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Abstract 
CoCrMo alloys have been used for biomedical implants for a number of years. They are now 

frequently used for the metal-on-metal hip resurfacing joints due to their high corrosion and 

wear performance. Thermal treatments are used on these alloys in attempt to alter the 

microstructure to improve the mechanical properties. However, the effect that this then has 

on the corrosion behaviour is less well understood. There is a concern that corrosion 

processes are the cause of in-vivo failures, leading to retrieval operations. The release of 

metal ions due to corrosion is thought to have adverse affects on the surrounding body tissue 

and ultimately leads to failure of the implant. The present project was carried out to 

investigate the feasibility of taking electrochemical measurements from hip resurfacing joints 

whilst articulating in a hip simulator. In this study, the effect of ‘as-cast’ and ‘double heat-

treated’ CoCrMo alloys were compared for microstructure and corrosion behaviour 

differences while operating in a hip simulator.  

Corrosion behaviour was investigated using a ProSim friction simulator with an 

integrated electrochemical cell in this study of tribocorrosion. OCP and potentiostat 

measurements were taken using 3.5% NaCl and 28% bovine in the hip simulator. 

Potentiodynamic polarisation curves were taken in neutral and acidified bovine serum 

solutions. Microstructure characterisation was carried out using SEM and EDX analysis. 

 The problems and changing variables that occur as a result of corrosion testing in a 

hip simulator were identified and discussed, most notably the change in temperature and its 

affect on the corrosion potential. 3.5% NaCl was shown to be a more corrosive environment 

than 28% bovine serum in an articulating hip simulator under load. Measurements of the 

OCP showed no consistent difference between the two heat-treatments; as-cast and double 

heat-treated. Preliminary potentiostat measurements in a hip simulator were taken, which to 

date, is the first of their kind.    
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The Corrosion of CoCrMo Alloys for Biomedical 
Applications 

1. Introduction  
Metal implants are used to replace hip joints. There was a need to increase the life expectancy 

of artificial hip joints as these are being implanted in younger and more active patients. One 

fairly new form of hip replacement is the hip resurfacing joint, which has “metal-on-metal” 

articulation between a metal cover on the femoral head and a metal-lined acetabular cup. 

These are made of CoCrMo because of its corrosion and wear resistance. However, when 

implanted into the body, the metal-on-metal joint will experience tribocorrosion, a form of 

metal degradation. There is currently concern that this may lead to the release of metal ions 

into the body, which can have an adverse affect on the body’s tissues. Recent work has 

suggested that the heat treatment of the alloy can affect its resistance to tribocorrosion and the 

release of metal ions. The aim of the project is to demonstrate the use of a hip simulator to 

take tribocorrosion measurements and investigate the effect of heat treatment on 

performance.    

 



 

 

Literature review  

1.1. Hip Replacement  

Hip replacement surgery has been used for many decades to resolve the problem of diseased 

or damaged hip joints. As life expectancy increases, the demand for hip joint replacement is 

rising and there is a need to increase the life of prosthetic hip joints. This is especially 

important for younger and more active patients.  Implant requirements such as high corrosion 

and wear resistance, biocompatibility and longevity are essential for successful hip joint 

replacement [1].     

There are two types of metal hip prosthesis. In total hip replacements (THR), the head 

of the femur is cut away and a metal shaft with a replacement femoral head is inserted into 

the femur (Figure 2.1). Owing to the significant bone loss, this is only suitable for elderly or 

inactive patients. However, it is a common elective surgical procedure, with over 30,000 

performed in England each year [2]. The alternative procedure, known as hip resurfacing, is 

more effective for younger, active patients since it conserves more bone stock and is less 

invasive of the femoral shaft [3]. In this case, an acetabular cup and femoral head fit together 

to form the hip joint, similar to a THR, but with a much shorter stem being inserted into the 

femur (shown in Figure 2.2). An additional advantage of resurfacing is that when the implant 

needs to be revised, it gives greater options than a THR as less bone will have previously 

been cut away [3].  

   

 



 

 

Figure 2.1:- A) An x-ray of a double total hip replacement. The shaft of the metal joint is 

placed down the centre of the femur. B) An example of a typical metal-on-metal total hip 

prosthesis [3]. 

 

Figure 2.2:- A) An example of a typical hip resurfacing component B) An X-ray of a 7 year 

old hip resurfacing joint [3].  

 

The x-ray in Figure 2.2 shows the hip resurfacing joint occupying much less space in the 

body compared to its counterpart in Figure 2.1. With fewer invasions of the femur and pelvic 

bone there is much less disruption and trauma experienced by the body and it is much easier 

to revise should problems arise.  

 

In Figure 2.2a beads are present on the outside of the acetabular cup that are needed for 

socket fixation. These beads create a porous ingrowth surface which allows bone ingrowth 

giving a more natural biological fixation [4]. This is much more advantageous than the THR 

alternative shown in Figure 2.1b whereby a screw is inserted into the pelvic bone. CoCrMo is 

the alloy used in both types of hip replacement shown in Figure 2.1 and 2.2 and commonly 

throughout surgical procedures 

 A variety of head materials (both metal and ceramic) and acetabular cups (metal and 

polymer) have been used for THR leading to metal-on-ceramic and metal-on-polymer 

articulation. However, there is now increasing use of metal-on-metal articulation as it 

possesses superior wear resistance compared with other material combinations [5].  In the 

case of hip resurfacing procedures, after much research into alternative materials, metal-on-



 

 

metal bearings have been used since the mid 1990s [6, 7]. However, there is a need for 

further study of the tribocorrosion of metal-on-metal bearings as they have been shown in the 

case of CoCrMo to produce a significantly higher release of metal ions in comparison with 

metal-on-polyethylene bearings [8]. CoCrMo alloys are the most commonly used metal-on-

metal bearing due to their high corrosion and wear resistance [9]. This is obtained largely 

from the addition of carbon in the alloy that results in the formation of carbides in the 

microstructure. Carbides give strength and wear resistance by taking up chromium and 

molybdenum from the surrounding area during the solidification process. However, when in 

articulation with another surface, in the case of a hip implant they may come into contact 

with the softer matrix. During the ‘running in’ period two-body grooving can occur where 

hard asperities (the carbides) make contact with their opposite surface to cause deep grooves. 

This can lead to the release of metal ions and wear debris. The wear debris can then lead to 

three-body rolling where the released particle rolls in the middle of the two articulating 

surfaces causing further damage. Carbides and their affect on two and three body wear will 

be discussed in more detail in section 2.2.5 Carbides in CoCrMo alloys.     

2.2 Metallurgy of CoCrMo alloys for biomedical applications  

2.2.1 Physical metallurgy  

Cobalt-based alloys have two possible crystal structures: close packed hexagonal (CPH) at 

low temperatures (below 417°C) and face centred cubic (FCC) at high temperatures (above 

417°C). In the application of a hip resurfacing joint, however, most cobalt-based alloys will 

display a metastable FCC matrix structure because the thermal treatments with which these 

alloys are produced involve relatively fast cooling, inhibiting the formation of a CPH 

structure [10, 11]. This is because the kinetic transformation from FCC to CPH at room 

temperature is very slow [10, 11]. The rate at which this transformation occurs, however, will 

depend on factors such as alloying elements and specific thermal processing. When 

chromium and tungsten are added, this increases the transformation rate. However, when 

FCC stabilisers are added, such as elements like nickel and carbon this slows the 

transformation rate [1].  

2.2.2 Chemical composition  

Commonly, there are two types of CoCrMo alloys used for biomedical applications, which 

depend on the level of carbon added. However, both alloys have a balance of cobalt, which 



 

 

can be as low as 60 wt%. There is approximately 28% chromium which forms a chromium 

rich passive oxide film (Cr2O3) that spontaneously forms on the surface of the metal [1, 5, 12, 

13]. This gives good corrosion resistance by separating the metal from the air and aqueous 

environments [5, 9]. Typically 5-7 wt% molybdenum is used to improve the mechanical 

properties of the alloy as it provides solid solution strengthening and good localised corrosion 

resistance [1, 3, 4, 13].  The alloy has an oxide layer on its surface, which forms a thin 

passive film that is enriched with chromium. This is thought to be 1-4 nm thick and gives 

very good corrosion resistance [14, 15].  

 CoCrMo alloys can be termed ‘high carbon’ (usually 0.15-0.25 wt%) or ‘low carbon’ 

(usually less than 0.06 wt%) depending on the amount added in the casting process [13]. 

Carbon additions between 0.1 and 0.3 wt% have been shown to favour the formation of 

carbides which increase wear resistance [1, 16]. These micron-scale cast carbides that form at 

the surface of the alloy are much harder than the alloys matrix and so they will protect the 

surface from wear [17]. Experiments using cast low carbon-content CoCrMo have been 

shown to produce high wear rates compared with cast high carbon material [18]. High carbon 

has also shown to have superior corrosion and tribo-corrosion resistance [13]. Subsequently, 

all manufacturers have moved away from low carbon products as bearing materials in the 

body.     

2.2.3 Processing of CoCrMo alloys 

CoCrMo alloys for orthopaedic implants are primarily in the cast or wrought forms, with 

similar chemical compositions based on American Society for Testing and Materials (ASTM) 

standards. Cast alloys are often used for complicated shapes that cannot be machined, such as 

the acetabular cup of total hip replacements. However, this process has its limitations such as 

the development of inhomogenous microstructures as a result of un-equal cooling rates. This 

can lead to wrought alloys being a favourable alternative whereby large castings are hot 

forged and thermo-mechanically processed and re-worked into a smaller size [1, 19, 20]. This 

result in the microstructure being refined is due to any shrinkage voids which existed being 

closed up. This then gives superior mechanical and fatigue properties to the same metallic 

material [20]. For example, simple modular femoral heads can be machined from a wrought 

alloy with high carbon in it.  

This project will focus on the use of cast ASTM F75, which has the composition given in 

Table 2.1. 



 

 

Table 2.1 List of compositions and major elements of Cast ASTM F75 CoCrMo alloy  

[1, 20] 

Nominal compositions of major elements 

(approximate wt %) 

Name  Condition  Hardness 

HV or R* 

Co  Cr Mo C  Others  

(≥ 1 wt %)  

ASTM F75  Cast  310 HV  Bal 28 6  0.35 Ni-1, Si-1, Mn-1 

*HV = Hardness Vickers, R = Hardness Rockwell, Bal = Balance 

2.2.4 Solution treatments of CoCrMo alloys for biomedical applications: the 

effect on the microstructure and properties  

The manufacturing process, solution treatment and solidification process can cause a number 

of different transformations to occur in the alloy. These variations in the microstructure have 

a strong influence of properties such as strength, fracture toughness, corrosion and wear 

resistance. An “as-cast” Co-Cr alloy has a coarse dendritic structure characteristic of 

investment casting with carbides present in the matrix. When the Co-Cr alloy is heat-treated 

it serves to homogenise the microstructure causing some of the carbides to dissolve into the 

matrix [21]. 

Hot isostatic pressing (HIPping) is sometimes used to reduce microporosity resulting 

from casting. Such treatments have been used for Birmingham Hip Resurfacing devices: in 

1994 HIPping was used alone, then in 1995 devices were solution heat-treated, before a 

combination of both hot isostatic-pressing and solution heat-treatment was used in 1996 [3].  

Heat treatments for biomedical CoCrMo vary with different manufacturing 

companies. The alloys used in this project were obtained from Smith and Nephew 

Orthopaedics who supplied “as-cast” and “double heat-treated” samples. Double heat 

treatment involves solution heat treatment followed by HIPping. Full details of the heat 

treatment procedures are given in Chapter 3.  There are two main effects of heating the metal 

to this temperature; Firstly, the overall carbide volume fraction of the alloy is reduced, and 

secondly, the original large blocky carbides can dissolve leaving smaller particles in the 

matrix [17, 18]. The corrosion resistant carbides are broken up by this dissolving making 

them easier to dislodge under abrasive conditions [3]. Kauser [1] also found similar results 



 

 

whereby heat treating the alloy reduced the carbide area fraction as well as the number of 

carbides in the alloy. However, with the reduced carbide area fraction it has been found that 

the HIPping of sintered materials gives fewer pores in the microstructure and so improves the 

fatigue strength [21]. This is also supported by Kauser who found that the amount of porosity 

seen in solution treated samples that had undergone HIPping first has been generally smaller 

than that of as-cast samples [1].  

Currently, there is concern that solution-treated prostheses (prostheses that have 

undergone further solution treatments post the casting process) do not perform as well as as-

cast prostheses. The advantage of double heat-treating, whereby solution treatment (ST) 

followed by hot isostatically pressing (HIP) is carried out on the component (full details of 

double heat treating process are in the Experimental Method, Section 3.1.2 Thermal 

Processing), is that subsurface microporosity is removed, and the alloy’s ductility and 

homogeneity is improved [17, 22]. However, the concern is that HIP-ST may lead to 

increased metal wear owing to the decrease in size and area fraction of carbides [17, 23].  

However, ST is carried out to homogenise the matrix leading to a more stable, uniform oxide 

layer compared with a more inhomogeneous highly dendritic (as-cast) structure [13].     

There is also evidence that the double heat treating of the alloy causes a molybdenum 

depleted region to surround the molybdenum rich precipitates that are seen in DHT CoCrMo 

samples [1, 24, 25] 

 

 

 

2.2.5 Carbides in CoCrMo alloys  

2.2.5.1 Effect of carbides on wear resistance 

Cobalt-based alloys owe their wear resistance to the hard macroscopic carbides present in the 

microstructure. Carbides are harder than the surrounding alloy and so are more resilient to the 

two and three body abrasive wear that can be experienced in a metal-on-metal hip joint [1]. 

The wear rate depends on the carbide volume fraction as well as their size and distribution, 

which is known to be affected by the thermal processing of the alloy. Carbide size 

distribution refers to the different morphologies that can exist such as blocky, particulate 

agglomerated or lamella eutectoid carbides depending on the thermal treatment undergone 

[20]. For example it has been shown that the carbides of an as-cast (AC) CoCrMo alloy 



 

 

possess a large, irregular and blocky morphology within the grains and at the grain 

boundaries, whereas those alloys that have been more extensively heat treated exhibit an 

agglomeration of particulate carbides which are finely dispersed at grain boundaries [18, 20].  

The AC bearings (those that have had no solution treatment post casting) have a 

higher carbide volume fraction as well as a greater abrasive wear resistance compared with 

the “single” or “double heat-treated” (DHT) alloys [20]. This is because during the casting 

process the carbon concentrates with molybdenum and chromium to form these carbides. 

Heat treatments vary between manufacturing processes, but it is evident that a combination of 

solution treatment and hot isostatic pressing leads to smaller carbides and a reduction in the 

number of visible carbides (using SEM) within the matrix [18]. However in a comparative 

study, Kauser saw carbides in all AC, single and DHT alloys but found that the carbide size 

and distribution was reduced once samples had undergone heat-treatment [1].   

2.2.5.2 Effect of carbides on corrosion resistance 

Carbides themselves are very good at resisting corrosion. During solidification of the alloy 

carbides take up chromium away from the matrix which deprives it of a highly corrosion 

resistant element. This preferential leaching of chromium causes a chromium depleted zone 

adjacent to carbide, which is known as sensitisation. These surrounding areas of the carbide 

are then open to localised attack [26]. Pits and crevices can then form in the matrix which can 

accelerate the rate of corrosion. As the matrix starts to corrode at a faster rate than the 

carbides areas of small asperities will develop on the surface due to non-uniform attack. 

These asperities (the corrosion resistant carbides) stick out and can cause deep grooves in the 

softer matrix of the opposing surface, which is termed two body abrasive wear. These deep 

grooves remove the protective oxide film as well as damaging the sub surface layers in the 

alloy. A larger asperity may cause a smaller asperity to break out of the articulating surface. 

This can remain in between the two surfaces and cause three-body rolling wear. The harder 

carbide can remain in the middle of the two surfaces or can get embedded into the opposing 

surface’s softer matrix. This disturbs the subsurface layers as well as the protective oxide film 

allowing the solution to come into contact with the bare metal and accelerate the corrosion 

process. Once CoCrMo alloys have undergone heat-treatment the carbides then remain richer 

in chromium and molybdenum. This then deprives the softer matrix of these important 

corrosion resistant elements [18, 20]. Moreover, Kauser [1] found that DHT samples had a 



 

 

higher corrosion rate than AC samples which was attributed to the molybdenum depletion as 

a result of the heat-treatment.   

2.2.6 Summary 

Currently work done on the heat-treatment of CoCrMo alloys has shown AC alloys to have 

superior wear properties over DHT [15, 18, 20, 27]. Generally, it is considered that AC 

microstructures have a higher carbide fraction and this results in them having lower wear 

rates. The effect that the heat treatment has on the carbides in the matrix is considered an 

important factor in how the alloy behaves under wear and in corrosive environments. The 

greater amount of wear a component experiences causes a greater amount of bare metal to be 

exposed to the environment. This will then accelerate the rate at which corrosion can occur. 

 

2.3 Corrosion of CoCrMo in aqueous environments 

2.3.1 The Corrosion Process  

Corrosion is an electrochemical process whereby metal atoms are oxidised and are released 

into a solution [1]: 

M → Mn+ + ne-                                                                                                                                                               (2.1) 

The electrons that are produced in the oxidation reaction must be consumed in a cathodic 

reaction such as the reduction of oxygen or water. The type of cathodic reaction that can 

occur is normally dependant on the nature of the corrosive environment; the most common 

cathodic reactions are as follows:- 

 

Oxygen reduction in an acidic environment: O2 + 4H+ + 4e- → 2H2O                     (2.2) 

Oxygen reduction in a neutral/alkaline environment: O2 + 2H2O + 4e- → 4OH-     (2.3) 

Water reduction (neutral/alkaline environment): 2H2O + 2e- → H2 + 2OH-                  (2.4)                                     

Proton reduction (acidic environment): 2H+ + 2e- → H2                                                               (2.5) 

 

These reactions can occur at any position over the metal surface but commonly some areas 

are dominated by anodic reactions and others are dominated by cathodic reactions [28]. For 

an isolated piece of metal, however, the total rate of oxidation must equal the total rate of 

reduction for corrosion to take place. The potential at which the rate of the anodic reaction is 



 

 

equal to the rate of the cathodic reaction is termed free corrosion potential (Ecorr) or open 

circuit potential (OCP). 

 

2.3.2 Resistance to Corrosion – The Passivation of CoCrMo 

Due to the formation of a chromium rich passive oxide film (Cr2O3) on CoCrMo alloys, they 

show a high resistance to corrosion. When a metal is in a passive state it will still corrode in a 

slow and uniform mode, but it will resist the thermodynamic tendency to rapidly dissolve. 

This condition is achieved when a passive oxide film is formed at the metal surface. Passive 

oxide films can vary in thickness, chemical composition as well as in oxidation states and are 

affected by a number of factors, including pH, electrode potential and composition of the 

electrolyte [29, 30]. When an alloy is placed in an electrolyte, the oxide film undergoes 

continual dissolution/depassivation and growth/repassivation processes. However, if the 

dissolution rate is high then active dissolution of the metal ions will occur accelerating the 

rate of corrosion [1].  

Changes in the pH of the electrolyte, can destabilise the passive film. They result from 

local anodic reactions where the pH drops meaning that there is an increased concentration of 

H+ ions in the electrolyte due to the hydrolysis of cations. This makes passivation and the 

formation of a new oxide film harder and dissolution easier meaning further dissolution of the 

oxide film occurs [1].  

2.3.3 Types of Corrosion   

Corrosion may be general or localised. General corrosion involves the uniform dissolution of 

the metal surface. In contrast, localised corrosion can take place on a passive metal surface in 

the presence of aggressive ions. Here, localised attack occurs in specific sites where there are 

high local dissolution rates, which lead to high rates of penetration [31]. Chloride ions will 

enhance the localised corrosion process and occur at local sites caused by imperfections 

where there are pits or inclusions [1]. There are several forms of localised corrosion, but 

pitting, crevice corrosion, fretting, and tribocorrosion are the most relevant types for artificial 

hip joints. 

Pitting corrosion is confined to a point or small hole within the metal. Pitting can 

initiate at sites where there are small surface defects such as a scratch or a dent, a small 

change in chemical composition of the alloy or damage to the oxide film. In the pit there is a 

rapid depletion of oxygen, and the pit becomes a net anode, undergoing rapid dissolution.  



 

 

This anodic reaction produces electrons that are used in oxygen reduction reactions at the 

external surface. The generation of metal ions in the pit cavity leads to a net positive charge 

in the pit, resulting in an influx of chloride ions to maintain the charge balance. Hydrolysis of 

metal cations causes a decrease in pH. These factors promote pit growth, as high 

concentrations of chloride and hydrogen ions promote metal dissolution [1].  

Crevice corrosion is associated with the formation of stagnant solution in crevices or 

occluded areas such as those formed under washers, fastener heads, lap joints and clamps.  

The mechanism of crevice corrosion is similar to that of pitting corrosion: depletion of 

oxygen, more acidic conditions and build-up of aggressive ionic species such as chloride 

enhance metal dissolution and produce accelerated attack within the crevice. However, the 

difference is that an external crevice former is required to initiate corrosion on the surface [1].  

Fretting corrosion can also occur where micro-motion between two surfaces causes 

depassivation leading to localised corrosion. These small amplitude displacements occur 

when the total amplitude of movement is smaller than the contact width of the prosthetic joint 

[32, 33]. The micromotion between the faying surfaces, which can often happen over a 

crevice, causes depassivation followed by a period of active dissolution during the 

repassivation process, increasing the concentration of metal ions in the cavity leading to 

acidification through hydrolysis and ingress of chloride ions for charge balance. Minor 

movements of the hip joint frequently occur when people adjust or change position and so 

fretting corrosion can accelerate wear.  

 

2.3.4 Tribocorrosion of CoCrMo 
Tribocorrosion describes the synergistic interaction of abrasion with corrosion to accelerate 

the degradation of an alloy [5]. The two processes combined have a bigger effect on the alloy 

than if they were to occur separately. For example, it has been demonstrated that by applying 

a load to the surface of the materials the corrosion potential shifts from a passive region to a 

more active region. This is a result of the physical removal of the passive film during sliding 

under load, allowing corrosion to proceed at an accelerated rate [34]. Metal ions can be 

released as a result of tribocorrosion, and their hydrolysis can lower the pH locally, which 

can further increase anodic dissolution and the susceptibility for corrosion. Metal debris can 

also be released and can build up in the body’s tissues. If they are not engulfed and excreted 

by the body’s immune response they can then cause adverse physiological effects. 

The articulating motion within an artificial joint damages the protective oxide layer 

and leads to the formation of corrosion products more rapidly than if there was no motion at 



 

 

all. The underlying active bare metal is then exposed to an electrochemical reaction with the 

tissue fluid, which then results in more material loss. This is two-body wear which involves 

the friction of two surfaces only. In between periods of motion where the joint is static, it is 

generally assumed that a depassivation-repassivation process can occur whereby a new 

protective oxide layer can be formed where the previous one had been damaged. This can be 

dependent on how quickly the materials ability to reform the oxide layer and the length of 

time the joint is static for.   

Three body wear involves the two articulating surfaces mentioned as well as an 

abrasive third body particle. This third body particle can increase the abrasion of the two 

surfaces, causing scratching and further damage to the protective oxide. Third body particles 

can be generated from articulating surfaces (Two-body wear) as well as reverse surfaces if 

joint/cement/bone movement occurs. Corrosive wear can also be caused by third body wear, 

where the corrosion debris acts as an abrasive third body [5] and can cause deep grooves in 

the bearing surfaces. It is accepted that wear particles from prosthetic implants can cause an 

inflammatory response as well as loosening of the joint and ultimately failure. However, it 

has been revealed that retrieved metal-on-metal hip replacements have predominantly failed 

(i.e. removed due to detrimental effect to the patient) due to two and three body wear [15]. 

 

2.3.5 Biocompatibility issues and metal ion release 
The biocompatibility of CoCrMo alloy is closely linked to its high resistance to corrosion, 

which is attributed to the spontaneous formation of a passive oxide film. The integrity of this 

oxide film has been strongly correlated with the chemical and mechanical stability of the 

alloy once implanted into the body [35]. However, CoCrMo alloys can still have an adverse 

effect on the body’s tissues when the implant undergoes tribocorrosion (covered more in 

Section 2.3.6 - Corrosion in the Body). When a hip-resurfacing joint is placed in the body the 

two articulating surfaces will cause tribocorrosion to occur and this will then lead to metal 

ion release.   

 

2.3.6 Corrosion in the body  

2.3.6.1 Chloride content and pH 

The chloride content of the environment is an important factor to consider when looking at 

the corrosion of an alloy. Chloride ions are aggressive species which can lead to localised 

corrrosion processes in the form of pitting and crevice corrosion (described in more detail in 



 

 

Section 2.3.3). If the chloride ions are present in an aerated solution, this is believed to 

increase the corrosion rate further [36].    

The pH of the environment can also affect the corrosion rate of the alloy. The pH can 

be lowered by changes in local anodic reactions by the increase in the concentration of H+ 

ions through the hydrolysis of cations. This makes passivation a lot harder and dissolution 

easier resulting in the dissolution of the oxide film meaning passivity is destabilised. This is 

described as an autocatalytic process [1]. Conversely, where cathodic reactions dominate, the 

solution becomes more alkaline (the pH increases due to the generation of OH- ions by the 

consumption of H+ ions). The more acidic the solution is, as a consequence of hydrolysis, the 

higher the corrosion current of the alloy will be when compared with a neutral pH [14]. 

Inside the body, the pH is generally homeostatically regulated to a value of 7.4 [37]. 

However, it is thought that at sites of inflammation, which can often happen at the site of an 

implanted metal-on-metal hip joint (see section 2.6 The development of Pseudotumours for 

more detail), can lead to a transient “acid tide” where the pH may fall to as low as 4.5 [38]. 

Another important aspect to consider is the oxygen saturation levels of tissues within the 

body. Currently it is considered that the cells of healthy individuals are saturated to 97-99% 

which could have a major influence on the oxidation reduction reactions that take place [1]. 

With regards to in-vitro testing in a hip simulator there is no information currently in the 

literature regarding the oxygen saturation levels of NaCl and bovine serum solutions. N 

5]. 
2.3.6.2 The influence of proteins 
When a hip-resurfacing joint is placed in the body it comes into contact with synovial fluid, 

which lubricates the joint. This can be an aggressive environment due to the proteins which 

constitute 5% of the synovial fluid [1]. The biomaterials surface (and the released degradation 

products) can combine with the proteins to form a proteinacious film, which in the literature 

can be referred to as a biofilm [30, 39]. The film can exist on the surface of the metal-on-

metal bearings and is often considered to have a beneficial effect, as it is thought that the 

proteins in the bovine serum adsorb to the bearings surfaces, creating solid films which 

provide lubricating surface layers [40].   

The presence of proteins can either decrease or increase the corrosion rate of the alloy. 

Contu [14] suggested that the proteins present in calf serum inhibit the hydrogen evolution 

reaction and form a diffusion barrier that causes the anodic dissolution of the alloy to be 

under a diffusion control. This barrier prevents metal ion release and access of aggressive 

species such as chloride ions, which would accelerate the corrosion rate of the joint [1, 14]. In 



 

 

contrast, Yan et al. [9, 30] observed that the proteins can enhance ion release and passive film 

breakdown in static corrosion conditions for both high and low carbon CoCrMo alloys. This 

occurred when there was a reduction in the passive region following proteins adsorbing to the 

sample surface.  

However, generally it is believed that the proteins in synovial fluid are beneficial to the 

effect of tribology as they provide boundary lubrication within the joint and reduce friction 

[30, 31, 36, 41, 42]. This is also supported by Sun et al. [15] who found that anodic currents 

were lower for protein solutions than inorganic solutions, reducing the potential for corrosion. 

The same is considered for amino acids, whereby they have been found to react with 

materials under tribological contact and form organometallic/oxides, which lubricate the 

metallic sample surface [13]. 

CoCrMo alloys are a relatively passive metal with a low dissolution rate. However, over 

time the effect of tribocorrosion in a biological system can lead to the release of metal ions 

in-vivo that will cause adverse physiological effects such as toxicity, carcinogenicity, 

genotoxicity, and metal allergy [43]. Most proteins are negatively charged, whereas cobalt 

and chromium are positively charged ions. Once a metal is bound to a protein it can be 

systematically transported and either stored or excreted. Cobalt has been shown to be 

transported from the tissues to the blood and usually eliminated in the urine within 48 hours, 

which does not cause too much of a health risk to the patient. However, chromium has been 

reported to have built up in the tissues and red blood cells [43] and this accumulation of metal 

ions can cause adverse physiological effects such as osteolysis and metallosis [44]. Metal 

debris can also be associated with tumour formation, hypersensitivity [31, 45]. High levels 

can also cause fibrosis, granulomatosis, bone resorption, necrosis of the bone and loosening 

of the implant [31, 46].  

2.4 Review of in vivo results and retrieval rates 

The “failure” of CoCrMo hip resurfacing joints leading to the need for retrieval of the 

implant and revision surgery has been attributed to many different reasons such as head and 

neck fractures, cup loosening and the orientation of load [47]. These all result to the bearing 

being subjected to adverse stresses increasing its wear rate, which ultimately results in 

revision surgery. From a tribocorrosion perspective, it is important to examine the retrievals 

specific to wear, corrosion and the release of metal ions and wear debris into the body. 



 

 

Investigation into the heat-treatment and microstructure can also help to explain the wear and 

corrosion properties of the implant and why it may fail.      

In March, 2007, a woman testified that her Corin hip resurfacing device came loose 

after 5 years with opposition from Smith and Nephew suggesting that failure was due to the 

double heat treating process the alloy was subjected to in the manufacturing process. This 

sparked media interest and was brought to the attention of FDA Orthopaedic and 

Rehabilitation Device Panel, where the influence of heat-treatment on its performance in-vivo 

has since been a hot topic of debate [48].  

In a study of 15 retrieved metal-on-metal implants of Weber Metasul hips were 

studied at 10-81 months after implantation. The average was 33 months before retrieval with 

patients experiencing pain, squeaking of the joint and limping, with half of which having 

radiological evidence of osteolysis [49]. These symptoms were attributed to the release of 

cobalt and chromium ions into the tissue, which can be the result of tribocorrosion processes.     

There has long been concern that metal-on-metal hip arthroplasties may develop 

problems associated with metal sensitivity. The disadvantage of metal-to-metal bearings is 

that they shed many more wear particles which is thought to produce local tissue 

concentrations that can be ten times higher than those found in metal-on-polymer joints. It is 

thought that this sensitivity can lead to loosening of the joint [50], as well as groin pain [51] 

and pain in and around the soft tissues of the joint [52], which can ultimately lead to revision 

surgery.   

Evidence exists that retrieval operations have been caused by corrosion failure, 

whereby the CoCrMo alloy head experienced localised attack around molybdenum-rich 

phases. This was thought to be the result of molybdenum-depletion in the alloy [25]. 

Unfortunately, no evidence of any chemical analysis was shown to support their theory.      

 

 

2.4.1 The development of Pseudotumours  
There is increasing concern that CoCrMo metal-on-metal hip resurfacing possesses a number 

of health risks resulting from metal sensitivity. It has been reported 17 women who have 

undergone metal-on-metal hip resurfacing have developed a soft tissue mass, termed a 

pseudotumour. The symptoms that have been experienced with the development of these 

pseudotumours have been discomfort in the region of the hip, spontaneous dislocation, nerve 

palsy and the development of a noticeable mass or rash at the hip joint, which can present 

itself after a mean time of only 17 months [45]. Further research into this has found that 



 

 

cobalt nanoparticles and ions have cytotoxic effects on macrophages in an in-vitro 

environment, which is believed to be a contributing factor to the development of 

pseudotumours [53]. In several other cases pseudotumour masses have also been seen to 

develop with the deposit of metal wear debris around the hip joint [47, 54-56] . The solution 

to pseudotumour development is normally to have revision surgery on the implant, and in 

some cases THRs [54] and metal-on-polyethylene bearings [57] have been preferred. 

Although there is a growing concern about pseudotumour development as a result of metal-

on-metal hip resurfacings it does not affect that many implant patients. It is estimated that 

approximately only 1% of patients who have a metal-on-metal resurfacing develop a 

pseudotumour within five years [45]. Another source describes the risk of developing a 

pseudotumour to be as low as 0.15% [57]. However, the literature suggests that the wear 

debris generated by the tribocorrosion of the two articulating surfaces is linked to the 

development of pseudotumours. This is why it is important to limit the tribocorrosion of an 

implant to prevent the release of wear debris and metal ions.      

 

2.5    Review of in vitro studies 

When examining the materials suitable for hip resurfacing prosthesis there are generally two 

types of in-vitro experiments; pin-on-disc/friction-test setups which look at the tribo-contact 

between two surfaces and is often combined with electrochemical measurements [5, 12-14, 

20, 30, 58-60]. The other alternative is to use hip simulators [17, 61-64]. To date these hip 

simulator experiments have measured the wear rate of alloys by measuring the ion release 

rate and weight loss of the bearing materials. Recently however, a study has been done that 

has looked at direct instrumentation of electrochemical measurements in a hip simulator [42], 

which this project aims to replicate.  

Hip joint simulator studies show that metal-on-metal bearing hip prostheses have two 

discrete wear phases, which are; ‘running in’ and ‘steady state’. The running in phase is the 

initial phase where the two surfaces co-adapt. There are high wear rates at this point as the 

two surfaces meet for the first time causing large amounts of friction. This stage is normally 

completed after the first 106 cycles [31]. Several simulator studies have demonstrated that 

initial wear rates are higher and then decline once the bearings have bedded in [31, 61, 65, 

66] . It is thought that during the ‘running in’ phase the surface becomes smoother, where 

sharp peak asperities wear off [31]. This smoother surface topography produced from the 



 

 

‘running in’ phase is then easier to lubricate than the original surface, causing wear rates to 

be much lower [31].  

Bowsher et al. [62] compared ‘normal walking’ and ‘fast jogging’ conditions in a hip 

simulator experiment using high carbon metal-on-metal CoCrMo bearings. The result was 

that ‘fast jogging’ conditions generated a twenty-fold increase in the total wear particle 

surface area, concluding that highly active metal-on-metal patients may exhibit greater ion 

release than in less active patients. This greater level of ion release would increase the 

corrosion susceptibility for those patients that are more active.   

Several studies have taken place looking at the wear of AC and DHT components in a 

hip simulator. Contrary to some studies mentioned earlier, Bowsher et al. [17] found no 

statistical difference between the two heat-treatments under both ‘running in’ and ‘steady 

state’ conditions. It was concluded that changes in the microstructure caused by heat-

treatments do not appear to influence the wear behaviour of high carbon metal-on-metal 

articulations with similar chemical compositions.  

It has been shown that the ion release rate increases as the swing phase load increases 

in a hip simulator. This is consistent with the increased severity of the metal-to-metal contact 

[42]. To minimise the risks of these conditions the release of metal ions and more specifically 

the exposure to wear needs to be reduced.  However, over time it is considered that the 

release of Co ions in particular should decrease due to the implant going from ‘running-in’ to 

a ‘steady state’ condition causing less wear [31].  

Although retrievals of revised components show much variability in the metals 

microstructure it has been found that those with the highest wear occur in components with a 

lower volume fraction of carbides [3]. This suggests that an AC microstructure (with a higher 

proportion of carbides) should have superior wear properties compared with a heat-treated 

implant. Nevelos et al, [67] found a comparable result in-vitro where unidirectional pin on 

plate studies of heat-treated cobalt chromium showed two and half times higher wear than 

AC cobalt chrome. It could be suggested that in both cases the heat treatment caused carbide 

depletion and as a result suffers higher wear rates. However, in another study by Nevelos et 

al, [67] they found no difference in the wear rates of heat-treated cobalt chrome and AC 

cobalt chrome in a hip simulator study [3].   

Taking potential measurements in a hip simulator machine is as yet a relatively new 

phenomenon. So far, studies have been done obtaining potential controlled measurements 

from CoCrMo alloys in other devices [1, 9, 13, 30, 34, 59]. To date, only one other paper 

exists obtaining potential measurements from a hip simulator machine [42] which is 



 

 

comparable to this study. Yan et al., [42] obtained results from a ProSim friction simulator 

with an integrated electrochemical cell under a variety of loads peaking at 2 kN. NaCl 

solution, 25% serum and Bovine synovial fluid were the solutions used to obtain OCP 

measurements. The main finding was that in comparison with a reciprocating pin-on-plate 

tester the OCP is nobler in the friction simulator, meaning less mechanical and 

electrochemical damage is experienced. To my knowledge this is the first study to produce 

potentiostatic measurements from a hip simulator.  

2.6 Summary of Literature 
Currently there has been concern that although CoCrMo metal-on-metal hip resurfacing 

joints have superior wear and strength to other metallic combinations as well as polymer and 

ceramic options, they still release metal ions into the body. This is the result of the 

tribocorrosion between the two articulating surfaces of the head and the cup under load. 

Although work has been done on the electrochemistry of the alloy, little work has currently 

been done on the electrochemistry of the CoCrMo hip resurfacing joint while operating in a 

hip simulator. As yet, there is no literature that specifically focuses on the corrosion 

properties of AC and DHT CoCrMo alloy operating in a hip simulator.       

2.7 Project Aims and Objectives  

The aim of this work is to carry out electrochemical measurements on the tribocorrosion of 

CoCrMo hip implants in a hip simulator and to investigate whether there is any difference in 

the behaviour of as-cast and double heat-treated components.   

 

 

 

 

2. Experimental Method 

3.1 Materials 
3.1.1 ASTM F75 CoCrMo alloy 
The material investigated was a cast cobalt-chromium-molybdenum (CoCrMo) alloy 

produced in accordance with American Society for Testing (ASTM) F75-98, which is a 

Standard Specification for vacuum cast cobalt chromium molybdenum alloy for surgical 

implant applications. Smith and Nephew Orthopaedics Ltd. (Leamington Spa) provided the 



 

 

CoCrMo hip resurfacing bearings. Samples were provided as a hip resurfacing joint 

consisting of a head and a cup in both as-cast and double heat-treated form. The nominal 

chemical composition provided by the manufacturer is listed in Table 3-1.     

Table 3.1 Nominal chemical composition of the ASTM F75 CoCrMo alloy (supplied by 

Smith and Nephew Orthopaedics Ltd).  

Element C Si Mn S Al Co Cr 

(Wt %) 0.28 0.95 0.36 0.004 <0.01 Bal 28.31 

 

Fe Mo Ni Ti W N ppm 

0.24 5.92 0.73 0.03 0.04 100 

 

3.1.2 Thermal processing 

Two different cast CoCrMo alloys were examined; “double heat-treated” and “as-cast”. The 

thermal processing for the double heat-treated alloy was carried out by Smith and Nephew 

Orthopaedics, Leamington Spa. Both the as-cast and the double heat-treated alloys were from 

the same batch and can be classed as high carbon alloys (approximately 0.28%). The only 

difference in the two alloys was the difference in thermal processing undertaken. This only 

applied to the double heat-treated alloy and is shown below.    

 

 

Table 3.2: Thermal treatments applied to produce a ‘Double heat-treated’ CoCrMo 

alloy (Information supplied by Smith and Nephew Orthopaedics, Leamington Spa). 

Process 

number 
Heat treatment procedures 

1 Solution annealed at 1200°C for 4 hours (in a soft vacuum <5x10-1 

Pa), then quenched in nitrogen gas from 1200°C to 800°C at a 

cooling rate of 50°C/min minimum, then air cooled. 



 

 

2 Heat treated to 1200 ± 10°C in vacuum and subjected to a pressure 

of 103 ± 5 MPa for 4 hours (HIPping), then cooled in argon at a 

rate of 8-10°C/min and combined with Process 1. 

 

Table 3.3: Thermal processing for the two types of CoCrMo samples provided. 

Abbreviation  Sample description Processing applied 

AC “As-Cast” No treatment 

DHT “Double Heat-treated” 1 + 2 

 

 

 

 

 

 

 

 

 

 

 
Table 3.4: Hip resurfacing joint sample number and process history (for hip simulator 

tests). 

Test history Heat treatment Sample name Experiment 

used/section 

Worn-in (unknown, 

scratches evident) 

As-cast WN AC 1 Difference in solution 

Worn-in (unknown, 

scratches evident) 

As-cast WN AC 2 Difference in 

temperature 



 

 

Worn-in (unknown, 

scratches evident) 

Double heat-treated  WN DHT 1 

Worn-in (unknown, 

scratches evident) 

As-cast  WN AC 3 Preliminary 

potentiostatic 

measurements 

New (polished) As-cast NW AC 1      

New (polished) Double heat-treated NW DHT 1     

Alternating 

abrasion/stabilisation 

(Section 4.4) 

New (polished) As-cast NW AC 2        

New (polished) Double heat-treated NW DHT 2      

Single abrasion test 

(Section 4.5) 

 
Table 3.5: Disc sample number and process history (for anodic polarisation tests) 

Test history Heat treatment Sample name Experiment 

used/section 

New (polished) – 

cut from the stem 

of NW AC1 

As-cast DC NW AC 1 

New (polished) – 

cut from the stem 

of NW DHT1 

Double heat-treated DC NW DHT 1 

Polarisation Curves 

(Section 4.2) 

 

Tables 3.4 and 3.5 below show information on each sample joint used for each test in the 

project and its sample name that it is referred to in the text. 
 

 

3.2 Microstructure Characterisation  
3.2.1 SEM 
For high resolution surface investigations Scanning Electron Microscopy (SEM) equipped 

with EDX were used. Imaging was carried out using both backscattered electron (BEI) and 

secondary electron imaging (SEI) modes at an accelerating voltage of 20 keV and a working 

distance of approximately 10 mm. Analysis of the data using EDX was carried out using 

INCA software (Oxford Instruments, UK) to determine composition of the microstructure.  



 

 

3.3 Solutions used 

Two solutions were used over the course of the project with each one being freshly prepared 

on each day of testing. The two different solutions provided different environments for the 

comparison of AC and DHT specimens.   

Newborn Calf Serum (NCS) (Harlan Sera Lab, UK) was used at 28% concentration in 

deionised water, as recommended in the ISO standards [68]. At present this is considered the 

most representative simulation of proteins that exist for synovial fluid and was pH8. The 

major protein constituents of the solution are listed in Table 3.6.   

3.5 % Sodium Chloride (NaCl) (Fisher Scientific Ltd, UK) was used at 3.5% concentration 

in deionised water and was pH5. A higher percent of sodium chloride was used than is 

normally comparable to body fluids (around 1%) in order to create a solution which was 

slightly more acidic simulating periods when a joint may be infected [38]. This solution was 

mainly used in preliminary experiments, as well as giving a comparison with the protein 

containing Newborn calf serum and to provide a different environment where a difference 

between AC and DHT may be seen. 

 

 

 

 

 

 

 

 

Table 3.6: Major protein fractions of newborn calf serum (supplied by Harlan Sera 

Lab, UK) 

Protein % 

Albumin 46.2 



 

 

Alpha 1 and 2 globulin 29.1 

Beta globulin 12.97 

Gamma globulin 11.8 

 

“Full Strength’ Ringers Solution” with 10% Concentrated Newborn Calf Serum (NCS) 

acidified to pH2 

Full strength Ringers solution (90% volume) (Fisher Scientific Ltd, UK) was combined with 

concentrated NCS (10% volume) to again closely simulate the protein constituents in 

synovial joint fluid. This is based on a study by Kauser [1], who also looked at the effect of 

heat treatment in simulated body environments. 

The solution was then acidified in order to simulate the effect of a drop in pH in vivo 

possibly caused by the effects of surgery, infection or by hydrolysis reactions resulting from 

crevice corrosion [38]. Concentrated HCl (Fisher Scientific Ltd, UK) was used to adjust the 

solution to pH2. The pH was measured using a pH 210 Microprocessor pH Meter (Hanna 

Instruments Ltd, UK), which was calibrated using two buffer solutions, pH 4 and 7, prior to any 

experiments. Acidifying the solution gave another environment where any differences between 

AC and DHT samples could possibly be seen. 

 

 

 

 

 

 

 

 

Table 3.7: Ringers’ solution chemical composition (supplied by Fisher Scientific Ltd, 

UK) 

Chemical Formula Concentration 

(mM) 

Sodium hydrogen carbonate NaHCO3 1 

Potassium chloride KCl 4 



 

 

Sodium chloride NaCl 154 

Calcium chloride CaCl2 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Measuring Tribocorrosion using a Hip Simulator 
3.4.1 Test Setup 
The metal-on-metal friction tests were executed using a ProSim Friction Simulator (ProSim 

Ltd, Stockport-Manchester). Figure 3.21 below shows the single-station servo-hydraulic 

machine set up for measuring friction and corrosion. The friction simulator has two 

controlled axes of motion: rotation and load.  

 



 

 

 
 

Figure 3.1: Test setup for taking OCP measurements of the head and cup during contact and 

abrasion in a ProSim Friction Simulator.   
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Figure 3.2: Close up of OCP setup showing the joint encased in a polyurethane sealed bag. 

The working electrode cable (green), temperature monitor (white) and Luggin probe are also 

shown.  

 

 
Figure 3.3: Stainless steel fixture and sample head attached with working electrode cable.  
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Figure 3.4: Stainless steel holder for the head modified with a polyethylene insert.   

The polymer insert goes down 3cm in the head fixture where the stem of the joint and 

contacting copper wire are placed. This insulates the head and the copper wire (the working 

electrode) from any other metal-on-metal contact. 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.5: Stainless steel holder showing Luggin probe for reference electrode.  
The Luggin probe is attached to the fixture with silicon sealant. This enables the solution in 

the holder to drain through a hole into the tube to provide a wet environment in a continuous 

path so that the corrosion potential can be measured. 
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Figure 3.6: Schematic diagram of the positions of the head and cup in the hip simulator.  

The copper wire acts as the working electrode by being placed down the polymer sleeve and 

is in direct contact with the stem. The stem is joined to the reverse of the head making its 

exterior surface the working electrode. The interior of the cup is in contact with the solution 

as well as the exterior of the head, meaning that the working electrode is made up of the two 

articulating surfaces on the head and cup, connected via the head stem and copper wire. It 

should also be noted that the parts of the fixture that are shown to be in contact with the 

solution (i.e. interior surface of the head and the stainless steel fixture and holder) were 

lacquered before the beginning of each test to prevent it from being electrochemically active.  

 

 

 

 

 

 

 

3.5 Precautions and Test parameters  
3.5.1 Hip Simulator 
In order to simulate the dominant flexion/extension action of the natural hip joint in the hip 

friction simulator, the motion arm of the loading frame is used to flex and extend the femoral 

head through a range of up to 45° (-15° to +30°). The flexion/extension motion of the femoral 

head operated at a frequency of either 1 or 0.5 Hz, which are the slowest available settings. 

Peak loads of 2000 N were applied to the joint during abrasion cycles, obtained from ISO 



 

 

standards and is comparable to other studies in this area [42, 69, 70]. During stabilisation 

periods, the hip joint was static with a load applied at either 0 N or 1000 N, which is stated 

with the results of each experiment. 

 

3.5.2 Connections and Insulation 

To ensure that no other metal surfaces were exposed to the solution both fixtures for the head 

and the cup were lacquered (45 stopping-off lacquer, MacDermid plc, Birmingham) as well 

as the back of the cup and the inside of the head. This ensured that the only two metal 

surfaces that were exposed to the solution were those that come into contact when the head 

and cup are articulating.    

A copper wire was placed down the polymer sleeve, so that it was in direct contact 

with the stem of the head (acting as the working electrode, as the head and cup are in direct 

metal-on-metal contact). A voltmeter was used to check these connections as well as the 

isolation of the fixtures. The sample head was held in stainless steel fixture shown above in 

Figure 3.4. A polymer insert was used to prevent metal-on-metal contact between the stem of 

the head and fixture, also shown. The head and cup were then encased in a sealed 

polyurethane bag. A Luggin probe (polyurethane tube) was used which was 70 cm long (as 

short as possible) where solution could proliferate to and be in contact with the reference 

electrode. The exterior of the head and the interior of the cup that articulated were the only 

exposed metallic areas that acted as the working electrode. This had a combined area of 

approximately 78 cm3. 

 

3.5.3 Test Samples  
To ensure new test samples were in the same condition prior for each experiment a series of 

procedures were carried out. Firstly, test specimens were cleaned using deionised water and 

propanol before and after each experiment. Secondly, a check was carried out on the 

alignment of the centres of rotation of the femoral head and acetabular cup with the 

simulator’s centre of rotation. This made sure that the point at which the head and cup are in 

contact was zero. The cup was fixed in the holder using polymer insert brackets at an angle of 

35° to be comparative to other studies [17, 42, 62] and as physiologically relevant as 

possible.    

 

3.5.4 Clearance Values between the head and cup  



 

 

Clearance is the gap that exists between the head and cup and the lower this is the better fit 

the two components will have. The amount of clearance between the head and the cup is 

thought to be a key parameter in controlling wear behaviour [41, 63, 71]. Wear experienced 

by the alloys surface can damage the passive film and leave the alloy more susceptible to 

corrosion. Due to this the average difference in clearance was kept as low as possible 

between the AC and DHT samples with a difference of 5.3 microns. The clearance values for 

each individual joint are shown in the appendix. 

 

3.5.5 Experiment Parameters  

Experiments which focused on the effect of temperature on the corrosion potential (results 

shown in section 4.3.2) used two operating temperatures; 20°C ± 1° (room temperature) and 

40°C ± 1°. Before the beginning of each test the solution was maintained at its desired 

temperature for 1 hour in an incubator and then directly placed in test situ. The maximum 

time between coming out of the incubator and the start of each test was approximately 90 

seconds. 

To ensure consistency, measurements were alternated between the two different 

parameters. For example, the bovine serum and NaCl solutions were alternately tested; 

solutions at 40°C and 20°C were alternately tested as well as as-cast and double heat-treated 

samples being alternately tested. The amount of solution used was kept constant by using 200 

ml for every hip simulator test which was enough to fully submerse the joint and the 

electrodes. 

For both OCP and potentiostatic tests a saturated calomel electrode (SCE) was used as 

the reference electrode which was placed down a Luggin probe (polymer tube) where it was 

immersed in solution of the test set up. When taking potentiostatic measurements a platinum 

mesh was used acting as a counter electrode. This had the same area as the head and cup 

added together (the working electrode) and was joined together with platinum wire. Care was 

taken to ensure that the platinum was free standing in the solution surrounding the head and 

cup and was not in contact with any other metal surface. The potential applied was -0.05 V 

which was based on being slightly above the OCP that had been found in previous 

experiments examining OCP. In between tests the counter electrode (platinum mesh) was 

cleaned by immersing in nitric acid for 2 minutes prior to testing.       

      

3.6 Anodic Polarisation Measurements  



 

 

3.6.1 Surface preparation for electrochemical measurements 
Disc samples 4 mm thick were cut from the stems of the as-cast and double heat treated heads 

to avoid any sample to sample variation resulting from the casting process. This also enabled 

them to be compared with results obtained from the hip simulation study. The discs were then 

cold mounted in epoxy resin with an electrical connection to the unexposed side of the disc. 

Prior to testing, samples were polished to 1 µm and degreased using Teepol. The samples 

were then ultrasonically cleaned in ethanol for 1 minute, washed with deionised water and 

dried to remove any contaminants on the metal surface. Before the beginning of each test, the 

sample was pre-warmed on a Microsoft Stage Heater (Brunel Microscopes Ltd, UK) to 37 ± 

0.5° for 20 minutes. All equipment was washed with deionised water and dried before use. 

 The tests were carried out using a computer controlled potentiostat 1280 (Solartron 

Instruments, UK) and Gill AC43 potentiostat (ACM Instruments Ltd, UK). The 

electrochemical setup consisted of a 3 electrode cell which included a working electrode, 

counter electrode and reference electrode. The counter electrode was a platinum mesh that 

was comparable to the area exposed on the working electrode. Between tests this was cleaned 

by immersing in nitric acid for 2 minutes. A saturated colomel electrode (SCE) was used as 

the reference. OCP was measured for 15 minutes prior to the anodic polarisation curves. For 

anodic sweeps a reference potential of -500 to 900 mV with a scan rate of 1 mV/sec and a 

sweep rate of 60 mV per second was used.  

 

 

 

 

 

 

 

4. Results 
4.1 The effect of thermal treatment on the microstructure of cast 

CoCrMo alloys  
4.1.1 SEM  
As-cast (AC) and double heat-treated (DHT) heads were examined using SEM prior to 

testing to observe any differences in the microstructure. The images shown are taken from the 



 

 

top and in the centre of each head. Images from the sides showed no obvious differences in 

the microstructure compared with the centre.  

 

 
Figure 4.1: SEM images of the microstructure of AC (NW AC1) (a) and (c) and DHT 

(NWDHT1) (b) and (d) heads. The AC samples were obtained from the same batch as the 

DHT samples prior to heat-treatement.  

Figure 4.1 shows microstructure that was typical for all AC and DHT head samples examined. 

In image (b) and (d) the carbides are much smaller and irregular following partial dissolution 

of the large as-cast carbides (images (a) and (c)). The carbides are typically less than 5 μm 

wide in comparison with the AC sample, which are typically much bigger with one being 

approximately 20 μm wide in Figure 4.1(c). Porosity is shown in DHT images (b) and (d) but 

this was not a consistent difference that was seen between AC and DHT samples.  

 



 

 

4.1.2 EDX 

 
Figure 4.2: Summary of SEM EDX spot analysis in both the matrix and carbide areas of NW 

AC1 and NW DHT1 samples, showing the average and standard deviation of 15 

measurements. Results are normalised to 100% for the elements selected. Analysis was 

carried out on polished head surfaces and carbon content was excluded from the data due to 

high carbon contamination using SEM EDX analysis. 

 

In all samples, the carbides were primarily chromium-molybdenum-rich and lower in cobalt 

content compared with the matrix. On average the double heat-treated carbides had a higher 

percentage of chromium and a lower percentage of cobalt in them compared with the as-cast 

carbides. The molybdenum levels appear similar for both the matrix and carbide in the as-cast 

and double heat-treated samples. EDX was taken from the same sample heads shown in 

Figure 4.1. 

In summary, the double heat-treatment resulted in a reduction of the carbide size and number 

with less of a dentritic structure exhibited in the matrix, compared with the as-cast structure 

(shown in Figure 4.1).   

 

4.2 Electrochemical Measurements – Potentiodynamic anodic 

polarisation curves 
All polarisation curves were performed at 37°C. 



 

 

Figure 4.3: Potentiodynamic anodic polarisation curves measured from DC NW AC1 in 

3.5% NaCl and 28% bovine serum at 37± 0.5°C. The measurements were alternated between 

the two solutions.  

The as-cast sample shows greater anodic reactivity (higher current density at -0.3 V) in the 

bovine serum compared with 3.5% NaCl.  The OCP (Ecorr) for bovine serum is more 

negative than the NaCl. It is interesting to note that the static potentiodynamic tests (figures 

4.3-5 consistently have a more negative OCP compared with hip simulation tests (figures 4.7-

19) under abrasion. The hip simulator tests are much nobler with OCPs of around 0--0.1 

where as the potentiodynamic tests were around -0.4--0.6.  

 

 

 



 

 

 
Figure 4.4: Potentiodynamic anodic polarisation curves measured from DC NW DHT1 in 

3.5% NaCl and 28% bovine serum at 37± 0.5°C. The measurements were alternated between 

solutions. 

 

For the double heat-treated sample again there is greater anodic reactivity in 28% bovine 

serum solution than in 3.5% NaCl. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
Figure 4.5: Potentiodynamic anodic polarisation curves for DC NW AC1 and DC NW DHT1 

in 28% bovine serum at 37± 0.5°C. Measurements were alternated between samples.  

 

In 28% bovine serum the as-cast and double heat-treated samples are fully overlapped 

suggesting a very similar level of anodic reactivity.  

 

 

 

 

 

 

 

 
 

 

 



 

 

F

igure 4.6: Potentiodynamic anodic polarisation curves in 90% Ringers solution and 10% 

bovine serum acidified to pH2 (adjusted using concentrated HCl) at 37± 0.5°C for Disc New 

AC1 and Disc New DHT1. Measurements were alternated between samples. 
 

In pH2 Ringers solution and 10% Bovine serum there is a consistent difference shown 

whereby the double heat-treated sample shows higher anodic reactivity. 

 

 

 

 

 

 

 

 

 

 

 



 

 

4.3 Preliminary Hip Simulator results measuring OCP 
4.3.1 AC Worn in part – The difference between 3.5% NaCl and 28% Bovine 

Serum 
The following results were obtained from tests that lasted 1500 seconds with periods of 

abrasion at 300 and 900 seconds. Each period of abrasion consisted of 100 cycles at a speed 

of 1 Hz, which lasted approximately 100 seconds. During this period the cup was stationary 

and the head moved through an angle of 45° while under a downward load of 2000 N. When 

not in a period of abrasion, the head and cup were stationary and were subjected to a vertical 

load of 1000 N. 

 

 
 

Figure 4.7: OCP as a function of time for a worn-in AC 1 part over a 1500 second period in 

28% Bovine serum and 3.5% NaCl at room temperature (20 °C). The measurements were 

alternated between 3.5% NaCl and 28% bovine serum to eliminate any time-dependent 

changes in the articulating surfaces.   

 

During the abrasion period (the sharp drops in potential) the sample shows a greater drop in 

OCP during depassivation when in the 3.5% NaCl solution compared with the 28% Bovine 

serum solution. The same sample was used for all of the measurements but the solutions were 



 

 

alternated so that the difference between the two is consistent and not a consequence of time-

dependent changes in the articulating surfaces.   

The greater drop in OCP during abrasion suggests a greater increase in anodic 

reactivity for CoCrMo in 3.5% NaCl compared with 28% Bovine serum.  This is somewhat 

surprising since the anodic reactivity in the absence of abrasion was found to be higher for 

28% Bovine serum than 3.5% NaCl in Figure 4.3 (anodic polarisation curves).  However, the 

polarisation curves were measured at 37 °C whereas the abrasion measurements in Figure 4.7 

were carried out at approximately 20°C.   

 
4.3.2 AC and DHT Worn-in parts – The difference in temperature at 40°C and 

20°C (room temperature) 
Before investigating the difference between as-cast and double heat-treated samples in the hip 

simulator the effect that temperature could have on potential was examined. This was to find 

out if it was needed to be regulated in future tests.   

 
Figure 4.8: OCP as a function of time for a worn-in AC 2 part in 28% bovine serum at 40°C 

and 20°C. The measurements were alternated between 20°C and 40°C with the solution being 

changed each time. 

 

These results were obtained from tests that lasted 1700 seconds. Two abrasion periods were 

used consisting of 100 cycles at a speed of 1 Hz. During this period the cup was held 



 

 

stationary while the head was moved through an angle of 45° under a downward load of 

2000 N. In the periods that abrasion did not take place the head and cup were stationary and 

were under a downward load of 1000 N (these test parameters were the same used for the 

results shown in Figures 4.9, 4.10, 4.11).  

 

At the start of each test each solution was at its specified temperature. However by the end of 

the test the solutions at 40°C had cooled to an average of 31°C. The solutions at 20°C had 

increased slightly to 22°C. These changes in temperature were typical for the following tests 

shown in Figures 4.9-11 where temperatures of 40°C cannot be maintained and the increases 

in temperature being attributed to the heat generated from the powering of the movement arm 

by the machine. Figure 4.8 shows the start potentials at 40°C to be lower than those at 20°C. 

Before the first period of abrasion there is a difference of approximately 20 mV, however 

there is no difference between the temperatures in both abrasion periods. This could be due to 

the solution at 40°C cooling down closer to 20°C to give a similar depassivation value.  

Also the 40°C experiment which starts of at -0.15 and then dramatically increases to   

- 0.11V may have cooled down towards room temperature at 300 seconds, explaining why 

the potential shoots up. Overall temperature does not have a definite affect for this worn-in 

as-cast sample in 28% bovine serum. 



 

 

Figure 4.9: OCP as a function of time for a worn-in AC 2 part in 3.5% NaCl solution at 40°C 

and 20°C. Measurements were alternated between 40°C and 20°C. 
 

At the start of each test, each solution was at its specified temperature. However by the end of 

the test the solutions at 40°C had cooled to an average of 29°C. The solutions at 20°C had 

increased slightly to 22°C. At 40°C the starting potential is 50 mV more negative and gives a 

lower depassivation potential in the first abrasion. Also when repassivating, the solution at 

20°C repassivates quicker and to a less negative value. However this difference is very slight 

and in the second abrasion period there is no difference in the OCPs. This could be due to the 

solution having cooled down to nearer 20°C by this point (1000 seconds into the experiment), 

meaning the depassivation rates would be similar. Overall the differences in the OCPs at 

40°C and 20°C for the as-cast sample in 3.5% NaCl solution is not enough to be considered 

significant.  



 

 

Figure 4.10: OCP as a function of time for the worn in DHT 1 part in 28% bovine serum at 

40°C and 20°C. The measurements were alternated between 40°C and 20°C. 

  

At the start of each test, each solution was stable at its specified temperature. However, for 

the tests conducted at 40°C the solution actually went on to cool during the experiment giving 

an average of 28°C by the end of the test. The tests conducted at 20°C actually increased in 

temperature to an average of 22°C by the end of the test. Figure 4.10 shows for DHT 1(worn-

in double heat-treated sample) in 28% Bovine serum, there is considerable scatter with no 

systematic trend in the behaviour with temperature. The green line which appears most 

negative could be an anomaly as it was the last test run in the sequence; however more testing 

would be required to confirm this.  

 
 



 

 

 
Figure 4.11: OCP as a function of time for the worn-in DHT 1 part in 3.5% NaCl solution at 

40°C and 20°C. Measurements were alternated between 40°C and 20°C. 

 

At the start of each test, each solution was stable at its specified temperature. However by the 

end of tests conducted at 40°C the temperature had cooled to an average of 32°C whereas the 

solutions at 20°C had increased slightly to 22°C. Figure 11 shows that 3.5% NaCl is less 

negative when it is at 40 degrees when compared with room temperature. The starting 

potential for 3/4 of the experiments at 40°C is significantly higher than when conducted at 

20°C. The green curve that falls in the middle of blue curves was the last experiment in the 

sequence. This could be the result of previous experiments before which may have impacted 

the surface’s reactivity if not enough time had been left for the alloy’s surface to repassivate. 

 

4.3.3 General Overview of OCPs of worn-in as-cast and double heat treated 

parts 
It is evident that Figures 4.8-4.11 show a large degree of scatter, as there is not always a clear 

difference in OCP between the two temperatures. However, one consistent difference is seen 

between the different solutions used. In Figures 4.8 and 4.10 examining bovine serum, 

increased temperature did not appear to have any effect. However, in Figures 4.9 and 4.11 

both experiments show a consistent difference in temperature (if only small), when tested in 

3.5% NaCl. However, these results contradict each other as for the AC sample (Figure 4.9) 



 

 

40°C gives a more negative OCP whereas for the DHT sample (Figure 4.11) 20°C gives a 

more negative OCP. It is important to note that in these experiments the temperature has 

never constant throughout any of the experiments. As a general trend the solutions at 40°C 

would cool by around 10°C during the 1700 second period as it was exposed to room 

temperature (20°C). The solutions tested at room temperature were more consistent, 

increasing each time to 22°C by the end of the experiment. This can be attributed to the 

frictional heat generated during these short abrasion periods. 

The major finding from these experiments is the issue of irreproducibility within the 

hip simulator. Although consistent trends were seen in Figures 4.9 and 4.11 in 3.5% NaCl, 

however these trends contradicted each other and so it is not possible to draw any reliable 

conclusions. The issue of irreproducibility could be the result of sample-to-sample variation 

as these worn-in samples may have different abraded areas as a result of wear previously 

experienced, which may in-turn affect the corrosion potential. The other significant factor is 

that it was not possible to regulate the temperature of the solution throughout the duration of 

the test, which could contribute to the irreproducibility of the results. The difficulty of 

keeping the temperature of the solution constant at either 20°C or 40°C in the hip simulator 

means that for the following experiments temperature will only be monitored, with all 

experiments taking place at room temperature. 

 
4.4 Hip Simulator results measuring OCP using new AC and DHT 

samples 
4.4.1 Alternating cycles of stabilisation and abrasion 
The following experiments lasted 4000 seconds (approximately 66 minutes), consisting of 

alternating cycles of stabilisation followed by abrasion, with each period lasting 500 seconds. 

During the stabilisation period the joint was completely stationary but was under a downward 

load of 1000 N. During the abrasion period a downward load of 2000 N was applied and 

movement by the head through a 45° angle at a speed of 1 Hz. Each as-cast and double heat-

treated sample was put through 8 runs with all experiments beginning at room temperature 

(20°C). In this experiment the temperature was monitored and the periods of abrasion caused 

an increase in temperature of the solution, surrounding the joint. This is shown in Figures 

4.13 and 4.15.       

 

 



 

 

Figure 4.12: OCP as a function of time for runs 1-8 on the New AC 1 joint in 28% Bovine 

serum. As-cast measurements were removed and alternated with the double heat-treated 

measurements that follow, with new solution being used for each experiment. Due to 

preliminary issues of irreproducibility experiments were alternated to eliminate any time 

dependant effects. 

 
Figure 4.13: Temperature increase as a result of abrasion for runs 1-8 of the bovine serum 

surrounding the New AC1 joint. Temperature readings were taken every 500 seconds. Note 

that abrasion occured for 500 seconds, starting at 500, 1500, 2500 and 3500 second time 

periods. 



 

 

 
Figure 4.14: OCP as a function of time for runs 1-8 on the New DHT 1 part in 28% bovine 

serum. Double heat-treated experiments were alternated with the as-cast experiments shown 

above with fresh solution being used each time.  

  
Figure 4.15: Temperature increase as a result of abrasion of the bovine serum surrounding 

the New DHT 1 joint for runs 1-8. Temperature readings were taken every 500 seconds. Note 

that abrasion occured for 500 seconds, starting at 500, 1500, 2500 and 3500 time periods. 

 



 

 

Figures 4.12 and 4.14 have been shown on the same scale for easy comparison. A large 

degree of scatter for both as-cast and double heat-treatments is evident. There is some 

consistency with the start potentials between the two heat-treatments in the first stabilisation 

period but once the surfaces have undergone abrasion there is little consistency between the 

OCPs.  

 It is evident that the New DHT sample 1 (Figure 4.14) is generally at a more negative 

potential than the New AC sample 1 (Figure 4.12). Figures 4.13 and 4.15 show the 

temperature increase in the solution as a result of articulation. There appears to be no distinct 

difference between the temperature at the two different heat treatments as most of the runs 

follow a similar trend.  The important aspect to note regarding Figures 4.13 and 4.15 is that 

during a 500 cycle abrasion period the temperature can increase up to 8 or 9 °C, which may 

then affect the corrosion potential. 

 
Figure 4.16: OCP as a function of time for NW AC 1 and NW DHT 1 joints for runs 1, 2 and 

8 in 28% bovine serum. 

 

 



 

 

Figure 4.16 shows NW DHT 1 depassivating to a more negative potential when comparing 

runs 1 and 2 with NW AC 1. Also the starting potentials are higher for NW AC 1 in both runs 

1 and 2 compared with NW DHT 1. After 8 runs there is little difference in the corrosion 

potential between AC and DHT. However, given the scatter of the results the difference is not 

very convincing.   

Figure 4.17: The OCP at the end of the abrasion cycle showing the depassivation potentials 

between NW AC 1 and NW DHT 1 for runs 1-8 in 28% bovine serum. Depassivation values 

were taken at 1000, 2000 and 3000 seconds for each sample explaining why there are 3 

values for each run number.  
 
 
 
 



 

 

Figure 4.18: The OCP at the end of the stabilisation cycle showing the repassivation 

potentials for NW AC 1 and NW DHT 1 in runs 1-8 in 28% bovine serum. Repassivation 

values were taken at 1500, 2500 and 3500 seconds for each sample explaining why there are 

3 values for each run number. 
 
Figures 4.17 and 4.18 show the maximum depassivation and maximum repassivation values 

in each test run respectively. In the tests shown in Figures 4.12 and 4.14 there were three 

periods of abrasion at 1000 s, 2000 s and 3000 s for each test run. The depassivation values at 

these points for both heat treatments are plotted on Figure 4.17. Generally, DHT depassivates 

to a more negative potential during abrasion, however runs 3, 6 and 8 give very similar 

values. For the stabilisation periods shown in Figures 4.12 and 4.14 repassivation values have 

been taken at the end of this period at 1500 s, 2500 s and 3500 s for each test run. The 

repassivation values at these points for both heat treatments are plotted on Figure 4.18. In 5 

runs out of 8 the AC sample repassivates to a greater potential than the DHT sample, 

however runs 6 and 8 are very similar and run 7 shows the opposite of this trend.  Run 7 in 

both Figures 4.17 and 4.18 could be an anomaly against the general trend as AC shows 

greater depassivation and less repassivation compared with DHT.             

 



 

 

4.5 Measuring the OCP over a 2.5 hour period 
Brand new polished as-cast and double heat-treated samples were used to perform an OCP 

experiment over a 2.5 hour period (9000 seconds). The experiment consisted of a 3000 

second (50 minute) stabilisation period at the start. During this period no load was applied, 

but the surfaces were in contact and the joint was completely stationary. After the first 3000 

seconds, there were 1500 cycles of abrasion that lasted another 3000 seconds. This was under 

a vertical load of 2000 N and through a 45° angle at a speed of 0.5 Hz. At the end of the 3000 

seconds of abrasion, another period of stabilisation followed with no vertical load applied and 

the joint remaining completely stationary and still in contact for 3000 seconds. All 

experiments were conducted at room temperature (20°C). These parameters were based on a 

similar test conducted by the Yan et al. [42].   
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Figure 4.19: OCP as a function of time for a single period of the NW AC 2 and NW DHT 2 

joints for runs 1 and 2 in 28% bovine serum. Measurements of NW AC 2 and NW DHT 2 

were alternated with fresh solution used for each test.  

 

The relatively constant OCP trace at the start of each experiment represents the initial period 

of 3000 seconds when the potential was stabilising in a static environment under no load. The 



 

 

potential then drops to more negative values during abrasion. This is due to the combined 

effect of a downward load of 2000N being applied and the joint moving through an angle of 

45° at 0.5 Hz. 

Each test regardless of AC or DHT, showed the same overall shape. For both NW AC 2 and 

NW DHT 2 run 1, a bigger drop in potential is seen compared to run 2.  The AC sample depassivates 

to a more negative potential than the DHT sample in both runs 1 and 2. However, previous 

experiments have shown there to be sample-to-sample variation this must be taken into account 

when interpreting the data. 

 

4.5.1 Detailed examination of the OCP over a 2.5 hour period 
The following Figures (4.20-4.23) show detailed examination of the OCP of the experiments 

shown in Figure 4.20. Image (a) shows the start of abrasion at 3000 seconds and images (b) 

and (c) show the mid-points of abrasion at 4000 and 5000 seconds respectively. This was 

done to see if fluctuations in the OCP were related to the movement of the head. This was 

under a vertical load of 2000 N and through a 45° angle at a speed of 0.5 Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

   

 

 

 

 

 

 

 

 

 
Figure 4.20: The OCP pattern for NW AC 2 run 1 at (a) the start of the abrasion cycle (b) 

1000 seconds in to the abrasion period (c) 2000 seconds into the abrasion period 
 

Start of abrasion 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fi

gure 4.21: The OCP pattern for NW AC 2 run 2 at (a) the start of the abrasion cycle (b) 1000 

seconds in to the abrasion period (c) 2000 seconds into the abrasion period 

Start of abrasion 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.22: The OCP pattern for NW DHT 2 run1 at (a) the start of the abrasion cycle (b) 

1000 seconds in to the abrasion period (c) 2000 seconds into the abrasion period. 
 

Start of abrasion 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: The OCP pattern for NW DHT 2 run 2 at (a) the start of the abrasion cycle (b) 

1000 seconds in to the abrasion period (c) 2000 seconds into the abrasion period. 
 

Start of abrasion



 

 

Figures 4.20-3 show the OCP fluctuation with the movement of the joint. The frequency of 

the oscillation was set at 0.5 Hz for this experiment (slowest available), meaning that each 

cycle takes 2 seconds to complete. In Figures 4.21-4, graphs (b) and (c) all show a relative 

pattern in that every 2 seconds the OCP has a similar shape to other periods in its own 

sequence. This highlights that the back and forth motion definitely affects the shape of the 

OCP.  

There is a slight difference between graphs (b) and (c) for Figures 4.20-3 in that the 

OCP pattern in all (c) graphs are less defined compared with the (b) graphs. Both graphs (b) 

and (c) were taken from the same abrasion period for each figure, although graph (c) was 

1000 seconds later (500 cycles later) into the cycle. 

There is also relative inconsistency with the OCPs at the start of each abrasion period. 

Figures 4.21 and 4.22 follow the same trend at the start of abrasion where a sharp dip is 

followed by a sharp rise in potential. Alternatively, Figure 4.20 has small rise in potential 

followed by another bigger, sharper rise in potential. However, Figure 4.23 shows no real 

change in the OCP at the start of abrasion, when comparing it with the rest of the OCP in the 

graph.  

There is a symmetrical pattern seen in Figures 4.20-3 which corresponds to the back 

and forth motion of the head in the hip simulator, however it was not clearly defined 

throughout the graphs.  
 

 

 

 

 

 

 

 

 

 

 

 



 

 

4.6 Preliminary potentiostatic measurements using a Hip Simulator  
The following experiment took potentiostatic measurements from WN AC 1 joint.  

 
Figure 4.24: Current flowing as a function of time for worn-in AC 3 in 28% bovine serum at 

room temperature. There are two different stages of abrasion shown (b) 15° angle of 

movement subjected to a 2000 N downward load and (c) a 45° angle of movement subjected 

to a 2000 N downward load.   

 

Figure 4.24 shows that when the joint is articulating the current increases during both 

abrasion periods. The increase in current released in abrasion period (b) compared with 

abrasion (c) can be correlated to the 30° increase in angle of movement by the hip simulator, 

mentioned in the caption. 

 

 



 

 

 
 

 

 

 

 

 

 

 
 

 

Figure 4.25: The difference in current as a function of time during abrasion period (b) under 

2000 N load with a 15° range of movement and (c) under 2000 N load with a 45° range of 

movement.  

Figures (b) and (c) 4.25 show the difference in current fluctuations with an increased angle of 

abrasion. Figure (b) shows current fluctuations with a difference of approximately 0.01 

(mA/cm2) whereas with (c) the increased angle gives current fluctuations of approximately 

0.07 (mA/cm2). The current for the increased angle of abrasion generally more negative 

suggesting a greater abrasion angle may mean the alloy is more susceptible to corrosion.  

4.27 (b)



 

 

 

 
Figure 4.26: The current fluctuations over 15-seconds of abrasion in sections a) and b). Both 

sections have 2000 N load applied but abrasion a) has a 15° range of movement whereas 

abrasion b) has a 45° range of movement.  

 

Figures (a) and (b) 4.26 were taken from the middle of each abrasion period and the 15-

second period shown in the figure shows the typical shape of the current flow throughout the 

whole period. It has been difficult to obtain consistent and reproducible measurements from 

this experiment. The preliminary results shown here is a promising start from a single sample. 

However, to compare as-cast and double heat-treated samples more work needs to be done on 



 

 

the procedure to reproduce similar results. It may also be difficult to obtain true results for the 

comparison of AC and DHT due to the sample-to-sample variation already observed.   
 

4.7 Characterising the Wear Scars from the Hip Simulator 
After each experiment in the hip simulator heads were examined using an SEM to observe 

surface damage as a result of abrasion. The following figures are typical of what was seen 

after the surface had experienced abrasion. 

 

 

 

 

 

 

 

 

 

 
Figure 4.27: SEM images of a wear scar from WN AC 1 sample. 

Figure 4.27 shows the wear tracks which result from articulation in the hip simulator. Two 

body wear is evident where a sharp peak or asperity has produced a deep groove in the 

bearing surface exposes the bare metal subsurface. On closer examination shear is evident on 

the edge of scratch which could represent a force coming in from the side causing fatigue and 

resulting in the formation of a scratch. It is important to note that these scratches represent a 

very small proportion of the surface exposed to the solution, indicating that a low fraction of 

the surface is active at any one time.   
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Figure 4.28: Typical SEM image of wear scars from NW AC 2.  

Figure 4.28 also shows deep grooves in the surface of the sample head. This was typical for 

both as-cast samples. Again the grooves are the result of third body wear. Here, wear 

particles have made scratches into the surface of the bearing that are evident through the 

matrix and the more wear resistant carbides. As mentioned with Figure 4.27 these scratches 

represent a very small proportion of the surface exposed to the solution, which is sensitive 

function when looking at the corrosion susceptibility of the whole head and cup joint.   

 
 
 
 
 
 
 
 
 
 



 

 

Discussion 
5.1   Microstructure and composition differences of AC and      

 DHT 
It is well known in the literature that thermal treatment can affect the microstructure and 

composition of CoCrMo alloys [1, 17, 22, 72]. Leaving the alloy in the as-cast (AC) 

condition or subjecting it to “double heat-treatment” (DHT) can alter the microstructure, 

ultimately affecting its properties, as will be discussed in this section. 

The AC material revealed a typical heterogeneous, coarse dendritic grain structure 

(shown in Figures 4.1a, 4.1c, 4.2a and 4.2c), which was consistent with the findings reported 

in the literature regarding microstructure [1, 13, 21, 73]. The microstructure also reveals large 

coarse carbides and shows evidence of interdendritic shrinkage porosity (Figure 4.1a). This 

could be detrimental in terms of an implant fracture by acting as initiation sites [74] for 

cracks or defects to develop under stress.  

The double heat-treatment process involved a combination of solution annealing and 

HIPping (details shown in Table 3.2). This is performed in an attempt to remove any residual 

porosity from the casting process and improve homogenisation of the microstructure [1, 62, 

75]. However, Figure 4.1 (b) shows that the double heat-treatment has not fully removed the 

porosity in the microstructure, which is expected to be removed if subjected to HIPping [1]. 

In both Kauser’s study [1] and this study identical HIPping procedures were used. It is clear 

that the double heat-treatment causes dissolution of the carbides which is consistent with the 

literature [1, 18, 62]. It has been suggested that here, the carbon and molybdenum present in 

the carbides are dissolving back into the solid solution [74], which can cause the formation of 

small precipitates on cooling [1]. 

 Figures 4.1b and 4.1d show that the double heat-treatment was not sufficient to fully 

dissolve the carbides. However the carbides were significantly reduced in size, demonstrating 

a significant reduction in carbide area fraction compared with Figure 4.1a and c, which is also 

consistent with the literature [1, 20].  

 

5.2 Anodic polarisation curves – the difference of as-cast and 

double heat treated samples 
The anodic reactivity of the AC and DHT samples was compared in different solutions.  Both 

AC and DHT showed higher anodic reactivity in 28% serum (pH 8) compared with 

3.5% NaCl (pH5) (Figures 4.3 and 4.4). For the measurements in serum, there was no 



 

 

significant difference between the reactivity of the AC and DHT samples (Figure 4.5). 

However, in a more acidic solution containing serum (90% Ringers and 10% bovine serum 

acidified to pH 2), the DHT sample showed higher anodic reactivity (Figure 4.6). 

These results for both pH 8 and pH2 solutions are consistent with those shown by 

Kauser [1] who used pH 7.6 Ringers solution and 90% Ringers with 10% bovine serum  

acidified to pH2 (the same as this study). The start potentials for the anodic reactions in both 

studies are of similar values for each solution and follow the same trend. This indicates some 

consistency that in acidified solutions the anodic polarisations occur at a less negative 

voltage. Kauser [1] also found that in both neutral and acidic solutions, the DHT sample was 

more susceptible to corrosion than the AC one, with more current flowing at the same 

potential. This backs up the results shown in Figure 4.6 where the DHT sample is shown to 

be more corrosion susceptible in the pH2 environment.  

In neutral conditions, both AC and DHT samples show a higher reactivity in bovine 

serum than in NaCl solution (Figures 4.3 and 4.4). This could be attributed to the proteins 

forming complexes on the metal surface through charge transfer with the metal ions [76]. 

Proteins have a net charge according to their R-groups (side chains) and terminal groups all 

of which can be charged [1].  

The results in Figure 4.6 suggest that under acidic conditions the bovine serum 

interacts with the metal surface of the AC and DHT alloys in a different manner than if they 

were at pH8 (Figure 4.5). This could be the effect of the proteins behaving differently but as 

no results were obtained without proteins in acidic conditions it cannot be reliably attributed 

as the reason why. It is widely considered that CoCrMo alloys show increased corrosion 

susceptibility in acidic environments as the solution is more aggressive making passivation 

more difficult [1, 14, 36]. It is suggested that in an acidic environment the repassivation rate 

of the alloy is slower than in a neutral environment. This is attributed to the formation of 

unstable cobalt oxide species as primary oxidation products and this hinders the formation of 

the chromium oxide passive film [1, 14, 77].  

The role of proteins in an acidic environment is also an important factor in the 

corrosion susceptibility of the alloy, as the net charge mentioned can vary with pH and the 

environment. The pH at which the charge of the protein is zero is called the isoelectric point 

(pI). It is suggested that some proteins in serum are very acidic such as α-globulins (which 

make up approximately 30% of the protein fractions in serum, see Table 3.4) with a protein 

pI ranging from approximately 2-5. At pH 8 the solution is greater than the pI, meaning that 

the α-globulins will have a net negative charge. Alternatively, at pH2 solution is equal or less 



 

 

than the pI of the α-globulins meaning that they will have a net positive charge. This could 

explain why the anodic polarisations at pH 2 in Figure 4.6 start at a less negative value than 

those done at pH 8 in Figure 4.5, which are at a more negative potential [1, 78, 79].  

In acidic bovine serum DHT is more reactive than AC (Figure 4.6). This could be 

attributed to the molybdenum depleted regions that surround the molybdenum rich 

precipitates that are seen in the literature regarding DHT CoCrMo samples [1, 25]. As 

reported in the literature molybdenum gives good corrosion resistance [1, 3, 4, 13] and this 

depletion as a result of double heat treatment can leave the sample open to greater corrosive 

attack.  

The clinical relevance of the difference seen in this experiment is that although the pH 

in the body is normally buffered to pH 7.4 [37, 43], during the time of an infection or 

inflammation a decrease to pH 4 can occur [37], which could then increase corrosion 

susceptibility. This may also apply to crevices in the implants [1].  

 

5.3 Feasibility of electrochemical measurements in a Hip 

Simulator   
5.3.1 The effect of temperature in hip simulator experiments 
The measurements carried out in this project demonstrate that it is feasible to carry out 

electrochemical measurements in a hip simulator, as demonstrated by Yan et al., [42]. 

However, Yan et al., [42] did not look at the effect of temperature and this was where 

difficulties were encountered. The biggest problem was maintaining the temperature of the 

solution at both 20°C (room temperature) and 40°C. This is shown in Figures 4.13 and 4.15 

where the solution is supposed to be at 20°C during the experiment but due to abrasion the 

temperature increases by approximately 12-16°C. As explained in Section 3.5.5 of the 

experimental method, prior to each test, the desired temperature was maintained for an hour 

prior to each experiment. However, when the solution came out of the incubator at 40°C it 

was immediately placed in an environment which was room temperature (20°C) and so 

would naturally cool over the course of the 1700 second experiment. In the case of the 

solution at 20°C the temperature was maintained more successfully due to the room 

temperature environment. However, increases were seen (shown in Figures 4.13 and 4.15), 

which can be attributed to the hot oil pumping around the machine to power articulation and 

the frictional heat resulting from articulation itself. The increase that resulted from this was 



 

 

very minimal due to the short periods of abrasion but should be taken into account for the 

increase in temperature that can come from prolonged periods of articulation.   

The results in section 4.3.2 regarding the difference in temperature show no major 

difference between 40°C and 20°C (room temperature). However, for the AC sample, in 

3.5% NaCl there appeared to be a slightly higher OCP during repassivation at 20°C than at 

40°C; this was less obvious in 28% bovine serum. Given the significant scatter observed, the 

data is not sufficiently robust to provide the basis for a detailed interpretation.     

However contrary to what was found here, it is suggested in the literature that 

increased temperature can result in increased corrosion susceptibility of an alloy [80-82]. For 

example it is well known that at higher temperatures, chemical reactions can occur at an 

accelerated rate [83]. This means that the active dissolution processes would speed up as a 

result of temperature increase, which would speed up the loss of electrons. With body 

temperature being at 37°C, this could suggest that chemical reactions and diffusion processes 

could occur at a faster rate than if they were at room temperature and so could affect the OCP 

of the alloy. There is evidence that exists that a nickel based alloy, 690, shows a narrowing of 

its passive region as temperature exist from 20°C to 80°C in 5M NaCl [82]. This may imply 

that elevated temperatures affect the anodic reaction and this is what causes passivation of a 

metal surface. However, the effect of temperature on the corrosion potential of alloys in hip 

simulator experiments is not well developed. It is important to test the temperature value of 

37°C in the laboratory so as to be as physiologically relevant as possible [38]. It was achieved 

in the anodic polarisation experiments where the parameters were easier to control and in 

some cases contrasting results were seen to the hip simulator results. Although various other 

variables listed in the method and appendix could also cause the inconsistency shown in 

Section 4.3.2, the results highlight the importance of at least monitoring temperature during 

tests. Ideally temperature regulation needs to be incorporated into the experiment and the use 

of a peristaltic pump as one of the possibilities. This would keep the solution at a constant 

temperature throughout experiments and would at least eliminate the possibility of it being a 

variable that could affect potential. Critically though, the results do not show that temperature 

has a consistent affect on the corrosion susceptibility in a hip simulator. 

 

 

 

 

 



 

 

5.3.2 Hip Simulator results measuring OCP using new AC and DHT samples 

5.3.2.1 Alternating cycles of stabilisation and abrasion 
The experiments comparing AC and DHT samples with alternating periods of stabilisation 

and abrasion show a high amount of scatter with no convincing difference between the two 

heat-treatments (Section 4.4.1). As a general observation AC runs 1-8 are less negative than 

DHT runs 1-8. When looking at these results of brand new polished surfaces in comparison 

with the worn in parts in Section 4.3.2 very little consistency is seen between the OCPs of 

each sample. For every joint sample there are different articulating surfaces, which result in 

different areas of bare metal becoming exposed (shown in Figures 4.27 and 4.28). Each 

sample will give off different OCPs as a result of its bare metal surface that can vary from 

sample to sample. 

As mentioned, literature exists attributing clinical failures and retrieval operations to 

the double heat-treating of the alloy [48]. Other literature suggests that DHT bearings have 

higher wear rates in comparison with AC bearings [20, 21]. However, little difference is 

shown in Figure 4.16, where very little difference is shown between AC run 8 and DHT run 8 

suggesting that testing needs to take place over a much longer period. The reliability of this 

small difference in OCP also has to be questioned due to the scatter that occurs in runs 1-7 for 

both AC and DHT (Figures 4.12 and 4.14) prior to it. An explanation for there being no 

definite difference between AC and DHT over an 8 run period is that a general criticism of 

hip simulation testing is that there is a lack of severe testing in hip simulators and this leads to 

clinical failures not being picked up [17]. The ‘severe’ wear that is experienced in-vivo and 

then attempted to be replicated in hip simulators is still not fully understood [62]. It is thought 

that in-vivo a hip joint experiences higher and more variable wear as opposed to in a hip 

simulator [42]. Bowsher et al., [17] has criticised hip simulators for not being able to pick up 

clinical failures due to the lack ‘severe’ testing. To create ‘severe’ testing it is thought that a 

combination of microseperation and intermittent loading should be used, which results in 

higher metal-on-metal wear [62, 84]. Rieker et al., [71] also suggests that in-vivo running in 

can take a year to achieve, meaning much more test periods would be needed. Due to the 

short term constraints of the project and the relatively new concept of corrosion testing in a 

hip simulator a ‘severe’ testing regime was unable to take place. From this we can draw that 

it is not possible to make assumptions about the differences of running-in periods between 

AC and DHT samples from the results in Figures 4.12 and 4.14 due to the large amount of 

scatter shown.    

  



 

 

 5.3.2.2 Measuring the OCP over a 2.5 hour period 

The results shown in Figure 4.19 are consistent with a study done by Yan et al., [42] whereby there 

is an initial stabilisation period in a static environment followed by a rapid shift in potential 

towards the active region.  All four tests in Figure 4.19 show that when the abrasion period is over 

the OCP cannot recover to its starting value (what it was at 3000 seconds) until the test is stopped. 

This could indicate that the sample surface had been changed by tribological contact, which would 

then result in different corrosion properties. Alternatively, it could be that more than 3000 seconds 

is needed for the potential to repassivate to the start potential as the potential value is still moving 

in a more positive direction when the experiment is stopped. This is similar to what is seen by Yan 

et al., [30] whereby the rate at which the potential shifts in the active direction represents the rate 

and degree of damage to the passive film [30]. Based on the results shown in Figure 4.19, this 

would suggest that in run 1 the AC sample shifts to a more negative potential at a greater rate than 

the DHT sample in run 1 due to greater damage to the passive film. However, the damage to the 

passive film is only in the form of wear scars (examples shown in Section 4.7). The area exposed 

is in the scratches themselves and this represents a low fraction of the surface area of the bearing. 

It is important to take this into account, as the scratch itself may not give an accurate 

representation of the corrosion susceptibility once the passive film has been removed. The 

scratches may vary in depth and width or may be exposed to greater amounts of 3rd body wear 

between samples and experiments.    

 In the most relevant study done so far to date, Yan et al., [42] concluded that the ion release 

rate increases as the swing phase load increases. At higher loads more CoCr ions are released into 

the solution and this is consistent with the increased severity of metal-on-metal contact. This 

suggests that during the 3000 second abrasion period shown in Figure 4.19 the ion release rate is 

increasing, as the load and articulation has increased. As the AC sample appears to have 

experienced more damage to its passive film than the DHT sample, due to its more negative 

corrosion potential (Figure 4.19).  This could suggest that the AC sample gives greater ion release 

in comparison with DHT sample due to the greater damage to the protective oxide film from the 

AC sample in this experiment. However, no measurements of ion release rate were able to be 

undertaken and this would need to be explored further for any definite conclusions to be drawn.   

 Another interesting aspect of the graph to consider is the gradient of the OCP during the 

3000 second abrasion period. There is variation whereby two of them remain fairly flat whereas 

the other two runs show a gradual increase in OCP. Different gradients during abrasion were also 

seen by Yan et al., [42] who attributed this to the variation of a potential build up of a tribo-

reaction layer, which could then affect the tribological interface and then ultimately the ion release 



 

 

rate. This suggestion could help explain these gradients and is possibility another sensitive 

function of these tests, which give variable results. 

When comparing these results with the worn-in samples (Figures 4.8-11) they too 

show differing start potentials which were attributed to sample to sample variability. Unlike 

the worn-in samples the variation seen in the start potentials cannot be attributed to previous 

experiments altering the surface properties of the alloy. However it could be argued that 

when comparing these two tests the stabilisation period for the alternating abrasion 

experiment was only 500 seconds, whereas the stabilisation period for the single abrasion 

experiment was 3000 seconds. If the alternating abrasion experiment had a 3000 second 

stabilisation period the potential may have levelled out to a similar value seen in the single 

abrasion experiment. However, based on the 3000 second stabilisation period seen in the 

single abrasion experiment, the OCP of the sample did not change enough to assume that this 

could be the reason for the difference in stabilisation potentials. A longer stabilisation period, 

greater than 3000 seconds could be required to obtain matching stabilisation potentials or it 

could be that sample to sample variation accounts for these differences in OCP.         

The close up examination of the OCP in Figures 4.20-3 does show a general pattern of 

a backward and forward motion of the head in the cup. The pattern is roughly every 2 

seconds, which is approximately the time taken for the head to do one forward and then 

backward motion at a speed of 0.5 Hz, however it should be noted that this pattern is not 

clearly defined. A reason for this could be the varying amounts of solution being washed in 

and out of the joint by the articulation of the head, which could then distort the signal being 

picked up by the reference electrode. It is also interesting to note that at the start of abrasion 

for each test a consistent pattern is not shown when articulation begins. Particularly, Figure 

4.23 does not show any difference in the OCP when articulation starts. This suggests that not 

all changes in OCP as a result of articulation can be seen. At this moment, this is a relatively 

new test setup and so it may be that subtle changes in OCP are not picked up in the solution. 

Yan et al., [42] did a comparable experiment closely examining the OCP in 

conjunction with the movement arm of the hip simulator. They used a speed of 1 Hz which 

gave a distinct pattern showing the backward and forward motion corresponding to a sharp 

dip and then a sharp increase in OCP. This shape was seen every second and so corresponds 

with the speed of the movement arm at 1 Hz.  

 

 



 

 

5.3.3 Obtaining preliminary potentiostatic measurements using a hip 

simulator 
The results in Figure 4.24 show that when a load and an angle of abrasion are applied to the 

two surfaces the current increases. The greater the angle of movement the greater amount of 

current is released by the joint. This can be attributed to the removal of the oxide film, 

exposing the bare metal surface, similar to what has been seen in the previous experiments 

measuring potential. This has also been seen in a study by Kauser [1] who performed scratch 

tests where a rapid increase in current was attributed to the exposure of the bare metal 

surface. The current also began to decay due to the reformation of the oxide film, which was 

also seen in Figure 4.24 when articulation was stopped. Currently, this is a relatively new 

experiment and as of yet no other studies have measured the current flowing from a metal-on-

metal hip resurfacing joint in a hip simulator.  

However, studies have looked at the current flowing using a ball-on-plate 

reciprocating tribo tester [13]. They found that the current increased in line with an increase 

in velocity of movement and that current then decreased with decreasing velocity. Similarly, 

with the results shown in Figure 4.24, the current increases with an increasing angle of 

movement and when the movement ceases the current decreases again. This indicates that 

once abrasion has stopped repassivation takes place after the passive film has been rubbed off 

during the articulation.   

A comparison of AC and DHT samples was unable to be looked at in this preliminary 

experiment due to the constraints of the project. However, Kauser [1] looked at the current 

released for AC and DHT disc samples using scratch tests and concluded that once the 

maximum current had been reached the current decays were very similar, regardless of the 

electrolyte used.  

 

5.3.4 The problem of variability within hip simulator experiments  
The temperature and alternating cycles of abrasion experiments already discussed in this 

section (5.3.1) showed a lot of variability, meaning a reliable conclusion could not be drawn 

from the results. A hip simulator experiment measuring corrosion is a very complex one with 

many variables already outlined in section 3.4 of the experimental method. During the setup 

of each experiment care was taken to make sure that all of the variables for each experiment 

were uniform for each test.  

 A big source of variability which was difficult to control was the change in 

temperature during experiments (covered in section 5.3.1). A small source of variability may 



 

 

arise from the movement of solution in the bag during articulation. The amount of solution in 

contact with the head and cup during each back and forth movement may give different 

readings to the reference electrode. However, this effect should be considered marginal as the 

same amount of solution was used for each experiment and the same type of articulation was 

used for each run in the experiment.   

The biggest source of variability could be the extent of damage suffered to the sample 

head during articulation. Section 4.7 shows examples of the wear scars that result from the 

metal-on-metal articulation. The wear scars are the active part of the metal, which results in 

the potential fluctuations. However, these wear scars are only a very low fraction of the 

surface area of the joint. The vast majority of the surface area of the head does not have these 

deep scratches and so the surface would be less susceptible to corrosion.  

Another source of variability and a concern with hip simulators in general is the head 

and cups are not in the appropriate anatomical position. Any wear debris or third body 

particles may stay imbedded in the joint whereas in the body the particles may fall out with 

time and be less of a problem. When third body wear takes place it can cause deep grooves in 

the implant surface such as the ones shown in Figures 4.27-8. This obviously exposes bare 

metal and can accelerate corrosion. It is possible to get the head and cup in the correct 

anatomical position in hip simulator experiments as demonstrated in a previous study [42]. 

 

5.4 The difference in solution using a Hip Simulator  
There is a significant difference between the corrosion susceptibility of the same CoCrMo 

alloy when tested in 3.5% NaCl and 28% bovine serum. Figure 4.7 shows that when the joint 

experiences abrasive wear from the rubbing of the two articulating surfaces the potential 

decreases, making the joint more susceptible to corrosion. There is a distinct and consistent 

difference between the open circuit potentials of the two solutions with the measurements in 

NaCl giving more negative drops in potential than those in the serum. This could be because 

the proteins in the bovine serum adsorb to the bearings surfaces, creating ‘solid like’ films 

which rub together, protecting the surfaces from adhesion and abrasion and act as a transient 

lubricant [40-42]. This means the potential will not become as negative compared to the salt 

solution, which is free from biological species. Yan et al., [42] suggests that these ‘solid like’ 

films give a greater contribution to load support due to a greater viscosity than NaCl solution. 

It is also suggested that the more viscous serum solution has a lower ion release rate than the 

NaCl solution [42]. This could explain why the 3.5% NaCl solution has a more negative 



 

 

potential then the 28% bovine serum solution. The protein concentration in bovine serum that 

can form this lubricating layer may be why not much of a difference was seen in the 

temperature experiments looking at bovine serum at 20°C and 40°C (Figures 4.8 and 4.10) as 

it may have buffered the effect that temperature can cause.   

 In contrast to this difference seen in solution, the anodic polarisation curves 

conducted with the same samples show the opposite, with calf serum being slightly more 

negative for both AC and DHT samples. This can be explained by the fact that there is no 

articulation in these experiments and highlights the effect that abrasive wear can have on the 

potential. The results suggest that when the passive film is worn away the NaCl has a more 

corrosive solution than the bovine serum, whereas when an experiment is performed with no 

abrasion to the surface there is less of a difference seen in the solutions with the serum being 

slightly more corrosive.  

 

5.5 The clinical implications of this study 
Throughout this study there has not been a consistent trend where one heat treatment has 

been superior to the other. Often AC has shown to have better corrosion resistance (Figures 

4.3, 4.4, 4.6, 4.12 and 4.14), although DHT has shown to be superior in the experiment of 

longest duration (Figure 4.19). Alternatively no real difference between the heat treatments 

has been observed (Figure 4.5 and 4.8-11). From these results it cannot be said with any 

confidence that one heat treatment should be used over another for hip resurfacing joints. 

 Again, it cannot be said with any confidence that temperature affects the corrosion 

susceptibility of an alloy in a hip simulator. However, to be as clinically relevant as possible 

these types of experiments need to be developed so they can be conducted and maintained at 

37°C. 

 The development of taking potentiostatic measurements in a hip simulator is more 

clinically relevant than doing static tests. Measuring the current that flows while the head and 

cup are articulating in a hip simulator makes it possible to see the fluctuations in current as a 

result of this movement which is more specific to what would happen in the body.  If the 

sources of variability in the experiments carried out here can be overcome, it is a promising 

way to evaluate the corrosion suscepbility of hip prostheses.   

 

 

 



 

 

 

6. Conclusions 
 
The effect of heat treatment on the microstructure of CoCrMo alloys causes the matrix to 

become more homogenised with the carbides dissolving into the matrix. The carbides that 

remain after heat treatment are significantly reduced in size. Carbides are also richer in 

chromium and molybdenum compared with the matrix.  

 

The change in microstructure between the two heat-treatments did not show any consistent 

differences in wear and corrosion behaviour.  

After conducting anodic polarisation curves in a range of different environments the only 

consistent difference was seen in ringers and bovine serum solution acidified to pH2. Here 

double heat-treated was shown to be more susceptible to corrosion than the as-cast sample. 

It is feasible to take both OCP and potentiostatic measurements using a hip simulator. 

However, in this study the sample to sample variation made it difficult to obtain consistent 

results regarding the effect of heat-treatment.  

3.5% NaCl was consistently a more corrosive environment than 28% bovine serum for an as-

cast worn-in part following experimentation in a hip simulator.  

 

 

 

 

 

 

 

 

 



 

 

7. Future Work 

• To further develop and devise a protocol for getting a consistent OCP and 

potentiostatic measurements in the hip simulator. 

• Attempt a test setup that gets the head and cup in the anatomical position as in other 

studies. 

• Introduce temperature regulation of the solution during hip simulator experiments. 

• Under acidic conditions, conduct tests in solutions without proteins to be able to 

compare results of 90% Ringers solution with 10% bovine serum acidified to pH2. 

This would allow for investigation of the effect of proteins in corrosion tests.   

• Increase the duration of the hip simulator tests to further investigate the difference 

between as-cast and double heat-treated samples.  

• Undertake measurements of ion release rate into the solution after hip simulator tests. 

This could be another way of identifying any differences between as-cast and double 

heat-treated samples and could be related to any differences seen in corrosion 

potential. 

• Measure pH2 acidic solutions in the hip simulator to compare with potentiodynamic 

anodic polarisation curves that saw a difference between AC and DHT with an acidic 

solution.  
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9. Appendix 
9.1 Clearance values of test pieces 
Clearance values were only taken for the new test parts used to examine the difference in 

heat-treatments. This was to eliminate the variability that clearance could cause on the 

behaviour of each heat-treatment. 

 

Acetabular cup diameter  
NW AC 1 NW DHT 1 NW AC 2 NW DHT 2 

Femoral head diameter 

50.027 mm 50.038 mm 50.026 mm 50.035 mm 
NW AC 1 
 

49.771 mm 254 microns - - - 

NW DHT 1 
 

49.798 mm - 240 microns - - 

NW AC 2 
 

49.776 mm - - 247 microns - 

NW DHT 2 
 

49.788 mm - - - 247 microns 

 
 
 


