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Abstract

The main aim of this work is to construct several new series of axial algebras of Monster
type (2η, η). These arise as subalgebras of the Matsuo algebras generated by singles and
doubles with respect to a flip, an automorphism of order 2. First, we construct a new
series of algebras of dimension n2 in an ad hoc way, as subalgebras of the Matsuo algebra
Mη(Oε

n+1(3)) and investigate the properties of these new algebras. Towards the end of
the thesis, we determine all classes of flips σ for the extended symmetic group 2n−1 : Sn.
Then, for each class of flips, we construct the fixed subalgebras Mσ and determine their
basic combinatorial properties. Furthermore, we identify the values of the parameter η,
for which these new algebras are not simple and determine the dimension of the radical in
each case.
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CHAPTER 1

INTRODUCTION

1.1 Background

The field of axial algebras has sprung, in a sense, from a single example. In 1973, Fischer
and Griess predicted the existence of the largest sporadic finite simple groups, the Monster
M of order approximately 8× 1053. The character table of M was found, predicated on
the existence of the smallest non-trivial irreducible representation of dimension 196883. It
was Norton, who observed that this irreducible representation carries the structure of a
commutative non-associative algebra and it was exactly this algebra that Griess [16] used
in 1982 to show the existence of M .

Shortly after that, Conway [7] improved the construction and produced the unital Griess
algebra V of dimension 1 + 196883 = 196884. Discovery of M led to a host of conjectures,
the main one of them being the Monstrous Moonshine conjecture of Conway and Norton
[8], generalising earlier observations of McKay and Thompson, namely, that M acts on a
graded module, whose graded dimension is the modular invariant

J(q) = q−1 + 196884q + 21493760q2 + . . .

and the entire graded character consists of modular functions known as Hauptmoduln.

Initially, this conjecture was verified by Atkin, Fong and Smith using some recurrence
relations satisfied by the coefficients of modular functions. The first explicit construction
was proposed by Frenkel, Lepowsky and Meurman [12] using vertex operators from quantum
field theory. Later this was generalised by Borcherds [4] who developed the theory of
vertex algebras and observed that the graded module acted on by M is in fact a vertex
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operator algebra (VOA) V \. As the coefficients above suggest, the Griess algebra is simply
the weight 2 component of the VOA V \.

Nearly ten years later, Miyamoto [34] realised that the special elements of V , the 2A-axes
of Norton, are conformal elements of V \, rescaled and renamed as Ising vectors, generating
Virasoro subalgebras of V \ in a specific action. Moreover, he noticed that the Ising
vectors satisfy specific C2-graded fusion laws (Definition 2.1.1) and this forces V \ (and its
component V ) to have automorphisms, called Miyamoto involutions (Section 2.4), one for
each Ising vector. In the Griess algebra V , the adjoint of a 2A-axis a satisfies the following
Monster fusion law:

∗ 1 0 1
4

1
32

1 1 1
4

1
32

0 0 1
4

1
32

1
4

1
4

1
4 1, 0 1

32

1
32

1
32

1
32

1
32 1, 0, 1

4

Table 1.1: Monster fusion law

Miyamoto asked which VOA are generated by a pair of Isiang vectors and he managed
to do some cases. In 2007, Sakuma [36] completed this project, having classified weight
2 subalgebras in the VOA generated by two Ising vectors. Namely he proved that every
such weight 2 component is isomorphic to one of eight specific algebras, all of them arising
as subalgebras of the Griess algebra V .

Ivanov [23] extracted the properties used by Sakuma in his proof. These properties became
the axioms of a new class of commutative non-associative algebras, called the Majorana
algebras. Naturally, the Griess algebra V is a Majorana algebra. Majorana algebras are
generated by special idempotents whose adjoint action is semi-simple with all eigenvalues
in {1, 0, 1

4 ,
1
32} and multiplication of eigenvectors is controlled by the Monster fusion law

from Table 1.1. Thus, Majorana algebras became the first class of non-associative algebras,
whose axioms involve a fusion law. There were also further axioms, which we omit for now.
The graded nature of the Monster fusion law means that, for every axis a in a Majorana
algebra, it admits an automorphism τa of order two, called the Majorana involution of a.
Thus, every Majorana algebra admits a significant (definitely, non-trivial) automorphism
group.
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In 2011, Ivanov, Pasechnik, Seress, and Shpectorov [22] proved a version of the Sakuma
theorem for Majorana algebras, i.e., they classified Majorana algebras generated by two
Majorana axes. Equivalently, since two involutions always generate a dihedral group, these
are the algebras having dihedral automorphism groups. In the same paper [22] the authors
also determined Majorana algebras for the first non-dihedral group, the symmetric group
S4. Further assumptions were utilised in this additional proof and they were added to the
axioms of Majorana algebras.

At about the same time, competing programs in the computer algebra system GAP were
created by Seress [38] and by Shpectorov, that were able to find Majorana algebras for
various further small groups. This experience of explicitly computing Majorana convinced
Shpectorov that the fusion law itself was strong enough in most cases and the additional
axioms were not necessary. Thus, the axial algebras were born. They were defined in
2015 in broad generality by Hall, Rehren, and Shpectorov in [17, 18]. These allowed an
arbitrary fusion law, arbitrary field, and no further axioms, apart from commutativity and
primitivity of axes. According to this new paradigm, different fusion laws define different
subclasses of axial algebras.

It turned out the class of Jordan algebras also exhibits axial behaviour. They were
introduced in 1933 by Pascual Jordan [26, 27] to represent algebras of states of quantum
systems. They are commutative algebras A that satisfy the Jordan identity:

x2(yx) = (x2y)x,

for all x, y ∈ A

Idempotents in a Jordan algebra satisfy the Peirce decomposition amounting to the
following fusion law:

∗ 1 0 1
2

1 1 1
2

0 0 1
2

1
2

1
2

1
2 1, 0

Table 1.2: Fusion law J (1
2)

A group of 3-transpositions is a pair (G,C), where G is a group, C a normal set (union
of conjugacy classes) of involutions, i.e., elements of order 2, such that G = 〈C〉 and
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for all a, b ∈ C we have that |ab| ≤ 3. Given a group of 3-transpositions, a field F
of characteristic not two, and η ∈ F with η 6= 1, 0, we can define the Matsuo algebra
Mη(G,C) (Definition 3.3.1). This is an algebra of Jordan type η, the class of axial algebras
introduced in [18], which is defined by the fusion law as in Table 1.2, but with η in place
of 1

2 . (In particular, Jordan algebras generated by primitive axes are algebras of Jordan
type 1

2 .) In [28, 29] Joshi introduced the concept of a double axis, and in [14], Galt, Joshi,
Mamontov, Shpectorov, and Staroletov introduced the flip construction that produces,
for an involution (flip) σ of (G,C) a subalgebra generated by single and double axes (see
Section 5.1 for the definitions) fixed by σ. This flip subalgebra satisfies the fusion law of
Monster type (2β, β) (as in Table 1.1, but with 2β and β in place of 1

4 and 1
32). In this way,

we obtain a rich family of examples of algebras of Monster type. It is a very interesting
task to study such flip subalgebras and determine their properties.

The case of G = Sn was completed in [29, 14]. In particular, they constructed a new
infinite series of algebras Qk(η) of dimension k2 generated by k single axes and k2 − k
double axes. Other cases of almost simple 3-transposition groups and their flips have also
been considered by various authors, with papers currently being prepared for publication.
In [1], I constructed an infinite series of algebras Qk(η) within the Matsuo algebra for
the group O+

k+1(3), which is, in a sense, dual to Qk(η). Namely, Qk(η) is generated by
k2 − k single axes and k double axes. It was later understood that the origin of this new
series Qk(η) is not so much the Matsuo algebra of O+

k+1(3), but rather its proper Matsuo
subalgebra Mη(2k : Sk+1).

In this thesis, we completely classify all flips of G = 2n−1 : Sn (where we take n = k + 1),
determine the corresponding flip subalgebras and discuss their properties, including their
critical values of η and the dimension of the corresponding radical.

1.2 Discussion

As discussed above, in this thesis, we utilise the flip construction to build new series of
axial algebras of Monster type (2η, η) generated by single and double axes. First, we deal
with the case of Matsuo algebras Mη(−O+

n+1(3)) corresponding to a class of reflections
of the isometry group of a non-degenerate orthogonal space over F3. In these Matsuo
algebras, we create a new series of subalgebras of dimension n2.

Namely, let G = GO+
n+1(3) be a group of orthogonal transformations of a vector space V

of dimension n+ 1 over F3, and let {e0, e1, . . . , en} be an orthonormal basis (this means
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that ei are pairwise orthogonal and

(e0, e0) = (e1, e1) = · · · = (en, en) = 1.

Suppose that C is the set of reflections and let G = 〈C〉 ≤ GO+
n+1(3). Then (G,C) is a

3-transposition group.

Again suppose that F is a field of characteristic not equal to 2 and let η ∈ F, η 6= 0, 1.
Recall from ([18], Section 6) that the Matsuo algebra Mη(G,C) over F corresponding to
the 3-transposition group (G,C) has a basis C and the multiplication of two basis elements
a, b ∈ C is given by

a · b =


a, if a = b;

0, if a 6= b and ab = ba;
η
2(a+ b− c), if a 6= b and ab = ba =: c.

.

The elements a ∈ C are the axes of the axial algebra Mη(G,C), and we call them single
axes. The sums of two orthogonal single axes a+ b are called double axes (Definition 5.1.1).
In the following theorem, we determine elements of C with the corresponding 1-spaces in
the orthogonal space V and construct primitive axial subalgebras of dimension n2 that
are generated by single and double axes.

Theorem 1.2.1. Let A be the subspace of the Matsuo algebra Mη(−O+
n+1(3)) spanned by

the set of single axes S = {〈ei + εej〉 : 1 ≤ i < j ≤ n, ε = ±1} and the set of double axes
D = {〈e0 + ei〉+ 〈e0 − ei〉 | 1 ≤ i ≤ n}. Then A is a primitive axial algebra of Monster
type (2η, η) of dimension |S|+ |D| = n(n− 1) + n = n(n− 1 + 1) = n2.

Moreover, we study the simplicity of the constructed subalgebras A. In Proposition 6.4.2
we show that no proper ideal of A can contain one of the generating axes in S ∪D. By
[30], this means that A is simple exactly when the Frobenius form on A has zero radical
(equivalently the Gram matrix of the Frobenius form on A has non-zero determinant).
We compute in GAP [15], the determinant as a polynomial in η and we find its roots for
n ≤ 14. Based on this, we have several precise conjectures describing the roots and their
multiplicities for arbitrary n.

Conjecture 1.2.2. The determinant of the Gram matrix G is a polynomial of degree
n(n+1)

2 , unless n = 3.
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Conjecture 1.2.3. The multiplicity of the eigenvalue 1
2 is

n(n− 1)
2 − 1 = n2 − n− 2

2 = (n+ 1)(n− 2)
2 .

Conjecture 1.2.4. The Gram matrix G has eigenvalue − 1
n−3 with multiplicity n.

Conjecture 1.2.5. There is just one further simple eigenvalue − 1
2(n−1) with multiplicity

1.

Next, we consider the extended symmetric group 2n−1 : Sn. Let vi = (1, . . . , 1,−1, 1, . . . , 1),
where −1 appears in the ith position. (This notation is re-introduced and utilised in Section
7.1.) Suppose that G = 〈C〉 and C is the set consisting of all elements eij = (i, j) and
fij = vij(i, j), where 1 ≤ i < j ≤ n and vij = vivj = (1, . . . , 1,−1, 1, . . . , 1,−1, 1, . . . , 1),
where −1 are in the ith and jth positions. Then (G,C) is a 3-transposition group.
Furthermore, in this case we have four types of flips σ:

1. σ = gk,0 = σk = (1, 2)(3, 4) · · · (2k − 1, 2k), n = 2k.

2. σ = g0,r = wr = (1, 1, . . . , 1,−1,−1, . . . ,−1), where r is the number of −1s and
r ≤ n

2 .

3. σ = gk,r = (1, 1, . . . , 1,−1, . . . ,−1) : (1, 2)(3, 4) · · · (2k − 1, 2k), n ≥ 2k + r.

4. σ = hk = (−1, 1,−1, 1, . . . ,−1, 1) : (1, 2)(3, 4) · · · (2k − 1, 2k), n = 2k.

For each class of flips σ we have the corresponding flip subalgebaras as follows:

Theorem 1.2.6. The fixed subalgebra Mσ of the Matsuo algebra M = Mη(22k−1 : S2k)
contains precisely 2k single axes, 2k(k − 1) double axes, and no extras. Therefore, the
dimension of the flip subalgebra Aσ = Mσ is 2k + 2k(k − 1) = 2k2.

Theorem 1.2.7. The fixed subalgebra Mσ of the Matsuo algebra M = Mη(2n−1 : Sn)
contains r(r − 1) + (n − r)(n − r − 1) single axes, r(n − r) double axes, and no extras.
Therefore, the dimension of Aσ = Mσ is r2 + n(n− r − 1).

Theorem 1.2.8. The flip subalgebra Aσ is the direct sum of two subalgebras isomorphic
to 2Qk(η) and Rn−2k,r.

Theorem 1.2.9. The fixed subalgebra Mσ of the Matsuo algebra M = Mη(2n−1 : Sn)
contains no single axes, n(n−1)

2 double axes, and no extras. Therefore, the dimension of
the flip subalgebra Aσ = Mσ is n(n−1)

2 .
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In Chapter 2, we give the basic background of axial algebras and it is divided into four
sections. In the first section, we provide definitions and some examples of axial algebras.
After that, we introduce Seress property and its application. Then, we discuss the primitive
axial algebra of Jordan type η and finding the eigenspaces for the adjoint map ada. We
conclude this chapter by defining the grading and automorphisms.

The goal of Chapter 3 is to study Matsuo algebras. First, we discuss the groups of
3-transpositions and their correspondence with Fischer spaces. Then we define Matsuo
algebras.

In Chapter 4, we study the structure of axial algebras. In particular, we define closed
set of axes, the radical, Frobenius form, and Gram matrix. Later, in Chapter 6, we use
the computer algebra system GAP [15] to determine the Gram matrix for subalgebras we
construct, for small n.

In Chapter 5, we review some of Joshi’s work from [29]. In particular, we discuss double
axes, fixed subalgebra Qk(η) of dimension k2. We conclude this chapter by describing the
ideals and the radical of Mη(S2k).

The aim of Chapter 6 is to construct a new series of axial algebras of Monster type (2η, η)
related to the orthogonal groups Oε

n+1(3). Firstly, we define the involutions (classes of
reflections). Then we construct the fixed subalgebra generated by n(n1) single axes and n
double axes. Furthermore, we investigate when these algebras are simple. We formulate
three conjectures based on the calculation, using GAP, of the roots of the determinant of
the Gram matrix of the Frobenius form for several small values of n.

In Chapter 7, we construct new series of axial algebras of Monster type (2η, η) related
to the extended symmetric groups 2n−1 : Sn. We begin this chapter by determining the
class C and we prove the key lemmas. In the next section, we discuss the automorphism
of (G,C). Then we determine the classes of flips. In particular, we have two classes of
flips σ = gk.r and σ = hk. Moreover, we construct the fixed subalgebras Mσ corresponding
to σ. Finally, we calculate the critical values of η and then discuss when these new fixed
algebras are simple.

In Chapter 8, we provide a conclusion of this work and also may include some conjectures.
Finally, we provide recommendations for the future study.
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1.3 Notation

In the following table we list the most common used notations.

Notation Description
A,B,C, . . . Algebraic structure.
a, b, c, . . . Elements in algebraic structure.
α, β, γ, . . . Scalars.
G,L, . . . Graphs.
F A field.
F Fusion rules ∗ : F × F → 2F .
ada The adjoint map in End(A).
λ, µ, . . . Eigenvalues in F .
Aλ(a) λ-eigenspace of ada.
τa Miyamoto involution.
X The set of generating axes.
G(X) Miyamoto group.
Ta Axis subgroups.
C A set of 3-transposition.
(G,C) A 3-transposition group.
Mη(G,F) Matsuo algebra of the Fischer space G over a field F.
(., .) The bilinear form.
A⊥ The radical of the Frobenius form.
Ann(A) The annihilator of A.
Gr The Gram matrix.
Qk(η) Fixed subalgebra of dimension k2 in the Matsuo algebra Mη(S2k).
Qk(η) The subalgebra A of Mη(O+

k+1(3)) of dimension k2.
2Qk(η) Flip subalgebra of dimension 2k2 in the Matsuo algebra Mη(22k−1 : S2k).
Mη(−O+

n+1(3)) Matsuo algebra of the orthogonal group over F3.
Rn,r Flip subalgebra of dimension r2 + n(n − r − 1) in the Matsuo algebra

Mη(2n−1 : Sn).
Hk Flip subalgebra of dimension n(n−1)

2 in the Matsuo algebra Mη(2n−1 : Sn).
ru Reflection in a nonsingular vector u.
det(G) The determinant of G.
G = 2n−1 : Sn The extended symmetric group.
(v, σ) Elements in G, where v = (δ1, δ2, . . . , δn) ∈ V and σ ∈ Sn.
Â Ambient subalgebra.
ηi Critical values.
ni Multiplicity of ηi.
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CHAPTER 2

AXIAL ALGEBRAS

In this chapter we provide basic definitions related to axial algebras, introduce key examples
and develop their properties.

2.1 Definitions and examples of axial algebras

In this thesis an algebra is a vector space with a bilinear product. In particular, algebras
are non-associative, i.e., associativity is not assumed. Suppose that A is a commutative
algebra over a field F. For an arbitrary a ∈ A, we write ada for the adjoint map in End(A)
that is given by ada : b 7→ ab. The eigenvalues, eigenvectors and eigenspaces of a are the
eigenvalues, eigenvectors and eigenspaces of ada, respectively. The element a is said to
be diagonalisable if ada is diagonalisable as a matrix, that is, there exists a basis of A
consisting of eigenvectors of ada. For λ ∈ F, we write

Aλ(a) = {b ∈ A|ab = λb}

for the λ-eigenspace of ada. This is trivial when λ is not an eigenvalue of ada. For F ⊂ F,
we set

AF(a) = ⊕λ∈FAλ(a).

Note that A∅(a) = 0.

Definition 2.1.1 ([18]). A fusion law is a set F together with a map ∗ : F ×F → P(F),
where P(F) is the power set of F .

We will represent fusion laws by tables similar to group multiplication tables. In the cell
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corresponding to λ, µ ∈ F , we simply list the elements of the subset λ ∗ µ. In particular,
if λ ∗ µ = ∅ then we leave the cell empty.

Definition 2.1.2. The fusion law F is symmetric (or commutative) if λ ∗ µ = µ ∗ λ for
all λ, µ ∈ F ,

Example 2.1.3. For A = {0, 1} ⊆ F, consider the fusion law in Table 2.1. Here 1∗1 = {1},

∗ 1 0

1 1

0 0

Table 2.1: Fusion law A

0 ∗ 0 = {0} and 1 ∗ 0 = 0 ∗ 1 = ∅. Manifestly, this fusion law is symmetric.

Let again A be a commutative algebra over F and let F ⊆ F be a symmetric fusion law.

Definition 2.1.4. An non-zero idempotent a ∈ A is an F-axis if

(1) A = AF(a); that is, a is diagonalisable and all of its eigenvalues lie in F ; and

(2) for all λ, µ ∈ F , Aλ(a)Aµ(a) ⊆ Aλ∗µ(a); that is, every product uv of a λ-eigenvector
u and µ-eigenvector v is a sum of some ν-eigenvectors, for ν ∈ λ ∗ µ.

Notice that if a is an idempotent then 1 is an eigenvalue of ada. Hence we always assume
that 1 ∈ F .

Definition 2.1.5. An axis a ∈ A is primitive if A1(a) = Fa; i.e., it is 1-dimensional.

Definition 2.1.6. The algebra A is an F-axial algebra if it is generated by a set of F -axes.
The algebra A is said to be primitive if the generating axes are primitive.

We will speak of simply axes and axial algebras when the fusion law F is clear from the
context.

Example 2.1.7. The Griess algebra V over R is of dimension 196, 884. This algebra is
primitive axial for the fusion law given in Table 1.1.

Example 2.1.8. Jordan algebras are also examples of axial algebras. Recall that a Jordan
algebra is a commutative algebra A satisfying the Jordan identity:

x(yx2) = (xy)x2,
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for all x, y ∈ A.

If A is a Jordan algebra and a ∈ A is an idempotent then we have the Peirce decomposition:

A = A1(a)⊕ A0(a)⊕ A 1
2
(a),

where the summands satisfy the multiplication properties:

A1(a)A1(a) ⊆ A1(a), A1(a)A0(a) = 0, A1(a)A 1
2
(a) ⊆ A 1

2
(a),

A0(a)A 1
2
(a) ⊆ A 1

2
(a), A 1

2
(a)A 1

2
(a) ⊆ A1(a)⊕ A0(a).

One can easily see that this amounts to the condition that every non-zero idempotent in a
Jordan algebra is a J (1

2)-axis, where the fusion law J (1
2) is given in Table 1.2.

Note that not every Jordan algebra contains non-zero idempotents. For example, in a
nilpotent Jordan algebra, every idempotent must be zero. However, when a Jordan algebra
is generated by a set of idempotents, it is an example of an axial algebra for the above
fusion law.

Based on this example, Hall, Rehren, and Shpectorov in [18] introduced the class of axial
algebras of Jordan type η (for η ∈ F, η 6= 0, 1) as primitive axial algebras for the fusion law
J (η), shown in Table 2.2. Clearly, a Jordan algebra generated by primitive idempotents is

∗ 1 0 η

1 1 η

0 0 η

η η η 1 + 0

Table 2.2: Fusion law J(η)

an example of algebras of Jordan type 1
2 . We will introduce further examples of algebras

of Jordan type in the next chapter.

The following is an example of an algebra of Jordan type 1
2 .

Example 2.1.9. Consider a field F of characteristic not equal to two and let V be a
vector space with a quadratic form q : V → F. The associated bilinear form F (u, v) is
given by:

q → F (u, v) := 1
2(q(u+ v)− q(u)− q(v)).
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Then the Clifford algebra C = Cl(V, q) is defined as;

C := T (V )/〈v2 − q(v)〉,

where T (V ) is the tensor algebra,

T (V ) = F⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . . ,

and q(v) = F (v, v). This is an associative non-commutative algebra of dimension equal
to 2dim(V ). Define a Jordan algebra CJ = (C, u⊗v+v⊗u

2 ), let B be a subspace F ⊕ V of
CJ . It is easy to check that B is a subalgebra. Indeed, for every u, v ∈ V we have that
u ◦ v = uv+vu

2 = F (u, v) ∈ F. Then take two elements (α, u), (β, v) ∈ B, so we have

(α, u) ◦ (β, v) = 1
2((α, u)(β, v) + (β, v)(α, u)),

= 1
2(αβ + αv + uβ + uv + αβ + βu+ vα + vu),

= αβ + 1
2(uv + vu) + αv + βu.

Since αβ + 1
2(uv + vu) ∈ F and αv + βu ∈ V , we have that (α, u) ◦ (β, v) ∈ B. So B is a

subalgebra of CJ . Since CJ is a Jordan algebra, we also have that B is a Jordan algebra.

To find the idempotents in B, let a = α + u, then

a2 = (α + u)(α + u),

= α2 + 2αu+ u2,

= α2 + q(u) + u2.

If a2 = a, so we have that 2αu = u and this implies to α = 1
2 . Also, α2 + q(u) = α, hence

q(u) = 1
4 . Define ā = α− u. If a is an idempotent, then ā is also an idempotent.

Now, we determine the eigenspaces for ada. Let a = 1
2 + u ∈ B be an idempotent and

suppose that w ∈ u⊥ (this means that u and w are orthogonal). Then

aw = (1
2 + u)w = w

2 + uw = w

2 .

Hence, we deduce that u⊥ ⊆ B 1
2
(a) and similarly we have u⊥ ⊆ B 1

2
(ā).

Moreover, aā = (1
2 + u)(1

2 + u) = 1
4 + q(u) = 0, since q(u) = 1

4 . This means that ā ∈ B0(a).
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Since dim(B) = dim(V ) + 1 and dim(u⊥) = dim(V )− 1, we have that

B1(a) = 〈a〉 = B0(ā),

B0(a) = 〈ā〉 = B1(ā),

B 1
2
(a) = 〈u⊥〉 = B0(ā).

Then, by the Peirce decomposition, we have that B = B1(a)⊕B0(a)⊕B 1
2
(a).

2.2 Seress property

Suppose that A is a commutative algebra and a ∈ A is a primitive axis for a fusion law F .

Proposition 2.2.1. Under the above assumptions, for λ ∈ F , we have

A1(a)Aλ(a) =

Aλ(a) if λ 6= 0,

0 if λ = 0.

Proof. Take u ∈ A1(a) and v ∈ Aλ(a). By primitivity, A1(a) = Fa. That is, u = αa for
some α ∈ F. Therefore, uv = αav = αada(v) = αλv, since v ∈ Aλ(a). Hence, uv = αλv.
When λ = 0, this clearly means that A1(a)A0(a) = 0. If λ 6= 0 then, first of all, we have
αλv ∈ Aλ(a), i.e., A1(a)Aλ(a) ⊆ Aλ(a). On the other hand, for any w ∈ Aλ(a), we can
select u = a (i.e., α = 1) and v = 1

λ
w. Then we have that uv = αλv = 1λ 1

λ
w = w, which

means that A1(a)Aλ(a) = Aλ(a).

In view of this, for primitive axial algebras, we will assume that in the corresponding
fusion law we have that

1 ∗ λ =

{λ} if λ 6= 0,

∅ if λ = 0.

We can see this to hold in the examples of fusion laws above. We also note that, in those
fusion laws, the element 0 behaves in a similar way to the element 1. Fusion laws having
this additional property have a special name.

Definition 2.2.2. A fusion law F is Seress if 0 ∈ F and

0 ∗ λ =

{λ} if λ 6= 1,

∅ if λ = 1.
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So we have the following.

Example 2.2.3. The fusion laws A, J (η), and the fusion law of the Griess algebra in
Table 1.1 are Seress.

Note that an axial algebra for a Seress fusion law will be also be called Seress.

Definition 2.2.4. Suppose that A is an algebra and u, v ∈ A. We say that u and v

associate if (uw)v = u(wv) for all w ∈ A.

The following is an important property of axial algebras with a Seress fusion law.

Proposition 2.2.5 (Seress). Suppose that A is a Seress axial algebra and a ∈ A is one of
the generating axes. Then a associates with A1(a)⊕ A0(a), that is,

a(uv) = (au)v,

for all u ∈ A and v ∈ A1(a)⊕ A0(a).

Proof. Since the equality a(xu) = (ax)u is linear in x, it suffices to take x from any
spanning set of A. Since the eigenvectors of ada form a spanning set of A, we can assume
that x is an eigenvector, that is, x ∈ Aλ(a) for some λ ∈ F . In view of the Seress property,
Aλ(a)A1(a) ⊆ Aλ(a) and Aλ(a)A0(a) ⊆ Aλ(a). This means that xu ∈ Aλ(a). Therefore,
a(xu) = λxu. Also, (ax)u = λxu. Hence the claim holds.

Now, we provide an application of Seress property. Note that the fusion law A in Table
2.1 is Seress.

Proposition 2.2.6. Every primitive axial algebra with fusion law A is a direct sum of a
number of copies of F.

Proof. We need to show that for any algebra A with a primitive A-axis a, we can write
A = 〈a〉 ⊕ A0(a). It is easy to check that A0(a) is a subalgebra, and so A is a direct sum
of decomposition subalgebras. Furthermore, every non-zero primitive idempotent b lies
in A0(a), where b 6= a. If A is a primitive A-axial algebra then A0(a) is also a primitive
A-axial algebra. To prove this, we write b = λa+ u, where u ∈ A0(a) and λ ∈ F.

b = b2 = λ2a2 + 2au+ u2,

since u ∈ A0(a) we have au = 0. So λa = λ2a2 and u = u2. Since λ = 1, 0 and 〈a〉 ∼= Fa
we only have two idempotents 0 and a. If λa = 0, then b ∈ A0(a) as claimed. Assume that
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λa = a and since b 6= a we should have u 6= 0. Note that ba = a and bu = u and hence
a, u ∈ A1(b). Thus b is not primitive, this is a contradiction.

2.3 Algebras of Jordan type η

In this section we classify all 2-generated axial algebras A of Jordan type η. This means
that there are two axes that together generate the whole algebra. Consider the fusion law
of Jordan type J(η) as shown in the example 2.2. Thus we write A = 〈a, b〉, for a and b

are primitive axes. Set
σ := ab− ηa− ηb.

We need to prove that σ ∈ A1(a)+A0(a), and also by symmetry σ ∈ A1(b)+A0(b). Indeed,
by using the fact that A = A1(a)⊕ A0(a)⊕ Aη(a), we can write

b = φa(b) · a+ b0 + bη,

where φa(b) ∈ F, b0 ∈ A0(a) and bη ∈ Aη(a). We write φ to denote φa(b). Then we have

σ = ab− ηa− ηb = a(φa+ b0 + bη)− ηa− η(φa+ b0 + bη),

= (φ− η − ηφ)a+ (−η)b0 + (η − η)bη,

∈ A1(a)⊕ A0(a).

Since the fusion law J(η) is Seress, and by Corollary 2.2.5, a associates with σ. By
symmetry we deduce that σ ∈ A1(a)⊕ A0(a).

Set π = πa(b) = φ− η − ηφ. Since a and b are interchanged, so we can write φb(a) = φ′

and then π′ = πb(a) = φ′ − η − ηφ′. Hence σ = πa− ηb0.

Now, we claim that A is spanned by a, b and σ. Thus A = 〈a, b, σ〉, this means A is at
most 3-dimensional.

Firstly, we prove that π = π′ and φ = φ′. Notice that

σa = (πa− ηb0)a = πa,

since a2 = a, ab0 = 0. Also, by symmetry σb = π′b. Then we can write σ(ab) = (σa)b = πab,
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since σ and b associate. Thus,

σ2 = σ(ab− ηa− ηb) = πab− ηπa− ηπ′b.

Then we have
πab− ηπa− ηπ′b = π′ab− ηπ′b− ηπa,

so either ab = 0 or π = π′. If ab = 0, then b = b0 and φ = φ′ = 0. So π = π′ = −η.
Therefore, in both cases we get π = π′. Furthermore, if π = π′ then

φ− η − ηφ = π = φ′ − η − ηφ′,

so we have (φ− φ′)(1− η) = 0, but η 6= 1. Then φ = φ′. Therefore,

σ2 = πab− ηπa− ηπ′b = πab− ηπa− ηπb = π(πab− ηa− ηb) = πσ.

Then there are two cases:

(i) If ab = 0, then A is spanned by a and b as a vector space, and Aη(a) = Aη(b) = {0}.
The fusion law in this case as in Table 2.1..

(ii) If ab 6= 0, then A has a spanning set {a, b, σ} and the multiplication between the
elements is given in the folowing table:

∗ a b σ

a a σ+ ηa+ ηb πa

b σ+ ηa+ ηb b πb

σ πa πb πσ

Table 2.3: Multiplication table of the primitive axial algebras A

Consider a 2-generated primitive axial algebra A = 〈〈a, b〉〉 = 〈a, b, σ〉, and suppose that
dim(A) = 3. Then we determine the eigenspaces for ada. Since A is primitive, we have
A1(a) = 〈a〉.

Recall that σ ∈ A1(a)⊕ A0(a), and let u = σ + αa ∈ A0(a), for some α ∈ F. So

0 = adau = au = a(σ + αa) = πa+ αa,

16



then α = −π and so u = σ − πa. Hence A0(a) = 〈σ − πa〉.

Now, we calculate the spanning set in Aη(a). Let v = αa + βb + γσ ∈ Aη(a), for some
α, β, γ ∈ F. Then

ηv = av,

ηαa+ ηβb+ ηγσ = αa+ βab+ γaσ,

= αa+ β(σ + ηa+ ηb) + γπa,

= (α + βη + γπ)a+ βηb+ βσ.

So, αη = α+βη+γπ. Take γ = 1 and β = η. Then we get α = η2+π
η−1 . Since π = φ−η−ηφ,

we have that α = η2+φ−η−ηφ
η−1 = (η−1)(η−φ)

η−1 = η− φ. Hence v = (η− φ)a+ ηb+ σ. Therefore,
Aη(a) = 〈(η − φ)a+ ηb+ σ〉.

2.4 Grading and automorphisms

In this section we define a grading and related automorphisms. First, we provide the
definition of a morphism of the fusion laws and then we define a group fusion law. The
definitions and results in this part come from [10] and [30].

Definition 2.4.1. Let F1 and F2 be two fusion laws. A morphism from F1 to F2 is a
map α : F1 → F2 such that

α(f1 ∗ f2) ⊆ α(f1) ∗ α(f2),

for all f1, f2 ∈ F1.

We also consider the natural extension of α to a map 2F1 → 2F2 , which will also be denoted
by α. This makes the collection of all fusion laws into a category Fus.

Definition 2.4.2. Let F1 and F2 be two fusion laws. Then we define the product of
(F1, ∗) and (F2, ∗) to be the fusion law (F1 ×F2, ∗) given by

(f ′1, f ′2) ∗ (f ′′1 , f ′′2 ) := {(f1, f2)|f1 ∈ f ′1 ∗ f ′′1 , f2 ∈ f ′2 ∗ f ′′2 }.

Furthermore, we define the union of (F1, ∗) and (F2, ∗) to be the fusion law (F1 ∪ F2, ∗),
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such that ∗ extends the fusion laws on F1,F2 and is given by

f1 ∗ f2 := ∅

for all f1 ∈ F1, f2 ∈ F2,

Definition 2.4.3. Let T be a group. Then T together with the map

∗ : T × T → 2T : (t1, t2)→ {t1t2}

is a group fusion law. The identity element of a group T is the unique of the fusion law
(T, ∗).

Notice that the category of groups is a full subcategory of Fus. Namely, if T1 and
T2 are groups, then the fusion law morphisms from (T1, ∗) to (T2, ∗) are precisely the
homomorphisms arising from homomorphisms from T1 to T2.

Example 2.4.4. Suppose that G is a group and let X be the set of conjugacy classes of
G. Then we define a fusion law on X as:

A ∈ B ∗ C ⇔ A ∩BC 6= ∅

where BC is the setwise product of B and C in the group G. The conjugacy class {1} ∈ G
is a unit of this fusion law. If G is a finite abelian group, then this fusion law coincides
with the group fusion law which is defined in the previous definition.

Definition 2.4.5. Let F be a fusion law and let (T, ∗) be a group fusion law. A T -grading
of F is a morphism α : F → (T, ∗). We call the grading abelian if T is an abelian group
and we call it adequate if α(F) generates T .

Every fusion law admits a T -grading where T is the trivial group; we call this the trivial
grading.

Let F be a fusion law. We say that a T -grading α of F is a finest grading of F if every
grading of F factors uniquely through (T, ∗), in other words, if for each T ′-grading β of F ,
there is a unique group homomorphism ρ : T → T ′ such that β = ρ ◦ α. (In categorical
terms, this can be rephrased as the fact that α is an initial object in the category of
gradings of F .)

Similarly, we say that an abelian T -grading α of F is a finest abelian grading of F if every
abelian grading of F factors uniquely through (T, ∗)
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The proof of the next lemma is given in [10].

Lemma 2.4.6. Every fusion law F admits a unique finest grading given by the group
with presentation

TF := 〈γf , f ∈ F|γf1γf2 = γf3 : f3 ∈ f1 ∗ f2〉,

with grading map α : F → (TF , ∗) : f → γf . Similarly, there is a unique finest abelian
grading, given by the abelianization TF/[TF , TF ] of TF . Both gradings are adequate.

Example 2.4.7. In the fusion law as in Table 2.2, let T = {1,−1} ∼= C2. Then the fusion
law of V admits a C2-grading. Indeed, the map α : F → C2 mapping 1, 0, 1

4 to 1 and 1
32

to −1 is a morphism. Notice that this is the finest grading of the fusion law.

Similarly, the fusion law J (η) is C2-graded: the map α : F → C2 mapping 1 and 0 to 1
and η to −1 is a morphism. Again, this is the finest grading of the Jordan fusion law.

Lemma 2.4.8. Suppose that F is a fusion law graded by T . If F is Seress, then the map
α : F → C2 mapping 1 and 0 to 1.

Proof. Assume that the map α mapping 1 to t, where t ∈ T . Since 1 ∗ 1 = {1}, t2 = t and
so t = 1. If F is Seress then 0 ∈ F and 0 ∗ 0 = {0}, and so again if the map α mapping 0
to t then again t2 = t. Then t = 0. Therefore, α mapping 1 and 0 to 1.

Consider again an arbitrary fusion law F and assume that A is an F -axial algebra, and
let α : F → T be a morphism.

Suppose that F is T -graded for some group T . Let T ∗ denotes the group of linear characters
of T over F (i. e., homomorphisms T → (F∗, ·)).

For an axis a in A, we define a map γa : T ∗ → Aut(A), namely each χ ∈ T ∗ is mapped to
the automorphism of A defined by

vγa(χ) := χ(t)v,

where v ∈ Aµ(a). So γa(χ) acts on Aµ(a) as χ(t) · Id.

Since A is T -graded, the map γa(χ) is an automorphism. Indeed, since γa(χ) is F-linear map,
then we just need to check the product of two eigenvectors. Again let α : F → C2 ∼= {t, t′}
be a fusion law morphism. Take u ∈ Aλ(a) with λ 7→ t, and v ∈ Aµ(a) with µ 7→ t′. Then

19



uv ∈ ⊕Av(a), v ∈ λ ∗ µ. Hence by the grading rule λ ∗ µ 7→ tt′. So

uγa(χ) · vγa(χ) = (χ(t)a)(χ(t′)a),

= χ(t)χ(t′)uv,

= χ(tt′)uv,

= (uv)γa(χ).

Therefore, γa(χ) is an automorphism.

Proposition 2.4.9. Let a be an F-axis and s ∈ Aut(A). Then as is also an F-axis.
Moreover,

αas(χ) = αa(χ)s.

Proof. Since s is an automorphism, then Aλ(a)s = Aλ(as).This means that s permutes the
axes of A. Furthermore, for u ∈ A we can write u as u = ∑

t∈T ut, where ut ∈ Autλ(a), λ 7→
t. Also, we have us = ∑

t∈T u
s
t , where ust ∈ Autλ(as), λ 7→ t. Hence

αas(χ) =
∑
t∈T

χ(t) · ust

= (
∑
t∈T

χ(t) · u)s

= uαa(χ)s

Therefore, αas(χ) = αa(χ)s.

Definition 2.4.10. We call the image Ta of the map γa the axis subgroup of Aut(A)
corresponding to a.

Assume that T ∼= C2. If char (F) is equal to 2, then T ∗ = 1 so in this case there is no
automorphisms. Then suppose that char (F) 6= 2, then T ∗ = {χ1, χ−1}, with γ(χ1) is the
identity automorphism, and

γa(χ−1) =

Id on⊕ Aλ(a), λ 7→ χ1

−Id on⊕ Aλ(a), λ 7→ χ−1

.

Moreover, γa(χ−1) = Id if all odd eigenspaces are trivial.

Since we mostly deal with a C2-graded fusion law, we will use the notation

τa = γa(χ−1) ∈ Aut(A).
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This is called the τ -involution corresponding to the axis a. Also it is known as the
Miyamoto involution.

Definition 2.4.11. We define the Miyamoto group G(X) of A with respect to the set of
generating axes X as the subgroup of Aut(A) generated by the axis subgroups Ta, where
a ∈ X.
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CHAPTER 3

MATSUO ALGEBRAS

The main purpose of this chapter is to introduce Matsuo algebras. First, we define groups
of 3-transpositions and Fischer spaces.

3.1 Groups of 3-transpositions

Let G be a group generated by a normal set C ⊆ G of involutions. Then C is called a
set of 3-transpositions in G if |ab| ∈ {1, 2, 3}, for all a, b ∈ C. A pair (G,C) is called a
3-transposition group (cf. [3]).

Example 3.1.1. Any symmetric group Sn with the class C of transpositions is a group
of 3-transpositions. Indeed, let a, b ∈ C, if a = b, then ab has order 1. Now take any two
distinct transpositions a, b ∈ Sn, then ab has order 2, if a and b have disjoint support, and
ab has order 3, if the supports of a and b meet in a single point.

H. Cuypers and J.I. Hall in [6] introduced two complementely graphs having the conjugacy
class C of 3-transpositions as the set of vertices. One is the commuting graph on C, where
two distinct involutions from C are adjacent whenever they commute. The other graph
is the complement of the commuting graph and it is known as the diagram of C. In
the diagram two involutions are adjacent whenever they commute. So, for each a ∈ C
we denote by Ca the set of neighbors of a in the commuting graph on C and by Aa the
neighbours of a in complement graph, two elements a, b ∈ C are equivalent if and only if
they have the same set of neighbours.

For c ∈ C define A(c) = {d ∈ C : |cd| = 2} and B(c) = {d ∈ C : |cd| = 3}. We define two
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G-invariant equivalent relations τ and θ on C as follows:

aτb if b ∈ A(a),

and
aθb if b ∈ B(a),

for a, b ∈ C. Correspondingly, we define two (normal) subgroups of G:

τ(G) = 〈ab : a, b ∈ C, aτb〉,

and
θ(G) = 〈ab : a, b ∈ C, aθb〉.

We also define β(G) = τ(G)θ(G). The 3-transposition group is irreducible if β(G) =
τ(G) = θ(G) = 1.

Fischer in 1971, proved (for finite G) that τ(G) = [O2(G), G] and θ(G) = [O3(G), G].
Clearly, this means that all finite 3-transposition groups with no non-trivial solvable
normal subgroups are irreducible. See [6]. The following theorem provides the statement
of the classification of the finite irreducible 3-transposition groups and it is also known as
Fischer’s theorem:

Theorem 3.1.2 ([6]). Let (G,C) be a finite 3-transposition group, and suppose that G is
irreducible. Then up to a center 1, the class C is identified as one of:

1. The transposition class of a symmetric group;

2. The transvection class of the isometry group of a non-degenerate orthogonal space
over F2;

3. The transvection class of the isometry group of a non-degenerate symplectic space
over F2;

4. One of the two reflection classes of the isometry group of a non-degenerate orthogonal
space over F3;

5. The transvection class of the isometry group of a non-degenerate unitary space over
F4;

6. Triality case, O+
8 (2) : S3 or O+

8 (3) : S3;
1Two groups G and H are isomorphic up to a center if G/Z(G) ∼= H/Z(H).
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7. A unique class of involutions in one of the three Fischer’s sporadic groups: F22, F23, F24.

Note that, the first six cases of this list are usually called the classical Fischer groups.
However, F22, F23, F24 are called the sporadic simple Fischer groups.

3.2 Fischer spaces

We define a partial linear space as a pair (G,L) consisting of a set of points, G, and a
set of lines L ⊆ 2G such that every l ∈ L has size at least 2, and any two distinct lines
intersect in at most one point. Also, we define a partial triple system as a partial linear
space (G,L) in which every line has exactly three points. For any two collinear points in
a partial triple system a, b ∈ G there exists a unique line l consisting of a, b and a unique
element a ∧ b ∈ G; i.e., l = {a, b, a ∧ b}.

Furthermore, we will write a ∼ b to indicate that a and b are collinear, for distinct points
a, b ∈ G. If there is no line containing a and b then we write a 6∼ b. So, G partitions into
three subsets corresponding to a:

G = {a} ∪ a∼ ∪ a 6∼,

where a∼ = {b ∈ G|a ∼ b} and a 6∼ = {b ∈ G|a 6∼ b}. If a∼ = φ, then a is called an isolated
point, and the space G is called non-degenerate if G does not contain isolated points.

Note that usually we write G instead of (G,L). A subset H of G is called a subspace if any
two collinear points a, b ∈ H, the entire line through a and b is contained in H. It is easy
to see that the intersection of any collection of subspaces is again a subspace. It follows
that, for every set of points X ⊆ G, there is a unique smallest subspace containing X. We
denote this smallest subspace by 〈X〉, and we say that it is generated by X.

Definition 3.2.1 ([3]). A Fischer space consists of a partial triple system for which, if
l1, l2 are any two lines with distinct intersection, the subspace 〈l1 ∪ l2〉 is isomorphic to
the dual affine plane of order 2, denoted by P∨2 , or to the affine plane of order 3, denoted
by P3. See Figure 3.1.

Note that we say that a Fischer space is connected if its collinearity graph is connected.

Proposition 3.2.2 ([6]). There is a 1 − 1 correspondence between connected Fischer
spaces and 3-transposition groups with trivial center. I.e., for each 3-transposition group
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Figure 3.1: The affine plane P3 and the dual affine plane P∨2

(G,C), the space G(G,C) is a connected Fischer space and every connected Fischer space
is isomorphic to G(G,C) for some 3-transposition group (G,C).

Example 3.2.3. Suppose that G is a symmetric group S4 and let C be the set of
transpositions in G. Then G(G,C) is a 3-transposition group, Fischer space contains of 6
points and 4 lines. (I. e., the dual affine plane of order 2).

Furthermore, two 3-transposition groups (G1, C1) and (G2, C2) have the same Fischer
space if and only if they have the same central type, i.e., (Ḡ1, C̄1) ∼= (Ḡ2, C̄2), where
Ḡi = Gi/Z(Gi).1

3.3 Matsuo algebras

Matsuo algebras are a class of non-associative algebras which were defined in 2003 [31].

Definition 3.3.1. Let η ∈ F, where η 6= 0, 1 and F be any field with charF 6= 2, and
assume that G is a partial triple system. Then the Matsuo algebra Mη(G,F) of the Fischer
space G over a field F is spanned by the points of G where the bilinear multiplication for

1This is the same as saying that the two groups are isomorphic up to the center. For a group of
3-transpositions, we also assume that the isomorphism takes C̄1 to C̄2.
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two basis elements a, b ∈ G is given by:

a · b =


a if a = b

0 if a 6∼ b

η
2(a+ b− a ∧ b) if a ∼ b

.

Note that the dimension of Matsuo algebra Mη(G,F) is equal to |C|.

Proposition 3.3.2 ([18]). The eigenspaces of a in Matsuo algebra Mη(G,F) are:

• 〈a〉, 1-eigenspace;

• 〈b+ a ∧ b− ηa|b ∼ a〉 ⊕ 〈b|b 6∼ a〉, 0-eigenspace;

• 〈b− a ∧ b|b ∼ a〉, η-eigenspace.

The algebra A = Mη(G,F) decomposes into a direct sum of the above eigenspaces for any
a ∈ G,

A = A1(a)⊕ A0(a)⊕ Aη(a).

Proof. Indeed, the basis for Matsuo algebra A consists of a, b ∈ G. Then a is a 1-eigenvector,
and a 6∼ is a set of 0-eigenvectors. For b ∼ a, we partition a∼ into b, a ∧ b. Hence the
subspace 〈a, b, a ∧ b〉 of A is spanned by a, b− a ∧ ab, and b+ a ∧ b− ηa, so these are 1, η,
and 0 eigenvectors of a, respectively. Since a is idempotent, i.e., a2 = aa = a and so a is a
1-eigenvector for ada. Also, a(b− a∧ b) = ab− a(a∧ b) = η

2 (a+ b− a∧ b− a− a∧ b+ b) =
η
2(2b − 2(a ∧ b)) = η(b − a ∧ b), then b − a ∧ b is η-eigenvector for ada. Similarly,
a(b+ a∧ b− ηa) = ab+ a(a∧ b)− ηa = η

2 (a+ b− a∧ b+ a+ a∧ b− b)− ηa = ηa− ηa = 0,
and therefore b+ a ∧ b− ηa is a 0-eigenvector for ada.

Recently, T. Yabe [41], has proved the following result:

Proposition 3.3.3. The Matsuo algebra associated with a connected Fischer space is a
Jordan algebra over a field F (charF 6= 3) if and only if the Fischer space is isomorphic to
either the affine space of order 3 or the Fischer space associated with the symmetric group.

Example 3.3.4. Let A = Mη(S3, (12)S3), that is, A = 〈a, b, c〉 where a = (12), b = (13),
and c = (23). Fischer space in this case is a line with three points a, b, and c. Since a, b,
and c are idempotents, we get a2 = a, b2 = b, and c2 = c. Also,

a · b = η
2(a+ b− ab) = η

2(a+ b− c);
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a · c = η
2(a+ c− ac) = η

2(a+ c− b);

b · c = η
2(b+ c− bc) = η

2(b+ c− a).

Hence the multiplication table is given as the following:

· a b c

a a η
2 (a+ b− c) η

2 (a+ c− b)

b η
2 (a+ b− c) b η

2 (b+ c−a)

c η
2 (a+ c− b) η

2 (b+ c−a) c

Table 3.1: Multiplication table of the Matsuo algebra for S3

Example 3.3.5. Consider A = 〈a, b, c, d, f, g〉 (i.e., A = Mη(S4)), where a = (12), b =
(13), c = (23), d = (14), f = (24), g = (34). Fischer space consists of 6 points and 4 lines.

Figure 3.2: Fischer space of Matsuo algebra for S4

We define the multiplication for any two elements a(ij), a(kl) ∈ A, where {i, j, k, l} =
{1, 2, 3, 4} as follows:

• a(ij) · a(ij) = a(ij);

• a(ij) · a(kl) = 0;

• a(ij) · a(ik) = η
2(a(ij) + a(ik) − a(jk)).

Then the multiplication table below shows the products of two basis elements of A:
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· a b c d f g

a a η
2 (a+ b− c) η

2 (a+ c− b) η
2 (a+d−f) η

2 (a+f−d) 0

b η
2 (a+ b− c) b η

2 (b+ c−a) η
2 (b+d−g) 0 η

2 (b+g−d)

c η
2 (a+ c− b) η

2 (b+ c−a) c 0 η
2 (c+f−g) η

2 (c+g−f)

d η
2 (a+d−f) η

2 (b+d−g) 0 d η
2 (d+f−a) η

2 (d+g−b)

f η
2 (a+f−d) 0 η

2 (c+f−g) η
2 (d+f−a) f η

2 (f+g−c)

g 0 η
2 (b+g−d) η

2 (c+g−f) η
2 (d+g−b) η

2 (f+g−c) g

Table 3.2: Multiplication table of Matsuo algebra for S4
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CHAPTER 4

THE STRUCTURE OF AXIAL ALGEBRAS

The definitions and the results of this chapter come from [30].

4.1 Closed set of axes

Let a be an axis and s ∈ Aut(A), then also as is an axis. Indeed, note that Aλ(as) = Aλ(a)s

for all λ ∈ F . Hence we have

Aλ(as)Aµ(as) = Aλ(a)sAµ(a)s = (Aλ(a)Aµ(a))s ⊆ Aλ∗µ(a)s = Aλ∗µ(as),

for all λ, µ ∈ F .

Note that every axial algebra A has a set of generating axes X. We define the Miyamoto
group of an arbitrary set of axes (not necessarily generating A).

Definition 4.1.1. Let Y be an arbitrary set of axes, then the Miyamoto group G(Y ) of
Y is the subgroup of Aut(A) which is generated by the axis subgroups Ta, where a ∈ Y .

Definition 4.1.2. Let Y be an arbitrary set of axes, then Y is closed if Y τ = Y , for all τ
in the axis subgroups Ta with a ∈ Y . Equivalently, we can write Y G(Y ) = Y .

Note that the intersection of two closed set Y and Y ′ is also closed. Then we define the
closure Ȳ of Y as the unique smallest closed set of axes which contains Y .

Proposition 4.1.3. Let Y be an arbitrary set of axes, then we have Ȳ = Y G(Y ). Moreover,
G(Ȳ ) = G(Y ).
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Proof. First, we need to prove that Y G(Y ) ⊆ Ȳ . Then from the definition of the closure of
Y , we have Y ⊆ Ȳ . Hence G(Y ) ≤ G(Ȳ ) and then Y G(Y ) ⊆ Ȳ G(Ȳ ) = Ȳ .

To prove Ȳ ⊆ Y G(Y ), it suffices to show that Y G(Y ) is closed. Let b ∈ Y G(Y ), then b = as

where a ∈ Y and s ∈ G(Y ). From Proposition 2.4.9, we have that τas(χ) = τa(χ)s and
so Tb = Tas = T sa . Since Ta ≤ G(Y ) and s ∈ G(Y ), so Tb = T sa ≤ G(Y )s = G(Y ). Then
G(Y G(Y )) = G(Y ). This means that Y G(Y ) is invariant under G(Y ) = G(Y G(Y )) and then
Y G(Y ) is closed. Therefore, Ȳ = Y G(Y ). Moreover G(Ȳ ) = G(Y G(Y )) = G(Y ).

Then we have:
Ȳ = {as : a ∈ Y, s ∈ G(Y )}.

Definition 4.1.4. Let Y and Y ′ be two sets of axes. Then they are equivalent, Y ∼ Y ′,
if Ȳ = Ȳ ′.

We write A(Y ) to denote the subalgebra of A which is generated by the set of axes Y .

Proposition 4.1.5. Assume that Y and Y ′ are two equivalent sets of axes in A. Then
the following conditions hold:

(1) G(Y ) = G(Y ′), and

(2) If A is generated by Y then also A is generated by Y ′.

Proof. From the definition of the equivalent sets and the Proposition 4.1.3, we have
G(Y ) = G(Y ′) if Ȳ = Ȳ ′, since G(Y ) = G(Ȳ ) = G(Ȳ ′) = G(Y ′). Let A(Y ′) = 〈Y ′〉 be an
axial subalgebra of A generated by the set of axes Y ′. It is invariant under Tb for some
b ∈ Y ′, so it also invariant under G(Y ′) = G(Y ). We claim that Y ⊆ A(Y ′) and thus
A = A(Y ′). Since Ȳ = Ȳ ′ and Y ⊆ Ȳ , we have that every a ∈ Y can be written as bs,
where b ∈ Y ′ and s ∈ G(Y ′). Therefore, a = bs ∈ A(Y ′).

Note that if a property of an axial algebra is invariant under the equivalence of axes, then
it is called stable. We have the following result.

Corollary 4.1.6. The Miyamoto group G(X) of an axial algebra is stable.

4.2 Ideals and the radical

Suppose that a is an axis and W is a subspace of A which is invariant under the action
of the adjoint of a. Note that if ada is semisimple on A, then it is also semisimple on W .
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Hence we can write
W = ⊕λ∈FWλ(a),

where Wλ(a) = W ∩ Aλ(a) = {w ∈ W : aw = λw}.

Proposition 4.2.1. Let a be an axis and W be a subspace of A, then if W is invariant
under ada then it is invariant under τa(χ) for all χ ∈ T ∗.

Example 4.2.2. For any axis a ∈ A, the ideals of A are invariant under ada.

Proposition 4.2.3. Let a be an axis in A, then the ideals I of A are G(X)-invariant.

Lemma 4.2.4. Assume that I is an ideal of A and a is a primitive axis. Then either
a ∈ I or I ⊆ AF/{1}(a).

Proof. Suppose that I 6⊆ AF/{1}(a), so choose u ∈ I such that φa(u) 6= 0. Since I is
invariant under the action of ada, we have φa(u)a ∈ I. Hence a ∈ I since I is a subspace
of A.

Corollary 4.2.5. If I1 and I2 are two ideals not containing a, then the sum of those ideals
is again an ideal not containing any axes from X.

This shows that the radical of A, which we define below, is well defined.

Definition 4.2.6. The radical R(A,X) of A with respect to the generating set of primitive
axes X is the unique largest ideal of A that does not contain any axes from X.

4.3 Frobenius form

Definition 4.3.1. A Frobenius form on an axial algebra A is a non-zero bilinear form
(·, ·) that associates with the algebra product, that is

(uv, w) = (u, vw)

for all u, v, w ∈ A.

For some classes of axial algebras (for example, for Majorana algebras), it is additionally
assumed that (a, a) = 1 for each axis a ∈ A.
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Example 4.3.2. Suppose that A is the Matsuo algebra with a 3-transposition group G,
then

(a, b) =


1 if a = b

0 if ab = ba

η
2 if 〈a, b〉 ∼= S3

.

is a Frobenius form.

Lemma 4.3.3. Let F be the fusion law and let A be an F -axial algebra with a bilinear
form (·, ·). Then

(i) If (·, ·) is a Frobenius form on A then Aλ(a) ⊥ Aµ(a) for all axis a ∈ A and λ, µ ∈ F
with λ 6= µ.

(ii) Assume that A has a basis B of primitive axes, and if Aλ(a) ⊥ Aµ(a) for all axis
a ∈ B and λ, µ ∈ F . Then (·, ·) is a Frobenius form.

(iii) Suppose that (·, ·) is a Frobenius form on A. If a is a primitive axis and (a, a) = 1,
then (a, u) = φa(u) for all u ∈ A. Moreover, if (a, a) = 0, then (a, u) = 0.

Proof. First we prove (i), assume that u ∈ Aλ(a) and v ∈ Aµ(a) where λ, µ ∈ F . Since
(·, ·) is a Frobenius form and a ∈ A, then

λ(u, v) = (au, v) = (u, av) = µ(u, v),

and since λ 6= µ, we obtain that (u, v) = 0, and so Aλ(a) ⊥ Aµ(a).

From (i), we see that if a is a primitive axis, then (a, u) = (a, φa(u)a) = φa(u)(a, a). Hence
(a, u) = φa(u) or 0 if (a, a) = 1 or 0, respectively.

It remains to prove (ii), so suppose that a is a primitive axis in the basis B and let
u ∈ Aλ(a), v ∈ Aµ(a). If λ 6= µ then (u, v) = 0 and so

(au, v) = λ(u, v) = 0 = µ(u, v) = (u, av).

In the case of λ = µ, we see that (au, v) and (u, av) are both equal to λ(u, v). Then by
bilinearity, (au, v) = (u, av) for all u, v ∈ A. Therefore, (·, ·) is a Frobenius form.

We use the notation A⊥ to denote the radical of the Frobenius form,

A⊥ = {u ∈ A | (u, v) = 0, for all v ∈ A}.
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It is easy to check that this radical A⊥ is an ideal of A. Indeed, suppose that u ∈ A⊥ and
v, w ∈ A. Then we have (uv, w) = (u, vw) = 0. Hence, uv ∈ A⊥ and since the Frobenius
form is bilinear, we deduce that A⊥ is an ideal.

Proposition 4.3.4 (Theorem 4.8, [30]). Suppose that A is a primitive axial algebra
generated by a set of axes X. Then the radical A⊥ of the Frobenius form coincides with
the radical R(A)X of A if and only if (a, a) 6= 0, for all a ∈ X.

4.4 Projection Frobenius form

Taking Lemma 4.3.3 into account, we define a projection form as a Frobenius form that
satisfies (a, a) = 1, for all a ∈ X. In particular, Hall, Segev and Shpectorov showed that
every axial algebra A of Jordan type η admits a projection form, see [19]. So in this case,
the radical of A coincides with the radical of its projection form.

Example 4.4.1. Consider the Matsuo algebra M = Mη(G,C) with η 6= 0, 1. The Matsuo
algebra M is an example of an axial algebra of Jordan type η (as discussed in the previous
chapter). Hence every Matsuo algebra should admit a projection form. And indeed this
projection form is defind by:

(a, b) =


1 if a = b

0 if a 6∼ b

η
2 if a ∼ b,

where a, b ∈ C.

Furthermore, the Gram matrix of this form is given by

Gr = I + η

2T,

where T is the adjacency matrix of the collinearity graph of the Fischer space on C, and I
is the identity matrix. Clearly, the projection form has a non-trivial radical if and only
if the Gram matrix Gr is not of full rank, and this arises if and only if η = − 2

λ
for an

eigenvalue λ 6= 0 of T . Moreover, the radical of the projection form coincides with the
λ-eigenspace of the matrix T . (See Example 4.11, [30].)

Now, we assume that A is a primitive axial algebra and consider the ideals that contain
axes a ∈ C. We have the following definition.
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Definition 4.4.2. [1] The projection graph P of A is the graph on C where two vertices
a and b are connected by an edge if (a, b) 6= 0.

Proposition 4.4.3 (Corollary 4.14, [30]). Assume that A is a primitive axial algebra
admitting a projection form, where the projection graph is connected. Then every proper
ideal of A is contained in the radical.

From Proposition 4.2.3, we show that the ideals of A are invariant under the Miyamoto
group G(X). Since G(X) ≤ Aut(P), we have the quotient graph P̄ := P/G(X). This
graph has as vertices the orbits of axes, aG(X) for a ∈ X. Two orbits are adjacent if they
contain adjacent axes. We call the graph P̄ the orbit projection graph.

Proposition 4.4.4 (Corollary 4.15, [30]). Again let A be a primitive axial algebra with a
projection form and a connected orbit projection graph. Then every proper ideal of A is
contained in the radical.

4.5 Decompositions of axial algebras

Let A be a commutative non-associative algebra and Ai, i ∈ I, be subalgebras of A.

Definition 4.5.1. An algebra A decomposes as ∑i∈I Ai if AiAj = 0 for all i 6= j and
A = 〈〈Ai : i ∈ I〉〉.

Notice that the subspace ∑i∈I Ai is a subalgebra. Indeed, take two elements a = ∑
i∈I ai

and b = ∑
i∈I bi from the ∑i∈I Ai. Then ab = ∑

i∈I ai
∑
i∈I bi = ∑

i∈I aibi. Since a, b ∈∑
i∈I Ai, we can see that all pairwise products are zero. Then ∑i∈I Ai is closed under the

multiplication. Therefore, ∑i∈I Ai is a subalgebra. Furthermore, this subalgebra contains
all Ai. Thus, we deduce that ∑i∈I Ai = A. Then every element a ∈ A can be written as
a = ∑

i∈I ai, where ai ∈ Ai. If the decomposition ∑i∈I ai is unique for each a ∈ A then A

is the direct sum of the subalgebras Ai and we write A = ⊕i∈IAi.

Let A be an axial algebra, we define the annihilator of A as the set

Ann(A) := {v ∈ A | vA = 0}.

Since A is commutative, we have Ann(A) is an ideal. Also, by the definition of the radical,
we prove that Ann(A) is a subset of R(A)X . Indeed, for all a ∈ X, a · a = a 6= 0. Then
Ann(A) does not contain any axes from X and so Ann(A) ⊆ R(A,X).

34



However, the annihilator is not always equal to the radical of A. A counterexample is
given below:

Example 4.5.2 (Example 4.11 and Example 5.5, [30]). Let A be the Matsuo algebra
for the symmetric group S5. The eigenvalues of A are λ = −2, 1, 6, so η = 1,−2,−1

3 ,
respectively. For η = −2, there is a 4-dimensional radical which is spanned by

(i, j) + (i, k) + (i, k)− (m, j)− (m, k)− (m, l),

where {i, j, k, l,m} = {1, 2, 3, 4, 5}. The authors showed that there exists a vector that does
not belong to Ann(A). These vectors do not lie in Ann(A). Hence, Ann(A) ( R(A,X).

The next proposition shows that we can decompose a primitive axial algebra A as a sum
of smaller axial algebras.

Proposition 4.5.3 (Theorem 5.11, [30]). Let A = ∑
i∈I Ai be a primitive axial algebra

with a generating set of axes X. Suppose that Xi is the set of all axes a ∈ X which are
contained in Ai. Then A = ∑

i∈I Bi, where Bi = 〈〈Xi〉〉.

Furthermore, in the case where A has two different generating sets X and Y , it is proved
in [30] that the decomposition of A into a sum of axial algebras is stable under any change
of axes.
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CHAPTER 5

DOUBLE AXES AND FLIP SUBALGEBRAS

In this chapter we review some results from [28]. First, we define double axes and the
related fusion laws. Then, we define fixed subalgebras. Finally, we discuss the flip
subalgebras for the symmetric group S2k determined by Joshi.

5.1 Axes and their fusion laws

The axial algebra of Monster type (α, β) is generated by a set of primitive axes M(α, β)-
axes. Joshi proved that an axis of Monster type (2η, η) arises as the sum of two orthogonal
axes of Jordan type η.

∗ 1 0 α β

1 1 α β

0 0 α β

α α α 1 + 0 β

β β β β 1 + 0 + α

Table 5.1: The fusion law M(α, β)

Here we are focussing on the case η 6= 1
2 , so that 2η 6= 1. We define double axes as follows.

Definition 5.1.1. Consider a Matsuo algebra M = Mη(G,C), where (G,C) is a group of
3-transpositions. Let a, b be any two Matsuo axes such that a · b = 0. Then x = a+ b will
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be called a double axis.

Note that axes a and b satisfying a · b = 0 are called orthogonal.

It is easy to see that a double axis is an idempotent:

x2 = (a+ b)2 = a2 + ab+ ba+ b2 = a+ 0 + 0 + b = a+ b = x.

For a double axis x = a+ b, we define Mαβ(a, b) as

Mαβ(a, b) = Mα(a) ∩Mβ(b).

Note that x = a+ b acts on Mαβ(a, b) as the scalar α + β.

Theorem 5.1.2 ([28]). Suppose a, b ∈ M = Mη(G,C) are two orthogonal axes. Then
x = a+ b satisfies the fusion law M(2η, η). Furthermore,

M0(x) = M00(a, b);

M1(x) = M10(a, b) +M01(a, b) = 〈a, b〉;

M2η(x) = Mηη(a, b);

Mη(x) = M0η(a, b) +Mη0(a, b).

Hence every double axis satisfies the fusion law M(2η, η), where η 6∈ {0, 1}. Hence, the
fusion law in this case is given in the following table:

∗ 1 0 2η η

1 1 2η η

0 0 2η η

2η 2η 2η 1 + 0 η

η η η η 1 + 0 + 2η

Table 5.2: The fusion law of Matsuo algebras M(2η, η)
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Remarks:

• Note that the fusion rules J(η) satisfied by every single axis a ∈ M is obtained
by dropping a row and a column from M(2η, η). This corresponds simply to the
2η-eigenspace being zero.

• Subalgebras of M generated by single axes are Matsuo algebras.

• Double axes are not primitive in M , namely, M1(x) = 〈a, b〉 is 2-dimensional. We
try to see if M contains a subalgebra in which the double axes generating it are
primitive.

• The fusion law M(2η, η) is C2-graded.

Here some examples of the subalgebras generated by single and double axes:

Example 5.1.3. Consider the subalgebra R = 〈〈c, a + b〉〉 of M = Mη(S4). (See Figure
5.1.) Then R is 4-dimensional with the basis {c, x, d, y}, where c = (12), x = a + b =
(13) + (24), d = cτx = (34), y = xτc = e+ f = (14) + (23) and τc = (12), τx = (13)(24).

Figure 5.1: Fischer space of the group S4

Now we calculate the multiplication table of R as the following examples show, where ·
refers to the Matsuo product.

c · x = (12) · ((13) + (24)) = (12) · (13) + (12) · (24)

= η

2((12) + (13)− (23)) + η

2((12) + (24)− (14))

= η(12) + η

2((13) + (24))− η

2((23) + (14))

= ηc+ η

2x−
η

2y.
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For the double axes x and y:

x · y = (a+ b) · (e+ f) = ((13) + (24)) · ((14) + (23))

= (13) · (14) + (13) · (23) + (24) · (14) + (24) · (23)

= η

2((13) + (14)− (34)) + η

2((13) + (23)− (12))

+ η

2((24) + (14)− (12)) + η

2((24) + (23)− (34))

= η((13) + (24)) + η((14) + (23))− η(12)− η(34)

= η(a+ b) + η(e+ f)− ηc− ηd

= ηx+ ηy − ηc− ηd.

Similarly, we can compute the remainder of the products. Hence the complete multiplication
table is given in the following table:

· c x d y

c c ηc+ η
2(x− y) 0 ηc+ η

2(y − x)

x ηc+ η
2(x− y) x ηd+ η

2(x− y) η(x+ y − c− d)

d 0 ηd+ η
2(x− y) d ηd+ η

2(y − x)

y ηc+ η
2(y − x) η(x+ y − c− d) ηd+ η

2(y − x) y

Table 5.3: Multiplication table for the 4-dimensional subalgebra R

Double axes x = a+ b are not primitive in the Matsuo algebra, but they can be primitive
in proper subalgebras. Thus, we focus on studying a subalgebra A of a Matsuo algebra M
in which the double axes of the generating set are primitive.

5.2 Fixed subalgebras

Suppose that M = Mη(G,C) is a Matsuo algebra and let H be a subgroup of Aut(G,C).
(The latter denotes the normaliser of C in Aut(G).) Let

F = {v ∈M : vh = v, for all h ∈ H} ⊂M.
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The subspace F is closed under addition and multiplication. Indeed, for all v, w ∈ F , we
see that;

(v + w)h = vh + wh = v + w,

(vw)h = vhwh = vw.

Hence, F is a subalgebra of M and it is called the fixed subalgebra corresponding to H.
We use the notation MH for this subalgebra.

Proposition 5.2.1 (Proposition 5.2.2, [28]). Assume that F = MH is the fixed subalgebra
of the Matsuo algebra M with respect to H ≤ Aut(G,C). Then the dimension of F is the
same as the number of the orbits of H on C.

Proof. Let B1, B2, . . . , Bn be the orbits of H on C. Since we have vh = v for all v ∈ F
and h ∈ H, then all the coefficients of elements of Bi where i ∈ {1, 2, . . . , n} are equal.
Let ei = ∑

b∈Bi b, for all i ∈ {1, 2, . . . , n}. Hence the set B = {e1, e2, . . . , en} spans F and
also it is linearly independent. Therefore, B is a basis for the fixed subalgebra F .

Notice for any element v ∈ F we can write:

v =
n∑
i=1

δi
∑
b∈Bi

b =
n∑
i=1

δiei,

where n is the number of the orbits.

Suppose that σ ∈ Aut(G,C) is an involution and let H = 〈σ〉. Then the action of 〈σ〉 on
the class of 3-transposition C has three different types of orbits. Since |H| = 2, we have
two possible H-orbit lengths: 1 and 2.

1. Singles, orbits of length 1 (in this case, aσ = a).

2. Doubles, orbits of length 2 (in this case aaσ = 0, a aσ are orthogonal).

3. Extras, orbits of length 2 (in this case aaσ 6= 0, a aσ are not orthogonal).

Proposition 5.2.2. [28] Let σ ∈ Aut(G,C) be an involution, and suppose that a is an
axis in B such that a and ah are orthogonal. Then the double axis x = a+ aσ is primitive
in F = MH , where H = 〈σ〉.

Proof. Since a and aσ are orthogonal, the involution σ does not fix a. Let x = a+ aσ be a
double axis of F . Moreover, {a, aσ} is a single orbit (is not a 2-dimensional orbit). So a
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and aσ should belong to F together, not separately. The 1-eigenspace of adx of F is

F1(x) = F1(a+ aσ) = M1(a+ aσ) ∩ F = 〈a, aσ〉 ∩ F = 〈a+ aσ〉 = 〈x〉.

Therefore, x is primitive in F .

We call the subalgebra generated by all single and double axes contained in F = MH

the flip subalgebra corresponding to the flip σ. By the above, every flip subalgebra is a
primitive axial algebra of Monster type (2η, η).

5.3 The series Qk(η)

Here we introduce the subalgebra of dimension k2 in the Matsuo algebra Mη(S2k), which
was constructed in [28]. Recall that the generating axes of Mη(S2k) are the transpositions
of S2k. We call this algebra Qk(η).

Theorem 5.3.1. (Theorem 6.1.2 [28]) Assume that M is the Matsuo algebra for the
symmetric group S2k and let σ = (1, 2)(3, 4) . . . (2k − 1, 2k) be an involution in S2k. Then
the fixed subalgebra relative to 〈σ〉 is spanned by the set containing k single axes and
k(k− 1) double axes. Moreover, this set of axes forms a basis for the fixed subalgebra Mσ,
and hence the dimension is k2.

The single axes are
(2i− 1, 2i), i = 1, . . . , n,

and the double axes are
(2i− 1, 2j − 1) + (2i, 2j),

(2i− 1, 2j) + (2j − 1, 2i),

where 1 ≤ i < j ≤ n.

5.4 Ideals and the radical of Mη(S2k)

In this section we will investigate the simplicity of the k2-dimensional subalgebra Qk(η).
First, we find the projection graph P . Let (G,C) = (S2k, (1, 2)S2k) be the 3-transposition
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group and let σ = (1, 2)(3, 4) · (2k − 1, 2k) be an involution (flip).

Recall that the fixed subalgebra Mσ = Qk(η) has k single axes of the form (2i− 1, 2i) and
k2 − k double axes of the form (2i − 1, 2j − 1) + (2i, 2j) and (2i − 1, 2j) + (2j − 1, 2i),
where 1 ≤ i < j ≤ 2k.

The projection graph P has all singles and all doubles as vertices. We say that {2i− 1, 2i}
is the support of the single (2i− 1, 2i). Similarly, the support of a double is the union of
the two parts. For example, the support of (1, 4) + (2, 3) is {1, 2, 3, 4}.

Note that two axes (single or double) are orthogonal if and only if their supports are
disjoint. Then in P two axes are adjacent exactly if their support sets are not disjoint.
Hence, we have the following:

1. If all single axes have disjoint support, then they form a coclique in P .

2. Take a single axis a = (1, 2), we can see that a is adjacent in P to all doubles
x = (1, 2i− 1) + (2, 2i) and y = (1, 2i) + (2, 2i− 1) for all i ≥ 2.

3. The doubles x and y are also adjacent to the single (2i− 1, 2i). Since i is arbitrary,
we have that a is at distance two from all other singles.

4. Every double axis is adjacent in P to some single axes. Then it is at distance at
most three from the single axis a.

Notice that in this case the fixed subalgebra has no extras. Also, the entire Fischer space
of S2k is connected. Then the graph P is connected. According to [30], this means that
the k2-dimensional subalgebra Qk(η) has no proper ideals containing axes from C.

Definition 5.4.1. A value η = η0 is called critical for A if the algebra A for this value
has a non-zero radical.

Proposition 5.4.2. [21] Let A = Mσ be a flip subalgebra, then the critical values of η
are the same as the special values of Matsuo algebras.

Now, we need to find the special values of η and for each of them find the radical. Recall
that the radical of the k2-dimensional subalgebra Qk(η) coincides with the radical of the
Frobenius form. Furthermore, it has a non-trivial radical if and only if the determinant of
the Gram matrix is zero, this means that it has zero eigenvalue. [30].

Recently, Hall and Shpectorov in [21] determined the eigenvalues of the diagrams of all
3-transposition groups. In particular, the eigenvalues of the diagram of S2k are 4(k − 1),
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2(k − 2), −2. Using the method shown in Example 4.4.1, we now find that the critical
values η of the Matsuo algebra Mη(S2k) are:

− 1
2(k − 1) ,−

1
k − 2 .

Note that if λ = −2, then η = 1, which is discarded as η 6= 0, 1.

Thus, we have the following result:

Proposition 5.4.3. The algebra Qk(η) of dimension k2 is simple unless η = − 1
2(k−1) or

η = − 1
k−2 .

Here is an example of the Gram matrix and how to find the critical values of η for a flip
subalgebra.

Example 5.4.4. Consider the algebra Q2(η) of dimension 4. Then the Gram matrix is
given by:

G =


1 0 η η

0 1 η η

η η 2 2η
η η 2η 2

 ,

by using GAP, we calculate the determinant and the eigenvalues of the Gram matrix G;

det(G) = 2η3 − 3η2 + 1,

then we have that
λ = [(−1)2,−1

2].

Therefore, the 4-dimensional subalgebra Q2(η) is simple unless λ = −1
2 .
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CHAPTER 6

NEW SERIES OF AXIAL ALGEBRAS OF
MONSTER TYPE

In this chapter, we construct a similar subalgebra of dimension k2 in the Matsuo algebra
Mη(−O+

n+1(3)). However, our subalgebra contains k(k − 1) single axes and k double axes.
Some of the definitions, comments and properties are from my recent published paper [1].

Recall that GO+
n+1(3) is the group of all orthogonal transformations of a vector space

V of dimension n + 1 over the finite field F3 = {−1, 0, 1} with an orthonormal basis
B = {e0, e1, . . . , en}. Consider the set C of all reflections with respect to vectors u with
(u, u) = −1. Let G = 〈C〉 ≤ GO+

n+1(3). We will see below that (G,C) is a 3-transposition
group and it is denoted −O+

n+1(3). Let M = Mη(G,C) be the corresponding Matsuo
algebra. In this section we construct a subalgebra of M of dimension n2, generated by
single and double axes.

6.1 Involutions

Recall that a reflection in a nonsingular vector u (i.e., u satisfies (u, u) 6= 0), is given by

ru : v 7→ v − 2(v, u)
(u, u)u.

Remark. For a vector u with (u, u) = −1, since 2 = −1 in F3, we get the map
ru : v 7→ v − (v, u)u.
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Lemma 6.1.1. For every α ∈ GO+
n+1(3), rαu = ruα .

Proof. Let v ∈ V . Then

vr
α
u = vα

−1ruα = ((vα−1)ru)α

= (vα−1 − 2(vα−1
, u)

(u, u) u)α

= v − 2 (v, uα)
(uα, uα)u

α

= vruα .

Hence we obtain that rαu = ruα .

Note that ru = rv if and only if v = ±u. Indeed, it is easy to see that ru = rαu for
0 6= α ∈ F3. Conversely, if ru = rv then −v = vrv = vru = v − 2 (v,u)

(u,u)u, which immediately
implies that u is a multiple of v.

Proposition 6.1.2. Suppose u, v ∈ V with (u, u) = −1 = (v, v) and suppose that u
and v are independent, that is, u 6= ±v. Then |rurv| = 2 if (u, v) = 0 and |rurv| = 3 if
(u, v) = ±1.

Proof. If (u, v) = 0 then urv = u and so, by Lemma 6.1.1, rrvu = ru. This means that
(rurv)2 = 1 and so |rurv| = 2. Now suppose that (u, v) 6= 0. Substituting −v for v
if necessary, we may assume that (u, v) = −1. Then urv = u + v = vru . Therefore,
rrvu = ru+v = rruv . In particular, rrvu = rruv , which means that (rurv)3 = 1, and so
|rurv| = 3.

This proposition shows that the class C of reflections ru with (u, u) = −1 is a class of
3-transpositions and so −O+

n+1(3) = (G,C), where G = 〈C〉, is a 3-transposition group,
as claimed in the introduction and at the beginning of this section. We recall from the
introduction that we identify the element ru ∈ C with the 1-dimensional subspace 〈u〉 as
both u and −u define the same element ru = r−u of C.

If u, v ∈ V with (u, u) = −1 = (v, v) then

〈u〉.〈v〉 =


〈u〉 if u = ±v,

0 if (u, v) = 0,
η
2(〈u〉+ 〈v〉 − 〈v − (u, v)u〉) if (u, v) = ±1.

.
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Suppose we have a non-degenerate bilinear form on a given space V with a basis
{e1, e2, . . . , en}. The Gram matrix is given by:

Gr =



(e1, e1) (e1, e2) . . . (e1, en)
(e2, e1) (e2, e2) . . . (e2, en)
. . . . . . . . . . . .

. . . . . . . . . . . .

(en, e1) . . . . . . (en, en)


,

where (ei, ej) = 0, i 6= j, and (e1, e1) = (e2, e2) = · · · = (en−1, en−1) = 1, and (en, en) = ε.

Two forms G and G′ on V are equivalent if there exists a matrix A ∈ GL(V ) such that
G′ = AtGA, and the determinant is defined as

det(G′) = det(A)2 det(G).

Now we discuss the involutions and then determine single and double axes to build new
subalgebras.

In the case of n = 2:

First, we provide the conjugacy classes of involution in the following table:

O+
2 O−2

(0, 2; 0,+) (0, 2; 0,−)

(1, 1; +,+) (1, 1; +,−)

(1, 1;−,−) (1, 1;−,+)

(2, 0; +, 0) (2, 0;−, 0)

where Id ∈ 2, 0; (±, 0) and −Id ∈ 0, 2; (0,±).

For all n, the identity classes are just Matsuo algebra.

Then we discuss how to determine single and double axes to build new subalgebras.

Example 6.1.3. Assume that τ ∈ (1, 1; +,+), in this case (e1, e1) = 1 = (e2, e2) where
e1 ⊥ e2. So the Gram matrix is given as:
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Gr =
1 0

0 1

 ,
τ =

1 0
0 −1

 .
To determine the single and double axes, we find the reflection in vectors of length +1,
and −1:

αe1 + βe2 =⇒ +1 + 1 = −1,

αe1 =⇒ +1,

βe2 =⇒ +1.

Reflections of length 1 Reflections of length −1

Single axes 2 fixed -

±e1,±e2 -

Double axes - 1

- a = ±(e1 + e2), b = ±(e1 − e2)

Type of subalgebras 2-dimensional subalgebra 1-dimensional subalgebra

Also, it is easy to verify that the class (1, 1;−,−) has two fixed single axes by reflection in
vectors of length −1 and one double axis by reflection in vectors of length 1.

Example 6.1.4. The class (1, 1; +,−) has no double axes. Indeed, in this case the Gram
matrix is given by:

Gr =
1 0

0 −1

 ,
and

τ =
1 0

0 −1

 .
Then,

αe1 + βe2 =⇒ +1− 1 = 0,

αe1 =⇒ +1,
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βe2 =⇒ −1.

Therefore, we just have single axes and there is no double axes in this class.

Reflections of length 1 Reflections of length −1

Single axes 1 fixed 1 fixed

±e1 a = ±e2

Double axes - -

- -

Type of subalgebras 1-dimensional subalgebra 1-dimensional subalgebra

Similarly, we can prove that the class (1, 1;−,+) has no double axes.

In the case of n = 3:

The conjugacy classes of involution in this case are given in the following table:

O+
3 O−3

(0, 3; 0,+) (0, 3; 0,−)

(1, 2; +,+) (1, 2; +,−)

(1, 2;−,−) (1, 2;−,+)

(2, 1; +,+) (2, 1; +,−)

(2, 1;−,−) (2, 1;−,+)

(3, 0; +, 0) (3, 0;−, 0)

Example 6.1.5. Suppose that τ ∈ (1, 2;−,−), so (e1, e1) = −1, (e2, e2) = 1, and
(e3, e3) = −1, where e1 ⊥ e2, e1 ⊥ e3, and e2 ⊥ e3. Then the Gram matrix corresponding
to this class is:

Gr =


−1 0 0
0 1 0
0 0 −1

 ,
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and

τ =


1 0 0
0 −1 0
0 0 −1

 .

Then,
αe1 + βe2 + γe3 =⇒ −1 + 1− 1 = −1,

0e1 + βe2 + γe3 =⇒ 0 + 1 + (−1) = 0,

αe1 + 0e2 + γe3 =⇒ −1 + 0 + (−1) = 1,

αe1 + βe2 + 0e3 =⇒ −1 + 1 = 0,

αe1 =⇒ −1,

βe2 =⇒ 1,

γe3 =⇒ −1.

Reflections of length 1 Reflections of length −1

Single axes 1 fixed 2 fixed

±e2 ±e1,±e3

Double axes 1 -

a = ±(e1 + e3), b = ±(e1 − e3) -

Type of subalgebras 2-dimensional subalgebra -

Fischer space

Example 6.1.6. In this example we take τ ∈ (2, 1; +,+), so (e1, e1) = 1, (e2, e2) = 1, and
(e3, e3) = 1. Then the Gram matrix is given by:

Gr =


1 0 0
0 1 0
0 0 1

 ,
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and

τ =


1 0 0
0 1 0
0 0 −1

 .
Then,

αe1 + βe2 + γe3 =⇒ +1 + 1 + 1 = 0,

0e1 + βe2 + γe3 =⇒ 0 + 1 + 1 = −1,

αe1 + 0e2 + γe3 =⇒ +1 + 0 + 1 = −1,

αe1 + βe2 + 0e3 =⇒ +1 + 1 + 0 = −1,

αe1 =⇒ 1,

βe2 =⇒ 1,

γe3 =⇒ 1.

Reflections of length 1 Reflections of length −1

Single axes 3 fixed 2

±e1,±e2,±e3 a = ±(e1 + e2), b = ±(e1 − e2)

Double axes - 2

- c = ±(e2 + e3), d = ±(e2 − e3)

- e = ±(e1 + e3), f = ±(e1 − e3)

Type of subalgebras 3-dimensional subalgebra 4-dimensional subalgebra

The case of n = 4:

The table below represents the conjugacy classes of involution in all Oε
4(3):

For example, we take τ ∈ (1, 3; +,+), so (e1, e1) = 1, (e2, e2) = 1, (e3, e3) = 1, and
(e4, e4) = 1.
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O+
4 O−4

(0, 4; 0,+) (0, 4; 0,−)

(1, 3; +,+) (1, 3; +,−)

(1, 3;−,−) (1, 3;−,+)

(2, 2; +,+) (2, 2; +,−)

(2, 2;−,−) (2, 2;−,+)

(3, 1;−,−) (3, 1;−,+)

(3, 1;−,−) (3, 1;−,+)

(4, 0; +, 0) (4, 0;−, 0)

Then the Gram matrix is given as follows:

Gr =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

and

τ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

Now we discuss the reflections in vectors of length 1 and −1, so suppose that q(v) =
e2

1 + e2
2 + e2

3 + e2
4, with U = 〈e1, e2, e3〉 and V = 〈e4〉, where τ = id on U and τ = −id on

V . In total, we have 34−1
2 = 40 1-spaces.

The condition q(v) = 1 implies that v has either three or one non-zero coordinates. The
four 1-spaces 〈v〉 with one non-zero coordinate are the 〈ei〉 and they are all fixed, so we
have four single axes.

Also, we have 24

2 = 8 1-space with 4 non-zero coordinates, they are all in orbits of length 2
and the product is 1 + 1 + 1− 1 = −1, so none are orthogonal.
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Now we act on 〈v〉 with q(v) = −1. Then we have two non-zero coordinates. If both
non-zero’s are within {e1, e2, e3} then they are fixed, so there are 3× 2 = 6 single axes of
such 1-spaces. In addition, we have v = αei + βe4 with i ∈ {1, 2, 3} then vτ = αei − βe4

where (v, vτ ) = 1− 1 = 0, so they are orthogonal. Hence, we have three double axes as
there are three choices for i.

The following table shows single and double axes in both reflections and then determine
new subalgebras:

Reflections of length 1 Reflections of length −1

Single axes 4 fixed 6

±e1,±e2 a = ±(e1 + e2), b = ±(e1 − e2)

±e3,±e4 c = ±(e1 + e3), d = ±(e1 − e3)

g = ±(e2 + e3), h = ±(e2 − e3)

Double axes - 3

- e = ±(e1 + e4), f = ±(e1 − e4)

- i = ±(e2 + e4), j = ±(e2 − e4)

- k = ±(e3 + e4), l = ±(e3 − e4)

Type of subalgebras 4-dimensional subalgebra 9-dimensional subalgebra

We calculate the multiplication table of the 9-dimensional subalgebra. Recall that this
subalgebra generated by six single axes:

a = ±(e1 + e2), b = ±(e1 − e2), c = ±(e1 + e3),

d = ±(e1 − e3), g = ±(e2 + e3), h = ±(e2 − e3).

And three double axes:

x = e+ f, where e = ±(e1 + e4) and f = ±(e1 − e4),

y = i+ j, where i = ±(e2 + e4) and j = ±(e2 − e4),

z = k + l, where k = ±(e3 + e4) and l = ±(e3 − e4).
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6.2 Subalgebras for O+
(k+1)(3)

In this section we construct new subalgebras corresponding to the class of involution
(k, 1; ++) with ε = + and we consider the reflections in vectors of length −1. By this way
we can verify how many single and double axes we have in each case. At the end of the
section we will generalize these results and we provide a new subalgebra of dimension k2

on the orthogonal group O+
(k+1)(3).

• Case of k = 2:

Single axes: ±(e1 + e2),±(e1 − e2).

Double axes: (e1 + e3) + (e1 − e3), (e2 + e3) + (e2 − e3).

So, in this case we construct a 4-dimensional subalgebra generated by two single
axes and two double axes as shown above.

• Case of k = 3:

Single axes: ±(e1 + e2),±(e1 − e2),

±(e1 + e3),±(e1 − e3),

±(e2 + e3),±(e2 − e3).

Double axes: (e1 + e4) + (e1 − e4),

(e2 + e4) + (e2 − e4),

(e3 + e4) + (e3 − e4).

In this case we get a subalgebra of dimension 9 which is generated by those six single
axes and three double axes.

• Case of k = 4:

Single axes: ±(e1 + e2),±(e1 − e2),

±(e1 + e3),±(e1 − e3),

±(e1 + e4),±(e1 − e4,

±(e2 + e3),±(e2 − e3),

±(e2 + e4),±(e2 − e4),

±(e3 + e4),±(e3 − e4).

Double axes: (e1 + e5) + (e1 − e5),

(e2 + e5) + (e2 − e5),
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n Single axes Double axes Subalgebras

2 2 2 4-dimensional subalgebra

3 6 3 9-dimensional subalgebra

4 12 4 16-dimensional subalgebra

5 20 5 25-dimensional subalgebra

6 30 6 36-dimensional subalgebra

7 42 7 49-dimensional subalgebra

... ... ... ...

k k(k − 1) k k2-dimensional subalgebra

Table 6.2: Subalgebras generated by single and double axes

(e3 + e5) + (e3 − e5),

(e4 + e5) + (e4 − e5).

Then we get a 16-dimensional subalgebra which is generated by 12 single axes and
four double axes as described above.

In this way we can construct further new subalgebras. The following table lists the number
of single and double axes for each case of k and corresponding subalgebras.

Theorem 6.2.1. Let A be the subspace of the Matsuo algebra Mη(−O+
k+1(3)) spanned by

the set of single axes S = {〈ei + εej〉 : 1 ≤ i < j ≤ n, ε = ±1} and the set of double axes
D = {〈e0 + ei〉+ 〈e0 − ei〉 | 1 ≤ i ≤ k}. Then A is a primitive axial algebra of Monster
type (2η, η) of dimension |S|+ |D| = k(k − 1) + k = k(k − 1 + 1) = k2.

Proof. To show that A is a subalgebra, we need to check that A is closed under multiplica-
tion. We establish this by looking through the possible cases of pairs of axes a, b ∈ S ∪D
and showing in each case that ab ∈ A. Note that every axis, single or double, is an
idempotent, so we just need to consider pairs of distinct axes: a 6= b.

Let us start with two single axes: a = 〈ei+εej〉 and b = 〈ei′+ε′ej′〉. Then |{i, j}∩{i′, j′}| is
0, 1 or 2. If {i, j} and {i′, j′} are disjoint then, clearly, ab = 0 since (ei+ εej, ei′+ ε′ej′) = 0.
If |{i, j} ∩ {i′, j′}| = 1, then, without loss of generality, i = i′, that is, b = 〈ei + ε′ej′〉. In
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this case, ab = η
2(a + b − c), where c = bra = 〈−εej + ε′ej′〉. Manifestly, c ∈ S, and so

ab ∈ A.

Finally, suppose that |{i, j} ∩ {i′, j′}| = 2. Then, without loss of generality, a = 〈ei + ej〉
and b = 〈ei − ej〉. Here, (ei + ej, ei − ej) = 0 and so again, as in the first case, ab = 0.

Next, assume that a = 〈ei + εej〉 is a single axis and b = 〈e0 + es〉+ 〈e0 − es〉 is a double
axis. Here we have two options: either s 6∈ {i, j} or s ∈ {i, j} (say, s = i). In the the first
case, ab = 0 since (ei ± ej, e0 ± es) = 0. If s = i then

ab = 〈ei + εej〉(〈e0 + ei〉+ 〈e0 − ei〉)

= η

2(〈ei + εej〉+ 〈e0 + ei〉 − 〈e0 + εej〉)

+ η

2(〈ei + εej〉+ 〈e0 − ei〉 − 〈e0 − εej〉)

= ηa+ η

2b−
η

2(〈e0 + ej〉+ 〈e0 − ej〉).

Clearly, 〈e0 + ej〉+ 〈e0 − ej〉 ∈ D and so ab ∈ A.

Finally, let a = 〈e0 + ei〉+ 〈e0− ei〉 and b = 〈e0 + ej〉+ 〈e0− ej〉 be two double axes, i 6= j.
Then

ab = (〈e0 + ei〉+ 〈e0 − ei〉)(〈e0 + ej〉+ 〈e0 − ej〉)

= η

2(〈e0 + ei〉+ 〈e0 + ej〉 − 〈ei + ej〉)

+ η

2(〈e0 + ei〉+ 〈e0 − ej〉 − 〈ei − ej〉)

+ η

2(〈e0 − ei〉+ 〈e0 + ej〉 − 〈ei − ej〉)

+ η

2(〈e0 − ei〉+ 〈e0 − ej〉 − 〈ei + ej〉)

= ηa+ ηb− η〈ei + ej〉 − η〈ei − ej〉.

Clearly, all summands here are in A, so in this final case ab ∈ A.

We have shown that A is a subalgebra. Manifestly, the vectors in S ∪ D are linearly
independent, and so they form a basis of A. This yields the claim concerning the dimension
of A.

It remains to show that the double axes x = 〈e0 + ei〉 + 〈e0 − ej〉 are primitive in A.
Consider σ = re0 . This involution fixes all single axes in S and it switches two single axes
a = 〈e0 + ei〉 and b = 〈e0 − ei〉 in every x = a + b ∈ D. Hence S ∪ D is contained in
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the fixed subalgebra Mσ, which means that A is contained in Mσ. Recall from Theorem
5.1.2 that M1(x) = 〈a, b〉. Within M1(x), σ fixes a + b = x and inverts a − b. Hence
A1(x) = A ∩M1(x) = 〈x〉 and so x is indeed primitive in A.

We use Qk(η) to denote the subalgebra A of Mη(O+
k+1(3)).

In the next sections, we study some properties of the subalgebras that were discovered
in the previous section. Firstly, we compute the Frobenius form for the subalgebra of
dimension n2. Then, using GAP to calculate the determinant and the eigenvalues of the
Gram matrix.

Furthermore, we use the theory developed in [30] to investigate the following question: for
which values of η is A a simple algebra?

6.3 Frobenius form on A

First of all, note that A inherits from M a Frobenius form (see Definition 4.3.1), a bilinear
from associating with the algebra product. In this subsection we compute the values of
the Frobenius form on the basis S ∪D of A. For a ∈ S ∪D, let the support supp(a) be
defined as {i, j} if a = 〈ei + εej〉 is a single axis and as {0, i} if a = 〈e0 + ei〉+ 〈e0 − ei〉 is
a double axis.

Proposition 6.3.1. Let a, b ∈ S ∪D. Then

• If a = b then (a, a) = 1 if a ∈ S and (a, a) = 2 if a ∈ D.

• If a 6= b then (a, b) = 0 if supp(a)∩ supp(b) = ∅ or if supp(a) = supp(b) (in this case
both a and b are single axes).

• If a 6= b and |supp(a)∩ supp(b)| = 1 then (a, b) = η
2 if a, b ∈ S; η if a ∈ S and b ∈ D

(or vice versa); and 2η if a, b ∈ D.

Proof. This follows immediately from the values of the Frobenius form on M , as given in
Subsection 4.3.
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6.4 Ideals in A

According to [30], the ideals of A containing axes from S ∪ D are controlled by the
projection graph on the set S ∪D of axes of A.

Definition 6.4.1. The projection graph of A is the graph on S ∪D where two vertices a
and b are connected by an edge if (a, b) 6= 0.

Proposition 6.4.2. The algebra A has no proper non-zero ideals containing an axis from
S ∪D.

Proof. According to [30], it suffices to show that the projection graph is connected. By
Proposition 6.3.1, we see that the single axis 〈ei + εej〉 is connected by edges to both
double axes 〈e0 + ei〉+ 〈e0 − ei〉 and 〈e0 + ej〉+ 〈e0 − ej〉. Thus all double axes and all
single axes are contained in the same connected component of the projection graph.

6.5 Radical

We turn now to ideals of A that contain no axes from S ∪D. All such ideals are contained
in the radical of A, which is defined in [30] as the largest ideal not containing any of the
generating axes of A. It is also shown in [30] that, in the presence of a Frobenius form
having non-zero values (a, a) on all generating axes a, the radical of A coincides with the
radical

A⊥ = {u ∈ A : (u, v) = 0 for all v ∈ A}

of the Frobenius form on A. Clearly, this radical is non-zero if and only if the determinant
of the Gram matrix of the Frobenius form is non-zero. Clearly, the determinant of the
Gram matrix (written with respect to the basis S ∪D of A) is a polynomial in η of degree
depending on n. In the next section we compute this polynomial for n ≤ 14 and based on
this we put forward exact conjectures concerning the values of η for which the radical is
non-zero (and hence A is not simple).
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6.6 Critical values of η

Here we use GAP [15] to compute and factorize the determinant of the Gram matrix
of the Frobenius form on A for small values of n. We conclude this section with some
conjectures.

Example 6.6.1. If we consider the 4-dimensional subalgebra A, then the Gram matrix is
given by:

G =


1 0 η η

0 1 η η

η η 2 2η
η η 2η 2

 .

The determinant det(G) and the list of eigenvalues λ̄ (where the multiplicity of each
eigenvalue is shown as the exponent) of the Gram matrix G are;

det(G) = 2η3 − 3η2 + 1,

λ̄ = [(−1)2,−1
2].

The radical of A is non-zero and A is not simple if and only if η = −1, 1
2 .

Example 6.6.2. In this example, we take the subalgebra A of dimension 9. Then the
Gram matrix G as follows;

Gr =



1 0 η
2

η
2

η
2

η
2 η η 0

0 1 η
2

η
2

η
2

η
2 η η 0

η
2

η
2 1 0 η

2
η
2 η 0 η

η
2

η
2 0 1 η

2
η
2 η 0 η

η
2

η
2

η
2

η
2 1 0 0 η η

η
2

η
2

η
2

η
2 0 1 0 η η

η η η η 0 0 2 2η 2η
η η 0 0 η η 2η 2 2η
0 0 η η η η 2η 2η 2


Also, using GAP we calculate the determinant of G and the eigenvalues;

det(Gr) = 16η3 − 12η2 + 1,

λ̄ = [(1
2)2,−1

4].
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Then, A⊥ 6= 0 if and only if η = 1
2 or η = −1

4 . Then for all other values of η the subalgebra
A is simple.

Example 6.6.3. Assume that we have the 16-dimensional subalgebra A, then the Gram
matrix as follows;

Gr =



1 0 η
2

η
2

η
2

η
2

η
2

η
2

η
2

η
2 0 0 η η 0 0

0 1 η
2

η
2

η
2

η
2

η
2

η
2

η
2

η
2 0 0 η η 0 0

η
2

η
2 1 0 η

2
η
2

η
2

η
2 0 0 η

2
η
2 η 0 η 0

η
2

η
2 0 1 η

2
η
2

η
2

η
2 0 0 η

2
η
2 η 0 η 0

η
2

η
2

η
2

η
2 1 0 0 0 η

2
η
2

η
2

η
2 η 0 0 η

η
2

η
2

η
2

η
2 0 1 0 0 η

2
η
2

η
2

η
2 η 0 0 η

η
2

η
2

η
2

η
2 0 0 1 0 η

2
η
2

η
2

η
2 0 η η 0

η
2

η
2

η
2

η
2 0 0 0 1 η

2
η
2

η
2

η
2 0 η η 0

η
2

η
2 0 0 η

2
η
2

η
2

η
2 1 0 η

2
η
2 0 η 0 η

η
2

η
2 0 0 η

2
η
2

η
2

η
2 0 1 η

2
η
2 0 η 0 η

0 0 η
2

η
2

η
2

η
2

η
2

η
2

η
2

η
2 1 0 0 0 η η

0 0 η
2

η
2

η
2

η
2

η
2

η
2

η
2

η
2 0 1 0 0 η η

η η η η η η 0 0 0 0 0 0 2 2η 2η 2η
η η 0 0 0 0 η η η η 0 0 2η 2 2η 2η
0 0 η η 0 0 η η 0 0 η η 2η 2η 2 2η
0 0 0 0 η η 0 0 η η η η 2η 2η 2η 2



Again by using GAP, we can calculate the determinant and the eigenvalues of the Gram
matrix G:

det(Gr) = η10 + 5
3η

9 − 5
4η

8 − 5
2η

7 + 15
16η

6 + 23
16η

5 − 35
64η

4 − 5
16η

3 + 5
32η

2 − 1
192 ,

λ̄ = [(1
2)5,−1

6 , (−1)4].

Hence, the subalgebra A is simple unless η = 1
2 ,−

1
6 and η = −1.

Similarly, we compute the eigenvalues of the Gram matrix for the further subalgebras in
case of n = 5, 6, 7, . . . . The following table illustrates the special eigenvalues which have
been calculated by GAP, (Figure 3.1);

Then, we formulate several conjectures:

Conjecture 6.6.4. The determinant of the Gram matrix Gr is a polynomial of degree
n(n+1)

2 , unless n = 3.
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n Degree of the determinant Special eigenvalues

2 3 [12,−1
2 ]

3 3 [1
2

2
,−1

4 ]

4 10 [1
2

5
,−1

6 ,−14]

5 15 [1
2

9
,−1

8 ,−
1
2

5]

6 21 [1
2

14
,− 1

10 ,−
1
3

6]

7 28 [1
2

20
,− 1

12 ,−
1
4

7]

8 36 [1
2

27
,− 1

14 ,−
1
5

8]

9 45 [1
2

35
,− 1

16 ,−
1
6

9]

10 55 [1
2

44
,− 1

18 ,−
1
7

10]

11 66 [1
2

54
,− 1

20 ,−
1
8

11]

12 78 [1
2

65
,− 1

22 ,−
1
9

12]

13 91 [1
2

77
,− 1

24 ,−
1
10

13]

14 105 [1
2

90
,− 1

26 ,−
1
11

14]

Table 6.3: Eigenvalues for n2-dimensional subalgebras

Conjecture 6.6.5. The multiplicity of the eigenvalue 1
2 is

n(n− 1)
2 − 1 = n2 − n− 2

2 = (n+ 1)(n− 2)
2 .
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Conjecture 6.6.6. The Gram matrix Gr has eigenvalue − 1
n−3 with multiplicity n.

Conjecture 6.6.7. There is just one further simple eigenvalue − 1
2(n−1) with multiplicity

1.

6.7 The dimension of the radicals

In this section we are looking for the conjectures concerning the values of η for which the
radical of the algebra is non-zero. Then we calculate the dimension of the radical.

Let A be the subalgebra of the Matsuo algebra Mη(−O+
n+1(3)) spanned by the set of

single axes S = {〈ei + εej〉 : 1 ≤ i < j ≤ n, ε = ±1} and the set of double axes
D = {〈e0 + ei〉u 〈e0 − ei〉 | 1 ≤ i ≤ n}, where |S| = n(n− 1) and |D| = n, and u is the
addition in the Matsuo algebra.

The set B = S ∪D is a basis for the subalgebra A. We use ai := 〈e0 + ei〉u 〈e0 − ei〉 to
denote the elements of D and, we have single axes;

bij := 〈ei + ej〉

cij := 〈ei − ej〉.

Now, we take

dij := bij − cij
eij := bij + cij.

The next proposition shows how we compute the values of the Frobenius form on the basis
S ∪D of A. For a ∈ S ∪D, let the support supp(a) be defined as {i, j} if a = 〈ei + εej〉 is
a single axis and as {0, i} if a = 〈e0 + ei〉u 〈e0 − ei〉 is a double axis.

Proposition 6.7.1. Let a, b ∈ S ∪D. Then

• If a = b then (a, a) = 1 if a ∈ S and (a, a) = 2 if a ∈ D.

• If a 6= b then (a, b) = 0 if supp(a)∩ supp(b) = ∅ or if supp(a) = supp(b) (in this case
both a and b are single axes).

• If a 6= b and |supp(a)∩ supp(b)| = 1 then (a, b) = η
2 if a, b ∈ S; η if a ∈ S and b ∈ D

(or vice versa); and 2η if a, b ∈ D.
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Lemma 6.7.2. The subspace D spanned by all dij is orthogonal with respect to the
Frobenius form (, ) to all other vectors of the basis. Therefore, D splits off as an orthogonal
direct summand.

Proof. For the distinct indices i, j, k in {1, . . . , n} the claim holds as:

(ak, dij) = (ak, bij − cij);

= 0− 0 = 0.

The other cases are as follows:

(ai, dij) = (ai, bij − cij);

= η − η = 0.

And similarly, (aj, dij) = 0.

Now we verify that dij is orthogonal to all single axes,

(eij, dij) = (bij + cij, bij − cij)

= 1− 0 + 0− 1 = 0.

Also,

(eik, dij) = (bik + cik, bij − cij)

= η

2 −
η

2 + η

2 −
η

2 = 0.

In the same way, we can check that (ejk, dij) = 0.

(dij, dij) = (bij − cij, bij − cij)

= 1− 0− 0 + 1 = 2.

Moreover, if we take bij = bji and cij = −cji Therefore, D is orthogonal to all other vectors
in the basis of the subalgebra A.

Let fij = eij + α(ai + aj) + β(∑s 6=i,j as). We want to choose α, β ∈ F so that all fij are
orthogonal to all as.
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Hence we have:

0 = (fij, ai) = (bij + cij + α(ai + aj) + β(
∑
s 6=i,j

as), ai)

= η + η + α(2 + 2η) + β((n− 2)2η)

= 2η + 2α(1 + η) + 2β((n− 2)η)

= 2(η + α(1 + η) + β((n− 2)η)).

Then,

(1 + η)α + (n− 2)ηβ = −η. (6.1)

Also,

0 = (fij, as) = (bij + cij + α(ai + aj) + β(
∑
s6=i,j

as), as)

= 0 + 0 + α(2η + 2η) + β(2 + (n− 3)2η)

= 2(2αη + β(1 + (n− 3)η).

So,

2αη + (1 + (n− 3)βη = 0. (6.2)

We solve (6.1) and (6.2) using Cramer’s Rule:

w = det
η + 1 (n− 2)η

2η 1 + (n− 3)η

 = (η + 1)(1 + (n− 3)η)− 2η2(n− 2)

= η + (n− 3)η2 + 1 + (n− 3)η − 2(n− 2)η2

= 1 + (n− 2)η + (−n+ 1)η2

= −(η − 1)((n− 1)η + 1).

Furthermore,

u = det
−η (n− 2)η

0 1 + (n− 3)η

 = −η(1 + (n− 3)η,

and also,
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v = det
η + 1 −η

2η 0

 = 2η2.

Then,

α = u

w
= η(1 + (n− 3)η)

(η − 1)(1 + (n− 1)η) , (6.3)

and

β = v

w
= −2η2

(η − 1)(1 + (n− 1)η) . (6.4)

Now,

(fij, fij) = (bij + cij + α(ai + aj) + β(
∑
s 6=i,j

as), bij + cij + α(ai + aj) + β(
∑
s 6=i,j

as))

= 2((2η + 2)α2 + 4ηα + 4(n− 2)ηαβ − 4ηβ + 2(1 + (n− 3)η(2 + (n− 3)η))β2 + 1).

By substituting the values of α and β, we get:

(fij, fij) = 2 (n−3)(8n−24)η6+(−2n2+30n−90)η5+(−2n2+16n+10)η4+(n2−13n+10)η3+(−2n2+3n−2)η2+(n2−3n)η+n
(η−1)2(1+(n−1)η)2 .

Similarly, we calculate (fij, fik):

(fij, fik) = (bij + cij + α(ai + aj) + β(
∑
s 6=i,j

as), bik + cik + α(ai + ak) + β(
∑
s 6=i,k

as))

= 2(η + 2ηα− 2ηβ + (2η + 2)α2 + (n− 2)2ηβ2 + ((3n− 7)η + 1)αβ).

Also, from (3) and (4) we get:

(fij, fik) = 2 (3n+5)(n−1)η5+(2n2+3n−10)η4+(n2−6n+3)η3+2(n−2)η2+η
(η−1)2(1+(n−1)η)2 .

Hence, the new basis of the subalgebra A is B′ = {dij} ∪ {fij} ∪ ai.

We aim to determine the dimension of the radicals of the form, that means where the
determinant of the new Gram matrix vanishes with respect to the new basis B′.

The Gram matrix with a new basis is
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G′ =


GS

GD

GF

 , (6.5)

where GS = 2I|dij |,

GD =


2 . . . 2η
... . . .

2η 2

 ,

and GF is the Gram matrix of the form on the new vector F = fij and it can be written
as GF = (fij, fij)I + (fij, fik)ΓF , where I is the identity matrix and ΓF is the adjacency
matrix of a group whose vertex set is F = {fij}. There is an edge between the intersection
pairs, fij and fik.

Take ζ = (fij, fij) and τ = (fij, fik), as we computed earlier. Then GF = ζI + τX where
I is the identity matrix and X is the adjacency matrix of the graph on the set of all
2-element subsets {i, j} where two such subsets adjacent when they share a single common
element. (This graph is known as the Johnson graph J(n, 2).) The eigenvalues of GF are
of the form ζ + τλ where λ is an eigenvalue of X. The Johnson graph is a strongly regular
graph and it has parameters:

(N,K, a, c) = (n(n− 1)
2 , 2n− 4, n− 2, 4).

It follows that the eigenvalues of X are:

λ0 = K = 2n− 4,

λ1 = (a− c) +
√

∆
2 ,

λ2 = (a− c)−
√

∆
2 ,

where ∆ = (a− c)2 + 4(K − c), and the multiplicities of the eigenvalues λ0, λ1 and λ2 are
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as follows:

m0 = 1,

m1 = 1
2((N − 1)− 2k + (N − 1)(a− c)√

∆
),

m2 = 1
2((N − 1) + 2k + (N − 1)(a− c)√

∆
).

To compute λ1 and λ2, first we calculate ∆

∆ = (a− c)2 + 4(K − c)

= (n− 6)2 + 4(2n− 4− 4)

= n2 − 4n+ 4

= (n− 2)2.

Hence, we have

λ1 = (n− 6) + (n− 2)
2 = n− 4,

λ2 = (n− 6)− (n− 2)
2 = −2.

Then the multiplicity of λ1 is:

m1 = 1
2((N − 1)− 2k + (N − 1)(a− c)√

∆
)

= 1
2((n+ 1)(n− 2)

2 −
2(2n− 4) + (n+1)(n−2)(n−6)

2
n− 2 )

= 1
2((n+ 1)(n− 2)

2 − n2 − 5n+ 2
2 )

= 1
2(n

2 − n− 2− n2 + 5n− 2
2 )

= n− 1,
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and the multiplicity of λ2 is:

m2 = 1
2((N − 1) + 2k + (N − 1)(a− c)√

∆
)

= 1
2((n+ 1)(n− 2)

2 +
2(2n− 4) + (n+1)(n−2)(n−6)

2
n− 2 )

= 1
2((n+ 1)(n− 2)

2 + n2 − 5n+ 2
2 )

= 1
2(n

2 − n− 2 + n2 − 5n+ 2
2 )

= n(n− 3)
2 .

From this we can find the eigenvalues ζ + ηλi.
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CHAPTER 7

FLIP SUBALGEBRAS IN THE EXTENDED
SYMMETRIC CASE

In this chapter we construct flip subalgebras of Mη(2n−1 : Sn). First, we discuss the classes
of flips and then, for each representative flip, we describe the corresponding flip subalgebra.
Towards the end of the chapter, we find the critical values of η for these new algebras and
determine the dimension of the radical when it is non-trivial.

7.1 Setup

Let S = Sn and V ∼= 2n ∼= C2 × C2 × . . . C2 be the multiplicative group of all {−1, 1}-
sequences of length n. Then S acts on V by permuting positions in each sequence,
and so we can consider the semi-direct product Ĝ = Ĝn := V : S ∼= 2n : Sn. (Note
that this is the wreath product C2 o Sn.) Recall that multiplication in Ĝ is as follows:
(v, σ)(v′, σ′) = (v(v′)σ−1

, σσ′). We use right actions and this explains the exponent notation
for the action of σ on v′.

It will be convenient to use the following notation: the pair (v, σ) ∈ Ĝ, where v =
(δ1, δ2, . . . , δn) ∈ V and σ ∈ S, will be denoted by (δ1, δ2, . . . , δn : σ). For example, for
n = 3, v = (1,−1, 1), and σ = (2, 3), we write (1,−1, 1 : (2, 3)) instead of ((1,−1, 1), (2, 3)).
We will view both V and S as subgroups of Ĝ, that is, we will simplify (δ1, δ2, . . . , δn : ())
to just (δ1, δ2, . . . , δn) and, similarly, we will simplify (1, 1, . . . , 1 : σ) to just σ. So we can
also write (δ1, δ2, . . . , δn : σ) = (δ1, δ2, . . . , δn)σ.

It will also be convenient to refer to v as the V -part of the element (v, σ) ∈ Ĝ, and similarly,
σ can be called the S-part.
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Throughout the chapter, we will be defining various elements of V . In particular, let
vi = (1, . . . , 1,−1, 1, . . . , 1) ∈ V be the element, where the only −1 appears in the ith
position. Clearly, v1, v2, . . . , vn are the generators of V and so every element of V can be
expressed as a product of the elements vi.

We denote by π the natural homomorphism Ĝ→ S sending every (δ1, δ2, . . . , δn : σ) to its
S-part σ. Clearly, π is surjective and V is the kernel of π.

It is well-known that two elements of S are conjugate if and only if they have the same
cycle type, describing the cycle lengths of the decomposition of a permutation as a product
of independent cycles. For example, the cycle type of (1, 3, 7)(2, 4)(5, 8) ∈ S8 is 2231, since
it has two 2-cycles and one 3-cycle. Note that we ignore 1-cycles, i.e., fixed points. For
g ∈ (v, σ) ∈ Ĝ, we define the cycle type of g as the cycle type of the permutation σ.

Lemma 7.1.1. If two elements of Ĝ are conjugate then they have the same cycle type.

Proof. If g = (v, σ) and g′ = (v′, σ′) are conjugate in Ĝ then g′ = gh for some h = (u, τ) ∈ Ĝ.
Applying π, we obtain σ′ = π(g′) = π(gh) = π(g)π(h) = στ . So σ and σ′ are conjugate in
S, yielding that they have the same cycle type.

We note that the converse is not true and we have elements of Ĝ with the same cycle type
that are not conjugate.

Define C to be the conjugacy class (1, 2)Ĝ of Ĝ. Clearly, C contains all transpositions
(2-cycles) from S. Which other elements does it contain? Let

vi,j = vivj = (1, . . . , 1,−1, 1, . . . , 1,−1, 1, . . . , 1),

where the entries −1 are in the ith and jth positions.

Proposition 7.1.2. The class C consists of all elements ei,j = (i, j) and fi,j = vi,j(i, j)
for 1 ≤ i < j ≤ n.

Proof. Since (1, 2) and (i, j) are conjugate in S ≤ Ĝ, it follows that ei,j = (i, j) is an
element in C for all 1 ≤ i < j ≤ n. Note that (i, j)vi = (vi)−1(i, j)vi = viv

(i,j)
i (i, j) =

vivj(i, j) = vi,j(i, j). So all elements fi,j = vi,j(i, j) are also contained in C.

This gives us 2
(
n
2

)
elements of C. Hence, to finish the proof, it suffices to show that

|C| = 2
(
n
2

)
. Let S0 be the set-wise stabilizer of {1, 2} in S (this is equal to the centraliser

of (1, 2) in S) and V0 = {(δ1, δ2, . . . , δn) ∈ V | δ1 = δ2}. It is clear that V0 is a subgroup of
V of index 2 and that V0 centralises (1, 2). It follows that CĜ((1, 2)) ≥ V0S0. Therefore,
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|C| = [Ĝ : CĜ((1, 2))] ≤ |V ||S|
|V0||S0| = 2

(
n
2

)
, since |V |

|V0| = 2 and |S|
|S0| =

(
n
2

)
. Thus, |C| ≤ 2

(
n
2

)
,

and so we have the desired equality.

Let G = 〈C〉.

Proposition 7.1.3. (G,C) is a 3-transposition group.

Proof. We need to show that |cd| ≤ 3 for all c, d ∈ C. Since all elements of C are
conjugate in Ĝ, it suffices to take c = (1, 2). If d = c then, clearly, cd = 1 and so
|cd| = 1. If d = v1,2(1, 2) then cd = v1,2 is of order 2. Now we can assume that
(i, j) := π(d) 6= (1, 2). If {1, 2} and {i, j} are disjoint then, clearly, c and d commute, that
is, |cd| = 2. Finally, suppose that |{1, 2} ∩ {i, j}| = 1. Without loss of generality we may
assume that (i, j) = (1, j) for some j ≥ 3. Then d = (1, j) or v1,j(1, j). In the first case,
cd = (1, 2)(1, j) = (1, 2, j), and in the second case,

cd = (1, 2)v1,j(1, j)

= (v1,j)(1,2)−1(1, 2)(1, j)

= v2,j(1, 2, j).

In both cases |cd| = 3.

Let W = {(δ1, δ2, . . . , δn) ∈ V | δ1δ2 · · · δn = 1}. Note that W consists of all tuples from V

containing an even number of −1s.

Proposition 7.1.4. G = WS has index 2 in Ĝ. In particular, GE Ĝ.

Proof. First, we need to prove that WS is a subgroup of Ĝ of index 2. Since G = 〈C〉 =
〈(1, 2)Ĝ〉, the class C contains all transpositions (i, j) and they generate S. Hence S is
contained in G.

Consider the map φ : V → C2 = {1,−1} given by:

φ((δ1, δ2, . . . , δn)) = δ1δ2 · · · δn.

It is easy to check that φ is a homomorphism. Indeed, let v = (δ1, δ2, . . . , δn) and
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v′ = (δ′1, δ′2, . . . , δ′n) be in V . Then

φ(vv′) = φ((δ1, δ2, . . . , δn)(δ′1, δ′2, . . . , δ′n))

= φ((δ1δ
′
1, δ2δ

′
2, . . . , δnδ

′
n))

= δ1δ
′
1δ2δ

′
2 · · · δnδ′n

= (δ1δ2 · · · , δn)(δ′1δ′2 · · · δ′n) = 1.

So φ is a homomorphism. Furthermore, φ is surjective and W = kerφ, so W is a subgroup
and [V : W ] = |V |

|W | = |im(φ)| = |C2| = 2 by the First Isomorphism Theorem. We have
shown that W is a subgroup of V of index 2.

Also, S normalises W . Indeed, suppose that (δ1, δ2, . . . , δn) ∈ W . Then (δ1, δ2, . . . , δn)σ =
(δ1σ , δ2σ , . . . , δnσ). In particular, (δ1, δ2, . . . , δn)σ has the same number of−1s as (δ1, δ2, . . . , δn).
Recall that W consists of all tuples from V with an even number of −1s. It follows
that (δ1, δ2, . . . , δn) ∈ W if and only if (δ1, δ2, . . . , δn)σ ∈ W for all σ ∈ S. Hence
W σ = W , i.e., S normalises W . Consequently, WS is a subgroup of Ĝ. Moreover,
|Ĝ|
|WS| = |V S|

|WS| = |V ||S|
|W ||S| = |V |

|W | = 2. So, [Ĝ : WS] = 2, which also shows that WS is a normal
subgroup of Ĝ.

From Proposition 7.1.2, every element of C is either x := (i, j) or x′ := vi,j(i, j) for some
1 ≤ i < j ≤ n. Since, in the first of these two, the V -part is the identity, with zero −1’s in
it, and since vi,j contains two −1s, both x and x′ lie in WS. Therefore, C ⊆ WS and this
means that G = 〈C〉 ≤ WS.

As we previously discussed, S ⊆ G. Also, all elements vi,j = x′x−1 ∈ G. Next, we prove
that W = 〈vi,j | 1 ≤ i < j ≤ n〉. For 2 ≤ k ≤ n, we define Tk = 〈vi,j | 1 ≤ i < j ≤ k〉 and
Wk = {(δ1, δ2, . . . , δn) ∈ W | δk+1 = 1 = δk+2 = . . . ,= δn}. We prove by induction that
Tk = Wk for all k. If n = 2 then the statement is clearly correct since T1 = 〈v1,2〉 = W2.
Assume now that k ≥ 3 and Ts = Ws is true for s = k − 1. That is, Tk−1 = Wk−1.
Clearly, Tk ⊆ Wk. Now, take an arbitrary v = (δ1, δ2, . . . , δn) ∈ Wk. If δk = 1, then
v ∈ Wk−1 = Tk−1 ⊆ Tk. If δk = −1, then note that vvk−1,k has the (k − 1)th entry 1, so
vvk−1,k ∈ Tk. Since also vk−1,k ∈ Tk, we conclude that v ∈ Tk. Thus, all elements of Wk

are in Tk, and so Wk ⊆ Tk, yielding Tk = Wk. So indeed Tk = Wk for all k.

Taking k = n, we obtain that Tn = Wn = W , i.e., W is generated by all elements vi,j.
Since all vi,j are in G, we conclude that W ≤ G. We have shown that WS ≤ G, and so
G = WS is of index two in Ĝ.

We see that G has the structure 2n−1 : Sn. We will call it the extended symmetric group.
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This is a well-known group that appears, for example, as the Weyl group W (Dn). The
3-transposition group (G,C) appears in [6] in the class PR.2.

7.2 The automorphism group of G

Since G has index 2 in Ĝ, it is normal, and this means that Ĝ acts on G by conjugation.
We note that this action is not faithful. Namely, the element z = (−1,−1, . . . ,−1) ∈ V
is in the centre of Ĝ and so it acts on G trivially. Hence the first result we need is the
following.

Proposition 7.2.1. If n ≥ 3 then the kernel of Ĝ acting on G by conjugation coincides
with Z = 〈z〉 = Z(Ĝ).

Proof. Note that the kernel coincides with the centraliser of G in Ĝ and it contains the
centre of Ĝ. Suppose g ∈ CĜ(G). Then in particular g commutes with all elements of S and
this implies that π(g) is in the centre of π(S) = Ĝ/V ∼= S ∼= Sn. However, Sn has trivial
centre when n ≥ 3, which means that π(g) = 1, that is, g ∈ V . Let g = (δ1, δ2, . . . , δn).
Again, since g centralises S, we must have that gτ = g for all τ ∈ Sn, and this can only
happen when all entries δi are the same. Thus, g = 1 or g = z. We have shown that
CĜ(G) ≤ Z. On the other hand, clearly, Z ≤ Z(Ĝ) ≤ CĜ(G), and so we have the desired
equality.

If n = 2 then G is of order 4 and hence Abelian, i.e., it centralises itself. This shows that
n = 2 is a true exception.

Recall that by an automorphism of a 3-transposition group (G,C) we mean an automor-
phism φ of G such that Cφ = C. All automorphisms of (G,C) form a subgroup of Aut(G),
which we denote by Aut(G,C).

Taking Proposition 7.2.1 into account, we now formulate the following key result.

Proposition 7.2.2. Let G be the extended symmetric group 2n−1 : Sn and C = (1, 2)G.
If n ≥ 3 then every automorphism of (G,C) is induced by an element of Ĝ. That is,
Aut(G,C) ∼= Ĝ/Z.

Proof. Recall that G = WS, where W = {(δ1, δ2, . . . , δn) ∈ V | δ1δ2 · · · δn = 1}, and W

is a subgroup of V of index two. Consider an arbitrary automorphism φ ∈ Aut(G,C).
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Note that W = O2(G) char G, and so W φ = W . This means that φ also acts on
Ḡ = G/W ∼= Sn. Furthermore, since Cφ = C and since C̄ is the conjugacy class of
transpositions in Ḡ, we conclude that φ induces an inner automorphism of Ḡ. (Indeed, if
n 6= 6 then every automorphism of Sn is inner. The group S6, on the other hand, does
have outer automorphisms, but they do not preserve the class of transpositions, switching
it with the class of triple 2-cycles.)

This means that correcting φ by an inner factor (certainly induced by an element of G),
we can assume that φ acts on Ḡ as the identity. Then for every pair {i, j}, φ either fixes
both (i, j) and vi,j(i, j) or it switches them. We will call the height of φ the largest i such
that φ does not fix (i− 1, i). Note that the height is defined for every φ 6= 1. Indeed, if φ
fixes all (i− 1, i), i = 2, 3, . . . , n, then φ centralises the subgroup of Sn that these elements
generate. It follows that every (i, j) is fixed, and this means that all elements of C are
fixed. However, C generates G and so φ = 1. Thus every nonidentity automorphism φ has
some height ≥ 2. To cover the case φ = 1, we will say this identity automorphism has
height 1.

We now prove that φ is induced by an element of Ĝ and we will use induction on height.
If the height is 1 then φ = 1 and there is nothing to prove. So suppose that the claim
holds true for heights at most k − 1 ≥ 1 and suppose that φ has height k. Let φ′ = φcvk−1

(as usual, cg denotes conjugation by g). We note that cvk−1 switches (k − 1, k) and
vk−1,k(k − 1, k). Similarly, it switches (k − 2, k − 1) and vk−2,k−1(k − 2, k − 1), but it fixes
all the other elements (i− 1, i) and vi−1,i(i− 1, i). From this it immediately follows that
φ′ also acts as identity on Ḡ and it has height smaller than the height of φ. By induction
φ′ coincides with cg for some g ∈ Ĝ and therefore φ = cgvk−1 is induced by some element
of Ĝ. This completes the proof.

7.3 Classes of flips

We aim to find all conjugacy classes of flips (automorphisms of order 2) of (G,C).

In view of Proposition 7.2.2, we just need to find the conjugacy classes of involutions in
Ĝ/Z. Suppose that g ∈ Ĝ is such that gZ is an involution. Equivalently, Z = (gZ)2 = g2Z,
i.e., g2 ∈ Z = {1, z}. The elements g with g2 = 1 are simply the involutions of Ĝ, and this
is the first case we are going to consider (leaving the second case, g2 = z, for later).

Suppose that g = (δ1, δ2, . . . , δn : σ) is an involution, that is, it has order 2. Recall that
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π : Ĝ → S is the homomorphism sending g to σ. It follows that σ = π(g) has order
dividing 2, that is, it has cycle type 2k, where 0 ≤ k ≤ bn2 c. This includes the case σ = 1
arising for k = 0. We will call k the rank of the involution g. Clearly, the rank is preserved
under conjugation.

Theorem 7.3.1. Every involution g ∈ Ĝ is conjugate to a unique element of the form

gk,r = (1, 1, . . . , 1,−1, . . . ,−1 : (1, 2)(3, 4) · · · (2k − 1, 2k)),

where r is the number of −1s in the tail of the V -part of gk,r and it satisfies 0 ≤ r ≤ n−2k
(and also k + r > 0, to avoid the identity element).

Proof. Note that the V -part wr = (1, 1, . . . , 1,−1, . . . ,−1) of gk,r has all 1s in positions
1, 2, . . . , 2k. In particular, this means that wr and σk = π(gk,r) = (1, 2)(3, 4) · · · (2k− 1, 2k)
commute, and so gk,r = wrσk is indeed an involution.

We first argue that no two distinct elements gk,r are conjugate. Indeed, suppose gk,r and
gk′,r′ are conjugate. Clearly, they have rank k and k′, respectively, and so k = k′. It
remains to show that r = r′. For this, we can use the realisation of Ĝ as the group of all
monomial n× n matrices over F3. Here V becomes the group of diagonal matrices and
S becomes the group of permutation matrices. Let U := Fn3 be the row space on which
the matrices act. Let {u1, u2, . . . , un} be the standard basis of U . Then it is easy to see
that [U, gk,r] coincides with 〈u1 + u2, u3 + u4, . . . , u2k−1 + u2k, un−r+1, . . . , un〉, and so it
has dimension k + r. Similarly, [U, gk′,r′ ] has dimension k′ + r′. Since gk,r and gk′,r′ are
conjugate, we must have k+ r = k′ + r′. We also have that k = k′ and hence r = r′. Thus,
indeed no two different elements gk,r are conjugate.

We now need to show that every involution g = vσ is conjugate to one of the elements gk,r.
Clearly, we must choose k to be equal to the rank of g, i.e., the number of 2-cycles in σ.
Since two elements of S are conjugate if and only if they have the same cycle type, there
exists an element of S conjugating g = vσ to g′ = v′σ′, where σ′ = σk. Hence, without
loss of generality, we may assume that g = g′ and so σ = σk = (1, 2)(3, 4) · · · (2k − 1, 2k).

From this point on, we are conjugating by the elements centralising σ = σk, so this part
of g stays the same, and only v changes. Let us decompose V = V ′ × V ′′ into a direct
product of V ′ = 〈v1, . . . , v2k〉 and V ′′ = 〈v2k+1, . . . , vn〉. Correspondingly, v = v′v′′, where
v′ ∈ V ′ and v′′ ∈ V ′′. Let us notice the following property of v′: for i = 1, 2, . . . , k, we
have that δ2i−1 = δ2i. This is because g = vσ is an involution, which implies that v and σ
commute. The element vσ has the entries δ2i−1 and δ2i swapped. However, vσ = v, since v
and σ commute, and so, indeed, δ2i−1 = δ2i.
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Consider the element w = (ε1, ε2, . . . , εn) ∈ V , where:

(a) For i = 1, 2, . . . , k, we have that ε2i−1 = 1 and ε2i = δ2i,

(b) For all j > 2k, we have that εj = 1.

Clearly, w ∈ V ′. Furthermore, [w, σ] = v′ and hence gw = (vσ)w = vwσw = vv′σ =
(v′v′′)v′σ = v′′σ. This means that we managed to conjugate g in such a way that the v′

part of it becomes trivial. Thus, we can now assume that v′ = 1 and v = v′′ ∈ V ′′.

In particular, all the −1s in v are now located in positions {2k + 1, 2k + 2, . . . , n}. Let r
be the number of −1s. Conjugating by an element of Sym(2k + 1, . . . , n) ≤ S permutes
the last n− 2k entries of v. Clearly, we can select a permutation in Sym(2k + 1, . . . , n)
moving all −1s to the end of v, hence after this final conjugation, we obtain gk,r and this
proves that every involution g ∈ Ĝ is conjugate to some gk,r, completing the proof.

Thus, the elements gk,r represent all classes of involutions in Ĝ and each class is identified
uniquely by the pair (k, r) satisfying k + r > 0 and 2k + r ≤ n. For example, for n = 4,
there are eight classes of involutions corresponding to pairs (0, 1), (0, 2), (0, 3), (0, 4), (1, 0),
(1, 1), (1, 2), and (2, 0).

Now recall that g and gz induce the same automorphism of G. If g is conjugate to gk,r
then it is easy to see that gz is conjugate to gk,r′ , where r′ = n− 2k − r. In particular, in
the above example for n = 4, the pairs (0, 1) and (0, 3) lead to the same class of involutions
in Aut(G). In total, we only need here to take the five pairs (0, 1), (0, 2), (1, 0), (1, 1), and
(2, 0), giving five conjugacy classes of flips of first kind in Aut(G).

Now we turn to the second kind, namely, we consider g = vσ ∈ Ĝ such that g2 = z.
Clearly, this means that σ2 = π(g)2 = π(g2) = π(z) = 1, and so σ2 = 1. If σ = 1 then
g = v is an involution, which contradicts that g2 = z. Thus, σ is an involution in S.

Theorem 7.3.2. The group Ĝ contains elements g satisfying g2 = z if and only if n = 2k
is even. Furthermore, all such elements are conjugate to hk := (−1, 1,−1, 1, . . . ,−1, 1)σk.

Proof. It easy to check that hk and its conjugates square to z.

Conversely, conjugating by an element of S if necessary, we may assume that σ =
σk = (1, 2)(3, 4) · · · (2k − 1, 2k) for some k ≥ 1. Let v = (δ1, δ2, . . . , δn). Then g2 =
(vσk)2 = vvσk = (δ1δ2, δ1δ2, δ3δ4, δ3δ4, . . . , δ2k−1δ2k, 1, . . . , 1). Since this must be equal to
z = (−1,−1, . . . ,−1), we conclude that (a) n = 2k (and so n is even); and (b) for each
j = 1, 2, . . . , k, we have that δ2j−1 = −1 and δ2j = 1, or δ2j−1 = 1 and δ2j = −1.
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Now notice that conjugating g by v2j−1 switches the values of δ2j−1 and δ2j. Therefore,
we conclude that every element g such that g2 = z is conjugate to the element hk =
(−1, 1,−1, 1, . . . ,−1, 1)σk, where n = 2k.

We have now completed the classification of all classes of flips for the extended symmetric
case. Next, we determine, for each class of flips, the principal parameters of the corre-
sponding flip subalgebras: the number of singles, doubles, and extras, as well as the total
dimension of the flip subalgebra.

We have two cases: either σ = gk,r for r ≤ n− 2k, or n = 2k and σ = hk.

7.4 Flip subalgebras for σ = gk,r

Before we discuss the general case σ = gk,r, let us focus on two particular situations.

7.4.1 Case n = 2k and σ = gk,0

Suppose that n = 2k and let σ = gk,0 = σk = (1, 2)(3, 4) . . . (2k − 1, 2k). Let us calculate
how many singles, doubles, and extras we have in this situation.

Proposition 7.4.1. The fixed subalgebra Mσ of the Matsuo algebra M = Mη(22k−1 : S2k)
contains 2k singles, 2k(k − 1) doubles, and no extras. Therefore, the dimension of the flip
subalgebra Aσ = Mσ is 2k + 2k(k − 1) = 2k2.

Proof. Again, we will use the notation ī, meaning that {i, ī} = {2s − 1, 2s} for some s
with 1 ≤ s ≤ k. Let a = ei,j or fi,j . Then aσ = eī,j̄ or fī,j̄ , correspondingly. In particular, a
is a single if and only if {i, j} = {̄i, j̄}, i.e., j = ī. It follows that there are exactly 2k = n

singles: e1,2, f1,2, e3,4, f3,4, . . . , e2k−1,2k, f2k−1,2k.

Now suppose that j 6= ī. Then {i, j} and {̄i, j̄} are disjoint, which implies that a and aσ

are orthogonal. Hence, all of such sums a+ aσ are doubles. It follows that there are no
extras and the number of doubles is 1

2(n(n− 1)− n) = 2k(k − 1), as claimed.

This flip subalgebra has already appeared in [14], where it was denoted 2Qk(η).

77



7.4.2 Case σ = g0,r

Now, consider σ is the conjugation by wr := g0,r = (1, 1, · · · , 1,−1, · · · ,−1). (For
simplicity, we will write σ = wr.) Here k = 0 and r ≤ n

2 .

Proposition 7.4.2. The fixed subalgebra Mσ of the Matsuo algebra M = Mη(2n−1 : Sn)
contains r(r − 1) + (n− r)(n− r − 1) singles, r(n− r) doubles, and no extras. Therefore,
the dimension of Aσ = Mσ is r2 + n(n− r − 1).

Proof. Suppose a = ei,j or fi,j, where 1 ≤ i < j ≤ n. We have three different cases: (1)
j ≤ n− r; (2) i ≤ n− r < j; and (3) n− r < i. In cases (1) and (3), we have that war = wr,
which implies that aσ = awr = a, so a is a single. This gives us 2

(
n−r

2

)
singles in case (1)

and 2
(
r
2

)
in case (3). Finally, in case (2), the commutator a−1aσ = [a, wr] = vi,j, which

means that σ switches ei,j and fi,j. Note that ei,j and fi,j commute in G, and hence they
are orthogonal in M . It follows that a+ aσ = ei,j + fi,j is a double. So we have (n− r)r
doubles in case (2) and no extras.

So, in total, we have (n− r)(n− r− 1) + r(r− 1) singles, (n− r)r doubles, and no extras,
which means that Aσ = Mσ and the claims follow.

In the special case r = 1, we have that Aσ has dimension n(n− 1− 1) + 12 = (n− 1)2.
This algebra has already appeared in this thesis in Chapter 6, where it was denoted Qk(η),
where k = n− 1. For the general r, let us denote Aσ as Rn,r.

7.4.3 General σ = gk,r

Suppose finally that n, k and r are arbitrary satisfying n ≥ 2k + r. Let σ = gk,r, where
the latter acts on the basis C of M = Mη(G,C) by conjugation. Let again a = ei,j or fi,j
be a Matsuo axis, 1 ≤ i < j ≤ n.

Lemma 7.4.3. If i ≤ 2k and j > 2k then a 6= aσ and a+ aσ is an extra.

Proof. Recall that ī is defined by {i, ī} = {2s+ 1, 2s} for some 1 ≤ s ≤ k. Then π(aσ) =
((i, j)σk = (̄i, j). Therefore, the order of aaσ in G is 3, since π(aaσ) = (i, j)(̄i, j) = (i, j, ī)
is of order 3. This means that a and aσ are not equal and not orthogonal as elements of
M = Mη(G,C).
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Consider the subgroup H of Ĝ, that contains V and such that H ∩ S is the stabilizer of
the partition {{1, 2, . . . , 2k}, {2k + 1, 2k + 2, . . . , n}} of {1, 2, . . . , n}. Then H = K × L,
where K ∼= Ĝ2k and L ∼= Ĝn−2k. It follows from the above lemma that singles and doubles
can only be obtained when i, j ≤ 2k or when i, j > 2k. That is, all such axes a lie in K or
L. Note that σ preserves both K and L, and furthermore, it acts on K ∼= Ĝ2k as gk,0 and
it acts on L ∼= Ĝn−2k as g0,r. This immediately yields the following result.

Proposition 7.4.4. The flip subalgebra Aσ is the direct sum of two subalgebras isomorphic
to 2Qk(η) and Rn−2k,r.

So in this case we don’t obtain any new simple flip subalgebras.

7.5 Flip subalgebras for σ = hk and n = 2k

Assume that n = 2k and let σ = hk = (−1, 1,−1, 1, . . . ,−1, 1) : (1, 2)(3, 4) · · · (2k − 1, 2k).
We will again use the notation ī defined by: {i, ī} = {2s− 1, 2s} for some s.

Proposition 7.5.1. The fixed subalgebra Mσ of the Matsuo algebra M = Mη(2n−1 : Sn)
contains no singles, n(n−1)

2 doubles, and no extras. Therefore, the dimension of the flip
subalgebra Aσ = Mσ is n(n−1)

2 = k(2k − 1).

Proof. Suppose that a = ei,j or fi,j , where 1 ≤ i < j ≤ n. We have two cases: either j = ī;
or j 6= ī. In the first case, a+ aσ = ei,j + fi,j is a double. In the second case, aσ is equal
to either eī,j̄ or fī,j̄ and, in each of these two subcases, a+ aσ is again a double.

So there are no single or extras, and the number of doubles is 1
2(2
(
n
2

)
) =

(
n
2

)
= n(n−1)

2 .

We will denote this flip subalgebra of dimension n(n−1)
2 by Hk.

7.6 Connectivity

In this section we investigate the question of whether the flip subalgebras constructed
above are connected. Recall that an axial algebra is called connected if its projection graph,
introduced in Chapter 4, is strongly connected. We note that in the context of this chapter,
every flip subalgebra inherits from the corresponding Matsuo algebra a Frobenius form,
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which respect to which all axes are non-singular. This means that the projection graph is
a simple (undirected) graph and strong connectivity is the same as just connectivity.

Recall that the support set of an axis a = ei,j or fi,j is {i, j}.

Proposition 7.6.1. Two axes, singles or doubles are orthogonal if and only if their support
sets are disjoint.

In the projection graph, two axes are adjacent if their supports are not disjoint.

We analyse the flip subalgebras case by case. Let first n = 2k and

σ = σk = (1, 2)(3, 4) . . . (2k − 1, 2k).

Proposition 7.6.2. The flip subalgebra A = 2Qk(η) is connected whenever k ≥ 2.

Proof. Recall that A contains 2k single axes, ei,̄i and fi,̄i, i = 1, 3, . . . , 2k−1, and 2k(k−1)
doubles axes, ei,j + eī,j̄ and fi,j + fī,j̄, for 1 ≤ i < j ≤ k with j 6= ī. Note that all singles
here are pairwise non-adjacent, i.e., they form a coclique in the projection graph. However,
when k ≥ 2, each double ei,j + eī,j̄ (and similarly, fi,j + fī,j̄) is adjacent to ei,̄i, fi,̄i, ej,j̄ , and
fj,j̄. It follows that all doubles are adjacent to some singles and all singles are at mutual
distance 2 in the projection graph. That is, the projection graph is connected.

When k = 1, there are only two singles e1,2 and f1,2 and no doubles, and so the projection
graph is disconnected, having two vertices and no edges. The corresponding disconnected
algebra 2Q1(η) is isomorphic to 2B = F ⊕ F. Next, let us consider the case where n is
arbitrary and σ = wr for r = 1, 2, . . . , bn2 c.

Proposition 7.6.3. The flip subalgebra A = Rn,r is connected.

Proof. The flip subalgebra A in this case contains two sets of single axes: S1 = {ei,j, fi,j |
1 ≤ i < j ≤ n− r} and S2 = {ei,j, fi,j | n− r + 1 ≤ i < j ≤ n}. It also contains r(n− r)
double axes d = ei,j + fi,j , where 1 ≤ i ≤ n− r < j ≤ n. Note that every single, ei,j of fi,j
from S1, and every single, ei′,j′ or fi′,j′ , from S2 are both adjacent to the double ei,i′ + fi,i′ .
So all singles from S1 are at distance two from all the singles in S2. In particular, all singles
are in the same connected component. On the other hand, it is immediate from above
that every double is adjacent to some singles in S1 and S2 and so the entire projection
graph is connected.

In the general case, σ = gk,r we have the flip subalgebra A that is a direct sum of two
sublagebras 2Qk(η) and Rn,r. Note that no axis from the first factor is adjacent to any
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axis from the second factor, i.e., the projection graph here is disconnected unless one of
the factors is trivial (which leads to the two cases that we have already considered).

In the last case, consider the flip

σ = hk = (−1, 1,−1, 1, . . . ,−1, 1) : (1, 2)(3, 4) · · · (2k − 1, 2k),

where n = 2k.

Proposition 7.6.4. The flip subalgebra A = Hk is connected.

Proof. This flip subalgebra A contains
(
n
2

)
= n(n−1)

2 double axes, split into two sets: D1 =
{ei,̄i + fi, ī | i = 1, 3, . . . , 2k− 1} and D2 = {ei,j + eī,j̄, fi,j + fī,j̄ | 1 ≤ i < j ≤ n and j 6= ī}.
Here D1 is a co-clique, as it contains no edges. However, two doubles, ei,̄i + fi,̄i and
ej,j̄ + fj,j̄ from D1 are both adjacent to the double ei,j + eī,j̄ (or fi,j + fī,j̄) from D2. So
all doubles from D1 are at pairwise distance 2 from each other, and in particular, they
are in the same connected component. It is also clear from the above that all doubles
from D2 are adjacent to some doubles from D1, and so the entire projection graph of A is
connected.

Note that here we do not have a special case when k = 1, as then there is only one double
axis in A and so the projection graph is trivially connected.

This completes the determination of connected flip subalgebras in our cases. In all of these
connected algebras 2Qk(η), Rn,r and Hk, there are no proper ideals containing axes. That
is, any proper ideal would have to be contained in the radical.

7.7 Ambient subalgebra

From the previous section, we know that the connected flip subalgebras 2Qk(η), k ≥ 2,
Rn,r, r ≤ bn2 c, and Hk have all proper ideals contained in the radical. Therefore, there are
simple if and only if their radical is zero. As it turns out, in each of the above cases, the
radical is non-trivial only for a finite number of special values of η, called critical values,
depending on the other parameters, k, n, and r. In this section we aim to find the critical
values of η explicitly in all the above cases.

We start with the concept of the ambient Matsuo algebra.
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Definition 7.7.1. Suppose (G,C) is a 3-transposition group and M = Mη(G,C) is the
corresponding Matsuo algebra. Let A be a subalgebra of M generated by a set X of single
and double axes.

1. For a single axis x = a or a double axis x = a+ b in M , we will say that the Matsuo
axis a or the Matsuo axes a and b are involved in x.

2. The ambient subalgebra of A is the subalgebra Â of M generated by all the Matsuo
axes involved in the axes x ∈ X.

Note that, since Â is generated by Matsuo axes, it is itself a Matsuo algebra corresponding
to the 3-transposition subgroup of (G,C) generated by the involutions corresponding to
the Matsuo axes involved in A. Often, Â is all of M , but this is not always the case.

Proposition 7.7.2. For the flip subalgebras A = 2Qk(η), Rn,r, and Hk of M = Mη(2n−1 :
Sn), the corresponding ambient algebra Â is equal to the entire M . Furthermore, A = Mσ.

Proof. Indeed, looking at Propositions 7.4.1, 7.4.2, and 7.5.1, we see that in all these cases
there are no extras, i.e., singles and doubles involve all Matsuo axes. Furthermore, they
form a basis of Mσ and they are contained in A. So A = Mσ.

An opposite example comes from the general flip σ = gk,r, where k /∈ {0, n2}. We see
in Lemma 7.4.3 and Proposition 7.4.4 that the Matsuo axes involved in singles and
doubles are exactly those elements ei,j and fi,j , for which both i and j lie in {1, 2, . . . , 2k},
or they both lie in {2k + 1, . . . , n}. This means that the ambient subalgebra Â of
the flip subalgebra A = Aσ in this cases is a proper subalgebra of M , isomorphic to
Mη(22k−1 : S2k)⊕Mη(2n−2k−1 : Sn−2k).

7.8 Critical values

Suppose A is a Matsuo algebra or a flip subalgebra of a Matsuo algebra. Then the
multiplication on A depends on the parameter η, which appears in the fusion law for A.

Recall the definition of a critical value 5.4.1. We note that the algebra A in all our cases
carries a Frobenius form (in case of the flip subalgebras, it is the form inherited from the
ambient Matsuo algebra). With respect to this form, all Matsuo/single axes have length 1
and all double axes have length 2. In particular, all of them are non-singular, and so it
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follows from Theorem 4.3.4 that the radical of the algebra A coincides with the radical of
its Frobenius form. Choose a basis of A (and in all of our cases A has a standard basis
consisting of singles and doubles) and let F be the Gram matrix of the Frobenius form
with respect to this basis. Then the radical of the Frobenius form is non-zero if and only
if 0 is an eigenvalue of F , i.e., if and only if the determinant of F is zero.

We note that this determinant is a non-zero polynomial d(η) in η and so η = η0 is critical
if and only if η0 is a root of the polynomial d(η). This implies that A has only finitely
many critical values. Our goal is to find the critical values for all the new flip subalgebras
we constructed in this chapter. A further related question is the multiplicity of the critical
value η = η0, that is, the highest power (η − η0)m dividing d(η).

Recall that in all our cases the flip subalgebra coincides with the fixed subalgebra Mσ,
where M = Â is the ambient Matsuo algebra.

Proposition 7.8.1. The fixed subalgebraMσ corresponding to a flip σ has the same critical
values as its ambient Matsuo algebra M = Â but with different, smaller multiplicities.

Proof. Let a1, a2, . . . , as be the singles, i.e., the Matsuo axes fixed by σ, and let

{b1, c1}, {b2, c2}, . . . , {bt, ct}

be the length 2 orbits of 〈σ〉 on the set of Matsuo axes of M . Then B = {a1, a2, . . . , as, b1 +
c1, b2 + c2, . . . , bt + ct} is a basis of Mσ and C = {b1 − c1, b2 − c2, . . . , bt − ct} is a basis of
the commutator subspace [M,σ]. (Indeed, bi − ci = cσi − ci = [ci, σ].) It is easy to see
that M = Mσ ⊕ [M,σ], and furthermore, this direct sum decomposition is orthogonal with
respect to the Frobenius form.

It follows that B ∪ C is a second basis of M and let E be the Gram matrix with respect
to this basis. We have already introduced the polynomial d(η) as the determinant of the
matrix F . Let us see how the same d(η) can be expressed in terms of E.

Lemma 7.8.2. The determinant of E coincides with 22td(η), so it differs from the
determinant of F by a constant factor only.

Indeed, first of all, the determinant of a matrix does not change if we apply the same
permutation to the rows and columns of this matrix. In particular, for this lemma, we
may assume that F is written for the basis {a1, a2, . . . , as, b1, c1, b2, c2, . . . , bt, ct} and E is
written for the basis {a1, a2, . . . , as, b1− c1, b1 + c1, b2− c2, b2 + c2, . . . , bt− ct, bt + ct}. Then
E = T tFT , where the transition matrix T is block diagonal with s ones on the diagonal
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followed by t blocks
 1 −1

1 1

. The latter blocks have determinant 2, and so the claim

follows.

We have established Lemma 7.8.2, and so, as expected, the determinant of E has exactly
the same roots as d(η) and they have the same multiplicities. (Recall that the characteristic
of F is not 2 by assumption, and so 22t is a non-zero constant.)

Now we return to the basis B ∪ C. When E is written with respect to this basis, it
is block diagonal with the blocks being the Gram matrix R of Mσ with respect to the
basis B and the Gram matrix S of [M,σ] with respect to the basis C. It follows that
22td(η) = detE = detR detS = dMσ(η) detS. In particular, if dMσ(η) is zero then also
dM(η) is zero. This means that the critical values of Mσ are critical for M as well.

It remains to find the multiplicities of the critical values of Mσ. Let η1, η2, . . . , ηc be the
critical values of M and let ni be the multiplicity of ηi as a root of dM(η). Then ni is
the dimension of the radical of M (the 0-eigenspace of the Gram matrix F on M) when
η = ηi. Similarly, let mi be the multiplicity of ηi as a root of dMσ(η). Note that when ηi is
not critical for Mσ, it just means that mi = 0.

Let us observe that the difference ni −mi is equal to the multiplicity of ηi as a root of the
polynomial dM(η)/dMσ(η), which is the determinant of the Gram matrix S on [M,σ].

The critical values ηi and the corresponding multiplicities ni for all finite 3-transposition
groups (G,C) can be found from [21]. There the eigenvalues λi of the adjacency matrix
D of the collinearity graph of the Fischer space of (G,C) are given together with their
multiplicities ni. The Gram matrix F of M = Mη(G,C) with respect to its basis of Matsuo
axes coincides with I + η

2D, and so the eigenvalues of F are equal to 1 + ηλi
2 . The radical

of M coincides with the 0-eigenspace of the Gram matrix F , so it is non-zero whenever
0 = 1 + ηλi

2 , i.e., η = − 2
λi

for some i, and its dimension then is ni. This gives us the
formula for the critical values ηi:

ηi = − 2
λi

for all i ∈ {1, 2, . . . , c}, for which λi 6= 0.

In the case of the extended symmetric group 2n−1 : Sn, the eigenvalues λi, critical values
ηi, and the corresponding multiplicities ni are shown in Table 7.1. In particular, c = 4.
Note that there is no a critical value corresponding to λ4 = 0 and so M has only three
critical values, namely the ones shown in the second column of the table.

Since by Proposition 7.7.2, M = Mη(2n−1 : Sn) is the ambient Matsuo algebra for
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Eigenvalues λi Critical values ηi Multiplicity ni

4(n− 2) − 1
2(n−2) 1

2(n− 4) − 1
n−4 n− 1

−4 1
2

n(n−3)
2

0 n(n−1)
2

Table 7.1: Critical values for the extended symmetric group 2n−1 : Sn

the flip subalgebras 2Qk(η), for n = 2k, Rn,r, for r = 1, 2, . . . , bn2 c, and Hk, for n = 2k.
Furthermore, by the same proposition these flip subalgebras coincide with the corresponding
fixed subalgebra Mσ. Thus, we conclude, using Proposition 7.8.1, that for all these algebras
the critical values are the same as for M = Mη(2n−1 : Sn). That is, we have the following:

Theorem 7.8.3. The critical values of the flip subalgebras A = 2Qk(η), Rn,r, and Hk are
η1 = − 1

2(n−2) , η2 = − 1
n−4 , and η3 = 1

2 , where n = 2k for A = 2Qk and Hk.

Turning to the multiplicities of these critical values, since the ni in M are known and
given in Table 7.1, we need to find the differences ni −mi, which we already identified as
the multiplicities of λi within W = [M,σ].

Proposition 7.8.4. The 0-eigenspace of F , denoted V −, coincides with 〈eij − fij | 1 ≤
i < j ≤ n〉.

Proof. Note that the points collinear (in the Fischer space of G = 2n−1 : Sn) to eij are also
collinear to fij, i.e., eij and fij have exactly the same set of neighbours in the collinearity
graph Γ of the Fischer space of the extended symmetric group G. Since the linear map
corresponding to F sends eij − fij to the sum of all neighbours of eij minus the sum of all
neighbours of fij, each vector eij − fij is mapped to zero, and so it is in the 0-eigenspace.
Clearly, the vectors eij − fij are all linearly independent, and the number of them is
exactly the dimension n4 = n(n−1)

2 of the 0-eigenspace. Thus, they form a basis of that
eigenspace.

Proposition 7.8.5. The sum of the remaining three eigenspaces of F coincides with the
subspace V + = 〈eij + fij | 1 ≤ i < j ≤ n〉.

Proof. Similarly to the previous proof, the linear map corresponding to F sends eij + fij

to the sum of all neighbours of eij plus the sum of all neighbours of fij . So this is twice the
same sum, and it clearly is contained in V , meaning that V is invariant under the linear
map. Since V + is obviously complementary to the 0-eigenspace V −, the claim follows.
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We are ready to determine the values of ni −mi.

We will note that the length 2 orbits of 〈σ〉 are of two kinds. If eσij = fij, we will say that
the orbit {eij, fij} is of cross type. All other length 2 orbits split into parallel pairs: either
{eij, est} and {fij, fst} is for {eij, fst} and {fij, est} for some {s, t} 6= {i, j}.

Proposition 7.8.6. The number n4−m4 is equal to the number of cross type orbits plus
the number of parallel pairs.

Proof. Clearly, every cross orbit contributes one dimension (vector eij − fij) to the inter-
section of V − with [M,σ]. Similarly, every parallel pair contributes one dimension (either
eij − fij − est + fst or eij − fij + est − fst).

Corollary 7.8.7. 1. For σ = gk,0 and n = 2k, we have that m4 = k(2k−1)−k(k−1) =
k2’

2. For σ = g0,r and n ≥ 2r, we have that m4 = n(n− 1)/2− (n− r)r.

3. For σ = hk and n = 2k, we have that m4 = k(2k − 1)− k − k(k − 1) = k(k − 1).

Proof. This follows from Proposition 7.8.6 and the description of doubles in the three
respective cases.

We note that m1 = n1 = 1, so we only need to determine m2 and m3.

Clearly, we have that dimMσ = m1 +m2 +m3 +m4 = 1 +m2 +m3 +m4, which gives us
one equation on m2 and m3. The second equation is obtained from finding the trace of
the map corresponding to D on [M,σ].

Proposition 7.8.8. For the three cases above, the trace of the map corresponding to D
on [M,σ] is zero.

Proof. The subspace [M,σ] has a basis consisting of differences of vectors from all length
2 orbits of σ. It is immediate to see that since all these orbits are orthogonal (as there
are no extras) the matrix of the map D with respect to such basis only has zeroes on the
main diagonal.

Corollary 7.8.9. We have the following equation:

2(n− 4)(n2 −m2)− 4(n3 −m3) = 0.
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Using our two equations we can now find m2 and m3 in all cases.

From the three cases above, we have the corresponding first equation respectively:

1. m2 +m3 = k2 − 1,

2. m2 +m3 = n2−n−2
2 = (n−2)(n+1)

2 ,

3. m2 +m3 = k2 − 1.

Then by using the equation 2(n− 4)(n2 −m2)− 4(n3 −m3) = 0, and the multiplicities n2

and n3 from Table 7.1, we have that (n− 4)m2 − 2m3 = 2n− 4. Hence, for the first case
(σ = gk,0 and n = 2k), we have the system of linear equation (where we use n = 2k and
cancel the factor of 2):

m2 +m3 = k2 − 1, (7.1)

(k − 2)m2 −m3 = 2(k − 1). (7.2)

Solving this system we find the multiplicities m2 and m3: From the equation (7.1), we
have that m3 = k2 − 1−m2. Then

(k − 2)m2 −m3 = 2(k − 1)

(k − 2)m2 − k2 + 1 +m2 = 2(k − 1)

(k − 2 + 1)m2 = 2(k − 1) + k2 − 1

(k − 1)m2 = k2 + 2k − 3

(k − 1)m2 = (k + 3)(k − 1)

m2 = k + 3.

Hence, m3 = k2 − 1−m2 = k2 − 1− k − 3 = k2 − k − 4.

Similarly, for the class σ = g0,r, n ≥ 2r, the system of linear equation is as follows:

m2 +m3 = (n− 2)(n+ 1)
2 , (7.3)

(n− 4)m2 − 2m3 = 2n− 4. (7.4)
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By solving this system, we find the multiplicities m2 and m3:

m2 = n+ 3,

m3 = (n− 2)(n+ 1)
2 − (n+ 3).

In the last case, σ = hk and n = 2k, we have the same system of linear equations as in the
first case. So the values of m2 and m3 are also the same.

The following table summarises the multiplicities mi corresponding to each class of flips:

The classes of
flips

Multiplicity
m1

Multiplicity
m2

Multiplicity m3 Multiplicity m4

σ = gk,0, n = 2k 1 k + 3 k2 − k − 4 k2

σ = g0,r, n ≥ 2r 1 n+ 3 (n−2)(n+1)
2 − (n+ 3) n(n−1)

2 − (n− r)r

σ = hk, n = 2k 1 k + 3 k2 − k − 4 k(k − 1)

Table 7.2: The multiplicity mi for the extended symmetric group 2n−1 : Sn
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CONCLUSION AND FUTURE STUDY

In this thesis, in particular, in Chapters 6 and 7 we constructed new series of axial algebras
of Monster type (2η, η). Subalgebras of the Matsuo algebras on the orthogonal group over
a field of characteristic 3, Mη(O+

k+1(3)), and subalgebras of the Matsuo algebras on the
extended symmetric group Mη(2n−1 : Sn).

In the latter case, we determined all the classes of flips σ = gk,r, hk = gk,0, g0,r, hk and their
corresponding flip subalgebras A = 2Qk(η), Rn,r, and Hk of dimension 2k2, r2 +n(n−r−1),
and n(n−1)

2 , respectively.

Furthermore, we investigated the question that when these subalgebras are simple. By
computing the critical values ηi we deduced that flip subalgebras of Mη(2n−1 : Sn) are
simple unless η = −1

2(n−2) ,
−1
n−4

1
2 .

In the future study, we will extend this research. Also, new families of axial algebras of
Monster type (2η, η) of different groups (groups differ from symmetric and orthogonal
groups) will be constructed.
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APPENDIX A

GRAM MATRIX OF FROBENIUS FORM CODE

n:= ; ;
F:= F i n i t e F i e l d ( 3 ) ; ;
V:=Fˆ(n +1) ; ;
e := Bas i s (V) ; ;
b a s i s : = [ ] ; ;
f o r i in [ 1 . . n ] do

f o r j in [ i +1. . n+1] do
Append( bas i s , [ e [ i ]+e [ j ] , e [ i ]−e [ j ] ] ) ;

od ;
od ;
f l i p := L i s t ( [ 1 . . Length ( b a s i s ) ] ,

f unc t i on ( i )
l o c a l v ;
v:=ShallowCopy ( b a s i s [ i ] ) ;
v [ n+1]:=−v [ n+1] ;
r e turn Pos i t i on ( bas i s , v ) ;

end ) ; ;
f l i p :=PermList ( f l i p ) ; ;
orbs := Orbits ( Group ( f l i p ) , [ 1 . . Length ( b a s i s ) ] ) ; ;
s i n g l e s := F i l t e r e d ( orbs , o−>Length ( o ) = 1 ) ; ;
doubles := F i l t e r e d ( orbs , o−>Length ( o ) = 2 ) ; ;
k:=Length ( s i n g l e s ) ; ;
m:=Length ( doubles ) ; ;
e ta := Indeterminate ( Rat ionals , ” eta ” ) ; ;
#eta :=1/2 ; ;
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K:= Fie ld ( eta ) ; ;
Gr:= L i s t ( [ 1 . . k+m] , i − > [ ] ) ; ;
f o r i in [ 1 . . k ] do
Gr [ i ] [ i ] :=One(K) ;
od ;
f o r i in [ k +1. . k+m] do
Gr [ i ] [ i ] :=2∗One(K) ;

od ;
f o r i in [ 1 . . k−1] do

f o r j in [ i +1. . k ] do
s := F i l t e r e d ( [ 1 . . n ] , u−>b a s i s [ s i n g l e s [ i ] [ 1 ] ] [ u]<>Zero (F ) ) ;
t := F i l t e r e d ( [ 1 . . n ] , u−>b a s i s [ s i n g l e s [ j ] [ 1 ] ] [ u]<>Zero (F ) ) ;
r :=Length ( I n t e r s e c t i o n ( s , t ) ) ;
i f r in [ 0 , 2 ] then
Gr [ i ] [ j ] := Zero (K) ;

e l s e
Gr [ i ] [ j ] := eta /2 ;

f i ;
od ;

od ;
f o r i in [ 1 . . k ] do

f o r j in [ 1 . .m] do
s := F i l t e r e d ( [ 1 . . n ] , u−>b a s i s [ s i n g l e s [ i ] [ 1 ] ] [ u]<>Zero (F ) ) ;
t := F i l t e r e d ( [ 1 . . n ] , u−>b a s i s [ doubles [ j ] [ 1 ] ] [ u]<>Zero (F ) ) ;
r :=Length ( I n t e r s e c t i o n ( s , t ) ) ;
i f r=0 then
Gr [ i ] [ k+j ] := Zero (K) ;

e l s e
Gr [ i ] [ k+j ] := eta ;

f i ;
od ;

od ;
f o r i in [ 1 . .m−1] do
f o r j in [ i +1. .m] do
Gr [ k+i ] [ k+j ] :=2∗ eta ;
od ;
od ;
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f o r i in [ 1 . . k+m−1] do
f o r j in [ i +1. . k+m] do

Gr [ j ] [ i ] :=Gr [ i ] [ j ] ;
od ;

od ;
poly :=DeterminantMat (Gr ) ; ;
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