), and C1(∆

0,F 0)

as a subspace of C1(∆,FC). Then the boundary map δ01 : C1(∆
0,F 0) → C0(∆

0,F 0) is

just the restriction to ∆0 of the boundary map δ1 : C1(∆,FC) → C0(∆,FC), since

the connecting maps φστ are inherited, and the cotypes of the simplices (corresponding

to their designation as a point or a line) are unchanged in the restricted sheaf. Hence

B0(∆
0,F 0) = Im(δ01) ≤ Im(δ1) = B0(∆,FC). Therefore, B0(∆

0,F 0) ≤ C0(∆
0,F 0) ∩

B0(∆,FC) and consequently

J =
(
C0(∆

0,F 0) + B0(∆,FC)
)
/B0(∆,FC)

∼= C0(∆
0,F 0)/

(
C0(∆

0,F 0) ∩B0(∆,FC)
)

is a quotient of C0(∆
0,F 0)/B0(∆

0,F 0) = H0(∆
0,F 0). □

We can now state and prove the main result of this chapter.
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Proposition 7.0.5 Let ∆0 be the subfield building in ∆ corresponding to the subfield

k0 = Fπ of k. Let G 0 be the fixed-point sheaf of ∆0 corresponding to the Cayley module C

defined over k0. If H0(∆
0,G 0) is irreducible of dimension 7, then H = H0(∆,FC)

∼=k C.

Proof. Assume that H0(∆
0,G 0) is irreducible of dimension 7.

Let F 0 be the restriction of the sheaf FC to the subfield building ∆0. By [24,

p.152], F 0 is isomorphic to the sheaf constructed as follows. For each σ ∈ ∆0 set

F 0
σ := G 0

σ ⊗ k. The connecting maps are tensored similarly (see the discussion in [24,

p.152]). Then by [24, p.152, Theorem A2 (ii)], we have H0(∆
0,F 0) ∼=k H0(∆

0,G 0) ⊗ k.

Hence dimH0(∆
0,F 0) = 7 and so H0(∆

0,F 0) is irreducible as π > 2.

By Lemma 7.0.4, setting J = 〈Cp, Cℓ | p, ℓ ∈ ∆0〉 ≤ H, we have that J is a quotient

of H0(∆
0,F 0). Thus dim J ≤ 7, and since J 6= 0 and H0(∆

0,F 0) is irreducible, we have

dim J = 7.

Let p ∈ ∆0 and let L = {ℓ | ℓ ∈ ∆0 with ℓ 3 p} be the set of lines in ∆0 which are

neighbours in ∆0 of p. Then |L| = π + 1 ≥ 3 and D := 〈Cℓ | ℓ ∈ L〉 ≤ J ∩ Dp with

dimD = 3 as dim J = 7. In particular, for ℓ1, ℓ2, ℓ3 ∈ L distinct lines we have

D = Cℓ1 + Cℓ2 ≥ Cℓ3 .

Applying Lemma 7.0.1 yields dimH = 7 and concludes the proof. □

The major consequence of Proposition 7.0.5 is that to prove our main theorem and to

prove the Segev-Smith speculation in general, it suffices to prove it for buildings defined

over Fπ and for Fπ-sheaves.

We can apply this immediately with some of the results which we have computed:

Theorem 7.0.6 Suppose that q is a finite field of characteristic 5, 7 or 11. Then

H0(FC)
∼= C.
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Proof. We have computed dimH0(FC) = 7 in the cases q = 5, 7, 11 (see Table 6.1). Then

by Proposition 7.0.5, this suffices to show that H0(FC)
∼= C for any finite field k = Fq,

where q = πa and π ∈ {5, 7, 11}. □
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Chapter 8

A Lower Bound on the Dimension

of H

The main consequence of Proposition 7.0.5 is that, for the proof of our main theorems, it

suffices to consider only the prime field case. This assumption allows us to apply certain

results from the theory of weights, as any weight we encounter will automatically be

π-restricted. Throughout this chapter, therefore, we assume that q = π and k = Fπ.

In this chapter, we intend to recognise a certain submodule of H using the theory of

weights. For G2(k), following the standard notation established in Section 4.3, we have

two fundamental weights, λ1 and λ2, and these are fixed respectively by the reflections σ1

and σ2 in the Weyl group. For π > 3 we know that the Cayley module C is irreducible

of dimension 7. Therefore we can use Table 2 from [15, p.124], which shows the weight

multiplicities of each highest weight kG2(k)-module V (λ), in order to deduce that C ∼=

V (λ1).2

In our construction of G, the Weyl group is given by W = N/T where N = 〈rp, rℓ, T 〉.
2The table row corresponding to the weight λ1 is labelled ‘10’. It shows that V (λ1) contains weights 0

(orbit length 1) with multiplicity 1, and λ1 (orbit length 6) with multiplicity 1, and thus has dimension
7. Here we have also used Premet’s result (Theorem 4.1.10) which allows us to deduce dimL(λ1) = 7.
By contrast, the table row corresponding to the weight λ2 shows that V (λ2) contains weights 0 (with
multiplicity 2), λ1 and λ2, and thus has dimension at least 14. Then Premet’s result shows that 13 ≤
dimL(λ2) ≤ 14.



The two generators σ1 and σ2 thus correspond to the involutions rpT and rℓT ; the only

problem is that we don’t yet know which way round they go. That is, we need to orient

our choice of ‘points’ and ‘lines’ with our simple reflections σ1 and σ2.

This is relatively straightforward. Since C ∼= V (λ1) = V (1 · λ1 + 0 · λ2), by Smith’s

Lemma (Lemma 5.1.9) the coefficient of FC at a σ1-panel is isomorphic to the SL2(q)-

module V (λ) of dimension 2, and the coefficient at a σ2-panel is isomorphic to the SL2(q)-

module V (0) of dimension 1. (Here, λ is the fundamental dominant weight of SL2(q).)

Since Gp leaves the 1-space Cp invariant, and Gℓ acts irreducibly on Cℓ which has dimen-

sion 2, we see that 〈rℓ, T 〉/T corresponds to σ1, and 〈rp, T 〉/T corresponds to σ2.

Recall that θ : H → C is the natural map from H onto the Cayley module C,

and K := ker θ. Let Y be a maximal proper kG-submodule of K, so that K/Y is an

irreducible kG-module. We will attempt to find a lower bound on the dimension of H by

calculating (partially) the highest weight of the module K/Y . To achieve this we shall

identify CK/Y (Up) as a kOπ′
(Lp)-module, thus finding the contribution of λ2 in the weight

of K/Y . Finally, we find a lower bound on the dimension of such a module.

8.1 Calculating the highest weight of K/Y
Fix a line ℓ ∈ L and a point p ∈ ℓ. Consider the restriction of θ to the subspace Dp and

denote Kp := K ∩Dp.

Lemma 8.1.1 dimKp = π − 1.

Proof. By Lemma 3.3.31, the image Dp has dimension 3. But by Corollary 6.3.6 (due to

Assumption 6.3.3), we have dimDp = π + 2. Thus dimKp = π − 1. □

Lemma 8.1.2 Let r 3 p, and U = 〈Up, Ur〉 be the unipotent radical of the minimal

parabolic fixing the chamber (p, r). Then [Cr, U ] = [Cr, Up] = Cp.
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Proof. Transitivity of G on chambers (p, r) follows as an immediate consequence of

Lemma 3.3.12 (arc transitivity), so we may take p = p and r = ℓ here without loss

of generality. We can then consider the action of Uℓ and Up on the 2-space Cℓ. We note

that Uℓ fixes Cℓ pointwise, whereas Up acts as 〈( 1 0
α 1 ) | α ∈ k〉. Hence [Cℓ, U ] = [Cℓ, Up] =

〈(1, 0)〉 = Cp.

Therefore in general we have [Cr, U ] = [Cr, Up] = Cp, as required. □

Lemma 8.1.3 Kp ≤ CH(Up).

Proof. By Lemma 8.1.2 and Lemma 5.1.8 we have

[Dp, Up] =

[∑
r∋p

Cr, Up

]
=

∑
r∋p

[Cr, Up] =
∑
r∋p

Cp = Cp.

Now, Kp ≤ Dp so we have

[Kp, Up] = Kp ∪ [Dp, Up] ≤ [Dp, Up] = Cp.

Also we have that Dp is a kGp-module, so θ|Dp is a kGp-module homomorphism. Now,

Kp is the kernel of θ|Dp , and so is a kGp-submodule of Dp. Thus by Lemma 5.1.6 we have

[Kp, Up] ≤ Kp. Putting these two together, we obtain

[Kp, Up] ≤ Kp ∩ Cp. (∗)

Now, both Cp and Cp are 1-spaces, so θ|Cp is a kGp-module isomorphism. So, if Cp

were contained in Kp, then dimKp ∩ Cp ≥ 1 — an impossibility since, by definition,

dimKp = 0. Therefore we must have Kp ∩Cp = {0} and so by (∗) we see that [Kp, Up] =

{0}. Hence Kp ≤ CH(Up) as required. □
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Let us investigate the module Kp. Set

G∗
p := Oπ′

(Gp) = 〈Sylπ(Gp)〉.

To investigate the structure of this group it suffices to consider the case p = p. Note

that one Sylow π-subgroup of Gp is given by 〈A(λ), . . . , F (λ) | λ ∈ k〉. Conjugation

by rp swaps the pair of generators {A(λ), B(λ)} as well as the pair {D(λ), F (λ)}, maps

the generator C(λ) to C(−λ) and maps the generator E(λ) to its transpose. So G∗
p =

〈A(λ), . . . , F (λ), E(λ)rp | λ ∈ k〉.

Then Oπ(G
∗
p) = Up = 〈A(λ), . . . , D(λ), F (λ) | λ ∈ k〉, and so

G∗
p/Oπ(G

∗
p)

∼= 〈E(λ), E(λ)rp | λ ∈ k〉 ∼= SL2(k).

Hence G∗
p/Oπ(G

∗
p)

∼= SL2(k) for any point p.

Lemma 8.1.4 Kp is irreducible as a kGp-module, and is isomorphic to V ((π − 2)λ2) as

a kG∗
p/Oπ(G

∗
p)-module.

Proof. This follows immediately from Lemma 6.2.4. □

Lemma 8.1.5 Kp ∩ Y = {0}.

Proof. By Lemma 8.1.4, Kp is irreducible as a kGp-module. Now, Kp∩Y is Gp-invariant,

so either Kp ∩ Y = {0} (in which case we are done), or Kp ∩ Y = Kp.

For the sake of a contradiction, let us assume that Kp ∩ Y = Kp. Then dim(Dp +

Y )/Y = 3, since Dp has dimension q + 2 and the entire (q − 1)-dimensional kernel Kp is

contained in Y . Therefore by Corollary 6.3.2 we have Y = K; a contradiction since Y is

a maximal proper submodule of K. Thus the assumption that Kp ∩Y = Kp cannot hold,

and so Kp ∩ Y = {0}. □
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With these lemmas in hand, we arrive at the following result.

Proposition 8.1.6 (Kp + Y )/Y = CK/Y (Up).

Proof. Kp is fixed pointwise by Up by Lemma 8.1.3, so (Kp + Y )/Y ≤ CK/Y (Up). Due to

our choice of Y as a maximal proper submodule of K, we have that K/Y is an irreducible

kG-module. Therefore by Smith’s Lemma (Lemma 5.1.9), CK/Y (Up) is an irreducible

kGp-module.

We cannot have (Kp + Y )/Y = {0} because Kp is non-zero by Lemma 8.1.1 and

Kp ∩ Y = {0} by Lemma 8.1.5. Therefore

(Kp + Y )/Y = CK/Y (Up),

as required. □

This allows us to partially calculate the weight of K/Y :

Proposition 8.1.7 K/Y is a kG-module with highest weight

ψ = aλ1 + (π − 2)λ2,

for some a ∈ Z+.

Proof. Suppose the irreducible kG-module K/Y has highest weight ψ = aλ1+bλ2. In the

fixed-point sheaf for K/Y , the sheaf term at a point p is given by CK/Y (Up). By Smith’s

Lemma, this is an irreducible kGp-module with highest weight ψ|T∩Oπ′ (Lp)
= bλ2.

By Lemma 8.1.6, we have CK/Y (Up) = (Kp + Y )/Y. Then by Lemma 8.1.5 we have

Kp∩Y = {0}, and so (Kp+Y )/Y ∼= Kp, which in turn is isomorphic to V ((π−2)λ2) as a

kG∗
p/Oπ(G

∗
p)

∼= k SL2-module by Lemma 8.1.4. Hence b = π− 2, and ψ = aλ1+(π− 2)λ2

for some a ∈ Z+. □
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In the next section, we obtain a lower bound for the dimension of a module with this

highest weight.

8.2 A lower bound on the dimension of K/Y
Having found that the highest weight of K/Y is of the form ψ = aλ1 + (π− 2)λ2, we can

now calculate a lower bound on its dimension.

Proposition 8.2.1 dimK/Y ≥ 9π2 − 36π + 40.

Proof. K/Y is a kG-module with highest weight ψ, and so dimK/Y ≥ dimL(ψ). Let

ψ0 := (π−2)λ2. Then ψ−ψ0 = aλ1 = a(2α1+α2), a sum of simple roots with non-negative

integer coefficients, and so ψ0 ≺ ψ. Thus by Lemma 4.1.9, we have that

Π(V (ψ0)) ⊆ Π(V (ψ)).

Since (π − 2)λ2 is π-restricted, we can use Lemma 4.1.9 and Theorem 4.1.10 to obtain

dimL(ψ) ≥ |Π(V ((π − 2)λ2))|.

At this point we refer back to Example 4.3.2, in which we calculated that

|Π(V ((π − 2)λ2))| = 1 + 6

⌊
5(π − 2)

2

⌋
+ 12

π−3∑
i=1

⌊
3i

2

⌋
= B

(1)
π−2.
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We can approximate the bound with a polynomial B(2)
π−2 ≤ B

(1)
π−2. We define

B
(2)
π−2 := 1 + 6

(
5(π − 2)− 1

2

)
+ 12

π−3∑
i=1

(
3i− 1

2

)
= 1 + 6

(
5(π − 2)− 1

2

)
+ 12

(
3

2

(π − 3)2 + (π − 3)

2
− π − 3

2

)
= 9π2 − 36π + 40

≤ B
(1)
π−2.

Thus we obtain

dimK/Y ≥ dimL(ψ) ≥ 9π2 − 36π + 40,

which completes the proof. □

The main importance of this section is the following bound.

Theorem 8.2.2 Suppose that q = π and K 6= {0}. Then dimH ≥ 9π2 − 36π + 47.

Proof. We have

dimH ≥ dimH/K + dimK/Y = 7 + dimK/Y = 9π2 − 36π + 47.
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Chapter 9

A Cubic Upper Bound on the

Dimension of H

With Proposition 7.0.5 in mind, in this chapter we continue to restrict our attention to

the case q = π. Assumption 6.1.1 still holds, so we have π > 3. The aim of this chapter

is to prove the following cubic bound on the dimension of H:

dimH ≤ q3 + 2q2 + q + 2.

First we require bounds on the dimensions of some subspaces of H.

9.1 Preliminaries
Recall that dimCp = 1 and dimCℓ = 2. We can bound the dimensions of our other

defined subspaces as follows. (Note that due to Assumption 6.3.6 we have dimDp = q+2

already fixed, but this lemma holds in more generality so here we let m := dimDp.)

Lemma 9.1.1 Let p be a point and ℓ be a line, and let Cp, Cℓ, Dp, Eℓ and Fp be as

defined in Definition 6.2.1. Set m := dimDp. Then m ≤ q + 2 and

(i) dimEℓ ≤ m(q + 1)− 2q ≤ q2 + q + 2.



(ii) dimFp ≤ q2(m− 2) + q(m− 2) +m ≤ q3 + q2 + q + 2.

Proof. We have already observed that the dimensions of these spaces are independent of

the choice of p or ℓ.

To see that m ≤ q + 2, we simply note that Dp = 〈Cr | r 3 p〉 and each line r 3 p

contributes at most 1 to the dimension of Dp, except for the first one which contributes

2.

(i) The line ℓ is incident to (q + 1) points, which we denote p1, . . . , pq+1. Firstly note

that

dim(Dp1 +Dp2) ≤ 2m− 2,

since each Dp has dimension m and the 2-space Cℓ is contained in their intersection.

Hence each additional Dpi contributes at most an additional m − 2 to the total

dimension. Thus

dimEℓ = dim(Dp1 + · · ·+Dpq+1) ≤ m+ q(m− 2)

= m(q + 1)− 2q.

Taking m = q + 2 yields the bound dimEℓ ≤ q2 + q + 2.

(ii) Let the (q + 1) lines incident to p be ℓ1, . . . , ℓq+1. Firstly we have

dim(Eℓ1 + Eℓ2) ≤ 2 · (m(q + 1)− 2q)−m,

since each copy of Eℓ has dimension at most m(q + 1) − 2q and their intersection

contains Dp which has dimension m. Adding in each additional Eℓi increases the
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dimension by another m(q + 1)− 2q −m = q(m− 2), and so we obtain

dim(Eℓ1 + · · ·+ Eℓq+1) ≤ (m(q + 1)− 2q) + q(q(m− 2))

= q2(m− 2) + q(m− 2) +m.

Taking m = q + 2 yields the bound dimEℓ ≤ q3 + q2 + q + 2. □

9.2 Forming a cubic bound
We begin with some lemmas.

Lemma 9.2.1 Let p and p† be a pair of opposite points. Then Dp† ≤ 〈Fp, Cp†〉.

Proof. By Lemma 3.3.18, for every line h incident to p† we can find a point r = r(p, h) ∈ h

which has distance 4 from p. Letting p, ℓ1, p1, ℓ2, r be a shortest path from p to r, we see

that

Cr ≤ Cℓ2 ≤ Dp1 ≤ Eℓ1 ≤ Fp.

None of the points r(p, h) are equal to p† since they all have distance 4 from p (whereas

d(p, p†) = 6). Therefore, Ch = 〈Cr, Cp†〉 ≤ 〈Fp, Cp†〉. Since this is true for all choices of

h 3 p†, we have Dp† ≤ 〈Fp, Cp†〉 as claimed. □

Note that {r(p, h) | h 3 p†} is the ideal line Ip†(p).

Definition 9.2.2 For p, p† opposite points, define

Up,p† = 〈Fp, Dr | r ∈ Ip†(p)〉.

Lemma 9.2.3 〈Fp, Cp†〉 ≤ Up,p†.

Proof. For any r ∈ Ip†(p) we have Cp† ≤ Dr, so 〈Fp, Cp†〉 ≤ Up,p† . □
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Lemma 9.2.4 The dimension of Up,p† is at most (q+1)2(m−2)+m−q ≤ q3+2q2+q+2,

where m = dimDp.

Proof. A naïve upper bound for dimUp,p† would be dimFp + (q + 1)m; one copy of Fp,

plus a copy of Dp for each of the (q+1) lines on p†. We can refine this by considering the

intersection Fp ∩Dr, where r = r(p, h) for some h 3 p†. Note that Fp ∩Dr contains the

2-space Cf , where f is the unique line incident to r which lies on the geodesic from r to

p. Thus the dimension contribution of each Dr is at most m− 2, and so we can form the

bound

dimUp,p† ≤ dimFp + (m− 2)(q + 1).

This can be refined slightly further; we have covered the 1-space Cp† a total of q+1 times,

since Cp† ≤ Dr1 ∩Dr2 for any r1, r2 ∈ Ip†(p). Subtracting the extra q dimensions gives us

dimUp,p† ≤ dimFp + (m− 2)(q + 1)− q.

Applying Lemma 9.1.1, we obtain

dimUp,p† ≤ q2(m− 2) + q(m− 2) +m+ (m− 2)(q + 1)− q

= (q + 1)2(m− 2) +m− q

≤ q3 + 2q2 + q + 2,

as required. □

This leads us to the main result of this section.

Proposition 9.2.5 Let p be a point and p† be a point opposite to p. Then H = Up,p†. In

particular, dimH ≤ (q + 1)2(m− 2) +m− q ≤ q3 + 2q2 + q + 2, where m = dimDp.

We will first demonstrate the following.
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Lemma 9.2.6 Up,p† = Up†,p.

Proof. We will begin by showing that Up†,p ≤ Up,p† . By definition, Up†,p = 〈Fp† , Dr | r ∈

Ip(p
†)〉, so we can achieve this by demonstrating that Fp† ≤ Up,p† and that 〈Dr | r ∈

Ip(p
†)〉 ≤ Up,p† .

Let h be a line through p†; it contains a point r = r(p, h) such that d(p, r) = 4 due to

Lemma 3.3.18. Now, let u be a point on h. There are three cases to consider.

• Case 1: u = p†. We have Dp† ≤ Up,p† by Lemma 9.2.1 and Lemma 9.2.3.

• Case 2: u = r. We have Dr ≤ Up,p† by the definition of Up,p† .

• Case 3: u 6∈ {p†, r}. Then d(p, u) = 6 so we have Du ≤ 〈Fp, Cu〉 by Lemma 9.2.1,

applied with u opposite p. But Fp ≤ Up,p† by definition, and Cu ≤ Ch ≤ Up,p† , so

Du ≤ 〈Fp, Cu〉 ≤ Up,p† .

Thus Du ≤ Up,p† for all u ∈ h, so Eh ≤ Up,p† , and since the initial choice of h was arbitrary,

Fp† ≤ Up,p† .

Now, Up†,p = 〈Fp† , Dr | r ∈ Ip(p
†)〉, so it remains to show that Dr ≤ Up,p† for r ∈ Ip(p

†).

Choose such an r. Then r is collinear with p, so Dr ≤ Fp ≤ Up,p† as required. Hence

Up†,p ≤ Up,p† .

Applying the same argument with the roles of p and p† reversed then gives us Up†,p =

Up,p† . □

9.2.1 Points opposite both p and p†: Brouwer’s theorem and

rogues

By definition, Up,p† includes all point spaces Cs for points with d(p, s) ≤ 4, and therefore

by Lemma 9.2.6 it also includes all point spaces Ct for points with d(p†, t) ≤ 4. The

remaining points to be checked are those which are opposite both p and p†. In order to

show that these points are included, we will need the following theorem:
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Theorem 9.2.7 (Brouwer) Let Γ be a generalised hexagon which is not 3-regular.

(Note: In our case, where Γ is the generalised hexagon for G2(k), this forces q 6= 2

which is true by Assumption 6.1.1.)

Let x ∈ Γ be a point. Then the subgraph of Γ induced by the points and lines of

distance 6 and 5 respectively from x is connected.

The above theorem is due to Brouwer and was proved in [7, p.54, Theorem 1.1 (i)]. With

this in hand, we are able to show the following:

Lemma 9.2.8 Suppose p† is opposite p, and that p‡ is another point which is opposite to

both p and p†. Then Cp‡ ≤ Up,p†.

Proof. Let ℓ1, . . . , ℓq+1 be the lines going through p‡. For each 1 ≤ i ≤ q+1, let ri = r(p, ℓi)

and si = r(p†, ℓi). By Lemma 3.3.18, each Cri ≤ Fp ≤ Up,p† and each Csi ≤ Fp† ≤ Up,p† .

Note that the set {ri | 1 ≤ i ≤ q + 1} forms the ideal line Ip‡(p) and the set {si | 1 ≤ i ≤

q + 1} forms the ideal line Ip‡(p†).

Suppose that ri 6= si for some 1 ≤ i ≤ q + 1, so that the two ideal lines are different.

Then 〈Cri , Csi〉 = Cℓi , which contains Cp‡ , so Cp‡ ≤ Up,p† .

Therefore, let us now suppose that ri = si for all 1 ≤ i ≤ q+1. That is, the ideal lines

Ip‡(p) and Ip‡(p
†) are equal. If this is true, and Cp‡ 6≤ Up,p† , then we call p‡ a rogue. We

will show that it is impossible for there to be any rogues, and therefore that Cp‡ ≤ Up,p†

for all p‡ opposite both p and p†, as required.

This setup is displayed in Figure 9.1, which again displays a portion of the geometry

∆ as a collinearity hypergraph (and not the graph Γ ). That is, vertices in the figure

represent points, and edges represent lines. We will adopt a new convention which we

will use going forward, where the end vertices of a line in the figure are coloured black

and others are coloured white. Of course, in the geometry (and in the graph Γ ) there is

no distinction between ‘end’ points and ‘middle’ points of a line, but drawing the figure
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...

p†

p

p‡

I

Figure 9.1: A pair of opposite points p and p†, with p‡ a rogue opposite to both such that
the ideal line Ip‡(p) is equal to the ideal line Ip‡(p†) (here shown by the circle marked I).

in this manner clearly differentiates the lines from one another in cases where the figure

might otherwise be ambiguous. (Note that Figure 9.1 displays at most two points per

line, and so the use of white dots is not required until Figure 9.2.)

Let Op denote the subgraph of Γ induced by all the points opposite p, as well as all

the lines at distance 5 from p. By Theorem 9.2.7, Op is a connected graph. Assume for

a contradiction that there are rogues. Since Op contains all points opposite p, it contains

all the rogues as well as the point p†. Let p0 be a rogue which is closest to p† in the graph

Op, and let γ be a shortest path from p0 to p† in Op. (Note that since p0 is a rogue, we

have d(p0, p
†) = 6, so |γ| ≥ 6). Let p1 be the point immediately after p0 along the path γ.

This situation is shown in Figure 9.2; here p0 is a rogue, with I := Ip0(p) = Ip0(p
†).

The point p1 is collinear with p0 but cannot be contained in the ideal line I, since p1 ∈ Op

and all such points are opposite p, whereas points in I are at distance 4 from p.

We reach a contradiction by showing that p1 is another rogue which is closer to p† in

Op. Firstly, notice that p1 is opposite p and p†, because the only points collinear with p0

at distance 4 from p or p† are those contained in I. Let y be the unique point of I which

is collinear with p1. We cannot have Cp1 ≤ Up,p† , because we know that Cy ≤ Up,p† and
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p†

p

p0

y

p1

I

Figure 9.2: We take p0 to be the closest rogue to p† in Op — but show that p1 is another
rogue which is closer.

Cp0 ≤ 〈Cp1 , Cy〉 but Cp0 6≤ Up,p† by assumption. Since Cp1 6≤ Up,p† , the ideal lines Ip1(p)

and Ip1(p
†) are equal, and so p1 is another rogue.

However, this contradicts the choice of p0 as a rogue of minimal distance from p† in

Op. Therefore there cannot exist any rogues and the lemma is proven. □

So finally we have:

Proof (Proof of Proposition 9.2.5). By definition Up,p† includes all point spaces for points

of distance ≤ 4 from p, and by symmetry (Lemma 9.2.6) all point spaces for points of

distance ≤ 4 from p†. Also, by Lemma 9.2.8, Up,p† also contains all the point spaces

for points opposite both p and p†. This covers all the point spaces; by Lemma 6.2.3 this

covers all of H. Hence H = Up,p† and so dimH ≤ (q+1)2(m−2)+m−q ≤ q3+2q2+q+2

by Lemma 9.1.1. □
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Chapter 10

A Quadratic Upper Bound on the

Dimension of H

Here we refine our cubic bound to a quadratic one. We will show that, in most cases, we

have

dimH ≤ 3q2 + q + 2.

In this chapter we again restrict our attention to the case q = π, which is sufficient to prove

the main theorem due to Proposition 7.0.5. Recall also that q > 3 by Assumption 6.1.1.

We begin with some notation. Fix a point p, a line ℓ 3 p and a line ℓ∗ opposite ℓ.

By Corollary 3.3.20, there is a unique path of length 5 from p to ℓ∗. Denote the point on

this path incident to ℓ∗ as p∗, so that d(p, p∗) = 4. Indeed, for any point r ∈ ℓ, there is

a corresponding point r∗ ∈ ℓ∗ at distance 4 from r. This gives us a bijection ∗ from the

q + 1 points on ℓ to the q + 1 points on ℓ∗, where each pair of points is connected by a

path of length 4.

Recall that for points x and y with d(x, y) = 4, the point x∗y is defined as the unique

point in Γ2(x) ∩ Γ2(y).

Definition 10.0.1 (Midpoint mr) Let r ∈ ℓ and r∗ be the point on ℓ∗ at distance 4

from r. Define the midpoint mr := r ∗ r∗ =: mr∗.



ℓ

ℓ∗

p

mp

p∗

Figure 10.1: A pair of opposite edges ℓ and ℓ∗ with specified points p ∈ ℓ and p∗ ∈ ℓ∗,
and corresponding midpoint mp.

The set of midpoints {mr | r ∈ ℓ} is given by Γ3(ℓ) ∩ Γ3(ℓ
∗).

This setup is displayed in Figure 10.1, which again displays a portion of the geometry

∆ displayed as a collinearity hypergraph. We continue to use the convention that a line is

represented on the figure by a straight line segment containing white vertices sandwiched

between a black vertex at each end; all of the vertices represent points and this distinction

is purely to remove any ambiguity from the figure.

In this chapter we will prove the following:

Proposition 10.0.2 Suppose that q = π, and 3 ∤ q − 1. Let p ∈ ℓ and ℓ∗ be opposite ℓ.

Define

X0 := 〈Eℓ, Eℓ∗〉

and

X := 〈X0, Dmr | r ∈ ℓ〉.

Then H = X. In particular, we have dimH ≤ 3q2 + q + 2.

In the previous chapter, we showed that for any pair of opposite points {p, p†} we have

H = Up,p† = 〈Fp, Dr | r ∈ Ip†(p)〉. Therefore we may prove Proposition 10.0.2 by showing
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that the following two lemmas hold:

Lemma 10.0.3 Suppose 3 ∤ q − 1. Then Fp ≤ X.

Lemma 10.0.4 Suppose 3 ∤ q − 1 and let p† ∈ ℓ∗ be a point opposite p (that is, p† is any

point on ℓ∗ other than p∗). Then 〈Dr | r ∈ Ip†(p)〉 ≤ X.

The following sets will help us to keep track of those points and lines for which we

have have demonstrated that the corresponding subspace Cp or Cℓ lies in X.

Definition 10.0.5 (PX and LX) Define PX := {p ∈ P | Cp ≤ X} and LX := {ℓ ∈ L |

Cℓ ≤ X}.

10.1 Spines, pages and books
We begin with some new notation.

Definition 10.1.1 (Spines, pages and books) Take a pair of opposite lines ℓ and ℓ∗,

as shown in Figure 10.1. We will refer to one of the paths of length 4 from ℓ to ℓ∗ as

a spine. For any pair of opposite lines there are q + 1 spines between them; let these

be denoted {s0, . . . , sq}. We use [r, r∗] as shorthand for the spine through r and r∗. The

midpoint mr = r ∗ r∗ = r∗ ∗ r = mr∗ lies on the spine [r, r∗].

A choice of any two distinct spines between a pair of opposite lines defines a page

{si, sj}, which we interpret as containing not only the points and lines of the two spines,

but also the points and lines of any (diagonal) paths of length 6 from the point in one

corner to the point in the opposite corner — in a sense, these diagonal paths are drawn

onto the page.

Fix one spine si in the diagram. The set of pages {{si, sj} | j 6= i} is called a book

with spine si.
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ℓ

ℓ∗

hp

hp∗

hr

hr∗

hw

hw∗

v

a

p r w

mp mr mw

p∗ r∗ w∗

Figure 10.2: A diagonal path on the page {[r, r∗], [w,w∗]}.

Note that the two spines bordering a page correspond to a 12-circuit in Γ and therefore

form an apartment. Furthermore, the points at opposite corners of a page are also opposite

in Γ , so the paths of length 6 from one to the other are in fact shortest paths between

the points.

Figure 10.2 shows two spines, [r, r∗] and [w,w∗], and a diagonal path on the page

{[r, r∗], [w,w∗]} running from r to w∗. We will denote the lines contained in a spine [x, x∗]

by hx (incident to x) and hx∗ (incident to x∗).

By definition Fp = 〈Ef | f 3 p〉, so in order to prove Lemma 10.0.3, we must show

that X contains Ef for every line f 3 p. The case f = ℓ is trivial as Eℓ ≤ X by definition,

so it remains to check the other q lines incident to p. We will deal with the q − 1 cases

where f 6= hp first, and then finally we will show that Ehp ≤ X.

10.2 Diagonals
Choose two points r, w ∈ ℓ, with corresponding points r∗, w∗ ∈ ℓ∗ such that [r, r∗] and

[w,w∗] are two spines forming a page. Suppose a is a line incident to r which is not ℓ or

hr. Note that d(r, w∗) = 6 so by Corollary 3.3.20 there is a unique shortest path of length

5 from a to w∗. This path may not involve either ℓ∗ or hw∗ , because this would force a
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cycle of length at most 10 (contradicting the girth of Γ being 12), and therefore the final

line on the path must be one of the other q−1 lines incident to w∗. See Figure 10.2 for an

illustration of such a path, which we refer to as a diagonal on the page {[r, r∗], [w,w∗]}.

Definition 10.2.1 (Diagonal) A path of length 6 from one corner of a page to an

opposite corner is called a diagonal.

Definition 10.2.2 (Central line of a diagonal) For d a diagonal, denote by d′ be the

central line of d (the line equidistant from the endpoints of d).

Lemma 10.2.3 A page determines q−1 diagonals from each corner to its opposite corner,

none of which share any points or lines other than the endpoints.

Proof. Without loss of generality, assume that the diagonals begin at r ∈ ℓ, and a is a

line incident to r other than hr or ℓ. If we make a different choice for the line a, we obtain

a new diagonal which does not share any of the points or lines of the first one. To see

this, draw a new line b 3 r. By the argument above, there is a point y ∈ b and a line

b∗ 3 w∗ such that d(y, b∗) = 3 and either b∗ is a new line, or b∗ = a∗. But if b∗ = a∗ then

we form a cycle of length at most 10, a contradiction since the girth of Γ is 12. Similarly,

if we denote the line at distance 2 from both b and b∗ by b′, then we cannot have a′ = b′

or else we would obtain a 6-cycle. This proves the lemma. □

Excluding the point r itself, there are q other points on the line a in Figure 10.2. We

will now demonstrate that there is a bijection between these q points, and the q points

of ℓ∗ excluding r∗, given by those pairs which are distance 4 apart. (For example, the

bijection maps v to w∗ in Figure 10.2.)

Lemma 10.2.4 For any point r ∈ ℓ, any line a 3 r (with a 6∈ {ℓ, hr}) and any point

v ∈ a (with v 6= r), there is a unique spine [z, z∗] such that there is a diagonal on the page

{[r, r∗], [z, z∗]}, beginning with the path r, a, v.
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hw∗
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mp mr mw
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Figure 10.3: A diagonal on the page {[r, r∗], [w,w∗]}.

Proof. By Lemma 10.2.3, any page contains q−1 diagonals between each pair of opposite

corners, and none of them share any lines. Therefore, every line incident to r, other than

ℓ and hr, lies on one of these diagonals.

Consider the book with spine [r, r∗], and fix a line a 3 r. By the above argument, there

is a diagonal from r starting with the line a on every page of the book. Thus for any spine

[w1, w
∗
1] 6= [r, r∗] there exists precisely one point v on a which has distance 4 from w∗

1. It

remains to show that no such point v can correspond in this way to two different spines

[w1, w
∗
1] and [w2, w

∗
2]. But if that were the case then there would be a path γ of length 4

from v to w∗
1, and a path ω of length 4 from v to w∗

2, so the concatenation γ◦(w∗
1, w

∗
2)◦ω−1

forms a closed walk containing a cycle of length at most 10, a contradiction to the girth

of Γ being 12. Therefore the pair (a, v) determines a unique w∗ ∈ ℓ∗ and so also a unique

spine [w,w∗]. □

The previous lemma shows that the point v can be considered to be ‘in general posi-

tion’, in the sense that (with ℓ and ℓ∗ already determined), for any choice of r ∈ ℓ, a 3 r

with a 6∈ {ℓ, hr} and v ∈ a with v 6= r, we can locate a spine [w,w∗] and draw Figure 10.2.

The significance of adding these diagonals is that they allow us to show that parts of

Ea lie in X.
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Lemma 10.2.5 Fix a point r ∈ ℓ, a line a 3 r with a 6∈ {ℓ, hr}, and a point v ∈ a such

that v 6= r. The pair (a, v) determines a unique diagonal from r to some w∗ ∈ ℓ∗ beginning

with r, a, v. Denote the next line in this path as b, and the final line as c. Then b ∈ LX .

Proof. Label the vertices along the diagonal as v and u, as depicted in Figure 10.3. Note

that Ca ≤ Eℓ ≤ X and Cc ≤ Eℓ∗ ≤ X by definition. This implies that Cv ≤ X and

Cu ≤ X, and these together span the 2-space Cb, so Cb ≤ X and b ∈ LX . □

Since r, a and v were chosen arbitrarily, we obtain the following:

Corollary 10.2.6 For any diagonal d, the 2-space Cd′ (corresponding to the central line

d′ of d) lies in X. In other words, we have d′ ∈ LX .

We have now shown that a, b ∈ LX , so the subspaces corresponding to two lines

incident to v lie in X. To show that Dv ≤ X there are q − 1 further lines which we must

demonstrate are in LX . We do this by identifying more connections in Γ .

10.3 Crossbraces
In this section we will find lines in ∆ which connect pairs of diagonals. Many of the

arguments used involve locating illegal cycles of length shorter than 12. To make this

easier, we will use the following notation for a closed walk: (a1 ∼i1 a2 ∼i2 · · · ∼in−1 an),

with a1 = an and 1 ≤ ij ≤ 6. The walk has length
∑n−1

j=1 ij, so if some edge appears in

the walk only once, then it necessarily contains a cycle of positive length d ≤
∑n−1

j=1 ij.

Definition 10.3.1 (D(x, y∗) and DP(x)) Let P = {[x, x∗], [y, y∗]} be a page. We de-

fine D(x, y∗) to be the complete set of q − 1 diagonals from x to y∗ on P. Similarly,

D(y, x∗) is the complete set of q − 1 diagonals from y to x∗ on P.

An alternative notation is useful when only one of the spines is important: we let

DP(x) = DP(y
∗) = D(x, y∗)
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and

DP(x
∗) = DP(y) = D(x∗, y).

Definition 10.3.2 (Bridged pair of sets of diagonals) Suppose P and Q are two

different pages sharing a common spine [s, s∗]. Then we refer to the pair (DP(s),DQ(s
∗))

as a bridged pair of sets of diagonals, with the spine [s, s∗] being the bridge.

We remark that a bridged pair of sets of diagonals share a spine, but not a point. In the

next proposition we consider the positions of the central lines of these diagonals relative

to one another:

Proposition 10.3.3 Let (D1,D2) be a bridged pair of sets of diagonals. For any diagonal

d ∈ D2, there is precisely one diagonal c ∈ D1 such that d(d′, c′) = 4. If b is any of the

remaining q − 2 diagonals in D1 then d′ and b′ are opposite.

We will prove this proposition via three lemmas.

Lemma 10.3.4 Let [y, y∗] and [z, z∗] be two spines forming a page, and d be a diagonal

on the page from y∗ to z. Let the point on d at distance 2 from y∗ be denoted f (see

Figure 10.4). Then y is opposite both z∗ and f , and the ideal lines Iy(z∗) and Iy(f) are

equal.

Proof. It is clear from Figure 10.4 that d(y, f) = d(y, z∗) = 6. Note that both ideal lines

Iy(z
∗) and Iy(f) are spanned by the points z and my. Hence, by Theorem 3.3.41 they are

equal. □

We now begin to look for new lines connecting the diagonals so we can ascertain

d(c′, d′).

Lemma 10.3.5 Let (D1,D2) be a bridged pair of sets of diagonals. For any d ∈ D2,

there must be at least one c ∈ D1 such that d′ is not opposite c′. In particular, we have

d(c′, d′) = 4.
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Figure 10.4: A diagonal in D(z, y∗).

d′

x y z

mx my mz

x∗ y∗ z∗

h1

g1

hj

gj

f

e

. .
.

. .
.

Figure 10.5: Diagonals on two pages sharing a spine.

Proof. Let P1 = {[x, x∗], [y, y∗]} and P2 = {[y, y∗], [z, z∗]}. Let D1 = DP1(y) and D2 =

DP2(y
∗). Choose one diagonal d from D2, going from y∗ to z. Label the points and

lines of this diagonal, and of the q − 1 diagonals in D1 (going from x∗ to y) as shown in

Figure 10.5. The central line of d, denoted d′, is incident to points e and f . Suppose for

a contradiction that the line d′ is opposite the central lines of all diagonals in D1.

Note that Iy(f) = Iy(z
∗) by Lemma 10.3.4. Next, let i ∈ {1, . . . , q − 1} and note that

gi is opposite z∗ (a path of length 6 passes through points hi and x∗), so gi cannot be in

the ideal line Iy(z∗), and therefore gi 6∈ Iy(f).
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x y z
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x∗ y∗ z∗
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e
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Figure 10.6: The ideal line Iy(f) is given by {si | i = 1, . . . , q − 1} ∪ {z,my}.

There must, however, be a point of Iy(f) on the line 〈y, gi〉. Denote this point si. It

has distance 4 from f , so must be collinear with a point on either 〈f, y∗〉, 〈f, e〉, or one of

the q− 1 other lines incident to f . However, si cannot be collinear with a point on either

〈f, y∗〉 or 〈f, e〉 as this would form a 10-cycle in either case: (si ∼4 y
∗ ∼2 my ∼2 y ∼2 si),

or (si ∼4 e ∼2 z ∼2 y ∼2 si). Thus we may draw on these new points and lines as in

Figure 10.6.

Next, note that the lines 〈gi, y〉 and 〈f, e〉 are opposite (a path of length 6 goes through

points y, z and e). By Corollary 3.3.20, there is a unique path of length 5 from gi to 〈f, e〉.

Let the final point on this path (incident to the line 〈f, e〉) be denoted ti. We will show

that the line 〈f, e〉 consists precisely of the points {ti | i = 1, . . . , q − 1} ∪ {f, e}.

Firstly suppose that ti = tj for some i 6= j. Then Iy(ti) = 〈gi, gj〉 = Iy(x
∗). But

z ∈ Iy(ti) whereas z 6∈ Iy(x
∗), a contradiction. Now suppose that ti = f for some i. But

then si = gi, which we have already shown to be impossible. Finally, if ti = e then this

would form a 10-cycle given by (e ∼2 z ∼2 y ∼2 gi ∼4 e), a contradiction. Therefore all

the ti are distinct, and together with f and e form the entire line 〈f, e〉.

Before we can add the paths from each gj to tj to our figure, it remains for us to

determine whether the line out of each gj is 〈hj, gj〉 or a different line. However, we have
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Figure 10.7: Shortest paths from each gj to the line 〈f, e〉.

assumed that 〈f, e〉 is opposite 〈hj, gj〉, so the line out of each gj must be a new one

otherwise the distance between central lines 〈f, e〉 and 〈hj, gj〉 would be 4, not 6. Thus

we may annotate our diagram further, as in Figure 10.7.

Fix some 1 ≤ i ≤ q − 1. Since 〈hi, gi〉 is opposite 〈f, e〉, there is some point on

〈f, e〉 at distance 4 from hi. Firstly note that hi ∼4 f is impossible as it creates the

10-cycle (hi ∼2 x
∗ ∼2 y

∗ ∼2 f ∼4 hi). Next, suppose that hi ∼4 e. This means that

Ix∗(e) = 〈y∗, hi〉 = Ix∗(y), and so mx ∈ Ix∗(e). Then we have e ∼4 mx which gives a

contradiction since d(e,mx) = 6.

The only remaining possibility is that hi ∼4 tj for some j. The intermediate point

on this path cannot be on the line 〈hi, x∗〉 as this would create a 10-cycle (x∗ ∼4 tj ∼2

f ∼2 y
∗ ∼2 x

∗). It also cannot be on the line 〈hi, gi〉 as we have assumed that 〈hi, gi〉 is

opposite 〈f, e〉. Therefore it must be on a new line out of hi.

We have Ix∗(tj) = 〈hi, y∗〉 = Ix∗(y). But Ix∗(y) also contains hj, so therefore hj ∈

Ix∗(tj) and tj ∼4 hj (see Figure 10.8). This forms the illegal 10-cycle (tj ∼4 gj ∼2 hj ∼4

tj), a contradiction. Hence the line d′ cannot be opposite the central lines of all diagonals

in D1; there must be at least one c ∈ D1 such that d(c′, d′) ≤ 4.

Note finally that d(c′, d′) = 2 is impossible; if c′ and d′ were collinear (meeting in a
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Figure 10.8: A shortest path from hi to 〈f, e〉, and the illegal 10-cycle it induces involving
hj, gj and tj.

point s, say) then an illegal 10-cycle would be given by (x∗ ∼2 y
∗ ∼2 f ∼2 s ∼2 hi), for

some 1 ≤ i ≤ q − 1. Thus we have d(c′, d′) = 4. □

Lemma 10.3.6 Let (D1,D2) be a bridged pair of sets of diagonals. For any d ∈ D2, there

is at most one c ∈ D1 such that d′ is not opposite c′.

Proof. Let the setup be as in Figure 10.5, and suppose that there are two diagonals in D1

such that 〈f, e〉 is not opposite either of their central lines — without loss of generality,

suppose these are 〈h1, g1〉 and 〈h2, g2〉. Then there is a line containing a point on both

〈f, e〉 and 〈h1, g1〉, and another line containing a point on both 〈f, e〉 and 〈h2, g2〉.

These points on 〈hi, gi〉 cannot be hi or gi, else we would create a 10-cycle given by

(hi ∼2 x
∗ ∼2 y

∗ ∼2 f ∼4 hi) or (gi ∼2 y ∼2 z ∼2 e ∼4 hi). For the same reason, the

connecting lines may not be incident to e or f . Thus we may add new points to our

diagram, labelling them t1 ∈ 〈h1, g1〉, t2 ∈ 〈h2, g2〉 and u1, u2 ∈ 〈f, e〉 as per Figure 10.9

where we assume for a contradiction that u1 6= u2.

We have Ix∗(u1) = 〈y∗, h1〉 and Ix∗(u2) = 〈y∗, h2〉. But note that Ix∗(y) contains

h1, h2 and y∗, so Ix∗(y) = Ix∗(u1) = Ix∗(u2). Therefore h2 ∈ Ix∗(u1) so h2 ∼4 u1.

Now, u1 cannot be collinear with a point w on 〈h2, g2〉 otherwise we obtain the 8-cycle
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Figure 10.9: For a contradiction, we assume here that u1 6= u2.

(u1 ∼2 w ∼2 t2 ∼2 u2 ∼2 u1) (an even smaller cycle is formed if w = t2). But then since

we have shown that h2 ∼4 u1, we obtain the 10-cycle (u1 ∼4 h2 ∼2 t2 ∼2 u2 ∼2 u1), a

contradiction. Thus we must have u1 = u2 (see Figure 10.10).

Now, we have Iy(u1) = 〈g1, g2〉 = Iy(x
∗). But z ∈ Iy(u1) whereas z 6∈ Iy(x

∗), a

contradiction. So 〈f, e〉 cannot be opposite more than one of the lines 〈hi, gi〉. □

Proof (Proof of Proposition 10.3.3). This is proved by a combination of Lemma 10.3.5

and Lemma 10.3.6. □

This motivates a definition:

Definition 10.3.7 (Crossbrace) Let (D1,D2) be a bridged pair of sets of diagonals. A

line connecting a point on the central line d′1 of some d1 ∈ D1 and a point on the central

line d′2 of some d2 ∈ D2 is called a crossbrace.

We can deduce a little more information about how d′1 and d′2 meet the crossbrace c.

Lemma 10.3.8 A crossbrace c cannot meet the central lines d′1 and d′2 at their ‘endpoints’,

by which we mean the points on the paths d1 and d2. Furthermore, every crossbrace c is

opposite both ℓ and ℓ∗.
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x y z

mx

my

mz

x∗ y∗ z∗

h1

g1

h2

g2

f

e

u1

t1

t2
. .
.

. .
.

Figure 10.10: We conclude that t1 and t2 both must be collinear with u1; but this induces
an illegal 10-cycle (u1 ∼4 h2 ∼2 t2 ∼2 u2 ∼2 u1). Therefore, the line 〈f, e〉 cannot be at
distance 4 from more than one line 〈hi, gi〉.

Proof. Let the setup be as above, and let c be a crossbrace which goes through the points

t1 ∈ d′1 and t2 ∈ d′1. If either t1 or t2 is an ‘endpoint’, an illegal 10-cycle is induced (see

Figure 10.11 for an example) — or even an illegal 8-cycle if both t1 and t2 are endpoints

near ℓ or both near ℓ∗.

Now, if d(c, ℓ∗) = 2 then the crossbrace c would share a point with the line ℓ∗, which

would create an illegal 8-cycle. Similarly, if d(c, ℓ∗) = 4 then there is a point on c which is

collinear with a point on ℓ∗; but this creates an illegal 10-cycle as displayed in Figure 10.12.

Therefore, we have d(c, ℓ∗) = 6. A similar argument shows that d(c, ℓ) = 6. □

Our interest in crossbraces stems from the following proposition:

Proposition 10.3.9 Suppose that c is a crossbrace. Then Cc ≤ X.

Proof. By definition, a crossbrace c is spanned by two points a, b which lie on diagonals.

By Corollary 10.2.6 the diagonals are in LX , so a, b ∈ PX . Hence Cc ≤ X. □
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x y z

mx my mz

x∗ y∗ z∗

h1

g1

h2 = t2

g2

t1
c

Figure 10.11: The points t1 and t2 cannot be endpoints, otherwise an illegal 10-cycle is
induced given by (t1 ∼2 h2 ∼2 y

∗ ∼2 x
∗ ∼2 h1 ∼2 t1).

x y z

mx my mz

x∗ y∗ z∗ w∗

h1

g1

h2

g2

t1 t2 r

c

Figure 10.12: We cannot have d(c, ℓ∗) = 4, as this induces an illegal 10-cycle given by
(t2 ∼2 r ∼2 w

∗ ∼2 y
∗ ∼2 h2 ∼2 t2).
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10.4 Locating an interior point with three incident

lines contained in LX

Thus far we have proven a series of results which hold for any pair of opposite lines ℓ

and ℓ∗. Since G acts transitively on pairs of opposite lines by Corollary 3.3.13, our choice

of ℓ and ℓ∗ does not matter. At this point, therefore, it will simplify calculations to fix

ℓ = ℓ = 〈1, 2〉 and ℓ∗ = 〈7, 8〉, and calculate explicitly in C. Note that these lines ℓ and

ℓ∗ belong to the apartment depicted in Figure 3.1.

Each point p ∈ ℓ has a unique corresponding point p∗ ∈ ℓ∗ at distance 4, creating a

spine [p, p∗]. We can see from Figure 3.1 that 〈1〉 and 〈7〉 form a spine with midpoint 〈3〉,

and 〈2〉 and 〈8〉 form a spine with midpoint 〈6〉. In fact, the remaining spines are given

by the pairs

(〈1 + λ2〉, 〈7− λ8〉)

for 1 ≤ λ < k. (We will prove this in Lemma 10.4.2.)

Consider the pages P = {[〈1〉, 〈7〉], [〈1+2〉, 〈7−8〉]} and Q = {[〈1+2〉, 〈7−8〉], [〈2〉, 〈8〉]}

which share a common spine. The sets D1 := D(〈1〉, 〈7 − 8〉) and D2 := D(〈1 + 2〉, 〈8〉)

are a bridged pair of sets of diagonals. By Proposition 10.3.3, for each choice of diagonal

d ∈ D1, there is precisely one diagonal e ∈ D2 such that d(d′, e′) = 4.

Let us choose the points 〈1 + 2 + 3〉 and 〈3 − 4 + 5 + 6 − 7〉, which form a diagonal

d1 ∈ D1 on P . We verify that the central line of d1 is at distance 4 from the central line

of the diagonal d2 ∈ D2 formed by 〈2− 3+ 4− 5− 6〉 and 〈6+ 7− 8〉 on Q. The setup so

far is shown in Figure 10.13, with crossbrace c connecting points x1 ∈ d′1 points x2 ∈ d′2.

The point x1 ∈ d′1 is given by 〈1 + 2 + 4 − 5 − 6 + 7〉, and the point x2 ∈ d′2 is given by

〈2− 3 + 4− 5 + 7− 8〉.

Definition 10.4.1 (Interior point) Let s be a point at distance 3 from either ℓ or ℓ∗.
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〈7〉 〈7− 8〉 〈8〉

〈3〉

⟨3 − 4 + 5 + 6⟩

〈6〉

〈1〉 〈1 + 2〉 〈2〉

⟨1 + 2 + 3⟩

⟨3 − 4 + 5 + 6 − 7⟩

⟨2 − 3 + 4 − 5 − 6⟩

⟨6 + 7 − 8⟩x1

x2c

Figure 10.13: A crossbrace c realised in geometry. Here we have x1 = 〈1+2+4−5−6+7〉,
and x2 = 〈2− 3 + 4− 5 + 7− 8〉.

We say that s is an interior point (with respect to ℓ and ℓ∗) if does not lie on any line

contained in a spine from ℓ to ℓ∗.

The points 〈1+2+3〉 and 〈3−4+5+6−7〉 are examples of interior points in Figure 10.13.

We begin by showing that there exist interior points s1 and s2 such that three of the

lines incident to each si are in LX . Then we will use a group theoretic argument to show

that this is in fact true for all interior points, not just s1 and s2.

Firstly, an easy lemma about the spines between ℓ and ℓ∗.

Lemma 10.4.2 Let w1 = 〈1 + α12〉 and w∗
2 = 〈7 + α28〉. Then [w1, w

∗
2] is a spine if and

only if α1 + α2 = π or α1 = α2 = 0.

Proof. Since w1 ∈ ℓ and w∗
2 ∈ ℓ∗, they form a spine if and only if d(w1, w

∗
2) = 4; otherwise,

w1 and w∗
2 are opposite. So by Lemma 3.3.26, w1 and w∗

2 form a spine if and only if

b(1 + α12, 7 + α28) = 0. Now,

(1 + α12) · (7 + α28) = −3− α24− α15 + α1α26
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and so, by looking at the coefficients of 4 and 5 in the product, we see that b(1+α12, 7+

α28) = 0 if and only if α1 + α2 = 0 (mod π). Since 0 ≤ α1, α2 < π, this is equivalent to

α1 + α2 = π or α1 = α2 = 0. □

Note that this gives q of the spines between ℓ and ℓ∗. The remaining spine is given by

[〈2〉, 〈8〉].

Proposition 10.4.3 There exist interior points s1 at distance 3 from the line ℓ and s2 at

distance 3 from ℓ∗ such that three of the lines incident to each si are in LX . In particular,

LX contains:

• a line connecting s1 with ℓ and a line connecting s2 with ℓ∗,

• a line incident to each si which is the central line of a diagonal, and

• one further line incident to each si.

Proof. To prove this, we will build up a list of points contained in PX in stages. We begin

with the set P (1)
X of points contained in some Dx for x ∈ ℓ or ℓ∗ (these points are in PX

by the definition of X). Next, by Corollary 10.2.6 the central line d′ of any diagonal d is

in LX , because two of its points are in P
(1)
X . Thus the next set of points included in PX

are those which lie on the central line of a diagonal but are not contained in P (1)
X ; we refer

the set of these points as P (2)
X .

There are more points in PX to be found on crossbraces. Let P (3)
X be the set of points

which lie on a crossbrace but are not in P (1)
X or P (2)

X ; we will demonstrate that P (3)
X is non-

empty. In particular, we consider the points on our crossbrace c (Figure 10.13). Denote

v1 := 1+2+4− 5− 6+7 and v2 := 2− 3+4− 5+7− 8, so that x1 = 〈v1〉 and x2 = 〈v2〉.

We know that c is spanned by the two 1-spaces x1 and x2, and since we have stipulated

that q > 3 (Assumption 6.1.1), c contains at least 5 points.
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Let x3 := 〈v1+ v2〉 = 〈1+2 · 2− 3+2 · 4− 2 · 5− 6+2 · 7− 8〉 ∈ 〈x1, x2〉 = c. It is easy

to verify that (v1+ v2) · (v1+ v2) = 0, and so x3 is a point on c. We will demonstrate that

x3 is a ‘new’ point, i.e. it is not in P (1)
X or P (2)

X . Note firstly that c is opposite both ℓ and

ℓ∗ by Lemma 10.3.8, so x3 6∈ P
(1)
X since it cannot be in Dx for any x ∈ ℓ or ℓ∗. It remains

to show that x3 6∈ P
(2)
X .

Now, since c is opposite both ℓ and ℓ∗ by Lemma 10.3.8, there are unique points

w1 ∈ ℓ and w∗
2 ∈ ℓ∗ such that d(x3, w1) = 4 and d(x3, w

∗
2) = 4. Since d(x3, w1) = 4 we

have b(x3, w1) = 0. It is easily verified that b(x3, 〈2〉) 6= 0, so we can write w1 = 〈1+α12〉.

We calculate

x3 · w1 = −2 · 1− 2− 2 · 3 + 4 + α1 · 1 + 2α1 · 2− 2α1 · 5− α1 · 6

= (α1 − 2) · 1 + (2α1 − 1) · 2− 2 · 3 + 4− 2α1 · 5− α1 · 6,

and so 1− 2α1 ≡ 0 (mod π). Since 0 ≤ α1 < π, we must have α1 = (π + 1)/2 and

w1 = 〈1 + π + 1

2
2〉.

Similarly, it is easily verified that b(x3, 〈8〉) 6= 0, so let w∗
2 = 〈7 + α28〉. Then using the

same technique, we have

x3 · w∗
2 = 3− 2 · 4− 2 · 7 + 8− α2 · 5− 2α2 · 6− α2 · 7 + 2α2 · 8

= 3− 2 · 4− α2 · 5− 2α2 · 6− (α2 + 2) · 7 + (2α2 + 1) · 8,

so α2 + 2 = 0 (mod π). Therefore α2 = π − 2 and w∗
2 = 〈7 + (π − 2)8〉.

Now, by Lemma 10.4.2 the points w1 and w∗
2 form a spine if and only if α1 + α2 = π;
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〈7〉 〈7− 8〉 〈8〉 w∗
2 = 〈7 + (π − 2)8〉

〈3〉

⟨3 − 4 + 5 + 6⟩

〈6〉

〈1〉 〈1 + 2〉 〈2〉 w1 = 〈1 + π+1
2
2〉

⟨1 + 2 + 3⟩

⟨3 − 4 + 5 + 6 − 7⟩

⟨2 − 3 + 4 − 5 − 6⟩

⟨6 + 7 − 8⟩x1

x2

x3
s1

s2

c

Figure 10.14: When π 6= 3, the points w1 ∈ ℓ and w∗
2 ∈ ℓ∗ do not form a spine.

that is, if and only if

π + 1

2
+ π − 2 = π ⇐⇒ π = 3.

Therefore, since π > 3 by Assumption 6.1.1, w1 and w∗
2 do not form a spine.

The situation is shown in Figure 10.14. Suppose for a contradiction that x3 ∈ P
(2)
X ,

so x3 is a point on the central line e′ of some diagonal e. Then e is a diagonal from w1

to w∗
2, as these are the unique points on ℓ and ℓ∗ at distance 4 from x3. This implies

that the lines incident to x3 on the shortest paths from x3 to w1 and w∗
2 respectively (the

lines 〈x3, s1〉 and 〈x3, s2〉 on the figure) are in fact both the line e′, and thus the points

{x3, s1, s2} are all collinear.

We can calculate the points s1 and s2. Set s1 = β1 · 1 + · · · + β8 · 8. Using that

s1 · w1 = 0, w1 · s1 = 0, s1 · x3 = 0 and x3 · s1 = 0, we can form a set of simultaneous

equations to find the βi. The solution, which is easily verified by multiplication with w1

and with x3, is

s1 = 〈3 · 1 + 4 · 3− 2 · 4 + 2 · 5 + 6〉.

Similarly, setting s2 = γ1 · 1 + · · · + γ8 · 8 and multiplying with x3 and w∗
2 to find the γi,
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〈7〉 〈7− 8〉 〈8〉 w∗
2=〈7 + (π − 2)8〉

〈3〉

⟨3 − 4 + 5 + 6⟩

〈6〉

〈1〉 〈1 + 2〉 〈2〉 w1=〈1 + π+1
2
2〉

⟨1 + 2 + 3⟩

⟨3 − 4 + 5 + 6 − 7⟩

x1

x2

x3
s1

s2

c d′1

Figure 10.15: We have shown that three of the lines incident to s2 are in LX .

we obtain

s2 = 〈3− 2 · 4 + 2 · 5 + 4 · 6− 3 · 8〉.

By inspection, we can see that (when π 6= 3) the vectors s1, s2 and x3 span a 3-space and

not a 2-space. Therefore they are not all collinear, a contradiction. Hence x3 6∈ P
(2)
X and

thus it is a ‘new’ point, not contained in P
(1)
X or P (2)

X . Thus P (3)
X is non-empty.

Now, by Lemma 10.2.4, the point s2 determines a unique spine [z, z∗] such that there

exists a diagonal d1 on the page {[z, z∗], [w2, w
∗
2]} going from from w∗

2 via s2 to z. In fact,

[z, z∗] = [〈2〉, 〈8〉] which we can verify by confirming that b(s2, 〈2〉) = 0. But this means

we have shown that three distinct lines incident to the point s2 are contained in LX ; the

central line d′1 of the diagonal d1, the line 〈s2, w∗
2〉 and the line 〈s2, x3〉 (see Figure 10.15).

A similar argument for s1, which lies on a diagonal from w1 to 〈7〉, completes the proof.□

10.5 Transitivity arguments
Having shown that there exist interior points such that three of their incident lines lie

in LX , we will use some transitivity arguments to prove the following proposition. We

continue with ℓ = ℓ = 〈1, 2〉 and ℓ∗ = 〈7, 8〉.
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Proposition 10.5.1 Suppose that 3 ∤ q − 1. Then if x is any interior point with respect

to lines ℓ and ℓ∗, all of the lines incident to x are in LX . Hence Dx ≤ X.

10.5.1 All interior points have three of their incident lines con-

tained in LX

We prove Proposition 10.5.1 in two stages; firstly we will prove a transitivity result on

the set of all interior points (in relation to ℓ and ℓ∗).

Lemma 10.5.2 Let x be an interior point and suppose Dx ≤ X. Then Dy ≤ X for any

interior point y.

We begin by constructing the stabiliser Gℓ,ℓ∗ = Gℓ ∩Gℓ∗ .

Lemma 10.5.3 We have Gℓ,ℓ∗ = 〈T, rℓ, F (λ) : λ ∈ k〉. Gℓ,ℓ∗ is isomorphic to GL2(k) and

has order q(q2 − 1)(q − 1). Furthermore,

(i) T fixes the points 〈1〉, 〈2〉, 〈3〉, 〈6〉, 〈7〉 and 〈8〉. T1(λ) maps 〈2 + γ3〉 to 〈2 + γλ3〉.

(ii) rℓ swaps the points 〈1〉 and 〈2〉, the points 〈3〉 and 〈6〉, and the points 〈7〉 and 〈8〉.

(iii) F (λ) maps 〈2〉 to 〈2− λ1〉.

Proof. We showed that Gℓ∩Gℓ∗ = 〈T, rℓ, F (λ) : λ ∈ k〉 in Chapter 3; in Lemma 3.3.36 we

showed that Lℓ = Gℓ ∩Gℓ∗
∼= GL2(k). Finally, (i), (ii) and (iii) are clear by inspection.□

To this, we add one further generator; the element w0 = (rprℓ)
3, which rotates our

standard apartment from Figure 3.1 by a half-turn, mapping 〈1〉 to 〈8〉, 〈2〉 to 〈7〉 and so

on. It therefore swaps ℓ and ℓ∗. We define the group

G{ℓ,ℓ∗} := 〈Gℓ,ℓ∗ , w0〉,
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where the set notation in the subscript means that the set of lines {ℓ, ℓ∗} is left invariant,

rather than each line being fixed individually. G{ℓ,ℓ∗} has order 2q(q2 − 1)(q − 1).

Lemma 10.5.4 The group G{ℓ,ℓ∗} leaves X invariant.

Proof. It is clear that G{ℓ,ℓ∗} leaves X0 = 〈Eℓ, Eℓ∗〉 invariant, and it also leaves invariant

set of midpoints {mr | r ∈ ℓ} and hence the subspace 〈Dmr | r ∈ ℓ〉. This proves the

lemma. □

Hence, if Y ≤ X is some subspace then Y g ≤ X for any g ∈ G{ℓ,ℓ∗}. We will use this fact

to our advantage during this section.

Proof (Proof of Lemma 10.5.2). We will prove the lemma by showing the transitivity

of G{ℓ,ℓ∗} on the interior points. We achieve this via a calculation of the stabiliser

G{ℓ,ℓ∗},⟨1⟩,⟨1,2+3⟩,⟨2+3⟩ (see Figure 10.16).

Firstly, we show that G{ℓ,ℓ∗} is transitive on the set of points of ℓ and ℓ∗. By

Lemma 10.5.3 (ii), the element rℓ swaps (and negates) the coefficients of 1 and 2, so

if x ∈ ℓ is arbitrary, then at least one of {x, x · rℓ} is a point on ℓ for which the coef-

ficient of 2 is non-zero. Write this point as y = 〈α1 + 2〉. Then due to Lemma 10.5.3

(iii) we have y · F (λ) = 〈(α − λ)1 + 2〉, and so y · F (λ)rℓ = 〈1 + (α − λ)2〉. The set

{〈(α− λ)1 + 2〉, 〈1 + (α− λ)2〉 | λ ∈ k} contains all points on ℓ, so G{ℓ,ℓ∗} is transitive on

these points. Then the element w0 ∈ G{ℓ,ℓ∗} provides a bijection between the points of ℓ

and ℓ∗, so we have transitivity on the complete set of points on ℓ and ℓ∗.

Now let us calculate the stabiliser G{ℓ,ℓ∗},⟨1⟩. (Note that fixing a point on the line 〈1, 2〉

also fixes the corresponding spine and therefore a point on the line 〈7, 8〉 as well.) T fixes

the point 〈1〉, as do the elements F (λ) for λ ∈ k, but the elements rℓ and w0 do not. So

G{ℓ,ℓ∗},⟨1⟩ = 〈T, F (λ) : λ ∈ k〉 and has order q(q − 1)2.

Next we show the transitivity of this group on the set of q − 1 lines incident to 〈1〉,

excluding the line ℓ = 〈1, 2〉 and the line h⟨1⟩ = 〈1, 3〉 on the spine. These lines are
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〈7〉 〈7− 8〉 〈8〉

〈3〉 〈6〉

〈1〉 〈1 + 2〉 〈2〉

〈2 + 3〉

Figure 10.16: We calculate the stabiliser G{ℓ,ℓ∗},⟨1⟩,⟨1,2+3⟩,⟨2+3⟩.

parametrised by 〈1, γ2 + µ3〉 where γ, µ > 0. (Note that γ = 0 gives us the line h⟨1⟩ on

the spine, and µ = 0 gives us the line ℓ.) We have

〈1, γ2 + µ3〉 · T1(γµ−1) = 〈γµ−11, γ2 + γ3〉 = 〈1, 2 + 3〉.

Hence all of these lines are in a single G{ℓ,ℓ∗},⟨1⟩ orbit as required.

Now we will calculate the stabiliser inside G{ℓ,ℓ∗},⟨1⟩ of a line f = 〈1, 2 + 3〉 incident

to 〈1〉, with f 6= ℓ and f 6= h⟨1⟩. The element F (λ) fixes the vector 1 and maps 2 + 3 7→

λ1 + 2 + 3, and therefore fixes f . A general element of T is of the form

t = T1(λ)T2(µ) = diag(λ, µ, λµ−1, 1, 1, λ−1µ, µ−1, λ−1).

If t fixes f then it preserves the ratio of the coefficients of 2 and 3, forcing µ = λµ−1 which

is equivalent to λ = µ2. Thus we have

G{ℓ,ℓ∗},⟨1⟩,⟨1,2+3⟩ = 〈T†(µ), F (λ) : λ ∈ k, µ ∈ k×〉,

where T†(µ) = diag(µ2, µ, µ, 1, 1, µ−1, µ−1, µ−2). Then G{ℓ,ℓ∗},⟨1⟩,⟨1,2+3⟩ has order q(q − 1).
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The next step is to show transitivity of G{ℓ,ℓ∗},⟨1⟩,⟨1,2+3⟩ on the q points of the line

〈1, 2 + 3〉 excluding the point 〈1〉. Here, the elements parametrised by F (λ) do the trick;

by Lemma 10.5.3 (iii) we have, for α 6= 0,

〈1 + α(2 + 3)〉 · F (λ) = 〈(1− αλ)1 + α(2 + 3)〉,

so only F (0) fixes the point 〈1 + α(2 + 3)〉. This gives transitivity on these points.

In all, we have shown that the group G{ℓ,ℓ∗} acts transitively on the set of interior

points (with respect to the lines ℓ and ℓ∗). So if Dx ≤ X for some interior point x, then

Dy ≤ X for any interior point y. □

For completeness, the stabiliser G{ℓ,ℓ∗},⟨1⟩,⟨1,2+3⟩,⟨2+3⟩ is given by 〈T†(µ) : µ ∈ k×〉 and

has order q − 1.

By Proposition 10.4.3, the points s1 and s2 both have three of their incident lines in

LX , including a line from si to ℓ (or ℓ∗), a central line of a diagonal, and one other line.

Thus by the this transitivity result, every interior point has three such incident lines in

LX .

10.5.2 All interior points have all their incident lines contained

in LX

Next we will prove a transitivity result on the lines incident to an interior point. For this

we need another condition on q; specifically that 3 ∤ q − 1.

Lemma 10.5.5 Let x be an interior point at distance 3 from ℓ (respectively, from ℓ∗).

Of the q + 1 lines incident to x, one of them contains a point on ℓ (or ℓ∗ respectively),

and another of them is the central line of some diagonal. If 3 ∤ q − 1 then the stabiliser

G{ℓ,ℓ∗},x acts transitively on the remaining q − 1 lines.
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〈7〉 〈8〉 〈7− 8〉

〈3〉 〈6〉

〈1〉 〈2〉 〈1 + 2〉

x = 〈2 + 3〉

〈6− 7〉

d

y

Figure 10.17: Two of the lines incident to x are distinguished, being the line connecting
x to ℓ (labelled y), and the central line of a diagonal (labelled d) respectively. We want
to show transitivity on the remaining q − 1 lines incident to x.

Proof. Using the transitivity of G{ℓ,ℓ∗} on the interior points, we may set x = 〈2 + 3〉

without loss of generality. Then we have d(x, ℓ) = 3, with the line y = 〈1, 2+3〉 connecting

x with 〈1〉 ∈ ℓ.

Due to Lemma 10.2.4, another one of the lines incident to an interior point is distin-

guished, being a central line of a diagonal. In the case of the point x = 〈2 + 3〉, this is

the line d = 〈2 + 3, 6− 7〉, which lies on a diagonal from 〈1〉 to 〈8〉 (see Figure 10.17).

We would now like to show transitivity on the remaining q − 1 lines incident to x.

These lines take the form

〈2 + 3, 1 + γ6− γ7〉

for γ 6= 0. Without loss of generality, take γ = 1 and consider the line f = 〈2 + 3, 1 +

6 − 7〉. If there is a non-trivial stabiliser of this line within the group G{ℓ,ℓ∗},⟨2+3⟩ =

G{ℓ,ℓ∗},⟨1⟩,⟨1,2+3⟩,⟨2+3⟩ = 〈T†(µ) : µ ∈ k〉, then the action cannot be transitive, since the

group has order q − 1 and there are q − 1 line to permute.

We note that if 3 | q − 1 then there are 3 solutions in k to the equation µ3 = 1, and

for each of these we get an element T†(µ0) = diag(µ2
0, µ0, µ0, 1, 1, µ

2
0, µ

2
0, µ0) which fixes f ,
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giving a stabiliser of order 3. However, if 3 ∤ q − 1 there is only one solution in k to the

equation µ3 = 1, giving a stabiliser of order 1. Thus G{ℓ,ℓ∗},⟨1⟩,⟨1,2+3⟩,⟨2+3⟩,⟨2+3,1+6−7⟩ has

order gcd(3, q − 1).

Hence if 3 ∤ q − 1, then G{ℓ,ℓ∗},⟨1⟩,⟨1,2+3⟩,⟨2+3⟩ = G{ℓ,ℓ∗},⟨2+3⟩ is transitive on the q − 1

lines. This proves the lemma. □

This leads us to:

Proof (Proof of Proposition 10.5.1). By Proposition 10.4.3, there exists an interior point

s1 such that three of the lines incident to s1 are in LX . Furthermore, these lines include

the line y connecting s1 to a point on ℓ, the central line d of a diagonal, and one other

line f . By Lemma 10.5.5, f ∈ LX implies that {j | j 3 s1} \ {y, d} ⊆ LX . Thus all of

the lines incident to s1 are in LX , so Ds1 ≤ X. Then by Lemma 10.5.1, Dx ≤ X for any

interior point x. This proves the proposition. □

10.6 Points on spines
Recall that our goal is to demonstrate that

H = Up,p† = 〈Fp, Dr | r ∈ Ip†(p)〉

≤ 〈Eℓ, Eℓ∗ , Dmr | r ∈ ℓ〉

= X.

Keep ℓ = 〈1, 2〉 and ℓ∗ = 〈7, 8〉, and set p = 〈1〉 so that p∗ = 〈7〉. Recall that the space

Fp is defined as 〈Ef | f 3 p〉; we need to show, therefore, that Ef ≤ X for all lines f 3 p.

By the definition of X we have Eℓ ≤ X. In the previous section we showed that

Dx ≤ X for all interior points x, which implies that Ef ≤ X whenever f 3 p with

f 6∈ {ℓ, 〈1, 3〉} (see Figure 10.18). It remains, therefore, to show that E⟨1,3⟩ ≤ X. To do

this, we must show that Dr ≤ X for all points r ∈ 〈1, 3〉.
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〈7〉 〈8〉

〈3〉 〈6〉

〈1〉 〈2〉

x

y

z . .
.

. .
.

Figure 10.18: Interior points include x and y, along with the white dots on the lines 〈1, x〉
and 〈1, y〉. We now need to show that Dr ≤ X for all points r on spines, such as the point
z on the figure.

Note firstly that D⟨1⟩ ≤ El ≤ X, and D⟨3⟩ ≤ X by definition since 〈3〉 is a midpoint.

There are q − 1 remaining points on 〈1, 3〉; one such point is marked z on Figure 10.18.

Choose a line h connecting to 〈8〉 to an interior point. The line 〈1, 3〉 is opposite to h,

so there is a bijection between the points on the two lines mapping points at distance 4 to

each other. (One point, w ∈ h, is on a diagonal from 〈8〉 to 〈1〉, and therefore is mapped

to 〈1〉 under this bijection. The point 〈8〉 ∈ h is mapped to 〈3〉; the path of length 4 goes

via the point 〈7〉.) Let s ∈ h be such that d(s, z) = 4 and let t = s∗z. (See Figure 10.19.)

Now, since s is an interior point, provided 3 ∤ q − 1 we have Ds ≤ X by Proposi-

tion 10.5.1. Hence t ∈ PX . Also, Cz ≤ D⟨1⟩ ≤ Eℓ ≤ X, so z ∈ PX . Thus the line 〈t, z〉 is

in LX .

10.6.1 Transitivity on the set of points like z

Having fixed p = p, we only need to show that Dx ≤ X for points x on the spine hp.

However, we find that it is easy to show that Dx ≤ X for all spine points x, so we

prove this slightly stronger result instead. We follow a similar approach as before, by

establishing that G{ℓ,ℓ∗} acts transitively on the points under consideration, such as the
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〈7〉 〈8〉

〈3〉 〈6〉

〈1〉 〈2〉

h

t
s

z

Figure 10.19: The line h is opposite 〈1, 3〉, and d(s, z) = 4.

point z from Figure 10.19.

Lemma 10.6.1 The group

G{ℓ,ℓ∗} = 〈w0, T, rℓ, F (λ) | λ ∈ k〉

acts transitively on the set of points on spines which are not midpoints and do not lie on

ℓ or ℓ∗.

Proof. Recall that w0 rotates the apartment containing ℓ and ℓ∗, so in fact it is enough

to show that

Gℓ,ℓ∗ = 〈T, rℓ, F (λ) | λ ∈ k〉

acts transitively on the subset of these points lying on a spine line hr for some r ∈ ℓ.

We know that Gℓ,ℓ∗ stabilises the set {hr | r ∈ ℓ}, since it leaves invariant both ℓ and

the set of all midpoints between ℓ and ℓ∗. Let mp = 〈3〉 and hp = 〈1, 3〉. We begin by

calculating the stabiliser Gℓ,ℓ∗,hp . This contains both 〈F (λ) | λ ∈ k〉 and T , since both fix
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the points 〈1〉 and 〈3〉. However, rℓ maps 〈1, 3〉 to 〈2, 6〉 so rℓ 6∈ Gℓ,ℓ∗,hp . Hence we have

Gℓ,ℓ∗,hp = 〈T, F (λ) | λ ∈ k〉,

which has order q(q − 1)2, and so [Gℓ,ℓ∗ : Gℓ,ℓ∗,hp ] = q + 1. This is equal to |{hr | r ∈ ℓ}|,

and so Gℓ,ℓ∗ is transitive these lines.

Suppose that z = 〈1− 3〉 ∈ hp. We calculate the stabiliser Gℓ,ℓ∗,hp,z. Again this must

contain 〈F (λ) | λ ∈ k〉 which fixes the vectors 1 and 3, and it also contains 〈T1(λ) | λ ∈

k×〉. However, z · T2(λ) = 〈1 − λ−13〉, so 〈T2(λ) | λ ∈ k×〉 intersects Gℓ,ℓ∗,hp,z trivially.

Hence we have

Gℓ,ℓ∗,hp,z = 〈T1(λ), F (µ) | λ ∈ k×, µ ∈ k〉

with order q(q − 1). The index [Gℓ,ℓ∗,hp : Gℓ,ℓ∗,hp,z] is q − 1, and so Gℓ,ℓ∗,hp is transitive on

the q − 1 points {t | t ∈ hp} \ {p,mp}.

Therefore, G{ℓ,ℓ∗} acts transitively on the spine points as desired. □

10.6.2 Transitivity on the q non-spine lines through z

With transitivity of G{ℓ,ℓ∗} on the points like z in hand, we may fix z = 〈1 − 3〉 without

loss of generality.

Lemma 10.6.2 Let z = 〈1− 3〉 ∈ hp. Then Dz ≤ X.

Proof. Since we know that Chp ∈ X, and (provided 3 ∤ q − 1) we have located one non-

spine line (f = 〈t, z〉 in Figure 10.19) incident to z such that Cf ≤ X, it is enough to

prove that the group G{ℓ,ℓ∗},z acts transitively on the q non-spine lines through z.

Firstly we note that these lines are given by {fψ = 〈1− 3, 2+ψ3− 4+5+7〉 | ψ ∈ k}.

(It is easy to verify by multiplication in C+ that 〈2 + ψ3− 4 + 5 + 7〉 is a point and that

it forms a line with 〈1− 3〉.)

150



Now, we have

G{ℓ,ℓ∗},z = Gℓ,ℓ∗,hp,z = 〈T1(λ), F (µ) | λ ∈ k×, µ ∈ k〉.

We calculate

〈2 + ψ3− 4 + 5 + 7〉 · F (µ) = 〈−λ1 + 2 + (ψ − 2λ)3− 4 + 5 + 7〉

= 〈2 + (ψ − 3λ)3− 4 + 5 + 7〉 − λ〈1− 3〉,

and so fψ · F (λ) = fψ−3λ. Hence to map fψ to any fφ, we just need to multiply by F (λ)

where λ = 3−1(ψ − φ). This proves the transitivity result. □

Bringing this all together, we have the following proposition:

Proposition 10.6.3 Suppose 3 ∤ q − 1 and let x be a point on a spine between ℓ and ℓ∗.

Then Dx ≤ X.

Proof. If x ∈ ℓ, x ∈ ℓ∗ or x = mr for some r ∈ ℓ then Dx ≤ X by definition. Lemma 10.6.2

and Lemma 10.6.1 prove the proposition in all other cases. □

10.7 Proof that H = X

We can now prove the two lemmas which together give us Proposition 10.0.2.

Proof (Proof of Lemma 10.0.3). By definition we have Fp = 〈Ef | f 3 p〉, so we must

show that Ef ≤ X for every line f 3 p. For f = ℓ this follows immediately from the

definition of X. For f = hp, we must show that 〈Dx | x ∈ hp〉 = Ehp ≤ X; this

follows from Proposition 10.6.3. Finally, suppose f is any of the remaining q − 1 lines.

Then f contains the point p ∈ ℓ and q other points, all of which are interior points. By

Proposition 10.5.1, if x is one of these interior points then Dx ≤ X, and Dp ≤ X by

definition. Hence Ef ≤ X. Therefore Fp ≤ X. □
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Proof (Proof of Lemma 10.0.4). We must show that Dx ≤ X for all x ∈ Ip†(p), where

p† ∈ ℓ∗ with d(p, p†) = 6 (in other words, with p† 6= p∗). The ideal line Ip†(p) contains the

points p∗ and mp† , as well as q − 1 interior points which lie on the diagonals from p† to

p. We have Dp∗ ≤ Eℓ∗ ≤ X and Dm
p†

≤ X by definition, and Proposition 10.5.1 tells us

that Dx ≤ X for any interior point x, so we are done. □

Proof (Proof of Proposition 10.0.2). Lemma 10.0.3 and Lemma 10.0.4 together prove that

H = X.

We obtain the dimension bound as follows. We have dimEℓ ≤ q2 + q + 2 from

Lemma 9.1.1, and we know that dimDp ≤ q + 2. Now, Eℓ and Eℓ∗ intersect in a 1-space

at each of the q + 1 midpoints, so

dimX0 = dim〈Eℓ, Eℓ∗〉 ≤ 2(q2 + q + 2)− (q + 1) = 2q2 + q + 3.

Each Dmr overlaps X0 in the lines hr and hr∗ , and therefore contributes at most q − 1 to

the dimension of X. Thus we have

dimX ≤ 2q2 + q + 3 + (q + 1)(q − 1) = 3q2 + q + 2,

as required. □

10.7.1 A note about the condition 3 ∤ q − 1

By computer calculation (see Table 6.1) we have already demonstrated that dimH = 7

over the field F7. This is generalised further by Proposition 7.0.5 to fields of order q = 7a.

This provides some evidence that the condition 3 ∤ q − 1 is not actually required, since

3 | 7a − 1 for all a ≥ 1.

In the same way that identifying the presence of ‘crossbraces’ allowed us to demon-

strate that new points and lines were contained in PX and LX , it seems likely that finding
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more connections in Γ might be enough to demonstrate that Dx ≤ X for all interior

points x, even in the case that 3 | q − 1. For example, in the case q = 7, the q + 1 lines

incident to an interior point x are composed of the following G{ℓ,ℓ∗},x orbits:

• 1 line connecting x to either ℓ or ℓ∗,

• 1 line which is the central line of a diagonal,

• 2 lines which each contain a point lying on a crossbrace,

• 2 more lines which each contain a point lying on a crossbrace, and

• 2 lines which do not contain any points lying on a crossbrace.

(This contrasts with the case 3 ∤ q − 1, where Lemma 10.5.5 shows that all lines incident

to x, except the first two orbits in the list above, lie in one single orbit of length q − 1;

and furthermore that all of these lines contain a point lying on a crossbrace.)

A line containing a point z lying on a crossbrace is automatically in LX , as it is

spanned by x and z, both of which are in PX . Therefore it is only the last orbit in the

list above which poses a potential problem. However, for q = 7 at least, the lines in the

last orbit do each contain a point z on a line f , which in turn contains two points z1, z2

lying on crossbraces. Thus z1, z2 ∈ PX , so f ∈ LX and z ∈ PX , and so the lines in the

last orbit are also in LX .

It seems likely than an approach like this will generalise to any finite field, but this

has not yet been shown.
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Chapter 11

Proof of the Main Theorem

We are now able to bring all of the results together in our main theorem, which we restate

here.

Theorem A Let k = Fq, where q = πa (π a prime) with π > 3 and 3 ∤ π − 1. Set

G = G2(k), and let ∆ be the building of G. Denote by C the Cayley module for G,

and let FC be the corresponding fixed-point sheaf on ∆. Then H0(∆,FC)
∼= C and so

dimH0(∆,FC) = 7.

Proof. By Proposition 7.0.5, it suffices to consider the case where q = π. Let H =

H0(FC). If K, the kernel of the natural map θ : H → C, is non-zero, then by Theo-

rem 8.2.2 we have dimH ≥ 9q2 − 36q + 47. But by Proposition 10.0.2 we have dimH ≤

3q2 + q+2. This is only possible if 9q2 − 36q+47 ≤ 3q2 + q+2, which is true if and only

if 5/3 ≤ q ≤ 9/2. The possible values for q are therefore 2, 3 or 4, all of which are ruled

out by our assumption that π > 3.

Hence K = 0, and so H ∼= C. Thus dimH = 7 as required. □

As per the discussion in Section 10.7.1, we suspect that in fact the result holds without

the need for the condition 3 ∤ π − 1; the case q = 7 has been computed using Magma,

and here we get dimH = 7 as well, which provides some evidence for this speculation.



The case q = 13, which would provide further evidence, is currently just out of our reach

computationally. We plan to optimise our Magma programs in the hope that the case

q = 13 becomes viable.
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Appendix A
Magma Programs

The Magma programs written during the completion of this thesis are available at the
following GitHub repository:

https://github.com/mw-butler/sheaves-on-buildings

https://github.com/mw-butler/sheaves-on-buildings
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