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CHAPTER 2

INTRODUCTION

The isomonodromic deformations of a meromorphic connections over the Riemann surfaces

provide a natural deautonomization of classical integrable systems. By deautonomization we

mean that the system of commuting Hamiltonians depends explicitly on the time coordinates,

so the integrability condition takes the form

{Hi, Hj}+
∂Hi

∂tj
− ∂Hj

∂ti
= 0.

In the case of the punctured Riemann sphere, the isomonodromic equations for a logarithmic

connection (also known as the Schlesinger equations) are related to the classical Gaudin model

(see [5]). On the quantum level, such correspondence provides a link between the quantum

Gaudin system and Knizhnik–Zamolodchikov equations. While the quantum Gaudin system

is a joint eigenproblem for a set of commuting Hamiltonians, the Knizhnik–Zamolodchikov

system is a flat connection over the space of parameters for the Gaudin model. Such slogan

may be extended to the general isomonodromic problem (not only for the logarithmic one) - the

classical Gaudin system deals with a commuting family of quadratic functions in the universal

enveloping algebra, while the isomonodromic systems provide a flat deautonomization of this

family.

This thesis is dedicated to the theory of isomonodromic deformations for systems of differ-

ential equations with poles of any order on the Riemann sphere. The initial motivation was

to generalise an observation by N.Reshetikhin that the quasi–classical solution of the standard

Knizhnik–Zamolodchikov equations (i.e. with simple poles) is expressed via the isomonodromic

τ -function arising in the case of Fuchsian systems [80]. Along the way of pursuing the project
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of extending this results to poles of any order, we have found a number of interesting results,

some of which were already known as folklore (i.e. either done as very specific examples or

not really proved in detail), others completely original. For example we introduce a new al-

gebraic description for all Painlevé equations which represents these equations as flows on an

algebraic surface with linear Hamiltonian and non-linear Poisson bracket. In contrast with the

local description which is given by the Painlevé equations, such algebraic description reflects

non-trivial topology of the phase space for the isomonodromic deformation equations. For the

Painlevé VI, such description was firstly obtained by Hitchin [49], however it was not known

for the all other Painlevé equations.

The Knizhnik–Zamolodchikov (KZ) equations emerged in theoretical physics as the system

of linear differential equations satisfied by the correlation functions in the two–dimensional

Wess–Zumino–Witten model of conformal field theory associated to a genus 0 curve [62, 9]. In

the case of g = glm, where glm stands for the Lie algebra of the m × m matrices , the KZ

equations can be represented as a system of linear differential equations for a local section ψ of

the trivial bundle B × U(glm(C))⊗n → B over the base B, where U(glm(C))⊗n is a n-th tensor

power of the glm(C) universal enveloping algebra and B is given by the configuration space of

ordered n-uples of points in C, namely B := {(u1, . . . , un) ∈ Cn|ui ̸= uj for i ̸= j}:

dψ =
∑
i ̸=j

Πij dui − duj
ui − uj

ψ, (2.0.1)

where Πij ∈ End(U(glm(C)⊗n) is the extension of the non-degenerated symmetric tensor

Π ∈ glm(C)× glm(C) = End(glm(C))

acting by left multiplication on the i−th and j−th components of the tensor product U(glm(C)⊗n),

and reads

Πij =
∑
αβ

1⊗ 1⊗ · · · ⊗ Eαβ
i−th place

⊗ . . . Eβα
j−th place

⊗ 1⊗ . . . 1,

where Eαβ ∈ glm(C) are given by

(Eαβ)ab = δαaδβb.

Geometrically one can think about (2.0.1) as a flat Hitchin connection in geometric quantisation
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[48].

As proved by N. Reshetikhin in [80] (see also [43] where this result was explained in terms of

passing from Schrödinger to Heisenberg representation), the KZ equations can be also viewed

as deformation quantisation of the Schlesinger system [82] of non-linear differential equations

dA(i) =
∑
i ̸=j

[A(i), A(j)]
dui − duj
ui − uj

, (2.0.2)

controlling the isomonodromic deformation of a Fuchsian system on P1,

dY

dλ
=

n∑
i=1

A(i)

λ− ui
Y, (2.0.3)

with n+1 simple poles u1, . . . , un,∞. These equations are multi–time non-autonomous Hamil-

tonian systems with Hamiltonians

Hi : B × glm(C)n → C (2.0.4)

given by

Hi :=
∑
i ̸=j

Tr(A(i)A(j))

ui − uj
.

Interestingly, if we treat the quantities u1 . . . , un in the Hamiltonian as parameters rather than

times, these Hamiltonians form a family of autonomous Poisson commuting Hamiltonians called

Gaudin Hamiltonians. This simple observation has been key to several efforts to introduce

specific examples of confluent analogues of KZ: by first introducing confluent analogues of

Gaudin, then quantising them and finally generating the non-autonomous versions. Let us give

a summary of our understanding of these results here below.

The main idea for the quantisation of the Gaudin Hamiltonians was based on the standard

point of view that for any finite dimensional Lie algebra g, the universal enveloping algebra U(g)

can be considered as a deformation of the symmetric algebra S(g) via the Poincaré-Birkhoff-

Witt map. One then defines the quantum enveloping algebra as

Uℏ(g) = T (g)/(X ⊗ Y − Y ⊗X − ℏ[X,Y ]), X, Y ∈ g, ℏ ∈ C
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by naturally extending the symmetrisation map to the map S(g)⊗n → Uℏ(g)
⊗n, and then the

functions Tr(A(i)A(j)) on g⊗n are transformed to Πij , which is given by

Πij =
∑
α

1⊗ 1⊗ · · · ⊗ ℏe⋆α
i−th place

⊗ . . . ℏeα
j−th place

⊗ 1⊗ . . . 1, ,

where eα is a basis of g and e⋆α is a dual basis. To define a Dirac quantisation of the Gaudin

Hamiltonians it is necessary to describe the Hilbert space of the quantum model as tensor

product of some representations of Uℏ(g
⊕n). The quantised Hamiltonians Ĥi act on this Hilbert

space and the quantum problem consists in finding their spectrum, matrix elements and so

on. Formulated rigorously, the quantum Gaudin Hamiltonians generate a large commutative

subalgebra in U(g)⊗n which can be easily completed to a maximal commutative subalgebra.

This subalgebra is usually called Gaudin or Bethe subalgebra. The explicit formulae for the

generators (namely the quantum Hamiltonians) were obtained in [71, 85].

In the case of g = glm, one can fix an element of the dual space µ ∈ g∗ and using the standard

basis of glm one can re-write the quantised Gaudin Hamiltonians as

Ĥi =
∑
j ̸=i

m∑
r,s=1

E
(i)
rs E

(j)
sr

ui − uj
+

m∑
r,s=1

µ(Ers)E
(i)
sr , (2.0.5)

where E
(i)
rs means Ers (as the element of standard basis in glm) considering in the i−th tensor

factor. We observe that even the case of regular µ ∈ g∗ (i.e. semi-simple, when µ(Ers) = µrδrs

with distinct µr ∈ C), the point ∞ is an order two pole. The case of semi–simple but not

regular µ was treated in [33].

The autonomous Gaudin model (2.0.5) can be generalised in two directions: by allowing

higher order singularities at the marked points ui ∈ C thus giving rise to Gaudin models

with irregular singularities in [34] or by taking an element µ ∈ g∗ that is not semi-simple (i.e.

has non-trivial Jordan blocks). These two approaches were unified in the classical and in the

quantum cases in [88] where an analogue of the bispectral dynamical duality of [30] between the

models was proved.

The next important step consisted in deforming the quantum Gaudin Hamiltonian to obtain

KZ. This was done in the case of the An root system by de Concini and Procesi [26] and

generalised to any Lie algebra in [69, 30]. More precisely, for any complex simple Lie algebra
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g with a Cartan subalgebra h ⊂ g and a corresponding root system ∆ ⊂ h∗, Millson and

Toledano-Laredo [69] introduced the following Casimir connection:

∇Cψ := dψ − ℏ
2πi

∑
α∈∆

Cα
dα

α
ψ, (2.0.6)

where for every α one takes the principal embedding of sl2 so that Cα = ⟨α,α⟩
2 (eαfα+fαeα+

1
2h

2
α)

is the Casimir in 3-dimensional subalgebra sl2,α with respect to the restriction of the fixed

non-degenerated ad−invariant bilinear form ⟨−,−⟩ on sl2,α and ℏ ∈ C. A special class of

quantum connections with one irregular singularity of Poincaré rank 2 and several other simple

poles appeared in [30] as dual to the standard KZ connection, and in [13] was re–obtained as

quantisation of Dubrovin’s system (without the skew-symmetry condition). Dubrovin system

was then generalised to simply laced Dynkin diagrams in [12] and quantised in [79].

Confluent versions of the KZ equation, or in other words, KZ equations with irregular

singular points of arbitrary Poincaré rank were obtained for sl2 by Jimbo, Nagoya and Sun [54].

In [34] a class of quantum integrable systems generalising the Gaudin model was introduced

by considering non-highest weight representations of any simple Lie algebra. These Gaudin

models with irregular singularities are expected to give rise to confluent KZ equations as the

corresponding differential equations on conformal blocks. Such KZ equations have not been

explicitly written and in this thesis we provide these irregular analogues of the quantum KZ

Hamiltonians.

In order to achieve our aim, we first needed to find explicit formulae for the isomonodromic

Hamiltonians and to introduce a good set of Darboux coordinates. We have succeeded in doing

this for a class of isomonodromic connections which can be obtained via a confluence proce-

dure. Let us describe this class in some details here. It is well known that the isomonodromic

deformation equations in the case of higher order poles have a co-adjoint orbit interpretation

on a loop algebra. In the case of the Painlevé equations, Harnad and Routhier [45] produced

finite–dimensional parameterisations by introducing suitable truncations of the loop algebra.

Korotkin and Samtleben [63] then conjectured the standard Lie–Poisson bracket on Takiff alge-

bras (i.e. truncated current algebras, see Section 4.1 for the definition) and later Boalch proved

that indeed these brackets are preserved by the Jimbo-Miwa isomonodromic deformations [15].

In this thesis, we unify these two approaches to study connections as elements of the product
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of co-adjoint orbits in the Takiff algebra. More precisely, we consider linear systems of ODEs

with poles at u1, u2, . . . , un,∞ of Poincaré rank r1, r2, . . . , rn, r∞ respectively, in the form

dY

dλ
= A(λ)Y, A(λ) =

n∑
i=1

ri∑
k=0

A
(i)
k

(λ− ui)k+1
+

r∞∑
k=1

A
(∞)
k zk−1, (2.0.7)

where A(λ) is an element of the phase space

M ≃ Ô⋆
r1 × Ô⋆

r2 × . . . Ô⋆
rn × Ô⋆

r∞ , (2.0.8)

where Ô⋆
ri stands for the co-adjoint orbit of the complex Lie group Ĝri corresponding to the

Takiff algebra of degree ri, for ri > 0, and for the standard Lie algebra g co-adjoint orbit for

ri = 0.

Following the ideas of [3], in Theorem 5.4.5, we show how to obtain the standard Lie–Poisson

bracket

{A(i)
k ,⊗A

(j)
l } =

 −δij [Π, A(i)
k+l ⊗ I] k + l ≤ ri

0 k + l > ri.
(2.0.9)

on our phase space (2.0.8) as the Marsden–Weinstein reduction of the Poisson structure on

⊕n+1
i=1 (T

⋆glm)ri+1 = ⊕d
k=1T

⋆glm,

obtained by endowing each copy of the cotangent bundle T ⋆glm with the canonical symplectic

structure dP∧dQ. Here d =
∑n+1

i=1 ri+n+1 denotes the degree of the divisorD of the connection

(2.0.7). The Marsden–Weinstein reduction is obtained by the additional first integrals given by

the moment maps of the inner group action by Ĝri as in formulae (5.4.3).

These coordinates (Q1, P1, . . . , Qd, Pd), that we call lifted Darboux coordinates, were first

introduced by Jimbo, Miwa, Mori and Sato in the case of linear systems of ODEs with n simple

poles and possibly a Poincaré rank one pole at ∞ [53]. Harnad generalised these coordinates

to allow rectangular m1 × m2 matrices and used them to generalise Dubrovin duality [27]

between two systems of linear ODEs: one of dimension m1 and the other of dimension m2

[44] and [91]. Similar coordinates were also introduced and partly used in the context of non-

autonomous Hamiltonian description of Garnier-Painlevé differential systems by M. Babich and

Derkachov [6, 7]. However in these latter works, the authors restricted to the case of rational
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parametrisation of co–adjoint orbits of Gln(C) and other semi-simple Lie groups and did not

consider loop algebras.

Interestingly, using the lifted Darboux coordinates, we can describe all possible isomon-

odromic systems with a fixed degree d of the divisor of the connection (2.0.7) as Marsden–

Weinstein reductions of different inner group actions on the universal phase space ⊕d
k=1T

⋆glm.

These reductions give rise to symplectic leaves of dimension (r1 + · · ·+ rn + r∞ + n)(m2 −m).

We explain how to produce the Darboux coordinates, which we call intermediate Darboux co-

ordinates, on such symplectic leaves. In the case of the Jimbo-Miwa isomonodromic problems

associated to the fifth, fourth, third and second Painlevé equations the degree is always d = 4,

the intermediate symplectic leaves have always dimension 6 and are determined by the choice of

3 spectral invariants giving a total dimension 9 for the Poisson manifold. This is the dimension

of the moduli space of SL2(C) connections with a given divisor D of degree 4 [64].

Remark 2.0.1. The problem of extending the Riemann-Hilbert symplectomorphism between the

de Rahm moduli space of meromorphic connections on a Riemann surface Σ with non-simple

divisor (a divisor of points that can have multiplicity > 1) and the analogous of the Betti moduli

space of representations of the fundamental group of Σ, namely with the cusped character variety

introduced in [16, 17] is still open and is beyond the scope of the current thesis. However, the

Darboux coordinate description of the de Rahm moduli space achieved in this thesis constitues

an important first step towards that goal.

Remark 2.0.2. It is worth mentioning here that the phase space (2.0.8) is not a moduli space

per se, however K. Hiroe and D. Yamakawa [46] showed that the sub–space of stable connections

admits a nice quotient with respect to the diagonal action of GLm(C) on M :

M ′ = {A(λ) ∈M |
n+1∑
i=1

π(A
(i)
0 ) = 0, “stable” }/GLm(C),

where

π : ĝ∗ri → gl∗m

is the moment map under the diagonal action of GLm(C) on M , thus assuring that M ′ is a

smooth complex symplectic variety. The space M ′ can be regarded as a certain moduli space

for meromorphic connections on O⊕m
P1 . Fix n distinct points u1, . . . , un ∈ P1, and endow P1
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with a coordinate z for which z(ui) ̸= ∞. The variable zi can be identified with λ − ui and ĝ∗ri

can be embedded in glm(C[z−1
i ])dzizi

via trace-residue pairing. Then each A(λ) ∈ M determines

a meromorphic connection d − A(λ) on O⊕m
P1 , having poles at u1, . . . , un,∞. The condition∑n+1

i=1 π(A
(i)
0 ) = 0 singles out the connections which have no residue at infinity.

The next result of the thesis is the classification of all linear Takiff algebra automorphisms

that preserve the standard Lie–Poisson structure (2.0.9) on the phase space (2.0.8) (see Theorem

5.3.1 for a more articulated statement).

Theorem 2.0.3. Consider two elements A(λ) and B(λ) of the phase space (2.0.8), so that they

both have the form (2.0.7):

A(λ) =

n∑
i=1

ri∑
k=0

A
(i)
k

(λ− ui)k+1
+

r∞∑
k=1

A
(∞)
k λk−1, B(λ) =

n∑
i=1

ri∑
k=0

B
(i)
k

(λ− ui)k+1
+

r∞∑
k=1

B
(∞)
k λk−1.

Then there exist parameters t
(i)
1 , t

(i)
2 , . . . t

(i)
ri for all i = 1 . . . n, such that

B
(i)
k =

ri∑
j=k

A
(i)
j M(ri)

k,j (t
(i)
1 , t

(i)
2 , . . . t(i)ri ), (2.0.10)

where

M(ri)
k,j =

|α|=k∑
w(α)=j

k!

α1!α2! . . . αri !

(
ri∏
l=1

(t
(i)
l )αl

)
, |α| =

ri∑
l=1

αl, w(α) =

ri∑
l=1

l · αl, (2.0.11)

so the coefficients of A(λ) and B(λ) have the same Poisson bracket

{B(i)
k ,⊗B

(j)
l } =

 δij [B
(i)
k+l ⊗ I,Π] k + l ≤ ri

0 k + l > ri,
{A(i)

k ,⊗A
(j)
l } =

 δij [A
(i)
k+l ⊗ I,Π], k + l ≤ ri

0 k + l > ri,

This result allows us to introduce extra (i.e. in addition to the positions of poles) deformation

parameters t
(i)
1 , . . . , t

(i)
ri , i = 1, . . . , n,∞ for any connection belonging to the phase space (2.0.8).

In other words, we consider families of the form

A(λ) =

n∑
i=1

ri∑
k=0

B
(i)
k

(λ− ui)k+1
+

r∞∑
k=1

B
(∞)
k λk−1

where the elements B
(i)
k contain explicitly the deformation parameters t

(i)
1 , . . . , t

(i)
ri as prescribed
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by formulae (2.0.10) and (2.0.11). The isomonodromic deformation equations will then impose

a further implicit dependence of the matrices A
(i)
k on the deformation parameters t

(i)
1 , . . . , t

(i)
ri

and on the position of the poles u1, . . . , un.

Remark 2.0.4. Let us stress that the class of connections we consider in this thesis are elements

of the space (2.0.8). This class excludes some of the Jimbo-Miwa-Ueno connections. Indeed,

our deformation parameters correspond to a subset of the Jimbo-Miwa-Ueno ones and this

correspondence is 1 : 1 only in the case of rank m = 2. For example, the famous Dubrovin’s

system

dY

dλ
=

(
U +

V

λ

)
Y,

where U is a diagonal n × n matrix and V ∈ son, is not an element of Ô⋆
r1 × Ô⋆

r∞ for some

r1, r∞ because the diagonal elements of U are independent deformation parameters. Of course

the isomonodromic deformation equations for V as a function of u1, . . . , un can be written as

a flow on a co–adjoint orbit O⋆ of the Lie algebra son, but not as equations for the whole

connection U + V
z on the product of two co–adjoint orbits as our theory dictates. To include the

Dubrovin system (and indeed all of Jimbo-Miwa-Ueno deformation parameters) in our theory,

one should either consider the extended coadjoint orbits introduced in [14, 15] or exploit the

Laplace transform to transform the Dubrovin system to the Fuchsian one. In the latter setting,

the confluence procedure destroys semi-simplicity, therefore it is a different process from the one

considered by Cotti, Dubrovin and Guzzetti [20, 21].

This is the correct framework to study confluence of two or more poles. Indeed, we show

that the confluence cascade of r+ 1 simple poles at certain positions depending on t
(i)
1 , . . . , t

(i)
ri

gives rise to an element of the phase space (2.0.8) which has a singularity of Poincaré rank r

and depends on t
(i)
1 , . . . , t

(i)
ri , i = 1, . . . , n,∞, as prescribed by formulae (2.0.10) and (2.0.11).

The following theorem provides the inductive step to create the confluence cascade (we drop

the index (i) for convenience).

Theorem 2.0.5. Consider an r–parameter family of connections of the following form:

A =

r∑
k=0

Bk(t1, t2 . . . tr)

(λ− u)k+1
+

C

λ− v
+ holomorphic terms, (2.0.12)

where by holomorphic terms we mean terms holomorphic in λ − u and λ − v, and each Bk
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depends on the parameters t1, . . . , tr as specified by (2.0.10), (2.0.11). Assume

v = u+
r∑

i=1

tiε
i = u+ Pr(t, ε), (2.0.13)

and that we have the following asymptotic expansions as ε→ 0

C ≃
∞∑

j=−r

W [j]εj , Ak ≃ −
r−k∑
l=1

W [−k−l]

εl
+A[k,0] +

∞∑
l=1

A[k,l]εl, (2.0.14)

for some matrices W [−k−l], A[k,l]. Then the limit ε→ 0 the connection exists and is equal to

Ã =

r+1∑
i=0

B̃i(t1, t2 . . . tr, tr+1)

(λ− u)i+1
+ holomorphic terms,

where B̃i’s are given by

B̃i(t1 . . . , tr+1) =
r∑

k=i

ÃkM
(r+1)
i,k (t1 . . . tr+1), Ãk =

 W [−k] +A[k,0], k < r + 1.

W [−r−1], k = r + 1.
(2.0.15)

We prove that the confluence procedure gives a Poisson morphism on the product of co-

adjoint orbits and we calculate explicitly the confluent Hamiltonians, which define the correct

isomonodromic deformations.

Theorem 2.0.6. Let u be a pole of a connection A with Poincaré rank r, which is the result of

confluence of r simple poles with the simple pole u. Then the confluent Hamiltonians H1, . . . ,Hr

which correspond to the times t1, . . . tr are defined as follows:



H1

H2

. . .

Hr


=
(
M(r)

)−1



S
(u)
1

S
(u)
2

. . .

S
(u)
r


, (2.0.16)

where

S
(u)
k =

1

2

∮
Γu

(λ− u)kTrA2dλ (2.0.17)

are spectral invariants of order i in u and the matrix M(r) is given by (2.0.11). The Hamiltonian
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Hu corresponding to the time u is instead given by the standard formula

Hu =
1

2
res
λ=u

TrA(λ)2.

Remark 2.0.7. It is well known that the isomonodromic deformation equations are Hamilto-

nian, namely that the flow is Hamiltonian with respect to the Jimbo-Miwa-Ueno deformation

parameters, see for example [32, 51, 90]. In [32], the isomonodromy equations have been de-

scribed as integrable non-autonomous Hamiltonian systems. A symplectic fibre bundle whose

base is the Jimbo-Miwa-Ueno deformation parameters space and the fibers are certain mod-

uli spaces of unramified meromorphic connections was introduced in [15]. This approach was

extended by D. Yamakawa for any reductive Lie algebra g [92] who removed some multiplicity re-

strictions and introduced a symplectic two-form on the fibration. Following the same geometric

approach and Jimbo-Miwa-Ueno isomonodromic tau-function D. Yamakawa [93] has proven that

the isomonodromy equations of Jimbo–Miwa–Ueno is a completely integrable non-autonomous

Hamiltonian systems. He was also motivated by the quantisation theorem of Reshetikhin but he

did not try to consider the quantisation of general isomonodromy equations. Recently, Bertola

and Korotkin have derived a new Hamiltonian formulation of the Schlesinger equations (i.e. for

the Fuchsian case) in terms of the dynamical r–matrix structure.

Remark 2.0.8. The results of the theorem 2.0.5 still hold true for the autonomous systems

which are obtained by the confluence procedure from the Gaudin system. It was shown by Yu.

Chernyakov in [18] that the Poisson algebra which arises in the confluent elliptic and rational

Gaudin systems coincides with the dual Takiff algebra equipped with the standard Lie–Poisson

bracket (in [18] the author use the word“fission” instead of “confluence”). It also should be

noted that the same result appeared in the paper by Chervov, Falqui and Rybnikov on the limits

in the Gaudin system [25]

One of the main quantum theorems of this thesis gives a general formula for the confluent

KZ Hamiltonians with singularities of arbitrary Poincaré rank in any dimension.

Theorem 2.0.9. Consider the differential operators:

∇uj :=
∂

∂uj
− Ĥuj , j = 1, . . . , n (2.0.18)
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and

∇(i)
k :=

∂

∂t
(i)
k

− Ĥ
(i)
k , i = 1, . . . , n,∞, k = 1, . . . , ri (2.0.19)

where the Hamiltonians Ĥuj which correspond to the positions of the poles uj, j = 1 . . . , n, and

Ĥ
(i)
1 , . . . , Ĥ

(i)
r which correspond to the times t

(i)
1 , . . . t

(i)
ri , for i = 1, . . . , n,∞, are given by the

following elements of the universal enveloping algebra U (ĝr1 ⊕ · · · ⊕ ĝr∞):

Ĥuj =
1

2
res
λ=uj

Tr0Â(λ)
2,

and

M(ri)



Ĥ
(i)
1

Ĥ
(i)
2

. . .

Ĥ
(i)
ri


=



Ŝ
(ui)
1

Ŝ
(ui)
2

. . .

Ŝ
(ui)
ri


, Ŝ

(ui)
k =

1

2

∮
Γui

(λ− ui)
kTr0Â(λ)

2dλ,

where

Â(λ) =
n∑
i

 ri∑
j=0

B̂
(i)
j

(
t
(i)
1 , t

(i)
2 . . . t

(i)
ri

)
(λ− ui)j+1

 ,

with B̂(i)’s given by

B̂
(i)
j (t

(i)
1 , . . . t(i)ri ) =

r∑
k=j

Â
(i)
k M(ri)

j,k (t
(i)
1 , t

(i)
2 . . . t(i)ri ), Âk =

∑
α

e(0)α ⊗ e(i)α ⊗ zki ,

and e
(0)
α corresponds to the quantisation of g∗ to g while

e(i)α = 1⊗ · · · ⊗ eα
i
⊗ · · · ⊗ 1.

where eα is chosen in some representation, with corresponding vector space V . Then the dif-

ferential operators commute

[∇uj ,∇us ] = [∇(i)
k ,∇us ] = [∇(i)

k ,∇(a)
l ] = 0,

∀ j, s = 1, . . . , n, i, a = 1, . . . , n,∞, k = 1, . . . , ri, l = 1, . . . , ra. We call the system of differen-
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tial equations

∇ujΨ = 0, ∇(i)
k Ψ = 0, j = 1, . . . , n, i = 1, . . . , n,∞, k = 0, . . . , ri, Ψ ∈ V ⊗n,

confluent KZ equations.

Moreover, we express the isomonodromic Hamiltonians in terms of the lifted Darboux co-

ordinates and show that the quasiclassical solutions of the confluent KZ equations is expressed

via the isomonodromic τ -function.

Theorem 2.0.10. Given a solution (P1, . . . , Pd, Q1, . . . , Qd) of the classical isomonodromic de-

formation equations, the corresponding semi-classical solution Ψsc of the confluent KZ equations

ℏ
∂Ψ

∂uj
= ĤujΨ, j = 1, . . . , n

and

ℏ
∂Ψ

∂t
(i)
k

= Ĥ
(i)
k Ψ, i = 1, . . . , n,∞, k = 1, . . . , ri

evaluated along the solution (P1, . . . , Pd, Q1, . . . , Qd), admits the following WKB expansion

Ψsc(Q(t), t) ∼ τ
i
ℏ (1 +O(ℏ)) , ℏ → 0. (2.0.20)

in terms of the classical isomonodromic τ -function

d ln(τ) :=
∑
i

(
H(i)

ui
dui +

ri∑
k=1

H
(i)
k dt

(i)
k

)
.

The asymptotic expansion (2.0.20) is valid for u1, . . . , un,, t
(i)
k , i = 1, . . . , n,∞, k = 1, . . . , ri in

a polydisk that does not contain the poles of the solution (P1, . . . , Pd, Q1, . . . , Qd).

This statement was mentioned in [80] for the case of the standard KZ, namely with simple

poles. We also discuss the quantisation of the reduced Darboux coordinates and provide the

quantised reduced systems in some examples.

Now we list the most of the results obtained in this thesis:

1. It was shown via a confluence procedure that the natural phase space for the irregu-
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lar isomonodromic system is given by the direct product of the co-adjoint orbits of the

corresponding Takiff algebras.

2. We prove that the moduli of special Poisson automorphisms for the Takiff co-algebras

provides isomonodromic times for the irregular singularities.

3. The Hamiltonians for the corresponding irregular isomonodromic deformation equations

have been written in an explicit closed form in terms of the spectral invariants.

4. We provided a symplectic embedding of the co-adjoint orbit of the degree r Takiff algebra

over slm into the cotangent bundle of r copies of glm.

5. In the sl2 case, we established a correspondence between ramification in the linear systems

of ODEs and the analogous of the nilpotent cone in the Takiff algebras.

6. Using the obtained irregular Hamiltonians, we provided a candidate for the irregular

Knizhnik–Zamolodchikov system.

7. We extended Reshetikhin’s theorem about the semi-classical solution of the Knizhnik–

Zamolodchikov equations to the irregular case.

8. For all Painlevé equations, we provide an explicit reduction procedure starting from the

co-adjoint orbits and finishing with the Darboux coordinates.

9. Moreover we provide an algebraic description of the phase spaces for all Painlevé equations

using symplectic reduction.

10. We show that in all cases, the phase space for the Painlevé equations can be written as a

double covering of A2 ramified along a (possibly rational) elliptic curve.

The results from 1 to 4 and from 6 to 8 are presented in a preprint [37] (collaboration

with M.Mazzocco and V.Rubtsov). The initial interest to the theory of the isomonodromic

deformations came from previous work on the nonlinear phenomena and asymptotical solutions

to the Painlevé equations [39, 40, 41]. The author of this thesis also studied integrability [84].

The experience in the integrable systems give rise to the work of the author on the multi-

particle Painlevé systems [38] (collaboration with V.Rubtsov) and a lot of results presented in

this thesis. The ramified case (results 5 and 8 for the Painlevé III D7, III D8 and I) will be
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part of the single author paper by the candidate. The parts 9 and 10 are work in progress in

collaboration with M. Mazzocco, V.Rubtsov and D.van Straten.
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CHAPTER 3

BACKGROUND MATERIAL

3.1 Systems of Linear differential equations, Monodromy and
Stokes phenomenon

The singularities of the solution to the system of the linear ODE’s which location depends only

on the singularities of the differential equation, and not on the Cauchy data (initial conditions),

are called fixed. The fundamental solution can be easily defined away from the singularities of

the differential operator or system via the Frobenius method. The question is what happens

to the fundamental solution around the fixed singularities. Depending on the local form of

the differential equation there are few possibilities - the solution has an apparent singularity, a

regular singularity or an irregular singularity. The fundamental solution is not a single-valued

object, and defines a so-called local system. The aim of this section is to give a review of the

theory of linear differential equations on the Riemann sphere with the focus on the local and

global behaviour of the fundamental solution. The results of this section may be found in

[36, 83]

3.1.1 Linear systems of ODE’s, gauge equivalence and principal G-bundles

Consider linear system of the form

d

dλ
Ψ = A(λ)Ψ, (3.1.1)
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where Ψ is a m-vector function on C and A(λ) is a m × m matrix function in the complex

variable λ holomorphic apart from a finite set of isolated poles u1, . . . , un, u∞ = ∞ such that

A(λ) =
n∑

i=1

ri∑
l=0

A
(i)
ri−l

(λ− ui)l+1
+

r∞∑
k=1

A
(∞)
r∞−lλ

l−1, (3.1.2)

where A
(i)
0 ̸= 0, for i = 1, . . . , n,∞. The number ri is called the Poincaré rank at λ = ui.

Definition 1. A fundamental system of solutions of (3.1.1) is a n× n matrix Ψ(λ) such that

its columns form a basis of linearly independent solutions of (3.1.1).

Given a fundamental matrix Ψ(λ) of (3.1.1), the general solution can be represented as

Ψ(λ)C

where C is a constant column vector.

Example 2. Suppose A(λ) = A0 is a constant matrix. Then the fundamental matrix is given

by Ψ(λ) = exp (A0λ).

Example 3. Suppose A(λ) = A0
λ , and A0 is a constant matrix. Then the fundamental matrix

is given by Ψ(λ) = λA0. If A0 is diagonalisable and Θ is the matrix of its eigenvalues, then

another fundamental matrix is Ψ(λ) = GλΘ, where A0 = GΘG−1.

The general solution of the linear system (3.1.1) gives rise to the G-bundle with connection

over the Riemann sphere with punctures at u1, u2 . . . un, u∞. Then Ψ(λ) ∈ G is a section of

G-bundle over P1 \ {u1, u2 . . . un, u∞} while

A = A(λ)dλ+ 0dλ̄ ∈ Ω(1,0)(P1 \ {u1, u2 . . . un, u∞}, g) ⊂ Ω1(P1 \ {u1, u2 . . . un, u∞}, g)

is a connection. Here Ω1(P1 \ {u1, u2 . . . un, u∞}) is a set of the globally defined g-valued one-

forms, while Ω(1, 0)(P1\{u1, u2 . . . un, u∞}) stands for the globally defined holomorphic g-valued

one-forms. The connection A is holomorphic on the punctured Riemann sphere. Two principal

G-bundles are equivalent if there exists a gauge transformation which sends connection of one

bundle to another. For the differential equations of the for (3.1.1) the local equivalence may be

formulated in the following way
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Definition 4. Two systems of the above form (3.1.1)

d

dλ
Ψ = A(λ)Ψ,

d

dλ
Ψ̃ = Ã(λ) Ψ̃,

having a pole of order r + 1 zero at 0, are formally equivalent near 0 if there exists a formal

series

G(λ) = G0 +G1λ+ . . .

such that the transformation Ψ̃ = G(λ)Ψ maps the first system into the second one, i.e.

Ã(λ)G(λ) = G(λ)A(λ) +
d

dλ
G(λ) (3.1.3)

3.1.2 Logarithmic Singularities and Monodromy matrices

Consider a connection with simple poles only

d

dλ
Ψ =

n∑
i=0

A(i)

λ− ui
Ψ, A(i) ∈ glm, Ψ ∈ GLm. (3.1.4)

Such systems are called Fuchsian. Near the singular point λ = uj the connection reads

A(λ) ∼
λ∼uj

A(j)

λ− uj
+

∞∑
l=0

∑
k ̸=j

(−1)lA(k)

(ui − uk)l+1
(λ− uj)

l+1 =
A(j)

λ− uj
+

∞∑
l=0

Rl(λ− uj)
l+1.

Let us do a technical assumption that the eigenvalues of all residues A(i) do not differ by a

non-zero integer. Near the singularity λ = ui the fundamental solution may be written in the

following form

Ψ ∼ Ψj = Pj

(
1 +

∑
ϕ
(j)
k (λ− uj)

k
)
exp

[
Λ(j) ln(λ− uj)

]
, A(j) = PjΛ

(j)P−1
j ,

where Λ(j) is a Jordan normal form of A(j). Coefficients ϕ
(j)
k are defined via recursive relation.

Locally, solution Ψi is not a single-valued function. Indeed, turning around singularity uj due
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to logarithmic behaviour of the argument of the exponent we have

Ψj(ze
2πi) = Ψj(z)e

2πiΛ(j)
, z = λ− ui.

The matrix e2πiΛ
(j)

is called a local monodromy. Globally multi-valuedness has less explicit de-

scription in the terms of the local data. Let π1(P1\{u1, . . . un,∞}) = ⟨γ1, γ2 . . . γn, γ∞ | γ1γ2 . . . γnγ∞ =

1⟩, then

Ψ|γk = ΨMk Mk = Gke
2πiΛ(k)

G−1
k ,

where Gk is a transition matrix from the base-point to the neigbourhood of singularity uk. In

particular, Gk is given by the prolognation of solution for the (3.1.4) along the interval I which

connects base-point with ui + ε, where ε is chosen in such a way, that I do not intersect any

other singularities. Monodromy matrices provide a representation of the fundamental group in

the group G, since the following relation holds

M1M2 . . .MnM∞ = 1, Mi ∈ G.

Moreover, the choice of the base-point provides an action of the group G on the monodromy

matrices Mi via simultaneous conjugation. Finally the space of the monodromy data reads as

M =

 M1,M2, . . .M∞

Mi ∈ G

∣∣∣ M1,M2 . . .MnM∞ = 1

Mi ∼ e2πiΛ
(i)


/
G (3.1.5)

This space is also called G-character variety and may be seen as a representation space of the

fundamental group of P1 \ {u1, . . . un,∞}

3.1.3 Irregular singularities and Stokes phenomenon

We consider a principal G-bundle and a meromorphic connection with poles of arbitrary order

over P1. In other words, we consider a G-bundle with a holomorphic connection over punctured

Riemann sphere. Using the local coordinate for a pole z = λ−ui, we write the system of linear

differential equations in the following form

d

dz
Ψ = A(z)Ψ, A(z) =

Ar

zr+1
+
Ar−1

zr
+ · · ·+ A0

z
+O(1), Ai ∈ g = TeG. (3.1.6)
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The number r ∈ Z is called a Poincaré rank of singularity.

Theorem 3.1.1. Let z be a local coordinate in a neigbourhood of singularity and consider the

system of differential equations (3.1.6). In case when Ar is a semi-simple, formal asymptotical

solution takes form

Ψ ∼ P (z) exp [−Λ(z)] zΛ0 , P (z) =
∞∑
i=0

Piz
i, Λ(z) =

1

r

Λr

zr
+ . . .

1

j

Λj

zj
+ · · ·+ Λ1

z
, (3.1.7)

where Λi are diagonal matrices for i = 0 . . . r. In the case, when Ar is not a semi-simple matrix,

local asymptotic solution may be written in a form

Ψ ∼ P (z) exp [−Λ(z)] zΛ0 , P (z) =
∞∑
i=0

Piz
i/d,

where d ∈ Z is a least common multiple of the eigenspace dimensions for Ar and Λ(z) is a

diagonal matrix, with a pole at z = 0.

Definition 3.1.2. The case when Ar is not a semi-simple matrix called ramified.

The monodromy data nicely describes the fundamental solution of the system with regular

singularities. However, when the connection has a higher order pole, the monodromy data is

not enough to describe the behaviour of the fundamental solution. The main difficulty is that in

the case of irregular singularities there is no way to define a convergent in a disk local solution

like in the Fuchsian case. More precisely, there is only a way to define a formal local solution,

which has a zero radius of convergence, and can be used to define the asymptotic behaviour of

the solution. The main difficulty is that such asymptotic define unique solution only in some

sectors near irregular singularity, which are called Stokes sectors.

3.1.4 Geometry of the Stokes rays and Stokes sectors

The Stokes rays are oriented half lines from zero to infinity. Let θα be the eigenvalues of Λr

in (3.1.7). Let us study the equation Re[λr∞(θα − θβ)] = 0, where r∞ ∈ Z+. For n distinct

eigenvalues there are n(n− 1) differences (we consider θα − θβ to be different from θβ − θα)

θα − θβ = ρ exp(iπϕαβ),
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let λ = σ exp(πiψ) then

λr∞(θα − θβ) = σρ exp (iπϕαβ + ir∞πψ)

thus why we impose

iπϕαβ + ir∞πψαβ =
2Z+ 1

2
iπ

that is

ψαβ =
1

r∞

(
1

2
− ϕαβ +m

)
, m = 0, . . . , 2r∞ − 1.

Imposing the condition on the Imaginary part we see that m can only be odd, thus we have

n(n − 1)r∞ Stokes rays. For each j they are distant 1
r∞

. In fact we can take m even and we

have the Stokes rays corresponding to the opposite difference. In a sector wider than π
r∞

, we

have at least two Stokes rays for each couple of eigenvalues. Crossing a Stokes ray determines

a change of dominance relations

The following lemma states essentially that the sectors of validity of our actual fundamental

matrices Y can be extended to the adjacent Stokes rays (without including them). The unique-

ness of actual fundamental matrix Y having asymptotic behavior Ψf in a sector of opening

> π
r∞

is due to the fact that such a sector contains r∞ + 1 Stokes rays.

Lemma 5. Let Ψ(λ) be an actual fundamental matrix of the system (3.1.1) at ∞ such that

Ψ(λ) ∼ Ψf (λ) as λ→ ∞, λ ∈ Σ ∩ {|λ| > N}, N ∈ IR where Σ is some sector of opening < 2π.

Suppose that Σ̃ is another sector of opening < π
r∞

such that Σ∩ Σ̃ is simply connected and non–

empty and Σ̃ does not contain any Stokes ray, then Ψ(λ) ∼ Ψf (λ) in as λ → ∞, λ ∈ Σ ∪ Σ̃.

Proof. Let Ψ̃(λ) be an actual fundamental matrix of the system (3.1.1) at ∞ such that Ψ̃(λ) ∼

Ψf (λ) as λ → ∞, λ ∈ Σ̃ ∩ {|λ| > N}. Since Σ ∩ Σ̃ ̸= ∅, and it is simply connected, there

exists a constant matrix C such that Ψ(λ) = Ψ̃(λ)C for λ ∈ Σ∩ Σ̃. Thus Ψ̃(λ)C is the analytic

continuation of Ψ(λ) in Σ̃. Since Ψ̃(λ) and Ψ(λ) have the same asymptotic behavior, we have

λR
(∞)

exp(Q(∞)(λ))C exp(−Q(∞)(λ))λ−R(∞) ∼ I

as λ→ ∞, λ ∈ Σ∩ Σ̃. Since Σ̃ doesn’t contain any Stokes ray, then the dominance relations in
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Σ̃ are the same as in λ ∈ Σ ∩ Σ̃, i.e. the above relation is valid in all Σ̃. Thus

Ψ(λ) exp(−Q(∞)(λ))λ−R(∞)
= Ψ̃(λ)C exp(−Q(∞)(λ))λ−R(∞)

=

= Ψ̃(λ) exp(−Q(∞)(λ))λ−R(∞)
λR

(∞)
exp(Q(∞)(λ))C exp(−Q(∞)(λ))λ−R(∞)

=

= Ψ̃(λ) exp(−Q(∞)(λ))λ−R(∞)

i.e. Ψ(λ) ∼ Ψ̃(λ) ∼ Ψf (λ) in all Σ̃.

Let us now prove uniqueness. Suppose that Ψ(λ) and Ψ̃(λ) are two actual fundamental

matrices of the system (3.1.1) at∞ such that Ψ(λ), Ψ̃(λ) ∼ Ψf (λ) as λ→ ∞, λ ∈ Σ̃∩{|λ| > N}.

Then there exists a constant matrix C such that Ψ(λ) = Ψ̃(λ)C, i.e.

λR exp(Q(λ))C−1 exp(−Q(λ))λ−R ∼ I

as λ → ∞, λ ∈ Σ as above. Now let us call qi(λ) the entries of the diagonal matrix Q(λ) and

ri the ones of R. On the matrix elements we have

exp(qi(λ)− qj(λ))z
ri−rjCij ∼ Iij .

Thus Cii = 1 and since the sector is big enough, for each dominance relation it contains also

the opposite one. Thus Cij = 0 for i ̸= j. This proves that C = I and the proof of our theorem

is concluded.

If the sector is narrow, we have ambiguity in the choice of the true fundamental solution.

Such ambiguity is described by the so-called Stokes multipliers defined in the following theorem.

Theorem 6. Consider the system (3.1.1) under our basic assumption that A∞
0 has a simple

spectrum and let Ψ
(∞)
l (λ),l = 1, . . . , 2r∞, denote the unique 2r∞ actual fundamental matrices

in Σl satisfying (3.1.7). Let the 2r∞ matrices S1, . . . , S2r∞ be defined corresponding to the

intersections

Σl,l+1 = Σl ∩ Σl+1

by means of

Ψ
(∞)
l (λ) = Ψ

(∞)
l+1 (λ)Sl, , λ ∈ Σl,l+1,

where Ψ
(∞)
2r∞+1 = Ψ

(∞)
1 and Σ2r∞+1 = Σ1. The matrices S1, . . . , S2r∞ are constant invertible
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matrices such that Sαα = 1 and Sαβ = 0 for all α ̸= β such that

∣∣∣eλr∞ (θα−θβ)
∣∣∣→ ∞

as λ→ ∞ along some ray in the chosen sector.

Definition 7. The matrices S1, . . . , S2r∞ introduced in Theorem 6 are called the Stokes multi-

pliers associated to the system (3.1.1) at ∞.

In such a way we may introduce additionaly a Stokes data for each irregular singularity.

This data extends the notion of the monodromy data for the case of the irregular singularities.

3.2 Isomonodromic deformations

The aim of this section is to provide a review of isomonodromic deformations. The correspond-

ing material can be found in [36].

3.2.1 Fuchsian systems and Schlesinger equations

Consider the Fuchsian system (3.1.4), generalized for an arbitrary Lie group G, i.e. the system

of the equations

d

dz
Ψ =

n∑
i=1

A(i)

z − ui
Ψ, Ψ ∈ G, A(i) ∈ g, z ∈ P1 \ {u1, u2, . . . , un}, ∀i ̸= j : ui ̸= uj ,

where g is the Lie algebra of G. Such system may be seen as a connection on the G-bundle

over Σ0,n = P1 \ {u1, u2, . . . , un}. The monodromy map, introduced in the subsection 3.1.2,

provides a representation of the fundamental group into the group G, by sending each generator

of π1(Σ0,n) to the corresponding monodromy matrix Mi.

The isomonodromic deformation theory studies the following question: How should elements

A(i) depend on the position of the poles ui, such that the monodromy matrices Mi do not change

during the local variation of the poles ui?

The answer to this question was given by L. Schlesinger [82], which may be formulated in

the following theorem.
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Theorem 3.2.1. The monodromy matrices are constant under the local variations of the posi-

tion of the poles ui, if the elements A(i) solve the following system of the non-linear differential

equations
∂A(i)

∂uj
=

[A(j), A(j)]

uj − ui
, j ̸= i

∂A(i)

∂ui
= −

∑
j ̸=i

[A(j), A(j)]

uj − ui
.

(3.2.1)

The equations (3.2.1) are called Schlesinger equations. We call the system (3.2.1) isomon-

odromic deformation, because it preserves the monodromy matrices of the corresponding local

system.

3.2.2 Isomonodromic deformations as a compatibility condition

The results of the theorem 3.2.1 may be reformulated in the following way:

Theorem 3.2.2. Consider the following overdetermined system of the linear differential equa-

tions 
d
dzΨ = A(z)Ψ

duΨ = B(z)Ψ,
Ψ ∈ G

where

duΨ =
n∑

i=1

∂Ψ

∂ui
dui, A(z) =

n∑
i=1

A(i)

z − ui
, B(z) = −

n∑
i=1

A(i) dui
z − ui

.

Then, compatibility condition

duA− d

dz
B + [A,B] = 0,

is equivalent to the Schlesinger equations (2.0.2).

In a nutshell, this means that isomonodromic deformation can be seen as a flatness condition

on the extended space which is a product of the base curve Σ0,n and the configuration space

of the deformation parameters (in the Fuchsian case this extended space may be associated

with the product of the base curve and its moduli of the complex structures). For the Fuchsian

system, such flat connection may be written as

Ω =

n∑
i=1

A(i)d ln(z − ui), df =
∂

∂z
fdz +

n∑
i=1

∂

∂ui
fdui.
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Indeed, the flatness conditions for Ω coincides with the compatibility condition from the theorem

3.2.2 and, as a consequence, with the Schlesinger equations (3.2.1).

In the case of irregular singularities the notion of the isomonodromic deformation has to be

extended also to the Stokes data described in the subsection 3.1.3. Still such deformations can

be formulated as flatness conditions on the extended space which is a product of the base curve

Σ0,n and the configuration space of the deformation parameters. We give a description of the

irregular isomonodromic deformations later in the thesis, see Section 5.1.

3.2.3 Painlevé equations as the isomonodromic deformations of sl2 connec-
tions

In this subsection we provide a brief introduction to the Painlevé equations as the isomon-

odromic systems for the sl2 connections with possibly irregular singularities. The Painlevé

equations form a list of the six non-linear second order differential equations, whose general

solution defines a transcendental function. Here is the list of the Painlevé equations:

PVI :
d2y
dt2

=
1

2

(
1

y
+

1

y − 1
+

1

y − t

)(
dy

dt

)2

−
(
1

t
+

1

t− 1
+

1

y − t

)
dy

dt

+
y(y − 1)(y − t)

t2(t− 1)2

(
α+ β

t

y2
+ γ

t− 1

(y − 1)2
+ δ

t(t− 1)

(y − t)2

)
,

PV : d2y
dt2

=

(
1

2y
+

1

y − 1

)(
dy

dt

)2

− 1

t

dy

dt
++

(y − 1)2

t2

(
αy +

β

y

)
+γ

y

t
+ δ

y(y + 1)

y − 1
,

PIV : y d2y
dt2

= 1
2

(
dy

dt

)2

+ β + 2(t2 − α)y2 + 4ty3 + 3
2y

4, (3.2.2)

PIII : y d2y
dt2

= t

(
dy

dt

)2

− y
dy

dt
+ δt+ βy + αy3 + γty4,

PII :
d2y
dt2

= 2y3 + ty + α,

PI :
d2y
dt2

= 6y2 + t,

where α, β, γ and δ are the complex numbers. All these equations may be obtained as an

isomonodromic deformation of the sl2 connection on P1 with sum of pole orders equal to 4.

In such a way, the Painlevé VI equation is an isomonodromic deformation of the sl2 Fuchsian
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system with 4 poles - at 0, 1, t and ∞. The other Painlevé equations are related to the connec-

tions with higher order poles. In particular, divisors of the singularities of the connections for

all Painlevé equations are given in the following table:

Painlevé VI 0+ 1+ t+∞

Painlevé V 0+ 1+ 2 · ∞

Painlevé IV 0+ 3 · ∞

Painlevé III 2 · 0+ 2 · ∞

Painlevé II 4 · ∞

Painlevé I 4 · ∞

In Section 5.6 we provide a systematic derivation of the all Painlevé equations except the

Painlevé VI, using a Hamiltonian description of the isomonodromic deformations for irregular

connections. The derivation of the Painlevé VI equation as a reduction of the Schlesinger

equations may be found in [6].

3.3 Symplectic and Poisson geometry, Hamiltonian group ac-
tions and Lie algebra co-adjoint orbits

The aim of this section is to provide a brief review of symplectic geometry with focus on the

moment map theory. Raised from Hamiltonian mechanics, symplectic geometry became an

important tool of the modern mathematical physics.

In this section we use following notation

• K is a base field, charK = 0.

• M stands for smooth (algebraic, holomorphic) variety,

• C(M) denotes the algebra of C∞ (resp. algebraic, holomorphic) functions on M

• O stands for an adjoint orbit of a Lie algebra, O⋆ for a co-adjoint orbit

We do not put references during the text of this section. Most of the material presented in

this section can be found in [5, 19].
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3.3.1 Adjoint and co-adjoint orbits

Consider the Lie group G with the Lie algebra g ≃ TeG and its dual g⋆. We define by

⟨Θ, X⟩, X ∈ g, Θ ∈ g⋆

the bi-linear pairing between the Lie algebra g and its dual.

Definition 3.3.1. The adjoint action of the group G on itself is the map Ad : G × G → G

defined by

Ad(g, h) := Adg h = ghg−1 (3.3.1)

Definition 3.3.2. The adjoint action of the group G on its Lie algebra g is the map ad :

G× g → g defined by

ad(g,X) := adg(X) =

[
d

dt
Adg exp(tX)

]
t=0

=

[
d

dt
(g exp(tX)g−1)

]
t=0

, X ∈ g, g ∈ G,

(3.3.2)

here exp is an exponential map from the Lie algebra to the Lie group.

Definition 3.3.3. The co-adjoint action of the group G on the dual of its Lie algebra is the

map ad⋆ : G× g⋆ → g⋆ defined in such way, that

⟨ad⋆g Θ, X⟩ = ⟨Θ, adgX⟩. (3.3.3)

The maps defined above are related in the following way - ad is a differential of the map

Ad, ad⋆ is the categorical dual to ad. The orbits of the adjoint and co-adjoint actions are quite

important objects which defined as

Definition 3.3.4. The adjoint orbit of the element X ∈ g is defined as

O(X) = {Y ∈ g| ∃g ∈ G : adg(X) = Y } (3.3.4)

The co-adjoint orbit of the element Λ ∈ g⋆ is defined as

O⋆(Λ) = {Θ ∈ g⋆| ∃g ∈ G : ad⋆g(Θ) = Λ}
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One of the most important example is the case of the Lie group GLn. The Lie algebra gln

is just an algebra of the matrices of size n. Moreover, there exists a Killing form, given by the

trace of matrix product

K(X,Y ) = Tr(XY ), X, Y ∈ gln,

which allows to identify gl⋆n with gln. Then both adjoint and co-adjoin action are given by

conjugation

adgX = gXg−1, ad⋆g Θ = g−1Θg.

Orbits in gln are classified by the Jordan normal form. The orbit is called semi-simple if it

contains a diagonal matrix with distinct eigenvalues θi ̸= θj .

3.3.2 Poisson Algebras

The notion of a Poisson algebra originates from Hamiltonian mechanics. In Hamiltonian me-

chanics such algebras arise as a coordinate ring of the cotangent bundle to Rn and in fact are

given by the inversion of the canonical symplectic structure. However, a Poisson algebra is an

algebraic object which can be formulated intrinsically.

Definition 3.3.5. A commutative algebra (A, ·) equipped with skew-symmetric bi-linear pair-

ing {, } : A×A→ A is called Poisson algebra if

1. (A, {, }) is a Lie algebra

2. {, } is a derivation satisfying Leibniz rule {x · y, z} = {x, z} · y + x · {y, z}

The bracket {, } is called a Poisson bracket on A. In other words, the bracket {, } defines a

Poisson structure on the commutative algebra A.

Example 3.3.6. Consider the algebra A = C∞(R2) of smooth functions of two variables p and

q in R2. Define a Poisson bracket as

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
.

This is an example of the ∞-dimensional Poisson algebra.
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Example 3.3.7. More general, consider the algebra of smooth functions of n variables x1, x2, . . . xn.

Consider (2, 0) skew-tensor πij , satisfying

∑
l

(
πlj

∂πik

∂xl
+ πlk

∂πji

∂xl
+ πli

∂πkj

∂xl

)
= 0,

defines a Poisson bracket

{f, g} =
∑
ij

πij
∂f

∂xi

∂g

∂xj
.

This example gives rise to the notion of the Poisson manifold.

Definition 3.3.8. A Poisson manifoldM is a (smooth, algebraic, etc.) manifold with a bivector

(2, 0 skew-tensor field) π ∈ ∧2Γ(TM), s.t.

[[π, π]] = 0,

where [[·, ·]] is a superalgebra structure on the exterior algebra of polyvector fields on M . The

Poisson bracket is given by

{f, g} = ⟨df ∧ dg, π⟩

Example 3.3.9. For the ring of polynomials C[x, y, z] the following bracket

{x, y} = z, {y, z} = x, {z, x} = y,

defines a Poisson structure.

Example 3.3.10. Consider an affine surface in C3 given by the equation P (x, y, z) = 0 for

x, y, z ∈ C3. Then the following bracket

{x, y} =
∂P

∂z
, {y, z} =

∂P

∂x
, {z, x} =

∂P

∂y
,

defines a Poisson bracket. Example 3.3.9 corresponds to P (x, y, z) = 1
2(x

2 + y2 + z2) + const.

Introduced Poisson structure is the particular example of the more general structure called

Nambu bracket. Nambu bracket can be defined on any algebraic variety and gives a Poisson

bracket for the algebraic surfaces.

Example 3.3.11. The algebra of functions C(M) of any symplectic manifold is a Poisson
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algebra. We consider this example in more details in the next section.

3.3.3 Symplectic geometry

In this subsection we provide a basic definitions of symplectic geometry.

Definition 3.3.12. A symplectic manifold is a pair (M,ω) where M is an even dimensional

(smooth, algebraic etc.) manifold and ω is a globally defined (nowhere vanishing) closed differ-

ential two form.

Example 3.3.13. In classical mechanics the most natural symplectic manifold is the cotangent

bundle of Rn, which provides a basic example of canonical coordinates. In general, the cotangent

bundle to any smooth manifold is a symplectic manifold. The symplectic form in that case is

given by differential of the so called Liouville form (or tautological one-form) ρ ∈ Ω1(T ⋆M) :

ω = dρ. The tautological one-form is defined in the following way

⟨ρ, v⟩(m) = ⟨p, dπm(v)⟩, m = (p, x) ∈ T ⋆M, x ∈M, v ∈ Tm(T ⋆M),

and dπm is a pushforward of the projection map π : T ⋆M →M at the point m.

Example 3.3.14. Consider Cn with coordinates z1, z2, . . . zn, then the standard symplectic

form on Cn reads

ω =
n∑

i=1

dzi ∧ dz̄i.

Example 3.3.15. Consider a non-singular closed algebraic surface in R3 given by the equation

P (x, y, z) = 0, then symplectic form is given by

ω =
dy ∧ dz

∂P/∂x
+

dx ∧ dy

∂P/∂z
+

dz ∧ dx

∂P/∂y

In case when P (x, y, z) = x2 + y2 + z2 − R2, where R is a constant non-zero real number, we

have a family of the symplectic manifolds parametrized by R. Each member of this family is a

symplectic leaf of the Poisson structure from example 3.3.9

The existence of symplectic form allows to construct vector fields from the globally de-

fined functions on the manifold. Indeed, for each globally defined function f ∈ C(M) we may
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canonically associate a vector field Xf , such that

ω(Xf , ·)(p) = −df(p), p ∈M

In general, the converse is not true - there is no canonical way to associate a function to an

arbitrary vector field. The set of vector fields which are generated by a function are called

Hamiltonian vector fields, while the associated function is called Hamiltonian. As a conse-

quence, we get a Poisson structure on C(M) given by

{f, g}(p) = ω(Xf , Xg)(p), p ∈M

3.3.4 Haniltonian group actions

Let G be a Lie group which acts on (M,ω) by symplectomorphisms - such that that symplectic

form is invariant under this action

G×M → M

(g,m) → ϕg(m)
, ϕ⋆g(ω) = ω

For each element ξ of the Lie algebra g of G we may associate a vector field Xξ, which can be

defined at point p ∈M by the following rule

Xξ(p) =
d

dt

(
etξ ◦ p

) ∣∣∣
t=0

The group action is called Hamiltonian if for each ξ ∈ g exists hξ ∈ C(M) such that

ω(Xξ, ·) = −dhξ

In the case of the Hamiltonian action we have a map

h : g → C(M)

ξ → hξ

(3.3.5)
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The map h is called co-moment map. The symplectic manifold (M,ω) with Hamiltonian G

action is called Hamiltonian G-space (M,ω,G). In further text, we will use the brief notation

M for Hamiltonian G-space (M,ω,G, h)

Proposition 3.3.16. If f is a G-invariant function, i.e. f(g ◦m) = f(m), then, for each ξ ∈ g

hξ, Poisson commutes with f .

Proof.

{hξ, f} = ω(Xξ, Xf ) = Xξdf = 0

since f is invariant under the G action, so it is invariant under the infinetisimal action.

3.3.5 Moment map

Consider the dual map to h

h⋆ : (C(M))⋆ → g⋆

The dual space (C(M))⋆ is not nicely defined, but we may think about M as a subspace of

(C(M))⋆. Indeed, we have an evaluation map

eval : C(M)×M → K,

(f,m) → f(m).

The evaluation map is a linear map on the C(M), so it defines a pairing between C(M) and M .

This means that M ⊂ (C(M))⋆. Restricting h∗ to M we obtain a map

µ : M → g⋆

such that

⟨µ(m), ξ⟩ = hξ(m), ∀ξ ∈ g

The map µ is called a moment map.

Theorem 3.3.17. Let H be a G-invariant function, then the moment map µ is the constant

of motion for the system of ODEs defined by the Hamiltonian vector field with Hamiltonian H
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Proof. Since H is G-invariant, we have

d

dt
hξ = {hξ, H} = 0,

for an arbitrary ξ ∈ g. On the other hand

d

dt
hξ =

d

dt
⟨µ, ξ⟩ = ⟨µ̇, ξ⟩ = 0.

Since ξ is arbitrary we finally have

d

dt
µ = 0.

The moment map µ is called equivariant if the following diagram is commutative

M g⋆

M g⋆

g◦

µ

Ad⋆
g−1 ◦

µ

which means that µ(g ◦ m) = Ad⋆g−1 ◦µ(m), where Ad stands for the coadjoint action of Lie

group G on the g⋆. The thing is that in general case, the map h : g → C(M) is not a Lie

algebra homomorphism, but the equivariance of the moment map gives us this property.

Theorem 3.3.18. If µ is an equivariant moment map from Hamiltonian G-space M to Lie

coalgebra g⋆ then the comoment map (µ⋆ = h : g → C(M)) is a Lie algebra homomorphism,

i.e.

h([X,Y ]) = {h(X), h(Y )}.

Remark 3.3.19. The map h may be defined up to the addition of constant to the Hamiltonian

hξ. This choice is not arbitrary since we want the Jacobi identity for the image of h, which

requires this constant to be a 2-cocycle.

Example 3.3.20. Consider Cn and with U(1)×n action

(t1, t2, . . . tn) · (z1, z2, . . . zn) = (t1z1, t2z2, . . . tnzn), ti ∈ U(1).
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This action is symplectic with the following moment map

µ(z) =
n∑

i=1

|zi|2.

3.3.6 Lie–Poisson bracket

There is a way to define a Poisson structure on g⋆, which means that the space of functions on

g⋆ is equipped with Poisson bracket. This Poisson bracket is a tautological lift of the initial Lie

algebra structure to the coordinatee ring of g⋆. Consider a Taylor expansion of a function

f : g⋆ → C, Θ ∈ g⋆, f |Θ = f(Θ) + df(Θ) + . . .

Since df is a linear function on g⋆, there is a canonical way to embed it into g. Then Lie–Poisson

bracket defined as follows

{} : C∞(g⋆)× C∞(g⋆) → C∞(g⋆)

{f, g}(Θ) = ⟨Θ, [df, dg]|Θ⟩
(3.3.6)

Here |Θ underlines that differentials are taken from the expansion at Θ.

Example 3.3.21. Consider gl⋆n. For each basis element Eij we associate a linear function

fij(A) = ⟨EijA⟩ = Tr(EijA).

The Lie–Poisson bracket is given by

{fij , flk} = δjlfik − δikflj

This bracket is degenerated since for any function g we have

{g,det ||fij ||} = 0.

More generally, let g be spanned by X1, X2 . . . Xn as a vector space. The Lie algebra structure
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is given by the structure constants

[Xα, Xβ] =
n∑

i=1

Cγ
αβXγ .

Now let Fα ∈ C∞(g⋆) is given by

Fα(Θ) = ⟨Θ, Xα⟩

Then the Lie-Poisson bracket given by

{Fα, Fβ} =
n∑

i=1

Cγ
αβFγ .

Therefore it define a Lie algebra homomorphism.

This Poisson structure for the dual of the Lie algebra is always degenerated (at least because

not every Lie Algebra is even dimensional). The question is what are the Casimirs of the Lie-

Poisson bracket? The answer is contained in the following theorem by Kostant, Kirillov and

Souriau.

Theorem 3.3.22. Invariant functions of the co-adjoint action ad⋆ of the group G are Casimirs

of the Lie-Poisson bracket.

Corollary 8. The co-adjoint orbits are symplectic leaves of the Lie-Poisson bracket.

Example 3.3.23. For the Lie algebra sl2, the dual sl⋆2 is isomorphic to algebra itself. We

choose following basis

h =

 1 0

0 −1

 , e =

 0 1

0 0

 , f =

 0 0

1 0

 ,

for sl2 so each element A of sl⋆2 is given as a linear combination - A = Ahh+ Aee+ Aff . And

we have that

Fh(A) = 2Ah, Fe(A) = Af , Fh(A) = Ae.

This gives an opportunity to endow sturucture ring of g⋆ which is C[Ah, Af , Ae] with the

stucture of the Poisson algebra. Indeed, we treat coefficients Ah, Af and Ae as a coordinates

in g⋆, i.e. we associate these variables with the generators of the structure ring of g⋆ which is
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C[Ah, Af , Ae]. On the other hand, we introduce Poisson algebra structure via

{Ah, Ae} ={Fh/2, Ff}(A) = Ff (A) = Ae

{Ah, Af} ={Fh/2, Fe}(A) = −Fe(A) = −Af

{Af , Ae} ={Fe, Ff}(A) = Fh(A) = 2Ah.

(3.3.7)

The invariant functions are traces of powers, the only non-trivial independent one is Tr(A2).

Since that the co-adjoint orbits are affine conics given by the equation

1

2
Tr(A2) = A2

h −AeAf = θ,

where θ is a constant. For a generic non-zero value of θ, the co-adjoint orbits are smooth affine

varieties. In the case when θ = 0, there is a singularity which corresponds to trivial element of

sl⋆2. The obtained symplectic manifold allows an explicit bi-rational Darboux parametrization

(since any smooth conic is a rational curve), which is given by

Ah = pq − θ, Ae = −p(pq − 2θ), Af = q, ω = dp ∧ dq.

There is another useful definition of the Lie-Poisson bracket that will be used in this thesis

3.3.7 Symplectic reduction

The moment map allows to use a symmetry to reduce the degrees of freedom of the initial

dynamical system. This procedure is called symplectic reduction. One the central theorems

regarding symplectic reduction is the following Marsden-Weinstein theorem

Theorem 3.3.24. (Marsden-Weinstein [67]) Let G be a compact Lie group. Let (M,ω,G) be

a Hamiltonian G-space with moment map µ. Define i : µ−1(0) → M to be the inclusion map.

Assume that G acts freely and properly on µ−1(0). Then

• the orbit space Mred = µ−1(0)/G is a manifold,

• π : µ−1(0) →Mred is a principal G-bundle, where π is a quotient map,

• there is a symplectic form ωred on Mred satisfying i⋆ω = π⋆ωred.
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Definition 3.3.25. The symplectic manifold (Mred, ωred) is called a Marsden-Weinstein re-

duction of (M,ω) with the group G and moment map µ. We use the following notation for

symplectic quotient

(Mred, ωred) =M �G := µ−1(0)/G. (3.3.8)

The choice of zero-level of the moment map is crucial for the Marsden-Weinstein quotient.

Indeed, since the stabilizer of zero coincides with the whole Lie group, the reduced space

dimension is minimal. However, a lot of different interesting examples requires to consider a

non-zero level set of the moment map. There is a way to fix this problem and to consider a

non-trivial level set of the moment map. To put this case into the Marsden-Weinstein theory

we have to extend the phase space in the following way. Let (M1, ω1, G) and (M2, ω2, G) are

Hamiltonian G-spaces with the moment maps µ1 and µ2. Consider the direct productM1×M2

as a symplectic space with the diagonal G-action, i.e.

G× (M1 ×M2) → M1 ×M2

ϕg ◦ (m1,m2) = (ϕ
(1)
g (m1), ϕ

(2)
g (m2))

where ϕ
(i)
g is action of G on Mi. From that point we use the following notation for any group

action ϕg(p) = g ◦ p. Now we want to construct symplectic form on the space M1 ×M2 = M

using pullbacks of symplectic forms ω1 and ω2. Let Ω
•(Mi) be a set of the all globally defined

differential forms on the manifold Mi, then

M1 ×M2

M1 M2

π1 π2

Ω•(M1 ×M2)

Ω•(M1) Ω•(M2)

π⋆
1 π⋆

2

Consider the following 2-form on M

ω = λ1π
⋆
1ω1 + λ2π

⋆
2ω2 = λ1ω̂1 + λ2ω̂2 (3.3.9)

where ω̂i is just a notation for the pull-back.

Proposition 3.3.26. The differential form (3.3.9) defines a symplectic form onM if (λ1, λ2) ∈

(R⋆)2
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Proof. The closedness of (3.3.9) is obvious, the condition on λ provides the non-degeneracy.

It is also easy to see, that (M,ω) is symplectic G-space with moment map given by

µ(m1,m2) = λ1µ1(m1) + λ2µ2(m2).

The Marsden-Weinstein reduction in that case takes form

M �G = µ−1(0)/G

and µ−1(0) is the locus in M given by equation

µ1(m1) = −λ2
λ1
µ2(m2).

Let us consider the following diagrams

M µ−1(0) M �Gi p
Ω•(M) Ω•µ−1(0) Ω•(M �G),i⋆ p⋆

where p is the quotient map and i is the inclusion map. According to the Marsden-Weinstein

theorem symplectic form ωred on the spaceM �G is uniquely defined and the following relation

holds

i⋆ω = p⋆ωred.

Using this construction we now handle the non-zero level reduction for a symplectic G-manifold

M and the co-adjoint orbit O of G-action on it’s Lie coalgebra equipped with Kirillov-Konstant-

Souriau symplectic structure. If we consider M ×O with symplectic form

ω = ω̂1 + ω̂KKS ,

but the diagonal action is twisted in the following way

g ◦ (x, ξ) = (g ◦ x, g−1 ◦ ξ) = (g ◦ x,Adg−1ξ),

in order to satisfy the equivariance property of the moment map. In such situation the Marsden-
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Weinstenin reduction leads to

M ×O �G = µ−1(0)/G = {(x, ξ) ∈M ×O : µ1(x) = ξ} /G, (3.3.10)

because the moment map on the co-adjoint orbit is the identity map. The reduced space may

be viewed as M �O G = µ−1
1 (O)/G. Here we provide an example of such reduction.

Example 3.3.27. Let g ∼= TeG be a Lie algebra of the group G, consider M = T ⋆g which we

identify with g⊕ g using a Killing form on g. The natural symplectic form is given by

ω = Tr(dP ∧ dQ),

where P and Q are coordinates on the direct sum g⊕ g. If we consider the Ad-action of G on

M , the equivariant moment map takes form

µ = [P,Q].

Let’s choose the (co)-adjoint orbit O of the element µ0 ∈ g⋆ ∼= g. Let’s consider symplectic

quotient (3.3.10) at the point, where Q is diagonal (this point is always on the orbit if Q is

the matrix of full rank with distinct eigenvalues; the transformation is just conjugation by the

transition matrix C of eigenbasis for Q). Resolving the moment map relation we get that

Pij = piδij + (1− δij)
Sij

qj − qi
, S = AdC−1 ◦ µ0.

The symplectic form on the reduced space writes as

ω =
∑
i

dpi ∧ dqi +Tr(µ0dCC
−1 ∧ dCC−1).

The last term is nothing but the Kirillov-Konstant-Souriau symplectic form. If g ∼= gln then

the Poisson brackets on the reduced space take form

{pi, pj} = {qi, qj} = {pi, Skl} = {qi, Skl} = 0, {pi, qj} = δij , {Sij , Skl} = δjkSil − δilSkj .

For example, such coordinates gives spin Calogero-Moser system [42] as a Hamiltonian reduction
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of the following free Hamiltonian

H = Tr(P 2/2),

which writes in reduced coordinates as

H =

n∑
i=1

p2i
2

−
∑
i<j

SijSji
(qi − qj)2

.

We also have to mention that the requirement for the Lie group to be compact may be also

omitted. Such generalization is known as Marsden-Weinstein-Meyer theorem

Theorem 3.3.28. (Marsden-Weinstein-Meyer [68]) Let G be a Lie group which acts on a

symplectic manifold (M,ω) in a Hamiltonian way with the moment map µ : M → g⋆. Let

η ∈ g⋆ be a fixed point of the co-adjoint action. If the action of G on µ−1(η) is free and proper,

then

• The symplectic reduction Mred =M �η G := µ−1(η)/G is a smooth manifold,

• π : µ−1(η) →Mred is a principal G bundle,

• There exists unique symplectic form ωred on Mred satisfying i⋆ω = π⋆ωred, where i :

µ−1(µ) →M is embedding of the level set of the moment map to initial symplectic mani-

fold.

In this thesis we mostly will deal with reduction with respect to the non-compact Lie group

(usually SLn(C)). During the further text we assume that we use Marsden-Weinstein-Meyer

theorem to justify obtained results.
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CHAPTER 4

HAMILTONIAN DESCRIPTION OF THE SCHLESINGER

EQUATIONS

4.1 Takiff Algebras

The Takiff algebra ĝr of the Lie algebra g is the Lie algebra of polynomials of fixed degree r in

the auxiliary variable z ∈ C with the following Lie bracket

 r∑
i=0

Aiz
i,

r∑
j=0

Bjz
j

 =
r∑

i=0

 i∑
j=0

[Ai, Bi−j ]

 zi. (4.1.1)

Definition 4.1.1. [87, 77] The Takiff algebra ĝr is a double quotient of the loop algebra g[z, z−1]

by the Lie algebra ideals g[z−1] and zr+1g[z], i.e

ĝr = (g[z, z−1]/g[z−1])/zr+1g[z].

Because the Takiff algebras are deeply connected with the loop algebras, we will also call

such algebras as the truncated loop algebras or truncated current algebras. The variable z is

usually called the spectral parameter and, as we will illustrate here below, it’s degrees induce

a grading on the Takiff algebra. In the case when g has an invariant non-degenerate bi-linear

form, we may define the co-algebra ĝ⋆r in the following way

ĝ⋆r = g[z]−/z−(r+1)−1g[z]− =

{
A(z)

∣∣∣A(z) = Ar

zr+1
· · ·+ A0

z
, Ai ∈ g

}
.
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The pairing between ĝr and ĝ⋆r is given by the residue formula

⟨A,B⟩ = 1

2πi

∮
S1

Tr(AB)dz =
r∑

i=0

TrAiBi. (4.1.2)

Let us assume that the Lie algebra g has a basis X1, X2, . . . Xn such that

[Xi, Xj ] = Ck
ijXk, ⟨Xi, Xj⟩ = δij ,

then for the truncated loop algebra ĝr we have the following basis and structure equations

Xα,i = Xiz
α, [Xi,α, Xj,β] =

 Ck
ijXk,α+β, α+ β ≤ r

0 α+ β > r.

For the dual algebra g⋆r we use the following basis

Xα,i = Xiz−α−1, ⟨Xi, Xj⟩ = δij ,

so the pairing for the truncated loop algebra is given by

⟨Xi,α, Xj,β⟩ = δαβ⟨Xi, Xj⟩ = δαβδij .

The details about Takiff algebras or truncated current algebras and it’s standard Lie–Poisson

bracket may be found in [31] (see part 2, chap. 4 §1). In the next sub-section we recall the

essentials of this construction.

4.1.1 Standard Lie–Poisson bracket for the Takiff algebras

The coadjoint orbits O⋆ are symplectic leaves of the standard Lie–Poisson structure on g⋆. The

vector fields on O⋆ may be identified with the elements of Lie algebra g and the symplectic

form takes form

ωKKS(X,Y )(L) = −⟨L, [X,Y ]⟩.
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Following [31], we now describe the standard Lie–Poisson structure on the dual ĝ⋆n of the Takiff

algebra. Let’s consider the following element of the coadjoint orbit

A =
r∑

α=1

∑
i

Aα,iX
α,i ∈ ĝ⋆n,

The coefficients Aα,i are functions on the coadjoint orbit, with dAα,i = Xi,α so that the

standard Lie–Poisson bracket is given by

{Aα,i, Aβ,j} = −⟨A, [Xi,α, Xj,β]⟩ = −⟨A,Ck
ijXkz

α+β⟩ =

 −Ck
ijAα+β,k, α+ β ≤ r

0 α+ β>r.
(4.1.3)

This is a graded Poisson structure of degree 1, and the Takiff co-algebra inherits the grading:

ĝ⋆r :=
r⊕

i=0

ĝ⋆,ir , {ĝ⋆,ir , ĝ⋆,jr } ⊆ ĝ⋆,i+j
r ,

where ĝ⋆,ir =
{
A = Ai

zi+1

∣∣∣Ai ∈ g⋆
}
. The same grading is induced to the co-adjoint orbit Ô⋆

r .

Example 4.1.2. In the case when g is glm we have the following Poisson structure

{(Aα)ij , (Aβ)kl} =

 (Aα+β)ilδjk − (Aα+β)kjδil α+ β ≤ r

0 α+ β > r,
(4.1.4)

which may be written in the r-matrix form

{Aα ,⊗Aβ} =

 −[Π, Aα+β ⊗ I] α+ β ≤ r

0 α+ β > r,
(4.1.5)

where { ,⊗} stands for Leningrad bracket, which is given by

{F ,⊗G}αβ = {Fα, Gβ}.

Takiff algebras, in a nutshell, are very special finite graded Lie algebras. The main feature of

such Lie algebras is that there is a way to do computations without using any representation,

but working with Lie algebra valued polynomials. Such constructions arise widely in the theory
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of integrable systems with spectral parameter. Instead of using quite universal, but extremely

rough approach which treats Lax matrix as an element of the loop algebra, sometimes it is

useful to consider the Lax matrix as evaluation morphism from a direct product of the co-

adjoint orbits of Takiff algebras to the loop algebra. Moreover, Takiff algebras also include the

Lie algebras as a particular case. Here we mean that ĝ0 is isomorphic to g (isomorphism is

obvious).

4.2 Lifted Darboux coordinates

One of the first attempts to study the general isomonodromic and isospectral systems with

spectral parameter as the Hamiltonian systems was made by Adams, Harnad, Hurtubise and

Previato in the series of works [1, 2, 3]. In these papers the authors heavily use moment

map theory and introduced a way to write down isomonodromic and isospectral systems as

unreduced Hamiltonian systems on the cotangent bundle to ⊕n
i=1glm.Here unreduced means

that such description inherits a great number of symmetries. However, their approach allows to

work with Darboux coordinates initially, which gives an opportunity to do explicit computations

in a sense of the classical mechanics.

The concept introduced by Adams, Harnad, Hurtubise and Previato may be formulated

disregarding integrable systems theory. In a nutshell, the concept of lifted Darboux coordinates

gives a Darboux parametrisation of the Lie-Poisson bracket. The approach introduced in orig-

inal papers [3] doesn’t cover a case of Takiff algebras, so it is valid only for Fuchsian/Gaudin

systems. In order to cover irregular systems, authors used Laplace transform from Dubrovin

type systems

d

dz
Y =

(
U +

V

z

)
Y,

which deformation may be formulated in terms of the co-adjoint orbits of Lie algebra son. In

this thesis we expand the lifted Darboux coordinates to the case of Takiff algebras in order

to give full description for irregular isomonodromic deformations obtained as a confluence of

the simple poles. In this section we do a review of the results by Adams, Harnad, Hurtubise

and Previato for the case of the Lie algebra gln. One of the key results of this theory may be

formulated in the following proposition
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Proposition 4.2.1. [3] Consider the canonical symplectic structure on T ⋆glm:

ω = Tr (dP ∧ dQ) =
m∑

i,j=1

dPij ∧ dQji. (4.2.1)

Let

A = QP, (4.2.2)

where we use the ring structure of glm to justify the multiplication of the Q and P . Then A

satisfies the standard Lie–Poisson bracket for glm. Moreover, the the entries of the matrix

Λ = PQ (4.2.3)

commutes with the entries of (4.2.2) with respect to the Poisson bracket induced by (4.2.1)

Proof. The Poisson bracket which corresponds to the symplectic form in (4.2.1) may be written

in the following way

{P ,⊗Q} = −Π, {P ,⊗P} = {Q ,⊗Q} = 0,

where Π is a permutation matrix. Computing the Leningrad bracket for A with itself, we get

{A ,⊗A} = {QP ,⊗QP} = (Q⊗ I){P ,⊗Q}(I⊗ P ) + (I⊗Q){Q ,⊗P}(P ⊗ I) =

= (Q⊗ I)Π(I⊗ P )− (I⊗Q)Π(P ⊗ I) = [Π, I⊗QP ] = [Π, I⊗A]

As we wanted to prove. Now let us compute bracket between Λ and A

{A ,⊗Λ} = {QP ,⊗PQ} = {Q ,⊗P}(P ⊗ I)(I⊗Q) + (Q⊗ I)(I⊗ P ){P ,⊗Q}

= Π(P ⊗ I)(I⊗Q)− (Q⊗ I)(I⊗ P )Π = Π(P ⊗ I)(I⊗Q)−Π(P ⊗ I)(I⊗Q) = 0.

Definition 4.2.2. We call T ⋆glm extended phase space and the canonical coordinates P,Q lifted

Darboux coordinates.

The provided straightforward proof has a very nice interpretation via commuting Hamilto-
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nian group actions. The space T ⋆glm ≃ glm × glm carries two natural commuting symplectic

actions of GLm which we call inner and outer:

g ×
inner

(P,Q) = (gP,Qg−1), h ×
outer

(P,Q) = (Ph, h−1Q), h, g ∈ GLm. (4.2.4)

Lemma 4.2.3. These inner and outer actions are Hamiltonian with equivariant moment maps

given by

µinner : T ⋆glm → O⋆
(glm)

(P,Q) 7→ Λ = PQ

µouter : T ⋆glm → O⋆
(glm)

(P,Q) 7→ A = QP
. (4.2.5)

This lemma makes computations trivial. Indeed, equivariant moment map is a symplec-

tomorphism to the co-adjoint orbit, which proves that symplectic form on T ⋆glm induces Lie-

Poisson structure on A and Λ. Moreover, moment maps of the commuting actions Poisson

commute, which proves that {Λ ,⊗A} = 0.

Let us restrict to the open affine subset of T ⋆glm where at least one of the two matrices Q

and P is invertible. For example Q. Then, resolving the moment map for Λ we obtain

P = ΛQ−1, A = QP = QΛQ−1.

As a consequence, A and Λ belong to the same co-adjoint orbit. Since the inner and outer

actions commute, A is invariant under the inner action, while Λ is invariant under the outer

action. Therefore we use the inner group action to fix Λ in a Jordan normal form without

changing A. In other words, we take the Jordan normal form Λ0 of A and select Λ = Λ0. This

gives

T ⋆glm �
Λ0

G = µ−1
inner(Λ0)/G,

here we denote by �
Λ0

the quotient with respect to the inner action of GLm on T ⋆glm. We may

resume these results in the following:

Lemma 4.2.4. The map

T ⋆glm �
Λ0

Ginner → O⋆

(Q,P ) 7→ A := QP

47



is a rational symplectomorphism and the Jordan normal form Λ0 of A is given by

Λ0 = PQ.

Remark 4.2.5. When A is a full-rank matrix, both P and Q must be invertible. So we may

embed (P,Q) into the group GLm and P and Q can be seen as left and right eigenvector matrices

for the matrix A. In the case when A may be diagonilized, the action of the Cartan torus (i.e.

the stabilizer of Λ) leads to a well known fact from linear algebra - the eigenvectors are defined

up to multiplication by non-zero constant. When A is not a full-rank matrix, we may choose

Q to be an invertible matrix (so it may be viewed as an element of GLn). Then the rank of P

must equal to the rank of A. Then the moment map Λ will inherit the rank of A automatically.

Since P in this case not invertible, the reduced coordinates take the form

P = ΛQ−1, A = QΛQ−1, detΛ = detA = detP = 0.

This means that instead of considering T ⋆glm as lifted space, we could take T ⋆GLm ∋ (Q,ΛQ−1).

Such consideration is closely related to the approach introduced in [11]. However, this approach

is not very useful for our purposes, since we wish to work with polynomial unreduced parametri-

sation, rather then rational.

Remark 4.2.6. In the case when we consider g to be any reductive Lie algebra and A ∈ g∗,

then we expect that Lemma 4.3.3 is still valid if we fix the value Λ of the moment map in g∗

and Q and P (or just Q in the case of degenerate orbit) as the elements from the corresponding

Lie group G.

4.3 Hamiltonian approach to the isomonodromic deformations
of Fuchsian systems

In this section we summarize known facts about Fuchsian systems. The aim of this section is

to review the Poisson and symplectic aspects of the deformation equations for connections over

the n + 1-holed sphere with simple poles at punctures. Starting from the linear system with
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simple poles at λ = u1, . . . , un,∞,

d

dλ
Ψ =

n∑
i=1

A(i)

λ− ui
Ψ, λ ∈ Σ0,n+1, ui ̸= uj , Ψ ∈ G, A(i) ∈ g := TeG, (4.3.1)

we consider the following matrix-valued 1-form

Ω = (duΨ)Ψ−1, duΨ :=
∑
i

∂uiΨdui. (4.3.2)

Since we consider only isomonodromic deformations, i.e. dMi = 0, the form Ω is a single-valued

meromorphic 1-form with possible singularities at ui’s. Using the local solutions of (4.3.1) in

the neighbourhood of the poles ui’s and applying Liouville theorem this form may be written

as

Ω = −
∑
i

A(i)

λ− ui
dui. (4.3.3)

The compatibility condition for (4.3.1) and (4.3.2) (zero-curvature equation)

duA− d

dλ
Ω+ [A,Ω] = 0, (4.3.4)

gives the Schlesinger equations

duA
(i) =

∑
j ̸=i

[A(i), A(j)]
dui − duj
ui − uj

. (4.3.5)

Schlesinger equations have

4.3.1 Phase space

The Schlesinger equations are Hamiltonian, with the natural phase space given by the direct

product of co-adjoint orbits which are symplectic leaves of the standard Lie–Poisson bracket:

(
A(1), A(2), . . . A(n)

)
∈ O⋆

1 ×O⋆
2 × · · · × O⋆

n.

In case when g is a Lie algebra with a non-degenerate bi-linear form (i.e. Killing form), we

may identify the co-adjoint orbits with the adjoint orbits. The Poisson brackets then may be
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written as

{
A(i)

,⊗A(j)
}
= δij [Π, 1⊗A(i)] ⇐⇒

{
A(i)

α , A
(j)
β

}
= −δij

∑
γ

χγ
αβA

(i)
γ (4.3.6)

where the lower indices α, β and γ correspond to the Lie co-algebra basis, χγ
αβ are the structure

constants of the Lie algebra and Ω is a quadratic Casimir element. In the case of glm it acts as

a permutation operator, i.e.

Π(A⊗B)Π = B ⊗A.

In the case of a Lie algebra which allows orthogonal with respect to Killing form basis eα,

quadratic Casimir Π writes as

Π =
∑
α∈I

eα ⊗ eα, g := span⟨eα, α ∈ I⟩.

Such bracket may be rewritten as an r-matrix bracket for the connection, i.e.

{A(λ) ,⊗A(µ)} =

[
Π

λ− µ
,A(z)⊗ I+ I⊗A(µ)

]
. (4.3.7)

The isomonodromic Hamiltonians for the Schlesinger equations are

Hi = Res
λ=ui

Tr
A(λ)2

2
=
∑
j ̸=i

Tr(A(i)A(j))

ui − uj
. (4.3.8)

The Schlesinger equations can be reduced, for example in the case of n = 3 sl2 co-adjoint orbits,

their reduction is the Painlevé VI equation which is non-autonomous Hamiltonian system with

1 degree of freedom.

In the case of any number n of co-adjoint orbits, the fully reduced dimension can be com-

puted using the spectral type technique introduced by Katz [59]. In case when A(i)’s and A(∞)

are semi-simple, the spectral type approach gives the formula for the dimension of the fully

reduced phase space as a function of the eigenvalues multiplicities of the residues [59]

N = 2− (1− n)m2 −
n∑

i=1

li∑
j=1

(mi
j)

2 −
l∞∑
j=1

(m∞
j )2, (4.3.9)

where li is a cardinality of the set of eigenvalues for the residue A(i) and mi
j is the multiplicity
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of the j-th eigenvalue of the residue A(i). The fully reduced systems may be seen as a reduction

with respect to the additional Fuchs condition:

n∑
i=1

A(i) = −A(∞). (4.3.10)

On the other hand this relation may be viewed as a moment map of the gauge group action

via constant matrix (i.e. gauge doesn’t depend in z) and A∞ is a constant of motion for the

Schlesinger equations.

From the point of view the symplectic reduction Katz formula may be rewritten in the

following way

N =

n∑
i=1

dimO⋆
i − dimG− stabO⋆

∞, (4.3.11)

where stabO⋆
∞ is the dimension of the stabilizer for the Jordan form of the residue at ∞.

When A(∞) is the element of the co-adjoint orbit of the general form (regular), we have that

stabO⋆
∞ = dim h, so the formula simplifies to

N =
n∑

i=1

dimO⋆
i − dimG− dim h.

For example, in the case of the Painlevé VI equation we deal with the coadjoint orbits of the

sl2(C). In the general situation formula (4.3.11) gives

N = 3 · dimOsl2 − dim(SL2)− dim hsl2 = 3 · 2− 3− 1 = 2,

which is exactly the dimension of the phase space for the Painlevé VI equation. In some sense

the multiplicity of the eigenvalues tells us that the Jordan form may be written as the tensor

product of identity matrices of sizes corresponding to the the multiplicities. The stabilizer of

such matrix is a set of the block diagonal matrices, so the dimension is greater then the dimen-

sion of the Cartan torus and finally we obtain the smaller phase space.

Our first goal is to describe this full reduction as a Hamiltonian reduction and a Marsden-

Weinstein quotient. To this aim, we will need first to extend the phase space to T ⋆glm and

show that the Darboux coordinates on this cotangent bundle reduced to the Kirillov-Kostant-
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Souriau form on the co-adjoint orbits. We will then discuss how the invariants of the co-adjoint

orbits correspond to moment maps with respect to different Hamiltonian group actions on the

extended phase space.

4.3.2 Extended phase space and its Darboux coordinates

In this subsection, we start by working locally, namely we restrict to the case of a single co-

adjoint orbit O⋆ of glm and identify gl⋆m with glm via Killing form. In the last part of this

subsection we extend to the product of n co-adjoint orbits.

We consider T ⋆glm with the standard Darboux coordinates (Q,P ) and the canonical sym-

plectic structure:

ω = Tr (dP ∧ dQ) =
∑
i,j

dPij ∧ dQji. (4.3.12)

Following [3, 1, 2], we explain how to obtain the standard Lie–Poisson bracket (4.3.6) on

g⋆ as Marsden–Weinstein reduction of the Poisson structure on T ⋆glm. There is a direct way

to see this reduction by a straightforward computation (see [53]), that, in a nutshell, coincides

with the proposition 4.2.1.

Definition 4.3.1. We call T ⋆glm extended phase space and the canonical coordinates P,Q lifted

Darboux coordinates.

To restrict ourself to the co-adjoint orbit we have to fix invariants of the co–adjoint actions,

i.e. the Jordan form of matrix QP = A. Such procedure leads to some additional non-linear

equations for the entries of Q and P , and there is no hope to derive the explicit symplectic

structure on the co-adjoint orbit from such a perspective. Therefore, we follow the construction

of [3] to obtain the co-adjoint orbits via Hamiltonian reduction.

The space T ⋆glm ≃ glm × glm carries two natural commuting symplectic actions of GLm

which we call inner and outer:

g ×
inner

(P,Q) = (gP,Qg−1), h ×
outer

(P,Q) = (Ph, h−1Q), h, g ∈ GLm. (4.3.13)

Lemma 4.3.2. These inner and outer actions are Hamiltonian with equivariant moment maps
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given by

µinner : T ⋆glm → gl⋆m

(P,Q) 7→ Λ = PQ

µouter : T ⋆glm → gl⋆m

(P,Q) 7→ A = QP
. (4.3.14)

Let us restrict to the open affine subset of T ⋆glm where at least one of the two matrices Q

and P is invertible. For example Q. Then, resolving the moment map for Λ we obtain

P = ΛQ−1, A = QP = QΛQ−1.

As a consequence, A and Λ belong to the same co-adjoint orbit.

Since the inner and outer actions commute, A is invariant under the inner action, while Λ is

invariant under the outer action. Therefore we use the inner group action to fix Λ in a Jordan

normal form without changing A. In other words, we take the Jordan normal form Λ0 of A and

select Λ = Λ0. This gives

T ⋆glm �
Λ0

G = µ−1
inner(Λ0)/G,

here we denote by �
Λ0

the quotient with respect to the inner action of GLm on T ⋆glm. We may

resume these results in the following:

Lemma 4.3.3. The map

T ⋆glm �
Λ0

Ginner → O⋆

(Q,P ) 7→ A := QP

is a rational symplectomorphism and the Jordan normal form Λ0 of A is given by

Λ0 = PQ.

Remark 4.3.4. When A is a full-rank matrix, both P and Q must be invertible. So we may

embed (P,Q) into the group GLm and P and Q can be seen as left and right eigenvector matrices

for the matrix A. In the case when A may be diagonilized, the action of the Cartan torus (i.e.

the stabilizer of Λ) leads to a well known fact from linear algebra - the eigenvectors are defined

up to multiplication by non-zero constant. When A is not a full-rank matrix, we may choose

Q to be an invertible matrix (so it may be viewed as an element of GLn). Then the rank of P

must equal to the rank of A. The the moment map Λ will inherit the rank of A automatically.
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Since P in this case not invertible, the reduced coordinates take the form

P = ΛQ−1, A = QΛQ−1, detΛ = detA = detP = 0.

This means that instead of considering T ⋆glm as lifted space, we could take T ⋆GLm ∋ (Q,ΛQ−1).

Such consideration is closely related to the approach introduced in [11]. However, this approach

is not very useful for our purposes, since we wish to work with polynomial unreduced parametri-

sation, rather then rational.

Remark 4.3.5. In the case when we consider g to be any reductive Lie algebra and A ∈ g∗,

then we expect that Lemma 4.3.3 is still valid if we fix the value Λ of the moment map in g∗

and Q and P (or just Q in the case of degenerate orbit) as the elements from the corresponding

Lie group G.

Let us now consider the case of the product of many co-adjoint orbits. Since the Poisson

brackets (4.3.6) are local, namely the residues at different marked points commute, the facts we

summarised so far easily extend to this case. Indeed, we can apply the above construction to

the co-adjoint orbit at each pole of the Fuchsian system (except ∞) and define:

A(i) = QiPi.

In this case we have that inner and outer actions can be lifted to the direct sum of n copies

T ⋆glm in a natural way

g ×
inner

(P1, P2, . . . Pn, Q1, Q2, . . . Qn) = (g1P1, . . . gnPn, Q1g
−1
1 , . . . Qig

−1
i , . . . Qng

−1
n ), g ∈ ×

n
GLm

h ×
outer

(P1, P2, . . . Pn, Q1, Q2, . . . Qn) = (P1h1, . . . Pnhn, h
−1
1 Q1, . . . h

−1
i Qi, . . . h

−1
n Qn), h ∈ ×

n
GLm

and the lemma 4.3.2 repeats

Lemma 4.3.6. These inner and outer actions are Hamiltonian with equivariant moment maps

given by

µinner :
⊕
n
T ⋆glm → ⊕

n
gl⋆m

(P1, . . . Pn;Q1, . . . Qn) → (P1Q1, P2Q2, . . . PnQn)
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µouter :
⊕
n
T ⋆glm → ⊕

n
gl⋆m

(P1, . . . Pn;Q1, . . . Qn) → (Q1P1, Q2P2, . . . QnPn)

Proof. Let us prove it for the inner action only. The vector field generated by the group action

(via element ξ = (ξ1, ξ2, ...ξn) ∈ ⊕nglm is given by

Xξ(Pi, Qi) =
d

dt
(e−tξiPi, Qie

tξi)
∣∣∣
t=0

= (−ξiPi, Qiξi) =
n∑

i=1

(∑
k,j

−(ξiPi)kj
∂

∂Pikj

+(Qiξi)kj
∂

∂Qikj

)
.

Inserting Xξ into the symplectic form we obtain

ω(Xξ, ◦) =
n∑
i

∑
k,j

[
−(ξiPi)kjdQijk−(Qiξi)kjdPijk

]
= −

n∑
i

Tr (ξiPidQi +QiξidPi) = −
n∑
i

dTr (ξiPiQi) ,

so the corresponding Hamiltonian is

hξ (m) = ⟨µ (m) , ξ⟩ =
n∑
i

Tr (ξiµ (m)i) = Tr (ξiPiQi)

where m = (P1, P2, . . . Pn, Q1, . . . Qn). So the moment map is given by

µ (m) = (P1Q1, P2Q2, . . . PiQi, . . . PnQn) ,

which is equivariant

µ (g ◦m) =
(
g−1
1 P1Q1g1, g

−1
2 P2Q2g2, . . . g

−1
i PiQigi, . . . g

−1
n PnQngn

)
= g−1µ(m)g = Ad⋆g−1(µ(m))

Then the following result is a straightforward computation

Lemma 4.3.7. A Hamiltonian system on the phase space

O⋆
1 ×O⋆

2 × · · · × O⋆
n ∋

(
A(1), A(2), . . . A(n)

)

can be lifted up to the extended phase space

T ⋆glm × T ⋆glm × · · · × T ⋆glm ∋ (Q1, P1, Q2, P2 . . . Qn, Pn)
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with additional first integrals given by the moment maps of the inner group action

µinner := PiQi = Λ(i),

where the inner group action is given by

(g1, g2, . . . gn) ×
inner

(P1, Q1, P2, Q2, . . . Pn, Qn) = (g1P1, Q1g
−1
1 , . . . giPi, Qig

−1
i , . . . gnPn, Qng

−1
n ).

Moreover, if Λ
(i)
0 is the Jordan normal form of A(i), we can fix Λ(i) = Λ

(i)
0 .

In particular, the Schlesinger Hamiltonians (4.3.8) can be lifted to the extended phase space

T ⋆glm as follows

Hi =
∑
j ̸=i

Tr(QiPiQjPj)

ui − uj
, (4.3.15)

and it can be checked directly that they Poisson commute with the moment maps of the inner

group action.

4.3.3 Outer group action and the gauge group

We have seen that the inner group action allows us to restrict from T ⋆glm to O⋆
1×O⋆

2×· · ·×O⋆
n.

Now we consider the outer group action that will allow us to reduce further. This is given by

(g1, g2, . . . gn) ×
outer

(P1, Q1, P2, Q2, . . . Pn, Qn) = (P1g1, g
−1
1 Q1, . . . Pigi, g

−1
i Qi, . . . Pngn, g

−1
n Qn)

and is also Hamiltonian (see Lemma 4.3.2).

Because inner and outer group actions commute, their moment maps Poisson commute too.

However, the Schlesinger Hamiltonians are generally not invariant under outer action, unless

the outer action is restricted to be a diagonal action, i.e.

g1 = g2 = · · · = gn = g.

In this case, the outer action reduces to the standard GLm-action on O⋆
1 × O⋆

2 × · · · × O⋆
n, or
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equivalently to the constant gauge group action:

g ×
outer

A =
∑ g−1A(i)g

z − ui
.

The moment map of such diagonal action is

n∑
i=1

QiPi =
n∑

i=1

A(i) = −A(∞), (4.3.16)

which is the Fuchs relation.

In order to describe the reduction procedure induced by the outer diagonal action in terms

of the Marsden-Weinstein reduction, following Proposition 2.2.7 of [4] (see also [47]) we further

extend the phase space by adding another copy of T ⋆glm:

(P1, Q1 . . . Pn, Qn;P∞, Q∞) ∈
n+1⊕
i=1

T ⋆glm, ω =

n∑
i=1

TrdPi ∧ dQi +TrdP∞ ∧ dQ∞, (4.3.17)

with the outer group action of the form

g ×
outer

(P1, Q1 . . . Pn, Qn;P∞, Q∞) = (P1g, g
−1Q1, . . . Pig, g

−1Qi, . . . Png, g
−1Qn;P∞g, g

−1Q∞).

The corresponded extended space which is given by the reduction with respect to the inner

group action takes form

(
A(1), A(2), . . . A(n);A(∞)

)
∈ O⋆

1 ×O⋆
2 × . . .O⋆

n ×O⋆
∞.

The reduction with respect to the relation (4.3.16) on the extended phase space may be viewed

as the Marsden-Weinstein quotient

n+1⊕
i=1

T ⋆glm �G = µ−1(0)/G, µ =
n∑

i=1

QiPi +Q∞P∞.

which corresponds to the Fuchsian relation on the reduced with respect to the inner group

action phase space.
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Finally, the fully reduced phase space then has form

M ≃ O⋆
1 ×O⋆

2 × . . .O⋆
n ×O⋆

∞ �G ≃
n+1⊕
i=1

(
T ⋆glm �

Λ(i)

G

)
�G.

Moreover, the Hamiltonians are the homogeneous polynomials in the lifted Darboux coor-

dinates. Such dependence plays a crucial role in the quantisation of the isomonodromic systems.
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CHAPTER 5

IRREGULAR ISOMONOROMIC DEFORMATIONS

5.1 Isomonodromic deformations

Suppose we consider a connection on the Riemann sphere with n + 1 poles of Poincaré ranks

r1, . . . , rn, r∞ and ask about how to deform it by keeping the monodromy data constant. To an-

swer, we have to choose some independent deformation variables and then impose that all other

quantities depend on those according to the isomonodromicity condition. When all poles are

simple, their positions give us enough independent variables for generic isomonodromic defor-

mations, because the number of the isomonodromic Hamiltonians equals half of the dimension

of the space of accessory parameters. When higher order poles are present, their positions

don’t give enough independent variables. Theorem 5.3.1 allows us to introduce further r − 1

independent variables for every singularity of Poincaré rank r, or in other words we have the

following

Corollary 5.1.1. The general element in the Takiff algebra co-adjoint orbit Ô⋆
r has the form

A ∼
r∑

i=0

Bi(t1, t2 . . . tr)

(λ− u)i+1
+ . . . , (5.1.1)

with

Bi(t1, t2, . . . tr) =
r∑

j=i

AjM(r)
i,j (t1, t2, . . . tr), M(r)

i,j =
1

j!

dj

dεj
Pr(t, ε)

i
∣∣∣
ε=0

, Pr(t, ε) =
r∑

i=1

εiti,

and the coefficients Aj satisfy the Takiff algebra Poisson bracket (4.1.5).
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In this paper, we therefore consider the isomondoromic deformations of connections of the

form

d

dλ
Ψ =

n∑
i=0

 ri∑
j=0

B
(i)
j

(
t
(i)
1 , t

(i)
2 . . . t

(i)
ri−1

)
(λ− ui)j+1

−
r∞∑
i=1

λi−1B
(∞)
i

(
t
(∞)
1 , t

(∞)
2 . . . t

(∞)
r∞−1

)Ψ, (5.1.2)

where the deformation parameters are the locations of the poles u1 . . . un and the coefficients

of the Poisson Takiff algebra automorphisms t
(i)
j . The isomonodromic deformation condition

means that the matrix differential one from

Ω = du,tΨΨ−1 =

n∑
i=1

Ω(0)
i dui +

ri−1∑
j=1

Ω
(j)
i dt

(i)
j

 , (5.1.3)

is a single valued holomorphic one form on CP1 \ {u1 . . . un}. In general, the explicit form of

Ω may be obtained by studying the local solutions of the equation (5.1.2) as in the celebrated

papers by Jimbo, Miwa [55] and by Flaschka and Newell [35].

In this paper we consider the general isomonodromic problem as a non-autonomous Hamil-

tonian system written on a suitable set of the co-adjoint orbits. Therefore, the zero curvature

condition splits into a Lax equation that defines the dynamics on the co-adjoint orbits, and an

additional relation between the partial derivative of Ω w.r.t. λ and the partial derivative of the

connection with respect to deformation parameters

d

dt
(i)
j

A− ∂

∂λ
Ω
(i)
j +

[
A,Ω

(i)
j

]
=

(
∂

∂t
(i)
j

A− ∂

∂λ
Ω
(i)
j

)
︸ ︷︷ ︸

0

+

((
d

dt
(i)
j

− ∂

∂t
(i)
j

)
A+

[
A,Ω

(i)
j

])
︸ ︷︷ ︸

0

= 0.

Thanks to this, we may define deformation the one form Ω through the following formula:

Ω
(i)
j =

∫
∂A

∂t
(i)
j

dλ. (5.1.4)

The matrix Ω
(i)
j is defined up to the addition of a matrix which does not depend on λ. Different

choices of the gauge result in different constant terms - we will see how to fix this constant term

in the examples (see for example Section 5.6.8).

As mentioned before, the deformation parameters t
(i)
1 , . . . t

(i)
ri , i = 1, . . . , n,∞ appear as

the result of confluence and may be seen as avatars of the Schlesinger system deformation
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parameters we start with. If we consider the divisor of singularities (where we denote ∞ by

un+1)

D :=

n+1∑
i+1

(ri + 1)ui,

we see that the total number of deformation parameters we introduce is given via the degree of

such divisor, i.e.

d = n+ 1
# of singularities

+
∑

ri
# irregular times

.

In this paper, the idea is that the number of deformation parameters doesn’t change during the

confluence procedure, or in other words d is fixed.

Here we want to answer an important question raised by Bertola and Harnad: what is

the relation between our deformation parameters and the Jimbo-Miwa-Ueno ones? In [55], the

number of deformation parameters depends on the degree of singularity divisor as well as on the

rank of the connection. The number of Jimbo-Miwa deformation parameters is not preserved

during the confluence cascade. Each coalescence leads to the appearance of additional m − 1

parameters, where m is a rank of isomonodromic problem. Here we refer to the rank of Lie

algebra which is dimension of the Cartan subalgebra h. Obviously in the case of sl2 connection,

this number equals to zero and the number of Jimbo-Miwa-Ueno coincides with ours.

Let’s dwell on this case in more details to explain the relation. Consider a sl2 connection

with a pole of the Poincaré rank r, i.e.

A ∼
λ≃u

Br

zr+1
+
Br−1

zr
+ . . .

B0

z
+O(1) ∈ sl2,

where z = λ−u is the local coordinate and the matrices Bk are linear combinations of the bare

co-adjoint orbit coordinates Aj and contain our deformation parameters as specified in formula

(2.0.10).

The Jimbo-Miwa-Ueno deformation parameters wj are the exponents of asymptotic be-

haviour of the formal solution at the irregular pole:

Ψ ∼
λ≃u

P (z) (I+ o(z)) zΛ0 exp

− r∑
j=1

wj

jzj
σ3

 , σ3 =

 1 0

0 −1

 .
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These wj can in fact be seen as the spectral invariants associated to the matrices Bk. Thanks

to this fact, in the case of sl2 there is a rational map which sends Jimbo-Miwa deformation

parameters to the parameters obtained via coalescence.To obtain this map explicitly, we perform

local diagonalisation at the pole λ ∼ u and we obtain the following correspondence between

Jimbo-Miwa deformation parameters wi and our tj via

wr = θrt
r
1

wr−1 = θr−1t
r−1
1 + (r − 1)θrt

r−2
1 t2

. . .

wk =
r∑

j=k

θjM(r)
k,j(t1, t2 . . . , tr)

. . .

w1 =
r∑

i=1
θiti.

Here θ’s can be seen as the spectral invariants of matrices Aj , so we separate non-autonomous

part (dependence on deformation parameters) and phase space symplectic leaf. Roughly speak-

ing, this map is a map between 2 phase spaces

ĝr → Ôr × Cr,

which is not bi-rational - starting from the irregular point of Poincaré rank 2 we have to deal

with square roots if when we write t1 . . . tr via Jimbo-Miwa parameters wj ’s.

For higher rank, we may think about our times as a special subfamily of the Jimbo-Miwa

isomonodromic deformations. The local solution writes as

Ψ ∼
λ≃u

P (z) (I+ o(z)) zΛ0 exp


−

r∑
j=1

1

jzj



w
(j)
1 0 . . . 0

0 w
(j)
2 . . . 0

. . . . . .

0 . . . 0 w
(j)
m





and w
(j)
k are the deformation parameters. Then our deformation parameters are given by the
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special trajectory into the Jimbo-Miwa parameters which may be written as

w
(j)
k

w
(j)
l

= const,

and may be considered as the deformation along the projective line in a space of Jimbo-Miwa

parameters.

In the next section we will see how the general form (5.1.2) of the isomonodromic problem

with irregular singularities naturally arises during the confluence procedure.

5.2 Confluence procedure

5.2.1 Coalescence of two simple poles

Without loss of generality, we consider confluence of un := v1 and un−1 := w, which is given by

the following change of deformation parameters

ui = ui, i = 1 . . . n− 1, v1 = w + εt1. (5.2.1)

Taking the limit ε → 0 the deformation parameter v1 tends to w which is a coalescence. We

rewrite matrix A(λ) as

A(λ) =

n−2∑
i=1

A(i)

λ− ui
+

B

λ− w
+

C

λ− w − εt1
, B = A(n−1), C = A(n),

where B and C are introduced as a convenient notation to avoid too many indices. We want to

assume some ε expansions for the matrices B and C in order that the limit of A(λ) as ε 7→ 0

is well defined and the resulting system has a double pole at w. To this aim, observe that by

rewriting the last two terms in A(λ) as

B

λ− w
+

C

λ− w − εt1
=

B

λ− w
+

1

λ− w
C

(
1− εt1

λ− w

)−1
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and expanding
(
1− εt1

λ−w

)−1
in ε we obtain

B

λ− w
+

C

λ− w − εt1
∼ C +B

λ− w
+

εt1
(λ− w)2

C +O(ε2).

In order to produce the second order pole we need two limits to exist

lim
ε→0

(εC) := A
(n−1)
1 ̸= 0, lim

ε→0
(C +B) := A

(n−1)
0 ,

Assuming that A(i)’s, B and C may be expanded in the Laurent series in ε we obtain expansions

A(i) = Ã(i)+O(ε), C =
1

ε
A

(n−1)
1 +C0+O(ε), B = −1

ε
A

(n−1)
1 +B0+O(ε), C0+B0 = A

(n−1)
0 .

(5.2.2)

Note that we have called these limits A
(n−1)
0 and A

(n−1)
1 respectively to adhere to the notation

of section 3.

In these hypotheses, we can take the limit as ε→ 0 and define

Ã(λ) := lim
ε→0

A(λ) =
n−2∑
i=1

Ã(i)

λ− ũi
+ t1

A
(n−1)
1

(λ− w)2
+
A

(n−1)
0

λ− w
(5.2.3)

Remark 5.2.1. Observe that the number of deformation parameters has not changed after the

confluence, n− 1 of them have remained as positions of poles, but one of them has become part

of the leading term at the second order pole - this is compatible with Theorem 5.3.1. Indeed, in

the next Proposition 5.2.3 we will prove that the matrices A
(n−1)
1 and A

(n−1)
0 satisfy the Takiff

algebra Poisson brackets. We will see that as we increase the Poincaré rank of the poles in the

confluence procedure, more and more deformation parameters will appear in the numerators of

pole expansions exactly in the way predicted by Theorem 5.3.1.

Now let us focus on the deformation equations. The change of variables (5.2.1) transforms

the deformation 1-form (4.3.3) to

Ω = −
n−2∑
i=1

A(i)

λ− ui
dui −

A(n−1)

λ− w
dw − A(n)

λ− w − εt1
(dw + εdt1).
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Applying the expansion (5.2.2) we obtain

Ω̃ = lim
ε→0

Ω = −
n−2∑
i=1

Ã(i)

λ− ui
dui −

(
t1

A
(n−1)
1

(λ− w)2
+
A

(n−1)
0

λ− w

)
dw − A

(n−1)
1

λ− w
dt1. (5.2.4)

The obtained deformation 1-form coincides with the deformation form which can be constructed

by considering the local expansions. The deformation one form Ω satisfies equation (5.1.4).

Definition 5.2.2. We call the process of taking the expansions (5.2.2) and the limits (5.2.3),

(5.2.4), 1+1 confluence procedure.

The considered structures - the connection A and the deformation one form Ω are linear

in A(i)’s so the O(ε) terms vanish during the limiting procedure. Since the Poisson structure

and the Schlesinger Hamiltonians are quadratic structures the limiting procedure becomes more

complicated.

Proposition 5.2.3. The 1+1 confluence procedure gives a Poisson morphism between the direct

product of the co-adjoint orbits to the Lie algebra and the co-adjoint orbit of the Takiff algebra:

O⋆
1 ×O⋆

2 × . . .O⋆
n ×O⋆

∞
confluence−−−−−−→ O⋆

1 ×O⋆
2 × . . .O⋆

n−2 × Ô⋆
2,n−1 ×O⋆

∞.

Namely, if the matrices A(i), B,C satisfy the standard Lie–Poisson brackets (4.3.6), then the

matrices Ã(i), A
(n−1)
0 , A

(n−1)
1 satisfy the Poisson algebra of the coefficients for the Takiff algebra

(4.1.5), i.e.

{
Ã(i)

α , Ã
(j)
β

}
= −δij

∑
γ

χγ
αβÃ

(i)
γ ,

{
Ã(i)

α , A
(n−2)
0,β

}
=
{
Ã(i)

α , A
(n−2)
1,β

}
= 0 i, j = 1, . . . n− 2,

{
A

(n−2)
1,α , A

(n−2)
1,β

}
= 0,

{
A

(n−2)
1,α , A

(n−2)
0,β

}
= −χγ

αβA
(n−2)
1,γ ,

{
A

(n−2)
0,α , A

(n−2)
0,β

}
= −χγ

αβ

(
A

(n−2)
0,γ

)
,

(5.2.5)

Proof. That Poisson structure (5.2.5) for the coefficients of the connection near the irregular

singularity is given by Kirillov-Kostant-Souriau form for the co-adjoint orbit Õ⋆
2 of the Takiff

algebra g2 ⋍ g[z]/(z2g[z]), where g[z] is a Lie algebra of the polynomials with coefficients in g.

Therefore, if we prove that (5.2.5), then the 1+1 confluence procedure gives a Poisson morphism

between the direct product of the co-adjoint orbits to the Lie algebra and the co-adjoint orbit
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of the Takiff algebra.

Let us prove (5.2.5). The first row relations are straightforward and we omit the proof. To

prove the relations in the second row of (5.2.5), let us consider the Poisson relations (4.3.6) for

B and C

{Cα, Cβ} = −
∑
γ

χγ
αβCγ , {Bα, Bβ} = −

∑
γ

χγ
αβBγ , {Cα, Bβ} = 0.

Inserting the expansion (5.2.2) and expanding the Poisson relations in ε, we obtain

1

ε2

{
A

(n−1)
1,α , A

(n−1)
1,β

}
+

1

ε

({
A

(n−1)
1,α , C0,β

}
+
{
C0,α, A

(n−1)
1,β

})
+

+ {C0,α, C0,β}+
{
A

(n−1)
1,α , C1,β

}
+
{
C1,α, A

(n−1)
1,β

}
= −χγ

αβ

(
1

ε
A

(n−1)
1,γ + C0,γ

)
+ o(ε)

1

ε2

{
A

(n−1)
1,α , A

(n−1)
1,β

}
− 1

ε

({
A

(n−1)
1,α , B0,β

}
+
{
B0,α, A

(n−1)
1,β

})
+

+ {B0,α, B0,β} −
{
A

(n−1)
1,α , B1,β

}
−
{
B1,α, A

(n−1)
1,β

}
= χγ

αβ

(
1

ε
A

(n−1)
1,γ −B0,γ

)
+ o(ε)

− 1

ε2

{
A

(n−1)
1,α , A

(n−1)
1,β

}
+

1

ε

({
A

(n−1)
1,α , B0,β

}
−
{
C0,α, A

(n−1)
1,β

})
+

+ {C0,α, B0,β}+
{
A

(n−1)
1,α , B1,β

}
−
{
C1,α, A

(n−1)
1,β

}
= o(ε).
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Collecting different terms in ε, we obtain

ε−2 :
{
A

(n−1)
1,α , A

(n−1)
1,β

}
= 0,

ε−1 :
{
A

(n−1)
1,α , C0,β

}
+
{
C0,α, A

(n−1)
1,β

}
= −χγ

αβA
(n−1)
1,γ ,

ε−1 :
{
A

(n−1)
1,α , B0,β

}
+
{
B0,α, A

(n−1)
1,β

}
= −χγ

αβA
(n−1)
1,γ ,

ε−1 :
{
A

(n−1)
1,α , B0,β

}
−
{
C0,α, A

(n−1)
1,β

}
= 0, (5.2.6)

ε0 : {C0,α, C0,β}+
{
A

(n−1)
1,α , C1,β

}
+
{
C1,α, A

(n−1)
1,β

}
= −χγ

αβC0,γ ,

ε0 : {B0,α, B0,β} −
{
A

(n−1)
1,α , B1,β

}
−
{
B1,α, A

(n−1)
1,β

}
= −χγ

αβB0,γ

ε0 : {C0,α, B0,β}+
{
A

(n−1)
1,α , B1,β

}
−
{
C1,α, A

(n−1)
1,β

}
= 0.

The term of order ε−2 in (5.2.6) proves the first relation in the second row of (5.2.5). Let us

prove the second relation. Take the 1/ε term

{
A

(n−2)
1,α , B0,β

}
−
{
C0,α, A

(n−2)
1,β

}
= 0 ⇐⇒

{
C0,α, A

(n−2)
1,β

}
=
{
A

(n−2)
1,α , B0,β

}

and put it in the Poisson relation between A
(n−1)
1 and C0. We get

− χγ
αβA

(n−2)
1,γ =

{
A

(n−2)
1,α , C0,β

}
+
{
C0,α, A

(n−2)
1,β

}
=
{
A

(n−2)
1,α , C0,β

}
+
{
A

(n−2)
1,α , B0,β

}
=

=
{
A

(n−2)
1,α , C0,β +B0,β

}
= −χγ

αβA
(n−2)
1,γ

which proves the second relation. Now let us compute the last Poisson bracket

{C0,α +B0,α, C0,β +B0,β} = {C0,α, C0,β}+ {C0,α, B0,β}+ {B0,α, C0,β}+ {B0,α, B0,β} .

Using ε0-terms from (5.2.6) for {C0,α, C0,β} and {B0,α, B0,β} we obtain

{C0,α +B0,α, C0,β +B0,β} = −χγ
αβ(C0,β +B0,β)−

{
A

(n−2)
1,α , C1,β

}
−
{
C1,α, A

(n−2)
1,β

}
+

+
{
A

(n−2)
1,α , B1,β

}
+
{
B1,α, A

(n−2)
1,β

}
+ {C0,α, B0,β}+ {B0,α, C0,β} (5.2.7)
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The last ε0-term in (5.2.6) leads to the following relations

{C0,α, B0,β} =
{
C1,α, A

(n−2)
1,β

}
−
{
A

(n−2)
1,α , B1,β

}

{B0,α, C0,β} =
{
A

(n−2)
1,α , C1,β

}
−
{
B1,α, A

(n−2)
1,β

}
which cancel all terms in the right-hand side of (5.2.7) except the first term, so we obtain

{C0,α +B0,α, C0,β +B0,β} = −χγ
αβ(C0,γ +B0,γ),

which concludes proof.

Observe that the relations (5.2.6) contain more information than we need, and that one

could actually try to come up with a Poisson algebra involving all coefficients Bk, Ck in the

expansion (5.2.2). However we are only interested in the Poisson subalgebra generated by

A
(n−1)
1 , A

(n−1)
0 = C0 +B0 and Ã(i) for i = 1, . . . , n− 2. The main feature of this subalgebra is

that it does not depend on a choice of a Poisson algebra for the coefficients Bk and Ck. We call

this subalgebra Isomonodromic Poisson Algebra (IPA), since these are the only elements which

survive in the isomonodromic problem after the confluence procedure.

Proposition 5.2.4. The 1+1 confluence procedure produces the isomonodromic Hamiltonians

giving the zero curvature condition

duÃ− d

dλ
Ω̃ + [Ã, Ω̃] = 0

as equation of motion.

Proof. To prove this, we start from the extended symplectic form for the Schlesinger equations:

ωKKS +
n∑

i=1

dui ∧ dHi.

Here ωKKS is the symplectic form which corresponds to the standard Lie–Poisson structure on the

direct product of the co-adjoint orbits. Thanks to Proposition 5.2.3, the standard Lie–Poisson

bracket tends to the Takiff algebra Poisson bracket, therefore ωKKS tends to the corresponding
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symplectic form. Let us concentrate on the
n∑

i=1
dui ∧ dHi part. This part transforms to

n∑
i=1

dui ∧ dHi →
n−2∑
i=1

dui ∧ dHi + dw ∧ d (Hn−1 +Hn) + dt1 ∧ d (εHn) .

Since we are working on a symplectic leaf of the standard Lie–Poisson bracket, the central

elements, or Casimirs, can be considered as fixed scalars, i.e. the differential d acts on them as

a zero. To find the Hamiltonians of the confluent dynamic we have to calculate the limit of the

”time-dependent” part of the symplectic structure as ε goes to zero. In other words, we have

to find

dH̃i := lim
ε→0

dHi, dH̃n−1 := lim
ε→0

d(Hn−1 +Hn), dH̃n := lim
ε→0

εdHn. (5.2.8)

To compute these limits, we can treat the Hamiltonians up to addition of Casimirs. This allows

us to use the Casimirs for regularizing parts of the Hamiltonains that are singular in ε parts

of Hamiltonians. Therefore all = signs in the rest of the proof are intended as equal up to

Casimirs. For i < n− 2 we have

H̃i := lim
ε→0

Hi =
n−2∑
j ̸=i

Tr
(
Ã(i)Ã(j)

)
ui − uj

+ t1
Tr
(
Ã

(n−1)
1 Ã(i)

)
(ui − w)2

+
Tr
(
Ã

(n−1)
0 Ã(i)

)
ui − w

, (5.2.9)

for i = n− 1 we have

H̃n−1 = lim
ε→0

(Hn−1 +Hn) = lim
ε→0

∑
j<n−2

TrÃ(j)

(
A(n−1)

w − uj
+

A(n)

w + εt1 − uj

)
=

=
∑

j<n−1

TrÃ(j)

(
Ã

(n−1)
0

w − uj
− t1

Ã
(n−1)
1

(w − uj)2

)
. (5.2.10)

For i = n

H̃n = lim
ε→0

εHn

Substituting coalescence expansions we get

εHn =

 ∑
j<n−2

TrÃ(j)A
(n−2)
1

w − uj
+O(ε)

+
TrA(n)A(n−1)

t1
. (5.2.11)
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The last term in (5.2.11) contains the 1/ε terms

TrA(n)A(n−1)

ũn
=

1

ũn

(
− 1

ε2
Tr
(
Ã

(n−1)
1

)2
+

1

ε
Tr
(
Ã

(n−1)
1 B0 − C0Ã

(n−1)
1

)
+Tr(B0C0)

)
+

+
1

ũn
Tr
(
Ã

(n−1)
1 B1 − C1Ã

(n−1)
1

)

The 1/ε2 term is a Casimir of the Poisson structure associated with truncated loop algebra, so

we may drop it.

Let us show that also the 1/ε-term is a Casimir and that, after eliminating the Casimirs,

ϵHn → H̃n +O(ε) where

H̃n =
∑

j<n−2

TrÃ(j)A
(n−2)
1

w − uj
+

1

t1

Tr
(
Ã

(n−1)
0

)2
2

. (5.2.12)

To see this, let us remind that the Casimirs of the Poisson algebra in a Fuchsian case are

Tr
(
A(i)

)k
, so the function

1

2
Tr
(
A(n) +A(n−1)

)2
differs from the last term of (5.2.11)

TrA(n)A(n−1).

by a Casimir. Since the Hamiltonians are defined up to the addition of a Casimir, we obtain

εHn =
∑

j<n−2

TrÃ(j)A
(n−2)
1

w − uj
+
Tr
(
A(n) +A(n−1)

)2
2t1

+O(ε) =
∑

j<n−2

TrÃ(j)A
(n−2)
1

w − uj
+

1

t1

Tr
(
Ã

(n−1)
0

)2
2

+O(ε).

Taking the limit as ε→ 0 we obtain the Hamiltonian (5.2.12).

5.2.2 Irregular singularities arising as confluence cascades.

In this section we consider an irregular singularity of arbitrary Poincaré rank r as the result

of a confluence cascade of r simple poles v1, v2 . . . vr with some chosen simple pole u on the

Riemann sphere. At the first step, we send v1 to u and create second order pole as in the

previous subsection. Then we do the same for v2 - we collide it with the second order pole
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at u and create a pole of order 3. In such a way, we continue this procedure, so at the l-th

step we collide simple pole vl with the pole of order l at u to create a new pole of order l + 1.

On the final r-th step, we obtain a pole of order r + 1, i.e. of Poincaré rank r. During this

procedure we expect that the poles vl’s that disappear give rise to deformation parameters

tl’s for the irregular isomonodromic problem1. Since the number of poles decreases during the

confluence procedure, these deformation parameters appear explicitly in the coefficients of the

local expansion of the connection near the singularity u. In the sub-section 5.2.3, we prove

Theorem 2.0.5 that tells us that this dependence is the one described in Corollary 5.1.1. Before

attacking that proof, let us formalise the definition of confluence:

Definition 5.2.5. The limiting procedure described in the hypotheses of Theorem 2.0.5 is

called r + 1 confluence.

Observe that as a result of the 1+1 confluence in subsection 5.2.1 we obtain a connection of

the form (2.0.12) with r = 2. We can then apply the 1 + 2 confluence to this and again obtain

a connection of the form (2.0.12) with r = 3 and so on. Therefore we can give the following

recursive definition:

Definition 5.2.6. The procedure of applying Theorem 2.0.5 recursively r times is called con-

fluence cascade of r + 1 simple poles on the Riemann sphere.

As mentioned at the beginning of this section, the inductive hypothesis on the local form of

the connection (2.0.12) is not restrictive. Indeed, we expect the local form of a connection with

a pole of order r at u to be given by an element in the Takiff algebra co-adjoint orbit Ô⋆
r with

some spectral parameter z = λ − u. However, if we want to keep the number of independent

variables to be maximal, we need to introduce some extra variables ti by hand in such a way

that they can be treated as independent variables. In Corollary 5.1.1, we proved that the only

way to do this is by taking precisely the form (2.0.12). Indeed, formula (2.0.11) corresponds to

(5.3.5). Therefore, we obtain theorem 2.0.5 which we remind here:

Theorem 5.2.7. Assume that u is a singularity of Poincaré rank r obtained by the confluence

1The confluence procedure is not symmetric in vi, however different choices of the order of the coalescence
cascade will lead to the action of the permutation group on tl’s, so we fix this ordering once for all.
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of r + 1 simple poles. Then the coefficients of the local expansion

A(λ) ∼
r∑

i=0

Bi(t1, . . . tr)

(λ− u)i+1
+ . . . ,

take the form

Bi(t1, t2, . . . tr) =
r∑

j=i

B[j]M(r)
i,j (t1, t2, . . . tr),

where

M(r)
k,j =

|α|=k∑
w(α)=j

k!

α1!α2! . . . αr!

(
r∏

i=1

tαi
i

)
, |α| =

r∑
i=1

αi, w(α) =
r∑

i=1

i · αi, M(r)
k>j := 0,

and B
[j]
i ’s hold the following Poisson relations

{(
B[k]

)
α
,
(
B[p]

)
β

}
=

 −χγ
αβ

(
B[k+p]

)
γ

k + p ≤ r

0 k + p > r,
(5.2.13)

where χγ
αβ are the structure constants of the corresponding Lie algebra.

Proof. Will be presented in Section 5.2.4

In this section we give an explicit description of the local coefficients Bi for the connection

near irregular singularity of Poincaré rank r in terms of the generators of the Takiff co-algebra

of degree r. It turns out that the Bi(t1, . . . tr−1) are the special linear combinations of the

generators of the Takiff co-algebra A0, . . . Ar with coefficients in C[t1, t2, . . . tr]. Now we state

a theorem we are going to prove in this subsection.

We want to underline here that the Poisson structure (5.2.13) gives rise to the Takiff co-

algebra Poisson structure on the coefficients of the local expansion, i.e

{Bi(t1, . . . tr)α, Bj(t1, . . . tr)β} = −
∑
γ

χγ
αβBi+j(t1, . . . tr)γ . (5.2.14)

However, such Poisson structure on the coefficients of the local expansion is quite rough, the

coefficients depend on the deformation parameters explicitly and it is important to understand

this dependence when we do the deformation with respect to ti’s. On the other hand, Poisson

structure (5.2.13) contains the information about explicit dependence on ti’s, moreover this
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Poisson structure compatible with more rough Poisson structure.

To motivate the constructions which appear in the statement of this theorem we introduce

some preliminaries on the confluence procedure and algebraic structures which appear during

coalescence before the proof.

5.2.3 The algebra of the weighted monomials and associated polynomials.

The aim of this subsection is to collect some useful algebraic relations involving the parameters

t1, . . . , tr that arise during the confluence procedure and describe the general elements of the

Takiff co-algebra with respect to the Poisson automorphisms.

In order to prove Theorem 2.0.5, in the of a simple pole vr with a pole w of Poincaré rank

r we take the following expansion

vr = w + Pr(t, ε) = w +
r∑

i=1

tiε
i.

The powers of the polynomial Pr(t, ε) play a significant role since they appear in the following

expansion

C

λ− vr
=

C

λ− w

(
1− Pr(t, ε)

λ− w

)−1

=

=
C

λ− w

(
1 +

Pr(t, ε)

λ− w
+ · · ·+ Pr(t, ε)

j

(λ− w)j
+ · · ·+ Pr(t, ε)

r

(λ− w)r

)
+O(εr+1).

Each power of Pr(t, ε) may be seen as a polynomial in ε with coefficients in C[t1, t2 . . . tr]

Pr(t, ε)
r = tr1ε

r +O(εr+1).

Because the aim of the confluence is to create a pole of Poinceré rank r + 1, we need the

coefficeints (λ−w)−r−2 to survive, therefore, we have to require C to be a Laurent polynomial

in ε starting from the power −r. Taking this fact into account, it is important to understand

how each power of Pr(t, ε) expands via ε

Pr(t, ε)
i mod εr+1 =

r∑
j=i

M(r)
i,k (t1, . . . tr)ε

k = M(r)
i,i (t1, . . . tr)ε

i + · · ·+M(r)
i,r (t1, . . . tr)ε

r,
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where

M(r)
i,k (t1, . . . tr) =

1

k!

d

dε
Pr(t, ε)

i
∣∣∣
ε=0

.

The following simple Lemma calculates an explicit formula for M(r)
i,j (t1, . . . tr) and gives some

useful identites.

Lemma 5.2.8. M(r)
i,k is a homogeneous polynomial in t1 . . . tr of degree i for any k given by

M(r)
i,k (t1, . . . tr) =

|α|=i∑
w(α)=k

i!

α1!α2! . . . αr!

 r∏
j=1

t
αj

j

 , w(α) =
r∑

j=1

jαj , |α| =
r∑

j=1

αj .

The polynomials M(r)
i,k satisfy the following identities

M(r+1)
i,k = M(r)

i,k , ∀k ≤ r (5.2.15)

and

M(r)
j,k =

k∑
p=0

[
M(r)

j−i,p · M
(r)
i,k−p +M(r)

j−i,k−p · M
(r)
i,p

]
, ∀i ≤ j. (5.2.16)

Proof. Consider a ring of polynomials C[ε] and the quotient ring C[ε]/εr+1. The ring homo-

morphism Tr which sends the elements of C[ε] to the elements C[ε]/εr+1 is given by truncation

of polynomials

Tr(Q(ε)) = Q(ε) mod εr+1, Q(ε) ∈ C[ε].

Since T is a ring homomorphism, it respects multiplication operation and, as a consequence,

commutes with the exponentiation, i.e.

Tr(Q(ε)n) = Tr(Q(ε))n, Tr(Q(ε))n =
n∏

i=1

Tr(Q(ε)) mod εr+1.

Now consider polynomial Pr+1(t, ε). By definition M(r+1)
i,k is a coefficient of Pr+1(t, ε)

i in front

of εk for k ≤ r + 1. Since that the ring homomorphism Tr gives a generating polynomial for

M(r+1)
i,k fro k < r + 1. On the other hand, we have that

Tr(Pr+1(t, ε)) = Pr(t, ε),
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and since that

Tr(Pr+1(t, ε)
i) = Tr(Pr+1(t, ε))

i = (Pr(t, ε))
i mod εr+1,

which proves formula (5.2.15). Formula (5.2.16) also uses the fact that Tr is a ring homomor-

phism. In particular, Mr
j,k are coefficients of the polynomial

Tr(Pr(t, ε)
j) =

r∑
k=1

Mr
j,kε

k.

On the other hand, for any i ≤ j we have

Tr(Pr(t, ε)
j) = Tr(Pr(t, ε)

j−iPr(t, ε)
i) = Tr(Pr(t, ε)

j−i)Tr(Pr(t, ε)
i) mod εr+1.

Collecting the coefficients in front of εk in the right side of the formula above we obtain (5.2.16).

Note that the function w(α), that we call weight, can be given by the following formula

w

(
n∏

i=1

tαi
i

)
= (α1, α2, . . . αn)



1

2

..

n


=

n∑
k=1

kαk. (5.2.17)

The weights may be seen as elements in the semi-group of homomorphism from the semi-group

of monomials in the variables t1, . . . tr to the (Z≥0,+), in fact:

w(θ · η) = w(θ) + w(η).

Remark 5.2.9. Instead of considering the polynomials Pr(t1, . . . tr), we might consider formal

power series

P (∞)(ε, t) =
∞∑
i=1

tiε
i,

and truncate all expansions at εr+1. The result will be the same, but such approach probably

makes more clear the recursive nature of the confluence procedure. In similar way, the matrix

M(r) with entries M(r)
i,k given in (2.0.11) can be considered as as a sub-matrix of size r × r in
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the upper left corner of some infinite dimensional upper triangular “master” matrix M(∞) with

entries given by

M(∞)
j,r =

1

r!

dr

dεr
P (∞)(ε, t)j

∣∣∣
ε=0

.

5.2.4 Proof of the Theorems 5.2.7 and 2.0.5

We use induction here to prove the theorem. Here we will start with the proof of the explicit

dependence of the local expansion on ti’s and then we will handle the Poisson structure. The

statement of the theorem is true for the r = 0, 1 (Fuchsian case and the pole of order 2), this

was proven via examples we consider before. Now let the statement be true for the irregular

singularity of Pincaré rank r − 1. Adding another simple pole vr, we consider the following

connection

A =

r−1∑
i=0

Bi(t1, t2 . . . tr−1)

(λ− w)i+1
+

C

λ− vr
+ . . . , Bi =

r−1∑
j=i

B[j]M(r−1)
i,j ,

where the dots denote regular terms in (λ−w) and (λ− v1), with the following behaviour of vr

vr = w +
r∑

j=1

tjε
j , C ≃

∞∑
j=−r

C [i]εi.

Expanding A with respect to ε at r’th order we obtain

A =
C [−r]tr1

(λ− w)r+1
+

r−1∑
i=0

Bi + CPr(t, ε)
i

(λ− w)i+1
+ . . . .

Using the formula (5.2.15) the coefficients Bi expands via polynomials M(r)
i,j which gives the

following

Bi + CPr(t, ε)
i = C [−r]M(r)

i,r +

r−1∑
j=i

(
B[j] + εjC

)
M(r)

i,j .

Since the confluence procedure requires existence of the limit ε → 0, the negative powers of ε

should vanish, so we obtain expansions for the coefficients A
(r)
j in the form

B[k] ≃ −
−(k+1)∑
m=−r

C [m]

εm+k
+B[k,0] +

∞∑
l=1

B[k,l]εl.
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Using these expansions and taking the ε→ 0 limit we obtain

A =
r+1∑
i=1

B̃i(t1 . . . tr)

(λ− u)i
+ . . . ,

where B̃i’s are given by (2.0.15), which finishes the proof of the first part of the theorem.

Finally we want to prove that the Poisson structure for the coefficient of the local expansion

of the connection near irregular singularity, which arises after confluence procedure is a Poisson

structure given by (5.2.13). Our IPA here is given by the formula (2.0.15).

Again we use the induction here. The statement is obvious in case when r = 0, and we

have previously proved that it holds for r = 1. Using the previous results we consider the same

coalescence

A =
r−1∑
i=0

Bi(t1, t2 . . . tr−1)

(λ− w)i+1
+

C

λ− vr
+ · · · ∼

r∑
i=0

B̃i

(λ− w)i+1

where B̃i is given by (2.0.15).The expansions take the same form

C ∼
∞∑

j=−r

C [i]εi, B[k] ≃ −
−(k+1)∑
m=−r

C [m]

εm+k
+B[k,0] +

∞∑
l=1

B[k,l]εl.

In order to get rid of the indices let us use the following notation

V = B[k], W = B[l], U = B[k+l].

In case if indices on the right hand sides are out of bound we assume that the values are zero.

The Poisson relations are

{Vα,Wβ} = −χγ
αβUγ , {Cα, Cβ} = −χγ

αβCγ , {Cα, Vβ} = {Cα,Wβ} = {Cα, Uβ} = 0
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and the expansions are

C =
C [−r]

εr
+
C [−r+1]

εr−1
+ · · ·+ C [−1]

ε
+ C [0] +

∞∑
i=1

C [i]εi

V = −C
[−r]

εr−k
− C [−r+1]

εr−k−1
− · · · − C [−k+1]

ε
+ V [0] +

∞∑
i=1

V [i]εi . . .

W = −C
[−r]

εr−l
− C [−r+1]

εr−l−1
− · · · − C [−l+1]

ε
+W [0] +

∞∑
i=1

W [i]εi . . .

U = − C [−r]

εr−k−l
− C [−r+1]

εr−k−l−1
− · · · − C [−k−l+1]

ε
+ U [0] +

∞∑
i=1

U [i]εi.

Due to the confluence formula we want to prove that the following Poisson relation holds

{
V [0]
α + C [−k]

α ,W
[0]
β + C

[−l]
β

}
=
{
V [0]
α ,W

[0]
β

}
+
{
V [0]
α , C

[−l]
β

}
+
{
C [−k]
α ,W

[0]
β

}
+
{
C [−k]
α , C

[−l]
β

}
=

= −χγ
αβ

(
U [0]
γ + C [−k−l]

γ

)
.

Taking the corresponding ε-terms of the expansions of the Poisson relations we get

Res
ε=0

ε0−1 {Vα,Wβ} :
{
V [0]
α ,W

[0]
β

}
−

r−l∑
i=1

{
V [i]
α , C

[−i−l]
β

}
−

r−k∑
i=1

{
C [−i−k]
α ,W

[i]
β

}
= −χγ

αβU
[0]
γ ,

Res
ε=0

εl−1 {Vα, Cβ} :
{
V [0]
α , C

[−l]
β

}
+

r−l∑
i=1

{
V [i]
α , C

[−i−l]
β

}
−

r−k∑
i=1

{
C [−i−k]
α , C

[i−l]
β

}
= 0,

Res
ε=0

εk−1 {Cα,Wβ} :
{
C [−k]
α ,W

[0]
β

}
+

r−k∑
i=1

{
C [−i−k]
α ,W

[i]
β

}
−

r−l∑
i=1

{
C [i−k]
α , C

[−i−l]
β

}
= 0

Res
ε=0

εk+l {Cα, Cβ}
ε

:
{
C [−k]
α , C

[−l]
β

}
+

r−k∑
i=1

{
C [−k−i]
α , C

[i−l]
β

}
+

r−l∑
i=1

{
C [−k+i]
α , C

[−i−l]
β

}
=

= −χγ
αβC

[−l−k]
γ . (5.2.18)

Finally, taking a sum of the relations in (5.2.18) we get the desired Poisson structure

{
V [0]
α ,W

[0]
β

}
+
{
V [0]
α , C

[−l]
β

}
+
{
C [−k]
α ,W

[0]
β

}
+
{
C [−k]
α , C

[−l]
β

}
= −χγ

αβ

(
U [0]
γ + C [−l−k]

γ

)
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5.2.5 Confluent Hamiltonians

As we saw before, in the case of the 1+1 confluence, the confluent Hamiltonians can be obtained

as the limits of some functions on a phase space - linear combinations of the initial Hamiltonians

with coefficients depending on a small parameter ε. Moreover the procedure of taking this limit

requires the introduction of some shifts by Casimirs, since the Hamiltonians are defined up to

Casimir element of the Poisson algebra. Such Casimir normalisation may be exploited in the

case of the confluence for the higher order poles, however, this procedure becomes very heavy.

In this section, we calculate these limits using residue calculus. Let us start by explaining these

limits of the Hamiltonians in the 1 + 1 confluence procedure; we want to calculate limits in

(5.2.8):

dH̃i := lim
ε→0

dHi, dH̃n−1 := lim
ε→0

d(Hn−1 +Hn), dH̃n := lim
ε→0

εdHn.

The Fuchsian Hamiltonians (4.3.8) can be written in the following form

Hui =
1

2

∮
Γui

Tr
(
A2
)
dλ, (5.2.19)

where Γui is a such contour that no singularities except ui are inside of it. Since the matrix

A admits finite limit as ε → 0, the integrand has a finite limit. When ui ̸= v1, u, we can

always deform Γui in such a way that the coalescence of v1 and u does not affect the contour

of integration. This gives us opportunity to switch the limit and the integration operations,

which gives the formula for the confluent Hamiltonian

H̃ui =
1

2

∮
Γui

Tr
(
Ã2
)
dλ, ui ̸= t1, u. (5.2.20)

Let us now deal with the limit of Hw +H1. Because both contours Γw and Γ1 will depend

on ε, we cannot calculate the limits of Hw and H1 separately. However, we can calculate the

limit of the sum due to

Hu +Hv1 =
1

2

∮
Γw

Tr
(
A2
)
dλ+

1

2

∮
Γv1

Tr
(
A2
)
dλ =

1

2

∮
Γw∪Γv1

Tr
(
A2
)
dλ,

where the last equality holds since the integrands in both integrals are the same and Γu ∪ Γv1
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Figure 5.1: Poles and contours confluence procedure

denotes the contour obtained by merging Γu and Γ1 like in Fig. 5.1. Such contour may be

deformed to the contour Γ̃u, such that the coalescent singularities are located inside this contour

and the confluence doesn’t affect the contour itself. Using the same arguments as before we

obtain that

H̃u = lim
ε→0

1

2

∮
Γw∪Γv1

Tr
(
A2
)
dλ,=

1

2

∮
Γw

Tr
(
Ã2
)
dλ. (5.2.21)

In order to obtain H̃1 we consider the following sum of Casimirs

1

2

∮
Γu

(λ− u)Tr
(
A2
)
dλ+

1

2

∮
Γv1

(λ− v1)Tr
(
A2
)
dλ

which may be put to zero since the Hamiltonians are defined up to Casimirs. Expanding v1 in

ε we obtain

1

2

∮
Γu

(λ− u)Tr
(
A2
)
dλ+

1

2

∮
Γv1

(λ− u)Tr
(
A2
)
dλ− t1ε

1

2

∮
Γv1

Tr
(
A2
)
dλ =

=
1

2

∮
Γu∪Γv1

(λ− u)Tr
(
A2
)
dλ− t1εH1 = 0.

The relation written above finally gives us

H̃1 =
1

2t̃1

∮
Γu

(λ− u)Tr
(
Ã2
)
dλ = Res

λ=u

[
(λ− u)

t1
Tr

(
Ã2

2

)]
. (5.2.22)
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Let us now add one more simple pole to w using the confluence, by a similar computation

as above, we obtain the following isomonodromic Hamiltonians

Hui = Res
λ=ui

Tr

(
A2

2

)
, Hu = Res

λ=u
Tr

(
A2

2

)

H1 = Res
λ=u

([
(λ− u)

t1
− t2(λ− u)2

t31

]
Tr

(
A2

2

))
, H2 = Res

λ=u

[
(λ− u)2

t21
Tr

(
A2

2

)]
.

The form of the Hamiltonians for t1 and t2 looks quite bizarre, but we may obtain them by

solving the following linear system

M(2)

 H1

H2

 =

 t1 t2

0 t21


 H1

H2

 =

 S1

S2

 , Si =
1

2

∮
Γu

(λ− u)iTrA2dλ.

Here M(2) is a matrix which entries were already introduced in (2.0.11).We now prove Theorem

2.0.6.

Theorem 5.2.10. Let u be a pole of a connection A with Poincaré rank r, which is the result of

confluence of r simple poles with the simple pole u. Then the confluent Hamiltonians H1, . . . ,Hr

which correspond to the times t1, . . . tr are defined as follows:



H1

H2

. . .

Hr


=
(
M(r)

)−1



S
(u)
1

S
(u)
2

. . .

S
(u)
r


, (5.2.23)

where

S
(u)
k =

1

2

∮
Γu

(λ− u)kTrA2dλ (5.2.24)

are spectral invariants of order i in u and the matrix M(r) is given by (2.0.11). The Hamiltonian

Hu corresponding to the time u is instead given by the standard formula

Hui =
1

2
res
λ=ui

TrA(λ)2.

Proof. To prove this theorem we again use induction. We showed that it holds for r = 2 and it
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is trivial in case when r = 1. Now we want to prove that if the statement of the theorem holds

for rank r it is also true for rank r + 1. The confluence expansion

vr+1 = u+ Pr+1(t, ε) = u+
r+1∑
i=1

εiti

sends the extended symplectic form

ω = dt1 ∧ dH1 + · · ·+ dtr ∧ dHr + du ∧ dHu + dvr+1 ∧ dHr+1 + . . .

where the last set of dots corresponds to the terms that are not changed in the confluence

procedure, to

dt1∧d(H1+εHr+1)+· · ·+dtr∧d(Hr+ε
rHr+1)+dtr+1∧d(εr+1Hr+1)+du∧d(Hu+Hr+1)+· · · =

that must be equal to

dt1 ∧ dH̃1 . . . dtr ∧ dH̃r + dtr+1 ∧ dH̃r+1 + du ∧ dH̃u + . . . .

Therefore, we must find the limits

H̃u = lim
ε→0

(Hu +Hr+1) , H̃k = lim
ε→0

(
Hk + εkHr+1

)
, k = 1 . . . r, H̃r+1 = lim

ε→0
εr+1Hr+1

The first limit is quite simple and may be obtained via the union of contours which we already

described before. To find the other limits, let us consider the relation

∮
Γu

(λ− u)iTr
A2

2
dλ+

∮
Γr+1

(λ− vr+1)
iTr

A2

2
dλ = S

(u)
i mod (Casimirs)

expanding vn+1 we obtain

∮
Γu∪Γr+1

(λ− u)iTr
A2

2
dλ−

∮
Γr+1

ϕ(λ)Tr
A2

2
= S

(u)
i mod (Casimirs) ,
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where ϕ(λ) is a holomorphic function inside Γr+1 which is given by

ϕ(λ) = (λ− u)i − (λ− u− Pr+1(t, ε))
i.

Since ϕ(λ) has no zeros at vr+1 we have

∮
Γr+1

ϕ(λ)Tr
A2

2
= ϕ(u+ Pr+1(t, ε))

∮
Γr+1

Tr
A2

2
= Pr+1(t, ε)

i

∮
Γr+1

Tr
A2

2
= Pr+1(t, ε)

iHr+1.

Finally, we obtain the following identity:

∮
Γu∪Γr+1

(λ− u)iTr
A2

2
dλ− Pr+1(t, ε)

iHr+1 = S
(u)
i mod (Casimirs) . (5.2.25)

In the case i = r + 1, S
(u)
r+1 is a Casimir due to the formula (5.4.7), therefore we have

∮
Γu∪Γr+1

(λ− u)r+1Tr
A2

2
dλ = Pr+1(t, ε)

r+1Hr+1 mod (Casimirs) .

The left hand side of this identity has a finite limit when ε goes to 0. Indeed, since the contour

contains both u and vr+1 the confluence procedure doesn’t affect it and the only dependence in

ε is in A. According to Theorem 2.0.5, A has a finite limit, the same has TrA2, so we have that

lim
ε→0

∮
Γu∪Γr+1

(λ− u)r+1Tr
A2

2
dλ =

∮
Γu∪Γr+1

(λ− u)r+1 lim
ε→0

Tr
A2

2
dλ =

∮
Γu

(λ− u)r+1Tr
Ã2

2
dλ = S̃

(u)
r+1,

where S̃
(u)
r+1 is a spectral invariant of the confluent system with connection Ã. Since after the

confluence, the order of pole increases to r+ 2, such spectral invariant is not a Casimir for the

confluent system. This means, that the limit of Pr+1(t, ε)
r+1Hr+1 up to Casimirs exists and

equals to S̃
(u)
r+1. On the other hand we have

Pr+1(t, ε)
r+1Hr+1 =

(
tr+1
1 εr+1 +O(εr+2)

)
Hr+1,

and since the limit exists up to Casimirs we get that

Hr+1 mod (Casimirs) =
S̃
(u)
r+1

εr+1
+

∞∑
i=−r

H
[i]
r+1ε

i,
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so in principle Hr+1 may have terms of lower order than 1/εr+1, but these terms has to be

Casimirs. Considering relations (5.2.25) for i = 1 . . . r + 1 as a linear system we obtain



S̃1

S̃2

S̃3

. . .

S̃r+1


−M(r+1)



ε

ε2

ε3

. . .

εr+1


Hr+1 =



S1

S2

. . .

Sr

0


mod (Casimirs) (5.2.26)

where

S̃i =

∮
Γu∪Γr+1

(λ− u)iTr
A2

2
dλ, Si =

∮
Γu

(λ− u)iTr
A2

2
dλ

Note that the contours in the definition of S̃i are not affected by the confluence procedure.

Using the same arguments as above, we compute the limits of these integrals, which are

lim
ε→0

S̃i = S̃
(u)
i =

∮
Γu

(λ− u)iTr
Ã2

2
dλ

where S̃
(u)
i denote the spectral invariants of the confluent system with connection Ã.

The crucial point here is that the matrix M(r+1) contains M(r) as r + 1, r + 1 minor, i.e.

M(r+1) =


M(r)

tr+1

...

...

0 0 . . . 0 tr+1
1


Now let us consider the following matrix

C =



(
M(r)

)−1

0

...

...

0

0 0 . . . 0 1


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and let us act via C on the equation (5.2.26) from the left. Then we get

CS̃ =


Ir

...

...

0 0 . . . 0 tr+1
1





εHr+1

ε2Hr+1

. . .

εnHr+1

εn+1Hr+1


+



H1

H2

. . .

Hr

0


=

=


Ir

...

...

0 0 . . . 0 tr+1
1





εHr+1 +H1

ε2Hr+1 +H2

. . .

εrHr+1 +Hr

εr+1Hr+1


= CM(r+1)



εHr+1 +H1

ε2Hr+1 +H2

. . .

εrHr+1 +Hr

εn+1Hr+1


.

In this way we have arranged the entries of equation (5.2.26) in such a way that the left hand

side has a nice limit as ε goes to zero (the confluence of points is inside the contour of integration

for S̃i). On the right hand side we have the functions whose limits we want to find. Finally,

multiplying by C−1 from the left we obtain

M(r+1)



H̃1

H̃2

. . .

H̃r

H̃r+1


= M(r+1) lim

ε→0



εHr+1 +H1

ε2Hr+1 +H2

. . .

εrHr+1 +Hn

εr+1Hr+1


= lim

ε→0



S̃1

S̃2

S̃3

. . .

S̃r+1


=



S̃1

S̃2

S̃3

. . .

S̃r+1


which finishes the proof.

Remark 5.2.11. The matrix M(r) is automatically upper triangular matrix, so it is quite easy

to solve such a system for any reasonable n.

In general we may consider Hamiltonians which are related to poles locations as a spectral
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invariant S
(u)
0 . Then it is easy to extend formula from (5.2.23) as follows

N (r)



H0

H1

. . .

Hr


=



S
(u)
0

S
(u)
1

. . .

S
(u)
r


, N (r) =



1 0 . . . 0

0

...

0

M(r)



5.2.6 Examples of Hamiltonians

We want to demonstrate obtained Hamiltonians in the previous section on a couple of examples.

In order to see all the features of obtained Hamiltonians we consider connection with 3 simple

poles at 0, 1 and ∞, and one irregular singularity at some point u. The minimal example is

A(λ) =
A(0)

λ
+

A(1)

λ− 1
+

A
(u)
0

λ− u
+

t1A
(u)
1

(λ− u)2
. (5.2.27)

Explicit formulas for Hamiltonians are

Hu = Tr

[
A

(u)
0

(
A(0)

u
+

A(1)

u− 1

)
− t1A

(u)
1

(
A(1)

(u− 1)2
+
A(0)

u2

)]
(5.2.28)

H1 = Tr

[
A

(u)
1

(
A(0)

u
+

A(1)

u− 1

)
+
A

(u)
0 A

(u)
0

2t1

]
(5.2.29)

In lifted Darboux coordinates, Hamiltonians take form

Hu = Tr
(
Q

(u)
0 P

(u)
0 +Q

(u)
1 P

(u)
1

)(Q(0)P (0)

u
+
Q(1)P (1)

u− 1

)
−

− t1Q
(u)
0 P

(u)
1

(
Q(1)P (1)

(u− 1)2
− Q(0)P (0)

u2

)
(5.2.30)

H1 = Tr
Q(0)P (0)Q

(u)
0 P

(u)
1

u
+
Q(1)P (1)Q

(u)
0 P

(u)
1

u− 1
+

(
Q

(u)
0 P

(u)
0 +Q

(u)
1 P

(u)
1

)2
2t1

.

(5.2.31)
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Hamiltonians obviously Poisson commute, moreover we may check that cross-derivative w.r.t.

u and t1 is zero, i.e.

∂

∂t1
Hu − ∂

∂u
H1 = 0,

which tells us that τ -function

d ln τ = Tr

(
A

(u)
0

(
A(0)

u
+

A(1)

u− 1

)
− t1A

(u)
1

(
A(1)

(u− 1)2
− A(0)

u2

))
du+

+Tr

(
A

(u)
1

(
A(0)

u
+

A(1)

u− 1

)
+
A

(u)
0 A

(u)
0

2t1

)
dt1

is defined correctly. If we go further and consider pole of Poincaré rank 2 at u connection takes

form

A(λ) =
A(0)

λ
+

A(1)

λ− 1
+

A
(u)
0

λ− u
+
t1A

(u)
1 + t2A

(u)
2

(λ− u)2
+

t21A
(u)
2

(λ− u)3
. (5.2.32)

Hamiltonians then write as

Hu = Tr

[
A

(u)
0

(
A(0)

u
+

A(1)

u− 1

)
− t1A

(u)
1

(
A(0)

u2
+

A(1)

(u− 1)2

)
+

+A
(u)
2

(
t21A

(0)

u3
+

t21A
(1)

(u− 1)3
− t2A

(0)

u2
− t2A

(1)

(u− 1)2
+

)]

H1 = Tr

[
A

(u)
1

(
A(0)

u
+

A(1)

u− 1

)
−t1A(u)

2

(
A(0)

u2
+

A(1)

(u− 1)2

)
+
A

(u)
0 A

(u)
0

2t1
−t2

A
(u)
0 A

(u)
1

t21
−t22

A
(u)
0 A

(u)
2

t31

]

H2 = Tr

[
A

(u)
2

(
A(0)

u
+

A(1)

u− 1

)
+
A

(u)
0 A

(u)
1

t1
+t2

A
(u)
0 A

(u)
2

t21

]
.

As in the previous example cross-derivatives are zeros

∂

∂t1
Hu − ∂

∂u
H1 =

∂

∂t2
Hu − ∂

∂u
H2 =

∂

∂t1
H2 −

∂

∂t2
H1 = 0,

so the τ -function is defined correctly.

The first example corresponds to the confluence of the Garnier system – isomonodromic

87



deformation of the connection on the 5 punctured sphere. Reduction of this example for sl2 has

to give equation form the list introduced in [60, 61] and corresponds to so-called fourth-order

Painlevé equations. The second example has to be more complicated – Hamiltonian reduction

then gives Hamiltonian system with 3 degrees of freedom, which corresponds to the higher order

Painlevé equations.

5.2.7 Confluence of the higher order poles.

The confluence of two poles w1 and w2 of Poincaré rank r1 and r2 respectively can be treated a

the confluence of r1 + r2 + 2 simple poles. Indeed, we have seen at the beginning of section 5.2

that the generic connection with a Poincaré rank r singularity can be obtained as confluence of

r + 1 simple poles. Therefore, a connection with two poles w1 and w2 of Poincaré rank r1 and

r2 respectively is obtained by coalescing r1 + 1 and r2 + 1 simple poles. To confluence w1 with

w2 is therefore the same as coalescing r1 + r2 + 2 simple poles.

5.3 Poisson automorphisms of the Takiff algebra and indepen-
dent deformation parameters.

In this subsectionwe describe the class of linear automorphisms of the Takiff algebra which

preserve the Poisson bracket, namely linear maps

Bi =

r∑
j=0

TijAj , Tij ∈ C, i, j = 0, . . . r, (5.3.1)

such that

{Bi ,⊗Bj} = [Π, I⊗Bi+j ] ⇐⇒ {Ai ,⊗Aj} = [Π, I⊗Ai+j ] (5.3.2)

In the next theorem we describe explicitly the constraints on the coefficients Tij and show that

they define an ideal in C[T00 . . . Trr]. We then give an explicit parameterisation of the quotient

of C[T00 . . . Trr] with respect to this ideal in terms of r parameters. t1, . . . , tr.

Theorem 5.3.1. The Poisson condition (5.3.2) generates the ideal P in the ring C[T11 . . . Trr]
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given by the equations

P =



T00 = 1

T0k = 0, k > 0

Tk0 = 0, k > 0

Tik = 0, k<i

Tsl =
i+j=l∑
i,j>0

TpiTmj ∀p,m > 0 : p+m = s.

(5.3.3)

Moreover we have the following ring isomorphism for the quotient

Q : C[T00 . . . Trr]/P → C[t1 . . . tr] (5.3.4)

such that

T1i = ti, Tki =
1

i!

di

dεi
Pr(t, ε)

k
∣∣∣
ε=0

, Pr(t, ε) =

r∑
i=1

εiti, (5.3.5)

so that Tki is just the coefficient of the εi term in the polynomial Pr(t, ε)
k.

Remark 5.3.2. The equations which define the ideal P do not depend on the specific form

of Π, i.e. on the structure constants of a Poisson bracket. Therefore, the classification of the

automorphisms is a consequence of the grading structure and not a property of the specific Lie

co-algebra.

Proof. Assume the matrices Ai and Bi satisfy the Poisson relations (5.3.2) and prove the rela-

tions for the coefficients Tij . Let us start from the relation for B1

{B0 ,⊗B0} = [Π, I⊗B0]. (5.3.6)

Substituting (5.3.1) in (5.3.6) and expanding, we obtain

{B0 ,⊗B0} =

r∑
i,j=0

T0iT0j{Ai ,⊗Aj} =

r∑
k=0

(
k∑

i=0

T0iT0,k−i

)
[Π, I⊗Ak] =

= [Π, I⊗B0] =
r∑

k=1

T0k[Π, I⊗Ak]. (5.3.7)
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This equation defines the system for the coefficients T0j , which takes form

T00T00 = T00, 2T00T0k +

k−1∑
i=1

T0iT0,k−i = T0k,

that, by recursion, leads to the first set of equations which generate ideal P:

T00 = 1, T0k = 0, k > 0.

The next statement we want to prove is that Tk0 = 0 for k > 1. We use

{B1 ,⊗Bk} = [Π, I⊗Bk+1] k = 1, . . . , r. (5.3.8)

Again, substituting (5.3.1) and expanding, we obtain

r∑
i,j=0

T1iTkj [Π, I⊗Ai+j ] =
r∑

j=0

Tk+1,j [Π, I⊗Aj ],

and collecting all coefficients of [Π, I⊗A1], we have that

Tk+1,0 = T10Tk0,

that is solved by

Tk+1,0 = (T10)
k .

On the other hand substituting (5.3.1) in

{B1 ,⊗Br} = 0, (5.3.9)

we obtain

T10Tr0 = 0 = (T10)
r ⇒ T10 = 0,

as we wanted. Now to demonstrate the statement that Tik = 0 for k<i we use the relation

{B1 ,⊗B1} = [Π, I⊗B2]. (5.3.10)
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By substituting (5.3.1) we see that the left hand side of (5.3.10)

{B1 ,⊗B1} =
∑
i,j>2

T1iT1j [Π, Ai+j ] = T11T11[Π, A2] +
∑
i=4

κi[Π, Ai], (5.3.11)

does not contain terms in A0, or A1, it contains only one term that depends on A2, given by

T11T11[Π, A2] and all other terms depend on A3, . . . , Ar. Expanding right hand side of (5.3.10)

we get

[Π, I⊗B2] = T21[Π, I⊗A1] +
∑
i=2

T2i[Π, I⊗Ai]. (5.3.12)

Therefore, we obtain that T21 = 0. Similarly, applying the {B1 ⊗ ◦} to B2 . . . Br and using the

same approach we obtain that Tik = 0 for k < i. The last relation in (5.3.3) is obtained by

imposing (5.3.2), substituting (5.3.1) and expanding as before, and then by imposing all other

conditions we have obtained so far.

We now prove the second part of the Theorem. First of all, we observe that thanks to

relations (5.3.3), the coefficients tj := T1j for j > 0 form a basis in the quotient ring Q :

C[T00 . . . Trr]/P. Then, because each Tik must be given by a polynomial P
(i)
k of t1, . . . , tr, we

just need to check the degree and the form of the coefficients. To this aim we use the last

relation of (5.3.3) for Tij by induction on j from i to r. We omit this computation as it is

straightforward.

Example 5.3.3. In order to give a taste of how the general elements of the Takiff co-algebra

depend on the Poisson automorphism parameters ti, we provide a few examples of low degree.

We consider an element of the Takiff co-algebra as a polynomial in 1
z . In the case of ĝ⋆1 we have

B(z) =
t1A1

z2
+
A0

z
. (5.3.13)

Here this automoprhism just establish that the invariant space of the action of A0 is defined

up to multiplication by a constant, so in a sense this example is quite trivial. For the ĝ⋆2 the

general element writes as

B(z) =
t21A2

z3
+
t1A1 + t2A2

z2
+
A0

z
. (5.3.14)
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The next example is the case of ĝ⋆3 and the element of the co-algebra writes as

B(z) =
t31A3

z4
+
t21A2 + 2t1t2A3

z3
+
t1A1 + t2A2 + t3A3

z2
+
A0

z
. (5.3.15)

In the previous section we saw how such dependence on the parameters ti’s arises during

the confluence procedure. In some sense, the irregular deformation parameters are just the

deformation of the representation for the Takiff algebra.

5.4 Darboux coordinates for sl2 Takiff algebra coadjoint orbits

In this section, we compute explicitly the reduced coordinates for the co-adjoint orbits of the

quotient of Takiff algebras with respect to the inner group action on the lifted Darboux co-

ordinates in the case of degrees 1, 2, 3 and 4 - this choice is motivated by the fact that in

the Painlevé confluence scheme the maximal pole order we have is 4. However, the described

procedure can be easily expanded for the Takiff algebra of any degree - we give a hint and some

explanation in the discussion after the examples. In each example we give explicit results in the

case of sl2, since this is the case of the isomonodromic problems for the Painlevé equations. We

also provide the coordinates in the diagonal gauge - the case when the leading term is diagonal.

We do this because there is also the additional outer action of the group G which can be used

to put one orbit in such form.

5.4.1 Lifted Darboux coordinates

As seen in the previous section, the lifted Darboux coordinates for the co-adjoint orbits of an

ordinary Lie algebra are given by a symplectic reduction from T ⋆glm. We use the same idea

for the truncated loop algebras. This follows ideas introduced in [24] to parametrize the space

of the irregular Gaudin systems, which are autonomous version of the isomonodromic systems.

However, Chervov and Talalaev didn’t perform the explicit reduction and the parametrisation

of the co-adjoint orbit of the truncated loop algebras. So in this section we provide detailed

reduction procedure.
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We start from the following space

g = glm, T ⋆ĝr =

{
(P,Q)

∣∣∣P =
r∑

i=0

Piz
i, Q =

r∑
i=0

Qiz
−i−1, Pi, Qi ∈ glm

}
.

The symplectic form on T ⋆ĝn is given by the differential of the Liouville form:

ω = d⟨P,dQ⟩ =
∮
S1

Tr (dP ∧ dQ) dz = d
r∑

i=0

Tr (Pi ∧ dQi) , (5.4.1)

here d is a differential on the space of spectral parameter z, while d is a differential on a phase

space.

Lemma 5.4.1. The map

r⊕
i=0

T ⋆glm → T ⋆ĝr

(P0, . . . , Pr, Q0, . . . , Qr) 7→ (P,Q)

is a symplectomorphism.

The proof of this result is a straightforward consequence of the fact that T ⋆ĝn and
n⊕

i=1
T ⋆glm

are isomorphic as vector spaces and formula (5.4.1) shows that they are symplectomorphic to

each other. However, we have enphasised this simple fact into a Lemma because
n⊕

i=1
T ⋆glm

provides the ambient space for the confluence procedure.

We now want to construct the Lie group Ĝr of the Takiff algebra. Its elements are given

by:

g(z) = g0 +
r∑

i=1

giz
i, g0 ∈ GLm, gi ∈ glm,

where, in order to be able to multiply both on the left and on the right, glm is considered as a

bi-module of GLm. The group structure of Ĝn is given by GLm multiplication mod zn, i.e.

g(z) · h(z) = g(z)h(z)mod zr+1 = g0h0 +

r∑
i=1

 i∑
j=0

gi−jhj

 zi.

The inverse is given by

g−1 = g−1
0

[
1 +

r∑
i=1

g−1
0 gi+1z

i

]−1

= g−1
0 (1 + g̃(z))−1 = g−1

0

∞∑
i=0

(−1)ig̃(z)imod zr+1,
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and the neutral element is given by the identity matrix. The induced inner and outer actions

on T ⋆ĝr are given by

g ×
outer

(P,Q) =
(
[P ◦ g] mod zr+1;π−

[
g−1 ◦Q

])
(5.4.2)

g ×
inner

(P,Q) =
(
[g ◦ P ] mod zr+1;π−

[
Q ◦ g−1

])
(5.4.3)

where π− is a projection to the Laurent part with respect to spectral parameter z, i.e.

π−

[ ∞∑
i=−∞

Tiz
i

]
=

−1∑
i=−∞

Tiz
i

Lemma 5.4.2. Both inner and outer actions are Hamiltonian with the moment maps respec-

tively

µinner : T ⋆ĝr → ĝ⋆r

(P,Q) 7→ Λ(z) = π− [PQ]

µouter : T ⋆ĝr → ĝ⋆r

(P,Q) 7→ A(z) = π− [QP ]
. (5.4.4)

These two moment maps are dual in a sense of Adams–Harnad–Previato duality [3]. Since

inner and outer group actions commute, A(z) and Λ(z) Poisson commute with respect to Poisson

bracket induced by (5.4.1). As in the Fuchsian case, A(z) is an element of the co-adjoint orbit

for the truncated loop algebra. On the other hand, Λ(z) becomes an invariant of the orbit after

quotient via the inner group action.

This gives us the opportunity to generalise the statement of the Lemma 4.3.3 to the case of

Takiff algebras:

Lemma 5.4.3. The map

T ⋆ĝr �
Λ0

Ĝr → Ô⋆
r

(Q,P ) 7→ A(z) := π− [QP ]

where �
Λ0

denotes the Hamiltonian reduction w.r.t. the inner action in which the moment map

has value Λ0, is a rational symplectomorphism and the Jordan normal form Λ0 of A is given by

Λ0(z) = π− [PQ] .
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Q0P0 Q1P1 Q2P2 . . . . . . Qr−1Pr−1 QrPr

Q0P1 Q1P2 Q2P3 . . . . . . Qr−1Pr

. . . . . . . . . . . . . . . . . .

QiPi+k−1 Qi+1Pi+k

QiPi+k Ak

. . .

Q0Pr

Figure 5.2: Lifted Darboux coordinates for the Takiff algebra of degree r. In this diagram we
have r+1 rows, and we number them starting at the top with row 0, all the way down to row r.
The sum of the elements in row k gives the coefficient Ak of the power of z−k−1, the blue arrow
follows each Qi matrix from the formula above to the one below, while the red one follows Pi.

The explicit form of A(z) is

A(z) =
Ar

zr+1
· · ·+ A0

z
, Ak =

r−k∑
i=0

χi,i+k, χi,j = QiPj . (5.4.5)

while Λ0(z) takes form

Λ0(z) =
Λr

zr+1
· · ·+ Λ0

z
, Λk =

r−k∑
i=0

Pi+kQi, (5.4.6)

Remark 5.4.4. According to Lemma 5.4.1, all co-adjoint orbits, i.e the ones of for the ordinary

Lie algebras and the one for the Takiff algebras, are reductions of the same phase space. Systems

with different orders of poles are obtained by different choices of the group realising the reduction:

in the Fuchsian case we considered the action of the direct product of GLm, while in the case

of the Takiff algebra we use the inner action of Ĝr
m := GLm[z]/zr+1GLm[z].

The parametrisation (5.4.5) allows a nice combinatorial description which is presented on

the Fig. 5.6.1.

Theorem 5.4.5. The Poisson bracket induced by the Darboux coordinates Qi, Pi to the space

of matrices Ak, k = 0, . . . , r coincides with the graded Poisson structure (4.1.5).

Proof. This statement is a straightforward corollary of the Lemma 5.4.3. However, here we

prove id directly for the sake of clarity. The Poisson bracket on the elements χij in (5.4.5) is
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given by

{χij ,⊗χkl} = {QiPj ,⊗QkPl} = δjk(Qi ⊗ 1)Ω(I⊗ Pl)− δil(I⊗Qk)Ω(Pj ⊗ I) =

= δjk(QiPl ⊗ I)Ω− δilΩ(QkPj ⊗ I) = δjk(χil ⊗ I)Ω− δilΩ(χkj ⊗ I)

which is the same as

{
(χij)αβ , (χkl)γδ

}
= δjkδγβ (χil)αδ − δilδαδ (χkj)γβ .

By direct computation

{Ak ,⊗Al} =
∑
i,j

{χi,i+k ,⊗χj,j+l} =
∑
i,j

δj,i+k(χi,j+l ⊗ I)Π− δi,j+lΠ(χj,i+k ⊗ I) =

=
∑
i

(χi,i+k+l ⊗ I)Π−
∑
j

Π(χj,j+k+l ⊗ I) = −[Π, Ak+l ⊗ I]

we obtain the proof of the statement. In case if k+l > r the Poisson bracket shall automatically

be zero.

In the next lemma, we show that the quadratic Casimirs for the Takiff algebra are given by

functions of the spectral invariants of the co-adjoint orbit:

Lemma 5.4.6. For the Takiff algebra of degree r, the following quantities are Casimirs

Ik = res
z=0

(
zr+kTrA2

)
, 0 < k < r. (5.4.7)

Proof. The fact that Ik are Casimirs may be checked by the direct computation, here we

demonstrate it for k = 1, since we use it in the further text. Explicitly I1 writes as follows

I1 =

r∑
j=0

TrAjAr−j .

The Poisson bracket with an arbitrary generator of the Poisson algebra defined via Lie-Poisson
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bracket for the Takiff algebra gives

r∑
j=0

{(Ai)α,TrAjAr−j} =
r∑

j=0

[Ai+j , Ar−j ]α +
r∑

j=i

[Ar−j+i, Aj ]α =

=

r∑
l=i

[Al, Ar−l+i]α +

r∑
j=i

[Ar−j+i, Aj ]α = 0.

In the same way we may prove that Ik are the Casimirs for k > 1.

First order pole. Takiff algebra of degree 1

In this case Takiff algebra coincide with the ordinary Lie algebra. Parametrisation in such

situation was obtained in works [6, 7]

Second order pole. Takiff algebra of degree 1

The Darboux parametrisation is given by

A(z) =
Q0P1

z2
+
Q0P0 +Q1P1

z
, ω = dΘ, Θ = Tr (P1dQ1 + P0dQ0) ,

so that the extended phase space is of dimension 4m2. We now want to reduce this dimension

by solving the moment map conditions

P1Q0 = Λ1, P0Q0 + P1Q1 = Λ0

w.r.t. P0 and P1. To do this, we only need to assume that Q0 is invertible, namely (Q0, Q1) ∈⊕
Glm × glm. This inversion sends the Liouville form to

θ = Tr
(
Λ1Q

−1
0 dQ1 + Λ1Q

−1
0 dQ0 − Λ1Q

−1
0 Q1Q

−1
0 dQ0

)
,

while A goes to

A(z) =
Q0Λ1Q

−1
0

z2
+
Q0Λ0Q

−1
0 + [Q1Q

−1
0 , Q0Λ1Q

−1
0 ]

z
.

We now want to reduce the dimension by 2m via the torus action Qi → QiDi, where Di is a

diagonal matrix, that fixes the invariants of the co-adjoint orbit Λ0,Λ1. To this aim, we find
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the Darboux coordinates p1, . . . pm(m−1), q1, . . . qm(m−1) explicitly in such a way that

Θ = Tr
(
Λ1Q

−1
0 dQ1 + Λ0Q

−1
0 dQ0 − Λ1Q

−1
0 Q1Q

−1
0 dQ0

)
=

m(m−1)∑
i=1

pidqi. (5.4.8)

The number of unknown functions also equals to 2m(m − 1), due to the factorisation of the

torus action (this is the truncated current algebra analog of the statement that the eigenvectors

are defined up to multiplication of the diagonal matrix). There are many possible choices for

the Darboux coordinats in this situation, our aim to find one of them; it is convenient to use

the following change

L1 = Q−1
0 Q1,

then Liouville form transforms to

Θ = Tr
[
Λ1dL1 + (Λ0 + [L1,Λ1])Q

−1
0 dQ0

]
.

The Liouville form is always defined up to a closed form. Since Λ1 is an invariant of the

co-adjoint orbit (i.e. is a constant) the term

Λ1dL1 = d (Λ1L1)

is exact, so we may drop it. The equation for the differential form therefore simplifies to

Tr
[
(Λ0 + [L1,Λ1])Q

−1
0 dQ0

]
=

m(m−1)∑
i=1

pidqi,

which allows us to pick our Darboux coordinates in such a way that Q0 depends only on

q1, . . . qm(m−1) (i.e.Q0 is a section of a principal bundle over the Lagrangian sub-manifold),

while the entries of L1 are given by solution of m(m− 1) linear equations. For example we can

we may take off-diagonal entries of Q0 as the coordinates on the Lagrangian sub-manifold. By
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using the torus action, we can make the following choice of Q0:

Q0 =



1 q1 . . . . . . qm−1

0 1 qm . . . q2m−3

... 0
. . .

. . .
...

0 . . . 0 1 qm(m−1)
2

0 . . . . . . 0 1





1 0 . . . . . . 0

qm(m−1)
2

+1
1 0 . . . 0

qm(m−1)
2

+2
qm(m−1)

2
+3

1
. . . 0

...
...

. . .
. . .

...

q(m−1)2 . . . . . . qm(m−1) 1


.

For sl2 we have

Λi =

 θi 0

0 −θi

 , Q0 =

 1 q1

0 1


 1 0

q2 1

 , L1 =
1

2θ1

 0 −p2

p2q
2
2 − 2θ0q2 + p1 0


and A goes to

A(z) =
2θ1
z2

 q1q2 + 1/2 − (q1q2 + 1) q1

q2 −q1q2 − 1/2

+

+
1

z

 p1q1 − q2p2 + θ0 −p1q21 + (2q1q2 + 1) p2 − 2θ0q1

p1 −p1q1 + q2p2 − θ0

 . (5.4.9)

If we take into account the outer action of SL2, the leading term can be chosen in diagonal

form and we have

Q−1
1 A(z)Q1 =

θ1
z2

 1 0

0 −1

+
1

z

 θ0 p2

p2q
2
2 − 2 θ0q2 + p1 −θ0


In the case of degenerated orbit, when

Λ2 =

 0 1

0 0


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we have

L2 =

 1 + p2 0

− (1+p2)q22−q22−2λ1q2+p1
2q2

1

 , Q2 =

 q1q2p2
2 + q1q2 + p2 + 1 + λ1q1 − q1p1

2q2
q1

p2q2
2 + q2 + λ1 − p1

2q2
1


and A goes to

A(z) =
1

z2

 − (q1q2 + 1) q2 (q1q2 + 1)2

−q22 (q1q2 + 1) q2

+

+
1

z


(
q1 +

1
2q2

)
p1 − p2q2

2

(
−q21 −

q1
q2

)
p1 + p2 (q1q2 + 1)

p1

(
−q1 − 1

2q2

)
p1 +

p2q2
2

 (5.4.10)

Diagonal gauge gives

Q−1
1 A(z)Q1 =

1

z2

 0 1

0 0

+
1

z

 q22p2+p1
2q2

p2

0 − q22p2+p1
2q2



Third order pole. Takiff algebra of degree 2

In this case, the parametrisation in terms of lifted Darboux coordinates is given by

A(z) =
Q0P2

z3
+
Q0P1 +Q1P2

z2
+
Q0P0 +Q1P1 +Q2P2

z
,

so that the extended phase space is of dimension 6m2. The moment map is given by the

equations

P2Q0 = Λ2, P1Q0 + P2Q1 = Λ1, P0Q0 + P1Q1 + P2Q2 = Λ0.

Here we again use the following change of variables

L1 = Q−1
0 Q1, L2 = Q−1

0 Q2
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that maps the Liouville form to

Θ = Tr
(
Λ2dL2 + Λ1dL1 − Λ2L1dL1 + (Λ0 + [L2,Λ2] + [L1,Λ1 − Λ2L1])Q

−1
0 dQ0

)
.

As in the previous case, the first 2 terms are closed differential forms, so we can drop them.

The dimension of the reduced phase space equals to 3m(m − 1) = 3N and we consider the

following parametrisation

Tr(−Λ2L1dL1) =

N/2∑
i=1

pidqi, Tr
[
(Λ0 + [L2,Λ2] + [L1,Λ1 − Λ2L1])Q

−1
0 dQ0

]
=

3N/2∑
i=N/2+1

pidqi.

For simplicity, let us denote

Θ1 = Tr(−Λ2L1dL1), Θ2 = Tr
[
(Λ0 + [L2,Λ2] + [L1,Λ1 − Λ2L1])Q

−1
0 dQ0

]
,

so that Θ = Θ1+Θ2. Now if we will find the right parametrisation of L1, we may put Q0 to be a

matrix which depends only on qN/2+1, . . . q3N/2 (i.e. again Q0 depends only on the coordinates

of Lagrangian sub-manifold) and then obtain L2 by solving a system of linear equations. In

non-degenerate case when Λ2 is a semi-simple matrix with distinct eigenvalues ζi we have

Θ1 =
∑
i<j

−ζi(L1)ijd(L1)ji − ζj(L1)jid(L1)ij =

∑
i<j

(ζi − ζj)(L1)jid(L1)ij − d(ζi(L1)ij(L1)ji) ≃
∑
i<j

(ζi − ζj)(L1)jid(L2)ij

and we see that a natural choice of the Darboux coordinates are the off-diagonal entries of L1,

such that

{(L1)ij , (L1)kl} = sgn(j − i)δkjδli(ζi − ζj).

In the case of sl2 we have

Λ2 =

 θ2 0

0 −θ2

 , L1 =

 . . . q1

p1
2θ2

. . .

 .

Here the diagonal part of L1 is irrelevant, since it does not contribute to Θ1,Θ2 and generally

may be be chosen to be zero by a torus action. Solving the linear equations for the Cartan form
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Θ2 we obtain

Λi =

 θi 0

0 −θi

 , Q0 =

 1 q1

q2 1



L1 =
1

2θ2

 0 (p2q2 + p3q3 − θ0)q1 − p2 +
θ1
θ2
p3

p1 − p1q1q2 + (p3q3 − θ0)q2 − 2θ1q3 0


Here we take in a slightly different form of Q0 respect to the previous example for the sake of

obtaining a neater final formula. The matrix A(z) takes form

A(z) =
1

z3
1

1− q1q2

 θ2 (q1q2 + 1) −2 θ2q1

2 q2θ2 −θ2 (q1q2 + 1)

+

+
1

z2
1

1− q1q2

 θ1q1q2 + 2 θ2q1q3 − q2p3 + θ1 −2 q21q3θ2 − 2 θ1q1 + p3

−q22p3 + 2 θ1q2 + 2 θ2q3 −θ1q1q2 − 2 θ2q1q3 + q2p3 − θ1

+

+
1

z

 p1q1 − q2p2 − p3q3 + θ0 −p1q12 + p3q1q3 − θ0q1 + p2

−p2q22 − p3q2q3 + θ0q2 + p1 −p1q1 + q2p2 + p3q3 − θ0

 (5.4.11)

The diagonal gauge gives

Q−1
0 A(z)Q0 =

1

z3

 θ3 0

0 −θ3

+
1

z2

 θ1 p3

2 θ2q3 −θ1


+

1

z

 −p3q3 + θ0 −p2q1q2 − p3q1q3 + θ0q1 + p2

−p1q1q2 + p3q2q3 − θ0q2 + p1 p3q3 − θ0

 (5.4.12)

Choosing another LU parametrisation for Q0, i.e.

Q0 =

 1 q1

0 1


 1 0

q2 1



102



the diagonal gauged system takes form

Q−1
0 A(z)Q0 =

θ3
z3

 1 0

0 −1

+
1

z2

 θ2 −2θ3q1

p1 −θ2

+
1

z

 q1p1 + θ1 p3

p3q
2
3 + (−2q1p1 − 2 θ1) q3 + p2 −q1p1 − θ1

 .

In the degenerate case, when

Λ3 =

 0 1

0 0


reduced Darboux coordinates take form

A(z) =
1

z3

 − (q1q2 + 1) q2 (q1q2 + 1)2

−q22 (q1q2 + 1) q2

+

+
1

z2

 −2q1q
2
2q3 + 2λ2q1q2 + p3q1q2 − 2q2q3 + λ2 +

1
2p3 − (−2q1q2q3 + 2λ2q1 + q1p3 − 2q3) (q1q2 + 1)

(−2q2q3 + 2λ2 + p3) q2 2q1q
2
2q3 − 2λ2q1q2 − p3q1q2 + 2q2q3 − λ2 − 1

2p3

+

+
1

z

1

8q2

 8p1q1q2 − 4p2q
2
2 + 4p3λ2 + p23 + 4p1 −8p1q

2
1q2 + 8p2q1q

2
2 − 8λ2p3q1 − 2p23q1 − 8p1q1 + 8p2q2

8q2p1 −8p1q1q2 + 4p2q
2
2 − 4p3λ2 − p23 − 4p1

 .

(5.4.13)

In the eigenbasis of the leading term we have

Q−1
1 A(z)Q1 =

1

z3

 0 1

0 0

+
1

z2

 λ2 + 1/2 p3 2 q3

0 −λ2 − 1/2 p3

+

+
1

z

1

8q2

 4 p2q
2
2 + 4 p3λ2 + p23 + 4 p1 8 p2q2

−8 q2p3λ2 − 2 q2p
2
3 −4 p2q

2
2 − 4 p3λ2 − p23 − 4 p1

 (5.4.14)
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Fourth order pole. Takiff algebra of degree 3

Here we provide only the result

Q−1
1 A(z)Q1 =

θ4
z4

 1 0

0 −1

+
1

z3

 θ3 −2θ4q3

2θ4q4 −θ3

+

+
1

z2

 2θ4q3q4 + θ2 −θ4q33q24 + (θ3 − 4θ4) q4q
2
3 − θ4q3 + p4

−θ4q23q43 + (θ3 − 4θ4) q
2
4q3 + (2θ3 − θ4) q4 + p3 −2θ4q3q4 − θ2

+

+
1

z

 q3p3 − q4p4 + θ1 p2

p2q
2
2 − 2 p3q2q3 + 2 p4q2q4 − 2 θ1q2 + p1 −q3p3 + q4p4 − θ1

 (5.4.15)

Remark 5.4.7. There is an interesting difference between poles of odd or even order. Indeed,

when the order of pole is even r + 1 = 2k, then the reduced phase space dimension is divisible

by 4, and we have a kind of polarisation. Indeed, for poles of order 2k we locally write the

connection as

A0

z
+ . . .

A2k−1

z2k
,

and the matrices Ak, . . . , A2k−1 form a Poisson commuting family of half the total dimension.

Therefore they define a Lagrangian sub-manifold in the phase space. We can then assume that

these matrices are parameterized by Q0, . . . , Qk−1, Pk, . . . P2k−1 only. In the case pole of odd

order, we will still have that Ak+1, . . . , A2k−1 form a Poisson commuting family, but now this

is not of half the dimension.

5.5 Geometry of the sl2 Takiff algebra co-adjoint orbits and
ramification

The aim of this section is to describe the ramification phenomenon for the sl2 linear systems

with irregular singularities using the classification of the co-adjoint orbits for the corresponding

Takiff algebras. All the results in this section are local by nature. Without loss of generality,
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assume that system has pole of the Poincaré rank r at zero

d

dz
Ψ =

[
Ar

zr+1
+
Ar−1

zr
+ · · ·+ A1

z2
+
A0

z
+O(1)

]
Ψ, Ψ ∈ SL2, Tr(Ai) = 0. (5.5.1)

Due to the results obtained by the confluence procedure, we may treat the Laurent part of

the connection as an element of a co-adjoint orbit of ŝl
r

2. Since the rank of sl2 is one, all the

invariants for the co-adjoint orbit of ŝl
r

2 are given by quadratic Casimirs

Ik =
r∑

j=0

TrAjAr+k−j−1, 0 < k ≤ r + 1,

due to the theorem by Molev [70]. For a generic choice of the values for the invariants Ik, the

formal solution is defined as a divergent series in z and the number of the Stokes rays is 2r.

However, when Ir+1 = 0, i.e. when Ar is conjugated to a Jordan block, the formal solution

is no longer a series in z, but it may be written only as a series in
√
z. The geometry of the

Stokes phenomenon also changes and the number of the Stokes sectors becomes less than 2r.

To illustrate such phenomenon let us give an example which demonstrates ramification for the

classical special functions.

Example 5.5.1. Consider the sl2 linear system with only one pole of order 3 at Z = 0.

Choosing inverse coordinate z = 1
Z such system writes as

d

dz
Ψ = (A2z +A1)Ψ, TrAi = 0. (5.5.2)

Now, let A2 be a semi-simple matrix, then there exist a gauge transformation Φ = gΨ which

sends (5.5.2) to

d

dz
Φ =


 θ 0

0 −θ

 z +

 v w

u −v


Φ,

for some numbers u, v, w. Reducing the system to a second order ODE we get

d2f

dz2
=
(
θ2z2 + 2θvz + uw + v2 − θ

)
f, Φ =

1

u

 df
dz + (θz + v)f

uf


which can be solved via parabolic cylinder functions. The number of Stokes sectors in such

case is 4, since solution behaves as exp(±z2/2) at ∞. Now let us assume that A2 is a non-zero
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nilpotent matrix. The there exists a gauge which sends (5.5.2) to

d

dz
Φ =


 0 1

0 0

 z +

 v w

u −v


Φ.

Rewriting the system as a second order ODE we get

d2f

dz2
=
(
uz + uw + v2

)
f, Φ =

1

u

 df
dz + vf

uf


whose solution writes via general solution of the Airy equation. The asymptotic solution of the

Airy equation is of the following form

y±(z) ∼ exp

(
∓2

3
z−

3
2

)
z

1
4

∑
m≥0

amz
m.

and defines 3 Stokes sectors. Computing the Takiff co-adjoint invariants in both cases we see

that Airy case corresponds to the co-dimension one hyperplane

I3 = TrA2
2 = 0

in the space of parameters (I1, I2, I3), while for the parabolic cylinder case I3 = 2θ2 ̸= 0.

Ramification was studied before in the context of differential equations without refering to

the co-adjoint orbits of the Takiff algebras. See [89] for the details. Connection with co-adjoint

invariants of the Takiff algebra gives an opportunity to consider transition from the generic

system to the ramified one as a transition from the generic co-adjoint orbit to the special one.

Such special orbit can be seen as an analogue of the nilpotent cone in the Takiff algebra.

5.5.1 Normal forms of the element in the Takiff algebra ŝl
r

2

The aim of this section is to provide classifications of the co-orbits in the Takiff algebra over

sl2.

Theorem 5.5.2. Let A(z) is an element of the Takiff co-algebra ŝl
r⋆

2 . Then it can be sent by
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the co-adjoint action of the group to the one of the following forms

A(z) = Âd
⋆

g(z)Λ(z), Λ(z) =



1
zr+1

 θr + θr−1z + · · ·+ θ0z
r 0

0 −(θr + θr−1z + · · ·+ θ0z
r)



1
zr+1

 0 1

θr−1z + · · ·+ θ0z
r 0


(5.5.3)

where θ1, θ2, . . . θr are the invariants on the orbit.

Proof. First of all let us proof that θi are invariants of the orbit. Indeed, let A(z) = Λ(z), then

using formulas for the quadratic invariants (5.4.7) in the diagonal case we get

Ik = 2
r∑

j=0

θjθr+k−j .

In the case when the leading term is nilpotent we get

Ir+1 = 0, Ik = θk.

Now let us proof the statement about the normal form. Consider co-adjoint action of the

corresponding Takiff group.

Definition 5.5.3. The Takiff group is a Lie group given by the application of the exponential

map to the corresponding Takiff algebra.

Lemma 5.5.4. Let v(z) is an element of the Takiff group corresponding to the Lie algebra ĝl
r

2,

then there exists such g0 ∈ GL2 and gi ∈ gl2 for i = 1..n, s.t.

v(z) = (1 + gnz
n)(1 + gn−1z

n−1) . . . (1 + g1z)g0, g0 ∈ GL2, gi ∈ gl2. (5.5.4)

This decomposition is defined uniquely.

Proof. Proof of this lemma is a straightforward computation - v(z) depends linearly on each
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gi. On the other hand we may write v(z) as

v(z) = v0 +
n∑

i=1

viz
i, v0 ∈ GL2, vi ∈ Matm×m . (5.5.5)

with some requirements for vi. Comparing the terms in front of each power of z in (5.5.4) and

(5.5.5), we obtain linear matrix equations for the coefficients gi. The solution is

gk = vkg
−1
0 −

∑
α∈Π(k)

gαmgαm−1 . . . gα1 .

Here Π(k) is a set of the ordered monotone partitions of the number k and α is a vector of

partition, i.e.

α = (α1, . . . αm) ∈ Π(k) ⇒
0 < α1 < α2 < · · · < αm

α1 + α2 + · · ·+ αm = k
.

The explicit formulas can be seen as some summation over some special Young diagrams.

However, here we are not interested in explicit formulas, but we want to emphasize that every

element of the truncated loop group has unique decomposition of the form

T (z) = (1 + gnz
n)(1 + gn−1z

n−1) . . . (1 + g1z)g0 = Gm . . . G1g0. (5.5.6)

Now let us show that gk ∈ gl2 for k > 0. Indeed g0 ∈ GL2 and 1 + zkgk are the generators of

the Lie group, which tangent space is a ĝl
r

2, then choosing entries of gk for k > 0 as a linear

coordinates in the Lie group we get that gk are in gl2.

Remark 5.5.5. Provided description of the Takiff group for gl2 seems to be new, up to the

knowledge of the author. It can be easily extended gln case.

Remark 5.5.6. Since ŝl
r

2 is a quotient of the ĝl
r

2 by the commutative subalgebra, the co-adjoint

orbits of ŝl
r

2 coincide with the orbits of the conjugation by the Takiff group corresponding to the

ĝl
r
2. Because of that, we use introduced in the lemma 5.5.4 group to investigate normal forms

in ŝl
r

2.

Due to the lemma 5.5.4, co-adjoint action of the Takiff algebra may be decomposed into a

series of co-adjoint actions of the simplier form. Each of these actions has a very nice property -

Ad⋆1+gkzk
leaves invariant the coefficients at the powers z−n−1, z−n, . . . z−n+k+1 for any element
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of the Takiff co-algebra. If we associate element of the Takiff algebra with its coefficients at

powers of z, then the action formally writes as

Ad⋆g0 (Ar, Ar−1, . . . Ak, . . . A0) = (g−1
0 Arg0, g

−1
0 Ar−1g0, . . . , g

−1
0 A0g0)

Ad⋆1+zg1 (Ar, Ar−1, . . . Ak, . . . A0) = (Ar, Ar−1 + [g1, Ar], An−2 . . . Ak, . . . A0)

. . .

Ad⋆1+zkgk
(Ar, Ar−1, . . . Ak, . . . A0) = (Ar, . . . , An−k+1, An−k + [gk, Ar], . . . , Ã0)

. . .

Ad⋆1+zngr (Ar, Ar−1, . . . Ak, . . . A0) = (Ar, Ar−1, . . . , A1, A0 + [gr, Ar])

(5.5.7)

Then, choosing g0 to be a transition matrix to the basis in which Ar is in it’s Jordan form Λr,

we find gi by solving linear equations

Ar−k + [gk,Λr] ∈ ker adΛr .

In case when Λr is diagonal ker adΛr = h, while in case when Λr is nilpotent, i.e. Λr ∈ e, kernel

ker adΛr is anti-borel algebra f.

5.5.2 Local solutions near irregular singularity. Gauge and unfold

Now we explain how the normal forms introduced in the previous subsection are related to the

formal solutions near the irregular singularity. Firstly, let us demonstrate the link between the

co-adjoint action in the Takiff algebras and the gauge transform. Let G(z) be an element of

the gauge group, such that G(0) ∈ SL2. Then the gauge transform may be written as

G(z)−1

[
Ar

zr+1
+
Ar−1

zr
+ · · ·+ A1

z2
+
A0

z
+O(1)

]
G(z)−G(z)−1 d

dz
G(z) =

= ÂdG̃

[
Ar

zr+1
+
Ar−1

zr
+ · · ·+ A1

z2
+
A0

z

]
+O(1), (5.5.8)

where G̃ is the r-th jet of G(z), i.e.

G(z) =

∞∑
i=0

giz
i → G̃(z) =

r∑
i=0

giz
i.
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Then there are two options - the first one is that there is a G(z) such that the Laurent part after

the gauge is diagonal. This is the non-ramified case and we may use formal asymptotic solution

written as a divergent series in the local coordinate z. The second option is that the Laurent

part has a non-trivial nilpotent leading term which allows us use a gauge transformation which

sends system to the form

d

dz
Ψ =


 0 1

zr+1

0 0

+

 0 0

θr−1

zr 0

+ · · ·+

 0 0

θ0
z 0

+O(1)

Ψ.

However, to write down a local solution we have to diagonilize the Laurent part. The general

theory for rank n systems is given in the book by Wasow, however in the sl2 case there is a way

to do it geometricaly and see the ramification explicitly. Let k be the the integer such that

θk−1 ̸= 0, ∀l ≥ k : θl = 0,

then locally we have

d

dz
Ψ =


 0 1

zr+1

θk−1
zk

0

+O
(
z−k+1

)Ψ. (5.5.9)

Lemma 5.5.7. The gauge transformation of the form

Ψ =

 z
k
2
− 1

2
− r

2 −z
k
2
− 1

2
− r

2√
θk−1

√
θk−1

Φ,

Transforms (5.5.9) to the following system

d

dz
Φ =

 1

(
√
z)k+r+1

 √
θk−1 0

0 −
√
θk−1

+O

(
1

(
√
z)k+r

)Φ.

Proof. Passing to the double covering coordinate w2 = z we get a local differetial equation in

w with diagonal leading term. The number of Stokes sectors is 2(r + k) on the double cover

and r + k in the initial local coordinate z. The theorem provide a scheme which connects the
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0 ∞

∞
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0 ∞
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0 ∞

Figure 5.3: Confluence scheme for Painlevé equations. Each triangle at this diagram corre-
sponds to the Takiff algebra Darboux coordinates which was introduced at the Fig. 5.6.1. Red
arrows stand for confluence procedure, while green ones for remification.

degeneration in the Takiff algebra with the degeneration of the Stokes phenomenon

(Ir+1, Ir, Ir−1, . . . I1) : 2r Stokes sectors

(0, Ir, Ir−1, . . . I1) : 2r − 1 Stokes sectors

(0, 0, Ir−1, . . . I1) : 2r − 2 Stokes sectors

. . .

(0, 0, 0, . . . 0, I1) : r + 1 Stokes sectors.

From that perspective to study ramified systems like the isomonodromic problem for Painlevé

I, degenerated Painlevé III (D7 and D8) or degenerated Painlevé V, we have to perform a

reduction from the coadjoint orbit with nilpotent leading term.

5.6 The Painlevé equations

5.6.1 General scheme

The confluence diagram of the Darboux parametrisations in the case of rank 2 non-ramified

connections with 4 points is given at Fig. 5.3.
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The Hamiltonians of the isomonodromic problem with irregular singularities of the Poincaré

rank ri at point ui allow additional symmetries with respect to the inner action (choice of

the spectral invariants at each singularity) and outer action (gauge group action). Using the

Darboux parametrisation of the co-adjoint for the sl2–Takiff algebras, we automatically fix

spectral invariants, i.e. reduce with respect to the inner action. The only symmetry which still

needs to be taken into account is the gauge freedom which leads to the fully reduced phase space.

In all the examples of this section, we write down Darboux coordinates with partly resolved

gauge group moment map by diagonalizing the leading terms at one of the irregular singularities.

We do it automatically by writing diagonal gauge intermediate Darboux coordinates for the

Takiff algebra co-adjoint orbit. Therefore, the number of the intermediate coordinates in all

examples is 4 and not 6 (because we have eliminated 2 coordinates by diagonalisation). Such

coordinates are in correspondence with the Darboux coordinates which were used in [45]. In

order to reduce to the smallest dimension of the system (namely 2), we have to always reduce

with respect to the action of the stabilizer of the leading term. The same scheme works for the

ramified cases, which corresponds to the special choice of the moment map.

5.6.2 Painlevé V

The Isomonodromic problem takes form

d
dλΨ =

(
A(0)

λ + A(t)

λ−t +B1

)
Ψ

d
dtΨ = −A(t)

λ−tΨ.

(5.6.1)

Deformation equations are

d

dt
A(0) =

1

t
[A(t), A(0)],

d

dt
A(t) =

1

t
[A(0), A(t)] + [B1, A

(t)],
d

dt
B1 = 0. (5.6.2)

The Poisson algebra is given by

{
A(i)

,⊗A(i)
}
= [Π, I⊗A(i)],

{
A(0)

,⊗A(t)
}
=
{
A(0)

,⊗B1

}
=
{
A(t)

,⊗B1

}
=
{
B1 ,⊗B1

}
= 0

(5.6.3)
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Isomonodromic Hamiltonian writes as

HV = res
λ=t

Tr

(
A(λ)2

2

)
= Tr

(
A(t)B1 +

1

t
A(t)A(0)

)
. (5.6.4)

In the sl2 case Darboux parametrisation of the elements of the coadjoint orbit takes form

A(0) =

 p0q0 − θ0 −(p0q0 − 2θ0)p0

q0 −p0q0 + θ0

 , A(t) =

 ptqt − θt −(ptqt − 2θt)pt

qt −ptqt + θt

 ,

with the symplectic form

ω = dpt ∧ dqt + dp0 ∧ dq0.

Using gauge freedom, we set a constant matrix B to be diagonal

B1 =

 k 0

0 −k

 .

In such parametrisation Hamiltonian takes form

H = res
λ=t

Tr

(
A(λ)2

2

)
= 4k(ptqt − θt)−

2

t
(qtq0(pt − p0)

2 − 2(q0θt − qtθ0)(pt − p0)− 2θ0θt) =

= 4k(ptqt − θt)−
2qtq0
t

(
pt − p0 −

θt
qt

+
θ0
q0

)2

+
2

t

(
θ2t
q0
qt

+ θ20
qt
q0

)
.

This Hamiltonian is invariant under the following rescaling

pi → piα, qi →
qi
α

which is the same as the gauge SL(2) action via diagonal matrix. The moment map is

q0p0 + qtpt.

The change of the coordinates

I = q0p0 + qtpt, ϕ = ln(q0), u = − qt
q0
, v = ptq0,
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is a canonical transformation. Resolving it with respect to the q’s and p’s we obtain

q0 = eφ, qt = −eφu, p0 = e−φ(I + uv) pt = e−φv,

and the symplectic form goes to

ω = dpt ∧ dqt + dp0 ∧ dq0 = dI ∧ dφ+ dv ∧ du.

The Hamiltonian in these coordinates writes as

H = −4k(uv + θt) + 2
u

t

(
v − I − uv +

θt
u

+ θ0

)2

− 2

t

(
θ2t

1

u
+ θ20u

)

and it is obvious that I and φ are the part of the action-angle variables, so we may decrease

degrees of freedom by 1 and consider the following Hamiltonian system

H = −4k(uv+θt)+2
u

t

(
v − a− uv +

θt
u

+ θ0

)2

− 2

t

(
θ2t

1

u
+ θ20u

)
, ω = dv∧du, a = const .

The equations of motion take form

u̇ =
∂H

∂v
= −4ku+

4u

t
(1− u)

(
v − a− uv +

θt
u

+ θ0

)

v̇ = −∂H
∂u

= 4kv−2

t

(
(v − uv − a+

θt
u

+ θ0)
2 − 2u(v − uv − a+

θt
u

+ θ0)

(
v +

θt
u2

)
+
θ2t
u2

− θ20

)
.

Writing second order ODE for u we obtain

d2u

dt2
=

(
1

u− 1
+

1

2u

)(
du

dt

)2

−1

t

du

dt
+8θ0

(u− 1)2

t2

(
u−

(
θt
θ0

)2 1

u

)
+4k(4(a−θ0−θt)−1)

u

t
−8k2

u(u+ 1)

u− 1

which is the Gambier’s form of the Painlevé V equations and the constants are given by

θ0 =
α

8
, θ2t = −αβ

64
, k2 = −δ

8
, 4k(4(a− θ0 − θt)− 1) = γ.

The following canonical transformation

u =
x

x− 1
, v = −((x− 1)y + a− 2θ0)(x− 1), dv ∧ du = dy ∧ dx,
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send H to the following form

tH = 2x(x− 1)y2 + 4(ktx(x− 1) + x(θt − θ0)− θt)y + 4(xkt(a− 2θ0)− θt(kt− θ0))

which was introduced in [58]. The example of the Painlevé V equation as a system written on

the co-adjoint orbits of the Takiff algebra was recently studied by [57] in more details.

5.6.3 Painlevé IV

The connectionis

A(λ) =
A(t)

λ− t
−B1 −B2λ (5.6.5)

and the deformation one-form is

Ω = − A(t)

λ− t
dt. (5.6.6)

Deformation equations are

Ȧ(t) = [A(t), B1 +B2t], Ḃ1 = [B2, A
(t)], Ḃ2 = 0.

The Poisson structure is

{A(t)
,⊗A(t)} = [Π, 1⊗ C], {B1 ,⊗B1} = [Π, 1⊗B2], {B1 ,⊗B2} = {B2 ,⊗B2} = 0.

Hamiltonian writes as

H = res
λ=t

Tr
A2

2
= −Tr

(
A(t)B1 + tA(t)B2

)
. (5.6.7)

Since B3 is a constant of motion the same holds for the transition matrix to the eigenbasis

to B3. This allows us to consider the gauge, which is equal to this transition matrix without

changing the Poisson structure of A(t). In the case of sl2 we have

A(t) =

 ptqt − θt − (ptqt − 2θt) pt

qt −ptqt + θt

 , −B2λ−B1 = −λθ3

 1 0

0 −1

−

 θ2 −2θ3q3

p3 −θ2


(5.6.8)
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The Hamiltonian writes as

H = (ptqt − 2θt) ptp3 − 2 (ptqt − θt) (tθ3 + θ2) + 2θ3q3qt. (5.6.9)

Since B3 is a diagonal matrix (has no Jordan blocks) the stabilizer is the Cartan torus of SL2,i.e.

S =

 h 0

0 1/h


The additional action of the stabilizer of B3 leads to the following action on the reduced phase

space

qt →
qt
h2
, pt → h2pt, q3 → h2q3, p3 →

p3
h2
,

which is Hamiltonian with the following moment map

I = q3p3 − qtpt.

Using the symplectic change of coordinates

q3 = eϕ, qt = e−ϕu, p3 = e−ϕ(I+uv), pt = eϕv, dp3∧dq3+dpt∧dqt = dI ∧dϕ+dv∧du

(5.6.10)

and fixing the level set of moment map I = I0 = const we reduce to the system with one degree

of freedom

H = (uv − 2θt) v (uv + I0)− 2 (uv − θt) (tθ3 + θ2) + 2θ3u. (5.6.11)

Finally, using the change of variables

u = x(xy − I0), v =
1

x
, dv ∧ du = dy ∧ dx

sends Hamiltonian to the Okamoto form of PIV

H = 2yx2 +
(
θ3y

2 + (−2tθ3 − 2 θ2) y − 2I0
)
x+ (−I0θ3 − 2θ3θt) y (5.6.12)

Taking

θ3 = −1, θ2 = 0, I0 = −θ0, θt = −1

2
(θ∞ + θ0)
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we obtain the PIV Hamiltonian

H = 2yx2 − (y2 + 2ty + 2θ0)x+ θ∞y.

5.6.4 Degenerated Painlevé IV. Flashka-Newell Painlevé II.

The degenerated case corresponds to the situation when the co-adjoint orbit of Takiff algebra

is the co-adjoint orbit of the Jordan form

B3λ+B2 +
1

λ
B1 ∼ λ

 0 1

0 0

+

 0 0

θ2 0

+
1

z

 0 0

θ1 0

 ,

here conjugation is considered via adjoint action of Takiff group. The Darboux parametrization

takes form

A(t) =

 ptqt − θt − (ptqt − 2θt) pt

qt −ptqt + θt

 , −B3λ−B2 = −λ

 0 1

0 0

−

 1
2p3 2q3

θ2 −1
2p3

 .

(5.6.13)

The Hamiltonian (5.6.7) takes form

H = −1

2
(ptqt − θt) p3 + (ptqt − 2θt) ptθ2 − qt (t+ 2q3) +

1

2
(−ptqt + θt) p3. (5.6.14)

Stabilizer of B3 now takes values in Borel subgroup

S =

 1 h

0 1


which leads to the following action on the Darboux coordinates

qt → qt, q3 → q3 −
1

2
(h2θ2 + hp3), pt → pt + h, p3 → p3 + h2θ2.

The moment map of this action is a constant of motion of the following form

I =
1

4
p23 + 2θ2q3 + qt.
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After symplectic change of variables

p3 = −2θ2(ϕ+ u), pt = −ϕ, q3 =
v − θ22(ϕ+ u)2

2θ2
, qt = I − v, (5.6.15)

Hamiltonian writes as

H =
v2

θ2
+

(
t− I

θ2
− θ2u

2

)
v + Iθ2u

2 − 2uθ2θt.

Hamilton equations take form

d

dt
v + 2θ2(1− I)uv + 2θ2θtv = 0,

d

dt
u+ t+

2v

θ2
− I

θ2
− θ2u

2 = 0

which are equivalent to

d2

dt2
u = 2θ22u

3 − (2θ2t+ 2I)u+ 4θt − 1.

After some shift and rescaling of time t and solution u this equation gives the Painlevé II

equation.

5.6.5 Painlevé III

The connection takes form

A =
B0

λ
+ t

B1

λ2
+ C (5.6.16)

with deformation one-form

Ω = −B1

λ
dt. (5.6.17)

Poisson algebra is

{C ,⊗C} = {C ,⊗B0,1} = {B1 ,⊗B1} = 0, {B0 ,⊗B0} = [Π, 1⊗B0], {B0 ,⊗B1} = [Π, 1⊗B1]

(5.6.18)

Hamiltonian is given by

H =
1

2
res
λ=0

Tr
λ

t
A2 = Tr

(
CB1 +

B2
0

2t

)
. (5.6.19)
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In the case of sl2, choosing the gauge such that C is diagonal we have the following Darboux

parametrisation

B0 =

 p1q1 − p2q2 + θ1 −p1q21 + (2q1q2 + 1) p2 − 2θ1q1

p1 −p1q1 + p2q2 − θ1



B1 =

 2q1q2θ2 + θ2 −2θ2 (q1q2 + 1) q1

2θ2q2 −2q1q2θ2 − θ2

 , C =

 θ3 0

0 −θ3

 . (5.6.20)

Hamiltonian writes as

tH = p22q
2
2 + 4tθ2θ3q1q2 − 2θ1p2q2 + p1p2. (5.6.21)

The stabilizer of C (SL2 torus) action gives integral of motion

I = q1p1 − q2p2.

In order to reduce the degrees of freedom we use change of variables

q1 = eϕ, q2 = −e−ϕu, p1 = e−ϕ(I+uv), p2 = −eϕv, dp1∧dq1+dp2∧dq2 = dI∧dϕ+dv∧du

which leads to the following Hamiltonian

tH = v2u2 −
(
v2 + 2θ1v + 4tθ2θ3

)
u− I0v (5.6.22)

where I0 is a level set of the first integral I. Obtained Hamiltonian corresponds to the Painlevé

III equation of type D6 after some choice of constants. To obtain degenerations to D7 and D8

we have to consider nilpotent orbits.

5.6.6 Painlevé III D7

In this case we consider situation when C is rank 1 matrix, i.e.

C =

 0 1

0 0

 .
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The Hamiltonian takes form

tH = p22q
2
2 + 2tθ2q2 − 2θ1p2q2 + p1p2. (5.6.23)

The Hamiltonian doesn’t depend on q1 so

p1 = I0 = const,

which coinsides with the moment map for the additional action of the stabilizer for C. Changing

p2 to v and q2 to u we obtain

tH = u2v2 + 2θ2tu− 2θ1uv + I0v, ω = dv ∧ du,

which coinsides with the Hamiltonian of Painlevé III D7.

5.6.7 Painlevé III D6

Here we also consider the co-adjoint orbit at 0 to the nilpotent orbit. The Darboux parametriza-

tion takes form

B1 =


(
q1 +

1
2q2

)
p1 − p2q2

2 − θ1
2q2

(
−q21 −

q1
q2

)
p1 + p2 (q1q2 + 1) + θ1

q1
q2

p1

(
−q1 − 1

2q2

)
p1 +

p2q2
2 + θ1

2q2



B2 =

 − (q1q2 + 1) q2 (q1q2 + 1)2

−q22 (q1q2 + 1) q2

 (5.6.24)

Hamiltonian takes form

tH =
q22p

2
2

4
− tq22 +

p1p2
2

+ θ1
p2
2

+
1

4

p1
2

q22
− 1

4

(p1 − θ1)
2

q22

Fixing the first integral

p1 = I0

we obtain

tH =
u22v

2
2

4
− tu22 +

1

2
(I0 + θ1)v +

1

4

I0
2

u2
− 1

4

(I0 − θ1)
2

u2
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In case when I0 = −θ1, after the change of variables

u =
1
√
q
, v = −2q

3
2

(
p+

1

2q

)

we obtain Painlevé III D8 Hamiltonian

tH = q2p2 + qp+ θ21q −
t

q
.

5.6.8 Painlevé II. Jimbo-Miwa

The connection takes form

A(λ) =
B3

λ4
+
B2

λ3
+
B1 + tB3

λ2
+
B0

λ
. (5.6.25)

Deformation one form is

Ω = −B3

λ
dt (5.6.26)

Deformation equations are

d

dt
B3 = [B2, B3],

d

dt
B2 = [B1, B3],

d

dt
B1 = [B0 − tB2, B3],

d

dt
B0 = 0. (5.6.27)

The Poisson structure is given by

{
Bi ,⊗Bj

}
= [Π, I⊗Bi+j−1] (5.6.28)

Hamiltonian takes form

H = res
λ=0

Trλ3
A(λ)2

2
= Tr

(
B2

1

2
+B0B2 + tB1B3

)
, (5.6.29)

here we drop TrB2
3 part since it is a Casimir. Since we assume that for Painlevé II there is no

singularity at ∞, the value of the gauge group moment map should be put to zero, i.e.

B0 = 0. (5.6.30)

121



Such reduction, has to be viewed as a Hamiltonian reduction written on the co-adjoint orbit of

the Takiff algebra ĝ3, so we have to change not only Hamiltonian, but also the Poisson structure.

However, usually the second Painlevé equation isomonodromic problem writes in chart where

the only singularity is at ∞. The connection takes form

A(λ) = B3λ
2 +B2λ+B3t+B1. (5.6.31)

Here we already resolve the gauge group moment map, by setting residue at ∞ to be zero. The

deformation one-form then my be written as

Ω = (B3λ+B2) dt.

The deformation equations are

Ḃ3 = 0, Ḃ2 = [B3, B1], Ḃ1 = t[B2, B3] + [B2, B1].

The deformation equations are Hamiltonian, with Hamiltonian written as

H = res
λ=0

Tr
A2

2λ
= Tr

(
B2

1

2
+ tB1B3

)
. (5.6.32)

To obtain Painlevé II equation we consider the sl2 case. Darboux parametrisation is given by

B3 =

 θ4 0

0 −θ4

 , B2 =

 θ3 −2θ4q3

2θ4q4 −θ3

 ,

B1 =

 2θ4q3q4 + θ2 −θ4q33q24 + (θ3 − 4θ4) q4q
2
3 − θ4q3 + p4

−θ4q23q43 + (θ3 − 4θ4) q
2
4q3 + (2θ3 − θ4) q4 + p3 −2θ4q3q4 − θ2

 .

The Hamiltonian takes form

H = −(2θ4q3q4 + θ2)
2 − 2t(2θ4q3q4 + θ2)θ4 − ((θ3 − 4θ4)q4q

2
3 − θ4q3 + p4

− θ4q
3
3q

2
4)((θ3 − 4θ4)q

2
4q3 + (2θ3 − θ4)q4 + p3 − θ4q

2
3q

3
4). (5.6.33)
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The action of stabilizer of B4 gives us the moment map

I = p3q3 − p4q4

which gives us the following change of variables (p3, p4, q3, q4) → (I, v, ϕ, u)

p3 = e−ϕ(I+uv), p4 = eϕv, q3 = eϕ, q4 = e−ϕu, dp3∧dq3+dp4∧dq4 = dv∧du+dI∧dϕ.

The Hamiltonian then writes as

H = −(2θ4u+θ2)
2−2t(2θ4u+θ2)θ4−(v−θ4u2+(θ3−4θ4)u−θ4)(uv+(θ3−4θ4)u

2+(2θ3−θ4)u+I−θ4u3)

The change of variable

v = w +
1

2u
(2θ4u

3 − 2u2θ3 + 8θ4u
2 − 2uθ3 + 2θ4u− I), w = −p

q
, u = −q

2

2

gives us

H =
p2

2
− θ24q

4 +

(
2θ24t+ 2θ2θ4 −

θ23
2

)
q2 − I2

2q2

which is the Hamiltonian of P34 equation, which is equivalent to Painlevé II in case when I = 0.

Remark 5.6.1. The isomonodromic problem with connection matrix (5.6.31) corresponds to

the non-autonomous version of the famous Nahm top which first appeared in [73]. Treating

the variable t as a constant, we obtain an integrable system with Lax matrix (5.6.31) which is

gauge equivalent to the Lax matrix for the Nahm equation. This gives the explicit Hamiltonian

formulation of the Nahm equation in terms of the coadjoint orbits of the Takiff algebras. This

should coincide with the Hamiltonian formalism for the Nahm equations introduced in [81].

5.6.9 Painlevé I. Degenerated Jimbo-Miwa problem.

We use the same setup as in previous case of Painlevé II, but consider degenerated case when

B4 =

 0 1

0 0

 .
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Then Darboux parametrization takes form

B3 =

 −q4 q3q4

θ1 q4

 , B2 =

 (2θ1 − q24)q3 − q4 + θ2 +
p3
q4

p4 − 1− θ1(q
2
3)−

(
q4 +

p3
q4

)
q3

−θ1q3q4 − q24 −(2θ1 − q24)q3 + q4 − θ2 − p3
q4

 .

In order to make the calculations more compact we use the following symplectic transformation

p3 = −2θ1q2 − p2q1 + q21, p4 =
2q2q

2
1 − p1q

2
1 − p2q2q1 − θ1q

2
2 + q21

q21
, q3 = −q2

q1
, q4 = −q1,

and Darboux parametrization writes as

B3 =

 q1 q2

θ1 −q1

 , B2 =

 q1q2 + zq1 + p2 + θ2 zq2 + z2 − p1 + t

zθ1 − θ1q2 − q21 −q1q2 − zq1 − p2 − θ2

 .

Hamiltonian writes as

H = −q21q22 − p1q
2
1 − p1q2θ1 + tq21 − 2p2q2q1 − 2q1q2θ2 + q2tθ1 − p22 − 2p2θ2 − θ22.

The action of the stabilizer of B4

C =

 1 c

0 1


takes the following form on a phase space

p1 → p1 + 2c(q1q2 + p2 + θ2)− c2(θ1q2 + q21), q1 → q1 + cθ1,

p2 → p2 + c(q21 − 2q2θ1) + c23q1θ1 + c3θ21, q2 → q2 − 2cq1 − c2θ1.

the moment map is

I = q2q
2
1 + 2p2q1 + 2θ2q1 − θ1q

2
2 − θ1p1.

Applying transformation

p1 = − 1

θ1

(
θ21ϕ

2u+ 2θ1ϕv + 2θ1θ2ϕ+ θ1u
2 + I

)
, q1 = −θ1ϕ,

p2 = −θ21ϕ3 + 2θ1ϕu+ v, q2 = −θ1ϕ2 + u
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we obtain Hamiltonian

H = θ1u
3 + θ1ut+ Iu− (v + θ2)

2.

which is equivalent to the Painlevé I Hamiltonian for a general values of the constants I, θ1.

5.7 Quantum Isomonodromic Hamiltonians and Irregular Knizhnik–
Zamolodchikov system

In this section, we give a general formula for the confluent KZ equations with singularities of

arbitrary Poincaré rank in any dimension. Moreover, we use the lifted Darboux coordinates in

order to generalise an observation by Reshetikhin that the quasiclassical solution of the standard

KZ equations (i.e. with simple poles) is expressed via the isomonodromic τ -function [80]. Here

we propose an easy proof which is valid for any Poincaré configuration of the singularities on

a Riemann sphere. Firstly we review a Reshetikhin approach for the quantum isomonodromic

problems and then produce our proof which is based on the generalisation of an observation by

Malgrange [65].

Throughout this section we work with the canonical quantisation of the linear Poisson

brackets that prescribes the standard correspondence principle

{f, g} −−−→ [f̂ , ĝ] = iℏ{̂f, g}, (5.7.1)

where the symbolˆdenotes the quantum operator, i.e. f̂ is the quantum operator corresponding

to the classical function f . In the case of a semi-simple Lie algebra, ℏ can be written via the

dual Coxeter number and the level. Here we ignore this fact and we focus on the glm case, so

we simply replace the Poisson bracket by the commutator.

More accurately, one can speak about the so–called Rees deformation that assigns to a

filtered vector space R = ∪iRi a canonical deformation of its associated graded algebra gr(R)

over the affine line A1 considered as the spectrum Spec(C[ℏ]) of the polynomials C[ℏ]. The

fiber at the point ℏ is isomorphic to R if ℏ ̸= 0 and to gr(R) for ℏ = 0. The corresponding

C[ℏ]–module here is the direct sum ⊕iRi on which ℏ acts by mapping each Ri to Ri+1 [28].

In our case the Rees construction gives a one-parameter family of algebras Uℏ(g), with the

associated graded algebra U0(g) being the symmetric algebra S(g). The ℏ deformation re-scales
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the bracket by ℏ, so that the ℏ linear terms define the standard Poisson bracket on S(g).

5.7.1 Finite-dimensional representation

In this sub-section, we recall the basic ideas at the basis of Reshetikhin’s approach to quantum

isomonodromic problems for Fuchsian systems and the adapt it to the irregular case. We fix

ℏ = 1 for simplicity.

In the case of the Fuchsian system we are dealing with canonical quantisation of the direct

product of the co-algebras g⋆. The quantisation functor sends the functions on the phase space

of the classical system to the differential operators which act on some Hilbert space in a way that

(5.7.1) holds. In principle, a choice of finite dimensional representation may be seen as a choice

of the special subspace of the Hilbert space of functions on which the algebra of quantum

operators acts. However, we may avoid such complicated construction of finite dimensional

representation when the classical Poisson algebra is given by a linear Poisson bracket. Indeed,

for g⋆ the standard Lie–Poisson bracket endows the space of functions with the structure of

a Lie algebra so that the structure constants of this Poisson algebra are identified with the

structure constants of the Lie algebra g.

In general, the quantisation procedure for the phase space of the Fuchsian system may be

viewed as a map from

g⋆ × g⋆ × · · · × g⋆︸ ︷︷ ︸
n

to the differential operators which act on the tensor product of Hilbert spaces Hi:

H1 ⊗H2 ⊗ · · · ⊗ Hn.

However, the isomonodromic nature of the Hamiltonian systems we consider gives additional

information which may be used to define a quantum problem in a uniform way. Following [54],

we quantise the connection that becomes the generating function for the quantum Hamiltonians.

Considering the connection as a matrix whose entries are functions on the g⋆ × g⋆ × · · · × g⋆,

we obtain a following quantisation for the Fuchsian case:

Â(λ) =

n∑
i=1

Â(i)

λ− ui
, Â(i) =

∑
α

e(0)α ⊗ e(i)α , e(i)α = 1⊗ · · · ⊗ eα
i
⊗ · · · ⊗ 1,
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where e
(i)
α , i = 1, . . . , n is a basis of representation we choose for a quantisation and the first

e
(0)
α corresponds to auxiliary space H0 given by the connection. The Schlesinger Hamiltonians

then transform to

Ĥi =
∑
j ̸=i

Tr(0)(Â(i)Â(j))

ui − uj
, (5.7.2)

where Tr(0) is a trace in the auxiliary space H0. The quantum Schlesinger Hamiltonians Ĥi are

the solutions for the classical Yang-Baxter equations and may be written as

Ĥi =
∑
j ̸=i

rij
ui − uj

, (5.7.3)

where rij is a solution of the classical Yang-Baxter equation

[rij , rik] + [rij , rjk] + [rik, rjk] = 0.

The corresponding set of Schrödinger equations are called Knizhnik–Zamolodchikov equations

and take form

∇iΨ =

 ∂

∂ui
−
∑
j ̸=i

rij
ui − uj

Ψ = 0.

Moreover, the Knizhnik–Zamolodchikov operators commute, i.e.

[∇i,∇j ] = 0 ⇐⇒ ∂

∂ui
Ĥj =

∂

∂uj
Ĥi, [Ĥi, Ĥj ] = 0.

Reproducing the same scheme for the Takiff co-algebras, we obtain the quantisation map that

acts by replacing the co-algebra with the Lie algebra

ĝ⋆r1 × ĝ⋆r2 × . . . ĝ⋆rn × ĝ⋆r∞ −−−→ ĝr1 ⊗ . . . ĝrn ⊗ ĝr∞ . (5.7.4)

The quantum connection then takes the form

Â(λ) =
n∑
i

 ri∑
j=0

B̂
(i)
j

(
t
(i)
1 , t

(i)
2 . . . t

(i)
ri

)
(λ− ui)j+1

 ,
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where B̂(i)’s are given by

B̂
(i)
j (t

(i)
1 , . . . t(i)ri ) =

r∑
k=j

Â
(i)
k M(ri)

j,k (t
(i)
1 , t

(i)
2 . . . t(i)ri ), Â

(i)
k =

∑
α

e(0)α ⊗e(i)α ⊗zki , e(i)α = 1⊗· · ·⊗eα
i
⊗· · ·⊗1.

The Hamiltonians which correspond to the position of poles are given as in the Fuchsian case,

i.e.

Ĥui =
1

2
res
λ=ui

Tr0Â(λ)
2,

where Tr0 is the tarce in the 0-th space, so we now have to choose a quantum ordering, for

example lexigraphical ordering. The irregular Hamiltonians have to be calculated according to

the Theorem 2.0.6 at each irregular singularity changing Tr by Tr0. Again we will choose a

quantum ordering. Thus, we obtain that the irregular Hamiltonians are given by

M(ri)



Ĥ
(i)
1

Ĥ
(i)
2

. . .

Ĥ
(i)
ri


=



Ŝ
(ui)
1

Ŝ
(ui)
2

. . .

Ŝ
(ui)
ri


, Ŝ

(ui)
k =

1

2

∮
Γui

(λ− ui)
kTr0Â

2dλ

at the point ui with the Poincare rank ri. To prove Theorem 2.0.9 we need to show that the

confluent KZ gives a quantum integrable system, namely that the differential operators defined

in (2.0.18), (2.0.19)

∇uj :=
∂

∂uj
− Ĥuj , j = 1, . . . , n

∇(i)
k :=

∂

∂t
(i)
k

− Ĥ
(i)
k , i = 1, . . . , n,∞, k = 1, . . . , ri

commute. This is a simple consequence of the fact that in the quantisation process the deriva-

tives remain commutative, i.e. for example [ ∂
∂uj

, ∂

∂t
(i)
k

] = 0, and that the quantum Hamiltonians

are linear combinations of the quantum Gaudin spectral invariants Ŝ
(ui)
k , k = 0, . . . , ri, which

commute as proved in [71].

We have to mention that for the Fuchsian times the isomonodromic Hamiltonian depends

on each phase space gri linearly – which means that it may be written as

Ĥui ∈ ĝr1 ⊗ . . . ĝrn ⊗ ĝr∞ ⊂ U (ĝr1 ⊕ · · · ⊕ ĝr∞) .
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In the case of irregular times Hamiltonians becomes more complicated – there are quadratic

terms which contains elements from the same space and in general we have that

Ĥ
(i)
k ∈ U(ĝr1)⊗ . . . U(ĝrn)⊗ U(ĝr∞).

The problem of the explicit form of the Hamiltonians introduced in this thesis has to deal

with the U(ĝri) representation theory, which is rather complicated. In order to avoid this rep-

resentational theoretic problems, we write down the quantum Hamiltonians for the irregular

isomonodromic deformations using intermediate Darboux coordinates. For the classical exam-

ples of the Painlevé equations, we provide invariant subspaces for these Hamiltonians. These

subspaces give finite dimensional representations for the Hamiltonians which are the quantum

reduction of the irregular Hamiltonians introduced in this section.

5.7.2 Intermediate Quantum Hamiltonians for Painlevé equations.

In this subsection, we write quantum Hamiltonians for the Painlevé equations written in Dar-

boux coordinates before the reduction with respect to the gauge group action. In the case of

Painlevé VI the gauge group action is not taken into account. For other cases, we partly resolve

the gauge group action by diagonalizing the leading term, but we do not complete the reduction,

we ignore additional Cartan torus action, to obtain quantum operators which leave invariant the

homogeneous polynomials of fixed degree. Since that in the Painlevé VI example the number

of coordinates for sl2 for 4 punctures is 6 while in other examples the number of intermidiate

coordinates is 4 (2 moments + 2 positions). Since we are dealing with Darboux coordinates, the

quantisation process becomes fairly straightforward. In this subsection, we show that for each

of the non-ramified Painlevé differential equations, there is a choice of quantisation such that

the quantum operator acts nicely on the space of homogeneous polynomials. More precisely,

we show that the quantum Hamiltonians invariant subspaces are the homogeneous polynomials

in several variables (3 for Painlevé VI and 2 for others) with fixed degree. In this section we

keep ℏ explicit as that makes it clearer how to extract semi-classical limits.
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Painlevé VI

For the sl2 Fuchsian system we have that the Hamiltonians in the intermediate coordinates take

form

Hi =
∑
j ̸=i

hij
ui − uj

, hij = 2pipjqiqj−p2i qiqj − p2jqiqj−

2θjpiqi − 2θipjqj + 2θipiqj + 2θjpjqi + 2θiθj

(5.7.5)

The quantisation problem is not trivial since we have to choose the ordering for the mixed parts

of Hamiltonian. There are three standard ways of the ordering, which are given by

: p̂iq̂j :=: q̂j p̂i := q̂j p̂i + δijε
(i), ε(i) =


0, left

iℏ, right

iℏ
2 , Weyl

This leads to the following forms of Hamiltonians

Ĥi =
∑
j ̸=i

ĥij
ui − uj

where

ĥij = 2q̂iq̂j p̂ip̂j − q̂iq̂j p̂
2
i − q̂iq̂j p̂

2
j − 2(θj − ε(j))q̂ip̂i − 2(θi − ε(i))q̂j p̂j + 2(θi − ε(i))q̂j p̂i+

+2(θj − ε(j))q̂ip̂j + 2(θi − ε(i))(θj − ε(j))

.

Here we see that different ordering leads to the different shifts of the local monodromies θi →

θi − ε(i). Since that we may consider left ordering without loss of generality, first of all because

different ordering shifts the constants and also this shift is of the order ℏ.

The most remarkable property is that Hamiltonians Ĥi leave invariant the space of ho-

mogeneous polynomials of qi with fixed degree in the following choice of the quantisation

p̂i = −iℏ ∂
∂xi

·, q̂i = xi·. So we may look for a solutions for the set of quantum Schrodinger

equations

iℏ∂uiΨ = ĤiΨ (5.7.6)
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in the following form

Ψ(n) =
∑
|α|=n

wα(u1, .., ui.., um)
m∏
i=1

xαk
i , |α| =

m∑
i=1

αi

which will lead to the non-autonomous linear system of ODE for the wα(u)-s. The resulting

equations in fact are KZ equations, since the equations for wα inherit singularities of Ĥi. Let’s

consider vector

W (n) =



wα1

wα2

..

..

wαN


where αi are the distinct partitions of n with height m (with zero entries). Then W (n) satisfies

the equations

iℏ
∂

∂ui
W (n) −

∑
j ̸=i

M
(i,j)
n

ui − uj
W (n) = 0

where M
(i,j)
n is action of ĥij on homogeneous polynomials of degree n. These equations are

Knizhnik–Zamolodchikov–type equations.

In the case of the Painlevé VI equation we deal with 4-punctured sphere 0, 1, t,∞. The

quantum Hamiltonian then writes as

Ĥ =
1

t

(
2q̂1q̂2p̂1p̂2 − q̂1q̂2p̂

2
1 − q̂1q̂2p̂

2
2 − 2θ2q̂1p̂1 − 2θ1q̂2p̂2 + 2θ1q̂2p̂1 ++2θ2q̂1p̂2 + 2θ1θ2

)
+

1

t− 1

(
2q̂1q̂3p̂1p̂3 − q̂1q̂3p̂

2
1 − q̂1q̂3p̂

2
3 − 2θ3q̂1p̂1 − 2θ1q̂3p̂3 + 2θ1q̂3p̂1 ++2θ3q̂1p̂3 + 2θ1θ3

)
(5.7.7)

Let’s consider simple case where |α| = 1. Substitution of the following function

Ψ(1) = w1x1 + w2x2 + w3x3
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into Schrodinger equation (5.7.6) gives the following system

iℏ
d

dt
w1 =

2iℏθ2(w2 − w1) + 2θ1θ2w1

t
+

2iℏθ3(w3 − w1) + 2θ1θ3w1

t− 1

iℏ
d

dt
w2 =

2iℏθ1(w1 − w2) + 2θ1θ2w2

t
+

2θ1θ3w2

t− 1

iℏ
d

dt
w3 =

2θ1θ2w3

t
+

2iℏθ1(w1 − w3) + 2w3θ1θ3
t− 1

(5.7.8)

which solution is given by the hypergeometric function in the follwing way

w1 =C1t
− 2i

ℏ θ1θ2(t− 1)−
2i
ℏ θ1θ3 + C2t

− 2i
ℏ θ1θ2(t− 1)−

2i
ℏ θ1θ3−2(θ1+θ3)

2F1(2θ2,−2θ3 + 1; 2(θ1 + θ2) + 1; t)

C3t
− 2i

ℏ θ1θ2−2(θ1+θ2)(t− 1)−
2i
ℏ θ1θ3−2(θ1+θ3)

2F1(−2θ1,−2(θ1 + θ2 + θ3) + 1;−2(θ1 + θ2) + 1; t).

Painlevé V

Hamiltonian in the intermediate coordinates is given by

tH = 2tθ∞q1p1 − q0q1p
2
0 + 2q0q1p0p1 − q0q1p

2
1 + 2θ0q1p0 + 2θ1q0p1 + 2θ0θ1 (5.7.9)

Using the same argument as in the previous case, we consider left ordering. Moreover, we see

that if quantise in the following way

q̂i = xi·, p̂i = −iℏ ∂

∂xi
(5.7.10)

the space of homogeneous polynomials in x0 and x1 is invariant under the action of the Hamil-

tonian. Considering example of the degree 2

Ψ(2) = w1x
2
1 + w2x

2
0 + w3x0x1

we get the following system of ordinary differential equations for coefficients

itℏ
d

dt
w1 = −4itθ∞ℏw1 − 2 iθ0ℏw3

itℏ
d

dt
w2 = −2iθ1ℏw3

itℏ
d

dt
w3 = 2ℏ2(w1 + w2)− 2iθ∞tℏw3 − 4θ1iℏw1 − 4θ0iℏw2θ0 − 2ℏ2w3

(5.7.11)
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Painlevé IV

Hamiltonian in the intermidiate coordinates takes form

H = qtp
2
t p3 − 2θtptp3 − 2 (ptqt − θt) (tθ3 + θ2) + 2θ3q3qt. (5.7.12)

The choice of the Lagrangian submanifold for quantisation procedure defines the properties of

the quantum Hamiltonian. Here quantum Hamiltonian will not preserve homogeneous poly-

nomials if we choose standard quantisation (5.7.10). However, choice of the Lagrangian sub-

manifold is irrelevant when we deal with Darboux coordinates and corresponds to the integral

transformation on the quantum level. If we choose the following quantisation

q̂3 = x·, p̂3 = ℏ
∂

∂x
, q̂t = ℏ

∂

∂y
, p̂t = y·

quantum Hamiltonian will preserve degree of homogeneous polynomials. Moreover choice of

the ordering shifts monodromy parameter θt by ℏ-small values. Hamiltonian writes as

Ĥ = y2
∂2

∂x∂y
− 2θty

∂

∂x
− 2 (tθ3 + θ2)

(
y
∂

∂y
− θt

)
+ 2θ3x

∂

∂y
(5.7.13)

Writing down system for second order polynomial wave function

Ψ(2) = w1x
2 + w2y

2 + w3xy,

we obtain system

iℏ
2

d

dt


w1

w2

w3

 =


−(tθ3 + θ2)θt 0 −θ3

−(tθ3 + θ2)θt 2θt − 1

2θt −2θ3 −(tθ3 + θ2)θt




w1

w2

w3

 , (5.7.14)

which may be solved via exponents.
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Painlevé III

Hamiltonian is

tH = p22q
2
2 + 4tθ2θ3q1q2 − 2θ1p2q2 + p1p2.

quantisation is

q̂1 = x·, p̂1 = iℏ
∂

∂x
, q̂2 = iℏ

∂

∂y
, p̂2 = y·

Quantum Hamiltonian (up to ℏ shifts of θ1) takes form

Ĥ = y2
∂2

∂y2
− 2θ1y

∂

∂y
+ 4tθ2x

∂

∂y
+ y

∂

∂x
. (5.7.15)

Writing down system for second order polynomial wave function

Ψ(2) = w1x
2 + w2y

2 + w3xy,

we obtain system

iℏ
d

dt


w1

w2

w3

 =


0 0 4t

0 2− 4θ1 1

2 8t −2θ1




w1

w2

w3

 , (5.7.16)

Painlevé II

Intermediate Darboux coordinates Hamiltonian is

H = (q53q
5
4 + 8q43q

4
4 + 18q33q

3
4 + 12q23q

2
4 + (4t+ 1)q3q4)θ

2
4+

+ (−2q43q
4
4 − 10q33q

3
4 − 10q23q

2
4 − 2q3q4)θ3θ4−

− (p3q
3
3q

2
4 − p4q

2
3q

3
4 − 4p3q

2
3q4 − 4p4q3q

2
4 + 4q3q4θ2 + 2tθ2 − p3q3 − p4q4)θ4+

+ (q33q
3
4 + 2q23q

2
4)θ

2
3 + (p3q

2
3q4 + p4q3q

2
4 + 2p4q4)θ3 + p3p4 (5.7.17)

Choice of the following quantisation

q̂3 = −iℏ ∂
∂x
, p̂3 = x·, q̂4 = y·, p̂4 = −iℏ ∂

∂y
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leads to the invariance of degree of homogeneous polynomial with respect to action. Indeed,

all the monomials in q3, p3, q4 and p4 are such that after quatisation Hamiltonian goes to the

operator which consists of operators with the same number of derivatives and multiplications

in each member. We do not provide explicit form of quantum Hamiltonian and the action on

the eigenspaces since the calculation is straightforward but the answer is too long.

Remark 5.7.1. In this section, we consider deformation quantisation of the intermediate Dar-

boux coordinates. This means that the quantised Hamiltonians are elements of the Weyl algebra

in two variables W[x, y] = C[x, ∂x, y, ∂y]/⟨[∂x, x] = 1, [∂y, y] = 1⟩. However, we know that the

Hamiltonian we quantise allows additional symmetry, which lifts to an additional vector field

Î which commutes with quantum Hamiltonian vector field. For example, in the case of the

Painlevé III, the quantum Hamiltonian (5.7.15) commutes with

Î = x
∂

∂x
+ y

∂

∂y
.

By restricting to the eigenfunctions of Î with some chosen eigenvalue I0, we produce quantum

Hamiltonian reduction, which is simply given by the quotient of the algebra W[x, y]/⟨Î − I0⟩.

As a result we obtain the following quantum Hamiltonian

ĤIII = q2
∂

∂q
+
(
−q2 − 2qθ1 + 4tθ2

) ∂
∂q

+ I0q, q =
y

x
,

which is just the Dirac quantisation of the Hamiltonian for the Painlevé III equation (5.6.22).

Such reduction may be performed for all examples, the resulting quantum Hamiltonians coincide

with the quantum Hamiltonians introduced in [54, 72] up to change of variables and ordering.

In order to extend the Reshetikhin theorem for the irregular singularity it is useful to work

with the lifted coordinates. In the next subsection, we give a simple proof of this extended

theorem for singularities of any type

5.7.3 Semi-classical solution of the confluent Knizhnik–Zamolodchikov equa-
tion

In this section we discuss the semi-classical solutions of the confluent Knizhnik–Zamolodchikov

equations in terms of the isomonodromic tau function. In this subsection, we use only the lifted
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Darboux coordinates and quantise them according to (5.7.1)

[P̂iab , Q̂jcd ] = iℏ δijδcbδad. (5.7.18)

Such quantisation leads to the infinite dimensional representation of the isomonodromic Hamil-

tonians as differential operators on a Hilbert space of functions depending on some coordinates

xjab , j = 1 . . . d, a, b = 1 . . .m and the isomonodromic times. In particular we put

Q̂jab = xjab ·, P̂icd = ℏ
∂

∂xidc
.

To study the semi-classical solutions ΨS , we use the following standard quantum mechanical

formula

Ψ ∼ ΨS := exp

(
i

ℏ
S
)
,

where S is the classical action functional which explicitly depends on entries of classical variables

Q and the isomonodromic times. The dependence of S on P is implicit, since

Pikl =
∂S
∂Qilk

.

In this section we prove Theorem 2.0.10, namely that ΨS evaluated along solutions of the classi-

cal system may be written as the isomonodromic τ -function. This statement already appeared

in [80] for the Knizhnik–Zamolodchikov equations with Fuchsian singularities. However, our

approach works also for irregular systems.

Proof of Theorem 2.0.10. The semi-classical solution by definition is given by

ΨS = exp

(
i

ℏ
S
)
,

where S is a classical action functional. In our case, we have a Hamiltonian system with Hamilto-

niansH
(i)
ui andH

(i)
1 , . . . ,H

(i)
ri for i = 1, . . . , n and Darboux coordinates P1, P2 . . . Pd, Q1, Q2 . . . Qd

the action functional satisfies the following relation

dS =
d∑

j=1

PjdQj −
∑
i

(
Huidui +

ri∑
k=1

H
(i)
k dt

(i)
k

)
=

d∑
j=1

PjdQj − d ln(τ), (5.7.19)
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along the solutions of the system. It is easy to see that the logarithmic differential of the τ

function is already in the definition of the action functional:

Lemma 5.7.2. (Malgrange [65]) If the Hamiltonians are homogeneous polynomials of degree

two in P1, . . . , Pd, then along solutions one has

dS =
∑
i

(
H(i)

ui
dui +

ri∑
k=1

H
(i)
k dt

(i)
k

)
. (5.7.20)

Proof. Evaluating the first term in (5.7.19) along the solutions of the isomonodromic deforma-

tion equations, we obtain

∑
j

Tr(PjdQj) =
∑
j

Tr

(
Pj

∑
l

(
dQj

dul
dul +

rl∑
k=1

dQj

dt
(l)
k

dt
(l)
k

))
=

=
∑
j

Tr

(
Pj

∑
l

(
∂Hul

∂Pj
dul +

rl∑
k=1

∂H
(l)
k

∂Pj
dt

(l)
k

))
.

Using the fact that the Hamiltonians are homogeneous of degree two in P1, . . . , Pd, we obtain

that

∑
j

Tr

(
Pj

∑
l

(
∂Hul

∂Pj
dul +

rl∑
k=1

∂H
(l)
k

∂Pj
dt

(l)
k

))
= 2

∑
i

(
H(i)

ui
dui +

ri∑
k=1

H
(i)
k dt

(i)
k

)
.

which leads to the statement of the lemma.

According to the previous lemma which works for any homogeneous polynomial Hamiltoni-

ans we get close to the proof of the theorem for the general isomonodromic Hamiltonians. In

the case of the Fuchsian isomonodromic deformation are given by (4.3.15)

Hi =
∑
j ̸=i

Tr(QiPiQjPj)

ui − uj
,

which are definitely homogeneous of degree 2 in the entries of matrices P1, P2 . . . Pn. This

provides a simple proof that the semi-classical solution is a τ -function in the Fuchsian case.

The same holds for the irregular singularities - indeed, the irregular Hamiltonians are given by
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the quadratic spectral invariants, i.e.

H =
∑
α,β

∑
i,j

Cα,β
i,j Tr

(
A

(α)
i A

(β)
k

)
, (5.7.21)

where α, β are the indices of the singular points, while i and j are the indices which correspond

to the coefficients of local expansion near singularity and Cα,β
i,j are coefficients which can be

explicitly computed by using the formulas from section 4. Thanks to Lemma 5.4.2, all the

terms Tr
(
A

(α)
i A

(β)
k

)
are homogeneous polynomials of degree 2 in the variables Pi (as well as

homogeneous polynomials of degree 2 in the Qi). This fact allows us to apply Lemma 5.7.2 to

conclude.

Observe that this proof depends on the coordinates we use to quantise. In general, the

property of semi-classical solution to be a power of an isomonodromic τ -function breaks for the

reduced systems. On the classical side this phenomenon is a straightforward statement that

reduced Hamiltonians are not hoimogeneous in moments or coordinates. This can be seen on

the Painlevé II example - in the fully reduced coordinates Hamiltonian writes as

H =
p2

2
− 1

2

(
q2 +

t

2

)
− θq

while the action along solution writes as

dS = pdq −Hdt =

[
p
∂q

∂t
−H

]
dt =

[
p2 −H

]
dt =

[
p2

2
+

1

2

(
q2 +

t

2

)
+ θq

]
dt ̸= Hdt

The classical action now differs from τ -function by some function depends on time. This

deviation from the classical action functional was investigated in the paper by Its and Prokhorov

[52] for the classical Painlevé equations written in fully reduced coordinates. From the quantum

point of view reduction is a restriction to the eigenspace of the Casimir operator which provides

partially separation of variables in the quantum problem. By passing to the less number of

coordinates the parts which were depending on the lifted coordinates vanish, so the structure

of solution changes rapidly. However, despite the fact that the theorem doesn’t work in the

reduced case we still see the avatars of this statement since τ -function still enters quasiclassical
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solution in some way, see paper [52] and formula (2.27) in [94].

5.8 Symplectic reduction for the Painlevé equations. Algebraic
description

The Marsden-Weinstein-Meyer theorem gives a rich information about the phase space obtained

by performing symplectic reduction with respect to the Hamiltonian action of a Lie group. In

the previous sections, for all Painlevé equations, we have written down Darboux coordinates

explicitly, which leads to the local description of the reduced phase space. In this section, we

approach the problem of the Marsden-Weinstein-Meyer reduction from the algebraic perspec-

tive. Our aim is to describe the reduced phase space as an affine variety for all isomonodromic

equations which are related to the Painlevé equations. Let us now briefly explain the approach

we use to archive this aim.

We start considering symplectic manifolds (M,ω) given by the zero locus of the set of

polynomials P1(x1, x2, . . . , xn), P2(x1, x2, . . . , xn), . . . Pl(x1, x2, . . . , xn) in the affine space An,

namely algebraic symplectic varieties. Assume that there is a Hamiltonian action of a Lie

group G on (M,ω), with algebraic moment map µ. By algebraic moment map we mean that

the components of the moment map are the elements of the coordinate ring of M , i.e. the

moment map may be written as the set of the polynomials in An restricted to M . In detail,

assume that g⋆ is spanned by Θ1,Θ2, . . .Θk, then the moment map evaluated at the point

m ∈M is

µ(m) =

k∑
i=1

qi(m)Θi.

Then algebraicity of the moment map means that each function qi may be seen as the restriction

of some polynomial Qi(x1, x2, . . . xn) ∈ K[x1, x2, . . . xn] to the algebraic variety M . In the case

when G acts on µ−1(0) freely and properly, we may use the Marsden-Weinstein-Meyer theorem

and perform the symplectic reduction M �G = µ−1(0)/G. Since M is an algebraic symplectic

variety and the moment map is algebraic, the zero set of the moment map µ−1(0) is given by
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the system of the following set of algebraic equations



P1(x1, x2, . . . xn) = 0

P2(x1, x2, . . . xn) = 0

. . .

Pl(x1, x2, . . . xn) = 0

Q1(x1, x2, . . . xn) = 0

. . .

Qk(x1, x2, . . . xn) = 0.

Then the coordinate ring of µ−1(0) is given by K[x1, x2, . . . xn]/⟨P ∪ Q⟩, where P is the ideal

generated by P1, P2, . . . Pl and Q is the ideal generated by Q1, P2, . . . Qk. Finally, to describe

the reduced space, we have to perform a quotient with respect to the action of the Lie group

G, which gives the following affine scheme

Mred = Spec
[
(K[x1, . . . x2n]/⟨P ∪Q⟩)G

]
.

Roughly speaking, the reduced phase space is given by the spectrum of the G-invariant functions

over the algebraic variety given by the union of the ideals P and Q. For details on the symplectic

reduction in the category of algebraic varieties we refer to [50, 78]. In some cases, affine schemes

may be described explicitly by a set of algebraic equations in some polynomial ring. However,

the obtained reduced space may happen to be non-compact or even to have singular points. In

this section we provide such description for the phase space which corresponds to the Painlevé

equations. In the previous sections, we provided a local description via Darboux coordinates,

however, the reduced phase space is not topologically trivial, so the algebraic description gives

some new information about phase space for the Painlevé equations.

In the case of the Painlevé equations, we always deal with four sl2-matrices with some

chosen ideals P and Q. The ideal P corresponds to the Casimirs of the corresponding Lie-

Poisson bracket, while the moment map ideal Q in the all cases gives that the sum residues of

the connection equals to zero, which just repeats the Cauchy residue theorem. In this section

we assume that the coordinates are chosen in such a way that the isomonodromic linear system

has no pole at infinity for technical reasons.
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5.8.1 Painlevé VI

As we mentioned in the beginning, the equation Painlevé VI which reads as

d2y

dt2
= 1

2

(
1
y + 1

y−1 + 1
y−t

)(
dy
dt

)2
−
(
1
t +

1
t−1 + 1

y−t

)
dy
dt

+y(y−1)(y−t)
t2(t−1)2

(
α+ β t

y2
+ γ t−1

(y−1)2
+ δ t(t−1)

(y−t)2

)
,

is a reduction of the Schlesinger equations for the four copies of the coadjoint orbit of sl2. This

space may be represented by 4 matrices with constraints

(A1, A2, A3, A4) ∈ O⋆ ×O⋆ ×O⋆ ×O⋆, Ai =

 xi yi

zi −xi

 , Xi : x
2
i + yizi = θ2i .

To avoid useless indices we use the following notation

A1 = A, A2 = B, A3 = C, A4 = D

θ1 = α, θ2 = β, θ3 = γ, θ4 = δ.

The corresponding meromorphic sl2 connection with 4 poles is given by

∇ = d+

(
A

z
+

B

z − 1
+

C

z − t
+

D

z + 1

)
dz = d+A(z)dz

In sl2 case such symplectic space may be seen as a symplectic leaf for the Lie-Poisson bracket,

which writes as

{xi, yj} = δijyj , {xi, zj} = −δijzi, {yi, zj} = δij2xi.

Moreover we assume that there are no other singularities (i.e. ∞ is a regular point) which

means that there is a relation

A+ C +B +D = 0.

Taking into account the gauge group action, the phase space is described as

Mred = O⋆
1 ×O⋆

2 ×O⋆
3 ×O⋆

4//SL2 = {A+ C +B +D = 0}/SL2, (5.8.1)
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where SL2 acts by a simultaneous conjugation. Algebraically this space may be seen as

Mred ≃ Spec(C[x1, x2, x3, x4, y1, y2, y3, y4, z1z2, z3, z4]/I)SL2

where ideal I is given by the equations

I :



x1 + x2 + x3 + x4 = 0

y1 + y2 + y3 + y4 = 0

z1 + z2 + z3 + z4 = 0

x2i + yizi = θ2i , i = 1 . . . 4.

,

i.e. we describe the reduced phase space in terms of function over the algebraic variety given

by I which are invariant with respect to SL2 action. Consider the following finctions

YK = Tr
∏
i∈K

Ai, K = {K1,K2, . . .Km}, Yij = Yji = TrAiAj , Yijk = TrAiAjAk

here K is a multi-index. Choose the following coordinates

Y12, Y13, Y14, Y23, Y24, Y34, Y123, (5.8.2)

so we have all the traces of the product of two matrices and trace of product of three matrices.

Using Gröbner basis algorithm we obtain that (5.8.2) satisfies the following set of equations

Q1 = 2θ21 + Y1,2 + Y1,3 + Y1,4 = 0

Q2 = 2θ22 + Y1,2 + Y2,3 + Y2,4 = 0

Q3 = 2θ23 + Y1,3 + Y2,3 + Y3,4 = 0

Q4 = 2θ24 + Y1,4 + Y2,4 + Y3,4 = 0

Q5 = −2Y 2
1,2,3 + Y1,2Y1,3Y1,4 + Y1,2Y1,3Y2,4 + Y1,2Y1,3Y3,4 + Y1,2Y1,4Y2,3+

+Y1,2Y1,4Y3,4 + Y1,2Y2,3Y2,4 + Y1,2Y2,3Y3,4 + Y1,2Y2,4Y3,4 + Y1,3Y1,4Y2,3 + Y1,3Y1,4Y2,4+

+Y1,3Y2,3Y2,4 + Y1,3Y2,3Y3,4 + Y1,3Y2,4Y3,4 + Y1,4Y2,3Y2,4 + Y1,4Y2,3Y3,4 + Y1,4Y2,4Y3,4 = 0

(5.8.3)

which defines an affine surface in A7. All the other invariant functions YK can be written via
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linear combinations of (5.8.2). Such surface has a natural Poisson bracket given by

{f, g} =
df ∧ dg ∧ dQ1 ∧ dQ2 ∧ dQ3 ∧ dQ4 ∧ dQ5 ∧ dQ6

dY12 ∧ dY13 ∧ dY14 ∧ dY23 ∧ dY24 ∧ dY34 ∧ dY123
.

and the Schlesinger Hamiltonian becomes linear in such coordinates

H = Res
z=t

Tr
A(z)2

2
=

TrAC

t
+

TrBC

t− 1
+

TrCD

t+ 1
=
Y1,3
t

+
Y2,3
t− 1

+
Y3,4
t+ 1

.

Since first four equations in (5.8.3) we may rewrite obtained variety as a surface in A3. Instead

of resolving system (5.8.3), let us choose the following set of coordinates

X =
1

2
Tr(A+ C)2, Y =

1

2
Tr(C +D)2, Z = TrABC.

Then surface (5.8.3) reads as

Z2 = XY (X + Y )−
(
α2 + β2 + δ2 + γ2

)
XY+

+ (γ − δ) (γ + δ) (α− β) (α+ β)X + (β − δ) (β + δ) (α− γ) (α+ γ)Y+

+
(
α2 − β2 + δ2 − γ2

)
(αδ − βγ) (αδ + βγ) (5.8.4)

The Hamiltonian takes form

H = Res
z=t

Tr
A(z)2

2
=
X

t
+

Y

t+ 1
− X + Y

t− 1
− α2

t
− δ2

t+ 1
+

4t2 + t− 1

t(t− 1)(t+ 1)
γ2.

In these coordinates Hamiltonian is a linear function, while the bracket which corresponds to

the surface is given by the nonlinear Poisson bracket of the form

{X,Y } = FZ = −2Z, {Y,Z} = FX = 2XY+Y 2−
(
α2 + β2 + δ2 + γ2

)
Y+(γ − δ) (γ + δ) (α− β) (α+ β) ,

{X,Z} = −Fy = −2XY −X2 +
(
α2 + β2 + δ2 + γ2

)
X − (β − δ) (β + δ) (α− γ) (α+ γ) .

Such representation for the Painlevé VI equation already appeared in the paper by N.Hitchin

[49]. Using isomonodromic equations it is easy to check that the obtained Hamiltonian with

introduced bracket gives the isomonodromic dynamics. The affine surface (5.8.4) is a double
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cover of the A2 branched along an elliptic curve. Indeed, the equation has the form

FV I(X,Y, Z;α, β, γ, δ) = Z2 − P3(X,Y ;α, β, γ, δ) = 0.

where P3 is a polynomial of degree 3 in X and Y . Affine part of such surface has no singularities

if P3(X,Y ;α, β, γ, δ) = 0 is a smooth elliptic curve. For (5.8.4) discriminant of the elliptic curve

is

∆V I = α2β2δ2γ2 (α+ β − γ + δ)2 (α+ β − γ − δ)2 (α− β − γ + δ)2 (α− β − γ − δ)2

(α− β + γ − δ)2 (α− β + γ + δ)2 (α+ β + γ − δ)2 (α+ β + γ + δ)2 .

So surface (5.8.4) is a smooth affine surface for generic α, β, γ, δ. Discriminant is invariant

under the action of the Weyl group for D4 root system, we may permute α, β, γ and δ, as well

as multiply each of the parameters by −1.

5.8.2 Painlevé V

Taking limit t = εt and performing the expansion in ε due to the algorithm described in Section

5.2, Fuchsian connection transforms to the following one

∇z = d+

(
A1t

z2
+
A0

z
+

C

z − 1
+

D

z + 1

)
dz.

Isomonodromic Hamiltonian takes form

H =
1

2t
Resz=0Tr(zA(z)

2) = Tr

[
−A1C +A1D +

A2
0

2t

]

The Casimirs for the corresponding Poisson bracket are

TrA2
1 = 2α2, TrA1A0 = 4αβ, TrC2 = 2γ2, TrD2 = 2δ2.

The moment map condition writes as

A0 + C +D = 0
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Theorem 5.8.1. The reduced space

Mred = Ô⋆
2 ×O⋆ ×O⋆//SL2

is an affine cubic in A3 which can be described as a double cover of A2 ramified along the specific

elliptic curve. In particular, choosing the following coordinates

X =
1

2
TrA2

0, Y = TrA1D, Z = TrA1A0D,

the affine part of the reduced space is given by the equation

Z2 = XY 2 + α2X2 + 4αβXY − 2α2
(
γ2 + δ2

)
X − 4αβ (γ − δ) (γ + δ)Y+

+ α2
(
γ4 − 2γ2δ2 + 16β2δ2 + δ4

)
(5.8.5)

The discriminant of the elliptic curve in the rhs of (5.8.5) is

∆V = (−16)α12δ2γ2(γ − 2β + δ)2(γ − 2β − δ)2(γ + 2β − δ)2(γ + 2β + δ)2. (5.8.6)

Hamiltonian rewrites as

H = 2Y +
X

t
+ 2α2.

with Poisson bracket given by the Poincaré residue with respect to the cubic (5.8.5). Direct

computations shows that the Hamiltons equations coincide with the isomondromic flow.

Theorem 5.8.2. Consider the cubic for Painlevé VI (5.8.4) and do the following change of

coordinates

X = X̃ +O(ε), Y =
α̃2

ε2
+

1

ε
Ỹ +O(1), Z =

1

ε
Z̃ +O(1), (5.8.7)

and constants

α =
α̃

ε
+ 0 +O(ε), β = − α̃

ε
+ β̃ +O(ε), γ = γ̃ +O(ε), δ = δ̃ +O(ε) (5.8.8)
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then Painlevé V cubic (5.8.5) is a limit

FV (X̃, Ỹ , Z̃; α̃, β̃, γ̃, δ̃) = lim
ε→0

ε2FV I(X,Y, Z;α, β, γ, δ). (5.8.9)

Proof. Can be checked explicitly

5.8.3 Phase spaces for the Painlevé equations

In the same way, we introduce affine surfaces for all other Painlevé equations. The results are

presented in the table 5.1. According to this table, for each Painlevé equation there exists a

4-parameter family of affine cubic surfaces in A3. The coalescence of poles in the isomonodromic

problem should lead to the special limiting procedure, same as in the theorem 5.8.2, while the

ramified systems correspond to the special fibers in the family.

In principle, the results obtained in this section are related to the co-adjoin orbits, but

not specificly to the Painlevé equations. However there is a nice parallel with the confluence

procedure for the Painlevé equations. Moreover, the isomonodromic flows (Hamiltonians for the

Painlevé equations) become linear functions on the obtained algebraic space which leads to a

new description of these equations. Moreover such point of view allows us to claim that we give

an algebraic description for the affine part of the de-Rham moduli space of the corresponding

connections. In particular, such interpretation may be useful in the study of the Riemann-

Hilbert map as a map between algebraic varieties (or more precisely between the del Pezzo

surfaces of different type).
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Painlevé Orbits Reduced cubic Discriminant

VI O ×O ×O ×O

Z2 = XY (X + Y )−
−
(
α2 + β2 + δ2 + γ2

)
XY

+(γ − δ) (γ + δ) (α− β) (α+ β)X
+(β − δ) (β + δ) (α− γ) (α+ γ)Y+
+
(
α2 − β2 + δ2 − γ2

)
(αδ − βγ) (αδ + βγ)

α2β2δ2γ2

(α+ β − γ + δ)2 (a+ β − γ − δ)2

(a− β − γ + δ)2 (a− β − γ − δ)2

(a− β + γ − δ)2 (a− β + γ + δ)2

(a+ β + γ − δ)2 (a+ β + γ + δ)2

V Ô2 ×O ×O
Z2 = XY 2 + α2X2 + 4αβXY−
−2α2

(
γ2 + δ2

)
X − 4αβ (γ − δ) (γ + δ)Y

+α2
(
γ4 − 2γ2δ2 + 16β2δ2 + δ4

) α12δ2γ2

(γ − 2β + δ)2(γ − 2β − δ)2

(γ + 2β − δ)2(γ + 2β + δ)2

IV
FN II : α = 0

Ô3 ×O

4Z2 = X3

2 +
(
α2 + β − 2γ

)
X2 + α2Y 2 −

(
2α2 + β

)
XY

+2
(
γ2 − 2α2δ2 + βδ2 − βγ

)
X

+2
(
βγ − 2α2δ2

)
Y + 4δ2

(
α2δ2 + β2 − βγ

)
δ2α6

(8α3δ − 4α2γ + β2)2

(8α3δ + 4α2γ − β2)2

III(D6)
D7 : α = 0

D8 : α = γ = 0
Ô2 × Ô2

Z2 = −2X2Y + 16βδX + 8α2γ2Y
+16β2γ2 + 16α2δ2

Ramification along
rational curve
singular when α = 0or γ = 0

II
I : α = 0

Ô4
Z2 = 1

8X
3 − 1

2γX
2 − α2XY

+βδX + 1
2β

2Y + 1
2γ

2X + 4α2δ2 − 2βγδ

Ramification along
rational curve
singular at ”∞” ∼ (0, 1, 0) ∈ P2

α ̸= 0 - double point at ∞
α = 0 - cusp at ∞

Table 5.1: Affine surfaces corresponding to the Painlevé equations isomonodromic problems
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CHAPTER 6

CONCLUSION

The results of this thesis summarized in the introduction are related to the Hamiltonian descrip-

tion of the isomonodromic deformation equations. Here we want to underline the importance

of the universality of our results - in most of the theorems related to the Poisson structures we

work with an arbitrary Lie algebra which has a non-degenerate bilinear pairing. The descrip-

tion via lifted Darboux coordinates is given for sln isomonodromic systems, however it should

be possible to extend these results to other Lie algebras. On the other hand, such universality

restricts us to special families of deformations arising from the confluence of Schlesinger flows,

but not to the general isomonodromic deformation in the sense of Jimba-Miwa-Ueno. However,

in the case of sl2, our class of the isomonodromic deformation equations coincides with the one

introduced by Jimbo, Miwa and Ueno and covers the all examples of the Painlevé equations and

their generalizations. As a consequence, our approach allows to write down the Hamiltonians

for the Painlevé equations by using explicit close formula in terms of the Takiff algebra pairing.

.

The first part of the thesis contains local results, while in the last section we do global

analysis of the phase spaces for the isomonodromic systems by performing symplectic reduction

without introducing the local Darboux coordinates. Such description is topologicaly non-trivial,

and it still has to be compactified. One of the most important questions which we don’t answer

here is how to compactify such phase spaces, in such a way that the compactification has

geometrical meaning. Our plan is to investigate this question in the future. Moreover, we wish

to use the same approach for the higher rank Lie algebras (for example sl3) as well as for more

complicated configurations of the isomonodromic problems (which originates by a confluence
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from the Fuchsian systems with more than four poles).

We hope that this algebraic approach allows to re-interpret a famous result by Manin [66]

about the elliptic form of the sixth Painlevé equation, firstly introduced by Painlevé himself in

[76], in terms of the very specific geometry of the phase space in connection with the moduli

spaces of elliptic curves. Our aim is also to investigate how the algebraic description of the

phase space for the other Painlevé equations are related to the Manin form of these equations

which are non-autonomous versions of the one particle Inozemtsev systems with trigonometric

and rational potentials (see [56, 86]).

Another application of the algebraic description for the phase space is related to the study

of the Riemann-Hilbert map and its connection to mirror symmetry. Our computations show

that the phase spaces for Painlevé equations are 4-parameter families of possibly singular cubic

surfaces in the affine space A3 which are essentially del Pezzo surfaces. These families of del

Pezzo surfaces have a very nice geometric interpretation - the generic member of the family can

be seen as a double cover of the family of (possibly degenerated) elliptic curves. Such description

brings new insights on the space of initial conditions for the Painlevé VI equation, bi-rational

Okamoto transformations and global properties of the solutions. Another feature of such ap-

proach is that the Hamiltonian for the system becomes a linear function of the coordinates on

A, while the non-linearity transfers to the Poisson structure. This interesting “linearisation” of

the Hamiltonian was already discovered by Hitchin in [49] by parameterising the phase space

by traces of products of matrices. While Hitchin’s result was somewhat mysterious, we now

understand that the symplectic structure he computes is nothing else that the Nambu bracket

on our 4-parameter family of singular cubic surfaces. An essential thing here is that now we

may consider a Riemann-Hilbert map as a correspondence between two families of del Pezzo

surfaces – one given by the monodromy manifolds the other given by the space of initial condi-

tions. A mirror pair for the del Pezzo family on the monodromy manifold side was constructed

in [23] applying Gross-Hacking-Keel construction [22]. For the initial condition space side we

have to introduce a suitable compactification to apply the mirror construction. To do this we

are planing to consider different compactifications to the weighted projective spaces and try to

find a mirror pair. The natural question is if there is some evidence of the Riemann-Hilbert

correspondence on the mirror side. Our aim for the future research is to investigate this mirror

avatar of the Riemann-Hilbert correspondence.
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arXiv:1912.12588

[39] I. Gaiur, N. Kudryashov Weak nonlinear asymptotic solutions for the fourth order analogue of the second
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