

PUBLIC KEY CRYPTOGRAPHY BASED
ON TROPICAL ALGEBRA

by

ANY MUANALIFAH

A thesis submitted to
The University of Birmingham

for the degree of
DOCTOR OF PHILOSOPHY

Supervisor: Dr. Serge˘ı Sergeev
School of Mathematics
The University of Birmingham
June 2022

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

UNIVERSITYDF
BIRMINGHAM

Abstract

We analyse some public keys cryptography in the classical algebra and tropical algebra.

Currently one of the most secure system that is used is public key cryptography, which is

based on discrete logarithm problem. The Dilfie-Helman public key and Stickel’s key ex-

change protocol are the examples of the application of discrete logarithm problem in public

key cryptography. This thesis will examine the possibilities of public key cryptography

implemented within tropical mathematics. A tropical version of Stickel’s key exchange

protocol was suggested by Grigoriev and Sphilrain We suggest some modifications of this

scheme use commuting matrices in tropical algebra and discuss some possibilities of at-

tacks on them. We also generalise Kotov and Ushakov’s attack and implement in our new

protocols. In 2019, Grigoriev and Sphilrain [14] generated two new public key exchange

protocols based on semidirect product. In this thesis we use some properties of CSR

and ultimate periodicity in tropical algebra to construct an efficient attack on one of the

protocols suggested in that paper.

Acknowledgements

I would like to thank my PhD supervisor Dr Sergĕı Sergeev for helping me to create this

thesis. He spent a lot of time to teach me how to conduct this research. His effort and

his passion motivated me to analyse the security of existing protocols based on tropical

algebra and to think of constructing some new ones.

I would also like thank my family (especially my Father Mukijan), closed friends (es-

pecially Dr. Arthur Kennedy-Cochran-Patrick and Dr. Asrul Harun Ismail), my beloved

one Kashif Sharif who always stand by me and support me during my study and my

sponsorship Ministry of Religion and Affairs who supported me during my study.

Contents

1 Introduction 1
1.1 Cryptography and tropical algebra . 1
1.2 Literature review . 2
1.3 Thesis overview . 5

2 Preliminaries 9
2.1 Tropical algebra . 9
2.2 Digraphs and Matrices . 17
2.3 Cryptography . 21

2.3.1 Public Key Cryptography . 22
2.3.2 Tropical version of Stickel’s Protocol 24
2.3.3 Kotov-Ushakov attack on the tropical version of Stickel’s protocol . 26
2.3.4 Protocol based on Semidirect Product 29

3 Tropical Discrete Logarithm 31
3.1 The Classical Discrete Logarithm Problem 31
3.2 The Tropical Discrete Logarithm Problem and Ultimate Periodicity 32
3.3 Proofs of some results on CSR expansions 42

3.3.1 Proof of Proposition 3.2.2 [29] . 42
3.3.2 Proof of Proposition 3.2.3 [29] . 45
3.3.3 Proof of Proposition 3.2.4[29] . 46

3.4 Two-sided Tropical Discrete Logarithm Problem 48
3.4.1 Theoretical observations and algorithms 48
3.4.2 Numerical Experiments . 54

4 Commuting Matrices in Tropical Algebra 56
4.1 Generalized Kleene stars . 56
4.2 Other sets of commuting matrices . 63

4.2.1 Matrices of the form [2r, r]kn . 63
4.2.2 Matrices of the form A(p, a) . 65

5 Protocols Based on Commuting Matrices in Tropical Algebra 68
5.1 New implementations of Stickel’s Protocol 68

5.1.1 Using tropical quasi-polynomials 69
5.1.2 Using matrices of the form [2r, r]kn 70
5.1.3 Using matrices of the form A(p, a) 71
5.1.4 Using polynomials and matrices of the form [2r, r]kn 71

5.2 Heuristic attacks on Protocol 5.1.2 . 72
5.3 Numerical Experiments and Toy Examples 76

5.3.1 Numerical Experiments . 76
5.3.2 Toy Examples . 79

5.4 Cryptanalysis using the Kotov-Ushakov attack 89
5.4.1 Generalisation of the Kotov-Ushakov attack 89
5.4.2 Attack on Protocol 5.1.1 . 92
5.4.3 Implementation of the attacks 2.3.1 and 5.4.2 94
5.4.4 Attack on Protocol 5.1.2 . 97
5.4.5 Attack on Protocol 5.1.3 . 99
5.4.6 Attack on Protocol 5.1.4 . 100
5.4.7 Attack on Protocol 5.1.5 . 102

6 Cryptography Based on Tropical Semidirect Product and Its Security 104
6.1 Tropical Semidirect Product . 104

6.1.1 The protocol based on tropical semidirect product 110
6.1.2 Correctness of Protocol 6.1.1. Relation to tropical matrix powers. . 111

6.2 Cryptanalysis of Protocol 6.1.1 . 113
6.2.1 Binary Search Attack . 113
6.2.2 Isaac and Kahrobei’s Attack . 114
6.2.3 the Tropical Discrete Logarithm Problem Attack 114
6.2.4 Computing the key knowing m and n 116
6.2.5 Formulation of the attack . 117

6.3 Toy examples . 118
6.4 Numerical experiments . 121

7 Conclusion and Future Work 128

List of References 130

List of Figures

3.1 Success rate of Algorithm 3.4.2 depending on dimension 54

5.1 (a) Dependence of average computation Attack 2.3.1 on the maximal degree
of tropical polynomials and (b) running time for generating a secret key of
Protocol 2.3.3 . 95

5.2 (a) Dependence of average computation Attack 5.4.2 on the maximal degree
of tropical quasi-polynomials and (b) running time for generating a secret
key of Protocol 5.1.1 . 96

6.1 Time required by Algorithm 6.2.1 in the case where H is randomly gener-
ated (“general matrices”) and in the case where (F) is guaranteed to have
at least three critical components and λ(F) > 0 (“special matrices)” 124

6.2 Time required by Algorithm 6.2.1 (green) and its light version (red) in the
case where all public matrices are randomly generated 126

6.3 Time required by Algorithm 6.2.1 in the case where H is randomly gener-
ated (“has at least one finite entries each row and −∞ entries.”) 127

List of Tables

5.1 Dependency of the success and similarity rate on dimension and the range of
entries of W for the attack based on (5.2.6). Parameters a, b are in the range
[−20,−1], parameters c, d are in the range [−100,−60], and k1, k2, l1, l2 are
random positive numbers in the range [0, 100]. 78

6

Chapter 1

Introduction

Tropical Cryptography is a new area that uses the structures of tropical mathematics

as a new platform for classical public key exchange protocols in cryptography (such as

the Diffie-Hellman and Stickel methods). The idea of using tropical algebra (and, more

generally, tropical mathematics) was pioneered by Grigoriev and Shpilrain [13]. In this

chapter, we provide an overview of the relevant concepts in public key cryptography,

introduce tropical algebra and give an outline of this thesis.

1.1 Cryptography and tropical algebra

Cryptography studies security of communication over a public channel. For examples,

suppose that two parties, Alice and Bob, need to communicate privately. There is a third

party, Eve, who wants to know what they are communicating. Therefore, Alice and Bob

need some secure system that will allow them to communicate with each other without

Eve intercepting their information. To do so, in their communication, Alice and Bob need

a key or a password to protect their information; therefore, the problem for Alice and Bob

is how to generate their private key securely. A mathematical approach to this problem

was put forward by Diffie and Hellman in 1976 [10] and led to the famous Diffie-Hellman

public key exchange protocol.

1

The tropical (or max-plus) semiring is the set Rmax = R ∪ {−∞} equipped with the

operations a ⊕ b = max(a, b) and a ⊗ b = a + b defined for all a, b ∈ Rmax. The set

Rmax equipped with operations ⊕,⊗ is denoted by (Rmax,⊕,⊗). These operations can

be extended to vectors and matrices in the usual way (see Definition 2.1.3 below), thus

giving rise to tropical linear algebra.

Grigoriev and Shpilrain [13] were the first to use tropical linear algebra to develop a

new implementation of a public key exchange protocol. The idea of using tropical linear

algebra for this purpose is supported by the observation that matrices in tropical linear

algebra are usually not invertible. They also developed two new protocols based on the

semidirect product in 2019 [14].

In the following sections, we are going to review some of the relevant literature on

cryptography and tropical linear algebra, and provide an overview of this thesis.

1.2 Literature review

The first known usage of cryptography in communication occurred around 2000 B.C.,

when hieroglyphics were used in ancient Egypt for communication. In principle, cryp-

tography is used for hiding secret information or a secret message. To hide a message,

the sender needs to encrypt the plaintext into unreadable text called ciphertext and the

receiver needs to decrypt the ciphertext into plaintext. The earliest methods which were

used for encryption were transposition and substitution ciphers. One of the oldest ex-

amples of transposition ciphers was the scytale, which was used by the ancient Greeks,

and one of the most famous substitution ciphers was Caesar’s cipher, which was used by

Julius Caesar himself in his private communication [37].

In cryptography, there are two methods that are used to help us share the secret

information, namely the symmetric key and the asymmetric key. The transposition cipher

and the substitution cipher are classical examples of symmetric keys in cryptography. A

2

standard symmetric key uses a single key to encrypt and decrypt the message, and this

means that Alice and Bob need to share their secret key over unsecured channel. To

address this problem, Diffie and Hellman [10] introduced a new method in cryptography,

allowing both parties to share a private document without sharing their secret key. This

system is now known as public key cryptography or asymmetric key cryptography. Their

concept has led to significant developments in the public key cryptography theories.

Most of the modern public key cryptography methods use groups, semigroups and

other algebraic structures. In 1985 Wagner and Magyarik [39] used the word problem for

groups and semigroups to generate a key exchange protocol. Stickel introduced a new key

exchange protocol using non-Abelian groups. This protocol is based on the same idea as

the Diffie-Hellman protocol and uses invertible matrices [38]. In 2005, Maze, Monico and

Rosenthal suggested a generalisation of the Diffie-Hellman key exchange protocol based

on semigroup action [25]. In 2016, Kahrobaei and Shpilrain described a modification of

the Diffie-Hellman protocol based on the semidirect product of semigroups [21].

The use of tropical mathematics in cryptography was pioneered by Grigoriev and

Shpilrain [13]. In particular, they developed a tropical implementation of Stickel’s key

exchange protocol that uses polynomials over tropical algebra. Their idea is that us-

ing tropical algebra instead of classical algebra is promising since matrices in tropical

algebra are usually not invertible, and therefore the decomposition problem in tropical

linear algebra cannot be simplified. They also introduced public key encryption using the

automorphism semigroup in tropical algebra.

There are also some other works that use tropical mathematics in cryptography. Chau-

vet and Mahe [5] discussed the Diffie-Hellman key exchange protocol based on tropical

Hessian pencil, and Grigoriev and Shpilrain [14] suggested two new implementations of

public key exchange protocols that use semi-direct product in tropical algebra.

Some cryptanalysis of these protocols also has been published. Shpilrain [35] sug-

3

gested a linear algebra attack on Stickel’s protocol for the case when it uses invertible

matrices. Furthermore, Kotov and Ushakov [23] developed a rather successful attack on

Grigoriev and Shpilrain’s tropical implementation of Stickel’s protocol [13]. In this thesis,

we are going to discuss Kotov and Ushakov’s attack more deeply and suggest a number

of modifications of it.

In order to modify Stickel’s key exchange protocol, we are going to study some classes

of commuting matrices in tropical algebra. Existing literature on commuting matrices

in tropical algebra is rather scarce. Some initial observations on them were made by

Cuninghame-Green and Butkovič [9].

Later Katz, Schneider and Sergeev [22] observed some facts on common eigenvector,

critical graphs and Frobenius normal forms of tropical commuting matrices. In this thesis

we are going to make use of: 1) the work of Linde and de la Puente [24] who discov-

ered some new classes of commuting normal matrices in tropical algebra, 2) the work

of Jones [19], who discovered that tropical matrix roots exist for matrices over tropical

semiring that satisfy a specific property (to be detailed later). We will show that trop-

ical matrix roots commute with each other and the observations of Jones [19] can be

generalised to give rise to new sets of pairwise commuting matrices.

In [14], Grigoriev and Shpilrain considered the semidirect product in tropical algebra.

Using this new concept, they constructed two new protocols. They claimed that the

resulting expression for the key in terms of the tropical matrix powers and their products

becomes very intricate and presents a challenge for the attacker. However, in 2020 two

papers analysing the security of new protocols of Grigoriev and Shpilrain were published.

Rudy and Monico [32], observed the non-decreasing property of the sequence of powers

based on the tropical semi-direct product and suggested an attack on one of the protocols

of [14] based on binary search. This attack is guaranteed to work and can be efficiently

implemented. However, its worst-case computational complexity is O(K2), where K is

4

an upper bound on the logarithm of the secret keys (power exponents) used by Alice and

Bob to construct their messages.

Isaac and Kahrobaei [18] took a different approach to attack the same protocol of

Grigoriev and Shpilrain [14]. They find the secret keys of Alice and Bob based on the

assumption that the sequence of the powers based on tropical semi-direct product is

ultimately periodic (although not providing a theoretical proof of that property). Not

being dependent on the magnitude of the secret keys of Alice and Bob, this attack is more

efficient in practice. Isaac and Kahrobei also prove that the second protocol suggested by

Grigoriev and Shpilrain [14] is invalid, since the version of semi-direct product which is

used in it does not satisfy associativity.

1.3 Thesis overview

There are two main achievements of this thesis. One of them is described in Chapter 5.

There we construct a number of new tropical implementations of Stickel’s protocol and

consider some attacks on them: generalised Kotov-Ushakov attack and other more special

attacks, which are called heuristic attacks. These new implementations are based on new

classes of commuting tropical matrices described in Chapter 4. The second achievement

is an attack on the protocol suggested by Grigoriev and Shpilrain [14]. This protocol is

based on the tropical semidirect product, however we showed that the messages of Alice

and Bob can be expressed via tropical matrix powers. This allows us to construct an

attack on the protocol based on the ultimate periodicity properties of tropical matrix

powers, more precisely on the ultimate periodicity of the columns with indices in the

critical digraph [26] and the weak CSR expansions developed by Merlet et al [27]. To

connect this results with cryptography we introduce and consider the tropical discrete

logarithm problem in Chapter 3. There we suggest a polynomial algorithm for solving

this problem and discuss the conditions under which it works.

5

Let us now describe the structure of this thesis in more detail.

In Chapter 2, we start with some basic definitions concerning tropical algebra and

cryptography that are useful for our research.

In Chapter 3, we will give a basic definition of the discrete logarithm problem in clas-

sical algebra and suggest its analogue in tropical matrix algebra. The tropical discrete

logarithm algorithm will be later applied to attack the protocol based on semidirect prod-

uct [14]. We will also consider a two-sided extension of the tropical discrete logarithm in

the last section of this chapter, which can potentially be used to construct a new attack

on the tropical Stickel’s key exchange protocol. We also implemented the two- sided trop-

ical discrete logarithm problem to examine the success rate of the attack in the tropical

version of Stickel’s protocol.

Since we need new classes of tropical commuting matrices to construct the new imple-

mentations of Stickel’s key exchange protocol, in Chapter 4 we will construct new classes

of commuting matrices in tropical algebra. We start with the results of Jones [19], which

we develop and extend in order to describe a new class of commuting matrices. Then, we

consider two classes of commuting matrices that are due to Linde and De La Puente [24]

and extend them. The first class of commuting matrices is comprised of matrices whose

diagonal entries are equal to zero and non-diagonal entries lie in the interval [2a, a] for

some negative real number a, and we extend this class by allowing the diagonal entries

to be equal to the same nonnegative number, so that they do not have to be equal to 0.

The second class of commuting matrices is a combination of the matrix of all zeros and a

tropical monomial matrix, and for this class we prove an extension of Theorem 22 from

[24].

In Chapter 5, we start by constructing several new implementations of Stickel’s proto-

col that use the new classes of commuting matrices that we described in Chapter 4. For

one of these protocols we suggest a couple of simple attacks that, strictly speaking, work

6

only in special situations, but we can also use them as quite successful heuristic attacks in

a general situation. Next, for all of these protocols we generalise the Kotov and Ushakov

attack and describe how this generalised attack can be specialised to every protocol.

In Chapter 6, we first describe the new public key exchange protocol of Grigoriev

and Shpilrain [14] (based on semidirect product). We analyse the security of Public Key

Cryptography based on semidirect product [14] aiming to attack the protocol using our

solution to the tropical discrete logarithm problem. The solution to that problem is based

on the ultimate periodicity properties of tropical matrix powers, investigated previously

by Merlet et al. [27, 26]. The attack on the protocol is then constructed as follows: first

we explain how the powers based on the tropical semi-direct product can be conveniently

expressed using tropical matrix powers and products, and then we use the solution to the

tropical discrete logarithm problem to find the secret keys of Alice and Bob.

Various numerical experiments have been conducted to confirm the validity and in-

vestigate the efficiency of the attacks that are suggested in this thesis. For protocol using

commutative matrices based on Linde and De La Puente matrices [24], we developed

code for a heuristic attack with MATLAB version R2019b to analyse the efficiency of

our attack we vary the bounds of the interval from which the parameters of the protocol

instance are randomly chosen, conducting 1000 experiments for each value of the bound:

see Chapter 5 for more details. We also developed code for modified Stickel’s protocol

(quasi-polynomials) using GAP (modifying Ushakov and Kotov code). For our attack

on the protocol using semi-direct product, we developed a set of programs in Python

where we used and modified parts of Isaac and Kahrobei’s program for implementing

the protocol and a C program implementing the policy iteration algorithm computing

the maximum cycle mean due to Cochet-Terrasson et al. [6]. Our programs have been

uploaded to GitHub1

1Python: https://www.github.com/anymath13/tropicalcryptographypython,
MATLAB: https://github.com/anymath13/tropicalcryptographymatlab,

7

https://www.github.com/anymath13/tropicalcryptographypython
https://github.com/anymath13/tropicalcryptographymatlab

The main results of this thesis have been published in academic journals. Most of the

material of Chapter 3 and Chapter 6 has appeared online in a joint publication with Dr

S. Sergeev [29]. This paper is about our attack on the protocol suggested by Grigoriev

and Shpilrain based on tropical semidirect product. Most of the results of Chapter 4

and Chapter 5 have been published in another joint article with Dr S. Sergeev [28]. This

article is about new tropical implementations of Stickel’s protocol based on some new

classes of commuting matrices in tropical algebra. In both publications, the main ideas

to consider new classes of commuting matrices and to formulate the tropical discrete

logarithm problem and build an attack based on CSR expansion and ultimate periodicity

emerged in discussions with Dr S. Sergeev. I developed those ideas, worked out the

technical details of the proofs and was responsible for all numerical experiments.

GAP: https://github.com/anymath13/tropicalcryptographyGAP

8

https://github.com/anymath13/tropicalcryptographyGAP

Chapter 2

Preliminaries

This chapter gives some basic definitions and results in tropical algebra and cryptography,

which will be used in this thesis.

2.1 Tropical algebra

Let us first give a formal definition of semiring. We are going to deal with a particular

semiring in this thesis (called tropical semiring), but this more general definition is also

of interest, since some of the protocols that we consider can be formulated over a wider

class semirings.

Definition 2.1.1 (Semiring) Let R be a non-empty set equipped with two binary oper-

ations ⊕ and ⊗, which satisfy the following properties:

1. (R,⊕) is an Abelian semigroup, which means that the following properties hold:

(i) associativity:

for all a, b, c ∈ R we have (a⊕ b)⊕ c = a⊕ (b⊕ c).

(ii) existence of an identity element:

there exists ε ∈ R such that for all a ∈ R then ε⊕ a = a⊕ ε = a.

9

(iii) commutativity:

for all a, b ∈ R then a⊕ b = b⊕ a.

2. (R,⊗) is a semigroup, which means:

(i) associativity:

for all a, b, c ∈ R then (a⊗ b)⊗ c = a⊗ (b⊗ c).

(ii) existence of an identity element:

there exists e ∈ R such that for all a ∈ R then e⊗ a = a⊗ e = a.

3. (R,⊕,⊗) is distributive: for all a, b, c ∈ R we have

(i) a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

(ii) (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a).

4. absorbing property of ε: ε⊗ e = e⊗ ε = ε.

The following is a key example of semiring, to be considered throughout this thesis.

Example 2.1.1 (Tropical semiring (e.g.,[3]) Tropical semiring is defined as the set

Rmax = R ∪ {−∞} we mean the set of equipped with two binary operations ⊕ and ⊗

defined by

a⊕ b = max(a, b),

a⊗ b = a+ b.

The neutral element with respect to addition ⊕ is −∞, it is also called the semiring zero,

and the neutral element with respect to multiplication is 0, it is the semiring unit. Inverse

with respect to multiplication is defined for any a ∈ Rmax and is equal to a− = −a.

10

Example 2.1.2 Let us illustrate some algebraic properties of the tropical arithmetics.

First of all, we have 2⊗ 0 = 2 + 0 = 2 and −∞⊕ 1 = 1, demonstrating the role of 0 and

−∞ as the unit and zero of the tropical semiring, respectively. The addition operation

does not admit inverses but it is idempotent: 2 ⊕ 2 = 2. The multiplication is a group

operation: 5⊗ (−5) = 0.

The tropical semiring has a number of useful properties, which makes it rather special.

We first note that, like in the field of real or complex numbers, the multiplication operation

is a group operation, meaning that the tropical semiring is a semifield according to the

following definition.

Definition 2.1.2 If each element of a semiring R not equal to ε has an inverse with

respect to ⊗, i.e., if for each a ∈ R\{ε} we have a− with a property that a− ⊗ a =

a⊗ a− = e, then it is called a semifield.

The tropical semiring (semifield) is also commutative (a ⊗ b = b ⊗ a for all a, b ∈ R)

and idempotent (a ⊕ a = a for all a ∈ R). Any idempotent semiring induces a partial

order on its elements by the rule a⊕ b = b⇔ a � b, which in the case of tropical semiring

is the usual total order on real numbers. Thus we have a ⊕ b = b ⇔ a 6 b for the

tropical semiring and the usual order on real numbers (assuming that −∞ is the smallest

element).

The following definition reassures us that the basic operations with matrices are defined

in the usual way (but using the new arithmetics). By [m] and [n] we denote {1, . . . ,m}

and {1, . . . , n}.

Definition 2.1.3 (Tropical matrix addition and multiplication (e.g., [3])) For an

element c ∈ Rmax and A = (aij) ∈ Rm×n
max one defines c⊗ A by

(c⊗ A)ij = c⊗ aij ∀i ∈ [m], j ∈ [n].

11

For two matrices A = (aij) ∈ Rm×n
max and B = (bij) ∈ Rm×n

max , one defines A⊕B by

(A⊕B)ij = aij ⊕ bij ∀i ∈ [m], ∀j ∈ [n].

For matrix A = (aij) ∈ Rm×p
max and matrix B = (bij) ∈ Rp×n

max, we define A⊗ B ∈ Rm×n
max

as the matrix with entries

(A⊗B)ij =

p⊕
k=1

aik ⊗ bkj, ∀i ∈ [m], ∀j ∈ [n].

Equipped with these operations, matrices and vectors over Rmax form the tropical

matrix algebra. Let us also remark that the semiring Rmax itself is also often called

“tropical algebra” or “max-plus algebra” in the literature.

Example 2.1.3 Suppose A =


−2 −1 −∞

2 0 −4

6 −2 −5

 and B =


−2 −∞ 0

1 4 −2

−∞ 0 1

. Then we

have

A⊕B =


max(−2,−2) max(−1,−∞) max(−∞, 0)

max(2, 1) max(0, 4) max(−4,−2)

max(6,−∞) max(−2, 0) max(−5, 1)

 =


−2 −1 0

2 4 −2

6 0 1

 ,

A⊗B =


max(−4, 0,−∞) max(−∞, 3,−∞) max(−2,−3,−∞)

max(0, 1,−∞) max(−∞, 4,−4) max(2,−2,−3)

max(4,−1,−∞) max(−∞, 2,−5) max(6,−4,−4)

 =


0 3 −2

1 4 2

4 2 6

 ,

3⊗ A =


3 + (−2) 3 + (−1) 3 + (−∞)

3 + 2 3 + 0 3 + (−4)

3 + 6 3 + (−2) 3 + (−5)

 =


1 2 −∞

5 3 −1

9 1 −2

 .

One of the central problems in tropical linear algebra is the eigenproblem.

12

Definition 2.1.4 (Tropical eigenproblem (e.g.,[3])) Let A ∈ Rn×n
max . Element λ ∈

Rmax is called a (tropical) eigenvalue of A if there exists a vector x ∈ Rn
max with some

components in R such that

A⊗ x = λ⊗ x.

In this case x is called a (tropical) eigenvector of A associated with eigenvalue λ.

The greatest tropical eigenvalue of A will be denoted by λ(A).

In general, a square matrix over tropical semiring always has an eigenvalue. It can

have up to n different eigenvalues in the above sense, described in detail by Butkovič [3]

(see also references therein).

The neutral element with respect to matrix multiplication (i.e., I ∈ Rn×n
max such that

A⊗ I = I ⊗ A = A for all A ∈ Rn×n
max) can be characterized as follows.

Definition 2.1.5 (Tropical identity matrix (e.g., [3]) Matrix I ∈ Rn×n
max is called a

tropical identity matrix if its entries are

Iij =


0, if i = j,

−∞, if i 6= j,

for i, j ∈ [n].

In other words, all diagonal entries of a tropical identity matrix are equal to 0, and all

off-diagonal entries are equal to −∞.

Tropical identity matrices are a special case of tropical diagonal matrices.

Definition 2.1.6 (Tropical diagonal matrices (e.g., [3]) Matrix D ∈ Rn×n
max is called

13

a tropical diagonal matrix, if

Dij =


di, if i = j,

−∞, if i 6= j,

for some di ∈ Rmax and i, j ∈ [n]. We also denote D = diag(d1, . . . , dn).

Diagonal matrices with finite diagonal entries are invertible: for anyD = diag(d1, . . . , dn)

with di ∈ R for i ∈ [n], the inverse is D− = diag(d−1 , . . . , d
−
n), so that we have D− ⊗D =

D ⊗ D− = I. Diagonal matrices with finite entries form an Abelian group. Another

important group of invertible matrices consists of tropical permutation matrices. For a

permutation σ of [n], the corresponding tropical permutation matrix P σ is defined by

P σ
ij =


0, j = σ(i),

−∞, otherwise.

Products of tropical diagonal and tropical permutation matrices are called tropical

monomial matrices. The group of invertible n×n tropical monomial matrices is precisely

the group of all invertible matrices in Rn×n
max (e.g., [3] Theorem 1.1.3).

Monomial matrices X can be used for performing similarity transformations (similarity

scalings) in tropical algebra: A→ X− ⊗ A⊗X. The following scaling is a useful special

case of this.

Definition 2.1.7 (Tropical diagonal similarity scaling (e.g.,[3])) Let A ∈ Rn×n
max and

D be a tropical diagonal matrix, then we define a diagonal similarity scaling as the trans-

formation A 7→ D− ⊗ A⊗D.

The similarity scaling and, in particular, diagonal similarity scaling does not change

the (tropical) eigenvalues of A. It is easy to see that if λ is an eigenvalue of A, then it is

14

also an eigenvalue of D− ⊗ A⊗D where D is an invertible diagonal matrix.

Any matrix over Rmax can be written as a tropical sum of what we will call tropical

elementary matrices.

Definition 2.1.8 (Tropical elementary matrices) Let Eij ∈ Rn×n
max be a matrix with

entries

(Eij)kl =

{
0, if k = i, l = j

−∞, otherwise.

for i, j ∈ [n] and k, l ∈ [n].

Any matrix of this form is called a tropical elementary matrix.

Let us now consider the tropical matrix powers.

Definition 2.1.9 (Tropical matrix powers (e.g.,[3])) Let A ∈ Rn×n
max . The kth tropi-

cal matrix power of A is defined as

A⊗k = A⊗ A⊗ . . .⊗ A︸ ︷︷ ︸
k

.

In tropical algebra, by analogy with linear algebra, we can define the zeroth power of A,

denoted by A⊗0, to be the identity matrix I of the same dimensions as A.

Tropical matrix powers are a natural extension of scalar tropical powers:

a⊗k = a⊗ a...⊗ a︸ ︷︷ ︸
k

= a+ ...+ a︸ ︷︷ ︸
k

= k × a, ∀a ∈ Rmax, k ∈ N.

Also note that scalar tropical matrix powers can be easily defined for arbitrary real ex-

ponents:

a⊗r = r × a, r, a ∈ R; (−∞)⊗r = −∞, ∀r > 0; (−∞)⊗0 = 0.

15

Furthermore, we can also consider tropical polynomials.

Definition 2.1.10 (Tropical polynomials (e.g.,[3])) Tropical polynomial is a func-

tion of the form

x 7→ p(x) =
d⊕

k=0

ak ⊗ x⊗k.

where ak ∈ Rmax for k = 0, 1, ..., d.

Here x can be a scalar or a square matrix of any dimension. Like in the usual algebra,

any two tropical matrix powers or polynomials of the same matrix commute, and therefore

they can be used to build a tropical version of Stickel’s protocol.

Tropical matrix powers with different exponents can also be summed up together

(tropically), and this gives rise to the following important objects.

Definition 2.1.11 (Metric Matrices and Kleene Stars (e.g.,[3])) Let A ∈ Rn×n
max and

consider the following formal sums:

A+ = A⊕ A⊗2 ⊕ A⊗3 ⊕ . . . (2.1.1)

and

A∗ = I ⊕ A⊕ A⊗2 ⊕ . . . (2.1.2)

If the series (2.1.1) and (2.1.2) converge then they are called metric matrix and the Kleene

star of A respectively.

Note that the convergence of scalar sequences in Rmax is understood in the sense of

the metric d(x, y) = |ex − ey| defined for any x, y ∈ Rmax, and the convergence of matrix

series is understood entrywise.

16

Proposition 2.1.1 (e.g., [3]) Let A ∈ Rn×n
max . Series (2.1.1) and (2.1.2) converge if and

only if λ(A) 6 0, and then they can be truncated as follows:

A+ = A⊕ A⊗2 ⊕ . . .⊕ A⊗n, (2.1.3)

and

A∗ = I ⊕ A⊕ A⊗2 ⊕ . . .⊕ A⊗(n−1). (2.1.4)

The Kleene stars can be characterized by the following well-known result, as multi-

plicative idempotents of the tropical matrix algebra with all diagonal entries equal to

0.

Proposition 2.1.2 (e.g., [3]) Let A ∈ Rn×n
max and λ(A) 6 0. Then A = B∗ if and only if

A = A⊗2 and aii = 0 for all i.

Let us conclude this subsection by defining some classes of matrices that will be useful.

Definition 2.1.12 (Definite, increasing and strongly definite matrices [3]) A square

matrix A ∈ Rn×n
max then it is called definite if λ(A) = 0. Matrix A is called increasing if

the diagonal entries of matrix A are nonnegative. If matrix A is increasing and definite

then it is called strongly definite.

2.2 Digraphs and Matrices

In this section we study the relationship between digraphs (directed graphs) and matrices

over the tropical semiring. We will give some definitions concerning directed graphs that

will be used in this thesis.

Definition 2.2.1 (Directed weighted graphs (e.g., [3])) A directed graph (digraph)

is formally defined as a pair of sets (N,E), where N is a finite set whose elements are

called nodes, and the elements of E ⊆ N ×N = {(i, j) | i, j ∈ N} are called edges.

17

Consider a matrix A = (aij) ∈ Rn×n
max . The weighted digraph associated with A is the

digraph GA = (N(A), E(A)) where N(A) = {1, . . . , n} and E(A) = {(i, j) | i, j ∈ N, aij 6=

−∞}. Each edge (i, j) ∈ E(A) has weight w(i, j) = aij.

Definition 2.2.2 (Length, walks,cycle and weights (e.g.,[3])) A sequence of nodes

W = (i0, ..., il), where l is called the length of W , is called a walk in G = (N,E) if

(is−1, is) ∈ E for each 1 6 s 6 l. A path ρ is a walk such that there are no two nodes

in W that are the same. The weight of a path ρ is defined as w(ρ) = ai1i2 ⊗ · · · ⊗ ail−1il.

A cycle is a walk where the initial node i0 is equal to the final node il, and such that the

sequence (i0, i1, . . . , il−1) is a path.

Definition 2.2.3 (Strongly connected digraph (e.g.,[3])) A digraph GA is called strongly

connected if there exists a path from node i to node j, for all i 6= j.

Definition 2.2.4 (Tropical irreducible and reducible matrices (e.g.,[3])) Matrix A ∈

Rn×n
max is an irreducible matrix if GA is strongly connected and a reducible matrix otherwise.

Example 2.2.1

Let us consider the following matrices:

A =


−∞ 3 −∞

0 1 1

−4 −∞ −∞

 , B =


−∞ −∞ 2

−1 −∞ 0

−∞ −∞ 0


Here A is irreducible and B is reducible.

Definition 2.2.5 (Maximum cycle mean (e.g.,[3])) The maximum cycle mean of GA,

denoted by λ(A), is defined as the following number:

λ(A) = max
σ

µ(σ,A) (2.2.1)

18

where the maximization is taken over all cycles in GA and µ(σ,A) = w(A,σ)
l(σ)

, where σ

denotes a cycle and l(σ) is the length of the cycle.

The maximum cycle mean of A ∈ Rn×n
max is known to be the greatest tropical eigenvalue

of A, and it is the unique tropical eigenvalue if A is irreducible.

Definition 2.2.6 (Critical digraph) A cycle σ in digraph GA is called critical, if µ(σ,A) =

λ(A). Every node and edge that belongs to a critical cycle is called critical. The set of

critical nodes is denoted by NC(A), the set of critical edges is denoted by EC(A). The

critical digraph of A, further denoted by C(A) = (NC(A), EC(A)), consists of all critical

nodes and critical edges of GA.

In general, the critical graph consists of a number of maximal strongly connected

components (m.s.c.c.), which do not connect to each other by any path.

Example 2.2.2 Consider the matrix

A =



2 −1 −3 −∞

1 −∞ −∞ −2

−∞ −∞ 0 3

−∞ 6 −∞ −∞


matrix A has two critical cycles: (1) and (2, 4). Entries of the matrix, which correspond to

the critical edges, are marked in red. Thus the critical graph of A consists of two m.s.c.c.,

which are precisely the two critical cycles mentioned above.

It appears that the critical digraph of a matrix can be “visualized” by means of a

diagonal similarity scaling. The desired property is formally described as follows.

19

Definition 2.2.7 (Visualised matrices (e.g.,[3])) Let A be a square matrix in Rn×n
max

then A is called visualised if it satisfies the following conditions:

{
aij = λ(A), ∀(i, j) ∈ EC(A),

aij 6 λ(A), ∀(i, j) 6∈ EC(A).
(2.2.2)

The following known result states that a matrix can be brought to a visualized form

by a diagonal similarity scaling.

Proposition 2.2.1 (e.g., [3]) Let A ∈ Rn×n
max have λ(A) 6= −∞ and x ∈ Rn be such that

A⊗ x 6 λ(A)⊗ x and X = diag(x), then X− ⊗ A⊗X is visualized.

Note that such x ∈ Rn satisfying A⊗ x 6 λ(A)⊗ x can always be found [3].

Let us now introduce the cyclicity of a strongly connected digraph and of a critical

digraph.

Definition 2.2.8 (Cyclicity (e.g.,[3])) The cyclicity of a strongly connected graph is

defined as the greatest common divisor (g.c.d) of the lengths of all cycles.

If the cyclicity is 1 then the graph is called primitive, otherwise it is called imprimitive.

The cyclicity of a critical digraph is defined as the least common multiple (l.c.m.) of

all maximal strongly connected components of that digraph.

The cyclicity of a critical graph plays a crucial role in the following result. Cohen et

al. [8] proved that if matrix A ∈ Rn×n
max is irreducible then the sequence of matrix powers

{A⊗k}k>1 is ultimately periodic (with a shift), i.e., there exists a positive integer γ and a

non negative transient time T such that

∀k > T : A⊗(k+γ) = λ⊗γ ⊗ A⊗k, (2.2.3)

20

where λ = λ(A) is the unique (tropical) eigenvalue of A. In particular we can take for γ

the cyclicity of Gc(A).

Definition 2.2.9 Let G = (N,E) be a digraph. Then we define two sets of walks as

follows:

(i) WG(i→ j) is the set of walks over G connecting i to j;

(ii) Wk
G(i→ j) is the set of walks over G with length k connecting i to j;

For arbitrary set of walks W, by p(W) we denote the greatest weight of a walk in W.

Using these sets of walks the following optimal walk interpretation of tropical matrix

powers, Kleene stars and metric matrices can be stated.

Proposition 2.2.2 (Optimal walk interpretation (e.g.,[3])) Let A ∈ Rn×n
max and G

be the associated digraph of A. Then we have:

A⊗kij = p
(
Wk
G(i→ j)

)
, ∀k > 1, 1 6 i, j 6 n;

A+
ij = p (WG(i→ j)) , 1 6 i, j 6 n;

A∗ij = p (WG(i→ j)) , 1 6 i, j 6 n, i 6= j.

2.3 Cryptography

Cryptography studies the security of communication over open channel. Suppose that

we have two parties, Alice and Bob, and that Alice needs to share her private document

with Bob. Since Alice sends the document over unsecured network, Alice would like to

protect her document with a secret password. In order to open the document, Bob needs

Alice’s secret password. The problem here is, how does Alice share her password securely

to Bob? If Alice sends the password by email, it means that she allows an eavesdropper

21

(Eve) to steal the password. Therefore, we need a system to help Alice share her password

in a secure way.

In cryptography, there are two methods to share a secret key: symmetric key and

asymmetric key. Diffie and Hellman [10] introduced a new concept in cryptography that

allowed Alice and Bob to share the private document without sharing their secret pass-

word. Their system became known as public key cryptography or asymmetric key.

2.3.1 Public Key Cryptography

In this section we discuss three main protocols, which are mostly relevant to our re-

search: The Diffie-Hellman key exchange protocol, Stickel’s protocol and protocol based

on semidirect product.

The Diffie-Hellman protocol

As we mentioned before, Diffie and Hellman invented the concept of public key cryptogra-

phy [10]. Let us denote Alice’s secret key and Bob’s secret key by Ka and Kb respectively

and give a formal description of the Diffie-Hellman key exchange protocol.

Protocol 2.3.1 (The Diffie-Hellman Protocol [10])

1. Alice and Bob agree on a finite cyclic group G and an element g ∈ G;

2. Alice chooses a random natural number a and sends u = ga to Bob;

3. Bob chooses a random natural number b and sends v = gb to Alice;

4. Alice computes Ka = (gb)a;

5. Bob computes Kb = (ga)b.

We can see that both Alice and Bob now have the common secret key Ka = (gb)a = gba =

gab = (ga)b = Kb.

22

The cryptanalysis of this protocol, i.e., the analysis of its security, is based on the

analysis of the discrete logarithm problem, where Eve needs to find a if she is given ga.

However, the ultimate goal is to compute gab using the known data g, ga and gb. This is

sometimes also referred to as the discrete logarithm problem.

Stickel’s Protocol

Stickel’s protocol is a public key exchange protocol closely related to the Diffie-Hellman

protocol. We now give a formal description of this protocol.

Protocol 2.3.2 [Stickel’s protocol [38]] Let G be a non Abelian group.

1. Alice and Bob agree on public elements A,B,W ∈ G

2. Alice chooses two random natural numbers k, l and sends U = AkWBl to Bob.

3. Bob chooses two random natural numbers m,n and sends V = AmWBn to Alice.

4. Alice computes her secret key Ka = AkV Bl.

5. Bob computes his secret key Kb = AmUBn.

We can see that Alice and Bob end up with the same secret key Ka = AkV Bl =

AkAmWBnBl = Ak+mWBn+l = Am+kWBl+n = AmAkWBlBn = AmUBn = Kb

In the case when this protocol uses invertible matrices it can be attacked by the

following linear algebra attack [36], [35].

Assume that Eve knows matrices A,B,W,U, V . Eve needs to find matrices X and Y such

that the following equations hold:

AX = XA, BY = Y B, XWY = U. (2.3.1)

23

Assuming that X is invertible, we observe that XA = AX if and only if X−1A = AX−1

so we can rewrite (2.3.1) as follows:

AX−1 = X−1A, (2.3.2)

BY = Y B, (2.3.3)

WY U−1 = X−1. (2.3.4)

By substituting (2.3.4) into (2.3.3) we obtain

AWY U−1 = WY U−1A, Y B = BY (2.3.5)

Here we only need to find one unknown matrix, which is Y , and solving (2.3.5) means

solving a system of linear equations. Hence Grigoriev and Shpilrain [13] suggested to use

non-invertible matrices over tropical semiring to avoid the linear algebra attack. In the

next section, we will discuss their tropical implementation of Stickel’s protocol.

2.3.2 Tropical version of Stickel’s Protocol

We next describe the following tropical version of Stickel’s protocol.

Protocol 2.3.3 (Tropical Stickel protocol of [13])

Alice and Bob agree on A,B ∈ Rn×n
max . After this:

1. Alice chooses two random polynomial p1(x) and p2(x) with integer coefficients. Then

Alice computes her public message U = p1(A)⊗W ⊗ p2(B) and shares U to Bob.

2. Bob chooses two random polynomial q1(x) and q2(x) with integer coefficients. Then

Bob computes his public message V = q1(A)⊗W ⊗ q2(B) and shares V to Alice.

3. Alice computes Ka = p1(A)⊗ V ⊗ p2(B).

24

4. Bob computes Kb = q1(A)⊗ U ⊗ q2(B).

We can see that both Alice and Bob have the common secret key because any two poly-

nomials of the same matrix commute. Thus we have Ka = p1(A)⊗ V ⊗ p2(B) = p1(A)⊗

q1(A)⊗W⊗q2(B)⊗p2(B) = q1(A)⊗p1(A)⊗W⊗p2(B)⊗q2(B) = q1(A)⊗U⊗q2(B) = Kb

Grigoriev and Shpilrain’s idea was that this modified protocol might be more secure

in tropical algebra than in the usual algebra, with respect to the attack where Eve would

like to find X and Y such that:

A⊗X = X ⊗ A, B ⊗ Y = Y ⊗B (2.3.6)

and

X ⊗W ⊗ Y = U (2.3.7)

If X and Y satisfy (2.3.6) and (2.3.7), then Eve can find the common key K = Ka = Kb

by X ⊗ V ⊗ Y . Indeed,

X ⊗ V ⊗ Y = X ⊗ q1(A)⊗W ⊗ q2(B)⊗ Y = q1(A)⊗X ⊗W ⊗ Y ⊗ q2(B)

= q1(A)⊗ U ⊗ q2(B) = Kb = K.

In the tropical algebra, it is not immediately obvious how to solve (2.3.6) and (2.3.7)

efficiently, especially since X ⊗W ⊗ Y = U is not tropically linear. However, Kotov and

Ushakov [23] suggested the following solution of (2.3.6) and (2.3.7).

25

2.3.3 Kotov-Ushakov attack on the tropical version of Stickel’s

protocol

We first select a big enough number D such that it is bigger than the maximal degree of

any tropical polynomial that can be used by Alice and Bob. Then we define

X =
D⊕
α=0

xα ⊗ A⊗α, Y =
D⊕
β=0

yβ ⊗B⊗β. (2.3.8)

To satisfy (2.3.7) we impose

X ⊗W ⊗ Y =
D⊕

α,β=0

xα ⊗ A⊗α ⊗W ⊗ yβ ⊗B⊗β

=
D⊕

α,β=0

xα ⊗ yβ ⊗ A⊗α ⊗W ⊗B⊗β = U.

(2.3.9)

Equation (2.3.9) can be equivalently written as

D⊕
α,β=0

xα ⊗ yβ ⊗ (A⊗α ⊗W ⊗B⊗β − U) = E, (2.3.10)

where E is a matrix of the same dimension as A or B with all entries equal to 0. As we

denote Tαβ = A⊗α ⊗W ⊗B⊗β − U , it is convenient to rewrite (2.3.10) as

D⊕
α,β=0

(xα ⊗ yβ ⊗ Tαβγδ) = 0, ∀γ, δ ∈ [n]. (2.3.11)

If we denote zαβ = xα ⊗ yβ then we find that this is a system of tropical linear one-

sided equations (of the type “A⊗ x = b”) with coefficients Tαβγδ and unknowns zαβ, where

pairs γδ play the role of rows and pairs αβ play the role of columns. Such systems are

considered, e.g., in [3], but here we have an additional requirement that unknowns have

26

a special structure: zαβ = xα ⊗ yβ = xα + yβ.

These ideas motivate the following attack suggested by Kotov and Ushakov [23]. The

goal of this attack is to solve (2.3.11)

Attack 2.3.1 (Kotov-Ushakov [23])

1. Compute cαβ = min
γ,δ

(−Tαβγδ) and Sαβ = arg min
γ,δ

(−Tαβγδ).

2. Among all minimal covers of [n] × [n] by Sαβ, that is, all minimal subsets C ⊆

{0, . . . , D} × {0, . . . , D} such that

⋃
(α,β)∈C

Sαβ = [n]× [n]. (2.3.12)

find a cover for which the system

{
xα + yβ = cαβ if(α, β) ∈ C

xα + yβ 6 cαβ otherwise.
(2.3.13)

is solvable.

Theorem 2.3.1 (Validity of the Kotov-Ushakov attack[28]) Let A,B,W ∈ Rn×n
max

and U is the message sent by Alice to Bob in Protocol 2.3.3 . If D is bigger than the

maximal degree of any tropical polynomial that can be used by Alice and Bob, then the

Kotov-Ushakov attack yields

X =
D⊕
α=0

xα ⊗ A⊗α, Y =
D⊕
β=0

yβ ⊗B⊗β. (2.3.14)

that satisfy X ⊗W ⊗ Y = U .

Proof. Since D is bigger than the maximal degree as any tropical polynomial used by

27

Alice and Bob, it is clear from the Protocol 2.3.3 that U = X ⊗W ⊗ Y where

X =
D⊕
α=0

xα ⊗ A⊗α, Y =
D⊕
β=0

yβ ⊗B⊗β.

for some xα and yβ, for α, β ∈ {0, . . . , D}. Therefore, there exist xα and yβ that satisfy

(2.3.9) or, equivalently, (2.3.11). It is also clear that any xα and yβ that solve (2.3.11)

yield X and Y that satisfy (2.3.8) and X⊗W ⊗Y = U . Thus the protocol can be broken

by solving (2.3.11) and (with Tαβ defined using U that is produced by the protocol) this

system is solvable.

It remains to show that the Kotov-Ushakov attack actually finds a solution to (2.3.11)

(provided that a solution exists, which is the case).

Consider the system

D⊕
α,β=0

zαβ ⊗ Tαβγδ = 0, ∀γ, δ ∈ [n].

According to the theory of A⊗ x = b, and namely [3] Theorem 3.1.1 and Corollary 3.1.2,

we have

1. If the solution exists then vector C = (cαβ) where cαβ = min
γ,δ

(−Tαβγδ) is the greatest

solution.

2. Vector Z = (zαβ) is a solution if and only if there exists a set C ⊆ {0, . . . , D} ×

{0, . . . , D} such that (2.3.12) holds and zαβ = cαβ for all (α, β) ∈ C and zαβ 6 cαβ

for all (α, β).

Since zαβ = xα ⊗ yβ, for all α and β, it follows that checking the solvabilty of (2.3.11)

amounts to finding at least one system (2.3.13) that is solvable with C being a minimal

cover (i.e a set satisfying (2.3.12) that is minimal with respect to inclusion). This is what

Attack 2.3.1 actually does. �

28

Note that Theorem 2.3.1 was not formally stated and proved in [23].

2.3.4 Protocol based on Semidirect Product

Habeeb, Kahrobei, Koupparis and Shpilrain [15] developed new concept of key exchange

protocol based on the Diffie-Hellman protocol. In their protocol, they used noncommuta-

tive (semi)group as a platform and extended this semigroup by conjugating automorphism.

However, this protocol can be attacked by ”linear algebra attack” [35]. Therefore they

tried to find another platform group which is a free nilpotent p-group with sufficiently

large prime number p. They believed the protocol with this platform group is not easy

to be attacked by ”linear algebra attack”.

Here, we give some basic definitions of semidirect product in the classical algebra and

present the protocol of Habeeb et al.[15] using semidirect product.

Definition 2.3.1 (Semidirect product) Suppose G and H are groups. Suppose that

ψ : H 7→ Aut(G)

is a homomorphism. Then we define the semidirect product of G and H as the set

GoH = {(g, h)|g ∈ G, h ∈ H}

equipped with the operation defined by

(g, h)(g′, h′) = (gψ(h
′) · g′, h · h′)

.

Protocol 2.3.4 (Protocol based on Semidirect Product [15])

Let G be a (semi)group. Alice and Bob agree on the following public information: an

29

element g ∈ G, an arbitrary automorphism ψ ∈ Aut(G). Then Alice and Bob compute

their secret key in the following steps:

1. Alice chooses a private integer m and computes (g, ψm) = (ψm−1(g) · · · · · ψ2(g) ·

ψ(g), ψm). Then Alice sends the first part A = ψm−1(g) · · · · · ψ2(g) · ψ(g) to Bob.

2. Bob chooses a private integer n and computes (g, ψn) = (ψn−1(g) · · · · · ψ2(g) ·

ψ(g), ψn). Then Alice sends a pair (B,X) where B = ψn−1(g) · · · · ·ψ2(g) ·ψ(g) and

Y = ψn to Alice.

3. Alice computes (B,X)(A,ψm) = (ψm(b) · a, x · ψm).

4. Bob computes (A, Y)(B,ψn) = (ψ(n)(a) · b, y · ψn).

Since (B,X)(A,ψm) = (A, Y)(B,ψm) = (g, ψ)m+n then Alice and Bob have the same

secret key KAlice = KBob.

30

Chapter 3

Tropical Discrete Logarithm

In this chapter, we will introduce the new concept of tropical discrete logarithm problem

that used to attack the protocol in the Chapter 6.

3.1 The Classical Discrete Logarithm Problem

Let G be a group. For any a ∈ G, k ∈ N, the kth power of a is expressed as follows:

ak = a · a · . . . · a︸ ︷︷ ︸
k

.

Let b ∈ G satisfy b = ak. The problem to find the smallest k such that b = ak is called

the discrete logarithm problem.

There are several algorithms that are used for solving the discrete logarithm prob-

lem. For instance, Shank’s Baby-Step Giant-Step Algorithm that requires running time

O(
√
n log n), Silver-Pohlig-Hellman Algorithm for solving the discrete logarithm prob-

lem over GF (q) that requires running time O(
√
p) where p is the largest prime num-

ber factor of q − 1. There is also ρ -method, which requires the same running time as

Baby-Step Giant-Step Algorithm, and Index Calculus Algorithm that has running time

O(exp(c(
√

log n log log n))) [40].

At present, no efficient algorithm can solve the discrete logarithm problem and public

31

key cryptography based on the tropical discrete logarithm problem. However, Shor showed

that the discrete logarithm problem can be solved using Quantum Computer in polynomial

time [34].

Since the discrete logarithm problem is hard to solve, it is used in public key cryptog-

raphy and digital signature. The hardness of this problem is particularly important for

the protocols discussed in [10],[11],[38],etc.

3.2 The Tropical Discrete Logarithm Problem and

Ultimate Periodicity

In this section, we will discuss the algorithmic solution of the following problem, which we

call the tropical discrete logarithm, for its similarity with the tropical discrete logarithm

problem.

Problem 3.2.1 (Tropical Discrete Logarithm [29]) Suppose that V ∈ Rm×d
max , F ∈

Rd×d
max and secret key t > 1 are used to produce A = V ⊗ F⊗t. Knowing A, V and F and

that t is unique, find t.

In the tropical mathematics, there is an important special case, in which the tropical

discrete logarithm is well defined.

Proposition 3.2.1 ([29]) Suppose that V has finite entries and F is irreducible. Then

V ⊗ F⊗t1 6= V ⊗ F⊗t2 for any t1 and t2 if and only if λ(F) 6= 0.

Proof. Suppose that we have V ⊗ F⊗t1 = V ⊗ F⊗t2 for some t1 < t2. However, then each

row of V ⊗ F⊗t1 (which has finite entries since so does V and since F is irreducible) is

a left eigenvector of F⊗(t2−t1) with eigenvalue 0. However, by [4] Corollary 5.5, F⊗(t2−t1)

has a unique eigenvalue, which is (t2 − t1) × λ(F) 6= 0. This contradiction shows that

V ⊗ F⊗t1 = V ⊗ F⊗t2 implies t1 = t2, so the tropical discrete logarithm is well-defined.

32

If λ(F) = 0, then the sequence (V ⊗ F⊗t)t>1 is ultimately periodic [7, 8] (see also

[1, 3, 16]), implying that the tropical discrete logarithm is not well-defined. �

As we mentioned before, there is no efficient algorithm that can solve the classical

discrete logarithm problem without the Quantum Computer. But the situation with the

tropical version described above is very different. In the tropical version, we can use the

ultimate periodicity of tropical matrix powers, which means that the tropical discrete

logarithm problem can be solved efficiently.

Now consider F ∈ Rd×d
max with λ(F) 6= −∞. Recall that the critical graph of F ,

denoted by Gc(F), is the subgraph of G(F), which consists of all nodes and arcs of the

cycles where the maximum cycle mean λ(F) is attained. In general it consists of several

maximal strongly connected components (abbreviated as m.s.c.c.), which do not have any

connection to one another. Suppose that the critical graph Gc(F) has l m.s.c.c. Gc1, . . . ,Gcl

with corresponding cyclicities σ1, . . . , σl. For all ν ∈ {1, ..., l}, each νth component gives

rise to a CSR term via the following procedure described by Sergeev and Schneider [33]

and Merlet, Nowak and Sergeev [27].

Let λ = λ(F). Denote Uν = ((λ− ⊗ F)⊗σν)+ (using the metric matrix defined

in (2.1.1)). Then, let matrices Cν , Rν and Sν be defined by:

(Cν)ij =


(Uν)ij if j is in Gcν

−∞ otherwise,

(Rν)ij =


(Uν)ij if i is in Gcν

−∞ otherwise,

(Sν)ij =


λ− ⊗ Fij if (i, j) ∈ Gcν

−∞ otherwise.

(3.2.1)

33

Define also matrices Bν [F] and B[F] by

(Bν [F])ij =


−∞, if i ∈ Gcν or j ∈ Gcν ,

Fij, otherwise,

(B[F])ij =


−∞, if i ∈ Gc(F) or j ∈ Gc(F),

Fij, otherwise.

(3.2.2)

Denote by t(remσ) the remainder of t modulo σ (i.e., r ∈ {0, . . . , σ − 1}) such that

t = kσ + r for some k. Denote CνS
k
νRν [F] = Cν ⊗ Skν ⊗ Rν and CνS

k
ν [F] = Cν ⊗ S⊗kν for

more brevity and to indicate the matrix (F) from which Cν , Sν and Rν are defined.

The following claims can be derived from certain results of [27]. Their proofs are

deferred to Section 3.3.

Proposition 3.2.2 (Coro. of [27] Theorem 4.1 and Corollary 4.3) Let F ∈ Rd×d
max

with λ = λ(F) 6= −∞ and suppose that Gc(F) has components Gc1, . . . ,Gcl and σν for

1 6 ν 6 l are their cyclicities. Then for any ν ∈ {1, . . . , l}

F⊗t = λ⊗t ⊗ CνSt(remσν)
ν Rν [F]⊕ (Bν [F])⊗t, ∀t > (d− 1)2 + 1. (3.2.3)

Proposition 3.2.3 Under the conditions of Proposition 3.2.2, we also have

F⊗t = λ⊗t ⊗

(
l⊕

ν=1

CνS
t(remσν)
ν Rν [F]

)
⊕ (B[F])⊗t ∀t > (d− 1)2 + 1, (3.2.4)

Furthermore, if F is irreducible then there exists T (F) such that

F⊗t = λ⊗t ⊗

(
l⊕

ν=1

CνS
t(remσν)
ν Rν [F]

)
, ∀t > T (F). (3.2.5)

Equation (3.2.5) implies that after T (F) the sequence of powers (λ(F)−⊗F)⊗t is peri-

odic, with period equal to the least common multiple of σν for ν = 1, . . . , l, a well-known

fact established by Cohen et. al. [7, 8]. If we denote CStR[F] =
⊕l

ν=1CνS
t(remσν)
ν Rν [F]

34

then we can also rewrite (3.2.5) as

F⊗t = λ⊗t ⊗ CStR[F], ∀t > T (F). (3.2.6)

It is not too difficult to compute the CSR terms. In particular, one needs to find

λ, for which one can exploit Karp’s method with complexity O(d3) [1, 3] or the policy

iteration algorithm of Cochet-Terrasson et al. [6, 16], which works in general case and is

very efficient in practice. The usual technique for powering up a matrix is to use repeated

squaring, and this yields the addition of an O(d3 log d) term (observing that σν 6 d).

Further, the metric matrix can be computed by shortest path algorithms such as the

Floyd-Warshall algorithm [1, 3, 16]. The complexity of finding the components of Gc(F)

does not exceedO(d3) [1]. We also need to know the cyclicity of the components, which can

be computed in O(d2) by Balcer and Veinott’s digraph condensation [2]. However, below

we are going to show how some of these problems can be avoided, as instead of the whole

critical component we can use one critical cycle from that component, following an idea

of Merlet et al. [27, Theorem 6.1]. The resulting complexity of computing CSR remains

of the order O(d3 log d), but we avoid the need for identifying the whole components of

Gc(V) and the use of Balcer-Veinott digraph condensation.

Let us first give yet another definition of a CSR term, as below. Suppose that Z is a

critical cycle, with length l(Z). Denote UZ = ((λ− ⊗ F)⊗l(Z))∗. Then, let matrices CZ ,

RZ and SZ and BZ [F] be defined by:

(CZ)ij =


(UZ)ij if j is in Z

−∞ otherwise,

(RZ)ij =


(UZ)ij if i is in Z

−∞ otherwise,

(SZ)ij =


λ− ⊗ Fij if (i, j) ∈ Z

−∞ otherwise,

(3.2.7)

35

The following claim can be seen as a corollary of [27, Theorem 6.1]. For the readers’

convenience we give a proof of it in Section 3.3.

Proposition 3.2.4 (Coro. of [27], Theorem 6.1) Let Z be a cycle belonging to a com-

ponent Gcν of the critical graph of a square matrix F with λ(F) 6= −∞. Then CνS
t
νRν [F] =

CZS
t
ZRZ [F] for any natural t, and therefore:

F⊗t = λ⊗t ⊗ CZSt(rem l(Z))
Z RZ [F]⊕ (Bν [F])⊗t, ∀t > (d− 1)2 + 1. (3.2.8)

for any critical cycle Z and component Gcν in which it lies.

Here, equation (3.2.8) follows from (3.2.3) and the first part of the claim since σν

divides l(Z) and {CνStνRν [F]}t>0 is periodic with period σν by [33, Prop. 3.2].

Let us now argue that the diagonal similarity scaling “commutes” with the computa-

tion of CSR. The claim below is also true for other CSR terms introduced and discussed

earlier, but we will prove it for CZS
t
ZRZ [F], which is used in our solution of the tropical

discrete logarithm problem.

Proposition 3.2.5 Let D be a diagonal matrix with finite diagonal entries and let FD =

D− ⊗ F ⊗D. Then

D− ⊗ CZStZRZ [F]⊗D = CZS
t
ZRZ [FD]. (3.2.9)

Proof. It suffices to prove the following identities:

D− ⊗CZ [F]⊗D = CZ [FD], D− ⊗ SZ [F]⊗D = SZ [FD], D− ⊗RZ [F]⊗D = RZ [FD],

(3.2.10)

because then (3.2.9) can be obtained as a product of such identities. Here, the second

identity follows since SZ [F] is obtained from the matrix λ−(F)⊗F by setting some entries

36

to −∞ and SZ [FD] is obtained from the matrix λ−(FD)⊗FD by setting the same entries

to −∞, and it is then implied by λ−(FD) ⊗ FD = D− ⊗ (λ−(F) ⊗ F) ⊗ D (using that

λ(F) = λ(FD) since the diagonal similarity scaling does not change eigenvalues).

For the first identity and the third identities, we recall that CZ [F] is the matrix where

the columns with indices in Z are the columns of ((λ(F)− ⊗ F)⊗l(Z))+ with indices in

cycle Z, and RZ [F] is the matrix where the rows with indices in Z are the rows of

((λ(F)− ⊗ F)⊗l(Z))+ with indices in cycle Z. Then it suffices to prove the identity for

(G[F])+ and (G[FD])+, where G[F] = (λ(F)−⊗F)⊗l(Z) and G[FD] = (λ(FD)−⊗FD)⊗l(Z).

For this we first obtain the identity D− ⊗ G[F] ⊗ D = G[FD] by taking the product of

l(Z) identities D− ⊗ (λ(F)− ⊗ F)⊗D = λ(FD)− ⊗ FD (recall that λ(F) = λ(FD)). Next

we recall that (G[F])+ =
⊕d

i=1(G[F])⊗i, and the identity D− ⊗ (G[F])+ ⊗D = (G[FD])+

follows as we sum up the identities D− ⊗ (G[F])⊗i ⊗D = (G[FD])⊗i. �

The next immediate corollary of above results will be used in practice, for solving the

tropical discrete logarithm problem. It is closely related to an observation by Nachti-

gall [30] that critical rows and columns of matrix powers become periodic after O(d2),

and the further more refined results of Merlet et al. [26].

Corollary 3.2.1 (Coro. of [27], Theorem 6.1) Let V ∈ Rm×d
max and F ∈ Rd×d

max with

λ = λ(F) 6= −∞, and let Z be a cycle of Gc(F). Then for any t > (d − 1)2 + 1,

the columns of V ⊗ F⊗t with indices in Z are equal to the corresponding columns in

λ⊗t ⊗ V ⊗ CZSt(rem l(Z))
Z RZ [F].

Proof. Equation (3.2.8) implies that the columns of F⊗t with indices in Z are equal to the

corresponding columns of λ⊗t⊗CZSt(rem l(Z))
Z RZ [F]. The claim now follows as we multiply

the columns of F⊗t and λ⊗t ⊗ CZSt(remσ1)
Z RZ [F] with indices in Z by V . �

Corollary 3.2.1 suggests the following algorithm for finding t such that A = V ⊗ F⊗t,

that is, for solving Problem 3.2.1. In this algorithm, E will denote a matrix of appropriate

37

dimensions consisting of all zeros.

Algorithm 3.2.1 (Tropical Discrete Logarithm [29])

Input: A, V ∈ Rm×d
max , F ∈ Rd×d

max.

Output: t such that A = V ⊗ F⊗t.

0. Find λ = λ(F) and a critical cycle Z. Compute CZ and SZ .

1. For t = 0, 1, . . . , (d− 1)2 check if A = V ⊗ F⊗t and return t if it is found;

2. For k = 0, . . . , l − 1 check if A·i − V ⊗ (CZS
k
ZRZ [F])·i = µ + E·i for all i ∈ Z and

some µ such that t = µ/λ(F) is a natural number and return the first such t that

is found.

Proposition 3.2.6 ([29]) Part 0., part 1. and part 2. of Algorithm 3.2.1 require at most

O(d3 log l(Z)), O(md4) and O(ml(Z)(d+ l(Z))) operations, respectively.

Proof. Complexity bounds:

0. Finding λ(F) and a critical cycle Z needs at most O(d3) operations (Karp’s al-

gorithm and the methods described in [16, 31]. After this, CZ can be found in

O(d3 log l(Z)) operations (dominated by the repeated matrix squaring).

1. On step 1, the outer loop has size (d − 1)2, and the computationally dominant

operation is that of repeated multiplication of an m× d matrix by an d× d matrix

F , taking md2 operations. Thus, the overall complexity is O(md4).

2. On step 2, the computational complexity can be decreased using the observation that

the columns of CZS
t(rem l(Z))
Z RZ [F] with indices in Z are equal to the corresponding

columns CZS
t(rem l(Z))
Z [F] by [33, Corollary 3.7], and therefore we actually check if

A·i−(V ⊗CZ⊗S⊗kZ)·i = µ+E·i for some µ such that t = µ/λ(F) is a natural number.

The outer loop has size l(Z) and we precompute the columns of V ⊗CZ with indices

38

in Z, which gives O(mdl(Z)) operations. The computationally dominant operation

at each step is that of multiplying an m× l matrix by SZ (done by a permutation of

and adding some scalar values to the columns of that matrix), which is O(ml(Z)).

Overall it gives O(ml(Z)(d+ l(Z))). �

Remark 3.2.1 Using [33, Corollary 3.7], CZS
t rem(l(Z))
Z RZ [F] can be replaced with CZS

t rem(l(Z))
Z [F]

in Corollary 3.2.1 and Algorithm 3.2.1.

Remark 3.2.2 If we are certain that t > (d − 1)2 + 1, then we can omit part 1. of the

above algorithm. This gives rise to a “light” version of Algorithm 3.2.1, which will be

tested in our numerical experiments.

Remark 3.2.3 We can also suggest another lighter but less reliable version of Algo-

rithm 3.2.1 where A·i − (V ⊗ CZSt(rem l(Z))
Z [F])·i = µ + E·i is checked just for one i ∈ Z.

Then the complexity of Step 1. drops further.

Theorem 3.2.1 ([29]) Suppose that matrices V ∈ Rm×d
max , F ∈ Rd×d

max and critical cycle Z

are such that any of the following equivalent conditions holds:

1. For any t1 6= t2, we have V ⊗ λ⊗t1 ⊗CZSt1 rem l(Z)
Z [F] 6= V ⊗ λ⊗t2 ⊗CZSt2 rem l(Z)

Z [F],

2. For no t1, t2 > (d − 1)2 + 1 and t1 6= t2 we have that all columns of V ⊗ F⊗t1 with

indices in Z are equal to the corresponding columns of V ⊗ F⊗t2.

Then, for any A = V ⊗ F⊗t with t > (d− 1)2 + 1, part 2. of Algorithm 3.2.1 finds this t

and it is unique.

Proof. The equivalence between 1. and 2. follows by Corollary 3.2.1 and Remark 3.2.1,

which also imply that if t > (d − 1)2 + 1, then A·i = t × λ + V ⊗ (CZS
t(rem l(Z)
Z [F])·i and

hence for k ≡ t(rem(l(Z)) we have A·i− V ⊗ (CZS
k
Z [F])·i = µ+E·i for all i ∈ Z, where µ

39

is such that t = µ/λ(F) is natural. Furthermore, if this holds for t > (d − 1)2 + 1, then

we have A·i = λ⊗t⊗ V ⊗ (CZS
t(rem l(Z))
Z [F])·i for all i ∈ Z, and hence A·i = (V ⊗F⊗t)·i for

all such i by Proposition 3.2.4 and (3.2.3). Condition 2. of the theorem then implies that

such t is unique and hence correct. �

Remark 3.2.4 The algorithm cannot work when λ(F) = 0. In this case, obviously, the

sequence of columns {(V ⊗F⊗t)·i}t>(d−1)2 is periodic for any i ∈ Z with the same period,

and there are infinitely many t such that A·i = (V ⊗F⊗t)·i, if one such t exists. However,

if F is irreducible with λ(F) = 0, then the tropical discrete logarithm problem is not

well-defined, either.

Remark 3.2.5 In the first part of the claim, we can replace t1 rem l(Z) and t2 rem l(Z)

with t1 and t2, respectively.

We now obtain the following previously not published result, which improves [29,

Corollary 2.6].

Theorem 3.2.2 Let λ(F) 6= 0, and let Z be a critical cycle of G(F) such that for each

t > (d− 1)2 + 1 at least one column of V ⊗ F⊗t with index in Z has a finite entry. Then

V ⊗ λ⊗t1 ⊗ CZSt1 rem l(Z)
Z [F] 6= V ⊗ λ⊗t2 ⊗ CZSt2 rem l(Z)

Z [F] for any t1 and t2 with t1 6= t2.

Proof. Suppose that V ⊗ λ⊗t1 ⊗ CZSt1 rem l(Z)
Z [F] = V ⊗ λ⊗t2 ⊗ CZSt2 rem l(Z)

Z [F], which is

the same as

λ⊗t1 ⊗ V ⊗ CZSt1Z [F] = λ⊗t2 ⊗ V ⊗ CZSt2Z [F] (3.2.11)

Let D be such that FD = D− ⊗ F ⊗D is visualised. Postmultiplying (3.2.11) by RZ [F]

and D we obtain

λ⊗t1⊗(V ⊗D)⊗D−⊗CZSt1ZRZ [F]⊗D = λ⊗t2⊗(V ⊗D)⊗D−⊗CZSt2ZRZ [F]⊗D. (3.2.12)

40

By Proposition 3.2.5, we have

D− ⊗ CZStZRZ [F]⊗D = CZS
t
ZRZ [FD]. (3.2.13)

In words, the diagonal similarity scaling of the CSR term defined from F is equal to the

CSR term defined from FD. We then obtain:

(V ⊗D)⊗ CZSt1ZRZ [FD] = λ⊗(t2−t1) ⊗ (V ⊗D)⊗ CZSt2ZRZ [FD]

Restricting this matrix equation to the columns with indices in Z we obtain

(V ⊗D)⊗ CZSt1Z [FD] = λ× (t2 − t1) + (V ⊗D)⊗ CZSt2Z [FD] (3.2.14)

Since FD is visualized, the submatrix of SZ [FD] extracted from the rows and columns in

Z is a permutation matrix, and so is S
⊗(t2−t1)
Z [FD]. We see that

(V ⊗D)⊗ CZSt2Z [FD] = (V ⊗D)⊗ CZSt1Z [FD]⊗ St2−t1Z [FD],

and since S
⊗(t2−t1)
Z [FD] is a permutation matrix, the greatest entries of (V ⊗D)⊗CZSt1Z [FD]

and (V ⊗D)⊗ CZSt2Z [FD] are the same. Since V ⊗ F⊗t for t > (d− 1)2 + 1 has at least

one finite entry in one of the columns in Z and since these columns are equal to those

of V ⊗ CZSt rem l(Z)
Z [F], the same property also holds for matrices (V ⊗ D) ⊗ CZSt1Z [FD]

and (V ⊗D)⊗CZSt2Z [FD] mentioned above, and therefore their greatest entries are finite.

This implies that (3.2.14) is impossible, hence the claim follows. �

Remark 3.2.6 It follows from the above that for any t2 > t1 > (d− 1)2 + 1 the {0,−∞}

the pattern of each column of V ⊗ F⊗t2 with index in Z can be obtained as the {0,−∞}

pattern of a (possibly different) column of V ⊗ F⊗t1 with index in Z, and hence the

41

condition that for each t > (d − 1)2 + 1 at least one column of V ⊗ F⊗t with index in Z

has a finite entry can be replaced with the condition that a column with index in Z and a

finite entry should exist in V ⊗ F⊗d2.

We then have the following immediate corollaries of the above results.

Corollary 3.2.2 Let λ(F) /∈ {0,−∞}, and suppose that there exists a node of Gc(F) such

that the corresponding column of V ⊗ F⊗d2 has a finite entry. Then part 2. of Algorithm

3.2.1, which uses any cycle Z containing such node and is applied to V ⊗ F⊗t, finds that

t, which is unique.

Corollary 3.2.3 Under the conditions of Corollary 3.2.2 the discrete logarithm problem

is well defined for V , F and any t > (d− 1)2 + 1.

Corollary 3.2.4 Let λ(F) /∈ {0,−∞} and let V have only finite entries. Then the

discrete logarithm problem is well-defined for these V and F and any t > (d − 1)2 + 1,

and part 2. of Algorithm 3.2.1, which uses any critical cycle Z and is applied to V ⊗F⊗t,

finds that t.

3.3 Proofs of some results on CSR expansions

In this section we will give the previously deferred proofs of some results on the CSR

expansion.

3.3.1 Proof of Proposition 3.2.2 [29]

Here we deduce these propositions from results of Merlet et al. [27]. To do this, we need

to introduce other versions of CSR decomposition and expansion, which appeared in that

work. First of all, we can define the “big” CSR terms by considering the whole critical

graph instead of individual components. For this, let σ be the l.c.m. of all σ1, . . . , σl and

42

define U = ((λ− ⊗ F)⊗σ)+. Then let matrices C, R and S be defined by

Cij =


Uij if j is in Gc(F)

−∞ otherwise,

Rij =


Uij if i is in Gc(F)

−∞ otherwise,

Sij =


λ− ⊗ Fij if (i, j) ∈ Gc(F)

−∞ otherwise.

(3.3.1)

We will denote CStR[F] = C ⊗ S⊗t ⊗ R. By Wielandt’s bound (15) in [27][Theorem

4.1], we have

F⊗t = λ⊗t ⊗ CStR[F]⊕ (B[F])⊗t = λ⊗t ⊗ CSt(remσ)R[F]⊕ (B[F])⊗t, t > (d− 1)2 + 1

(3.3.2)

Let us now discuss how the CSR term appearing in (3.3.2) can be decomposed into

smaller CSR terms. For this, assume some numbering of the critical components and for

µ : 1 6 µ 6 l − 1, define matrix Fµ+1 by

(Fµ+1)ij =


−∞, if i ∈ Gcµ or j ∈ Gcµ,

(Fµ)ij, otherwise,

(3.3.3)

with F1 = F . Observe that λ(Fµ) = λ for any such µ, and that the critical graph of Fµ

consists of components Gcµ, . . . ,Gcl . Denote U ′µ = ((λ−⊗Fµ)⊗σµ)+. Then, let matrices C ′µ,

43

R′µ and S ′µ for µ = 1, . . . , l be defined by:

(C ′µ)ij =


(U ′µ)ij if j is in Gcν

−∞ otherwise,

(R′µ)ij =


(U ′µ)ij if i is in Gcν

−∞ otherwise,

(S ′µ)ij = (Sµ)ij =


λ− ⊗ (Fµ)ij if (i, j) ∈ Gcν

−∞ otherwise.

(3.3.4)

Let us also compare C ′µ, S ′µ and R′µ with the matrices introduced in (3.2.1). Notice that

S ′µ = Sµ, for all µ and also C ′1 = C1 and R′1 = R1, but in general only C ′µ 6 Cµ and

R′µ 6 Rµ. We further denote C ′µS
t(remσν)
µ Rµ[F] = C ′µ ⊗ S

t(remσµ)
µ ⊗ R′µ, similarly to the

CSR notation before. According to [27][Corollary 4.3], the following decomposition holds:

CSt(remσ)R[F] =
l⊕

µ=1

C ′µS
t(remσµ)
µ R′µ[F], ∀t. (3.3.5)

Combining (3.3.2) and (3.3.5), we obtain

F⊗t = λ⊗t ⊗
l⊕

µ=1

C ′µS
t(remσµ)
µ R′µ[F]⊕ (B[F])⊗t, ∀t > (d− 1)2 + 1. (3.3.6)

Observing that C ′1S
t(remσ1)
1 R′1[F] = C1S

t remσ1
1 R1[F] we can also write:

F⊗t = λ⊗t⊗C1S
t(remσ1)
1 R1[F]⊕λ⊗t⊗

l⊕
µ=2

C ′µS
t(remσµ)
µ R′µ[F]⊕(B[F])⊗t, ∀t > (d−1)2+1.

(3.3.7)

But by a similar combination of [27] Theorem 4.1 and Corollary 4.3, we also have:

(B1[F])⊗t = λ⊗t ⊗
l⊕

µ=2

C ′µS
t(remσµ)
µ R′µ[F]⊕ (B[F])⊗t, ∀t > (d− 1)2 + 1, (3.3.8)

44

where B1[F] is defined as in (3.2.2) with ν = 1. Substituting (3.3.8) into (3.3.7) we obtain

F⊗t = λ⊗t ⊗ C1S
t(remσ1)
1 R1[F]⊕ (B1[F])⊗t, (3.3.9)

which is the same as (3.2.3) for ν = 1

3.3.2 Proof of Proposition 3.2.3 [29]

Observe that (3.3.6) holds for any numbering of critical components. In other words,

for any numbering of critical components we get the corresponding CSR decomposition

of the form (3.3.6). Depending on which of these components is the first one, the first

term in (3.3.6) can be equal to any of the terms CνS
t(remσν)
ν Rν [F], while any other term

in (3.3.6) is less than or equal to one of these CνS
t(remσν)
ν Rν [F]. This implies that taking

the tropical sum of all CSR decompositions (3.3.6) written for all possible numberings of

the critical components we obtain (3.2.4):

F⊗t = λ⊗t ⊗
l⊕

ν=1

CνS
t(remσν)
ν Rν [F]⊕ (B[F])⊗t, ∀t > (d− 1)2 + 1, (3.3.10)

For the irreducible matrices, the existence of T (F) such that

F⊗t = λ⊗t ⊗ CSt(remσ)R[F], ∀t > T (F) (3.3.11)

follows from [33][Theorem 5.6], and a number of upper bounds on T (F) have been estab-

lished in [27]. Recall also that

CStR[F] =
l⊕

µ=1

C ′µS
t(remσµ)
µ R′µ[F] 6

l⊕
ν=1

CνS
t(remσν)
ν Rν [F], ∀t. (3.3.12)

45

It follows from (3.3.10), (3.3.11) and (3.3.12) that

l⊕
ν=1

CνS
t(remσν)
ν Rν [F] 6 CSt(remσ)R[F], ∀t > T (F). (3.3.13)

Combining (3.3.12), (3.3.13) and the periodicity of CSR terms, we can replace inequalities

in (3.3.12) and (3.3.13) with equalities, and we can write (3.3.11) as

F⊗t = λ⊗t ⊗
l⊕

ν=1

CνS
t(remσν)
ν Rν [F],

establishing (3.2.5) and completing the proof of Proposition 3.2.3.

3.3.3 Proof of Proposition 3.2.4[29]

Let us recall the notation introduced in Definition 2.2.9 and the result of Proposition 2.2.2,

according to which, in particular,

A⊗kij = p
(
Wk(i→ j)

)
, A+

ij = p (W(i→ j)) .

Here and below, we will omit the subscript G as the walks will be always defined on G

being the graph associated with A.

Let us also introduce some extra notation, following [27]. We are also going to use the

following sets of walks:

• W t,l(i→ j) : set of walks connecting node i to node j and having length t(rem l);

• W t,l(i
G−→ j): set of walks connecting node i to node j, going through a node in

subgraph G and having length t(rem l).

The proof given below is a simplified version of the proof of [27][Theorem 6.1]. For the

sake of this proof we assume without loss of generality that the critical graph is strongly

46

connected, i.e., it consists of one component, and let C, S and R be defined from it. We

will show that for arbitrary i and j

(C ⊗ S⊗t ⊗R)ij = (CZ ⊗ S⊗tZ ⊗RZ)ij = p(W t,l(Z)(i
Z−→ j)). (3.3.14)

We first show

(CZ ⊗ S⊗tZ ⊗RZ)ij 6 p(W t,l(Z)(i
Z−→ j)), (C ⊗ S⊗t ⊗R)ij 6 p(W t,l(Z)(i

Z−→ j)). (3.3.15)

For the first inequality, we have (CZ ⊗ S⊗tZ ⊗ RZ)ij = (CZ)is1 ⊗ (S⊗tZ)s1s2 ⊗ (RZ)s2j,

for some s1, s2 ∈ Z, which means that in terms of walks, there is a walk V such that

p(V) = (CZ ⊗ S⊗tZ ⊗ RZ)ij and decomposed as V = V1V2V3, where V1 ∈ W0,l(Z)(i → s1),

V2 ∈ W t(s1 → s2) and V3 ∈ W0,l(Z)(s2 → j). It is then obvious that V ∈ W t,l(Z)(i
Z−→ j),

and the first inequality of (3.3.15) follows.

As for the second inequality, (C ⊗ S⊗t ⊗ R)ij is the weight of a walk W that can

be decomposed as W = W1W2W3, where W1 ∈ W0,σ(i → k1), W2 ∈ W t(k1 → k2) and

W3 ∈ W0,σ(k2 → j) and k1, k2 ∈ Gc1. We now introduce a walk W4 connecting k1 to a node

k3 ∈ Z and a walk W5 going back to k1. The composition W4W5 forms a closed walk on

Gc(F), and its length is a multiple of σ. In k3, we insert a closed walk W6 of a big enough

length, whose all arcs belong to Gc(F) and whose length is such that the sum of lengths of

W1, W3, W4, W5 and W6 is a multiple of l(Z). Then for the walk W̃ = W1W4W6W5W2W3,

we have W̃ ∈ W t,l(Z)(i
Z−→ j). We thus have p(W) = p(W̃) 6 p(W t,l(Z)(i

Z−→ j)), hence the

second inequality of (3.3.15).

We now prove:

(CZ ⊗ S⊗tZ ⊗RZ)ij > p(W t,l(Z)(i
Z−→ j)), (C ⊗ S⊗t ⊗R)ij > p(W t,l(Z)(i

Z−→ j)). (3.3.16)

47

For this, consider a walk W such that p(W) = p(W t,l(Z)(i
Z−→ j)). Then we decompose

it as W = V1V2, where V1 connects i to a node k ∈ Z ⊆ Gc(F), and V2 connects k to j.

At node k we insert mZ: a number of copies of Z such that ml(Z) > t + l(Z). We then

find V3, W2 and V4 such that mZ = V3W2V4, W2 has length t and both l(V1) + l(V3) and

l(V4) + l(V2) are multiples of l(Z). Since W̃ = V1V3W2V4V2 ∈ W t,l(Z)(i
Z−→ j) and m is big

enough, such walks V3, W2 and V4 can be found. Denoting by k1 the end of walk V3 and

by k2 the beginning of walk V4, we see that

p(V1) + p(V3) 6 (CZ)ik1 , p(V1) + p(V3) 6 Cik1 , p(W2) 6 (S⊗tZ)k1k2 , p(W2) 6 S⊗tk1k2 ,

p(V4) + p(V2) 6 (RZ)k2j, p(V4) + p(V2) 6 Rk2j,

and this implies both inequalities of (3.3.16).

3.4 Two-sided Tropical Discrete Logarithm Problem

In this section, we will generalise the two-sided tropical discrete logarithm problem to

attack heuristically the tropical version of Stickel’s protocol.

3.4.1 Theoretical observations and algorithms

Recall the original Stickel’s Protocol 2.3.2 in Chapter 2. Here we consider the following

tropical version of Stickel’s protocol:

Protocol 3.4.1 (Tropical Version of Stickel’s Protocol) Alice and Bob agree on pub-

lic matrices A,B,W ∈ Rn×n
max then they do the following steps:

1. Alice chooses a pair of positive integer numbers (m,n). Then Alice sends U =

A⊗m ⊗W ⊗B⊗n to Bob,

2. Bob chooses a pair positive integer numbers (p, q). Then Bob sends V = A⊗p⊗W ⊗

B⊗q to Alice,

48

3. Alice computes her private key Ka = A⊗m ⊗ V ⊗B⊗n,

4. Bob computes his private key Kb = A⊗p ⊗W ⊗ A⊗q.

Note that here we are not considering the tropical Stickel protocol with tropical polyno-

mials as in [13], but a simpler version of it.

To break Protocol 3.4.1, it is desirable to have a method of finding t1 and t2 such that

A⊗t1 ⊗W ⊗B⊗t2 = U , for given matrices A, B, W and U . However, unlike the one-sided

problem discussed earlier in this chapter, such problem is quite likely to have multiple

solutions, as we can see from experiments.

Example 3.4.1 Let

A =



595 432 −120 −959 −755

444 −901 395 389 793

−387 −990 357 211 474

558 −482 897 307 −233

81 186 27 −246 −829


, B =



607 476 749 −244 −775

310 −496 −74 917 −677

−270 479 103 −939 394

−105 −661 −999 500 67

−133 −172 −163 −508 935


,

and

W =



−831 931 287 790 −250

−990 −901 −411 −424 −588

229 −989 −474 106 −714

141 −376 454 666 688

−450 820 −997 −699 −858


Consider the following pairs: (m1, n1) = (68, 72), (m2, n2) = (35, 93), (m3, n3) =

49

(46, 86), (m4, n4) = (90, 58) Then it can be seen that:

A⊗m1 ⊗W ⊗ A⊗n1 = A⊗m2 ⊗W ⊗B⊗n2 = A⊗m3 ⊗W ⊗B⊗n3

= A⊗m4 ⊗W ⊗B⊗n4 =

=



107031 106992 107001 106974 108099

106880 106841 106850 106823 107948

106610 106571 106580 106553 107678

106994 106955 106964 106937 108062

106517 106478 106487 106460 107585


.

Let us also consider the following pairs: (p1, q1) = (53, 53), (p2, q2) = (31, 67), (p3, q3) =

(64, 46) and (p4, q4) = (42, 60). Then

A⊗p1 ⊗W ⊗ A⊗q1 = A⊗p2 ⊗W ⊗B⊗q2 = A⊗p3 ⊗W ⊗B⊗q3 = A⊗p4 ⊗W ⊗B⊗q4

=



80341 80302 80311 80284 81409

80190 80151 80160 80133 81258

79920 79881 79890 79863 80988

80304 80265 80274 80247 81372

79827 79788 79797 79770 80895


For the purpose of breaking Stickel’s protocol we can find arbitrary t′1 and t′2 such that

A⊗t
′
1 ⊗W ⊗ B⊗t

′
2 = U , and guessing the “true” t1 and t2 is not necessary. Therefore,

for that purpose we are satisfied with the following relaxed formulation of the two-sided

discrete logarithm problem.

Problem 3.4.1 (Two-sided Tropical Discrete Logarithm) Given matrices A,W,B

and U of appropriate dimensions such that A⊗t1 ⊗W ⊗B⊗t2 = U for some t1 and t2, find

t′1 and t′2 such that A⊗t
′
1 ⊗W ⊗B⊗t′2 = U .

50

For irreducible A and B the solution to this problem can be based on the CSR expan-

sion, as it follows from (3.2.6) that:

A⊗t1⊗W⊗B⊗t2 = λ⊗t1(A)⊗λ⊗t2⊗CSt1R[A]⊗W⊗CSt2R[B], ∀t1 > T (A), ∀t2 > T (B),

(3.4.1)

where T (A) and T (B) are the periodicity transients of the sequences of tropical ma-

trix powers of A and B. If, moreover, Gc(A) and Gc(B) consist just of one component

then (3.4.1) simplifies to

A⊗t1 ⊗W ⊗B⊗t2 = λ⊗t1(A)⊗ λ⊗t2(B)⊗ CZ1S
t1
Z1
RZ1 [A]⊗W ⊗ CZ2S

t2
Z2
RZ2 [B],

∀t1 > T (A), ∀t2 > T (B),

(3.4.2)

where Z1 is an arbitrary critical cycle of GA and Z2 is an arbitrary critical cycle of GB.

We will also suggest a heuristic method for solving this problem, based on the following

proposition.

Proposition 3.4.1 Let A,B,W ∈ Rd×d
max, Z1 be a critical cycle in GA with set of nodes

N1 and Z2 be a critical cycle in GB with set of nodes N2. Then

(
A⊗t1 ⊗W ⊗B⊗t2

)
N1N2

= λ⊗t1(A)⊗ λ⊗t2(B)⊗ (CZ1S
t1
Z1
RZ1 [A]⊗W ⊗ CZ2S

t2
Z2
RZ2 [B])N1N2 ,

∀t1, t2 > (d− 1)2 + 1.

(3.4.3)

Proof. By Theorem (3.2.2) we know that for any t1, t2 > (d − 1)2 + 1 the rows of A⊗t1

with indices in N1 are equal to the rows of λ⊗t1⊗CZ1S
t1
Z1
RZ1 [A] with the same indices and

the columns of B⊗t2 with indices in N2 are equal to the columns of CZ2S
t2
Z2
RZ2 [B] with

the same indices. Next, the submatrix of A⊗t1 ⊗W ⊗B⊗t2 extracted from the rows in N1

51

and columns in N2 can be obtained as the (tropical) product of: 1) the submatrix of A⊗t1

extracted from the rows in N1, 2) matrix W and 3) the submatrix of A⊗t2 extracted from

the columns in N2. The claim results from a direct combination of these two ideas. �

Using a result of [33] we can simplify (3.4.3) as follows:

(
A⊗t1 ⊗W ⊗B⊗t2

)
N1N2

= λ⊗t1(A)⊗ λ⊗t2(B)⊗ (St1Z1
RZ1 [A]⊗W ⊗ CZ2S

t2
Z2

[B])N1N2 ,

∀t1, t2 > (t− 1)2 + 1

(3.4.4)

Let us first formulate an algorithm based on (3.4.2). It is guaranteed to solve the

two-sided logarithm problem in the case where A and B are irreducible and Gc(A) and

Gc(B) consist just of one component.

Algorithm 3.4.1 (Two-sided Tropical Discrete Logarithm (exact))

Input: A, B, W, U ∈ Rd×d
max.

Output: t1 and t2 such that U = A⊗t1 ⊗W ⊗B⊗t2 .

0. Find λ1 = λ(A), λ2 = λ(B), critical cycle Z1 of A and critical cycle Z2 of B.

Compute CZ1 [A], SZ1 [A], RZ1 [A], CZ2 [B], SZ2 [B] and RZ2 [B]. Determine T1 and T2:

upper bounds on T (A) and T (B).

1. For each t1 = 0, 1, . . . , T1, using Algorithm 3.2.1, try to find t2 such that U =

A⊗t1 ⊗W ⊗ B⊗t2 . If t2 is never found, try to find t1 such that the same equation

holds for some t2 = 0, 1, . . . , T2.

2. Let l1 and l2 be the lengths of Z1 and Z2, respectively. For k1 = 1, . . . , l1 and

k2 = 1, . . . , l2 check if U −CZ1S
k1
Z1
RZ1 [A]⊗W ⊗CZ2S

k2
Z2
RZ2 [B] = µ+E, where µ =

λ1t1 + λ2t2 for some natural t1 and t2 such that k1 ≡ t1(rem l1) and k2 ≡ t2(rem l2).

Return these t1 and t2 when they are found.

52

The following heuristic version of this algorithm is based on Proposition 3.4.1 and will

be studied in our numerical experiments.

Algorithm 3.4.2 (Two-sided Tropical Discrete Logarithm (heuristic))

Input: A, B, W, U ∈ Rd×d
max.

Output: t1 and t2 such that U ≈ A⊗t1 ⊗W ⊗B⊗t2 .

1. Find λ1 = λ(A), λ2 = λ(B), critical cycle Z1 of A and critical cycle Z2 of B.

Compute SZ1 [A], RZ1 [A], CZ2 [B], SZ2 [B].

2. Let l1 and l2 be the lengths of Z1 and Z2, respectively. For t1 = 1, . . . , l1 and

t2 = 1, . . . , l2 check if UN1N2 −
(
Sk1Z1

RZ1 [A]⊗W ⊗ CZ2S
k2
Z2

[B]
)
N1N2

= µ + EN1N2 ,

where µ = λ1t1 + λ2t2 for some natural t1 and t2 such that k1 ≡ t1(rem l1) and

k2 ≡ t2(rem l2). Return these t1 and t2 when they are found.

Efficient implementation of these algorithms relies on efficient solution of the following

problems. For the first algorithm, we would have to find the transients T (A) and T (B) or

some upper bounds on them that are not too big. Finding the transients is essentially the

same problem as the one solved in the attack of Isaac and Kahrobaei [17], where the length

of the preperiodic part of an ultimately periodic sequence is found. For better bounds

on T (A) and T (B), the results of Merlet et al. [27] can give some guidance. However

both the transients and the bounds in general depend on the matrix entries and can be

arbitrarily big (see, e.g., [27]).

Also, in both algorithms we need to find t1 and t2 with certain properties, satisfying

µ = λ1t1 +λ2t2, where µ is the difference between the entries of the matrix and the entries

of a CSR product. Finding such t1 and t2 is more difficult than just dividing µ by λ as in

the solution of the (one-sided) tropical discrete logarithm.

On the other hand, however, if the problem is very degenerate as in Example 3.4.1,

then it will not take too much effort for the attacker to find one such pair (which does

53

not have to be the same as the one used by Alice and Bob).

3.4.2 Numerical Experiments

In this section, we examine the success rate of our heuristic algorithm to break the tropical

version of Stickel’s protocol. We implemented Algorithm 3.4.2 in Matlab R2019b and run

the test on 1.2 GHz Dual-Core Intel Core m3 Macbook retina 2017 with 8 GB of RAM.

We performed a series of experiments for Algorithm 3.4.2. For each dimension we

performed 100 experiments. More precisely, the following parameters were used:

• The dimension of matrices d = 5 to d = 50,

• The entries of public matrices A, B and W in the range [−1000, 1000],

• The private exponents of Alice and Bob in the range [d2, 3× d2].

The result which we obtained is shown in Figure 3.1.

Figure 3.1: Success rate of Algorithm 3.4.2 depending on dimension

54

From this figure we can see that the success rate of algorithm 3.4.2 depends on the

dimension of public matrices. The success rate decreases when the dimension of public

matrices increases, but still stays well above 70% as the dimension of matrices approaches

50.

55

Chapter 4

Commuting Matrices in Tropical

Algebra

In this chapter, we study three sets of commuting matrices in tropical algebra which are

used to generate new public key exchange protocols (in the next chapter). The first set

of commuting matrices is based on a set of special matrices considered by Jones [19],

which we call generalised Kleene stars (Section 4.1). More precisely, we consider the set

of deformations of such matrices (Definition 4.1.2) generalising Jones’ results on tropical

matrix roots of those special matrices. Two other sets of commuting matrices are based

on our generalisation of some results of Linde and de la Puente [24] (Section 4.2).

4.1 Generalized Kleene stars

Tropical polynomials are used in the tropical version of Stickel’s protocol suggested by

Grigoriev and Shpilrain. We now describe a special kind of matrices considered by

Jones [19], for which the notion of polynomial can be extended.

Definition 4.1.1 (Generalized Kleene Stars) Let A = (aij) be a n×n tropical matrix

56

which satisfies the following property:

aij ⊗ ajk 6 aik ⊗ ajj ∀i, j, k. (4.1.1)

We call A a generalized Kleene star.

Note that any Kleene star is a generalized Kleene star where we have ajj = 0 for all

j ∈ [n] in (4.1.1).

We will consider the following operation. It is an extended version of tropical matrix

roots, which were considered by Jones [19].

Definition 4.1.2 (Deformation [28]) Let A be a generalized Kleene star and α ∈ R.

Matrix A(α) = (a
(α)
ij) defined by

a
(α)
ij = aij ⊗ (aii ⊕ ajj)⊗(α−1) (4.1.2)

is called a deformation of A.

The proof techniques of the following two theorems are very close to those in Jones [19].

However, the statements were not explicitly stated and proved in that work.

The next theorem shows that the class of generalized Kleene stars is stable under

deformations for α 6 1.

Theorem 4.1.1 ([28]) A(α) satisfies (4.1.1) for any α 6 1.

Proof. We have

a
(α)
ij ⊗ a

(α)
jk = aij ⊗ (aii ⊕ ajj)⊗(α−1) ⊗ ajk ⊗ (ajj ⊕ akk)⊗(α−1),

a
(α)
ik ⊗ a

(α)
jj = aik ⊗ (aii ⊕ akk)⊗(α−1) ⊗ a⊗αjj .

57

Hence the inequality which we want to prove is

aij ⊗ (aii ⊕ ajj)⊗(α−1) ⊗ ajk ⊗ (ajj ⊕ akk)⊗(α−1)

6 aik ⊗ (aii ⊕ akk)⊗(α−1) ⊗ a⊗αjj .
(4.1.3)

Multiplying both parts by (aii⊕ajj)⊗(1−α)⊗ (ajj⊕akk)⊗(1−α)⊗ (aii⊕akk)⊗(1−α) we obtain

that (4.1.3) is equivalent to

aij ⊗ ajk ⊗ (aii ⊕ akk)⊗(1−α)

6 aik ⊗ a⊗αjj ⊗ (aii ⊕ ajj)⊗(1−α) ⊗ (ajj ⊕ akk)⊗(1−α).
(4.1.4)

To prove (4.1.4) we observe that

aij ⊗ ajk ⊗ (aii ⊕ akk)⊗(1−α) = aij ⊗ ajk ⊗ (a
⊗(1−α)
ii ⊕ a⊗(1−α)kk)

6 aik ⊗ ajj ⊗ (a
⊗(1−α)
ii ⊕ a⊗(1−α)kk) = aik ⊗ ajj ⊗ a⊗(1−α)ii ⊕ aik ⊗ ajj ⊗ a⊗(1−α)kk

(4.1.5)

and that

(aii ⊕ ajj)⊗(1−α) ⊗ (ajj ⊕ akk)⊗(1−α) > a
⊗(1−α)
ii a

⊗(1−α)
jj ,

(aii ⊕ ajj)⊗(1−α) ⊗ (ajj ⊕ akk)⊗(1−α) > a
⊗(1−α)
jj a

⊗(1−α)
kk ,

which implies

aik ⊗ a⊗αjj (aii ⊕ ajj)⊗(1−α) ⊗ (ajj ⊕ akk)⊗(1−α)

> aik ⊗ a⊗αjj ⊗ (a
⊗(1−α)
ii ⊗ a⊗(1−α)jj ⊕ a⊗(1−α)jj ⊗ a⊗(1−α)kk)

= aik ⊗ ajj ⊗ a⊗(1−α)ii ⊕ aik ⊗ ajj ⊗ a⊗(1−α)kk .

(4.1.6)

Combining (4.1.5) and (4.1.6) yields (4.1.4). �

Note that in Theorem 4.1.1 α can be negative.

58

Matrix deformations do not always commute, as the following counterexample shows.

Example 4.1.1 Let us consider matrix

A =


0 1 −1

−1 0 −2

−1 0 −2


then we compute:

A(− 2
3
) =


0 1 −1

−1 0 −2

−1 0 4
3


and

A(− 4
5
) =


0 −1 −1

−1 0 −2

−1 0 8
5


.

A(− 2
3
) ⊗ A(− 4

5
) =


0 1 3

5

−1 0 −2
5

1
3

4
3

44
15


and

A(− 4
5
) ⊗ A(− 2

3
) =


0 1 1

3

−1 0 −2
3

3
5

8
5

44
15


.

We can see that A(− 2
3
) ⊗ A(− 4

5
) 6= A(− 4

5
) ⊗ A(− 2

3
).

Thus for α, β < 0 we have A(α) ⊗ A(β) 6= A(β) ⊗ A(α) in general. However, we can obtain

the following result.

59

Proposition 4.1.1 ([28]) For any α, β ∈ R such that 0 6 α 6 1, 0 6 β 6 1 and

0 6 α + β 6 1, we have A(α) ⊗ A(β) = A(β) ⊗ A(α) = A(α+β).

Proof. It suffices to prove that A(α) ⊗ A(β) = A(α+β), i.e., that

n⊕
j=1

aij ⊗ (aii ⊕ ajj)⊗(α−1) ⊗ ajk ⊗ (ajj ⊕ akk)⊗(β−1) = aik ⊗ (aii ⊕ akk)⊗(α+β−1). (4.1.7)

We have

n⊕
j=1

aij ⊗ (aii ⊕ ajj)⊗(α−1) ⊗ ajk ⊗ (ajj ⊕ akk)⊗(β−1)

= aik ⊗ (aii ⊕ akk)⊗(α−1)a⊗βkk ⊕ a
⊗α
ii ⊗ aik ⊗ (aii ⊕ akk)⊗(β−1)

⊕
⊕
j /∈{i,k}

aij ⊗ (aii ⊕ ajj)⊗(α−1) ⊗ ajk ⊗ (ajj ⊕ akk)⊗(β−1).

(4.1.8)

Let us analyse the first two terms. When aii > akk we obtain

aik ⊗ (aii ⊕ akk)⊗(α−1) ⊗ a⊗βkk ⊕ a
⊗α
ii ⊗ aik ⊗ (aii ⊕ akk)⊗(β−1)

= aik ⊗ a⊗βkk ⊗ a
⊗(α−1)
ii ⊕ aik ⊗ a⊗(α+β−1)ii = aik ⊗ a⊗(α+β−1)ii

= aik ⊗ (aii ⊕ akk)⊗(α+β−1).

(4.1.9)

The remaining case aii 6 akk is treated similarly. As these two terms already yield the

required expression aik ⊗ (aii ⊕ akk)α+β−1, it remains to prove that the remaining terms

do not exceed it. Since

aij ⊗ (aii ⊕ ajj)⊗(α−1) ⊗ ajk ⊗ (ajj ⊕ akk)⊗(β−1)

6 aik ⊗ ajj ⊗ (aii ⊕ ajj)⊗(α−1))⊗ (ajj ⊕ akk)⊗(β−1),

60

it remains to show that

ajj ⊗ (aii ⊕ ajj)⊗(α−1) ⊗ (ajj ⊕ akk)⊗(β−1) 6 (aii ⊕ akk)⊗(α+β−1). (4.1.10)

which is equivalent to

ajj 6 (aii ⊕ akk)⊗(α+β−1) ⊗ (aii ⊕ ajj)⊗(1−α) ⊗ (ajj ⊕ akk)⊗(1−β). (4.1.11)

If aii > akk then we have

(aii ⊕ akk)⊗(α+β−1) ⊗ (aii ⊕ ajj)⊗(1−α) ⊗ (ajj ⊕ akk)⊗(1−β)

= a
⊗(α+β−1)
ii ⊗ (aii ⊕ ajj)⊗(1−α−β) ⊗ (aii ⊕ ajj)⊗β ⊗ (ajj ⊕ akk)⊗(1−β)

> a
⊗(α+β−1)
ii ⊗ (aii ⊕ ajj)⊗(1−α−β) ⊗ ajj > ajj.

For the remaining case akk > aii the same holds by symmetry. �

In particular, A(0) is an idempotent and plays the role of unity for A(α) for 0 6 α 6 1.

For the tropical matrix roots, this property was established by Jones [19], see also [20].

Corollary 4.1.1 ([19]) Matrix A(0) satisfies A(α) ⊗ A(0) = A(0) ⊗ A(α) = A(α) for all

0 6 α 6 1.

We also obtain the following result of Jones [19].

Corollary 4.1.2 ([19]) A(k/l) = (A(1/l))⊗k holds for any integer l > 0 and integer k : 1 6

k 6 l.

Proof. We use a simple induction: if A(k/l) = (A(1/l))⊗k then A(k+1/l) = A(k/l) ⊗ A(1/l) =

(A(1/l))⊗k ⊗ A(1/l) = (A(1/l))⊗(k+1). �

Now we are able to extend the commutativity to all α and β from the unit interval

[0, 1]

61

Theorem 4.1.2 ([28]) A(α) ⊗ A(β) = A(β) ⊗ A(α) for any α and β such that 0 6 α 6 1

and 0 6 β 6 1.

Proof. First consider the case of rational α = k1
l1

and β = k2
l2

. Then α = k1l2
l1l2

and β = k2l1
l1l2

.

Then A(α) = A

(
k1l2
l1l2

)
=

(
A

(
1
l1l2

))⊗k1l2
and A(β) =

(
A

(
1
l1l2

))⊗k2l1
, so A(α) ⊗ A(β) =

A(β) ⊗ A(α) since both A(α) and A(β) are powers of A

(
1
l1l2

)
. The claim follows for any

real α and β in [0, 1] since rational numbers are dense on the real line and since the

max-algebraic operations are continuous. �

We now discuss a connection between Kleene stars and generalized Kleene stars. It

helps us to construct generalized Kleene stars in practice. The key observations are that

1) the set of generalized Kleene star is stable under scaling by diagonal matrices, 2) any

Kleene star is a generalized Kleene star.

Proposition 4.1.2 ([28]) Let A be a generalized Kleene star and D and F be arbitrary

diagonal matrices. Then D ⊗ A⊗ F is also a generalized Kleene star.

Proof. Let A ∈ Rn×n
max , D = diag(d1, . . . , dn) and F = diag(f1 . . . , fn). The inequality

aij ⊗ ajk 6 aik ⊗ ajj is equivalent to

di ⊗ aij ⊗ fj ⊗ dj ⊗ ajk ⊗ fk 6 di ⊗ aik ⊗ fk ⊗ dj ⊗ ajj ⊗ fj. (4.1.12)

Observing that the entries of B = D⊗A⊗ F are equal to bij = di ⊗ aij ⊗ fj for all i and

j, we obtain that (4.1.12) is the same as bij ⊗ bjk 6 bik ⊗ bjj. �

As any Kleene star is a generalized Kleene star, we have the following immediate

corollary. It shows how Kleene stars can be used to construct generalized Kleene stars.

Corollary 4.1.3 (Generalised Kleene Star [28]) Let A be a Kleene star and D and

F be arbitrary diagonal matrices. Then D ⊗ A, A⊗ F are generalized Kleeme stars.

62

Proof. By Proposition 4.1.2, D⊗A⊗F is a generalized Kleene star for arbitrary diagonal

matrices D and F . Taking F = I we obtain that D ⊗A is a generalized Kleene star and

taking D = I we obtain that A⊗ F is a generalized Kleene star. �

The other way around, if we have a generalized Kleene star with finite diagonal entries,

then by means of an appropriate scaling it can be transformed to Kleene star.

Proposition 4.1.3 ([28]) Let B ∈ Rn×n
max be a generalized Kleene star with finite diagonal

entries. Then

(i) For D = diag(b−11, . . . , b
−
nn), A1 = B ⊗D and A2 = D ⊗B are Kleene stars;

(ii) For D = diag(b
⊗−1/2
11 , . . . , b

⊗−1/2
nn), A = D ⊗B ⊗D is a Kleene star.

Proof. The Kleene star inequality aijajk 6 aik is a special case of (4.1.1) when aii = 0.

By Proposition 4.1.2, matrices A1, A2 and A satisfy (4.1.1). Then it suffices to observe

that all diagonal entries of these matrices are equal to 0. �

4.2 Other sets of commuting matrices

In this section we will extend two sets of pairwise commuting matrices that were described

by Linde and De La Puente [24].

4.2.1 Matrices of the form [2r, r]kn

Let us consider the following set of matrices, which extends a set of matrices considered

by Linde and de la Puente [24].

Definition 4.2.1 For arbitrary real number r 6 0 and real number k > 0, we denote by

[2r, r]kn the set of matrices A such that aii = k, for all i and aij ∈ [2r, r] for i 6= j.

We now show that any two matrices of this kind commute.

63

Theorem 4.2.1 ([28], extension of [24] Theorem 21) Let A ∈ [2r, r]k1n , B ∈ [2s, s]k2n

for any r, s 6 0 and aii = k1 > 0, bii = k2 > 0 then

A⊗B = B ⊗ A = k2 ⊗ A⊕ k1 ⊗B.

Proof. For all i, j we have

(A⊗B)ij = aii ⊗ bij ⊕ aij ⊗ bjj ⊕
⊕
l /∈{i,j}

ail ⊗ blj

= k1 ⊗ bij ⊕ k2 ⊗ aij ⊕
⊕
l /∈{i,j}

ail ⊗ blj.
(4.2.1)

We now argue that ail ⊗ blj 6 k1 ⊗ bij ⊕ k2 ⊗ aij. Indeed,

ail + blj 6 r + s 6 max(2r, 2s) 6 max(aij, bij) 6 max(k1 + bij, k2 + aij).

Note that we used the well-known inequality r+s
2
6 max(r, s). Then we obtain:

(A⊗B)ij = k1 ⊗ bij ⊕ aij ⊗ k2 ⊕
⊕
l /∈{i,j}

ail ⊗ blj

= k1 ⊗ bij ⊕ aij ⊗ k2

= (k2 ⊗ A⊕ k1 ⊗B)ij

= (B ⊗ A)ij,

(4.2.2)

which shows the claim. �

Note that Linde and de la Puente obtained a special case of this result, for s = r and

k1 = k2 = 0.

Let us define a matrix with entries belong to [0, k].

Definition 4.2.2 For arbitrary real number k > 0, we denote by [0, k]n the set of matrices

64

A such that 0 6 aij 6 k, forall i, j.

We also observe the following commutativity property.

Theorem 4.2.2 ([28]) Let A ∈ [2a, a]kn with a 6 0, k > 0 and B ∈ [0, k]n then A⊗B =

B ⊗ A = k ⊗ bij.

Proof.

(A⊗B)ij = aii ⊗ bij ⊕ aij ⊗ bjj ⊕
⊕
l 6∈{i,j}

ail ⊗ blj

= k ⊗ bij.

(4.2.3)

(B ⊗ A)ij = bii ⊗ aij ⊕ bij ⊗ ajj ⊕
⊕
l 6∈{i,j}

bil ⊗ alj

= bij ⊗ k.

(4.2.4)

Hence A⊗B = B ⊗ A. �

4.2.2 Matrices of the form A(p, a)

Let us introduce other special commuting matrices from [24]. By Rn
− we denote the set

of real n-vectors with nonpositive components.

Definition 4.2.3 Let p = (p1, ..., pn) ∈ Rn
− and a 6 0. Then for n > 3 we define

A(−p,−a) :=



0 p1 . . . a a

a 0 p2 . . . a

a a 0
. . .

...

...
. pn−1

pn . . . a a 0


65

In [24] if we take two matrices A = A(p, a) and B = A(p, b) where a+ b > pi for all i then

we have A⊗B = B⊗A. Our next goal is to get rid of this condition thus extending this

result to the case when we have just a, b 6 0 as in the following Theorem.

Theorem 4.2.3 ([28], extending Theorem 22 in [24]) Let A = A(p, a) and B =

A(p, b) for all p ∈ Rn
− and a, b 6 0 then A⊗B = B ⊗ A.

Proof. To prove the theorem, we identify four cases for A⊗B as follows:

Case 1 When i = j (diagonal entries)

(A⊗B)ij = (aii ⊗ bjj) = 0 for all i = j.

Case 2 When j − i = 1(mod n)

(A⊗B)ij = (aii ⊗ bij)⊕ (aij ⊗ bjj)⊕
⊕

k 6∈{i,j}
(aik ⊗ bkj) = max(pi, a+ b).

Case 3 When j − i = 2 (mod n)

(A⊗B)ij = (aii ⊗ bij)⊕ (aij ⊗ bjj)⊕ (ail ⊗ blj)⊕
⊕

k 6∈{i,j,l}
(aik ⊗ bkj) = max(a, b, pi +

pi+1, a+ b).

Case 4 Otherwise

(A⊗B)ij = (aii ⊗ bij)⊕ (aij ⊗ bjj)⊕ (ait ⊗ btj)⊕ (ais ⊗ bsj)⊕
⊕

k 6∈{i,j,t,s}
(aik ⊗ bkj) =

max(a, b, pi + b, a+ ps, a+ b) = max(a, b).

and for B ⊗ A we also identify four cases below:

Case 1 When i = j (diagonal entries)

(B ⊗ A)ij = (bjj ⊗ aii) = 0 for all i = j.

Case 2 When j − i = 1 (mod n)

(B ⊗ A)ij = (aij ⊗ bii)⊕ (bij ⊗ ajj)⊕
⊕

k 6∈{i,j}
(bik ⊗ akj) = max(pi, pi, b+ a).

66

Case 3 When j − i = 2 (mod n)

(B ⊗ A)ij = (bii ⊗ aij)⊕ (bij ⊗ ajj)⊕ (bil ⊗ alj)⊕
⊕

k 6∈{i,j,l}
(bik ⊗ akj) = max(b, a, pi +

pi+1, b+ a).

Case 4 Otherwise

(B ⊗ A)ij = (bii ⊗ aij)⊕ (bij ⊗ ajj)⊕ (bit ⊗ atj)⊕ (bis ⊗ asj)⊕
⊕

k 6∈{i,j,t,s}
(bik ⊗ akj) =

max(b, a, pi + a, b+ ps, b+ a) = max(b, a).

We can see that A⊗B = B ⊗ A. �

67

Chapter 5

Protocols Based on Commuting

Matrices in Tropical Algebra

In Chapter 4 we introduced and studied new sets of pairwise commuting matrices in

tropical linear algebra. In this Chapter, we will introduce new tropical implementations

of Stickel’s protocol based on those sets of commuting matrices. In Section 5.1 we suggest

some heuristic attacks on one of these implementations (Section 5.2) and a generalised

Kotov-Ushakov attack whose specifications apply to all protocols that we are going to

introduce in Section 5.4. We also performed some numerical experiments for heuristic

attack on Protocol 5.1.2 and give some toy examples in Section 5.3.

5.1 New implementations of Stickel’s Protocol

In this section, we are going to describe a number of protocols using the commuting

matrices from Chapter 4. In Protocols 5.1.1, 5.1.2 and 5.1.4 we make use of tropical

quasi-polynomials of generalised Kleene stars, and matrices belonging to sets [2r, r]kn and

A(p, a), respectively. Protocols 5.1.3 and 5.1.5 give two examples how one can combine

two different kinds of commuting matrices.

68

5.1.1 Using tropical quasi-polynomials

By Theorem 4.1.2, if A ∈ Rn×n
max is a generalized Kleene star then its deformations A(α) and

A(β) commute for any α, β : 0 6 α, β 6 1. Using this we can define a quasi-polynomial,

where the role of monomials is played by deformations.

Definition 5.1.1 (Quasi-polynomial) Let A ∈ Rn×n
max be a generalized Kleene star. Ma-

trix B is called a quasi-polynomial of A if

B =
⊕
α∈R

aα ⊗ A(α)

for some finite subset R of rational numbers in [0, 1] and aα ∈ Rmax for α ∈ R.

The requirements that R consists of rational numbers and is finite are not necessary

in theory, but we have to impose them for practical implementation.

We now suggest another tropical implementation of Stickel’s protocol, where we use

tropical quasi-polynomials instead of tropical polynomials.

Protocol 5.1.1 ([28])

Alice and Bob agree on some generalized Kleene stars A,B ∈ Rn×n
max and an arbitrary

matrix W ∈ Rn×n
max .

1. Alice chooses two random quasi-polynomials p′1(A), p′2(B) and computes U = p′1(A)⊗

W ⊗ p′2(B). Then Alice sends U to Bob.

2. Bob chooses two random quasi-polynomials q′1(A), q′2(B) and computes V = q′1(A)⊗

W ⊗ q′2(B). Then Bob sends V to Alice.

3. Alice and Bob compute their secret keys Ka = p′1(A)⊗V ⊗ p′2(B) and Kb = q′1(A)⊗

U ⊗ q′2(B), respectively.

69

Since p′1(A) ⊗ q′1(A) = q′1(A) ⊗ p′1(A) and p′2(B) ⊗ q′2(B) = q′2(B) ⊗ p′2(B), we have a

common secret key Ka = Kb.

5.1.2 Using matrices of the form [2r, r]kn

The protocol that we next describe are based on Theorem 4.2.1 and 4.2.2.

Protocol 5.1.2 ([28])

Alice and Bob agree on a public matrix W ∈ Rn×n
max .

1. Alice chooses matrices A1 ∈ [2a, a]k1n and A2 ∈ [2b, b]k2n , for a 6 0, b 6 0, k1 > 0

and k2 > 0. Then Alice sends U = A1 ⊗W ⊗ A2 to Bob.

2. Bob chooses matrices B1 ∈ [2c, c]l1n and B2 ∈ [2d, d]l2n , for c 6 0, d 6 0, l1 > 0 and

l2 > 0. Then Bob sends V = B1 ⊗W ⊗B2 to Alice.

3. Alice computes the secret key Ka = A1 ⊗ V ⊗ A2 = (A1 ⊗ B1 ⊗W ⊗ B2 ⊗ A2) and

Bob computes the secret key Kb = B1 ⊗ U ⊗B2 = (B1 ⊗ A1 ⊗W ⊗ A2 ⊗B2).

Protocol 5.1.3 [[28]]

Alice and Bob agree on a public matrix W ∈ Rn×n
max .

1. Alice chooses matrix A1 ∈ [2a, a]gn for a 6 0 and g > 0 and sends g to Bob.

2. Bob chooses B2 ∈ [2b, b]hn for b 6 0 and h > 0 and sends h to Alice.

3. Alice chooses matrix A2 with entries in [0, h]n, computes U = A1 ⊗W ⊗ A2 and

sends it to Bob.

4. Bob chooses matrix B1 with entries in [0, g]n, computes V = B1⊗W ⊗B2 and sends

it to Alice.

5. Alice computes the secret key Ka = A1 ⊗ V ⊗ A2(= A1 ⊗ B1 ⊗W ⊗ B2 ⊗ A2) and

Bob computes the secret key Kb = B1 ⊗ U ⊗B2(= B1 ⊗ A1 ⊗W ⊗ A2 ⊗B2).

70

For both protocols, since A1 ⊗B1 = B1 ⊗A1 and A2 ⊗B2 = B2 ⊗A2, it is immediate

that Alice and Bob have the same secret key Ka = Kb.

5.1.3 Using matrices of the form A(p, a)

Next, we introduce protocol based on Theorem 4.2.3.

Protocol 5.1.4 ([28])

Suppose Alice and Bob agree on W ∈ Rn×n
max be a public matrix.

1. Alice chooses a random vector p > 0 and a non negative real number a. Then Alice

constructs a matrix A1 = A(−p,−a) and sends p to Bob.

2. Bob chooses a random vector q > 0 and b > 0. Then Bob constructs matrix B2 =

A(−q,−b) and sends q to Alice.

3. Alice selects a matrix A2 = A(−q,−c) for c > 0 and sends to Bob U = A1⊗W⊗A2.

4. Bob selects a matrix B1 = A(−p,−d) for d > 0 and sends to Alice V = B1⊗W⊗B2.

5. Alice computes Ka = A1 ⊗ V ⊗ A2 = A1 ⊗B1 ⊗W ⊗B2 ⊗ A2.

6. Bob computes Kb = B1 ⊗ U ⊗B2 = B1 ⊗ A1 ⊗W ⊗ A2 ⊗B2.

Hence, since A1 ⊗ B1 = B1 ⊗ A1 and A2 ⊗ B2 = B2 ⊗ A2 then Alice and Bob have the

common key Ka = Kb.

5.1.4 Using polynomials and matrices of the form [2r, r]kn

Protocol 5.1.5 ([28])

Alice and Bob agree on public matrix W ∈ Rn×n
max . Then Alice and Bob exchange the

messages in the following steps:

1. Alice chooses matrix A ∈ [2a, a]k1n and a random tropical polynomial p(x). Then

Alice sends U = A⊗ p(W).

71

2. Bob chooses matrix B ∈ [2b, b]k2n and a random tropical polynomial q(x). Then Bob

sends V = B ⊗ q(W).

3. Alice computes Ka = A⊗ V ⊗ p(W) and Bob computes Kb = B ⊗ U ⊗ q(W).

It can be seen immediately that Alice and Bob have the common secret key Ka = A ⊗

V ⊗ p(W) = A⊗B ⊗ q(W)⊗ p(W) = B ⊗ A⊗ p(W)⊗ q(W) = Kb.

5.2 Heuristic attacks on Protocol 5.1.2

In this Section we will look closely at Protocol 5.1.2, which exploits matrices belonging

to [2a, a]kn for a 6 0 and k > 0. We observe that there are two special cases, in which the

key can be reconstructed easily, by means of an explicit formula. We then use the two

formulae that are guaranteed in these special cases as heuristic attacks on the protocol

analysing their performance in the general case.

Recall that Alice’s secret key is Ka = A1 ⊗ V ⊗A2 = A1 ⊗B1 ⊗W ⊗B2 ⊗A2. Using

Theorem 4.2.1, we obtain

Ka = (l1 ⊗ A1 ⊕ k1 ⊗B1)⊗W ⊗ (k2 ⊗B2 ⊕ l2 ⊗ A2)

= (l1 ⊗ k2 ⊗ A1 ⊗W ⊗B2)⊕ (l1 ⊗ l2 ⊗ A1 ⊗W ⊗ A2)

⊕ (k1 ⊗ k2 ⊗B1 ⊗W ⊗B2)⊕ (k1 ⊗ l2 ⊗B1 ⊗W ⊗ A2)

= (l1 ⊗ l2 ⊗ U)⊕ (k1 ⊗ k2 ⊗ V)⊕ (l1 ⊗ k2 ⊗ A1 ⊗W ⊗B2)

⊕ (k1 ⊗ l2 ⊗B1 ⊗W ⊗ A2).

(5.2.1)

Let us discuss how Eve can find l1 ⊗ l2 and k1 ⊗ k2 and hence recover the first two

terms of the above expression (underlined).

Lemma 5.2.1 ([28]) We have k1 ⊗ k2 = ust ⊗ w−st and l1 ⊗ l2 = vst ⊗ w−st, where s, t is

any pair of indices for which maxi,j wij = wst.

72

Proof. We have

ust = k1 ⊗ wst ⊗ k2 ⊕
⊕

(s′,t′)6=(s,t)

(A1)ss′ ⊗ ws′t′ ⊗ (A2)t′t,

vst = l1 ⊗ wst ⊗ l2 ⊕
⊕

(s′,t′)6=(s,t)

(B1)ss′ ⊗ ws′t′ ⊗ (B2)t′t.

(5.2.2)

However, we also have (A1)ss′ 6 k1, (A2)t′t 6 k2, (B1)ss′ 6 l1, (B2)t′t 6 l2 and ws′t′ 6 wst,

and therefore ust = k1 ⊗ wst ⊗ k2 and vst = l1 ⊗ wst ⊗ l2, and hence the claim follows. �

Using Lemma 5.2.1 the attacker can recover l1 ⊗ l2 ⊗ U ⊕ k1 ⊗ k2 ⊗ V which is the

underlined part of Ka = Kb. Let us consider the following special case when this allows

the attacker to recover the whole key.

Definition 5.2.1 (W is vanishing [28]) W is called vanishing in A1 ⊗ W ⊗ A2 and

B1 ⊗W ⊗B2 if A1 ⊗W ⊗ A2 = A1 ⊗ A2 and B1 ⊗W ⊗B2 = B1 ⊗B2.

Theorem 5.2.1 (Attack when W is vanishing [28]) If W is vanishing in A1⊗W ⊗

A2 and B1 ⊗W ⊗B2, then

Ka = Kb = l1 ⊗ l2 ⊗ U ⊕ k1 ⊗ k2 ⊗ V, (5.2.3)

where k1⊗ k2 = ust⊗w−st, and l1⊗ l2 = vst⊗w−st, and s, t is any pair of indices for which

maxi,j wij = wst.

Proof. Let U = A1 ⊗W ⊗A2 = A1 ⊗A2 and V = B1 ⊗W ⊗B2 = B1 ⊗B2. In this case

Kb = B1 ⊗ A1 ⊗ A2 ⊗B2 = Ka = K. Repeatedly applying Theorem 4.2.1 we find that

K = k2 ⊗ l1 ⊗ l2 ⊗ A1 ⊕ k1 ⊗ l1 ⊗ l2 ⊗ A2

⊕ k1 ⊗ k2 ⊗ l2 ⊗B1 ⊕ k1 ⊗ k2 ⊗ l1 ⊗B2

= l1 ⊗ l2 ⊗ U ⊕ k1 ⊗ k2 ⊗ V.

73

The expressions for k1 ⊗ k2 and l1 ⊗ l2 follow from Lemma 5.2.1. �

Trying to escape from the case of vanishing W , we tried to consider the case when the

range of the entries of W is much bigger than that of other matrices (A(1), A(2), B(1) and

B(2)). Then we can assume that the following property holds.

Definition 5.2.2 (W is dominant [28]) Let A(1) = (a
(1)
ij), A(2) = (a

(2)
ij), B(1) = (b

(1)
ij)

and B(2) = (b
(2)
ij) be n × n matrices over Rmax. Matrix W = (wij) ∈ Rn×n

max is called

(s, t)-dominant in A(1)⊗W ⊗A(2) and B(1)⊗W ⊗A(2), if the following properties hold:

(A(1) ⊗W ⊗ A(2))il = a
(1)
is ⊗ wst ⊗ a

(2)
tl , ∀i, l,

(B(1) ⊗W ⊗B(2))il = b
(1)
is ⊗ wst ⊗ b

(2)
tl , ∀i, l,

(5.2.4)

for some s and t such that wst = maxi,j wij.

It turns out that we can reconstruct the whole key in this case.

Theorem 5.2.2 (Attack when W is dominant [28]) Suppose that W is (s, t)-dominant

in A(1)⊗W ⊗A(2) and B(1)⊗W ⊗B(2). Then the entries of the key Ka = Kb = (kil) can

be found as follows:

kil = w−st ⊗ (vst ⊗ uil ⊕ ust ⊗ vil ⊕ uit ⊗ vsl ⊕ vit ⊗ usl). (5.2.5)

Proof. Using (5.2.1) and (5.2.4), we obtain that

kil = (l1 ⊗ l2 ⊗ uil)⊕ (k1 ⊗ k2 ⊗ vil)⊕ (l1 ⊗ k2 ⊗ a(1)is ⊗ wst ⊗ b
(2)
tl)

⊕ (k1 ⊗ l2 ⊗ b(1)is ⊗ wst ⊗ a
(2)
tl).

(5.2.6)

The attacker can compute l1 ⊗ l2 and k1 ⊗ k2 as in Lemma 5.2.1: l1 ⊗ l2 = vst ⊗ w−st

74

and k1 ⊗ k2 = ust ⊗ w−st. To compute the rest, we observe that by (5.2.4)

uit = a
(1)
is ⊗ wst ⊗ a

(2)
tt , usl = a(1)ss ⊗ wst ⊗ a

(2)
tl ,

vit = b
(1)
is ⊗ wst ⊗ b

(2)
tt , vsl = b(1)ss ⊗ wst ⊗ b

(2)
tl ,

and recall that a
(2)
tt = k2, a

(1)
ss = k1, b

(2)
tt = l2 and b

(1)
ss = l1. Using this we then obtain that

uit ⊗ w−st = a
(1)
is ⊗ k2, usl ⊗ w−st = k1 ⊗ a(2)tl ,

vit ⊗ w−st = b
(1)
is ⊗ l2, vsl ⊗ w−st = l1 ⊗ b(2)tl .

Substituting this into (5.2.1) we obtain

kil = vst ⊗ w−st ⊗ uil ⊕ ust ⊗ w−st ⊗ vil ⊕ uit ⊗ w−st ⊗ vsl ⊕ vit ⊗ w−st ⊗ usl,

which can be simplified to (5.2.5). �

Let us describe both attacks formally.

Attack 5.2.1 (W vanishing)

Input: Public matrix W ∈ Rn×n
max , messages U, V ∈ Rn×n

max .

Output: Secret key of Alice Ka or secret key of Bob Kb.

1. Compute l1 ⊗ l2 = vst ⊗ w−stand k1 ⊗ k2 = ust ⊗ w−st.

2. Compute K = l1 ⊗ l2 ⊗ U ⊕ k1 ⊗ k2 ⊗ V .

This attack works well when the range of matrix W is small enough. More precise

results can be seen in Table 5.1, see in particular the case when entries of W belong to

[−10, 10].

75

Attack 5.2.2 (W dominant)

Input: Public matrix W ∈ Rn×n
max , messages U, V ∈ Rn×n

max .

Output: Secret key of Alice Ka or secret key of Bob Kb.

1. Compute l1 ⊗ l2 = vst ⊗ w−stand k1 ⊗ k2 = ust ⊗ w−st.

2. Compute K using formula (5.2.5).

5.3 Numerical Experiments and Toy Examples

In this section, we perform various numerical experiments for heuristic attacks on Protocol

5.1.2

5.3.1 Numerical Experiments

Now let us consider the formulae (5.2.3) and (5.2.6) as heuristic attacks on Protocol 5.1.2.

To analyze the success of these attacks we consider the following two parameters: 1) the

success rate, i.e., the percentage of instances where the secret key Ka = Kb is exactly

equal to expression (5.2.3) or (5.2.6), 2) the similarity rate: the average percentage of

the entries of the matrix computed by (5.2.3) or (5.2.6) which are equal to those in the

secret key Ka = Kb in the case of “no success” when the matrix computed by (5.2.3)

or (5.2.6) does not coincide with the key. We implemented the attacks in Matlab R2019b

and run the test on 1.2 GHz Dual-Core Intel Core m3 Macbook retina 2017 with 8 GB

of RAM. The parameters that we use in our experiments as follows:

• the maximum dimension of matrices is 50× 50;

• the range of k1, k2, l1 and l2 is integer number between 0 and 100;

• the entries of matrixW are integer numbers in the range from [−10, 10] to [−106, 106]

(depending on the series of experiments, see Table 5.1).

76

We see that the attack based on (5.2.6) is much more successful when the entries of

W are within a much bigger range than all other important parameters. This is due to

the fact that in this case W is highly likely to be dominant. We also consider the case

when the range of the entries of W is not so big compared to all other parameters, in

which the attack working in the case of vanishing W has better chance. Considering the

success rate and the similarity rate once again, we arrive at the following results shown in

Table 5.1. Note that here we revised the results previously obtained in [28] and improved

them.

We see that in this case the simpler attack based on formula (5.2.3) is more efficient,

and in particular, its success rate grows with the dimension while the success rate of the

attack based on (5.2.6) decreases. However, the similarity rate remains overwhelming for

both attacks and any dimension with which we experimented.

In view of the success of simple heuristic attacks based on (5.2.3) and (5.2.6), it is still

challenging to suggest W that would most often withstand these attacks and for which

no other obvious heuristic attacks would work. However, on the attacker’s side we still

would like to have an attack that can reconstruct Ka = Kb with certainty. Such attack

will be developed in the next section.

The results of our experiments are shown in Table 5.1.

77

Dimension of matrices 5 20 30 40 50

Success rate, entries of W in
[−10, 10] using attack 5.2.1 (%)

100 100 100 100 100

Success rate, entries of W in
[−10, 10] using attack 5.2.2 (%)

17.54 0.06 0.1 0.2 0

Success rate, entries of W in
[−102, 102] using attack 5.2.1 (%)

99.02 100 100 100 100

Success rate, entries of W in
[−100, 100] using attack 5.2.2
(%)

54.10 8.22 4.08 2.21 1.35

Success rate, entries of W in
[−103, 103] using attack 5.2.1 (%)

31.57 28.28 32.89 38.9 45.28

Success rate, entries of W in
[−103, 103] using attack 5.2.2 (%)

89.36 27.21 24.05 22.7 23.07

Success rate, entries of W in
[−104, 104] using attack 5.2.1 (%)

23.10 9.96 10.1 13.68 15.62

Success rate, entries of W in
[−104, 104] using attack 5.2.2 (%)

98.54 52.04 28.01 21.17 18.03

Success rate, entries of W in
[−105, 105] using attack 5.2.1 (%)

22.62 8.32 7.15 8.68 5.43

Success rate, entries of W in
[−105, 105] using attack 5.2.2 (%)

99.91 93.27 82.65 71.78 61.32

Success rate, entries of W in
[−106, 106] using attack 5.2.1 (%)

22.06 8.30 6.6 8.58 7.71

Success rate, entries of W in
[−106, 106] using attack 5.2.2 (%)

99.98 99.25 98.12 96.38 95.67

Table 5.1: Dependency of the success and similarity rate on dimension and the range of
entries of W for the attack based on (5.2.6). Parameters a, b are in the range [−20,−1],
parameters c, d are in the range [−100,−60], and k1, k2, l1, l2 are random positive numbers
in the range [0, 100].

78

5.3.2 Toy Examples

The following examples demonstrate that all of the following four situations are possible:

(1) when both Attack 5.2.1 and Attack 5.2.2 work; (2) only Attack 5.2.1 succeeds; (3)

only Attack 5.2.2 succeeds; (4) none of these attacks succeed.

Example 5.3.1 Alice and Bob agree on public matrix

W =



6 −8 −5 −7

−3 1 −4 2

−6 2 4 −6

1 −9 3 4


Then they generate the secret key in the following steps:

1. Alice picks some integer numbers a = 5, b = 78, k1 = 69 and k2 = 39.

She generates matrix A1 and A2 as follows:

A1 =



69 −10 −9 −8

−5 69 −6 −10

−5 −6 69 −9

−9 −9 −6 69


and A2 =



39 −87 −83 −135

−126 39 −116 −135

−139 −99 39 −111

−90 −133 −149 39


.

She then sends U = A1 ⊗W ⊗ A2 =



98 101 107 112

109 112 106 113

107 106 111 102

115 114 100 108


.

2. Bob picks some integer numbers c = 6, d = 87, l1 = 64 and l2 = 15. He generates

matrices B1 and B2 as follows:

79

B1 =



64 −8 −7 −12

−7 64 −7 −8

−10 −7 64 −9

−10 −12 −6 64


and B2 =



15 −134 −158 −93

−87 15 −121 −95

−99 −144 15 −148

−102 −166 −130 15


.

Then Bob sends V = B1 ⊗W ⊗B2 =



69 72 78 83

80 83 77 84

78 77 82 73

86 85 71 79



3. Alice computes her secret key KAlice = A1 ⊗ V ⊗ A2 =



177 180 186 191

188 191 185 192

186 185 190 181

194 193 179 187



4. Bob computes his secret keys KBob = B1 ⊗ U ⊗W =



177 180 186 191

188 191 185 192

186 185 190 181

194 193 179 187


We can see immediately that KAlice is equal to KBob.

As an attacker, Eve needs to find Alice’s or Bob’s secret key. Therefore, she uses the

public matrices to attack the protocol. In this example we will implement Attack 5.2.2 and

Attack 5.2.1. First, we perform Attack 5.2.1:

1. Using the information from public matrices W,V and U , Eve computes k1⊗k2 = 108

and l1 ⊗ l2 = 79.

80

2. Eve computes KAttack = l1 ⊗ l2 ⊗ U ⊕ k1 ⊗ k2 ⊗ V =



177 180 186 191

188 191 185 192

186 185 190 181

194 193 179 187


.

We have KAlice = KBob = KAttack. So Eve can reveal Alice’s or Bob secret keys

easily. Second, we will attack the protocol using attack 5.2.2. Eve attacks the protocol

as in the following step:

(a) Using the information from public matrices W,V and U , Eve computes k1 ⊗

k2 = 108 and l1 ⊗ l2 = 79.

(b) Eve computes each components of Kattack using Theorem 5.2.2 and gets Kattack =

177 180 186 191

188 191 185 192

186 185 190 181

194 193 179 187


In this example we can see that both Attack 5.2.1 and Attack 5.2.1 can break the protocol

to get the secret key.

Example 5.3.2 Alice and Bob agree on public matrix W =



9 −8 −6 −6

−4 −3 −10 −5

−5 1 7 0

8 −3 −5 10


Then they generate the secret key in the following steps:

1. Alice picks some integer numbers a = 9, b = 70, k1 = 54 and k2 = 70. She generate

matrix A1 and A2 as follows:

81

A1 =



54 −16 −18 −11

−16 54 −13 −12

−18 −16 54 −17

−11 −15 −11 54


and A2 =



70 −101 −80 −100

−103 70 −108 −77

−113 −75 70 −102

−129 −73 −88 70


.

She then sends U = A1 ⊗W ⊗ A2 =



133 116 118 118

120 121 114 119

119 125 131 124

132 121 119 134


.

2. Bob picks some integer numbers c = 18, d = 75, l1 = 88 and l2 = 80. He generate

matrix B1 and B2 as follows:

B1 =



88 −26 −29 −33

−24 88 −29 −27

−30 −25 88 −33

−24 −20 −35 88


and B2 =



80 −138 −130 −149

−97 80 −75 −132

−86 −113 80 −123

−114 −148 −143 80


.

Then Bob sends V = B1 ⊗W ⊗B2 =



177 160 162 162

164 165 158 163

163 169 175 168

176 165 163 178



3. Alice computes her secret key KAlice = A1 ⊗ V ⊗ A2 =



301 284 286 286

288 289 282 287

287 293 299 292

300 289 287 302



82

4. Bob computes his secret keys KBob = B1 ⊗ U ⊗W =



301 284 286 286

288 289 282 287

287 293 299 292

300 289 287 302


We can see immediately that KAlice is equal to KBob.

As attacker, Eve needs to find Alice’s or Bob’s secret key. Therefore, she uses the

public matrices to attack the protocol. In this example we will implement Attack 5.2.2 and

Attack 5.2.1. First, we perform Attack 5.2.1:

1. Using the information from public matrices W,V and U , Eve computes k1⊗k2 = 124

and l1 ⊗ l2 = 168.

2. Eve computes KAttack = l1 ⊗ l2 ⊗ U ⊕ k1 ⊗ k2 ⊗ V =



301 284 286 286

288 289 282 287

287 293 299 292

300 289 287 302


We have KAlice = KBob = KAttack. So Eve can reveal Alice’s or Bob secret keys

easily. Second, we will attack the protocol using Attack 5.2.2. Eve attacks the

protocol as follows:

(a) Using the information from public matrices W,V and U . Eve computes k1 ⊗

k2 = 108 and l1 ⊗ l2 = 79.

(b) Eve computes each components of Kattack using Theorem (5.2.2) and gets Kattack =

301 284 286 286

288 289 282 287

290 293 299 292

300 289 287 302


We can see that KAlice 6= KAttack, therefore this attack fails to break the protocol.

83

However, the similarity of KAlice and KAttack is quite big. In this example only

element (3,1) is different from KAlice.

In this example we can see that both Attack 5.2.1 and Attack 5.2.1 can break the protocol

to get the secret key.

Example 5.3.3 Alice and Bob agree on public matrix

W =



819 128 794 312

609 898 908 58

248 984 252 640

409 836 338 292


.

Then they generate the secret key in the following steps:

1. Alice picks some integer numbers a = 11, b = 74, k1 = 6 and k2 = 15. She generates

matrices A1 and A2 as follows:

A1 =



64 −21 −18 −11

−16 64 −16 −17

−14 −17 64 −20

−17 −12 −21 64


and A2 =



15 −81 −128 −136

−88 15 −78 −122

−123 −88 15 −101

−90 −119 −101 15


.

She then sends U = A1 ⊗W ⊗ A2 ==



898 981 902 844

880 983 987 871

960 1063 970 926

875 978 911 841


.

2. Bob picks some integer numbers c = 16, d = 955, l1 = 47 and l2 = 22. He generates

matrix B1 and B2 as follows:

84

B1 =



47 −25 −27 −21

−17 47 −27 −16

−19 −30 47 −18

−20 −25 −22 47


and B2 =



22 −143 −115 −105

−164 22 −183 −152

−179 −187 22 −126

−138 −98 −151 22


. Then

Bob sends V = B1 ⊗W ⊗B2 =



888 979 905 805

824 979 977 829

867 1053 900 879

821 984 905 810



3. Alice computes her secret key KAlice = A1 ⊗ V ⊗A2 =



967 1058 984 921

955 1058 1056 940

1029 1132 1039 995

960 1063 984 926


.

4. Bob computes his secret keys KBob = B1 ⊗ U ⊗W =



967 1058 984 921

955 1058 1056 940

1029 1132 1039 995

960 1063 984 926


.

We can see immediately that KAlice is equal to KBob.

As an attacker, Eve needs to find Alice’s or Bob’s secret key. Therefore, she uses the

public matrices to attack the protocol. In this example we will implement Attack 5.2.2 and

Attack 5.2.1. First, we perform Attack 5.2.1:

1. Using the information from public matrices W,V and U , Eve computes k1⊗k2 = 21

and l1 ⊗ l2 = 69.

85

2. Eve computes KAttack = l1⊗ l2⊗U ⊕k1⊗k2⊗V =



967 1058 984 913

949 1058 1056 940

1029 1132 1039 995

944 1063 984 910


. We

have KAlice = KBob = KAttack. So Eve can reveal Alice’s or Bob secret keys easily.

Second, we will attack the protocol using Attack 5.2.2. Eve attacks the protocol

follows:

(a) Using the information from public matrices W,V and U , Eve computes k1 ⊗

k2 = 108 and l1 ⊗ l2 = 79.

(b) Eve computes Kattack using Theorem 5.2.2 and gets Kattack =



967 1058 984 921

955 1058 1056 940

1029 1132 1039 995

960 1063 984 926


.

We can see that KAlice = KAttack.

In this example we can see that only Attack 5.2.2 can break the protocol. However, Attack

5.2.1 cannot break the protocol but the entries of Kattack are similar with the entries of

KAlice

Example 5.3.4 Alice and Bob agree on public matrix

W =



982 621 293 369

552 584 343 157

805 468 667 967

677 797 980 979


.

Then they generate the secret key in the following steps:

86

1. Alice picks some integer numbers a = 16, b = 97, k1 = 9 and k2 = 63. She generates

matrices A1 and A2 as follows:

A1 =



9 −30 −17 −16

−23 9 −25 −17

−22 −26 9 −24

−30 −16 −24 9


and A2 =



63 −131 −154 −188

−117 63 −170 −109

−115 −111 63 −101

−182 −159 −109 63


. She

then sends U = A1 ⊗W ⊗ A2 ==



1054 860 1027 1026

1022 852 1026 1025

1023 845 1019 1039

1015 878 1052 1051


.

2. Bob picks some integer numbers c = 18, d = 81, l1 = 43 and l2 = 40. He generates

matrix B1 and B2 as follows:

B1 =



43 −18 −33 −31

−31 43 −19 −28

−18 −30 43 −35

−23 −27 −21 43


and B2 =



40 −136 −108 −157

−135 40 −126 −128

−103 −97 40 −121

−138 −131 −123 40


. Then

Bob sends V = B1 ⊗W ⊗B2 =



1065 889 989 988

991 855 992 991

1004 879 985 1050

999 926 1063 1062


.

3. Alice computes her secret key KAlice = A1 ⊗ V ⊗A2 =



1137 973 1110 1109

1105 972 1109 1108

1106 965 1102 1122

1098 998 1135 1134


.

87

4. Bob computes his secret key KBob = B1 ⊗ U ⊗W =



1137 973 1110 1109

1105 972 1109 1108

1106 965 1102 1122

1098 998 1135 1134


.

We can see immediately that KAlice is equal to KBob.

As an attacker, Eve needs to find Alice’s or Bob’s secret key. Therefore, she uses the

public matrices to attack the protocol. In this example we will implement Attack 5.2.2 and

Attack 5.2.1. First, we perform attack 5.2.1 as follows:

1. Usiing the information from public matrices W,V and U , Eve computes k1⊗k2 = 72

and l1 ⊗ l2 = 83.

2. Eve computes KAttack = l1 ⊗ l2 ⊗ U ⊕ k1 ⊗ k2 ⊗ V =



1137 961 1110 1109

1105 935 1109 1108

1106 951 1102 1122

1098 998 1135 1134


.

We have KAlice 6= KAttack. Eve fails to break the protocol.

Second, Eve attacks the protocol using Attack 5.2.2. Eve attacks the protocol as

follows:

(a) Using the information from public matrices W,V and U , Eve computes k1 ⊗

k2 = 72 and l1 ⊗ l2 = 83.

(b) Eve computes each components of Kattack using Theorem (5.2.2) and get Kattack =

1137 961 1110 1109

1105 935 1109 1108

1106 951 1102 1122

1098 998 1135 1134


We can see that KAlice 6= KAttack. Eve cannot break protocol using this attack.

88

In this example we can see that both Attack 5.2.1 and Attack 5.2.1 cannot break the protocol

to get the secret key. However, the similarity between Kattack and KAlice is quite big. In

this example also, we have that Kattack when W vanishing and Kattack when W dominant

are the same.

5.4 Cryptanalysis using the Kotov-Ushakov attack

In this section we focus on the Kotov-Ushakov attack: how to modify it so that it ap-

plies to all protocols that were described in Section 5.1. To solve this problem we first

describe a generalisation of the Kotov-Ushakov attack in Subsection 5.4.1. Then we de-

scribe specifications of this generalised attack to Protocol 5.1.1 (in Subsection 5.4.2),

Protocol 5.1.2, (in Subsection 5.4.4), Protocol 5.1.3 (in Subsection 5.4.5) Protocol 5.1.4

(in Subsection 5.4.6), and Protocol 5.1.5 (in Subsection 5.4.7).

5.4.1 Generalisation of the Kotov-Ushakov attack

Previous section yields some simple but efficient enough heuristic attacks on Proto-

col 5.1.2. We now discuss how the Kotov-Ushakov attack can be generalized to apply

to all protocols described in Section 5.1. The main idea is that for the protocols using

other kinds of commuting matrices, tropical matrix powers can be replaced with other

generators at the expense of some mild conditions imposed on coefficients.

We first describe a generalization of the Kotov-Ushakov attack, which can be then

specialized to all our protocols. In the generalized Kotov-Ushakov attack we seek matrices

X and Y such that

X =
⊕
α∈A

xα ⊗ Aα, Y =
⊕
β∈B

yβ ⊗Bβ,

X ⊗W ⊗ Y = U,

xα ∈ Xα(s), yβ ∈ Yβ(t).

(5.4.1)

89

Here {Aα : α ∈ A} and (respectively) {Bβ : β ∈ B} are finite sets of matrices such that

any matrix that can be used by Alice and (respectively) by Bob can be represented as

in the first line of (5.4.1), provided that the coefficients xα and yβ satisfy the conditions

written in the last line of (5.4.1). In these conditions, Xα(s) and Yβ(t) are subsets of R

whose specification depends on vectors s and t of unknown parameters.

The solution of (5.4.1) is based on the same ideas from [23] that were already used

in Subsection 5.4.2. After we substitute the first line of (5.4.1) into the decomposition

problem X ⊗W ⊗ Y = U and denote

Tαβ = Aα ⊗W ⊗Bβ − U, (5.4.2)

the decomposition problem reduces to solving the system

0 = max
α∈A,β∈B

(xα ⊗ yβ ⊗ Tαβγδ), ∀γ, δ ∈ [n]. (5.4.3)

Here, unlike in Subsection 5.4.2, xα and yβ also satisfy the conditions in the last line

of (5.4.1). Our attack then aims to solve equation (5.4.3) with these conditions.

Attack 5.4.1 (Generalized Kotov-Ushakov)

1. Compute

cαβ = min
γ,δ∈[n]

(−Tαβγδ)

Sαβ = arg min
γ,δ∈[n]

(−Tαβγδ).

(5.4.4)

2. Among all minimal covers of [n]× [n] by Sαβ, that is, all minimal subsets C ⊆ A×B

such that ⋃
(α,β)∈C

Sαβ = [n]× [n], (5.4.5)

90

find a cover for which the system

xα + yβ = cαβ, if (α, β) ∈ C,

xα + yβ 6 cαβ, if otherwise.

xα ∈ Xα(s), yβ ∈ Yβ(t)

(5.4.6)

is solvable.

Note that we do not generally know the nature and the complexity of the conditions

xα ∈ Xα(s), yβ ∈ Yβ(t), and vectors s and t can themselves be constrained. However, in

the specifications of Attack 5.4.1 that will follow in the next subsections, system (5.4.6)

is always linear, so that its solvability can be checked by the simplex method.

The proof that Attack 5.4.1 is almost the same as that of Theorem 2.3.1, the only

differences being that we have more general sets A and B instead of {0, . . . , D}, and that

we have to respect the new conditions xα ∈ Xα(s) and yβ ∈ Yβ(t).

Theorem 5.4.1 ([28]) Attack 5.4.1 yields

X =
⊕
α∈A

xα ⊗ Aα, Y =
⊕
β∈B

yβ ⊗Bβ.

that satisfy X ⊗W ⊗ Y = U and xα ∈ Xα(s), yβ ∈ Yβ(t) if such X and Y exists.

Proof. It remains to show that the Kotov-Ushakov attack actually finds a solution to

(5.4.3) with conditions xα ∈ Xα(s), yβ ∈ Yβ(t) (provided that such solution exists, which

is the case).

Consider the system

0 =
⊕

α∈A,β∈B

(zαβ ⊗ Tαβγδ), ∀γ, δ ∈ [n].

91

where zαβ = xα + yβ and xα ∈ Xα(s), yβ ∈ Yβ(t).

According to the theory A⊗ x = b (see [3] Theorem 3.1.1 and Corollary 3.1.2) we can

use the following results:

1. If the solution exists then vector C = (cαβ) where cαβ = min
γ,δ∈[n]

(−Tαβγδ) is the greatest

solution.

2. Vector Z = (zαβ) is a solution if and only if there exists a set C ⊆ A× B such that

(5.4.5) holds and zαβ = cαβ for all (α, β) ∈ C and zαβ 6 cαβ for all (α, β). �

Since zαβ = xα⊗yβ, for all α and β where xα ∈ Xα(s), yβ ∈ Yβ(t), it follows that checking

the solvability of (5.4.3) amounts to finding at least one system (5.4.6) that is solvable

with C being a minimal cover (i.e a set satisfying (5.4.5) that is minimal with respect to

inclusion).

5.4.2 Attack on Protocol 5.1.1

We first select a big enough finite subset T of rational numbers in [0, 1] such that, e.g.,

we have R ⊆ T with certainty for any set R that can be used by Alice and Bob. Then

we define

X =
⊕
α∈T

xα ⊗ A(α),

Y =
⊕
β∈T

yβ ⊗B(β).

(5.4.7)

Comparing this with (5.4.1) we see that here we have Aα = A(α), Bβ = B(β) and

A = B = T . In this case the coefficients xα and yβ are unrestricted, so the conditions in

the last line of (5.4.1) are absent.

Following the idea of Attack 5.4.1, we can write the following attack:

92

Attack 5.4.2 [[28]]

Input: Public matrices W,A,B ∈ Rn×n
max and the messages U, V ∈ Rn×n

max

Output: The secret key of Alice Ka or the secret key of Bob Kb

1. Compute cαβ = cijst and Sαβ = Sijst by (5.4.4), where Aα = A(α), Bβ = B(β) and

Tαβ by (5.4.2) where α, β ∈ T .

2. Among the minimal sets C ⊆ T ×T that satisfy (5.4.5) we seek those which satisfy

xα + yβ = cαβ, if (α, β) ∈ C,

xα + yβ 6 cαβ, if (α, β) /∈ C.
(5.4.8)

Thus the Kotov-Ushakov attack on the protocol with tropical quasi-polynomials is

very similar to the original one.

We now present a theorem about the validity of Attack 5.4.2.

Theorem 5.4.2 ([28]) Let A,B,W ∈ Rn×n
max and U be the message sent by Alice to Bob

in Protocol 5.1.1. If R ⊆ T for any set R that can be used by Alice and Bob in that

protocol, then the Kotov-Ushakov attack yields

X =
⊕
α∈T

xα ⊗ A(α), Y =
⊕
β∈T

yβ ⊗B(β). (5.4.9)

that satisfy X ⊗W ⊗ Y = U .

The proof of this theorem is very similar to that of Theorem 2.3.1 and will be omitted. It

can be also obtained as a corollary of Theorem 5.4.1 where (as explained above) Aα = A(α),

Bβ = B(β) and A = B = T .

93

5.4.3 Implementation of the attacks 2.3.1 and 5.4.2

We implemented Attack 2.3.1 and Attack 5.4.2 using the computational algebra software

GAP version 4.10.2 on MacBook Retina 1.2 GHz Intel Core m3 by modifying the existing

code from [23].

In their paper Kotov and Ushakov [23] run experiments using the parameters described

in [13]. In their experiments the maximal degree of the tropical polynomials is in the

interval [1, 10], the entries of matrices are in the interval [−1010, 1010] and the coefficients

of tropical polynomial are in the interval [−1000, 1000]. We use the same dimension of

matrices as in the experiments of Kotov and Ushakov . For Protocol 2.3.3 and Attack

2.3.1, we use the following parameters:

• The dimension of matrices are 10× 10.

• The entries of matrices and the coefficients of tropical polynomial are integer num-

bers in the interval [−100, 100].

• The degree of polynomial in this experiment is from 1 to 50.

The growth of running time for attacking the protocol and generating a secret key is shown

on Figure 5.1. Each point on the graph results from a single instance experiment, hence

the random character of these graphs. We can see that the running time for Attack 2.3.1 is

likely to be polynomial and the average computation time grows in practice as we increase

the maximal degree of monomials in tropical polynomial. On the other hand, this increase

is not so dramatic, and a possible reason for this is the slow growth of the average number

of tested minimal covers, as reported in [23]. Note that acording to [23] the attacker

generates all minimal covers and sorts them by criteria |{α|∃(α, β) ∈ C}.|{β|∃(α, β) ∈ C}.

We could generate one minimal cover after another instead, but the efficiency of this

is arguable. With this sorting, we need to check 1 or 2 covers in practice so that the

94

complexity of Attack 2.3.1 similar to the complexity of simplex method, after the covers

are generated and sorted. We can also see that to generate a secret key we only need

much less time than to attack the protocol. For instance to generate a secret key with

degree of polynomial is 50 we only need 2.152 seconds but to attack it we need 7242.807

seconds.

Figure 5.1: (a) Dependence of average computation Attack 2.3.1 on the maximal degree
of tropical polynomials and (b) running time for generating a secret key of Protocol 2.3.3

For Protocol 2.3.3 and Attack 5.4.2, we use the following parameters:

• The dimension of matrices are 10× 10.

• The entries of matrices and the coefficients of tropical quasi-polynomial are integer

numbers in the interval [−100, 100].

• The denominator of degree of tropical quasi-polynomial that is used in this exper-

iment is from 1 to 50 for generating a secret key and from 1 to 13 for attacking

Protocol 5.1.1.

95

The growth of running time for attacking the protocol and generating a secret key is

shown on Figure 5.2. We can also see that the running time for Attack 5.4.2 is likely to

be polynomial similar to the running time for Attack 2.3.1 and the average computation

time grows in practice as we increase the maximal denominator of the degree of tropical

quasi-polynomial. Since the running time of Attack 5.4.2 grows more rapidly than that of

Attack 2.3.1 as we increase the maximal denominator, for Attack 5.4.2 we only investigate

the running time until maximal denominator is equal to 13. We also can see that when we

select the maximal denominator equal to 13, we only need 0.043 seconds for generating a

secret key and 9147.872 seconds for attacking.

Figure 5.2: (a) Dependence of average computation Attack 5.4.2 on the maximal degree
of tropical quasi-polynomials and (b) running time for generating a secret key of Protocol
5.1.1

96

We conclude that our modified Protocol 5.1.1 requires more time to attack it using a

Kotov-Ushakov attack rather than Protocol 2.3.3.

5.4.4 Attack on Protocol 5.1.2

In Protocol 5.1.2, we have A1 ∈ [2a, a]k1n and A2 ∈ [2b, b]k2n with unknown nonpositive a,

b, and unknown nonnegative k1 and k2. Using tropical elementary matrices as Aα and

Bβ with α and β being pairs of indices from [n] (see equation (5.4.10)), we can represent

any matrix in [2a, a]k1n and [2b, b]k2n as in the first line of (5.4.1). However, for this we also

need to restrict the coefficients xα to belong to [2a, a] if α = (i, j) with i 6= j or to be

equal to k1 if i = j. Similarly, the coefficients yβ should belong to [2b, b] if β = (i, j) with

i 6= j or to be equal to k2 if i = j.

Formally, we set Aα and Bβ for α = β = (i, j) to be:

Aα = Aij = Bβ = Bij = Eij, for all i, j (5.4.10)

where (i, j) ∈ [n]× [n], thus A = B = [n]× [n].

Sets X and Y satisfy

X(i,j)(a, k1) =

{
[2a, a], i 6= j

{k1}, i = j.
(5.4.11)

Y(i,j)(b, k2) =

{
[2b, b], i 6= j

{k2}, i = j.
(5.4.12)

Unknown parameters k1, k2, a and b satisfy k1, k2 > 0 and a, b 6 0.

Attack 5.4.3 ([28])

Input: public matrix W ∈ Rn×n
max and messages U, V ∈ Rn×n

max .

Output: the secret key of Alice Ka or the secret key of Bob Kb.

97

1. Compute cαβ = cijst and Sαβ = Sijst by (5.4.4), where Aα, Bβ are defined by (5.4.10)

and Tαβ by (5.4.2) where α = (i, j), β = (s, t) with i, j, s, t ∈ [n].

2. Among the minimal sets C ⊆ [n]2 × [n]2 that satisfy (5.4.5) we seek those which

satisfy

xij + yst = cijst, for (i, j, s, t) ∈ C

xij + yst 6 cijst, otherwise,

2a 6 xij 6 a, 2b 6 yst 6 b, ∀i 6= j, s 6= t,

xii = k1, yss = k2, ∀i, s,

a, b 6 0, k1, k2 > 0.

(5.4.13)

Note that this is a linear system of equalities and inequalities whose solvability can be

checked by the simplex method. Then attack works since it is a special case of Attack

5.4.2.

We now explain why the attack is valid.

Theorem 5.4.3 ([28]) Let W ∈ Rn×n
max and let U be the message sent by Alice to Bob in

Protocol 5.1.2. Then Attack 4 yields matrices X ∈ [2a, a]k1n and Y ∈ [2b, b]k2n for some

a, b 6 0 and k1, k2 > 0 that satisfy X ⊗W ⊗ Y = U .

Proof. In this case we have to solve system (5.4.1) with A = B = [n]×[n], with Aα and Bβ

being tropical elementary matrices, and with the sets that contain xα and yβ taking the

forms of (5.4.11) and (5.4.12) respectively, also with the conditions a, b 6 0 and k1, k2 > 0

on the parameters of these sets. This system is the same as X ⊗W ⊗ Y = U where it is

required that X ∈ [2a, a]k1n and Y ∈ [2b, b]k2n for some a, b 6 0 and k1, k2 > 0. The latter

system has a solution since U is the message sent by Alice to Bob in Protocol 5.1.2.

Since (5.4.6) in this case becomes (5.4.13), Attack 4 is indeed a specialization of

Attack 3, and by Theorem 5.4.1 it finds a solution to the above described specialization

98

of system 5.4.1, and hence it finds matrices X and Y which satisfy X ⊗W ⊗ Y = U and

are of the required form. �

5.4.5 Attack on Protocol 5.1.3

In Protocol 5.1.3, we have A1 ∈ [2a, a]gn and A2 ∈ [0, h]n (see Definition 4.2.2)with un-

known nonpositive a and known nonnegative g and h. Using tropical elementary matrices

and I as Aα and only tropical elementary matrices as Bβ with α and β being pairs of

indices from [n], we can represent any matrix in [2a, a]gn and [0, h]n as in the first line of

(5.4.1). However, for this we also need to restrict the coefficients xα to belong to [2a, a]

if α = (i, j) with i 6= j or to be equal to g if i = j. The coefficients yβ should belong to

[0, h]n for any β = (i, j) for i, j ∈ [n]

Formally, we set Aα and Bβ for α = β = (i, j) to be:

Aα = Aij =

{
Eij, for i 6= j,

I, for i = j,

Bβ = Bij = Eij.

(5.4.14)

Here (i, j) ∈ [n]× [n], thus again A = B = [n]× [n].

Sets X and Y satisfy

X(i,j) =

{
[2a, a], i 6= j

{g}, i = j.
(5.4.15)

Y(i,j) = [0, h] ∀i, j. (5.4.16)

Observe that g and h are not parameters in this case, since Alice and Bob are sending

them to one another, so we have to assume that they can be intercepted by Eve. However,

a is an unknown parameter satisfying a 6 0.

Attack 5.4.4 ([28])

99

Input: public matrix W , public integer number g, h and messages U, V ∈ Rn×n
max

Output: the secret key of Alice Ka and the secret key of Bob Kb

1. Compute cαβ = cijst and Sαβ = Sijst by; (5.4.4), where Aα and Bβ are defined

by (5.4.14) and Tαβ by (5.4.2) for α = (i, j) and β = (s, t) with i, j, s, t ∈ [n];

2. Among the minimal sets C ⊆ [n]2 × [n]2 that satisfy (5.4.5) we seek those which

satisfy

xij + yst = cijst, for (i, j, s, t) ∈ C

xij + yst 6 cijst, otherwise,

2a 6 xij 6 a,∀i 6= j, xii = g,∀i

0 6 yst 6 h ∀s, t, a 6 0.

(5.4.17)

Note that this is a linear system of equalities and inequalities whose solvability can be

checked by the simplex method. This attack works since it is a special case of Attack

5.4.2. The detailed explanation of this, which we omit here, is fully analogous to the proof

of Theorem 5.4.3.

5.4.6 Attack on Protocol 5.1.4

In Protocol 5.1.4 we have A1 = A(p, a) and A2 = A(q, b) with known vectors p, q 6 0 and

unknown non positive scalars a, b 6 0. We can represent any matrix in A1 = A(p, a) and

100

A2 = A(q, b) as in the first line of (5.4.1), if we define

M =



−∞ −∞ . . . 0 0

0 −∞ −∞ . . . 0

0 0 −∞ . . .
...

...
. −∞

−∞ . . . 0 0 −∞


and let Aα and Bβ be:

A0 = B0 = I, An+1 = Bn+1 = M,

Ak = Eij, k ∈ [n], for i = k, j ≡ k + 1(mod n)

(5.4.18)

thus A = B = {0, . . . , n+ 1}.

Sets X and Y satisfy:

X0 = Y0 = {0},

Xk = {pk}, Yk = {qk}, for k ∈ [n],

Xn+1(a) = (−∞, a], Yn+1(b) = (−∞, b].

(5.4.19)

Observe that vectors p and q are known in this case, since Alice and Bob are sending

them to one another in the public area, so we have to assume that Eve can intercept

vectors p and q. However, a, b are unknown parameters satisfying a, b 6 0.

Attack 5.4.5 ([28])

Input: public Matrix W ∈ Rn×n
max and the messages U, V ∈ Rn×n

max

Output: Alice’s secret key Ka or Bob secret’s key Kb.

1. Compute cαβ and Sαβ by (5.4.4), where Aα and Bβ are defined by (5.4.18) and Tαβ

by (5.4.2) .

101

2. Among the minimal sets C ⊆ {0, . . . , n+ 1} × {0, . . . , n+ 1} that satisfy (5.4.5) we

seek those which satisfy

xα + yβ = cαβ, for (α, β) ∈ C

xα + yβ 6 cαβ, otherwise,

x0 = y0 = 0, xk = pk, yk = qk for k ∈ [n],

xn+1 6 0, yn+1 6 0.

(5.4.20)

Note that this is a linear system of equalities and inequalities whose solvability can be

checked by the simplex method. This attack works since it is a special case of Attack

5.4.2.

5.4.7 Attack on Protocol 5.1.5

As in the case of the original Kotov-Ushakov attack [23], we first select a big enough

number D such that it is bigger than the maximal degree of any tropical polynomial that

can be used by Alice and Bob.

Then we use the tropical elementary matrices and I as Aα and the matrix power W⊗β

as Bβ. Here α are pairs of indices from [n] and β ∈ {0, . . . , D}. Thus we can represent any

matrix in [2a, a]gn and tropical polynomial p(W) as in the first line of (5.4.1). However,

for this we also need to restrict the coefficients xα to belong to [2a, a] if α = (i, j) with

i 6= j or to be equal to g if i = j. The coefficients yβ are unrestricted.

Formally, we set Aα and Bβ for α = β = (i, j) to be:

Aα = Aij =

{
Eij, for i 6= j,

I, for i = j,

Bβ = W⊗β, for β ∈ {0, . . . , D}.

(5.4.21)

102

Thus A = [n]× [n] and B = {0, . . . , D}

Sets X and Y satisfy

X(i,j) =

{
[2a, a], i 6= j

{g}, i = j.
(5.4.22)

Yβ = Rmax. (5.4.23)

Here, we have two unknown parameters a and g such that a 6 0 and g > 0.

Hence, we formulate attack for protocol 5.1.6 as follows:

Attack 5.4.6 ([28])

Input: Public Matrix W ∈ Rn×n
max and messages U, V ∈ Rn×n

max

Output: Alice’s secret key Ka or Bob secret’s key Kb. In order to reveal Ka or Kb, the

attacker need to solve decomposition problem (5.4.2) in the following steps:

1. Compute cαβ = cijβ and Sαβ = Sijβ by (5.4.4), where Aα and Bβ are defined

by (5.4.21), Tαβ by (5.4.2) where α = (i, j) for all i, j ∈ [n]and β ∈ {0, . . . D}.

2. Among the minimal sets C ⊆ [n]2 × {0, . . . , D} that satisfy (5.4.5) we seek those

which satisfy

xij + yβ = cijβ, for (i, j, β) ∈ C

xij + yβ 6 cijβ, otherwise,

2a 6 xij 6 a, ∀i 6= j, xii = g,∀i.

(5.4.24)

3. Since X and Y can be found then Eve as an attacker can compute KAlice = X⊗V⊗Y.

Note that this is a linear system of equalities and inequalities whose solvability can be

checked by the simplex method.

103

Chapter 6

Cryptography Based on Tropical

Semidirect Product and Its

Security

6.1 Tropical Semidirect Product

In this section we are going to give a definition of the semidirect product in tropical

algebra, following [14].

Definition 6.1.1 (Tropical Group Action) Let G be a semigroup (a non empty set

equipped with a binary operation and associative). Then we say that G acting on tropical

algebra Rmax, if it satisfies the following conditions:

• there is a well defined element xg ∈ Rmax for any x ∈ Rmax and g ∈ G,

• (x⊗ y)g = (xg ⊗ yg) and xgh = (xg)h for any x, y ∈ Rmax and g, h ∈ G.

Definition 6.1.2 (Tropical Semidirect Product) Let G be semigroup acting on Rmax.

Then define the set of pairs as follow:

Γ = Rmax oG = {(x, g)|x ∈ Rmax, g ∈ G}

104

. Then Γ is a semidirect products if it is a semigroup under the following operation:

(x, g)(y, h) = (xh ⊗ y, gh)

. for any x, y ∈ Rmax and g, h ∈ G.

Example 6.1.1 (Tropical Semidirect Product [14]) Grigoriev and Shpilrain [14] con-

sider the following semidirect products of the pairs of matrices over tropical semiring

(M,G)(A,H) = ((M ◦H)⊕ A,G ◦H) (6.1.1)

We will consider one of the protocols in [14], where ◦ is defined as the adjoint product:

A ◦B = A⊕B ⊕ A⊗B, (6.1.2)

defined for any square matrices A and B of the same size. It has the following properties:

• (A ◦B) ◦ C = A ◦ (B ◦ C) (associativity),

• A ◦ (B ⊕ C) = A ◦B ⊕ A ◦ C and (B ⊕ C) ◦ A = B ◦ C ⊕B ◦ A (distributivity).

Adjoint product (6.1.5) can be used to define adjoint powers inductively: A◦(k+1) = A◦k◦A

for all k. Moreover, the associativity implies that for any nonzero numbers m1, . . . ,ms ∈ N

such that m1 + . . .+ms = k we have

A◦k = A◦m1 ◦ A◦m2 ◦ . . . ◦ A◦ms . (6.1.3)

Thus the adjoint powers A◦n = A ◦ . . . ◦ A︸ ︷︷ ︸
n

are well-defined and can be quickly computed

using (6.1.3).

Using (6.1.4) we also observe the following:

105

Proposition 6.1.1 Let A ∈ Rd×d
max have λ(A) 6 0 and n > d. Then A◦n = A+.

Here A+ is the metric matrix of A defined in (2.1.1)

Proof. We start by proving the following identity:

A◦n = A⊕ A⊗2 ⊕ . . . A⊗n. (6.1.4)

Indeed, A◦2 = A⊕ A⊗2 is obvious, and for general n we can use a simple induction:

A◦n = A◦(n−1) ◦ A = A⊕ A◦(n−1) ⊕ (A◦(n−1) ⊗ A)

= A⊕ (A⊕ A⊗2 ⊕ . . .⊕ A⊗(n−1))⊕ (A⊗2 ⊕ . . .⊕ A⊗n)

= A⊕ A⊗2 ⊕ . . .⊕ A⊗n.

When λ(A) 6 0 and n > d, the above series is equal to A+, which completes the claim.�

With ◦ being the adjoint multiplication, the semidirect product of (M,G) and (A,H)

given by (6.1.1) becomes

(M,G)(A,H) = (M ⊕ A⊕H ⊕M ⊗H,G⊗H ⊕G⊕H). (6.1.5)

This semidrect product is associative as the following lemma proves:

Lemma 6.1.1 Let A,B,M,G,H, J in Rn×n
max and then we have [(M,G) · (A,H)] · (B, J) =

(M,G) · [(A,H) · (B, J)]

106

Proof. Indeed, on the left-hand side we have:

[(M,G) · (A,H)] · (B, J) = (M ◦H ⊕ A, G ◦H) · (B, J)

= ((M ⊕H ⊕ (M ⊗H)⊕ A) ◦ J ⊕B, G ◦H ◦ J)

= (M ◦ J ⊕H ◦ J ⊕ (M ⊗H) ◦ J ⊕ A ◦ J ⊕B,G ◦H ◦ J)

= (M ⊕ J ⊕ (M ⊗ J)⊕H ⊕ J ⊕ (H ⊗ J)⊕ (M ⊗H)⊕ J

⊕ (M ⊗H ⊗ J)⊕ A⊕ J ⊕ (A⊗ J)⊕B,G ◦H ◦ J)

= (M ⊕H ⊕ J ⊕ A⊕B ⊕ (M ⊗ J)⊕ (M ⊗H)⊕ (H ⊗ J)⊕ (A⊗ J)

⊕ (M ⊗H ⊗ J), G ◦H ◦ J)

On the right-hand side:

(M,G) · [(A,H) · (B, J)] = (M,G) · (A ◦ J ⊕B,H ◦ J)

= (M,G) · (A⊕ J ⊕ A⊗ J ⊕B,H ⊕ J ⊕H ⊗ J)

= (M ◦ (H ⊕ J ⊕H ⊗ J)⊕ A⊕ J ⊕ A⊗ J ⊕B,G ◦H ◦ J)

= (M ◦H ⊕M ◦ J ⊕M ◦ (H ⊗ J)⊕ A⊕ J ⊕ A⊗ J ⊕B,G ◦H ◦ J)

= (M ⊕H ⊕ (M ⊗H)⊕M ⊕ J ⊕ (M ⊗ J)⊕M ⊕ (H ⊗ J)⊕

(M ⊗H ⊗ J)⊕ A⊕ J ⊕ (A⊗ J)⊕B,G ◦H ◦ J)

= (M ⊕H ⊕ J ⊕ A⊕B ⊕ (M ⊗ J)⊕ (M ⊗H)⊕ (H ⊗ J)

⊕ (A⊗ J)⊕M ⊗H ⊗ J,G ◦H ◦ J),

which is identical with what we obtained for the left-hand side. �

Example 6.1.2 (Tropical Semidirect Product) Grigoriev and Sphilrain also intro-

107

duced another action of the multiplicative semigroup of Rn×n
max as follows:

MH = (H ⊗MT)⊕ (MT ⊗H) (6.1.6)

where MT is the transpose of matrix M .

The semidirect product assiciated with this action is a semigroup with the following

operation:

(M,G)(S,H) = ((H ⊗MT)⊕ (MT ⊗H)⊕ S,G⊗H) (6.1.7)

However, Isaac and Kahrobei observed that the operation (6.1.5) is not associative and

consequently this is not a semidirect product, contrary to the claim of Grigoriev and

Shpilrain [14].

Let us consider the following counterexample to the associativity of operation defined

by (6.1.5). This example is different from the one given by [17], but still very similar to

their example.

Example 6.1.3 Let us consider two matrices as follows:

M =

 1 2

−1 2


and

H =

4 0

0 0



108

. Then we have

(M,H)2 = (M,H)(M,H)

=


 1 2

−1 2

 ,

4 0

0 0




 1 2

−1 2

 ,

4 0

0 0




=


4 0

0 0

⊗
1 −1

2 1

⊕
1 −1

2 1

⊗
4 0

0 0

⊕
 1 2

−1 2

 ,

4 0

0 0

⊗
4 0

0 0




=


5 3

2 1

⊕
5 1

6 2

⊕
 1 2

−1 1

 ,

8 4

4 0




=


5 3

6 2

 ,

8 4

4 0


 .

We need to show that (M,H)(M,H)2 6= (M,H)2(M,H). Let us start with the left

side as the following step:

(M,H)(M,H)2 =


 1 2

−1 2

 ,

4 0

0 0




5 3

6 2

 ,

8 4

4 0




=


8 4

4 0

⊗
1 −1

2 1

⊕
1 −1

2 1

⊗
8 4

4 0

⊕
5 3

6 2

 ,

4 0

0 0

⊗
8 4

4 0




=


9 7

5 3

⊕
 9 5

10 6

⊕
5 3

6 2

 ,

12 8

8 4




=


 9 7

10 6

 ,

12 8

8 4




(6.1.8)

109

(M,H)2(M,H) =


5 3

6 2

 ,

8 4

4 0




 1 2

−1 1

 ,

4 0

0 4




=


4 0

0 0

⊗
5 6

3 2

⊕
5 6

3 2

⊗
4 0

0 0

⊕
 1 2

−1 2

 ,

8 4

4 0

⊗
4 0

0 0




=


9 10

5 6

⊕
9 6

7 3

⊕
 1 2

−1 1

 ,

12 8

8 4




=


9 10

7 6

 ,

12 8

8 4




(6.1.9)

From (6.1.8) and (6.1.9) we can see that this operation is not associative.

Since the operation is not associative (i.e is not a semigroup), it cannot be a semidirect

product and we will not consider it further.

6.1.1 The protocol based on tropical semidirect product

Grigoriev and Shpilrain[14] introduced a new tropical version of the public key exchange

protocol based on the tropical semidirect product. Their work is based on public key

protocol using semidirect product in classical algebra by Kahrobaei and Shpilrain [21].

The new protocol uses the tropical semidirect product (6.1.1).

Protocol 6.1.1 Suppose that Alice and Bob agree on matrices M,H ∈ Rn×n
max . Then Alice

and Bob do the following steps:

1. Alice chooses a random positive integer number m and computes (M,H)m = (A,Hm).

Then Alice sends A to Bob.

2. Bob chooses a random positive integer number n and computes (M,H)n = (B,Hn).

Then Bob sends B to Alice.

110

3. Alice computes KAlice = A⊕B ⊕H◦m ⊕ (B ⊗H◦m).

4. Bob computes KBob = A⊕B ⊕H◦n ⊕ (A⊗H◦n).

6.1.2 Correctness of Protocol 6.1.1. Relation to tropical matrix

powers.

Semidirect product (6.1.5) can be used to define semidirect powers of matrix pairs induc-

tively: (M,H)k+1 = (M,H)k · (M,H) for all k. Moreover, the associativity implies that

for m1, . . . ,ms ∈ N such that m1 + . . .+ms = k we have

(M,H)k = (M,H)m1(M,H)m2 . . . (M,H)ms . (6.1.10)

This property assures that the semidirect powers (M,H)k = (M,H) · . . . · (M,H)︸ ︷︷ ︸
k

are well-

defined. We now express the semidirect powers in terms of the tropical matrix powers.

Proposition 6.1.2 ([29]) Let M,H ∈ Rd×d
max. Then

(M,H)k = ((M ⊗
k−1⊕
i=0

H⊗i)⊕ (H ⊗
k−2⊕
i=0

H⊗i), H◦k)

for all k > 2.

Proof. We first consider k = 2 to check the base of induction. We obtain:

(M,H)(M,H) = (M ⊕H ⊕M ⊕M ⊗H, H◦2) = (M ⊗ (I ⊕H)⊕H, H◦2).

111

We now assume that the statement holds for k = t and prove it for k = t+ 1. Indeed:

(M,H)t+1 = (M,H)t · (M,H) = ((M ⊗
t−1⊕
i=0

H⊗i)⊕ (H ⊗
t−2⊕
i=0

H⊗i), H◦t) · (M,H)

= ((M ⊗
t−1⊕
i=0

H⊗i)⊕ (H ⊗
t−2⊕
i=0

H⊗i)⊕M ⊕H ⊕ (M ⊗
t⊕
i=1

H⊗i)⊕ (H ⊗
t−1⊕
i=1

H⊗i), H◦(t+1))

= ((M ⊗
t⊕
i=0

H⊗i)⊕ (H ⊗
t−1⊕
i=0

H⊗i), H◦(t+1)).

The induction is complete. �

Note that we can also use that
⊕k

i=0H
⊗i = (I ⊕H)⊗k for any k, and then the result of

the previous lemma can be reformulated as follows:

(M,H)k = (M ⊗ (I ⊕H)⊗(k−1) ⊕H ⊗ (I ⊕H)⊗(k−2), H◦k)

= ((M ⊗ (I ⊕H)⊕H)⊗ (I ⊕H)⊗(k−2), H◦k).

(6.1.11)

Property (6.1.10) implies that Ka = Kb, since both of them are the first component of

(M,H)m+n. For the protocol recalled above, we immediately obtain

A =

(
M ⊗

m−1⊕
i=0

H⊗i

)
⊕

(
H ⊗

m−2⊕
i=0

H⊗i

)
= (M ⊗ (I ⊕H)⊕H)⊗ (I ⊕H)⊗(m−2),

B =

(
M ⊗

n−1⊕
i=0

H⊗i

)
⊕

(
H ⊗

n−2⊕
i=0

H⊗i

)
= (M ⊗ (I ⊕H)⊕H)⊗ (I ⊕H)⊗(n−2),

(6.1.12)

for the messages exchanged between Alice and Bob (m > 2 and n > 2), using Proposi-

tion 6.1.2.

112

6.2 Cryptanalysis of Protocol 6.1.1

In this section, we will present three attack methods for Protocol 6.1.1. The first method

is proposed by Rudy and Monico [32], the second method is introduced by Isaac and

Kahrobei [18], and the last attack is due to Muanalifah and Sergeev [29], which uses the

ultimate periodicity of tropical matrix powers and the previously discussed connection

between tropical matrix powers and powers resulting from the tropical semidirect product.

6.2.1 Binary Search Attack

This attack is based on Rudy and Monico [32]. The focus of this attack is to find m from

the first component of (M,H)m and then use this m to compute the secret key KAlice.

Using the fact that A ⊕ B > A and A ⊕ B > B for any matrices A and B of the same

size, one can obtain the following claim.

Proposition 6.2.1 ([32]) Let (Mm, Hm) := (M,H)m. Then the sequence {Mm} is

monotonically increasing, meaning that M1 6M2 6M3 6 . . .Mm for all m ∈ N.

Proof. For every m > 2, we can observe the following:

(M,H)m = (M,H)m−1 ◦ (M,H)

= (Mm−1 ⊕M ⊕H ⊕ (Mm−1 ⊗H), Hm−1 ⊕H ⊕ (Hm−1 ⊗H))

(6.2.1)

From equation (6.2.1), we can see that Mm = (Mm−1 ⊕M ⊕H ⊕ (Mm−1 ⊗H)), and

therefore Mm >Mm−1 for any m > 2. �

The problem to find a positive integer m can be solved by using binary search algorithm.

Rudy and Monico successfully attack the Protocol 6.1.1. The attack of Rudy and Mon-

ico [32] requires O(N2), where N is the maximum of the logarithms of the secret keys

(exponents) used by Alice and Bob.

113

6.2.2 Isaac and Kahrobei’s Attack

The attack on Protocol (6.1.1) developed by Isaac and Kahrobaei [17] is based on the ul-

timate periodicity property of the tropical semidirect powers, which was observed experi-

mentally. In their attack, based on the property that the sequence {Mn}n>1 is ultimately

periodic (where Mn is the first component of (M,H)n), the attacker can compute the

exponent a using the public matrices M,H and A. Then the attacker can find the secret

key using the formula by which it is computed in Protocol 6.1.1. The attack consist of

two parts:

• Attacker computes d and ρ for the sequence {Mn}n>1, where ρ is the period of that

sequence after the periodicity starts and d is the length of the pre-periodic part.

• Using d and ρ, the attacker computes the private key (exponent) a.

Isaac and Kahrobei successfully attack the protocol with the parameters suggested

by Grogoriev and Sphilrain [14]. They performed 1000 instances protocol using Python

3.76 on single core of an i7 CPU at 2.9GHz, with 8GB of RAM, running Windows 10.

Experimentally, their attack is better in time than the Binary Search attack of Rudy and

Monico [32].

6.2.3 the Tropical Discrete Logarithm Problem Attack

We now explain the attack on the Grigoriev-Shpilrain protocol, which depends on the sign

of λ(H). This attack was developed in a joint article with my supervisor S. Sergeev [29].

Proposition 6.2.2 ([29]) Let M,H ∈ Rd×d
max and λ(H) 6 0. If m > d + 1 then A =

(M ⊕H)⊗H∗, and if n > d+ 1 then B = (M ⊕H)⊗H∗.

Proof. From (6.1.12) we recall that

A =

(
M ⊗

m−1⊕
i=0

H⊗i

)
⊕

(
H ⊗

m−2⊕
i=0

H⊗i

)
, B =

(
M ⊗

n−1⊕
i=0

H⊗i

)
⊕

(
H ⊗

n−2⊕
i=0

H⊗i

)

114

Since λ(H) 6 0, we have

H∗ = I ⊕H ⊕ . . .⊕H⊗(t−1) for t > d.

Using this property and the identities for A and B, we obtain the claim. �

Proposition 6.2.3 ([29]) Let M,H ∈ Rd×d
max and λ(H) 6 0 and let m > d+1, n > d+1,

A = (M ⊕H)⊗H∗ or B = (M ⊕H)⊗H∗. Then

Ka = Kb = A⊕B = (M ⊕H)⊗H∗.

Proof. Using Proposition 6.2.2 and (6.1.4), if m > d + 1 or if A = (M ⊕H) ⊗H∗, then

we obtain

A⊗H◦n = (M ⊕H)⊗ (H∗ ⊗H◦n)

= (M ⊕H)⊗

(
H∗ ⊗

n⊕
i=1

H⊗i

)
6 (M ⊕H)⊗H∗ = A,

H◦n =
n⊕
i=1

H⊗i 6 A,

and also B 6 A, using (6.1.12).

Similarly, if n > d+ 1 or if B = (M ⊕H)⊗H∗ then we have

B ⊗H◦m = (M ⊕H)⊗ (H∗ ⊗H◦m)

= (M ⊕H)⊗

(
H∗ ⊗

m⊕
i=1

H⊗i

)
6 (M ⊕H)⊗H∗ = B,

H◦m =
m⊕
i=1

H⊗i 6 B

115

and A 6 B. Therefore, we have

Ka = B ⊕ A⊕H◦m ⊕B ⊗H◦m = A⊕B = B, if n > d+ 1

Kb = A⊕B ⊕H◦n ⊕ A⊗H◦n = A⊕B = A, if m > d+ 1.

Thus in this case the key can be computed simply as A⊕B. �

6.2.4 Computing the key knowing m and n

If we have m and n then the key can be obviously computed as

Ka = Kb = A⊕B ⊕H◦m ⊕ (B ⊗H◦m) = A⊕B ⊕H◦n ⊕ (A⊗H◦n), (6.2.2)

where H◦m and H◦n can be computed as adjoint powers, using (6.1.3) or (6.1.4).

Let us also consider how to simplify expression (6.2.2). Assume first that m > n.

Then A > B and A > H◦n, since any power H⊗i for 1 6 i 6 n appears as one of the

terms in

A = (M ⊗ (I ⊕H)⊕H)(I ⊕H ⊕ . . .⊕H⊗(m−2)),

when we multiply it out. Then the key simplifies to

Ka = Kb = A⊗ (I ⊕H◦n) = A⊗ (I ⊕H ⊕ . . .⊕H⊗n) = A⊗ (I ⊕H)⊗n. (6.2.3)

In the case n > m we similarly obtain

Ka = Kb = B ⊗ (I ⊕H ⊕ . . .⊕H⊗m) = B ⊗ (I ⊕H)⊗m. (6.2.4)

In the case m = n we have B = A and therefore

Ka = Kb = A⊗ (I ⊕H)⊗n ⊕H ⊗ (I ⊕H)⊗(n−1). (6.2.5)

116

6.2.5 Formulation of the attack

Let us now give a more formal description of the attack on Protocol 6.1.1, in the form of

an algorithm.

Algorithm 6.2.1 (Attacking Protocol 6.1.1 [29])

Input: public matrices M,H ∈ Zd×dmax and messages A,B ∈ Zd×dmax of Alice and Bob.

Output: the secret key Ka and the secret key Kb

0. Compute λ(H), F = I ⊕H and V = (M ⊗ (I ⊕H)⊕H).

1. If λ(H) 6 0 then check if A = (M ⊕H)⊗H∗ or B = (M ⊕H)⊗H∗. If any of these

two conditions is true then return K = (M ⊕H)⊗H∗.

If none of these conditions are true, check if A = M or B = M or find l1, l2 =

0, . . . d − 2 such that A = V ⊗ F⊗l1 and B = V ⊗ F⊗l2 . Then set m = l1 + 2 or

m = 1 if A = M , and n = l2 + 2 or n = 1 if B = M , and go to 3.

2. If λ(H) > 0 then check A = M or B = M or find l1 and l2 satisfying A = V ⊗ F⊗l1

and B = V ⊗ F⊗l2 using Algorithm 3.2.1. Then set m = l1 + 2 or m = 1 if A = M ,

and n = l2 + 2 or n = 1 if B = M , and go to 3.

3. Compute the key using (6.2.3), (6.2.4) or (6.2.5).

The following result improves the claim which we obtained in [29], as we dispense with

the assumption that the critical graph should be strongly connected. We could also omit

the irreducibility, but we need to make sure that the conditions of Theorem 3.2.2 hold.

Theorem 6.2.1 Suppose that H is irreducible. Then the attacker can compute the key

using Algorithm 6.2.1.

Proof. Since H is irreducible, so is F = I ⊕ H and V = (M ⊗ (I ⊕ H) ⊕ H) 6= E , each

column of V ⊗ F⊗t has a finite entry, and Corollary 3.2.2 applies and establishes the

117

validity of Algorithm 3.2.1 for t > (d − 1)2 + 1. The increasing property of F = I ⊕ H

means that the sequence of matrices {M, V, V ⊗ F, V ⊗ F 2 . . .} is non-decreasing, and

it either stabilises so that V ⊗ F⊗t = (M ⊕H)⊗H∗ for t > T for some T 6 d− 1, or it

grows in such a way that

M < V < V ⊗ F⊗t1 < V ⊗ F⊗t2 < . . .

In particular, we have V ⊗ F⊗t1 6= V ⊗ F⊗t2 for t1 6= t2, unless both are equal to

(M ⊕ H) ⊗ H∗. These observations, together with the validity of Algorithm 3.2.1 for

t > (d− 1)2 + 1, imply the validity of the claim. �

Let us analyse how many operations the algorithm requires.

0. Computation of λ(H) and V requires no more than O(d3) operations.

1. Checking if A = (M ⊕H) ⊗H∗ or B = (M ⊕H) ⊗H∗ requires O(d3) operations.

Straightforward checking for powers less than d− 1 requires O(d4) operations.

2. Here we apply Algorithm 3.2.1, whose complexity is analysed in Proposition 3.2.6.

3. Computation of the key (unless it has been computed on step 1) requires no more

than O(d3 log max(m,n)). This is done using repeated tropical matrix squaring and

has the same computational complexity as the protocol itself.

6.3 Toy examples

In this section we give a couple of toy examples to demonstrate how the attack on the

protocol works in the cases when λ(H) 6 0 and λ(H) > 0.

118

Example 6.3.1 ((λ(H) 6 0))

Let Alice and Bob agree on two public matrices as follows:

M =


8 7 2

10 3 6

−10 −1 3

 , H =


0 −3 −5

−1 −2 2

1 −3 −4

 .

Bob and Alice pick two random integer numbers m = 5 and n = 8 respectively. Alice and

Bob compute

A = B =


10 7 9

10 7 9

4 1 3

 = Ka = Kb.

Since λ(H) = 0, we cannot use the tropical discrete logarithm method to find m and

n. However, Eve can check that A = B = (M ⊕ H) ⊗ H∗, hence she concludes that

Ka = Kb = (M ⊕H)⊗H∗.

Example 6.3.2 ((λ(H) > 0))

Alice and Bob agree on two public matrices as follows:

M =



−75 −45 −69 60

83 52 9 −72

27 92 92 −16

87 93 −3 84


, H =



1 7 2 5

−1 −2 2 4

3 4 2 2

−5 −10 10 0


.

Then they follow the protocol 6.1.1 in the following steps:

• Alice and Bob pick two random integer numbers m = 15 and n = 16 respectively.

• Alice computes (M,H)m = (A,H◦m) and Bob computes (M,H)n = (B,H◦n). They

119

exchange the following messages:

A =



145 146 148 144

176 177 179 175

175 176 178 174

176 177 179 175


, B =



151 152 154 150

182 183 185 181

181 182 184 180

182 183 185 181


.

• Alice computes Ka = A⊕B⊕H◦m⊕ (B⊗H◦m) and Bob computes Kb = B⊕A⊕

H◦n ⊕ (A⊗H◦n). They thus obtain the common secret key:

Ka = Kb =



241 242 244 240

272 273 275 271

271 272 274 270

272 273 275 271


.

Attacking the protocol

Eve as an attacker only knows public matrices M and H and public keys A and B. To

attack the protocol Eve needs to find m and n and compute Ka or Kb. Using Algorithm

5.3, Eve obtains Alice’s private key by the following:

1. Eve computes λ(H) = 6 and

F = I ⊕H =



1 7 2 5

−1 0 2 4

3 4 2 2

−5 −10 10 0


, V =



55 50 70 60

98 99 97 97

95 96 94 96

92 93 95 97


.

2. Since λ(H) > 0, Eve needs to find ma satisfying A = V ⊗ F⊗(ma−2). For this Eve

120

finds a critical cycle Z = (1 2 4 3) and computes

CZ = RZ =



0 1 3 −1

−5 0 2 −2

−1 −2 0 −4

1 2 4 0


, SZ =



−∞ 1 −∞ −∞

−∞ −∞ −∞ −2

−3 −∞ −∞ −∞

−∞ −∞ 4 −∞


.

3. The dimension is d = 4, hence for t = 0, . . . , (4 − 1)2 = 9, Eve first tries to find t

such that A = V ⊗F⊗t. Here we cannot find t satisfying A = V ⊗F⊗t for these low

exponents.

4. Now Eve uses the CSR method. The length of critical cycle is l = 4, but it turns

out that

CZS
k
ZRZ [F] =



0 1 3 −1

−1 0 2 −2

−3 −2 0 −4

1 2 4 0


for all k.

For k = 0 Eve finds that A = V ⊗ (CZRZ [F]) = µ+E with µ = 78. Eve then finds

that ma = µ/λ(F) + 2 = 78
6

+ 2 = 15.

5. Eve computes Ka = B ⊗ (I ⊗H)⊗15 =



241 242 244 240

272 273 275 271

271 272 274 270

272 273 275 271


.

6.4 Numerical experiments

In this section we will describe the numerical experiments which we performed with the

tropical discrete logarithm and attack on Protocol 1 of [14]. We will mostly follow the de-

121

scription that we gave in [29] and then will give a brief summary of some new experiments

which we did not describe in that paper.

We first discuss how we generated matrix F , which gets powered up in the discrete

logarithm problem, or matrix H for Protocol 1 of [14]. If we generate matrix F by random

and all of its entries are real, then it is irreducible and generically we have only one critical

cycle and therefore the critical graph is strongly connected. This is the case for which

the validity of our attack was proved in [29]. To study the problem under more general

conditions we also generated matrices F (and H) in such a way that the critical graph is

guaranteed to have at least three components.

In more detail, we did it according to the following procedure:

(a) We determined two random integer numbers k1 and k2, where k1 is approximately

1
3

of the dimension of matrix d and k2 is a random integer numbers between k1 and

k2. Then we generated three random matrices with entries 0 and −∞. Each matrix

has dimension k1, [k1 + 1, k2] and [k2 + 1, d] respectively. The frequency of 0 entries

is approximately 1
3

and we made sure that each of these matrices contains a cycle

and there is −∞ on the diagonal.

(b) We composed a d× d matrix with entries in {0,−∞}, which has the three matrices

generated above as as its principal submatrices. The rest of entries in this matrix

are set to −∞.

(c) We substituted all −∞ entries in step (b) with a random negative number in the

interval [−100, 0] and add to the whole matrix a nonzero random number λ.

(d) We applied a diagonal similarity scaling A 7→ D−1 ⊗ A⊗D where D is a diagonal

matrix (with all off-diagonal entries equal to −∞) and the diagonal entries being

randomly selected in the interval [−100, 100].

122

As a result, we would obtain a “random” matrix F , whose critical graph contains three

components, and such that λ(F) = λ.

Such matrix was also used as matrix H in [14] Protocol 1, however here we also had

to make sure that λ(H) > 0, otherwise we would be in the very easy case treated in

Propositions 6.2.2 and 6.2.3 This could be guaranteed by taking λ > 0 at step (c).

For the tropical discrete logarithm problem as well as for the protocol, we ran similar

experiments using the following parameters:

• Dimension d was in the interval [6, 500];

• The entries of matrix M were random integer numbers in the interval [−100, 100];

• Exponents m,n used by Alice and Bob, and the secret key t in the tropical discrete

logarithm were random integer numbers in the interval [(d− 1)2 + 1, d2].

We then performed experiments using MATLAB R2019/b, also using supercomputer

Bluebear system (University of Birmingham) for dimensions between 400 and 500. We

ran 100 experiments for each dimension d:

1. We solved the tropical discrete logarithm by Algorithm 3.2.1 where we skipped step

(1): straightforward “catching” powers powers up to (d − 1)2. In this experiment

we find 100% success rate.

2. We attacked Protocol 1 of [14] using Algorithm 6.2.1 In this experiment we also

found 100% success rate.

For the dimensions up to 100, the average computation times are given on Figure 6.1.

We distinguish between the cases where H is randomly generated and where F = I ⊕H

is guaranteed to have three critical components. However, the average time that it takes

is similar (being slightly less for the case of special matrices), and it does not exceed 6

seconds for dimensions up to 100 in both cases.

123

Figure 6.1: Time required by Algorithm 6.2.1 in the case where H is randomly generated
(“general matrices”) and in the case where (F) is guaranteed to have at least three critical
components and λ(F) > 0 (“special matrices)”

124

We then observed that Rudy and Monico [32] as well as Isaac and Kahrobaei [17]

use much bigger exponents in their experiments, following the setup of Grigoriev and

Shpilrain [14]. To make a better comparison with their results, we implemented Algo-

rithm 3.2.1 and Algorithm 6.2.1 also in Python, thus enabling our attacks to work with

very high exponents of Alice and Bob, of the order 2200. We also increased the range of

matrices H and M to [−1000, 1000].

This required some other improvements and upgrades in the code, such as: 1) the

use of fast powering to generate the protocol instances (for which we utilized parts of the

code written by Isaac and Kahrobaei [17], 2) we “translated” into Python the program

(written by S. Gaubert) for computing the maximum cycle mean based on the Howard

policy iteration algorithm of Cochet-Terrasson et al. [6]. Another upgrade was done to

enable us to experimentate with matrices that have −∞ entries.

We then performed a series of numerical experiments, where we attacked the protocol

with the public matrices being randomly generated matrices (with range [1000, 1000]. We

implemented our attack using Python 3.8 and performed 1000 instances of the protocol

on Macbook Retina 1.2 GHz Dual-Core Intel Core m3, with 8GB of RAM. The results

are shown below, first for a “light” version of the algorithm where we omit the “catching

power” part of it, and then for Algorithm 6.2.1 as it is stated.

We decided that performing experiments where all entries are finite and the critical

graph is guaranteed to have three components is not necessary, as due to the improved

results of this Thesis, Algorithm 6.2.1 is also guaranteed to work in this case and Figure 6.1

indicates that its performance does not differ significantly.

125

Figure 6.2: Time required by Algorithm 6.2.1 (green) and its light version (red) in the
case where all public matrices are randomly generated

We performed similar series of experiments where matrix H has −∞ entries and each

row has at least one finite entry. Note that policy iteration algorithm of Cochet-Terrasson

et al. [6] allows us to compute the maximum mean value (λ) for general matrices with

−∞ entries (however, we introduced the assumption that each row of H has a −∞ entry

for simplicity of application of that algorithm). We next implemented Algorithm 6.2.1 on

Python 3.9. Using similar parameters, we generate random 1000 instances experiments

for each dimension of public matrices. The results of the average running times are shown

on Figure 6.3.

126

Figure 6.3: Time required by Algorithm 6.2.1 in the case where H is randomly generated
(“has at least one finite entries each row and −∞ entries.”)

From Figure 6.3 we can see that the average time to attack the protocol is similar to

that on Figure 6.2, where matrix H does not have −∞ entries. So far we do not have

any counterexample or indication that Algorithm 6.2.1 could fail in the case where −∞

entries are allowed, unless the conditions of Theorem 3.2.2 are violated.

127

Chapter 7

Conclusion and Future Work

The starting point for this thesis are two papers by Grigoriev and Shpilrain [13, 14],

where it was suggested to use the tropical linear algebra as a platform for some public key

protocols. In the first paper, one of the most prominent suggestions was to use tropical

matrix polynomials in the tropical version of Stickel’s protocol, and this idea naturally

led us to search for some classes of tropical commuting matrices which could be used with

the same purpose.

Using the results previously obtained in [19] and [24] and extending them, we described

two useful classes of commuting matrices in tropical algebra and suggested some new

implementations of Stickel’s protocol based on them. For one of these implementations we

developed two simple attacks which, strictly speaking, work only in very special situations

but can be rather successfully used as heuristic attacks in a general situation. We also

showed how the Kotov-Ushakov attack can be generalised to apply to all our protocols.

We analysed the performance of this attack on the tropical Stickel protocol suggested

by [13] and our new modification that uses quasi-polynomials. We conclude that the

Kotov-Ushakov attack works well when the number of generators (Aα and Bβ) is limited,

but the complexity quickly grows as the number of these generators increases. This means

that the Kotov-Ushakov attack is not guaranteed to be successful for big D in the tropical

128

Stickel protocol of [13] (Protocol 2.3.3) and even more so when too large subsets of rational

numbers in [0, 1] are used in the protocol with quasi-polynomials (Protocol 5.1.1). We

also do not expect it to be successful for large n in the protocols with [2r, r]kn matrices

(Protocols 5.1.2 and 5.1.3). However, the complexity and efficiency of this attack requires

more rigorous analysis. It still makes sense to search for alternative attacks on our new

protocols. For Protocol 5.1.2, since some rather successful heuristic attacks have been

found, it is desirable to look for a new class of matrices W that will safeguard against

such attacks.

Intuitively, matrix commutativity in tropical algebra should be more common than in

the usual algebra and it is a promising topic of research of independent interest.

Some new protocols using tropical algebra were suggested in [14]. Unlike the previous

tropical implementations of Stickel protocol, these new protocols use more sophisticated

algebraic tools such as semi-direct product, and therefore they are immune to Kotov-

Ushakov attack.

Grigoriev and Sphilrain proposed two new key exchange protocols. However, Isaac

and Kahrobei [18] showed that one of the protocols fails to work because the product on

which it is based is not associative. We are then left with Protocol 6.1.1 which uses an

assosiative operation and thus a true tropical version of the semidirect product. Isaac

and Kahrobei already suggested an efficient attack on Protocol 6.1.1 using the ultimate

periodicity properties. Before that, Rudy and Monico [32] also introduced binary search

methods to attack Protocol 6.1.1.

Motivated by the discrete logarithm problem, which plays an important role in the

classical cryptography, we introduced a new concept of the tropical discrete logarithm

problem and its two-sided version. Using the CSR expansion of [33] and [27] we can

find an efficient solution of the tropical discrete logarithm problem. This method and

the connection between the tropical semidirect product and the tropical matrix powers

129

which we found allowed us to attack Protocol 6.1.1 using a different approach from Rudy

and Monico, and Isaac and Kahrobei methods. For the same parameters as suggested

in [14], our attack needs less time than the attack of Rudy and Monico [32] and Isaac

and Kahrobaei [17]. For instance, for the matrix with dimension 30 × 30, the average

time that is needed by our attack to find the exponent used by Alice and Bob is equal

to 0.2544478195s, compared to Isaac and Kahrobaei’s attack [17] needing 3.9s on average

for the same dimension and the same order of exponents used by Alice and Bob.

We also included in this dissertation some results on the extended two-sided version

of tropical discrete logarithm, which could help to develop an alternative to the Kotov-

Ushakov attack on the tropical Stickel protocol of Grigoriev and Shpilrain [13]. However,

there are still some obstacles to this, which we hope to overcome in the future.

At present, it seems that there are no protocols that are immune to attacks based

on the ultimate periodicity of tropical matrix powers or on the efficient enough solution

of the tropical one-sided systems (possibly, with some extra conditions). The search

for successful protocols using tropical linear algebra only may be not the best possible

direction for future research, but the abundance of semirings on which new protocols

can be based (such as described in Golan [12]) leads one to consider “tougher” semirings

and linear algebra over them as a possible platform for implementing Diffie-Hellman and

Stickel protocols.

130

List of References

[1] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean Pierre Quadrat. Synchro-
nization and linearity: an algebra for discrete event systems. John Wiley & Sons
Ltd, 1992.

[2] Yves Balcer and A.F. Veinott. Computing a graph’s period quadratically by node
condensation. Discrete Math., 4:295–303, 1973.

[3] Peter Butkovič. Max-linear systems: theory and algorithms. Springer Science &
Business Media, 2010.

[4] Peter Butkovič, Hans Schneider, Sergĕı Sergeev, and Bit-Shun Tam. Two cores of a
nonnegative matrix. Linear Algebra Appl., 439:1929–1954, 2013.

[5] Jean-Marie Chauvet and Eric Mahé. Cryptography from the tropical hessian pencil.
Groups Complexity Cryptology, 9(1):19–29, 2017.

[6] Jean Cochet-Terrasson, Guy Cohen, Stéphane Gaubert, Michael M. Gettrick, and
Jean-Pierre Quadrat. Numerical computation of spectral elements in max-plus alge-
bra. In Proceedings of the IFAC conference on systems structure and control, pages
699–706, IRCT, Nantes, France, 1998.

[7] Guy Cohen, Didier Dubois, Jean-Pierre Quadrat, and Michel Viot. A linear system
theoretic view of discrete event processes and its use for performance evaluation in
manufacturing. IEEE Trans. on Automatic Control, AC–30:210–220, 1985.

[8] Guy Cohen, Didier Dubois, Jean-Pierre Quadrat, and Michel Viot. Analyse du com-
portement périodique de systèmes de production par la théorie des diöıdes. Technical
report, INRIA, Février 1983. Rapport de Recherche no. 191.

[9] RA Cuninghame-Green and P Butkovic. Generalised eigenproblem in max-algebra.
In 2008 9th International Workshop on Discrete Event Systems, pages 236–241.
IEEE, 2008.

[10] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE trans-
actions on Information Theory, 22(6):644–654, 1976.

131

[11] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.

[12] J.S. Golan. Semirings and Their Applications. 2013.

[13] Dima Grigoriev and Vladimir Shpilrain. Tropical cryptography. Communications in
Algebra, 42(6):2624–2632, 2014.

[14] Dima Grigoriev and Vladimir Shpilrain. Tropical cryptography II. extensions by
homomorphisms. Communications in Algebra, 47:4224–4229, 2018.

[15] Maggie Habeeb, Delaram Kahrobaei, Charalambos Koupparis, and Vladimir Shpil-
rain. Public key exchange using semidirect product of (semi) groups. In International
Conference on Applied Cryptography and Network Security, pages 475–486. Springer,
2013.

[16] Bernd Heidergott, Geert Jan Olsder, and Jacob Van der Woude. Max Plus at Work.
Princeton University Press, 2006.

[17] Steve Isaac and Delaram Kahrobaei. A closer look at the tropical cryptography. In-
ternational Journal of Computer Mathematics: Computer Systems Theory, 6(2):137–
142, 2021.

[18] Steve Isaac and Delaram Kahrobaei. A closer look at the tropical cryptography.
Arxiv preprint 2011.14163v1, November 2020.

[19] D. Jones. Special and structured matrices in max-plus algebra. PhD thesis, University
of Birmingham, 2017.

[20] D. Jones. Matrix roots in the max-plus algebra. 2018.

[21] Delaram Kahrobaei and Vladimir Shpilrain. Using semidirect product of (semi)
groups in public key cryptography. In Conference on Computability in Europe, pages
132–141. Springer, 2016.

[22] Ricardo D Katz, Hans Schneider, et al. On commuting matrices in max algebra and
in classical nonnegative algebra. Linear Algebra and its Applications, 436(2):276–292,
2012.

[23] Matvei Kotov and Alexander Ushakov. Analysis of a key exchange protocol based
on tropical matrix algebra. IACR Cryptology ePrint Archive, 2015:852, 2015.

[24] J Linde and MJ de la Puente. Matrices commuting with a given normal tropical
matrix. Linear Algebra and its Applications, 482:101–121, 2015.

[25] Gérard Maze, Chris Monico, and Joachim Rosenthal. Public key cryptography based
on semigroup actions. arXiv preprint cs/0501017, 2005.

132

[26] Glenn Merlet, Thomas Nowak, Hans Schneider, and Sergĕı Sergeev. Generalizations
of bounds on the index of convergence to weighted digraphs. Discrete Applied Math-
ematics, 178:121–134, 2014.

[27] Glenn Merlet, Thomas Nowak, and Sergĕı Sergeev. Weak CSR expansions and tran-
sience bounds in max-plus algebra. Linear Algebra and its Applications, 461:163–199,
2014.

[28] Any Muanalifah and Sergĕı Sergeev. Modifying the tropical version of stickels key
exchange protocol. Applications of Mathematics, 65(6):727–753, 2020.

[29] Any Muanalifah and Sergĕı Sergeev. On the tropical discrete logarithm problem
and security of a protocol based on tropical semidirect product. Communications in
Algebra, 0(0):1–19, 2021.

[30] Karl Nachtigall. Powers of matrices over an extremal algebra with applications to
periodic graphs. Mathematical Methods of Operations Research, 46:87–102, 1997.

[31] Geert-Jan Olsder, Kees Roos, and R.J. van Egmond. An efficient algorithm for
critical circuits and finite eigenvectors in the max-plus algebra. Linear Algebra and
its Applications, 295(1):231–240, 1999.

[32] Dylan Rudy and Chris Monico. Remarks on a tropical key exchange system. Arxiv
preprint 2005.04363, May 2020.

[33] Sergĕı Sergeev and Hans Schneider. CSR expansions of matrix powers in max algebra.
Transactions of the American Mathematical Society, 364(11):5969–5994, 2012.

[34] Peter W Shor. Algorithms for quantum computation: discrete logarithms and fac-
toring. In Proceedings 35th annual symposium on foundations of computer science,
pages 124–134. Ieee, 1994.

[35] Vladimir Shpilrain. Cryptanalysis of stickel’s key exchange scheme. Lecture Notes in
Computer Science, 5010:283–288, 2008.

[36] Vladimir Shpilrain and Alexander Ushakov. A new key exchange protocol based on
the decomposition problem. arXiv preprint math/0512140, 2005.

[37] Laurence Dwight Smith. Cryptography: The science of secret writing. Courier Cor-
poration, 1955.

[38] Eberhard Stickel. A new method for exchanging secret keys. In Information Tech-
nology and Applications, 2005. ICITA 2005. Third International Conference on, vol-
ume 2, pages 426–430. IEEE, 2005.

[39] Neal R Wagner and Marianne R Magyarik. A public-key cryptosystem based on
the word problem. In Workshop on the Theory and Application of Cryptographic
Techniques, pages 19–36. Springer, 1984.

133

[40] Song Y Yan. Quantum attacks on public-key cryptosystems. Springer, 2013.

134

	Introduction
	Cryptography and tropical algebra
	Literature review
	Thesis overview

	Preliminaries
	Tropical algebra
	Digraphs and Matrices
	Cryptography
	Public Key Cryptography
	Tropical version of Stickel's Protocol
	Kotov-Ushakov attack on the tropical version of Stickel's protocol
	Protocol based on Semidirect Product

	Tropical Discrete Logarithm
	The Classical Discrete Logarithm Problem
	The Tropical Discrete Logarithm Problem and Ultimate Periodicity
	Proofs of some results on CSR expansions
	Proof of Proposition 3.2.2 MS-tropical-2021
	Proof of Proposition 3.2.3 MS-tropical-2021
	Proof of Proposition 3.2.4MS-tropical-2021

	Two-sided Tropical Discrete Logarithm Problem
	Theoretical observations and algorithms
	Numerical Experiments

	Commuting Matrices in Tropical Algebra
	Generalized Kleene stars
	Other sets of commuting matrices
	Matrices of the form [2r,r]kn
	Matrices of the form A(p,a)

	Protocols Based on Commuting Matrices in Tropical Algebra
	New implementations of Stickel's Protocol
	Using tropical quasi-polynomials
	Using matrices of the form [2r,r]kn
	Using matrices of the form A(p,a)
	Using polynomials and matrices of the form [2r,r]kn

	Heuristic attacks on Protocol 5.1.2
	Numerical Experiments and Toy Examples
	Numerical Experiments
	Toy Examples

	Cryptanalysis using the Kotov-Ushakov attack
	Generalisation of the Kotov-Ushakov attack
	Attack on Protocol 5.1.1
	Implementation of the attacks 2.3.1 and 5.4.2
	Attack on Protocol 5.1.2
	Attack on Protocol 5.1.3
	Attack on Protocol 5.1.4
	Attack on Protocol 5.1.5

	Cryptography Based on Tropical Semidirect Product and Its Security
	Tropical Semidirect Product
	The protocol based on tropical semidirect product
	Correctness of Protocol 6.1.1. Relation to tropical matrix powers.

	Cryptanalysis of Protocol 6.1.1
	Binary Search Attack
	Isaac and Kahrobei's Attack
	the Tropical Discrete Logarithm Problem Attack
	Computing the key knowing m and n
	Formulation of the attack

	Toy examples
	Numerical experiments

	Conclusion and Future Work
	List of References

