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 i 

Abstract 

Brain tissue is vulnerable and sensitive, predisposed to potential damage under various 

conditions of mechanical loading. The studies in this thesis aimed to investigate the viscoelastic 

properties of brain tissue under various loading conditions and develop viscoelastic models to 

capture the tissue behaviour. 

The mechanical properties of brain tissue were quantified using dynamic mechanical analysis 

(DMA) where a sinusoidally varying displacement was applied to specimens and the 

viscoelastic properties were obtained under different testing protocols. The regional and 

directional properties of brain tissue were quantitatively measured at physiological and 

injurious loading conditions. The compressive properties of brain tissue were studied under 

time and frequency domains with the same physical conditions. The theory of viscoelasticity 

was applied to estimate the prediction of viscoelastic response through Finite Element models. 

Further, the effect of large strain to mechanical behaviour of brain tissue was investigated. 

This thesis found brain tissue to have showed frequency dependent-viscoelastic properties. The 

compressive dynamic properties of brain tissue were heterogenous for regions and affected by 

indenter size and indentation depth. The results demonstrate the feasibility of deriving time-

domain viscoelastic parameters from frequency-dependent compressive data for biological 

tissue. Applications of the brain viscoelastic properties presented in this thesis include the 

diagnosis of brain injury and fabrication of biomaterials to replicate brain tissue.  
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1 Introduction 

The brain is considered to be one of the most complex organs in the body and is responsible for 

a series of physical and mental tasks. Although the brain is well protected by the skull, it is still 

sensitive and vulnerable under potentially injurious loading conditions. Due to various external 

forces, traumatic brain injury (TBI) is a major cause of death and disability affecting millions 

of people (Taylor et al. 2017). According to the Centres for Disease Control, 2.53 million TBI-

related emergency department visits were documented in 2014 and the TBI-related emergency 

department visits and deaths have increased steadily from 2006 to 2014 (Capizzi et al. 2020). 

Treatment modalities of brain injuries are categorized based on the severity of the injury ranging 

from mild to severe traumatic brain injury (Galgano et al. 2017). The focus of this thesis is on 

mild traumatic brain injuries which could be induced when oscillatory force is around 20 Hz 

(Laksari et al. 2015). In the subsequent chapters, the tested frequency range for dynamic 

mechanical experiments was up to 35 Hz to which the brain might be exposed during 

physiological and injury conditions (Rashid et al. 2013). 

The aim of this thesis was to characterize the mechanical properties of brain tissue and develop 

viscoelastic models. The systematic characterization of brain tissue would provide essential 

information to the analysis of brain injuries in clinical treatments and lead to the development 

of computational simulations of head which can predict brain disease progression and develop 

smart protection systems. The specific objectives were to: 



 

 2 

x Acquire the dynamic mechanical properties of brain tissue; 

x Evaluate the effect of heterogeneous microstructure on mechanical properties of brain 

tissue and within the context of constitutive models; 

x Investigate the time and frequency domain mechanical characterization of brain tissue. 

The mechanical properties of brain tissue play an important role when head injuries are 

analysed. To obtain the mechanical properties of brain tissue, this thesis investigates animal 

brains extensively under various loading conditions. Characterization and quantification of 

these mechanical properties can be applied to models of brain disease via computational 

simulations. The effect of microstructural heterogeneity of brain tissue was identified for 

accurate prediction of injury across the brain structure. The measurements can provide a 

standard for clinical-grade biomaterials suitable for use in regenerative medicine (Bartlett et al. 

2020). In addition, these mechanical properties can be used to determine a surrogate brain 

material for assessing the feasibility of head protection system (Zhang et al. 2019). The 

investigation of mechanical response under different loading environments (e.g. time and 

frequency domains) can contribute to a better understanding of the phenomenology of brain 

tissue and its constitutive modelling. 

Chapter 2 presents the background information pertinent to this thesis. It includes an 

introduction to the brain system. Modelling and mechanical testing of brain tissue are discussed 
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under various testing conditions. Furthermore, the mechanics of these materials are analysed 

including viscoelastic and hyperelastic properties. 

Chapter 3 describes a study on the general viscoelastic properties of porcine brain tissue. The 

variation of dynamic stiffness was assessed by comparing different indenter sizes and 

indentation depths. The viscoelastic moduli were also analysed over a range of loading 

frequencies. The chapter is based on the work published in the Journal of the Mechanical 

Behaviour of Biomedical Materials entitled ‘Frequency dependent viscoelastic properties of 

porcine brain tissue’; 2020, volume 102, pages 103460. This work was also presented at the 

25th Congress of the European Society of Biomechanics, Vienna, Austria, 2019. 

Chapter 4 details the analysis on the compressive frequency-dependent mechanical 

characterization of bovine brain tissue and identifies its viscoelastic modelling. In this chapter, 

the white and grey matter were investigated to determine the regional and directional properties 

of brain tissue. A frequency-dependent constitutive model was applied in the numeric 

simulation to capture the mechanical behaviour of brains. The work in this chapter is based on 

the work published in the Journal of the Mechanical Behaviour of Biomedical Materials 

entitled ‘Dynamic mechanical characterization and viscoelastic modeling of bovine brain 

tissue’; 2021, volume 114, pages 104204. 

Chapter 5 studies the viscoelastic properties of brain tissue under time and frequency dependent 

loading conditions. This chapter compares the frequency and time domain mechanical 
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characterization of brain tissue by converting its dynamic properties to enable mathematical 

modelling in the time domain. Further, the hyperelastic material model was used to investigate 

the large strain behaviour of brain tissue. The work in this chapter is based on the work 

published in the Annals of Biomedical Engineering entitled ‘Investigation of the Compressive 

Viscoelastic Properties of Brain Tissue Under Time and Frequency Dependent Loading 

Conditions’; 2021, Volume 49, Pages 3737-3747. 

Chapter 6 outlines the overall discussion, including the future work the findings presented in 

thesis could be applied to, and the final conclusions. 
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2 Background 

2.1 Chapter Overview 

This chapter provides the background information required to understand subsequent chapters 

in this thesis. To begin, a background is provided on skull and brain tissue in section 2.2. The 

discussion of the mechanics of materials applied in analysis of experimental results and 

simulations is outlined in section 2.3. Following this, literature on modelling and mechanical 

testing of brain tissue is critically analysed in section 2.4 under various testing conditions. 

Finally, section 2.5 summarizes the background chapter. 

2.2 Skull and Brain System 

2.2.1 The Skull 

The skull is a cortical grain structure which forms the head in vertebrates (Dempster 1967) and 

is comprised of two parts, the cranium and the mandible. The skull supports the structure of the 

face and provides a protective cavity for the brain tissue from injuries during externally applied 

mechanical forces, such as blast and impact. The skull bones are generally made up of the 

frontal bone, forming the forehead; two parietal bones, which are the biggest part of the skull 

distributed on either side; the occipital bone, the base of the skull; and the two temporal bones 

(Figure 2.1). Sutures are rigid joints between the bones of the skull and suture lines are the most 

distinguishing mark on the skull bones. These fibrous joints as synarthroses provide the 
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compliance and elasticity of the skull. The growth pattern of the skull is affected by the sutures, 

which gradually harden during early childhood. 

 

Figure 2.1– Skull structure scheme. Image by Edoarado - Own work based on: Human skull side 
simplified (bones), freely available in the public domain (LadyofHats 2007). 

2.2.2 Anatomy of Cranial Bone 

Cranial bones have various structural properties that change with age. Fetal cranial bone is a 

thin cortical bone layer and highly sensitive to gestational age and cranial bone fibre orientation 

(McPherson and Kriewall 1980). Mature cranial bone differentiates into a composite structure 

made up of a three-layer sandwich sphere with compact cortical bones and inner cancellous 

bone (diploe) (Figure 2.2). The cranial bones are considered as transversely isotropic 

(McElhaney et al. 1970) and the mechanical response of the skull is strongly affected by the 
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structural arrangement of the diploe (Endo 1966). The morphological variation of cranial bones 

was found to be large (Law 1993) and this is considered as the most significant factor to cause 

discrepancies in the mechanical properties. Sutures are surrounded and reinforced by compact 

bone, and the area with thicker diploe is away from sutures. The outer compact bones have a 

dense structure with less than 30% porosity, while diploe is highly porous (Alexander et al. 

2020).  

 

Figure 2.2 – Anatomy of human cranial bone from skull. Image by OpenStax College, available under 
Creative Commons Attribution 3.0. (Anatomy & Physiology 2013). 
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2.2.3 Brain Tissue 

The brain is considered as one of the most vulnerable organs in the body; it is immersed in 

cerebrospinal fluid (CSF) and surrounded by the skull. The brain consists of the cerebrum, the 

brainstem and the cerebellum. The cerebrum, the biggest part of brain tissue, has two 

hemispheres (left and right connected by corpus callosum white matter tissue) and each 

hemisphere is conventionally subdivided into four main lobes including frontal, temporal, 

parietal and occipital lobes (Figure 2.3). Brain tissue can be divided into grey and white matter. 

The grey matter consisting of cortex and the basal ganglia is made of neurons with the function 

of data processing, and the white matter consisting of corona radiate and corpus callosum is 

made of myelinated nerve axons (Prange et al. 2000). The brain is wrapped by three membranes 

of the dura mater, arachnoid mater and the pia mater, which protect the nervous system (Figure 

2.4). CSF circulates around the space between the arachnoid mater and the pia mater.  

The effect of microstructural heterogeneity of brain tissue has recently received attention 

(Budday et al. 2015; Pervin and Chen 2009) and it is necessary to investigate the connection 

between the macroscopic mechanical behaviour and the regional microstructure for accurate 

prediction of injury across the brain structure. Brain tissue can be divided into grey and white 

matter and is covered with the thin layer of pia and arachnoid membranes. The grey matter is 

made of neurons with the function of data processing distributed around the surface of the 

cortex, and the white matter consists of myelinated nerve axons which can be highly oriented 
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and connect various grey matter areas. Previous studies showed grey matter seems to be less 

stiff than white matter through indentation tests (Budday et al. 2015; Feng et al. 2013). Recently, 

a study showed there is regionally microstructural variation even within the grey and white 

matter tissue (Budday et al. 2017). Brain tissue was further differentiated into locations of 

corpus callosum, corona radiata, cortex and basal ganglia (Prange and Margulies 2002). Corona 

radiata and corpus callosum are considered as white matter, while the latter has more oriented 

nerve fibres connecting the two hemispheres. Cortex and basal ganglia are considered as grey 

matter. The investigation of regionally mechanical properties in brain tissue would be helpful 

for clinic analysis as the degree of injury may vary with regions. In addition to the regional 

heterogeneity, white matter structure has been found to be transversely isotropic because of the 

highly aligned axonal fibres, while grey matter is simply isotropic (Arbogast and Margulies 

1999; Feng et al. 2017). Therefore, the mechanical response of white matter is potentially 

affected by the fibre direction (Ning et al. 2006). 
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Figure 2.3 – Brain anatomy in sagittal plane. Image by Own work, available under Creative Commons 
Attribution 3.0. (NEUROtiker 2007). 

 

Figure 2.4 – Illustration of meninges and brain-skull interface. Image by OpenStax College, available 
under Creative Commons Attribution 4.0. (Anatomy & Physiology 2016).  
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2.2.4 Traumatic Brain Injury 

Although the brain is well protected by the skull, brain tissue is still easily injured when 

experiencing various loading conditions. Traumatic brain injury (TBI) is a major cause of death 

and disability induced by external dynamic forces (Taylor et al. 2017) and is a critical public 

health problem worldwide (Hyder et al. 2007). The primary causes of brain injury include 

violence, sports, vehicle crashes and construction where brain trauma occurs as a consequence 

of a sudden acceleration or deceleration within the cranium (Kushner 1998). In the United 

States, approximately 1.5 million traumatic brain injuries occur per year (Bruns Jr and Hauser 

2003) and traumatic brain injury is among the most severe type of injury in terms of long-term 

implications for survivors and case fatality (Rodriguez et al. 2006). The direction and type of 

forces may contribute to brain injuries including angular, shear and translational forces. In 

addition, the sudden acceleration or deceleration, blast waves and penetrating impact can cause 

brain injuries. Although TBI pathology and neuronal function have been the focus of many 

studies, many injury conditions are still unclear. 

The severity of traumatic brain injury can be classified into mild, moderate and severe 

categories. Concussion known as mild traumatic brain injury (mTBI) is one of the most 

common types of TBI which occurs at least 10 times more frequently than moderate and severe 

conditions (Nguyen et al. 2016). Primary injuries of concussion can be caused either at the place 

of impact or on the side opposite the impact region, which is thought as the coup-contrecoup 
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phenomenon (Meaney and Smith 2011). The exact mechanism of the coup-contrecoup injury 

in concussion is controversial. Generally, it is thought that the impact of inertia is important in 

brain injuries where the brain keeps moving with the skull stopped by external loading (Shaw 

2002). In addition, the increased intracranial pressure wave may play a role in the injury (Mckee 

and Daneshvar 2015). It also can be affected by many other factors including the skull, 

cerebrospinal fluid, and the membranes between the brain and skull. 

When the brain rapidly moves within the skull inducing traumatic shearing force, white matter 

with partial grey matter appears to be damaged and deformed during the traumatic forces, 

leading to diffuse axonal injury (DAI) (Smith and Meaney 2000). DAI pathology reveals the 

mechanical damage of the axon which is slowly disconnected in white matter (Johnson et al.  

2013). The severity of DAI covers from mild to severe and its dynamic impact on infants can 

cause shaken baby syndrome (SBS) as diffuse injury (Elinder et al. 2018). Lesions in DAI 

patients can be found through computed tomography (CT) or magnetic resonance imaging 

(MRI) scans (Figure 2.5). 
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Figure 2.5 – A CT scan showing traumatic brain injury with a black arrow indicating the injurious 
location. Image by Own work, available under Creative Commons Attribution 3.0. (James Heilman 
2010) 

2.3 Mechanics of Materials 

2.3.1 Introduction 

Constitutive models are of importance for the FE modelling of brain tissue. The underlying 

mechanical relationships can provide essential information for understanding the tissue 

behaviour. The mechanical properties of brain tissue can be obtained from experimental tests, 

which also depends on the loading conditions. In the following section viscoelastic properties 

are described. The mechanical properties of brain tissue throughout this thesis are used to 

quantify tissues and combined with constitutive laws in numerical simulations. 
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2.3.2 Stress and Strain 

When evaluating the mechanical properties of a material, a uniaxial mechanical test is common 

to be performed where a force versus displacement curve is measured. However, in order to be 

independent of sample size, the results are preferably shown as stress versus strain. In structural 

mechanics, there are various definitions of stress and strain which have different applications 

in FE analysis. The term stress (𝜎) is used to measure the force applied to a certain cross-

sectional area of an object (Equation 2.1). Strain (𝜀) is the deformation or displacement change 

over the original length resulting from an applied stress (Equation 2.2). Stiffness (k) which 

measures the resistance of a structure in response to an applied force can be calculated from 

Equation 2.3 and is influenced by material geometry. 

 𝜎 =
𝐹
𝐴0

   Equation 2.1 

 𝜀 =
𝐿 − 𝐿0

𝐿0
 Equation 2.2 

 𝑘 =
𝐹

𝐿 − 𝐿0
 Equation 2.3 

where F is the applied force, A0 is the original cross-sectional area, L is the length after load is 

applied and L0 is the original length, which are shown in Figure 2.6. 
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Figure 2.6 – Cylinder specimen subjected to a tensile force (F) with original cross sectional area (A0), 
original length (L0) and length after an applied force (L). 

The discussion above focused on engineering stress and strain, which are commonly used 

because it is easier to generate experimental data and the mechanical properties obtained are 

adequate for most engineering calculations. For compression testing, the compressive force 

results in shortening instead of elongation with the different direction of stress and strain. The 

confined compression test was first chosen in chapter 3 because the general mechanical 

behaviour of brain tissue was investigated in macroscope where the brain is considered as the 

soft tissue constrained by the skull. The confined testing is thus the nature of the boundary 

conditions at skull/brain interface. For the subsequent chapters, the focus of the work was 

microstructural heterogeneity of brain tissue, and the unconfined compression testing was 
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applied to investigate regional and directional mechanical properties, which is consistent to 

previous studies (Budday et al. 2017; Li et al. 2019). Other fundamental measurements are true 

stress and strain, which are defined by studying the force acting on an infinitesimal area element 

in deformed body, accounting for changes in cross-sectional area. The correlation between 

engineering stress-strain curve and true stress-strain curve was investigated (Faridmehr et al. 

2014) and at small deformations, the true stress and strain are basically indistinguishable from 

the engineering stress and strain. Figure 2.7 shows a typical stress-strain curve. 

 

Figure 2.7 – Typical stress-strain curve (adapted from Laurence W. McKeen (McKeen 2016)). At the 
small deformation, the engineering and true stress-strain curves are overlapped showing linear elastic 
behaviour. Yield stress 𝜎  is the end point of the linear elastic region. Su is the ultimate tensile strength 
and 𝜎𝑓, 𝜀𝑓 denote true fracture stress and strain, respectively. 
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2.3.3 Elasticity  

In engineering, the elasticity of a material is quantified by elastic modulus such as Young’ 

modulus measuring an object’s resistance to being deformed elastically when subject to a stress. 

Hooke’s law describes perfect elasticity where the force is directly proportional to the distance 

of deformation at any displacement. However, most materials are only purely elastic only up to 

small deformation, which is regarded as linear elasticity. From Figure 2.7, the slope of the 

straight line denoting the elastic region is the Young’ modulus (E) which is a mechanical 

property measuring the stiffness of a material and can be determined using Equation 2.4. 

 𝐸 =
𝜎
𝜀

 Equation 2.4 

From Figure 2.6, the deformation of the cylindrical specimen has contracted in directions 

perpendicular to the loading direction. The negative ratio of transverse strain (𝜀𝑡) to axial strain 

(𝜀) is known as Poisson’s ratio: 

 𝜈 = −
𝜀𝑡

𝜀
 Equation 2.5 

The allowable range of Poisson’s ratio is between -1 and 0.5, where positive values indicate 

that the material shrinks in the transverse direction when the specimen is pulled. For soft 

materials, such as biological tissue, this value is near 0.5 and for many metals and alloys, this 

value is near 0.3 (Liu et al. 2006). 
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In the vast majority of simulations of linear elastic materials, an isotropic material model was 

selected which does not have directional sensitivity. To describe such a material, Young’s 

modulus (E), shear modulus (G) and Poisson’ ratio (𝜈) are the most commonly used parameters 

in tables of material data and the shear modulus can be calculated as: 

 𝐺 =
𝐸

2(1 + 𝜈) Equation 2.6 

 

2.3.4 Hyperelasticity 

For materials such as rubber whose stress-strain curve is non-linear, hyperelastic material 

models have been widely used to describe this behaviour. There are constitutive models 

characterized by a strain-energy density function where a hypothesis is applied that the stress 

in a material can be obtained by taking the derivative of strain energy with respect to strain 

(Muhr 2005). Generally, hyperelastic material models are applied to represent the large 

deformation behaviour of materials in FE simulations and biological tissue is assumed to be 

incompressible. Compared with a linearly elastic model where materials are mainly described 

by two material constants such as Young’s modulus and Poisson’s ratio, the strain-energy 

density (W) is used to derive nonlinear constitutive models, which is a function of principle 

strain invariants (Ogden 1997). The strain invariants are shown as follows: 
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 𝑊 = 𝑊(𝐼1, 𝐼2, 𝐼3) Equation 2.7 

 𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2 Equation 2.8 

 𝐼2 = 𝜆1
2𝜆2

2 + 𝜆2
2𝜆3

2 + 𝜆3
2𝜆1

2 Equation 2.9 

 𝐼3 = 𝜆1
2𝜆2

2𝜆3
2 Equation 2.10 

where 𝜆1 , 𝜆2 , 𝜆3  are the principle stretches or principle extension ratios, linked by the 

relationship 𝜆1𝜆2𝜆3 = 1 , due to incompressibility. During uniaxial mechanical testing, the 

specimens are assumed to be deformed homogenously. For this deformation state, the principle 

stretch ratios in the directions orthogonal to the loading axis will be identical. Thus, due to 

symmetry and incompressibility, the stretch ratios are now of the form: 

𝜆1 = 𝜆, 𝜆2 = 𝜆3 = 𝜆−1 Equation 2.11 

where 𝜆 < 1 is in compression. The first and second strain invariants then become: 

𝐼1 = 𝜆2 + 2𝜆−1, 𝐼2 = 𝜆−2 + 2𝜆 Equation 2.12 

The strain-energy density (W) is a function of the stretch ratio only. In uniaxial compression, 

the stretch (𝜆 = 𝐿
𝐿0

= 1 + 𝐿−𝐿0
𝐿0

= 1 + 𝜀 ) can be calculated by the deformed length of the 

specimen (L) divided by the initial length (L0). The stress component along the direction of 

loading S11 has been mentioned in section 2.4.2 as the ratio of the measured force and the cross-
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sectional area in the undeformed state. The measured nominal stress is used to compare the 

predictions of the hyperelastic models (Ogden 1997). 

𝑆11 =
𝑑𝑤
𝑑𝜆

, 𝑤(𝜆) = 𝑊(𝐼1, 𝐼2) Equation 2.13 

Different hyperelastic material models are constructed by specifying different elastic strain 

energy expressions. Below are some common models used to describe biological tissue.  

The total strain energy density for a Neo-Hookean material model (𝑊 𝐻) and the nominal stress 

(𝑆11
𝐻) are given by: 

 𝑊 𝐻 =
𝜇0

2
(𝐼1 − 3) Equation 2.14 

 𝑆11
𝐻 = 𝜇0(𝜆 − 𝜆−2) Equation 2.15 

where 𝜇0 is a material parameter which can be obtained by curve fitting. 

The form of the strain-energy potential for the Gent model (𝑊𝐺 ) depends on the first strain 

invariant only (Gent 1996). It yields the corresponding nominal stress (𝑆11
𝐺 ) as follow: 

 𝑊𝐺 = −
𝜇0

2
𝐽𝑚 ln 1 −

𝐼1 − 3
𝐽𝑚

 Equation 2.16 

 𝑆11
𝐺 =

𝜇0𝐽𝑚

𝐽𝑚 − 𝜆2 − 2𝜆−1 + 3
(𝜆 − 𝜆−2) Equation 2.17 

where 𝜇0 and 𝐽𝑚 are the material constants which can be optimized with experimental data. 
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The Ogden model has been widely used in literature to describe the nonlinear mechanical 

behaviour of brain tissue at large deformation (Budday et al. 2017; Forte et al. 2017). The Ogden 

strain energy density (𝑊 𝑔𝑑) and corresponding nominal stress (𝑆11
𝑔𝑑) are defined as: 

 𝑊 𝑔𝑑 =
2𝜇0

𝛼2 (𝜆1
𝛼 + 𝜆2

𝛼 + 𝜆3
𝛼 − 3) Equation 2.18 

 𝑆11
𝑔𝑑 =

2𝜇0

𝛼
𝜆𝛼−1 − 𝜆− 𝛼

2+1  Equation 2.19 

where 𝜇0 is the instantaneous shear modulus and 𝛼 is the stiffening parameter accounting for 

the nonlinearity of the stress-strain response. 

2.3.5 Viscoelasticity  

Almost all biological tissues exhibit viscoelastic behaviour and the viscoelastic properties are 

essential in their constitutive function (Vicente 2012). Viscoelastic materials can be considered 

as having both elastic and viscous components. For a purely elastic material, the strain reacts 

instantly to the stress, and when the stress is removed it also reacts instantly (Figure 2.8 (b)). 

For a perfectly viscous material, there is no instantaneous strain and elastic recovery, but a 

permanent strain (Figure 2.8 (c)). In Figure 2.8 (d), a typical response of a viscoelastic material 

subject to a constant load and to the subsequent unload, is shown. This behaviour includes 

elastic and permanent viscous strain, and the time-dependent response is regarded as creep. At 

first, an instantaneous strain occurs with loading followed by an increasing strain with a 

decreasing strain rate. 
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Figure 2.8 – With (a) a step stress excitation, (b) strain responses of idealistically elastic materials, (c) 
viscous materials and (d) viscoelastic materials. 

Figure 2.9 shows the typical response of a viscoelastic material to a relaxation test subject to a 

constant strain. The process of stress relaxation shows how the stress induced in the material 

reduces following sudden deformation, from the corresponding stress-strain data and the 

viscoelastic response of the material can be evaluated. 
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Figure 2.9 – With (a) a step strain excitation, (b) stress response of a viscoelastic material shows a 
relaxation process where the magnitude of stress decreases over time. 

For a viscoelastic material, a lag exists between the unloading and loading portions of the curve 

(Figure 2.10). Hysteresis is a measure of observing the dissipated energy for the material 

(Menard and Menard 2020). Hysteresis can be calculated from the area in grey in Figure 2.10 

and a larger hysteresis area means the greater amount of energy dissipated. 

 

Figure 2.10 – Stress-strain hysteresis loops. The grey area inside the curve represents the energy lost. 
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2.3.5.1 Linear Viscoelasticity  

Linear viscoelasticity is a special type of viscoelastic theory describing materials for which the 

relationship between stress and strain is linear. Linear viscoelasticity is commonly applied in 

computational models for polymers and biological tissues to capture their viscoelastic 

behaviour (Gidde and Pawar 2017; Qian et al. 2018). The mechanical behaviour of brain tissue 

under external forces shows viscoelastic properties and it includes elastic and viscous 

deformation which can be described by linear viscoelastic theory with the spring and dashpot 

elements (Qian et al. 2018). A linear viscoelastic model is built up by considering simple linear 

elements such as the linear elastic spring and the linear viscous dash pot, where the stress is in 

linear relation with strain and strain rate. The constitutive equations for a spring and a dashpot 

component are simply expressed by Equation 2.20 and Equation 2.21, respectively.  

 𝜎 =
1
𝐽

𝜀 Equation 2.20 

 𝜎 = 𝜂
𝑑𝜀
𝑑𝑡

 Equation 2.21 

where 𝜎 is the stress, 𝜀 is the strain, 𝐽 and 𝜂 are known as compliance (the inverse of the 

stiffness) and viscosity of fluid, respectively (Figure 2.11).  
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Figure 2.11 – (a) Spring and (b) dash-pot elements in linear viscoelastic models. 

Through different combinations of the linear elements, there are various physical models 

generated to describe the time-dependent behaviour, including the Maxwell model consisting 

of a spring and a dash pot in series and Kelvin model consisting of a spring and a dash pot in 

parallel (Figure 2.12). The corresponding constitutive equation for a Maxwell model is: 

 𝜎 + 𝜂𝐽
𝑑𝜎
𝑑𝑡

= 𝜂
𝑑𝜀
𝑑𝑡

 Equation 2.22 

and for a Kelvin model is: 

 𝜎 =
𝜀
𝐽

+ 𝜂
𝑑𝜀
𝑑𝑡

 Equation 2.23 
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Figure 2.12 – (a) Maxwell material model consisting of a spring and a dash pot in series and (b) 
Kelvin material model consisting of a spring and a dash pot in parallel. 

These simple models can only exhibit a part of viscoelastic characterization. Complicated 

models can be constructed by combining more elements. The generalized Maxwell model is 

the most widely used method for a linear model of viscoelasticity consisting of N spring-

dashpot pair branches and a main elastic branch with different parameter values (Figure 2.13). 

The isolated spring ensures the solid behaviour (an instantaneous impact response) and the 

model presumes the relaxation does not occur at a single time but at various times with spring-

dashpot branches. 
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Figure 2.13 – A schematic interpretation of the generalized Maxwell model. Image freely available in 
the public domain (Pekaje 2007). 

2.3.5.2 Prony Series 

For viscoelastic materials, the stress depends on the strain history. The stress in a viscoelastic 

model is obtained by the following constitutive formulation based on the Boltzmann’s 

superposition integral (Boltzmann 1878).  

 𝜎(𝑡) = 𝑢(𝑡 − 𝜏)
𝑑𝛿
𝑑𝜏

𝑡

−∞
𝑑𝜏 Equation 2.24 

where 𝜎 is the deviatoric stress tensor, 𝛿 is the deviatoric strain tensor and 𝑢(𝑡) is the linear 

relaxation modulus. 

During the relaxation step, the stress relaxes over time due to the viscous part of the material. 

ı

N N

N

N

ĲĲ Ĳ
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The relaxation function is widely approximated by a Prony series: 

 
𝑢(𝑡) = 𝑢𝑒 + 𝑔𝑖 exp −

𝑡
𝜏𝑖𝑖=1

 Equation 2.25 

where the N relaxation modes are determined by the corresponding Prony constants 𝑔𝑖 and 

retardation times constants 𝜏𝑖. 𝑢𝑒 is the equilibrium modulus. This method is commonly used 

to fit experimental data with a minimization algorithm to collect the parameters which are able 

to be applied in FE simulations. The initial elastic modulus is related to the equilibrium: 

 
𝑢0 = 𝑢𝑒 + 𝑔𝑖

𝑖=1

 Equation 2.26 

Then, the Prony series can also be represented in an alternative form: 

 
𝑢(𝑡) = 𝑢0 − 𝑔𝑖 1 − exp −

𝑡
𝜏𝑖𝑖=1

 Equation 2.27 

  



 

 29 

2.3.5.3 Quasi-linear viscoelasticity  

For linear viscoelasticity, the relaxation function is a function of time and limited to the linear 

viscoelastic region (LVR). Quasi-linear viscoelasticity (QLV) has been applied to fit with large 

strain experimental data and this model assumes the effects of strain and time are separable. 

The QLV model has been widely used to predict the pattern of injury in large strain conditions 

in computational modelling (Jannesar et al. 2018; Mendizabal et al. 2015). It decomposes the 

mechanical behaviour of a material into two effects including a time-independent elastic 

response and a linear viscoelastic stress relaxation response. These models can be derived from 

separate experiments. For the large strain behaviour, the QLV model can be represented with a 

hyperelastic model using elastic effect identified in section 0.  

2.3.5.4 Dynamic Mechanical Analysis 

Viscoelasticity can also be studied using dynamic mechanical analysis (DMA). DMA is a 

method which can be used to characterize a material’s viscoelastic properties over specific 

frequencies covering physiological and injury loading conditions (Bartlett et al. 2020). Unlike 

conventional stress-strain tests, an oscillatory deformation is applied to materials with a phase 

delay from the force. It is useful because it provides details of the short-term effects of loading 

on viscoelastic properties. The schematic overview of the sinusoidal load and displacement data 

is shown in Figure 2.14. 



 

 30 

 

Figure 2.14 – A schematic representation of sinusoidal load and displacement waves of a viscoelastic 
material. 

Fast Fourier transform (FFT) is applied to analyse the force and displacement waves (Figure 

2.14). The dynamic stiffness (k*) and the phase angle (δ) are characterized subsequently. The 

data-set length for force (F*) and displacement (d*) at the fundamental frequency are quantified 

and used to calculate the dynamic stiffness: 

 𝑘∗ =
𝐹∗

𝑑∗ Equation 2.28 

Viscoelastic properties of a structure can be characterized by a storage and loss stiffness 

(Aspden 1991). The storage stiffness characterizes the ability of the tissue to store energy in the 

elastic phase. The loss stiffness characterizes the ability of the tissue to dissipate energy in the 

viscous phase, mostly lost as heat. The storage (k’) and loss (k’’) stiffness regarded as the real 
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and imaginary portion of dynamic stiffness are calculated: 

 𝑘 = 𝑘∗ cos 𝛿 Equation 2.29 

 𝑘 = 𝑘∗ sin 𝛿 Equation 2.30 

The phase angle 𝛿 is the phase lag between the applied compressive force and displacement. 

For a perfectly elastic material, there is no phase lag between resulting stress and strain. For a 

purely viscous material, there is a 90-degree phase lag of stress with respect to strain. The ratio 

of loss to storage stiffness is tan delta (tan (𝛿)) which is a measure of energy dissipating in a 

system. A material with greater ratio displays the greater proportion of viscous behaviour in the 

system. The relationship between storage stiffness, loss stiffness and phase angle is shown in 

Figure 2.15. 

 tan(𝛿) =
𝑘
𝑘

 Equation 2.31 
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Figure 2.15 – Vectorial relationship between the dynamic (k*), storage (k’) and loss (k’’) stiffness with 
phase lag (δ). 

The viscoelastic properties of a material can be quantified through a shape factor (S), where the 

dynamic modulus (E*) can be calculated from the dynamic stiffness which describes 

viscoelastic properties of a structure. Correspondingly, storage (E’) and loss moduli (E’’) can 

be calculated by converting from the relevant stiffness using a shape factor: 

 𝐸 =
𝑘∗𝑐𝑜𝑠𝛿

𝑆
 Equation 2.32 

 𝐸 =
𝑘∗𝑠𝑖𝑛𝛿

𝑆
 Equation 2.33 

 𝑆 =
𝜋𝑑2

4ℎ
 Equation 2.34 

where h and d are the thickness and diameter of a cylindrical specimen, respectively. 
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Using DMA can characterize bulk mechanical properties of a material in the frequency domain. 

This flexible and automated technique compared to creep and stress relaxation tests has an 

advantage of determining viscoelastic properties more quickly and can obtain accurate data 

without very high-resolution data acquisition. DMA is widely used to map mechanical 

properties of soft viscoelastic materials, including biomaterials (Bartlett et al. 2020), bladder 

(Barnes et al. 2015) and articular cartilage (Lawless et al. 2017). 

2.4 Modelling and Mechanical Testing of Brain Tissue 

2.4.1 Finite Element Analysis and Constitutive Models 

Computational simulations of brain tissue have emerged with progress in brain mechanical 

investigations over the past decades. This type of modelling is promising as it can be applied to 

predict brain mechanics (Goriely et al. 2015) and develop a methodology to assess head injury 

(Sahoo et al. 2016). For the mild traumatic brain injury, the physiology of brain can be affected 

for hours to years and the symptoms of brain injuries may occur immediately or a few weeks 

later. Due to the existence of these uncertain cases, the predictive abilities of brain injuries 

become important and have been studied intensively leading to head simulation models (Sahoo 

et al. 2014). In addition, finite element (FE) simulations have been studied to analyze the smart 

protection systems such as impacts of a construction helmet (Wu et al. 2017) and predict brain 

disease progression and development (Weickenmeier et al. 2017). An FE model of the human 

head is shown in Figure 2.16. However, the accuracy and variety of these computational models 
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on brain tissue requires quantitative data from experiments and the development of constitutive 

models to capture the viscoelastic behaviour of this tissue.  

 

Figure 2.16 – Finite element model of human head illustrating the main anatomical features with a 
cross section (reproduced with permission from Taylor & Francis (Deck, & Willinger 2014)). 

To develop finite element models of brain tissue, the appropriate constitutive laws are essential. 

Most previous studies characterized viscoelastic behaviour in the time domain and have used a 

Prony series in the single viscous solid phase (Budday et al. 2017). Some studies applied a 

biphasic theory to describe the time-dependent response of brain tissue (Cheng and Bilston 

2007; Forte et al. 2017), which was first established for the study of articular cartilage (Mow et 

al. 1980) and then extended to integrate the strain-dependent permeability and elasticity of solid 

matrix with finite deformation (Holmes 1986). 
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For most biological materials under large strains, the theory of nonlinear elastic models is often 

adopted to describe the mechanical behaviour (e.g. hyperelastic models). Hyperelastic models 

are commonly used to simulate brain tissue (Budday et al. 2017; Li et al. 2019) or other general 

soft tissues (Lapeer et al. 2010) which shows an nonlinear stress-strain relationship at 

experimental tests under large deformation. Further, the specific component of hyperelastic 

models has been determined following comparison of different constitutive models (e.g. neo-

Hookean, Mooney-Rivlin, Gent or Ogden) (Rashid et al. 2013). Among these models, Ogden 

models have been used for various biological tissues (Jannesar et al. 2018; Li et al. 2019), and 

tend to better map the non-linear stress-strain curve. 

Regarding head injuries, except “quasi-static” and time-dependent loading conditions, the brain 

could also experience dynamic impact in the frequency domain where the strong shaking force 

occurs within the skull (Elinder et al. 2018). Therefore, the frequency-dependent properties of 

brain tissue are vital in head computational simulations when the dynamic mechanical response 

is analysed. However, the application of constitutive laws describing the frequency-dependent 

viscoelastic behaviour of brain tissue in compression is limited.  
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2.4.2 Mechanical Testing of Brain Tissue 

The mechanical characterization of brain tissue has been the focus of several studies. However, 

the obtained results are not always consistent across different studies due to the complexity of 

the soft tissue. Further, a wide range of loading conditions and protocols have been performed 

on brain tissue and there is lack of a standard testing method. Most protocols analyse brain 

tissue within the time domain and with “quasi-static” test conditions. The effect of strain rate 

on mechanical properties of porcine brain tissue has been analysed by indentation tests (Qian 

et al. 2018). Unconfined compression experiments have been performed to investigate the 

porous properties of the bovine white matter using a poro-viscoelastic model (Cheng and 

Bilston 2007). The influence of heterogeneity on porcine brain tissue was studied through 

tensile tests (Velardi et al. 2006). Recently, the mechanical behaviour and regional properties 

of brain tissue have been investigated through the combination of compression, shear and 

tensile tests under multiple loading conditions (Budday et al. 2017). In addition, the mechanical 

properties of brain tissue have been previously investigated in the frequency domain. Dynamic 

frequency sweep tests have been performed to characterize material properties of human brain 

(Fallenstein et al. 1969) and nonlinear constitutive models for bovine brain (Darvish and 

Crandall 2001), mostly conducted in shear. These studies have quantitatively measured 

mechanical properties of brain tissue (Table 2-1). In addition, the compressive loading plays an 

important role in head trauma as many deformations of initial impact is compressive (Bar-

Kochba et al. 2016; Young et al. 2015). The brain could also experience the compressive waves 
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during the course of head impact (Morse et al. 2014). However, the effect of dynamic 

viscoelastic characterization of the brain tissue through dynamic mechanical analysis (DMA) 

under compression has not been quantified and only one dynamic oscillatory strain study of 

compression load can be found, described in a review paper where fifty years of brain tissue 

mechanical testing were investigated (Chatelin et al. 2010). DMA is a versatile, flexible and 

automated technique to map the bulk mechanical properties of soft viscoelastic materials. It can 

determine both the elastic and viscous components of a material through compressive 

movement to collect comprehensive mechanical characterization of brain tissue.  
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Table 2-1 – Mechanical testing of brain tissue from literature. 

Testing Method Model Main Findings Limitations Study 

Indention test Porcine 
Shear modulus from 0.3 kPa to 0.7 
kPa, with the strain rate fluctuating 

from 0.002 s-1 to 0.017 s-1 

Limited to interregional 
variation of brain tissue 

(Qian et al. 
2018) 

     

Combination of 
shear, 

compression 
and tension tests 

Human 

One-term Ogden model can 
represent the hyperelastic behaviour 
with a shear modulus of 0.4 to 1.4 

kPa 

No viscoelastic models 
to describe relaxation 

response 

(Budday et al. 
2017) 

     

Shear test Porcine 

The maximum shear stress at strain 
rates of 30, 60, 90 and 120/s was 
1.15 ± 0.25, 1.34 ± 0.19, 2.19 ± 

0.225 and 2.52 ± 0.27 kPa (mean ± 
SD) 

Estimation of material 
properties was based on 

mixture of white and 
grey matter 

(Rashid et al. 
2013) 

     

Compression 
test 

Bovine 

The stress–strain behaviour at high 
strain rates reveals a significant rate 
dependency of the grey matter and 

white matter 

No relaxation tests were 
conducted to derive 

viscoelasticity  

(Pervin and 
Chen 2009) 

     

Tensile test Porcine 

The tensile engineering stress at 
30% strain was 3.1 ± 0.49, 4.3 ± 

0.86, 6.5 ± 0.76 kPa (mean ± SD) at 
strain rates of 30, 60 and 90/s 

Limited to homogenous 
deformation due to the 
bonding of brain tissue 

(Rashid et al. 
2014) 
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Dynamic shear 
test 

Human 
The storage modulus lies between 

0.6 to 1.1 kPa and loss modulus lies 
between 0.35 to 0.6 kPa 

Only white matter of 
brain tissue was tested 

(Fallenst.Gt et 
al. 1969) 

     

Oscillatory 
shear test 

Human
/ 

Porcine 

The storage modulus increased 
from 2.1 to 16.8 kPa and the loss 

modulus increased from 0.4 to 18.7 
kPa between 0.1 and 6300 Hz. No 
significant difference between the 
viscoelastic behaviour of porcine 

and human brain white matter 

The presented results 
were based on limited 

amount of brain samples 

(Nicolle et al. 
2004) 

Many previous studies have selected animal brains to conduct in vitro tests as a substitute for 

human brains because the former is more readily available. The human brain samples were 

found to be 29% stiffer than the porcine brain samples through shear stress relaxation (Prange 

and Margulies 2002). Human brain samples were shown to be 40% stiffer than bovine samples 

using the same testing method (Takhounts et al. 2003). These experiments were performed in 

the time domain with stress-strain methods while the results in the frequency domain were 

different. Galford and McElhaney (Galford and Mcelhaney 1970) found, from vibration 

experiments, the dynamic storage and loss moduli of monkey brain tissue to be 1.4 and 2 times 

higher than that of human brain tissue, respectively. However, through oscillatory shear tests 

the moduli of human and porcine brain tissue were found to be similar (Nicolle et al. 2004). 

Therefore, there are similarities reported in previous studies on the mechanical response of 

brain tissue between human and porcine, implying that porcine brains may be used as models 

for human brains (Rashid et al. 2012). 
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2.4.3 Effect of Testing Condition  

Testing conditions and protocols in the research of material properties have a significant 

influence on experimental results. The complex shear modulus of porcine brain tissue at 5% 

applied strain was found to be lower than at 2.5% strain (Arbogast et al. 1997). A similar trend 

was identified that the variations of shear modulus on bovine brain tissue are relevant to strain 

(Darvish and Crandall 2001). The contact stiffness of bovine samples was observed to have a 

linear relationship with the indenter size (Budday et al. 2015). In addition, the variations are 

also affected by the factors of sample species, tissue heterogeneity and even environmental 

temperature (Rashid et al. 2012). 

2.4.4 Comparison of Time and Frequency Domain Characterization  

The mechanical characterization of brain tissue has been generally analysed in the frequency 

or time domains. Frequency-dependent dynamic modulus is defined as the ratio of force 

amplitude to displacement amplitude over a range of frequencies and provides information for 

both elastic and viscous components of biological tissues. Time-dependent relaxation modulus 

describes the phenomenon of viscous effect of a material where stress decreases under constant 

strain. Brain injuries may be induced by angular, shear and translational force. Oscillations of 

the head leading to brain shaking within the skull can also produce brain trauma (Laksari et al. 

2015). Some studies investigated brain tissue in the time domain (Velardi et al. 2006) while 

dynamic sweep tests on brain tissue in the frequency domain have also been performed (Darvish 
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and Crandall 2001). Although a range of dynamic mechanical data are available for various 

materials in the literature, it has rarely been applied in modelling to analyse and design 

structures, mainly because models are often solved under steady state conditions providing 

limited information about the stiffness of tissues.  

Viscoelastic characterization can be implemented either in the time or the frequency domain 

and these models are capable of describing the mechanical properties of a material from both 

testing domains. Based on the equivalent mathematical equations including integral and 

differential theory with shared linear viscoelastic material parameters described in detail in 

section 2.3.5, it should be possible to link between time dependent and frequency dependent 

viscoelastic properties (Tschoegl 2012). Even though frequency dependent properties and 

corresponding viscoelastic models of brain tissue have been recently studied (Li et al. 2020), it 

remains unclear whether such data can be used in computational models to predict mechanical 

behaviour under various loading conditions such as under time-dependent loading. It is crucial 

to understand the relationship between different testing methods on material properties of brain 

tissue because it enables the viscoelastic properties of the brain to be measured under realistic, 

dynamic conditions and makes this information available to existing models which predict 

trauma. 
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2.5 Chapter Summary 

This background chapter summarizes modelling of brain tissue and its related injuries. Different 

types of traumatic brain injury, which are a major cause of death, are presented and can be 

caused by external dynamic forces. Finite Element simulations have been widely performed to 

predict and analyse brain injuries, so quantitative results from experiments are required to 

improve these models. Dynamic mechanical analysis is a dynamic method which can be used 

to measure the viscoelastic properties of a material over a range of frequencies under various 

testing conditions. The mechanical characterization of brain tissue has been generally analysed 

in the frequency and time domain. Understanding the relationship between the time and 

frequency dependent properties can make the most of existing data and convert the mechanics 

of the brain under dynamic conditions to enable mathematical modelling in a time domain. 

In the next chapter, the frequency-dependent mechanical properties of brain tissue have been 

studied extensively by compressive DMA under various testing conditions. Indenters with 

varying diameters were used to study the effect on viscoelastic properties under a sinusoidally 

varying displacement with varying mean displacements.  
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3 Frequency Dependent Viscoelastic Properties of Porcine Brain 

Tissue 

3.1 Introduction 

Brain tissue, as discussed in the Background chapter, is considered as one of the most vulnerable 

organs in the human body. Although the brain is well protected by the skull, damage 

experienced by brain tissue has been linked to the mechanism of loading (Taylor et al. 2017), 

such as the effect of strain rate (Qian et al. 2018), loading deformation conditions (MacManus 

et al. 2017) and shear oscillation of load (Darvish and Crandall 2001). Additionally, regarding 

head injuries, the brain could experience dynamic loading conditions such as shaken baby 

syndrome (SBS) where the violent shaking occurs with the head moving backwards and 

forwards (Elinder et al. 2018). Its material properties have been widely investigated in shear, 

but there are potential differences which exist in loading protocols between shear and 

compression tests. The compressive force is also important in the analysis of brain injuries, yet 

detailed dynamic measurements relevant to compressive strains are lacking (Chatelin et al. 

2010). 

Different testing conditions can have significant influences on experimental results. While 

viscoelastic properties of brain tissue have been characterized, the effect of indenter size and 

mean indentation depth on dynamic properties such as storage and loss moduli has not been 

assessed by compressive DMA. The severity of brain injuries is also relevant to the strain rate 
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and the magnitude of the displacement of brain away from an initial centre line (Maas et al. 

2008; Pfister et al. 2003). Therefore, the understanding of frequency-dependent properties per 

external loading condition, such as indenter size or strain is important. 

The aim of the work presented in this chapter was to characterize the macroscopic frequency 

dependent viscoelastic properties of porcine brain tissue using DMA under compression. The 

variation of dynamic stiffness properties was assessed by comparing different indenter sizes 

and indentation depths. The storage and loss moduli were also analysed over a range of loading 

frequencies. 

3.2 Materials and Methods 

3.2.1 Specimen Preparation 

Four half porcine brains under 8 months old were obtained from a supplier (Dissect Supplies, 

Kings Heath, Birmingham, UK). Following arrival in the laboratory the samples were wrapped 

in tissue paper soaked in Ringer’s solution (Oxoid Ltd, Basingstoke, UK) and then stored at - 

40 °C in a freezer in double heat-sealed plastic bags (Li et al. 2020; Mahmood et al. 2018). 

From previous studies, such freezing treatment does not change the mechanical properties of 

biological tissues (Szarko et al. 2010). Before each mechanical test, a half brain was taken out 

from the freezer and placed in a fridge, thawed in Ringer’s solution overnight at around 4 °C 

ahead of dissection and preparation for mechanical testing. 
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Ten test specimens which comprised both white and grey matter were obtained from the four 

half porcine brains. Each specimen was tested for different scenarios described in section 3.2.4 

to collect adequate data for statistical analysis, which is consistent to a previous study where 

the same brain specimen was tested under multiple loading modes (Budday et al. 2017). In 

order to be able to understand the effect of frequency on viscoelastic properties, it is necessary 

for the frequency test to be performed on the same samples, which is consistent to previous 

studies (Barnes et al. 2016; Budday et al. 2017).After the cerebellum, spinal cord and medulla 

oblongata were removed, the cerebral hemi- spheres were mainly composed of the frontal, 

parietal and occipital lobes and cut in the coronal plane using a surgical scalpel (Swann-Morton 

Limited, Sheffield, UK). Specimens were dissected into cylindrical shaped samples (Figure 3.1) 

through the anterior-posterior direction. The brain samples were 7 ± 1 mm (mean ± deviation) 

in thickness and 28 ± 1 mm in diameter measured using a Vernier calliper (Draper Tools Ltd, 

Hampshire, UK) shown in Figure 3.2.  
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Figure 3.1 – A half porcine brain before dissection. (a) an anatomy of brain in coronal plane showing 
the cerebrum, cerebellum, medulla oblongata and spinal cord. (b) From the view of top, the cerebral 
sample was mainly made of the frontal, parietal and occipital lobes.  
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Figure 3.2 – A representative image of a test brain specimen. The dimension of each specimen was 
measured before mechanical testing. 

3.2.2 Experimental Device 

In this study, the macroscopic mechanical response of brain tissue was the main focus and the 

brain tissue is considered as the soft tissue constrained by the skull. The confined container was 

designed and manufactured, with the same diameter of 28 mm to the tested brain samples 

(Figure 3.3). The selection of confined testing is based on the nature of the boundary conditions 

at the skull/brain interface. 
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Figure 3.3 – A custom-designed container with diameter of 28 mm for compression testing. 

To investigate the impact of indenter size on the mechanical properties of brain tissue, three 

circular flat indenters with diameters of 8, 12 and 16 mm were manufactured to compress brain 

samples in dynamic mechanical testing (Figure 3.4). The indenter sizes used were large enough 

to ensure the homogenous behaviour of tissue during the process of testing.  



 

 49 

 

Figure 3.4 – Three circular flat indenters with diameters of 16 mm, 12 mm and 8 mm. 

3.2.3 Preliminary Testing 

The brain tissue is considered extremely soft and due to the high stress relaxation nature, 

displacement control in DMA testing was preferred. A sinusoidally varying displacement was 

applied to the samples to perform preliminary tests. 

The cylinder brain specimens were tested from 0.1 to 35 Hz and 35 to 0.1 Hz with a pre-cycling 

at 5 Hz to investigate whether the order of the testing alter the measured mechanical properties 

of brain tissue and whether the preconditioning cycle is necessary. Three samples were tested 

with three different mean displacements of 20% specimen height (Figure 3.5), 15% specimen 

height (Figure 3.6) and 10% specimen height (Figure 3.7), respectively. 
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Figure 3.5 – Storage (k’) and loss (k’’) stiffness against frequency under a 20% specimen height mean 
displacement. The range of tested frequency was between 0.1 and 35 Hz. The In refers to an increasing 
tested frequency and De refers to decreasing tested frequency. 
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Figure 3.6 – Storage (k’) and loss (k’’) stiffness against frequency under a 15% specimen height mean 
displacement. The range of tested frequency was between 0.1 and 35 Hz. The In refers to an increasing 
tested frequency and De refers to decreasing tested frequency. 
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Figure 3.7 – Storage (k’) and loss (k’’) stiffness against frequency under a 10% specimen height mean 
displacement. The range of tested frequency was between 0.1 and 35 Hz. The In refers to an increasing 
tested frequency and De refers to decreasing tested frequency. 

From the preliminary tests, the preconditioning cycle of 5 Hz was recorded, and it was seen that 

pre-cycling had effects on the mechanical properties of brain tissue as the relevant results for 

storage and loss stiffness differed from the general trend. Preliminary tests also showed that the 

results were similar whether the specimen was tested from 0.1 to 35 Hz or 35 to 0.1 Hz. 

Therefore, in subsequent tests, an order of increasing frequency was used. The brain samples 

were tested under a dehydrated condition in the preliminary testing. However, there was 

adhesive contact between the brain sample and indenter leading to different mechanical 

properties. Thus, the brain samples were kept hydrated during the following mechanical testing. 
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3.2.4 Porcine Brain Dynamic Experiment 

Ten brain specimens were placed in a 28 mm diameter custom-designed container and 

compressed using a circular flat indenter. Three different indenter diameters of 8, 12 and 16 

mm were used during the dynamic testing (Figure 3.8). To minimize the friction between the 

brain specimens and the compression indenter, samples were hydrated with Ringer’s solution 

before each mechanical test. All samples were tested by applying a sinusoidally varying 

displacement with a mean displacement (MD) of 1.4 mm (20% of the specimen height) and an 

amplitude of 0.14 mm, i.e. between 1.26 and 1.54 mm, over the frequency range from 0.1 to 35 

Hz in 14 steps. The acquisition frequency at 35 Hz is 5 kHz. An example of the force against 

displacement data is shown in Figure 3.9. The frequency range of 0.1 to 35 Hz covers most of 

the loading frequencies to which the brain might be exposed during physiological and traumatic 

loading (Laksari et al. 2015). For mild traumatic brain injuries (mTBI), oscillatory force with 

approximate 20 Hz could be possible cause and the highest frequency of 35 Hz applied in testing 

is relevant to diffuse axonal injury (DAI) (Rashid et al. 2013). For the 16 mm diameter indenter 

two further mean displacements of 1.05 mm (15% of the specimen height, with an amplitude 

of 0.105 mm) and 0.7 mm (10% of the specimen height, with an amplitude of 0.07 mm) were 

investigated (Table 3-1). The mean displacement range covered mechanical levels of brain 

tissue from spontaneous recovery to irreversible injury (Thibault et al. 1990; Zou and 

Schmiedeler 2008). Between each test, the brain specimens were irrigated with Ringer’s 

solution to keep hydrated. Before the data collection procedure, a preconditioning cycle of 5 
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Hz was applied (Barnes et al. 2016; Wilcox et al. 2014) following the same displacement 

parameters detailed above. Preconditioning is a well-established process for the mechanical 

testing of biological tissue. A previous study has performed similar preconditioning cycles on 

human brain to ensure a repeatable mechanical response (Budday et al. 2017). By analogy, 

quasi-static tests use preloading on bovine brain to ensure a consistent and comparable starting 

point for test (Cheng and Bilston 2007). Preconditioning cycles are needed to counter the 

artefacts which occur in mechanical behaviour from the fact that ex vivo tissue has been excised. 

The thawed tissue is loaded initially and following a few preconditioning cycles, the tissue then 

behaves consistently. 

Table 3-1 – Testing protocol for sequential mechanical testing. Ten brain specimens were tested under 
multiple loading modes. 

 Indenter Diameter (mm) Mean Displacement (% of h) Amplitude (mm) 

1 8 20%h 0.14 

2 12 20%h 0.14 

3 16 20%h 0.14 

4 16 15%h 0.105 

5 16 10%h 0.07 

h, specimen height 
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Figure 3.8 – Compressive testing setup for the porcine brain specimens including the customized 
container and indenter. 

The frequency-dependent data of each brain sample were collected and for different scenarios 

described in Table 3-1, the corresponding average dynamic response was calculated with mean 

value and standard deviation. The mean mechanical responses of brain tissue were further used 

to curve fit with equations described in section 3.3. This would lead to less understanding of 

coefficient sensitivity compared to fit equations to each sample. 
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Figure 3.9 – Representative load displacement experimental data, from multiple cycles, for a given 
sample at 22 Hz. 

A Bose ElectroForce 3200 (Bose Corporation, ElectroForce Systems Group, Minnesota, USA) 

testing machine operated using WinTest Dynamic Mechanical Analysis software (Bose 

Corporation, ElectroForce Systems Group, Minnesota, USA) was used to determine the 

viscoelastic properties of the brain tissue samples; the set-up configuration is displayed in 

Figure 3.10. This approach has been previously used to test biological and synthetic materials 

(Baxter et al. 2017; Lawless et al. 2017). A 225 N load cell was used which measures force with 

a resolution of 0.002 N over a wide range of frequencies. The Wintest DMA Analysis software 

uses a fast Fourier transform (FFT) to analyse the force and displacement waves. The dynamic 

stiffness (k*) and the phase angle (δ) were characterized subsequently. Dynamic stiffness was 

determined as the ratio of force amplitude to displacement amplitude. The phase angle was 
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calculated as the phase difference between the force and displacement. The ratio of loss to 

storage stiffness (k’’/k’) as the tanδ is a measure of energy dissipating in a system. A material 

with greater k’’/k’ ratio displays the greater proportion of viscous behaviour in the system. The 

method the software used is described in detail in section 2.3.5. The storage (k’) and loss 

stiffness (k’’) were calculated using Equation 3.1 and Equation 3.2. 

 𝑘 = 𝑘∗ cos 𝛿 Equation 3.1 

 𝑘 = 𝑘∗ sin 𝛿 Equation 3.2 

Considering the effect of the indenter size, storage (E’) and loss moduli (E’’) were calculated 

by converting from the relevant stiffness using a shape factor (S) calculated using Equation 

3.4 and Equation 3.5 (Fulcher et al. 2009). The shape factor for cylindrical samples can be 

calculated from Equation 3.3. 

 𝑆 =
𝜋
ℎ

𝑑
2

2

 Equation 3.3 

 𝐸 =
𝑘
𝑆

 Equation 3.4 

 𝐸 =
𝑘
𝑆

 Equation 3.5 

where h is the sample thickness, d is the diameter of a specimen. In this instance, the diameter 

d was considered to be equivalent to the diameter of the indenter. 
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Figure 3.10 – The experimental set-up of a full testing system shows the application of the Bose 
ElectroForce 3200 connected to WinTest DMA software. 

3.2.5 Data Analysis 

Sigmaplot Version 13.0 (Systat Software Inc., London, UK) was used to perform regression 

analysis for the curve fit of stiffness and modulus against frequency. The relationship between 

brain specimens in terms of one variable (i.e. indenter size or mean displacement) were 

analysed by a one-way analysis of variance method (ANOVA). It would provide statistical 

results at various tested frequencies for three indenter sizes or mean displacements. A Kruskal-

Wallis ANOVA on ranks was used if the normality test (Shapiro-Wilk) failed (p < 0.05). If 

ANOVA showed a statistically significant difference (p < 0.05), a Student-Newman-Keuls 

Method (SNK) was used for all pairwise comparisons of testing groups which would be 

significant when p < 0.05. 
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3.3 Results 

Figure 3.11 (a) shows storage stiffness properties for three individual brain samples. The storage 

stiffness for all tested samples increased with frequency initially, then decreased at higher 

frequencies. The trend of storage stiffness can be characterized by a logarithmic curve fit 

(Equation 3.6) from 0.1 to 18 Hz and a second order polynomial fit (Equation 3.7) up to the end 

frequency sweep. 

 𝑘′ = 𝐴 ln 𝑓 + 𝐵   𝑓𝑜𝑟 0.1 < 𝑓 < 18 Equation 3.6 

 𝑘′ = 𝐶𝑓2 + 𝐷(𝑓) + 𝐹   𝑓𝑜𝑟 18 ≤ 𝑓 ≤ 35 Equation 3.7 

where, 𝑘  is the storage stiffness, f is frequency and A, B, C, D and F are empirically derived 

storage constants by the least-squares fit method, which are summarized in Table 3-2. 

Figure 3.11 (b) shows loss stiffness properties for three individual brain samples. The loss 

stiffness increased with increasing frequency and was lower than storage stiffness for most 

frequencies tested while for the end testing frequency, the storage and loss stiffness was found 

to be similar. The trend of loss stiffness can be characterized by a second order polynomial fit 

across all frequencies tested (Equation 3.8) which has the same equation to the second part of 

storage with different constants. All constants were found to be statistically significant (p < 

0.05) indicating there is a non-zero correlation between the independent variable and the 

dependent variable. 
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 𝑘 = 𝐻(𝑓2) + 𝐼(𝑓) + 𝐽   𝑓𝑜𝑟 0.1 ≤ 𝑓 ≤ 35 Equation 3.8 

here, k’’ is the loss stiffness, f is frequency and H, I and J are empirically derived loss constants 

by the least-squares fit method summarized in Table 3-2. 
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Figure 3.11 – Variation of stiffness with frequency for three individual samples from a single 
hemisphere tested using a 16 mm-diameter indenter and under a 20% specimen height mean 
displacement. (a) storage stiffness and (b) loss stiffness. 

For specimens tested under various mean displacements, there was a statistically significant 

increase in storage stiffness (p < 0.05) of 1.6 (35 Hz) to 2.4 (0.1 Hz) times as the mean 

displacement increased from 10%h to 20%h (Figure 3.12). The loss stiffness with 20%h MD 

was significantly higher than with 10%h MD (p < 0.05) while there was no significant 

difference (p > 0.05) for other two pairs (i.e. 10%h and 15%h MD; 15% and 20% MD). For the 

average storage and loss stiffness, the mean displacement of 20%h (229.7 N/m and 140.3 N/m) 

was greatest, followed by the mean displacement of 15%h (171.2 N/m and 111.0 N/ m) and the 

mean displacement of 10%h (133.6 N/m and 87.4 N/m) had the lowest value. For the generation 

of standard deviation, it is one measurement on each of the ten brain samples to give ten 

measurements. 
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Figure 3.12 – Variation of stiffness with frequency for brain tissue tested under three different mean 
displacements of 10%, 15% and 20% of the specimen height with the 16 mm diameter indenter. (a) 
mean storage and (b) mean loss stiffness (N/m). In (a), L1 represents a logarithmic curve fit (Equation 
3.6) from 0.1 to 18 Hz and L2 represents a second order polynomial fit (Equation 3.7) up to the end 
frequency sweep. In (b), a logarithmic curve (Equation 3.8) was fitted across all frequencies tested. 
Error bars represent standard deviation. 
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For specimens tested using varying indenter sizes, the average stiffness (Figure 3.13) against 

frequency follows the same trend of individual samples. The dynamic storage and loss stiffness 

response of brain tissue was dependent on the indenter size, increasing with indenter diameter 

(𝑝 < 0.05). The storage stiffness increased up to 258.4 N/m at a diameter of 16 mm, 144.2 N/m 

at a diameter of 12 mm and 67.9 N/m at a diameter of 8 mm and then experienced a decreasing 

trend at higher frequencies. The loss stiffness had an increasing trend across all tested 

frequencies from 39.6 N/m to 227.7 N/m at a diameter of 16 mm, 21.5 N/m to 123.0 N/m at a 

diameter of 12 mm and 10.2 N/m to 58.7 N/m at diameter of 8 mm. Increasing the indenter 

diameter led to an increase of stiffness (k’ and k’’) by 1.83 r 0.05 (mean r deviation) from D = 

12 mm to D = 16 mm, 2.12 r 0.04 from D = 8 mm to D = 12 mm and 3.88 r 0.12 from D = 8 

to D = 16 mm. 
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Figure 3.13 – Variation of stiffness with frequency of brain tissue tested under three indenter diameters 
of 16 mm, 12 mm and 8 mm with the mean displacement of 1.4 mm (20% of the specimen height). (a) 
mean storage and (b) mean loss stiffness (N/m). In (a), L1 represents a logarithmic curve fit (Equation 
3.6) from 0.1 to 18 Hz and L2 represents a second order polynomial fit (Equation 3.7) up to the end 
frequency sweep. In (b), a logarithmic curve (Equation 3.8) was fitted across all frequencies tested. 
Error bars represent standard deviation. 
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Figure 3.14 shows the mean storage and loss moduli against frequency for all tested samples. 

The storage modulus increased up to 9.14 kPa with an average value of 8.09 kPa and loss 

modulus ranged between 1.38 kPa and 7.91 kPa with an average value of 4.85 kPa. The 

converted results of the average stiffness from brain specimens tested under three indenter 

diameters of 16 mm, 12 mm and 8 mm were not significantly different (𝑝 > 0.05). 

  



 

 66 

 

Figure 3.14 – Variation of modulus with frequency. (a) mean storage and (b) mean loss modulus (kPa) 
of brain tissue obtained from three indenter sizes with the mean displacement of 1.4 mm (20% of the 
specimen height). In (a), L1 represents a logarithmic curve fit (Equation 3.6) from 0.1 to 18 Hz and L2 
represents a second order polynomial fit (Equation 3.7) up to the end frequency sweep. In (b), a 
logarithmic curve (Equation 3.8) was fitted across all frequencies tested. Error bars represent standard 
deviation. 
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From the samples tested, the mean tanG (i.e. ratio of k’’/k’) of brain tissue showed an increasing 

trend with frequencies, ranging from 0.32 to 0.98 (Figure 3.15). No significant differences in 

tanG were found for different diameters and mean indentations (𝑝 > 0.05). 

 

Figure 3.15 – Variation of tan (G) with frequency for all the brain samples tested. Error bars represent 
standard deviation. 
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Table 3-2 – Curve fit results derived from mean stiffness against frequency plots of Figure 3.12 for 
three mean displacements and Figure 3.13 for three indenter diameters. Curve fit results also derived 
from mean storage and loss modulus against frequency plots of Figure 3.14 (𝑝 ≤ 0.05 for all trends). 
Coefficients are in N/m for stiffness while they are in kPa for modulus. 

h, specimen height  

  

    Stiffness constants (N/m)  Modulus 

Constants 

(kPa) 

Constant   Mean displacement (% of h)  Indenter diameter (mm)  

  10%h 15%h 20%h  8 12 16  

A Storage  20.61 24.15 26.57  7.37 14.57 26.57  0.95 

B Storage  94.23 124.79 181.91  45.91 99.36 181.91  6.29 

  R2 0.98 0.98 0.99  0.99 0.99 0.99  0.99 

            
C Storage  -0.069 -0.096 -0.092  -0.011 -0.048 -0.092  -0.003 

D Storage  2.73 3.82 2.91  0.38 1.83 2.91  0.089 

F Storage  129.39 160.79 235.76  64.61 126.85 235.76  8.36 

  R2 0.99 0.99 0.99  0.99 0.99 0.99  0.99 

            

H Loss  -0.063 -0.08 -0.102  -0.026 -0.052 -0.102  -0.003 

I Loss  5.66 7.02 8.39  2.16 4.46 8.40  0.30 

J Loss  26.83 36.38 52.96  13.23 28.39 52.96  1.82 

  R2 0.99 0.99 0.99  0.99 0.99 0.99  0.99 
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3.4 Discussion 

This chapter has presented work that used dynamic mechanical analysis under compression to 

demonstrate that brain tissue is viscoelastic with both storage and loss stiffness, and moduli, 

being frequency dependent. Further, the viscoelastic storage and loss stiffness are dependent on 

the indentation mean displacement and the indenter size, increasing with higher mean 

displacement and larger indenter diameters. The viscoelastic storage and loss moduli are 

independent on the indenter size. For all samples tested under different testing protocols, the 

trends for storage and loss stiffness were similar. Many other studies used the similar curve fit 

method to define viscoelastic material properties including heart chordae (Wilcox et al. 2014) 

and mitral valve (Baxter et al. 2017). In this study, the storage stiffness, and moduli of porcine 

brain showed an increasing trend at initial frequencies and then a decreasing trend at higher 

frequencies. This finding is consistent with previous results for porcine bladder (Barnes et al. 

2015), mitral valve leaflet (Baxter et al. 2017), and human/porcine brain (Weickenmeier et al. 

2018), for the latter magnetic resonance elastography (MRE) was performed to describe the 

material properties. Loss stiffness of porcine brain exhibited an increasing trend with frequency; 

a similar tendency has been found in brain tissue by dynamic testing in shear (Hrapko et al. 

2006) and MRE methods (Guertler et al. 2018). In spite of differences in testing devices and 

experimental conditions, the general trends were consistent with previous studies. The dynamic 

stiffness properties (Figure 3.11) varied with frequencies for the three samples, dissected from 

the same cerebral hemisphere which implies sample variability. 
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The storage and loss stiffness of porcine brain tissue decreased with lower mean displacement 

of the indenter. The size of indenter significantly altered the storage and loss stiffness of brain 

tissue, both of which decreased with decreasing indenter diameter which can be found in bovine 

brain under indentation testing (Budday et al. 2015). Furthermore, the change of stiffness 

throughout the tested frequencies was significant. For brain samples tested under the three 

indenter diameters, the average minimum values of storage and loss stiffness were 

approximately 48% and 17% of the corresponding maximum values, which were consistent to 

three indenter diameters. For brain samples tested under three mean displacements, however, 

the change of stiffness varied from 48% to 34% and 17%–11% with lower mean displacement 

for storage and loss stiffness, respectively. This indicates that the mean displacement has a 

greater effect on the frequency-dependent trend of stiffness as compared to the indenter size. 

The storage and loss modulus were derived from the relevant stiffness. Compared to stiffer 

biomaterials such as articular cartilage (Espino et al. 2014) in compression, adhesion in soft 

biological materials plays a significant role in contact mechanics affecting the impacting area 

and inducing mechanical errors (Carrillo et al. 2005; Kohn and Ebenstein 2013). To avoid this 

issue, a circular flat indenter was selected (Barnes et al. 2016; Budday et al. 2015) rather than 

a hemispherical indenter (Shepherd et al. 1999). When the custom-designed flat indenter was 

performed on brain tissue, the impacting area remains constant over the whole sinusoidal 

displacement range (Blum and Ovaert 2012; Cheng et al. 2000). As the thickness of each sample 

was controlled, the modulus of the specimen is considered to be inversely proportional to the 
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square of the indenter diameter and proportional to the specimen stiffness. Some previous 

studies (Budday et al. 2015; Liu et al. 2009a) have indicated that modulus is independent of the 

indentation depth where the contact stiffness assumed as the ratio of the linear stress-strain 

curve is constant. In DMA testing the strain-rate is continuously changing during oscillation at 

a frequency so the dynamic stiffness might vary with different indentation depth. A range of 

shape factors are available in literature for indentation studies (Delaine-Smith et al. 2016). 

Although different shape factors will alter the predicted values across studies, it is worth noting 

that as it is a constant any predicted trends are not affected within a study; instead, predictions 

between studies may be offset. 

Many studies have measured mechanical properties for porcine brain tissue. Rashid found the 

elastic secant modulus to be 19–65.2 kPa (Rashid et al. 2012), Budday found the modulus of 

white matter tissue to be 1.604 kPa (Budday et al. 2015), while Miller found the instantaneous 

Young’s modulus was 3.24 kPa (Miller et al. 2000). The average dynamic modulus through the 

frequency tested for the cylindrical samples in this study was 9.4 kPa that is comparable to the 

range studied by Tamura et al. where the initial elastic modulus was found to be between 5.7 

and 23.8 kPa (Tamura et al. 2007). However, all of these studies were performed in the time 

domain (i.e. static stress-strain experiments) which are difficult to compare the results of this 

investigation because dynamic modulus obtained in the frequency domain is different to 

Young’s modulus.  
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Many soft biological tissues have been tested under oscillatory shear methods to analyze the 

viscoelastic properties (Arbogast and Margulies 1997). In comparison to a study (Fallenst.Gt et 

al. 1969), where human brain tissue was tested in vitro at 9–10 Hz with shear storage modulus 

ranging between 0.6 and 1.1 kPa and loss modulus ranging between 0.35 and 0.6 kPa, the axial 

compressive moduli reported in this chapter were higher at comparable frequencies. However, 

any comparison is limited by the potential differences in loading protocols between shear and 

compression tests.  

This study was based on the viscoelastic properties of brain which combined white and grey 

matter. There is future opportunity to investigate the regional variation of brain tissue under 

dynamic mechanical analysis. Indeed, some studies have found variation between the white and 

grey matter (Nicolle et al. 2004; Prange and Margulies 2002) and the interregional 

heterogeneities of brain tissue (Elkin et al. 2011). These are described in detail in section 2.2.3. 

However, the results presented in this chapter provide a useful measure of the mechanical 

behaviour of brain tissue. Average material properties of brain tissue have often been studied, 

e.g. by Rashid and Qian through compression (Rashid et al. 2012) and indentation tests (Qian 

et al. 2018), respectively. Generally, white matter with aligned fibre tracts is considered more 

anisotropic than grey matter. 

Realistic viscoelastic properties of brain are important for the computational modelling of the 

brain. Finite element (FE) models of brain provide a non-invasive way to analyse the brain 
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response to head impacts (Koncan et al. 2019). The viscoelastic parameters as material 

constants in simulations were mostly taken from indentation (MacManus et al. 2017), stress-

strain and stress relaxation tests (Cheng and Bilston 2007; Forte et al. 2017) where an N-term 

Prony series was used to fit the experimental data. The frequency-dependent properties of brain 

tissue are also important in FE simulations to analyse the mechanical response under dynamic 

loading. A comparison between time and frequency dependent properties of brain tissue in the 

previous literature is limited due to different experimental protocols (Chatelin et al. 2010), 

however, a recent study found that it is possible to predict the frequency-dependent properties 

based on experiments in the time domain (Zupančič 2018). A linear viscoelastic model was 

adopted to model biological tissues under cyclic loading, characterized by the storage and loss 

moduli. Further, methods to convert data from the frequency domain to time-domain are 

reported in literature (Bartolini et al. 2018); the maximum strain rate in this study ranges 

approximately between 7 and 14/s. Based on this approach, the frequency dependent values 

presented in this chapter could be used to fit viscoelastic constitutive models such as through 

Prony series representations following adaptation of the storage and loss moduli obtained to 

represent the mechanical behaviour of brain tissue. 

A limitation of this study is that a small amount of geometric variability occurred when 

preparing samples. The extremely soft nature of brain tissue also leads to some deformation of 

specimens under their own weight during the preparation (Budday et al. 2017). However, the 

diameter of samples was measured using callipers prior to testing, this ensured that the resultant 
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moduli accounted for any variability in specimen shape during preparation. Further, the indenter 

sizes in this study are large enough to ensure the homogenous behaviour of tissue (Samadi-

Dooki et al. 2018). 

In this study, a freeze-thaw protocol has been used to store specimens. Although there are some 

limitations when comparing frozen to fresh soft biological tissue, the data from the results 

showed extensive overlap between the frozen and fresh samples (Clark 1973). Previous studies 

reporting tests on porcine liver (Wex et al. 2014), ligaments (Woo et al. 1986) and aortic 

specimens (O’Leary et al. 2014) revealed limited changes in mechanical properties of biological 

materials. Further, the method of freezing preservation including freezing temperature may be 

more critical to mechanical properties (Aidulis et al. 2002; Goh et al. 2010). In this study, the 

storage protocol of tissue at - 40 °C, consistent with established procedures to maintain initial 

stress-strain response of soft tissues (Baxter et al. 2017; Chow and Zhang 2011). 
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3.5 Chapter Summary 

It can be concluded that porcine brain tissue shows frequency dependent-viscoelastic properties 

over the range of frequencies tested, 0.1–35 Hz. The experiments focus on the macrostructural 

mechanical response of brain tissue. Variation of viscoelastic properties with anatomical 

location, and white/grey matter was not the focus of this chapter. The storage stiffness exhibited 

a combination of a logarithmically increasing trend and a quadratic decreasing trend against 

frequency while the loss stiffness exhibited a quadratic increasing trend against frequency. The 

curve-fitted equations with parameters showed good correlation (p < 0.05 and R2 > 0.9) to the 

experimental trends. The dynamic stiffness properties were affected by different indenter sizes 

and indentation depths. The storage and loss stiffness decreased with lower mean displacement 

of the indenter. The indenter with a larger diameter led to higher storage and loss stiffness while 

the storage and loss moduli were constant with a mean value of 8.09 kPa and 4.85 kPa, 

respectively. These findings could be used in diagnosis of traumatic brain injury and head 

simulations in frequency domain. 

In the next chapter, the mechanical behaviour of brain tissue has been studied to characterize 

the regional and directional response of the tissue. In addition, the material parameters were 

obtained using a linear viscoelastic model, using a Prony series in the frequency domain and a 

numerical model to simulate the compressive mechanical behaviour of bovine brain tissue 

across a range of frequencies.   
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4 Dynamic mechanical characterization and viscoelastic modeling of 

bovine brain tissue 

4.1 Introduction 

Computational models can provide a non-invasive method by which to analyse brain injuries 

and predict the mechanical response of the tissue. The brain injuries are expected to be induced 

by dynamic loading, mostly in compression and measurement of dynamic viscoelastic 

properties are essential to improve the accuracy and variety of finite element simulations on 

brain tissue. The accuracy and variety of these computational models requires quantitative data 

from experiments and are also dependent on the constitutive models used within simulations. 

Previous studies on brain tissue have investigated elastic modulus (Rashid et al. 2014) and the 

microstructural heterogeneity including white and grey matter (Budday et al. 2015) through 

stress-strain tests. It is important to understand the connection between the macroscopic 

mechanical behaviour and the regional microstructure for accurate prediction of injury across 

the brain structure. In addition, fibre orientation of white matter has been considered 

transversely isotropic because of the highly aligned axonal fibres (Feng et al. 2017). While 

mechanical properties of brain tissue have been characterized, the regional and directional 

effects on frequency-dependent viscoelastic properties have not been assessed by compressive 

DMA. 
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In this chapter, the frequency-dependent viscoelastic properties of bovine brain tissue were 

characterized using Dynamic Mechanical Analysis. The white matter (corona radiata and 

corpus callosum) and grey matter (cortex and basal ganglia) were investigated under 

compression over a range of loading frequencies to characterize the regional and directional 

properties. The storage and loss moduli were analysed, and a frequency-dependent constitutive 

model was calibrated using experimental data, to characterize the mechanical behaviour of 

brains. 

4.2 Materials and Methods 

4.2.1 Specimen Preparation 

Eight bovine brains under 12 months of age, were obtained from a supplier (Samples for 

Schools https://www.samples-for-schools.co.uk/, UK). After delivery to the laboratory, the 

brain samples were wrapped in tissue paper and soaked in Ringer’s solution (Oxoid Ltd, 

Basingstoke, UK). Samples were then stored at −40 °C in a freezer in double heat-sealed plastic 

bags (Lawless et al. 2017; Li et al. 2020). When the brains were required for testing, samples 

were taken out from the freezer and left in Ringer’s solution for 12 hours ahead of dissection. 

From previous studies, freeze-thaw treatment does not change the mechanical properties of 

biological tissue (Chan and Titze 2003; Wex et al. 2014). 

After the cerebellum and brainstem were removed, the cerebrum was cut in the coronal plane 

https://www.samples-for-schools.co.uk/


 

 78 

using a surgical scalpel (Swann-Morton Limited, Sheffield, UK). To investigate the regional 

properties of brain tissue, the specimens were collected from the four locations of cerebrum 

including corona radiata and corpus callosum, cortex and basal ganglia (Figure 4.1). This 

categorization is consistent with previous studies (Budday et al. 2015; Budday et al. 2017). A 

circular trephine with the diameter of 8 mm was used through the anterior-posterior direction 

to extract homogeneous specimens into cylindrically shaped samples (Figure 4.2). Samples 

from the region of corpus callosum were extracted in the two orientations (i.e. (D1) orthogonal 

to nerve fibre bundles in the sagittal plane and (D2) aligned with the nerve fibre tracts in the 

coronal plane) to investigate the directional properties (Figure 4.3). The cerebral cortex is 

usually folded, and this circumvolution leads to a greater surface area for grey matter. The soft 

nature of brain tissue resulted in some deformation of specimens under their own weight during 

the preparation, which may have increased the variability of the dimension measured. Brain 

samples were 5 ± 0.5 mm (mean ± deviation) in thickness and 8 ± 0.1 mm in diameter, measured 

prior to testing using a Vernier calliper (Draper Tools Ltd, Hampshire, UK). 
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Figure 4.1 – Locations of specimen extraction from four brain regions, including corona radiata and 
corpus callosum, cortex and basal ganglia. 

 

Figure 4.2 – (a) A bovine brain obtained for mechanical testing. (b) Representative brain specimen in 
cylindrical shape of 8 ± 0.1 mm diameter. 
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Figure 4.3 – Schematic graphic of loading direction. Samples from the region of corpus callosum were 
tested orthogonal to nerve fibre direction D1 and aligned with the nerve fibre tracts D2. Vector f 
represents the nerve fibre direction. 

4.2.2 Preliminary Testing 

In chapter 3, the porcine brains were tested to determine the general mechanical behaviour in 

macroscope where the brain samples were mixture of white and grey matter. As the experiments 

in this chapter were designed to investigate the mechanical behaviour of brain tissue regarding 

regional and directional properties, the type of specimens, locations and orientation were 

delicately considered. The bovine brains were larger than porcine brains and the mass of bovine 

brains was approximately 400 g being almost twice that of porcine brains generating a greater 

area which could be seen clearly during the dissection. It was then selected as the material to 

extensively determine the brain mechanical properties. A circular trephine with a diameter of 8 
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mm was used to extract specimens. Previous studies performed similar cutting protocols to 

obtain the specific brain samples on porcine (Li et al. 2019) and human brain (Budday et al. 

2017) with comparable diameters. 

Using DMA, a sinusoidal deformation was applied on the samples and in order to accurately 

characterize dynamic mechanical properties, the material samples were required to be deformed 

at an amplitude which is within the linear viscoelastic region. Before a sequence of dynamic 

mechanical tests on brain samples was undertaken, amplitude sweep tests were performed to 

determine the linear region. In the sweep test, the frequency of the test was fixed at 1 Hz and 

the amplitude is incrementally increased from 10 𝜇𝑚  to 90 𝜇𝑚  in steps of 10 𝜇𝑚 . To 

analyze the linear viscoelastic region, the storage modulus was plotted against the amplitude 

(Figure 4.4) and the end of the linear region was found when the initial storage modulus changes 

by 5 %. The same method has been used in various other studies (Jiang and Lu 2009; Kaboorani 

and Blanchet 2014) to determine the LVR of viscoelastic materials.  
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Figure 4.4 – Representative storage modulus of brain tissue tested against amplitude which is as the 
control variable. 

Figure 4.4 shows the typical result of storage modulus versus amplitude for brain tissue. When 

the amplitude increased to 60 𝜇𝑚, the corresponding storage modulus was below the 5% line 

from the initial value. So, in the following mechanical tests on brain samples, the amplitude 

was chosen as 50 𝜇𝑚. Within the linear viscoelastic region, the response of the material was 

considered to be independent of the magnitude of the deformation and the structure of a material 

was assumed to be undamaged. 
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4.2.3 Dynamic Mechanical Analysis Frequency Sweep  

The Bose testing machine was equipped with a 225 N load cell with a resolution of 0.002 N 

and a high accuracy displacement sensor with a resolution of 0.001 mm. A Fast Fourier 

Transform (FFT) was used to analyse the displacement sine wave input and load sine wave 

output. The phase angle (δ) was determined as the phase relationship between the force and 

displacement and the software calculates the dynamic stiffness (k*). The WinTest DMA 

software calculated storage (E’) and loss (E’’) modulus by converting the relevant stiffness and 

phase data through a shape factor (S) as shown in Equation 4.1 and Equation 4.2. The shape 

factor for cylindrical specimens was calculated from Equation 4.3. The method the software 

used is described in detail in section 2.3.5. To measure how energy dissipates in the tissue 

structure, the tan delta (tanδ) as the ratio of loss to storage modulus (E’’/E’) was calculated for 

every frequency at different brain regions. The viscous response of a material increases with 

greater E’’/E’ ratio in a system. 

 𝐸 =
𝑘∗ cos 𝛿

𝑆
 Equation 4.1 

 𝐸 =
𝑘∗ sin 𝛿

𝑆
 Equation 4.2 

 𝑆 =
𝜋𝑑2

4ℎ
 Equation 4.3 

where d is the diameter and h is the thickness of a specimen. 
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4.2.4 Experimental Setup  

The specimens were placed in the sample holder after dissection and preparation (Figure 4.5). 

Amplitude sweep tests were performed at 1 Hz for about 680 cycles to determine the amplitude 

range within the linear viscoelastic region of the material, followed by the subsequent 

mechanical tests. All samples were compressed with a mean displacement of 1 mm (20% of a 

specimen height) using a circular flat indenter, followed by a sinusoidally varying displacement 

with an amplitude of 0.05 mm (i.e. between 0.95 and 1.05 mm), across a frequency sweep 

between 0.5 and 35 Hz in 12 steps for approximate 5000 cycles. The range of frequencies is 

relevant to the strain rates comparable with previous studies on bovine (Cheng and Bilston 

2007), porcine (Prange and Margulies 2002) and human brains (Forte et al. 2017). Prior to the 

data collection procedure, a preload of 10 mN was initially applied to specimens to ensure a 

zero configuration and a preconditioning cycle of 1 Hz with 0.05 mm amplitude was then 

performed to stabilize the samples (Ohman et al. 2009). All tests were performed at room 

temperature with the sampling rate of acquisition at 5 kHz for the highest frequency tested. A 

total of 96 brain samples were tested from four locations containing 23 corona radiata samples, 

32 corpus callosum samples, 20 basal ganglia samples and 21 cortex samples (Table 4-1). The 

specimens were hydrated with Ringer’s solution before each test to minimize the friction 

between the compressed platen and the brain samples. During preliminary investigations the 

order of the tested frequencies did not alter the measured mechanical properties. 
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Figure 4.5 – Experimental setup for the compressive DMA of bovine brain tissue specimens. 

Table 4-1 – Test matrix for the dynamic compression of the brain specimens. 

Location Direction Number of tissue specimens tested 

White matter 

Corona radiata D1 23 

Corpus callosum 

D1 22 

D2 10 

Grey matter 

Basal ganglia D1 20 

Cortex D1 21 
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4.2.5 Data Analysis 

To determine the effect of the regionally and directionally frequency-dependent behaviour of 

brain tissue, Sigmaplot Version 14.0 (Systat Software Inc., London, UK) was used to perform 

the statistical comparisons. For the generation of error bars, it is one measurement on each 

sample. For each measurement, a frequency sweep was performed in 12 steps for approximate 

5000 cycles providing the values of storage and loss modulus at each tested frequency. Storage 

and loss modulus and phase angle were compared at each frequency. A one-way analysis of 

variance (ANOVA) was performed to investigate significant differences. When ANOVA 

showed a statistically significant difference (p < 0.05), a Tukey HSD post-hoc analysis was 

used for all pairwise comparisons between various brain regions and directions in compressive 

DMA testing. The results for all analysis were considered statistically significant with a 

probability value of less than 0.05. 

4.2.6 Constitutive Modeling 

For viscoelastic materials, the deviatoric stress is not linearly related to the deviatoric strain. To 

characterize the viscoelastic behaviour of brain tissue, linear viscoelastic (LV) theory was 

applied to model the strain rates of brain injury (Qian et al. 2018) or combined with other 

constitutive laws (Forte et al. 2018; Wang and Sarntinoranont 2019). The linear viscoelastic 

model can be effectively conducted in commercial Finite Element software with the 

experimental parameters. In a range of small deformations, the stress in this model was obtained 



 

 87 

by the following constitutive formulation based on the Boltzmann’s superposition integral 

(Boltzmann 1878). 

 
𝜎(𝑡) = 𝑢(𝑡 − 𝜏)

𝑑𝜀
𝑑𝜏

𝑑𝜏
𝑡

−∞

 Equation 4.4 

where σ is the deviatoric stress tensor, ε is the deviatoric strain tensor and u(t) is the linear 

relaxation modulus. In this equation, the strain ε(t) is considered to be zero for t ≤ 0, and it 

could be transferred in the Laplace form by assuming the imaginary variable s to jω as: 

 𝑢∗(𝑗𝜔) = 𝑠𝑢(𝑠) =
𝜎(𝑠)
𝛿(𝑠)

=
𝜎(𝑗𝜔)
𝛿(𝑗𝜔)

 Equation 4.5 

where 𝑢 , 𝜎  and 𝛿  are relaxation modulus, stress and strain tensor in the Laplace domain, 

respectively. 𝜔 is a single angular frequency, the real part relevant to the actual force and 𝑗 =

√−1 standing for the imaginary number. 𝑢∗(𝑗𝜔) is the complex modulus which can be given 

by the dynamic storage 𝑢  and loss 𝑢  modulus as: 

 𝑢∗ = 𝑢 + 𝑗𝑢  Equation 4.6 

In the physical models, a discrete relaxation function is considered with the expression as a 

discrete set of exponential decays defined in Equation 4.7. Using this discrete function with 

Equation 4.4 to Equation 4.6, the complex modulus can be defined from Equation 4.8. Further, 

the dynamic storage and loss modulus of the generalized Maxwell model can be obtained as 

given by Equation 4.9 and Equation 4.10 in the Prony series form. 
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𝑢(𝑡) = 𝑢𝑒 + 𝑔𝑖exp (−𝑡/𝜏𝑖)

𝑖=1

 Equation 4.7 

 
𝑢∗(𝑗𝜔) = 𝑢𝑒 + 𝑔𝑖

𝜏𝑖𝑗𝜔
1 + 𝜏𝑖𝑗𝜔

𝑖=1

 Equation 4.8 

 
𝑢 (𝜔) = 𝑢𝑒 + 𝑔𝑖

(𝜔𝜏𝑖)2

1 + (𝜔𝜏𝑖)2
𝑖=1

 Equation 4.9 

 
𝑢 (𝜔) = 𝑔𝑖

𝜔𝜏𝑖

1 + (𝜔𝜏𝑖)2
𝑖=1

 Equation 4.10 

where the N relaxation modes are determined by the corresponding Prony constants 𝑔𝑖 and 

retardation times constants 𝜏𝑖. 𝑢𝑒 is the equilibrium modulus. 

The nonlinear least square method is an optimization technique that can be used to build 

regression models with nonlinear features, and it has been previously carried out when 

analysing brain mechanical behaviour (Budday et al. 2017; Cheng and Bilston 2007). 

Compared to linear least squares method, nonlinear regression is much more flexible in the 

shapes of the curves fitted. To estimate the parameters of a frequency dependent discrete 

relaxation function showing nonlinear features, a non-linear least squares algorithm was 

conducted, and the optimization constraint were iteratively updated until the coefficients of the 

Prony coefficients 𝑔𝑖 and retardation times 𝜏𝑖 converged with optimality tolerance of three 

decimal accuracy. The average experimental results for various regions or directions were used 

to calibrate the constitutive models based on the average square of deviation between the 
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predicted dynamic modulus and the measured dynamic modulus from experiment through 

Equation 4.11. The long-term modulus was obtained from the preliminary studies with low 

frequency testing conditions. The Prony coefficients 𝑔𝑖  and retardation times 𝜏𝑖  were 

initially assumed, based on the exponentially ascending order of the control variables. A 

minimum of three pairs of Prony constants were required to represent the viscoelastic behavior 

of the brain tissue (Cheng and Bilston 2007) and from the preliminary studies, a four term Prony 

series was needed for these frequency-dependent linear viscoelastic models (Miller 1999): 

 
min(𝑔, 𝜏) =

𝑢 (𝜔𝑘)
𝑢𝑘

− 1
2

+
𝑢 (𝜔𝑘)

𝑢𝑘
− 1

2

𝑘=1

 Equation 4.11 

where 𝑢 (𝜔𝑘), 𝑢 (𝜔𝑘) are the calculated values from Equation 4.9 and Equation 4.10, and 

𝑢𝑘, 𝑢𝑘  are the measured data at M frequencies 𝜔𝑘. The goodness of fit of data to the given 

model was assessed using the coefficient of determination R2.  

The mean frequency-dependent behaviour of brain tissue for different regions and orientations 

was each simulated in COMSOL Multiphysics 5.5 (COMSOL, Stockholm, Sweden). The FE 

axisymmetric models were created using a cylindrical geometry with the average diameter and 

height of tested samples (8 mm in diameter, 5 mm in height), as shown in Figure 4.6. A mesh 

convergence analysis was conducted to validate the mesh density with the final mesh size of 

0.2 mm. The top and bottom platens were modelled as rigid surfaces. The contact analysis 

between the platens and brain tissue specimens was performed in the simulation and the 
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relevant friction coefficient of 0.1 in the lateral direction was adopted, which is within the range 

estimated for the soft tissue (Rashid et al. 2012). A Poisson’s ratio of 0.49 for an incompressible 

material was selected to avoid any singularity conditions during the FE implementation 

(Maikos et al. 2008). The brain specimens were compressed by the top platen, subsequently 

followed by a harmonic perturbation of 0.05 mm over a range of frequencies, 0.5–35 Hz, while 

the bottom platen was set as a fixed constraint. 

 

Figure 4.6 – Numerical simulation of the brain specimens under dynamic compressive testing in (a) FE 
axisymmetric and (b) partial revolution 2D configurations to easily identify the cross-section. 
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4.3 Results 

4.3.1 Regional Dependency of Viscoelasticity  

The mean storage and loss modulus of brain specimens showed an increasing trend with 

increasing frequency (Figure 4.7 (a) and (b)) for the different regions; the average loss modulus 

was lower than storage modulus for each tested frequency. To determine the regional properties 

of brain tissue, the data lines for corpus callosum region were derived from both D1 and D2 

orientations while for other regions, the data lines were derived from D1 orientation. The tested 

specimens from the corpus callosum showed the greatest mean storage and loss modulus (18.19 

kPa and 7.82 kPa, respectively) over frequencies, followed by the specimens from the corona 

radiata (12.28 kPa and 6.08 kPa, respectively). The specimens tested from the cortex had 

marginally higher mean storage and loss modulus (8.86 kPa and 3.85 kPa, respectively) than 

from the basal ganglia with a lowest value of 7.05 kPa and 3.02 kPa, respectively.  
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Figure 4.7 – Frequency-dependent viscoelastic properties for brain tissue tested from the different 
regions of corona radiata, corpus callosum, basal ganglia and cortex. Mean (a) storage and (b) loss 
modulus, against frequency from experiments with relevant linear viscoelastic model predictions and 
the trendlines are data predicted following simulations which were solved at loading frequencies from 
0.5 Hz up to 35 Hz in incremental steps of 0.1 Hz; (c) mean tan delta against frequency. Error bars 
represent 95% confidence intervals. 

The storage and loss modulus in the corpus callosum were significantly greater (𝑝 < 0.05) than 

in the basal ganglia and the cortex across all frequencies tested; the moduli in the basal ganglia 

and the cortex were not significantly different from each other. There was also no significant 

difference between the storage and loss modulus in the corona radiata and the corpus callosum 

(𝑝 > 0.05); however, from the frequency of 7 Hz a significant difference of storage modulus 

was considered between them (Figure 4.8 (a) and (b)). For all increments of frequencies, the 

storage modulus in the corona radiata, the cortex and the basal ganglia was not significantly 

different, while the loss modulus in the corona radiata was significantly larger than in the basal 

ganglia. 
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Figure 4.8 – Grouped vertical bars of frequency-dependent viscoelastic properties (mean ± 95% 
confidence intervals) for brain tissue tested from the different regions of corona radiata, corpus 
callosum, basal ganglia and cortex. The statistical results (a) the storage modulus showed the two 
types of significant differences i.e. from 0.5 to 7 Hz and up to the end frequency sweep, (b) the loss 
modulus showed the same significant differences of regions over all frequencies tested; (c) the tan 
delta indicated significant differences were only found at 3 and 7 Hz; however, at the other frequency 
increments from 10 Hz there were the same significant differences of regions. In each regional group, 
viscoelastic properties not sharing a letter are considered to be significantly different (Tukey HSD). 

From the specimens tested, the average tan delta (i.e. ratio of E’’/E’) of brain tissue for each 

region showed an increasing trend with increasing frequency (Figure 4.7 (c)). The corona 

radiata exhibited the greater viscous behaviour with the tanG ranging from 0.29 ± 0.03 (mean 

± 95 % confidence intervals) to 0.67 ± 0.04; other regions showed a similar ability to dissipate 

energy with a mean value of around 0.41 across all frequencies. For the brain specimens tested 

below 10 Hz, the significant differences were only found between the tan delta in the corona 

radiata and the corpus callosum (𝑝 < 0.05) at 3 and 7 Hz, respectively. From the frequency of 
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10 Hz, the tan delta in the corona radiata was significantly greater than in other regions (Figure 

4.8 (c)). 

4.3.2 Directional Dependency of Viscoelasticity 

The effect of the nerve fibre direction on frequency-dependent viscoelastic properties was 

investigated. The viscoelastic storage and loss moduli exhibited an increasing trend with 

frequencies for different directions. The brain specimens from corpus callosum tested 

orthogonal to the fibres (D1) showed a slightly lower mean storage and loss modulus (Figure 

4.9 (a) and (b)). For the dynamic viscoelastic behaviour of brain specimens, no significant 

directional dependency on the storage modulus was revealed over all frequencies tested while 

the loss modulus was found significantly larger at 1.8 to 1.6 times (Figure 4.10 (a) and (b)) for 

specimens tested aligned to the fibre tracts (D2) below the frequency of 7 Hz (𝑝 < 0.05). The 

trend of tan delta was consistent with the specimens tested in different nerve fibre orientations 

(Figure 4.9 (c)) and no significant differences (𝑝 > 0.05) were found over the frequency range 

tested (Figure 4.10 (c)). 
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Figure 4.9 – Frequency-dependent viscoelastic properties for brain tissue tested from the different 
directions: orthogonal to nerve fibre bundles (D1) and aligned with the nerve fibre tracts (D2). Mean 
(a) storage and (b) loss modulus, against frequency from experiments with relevant linear viscoelastic 
model predictions and the trendlines are data predicted following simulations which were solved at 
loading frequencies from 0.5 Hz up to 35 Hz in incremental steps of 0.1 Hz; (c) mean tan delta against 
frequency. Error bars represent 95% confidence intervals. 
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Figure 4.10 – Grouped vertical bars of frequency-dependent viscoelastic properties (mean ± 95% 
confidence intervals) for brain tissue tested from the different directions: orthogonal to nerve fibre 
bundles (D1) and aligned with the nerve fibre tracts (D2). The statistical results (a) the storage 
modulus showed no significant differences of directions over all frequencies tested; (b) the loss 
modulus showed a significant difference only from 0.5 to 7 Hz; (c) the tan delta showed no significant 
differences were found across frequencies. In each directional group, viscoelastic properties not 
sharing a letter are considered to be significantly different (Tukey HSD). 
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4.3.3 Frequency-Dependent Characterization 

The mean dynamic viscoelastic properties of brain tissue against frequency are shown in Figure 

4.11 for all 96 tested samples. The storage modulus increased from 7.39 kPa to 16.19 kPa with 

a mean value of 12.41 kPa and the loss modulus ranged between 1.87 kPa and 9.70 kPa with a 

mean value of 5.54 kPa. The average tan delta of brain tissue exhibited an increasing trend with 

frequencies ranging from 0.26 to 0.60, with an average value of 0.43. 
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Figure 4.11 – Frequency-dependent viscoelastic properties for brain tissue for all specimens tested. 
Mean (a) storage and (b) loss modulus, against frequency from experiments with relevant linear 
viscoelastic model predictions and the trendlines are data predicted following simulations which 
were solved at loading frequencies from 0.5 Hz up to 35 Hz in incremental steps of 0.1 Hz; (c) mean 
tan delta against frequency. Error bars represent 95% confidence intervals. 
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4.3.4 Viscoelastic Model Fitting 

The mean results of the experimental storage and loss moduli of the brain tissue tested from 

various regions, directions and all brain specimens were used to obtain the optimized 

parameters of a four term Prony series in the frequency-dependent linear viscoelastic model 

(Table 4-2) with the corresponding coefficients of determination. The long-term modulus 𝑢𝑒 

was found to be 83.9 Pa. The number of four pairs of Prony constants were adequate to keep 

the simulation accuracy in the models. For the linear viscoelastic model in the frequency 

domain, the FE simulations were able to represent the mechanical behaviour of brain tissue 

adequately from the mean storage and loss modulus (the trendlines from Figure 4.7, Figure 4.9 

and Figure 4.11). 
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Table 4-2 – Constitutive parameters of frequency-dependent linear viscoelastic model derived from the 
mean dynamic viscoelastic properties over all frequencies for various regions, directions and general 
material characterization. 

  Linear viscoelastic model parameter  

 Prony constant (kPa)  Relaxation time constant (s)  

 𝑔1 𝑔2 𝑔3 𝑔4  𝜏1 𝜏2 𝜏3 𝜏4 R2 

Corona radiata 5.80 3.54 4.93 58.75  6.59×101 2.57×10-1 1.87×10-2 7.58×10-4 0.994 

Corpus callosum 9.60 4.56 6.08 40.70  2.34×101 1.74×10-1 1.89×10-2 1.51×10-3 0.998 

Basal ganglia 3.59 1.76 2.14 15.44  5.00×104 2.09×10-1 2.38×10-2 1.63×10-3 0.998 

Cortex 4.57 1.88 3.05 18.85  5.00×104 2.15×10-1 2.36×10-2 1.71×10-3 0.996 

D1 8.53 3.77 4.91 29.36  1.12×101 1.60×10-1 2.02×10-2 1.98×10-3 0.994 

D2 11.94 6.42 8.60 97.49  1.12×101 1.95×10-1 1.71×10-2 7.21×10-4 0.997 

General 6.38 3.11 4.29 31.57  1.17×101 2.00×10-1 2.01×10-2 1.37×10-3 0.998 
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4.4 Discussion 

The research presented in this chapter has demonstrated the effect of regions and directions on 

the frequency-dependent viscoelastic properties of brain tissue using Dynamic Mechanical 

Analysis. As the compressive loading plays a significant role in head trauma (Bar-Kochba et al. 

2016; Young et al. 2015) and the brain could be exposed to compressive waves during the 

course of head impact (Morse et al. 2014), it is essential to determine the compressive behaviour 

of the brain tissue over a range of frequencies. The dynamic storage modulus and tan delta from 

four regions showed different types of significant differences to various frequency ranges while 

the corresponding dynamic loss modulus exhibited the same significant difference of regions 

over all frequencies tested. No significant mechanical directional dependency was found in 

frequency-dependent viscoelastic properties except in loss modulus. For all specimens tested 

under the frequency sweep, the trends of dynamic properties were similar, with properties 

increasing with frequency. Preconditioning tests were performed in this study which is a well-

established process for the mechanical testing of biological tissue. Similar preconditioning 

behaviour was conducted on human brain (Budday et al. 2017) and bovine brain (Cheng and 

Bilston 2007) to ensure a repeatable mechanical response. The experimental results were used 

to establish viscoelastic constitutive models following the adaptation of storage and loss 

modulus against frequency to capture the compressive mechanical response of brain tissue. 

The dynamic mechanical properties of bovine brain tissue showed regional dependency. 
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Specimens tested from the corpus callosum exhibited a consistently significant difference with 

larger storage and loss modulus and tan delta than specimens tested from the basal ganglia, over 

all frequencies. In general, the dynamic storage and loss moduli of white matter (15.72 kPa and 

7.09 kPa) in this study were greater than that of grey matter (7.97 kPa and 3.45 kPa). A similar 

trend for white and grey matter was found by some studies on human (Finan et al. 2017) and 

bovine brains (Budday et al. 2015) using indentation tests, but other studies reported the 

opposite trend on rat (Christ et al. 2010) and porcine brain tissue (Prange and Margulies 2002); 

all of these experiments were performed in the time domain with stress-strain testing. These 

discrepancies may be induced by the potential differences in loading protocols and the 

extremely sensitive properties of brain tissue. Further, recent investigations on magnetic 

resonance elastography (MRE) (Bayly et al. 2012; Clayton et al. 2012) in the frequency domain 

showed the modulus of white matter was approximately 2 times greater than that of grey matter, 

which is comparable to the results presented in this chapter. Although MRE has been used to 

characterize brain tissue in vivo (Weickenmeier et al. 2018), current applications are limited to 

accurately quantify regional dependent properties within the small structure of the tissue 

specimens. 

Significant directional dependency of the dynamic viscoelastic properties was only observed 

for the loss modulus from 0.5 to 7 Hz in the corpus callosum, considered as a highly anisotropic 

brain region, with larger values aligned to the nerve fibre tracts. Some studies reported a similar 

trend on lamb brain white matter through dynamic shear tests (Feng et al. 2013) and porcine 
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brain tissue through tensile tests (Velardi et al. 2006). However, for the storage modulus and 

tanG, no significant differences were found over all tested frequencies and the bovine brain 

tissue is more likely to be isotropic, which is consistent to the previous studies on mouse brain 

tissue through indentation tests (MacManus et al. 2017) and bovine brain through compression 

(Pervin and Chen 2009). 

The mean dynamic viscoelastic properties of bovine brain tissue are frequency-dependency and 

the storage modulus was constantly higher than the loss modulus for every frequency. In 

comparison to the work presented in chapter 3 on the general viscoelastic properties of porcine 

brain tissue where the mean storage and loss moduli were 8.09 kPa and 4.85 kPa, respectively, 

the bovine brain results in this chapter had higher dynamic moduli at comparable frequencies. 

However, the average tan delta of porcine brain showed higher range (0.34 to 0.98) than that of 

bovine brain presented in this chapter, which indicated a greater proportion of viscous 

behaviour in porcine brain tissue. In addition, animal brain tissues were tested using dynamic 

shear (Boudjema et al. 2017) and tensile methods (Barnes et al. 2015) to analyse the oscillatory 

characterization. Despite comparisons being limited by the potential discrepancies in the types 

of loading and tested specimen species, the general trends of the dynamic storage and loss 

moduli against frequency were found to be similar. 

Due to the ethical restrictions and difficulties in obtaining human brain specimens, animal 

brains are often adopted for many mechanical experiments (Brands et al. 1999; Miller et al. 
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2000; Pan et al. 2018). The discrepancies for the mechanical properties between human and 

animal brain tissue has been controversial. Human brain tissue was previously reported with 

stiffer mechanical properties than porcine brain tissue (Prange et al. 2000), while the similar 

dynamic moduli of human and porcine brain tissue were found through dynamic shear tests 

(Nicolle et al. 2004) and the dynamic mechanical behaviour in different animal brain tissues 

were measured to be close (Pervin and Chen 2011). From the literature, the fresh human tissue 

exhibited relatively softer mechanical properties than samples obtained following human 

autopsy (Hohmann et al. 2019) which implied the animal brain tissue may generate more 

presentative data. Further, the anatomical structure between animal and human brains is 

analogous. Based on this similarity, the dynamic mechanical properties of bovine brains tested 

in this study may be used in the mechanical analysis and computational models of human brains. 

To develop the brain FE models, dynamic viscoelastic properties of brain tissue are essential. 

Regarding head injuries, the brain could experience dynamic loading conditions such as shaken 

baby syndrome (SBS) where the violent shaking occurs with the head moving backwards and 

forwards (Elinder et al. 2018). However, due to the lack of experimental data for compressive 

frequency-dependent properties of brain tissue, most simulations were applied with the 

viscoelastic models to capture brain mechanical behaviour in the time domain (i.e. stress-strain 

curves) (Li et al. 2019; Samadi-Dooki et al. 2018). The stress versus time behaviour was studied 

previously from shear, compression and tensile tests (Rashid et al. 2012; Rashid et al. 2013, 

2014) where the time dependent Prony parameters were estimated from the corresponding 
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relaxation functions. The DMA tests in this study provide critical information on the frequency-

dependent viscoelastic behaviours of brain tissue for different regions and directions, which has 

been manifested in the discrete relaxation mode of a Prony series with the exponentially 

ascending order of relaxation times. The linear viscoelastic model was previously adopted to 

replicate the mechanical response of biological material (Qian et al. 2018) with time domain 

experimental data and can also be applied to reproduce the dynamic response of a viscoelastic 

material with adaptation of the storage and loss moduli. This constitutive model could improve 

the variety and accuracy in the brain computational models to develop the prediction of 

dynamic impact of brain injuries. Although the small dynamic deformation responses of brain 

tissue were the focus of this study, there is future opportunity to investigate large strain 

behaviour based on the material parameters derived from dynamic experimental data; this 

would require further experimental work to investigate the large strain behaviour of the tissue. 

A recent study showed a numerical approach to support the linear viscoelastic interconversion 

between the time and frequency dependent material properties of porcine brain tissue, based on 

the stress relaxation experimental data (Zupančič 2018), even though the conversion of the 

frequency to the strain rate is inherently limited due to the continuously changing velocity 

during the oscillation. An optomechanical indentation method was performed with the same 

testing conditions through both the strain rate and frequency dependent approaches to indicate 

there is the great correlation between these data of different types (Bartolini et al. 2018). In 

addition, inverse FFT is able to convert the frequency function to the time function and a 
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comparison between the frequency and time dependent models becomes available. 

A limitation of this study is that a freeze-thawed treatment was applied to prepared specimens. 

The variation between frozen and fresh tissue was previously studied and the results showed 

extensive overlap (Clark 1973). In addition, limited changes were shown for mechanical 

properties on porcine liver (Wex et al. 2014), aortic tissue (O’Leary et al. 2014), and ligaments 

(Woo et al. 1986).  

For sample preparation, the presence of the convolutions within the cerebral cortex, and the pia 

mater present limitations during the extraction of specimens from the continuum of tissue from 

the cerebral cortex, additionally it is close to the sulci (i.e. the grooves which give a folded 

appearance to the brain). Although these factors may have an impact, much cortex tissue was 

also collected in the circumvoluted area mainly contributing to the testing results, with the 

magnitude of data measured and trends in this data being broadly in agreement across both 

these datasets. 
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4.5 Chapter Summary 

In conclusion, bovine brain tissue is viscoelastic with frequency-dependent storage and loss 

modulus. The dynamic mechanical tests were conducted to characterize the regional and 

directional properties of the bovine tissue throughout the range of frequencies tested. The 

viscoelastic storage and loss modulus showed an increasing trend against frequency with a 

mean value of 12.41 kPa and 5.54 kPa, respectively. In this chapter, the constitutive properties 

of bovine brain tissue for different regions of corona radiata, corpus callosum, basal ganglia 

and cortex were determined, and the frequency-dependent compressive behaviour can be 

captured adequately through a linear viscoelastic model. Applications of the brain viscoelastic 

properties include the diagnosis of brain injury, complex head computational simulations and 

the development of protection equipment. 

In the next chapter, the compressive viscoelastic properties of brain tissue have been 

investigated under time and frequency domains. The same physical conditions and theory of 

viscoelasticity is applied to estimate the prediction of viscoelastic response in the time domain 

based on frequency-dependent mechanical moduli. Storage and loss modulus were obtained 

from white and grey matter, of bovine brains, using dynamic mechanical analysis and time 

domain material functions were derived based on a Prony series representation. 
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5 Investigation of the compressive viscoelastic properties of brain 

tissue under time and frequency dependent loading conditions 

5.1 Introduction 

The mechanical characterization of brain tissue has been analysed in the frequency and time 

domain. Viscoelastic properties of biological tissue can be effectively obtained in the frequency 

domain over a wide range of frequencies and using this method with the same testing conditions 

the mechanical properties can be comprehensively compared (Bartlett et al. 2020). However, 

some numeric models of brain biomechanics have required the time-dependent relaxation 

spectrum instead of the available dynamic moduli to analyse the mechanics of brain injury 

(Forte et al. 2018; Sahoo et al. 2016). Therefore, it is crucial to understand the mechanics of the 

brain under realistic, dynamic conditions and convert it to enable mathematical modelling in a 

time domain. Frequency dependent properties and corresponding viscoelastic models of brain 

tissue have been studied in chapter 3 and chapter 4, but it remains unclear whether such data 

can be used in computational models to predict mechanical behaviour under various loading 

conditions such as under time-dependent loading. 

Comparison of the mechanical properties of brain tissue in the literature shows that there is a 

lack of standard testing protocols (Chatelin et al. 2010). Some studies investigated brain tissue 

in the time domain (Velardi et al. 2006) while dynamic sweep tests on brain tissue in the 

frequency domain have also been performed (Darvish and Crandall 2001). Although a range of 
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dynamic mechanical data are available for various materials in the literature, it has rarely been 

applied in modelling to analyse and design structures, mainly because they are not directly 

applicable to most of engineering issues and models are often solved in the time domain. 

Therefore, it is of great practical use to determine time-dependent material properties from 

frequency-dependent data obtained from mechanical testing. 

DMA has been considered as an effective technique for measuring the bulk mechanical 

properties of viscoelastic materials (Bartlett et al. 2020). This method is flexible and powerful 

to map frequency-dependent viscoelastic properties of biological tissue over a range of 

frequencies covering physiological and injury loading conditions. The relaxation modulus 

which has been widely used in simulations to describe viscous response (Qian et al. 2018) can 

be determined in the time domain, however, it is limited to the strain rate range used in 

experiments and it can be time consuming leading to long measurement trials (Zeltmann et al. 

2016). Thus, it is of value to characterize viscoelastic properties, such as the Prony series, from 

dynamic moduli which can be used to predict time-domain phenomena such as stress relaxation 

when applied to FE models. 

With DMA, the testing material should be deformed at an amplitude within the linear stress-

strain regime for characterising the bulk mechanical properties. Therefore, to characterize the 

mechanical behaviour of brain tissue over large strain conditions, using uniaxial compression, 

is necessary to complement the understanding of compressive properties on various 
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deformation conditions. Also, different material models are required to capture its mechanical 

behaviour such as hyperelastic material models. The Prony series can be combined with 

hyperelasticity to characterize the compressive viscoelastic properties of brain tissue in large 

strain (Forte et al. 2018). 

The purpose of this study was to investigate compressive mechanical properties of brain tissue 

under various loading conditions covering linear and nonlinear ranges. For linear viscoelastic 

behaviour, the viscoelastic properties obtained experimentally via dynamic mechanical analysis 

were transformed to a Prony series, for white and grey brain matter to study the relationship 

between time and frequency domains. Prony series parameters were determined using a 

constitutive model and implemented in FE analysis. The FE model was evaluated in both time 

and frequency domains against relevant experimental data. For nonlinear viscoelastic behaviour, 

the mechanical properties of brain tissue were studied under large strain, and hyperelastic and 

quasi-linear viscoelastic models were applied to describe the responses.  
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5.2 Materials and Methods 

5.2.1 Sample Preparation  

Eight whole bovine brains were obtained from animals under 12 months of age collected from 

a supplier (Samples for Schools, Portsmouth, UK), and all of the specimens were free from 

imperfections. On arrival in the laboratory, the brains were stored at -40°C wrapped in tissue 

paper soaked in Ringer’ solution (Oxoid Ltd, Basingstoke, UK) following the standard 

procedure (Li et al. 2021; Wilcox et al. 2014). Prior to the mechanical tests, brain samples were 

thawed in Ringer’ solution for 12 hours before dissection. The freeze-thaw process has not been 

found to adversely affect the mechanical properties of biological tissue (Chan and Titze 2003; 

Szarko et al. 2010). Slices of cerebrum were collected from brain tissue using a surgical scalpel 

(Swann-Morton Limited, Sheffield, UK). During the dissection, specimens were immersed in 

Ringer’s solution and a circular trephine of 8 mm diameter was applied to extract white and 

grey matter samples (Figure 5.1). The specimens of white matter were collected from regions 

of the corona radiata and corpus callosum, and the specimens of grey matter were collected 

from regions of the cortex and basal ganglia, which is in agreement with previous studies 

(Budday et al. 2017; Li et al. 2019). The variability of measured dimensions may be increased 

due to the soft nature of brain tissue which can cause deformation under its own weight in 

preparation. Prior to the mechanical tests, geometric dimensions were determined using a 

Vernier calliper (Draper Tools Ltd, Hampshire, UK). The brain samples obtained were 8 ± 0.1 
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mm in diameter and 5 ± 0.5 mm (mean ± standard deviation) in thickness.  

 

Figure 5.1 – (a) A bovine brain was obtained for dissection and cylindrical specimens were collected 
from (b) a slice of cerebrum. (c) Representative brain specimen for compressive mechanical testing. 
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5.2.2 Experimental Setup in Linear Viscoelastic Range 

Mechanical testing was conducted using a Bose ElectroForce 3200 (Bose Corporation, 

ElectroForce Systems Group, Minnesota, USA) testing machine. This approach has been 

previously used to test many biological and synthetical materials (Barnes et al. 2016; Bartlett 

et al. 2020; Jannesar et al. 2018). The brain specimens were placed in the sample container; 

force and displacement values were adjusted to be a zero. Prior to the data collection procedure, 

an upper flat indenter was lowered onto the specimen until a preload of 10 mN was observed, 

using the WinTest DMA software (Bose Corporation, ElectroForce Systems Group, Minnesota, 

USA).  

The viscoelastic characterization was investigated both in the time (using stress-relaxation) and 

the frequency domain (using DMA). To understand the effect of the testing domains on brain 

tissue, it was essential to keep the samples under the same physical conditions. For DMA, 

amplitude sweep tests were conducted at 1 Hz to determine the amplitude range within the 

linear viscoelastic region of the material. Samples were subjected to a pre-strain with a mean 

displacement of 1 mm (20% of a specimen height) and a 1 Hz pre-conditioning cycle (Cheng 

et al. 2009; Ohman et al. 2009). A sinusoidally varying displacement was then performed with 

1% dynamic amplitude between 0.95 and 1.05 mm (i.e. from peak to trough) across a frequency 

sweep of 0.5-35 Hz. This frequency range is relevant to the strain rates comparable with 

previous studies on porcine (Prange and Margulies 2002) and human brain tissue (Forte et al. 
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2017), and to which the brain might be exposed during physiological and traumatic loading 

conditions (Laksari et al. 2015). For each frequency, the sinusoidal force and displacement data 

were recorded and analysed using a Fast Fourier Transform (FFT). The data-set length for force 

(F*) and displacement (d*) at the fundamental frequency were quantified and used to calculate 

the dynamic stiffness (k*). The method the software used is described in detail in section 2.3.5. 

Then, the storage (E’) and loss (E’’) moduli were calculated by converting from the relevant 

stiffness through a shape factor from: 

 𝑘∗ =
𝐹∗

𝑑∗ Equation 5.1 

 𝐸 =
𝑘∗𝑐𝑜𝑠𝛿

𝑆
 Equation 5.2 

 𝐸 =
𝑘∗𝑠𝑖𝑛𝛿

𝑆
 Equation 5.3 

 𝑆 =
𝜋𝑑2

4ℎ
 Equation 5.4 

where h and d are the thickness and diameter of a specimen. The phase angle 𝛿 is the phase 

lag between the applied compressive force and displacement. S is the shape factor for 

cylindrical samples. Further details on the characterization are provided elsewhere (Wilcox et 

al. 2014).  

For the stress relaxation tests, specimens were subjected to a compressive strain of 0.1 and a 

relaxation step of 150 s was followed at this compression level. The process of stress relaxation 
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shows how the stress induced in the material reduces following sudden deformation, from the 

corresponding stress-strain data and the material’s viscoelastic response can be evaluated. The 

velocity of 180 mm/min was set for the compression step which was consistent with the pre-

strain step in DMA. The stress was calculated from the ratio of measured force and sample 

original cross-sectional area. 

Further, samples were subjected to a sinusoidal compression with cyclic loading at a frequency 

of 35 Hz with 0.05 mm dynamic amplitude for about 2 s to collect hysteresis loops. A lag 

between the unloading and loading portions of the curve exists for a viscoelastic material. A 

total of 55 white matter and 41 grey matter samples were tested in the frequency domain through 

DMA, and 8 white matter and 10 grey matter samples were tested through stress relaxation and 

cyclic loading measurements. All samples were tested at room temperature and hydrated with 

Ringer’s solution during the testing. The collected experimental data were initially used to 

determine the viscoelastic parameters (from frequency domain tests) and compared with FE 

models under both testing domains for validation. For clarity, a schematic showing the 

experimental design is outlined in Figure 5.2. 
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Figure 5.2 – Outline of the experimental design for this chapter in the linear range. Blue boxes denote 
workflow linked to frequency domain and white boxes denote the workflow linked to time domain. 
The number of specimens tested in DMA was 55 white matter and 41 grey matter. For stress relaxation 
and cyclic loading measurements, 8 white matter and 10 grey matter samples were tested. 

Sigmaplot version 14.5 (Systat Software Inc., London, UK) was used for statistical analysis. A 

two-way analysis of variance (ANOVA) was performed accounting for anatomical region and 

frequency with Tukey post-hoc analysis. Statistical tests were assumed to be significant at the 

5% level. The statistical approach was used to determine whether there were significant 

differences between regions of brain white and grey matter over tested frequencies which is 

consistent to a previous study (Bartlett et al. 2020) and no interactions were found for the factors 

of region and frequency.  
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5.2.3 Experimental Setup in Nonlinear Range 

To investigate the compressive properties of brain tissue in large strain, the upper plate 

compressed the specimen to the displacement of 30% of the height of the sample (i.e. 0.3 strain) 

for pre-set deformation velocity of 50 mm/min. Afterwards, a relaxation step of 150 seconds 

was applied by holding the upper plate. Engineering stress (force over the undeformed area) 

and strain (deformation over the sample initial height) were calculated for each test. The 

relaxation time indicates how fast the brain specimens dissipate stress after a sudden 

deformation and it was used to describe the viscous parts of a material. For the large strain tests, 

samples were only obtained from white matter, which can provide enough testing specimens 

with a larger area. A total of 8 brain tissue samples were tested in this method. All the stress-

strain curves with the same testing conditions were averaged to show the final trend.  

5.2.4 Constitutive Modelling 

5.2.4.1 Linear Viscoelastic Model 

Linear viscoelastic theory has been used in computational studies to analyse the patterns of 

brain injuries and the relationship between strain and stress (Budday et al. 2017; Cheng and 

Bilston 2007). In addition, this model can be effectively applied in commercial FE software. 

The time dependent response of the material is applied in the model determining the stress 

relaxation (𝜏(𝑡)) for a viscoelastic model: 
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 𝜏(𝑡) = 𝜇(𝑡 − 𝑡 )�̇�(𝑡 )𝑑𝑡
𝑡

0
 Equation 5.5 

where �̇�  is the strain rate tensor and 𝜇(𝑡)  is the time-dependent relaxation modulus. The 

generalized Maxwell model is widely used to characterize the modulus function for linear 

viscoelastic materials with a main elastic branch and N spring-dashpot pair branch shown in 

Figure 5.3. Using the Prony series, the constitutive relation of the viscoelastic response in the 

time domain is as follows: 

 
𝜇(𝑡) = 𝐺∞ + 𝑔𝑖 exp −

𝑡
𝑡𝑖𝑖=1

 Equation 5.6 

where 𝐺∞ is the equilibrium modulus, 𝑔𝑖 and 𝑡𝑖  are the relative moduli and the relaxation 

time of the Prony series for N relaxation modes where 𝑡𝑖 = 𝜂𝑖/𝑔𝑖; 𝜂𝑖 is the corresponding 

viscosity. The initial stress modulus can be obtained from the sum of 𝐺∞ and 𝑔𝑖.  

 
Figure 5.3 – A schematic interpretation of the generalized Maxwell model. 𝐺∞ is the stiffness of the 
main elastic branch, 𝑔𝑖 and 𝜂𝑖 represents the stiffness of the spring and viscosity in branch i. 𝑡𝑖  is 
the relaxation time constant of the spring-dashpot pair in branch i. 
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In the frequency domain, Equation 5.5 can be transferred to the Laplace form by considering a 

pure imaginary variable s to 𝑗𝜔 as: 

 
𝑢∗(𝑗𝜔) = 𝑠𝑢(𝑠) =

�̃�(𝑠)
𝛾(𝑠) =

�̃�(𝑗𝜔)
𝛾(𝑗𝜔) 

Equation 5.7 

where 𝑢  is the relaxation modulus, �̃�  is the stress tensor and 𝛾  is the strain tensor in the 

Laplace form. 𝜔 is an angular frequency and 𝑗 =  √−1. The complex modulus 𝑢∗ can be 

expressed from the dynamic storage modulus 𝑢  and loss modulus 𝑢  as: 

 𝑢∗ = 𝑢 + 𝑗𝑢  Equation 5.8 

A discrete relaxation spectrum is considered in physical models. The relaxation modulus 𝜇(𝑡) 

expressed above is in the form of a discrete set of exponential decays. Using this discrete 

function, the complex modulus 𝑢∗ can then be defined as: 

 
𝑢∗(𝑗𝜔) = 𝐺∞ + 𝑔𝑖

𝑡𝑖 𝑗𝜔
1 + 𝑡𝑖 𝑗𝜔

𝑖=1

 
Equation 5.9 

Thus, the Prony series representations of dynamic storage and loss modulus in the generalized 

Maxwell model can be obtained as functions of frequency: 

 
𝑢 (𝑗𝜔) = 𝐺∞ + 𝑔𝑖

(𝑡𝑖 𝜔)2

1 + (𝑡𝑖 𝜔)2
𝑖=1

 Equation 5.10 

 
𝑢 (𝑗𝜔) = 𝑔𝑖

𝑡𝑖 𝜔
1 + (𝑡𝑖 𝜔)2

𝑖=1

 Equation 5.11 

The dynamic modulus and relaxation modulus shared the coefficients. The parameters of 
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discrete frequency dependent relaxation modulus are estimated using the non-linear least 

squares fit algorithm by calibrating the constitutive models with the average experimental data 

based on the average square of deviation between the measured dynamic modulus from the 

mechanical tests and the predicted values via Equation 5.12. 

 𝑢 𝜔𝑗

𝑢𝑗
− 1

2

+
𝑢 𝜔𝑗

𝑢𝑗
− 1

2𝑚

𝑗=1

= minimized 
Equation 5.12 

where 𝑢𝑗  , 𝑢𝑗   are the measured dynamic modulus at m frequencies 𝜔𝑗  with 𝑢 𝜔𝑗   and 

 𝑢 𝜔𝑗  the predicted values calculated from Equation 5.10 and Equation 5.11, respectively. 

From here, the relaxation times 𝑡𝑖  are expected to be prescribed and the coefficients 𝑔𝑖 are 

subsequently calculated. The resulting constants are considered all positive. The spacing of 

relaxation times has been suggested around 1 logarithmic time (i.e. log10 of relaxation time) 

(Park and Schapery 1999) and negative coefficients may appear when the interval is too small 

(Friedrich and Hofmann 1983). In addition, the number N of Maxwell elements is an important 

issue for the success of the nonlinear method. A large number of relaxation modes generally 

leads to higher accuracy, but more complexity is generated and negative constants start to occur 

with ill-posed issues (Tian et al. 2015). In this study, the initial number of relaxation elements 

was empirically chosen at around ten for transmission and redundant elements can be merged 

or eliminated. From the preliminary studies, an eight term Prony series was chosen for these 

linear viscoelastic models. The goodness of fit of data to the given model was assessed using 

the coefficient of determination R2. 
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5.2.4.2 Quasi-linear Viscoelastic Model 

A quasi-linear viscoelastic (QLV) model can describe the high strain experimental data for brain 

tissue. The QLV allows the material behaviour to be divided into two responses: a time-

independent elastic response and a linear viscoelastic response. The parameters of these models 

can be obtained separately from the mechanical experiments. 

For the time-independent behaviour, a hyperelastic model was applied to describe the brain 

tissue compressive response for large deformation. The brain tissue was considered as an 

isotropic and incompressible material, which is generally characterized by a strain-energy 

function W. The strain energy density and stresses are expressed in terms of the stretch ratio 𝜆. 

The stretch ratio in a uniaxial experiment is defined as the ratio between the deformed length 

of the specimen (L) and its original length (L0). 

 𝜆 =
𝐿
𝐿0

 Equation 5.13 

Three commonly established incompressible isotropic hyperelastic models (Table 5-1) were 

fitted to average stress-strain experimental data respectively to obtain the material parameters 

used in the simulations. The constitutive models of hyperelastic models applied are described 

in detail in section 2.3.4.  
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Table 5-1 – Incompressible strain energy functions and the uniaxial stress response for each 
hyperelastic model. 𝜇0, 𝐽𝑚 and 𝛼 are the material parameters. 

Hyperelastic model Strain energy function Uniaxial stress response 

Neo-Hookean 𝑊 =
𝜇0

2
(𝐼1 − 3) 𝑆11 = 𝜇0(𝜆 − 𝜆−2) 

Gent 𝑊 = −
𝜇0

2
𝐽𝑚 ln 1 −

𝐼1 − 3
𝐽𝑚

 𝑆11 =
𝜇0𝐽𝑚

𝐽𝑚 − 𝜆2 − 2𝜆−1 + 3
(𝜆 − 𝜆−2) 

Ogden 𝑊 =
2𝜇0

𝛼2 (𝜆1
𝛼 + 𝜆2

𝛼 + 𝜆3
𝛼 − 3) 𝑆11 =

2𝜇0

𝛼
𝜆𝛼−1 − 𝜆− 𝛼

2+1  

The parameters from these three material models can be determined by fitting the compressive 

stress-strain data using the least-square method. 

For the viscoelastic behaviour, the Prony series expansion of the dimensionless relaxation 

modulus was combined with the strain energy function (Miller and Chinzei 1997): 

 𝜓(𝑡) = 𝑔𝑑(𝑡 − 𝜏)
𝑑𝑤
𝑑𝜏

𝑡

0
 Equation 5.14 

where 𝜓 is time dependent strain energy, W is the hyperelastic strain energy from Table 5-1 

and 𝑔𝑑(𝑡) is the dimensionless relaxation modulus function: 

 𝑔𝑑(𝑡) = 1 − 𝑔𝑝
𝑝=1

(1 − 𝑒−𝑡/𝜏𝑝) Equation 5.15 

where 𝑔𝑝  and 𝜏𝑝  are material parameters of pth term in the number N Prony series and 

determined by fitting 𝑔𝑑(𝑡)  with experimental values obtained from the relaxation test. In 
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order to describe the viscoelastic response adequately, a minimum of 3 terms (𝑔𝑝) were needed. 

5.2.5 FE Analysis 

The average mechanical behaviour of brain tissue for white and grey matter was simulated, 

separately, both in the frequency and time domain using COMSOL Multiphysics 5.5 (COMSOL, 

Stockholm, Sweden). For simulations in both domains, an axisymmetric model was used with 

a cylindrical geometry representing the average tested brain specimen of 4 mm in radius and 5 

mm in thickness. The bottom surface was restrained vertically while it was free to move and 

expand horizontally. A linear viscoelastic model was applied under the COMSOL solid 

mechanics module. To avoid ill-conditioning for incompressible materials in the FE simulation, 

a Poisson’s ratio of 0.49 was chosen (Maikos et al. 2008). The viscoelastic parameters obtained 

from dynamic modulus of white and grey brain tissue (derived from section 5.2.2) were inputted 

into the general Maxwell material constitutive model with eight viscoelastic branches, under 

the material setting to represent the mechanical behaviour for time and frequency testing 

methods in linear viscoelastic region. A mapped 4 node was employed for brain tissue to create 

an axisymmetric quadrilateral mesh on boundaries and an element ratio node was applied to 

specify the element size in the distribution (Figure 5.4). The applied mesh density was validated 

by a mesh convergence analysis.  
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Figure 5.4 – Finite element simulation used for the uniaxial compression of brain tissue in (a) 
axisymmetric and (b) deformed 2D revolution configurations. 

In the frequency domain analysis, the top surface of brain tissue was displaced by 1 mm in the 

vertical direction, followed by a harmonic perturbation of 0.05 mm over a range of frequencies 

from 0.5-35 Hz. These models were solved under conditions which mimicked the experimental 

conditions of DMA tests.  

In the time domain analysis, the brain tissue was compressed to 0.1 strain and held for a 
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relaxation step consistent to the experimental conditions to obtain simulated stress relaxation 

results. In addition, a sinusoidal prescribed displacement was set under the time dependent 

solver at 35 Hz for 2 s in the form sin(2𝜋𝑓𝑡), where f is the testing frequency and t is the time, 

to obtain the force displacement viscoelastic hysteresis loops. The comparison between the FE 

models and physical tests were used for validation.  

For the simulation of brain tissue experiencing the large strain loading condition, an 

hyperelastic material model was applied instead of a linear elastic material model where Neo-

Hookean, Gent and Ogden models were selected to describe the elastic response under the 

assumption of incompressibility for brain tissue. The viscoelastic model was then selected 

under the hyperelastic material mode to describe the time-dependent relaxation response. The 

FE models were analysed in the time domain and the brain sample was compressed to 0.3 strain 

with deformation velocity of 50 mm/min, followed by a relaxation step of 150 s by holding the 

upper plate. The boundary conditions in the simulations were consistent with the experiments. 

The simulant results from the quasi-linear viscoelastic model for brain tissue, where Neo-

Hookean, Gent and Ogden hyperelastic models were applied respectively as its elastic part were 

compared to the experimental data.   
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5.3 Results 

5.3.1 Frequency Dependency of Viscoelasticity 

The frequency dependent mechanical behaviours of brain white and grey matter were 

characterized using dynamic mechanical testing, and the results show that the storage modulus 

is greater than the loss modulus over all tested frequencies. Figure 5.5(a) illustrates an 

increasing trend with frequency for white matter storage and loss modulus with average values 

of 15.72 kPa and 7.97 kPa, respectively. Figure 5.5(b) illustrates the significantly lower storage 

and loss modulus (p < 0.05) for grey matter by performing statistical analysis with average 

values of 7.97 kPa and 3.45 kPa, respectively. The mean results of the experimental dynamic 

moduli of brain tissue tested from various regions were used to determine the optimized 

parameters of the discrete relaxation spectrum with an eight term Prony series (Table 5-2) and 

the equilibrium modulus was 0.48 kPa. The number of eight pairs of relaxation modes was 

adequate to simulate the mechanical behaviour converted from the frequency-domain and 

redundant modes were merged. The FE models in the frequency domain were capable of 

capturing the trend for both storage and loss moduli across the frequencies investigated (lines 

in Figure 5.5).  
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Figure 5.5 – Variation of mean storage (circle) and loss (squares) moduli against frequency for (a) white 
and (b) grey matter tissue obtained using DMA. Error bars represent 95% confidence intervals. 
Predictions of dynamic properties from FE simulations, in the frequency domain, are shown as the lines 
for dynamic storage (full black line) and loss (dashed grey line) modulus. 
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5.3.2 Time Dependency of Viscoelasticity 

The mean stress relaxation behaviours were obtained and the material relaxation for both white 

and grey matter (Figure 5.6) showed immediately a drop after the compression platen was held. 

The stress drop for white matter is higher than that of grey matter. The viscoelastic parameters 

converted from dynamic modulus were applied in the time dependent simulations and the 

models were able to approximate the trend of stress relaxation responses. For the white matter, 

the prediction of the stress relaxed slower at the beginning compared to the experimental results. 

This was followed by a faster relaxation and with a longer relaxation process, the viscoelastic 

response was more closely approximated with a difference of less than 19% between model and 

experimental data. For the grey matter, the predicted results appeared to relax faster at first and 

then exhibited similar relaxation behaviour with a difference of up to 13%. The viscoelastic 

response in prediction of models was mostly approximated within the 95% confidence intervals 

through the measured relaxation process. 
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Figure 5.6 – Relaxation response of (a) white and (b) grey matter tissue obtained from the stress 
relaxation tests (full line) with 95% confidence intervals shown as error bars, and the prediction of stress 
relaxation (dash line) based on frequency domain derived parameters from FE simulations in the time 
domain. 
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The hysteresis loops for white and grey matter tissue are shown in Figure 5.7 as a measure of 

observing the dissipated energy of the material. Under the same testing protocols, samples from 

white matter exhibited a larger hysteresis area than samples from grey matter, meaning the 

greater amount of energy dissipated for white matter tissue. The curves for both white and grey 

matter were approximately elliptical. This indicated the tested specimens showed linear 

viscoelastic mechanical behaviour. In simulations, the viscoelastic parameters converted from 

dynamic modulus were applied in the time dependent models and used to predict the stress 

strain relationship; the ranges of stress (from minimum to maximum stress) in the simulations 

were estimated well for both white and grey matter which were similar to experimental results. 

The hysteresis behaviour for white matter was closely approximated by model prediction with 

a difference in the area enclosed by hysteresis loops of up to 18%. For grey matter the predicted 

area was larger than the experimental results, with up to a 34% area difference. 
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Figure 5.7 – Representative hysteresis loops of stress against strain for (a) white matter and (b) grey 
matter tissue obtained from cyclic loading tests with model prediction results (black line) based on 
frequency domain derived parameters following FE simulations in the time analysis.  
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Table 5-2 – Material parameters of relaxation moduli obtained from the mean dynamic viscoelastic 
properties for white and grey brain matter. 

 

Linear viscoelastic model parameter 

White matter Grey matter 

𝑖 𝑔𝑖(𝑘𝑃𝑎) 𝑡𝑖 (𝑠) 𝑔𝑖(𝑘𝑃𝑎) 𝑡𝑖 (𝑠) 

1 24.33 7.36 × 10-4 7.30 1.00 × 10-4 

2 19.37 2.23 × 10-3 17.88 1.45 × 10-3 

3 4.87 2.51 × 10-2 2.43 1.55 × 10-2 

4 4.46 2.73 × 10-1 2.43 1.45 × 10-1 

5 2.43 1.00 × 101 1.46 1.00 × 101 

6 2.43 1.00 × 102 1.46 1.00 × 102 

7 1.46 1.00 × 103 0.49 1.00 × 103 

8 0.49 1.00 × 104 0.29 1.00 × 104 
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5.3.3 Large Strain Behaviour of Viscoelasticity  

The mean compressive stress-strain behaviour for brain tissue compressed to 30% strain 

showed a nonlinear trend (Figure 5.8), this mechanical behaviour could be observed when the 

strain exceeded 0.1 and the mean stress increased to approximately 1.5 kPa. For the loading 

condition with large strain, the linear elastic model was not able to predict the brain tissue’s 

nonlinear response. This elastic response was represented more effectively using hyperelastic 

models. For the time-dependent relaxation response (Figure 5.9), the viscoelastic behaviour 

was represented by the Prony series of the relaxation modulus, described in section 5.2.4.2 and 

the viscoelastic parameters were obtained by fitting the material models (Table 5-3) with mean 

experimental data.  
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Figure 5.8 –Mean engineering stress-strain curves for eight white matter tissue under 0.3 strain level 
with 95% confidence intervals shown as error bars. 

 

Figure 5.9 – Mean relaxation response of eight white matter tissue obtained from the stress relaxation 
tests after 0.3 strain compression with 95% confidence intervals shown as error bars. 
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A quasi-linear viscoelastic model was represented with hyperelastic models as an elastic 

response to capture brain tissue behaviour under large strain. Neo-Hookean, Gent and Ogden 

models were defined, as noted in Table 5-1, as an instantaneous effect and the elastic response 

was fitted with mean experimental data to obtain relevant parameters (Table 5-4). Figure 5.10 

showed the response of quasi-linear viscoelastic models with different hyperelastic components 

and compared the results to experimental data. It can be observed that the Neo-Hookean model 

only predicted an increasing trend, without the accuracy of the other two models which instead 

predicted a similar response. The Ogden model fitted the experimental behaviour more 

accurately than the Gent model where the loading response fitted within the 95% confidence 

intervals. And the models fitted well the experimental data for strain up to 0.2 and the stress in 

the simulation for Gent model was higher than in the test as the strain was close to 0.3, which 

indicated it overestimated the actual experimental result at this strain level. 
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Figure 5.10 – Quasi-linear viscoelastic predictions of simulation were performed in the time domain 
analysis where hyperelasticity is accounted for using Neo-Hookean, Gent and Ogden models, for the 
elastic response at 0.3 strain. A Prony series has been derived from stress-relaxation behaviour and 
accounts for time-dependent viscous response. The mean experimental stress-strain response (black 
dash line) for eight white matter is shown with 95% confidence intervals shown as error bars. 
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Table 5-3 – Material coefficients of Prony series representing time-dependent viscoelastic response. 

𝑖 𝜏𝑝𝑖 (s) 𝑔𝑝𝑖 

1 0.421 0.389 

2 10.26 0.217 

3 163.7 0.154 

 

Table 5-4 – Material coefficients of hyperelastic models representing elastic response. 

Ogden Gent Neo-Hookean 

𝜇0 = 646.8 𝑃𝑎 

𝛼 = 14.7 

𝜇0 = 418.2 𝑃𝑎 

𝐽𝑚 = 0.5 

𝜇0 = 994.7 𝑃𝑎 

 
  



 

 142 

5.4 Discussion  

This chapter has investigated the viscoelastic properties of brain tissue under time and 

frequency testing domains and computational models were developed to predict the mechanical 

behaviour based on the parameters of a discrete relaxation spectrum from dynamic moduli. In 

addition, hyperelastic models were applied in simulation combined with viscoelastic material 

model to describe brain tissue under large strain loading conditions. Dynamic mechanical 

experiments are effective for measuring the viscoelastic properties of biological tissue over a 

range of frequency and the dynamic properties of brain tissue measured can be converted in the 

time domain data which are applicable in engineering analysis. Frequency-dependent storage 

and loss moduli were collected from brain white and grey matter tissue in compression. Stress 

relaxation tests were performed to obtain the time-dependent viscoelastic behaviour and brain 

samples were subjected to a sinusoidal compressive displacement in the time domain to obtain 

the hysteresis loops. For different testing protocols, the brain samples were kept under the same 

physical conditions. The time-dependent experimental results were compared to the predictions 

from simulations based on the constitutive linear viscoelastic, converting frequency to time-

domain data. This validated the use of viscoelastic data of brain tissue, derived from the 

frequency-domain, for use in FE models in the time-domain. The brain tissue were modelled 

further under large strain loading conditions, using a quasi-linear viscoelastic model with 

Ogden, Gent and Neo-Hookean hyperelastic models. 
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The dynamic mechanical properties of brain tissue showed an increasing trend over tested 

frequencies from DMA measurements, which is in agreement with previous studies on porcine 

brains (Hrapko et al. 2008) as well as other biological materials, including human bladder 

tumours (Barnes et al. 2016). Frequency-dependent dynamic moduli showed brain white matter 

is stiffer. A similar trend for the regional difference was found on human brain tissue (Jin et al. 

2013). A wide range of loading conditions has been applied to determine the frequency-

dependent viscoelastic properties. Human brain tissue has been studied in shear (Fallenstein et 

al. 1969) and the frequency-dependent behaviour of porcine bladder was characterized in tensile 

(Barnes et al. 2015). Further, brain tissue has been investigated in the frequency domain through 

magnetic resonance elastography (MRE) (Clayton et al. 2012). However, the dynamic 

compressive properties of brain tissue are still not fully understood (Chatelin et al. 2010). The 

compressive force is important in the analysis of brain injuries where the brain could be exposed 

to compressive waves during the course of head impact (Morse et al. 2014). Even though 

potential differences exist in the various testing methods compared, the general trends for the 

dynamic storage and loss modulus versus frequency on these biological tissues were consistent 

across these.  

The standard mechanical models have been applied in this study to capture the linear 

viscoelastic material functions of brain tissue with Prony series representations, and the fitting 

of dynamic moduli from experiments and the time domain material functions are subsequently 

obtained. There are other mathematical models available to describe the linear viscoelastic 
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response of a material (Tschoegl 2012). The fractional derivative models with a fractional order 

‘spring-dashpot’ element were used to determine the viscoelastic behaviour in relaxation tests 

on brain tissue (Zhang et al. 2019). The modified power law, derived from the phenomenology 

of polymers, was applied on soft and biological materials to describe their power law 

viscoelastic response from a wide range of test conditions (Bonfanti et al. 2020). These models 

are able to characterize viscoelastic properties using model coefficients, the determination of 

the constants from experimental results generally is less efficient due to the complicated 

mathematical expressions and it is limited for the conversion of parameters across material 

functions (Park 2001).  

The parameters in the simulations for linear viscoelastic models were determined by fitting the 

dynamic storage and loss modulus from experiments. There are various techniques for the 

fitting described in the literature. A simple collocation method has been applied on 

polymethylmethacrylate to fit the viscoelastic behaviour from dynamic shear and tensile 

relaxation tests (Schapery 1962). A least squares method was widely used to obtain model 

coefficients on brain tissue viscoelastic properties and has the benefits of being easily 

implemented in commercial software (Budday et al. 2017; Cheng and Bilston 2007). In this 

study, the frequency dependent responses of brain white and grey matter tissue were evident 

from the discrete relaxation mode with the exponentially ascending order of relaxation times 

and positive constraints, which is consistent to a previous study which analysed dynamic 

mechanical data (Baumgaertel and Winter 1989). The technique presented in this chapter can 



 

 145 

have wider applications for other biological tissues such as coronary arteries (Burton et al. 2017) 

and mitral valve (Wilcox et al. 2014), where the frequency dependent properties have been 

investigated and described using simple fitting equations obtained through regression analysis. 

It enables the viscoelastic properties of the brain to be measured under realistic, dynamic 

conditions and makes this information available for brain models which predict trauma 

(Madouh and Ramesh 2019; Townsend et al. 2019; Wu et al. 2019). 

The viscoelastic characterization of brain tissue in the time domain was studied through stress 

relaxation tests and the hysteresis loops were obtained to characterize the dissipated energy. 

The experimental results show that the behaviour of brain tissue is not only frequency-

dependent, but also time-dependent. Further, the viscous relaxation for white and grey matter 

was similar with a stress relaxation of around 85% which is in agreement with a previous study 

on human brain tissue (Budday et al. 2017). Hysteresis loops for white matter showed a larger 

area than that for grey matter. A similar trend was found for bovine brain tissue indicating that 

the white matter with larger dissipated energy shows more viscous than grey matter (Van et al. 

2010). 

In FE simulations, the models with linear viscoelasticity were able to well capture the dynamic 

storage and loss modulus for both brain white and grey matter in the frequency domain with 

the FE responses within the 95% confidence intervals. The model viscoelastic parameters were 

collected from dynamic mechanical tests and time domain material functions were derived 



 

 146 

based on the Prony series representation. Although mild brain traumatic loading conditions 

were the focus of this study, there is future opportunity to investigate the applicability of the 

model at higher loading rates, such as blast brain impacts (Singh and Cronin 2019; 

Unnikrishnan et al. 2019; Vogel et al. 2020). A previous study investigated the differences of 

converting dynamic modulus to relaxation modulus, however, there was no direct experimental 

data for validation (Zhang et al. 2018). The simulated results of the time domain in this study 

showed the general trends for stress relaxation behaviour on brain tissue which is comparable 

to the experimental data. Despite the initial difference between the predicted and measured 

results, the viscoelastic response in prediction of models was mostly approximated within the 

95% confidence intervals which indicated the prediction of models was considered reliable. 

The hysteresis area for both brain white and grey matter was predicted to be larger in 

simulations and the simulated hysteresis area for white matter was larger than that of grey 

matter which is consistent to the experimental trends. The approach presented in this study of 

converting material properties between frequency and time domains enables brain modelling in 

the time domain based on the mechanics of brain tissue measured under dynamic loading 

conditions. 

Brain tissue was modelled with the FE method using a quasi-linear viscoelastic model, which 

can represent accurately the tissue behaviour for large strain loading conditions. The Ogden 

model as the elastic part of a QLV was considered to more accurately capture the mechanical 

behaviour of brain tissue as compared to the Gent or the Neo-Hookean. This was because all 
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predictions fell within the 95% confidence intervals of the experimental data obtained. In 

previous studies on soft biological tissue, it has been suggested that a QLV model was 

insufficient to describe the viscoelastic behaviour of a material and that purely nonlinear models 

should be applied (Provenzano et al. 2001; Shetye et al. 2014). However, the material behaviour 

in these studies was only investigated at low strain levels of less than 0.1 and not analysed under 

large strain loading conditions. For the small strain behaviour of viscoelastic materials, linear 

viscoelastic model is more suitable as discussed above in this chapter. To avoid the instabilities 

of fitting hyperelastic properties, the mean experimental data was fitted instead of using the 

individual test results. The proposed QLV model presented in this chapter is available in 

commercial FE software (e.g. COMSOL) and, therefore, further related FE analysis can be 

easily implemented. Further, various mechanical testing on brain tissue with various peak 

strains representative of physiological and injurious loading conditions as well as creep and 

stress relaxation will be performed to determine if a more advanced material model is needed 

to capture the soft tissue under more general loading conditions. However, the quasi-linear 

viscoelastic model was able to simulate the large strain mechanical properties. 
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5.5 Chapter Summary 

To conclude, the viscoelastic behaviour of brain tissue was investigated under both time and 

frequency domains. Frequency-dependent storage and loss moduli were collected for both 

white and grey matter through dynamic mechanical tests which can be represented accurately 

by the linear viscoelastic models. The time-domain material functions were obtained through 

the corresponding frequency-domain material functions based on a Prony series representation. 

The stress relaxation and hysteresis characterizations were studied and compared to the 

predictions from model simulations. The outcomes provide a better understanding of the 

material viscoelastic behaviour and the linear viscoelasticity between the time and frequency 

dependent material functions of biological tissues. The quasi-linear viscoelastic model was 

applied in simulation with various hyperelastic parts to describe the large strain response of 

brain tissue obtained from experiments. This analysis is of importance for a number of 

applications, for brain tissue it enables various loading conditions to be simulated, including 

traumatic loading. 
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6 Discussion and Conclusions 

6.1 Discussion 

This thesis has presented the investigation of the viscoelastic properties of brain tissue under 

various loading conditions. The compressive frequency-dependent behaviour of brain tissue 

was, for the first time, quantitatively measured and the viscoelastic material model was applied 

in the numerical simulations to describe its behaviour and enable the feasibility of deriving 

time-domain viscoelastic properties from frequency-domain based experiments.  

Chapter 3 of this thesis used compressive dynamic mechanical analysis to quantify general 

viscoelastic properties of porcine brain tissue under different testing conditions. The viscoelastic 

storage and loss stiffness are dependent on the indentation mean displacement and the indenter 

size, increasing with higher mean displacement and larger indenter diameters. The mean 

displacement was considered having a greater effect on the frequency-dependent trend of 

stiffness as compared to the indenter size. The viscoelastic properties with regards to different 

indentation depth and indenter size were investigated previously in quasi-static loading 

conditions (Budday et al. 2015; Liu et al. 2009b). However, the understanding of mechanical 

behaviour for various testing conditions on brain tissue is not clear in the frequency domain. 

These frequency-dependent viscoelastic properties are also important for brain injury analysis. 

Confined compression was selected in this work because the general mechanical 

characterization of brain tissue was investigated in the macroscope where the brain is 
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considered as the soft tissue constrained by the skull. The confined testing is thus the nature of 

the boundary conditions at skull/brain interface. The brain tissue was tested at frequencies of 

0.1 to 35 Hz in 14 steps. For mild traumatic brain injuries (mTBI), oscillatory force at around 

20 Hz with low acceleration could be a possible cause (Laksari et al. 2015). The conversion of 

a frequency to a constant strain is inherently limited, because the strain-rate is continuously 

changing during the oscillation. From the recent literature, the conversion was calculated from 

the quasi-linear portion of the oscillation (Bartolini et al. 2018). Based on this, the strain rate is 

estimated from frequency, strain amplitude and the tip diameter and in chapter 3, the maximum 

strain rate is estimated between 7 and 14 s-1, which is comparable to TBI (Rashid et al. 2013). 

The dynamic stiffness was dependent on the indenter size while the storage and loss moduli 

from three indenters were constant with a mean value of 8.09 kPa and 4.85 kPa, respectively. 

Chapter 4 of this thesis investigated the compressive frequency-dependent viscoelastic 

properties of bovine brain extensively and presented a mathematical model in the frequency 

domain to capture the tissue behaviour based on the experimental results. The brain samples 

were generally obtained from white and grey matter to determine the regional properties. Brain 

samples from corpus callosum region were extracted in the two orientations to determine the 

directional properties. The viscoelastic characterization of brain tissue can improve the fidelity 

of the computational models of the head and provide essential information to the prediction and 

analysis of brain injuries in clinical treatment. Even though the compressive loading plays a 

significant role in head trauma (Bar-Kochba et al. 2016; Young et al. 2015), the dynamic 
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compressive characterization of brain tissue has not been understood completely (Chatelin et 

al. 2010). The effect of brain regions and testing directions on the frequency-dependent 

viscoelastic properties was studied in compression using DMA. The compressive dynamic 

properties of bovine brain tissue were heterogenous for regions of corona radiata, corpus 

callosum, basal ganglia and cortex but not sensitive to orientation showing frequency dependent 

statistical results, with viscoelastic properties increasing with frequency. Due to the lack of 

experimental data for compressive frequency-dependent properties of brain tissue, most 

simulations were applied in the time domain with viscoelastic models to describe brain 

mechanical behaviour (Li et al. 2019; Samadi-Dooki et al. 2018). This chapter has outlined a 

linear viscoelastic model which can be applied in simulations to reproduce the compressive 

dynamic response of brain tissue with adaption of experimental moduli for different regions 

and directions.  

Chapter 5 of this thesis investigated the viscoelastic properties of brain tissue under time and 

frequency testing domains. This chapter presented a technique, for deriving time-domain 

viscoelastic parameters from frequency-dependent compressive data of brain tissue, as 

validated by comparing experimental tests with computational simulations. Although dynamic 

mechanical experiments are effective for measuring the viscoelastic properties of biological 

tissue over a range of frequency (Bartlett et al. 2020; Kohandel et al. 2005; Pattison et al. 2015), 

the dynamic properties are not always applicable in engineering, where analysis is performed 

using a time-dependent domain. This is the first study to validate the use of viscoelastic data of 
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brain tissue, derived from the frequency-domain, for use in FE models in the time-domain. It 

can provide wider applications for other biological tissues (Burton et al. 2017; Wilcox et al. 

2014), where the frequency dependent properties have been investigated and described using 

simple fitting equations obtained through regression analysis. In this chapter, brain white and 

grey matter samples were tested through DMA, stress relaxation and cyclic loading tests with 

the same physical conditions and the theory of viscoelasticity was applied to estimate the 

prediction of viscoelastic response in the time domain based on frequency-dependent 

mechanical moduli through Finite Element models. In addition, large strain behaviour of brain 

tissue was also studied experimentally and analysed in simulations using a quasi-linear 

viscoelastic model with Ogden, Gent and Neo-Hookean hyperelastic models. The QLV model 

with Ogden model being the elastic response can best describe the brain tissue when the large 

deformation is considered. 
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6.2 Conclusions 

The overall conclusions from this thesis are outlined below: 

1) Brain tissue shows frequency dependent-viscoelastic properties. As the indenter size 

increased, the storage and loss stiffness of porcine brain tissue significantly increased (p < 

0.05). The storage stiffness decreased significantly as the mean displacement decreased (p 

< 0.05). The average storage modulus of porcine brain tissue was found to be 8.09 kPa and 

the average loss modulus was found being 4.85 kPa.  

2) The dynamic properties of bovine brain tissue were heterogenous for regions including 

white matter (corona radiata and corpus callosum) and grey matter (cortex and basal 

ganglia). Generally, the dynamic storage and loss moduli of white matter (15.72 kPa and 

7.09 kPa) were greater than that of grey matter (7.97 kPa and 3.45 kPa). The brain tissue 

from the corpus callosum showed the greatest mean storage and loss modulus (18.19 kPa 

and 7.82 kPa) over frequencies, followed by the corona radiata (12.28 kPa and 6.08 kPa). 

The bovine brain tissue from the cortex had marginally higher mean storage and loss 

modulus (8.86 kPa and 3.85 kPa) than from the basal ganglia with a lowest value of 7.05 

kPa and 3.02 kPa. 

3) For the dynamic viscoelastic behaviour of bovine brain tissue, no significant directional 

dependency on the storage modulus was revealed over all frequencies tested while the loss 
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modulus was found significantly larger at 1.8 to 1.6 times for brain specimens tested 

aligned to the fibre tracts below the frequency of 7 Hz (p < 0.05). 

4) The linear viscoelastic model in the frequency domain can be used to characterize the 

compressive mechanical behaviour of bovine brain tissue in numerical models across a 

range of frequencies. The quasi-linear viscoelastic model used with a hyperelastic 

component can describe the large strain response of brain tissue. 

5) The time-domain material functions can be obtained through the corresponding frequency-

domain material functions based on a Prony series representation. The approach of 

converting material properties between frequency and time domains enables brain 

modelling in the time domain based on the mechanics of brain tissue measured under 

dynamic loading conditions. 
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6.3 Limitations and Future Work 

The overall limitations from this thesis are outlined below: 

1) The use of animal brain tissue (i.e. porcine and bovine brains) in place of human brain tissue 

for all experiments presented in this thesis as the limitation. Although there are similarities 

on mechanical response of brain tissue between human and porcine, human brain tissue 

would still be ideal due to the differences in size and morphology. 

2) For all mechanical testing in this thesis, the brain tissue was tested in vitro. Directly 

measuring brain tissue properties in the body would be ideal, however, current technologies 

are insufficient for isolating brain tissue properties at various loading conditions. The 

variation in mechanical characterization may be due to the difference between in vivo and 

in vitro properties of tissue. 

3) All tests were conducted at room temperature. Although a slight influence of temperature 

on the mechanical properties of the tissue, the main purpose of this thesis was to understand 

the dynamic mechanical characterization of brain tissue under various loading conditions. 

4) Although all tested brain specimens were hydrated with Ringer’s solution during the testing 

process to make the contact surface relatively smooth, the effect of the friction on 

compressive mechanical properties acts as a further limitation. 
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5) The scalpel used in Chapter 3 to obtain brain specimens may contribute to a small amount 

of variability in the sample size and shape. However, the diameter of samples was measured 

using callipers in different directions and the moduli account for the variability. 

6) The material constitutive model presented in Chapter 4 and 5 was characterized based on 

the compressive response of the brain tissue. Therefore, the accuracy of the presented 

constitutive model is limited to compressive loading conditions. 

For all experimental chapters presented in this thesis, it would be of value to test human brain 

tissue under the same testing methods. The implementation of human brain tissue would assess 

the feasibility of animal brain tissue as a model for human brain tissue. In addition, the use of 

human brain tissue can provide valuable clinical information and act directly as a benchmark 

for matching a potential clinical-grade biomaterial suitable for regenerative medicine. All 

mechanical tests in this thesis were conducted at room temperature. A future development 

considers the influence of temperature on the mechanical properties of the brain tissue. 

Further tensile or shear experimental tests could be applied on brain tissue in the future under 

the same testing conditions (e.g. the frequency range) to develop a general constitutive model 

which is able to capture tissue dynamic mechanical behavior under combined shear, tension 

and compression loading cases. The material constitutive model could be further developed 

when considering the biphasic theory where the brain tissue is considered to be saturated with 

cerebrospinal fluid, enabling to capture the behaviour caused by the movement of the fluid in 
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the solid matrix. 

The testing conditions applied on brain samples were associated with brain injuries such as mild 

brain trauma and diffuse axonal injury. The dynamic mechanical properties and viscoelastic 

modelling of brain tissue presented in this thesis could be further applied in the analysis of 

accident-related scenarios with the head subjected to falls and automotive accidents. In addition, 

the loading conditions on brain tissue could be extended in the future with larger frequency 

range or strain level to investigate dynamic mechanical behaviour of brain tissue under non-

penetrating ballistic and traffic road impacts. 

With regards to Chapter 5, the time-dependent mechanical properties on brain tissue could be 

further investigated at a range of peak strains and strain rates representative of physiological 

and injurious loading conditions. It could provide important information if a more complicated 

material model is required to describe the tissue behavior under arbitrary loading cases. Further, 

it would be of value to use the inverse FE modelling for optimization to obtain the material 

parameters. The advanced optimization method could directly incorporate FE models in the 

parameter optimization and provide an accurate FE-adoptable model for the material. 
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