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Abstract 

The theory that various features of autism spectrum disorders (ASD) can be explained by 

differences in the learning (or “predictive coding”) process is growing in popularity. 

However, extant studies have focused on the domain of sensory perception, i.e., learning 

what to expect in the visual or auditory domains. It is thus unclear whether such models are 

restricted to the perceptual domain, or whether they are outlining differences in domain-

general learning processes. Consequently, how such theories can explain the social and motor 

features of ASD is currently unclear. The first part of the current thesis asks whether autistic 

adults exhibit differences, compared to non-autistic adults, with respect to social learning and 

motor learning. The second part of this thesis focuses in detail on one of these learning types 

- social learning. Here I investigate the neurochemical mechanisms that underpin social 

learning and ask whether they are dissociable from the neurochemical mechanisms that 

underpin learning from one’s own individual experience (individual learning). In integrating 

these results with the wider literature, I reflect upon the broader question of whether there are 

common domain-general learning mechanisms, or domain (e.g., social, motor, individual) 

specific learning “modules”. Together the studies presented in this thesis implicate the 

dopaminergic neurotransmitter system in both social and individual learning. Results support 

the view that there are domain-general neurochemical mechanisms that support various types 

of learning. These results do not, however, support the view that autistic adults exhibit 

differences in these domain-general learning processes. That is, our empirical work showed 

no differences in either social or motor learning when comparing autistic and non-autistic 

adults. These results do not add support for impaired predictive coding as a core deficit that 

can explain social and motor atypicalities in autism, but rather force us to think more 

critically about what overarching conclusions can be drawn from studies of predictive coding 

in autism within the perception domain. 
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Chapter 1:  Introduction 

 

1.1 General Introduction  

Autism spectrum disorder (hereafter referred to as autism1) is a diverse and complex 

neurodevelopmental condition, diagnosed primarily based on the presence of socio-

communicative impairments and restricted or repetitive behaviours [1]. However, despite not 

being prerequisite for diagnosis, there exists a growing awareness that other features, such as 

motor difficulties, are important characteristics of the autistic phenotype [2]. Thus, autism is 

characterised by many heterogeneous traits that affect different domains, with cognitive, 

motor, social and perceptual characteristics [3]–[5], suggesting widespread alterations in neural 

processing and computations. However, the underpinning computational mechanisms are yet 

to be understood. Indeed, most prominent theories of autism only seek to explain a specific 

subset of behaviours, for example, difficulties in social interaction [6],[7] or atypical sensory 

processing [8] [9]. Hence it is of crucial importance to investigate computations underlying 

atypical behaviours across all domains, i.e., link observable behaviours to underlying 

computational and neural processes and provide a broader explanation for phenotypic traits. 

This could lead to progress in improving therapeutic recommendations and appropriate 

strategies for autistic individuals, potentially via improvement of diagnostic criteria [10]. 

Bayesian and predictive coding accounts of autism propose a unifying explanation for the 

many heterogeneous symptoms observed in autism, under the framework of atypical 

prediction [11]–[13]. These accounts propose atypical predictive processing as a common 

domain-general impairment, raising the question of whether they can be extended to 

predictive processing in the social and motor domains. This chapter provides a background to 

these questions, first providing an overview of reward learning atypicalities in autism, before 

outlining Bayesian and predictive processing accounts of autism. Next, evidence for 

predictive atypicalities in motor and social learning is considered, and gaps in the current 

 

1 I will use identity-first terminology, such as ‘autistic person’, following the preferred language of many people 

on the autistic spectrum (e.g., Kenny et al., 2016).  
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literature identified. In considering whether predictive atypicalities are a common 

computational atypicality in autism, the final section focuses specifically on social learning, 

considering evidence for and against the presence of domain-specific neural and 

neurochemical mechanisms for social learning.  

 

1.2 Learning  

Atypicalities in learning have been widely reported in autism and may comprise a common 

process in contributing to impaired development of motor and social skills [14]–[16]. While 

some types of learning are intact, and some indeed superior, in autistic individuals [17],[18], 

different learning styles have been observed, with autistic learning biased towards local, 

specific, information and away from context-dependent, global learning [19]. Atypical learning 

has been reported across different domains, such as perceptual learning [20] and sensorimotor 

learning [2],[21], amongst others. However, while clear differences exist, the exact nature of 

learning atypicalities in autism remains unclear [22]. In recent years, cognitive studies have 

investigated learning atypicalities in autism under different frameworks, including 

reward/reinforcement learning, reversal learning and implicit learning.  

  

1.2.1 Reward learning  

Learning relies on the computing and updating of internal representations of the 

environment’s structure, facilitated by learning the signals of relevant events in order to 

anticipate their occurrence, and using past experiences to predict future outcomes [23]. Models 

of how the brain computes these representations have been described in the field of reward 

learning which focuses upon learning to take actions that maximize reward or value. Here, 

learning relies on a prediction error (PE) signal, which represents the difference between the 

actual and the anticipated reward. This signal allows the brain to update its predictions about 

the environment based on the PE signal, using this feedback to guide future decisions [24],[25]. 

The PE signifies the difference between the actual event (R) and the predicted event (V) in a 

given trial t: 

PE = R (t) −V (t)       
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The PE updates the predicted value for the next trial (V (t+1)) in proportion to the learning 

rate α, which determines the rate of learning, by altering the weight given to more recent as 

compared to less recent events.  

 

V (t+1) =V (t) + αPE(t)   

 

Therefore, PEs drive learning and inference, allowing the brain to update predictions or 

values based on the error signal and to refine future predictions [24]–[26]. Learning and 

inference are proposed to be PE-dependent across all domains, including sensory perception, 

motor and social processing [27]–[29], as well as during classic reward learning, i.e., when 

learning from reward and punishment.  

 

1.2.2 Atypical reward learning in autism 

Atypical reward learning has been observed in autism in both children and adults in the 

context of decision-making tasks [30] and probabilistic associative learning tasks [31],[32], as 

well as during perceptual learning [33]. Indeed, general reward learning of cue-outcome 

associations has been found to be a predictor of socio-cognitive symptoms in autistic children 

[34] and autistic individuals have been shown to demonstrate atypical learning from reward 

feedback, particularly when rewards are social in nature [35]. A recent systematic meta-

analysis of functional imaging studies found atypical reward processing (including reward 

learning) in autistic individuals, with atypicalities associated primarily with striatal regions, 

including the caudate nucleus, putamen and ventral striatum (mainly the nucleus accumbens 

(NAcc)) [36]. However, in a study which specifically examined the neural correlates of PEs in 

autism, although atypical neural processing of PEs was observed, no behavioural differences 

in learning were found in autistic individuals [37].  

Focusing on implicit reward learning, referring to learning without conscious awareness, 

autistic children were reported to demonstrate impaired learning, as well as an atypical neural 

response when learning from social feedback [38]. Similarly, in an implicit categorisation 

learning task, autistic individuals took longer to learn and demonstrated altered neural 
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activation and connectivity in frontostriatal regions [39]. However, there is also evidence for 

intact implicit learning in ASD with large meta-analyses finding no differences between 

autistic and non-autistic individuals [40],[41]. Therefore, the precise nature of implicit learning 

deficits in autism is still unclear.  

Atypical learning in autism has been found more consistently in probabilistic reversal 

learning tasks, which involve a switch in cue-outcome contingencies after learning [42], 

allowing assessment of both reward learning and behavioural flexibility, the ability to adapt 

response when the environment changes [43]. Evidence for reduced flexibility during learning 

in autistic populations has been observed across different types of learning paradigms [38],[44]–

[46]. For example, D’Cruz and colleagues found that, although initial learning did not differ 

between autistic and non-autistic groups, autistic participants were slower to learn new 

contingencies after a reversal, and made more perseverative errors [45]. Similarly, during a 

perceptual discrimination learning task, while autistic participants showed intact initial 

learning, impaired performance was observed when the target (consisting of three diagonal 

bars surrounded by horizontal bars) was moved to a new location, suggesting over-specificity 

of learning [33]. In addition, atypical flexible behaviour is consistently observed in ASD, with 

a large-scale study finding differences in flexible behaviour across all age groups, although 

the exact nature of learning atypicalities varied across the lifespan [46]. However, no 

differences, or differences that are unrelated to reversal phases, have also been reported 

[47],[48].  

Overall, evidence suggests reward learning is atypical under some circumstances in autism, 

particularly in tasks where behavioural flexibility is required. For example, impairments are 

often observed in learning post-reversal, in line with accounts of inflexible and perseverative 

behaviour in autism [49]–[52]. However, atypicalities are not consistently observed across 

different studies and paradigms.  

 

1.3 Bayesian and predictive coding accounts of Autism  

Bayesian and predictive coding accounts of autism have attempted to resolve conflicting 

findings in the literature and provide a unifying explanation for the diverse symptoms 

observed in autism, under the framework of aberrant precision, or autism as a ‘disorder of 

prediction’ [11]–[13]. Here, atypical autistic perception and learning are described as stemming 
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from a reduction in the ability to accurately predict upcoming events and to utilise these 

predictions, building on accounts which explain autistic perception through a framework of 

atypical Bayesian inference [53],[54].  

 

1.3.1 Bayesian inference  

The Bayesian inference model describes perception and learning as relying on a combination 

of incoming sensory information and prior beliefs, resulting in the construction of a 

hierarchical probabilistic model of the environment [27],[55],[56]. The brain constructs prior 

predictions and updates these by combining prior knowledge, or beliefs, with incoming, 

‘bottom-up’ sensory information. The weight given to the prior and sensory information is 

dependent on the reliability, or precision, of their estimation, with precision in this context 

referring to the inverse of variance. New ‘posterior’ beliefs are thus a weighted combination 

of priors and new (incoming sensory) evidence. Learning the associations between cues and 

outcomes can also be understood in line with the Bayesian inference framework, whereby the 

brain predicts future outcomes via computation of probabilities from past experiences [57].  

Bayesian accounts of autism describe autism perception and learning as stemming from an 

imbalance in how prior beliefs and incoming sensory information are combined, resulting in 

an increased reliance on incoming evidence, although different models differ in their exact 

mechanistic explanations. For example, this imbalance has been described as emerging from 

a reduced influence of priors, or ‘hypo-priors’ [53] or, alternatively, from enhanced reliance on 

sensory, bottom-up processes, stemming from increased precision of incoming information 

[54]. Indeed, the majority of empirical evidence in support of Bayesian accounts of autism thus 

far stems from studies investigating the use of priors in autistic individuals, during sensory 

and perceptual processing. Many studies provide evidence in support of reduced reliance on 

priors in autistic individuals, across a variety of different paradigms [58]–[61]. However, and in 

direct contrast to the above, studies have also reported intact use of priors in autism [62]–[64], 

suggesting typical use of specific types of priors in autism. 

  



  6 

1.3.2 Predictive coding 

The hierarchical predictive coding framework builds on the above, providing a mechanistic 

explanation for how Bayesian inference could be implemented in the brain [27],[56],[65]. Here, 

prior beliefs are recast as higher-level predictions and integrated with incoming sensory 

information, with the discrepancy between both signals, or prediction error (PE), used to 

refine and update the high-level predictions and minimise further PEs. Learning and 

inference occur through minimisation of PEs, with the relative influence of PEs on 

predictions reliant on the relative precision, or reliability of incoming and higher-level 

information [66]. For example, higher precision of incoming information results in a greater 

weight on PEs during perception and learning. In contrast, higher precision of top-down 

predictions relative to PEs will result in a greater weight on top-down predictions, or priors. 

The relative precision of PEs and higher level predictions should flexibly vary according to 

the context: precision of PEs should be high when PEs signal useful changes in cue-outcome 

probabilities (i.e., promoting ongoing learning), and low when signalling uninformative 

changes, or noise [67]. Modulation of precision is hierarchical; the relative weighting of PEs at 

lower levels relies on the precision of higher-level predictions about the probabilistic 

structure of the environment [65],[68], with higher level predictions representing increasingly 

higher-level or abstract concepts. Different neuromodulators, such as dopamine, 

norepinephrine and acetylcholine, have been proposed to modulate weighting or precision 

estimation of PEs at different hierarchical levels, through modulation of postsynaptic gain 

[69]–[71].  

Prediction in the context of learning  

Autism, along with other conditions [72]–[74], has been described through the framework of 

atypical predictive coding [75],[76]. Under predictive accounts of autism, it is the relative 

precision of PEs and higher-level predictions that is atypical, rather than PEs and priors 

themselves [12],[13],[77]. For example, Lawson and colleagues explain features of autistic 

cognition as stemming from reduced precision of priors relative to precision of sensory 

information [13]. Van de Cruys and colleagues propose that flexible adjusting of precision of 

PEs is impaired in autism, with PEs weighted uniformly high and inflexibly, resulting in a 

reduced distinction between PEs that are informative and relevant (signals) and those that are 

irrelevant (noise). Here, constantly high precision of PEs results in overly high rates of 

learning from both signal and noise, leading to overfitting of predictions and reduced 
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generalisation [12]. Other accounts propose atypical adjustment of weighting of PEs in 

response to context (atypical precision-weighting) [78], and learning-based accounts propose 

atypicalities in predicting conditional relationships between events, leading to increased 

baseline uncertainty [11]. While specific details differ, these theories all converge on the main 

theme of atypical predictive processes as a common endophenotype in autism [79],[80], a 

measurable cognitive mechanism bridging genotype and observable phenotypic symptoms. In 

addition, atypical predictive coding could explain contrasting findings with regards to 

reliance on priors in autism; autistic individuals could learn priors but not apply them as 

broadly as non-autistic individuals. 

Overall, these theoretical accounts align with other theories of autistic perception and 

learning, such as a bias towards local or low-level processing, over global processing 

[9],[81],[82], and different learning styles in autism [19]. They extend previous accounts of autism, 

with the aim of describing the underlying computational mechanisms, and propose 

explanations for common behavioural atypicalities, such as intolerance of change and a desire 

for predictability [83],[84], as well as sensory atypicalities. It has been suggested that atypical 

predictive processes, such as inflexible and high weighting of PEs, lead to increased feelings 

of surprise, and that repetitive behaviours and desire for sameness are a compensatory 

response to an overall unpredictable environment [12]. This would result in autistic individuals 

perceiving events as being overall more unpredictable [50] and having a reduced ability to 

separate signal from noise during learning [12], particularly in complex and highly uncertain 

social environments [12],[13]. Predictive accounts of autism, while differing in their exact 

hypotheses, propose similar patterns of behaviour, such as decreased weight on prior 

predictions and an overreliance on new, incoming information, reduced flexible adjustment 

of learning and an increased baseline level of surprise. Importantly, as these accounts do not 

propose a general impairment in learning, but rather difficulty in flexibly adjusting learning 

rate or atypical learning in complex environments, this framework could shed light on the 

mixed findings from previous studies investigating learning in autism. For example, 

differences might be observable when learning in a more unpredictable environment or from 

more complex information.  

Learning and uncertainty 

As described in the previous section, learning is driven by prediction errors (PE), which have 

been described as a surprise signal, indicating the difference between the expected and actual 
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outcome. Learning depends on minimising or explaining away PEs, by updating expectations 

or beliefs. The degree to which PEs update beliefs is reflected by the speed of learning, or 

learning rate, determining to what extent more recent and more distant cues are taken into 

account during learning [85]. In the context of predictive coding accounts, the learning rate 

depends on a combination of the precision of incoming, bottom-up information and top-down 

predictions [65],[68]. Optimal learning relies on tracking the probability of cue-outcome 

relationships, which are inherently noisy or variable. The uncertainty (or precision) around 

these relationships is commonly referred to as ‘expected uncertainty’ [86]. However, in 

dynamic environments, cue-outcome joint probabilities or associations can change over time. 

Uncertainty about these changes is known as “unexpected uncertainty”, reflecting the 

(subjective) uncertainty about changes in the environment over time; i.e., about the volatility 

of the environment [70],[87],[88]. Therefore, the weight assigned to PEs during learning should 

vary depending on the background environment or volatility. For example, in a rapidly 

changing, or volatile environment, with high unexpected uncertainty, more weight should be 

given to PEs relative to prior predictions, as PEs are signalling useful information about 

changes in cue-outcome contingencies. Thus, according to theoretical accounts [67],[88] 

learning rates should be higher in volatile phases, with more recent outcomes used to update 

decisions. The opposite should be true, however, in stable environments, where unexpected 

uncertainty is low. Here, the weighting of PEs should be low, as PEs are likely to reflect 

noise, rather than informative changes in cue-outcome probabilities. Learning rates should 

therefore also be low, and more distant outcomes taken into account [89]. The capacity to 

adjust parameters of learning, or adapt learning rates in response to the current environment, 

is proposed to be mediated by neuromodulators, such as acetylcholine (ACh), dopamine 

(DA), norepinephrine (NE) and serotonin (5-HT) [90],[91], encoding uncertainty signals or 

precision around PEs [67],[92]. In line with theoretical accounts, a key role has been 

demonstrated for catecholamines (dopamine and norepinephrine) in the context-dependent 

adjustment of learning, with pharmacological manipulation of catecholamine signalling 

affecting adaptation to environmental volatility [93],[94].  

Empirical studies support the theoretical proposal that healthy individuals adjust their 

learning rates to volatility [70],[88],[95], although contrasting evidence has also been found [96]. 

Atypical adjustment of learning rates has been observed in psychiatric conditions, such as 

schizophrenia and borderline personality disorder [72],[97], and correlates with trait anxiety in 

healthy individuals [98]. Adjustment of the relative weighting of PEs, and therefore adjustment 
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of learning rates or response to volatility, is proposed to be atypical in autistic individuals 

[12],[13],[77],[78]. For example, if precision estimation of PEs is constantly high and/or not 

flexibly modulated by volatility, learning rates will be inflexibly high [77]. Other accounts 

hypothesise high precision of incoming, relative to prior predictions, which would be more 

noticeable in uncertain situations where prior predictions should be more heavily relied on 

[13]. In addition, atypical precision estimation could result in a decrease in learning the 

regularities of the environment, resulting in atypical prediction and anticipation and an 

atypically high baseline level of surprise in autistic individuals [11]. Overall, all accounts 

predict atypical responses to uncertainty (both expected and unexpected uncertainty) in 

autism, with empirical evidence in support of this: atypical predictive processes have been 

observed in volatile environments with changing cue-outcome probabilities, and atypical 

responses to unexpected events have been observed [99]–[101].  

 

1.3.3 Empirical evidence for atypical prediction in autism 

The focus of this thesis will be on prediction-based learning processes, specifically the ability 

to learn cue-outcome contingencies. However, it is also important to examine behavioural 

and neural responses to predictable events. For example, evidence for atypical predictive 

processes in autism comes from studies on perceptual adaptation, whereby repeated exposure 

to a stimulus subsequently biases perception away from that particular stimulus [102]. Here, 

reduced adaptation is proposed to reflect a reduced impact of prior predictions on perception. 

Several studies have demonstrated reduced adaptation in autism in the visual domain, 

including face discrimination [103], gaze direction [61] and biological motion perception [104], 

although contrasting results have been found in studies of biological motion judgements [105] 

and face identity and expression in autistic adults [106]. Within the field of auditory perception, 

autistic adults show reduced adaptation to loudness [107] and audio-visual integration [108], 

with neural signals reflecting reduced auditory adaptation observed in autistic adults [109]. 

Contrasting evidence comes from a task investigating motion prediction in children and 

adolescents with autism, with no differences in predictive abilities observed between autistic 

and non-autistic participants [110].  

Further evidence for atypical predictive processes in autism comes from research 

investigating behavioural habituation, or attenuation of a response subsequent to repeated 

exposure to a stimulus. Habituation of response is a form of single-stimulus learning and 
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reflects a prediction or expectation that a stimulus is constant; reduced habituation can 

therefore be interpreted as a reduced ability to predict an upcoming stimulus or downregulate 

PEs. The majority of studies providing evidence of reduced habituation in autism are in the 

auditory domain [109],[111]–[113]. However, there is also evidence for reduced habituation with 

regard to visual stimuli, with reduced behavioural and neural measures of habituation 

observed in response to social (facial images) [59],[114] and non-social images in both autistic 

adults [115] and children [116]. Finally, although no evidence of reduced habituation was 

observed in autistic adolescents, atypical patterns of neural activation were found in response 

to unexpected visual stimuli [117]. 

Empirical testing of atypical predictive learning in autism has mainly been in the 

sensory/perceptual domain, where atypicalities have been well-documented in autism [118]. 

Implicit learning tasks have shown reduced use of previous sensory information, or 

environmental statistics in autism. For example, in a statistical learning paradigm, autistic 

individuals were reported to show an atypical neural response to unexpected auditory events 

which violated previous predictions [119]. A further study found reduced reliance of previous 

trials on perceptual decision-making, despite no evidence of atypical weighting of PEs or 

overfitting of predictions [58]. In an action prediction task, while non-autistic children relied 

on previously learned associations between context and kinematic patterns (priors) to predict 

action outcomes under conditions of perceptual uncertainty, autistic children did not [120]. 

Further research, using eye-tracking to examine how autistic adolescents responded to 

unexpected events that violated learned visual associations between colour and location, 

reported atypical predictive behaviour in the autistic group, indexed by reduced gaze to 

predicted locations [121]. Similarly, Lawson and colleagues [100] used a perceptual learning task 

with audio-visual stimuli to investigate probabilistic associative learning in autism. Results 

showed that, while autistic adults could successfully learn associations between a high/low 

pitched tone and an image (face/house), response to unpredictable events was atypical. 

Autistic adults showed reduced surprise in response to unpredicted events, indexed by 

reduced slowing of response, and reduced pupil dilation. Computational models of learning 

fitted to behavioural data suggested atypical (over) estimation of volatility and subsequent 

atypical adaptation of learning rates in the autistic group [100]. Finally, an associative learning 

task comparing autistic and non-autistic adults was conducted, requiring learning of auditory-

visual stimuli associations. Although both autistic and non-autistic groups demonstrated use 

of prior predictions in learning associations, and learning did not differ between groups, the 
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autistic group were slower to update priors after a reversal in associations between stimuli, 

suggesting less flexible updating of priors [122]. Taken together, evidence across perceptual 

learning studies supports atypical predictive learning in autism.  

Learning has been investigated in autism in reward-learning paradigms, where correct 

choices are linked to receipt of reward. However, evidence for atypical predictive processes 

within the domain of reward-learning is mixed. First, a reward-learning paradigm comparing 

neural responses to social and non-social reward in adolescents found no differences in 

behavioural indices of learning. However, differing neural activation patterns were observed 

in frontostriatal regions for PEs linked to social, but not non-social, rewards, suggesting 

atypical predictive mechanisms when learning from social reward stimuli [123]. Using a 

reward learning task, Goris and colleagues [99] demonstrated a correlation between less 

optimal decision-making in volatile contexts and higher levels of autistic traits (indexed by 

autism spectrum quotient (AQ) scores [124]), in a non-autistic sample. Importantly, they used a 

paradigm that could distinguish between volatile and noisy contexts, via inclusion of a 

condition where the probabilities of cue-outcome associations were low (i.e., noisy) but 

stable. By comparing adjustment of learning in volatile versus noisy contexts, they showed 

that deficits in decision-making in volatile contexts were not driven by impaired context-

dependent adjustments of learning rates, suggesting typical precision estimation during 

learning, despite impaired performance in volatile environments. However, although a large 

sample was used and therefore variation in autistic traits was captured, this study investigated 

learning in a neurotypical population, thus the extent to which the conclusions apply to 

individuals with a clinical diagnosis of autism is unclear [99]. Using a similar probabilistic 

reward learning task, Robic and colleagues [101] investigated the influence of social and non-

social information on choice, under stable and volatile conditions. On each trial, participants 

were required to choose one of two boxes, with hidden reward probabilities, and received 

advice in the form of social or non-social advice cues, which varied in their utility. Reduced 

performance in the autistic group (as measured by the proportion of participants who reached 

a pre-defined success criterion) was found on trials with the social cue and during volatile 

phases, although volatility had a greater impact on task performance compared with the social 

cue [101]. Finally, contrasting results have been found. Manning and colleagues [125] compared 

the performance of autistic and non-autistic children on a probabilistic reward learning task, 

under both stable and volatile conditions. In stable conditions, reward probabilities were 

fixed, while, in volatile phases, they fluctuated, with cue-outcomes probabilities reversing 
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every 10-20 trials. In contrast to the main hypotheses of the study, which predicted uniformly 

higher, and less flexible learning rates in the autistic group, no significant group differences 

were observed. Autistic children showed typical learning rates and increased learning rates in 

volatile, relative to stable phases, indicating typical precision estimation of PEs [125]. 

Overall, while atypicalities in learning in autism are often observed in the perceptual domain, 

evidence is more mixed with regard to reward learning. Atypical performance is frequently 

observed in volatile or uncertain conditions in autistic individuals, but this cannot be fully 

ascribed to impaired adjustment of learning rates. In addition to explaining atypical sensory 

perception and learning, however, Bayesian and predictive processing accounts propose a 

general mechanism underpinning autistic processing which should apply to learning across 

different domains [11]. While empirical evidence in recent years has grown rapidly, it is 

crucial to test these theories across all domains and investigate whether predictive 

impairments represent a core underlying impairment in autistic learning. Extending existing 

theories in this way may help us to understand whether common, domain-general predictive 

impairments can explain frequently observed features of autism, such as social and motor 

atypicalities. 

 

1.4 Motor atypicalities in autism 

There is mounting evidence to suggest that motor differences, although not included in 

formal diagnostic criteria, are a core feature of autism [126],[127], with estimates of the 

prevalence of motor deficits ranging between 20 – 90 % of the autistic population [128]–[131]. 

Motor atypicalities can manifest as deficits in both fine and gross motor skills[132], including 

abnormalities in motor coordination and posture [126],[133], clumsiness of gait [134], impaired 

skilled motor gestures [135]–[137] and atypical motor planning [138],[139]. Motor deficits lead to 

difficulties in normal day-to-day functioning [140], but also affect communication and social 

interaction [141]. For example, delays in obtaining fundamental motor skills in autism [142] can 

lead to delay in obtaining skills such as writing, speaking, and playing [135],[143], and deficits in 

motor planning and sequencing could affect the ability to regulate movement while 

communicating with or imitating others [144]. Movement differences also contribute to 

difficulties for autistic individuals in interpreting the movements of others, leading to 

difficulties in social cognition [145]. Movement atypicalities may stem from motor learning 
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difficulties [2],[141],[146], with evidence that autistic individuals show delays in learning new 

skills [133] and in learning complex sequences of movements [147],[148]. In the next two sections, 

I review evidence for the presence of atypical predictive coding as a core mechanism 

underpinning both general motor atypicalities, and for motor learning in particular.  

 

1.4.1 Atypicalities in the general motor domain 

The majority of studies examining predictive processes in the motor domain have examined 

autistic individuals’ action perception and understanding of others, meaning that movement 

and action are investigated within a social context, rather than with a focus on low-level 

motor processes. For example, research has shown that autistic adults demonstrate a 

reduction in anticipatory neural activity during processing of action-related sounds and words 

[149], reduced ability to predict the goal-directed actions underlying reaching movements of 

other individuals [150] and attenuated use of priors when predicting goal-directed actions of 

others [151]. Amoruso et al. [152] examined modulation of excitability in the primary motor 

cortex (M1) during action prediction in a non-autistic population. Individuals observed videos 

of actions in congruent and incongruent contexts. Autistic traits correlated with a reduction in 

the ability to downregulate M1 when observing actions in an incongruent context (i.e., when 

a mismatch occurred), suggesting impaired integration of predictions (goal representation) 

and incoming evidence (kinematics) [152]. A further study found that, when inferring 

intentions of others through action observation under conditions of perceptual uncertainty, 

autistic children showed reduced use of priors in comparison with non-autistic children [120]. 

Taken together, evidence suggests that predictive processes are atypical in both autistic 

children and adults, during action perception and understanding.  

 

1.4.2 Motor learning 

Active inference extends the predictive processing framework to include action and 

movement [153],[154], with actions described as a method to minimise prediction errors or 

surprise [155]. Similarly, motor learning is described as relying on the creation and utilisation 

of internal sensory models of actions to predict movement, with these predictions compared 

to incoming sensory (visual and proprioceptive) feedback. Here, PEs can be reduced by either 

updating predictions or through action [153],[156],[157]. Although empirical evidence is still 
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limited, studies have begun to examine prediction in motor learning in autistic individuals, 

with mixed results.  

Empirical evidence for atypical motor learning in autism 

A recent study investigating sensorimotor prediction in adults with autism used two tasks to 

investigate predictive mechanisms in the sensorimotor domain: a force matching task, 

measuring attenuation in the sensory perception of self-generated movements, and an 

intentional binding task; an effect whereby sensory outcomes and motor actions are perceived 

to be closer together temporally when actions are voluntary and self-generated, that is thought 

to index predictive motor processes. Thus, allowing investigation into both low-level sensory 

prediction and prediction of action-outcome contingencies in the same group of individuals. 

However, the authors found no evidence to support the presence of atypical predictive 

processing in either task [158]. Similarly, Arthur and colleagues [159] reported that autistic 

adults showed typical predictive processes for sensory perception and action during an object 

lifting task. Specifically, both initial force profiles and subsequent action kinematics were 

driven by prior perceptions of object weight in autistic individuals [159]. However, in a 

subsequent study, which utilised a virtual reality paradigm to measure sensorimotor 

prediction in a volatile environment, autistic adults showed atypical predictive behaviour, 

indexed by atypical movement kinematics and predictive gaze in response to surprising or 

unexpected events. These differences were amplified under more uncertain, or volatile 

conditions [160]. Taken together, evidence from sensorimotor paradigms suggests that autistic 

adults show typical use of predictive action models, but atypical adjustment of behaviour in 

volatile conditions, in line with accounts proposing, rather than higher weighting of PEs 

overall, atypical modulation of precision in autism [78].  

Aside from sensorimotor learning, learning has been investigated in the motor domain in the 

context of implicit learning of action sequences, mainly through employment of sequence 

learning paradigms, such as the serial reaction time task (SRT) [161]. Here, participants are 

required to learn cue-action contingencies in a training phase, and then to respond to these 

cues as rapidly as possible by performing the associated action in the test phase. During the 

test phases, and unknown to the participant, cues follow a repeating pattern or sequence, 

providing a measure of implicit or statistical learning; participants are unaware of the 

underlying pattern but demonstrate increased speed for predictable events that follow the 

sequence. Mixed evidence has been found when investigating motor sequence learning in 
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autistic individuals, with some studies finding intact sequence learning [162]–[164] and some, in 

direct contrast, finding atypical sequence learning [148],[165],[166].  

Predictive processing accounts of learning have the potential to shed light on the mechanisms 

underpinning motor sequence learning in autism. For example, the motor system relies on 

top-down predictions (or priors) to prepare for actions, in a manner that is proportional to the 

likelihood of the event occurring [167]. Therefore, as the precision of predictions about an 

upcoming action increases, reaction time (RT) decreases. This implies that, if a violation of 

predictions (a PE) occurs, RT will increase, due to the requirement to inhibit the prepared 

action and prepare and execute the unpredicted action. Predictive theories propose an 

atypically high baseline level of surprise in autistic individuals [78], suggesting that 

unpredictable or surprising events are not as surprising for autistic relative to non-autistic 

individuals. In addition, if prior predictions are attenuated, learning and motor planning 

would be impaired. Thus, in the context of sequence learning, an atypical response to 

surprising or unpredictable events should be observed in autistic individuals, indexed by a 

lack of slowing of response where slowing would be expected (i.e., reduced surprise-related 

slowing), and/or impaired motor preparation during sequence learning.  

Evidence for reduced surprise-related slowing has been demonstrated in the sensory domain 

[100], with autistic adults demonstrating a reduced distinction between expected and 

unexpected outcomes, indexed by reduced slowing of response, relative to non-autistic adults. 

In the motor domain, Rinehart and colleagues showed that, when executing actions in 

response to changing visual patterns, autistic, compared to non-autistic children showed a 

significant reduction in surprise-related slowing in response to unexpected patterns [168]. 

Similarly, Gidley Larson and colleagues used a rotary-pursuit paradigm to examine 

visuomotor sequence learning in autistic children. Rotary-pursuit tasks are a measure of 

motor skill performance, involving learning a sequence of movements to accurately predict 

and track the motion of a moving target. Results showed that violations to the pattern resulted 

in surprise-related slowing for non-autistic, but not for autistic, children [147]. However, both 

studies were carried out with children, highlighting the importance of determining whether 

these effects persist into adulthood. To date, only one study has been carried out with adults, 

with no differences between groups observed with regard to surprise-related slowing [139].  

In sum, a limited number of studies have investigated motor processes from a predictive 

coding perspective in autism, with the majority showing a focus on action perception. The 
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studies that do, including low-level sensorimotor prediction, provide mixed evidence. 

Previous work suggests atypical prediction in autistic individuals, but these studies were not 

developed specifically to test hypotheses from predictive coding accounts of autism, and 

were conducted in children and adolescents, but not in adults. It is therefore important to 

investigate predictive motor sequence learning in adults and look at response to surprise on a 

trial-by-trial basis (Chapter 2).  

 

1.5 Social atypicalities in autism 

Impairments in social communication and interaction are classified as cardinal symptoms in 

autism [1], with a negative impact on quality of life and functioning [169]. Bayesian and 

predictive processing accounts suggest common computational underpinnings for social and 

non-social symptoms (repetitive and restricted behaviour, interests and activities), in contrast 

with domain-specific theories, which propose a primary ‘social’ impairment, such as 

impaired theory of mind in autism [170], or reduced social motivation. [7]. Indeed, these 

accounts of autism propose that predictive deficits are enhanced in the social domain [13],[78]. 

For example, understanding the actions or intentions of other individuals is proposed to be 

more difficult, as social information is intrinsically unpredictable and ambiguous, with less 

defined contingencies between events. Predictive accounts thus propose difficulties for 

autistic individuals in inferring the causes of (often unpredictable) social stimuli, through a 

lack of generalisation and overfitting of incoming data [10]. In the next two sections, I review 

evidence for the presence of atypical predictive processing in autism, first within the general 

social domain, and then for social learning specifically, with a view to assessing what is and 

is not known regarding predictive atypicalities in the social domain.  

 

1.5.1 Social cognitive atypicalities 

Within the social domain, individuals must predict the behaviour of others, a process that has 

been described through the framework of predictive coding [29],[171],[172]. Predictive accounts 

of autism propose that deficits in predicting the actions/and or intentions of other individuals 

could be underpinned by atypical prediction. Indeed, there is evidence that autistic 

individuals show impaired use of social information when predicting the actions and/or 
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intentions of others, through attenuated use of prior predictions. For example, using a visual 

motion dot paradigm, Von der Lühe and colleagues reported that, while non-autistic adults 

used the communicative actions of one agent to predict the actions of an interacting agent, 

autistic adults did not [173]. Similarly, Chambon et al. [174] found that attenuated prior use in 

autism was specific to social interactions. Autistic and non-autistic matched groups were 

required to observe two actors manipulating objects and infer their intentions, in both a 

social, and non-social context. The autistic group displayed reduced reliance on prior 

predictions within the social context, compared to non-autistic controls [174]. Furthermore, 

atypical use of social priors has been observed outside of paradigms investigating action 

understanding. For example, in comparison with non-autistic individuals, autistic adults 

showed reduced use of social priors in a paradigm examining the effect of preceding dynamic 

facial expressions on the evaluation of a subsequent neutral expression [175]. In contrast, in a 

study examining response to violations of learned visual cue-outcome events, while autistic 

individuals showed an atypical response to surprising events, this did not vary with regard to 

the social/non-social nature of the stimulus [121]. Finally, a study comparing adaptation to 

social and non-social visual stimuli in autistic children, found reduced adaptation to social 

stimuli only, indexed by reduced perceptual aftereffects [60], while a similar study found 

diminished adaption to eye-gaze stimuli in autistic adults [176]. Taken together, these studies 

suggest atypical predictive processing in the general social domain in autistic individuals. In 

the next section, I focus specifically on social learning, summarising the evidence for atypical 

PE-based learning in autism, and identifying areas that require further examination. 

 

1.5.2 Social learning 

Highlighting the importance of social learning, sociocognitive ability is thought to develop to 

a large extent through implicit learning from observation of other individuals [16]. 

Furthermore, some predominantly social theories of autism, such as reduced attention to 

social stimuli [177], decreased motivation to attend to social stimuli [7] or difficulty in 

processing biological stimuli [178], propose a reduction in opportunities for, and/or abilities in 

social learning, which could lead to impairment in social cognitive function. Thus, 

sociocognitive difficulties could have atypical social learning at their root. Social learning, or 

learning from others, refers to the ability for an individual to obtain information or adapt their 

behaviour as a result of observation of another individual’s actions or choices, rather than 
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through their own direct experience [179]. In contrast, asocial, or “individual learning” refers to 

learning directly through one’s own experience, through trial and error, independently of 

advice or observation of others. Social learning has been documented across many species 

[180],[181], and is fundamental for the rapid acquisition of valuable information, such as 

learning to acquire rewards and avoid harm, without personal cost or risk [182],[183].  

Before considering the evidence for atypical social learning in autistic individuals, it is 

important to define social learning precisely, as the term is used interchangeably for different 

types of prediction-based learning. For example, social learning has been used to describe 

individual learning about other individuals, prosocial learning, namely learning the impact of 

one’s own actions on another individual [184], and for individual learning from social reward 

[123]. Additionally, social learning can include learning via verbal instruction or teaching [185], 

as well as imitation. In this thesis, I use social learning to refer solely to learning from other 

individuals by observing their choices or actions and subsequent outcomes [179],[186].  

Empirical evidence for atypical social learning in autism 

Empirical evidence for atypical social learning is limited in autistic individuals. For example, 

as highlighted above, ‘social’ prediction error-based learning is used to describe PEs both 

when learning from other individuals, but also when learning is linked to a ‘social’ reward, 

i.e., an image of a happy face. For example, altered neural activation was reported in autistic 

individuals during a learning task, for ‘social’ PEs only. However, the PEs in this study 

reflected the type of reward (i.e., an image of a face or an image of an object), rather than 

learning through observation of another individual [123]. A further study reported differences 

in prediction-error associated neural signals in autistic individuals when coding PEs during 

observation of another person’s decisions. Balsters and colleagues [187] compared autistic and 

non-autistic individuals on a probabilistic decision making task in combination with 

neuroimaging. Participants were required to play on behalf of themselves (i.e., make 

decisions for themselves), or to observe another individual playing, and predict, from the 

other person’s perspective, whether the observed outcome was expected or unexpected. Both 

reduced accuracy and reduced neural activation in the gyrus of the anterior cingulate cortex 

(ACCg) were observed in autistic individuals for ‘social PEs’ based on predictions made 

from another’s perspective. Results showed that autistic individuals were less accurate at 

monitoring the predictions of others, potentially resulting in a deficit in understanding the 

perspectives of others. [187]. However, this ‘social’ prediction error requires taking the 
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perspective of another person, comparing actual outcomes with expected outcomes as 

perceived by another individual, rather than learning for one’s own benefit through 

observation of another individual’s actions or choices. In sum, while the studies described in 

this section suggest atypicalities in predictive processing in the social domain in autism, there 

is limited research directly comparing social and individual PE-based learning in autistic 

individuals. 

Preliminary evidence for predictive differences in social learning comes from research in a 

non-autistic population. Sevgi et al. showed that autistic traits were correlated with difficulty 

in integrating social information during learning, in a task that required integration of social 

and non-social cues. Individuals with high autistic traits showed a reduction in the ability to 

accurately utilise social information to modulate the precision of individual information [188]. 

Using a similar learning task, Robic and colleagues [101] compared the influence of social and 

non-social information on a probabilistic learning task. On each trial, participants were 

required to choose one of two boxes, and received advice in the form of a social or non-social 

advice cue. Reduced performance was observed in a volatile context in autistic adults, with 

these deficits more pronounced when social cues were provided. However, this study did not 

estimate learning rates, but rather examined group differences by comparing the number of 

participants in each group who achieved a certain performance criterion (60% accuracy). 

Thus, inter-individual differences in learning rates were not taken into account and the 

underlying mechanisms underpinning impaired performance were not examined [101].  

Taken together, there is limited evidence in the social domain for atypical predictive 

processes, and no studies directly comparing social and individual learning rates in an autistic 

population; somewhat surprising given that Bayesian/predictive theories of autism propose 

that atypicalities will be amplified in a social environment. Moreover, determining whether or 

not domain-general theories of autistic learning and cognition can provide explanations for 

diverse atypicalities feeds into a wider debate, concerning the domain-specificity of social 

processes, in both autistic [169] and neurotypical individuals [186],[189],[190]. For example, an 

unresolved question in the literature is the extent to which neurochemical mechanisms and 

neural pathways and connections are specialised for social learning. In the next section, I first 

describe opposing views of the mechanisms underpinning social learning, before outlining 

how an investigation at the level of neurochemical signalling could help to resolve 

outstanding questions in this field.  
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1.6 Domain-specificity of social learning  

Social learning, learning from observing the actions and outcomes of another individual, has 

been widely studied, with its importance emphasised by its occurrence across many species 

including humans [180],[181],[191]–[193]. In addition, social learning is widely described as the 

basis for human culture, by enabling behaviours to spread between individuals in groups and 

through subsequent generations [191],[192],[194]. There remains, however, debate as to the 

fundamental mechanisms underlying social learning.  

Behavioural ecology and evolutionary viewpoints argue that humans, and other social 

animals, possess specific learning mechanisms, specialised for social learning 

[180],[192],[195],[196]. Here, social learning is thought to rely on distinct “social” neural 

mechanisms, or processes, which have genetically evolved independently of those 

underpinning individual (asocial) learning. Thus suggesting that social learning is an 

‘adaptive specialisation’ for living in social groups [190],[197],[198]. Evidence in support of this 

stems from comparative research, with social and individual learning shown to be 

dissociable, both within [199] and between different species [200]. For example, variability in 

social, but not non-social, learning between humans and non-human primates at a young age 

has been used as evidence for the presence of genetically inherited social learning capabilities 

in humans [190],[200].  

Alternatively, social learning may be underpinned by the same mechanisms as individual 

learning, i.e., learning from one’s own reward outcomes [186],[201]. This domain-general 

approach argues that social learning mechanisms are underpinned by the same core 

associative mechanisms as general reinforcement learning (RL). Evidence for this theory 

originally stemmed from comparative research across different species [179]. For example, 

social and non-social learning co-vary both within [202],[203] and across species [204] and asocial 

animals can also demonstrate social learning if required to do so [205],[206]. Under this 

framework, differences in social learning abilities across species depend on, among others, 

variability in the attention paid to, and motivation to attend to, social stimuli [186],[207]. 

Crucially, however, the underlying mechanisms are proposed to be the same as those 

underpinning individual learning, namely associative learning processes [179],[186],[201],[208]. 

Indeed, key associative learning phenomena, including blocking [209] and overshadowing have 

been observed during social learning [186], and a recent computational modelling study 
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demonstrated that many types of social learning can be modelled by domain-general 

associative RL learning mechanisms [210].  

If both social and individual learning rely on the same underlying cognitive mechanisms, this 

strongly suggests that they would be underpinned by the same neurochemical signalling 

processes. In contrast, if social learning relies on separate, social-specific cognitive 

mechanisms, that have evolved specifically, social and individual learning should be 

dissociable at a cognitive, neural and/or neurochemical level. Thus, to determine if specific 

mechanisms underpin social learning, it is important to look for dissociations between 

learning types. Alternatively, a lack of dissociation would fail to support the adaptative 

specialisation view but is consistent with the presence of shared mechanisms. I here focus on 

the neurochemical level. The monoamine neurotransmitters dopamine and serotonin have 

both been implicated in learning from one’s own experience (individual learning) and in 

social learning (learning from others). In the next two sections, I outline evidence for the role 

of monoamine signalling in both types of learning.  

 

1.6.1 Neurochemical mechanisms of learning 

Dopaminergic mechanisms 

Individual or direct reward learning relies on phasic dopaminergic signalling, with midbrain 

dopaminergic neurons in the ventral tegmental area (VTA) and substantia nigra (SN) 

encoding a PE signal, reflecting the difference between the actual and expected reward 

[71],[211]–[213]. Thus, PEs drive learning, allowing the brain to update its beliefs or values based 

on the error signal and to refine future predictions [24]–[26]. In humans, imaging, pharmacology 

and genetics studies corroborate this role for dopamine in updating predictions [70],[93],[214]–

[216]. For example, functional magnetic resonance imaging (fMRI) studies have shown PE 

related blood oxygenation level-dependent (BOLD) signals in reward-related neural regions 

such as the striatum [217],[218] and the VTA/SN [219]. In addition, pharmacological 

manipulations of dopamine signalling modulate neural correlates of PEs and behavioural 

choice in healthy individuals [214]. Midbrain dopaminergic signalling has also been proposed 

to encode the precision of PEs, rather than PEs themselves [154], with recent empirical 

evidence in support of this [70],[220]. Thus, dopaminergic signalling plays a crucial role in 
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individual learning. If social learning relies on the same mechanisms as individual learning, a 

role for dopaminergic signalling should be observable with regard to social learning. 

Indeed, in line with accounts proposing domain-general neurochemical mechanisms for 

social learning, recent work has highlighted a role for dopaminergic signalling in social 

learning [221]–[225]. Evidence in humans (see Joiner et al. [226] for a review in the non-human 

animal literature) comes mostly from the neuroimaging literature, where a number of studies 

have demonstrated that social learning-related PEs correlate with BOLD response in 

dopamine-rich brain regions such as the ventral striatum [95],[223],[227]–[229]. In further support of 

shared dopamine-dependent mechanisms for both types of learning, there is evidence that the 

same prediction-based striatal computations underlie both social and individual learning [230]. 

Furthermore, social PEs have been shown to covary with genetic variation in genes that affect 

dopamine signalling, via modulation of dopamine reuptake [222]. Finally, social information is 

integrated based on its reliability or precision [231] in the same manner as individual 

information. Thus, evidence suggests that, in addition to its role in individual learning, 

dopamine may also be implicated in social learning, suggesting shared dopaminergic 

mechanisms underpinning both types of learning.  

Preliminary evidence against a neurochemical dissociation between social and individual 

learning comes from a study by Cook and colleagues [93], wherein a pharmacological 

manipulation of dopamine (and norepinephrine) signalling affected learning from the primary 

information source only, regardless of the social nature of the information. This observation 

raises the intriguing possibility that dissociations observed during learning could reflect the 

status of the information source (i.e., whether or not it was the primary learning source), 

rather than the social nature of information [93]. Taken together, these studies provide support 

in favour of domain-general dopaminergic mechanisms for social and individual learning.  

Serotoninergic mechanisms  

Along with dopamine, preliminary work has implicated serotonin in individual learning [232]–

[237], with a role for serotonergic signalling proposed in signalling unsigned or surprise-related 

PEs [238],[239]. Matias and colleagues [239], for instance, reported both positive and negative 

prediction error-like signals in 5-HT neurons in mice, using a pharmacogenetic approach. 

Whereas dopamine was initially associated with individual learning and has only more 

recently become linked to social learning, serotonin has long had an association with social 

behaviour, with a wide body of research highlighting the importance of the serotonin system 
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in social cognition [240],[241]. Early work with rodents and nonhuman primates identified a role 

for serotonin in social behaviours including social play [242]–[244], social perception [245] and the 

establishment of social hierarchies [246],[247]. Subsequent studies in humans have highlighted 

the importance of the serotonin system in many types of social cognition [240],[241], (though see 

Crockett and Cools [248] for discussion of potential non-social underlying mechanisms). For 

instance, the effects of serotoninergic enhancement or depletion have been demonstrated on 

social perception [249],[250], social cooperation [251], altruistic behaviour [252] and social trust 

[253], among others. Using a reward learning paradigm with social stimuli (emotional faces), 

Frey & McCabe showed that serotonin depletion resulted in alterations in both behavioural 

and neural markers of learning [254]. Focusing on social learning, Crişan al. found a significant 

effect of genetic variation in serotonergic signalling on learning from observing the fear 

responses of other people [255]. In sum, serotonin is implicated in both individual and social 

learning, suggesting shared neurochemical mechanisms. Nevertheless, this cannot be 

concluded with confidence from existing research, since extant studies have not directly 

compared the effects of variation in serotonin signalling on social and individual learning.  

 

1.6.2 Neural mechanisms of learning 

In contrast to studies suggesting domain-general learning neurochemical mechanisms for 

social learning, neuroimaging studies have provided evidence of dissociations between brain 

regions involved in individual and social learning [95],[256]–[258]. For example, Behrens and 

colleagues developed a decision-making paradigm where subjects were required to learn 

from social and individual information simultaneously, integrating both sources of 

information. While overlapping neural correlates were found for social and individual 

learning in the striatum, dissociable patterns of activation were also observed. Neural 

correlates of social learning were observed in the ACCg and temporoparietal junction (TPJ), 

while correlates for individual learning were observed in the sulcus of the ACC (ACCs) [95]. 

Therefore, while social learning processes could be underpinned by the same dopamine-

mediated prediction-based mechanisms as individual learning [226] relying upon shared 

regions, such as the striatum and ventromedial prefrontal cortex (vmPFC) [95],[228],[230], social 

and individual learning could, at least to some extent, recruit separable brain networks/areas. 

For example, neural regions such as the dorsomedial prefrontal cortex (dmPFC), the ACCg 

[95],[228],[256]–[258] and the TPJ [95],[259], areas described as important for representing the 
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motivational states of others and simulation of others’ actions and intentions [260],[261], 

arguably comprise ‘social-specific’ regions that have evolved for social living [189],[262],[263].  

Alternative explanations for differing patterns of neural activation for social and individual 

learning must be considered before a brain region can be conclusively described as ‘social-

specific’. For example, in a task where participants had to make choices on behalf of 

themselves and at other times on behalf of others, neural activation patterns were observed in 

dmPFC that were related to preferences that were not guiding the current choice, e.g., the 

other individual in the ‘self’ condition and own preferences in the ‘other’ condition. In 

contrast, activation was observed in the vmPFC for preferences related to the current choice, 

suggesting a gradient of activation that, rather than representing self versus other [264], 

represents the current task relevance of information [265],[266]. Thus, it is possible that the 

observed dissociations between neural mechanisms for social and individual learning 

mentioned previously, could be better explained as dissociations between other factors, such 

as the relevance or the value of the information during learning. However, extant paradigms 

cannot determine which factor accounts for observed dissociations, as the social nature of 

information is confounded with other factors (such as whether information is the primary 

source of learning) in these paradigms.  

In sum, research suggests that serotoninergic, as well as dopaminergic signalling, play a key 

role in both individual and social learning. Therefore, if social and individual learning rely on 

dissociable neurochemical mechanisms, it is important to look for dissociations as a function 

of dopamine and/or serotonin availability. To date, studies have not been able to test this 

hypothesis because they have not employed a design that enables mapping of variation in 

neurochemical signalling onto variation in both social and individual learning and, more 

importantly, have not accounted for confounding factors.  

 

1.7 Aims of this thesis 

The overall aims of this thesis are to shed light on the conditions wherein predictive 

processes/learning is, and is not, atypical in high functioning adults with autism, and, to 

investigate the neurochemical underpinnings of social learning in neurotypical individuals. 

The first two empirical chapters investigate social and motor learning in autism, by 

examining whether autistic adults exhibit differences, compared to non-autistic adults, in 
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predictive learning processes, as proposed by Bayesian and predictive coding accounts of 

autism. These accounts, which describe broad atypicalities in predictive processes, have not 

been extensively tested from a social or motor learning perspective. Therefore, I examine 

these theories in the context of social and motor learning, with the aim of determining 

whether these models are restricted to the perceptual domain, or whether they outline 

differences in domain-general learning processes. The first empirical chapter (Chapter 2) 

examines whether dopamine-dependent predictive processes are atypical during implicit 

motor sequence learning in autistic, compared to non-autistic adults, using a probabilistic 

motor learning paradigm. As autism is primarily associated with differences in social 

functioning, Chapter 3 focuses on learning in a social context. Here, I investigate whether 

social learning is atypical in autism spectrum disorder and quantify how autistic adults learn 

from individual and social information sources simultaneously in a reward-learning 

paradigm, using computational models of learning. This paradigm allows investigation of 

whether learning atypicalities in autism relate to social learning per se, or the modulation of 

learning as a function of environmental volatility (as hypothesised by some predictive 

accounts of autism). In addition to investigating learning mechanisms in autism, Chapter 3 

also has the power to provide insight into the mechanisms underpinning social and individual 

learning. That is, differences in social, but not individual learning in autistic individuals in 

Chapter 3 would comprise evidence of dissociable mechanisms for social and individual 

learning.  

The second part of this thesis focuses in detail on one of these learning types - social learning, 

with the aim of addressing an extant issue in this field: are the neurochemical mechanisms 

that underpin social learning dissociable from the neurochemical mechanisms that underpin 

learning from one’s own individual experience (individual learning). In Chapter 4, I examine 

whether social and individual learning can be dissociated as a function of naturally occurring 

genetic variation in genes important for the regulation of monoamine signalling. Chapter 5 

describes the development and piloting of an adapted version of a social learning task. In 

studies demonstrating dissociations between social and individual learning, learning types 

differ both in terms of social nature (social or individual) and rank (primary versus secondary 

status), meaning that social nature and rank are confounded. This chapter is therefore written 

with a focus on describing the design and development of a task where social versus 

individual and primary versus secondary status are orthogonalized. In Chapter 6, the 

behavioural task developed in Chapter 5 is employed in a pharmacological intervention, 
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where dopamine signalling is manipulated. This chapter investigates whether the dissociable 

effects of dopaminergic manipulation on different learning types are better explained by 

primary versus secondary status, than by social versus individual nature. 

The final chapter will summarise and integrate all reported results and outline future 

directions to further investigate the ways that Bayesian and predictive coding accounts of 

autism can, and cannot, be extended across all domains, and the role of both dopamine and 

serotonin in predictive learning. Furthermore, this thesis aims to shed light on the contexts in 

which learning is, and is not, atypical in adults with autism.



 

 

Chapter 2:  Intact predictive motor sequence learning in autism 

spectrum disorder 

 

This chapter presents a published study, examining whether predictive processes are atypical 

during implicit motor sequence learning in autistic, compared to non-autistic adults, using a 

probabilistic motor learning paradigm. 

Supplementary materials for this chapter can be found in Appendix 1.  

 

 



 

Publication 1:  

 

Intact predictive motor sequence learning in autism spectrum disorder 

 

Alicia J. Rybicki, Joseph M. Galea, Bianca A. Schuster, Chole Hiles, Cleo Fabian, and 

Jennifer L. Cook 

 

Scientific Reports 11:20693 (2021). DOI: 10.1038/s41598-021-00173-1 

 

Page 27



 

Abstract 

Background. Atypical motor learning has been suggested to underpin the development of 

motoric challenges (e.g., handwriting difficulties) in autism. Bayesian accounts of autistic 

cognition propose a mechanistic explanation for differences in the learning process in autism. 

Specifically, that autistic individuals overweight incoming, at the expense of prior, information 

and are thus less likely to a) build stable expectations of upcoming events and b) react to 

statistically surprising events. Although Bayesian accounts have been suggested to explain 

differences in learning across a range of domains, to date, such accounts have not been 

extended to motor learning. 

Methods. 28 autistic and 35 non-autistic controls (IQ > 70) completed a computerised task in 

which they learned sequences of actions. On occasional “surprising” trials, an expected action 

had to be replaced with an unexpected action. Sequence learning was indexed as the reaction 

time difference between blocks which featured a predictable sequence and those that did not. 

Surprise-related slowing was indexed as the reaction time difference between surprising and 

unsurprising trials. 

Results. No differences in sequence-learning or surprise-related slowing were observed 

between the groups. Bayesian statistics provided anecdotal to moderate evidence to support the 

conclusion that sequence learning and surprise-related slowing were comparable between the 

two groups.  

Conclusions. We conclude that individuals with autism do not show atypicalities in response 

to surprising events in the context of motor sequence-learning. These data demand careful 

consideration of the way in which Bayesian accounts of autism can (and cannot) be extended 

to the domain of motor learning.  
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Introduction  

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by 

restricted and repetitive interests and difficulties with social communication and interaction 

(American Psychiatric Association, 2013). While not considered a core diagnostic feature, 

over recent years the study of autistic body movements has gained traction [267]–[269] and 

differences in the way autistic and non-autistic people move have been documented [145]. A 

number of studies have suggested that movement challenges in autism could stem from 

atypicalities in the motor learning process [136],[137]. Evidence to support this comes from 

serial reaction time tasks, wherein participants execute a sequence of discrete movements 

over repeated trials, with motor sequence learning indexed as a reduction in response time for 

learned sequences [161],[270]. Several studies report atypical sequence learning in autism 

[148],[165]. Thus, a small but growing literature suggests that differences in autistic body 

movements may lie, not in the execution of learned movements, but in the learning process 

itself. 

The claim that motor learning is different in autism resonates well with a broader literature 

arguing for general learning atypicalities. Current prominent accounts of autism [53],[78] 

propose that major characteristics can be explained by differences in Bayesian inference. 

Under Bayesian [55], specifically predictive coding frameworks [27],[56], perception and 

learning are based on the construction of hierarchical probabilistic models of the 

environment. These models are updated when top-down prior predictions are compared with 

incoming, sensory information, and the difference between the two (prediction error) is used 

to update the prior. Relative confidence in the prediction error and prior determines how 

much weight is afforded to each, and thus the extent to which beliefs are updated by 

incoming information versus prior knowledge. Bayesian and predictive coding accounts 

(referred to collectively as ‘Bayesian accounts’ from hereon [13],[53],[54]) propose that autism is 

characterised by atypical weighting of prior beliefs relative to incoming sensory information 

[12],[13],[76],[78]. In support of this, research has demonstrated that autistic perception and 

learning are dominated by incoming sensory information, with less reliance on top-down 

priors [103],[119],[271]. 

In principle, Bayesian accounts detail a general mechanism underpinning autistic processing 

which should apply to various domains of functioning. In the motor learning domain, the 

hypothesis that autistic individuals show underutilization of priors leads to specific and 
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testable predictions. The motor system uses prior experience to prepare motor output for an 

event by an amount that is proportional to the probability of the event [167]. Thus, as the 

precision of an individual’s expectations about an upcoming action increases, reaction time 

(RT) decreases. However, if expectations are violated, RT increases (i.e., surprise-related 

slowing occurs) due to the requirement to halt the prepared action and prepare and execute 

the surprising action. Bayesian accounts of autism predict that the underutilisation of priors 

results in an aberrantly high baseline level of surprise. Thus, surprising events, which violate 

expectations, are not as surprising for autistic relative to non-autistic individuals [12],[78]. 

According to such accounts, during motor learning surprise-related slowing should be 

reduced in autism (i.e. a more efficient response to surprising events should be observed), at 

the expense of learning a sequence and forming strong prior predictions about upcoming 

events [11]. To date, this has mainly been tested by demonstrating atypical surprise-related 

slowing with respect to perception. Lawson and colleagues [100], for example, found that, 

relative to non-autistic controls, autistic adults showed reduced surprise in response to 

unexpected visual stimuli. It is currently not clear, however, whether Bayesian accounts of 

autism apply to motor learning. If so, they would help to shed light on the computational 

mechanisms underpinning differences in autistic motor learning. 

Preliminary evidence for atypical surprise-related slowing in autism comes from several 

studies: Rinehart and colleagues [168] required participants to execute button presses in 

response to a visual pattern, where surprising deviations from the pattern sporadically 

occurred. Relative to non-autistic children, autistic individuals showed a significant reduction 

in surprise-related slowing. Similarly, Gidley Larson and colleagues [147], required 

participants to learn and execute a pattern of movements to anticipate the motion of a moving 

target. In several trials, expectations were violated by altering the pattern, inducing surprise-

related slowing for non-autistic, but not for autistic, children. In line with Bayesian 

predictions, these studies suggest reduced surprise-related slowing in ASD. If underutilisation 

of priors is a pervasive style of autistic processing that cannot be unlearned or compensated 

for, establishing these effects in autistic adults is of central importance. However, to date, 

only one study has been carried out with adults, with results showing that participants were 

faster to respond to expected (referred to by the authors as validly cued) compared to 

unexpected (invalidly cued) events, there was no interaction between group (ASD versus 

control) and the validity of the cue type [139]. In sum, very few studies have investigated 

surprise-related slowing in ASD, and a coherent pattern of results has not emerged.  
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Extant studies of surprise-related slowing in autism have used paradigms with two response 

options (i.e. respond left or right [168], trace circle or square [147], change either hand or 

direction of movement [139]). A disadvantage of two-option paradigms is that, compared to 

multi-option paradigms, sequence-learning cannot be investigated. According to Hick’s Law 

[272], the number of response options is logarithmically related to decision time, thus average 

RTs for a four-option paradigm in which each option is equally likely are 500-700 

milliseconds (ms), whereas a single response elicits an RT around 250-350ms [273]–[275]. If, 

however, there is a sequence to the responses, one can reduce a four-option paradigm to a 

single response (with an associated probability) using prior knowledge of the sequence [161], 

resulting in a greater RT reduction (i.e. a sequence-related speeding effect). The more 

potential options, the greater the potential speeding effect [276]. Since the extant autism 

literature has focused on two-option paradigms, it is not clear whether reduced surprise-

related slowing (that is, a more efficient response to surprising events), comes at the expense 

of sequence-learning.  

Here we compared the performance of autistic and non-autistic adults on a motor sequence-

learning task [277]. Participants learned associations between four visual stimuli and four 

unique actions. In an ‘easy-predictable condition’, actions followed a simple sequence with 

occasional surprising trials where an unpredictable action was required. The same was true of 

the ‘difficult predictable condition’, although with a more challenging sequence. In the 

‘unpredictable condition’ there was no sequence to learn. This task thus provides indices of 

sequence-learning, indexed by sequence-related speeding (the difference in RT between 

predictable and unpredictable conditions) and surprise-related slowing (the difference in RT 

between surprising and unsurprising trials in the predictable conditions). We predicted that 1) 

autistic adults would exhibit a less efficient response to unsurprising events, indexed by 

decreased sequence learning relative to non-autistic participants and 2) autistic adults would 

show a more efficient response to surprising events, indexed by a reduction in surprise-

related slowing relative to non-autistic controls. 
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Methods  

Participants 

Twenty-eight adults with a clinical diagnosis of ASD (18-57 years, mean (standard deviation 

(SD)) age = 29.8 (10.2); 15 female), previously diagnosed by a UK National Health Service 

(NHS) or privately registered clinician who worked independently from our research group, 

according to the DSM ([1]) or ICD-10 [278] criteria, and 35 healthy non-autistic controls (18-57 

years, mean (SD) age = 27.6 (10.5); 13 female) were recruited from Birmingham and 

surrounding areas through advertising via posters and social media (see Table 1 for full 

demographic details and Supplementary Methods for full clinical details). All participants  

were reimbursed for their time (at a rate of £10 per hour) and travel expenses. ASD diagnosis 

was confirmed with administration of the Autism Diagnostic Observation Schedule, second 

edition (ADOS-2) [279] by a trained researcher, using the current standard scores for a 

diagnosis of ASD, whereby a minimum score of 7 is the cut-off for designation as “on the 

autism spectrum,” and a minimum score of 10 is the cut-off for being designated as “autistic” 

(see Supplementary Methods for further inclusion criteria). The study was approved by the 

University of Birmingham local ethics committee (ERN_160281AP1R) and was conducted in 

accordance with the Declaration of Helsinki.  
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Table 2-1 Demographic information 

 

Note: IQ was assessed with the Wechsler Abbreviated Scale of Intelligence-2 (WASI-2). SD refers to 

standard deviation. Training trials, IQ and gender did not significantly differ between the groups.  

 

General procedure  

In a single session, participants first provided written, informed consent; second, completed 

the Autism-Quotient (AQ) questionnaire [124], Toronto Alexithymia Scale- II (TAS-20)[280] 

and an Intelligence Quotient (IQ) test (two-item subscale of the Wechsler Abbreviated Scale 

of Intelligence - Second Edition (WASI-II) [281], administered by a trained researcher (1 

   Control group 

(n = 35) 

 

Mean (SD) 

ASD group 

(n = 28) 

 

Mean (SD) 

 

 

 

t (1,61) 

 

 

 

X2 (1, N = 

63) 

 

 

 

p 

      

Gender 

(n males: n females) 

 

22:13 13:15  

 

1.700 0.192 

 

Age 27.6 (10.5) 29.8 (10.2) 1.496  0.140 

      

Training trials 

 

178.86 (177.16) 222.86 

(133.19) 

1.090  0.280 

   
  

   

2-subscale IQ  107.51 (13.17) 108.679 

(16.31) 

0.314  0.755 

   
  

   

Autism-Quotient (AQ) 15.09 (8.42) 36.46 (8.08) 10.196  <0.001 

      

Toronto Alexithymia 

Scale- II (TAS-2) 

43.03 (10.67) 64.11(10.51) 7.842  <0.001 

      

ADOS total scores  7.64 (3.29)    
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hour); participants finally completed the serial reaction time task (1 hour) followed by ADOS 

administration (1-2 hours). All interviews were filmed for validation and training purposes.  

Serial reaction time task 

Participants completed a probabilistic serial reaction time task, widely used to investigate 

motor sequence-learning [277],[282]. Participants were instructed to place their index, middle, 

ring and little fingers on the keyboard letters V, B, N and M respectively. Subsequently, 

participants were required to learn associations between four imperative stimuli (IS) and four 

specific finger press actions (Fig. 1a) such that, for example, the appearance of a particular IS 

became associated with pressing the index finger down on the letter V. Participants were 

instructed to respond as quickly as possible to the IS. IS order followed different sequences 

depending on the condition, with predictable and unpredictable sequences presented in 

different blocks (Fig. 1b). A training period preceded the main experiment, in which 

participants learned associations between the IS and the specific actions. Subsequently 

participants completed seven blocks of 100 trials with self-paced rest intervals between the 

blocks. The task required approximately 45 minutes to complete in total. For the 

unpredictable condition, there was an equal probability of each IS appearing on each trial 

(Fig. 1c). For the easy-predictable condition the sequence followed a pattern in which IS 

order 1-2-3-4 occurred with high probability (Fig. 1d). For the difficult-predictable condition 

stimuli followed a more complicated pattern whereby the stimuli order 1-4-2-3 occurred with 

high probability. Surprising/unpredictable stimuli, which violated the sequence, occurred at a 

low probability, forcing participants to respond against their prior knowledge of the sequence, 

i.e., replace an expected action with an unexpected action. Surprising trials only occurred 

during the predictable blocks. The pattern or sequence in each block was not explicitly 

described. See Supplementary Methods for a more detailed task description and the 

participant instruction script.  

  



 8 

Figure 2.1 Behavioural task 

 

Figure 1. Behavioural task (a) Representation of a single trial. Participants observed a warning signal, 

followed by a fixation cross, then one of four different imperative stimuli (IS) and another fixation 

cross. Participants were advised to react as quickly as possible without sacrificing accuracy. Each of 

the four imperative stimuli corresponded to a specific finger press. (b) Overall task structure. Each 

participant completed seven blocks. Block order was the same for all participants. (c) Unpredictable 
condition. Transition matrix: All IS followed each other with equal probability, resulting in an 

unpredictable sequence. (d) Predictable condition. Sequences were generated from a first-order Markov 

sequence whereby numbers within the probability matrix represent the transition probabilities (16 

possible combinations) and determined the relationship between the IS on trial t and trial t-1. The easy-

predictable sequence is displayed here. Adapted from "Action reprogramming in Parkinson's disease: 

response to prediction error is modulated by levels of dopamine" by J. M. Galea et al, 2012, Journal of 

Neuroscience, 32(2):542-50. Copyright (2012) Galea et al.  

 

(c)

(a)

(b)

Figure 1

(a)

(d)

0.07 0.04 0.1 0.8

0.75 0.05 0.05 0.05

0.1 0.8 0.05 0.075

0.08 0.11 0.8 0.075
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Statistical analysis 

All analyses were conducted with MATLAB 2018b (MathWorks, Inc) and JASP (JASP 

Team, 2019). Raw and collated data and analysis scripts can be accessed at OSF 

(tiny.cc/58oxsz). RT was calculated as the time in milliseconds (ms) between onset of the IS 

and response (button press), for correct responses only. Since error rates and log-transformed 

error rates violated the assumptions for parametric testing (Levene’s test scores significantly 

differed from zero (p = 0.010)), Inverse Efficiency scores IES; [283] were instead used to 

account for possible speed-accuracy trade-offs. IES scores comprised the RT divided by 1 

minus the proportion of correct responses (Supplementary Methods). To test whether autistic 

and non-autistic adults exhibit comparable sequence learning, RTs and IES were averaged for 

each condition and submitted to repeated-measures analysis of variance (RM-ANOVA), with 

the within-subject factor condition (easy-predictable, difficult-predictable and unpredictable) 

and between-subjects factor group (ASD, control). To test whether autistic and non-autistic 

adults exhibit comparable surprise-related slowing, RTs were calculated separately for 

surprising (probability > 0.75) and unsurprising (probability < 0.75) trials (Fig. 1d) separately 

for the predictable easy and difficult conditions and submitted to a RM-ANOVA with within-

subject factors surprise (surprising, unsurprising), condition (easy-, difficult-predictable) and 

between-subjects factor group (ASD, control). To investigate whether the temporal evolution 

of surprise-related slowing differed between groups we modelled the effects of surprise on 

RT on a trial-by-trial basis. That is, alongside trial number and group, trial-by-trial surprise 

was included as a factor in a multiple regression analysis with RT as the dependent variable. 

The (trial specific) surprise of observing IS type i on trial t after experiencing IS type j on 

trial t-1 was calculated as the negative log of the IS pair’s (ji) predicted joint probability, with 

the joint probability of an IS pair on a given trial estimated from the number of previous 

occurrences of this IS pair on the preceding trials. Surprise thus represented the 

unexpectedness of the current IS (i) given the previous IS (j) based on the number of previous 

trials in which j preceded i [277] (Supplementary Methods). Multiple regression was performed 

for each participant for each condition, with standardised β values then averaged across all 

participants within each group.  

 

A threshold of p<0.05 was used for all statistical tests, with significant effects investigated 

with Bonferroni-corrected post-hoc t-tests. For all analyses, Bayesian statistical testing was 
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implemented as a supplement to null hypothesis significance tests. Bayes inclusion factors 

(BFincl) were included for all RM-ANOVAs, representing the evidence given the observed 

data for including a certain predictor in the model (see Supplementary information for a full 

description of Bayesian analyses). For example, an inclusion Bayes factor for an effect of 3 

for a given predictor i can be interpreted as stating that models which include the predictor i 

are 3 times more likely to describe the observed data than models without the predictor. 

An a priori power analysis was carried out, based on research by Galea and colleagues [277]. 

Results showed that, based on an achieved effect size of η2p = 0.193, a minimum sample size 

of 22 participants per group was required. We complemented our a priori power analysis 

with post hoc sequential Bayesian testing. For our main effect of interest (surprise-related 

slowing), we continued data collection (and accumulation of evidence) until we had sufficient 

certainty about the absence of a group difference, i.e., the relative evidence for H0 plateaued 

above 3 (Suppl. Figure 1), representing moderate evidence for no group differences. 

 

Results  

Autistic and non-autistic adults exhibit comparable sequence learning  

To test our hypothesis that we would observe reduced sequence learning in the autistic group, 

as indexed by a reduced RT difference between predictable and unpredictable conditions 

relative to the control group, we submitted RTs to a RM-ANOVA with within-subject factor 

condition (easy-predictable, difficult-predictable, and unpredictable) and between-subjects 

factor group (ASD, control). This revealed a significant main effect of condition (F(2,122) = 

28.804, p < 0.001, η² = 0.028, BFincl = 1.862e+8) (Fig. 2a), no main effect of group (F(1,61) = 

0.518, p = 0.474, η² = 0.008, BFincl = 0.423) and no interaction between condition and group 

(F(2,122) = 0.429, p = 0.652, η² = 0.000, BFincl = 0.182). Post-hoc Bonferroni-corrected t-

tests demonstrated that RT was significantly lower for the predictable-easy (mean (standard 

error) �̅� (𝜎�̅�) = 660.350 (11.438)) compared to the predictable-difficult (�̅� (𝜎�̅�) = 697.318 

(12.062), t(61) = -6.707, p < 0.001, d = -0.845) and unpredictable conditions (�̅� (𝜎�̅�) = 

687.624 (11.316), t(61) = -5.156, p < 0.001, d = -0.65). Although RTs for the unpredictable 

and predictable-difficult conditions differed - with lower RTs for the unpredictable condition 

– this difference did not reach statistical significance (t(61) = 2.018, pbonf = 0.137). In sum, 

we observed lower RTs for the predictable-easy compared to the unpredictable condition, 
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suggesting that sequence learning enabled participants to speed their responses. However, we 

observed no significant speeding for the predictable-difficult condition, thus raising the 

possibility that the sequence was too challenging for participants to learn. Finally, the lack of 

a main effect of group suggested that the groups do not differ with respect to sequence-

learning. This result was strengthened by Bayesian independent t-tests, with the BF indicating 

moderate evidence for H0 for the easy (BF01 = 3.193) and anecdotal evidence for the difficult 

(BF01 = 2.371) predictable conditions (Figs. 3a-3b).  

 

Figure 2.2 Reaction time and Inverse Efficiency Scores 

 

Figure 2. (a) Reaction time (RT). A significant difference in RT was observed between both the easy-

predictable condition and the difficult-predictable and unpredictable conditions. ASD and control 

groups did not significantly differ in RT for any of the three conditions. (b) Inverse Efficiency Scores 

(IES). IES scores varied as a function of condition; no differences between groups were observed. 

Data points indicate individual participants. The mean is the thick black horizontal line and 1 standard 

error of the mean (SEM) is represented by the shaded box around the mean. Standard deviation (SD) 

is the shaded region. 

  

(a) (b)
Figure 2

* *

* *
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Figure 2.3 Bayesian statistical testing 

 

 

Figure 3. Bayesian statistical testing. The Bayes factor (BF01) indicates the evidence for the null 

hypothesis of no difference between groups. The density distribution displays the prior and posterior 

distribution for the population effect size, with the median effect size estimated, and a 95% credible 

interval which contains the median effect size. (a) Sequence learning – easy: BF01 = 3.193, meaning 

that the data are over three times more likely under H0 and provide moderate support for null hypothesis 

of no difference between groups (b) Sequence learning – difficult: BF01 = 2.371, meaning that the data 
are over two times more likely under H0 and provide anecdotal support for the null hypothesis of no 

difference between groups. (c) Bayesian paired t-test for IES scores in the predictable difficult condition 

compared with the unpredictable condition. BF01 = 0.625, meaning that the data are more likely under 

H1, providing weak support for the alternative hypothesis of a difference between conditions. (d) 

Surprise-related slowing – easy condition. BF01 = 3.778, meaning that the data are over three times more 

likely under H0 and provide moderate support for null hypothesis of no difference between groups.  

 

A RM-ANOVA with within-subject factor condition (easy-predictable, difficult-predictable 

and unpredictable) and between-subjects factor group (ASD, control) and IES as dependent 

(a) (b)Sequence learning – easy Sequence learning – difficult

(c) Surprise-related slowing – easy (d)IES scores
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variable revealed a main effect of condition (F(2,122) = 25.078, p <0.001, η² = 0.036, BFincl = 

1.585e+7) and no main effect of group (F(1,61) = 0.064, p = 0.801, η² = 0.001, BFincl = 

0.509) or group by condition interaction (F(2,122) = 0.377, p =0.687, η² = 0.001, BFincl = 

0.137) (Fig. 2b). Post-hoc tests demonstrated that IES were significantly lower for the 

predictable-easy (�̅� (𝜎�̅�) = 685.502 (12.222)) compared to both the unpredictable (�̅� (𝜎�̅�) = 

719.985 (12.938), t(61) = -5.357, p < 0.001) and the predictable-difficult condition (�̅� (𝜎�̅�) = 

734.790 (15.226), t(61) = -5.942, p <0.001). IES for the unpredictable compared to 

predictable difficult conditions did not significantly differ (t(61) = -2.155, p = 0.099, Cohen’s 

d = 0.271). However, a Bayesian paired t-test provided weak evidence that IES for the 

unpredictable blocks differed from the predictable difficult condition (BF01 = 0.625, Fig. 3c). 

Thus, RT, after correcting for number of errors, was higher during the predictable difficult, 

relative to the unpredictable, condition adding support for a lack of sequence learning during 

the difficult-predictable condition. The lack of a main effect of group, or interaction between 

group and condition suggests that the groups did not differ in the ability to execute the 

appropriate action. In sum, we did not find evidence to support the hypothesis that, relative to 

controls, autistic adults exhibited decreased sequence learning. 

 

Autistic and non-autistic adults exhibit comparable surprise-related slowing  

To test our second hypothesis that, relative to non-autistic controls, autistic participants 

would exhibit a reduction in surprise-related slowing - as indexed by a reduced RT difference 

between surprising and unsurprising trials - we submitted RTs to a RM-ANOVA with within-

subject factors surprise (surprising trials, unsurprising trials) and condition (easy-predictable, 

difficult-predictable), and between-subjects factor group (ASD, control). We observed main 

effects of surprise (F(1,61) = 34.144, p < 0.001, η² = 0.017, BFincl = 1.166e+13), condition 

(F(1,61) = 34.144, p < 0.001, η² = 0.017, BFincl = 4.526e+13) and a surprise by condition 

interaction (F(1,61) = 72.325, p < 0.001, η² = 0.022, BFincl = 3.714e+8). Post-hoc 

comparisons revealed an increase in RT for surprising compared to unsurprising trials for the 

easy-predictable (surprising: �̅� (𝜎�̅�) = 703.782 (11.744), unsurprising: �̅� (𝜎�̅�) = 649.278 

(11.575), mean difference = 54.340; t(61)= 9.850, p < 0.001, d = 1.241) (Fig. 4a) but not the 

difficult-predictable condition (surprising: �̅� (𝜎�̅�) = 694.875 (12.011), unsurprising: �̅� (𝜎�̅�)= 

697.835 (12.241), mean difference = -3.656; t(61) = -0.663, p = 1.000, d = -0.083) (Fig. 4b). 

Crucially, no main effect of group (F(1,61) = 0.493, p = 0.485, η² = 0.008, BFincl = 0.326), 
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surprise by group (F(1,61) = 0.797, p = 0.375, η² = 0.000, BFincl = 0.267), condition by group 

(F(1,61) = 0.795, p = 0.980, η² = 0.000, BFincl = 0.199) or surprise by condition by group 

(F(1,61) = 0.493, p = 0.485, η² = 0.000, BFincl = 0.088) interactions were observed. To ensure 

that the lack of group difference could not be attributed to differences in baseline speed, we 

re-ran the analysis with baseline-corrected mean RT scores. This did not change the observed 

pattern of results, with no main/interaction effect(s) of group observed (all p-values > 0.05, 

all η² < 0.001, all BFincl < 1). Indeed, no differences in motor execution overall were observed 

between groups (Supplementary Results).  

Figure 2.4 Surprise-related slowing 

 

Figure 4. Surprise-related slowing (a) Easy-predictable condition. Data represent the difference 
between the mean reaction time (RT) for the unpredictable conditions and RT for surprising (orange) 

and unsurprising (green) trials. RT was significantly greater for surprising compared to unsurprising 

trials. (b) Difficult-predictable condition. There was no difference in RT between surprising and 

unsurprising trials in the difficult condition. No differences between the ASD and control group were 

observed in either condition. Data points indicate individual participants. The mean is the thick black 

horizontal line and 1 standard error of the mean (SEM) is represented by the shaded box around the 

mean. Standard deviation (SD) is the shaded region. 

 

Surprise-related slowing scores for the two groups in the easy-predictable condition were 

compared using a Bayesian independent t-test. The BF01 was equal to 3.778, indicating the 

(a) (b)

Figure 4

*

*
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data were approximately 3.8 times more likely under the hypothesis that groups did not differ 

with respect to surprise-related slowing and providing moderate evidence for H0 (Fig. 3d). 

Finally, although IES scores varied significantly across condition (F(1,61) = 16.538, p < 

0.001, η² = 0.011, BFincl = 106.780), surprise (F(1,61) = 43.141, p < 0.001, η² = 0.031, BFincl 

= 1.905e+7) and condition by surprise (F(1,61) = 56.538, p < 0.001, η² = 0.026, BFincl = 

2.649e+7), no main/interaction effect(s) of group were observed (all p-values > 0.05, all η² < 

0.001, all BFincl < 1) (Suppl. Figs. 2a-2b).  

 

Trial-by-trial surprise did not differ between groups  

The observed results demonstrated typical surprise-related slowing in autistic individuals. 

However, the above analyses collapse data across all trials within each condition and cannot 

detect differences in the temporal progression of surprise-related slowing, nor reveal 

differences between the groups in the speed of acquisition of surprise-related slowing. Trial-

by-trial surprise was therefore included as a predictor in a multiple regression analysis, 

alongside trial number and condition. Standardized beta values (β) for the main and 

interaction effect(s) of predictors (Table 2) were compared using one-sample t-tests to 

determine if they were significant predictors of RT. β values that significantly differed from 

zero were averaged across each group and compared using standard and Bayesian 

independent sample t-tests. If differences in the temporal progression of surprise-related 

slowing existed between groups, we would expect to observe a significant difference in β 

values relating to the interaction between surprise and trial number. However, no differences 

in β values were observed between groups for this interaction (t(61) = 1.130, p = 0.263, d = 

0.287, BF01 = 2.260), nor for β values for condition (t(61) = -0.022, p = 0.983, d = -0.005, 

BF01 = 3.868), trial-by-trial surprise (t(61) = 0.905, p = 0.369, d = 0.229, BF01 = 2.739) or 

surprise by condition (t(61) = 1.191, p = 0.238, d = 0.302, BF01 = 2.130). In summary, no 

differences in the temporal evolution of surprise-related slowing were observed between 

groups.  
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Table 2-2 Predictors of reaction time 

Note: Standardized beta values (β) are displayed for significant and non-significant predictors 

of reaction time. 

 

ADOS severity scores as a predictor of surprise-related slowing and sequence-learning 

Focusing specifically on the easy-predictable condition, where surprise-related slowing and 

sequence-learning effects were observed, correlation analysis showed that ADOS scores were 

not a significant predictor of surprise-related slowing (r = -0.324, F(1,26) = 3.042, p = 0.093) 

or sequence-learning (r = 0.070, F(1, 26) = 0.129, p = 0.723). Furthermore, neither AQ nor 

TAS scores were significant predictors of behavioural measures (Supplementary Results). 

 

Discussion  

Here we investigated the underutilisation of priors in ASD in the context of a motor 

sequence-learning task. In predictable conditions, actions largely followed a pre-defined 

 Standardized β 

values 

Standard 

Error β 

values 

t (62) p Cohen’s d 

Time 

 

1.430 1.776 0.805 0.424 0.101 

Condition 

 

18.793 2.821 6.663 < 0.001*** 0.839 

Surprise 

 

9.707 1.598 6.076 < 0.001*** 0.766 

Time x 

condition 

0.026 2.247 0.012 0.991 0.001 

Time x 

surprise 

 

1.116 1.120 0.996 0.323 0.126 

Condition x 

surprise  

 

-10.432 1.414 -7.3766 < 0.001*** -0.929 

Time x 

condition x 

surprise 

1.612 1.300 1.239 0.220 0.156 
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sequence with infrequent surprising violations of this sequence. In the unpredictable 

condition, there was no sequence to learn. In line with Bayesian accounts of autism, we 

hypothesised that autistic adults would show a more efficient response to surprising events at 

a cost to sequence learning, indexed by a reduction, relative to non-autistic controls, in 

surprise-related slowing alongside decreased sequence-learning. Contrary to our predictions, 

there were no significant differences between autistic and non-autistic adults in terms of 

surprise-related slowing or sequence learning. Furthermore, Bayesian statistics provided 

anecdotal to moderate evidence to support the conclusion that the groups were comparable 

with respect to both measures.  

The lack of a difference between the groups departs from the predictions of Bayesian 

accounts of autism. One potential explanation for this conflict is that our sample might not be 

representative of the populations typically used to test these accounts. In opposition to this, 

we argue that our sample is comparable in terms of age, IQ and average ADOS score to a 

number of studies that have found evidence in support of the underutilization of priors in 

ASD [100],[107],[108],[173]. Thus, suggesting that the level of autism symptomatology, age or IQ of 

our participants is unlikely to explain the observed null results, though we note that 

comparison between studies is challenging due to the use of different paradigms. In addition, 

Bayesian analyses revealed that we had anecdotal evidence to support the null hypothesis that 

there is no correlation between ADOS scores and the extent of surprise-related slowing. This 

suggests that recruiting a more diverse sample is unlikely to alter the observed results. 

Indeed, if the relationship between ADOS and surprise-related slowing is linear, we would 

not expect different results with a broader sample. Nevertheless, we acknowledge that this 

claim requires empirical testing since at present we have only anecdotal evidence for the lack 

of a relationship between ADOS and surprise-related slowing and, furthermore, it is possible 

that a non-linear relationship exists (e.g., there could be a step change in surprise-related 

slowing with increasing ADOS score). Consequently, we can confidently conclude, based on 

our Bayesian and frequentist analyses that in our sample (with age, AQ and ADOS ranges of 

18-57, 17-48 and 2-14 respectively) there is no evidence of underutilisation of priors. Further 

empirical testing would be necessary to be confident that this conclusion extends to samples 

of the autistic population with different characteristics. 

A further potential explanation for the conflict between the current results and the predictions 

from Bayesian accounts of autism is that our task does not really index the process of 

evaluating and updating priors predicted by Bayesian accounts of autism. The motor 
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sequence featured in the easy-predictable condition is easily executable and could potentially 

be explicit in nature. Some authors have argued that explicit motor learning relies less on 

priors and prediction errors and more on target-driven error derived from an explicit strategy, 

although results thus far derive from sensorimotor adaptation tasks [284],[285]. However, the 

current paradigm employed a probabilistic sequence learning structure, frequently used as a 

measure of implicit learning, whereby a predictable sequence is frequently interspersed with 

“surprising” stimuli [286]. Such surprising trials decrease explicit knowledge of the sequence 

in comparison to a fixed or deterministic sequence [287],[288]. Additionally, Galea and 

colleagues [277],[282], demonstrated that the (dopamine-dependent) prediction error process is 

central to this task, observing increased surprise-related slowing in the context of the same 

motor sequence learning task in adults with Parkinson’s disease when off- compared to on-

medication [277] and under dopamine antagonism in healthy adults [282]. Consequently, we 

believe that our task provides a good measure of the utilisation of priors. 

One might ask whether the logical conclusion from our results is that Bayesian accounts of 

autism do not apply in the motor domain. Indeed, research relating to Bayesian accounts of 

autism has primarily focused on sensory/perceptual processing [58],[103],[119],[271],[289], leading to 

the possibility that Bayesian accounts of autism are restricted to these domains. However, 

Bayesian accounts have been proposed as a general principle of information processing 

across various domains including motor function [157]. Furthermore, attenuated priors have 

been suggested to account for difficulties in movement preparation and planning in autism [78] 

and reduced slowing for unexpected movements has been demonstrated for autistic children 

relative to controls [147],[168]. Thus, there is little reason to believe that Bayesian accounts 

would be restricted to the sensory/perceptual domain. 

This lack of a theoretical or empirical basis to support the conclusion that Bayesian accounts 

of autism do not extend to the motor domain forces us to consider alternative explanations. 

For example, our results clearly contrast with recent research showing attenuated surprise-

related slowing (albeit in the context of learning auditory-visual as opposed to motor-motor 

associations) in autistic adults [100]. However, a notable difference between the current 

paradigm and the one employed by Lawson and colleagues is that the latter concerned a 

learning environment containing multiple levels of uncertainty including, probabilistic 

uncertainty (i.e. the auditory stimulus could be weakly, strongly or not at all predictive of the 

visual stimulus) and crucially, variation in the uncertainty of the learning environment itself 

(i.e. “environmental volatility”) such that some periods featured frequent reversals in learned 
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associations, and others rarely featured reversals. Lawson and colleagues argue that group 

differences in surprise-related slowing stem from an overestimation of environmental 

volatility. Results were in accordance with recent updates to predictive coding accounts of 

autism, which propose that, while general learning is unaffected, meta-learning (learning 

about learning, as when one learns about the statistics (e.g. volatility) of a learning 

environment), is atypical [12],[77],[78]. The current paradigm contained only probabilistic 

uncertainty (i.e., the current action could be weakly or strongly predictive of the action in the 

subsequent trial), with no requirement to learn higher-order statistics about the environment. 

Therefore, it is possible that our task did not tap into the (meta-learning related) predictive 

processes that are thought to be a key point of difference between autistic and non-autistic 

individuals. Work from Manning and colleagues [125], however, casts doubt on this potential 

explanation. Using a probabilistic reward-learning paradigm which demanded learning of 

environmental volatility, Manning and colleagues demonstrated that autistic children 

successfully adapted their learning rate to suit the level of environmental volatility. To 

investigate whether the current (null) results are due to a lack of variation in environmental 

uncertainty, an adapted version of our paradigm that demands learning about environmental 

volatility - such as that developed by Marshall et al. [290] - could be employed.  

Finally, contrasting findings could be related to different networks of brain regions recruited 

across different tasks. Sequence learning tasks have relatively low motor demands and do not 

require the acquisition of a novel movement, thus they predominantly rely on connections 

within the motor cortical and subcortical regions [291]. In contrast, several tasks in which 

performance is atypical in ASD require integration between distinct brain regions [100],[108] and 

thus rely on long-range connectivity. Neuroimaging studies have linked autism to alterations 

in the coordinated activity of distant brain regions [292]–[294]. Indeed, autism has been 

associated with underconnectivity for long-range cortico-cortical connections [295],[296] and 

theoretical accounts have linked this to the underutilisation of priors [297],[298]. Furthermore, 

with respect to motor function, Gowen and Hamilton [2] have argued that motor learning per 

se is not atypical in autism, however, complications arise when cross-modal integration, 

which relies on long-range connectivity, is required. It is, therefore, possible that the 

influence of top-down priors is predominantly attenuated in tasks that rely on long-range 

connectivity between cortical regions (e.g., [100],[299],[300]). 

In summary, after considering both frequentist and Bayesian statistics, we did not find 

evidence for differences in surprise-related slowing or sequence learning between autistic and 
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non-autistic adults in a motor sequence learning task. Our results fail to provide evidence in 

support of straightforward predictions from Bayesian accounts of autism in the context of 

motor learning. Consequently, these data highlight that more nuanced Bayesian accounts of 

autism (potentially considering the role of factors such as meta-learning or long-range 

connectivity demands) are required if such accounts are to be extended to the domain of 

motor learning. 
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Chapter 3:  Intact social reward learning in autistic adults  

The first empirical chapter did not find predictive processing differences in autistic adults in 

the motor domain. This provides preliminary evidence suggesting that predictive accounts do 

not extend beyond sensory domains, and/or are restricted to paradigms where volatility is 

manipulated. To test these ideas, this chapter presents a study investigating whether autistic 

adults show atypical social or individual learning or atypical adjustment of learning rate to 

the current environmental volatility.  

Supplementary materials for this chapter are in Appendix 2.  
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3.1 Introduction  

Socio-communicative atypicalities are a core feature of autism spectrum disorder (ASD) and 

a prerequisite for diagnosis [1]. The development of socio-cognitive differences in autistic 

children has been hypothesised to stem from reduced attention to and/or motivation for social 

stimuli [7],[36],[301],[302]. These could lead to reduced or atypical social learning, and subsequent 

downstream changes in social cognition, i.e., atypicalities in social cognition could develop 

from differences in the social learning process itself. It is therefore of high importance to 

investigate whether social learning is atypical in autistic individuals, with research into social 

learning in autism having the potential to result in new therapies or learning aids [10].  

Recent Bayesian and predictive coding accounts of autistic cognition and learning have 

described core symptoms as stemming from an imbalance in the precision weighting of 

incoming and prior information, leading to a reduction in the ability to accurately predict 

upcoming events and to utilise these predictions during learning [11]–[13],[50],[53]. These accounts 

result in testable predictions, such as an impairment in adjusting the weight of prediction 

errors (PEs) during learning [12] or an overreliance on incoming information [13]. In theory, 

these accounts describe common computational mechanisms underpinning autistic 

processing, i.e., domain-general learning atypicalities. Thus, atypicalities in predictive 

processing should be observable with regard to social learning. Indeed, some studies find 

evidence for atypical predictive processing in the broader social domain. For example, 

autistic individuals show atypical use of prior predictions both when using social information 

to predict action sequences of other individuals [173] and when interpreting the goals of actions 

within a social context [174].  

When examining reward learning more generally, evidence has been found for atypical 

response to reward in autistic populations [31],[32],[37], particularly when learning from social 

(e.g. emotional faces) as opposed to non-social (monetary/objects) rewards [35],[123]. However, 

social learning (learning from other individuals) has not been thoroughly investigated in 

autism and there is limited research directly examining social learning from a predictive 

perspective. Preliminary evidence for atypical social learning in autism comes from research 

reporting that autistic traits were correlated with difficulty in integrating social information 

during learning. Individuals with high autistic traits (AQ scores) showed a reduction in the 

ability to accurately utilise social information to modulate individual learning, with this 

deficit magnified during volatile phases. However, this research was carried out in a non-
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autistic population [188]. Hence with respect to social learning in a clinical group, it is still 

unclear as to whether difficulties in integrating social information are present during learning.  

Aside from difficulties in social cognitive abilities, autistic individuals demonstrate 

intolerance to uncertainty and difficulty in modulating responses to unexpected events [83],[84]. 

In line with this, predictive coding accounts of autism propose that autistic individuals will 

have increased difficulty learning when the environment is unpredictable, with this deficit 

magnified when processing complex, rapidly changing cues such as social information 

[12],[13],[50],[76]. During learning, the precision of PEs should vary depending on the underlying 

environment, with PE precision (and therefore learning rates) high in volatile environments, 

as PEs are signalling informative changes in reward-outcome contingencies. In stable 

environments, however, learning rates should be low, as discrepancies are likely due to noise 

[67],[88]. Therefore, if flexible adjustment of precision is impaired in autism, autistic 

individuals should show difficulty in flexibly adjusting their learning rates to the 

environmental context [12],[77].  

Empirical work has shown mixed results. First, altered learning was observed in autistic 

participants when stimulus-outcomes cues were rapidly changing (i.e., in a volatile 

environment), coupled with decreased behavioural measures of surprise in response to 

unexpected events [100]. Similar results were found using a decision-making task in 

combination with neuroimaging, to track neural correlates of PEs when predicting rewards 

for oneself (self) and for another individual (other-related PEs). Participants were required to 

indicate if the outcome was expected or unexpected, for both self and other conditions. The 

autistic group reported more probable events as unexpected and less probable events as 

expected, suggesting atypical learning of the underlying regularities of the learning 

environment, with this difference particularly pronounced when taking the perspective of 

another individual. In addition, other-related PE signals were observed in specific neural 

regions in the control, but not in the autistic group [187]. In contrast, using a probabilistic 

reward learning paradigm, Manning and colleagues reported no differences between autistic 

and non-autistic children when adapting learning rates to environmental volatility [125]. 

Finally, Robic et al. used a decision-making task to investigate the influence of social and 

non-social information on choice in an environment where volatility was manipulated. On 

each trial, a cue representing social (a video of an actor visually indicating an option) or non-

social advice (an arrow indicating an option) was given, which varied in its validity. Autistic 

participants showed impaired performance relative to non-autistic participants during volatile, 
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but not stable phases, with a stronger behavioural deficit observed with regard to social cues 

[101].  

Taken together, preliminary research suggests that social learning may be atypical in autistic 

individuals, particularly under volatile conditions. However, most paradigms investigating 

social learning employed overtly social stimuli, such as pictures or videos of faces 

[35],[101],[123],[126],[188]. Thus, introducing confounds, since both atypical processing of, and 

attention to, explicitly social stimuli have been observed in autistic populations [303]–[308]. 

Therefore, extant studies cannot determine whether differences in the use of social 

information in autistic individuals stem from differences in processing/ attending to social 

cues or differences in social learning per se. Considering the above, the current study 

employed a paradigm where social information was presented abstractly through cues, with 

no requirement for face or biological motion processing.  

We examined computational learning parameters in social and individual learning 

simultaneously in autistic adults and a matched group of non-autistic control participants. An 

adapted version of a probabilistic social learning task (SLT) was employed, allowing 

indexing of learning in stable and volatile environments, separately for social and individual 

information [93],[95],[309]. Learning rates were modelled using an adapted Rescorla-Wagner 

(RW) learning model [24], which allowed social and individual learning rates to be estimated 

simultaneously, separately for volatile and stable phases. Adjustment to volatility was 

calculated as the increase in learning rate during volatile, versus stable, conditions. To 

supplement computational analyses, an analysis of win-stay lose-shift scores was conducted.  

We hypothesised that, despite the lack of a requirement for face/biological motion processing 

in the current paradigm, autistic individuals would show deficits in social learning, relative to 

the non-autistic group. Thus, we predicted a group by information interaction for learning 

rates, with reduced learning from social information in the autistic group. This pattern of 

results would imply that autistic individuals show social-specific learning difficulties that 

cannot be explained by the complex/unpredictable nature of social stimuli or impaired 

face/biological motion processing. We further hypothesised that the autistic group would 

show atypical adaptation to volatility, indexed by the difference in learning rates in stable, 

versus volatile phases, and that this would be more pronounced with regard to social 

information, in line with previous research reporting atypical social learning under volatile 
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conditions. Specifically, we predicted a group by volatility and/or a group by information by 

volatility interaction.  

 

3.2 Methods 

3.2.1 Participants 

Subjects (n = 73, aged 18 to 70 years, mean (SD) = 37.3 (13.1); 7 female) were recruited 

from a database held by the Autism Research Groups at City University London and Oxford 

University, and non-autistic control participants were recruited online. All subjects provided 

written, informed consent to participate. Autistic participants had previously been diagnosed 

by a UK National Health Service (NHS) or privately registered independent clinician, 

according to the DSM ([1]) or ICD-10 [278] criteria. All participants were reimbursed for their 

time (at a rate of £10 per hour) and travel expenses. ASD diagnosis was confirmed with 

administration of the Autism Diagnostic Observation Schedule, second edition ADOS-2; [279] 

by a trained researcher, using the current standard scores for a diagnosis of ASD. The study 

was approved by the City University London local ethics committee and was conducted in 

accordance with the Declaration of Helsinki. Autistic (ASD) and non-autistic control (CTRL) 

groups were matched on IQ and gender (Table 3.1).  

 

3.2.2 General Procedure 

Participants first provided written, informed consent; second, completed the Autism-Quotient 

(AQ) questionnaire [124] and the vocabulary and reasoning subscales of the WAIS-IV (if not 

already on file in the database), administered by a trained researcher (1 hour); finally, 

participants completed 120 trials of the social learning task (SLT) (approx. 35 minutes). 

Social learning task 

On each trial participants had to make a choice between a blue and a green shape, with 

correct choices rewarded (Fig. 3.1A). The probability of reward (individual reward) 

associated with each shape (blue or green) varied throughout the task, requiring participants 

to track the changing probabilities of either shape being correct. Participants were informed 

that the task followed phases, with sometimes the blue, and sometimes the green shape more 
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likely to result in reward, and that phases could change at any time. In addition to the 

individual reward history, a second source of information was available to participants: on 

each trial, a red frame surrounded one of the shapes. Participants were informed that this 

frame represented ‘social’ advice: the most popular choice made by a group of people, who 

had previously completed the task. The probability of the social advice also varied 

throughout. Participants received reward feedback in the form of an outcome indicator, a 

green or blue box in the middle of the screen, directly indicating which shape (blue/green) 

was correct. Participants could then infer from reward feedback whether the social 

information (the red frame) was correct or incorrect. Participants were randomly allocated to 

one of four different groups, with group membership determining the probabilistic schedule 

underpinning both reward outcomes (blue/green) and the veracity of the group advice 

(correct/incorrect), with differing stable and volatile phases for each (Fig. 3.1B). For stable 

phases, the probability of reward and “advice” was constant and during volatile phases, 

probabilities changed every 10-20 trials. The randomisation schedule for group 1 was the 

same as in the task developed by Behrens et al. [88]. For groups 2, 3, and 4, the schedules were 

inverted and counterbalanced versions of schedule 1 (see Appendix 2.1 for a full description 

of the behavioural task and randomisation schedules).  
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Figure 3.1 Behavioural task 

 

Figure 3.1. Behavioural task. A. Participants selected between a blue and a green box to gain points. 

On each trial, the blue and green boxes were presented first. After 1-4 seconds (s), one of the boxes was 

highlighted with a red frame, representing the social information. After 0.5–2s, a question mark 

appeared, indicating that participants were able to make their response. Response was indicated by a 

silver frame surrounding their choice. After a 1-3s interval, participants received feedback in the form 

of a green or blue box in the middle of the screen. B. The probability of reward varied according to 

probabilistic schedules, including stable and volatile blocks for both the probability of the blue 

box/frame being correct (top) and the probability of the red (social) box/frame being correct (bottom).  
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Table 3-1 Demographic information 

Note: IQ was assessed with the Wechsler Abbreviated Scale of Intelligence-2 (WASI-2). Depression 

was indexed with the Becks Depression Index (BDI). ADOS-2 refers to the Autism Diagnostic 

Observation Schedule, second edition. CTRL refers to the non-autistic control group, ASD refers to the 

autistic group. Due to missing data, BDI and ADOS could not be compared between groups. SD refers 
to standard deviation. IQ and gender did not significantly differ between the groups. Age and AQ 

differed significantly between groups. 

 

 

 

n = 64   

CTRL group 

(n = 35) 

 

Mean (SD) 

ASD group 

(n = 29) 

 

Mean (SD) 

 

 

 

t (1,63) 

 

 

 

X2 (1, N = 

64) 

 

 

 

p 

      

Gender 

(n males: n females) 

 

31:4 26:3  

 

  0.019 0.890 

 

      

Age 34.8 (12.9) 41.4 (13.2) -2.031  0.047 

      

   
  

   

2-subscale IQ  110.727 (13.588) 114.481 (13.704) -1.061  0.293 

   
  

   

Autism-Quotient (AQ) 17.382 (6.893) 36.276 (7.769) -10.228   <0.001 

      

BDI 6.333 (5.861) 15.733 (9.369)    

      

ADOS-2 total scores  9.760 (2.934)    
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3.2.3 Behavioural measures 

Accuracy and Reaction Time 

Accuracy was defined as the proportion of correct responses. Reaction time (RT) was 

calculated as time from stimulus presentation to response in milliseconds (ms).  

Win-stay, lose-shift analysis 

Win-stay, lose-shift scores were calculated separately for individual and social information. 

For individual learning, a win-stay was counted if the participant chose the correct answer on 

the previous trial and if their response on the current trial was the same (e.g., pick blue and 

win, and subsequently pick blue again). A trial was denoted as a lose-shift if the participant 

had lost on the previous trial and subsequently shifted their response. For the social 

information, a trial was counted as a win-stay if the participant correctly conformed to or 

disregarded the group choice and if they were correct, repeated this decision on the next trial 

(e.g., go with the group and win, and subsequently chose to go with the group again). A lose-

shift trail was counted if the participant wrongly conformed to or disregarded the group’s 

choice and then made the opposite decision on the next trial. Win-stay and lose-shift trials 

were summed and divided by the total number of win/lose trials, separately for volatile and 

stable trials.  

Data pre-processing 

Participant data was excluded based on the following: accuracy under chance level (< 50%), 

choose the same side or colour on over 80% trials or conformed to the group answer on over 

80% of trials, incomplete datasets (less than 120 trials completed), resulting in a final sample 

of n = 64. As in the previous chapter, we supplemented all analyses with Bayesian statistical 

analyses (Appendix 2.2). 

Computational model 

An adapted Rescorla-Wagner (RW) learning model [24] was fitted to participants’ choice data, 

providing estimates, for each participant, of 𝛼, β, and ζ. The learning rate (𝛼) controls the 

weighting of prediction errors on each trial. A high 𝛼 favours recent over (outdated) historical 

outcomes, while a low 𝛼 suggests a more equal weighting of recent and more distant trials. 𝛼 

was estimated separately for volatile and stable phases for both individual and social learning, 

resulting in four 𝛼 estimates: 𝛼individual_volatile, 𝛼individual_stable, 𝛼social_volatile, 𝛼social_stable. 𝛽 captures 



 37 

the extent to which learned probabilities determine choice, with a larger 𝛽 meaning that 

choices are more deterministic with regard to the learned probabilities. ζ represents the 

relative weighting of primary and secondary sources of information, with higher values 

indicating a bias towards the over-weighting of social relative to individual information (see 

Appendix 2.3 for full model details and Appendix 2.4 for model comparison and validation 

methods).  

Estimated 𝛼 values were compared to optimal 𝛼 estimates. An optimal learner model, with 

the same architecture and priors as the model employed in the current task, was fit to 100 

synthetic datasets, resulting in average optimal learning rates: 𝛼optimal_primary_stable = 0.16, 

𝛼optimal_primary_volatile = 0.21, 𝛼optimal_secondary_stable = 0.17, 𝛼optimal_secondary_volatile = 0.19. Scores 

representing the difference between 𝛼 estimates and optimal 𝛼 scores were calculated (𝛼𝑑𝑖𝑓𝑓: 

𝛼 −  𝛼optimal). 

 

3.3 Results 

Accuracy and reaction time 

No differences were observed in accuracy between ASD (mean (standard error) �̅� (𝜎�̅�) = 

0.607 (0.009)), and CTRL groups (�̅� (𝜎�̅�) = 0.617 (0.009); F (1,56) = 0.676 p = 0.414, ηp
2 = 

0.012). Furthermore, accuracy was significantly greater than zero for both the autistic (t(28) = 

69.770, p <0.001, d = 12.956) and the non-autistic group (t(34) = 77.755, p <0.001, d = 

13.143)), suggesting both groups could successfully perform the task. Additionally, mean 

reaction time (RT) did not significantly vary between ASD (�̅� (𝜎�̅�) = 1.455 (0.130) and 

CTRL groups (�̅� (𝜎�̅�) = 1.240 (0.130); F (1,62) = 1.605, p = 0.210, ηp
2 = 0.025) (see 

Appendix 2.5 for extended statistical analyses).  

 

Analysis of computational modelling parameters  

Mathematical models of learning suggest that beliefs are updated in proportion to prediction 

errors – the difference between predicted and actual outcomes – which are modulated by a 

learning rate (𝛼). Previous work predicts either a difference between ASD and CTRL groups 

in the change in learning rate between volatile and stable environments, and/or a difference in 
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learning rate regarding social relative to individual sources of information during learning. To 

test these predictions, we compared estimated 𝛼 values from a RW model of learning, 

between individual and social information sources and for volatile and stable learning 

environments across groups. A RM-ANOVA was conducted on (square-root transformed) 𝛼 

values (see Appendix 2.5 for untransformed values), with factors volatility (stable, volatile), 

information source (individual, social), and group (ASD, CTRL). A significant main effect of 

information source was observed (F (1, 62) = 67.111, p < 0.001, ηp
2 = 0.520) with 𝛼individual 

(�̅� (𝜎�̅�) = 0.572 (0.018)) significantly higher than 𝛼social (�̅� (𝜎�̅�) = 0.349 (0.018)). No other 

main or interaction effects were observed. Importantly, and in contrast to our main 

predictions, no main or interaction effect(s) were observed involving the factor group (all p > 

0.05). Specifically, we did not observe an interaction between group and information source 

(F (1, 62) = 0.798, p = 0.375, ηp
2 = 0.013, BFexcl = 2.549) or group and volatility (F (1, 62) = 

0.867, p = 0.356, ηp
2 = 0.014, BFexcl = 3.989). Thus, higher learning rates were observed for 

individual information, with no differences between ASD and CTRL groups. 

Separate univariate ANOVAs were carried out to compare decision parameters 𝛽, controlling 

the extent to which learned probabilities determine behaviour, and , controlling the 

weighting of social relative to individual sources of information, across groups. No effect of 

group was observed on 𝛽 values (F (1, 62) = 0.133, p = 0.716, ηp
2 = 0.002, BFexcl = 3.411) or 

 values (F (1, 62) = 1.302, p = 0.258, ηp
2 = 0.021, BFexcl = 2.252). Results suggest that the 

relative weighting of social versus individual information did not differ between groups.  

 

Optimal learning rates 

We predicted differences between the ASD and CTRL groups in adjusting learning rate to 

current volatility, i.e., atypical adjustment of learning rate within the ASD group. However, 

analysis of learning rates did not find evidence to support our hypotheses, with no group 

differences observed. Furthermore, although our winning perceptual model included separate 

learning rates for volatile and stable phases, no main effect of volatility was found on 𝛼 

values overall (F (1, 62) = 0.293, p = 0.590, ηp
2 = 0.005), suggesting that participants, in both 

groups, were not modulating learning rate according to environmental volatility. Thus, raising 

the possibility that, although the chosen computational model was the (relative) best fitting 

model (Appendix 2.4), this model was not accurately describing participant behaviour. To 
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investigate this further, we compared our estimated 𝛼 values with optimal 𝛼 estimates, 

allowing measurement of how estimated learning rates differed from optimal values. Scores 

representing the difference between (untransformed) 𝛼 estimates and optimal 𝛼 scores (𝛼𝑑𝑖𝑓𝑓: 

𝛼 −  𝛼optimal) were submitted to one-sample t-tests, with difference scores for 𝛼individual_volatile 

(t(63) = 6.696, p < 0.001), 𝛼individual_stable (t(63) = 7.163, p < 0.001) and 𝛼social_volatile (t(63) = -

4.323, p < 0.001) significantly differing from optimal estimates (Fig. 3.2). 

 

Figure 3.2 Learning rate estimates minus optimal learning rates 

 

 

Figure 3.2. Learning rate estimates minus optimal learning rates. The dashed line indicates optimal α 

values. Data points indicate 𝛼 −  𝛼optimal values for individual participants (n = 64) across both groups, 

boxes = standard error of the mean, shaded region = standard deviation. 

 

Analysis of win-stay, lose-shift behaviour 

Learning rates significantly differed from optimal estimates, raising the possibility that 

participants were not using a reinforcement learning (RL) strategy. We subsequently 

performed a behavioural analysis of learning, comparing the use of win-stay, lose-shift 
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(WSLS) behaviour between groups. Win-stay (WS) behaviour measures how often a 

participant stays with the previously rewarded choice, while lose-shift (LS) behaviour 

involves shifting to the alternative option after a loss. In this task, the utility of a WSLS 

strategy varies according to environmental volatility. For example, increased WSLS is 

theoretically adaptive in volatile phases but maladaptive in stable phases where optimal 

performance depends on ignoring misleading probabilistic feedback. 

WSLS scores were calculated separately for individual and social, and volatile and stable 

phases and submitted to a RM-ANOVA with within-subjects factors volatility (stable, 

volatile), information source (individual, social) and index (win-stay, lose-shift), and 

between-subjects factor group (ASD, CTRL). WSLS scores were significantly correlated 

with learning rates for individual and social information for both volatile (individual: r = 

0.769, p < 0.001, social: r = 0.558, p < 0.001) and stable phases (individual: r = 0.818, p < 

0.001, social: r = 0.323, p = 0.009). A main effect of information source was observed (F 

(1,62) = 55.250, p < 0.001, ηp
2 = 0.471), with higher WSLS behaviour for individual (�̅� (𝜎�̅�) 

= 0.716 (0.012)) versus social information (�̅� (𝜎�̅�) = 0.571 (0.012)), as well as a main effect 

of index (F (1,62) = 110.273, p < 0.001, ηp
2 = 0.640), with significantly more win-staying 

(WS) (�̅� (𝜎�̅�) = 0.721 (0.010)) versus lose-shifting (LS) (�̅� (𝜎�̅�) = 0.571 (0.010)). As in our 

analysis of learning rates, no main effect of volatility was observed (p > 0.05). However, a 

significant group by index by volatility interaction was observed (F (1,62) = 4.936, p = 0.030, 

ηp
2 = 0.074), although analysis of effects using a Bayesian RM-ANOVA provided weak 

evidence against the presence of this interaction effect (BFexcl = 1.386). To unpack this 

interaction, separate RM-ANOVAs were conducted for WS and LS scores, collapsed across 

individual and social learning. For LS scores, no main/interaction effect(s) were observed (all 

p > 0.05). For WS scores, however, a significant volatility by group interaction was observed 

(F (1, 62) = 4.327, p = 0.042, ηp
2 = 0.065) (Fig. 3.3). Although holm-corrected post hoc 

comparisons did not reach significance (all pholm > 0.05), the pattern of results suggested that 

the ASD group were showing more WS behaviour in volatile (�̅� (𝜎�̅�) = 0.734 (0.015)) 

compared with stable phases (�̅� (𝜎�̅�) = 0.709 (0.015); t(64) = 1.098, pholm = 0.691, 

uncorrected p = 0.114). In contrast, the CTRL group were showing more WS in stable 

(�̅� (𝜎�̅�) = 0.741 (0.016)) compared with volatile phases (�̅� (𝜎�̅�) = 0.703 (0.014); t(64) = 

1.884, pholm = 0.386, uncorrected p = 0.127).  
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In sum, win-stay behaviour varied in response to volatility between groups, providing 

tentative support for altered response to volatility in the autistic group. There were no 

differences in response to social/individual information. 

 

Figure 3.3 Win-stay behaviour as a function of volatility 

 

Figure 3.3. Win-stay (WS) scores (collapsed across individual and social learning). WS varied as a 

function of volatility between ASD and CTRL groups. Data points indicate mean WS values for 

individual participants (n = 64) across groups, boxes = standard error of the mean, shaded 

region = standard deviation. 

 

3.4 Discussion 

The current study investigated learning from social versus individual information and 

adaptation to volatility in adults with autism. In line with predictive processing and Bayesian 

accounts of autism, we predicted that learning from social information would be atypical in 

the autistic group. In addition, we predicted that the autistic group would show reduced 

adaptation to volatility during learning, indexed by atypical adjustment of learning rates. In 

contrast to our predictions, results showed no evidence for group differences with respect to 

social, or indeed individual, learning. Furthermore, no evidence for atypical adaptation of 
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learning rate in response to changes in environmental volatility was observed in the autistic, 

compared with the non-autistic, group. Bayesian analyses provided moderate evidence in 

support of no differences between groups as a function of learning type or volatility. When 

we further explored the data, group differences were observed for win-stay scores: in contrast 

with the non-autistic group, who showed more win-staying in stable, as compared to volatile 

phases, autistic participants showed the opposite pattern of behaviour. Results suggest subtle 

differences in response to volatility in autism; in a volatile environment, while non-autistic 

participants became more flexible with regard to repeating a previously rewarded response or 

shifting responses after a loss, autistic participants did not, but rather stayed with the 

previously rewarded response. Overall, results do not support predictions from accounts 

proposing altered prediction-based learning in social contexts in autism [13],[50], nor atypical 

adjustment of learning rates to volatility [77],[78]. However, analyses of win-stay scores add 

tentative support for altered choice behaviour after reward in volatile environments in autistic 

individuals.  

There were no differences in learning rates between the groups with regard to adjustment of 

learning to environmental volatility. However, and in contrast to previous research showing 

higher learning rates in volatile, relative to stable, phases in the general population [98],[230], no 

main effect of volatility was observed on learning rates when collapsed across groups. A 

potential explanation for the lack of a main effect of volatility is that our paradigm, which 

demands learning from two dissociable, and sometimes opposing sources of information, has 

high learning demands, particularly during volatile phases. Thus, raising the possibility that 

participants were disengaging during volatile phases. However, learning rates were 

significantly higher than zero in both stable and volatile phases, and accuracy did not 

decrease significantly during volatile phases. Furthermore, model comparison showed that 

the model that best fit the data included separate learning rates for learning in volatile and 

stable phases. Thus, we argue that participants were engaged with the task in volatile phases 

and were responding to the volatility manipulation.  

A further possibility is that, due to high learning demands, participants were not integrating 

the value of trials over the course of the experiment, in line with an RL model of learning, but 

rather, using a WSLS strategy, taking only the outcome on the previous trial into account. 

WSLS and RL strategies are closely related, with WSLS scores often used as a proxy 

measure of learning rate [93], although they can also be dissociated [310]. For example, 

continually following a WSLS strategy would correspond to a learning rate of 1 within an RL 
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framework, meaning that only the most recent trial (t-1) would be taken into account on the 

current trial t. As WSLS scores and learning rates were significantly correlated in our 

paradigm, we examined WSLS behaviour in this task.  

An exploratory analysis of WSLS scores revealed a group difference with regard to win-

staying in volatile trials; no group differences were observed for trials where a loss was 

experienced. That is, while non-autistic participants showed a greater tendency to shift 

response in volatile phases, autistic participants showed the opposite pattern of behaviour. 

Thus, it is possible that the WSLS analysis was detecting subtle differences in response to 

trials that resulted in a win or loss, which could not be indexed using a RW learning model. 

Indeed, previous work has found differences in behaviour in volatile environments, unrelated 

to differences in learning rates. Using a reward learning task with non-autistic individuals, 

Goris et al. reported that, while impaired performance in volatile environments was correlated 

with a higher level of autistic traits, no impairment in adjustment of learning rate to volatility 

was found. Instead, impaired performance was observed after a reversal in cue-outcome 

contingencies [99]. This raises the question of whether atypical performance in autistic 

individuals in volatile environments can be ascribed to impairment in adaptation to volatility, 

or instead, to impaired performance post-reversal, as has been previously reported [44],[45],[311]. 

To unpack this further, a paradigm and a model of learning that can discriminate between 

initial and post-reversal learned reward contingencies could be used in future research. 

However, it is important to note that, although a significant interaction effect on win-stay 

scores was observed, post-hoc tests did not reach significance and Bayesian evidence 

provided weak evidence against the inclusion of this interaction. Furthermore, this effect 

does not translate into group differences in accuracy, in contrast with observations of 

decreased performance in volatile phases in previous work [99],[101]. Therefore, this 

exploratory analysis of WSLS scores should be treated with caution. 

Predictive processing accounts of autism, in theory, describe common mechanisms 

underpinning autistic cognitive processing. We, therefore, expected to observe atypical 

learning in the autistic group, particularly in volatile phases, in accordance with previous 

research [101]. However, no evidence for differences in social learning between groups was 

observed. Moreover, Bayesian analyses provided moderate evidence to support the 

conclusion that the groups were comparable with respect to learning from social versus 

individual information. Finally, no differences were found in the relative weighting of social 

and individual information, as indexed by the decision-weighting parameter . The current 
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results raise the possibility that predictive atypicalities are not present during social learning 

and stand in contrast to previous findings [59],[123],[188].  

A potential explanation for the contrasting results reported here is the lack of requirement for 

face processing or biological motion processing in our paradigm. Predictive processes are 

proposed to be atypical in the social domain, in part due to the complex and unpredictable 

nature of social cues [13]. In contrast with the social information in the research mentioned 

above, the majority of which used images or videos of faces (for example, representing the 

social cue through eye gaze direction or pointing [101],[188]), the social information in our 

paradigm was equally as predictable as the individual information, and represented by a 

simple cue (a red frame). The current results demonstrate that autistic adults engaged in 

social learning to the same extent as non-autistic adults, suggesting that differences in social 

learning observed in previous work were underpinned by differences in face/biological 

motion processing, rather than in predictive learning specifically.  

Our results are relevant both for refining predictive accounts of autism and for the 

development of better tools to improve social learning in autistic individuals. For example, it 

is important to determine whether aids or therapies to improve social cognitive processes 

should be social-specific or rather based on domain-general associative learning principles. 

Our findings demonstrate that autistic individuals do not show a specific impairment in social 

relative to individual learning, compared with non-autistic individuals; consistent with a 

domain-general view of social learning. However, across both groups, learning rates were 

higher for individual compared with social information, indicating that mechanisms 

underlying social and individual learning might be dissociable. Social learning has been 

reported to follow the same computational and neural principles as individual reward 

learning, relying on the same prediction-error mediated processes [230] and associated with the 

same neural regions [221],[225],[227]. However, other research supports the existence of social-

specific learning mechanisms [95],[187],[257]. Thus, future work should unpack what makes 

social learning specifically 'social', at a neurochemical level.  

To conclude, using a combination of frequentist and Bayesian statistics, no evidence was 

found to support differences in social or individual learning between autistic and non-autistic 

adults in a probabilistic social learning task. Furthermore, no group differences were found in 

adaption of learning rate to volatility. We did, however, find a small and unpredicted group 

difference in choice behaviour after trials which resulted in reward in volatile phases. Taken 
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together, results fail to provide evidence in support of predictions from Bayesian accounts of 

autism in the context of social learning and adjustment to volatility and have the potential to 

help in refining predictive coding accounts of autism.  
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Chapter 4:  The influence of genetic variation in monoamine 

transporters on social and individual learning 

 

In the previous chapter, although no differences in learning rates between autistic and non-

autistic adults were observed, dissociations between social and individual learning were 

found. Thus, highlighting the importance of finding out whether social learning is 

underpinned by social-specific neurochemical mechanisms. In this chapter, a large-scale 

behavioural genetics approach is employed to investigate whether there is evidence to support 

the existence of dissociable genetic contributions to social and individual learning. Building 

on their previously documented roles in learning (see Chapter 1), I here focus on genes 

related to the monoamine neurotransmitters dopamine and serotonin, both implicated in 

learning from one’s own experience (individual learning) and in social learning (learning 

from others). 

Supplementary materials for this chapter are in Appendix 3.  
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4.1 Introduction 

The existence in the human brain of neural and/or neurochemical pathways that are 

specialised for learning from social information and from individual experience respectively 

is the topic of much debate [186],[189],[201],[312], and of great importance to theories of cultural 

evolution [313]. If humans learn from others using the same, domain-general mechanisms as 

when learning from any other source of information in the environment [201], social and 

individual learning should not be dissociable at a neural/neurochemical level. In contrast, if 

social and individual learning can be dissociated, this implies the presence of specific 

mechanisms for social learning. Building on their previously documented roles in both 

individual and social learning, this chapter focuses on genes related to the monoamine 

neurotransmitters dopamine and serotonin. 

Dopamine (DA) is perhaps best known for its role in individual learning [211],[217]. Indeed, a 

number of studies have shown that individual learning covaries with genetic polymorphisms 

that affect the dopamine system [236],[314],[315]. Den Ouden and colleagues, for example, 

showed that genetic variation in the dopamine transporter (DAT1) polymorphism altered both 

perseveration and the influence of past choices on behaviour in the reversal phase of an 

associative learning task [236]. Thus, supporting a role for dopamine in learning and 

demonstrating that naturally occurring (e.g., genetic) variation in the dopamine system can 

account for variation in behavioural indices of learning. Furthermore, although dopamine has 

predominately been investigated in the context of individual learning, recent work in both 

animals and humans suggests a role for dopaminergic signalling in social learning 

[222],[223],[225],[226],[229],[316],[317]. For example, Diaconescu et al. found that the magnitude of 

striatal social learning-related prediction error signals co-varied with dopamine-related 

genotype - specifically polymorphisms of the Catechol-O-Methyltransferase (COMT) gene - 

in a sample of 82 individuals [222]. Thus, preliminary work suggests that, in addition to its role 

in individual learning, dopamine may also be implicated in social learning. 

Serotonin (5-HT) signalling is strongly associated with social behaviour, with a wide body of 

research highlighting the importance of the serotonin system in social cognition [240],[241]. 

With respect to social learning more specifically, Crişan et al [255] found a significant effect of 

genetic variation in serotonergic signalling on learning from observing the fear responses of 

other people during an aversive conditioning task. Specifically, variation in the serotonin 

reuptake transporter gene (SERT) covaried with participants’ autonomic skin conductance 
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response, both when observing another individual receiving aversive feedback and when 

presented with the conditioned stimuli themselves.  

Importantly, in addition to its role in social behaviour, serotonin has been implicated in 

individual learning [232]–[237]. Den Ouden and colleagues [236], for example, showed that the 

extent to which behaviour was adapted after punishment - indexed by the degree to which 

participants shifted response after receiving negative feedback - was predicted by SERT 

genotype. More recently, a role for serotonergic signalling has been proposed in signalling 

prediction errors [238],[239]. Consequently, preliminary work implicates serotonin in both 

individual and social learning.  

The literature, to date, implicates dopamine and serotonin in both individual and social 

learning. Based on the importance of serotonin in social learning, and dopamine in individual 

learning, social learning might predominately rely upon serotonergic mechanisms and 

individual learning predominately on dopaminergic mechanisms. For example, if social 

learning relies more heavily upon serotonergic mechanisms (compared to individual 

learning), this raises the possibility of a social-specific neurochemical learning pathway that 

is especially serotonin-dependent. However, extant studies have not been able to test this 

because they have not adopted a design enabling the mapping of variation in monoamine 

systems onto variation in both social and individual learning within the same individuals. 

Here we leverage work showing that genetic variation in genes involved in dopamine and 

serotonin signalling can result in naturally occurring variation in monoamine availability [318]. 

Building upon this, the current study asked whether social and individual learning share 

common dopaminergic and serotonergic mechanisms. Specifically, whether genetic variation 

in dopamine- and/or serotonin-related single nucleotide polymorphisms (SNPs) has different 

effects on social versus individual learning.  

Variation in social and individual learning was indexed using an online version of a widely 

used social learning task (SLT) [93],[95],[309]. Participants (n = 803) were required to choose 

between a blue or green shape to gain points, receiving reward feedback in the form of a blue 

or green indicator, which directly informed them about the utility of their choice. In addition, 

participants saw an orange frame, representing social information, which surrounded one of 

the boxes. Participants were informed that the orange frame represented social information 

(the most popular choice made by previous participants) which could vary between being 

predominantly correct, and predominantly incorrect. Successful performance thus required 
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participants to engage in individual learning (about the value associated with the blue and 

green shapes) and social learning (about the value of the social information). The majority of 

the commonly used formalisations (and conceptualisations) of human decision-making 

assume that there is a prediction error-driven learning process by which individuals learn the 

value (either by individual or social means) of stimuli/actions, and a subsequent decision-

making process by which individuals evaluate the extent to which their behaviour will be 

driven by these learned values. These processes have been referred to, respectively, as the 

critic and actor, the perceptual and response model, and/or the learning model and decision 

rule [24],[25],[319]. Here we used a computational model with free parameters, which can be 

estimated participant-wise, in both the learning model and decision rule. With respect to the 

estimated parameters from the learning model, we predicted an interaction such that 

serotonin-related genetic variation would account for significantly more variation in social as 

opposed to individual learning-related estimates, whereas dopamine-related genetic variation 

would account for significantly more variation in individual as opposed to social learning-

related estimates. Theories of cultural learning postulate social-specific learning mechanisms, 

however, to the best of our knowledge these theories do not predict social-specific biases in 

decision rules. Thus, as far as we are aware there is no a priori reason to predict that 

parameter estimates relating to the decision-rule would covary with dopamine- or serotonin-

related genes.  

Participants were genotyped for variation in both dopamine- (DAT1, COMT) and serotonin-

related (SERT) genes. Both frequentist and Bayesian statistical models were used to test 

whether variation in dopamine- and/or serotonin-related genes predicted variation in indices 

of social and/or individual learning.  

 

4.2 Materials and Methods 

4.2.1 Participants 

Participants were part of the Nijmegen Brain Imaging Genetics (BIG) project (Donders 

Institute, Nijmegen, The Netherlands), comprising imaging, genetic and cognitive data from 

healthy volunteer subjects (https://www.ru.nl/donders/research/research-facilities-

projects/cognomics/big-project/). Participants were recruited from among the BIG cohort and 

invited to complete an online learning task. All participants had given written informed 
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consent to participate in the BIG study prior to participation and the study was approved by 

the local medical ethics committee. 803 healthy participants for whom genetic data was 

available, aged 18-80 years (57.9% female, mean age = 28.17 ± 10.07 years) completed the 

online behavioural task (described below). 

Table 4-1 Demographic information 

 

 

 

 

DAT 

 9/9 

  

9/10 10/10 

n 32 208 330 

Gender (male: female) 16:16 87:121 147:183 

χ² (570) 

p 

0.902 

0.637 

Age (mean (SD)) 30.4 (13.2) 26.3 (6.8) 28.0 (9.8) 

F(2,567) 

p 

3.793 

0.023* 

 

 

 

 

 

SERT 

 s/s s/l l/l 

n 185 262 123 

Gender (male: female) 86:99 110:152 54:69 

χ² (570) 

p 

0.893 

0.640 

Age (mean (SD)) 27.6 (9.8) 26.8 (7.6) 28.8 (10.7) 

F(2,567) 

p 

1.975 

0.140 

 

 

 

 

COMT 

 v/v v/m m/m 

n 166 270 134 

Gender (male: female) 80:86 118:152 52:82 

χ² (570) 

p 

2.658 

0.265 

Age (mean (SD)) 27.6 (9.8) 26.8 (7.6) 28.8 (10.7) 

F(2,567) 

p 

0.430 

0.651 

   

Note: Genotype frequencies (number), gender (number) and age (mean and standard deviation (SD)) 

are reported. Statistical tests compare the genotype groups on demographic variables age and gender. 

Gender did not significantly differ as a function of DAT, SERT or COMT genotype. Age significantly 

differed as a function of DAT genotype.  
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4.2.2 Genetic Analysis 

All genetic analyses were performed at the Department of Human Genetics, Radboud 

University Nijmegen Medical Centre, with details of DNA collection, extraction and 

genotyping described in full in Appendix 3.1. Three different genes were investigated, DAT1, 

SERT1 and COMT. For DAT1 (SLC6A3), two alleles were analysed: 9R and 10R. 

Genotypes included 9:9, 9:10 and 10:10. S/S, S/L and L/L genotypes were included for SERT 

(SLC6A4). For the COMT gene, val/val, val/met and met/met genotypes were included. All 

genotypes were in Hardy Weinberg equilibrium (all p-values > 0.1).  

Dopamine-related genetic variation 

The dopamine transporter (DAT) is a membrane protein that regulates dopamine transmission 

by reuptake from the presynaptic cleft. A 40-base pair variable number of tandem repeats 

(VNTR) polymorphism located in the 3′-untranslated region (3′UTR) of the DAT gene 

(DAT1/SLC6A3) produces two common alleles with 9- and 10-repeats (9R and 10R) [320]. 

Although the polymorphism causes variation in DAT protein expression, results are mixed as 

to the direction of the effects on DAT expression and DA signalling [320]–[322]. Consequently, 

our predictions were only that indices of learning would covary with DAT genotype; we had 

no directional predictions regarding the effect of DAT genotype. We did, however, predict an 

interaction between DAT genotype and learning source, such that DAT genotype would 

account for significantly more variation in individual as opposed to social learning-related 

estimates. 

Variation in the gene encoding Catechol-O-Methyltransferase (COMT) was also investigated. 

COMT plays a key role in synaptic dopamine removal, particularly in the cortex where DAT 

expression is low [323],[324]. A single nucleotide polymorphism of the COMT gene results in a 

single amino acid substitution of methionine (met) for valine (val), with the val allele 

associated with higher activity [325] and the met allele associated with lower activity and 

higher prefrontal dopamine concentrations [314]. Variation in the gene encoding COMT has 

been linked to the ability to flexibly adapt decisions during a probabilistic reversal learning 

task [326] and found to influence prediction error responses in the midbrain during social 

learning tasks [222]. We predicted an interaction between COMT genotype and learning 

source, such that COMT genotype would account for significantly more variation in 

individual as opposed to social learning-related estimates. 
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Serotonin-related genetic variation 

A key regulator of serotonergic transmission is the high-affinity 5-HT reuptake transporter, 

SERT/5-HTT, encoded by a single gene, SLC6A4. An insertion or deletion in the promoter 

region of the gene, the SLC6A4-linked polymorphic region (5-HTTLPR), results in a short 

(S) and long (L) allele respectively, resulting in variation in both transcriptional and 

translational levels [327],[328]. The s-allele has been associated with a decrease in transcriptional 

efficacy, which putatively results in less 5-HT reuptake and increased extracellular 5-HT 

levels relative to the long allele [329], as well as reduced 5-HT binding [322], and a greater 

sensitivity to social cues [240],[330]. We predicted an interaction between SERT genotype and 

learning source, such that SERT variation would account for significantly more variation in 

social as opposed to individual learning-related estimates, and that s-allele carriers would 

show greater sensitivity to social information compared with l-allele carriers.  

 

4.2.3 Behavioural task 

Participants completed an online, modified version of the task employed in Chapter 3. 

Although the task structure was the same, the task was visually different, employing different 

shapes for the blue and green choices, and an orange frame for the social information. 

Furthermore, choices were made with a mouse, rather than with button presses, and to 

progress to the next trial, the mouse had to be re-centred to allow the next trial to start. All 

other details were the same: on each trial, participants had to make a choice between a blue 

and a green shape, with correct choices rewarded (Fig. 4.1). In addition to the individual 

reward history, a second source of information was available to participants: on each trial, an 

orange frame surrounded one of the shapes, representing the social information (see 

Appendix 3 for task instructions). Both the probability of reward and the veracity of the 

social information switched between being correct and incorrect, with stable and volatile 

phases for each.  
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Figure 4.1 Behavioural task 

 

 

 

Figure. 4.1.A. Stable and volatile phases. The probability of reward varied according to probabilistic 

schedules, including stable and volatile blocks for both the probability of blue being correct (individual 

information) and the probability of the orange box indicating the correct answer (social information). 

B. Task structure. Participants selected between a blue and a green shape to gain points. One of the 

shapes was highlighted with an orange box. Participants were instructed that this box represented the 

most popular choice made by a group of four participants who had completed the task previously. After 

participants selected their response, a silver frame surrounded their choice. After a 0.5–2 s interval, 

participants received feedback in the form of a green or blue shape in the middle of the screen. If 
participants had chosen the correct answer, a red reward bar at the bottom of the screen progressed 

toward the silver and gold goals.  

 

4.2.4 Data analysis 

Statistical analyses were conducted using MATLAB R2017b (The MathWorks, Natick, MA) 

and JASP (JASP Team (2020). JASP (Version 0.14) [Computer software]). We used the 

standard p < .05 criteria for determining if significant effects were observed, with a Holm 

A B 
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correction applied for multiple comparisons, to control for type I family-wise errors. All 

analyses were repeated with and without the inclusion of age as a covariate. Where 

appropriate, data were transformed to meet assumptions of normality for parametric testing. 

The effects of different genotypes were tested separately for DAT, COMT and SERT, as 

small samples for some genotypes resulted in empty cells in the design when analysed 

simultaneously. The study had a mixed design with between-subjects factors COMT (A/A; 

A/G; G/G), DAT (9:9; 9:10; 10:10) and SERT (S/S; S/L; L/L) genotypes and within-subjects 

factors information type (individual, social information) and volatility (volatile, stable).  

Exclusions 

Only participants with the three most common genotypes for each gene were included (n = 

693). Further to this, participant data was excluded based on the following measures of 

performance on the behavioural task: accuracy under chance level (< 50%), choose the same 

side or colour on over 80% of trials or conformed to the group answer on over 80% of trials, 

incomplete datasets (less than 120 trials completed), mean reaction time (RT) greater than 

three standard deviations (SD) from the mean RT, resulting in a final sample of n = 570 

(56.1% female, mean age = 27.50 ± 9.1 years, see Table 4.1 for demographic details of the 

final sample).  

 

4.2.5 Computational modelling framework  

We modelled participant response using a Rescorla-Wagner learning model [24], consisting of 

a perceptual model and an action selector. The model relies on the assumption that updates to 

choice behaviour are based on prediction errors, i.e., the difference between an expected and 

the actual outcome. Participants were assumed to update their beliefs about reward outcomes, 

or the state of the environment based on sensory feedback in the form of reward, and to use 

this feedback to make decisions about the next action (response model). The Rescorla-

Wagner predictors used in our learning models consisted of a modified version of a simple 

learning model (see Appendix 3.2 for full model details). Parameters were fitted separately 

for each participant’s choice data and provided estimates of 𝛼, β, and ζ. Learning rate (𝛼) was 

estimated for each participant, separately for individual and social information and volatile 

and stable phases, resulting in four estimated learning rates per participant. The free 

parameter 𝛽 captured the extent to which learned probabilities determined participant choice 
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behaviour, with a larger 𝛽 when more deterministic choices were observed, with regard to the 

learned probabilities. ζ represented the relative weighting of individual and social sources of 

information, with higher values indicating a bias towards the over-weighting of social relative 

to individual information.  

 

4.3 Results 

We employed three separate repeated-measures analysis of variance (RM-ANOVA) with 

fixed factors information source (individual, social), environmental volatility (volatile, 

stable), and genotype (DAT: 9/9, 9/10, 10/10, or SERT: S/S, S/L, L/L, or COMT: val/val, 

val/met, met/met) on dependent variables 𝛼, β, and ζ. For 𝛼 we predicted an interaction 

between SERT and information source such that serotonin-related genetic variation would 

account for significantly more variation in social as opposed to individual learning-related 

estimates. Furthermore, we predicted that dopamine-related genetic variation (DAT or 

COMT) would account for significantly more variation in individual as opposed to social 

learning-related estimates. We conducted separate ANOVAs for DAT, SERT and COMT. 

Including randomisation schedule as a factor in all analyses did not change the pattern of 

results.  

 

Effects of serotonin-related genetic variation on learning model-related parameters 

The RM-ANOVA with 𝛼 as the DV revealed a significant main effect of information type (F 

(1,567) = 256.521, p < 0.001, η2p = 0.311, BFincl > 100), with higher (sqrt-transformed) 

𝛼𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 (mean (standard error) (�̅�(𝜎�̅�) = 0.507 (0.006)) compared to 𝛼𝑠𝑜𝑐𝑖𝑎𝑙  (�̅�(𝜎�̅�) = 

0.374 (0.006)). A significant volatility by SERT interaction was observed (F (2,567) = 4.535, 

p = 0.011, η2p = 0.016; Fig. 4.2), with post hoc tests revealing a significantly lower 𝛼 for 

volatile (𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒: �̅�(𝜎�̅�) = 0.425 (0.008)) compared to stable phases (𝛼𝑠𝑡𝑎𝑏𝑙𝑒: �̅�(𝜎�̅�) = 0.452 

(0.008)) for the S/L genotype (t (567) = -3.437, pholm = 0.009, BF10 = 38.950). This difference 

was not observed for the S/S (t (567) = 0.948, pholm = 1.000, BF10 = 0.139) or L/L genotypes 

(t (567) = -0.309, pholm = 1.000, BF10 = 0.111), with Bayesian analysis providing moderate to 

strong evidence to support the null hypothesis of no difference between 𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒  and 

𝛼𝑠𝑡𝑎𝑏𝑙𝑒  for these groups. Indeed, an ANOVA conducted on difference scores (𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒  – 



 56 

𝛼𝑠𝑡𝑎𝑏𝑙𝑒) revealed that the signed difference between 𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒  and 𝛼𝑠𝑡𝑎𝑏𝑙𝑒 was significantly 

smaller (i.e. more negative) for S/L carriers (�̅�(𝜎�̅�) = -0.028 (0.008)) compared with S/S 

carriers (�̅�(𝜎�̅�) = 0.006 (0.008); t (567) = -2.560, pholm = 0.032) and (non-significantly) lower 

than for L/L carriers (�̅�(𝜎�̅�) = -0.007 (0.009); t (567) = -1.655, pholm = 0.197; Fig. 4.2). No 

other main/interaction effect(s) of SERT were observed. These results show that, unlike the 

S/S and L/L groups, participants with the S/L SERT allele were showing altered adaptation of 

learning rate to environmental volatility, with a higher learning rate in stable, compared to 

volatile, phases.  

 

Figure 4.2. Learning rate for volatile and stable phases as a function of SERT genotype 

 

Figure 4.2. Learning rate (α) estimates for volatile and stable phases (collapsed across individual and 

social learning) as a function of SERT genotype. α estimates for S/L carriers varied significantly 

between volatile and stable phases. Data points indicate α estimates for individual participants (n = 

570), boxes = standard error of the mean, shaded region = standard deviation, * indicates statistical 

significance (p < 0.05). 

 

* 
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We had predicted an interaction such that serotonin-related genetic variation would account 

for significantly more variation in social as opposed to individual learning-related estimates. 

However, we did not observe a significant SERT genotype by information type interaction (F 

(2,567) = 1.019, p = 0.361, η2p = 0.004). The BFexcl value for this interaction was 18.891, 

illustrating that the observed data is 18.9 times more likely under a model that excludes the 

interaction term compared to a model that includes the interaction term. Furthermore, we did 

not observe an interaction between SERT genotype, information type and volatility (F (2,567) 

= 0.064, p = 0.938, η2p > 0.001, BFexcl = 44.760). Thus, the volatility-dependent effect of 

SERT genotype on 𝛼 did not significantly differ for social and individual learning, with 

Bayesian analysis providing strong evidence (BFexcl = 44.760) against the presence of an 

interaction.  

 

Effects of serotonin-related genetic variation on decision rule-related parameters 

A separate ANOVA revealed a main effect of SERT genotype on ζ values (F (2,567) = 6.326, 

p = 0.002, η2p = 0.022) with Bayesian analysis providing moderate evidence for this effect 

(BFincl = 7.681). ζ values were significantly higher for the S/L (�̅�(𝜎�̅�) = 0.477 (0.016)) 

compared with the L/L genotype (�̅�(𝜎�̅�) = 0.376 (0.024); t (567) = 3.507, pholm = 0.001), and 

the S/S (�̅�(𝜎�̅�) = 0.459 (0.019)) compared with L/L groups (t (567) = 2.701, pholm = 0.014) 

(Fig. 4.3). Values between the S/L and S/S groups did not significantly differ (t (567) = 

0.720, pholm = 0.472). These results suggest a bias, specifically for s-allele carriers (S/S and 

S/L groups), towards more highly weighting social, as opposed to individual, information. No 

main effect of SERT genotype on β values was observed (F (2,567) = 1.153, p = 0.316, η2p = 

0.004).  
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Figure 4.3 ζ values as a function of SERT  

 

Figure 4.3. ζ values as a function of SERT genotype. ζ estimates for L/L carriers were significantly 

lower than both S/S and S/L groups. Data points indicate ζ estimates for individual participants (n = 

570), boxes = standard error of the mean, shaded region = standard deviation, * indicates statistical 

significance (p < 0.05). 

 

Effects of dopamine-related genetic variation on learning model-related parameters 

For analysis with (square-root transformed) 𝛼 as the DV, and DAT genotype as the BS factor, 

a main effect of information type was observed (F (1,567) = 163.541, p < 0.001, η2p = 0.224, 

BFincl > 100). 𝛼𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 (�̅�(𝜎�̅�) = 0.520 (0.008)) was significantly higher than 𝛼𝑠𝑜𝑐𝑖𝑎𝑙 (�̅�(𝜎�̅�) 

= 0.361 (0.008)). In addition, there was a significant genotype by information interaction (F 

(2,567) = 3.571, p = 0.029, η2p = 0.012, BFincl = 2.686). Holm-corrected post hoc tests did 

not reach significance. However, an ANOVA conducted on difference scores (𝛼𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙  – 

𝛼𝑠𝑜𝑐𝑖𝑎𝑙) revealed a main effect of DAT (F(2,567) = 3.073, p = 0.047, η2p = 0.011), with the 

difference between 𝛼𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 and 𝛼𝑠𝑜𝑐𝑖𝑎𝑙  significantly larger for 9/9 carriers (�̅�(𝜎�̅�) = 0.210 

(0.032)) compared with 9/10 carriers (�̅�(𝜎�̅�) = 0.127 (0.012); t (567) = 2.445, pholm = 0.044, 

BF10 = 2.719), and 10/10 carriers (�̅�(𝜎�̅�) = 0.132 (0.010); t (567) = 2.361, pholm = 0.044, BF10 

= 2.386). 9/10 carriers and 10/10 carriers did not differ (t (567) -0.306, pholm = 0.760, BF10 = 

* 

* 
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0.103) (Fig. 4.4). Thus, results demonstrate that both 𝛼𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 and 𝛼𝑠𝑜𝑐𝑖𝑎𝑙  varied as a 

function of DAT genotype. 

 

Figure 4.4 α_social and α_individual as a function of DAT genotype 

 

Figure 4.4. α_social and α_individual as a function of DAT genotype. The 9/9 group showed a 

significantly higher difference between 𝛼𝑠𝑜𝑐𝑖𝑎𝑙  and 𝛼𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙  compared with the 9/10 and 10/10 

groups. Datapoints indicate 𝛼 estimates for individual participants (n = 570), boxes = standard error of 

the mean, shaded region = standard deviation. 

 

Additionally, a significant genotype by volatility interaction was observed (F (2,567) = 3.421, 

p = 0.033, η2p = 0.012, BFincl = 0.158). However, evidence for this was weak since the data 

were only 0.2 times more likely under a model that included, versus excluded, this 

interaction. Participants in the 9/9 group showed higher 𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒  (�̅�(𝜎�̅�) = 0.253 (0.020)) 

compared with 𝛼𝑠𝑡𝑎𝑏𝑙𝑒  scores (�̅�(𝜎�̅�) = 0.222 (0.019); t (567) = 1.990, pholm = 0.660, 

uncorrected p = 0.046, BF10 = 1.25), whereas there was no significant difference between 

𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒  and 𝛼𝑠𝑡𝑎𝑏𝑙𝑒for 9/10 and 10/10 carriers (𝑡 < 0.5, 𝑝 > 0.05) (Fig. 4.5). However, it 

should be noted that the difference between 𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒  and 𝛼𝑠𝑡𝑎𝑏𝑙𝑒  in the 9/9 group did not 

survive correction for post-hoc testing and Bayesian statistics provided weak evidence in 
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support of this difference. No other main/interaction effect(s) of DAT were observed. There 

was no significant DAT x information x volatility interaction (F (2,567) = 0.312, p = 0.732, 

η2p = 0.001) with Bayesian statistics providing strong evidence against an interaction effect 

(BFexcl = 16.950). 

 

Figure 4.5 Learning rate α as a function of volatility and DAT genotype. 

 

Figure 4.5. Learning rate 𝜶 as a function of volatility and DAT genotype. 𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒 and 𝛼𝑠𝑡𝑎𝑏𝑙𝑒  

differed for 9/9 carriers only. Data points indicate 𝛼 estimates for individual participants (n = 570), 

boxes = standard error of the mean, shaded region = standard deviation, * indicates statistical 

significance (p < 0.05). 

 

Finally, our analysis with (square-root transformed) 𝛼 as the DV, and COMT genotype, 

revealed no main or interactions effects as a function of COMT genotype (all p > 0.05). 

Effects of dopamine-related genetic variation on decision rule-related parameters 

Separate ANOVAs revealed no main effect of DAT genotype on ζ values (F (2,567) = 1.001, 

p = 0.368, η2p = 0.004) or β values (F (2,567) = 0.098, p = 0.907, η2p < 0.001). A similar 

pattern of results was observed with COMT genotype: no main effect of COMT genotype on 
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ζ values (F (2,567) = 0.478, p = 0.621, η2p = 0.002) or β values (F (2,567) = 1.307, p = 0.272 

η2p = 0.005).  

 

Relationship between accuracy and model parameters 

Participants with the S/L SERT allele showed altered adaptation of learning rate to 

environmental volatility, with a higher learning rate in stable, compared to volatile, phases. In 

addition, S/L allele carriers showed significantly higher accuracy on the behavioural task 

(�̅�(𝜎�̅�) = 0.626 (0.003)) compared to the S/S carriers (�̅�(𝜎�̅�) = 0.613 (0.004), t(567) = 2.643, 

pholm = 0.025) and numerically higher compared with L/L carriers (�̅�(𝜎�̅�) = 0.618 (0.005), 

t(567) = 1.467, pholm = 0.286) (see Appendix 3.3 for an extended analysis of accuracy). We 

therefore explored how our model parameters were related to accuracy scores. We deployed a 

backwards regression model, with 𝜁 , 𝛽, α_volatile and α_stable (collapsed across individual and 

social) as predictors and accuracy as the dependent variable. Accuracy was significantly 

predicted by the full model (R = 0.322, F (4, 565) = 16.318, p < 0.001), with α_stable (t (565) = 

5.627, p < 0.001) and 𝛽 (t (565) = 4.162, p < 0.001) significant positive predictors of 

accuracy. Removing 𝜁 did not significantly improve the fit of the model (R2 change = -0.000, 

F change (1,566) >0.001, p = 1.000). 

Thus, higher accuracy correlated with higher α in stable compared with volatile phases, with 

subjects with the S/L genotype differing from the S/S and L/L groups. In contrast to 

predictions of a higher learning rate in volatile phases being more optimal than in stable, here 

we found the opposite; higher α in stable as compared with volatile phases, coupled with 

higher task accuracy for the S/L group. To determine if this pattern of results should 

statistically result in higher accuracy, an optimal learner model, with the same architecture 

and priors as the model employed in the current task, was fit to 100 synthetic datasets, 

resulting in average optimal learning rates: 𝛼optimal_individual_stable = 0.16, 𝛼optimal_individual_volatile = 

0.21, 𝛼optimal_social_stable = 0.17, 𝛼optimal_social_volatile = 0.19. Scores representing the difference 

between 𝛼 estimates and optimal 𝛼 scores were calculated (𝛼𝑑𝑖𝑓𝑓: 𝛼 −  𝛼optimal). A RM-

ANOVA on 𝛼𝑑𝑖𝑓𝑓 values with factors information source, volatility and SERT genotype, was 

conducted, with a significant volatility by SERT interaction observed (F (2,567) = 4.998, p = 

0.007, η2p = 0.017). Post-hoc tests were not significant after correction for multiple 
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comparisons (all pholm > 0.05). However, 𝛼 estimates were closest to optimal estimates for the 

S/L group in volatile phases (Fig. 4.6).  

 

Figure 4.6 Estimated α compared with α optimal scores 

 

Figure 4.6. Estimated 𝛼 compared with 𝛼 optimal scores. 𝛼 estimates were closet to optimal for S/L 

carriers in volatile phases. Data points indicate 𝛼 estimates for individual participants (n = 570), dotted 

line indicates optimal scores, boxes = standard error of the mean, shaded region = standard deviation, 

* indicates statistical significance (p < 0.05). 

 

When combining analysis of accuracy with our optimality analysis, these results suggest that 

S/L genotype carriers show reduced adaptation to volatility, driven by an optimal reduction in 

α in volatile phases. No differences were observed as a function of information type, 

however, suggesting similar volatility-dependent processes across both social and individual 

learning (common learning processes). However, the S/L group, rather than showing 

differences in learning rate depending on the social nature of the information source, were 

instead putting a greater weight on social information during decision-making. Evidence to 

support this comes from our analysis of ζ, representing the weight given to the social 
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information (see also an analysis of ideal learner scores for social information - Appendix 

3.3). Finally, no effect of DAT genotype was found on accuracy (F (2,567) = 0.279 p = 

0.757, η2p < 0.001).  

It was surprising to see that, on average, learning rates were significantly higher during stable 

(𝛼𝑠𝑡𝑎𝑏𝑙𝑒  (�̅�(𝜎�̅�) = 0.231 (0.005)) compared to volatile phases (𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒  (�̅�(𝜎�̅�) = 0.221 

(0.005), (t(569) = 2.061, p = 0.040, d = 0.086). Could this indicate that participants were 

learning in the stable periods and simply “gave up” in the volatile periods? Given that 

𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒  (t(569) = 46.268, p < 0.001, BF10 > 100) and 𝛼𝑠𝑡𝑎𝑏𝑙𝑒 (t(569) = 50.206, p < 0.001, 

BF10 > 100, both collapsed across social and individual learning) were significantly greater 

than zero, this potential explanation is unlikely. Furthermore, a Bayesian paired t-test 

revealed that frequentist statistics were somewhat misleading with respect to higher learning 

rates in stable versus volatile periods. In contrast with the frequentist statistics, Bayesian 

statistics provided anecdotal evidence against the presence of a difference in learning rates 

(BF10 = 0.387).  

  

4.4 Discussion 

The present study investigated whether naturally occurring variation in genes involved in the 

regulation of monoamine neurotransmission modulated learning from individual and social 

information in the same way. Participants completed an online social learning task, requiring 

learning from their own individual feedback, and from an additional, social source of 

information. Results did not confirm our original hypotheses: it was not the case that 

serotonin-related genetic variation accounted for more variation in social versus individual 

learning. Neither did we find that dopamine-related genetic variation accounted for more 

variation in individual versus social learning. Instead, our results revealed that variation in 

participants’ ability to adapt their rate of both social and individual learning to suit the 

current level of environmental volatility covaried with SERT genotype. In addition, we 

observed significant relationships between dopamine-related genetic variation and both 

environmental volatility and learning source. However, as both 𝛼𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 and 𝛼𝑠𝑜𝑐𝑖𝑎𝑙  varied 

as a function of DAT genotype, these results do not support the hypothesis that dopamine-

related genetic variation would account for more variation in individual versus social 

learning. Finally, and in contrast with our predictions, we observed a significant relationship 
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between SERT genotype and a parameter within our decision rule which influences the extent 

to which participants are biased towards social, as opposed to individual, information.  

Our original hypothesis, that genetic variation in DAT would vary with learning from 

individual information specifically, was not confirmed. However, our pattern of results does 

suggest that genetic variance in dopamine-related genes modulates social and individual 

learning in a dissociable manner. Specifically, we observed a DAT by information type 

interaction, with the 9/9 carriers showing numerically higher 𝛼𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 and lower 𝛼𝑠𝑜𝑐𝑖𝑎𝑙 , 

relative to the other genotypes. Thus, cautiously indicating that genetic variation affecting the 

dopamine system might dissociate social from individual learning. This pattern of data is 

consistent with the proposal that humans possess social-specific neurochemical learning 

mechanisms, specialised for social learning, in line with predictions from some theories of 

cultural evolution [190],[197],[331]. On a cautionary note, however, participant numbers in the 

rarer 9/9 DAT genotype group may have skewed these results. To determine whether these 

results provided sufficient evidence to support the existence of dissociable genetic 

contributions to social and individual learning, we considered additional analysis, to 

supplement significance testing for the presence of main and interaction effects. Thus, effect 

sizes and Bayesian evidence for the inclusion of effects were calculated for all effects of 

interest. Bayesian analysis provided moderate evidence against the inclusion of the observed 

interaction between DAT genotype and information. Furthermore, post-hoc tests did not 

reach significance. Consequently, our results which hint at a dissociation between social and 

individual learning must be interpreted with caution.  

Regarding variation in serotonin-related genes, we found that adaptation of learning rate to 

environmental volatility varied as a function of SERT genotype, but not between social and 

individual learning, with Bayesian statistics providing evidence against a difference in social 

and individual learning. Thus, suggesting common volatility-dependent processes across both 

social and individual learning. To conclude, results do not provide support for the presence of 

social-specific neurochemical learning pathways that are especially serotonin-dependent.  

Separate interactions were observed between both serotonin-related genes and volatility and 

dopamine-related genes and volatility. Such interactions align well with theories proposing a 

modulatory effect of neuromodulators on learning about the underlying environmental 

statistics, or meta-learning [67],[91]. However, while dopaminergic signalling has previously 

been implicated in both increasing learning rate [94],[290] and in adjusting learning rate to suit 
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the environmental context [93], the current results provide preliminary, novel, evidence of a 

link between variation in serotonergic systems and meta-learning in human participants. 

Specifically, we observed a significant, but unpredicted, interaction between SERT genotype 

and volatility. While serotonergic signalling and meta-learning have not been directly 

investigated in humans, serotonergic signalling has been implicated in many aspects of 

reward learning [235],[238],[332]–[334], with serotonergic neurons active in response to prediction 

error-like signals [233],[239]. In addition, serotonin plays a crucial role in the modulation of 

behaviour in changing environments [92],[237],[239],[335],[336]. In non-human research, a recent 

study with mice performing a dynamic foraging task has proposed a key role for 

serotoninergic signalling in meta-learning [337], and a separate study has identified a role for 

serotonin signalling in altering learning rates [92]. Thus, the observed relationship between 

variation in serotonin genes and meta-learning is in accord with previous research [241]. On a 

neural level, serotonin-mediated modulation of learning rates could potentially be mediated 

via modulation of neurotransmitter release from midbrain dopaminergic neurons [338]. 

Therefore, we provide preliminary evidence in favour of a role for serotonergic signalling in 

meta-learning in human participants. 

Interestingly, we observed that the heterozygous S/L group differed from both the short (s) 

and long (l) homozygotes in our analysis of learning rates. While the s variant, resulting from 

a deletion in the promoter region of the gene, has been associated with reduced SERT 

expression (leading to reduced serotonin reuptake and, therefore, greater synaptic availability 

[328],[329]), the opposite has been observed for the l-allele, namely a relative increase in SERT 

expression [339]. Thus, differences could be predicted between individuals who carry at least 

one copy of the 5-HTTPLR short variant (S/S and S/L) and homozygous carriers of the long 

variant (L/L). Similarly, to DAT genotype, however, the directional effects of SERT gene 

variants are hard to determine. For example, variants that confer both decreased and 

increased function have been associated with autism [340]. Moreover, the effects of genetic 

polymorphisms on 5-HT signalling are complex. The specific polymorphism investigated 

here, within the promoter region of the SERT gene, is thought to account for only 

approximately 25-30% of changes in 5-HT reuptake [341]. The effect on complex behaviours 

is thus harder to detect, making it difficult to directly map a causal effect of genetic variation 

to cognitive processes such as reinforcement learning. Future work could investigate a wider 

range of polymorphisms within the monoamine transporter genes, and interactions between 
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them, or utilise a pharmacological manipulation of serotonergic signalling, for example, via 

depletion of the serotonin precursor, tryptophan.  

Focusing on the interaction between DAT genotype and volatility, 9/9 carriers showed a 

higher learning rate in volatile compared to stable phases, or greater adaptation to 

environmental volatility, in contrast with other genotypes. While these results are in 

accordance with previous research demonstrating a role for dopamine in adaptation to 

volatility [93], Bayesian analysis provided moderate evidence against the inclusion of the 

observed interaction between DAT genotype and volatility and (similarly to the previously-

mentioned DAT by information interaction) post hoc tests did not reach significance. 

Furthermore, no correlation between genotype and accuracy was observed. Moreover, the 

effects of DAT polymorphisms on DAT expression (and therefore on extracellular dopamine 

concentration) are difficult to interpret [342]. For example, although recent meta-analyses 

suggest stronger associations between the 9R allele and DAT expression [343], both the 9R 

allele [344] and the 10R allele [320],[345] have been associated with higher striatal DAT 

availability. In contrast with genetic analysis, pharmacological manipulations of 

dopaminergic signalling, using drugs known to have a measurable effect on dopamine levels, 

allow directional perturbation of dopamine signalling. We follow up on this in Chapter 6, 

wherein participants complete the SLT under placebo and under administration of a 

dopamine antagonist, in a double-blind, within-subjects design. 

In contrast to previous work, where higher learning rates were observed in volatile phases [88], 

we observed higher learning rates in stable phases overall in the current study. Previous 

research has demonstrated that healthy adults adapt their learning rate to the current 

environmental volatility [70],[88], with a higher learning rate predicted to be more adaptive 

when the environment is volatile, or reward probabilities are changing rapidly [89],[98]. This 

pattern of results forces us to consider whether participants were indeed learning in volatile 

phases, or rather, disengaging from the task. In refute of this, a higher learning rate in stable 

as compared with volatile phases was observed in one SERT group in particular, the S/L 

group. Crucially, this group also displayed higher accuracy on the behavioural task. This 

observation, coupled with our optimal learner analysis, whereby 𝛼 estimates were closest to 

optimal estimates for the S/L group in volatile phases, suggests that the observed reduction in 

learning rate during volatile phases had a beneficial impact on task performance, bringing 

learning rate estimates within the optimal range. Additionally, we did not find a significant 

decrease in accuracy (across all participants) during volatile phases – as would be expected if 
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participants were disengaging from the task. Finally, results are in line with recent work by 

Cook and colleagues, where no difference in learning rate was observed between volatile and 

stale phases under placebo, but solely under the dopamine indirect agonist methylphenidate 

[93].  

Focusing on social information, we observed a bias, specifically for s-allele carriers (S/S and 

S/L groups), towards a greater use of social information during decision making. We found 

evidence that the s-carriers, rather than showing differences in learning rate depending on the 

social/individual nature of the information source, were instead putting greater weight on 

social information during decision-making. Evidence to support this comes from our analysis 

of ζ, representing the weight given to the social information during decision-making (and 

optimal learner weights -Appendix 3) with s-allele carriers showing increased reliance on 

social information. Taken together, our results suggest that genetic variation in serotonergic 

signalling is linked to variation in the weight given to, or the attention paid to social 

information during learning, i.e., s-allele carriers are more sensitive to changes in social 

information. Indeed, gene variants associated with higher synaptic 5-HT availability (such as 

the s-allele of SERT), have been linked with greater sensitivity to social cues, across many 

different aspects of social cognition [240],[330]. One study in particular, focusing on 

observational fear learning, demonstrated increased social fear learning in s- relative to l- 

allele carriers [255]. Additionally, in the current task, increased use of social information 

correlated significantly with increased task accuracy, unsurprising as optimum performance 

on this task requires integrating the utility of both social and individual reward information. 

Thus, increased weighting of social information provides a potential explanation for 

improved task accuracy within the S/L group. In summary, we did not find evidence of 

SERT-related genetic dissociations between social and individual learning per se, but rather, 

an increased weighting of social information for s-allele carriers. Results are in accord with 

previous research demonstrating an increased sensitivity to social cues in s-allele carriers.  

Taken together, our results suggest roles for both dopamine- and serotonin-related signalling 

with regard to meta-learning, or adjustment of learning rate to environmental context, and a 

bias towards increased weighting of social information for s-allele carriers. In accordance 

with theories predicting dissociable neurochemical pathways for social and individual 

learning, we observed weak evidence for an interaction between dopamine-related genotype 

and learning source [186],[189]. However, a confound exists, whereby, in this task, the social 

information is an additional, secondary source of information when compared to the 
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individual reward information. For example, it is less salient, in the form of a small orange 

frame and appears temporally after the individual information (large blue/green shapes). In 

addition, the validity of the social frame must be inferred from the individual or experienced 

outcome values (i.e., if the outcome indicator is blue and the orange frame surrounds the blue 

shape, then the social information is correct). Thus, the social learning source is also a 

secondary information source relative to the individual information (primary learning 

source), meaning that learning from individual and social information cannot be fully 

dissociated using this paradigm. Thus, it cannot be determined whether the dopaminergic 

mechanisms underpinning learning dissociate along a primary-secondary and/or a social-

individual axis. In support of this, Cook and colleagues [93], measured the effects of 

catecholamine agonism on learning, using an adapted version of the current task, that 

included an explicitly ‘non-social’ control condition. While half of the participants were 

informed that the secondary information source (a red frame) represented social advice, the 

remainder were told that it represented non-social, additional information (output from a 

rigged roulette wheel). Thus, enabling the authors to determine whether dissociations 

between social and individual learning were better explained in terms of the social versus 

non-social or the secondary versus primary nature of the information source. No effect of 

catecholamine manipulation was found on learning from the secondary information source, 

regardless of whether participants believed it was “social” or not. Thus, suggesting that 

catecholamine-mediated dissociations during learning are potentially between primary and 

secondary, rather than individual and social, learning. To explore this further, we created a 

version of the behavioural task where social is the primary, and individual the secondary, 

learning source, i.e., we orthogonalized primary versus secondary and social versus 

individual learning. Task development and piloting will be described in the following 

chapter. 

In summary, results suggest a role for serotonergic signalling in meta-learning or adaptation 

of learning rate to environmental volatility, as well as an influence on the weighting of social 

information during decision-making. Genetic variation in the dopamine transporter gene hints 

at the presence of a neurochemical dissociation between social and individual learning. 

However, results would be strengthened by the use of a pharmacological intervention and a 

behavioural task where social/individual and primary/secondary learning are orthogonalized. 
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Chapter 5:  Manipulating the learning hierarchy – a pilot 

analysis/task development study  

In the previous chapter, I demonstrate a dissociation between social and individual learning at 

the level of naturally occurring variation in genes important in the regulation of dopamine 

signalling. However, the social/non-social nature of the information source during learning is 

confounded with whether the information source is the primary source of information, or an 

additional source, with its utility needing to be inferred from the primary reward feedback. This 

chapter describes the development and piloting of a version of a social learning task where the 

primary and secondary nature of the learning sources are switched, resulting in social 

information acting as the primary source of learning, and individual information the secondary, 

additional information source. This chapter is therefore written with a focus on describing task 

design and development. The overall aim of this chapter is to demonstrate that the 

social/individual and primary/secondary nature of information can be orthogonalized. I 

investigate whether manipulation of several aspects of the task structure results in the social 

information becoming the primary information source during learning. These manipulations 

would then allow testing of the prediction that manipulations in dopamine signalling affect 

learning from the primary source, regardless of the social nature of the information source. To 

this end, the manipulated task version outlined in this chapter, and the standard version, are 

employed in a between-subjects pharmacological intervention (Chapter 6).  

Supplementary materials for this chapter are in Appendix 4.  
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5.1 Introduction 

It is unclear as to whether social learning is underpinned by uniquely social mechanisms or 

domain-general associative learning processes. In attempting to disentangle social and 

individual learning, cognitive neuroscientific studies have resulted in mixed evidence. Some 

studies investigating social learning have found that social learning is associated with the 

same dopamine-mediated prediction error signalling as non-social, or individual learning. 

These studies, however, usually feature the social information as the primary source of 

information; participants are encouraged to learn primarily from the social information, 

which is often the sole information source [221]–[223],[346]. In other, conflicting studies, where 

social and individual learning have been directly compared, dissociations have been found. 

However, in studies where dissociations have been found the social information is typically a 

secondary and indirect source of learning, when compared to the primary or directly 

experienced individual reward information [93],[95],[258],[347]. In these paradigms, the social 

information is usually less salient, with its utility needing to be inferred from the individual 

reward feedback. Consequently, when it is the primary learning focus, social learning may be 

underpinned by the same dopamine-rich mechanisms as individual learning, but not when it 

comprises a secondary, additional element. Therefore, observed dissociations between social 

and individual learning may not reflect social versus individual dissociations but rather, 

dissociations between primary and secondary learning status. 

For example, a commonly used index of social learning is a social learning task (SLT), 

originally developed by Behrens and colleagues [95]. This task allows learning rates and other 

indices of learning to be estimated from social and individual reward information at the same 

time but in a dissociable manner. During the task, participants are required to choose between 

a blue or green shape to gain points, receiving feedback in the form of a blue/green indicator, 

which directly informs participants about the utility of their choice (blue/green). Participants 

can also learn from an additional source of information, a red frame surrounding one of the 

choices (the orange frame in Chapter 4), which represents the ‘social’ information. This, 

however, is a secondary source of information to the primary or experienced information, as 

the utility of the frame must be inferred from the experienced outcome values (i.e., if the 

indicator is blue and the red frame surrounds the blue shape, then the red frame is correct). In 

addition, the red frame appears temporally after the blue/green indicators and is less visually 

salient. Thus, the social learning source is also a secondary information source relative to 
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individual information and learning from individual and social information cannot be fully 

orthogonalized using extant paradigms.  

Cook and colleagues provided preliminary evidence against a neurochemical dissociation 

between social and individual learning mechanisms. Using the social learning task (SLT) 

adapted from Behrens et al., [95], they demonstrated that manipulation of catecholamine 

signalling via methylphenidate (MPH) affected learning from a primary information source 

only. The task was adapted whereby half of the participants were informed that the secondary 

information source (red frame) represented social advice, the remainder were told that the red 

frame represented output from a rigged roulette wheel, enabling the authors to determine if 

dissociations between social and individual learning were better explained in terms of the 

social versus non-social or the secondary versus primary nature of the information source. 

MPH enhanced subjects’ ability to optimize their learning rate for the current level of 

environmental volatility, specifically while learning from the primary (individual) reward, 

with no effect of MPH on learning from the secondary information source, regardless of 

whether participants believed it was “social” or not. These results suggested that the differing 

effect of catecholamine perturbation dissociated between learning from primary and 

secondary sources, rather than between individual and social sources. However, in this study, 

the social source was an additional, secondary, source of information, meaning that social 

nature (social versus individual) and rank (primary versus secondary status) were not fully 

orthogonalised. To provide positive evidence that dissociations lie between learning from 

primary and secondary, rather than between social and individual information, it is therefore 

necessary to orthogonalize the social/individual and primary/secondary nature of the 

information sources. This will allow investigation of the effects of these factors 

independently of one another and help in determining which factor accounts for previously 

observed dissociations. We, therefore, aimed to develop a version of this task whereby the 

primary and secondary nature of the learning sources were switched, resulting in social 

information acting as the primary source of learning, and individual information as the 

secondary, additional information source. 

Within the SLT, there are three main differences that might be contributing to the primary 

versus secondary distinction between the blue/green boxes and the red frame: 1) saliency, 2) 

direct association with reward, 3) temporal order. The social information is visually less 

salient, appearing as a thin frame, and temporally appears after the individual information. 

Finally, the reward information is linked directly to the individual information, meaning that 
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the utility (correct/incorrect) of the social information must be inferred, in a secondary 

manner, from the individual reward feedback (i.e., which stimulus is correct). There exist 

some well-known phenomena in the associative learning literature, that suggest that these 

factors would result in stronger associations between the blue/green stimuli and reward than 

between the social stimulus and reward. For example, blocking [209],[348] occurs when a 

stimulus becomes associated with reward, blocking any further associations between that 

same reward and other stimuli; i.e., learning of a particular stimulus-reward association 

blocks further learning [24]. In the case of the current paradigm, as the blue/green stimuli are 

first associated with reward, they may block learning to the red frame (social information). 

Additionally, there is evidence that temporal primacy can reduce the effects of blocking [349], 

suggesting that the temporal order of stimuli presentation is highly important during learning 

[25]. In the current paradigm, the red frame appears temporally after the blue/green stimuli, 

meaning that any blocking effects of the blue/green stimuli are not altered. Another 

mechanism that may be occurring in the SLT is overshadowing, referring to a phenomenon 

whereby when two stimuli are present in compound and only the more salient (sometimes 

referred to as “intense”) stimuli is associated with reward [350], overshadowing any learning to 

the less salient stimulus by taking up attentional resources. This, alongside blocking, is often 

referred to as cue competition, where one cue or stimulus prevents learning of another 

[24],[350],[351]. Indeed, associative learning between a stimulus and outcome can be modulated 

by the attention given to a particular stimulus [193],[201], with attention affected by a number of 

different factors, including the visual saliency of stimuli [352]. In addition, whether or not the 

stimulus is directly relevant to task performance, i.e., whether it is directly associated with a 

reward, also modulates the salience of the stimulus and attention given to the stimulus during 

learning [353]–[355], in line with an incentive motivation view of attentional orienting [356]. 

In order to make the social information into the primary information source, we adapted 

several aspects of the SLT structure, so that the social information was more salient, appeared 

first, and was linked directly to reward feedback. In this modified version of the task (referred 

to hereafter as the ‘social-primary’ task condition) the social information appears in the form 

of a large, solid red shape rather than a thin, red frame and is presented to participants first, 

before the blue/green frames (individual information) appear. Crucially, reward feedback is 

altered, such that it now informs participants as to whether the social group are correct or 

incorrect, rather than which shape (blue/green) is correct. All other aspects of the task, 
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including probabilistic schedules, are identical to the standard task version (referred to as the 

‘individual-primary’ task from hereon).  

To assess whether task manipulations had made the social information into the primary 

learning source, we aimed to quantify the weight given to both social and individual 

information during learning. Participants (n = 77) completed the social-primary version of the 

SLT. Both behavioural and computational measures of learning were collected. We compared 

these measures with data from previous work (n=102) [93] using the standard version of the 

task (individual-primary group). We predicted an increase in the weight or reliance given to 

social information and/or higher learning rates for social information within the social-

primary versus the individual-primary groups.  

 

5.2 Materials and Methods 

5.2.1 Participants 

Data was collected from 77 volunteers, recruited via the research participation scheme (RPS) 

system at the University of Birmingham (aged 18 – 37 years, mean (SD) = 20.8 (4.1); 58 

women). All participants gave informed consent to participate. The study was approved by 

the University of Birmingham local ethics committee (ERN_16-021AP5). Participants 

received monetary compensation on completion of both testing sessions, at a rate of £7 or 1 

research credit per hour. 

Effect size calculation  

Based on estimates of effect size from previous work [93], a sample of 71 participants was 

required, to obtain 90% power at 0.05 alpha, to detect the effect of information type 

(individual, social) on beta values.  

  

5.2.2 General procedure  

Participants took part in the experiment over two separate test days and completed a wider 

battery of tasks, including measures of interoception, emotion recognition and production, 

and movement tracking. The behavioural task reported here (social learning task (SLT); 

Appendix 4.1) was always completed on test day 1 and lasted approximately 35 minutes. 
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Participants were seated approximately 30cm from a computer screen. Stimuli were displayed 

using PsychToolBox and the task was programmed using MATLAB R2017b (The 

MathWorks, Natick, MA). Before the main task, participants completed a step-by-step on-

screen practice task (10 trials) in which they learnt to choose between the two options to 

obtain a reward and learned that the “advice” represented by the frame(s) could help in 

making the correct choice in some phases. To ensure that participants were making a 

conceptual distinction between the social and individual learning sources, we required 

participants to complete a short pre-task quiz (Appendix 4.2), testing their knowledge, after 

the practice task. Participants were required to repeat the practice round until they achieved 

100% correct score in the quiz, meaning that all participants understood the structure of the 

task and that the red shape represented social information. Furthermore, after the experiment, 

participants completed a feedback questionnaire (Appendix 4.3). Answers confirmed that 

participants understood the difference between, and paid attention to both, individual and 

social sources of information. Participants were informed as to whether they had earned a £5 

bonus after the session. However, due to ethical considerations, all participants received the 

bonus. 

Social-primary social learning task  

Participants completed 120 trials of the SLT [309] (Fig. 5.1A). Participants were required to 

choose between two shapes (blue or green) to gain points. On each trial, participants were 

presented with two grey placeholders. One placeholder was filled with a red box, which 

participants were informed represented the most popular choice made by a group of 

participants who had previously completed the task, i.e., it indicated the ‘social’ choice or 

option. Blue/green frames then appeared around the placeholders. Participants were then 

asked to choose between the two colours. Outcome or social reward information appeared in 

the form of a tick or a cross, which primarily informed participants about the utility of the 

group’s decision. The indicator thus primarily informed participants about whether the social 

group had been rewarded (and thus going with them would have resulted in points scoring 

but going against them would not) on the current trial. Whether the blue (or green) frame 

surrounded the correct or incorrect option could, secondarily, be inferred from the indicator. 

Participants were informed that the group’s “advice” (the red stimulus) would fluctuate 

between being predominantly correct and predominantly incorrect, and that the task followed 

‘phases’ wherein sometimes the blue, but at other times the green stimulus, was more likely 

to be associated with reward (Fig.5.1B). Both the probability of blue being correct and the 
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probability of the red shape indicating the correct answer varied according to four different 

probabilistic schedules, including stable and volatile blocks.  

 

Figure 5.1 Behavioural task manipulations - social-primary task 

 

  

Figure 5.1. Behavioural task. A. Task structure. Participants selected between going with, or against a 

red box, which represented the social information. On each trial, the red box was displayed. After 1-4s, 

blue and green frames appeared. After 0.5–2s, a question mark appeared, indicating that participants 

were able to make their response. Response was indicated by a silver frame surrounding their choice. 

After a 1-3s interval, participants received feedback in the form of a tick or a cross. This feedback 

informed participants if going with the group was correct or incorrect, from this feedback participants 

could infer whether the blue or green frame was correct. B. Stable and volatile phases. The probability 

of reward varied according to probabilistic schedules, including stable and volatile blocks for both the 

probability of blue being correct and the probability of the red shape indicating the correct answer. 

 

5.2.3 Behavioural Measures 

Accuracy & Reaction time 

Accuracy was defined as the proportion of correct responses. Accuracy scores were summed 

and averaged, with Shapiro-Wilk (SW) testing failing to reject the null hypothesis that scores 
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followed a normal distribution (p > 0.01). Reaction time (RT) was calculated as time from 

stimulus presentation to response in milliseconds (ms). Scores did not meet normality 

assumptions (SW test, p values < 0.01); RT values were therefore square root transformed 

prior to analysis. After transformation, we failed to reject the null hypothesis that scores 

followed a normal distribution (SW test, p values > 0.01).  

Optimal learner model 

The influence of each information source (primary and secondary) on choices was quantified 

by regressing two “optimal learners” against subjects’ choices. Learner models comprised an 

optimal “individual learner model” [88] simulating an optimal learner who learns solely from 

individual information (the blue and green stimuli) and a “social learner model” which 

simulated an optimal learner who learns solely from the social information (red stimuli). Both 

models were (separately) regressed against each individual participant’s choice data using 

binomial logistic regression, with model predictions from the primary and secondary models 

as continuous predictor variables and participant response as the dependent variable (0/1). 

For each participant, this produced two parameter estimates, or standardised beta weights, 

each representing the degree to which individual experience and social information explained 

choices. For example, a participant whose choices were more strongly influenced by the 

social information than the individual information would have a high social βoptimal value, and 

a low individual βoptimal value (see Appendix 2.2 for full details of the optimal learner model). 

Win-stay lose-shift beta regression (WSLS 𝛽)  

WSLS behaviour was quantified by regressing participant choices (choose blue/green; 

follow/deviate from social advice) against a WSLS strategy. The analysis is identical to that 

used by Cook and colleagues [93] and is reproduced here for completion. A separate regressor 

was created for each participant for individual and social information, representing the choice 

that they would have made if following an ideal WSLS strategy. For individual learning, if on 

the previous trial (t-1) the participant had chosen blue and won, the regressor predicted that 

the participant should repeat this choice and choose blue on trial t, i.e., win and stay (coded as 

1). If, however, the participant had chosen blue on trial t-1 and lost, the regressor would 

predict a shift to a green choice, or a lose-shift (coded as 0). Similarly, for learning from 

social information, if the participant had previously followed the social advice and won, the 

regressor would predict that they should stay with the advice; if they lost, the regressor would 

predict that the participant should shift such that they do not follow the frame’s advice on the 
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current trial. WSLS regressors were regressed against each participant’s choice data, 

separately for individual and social information and volatile and stable phases, resulting in 

four beta values for each participant. Beta values did not meet assumptions for normality 

(SW test, p values < 0.01); values were log-transformed prior to analysis. 

Computational modelling framework  

Further to behavioural analysis of participant choices, participant response was modelled 

using an adapted Rescorla-Wagner learning model [24]. The model relies on the assumption 

that updates to choice behaviour are based on prediction errors, i.e., the difference between an 

expected and the actual outcome. Participants were assumed to update their beliefs about 

outcomes based on sensory feedback (perceptual model), and to use this feedback to make 

decisions about the next action (response model) (see Appendix 2.3 for full model details). 

Model fitting was performed using scripts adapted from the TAPAS toolbox [230] (scripts 

available at OSF link https://tinyurl.com/b3c7d2zb). Parameters were fitted separately for 

each participant’s choice data. Learning rate (𝛼) was estimated for each participant, 

separately for primary and secondary information and volatile and stable phases, resulting in 

four estimated learning rates per participant. β and ζ values were also estimated for each 

participant.  

Data pre-processing 

Datasets were excluded based on the following: accuracy < 50% under placebo, conformed to 

the group choice on > 80% trials, chose the same side (left/right) or colour on > 80% trials, 

incomplete datasets (less than 120 trials completed). Five subjects were excluded, resulting in 

a final sample of n = 70.  

 

5.3 Results 

The main aim of the task manipulation was to make the social information into the primary 

learning source. We compared behavioural and computational measures of learning from the 

current pilot study (social-primary group) with a sample from previous work (n = 102) using 

the original version of the task (individual-primary group). All analyses, therefore, included 

group (social-primary, individual-primary) as a between-subjects (BS) factor, to assess the 

effect of the task manipulation on different variables. Participants from the individual-
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primary group were excluded based on the exclusion criteria described above, resulting in a 

final sample of n = 98. Due to time constraints, groups were not matched on demographic 

variables (Table 5.1).  

Table 5.1 Demographic information 

 

 

n = 168   

Individual-

primary group 

(n = 98) 

 

Mean (SD) 

Social-primary 

group 

(n = 70) 

 

Mean (SD)) 

 

 

 

t (1,166) 

 

 

 

X2 (1, N = 

166) 

 

 

 

p 

      

Gender 

(n males: n females) 

 

47:51 17:53  

 

  9.704 0.002 

 

Age 21.5 (2.3) 20.8 (4.1) 1.409  0.161 

   
  

   

Note: SD refers to standard deviation. Gender differed between the groups. Age did not significantly 

differ between groups. 

 

Accuracy and reaction time 

We first compared accuracy across task groups (individual-primary, social-primary). A 

repeated measures ANOVA (RM-ANOVA) was carried out, with accuracy as the dependent 

variable (DV), volatility (volatile, stable) as a within-subjects (WS) predictor variable and 

schedule (1-4) and task group as between-subjects predictors. Accuracy varied significantly 

as a function of group (F (1,160) = 4.469, p = 0.036, ηp
2 = 0.027), with higher accuracy for 

the individual-primary group (mean (standard error) (�̅�(𝜎�̅�) = 0.630 (0.006) compared to the 

social-primary group (�̅� (𝜎�̅�) = 0.612 (0.006)) (Fig. 5.2A). Neither schedule (F (3, 160) = 

1.923, p = 0.128, ηp
2 = 0.035) nor volatility (F (1, 160) = 0.037, p = 0.847, ηp

2 < 0.001) had a 

significant effect on accuracy scores and no other interactions with group were observed (all 
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p > 0.05). However, a significant volatility by schedule interaction was observed (F (3, 160) 

= 15.227, p < 0.001, ηp
2 = 0.409). For participants in schedules 1 and 2, no difference in 

accuracy was observed between stable and volatile phases (pholm > 0.05). However, for 

schedules 3 and 4, accuracy significantly differed as a function of volatility; for schedule 3, 

higher accuracy was observed in volatile (�̅� (𝜎�̅�) = 0.678 (0.012) compared to stable phases 

(�̅� (𝜎�̅�) = 0.562 (0.011); t(160) = 7.925, pholm < 0.001). For schedule 4, however, higher 

accuracy was observed in stable (�̅� (𝜎�̅�) = 0.678 (0.013) compared to volatile phases (�̅� (𝜎�̅�) 

= 0.563 (0.009); t(160) = 7.533 , pholm < 0.001). However, participants were counterbalanced 

to different randomisation schedules, with the proportion of participants assigned to each 

schedule not differing between groups (X2 (1, N = 168) = 0.778, p = 0.855). The observed 

interaction therefore does not explain difference in accuracy between groups. Finally, log-

transformed mean reaction times (RT) (ms) were submitted to an ANOVA, with group and 

schedule as BS factors. RT was significantly greater in the social-primary group (�̅� (𝜎�̅�) = 

1.000 (0.022)) compared with the individual-primary group (�̅� (𝜎�̅�) = 0.926 (0.019); F(1,160) 

= 6.361, p = 0.013, ηp
2 = 0.038) (Fig. 5.2B). This pattern of results, namely lower accuracy, 

and slower reaction time, suggests that the social-primary condition was more difficult 

compared to the individual-primary condition. However, as results were taken from two 

separate experiments and groups were not matched, this cannot be confidently concluded 

from the current data. 
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Figure 5.2 Accuracy and reaction time 

 

Figure 5.2. A. Mean accuracy across task groups. Accuracy was significantly higher for the 

individual-primary group. B. Mean reaction time across task groups. Reaction time was significantly 

slower for the social-primary group. Data points indicate mean accuracy for individual participants 

(total n = 168), bold point indicates the mean, bold line indicates standard error of the mean (1 SEM), 

* indicates statistical significance (p < 0.05). 

 

Optimal learner model 

We predicted an increase in the influence of social information on learning in the social-

primary group, indexed by βoptimal scores. βoptimal values were submitted to a RM-ANOVA 

with factors information source (individual, social) and group (social-primary, individual-

primary). A main effect of group was observed (F(1,166) = 8.980, p < 0.001, ηp
2 = 0.051), 

with (transformed) βoptimal values (averaged across individual and social) significantly higher 

for the individual-primary group (�̅�(𝜎�̅�) = 1.334 (0.016)), compared with the social-primary 

group (�̅�(𝜎�̅�) = 1.267 (0.016) (Fig. 5.3). No main effect of information (individual/social) 

was observed (F(1,166) = 0.976, p = 0.323, ηp
2 = 0.006)). In contrast to predictions of 

increased βoptimal for social information in the social-primary group, we did not observe a 

significant interaction between information and group (F (1,166) = 2.438, p = 0.120, ηp
2 = 

0.014), with βoptimal for social information not differing significantly between groups (pholm = 

1.000). However, in the social-primary group, βoptimal for individual information (�̅�(𝜎�̅�) = 

1.251 (0.029) was significantly lower compared with the individual-primary group (�̅�(𝜎�̅�) = 

* 

* 

A B 
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1.375 (0.033); t(166) = 2.906, pholm = 0.024). These data suggest, that, rather than 

significantly increasing the influence of social information on learning, the task manipulation 

had reduced the influence of individual information on learning, with βoptimal values 

comparable for individual and social information in the social-primary group. Crucially, 

βoptimal weights in the social-primary group were significantly greater than zero for both 

information sources (individual: t (167) = 12.743, p < 0.001; social: t (167) = 13.539, p < 

0.001), demonstrating that use of optimal models of information explained a significant 

amount of variance in the use of individual and social learning sources.  

  

Figure 5.3 βoptimal for individual and social information across task groups. 

 

Figure 5.3. Beta weights (βoptimal) for individual and social information across task groups. Data 

points indicate estimated 𝛽 for individual participants (n = 168), bold point indicates the mean, bold 

line indicates standard error of the mean (1 SEM), * indicates statistical significance (pholm < 0.05). 

βoptimal for individual information was significantly lower for participants in the social-primary group 

compared with the individual-primary group. βoptimal for social information did not significantly differ 

between groups. 

 

* 
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Analysis of win-stay, lose-shift behaviour 

Next, WSLS𝛽 values were compared across groups. A RM-ANOVA, with information 

(individual, social) and volatility (volatile, stable) as WS factors, and group (individual-

primary, social-primary) as the BS factor, revealed a significant main effect of information 

type (F (1,166) = 34.969, p < 0.001, ηp
2 = 0.174) on (log-transformed) WSLS𝛽 scores, with 

more WSLS behaviour for individual information. In addition, a significant main effect of 

volatility was observed (F (1,166) = 69.409, p < 0.001, ηp
2 = 0.295), with higher WSLS𝛽 

scores during volatile phases. Importantly, a significant group by information interaction was 

observed (F (1,166) = 4.078, p = 0.045, ηp
2 = 0.024, BFincl = 2.688). Although post-hoc tests 

did not reach significance, a trend was observed whereby WSLS𝛽 scores for individual 

information were (non-significantly) reduced in the social-primary group (�̅� (𝜎�̅�) = 0.119 

(0.011)) compared with the individual-primary group (�̅� (𝜎�̅�) = 0.138 (0.007), t = -1.841, 

pholm = 0.133). In contrast, WSLS𝛽 scores for social information showed a (non-significant) 

increase in the social-primary group (�̅� (𝜎�̅�) = 0.085 (0.007)) compared with the individual-

primary group (�̅� (𝜎�̅�)= 0.070 (0.006), t = 1.435, pholm = 0.152) (Fig. 5.4).  

Figure 5.4 WSLSβ for individual and social information 

 

Figure 5.4. WSLSβ for individual and social information. Data points indicate (log-

transformed) WSLSβ for individual participants (n = 168), bold point indicates the mean, bold 

line indicates standard error of the mean (1 SEM).  



 83 

Results suggest a trend towards increased WSLS𝛽 scores for social information in the social-

primary group, coupled with a decrease in WSLS𝛽 scores for individual information, with 

Bayesian analysis providing anecdotal-moderate evidence for this interaction effect. 

 

Computational modelling parameters 

Next, computational modelling parameters 𝛼, 𝛽 and 𝜁 were compared across task groups. We 

predicted that, if social information was the primary source of information for participants in 

the social-primary group, an increase in learning rates for social information would be 

observed, relative to learning rates for individual information. Specifically, we predicted an 

interaction between group and information type. A RM-ANOVA with factors information, 

volatility, and group, and 𝛼 as the DV revealed main effects of information (F (1,166) = 

63.126, p < 0.001, ηp
2 = 0.276), reflecting that 𝛼𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 was higher than 𝛼𝑠𝑜𝑐𝑖𝑎𝑙  in both 

groups. No other main/interaction effects were observed. Surprisingly, and in contrast with 

our analysis of WSLS𝛽 values, no significant group by information interaction was observed 

(F (1,166) = 0.518, p = 0.473, ηp
2 = 0.003), with Bayesian analyses providing moderate 

evidence against the presence of an interaction effect (BFexcl = 5.108). However, WSLS𝛽 and 

𝛼 scores were significantly correlated for both individual (volatile: r = 0.783, p < 0.001; 

stable: r = 0.822, p < 0.001) and social information (volatile: r = 0.666, p < 0.001; stable: r = 

0.573, p < 0.001). Despite the lack of a significant interaction, a trend towards a numerical 

increase in 𝛼𝑠𝑜𝑐𝑖𝑎𝑙  was observed in the social-primary group (�̅� (𝜎�̅�) = 0.213 (0.014)) 

compared with the individual-primary group (�̅� (𝜎�̅�) = 0.193 (0.011)), t(166) = 1.134, p = 

0.258, d = 0.177).  

We then compared 𝜁 across task groups. ζ represents the relative weighting of individual and 

social sources of information, with higher values indicating a bias towards the over-weighting 

of social relative to individual. An increase in 𝜁 was predicted for participants in the social-

primary, relative to the individual-primary group. Although there was no significant effect of 

group on 𝜁 scores (F (1,166) = 1.616, p = 0.205, ηp
2 = 0.010), ζ scores showed a numerical 

increase in our social-primary (�̅� (𝜎�̅�) = 0.549 (0.030), relative to individual-primary, groups 

(�̅� (𝜎�̅�) = 0.500 (0.025)). However, a Bayesian independent samples t-test provided anecdotal 

evidence against higher 𝜁 scores for the social-primary group (BF01 = 1.58). Finally, there 

was no effect of group on 𝛽 values (F (1,166) = 0.049, p = 0.825, ηp
2 < 0.001).  
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In summary, although inconclusive, results suggest a trend towards an increase in the 

weighting of social information for participants in the social-primary group. Results do not, 

however, support an increase in learning rates with regard to social information for the social-

primary group.  

 

5.4 Discussion 

The existence of neurochemical pathways specific to social learning is widely debated, with 

contrasting findings in the current literature. However, there is evidence to suggest that 

learning can be neurochemically dissociated at a primary versus secondary, rather than a 

social versus individual level [93]. As current paradigms lack the ability to separate these 

factors, we here aimed to develop a version of this paradigm that would enable us to 

orthogonalize social versus individual and primary versus secondary, to use in the context of 

a pharmacological manipulation in Chapter 6. Different aspects of the task structure, namely 

the salience of the social information, the temporal order of stimuli presentation and the 

nature of the reward feedback were manipulated, in an attempt to make the social information 

into the primary source of learning. We conducted a pilot study with healthy individuals (n = 

72) who completed the adapted SLT (social-primary group). These results were compared 

with results from a separate sample (n = 98) who had previously completed the standard SLT 

(individual-primary group, data from Cook et al., 2019 [93]), to test if task manipulations had 

made the social information into the primary source of learning. Our analyses suggest that 

our task manipulation affected several indices of learning, with results in the expected 

direction. However, both frequentist and Bayesian analyses suggest that stronger 

manipulations are required, in order to fully orthogonalize these factors.  

First, participants in the social-primary group showed significantly reduced individual βoptimal 

weights, relative to the individual-primary group. βoptimal weights represent the extent to 

which participants are following an optimal strategy for learning solely from individual or 

social information during learning, thus providing an index of reliance on each information 

source. Results show a reduced reliance on individual information in our social-primary task 

group, relative to in the individual-primary group, although Bayesian evidence was 

inconclusive. Next, our analysis of WSLS𝛽 scores, representing the extent to which 

participants rely on performance on the previous trial, and commonly used as a proxy for 
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learning rate, showed a significant interaction between group and information type. Although 

post hoc tests were non-significant, results showed an increase in the use of a WSLS strategy 

for social information within the social-primary compared with the individual-primary group, 

coupled with a corresponding decrease in WSLS strategy for individual information. Thus, 

suggesting an increase in learning from social information in the social-primary group, with 

Bayesian analysis supporting these results. Analysis of the decision-rule parameter estimate 

𝜁, representing the weighting of social, relative to individual information, revealed a trend 

towards increased weighting of social information in the social-primary group, although 

Bayesian analyses provided anecdotal evidence against a difference between groups. Finally, 

although results from our analyses of parameter estimates from a computational model of 

learning were non-significant, with Bayesian analyses providing evidence against differences 

in learning rates as a function of group and information source, the data showed a trend in the 

same direction as our behavioural measures of learning. Taken together, the data reported 

here suggest that participants in the social-primary group were putting more weight on the 

social information, in comparison with participants in the individual-primary group. 

While the pattern of results trend in the predicted direction and provide tentative evidence 

that participants are putting more weight on social information during learning, several 

cautionary points should be noted. First, our analysis of optimal beta weights showed that, 

while the weight given to individual information significantly decreased for the social-

primary group, the corresponding increase in the weighting of social information, although 

showing a trend in the predicted direction, was not significant. Second, although our 

behavioural proxy measure of learning rate, indexed by win-stay, lose-shift behaviour 

showed a trend towards an increase in learning from social information in the social-primary 

group, post hoc tests were not significant. Finally, we did not observe a corresponding effect 

in computational measures of learning rate.  

It might therefore be the case that, while participants in the social-primary group are giving 

more weight to the social information, compared with those in the individual-primary group, 

further manipulations would strengthen this. For example, participants are presented with two 

shapes (blue/green) to choose between, and only one source of social information (red shape). 

While this cannot be altered, perhaps more importantly, participants’ choice during the 

current pilot study was framed as choosing between two shapes, similarly to the individual-

primary task. Specifically, participants were told that they had to choose between two shapes, 

which might encourage participants to think primarily of the blue and green shapes. The 
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possibility that this factor prevented the social information from being the primary source of 

information must be considered. Indeed, there exists a wide body of literature demonstrating 

that instructions can actively influence both behavioural and neural learning-related responses 

[227],[357]–[360], suggesting that prior experimental instructions affect performance on this task. 

Building on this idea, task instructions provided to participants were updated for use in the 

paradigm employed in Chapter 6. Participants were here primarily asked to choose between 

going with, or against, the group’s choice, i.e., with or against the social information 

(Appendix 4.4).  

For future task development and for adapting current paradigms to include appropriate non-

social control conditions, it is important to disentangle which manipulations in particular are 

the most important in making an information source into the primary source of learning. 

Here, temporal order, salience and reward feedback were altered. Humans can learn from and 

integrate multiple sources of information to guide behaviour [211],[217],[361],[362]. While it is 

likely that all manipulations of the task have contributed to increasing the salience of the 

social information, linking the reward feedback directly to the social information source may 

have made the greatest contribution. Reward has been found to influence the amount of 

attention allocated to stimuli during decision-making tasks [353],[354],[363] and the source of 

information that results in the highest reward is thought to inform learning to the greatest 

extent [364]. Therefore, if there are reward-related consequences linked to a particular stimulus 

(for example, choosing the blue option and gaining feedback on whether blue was correct or 

incorrect), the stimulus becomes more salient and attracts more attention through top-down 

processes [365],[366]. Future studies could test if linking the reward feedback directly to the 

social information is sufficient to make the social information into the primary source, when 

learning from multiple sources of information.  

The adapted task described here has an advantage over previous work, in that it provides a 

way to orthogonalize the social/individual and primary/secondary nature of information 

sources in the same paradigm. For example, in previous work, where the social information 

was the only, and therefore the primary source of information, social learning was found to 

activate the same brain areas as in individual learning, namely dopamine-rich areas of the 

striatum [221]–[223],[225]. In contrast, other work has shown dissociations between social and 

individual learning. However, here the social information is typically an additional, indirect 

source of information during learning [93],[95],[258],[309]. Thus, this paradigm could be used to 

resolve contradictory findings in the literature.  
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In the following chapter, we test the prediction that, using our adapted version of the task, 

(‘social-primary’ task, with social information comprising the primary, and individual 

information the secondary source), as well as the unaltered task (‘individual-primary’ task), 

pharmacological manipulation of dopamine signalling will affect learning only from the 

primary source of information. For example, in the social-primary task, a significant effect of 

dopaminergic manipulation will be observed on social, but not individual, learning, with the 

opposite true for the individual-primary task. A between-subjects design will be utilised, 

allowing the social nature of the primary information source to vary across task groups, with 

participants randomly assigned to a task group. Groups will, however, be matched on 

demographic measures, a key limitation in the current pilot study, as, due to time constraints, 

results were compared across samples from two separate experiments, and were not matched 

on demographic variables, including gender. Participants will complete the task twice; once 

under placebo and one under a dopamine antagonist. We predict a decrease in learning from 

the primary information, with no significant effect on secondary, inferred-value learning. 

This pattern of results would be consistent with a domain-general view of social learning at a 

neurochemical level, with regard to the dopaminergic system. They would also add support 

for research showing that, rather than being specialised for social processes, brain networks 

are adaptable, and can process both social and individual information, flexibly switching 

between them depending on which is primary or more relevant for the current task 

[265],[266],[367],[368]. 

To conclude, this chapter describes the underlying rationale and preliminary pilot data from 

the development of a new task version of a widely used social learning task. Pilot testing 

results supported the underlying aim; to make the social information into a more primary 

source of information during learning. This adapted version of the SLT has the potential to 

allow the orthogonalization of primary/secondary and social/individual information 

simultaneously, and manipulations described here could be utilised in other paradigms 

comparing social and individual learning. Future work will involve replication of these 

findings in a sample with matched task groups, and an investigation of the effects of 

pharmacological manipulation of dopamine signalling on learning from social/individual and 

primary/secondary information.



 

 

Chapter 6:  Dopaminergic challenge dissociates learning from 

primary versus secondary sources of information 

This chapter presents a published study investigating manipulation of dopamine signalling on 

learning from social and individual information, employing a design whereby the social 

nature and the status of information sources are orthogonalized. 

 

Supplementary materials for this chapter are in Appendix 5.  
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Summary  

Some theories of human cultural evolution posit that humans have social-specific learning 

mechanisms that are adaptive specialisations moulded by natural selection to cope with the 

pressures of group living. However, the existence of neurochemical pathways that are 

specialised for learning from social information and from individual experience is widely 

debated. Cognitive neuroscientific studies present mixed evidence for social-specific learning 

mechanisms: some studies find dissociable neural correlates for social and individual learning 

whereas others find the same brain areas and, dopamine-mediated, computations involved in 

both. Here we demonstrate that, like individual learning, social learning is modulated by the 

dopamine D2 receptor antagonist haloperidol when social information is the primary learning 

source, but not when it comprises a secondary, additional element. Two groups (total N = 43) 

completed a decision-making task which required primary learning, from own experience, 

and secondary learning from an additional source. For one group the primary source was 

social, and secondary was individual; for the other group this was reversed. Haloperidol 

affected primary learning irrespective of social/individual nature, with no effect on learning 

from the secondary source. Thus, we illustrate that dopaminergic mechanisms underpinning 

learning can be dissociated along a primary-secondary but not a social-individual axis. These 

results resolve conflict in the literature and support an expanding field showing that, rather 

than being specialised for particular inputs, neurochemical pathways in the human brain can 

process both social and non-social cues and arbitrate between the two depending upon which 

cue is primarily relevant for the task at hand.  
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Introduction 

The complexity and sophistication of human learning is increasingly appreciated. Enduring 

theoretical models illustrate that learners utilise “prediction errors” to refine their predictions 

of future states (e.g. Rescorla-Wagner and temporal difference models) [24],[25],[211],[217]. An 

explosion of studies, however, illustrates that this simple mechanism lies at the heart of more 

complex and sophisticated systems that enable humans (and other species) to learn from, 

keep track of the utility of, and integrate information from, multiple learning sources 

[347],[359],[369] meaning that one can learn from many sources of information simultaneously 

[364]. Such complexity enables individuals to, for example, rank colleagues according to the 

utility of their advice and learn primarily from the top-ranked individual [190],[195],[197],[331] 

whilst also tracking the evolving utility of advice from others [95],[227]. Recent studies have 

further revealed that learning need not rely solely on directly experienced associations, since 

one can also learn via inference [370]–[376]. This growing appreciation of the complexity and 

sophistication of human learning may help to explain contradictory findings in various fields. 

Here we focus on the field of social learning. 

The existence in the human brain of neural and/or neurochemical pathways that are 

specialised for learning from social information and from individual experience respectively 

is the topic of much debate [186],[201]. Indeed, the claim that humans have social-specific 

learning mechanisms that are adaptive specialisations moulded by natural selection to cope 

with the pressures of group living, lies at the heart of some theories of cultural evolution 

[190],[197],[199]. Since cultural evolution is argued to be specific to humans [194], establishing 

whether humans do indeed possess social-specific learning mechanisms has attracted many 

scholars with its promise of elucidating the key ingredient that “makes us human”. 

Cognitive neuroscience offers tools that are ideally suited to investigating whether the 

mechanisms underpinning social learning (learning from others), do indeed differ from those 

that govern learning from one’s individual experience (individual learning). Cognitive 

neuroscientific studies, however, present mixed evidence for social-specific learning 

mechanisms. Some studies find dissociable neural correlates for social and individual 

learning [95],[256]–[258]. For example, a study by Behrens and colleagues [95] reported that whilst 

individual learning was associated with activity in dopamine-rich regions such as the striatum 

that are classically associated with reinforcement learning, social learning was associated 

with activity in a dissociable network that instead included the anterior cingulate cortex gyrus 
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(ACCg) and temporoparietal junction. Further supporting this dissociation, studies have 

revealed correlations between personality traits, such as social dominance [309] and 

dimensions of psychopathy [377] and social, but not individual, learning; as well as atypical 

social, but not individual, prediction error-related signals in the ACCg in autistic individuals 

[187]. Together these studies support the existence of social-specific learning mechanisms. In 

contrast, other studies have reported that the same computations, based on the calculation of 

prediction error, are involved in both social and individual learning [230], and that social 

learning is associated with activity in dopamine-rich brain regions typically linked to 

individual learning [221]–[225],[347]. Diaconescu and colleagues [222], for example, observed that 

social learning-related prediction errors covaried with naturally occurring genetic variation 

that affected the function of the dopamine system. Further supporting this overlap between 

social and individual learning, behavioural studies have observed that social and individual 

learning are subject to the same contextual influences. For example, Tarantola and colleagues 

[378] observed that prior preferences bias social learning, just as they do individual learning. 

Such findings promote the view that ‘domain-general’ learning mechanisms underpin social 

learning: we learn from other people in the same way that we learn from any other stimulus 

in our environment [186],[201]. That is, there are no social-specific learning mechanisms. 

One potential resolution to this conflict in the literature hinges on i) an appreciation of the 

complexity and sophistication of human learning systems and ii) a difference in study design 

between tasks that have, and have not, found evidence of social-specific mechanisms. In 

studies, that have linked social learning with the dopamine-rich circuitry typically associated 

with individual learning (and which are therefore consistent with the domain-general view), 

participants have been encouraged to learn primarily from social information. Indeed, in 

many cases the social source has been the sole information source [222],[223],[225]. For example, 

in the paradigm employed by Diaconescu and colleagues [222],[230], participants were required 

to choose between a blue and green stimulus and were provided with social advice which was 

sometimes valid and sometimes misleading; on each trial, participants received information 

about the time-varying probability of reward associated with the blue and green stimuli, thus 

participants did not have to rely on their own individual experience of blue/green reward 

associations and could fully dedicate themselves to social learning. That is, participants did 

not learn from multiple sources (i.e., social information and individual experience); 

participants only engaged in social learning. In contrast, in studies where social learning has 

been associated with neural correlates outside of the dopamine-rich regions classically linked 
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to individual learning (and which are therefore consistent with the domain specific view), 

social information has typically comprised a secondary, additional source [95],[309]. Typically, 

the non-social (individual) information is presented first to participants, represented in a 

highly salient form, and is directly related to the feedback information. The social 

information, in contrast, is presented second, is typically less salient in form, and is not 

directly related to the feedback information. For example, in the Behrens et al. study [95] (and 

in our own work employing this paradigm [93],[309]) participants were required to choose 

between two, highly salient, blue and green boxes to accumulate points. The boxes were the 

first stimuli that participants saw on each trial. Outcome information came in the form of a 

blue or green indicator thus primarily informing participants about whether they had made 

the correct choice on the current trial (i.e., if the outcome indicator was blue, then the blue 

box was correct). In addition, each trial also featured a thin red frame, which represented 

social information, surrounding one of the two boxes. The red frame was the second stimulus 

that participants saw on each trial and indirectly informed participants about the veracity of 

the frame: if the outcome was blue AND the frame surrounded the blue box, then the frame 

was correct. In such paradigms, participants must learn from multiple sources of information 

with one source taking primary status over the other. Consequently, in studies that have 

successfully dissociated social and individual learning the two forms of learning differ both 

in terms of social nature (social or non-social) and rank (primary versus secondary status). 

Thus, it is unclear which of these two factors accounts for the dissociation. 

The current study tests whether social and individual learning share common neurochemical 

mechanisms when they are matched in terms of (primary versus secondary) status. Given its 

acclaimed role in learning [71],[379], we focus specifically on the role of the neuromodulator 

dopamine. Drawing upon recent studies illustrating the complexity and sophistication of 

human learning [361],[375],[380] we hypothesise that pharmacological modulation of the human 

dopamine system will dissociate learning from two sources of information along a primary 

versus secondary, but not along a social versus individual axis. In other words, we 

hypothesise that social learning relies upon the dopamine-rich mechanisms that also underpin 

individual learning when social information is the primary source, but not when it comprises 

a secondary, additional element. Such a finding would offer a potential resolution to the 

aforementioned debate concerning the existence of social-specific learning mechanisms.  
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Preliminary support for our hypothesis comes from three lines of work. First, studies have 

convincingly argued for flexibility within learning systems. For example, in a study by Daw 

and colleagues [364], participants tracked the utility of four uncorrelated bandits, with 

particular brain regions - such as the ventromedial prefrontal cortex - consistently 

representing the value of the top-ranked bandit, even though the identity of this bandit 

changed over time. Second, studies are increasingly illustrating the flexibility of social brain 

networks [367],[368]. The medial prefrontal cortex (mPFC), for example, is not - as was once 

thought - specialised for representing the self; if the concept of ‘other’ is primarily relevant 

for the task at hand, then the mPFC will prioritise representation of other over self [265],[266]. 

Finally, in a recent study [93], we provided preliminary evidence of a catecholaminergic (i.e. 

dopaminergic and noradrenergic) dissociation between learning from primary and secondary, 

but not social and individual, sources of information. In this work (Cook et al., 2019) we 

employed a between-groups design, wherein both groups completed a version of the social 

learning task adapted from Behrens and colleagues (2008; described above). For one group 

the secondary source was social in nature (social group). For the non-social group, the 

secondary source comprised a system of rigged roulette wheels and was thus non-social in 

nature. We observed that, in comparison to placebo, the catecholaminergic transporter 

blocker methylphenidate only affected learning from the primary source - which, in this 

paradigm, always comprised participant’s own individual experience. Methylphenidate did 

not affect learning from the secondary source, irrespective of its social or non-social nature. 

That is, we found positive evidence supporting a dissociation between primary and secondary 

learning but no evidence to support a distinction between learning from social and non-social 

sources. Nevertheless, since we did not observe an effect of methylphenidate on learning 

from the (social or non-social) secondary source of information this study was unable to 

provide positive evidence of shared mechanisms for learning from social and non-social 

sources. If it is truly the case that domain-general (neurochemical) mechanisms underpin 

social learning, it should follow that pharmacological manipulations that affect individual 

learning when individual information is the primary source also affect social learning when 

social information is the primary source.  

The current (pre-registered) experiment tested this hypothesis by orthogonalizing social 

versus individual and primary versus secondary learning. We perturbed learning using the 

dopamine D2 receptor antagonist haloperidol, in a double-blind, counter-balanced, placebo-

controlled design. To test whether pharmacological manipulation of dopamine dissociates 
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learning along a primary-secondary and/or a social-individual axis, we developed a novel 

between-groups manipulation wherein one group of participants learned primarily from social 

information and could supplement this learning with their own individual experience, and a 

second group learned primarily from individual experience and could supplement this 

learning with socially learned information. To foreshadow our results, we demonstrate that 

haloperidol specifically affects learning from the primary (not secondary) source of 

information. Bayesian statistics confirmed that the effects of haloperidol were comparable 

between the groups thus, haloperidol affected individual learning when individual 

information was the primary source and, to the same extent, social learning when social 

information was the primary source. Our data support an expanding field showing that, rather 

than being fixedly specialised for particular inputs, neurochemical pathways in the human 

brain can process both social and non-social cues and arbitrate between the two depending 

upon which cue is primarily relevant for the task at hand [265],[266],[367]. 

 

Results  

Participants (n = 43; aged 19-38, mean (standard error) �̅�(𝜎�̅�) = 25.950 (0.970); 24 males, 19 

females; see Methods) completed an adapted version of the behavioural task originally 

developed by Behrens and colleagues [95]. Participants were randomly allocated to one of two 

groups. Participants in the individual-primary group (n = 21) completed the classic version of 

this task (Figure 1A [95]) in which they were required to make a choice between a blue and 

green box in order to win points. A red frame (the social information), which represented the 

most popular choice made by a group of four participants who had completed the task 

previously, surrounded either the blue or green box on each trial and participants could use 

this to help guide their choice. The actual probability of reward associated with the blue and 

green boxes and the probability that the red frame surrounded the correct box varied 

according to uncorrelated pseudo-randomised schedules (Appendix 2 – Fig. 1). For the 

individual-primary group, the individual information (blue and green stimuli) was primary, 

and the social information (red stimulus) was secondary on the basis that the blue/green 

stimuli appeared first on the screen, were highly salient (large boxes versus a thin frame) and 

were directly related to the feedback information. That is, after making their selection, 

participants saw a small blue or green box which primarily informed them whether a blue or 
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green choice had been rewarded on the current trial. From this information the participant 

could, secondarily, infer whether the social information (red frame) was correct or incorrect.  

Our social-primary group (n = 22; groups matched on age, gender, body mass index (BMI) 

and verbal working memory span (Table 1)) completed an adapted version of this task 

(Figure 1B) wherein the social information (red stimulus) was primary, and the individual 

information (blue/green stimuli) was secondary. Participants first saw two placeholders; one 

empty and one containing a red box which indicated the social information. Subsequently, a 

thin green and a thin blue frame appeared around each placeholder. Participants were told 

that the red box represented the group’s choice. They were then required to choose whether to 

go with the social group (red box) or not. After making their choice a tick or cross appeared 

which primarily informed participants whether going with the social information was the 

correct option. From this they could, secondarily, infer whether the blue or green frame was 

correct. Consequently, for the social-primary group the social information was primary on the 

basis that it appeared first on the screen, was highly salient (a large red box versus thin 

green/blue frames) and was directly related to the feedback information.  

Participants in both the individual-primary and social-primary groups performed 120 trials of 

the task on each of two separate study days. To perturb learning, on one day participants took 

2.5mg of haloperidol (HAL), previously shown to affect learning [214] via multiple routes 

including perturbation of phasic dopamine signalling [211],[379] facilitated by action at 

mesolimbic D2 receptors [381]–[383]. On the other day, they took a placebo (PLA) under 

double-blind conditions, with the order of the days counterbalanced. 43 participants took part 

in at least one study day, 33 participants completed both study days. Two participants 

performed at below chance level accuracy and were excluded from further analysis. We 

present an analysis of data from the 31 participants who completed both study days with 

above chance accuracy (Table 1) in the main text of this manuscript, which we complement 

with a full analysis of all 41 datasets in Appendix 4i. 
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Table 6-1 Participant information 

 Note: SD refers to standard deviation, VWM refers to verbal working memory span, BMI 

refers to body mass index. Age, gender, BMI and VWM did not significantly differ between 

the groups. 

 

We used the following strategy to analyse our data. First, we sought to validate our 

manipulation by testing (under PLA) whether participants in both the individual-primary and 

social-primary groups learned in a more optimal fashion from the primary, versus secondary, 

source of information. Next, we tested our primary hypothesis that both social and individual 

learning would be modulated by haloperidol when they are the primary source of learning, 

but not when they comprise the secondary source. To do so we estimated learning rates for 

primary and secondary sources of information, for each group (social-primary, individual-

primary), under HAL and PLA, by fitting an adapted Rescorla-Wagner learning model to 

choice data. To ascertain that our model accurately described choices we used simulations 

and parameter recovery. We used random-effects Bayesian model selection to compare our 

 
Individual-

primary group 

(n = 15) 

Mean (SD) 

Social-

primary 

group 

(n = 16) 

Mean (SD) 

 

 

 

t (1,29) 

 

 

 

X2 (1, N = 

31) 

 

 

 

p 

      

Gender 

(n males: 

n females) 

 

7:8 8:8  

 

0.034 0.853 

 

Age 
 

25.600 (5.448) 25.625 

(4.745) 

0.014  0.989 

  
  

   

VWM  80.333 (6.016) 76.354 

(7.823) 

1.580  0.125 

   
   

BMI 24.016 (2.807) 22.625 

(2.606) 

1.431   0.114 
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model with alternative models. These analyses provided confidence that our model accurately 

described participants’ behaviour. After testing our primary hypothesis, we explored the 

relationship between parameters from our computational model and performance. To 

accomplish this, we first used an optimal learner model, with the same architecture and priors 

as our adapted Rescorla-Wagner model, to assess the extent to which haloperidol made 

participants’ learning rates more (or less) optimal. Finally, we regressed estimated model 

parameters against accuracy to gain insight into the extent to which variation in these 

parameters (and the effect of the drug thereupon) contributed to correct responses on the task.  

 

Figure 6.1 Behavioural task 

 

Figure 1. Behavioural task. A. Individual-primary group. Participants selected between a 

blue and a green box to gain points. On each trial, the blue and green boxes were presented 

first. After 1-4 seconds (s), one of the boxes was highlighted with a red frame, representing 

the social information. After 0.5–2s, a question mark appeared, indicating that participants 

were able to make their response. Response was indicated by a silver frame surrounding their 

choice. After a 1-3s interval, participants received feedback in the form of a green or blue box 

in the middle of the screen. B. Social-primary group. Participants selected between going 

with, or against a red box, which represented the social information. On each trial, the red 

box was displayed. After 1-4s, blue and green frames appeared. After 0.5–2s, a question mark 

appeared, indicating that participants were able to make their response. Response was 

indicated by a silver frame surrounding their choice. After a 1-3s interval, participants 

received feedback in the form of a tick or a cross. This feedback informed participants if 

going with the group was correct or incorrect, from this feedback participants could infer 

?
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whether the blue or green frame was correct. C. Example of pseudo-randomised 

probabilistic schedule. The probability of reward varied according to probabilistic 

schedules, including stable and volatile blocks for both the probability of the blue box/frame 

being correct (top) and the probability of the red (social) box/frame being correct (bottom).  

 

Social information is the primary source of learning for participants in the social-

primary group 

Our novel manipulation orthogonalized primary versus secondary and social versus 

individual learning. To validate our manipulation, we tested whether participants in both the 

individual-primary and social-primary group learned in a more optimal fashion from the 

primary versus secondary source of information in our placebo condition. For this validation 

analysis we used a Bayesian learner model to create two optimal models (1) an optimal 

primary learner, and (2) an optimal secondary learner (Methods). Subsequently we regressed 

both models against participants’ choice data, resulting in two βoptimal values capturing the 

extent to which a participant made choices according to the optimal primary, and optimal 

secondary learner models respectively. βoptimal values were submitted to a repeated-measures 

ANOVA with factors information source (primary, secondary) and group (social-primary, 

individual-primary), revealing main effects of information source (F (1,29) = 6.594, p = 

0.016) and group (F (1,29) = 10.423, p = 0.003). βoptimal values (averaged across individual-

primary and social-primary groups) were significantly higher for the primary information 

(�̅�(𝜎�̅�) = 0.872 (0.101)), compared with secondary information source (�̅�(𝜎�̅�) = 0.438 

(0.101); t(29) = 2.568, pholm = 0.016). βoptimal values (averaged across primary and secondary 

conditions) were significantly higher for the social-primary group (�̅�(𝜎�̅�) = 0.833 (0.078)), 

compared with the individual-primary group (�̅�(𝜎�̅�) = 0.477 (0.078); t(29) = 3.228, pholm = 

0.003) (Figure 2). Crucially, we did not observe a significant interaction between information 

and group (F (1,29) = 0.067, p = 0.797), meaning that participants’ choices were more 

influenced by the primary information source, regardless of whether it was social or 

individual in nature. Furthermore, βoptimal values for primary information alone did not 

significantly differ between groups (t(29) = -1.982, pholm = 0.257). Note that, βoptimal weights 

for both information sources were significantly greater than zero (primary: t (30) = 7.534, p < 

0.001; secondary: t (30) = 4.789, p < 0.001) thus our optimal models of information use 

explained a significant amount of variance in the use of both primary and secondary learning 

sources. These data show that, irrespective of social (or individual) nature, participants 
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learned in a more optimal fashion from the primary (relative to secondary) learning source, 

which was first in the temporal order of events, highly salient and directly related to the 

reward feedback. 

Figure 6.2 Beta weights (βoptimal) 

 

Figure 2. Beta weights (β_optimal) for primary and secondary information. βoptimal values 

were significantly higher for the primary, compared to secondary, information source and for 

the social-primary, compared with the individual-primary, group. Data points indicate 

estimated βoptimal weights for individual participants (n = 31, placebo data only), bold point 

indicates the mean, bold line indicates standard error of the mean (1 SEM).  

 

Haloperidol reduces the rate of learning from primary sources  

We hypothesed that both social and individual learning would be modulated by 

administration of the dopamine D2 receptor antagonist haloperidol when they were the 

primary source of learning, but not when they comprised the secondary source. To test this 

hypothesis we fitted an adapted Rescorla-Wagner (RW) learning model [24] to participants’ 

choice data, enabling us to estimate various parameters that index learning from primary and 

secondary sources of information, for HAL and PLA conditions, for participants in the social-
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primary and individual-primary groups. Our adapted RW model provided estimates, for each 

participant, of 𝛼, β, and ζ. The learning rate (𝛼) controls the weighting of prediction errors on 

each trial. A high 𝛼 favours recent over (outdated) historical outcomes, while a low 𝛼 

suggests a more equal weighting of recent and more distant trials. Since our pseudo-random 

schedules included stable phases (where the reward probability associated with a particular 

option was constant for > 30 trials), and volatile phases (where reward probabilities changed 

every 10-20 trials), 𝛼 was estimated separately for volatile and stable phases (for both 

primary and secondary learning) to accord with previous research [88],[93],[125]. 𝛽 captures the 

extent to which learned probabilities determine choice, with a larger 𝛽 meaning that choices 

are more deterministic with regard to the learned probabilities. ζ represents the relative 

weighting of primary and secondary sources of information, with higher values indicating a 

bias towards the over-weighting of secondary relative to primary (see Methods and Appendix 

3 for further details of the model, model fitting and model comparison). 

We hypothesised an interaction between drug and (primary versus secondary) information 

source such that haloperidol would affect learning from the primary information source only, 

regardless of its social/individual nature. To test this hypothesis, we employed a linear mixed 

effects model with fixed factors information source (primary, secondary), drug (HAL, PLA), 

environmental volatility (volatile, stable) and group (social-primary, individual-primary) and 

dependent variable 𝛼 (square-root transformed to meet assumptions of normality). We 

controlled for inter-individual differences by including random intercepts for subject. 

Including pseudo-randomisation schedule as a factor in all analyses did not change the 

pattern of results. The mixed model revealed a drug by information interaction (F (1, 203) = 

6.852, p = 0.009, beta estimate (𝜎�̅�) = 0.026 (0.010), t = 2.62, confidence interval [CI] = 

[0.010 – 0.050]) (Figure 3). There were no significant main effects of drug (F (1, 203) = 

0.074, p = 0.786), group (F (1, 29) = 3.148, p = 0.087) or volatility (F (1, 203) = 1.470, p = 

0.227) on 𝛼 values, nor any other significant interactions involving drug (all p-values > 0.05, 

see Appendix 4v-vi for analysis including schedule, session and working memory). Planned 

contrasts showed that, whilst under PLA, 𝛼primary (�̅�(𝜎�̅�) = 0.451 (0.025), collapsed across 

volatility and group) was significantly greater than 𝛼secondary (�̅�(𝜎�̅�) = 0.370 (0.025); z(30) = 

2.861, p = 0.004), this was not the case under HAL (𝛼primary �̅�(𝜎�̅�) = 0.393 (0.025), 𝛼secondary 

�̅�(𝜎�̅�) = 0.417(0.025); z(30) = -0.843, p = 0.400). Furthermore, 𝛼primary was decreased under 

HAL relative to PLA (z (30) = -2.050, p = 0.040). Although 𝛼secondary was, in contrast, 

numerically increased under HAL (�̅�(𝜎�̅�) = 0.417 (0.025) relative to PLA (�̅�(𝜎�̅�) = 0.370 
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(0.025), this difference was not significant (z (30) = 1.654, p = 0.098). This drug x 

information interaction therefore illustrated that whilst haloperidol significantly reduced 

𝛼primary it had no significant effect on αsecondary. Furthermore, under placebo there was a 

significant difference between αprimary and αsecondary, which was nullified by haloperidol 

administration. Consequently, under placebo participants’ rate of learning was typically 

higher for learning from the primary relative to the secondary source, however, under the D2 

receptor antagonist haloperidol the rate of learning from the primary source was reduced and 

thus there was no significant difference in the rate of learning from primary and secondary 

sources. 

Figure 6.3 Learning rate estimates 

 

Figure 3. Learning rate (𝛼) estimates for learning from primary and secondary information across all 

trials (averaged across volatile and stable phases). There was a significant interaction between 

information and drug, with 𝛼 estimates significantly lower under haloperidol (orange), relative to 

placebo (purple), for primary information only. Data points indicate square-root transformed 

𝛼 estimates for individual participants (n = 31), boxes = standard error of the mean, shaded 

region = standard deviation, HAL = haloperidol, PLA = placebo, * indicates statistical significance (p 

< 0.05). 
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Linear mixed models, with fixed factors group and drug, and random intercepts for subject, 

were also used to explore drug effects on ζ values (representing the relative weighting of 

primary/secondary information) and β values. For ζ there were no significant main effects of 

drug (F (1, 29) = 1.941, p = 0.174, 𝜎�̅� = -0.07 (0.050), t = -1.390, CI = [-0.170 – 0.003]) or 

group (F (1, 51) = 0.184, p = 0.669, 𝜎�̅� = 0.020 (0.040), t = 0.430, CI = [-0.070 – 0.100]), nor 

drug by group interaction (F (1, 29) = 0.039, p = 0.845, 𝜎�̅� = -0.001 (0.050), t = -0.200, CI = 

[-0.110 – 0.090]). Similarly, our analysis of β values revealed no main/interaction effect(s) of 

drug, group, or drug by group (all p > 0.05). 

 

Haloperidol reduces the rate of learning from a primary source irrespective of its social 

or individual nature 

Our primary hypothesis was that haloperidol would modulate the rate of learning from the 

primary source irrespective of its social or individual nature. This would be evidenced as an 

interaction between drug and (primary versus secondary) information source (see above) in 

the absence of an interaction between drug, information source and group (social-primary 

versus individual-primary). Crucially, we observed no significant interaction between drug, 

information source and group (F (1, 203) = 0.098, p = 0.754). To further assess whether drug 

effects on primary information differed as a function of group, results were also analysed 

within a Bayesian framework, using JASP software (JASP Team (2020)). A Bayes exclusion 

factor (BF excl), representing the relative likelihood that a model without a drug x information 

x group interaction effect could best explain the observed data, was calculated [384]. Values of 

3–10 are taken as moderate evidence in favour of the null hypotheses that there is no drug x 

information x group interaction [385] with values greater than 10 indicating strong evidence. 

The BFexcl value was equal to 7.516, providing moderate evidence in favour of the null 

hypothesis that there is no drug x information x group interaction. Consequently, results 

confirmed our hypothesis: haloperidol perturbed learning from the primary but not the 

secondary source, irrespective of social or individual nature. 

Haloperidol brings αprimary estimates within the optimal range 

To assess whether the effects of haloperidol on αprimary are harmful or beneficial with respect 

to performance we first explored drug effects on accuracy (see Appendix 4ii for a detailed 

analysis including randomisation schedule). There was no significant difference in accuracy 
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between haloperidol (�̅�(𝜎�̅�) = 0.600 (0.013)), and placebo (�̅�(𝜎�̅�) = 0.611 (0.010); F (1,29) = 

0.904, p = 0.349, ηp
2 = 0.030) conditions.  

The lack of a significant main effect of drug on accuracy was somewhat surprising given the 

significant (interaction) effect on learning rates, i.e., a decrease in αprimary under haloperidol 

relative to placebo. To investigate whether haloperidol resulted in learning rates that were 

less, or alternatively, more, optimal we compared our estimated 𝛼 values with optimal 𝛼 

estimates. Since trial-wise outcomes were identical to those utilised by Cook et al. [93], 

optimal values are also identical and are described here for completeness. An optimal learner 

model, with the same architecture and priors as the model employed in the current task, was 

fit to 100 synthetic datasets, resulting in average optimal learning rates: 𝛼optimal_primary_stable = 

0.16, 𝛼optimal_primary_volatile = 0.21, 𝛼optimal_secondary_stable = 0.17, 𝛼optimal_secondary_volatile = 0.19. 

Scores representing the difference between (untransformed) 𝛼 estimates and optimal 𝛼 scores 

were calculated (𝛼𝑑𝑖𝑓𝑓= 𝛼 −  𝛼optimal). A linear mixed model analysis on 𝛼𝑑𝑖𝑓𝑓  values with 

factors group, drug, volatility and information source, and random intercepts for subject was 

conducted. A significant interaction between drug and information source was observed (F 

(1, 203) = 4.895, p = 0.028, 𝜎�̅�= 0.019 (0.010), t = 2.212, CI = [0.000 – 0.040]) (Figure 4). 

Planned contrasts showed that, for primary information, 𝛼𝑑𝑖𝑓𝑓𝑝𝑟𝑖𝑚𝑎𝑟𝑦  
 was higher under PLA 

(�̅�(𝜎�̅�) = 0.052 (0.023)) compared with HAL (�̅�(𝜎�̅�) = 0.009 (0.028)); z(30) = 1.806, p = 

0.071). In contrast, 𝛼𝑑𝑖𝑓𝑓𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦  
 was lower under PLA (�̅�(𝜎�̅�) = -0.011 (0.023)) compared 

with HAL (�̅�(𝜎�̅�) = 0.021 (0.021)); z(30) = 1.323, p = 0.186). Learning rates for learning 

from the primary source were higher than optimal under placebo, with 

𝛼𝑑𝑖𝑓𝑓𝑝𝑟𝑖𝑚𝑎𝑟𝑦  
significantly differing from 0 (one-sample t test; t(30) = 2.259, p = 0.031). 

Haloperidol reduced learning rates that corresponded to learning from the primary source, 

thus bringing them within the optimal range, with 𝛼𝑑𝑖𝑓𝑓𝑝𝑟𝑖𝑚𝑎𝑟𝑦  
not significantly differing 

from 0 under haloperidol (one-sample t test; t(30) = 0.319, p = 0.752). Consequently, under 

haloperidol relative to placebo, learning rates for learning from primary sources were more 

optimal. 
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Figure 6.4 Learning rate estimates compared with optimal learning rates 

 

Figure 4. Learning rate estimates minus optimal learning rates. There was a significant interaction 

between information and drug, with αprimary scores significantly higher than optimal estimates under 

placebo but not under haloperidol. Data points indicate 𝛼 −  𝛼optimal values for individual participants (n 

= 31) across all trials (averaged across volatile and stable phases), boxes = standard error of the mean, 

shaded region = standard deviation, HAL = haloperidol, PLA = placebo. 

 

To explore whether α values were in some way related to accuracy scores we used two 

separate backwards regression models, for PLA and HAL conditions separately, with αprimary 

and αsecondary as predictors and accuracy as the dependent variable (see Appendix 4iii for 

details of a regression model with all model parameters). PLA accuracy was predicted by 

αsecondary though this model only approached significance (R = 0.121, F (1,29) = 3.981, p = 

0.055). Under HAL however, accuracy was predicted by a model with αsecondary and αprimary (R 

= 0.450, F (2,28) = 3.560, p = 0.042), with αprimary a significant positive predictor of accuracy 

(𝛽 = 0.404, p = 0.028). Removing αsecondary as a predictor did not significantly improve the fit 

of this model (R2change = 0.014, F change (1,29) = 0.495, p = 1.000). When combined with 

our optimality analysis, these results suggest that under placebo αprimary was outside of the 

optimal range of α values and thus accuracy was primarily driven by αsecondary. However, 
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haloperidol reduced αprimary, bringing it within the optimal range. Thus, under haloperidol 

accuracy was driven by both αprimary and αsecondary.  

In sum, relative to placebo, the dopamine D2 receptor antagonist haloperidol significantly 

decreased learning rates relating to learning from primary, but not secondary sources of 

information, likely via mediation of phasic dopaminergic signalling (see Appendix 4iv). 

Interestingly, learning rates for learning from the primary source were higher than optimal 

under placebo and haloperidol brought them within the optimal range. Consequently, both 

primary and secondary learning contributed to accuracy under haloperidol but not under 

placebo. Importantly, the effects of haloperidol did not vary as a function of group allocation, 

which dictated whether the primary source was of social or individual nature. A Bayesian 

analysis confirmed that we had moderate evidence to support the conclusion that there was no 

interaction between drug, learning source and group. These data, thus, illustrate a dissociation 

along the primary-secondary but not social-individual axis.  

 

Discussion  

The current study tested the hypothesis that social and individual learning share common 

neurochemical mechanisms when they are matched in terms of (primary versus secondary) 

status. Specifically, we predicted that haloperidol would perturb learning from the primary 

but not the secondary source, irrespective of social or individual nature. Supporting our 

hypothesis, we observed an interaction between drug and information source (social versus 

individual) such that under haloperidol (compared to placebo) participants exhibited reduced 

learning rates with respect to learning from the primary, but not the secondary, source of 

information. Crucially, we did not observe an interaction between drug, information source 

and group (social-primary versus individual-primary). Bayesian statistics revealed that, given 

the observed data, a model that excludes this interaction is 7.5 times more likely than models 

which include the interaction. 

An important question concerns whether the lack of a dopaminergic dissociation between 

social and individual learning could be explained by participants not fully appreciating the 

social nature of the red shape (the social information source). In opposition to this, we argue 

that since our participants could not commence the task until reaching 100% accuracy in a 

pre-task quiz, which questioned participants about the social nature of the red shape, we can 
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be confident that all participants knew that the red shape indicated information from previous 

participants. Participants also completed a post-task questionnaire (Appendix 5), which 

required them to reflect upon the extent to which their decisions were influenced by the social 

(red shape) and individual (blue/green shapes) information. If participants had not fully 

believed that the red shape represented social information, one might expect that they would 

indicate that they were not influenced by this source. In contrast, participants in both the 

individual-primary and social-primary groups believed that they were influenced by the red 

shape (as well as the blue/green stimuli). Furthermore, in our previous work, using the same 

social manipulation, we demonstrated that the personality trait social dominance significantly 

predicts social, but not individual, learning [309]. Thus, illustrating that participants treat the 

social information differently from the non-social information in this type of paradigm. 

Finally, based on previous studies, we argue that even with a more overtly social 

manipulation it is highly likely that social learning would still be perturbed by dopaminergic 

modulation when social information is the primary source. Indeed, in a study by Diaconescu 

et al. [222] social information was represented by a video of a person indicating one of the two 

options. Even with this overtly social stimulus, Diaconescu and colleagues still observed that 

social learning covaried with genetic polymorphisms that affect the functioning of the 

dopamine system.  

The first part of our analysis illustrated that our manipulation produced the expected effect: 

when social information was first in the temporal order of events, highly salient and directly 

related to reward feedback participants learned in a more optimal fashion from this source of 

information. Such a result may be a surprise to some since one might think that, relative to 

learning from one’s own experience, learning from others will always take a “backseat”. Here 

we clearly demonstrate that, when cast as the primary task, participants can make good use of 

social information. This paradigm may comprise a step towards developing a system to 

support accelerated social learning. Future studies could, for instance, investigate whether 

similar manipulations can be used to improve learning about (as opposed to from) other 

individuals. Since temporal order, saliency and reward feedback were manipulated 

simultaneously we cannot determine which manipulation is the most influential. Future work 

may therefore also seek to manipulate these factors independently to establish the most 

effective method for promoting social learning. 

Our results comprise an important contribution to the debate concerning the existence of 

social-specific learning mechanisms. We find that, like individual learning, social learning is 
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modulated by a dopaminergic manipulation when it is the primary source of information. 

This result marries well with previous studies that have linked social learning with dopamine-

rich mechanisms when the social source has been the primary (or in many cases the sole) 

information source [222],[223],[225]. Our results are also consistent with studies that have 

associated social learning with different neural correlates, outside of the dopamine-rich 

regions classically linked to individual learning, when it is a secondary source of information 

[95],[257],[258]. Our data suggest that social and individual learning share common dopaminergic 

mechanisms when they are the primary learning source and that previous dissociations 

between these two learning types may be more appropriately thought of as dissociations 

between learning from a primary and secondary source. Extant studies e.g. [93] were not able to 

illustrate the importance of the primary versus secondary distinction because they did not 

fully orthogonalize primary versus secondary and social versus individual learning.  

Though our results suggest shared neurochemical mechanisms for social and individual 

learning when they are matched in status, it is, nevertheless, essential to highlight that it does 

not follow that there are no dimensions along which social learning may be dissociated from 

individual learning. It is possible that although social and individual learning are affected by 

dopaminergic modulation - when they are the primary source -, there are differences in the 

location of neural activity that could be revealed by neuroimaging. For instance, although 

social and individual learning are both associated with activity within the striatum [229],[316], 

social-specific activation patterns have been observed in other brain regions, including the 

temporoparietal junction [95],[386] and the gyrus of the anterior cingulate cortex [95],[257],[258]. 

Consequently, it is possible that haloperidol has comparable effects on social and individual 

learning but that these effects (seen at an “algorithmic level of analysis” [189]) are associated 

with activity in different brain regions (i.e., dissociations at an “implementation level of 

analysis”[189]). For example, haloperidol may comparably affect the BOLD signal associated 

with social and individual prediction errors, but the effect may be localised to dissociable 

neural pathways. Such a location-based dissociation requires further empirical investigation 

as well as further consideration of the possible functional significance of such location-based 

differences, if they are indeed present when primary versus secondary status is accounted for. 

Nevertheless, whilst such location-based differences are possible, we argue that they are not 

probable since, given different distributions of dopamine neurons, receptors and reuptake 

mechanisms throughout the brain [323],[383],[387],[388], differences in location are relatively likely 

to result in differences in the magnitude of the effect of haloperidol [389],[390]. Additionally, 
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since we did not observe significant effects of haloperidol on learning from social or 

individual sources when they were secondary in status, it remains a logical possibility that 

social and individual learning can be neurochemically dissociated when they are the 

secondary source of information - though it is admittedly difficult to conceive of a 

parsimonious explanation for the existence of two neurochemical mechanisms for social and 

individual learning from secondary sources. Finally, it is possible that social and individual 

learning share common dopaminergic mechanisms when they are the primary source, but 

differentially recruit other neurochemical systems. For instance, some have argued that social 

learning may heavily rely upon serotonergic mechanisms [241],[254],[255]. The abovementioned 

avenues should be further explored, however, in the interim, it must be concluded that since 

existing studies have not controlled for primary versus secondary status, we do not currently 

have convincing evidence that social and individual learning can be dissociated in the human 

brain. 

Notably, our results reveal a clear dissociation between learning from primary and secondary 

sources. For learning from primary sources haloperidol made learning rates more optimal, 

haloperidol did not have this effect on learning rates for secondary learning. Interestingly, a 

combined optimality analysis and regression model suggested that, under placebo, learning 

rates for learning from the primary source were “too high” and fell outside of the optimal 

range (for this specific task). Consequently, under placebo, variance in accuracy was 

primarily explained by learning rates for learning from the secondary source. However, 

haloperidol reduced learning rates for learning from the primary source, bringing them within 

the optimal range. Thus, under haloperidol, accuracy was driven by learning rates for learning 

from both the primary and secondary sources. An open question concerns whether 

haloperidol truly optimises, or simply reduces learning rate. Since the current paradigm was 

not designed to test this hypothesis a reduction in learning rate herein also corresponds to an 

optimisation of learning rate. To dissociate the two, one would need a paradigm that 

generates sufficient numbers of participants with learning rates (in the placebo condition) that 

are sub-optimally low such that one can observe whether, in these critical test cases, 

haloperidol increases (i.e., optimises) learning rate. 

An intriguing question concerns the synaptic mechanisms by which haloperidol affects 

learning rates. Non-human animal studies, have shown that phasic signalling of dopaminergic 

neurons in the mesolimbic pathway encodes reward prediction error signals [211],[379]. Since 

haloperidol has high affinity for D2 receptors [383], which are densely distributed in the 
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mesolimbic pathway [381],[382], dopamine antagonists including haloperidol can affect phasic 

dopamine signals [215] - either via binding at postsynaptic D2 receptors (which blocks the 

effects of phasic dopamine bursts), or via presynaptic autoreceptors (which has downstream 

effects on the release and reuptake of dopamine and thus modulates bursting itself) [391]–[393]. 

That is, haloperidol may affect learning rate via blockade of the postsynaptic D2 receptors, 

which may mute the effects of phasic dopamine signalling (either directly or via reduction in 

the background tonic rate of activity which, in turn, reduces the amplitude of phasic 

responses [394],[395]), thus reducing the weight of prediction error signals on value updating 

(i.e., reducing the learning rate). Indeed a number of studies have shown that haloperidol can 

attenuate prediction error-related signals [214],[216],[220],[396]. For example, in the context of 

individual learning, Pessiglione et al. [214] demonstrated that haloperidol attenuated prediction 

error signals in the striatum, indexed via changes in blood oxygen levels (BOLD). In addition 

to effects on postsynaptic D2 receptors, haloperidol may modulate prediction errors via 

effects on presynaptic autoreceptors. Autoreceptor binding is suggested to increase phasic 

bursting [215],[397]–[399] thus enhancing the phasic signal that is indicative of positive prediction 

errors. A combination of pre- and post-synaptic effects could feasibly result in more optimal 

learning rates wherein dopamine signalling is muted via postsynaptic blockade thus muting 

(tonic background) “noise” (and signal) but where the phasic “signal” is enhanced via 

presynaptic effects, potentially resulting in an overall increased signal-to-noise ratio which 

may translate into more optimal learning rates. 

Perhaps the most novel contribution of our work is that we here illustrate that, whilst 

dopaminergic modulation affects learning from the primary source, it does not significantly 

affect learning from the secondary source. Previous studies have illustrated that humans can 

learn - ostensibly simultaneously - from multiple sources of information and tend to organise 

this information in a hierarchical fashion such that the source which is currently of highest 

value has the greatest influence on a learner’s behaviour [364]. Here we extend this work by 

showing that the primary source, at the top of the hierarchy, is more heavily influenced by 

modulation of the dopamine system, thus suggesting a graded involvement of the dopamine 

system according to a source’s status in the “learning hierarchy”. Extant studies [364] suggest 

that such learning hierarchies are flexible and can be rapidly remodelled according to a 

source’s current value. The success of our orthogonalization of social versus individual and 

primary versus secondary learning depended on a within-subjects design, wherein the status 

(primary or secondary) of the learning source varied only between participants. Although our 
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study was therefore not optimised for studying the rapid remodelling of learning hierarchies, 

our results pave the way for future studies to investigate whether the impact of dopaminergic 

modulation of learning from a particular source quickly changes according to the source’s 

current status in the learning hierarchy.  

In sum, in previous paradigms that dissociate social and individual learning, the social 

information comprised a secondary or additional information source, differing from 

individual information both in terms of its social nature (social/individual) and status 

(secondary/primary). We here provide evidence that dissociable effects of dopaminergic 

manipulation on different learning types are better explained by primary versus secondary 

status, than by social versus individual nature. Specifically, we showed that, relative to 

placebo, haloperidol reduced learning rates relating to learning from the primary, but not 

secondary, source of information irrespective of social versus individual nature. Results 

illustrate that social and individual learning share a common dependence on dopaminergic 

mechanisms when they are the primary learning source. 
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Materials and Methods 

Subjects 

Subjects (n = 43, aged 19 to 42 years, mean (SD) = 26 (6.3); 19 female) were recruited from 

the University of Birmingham and surrounding areas in Birmingham city, via posters, email 

lists and social media. Four participants dropped out of the study after completing the first 

day. A further five participants could not complete the second test day, due to university-wide 

closures and a restriction of data collection. In total, 43 participants completed one session, 

with 33 participants completing both test days. However, Bayes exclusion factors were 

reported for interactions of interest, to avoid the possibility of type 2 error. The study was in 

line with the local ethical guidelines approved by the local ethics committee (ERN_18_1588) 

and in accordance with the Helsinki Declaration of 1975. 

 

General procedure 

The study protocol was pre-registered (see Open Science Framework (OSF) 

https://osf.io/drmjb for study design and a priori sample size calculations). All participants 

attended a preliminary health screening session with a qualified clinician, followed by two 

test sessions with an interval of one to a maximum of four weeks between testing session. 

The health screening session, lasting approximately one hour, started with informed consent, 

followed by a medical screening. Participants were excluded from further participation if they 

met any of the exclusion criteria. Participants then completed a battery of validated 

questionnaire measures (see Appendix 1 for inclusion/exclusion criteria, questionnaire 

measures, medical symptoms, and mood ratings). Both test days (1-4 weeks post health 

screening) followed the same procedure, starting with informed consent, followed by a 

medical screening. Participants were then administered capsules (by a member of staff not 

involved in data collection) containing either 2.5 mg haloperidol (HAL) or placebo (PLA), in 

a double-blind, placebo-controlled, cross-over design. Participants were told to abstain from 

alcohol and recreational drugs in the 24 hours prior to testing and from eating in the two 

hours prior to capsule intake. 
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1.5 hours after capsule intake, participants commenced a battery of behavioural tasks, 

including a probabilistic learning paradigm (Go-NoGo learning [215]) and a measure of verbal 

working memory [400]. The social learning task was started approximately 3 hours post-

capsule administration, within the peak of HAL blood plasma concentration. HAL dosage 

and administration times were in line with similar studies which demonstrated both 

behavioural and psychological effects of haloperidol [215],[282]. Both test days lasted 

approximately 5.5 hours in total. Blood pressure, mood and medical symptoms were 

monitored throughout each day: before capsule intake, three times during the task battery and 

after finishing the task battery. On completion of the second session, participants reported on 

which day they thought they had taken the active drug or placebo. Participants received 

monetary compensation on completion of both testing sessions, at a rate of £10 per hour, with 

the opportunity to add an additional £5 based on their performance during the learning task.  

 

Behavioural task  

Participants completed a modified version of a social learning task [309], first developed by 

Behrens and colleagues [95]. The task was programmed using MATLAB R2017b (The 

MathWorks, Natick, MA). Participants were randomly allocated to one of two groups. For 

both groups, participants completed 120 trials on both test days. The task lasted 

approximately 35 minutes, including instructions. Before the main task, participants 

completed a step-by-step on-screen practice task (10 trials) in which they learnt to choose 

between the two options to obtain a reward and learned that the “advice” represented by the 

frame(s) could help in making the correct choice in some phases. In our previous work with 

the individual-primary condition alone, we demonstrated that social dominance significantly 

predicts social, but not individual, learning [309]. Thus, showing that participants maintain a 

conceptual distinction between the social and individual learning sources. In the current study 

we investigated whether participants, maintained this conceptual distinction by requiring 

participants to complete a short quiz (3 questions), testing their knowledge, after the practice 

task. Participants were required to repeat the practice round until they achieved 100% correct 

score in the quiz, meaning that all participants understood the structure of the task, and that 

the red shape represented social information. Furthermore, after the experiment, participants 

completed a feedback questionnaire (Appendix 5). Answers confirmed that participants 

understood the difference between, and paid attention to both, individual and social sources 
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of information. Participants were informed as to whether they had earned a £5 bonus after the 

second session. Due to ethical considerations, all participants received the bonus. 

 

Individual-primary group 

On each trial participants were required to choose between a blue or green box to gain points. 

Participants could also use an additional, secondary, source of information - a red frame 

surrounding either the blue or green box – to help make their decision. Participants were 

informed (see Appendix 5 for instruction scripts) that the frame represented the most popular 

choice made by a group of participants who had previously completed the task. They were 

also informed that the task followed ‘phases’ wherein sometimes the blue, but at other times 

the green choice, was more likely to result in reward and sometimes the social information 

predominantly indicated the correct box, but at other times it predominantly surrounded the 

incorrect box (Fig.1A). After making their choice participants received outcome information 

in the form of a blue or green indicator. The indicator primarily informed participants about 

whether the blue or green box had been rewarded on the current trial. Whether the social 

information surrounded the correct or incorrect box could, secondarily, be inferred from the 

indicator. For example, if the red frame indicated that the social group had chosen the blue 

shape, and the blue shape was shown to be correct, participants could infer that the social 

information had therefore been correct on that trial. Both the probability of reward associated 

with the blue/green stimuli and the utility of the social information, varied according to 

separate probabilistic schedules, with participants randomly assigned to one of four groups 

(Appendix 2). For both individual and social information, the probabilistic schedules featured 

stable phases, where the probability of reward was constant, and volatile phases, in which the 

probability switched every 10-20 trials. This feature of the task design was included to 

capture potential effects of dopaminergic modulation on adaptation to environmental 

volatility [93]. Participants were informed that correct choices would be rewarded, and thus to 

aim to accumulate points to obtain a reward at the end of the experiment. Although 

probabilistic schedules for Day 2 were the same as Day 1, there was variation in the trial-by-

trial outcomes and advice. In addition, to prevent participants from transferring learned 

stimulus-reward associations from Day 1 to Day 2, different coloured stimuli were employed 

on the second session: participants viewed blue/green squares with advice represented as a 
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red frame on Day 1 and yellow/purple squares with advice represented as a blue frame on 

Day 2.  

 

Social-primary group 

For the social-primary group the social information source was the primary source of 

learning. On each trial participants were presented with two grey placeholders. One 

placeholder was filled with a red box, indicating the group’s choice. Blue/green frames then 

appeared around the placeholders. As in the individual-primary group, participants were 

informed that the task followed ‘phases’ wherein sometimes going with, but at other times 

going against, the group’s choice was more likely to result in reward and sometimes the blue 

frame predominantly indicated the correct box, whereas at other times the green frame 

predominantly indicated the correct box. After making their choice participants received 

outcome information in the form of a tick/cross indicator. The indicator primarily informed 

participants about whether the social group had been rewarded (and thus going with them 

would have resulted in points scoring but going against them would not) on the current trial. 

Whether the blue(green) frame surrounded the correct or incorrect option could, secondarily, 

be inferred from the indicator. As in the individual-primary task, both the probability of 

reward associated with the blue/green stimuli and the utility of the social information varied 

according to probabilistic schedules (Appendix 2). All other aspects of the task structure were 

the same as previously described in the individual-primary task group.  

  

Data analysis 

All analyses were conducted using MATLAB R2017b (The MathWorks, Natick, MA) and 

Bayesian analyses using JASP (JASP Team (2020). JASP (Version 0.14) [Computer 

software]). Linear mixed models were fitted to data using RStudio (RStudio Team (2020). 

RStudio: Integrated Development for R. RStudio, PBC, Boston, MA). In the instance of data 

not meeting assumptions of normality (as assessed by Kolmogorov–Smirnov testing), data 

were square-root-transformed. Learning rate 𝛼 values were square-root transformed (see 

Table II for untransformed learning rates). We used the standard p < .05 criteria for 

determining if significant effects were observed, with a Holm correction applied for 
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unplanned multiple comparisons, to control for type I family-wise errors. In addition, effect 

sizes and beta weights for linear mixed model analysis are reported.  

 

Data pre-processing 

Datasets were excluded based on the following: accuracy < 50% under placebo, chose the 

same side (left/right) or colour on > 80% trials, incomplete datasets (less than 120 trials 

completed). Two subjects were excluded, resulted in a final sample of n = 31, with 

behavioural data for both testing days, and n = 41, with data for one day only (see Appendix 

4i for analysis).  

 

Optimal learner model 

The influence of each information source (primary and secondary) on choices was quantified 

by regressing two “optimal learners” against subjects’ choices. The first comprised an 

optimal “individual learner model”, which was generated by using a Bayesian learner 

algorithm [88] to simulate an optimal learner who learns solely from individual information 

(the blue and green stimuli). The second comprised a “social learner model” which simulated 

an optimal learner who learns solely from the social information (red stimuli). The Bayesian 

learner algorithm [88] describes an optimal approach to tracking reward probabilities in a 

changing environment. It assumes an underlying probability of an outcome being correct and 

tracks this probability across time, as well as maintaining an estimate of the rate of change of 

probabilities, i.e., volatility. All probabilities are updated in a Markovian fashion, meaning 

there is no requirement to store the full history of decision outcomes or statistics of the 

environment [88]. Thus, on each trial, the individual learner model represented the reward 

probability associated with a blue choice, derived through learning, in an optimal fashion, 

exclusively from information about reward outcomes and ignoring the social information. 

The social learner model represented the probability, based on the (reward-weighted) social 

information, that the social information was correct. From the social learner model, on each 

trial, the reward probability of a blue choice was calculated, that would have been derived if a 

participant had been learning optimally, exclusively from the social information (i.e., 

ignoring individual reward outcomes). Subsequently both models were regressed separately 

against each individual participant’s choice data using binomial logistic regression, with 
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model predictions from the primary and secondary models as continuous predictor variables 

and participant response as the dependent variable (0/1). For each participant, this produced 

two parameter estimates, or standardised beta weights, each representing the degree to which 

individual experience and social information explained choices. For example, a participant 

whose choices were more strongly influenced by the social information than the individual 

information, would have a high social βoptimal value, and a low individual βoptimal value. 

 

Computational modelling framework  

Participant responses were modelled using an adapted Rescorla-Wagner learning model [24]. 

The model relies on the assumption that updates to choice behaviour are based on prediction 

errors, i.e., the difference between an expected and the actual outcome. Participants were 

assumed to update their beliefs about outcomes based on sensory feedback (perceptual 

model), and to use this feedback to make decisions about the next action (response model). 

Model fitting was performed using scripts adapted from the TAPAS toolbox [230] (scripts 

available at OSF link https://tinyurl.com/b3c7d2zb). A systematic comparison of eight 

separate models (Appendix 3 for full details regarding model fitting and model comparison) 

showed that the exceedance probability of this particular model was ~1. This demonstrates 

(relative) evidence in favour of the conclusion that, the current model, with separate learning 

rates for primary and secondary information, and volatile and stable phases, provided the best 

fit to participant choice data and that the data likely originated from the same model for both 

HAL and PLA treatment conditions (Appendix 3 - Fig. 1). Further model validation, 

including simulation of data and parameter recovery, provided further support for the choice 

of computational model (Appendix 3). 

 

Perceptual model  

The Rescorla-Wagner predictors used in our learning models consisted of a modified version 

of a simple learning model, with one free parameter, the learning rate 𝛼, varying between 0 

and 1.  
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𝑉(𝑖+1)  
=  𝑉𝑖 + 𝛼(𝑟𝑖 − 𝑉𝑖) 

 

According to this model the predicted value (𝑉𝑖) is updated on each trial based on the 

prediction error (PE), or the difference between the actual and the expected reward (𝑟𝑖 − 𝑉𝑖), 

weighted by the learning rate 𝛼. 𝛼 thus captures the extent to which the PE updates the 

estimated value on the next trial. In line with previous work [93], we used an extended version 

of this learning model, with separate 𝛼 values for volatile and stable environmental phases. In 

a stable environment, learning rate will optimally be low, and reward outcomes over many 

trials will be taken into account. In a volatile environment, however, an increased learning 

rate is optimal, as more recent trials are used to update choice behaviour [88]. Furthermore, we 

simultaneously ran two Rescorla-Wagner predictors in order to estimate parameters relating 

to learning from primary and secondary information sources. Consequently, our model 

generated the predicted value of going with the primary source (going with the blue frame for 

the individual-primary group, going with the group for the social-primary group; V_primary(i+1)) 

and the predicted value of the secondary information (going with the group recommendation 

for the individual-primary group, going with the blue frame for the social-primary group; 

V_secondary(i+1)) and provided four 𝛼 estimates: 𝛼primary_stable, 𝛼primary_volatile, 𝛼secondary_stable, 

𝛼secondary_volatile.  

 

Response model 

Our response model assumed that participants integrated learning from both primary and 

secondary sources. The action selector predicts the probability that the primary information 

(blue choice/ group choice) will be rewarded on a given trial and was based on the softmax 

function (TAPAS toolbox), adapted by Diaconescu and colleagues [230]. This response model 

is adapted from that used by Cook and colleagues [93] and reproduced here with permission. 

The value of primary and secondary information was combined using the following:  

 

𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) =  𝜁 (𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑎𝑑𝑣𝑖𝑐𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(i+1)
) + (1 − 𝜁)(𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1)) 
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wherein ζ is a parameter that varies between individuals, and which controls the weighting of 

secondary relative to primary sources of information. Vsecondary_advice_weighted(i+1) comprises the 

advice provided by the secondary information (the red and blue frames, for individual-

primary and social-primary groups respectively) weighted by the probability of advice 

accuracy (Vsecondary(i+1)) in the context of making a choice to go with the primary information 

(the blue and red box for the individual-primary and social-primary groups respectively). 

That is:  

 

V_secondary_advice_weighted(i+1) = |advice − 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1)| 

 

where advice from the red frame equals 0 for blue and 1 for green, and advice from the blue 

frame equals 0 for going with the red box and 1 for going against the red box. For example, 

for a participant in the social-primary group, if the blue frame advised them to go with the red 

box (the group choice) and the probability of advice accuracy was estimated at 80% 

(Vsecondary(i+1) = 0.80), the probability that the choice to go with the group will be rewarded, 

inferred from secondary learning, would be 0.8 (Vsecondary_advice_weighted(i+1) = |0−0.8|= 0.8). The 

probability that this integrated belief would determine participant choice was described by a 

unit square sigmoid function, describing how learned belief values are translated into choices.  

 

𝑃(𝑦(𝑖+1) = 1 ||𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1)) =  
𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1)

𝛽

𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1)
𝛽+ (1−𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1))

𝛽
 

 

Here, responses are coded as y(i+1) =1 when selecting the primary option (going with the blue 

and red box for the individual-primary and social-primary groups respectively), and y(i+1) 

=0 when selecting the alternative (going with the green box and going against the red box for 

the individual-primary and social-primary groups respectively). The participant-specific free 

parameter β, the inverse of the decision temperature, describes the extent to which estimated 

value of choices determines actual participant choice: as β decreases, decision noise increases 

and decisions become more stochastic; as β increases, decisions become more deterministic 

towards the higher value option.  
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Significance tests for estimated model parameters  

Parameters were fitted separately for each participant’s choice data. Learning rate (𝛼) was 

estimated for each participant, for primary and secondary learning, for volatile and stable 

phases, on both test days, resulting in 8 estimated learning rates per participant. β values were 

also estimated for each participant on both treatment days, resulting in two β values per 

participant. Effects-coded mixed model linear analyses were carried out, to allow for 

inclusion of subject as a random factor thus ensuring that between-participant variation in 𝛼 

could be controlled for. Fixed factors were drug (HAL, PLA), information type (primary, 

secondary), volatility (volatile, stable) and group (individual primary, social-primary), with 

the inclusion of random intercepts for participant: ~ group x information x drug x volatility + 

1| subject. 

 

Repeated-measures analysis of variance (RM-ANOVA) for linear mixed effects models was 

carried out using the Satterthwaite approximation for degrees of freedom, and the model was 

fit using maximum likelihood estimation, with a model including random intercepts, but not 

random slopes, providing the best fit to the data. All analyses were repeated with and without 

the inclusion of age, BMI and baseline working memory as covariates, with the pattern of 

results unchanged. Where appropriate, data were transformed to meet assumptions of 

normality for parametric testing.  
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Table 6-2 Untransformed estimated learning rates 

Note: �̅�(𝜎�̅�) refers to mean (standard error of the mean), PLA refers to placebo, HAL refers 

to haloperidol. 

 

Bayesian statistical testing 

Bayesian statistical testing was implemented as a supplement to null hypothesis significance 

tests, to investigate if null results represent a true lack of a difference between the groups [384], 

using JASP software, based on the R package “BayesFactor” [401]. The JASP framework for 

repeated measures ANOVA was used [402], whereby exclusion Bayes factors were obtained 

for predictors of interest. The exclusion Bayes factor (BFexcl) for a given predictor or 

interaction quantifies the change in odds from the prior probability that the predictor is 

included in the regression model, to the probability of exclusion in the model after seeing the 

data (BFexcl). Bayes factors were computed by comparing all models with a predictor against 

all models without that predictor, i.e., comparing models that contain the effect of interest to 

equivalent models stripped of the effect. For example, an exclusion Bayes factor for an effect 

of 3 for a given predictor i can be interpreted as stating that, models which exclude the 

predictor i, are 3 times more likely to describe the observed data than models which include 

the predictor. In short, the exclusion Bayes factor is interpreted as the evidence given the 

observed data for excluding a certain predictor in the model and can be used as evidence to 

support null results. For all Bayesian analyses, the Bayes factor quantifies the relative 

  αprimary_volatile αprimary_stable αsecondary_volatile αsecondary_stable 

      

PLA �̅�(𝜎�̅�)  0.184 

(0.018) 

0.290 

(0.041) 

0.187 (0.028) 0.151 

(0.025) 

range 0.024-0.477 0.027-0.721 0.011-0.591 0.004-0.612 

      

HAL �̅�(𝜎�̅�)  0.169 

(0.029) 

0.218 

(0.033) 

0.200 (0.023) 0.202 

(0.026) 

range 0.010-0.578 0.013-0.699 0.014-0.481 0.011-0.584 
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evidence for one theory or model over another. We followed the classification scheme used 

in JASP [385] to classify the strength of evidence given by the Bayes factors, with BFexcl 

between one and three considered as weak evidence, between three and ten as moderate 

evidence and greater than ten as strong evidence for the alternative hypothesis respectively.  
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Chapter 7:  General Discussion 

Bayesian inference and predictive processing have been proposed as a common mechanism 

that is atypical in autism spectrum disorder (ASD), accounting for many diverse 

characteristics of the autistic phenotype. This thesis focused on examining some key 

predictions from these accounts in the social and motor domains, before focusing on social 

learning in greater detail, investigating the extent to which social learning relies on domain-

general neurochemical mechanisms. There were therefore two main themes to this research; 

the extent to which predictive mechanisms in social and motor learning are atypical in autistic 

adults (Chapters 2 and 3), and the neurochemical mechanisms underpinning social (and 

individual) learning in neurotypical adults (Chapters 4-6). As individual findings have been 

discussed in each chapter, I here briefly summarise and integrate all reported results in light 

of previous research. I will then discuss how the empirical findings in this thesis add to the 

overall literature on predictive processing in autism and to our understanding of the domain-

specificity of these processes. As limitations specific to each chapter have been discussed 

already, this chapter will provide a more general overview of the strengths and limitations 

associated with each theme and outline future research directions to build on these results and 

explore outstanding questions.  

 

7.1 Predictive learning in autistic adults 

In empirical Chapters 2 and 3, I examined whether predictive learning mechanisms were 

atypical in autistic adults in the context of a probabilistic social reward learning and a motor 

sequence learning task. Predictive accounts of autism seek to explain diverse aspects of the 

autistic phenotype under a common ‘predictive coding impairment’, proposing a domain-

general impairment in predictive processes in autism [11]–[13],[75],[78]. Under this framework, 

atypical prediction stems from an imbalance between the relative precision of prediction 

errors (PEs) and higher-level predictions and atypical adjustment of precision, with atypical 

prediction proposed as a mechanistic explanation for behavioural atypicalities across different 

domains. I will discuss the extent to which the empirical data in this thesis are consistent with 

hypotheses from these accounts. 
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7.1.1 Summary of results  

7.1.1.1. Chapter 2 [403] compared the performance of autistic and non-autistic adults on a 

probabilistic motor sequence learning task. We examined key predictions from predictive 

coding accounts of autism. Specifically, that a relative imbalance of precision of prior 

predictions relative to incoming information results in an aberrantly high baseline level of 

surprise in autistic individuals, leading to an atypical behavioural response to surprising 

stimuli. In this task, participants were required to (implicitly) learn sequences of actions, 

wherein, on occasional “surprising” trials, an expected action had to be replaced with an 

unexpected action. We predicted that autistic individuals would overweight incoming, at the 

expense of prior, information, resulting in a decrease in building stable expectations of 

upcoming events (impaired learning of motor sequences) and a subsequent atypical response 

to statistically surprising events (reduced surprise where surprise would be expected). In 

contrast to our predictions, no significant differences were observed between autistic and 

non-autistic participants on either measure; autistic individuals demonstrated intact motor 

sequence learning and a typical response to surprising events. Furthermore, no correlations 

were observed between autistic traits and behavioural measures.  

7.1.1.2. Chapter 3 examined social and individual learning, in autistic and non-autistic adults, 

using a probabilistic social learning task (SLT). This paradigm allowed comparison of 

performance in a stable environment, where the underlying cue-outcome probabilities were 

stable for at least 50 trials, and in a volatile environment, where probabilities changed rapidly 

(every 10-20 trials), separately for social and individual information. In line with accounts of 

atypical prediction in autism, specifically inflexibly high precision of PEs [12],[77], we 

predicted atypical adaptation to volatility during learning, with adjustment to volatility 

indexed by the difference in learning rates between volatile and stable phases. We also 

investigated whether social learning would be atypical in our autistic sample, without the 

presence of possible confounds, such as the requirement for processing of face/biological 

stimuli. In contrast to predictions, our results demonstrate no differences in social or 

individual learning between groups, and no differences in adjustment of learning to volatility. 

While we did observe a small and unpredicted difference in behaviour in autistic individuals 

with respect to winning on the previous trial in a volatile environment, Bayesian analysis did 

not provide support for this difference. 



 

 91 

7.1.2 Interpretation of results 

Taken together, with respect to the question of whether autistic adults exhibit differences in 

predictive learning processes, the current results do not add support. That is, empirical work 

in this thesis showed no differences in either social or motor learning when comparing 

autistic and non-autistic adults. These results contradict predictions from accounts proposing 

altered prediction-based learning in autism [50], altered relative precision and atypical 

adjustment of learning to the current state of environmental volatility [13],[77],[78]. However, 

while these accounts have been tested empirically across different domains in recent years, 

findings have remained mixed, with the presence of atypicalities in autistic individuals 

varying across studies. For example, while many studies find evidence in support 

[107],[119],[271],[289], our results, providing evidence that autistic adults do not differ from non-

autistic adults, are not unprecedented and are in accordance with previous research reporting 

no differences between autistic and non-autistic individuals [106],[110],[125],[404]–[407]. In 

attempting to consider how the current empirical results integrate with current literature, I 

will identify the circumstances under which previous research supports or opposes 

predictions from these theories, highlighting differences between the measures used here and 

previous work. 

First, the current results contrast with previous work reporting atypical responses to 

surprising events in autism, indexed by a decrease in the difference in response to unexpected 

and expected cues. For example, Lawson et al. [100] reported both reduced behavioural 

(indexed by reaction time (RT) and error rate) and pupillometric response to ‘surprising 

trials’, in autistic, compared with non-autistic adults. Similarly, reduced surprise when 

expectations were violated was reported in autistic children and young adolescents [168],[408]. 

Our results (Chapter 2) directly contrast with these findings; autistic adults showed typical 

use of priors and typical response to surprising cues. However, there are important 

methodological differences between our findings and previous work, namely the age of 

participants and the paradigm employed, with the aforementioned studies not requiring 

learning of a sequence. In addition, although Lawson and colleagues used a sample that was 

comparable to ours, with regard to age and symptom severity, they used a perceptual 

associative learning task, suggesting contrasting findings could be related to different 

networks of brain regions recruited across different tasks [291]–[293]. Finally, our results are in 

accord with findings examining predictive eye movements. Using a visual pursuit task, where 

participants were required to track targets that were transiently occluded, the authors reported 
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no differences in anticipatory eye movements between autistic and non-autistic children and 

adolescents [404]. In sum, although methodological differences make it difficult to directly 

compare between different studies, the current results contrast with previous reports of 

atypical use of priors and response to surprise. It is thus possible that predictive differences in 

autism cannot be fully extended to the motor domain and that some types of motor learning 

(e.g., motor sequence learning) are intact. 

An important difference between the paradigm used in Chapter 2 and previous work concerns 

the manipulation of the volatility of the learning environment. For example, Lawson and 

colleagues proposed that atypical responses to surprising cue-cue parings in autistic adults in 

their study stemmed from over-estimation of volatility. The authors manipulated the volatility 

of the environment, with stable phases, where cue-cue associations rarely changed, and 

volatile phases, which featured frequent reversals in cue-cue associations. Group differences 

were found in higher-level beliefs about the volatility (the rate of change of cue-cue 

associations) of the environment, when modelled using a Hierarchical Gaussian Filter model 

(HGF) [65],[409], which allows estimation of uncertainty at different levels. It is thus possible 

that differences might have emerged in the paradigm we employed in Chapter 2 if the 

volatility of the learning environment had been manipulated. Indeed, although a study 

investigating predictive processes through sensorimotor control reported typical performance 

in autistic individuals [159], further work from the same research group found atypical 

performance in autistic individuals in a volatile environment [160]. While different paradigms 

were used in these studies (force-matching versus interception of a moving target), both 

indexed predictive sensorimotor control.  

To test the proposal that the lack of group differences observed in Chapter 2 stemmed from 

lack of volatility manipulation, the volatility of the learning environment was manipulated in 

Chapter 3. However, in refute of this proposal, no differences in adjustment of learning rates 

were observed between groups. These results are in accord with previous work from Manning 

and colleagues which used a probabilistic associative learning task (adapted from Behrens et 

al., [88]) to investigate adjustment of learning rates to volatility in autistic children [125]. We 

replicated and extended this work, by examining probabilistic learning in autistic adults. 

Furthermore, learning demands were higher in our task, with the inclusion of an additional 

information source, the social cue. Thus, countering the proposal raised by Manning et al., 

that group differences in learning might emerge when using a more complex learning task. 

Taken together, results contrast with claims of atypical volatility processing in autism, at least 
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with regard to stimulus-reward associative learning. Furthermore, the empirical work in this 

thesis extends previous work, demonstrating typical adjustment of learning in autistic adults 

within a social context.  

In Chapter 3, a group difference was observed in behaviour in volatile phases, independent of 

adjustment of learning rates. Specifically, on trials following a ‘win’, the non-autistic 

participants showed a greater tendency to stay with the rewarding response on the following 

trial, with more ‘win-stay’ behaviour in stable compared to volatile phases. Autistic 

individuals showed the opposite, with more win-staying in volatile phases. While this effect 

was unexpected and did not translate to any impairments in task performance, similar 

findings have been reported previously. For example, in a reward learning task, which 

included volatile, stable, and noisy conditions, less optimal behaviour in volatile phases was 

found to correlate with levels of autistic traits; however, this was unrelated to adjustment of 

learning rates to changes in volatility [99]. Similarly, less flexible behaviour on a probabilistic 

reversal learning task was observed in both adults and children [46]. Finally, studies have 

reported that autistic individuals more frequently revert to the previously learned response 

[45], and require more time to learn new responses after a reversal [44]. Atypical performance 

in volatile phases could thus reflect difficulties in learning new responses (and forgetting 

previously learned responses) when stimulus-outcome associations change after a reversal, 

rather than from atypical adjustment of learning rate stemming from high and inflexible PEs 

(i.e., from a reduced capacity to distinguish volatility from noise [12],[78]. Thus, differences in 

autistic behaviour in volatile environments cannot be conclusively attributed to an 

impairment in tracking volatility.  

Next, autistic individuals are proposed to show atypicalities in the social domain, due to the 

inherently complex and unpredictable nature of social information [13],[78]. Indeed, a recent 

review examining predictive mechanisms in autism concluded that evidence supports atypical 

predictive mechanisms in autism overall, but that these atypicalities are likely to be increased 

in the social domain [410]. However, it must be highlighted that only six studies examining 

prediction in the social domain were included in this review; two examined social prediction 

through the perspective taking of another individual (with opposing results [187],[411]), one 

found differing neural, but not behavioural, response to social reward and one study found no 

differences between social and non-social conditions [121]. Two further studies focusing 

specifically on social learning found atypical response to social information. Robic and 

colleagues [101] reported impaired performance in volatile environments in autistic 
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individuals, with greater impairment when advice was social as opposed to non-social. 

However, the computational mechanisms underpinning this impairment are unclear, as, rather 

than estimating individual measures of learning, the authors compared the number of 

participants in each group who reached a success criterion (60% correct). Similarly, Sevgi et 

al. [188] reported that a higher level of autistic traits correlated with difficulties in integrating 

social information with individual information during learning. This research, however, 

examined autistic traits in a non-autistic population, and these results should be replicated in 

individuals with a clinical diagnosis of autism. In sum, there is still limited research 

examining predictive processing in the social domain. The current results add to this 

literature, providing evidence against atypical predictive learning from social information in 

autistic adults.  

A plausible explanation for the null findings reported here is our use of non-overtly social 

cues when representing social information. Studies in support of atypical predictive 

processing in the social domain use images or videos of face stimuli [59],[101],[123],[188]. This is 

also the case in the motor domain, where the majority of research in this field examines 

action inference in autism. For example, studies finding differences in autistic individuals 

used biological stimuli, such as point-light displays or videos of actors making intentional 

movements [120],[173],[174]. In contrast, the paradigms used in this thesis, examining social 

learning and motor sequence learning, did not use overtly social stimuli. This raises the 

possibility that requirements for face perception or biological motion processing, which have 

been reported as atypical in autism [178],[304],[412],[413], could explain contrasting results. In 

conclusion, when social information is represented through non-overtly social cues, as in the 

paradigm used in this thesis, no differences are observed in social learning. This could 

constrain predictive coding accounts to learning from biological stimuli, although it is 

important to note that results to date are mixed, with some accounts supporting [103],[104] and 

some opposing [105],[106] atypical predictive mechanisms for biological stimuli in autism.  

 

7.1.3 Strengths and limitations 

Chapters 2 and 3 examined predictive processes in the context of motor sequence learning 

and probabilistic social learning. Both studies were (separately) carried out with individuals 

who had previously received a clinical diagnosis of autism spectrum disorder and a matched 

group of non-autistic control participants. Although different paradigms were used, both 
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indexed the PE-related processes hypothesised to be impaired under Bayesian/predictive 

processing accounts of autism.  

Is it important to mention that drawing conclusions from estimated parameters from 

computational models of learning is not without problems, and, in order to draw strong 

conclusions from comparison of parameter estimates, a computational model is required to 

provide a good fit to choice data. However, to strengthen the conclusions drawn from 

analysis of estimated computational parameters, additional measures of learning were 

considered and null findings were supported by Bayesian statistical analyses [401],[414]. 

Furthermore, Bayesian model selection [415]was used to compare our model with alternative 

models, providing confidence that our model accurately described participants’ behaviour.  

Model comparison is a relative measure, however, raising the possibility that group 

differences could emerge when using a different model of learning. In studies finding 

evidence in support of atypical adjustment of learning, one commonality is the use of a 

hierarchical Gaussian filter (HGF) model [100],[188]. In the HGF model, volatility is estimated 

on trial-by-trial basis, and a parameter which captures beliefs about volatility is estimated. 

Neither the results reported in Chapter 3, nor the study by Manning and colleagues (which 

also reported typical predictive processes in ASD) used this analysis and thus do not estimate 

volatility on a trialwise basis. The choice of model across different studies could thus 

potentially explain contrasting findings. However, while possible, this explanation is unlikely 

as the change in learning rate between volatile and stable phases is also an index of volatility 

tracking, meaning that we would expect to see differences in changes in learning rate 

between stable and volatile blocks of trials, if differences existed.  

One potential limitation (addressed in detail in Chapter 2), concerns the question of whether 

results from these studies can be generalized to the wider autistic population. Participants in 

both studies only included autistic adults without intellectual disability or impaired language 

skills. Furthermore, in the motor learning task reported in Chapter 2, there was a high ratio of 

female to male participants; in contrast to the general population [416]. Here, an opportunity 

sample was used due to practical considerations, and no differences were observed between 

male and female participants. It is, however, possible that sex differences in predictive 

processing mechanisms were present, but the studies in this thesis were not sufficiently 

powered to detect these effects. In refute of this, there is no a priori reason to believe this to 

be the case and the same pattern of results was observed when splitting by gender. Thus, even 
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if the ratio in our sample had included a higher proportion of males, it is unlikely that this 

would change our pattern of null results. Overall, the sample of participants who took part in 

the studies described in the current thesis was comparable to those from other research 

[100],[107],[108],[173], in sample size, age and diagnostic criteria.  

Finally, the social learning task employed in Chapter 3 could be argued to be lacking in 

ecological validity. The social ‘advice’ in this paradigm was represented by a thin, red frame, 

highlighting a particular option, in contrast with previous work using similar paradigms, 

which utilised images/videos of faces to indicate social advice [95],[188],[230]. Thus, group 

differences might have emerged if the task had employed more overtly social stimuli. 

However, representing the social information as an abstract cue was a deliberate choice, to 

investigate social learning without the confound of face processing. In addition, all 

participants knew that the red shape indicated information from previous participants, as 

participants could not commence the task until reaching 100% accuracy on a pre-task quiz, 

with questions concerning the social nature of the red shape. Furthermore, individuals 

indicated (through a post-task questionnaire) both that they believed the red frame to 

represent social information, and that they relied on this information source when making 

decisions. Finally, the task used here has been demonstrated to be a good index of social 

learning, with social, but not individual, learning correlating with social traits [309]. Taken 

together, participants treat the red cue as social information in this paradigm, despite the use 

of non-overtly social stimuli.  

 

7.1.4 Conclusions and future work 

Taken together, the current results do not add support for atypical predictive learning in 

autism, with the empirical work reported in this thesis finding no differences in either social 

or motor learning when comparing autistic and non-autistic adults. Furthermore, results 

suggest that, when social information is predictable and represented with a simple cue, social 

learning is not impaired in autistic individuals. The evidence reported here adds to a growing 

body of work reporting typical predictive learning in autism, particularly outside the sensory-

perceptual domain. The empirical findings in this thesis are therefore not consistent with the 

hypothesis that common, domain-general impairments in predictive processes underpin many 

diverse aspects of the autistic phenotype, and contrast proposals of amplified predictive 

deficits in the social domain.  
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These findings help to determine if predictive impairments are indeed a common 

computational cause, or whether they are limited to certain domains, i.e., to identify the 

specific circumstances wherein predictive learning is atypical in autism. This is important, 

both to increase our general understanding of underlying predictive mechanisms in the 

autistic brain, but also in highlighting areas for future investigation, i.e. to identify areas 

where training in predictive learning could bring tangible benefits to autistic individuals [10]. 

It is therefore important to determine if there are unique differences between learning types. 

Focusing on the social domain, in particular, an important question is whether training and 

aids to improve social cognitive mechanisms need to be specialised or whether domain-

general learning aids would have the same effect. A key question thus concerns whether or 

not social learning is underpinned by domain-general associative learning principles. The 

current results showed that group membership did not dissociate social and individual 

learning, tentatively suggesting that social and individual learning rely on the same 

mechanisms. This is examined in more detail at a neurochemical level in subsequent chapters 

(Chapters 4 and 6).  

The research presented here could be extended in a number of ways. For example, an 

investigation of predictive processes in motor sequence learning in a paradigm where 

volatility is manipulated (e.g. [290]). However, as autistic adults showed intact learning with 

regard to volatility in Chapter 3, it is possible, but improbable that differences would emerge 

with regard to motor learning. Furthermore, while both of the tasks employed here indexed 

prediction-related processes, they are testing slightly different hypotheses (i.e., reduced 

reliance on prior predictions in Chapter 2 versus atypical precision-weighting of PEs in 

Chapter 3). Indeed, this is the case in the wider literature, with methodology varying widely 

across studies. While differing paradigms are thought to index common predictive processes, 

it is unknown whether performance on one task correlates with that on another, and therefore, 

whether they can be used interchangeably in support (or indeed opposition) of the same 

hypotheses. Future work should assess this further. In addition, when comparing across 

different paradigms, possible confounds should be highlighted. For example, there is 

evidence that autistic predictive processing is intact when individuals are given explicit task 

instructions [404], when cues are attended versus unattended [417] and when stimuli are linked 

to reward [125], all highlighting a role for attention in modulating predictive processing in 

autism [418]. These potentially confounding factors should be given greater attention in future 

work, in order to allow stronger comparisons to be made across different studies.  
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In sum, with respect to one of the main hypotheses of this thesis, these results suggest that 

predictive mechanisms underpinning both social and motor sequence learning are intact in 

autistic adults. Results do not support impaired predictive coding as a core deficit that can be 

extended to explain social and motor learning atypicalities in autism. These results force us to 

think more critically about what overarching conclusions can be drawn from studies of 

predictive coding in autism and can help in refining and revising these theories.  

 

7.2 Neurochemical mechanisms of social learning  

This section examines evidence for, and against, the presence of social-specific 

neurochemical mechanisms for social learning, based on empirical findings in this thesis. The 

existence in the human brain of neural and neurochemical pathways that are specialised for 

learning from social and individual information is debated, with cognitive neuroscientific 

studies presenting mixed evidence. In line with theories of human cultural evolution, some 

cognitive neuroscience studies have found dissociable neural correlates for social and 

individual learning; evidence for social-specific learning mechanisms [95],[256]–[258]. In contrast, 

other studies have reported evidence showing that social learning is associated with the same 

brain areas [222]–[225] and, dopamine-mediated computations [230] as individual learning, i.e., 

domain-general neurochemical mechanisms for social learning. There is, however, a lack of 

research comparing the effect of variation in neurochemical signalling on social and 

individual reward learning in the same paradigm; crucial for analysing the differences 

between each type of learning simultaneously while allowing for control of variation in 

learning between individuals. Differences in social and individual learning as a function of 

variation in neurochemical signalling would provide evidence that social and individual 

learning are facilitated by different mechanisms, with similarities reinforcing the opposing 

argument, that both types of learning share underlying neurochemical mechanisms. In 

empirical Chapters 4-6, I examine evidence for the above. Specifically, with regards to both 

dopamine and serotonin signalling, I examine if there are dissociations between social and 

individual learning as a function of genetic variation in the serotonin transporter gene 

(SERT/SLC6A4) and the dopamine transporter genes (DAT/SLC6A3), and whether 

pharmacological manipulation of dopamine has a dissociable effect on social and individual 

learning. All results are integrated and interpreted in light of existing research. I then consider 

what the current results imply for the domain-specificity of social learning and other social 
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processes, both for autism and in wider research. General strengths and weaknesses of the 

methodological approaches used will be outlined and I will discuss how the empirical 

research reported in the current thesis could be extended in future work.  

 

7.2.1 Summary of Results 

7.2.1.1. In Chapter 4, a large-scale behavioural genetics approach was employed, to 

investigate whether there was evidence to support the existence of dissociable genetic 

contributions to social and individual learning. Focusing on genes related to the monoamine 

neurotransmitters dopamine and serotonin, we investigated whether genetic variation in 

dopamine- and serotonin-related single nucleotide polymorphisms had different effects on 

social versus individual learning. An online version of the probabilistic social learning task 

(SLT) employed in Chapter 3, was utilised to dissociate behavioural markers of learning from 

social and individual learning. Results demonstrated that variation in participants’ ability to 

adapt both social and individual learning rates to volatility covaried with serotonin-related 

genotype, providing preliminary evidence for a (domain-general) role for serotonergic 

signalling in adjusting learning rate. In addition, serotonin-related genotype covaried with the 

extent to which participants were biased towards social information during decision making 

as indexed by the social weighting parameter, ζ. Finally, significant interactions were 

observed between dopamine-related genetic variation and both environmental volatility and 

learning source with regard to learning rates. These results suggested the presence of a 

neurochemical dissociation between social and individual learning, in line with theories 

proposing that social and individual learning can be dissociated. However, in the paradigm 

used in this chapter, and in previous work finding dissociations between social and individual 

learning [93],[95], the social information is an indirect source of information, secondary to the 

individual reward information. For example, the social information is less salient and 

represented temporally after the individual information, with its utility needing to be inferred 

from the primary reward feedback. The social/non-social nature of the information source 

during learning is therefore confounded with whether the information source is the primary 

source of information, or rather, an additional, secondary source. Thus, the dissociations 

between individual and social learning observed here could instead be dissociations between 

learning from a primary and secondary source of information.  
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7.2.1.2. Chapter 5 builds on the results reported in the previous chapter, describing the 

rationale behind the development of an adapted version of the social learning task (SLT). The 

aim was to develop a task version where the social nature (social/individual) of the 

information was not confounded with status (primary/secondary) during learning. In line with 

this, we aimed to create a version of the task where the primary and secondary nature of the 

learning sources were switched, with the social information the primary source, and the 

individual information, the secondary, additional information source. To do so, several 

aspects of the information sources were manipulated, including saliency, temporal order and 

link to reward. To test whether the task manipulation had modulated participants’ behaviour 

in the expected direction (i.e., whether the social information was the primary source of 

learning), different indices of learning were measured in a large sample and compared with 

measures from previous work utilising the standard version of the SLT [93]. Results suggested 

that the task manipulation affected several different indices of learning, including optimal 

beta scores and win-stay, lose-shift behaviour, with more weight given to social information 

during learning in the manipulated version of the task. However, while results were in the 

expected direction, both frequentist and Bayesian analyses suggested that stronger 

manipulations were required. Subsequently, task instructions provided to participants were 

updated for use in the paradigm employed in Chapter 6; participants were here primarily 

asked to choose between going with, or against, the group’s choice, i.e., with or against the 

social information. Thus, employment of this task version (social-primary task) and the 

original version (individual-primary) allowed orthogonalization of the status and social nature 

of learning sources.  

7.2.1.3. In Chapter 6 [419], the social-primary task and the individual-primary task were 

employed in a between-subjects design, to investigate whether the dopamine-dependent 

reinforcement learning (RL) process could be dissociated in a social versus individual 

condition, independently of the “status” of the learning source. Thus, enabling testing of the 

hypothesis highlighted in both Chapter 4 and in previous work [93]; that learning types can be 

dissociated along a primary versus secondary rather than an individual versus social axis. In a 

double-blind, placebo-controlled design, over two separate days participants received a 

dopamine antagonist, or placebo, and completed the social learning task, requiring learning 

from social and individual sources. Participants were randomly assigned to one of two task 

groups; for the social-primary group, social information was the primary learning source, 

whereas for the individual-primary group, individual information was the primary learning 
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source, meaning that status (primary, secondary) and social nature (social, individual) were 

orthogonalized. Results showed that manipulation of dopamine signalling affected primary 

learning irrespective of the social/individual nature of the information source, with no effect 

on learning from the secondary source. That is, as with individual learning, social learning 

was modulated by manipulation of dopamine signalling when social information was the 

primary learning source (i.e., in the social-primary group), but not when it comprised a 

secondary, additional element. These results, showing that dopaminergic mechanisms 

underpinning learning can be dissociated along a primary-secondary but not a social-

individual axis, comprise positive evidence for shared dopaminergic signalling mechanisms 

for social and individual learning. These results add support for the existence of domain-

general mechanisms underlying social learning and suggest that dopaminergic pathways in 

the human brain can process both social and non-social cues and flexibly switch between the 

two. 

 

7.2.2 Interpretation of results 

Taken together, empirical results in this thesis do not add support for dissociable 

neurochemical mechanisms underpinning social and individual learning. First, although 

results from Chapter 4 indicated dissociations between dopaminergic signalling mechanisms 

underpinning social and individual learning, this cannot be taken as conclusive evidence in 

support of social-specific neurochemical learning mechanisms. Importantly, Bayesian 

analyses provided moderate evidence against the inclusion of an interaction between 

dopamine-related genotype and (social versus individual) learning source, and post-hoc tests 

were not significant, suggesting that these results should be interpreted with caution. 

Furthermore, dissociations between individual and social learning cannot be confidently 

ascribed to the social nature of the information source; in this task, the social nature of the 

information was confounded with its secondary status during learning.  

This confound was highlighted by Cook and colleagues [93], who provided preliminary 

evidence against a neurochemical dissociation between social and individual learning 

mechanisms. The authors reported that methylphenidate (MPH), a catecholamine reuptake 

inhibitor, affected participants’ ability to adjust learning rate in response to changes in 

environmental volatility, with this effect restricted to learning from the individual source of 

information. The task was adapted to include a non-social control condition; while half of the 
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participants were informed that the secondary cue represented social advice, the remainder 

were told that it represented non-social advice (output from a rigged roulette wheel). This 

enabled the authors to determine whether dissociations between social and individual 

learning were better explained in terms of social versus non-social or secondary versus 

primary nature of the information source. MPH affected learning specifically while learning 

from the primary (individual) reward, with no effect when learning from the secondary 

information source, regardless of whether participants believed it was “social” or not. These 

results suggested that the differing effect of catecholamine perturbation dissociated between 

learning from primary and secondary information, rather than between individual and social 

sources. However, this study could not provide positive evidence in support of domain-

general mechanisms for social learning: as MPH did not affect secondary learning, social and 

non-social learning could have relied on different neurochemical mechanisms. This study 

therefore could not provide conclusive evidence for domain-general mechanisms for social 

learning. 

The current results (Chapter 6) extend the work conducted by Cook et al. [93] in two ways. 

First, orthogonalization of the status and social nature of the learning source allowed 

investigation into the effects of these factors independently of one another, allowing 

determination of which factor accounted for dissociations. Results demonstrated common 

dopaminergic mechanisms for social and individual learning when they were the primary 

learning source, independently of social nature. Second, in the study conducted by Cook and 

colleagues [93], it is unclear if observed effects on learning rate were mediated through effects 

on dopaminergic or norepinephrinergic signalling, as MPH blocks the reuptake of both. In the 

current study, we used a specific dopamine receptor antagonist, haloperidol, meaning that 

effects could be attributed to dopamine-dependent processes. Furthermore, haloperidol acts 

with high affinity on D2 receptors [383], which are found in highest concentrations in the 

mesolimbic signalling pathway [381],[382], an area key for reward learning [71],[211]. Meaning 

that, although the effects of haloperidol differ across different regions [390], we can be 

relatively confident in localising the observed effects on learning to striatal regions. However, 

a combination of neuroimaging and a pharmacological intervention could strengthen these 

results, by allowing a more precise localisation of effects.  

With regard to serotonergic signalling (Chapter 4), empirical findings in this thesis support a 

lack of dissociation between social and individual learning as a function of differences in 

serotonin-related genetic variation. Instead, there is evidence for an association between 
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serotonergic variation and adjustment of learning rate, suggesting a domain-general role for 

serotonergic signalling in adaptation of learning rate to volatility. These results are in line 

with a role for neuromodulators in meta-learning [67],[91]. Although serotonin has long been 

associated with learning and decision-making [241],[420], its exact role remains unclear, with 

proposals including opponency to dopamine signalling [236],[332], reward discounting [421] and 

reward learning [233],[235],[238]. The current results, suggesting a role in adjusting learning rate, 

are in agreement with previous reports of variation in serotonin signalling affecting reversal 

learning, alongside other indices of flexible behaviour [237],[239],[241],[335],[336]. Indeed, recent 

evidence from animal studies report a role for serotonergic signalling in adjusting learning to 

volatility [337], and altering learning rates, potentially through tracking uncertainty of the 

learning environment [92]. The empirical work in this thesis adds to this, providing 

preliminary evidence for a role for serotonin in adjusting learning rates in humans.  

In Chapter 4, an unpredicted role for serotonin in decision-making was observed. 

Specifically, s-allele carriers showed a bias towards greater use of social information during 

decision making. The short (s) allele is one of two common alleles in the promotor region of 

the gene encoding the serotonin reuptake transporter (SERT), with the s-allele associated 

with increased extracellular serotonin, mediated by a decrease in transcriptional efficacy, and 

reduced SERT function [328],[329]. An association between s-allele carriers and social learning 

is in agreement with previous work in social fear learning, although previous work has not 

directly compared social and individual learning [255]. Moreover, it is important to note that 

the social nature and secondary status of the learning source are confounded, meaning that 

this interaction could instead reflect an association between increased serotonergic signalling 

and a reliance on the secondary source of information, during decision-making. Accordingly, 

this confound should be ruled out before the results from this chapter are used to support a 

specific association between serotonergic signalling and increased use of social information.  

In addition to helping to resolve issues with regard to the existence of social-specific 

neurochemical learning mechanisms, the current work adds to a broader discussion 

concerning the existence of specific neural regions for social processes. In contrast to studies 

proposing regions or pathways specialised for social processes [184],[185],[257],[263],[312],[386], there 

is a growing consensus that many brain areas and networks previously thought to have a 

social function, are rather implicated in both social and non-social processes [422]. For 

example, there is evidence that neural pathways in the human brain vary based on the current 

task relevance of information. Nicolle and colleagues [265] reported that, rather than a self 
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versus other distinction, information in the medial prefrontal cortex (mPFC) is arranged 

according to task-relevance, with ventral regions of the mPFC tracking task-relevant 

information (e.g., information about the self during a self-relevant trial and information about 

another individual during an other-relevant trial). In contrast, dorsal regions of the mPFC 

keep track of task-irrelevant information (e.g., information about the self during an other-

relevant trial and the other individual during a self-relevant trial) [265],[266]. Further research 

showed that, when tracking one’s own, and another’s beliefs, the distinction between PEs for 

the self and for others was flexible, and the manner in which PEs were identified as 

representing the self or other shared common computations with non-social processes (inter-

temporal reasoning) [368]. Finally, the mPFC encodes value representations, independently of 

self-versus other distinctions [367],[423]. The results in this thesis are in agreement, suggesting 

neurochemical pathways (such as the mesolimbic dopaminergic signalling pathway), are not 

specialised for social or individual input, but rather, process both types of information 

flexibly, with manipulations of signalling having different effects depending on the status of 

the information source.  

 

7.2.3 Strengths and limitations 

Several limitations and strengths specific to each chapter have been discussed previously, 

however, some general limitations will be mentioned in this section. First, one limitation 

concerns the statistical analysis in Chapter 5, where indices of learning from different task 

versions were compared. Due to time constraints, datasets from different task versions were 

not collected at the same time, meaning that groups were not matched on demographic 

measures, and were conducted at varying times and locations; all factors which could have 

influenced the pattern of results. In addition, the participant sample in the social-direct group 

was relatively homogenous in terms of gender and age. Accordingly, when this task was 

employed in Chapter 6, groups were matched and randomly assigned to one of two tasks 

conditions, and, to improve generalisability of results, the participant sample included a wide 

age range and was balanced with regard to gender.  

Second, the empirical results from Chapter 5, while suggesting that task manipulations 

resulted in an increase in the influence of social information during learning, were not 

conclusive; although the influence of social information on learning increased, it did not do 

so significantly, and, while manipulations affected certain indices of learning (win-stay, lose-
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shift scores), learning rates were not affected. Accordingly, based on research showing that 

instructions can alter choice behaviour [357],[358], changes were made to the task instructions 

before this task was employed in Chapter 6 (Appendix 4.4). Indeed, in Chapter 6, to ensure 

that the task manipulation (orthogonalizing social/individual and primary/secondary 

information) had indeed modulated participants’ behaviour, the influence of both information 

types on learning was compared, prior to our primary analysis of learning rate. Here, 

participants put more weight on the primary information source, regardless of social nature, 

during learning, thus validating our manipulation. Importantly, the rationale, methodology 

and analysis plan for the study reported in Chapter 6 were pre-registered.  

A potential limitation of the current work concerns the level of analysis in Chapter 6. It has 

been argued that social-specific properties of processes can be observed on a number of 

different levels; the computational level, concerning the goal of the agent, the algorithmic 

level, representing the underlying computations, and the implementational level, for example, 

the neural region or circuit [189]. Here, we manipulated dopamine signalling (i.e., affecting the 

implementational level), and concluded that our manipulation had comparable effects at the 

algorithmic level; that is, manipulating dopamine signalling had comparable effects on 

learning rates related to social and individual learning. However, the current study only 

addresses social-specificity at the level of D2-mediated dopaminergic signalling, thus only 

testing one of many possible components at an implementational level. Therefore, the 

presence of dissociations between social and individual learning at a neural or circuit level 

cannot be fully ruled out, with potential differences including the location of neural activity. 

However, it is unclear as to how location-based differences would be selected for, in the 

absence of behavioural differences. Furthermore, if location-based differences do exist, these 

would be likely to result in differences in the magnitude of the effect of haloperidol on 

learning, as effects of haloperidol differ across the brain [389],[390]. In sum, it is unlikely that 

social learning relies on similar computational mechanisms as individual learning when it is 

the primary learning source but is localised to a different neural region or pathway. A further 

possibility is that other forms of disruption at the implementation level (e.g., pharmacological 

manipulation of serotonin signalling) could dissociate social from individual learning. 

However, results from Chapter 4 oppose this; no dissociations between social/individual 

learning rates were found as a function of variation in serotonergic signalling, meaning it is 

unlikely that implementational differences exist at the level of 5-HT signalling. A 
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pharmacological manipulation of the serotonin system would, however, provide stronger 

evidence.  

A strength of the current empirical work concerns the computational modelling approach 

used in Chapters 4 and 6. In both chapters, random-effects Bayesian model selection was 

used to compare the model with alternative candidate models, with analyses supporting the 

use of the chosen model. Subsequently, to improve confidence in the ability of the model to 

accurately describe choice behaviour, data simulations and parameter recovery were carried 

out, with estimated and recovered parameters significantly correlated in both analyses. 

Furthermore, our main effect of interest (a significant effect of haloperidol on primary 

learning) was observable when analysing recovered parameters. Finally, simulated and actual 

choice data were significantly correlated. While confident that the chosen computational 

model was robust and could accurately describe behaviour, it is important to note that, as 

mentioned in the previous section, model selection is a relative technique. It is therefore 

possible that a different type of model, such as HGF, would have better explained choice 

data. However, with the current dataset, this model frequently failed to converge. 

Furthermore, since the task used in Chapters 5 and 6 featured a novel manipulation (enabling 

orthogonalization of primary/secondary and social/individual factors), it was unclear as to 

what the most appropriate priors for the modelling parameters were, if using a different 

model. In addition, as the study design and hypotheses were based on previous work [93]; the 

same model and model priors were employed here.  

 

7.2.4 Conclusions and future work 

Taken together, addressing the main research question of this section, the results in this thesis 

provide positive evidence in support of domain-general theories of social learning, and 

evidence against dissociable neurochemical mechanisms underpinning social and individual 

learning. Instead, results demonstrate that disrupting the dopamine system can have 

comparable effects on social and individual learning when they are the primary source. 

Existing studies did not control for primary versus secondary status, meaning that they could 

not provide convincing evidence for neurochemical dissociations between social and 

individual learning. The current work builds upon this, providing evidence that dissociations 

between learning types can be explained through dissociations between learning from a 

primary, versus secondary, rather than a social versus individual information source. These 
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results have important practical implications with respect to enhancing social and individual 

learning in a clinical setting and add to the wider debate concerning the social specificity of 

neural processes. However, as outlined in the previous paragraph, some outstanding questions 

remain.  

First, while it is unlikely that social learning relies on similar computational mechanisms as 

individual learning but is localised to a different neural region or pathway, this should be 

ruled out. As the social learning task employed here is amenable to neuroimaging [95], a 

combined imaging and pharmacological approach would provide conclusive evidence in 

determining whether the location of neural activation varies depending on the 

primary/secondary status, rather than the social/ individual nature of information during 

learning. Second, while the task manipulation described in Chapter 5 resulted in the social 

information becoming the primary source of learning, this manipulation changed several 

aspects of the stimulus simultaneously: saliency, temporal order, and reward feedback. It is 

thus unclear as to which manipulation was the most successful. The utility of making social 

information into the primary learning source is highlighted in Chapter 6, whereby participants 

showed more optimal learning from the social information when it was the primary source. 

Thus, similar manipulations could potentially be used to improve learning about individuals, 

as well as from other individuals. To unpack which manipulation is the most important, 

future work could investigate this in a large sample, manipulating each aspect independently. 

Finally, future work could utilise this task in parallel with a pharmacological manipulation of 

serotonergic signalling.  

Together the studies presented in this thesis implicate the dopaminergic and serotonergic 

neurotransmitter systems in both social and individual learning and contribute to the debate 

concerning the existence of social-specific learning mechanisms. These results support the 

view that there are domain-general neurochemical mechanisms supporting social learning and 

contrast the existence of social-specific mechanisms, particularly with regard to 

dopaminergic signalling.  

 

7.3 General Conclusion 

Taken together, the empirical findings in this thesis do not find evidence of atypical 

predictive coding in social and motor learning, in contrast to accounts proposing atypical 



 

 108 

predictive processing as a core domain-general deficit in autism. These results add to a recent 

body of empirical research helping to constrain predictive coding accounts of autism. 

Furthermore, this thesis provides positive evidence for domain-general dopaminergic 

mechanisms for social learning, suggesting that the learning process is modulated as a 

function of domain-general factors such as primary versus secondary status and volatility, but 

not social versus individual nature. These results, finding evidence against specific 

neurochemical mechanisms for social learning, are in agreement with a lack of social-specific 

learning differences in autistic adults. Thus, highlighting the possibility that atypicalities in 

autism lie in processing overtly social cues, rather than in the social learning process itself. 

To conclude, the results reported in this thesis have important implications, both for 

predictive coding accounts of learning in autism and for helping to resolve a wider debate 

concerning the domain-specificity of social cognitive processes.   
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Methods 

 

Participant inclusion criteria 

All participants were fluent English speakers, with no history of neurological disease, 

muscular dystrophy or cerebral palsy, and had an intelligence quotient (IQ) score, measured 

using the two-subscale measure of the Wechsler Abbreviated Scale of Intelligence- 2 (WASI-

2; Wechsler, D., 2011), greater than 75. 

 

Autism spectrum group clinical information  

Sixteen (57%) of the participants reported direct family history of developmental, 

neurological or severe psychiatric disorders. Six subjects had an additional diagnosis of a 

psychiatric disorder: one with bipolar disorder, one with epilepsy, two with attention deficit 

disorder (ADHD), three with generalized anxiety disorder and two with major depression. 

Sixteen (57%) of the sample were on prescribed psychiatric medication, with antidepressants 

the most commonly prescribed medication (twelve subjects), followed by ADHD medication 

(three subjects) and epilepsy (one subject). Six subjects (21%) had a learning disorder and 

two (7%) reported developmental delay. 2-subscale IQ scores ranged from 78-142 (mean 

(SD) = 108.68 (16.31) All analyses were repeated with the exclusion of sub-groups based on 

clinical information (see Supplementary results).  

 

Serial reaction time behavioural task  

Participants completed a computerised motor sequence learning task run on MATLAB 2018b 

(MathWorks, Inc.; http://www.mathworks.co.uk/) with Cogent 2000 

(http://www.vislab.ucl.ac.uk/cogent_2000) for which they sat in front of a computer screen 

(approx. 30 cm distance from screen), with the keyboard placed in front of their dominant 

hand. They were instructed to place each of their fingers separately on the keyboard letters V, 

B, N and M and to maintain this position throughout the task. A Razer DeathStalker 

keyboard, with ultra-polling at 1000Hz enabled, was used for precise measurement of RT.  
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For each individual trial, the following events were presented to the participant: A warning 

cue was displayed for 250 milliseconds (ms), followed by a fixation cross (1000 ms). After 

this, one of four imperative stimuli (IS) were shown in the centre of the screen for 250 ms 

(Fig. 1a). During this time, the participant was required to respond to the displayed stimuli. 

Stimulus presentation was followed by the fixation cross (2500 ms). Each IS was associated 

with a specific keyboard key, which corresponded to a specific finger press action (V, B, N, 

or M). Participants were required to learn the association between the IS and action (e.g., 

middle finger press) and execute the associated action when presented with an IS. 

Participants were instructed to respond as fast as possible, without sacrificing accuracy. 

Participants had to complete at least two training blocks of 60 trials in which they scored over 

90% accuracy, before they could progress to the main experiment. If performance on the 

second training block was less than 90% correct, another block was added, this procedure 

was repeated until performance exceeded 90% correct. During the training blocks, 

participants received textual on-screen feedback as to whether their response was correct 

(“Correct!!!”) or incorrect (“Wrong”). During training, stimuli were presented in an 

unpredictable order, with equal probabilities (25%) of each stimulus appearing on each trial. 

After the training round, they were asked to respond as quickly and accurately as possible to 

the presented symbols. They were shown the following instructions on the computer screen 

before starting the task: 

 

“The experiment will start soon. Please remember to stay focused all the time! Please get 

ready when you see the warning cue, this will allow you to respond fast and accurately” 

 

In the main experiment, participants completed seven blocks of 100 trials with self-paced rest 

intervals between the blocks. Feedback was not given in the main experiment. In the main 

experiment, IS order followed different sequences depending on condition, with predictable 

and unpredictable sequences presented in different blocks (Fig. 1b). For blocks one, four and 

seven (Fig. 1c) the stimulus sequence was unpredictable, with an equal probability (0.25) of 

each stimulus appearing on each trial. For blocks two, three, five and six, stimulus 

presentation followed a predictable pattern (see Fig. 1d for the easy predictable probabilities). 

Each stimulus was drawn from a predictable first-order Markov sequence, where the current 

stimulus t was dependent on the stimulus presented at the previous trial, t-1. Therefore, 
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predictable sequences were generated by sampling from a distribution specified in a transition 

matrix which quantified the dependence between stimuli. For the first predictable condition 

(Fig. 1d), the sequence followed an easy pattern in which IS order 1-2-3-4 (corresponding to 

the keyboard presses V-B-N-M) occurred with high probability, requiring the participant to 

respond with the natural order of the fingers, i.e., index, middle, ring and little finger. For the 

difficult-predictable condition stimuli followed a less natural predictable pattern whereby the 

stimuli order 1-4-2-3 (V-M-B-N) occurred with high probability. 

 

Trial-by-trial surprise 

Surprise was quantified on a trial-by-trial basis in a stimulus-specific manner, with the 

surprise (S) of observing a stimulus i on trial t after experiencing stimulus type j on trial t-1 

calculated using the assumption that subjects behaved as “ideal” observers, beginning each 

block with the prior expectation of all stimulus pairings being equally probable, and updating 

the conditional probability of each pairing using a Bayesian update scheme [424],[425]. On each 

trial (t), subjects were presented with one of four IS, with the conditional probability of an IS 

on a given trial estimated from the previous occurrences of IS on the preceding trials. 

Specifically, the conditional probability (E) of an IS at trial t, p(Et), was estimated from the 

number of occurrences of IS i up to trial t (𝑛𝑖
𝑡, where i indexes the IS type and t the trial 

number) (Equation 1). Thus, the estimate of i at a given trial t was defined by: 

 

𝑝𝑡(𝐸𝑡 = 𝑖) =
𝑛𝑖

𝑡+1

∑ (𝑛𝑖
𝑡

𝑖 +1) 
, (𝑝0𝐸0 = 𝑖) =  

1

4  
                (Equation 1) 

 

 

Due to the probabilistic structure of the first-order Markov sequence, the IS occurring on the 

previous trial (t-1) could be used to form the prediction for the IS on trial t, allowing an 

approximation of the joint probability distribution for each IS pair to be estimated from the 

count of previous occurrences of the IS pair up to trial t (𝑛𝑖𝑗,
𝑡  i = current IS type and j = 

previous IS type, Equation 2).  
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𝑝𝑡(𝐸𝑡 = 𝑖, 𝐸𝑡−1 = 𝑗) =  
𝑛𝑖𝑗

𝑡 +1

∑ (𝑛𝑖𝑗
𝑡 +1)𝑖,𝑗

                                           (Equation 2) 

 

 

The surprise (S) of observing IS type i on trial t after experiencing IS type j on trial t-1 was 

therefore calculated as the negative log of the IS pair’s predicted joint probability (Equation 

3).  

 

𝑆(𝐸𝑡 = 𝑖, 𝐸𝑡−1 = 𝑗) =  −log 2(𝑝(𝐸𝑡 = 𝑖, 𝐸𝑡−1 = 𝑗))                   (Equation 3) 

 

Surprise was therefore stimulus-specific, representing the unexpectedness of the current IS, 

given the IS at trial t-1 and was high when an IS pairing was infrequent and low when the 

paring was frequent or occurred at a high probability (Fig. S1). Surprise was low overall 

during the predictable sequences, with occasional violations when unlikely surprising IS pairs 

occurred. In the unpredictable blocks, all events were equally as surprising as stimulus-pair 

probabilities were all fixed at 0.25. 

 

Inverse Efficiency scores 

Due to the extensive practice period, error rate was low across all conditions. Further to this, 

reaction time and accuracy were not independent in this task, as participants were required to 

respond within a narrow time frame. As this could lead to a speed-accuracy trade-off, 

whereby variable measures could lead to contradictory conclusions about the effect of group, 

we included a measure which combined speed (inverse RT) and accuracy. The inverse 

efficiency score (IES) [283] was utilized. This measure divided RT by 1 minus the proportion 

of errors (PE) or the proportion of correct responses (Equation 4). IES scores were calculated 

for each condition and for surprising and unsurprising trials separately.  
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                                       (Equation 4) 

 

Bayesian statistical testing 

Bayesian statistical testing was implemented as a supplement to null hypothesis significance 

tests, to compare the likelihood of the data under the null and alternative hypothesis and 

provide an estimate for the amount of evidence represented in the data, in order to investigate 

if null results represent a true lack of a difference between the groups [384]. Bayesian statistical 

testing was implemented in JASP, based on the R package “BayesFactor” [401]. 

A Bayesian t-test framework [426] was used to determine if there was a difference in surprise-

related slowing between the groups, for both the easy and difficult conditions. A Bayes 

factor, comparing the fit of data under the null hypothesis and the alternative hypothesis was 

estimated [427],[428] for each condition, whereby the null hypothesis (H0) postulates that there 

are no differences between groups for surprise-related slowing scores. A two-sided 

alternative hypothesis was used, allowing the effect size (δ) to take both positive and negative 

values, with a default Cauchy prior distribution for a two-sample t-test, specifically, a zero-

centred Cauchy distribution with a scale of 0.707 [427].  

Bayesian repeated measures ANOVAs were utilized to investigate the effects of surprise, 

condition and group on RT and IES scores. The JASP framework for repeated measures 

ANOVA was used [402], whereby candidate models M and their condition-effect parameters β 

were compared, resulting in Bayes factors for each candidate model, quantifying the relative 

predictive performance of different models, as well as inclusion Bayes factors for predictors 

of interest. The inclusion Bayes factor (BFincl) for a given predictor quantifies the change in 

odds from the prior probability that the predictor is included in the model to the probability of 

inclusion in the model after seeing the data, and were computed by comparing all models 

with a predictor against all models without that predictor, i.e., comparing models that contain 

the effect of interest to equivalent models stripped of the effect. For example, an inclusion 

Bayes factor for an effect of 3 for a given predictor i can be interpreted as stating that models 

which include the predictor i are 3 times more likely to describe the observed data than 

models without the predictor. In short, the inclusion Bayes factor is interpreted as the 

evidence given the observed data for including a certain predictor in the model. The inverse 

𝐼𝐸𝑆 =
𝑅𝑇

(1 − 𝑃𝐸)
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of this, the Bayes exclusion factor (BFexcl) therefore represents the evidence for excluding a 

certain predictor. For example, a BFexcl value of 3 for a given predictor j means that models 

that exclude the predictor j are 3 times more likely given the data than models which include 

it. For all Bayesian analyses, the Bayes factor quantifies the relative evidence for one theory 

or model over another. We followed the classification scheme used in JASP [385] to classify 

the strength of evidence given by the Bayes factors, with BF01 between one and three 

considered as weak evidence, between three and ten as moderate evidence and greater than 

ten as strong evidence for the null hypothesis respectively. An annotated .jasp file containing 

all analysis is available at https://osf.io/cax4g/.  

 

Results 

AQ and TAS scores as a predictor of surprise-related slowing  

As AQ and TAS scores differed significantly between the groups, we conducted separate 

linear regression analyses to investigate the potential effect of AQ and TAS score severity on 

surprise-related slowing. Results demonstrated that neither AQ (β = 0.031, R2 = 0.001, t(62) = 

0.241, p = 0.810) nor TAS scores (β = 0.019, R2 = 0.000, t(62) = 0.147, p = 0.884) predicted 

the extent of surprise-related slowing. Repeated the above analyses with sequence learning as 

the dependent variable yielded similar results: neither AQ (β = 0.139, R2 = 0.019, t(62) = 

1.096, p = 0.277) nor TAS scores (β = 0.115, R2 = 0.115, t(62) = 0.900, p = 0.371) predicted 

the extent of sequence learning.  

 

Comorbidity and Medication 

We re-ran all analyses with the exclusion of participants with current psychiatric medication 

use (n = 16). There were no significant differences between for any of the main measures of 

interest between the full sample and the sample excluding medication use, including 

sequence learning (all main/interaction effect(s) of group: all p values > 0.05, all η² <0.01) 

and surprise-related slowing (all main/interaction effect(s) of group: all p values > 0.05, all η² 

<0.01). Repeating the analyses with the exclusion of participants with comorbid psychiatric 

conditions (n = 7) yielded similar results (all main/interaction effect(s) of group: all p values 

> 0.05, all η² <0.01).  
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Motor execution 

Performance in the unpredictable blocks enable us to obtain a measure of participants’ motor 

ability, as, since there are no sequences to learn in the unpredictable blocks, any differences 

in speed/error are likely to reflect motor execution ability. No significant differences were 

found between CTRL and ASD in RT (unpaired t-test: t(61) = 0.951, p = 0.345, d = 0.241, 

BF01 = 2.642) or IES (unpaired t-test: t(61) = 0.513, p = 0.610, d = 0.130, BF01 = 3.462) when 

we examined unpredictable trials (averaged across 3 blocks). Bayesian independent samples 

t-tests supported these results, with BF01 = 2.642 providing anecdotal evidence for no 

difference in RT between groups, and BF01 = 3.462 providing moderate evidence for no 

difference in IES scores between groups. We then investigated whether motor execution 

(RT/IES in unpredictable blocks) was correlated with other measures. No correlation was 

found between RT in the unpredictable blocks and sequence-learning in either the easy (r = 

0.211, p = 0.098) or difficult (r = -0.012, p = 0.924) predictable blocks. In addition, there was 

no correlation between RT in the unpredictable blocks and the extent of surprise-related 

slowing in either the easy (r = 0.164, p = 0.200) or difficult (r = -0.032, p = 0.805) predictable 

blocks, suggesting that our measures (surprise-related slowing and sequence learning) are 

independent of motor execution.  
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Fig. S1 

 

 

Fig. S1. Sequential analysis. Sequential analysis represents a visualisation of evidence as data are 

collected. The black line represents accumulation of evidence for the null hypothesis (BF01) that groups 

do not differ in the extent of surprise-related slowing during the easy-predictable condition.  
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Fig. S2 

 

 

 

Fig. S2. IES scores. IES scores were lower for unsurprising trials for the easy but not the difficult 

predictable conditions. No differences were observed between groups. Data points indicate individual 

participants. The mean is the thick black horizontal line, and 1 standard error of the mean (SE) is 

represented by the shaded box around the mean. Standard deviation (SD) is the shaded region. 

  

(a) 

(b) 
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Table S1. Clinical information for the autistic individuals  

 

 Total sample (%) 

N=28 

Major depression 2 (7%) 

Generalized anxiety disorder 3 (11%) 

Bipolar disorder 1 (4%) 

ADHD 3 (11%) 

Epilepsy 1 (3%) 

No current disorder* 22 (78%) 
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Appendix 2 

Supplementary methods and supplementary results for Chapter 3  

 

2.1 Social Learning Task  

The behavioural task (social learning task (SLT)) lasted approximately 35 minutes. 

Participants were seated approximately 30cm from a computer screen. Stimuli were displayed 

using PsychToolBox and the task was programmed using MATLAB R2017b (The 

MathWorks, Natick, MA). Before the main task, participants completed a step-by-step on-

screen practice task (10 trials) in which they learnt to choose between the two options to 

obtain a reward and learned that the “advice” represented by the frame(s) could help in 

making the correct choice in some phases. To ensure that participants were making a 

conceptual distinction between the social and individual learning sources, participants were 

required to complete a short pre-task quiz (Appendix 2.1.1), testing their knowledge, after the 

practice task. Participants were required to repeat the practice round until they achieved 

100% correct score in the quiz, meaning that all participants understood the structure of the 

task and that the red shape represented social information. Participants were informed as to 

whether they had earned a £5 bonus after the session. However, due to ethical considerations, 

all participants received the bonus. 

On each trial participants were required to make a choice between a blue and green box in 

order to win points. Participants could also use an additional, secondary, source of 

information - a red frame surrounding either the blue or green box – to help make their 

decision. Participants were informed that the frame represented the most popular choice made 

by a group of participants who had previously completed the task. They were also informed 

that the task followed ‘phases’ wherein sometimes the blue, but at other times the green 

choice, was more likely to result in reward and sometimes the social information 

predominantly indicated the correct box, but at other times it predominantly surrounded the 

incorrect box (Suppl. Fig. 2.1A). After making their choice participants received outcome 

information in the form of a blue or green indicator. The indicator primarily informed 

participants about whether the blue or green box had been rewarded on the current trial. 

Whether the social information surrounded the correct or incorrect box could, secondarily, be 

inferred from the indicator. For example, if the red frame indicated that the social group had 
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chosen the blue shape, and the blue shape was shown to be correct, participants could infer 

that the social information had therefore been correct on that trial. Both the probability of 

reward associated with the blue/green stimuli and the utility of the social information, varied 

according to separate probabilistic schedules, with participants randomly assigned to one of 

four groups (Appendix 2.1.1). All schedules included stable phases, where the probability of 

reward was constant for 50-60 trials, and volatile phases, wherein probabilities reversed every 

10–30 trials, with outcomes determined according to these schedules, for both the probability 

of blue being correct and the probability of the red shape indicating the correct answer. After 

making their selection, participants saw a small blue or green box which informed them 

whether a blue or green choice had been rewarded on the current trial. From this information 

the participant inferred whether the social information (red frame) was correct or incorrect.  

 

Supplementary Figure 2.1. Social learning task. A. Participants selected between a blue and a green 

box to gain points. On each trial, the blue and green boxes were presented first. After 1-4 seconds (s), 

one of the boxes was highlighted with a red frame, representing the social information. After 0.5–2s, a 

question mark appeared, indicating that participants were able to make their response. Response was 

indicated by a silver frame surrounding their choice. After a 1-3s interval, participants received 

feedback in the form of a green or blue box in the middle of the screen. B. Example of pseudo-

randomised probabilistic schedule. The probability of reward varied according to probabilistic 

schedules, including stable and volatile blocks for both the probability of the blue box/frame being 

correct (top) and the probability of the red (social) box/frame being correct (bottom).  
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2.1.1 Randomisation groups  

Reward outcomes (blue/green correct) and the veracity of social information 

(correct/incorrect), were governed by four different pseudo-randomisation schedules (adapted 

from Behrens et al [95], with participants randomly assigned to one of the four groups. Both 

individual reward information and social information varied separately between stable 

phases, where the probability of reward was constant, and volatile phases, in which the 

probability switched every 10-20 trials. Participants were informed that correct choices would 

be rewarded, and thus to aim to accumulate points to obtain a reward. For example, the 

randomisation schedule for group 1 was the same as that employed by Behrens et al [95]. 

During the first 60 trials, the individual reward history was stable, with a 75% probability of 

blue being correct. During the next 60 trials, the reward history was volatile, switching 

between 80% green correct and 80% blue correct every 20 trials. Meanwhile, during the first 

30 trials, social information was stable, with 75% of choices being correct. During the next 

40 trials, the social information was volatile, switching between 80% incorrect and 80% 

correct every 10 trials. During the final 50 trials, social information was once again stable, 

with 85% of choices being incorrect. Randomisation schedules for groups 2, 3, and 4 were 

inverted and counterbalanced versions of schedule 1 (Suppl. Fig. 2.2).  
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Supplementary Figure 2.2. Randomisation schedules. The probability of reward varied according to 

probabilistic schedules, including stable and volatile blocks for both the probability of blue being 

correct and the probability of the social information indicating the correct answer. Probability schedules 

were counterbalanced between participants. Solid blue lines show the probability of blue being the 

correct choice, dashed red lines show the probability of the social information being correct. Schedules 

1-4 are displayed here.  

 

  

Prob. blue is correct 

Prob. red shape is correct 

Prob. blue is correct 

Prob. red shape is correct 

Prob. blue is correct 

Prob. red shape is correct 

Prob. blue is correct 

Prob. red shape is correct 
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2.1.2 Pre-task quiz 

(Correct answers are indicated with a star) 

 

Q1) What does it mean if the blue square is on the left side of the screen? 

A) The blue box is the correct answer 

B) The blue box is more likely to be correct 

C) Nothing, the blue and green boxes change at random * 

D) The game is entering a new phase 

 

Q2) What does the red frame signify? 

A) The most likely answer  

B) The output from a (possibly biased) roulette wheel  

C) Nothing, the information is deliberately misleading  

D) What previous players believed the correct answer was at some point in the game * 

 

Q3) A small square appears between the two larger squares when an answer is given. 

What does it represent? 

A) The type of phase the game is in 

B) The correct answer * 

C) The answer you gave  

D) Your previous response that you gave  
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2.2 Data analysis  

All statistical analyses were conducted using MATLAB R2017b (The MathWorks, Natick, 

MA) and JASP (JASP Team (2020). JASP (Version 0.14) [Computer software]). We used the 

standard p < .05 criteria for determining if significant effects were observed, with a Holm 

correction [429] applied for multiple comparisons, to control for type I family-wise errors. 

Holm correction was used as it progressively adapts the threshold values for significance, 

resulting in an increase in power, relative to other correction methods [430]. Where 

appropriate, data were transformed to meet assumptions of normality for parametric testing. 

 

2.2.1 Bayesian statistical testing 

For all analyses, Bayesian statistical testing was implemented as a supplement to null 

hypothesis significance testing, allowing for comparison of the likelihood of observed data 

under the null and alternative hypothesis. All Bayesian tests were carried out using JASP 

software (JASP Team (2020)). 

Bayesian t-tests [426] were used to determine if null results represented a true lack of a 

difference between genotype groups. A Bayes factor, comparing the fit of data under the null 

and the alternative hypothesis was estimated for each comparison [427],[428], whereby the null 

hypothesis (H0) postulates that there are no differences between groups. A two-sided 

alternative hypothesis was used, allowing the effect size (δ) to take both positive and negative 

values. We used a default Cauchy prior distribution for a two-sample t-test, specifically, a 

zero-centred Cauchy distribution with a scale of 0.707 [427]. In addition, Bayes inclusion 

factors (BFincl) were included when conducting repeated measures ANOVAs (RM-ANOVA). 

The JASP framework was used [402], whereby candidate models M and their related 

condition-effect parameters β were compared, resulting in Bayes factors for each candidate 

model, quantifying the relative predictive performance of different models, as well as 

inclusion Bayes factors for predictors of interest.  

The inclusion Bayes factor (BFincl) for a given predictor represents the evidence, given the 

observed data, for including a certain predictor in the model. BFincl quantifies the change in 

odds from the prior probability that the predictor is included in the model to the posterior 

probability of inclusion after seeing the data and is computed by comparing all models with a 
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given predictor against all models without that predictor, i.e., comparing models that contain 

the effect of interest to equivalent models stripped of the effect. For example, an inclusion 

Bayes factor for an effect of 3 for a given predictor i or interaction can be interpreted as 

stating that models which include the predictor i are 3 times more likely to describe the 

observed data than models without the predictor or interaction. Similarly, the inverse, a Bayes 

exclusion factor (BF excl) for a given predictor or interaction, represents the relative likelihood 

that a model without the predictor i can best explain the observed data [384]. For all Bayesian 

analyses, we followed a widely used classification scheme [385], in which BF10/BFincl values 

between one and three are considered weak evidence, between three and ten as moderate 

evidence and greater than ten as strong evidence for the alternative hypothesis H1. In 

addition, BF01 values between 1 and 0.33 are considered weak evidence, between 0.33 and 

0.1 as moderate evidence, and smaller than 0.1 as strong evidence for the null hypothesis 

respectively.  

 

2.2.2 Optimal learner model 

The influence of each information source (primary and secondary) on choices was quantified 

by regressing two “optimal learners” against subjects’ choices. The first comprised an 

optimal “individual learner model”, which was generated by using a Bayesian learner 

algorithm [88] to simulate an optimal learner who learns solely from individual information 

(the blue and green stimuli). The second comprised a “social learner model” which simulated 

an optimal learner who learns solely from the social information (red stimuli). The Bayesian 

learner algorithm [88] describes an optimal approach to tracking reward probabilities in a 

changing environment. It assumes an underlying probability of an outcome being correct and 

tracks this probability across time, as well as maintaining an estimate of the rate of change of 

probabilities, i.e., volatility. All probabilities are updated in a Markovian fashion, meaning 

there is no requirement to store the full history of decision outcomes or statistics of the 

environment [88]. Thus, on each trial, the individual learner model represented the reward 

probability associated with a blue choice, derived through learning, in an optimal fashion, 

exclusively from information about reward outcomes and ignoring the social information. 

The social learner model represented the probability, based on the (reward-weighted) social 

information, that the social information was correct. From the social learner model, on each 

trial, the reward probability of a blue choice was calculated, that would have been derived if a 
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participant had been learning optimally, exclusively from the social information (i.e., 

ignoring individual reward outcomes). Subsequently both models were regressed separately 

against each individual participant’s choice data using binomial logistic regression, with 

model predictions from the primary and secondary models as continuous predictor variables 

and participant response as the dependent variable (0/1). For each participant, this produced 

two parameter estimates, or standardised beta weights, each representing the degree to which 

individual experience and social information explained choices. For example, a participant 

whose choices were more strongly influenced by the social information than the individual 

information, would have a high social βoptimal value, and a low individual βoptimal value. 

 

2.3 Computational modelling framework  

Participant response was modelled using a Rescorla-Wagner (RW) learning model [24], 

consisting of a perceptual model and an action selector. The model relies on the assumption 

that updates to choice behaviour are based on prediction errors, i.e., the difference between an 

expected and the actual outcome. Participants were assumed to update their beliefs about 

reward outcomes, or the state of the environment based on sensory feedback in the form of 

reward, and to use this feedback to make decisions about the next action (response model).  

 

2.3.1 Perceptual model  

The RW predictors used in our learning models consisted of a modified version of a simple 

learning model, with a free parameter, learning rate (𝛼), which varied between 0 and 1.  

𝑉(𝑖+1)  
=  𝑉𝑖 + 𝛼(𝑟𝑖 − 𝑉𝑖) 

The predicted value on each trial (𝑉𝑖) is updated on each trial based on the prediction error 

(PE), or the difference between the expected and the actual reward (𝑟𝑖 − 𝑉𝑖), weighted by the 

learning rate 𝛼. 𝛼 thus captures the extent to which the PE updates the estimated value on the 

next trial. In line with previous work [93],[309], we used an extended version of this learning 

model, with separate 𝛼 values for volatile and stable environmental phases. In a stable 

environment, learning rate will optimally be low, and reward outcomes over many trials will 

be taken into account. In a volatile environment, however, an increased learning rate is 
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optimal, as more recent trials are used to update choice behaviour [88]. Rescorla-Wagner 

predictors were simultaneously estimated for parameters relating to learning from both 

individual and social reward information. Consequently, the model generated the predicted 

value of going with the individual source (going with the blue frame; V_individual(i+1)) and the 

predicted value of the social information (going with the group recommendation; 

V_social(i+1)) and provided four 𝛼 estimates: 𝛼individual_stable, 𝛼individual_volatile, 𝛼social_stable, 

𝛼social_volatile.  

 

2.3.2 Response model 

An action selector was utilised whereby information from learning from both information 

sources (individual and social reward) was integrated. The action selector predicts the 

probability that the blue choice will be rewarded on a given trial, and was based on the 

softmax function (TAPAS toolbox - available 

at http://www.translationalneuromodeling.org/tapas) and adapted by Diaconescu and 

colleagues [222],[230]. This response model is identical to that used by Cook and colleagues [93] 

and reproduced here with permission. The value of individual and social information was 

combined using the following:  

 

𝑣𝐵(𝑖+1) =  𝜁 (𝑉𝑠𝑜𝑐𝑖𝑎𝑙𝑎𝑑𝑣𝑖𝑐𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑖+1)
) + (1 − 𝜁)(𝑉𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝑖+1)) 

 

whereby the belief that blue would be rewarded (vB) comprises the integrated value of 

individual information (𝑉𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) and social information. 𝑉𝑠𝑜𝑐𝑖𝑎𝑙𝑎𝑑𝑣𝑖𝑐𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑
comprises the 

“social” advice weighted by the probability of social advice accuracy. ζ is a free parameter 

which describes the weighting of social relative to individual information in belief 

integration.  

The probability that this belief would determine participant choice was described by a unit 

square sigmoid function, describing how learned belief values are translated into choices.  

http://www.translationalneuromodeling.org/tapas
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𝑃(𝑦(𝑖1) = 1 ||𝑣𝐵(𝑖+1)) =  
𝑣𝐵(𝑖+1)

𝛽

𝑣𝐵(𝑖+1)
𝛽+ (1−𝑣𝐵(𝑖+1))

𝛽
 

The participant-specific free parameter β, the inverse of the decision temperature, describes 

the extent to which estimated value of choices determines actual participant choice: as β 

decreases, decision noise increases and decisions become more stochastic; as β increases, 

decisions become more deterministic towards the higher value option.  

2.3.3 Model fitting  

Optimisation of free parameter values was performed as per Cook and colleagues [93], using a 

quasi-Newton optimisation algorithm specified in the TAPAS toolbox 

(quasinewton_optim_config.m). The function maximised the log-joint posterior density over 

all parameters given the data and the generative model. α values were estimated in logit space 

(see tapas_logit.m), i.e., a logistic sigmoid transformation of native space (tapas_logit(x) = 

ln(x/(1-x)); x = 1/(1+exp(-tapas_logit(x)))). An uninformative prior, allowing for individual 

differences in learning rate was used for α: tapas_logit (0.2, 1), with a variance of 1. Initial 

values were fixed at logit (0.5, 1). The prior for β was set to log (48), with a variance of 1, 

and the prior for ζ was set at 0 with a variance of 102 (logit space), i.e., an equal weighting 

for information derived from individual-value and social-value learning (0.5). All prior 

choices were based on previous work. Maximum-a-posteriori (MAP) estimates for all model 

parameters were calculated using the HGF toolbox version 3 (OSF link). All code used is 

adapted from the open-source software package TAPAS (available at 

http://www.translationalneuromodeling.org/tapas).  

 

2.3.4 Optimal model parameters  

For all analyses, estimated 𝛼 values were compared to optimal 𝛼 estimates. An optimal 

learner model, with the same architecture and priors as the model employed in the current 

task, was fit to 100 synthetic datasets, resulting in average optimal learning rates: 

𝛼optimal_primary_stable = 0.16, 𝛼optimal_primary_volatile = 0.21, 𝛼optimal_secondary_stable = 0.17, 

𝛼optimal_secondary_volatile = 0.19. Scores representing the difference between (untransformed) 𝛼 

estimates and optimal 𝛼 scores were calculated (𝛼𝑑𝑖𝑓𝑓= 𝛼 −  𝛼optimal). 

 

http://www.translationalneuromodeling.org/tapas
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2.4 Computational modelling validation 

2.4.1 Model comparison  

Although there was a priori evidence to model choice behaviour with the chosen model, 

which featured four 𝛼 estimates: 𝛼individual_volatile, 𝛼individual_stable, 𝛼social_volatile, 𝛼social_stable, we 

explored whether participants in ASD and CTRL groups might be solving the task in 

structurally different ways. To this end, we adapted our learning model, resulting in eight 

possible computational models representing different strategies that participants might use to 

solve the task (note that we do not imply that participants are explicitly aware of their 

strategy). All models were variations of the classic Rescorla-Wagner model. Based on WSLS 

results, we included a family of models which included separate learning rates from learning 

from wins and losses (Models 5-8). 

A formal model comparison was carried out using Group level Bayesian model selection 

(BMS), to evaluate which model provided the (relative) best fit to the observed data. The 

VBA toolbox , specifically random-effects BMS (using the VBA_groupBMC_btwConds.m 

function), was utilised [431]. Random effects group BMS computes an approximation of the 

model evidence relative to the other models, i.e., the probability of the data y given a model 

m, p(y|m), with log model evidence here approximated with Akaike Information Criterion 

(AIC) values. The posterior probability that a model has generated the observed data, relative 

to other models is estimated, as well as the exceedance probability, representing the 

likelihood that a given model is more likely than other included models in the set. Analysis 

across both groups allows us to test the hypothesis that the same model produced observed 

data for the ASD and CTRL groups. Specifically, we investigated whether the same model 

could explain data from both groups, or whether there was sufficient evidence to conclude 

that the data from the ASD and CTRL groups are best fit by differing models. For example, it 

could be that a model that includes the factor volatility provides the best fit to the data 

produced by the CTRL group, whereas for the ASD group the best fit is provided by a model 

that does not include volatility as a factor.  
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Model 1 was a classic Rescorla-Wagner model:  

 

𝑉(𝑖+1) = 𝑉𝑖 + 𝛼𝜀𝑖 

 

with 𝜀𝑖 = 𝑟𝑖 − 𝑉𝑖, the difference between the actual and the expected reward or prediction 

error (PE). 

 

Model 2 was an extension of Model 1, with separate learning rates (𝛼) for learning from 

primary value and secondary value learning sources:  

 

𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) = 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝜀𝑖  

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1) = 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖) + 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝜀𝑖  

 

Model 3 had a single learning rate 𝛼 for primary/secondary learning, but separate learning 

rates for volatile and stable blocks:  

 

𝑉(𝑖+1) = 𝑉𝑖 + 𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝜀𝑖 + 𝛼𝑠𝑡𝑎𝑏𝑙𝑒𝜀𝑖  

 

Model 4 had four separate learning rates 𝛼 for volatile and stable and primary and secondary 

learning:  

𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) = 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒
𝜀𝑖 + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑠𝑡𝑎𝑏𝑙𝑒

𝜀𝑖  
 

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1) = 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖) + 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒
𝜀𝑖 +  𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑠𝑡𝑎𝑏𝑙𝑒

𝜀𝑖  
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As an exploratory measure, we further extended Models 1-4 to include separate learning rates 

corresponding to learning from rewarded trials and unrewarded trials separately, i.e., learning 

from wins and losses.  

 

Model 5:  

𝑉(𝑖+1) = 𝑉𝑖 +  𝛼𝑟𝑒𝑤𝑎𝑟𝑑  𝜀𝑖 + 𝛼𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑  𝜀𝑖  

 

 

Model 6:  

𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) = 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑟𝑒𝑤𝑎𝑟𝑑
 𝜀𝑖 + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑

 𝜀𝑖  
 

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1) = 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖) + 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑟𝑒𝑤𝑎𝑟𝑑
 𝜀𝑖 +  𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑

 𝜀𝑖  
 

 

Model 7:  

 

𝑉(𝑖+1) = 𝑉𝑖 + 𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑟𝑒𝑤𝑎𝑟𝑑
𝜀𝑖 +  𝛼𝑠𝑡𝑎𝑏𝑙𝑒𝑟𝑒𝑤𝑎𝑟𝑑

𝜀𝑖 +  + 𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑
𝜀𝑖  

+  𝛼𝑠𝑡𝑎𝑏𝑙𝑒𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑
𝜀𝑖 

  

Model 8:  

 

𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) = 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑟𝑒𝑤𝑎𝑟𝑑
𝜀𝑖 + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑠𝑡𝑎𝑏𝑙𝑒𝑟𝑒𝑤𝑎𝑟𝑑

𝜀𝑖

+ + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑
𝜀𝑖  +  𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑠𝑡𝑎𝑏𝑙𝑒𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑

𝜀𝑖
 
 

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1)

= 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖)𝑉(𝑖+1) + 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑟𝑒𝑤𝑎𝑟𝑑
𝜀𝑖 + 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑠𝑡𝑎𝑏𝑙𝑒𝑟𝑒𝑤𝑎𝑟𝑑

𝜀𝑖

+ 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑
𝜀𝑖  +  𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑠𝑡𝑎𝑏𝑙𝑒𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑

𝜀𝑖 
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BMS, using AIC scores, revealed a high probability that the data from the ASD and CTRL 

groups were fit by the same model with the posterior probability that the two groups had the 

same model frequencies = 0.854 (Suppl. Fig. 2.3). Thus, we failed to reject the null 

hypothesis of no difference between groups. The previously chosen model (Model 4) was the 

winning model; an adapted Rescorla-Wagner model with separate α values for stable and 

volatile environments and separate α values for individual and social learning. 

 

Supplementary Figure 2.3. Between-groups model selection (BMS) A. Estimated posterior model 

frequencies (p(y|m)). B. Exceedance probabilities for each model (EP). Models (1-8) were compared 

based on AIC scores for each participant (n = 64) across both ASD and CTRL groups. 

 

2.4.2 Model Validation  

To demonstrate that the chosen model (model 4) accurately described participant behaviour, 

we subsequently simulated response data for each participant, using estimated model 

parameter values (tapas_simModel.m). Simulated accuracy and calculated accuracy were 

significantly correlated for each participant (r = 0.623, p <.001) (Suppl. Fig. 2.4). 
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Supplementary Figure 2.4. Model simulations (left) and participant response data (right). Mean 

accuracy is displayed separately for volatile and stable environmental phases. Boxes = standard error 

of the mean, shaded region = standard deviation, individual datapoints (n = 65) are displayed.  

 

In additon, actual and simulated choice were compared, to ensure that the chosen model was 

indeed capturing participants’ choice behaviour. On each trial (1-120), we compared mean 

and simulated choice (averaged across subjects), using a paired t-test (Suppl. Fig. 2.5A). We 

then employed bootstrapped paired t-tests (n = 100) with resampled distributions, to isolate 

significant differences. We defined significant differences as those occurred in less than 5% 

of t-tests (Suppl. Fig. 2.5B). 

 



 

 27 

 

 

Supplementary Figure 2.5. A. Participant choice data and model simulations. Line indicates mean 

choice across all participants. Shaded region = standard error of the mean. B. T-statistics for comparison 

between actual and simulated choice. Choices significantly differed on 26 trials.  

 

Parameter recovery  

To ensure that parameter estimates could be recovered, model parameters were estimated 

from simulated data for each participant. All recovered parameters correlated significantly 

with estimated parameters (all p < 0.001).  

 

A 

B 
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2.4.3 Estimated parameters from other models 

Interestingly, although BMS provided evidence for model 4 overall, and there was a priori 

evidence to model choice behaviour with this model, which featured four 𝛼 estimates: 

𝛼individual_volatile, 𝛼individual_stable, 𝛼social_volatile, 𝛼social_stable, more heterogeneity was observed within 

the ASD group. Within this group, the posterior probability of the same model explaining the 

data was equal to 0.607, compared to 1.000 for the CTRL group (Suppl. Fig. 2.6). Within the 

ASD group, model 1, comprising of only 2 free parameters, 𝛼 and 𝛽, was the winning model, 

followed by model 6, with separate α values for individual/social and separate α values for 

wins/losses, as well as 𝛽 and 𝜁. Thus, suggesting that the previously described model (Model 

4) does not explain all observed variance within this group and that participants in the ASD 

and CTRL groups might be solving the task in structurally different ways. We further 

explored our data by considering parameter estimates from alternative computational models. 

Specifically, we investigated whether estimated parameters from models 1 and 6 differed 

between the ASD and CTRL groups.  

 

Supplementary Figure 2.6. A. Estimated posterior model frequencies (p(y|m)). B. Exceedance 

probabilities for each model (EP). Models (1-8) were compared based on AIC scores for each 

participant separately for ASD (n = 29) and CTRL groups (n = 35). Red bars indicate ASD, and blue 

bars indicate CTRL groups respectively. 
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Model 1 

Independent t-tests showed that neither α (t(63) = 1.125, p = 0.265, d = 0.281) nor 𝛽 values 

(t(63) = 0.659, p = 0.512, d = 0.164) differed between ASD and CTRL groups. 

 

Model 6 

A RM ANOVA was carried out on α values, with information source (social, individual) and 

reward (wins, losses) as WS factors and group (ASD, CTRL) as BS factor. A main effect of 

information and an information by reward interaction effect were observed. However, no 

main/interaction effect(s) involving group were observed. Independent t-tests between groups 

showed that neither 𝜁 (t(63) = 0.874, p = 0.385, d = 0.218) nor 𝛽 values (t(63) = 0.603, p = 

0.549, d = 0.150) differed between ASD and CTRL groups. 

 

2.5 Extended statistical analysis 

 

Supplementary Table S2.1. Untransformed learning rates 

 αindividual_volatile αindividual_stable αsocial_volatile  αsocial_stable 

  Ctrl ASD Ctrl ASD Ctrl ASD Ctrl ASD 

n  35  29  35  29  35  29  35  29  

Mean  0.334  0.387  0.321  0.411  0.147  0.134  0.139  0.161  

Std. Error of Mean  0.033  0.038  0.036  0.039  0.025  0.018  0.018  0.021  

Minimum  0.075  0.035  0.029  0.067  0.009  0.020  0.010  0.004  

Maximum  0.728  0.727  0.739  0.724  0.528  0.409  0.588  0.444  

 

Note: Ctrl refers to non-autistic group, ASD refers to autistic group.  
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2.5.1. Accuracy and reaction time 

Accuracy was compared between groups, randomisation schedules, and volatile and stable 

phases. A repeated measures analysis of variance (RM-ANOVA), with within-subjects factor 

volatility (stable, volatile), and between-subjects factors group (ASD, CTRL) and 

randomisation schedule (1-4) demonstrated no difference in accuracy between ASD (mean 

(standard error) �̅� (𝜎�̅�) accuracy = 0.607 (0.009)), and CTRL groups (�̅� (𝜎�̅�) = 0.617 (0.009); 

F (1,56) = 0.676 p = 0.414, ηp
2 = 0.012). Furthermore, no difference in accuracy was 

observed between volatile (�̅� (𝜎�̅�) = 0.602 (0.009)) and stable phases (�̅� (𝜎�̅�) = 0.623 (0.011); 

F (1,56) = 1.835, p = 0.181, ηp
2 = 0.032). However, a schedule by volatility interaction was 

observed (F (3,56) = 11.297, p < 0.001, ηp
2 = 0.377) (Suppl. Fig. 2.7). For participants in 

schedules 1 and 2, no difference in accuracy was observed between stable and volatile phases 

(pholm > 0.05). However, for schedules 3 and 4, accuracy significantly differed as a function 

of volatility; for schedule 3, higher accuracy was observed in volatile (�̅� (𝜎�̅�) = 0.663 (0.016) 

compared to stable phases (�̅� (𝜎�̅�) = 0.568 (0.020), t(64) = 3.455, pholm = 0.024). For schedule 

4, however, higher accuracy was observed in stable (�̅� (𝜎�̅�) = 0.667 (0.025) compared to 

volatile phases (�̅� (𝜎�̅�) = 0.550 (0.011), t(64) = 4.553 , pholm = 0.001). However, as 

participants were counterbalanced to different randomisation schedules, with the proportion 

of participants assigned to each schedule not differing between groups (X2 (1, N = 64) = 

1.658, p = 0.646), this pattern of results does not affect between-group comparisons. Finally, 

mean reaction time (RT) did not significantly vary between ASD (�̅� (𝜎�̅�) = 1.455 (0.130) and 

CTRL groups (�̅� (𝜎�̅�) = 1.240 (0.130); F (1,62) = 1.605, p = 0.210, ηp
2 = 0.025).  
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Supplementary Figure 2.7. Mean accuracy across randomisation groups. A significant 

randomisation by schedule interaction was observed. Data points indicate mean accuracy for individual 

participants (n = 64), bold point indicates the mean, bold line indicates standard error of the mean (1 

SEM), * indicates statistical significance (pholm < 0.05). 

 

2.5.2 Optimal learner model 

We tested whether participants in both ASD and CTRL groups learned in a more optimal 

fashion from the individual versus social source of information. A Bayesian learner model 

was used to create two optimal models (1) an optimal individual learner, and (2) an optimal 

social learner (Appendix 2.2). Subsequently we regressed both models against participants’ 

choice data, resulting in two βoptimal values capturing the extent to which a participant made 

choices according to the optimal individual, and optimal social learner models respectively. 

βoptimal values were submitted to a RM-ANOVA with factors information source (individual, 

social) and group (ASD, CTRL). A main effect of information source was observed (F 

(1,62)= 4.429, p = 0.039, ηp
2 = 0.067), with βoptimal values significantly higher for individual 

(�̅�(𝜎�̅�) = 0.795 (0.076)), compared with social information (�̅�(𝜎�̅�) = 0.526 (0.076) (Suppl. 

Fig. 2.8). However, no main effect of group (F (1,62) = 2.211, p = 0.151, ηp
2 = 0.033, BFexcl = 

3.053) or, crucially, no information by group interaction effect (F (1,62) = 0.615, p = 0.436, 

* 

* 
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ηp
2 = 0.010, BFexcl = 2.563) was observed. Results show that the extent to which a participant 

made choices based on individual and social information did not differ between the groups.  

 

 

Supplementary Figure 2.8. Beta weights (βoptimal) for individual and social information across ASD 

and CTRL groups. βoptimal values were significantly higher for individual, versus social information. 

No differences were observed between ASD and CTRL groups. Data points indicate βoptimal for 

individual participants (n = 64), bold point indicates the mean, bold line indicates standard error of the 

mean (1 SEM), * indicates statistical significance (p < 0.05). βoptimal for individual information was 

significantly lower than βoptimal for social information. βoptimal did not differ between groups. 

 

  

* * 



 

 33 

Appendix 3 

Supplementary material for Chapter 4 

 

3.1. Genotyping Analysis  

Genetic analyses were carried out in at the department of Human Genetics of the Radboud 

University Nijmegen Medical Centre. Participants were asked to donate saliva samples. High 

molecular weight DNA was isolated from saliva using Oragene kits according to the 

manufacturer protocol (DNA Genotek Inc., Kanata, Ontario, Canada).  

In total, 803 participants were genotyped for variants in the dopamine transporter gene 

(SLC6A3/ DAT1), the serotonin transporter gene (SLC6A4/SERT/5HTT) and the Catechol-

o-methyl-transferase gene (COMT). 5% duplicate and blank samples were included as quality 

controls to control for random genotyping error. The genotyping assay was validated before 

use.  

 

Genotyping of DAT1/ SLC6A3 

Genotyping of the 40 base pair variable number of tandem repeats (VNTR) polymorphism in 

the 3’ untranslated region (UTR) of the SLC6A3 encoding the DAT1 transporter was carried 

out below as previously described by den Ouden et al [236]. After DNA extraction, 

amplification of genomic DNA was carried out with 0.33 µM of a forward primer (NED-5’- 

TGTGGTGTAGGGACGGCCTGAGAG-3’) and reverse primer (5’- 

CTTCCTGGAGGTCACGGCTCAAGG-3’) in 1x AmpliTaq Gold® 360 Mastermix 

(Applied Biosytems, Nieuwerkerk a/d Ijssel, The Netherlands). The cycling conditions for the 

polymerase chain reaction (PCR) started with 10 min at 92°C, followed by 35 cycles of 30 

sec at 95°C, 30 sec at the optimized annealing temperature of 64°C, and 1 min 72°C, then 

followed by an extra 7 min 72°C. The amplifications were performed in a PTC200 

Multicycler (MJ- Research via Biozym, Landgraaf, The Netherlands). Subsequent to this, 

determination of allele length was performed by direct analysis on an automated capillary 

sequencer (ABI3730, Applied Biosystems) using standard conditions. 
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The 10R and 9R alleles were analysed, with 330 subjects homozygous for the 10R allele, 32 

homozygous for the 9R allele, and 208 subjects heterozygous (9/10). Participants with 

different allele variants (such as 10/11, 9/11) were excluded. Testing for Hardy–Weinberg 

equilibrium did not show deviations from the expected distribution (χ2(3) = 5.284, p = 0.152). 

 

Genotyping of SERT/5-HTT/rs25531 

Genotyping of the 5HTTLPR polymorphism was performed by simple sequence length 

analysis. PCR was performed on 50 ng of genomic DNA using 0.5 μM fluorescently labelled 

forward primer (FAM-5’-GGCGTTGCCGCTCTGAATGC-3’) and reverse primer (5’-

GAGGGACTGAGCTGGACAACCAC-3’), 0.25 mM dNTPs, 1x PCR optimization buffer A 

(30 mM Tris-HCl pH 8.5, 7.5mM (NH4)2SO4, 0.75 mM MgCl2), 10% DMSO and 0.4 U 

AmpliTaq Gold® DNA Polymerase (Applied Biosystems). The cycling conditions for the 

PCR started with 12 min at 95°C, followed by 35 cycles of 1 min at 94°C, 1 min at the 

optimized annealing temperature (57.5°C), and 2 min. 72°C, then followed by an extra 10 

min 72°C. Subsequent determination of the length of the alleles was performed by direct 

analysis on an automated capillary sequencer (ABI3730, Applied Biosystems) using standard 

conditions. The SNP present in the 5HTTLPR (rs25531) was genotyped using Taqman 

analysis (assay ID: Taqman assay: C_25746809_50; Applied Biosystems). Genotyping was 

carried out in a volume of 10 µl containing 10 ng of genomic DNA, 5 µl of ABgene 

Mastermix (2x; ABgene Ltd., Hamburg, Germany), 0.125 µl of the Taqman assay and 3.875 

µl of H2O. Amplification was performed on a 7500 Fast Real-Time PCR System starting 

with 15 minutes at 95ºC, followed by 50 cycles of 15 seconds at 95ºC, 1 minute at 60ºC. 

Genotypes were scored using the algorithm and software supplied by the manufacturer 

(Applied Biosystems). The assay has been validated by digesting the 5HTT PCR product 

with MspI (New England Biolabs, Ipswich, USA) and separating the restriction fragments on 

a 2% agarose gel. This resulted in restriction fragments of 340 bp,130 bp and 60 bp for the 

LA allele, fragments of 175 bp, 165 bp, 130 bp and 60 bp for the LG allele, and fragments of 

300 bp, 130 bp and 60 bp for the S allele. As LG is comparable to the S-allele with regard to 

gene expression, we grouped the S and LG alleles together for the behavioural analysis, 

resulting in L'L', S'L', and S'S' genotypes [432],[433]. 185 subjects were homozygous for the s 

allele, 123 homozygous for the l allele, and 262 subjects were heterozygous (S/L). These 
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genotyping results did not show deviations from Hardy–Weinberg equilibrium (χ2(3) = 

0.185, p = 0.667).  

 

Genotyping of COMT 

Genotyping of the COMT Val158Met polymorphism was carried out using Taqman analysis. 

Amplification was carried out using PCR. 166 subjects were homozygous for the val allele, 

134 homozygous for the met allele, and 270 subjects were heterozygous (val/met). Testing 

for Hardy–Weinberg equilibrium did not show deviations from the expected distribution 

(χ2(3) = 0.215, p = 0.643).  

 

3.2 Computational modelling  

3.2.1 Model comparison 

RFX-BMS model comparison, with eight models was conducted. The winning model was a 

model with a single 𝛼 value, based on F values (LME), with model 4 the next best 

performing model. Based on AIC values, however, model 4 outperformed model 1, with both 

an exceedance probability and posterior model probability of 1. As we had a strong a priori 

hypothesis concerning different learning rates for social and individual information, model 4 

was chosen as the winning model.  

3.2.2 Model Simulation 

We simulated response data for each participant, using estimated model parameter values 

(tapas_simModel.m). Simulated and calculated accuracy were significantly correlated for 

stable (r = 0.665, p < 0.001) and volatile phases (r = 0.627, p < 0.001) (Suppl. Fig. 3.1).  
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Supplementary Figure S3.1. A. Model simulations (left) and participant response data (right). Mean 

accuracy is displayed separately for volatile and stable environmental phases. Boxes = standard error 

of the mean, shaded region = standard deviation, individual datapoints are displayed. B. Participant data 

(left) juxtaposed against model simulations (right) Running average, across 5 trials of blue choices for 

probabilistic randomisation schedules 1 to 4. Shaded region = standard error of the mean. 

 

volatile volatile stable stable 

A 

B 
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We next compared actual and simulated choice, to ensure that the computational model was 

indeed capturing participants’ choice behaviour. On each trial (1-120), we compared mean 

and simulated choice (averaged across subjects), using a paired t-test (Suppl. Fig. 3.2A). We 

then employed bootstrapped paired t-tests (n = 100) with resampled distributions, to isolate 

significant differences. Analysis revealed 26 trials where significant differences were found. 

We defined significant differences as those occurred in less than 5% of t-tests (Suppl. Fig. 

3.2B).  

 

 

 

Supplementary Figure S3.2.A. Participant choice data and model simulations. Line indicates mean 

choice across all participants. Shaded region = standard error of the mean. B. T-statistics for comparison 

between actual and simulated choice.  

 

A 

B 
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Parameter recovery  

Finally, and to ensure that parameter estimates could be recovered, model parameters were 

estimated from simulated data for each participant, using the same model. All recovered 

parameters correlated significantly with estimated parameters (all p < 0.001). 

 

3.3 Extended statistical analysis  

3.3.1. Accuracy  

Mean accuracy scores were submitted to a RM-ANOVA, with volatility and schedule as 

predictor variables. A significant main effect of volatility was observed (F (1,566) = 8.063, p 

= 0.005, η2p = 0.006), with higher accuracy in stable (mean (standard error) �̅�(𝜎�̅�) = 0.629 

(0.003)) as compared to volatile phases (�̅�(𝜎�̅�) = 0.617 (0.003) (Suppl. Fig. 3.3A). A main 

effect of schedule was observed (F (3,566) = 3.024, p = 0.029, η2p = 0.016) with mean 

accuracy for schedule 2 (�̅�(𝜎�̅�) = 0.632 (0.004)) significantly higher than schedule 1 (�̅�(𝜎�̅�) = 

0.614 (0.004); t(566) = 2.975, pholm = 0.018), and non-significantly higher than for schedules 

3 (�̅�(𝜎�̅�) = 0.622 (0.004); t(566) = 1.722, pholm = 0.428) and 4 (�̅�(𝜎�̅�) = 0.625 (0.004); t(566) 

= 1.242, pholm = 0.588. Finally, a significant schedule by volatility interaction was observed 

(F (3,566) = 100.323, p < 0.001, η2p = 0.347). Accuracy did not vary significantly across 

schedule in volatile phases (pholm > 0.05). However, in stable phases, accuracy differed a 

function of schedule. Mean accuracy for schedule 1 (�̅�(𝜎�̅�) = 0.575 (0.004)) was numerically 

lower than for schedule 2 (�̅�(𝜎�̅�) = 0.622 (0.004); t(566) = - 2.826, pholm = 0.090 and 

significantly lower than for schedule 4 (�̅�(𝜎�̅�) = 0.662 (0.004); t(566) =-4.218, pholm < 0.001). 

Similarly, mean accuracy for schedule 3 (�̅�(𝜎�̅�) = 0.530 (0.004) was significantly lower than 

for both schedule 2 (t(566) = -5.702, pholm < 0.001) and schedule 4 (t(566) = -6.512, pholm < 

0.001). Schedules 1 and 3 did not differ significantly (t(566) = 2.197, pholm = 0.372), nor did 

schedules 2 and 4 (t(566) = -2.471, pholm = 0.202), 

 

Separate RM-ANOVAs to assess the effect of different genotypes on accuracy were carried 

out for DAT, COMT and SERT, with no main/interaction effect(s) involving DAT or COMT 

genotype on accuracy (all p > 0.05). However, SERT genotype had a significant effect on 

accuracy (F (2,558) = 3.398, p = 0.034, η2p = 0.012), with higher mean accuracy for 
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individuals with the S/L allele (�̅�(𝜎�̅�) = 0.626 (0.003)) compared to the S/S carriers (�̅�(𝜎�̅�) = 

0.613 (0.004), t(567) = 2.643, pholm = 0.025) and numerically higher when compared with L/L 

carriers (�̅�(𝜎�̅�) = 0.618 (0.005)), t(567) = 1.467, pholm = 0.286) (Suppl. Fig. 3.3B). The above 

analysis was repeated with the inclusion of age as a covariate predictor variable. Age was a 

significant negative predictor of accuracy (F (1,557) = 13.106, p < 0.001, η2p = 0.023). 

Interestingly, with the inclusion of age, volatility was no longer a significant predictor of 

accuracy (F (1,566) = 0.272, p = 0.602, η2p < 0.001), driven by a significant negative 

relationship between age and accuracy in volatile phases (r = -0.155, p < 0.001). However, 

schedule, volatility by schedule and SERT genotype remained significant predictors. 

 

 

Supplementary Figure S3.3. A. Accuracy for stable and volatile phases. Accuracy was higher 

overall during the stable relative to the volatile environmental phases. B. Accuracy as a function of 

SERT genotype. Accuracy was higher for the S/L genotype: significantly compared to the S/S group 

and numerically compared to the L/L group. Data points indicate 𝛼 estimates for individual participants 

(n = 570), boxes = standard error of the mean, shaded region = standard deviation, * indicates statistical 

significance (p < 0.05). 

 

3.2.2. Optimal learner beta weights varied as function of SERT genotype  

A RM-ANOVA with information type as the IV and ideal learner beta weights as the DV 

revealed significantly higher beta weights for individual (βoptimal _individual �̅�(𝜎�̅�) = 1.144 

* 

* 
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(0.031)) compared with social information (βoptimal_social : �̅�(𝜎�̅�) = 0.618 (0.031), F(1, 567) = 

107.624, p <0.001, η2p = 0.160). Thus, the majority of participants were giving greater 

weight to individual information while making decisions. Separate RM-ANOVAs, with 

within-subject factor of information type (individual, social), and between-subject factor of 

genotype were carried out for DAT, COMT and SERT. No main or interaction effects were 

observed as a function of DAT or COMT genotypes, although there was a significant main 

effect of information type in both analyses. For analysis involving SERT, however, a 

significant SERT by information type interaction was observed (F (2, 567) = 7.338, p < 

0.001, η2p = 0.025) (Suppl. Fig. 3.4). βoptimal_social scores were significantly higher for 

individuals carrying the S/L genotype (�̅�(𝜎�̅�) = 0.780 (0.042)), compared with both the S/S 

(�̅�(𝜎�̅�) = 0.557 (0.043); t (567) = 3.241, pholm = 0.006) and the L/L genotypes (�̅�(𝜎�̅�) = 0.497 

(0.048)); t(567) = 3.622, pholm = 0.002). For βoptimal_individual, however, beta weights did not 

significantly differ across genotypes (pholm > 0.05). We thus investigated whether an 

increased weighting of social information was a driver of increased accuracy. A backwards 

regression model was deployed, with beta weights as predictor variables and accuracy as the 

dependent variable. Accuracy was significantly predicted by the full model (R = 0.731, F (2, 

567) = 324.831, p < 0.001), with both βoptimal_social (t (567) = 20.200, p < 0.001) and 

βoptimal_individual (t (567) = 21.151, p < 0.001) significant positive predictors of accuracy. 

 

* 
* 
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Supplementary Figure S3.4. Optimal learner model. βoptimal_social varied as a function of SERT 

genotype. Data points indicate 𝜶 estimates for individual participants (n = 570), boxes = standard error 

of the mean, shaded region = standard deviation, * indicates statistical significance (p < 0.05). 

 

3.2.3. SERT genotype: s - and l-carriers 

Previous work has grouped together individuals with either one or two copies of the S (short) 

variant separately to those who are homozygous for the L (long) variant. As an exploratory 

measure, we re-ran all analyses with SERT genotype as a factor in two groups: S carriers (S/S 

and S/L) and L homozygotes (L/L). No effects of SERT genotype (S or L) were observed on 

accuracy (all p > 0.05). For optimal learner values, however, a RM-ANOVA with optimal 

beta weights as the DV and information and SERT genotype as the IVs revealed a significant 

SERT by information interaction (F (1,568) = 8.765, p = 0.003, η2p = 0.009). Post hoc t-tests 

showed that βoptimal_individual varied significantly as a function of genotype, with higher 

βoptimal_individual for l-carriers (�̅�(𝜎�̅�) = 1.239 (0.072)) compared with s-carriers (�̅�(𝜎�̅�) = 1.081 

(0.038)), t(568) = 2.164, pholm = 0.031). Similarly, βoptimal_social varied as a function of 

genotype, with higher βoptimal_social for s-carriers (�̅�(𝜎�̅�) = 0.688 (0.031)) compared with l-

carriers (�̅�(𝜎�̅�) = 0.497 (0.048)); t (568) = 2.997, pholm = 0.003).  

Finally, all model parameters were re-analysed. A RM-ANOVA with learning rate α as the 

DV and information, volatility and SERT genotype as the IVs revealed a significant main 

effect of information type (F (1,568) = 180.896, p < 0.001, η2p = 0.242). No other main or 

interaction effects were observed (all p > 0.05, all η2p < 0.001). There was, however, a 

significant effect of SERT on 𝜁 values (F (1,568) = 12.145, p < 0.001, η2p = 0.021), with 

higher values for s-allele carriers (�̅�(𝜎�̅�) = 0.469 (0.012)) compared with l-allele carriers 

(�̅�(𝜎�̅�) = 0.376 (0.024)).   

 

3.3. Instruction script - online SLT 

In this game you can win points by making choices between two shapes. You will also see 

choices made by other players which you can use to help you with your choice. The entire 

game should take approximately 15 to 20 minutes. You should finish it in one session, and 

you should work on your own without the help of others. 
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Welcome. You have a choice: either choose the blue shape or the green shape. One shape is 

correct - guessing which one it is will give you points. Try picking a shape by clicking on 

one. [Participant responds] 

Feedback: After you make a choice, the correct shape appears in the middle. You didn't really 

have a lot of information though. After each round you need to move your mouse into the 

dashed area to continue. Start the next round by moving your mouse into the area, then pick a 

shape. Maybe the same shape will be right again? [Participant responds] 

Blue was right again! Things happen in phases in this game. Right now, it looks like you are 

in a phase where blue is most likely to be correct. TIP: Here's a little tip - the shapes can be 

used by people who find it difficult to see the difference between blue and green. If you don't 

have a problem with seeing these colours you can ignore the shapes and just focus on the 

colours. Move your mouse into the area to start the next round and try picking blue again. 

[Participant responds] 

And blue again! It certainly looks as though you are in a blue phase but make sure you pay 

attention to what the right answers are because the phase that you are in can change at any 

time. 

TIP: Here's a tip - ignore which side of the screen the shapes are on - it's the colour that is 

important! Try again. Perhaps the other shape is right this time? [Participant responds] 

Green! This time the green shape was right! The chance of each shape being right or wrong 

will change as you play, so pay attention! [Participant responds] 

 

A Little Help. To help you decide - one of the shapes will be highlighted. This is the most 

popular choice selected by a group of 4 people who previously played this task. Here they 

think the green shape will be correct. Try picking a shape now. [Participant responds] 

A caution. You see? This time the others got it right! Be careful though because we have 

mixed up the order of the other people's trials so that their choices will also follow phases. It 

looks like, right now, you could be in a phase where the group's information is useful - 

perhaps these are trials from the end of their experiment where they had developed a good 

idea of what was going on. [Participant responds] 
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Move your mouse into the dashed area and then try picking a shape. Do you think that the 

group's information will be useful? [Participant responds] 

Yep, it certainly looks like the group information is useful right now but be careful, this could 

change! Sometimes you will see less useful information - for example from the beginning of 

their experiment where they didn't have a very good idea of what was going on.  

Getting it right, gives you points. Get enough points and you could earn a silver or even a 

gold prize. [Participant responds] 

Ready? No more practice. Now we'll start with the real game! Good luck. 
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Supplementary Table S3.1. Genotype frequencies (number and percentage)  

SERT N 

L/L 123 (21.58 %) 

S/L 262 (45.96 %) 

S/S 185 (32.46 %) 

DAT  

9/9 32 (5.61%) 

9/10 208 (36.49 %) 

10/10 330 (57.89 %) 

COMT  

val/val 166 (29.12 %) 

val/met 270 (47.37 %) 

met/met 134 (23.51 %) 

Note: The final sample which included complete genotype data for all three polymorphisms 

consisted of 693 subjects. A subset of participants was then excluded based on performances 

in the behavioural task, resulting in a final sample of 570.  
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Appendix 4 

Supplementary material for Chapter 5 

 

4.1 Social Learning Task  

The behavioural task (social learning task (SLT)) lasted approximately 35 minutes. 

Participants were seated approximately 30cm from a computer screen. Stimuli were displayed 

using PsychToolBox and the task was programmed using MATLAB R2017b (The 

MathWorks, Natick, MA). Before the main task, participants completed a step-by-step on-

screen practice task (10 trials) in which they learnt to choose between the two options to 

obtain a reward and learned that the “advice” represented by the frames could help in making 

the correct choice in some phases. To ensure that participants were making a conceptual 

distinction between the social and individual learning sources, participants were required to 

complete a short pre-task quiz (Appendix 1.1.3), testing their knowledge, after the practice 

task. Participants were required to repeat the practice round until they achieved 100% correct 

score in the quiz, meaning that all participants understood the structure of the task and that 

the red box represented social information. Furthermore, after the experiment, participants 

completed a feedback questionnaire (Appendix 1.1.4). Participants were informed as to 

whether they had earned a £5 bonus after the session. However, due to ethical considerations, 

all participants received the bonus. 

 

Social-primary group  

For the social-primary group the social information source was the primary source of 

learning. On each trial participants were presented with two grey placeholders. One 

placeholder was filled with a red box, indicating the group’s choice. Blue/green frames then 

appeared around the placeholders. As in the individual-primary group, participants were 

informed that the task followed ‘phases’ wherein sometimes going with, but at other times 

going against, the group’s choice was more likely to result in reward and sometimes the blue 

frame predominantly indicated the correct box, whereas at other times the green frame 

predominantly indicated the correct box. After making their choice participants received 

outcome information in the form of a tick/cross indicator (Suppl. Fig.4.1B). The indicator 
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primarily informed participants about whether the social group had been rewarded (and thus 

going with them would have resulted in points scoring but going against them would not) on 

the current trial. Whether the blue/green frame surrounded the correct or incorrect option 

could, secondarily, be inferred from the indicator. As in the individual-primary task, both the 

probability of reward associated with the blue/green stimuli and the utility of the social 

information varied according to probabilistic schedules (Appendix 4.1C). All other aspects of 

the task structure were the same as previously described in the individual-primary task group 

(displayed for reference – Suppl. Fig.4.1A).  

 

Supplementary Figure S4.1. Social learning task. A. Individual-primary group. Participants selected 

between a blue and a green box to gain points. On each trial, the blue and green boxes were presented 

first. After 1-4 seconds (s), one of the boxes was highlighted with a red frame, representing the social 

information. After 0.5–2s, a question mark appeared, indicating that participants were able to make 

their response. Response was indicated by a silver frame surrounding their choice. After a 1-3s interval, 

participants received feedback in the form of a green or blue box in the middle of the screen. B. Social-

primary group. Participants selected between going with, or against a red box, which represented the 

social information. On each trial, the red box was displayed. After 1-4s, blue and green frames appeared. 

After 0.5–2s, a question mark appeared, indicating that participants were able to make their response. 

Response was indicated by a silver frame surrounding their choice. After a 1-3s interval, participants 

received feedback in the form of a tick or a cross. This feedback informed participants if going with the 

group was correct or incorrect, from this feedback participants could infer whether the blue or green 

frame was correct. C. Example of pseudo-randomised probabilistic schedule. The probability of reward 

varied according to probabilistic schedules, including stable and volatile blocks for both the probability 

of the blue box/frame being correct (top) and the probability of the red (social) box/frame being correct 

(bottom).  
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4.2 Pre-task quiz 

(Correct answers are indicated with a star) 

 

1. What does it mean if the green frame is around the red box? 

A) The green box is the correct answer  

B) Previous players believed the correct answer was green * 

C) The left box is more likely to be correct  

D) The answer you gave is correct  

 

2. What does the red tick signify? 

A) The most likely answer is red  

 B) The red box is incorrect  

 C) Nothing, the information is deliberately misleading  

 D) The group of previous players chose the correct answer * 

  

3. What does it mean if the red box is on the left? 

A) Nothing, the colour of the boxes changes at random.  

B) The correct answer is on the left  

C) The answer you gave is on the left  

D) Previous players believed that the correct answer was the frame on the left. * 

  

4.3 Post-task feedback quiz 

 (Likert scale 1-5) 
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1. Did you have a strategy? If so, what was it? 

2. Did you use the group's suggestions (red box) to help you to make your decision?  

3. Did you pay attention to which colour (green/blue) was more likely to be correct?  

4. How hard did you find the task? 

5. How clear were the task instructions? Were they easy to understand?   

 

4.4 Instruction scripts 

 

Social-primary group 

Instruction script - version 1 

Welcome. You have a choice between two shapes. One of the shapes is filled with red. This 

indicates the most popular choice selected by a group of 4 people who previously played this 

task. One shape is correct – this means that the group were either correct or incorrect. When 

the question mark appears, try picking a shape by pressing the left or right keyboard buttons. 

[Participant responds] 

Feedback: After you make a choice, a tick or cross will appear in the middle. This tells you if 

the group of previous players were correct or incorrect. Here they think the blue shape (filled 

with red) will be correct. Try picking a shape now. [Participant responds] 

The group were correct! This means that this time the others got it right and picked the 

correct colour.  

Things happen in phases in this game. The game could be in a phase where the group are 

more likely to be correct. Have another go. [Participant responds] 

The group were correct again! The blue shape was right again. It certainly looks as though 

you are in a phase where the blue phase but make sure you pay attention to what the right 

answers are because the phase that you are in can change at any time. Here's a tip - ignore 

which side of the screen the shapes are on - it's the colour that is important! [Participant 

responds] 
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The others got it right again. It looks like, right now, you could be in a phase where the 

group's information is useful. Perhaps these are trials from the end of their experiment, when 

they had developed a pretty good idea of what was going on. Be careful though because we 

have mixed up the order of the other people's trials so that their choices will also follow 

phases. Try again. Perhaps the other shape is right this time? [Participant responds] 

Green! This time the green shape was right! The chance of each shape being right or wrong 

will change as you play, so pay attention! The group were incorrect this time. Remember that 

sometimes you will see less useful information from the group - for example from the 

beginning of their experiment where they didn't have a very good idea of what was going on. 

Have another go... [Participant responds] 

This time the green shape was right! The chance of each shape being right or wrong will 

change as you play, so pay attention. The group were correct too. It looks like, right now, you 

could be in a phase where the group's information is useful. Try to be as accurate as possible. 

Getting it right, gives you points. Get enough points and you could earn a silver or even a 

gold prize! Have another go... [Participant responds] 

Things happen in phases in this game. Remember, the tick or cross in the middle tells you if 

the group were correct or incorrect. That means that the shape with the red box was the 

correct choice. Have another go... [Participant responds] 

The group were correct this time. The tick in the middle tells you that they picked the correct 

choice. There will now be a short quiz. Pick one more shape and then we'll head to the real 

game! [Participant responds] 
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Instruction script - version 2 

Welcome. You have a choice between going with, or against advice from a group. Below you 

can see a blue and green frame, one frame is filled with a red box: this indicates the most 

popular choice selected by a group of 4 people who previously played this task. One frame is 

correct. You can pick the same frame as the group have picked or choose to go against the 

group’s advice. When the question mark appears, make your selection by pressing the left or 

right keyboard buttons. [Participant responds] 

Feedback: After you make a choice, a tick or cross will appear in the middle. This tells you if 

the group of previous players were correct or incorrect. This time they were correct! This 

means that the frame filled with the red square was the correct frame. Here they think the 

blue frame (filled with red) will be correct. Try picking a frame now. [Participant responds] 

The group were correct! This means that this time the others got it right and picked the 

correct colour. Things happen in phases in this game. The game could be in a phase where 

the group are more likely to be correct. Have another go. [Participant responds] 

The group were correct again! The blue frame was right again. It certainly looks as though 

you are in a phase where the group are correct but make sure you pay attention to the 

feedback because the phase that you are in can change at any time. Blue and green can also 

go through phases: it looks like you might be in a phase where the blue frame is more likely 

to be correct. Try again. [Participant responds] 

The others got it right again. It looks like, right now, you could be in a phase where the 

group's information is pretty useful. Perhaps these are trials from the end of their experiment, 

when they had developed a pretty good idea of what was going on. Be careful though because 

we have mixed up the order of the other people's trials so that their choices will follow 

phases. Try again. [Participant responds] 

The group were incorrect this time. This time the green frame was correct. The chance of 

each frame being right or wrong will change as you play, so pay attention! Remember that 

sometimes you will see less useful information from the group - for example from the 

beginning of their experiment where they didn't have a very good idea of what was going on. 

Have another go... [Participant responds] 
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The group were correct this time. The chance of each frame being right or wrong will change 

as you play, so pay attention. Try to be as accurate as possible. 

 Getting it right, gives you points. Get enough points and you could earn a silver or even a 

gold prize! Have another go... [Participant responds] 

Things happen in phases in this game. Remember, the tick or cross in the middle tells you if 

the group were correct or incorrect. That means that the frame filled with the red was the 

correct choice. Have another go... [Participant responds] 

The group were correct this time. The tick in the middle tells you that they picked the correct 

choice. There will now be a short quiz. Pick one more time and then we'll head to the real 

game! [Participant responds] 
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Appendix 5 

Supplementary material for Chapter 6 

 

Dopaminergic challenge dissociates learning from primary versus secondary sources of 

information 

 

Rybicki, A. J., Sowden, S. L., Schuster, B. A., & Cook, J. L. 

 

eLife 2022;11:e74893 DOI: 10.7554/eLife.74893 
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Appendix 5.1 

 

Inclusion criteria  

Participant is willing and able to give informed consent for participation in the study. 

Aged between 18 and 45. 

BMI in the range of 18.5 – 29.5 

Resting blood pressure in the range of 90/60 (low) to 140/90 (high) 

Electrocardiogram QT (heart rate corrected) interval < .42 

 

Exclusion criteria 

Participation in another drug study in the 3 weeks previous. 

Personal or first-degree family history of cardiovascular disease, specifically hypotension, 

arrhythmias or valvular disease, stroke 

Neurological abnormalities or traumas, kidney disease or liver disease 

Inherited blood conditions 

Psychiatric or psychological conditions (including depression and anxiety disorders) 

Known learning disability 

Anybody found to have an elongated Q-T interval following single lead ECG examination 

Low heart rate  

Low or high blood pressure  

Any regular medication - excluding the oral contraceptive pill 

Recent recreational drugs use or alcohol and drug dependency  

Known allergy to any medication 
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Current pregnancy or breastfeeding 

Previous participant in a drug study  

Lack of sleep in last 24 hours.  

Lack of food or drink in last 12 hours  

Primary sensory impairment (e.g., uncorrected visual or hearing impairment) 

Lactose intolerant  

Insufficient English to be able to consent to take part in the study 
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Baseline cognitive measures and mood ratings 

 

Approximately one week prior to drug/placebo administration, participants completed a battery 

of self-report questionnaire measures: Autism Spectrum quotient (AQ)[124], Toronto 

Alexithymia Scale (TAS 20) [280], Behavioural Inhibition/Activation Scale (BIS-BAS) [434], the 

Depression Anxiety and Stress Scale (DASS 21) [435], Interpersonal Reactivity Index (IRI) [436], 

Beck's Depression Inventory (BDI) [437] and Body Perception Questionnaire (BPQ) [438]. Self-

report questionnaire scores are summarised in Table 1. The individual-primary group did not 

differ significantly on any measure from the social-primary group. The group that received 

haloperidol (HAL) on day 1 did not differ significantly on any of the baseline measures from 

the group that received placebo (PLA) on day 1 (p < 0.05). Mood and fatigue were monitored 

three times per day during each test day, i) before capsule intake, ii) two hours post-capsule 

intake upon start task battery, and iii) upon completion of the task battery. The mood ratings 

consisted of the Positive and Negative Affect Scale (PANAS) [439]. A self-report scale was used 

to monitor fatigue. 24% of participants reported that they did not know on which day they had 

taken an active drug. Out of the remaining participants, 84% of participants correctly reported 

that they thought they had received an active drug. No adverse side effects were reported. Blood 

pressure, heart rate and blood oxygenation levels were monitored five times over the course of 

the testing days; before drug/placebo administration, and then at one, two and three and a half 

hour intervals thereafter. Measures were taken for a final time immediately before the end of 

the testing day.  
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Appendix 5.1 - Table 1. Self-report questionnaire scores (n = 31) 

Note: Mean (standard deviation) scores are reported. Significance level for the between-group 

differences are reported. Autism Spectrum quotient (AQ) [124], Toronto Alexithymia Scale 

(TAS 20) [280], Behavioural Inhibition/Activation Scale (BIS-BAS)[434], the Depression Anxiety 

and Stress Scale (DASS 21) [435], Interpersonal Reactivity Index (IRI) [436], Beck's Depression 

Inventory (BDI) [437] and Body Perception Questionnaire (BPQ) [438].  

 

Drug effects on mood and tiredness 

Positive and negative affect (PANAS) scores were submitted to separate RM-ANOVAs, with 

within-subjects (WS) factors time (baseline/start testing/end testing) and drug (HAL/PLA). 

For both positive and negative scores, a main effect of time was observed. Both positive (F 

(2,62) = 8.286, p < 0.001, ηp
2 = 0.211), and negative scores decreased over time (F (2,62) = 

6.020, p = 0.004, ηp
2 = 0.163). A drug by time interaction was observed for positive scores (F 

(2,62) = 7.353, p = 0.001, ηp
2 = 0.192), with simple effects analysis demonstrating that 

positive scores decreased over time under haloperidol (p < 0.001), but not placebo (p = 

0.994). A main effect of drug was observed on negative scores (F (1,31) = 4.749, p = 0.037, 

ηp
2 = 0.133), with higher negative affect scores under haloperidol (�̅� (𝜎�̅�) = 10.771 (0.557) 

compared with placebo (�̅� (𝜎�̅�) = 9.491(0.557)).  

Self-report 

questionnaires 

 Individual-

primary group 

Social-primary 

group 

t (29) p-value 

AQ  9.412 (4.556) 6.500 (4.179) 1.910 0.065 

TAS-20  39.529 (6.947) 40.313 (7.981) -0.301 0.765 

BIS-BAS  50.647 (6.855) 51.125 (5.536) -0.219 0.828 

DASS-Stress  3.176 (4.231) 3.875 (2.306) -0.583 0.723 

DASS-Anxiety  1.353 (2.178) 1.938 (2.516) -0.715 0.564 

DASS-Depression  1.706 (1.863) 2.313 (3.005) -0.702 0.480 

IRI  66.235(15.114) 66.375(10.645) -0.031 0.976 

BDI  3.176 (3.746) 3.438 (2.732) -0.227 0.822 

BPQ  52.176(29.473) 46.688(18.650) 0.635 0.221 
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Self-reported fatigue ratings (Likert scale: 1-10, with higher scores referring to higher levels 

of fatigue) were submitted to a RM-ANOVA, with WS factors time (T1-T5) and drug 

(HAL/PLA). A main effect of time was observed, with fatigue rising across time (F (4,88) = 

6.652, p < 0.001, ηp
2 = 0.232). No main or interaction effect(s) involving drug were observed.  

 

Appendix 5.2  

Randomisation groups  

For both the social-primary and individual-primary group, the probability of reward 

associated with the blue/green stimuli (individual information) and the red stimuli (social 

information) were governed by different pseudo-randomisation schedules, adapted from 

Behrens et al [95]. Schedules were counterbalanced between participants to ensure that 

learning could not be explained in terms of differences in learning between schedules with 

increased/decreased, or early/late occurring, volatility. The individual-primary group 

(schedules 1,3) were sub-divided into two groups, such that half started with predominantly 

correct social information, and half with predominantly incorrect social information, with the 

same true for the social-primary group (schedules 2,4). The primary information source was 

always less volatile overall compared to the secondary information source, irrespective of 

whether it was social or individual. To give an example, the randomisation schedule for 

group 1 was the same as that employed by Behrens et al [95]. During the first 60 trials, the 

individual reward history was stable, with a 75% probability of blue being correct. During the 

next 60 trials, the reward history was volatile, switching between 80% green correct and 80% 

blue correct every 20 trials. Meanwhile, during the first 30 trials, social information was 

stable, with 75% of choices being correct. During the next 40 trials, the social information 

was volatile, switching between 80% incorrect and 80% correct every 10 trials. During the 

final 50 trials, social information was once again stable, with 85% of choices being incorrect. 

Randomisation schedules for groups 2, 3, and 4 were inverted and counterbalanced versions 

of schedule 1 (Appendix 5.2 - Fig. 1).  
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Appendix 5.2 - Figure 1. 

 

Appendix 5.2- Figure 1. Randomisation schedules. The probability of reward varied according to 

probabilistic schedules, including stable and volatile blocks for both the probability of blue being 

correct and the probability of the social information indicating the correct answer. Probability schedules 

were counterbalanced between participants. Solid blue lines show the probability of blue being the 

correct choice, dashed red lines show the probability of the social information being correct. Schedules 

1-4 are displayed here.  

  

Prob. blue is correct 

Prob. red shape is correct 

Prob. blue is correct 

Prob. red shape is correct 

Prob. blue is correct 

Prob. red shape is correct 

Prob. blue is correct 

Prob. red shape is correct 
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Supplementary Methods 

i. Visual working memory task 

Participants completed a visual working memory (VWM) task, adapted from the Sternberg 

VWM Task [400], and programmed using MATLAB R2017b. Participants were first presented 

with instructions followed by practice trials. Upon completion of the practice trials, 

participants completed 60 experimental trials across 5 blocks. On each trial, a fixation cross 

was displayed in the centre of screen (fixation duration varied randomly between 500-1000 

ms). Then participants were presented with a list of letters, (varying between 5 – 9 

consonants in length, with letters randomly selected from the alphabet on each trial) for 1000 

ms, followed by a blue fixation cross for 3000 ms. Following this, a single test letter was 

displayed (for a maximum of 4000 ms), requiring participants to determine whether the letter 

was taken from the previously displayed list. For 50% of trials, the letter had been present on 

the previous list and on 50% of trials, it had not. Participants responded by pressing 1-3 on 

the keyboard (1 – Yes, 2 - No, 3 – Unsure). The total task duration was approximately 10 

minutes. Responses (accuracy) and response time (time from test letter displayed until 

participant response) were recorded for each trial.  

 

ii. Go-NoGo learning 

An adapted version of a probabilistic Go/No-Go Task [215] was employed, presented using 

MATLAB R2017b. In this task, a ‘Go’ response measures sensitivity to reward, whereas a 

‘No-Go’ response measures sensitivity to punishment. Participants were presented with 4 

different stimuli, each with a probabilistic value of reward (80%, 60%, 40%, 20%) and 

instructed to accumulate as many points as possible and to avoid losing points, achieved by 

selecting or withholding a response to the given stimuli. For example, if selected, stimuli A 

would result in gaining a point on 80% of trials and losing a point on 20% of trials. 

Participants were informed that points would be rewarded with monetary compensation; 

however, due to ethical considerations, all participants were awarded £5 at the end, regardless 

of task performance. Participants first completed 4 blocks of a practice stage, where single 

stimuli were presented (40 trials/block, with each stimulus presented 10 times per block). 

Reward feedback was provided, allowing learning of the probabilistic value of each stimulus. 

This was followed by 6 testing blocks (40 trials/block) displaying either single stimuli 
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(training stimuli) or novel pairs of stimuli on each trial, whereby participants were required to 

respond based on the combined probabilistic value of the pairs. Testing blocks contained 

positive pairs with a high associated probabilistic reward value, equal pairs (equally probable 

reward value), and negative pairs, with a high probabilistic value for punishment. Participants 

could respond via a ‘Go’ (space bar press) or ‘No-Go’ (withhold response) response. 

Feedback was not provided during testing blocks. In all trials, a fixation cross was presented 

for 250-750ms, followed by stimuli presentation for 1000ms and a response period for 

250ms. Task performance was calculated as the difference in ‘Go’ response for stimuli (novel 

pairs and single stimuli) with a high probability of reward under HAL and PLA conditions, 

for each participant separately.  

 

Appendix 5.3  

Model fitting  

Optimisation of free parameter values was performed as per Cook and colleagues [93], using a 

quasi-Newton optimisation algorithm specified in TAPAS toolbox - 

quasinewton_optim_config.m. The function maximised the log-joint posterior density over 

all parameters given the data and the generative model. α values were estimated in logit space 

(see tapas_logit.m), i.e., a logistic sigmoid transformation of native space (tapas_logit(x) = 

ln(x/(1-x)); x = 1/(1+exp(-tapas_logit(x)))). An uninformative prior, allowing for individual 

differences in learning rate was used for α: tapas_logit (0.2, 1), with a variance of 1. Initial 

values were set at logit (0.5, 1), with a variance of 1. Initial values were allowed to vary, to 

allow for inter-individual differences in prior preferences for the extent to which individual 

would conform to the group choice. The prior for β was set to log (48), with a variance of 1, 

and the prior for ζ was set at 0 with a variance of 102 (logit space), i.e., an equal weighting for 

information derived from primary and secondary learning (0.5). Prior choices were based on 

previous work [93]. Maximum-a-posteriori (MAP) estimates for all model parameters were 

calculated using the HGF toolbox version 3 (https://osf.io/398w4/files/). All code used is 

adapted from the open-source software package TAPAS (available 

at http://www.translationalneuromodeling.org/tapas). 
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Model comparison 

We based our choice of perceptual model on previous work by Cook and others [93], wherein 

a systematic comparison of three alternative models was conducted, to determine which best 

explained observed choice behaviour. Here we repeated Cook et al.’s model comparison and 

added four further extensions of the classic model, thus we compared eight alternative models 

in total. A formal model comparison was carried out using Bayesian model selection using 

the VBA toolbox [440].  

 

Data were initially analysed with eight models. All models were variations of the classic 

Rescorla-Wagner model. Group level Bayesian model selection (BMS) was used to evaluate 

which model provided the (relative) best fit to the observed data. The VBA toolbox 
[431], 

specifically random-effects BMS (using the VBA_groupBMC_btwConds.m function), was 

utilised. Random effects group BMS computes an approximation of the model evidence 

relative to the other models, i.e., the probability of the data y given a model m, p(y|m), with 

log model evidence here approximated with F values. The posterior probability that a model 

has generated the observed data, relative to other models is estimated, and the exceedance 

probability, or the likelihood that a given model is more likely than other included models in 

the set, is estimated. Analysis across both conditions allows us to test the hypothesis that the 

same model produced observed data under both haloperidol and placebo conditions.  

 

Model 1 was a classic Rescorla-Wagner model:  

 

𝑉(𝑖+1) = 𝑉𝑖 + 𝛼𝜀𝑖 

 

with 𝜀𝑖 = 𝑟𝑖 − 𝑉𝑖, the difference between the actual and the expected reward or prediction 

error (PE). 
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Model 2 was an extension of Model 1, with separate learning rates (𝛼) for learning from 

primary value and secondary value learning sources:  

 

𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) = 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝜀𝑖  

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1) = 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖) + 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝜀𝑖  

 

 

Model 3 had a single learning rate 𝛼 for primary/secondary learning, but separate learning 

rates for volatile and stable blocks:  

 

𝑉(𝑖+1) = 𝑉𝑖 + 𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝜀𝑖 + 𝛼𝑠𝑡𝑎𝑏𝑙𝑒𝜀𝑖  

 

Model 4 had four separate learning rates 𝛼 for volatile and stable and primary and secondary 

learning:  

𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) = 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒
𝜀𝑖 + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑠𝑡𝑎𝑏𝑙𝑒

𝜀𝑖  
 

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1) = 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖) + 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒
𝜀𝑖 +  𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑠𝑡𝑎𝑏𝑙𝑒

𝜀𝑖  
 

 

As an exploratory measure, we further extended Models 1-4 to include separate learning rates 

corresponding to learning from rewarded trials and unrewarded trials separately, i.e., learning 

from wins and losses.  

 

Model 5:  

𝑉(𝑖+1) = 𝑉𝑖 +  𝛼𝑟𝑒𝑤𝑎𝑟𝑑  𝜀𝑖 + 𝛼𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑  𝜀𝑖  

 

Model 6:  
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𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) = 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑟𝑒𝑤𝑎𝑟𝑑
 𝜀𝑖 + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑

 𝜀𝑖  
 

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1) = 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖) + 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑟𝑒𝑤𝑎𝑟𝑑
 𝜀𝑖 +  𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑

 𝜀𝑖  
 

 

Model 7:  

 

𝑉(𝑖+1) = 𝑉𝑖 + 𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑟𝑒𝑤𝑎𝑟𝑑
𝜀𝑖 + 𝛼𝑠𝑡𝑎𝑏𝑙𝑒𝑟𝑒𝑤𝑎𝑟𝑑

𝜀𝑖 + 𝛼𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑
𝜀𝑖  +  𝛼𝑠𝑡𝑎𝑏𝑙𝑒𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑

𝜀𝑖 

  

Model 8:  

 

𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) = 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑟𝑒𝑤𝑎𝑟𝑑
𝜀𝑖 + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑠𝑡𝑎𝑏𝑙𝑒𝑟𝑒𝑤𝑎𝑟𝑑

𝜀𝑖

+ + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑
𝜀𝑖  +  𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑠𝑡𝑎𝑏𝑙𝑒𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑

𝜀𝑖
 
 

 

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1)

= 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖)𝑉(𝑖+1) + 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑟𝑒𝑤𝑎𝑟𝑑
𝜀𝑖 + 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑠𝑡𝑎𝑏𝑙𝑒𝑟𝑒𝑤𝑎𝑟𝑑

𝜀𝑖

+ 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑
𝜀𝑖  +  𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑠𝑡𝑎𝑏𝑙𝑒𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑

𝜀𝑖 

 

We ran a between-groups model comparison, to ensure that the same model could explain the 

observed data under both placebo and haloperidol. When comparing all models, Model 4 

performed best, with an exceedance probability approaching 1. The exceedance probability 

that the same model (Model 4) had produced data under both conditions was equal to 1. For 

condition 1 (placebo), the posterior probabilities that the observed data had produced the 

model was equal to 10.329 for Model 3 and 12.998 for Model 4, with the probability that the 

data was produced by the winning model p(H1|y) = 0.762. For group 2 (haloperidol), Model 

4 had a posterior probability of 15.417 (p(H1|y) = 0.998). For the between-groups 

assessment, the posterior probability p(H1|y) = 0.999 and the protected exceedance 

probability (ϕ) was equal to 0.999. 
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Appendix 5.3- Figure 1 

 

Appendix 5.3 - Figure 1. Model comparison. Results from random-effects Bayesian model 

selection. Exceedance Probability and posterior model probability for models 1-8. p(y|m) = 

posterior model probability, ϕ = exceedance probability, HAL = blue, PLA = red. 

 

Model Validation  

To demonstrate that the chosen model (model 4) accurately described participant behaviour, 

we simulated response data for each participant, using estimated model parameter values 

(tapas_simModel.m). Accuracy did not significantly differ between actual and simulated 

accuracy for PLA (t = -0.866, p = 0.394) or HAL conditions (t = -0.280, p = 0.781) 

(Appendix 5.3 -Fig. 2A). Simulated and calculated accuracy were significantly correlated for 

each participant, under both placebo (r = 0.487, p = 0.005) and haloperidol conditions (r = 

0.712, p <.001) (Appendix 5.3 -Fig. 2B).  

A 
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B 
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Appendix 5.3 - Figure 2. A. Model simulations (left) and participant response data (right). Mean 

accuracy is displayed separately for volatile and stable environmental phases, under HAL (purple) and 

PLA (green). Boxes = standard error of the mean, shaded region = standard deviation, individual 

datapoints are displayed. HAL = haloperidol, PLA = placebo. B. Participant data (left) juxtaposed 

against model simulations (right) Running average, across 5 trials of blue choices for probabilistic 

randomisation schedules 1 to 4. Shaded region = standard error of the mean. 

 

In addition, to formally test model predictions of choice behaviour, for each participant we 

calculated the average value that the model estimated for the options chosen by the 

participant (collapsed across HAL and PLA conditions), and the average value that the model 

estimated for the options that were not chosen by the participant. If the chosen model was 

accurately describing participants’ choice behaviour, then average estimated values for 

chosen options should be significantly higher than for the unchosen options. Indeed, a paired 

samples t-test illustrated that, model-derived values for chosen options (�̅�(𝜎�̅�) = 0.607 

(0.008)) were significantly greater than values for unchosen options (�̅�(𝜎�̅�) = 0.393 (0.008); 

t(30) = 12.558, p < 0.001).  

 

To ensure that parameter estimates could be recovered, we simulated response data for each 

participant, based on estimated model parameters, using the function tapas_simModel.m from 

the TAPAS toolbox. Model parameters were subsequently estimated from simulated data and 

averaged over 100 iterations for each participant, separately for HAL and PLA conditions. 

All recovered parameters correlated significantly with estimated parameters under both HAL 

(αprimary: r = 0.991, p < 0.001, αsecondary: r = 0.961, p < 0.001) and PLA (αprimary: r = 0.975, p < 

0.001 , αsecondary: r = 0.984 , p < 0.001) treatment conditions. A RM ANOVA on recovered 

parameters showed the same pattern of results as with estimated parameters, including a 

significant interaction effect for our main interaction of interest (drug by information source: 

(F (1,29) = 4.027, p = 0.054, ηp
2 = 0.122)).  
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Appendix 5.4  

Extended statistical analyses 

i. Learning rate analysis (n = 41) 

A RM-ANOVA, with (square-root transformed) learning rate (α) as the DV and predictors 

information source, volatility, drug, and group was carried out on estimates from the mixed 

model analysis which included all participants who completed at least one study day (N = 

41). A significant main effect of information was observed (F (1,234) = 3.944, p = 0.048, 

beta estimate (𝜎�̅�) = 0.019 (0.010); t = 1.986, CI [0 - 0.04]), with higher mean values for 

αprimary (�̅�(𝜎�̅�) = 0.429 (0.018)) compared with αsecondary (�̅�(𝜎�̅�) = 0.391 (0.018)).  

A significant volatility by information interaction (F (1, 234) = 4.676, p = 0.032, beta 

estimate (𝜎�̅�)  = 0.021 (0.010), t = -2.162, CI [0 - 0.04]) was observed. Post hoc comparisons 

revealed that, under stable phases, αprimary values (�̅�(𝜎�̅�) = 0.461 (0.023)) were significantly 

greater than αsecondary (�̅�(𝜎�̅�) = 0.381 (0.023); z = 2.933, pholm = 0.007), with no difference 

between α in volatile phases (z = -0.125, pholm = 0.901). No main effect of group was 

observed, however, there was a significant information by group interaction (F (1, 234) = 

32.471, p < 0.001, beta estimate (𝜎�̅�) = 0.05 (0.010); t = 5.700, CI [0.04-0.07]). Post hoc 

comparisons revealed that, for the individual-primary group, αprimary (�̅�(𝜎�̅�)  = 0.455 (0.026)) 

was significantly greater than αsecondary (�̅�(𝜎�̅�)  = 0.307 (0.026); z = 5.351, pholm < 0.001). For 

the social-primary group, however, αsecondary (�̅�(𝜎�̅�) = 0.475 (0.025)) was significantly greater 

than αprimary (�̅�(𝜎�̅�) = 0.404 (0.025); z = 2.667, pholm = 0.015). 

A significant volatility by group interaction was observed (F (1,234) = 4.168, p = 0.042, beta 

estimate (𝜎�̅�) = 0.020 (0.010); t = 2.042, CI [0 - 0.04]). For the individual-primary group, 

αvolatile (estimate (𝜎�̅�) = 0.351 (0.026)) was (marginally) significantly lower than αstable 

(estimate (𝜎�̅�) = 0.41 (0.026); z = -2.192, pholm < 0.057). For the social-primary group, 

however, αvolatile (estimate (𝜎�̅�) = 0.449 (0.025)) and αstable (estimate (𝜎�̅�) = 0.431 (0.025)) did 

not significantly differ (z = 0.672, pholm = 0.502). Most importantly, as with the analysis 

reported in the main text, a significant drug by information interaction was observed (F 

(1,234) = 3.727, p = 0.054, beta estimate (𝜎�̅�) = 0.020 (0.010); t = 1.93, CI [0.00 – 0.04]. Post 

hoc comparisons demonstrated that, under PLA there was a significant difference between 

αprimary (beta estimate (𝜎�̅�) = 0.451 (0.023)) and αsecondary (estimate (𝜎�̅�) = 0.375 (0.023); z = 

2.727, pholm = 0.026, uncorrected p = 0.006). This difference was nullified under HAL 
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(αprimary estimate (𝜎�̅�) = 0.408 (0.023) and αsecondary (estimate (𝜎�̅�) = 0.407 (0.023); z = 0.040, 

pholm = 0.968, uncorrected p = 0.968). There was no significant group x information source x 

drug interaction (F (1,234) = 0.029, p = 0.866, beta estimate (𝜎�̅�) = -0.002 (0.010); t = -0.169, 

CI [-0.02 - 0.02]). 

 

ii. Accuracy  

An analysis of accuracy was conducted in participants who had completed both study days 

(n=31), to explore whether there was any systematic variation as a function of randomization 

schedule, and across drug and placebo conditions and volatile and stable phases. A RM-

ANOVA, with within-subjects factors drug (HAL, PLA) and volatility (stable, volatile), and 

between-subjects factor group (social-primary, individual-primary) and randomisation 

schedule (1-4), demonstrated no difference in accuracy between haloperidol (�̅�(𝜎�̅�) = 

0.601(0.011)), and placebo (�̅�(𝜎�̅�) = 0.614 (0.011); F (1,27) = 1.161, p = 0.291, ηp
2 = 0.041). 

However, a significant main effect of schedule was observed (F (3,27) = 3.004, p = 0.048, ηp
2 

= 0.250), with the lowest accuracy observed for schedule 1 (�̅�(𝜎�̅�) = 0.558 (0.019)). 

Although accuracy for schedule 1 was lower than for schedule 2 (�̅�(𝜎�̅�) = 0.619 (0.018); t 

(27) = -2.358, pholm = 0.129), schedule 3 (�̅�(𝜎�̅�) = 0.614 (0.018); t(27) = -2.162, pholm = 

0.159) and schedule 4 (�̅�(𝜎�̅�) = 0.637 (0.020); t(27) = -2.748, pholm = 0.063); these 

differences were no longer significant after correction for multiple comparisons. Mean 

accuracy for schedules 2-4 did not significantly differ from each other (all p-values = 1.000). 

In addition, there was a significant interaction effect between schedule and volatility (F (3,27) 

= 7.527, p < 0.001, ηp2 =0.455). For all schedules except for schedule 3, there was no 

significant difference in accuracy between volatile and stable phases (all p>0.05). However, 

for schedule 3, accuracy was significantly higher for volatile (�̅�(𝜎�̅�) = 0.675 (0.022)) over 

stable phases (�̅�(𝜎�̅�) = 0.533 (0.022); t(27) = (3.656), pholm = 0.027). Accuracy was 

significantly higher for the social-primary group (�̅�(𝜎�̅�) = 0.629 (0.013)), compared with the 

individual-primary group (�̅�(𝜎�̅�) = 0.586 (0.013); F (1,29) = 5.196, p = 0.030, ηp
2 = 0.152) 

and no other main effects or interactions were observed (all p>0.05). 
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iii. Relationship between accuracy scores and parameters from model-based analyses 

A backwards regression with PLA accuracy as the dependent variable, and αprimary and 

αsecondary (collapsed across volatile and stable phases), initial values 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) and 

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖), β and ζ as predictors, was carried out. PLA accuracy was marginally 

significantly predicted by a model with αsecondary as a single predictor (R = 0.347, F (1,29) = 

3.981, p = 0.055). Under haloperidol, a backward regression with HAL accuracy as the 

dependent variable, and αprimary, αsecondary, 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖), 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖), β and ζ as predictors, 

revealed that HAL accuracy was significantly predicted by the full model. Within the model, 

αprimary was the only significant predictor (Table 2). Removing predictors did not significantly 

improve the fit of the model (R2change < 0.001, F change (1,25) = -0.064, p = 1.000). 

 

Appendix 5.4 - Table 1 

Coefficients from regression model with HAL accuracy as the dependent variable. 

 β β (SEM) 

 

standardised 

β 

 

t p 

constant 0.431 0.089  4.840 <0.001 

αprimary 0.195 0.077 0.431 2.532 0.018* 

αsecondary 0.076 0.119 0.127 0.642 0.527 

𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) 0.121 0.090 0.230 1.342 0.192 

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖) 0.033 0.131 0.050 0.249 0.806 

β 0.002 0.001 0.329 1.698 0.102 

ζ  0.045 0.043 0.189 1.066 0.297 

Note: * indicates statistical significance  
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iv. Go, No-go control task 

To further investigate the neurochemical mechanisms underlying the observed decrease in 

𝛼primary under haloperidol, we measured performance on a probabilistic Go, No-go control 

task, adapted from Frank and colleagues[215]. Previous research (using a similar low, acute 

dose of haloperidol) resulted in enhancement of learning from positive reinforcement, 

indexed by an increase in learning from positive feedback [215], suggested to be mediated via 

pre-synaptic antagonistic effects on phasic dopamine (DA) signalling. As an exploratory 

measure, participants were stratified into two subgroups based on performance during this 

task; those with a higher change in ‘Go’ performance for high reward trials under 

haloperidol, and those with a lower change in ‘Go’ performance under haloperidol, relative to 

placebo. For the participants who demonstrated increased ‘Go’ performance under 

haloperidol (n = 12), a significant drug by information effect was observed on the main 

behavioural task (F (1,10) = 4.773, p = 0.054, ηp
2 = 0.323). However, this effect was not 

observed in participants with reduced ‘Go’ performance under haloperidol (n = 19; F (1,17) = 

2.001, p = 0.175, ηp
2 = 0.105). Thus, suggesting that the observed effect of haloperidol on 

learning rate for primary information was driven by a subgroup of participants who exhibited 

increased ‘Go’ performance under haloperidol (relative to placebo). Given that such effects 

on Go performance have been linked to pre-synaptic antagonistic effects on phasic DA 

signalling [215] these results suggest that the effects we observed on 𝛼primary are likely 

mediated by effects of haloperidol on phasic DA signalling.  

 

While an increase in Go performance suggests pre-synaptic effects of haloperidol on phasic 

dopamine release, the effects of haloperidol are also mediated via antagonism of 

heteroreceptors on non-dopaminergic neurons[215], resulting in a reduction in tonic dopamine 

signalling. These tonic effects are commonly indexed by a slowing of response [383],[441]. 

Indeed, haloperidol had a significant effect on (log) reaction time (RT), with higher reaction 

times observed under haloperidol (�̅� (𝜎�̅�) = 1.580 (0.147) seconds(s)) when compared with 

placebo (�̅� (𝜎�̅�) = 1.242 (0.150), p = 0.002, η2 = 0.292). We therefore investigated whether 

there was a relationship between ∆𝑅𝑇 and ∆𝛼 under haloperidol. A median split (∆𝑅𝑇) 

resulted in two subgroups of participants. Separate RM-ANOVAs, with (square root) learning 

rate estimates (𝛼) as the dependent variable, and information, volatility and task group as the 

predictor variables were carried out for each subgroup. For the subgroup of participants who 
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showed the greatest increase in RT (slowing of response) under haloperidol (n=15), the drug 

by information interaction no longer reached significance (F (1,13) = 0.106, p = 0.750, ηp
2 = 

0.008). The opposite pattern of results was observed for the subgroup of participants (n =16) 

with a ∆𝑅𝑇 below the median change (a reduced slowing of response under haloperidol): 

here a significant drug by information interaction effect was observed (F (1,14) = 10.846, p = 

0.005, ηp
2 = 0.437). Results show that, for the subgroup of participants who showed the 

greatest slowing of response (∆𝑅𝑇), haloperidol did not significantly affect learning rates. 

Given that response slowing has been linked to tonic dopamine this pattern of results further 

reinforces the idea that our observed effects on 𝛼primary are likely mediated by effects of 

haloperidol on phasic, not tonic, DA. 

 

v. Effect of randomisation schedule and drug day on model parameters  

Randomisation schedule (1-4) and drug day (i.e., haloperidol administered on testing day 1 or 

2) were included as predictor variables in all analyses (with both n = 31 and n = 41 samples), 

with no main/interaction effect(s) observed (all F< 1, all p > 0.05). Additionally, testing 

session was used to check for the presence of practice effects. Testing session (session 1 or 2) 

was included as a predictor variable in all analysis, with no main/interaction effect(s) 

observed (all F< 1, all p > 0.05).  

 

vi. Effects of baseline verbal working memory (VWM) on model parameters  

As there is evidence to suggest that effects of dopamine manipulation are dependent on 

baseline DA synthesis, with working memory capacity shown to predict dopamine synthesis 

in healthy adults [442], we stratified participants into high and low verbal working memory 

(VWM) groups, based on mean baseline (under placebo) accuracy scores on a verbal working 

memory task [400]. VWM (high/low) was included as a predictor in a mixed model analysis (n 

= 31). A Type III RM-ANOVA conducted on model estimates revealed a significant 

interaction between VWM and information type (F(1,189) = 5.932, p = 0.016, beta estimate 

(SE) = 0.026 (0.010), t = 2.436, CI [0.00 – 0.05]) with planned contrasts revealing that, for 

low VWM participants, 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦  values (�̅�(𝜎�̅�) = 0.364 (0.031) were significantly lower 

than 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦 values (�̅�(𝜎�̅�) = 0.447 (0.031); z(30) = 2.820, pholm = 0.010). There was no 
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significant difference between 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦 and 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦for high VWM participants (z(30) = -

0.641, pholm = 0.522). No other main or interaction effects of VWM on 𝛼 values were 

observed (all F < 0.01, all p > 0.05). Additionally, the pattern of results was unchanged from 

the previous analysis excluding VWM, with the drug by information interaction effect 

remaining significant (F (1,189) = 3.967, p = 0.048, beta estimate (SE) = 0.021 (0.010), t = 

1.992, CI [0.00 – 0.04]). Finally, while including baseline VWM as continuous predictor 

variable in a RM-ANOVA, no main or interaction effect(s) of VWM on 𝛼 values were 

observed. Additionally, neither gender, age nor BMI interacted with any outcome variables 

(all F < 0.01, all p > 0.05). Results suggest that the observed decrease in 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦  under 

haloperidol is not related to variation in working memory capacity.  

 

Appendix 5.5 

Instruction scripts 

Individual-primary group 

Welcome. You have a choice: either choose the blue shape or the green shape. One shape is 

correct – guessing which one it is will give you points. To help you to choose, one of the 

shapes is filled with red. This indicates the most popular choice selected by a group of 4 

people who previously played this task. When the question mark appears, try picking a shape 

by pressing the left or right keyboard buttons. [Participant responds] 

 

Feedback: After you make a choice, a tick or cross will appear in the middle. This tells you if 

the group of previous players were correct or incorrect. 

Here they think the blue shape (filled with red) will be correct. Try picking a shape now. 

[Participant responds] 

 

Blue is correct! This means that this time the others got it right.  

Things happen in phases in this game. The game could be in a phase where the blue shape is 

more likely to be correct. Have another go. [Participant responds] 
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And blue again! It certainly looks as though you are in a blue phase but make sure you pay 

attention to what the right answers are because the phase that you are in can change at any 

time. Here’s a tip – ignore which side of the screen the shapes are on – it’s the colour that is 

important! [Participant responds] 

 

The others got it right again. It looks like, right now, you could be in a phase where the 

group’s information is useful. Perhaps these are trials from the end of their experiment, when 

they had developed a pretty good idea of what was going on. Be careful though because we 

have mixed up the order of the other people’s trials so that their choices will also follow 

phases. Try again. Perhaps the other shape is right this time? [Participant responds] 

 

Green! This time the green shape was right! The chance of each shape being right or wrong 

will change as you play, so pay attention! The group were incorrect this time. Remember that 

sometimes you will see less useful information from the group – for example from the 

beginning of their experiment where they didn’t have a very good idea of what was going on. 

Have another go... [Participant responds] 

 

This time the green shape was right! The chance of each shape being right or wrong will 

change as you play, so pay attention. The group were correct too. It looks like, right now, you 

could be in a phase where the group’s information is useful. Try to be as accurate as possible. 

Getting it right, gives you points. Get enough points and you could earn a silver or even a 

gold prize! Have another go... [Participant responds] 

 

Things happen in phases in this game. Remember, the tick or cross in the middle tells you if 

the group were correct or incorrect. That means that the shape with the red box was the 

correct choice. Have another go... [Participant responds] 
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The group were correct this time. The tick in the middle tells you that they picked the correct 

choice. There will now be a short quiz. Pick one more shape and then we’ll head to the real 

game! [Participant responds] 

 

Social-primary group 

Welcome. You have a choice between going with, or against advice from a group. Below you 

can see a blue and green frame, one frame is filled with a red box: this indicates the most 

popular choice selected by a group of 4 people who previously played this task. One frame is 

correct. You can pick the same frame as the group have picked or choose to go against the 

group’s advice. When the question mark appears, make your selection by pressing the left or 

right keyboard buttons. [Participant responds] 

 

Feedback: After you make a choice, a tick or cross will appear in the middle. This tells you if 

the group of previous players were correct or incorrect. 

This time they were correct! This means that the frame filled with the red square was the 

correct frame. 

Here they think the blue frame (filled with red) will be correct. Try picking a frame now. 

[Participant responds] 

 

The group were correct! This means that this time the others got it right and picked the 

correct colour.  

Things happen in phases in this game. The game could be in a phase where the group are 

more likely to be correct. Have another go. [Participant responds] 

 

The group were correct again! The blue frame was right again. It certainly looks as though 

you are in a phase where the group are correct but make sure you pay attention to the 

feedback because the phase that you are in can change at any time. Blue and green can also 
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go through phases: it looks like you might be in a phase where the blue frame is more likely 

to be correct. Try again. [Participant responds] 

 

The others got it right again. It looks like, right now, you could be in a phase where the 

group’s information is pretty useful. Perhaps these are trials from the end of their experiment, 

when they had developed a pretty good idea of what was going on. Be careful though because 

we have mixed up the order of the other people’s trials so that their choices will follow 

phases. Try again. [Participant responds] 

 

The group were incorrect this time. This time the green frame was correct. The chance of 

each frame being right or wrong will change as you play, so pay attention! Remember that 

sometimes you will see less useful information from the group – for example from the 

beginning of their experiment where they didn’t have a very good idea of what was going on. 

Have another go... [Participant responds] 

 

The group were correct this time. The chance of each frame being right or wrong will change 

as you play, so pay attention. Try to be as accurate as possible. Getting it right, gives you 

points. Get enough points and you could earn a silver or even a gold prize! Have another go... 

[Participant responds] 

 

Things happen in phases in this game. Remember, the tick or cross in the middle tells you if 

the group were correct or incorrect. That means that the frame filled with the red was the 

correct choice. Have another go... [Participant responds] 

 

The group were correct this time. The tick in the middle tells you that they picked the correct 

choice. There will now be a short quiz. Pick one more time and then we’ll head to the real 

game! [Participant responds] 
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Feedback Questionnaire 

Participants competed a short feedback questionnaire after the behavioural task. 100% of 

participants said that they understood the task instructions and what they were supposed to 

do. Participants were then asked to rate on a 5-point Likert scale how often they i) used the 

group’s suggestions (red shape) to help make their decision, comprising the social rating 

score, and ii) if they paid attention to the colour of the shape (blue/green) that was correct 

when making their decision (the individual rating score). Social and individual ratings were 

submitted to separate one-sample t-tests, to ensure that participants in both the individual-

primary and social-primary groups were paying attention to both sources of information. 

Both social (t(42) = 30.765, p < 0.001 ) and individual ratings (t(42) = 29.565, p <0.001) 

were significantly greater than zero.  
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