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Abstract 

Dynamic susceptibility contrast (DSC-) MRI is an important imaging technique from which 

estimates of perfusion measures including cerebral blood volume (CBV), cerebral blood flow 

(CBF) and mean transit time (MTT) can be calculated. These perfusion measures can be used 

to indicate health in a range of diseases. However, acquisition protocol varies from centre-to-

centre, which leads to variability in data quality between centres and limits the clinical 

applicability of DSC-MRI. Currently, the recommended process for assessing data quality is 

by eye, which is very time consuming and subjective between reviewers.  

In this work an automated processing pipeline for DSC-MRI was produced. Work to develop 

the pipeline demonstrated that data quality of DSC-MRI data can be assessed using machine 

learning classifiers, which were trained using metrics calculated from the data and the results 

of qualitative review. It also showed that it was possible to denoise the data using singular 

value decomposition (SVD) based methods, which were validated on a simulator and 

confirmed in patient data. The pipeline created was applied to a multicentre patient dataset 

where it demonstrated the importance of denoising DSC-MRI data in improving data quality 

and how data quality can vary with acquisition protocol. It was also applied to a single centre 

study of patients receiving differing treatments for brain tumours and suggested there are no 

significant changes in relative CBV (rCBV) in non-tumour brain between differing treatment 

groups. The pipeline developed during this work has wider applications in other imaging 

modalities and could be adapted to be applied to other perfusion imaging methods, such as 

dynamic contrast enhanced (DCE-) MRI, or any other imaging modality that involves 

analysis of a signal variation with time, such as computed tomography (CT) perfusion 

imaging or positron emission tomography (PET).  
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1. Introduction 

1.1. Perfusion 

Perfusion is a physiological process, which describes the delivery of blood to tissues and 

organs via the capillaries. It is measured as volume of blood per unit of tissue (1). The process 

of perfusion is used to deliver oxygen and nutrients to the tissue and is also responsible for the 

removal of waste products (2). Therefore, perfusion is crucial to tissue health and changes in 

perfusion can be associated with a variety of pathologies. Measurement of perfusion can lead 

to further understanding of normal and pathologic physiologies and is an important tool in 

disease diagnosis and treatment (3). Consequently, ensuring perfusion measurements are 

quantified is an important step in applying them as quantitative imaging biomarkers (4). 

Examples of applications of perfusion measurement in disease diagnosis include coronary 

artery disease, ischaemia, tumours, abscesses, and neurodegenerative diseases (5, 6). 

Examples of application of perfusion measurement in disease treatment include: assessing the 

performance of drugs used to treat coronary artery disease and brain tumour patients (7, 8); 

monitoring treatment response in patients with Parkinson’s disease (9); and assessing 

perfusion pre- and post-surgical treatment (10).  

Perfusion can be characterised using a series of physiological parameters, as summarised in 

Figure 1.1. Tissue blood flow, FT, is the blood flow per volume of tissue and is measured as 

mL min-1 100mL-1. In brain measurements this is often referred to as cerebral blood flow 

(CBF). The average time taken for the blood to pass through the network is defined as the 

mean transit time (MTT). Blood volume fraction, υb, defines the volume of blood contained 

within a volume of tissue and is measured as mL 100mL-1. In brain measurements this is often 

referred to as cerebral blood volume (CBV). Extracellular and extravascular volume fraction, 

υe, defines the extracellular extravascular volume within the tissue volume. The permeability-
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surface area product, PS, defines the flow of blood through the capillary membrane into the 

extravascular extracellular space and is also measured as mL min-1 100mL-1. The leakiness of 

the capillaries can be assessed through the use of Ktrans which is a combination of PS and 

tissue blood flow (11).  

 

Figure 1.1: Perfusion parameters that can be obtained from microcirculation. The blue cube represents a volume of tissue, 
the red tubes represent the capillaries, the orange circles represent cells, and the green arrows represent the leakage of 
blood from the capillaries into the extravascular extracellular space (characterised by PS).   

All of these parameters have applications in assessing different pathologies and estimates of 

their values can be made using perfusion imaging. 

1.2. Perfusion Imaging 

There are several different imaging techniques, which can be used to image perfusion within 

the body including: computed tomography (CT), positron emission tomography (PET), 

ultrasound, near infrared spectroscopy (NIRS), and magnetic resonance imaging (MRI).  

In CT perfusion imaging an iodinated contrast agent is injected and CT images are acquired as 

the contrast agent passes through the body. From this method it is possible to obtain estimates 

of CBV, CBF and vascular MTT (12). CT perfusion imaging has quick image acquisition and 
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is a widely available imaging technique. However, it requires additional radiation doses 

compared to standard CT and there are risks associated with iodinated contrast agents (13). 

In PET, a radioactive positron-emitting tracer is injected into the blood stream and the 

photons produced from the interactions between the emitted positrons and the surrounding 

tissue are detected using a PET camera (14). PET can be used to determine estimates of 

regional CBV, regional CBF and regional cerebral metabolic rate of oxygen (CMRO) (15). 

PET imaging has high sensitivity, can provide accurate estimation of tracer concentration, and 

has good diagnostic accuracy. However, it has limited SNR and spatial resolution, and 

requires access to a cyclotron to produce the tracer, which means it is not applicable in all 

settings (16). 

Ultrasound uses the Doppler effect to provide estimates of blood flow. However, tissue 

motion can make measurements difficult, specifically for smaller vessels. Therefore, 

microbubbles can be used as a contrast agent which helps distinguish tissue from blood 

vessels (17). The use of a contrast agent means that a time intensity curve (TIC) can be 

produced from a region of interest (ROI). MTT and time to peak (TTP) can be calculated 

from the TIC along with several other parameters (18). Ultrasound has the advantage of being 

very repeatable and more portable than other methods as it can be performed at the bedside 

(17). However, it is susceptible to attenuation artefacts and has poor sensitivity to slow blood 

flow and capillary flow (17, 19). It is difficult to apply in the brain, as the skull blocks the 

ultrasound waves. However, it can be applied in neonates as the skull is not fully developed 

(20). 

NIRS uses near infrared light to provide estimates of the oxygen saturation of the tissue, 

which can be used to estimate perfusion. Infrared light is transmitted into the tissue and is 
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detected by nearby receivers. Differences in intensity between the transmitted and received 

light are used to calculate estimates of oxygen saturation (21). NIRS provides a non-invasive 

measure of oxygen saturation. However, it has limited spatial resolution and limited 

penetration, meaning that it is only suitable for measurements within the cortex. The acquired 

signal can also be contaminated by contributions from other molecules (e.g. haemoglobin) 

(21, 22). 

MRI can be used to provide estimates of tissue perfusion using specifically designed 

protocols, which have led to clinical applications in assessing perfusion related abnormalities 

(23). Perfusion MRI techniques can be split into two categories: those that use exogenous 

contrast agents and those that use endogenous contrast agents (24). Both dynamic 

susceptibility contrast (DSC-) MRI and dynamic contrast enhanced (DCE-) MRI use 

gadolinium based exogenous contrast agents, which are injected into the patient (25). Arterial 

spin labelling (ASL) uses magnetically labelled blood as an endogenous tracer (26) and 

intravoxel incoherent motion (IVIM) uses the pseudo-diffusion of blood water in the 

capillaries to estimate perfusion (27). Each of these MRI methods will be discussed in more 

detail in the sections below. Table 1.1 summarises all the imaging methods discussed in this 

chapter, the parameters obtained from them and their pros and cons. The cons column focuses 

on problems specific to each imaging technique. This is because problems such as noise, 

motion, and variability in acquisition protocol between centres, are common across multiple 

imaging techniques. 

1.2.1. DSC-MRI 

DSC-MRI is a technique used mostly within the brain, where the passage of a gadolinium 

based contrast agent is imaged using a dynamically acquired T2 or T2
* weighted sequence 

(28). The contrast agent causes shortening in T1, T2, and T2
*, therefore causing a decrease in 
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signal as it passes through the body (29). The equations for the change in T1, ΔT1, and T2, 

ΔT2, with contrast agent are shown in equations 1.1 and 1.2. In these equations r1 and r2 are 

the T1 and T2 relaxation rates respectively, and C is the concentration of contrast agent (30). 

1

∆𝑇1
= 𝑟1 ∙ 𝐶 (1.1) 

1

∆𝑇2
= 𝑟2 ∙ 𝐶 (1.2) 

Therefore, for each pixel within a DSC-MRI image it is possible to plot a signal-time course 

which shows how the signal intensity changes with time. From the signal-time course, it is 

possible to calculate: the signal-to-noise ratio (SNR); the maximum signal drop (MSD); and 

the percentage signal recovery (PSR) (31, 32). The signal-time course can also be converted 

into a concentration time curve (CTC), from which estimates of perfusion parameters such as 

CBV, CBF and vascular MTT can be calculated. Further details on how these perfusion 

parameters are calculated can be found in section 2.2.1 of Chapter 2. In order to calculate 

these perfusion measures it is assumed that the contrast agent remains within the vasculature 

(33). To produce quantitative perfusion measures, an arterial input function (AIF), which is 

the signal-time course from an artery supplying the tissue of interest, is required (34). An 

alternative approach is to report relative CBV (rCBV), thereby avoiding the need to measure 

an AIF, which can be difficult as AIFs can be distorted by partial volume effects (PVEs), 

affecting the accuracy of the quantitative measures (35, 36). rCBV measurements are 

calculated by normalising the CBV values from the area of interest to a region of interest 

(ROI) from another tissue (34). Often this is normally appearing white matter, although any 

normally appearing tissue can be used (34, 37).  



7 
 

DSC-MRI has applications in indicating health in a range of diseases. For example, it can be 

used in the diagnosis and treatment of brain tumours. It can be used in the grading of brain 

tumours, which is important as it determines the treatment received by the patient. It allows a 

non-invasive diagnosis of the brain tumour prior to confirmation by biopsy, which means that 

potential treatment can be discussed with the patient and their family at an earlier stage (38, 

39). Higher grade tumours are more vascular, which leads to increased perfusion and is 

reflected in the rCBV values (38). Work from Law et al., Maia et el. and Knopp et al. has 

shown that rCBV values from gliomas correlate with their grade (38, 40-42). Work by Grist et 

al. has shown that DSC-MRI rCBV values can be used in combination with metrics extracted 

from diffusion weighted imaging to distinguish brain tumour type (39). It can be used to 

identify molecular characteristics of different gliomas (43). Work from Kickingereder et al. 

showed that tumour rCBV could be used to predict the presence of IDH mutation with those 

tumours having larger rCBV values (43), and work from Lee et al. finding increased 

normalised CBV (nCBV), in tumours with the IDH mutation (44). It can be used to 

differentiate between different types of brain tumour, which is important as different tumours 

require different treatment pathways (45). Tumour types show variation in their vascularity 

and therefore differences in blood volume and flow (45). Work by Law et al. has shown that 

rCBV values from DSC-MRI in combination with magnetic resonance spectroscopy (MRS) 

can be used to distinguish high grade gliomas (HGG) from metastases (45). Differences in the 

vasculature between tumour types also lead to differences in blood vessel ‘leakiness’, and 

work by Cha et al. has used PSR values from DSC-MRI as a measure to distinguish between 

glioblastoma multiforme (GBM) and metastases (46). It can also be used to plan surgical 

interventions in brain tumour patients, with work by Barajas et al. showing that rCBV values 

from DSC-MRI can be used to identify tissue regions surrounding a GBM tumour which need 
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further treatment (47), whilst work by Lefranc et al. has shown that rCBV values are useful in 

improving the accuracy of stereotactic biopsies (48). Aside from brain tumours, it has 

applications in stroke, where it has been used in combination with diffusion weighted imaging 

(DWI) to identify perfusion mismatches and identify regions which could be salvaged from 

infarction (49, 50). It also has applications in Alzheimer’s, where a decreased CBV has been 

measured in Alzheimer’s patients (51) and age-dependent decreases in CBF and CBV in grey 

matter have been measured (52). 

DSC-MRI has several advantages: it is the most established and widely used MR perfusion 

technique, meaning there are lots of analysis packages available to analyse the data; it has fast 

acquisition times of around 2 minutes (34); it offers a better contrast-to-noise ratio than DCE-

MRI (53); and it offers better SNR than ASL (53). However, the need to inject contrast agent 

makes for a more invasive procedure. Gadolinium contrast agents can potentially cause 

nephrogenic systemic fibrosis in patients with impaired kidney function (54), and there are 

concerns about potential gadolinium deposition within the brain (55). This is of particular 

concern in paediatrics as previous individual case studies have shown evidence of gadolinium 

deposition following repeated doses of contrast agent (56, 57). Therefore, recommended 

protocols for paediatric DSC-MRI tend to limit the amount of gadolinium which is injected 

(58). The measurement of perfusion parameters assumes that the blood brain barrier (BBB) is 

intact and no contrast agent leaks into the extravascular extracellular space (EES), which is 

not always the case in brain tumour patients (59). In order to fully quantify the perfusion 

parameters from DSC-MRI an AIF is needed, which can be challenging to obtain (60). DSC-

MRI is affected by noise, motion, and susceptibility artefacts, which all impact the quality of 

the acquired data, and therefore the accuracy of any perfusion parameters estimated from the 

data (34). The current recommended method for assessing data quality is through qualitative 
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review, which is very time-consuming and subjective between reviewers (34). These factors, 

plus variability in acquisition protocol applied between centres, limit the clinical applicability 

of the technique (61). 

1.2.2. DCE-MRI 

In DCE-MRI, the passage of a gadolinium based contrast agent is imaged using a T1 weighted 

imaging sequence (62). The contrast agent causes a signal increase due to T1 shortening as it 

passes through and the change in intensity with time can be plotted as a time intensity curve 

for each pixel (62). The shape of each time intensity curve depends on the vascular properties 

of the tissue, and fitting a pharmacokinetic model to the concentration-time curves allows for 

estimates of physiological parameters such as the volume transfer constant, Ktrans, the volume 

of extravascular extracellular space per unit volume of tissue, Ve, the plasma volume, Vp, and 

the rate constant between EES and blood plasma, kep
**, to be calculated (63, 64). It is also 

possible to determine estimates of the tissue plasma perfusion, Fp, and the capillary 

permeability-surface area product (PS) (65). 

DCE-MRI has several applications in relation to brain tumours, where it has been used to 

distinguish gliomas from radiation injury (66), determine tumour grade (67), predict survival 

(68), and determine progression from pseudo-progression (69). It has also been used to assess 

tumours throughout the body, including in the lungs (70), breast (71) and prostate (72). It has 

applications in assessing kidney function, where it is used to assess the filtration of the 

kidneys (73, 74). Finally, it has been used to assess atherosclerotic plaques, where Ktrans has 

been shown to be a biomarker of plaque inflammation (75). 

One of the main advantages of DCE-MRI is its ability to assess vessel leakiness (53), which is 

very useful in assessing brain tumour grade (76). DCE-MRI suffers from some of the same 

issues as DSC-MRI as it requires high temporal-resolution scanning, the injection of a 
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gadolinium based contrast agent (61), and an AIF is needed to estimate the physiological 

parameters (77). It has a longer acquisition time than DSC-MRI as sufficient leakage needs to 

have occurred for leakage parameters, such as Ve, to be estimated (23). Its clinical utility is 

also limited by the fact that there are multiple acquisition methods and analysis models 

available (63). 

1.2.3. ASL 

In ASL, magnetically labelled arterial blood is used to provide estimates of CBF within the 

brain (26). The arterial blood is labelled by inverting the magnetisation of its protons using a 

radiofrequency (RF) pulse (78). The arterial blood is labelled outside of the region to be 

imaged, usually labelling occurs in an artery supplying the region of the body to be imaged. 

For example, in brain imaging one of the arteries in the neck is labelled (79). A post labelling 

delay is applied, which is a period of time during which no RF pulses are applied, and no 

images are acquired (78). This delay allows the labelled protons in the arterial blood to diffuse 

into the tissue of the region to be imaged (26, 78). An image is then acquired and is referred to 

as the labelled image (78). A control image is then acquired by repeating the process without 

any labelling (78). Subtraction of the control image from the labelled image produces a signal 

difference map which can be used to provide estimates of CBF (26). 

ASL has several applications in brain tumours, where it can be used to characterise tumour 

type (80, 81), classify tumour grade (82, 83) and differentiate between progression and 

pseudoprogression (84). It also has several applications in age-related disease, where it has 

been used to identify Alzheimer’s disease and has shown comparable results to positron 

emission tomography (PET) (85, 86). Finally it has also been used to monitor disease 

progression in patients with Parkinson’s disease (87).  
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One of the main advantages of ASL is that it is non-invasive as it uses an endogenous contrast 

agent (78). This makes it well suited for patients with reduced kidney function, for use in 

studies where repeated measurements are required, for use in healthy volunteers, and in 

paediatrics (88).  ASL has been shown to be comparable to DSC, both in terms of the quality 

of perfusion maps produced by both methods (89), and in terms of significant correlations in 

the CBF values produced (90, 91). However, ASL has low SNR compared to the other 

perfusion MR methods (78). There is a delay between labelling and acquisition, which can 

lead to systematic measurement errors and also means the acquisition time is longer than 

DSC-MRI and DCE-MRI (88). The choice of post-labelling delay has an effect on the quality 

of the perfusion measurements and selecting the optimal post-labelling delay in paediatrics 

and disease states can be challenging (26, 92). 

1.2.4. IVIM 

IVIM uses diffusion-weighted MRI to provide estimates of perfusion within the body, 

therefore no contrast agents are required (27). In diffusion MRI, diffusion sensitising 

gradients are applied during the acquisition, the strength and duration of which are determined 

by the b-values (93). A larger b-value results in the application of the diffusion gradient for a 

longer time period, leading to a larger diffusion effect (94). The signal after the diffusion 

sensitive gradients have been applied, S, is dependent on the baseline signal S0, the b-value, b, 

and the apparent diffusion coefficient (ADC), D, as shown in Equation 1.3 (94). 

𝑆

𝑆0
= 𝑒−𝑏𝐷 (1.3) 

The b-value is selected by the user prior to acquisition and is used to determine how much 

diffusion-weighting is present in the acquired image (94). The ADC is a measure of the 

amount of diffusion present (94). Several diffusion weighted images are acquired over a range 
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of b-values (95). For each pixel, the b-values are plotted against signal, and equation 1.3 can 

be fitted to the resulting curve to produce an estimate of the ADC values. The bi-exponential 

IVIM model, shown in equation 1.4, can also be fitted to the b-value curve (96). This model 

assumes that the b-value curve is the sum of diffusion from tissue and blood components and 

allows estimates of the flowing vascular volume fraction, f, and the pseudo-diffusion 

coefficient, D*, to be calculated (96).   

𝑆

𝑆0
= 𝑓𝑒−𝑏𝐷∗

+ (1 − 𝑓)𝑒−𝑏𝐷 (1.4) 

Figure 1.2 shows an example of the natural log of the normalised signal (S/S0) plotted against 

the b-values. This allows both the ADC and IVIM models (represented by equations 1.3 and 

1.4, respectively) to be fitted to the data.  

 
Figure 1.2: An example of the curve produced from plotting the change in signal with b-value, with the ADC and IVIM models 
fitted to the curve. 

IVIM has multiple applications in assessing health in different types of disease. For example 

in brain imaging it has been shown that f moderately correlates with CBV from DSC-MRI 
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(97), and can be used to determine tumour grade (97, 98). IVIM has applications in stroke 

where it has been used to identify infarcted regions (99). Finally, IVIM also has applications 

in body imaging where it has been used to characterise liver lesions (100) and assess kidney 

function (101). 

One of the advantages of IVIM is that it relies on diffusion to estimate blood flow, so does not 

require any contrast agent, and is completely non-invasive (96). Another advantage is that it is 

capable of providing a simultaneous measurement of perfusion and diffusion (102). Finally, 

the signal has high spatial specificity since it originates from the region it is measured in and 

is independent of the arterial blood flow (103). The main disadvantage of IVIM is that there is 

no current consensus on the optimal set of b values used in the acquisition, meaning there is a 

lot of variability between studies (99, 104-106). This limits the usefulness of IVIM as the 

selection of b values used has a large effect on the perfusion measures obtained from IVIM 

(107). Finally, there are several different variations on the IVIM model available, with each 

model having an effect on the perfusion parameters obtained (27). 

Imaging 

Technique 

Parameters 

measured 

Pros Cons 

CT 

perfusion 

CBV, CBF, 

MTT 

- Quick image acquisition  

- Widely available compared to 

other methods 

- Requires additional radiation 

dose compared to standard CT  

- Risks associated with iodinated 

contrast agents 

PET regional 

CBV, 

regional CBF 

and regional 

CMRO 

- High sensitivity 

- Can provide accurate 

estimation of tracer 

concentration 

- Good diagnostic accuracy  

- Limited SNR 

- Requires a cyclotron to produce 

the tracer 

Ultrasound MTT and TTP - Very repeatable measurement - Susceptible to attenuation 

artefacts  
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- Very portable compared to 

other methods (can be 

performed at the bedside)  

- Poor sensitivity to slow blood 

flow and capillary flow 

NIRS Oxygen 

saturation 

- Non-invasive imaging  - Limited spatial resolution  

- Signal can be contaminated by 

contributions from other 

molecules 

DSC-MRI rCBV, CBV, 

CBF, MTT 

- Most established and widely 

used MR perfusion technique 

- Offers the best SNR and 

contrast to noise ratio 

- Fast acquisition time   

- Requires gadolinium contrast 

agent 

- Contrast agent leakage can 

occur in areas of blood-brain-

barrier breakdown 

- Susceptibility artefacts 

- Need to normalise to normal 

tissue unless an AIF is measured 

DCE-MRI Ktrans, Ve, Vp, 

kep
**

, Fp, PS 

- Useful for assessing the 

leakiness of the BBB, which has 

multiple applications in assessing 

brain tumours.  

- Use in solid body tumours 

- Requires the injection of a 

gadolinium based contrast agent 

- Clinical utility limited due to 

multiple acquisition methods 

and analysis models available 

- Requires a pre-contrast T1 

measurement 

- Requires measurement of an 

arterial input function 

ASL CBF - Non-invasive 

- Well suited for patients with 

reduced kidney function, for 

repeated measurements, for use 

in healthy volunteers, and in 

paediatrics.  

- Comparable CBF values to DSC-

MRI 

- Low SNR compared to contrast 

agent based methods 

- Delay between labelling and 

acquisition can lead to 

systematic measurement errors 

- Long acquisition time compared 

to DSC-MRI and DCE-MRI 

IVIM f, D* - Does not require any contrast 

agent, and is completely non-

invasive 

- No current consensus on the 

ideal b value sequence 

- Multiple fitting models 

available which all affect the 

parameters produced 
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- Provides a simultaneous 

measurement of perfusion and 

diffusion  

- High spatial specificity 

Table 1.1: A summary of all the imaging methods discussed, the parameters they measure and the pros and cons of each 
method. 

1.3. Obtaining Robust Biomarkers 

A biomarker can be defined as a measurable characteristic that is an indicator of a biological 

process, pathological change or response to treatment (108). Biomarkers can be obtained 

from: biofluids, solid tissue samples, physiological measures and imaging measures (109). 

Imaging biomarkers have the advantage of being relatively non-invasive and inherently 

quantitative, and also allow for repeated measurements (110). They can be categorised as 

either a structural, physical, functional, morphological, or textural property (4). They have 

multiple applications and can be used for: prediction, to determine which patients are more 

susceptible to a disease; detection, to identify which patients have a disease; staging, to 

classify the extent of a disease; grading, to indicate disease aggressiveness; prognosis, to 

determine the likelihood of survival or disease recurrence; and assessment of treatment 

response, to determine how the disease has responded to a treatment (108). 

Often in clinical settings, the interpretation of medical images is carried out by visual 

assessment, relying on acquired knowledge to identify abnormalities (111). Semi-quantitative 

approaches, which use categorical scoring systems based on user observations are also widely 

used; for example, the reporting and data systems (RADS) (112, 113). However, in some 

cases a quantitative imaging biomarker (QIB) offers a more accurate and objective assessment 

than manual assessment (111). Widespread use of QIBs in clinical practice is hampered by 

difficulties in harmonising data acquisition and analysis protocols (111).  



16 
 

Ensuring that QIBs are robust is an important step in validating them for application to a  

clinical setting (4). The European Imaging Biomarkers Alliance (EIBALL) has produced a set 

of recommendations for using validated imaging biomarkers in clinical decision making 

(111). Whilst a collaboration between the Quantitative Imaging Biomarker Alliance (QIBA) 

and the Radiological Society of North America (RSNA) has produced a statistical framework 

to assess the technical performance of potential QIBs (4). QIBA has also recently published a 

set of recommendations to improve precision of biomarkers obtained from DWI and DCE-

MRI in multicentre oncology trials (114). An example of some perfusion imaging biomarkers 

and their applications are shown in Table 1.2. 

As can be seen from table 1.2, perfusion biomarkers have many applications in identifying 

and evaluating disease and may have an impact on a patient’s treatment if used clinically. The 

accuracy of the biomarker values is dependent on the quality of the data acquired, which they 

have been estimated from. Therefore, determining data quality is an important step in 

determining biomarker accuracy, and improved data quality can lead to improved biomarker 

accuracy. 

Imaging Biomarker Imaging Modality Applications 

Left ventricular 
ejection fraction 
(LVEF) 

Contrast-enhanced 
Echocardiography 
(Ultrasound) 

Assess heart function (115) 

Blood flow, blood 
volume and 
permeability surface 
product 

CT Perfusion Identifying head and neck squamous cell 
carcinoma (116) 

Identifying liver cancer (117) 

Blood flow useful for evaluating rectal cancer 
(118) 

Permeability can predict survival from lung 
cancer (119) 

Ktrans, Kep, blood flow, 
Ve 

DCE-MRI Identifying recurrent glioblastoma (120) 

Identifying liver cancer (117) 

Assessing treatment response (121) 

rCBV, CBV, CBF, MTT DSC-MRI Discriminating glioma grade (122) 

Differentiating tumour progression from 
treatment effects (123, 124) 
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Identifying perfusion delay in patients with 
Moyamoya disease (125) 

Identifying regions of the brain which would 
benefit from thrombolytic therapy following 
stroke (49) 

Table 1.2: Some examples of perfusion imaging biomarkers and their applications. 

1.4. Aims and Objectives 

The perfusion parameters obtained from DSC-MRI (CBF, CBV and MTT) have applications 

as biomarkers for disease. In order to obtain robust biomarkers, the perfusion parameters must 

be accurate. Since estimates of the perfusion parameters are derived from the acquired data, 

ensuring that the data acquired is of sufficient quality to obtain accurate perfusion estimates is 

crucial in obtaining robust biomarkers. Therefore, the overall aim for this project was to 

investigate methods for improved processing of DSC-MRI data, validate them, and then 

combine them to produce an automated processing pipeline for DSC-MRI, which could assess 

data quality and produce robust biomarkers. 

The objectives of this project were to: 

1. Assess the performance of the recommended processes for assessing DSC-MRI data 

quality. Investigate ways to replace this with an automated method using conventional 

methods and machine learning. 

2. Investigate the performance of differing denoising methods to improve the quality of 

DSC-MRI data. Develop a DSC-MRI simulator to validate each denoising method and 

quantify the differences in performance between  methods. The simulator should be 

capable of modelling and accommodating for a range of acquisition protocols. 

3. Develop an automated pipeline capable of segmenting the relevant regions of the 

brain, denoising the data, assessing data quality and producing estimates of perfusion 

parameters. 
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4. Apply the automated pipeline to a set of patient data. 

1.5. Thesis Structure 

Chapter 2 presents the theory of MRI and the computational techniques used. In the MRI 

section, an overview of the physics behind MRI is presented, along with an explanation of 

how DSC-MRI uses a contrast agent to provide estimates of perfusion. Common acquisition 

protocols and analysis methods for DSC-MRI are covered. In the computational techniques 

section, the machine learning, denoising methods and statistical tests applied throughout this 

piece of work are introduced. 

Chapter 3 reviews the performance of qualitative review as a method for determining data 

quality and presents the development of an automated alternative. This uses parameters 

extracted from the DSC-MRI signal-time courses and investigates whether machine learning 

can be used to predict data quality. 

Chapter 4 looks into potential denoising methods to improve the quality of DSC-MRI data. 

This focuses on the application of matricization, wavelets and the Tucker decomposition as 

denoising methods. All three denoising methods are applied to simulated and patient data and 

their performance is assessed. 

Chapter 5 presents the results from combining the machine learning from Chapter 3 and the 

denoising from Chapter 4 to create an automated processing pipeline for DSC-MRI. Also 

presented are the results of applying the pipeline to a multicentre dataset. 

Chapter 6 presents the results of applying the automated pipeline from Chapter 5 to DSC-MRI 

data from a single centre study of brain tumour survivors who received differing treatments. 

Chapter 7 draws conclusions from the work presented in Chapters 3-6 and discusses possible 

future work.  
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Chapter 2: Theory 
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2. Theory  

2.1. MRI 

2.1.1. Nuclear Magnetic Resonance (NMR) 

MRI relies on the concept of nuclear magnetic resonance (NMR) to produce images, which in 

turn relies on nuclei with magnetic properties. A nucleus has magnetic properties when it 

precesses about its nuclear axis, generating a magnetic moment. The magnetic moment, μ, is 

related to the angular momentum of the nucleus, P, through equation 2.1, where γ is the 

gyromagnetic ratio. P is related to the spin quantum number of the nucleus, I, through 

equation 2.2, where h is Planck’s constant (126). 

𝜇 = 𝛾𝑃 (2.1) 

𝑃 =  √𝐼(𝐼 + 1)
ℎ

2𝜋
 (2.2) 

Any nucleus with a non-zero value for I will have magnetic properties. The value of I for a 

given nucleus is determined by the number of unpaired nucleons. This is because nucleons 

form proton-proton and neutron-neutron pairs cancelling out their angular momentum. 

Therefore, a nucleus with an even number of protons and neutrons will have no unpaired 

nucleons and I = 0. All nucleons have I = ½, so a nucleus with an odd number of unpaired 

protons or neutrons will have a half integer value for I, whilst a nucleus with an even number 

of unpaired protons and neutrons will have an integer value for I (126).  

Some examples of nuclei which have non-zero values for I, and consequently have magnetic 

properties, include 1H, 23Na, 31P and 129Xe. 1H, which consists of a single proton, is the most 

abundant element within the body and is therefore used in MR imaging (127). When there is 

no magnetic field present, all the magnetic moments of 1H nuclei are randomly aligned. As 

each 1H nuclei has a magnetic moment of equal magnitude, the vector sum of all the magnetic 
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moments will add up to zero, and there will be no overall net magnetisation (127). When a 

magnetic field, B0, is applied the 1H nuclei can exist in one of (2𝐼 + 1) quantised states. The 

B0 field is applied along the z axis, so the angular momentum, Pz, of each 1H nuclei will exist 

in one of (2𝐼 + 1) orientations respective of the B0 field. Hence there is also a magnetic 

moment, μz, and energy, E associated with each quantised state. Equation 2.3 summarises the 

relationship between the energy, magnetic moment, and angular momentum, where m has 

(2𝐼 + 1) values 𝑚 = 𝐼, 𝐼 − 1, 𝐼 − 2, … , −𝐼. 

𝐸 = 𝜇𝑧𝐵0 = 𝛾𝑃𝑧𝐵0 = 𝛾𝑚ℏ𝐵0 (2.3) 

For 1H, I = ½, so there are two possible states: the spin-up state where the 1H nucleus is 

aligned to B0; or the spin-down state where the 1H nucleus is anti-aligned to B0. Figure 2.1 

summarises the two possible orientations, their associated energy, and the difference in 

energy between the two states, ΔE. 

 

Figure 2.1: The possible orientations of the 1H nuclei in a magnetic field. 
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Due to the quantised nature of the two states, neither the spin-up or spin-down energy states 

are perfectly aligned to the magnetic field. This means that the magnetic moment is oriented 

at an angle θ to the B0 field which it precesses around, as shown in Figure 2.2. This precession 

is caused by the force exerted on the 1H nucleus by the B0 field, called a torque, The torque 

tries to force the 1H nuclei to align with exactly with the field lines. However, as the 1H nuclei 

can only exist in one of two quantised energy states, which are at an angle to the B0 field, it 

experiences a constant torque, causing it to precess about the B0 field (128).  

 

Figure 2.2: A magnetic moment precessing around the B0 field. 

The magnetic moment precesses at the Larmor frequency, 𝜔𝐿, which is related to the B0 field 

and is given by equation 2.4 (128). 1H has a gyromagnetic ratio of 42.58 MHz T-1, which 

produces 𝜔𝐿 values of 63.87 MHz and 127.74 MHz at field strengths of 1.5 T and 3 T, 

respectively (129). 

𝜔𝐿 = 𝛾𝐵0 (2.4) 

Vector addition of all the magnetic moments now produces a different result compared to 

when there was no B0 field applied. Perpendicular to the B0 field (in the xy plane) there is no 

net magnetisation. This is because the precessions of the individual magnetic moments are all 

randomly oriented, so cancel each other out. Parallel to the B0 field (along the z axis) there is a 
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net magnetisation, M0. This is because the spin-up state is lower energy than the spin-down 

state, so slightly more magnetic moments will be in the spin-up state. The orientation of a 

proton depends on its energy and the distribution of protons between the spin-up and spin-

down state is defined by the Boltzmann distribution and is shown in equation 2.5. Nup and 

Ndown are the numbers of protons in the spin-up and spin-down states respectively, ΔE is the 

energy difference between the spin-up and spin-down states, kb is the Boltzmann constant and 

T is the temperature (128). 

𝑁𝑢𝑝

𝑁𝑑𝑜𝑤𝑛
= 𝑒

Δ𝐸
𝑘𝐵𝑇 (2.5) 

The value of M0 depends on the strength of the B0 field applied and is given by equation 2.6, 

where χ is the magnetic susceptibility of the substance (127). 

𝑀0 = 𝜒𝐵0 (2.6) 

2.1.2. Radiofrequency (RF) Pulses 

M0 is very small compared to B0, so it is not possible to measure the net magnetisation whilst 

it is parallel to the B0 field. It is possible to tip the net magnetisation into the xy plane by 

applying an oscillating B1 field, in the form of a radiofrequency (RF) pulse. In order to have 

an effect on M0, by inducing resonance, the RF pulse must have a frequency equal to ωL. 

These frequencies are necessary because the RF pulse must have an energy equal to ΔE, the 

energy gap between the two levels. Substituting, the Larmor equation (2.4) into the equation 

for ΔE (Figure 2.1) gives equation 2.7.  

Δ𝐸 = ℏ𝜔𝐿 (2.7) 
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The angle between M0 and B0 following the application of the RF pulse is known as the flip 

angle (FA), α. The FA produced by RF pulse depends on the strength of its B1 field and the 

length of time the pulse is applied for, tp, and is given by equation 2.8 (128). 

𝛼 = 𝛾𝐵1𝑡𝑝 (2.8) 

As well as tipping M0 by an angle α, the RF pulse also has the effect of synchronising the 

precession of all the individual magnetic moments, bringing them to phase coherence. This 

means that following the application of the RF pulse there is a net M0 precessing around the 

B0 field with a component perpendicular to the B0 field. The transverse component, Mxy, 

depends on the flip angle of the RF pulse applied. Figure 2.3 shows an example of an RF 

pulse being applied to the net magnetisation and the resulting changes to the transverse, Mxy, 

and longitudinal, Mz, components of the magnetisation. This diagram uses the rotating 

reference frame, where the xy plane rotates about the z axis at ωL. In this reference frame M0 

can be considered to be stationary (128). 

 
Figure 2.3: The rotation of the net magnetisation following the application of an RF pulse. 

A commonly used RF pulse in MR imaging is the 90˚ pulse, which tips the entirety of M0 into 

the transverse place, resulting in a maximum value for Mxy. The precessions of the Mxy 
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component induce an oscillating voltage in the receiver coil of the MRI scanner, which takes 

the form of a sine wave (128).  

2.1.3. T1 and T2
 Relaxation 

Once the RF pulse is turned off the individual 1H nuclei undergo relaxation, where they begin 

to realign with the field lines of the B0 field, by reverting to their spin-up and spin-down 

states, and their precessions begin to de-phase. Both of these relaxation processes cause the 

magnitude of the transverse component of M0 to decay. This produces a free induction decay 

(FID) signal in the receiver coil, which is a sine wave damped by an exponential and is shown 

in Figure 2.4 (128). 

 
Figure 2.4: The free induction decay (FID) signal. 

T1 relaxation, also referred to as spin-lattice relaxation, describes the mechanism by which 

protons release the energy they absorbed from the RF pulse and realign with the Bo field lines. 

It is referred to as spin-lattice relaxation as it describes the interactions between the anti-

aligned 1H nuclei and surrounding molecules, which results in the 1H nuclei transferring their 

energy and re-aligning with the B0 field. The T1 relaxation time is the time it takes for 

longitudinal component of M0 (parallel to B0) to return to 63% of its original value, as shown 

in Figure 2.5. The change in longitudinal magnetisation, Mz, as the 1H nuclei undergo T1 

relaxation is shown in equation 2.9, where T1 is the T1 relaxation time and t is the time since 
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the RF pulse was turned off (127). Figure 2.6 demonstrates how the magnitude of the Mz 

vector changes with time, from the rotating reference frame, following the application of a 

90° RF pulse. 

 
Figure 2.5: Change in longitudinal magnetisation with time after the RF pulse is switched off. 

𝑀𝑧(𝑡) = 𝑀0 (1 − 𝑒
−

𝑡
𝑇1) (2.9) 

 
Figure 2.6: The change in Mz with time during the T1 relaxation process following a 90° RF pulse. 

T2 relaxation, also referred to as spin-spin relaxation is the dephasing of the precessing 1H 

nuclei after the RF pulse is turned off. It is referred to as spin-spin relaxation because it is 
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influenced by the interactions between neighbouring 1H nuclei. The movement of 1H nuclei 

close to each other causes forces to develop between the nuclei, which in turn leads to local 

variations in the magnetic field. This causes local differences in 𝜔𝐿, which leads to a loss of 

phase and therefore a dispersal of the transverse magnetisation (perpendicular to the B0 field), 

Mxy (130). The T2 relaxation time is the time constant for the T2 decay and is the time taken 

for Mxy to decay to 37% of its maximum value, as shown in Figure 2.7. The decay of Mxy is 

described by equation 2.10 (127). Figure 2.8 demonstrates how the magnitude of Mxy changes 

with time, from the rotating reference frame, following the application of a 90° RF pulse. 

 
Figure 2.7: Change in transverse magnetisation with time, after the RF pulse is switched off. 

𝑀𝑥𝑦(𝑡) = 𝑀0𝑒
−

𝑡
𝑇2 (2.10) 
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Figure 2.8: The change in Mxy with time during T2 relaxation following a 90° RF pulse. 

Inhomogeneities in the magnetic field also contribute to spin-spin dephasing. The T2
* decay 

time accounts for both tissue specific T2 decay, and decay caused by field inhomogeneities 

and is given by equation 2.11 (127). 

1

𝑇2
∗ =

1

𝑇2
+ 𝛾Δ𝐵0 (2.11) 

2.1.4. Magnetic Field Gradients 

Magnetic field gradients are an important part of image acquisition in MRI. A magnetic field 

gradient induces a gradient in the B0 field in the direction it is applied. They are applied over 

short time intervals during imaging and are small compared to the B0 field, inducing changes 

of less than 1% (127). Figure 2.9 shows an example of a magnetic field gradient G applied in 

the x direction and how it affects the magnetic field, Bx. The dashed line shows the value of 

Bx across the x direction when G = 0, whilst the solid line shows the value of Bx when G ≠ 0. 
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Figure 2.9: An example of a magnetic field gradient, G, and how it affects the magnetic field in the x direction, Bx. 

2.1.5. Producing a Signal 

Applying a 90˚ RF pulse induces an FID signal which starts to decay as soon as the RF pulse 

is turned off. In order to produce a recordable signal, it is necessary to refocus the dephasing 

spins. Rephasing the spins is referred to as producing an echo and can be created by either an 

RF pulse (spin echo) or a magnetic field gradient (gradient echo).  

A spin echo is created by a combination of a 90˚ pulse and a 180˚ pulse. Once the 90˚ pulse 

has been applied the spins start to dephase. The 180˚ pulse flips all the spins by 180˚. As all 

the spins are still precessing at the same frequency they are now rephasing rather than 

dephasing. Rephasing occurs until all the spins are in phase and the signal begins to dephase 

again. This process of rephasing and dephasing is called an echo and the centre of the echo is 

the point where all the spins are back in phase. Figure 2.10 summarises this process from the 

rotating reference frame.  
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Figure 2.10: How a spin echo is formed in the rotating frame using a combination of 90 and 180 degree RF pulses. 

A gradient echo is created by replacing the 180˚ RF pulse with a set of gradients. First a 

dephasing gradient is applied, which accelerates the dephasing of the all the spins, by altering 

the local magnetic fields and therefore the resonant frequencies. Following this a rephasing 

gradient is applied, which has the same strength but opposite polarity of the dephasing 

gradient. The rephasing gradient is applied for double the length of the dephasing gradient. 

This is because the spins will rephase at the point where the rephasing gradient is of equal 

area to the dephasing gradient. Therefore, for the echo to be at the centre of the rephasing 

gradient it needs to be double the area of the dephasing gradient (131). 

2.1.6 Localising the Signal 

To create an image, it is necessary to isolate groups of spins, which is achieved using 

magnetic field gradients. The first step in localising a signal is the application of a slice select 

gradient, which induces a gradient in the B0 field along the direction the gradient is applied. 

The direction of the field gradient defines the orientation of the slice, with the slices being 

perpendicular to the applied gradient. For example, for an axial image, the slice select 

gradient is applied in the z direction, parallel to the B0 field lines. Therefore, from equation 

2.4. there will be a variation in the Larmor frequencies along the z direction. This means that 
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a specific slice location and thickness can be selected by using a frequency selective RF pulse 

containing a range of frequencies. The central frequency of the RF pulse determines the 

central location of the slice, whilst the range of frequencies controls the thickness of the slice. 

The range of frequencies is referred to as bandwidth, ΔF, and is related to the slice thickness, 

Δz and the slice select gradient, GSS, through equation 2.12 (127). 

Δ𝐹 = 𝛾𝐺𝑆𝑆Δ𝑧 (2.12) 

The frequency encoding (or readout) gradient defines one image dimension and is applied 

perpendicular to the slice select gradient. For an axial image this could be in either the x or y 

direction. It is applied continuously whilst the signal is recorded by sampling it over a series 

of equally spaced time points. The gradient causes the protons within the imaging slice to 

precess with differing frequencies, determined by the location of the proton within the 

gradient field and the strength of the applied gradient. As the protons are all precessing at 

differing frequencies, the signal recorded at each time point will therefore correspond to a 

different spatial frequency (128). 

The phase encoding gradient defines the other image dimension and is applied perpendicular 

to the other two gradients. The effect of applying a phase encoding gradient is demonstrated 

in Figure 2.11, by considering a phase encoding gradient applied across a column of protons, 

from the rotating reference frame. Before the phase encoding gradient is applied all protons 

precess in phase at the same frequency (first column of Figure 2.11). When the phase 

encoding gradient is switched on, it causes a local change in the B0 field, which leads to 

changes in the frequency at which the protons precess. In Figure 2.11, the proton in the 

middle row precesses at the same frequency as it did prior to the application of the phase 

encoding gradient, as the gradient is zero at this point. The proton in the top row precesses 
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slower as it experiences a negative phase encoding gradient, and the proton in the bottom row 

precesses faster as it experiences a positive phase encoding gradient. When the phase 

encoding gradient is switched off all the protons return to precessing at their original 

frequency. However, they are now out of phase due to the phase encoding gradient. The 

difference in phase between the protons depends on the strength of the phase encoding 

gradient and the length of time it is applied for. In order to produce a complete image, the 

process of applying gradients is repeated multiple times with phase encoding gradients of 

differing amplitudes. This is necessary to ensure that enough spatial frequencies are recorded 

to fully re-create an image. Repeated application of gradients increases the total acquisition 

time for the scan (127). 

 

 Figure 2.11: The effect on the individual spins by applying a phase encoding gradient. 

The final acquired signal is a superposition of all the differing precession frequencies, which 

can be extracted using a Fourier transform. Following the Fourier transform the signal can be 



33 
 

plotted as frequency against amplitude of each frequency, with frequency defining the 

position along the frequency encoding gradient, and the amplitude of each frequency defining 

the amount of signal at that position. The Fourier transform of the signal acquired from one 

frequency encoding and one phase encoding gradient represents a one dimensional projection 

of the object being imaged (128).   

2.1.7. Producing an Image 

To form an image, RF pulses are combined with magnetic field gradients to create a pulse 

sequence. The resulting signals detected in the receiver coil are digitised and then stored in k-

space, which represents the spatial frequencies of the image. The k-space data is later 

converted to an image using a Fourier transform. Figure 2.12 shows an example of a spin 

echo pulse sequence, whilst Figure 2.13 shows an example of a gradient echo pulse sequence. 

The time between the RF pulse and the centre of the echo is defined as the echo time (TE), 

whilst the time between two successive excitation pulses is defined as the repetition time (TR) 

(131). 
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Figure 2.12: Spin echo pulse sequence diagram. 

 
Figure 2.13: Gradient echo pulse sequence diagram. 
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For both pulse sequences, the slice select gradient is applied at the same time as the RF 

excitation pulse. It is followed by a negative gradient lobe, the purpose of which is to 

compensate for any dephasing caused by the slice select gradient (128). 

For the spin echo pulse sequence, this is followed by the simultaneous application of a 

frequency and phase encoding gradient. Following this a 180˚ RF pulse, which is used to 

create the spin echo, is applied at the same time as a second slice select gradient. A second 

frequency encoding is applied for the duration of the spin echo and a signal is recorded in the 

receiver coil (128).  

For the gradient echo sequence, the slice select gradient is followed by a frequency encoding 

gradient, which is used to create the gradient echo. The frequency encoding gradient consists 

of a dephasing lobe and a rephasing lobe. During the dephasing lobe the phase encoding 

gradient is also applied, and during the rephasing lobe a signal is recorded in the receiver coil 

(128). 

The flip angle of the RF excitation pulse used differs between spin echo and gradient echo 

pulse sequences. In spin echo the RF excitation pulses usually have flip angles of 90° and 

180°, whilst in gradient echo it has a flip angle, α, which is often less than 90°. This is 

because gradient echo sequences have shorter TR values, which means they have shorter 

acquisition times than spin echo sequences. The flip angle is therefore smaller to prevent 

signal saturation from occurring and to make use of the shorter TR (132).  

For the pulse sequences above, an entire line of k-space is acquired during the signal 

acquisition. In order to create a full image multiple lines of k-space must be acquired. 

Therefore, both pulse sequences must be repeated many times in order to acquire a full image. 

During each repetition, the amplitude of the phase encoding gradient is changed, and this 
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defines the ky value of the line of k-space that is acquired during the rephasing lobe. Once 

enough lines of k-space are acquired a 2D Fourier transform is applied to the k-space values 

and an image is produced. The field of view in the phase encoding direction, FOVPE, defines 

the number of phase encoding gradients needed, which in turn defines the image resolution in 

the phase encoding direction, Δy. This is because the spacing between k-space lines in the 

phase encoding direction, Δky, is related to the field of view (FOV) in the phase encoding 

direction of the acquired image, FOVPE, by equation 2.13 (131). 

Δ𝑘𝑦 =
1

𝐹𝑂𝑉𝑃𝐸
 (2.13) 

Multiplying equation 2.13 by the number of phase encoding gradients, NPE, gives the ky value 

of the largest amplitude phase encoding gradient, ky,max, and produces equation 2.14 (131). 

𝑘𝑦,𝑚𝑎𝑥 = 𝑁𝑃𝐸Δk𝑦 =
𝑁𝑃𝐸

𝐹𝑂𝑉𝑃𝐸
=

1

Δ𝑦
 (2.14) 

A similar equation can be produced relating the field of view, FOVFE, and resolution, Δx, in 

the frequency encoding direction to the number of samples recorded during the application of 

the frequency encoding gradient, NFE. The resolution of the final image can be improved by 

increasing the number of phase encoding gradients and frequency encoding steps over the 

same field of view. However, increasing the number of phase encoding steps has a large 

impact on the acquisition time, as shown in equation 2.15, where TAcq is the acquisition time, 

and NSA is the number of signal averages (128). This means that there is a trade-off between 

optimising the resolution and acquisition. This is a particular problem for the pulse sequences 

above, as a single line of k-space is acquired during each TR, meaning that acquisition times 

are slow (131). Some sequences allow for multiple lines of k-space to be acquired during a 
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single TR, which reduces acquisition time. Some examples of these will be discussed in 

section 2.2.2. 

𝑇𝐴𝑐𝑞 = 𝑁𝑆𝐴 ∙ 𝑁𝑃𝐸 ∙ 𝑇𝑅 (2.15) 

The selection of the FOVPE is particularly important, because if FOVPE is smaller than the 

anatomy being imaged this leads to a wrap-around artefact where anatomy outside of FOVPE 

is folded back into the image. This artefact can be prevented by increasing the FOV, but this 

reduces the resolution in the phase encoding direction. The resolution can be maintained by 

increasing the number of phase encoding steps, but this increases the scan time. An alternative 

is to swap the frequency and phase encoding axes, but this only works if FOVPE is larger than 

the anatomy along its new axis. A third alternative is to use spatial saturation bands to saturate 

the signal outside of FOVPE. However, saturation bands are not capable of fully saturating the 

signal, so the artefact may not be fully suppressed (128). 

2.1.8. Weighting of MR Images 

The weighting of the acquired MR images is controlled by the acquisition parameters of the 

pulse sequence used. The parameters used to control this differ between spin echo and 

gradient echo imaging.  

For spin echo imaging the weighting is controlled by the values of TR and TE. T1 weighting 

is achieved using a short TR and a short TE. The short TR maximises the differences between 

T1 recovery between tissues. The short TE minimises the amount of dephasing which has 

occurred, minimising the sensitivity of the acquired signal to changes in T2. Therefore, the 

acquired signal intensity is dependent on the T1 relaxation rate. T2 weighting is achieved using 

a long TR and a long TE. The long TR allows for the longitudinal magnetisation to mostly 

recover between excitation pulses, which minimises the sensitivity of the acquired signal to 

differences in T1. The long TE allows lots of T2 dephasing to occur. Therefore, the acquired 
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signal intensity is dependent on the T2 relaxation rate. Proton density (PD) weighting is 

achieved using a long TR and a short TE, which minimises the effects of both T1 and T2 

relaxation on the signal intensity. Therefore, the signal intensity reflects differences in PD 

between tissues (133). 

In gradient echo imaging the TR is always short, which minimises the time allowed for T1 

recovery. Therefore, the weighting of gradient echo images is controlled by the flip angle of 

the excitation pulse and the TE. The amount of T1 weighting is controlled by the flip angle, 

whilst the amount of T2
* weighting is controlled by the TE. T2

* weighting is not possible with 

spin echo imaging because the 180° pulse eliminates any T2
* effects (134). T1 weighting is 

achieved using a large flip angle, short TR and short TE. A larger flip angle means that less of 

the net M0 remains in the longitudinal direction following excitation, so the acquired signal is 

more sensitive to the T1 relaxation. Figure 2.14 shows how changing the flip angle changes 

the size of Mz. As with spin echo imaging the short TE minimises the amount of dephasing, 

which minimises the sensitivity of the acquired signal to T2
* relaxation. Therefore, the signal 

is dependent on the T1 relaxation rate. T2
* weighting is achieved using a low flip angle, short 

TR and long TE. The low flip angle means that more of the net M0 remains in the longitudinal 

direction following excitation, so the acquired signal is less sensitive to the T1 relaxation. A 

long TE maximises the differences in T2
* recovery between tissues. Therefore, the acquired 

signal is dependent on the T2
* relaxation rate. PD weighted images are produced using a low 

flip angle, short TR and short TE. As with spin echo imaging, this minimises the sensitivity of 

the acquired signal to the T1 and T2
* relaxation, meaning the acquired signal is most sensitive 

to the PD (127). 
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Figure 2.14: Diagrams showing how the size of Mz changes with flip angle, (a) shows a flip angle of 30° and (b) shows a flip 
angle of 80°. 

2.1.9. Noise and SNR 

Thermal noise, which occurs in the receiver coils, is the primary source of noise in MR 

imaging, and its distribution can be assumed to be Gaussian with zero mean. As well as 

thermal noise, patient motion, physiological motion and characteristics of the MR system can 

also introduce noise into the final acquired image (135). In MRI, magnitude images are most 

commonly presented, which are produced by reconstructing an image from the real and 

imaginary signals. Magnitude images are preferred as they discard the phase information, 

which removes any phase artefacts (136). The noise in the real and imaginary signals can be 

assumed to be Gaussian. However, the process of combining the signals is non-linear, 

meaning that the final image will have a Rician distribution. However, it has been shown that 

for SNR values greater than 2, the noise distributions can be assumed to be Gaussian (136).  
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The simplest method for calculating the SNR in MR images is to calculate the mean signal 

intensity in a region of interest (ROI) within the brain and divide this by the standard 

deviation in the signal from an ROI drawn outside of the brain. However, for phased array 

coils and modern reconstruction techniques this method is not valid and can lead to 

underestimation or overestimation of SNR (137). 

Alternatively, SNR can be calculated following the guidance provided by the National 

Electrical Manufacturers Association (NEMA) guidelines (138). The first method uses a 

single acquisition, where an estimate of the noise is calculated by averaging the standard 

deviation in the signal from four ROIs placed in the four corners of the image. This value is 

then divided by 0.66, which is to correct for the fact that the background noise follows a 

Rayleigh distribution instead of a Gaussian distribution. Typically, noise should follow a 

Gaussian distribution with a zero mean, but because MRI uses magnitude images there are no 

negative values. This changes the distribution to a Rayleigh distribution with a non-zero mean 

and a smaller standard deviation. The factor of 0.66 corrects for this reduced standard 

deviation (128). The second method uses two images which are acquired sequentially with 

identical acquisition protocol. A subtraction image is produced, and the noise is estimated by 

calculating the standard deviation in a signal ROI in the subtraction image and dividing by 

√2. The factor of √2 is used to to correct for the greater standard deviation in the signal ROI. 

The factor of 0.66 is not required as no background noise is used in the calculation (128). A 

third method uses two acquisitions, but in the second acquisition there is no RF excitation, 

which produces a noise image. The noise can then be estimated from the standard deviation in 

an ROI in the noise image. If a magnitude image is used, a correction factor of 0.66 must be 

applied (as is used in the first method). The final method is very similar to the second method 

as it uses a subtraction image. However, in this case the two images are reconstructed from 
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the raw k-space data from a single acquisition, which prevents system drift from affecting the 

noise estimation (138). 

Key factors in the SNR of the final acquired image include: the voxel size, Δ𝑥 ∙ Δ𝑦 ∙ Δ𝑧; the 

relaxation factor Fsequence; the number of signal averages, NSA; the number of phase encoding 

steps, NPE; the number of frequency encoding steps, NFE; and the bandwidth. All of these 

factors can be related to the SNR through equation 2.16 (128). 

𝑆𝑁𝑅 ∝
Δ𝑥 ∙ Δ𝑦 ∙ Δ𝑧 ∙ 𝐹𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ∙ √𝑁𝑆𝐴 ∙ 𝑁𝑃𝐸 ∙ 𝑁𝐹𝐸

√𝐵𝑊
 (2.16) 

The field strength of the scanner is also important as the SNR of the acquired image is 

proportional to the field strength. However, increased field strength can have drawbacks such 

as artefacts appearing more prominently, which is due to an increased artefact-to-noise ratio. 

An example is the Gibb’s ringing artefact, which is a series of parallel lines that can appear at 

high contrast boundaries (139). Increasing the voxel size increases the SNR. Voxel size is 

controlled by the field of view (FOV), the slice thickness and the pixel spacing. Increasing the 

size of any of these factors increases the voxel size. However, increasing the pixel spacing 

reduces the in-plane resolution and increasing slice thickness increases the chance of partial 

volume effects (PVEs). Therefore, setting the voxel size is a trade-off between optimal SNR 

and resolution and reducing PVEs (140). Fsequence defines the contribution of the relaxation 

times to the signal dependent on the type of pulse sequence. The Fsequence values for spin echo 

sequences, FSE, and gradient echo sequences, FGE, are shown in equations 2.17 and 2.18, 

respectively (128). In these equations, TR is the repetition time, TE is the echo time, T1 is the 

T1 relaxation time, T2 is the T2 relaxation time, T2
* is the T2

* relaxation time, and α is the flip 

angle. 
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𝐹𝑆𝐸 ∝ [1 − 𝑒
−

𝑇𝑅
𝑇1 ] ∙ 𝑒

−
𝑇𝐸
𝑇2 (2.17) 

𝐹𝐺𝐸 ∝
sin(𝛼) ∙ (1 − 𝑒

−
𝑇𝑅
𝑇1 ) ∙ 𝑒

𝑇𝐸
𝑇2

∗

1 − cos(𝛼) ∙ 𝑒
−

𝑇𝑅
𝑇1

(2.18) 

Increasing NSA increases the SNR, but also increases the acquisition time (128). Increasing 

NPE and NFE can increase the SNR. However, increasing the NPE increases the acquisition 

time. NPE and NFE are also related to voxel volume and if either NPE or NFE are increased 

without a respective increase in field of view then the voxel size will be decreased (128). The 

bandwidth refers to the bandwidth of the receiver which records the MR signal. Decreasing 

bandwidth increases the SNR as less noise is sampled due to the decreased frequency range. 

However, bandwidth is inversely proportional to the sampling time so decreased bandwidth 

leads to increased sampling time and therefore longer acquisition time (141). 

2.1.10 Multi-Slice Imaging 

Often when an MR image is required more than one slice is needed. In order to speed up the 

acquisition time, multiple slices are acquired simultaneously. This can be done using either a 

2D multi-slice acquisition or a 3D acquisition. 2D multi-slice imaging exploits the time gap 

between the end of the signal acquisition and end of the TR. Extra signals can be excited and 

acquired during this gap allowing for signals from multiple slices to be acquired during a 

single TR. This is achieved using a series of staggered RF excitation pulses, as shown in 

Figure 2.15. The number of slices which can be acquired depends on the length of time 

between the end of the signal acquisition and the next excitation pulse and is therefore 

dependent on the echo train length and TR. A 3D acquisition uses an extra phase encoding 

gradient applied along the slice select direction. The slice select gradient and RF excitation 

pulse are used to excite a 3D volume, which is then partitioned into slices using the extra 
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phase encoding gradient. Figure 2.16 shows the difference in slice select gradient between a 

2D and 3D gradient echo pulse sequence. A 3D acquisition can only be carried out using 

gradient echo or fast spin echo imaging, as standard spin echo imaging is too slow. However, 

it offers thinner slices than 2D multi-slice and better SNR for comparable slice thickness, and 

images produced from a 3D acquisition can be reconstructed into any plane provided the 

voxels are isotropic. As a general rule, a 2D acquisition is used if the slice thickness is 3mm 

or greater, whilst a 3D acquisition is used for thinner slices (128). 

 
Figure 2.15: An example of how staggered RF excitation pulses are applied in a 2D multi-slice acquisition. 

 
Figure 2.16: The difference in the slice select gradients between a 2D and 3D gradient echo acquisition. The 3D version 
includes phase encoding gradients to allow multiple slices to be acquired simultaneously. 
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2.2. DSC-MRI 

A brief overview to DSC-MRI, its applications and issues with the method was given in the 

introduction. This section will explain the physics behind estimating perfusion with a contrast 

agent, and how DSC-MRI data is acquired and how it is analysed to produce biomarkers. 

2.2.1. Estimating Perfusion with a Contrast Agent 

DSC-MRI relies on the use of a paramagnetic contrast agent, which is injected into the blood. 

Paramagnetic contrast agents consist of molecules that have their own magnetic moment, 

which is either caused by unpaired nucleons in the nucleus, or unpaired electrons orbiting the 

nucleus (142). A contrast agent must meet several criteria to be used in DSC-MRI: there 

should be no chemical interactions between the contrast agent and the blood plasma; the 

contrast agent must not disturb the blood flow; it must be detectable by the imaging method; 

and finally it needs to be non-diffusible (143). 

Gadolinium-based contrast agents are frequently used in DSC-MRI, as gadolinium has a large 

magnetic moment due to having 7 unpaired electrons. However, gadolinium is toxic so must 

be chelated with a ligand before it can be safely injected. Commonly, it is chelated with 

diethylene-triaminepenta-acetic acid (DTPA) to form Gd-DPTA (144). Gd-DPTA has T1 and 

T2 relaxivities of 4.3 Lmmol-1s-1 and 4.4 Lmmol-1s-1, respectively, when measured in blood at 

1.5T (30). It causes signal changes in MR imaging by shortening T1 and T2 values, which 

accelerates the longitudinal and transverse relaxation. The magnetic susceptibility of the 

contrast agent also increases the difference in magnetisation between the blood and 

surrounding tissues. This causes local inhomogeneities in the magnetic field, leading to local 

variations in T2
*. Reduced local T2 and T2

* cause local signal decreases in T2 and T2
* 

weighted imaging, respectively (143).   



45 
 

The changes in signal intensity caused by the contrast agent can be plotted as a signal-time 

course, and each pixel within a DSC-MRI image has a corresponding signal-time course. An 

assumption of DSC-MRI is that the change in concentration of gadolinium contrast agent, 

represented by a concentration time course (CTC), is linearly proportional to the change in T2
* 

relaxivity, ΔR2
*, caused by the contrast agent, which is calculated from the signal-time course. 

These quantities are all related through Equation 2.19, where Ct(t) is the CTC, ΔR2
*(t) is the 

change in ΔR2
* with time, ΔT2

* is the change in T2
* relaxation time, TE is the echo time, S(t) 

is the signal at time, t, obtained from the signal-time course, and S0 is the mean of the baseline 

of S(t) (145).  Figure 2.17 shows an example of a signal-time course and ΔR2
* curve. 

𝐶𝑡(t) ∝  Δ𝑅2
∗(𝑡) =

1

Δ𝑇2
∗ = −

1

𝑇𝐸
ln (

𝑆(𝑡)

𝑆0
) (2.19) 

 
Figure 2.17: An example signal-time course (a) and its corresponding relaxation rate curve (b). 

2.2.2. Acquisition 

The acquisition protocol for DSC-MRI can be divided into two parts: the imaging protocol 

and the injection protocol for the contrast agent. In order to monitor the changes in 

concentration of the contrast agent the DSC-MRI images are acquired rapidly. Currently, it is 

recommended that images are acquired with a temporal resolution of at least 1.5s (34). For 
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this reason, the recommended protocol for acquiring DSC-MRI data is the gradient echo – 

echo planar imaging (GE-EPI) sequence (34). However, it is also possible to acquire DSC-

MRI using the sensitivity encoded (SENSE) principles of echo-shifting with a train of 

observations (sPRESTO) (146). Both protocols need to be T2
* weighted, as changes in T2

* 

caused by the contrast agent are being measured (147). It is also possible to acquire DSC by 

measuring changes in T2 using a spin echo pulse sequence. However, GE-EPI has advantages 

over spin echo such as greater SNR and sensitivity (34).  

2.2.2.1. Imaging Protocol 

Both the GE-EPI and sPRESTO sequences have RF excitation pulses with flip angles, α, 

which are less than 90°. The GE-EPI sequence, shown in Figure 2.18, differs from standard 

gradient echo imaging in that it uses a train of frequency encoding gradients to create a train 

of gradient echoes following one RF pulse. As each frequency encoding gradient in the train 

has an individual phase encoding gradient, multiple lines of k-space can be acquired from a 

single RF pulse, which speeds up acquisition (131). For GE-EPI it is common to use a spatial-

spectral (SPSP) RF excitation pulse, which is used to reduce lipid induced chemical shift 

artefacts. This consists of an envelope of RF pulses applied at the same time as an alternating 

slice select gradient. The frequencies within the RF envelope determine the spectral content of 

the signal, whilst the combination of the slice select gradient and RF frequencies determine 

the spatial selectivity. An oscillating slice select gradient is required to prevent the production 

of spatially offset replicates of the slice profiles for each of the chemical species (131). 
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Figure 2.18: GE-EPI pulse sequence diagram. 

The sPRESTO sequence, shown in Figure 2.19, also uses an echo train, but in combination 

with an echo shifted pulse sequence. In an echo shifted pulse sequence a modified slice select 

gradient is used to ensure that no signal is recorded in the first TR following the RF pulse, 

which delays the gradient echo by one TR. Following the first TR, the slice select gradient 

consists of a positive lobe of area, A, followed by two lobes of equal and opposite area, 2A 

(shown in Figure 2.19). The first positive lobe rephases the gradient echo from the first TR 

and the pair of lobes that follow it spoil the transverse magnetisation from the second TR 

(131). 



48 
 

 
Figure 2.19: sPRESTO pulse sequence diagram. No signal is recorded during the first TR and is rephased using the slice select 
gradient, which consists of a positive lobe of area A, followed by a positive and negative lobe, each with area 2A. 

A factor that needs to be considered with DSC-MRI acquisition is the length of the TR 

relative to the T1 and T2 values of the tissues imaged. When the TR is significantly longer 

than the T1 and T2 values, the transverse magnetisation completely decays between successive 

RF pulses. However, if the TR is shorter than the T1 and T2 values then there is residual 

transverse magnetisation at the end of the TR, which experiences the next RF pulse. 

Therefore, it takes a few repetitions of the pulse sequence before a steady state is reached, 

where the net transverse magnetisation is equal at the same point in two successive pulse 

sequences (148). This is particularly a problem for sPRESTO as the TR is very short and is in 

the order of ms. For sPRESTO scans it is common to acquire a few dummy scans, where the 

pulse sequence is played but no signal is acquired, to allow the steady state to be reached 

(149, 150). 

The total acquisition time for a MR image is defined by the length of TR, the number of 

NSAs and the number of repetitions of TR needed to acquire enough lines of k-space, as 

shown in equation 2.15. Reducing the acquisition time increases the temporal resolution. The 

temporal resolution is important as it needs to be short enough to be able to capture the 



49 
 

change in signal intensity induced by the contrast agent. Currently a temporal resolution of 

1.5s or less is recommended (34). T2
* weighted GE-EPI and sPRESTO imaging techniques 

are used to acquire DSC-MRI as both techniques allow multiple lines of k-space to be 

acquired with a single excitation pulse, offering much faster acquisition, and therefore greater 

temporal resolution, than standard gradient echo imaging (146).  

Parallel imaging can be used to further reduce acquisition time, by undersampling k-space in 

the phase encoding direction and reconstructing an image from the undersampled data. The 

reduction in acquisition time is determined by the acceleration factor, R, which is a ratio of 

the number of lines of k-space acquired in the fully sampled image, to the number of lines of 

k-space acquired in the undersampled image. Parallel imaging uses a phased coil array, 

consisting of several receiver coils. Each coil is more sensitive to the region of tissue it is 

closest to, providing additional spatial information which can be used in the reconstruction 

(151). 

Undersampling k-space can result in aliasing artefacts, which can be removed by parallel 

imaging reconstruction algorithms. There are many reconstruction algorithms available, and 

they can be classified as either sensitivity encoding (SENSE) algorithms or generalised 

autocalibrating partially parallel acquisition (GRAPPA) algorithms. SENSE algorithms 

combine the aliased images with a map of the coil sensitivities to produce a final, unaliased 

image. GRAPPA algorithms are applied to the raw k-space data and regenerate the missing 

phase-encoding lines (151). 

When optimising the acquisition parameters for DSC-MRI, there are a series of trade-offs 

between improving the data quality, maintaining sufficient temporal resolution, and reducing 

any T1 effects in the acquired data. T1 effects can contaminate the T2 / T2
* weighted DSC-
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MRI signal due to T1 shortening caused by the gadolinium contrast agent leaking from the 

intravascular space to the extravascular extracellular space (EES) in tumours with a disrupted 

blood brain barrier (BBB). These effects can be reduced by reducing the T1 weighting of the 

sequence - reducing the flip angle and increasing the TE. However, reducing the flip angle 

reduces SNR, and increasing the TR reduces the temporal resolution, which increases the 

acquisition time (34). 

2.2.2.2. Injection Protocol 

A gadolinium based contrast agent is injected during acquisition using a power injector. The 

injection rate varies between patients and depends on factors such as the age of the patient and 

the cannula size (34). This is particularly important in paediatrics where custom bolus 

administrations are needed (152). Contrast agent may be injected either as a single-dose 

dynamic bolus, or as a double-bolus consisting of the dynamic bolus and a preload. The 

American Society of Functional Neuroradiology (ASFNR) recommendations for DSC-MRI 

from 2015 suggest a preload of a quarter to a single dose, 5-10 minutes prior to the injection 

of the main dynamic bolus should be used (34). However, for paediatrics European society for 

paediatric oncology (SIOPE) recommends that the total bolus is equally split between the pre-

bolus and the main bolus, in order to limit the amount of contrast agent injected (153). The 

selection of preload dose and time between preload and main dynamic bolus is important as it 

has been shown to have an effect on the accuracy of the CBV values (154-158).   

In patients with a disrupted BBB, leakage of contrast agent from the intravascular space 

causes T1 and T2 or T2
* weighted effects, which affects the accuracy of the acquired signal 

and therefore the accuracy of any biomarkers estimated from the data (34). The purpose of the 

preload is to leak from the intravascular space to the extravascular extracellular space (EES), 
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thereby shortening the T1 of the EES prior to the DSC acquisition, minimising the T1 

weighted effects that occur during the acquisition of the DSC-MRI signal (59). 

2.2.2.3. Recommended Acquisition Protocol 

In 2015 the ASFNR published a set of recommendations for acquiring DSC-MRI data (34). A 

more updated set of recommendations were published in a consensus paper in 2020 (159). 

Table 2.1 summarises the two set of recommendations and the differences between them. The 

main difference between these two protocols is the flip angle and the use of a preload. As 

mentioned above the purpose of the preload is to reduce T1-weighted effects cause by contrast 

agent leakage. However, recent work has shown that using a lower flip angle and no preload 

produces similar results, provided that leakage correction is applied (160, 161). 

Acquisition 
Parameter 

Paper 

ASFNR 2015 Recommendations 2020 Consensus Paper 

Sequence GE-EPI GE-EPI 

TR (ms) 1000-1500 1000-1500 

TE (ms) 25-35 25-35 

Flip Angle 60˚ - 70˚ 30˚ 

Temporal 
Coverage 

120 time points, with injection of 
contrast agent 30-50 time points 
after imaging begins 

At least 120 time points, with injection 
of contrast agent 30-60 time points 
after imaging begins 

Slice Thickness 
(mm) 

3-5 3-5 

Field of View 
(cm) 

20 24 

Preload 
1/4 - 1 single dose 5-10 mins prior to 
DSC acquisition 

No preload 

Injection Rate 
(mL/s) 

3-5 3-5 

Total 
Acquisition 
Time 

Approximately 2 minutes 2-3 minutes 

Table 2.1: Summary of the protocols presented in both the 2015 and 2020 consensus papers. 

2.2.3. Analysis of DSC-MRI 

Before analysis of DSC-MRI data can be carried out, it is necessary to assess the quality of 

the raw data, which is the signal-time courses produced by the acquisition. Currently the 



52 
 

ASFNR recommendation is that this is carried out by visual inspection of the data, which 

involves assessing whether a clear first pass can be seen and assessing the level of noise 

within the baseline and the rest of the signal (34). This is an important step as the quality of 

the raw data affects the accuracy of any metrics calculated from the signal-time courses and 

any biomarkers calculated from the concentration time curves. The quality of the raw data can 

be affected by a series of artefacts, which are discussed in Section 2.2.4. 

2.2.3.1 Metrics from DSC-MRI Signal-Time Courses  

Metrics which can be calculated from DSC-MRI signal-time courses include signal drop to 

noise ratio (SDNR), root mean square error (RMSE), full width half maximum (FWHM) and 

Percentage Signal Recovery (PSR). SDNR can be calculated using equation 2.20, with the 

signal drop defined as the difference between the mean baseline and mean of the first pass 

minima and the two adjacent dynamics. RMSE can be calculated by fitting a version of the 

simplified gamma variate function (162), shown in equation 2.21, to the first pass of the 

signal-time course. In equation 2.21 y(t) is the fit, t is the time, c is the average baseline, and 

α, β and K are coefficients that affect the shape of the fit. The FWHM can be determined from 

the width of the bolus of the signal-time course (in seconds) at half of the signal drop. The 

PSR can be calculated from equation 2.22 (34), with T2
* recovery defined as the difference 

between the mean post-bolus signal and the mean of the first pass minima and the two 

adjacent dynamics. 

𝑆𝐷𝑁𝑅 =
𝑆𝑖𝑔𝑛𝑎𝑙 𝐷𝑟𝑜𝑝

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 (2.20) 

𝑦(𝑡) = 𝑐 − 𝐾𝑡𝛼𝑒
−

𝑡
𝛽 (2.21) 

𝑃𝑆𝑅 =
𝑇2

∗ 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

𝑆𝑖𝑔𝑛𝑎𝑙 𝐷𝑟𝑜𝑝
× 100 (2.22) 
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2.2.3.2 Estimating Biomarkers 

Several biomarker values can be estimated from DSC-MRI including: CBV, cerebral blood 

flow (CBF), vascular mean transit time (MTT), bolus arrival time (AT) and time to peak 

(TTP). AT is defined as the time between the bolus injection and the beginning of the signal 

drop, whilst TTP is the time between the bolus injection and the maximum signal drop (163). 

CBV, CBF and MTT values are calculated for each voxel by converting the signal-time 

course into a CTC, using equation 2.19 (156). 

A relative CBV (rCBV) value can be calculated by fitting a gamma variate to the first pass of 

the CTC and calculating the area under the curve (147). rCBV is a commonly reported 

measure in DSC-MRI research and is often normalised using an average rCBV value from an 

ROI defined in normally appearing white matter (WM) or grey matter (GM) (34). 

In order to obtain fully quantified CBV values and to obtain CBF and MTT values it is 

necessary to obtain an AIF. An AIF is a CTC obtained from a voxel located within an artery, 

it therefore represents the concentration of contrast agent within the blood vessels. The artery 

selected must be supplying the tissue which the CBV is being calculated for. A quantified 

CBV value can be obtained from dividing the area under the CTC by the area under the AIF, 

as shown in equation 2.23, where Ct(t) is the CTC, Ca(t) is the AIF, Hf is a factor accounting 

for the differences in haematocrit between large and small vessels, and ρ is the brain tissue 

density (147). 

𝐶𝐵𝑉 =
𝐻𝑓

𝜌

∫ 𝐶𝑡(𝑡)𝑑𝑡
𝑡

0

∫ 𝐶𝑎(𝑡)𝑑𝑡
𝑡

0

 (2.23) 

The CTC for each voxel can be assumed to be a convolution of the AIF and a tissue residue 

function, R(t), all multiplied by the CBF, as shown in equation 2.24 (147). The residue 
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function describes the amount of contrast agent remaining in the tissue following the injection 

of the bolus of contrast agent (147). 

𝐶𝑡(𝑡) = 𝐶𝐵𝐹 ∙ 𝐶𝑎(𝑡) ⊗ 𝑅(𝑡) (2.24) 

Deconvolution of the AIF and CTC allows a quantified value of CBF to be calculated. There 

are multiple methods for performing the deconvolution, but the most frequently used is 

singular value decomposition (SVD). SVD is a technique for factorising matrices and is 

explained in section 2.3.1. The vascular MTT for the voxel can then be calculated from the 

central volume theorem, which relates the MTT, CBF and CBV and is shown in equation 2.25 

(147).  

𝑀𝑇𝑇 =
𝐶𝐵𝑉

𝐶𝐵𝐹
(2.25) 

In most clinical applications AIF selection is often manual and relies on a radiologist drawing 

a ROI around one of the major arteries (often either the major carotid artery or the internal 

carotid artery). However, manual AIF determination can be time consuming and subjective 

between radiologists, and also relies on the existence of an appropriate vessel within the FOV 

(164). Therefore, most centres do not carry out deconvolution and just report rCBV values 

instead. There are several automated AIF selection methods available (164-167), but their use 

is not widespread. 

2.2.4. DSC-MRI Artefacts 

Artefacts such as noise, motion, susceptibility artefacts and contrast agent leakage, make it 

challenging to obtain accurate biomarkers from the acquired DSC-MRI data (34, 168). This 

section covers each of these artefacts and the methods used to reduce or correct them. 
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2.2.4.1 Noise 

Noise is a common problem across all MR modalities. In DSC-MRI, noise can obscure the 

first pass of the signal-time course, making it difficult to obtain accurate estimates of 

biomarker values. The acquired DSC-MRI signal is affected by the field strength and the 

acquisition parameters used. If the signal is increased but the noise remains constant then the 

SNR of the acquired data is improved (34). 

Alternatively, noise can also be reduced in post-processing by denoising the acquired data. 

Examples of denoising methods include: matricization, Tucker decomposition and wavelet 

denoising. The theory behind these methods is covered in section 2.3.  

2.2.4.2 Motion 

Patient motion can introduce noise and discontinuities into the acquired DSC-MRI signal-

time course. These discontinuities result in a spatiotemporal partial volume effect (PVE), 

which effects the accuracy of biomarker estimates obtained from the acquired data. This type 

of PVE also makes AIF determination challenging, as the arteries AIFs are selected from are 

often around a voxel in diameter. This makes it more difficult to obtain quantified biomarker 

values (169). 

Motion can be reduced by acquiring the DSC-MRI scan whilst the patient is under 

anaesthetic, which is common practice in paediatric studies where the patients are 5-6 years 

old or younger (152, 170, 171). It is also possible to correct for motion in post-processing by 

registration methods, with one image from one time point used as a reference to register the 

rest of the time points to (169). 

2.2.4.3 Susceptibility Artefacts 

Susceptibility artefacts are distortions to an image caused by inhomogeneities in the B0 field, 

which are in turn caused by variations in the magnetic susceptibility. These distortions 
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generally occur at boundaries between air and tissue (for example the sinuses) and around 

metal implants (172). 

Susceptibility artefacts can be reduced by optimising the imaging protocol to increase the 

pixel bandwidth in the phase encoding direction (172). It is also possible to correct for 

susceptibility artefacts using post-processing correction, and there are several different 

methods available. For example, in one method two GE images with differing TEs are 

acquired, and the phase differences between the images are used to estimate the 

inhomogeneity (173). Another method is to acquire two gradient echo (GE) images, where 

one has a reversed phase encoding gradient. The two images then have opposite distortions, 

which can be used to estimate an undistorted image (172, 174).  

2.2.4.4 Contrast Agent Leakage Correction 

Contrast agent leakage from the intravascular space to the extracellular extravascular space 

occurs in patients with a disrupted BBB. This results in T1 and T2
* weighted effects that can 

affect the accuracy of biomarker values from DSC-MRI data. In regions where T1 weighted 

effects dominate, contrast extravasation causes a decrease in T2
* weighted signal loss, which 

results in an increased post-bolus signal in the signal-time course, leading to underestimated 

CBV values. In other regions differences in magnetic susceptibility between the contrast agent 

in the EES and the surrounding tissue can lead to T2
* weighted effects dominating, which 

leads to a reduced post-bolus signal in the signal-time course and overestimated CBV values 

(59). Figure 2.20 shows an example of the T1 and T2
* weighed effects on a signal-time course. 
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Figure 2.20: Examples of the effects of contrast agent leakage on signal-time courses. (a) shows an example of T2

* weighted 
effects, whilst (b) shows an example of T1 weighted effects. 

There are several different leakage correction methods available (156, 175-178). However, 

the most widely used method is the Boxerman method (156). In this method the leakage 

correction is applied to the uncorrected CTCs, Δ�̅�2
∗
, associated with each signal-time course. 

The uncorrected CTC can be linked to the corrected CTC, Δ𝑅2
∗, through equation 2.26, where 

Δ𝑅2
∗̅̅ ̅̅ ̅ is the average CTC for voxels with no contrast agent leakage, and K1 and K2 are 

correction factors. K1 multiplied by Δ𝑅2
∗̅̅ ̅̅ ̅ represents the corrected Δ𝑅2

∗, and K2 represents the 

effects of contrast agent leakage (156). Δ𝑅2
∗̅̅ ̅̅ ̅ is estimated by finding all CTCs where the mean 

of the last 10 time points are within 1 standard deviation of the average baseline (156). 

Δ�̅�2
∗
(𝑡) ≈ 𝐾1Δ𝑅2

∗̅̅ ̅̅ ̅(𝑡) − 𝐾2 ∫ Δ𝑅2
∗̅̅ ̅̅ ̅(𝑡′)𝑑𝑡′

𝑡

0

 (2.26) 

This equation makes several assumptions. Firstly, it assumes that R2
* is approximately 

proportional to the CTC (equation 2.19). Secondly, it assumes that the effect of contrast agent 
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leakage is a small and occurs over a time period longer than the first pass, but shorter than the 

clearance time of the contrast agent. Thirdly, it assumes that the contrast agent only diffuses 

from the intravascular space to the extravascular extracellular space. Finally, it assumes that 

the average of CTC’s that do not demonstrate leakage are proportional to the average contrast 

agent in the capillaries, and that they all return to the baseline (156). 

As shown in equation 2.27, K2 is dependent on a number of factors including: TR; TE; T1; the 

longitudinal relaxivity of the contrast agent, r1; a constant, k; and the permeability and surface 

area product, PS. The constant k depends on physiological factors such as vessel size and the 

average CBV within the brain. PS is an important parameter as it is the only leakage 

dependent parameter in the equation for K2, and therefore explains why K2 defines the amount 

of leakage (156). A Similar measure to PS in DCE-MRI is Ktrans
 which measures a mixture of 

PS and flow (179).  

𝐾2 =
𝑇𝑅

𝑇𝐸

𝑒
−

𝑇𝑅
𝑇1

1 − 𝑒
−

𝑇𝑅
𝑇1

𝑟1 ∙ 𝑘 ∙ 𝑃𝑆 (2.27) 

Since the value of Δ𝑅2
∗̅̅ ̅̅ ̅(𝑡) is constant for each voxel, the values for K1 and K2 can be 

estimated using a linear least squares fit using equation 2.26. The corrected Δ𝑅2
∗ can then be 

calculated from rearranging equation 2.26, and a corrected value or CBV can be calculated 

using equation 2.28. In this equation rCBV is the uncorrected relative CBV value and 

rCBVcorr is the corrected rCBV value (156). 

𝑟𝐶𝐵𝑉𝑐𝑜𝑟𝑟 = 𝑟𝐶𝐵𝑉 + 𝐾2 ∫ 𝑑𝑡′′
Τ

0

∫ Δ𝑅2
∗̅̅ ̅̅ ̅(𝑡′)𝑑𝑡′

𝑡′′

0

 (2.28) 

This method has also been further extended by Leu et al. to allow for bidirectional leakage 

corrections (180). 
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2.3. Computational Techniques  

Developing a pipeline for processing DSC-MRI data requires multiple computational 

techniques to process the acquired data. This section provides some background on the 

computational techniques used. It covers the singular value decomposition (SVD) and wavelet 

based methods which are applied as denoising methods. This is followed by machine learning 

techniques including: principal component analysis (PCA) and clustering techniques, used for 

segmentation; and classification, used for determining data quality. Finally, section 2.3.5 

gives an overview of the types of data used in this thesis and examples of how each 

computational technique is suited to the data. 

Machine learning techniques can be classified as either supervised or unsupervised learning. 

In supervised learning techniques the training data consists of a set of input data and a set of 

corresponding correct outputs. In unsupervised learning the training data consists of only 

input data with no outputs (181). Both supervised and unsupervised machine learning 

techniques are used in this thesis. The supervised machine learning techniques have been used 

for classification, whilst the other unsupervised techniques have been used for denoising, 

dimensionality reduction, and segmentation. 

2.3.1. Singular Value Decomposition 

The singular value decomposition (SVD) is a technique for factorising a matrix into a series 

of constituent matrices. SVD is used to estimate the rank of matrices and to calculate a lower-

rank approximation of a matrix (182). It also provides the basis for other techniques including 

principal component analysis (PCA) and the Tucker decomposition (183). It states that a 

matrix, A, can be factorised into three matrices, according to equation 2.29. A is a matrix of 

dimensions 𝑚 × 𝑛, whilst U and V are orthogonal matrices of dimensions 𝑚 × 𝑚 and 𝑛 × 𝑛 

respectively and S is a diagonal matrix with the same dimensions as A (184).  
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𝐴 = 𝑈𝑆𝑉𝑇 (2.29) 

A lower rank approximation of the original matrix can be estimated  by rewriting the matrix, 

A, as the sum of a series of rank 1 matrices, according to equation 2.30, where sii, ui, and vi 

are all elements of S, U and V from equation 2.29 respectively, and r is the number of 

elements in the diagonal of S (185). 

𝐴 =  ∑ 𝑠𝑖𝑖𝑢𝑖𝑣𝑖
𝑇

𝑟

𝑖=1

(2.30) 

The sii values are the diagonal values of S and are referred to as the singular values. The p 

largest singular values (where p < r) can be selected and used to produce a reconstruction of 

A, referred to as, and shown in equation 2.31 (185). 

𝐴𝑆 =  ∑ 𝑠𝑖𝑖𝑢𝑖𝑣𝑖
𝑇

𝑝

𝑖=1

(2.31) 

Assuming the largest singular values are associated with the signal and the smallest singular 

values are associated with the noise, this has the effect of removing the noise from the 

reconstructed dataset (185).  

Rank reduction, via SVD or SVD-based methods, has been widely applied as a denoising 

method in the literature. It has been applied to imaging: Guo et al. and He et al. have both 

demonstrated that SVD denoising can be used to suppress the noise in an image and gives 

improved performance when compared to spatial domain filtering methods (186, 187); James 

et al. has applied three SVD-based to MR images, with all three methods improved the SNR 

(188); Lyra-Leite et al. have demonstrated that it can be applied to MRI images to reduce 

noise and make the reconstruction process less computationally expensive (189); and Leal et 
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al. have applied it to MR images and demonstrated improved SNR and reduced artefacts 

compared to other spatial filtering methods (190).  

It has also been applied to a range of signals: Cheng et al. have shown it can be applied to 

laser imaging, detection, and ranging (LIDAR) data to give improved SNR (191). Fan et al. 

have applied it to denoise Raman spectroscopy data, where it was shown to provide a more 

efficient alternative to standard methods of denoising individual spectra (192); Li et al. have 

shown that it can be applied to ECG data (193); Wang et al. have applied it to unmanned air 

vehicle flight data, in combination with standard analysis methods to give improved noise 

suppression (194); and Jha et al. have applied it to give good noise suppression in electronic 

nose data (195).  

2.3.1.1. Principal Component Analysis 

Principal component analysis (PCA) is a form of unsupervised machine learning, which can 

be thought of as a method of reorganising a dataset into a new set of variables. This new set of 

variables are called principal components (PCs) and are used to explain the variance in the 

dataset. The first PC is oriented in a direction to explain the maximum variance. All following 

PCs are then orthogonal to the first PC and all other PCs. All the data within the dataset will 

have a new set of values for the PCs. These new values are referred to as scores and each 

point within the dataset will have a score for each PC (196). 

PCA uses SVD (equation 2.29) to calculate the principal components. In this case the 

columns of the matrix, A, are variables and the rows are the corresponding observations. 

Often the columns of A are centred prior to PCA, so that all columns have a zero mean. 

Following SVD the orthogonal matrix, V, is referred to as the principal component coefficient 

matrix and indicates the correlations between the principal components and the variables. The 
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principal component score matrix, F, can then be calculated using equation 2.32, where U and 

S are matrices produced by SVD (equation 2.29) (197).  

𝐹 = 𝑈𝑆 (2.32) 

The aim of PCA is to reduce the dimensionality of the dataset. The square of the singular 

values is equivalent to the eigenvalues of the covariance matrix. The magnitude of each 

eigenvalue is proportional to the amount of variance explained by its corresponding principal 

component. Therefore, the singular values contain information on the amount of variance 

explained by each principal component. Ordering the singular values and their corresponding 

principal components by descending order ensures the principal components are ordered by 

the amount of variance they explain (197). This means that by rearranging the data into a set 

of PCs, it is possible to represent the dataset with fewer variables with a minimal loss of 

information (198). 

Representing a dataset with fewer variables means that PCA analysis has applications in 

exposing relationships between variables that might not be apparent in a highly dimensional 

dataset, and in denoising data (198). One of the challenges of applying PCA as an analysis 

technique is selecting the number of principal components to use. A commonly used 

technique is the scree plot, where the eigenvalues are plotted against the components (199). 

An example scree plot is shown below in Figure 2.21. The number of components to include 

is then selected by finding the ‘elbow’ of the curve where it starts to level off and any 

additional components have low variance (200). There are however, many different methods 

available for selecting the number of principal components, some which use a variation on the 

Scree plot (200) and others which use different methods (201-203). 
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Figure 2.21: An example of a scree plot used to select the number of principal components used in PCA analysis 

PCA has previously been applied as a dimensionality reduction method in multiple 

applications. Perfilieva and Hurtik have applied it as a technique to aid pattern recognition in 

large databases (204), whilst Zhao et al. have applied it as a dimensionality reduction 

technique to improve the performance of a deep learning network used for image 

classification (205). In MRI it has been applied by Kaya et al. in combination with clustering 

methods to segment brain tumours from T1 weighted MR images (206). It has also been 

applied as a method to aid the analysis of functional MRI (fMRI) (207). 

PCA also has multiple applications as a denoising method and can be applied to images and 

time-varying signals. James et al. applied it to denoise grayscale and colour images and 

showed that it gave improved SNR (188), whilst Malladi et al. compared a PCA method to 

standard image denoising methods and showed that PCA gave improved performance (208). 

In terms of time-varying signals, Jade et al. have demonstrated that PCA can be used to 

recover the original signal (209), whilst Kang et al. have applied it to decompose multi-

channel electrocardiogram (ECG) signals during the denoising process (210). In MRI, 

Manjon et al. and Kanwal et al. have both applied it to denoising of MRI images (211, 212), 
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whilst Gurney-Champion et al have applied it to diffusion weighted MRI (201), Zhu et al 

have applied it to ASL (213), and Balvay et al have applied it to DCE-MRI (214). 

2.3.1.2. Matricization 

SVD and PCA methods are limited by the fact that they can only be applied to a 2-

dimensional matrix. However, many datasets have more than 2 dimensions. Often in imaging 

this will be two spatial dimensions, and one signal or data dimension. Matricization is a 

technique which allows a higher order tensor to be unfolded into a matrix, allowing for 

techniques such as PCA to be applied to the data. The tensor can be unfolded along any of its 

dimensions, for example a 3 x 4 x 2 tensor can be unfolded into 3 matrices: two 3 x 8 matrices 

and a 2 x 12 matrix, as demonstrated in figure 2.22 (183). A detailed explanation of the 

formulas used to map the tensor indices to the matrix indices can be found in work by Kolda 

(215). 

 
Figure 2.22: A demonstration of how a 3 x 4 x 2 tensor can be unfolded into matrices along its three dimensions. 
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Following matricization SVD-based denoising can be applied to the data and then the matrix 

can then be refolded into a tensor (216). Matricization has been applied in the literature in 

combination with SVD-based denoising method. For example, Brender et al. have used it to 

denoise MR spectroscopy data (216), and Feschet has used matricization in the denoising of 

images (217). However, the main application of matricization is in tensor decomposition 

(183). 

2.3.1.3. Tucker Decomposition 

The Tucker decomposition can be thought of as a higher order form of PCA that can be 

applied to tensors. It decomposes a tensor, X, into a core tensor, G, and a series of matrices 

referred to as factor matrices, which are orthogonal. In the case of a three-way (three 

dimensions) tensor, X will have dimensions (I x J x K), G will have dimensions (P x Q x R), 

and there will be three factor matrices (one for each mode of the tensor): A with dimensions (I 

x P), B with dimensions (J x Q), and C with dimensions (K x R). P, Q, and R are equivalent to 

the principal components along each mode. This can be represented by an n-mode vector 

product of the core tensor and matrices, which is equivalent to the sum of each element of G 

multiplied by the outer product of each column of each of the matrices A-C, and is shown in 

Equation 2.33 (183).  

𝑋 ≈ 𝐺 ×1 𝐴 ×2 𝐵 ×3 𝐶 = ∑ ∑ ∑ 𝑔𝑝𝑞𝑟𝑎𝑝 ∘ 𝑏𝑞 ∘ 𝑐𝑟

𝑅

𝑟=1

𝑄

𝑞=1

𝑃

𝑝=1

(2.33) 

The ×1, ×2, and ×3, operators are the n-mode vector products, which is when a tensor is 

unfolded along the nth dimension into a 2D matrix and is multiplied by a matrix. The ∘ 

operator is the outer product of two vectors, which is when the elements of two vectors are 

multiplied (218, 219). The Tucker decomposition can be generalised to an N-way tensor with 

N dimensions, according to Equation 2.34 (183). 
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𝑋 ≈ 𝐺 ×1 𝐴1 ×2 𝐴2 … ×N 𝐴𝑁 (2.34) 

The Tucker decomposition can be calculated using higher order SVD (HOSVD), which is an 

extension of matrix SVD allowing it to be applied to tensors with more than two dimensions. 

This method involves using SVD to determine the number of components which accurately 

explain a mode of the tensor independently of the other modes (183).  

The rank of the core tensor, G, can be reduced by reducing the size of the factor matrices (e.g. 

by reducing the values of P, Q, and R in Equation 2.33). Using reduced factor matrices in the 

decomposition is referred to as truncated HOSVD. However, truncated HOSVD does not 

provide the best estimate of the core tensor. This can be improved using higher order 

orthogonal iteration (HOOI) where an initial Tucker decomposition is calculated using 

HOSVD and then improved and optimised using an alternating least squares (ALS) algorithm, 

which iterates until either the error between the core tensor and original tensor does not 

improve, or until a set number of iterations have passed (183).  

The Tucker decomposition can be calculated in Matlab using the tensorlab and N-way 

toolboxes (220, 221). Tensorlab has an mlrankest function which can be used to estimate the 

optimal number of components to reduce the rank of the tensor, using HOOI. It varies the 

number of components over a range of values and plots the error between the core tensor and 

the original tensor against the compression ratio of the core tensor (222). The elbow of the 

curve is then selected as the optimal number of components. The Tucker decomposition can 

then be calculated using the Tucker3 model in the N-way toolbox, which was developed by 

Claus Andersson and Rasmus Bro to be a fast algorithm which can be used in Matlab (221, 

223). 
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Rank reduction using the Tucker decomposition has multiple application on the literature. 

Vasilescu and Terzopoulos applied the Tucker decomposition as a dimensionality reduction 

method to process images of faces used in facial recognition (224), whilst Acar et al. applied 

it as a dimensionality reduction method to chatroom communication data prior to analysis 

(225). Muti et al. have applied the Tucker decomposition to filtering methods, using it to 

extend the Wiener filter so that it can be applied to multidimensional data (226). The Tucker 

decomposition has also been applied as a denoising method to hyperspectral images by both 

Bai et al. and Meng et al. (227, 228). In MRI it has been used by Yaman et al. as a 

dimensionality reduction method to improve the processing of multidimensional MRI data 

(229); Vargas-Cardona et al. have applied it as a method to interpolate diffusion MRI data, 

showing that it outperformed standard methods (230); and Brender et al. have applied the 

Tucker decomposition to denoise MR spectroscopy data (216). 

2.3.2. The Wavelet Transform  

A wavelet is a mathematical function which is used to split up a signal into its constituent 

frequency components, and then analyse the components according to their scale. To carry out 

wavelet analysis a ‘mother wavelet’ or analysing wavelet is defined. The analysing wavelet is 

then dilated and transformed to form a wavelet basis or wavelet family (231). This basis of 

functions is defined by equation 2.35. In this equation j and k are integer values related to the 

dilations and translations of the analysing wavelet respectively, ψ is the wavelet function, and 

t is time. The wavelets which make up the wavelet basis must satisfy two conditions as shown 

in equations 2.36 and 2.37. Equation 2.36 suggests that the wavelets must decay and equation 

2.37 suggests the wavelets must oscillate (232). 

𝜓𝑗,𝑘(𝑡) = 2−
𝑗
2𝜓(2−𝑗𝑡 − 𝑘) (2.35) 



68 
 

lim
𝑡→∞

|𝜓𝑖,𝑗(𝑡)| = 0 (2.36) 

∫ 𝜓𝑗,𝑘(𝑡)𝑑𝑡 = 0

∞

−∞

(2.37) 

The discrete wavelet transform can be used to decompose a signal, s(t), into a series of 

wavelet functions, ψ(t), and wavelet coefficients, a, according to equation 2.38. The 

coefficients aj.k can be calculated using equation 2.39 (232). 

𝑠(𝑡) = ∑ ∑ 𝑎𝑗,𝑘𝜓𝑗,𝑘(𝑡)

𝑗𝑘

(2.38) 

𝑎𝑗,𝑘 = ⟨𝑠(𝑡)𝜓𝑗,𝑘(𝑡)⟩ = ∫ 𝑠(𝑡)𝜓𝑗,𝑘(𝑡)𝑑𝑡
+∞

−∞

 (2.39) 

The coefficients produced in Equation 2.39 can be split into approximation and detail 

coefficients using a band pass filter, with the approximation coefficients separated out by a 

low-pass filter and the detail coefficients separated out by a high-pass filter. The discrete 

wavelet transform can be repeated over multiple levels, producing a multi-level 

decomposition as shown in Figure 2.21. Each level of the diagram represents a specific 

dilation of the analysing wavelet j, and the translations within a level correspond to k (232). 
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Figure 2.21: An example of the wavelet decomposition of a signal over several levels. 

2.3.2.1. Wavelet Denoising 

Wavelet denoising makes use of the discrete wavelet transform to denoise a signal. When an 

appropriate wavelet is selected which matches the signal which is being denoised, the high 

valued coefficients of the decomposition relate to the signal, whilst the lower values 

coefficients relate to the noise. This is because the wavelet correlates with the signal and not 

the noise. Therefore, if the low valued coefficients are thresholded out, then the signal can be 

denoised (232). There are multiple possible methods for determining the thresholds, but a 

commonly used method is an empirical Bayes threshold (233). The number of levels the 

signal is decomposed across by the discrete wavelet transform is decided by the user, along 

with the type of wavelet used in the decomposition (232).Wavelet denoising has been applied 

in the literature to denoise images and other signals. For example Singh has applied it to 

denoise natural images (234), Chang et al. applied an adaptive method of wavelet denoising to 

image denoising (235), and Bnou et al. applied a wavelet denoising approach based on 

unsupervised learning to image denoising (236). In terms of other signals, Dautov et al. have 
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applied wavelet denoising to recorded speech (237), Tikkanen has applied it to 

electrocardiogram signals (238), and Messer et al. have applied it to phonocardiograms (239). 

Examples of wavelet denoising being applied to MRI data include Cancino-de-Greiff et al. 

who have applied it to MRI of the liver (232), Ali et al. who have applied it to MR 

spectroscopy (240), and Wink et al. who have applied it to functional MRI (241). 

2.3.3 Clustering 

Clustering is a form of unsupervised machine learning which is used to group data points into 

a user defined number of groups. Clustering methods can either be hierarchical or partitional. 

Hierarchical methods recursively find nested clusters, whilst partitional clustering methods 

simultaneously find all the clusters (242).  

K-means clustering is an example of a partitional method. In k-means clustering, a set of N 

data points, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}, are separated into K clusters, 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘}, with cluster 

means, Μ = {𝜇1, 𝜇2, … , 𝜇𝑘}. The squared error, J, between the points in a cluster and its 

corresponding cluster mean is given by equation 2.40. The squared error can be summed over 

all clusters using equation 2.41. The overall aim of the k-means clustering is to minimise this 

overall squared error (242). 

𝐽(𝑐𝑘) = ∑ ‖𝑥𝑖 − 𝜇𝑘‖2

𝑥𝑖𝜖𝑐𝑘

 (2.40) 

𝐽(𝑐𝑘) = ∑ ∑ ‖𝑥𝑖 − 𝜇𝑘‖2

𝑥𝑖𝜖𝑐𝑘

 

𝐾

𝑘=1

(2.41) 

Initially, the cluster means are initialised with random values. Then each data point is 

assigned to the cluster of the cluster mean it is closest to. The cluster means are then 

recalculated using the newly assigned data points. This process is then repeated through 

several iterations, until the locations of the cluster means do not move (243). 
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K means clustering has applications in the literature, for clustering many different types of 

data. For example Chen et al have applied it to segmenting credit card data (244), 

Khanmohammadi et al have applied it to clustering medical datasets of patient information to 

uncover their underlying structure, Dhanachnadra et al have applied it to segmenting images 

(245), and Wu et al have applied it to brain tumour segmentation in MR images (246). 

Hierarchical clustering takes a slightly different approach, in that each individual data point is 

initially considered to be its own cluster. Each individual cluster is then merged with its 

nearest neighbour, and this process is repeated until the desired number of clusters are 

obtained (247). In hierarchical clustering two factors can be varied: the clustering method, 

which defines the data points used to measure the distance between two clusters; and the 

distance measure, which defines how that distance is calculated. Clustering methods which 

may be used include: the nearest neighbour, furthest neighbour, or a group average (which 

may be weighted or unweighted) (248).  

Distance measures which may be used include: the Euclidean distance (the direct distance 

between two data points), the city-block distance (the sum of the difference in each coordinate 

between the two data points) and the Chebyshev distance (the maximum difference value 

between two coordinates). Of these, the Euclidean distance is most commonly used (248). 

Hierarchical clustering has multiple applications in the literature. For example, Byron et al. 

have applied it to a dataset of student background and performance in order to understand its 

underlying structure (249), Govender and Sivakumar have reviewed its use in analysing air 

pollution data (250), and Arifin et al. have combined it with histogram thresholding to 

produce an image segmentation method (251). Examples of it being applied in MRI include 

Cordes et al. and Filzmoser et al. who used it to analyse functional MRI data (252, 253), and 
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Vupputuri et al. who used it to automatically segment ischemic regions from MRI scans of 

stroke patients (254). 

2.3.4. Classification 

Classification is a form of supervised machine learning, in which a learner is provided with a 

labelled dataset consisting of pairs of input variables and a corresponding output variable. The 

learner then uses this dataset to predict the output variables of unlabelled data, consisting of 

just the input variables. The process of classification is summarised in Figure 2.22 (181). The 

following subsections cover: validation, the machine learning algorithms used in this work, 

methods to optimise the classifiers, and methods to assess the performance of classifiers.  

 
Figure 2.22: Steps involved in machine learning classification. 

Classification can also be carried out by deep learning, which uses neural networks. Neural 

networks are built using artificial neurons, which take the weighted sum of a number of inputs 

and then apply an activation function to the result. The weights of each artificial neuron are 

adjusted during training (255). The resulting network has many applications, for example they 

can be used for classification, image processing, speech recognition and natural language 

processing (256). Neural networks differ from other classification algorithms is that 

classification algorithms require metrics to be extracted from the data before the machine 
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learning algorithm can be applied, whilst neural networks process the raw data (257). 

However, one of the downsides is that they require a lot of training data. As the datasets used 

for machine learning in this work were of limited size, neural networks were not considered in 

this work. 

2.3.4.1. Validation 

Validation is an important step in assessing the performance of a classifier. If the same data is 

used to train and test the classifier then there is a risk of the classifier over-fitting to the data. 

Therefore, it’s necessary to split the data into training and testing data, and the three most 

commonly used methods to split the data are: resubstitution, holdout and k fold cross-

validation (258). 

In resubstitution all the data is used for training and testing. In holdout the data set is split into 

training and testing data (often the training data set is larger). In k fold cross-validation the 

data set is split into k equally sized ‘folds’, the classifier is then trained on (k-1) folds and 

tested on the remaining fold. This process is repeated until all the folds have been used as the 

testing data, and the performance metrics are averaged across all the folds (258). A slight 

variation on k fold cross-validation is stratified cross-validation, where it is ensured that each 

fold has the same distribution of data (259). 

These methods have been previously compared in the work by Kohavi et al. and stratified k 

fold cross-validation was shown to be the preferred method as it is less biased compared to 

the other validation methods (259). They recommended that validation should be carried out 

using stratified cross-validation with 10 folds (259). 

2.3.4.2. Algorithms 

One of the crucial steps is the selection of the learning algorithm. There are multiple different 

learning algorithms that can be applied and examples include: decision trees, support vector 
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machines, ensembles, random forests and logistic regression algorithms (181). The following 

sections provide an overview of how each algorithm works and gives examples of the 

algorithms being applied in the literature. This is not an exhaustive list of machine learning 

algorithms, and those described below are the ones applied in this thesis. They were selected 

as they were suited to the datasets used in this thesis. 

2.3.4.2.1. Binary Tree 

Decision trees are algorithms which generalise a dataset by deriving a set of rules, which is 

represented by a tree. The decision tree consists of decision nodes, leaves, and branches. 

Decision nodes are used to split the data based on a test; leaves are the endpoint of the tree, 

where the class labels are assigned; and branches connect the leaves and the nodes. The node 

at the top of the tree with no branches input into it is the root node. At each node there is a 

rule which is used to split the data, if the decision at each node is either true or false, then the 

decision tree is a binary tree (260). 

Binary decision tree algorithms build a decision tree by splitting the data at each node using a 

condition. In order to decide how to split the data and whether to split the data, a ‘gain’ 

measure is defined which is used to quantify any improvement from the split (261). Gain is 

calculated by calculating the ‘impurity’ of the node prior to the split and the weighted average 

of the impurities of the two nodes created by the split (262). There are several different 

methods to define the gain and studies have shown that the choice of method has little effect 

on the outcome, as many methods are consistent with each other (263). 

An important part in growing a binary tree classifier is deciding when to stop splitting the 

data. It is possible to continually split the data until each node has one datapoint in it, but this 

would result in overfitting the data. The three main methods for stopping are: defining a 

maximum number of splits in the tree, defining a maximum number of datapoints in a leaf, 
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and defining a minimum value for the gain of a split (262). Figure 2.23 summarises the 

process of training a binary tree classifier. 

 
Figure 2.23: A flow chart describing the process of training a binary tree classifier. 

The binary tree classifier has been applied to classification of MR images in multiple 

applications in the literature. For example, Al-Badarneh et al. have used a binary tree 

classifier applied to features extracted from MRI images to classify brain as ‘normal’ or 

‘abnormal’ (264), whilst Fayaz et al. applied a binary tree to features extracted from 

histograms of MR images to also classify them as ‘normal’ or ‘abnormal’ (265). 

2.3.4.2.2. Support Vector Machine (SVM) 

An SVM classifier splits a dataset into two classes using a hyperplane (266). The points 

closest to the hyperplane are referred to as support vectors as they are the most difficult to 
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classify, and their location has the largest effect on the position of the hyperplane. The 

separation between the hyperplane and the support vectors is defined as the margin, and the 

best fitting SVM model is the one which produces the largest margin (267). For an SVM the 

input data can be considered to be a 2 dimensional matrix, X, with n rows equal to the number 

of observations, and p columns equal to the number of predictors, whilst the classification 

labels can be considered to be a vector, Y, with n rows, where each value is 1 or -1. X can be 

represented by a set of vectors, 𝑥𝑖, (i = 1, …, n) where each vector is a row of X, whilst the 

elements of Y can be represented by, 𝑦
𝑖
 (i = 1, …, n). The hyperplane, 𝑓(𝑥), is represented by 

Equation 2.42, where 𝜔𝑇 is the transpose of an n-dimensional vector and b is a bias term 

(266). 

𝑓(𝑥) = 𝜔𝑇𝑥 + 𝑏 = 0 (2.42) 

The hyperplane which provides the best separation is found by finding ω and b to minimise 

the value of ||ω|| and produce a hyperplane which satisfies Equation 2.43. As the support 

vectors define the boundary of the classifier they will satisfy Equation 2.44 (267). 

𝑦𝑖𝑓(𝑥𝑖) ≥ 1 (2.43) 

𝑦𝑖𝑓(𝑥𝑖) = 1 (2.44) 

If the data is not linearly separable then a soft margin can be used, which means that the 

hyperplane separates the majority of but not all datapoints. However, in some cases the data 

may not be separable even with a soft margin. In this case a kernel function is used to 

transform the data into a higher dimensional space where it may be easier to separate with a 

hyperplane (267). There are multiple types of kernel function which can be used to transform 

the data, but the three most commonly used are the Gaussian kernel, the linear kernel, and the 

polynomial kernel, which are represented in equations 2.45 to 2.47, respectively. In all three 
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equations xi and xj represent two different observations from X. In equation 2.45, σ is a 

constant which can be altered by the user. In equation 2.47, p is the order of the polynomial 

(266). 

K(𝑥𝑖, 𝑥𝑗) = 𝑒
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2 (2.45) 

K(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 (2.46) 

K(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗 + 1)

𝑝
(2.47) 

Examples of SVM classifiers applied to MRI include: work by Gupta et al. where a SVM 

classifier was used to identify slices of MRI datasets which contained tumour (268); work by 

Sujitha et al. which used an SVM classifier applied to features extracted from MR images to 

predict the presence of epilepsy (269); and work by Gonella et al. used pixel intensities 

combined with features extracted from MR images to segments brain tumours (270). 

2.3.4.2.3. Ensemble 

Ensemble classification combines classifiers to produce improved performance. It uses 

classifiers defined as ‘weak learners’ (classifiers with a classification error similar to random 

guessing) and combines them to produce a ‘strong learner’ (a classifier with a low 

classification error). There are multiple different methods for combining weak learners (271). 

A common method of combining classifiers is boosting, and boosting algorithms which use a 

binary classification tree as the weak learner have shown to consistently improve 

performance, when compared to a single binary classification tree (272). 

Adaptive boosting (also referred to as AdaBoost) uses the weighted sum of a set of weak 

learners to produce a final output. A series of weak learners are applied iteratively to a 

weighted training dataset consisting of N data points. The weights are then updated using the 
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results from the weak learner. The process is repeated over M iterations. Initially, the weight 

on each datapoint within the training data is set to 1/N. For the mth iteration the weighted 

error of the weak learner, errm, and the weight of the weak learner, αm, are calculated using 

equations 2.48 and 2.49. In equation 2.48, wi
m is the weights from the mth iteration, yi is the 

expected class label, Hm(xi) is the predicted class label by the weak learner, and h() is the 

Heaviside function, which is equal to 1 if −𝑦𝑖𝐻𝑚(𝑥𝑖) ≥ 0 and equal to zero if −𝑦𝑖𝐻𝑚(𝑥𝑖) <

0. The new weights, vi
m, are then calculated using equation 2.50, and are then normalised 

(271).  

𝑒𝑟𝑟𝑚 = ∑ 𝑤𝑖
𝑚ℎ(−𝑦𝑖𝐻𝑚(𝑥𝑖))

𝑁

𝑖=1

(2.48) 

𝛼𝑚 =
1

2
log (

1 − 𝑒𝑟𝑟𝑚

𝑒𝑟𝑟𝑚
) (2.49) 

𝑣𝑖
𝑚 = 𝑤𝑖

𝑚exp (−𝛼𝑚𝑦𝑖𝐻𝑚(𝑥𝑖))          (2.50) 

A final result is determined from the weighted sum of the classification results of each weak 

learner. The advantage of this method is that the weightings allow subsequent weak learners 

to focus on the misclassified data (271). 

There are several variations on AdaBoost available. Logit Boost and Gentle AdaBoost are two 

variations which are similar in that they both use a weighted least squares method to train the 

weak learner during each iteration of the algorithm. The weights used are the ones updated 

during each iteration of the algorithm. Gentle AdaBoost, trains the weak learner using the 

expected class labels. Logit Boost calculates a class probability estimate for each data point in 

the training data. The weights are then updated using the class probabilities, and a working 

response is calculated using the actual class labels and the class probabilities. The working 

response values are then used in place of the actual class labels when training the weak 
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learner. The aim of these two variations is to provide more reliable and stable ensembles 

(271). 

A further variation on AdaBoost is random undersampling boosting (RUSBoost), which 

introduces random undersampling to the AdaBoost algorithm to help deal with class 

imbalances, which can lead to biased classifiers. Random undersampling randomly removes 

datapoints from the majority class until a desired split between classes is achieved. In 

RUSBoost, random undersampling is applied after the weight have been calculated and before 

the weak learner is trained on the data (273). 

Boosting classifiers have been applied to classify MR images in multiple applications. For 

example: Minz et al. have applied AdaBoost to determine brain tumour type using features 

extracted from MRI images (274), and Savio et al. have applied it to features extracted from 

MR images to detect Alzheimer’s (275). Gentle Boost has been applied by Pang et al. to 

glioma grading based on features extracted from MRI (276), and Zhang et al. have applied it 

to assess spinal curvature in CT imaging (277). Logit Boost has been applied by Zhang et al. 

to EEG data to diagnose alcoholism and to MRI data to diagnose ADHD (278); whilst Gitto et 

al. have applied it to features extracted from CT imaging to classify brain tumours (279). 

RUSBoost has been applied by Maglietta et al. to segment the hippocampal region of the 

brain on MR images (280); and Tong et al. have applied it to features extracted from MR 

images to distinguish between different types of neurodegenerative disease (281). 

2.3.4.2.4. Random Forest 

A random forest classifier consists of a series of decision trees, which are combined using 

bootstrap aggerating (bagging). The bagging process is used to improve the stability and 

accuracy of the classifier. To build a random forest classifier, N datapoints are sampled (with 

replacement) from the training data, and p features are selected (where p is less than the 
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number of features and is often √𝑝 or p/3). A binary tree is then trained following the process 

described in Section 2.3.4.2.1. This process is then repeated t times, where t is the number of 

trees. Therefore, for a random forest classifier the values of N, p, and t can be selected to 

optimise the model (282). 

To make a prediction using a random forest classifier, the result from each of the individual 

trees is aggregated to produce a final result. In the case of a random forest classifier, the final 

result is selected by a majority vote of the classes selected by each tree. This process is 

demonstrated in Figure 2.24 (282). 

 
Figure 2.24: A flow chart demonstrating how a random forest classifier with N trees makes a prediction. 

The random forest classifier has been applied to classification problems in MRI. For example, 

Payabvash et al. have used it to determine tumour type in patients with posterior fossa 

tumours using features extracted from diffusion weighted MRI (283); and Yang et al. have 

applied the random forest to produce pseudo-CT images from MRI data (284). 
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2.3.4.2.5. Logistic Regression 

In logistic regression classification a logistic function is fitted to the data and is used to 

predict the class. The logistic function is a sigmoid function and takes the form shown in 

equation 2.51, where σ is the sigmoid function, and t is the input variable (285). 

𝜎(𝑡) =  
1

1 + 𝑒−𝑡
(2.51) 

The sigmoid function produces values between 0 and 1, so the output of logistic regression 

classification is the probability that the data belongs to a specific class. Equation 2.51 only 

works for predicting the probability of an item belonging to one of two classes based on one 

input variable. If there are multiple input variables then Equation 2.51 needs to be expanded. 

The variable t can be rewritten for a dataset with d variables according to Equation 2.52, 

where xi,d, are the variables, i, is the number of datapoints, and ω is the parameters of the 

logistic regression model (285).  

𝑡 = 𝜔0 + 𝜔1𝑥𝑖,1 + 𝜔2𝑥𝑖,2 + ⋯ + 𝜔𝑑𝑥𝑖,𝑑 (2.52) 

To train a logistic regression model the values of the model parameters, ω, must be 

determined. To do this a loss function is defined. A typical loss function is cross entropy, Li, 

shown in equation 2.53, where pi is the predicted label and yi is the actual label (286).  

𝐿𝑖 = −𝑦𝑖 ln(𝑝𝑖) − (1 − 𝑦𝑖) ln(1 − 𝑝𝑖) (2.53) 

The cross entropy loss function produces large values for incorrect classification and small 

values for correct classifications. An average loss function can then be calculated for the 

entire dataset, and the values of the model parameters are varied over a number of iterations to 

minimise the loss function (286).  
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Examples of logistic regression being applied to MRI in the literature include: work by 

McLaren et al. who applied logistic regression to features extracted from DCE-MRI data to 

distinguish between malignant and benign breast legions (287); whilst Xiao et al. have applied 

it to features extracted from MRI to diagnose Alzheimer’s disease (288). 

2.3.4.3. Optimising Classifiers 

Parameters are quantities that are estimated by the classifier during training, whilst 

hyperparameters are quantities of the classifier which are set by the user. For example, a 

hyperparameter of a binary tree classifier is the maximum number of splits used when 

constructing the tree. Adjusting the hyperparameters can improve the performance of a 

classifier, and they can be adjusted manually, or by using an automated process (289). In 

hyperparameter optimisation an objective function, f(x), is defined where the input of the 

function, x, is a given combination of hyperparameters, and the output of the function is a 

measure of the classifier performance. The function f(x) is unknown and is considered to be a 

‘black-box’ function (289). 

The simplest method to optimise the hyperparameters is manual adjustment, but it is also 

inefficient, can be difficult to reproduce, and requires the user to have expert knowledge 

(289). This process can be automated using the grid search method, where every combination 

of hyperparameters is tested and the best performing combination is then selected. If one or 

more of the hyperparameters is continuous then they are split into a set of discrete values. 

This is quicker than manual searching and removes the need for expert knowledge to optimise 

the hyperparameters. However, searching through all possible combinations of 

hyperparameters can be very computationally expensive (290). An alternative is the random 

search method, where the combinations of hyperparameters are chosen randomly, instead of 

searching all possible combinations. This has been shown to offer similar performance to grid 
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searching, whilst being less computationally expensive. However, this is not a universally 

applicable method, as it does not perform as well with complex machine learning algorithms 

(291). 

An alternative to the searching based methods above is Bayesian optimisation, which has 

been shown to perform better than standard searching methods (289, 292, 293). The aim of 

this method is to approximate f(x) from a series of sample points. It uses Bayes theorem to 

state the relationship between the model of f(x), M, and the evidence from already sampled 

points of f(x), E, as shown in equation 2.54. In this equation, P(M) is the probability of the 

model, P(E|M) is the probability of E given M (the likelihood), and P(M|E) is the probability 

of M given E (the posterior probability) (289). 

𝑃(𝑀|𝐸) ∝ 𝑃(𝐸|𝑀)𝑃(𝑀) (2.54) 

P(M|E) is the posterior distribution of f(x) and is determined from sampled points of f(x) 

using equation 2.54. The maxima of the posterior distribution is then found using an 

acquisition function, u. There are several different acquisition functions which can be used. 

The two most common are the probability of improvement and the expected improvement. 

Probability of improvement searches near the current optimal value to find points which are 

likely to become the new optimal value, whilst expected improvement calculates the degree of 

improvement between the current optimal value and other local values. A large value of u 

correlates to a large value of f(x), so finding the maxima of u is equivalent to finding a 

maxima of f(x). Once the maxima of u has been found the corresponding value for x can be 

used to sample f(x). This new set of values is then added to the samples of f(x) (E in equation 

2.51). The new samples are used to recalculate the posterior probability distribution. This 

process is repeated until either a set number of iterations have passed, or the difference 
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between the current maxima and the next maxima reaches a minimum value (289). Figure 

2.25 summarises the process in a flow chart. 

 
Figure 2.25: A flowchart summarising the process of Bayesian optimisation. 

2.3.4.4. Assessing Classifier Performance 

Classifier performance can be assessed using a confusion matrix and the metrics calculated 

from it. A confusion matrix, shown in Figure 2.26, is a graphical way of comparing the 

predictions made by the classifier to the actual class labels (294).   
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Figure 2.26: A confusion matrix used to calculate metrics to assess classifier performance. 

From the confusion matrix a series of performance metrics referred to as sensitivity, 

specificity, precision, and classification error can be calculated. They are defined by equations 

2.55-2.58 

(294).

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(2.55) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(2.56) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(2.57) 

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =
𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
(2.58) 

Another method of assessing classifier performance is a receiver operating characteristic 

(ROC) curve, which is a plot of the true positive rate (sensitivity) against the true negative 

rate (1-specificity), for a range of thresholds used to separate the classes. The area under the 

curve (AUC) is a measure of the performance of the classifier, with a value of 1 representing 

a perfect classifier (294). Figure 2.27 shows an example ROC curve.  
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Figure 2.27: An example of an ROC curve 

2.3.5. Justifications 

The computational techniques described in this section will be applied to DSC-MRI datasets. 

A DSC-MRI dataset consists of a series of images recorded over time, with one image 

recorded for each slice and time point. Therefore, the entire dataset can be represented as a 4D 

tensor, with the first two dimensions representing the rows and columns of the image, the 

third dimension representing the slices, and the fourth dimension representing the signal-time 

courses. Similarly, a single slice can be represented by a 3 dimensional tensor with two 

dimensions of the image and the third dimension for the signal-time courses. 

For the machine learning classifiers, the training and testing data consisted of four features 

calculated from the signal-time courses, which are SDNR, RMSE, FWHM, and PSR. The 

target variables were the results of carrying out qualitative review on the signal-time courses. 

Table 2.2 addresses each technique and explains why it is suited to the data described above. 
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Technique Reason why it’s well suited to the data in the thesis Reference 

SVD SVD can be used to decompose a matrix into component 
matrices. MRI data can be represented as a matrix. 

(185) 

PCA PCA uses SVD to reduce the dimensionality of a dataset. It can be 
applied to matrices, and DSC-MRI data can be represented as a 
matrix. 

(198) 

Matricization DSC-MRI data can be represented as a tensor with more than two 
dimensions, to include all time points, all slices, or both. 
Matricization can be used to unfold this into a matrix, which 
allows SVD and PCA to be applied to it. 

(216) 

Tucker 
Decomposition 

Tucker decomposition is well suited to highly dimensional data 
and DSC-MRI data is highly dimensional. Tucker decomposition 
allows the data to be represented in a more compact way which 
allows it to denoise more effectively than SVD. 

(216) 

Wavelets Wavelets are well suited to approximate data with sharp 
discontinuities. The signal drop in a DSC-MRI signal-time course is 
a relatively sharp discontinuity. 

(231) 

K-Means 
Clustering 

It’s a simple, efficient, and widely used method of clustering data 
where the underlying structure is unknown 

(242) 

Hierarchical 
Clustering 

Hierarchical clustering is a simple and reproducible clustering 
technique which has been applied across many data sets. 

(295) 

Binary Tree The binary tree is a simple and efficient classification method, 
which has been shown to be more robust to outliers than other 
methods. 

(296) 

Support Vector 
Machine 

The support vector machine performs well when there are a small 
set of features. The dataset used in this thesis has four features 

(266) 

AdaBoost Boosting allows classifiers to be trained with less bias and better 
performance than a single classifier and AdaBoost is suited to 
small datasets. 

(271, 297) 

Logit Boost Logit Boost has the same benefits as AdaBoost but can produce 
more stable results. 

(297) 

Gentle AdaBoost Gentle AdaBoost has the same benefits as AdaBoost but can 
produce more stable results. 

(297) 

RUSBoost RUSBoost has the same benefits as AdaBoost but is also well 
suited where there is a class imbalance in the training data. The 
dataset used in this thesis has a class imbalance. 

(273, 297) 

Random Forrest Bagging produces more stable classifiers than an individual 
classifier, with less bias and better performance than a single 
classifier. It is also suited to small datasets.  

(271, 297) 

Logistic 
Regression 

Simple and efficient model which is well suited to binary 
classification problems 

(298) 

Table 2.2: A summary of the reasons why each computational technique is suited to the data used in this thesis. 
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2.4. Statistical Methods 

This section covers the theory behind some of the statistical methods used throughout the 

thesis. 

2.4.1. Cohen’s Kappa 

Cohen’s kappa, κ, is a statistical measure for assessing the reliability between two raters and 

was developed by Jacob Cohen in the 1960’s (299). Cohen’s kappa can be calculated using 

equation 2.59, where 𝑃𝑟(𝑎) is the actual observed percentage agreement and 𝑃𝑟(𝑒) is the 

expected (chance) agreement (300). 

𝜅 =
Pr(𝑎) − Pr(𝑒)

1 − Pr(a)
(2.59) 

Pr(e) is calculated from equation 2.60 and Table 2.3 summarises the chi-square table used to 

calculate the parameters within equation 2.60 (300). 

Pr(𝑒) =
(

𝑐𝑚1 × 𝑟𝑚1

𝑁
) + (

𝑐𝑚2 × 𝑟𝑚2

𝑁
)

𝑁
 (2.60)

 

 
Rater 1 

Row Marginals 
Normal Abnormal 

Rater 2 
Normal A B rm1 = A + B 

Abnormal C D rm2 = C + D 

Column Marginals cm1 = A + C cm2 = B + D N = rm1 + rm2 + cm1 + cm2 

Table 2.3: A summary of the parameters calculated from the chi square table, used in the calculation of Pr(e). 

The Cohen’s kappa statistic can have values ranging from 0 to 1 and there are a set of pre-

determined cut-offs that define the level of agreement, as summarised in Table 2.4 (300). 

Value of Kappa Level of Agreement 

0 – 0.2 None 

0.21 – 0.39 Minimal 

0.40 – 0.59 Weak 

0.60 – 0.79 Moderate 

0.80 – 0.90 Strong 
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> 0.90 Almost Perfect 
Table 2.4: Cut-offs for the Kappa statistic. 

2.4.2. Comparing Means 

Statistical testing can be used to find significant differences between two sets of values. The 

type of test used depends on whether the distribution of values that are being compared is 

normal or non-normal. The normality of a set of values can be tested using the Shapiro-wilk 

test for normality. This then determines the type of statistical test used (301). 

2.4.2.1. Normal Distribution 

For a normally distributed set of values, the Analysis of Variance (ANOVA) technique can be 

used. This test is based on the variance in the means of the sets of values. For each set of 

values, a group mean and several sample means are calculated. An overall grand mean 

(average of all the group means) is also calculated. The mean square between groups, 𝑀𝑆𝐵, 

and within groups, 𝑀𝑆𝑊, is then calculated, and is given by equations 2.61 and 2.62, 

respectively. 𝑆𝑆𝐵 is the sum of squared deviations of the sample means compared to the grand 

mean, 𝑆𝑆𝑊 is the sum of squared deviations of the sample means around the group mean, 𝑑𝑓𝐵 

is the degrees of freedom between groups (given by the number of groups minus 1) and 𝑑𝑓𝑤 is 

the degree of freedom within a group (given by the number of values minus 1) (302). 

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑑𝑓𝐵
 (2.61) 

𝑀𝑆𝑊 =
𝑆𝑆𝑊

𝑑𝑓𝑊
 (2.62) 

Dividing 𝑀𝑆𝐵 by 𝑀𝑆𝑊 produces an F statistic which gives a measure of the difference 

between the groups. For this test, the null hypothesis states that the means are equal. Since the 

F statistic belongs to an F distribution the P value of the null hypothesis is equal to the P value 

from the F distribution (302).  
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2.4.2.2. Non-Normal Distribution 

The Kruskal-Wallis test can be used to compare means when the values do not follow a 

normal distribution. The first stage is to rank all the values within the dataset (ignoring which 

group they belong to) by value, where the lowest value is ranked 1 and the largest value has a 

rank equal to the number of values within the dataset. Repeated values are assigned average 

ranks. The test statistic 𝐻 is then calculated, according to equation 2.63, where 𝑅𝑖 is the sum 

of the ranks within the ith group, 𝑛𝑖 is the number of data points in the ith group and 𝑁 is the 

total number of data points within the dataset (303). 

𝐻 =
12

𝑁(𝑁 + 1)
∑

𝑅𝑖
2

𝑛𝑖
− 𝑒(𝑁 + 1) (2.63) 

𝐻 is a value representing the variance in the ranks between groups with a correction applied 

to account for any average ranks. For this test, the null hypothesis is that the means of the 

groups are equal. Since 𝐻 follows a chi square distribution the probability of the null 

hypothesis is equal to the P value if 𝐻 corresponds to a chi-square value (304).  

2.4. Summary 

This chapter covers the theory behind MRI, DSC-MRI and the computational and statistical 

methods used in this thesis. The MRI theory and DSC-MRI theory provide the background 

theory needed to understand the work carried out in the thesis, and the DSC-MRI section 

outlines some of the issues relating to assessing data quality, which will be addressed in the 

results chapters.  

The computational methods section covers the theory behind the different techniques used, 

examples of them being applied in the literature, and justifications for why they are suited to 

this data. Combining the different techniques is useful as it combines the advantages of each 
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technique and allows an image processing pipeline to be produced, which is one of the aims 

of the thesis. 

The statistical methods section covers the theory behind the standard statistical methods used 

in this work. Multiple statistical tests are required as the test used depends on the distribution 

of the data it is applied to. 
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Chapter 3: An Automated Machine Learning Method To Assess 

the Quality of DSC-MRI Data 
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3. An Automated Machine Learning Method to Assess the Quality 

of DSC-MRI data 

3.1. Introduction 

DSC-MRI is prone to motion and susceptibility artefacts, which degrade the quality of 

acquired data (34). The scanner and acquisition protocol for DSC-MRI also commonly varies 

from centre-to-centre, which affects the signal-time courses produced and the SNR of the 

CBV maps (305, 306), limiting the clinical applicability of the technique (61). Currently, the 

American Society of Functional Neuroradiology (ASFNR) recommendation for quality 

control of DSC-MRI data is to assess signal-time courses by eye, using qualitative review 

(34). However, there can be discordance between reviewers and one DSC dataset contains 

thousands of signal-time courses, so it is not practical to assess the quality of all signal-time 

courses. An automated process, which reflects the qualitative review process and could be 

applied to all signal-time courses, would be much more applicable. 

Previous work has shown that it is possible to define statistical thresholds and apply these to 

quality metrics calculated from DSC-MRI signal-time courses to automatically assess data 

quality (307). This used three metrics (full width half minimum (FWHMin), percentage signal 

recovery (PSR) and % failed gamma variate fit rate) averaged for each dataset. However, 

using average metrics to assess quality may not give a true reflection of data quality. Machine 

learning has also previously been applied to DSC-MRI data for several different applications, 

but not for assessing data quality. For example, it has been used to generate perfusion maps 

from DSC-MRI data by McKinley et al. (308), predict survival in glioma patients by Emblem 

et al. (309), and classify tumour type using DSC-MRI alone by Jeong et al. and Ji et al. (310, 

311) and in combination with other MR modalities, such as diffusion weighed imaging 

(DWI), diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), and DCE-

MRI by Grist et al., Hu et al., Tsolaki et al. and Swinburne et al. (39, 312-314). 



94 
 

The studies presented above use a variety of features as predictors. Most studies use metrics 

calculated from the DSC-MRI data but the work by McKinley et al. uses time points from the 

concentration time curves as predictors (308). However, this requires all the signal-time 

courses to be interpolated as a pre-processing step, which may produce misleading results 

when trying to assess signal-time course quality, as artefacts may be obscured. Some studies 

use features from DSC-MRI in combination with features from other modalities. However, 

this would not be practical in assessing DSC-MRI data quality as data quality will not be 

dependent on features extracted from other MR imaging modalities. Based on the literature 

above, it may be possible to apply machine learning to features extracted from DSC-MRI 

signal-time courses to determine data quality.  

The overall aim of this chapter is to develop an objective method to assess whether a DSC-

MRI dataset acquired in the paediatric brain has sufficient quality for clinical use. To achieve 

this, the objectives of this chapter are to: assess the discordance in qualitative review between 

two reviewers; use qualitative review to determine a set of thresholds in quantitative measures 

of quality; and investigate if an automated quality control aid can be devised using the 

quantitative measures of quality and qualitative review results.  

3.2. Methods 

3.2.1. Patient Data 

The patient data is from an imaging study entitled “CNS 2004 10 Functional Imaging of 

Tumours” (NRES REC ref: 04/MRE04/41). This is a multi-centre study sponsored by the 

University of Birmingham ref: RG_09-028 and UoB Ethics ref: ERN_11-1170. Informed 

consent was obtained from all patients included in the study. 

For this study, a dataset containing 25 paediatric patients, from four different centres 

(Birmingham, Liverpool, Newcastle, and Nottingham), was used. The acquisition protocols 
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are summarised in Table 3.1. Patients from centres 1-3 were all injected with Dotarem 

contrast agent (Dotarem, Guerbert, France), whilst patients from centre 4 were injected using 

either Gadovist (Bayer AG, Leverkusen, Germany) or Magnevist (Bayer AG, Leverkusen, 

Germany). All patients received a total dosage of 0.1 mmol/kg, using a power injector. 

Patients who did not receive a pre-bolus were injected using a single bolus protocol and 

received the total dosage in one injection during the DSC acquisition. Patients who received a 

pre-bolus were injected using a split bolus protocol and received half the total dosage prior to 

the DSC acquisition, and the other half of the dosage during the DSC acquisition. This was to 

minimise T1 weighted effects from contrast agent leakage (as discussed in section 2.2.2.2.). 

For all patients, a volume of up to 10 ml of saline was injected after the total dosage of 

contrast agent was received. All injections were administered at a rate of 3 ml s-1. 

Centre 
No. of 

Patients 

No. of 
Signal-
Time 

Courses 

Field 
Strength 

(T) 

Pre-
Bolus 

Sequence 
Flip 

Angle 
(°) 

TE 
(ms) 

TR 
(ms) 

Voxel 
Size 

(mm) 

1 3 139 3 yes GE-EPI 20 40 
1829 - 
4865 

2.5 x 2.5 
x 3.5 

1 5 193 1.5 yes GE-EPI 20 40 
1490 - 
1643 

2.4 x 2.4 
x 5 

1 3 112 3 no sPRESTO 7 22 15 
3.4 x 3.4 

x 3.5 

2 5 177 3 yes GE-EPI 75 40 
1335 - 
2343 

1.75 x 
1.75 x 4 

3 3 166 3 no GE-EPI 45 29 1570 
3.4 x 3.4 

x 3.5 

4 3 112 3 yes GE-EPI 20 40 1865 
2.5 x 2.5 

x 3.5 

4 2 96 1.5 no sPRESTO 7 25 17 
3.4 x 3.4 

x 3.5 

4 1 16 3 no sPRESTO 7 24 16 
1.8 x 1.8 

x 3.5 
Table 3.1: A summary of the acquisition protocols used to acquire the patient data, and the number of patients and signal-
time courses from each acquisition protocol. 



96 
 

3.2.2. Qualitative Review of Patient Data 

A total of 1,027 signal-time courses were used in the qualitative review process, which were 

extracted from 25 patients. A large number of patients were used to ensure a range of artefacts 

and acquisition protocols were included, and Table 3.1 summarises how many signal-time 

courses came from each acquisition protocol. Signal-time courses were randomly selected 

from a set of manually pre-defined regions within each patient, which included: grey matter 

(GM), white matter (WM), the edge of the brain, the edge of the ventricles, and the 

cerebellum. Signal-time courses were selected from slices that did not contain tumour, by 

selecting supratentorial slices from patients with infratentorial tumours and infratentorial 

slices from patients with supratentorial tumours. All signal-time courses were assessed by 

qualitative review by Stephen Powell (a PhD student with 3 years experience), and a 

randomly selected subset of 243 signal-time courses were additionally assessed by Dr 

Stephanie Withey (a clinical scientist specialising in MRI with 8 years experience). 

Comparing the differences in qualitative review between two reviewers can be used to 

estimate the discordance between reviewers. Qualitative review was carried out using the 

guidance from the ASFNR recommendations (34). This involved assessing whether a clear 

signal drop was present and the level of noise within the signal. For the subset of signal-time 

courses assessed by two reviewers the qualitative review results from author 2 were used as 

the ground truth.  

The qualitative review results for the 784 signal-time courses assessed only by author 1 and 

the 243 signal-time courses assessed by author 2 were combined to form a ‘quality control 

test dataset’.  

3.2.3. Calculating Quantitative Measures of Quality 

The first step in automating the quality control process was calculating the metrics which 

were used as quantitative measures of quality, for all the signal-time courses within the 
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quality control test dataset. This included: signal drop to noise ratio (SDNR), root mean 

square error (RMSE), full width half maximum (FWHM) and percentage signal recovery 

(PSR). These measures were calculated using equations 2.16 – 2.18 shown in section 2.2.3.1 

of the theory chapter. The RMSE values were normalised to the area of the first pass to allow 

for comparisons between patients and centres. 

To calculate the quantitative measures, it was necessary to define the dynamic time point at 

which the baseline ended, and the post-bolus acquisition started. The end of the baseline was 

determined by calculating the moving mean (with sliding window of three) and cumulative 

mean of the signal-time course, starting from the first dynamic, and finding the point where 

the means diverged. The start of the post-bolus signal was determined using the same process 

but starting from the last dynamic.  

All signal-time courses were then ordered by ascending SDNR and the range of SDNR values 

where signal-time courses pass and fail quality control was investigated. This process was 

then repeated for each of the quantitative measures. 

3.2.4. Thresholds from Qualitative Review 

Threshold values for each quantitative measure were determined using the qualitative review 

results from the quality control test dataset, and k-fold cross validation (CV) with k = 10. In 

k-fold CV the data is separated into k equally sized folds. (k-1) folds are used as training data 

and the remaining fold is used as testing data, from which the performance metrics are 

calculated. This process is repeated until all folds have been used as testing data and average 

performance metrics are calculated (315). For each fold, threshold values were determined 

from the training data. Sensitivity, specificity, precision, classification error and Area Under 

Curve (AUC) from a Receiver Operator Curve (ROC) were calculated by applying the 
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thresholds to the testing data and were used as the performance metrics. Mean thresholds and 

performance metrics were calculated by averaging across the folds. 

SDNR and RMSE threshold values were determined using sensitivity vs. specificity plots. For 

each fold, the SDNR threshold was varied over each SDNR value within the training dataset, 

and the sensitivity and specificity were calculated by applying the threshold to the training 

data. The optimal threshold was chosen as the value where sensitivity equalled specificity. 

This process was then repeated for the RMSE values. 

Upper and lower thresholds were determined for FWHM and PSR. For each fold, the FWHM 

values of signal-time courses from the training data were ordered by increasing FWHM value. 

The signal-time courses with the smallest and largest FWHM values that passed qualitative 

review were identified and these values were used as the thresholds, with any signal-time 

course with an FWHM between the two thresholds classed as good quality. This process was 

repeated for the PSR values. 

3.2.5. Combining Quantitative Measures Using Logical Voting 

The threshold values from each of the quantitative measures were combined using a logical 

voting method and k-fold CV with k = 10. This process was carried out simultaneously 

alongside determining thresholds for each of the metrics. The thresholds determined from the 

training data during each fold were combined in a logical voting system and applied to the 

testing data. As with the individual thresholds, sensitivity, specificity, precision, classification 

error and AUC, were calculated and averaged across all folds. 

In the logical voting system, the PSR and FWHM values from each signal-time course were 

compared to the thresholds. If a signal-time course failed one or both of the metrics it was 

classed as poor quality. If it passed both these metrics it was then compared to the SDNR and 
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RMSE thresholds. If the signal-time course passed at least one of these metrics it was classed 

as good quality. If it failed both metrics it was classed as poor quality. 

3.2.6. Combining Quantitative Measures Using Machine Learning 

Machine learning classification was carried out using the machine learning toolbox in Matlab 

(The MathWorks, MA, 2019a) and was applied to the quality control test dataset. Classifiers 

were trained with SDNR, RMSE, FWHM and PSR values used as predictors, and the 

qualitative review results used as the target outputs. Hyperparameter optimisation was applied 

to each classifier and k-fold CV with k = 10 was used. The classifiers used were binary tree, 

support vector machine (SVM), ensemble, random forest, and logistic regression. An 

explanation of how each machine learning classifier works can be found in Section 2.3.4.2, 

and a table summarising why each classifier is suited to the data is presented in Section 2.3.5. 

The binary tree classifier was selected as it is a simple and efficient classifier which has 

shown to be robust to outliers (295). The SVM classifier was selected as it has previously 

been shown to suit datasets where there are a limited number of features (266). The ensemble 

classifiers were used as they have been shown to offer improved performance compared to 

standard classifiers (271, 297). Five ensemble classifier methods were used, and these were 

AdaBoost, Gentle AdaBoost, Logit Boost, RUSBoost, and bagging. Hyperparameter 

optimisation was used to select the ensemble method used. As the weak learner was set to be 

a binary tree the bagging method produced a random forest. A separate random forest 

classifier was also trained and tested, as it allowed for more control over the hyperparameters. 

Gentle AdaBoost and Logit Boost were selected as they have been designed to give improved 

performance compared to AdaBoost and RUSBoost was selected as it is suited to datasets 

with class imbalances (297). Random forest was chosen as it is also a type of ensemble 

classifier and offers improved performance compared to a binary tree, it is also suited to 

smaller datasets (271, 297). The logistic regression classifier was chosen as it is a simple and 
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efficient classifier which is suited to binary classification problems (298). The average 

sensitivity, specificity, precision, classification error and AUC were calculated for each 

classifier. 

3.2.7. Application to Patient Data 

Each of the thresholds of the quantitative measures of quality and the best performing 

machine learning classifier were applied to one slice of patient data that was acquired using 

the acquisition protocol described in row 3 of Table 3.1 but was not included in the quality 

control test dataset. A quality map was created for each of the different methods, displaying 

which voxels had passed quality control and which had failed. 

3.2.7. Statistical Analysis 

For the subset of signal-time courses assessed by two reviewers, the agreement between 

reviewers was investigated by calculating the % disagreement between the two reviewers and 

the Cohen’s Kappa for interrater reliability. All statistical analysis was carried out in R (R 

Foundation for Statistical Computing, Vienna, Austria, Version 3.5.0).  

3.3. Results 

3.3.1. Qualitative Review Results 

Figure 3.1 shows an example signal-time course and identifies the features used to calculate 

each of the quantitative measures. Table 3.2 splits the signal-time courses assessed by two 

reviewers into 3 groups (all the signal-time courses, all the 1.5T signal-time courses, and all 

the 3T signal-time courses) and summarises the percentage disagreements and Cohen’s Kappa 

for each group. Across the entire subset, the signal-time courses where there were 

disagreements had a median SDNR of 5.4 with a range of 3.3 - 56.4, median RMSE of 0.020 

with a range of 0.005 - 0.058, median PSR of 84.5% with a range of 52.5% - 107.1%, and a 

median FWHM of 7s with a range of 4s - 15s. 
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Figure 3.1: Example signal-time course showing which features of the signal-time course are used to calculate the 
quantitative measures of quality. 

Group 

No. of 
Signal-
Time 
Courses 

Percentage 
Difference 
(%) 

Cohen's 
Kappa 

All 243 6.58 0.84 

All 1.5T 81 12.35 0.73 

All 3T 162 3.70 0.79 
Table 3.2: A summary of the differences between the reviewers, in terms of percentage difference and Cohen’s Kappa, 
across all signal-time courses, all signal-time courses recorded at 1.5T, and all signal-time courses recorded at 3T. 

3.3.2. Comparing Qualitative Review to Quality Metrics 

Figure 3.2 shows some examples of signal-time courses that failed qualitative review for 

different reasons: 3(a) failed due to a small signal drop in comparison to the noise in the 

baseline, leading to a low SDNR; 3(b) failed due to a very noisy first pass, leading to a large 

RMSE value; 3(c) failed due to a very narrow first pass, which lead to a very small FWHM 

value; 3(d) failed to a low T2
* recovery, which lead to a very low PSR value. Below an SDNR 

value of 2.8 no signal-time courses passed qualitative review, whilst above an SDNR of 56.4, 

no signal-time courses failed qualitative review. Above an RMSE value of 0.0846 no signal-

time courses passed qualitative review, whilst below an RMSE value of 0.0055 no signal-time 

courses failed qualitative review. No signal-time courses with FWHM values less than 3s or 

greater than 19s passed qualitative review. No signal-time courses with PSR values less than 
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43% or greater than 131% passed qualitative review. This shows that there is a region of 

uncertainty where it is difficult to classify signal-time courses. 

 
Figure 3.2: An example of signal-time courses that failed qualitative review for differing reasons. (a) has a low SDNR value of 
2.7, (b) has a large RMSE values of 0.129, (c) has a very small FWHM value of 1.8s and (d) has a low PSR of 36.9%. 

3.3.3. Determining Thresholds in Quantitative Measures of Quality using Qualitative 

Review 

Figure 3.3 shows an example of the sensitivity vs. specificity plots for one of the folds. 

Averaging across all folds produced an SDNR threshold of 7.6, an RMSE threshold of 0.019, 

FWHM thresholds of 3s and 19s, and PSR thresholds of 42.9% and 130.4%. The average 

sensitivity, specificity, precision, classification error and AUC are summarised in Table 3.3. 

SDNR was the best performing quantitative measure producing a sensitivity, specificity, 

precision, classification error and AUC of 0.86, 0.86, 0.93, 14.2% and 0.83, respectively. 

Figure 3.4 shows some of the disagreements between the qualitative review results and the 

SDNR threshold. Out of the three signal-time courses that passed the SDNR threshold but 

failed qualitative review, all three passed the FWHM and PSR thresholds, and one passed the 

RMSE threshold. All three signal-time courses failed qualitative review because of issues 
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with the post-bolus signal, which was not picked up by SDNR. Out of the three signal-time 

courses that passed qualitative review but failed the SDNR threshold, one passed the RMSE 

threshold and two passed the FWHM and PSR thresholds. This shows that SDNR is key to 

data quality. However, relying on one metric to determine quality risks misclassification of 

signal-time courses. 

 
Figure 3.3: Sensitivity and specificity plots for (a) SDNR, (b) RMSE. 

Metric Threshold(s) Sensitivity Specificity Precision Classification Error (%) AUC 

SDNR 7.6 0.86 0.86 0.93 14.2 0.83 

RMSE 0.019 0.79 0.79 0.89 21.8 0.75 

FWHM (s) 3, 19 1.00 0.18 0.74 24.8 0.85 

PSR (%) 42.9, 130.4 1.00 0.12 0.73 26.4 0.84 
Table 3.3: Summary of the threshold values, sensitivity, specificity, precision, classification errors and AUCs for each of the 
quantitative measures of quality. 
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Figure 3.4: A demonstration of the disagreements between the qualitative review results and the SDNR threshold. The left 
column (a, c, e) shows signal-time courses that passed qualitative review but failed the SDNR threshold. The signal-time 
courses in a, c, e has SDNR values of 5.4, 7.2 and 7.2, respectively. The right column (b, d, f) shows signal-time courses that 
passed the SDNR threshold but failed qualitative review. The signal-time courses in b, d, f had SNDR values of 7.8, 16.4 and 
11.6, respectively. 

3.3.4. Combining Quantitative Measures Using Logical Voting 

Figure 3.5 shows a summary of the logical voting process. Applying logical voting in 

combination with k-fold CV produced a sensitivity, specificity, precision, classification error 

and AUC of 0.91, 0.75, 0.89, 13.8%, and 0.84, respectively. 

 
Figure 3.5: Flowchart summarising the logical voting process. 



105 
 

3.3.4. Combining Quantitative Measures Using Machine Learning 

Table 3.4 summarises the sensitivity, specificity, precision, and classification error for each of 

the machine learning classifiers tested. The best performing classifier was the random forest, 

producing sensitivity, specificity, precision, classification error and AUC of 0.94, 0.83, 0.93, 

9.3% and 0.89, respectively. Figure 3.6 shows examples of the disagreements between the 

qualitative review and machine learning results. Combining metrics to assess data quality 

offers improvements in classification error and machine learning classifiers offer an 

automated method to do this. 

Classifier Sensitivity  Specificity Precision Classification Error (%) AUC 

Binary Tree 0.93 0.80 0.92 11.4 0.87 

SVM 0.93 0.84 0.93 9.5 0.89 

Ensemble* 0.94 0.82 0.92 9.5 0.89 

Random Forest 0.94 0.83 0.93 9.3 0.89 

Logistic Regression 0.93 0.83 0.92 10.3 0.88 
Table 3.4: Summary of the performance metrics for each machine learning classifier. (* The Bag method was selected the by 
the hyperparameter optimisation). 
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Figure 3.6: An example of some of the agreements and disagreements between the machine learning results and qualitative 
review: (a & c) show signal-time courses that failed machine learning but passed qualitative review, (b & d) show signal-time 
courses that passed machine learning but failed qualitative review. 

3.3.5. Application to Patient Data 

Figure 3.7 shows a set of quality maps produced by applying each of the quality control 

methods to one slice of a patient dataset from Birmingham Children’s Hospital (acquired at 

1.5T). In the quality maps blue pixels represent signal-time courses which passed the quality 

control methods, whilst orange pixels represent those that failed. Table 3.5 summarises the 

percentage of pixels passed by each method. 

 
Figure 3.7: (a) An axial slice from a patient dataset recorded at 1.5T, and the resulting quality maps from applying (b) the 
SDNR threshold, (c) RMSE threshold, (d) PSR threshold, (e) the FWHM threshold, (f) logical voting and (g) the machine 
learning classifier. Blue pixels represent signal-time courses that passed the quality control and orange pixels represent 
signal-time courses that failed quality control. 

Quality Control Method % of signal-time courses passed 

SDNR Threshold 60.97% 

RMSE Threshold 66.18% 

PSR Threshold 99.12% 

FWHM Threshold 97.44% 

Logical Voting 70.88% 

Random Forest Machine Learning Classifier 75.55% 
Table 3.5: % of signal-time courses passed by each quality control method. 

3.4. Discussion 

This study shows that although qualitative review can be used to assess data quality, there are 

a range of signal-time courses which are difficult to classify. Automated quality control 

methods can be developed using the results of qualitative review, and combining quantitative 
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measures using machine learning offers better performance than individual measures. 

However, selecting a set of quantitative measures to fully describe a signal-time course and all 

potential artefacts is challenging. 

The signal-time courses assessed by two reviewers show a low discordance between 

reviewers, due to a low percentage of disagreements, and a Cohen’s Kappa value of 0.83, 

which shows excellent agreement (300). Comparing this to the discordance between 

reviewers when the signal-time courses are split by field strength, it can be seen that the 1.5T 

signal-time courses are more difficult to classify. For the entire subset of signal-time courses 

where there were disagreements between the reviewers and for the signal-time courses that 

were within the region of uncertainty, the ranges of SDNR and RMSE values are both large. 

This shows that a signal-time course with a large SDNR is not guaranteed to be good quality, 

as other factors may affect quality. For example, a signal-time course with a low PSR, caused 

by T2
* leakage effects, could still have a large SDNR value.  

The SDNR threshold defined the minimum acceptable SDNR and was the best performing 

individual measure, giving the most similar results to qualitative review. This is expected as 

SDNR defines how visible the signal drop is, which is a key part of assessing quality by 

qualitative review (34). 

The RMSE threshold defined the maximum acceptable RMSE and gave poorer performance 

across all the performance measures compared to SDNR. This may be because RMSE focuses 

on the shape of the first pass, meaning signal-time courses that fail due to other artefacts could 

still have a reasonable RMSE. For example, RMSE is not able to detect anomalies in the post-

bolus signal, which would be picked up by the PSR. A signal-time course which fails the PSR 

threshold could still have a good RMSE value. 
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The FWHM and PSR thresholds give AUC values comparable to the other metrics and a 

classification error similar to the RMSE threshold. They also give very good sensitivity and 

very poor specificity. However, this is due to the threshold selection method. Choosing 

thresholds based on the smallest and largest FWHM and PSR values that passed quality 

control means that there are very few false negatives and a lot of false positives. Unlike the 

SDNR and RMSE thresholds, FWHM and PSR define a range of acceptable values for each 

metric. FWHM has been previously shown to correlate to MTT, and as there is an expected 

range of values for MTT in GM and WM, there should be an expected range of values for 

FWHM (316). PSR is known to reflect the amount of contrast agent leakage, with low PSR 

values corresponding to T2
* weighted effects and a PSR values (greater than 100%) 

corresponding to T1 weighted effects (31). 

Multiple factors affect DSC-MRI data quality, and a single quantitative measure cannot cover 

all of them. For example, the right-hand column of Figure 3.4 shows signal-time courses that 

passed the SDNR threshold but failed qualitative review and at least one other threshold. The 

left-hand column of Figure 3.4 shows signal-time courses that failed the SDNR threshold but 

passed qualitative review and at least one other threshold. This, combined with the fact that it 

is difficult to define a single threshold for each quantitative measure, shows the need for 

combined quantitative measures to assess data quality. This agrees with work by Akella et al. 

where the failure rate of fitting a gamma-variate to the first pass, mean FWHM and mean PSR 

were calculated from each patient. Cut-off values were then calculated using a 99% one-sided 

confidence interval, and datasets that didn’t fall within the cut-off values for at least one 

metric were classed as poor quality (307). This differs from the work presented here as 

thresholds for quality are determined using qualitative review results instead of confidence 

intervals. 
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Using logical voting to combine the thresholds offered an improved sensitivity, classification 

error and AUC compared to the SDNR threshold. However, this came at the cost of decreased 

specificity and precision. This shows that determining the optimal combination of thresholds 

manually is difficult. 

Combining quantitative measures using machine learning classifiers offers an improved 

classification error compared to individual thresholds. They also provide a more efficient 

method for combining quantitative measures compared to logical voting, with improved 

performance. The random forest classifier gave the best classification error, and both the 

random forest and ensemble classifier gave better performance than the binary tree classifier, 

which is expected as these methods combine binary tree classifiers to give improved 

performance. For the ensemble method the hyperparameter optimisation selected the bag 

method as the best option. As the weak learner was a binary tree this was also a random 

forest. The separate random forest classifier gave slightly improved performance on the 

random forest produced by the ensemble method, and this may be because the separate 

random forest allowed for more control over the hyperparameter optimisation than the 

ensemble classifier. Of the three methods that did not combine classifiers (binary tree, SVM 

and logistic regression), the SVM had the best classification error. This is probably due to the 

fact that the SVM is suited to datasets with limited features and the dataset used in this work 

has four features (266). Although the random forest classifier gave the best classification 

error, it only offers a 0.2% decrease in classification error compared to the SVM and 

ensemble classifiers, whilst the rest of the performance measures give almost identical results. 

Therefore, any of these three classifiers would be suitable. 

The machine learning classifier offers improved sensitivity, classification error and AUC, 

compared to the SDNR threshold. However, there is little change in specificity and precision. 
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This shows that the main improvement in performance comes from a reduction in the number 

of false negatives, with little change in the number of false positives. Machine learning also 

has a classification rate which is very similar to the percentage disagreements in qualitative 

review between reviewers, which implies that it is as accurate as qualitative review at least for 

these datasets. Therefore, when the quality control methods are applied to a patient dataset the 

machine learning classifier passes a higher % of signal-time courses than the SDNR 

threshold, as shown in Figure 3.6 and Table 3.5. The lack of reduction in the number of false 

positives is likely due to the current selection of quantitative measures not being able to 

identify all the artefacts that DSC-MRI is susceptible to. 

When applied to patient data, the SDNR and RMSE thresholds and machine learning 

classifier have a similar effect to WM masking. GM has CBV values on average 2.7 times 

larger than WM (317), leading to a larger signal drop in the first pass of GM signal-time 

courses. The size of the signal drop also scales with field strength (34). Therefore, 1.5T WM 

data will have the lowest SDNR. As SDNR is key to data quality, the 1.5T WM data will 

generally be classified as poor quality compared to 3T data. However, there are multiple 

methods for measuring SDNR, therefore the method used may have an effect on the value of 

the SDNR. 

The quality control methods presented in this work take a voxel-wise approach to assessing 

quality. Voxel-wise quality control would make it possible to exclude poor quality regions 

from a given dataset. However, this would be a problematic approach because, as discussed 

above, it could lead to the exclusion of large amounts of WM, which is suggested by 

consensus guidelines as the tissue to use for normalising rCBV values (318). This would 

affect the values of perfusion measures calculated from these datasets. It could also lead to the 

exclusion of useful information, such as pathology related signal-time courses, as the ML 
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classifier is trained using ‘normal brain’. A better approach would be to use voxel-wise 

quality control to give an overall assessment of data quality, which could then be used to 

decide whether a dataset should be included in a study. For example, if a dataset has a very 

low percentage of voxels passing quality control, then this could indicate the presence of 

significant artefact which would make the dataset unsuitable for use. However, if a dataset has 

a large percentage of voxels passing quality control then this dataset is likely to be suitable for 

inclusion. This allows for the quality of all the signal-time courses within a dataset to be 

assessed automatically, which is not currently possible using qualitative review. An 

alternative to this would be to assess the quality of an average signal-time course from a 

dataset. This would be much quicker than a voxel-wise analysis but could produce misleading 

results. 

The majority of DSC-MRI studies use the ASFNR recommendation of qualitative review by 

eye to assess data quality (34), whilst some studies also use SNR (317). Automated quality 

control has previously been presented by Akella et al. (307) using statistical thresholds to 

assess quality. Our method differs as the thresholds and machine learning classifier are trained 

on the results of qualitative review. An alternative way to assess data quality is for a 

radiologist to assess the quality of the perfusion maps produced. This could either mean 

assessing the diagnostic quality of the perfusion maps (89, 319), or checking for the presence 

of susceptibility artefacts on the raw DSC images (320), or assessing the visibility of a certain 

region of the brain (321). However, these methods have not been automated and have the risk 

that artefacts may be misinterpreted as pathology. A difficulty of assessing the quality of the 

perfusion maps automatically is that the true perfusion values are not known. Therefore, the 

alternative is to assess the quality of the signal-time courses. As the perfusion parameters are 
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estimated from the signal-time courses, the quality of them will impact the quality of the 

perfusion parameters. 

In order to calculate the measures presented in this study it is necessary to establish the end of 

the baseline. There are established methods for determining the end of the baseline, for 

example Carroll et al. present a method which uses adaptive thresholds calculated from the 

standard deviation of the pre-contrast signal (322). However, the method presented in this 

work is better suited to a multicentre dataset with variable injection protocols, as the Carroll 

method defines a set number of time points to calculate the adaptive thresholds from. This 

could be problematic in a multicentre study as the number of dynamics in the baseline varies 

between centres.  

There are some limitations to this study. Firstly, the patient ‘training’ dataset does not include 

every type of artefact, such as motion or susceptibility artefacts. So, there may be cases where 

the classifier would misclassify a new signal-time course with an artefact not in the training 

set the first time. Secondly, these methods were tested on signal-time courses from slices of 

brain that did not contain tumour or other definite pathology. Quantitative measures may 

differ in diseased tissue and so the thresholds may not produce the same results in all 

circumstances. In particular, applying PSR to signal-time courses within brain tumours may 

not provide reliable results. Brain tumours can cause breakdown of the BBB, leading to 

contrast agent leakage. This causes local alterations in the T1 and T2
*, which affect the post 

bolus signal, altering the T2
* recovery of the signal-time courses (168). Leakage correction 

methods such as the Boxerman-Schmainda-Weisskoff method (156) are often applied. 

Finally, although the classifier offers an automated quality control method it is still trained on 

cases classified by qualitative review, which has an element of subjectivity to it. However, 
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any automated quality control method requires some form of human input and will therefore 

have some subjective judgement. 

3.5. Conclusions 

Qualitative review of individual signal-time courses by the two reviewers showed good 

agreement on the signal-time courses they assessed. Machine learning offers the possibility of 

a new automated alternative to qualitative review, which allows the quality of large datasets to 

be assessed, and combines multiple quantitative measures to give a reasonable classification 

error. Although SDNR is a good general indicator of quality, using only a single quantitative 

measure to determine data quality risks misclassification of signal-time courses with other 

types of artefact present. Combining SDNR with RMSE, FWHM and PSR improves 

classification and achieves a misclassification rate which is similar to the discordance rate of 

the qualitative review. 
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Chapter 4: Denoising Methods to Improve Data Quality and 

Accuracy of Perfusion Measures for DSC-MRI 
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4. Denoising methods to improve data quality and accuracy of 

perfusion measures for DSC-MRI  

4.1. Introduction  

Estimating accurate measures of perfusion from DSC-MRI is challenging due to noise and 

other artefacts such as contrast agent leakage, motion, and susceptibility artefacts (34). Since 

perfusion measurements are estimated from the signal-time course, their accuracy is affected 

by the presence of noise and other artefacts. Acquisition parameters such as echo time (TE), 

repetition time (TR), flip angle, field strength, voxel volume and the protocol for the injection 

of the bolus of contrast agent can all affect the signal-to-noise ratio (SNR) (323).  

Data quality of DSC-MRI data can be improved by application of post-processing methods, 

applied after the images have been acquired. An example of this is denoising, which could be 

used to suppress the noise in DSC-MRI data and therefore improve the accuracy of any 

perfusion measures (324, 325). There are many different methods available for denoising 

data, and this chapter focuses on matricization, wavelets and Tucker decomposition as 

potential denoising methods. Matricization has previously been used as an effective denoising 

method for MR images, for dynamic contrast enhanced (DCE-) MRI, and for MRI chemical 

shift imaging (CSI) (211, 214, 216, 326). Wavelet denoising has previously been applied to 

MRI of the liver, and to magnetic resonance spectroscopy (232, 240). Tucker decomposition 

has previously been applied to the denoising of hyperspectral images, and in magnetic 

resonance spectroscopy (MRS) (216, 227, 228). 

The aim of this chapter is to validate the impact of several denoising methods on data quality 

using simulated DSC-MRI data, and then confirm this in patient data. In order to achieve this 

the objectives are to: apply matricization, wavelet denoising and the Tucker decomposition to 

simulated DSC-MRI signal-time courses; determine if there is an SDNR ‘performance 
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threshold’ for each denoising method, below which CBV accuracy is not improved; compare 

the denoising methods to see which performs best in terms of noise suppression and CBV 

accuracy; and then to apply the denoising methods to patient data, to determine if the same 

level of noise reduction is achieved.  

4.2. Methods 

4.2.1 Simulations 

DSC simulations were performed in Matlab (The MathWorks, MA, 2019a). First an arterial 

input function (AIF) was simulated using equation 4.1 (327). Following this a residue 

function was simulated using equation 4.2, and then the AIF and residue function were 

convolved to form a gadolinium concentration time curve (CTC) (328). There are several 

different models that can be selected for the residue function. An exponential model was 

chosen as it assumes that the vasculature is one, well-mixed compartment (328). 

𝐶𝑝(𝑡) = {
0,   𝑡 < 𝑡0

𝐾(𝑡 − 𝑡0)𝛼𝑒
−

(𝑡−𝑡0)
𝛽 ,   𝑡 ≥ 𝑡0

 (4.1) 

𝑦(𝑡) =  𝐶𝐵𝐹 ∙ 𝑒−
𝑡

𝑀𝑇𝑇 (4.2) 

In equation 4.1 α, β and K are coefficients which affect the shape of the AIF, Cp(t), and are 

assumed to have values of 3, 1.5 and 2 respectively (328). Whilst t0 is the bolus arrival time 

and is assumed to have a value of 10 s (328). In equation 4.2 y(t) is the residue function. 

Average values for MTT in grey matter (GM) and white matter (WM) were calculated from 

the literature, which produced values of 5.11 s for GM and 5.28 s for WM (329-332). 

Individual CBV values were produced for each simulated signal-time course by obtaining 

values from a Gaussian distribution, using a mean of 5.10 ml/100ml and standard deviation of 

0.5 ml/100ml for GM and a mean of 2.36 ml/100ml and standard deviation of 0.2 ml/100ml 

for WM. Average values were calculated from the values reported in the literature (329-333). 

CBF values were then calculated from the central volume theorem (equation 2.22) using MTT 



117 
 

as above. The CTC was converted into a signal-time course, according to the spoiled gradient 

echo signal equation, shown in equation 4.3 (334). This equation was chosen as gradient echo 

is the most frequently used sequence in DSC-MRI, and is the sequence used at our centre 

(323). 

𝑆(𝑡) = 𝑀0

sin(𝛼) (1 − 𝑒−𝑇𝑅∙R1(C))

1 − cos(𝛼) 𝑒−𝑇𝑅∙𝑅1(𝐶)
𝑒−𝑇𝐸∙𝑅2∗(𝐶) (4.3) 

In equation 4.3, M0 is the proton density of the tissue, α is the flip angle used in the DSC-MRI 

acquisition, TR is the repetition time, TE is the echo time and R1(C) and R2*(C) are the T1 

and T2
* relaxation rates which vary with concentration of contrast, C, and are given by 

equations 4.4 and 4.5, respectively. In these equations, R1(0) and R2*(0) are the T1 and T2
* 

relaxation rates of the tissue without any contrast agent present, whilst r1 and r2 are the T1 and 

T2
* relaxivities of the contrast agent, respectively (334). 

𝑅1(𝐶) = 𝑅1(0) + 𝑟1 ∙ 𝐶 (4.4) 

𝑅2∗(𝐶) = 𝑅2∗(0) + 𝑟2 ∙ 𝐶 (4.5) 

R1(0) values for GM, WM and cerebrospinal fluid (CSF) were 0.92 s-1, 1.29 s-1 and 0.25 s-1 

respectively (335). R2*(0) values for GM, WM and CSF were 10.53 s-1, 12.66 s-1 and 0.4 s-1 

respectively (335). M0 values were 79.8 pu, 69.2 pu and 100 pu for GM, WM and CSF (where 

pu is percentage units, the proton density as a percentage of the proton density of water) 

(336). The contrast agent relaxivities were set to the values of Magnevist contrast agent (GD-

DPTA) in plasma at 37°C, which produced values of 4.9 s-1 for r1 and 6.3 s-1 for r2 (30). 

Values for TR, TE and α were selected using ASFNR recommendations and were assumed to 

be 1690 ms, 40 ms and 75˚ respectively (34). 

Gaussian noise was added to signal-time course data, to give specified signal drop to noise 

ratio (SDNR) values. For each GM and WM signal-time course, the CBV was calculated 
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before noise was added, providing a ‘noiseless’ value for CBV, and allowing for the 

calculation of the % error in CBV of the noisy and denoised signal-time courses.  

Two different models were created to test the denoising methods. The first of these was a 

simple model which consisted of a 100 x 100 grid of GM signal-time courses with differing 

amounts of Gaussian noise added to produce a model where each row had an average SDNR 

varying from 1 to 10. This model was used to test if it was possible to determine an SDNR 

performance threshold for the denoising methods. 

The second model was a brain model that simulated a single axial slice of brain (matrix size 

96 x 96), which contained a mixture of GM, WM, and CSF signal-time courses. This model 

was used to compare the performance of the different denoising methods. Three different 

version of this model were created by adding Gaussian noise to produce average SDNR 

values of 4, 8 and 12, respectively. For each signal-time course within each simulation, the 

SDNR, χ2 from comparison to the noiseless signal-time course and % error in CBV were 

calculated. % error in CBV was calculated from the % difference in CBV between the 

noiseless signal-time courses and the noisy and denoised signal-time courses. CBV values 

were calculated as the area under a gamma variate fitted to the concentration time curve. 

Figure 4.1(a) shows the simulated brain model and figure 4.2(b) shows the GM and WM 

signal-time courses used to construct the brain model. 
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Figure 4.1: (a) Simulated DSC-MRI dataset, containing a mixture of GM (light grey), WM (dark grey) and CSF (white). (b) 
Simulated Grey Matter (GM) and White Matter (WM) signal-time courses used in model. CSF signal-time courses are 
modelled as a flat horizontal line at an intensity of 739. 

4.2.2. Patient Data 

Following testing of the denoising methods on simulated data, the methods were tested on a 

single slice from 8 different patient datasets. These patient datasets are from an imaging study 

entitled “CNS 2004 10 Functional Imaging of Tumours”. Further details on this study can be 

found in section 3.2.1 of Chapter 3. Patients with cerebellar tumours were selected, and a slice 

was chosen from the corpus callosum to avoid any tissue containing tumour. 

All 8 scans were acquired at Birmingham Children’s Hospital. Four of the patient scans were 

acquired on a Siemens Avanto 1.5T (Siemens Healthcare, Erlangen, Germany) using the 

following parameters: TR = 1490 ms, TE = 40 ms, flip angle = 20°, voxel dimensions = 2.4 

mm x 2.4 mm x 5 mm, scan type = GE-EPI, field of view = 230 mm x 230 mm, parallel 

imaging = SENSE with factor 2, temporal resolution = 1.49 s, number of dynamics = 60, total 

acquisition time = 90 s. 

The other four patient scans were acquired on a Philips Achieva 3T TX (Philips Healthcare, 

Best, the Netherlands) using the following parameters: TR = 1865 ms, TE = 40 ms, flip angle 

= 20°, voxel dimensions = 2.5 mm x 2.5 mm x 3.5 mm, scan type = GE-EPI, field of view = 
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240 mm x 240 mm, parallel imaging = SENSE with factor 2, temporal resolution = 1.87 s, 

number of dynamics = 60, total acquisition time = 117 s.  

All 8 patients were injected with Dotarem contrast agent (Dotarem, Guerbert, France), with a 

total dosage of 0.1 mmol/kg, using a power injector. All four patients scanned at 1.5T were 

injected using a single bolus protocol and received the total dosage in one injection at the start 

of time point 6 in the DSC data acquisition. All four patients scanned at 3T were injected 

using a split bolus protocol and received half the total dosage prior to the DSC acquisition, 

and the other half of the dosage at time point 6 in the DSC acquisition. This was to minimise 

T1 weighted effects from contrast agent leakage (as discussed in section 2.2.2.2.). For all 

patients, a volume of up to 10 ml of saline was injected after the total dosage of contrast agent 

was received. All injections were administered at a rate of 3 ml s-1. 

4.2.3. Matricization Denoising 

The matricization denoising method used a combination of matricization and PCA to denoise 

the data. An explanation of how both these techniques work can be found in section 2.3.1.1 

and 2.3.1.2. Prior to denoising every signal-time course within was normalised using z-score 

normalisation (subtract the mean and divide by the standard deviation) (337). This method 

was chosen as it is the easiest to reverse, which is necessary when reconstructing data. 

Following normalisation, the data was matricized and decomposed using PCA. The number of 

components used to reconstruct a given dataset was selected by determining the elbow of the 

scree plot of the eigenvalues for that dataset (338). The location of the elbow was determined 

using the triangle thresholding method, whereby the elbow is defined by the maximum 

difference between the scree plot and a straight line between the first and last points of the 

scree plot (339). The data was then reconstructed, the normalisation reversed, and the 

denoised signal-time courses were folded back into a rank 3 tensor.  
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4.2.4. Wavelet Denoising 

Wavelet denoising was carried out using the wdenoise function from the wavelet toolbox in 

Matlab (340). The wdenoise function suppresses noise using the method described in section 

2.3.2.1 of the theory chapter, with the number of levels of denoising and the wavelet used 

defined by the user. The simple model was used to determine the optimal wavelet and level of 

denoising to use. The number of levels of denoising was fixed to one and the type of wavelet 

was varied through all those available from the wavelet toolbox and the wavelet that produced 

the lowest average % error in CBV was selected. This was determined to be the biorthogonal 

3.9 wavelet. The simulation was then repeated with the type of wavelet fixed as the 

biorthogonal 3.9 wavelet and the levels of denoising varied between 1 and 5 (the maximum 

levels of denoising allowed by wdenoise). From this simulation the level of denoising with 

the lowest % error in CBV was 3. Therefore, the biorthogonal 3.9 wavelet with 3 levels of 

denoising was used. 

4.2.5. Tucker Decomposition Denoising 

The process behind Tucker decomposition is explained in section 2.3.1.3. Tucker 

decomposition denoising can be applied to DSC-MRI by considering one slice of data as a 

rank 3 tensor, with the first 2 dimensions being the rows and the columns of the image and the 

third dimension being time. Denoising was carried out using the N-way and tensorlab 

toolboxes in Matlab (221, 341). The mlrankest function from the tensorlab toolbox was used 

to estimate the rank of the core tensor and this was used as an estimate for the number of 

components used in Tucker decomposition. 

4.2.6. Determining a Performance Threshold in SDNR for Denoising Using the Simple 

Model 

SDNR and CBV error values were investigated to see if there was a performance threshold for 

denoising, a minimum pre-denoising SDNR value below which there was no improvement in 

CBV error post-denoising. All three denoising methods were independently applied to the 
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simple model and the CBV error post-denoising was compared to the CBV error pre-

denoising. The signal-time courses were then split into two groups: those with improved CBV 

error post-denoising, and those with worse CBV error post-denoising. The SDNR values pre-

denoising of each group were plotted as histograms to investigate the link between pre-

denoising SDNR and change in CBV error. 

4.2.7. Comparing Denoising Methods using the Brain Model 

Denoising methods were compared using the three different versions of the brain model with 

average SDNR values of 4, 8, and 12, respectively. Prior to denoising, SDNR, χ2, and % error 

in CBV values were calculated for each of the brain models. Each of the three denoising 

methods were then applied independently to each of the brain models, and the SDNR, χ2 and 

% error in CBV values were recalculated post-denoising. Violin plots were produced to 

graphically demonstrate the differences in distributions of SDNR, % error in CBV and χ2 

values. CBV maps were produced pre- and post-denoising to show the effect of denoising on 

the perfusion parameters. 

4.2.8. Comparing Denoising Methods in Patient Data 

SDNR values were calculated for the signal-time courses within the selected slice from each 

patient dataset. Each of the denoising methods were then applied individually to each slice of 

patient data and the SDNR values were recalculated. Violin plots were used to demonstrate 

the differences in SDNR values due to each denoising method. rCBV maps were produced 

pre-and post-denoising to show the effect of denoising on the perfusion parameters. 

4.2.9. Statistics 

Statistical analysis was carried out using R (R Foundation for Statistical Computing, Vienna, 

Austria, Version 3.5.0), and was used to compare differences in SDNR, % error in CBV and 

χ2 values pre- and post-denoising in the brain model; and differences in SDNR pre- and post-

denoising in patient data. The Shapiro-Wilk test was used to test for the normality of the data, 
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and the Kruskal-Wallis and Wilcoxon pairwise tests were carried out to assess if there were 

any statistically significant differences between the metrics produced by each denoising 

method. A significance level of P < 0.05 was used, with a Bonferroni correction applied to the 

P values from the Wilcoxon pairwise test to account for the number of comparisons. 

4.3. Results 

4.3.1. Determining a Performance Threshold in SDNR Denoising using the Simple 

Model  

Histograms of the pre-denoising SDNR values from the simple model were split by whether 

the post-denoising CBV error improved or worsened for each of the denoising methods. The 

histograms for matricization, wavelet denoising and Tucker decomposition are shown in 

Figures 4.2 (a), (b) and (c) respectively. On average there was an improvement in CBV error 

post denoising for each denoising method. There was an improvement in CBV error post-

denoising in 73.9% of signal-time courses for matricization, 67.1% of signal-time courses for 

wavelet denoising, and 66.8% of signal-time courses for Tucker decomposition. Table 4.1 

summarises the average change in % CBV error ± the standard deviation for each of the 

histograms in Figure 4.2. As there was an average improvement in CBV error across all 

SDNR values, it was not possible to determine a performance threshold for SDNR. 
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Figure 4.2:  Histograms of SDNR values from simulated signal-time courses split by whether they had improved CBV error 
(blue) or worse CBV error (orange) following (a) matricization, (b) wavelet denoising and (c) Tucker decomposition. 

Denoising 
Method 

Average decrease in 
CBV error post-
denoising for signal-
time courses with 
decreased CBV error 

Average increase in 
CBV error post-
denoising for signal-
time courses with 
increased CBV error 

Average change in CBV 
error post-denoising 
across all signal-time 
courses (negative value 
denotes average 
decrease) 

Matricization 13.1% ± 16.8% 6.5% ± 7.4% -8.0 ± 17.2 

Wavelet 
Denoising 

2.8% ± 4.4% 3.9% ± 5.1% -0.2 ± 5.6 

Tucker 
Decomposition 

16.3% ± 21.4% 7.3% ± 5.9% -8.5 ± 21.0 

Table 4.1: A table summarising the average change in CBV error for each of the signal-time courses within each of the 
histograms shown in Figure 4.2. 

4.3.2. Comparing Denoising Methods using the Brain Model 

Figures 4.3 – 4.5 show example GM and WM signal-time courses from the brain models with 

SDNR values of 4, 8, and 12, respectively. Signal-time courses are shown before and after 

noise was added and after each of the denoising methods has been applied. Table 4.2 shows 

the number of components selected by the matricization and Tucker decomposition methods 

for each brain model. 
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Figure 4.3: Example of grey matter (left column) and white matter (right column) signal-time courses before and after 
denoising methods have been applied for the brain model with an average SDNR of 4. (a) GM signal-time course prior to 
denoising, (b) WM signal-time course prior to denoising, (c) GM signal-time course after matricization, (d) WM signal-time 
course after matricization, (e) GM signal-time course after wavelet denoising, (f) WM signal-time course after wavelet 
denoising, (g) GM signal-time course after Tucker decomposition, (h) WM signal-time course after Tucker decomposition. 
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Figure 4.4: Example of grey matter (left column) and white matter (right column) signal-time courses before and after 
denoising methods have been applied for the brain model with an average SDNR of 8. (a) GM signal-time course prior to 
denoising, (b) WM signal-time course prior to denoising, (c) GM signal-time course after matricization, (d) WM signal-time 
course after matricization, (e) GM signal-time course after wavelet denoising, (f) WM signal-time course after wavelet 
denoising, (g) GM signal-time course after Tucker decomposition, (h) WM signal-time course after Tucker decomposition. 
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Figure 4.5: Example of grey matter (left column) and white matter (right column) signal-time courses before and after 
denoising methods have been applied for the brain model with an average SDNR of 12. (a) GM signal-time course prior to 
denoising, (b) WM signal-time course prior to denoising, (c) GM signal-time course after matricization, (d) WM signal-time 
course after matricization, (e) GM signal-time course after wavelet denoising, (f) WM signal-time course after wavelet 
denoising, (g) GM signal-time course after Tucker decomposition, (h) WM signal-time course after Tucker decomposition. 
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Table 4.2: The number of components selected by the matricization and Tucker decomposition denoising methods for each 
model.  

Figures 4.6 - 4.8 shows the distributions of each metric, pre- and post-denoising for all 

simulations. The Shapiro-Wilk test for normality gave P < 0.05 for each of the metrics shown 

in Figures 4.6 - 4.8, showing that all metrics are not normally distributed.  

Figure 4.6 shows violin plots of the SDNR values. For all three brain models, matricization, 

wavelet denoising and Tucker decomposition all give significantly improved SDNR with P < 

0.05. Tucker decomposition is significantly better than matricization and wavelet denoising, 

with P < 0.05, producing SDNR values of 285 ± 15, 575 ± 36, and 1223 ± 22 for the brain 

models with average SDNR values of 4, 8 and 12, respectively. 

 
 Figure 4.6: The violin plots of SDNR for noisy data (N), data following matricization (M), data following wavelet denoising 
(W) and data following Tucker decomposition (T). (a) shows the brain model with an average SDNR of 4, (b) shows the brain 
model with an average SDNR of 8, and (c) shows the brain model with an average SDNR of 12. Brackets with * denote P < 
0.05, and brackets with ** denote P < 0.001. 

Model 
No. of Components 

Matricization 
Tucker 

Decomposition 

SNR 4 2 [32,32,2] 

SNR 8 3 [32,32,2] 

SNR 12 3 [32,32,2] 



129 
 

Figure 4.7 shows violin plots of the χ2 values. For all three brain models, matricization, 

wavelet denoising and Tucker decomposition all give significantly improved χ2 with P < 0.05. 

For the brain model with an average SDNR of 4, Tucker decomposition offers significantly 

better χ2 than matricization and wavelet denoising (P < 0.05), with a value of 0.992 ± 0.016. 

Whilst for the brain models with an average SDNR of 8 and 12, matricization offers 

significantly better χ2 than wavelet denoising and Tucker decomposition (P < 0.05), producing 

values of 0.996 ± 0.004 and 0.998 ± 0.002, respectively.  

 
Figure 4.7: The violin plots of χ2 for noisy data (N), data following matricization (M), data following wavelet denoising (W) 
and data following Tucker decomposition (T). (a) shows the brain model with an average SDNR of 4, (b) shows the brain 
model with an average SDNR of 8, and (c) shows the brain model with an average SDNR of 12. Brackets with * denote P < 
0.05, and brackets with ** denote P < 0.001. 

Figure 4.8 shows the violin plots for the CBV error values. For the brain models with average 

SDNR values of 4 and 8, both matricization and Tucker decomposition give significantly 

better CBV error than the noisy data, with P < 0.05. However, for the brain model with an 

average SDNR of 12 matricization gives better CBV error than noisy data (P < 0.05), whilst 

Tucker decomposition gives worse CBV error than noisy data (P < 0.05). For the brain model 

with an average SDNR of 4, Tucker decomposition offers significantly better CBV error than 
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matricization (P < 0.05) with a value of 7.8% ± 6.2%. Whilst for the brain model with an 

average SDNR of 8, matricization offers significantly better CBV error than Tucker 

decomposition (P < 0.05), producing values of 5.4% ± 5.1% and 5.1% ± 4.0% respectively. 

Wavelet denoising does not offer a significant improvement in CBV error across all three 

simulations (P = 1). 

 
Figure 4.8: The violin plots of % error in CBV for noisy data (N), data following matricization (M), data following wavelet 
denoising (W) and data following Tucker decomposition (T). (a) shows the brain model with average SDNR of 4, (b) shows 
the brain model with average SDNR of 8, and (c) shows the brain model with an average SDNR of 12. Brackets with * denote 
P < 0.05, and brackets with ** denote P < 0.001. 

Table 4.3 summarises the mean values ± the standard deviations for each metric, denoising 

method and simulation. 

 SDNR χ² CBV Error (%) 

Sim 4 Sim 8 Sim 12 Sim 4 Sim 8 Sim 12 Sim 4 Sim 8 Sim 12 

Noisy 
4.8 ± 
2.4 

9.0 ± 
4.8 

13.3 ± 
7.0 

0.413 
± 

0.092 

0.865 
± 

0.035 

0.955 
± 

0.012 

20 ± 
21 

10.0 
± 9.3 

6.6 ± 
6.3 

Matricization 
61 ± 
63 

69 ± 
66 

75 ± 
62 

0.982 
± 

0.022 

0.996 
± 

0.004 

0.998 
± 

0.002 

10.1 
± 9.6 

5.4 ± 
5.1 

5.1 ± 
4.0 

Wavelet 
Denoising 

17 ± 
22 

29 ± 
44 

43 ± 
93 

0.763 
± 

0.111 

0.959 
± 

0.023 

0.987 
± 

0.008 

20 ± 
21 

9.9 ± 
9.3 

6.5 ± 
6.2 
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Tucker 
Decomposition 

285 ± 
15 

575 
± 36 

1223 ± 
22 

0.992 
± 

0.016 

0.995 
± 

0.011 

0.996 
± 

0.011 

7.8 ± 
6.2 

7.0 ± 
5.5 

6.8 ± 
5.3 

Table 4.3: Table showing the mean ± standard deviation in SDNR, χ2 and % error in CBV values before and after denoising for 
each of the brain models. 

Figure 4.9 shows the rCBV maps for each of the simulated models prior to denoising and 

after each of the denoising methods had been applied. 

 

Figure 4.9: The rCBV maps produced for the simulated data pre- and post-denoising. (a-c) shows the rCBV maps pre-
denoising for each of the three models; (d-f) shows the rCBV maps post matricization denoising for each of the three models; 
(g-i) shows the rCBV maps post wavelet denoising for each of the three models; and (j-l) shows the rCBV maps post Tucker 
decomposition denoising for each of the three models. 
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Figure 4.10(a) shows a simulated signal-time course prior to denoising, which has a CBV 

error 3.80%. Figure 4.10(b) shows the signal-time course after matricization, which has an 

improved CBV error of 3.52%. Figure 4.10(c) shows the signal-time course after wavelet 

denoising, which has a CBV error of 5.62%. Figure 4.10(d) shows the signal-time course after 

Tucker decomposition, which has a CBV error of 7.22%. 

 
Figure 4.10: An example of denoising a simulated signal-time course with initial SDNR of 19.9. In this example Tucker 
decomposition removes some of the first pass as well as denoising. (a) shows the signal-time course pre-denoising, (b) shows 
the signal-time course after matricization, (c) shows the signal-time course after wavelet denoising and (d) shows the signal-
time course after Tucker decomposition.  

4.3.3. Comparing Denoising Methods on Patient Data 

Figure 4.11 shows an example of each of the denoising methods applied to a signal-time 

course from a 3T and a 1.5T patient dataset. The signal-time course from the 3T patient 

dataset had an original SDNR of 21.2 and SDNR values of 64.3, 17.1 and 58.8 after 

matricization, wavelet denoising and Tucker decomposition, respectively. The signal-time 

course from the 1.5T patient dataset had an original SDNR of 24.9 and SDNR values of 

128.4, 42.4 and 189.1 after matricization, wavelet denoising and Tucker decomposition, 

respectively. 
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Figure 4.11: An example of a signal-time course from a 3T patient dataset (left column), with original SDNR of 21.2, and an 
example of a signal-time course from some 1.5T patient dataset (right column), with original SDNR 24.9, after matricization 
(top row), wavelet denoising (middle row) and Tucker decomposition (bottom row) has been applied. (a) Matricization 
applied to a signal-time course from the 3T dataset, giving an SDNR of 64.3. (b) Matricization applied to a signal-time course 
from a 1.5T dataset, giving an SDNR of 128.4. (c) Wavelet denoising applied to a signal-time course from a 3T dataset, 
giving an SDNR of 17.1. (d) Wavelet denoising applied to a signal-time course from a 1.5T dataset, giving an SDNR of 42.4. 
(e) Tucker decomposition applied to a signal-time course from a 3T dataset, giving an SDNR of 58.8. (f) Tucker 
decomposition applied to a signal-time course from a 1.5T dataset, giving an SDNR of 189.1. 

Figure 4.12 shows violin plots of the SDNR values from the 3T patient datasets before and 

after denoising, and Figure 4.13 shows violin plots of the SDNR values from the 1.5T patient 

datasets before and after denoising, whilst Table 4.4 summarises the mean values ± the 

standard deviation. All three denoising methods show significantly improved SDNR, with P < 

0.05, and Tucker decomposition offers significantly better SDNR than matricization and 

wavelet denoising, with P < 0.05, across all the patient datasets. 
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Figure 4.12: Violin plots of the SDNR values before and after denoising for one slice of each of the 3T patient datasets. Parts 
a-d correspond to patients 1-4 in Table 4.3. Brackets with * denote P < 0.05, and brackets with ** denote P < 0.001. The 
orange circles represent the mean value of each distribution, whilst the grey squares represent the median values. 

 
Figure 4.13: Violin plots of the SDNR values before and after denoising for one slice of each of the 1.5T patient datasets. 
Parts a-d correspond to patients 5-8 in Table 4.3. Brackets with * denote P < 0.05, and brackets with ** denote P < 0.001. 
The orange circles represent the mean value of each distribution, whilst the grey squares represent the median values. 

Patient 
Field 

Strength 

Mean SDNR ± Standard Deviation 

Pre-
Denoising Matricization 

Wavelet 
Denoising 

Tucker 
Decomposition 

1 3T 8.5 ± 6.5 26.6 ± 18.9 14.7 ± 14.8 51.3 ± 32.1 

2 3T 12.4 ± 8.7 62.9 ± 39.7 21.5 ± 20.0 105.3 ± 78.4 

3 3T 12.6 ± 10.0 36.8 ± 27.6 20.6 ± 32.4 76.1 ± 30.0 
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4 3T 11.6 ± 8.1 37.5 ± 26.9 19.0 ± 15.2 85.7 ± 43.2 

5 1.5T 9.5 ± 5.8 34.1 ± 21.8 18.2 ± 14.2 62.7 ± 38.6 

6 1.5T 11.7 ± 8.3 40.0 ± 29.8 22.6 ± 20.3 53.9 ± 44.6 

7 1.5T 5.2 ± 4.0 30.0 ± 20.4 11.2 ± 13.4 57.2 ± 24.8 

8 1.5T 11.5 ± 8.0 63.8 ± 42.9 22.0 ± 23.0 99.5 ± 63.3 
Table 4.4: Table showing the mean SDNR ± standard deviation before and after denoising for all patient datasets. 

Figures 4.14 and 4.15 show the rCBV maps produced pre- and post-denoising for the 3T and 

1.5T datasets, respectively. 

 
Figure 4.14: The rCBV maps from the 3T patient datasets pre- and post-denoising. (a-e) shows the rCBV maps pre-denoising 
for the four 3T datasets; (f-i) shows the rCBV maps post matricization denoising for the four 3T datasets; (j-m) shows the 
rCBV maps post wavelet denoising for the four 3T datasets; and (o-r) shows the rCBV maps post Tucker decomposition 
denoising for the four 3T datasets. 
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Figure 4.15: The rCBV maps from the 1.5T patient datasets pre- and post-denoising. (a-e) shows the rCBV maps pre-
denoising for the four 1.5T datasets; (f-i) shows the rCBV maps post matricization denoising for the four 1.5T datasets; (j-m) 
shows the rCBV maps post wavelet denoising for the four 1.5T datasets; and (o-r) shows the rCBV maps post Tucker 
decomposition denoising for the four 1.5T datasets. 

4.4. Discussion 

This work shows that denoising can be used to effectively suppress the noise in DSC-MRI 

signal-time courses in both simulated and patient data. When applied to the simple model, all 

three methods offer improvements in CBV error across all SDNR values. When applied to the 

brain models, Tucker decomposition denoising offers improved SDNR compared to 

matricization and wavelet denoising, but only offers improved CBV error and χ2 values at low 

SDNR values. Wavelet denoising offers improved SDNR and χ2 but no significant 

improvement in CBV error. In patient data, Tucker decomposition denoising offers improved 

SDNR compared to matricization and wavelet denoising. 
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Determining a performance threshold in SDNR is difficult, as figure 4.2 shows that there is no 

range of SDNR values where there is no improvement in CBV error. Instead, improvement 

and worsening of CBV error occurs across all SDNR values. All three methods show a 

majority of signal-time courses have improved CBV error post-denoising and the final 

column of Table 4.1 shows that averaging across the change in CBV error for every signal-

time course shows an overall decrease in CBV error for each denoising method. For wavelet 

denoising the overall decrease in CBV error is much smaller than the matricization and 

Tucker decomposition. This is because for wavelet denoising the average increase in CBV 

error in signal-time courses with a worse CBV error post-denoising is larger than the average 

decrease in CBV error in signal-time courses with improved CBV error post-denoising.  

When applied to the brain models, matricization and Tucker decomposition denoising 

methods produce good reconstructions of the original signal-time courses, across all three 

brain models, and offer improved SDNR when compared to noisy data. However, Tucker 

decomposition reduces noise more effectively at lower SDNR as can be seen from comparing 

parts (d) and (h) from Figures 4.3 - 4.5. Wavelet denoising removes noise and offers 

improved SDNR but produces distorted signal-time courses that do not always provide good 

representations of the original signal. This may be due to fundamental differences in the way 

each method denoises the data. Wavelet denoising uses the wavelet transform to separate the 

signal from noise using frequencies. Effectively, the first pass of the signal-time course can be 

considered to be a very low frequency signal and the noise to be a high frequency signal. As 

the user has to select the type of wavelet, the number of levels in the decomposition and the 

thresholding method, the performance of this method is dependent on the assumptions made 

by the user. In contrast matricization and the Tucker decomposition decompose the signal into 

components and then separate signal from noise based on variance of each component. 
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Variance based methods appear to separate signal and noise better than frequency based 

methods. The variance based method is also data driven and relies less on assumptions by the 

user. The user still has to select the method to choose the number of components selected by 

the method. However table 4.2 shows that the number of components for both the 

matricization and Tucker decomposition methods does not change much with the level of 

noise in the dataset. 

The effect of the denoising methods on the rCBV values in simulated and patient data can be 

seen in Figures 4.9, and 4.14 – 4.15, respectively. In both the simulated and patient data, the 

rCBV maps produced by the wavelet denoising show little change from the noisy rCBV 

maps. When applied to the simulated data, both the matricization and Tucker decomposition 

methods the rCBV maps look less ‘speckled’ and there are a lot less failed rCBV fits 

(represented by black pixels). For some of the patient data sets the matricization and Tucker 

decomposition produce rCBV maps with less outlier values, and a clearer definition between 

the GM and WM. For some of the patient data sets the denoising methods do not seem to 

affect the rCBV maps, but in these cases there is already a clear definition between the GM 

and WM, so the data is likely to already be good quality prior to denoising. 

The violin plots in Figures 4.6 - 4.8 show that both matricization and Tucker decomposition 

denoising methods give significantly better SDNR, χ2 and CBV error than noisy data, with P 

< 0.05. Wavelet denoising offers significant improvements in SDNR and χ2 (P < 0.05) but 

offers no improvement in CBV error (P = 1). Tucker decomposition gives significantly better 

SDNR than matricization across all three brain models with P < 0.05. This result agrees with 

Brender et al., which showed that Tucker decomposition gave larger SDNR than matricization 

when applied to magnetic resonance spectroscopy (216). Tucker decomposition also changes 

the shape of the distribution of SDNR values post-denoising, producing a distribution with 
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two peaks. Matricization and wavelet denoising improve the average SDNR without changing 

the overall shape of its distribution. 

When comparing χ2 and CBV error values from the violin plots, Tucker decomposition only 

outperforms matricization for the brain model with an average SDNR value of 4, with P < 

0.05 for both χ2 and CBV error. For the brain models with average SDNR values of 8 and 12, 

matricization gives significantly better χ2 and CBV error (P < 0.05) and for the brain model 

with an average SDNR of 12, the CBV error for Tucker decomposition is worse than the 

noisy data (P < 0.05). This result shows that although Tucker decomposition performs better 

at lower SDNR values, matricization is capable of denoising over a larger range of values. 

This may be due to fundamental differences in the way matricization and Tucker 

decomposition denoise data. As the Tucker decomposition is applied to a higher dimensional 

tensor than matricization, it uses a more complex basis to do this. This means that the core 

tensor can be represented in a more compact form, which results in greater denoising 

performance (216, 342). However, in the case of the simulated signal-time courses with 

higher SDNR a small part of the first pass is removed along with the noise, resulting in the 

first pass being underestimated. Figure 4.10 demonstrates that this is caused by Tucker 

decomposition underestimating the maximum signal decrease in the first pass as well as 

removing the noise from higher SDNR signal-time courses, thereby producing a signal-time 

course with exceptional SDNR but worse CBV error than the noisy signal-time course. This 

does not appear to occur for all signal-time courses as the average χ2 and CBV error for 

Tucker decomposition is significantly better than noisy data (P < 0.05). 

The standard deviations in the % CBV error values in Table 4.2 are almost as large as the 

mean values. The brain model contained an equal mix of GM and WM signal-time courses. 

These signal-time courses have the same amount of noise added to them but have different 
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sized signal drops and different baseline signal intensities, so are affected by the same amount 

of noise to a differing extent, leading to a large range in % CBV error. 

When applied to the patient datasets, both matricization and Tucker decomposition denoising 

methods provide good reconstructions of the original signal-time courses for both the 1.5T 

and 3T datasets, whilst wavelet denoising produces distorted signal-time courses. The violin 

plots in Figure 4.12 - 4.13 and the mean SDNR values show that Tucker decomposition 

consistently gives better SDNR than matricization and wavelet denoising, P < 0.05. This 

mirrors the results of the simulations. In the patient datasets used in this chapter the 1.5T data 

has a larger SDNR value than the 3T data. This may be because the 1.5T patient data was 

recorded using a single-bolus protocol and the 3T data was recorded using a split-bolus 

protocol. In paediatrics a split bolus protocol means that half the volume of contrast agent is 

injected during the DSC acquisition, which leads to a reduction in signal drop, and may lead 

to reduced SDNR. In the violin plots for the 3T patient datasets the maximum SDNR value on 

the y axis of the violin plot for patient 2 is double that of the other violin plots. There is no 

difference in the acquisition protocol in the 3T patient datasets so this may be caused by a few 

signal-time courses having a larger SDNR due to the Tucker decomposition. 

Using simulations has advantages as it allows for post-processing methods to be tested and 

optimised before they are applied to patient data. For denoising, using simulations allows the 

improvement in CBV accuracy to be assessed, as the ‘true’ value for CBV is known, which is 

not possible in patient data. Using a Gaussian distribution of CBV values for simulating 

signal-time courses adds some variation to the GM and WM signal-time courses, ensuring 

that they are not all identical and are more representative of a patient dataset. For the 

simulations in this chapter the SDNR values are much lower than the average SDNR values 

of the patient datasets. This is because the work shown in Chapter 3 to produce thresholds 
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from the quantitative measures of quality produced an SDNR threshold of 7.6. The aim of the 

denoising is to improve the quality of signal-time courses which would normally be classed as 

poor quality. Therefore, the simulations were given SDNR values similar to the SDNR 

threshold as these are the signal-time courses that need to be improved by denoising. 

Matricization has been applied as a denoising method to multiple types of data previously 

(211, 214, 216, 326). Therefore, multiple methods for selecting the correct number of 

components used to reconstruct the data have been developed. Some methods are applicable 

to multiple types of data. For example, Gurney-Champion et al. have used the components 

which contained at least 97% of the signal information to denoise diffusion-weighted MRI 

(201). Ulfarsson et al. present a method for denoising which uses Stein’s Unbiased Risk 

Estimator (SURE) to minimise the mean square error (202). Therefore, selecting the correct 

method to optimise the number of components used can be challenging.  

There are several examples of applying denoising methods to perfusion MRI data, some using 

the techniques presented in this chapter and some using other techniques. For example 

Wirestam et al implemented wavelet denoising into the deconvolution of DSC-MRI signal-

time courses to improve the quality of the CBF maps produced (324). This differs to the 

results achieved in this chapter and may be due to the application of a Wiener filter in the 

wavelet space. An example of another denoising method applied to DSC-MRI data is work by 

Murase et al., which uses anisotropic diffusion as a denoising method (325). This method was 

also applied to the deconvolution step and was used to improve the accuracy of CBF values. 

A third example is the work by Benou et al., which uses deep neural networks to denoise 

DCE-MRI data, which can be used to improve the accuracy of the parameters obtained (343).  
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Wavelet denoising has multiple elements that can be adjusted and selected by the user, 

including the number of levels of denoising applied and the type of wavelet used. This makes 

selecting the optimal settings challenging. In this chapter the same wavelet and level of 

denoising has been applied to all signal-time courses. It may be possible to improve the 

denoising results by selecting individual wavelets and levels of denoising for each signal-time 

course. However, this would make the denoising process much more manual and would be 

significantly slower than applying matricization or Tucker decomposition. It may also be 

possible to improve the method used to optimise the wavelet denoising. However, optimising 

wavelet denoising is a complex process, whilst matricization and Tucker decomposition offer 

a simpler, data-driven alternative. 

The work presented in this chapter has several limitations. Firstly, the simulations only 

consider noise in signal-time courses simulated to resemble healthy brain. DSC-MRI is prone 

to other artefacts such as motion and susceptibility and disease specific artefacts such as 

contrast agent leakage. This means that real patient data is more complex than the simulation 

presented here. However, methods to correct other common artefacts found in DSC-MRI have 

already been implemented. For example, rigid-body registration has been used to correct 

motion in simulated and patient data, whilst susceptibility artefacts have been corrected for 

using displacement maps, and leakage correction methods have been developed to account for 

contrast agent leakage (156, 172, 344). Secondly, there are more complex versions of DSC-

MRI models available, such as the model by Mehndiratta et al., which includes a term to 

account for bolus dispersion (345). The simpler model was chosen as it still provides a good 

estimate of the signal-time courses, and a more complex model is not necessary for denoising 

simulations. Thirdly, differing methods were used to select the number of components for all 

three denoising methods. Although this does not allow for a direct comparison between the 
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two methods, it allows each method to be optimised independently and better demonstrates 

their applicability as denoising methods. Finally, the model presented in this work uses 

Gaussian noise. However, noise in MR images is approximated to be Rician in distribution 

and Rician distributions are used in simulations to prevent negative noise values and 

potentially negative intensity values in the simulated image (136). This is only an issue when 

noise is estimated from the background of an image, which is not the case in DSC-MRI 

simulations, as the noise is estimated from the baseline signal. Gaussian noise is regularly 

used in publications on simulated DSC-MRI data, and an example of this is the simulation 

study published by Knutsson et al. (346). 

4.5. Conclusion 

Denoising of DSC-MRI data is an important step in improving data quality and therefore 

accuracy of perfusion measures. Matricization and Tucker decomposition both give good 

reconstructions of the simulated and patient signal-time courses, across the range of SDNR 

values tested. Both offer an improvement in data quality compared to noisy data. Wavelet 

denoising produces distorted signal-time courses with no significant improvement in CBV 

error. Tucker decomposition offers better performance at lower SDNR, but this comes at the 

cost of reduced performance at higher SDNR values. 
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Chapter 5: An Automated Quality Control Pipeline for Assessing 

and Improving the Quality of Multicentre DSC-MRI Data 
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5. An Automated Quality Control Pipeline for Assessing and 

Improving the Quality of Multicentre DSC-MRI Data 

5.1. Introduction 

Studies utilising single centre DSC-MRI paediatric data often have small populations. 

Therefore, there is a need for more multicentre studies. Obtaining robust biomarkers from 

multicentre paediatric DSC-MRI data is challenging due to the heterogeneous nature of 

paediatric patient populations, and variability in the acquisition protocols in DSC-MRI data 

between centres (61). 

Currently quality control is carried out by expert qualitative review, as per the ASFNR 

recommendations (34). This can be subjective and DSC-MRI datasets contain many signal-

time courses, which means it is not possible to assess all the data by qualitative review. 

Therefore, there is a need for a more automated quality control method. Work in Chapter 3 

showed that it is possible to automatically assess data quality using a machine learning 

classifier trained on quality metrics calculated from the signal-time courses. The data quality 

of DSC-MRI can also be improved by post-processing methods, such as denoising, which 

could lead to improved biomarker accuracy (325). Work in Chapter 4 showed that it is 

possible to improve data quality using Tucker decomposition denoising. These two methods 

could be combined to create a pipeline to automatically assess and improve data quality for 

DSC-MRI. 

Previous work to assess data quality automatically has included a set of statistical thresholds 

produced by Akella et al. (307), whilst Tucker decomposition has been previously applied as 

a denoising method to hyperspectral imaging and in MRS, where it showed a significant 

improvement in SNR and outperformed other denoising methods (216, 227, 228). 
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The aim of this chapter is to develop a processing pipeline which will automatically assess the 

quality of DSC-MRI data and improve data quality. In order to achieve this the objectives are: 

to implement an automated segmentation method to segment the brain from the ventricles; 

combine the segmentation method with the denoising and automated quality control methods 

presented in Chapters 3 and 4, to create an automated pipeline; and to apply this pipeline to 

determine how variations in acquisition and contrast agent injection protocols can affect the 

quality of the data acquired. 

5.2. Methods 

5.2.1. Patient Data 

The patient data used in this study was obtained from a multicentre dataset, summarised in 

Table 5.1. The patient data is from an imaging study entitled “CNS 2004 10 Functional 

Imaging of Tumours” (NRES REC ref: 04/MRE04/41). Further details on this study can be 

found in section 3.2.1 of Chapter 3.  

Group 

No. 
of 

Data
sets 

Centre 
Scanner 

Type 
Protocol 

Pre-
Bolus? 
(Y/N) 

Field 
Strength 

(T) 

TR 
(ms) 

TE 
(m
s) 

FA 
(⁰) 

Voxel 
Vol. 

(mm3) 

Temporal 
Resolution 

(s)  

 

A 5 Birmingham 
Siemens 
Avanto 

GE-EPI N 1.5 1490 40 20 28.80 1.48 - 1.50  

B 5 Birmingham 
Siemens 
Avanto 

GE-EPI Y 1.5 
1490 - 
1643 

40 20 28.80 1.50 - 1.65  

C 5 Birmingham 
Phillips 
Achieva 

GE-EPI N 3 
1830 - 
1835 

40 20 21.88 1.95 - 1.97  

D 5 Birmingham 
Phillips 
Achieva 

GE-EPI Y 3 
1830 - 
1866 

40 20 21.88 1.95 - 1.98  

E 5 Birmingham 
Phillips 
Achieva 

sPRESTO N 3 
14 - 
15 

21 
- 

22 
7 41.42 1.40 - 2.05  

F 5 Liverpool 
Phillips 
Achieva 

GE-EPI Y 3 
1335 - 
2343 

40 75 12.25 1.47 - 2.58  

G  5 Newcastle 
Siemens 

Verio 
GE-EPI N 3 1570 29 45 41.42 1.57 - 1.58  

H 5 Nottingham 
Phillips 
Achieva 

GE-EPI Y 3 
1860 - 
1866 

40 20 21.88 1.95 - 1.97  

I 5 Nottingham 
Phillips 
Intera 

sPRESTO N 1.5 
23 - 
25 

16 
- 

17 
7 

11.34 
- 

41.42 
1.23 - 1.58  

Table 5.1: A summary of the protocols used to acquire the multicentre dataset. 
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Patients from Birmingham, Liverpool, and Newcastle were all injected with Dotarem contrast 

agent (Dotarem, Guerbert, France), whilst patients from Nottingham were injected using 

either Gadovist (Bayer AG, Leverkusen, Germany) or Magnevist (Bayer AG, Leverkusen, 

Germany). All patients received a total dosage of 0.1 mmol/kg, using a power injector. 

Patients who did not receive a pre-bolus were injected using a single bolus protocol and 

received the total dosage in one injection during the DSC acquisition. Patients who received a 

pre-bolus were injected using a split bolus protocol and received half the total dosage prior to 

the DSC acquisition, and the other half of the dosage during the DSC acquisition. For all 

patients, a volume of up to 10 ml of saline was injected after the total dosage of contrast agent 

was received. All injections were administered at a rate of 3 ml s-1. 

5.2.2. Automated Segmentation of Background and Ventricles 

The aim of the segmentation was to produce a mask of all the pixels within the brain, 

excluding the ventricles, for each DSC image analysed. This was necessary as the ventricles 

do not contain any blood, and therefore no useful perfusion information. All segmentation 

was carried out directly on the DSC images, without using conventional T1 or T2
* weighted 

images. This was necessary as with multicentre datasets, there may not be access to all of the 

conventional imaging. Segmenting directly on the DSC images also allows the segmentation 

to be a fully automated step in the pipeline.  

The segmentation was carried out in two stages: the first stage removed the background pixels 

with the segmentation carried out using the pixel intensities from the first dynamic; whilst the 

second stage removed the ventricles with the segmentation carried out using features 

extracted from the signal-time courses. 

To remove the background, all of the pixel intensities from the first dynamic of the middle 

slice of each dataset were separated into two clusters, using k-means clustering, where one 
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cluster represented the background pixels, and the other cluster represented the brain pixels. 

The lowest pixel intensity from the brain pixel cluster and the largest pixel intensity from the 

background pixel cluster were selected. The mean of these two values was calculated and this 

was applied as a threshold to remove the background pixels from all slices within the dataset.  

To remove the ventricles, segmentation was carried out on the signal-time courses, with the 

segmentation method dependent on the acquisition protocol for the DSC-MRI data. Different 

methods for segmenting the ventricles were needed as there were differences in the signal-

time courses and the contrast of the images produced by the two different protocols. 

For GE-EPI data the ventricles were segmented using a combination of PCA and hierarchical 

clustering applied to the signal-time courses. PCA reduces the dimensionality of a dataset, 

which makes it possible to identify differences between brain matter and ventricle signal-time 

courses, whilst ignoring factors such as noise. All signal-time courses selected by the mask 

during the first stage of segmentation were stacked in a matrix and PCA was applied. 

Hierarchical clustering was then applied to the scores from the first two principal components 

and the clustering results were used to separate them into two clusters: one representing the 

brain matter signal-time courses and one representing the ventricle signal-time courses. 

sPRESTO data has less contrast between the brain matter and the ventricles, which meant that 

the PCA and hierarchical clustering method did not work for this data. Instead the first ratio 

was used, which is the first dynamic of the signal-time course normalised to the average 

baseline of the signal-time course (347). For sPRESTO signal-time courses the baseline takes 

several dynamics to stabilise, which means there is a signal drop between the first dynamic 

and the stabilised baseline. This signal drop differs between brain matter and ventricle signal-

time courses and can be exploited using the first ratio. The first ratio values were calculated 
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for all signal-time courses selected during the first stage of the segmentation and were then 

separated into two clusters using k-means clustering. As with the GE-EPI method, one cluster 

represented the brain matter signal-time courses, and one represented the ventricle signal-time 

courses. 

For two of the Birmingham datasets (one GE-EPI dataset and one sPRESTO dataset) a high 

resolution T2 weighted image was acquired with the same field of view (FOV) and same 

number of slices as the DSC dataset. This meant it was possible to segment the brain from the 

ventricles on the T2 image and register the resulting segmentation to the DSC dataset. The 

functional magnetic resonance imaging of the brain (FMRIB) group in Oxford have produced 

a series of tools for processing MRI data, which have been published as the FMRIB software 

library (FSL) (348). The segmentation of the T2 weighted image was carried out using the 

FMRIB’s automated segmentation tool (FAST) (349). The resulting mask was then imported 

into Matlab and was manually registered to the DSC-MRI image. 

This mask was used as a ‘gold standard’ comparison to the automated segmentation method. 

Birmingham datasets were used because T2 weighted images with the same FOV and same 

number of slices as the DSC were not always available from other centres. The two 

segmentation methods were compared using the modified Hausdorff distance (350) and the 

dice similarity coefficient (351). 

5.2.3. Denoising 

The aim of the denoising step was to improve the quality of the data. This was carried out 

using the Tucker decomposition method presented in Chapter 4. This method was chosen as it 

produced the best results at low SDNR and these are the signal-time courses which are most 

likely to fail quality control. The Tucker decomposition method is also well suited to 

denoising DSC-MRI datasets as it is specifically designed to be applied to higher dimensional 
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data (216). It was concluded that the improved performance at lower SDNR values 

outweighed the possible risk of a slight reduction in data quality at higher SNR as the actual 

increase in CBV error in the simulated data presented in Chapter 4 was small. 

As in Chapter 4, the Tucker decomposition was applied using the N-way (221) and tensorlab 

(341) toolboxes in Matlab. In this chapter entire patient datasets are being denoised instead of 

individual slices. Therefore, each patient dataset was treated as a four way tensor, with the 

first two dimensions being the rows and columns of the image, the third dimension being the 

slices and the fourth dimension being the signal-time courses. The mlrankest function from 

the tensorlab toolbox was used to estimate the rank of the core tensor and the result from this 

was used as the number of components used in the Tucker decomposition.  

5.2.4. Calculation of Metrics 

For each signal-time course, SDNR, RMSE, FWHM and PSR were calculated as before. 

Pixel-by-pixel rCBV was also calculated by computing the area under a gamma variate fit to 

the first pass of the CTC. All rCBV values were normalised to average rCBV from a WM 

mask. The method used to produce the WM mask is described in the next section. Further 

details on how each of the metrics were calculated can be found in Chapter 2, and details on 

how the baseline and post-bolus signal was identified can be found in section 3.2.3. of 

Chapter 3. 

5.2.4.1. Normalisation of rCBV 

In order to normalise the rCBV maps produced by the pipeline, it was necessary to segment 

WM from the DSC-MRI images, to produce an average rCBV for normally appearing WM 

(NAWM). WM segmentation was achieved using a network created in MeVisLab (MeVis 

Medical Solutions AG, Bremen, Germany, version 2.8.2). This network used T2 weighted 

images to segment the WM and then register the resulting segmentation to the DSC image. 
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The first step was to upsample the DSC image, which was achieved using nearest neighbour 

resampling (352). The T2 image was reformatted and registered to the upsampled DSC image 

to ensure that it had the same FOV as the DSC image. Following this the reformatted T2 

image was segmented using region growing methods. In this method one or more seed points 

and a threshold value are selected, and any pixels that fall within the threshold of the average 

of the seed points are segmented. The resulting mask is then downsampled to the dimensions 

of the original DSC image. 

5.2.5. Assessing Data Quality 

Quality control was carried out using a random forest machine learning classifier from the 

machine learning toolbox in Matlab. This machine learning classifier was selected as it 

produced the lowest classification error when compared to other machine learning classifiers 

in Chapter 3. The classifier was trained using 1,027 signal-time courses from a multicentre 

dataset. SDNR, RMSE, FWHM and PSR were used as predictors of quality. More details on 

the machine learning can be found in Chapter 4. 

5.2.6. Statistical Analysis 

Statistical testing was used to assess differences in the quality metrics and % passing quality 

control before and after denoising and between centres. Kruskal-Wallis testing was used to 

investigate differences in quality metrics and χ2 testing was used to investigate differences in 

the % of signal-time courses passing quality control. All statistical testing was carried out 

using R (R Foundation for Statistical Computing, Vienna, Version 3.5.0). 

5.3. Results 

5.3.1. Constructing the Pipeline 

Figure 5.1 summarises the processes involved in each stage of the pipeline. Figure 5.2 shows 

an example of the differences between a GE-EPI and sPRESTO signal-time course, which 

were both acquired with a single-bolus protocol. Figure 5.3 shows some examples of the 
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automated segmentation method used in the pipeline compared to the standard method of 

segmentation. Table 5.2 summarises the results from the performance metrics used to 

compare the two segmentation methods. Figure 5.4 shows an example of the WM masks 

produced by the network in Mevislab.  

 
Figure 5.1: Flowchart summarising the various processes within the quality control pipeline. 
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Figure 5.2: An example of the signal-time courses from (a) a GE-EPI dataset and (b) an sPRESTO dataset. 

 
Figure 5.3: Examples of the ventricle segmentation using the automated method developed (middle column) compared to 
applying FSL to a T2 weighted image registered to the DSC-MRI scan (right column), for an GE-EPI (top row) and sPRESTO 
acquisition (bottom row). (a) is a slice from a GE-EPI DSC-MRI dataset, (b) is the automated segmentation applied to this 
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image, and (c) is FSL applied to the T2 weighted image and registered to the DSC image. (d) is a slice from a sPRESTO DSC-
MRI dataset, (e) is the automated method applied to this image, and (f) is FSL applied to a T2 weighted image and registered 
to the DSC image. 

Protocol 

Modified 
Hausdorff 
Distance 

(mm) 

Dice 
Similarity 

Coefficient 

Pixel 
Spacing 

(mm) 

Slice 
Thickness 

(mm) 

GE-EPI 1.71 0.95 2.39 3.5 

sPRESTO 3.44 0.92 3.43 3.5 
Table 5.2: Performance measures comparing the automated segmentation method to FSL of a T2 weighted image registered 
to the DSC image. 

 
Figure 5.4: An example of the WM segmentation produced by the Mevislab network. (a) is a T2 weighted image, (b) is the 
original DSC image, (c) is the WM mask produced and (d) is the WM mask overlaid onto the DSC image. 

5.3.2. Outputs from the Pipeline 

Figure 5.5 shows an example of the maps produced by the pipeline for one slice of a 3T GE-

EPI dataset with a pre-bolus from Birmingham. Table 5.3 summarises the average metrics on 

a centre-by-centre basis pre- and post-denoising. Figure 5.6 shows bar charts showing the 

changes in average SDNR and % passing for each centre pre- and post-denoising. 
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Out of all the datasets included in the study, Kruskal-Wallis testing showed that there was a 

significant improvement (P < 0.05) in SDNR and RMSE post-denoising for 84.4% and 73.3% 

of datasets, respectively. Chi square testing showed there was a significant improvement (P < 

0.05) in the % of signal-time courses passing quality control post-denoising for 73.3% of 

datasets. Kruskal-Wallis testing gave P < 0.01 when comparing all metrics between centres 

pre- and post-denoising. Chi square testing gave P < 0.01 when comparing the % of signal-

time courses passing quality control between centres. 
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Figure 5.5: An example of the maps produced by the quality control pipeline, for one slice of a GE-EPI DSC-MRI dataset. (a) 
shows the original DSC image, (b) and (c) show the SDNR maps pre- and post-denoising, (d) and (e) show the RMSE maps 
pre- and post-denoising, (f) and (g) show the FWHM maps pre- and post-denoising, (h) and (i) show the PSR maps pre- and 
post-denoising, (j) and (k) show the rCBV maps pre- and post-denoising, and (l) and (m) show the quality control maps pre- 
and post- denoising. For the quality control maps, blue pixels represent signal-time courses that passed quality control, 
whilst orange pixels represent signal-time courses which failed quality control. 
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Group 
Average SDNR ± Std. Dev. Average RMSE ± Std. Dev. Average FWHM ± Std. Dev. Average PSR ± Std. Dev. (%) Average % Passed ± Std. Dev. (%) 

Pre Post Pre Post Pre Post Pre Post Pre Post 

A 8.7 ± 6.9 144.4 ± 133.5 0.035 ± 0.560 0.008 ± 0.062 7.8 ± 5.1 8.3 ± 2.3 80.8 ± 13.9 81.1 ± 10.6 51.3 ± 21.4 95.9 ± 5.9 

B 3.9 ± 4.6 57.6 ± 99.7 0.111 ± 3.172 0.022 ± 0.527 7.8 ± 8.8 9.0 ± 5.0 78.5 ± 22.7 78.4 ± 18.0 18.2 ± 23.8 76.7 ± 28.0 

C 15.6 ± 10.9 37.5 ± 43.1 0.025 ± 0.091 0.022 ± 0.045 9.7 ± 6.0 9.6 ± 5.4 73.9 ± 12.9 73.8 ± 12.6 77.0 ± 10.2 84.8 ± 15.3 

D 8.4 ± 8.5 52.9 ± 68.1 0.043 ± 0.601 0.020 ± 0.104 10.4 ± 8.3 10.9 ± 5.6 71.0 ± 22.6 68.9 ± 19.9 41.6 ± 21.9 72.4 ± 37.0 

E 23.1 ± 16.3 66.4 ± 66.1 0.016 ± 0.023 0.016 ± 0.097 7.0 ± 3.6 6.7 ± 2.4 81.3 ± 10.6 82.1 ± 9.9 92.3 ± 4.1 94.4 ± 5.2 

F 26.1 ± 16.7 139.8 ± 110.9 0.015 ± 0.339 0.008 ± 0.148 10.0 ± 3.7 10.3 ± 3.3 74.9 ± 14.9 74.6 ± 15.3 91.6 ± 10.7 98.4 ± 1.7 

G 47.8 ± 30.1 51.5 ± 45.4 0.009 ± 0.011 0.006 ± 0.006 9.8 ± 2.8 10.7 ± 2.4 77.1 ± 10.9 76.2 ± 9.0 96.4 ± 1.6 96.8 ± 1.5 

H 14.3 ± 11.0 19.9 ± 17.9 0.023 ± 0.223 0.020 ± 0.147 8.3 ± 4.1 8.4 ± 3.5 75.1 ± 16.2 74.9 ± 15.6 73.6 ± 16.5 79.6 ± 18.6 

I 12.5 ± 9.8 19.2 ± 12.3 0.018 ± 0.128 0.018 ± 0.901 8.1 ± 4.1 8.3 ± 3.5 79.3 ± 16.1 81.8 ± 15.0 75.5 ± 13.7 88.6 ± 4.3 

Table 5.3: A summary of the centre averages for each of the metrics pre- and post-denoising. 
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Figure 5.6: Bar charts showing (a) the change in average SDNR and (b) the change in % passing ± the standard deviation for 
each centre pre- and post-denoising. 

5.4. Discussion 

The work in this chapter shows that it is possible to create an automated quality control 

pipeline, which is capable of segmenting DSC-MRI images, denoising the signal-time 

courses and assessing data quality using machine learning. Denoising provides a significant 

improvement in data quality for the majority of datasets. Statistical testing also shows 

significant differences in data quality between centres, showing the impact of acquisition 

protocol on data quality. 

The use of the automated segmentation method applied directly to the DSC images is 

advantageous as it does not require any conventional imaging, which may not always be 

available in a multicentre dataset. It also allows the segmentation to be a fully automated step 

in the processing pipeline. Comparing the automated segmentation methods for the GE-EPI 
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and sPRESTO images to the FSL gold standard segmentation shows similar performance, for 

the two example datasets which were tested. The modified Hausdorff distances for both 

datasets are less than the pixel spacing and the slice thickness, which shows that for the two 

datasets the borders were less than a pixel different when compared to the FSL gold standard 

segmentation. The dice similarity coefficient for both segmentation methods produces values 

greater than 0.9, showing good agreement with the FSL gold standard segmentation. As this 

method has only been tested on one example of GE-EPI and one example of sPRESTO data, 

more datasets would need to be tested before it can be concluded if the new segmentation 

method is comparable to the gold standard. 

Differing segmentation methods were required due to the differences in the image contrast 

produced by each acquisition protocol. GE-EPI has good contrast between the ventricles and 

brain matter and PCA of the signal-time courses combined with hierarchical clustering was 

able to separate brain matter from ventricles. However, this did not work for sPRESTO due 

to lack of contrast between these regions. Therefore, the first ratio which exploits differences 

in the signal drop between the first time point and the stabilised baseline between brain 

matter and ventricles, was applied instead. Comparing the signal-time courses in Figure 5.2, 

the differences in the baseline signal of GE-EPI and sPRESTO signal-time courses can be 

seen. 

Comparing the example maps shown in Figure 5.5 pre- and post-denoising, an improvement 

in SDNR, RMSE and % passing quality control can be clearly seen. The change in FWHM, 

PSR and rCBV are less pronounced but that is because there is a linear relationship between 

an increased SDNR, decreased RMSE, and increased % of signal-time courses passing 

quality control. For PSR and FWHM quality metrics there is no linear relationship between 

data quality and change in PSR or FWHM, as a very low or very high value of PSR or 

FWHM indicates poor quality data. Therefore, denoising corrects outlier values of PSR and 
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FWHM. In the case of rCBV, poor quality data makes it difficult to fit a curve to the first 

pass and leads to underestimated or overestimated rCBV values. Consequently, denoising 

corrects outlier values of rCBV and there is a non-linear relationship between rCBV and data 

quality. 

This trend is repeated in the centre averages in Table 5.3, with SDNR, RMSE and % of 

signal-time courses passing quality control showing improvement post-denoising. For SDNR, 

the standard deviation increases post-denoising, suggesting that the increase in SDNR is not 

uniform across all datasets. For the rest of the metrics there is a general decrease in the 

standard deviation post-denoising, suggesting that for metrics such as FWHM, denoising 

corrects outlier values to a greater extent than those closer to the mean. 

The P values produced by comparing the results on a centre-by-centre basis show that the 

acquisition protocol used to acquire the data has a significant effect on data quality. Several 

conclusions can be drawn by comparing the results from applying several different 

acquisition protocols at one centre (Birmingham). Firstly, 3T data is of better quality than 

1.5T, which is expected as a larger field strength gives greater SDNR. Secondly, sPRESTO 

generally gives a higher SDNR and % of signal-time courses passing quality control than 

EPI. However, sPRESTO has poorer temporal and spatial resolution and poorer contrast than 

GE-EPI (353). The reduced spatial resolution also means that the sPRESTO sequence has a 

larger voxel size than GE-EPI, which may be the cause of the increased SDNR compared to 

GE-EPI. Thirdly, using a single bolus protocol gives a higher SDNR and % of signal-time 

courses passing quality control than giving a pre-bolus. Comparing the centres that used GE-

EPI it can be seen that both the Liverpool and Newcastle datasets gave the largest SDNR. 

Newcastle data was consistently acquired using a single-bolus protocol and both centres used 

larger flip angles in their GE-EPI protocols than other centres. Although a larger flip angle 

leads to greater SDNR, it also leads to increases T1 effects in the acquired image (132). 
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It can be seen from the bar charts in Figure 5.6 that there is a link between improved SDNR 

and improved % of signal-time courses passing denoising. For every centre, an improvement 

in average SDNR leads to an improvement in average % of signal-time courses passing 

quality control. For centre F, a large improvement in SDNR only leads to a slight 

improvement in % passing quality control. This is because the % passing quality control was 

already close to its maximum value pre-denoising.  

Inspecting the results on a dataset by dataset basis, it can be seen that significant 

improvement in data quality is not universal across all datasets, with 73.3% of all the datasets 

showing a significant improvement in the % of signal-time courses passing quality control 

post-denoising. However, a larger percentage of datasets had a significant improvement in 

SDNR post-denoising, showing that a significant improvement in SDNR does not necessarily 

lead to a significant improvement in data quality. This is because the % of signal-time 

courses passing quality control has an upper limit, whereas the SDNR value does not. 

Therefore, for a dataset that is already high quality prior to denoising, a change in SDNR will 

have a negligible impact in the % of signal-time courses passing quality control. 

In terms of other work there have been automated methods to assess data quality, such as the 

work by Akella et al. (307), which attempted to determine quality thresholds for DSC-MRI. 

In this work the signal drop of the first pass, PSR, FWHM, and % failure rate of fitting a 

gamma variate to the first pass were used as quality metrics. Average values were calculated 

for each patient and a one-sided 99% confidence interval was applied and used to determine a 

threshold for each of the metrics (307). This differs from the work presented here as it uses 

different quality metrics, and uses statistical thresholds, instead of thresholds based on 

qualitative review. However, most other studies seem to rely on the ASFNR 

recommendations to assess quality by eye prior to processing (34). Denoising has previously 

been applied to DSC-MRI and other MR modalities such as MRS (216). However, there has 
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not been any previous work which combines denoising with automated quality control for 

DSC-MRI. 

There are currently several limitations to this work. Firstly, the ventricle segmentation has 

only been compared to the gold standard segmentation method for a limited number of 

datasets and may not work well with DSC data acquired with other acquisition protocols. 

This could be improved by testing comparing the performance of the automated and gold 

standard methods for a much larger range of datasets. Secondly, the WM segmentation 

method is currently manual, which prevents the pipeline from being fully automated. This 

could be improved by implementing automated WM segmentation. Finally, the pipeline and 

its components have not yet been tested on imaging slices which contain brain pathology, 

such as tumour. The machine learning classifier has not been trained on tumour data, so may 

not be able to classify its quality accurately. Tumour signal-time courses may be affected by 

contrast agent leakage, which may lead to them being misclassified due to abnormal PSR 

values. However, this could be mitigated for by applying leakage correction and including 

leakage corrected signal-time courses in the training data. The segmentation method has also 

not been tested on slices containing brain tumour. Whether it is able to distinguish tumour 

from ventricle, will likely depend on the type of tumour and the perfusion levels. Contrast 

agent leakage correction was not applied as the brain slices analysed did not contain brain 

tumour. Work presented in Appendix 1 showed that leakage had an insignificant effect on the 

rCBV values obtained. 

5.5. Conclusion 

This work demonstrates that it is possible to create an automated quality control pipeline for 

DSC-MRI. There are significant differences in data quality caused by variations in 

acquisition protocol. Tucker decomposition denoising can be used to significantly improve 

the quality of the majority of datasets, in particular those with low SDNR.  



164 
 

 

 

Chapter 6: Application of the Automated Quality Control 

Pipeline to Data from Paediatric Brain Tumour Survivors 
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6. Application of the Automated Quality Control Pipeline to Data 

from Paediatric Brain Tumour Survivors 

6.1. Introduction 

Brain tumours are the main cause of death due to cancer in children (354). They can be 

challenging to treat, as their location can make them difficult to remove with surgery (355). 

The three treatments usually applied to brain tumours are surgery, radiotherapy, and 

chemotherapy. Surgery to resect the tumour, if possible, is usually the first stage of treatment, 

with a sample of the resected tumour used for histologic diagnosis (354). Radiotherapy may 

be either craniospinal (CS) or focal. In CS radiotherapy, the entire brain and spinal cord is 

irradiated, and this is used for malignant tumours, such as medulloblastomas, which have a 

significant risk of metastasis in the brain and spine (356, 357). In these patients, irradiating 

the entire brain has the advantage of a reduced chance of metastatic recurrence (358). 

However, there are concerns over the use of CS radiotherapy in paediatric patients, as this 

may cause damage to normal brain particularly in the very young, which could lead to 

problems such as cognitive deficiencies, growth retardation, hormonal deficiency and the 

potential to cause severe physical disability in the patient (356-358). Focal radiotherapy 

refers to a group of radiotherapy techniques where the dose of radiation is highly targeted on 

the brain tumour or region of the brain it arose from, which reduces the dose of radiation to 

normal brain (358). Examples of focal radiotherapy techniques include focal fractionated 

radiotherapy (FFRT), stereotactic radiosurgery (SRS) and proton beam therapy (358). 

Chemotherapy is also used in some tumour types with an intent to increase survival, and is 

preferred to radiotherapy in young children as it reduces their exposure to ionising radiation 

(354). 

Radiotherapy treatments reduce the CBV within the tumour but can also lead to reduced CBV 

in normal brain tissues (359-361). Chemotherapy is also used to reduce tumour perfusion and 

tumours with reduced perfusion are classed as responsive to treatment (362). However, in 
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some cases treatments may be used to increase blood flow to tumour to aid in the delivery of 

chemotherapy drugs (363). 

DSC-MRI can be used following radiotherapy to assess changes in perfusion in the tumour 

and in normal brain. This is routinely carried out in adults but is not common in paediatrics. 

In adults, DSC-MRI has previously been used to distinguish between recurrence and 

radiation necrosis (364), and to predict survival in high grade glioma before and during 

radiotherapy (365). 

The aim of this chapter was to apply the quality control pipeline developed in the last chapter 

to DSC-MRI scans acquired after completion of treatment from a cohort of patients with 

posterior fossa tumours which have undergone surgical resection but differing adjuvant 

treatment. The effect of different treatments on perfusion in normal appearing supratentorial 

brain tissue was assessed by comparing the rCBV values between treatment groups. 

6.2. Methods 

6.2.1. Patient Data 

All patient datasets came from an imaging study entitled “CNS 2004 10 Functional Imaging 

of Tumours”. Further details on this study can be found in section 3.2.1 of Chapter 3. All 

DSC scans were acquired on a Phillips Achieva 3T scanner at Birmingham Children’s 

Hospital, with TE = 40 ms, TR = 1830-2225 ms, flip angle = 20°, voxel dimensions = 2.5 

mm x 2.5 mm x 3.5 mm, scan type = GE-EPI, field of view = 230 mm x 230 mm, number of 

slices = 30, parallel imaging = SENSE with factor 2, temporal resolution = 1.83 - 2.23s, no. 

of dynamics = 60, total acquisition time = 117s. The range of TR values is large as one 

patient scan was recorded with a different head coil to the rest (the SENSE-NV-16 coil), 

which produced a TR of 2225ms. For the rest of the patients the TR values varied from 

1830ms to 1865ms. 
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All patients were injected with Dotarem contrast agent (Dotarem, Guerbert, France), with a 

total dosage of 0.1 mmol/kg, using a power injector. Some patients were injected using a 

single bolus protocol and received the total dosage in one injection at the start of time point 6 

in the DSC data acquisition. Some patients were injected using a split bolus protocol and 

received half the total dosage prior to the DSC acquisition, and the other half of the dosage at 

time point 6 in the DSC acquisition. This was to minimise T1 weighted effects from contrast 

agent leakage (as discussed in section 2.2.2.2.). For all patients, a volume of up to 10 ml of 

saline was injected after the total dosage of contrast agent was received. All injections were 

administered at a rate of 3 ml s-1. 

The patients in this study were all diagnosed with cerebellar brain tumours and the tumour 

types included: 13 Medulloblastomas, 6 Ependymomas, 5 Pilocytic Astrocytomas, and 1 

Atypical Choroid Plexus Papilloma. Only patients with cerebellar tumours were included so 

that it would be possible to compare the effects of treatment on supratentorial slices, which 

did not include any tumour. All patients initially underwent surgery to remove the tumour, 

and all scans were acquired more than one year after the completion of all treatment. The 

patients were split into three groups: those that received CS radiotherapy, those that received 

focal radiotherapy to the posterior fossa, and those that did not receive radiotherapy. Some of 

the patients in this study also received chemotherapy. Table 6.1 summarises the number and 

age range of patients in each treatment group, whilst Table 6.2 summarises the treatments 

received by each patient. 

Treatment 
No. of 

Patients 

Age at Diagnosis (yrs.) 

Average Range 

Focal Radiotherapy 4 3.3 1.4 - 4.1 

CS Radiotherapy 9 5.6 2.5 - 10.1 

No Radiotherapy 12 3.2 0.3 - 8.8 

Table 6.1: A summary of the number of patients and age ranges included in each treatment group. 
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CCLG ID 
Treatment 

Group 
Tumour Type 

Age at 
diagnosis 

Chemotherapy Radiotherapy 

Date Details Date Details Dose 

1189 
Craniospinal 
Radiotherapy 

Medulloblastoma 
M2 

2yrs 6m 

T1: Oct 
2013 - Mar 
2014 
T2: Apr 
2014 

T1: HEADSTART II 
protocol 
T2: High Dose 
chemotherapy and 
blood stem cell 
rescue 

Sep 2014 - 
Oct 2014 

Radiotherapy 
after relapse in 
Aug 2014. 
Craniospinal 
radiotherapy to 
whole CNS, with 
boost to 
posterior fossa. 

35Gy, with 
boost of 20Gy 

1557 
Craniospinal 
Radiotherapy 

Medulloblastoma 
M3 

10yrs 1m 
Completed 
May 2016 

POG 9031 
chemotherapy 

Completed 
Apr 2016 

Craniospinal 
tomotherapy 
with posterior 
fossa boost 

39.6Gy with 
16.2Gy boost 
to tumour bed 

1603 
Craniospinal 
Radiotherapy 

Medulloblastoma 
M0 

4yrs 3m 
Mar 2016 - 
Mar 2017 

Standard risk CCLG 
guidelines - 8 cycles 
of "Packer" 
chemotherapy - 4 of 
(Cisplatin, CCNU, 
Vincristine), 2 of 
(carboplatin, CCNU, 
vincristine), 2 of 
(CCNU, vincristine) 

Feb 2016 - 
Mar 2016 

Craniospinal with 
posterior fossa 
boost 

23.4Gy with 
posterior fossa 
boost of 54Gy 

1496 
Craniospinal 
Radiotherapy 

Medulloblastoma 
M0 

4yrs 9m 
Completed 
June 2013 

Standard risk PNET4 
guidelines (CCNU, 
Cisplatin/carboplatin, 
vincristine) 

Apr 2012 - 
May 2012 

Craniospinal plus 
posterior fossa 
boost 

23.4Gy with 
posterior fossa 
boost of 
30.6Gy 

844 
Craniospinal 
Radiotherapy 

Medulloblastoma 
M0 

4yrs 1m 
Completed 
Jan 2012 

Standard risk 
“Packer" 
chemotherapy 
(cisplatin, CCNU, 
vincristine) 6 cycles 

Completed 
Aug 2011 

Craniospinal 
radiotherapy 
plus posterior 
fossa boost 

23.5Gy with 
posterior fossa 
boost of 
30.6Gy 
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1543 
Craniospinal 
Radiotherapy 

Medulloblastoma 
M3 

10yrs 1m 

T1: 3 
cycles Sep 
2014 - Nov 
2014 
T2: Jan 
2015 - Feb 
2015 

T1: St. Jude's high 
dose 
medulloblastoma 
study 
T2: Cisplatin and 
Lomustine 

Completed 
Aug 2014 

Craniospinal with 
posterior fossa 
boost 

39.6Gy with 
posterior fossa 
boost of 
16.2Gy 

792 
Craniospinal 
Radiotherapy 

Medulloblastoma 
M3 

3yrs 6m 

T1: Dec 
2010 - Apr 
2011 
T2: May 
2011 - Jul 
2011 

T1: Head Start 3 
Protocol 
T2: High dose 
chemotherapy and 
peripheral blood 
stem cell rescue 

July 2011 - 
Sept 2011 

Craniospinal 
radiotherapy 
with posterior 
fossa boost 

18Gy with 
conformal 
boost to 
posterior fossa 
of unknown 
dose 

1510 
Craniospinal 
Radiotherapy 

Medulloblastoma 
M2 

5yrs 5m 
Oct 2015 - 
Feb 2016 

St Jude’s (4 cycles 
high dose 
chemotherapy with 
peripheral blood 
stem cell rescue) 

Jul 2015 - 
Aug 2015 

Craniospinal 
tomotherapy 
with boost to 
posterior fossa 
and suprasellar 
metastasis 

36Gy with 
posterior fossa 
and suprasellar 
metastasis 
boost of 18Gy 

1762 
Craniospinal 
Radiotherapy 

Medulloblastoma 
M3 

6yrs 1m 

T1: Oct 
2015 
T2: Jan 16 
- May 16 

T1: 
cyclophosphamide 
T2: CCLG High Risk 
Medulloblastoma 
guidelines - St Jude’s 
(SJMB03) - 4 cycles 
high dose and stem 
cell rescue 

Nov 15 - 
Dec 15 

Craniospinal with 
boost to primary 
site 

39.6Gy with 
primary site 
boost to 
55.8Gy 

1784 
Focal 
Radiotherapy 

Ependymoma 3yrs 11m N/A N/A 
July 2017 - 
Sept 2017 

Radiotherapy 54Gy 

511 
Focal 
Radiotherapy 

Medulloblastoma 4yrs 1m 
Completed 
Feb 2006 

Treatment according 
to the UKCCSG Infant 
PNET Protocol 

Completed 
Aug 2006 

Radiotherapy to 
posterior fossa 

55Gy to 
posterior fossa 
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721 
Focal 
Radiotherapy 

Pilocytic 
Astrocytoma 

3yrs 7m N/A N/A 
Completed 
Jul 2013 

Proton beam 
therapy  

Dose unknown 

813 
Focal 
Radiotherapy 

Ependymoma 1yr 5m 
Started 
Mar 2011 

Infant ependymoma 
protocol, 2 courses 
given (vincristine, 
carboplatin then 
vincristine, 
methotrexate) 

Completed 
Jul 2011 

Proton beam 
therapy  

Dose unknown 

774 
No 
Radiotherapy 

Ependymoma 2yrs 8m 
Sep 10 - 
Nov 2011 

CCLG infant 
ependymoma 
protocol  

N/A N/A N/A 

849 
No 
Radiotherapy 

Medulloblastoma 
M0 

1yr 4m 

T1: Mar 
2011 
T2: Aug 
2011 

T1: Headstart III 
protocol 
T2: high dose 
chemotherapy 

N/A N/A N/A 

594 
No 
Radiotherapy 

Ependymoma 2yrs 9m 
Completed 
Mar 2009 

CCLG infant 
ependymoma 
protocol 

N/A N/A N/A 

1359 
No 
Radiotherapy 

Pilocytic 
Astrocytoma 

3yrs 3m N/A N/A N/A N/A N/A 

1672 
No 
Radiotherapy 

Ependymoma 2yrs 7m 
Sep 2004 - 
Nov 2005 

UKCCSG infant 
protocol 9204 

N/A N/A N/A 

860 
No 
Radiotherapy 

Medulloblastoma 
M2 

1yr 7m 
July 2011 - 
Dec 2011 

Headstart III protocol N/A N/A N/A 

791 
No 
Radiotherapy 

Pilocytic 
Astrocytoma 

4yrs 6m N/A N/A N/A N/A N/A 

1459 
No 
Radiotherapy 

Pilocytic 
Astrocytoma 

8yrs 10m N/A N/A N/A N/A N/A 

859 
No 
Radiotherapy 

Ependymoma 0yrs 4m 
Sep 2011 - 
Sep 2012 

Followed CCLG 
ependymoma 
guidelines 

N/A N/A N/A 
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1553 
No 
Radiotherapy 

Atypical Choroid 
Plexus Papilloma 

1yr 7m N/A N/A N/A N/A N/A 

974 
No 
Radiotherapy 

Pilocytic 
Astrocytoma 

7yrs 2m N/A N/A N/A N/A N/A 

1174 
No 
Radiotherapy 

Medulloblastoma 
M0 

2yrs 3m 
Completed 
Sep 2013 

Headstart II protocol N/A N/A N/A 

Table 6.2: A table summarising the treatment received by each of the patients included in the analysis. 

 



172 
 

6.2.2. Processing Patient Data 

DSC-MRI data from the patients was processed in Matlab (The MathWorks, MA, 2019a), 

using the quality control pipeline developed from earlier work. For further details on how the 

pipeline functions, and justifications for the techniques used, see the methods section of 

Chapter 5. As in Chapter 5, four slices were analysed from each dataset, centred around the 

corpus callosum where possible. Slices higher up in the brain were chosen as these will have 

received a very low dose during focal radiotherapy.  

6.2.3. Comparing Treatment Groups 

WM and GM ROIs were drawn onto high resolution T2 weighted images and downsampled to 

the resolution of the DSC images. In the case of GM ROIs, a threshold was applied to remove 

any CSF from the ROIs. The value of the threshold applied varied between patients. The 

ROIs were drawn by Stephen Powell using a network created in MeVisLab and were checked 

by Professor Andrew Peet (a Paediatric Neurooncologist with 18 years of experience) and Dr 

Stephanie Withey (a Clinical Scientist specialising in MRI with 8 years of experience). From 

the ROIs it was then possible to calculate average rCBV values from WM and GM. The ratio 

of average WM rCBV to average GM rCBV (rCBVWM/GM) was calculated for each patient 

and this value was compared between treatment groups. Two sets of comparisons were made: 

one where the three treatment groups were compared to each other; and one where the focal 

radiotherapy and no radiotherapy groups were merged into one group and compared to the CS 

radiotherapy group. 

6.2.4. Investigating Change in rCBVWM/GM with time 

For patients with multiple DSC-MRI scans post-treatment completion, it was possible to plot 

the change in rCBVWM/GM values with time. Error bars were produced by estimating the 

standard error in the mean rCBV values from the GM and WM ROIs by dividing the standard 

deviation in the rCBV by the square root of the number of values within the ROI. The errors 
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in the average rCBV values from the GM and WM ROIs were then combined to give an error 

in rCBVWM/GM. 

6.2.5. Statistical Analysis 

All statistical testing was carried out using R (R Foundation for Statistical Computing, 

Vienna, Austria, Version 3.5.0). The Shapiro-Wilk test for normality was used to test all 

datasets prior to making any comparisons. The Kruskal-Wallis test was used to investigate 

differences in the SDNR, RMSE, FWHM, PSR and rCBV values before and after denoising, 

whilst the chi square test was used to investigate difference in the % of signal-time courses 

passing quality control before and after denoising. Prior to comparing treatment groups, a 

statistical power analysis was carried out to determine the number of samples required in each 

group to see a significant difference between the groups. A significance level of 0.05 was 

selected as this is the significance level used by the statistical tests; an effect size of 0.4 was 

chosen as this represents a small effect; and a statistical power of 0.8 was used, as this gives a 

low chance of a type II error occurring (366). ANOVA combined with Tukey post-hoc testing 

(with a Bonferroni correction) was used to compare the rCBVWM/GM values between treatment 

groups. A two way ANOVA test was also used to compare the effect of denoising and 

treatment on patients from the CS and no radiotherapy groups.  

6.3. Results 

6.3.1. Effect of Denoising on the Patient Data 

For each of the metrics produced by the pipeline, the Shapiro-Wilk test produced a P value < 

0.05, showing a non-normal distribution. The denoising step of the quality control pipeline 

caused an increase in SDNR, a decrease in RMSE and an increase in the % of signal-time 

courses passing quality control for all datasets. Table 6.3 summarises the % of datasets which 

saw a significant change post-denoising for each metric. The datasets which did not have a 

significant improvement in the % of signal-time courses passing quality control post-
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denoising, had an average of 55.4 ± 28.6% of signal-time courses passing quality control pre-

denoising. Figure 6.1 shows a grouped bar plot showing the average SDNR and % of signal-

time courses passing quality control for each treatment group pre- and post-denoising. Two 

patient datasets were excluded post-denoising as the signal-time courses produced were 

distorted resulting in a larger rCBV in WM compared to GM. An example GM and WM 

signal-time course from one of the datasets is shown in Figure 6.2. Both datasets were very 

low quality pre-denoising with only 14.4% and 12.2% of signal-time courses passing quality 

control, respectively. For both datasets only 3 components were selected in the time direction 

by the component selection method used for the Tucker decomposition. 

Metric % of datasets with a significant change post-denoising 

SDNR 92 

RMSE 80 

FWHM 84 

PSR 48 

rCBV 80 

% passing quality control 84 
Table 6.3: A summary of the % of datasets that show a significant difference in each metric post-denoising. 

 
Figure 6.1: (a) average SDNR for the three treatment groups pre- and post-denoising, (b) average % of signal-time courses 
passing quality control for the three treatment groups pre- and post-denoising. 
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Figure 6.2: An example (a) WM and (b) GM signal-time course pre- and post-denoising from one of the datasets that was 
excluded due to issues with the denoising. 

6.3.2. Comparing rCBV values between treatment groups 

The statistical power analysis showed that for comparing treatments between three groups 21 

values would be needed in each group to have 80% power to detect an effect size of 0.4 with 

P < 0.05, whilst for two groups 25 values would be needed to detect an effect size of 0.4 with 

P < 0.05. For each of the treatment groups the Shapiro-Wilk test produced a P value > 0.05, 

showing a normal distribution of rCBVWM/GM values. Figure 6.3 shows an example of the 

ROIs, which were used to calculate the average rCBVWM/GM. Figure 6.4 shows violin plots of 

rCBVWM/GM for each of the three treatment groups pre- and post-denoising. Figure 6.5 shows 

the violin plots for the CS radiotherapy group compared to the combined focal radiotherapy 

and no radiotherapy groups, pre- and post-denoising. 
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Figure 6.3: An example of the GM and WM ROIs for one dataset. (a) shows the original T2 image, (b) shows the original DSC 
image, (c) shows the GM (red) and WM (green) ROIs, and (d) shows the ROIs overlayed onto the DSC. 

 
Figure 6.4: Violin plots showing the differences in the rCBVWM/GM values between the treatment groups (a) before denoising 
and (b) after denoising. 
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Figure 6.5: Violin plots showing the differences in rCBVWM/GM between the CS radiotherapy group and the combined focal 
radiotherapy and no radiotherapy groups, (a) pre-denoising and (b) post-denoising. 

rCBVWM/GM values showed no significant differences between the groups, with ANOVA 

producing P values of 0.86 and 0.31 pre- and post-denoising for three groups, and P values of 

0.64 and 0.63 pre- and post-denoising for two groups. Table 6.4 summarises the P values pre- 

and post-denoising from running a Tukey post-hoc test on the comparison between three 

groups. 

Comparison 
P Value 

Pre-Denoising Post-Denoising 

CS-Focal 0.86 0.32 

None-Focal 0.95 0.34 

None-CS 0.94 0.99 
Table 6.4: P values from comparing the effect of different treatment types on rCBVWM/GM values using Tukey post-hoc 
testing. 

rCBVWM/GM values showed a significant difference due to denoising, but no significant 

differences between the CS and no radiotherapy groups, with the P values summarised in 

Table 6.5.  
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Category P Value 

Treatment 0.721 

Denoising 0.003 
Table 6.5: P values from a two way ANOVA test comparing the effect of treatment and denoising on rCBVWM/GM values. 

Figure 6.6 shows the changes in the ratio of mean rCBVWM/GM for four patients from the CS 

and focal radiotherapy groups, who were scanned at multiple time points. For all patients 

there was a decrease in the size of the error bars in rCBVWM/GM except for those from the 

second scan from CS radiotherapy patient 1. This is because the denoising does not have a 

significant effect on the data quality, which appears to be due to the data being very poor 

quality pre-denoising, with only 10.2% of signal-time courses passing quality control.  

 
Figure 6.6: The change in the value of rCBVWM/GM for all patients with scans at multiple time points (a) pre-denoising and (b) 
post-denoising. 
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6.4. Discussion 

The work in this chapter shows that the processing pipeline developed in this thesis can be 

applied to patient studies. It also shows that, for this cohort of patients, there were no 

significant differences in the rCBVWM/GM value in non-tumour brain matter when comparing 

differing treatment groups. 

The denoising step caused a significant change in metric values for the majority of datasets. It 

led to improved data quality in all datasets as a larger percentage of signal-time courses 

passed quality control post-denoising. The increase in % passing was statistically significant 

for 21 out of 25 of the datasets. The average % passing ± the standard deviation shows that 

there was a large variation in the data quality pre-denoising for the datasets which did not 

show a significant increase in % passing quality control post-denoising. This varies from the 

results shown in Chapter 5 and is due to two poor quality datasets not showing a significant 

improvement in data quality post-denoising. This may be due to the component selection 

method as this is the key step in Tucker decomposition and in some datasets the method is 

unable to select the optimal number of components needed to denoise the data. 

There is a significant change in the average rCBV post-denoising, but it is not possible to 

prove whether this change leads to an improved or decreased accuracy in the rCBV, as the 

‘true’ rCBV values in patient data are unknown. However, denoising of simulated data in 

Chapter 4, where the true value of rCBV is known, showed that the Tucker decomposition 

produced improved SDNR and improved % error in rCBV values, whilst work in this chapter 

and Chapter 5 has shown that Tucker decomposition leads to improved SDNR and improved 

data quality. There is also an expected range of rCBV values for both GM and WM, so it 

would be possible to compare the expected values to the calculated values to see if they are 

physiological. If there were a lot of non-physiological values present in a dataset then this 
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would suggest that there was something wrong with the data. The pipeline does not currently 

have a method for checking for non-physiological rCBV values. 

When the SDNR and % of signal-time courses passing quality control are grouped by 

treatment type it can be seen that all of the treatment groups have reasonable data quality 

post-denoising, although the focal radiotherapy group has a smaller percentage of signal-time 

courses passing quality control than the other groups and a larger standard deviation. The 

increased range of values is caused by one dataset within the focal radiotherapy group having 

a larger SDNR and % of signal-time courses passing quality control than the others, due to 

being acquired with a single-bolus acquisition protocol.  

Two datasets were excluded post-denoising due to unusual denoising results, which resulted 

in rCBVWM/GM values which were greater than 1. GM is more perfused than WM so all 

rCBVGM/WM values should be less than 1. From the example WM and GM signal-time courses 

in Figure 6.2 it can be seen that the signal-time courses post-denoising consist of signal-time 

courses which have an underestimated first pass post-denoising, and signal-time courses that 

appear to be just noise pre-denoising. As mentioned in the results section the component 

selection method for the Tucker decomposition only selected three components in the time 

dimension. This suggests that there is an issue with the current component selection method, 

which is a key step in Tucker decomposition denoising. Both datasets are very low quality 

pre-denoising and this may be the reason for the poor performance of the component selection 

method and therefore the denoising method. Therefore, further work may be needed to 

develop the component selection method further, to make it more robust to noisy data. 

Alternatively, it may be necessary to determine a lower quality threshold, below which 

denoising is not attempted and the data is rejected. 
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There were no significant differences in rCBVWM/GM values between any of the treatment 

groups pre- or post-denoising as shown by the ANOVA and Tukey post-hoc testing, for any 

of the comparisons made. Only denoising had a significant effect on rCBVWM/GM when a two 

way ANOVA test was applied to the rCBVWM/GM values from the CS and no radiotherapy 

groups. However, the statistical power analysis shows that more patients are required in each 

group in order to have sufficient power to detect a significant difference in rCBVWM/GM 

between groups.  

Looking at the violin plots produced, the shape of the distribution changes for each treatment 

group post-denoising. Each group in the violin plot has a small number of values (4 in the 

focal radiotherapy group, 9 in the CS radiotherapy group and 12 in the no radiotherapy 

group), so one or two outlier values would cause a change in the distribution shape. In much 

larger datasets the outlier values would have less significance and would likely not affect the 

distribution shape. 

The change in rCBVWM/GM values with time for patients with scans acquired at multiple time 

points shows no overall trend in rCBVWM/GM. For the focal radiotherapy group there was an 

overall decrease in the rCBVWM/GM value for each patient. However, there are only two 

patients in this group with scans acquired at multiple time points, so this is far from 

conclusive. For some of the patients the error bars between two scan dates do not overlap, 

suggesting a larger change in rCBVWM/GM than those where is an overlap.  Comparing the 

plots in Figure 6.6 pre- and post-denoising, it can be seen that denoising does not change any 

of the trends in rCBVWM/GM between time points, despite causing a significant change in 

rCBV values. Comparing the error bars pre- and post-denoising it can be seen that denoising 

causes a decrease in error bar size for all patients and scans, except for the second scan from 

the first craniospinal radiotherapy patient. This is due to the denoising not having a significant 
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effect on the data quality, which appears to be due to the data being low quality pre-denoising 

in this case. 

Previous work in this area has shown a difference in perfusion measures between different 

types of treatment. For example, work by Wenz et al. showed a significant decrease in CBV 

in normal brain post whole brain radiotherapy and a non-significant decrease post conformal 

radiotherapy (359). It has also been shown that the significance of the decrease in perfusion 

measures following focal radiotherapy depends on the dose of radiation received. For 

example, Fahlstrom et al, showed a dose dependent reduction in CBV and CBF for WM but 

not for GM (360), whilst Cao et al, found a statistically significant decrease in perfusion 

measures in regions that had received greater than 20Gy (361), and Fuss et al, found a 

significant decrease in rCBV in regions of the brain that received more than 40% of the dose 

(367). The results from this chapter appear to be different from those in the literature. 

However, this may be due to the methodology. The papers referenced above are all comparing 

significant differences in perfusion scans on the same patient pre- and post-radiotherapy, 

whilst this study compares rCBV ratios from groups of patients receiving differing treatments. 

The DSC-MRI scans in this study are also acquired at differing times following treatment 

whilst the papers referenced have scans acquired at fixed time periods following treatment, 

which makes it easier to make comparisons between patients.  

In this work the quality control pipeline has been applied to a dataset of paediatric brain 

tumour patients. It could be applied to assess the data quality and changes in rCBV in DSC-

MRI datasets for other types of pathology. The pipeline could also adapted in order to apply it 

to other perfusion MRI techniques such as dynamic contrast enhanced (DCE-) MRI. This 

technique is similar to DSC-MRI in that both techniques series involve the acquisition of 

images are whilst a contrast agent is injected. As the pipeline has essentially been developed 
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to process signals that vary with time, it could potentially be adapted to be applied to other 

imaging modalities where a change in signal with time is measured, for example perfusion CT 

or PET. 

There are some limitations to this study. Firstly, this study analyses changes in perfusion with 

age as a confounding variable. Secondly, the majority of patients did not have any perfusion 

scans until after treatment began, so there is no way to compare perfusion pre-radiotherapy to 

post-radiotherapy. Thirdly, there are a limited number of patients in the focal radiotherapy 

group compared to the other two groups, and the data quality is generally poorer in that group. 

Ideally, it would be useful to have equally sized groups of high quality data acquired at the 

same point after treatment, and as seen from the statistical power testing a larger number of 

patients are needed in each group. Fourthly, the results from the denoising show that the 

Tucker decomposition component selection method is not fully robust, as it appears to 

struggle with very poor quality data. Further work is needed to either improve the component 

selection method or develop a threshold to automatically reject very poor quality data. Finally, 

there is not currently a method for checking for non-physiological rCBV values, the presence 

of which would suggest issues with the data or an issue with the automated quality control. 

Including a method of checking whether rCBV values are physiological would help to further 

improve the robustness of the pipeline. 

6.5. Conclusion 

This work shows that the quality control pipeline developed in Chapter 5 is applicable to 

other clinical datasets. It shows that denoising is an important step in ensuring data quality in 

DSC-MRI data. There were no significant differences in rCBVWM/GM values between the 

treatment groups tested. However, further work with a larger cohort and longitudinal data 
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from before treatment is needed to confirm if there are more subtle differences in perfusion 

following treatment. 
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Chapter 7: Conclusions and Future Work 
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7. Conclusions and Future Work 

7.1. Overview 

An automated quality control pipeline for DSC-MRI was developed. The pipeline is capable 

of segmenting the background and ventricles from a DSC image; improving the data quality 

through Tucker decomposition denoising; determining the data quality using machine 

learning applied to metrics extracted from signal-time courses; and generating maps for 

quality control metrics such as SDNR, RMSE, FWHM, and T2 recovery. It is also capable of 

producing rCBV maps, with manual input of a WM ROI, which is used to normalise the 

rCBV values. A simulator capable of modelling DSC-MRI data, with a variety of acquisition 

protocols was developed and was used to validate the work completed in the denoising 

chapter. 

The developed pipeline has been applied to two differing patient datasets: a multicentre study 

of paediatric cancer patients to assess variation in data quality with acquisition protocol; and a 

single-centre study of paediatric cancer survivors who underwent differing types of treatment. 

The outputs of this thesis have many potential useful applications. The quality control 

pipeline is capable of assessing data quality and could be used to apply a more quantitative 

and automated estimate of data quality when applied to large multicentre datasets. It could be 

applied to assess data quality and generate perfusion maps in a range of disease states such as 

age-related diseases or brain trauma. Outside of DSC-MRI, the pipeline could also be adapted 

to be applied to dynamic contrast enhanced (DCE-) MRI as it is a similar technique where the 

passage of a contrast agent is imaged, using T1 weighted MRI instead of T2
* weighted MRI. 

As the pipeline has been developed to process signal that vary with time, it could potentially 

be adapted to be applied to other imaging modalities where a change in signal intensity with 

time is used to calculate estimates of parameters, for example perfusion CT or PET. 
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However, the pipeline will need some further development to ensure that it is fully robust and 

fully automated. This may include further developments to the segmentation, denoising and 

machine learning quality control steps to ensure that they are capable of dealing with a large 

range of acquisition protocols and disease states and automating the calculation of rCBV 

values. The DSC-MRI simulator models a variety of differing acquisition protocols and 

artefacts and will have useful applications in validating any new post-processing methods 

before they are added to the pipeline. 

The quality control pipeline provides a voxel-by-voxel assessment of data quality, but it is 

important to consider the most effective way to apply the quality assessment results. 

Excluding individual voxels from a dataset on the basis of their quality could be problematic. 

This is because the machine learning classifier is not trained on pathology-related voxels, 

such as those located within brain tumours or areas of low perfusion, and these could be 

excluded from further analysis. It could also lead to a lot of WM being excluded due to it 

being less perfused. Therefore, it may be more appropriate to use the quality control pipeline 

to provide an automated assessment of the overall quality of a dataset, and then use this as a 

basis to decide whether the entire dataset should be excluded from further analysis or not. 

Datasets with a large % of signal-time courses passing quality control could be passed as 

good quality, whilst those with a very low percentage of signal-time courses passing quality 

control could be excluded as poor quality. For datasets in between these extremes the quality 

maps could be compared to the standard imaging and the perfusion maps to see if the regions 

of poor quality matched with expectations. 

It is also important to consider the use of denoising and whether it should be applied to every 

dataset. Currently, denoising is applied to every dataset using the Tucker decomposition. The 

work produced in Chapters 4, 5, & 6, show that denoising can be used to improve the quality 



188 
 

of both simulated and patient data. Work in Chapter 4 showed that in some cases denoising 

can cause slight increases in CBV error by missing the bottom of the first pass. However, the 

overall improvement in data quality outweighs the risks of damaging data. Therefore, 

denoising should be applied to all datasets which are processed by the quality control 

pipeline. Some datasets in Chapter 6 did not receive any improvement in quality post-

denoising. These datasets were all very poor quality so when using the current version of the 

quality control pipeline, any poor quality datasets that do not see any improvement in quality 

should be excluded. 

7.2. Objectives and Conclusions 

This section summarises the main objectives from the introduction chapter, the work 

completed towards each objective, and the main conclusions drawn from that work. 

The first objective was to replace the recommended process for assessing DSC-MRI quality 

with a new, automated method. This was achieved using a machine learning classifier to 

assess quality, which was trained using a series of metrics extracted from the signal-time 

courses and the qualitative review results. The conclusion from this work was that the quality 

control results produced by the machine learning classifiers were comparable to the difference 

between the reviewers in the qualitative review process. The significant contribution from this 

work was that a new, automated method of assessing data quality in DSC-MRI, based on 

qualitative review, was implemented. 

The second objective was to validate the performance of differing denoising methods using 

simulations. A simulator capable of modelling a variety of acquisition protocols and artefacts 

was developed and was used to assess matricization, wavelet denoising and Tucker 

decomposition. The conclusion from this work was that denoising can be used to improve the 

SDNR in patient and simulated data and reduce the error in CBV in simulated data. However, 
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frequency based denoising methods appeared to produce distorted signal-time courses. The 

significant contribution from this work was that a series of denoising methods were validated 

using a DSC-MRI simulator and then the results were confirmed in patient data. 

The third objective was to develop an automated pipeline capable of segmenting the relevant 

regions of the brain using the DSC-MRI data, denoising the data, assessing data quality and 

producing estimates of perfusion parameters. An automated segmentation method using 

features extracted directly from the DSC-MRI signal-time courses was developed, which is 

capable of segmenting the background and ventricles from both GE-EPI and sPRESTO data. 

This was combined with the denoising and machine learning work to create an automated 

pipeline. The conclusion from this work was that the quality control pipeline was capable of 

automatically assessing quality and that Tucker decomposition provided a significant increase 

in data quality. The significant contribution from this work was that an automated quality 

control pipeline was created and applied to a multicentre dataset, where it was used to show 

the importance of denoising to DSC-MRI data quality, and how a variation in acquisition 

protocol can affect data quality. 

The final objective was to apply the automated pipeline to patient data. The pipeline was 

applied to two different patient datasets. The first of these was a multicentre dataset consisting 

of DSC-MRI scans acquired with varying acquisition protocols. This was used to demonstrate 

that the pipeline can handle large, multicentre datasets with differing acquisition protocols. 

The conclusion from this dataset was that the acquisition protocol had a significant effect on 

data quality and that Tucker decomposition is an important step in improving data quality. 

The second dataset was a single-centre study consisting of paediatric patients with brain 

tumours who underwent either focal radiotherapy, craniospinal radiotherapy or no 

radiotherapy. The aim was to determine if the treatment type affected the normalised rCBV in 
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slices of brain which did not contain tumour. The main conclusions were that: it was possible 

to apply the quality control pipeline to the datasets and improve the data quality; and that 

there were no significant differences in rCBV between treatment groups. However, the 

number of cases was limited particularly in terms of longitudinal data and small changes in 

perfusion could not be ruled out. The significant contribution from this work was that the 

quality control pipeline was applied to a new dataset to a clinical dataset and the results 

suggested that there was no significant difference in rCBV in non-tumour brain between the 

differing treatment groups. 

7.3. Limitations and Future Work 

There are several limitations to the work produced in this thesis, the majority of which can be 

addressed by further developing the quality control pipeline. This section will address each of 

the limitations and discuss potential future work. 

The segmentation step of the pipeline functions well on the data it has been tested on so far, 

and the background segmentation method appears to function well. However, the ventricle 

segmentation method needs further testing. It has only been compared to the gold standard 

segmentation method for two datasets. It has not been tested on any slices containing 

pathology, for example a slice containing brain tumour or a slice containing both brain tumour 

and ventricle. The automated segmentation method needs to be compared to the gold standard 

segmentation for a much larger range of data, including slices containing pathology such as 

brain tumour. This may result in alterations or further development of the segmentation 

method.  

The Tucker decomposition used in the denoising step of the pipeline appears to work well for 

the majority of the datasets. However, for a minority of datasets the component selection step 

does not function properly, leading to poor denoising performance. Further investigation into 
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the component selection method is needed to see if the current method can be replaced by a 

more robust methods..  

When comparing the denoising methods, the wavelet denoising method was applied using 

assumptions on which type of wavelet, level of denoising, and thresholding method, would be 

best suited to the data. Further work is needed to ensure that it is fully optimised. The model 

used to compare the methods could be further developed to produce a more complex model. 

For example, the model by Mehndiratta et al. includes a term for bolus dispersion (345). 

Using a more complex model may make it possible to simulate a larger range of artifacts. The 

model has also only been used to simulate healthy brain. Further developing it to include 

signal-time course from different types of pathology, could be used to assess the performance 

of denoising methods in different disease states. 

The calculation of metrics step, where SDNR, RMSE, FWHM, PSR and rCBV values are 

determined functions well and is mostly automated. However, the calculation of rCBV 

currently requires the manual input of a hand-drawn segmentation for normalisation to WM, 

which is preventing the pipeline from being completely automated. This could be developed 

in future work by including an automated segmentation step or by implementing automated 

AIF detection so that quantitative CBV values could be determined. Furthermore, if the 

pipeline is going to be applied to disease states such as brain tumours, then it is going to be 

essential to incorporate leakage correction into the calculation of metrics. 

Determination of data quality is currently carried out by a random forest classifier, which has 

been trained on a dataset of multicentre signal-time courses. Currently, the training dataset 

only contains 1,027 signal-time courses and does not contain any signal-time courses from 

brain tumour regions. Therefore, future work could involve creating a new dataset for 
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training, which would contain a much larger number of signal-time courses along with some 

signal-time courses from diseased brain. If the new dataset is large enough, it may be possible 

to investigate replacing the machine learning classifier with deep learning. 

The quality control pipeline produces rCBV values but there is currently not a method to 

check if the values produced are physiological. In patient data the true rCBV value are 

unknown, so there is not an expected value to compare to. However, there is an expected 

range of rCBV values for GM and WM so a method for comparing values produced by the 

pipeline to the expected range could be implemented. This would help to identify non-

physiological values and could help improve the robustness of the pipeline.  

The work from the final results chapter was centred on a single centre study of brain tumour 

survivors. The results from this chapter appeared to suggest that there were no significant 

differences in rCBV between the differing treatment groups. However, there are a number of 

limitations with the dataset used. Firstly, the number of patients in each treatment group 

(especially the focal radiotherapy group) were small and the statistical power analysis showed 

that larger numbers of patients would be needed to see a significant difference between the 

groups. Secondly, there was variation in the treatment protocols particularly with regards to 

chemotherapy. Finally, the changes in perfusion were analysed with age as a confounding 

variable. Therefore, this work could be improved on by repeating the comparison when a 

larger number of patients have been recruited to the study and there is a more even split across 

the main treatment groups, and age groups. When investigating the effect of treatment on 

rCBV values the majority of studies investigate the difference in rCBV at diagnosis and 

during treatment, whilst this work directly compares rCBV WM to GM ratios between 

differing treatment groups. Therefore, it may be useful to include patients who have had a 
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DSC-MRI scan prior to treatment. However, none of the patients in the current study have had 

DSC-MRI scans prior to treatment starting. 

In summary the work carried out in this thesis has led to the development of an automated 

quality control pipeline and a DSC-MRI simulator. The pipeline has been successfully applied 

to a multicentre dataset and a study which had an important biomedical question, whilst the 

simulator has been used to validate denoising work and simulate contrast agent leakage. Both 

outputs have plenty of potential application in DSC-MRI, with some further work to improve 

their robustness required.  
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Appendix 1: K2 Values of Multicentre Dataset 

A1.1. Introduction 

The current recommended acquisition and analysis protocols for DSC-MRI of patients with 

brain tumours includes the use of leakage correction in post-processing (34, 159). The quality 

control pipeline constructed in Chapter 5 does not include leakage correction. This is because 

the slices of patient data from the multicentre dataset analysed were selected to avoid tumour. 

Normal brain has an intact blood brain barrier, so the contrast agent remains within the 

intravascular space and there is very little contrast agent leakage (59). Therefore, it was felt 

that contrast agent leakage would not be required. The aim of this appendix is to apply 

leakage correction to a selection of the datasets used in Chapter 5 and estimate the error which 

may be introduced by not undertaking leakage correction for these datasets.  

A1.2. Methods 

Seven patients were randomly selected from the multicentre dataset and had leakage 

correction applied to them using the Boxerman method (leakage correction was carried out by 

Dr Stephanie Withey using in-house software written in the Python programming language 

(v2.7) (90, 368)), which produced K2 maps for each dataset (156). 

A MeVisLab network was created to produce hand-drawn ROIs of ‘normal brain’. ROIs were 

drawn on a high resolution T2 weighted image and then registered down to the DSC dataset. 

The aim of this was to exclude any artefactual K2 values (caused by blood vessels, CSF, the 

edge of the brain or the edge of the ventricles). Analysis of the K2 values within the ROIs was 

carried out using a Matlab script, which calculated the mean and standard deviation in the K2 

values within the ROIs for each patient.  

One hundred GM signal-time courses were simulated using the DSC-MRI model presented in 

Chapter 4. Leakage was simulated using the mean K2 values determined from the patient 
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datasets. rCBV was calculated pre- and post-addition of leakage and this was used to calculate 

the percentage error in rCBV caused by the contrast agent leakage. ANOVA was used to 

compare the rCBV values pre- and post-leakage to assess if there was a significant difference. 

No noise was added as the aim was to investigate the effect of leakage only. 

A1.3. Results 

Figure A1.1 shows an example K2 map for one slice from patient 4 alongside the 

corresponding T2 weighted and DSC images. Figure A1.2 shows the ROIs used to obtain the 

average and the standard deviation in the K2 values and the K2 map after the ROI has been 

applied. Table A1.1 summarises the acquisition protocol for each of the patient datasets 

tested, the mean and standard deviation in K2 and the mean error in K2 for the slices tested. 

Table A1.2 summarises the results of simulating data with the K2 values from Table A1.1 and 

shows the mean pre- and post-leakage rCBV values, the P values from comparing the mean 

rCBV values and the mean percentage error in rCBV caused by the simulated leakage. 

 
Figure A1.1: An example of the K2 map produced for one slice of patient 4. (a) shows the T2 weighted image, (b) shows the 
corresponding slice from the DSC-MRI dataset, and (c) shows the K2 map. 
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Figure A1.2 An example of the ROIs drawn and the K2 map following the application of the ROIs from patient 4. (a) shows 
the original K2 map, (b) shows the ROIs, and (c) shows the K2 map after the application of the ROIs. 

Patient Centre 
Field 

Strength 
Flip 

Angle 
Protocol 

Pre-
Bolus 

Mean 
K2 

Std. Dev. 
K2 

Mean K2 
Error 

 
1 Birmingham 1.5T 20 GE-EPI No -0.0004 0.0027 0.0010  

2 Birmingham 3T 7 sPRESTO No -0.0007 0.0037 0.0012  

3 Birmingham 3T 20 GE-EPI Yes -0.0001 0.0039 0.0016  

4 Birmingham 3T 20 GE-EPI No -0.0001 0.0017 0.0006  

5 Nottingham 1.5T 7 sPRESTO No 0.0008 0.0040 0.0015  

6 Newcastle 3T 45 GE-EPI No 0.0016 0.0017 0.0008  

7 Nottingham 3T 20 GE-EPI Yes 0.0003 0.0028 0.0009  

8 Newcastle 3T 45 GE-EPI No 0.0016 0.0011 0.0005  

Table A1.1: A summary of the patient datasets that were tested, their acquisition protocols and the mean and standard 
deviation in the K2 values. 

Patient 
Mean 

K2 

Mean rCBV Mean % error in 
rCBV due to 

leakage 

Std. Dev. in % 
error in rCBV 

due to leakage 
Pre-

Leakage 
Post-

Leakage 
P Value from 

ANOVA 

1 -0.0004 

2.77 

2.74 0.69 0.554 0.003 

2 -0.0007 2.75 0.46 1.055 0.003 

3 -0.0005 2.73 0.89 0.188 0.003 

4 -0.0001 2.73 0.88 0.220 0.003 

5 0.0008 2.69 0.35 1.316 0.004 

6 0.0016 2.65 0.07 2.537 0.005 

7 0.0017 2.71 0.77 0.417 0.003 

8 0.0016 2.65 0.07 2.525 0.005 
Table A1.2: A summary of the mean K2 values from the patient datasets and the mean CBV and mean percentage error in 
CBV from using the K2 values to model leakage in the simulated data. 
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A1.4. Discussion 

The work in this appendix suggests that the K2 values from the slices analysed by the quality 

control pipeline are small. Therefore, not applying leakage correction does not have a 

significant impact on perfusion measures, as even the largest K2 values only cause a 

percentage error in rCBV of around 2.5%. 

The example K2 map in Figure A1.1 shows that for brain slices which do not contain any 

brain tumour, the larger K2 values are artificially high in these areas due to their physiology. 

For these signal-time courses the effects of leakage have been shown to have a negligible 

effect on the rCBV values.  

Hand-drawn ROIs were used to avoid blood vessels, CSF and the edge of the brain or 

ventricles, as demonstrated in Figure A1.2. This ensures that the analysis of K2 values 

excludes any artificially high or low values. The hand-drawn ROIs are from slices which do 

not contain tumour; therefore the K2 values should be zero as no contrast agent leakage is 

expected. Positive K2 values would suggest T1 weighted contrast agent leakage effects and 

negative K2 values would suggest T2
* weighted contrast agent leakage effects (59). 

The average K2 values produced from the ROIs are all small and the simulations show that 

applying any of the K2 values did not cause a significant change in the rCBV values (P > 0.05 

for all patients), and all of the average % errors in rCBV negligible. However, for patients 6-8 

the mean K2 values are a lot larger than the other patients. This difference may be due to 

differences in the acquisition protocol. For example, patients 6 and 8 were acquired at a centre 

which used a much larger flip angle than the other centres and did not use a pre-bolus. A 

larger flip angle results in more T1 weighting so the T1 weighted effects of contrast agent 

leakage are larger (34). A pre-bolus leaks from the intravascular space to the extravascular 

extracellular space (EES) to shorten T1 related leakage effects (59). Therefore, for a dataset 
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with a large flip angle and no pre-bolus, any leakage would result in greater T1 weighted 

effects on the signal-time courses. 

The main limitations of this work are that only a sample of the datasets analysed by the 

quality control pipeline have been tested by the leakage correction protocol and only one slice 

from each patient has been analysed. This could be improved by analysing a larger number of 

datasets. However, if the quality control pipeline is going to be applied to disease states, such 

as brain tumours, it will be necessary to incorporate leakage correction.  

A1.5. Conclusion 

This work confirms that the K2 values in normal brain of the datasets tested is negligible. The 

simulations carried out show that applying these K2 values results in small changes to the 

estimated rCBV values. However, if the pipeline is applied to any slices containing brain 

tumour, then leakage correction should be included in the pipeline. 


