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ABSTRACT

The world is becoming increasingly reliant on electricity as a result of decarbonisation

efforts, necessitating an electric grid that is resilient to natural disasters. Wildfires can

adversely impact the electric grid, requiring mitigation to limit disruption to customers.

Evaluation of wildfire mitigation options in the planning horizon is necessary to provide

sufficient time for implementation. The complex interaction between wildfires and low

carbon technologies (LCTs) like electric vehicles (EV) and solar photovoltaic (PV) gen-

eration further complicates management of the grid during the operating horizon. As

residents in the wildland-urban interface evacuate, EV charging introduces additional

load volatility increasing the uncertainty. Smoke also limits solar radiation, reducing the

available capacity of solar PV generation integrated power systems in affected areas. This

thesis presents significant contributions to enhance wildfire resilience assessment in the

planning horizon, integrating the effects of LCT adoption with geospatial visualisation to

strengthen proactive mitigation efforts.

In order to identify robust mitigation plans, resilience metrics should be risk-informed,

as expected value metrics are likely to under-estimate the risk of interruption during a

period with extreme wildfires. This thesis primarily proposes an advanced framework to

quantify wildfire resilience in the planning horizon. The uniqueness of the framework is

the integration of satellite-derived empirical wildfire ignitions with grid topology to pro-

duce data for numerous synthetic wildfire seasons and presenting algorithms to quantify

the risk over an entire year of events, rather than focusing on a single event. Leveraging

the growth of solar PV generation and EVs in wildfire mitigation plans requires current

knowledge of the location and anticipated performance of PV and EV installations. This

thesis also provides an advanced agglomerative approach to robustly identify the location

of solar prosumers, with net smart meter data. The approach employs piecewise-aggregate

approximation to reduce the computational burden of the approach without compromis-

ing the accuracy. Wildfire smoke has far reaching effects, resulting in regional attenuation

of PV production. This thesis further presents an innovative methodology to predict the

derate to PV production to inform generation planning. The uniqueness of the methodol-

ogy is the ability to use satellite-derived aerosol optical depth data to project the derate

over a wide geographical region. Awareness of EV penetration level is important as loss

of diversification in EV charging behaviour during a wildfire evacuation has the potential

to increase the amount of power required from the grid. This problem is addressed in the

thesis by presenting a novel algorithm that integrates behavioural factors and technical

parameters of EVs to reflect the EV spatio-temporal charging demand throughout the

evacuation process.

Geospatial visualisations resulting from the research findings provide practical and

broad insight for power system wildfire resilience planning. The research findings pre-

sented in the thesis offer new tools to enhance wildfire resilience planning assessments in

modern power systems.
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Chapter 1

Introduction

1.1 Background

There is growing dependence on the electric grid as countries seek to reduce greenhouse

gas emissions. For example, in the United Kingdom (UK), the share of energy supplied

by electricity is anticipated to grow from 15-20% in 2021 to 55-65% by 2050 [1]. As this

dependence grows, outages of the electric grid can propagate to other sectors including

digital communications, gas, transportation, waste and water, resulting in increased risk

to society from failures of the grid [1, 2]. A primary cause of large scale outages affect-

ing power system infrastructure is weather. In the United States, a study of the North

American Electric Reliability Corporation (NERC) Transmission Availability Data Sys-

tem from 2015-2019, found that the 29 largest transmission events (ranging from 32 to 380

automatic outages) were all weather related [3]. This is further evidenced in events such

as the August 2019 Great Britain power system disruption event, where a lightning strike

resulted in the loss of a transmission line and around 2,100 MW of generation affecting

1 million customers [4], and the more recent 2021 winter blackout in Texas resulting in

more than 10 million people without electricity and $130 billion in damages [5].

Traditionally the sufficiency of electric power systems has been assessed in terms of

reliability, defined by IEEE as “the probability that a system will perform its intended

1



functions without failure, within design parameters, under specific operating conditions,

and for a specific period of time” [6]. However, given the disproportionate impact of

extreme events compared to typical component failures, the focus is shifting towards cre-

ating a grid that is also resilient to extreme events. This shift in focus is made explicit in

the United Nation’s Sustainable Development Goal 9: “Build resilient infrastructure, pro-

mote sustainable industrialization and foster innovation” [7]. For this thesis the CIGRE

definition [8] is used which defines resilience as: “the ability to limit the extent, severity,

and duration of system degradation following an extreme event.”

Decarbonisation efforts are also leading to accelerated adoption of solar photovoltaic

(PV) generation and Electric Vehicles (EVs). The end of 2020 saw 10 million electric cars

on the road with registrations increasing by 41% [9]. In 2030, under the International

Energy Agencies’ Announced Pledges Scenario, projections include “annual additions of

solar PV and wind approaching 500 gigawatts”, and over 190 million electric cars in the

global fleet, as “EVs account for over 3% of global electricity demand” [10]. Many of these

resources are connected behind-the-meter, thus creating challenges for grid operators due

to the lack of visibility, potentially affecting the resilience of the system during extreme

events.

Increasing adoption of Low-Carbon Technologies (LCT) such as EV and solar PV

generation, results in a grid that is more reliant on large shares of inverter-based resources,

variable renewable energy (VRE) and distributed energy resources (DER) [11]. LCT

introduce additional uncertainty to the operating patterns of the grid, adding an extra

layer of complexity to the management of the grid during extreme events [11]. To account

for the increased uncertainty, Transmission System Operators (TSOs) have had to develop

new reserve requirements and improve generation forecast accuracy [12]. LCT can also

increase susceptibility to cascading events as demonstrated by a 2016 wildfire event where

1,200 MW of solar PV generation tripped erroneously following a 500 kV fault, requiring

updates to inverter settings [13]. Therefore, development of methods to assess and enhance

the resilience of low-carbon power systems must consider the behaviour and performance
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of LCT in order to be robust.

1.2 Research Motivation

Across extreme events affecting power systems, wildfires are unique as they can adversely

affect the operation of the grid and contribute significant amounts of carbon emissions

[14]. Furthermore, grid failures can also ignite wildfires, thereby causing further damage

[14]. Significant wildfires in the Western United States, Brazil, Russia, and Australia

evidence the global scale of wildfire related hazards [15]. In 2016, annualised economic

burden from wildfires in the United States was estimated between $71.1 and $347.8 billion

by the National Institute of Standards and Technology [16]. In California alone, damage

from wildfires in 2018 resulted in estimated damages of $148 billion (equivalent to 1.5%

of annual California GDP) [17].

Furthermore, once a wildfire has started (due to any cause) substantial disruptions

can occur to power system infrastructure as seen by the 2019 Saddle Ridge Fire that

resulted in 32 outages including loss of 13 generators and 30,144 MVA of transmission

capacity [3]. The likelihood of overlapping significant fires is also growing in some regions

of the world with the annual number of days with synchronous fire danger (defined as

“fire weather indices exceeding the local 90th percentile across ≥40% of forested land”)

in the western United States expected to increase from 20 days during 1951–1980 to a

multimodel median of 47 days/year by 2051–2080 with RCP4.5 forcing [18]. Developing a

methodology to assess the risks that such wildfires pose to the power transmission system

in the planning horizon (1-10 years) would enable the proactive implementation of climate

adaptation and mitigation plans to enhance system resilience.

It is of growing importance to understand the interrelationship between LCT and wild-

fires, due to growing numbers of solar PV and EVs. In 2020, significant reductions in solar

PV generation were observed in California as wildfires ravaged the state [19]. As reliance

on solar PV generation increases, methods to predict the derate to the performance of

3



solar PV production during a wildfire would be beneficial to power system operators. EV

also interact with wildfires and the electric grid. From 2017 to 2019, five wildfires in Cali-

fornia each caused the evacuation of 100,000 or more people [20]. In an electrified future,

more customers will be reliant on EVs to evacuate during a wildfire. While EV charging

may be diversified under normal conditions, wildfire evacuations may significantly alter

charging behaviour as customers simultaneously charge their EVs to evacuate. The trans-

mission network may already be under stress from the wildfire itself, and these abnormal

charging patterns could dynamically alter the loading on transmission system components

and contribute to increased risk of load shedding. Therefore, methodologies to consider

interrelationships between LCT and power system wildfire resilience must be considered

in planning and operational studies.

1.3 Aim and Objectives

The aim of this thesis is to investigate innovative spatiotemporal approaches for power

system wildfire resilience assessment, reflecting the interrelationship with growing adop-

tion of LCT. The critical review of literature substantiating the purpose and significance

of this aim and the corresponding objectives is presented in Chapter 2. To achieve this

aim, the main objectives pursued in this thesis are as follow:

1. To propose a framework for assessment of power system wildfire resilience in the

planning horizon.

2. To propose an innovative algorithm to identify the location of customers with

behind-the-meter solar PV installations.

3. To identify salient feature sets that could be incorporated to enhance solar PV

generation forecast accuracy during a wildfire.

4. To propose a novel mobility algorithm to model changes in demand during a wildfire

due to electric vehicle emergency behaviour.
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5. To develop spatiotemporal visualisation techniques to enhance practical understand-

ing of resilience for power system operators and planners.

1.4 Research Contributions

The research presented in this thesis advances existing knowledge in many ways and is

summarised in the following contributions.

• The first contribution is the innovative methodology to assess power

system wildfire resilience in the planning horizon. The significance of the

methodology is that it provides a risk-informed mechanism to evaluate the efficacy

of wildfire mitigation and adaptation plans with sufficient time for implementation.

The methodology advances the state of the art by generating data for numerous

synthetic wildfire seasons, instead of focusing on a single wildfire event, enabling

use of risk-based resilience metrics. Furthermore, each season is generated from

empirical satellite-derived wildfire perimeters, eliminating the need for detailed fu-

ture meteorological information. The methodology advances existing knowledge by

quantifying key transmission assets for reinforcement and provides geospatial vi-

sualisation of these assets contributing to better understanding of where wildfire

mitigation measures are needed in the planning horizon.

• The second contribution is a spatiotemporal approach to identify possible

N-k contingencies due to wildfires for incorporation into transmission

planning assessments. The significance of the approach is the identification of

overlapping outages resulting from synchronous wildfires that extend beyond the

planning criteria. The uniqueness of the approach is the use of empirical wildfire

data to produce a list of N-k contingencies capturing outages that may occur over

numerous wildfire seasons. Thus, the approach advances the state of the art of

the knowledge in wildfire resilience assessment by providing an innovative way to

capture high impact low frequency wildfire outages to include in annual transmission

5



reliability assessments.

• The third contribution is an innovative solar prosumer identification ap-

proach. The significance of the approach is the ability to accurately identify solar

prosumers requiring only hourly net smart meter data. In addition to requiring less

data than existing methods, Piecewise-Aggregate Approximation (PAA) reduces the

computational burden (by ∼ 100×) without sacrificing accuracy, further reflecting

the effectiveness. Solar Prosumer Identification Duration Curves (SPIDCs) give

insight into the duration of historical data required to reach a target confidence

level, enhancing practical decision-making. This contribution resulted in the publi-

cation given in [P1] and provides a means to obtain current estimates of solar PV

installations to support restoration and mitigation planning efforts.

• The fourth contribution is a robust methodology to predict the derate

to Solar PV production during a wildfire. The methodology yields a trained

quantile regression model that captures the relationship between aerosol optical

depth (AOD) and PV generation capacity during a wildfire. The uniqueness comes

from the use of satellite derived AOD forecasts to produce a spatial indication

of the derate to PV production over entire planning areas due to wildfire smoke.

Therefore, the methodology advances the knowledge of PV behaviour modelling,

and provides an improved basis for generation scheduling, dispatch, and setting of

reserve requirements during a wildfire. This contribution resulted in the publication

given in [P3].

• The fifth contribution is a novel EV evacuation model reflecting the an-

ticipated behaviour of residential EV during a wildfire. The novelty comes

from the integration of EV fleet characteristics with safety, suitability, and proxim-

ity factors to reflect spatiotemporal impacts to transmission system loading. Thus

the state of the art is advanced through more refined and effective EV charging

profiles at each substation reflecting charging before, during and after a wildfire
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evacuation with increased modelling accuracy. The proposed model enhances the

ability to anticipate abnormal charging patterns (as the peak charging demand at

the evacuating substation could be nearly triple its normally diversified peak charg-

ing demand), supporting proactive generation dispatch and reserve requirements.

This contribution resulted in the publication given in [P2].

1.5 Thesis Outline

This thesis contains six additional chapters with Chapter 2 providing a review of litera-

ture, Chapters 3-6 providing the unique research contributions, and Chapter 7 providing

conclusions and possible areas for future research. The relationship between the chapters

is presented in Figure 1.1 with the content of each chapter outlined below.

Chapter 2 presents a critical review and summary of existing literature relevant to

the research. First this chapter provides foundational understanding regarding the shift

in focus from maintaining a reliable power system, to one that is also resilient to extreme

events. Next the chapter examines the threat posed to power system infrastructure from

wildfires along with existing methods to assess wildfire resilience. Finally the chapter

evaluates the interrelationships between wildfires and low carbon technologies. For each

area, challenges that underscore the need for the research conducted in this thesis are

highlighted.

Chapter 3 presents a methodology to quantify power system wildfire resilience in the

planning horizon. The methodology first generates many synthetic wildfire seasons from

historical wildfire perimeters collected via satellite. Next the impacts of wildfires for each

season on the transmission infrastructure are quantified using risk-based metrics. Finally,

transmission lines most at risk are identified along with anticipated outages. The risk is

used to inform further analysis in Chapter 6. Case studies are conducted to demonstrate

the impact of infrastructure hardening and enhanced restoration speed.

Chapter 4 presents an advanced agglomerative clustering-based method to identify
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Figure 1.1: Overall Thesis Structure

solar prosumers using only net smart meter data at hourly resolution. Piecewise-aggregate

approximation (PAA) is implemented to reduce the amount of data used for identification

to as little as a single data point per customer to reduce the computational burden and

storage requirements. A case study is used to demonstrate the accuracy of the proposed

approach and improvement over existing identification approaches. The chapter closes

with discussion of how the proposed identification approach can be used to inform wildfire

mitigation plans.

Chapter 5 presents a quantile regression based model to predict the derate to solar

PV capacity during a wildfire using measurements of aerosol optical depth (AOD). The
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chapter also details how generation developers and planners can use the model to enhance

the site selection process for new generation facilities. Real operating data from PV

generation across four sites in California during the 2020 wildfire season are used as a case

study to train the quantile regression model and validate the accuracy of the methodology.

Chapter 6 presents a new methodology to integrate electric vehicle evacuation charg-

ing demand in transmission system wildfire resilience assessments. Central to this method-

ology is a novel spatiotemporal EV evacuation charging demand model. The model reflects

changes to EV charging demand seen by the electric grid as customers charge prior to

their journey, once they arrive at their destination, as well as the charging during the re-

maining extent of the evacuation period. A case study informed by the wildfire risk from

Chapter 3 and the potential derate to solar PV capacity from Chapter 5 is conducted to

demonstrate the suitability of the proposed methodology.

Chapter 7 presents the conclusions from the research contained in Chapters 3-6. Rec-

ommendations are also provided demonstrating the practicality of the proposed method-

ologies for use in power system wildfire resilience assessment. Finally, several areas for

future research are provided.
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Chapter 2

Literature Review

This chapter critically reviews recent and relevant literature related to the topic of power

system wildfire resilience with low carbon technologies (LCT). The chapter is divided

into four sections: Section 2.1 examines the emergence of the concept of resilience and its

application to power systems. Section 2.2 critically evaluates past and present state-of-

the-art methods and techniques to assess wildfire resilience for power systems. Section 2.3

explores how LCT including solar photovoltaics (PV) and electric vehicles (EVs) impact

the performance of the grid during wildfires. Finally, Section 2.4 reinforces the gaps in

these areas that are the focus of this thesis.

2.1 Power System Resilience

2.1.1 Defining Resilience

Resilience can be distinguished from reliability by an expansion of the events considered,

consideration of the period before and after an event in addition to the event itself, and a

more holistic look at the effects across customers, emergency management personnel, and

grid infrastructure [21]. Resilience and security are similar but differ in that resilience

expands beyond the set of credible contingencies typically considered in a security assess-

ment and that resilience measures are often continuous, whereas in response to a given
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contingency the security is binary (secure/insecure) [22]. However, a singular definition

of resilience has not been adopted. Some notable definitions include:

“The ability of a system, community or society exposed to hazards to resist,

absorb, accommodate, adapt to, transform and recover from the effects of a

hazard in a timely and efficient manner, including through the preservation

and restoration of its essential basic structures and functions through risk

management.” - United Nations Office for Disaster Risk Reduction [23]

“The ability to withstand and reduce the magnitude and/or duration of dis-

ruptive events, which includes the capability to anticipate, absorb, adapt to,

and/or rapidly recover from such an event.” - IEEE [21]

“Power system resilience is the ability to limit the extent, severity, and dura-

tion of system degradation following an extreme event.” - CIGRE [8]

“Transmission system resilience is defined as the ability of the system and its

components (i.e., both the equipment and human components) to minimize

damage and improve recovery from non-routine disruptions, including High

Impact Low Frequency (HILF) events, in a reasonable amount of time.” -

North American Transmission Forum [24]

Although these definitions are similar in principle, some definitions explicitly highlight

HILF events [24]. While events that utilities are seeking to address may have historically

been considered HILF, climate change is altering the frequency of extreme events such as

drought [25] and wildfire [26]. Therefore, definitions that use more general terms such as

“disruptive events” [21] or “extreme events” [8] are more robust.

2.1.2 Processes of a Resilience Assessment

Assessment of the resilience of the system to a particular hazard requires a detailed

characterisation of the system processes during the timeframe leading up to the event, the
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behaviour of the system during the event and the restoration process following the event

[21]. Initially the processes involved were simplified to a sharp reduction in resilience

due to a disruptive event, followed by a steady increase in resilience as the system is

restored, termed the ”resilience triangle” [27]. A refined triangle was presented in [28]

to represent the response of the system resulting in a rounded point to the triangle.

However, this characterisation still failed to reflect that the initial shock to the system

may consist of several component failures, resulting in graduated decline rather than a

single shock. To address this deficiency, the processes were expanded to form a “resilience

trapezoid” consisting of 1) the disturbance process, 2) the post-disturbance degraded

state, and 3) the restorative state [29]. Subsequently, the processes were further expanded

by CIGRE Working Group C4.47 to seven actionable processes that reflect actions taking

place before, during and after the event [8]. Authors in [30] refined the trapezoidal shape

to account for these updates indicating that the preparation before an event can raise the

resilience and adaptation after the event can also increase the resilience for future events.

Depiction of the processes proposed by CIGRE [8] and the prior shapes (triangle [27],

updated triangle [28], initial trapezoid [29], and refined trapezoid [8] are shown in Figure

2.1. Metrics to quantify the resilience are described in Section 2.1.3 with the established

metrics given in [29] shown in Figure 2.1 as they are linked to the shape shown.

While considering the resilience timeline as a “trapezoid” may be useful in visualising

or conceptualising resilience, it may not reflect the “shape” of actual complex disturbances

of the grid. Under a real extreme event, outages and restoration can occur at different

times as an event propagates across the power system, leading to irregular patterns not

reflected by a trapezoid [31]. Therefore, rather than relying on a specific shape to guide

assessment of the stages of resilience, it is critical to identify the underlying behaviour of

the seven key processes unique to the event being considered.

Assessing the resilience of the system and determining the actions that should be taken

in each process require understanding of the spatiotemporal system behaviour in response

to the event. For power systems, this requires simulation of the power-flow at each time
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Figure 2.1: Depiction of the shapes, processes and metrics used to reflect resilience [8, 27,
28, 29]

step during the period being considered. When a hazard causes a violation of power system

operating criteria, an Optimal Power Flow (OPF) model can be used to eliminate these

violations via the redispatch of generation, or curtailment of load in extreme cases [32].

Two variations of OPF are traditionally simulated for resilience analyses: 1) Alternating

current (AC) OPF and 2) Direct Current (DC) OPF. The difference between the two is

that DC-OPF neglects the effect of reactive power, resulting in a linear approximation

of the problem [33]. The lower computational burden of DC-OPF in comparison to AC-

OPF can allow the simulation of a larger number of events [34]. However, DC-OPF often

underestimates the impact as voltage constraints are not considered [35]. Therefore, where

feasible computationally, AC-OPF should be used to identify more realistic assessments

of the impact of extreme events.
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For an n-bus electric power system, the AC-OPF problem can be formulated as [32]:

min
NG∑
i

fCi(PGi) (2.1)

subject to

PGi − PDi = Vi

N∑
j=1

Vj(Gij cos(δij) +Bij sin(δij)) (i = 1, . . . N) (2.2)

QGi −QDi = Vi

N∑
j=1

Vj(Gij sin(δij)−Bij cos(δij)) (i = 1, . . . N) (2.3)

Pmin
Gi ≤ PGi ≤ Pmax

Gi (i = 1, . . . NG) (2.4)

Qmin
Gi ≤ QGi ≤ Qmax

Gi (i = 1, . . . NG) (2.5)

V min
i ≤ Vi ≤ V max

i (i = 1, . . . N) (2.6)

−Smax
l ≤ Sl ≤ Smax

l (l = 1, . . . NB) (2.7)

where fC is the cost function; N , NG, NB are the number of buses, generators and

branches respectively; Vi and δi are the magnitude and angle at bus i; δij is the difference

in angle between bus i and bus j; Gij and Bij are the real and imaginary parts of the

corresponding element in the bus admittance matrix; PG and QG are the real and reactive

generation power; PD and QD are the real and reactive power loads; Sl is the apparent

power flow on branch l; Smax
l is the maximum rating of branch l; and equations (2.4)-(2.7)

are the upper and lower limits of the corresponding variables. To identify the minimum

amount of load shed to alleviate system constraints during an extreme event load shedding

can be considered by modelling dispatchable loads as a generator with a negative output
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where increasing the output has a sufficiently high cost that reflects the value of lost load

(VOLL) [36]. Once the behaviour of the system in each state is computed, the resilience

at each stage can be quantified using resilience metrics.

2.1.3 Metrics to Quantify Power System Resilience

Traditional indices used in power system reliability and risk assessments may be insuffi-

cient for power system resilience assessment due to their emphasis on the event probabil-

ity and focus on expected or average values [37, 22]. Overall, the insufficiency of existing

metrics for reliability have led to the proposal of new metrics to consider the unique char-

acteristics of an extreme event. One such metric is ‘ΦΛEΠ’ pronounced ‘FLEP’, where

Φ and Λ capture how fast and how low the system resilience drops, E reflects the extent

of the impact in the post-event degraded state, and Π reflects the promptness of system

recovery [29]. The formulation of each of these metrics alongside the resilience timeline

for a theoretical extreme event can be seen in Figure 2.1. While these metrics provide a

holistic view of the resilience of a system, they are focused on measuring the response to

a single event rather than the resilience over a longer duration period where the system

may be exposed to several extreme events.

Other studies use variations on traditional metrics such as loss of load probability

(LOLP), expected demand not served (EDNS), and expected energy not served (EENS)

as a means to quantify resilience [38, 39]. Authors in [37] argue against use of any metric

that is based on disaster probability, under the premise that the probability of an extreme

event is not able to be defined in most cases. However, the probability of a given hazard is

an essential part of resilience assessments and is necessary to inform decision-making and

mitigation selection. While the true event probability may be unknown, the historical

frequency of occurrence of an event may be readily observable [37]. Instead of simply

avoiding probabilistic metrics as suggested in [37], a better approach is to move away

from simple mean based metrics which may not capture resilience [40]. One means to do

this is via use of Value at Risk (VaR), and Conditional Value at Risk (CVaR) which can
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Figure 2.2: Illustrative example of VaR and CVaR for resilience analysis where HILF is
defined as the top 1-α events [41].

be used to provide an indication of the expected risk under a HILF event [40, 41]. V aRα

estimates the magnitude of a loss function for a specific confidence level defined as 1-α

[42]. CV aRα(Z) is then a measure of expected value of the resilience indicator for the top

1-α events [41]. Both of these indicators are depicted in Figure 2.2 for a representative

loss and density function [41].

CV aR can be used to develop planning portfolios to constrain exposure to HILF

events, enhancing resilience [43]. This is even more significant in light of climactic changes

that are resulting in the increased likelihood of simultaneous natural hazards such as

wildfires [18], resulting in more extreme losses under low frequency events. Therefore,

use of metrics for resilience should consider both the impacts of individual events such

as captured in ‘ΦΛEΠ’ while also quantifying the resilience under extreme conditions

through use of CV aR with multiple events occurring over the course of a given hazard

season. These metrics should also be customised to reflect the specific system properties

of interest for a particular type of extreme event such as a wildfire.

2.2 Power System Wildfire Resilience
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Wildfires are different from other extreme events such as windstorms in that they are fuel-

dependent, and increased fuel loads from wildfire suppression or other factors can result

in more severe wildfires [14]. The dependence on fuel results in repeated impacts over a

given period of time which can vary by area. For example, in the United States Northern

Rocky Mountains, researchers found a median interval of 13 years between successive fires

affecting the same area, and observed intervals as short as 0 years (indicating multiple

fires in a single wildfire season) [44]. Therefore, determination of portions of the power

system that may be at risk of failure due to wildfires is important to develop a resilient grid.

Furthermore, modelling the resilience of a power system to wildfire related threats requires

a deep understanding of the spatiotemporal extent of wildfires and the vulnerability of

infrastructure. Using this understanding, power system planners, operators, and other

stakeholders can identify the most suitable measures to adapt the system, or mitigate the

risk posed to the system from wildfires. Each of these topics is critically reviewed below,

highlighting the need for enhanced methods to assess power system wildfire resilience.

2.2.1 Simulation of Wildfire Spatiotemporal Extent

In existing literature, methods for modelling the spatiotemporal extent of wildfires for

power system analysis can be grouped into two categories: 1) Thomas Formula based

methods [45, 46, 47]; and 2) Cellular-Automata (C-A) based methods [48, 49]. The

Thomas formula is given as:

R =
k(1 + w)

ρb
(2.8)

where R is the rate of spread (m/s); w is the wind speed; ρb is the bulk density of fuel; and

k is a proportionality constant noted to be 0.07 kg/m3 [50]. Authors in [45, 46, 47] all rely

on the Thomas formula to assess impact of a single fire to power system infrastructure.

Such studies do not incorporate elevation or varied fuel composition, which can alter

the rate of spread [51]. Authors in [52] and [53] simplify this approach even further

by assuming a known wildfire position relative to the line [52] rather than modelling
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the spread or assume a fixed propagation speed [53]. Furthermore, across these studies

[45, 46, 47, 52, 53, 54] the location of the ignition point has been fixed. The downside of

approaches using the Thomas formula or fixed spread assumptions, is that the stochastic

behaviour of a wildfire and the ignition location is not directly reflected.

The other approach is to use C-A models informed by the Rothermel [51] equation.

In addition to the density of fuel reflected by Thomas [50], Rothermel proposed a model

shown in (2.9) that incorporated the moisture content of the fuel, the temperature of

ignition, and the amount of fuel:

R =
IRξ(1 + ϕw + ϕs)

ρbεQig

(2.9)

where R is the rate of spread (ft./min.); IR is the reaction intensity; ξ is the propagating

flux ratio; ϕw and ϕs are factors to account for wind and slope respectively; ρb is the bulk

density of fuel; ε is the effective heating number; and Qig is the heat of pre-ignition [51].

C-A models model the wildfire and surrounding area as a grid of cells that transition

from unburned, to burning, to burned via the principles from the Rothermel equation

to [55]. This can provide an accurate spatiotemporal reflection of wildfire behaviour

as validated with real fires in [55, 56]. As C-A models are a stochastic process, their

use enables consideration of multiple potential wildfire scenarios as the environmental

parameters are varied to identify the corresponding power system impact [48, 49]. In

[49], authors assigned a single propagation value to all cells, greatly simplifying the C-

A model. The model employed in [48] incorporates an unvalidated “random factor” in

addition to other traditional variables such as elevation, wind speed, and vegetation.

While C-A models that have been validated with real fires are present in literature, the

assumptions in [48] and [49] are not validated with real fires and may result in simplistic

and/or inaccurate wildfire spread patterns.

Studies using the Thomas formula or un-validated C-A models may be beneficial for

efficiently modelling a single wildfire for a given area but may lack the irregularities of real
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fires. Furthermore, both (2.8) and (2.9) require specific meteorological and environmental

variables to properly model the spread of a wildfire that may not be known in advance due

to annual changes in fuel density and weather stochasticity. While such information may

be available in the operating horizon, methods that can provide realistic wildfire behaviour

while minimising the need for specific parameters could be beneficial for studies in the

planning horizon. Therefore, given the uncertainty of these parameters in the planning

horizon, this thesis models the wildfire rate of spread using historical wildfire perimeters

rather than using (2.8), (2.9) or C-A models. Chapter 3 describes this process, fulfilling

Objective 1 of this thesis.

2.2.2 Infrastructure Vulnerability

Wildfires can damage or disrupt the operation of electric power systems as a result of

the flames, smoke, or associated wildfire mitigation activities [14]. The amount of heat

produced by a wildfire varies based on fuel and other environmental properties. Surface

fire temperatures are often less that 400◦C; however chaparral (a type of fuel found in

places such as California) can result in surface fire temperatures reaching 900◦C [57].

When fires spread from the surface to the forest crown, temperatures can range from

800 to 1,200◦C [57]. For overhead conductors, this heat can cause annealing, resulting

in an irreversible reduction in tensile strength [58]. As a result, lines may sag below

their safety clearance resulting in increased likelihood of flash-over or failure [58]. For

structures, the high temperature can cause wooden poles to ignite, and in extreme cases,

compromise the structural integrity of steel poles [59]. Though the specific temperature

limits differ based on the exact material properties and the presence of additional coatings,

authors in [59] indicate that damage can result at temperatures of 538 ◦C for steel, 162

◦C for aluminium, 300 ◦C for wood and 350 ◦C for fiberglass. While steel poles are the

most resistant to heat related failure, when failure does occur it is often catastrophic as

opposed to the slower relative failure of wooden structures [59]. The smoke from wildfires

can also contaminate insulators, leading to flashover and line outages [60]. The dumping
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of flame retardant from aircraft as part of firefighting efforts can also result in flashover

for insulators operating in the range of 115-500 kV due to the increased conductivity of

the retardant [61]. As a result, lines may remain out of service until utilities are able to

clean the insulators. Finally, the smoke and heat from can result in increased conductivity

of the air and surrounding gases leading to line to line and line to ground faults [62].

To reflect the impact of heat on power system operations, researchers have used a solid

flame model incorporating the radiative and convective heat from a progressing wildfire

to identify the corresponding impact to line ratings [45, 46]. Authors in [45] focus on

identifying dynamic thermal limits for distribution and transmission lines in order to aid

operators in avoiding irreversible conductor damage. While this approach is beneficial

for active operational damage mitigation during a wildfire, it does not predict the likeli-

hood of a line failing if the stated limits are not observed. Authors in [46] enhance the

model presented in [45] by reflecting the non-steady state heat balance equations and use

stochastic programming to optimize the operation of the grid to minimise load shedding.

However, the authors assume that as soon as a wildfire reaches the line failure always

occurs [46]. While the focus of the work in [46] was at the distribution level, this assump-

tion may not be valid at the transmission level depending on the line clearance, material

properties, tower characteristics, and nature of the fire. While beneficial operationally,

models in [45, 46] are reliant on characteristics of the wildfire flame (flame length, angle,

tilt etc.) to develop an accurate measure of the corresponding radiative heat which may

not be available to power system planners and operators.

The second method seeks to identify the failure of assets using a fragility curve. A

fragility curve reflects the failure probability of an asset in relationship to a natural hazard

and can be developed via a variety of methods including historical failure data, analytical

simulation, or expert judgement [38]. While much work has been done to develop fragility

curves for hazards such as hurricanes, floods, earthquakes and windstorms [38, 63], less

attention has been given to wildfires. At the transmission level, initial fragility functions

that reflect the risk of transmission line failure due to wildfire smoke have been proposed
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recently by authors in [48] and [64]. These works model the wildfire fragility as a func-

tion of environmental variables such as temperature, humidity, smoke, and windspeed as

well as the physical parameters of a given line (tower height, line spacing, and insulator

shape). In application of these works to corresponding case studies, authors in [48] and

[64] make multiple simplifying assumptions regarding the specific infrastructure param-

eters along with the exact weather conditions during the event to enable calculation of

impact. Existing approaches using flame models and fragility curves are focused on the

operating horizon [45, 46, 48, 64] as the detailed assumptions are unlikely to be available

to power system planners multiple years in advance. Given the uncertainty regarding

future hourly weather data and given that this thesis is largely focused on the planning

horizon, wildfire fragility curves are not used. Instead, methods that can be applied by

power system planners to simulate a range of outage behaviours in the planning horizon

in absence of such high resolution data would be beneficial to inform wildfire resilience

assessments. Such a method is proposed in Chapter 3, addressing this gap and fulfilling

Objective 1 of this thesis.

2.2.3 Mitigation and Adaptation Measures

Both mitigation and adaptation play a role in enhancing power system resilience. Mit-

igation of disaster risk is defined as “The lessening of the potential adverse impacts of

physical hazards (including those that are human-induced) through actions that reduce

hazard, exposure, and vulnerability” and adaptation (in human systems) as “the process

of adjustment to actual or expected climate and its effects, in order to moderate harm

or exploit beneficial opportunities” [65]. In the context of this thesis, mitigation of the

impact of wildfires refers to operational action taken to limit the extent of the damage

caused by a wildfire. This can be achieved by providing operators with advanced warning

of an event or the real-time risk of a fire under current weather conditions [48, 64] or by

implementing methods to reconfigure the system to limit the impact [46]. Authors in [53]

demonstrate how local energy resources can be used to further supply power during the
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wildfire mitigating load shed requirements. Finally methods to speed up the restoration

such as enhanced emergency planning, and the use of temporary microgrids can also limit

the duration and extent of the damage caused to the system [66, 67]. Practical methods

to aid power system planners and operators with the better understanding of the perfor-

mance of the generation facilities involved in such mitigation measures would be beneficial

to determine their suitability for a particular location.

The simulation done in existing wildfire resilience assessments often focuses on the ef-

fect of a single fire [46, 49] or a single day with multiple fires [48]. Single event modelling

can be useful to present a new methodology, or demonstrate how new types of variables

can be integrated into the event assessment. However, with growing prevalence of over-

lapping wildfires [18], work to assess wildfire resilience over the course of an entire wildfire

season could better inform power system planners where to focus attention on resilience

enhancements. This gap is addressed in Chapter 3, fulfilling Objective 5 of this thesis.

Once the resilience of the system has been quantified, suitable means of adaptation

to enhance the resilience can be identified. These enhancements consist of methods of

wildfire prevention, impact mitigation, and recovery [66, 67]. Approaches to wildfire pre-

vention include vegetation management, element undergrounding, structural hardening

and alteration of protection settings such as line reclosing [66, 67, 68]. Vegetation man-

agement requires regular ongoing action to ensure sufficient clearances are maintained to

mitigate the risk of heat related failures [59]. Other adaptation measures such as under-

grounding may provide a more permanent reduction in risk, but are much more expensive,

and take multiple years to complete [67]. Therefore, methods that can identify needs for

adaptation in the planning horizon would be beneficial to enable time for proactive imple-

mentation of wildfire resilience plans. This gap is addressed in Chapter 3, also fulfilling

Objective 1 of this thesis.
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2.3 Modelling Low Carbon Technologies DuringWild-

fire Events

2.3.1 Detecting the Location of Rooftop PV Installations

Wildfire resilience enhancements and mitigation plans often rely on the presence of dis-

tributed generation to provide power supply to an isolated area [53, 66]. Customers

around the world are rapidly installing rooftop solar PV systems to offset their energy

consumption with 240 million installations anticipated globally by 2050 under the IEA

net zero energy scenario [10]. Customers with solar PV installed are often referred to

as ‘prosumers’ due to their ability to produce and consume electricity [69]. However,

utilities may not be aware of the locations of each installation as many PV installations

are connected via Net Energy Metering (NEM) schemes where a single meter measures

the balance between import and exports [70]. Therefore, it can be difficult for operators

to track the location and performance of rooftop PV installations. Furthermore, as re-

ported in 2020, “in some countries, including the UK, small systems may legally be grid

connected with no registration, meaning there may be no official documentation of their

existence” [71]. In the UK at present (2022), installers of small PV facilities (a capacity

of 16A per phase or less) have up to 28 days to notify Distribution Network Operators

(DNOs) following installation [72]. Location uncertainty is further compounded due to

unauthorised or unreported PV installations, multiple systems at one residence, and in-

correct data entry [73]. Therefore, methods to detect the location of solar prosumers

are essential to fully leverage existing solar PV installations as a component of resilience

enhancement strategies.

There are several existing approaches to identify solar PV installations. The primary

difference between approaches is the amount of input data (satellite, weather, grid mea-

surements) and requirement of labelled training data. Classification approaches can be

evaluated based on the number of True positives (TP ), True negatives (TN), False pos-

itives (FP ), and False negatives (FN) [74]. These indicators are combined to provide
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performance measures including Precision, Recall, Accuracy and F1 Score as given in

(2.10)-(2.13) [74].

Precision =
TP

TP + FP
×100% (2.10)

Recall =
TP

TP + FN
×100% (2.11)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (2.12)

F1 Score =
TP

TP + 1
2
(FN + FP )

× 100% (2.13)

The first set of methods are those reliant on satellite data. An early method in this

area used high resolution (0.3 meter per pixel) colour satellite orthoimagery to train a

random forest (RF) classifier for identification, and was reliant on 2,700 manually labelled

installations for training and testing [75]. The approach first divides the imagery into an

m-dimensional feature space capturing information such as nearby colours and textures to

use for identification, and then uses those features in a random forest classifier to identify

whether a specific pixel is a PV array [75]. The random forest classifier works by fitting an

ensemble of decision trees which each assign a probability of a pixel belonging to a specific

class and then taking the average probability across all of the trees [75]. The efficacy of

the approach varied with the value of Jaccard index (J) selected by the authors, only

achieving an object based performance at J=0.1 of 70% Precision and 60% Recall (and

lower performance at other values of J) [75].

Convolutional Neural Networks (CNNs) can provide improvements in accuracy over

RF, with performance improving to 95% Precision and 80% Recall [76]. CNNs are “neural

networks that use convolution in place of general matrix multiplication in at least one

of their layers” [77] enabling sophisticated features to be identified [78]. A CNN based
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approach, DeepSolar, was developed in 2018 [79] to detect panels for the entire contiguous

United States from Google Static Maps and reported to have “a precision of 93.1% with

a recall of 88.5% in residential areas and a precision of 93.7% with a recall of 90.5% in

non-residential areas” [79]. Deep Solar was further improved and extended to Germany in

2020 achieving a precision of 92% and a recall of 98% [80]. While accuracy and coverage

is improving, these methods remain dependent on the availability and latency of high

resolution satellite imagery along with labelled training data (with [79] requiring labelling

of 100,000+ images). In addition, these methods require training at a representative

number of locations as CNN trained in one city may not generalise to another [81]. Finally,

the end result of these methods is the identification of pixels representing a geographic

location containing solar PV installations [79]. Due to the output of these models, further

inaccuracies may be introduced when mapping the pixels to the exact point of the grid

where the panel is connected.

Power system data (along with weather information in some cases) can also be used

to identify solar prosumers. A changepoint detection approach is presented in [73], but

requires information from before and after the PV installation is put into service. A

support-vector classifier is proposed in [82] that uses load and meteorological data to cre-

ate features including the ratio of total electricity consumption across different weather

classes, a concave shape index, a concavity degree, and load ramping rate for use in solar

prosumer identification. The approach is tested using 4-fold cross validation (requiring

labelled training data), providing an average accuracy of 95.51% [82]. One unsuper-

vised method to identify solar prosumers reliant solely on smart meter data utilised k-

means clustering [83]. K-means is a partitioning based cluster algorithm which organises

a dataset X containing n objects into k clusters C1, . . . Ck, where Ci ⊂ X and Ci∩Cj = ∅

for (1 ≤ i, j ≤ k) [84]. K-means then attempts to minimize the within cluster variation

given as:

E =
k∑

i=1

∑
x∈Ci

dist(x, ci)
2 (2.14)

where E is the sum of squared error acrossX; x is the point in space that represents a given
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object; ci is the cluster centroid for cluster Ci; and dist reflects the measure of distance

between x and ci (note both x and ci are multi-dimensional) [84]. The k-means based

approach performed well with authors reporting 95% Precision, 94% recall, and 94% F1

Score [83]. However, the approach was reliant on 15-min smart meter measurement data,

and required authors to manually label the resulting clusters through “visual inspection”

[83]. The performance of the k-means algorithm can also be improved through careful

seeding (referred to as k-means++) [85]. Alternative methods of clustering could also

provide potential benefits to the accuracy. One such method, agglomerative clustering is

a hierarchical method, performed in a bottoms up fashion, whereby each customer starts

out as its own cluster and clusters are iteratively merged according to a specified merging

criteria until either a single cluster is reached or the process is stopped by a termination

criteria [84]. Criteria for merging include 1) Single-linkage: similarity is measured by the

closest pair of elements; 2) Complete-linkage: similarity is determined by the maximum

distance between elements; [84] and 3) Ward-linkage where the similarity is determined by

the sum of squares of the clusters formed from the current clusters [86]. Artificial neural

networks provide another means of clustering referred to as Self-Organising Maps (SOM)

[87]. The user pre-defines the dimensions N1 and N2 and then a SOM projects a set of

H-dimensional data into a reduced dimension space containing N1 × N2 H-dimensional

competitive units forming a competitive layer [88]. The SOM takes each of the points in

the H dimensional space and identifies the best matching competitive unit in the reduced

feature space based on the distance [88]. Each subsequent iteration of the SOM updates

the location of the competitive units to best match the input data [88].

Furthermore, as the resolution of the data and the amount of exogenous data such as

weather increases, so does the computational and storage requirements. Dimensionality

reduction techniques can alleviate these concerns, reducing computational complexity and

storage requirements. Dimensionality reduction techniques come with trade-offs and the

best methods are able to reduce the data requirement while retaining critical data on the

original series. One approach, Piecewise-Aggregate Approximation (PAA), is superior to
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other established methods such as Singular Value Decomposition (SVD), Discrete Fourier

transforms (DFT), and Discrete Wavelet Transforms (DWT) as PAA is much faster to

compute, is not limited to arbitrary lengths of time series, and is flexible to various

distance measures, while being simple to understand and implement [89]. PAA divides

a times series (such as hourly smart meter data) into a series of ‘frames’ and calculates

the mean of data within each frame with the resulting vector of means becoming the

reduced time series [89]. This enables translation of a time series X of length n into a

w-dimensional vector X̄ = x̄1, . . . , x̄w with the dimensionality reduced by a factor of n
w

where x̄i is determined as [89]:

x̄i =
w

n

n
w
i∑

j= n
w
(i−1)+1

xj (2.15)

Alternative methods of aggregation within each frame such as the minimum or maxi-

mum value can be implemented as in:

x̄i = min{xj, . . . , xk} (2.16)

x̄i = max{xj, . . . , xk} (2.17)

where j = n
w
(i− 1) + 1 and k = n

w
i.

A related method is to aggregate values based on the hour of the day rather than

over a frame of sequential values. This statistical approach to aggregation results in the

representation of a time series as a typical daily profile. Similar to the approach in (2.15)-

(2.17) the values can be aggregated based on the mean, minimum or maximum hourly

values as follow:

EMeanh =
1

p

p∑
d=1

xdh (2.18)

where h = 1, 2..., 24 represents the hour; d represents a specific day; p represents the total

number of days in the period; and EMeanh is the mean electricity demand for a given
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hour over the period.

EMaxh = max{xdh , 1≤d≤p} (2.19)

where EMaxh is the maximum electricity demand for a given hour over the period.

EMinh = min{xdh , 1≤d≤p} (2.20)

where EMinh is the minimum electricity demand for a given hour over the period. Ap-

plication of (2.18)-(2.20) result in typical 24-hour load profiles for each customer.

Overall, when evaluating the suitability of any of these methods, the amount, sample

rate and duration of data necessary, the accessibility of that data, and the frequency

at which the data is updated must be considered to enable a robust means to identify

candidate resources for resilience enhancement strategies. Knowledge of the presence of

PV generation is also critical when performing automated switching reconfiguration or

restoration as PV can mask the true load on a distribution feeder [90]. For example,

when restoring a distribution feeder following an outage, for feeders with solar prosumers,

the amount of load requiring restoration can be higher than pre-outage levels and can

result in overloads, undervoltage, and/or tripping of protective devices [90]. Awareness

of PV installations is also essential to set and maintain appropriate protection settings

[90, 91, 92] as well as regulation of the voltage on distribution feeders [90, 91]. Ultimately,

methods to accurately identify solar prosumers can enhance the ability of power system

planners and operators to maintain a safe and resilient system, and develop robust wildfire

mitigation plans. This gap is addressed in Chapter 4, fulfilling Objectives 2 and 5 of this

thesis.

2.3.2 Solar PV Generation Performance

The amount of Solar PV generation present in the grid continues to increase due to

favourable policies, lowering cost, and a desire to reduce greenhouse gas emissions [93].

Some regions are seeing especially high penetration such as the California Independent

System Operator (CAISO), where Solar PV generation represented 14% of total supply in
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2020, with an even higher share during the middle of the day [94]. As penetration grows,

the main challenge for grid operators is to predict the power output due to the influence of

clouds, aerosols, and other meteorological factors [93]. To account for uncertainty in the

forecast output, operators integrate this uncertainty into the determination of effective

load carrying capacity or operating reserves [95, 94]. While models to predict solar PV

generation are growing in accuracy, difficulty remains in forecasting the output during

abnormal phenomena such as fog, snow and dust [93] and wildfires.

Researchers have quantified the magnitude of impacts to solar PV production for

some phenomena, leading to more accurate generation forecasts. For instance, the build-

up of snow on solar PV facilities can adversely impact PV production by inhibiting solar

irradiance. The magnitude of the derate to production is primarily dependent upon

the climate (amount of snowfall), tilt angle, and the obstruction of snow sliding [96,

97]. A study of PV configuration in the northern United States indicated that annual

snow induced losses reduced from 34% to 5% for unobstructed installations as the tilt

angle increased from 0◦ to 45◦, whereas tilt angle did not have a substantive impact on

obstructed installations with losses from 29-34% [97]. As a result, models that account for

the reduction in output due to snow have been integrated into industry standard forecast

models to enhance accuracy [98].

Dust and pollution have also been investigated due to their impact to solar PV pro-

duction. Dust from large deserts such as the Sahara can inhibit solar PV production,

with events lasting several days occurring 5 to 15 times per year in Germany [99]. The

magnitude of disruption can include mean daily reductions during a dust outbreak rang-

ing from 20 to 40% and an extreme daily reduction of 79% [100]. The April 2014 dust

storm in Germany highlights the significance of these reductions as failure to consider

dust contributed to German TSOs over-forecasting PV output by up to 5.3 GW [99].

While the impacts from dust can be substantial, most effects are limited to areas in the

proximity of large deserts such as those found in northern Africa, along with middle and

eastern Asia [101]. Aerosols from air pollution have also been shown to reduce annual
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PV generation in Eastern China by more than 20% [102]. The impact of pollution can be

even more significant (29-34%) for PV installation with tracking capabilities as aerosols

result in more attenuation of the direct irradiance that tracking seeks to maximize [102].

Authors in [103] quantify the impact of haze on solar insolation using extensive empirical

data from Delhi and Singapore. A fitted exponential decay is used to reflect the corre-

lation between particulate matter less than 2.5 µm in diameter (PM2.5) and normalised

insolation, and identified insolation reductions due to haze of 2-9% for 16 cities around

the world [103]. While dust and air pollution can both result in reductions to solar PV

performance, the impact can be worsened by wildfire smoke.

In comparison to other phenomena such as snow, dust, and air pollution, the impact

from wildfire smoke remains largely unexplored. Smoke from wildfires can span hundreds

of miles affecting the performance of solar production for an entire region. In August and

September 2020, California experienced five fires exceeding 300,000 acres each, with the

largest (August Complex) spanning over 1 Million acres (4000 km2) [104]. The smoke

from these fires can be seen in Figure 2.3 covering large parts of the Western United

States. Evidence of the widespread reduction in solar PV production was reported by

the US Energy Information Administration [19]. During the first two weeks of September

2020, a nearly 30% reduction in solar PV generation was observed compared to July 2020

averages [19]. However, a simple comparison between September and July generation

levels is insufficient to identify the magnitude of the derate as performance could be

influenced by other factors in addition to wildfire smoke such as curtailment, scheduled

outages, and seasonality. Hence further work is necessary to determine the empirical

derate to solar PV generation resulting from wildfire smoke.

In initial efforts to identify the impact, a controlled burn in Australia was reported

to have reduced the power output from a 1.56 kW installation by up to 27%, with an

average reduction of 7% over the 140 minute study period [105]. Although analysis was

only conducted for a single, relatively small (40 hectares) wildfire, it provides an initial

indication of the potential for wildfire smoke to adversely affect performance. Wildfire
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Figure 2.3: Smoke from California Wildfires on September 7th, 2020. Satellite Imagery
used with permission from the NASA Worldview application. Borders from © Open-
StreetMap contributors. Data available under the Open Database License.

smoke contains airborne PM2.5 and evaluation of the increase in PM2.5 emissions can

provide one means to quantify the corresponding impact of wildfire smoke on PV genera-

tion [19, 106]. Regression models provide an effective and transparent means to establish

the relationship between a target variable y (i.e. load or generation) and a set of predictor

variable(s) x1, x2, . . . xp (i.e. meteorological, natural hazard data) [107]. Once developed,

these models can be used to predict the future value of a target variable given a forecast

of the predictors. The most fundamental form of regression relates a target value y and

a single predictor variable xp as shown below:

y = β0 + β1xp + ϵ (2.21)

where β0 and β1 are unknown constants and ϵ is the error. Researchers in [106] used linear

regression to identify the relationship between PM2.5, other meteorological variables, and

solar PV generation and found the relationship to be statistically significant. However, the

PM2.5 measurements were taken from ground based monitoring stations, limiting model

coverage as plants may be located far from the nearest monitor. To extend coverage be-
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yond ground based monitoring stations, an alternative means of quantifying the amount

of smoke present is through aerosol optical depth (AOD), defined as “a measure of the ex-

tinction of the solar beam by dust and haze. In other words, particles in the atmosphere

(dust, smoke, pollution) can block sunlight by absorbing or by scattering light. AOD

tells us how much direct sunlight is prevented from reaching the ground by these aerosol

particles” [108]. Average US AOD is 0.1-0.15 with 0.4 reflecting a hazy day [108] on a

scale from -1 to 5 [109]. Satellites such as NOAA’s geostationary Earth-observing systems

(GOES-17) satellite can provide a reliable source of AOD measurements [110]. GOES-17

provides global coverage at a 10 minute refresh rate and coverage of the continental United

States (CONUS) with a faster 5 minute refresh rate [109]. The development of an em-

pirical relationship between AOD during wildfires and solar PV generation would benefit

operational forecasts of solar PV production leading to better situational preparedness

during an emergency. This gap is addressed in Chapter 5, fulfilling Objectives 3 and 5 of

this thesis.

2.3.3 Electric Vehicle Charging Demand During Wildfire Evac-

uations

The loading of the grid can also be dynamically affected by the charging of EV during

a wildfire as penetration grows. Adoption of EV grew by 43% in 2020 with over 10

million electric cars on the road worldwide [9]. As adoption continues to grow, power

system operators face the task of ensuring the electric grid is able to safely accommodate

the increased penetration. One of the most significant challenges, is to preemptively

anticipate the location and magnitude of EV charging to make necessary grid upgrades

and site charging infrastructure [111]. Travel patterns from GPS data and national surveys

provide a key source of information for estimating the location where vehicles will charge

[112]. The magnitude of charging demand for a single vehicle can vary based on the

charging infrastructure, from 1.4 kW on Level 1 charger to 150 kW or more on a DC

fast charger [112]. However, the average demand per vehicle is typically much less due to
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diversity of charging time. For example with 100 EVs charging at a rate of 3 kW each,

the average demand per vehicle seen by the grid might only be 1.2 kW [113]. The effect

of diversity is further validated by field trials such as My Electric Nation in the United

Kingdom which found the maximum concurrent vehicles charging on a weekday was 25%

[114].

Natural disaster evacuations can alter typical charging locations and eliminate this di-

versity as residents concurrently seek to refuel prior to an evacuation [115]. This can cause

charging infrastructure to be insufficient to meet the heightened demand, adversely affect-

ing the ability to safely evacuate [116, 117]. Wildfires can impact residential communities,

forcing evacuation of large groups of people. Between 2017 and 2019, approximately 1.1

million people were forced to evacuate as a result of 11 major wildfires in California [20].

Rapid growth in the wildland-urban interface is also placing more homeowners at risk of

evacuation in the future [118].

The use of EVs for evacuation adds complexity to wildfire emergency planning, as

plans must ensure the sufficiency of charging stations and ability of the electric grid to

supply and transmit the necessary power. While authors in [116] and [117] explore the

number of charging stations to facilitate evacuation, notably absent is analysis of the grid

impacts of synchronised charging of significant numbers of electric vehicles. Unantici-

pated wide-scale EV charging during a natural disaster could lead to power shortages and

cascading blackouts affecting regional power networks [119]. In addition to pre-departure

charging, as residents evacuate, the associated EV charging demand is dispersed around

the network. Therefore, further methods to model the location and magnitude of electric

vehicle charging demand during a wildfire are needed. This gap is addressed in Chapter

6, fulfilling Objectives 4 and 5 of this thesis.
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2.4 Summary

This chapter critically reviews the most recent and relevant frameworks, methods, models

and metrics for assessing power system wildfire resilience along with the impact of growing

penetration of LCT. Existing methods to identify the risk to power system infrastructure

from wildfires can be improved by developing a new methodology to anticipate wildfire

impacts in the planning horizon (Objective 1). This can greatly enhance flexibility and

efficiency of mitigation selection as some mitigation options can take multiple years to

implement. Furthermore, in the operating horizon, the growing penetration of LCT alters

the behaviour of the grid during a wildfire, and the added complexity from LCT is often

excluded from traditional wildfire resilience assessments. New methodologies to detect the

location of solar PV installations for use in resilience and restoration planning (Objective

2), quantify the effect of wildfire smoke on PV performance (Objective 3), and predict the

additional demand due to evacuating EV (Objective 4) can greatly enhance awareness and

scheduling decisions in the operating horizon. Furthermore, spatiotemporal visualisation

techniques are important to aid power system operators and planners in the application

of these methodologies (Objective 5). These areas will be addressed in detail in the

subsequent chapters of this thesis.
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Chapter 3

Assessment of Wildfire Resilience in

the Planning Horizon

3.1 Introduction

Climate change has resulted in increased frequency and intensity of wildfires in many

parts of the world over the past several decades [26, 120]. The geographic synchronicity

of wildfire danger is also increasing in areas such as the Western United States, where the

number of days with synchronous fire danger is projected to double by the middle of the

21st century [18]. Therefore, it is necessary to assess the risks posed to the transmission

system by multiple wildfires over an entire wildfire season. As detailed in Chapter 2.2,

existing approaches to wildfire resilience typically focus on actions taking place during

the operating horizon over the course of a single event period [46, 48, 49, 64]. While

operational resilience measures are likely possible during the period of warning leading

up to an imminent event and during the event itself, measures to enhance power system

infrastructure resilience can take much longer and thus should be considered well in ad-

vance. In North America, the North American Electric Reliability Corporation (NERC)

requires Transmission Planners and Planning Coordinators to perform annual planning

assessments, which analyse the performance of the system under extreme events including
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wildfires [121]. However, selection of the specific outages to assess can be difficult given

the vast number of combinations for a large system.

The chapter presents a probabilistic methodology to assess power transmission system

wildfire resilience in the planning horizon. The methodology incorporates globally avail-

able satellite information to generate many synthetic fire seasons and identify the risk to

resilient operation of the transmission network. The significance of the methodology is

that it delivers quantifiable measures of risk over an entire wildfire season, demonstrated

using a realistic case study, that enable effective risk assessment and support mitigation

plan development. This chapter also presents a selection methodology to identify N-k

contingencies from wildfires which should be included into planning assessments. This

facilitates more robust transmission planning assessments that underpin a utility’s long-

term investment strategy.

3.2 Probabilistic Methodology for the Planning Hori-

zon

A probabilistic methodology to assess wildfire resilience in the planning horizon is pro-

posed in this chapter with the primary aim of providing a quantifiable measure of the

system resilience and identifying the transmission lines most at risk. The methodology

consists of four main stages: 1) Hazard generation; 2) Network vulnerability; 3) Restora-

tion; and 4) Resilience quantification. Each of these stages is applied for each season

within a set of synthetic wildfire seasons S, where |S| is calculated based on the conver-

gence of the resilience metrics. An overview of the methodology is shown in Figure 3.1

and details for each stage are provided in the following subsections.

3.2.1 Wildfire Hazard Generation

The model leverages historical, satellite derived wildfire information to generate synthetic

wildfire seasons. The spatiotemporal characteristics of wildfires can vary across fire size
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Figure 3.1: Probabilistic Wildfire Resilience Methodology

[122]. To account for this variation, the first step is to split the set of historical fires into

two levels (as a two level split was used in prior literature [122]) (F) such that:

FLarge = {fsize | f ∈ F , fsize≥γ} (3.1)

FSmall = {fsize | f ∈ F , fsize<γ} (3.2)

where fsize is the size of fire f ; γ is the fire size threshold; FLarge are large fires; and FSmall

are small fires. Following separation of the historical data by size, the steps to generate

each season s ∈ S consist of generating: 1) the overall number of wildfires; 2) the time at

which each wildfire ignition occurs; and 3) the spatiotemporal extent of each fire.
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The typical number of annual wildfires in a single wildfire season depends on two key

parameters: Thist and κ. Thist reflects the number of historical years used to calculate the

typical number of fires in a given season. This choice of length is important as the number

of fires for some regions of the world has seen substantial increases in recent history [122]

and therefore a longer horizon may dampen these effects. Furthermore, depending on

the planning horizon selected, the projected number of fires in the future may increase.

Therefore a scaling factor κ is included in (3.3) and (3.4) to enable consideration of the

anticipated growth in number of fires.

nLarge = κ
|FLarge|
Thist

(3.3)

nSmall = κ
|FSmall|
Thist

(3.4)

n = nLarge + nSmall (3.5)

where n is the total number of fires anticipated in each synthetic year; and nLarge and

nSmall are the number of large and small fires anticipated in each synthetic year respec-

tively.

The seasonal variation in wildfire ignition dates can be reflected by a truncated normal

probability distribution. The truncated normal distribution is necessary to reflect the

limitation that the start and end dates of wildfires bounded by the Julian calendar. The

resulting truncated normal probability distribution function (PDF) is shown in (3.6) as

follows:

ψ(µ̄, σ̄, a, b;x) =


0 if x ≤ a

ϕ(µ̄,σ̄2;x)
Φ(µ̄,σ̄2;b)−Φ(µ̄,σ̄2;a)

if a < x < b

0 if b ≤ x

(3.6)

where ϕ is the normal probability density function (PDF); Φ is the normal cumulative
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density function (CDF); µ̄ is the mean of the parent general normal PDF; σ̄2 is the variance

of the parent general normal PDF; and a and b reflect the upper and lower bounds of the

truncation interval, in this case the Julian Calendar [123].

Once the distribution is calculated, the Ignition dates (I) are determined via sampling

where I ∼ f(x). The result of the first two steps is a matrix containing the number of fires

anticipated for each day of the year. For each fire ignition, the origin and spatiotemporal

extent are obtained by uniformly sampling from the historical empirical distribution. This

approximates the underlying size distribution of the fires while also reducing the possibility

that the same fire is selected twice. Sampling is performed with replacement due to the

possibility that re-burn could occur twice within the same fire season as indicated in [44]

and discussed in Section 2.2. The potential for re-burn could also be excluded by sampling

without replacement. Finally, the fires, ignition dates, and extent are combined for FLarge

and Fmall to form a single wildfire season. This process is then repeated to form the set

of synthetic fire seasons S.

3.2.2 Network Vulnerability

The primary vulnerability considered in this work is that of transmission lines. The heat

and smoke from a wildfire can result in a reduction in the breakdown voltage resulting

in equipment failure or in severe cases melt the aluminium used in the lines themselves

[14, 64]. The key parameter to determine the probability of breakdown of a specific line

is the breakdown voltage [64]. Environmental factors such as temperature, humidity, air

pressure and smoke can all effect the breakdown voltage. To correct for the impact of

weather on the breakdown voltage, the following correction coefficients can be used [64]:


δ = (273+t0)ρ

(273+t)ρ0

kδ = δm

kα = 1
Rα+1

(3.7)
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where δ is the relative density of air; t0 and t are the temperature in ◦C under standard

conditions and wildfire conditions respectively; ρ0 and ρ are the pressure in kPa under

standard conditions and wildfire conditions respectively; m is a value ranging from 0.4 to

1.0 reflecting properties of the electrodes; R is the coefficient of smoke reduction; and α

is the amount of smoke present ranging from 0-1.

The adjusted breakdown voltage is then given as:

V̂50 = V50kδkα (3.8)

The electrical breakdown probability is most commonly represented via a Gaussian or

Weibull distribution with the following probability density functions as given in [124]:

p(V ) =
1

σ
√
2π
e−((V−V̂50)2/2σ2) (3.9)

p(V ) = 1− 0.5[1+((V−V̂50)m/nσ)ln2] (3.10)

where p(V ) is the breakdown probability for an applied voltage V ; V̂50 is the voltage which

leads to a 50% discharge probability; and n for the Weibull distribution determines the

value below which no flashover occurs.

Experimental testing under various voltages and environmental conditions give a range

of the potential reductions in breakdown strength due to a wildfire. Authors in [125]

indicate that the breakdown strength during a fire can be reduced to about 40% of that of

air, whereas [126] find a reduction to 33% of air. The value is even lower for direct current

(DC) lines which exhibited a breakdown strength of 20% of air under the test conditions

in [127]. Authors in [48] assume a 90% reduction in the breakdown due to smoke and

flame and use this to come up with a relationship between smoke, temperature and the

breakdown probability.

If the smoke characteristics, historical fire temperatures, pressure and electrode prop-

erties are known, equations (3.7)-(3.9) can be used to identify specific breakdown prob-
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abilities for an individual line component. However, as weather information for multiple

years in the future contains a significant amount of uncertainty, exact future weather pa-

rameters are not available. Therefore, (3.7)-(3.9) are not used in this work. Instead, as the

breakdown probabilities are highly dependent on the stochastic environmental parameters

at the time of ignition, in the planning horizon, historical equipment failure information

can be used to identify a general failure probability rate for the system. For this thesis

a range of equipment failure probabilities from 0.25 to 1.0 are used as described in Sec-

tion 3.4. These can be used to identify the overall system resilience with more detailed

analyses conducted in the operating horizon.

3.2.3 System Restoration

The duration of wildfire induced outages can span from seconds in the case of momentary

outages to sustained outages lasting several days depending on the characteristics of the

fire and equipment. Whereas in normal conditions, the restoration time can be reflected by

the Mean Time to Repair (MTTR), under emergencies, crews may not be able to access

the affected equipment, leading to longer outage times. Two scenarios for restoration

are considered in the proposed methodology to reflect the access limitations during a

fire. The first is the standard restoration, which assumes that the equipment is restored

after the fire is fully contained, often substantially longer than the MTTR. The second

restoration scenario - Enhanced Access, which assumes that equipment is restored after

the fire passes the equipment in question plus the MTTR, or following full containment

of the fire, whichever is shorter. This reflects the ability of crews to reach some of the

affected equipment prior to full containment of the fire. The restoration scenarios used

are not based on empirical wildfire specific MTTR values, but if available, such values

could be used to provide further insight into the restoration impacts.
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3.2.4 Resilience Quantification

For the transmission planning horizon (1-10 years) [128], power system planners are tasked

with ensuring the sufficiency of the transmission network under a range of contingencies

and extreme events [121] prompting the use of infrastructure metrics to evaluate resilience.

For this work, transmission lines are selected due to their susceptibility to wildfire induced

failure [129, 130]. The wildfire infrastructure resilience of the system in the planning

horizon is quantified using three measures: OM : the maximum number of lines out; Ok:

the frequency of an N-k outage; and the area metric LOD (Line Outage Days). The first

metric OM reflects the peak number of transmission lines out of service due to wildfires

during a single fire season and is calculated as:

OM = max
t∈T

O(t) (3.11)

where t represents a single day of all the days T within a wildfire season; and O(t) reflects

the number of lines out of service on day t. This is similar to the Λline metric proposed

in [29] with the key distinction that OM considers the worst value across an entire season

as opposed to the number of lines out at a given point in time.

In addition to the OM value, a probabilistic metric (Ok) provides planners with an

expectation of how many days a given level of vulnerability (k) may be reached and is

calculated as follows:

Ok =
1

|T |
∑
t∈T


1, O(t) = k

0, otherwise.

(3.12)

where k is the selected level of vulnerability in terms of number of lines out of service.

Finally, LOD is proposed as shown in (3.13) to provide a quantifiable measure of the

wildfire resilience over the entire year.

LOD =

∫ T

t

O (t) (3.13)
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LOD is a specific form of the generalised “Area” metric presented in [29]. The LOD

expands the Area to consider the entire wildfire season as opposed to a single event

period. As the threat of synchronous wildfire events may become more of a threat [18],

LOD values are computed over the course of each wildfire season to captures the influence

of overlapping wildfires, rather than just a single event. Examples of this metric are shown

in Figure 3.2.

(a) Example Fire A (b) Example Fire B (c) Example of Overlapping
Fires

Figure 3.2: Calculation of OM and LOD for three examples

The convergence criterion for each of the resilience metrics is used to determine |S|.

The resilience metric with the lowest rate of convergence should be used as the stopping

criteria. The variance of the estimated reliability index Z̄ can be calculated as [131]:

V (Z̄) =
1

S(S − 1)

∑
s∈S

(Zs − Z̄)2 (3.14)

The coefficient of variation β which is an expression of the accuracy level of the Monte

Carlo simulation can be determined as:

β =

√
V (Z̄)

Z̄
(3.15)

The formulation for each of these metrics reflects the expected value of each Resilience

indicator Z̄. However, as described in Chapter 2, using the expected value may not

adequately reflect the risk for High Impact Low Probability events such as an extreme

wildfire season. Therefore, two additional risk informed indices of each metric, Value at
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Risk (VaR) and Conditional Value at Risk (CVaR) are used [41] as described in Chapter

2.

The final step in the resilience quantification is the selection and risk-determination

of outages for incorporation in long-term planning assessments. The selection of contin-

gencies is based on the simulation of s ∈ S. Contingencies which occur in at least one

synthetic wildfire season are identified to produce a set of unique contingencies C. To

identify contingencies with a lower anticipated frequency, |S| can be increased to align

with the risk tolerance of a given entity. An initial screening identification of the risk

posed to the system from each contingency also requires a determination of the magni-

tude of impact. This magnitude is calculated by taking the peak loading of the system

and assessing the projected load shed requirements via AC-OPF. For the AC-OPF, the

loads are reflected in the economic dispatch as negative generators with a sufficiently large

cost of operation with the formulation as discussed in Chapter 2.1.2 and [36].

3.3 Reference Transmission Network and Global Wild-

fire Data

A case study is used to demonstrate the robustness of the proposed methodology. The

main data necessary to implement the proposed methodology are power system network

model and historical wildfire data. Region 3 of the Grid Modernization Laboratory Con-

sortium update to the IEEE reliability test network (RTS-GMLC) is used to demonstrate

the proposed wildfire resilience approach [132]. The RTS-GMLC is a test network ge-

olocated to Southern California and using the coordinates provided in the RTS-GMLC

enable consideration of historical fire behaviour. The assigned geo-location of Region 3 of

the RTS-GMLC spans several wildfire prone areas, making it an ideal candidate for this

analysis. The geolocation of the RTS-GMLC allows realistic natural hazards, load, along

with hydroelectric, solar and wind profiles to be used for the test network. Details of the

transmission network for the RTS-GMLC used for this chapter are contained in Appendix
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A.

After 2000, the historical wildfire data shows marked difference from prior wildfire

behaviour [122]. Furthermore, the 15 largest wildfires in California history have occurred

since 2003 [104]. Therefore, historical wildfire information for the case study was collected

from the Global Fire Atlas which contains data for 13.3 Million individual fires greater

than 0.21 km2 for the period of 2003 to 2016 [133]. The 14 year duration provides

representative coverage of wildfire patterns for this region. For each fire the Global Fire

Atlas includes a shapefile with: ignition location and time; perimeter (km); size (km2);

duration (days); average daily fire line (km); average daily fire expansion (km2day−1);

speed (km day−1); and direction of spread [134]. Figure 3.3 shows the location of historical

fires [134] overlayed alongside the RTS-GMLC test network [132].

This data was benchmarked against more extensive historical wildfire perimeter data

from the California Department of Forestry and Fire Protection (FRAP) [135]. Com-

parison of the two data sources indicates that the Fire Atlas has good coverage of fires

greater than 0.21 km2, but excludes a significant number of small fires given the limita-

tions in satellite resolution. However, this limitation is offset by the global coverage of the

Global Fire Atlas, allowing for worldwide use where areas may not have the same level of

reporting or historical record keeping as that available for California.

3.4 Southern California Case Study

For the analysis presented in this case study, the methodology described in Section 3.2 is

implemented via a combination of the following: numpy [136] and pandas [137] packages

for the data preparation, geopandas [138], rasterio [139], rioxarray, xarray [140], and car-

topy [141] for geospatial analysis; matplotlib [142] and seaborn [143] for visualisation; and

scipy [144] for analysis. Analysis of the outage impact is scripted inMATLAB ver. R2018b

with MATPOWER [145] used to conduct the AC-OPF, and the optimization solved using

MATPOWER Interior Point Solver [146]. Cartographic boundaries are obtained from the
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Figure 3.3: Study area mapped with IEEE RTS-GMLC [132] and historical wildfires from
[134]

US Census Bureau [147].

Historical wildfire extent, points of ignition and duration are determined from satellite

imagery as described in [133]. For this analysis S is set to 1000. A geospatial bounding

box spanning longitudes of 119◦W to 116.7◦W and latitudes from 34◦N to 36.6◦N was

used to reflect the spatial extent of the test network and collect historical wildfires from

the Global Fire Atlas [134]. This resulted in F = 467 wildfires over the period from 2003

to 2016 or approximately 34 fires per year. For the 135 large fires observed over the study

period, 26 of those fires intersected at least one transmission line. The chronology of one

example fire can be seen in Figure 3.4, burning over the course of eight days.

The next step is to identify an appropriate value of γ. This is selected by identifying
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Figure 3.4: Example Fire Perimeter Burn

the inflection point on a logarithmic scale of the historical fires sorted by size resulting in

γ = 1000, providing a trade-off between the number of fires in each group and the relative

change in size. This can be seen in Figure 3.5.

Figure 3.5: Proportion of wildfires by extent, plotted on a logarithmic scale

Next the date of occurrence for FLarge and FSmall are checked for normality using the
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Kolmogorov–Smirnov test indicating that both follow a normal distribution. Therefore a

truncated normal distribution is fit for each with the resulting distribution and param-

eters given in Figure 3.6. Comparison of the temporal distribution of FLarge and FSmall

demonstrates clear distinction between these groups of fires. The mean date of occurrence

for small fires is nearly a month early that that of large fires and the fire season extends

substantially longer. This is significant for determining the timeframe of candidate fires

within a given synthetic wildfire season s.

Figure 3.6: Temporal variation in wildfire occurrence by size

Given the distributions and mean annual values of FLarge and FSmall, synthetic wildfire

seasons can be developed for each s ∈ S. A visual depiction of 100 synthetic fire years

can be seen in Figure 3.7, clearly showing the clustering of fires in the spring and summer

months.

As discussed in Chapter 2, the failure probability of a transmission line to a wildfire

is dependent on the construction of the pylon, the clearance between the line and the

environment, the presence of fuel nearby, the weather conditions, the heat of the fire, the

amount of smoke. In the planning horizon (1-10 years) many of these stochastic variables

are unavailable such as the exact wind speed and direction during the fire. However, the

likelihood of failure of a specific line is bounded by the range of [0, 1]. Four scenarios
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Figure 3.7: Distribution of fires across each synthetic fire season

are employed to simulate this range of risk with failure probabilities of [100%, 75%, 50%,

25%]. A base system failure rate of 50% is selected based on a study of the impact

of wildfires in California from 2003 to 2016, which indicated that 44.4% of wildfires in

the Southern California Mountains adversely impacted the operation of the grid [148].

The other significant variable is the time taken to restore the affected elements. The two

restoration scenarios laid out in Section 3.2, are reflected for the case study. Each scenario

is referred to as Scenario F[failure probability] for the base restoration speed and Scenario

F[failure probability]-R for the enhanced restoration speed.

3.4.1 Base Scenario Results

A total of 1000 synthetic fire seasons were generated to quantify the resilience of the

test system for the case study. An accuracy threshold (β as defined in (3.15)) of 5%, to

evaluate the convergence of the resilience metrics was selected for this analysis. Figure

3.8 demonstrates the convergence of the simulation. LOD and OM converge to 3.0% and

2.2% accuracy respectively indicating the sufficiency of 1000 fire seasons.

Analysis is conducted for S using the proposed methodology in Section 3.2 and the

three resilience metrics are calculated. To identify the risk informed reliability metrics

(VaR and CVaR) an α value of 90% is selected, resulting in the top 10% events classified

as HILF, to align with the 1 in 10 scenario often used in transmission planning studies

[121]. The resulting OM and LOD are shown in Figure 3.9. Using the expected value

of resilience indices can substantially underestimate the magnitude of the impact of a
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Figure 3.8: Convergence of LOD in S

wildfire season on the transmission infrastructure. For the case study, OM increases from

an expected value of 1.6 to a CVaR of 3.6; increasing from approximately an N-2 to an

N-4. Results indicate that when conducting a wildfire resilience plan for the test network,

consideration should be given to N-k contingencies ranging from a single outage to outage

of at least four elements. Not a single N-6 outage was identified in S. While this does

not mean an N-6 is impossible, findings suggest that N-6 outages are highly unlikely to

occur and therefore can be excluded from the resilience assessment. However, |S| can be

increased to identify more infrequent outages.

(a) Resilience Metric OM (b) Resilience Metric LOD

Figure 3.9: Calculation of Resilience Metrics for Base Scenario

Analysis of the frequency of each level of Ok occurring in the test network reveals

that contingencies beyond an N-5 are unlikely to occur, whereas wildfire caused N-1

contingencies are expected to occur on multiple days each year. This further supports the

identified range of contingencies to simulate as part of the wildfire resilience assessment.
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Figure 3.10: Frequency of Failure of Each Component Due to Wildfire

Specific values for each level of Ok can be seen in Table 3.1.

Table 3.1: Frequency of outages at each level of Ok (number of days per year)

Expected (Ok) VaR (Ok) CVaR (Ok)
N-1 6.96 15 19.89
N-2 3.31 11 18.14
N-3 1.79 9 11.21
N-4 0.30 0 3.04
N-5 0.02 0 0.21
N-6 - - -

The elements which exhibited the highest frequency of outage are shown geospatially

in Figure 3.10 to provide insight into the relative areas most affected by the wildfire

seasons. This figure allows stakeholders to quickly identify which lines are most at risk

due to wildfires, enabling the creation of effective mitigation strategies and is used to

inform the wildfire assessed in Chapter 6.
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3.4.2 Impact of Failure Probability and Restoration Framework

A total of eight scenarios were considered with the wildfire fragility including [0.25, 0.5,

0.75, 1] and both restoration strategies for each fragility level. The resilience indicators

for each scenario are given in Table 3.2. The fragility of the system can be reduced by

system hardening efforts such as replacement or reinforcement of structures, installation

of automation, installation of covered conductor and enhanced vegetation management

[149]. Utilities should collect historical wildfire repair statistics to further inform the esti-

mates of restoration time following wildfire related interruptions to enhance the accuracy

of restoration estimates. While lowering the failure probability and faster restoration

both improve the resilience indicators, lowering the failure probability is more effective at

reducing OM , whereas enhanced restoration is more effective at reducing the LOD. Fur-

thermore, the resulting CVaR indicates that even in the most resilient scenario (F25-R)

at least N-3 contingencies should be reflected in further transmission planning studies as

part of extreme event analyses, which is beyond the range of typical N-1/N-2 contingen-

cies. Results for Ok across the range of outage magnitudes are given in Table 3.3. The

maximum observed value of k ranged from 4 (F25-R and F50-R) to 7 (F75 and F100).

A key element is that reduction in failure probability and enhanced access contribute

to contingencies with a lower number of elements involved. Close proximity in values

of CVaR for Scenarios F75 and F100, indicate that there may be a saturation in risk

at higher failure probabilities. This highlights the importance of conducting adequate

determination of wildfire failure probability for power system elements to determine how

significant any proposed adaptation measures may be in enhancing resilience.

3.4.3 Identification of N-k Contingencies for Planning Assess-

ments

While it is informative to have a relative measure of the system performance, the impact

of the loss of transmission lines varies based on the associated generation, load profiles,
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Table 3.2: Resilience Metrics for Southern California Case Study

Metric Scenario
Standard Restoration Enhanced Access
E VaR CVaR E VaR CVaR

OM

F25 1.2 3 3.1 1.1 2 2.5
F50 1.6 3 3.6 1.4 3 3.2
F75 1.8 3 4.2 1.7 3 3.9
F100 1.9 4 4.2 1.8 4 4.1

LOD

F25 14 35 49 5 12 16
F50 20 47 62 8 19 25
F75 23 53 70 11 25 32
F100 26 57 75 14 29 39

Table 3.3: Ok Metric for Southern California Case Study

Standard Restoration Enhanced Access
Metric Scenario E VaR CVaR E VaR CVaR

O1

F25 6 14 19 3 8 10
F50 7 15 20 5 10 13
F75 8 17 22 5 11 14
F100 8 18 23 6 12 15

O2

F25 3 10 17 1 3 4
F50 3 11 18 1 4 6
F75 3 11 18 2 6 8
F100 4 11 18 2 7 10

O3

F25 1 1 7 0.1 0 1
F50 2 9 11 0.3 2 2
F75 2 10 12 1 2 4
F100 2 11 12 1 3 6

O4

F25 0.1 0 0.5 0.01 0 0.1
F50 0.3 0 3 0.04 0 0.4
F75 1 0 7 0.1 0 1
F100 1 7 9 0.3 2 2

O5

F25 0.01 0 0.1 - - -
F50 0.02 0 0.2 - - -
F75 0.04 0 0.4 <0.01 0 0.03
F100 0.05 0 1 0.01 0 0.07

O6

F25 - - - - - -
F50 - - - - - -
F75 0.02 0 0.2 <0.01 0 0.03
F100 0.02 0 0.2 <0.01 0 0.04

O7

F25 - - - - - -
F50 - - - - - -
F75 <0.01 0 0.05 - - -
F100 0.01 0 0.06 - - -
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and operating conditions of the system. Therefore, in addition to resilience metrics, the

methodology identifies a set of unique contingencies for consideration in planning studies

as part of extreme event analysis. For this case study, 13 transmission lines are affected

by wildfires over the study period and could result in 8,191 unique contingencies. While it

might be feasible to evaluate several thousand contingencies, the number of contingencies

grows rapidly as the system increases in size. Therefore, methods to identify the most

frequent and significant contingencies affected can be beneficial to identify a plausible set

of outages to consider as part of transmission planning assessments.

Application of the proposed methodology for S revealed 84 unique contingencies across

13 transmission lines, with a magnitude ranging from N-1 to N-5. Evaluation revealed

that outage of at least three lines due to wildfire occurred in 24% of wildfire seasons

with 6% of wildfire seasons seeing four or more lines out. This methodology provides

a way to simulate the worst conceivable outage (with the likelihood dependent on a set

probabilistic threshold). In this case it was an N-5. While the case study found it

unlikely (one day in 50 years) that five separate transmission elements would experience

wildfire outages concurrently, planners should be aware of the possibility in considering

the potential for system cascading or other risks as part of their security assessments

for the planning horizon. With authors in [18] noting that days with synchronous fire

danger are anticipated to be much more likely in the future, preparation for such events

is important.

However, the risk to the transmission system cannot be directly correlated to the

number of lines lost due to variation in dispatch, load patterns and redundancy. Hence,

the final step in the overall resilience assessment is to simulate the identified contingencies

at peak system load to identify the risk of load shedding as described in Section 3.2. Figure

3.11 presents the number of times each outage is observed over the course of S along with

the amount of load shed during peak load on the system using the emergency line ratings

given in Table A.4. Hourly analysis of a two week wildfire in the operating horizon will

be presented in Chapter 6.
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For this test network, much of the load shed is due to wildfires that disrupt lines

connecting to substation 308 as also shown in Figure 3.10. Therefore, if the wildfire risk

is sufficiently high, these lines would be good candidates for hardening via means such

as installation of covered conductor, increasing insulator clearances enhanced vegetation

management, undergrounding, or if risk is sufficiently high, installation of line in a new

right of way [14, 150, 151]. Alternatively a local microgrid could be set up to serve these

islanded substation loads during an outage as described in [152].

When considering each of these proposed mitigation solutions trade-offs between risk

reduction and risk cost must be assessed against the risk. Utilities examining these trade-

offs in wildfire mitigation refer to this as risk-spend efficiency [149]. For example a Cal-

ifornia utility compared covered conductor with undergrounding as part of a wildfire

resilience assessment and found that although undergrounding was more effective at re-

ducing their identified wildfire drivers (98% reduction compared to 70%), it was roughly

eight times more expensive [151]. The proposed methodology in this chapter provides the

foundational risk information necessary to inform such risk-spend efficiency analyses.

3.5 Summary

The number of concurrent wildfires is increasing in some areas due to climate change.

As multiple fires occur simultaneously, it can be difficult for transmission planners to

determine the likelihood of overlapping contingencies during a wildfire season to include

into transmission planning assessments. This chapter presented a probabilistic wildfire re-

silience methodology enabling the quantification of the exposure and subsequent resilience

of the transmission network over the course of a wildfire season.

The proposed methodology supports the mitigation selection process by providing the

resilience metrics necessary to inform risk spend efficiency calculations and justify capital

expenditures to mitigate risk. The case study showed that use of traditional expected

value reliability metrics can lead to the underestimation of risk to the transmission net-
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Figure 3.11: Frequency of Exposure to Wildfire Contingencies alongside the amount of
load shed under peak conditions.

work during extreme wildfire seasons, whereas CVaR can reflect a means to quantify the

risk over the worst expected cases. Furthermore, the case study argues that while improv-

ing the restoration time may significantly reduce the overall LOD experienced during a

wildfire season, reducing restoration time had minimal impact on OM . In order to reduce

OM , strategies such as infrastructure hardening or enhanced vegetation management are

suggested to reduce the exposure to wildfires.

The proposed methodology also provides the N-k contingencies which should be in-

cluded in planning assessments to proactively identify future grid needs to maintain wild-

fire resilience and prepare the grid for such extreme events. Finally, assessing the antici-

pated contingency frequency and load shed under peak loading conditions enables efficient

identification of the contingencies which pose the most threat to the reliable operation of

the transmission network.
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Chapter 4

Solar Prosumer Location Detection

to Inform Resilience Plans

Distributed Energy Resources (DER) and microgrids are becoming attractive mitigation

options to enhance power system wildfire resilience especially in areas such as Australia

and Southern Europe that have significant solar resources [152]. The operating status

and location of existing rooftop solar PV generation installations is a critical input to

assess the feasibility, cost, and time required to implement these solutions. However, as

reported in 2020, “in some countries, including the UK, small systems may legally be grid

connected with no registration, meaning there may be no official documentation of their

existence” [71]. In the UK at present (2022), installers of small PV facilities (a capacity

of 16A per phase or less) have up to 28 days to notify Distribution Network Operators

(DNOs) following installation [72]. Despite existing requirements for customers to notify

utilities, DNOs may be unaware of the location of solar PV facilities due to unreported

or unauthorised installations or incorrect data entry [73].

This chapter presents an advanced agglomerative clustering-based approach to au-

tomatically identify solar prosumers through use of hourly net smart meter data. The

hierarchical structure of agglomerative clustering provides an effective way to progres-

sively group customers until two clusters are reached; one for prosumers and another for
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consumers. The computational burden and storage requirements are reduced using PAA

while retaining high accuracy. The approach also proposes the creation of SPIDCs to give

insight into the duration of historical data necessary to achieve accurate identification.

The overall methodology for solar prosumer identification and SPIDC development is

given in Section 4.1. The significance of the approach is that it enables effective identifica-

tion of solar prosumers, demonstrated using a case study with hundreds of real prosumers

providing improvements over existing methods in terms of accuracy and data required.

The case study details are presented in Section 4.2 and the results are presented in Section

4.3. Applications of this approach to enhance wildfire resilience planning are provided in

Section 4.4. The chapter concludes with a summary in Section 4.5. As a contribution

to the state-of-the-art, the publication [P1] resulted from the research described in this

chapter.

4.1 Solar Prosumer Identification Methodology

The main stages of the proposed methodology for solar prosumer identification include:

1) Data Preparation, 2) Model Selection, and 3) Solar Prosumer Identification Duration

Curve (SPIDC) creation. Figure 4.1 depicts the stages in the methodology. Each stage is

discussed in detail below.

4.1.1 Data Preparation

When working with real data, pre-processing is necessary as the quality of data driven

methods is directly linked to the quality of the input data [84]. For smart meter mea-

surements this consists of eliminating missing data, repeated values, and sensor errors.

First, customers with missing measurements over the time period in question are removed.

Next, erroneous metering measurements (Err) are calculated based on (4.1) for each cus-

tomer and any customer with erroneous measurements is removed (with an erroneous
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Figure 4.1: Methodology for Solar Prosumer Identification Duration Curve creation.
Adapted from [P1]

measurement identified where (4.1) is true).

|Li − Pi −Ni| > 0.05 (4.1)

where i is an hour over the period of interest; L is the gross metered demand; N is the

net metered demand; and P is the metered generation. Finally, the standard deviation is

used to identify customers with stuck readings. Any customer with a standard deviation

of <0.05 kWh over the period is removed.

After data is cleansed, the smart meter data from each customer may be normalised

to minimise the impact of differences in load magnitude influenced by factors such as the

number of appliances installed or the presence of other energy intensive LCTs like electric

vehicles or heat pumps. Application of the normalisation step depends on the use case,
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and the specific model selected. For example, normalising PAA A-min or PAA A-max is

ineffective as all customers would have the same value. Min-Max normalisation is used

which converts x = x1, x2, . . . , xn to a range of [0, 1] via [84]:

x′i =
xi − xmin

xmax − xmin

(4.2)

where x′i and xi reflect the normalised and actual recorded electricity consumption at time

i; xmin and xmax are the minimum and maximum demand within period n.

The final data preparation step is to apply dimensionality reduction to improve com-

putational efficiency and reduce storage requirements. The use of PAA is proposed as it

is superior to other established methods [89]. Of the six aggregation methods, given in

Chapter 2.3.1, use of PAA with minimum aggregation over an annual period (PAA A-min)

is proposed in this chapter with the formulation given in Equation (2.16). PAA min is

selected based on domain knowledge that solar prosumers can feed power back to the grid

(i.e. a minimum demand less than 0) whereas consumers are limited to a minimum de-

mand of 0. The annual period (A) is selected to reduce each customer energy consumption

profile from 8760 individual smart meter reads, to a single data point (the customer’s min-

imum demand over the considered time-frame) thereby reducing the information needed

to identify prosumers.

4.1.2 Model Selection

After data cleansing, and dimensionality reduction via PAA A-min, the approach uses

agglomerative clustering to group customers into two groups (solar prosumers and con-

sumers). Ward linkage [86] is used to minimise the variance as clusters grow in size.

Agglomerative clustering is an unsupervised learning technique, meaning labelled input

data is not required to train the model. The output of the clustering is two unlabelled

groups of customers. Domain knowledge is used to automatically label the resulting clus-

ters as prosumers and consumers to improve process efficiency. As solar prosumers offset
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a portion of their energy consumption via their on-site generation, much of the annual en-

ergy consumption is able to be offset, resulting in low net energy consumption over a given

period in comparison to a traditional consumer. This informs the assumption that the

group that contains the individual customer with the lowest energy consumption should

be labelled ‘solar prosumers’. Normalisation is not applied for the proposed approach

(PAA A-min), however for models using normalisation, after application of normalisation

the normalised load for a solar prosumer is often higher than that of a typical consumer

and therefore the labels are switched. Prior to use for a specific region, these assumptions

should be validated through comparison of customer annual energy consumption as shown

in Section 4.3.1.

Two metrics are used following cluster labelling to evaluate the method performance:

accuracy and F1 Score. Use of the F1 Score in addition to accuracy allows for better

evaluation of a bias in accuracy resulting from unbalanced clusters (e.g. only a few

consumers or solar prosumers). The calculation of accuracy and F1 score is as given in

(2.12)-(2.13).

4.1.3 Solar Prosumer Identification Duration Curve (SPIDC)

Creation

After validation of the solar prosumer model performance, and running the model for a

given region, it is important to understand how quickly new installations or changes in

existing installations can be identified. SPIDC provide a classification accuracy nomogram

to address this question. The steps to generate the SPIDC are:

1. Select the horizon(s) of interest H. The important factor when conducting

this step is to select a range of horizons to provide insight into variations in the

model performance along with any seasonal variance in accuracy. Useful horizons

to consider include: one week, one month, and one year providing examples of

near-term, medium-term and long-term performance.
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2. Split the historical data by horizon. As an example, with a monthly horizon

and one year of historical data, the data would be split into twelve periods within

the year.

3. Evaluate the model over each horizon. The classification model is run for each

resulting period and evaluated using model accuracy (2.12).

4. Identify risk tolerance for proposed use case. A percentile should be selected

that reflects the confidence in performance that meets the use case needs (for exam-

ple the 50th percentile would reflect the typical model performance over the horizons

in the historical period). Several percentiles can be selected to reflect the confidence

needs under different scenarios.

5. Determine update regularity. The update regularity will differ based on the

use case. For example, in planning studies annual updates coinciding with the start

of the plan may be sufficient, maximising historical data to achieve the highest

accuracy. However, for operational studies, the ability to provide more regular

updates with incremental reduction in accuracy may be desirable to enable changes

to customer classification to be more quickly identified.

4.2 Data from Real Consumers and Solar Prosumers

Real hourly energy consumption data from residential customers located in the states

of California, Colorado, and Texas was collected from the Pecan Street Dataport [153]

for the period from 2013 to 2016. Exploratory data analysis indicated the necessity of

cleansing of the smart meter data, including customers with missing, erroneous, or flatline

(measurements without any change) data. Table 4.1 provides the number of customers

after each stage of the data cleansing process with the final number of customers used

for the annual classification ranging from 130 to 364. However, many of the customers

are only missing data for specific portions of the year. Hence, as time periods shorter
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than a single year are considered, the number of customers with clean data increases.

This highlights the importance of providing operators with insight into how much data is

necessary for solar prosumer identification.

Table 4.1: Unique customers remaining after annual data cleansing [P1]

Component 2013 2014 2015 2016

Customers (#) 439 684 626 463
Remaining customers: after removal of those with missing data 144 297 374 317
Remaining customers: after removal of those with anomalous data 138 278 365 309
Remaining customers: after removal of those with flatline data 130 278 364 305

As the Pecan St. is an active large scale research database, customer enrolment

happens throughout the year and the specific customers can change from one year to

the next. Therefore, the total number of unique customers across the four-year period

considered (733) is larger than the number of customers in any one year. Across these

customers, 269 solar PV installations and 104 electric vehicles were included. Evaluation

of the power generation data for each customer is performed to determine whether a

customer had a PV installation in a given year and provides a true label to compare to

the label produced by the classification model. Although, true labels and PV generation

are available, the proposed identification approach does not use these as inputs, but uses

only customers’ net energy consumption.

4.3 Case Study

The data outlined in Section 4.2 are used to validate the accuracy of the proposed ag-

glomerative method using the aforementioned smart meter data from consumers and

prosumers in the United States. Two other clustering methods are also evaluated to

provide a comparison of the performance. To validate the suitability of the proposed

approach, scenarios are conducted, varying the method across each decision variable as

follows: 1) Normalisation: (no normalisation, normalisation); 2) Clustering method: (ag-

glomerative, k-means++, SOM); 3) Aggregation method: (minimum, mean, maximum);
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and 4) Dimensionality reduction technique (PAA, statistical method (STAT)). For PAA,

the following window sizes were also evaluated 1H, 2H, 4H, 6H, 8H, 12H, 24H, Monthly

(M), and Annually (A); where H is hours. This results in 180 model combinations.

The approach was implemented in Python using the following packages: numpy [136]

and pandas [137] for data analysis; sci-kit learn [154] and minisom [155] for creation

of the models; and matplotlib [142] and seaborn [143] for visualisation.

4.3.1 Effective Identification of Solar PV Prosumers

The proposed advanced agglomerative clustering approach listed in Section 4.1 is used to

identify solar prosumers. Clustering using both the cleansed and normalised input data

for each of the three methods (agglomerative, kmeans++, and SOM) is performed for

each year. This is done using a C × 8760 matrix; where C is the number of customers

with complete data for a given year as shown in Table 4.1. Each row of the matrix consists

of the hourly energy consumption data for a single customer. For the kmeans++ method,

the number of iterations was set at 300 and the centroids are re-initialized 10 times and

for the SOM the number of iterations was set at 1000 with batch training, sigma was 0.5,

and the neighborhood function was Gaussian. Table 4.2 shows the classification results

for each method. The results demonstrate that the proposed agglomerative clustering

method outperforms the alternative methods based on the evaluation metrics for both

cleansed and normalised data. Furthermore, the accuracy with cleansed-normalised data

ranges from 98 to 100% demonstrating the efficacy of the proposed approach in correctly

identifying solar prosumers using solely net energy consumption data.

The accuracy of the proposed approach outperforms other existing methods to identify

solar prosumers while requiring only smart meter data. K-means is used in [83] and is

shown in Table 4.2 to be less accurate. Authors in [82] proposed a machine learning

based approach that identifies solar prosumers using weather data to identify changes in

performance and the load shape, using 2015 data from Pecan St (the same database used

in this chapter). The average accuracy reported in [82] is 95.51%, which is less than the
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98% for 2015 using the approach proposed in this chapter. Satellite data is used in [76]

reporting 95% Precision and 80% Recall yielding an F1 Score of roughly 87%. This is

substantially lower than the F1 Score for the proposed approach (98 to 100%) given in

Table 4.2. The comparison in accuracy with these approaches demonstrates the ability of

the proposed approach to obtain higher accuracy with less data.

Table 4.2: Classification Method Evaluation [P1]

Method Aggregation
Accuracy (%) F1 Score (%)

2013 2014 2015 2016 2013 2014 2015 2016

Agglomerative
cleansed 97 98 98 97 98 98 97 98
cleansed & normalised 100 98 98 98 100 98 98 98

k-means++
cleansed 95 96 68 94 97 95 75 94
cleansed & normalised 98 96 96 96 98 96 96 97

SOM
cleansed 95 96 78 93 97 96 80 94
cleansed & normalised 96 96 96 94 97 95 95 95

To validate the automated cluster labelling assumptions made in Section 4.1.2 a com-

parison of the annual cleansed and normalised energy of the true customers groups is

calculated (with the process to obtain true labels described in Section 4.2). Across the

case study period, the minimum cleansed annual energy (kWh) are -2912 kWh and 245

kWh for solar prosumers and consumers respectively, and normalised values of 99 for

consumers and 1573 for prosumers as shown in Figure 4.2. This validates that pro-

sumers have a lower minimum annual energy consumption for cleansed data, but that

the relationship is inverted after normalisation, demonstrating that in absence of labelled

data, minimum energy usage can provide an effective means of overall cluster labelling.

While this approach is demonstrated to be effective for the case study, a few known

consumers/prosumers could be used to further validate the overall cluster labelling.

4.3.2 Dimensionality Reduction for Enhanced Efficiency

In the United States, the average number of customers served by Investor Owned Utilities

(IOUs) in 2017 was 654,600 [156]. However, the number can be significantly higher with

largest US IOUs serving 5-5.5 million customers [156] and the largest DNO in the UK
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Figure 4.2: Comparison of annual energy consumption of true solar prosumers and con-
sumers, adapted from [P1]

serving over 8.3 million customers [157]. Although the proposed prosumer classification

method using agglomerative clustering of normalised smart meter data without dimen-

sionality reduction was highly accurate (98-100%), classification with a single year of data

requires storage of a M × 8760 matrix where M is the number of customers being iden-

tified. The number of customers to classify can be significantly larger than the number

used in the case study, leading to increases in data storage and computational burden.

Attempting to cluster even the average number of customers for a US IOU using hourly

resolution for a year, requires storage and computation of a matrix with over 5 billion data

points. Application of dimensionality reduction reduces the size of the clustering matrix

to M × w in the case of PAA where w is the selected number of dimensions and M × 24

when using the statistical methods. Therefore, dimensionality reduction is significant to

reduce the storage and computational requirements.

The impact of each dimensionality reduction technique on the accuracy of the proposed

clustering model with and without normalisation is evaluated. The results are shown in

4.3, and demonstrate that agglomerative clustering again produces the highest accuracy

across the three methods (agglomerative, kmeans++, and self-organizing map (SOM)).

Overall, the performance shown in Table 4.3 demonstrates that the proposed classification
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Table 4.3: Average Classification Method Accuracy (%) over the period of 2013-2016 with
best in each dimensionality reduction technique underlined [P1]. (H:Hours, M:Month,
A:Annual, and STAT:statistical)

Cluster Method 1H 2H 4H 6H 8H 12H 24H M A STAT

Agglom.

Max 98 76 66 52 58 47 49 50 55 57
Mean 98 97 88 72 88 63 64 62 57 95
Min 98 98 99 99 99 99 99 99 99.7 99.7
Norm-max 99 97 91 94 94 94 93 78 43 83
Norm-Mean 99 98 98 97 97 97 96 97 97 97
Norm-Min 99 99 98 99 98 99 99 83 43 99.5

k-
means++

Max 88 70 62 55 58 54 52 52 55 54
Mean 88 88 78 72 77 64 64 62 64 78
Min 88 95 95 95 95 94 95 97 98 98
Norm-max 97 96 95 95 95 93 91 73 44 84
Norm-Mean 97 97 97 97 97 96 96 96 96 97
Norm-Min 97 97 97 97 98 96 96 84 44 98

SOM

Max 91 78 60 56 57 55 53 49 55 55
Mean 91 91 89 79 82 65 64 64 64 89
Min 91 92 95 95 95 95 95 97 98 98
Norm-max 96 95 95 94 94 93 92 74 44 84
Norm-Mean 96 96 96 96 96 95 95 95 95 95
Norm-Min 96 96 97 97 98 96 96 73 44 97

method for solar prosumer identification (Agglomerative clustering with PAA A-Min) can

simultaneously reduce the amount of data required to identify solar prosumers to as little

as a single data point per customer for each year and maintain an accuracy of nearly 100%.

Dimensionality reduction can improve accuracy while using less data because some hours,

such as those when the sun is not shining, may add noise to the classification. Hence,

by reducing the data used and selecting data where differences between a consumer and

prosumer may be more pronounced (in this case a single point representing the minimum

annual energy consumption) this noise can be reduced or eliminated yielding a more

accurate classification.

Although PAA A-min shows the highest performance, for regions where consumers

may have a high base load or install solar to cover only a portion of their overall energy

consumption, the minimum load may be indistinguishable across customers. For such

areas, Statistical dimensionality reduction methods (STAT) as described in Chapter 2 can
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provide a balance between data reduction and accuracy by reflecting the daily variation

in load profile rather than a single point. Figure 4.3 shows a comparison of the STAT

methods of dimensionality reduction for the year 2016, demonstrating clear distinction

between the solar prosumer/consumer clusters.

The results presented demonstrate that PAA does not compromise the accuracy of

the model. Therefore, it serves as a means to reduce the data storage and computational

burden required for identification. To compare the impact of dimensionality reduction on

data storage requirements, the assumption is made that each smart meter measurement

requires eight bytes of memory. Figure 4.4 shows the corresponding increase in data

storage, plotted on a logarithmic scale. For an average sized IOU in the US, application

of dimensionality reduction could reduce the data required from tens of gigabytes (GB)

to several megabytes (MB). In addition to storage, the computational performance of the

algorithm can be adversely effected if the size of the matrix for calculation grows beyond

the amount of computer random access memory (RAM) available. The time it took to

cluster customers for each year was determined using the Python ‘timeit’ function with

1000 trials, with the minimum time used to limit variance. The computer used for this

purpose had a 1.8 GHz processor and 16 GB of RAM. The resulting times ranged from

approximately 0.1 to 0.7 seconds for the full hourly data, and 1 to 4 ms after applying the

PAA A dimensionality reduction technique. Using 2013 as an example, the cluster time

was reduced from approximately 0.1 seconds using the full hourly data to 0.001 seconds

after application of PAA A, a hundredfold improvement in computational burden, with

larger improvements for years with more customers. Therefore, dimensionality reduction

can provide substantial benefits in terms of storage and computational efficiency without

compromising the classification accuracy.

4.3.3 Duration of Data Required for Identification

The last component of the case study is SPIDC creation. To assess performance over a

range of horizons, the four years of data are divided into the following horizons: weekly
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Figure 4.3: Comparison of three statistical aggregation methods for 2016 [P1]. Individual
customer profiles shown in grey with the mean shown in black.

(208 periods as the partial week 53 was excluded); monthly (48 periods); and annually

(four periods). If a period covers less time than the dimensionality reduction technique
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Figure 4.4: Indication of growth in storage requirements for classification at 8 bytes per
individual smart meter measurement (x and y axes on logarithmic scale)

window (e.g. one week is less than the year used in PAA A) the technique for dimen-

sionality reduction is updated to provide a single data-point per period available (w = 1)

(except for the special case of a period spanning two calendar months where two data-

points are used for the period).

The methodology shown in Figure 4.1 was followed using the proposed agglomerative

clustering approach with PAA A-Min to evaluate the performance across these horizons.

To develop the SPIDC, weekly, semi-monthly, monthly, 2-month, 3-month, 6-month, and

annual horizons were evaluated. As the performance varies across the horizon selected,

percentiles are used to define the acceptable historical performance. The resulting SPIDC

showing a conservative risk tolerance (10th percentile) and typical tolerance (50th per-

centile) is provided in Figure 4.5. The selection of percentiles enable evaluation of the

trade-offs between accuracy and the historical data available, capturing the risk tolerance

of a particular use case.

The seasonal evaluation further confirms that the proposed solar prosumer identifica-

tion method (Agglomerative PAA A-min) is more accurate compared to kmeans++ and
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Figure 4.5: Example Solar Prosumer Identification-Duration Curve [P1]

SOM even with limited historical horizons. Figure 4.6 depicts the changing seasonal ac-

curacy with a median weekly accuracy of 98.6% and median monthly accuracy 99.2% for

the agglomerative clustering method. While SPIDC provide insight into the accuracy at

different horizons, there is also a seasonal component to the accuracy as demonstrated in

Figure 4.6. Comparison of the accuracy by season for weekly and monthly horizons, shows

that across the four years in the case study, the summer months (July-September) where

the loading is typically highest produce lower classification accuracy as a result of the

lower share of daily energy consumption produced by the PV facility. This can be seen in

Figure 4.6. Areas with different seasonal patterns (such as an area in another hemisphere

or a winter/dual peaking area) may observe different monthly accuracy. Thus, when im-

plementing the approach, it is important to evaluate the seasonal loading patterns specific

to the particular region being assessed.

4.4 Application of Solar PV Detection to Enhance

Resilience Mitigation Planning

Knowledge of the location of solar prosumer installations enables DNOs to account for

their presence during switching, reconfiguration, or restoration in response to a wildfire.
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Figure 4.6: Solar prosumer classification accuracy in relation to season of the year [P1]

This knowledge is significant as PV may mask the true feeder load [90] as solar prosumer

load profiles are likely to be quite different from consumers as shown in Figure 4.3. Ac-

curately labelled customers can help to identify unauthorised installations, or clusters of

solar prosumers for use in grid restoration or microgrid formation. Operator awareness

can also be enhanced by using the proposed method to identify the customers that switch

from one group to another over a period of time. Changes in group can reveal periods

where a solar prosumer’s PV installation may be offline or operating abnormally. An

example of the application of this process using a monthly horizon is shown in Figure

4.7 for 60 customers who had data for the entire four year case study period. Where the

model identified a change in monthly classification for more than one consecutive month,

data were investigated for anomalies. This resulted in the identification of customers

whose solar PV were not generating or were operating at a lower output level. Use of this

approach could enable DNOs to be aware of the current state of PV installations for a

given planning area when evaluating wildfire mitigation options. During periods of high

wildfire risk, utilities in California are performing Public Safety Power Shutoffs (PSPSs)

to pre-emptively de-energize portions of the grid in high fire risk areas [158]. Unautho-

rised PV installations may also lead to safety concerns for utility workers or others if not
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properly installed during such conditions. The identification of such installations prior to

a PSPS can help remedy such risk.

Figure 4.7: Example use of solar prosumer identification to detect anomalous behaviour
[P1]

Up-to-date information regarding the number of solar PV customers on a given feeder

will grow in significance as more utilities begin to pursue use of solar PV as part of efforts

to enhance wildfire resilience in the form of microgrids [152]. As discussed in Chapters

2 and 3, remote microgrids are becoming a valuable tool to enhance the resilience of
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the distribution system to extreme natural hazards such as wildfires. The presence of

microgrids in an area enables grid operators to dynamically reconfigure the distribution

network into self-sufficient islands to hasten restoration of power following a contingency,

or prevent power disruption [152]. However, such approaches typically rely on the pres-

ence and location of distributed generation including solar PV [159]. In these conditions,

balancing of load and generation on the microgrid is critical, and it becomes even more

essential for grid operators and planners to know the location of all DGs present in a

candidate distribution network. The solar prosumer identification approach presented in

this chapter can enable accurate identification of solar prosumers in a natural hazard risk

area, providing the operator with a projection of the number of prosumers and consumers

on each feeder. Figure 4.8 shows how clusters of customers might be identified for re-

silience planning efforts. The location of clusters of customers can then be used to inform

cost estimates of new microgrids, or the performance and scheduling existing microgrid

resilience measures.

Figure 4.8: Use of solar prosumer identification to inform resilience planning. Location A
is an example of a clustered group of prosumers in a remote area.

74



4.5 Summary

Solar prosumer identification can provide utilities with a means to enhance awareness

of the location of PV systems on the distribution network, whether authorised or unau-

thorised. This chapter proposes an effective approach to identify solar prosumers; Ag-

glomerative clustering and PAA A for dimensionality reduction aggregating data for each

customer based on their minimum demand over the year. This approach provides accu-

racy of nearly 100% when tested using real smart meter data from hundreds of customers

in the United States. This equips utilities with an effective approach to use net smart

meter data to directly identify solar prosumers, using less data than existing methods in

the literature while also providing high identification accuracy. The approach also reflects

the classification accuracy in the form of SPIDCs to provide distribution grid operators

with understanding of how much historical data is needed to place confidence in the clas-

sifications. Finally practical examples demonstrate how this approach can provide the

ability to flag performance issues with existing panels and update awareness of customers

with PV installations for use in microgrid feasibility analysis to support resiliency during

a wildfire or other natural hazard.
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Chapter 5

Predicting Reductions in Solar PV

Generation During Wildfires

The maximum amount of power able to be produced by a solar PV plant is a function

of the plant’s physical characteristics (number of PV cells, module type, and means of

mounting) along with weather variables (solar irradiance, temperature, and wind speed)

[160]. Wildfires can disrupt the transmission system, crippling import capability and

causing risk of insufficient generation supply [3, 130]. Failure to consider reductions

in solar PV capacity due to natural hazards can result in overestimating the available

generation capacity and increase the risk of insufficient supply of electricity [99]. During

a wildfire, smoke can obstruct the solar radiation resulting in a reduction of the output

of a solar facility.

This chapter presents a methodology to predict the spatiotemporal derate to solar

PV capacity from wildfire smoke, enhancing generation forecasts. This enables operators

to translate forecasts of aerosol optical depth (AOD) [161] into anticipated reductions

in solar capacity. Prior work to quantify the derate from wildfire smoke to solar PV

performance has been limited to the effect of single events [105, 162] and use of point based

PM2.5 measurements to inform performance [106]. Knowledge of how smoke might affect

solar PV installations over a large geographic area can equip balancing authorities with
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information to make better scheduling and dispatch decisions. Providing grid operators

with a means to anticipate these effects can potentially reduce forecasting errors and the

associated risk of imbalances in generation supply.

The chapter is divided into four sections. Section 5.1 proposes the method to forecast

the derate to solar PV facilities. Section 5.2 demonstrates the accuracy using real PV

operating data from the 2020 Southern California wildfire season. Section 5.3 provides

means to practically visualise the resulting insights to inform decision making. Finally,

Section 5.4 summarises the findings. As a contribution to the state-of-the-art, the publi-

cation [P3] resulted from the research described in this chapter.

5.1 Wildfire Smoke PV Derate Methodology

The methodology contains two main stages: 1) Data Preparation; and 2) Model fitting

and evaluation. Figure 5.1 depicts these stages. The result of the methodology is a model

that can be used to predict the derate to solar PV generation given the amount of AOD

present.

5.1.1 Data Preparation

The initial step is to select sites to analyse and collect historical PV and AOD data for

use in model training and evaluation. Following data collection, the methodology first

controls for the influence of seasonal variation in solar irradiance, along with variation in

temperature, wind speed, and PV generation nameplate capacity through a normalisation

process . This produces a more robust model enhancing the model’s generalisation to

other facilities within a service territory. Individual PV plants often differ in the installed

nameplate capacity. Min-Max normalisation converts the generation of each plant g =

g1, g2, . . . , gn to a range of [0, 1] via (5.1) [84]. This allows equivalent comparison of the
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Figure 5.1: Brief overview of methodology for geospatial wildfire PV capacity model.
Satellite imagery from NOAA GOES-17 satellite [163]. Figure reproduced from [P3].

effect of smoke across multiple plants while maintaining the original profile shape:

g′t =
gt − gmin

gmax − gmin

(5.1)

where g′t and gt are the normalised and actual recorded solar power output at time t; gmin

and gmax are the minimum and maximum power output within the fire study period n.

When grid operators are performing assessment of the effect of smoke on a single plant’s

operating history, this step can be omitted to retain the nameplate value. Ambient

temperature and wind speed affect performance of the solar PV capacity by affecting the
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PV cell temperature. As temperature of the PV cell (τc) increases, the PV efficiency is

reduced by a factor of 0.5% per ◦C for every degree above 25◦C [164, 165]. Increases

in wind speed (v) have the opposite effect, lowering τc, thereby increasing efficiency.

Therefore, it is important to normalise the PV capacity for windspeed and temperature.

Equations (5.2-5.3) [160] are used to determine τci and then (5.4) is used to calculate the

weather adjustment factor (wn). Once wn is calculated, the temperature adjusted series

can be calculated as in (5.5) and then normalised to retain the range of [0, 1] in (5.6)

producing the weather normalised PV output (g′′t ).

τmt = Et[e
γ1+γ2vt ] + τat (5.2)

τct = τmt +
Et

Eo

∆τt (5.3)

wnt =


0.5
100

(τct − 25), τct > 25

0, τct ≤ 25

(5.4)

δt =
g′t

1− wnt

(5.5)

g′′t =
δt
δmax

(5.6)

where τm is the back-surface module temperature (◦C); γ1 and γ2 are empirically derived

constants; τa is the ambient temperature (◦C); Eo is the reference solar irradiance (1000

W/m2); and ∆τ is the temperature difference between the cell and the module back

surface at an irradiance level of 1000 W/m2; δ is the weather adjusted generation series;

and δmax reflects the maximum value of δ across observations at the same hour. If the

solar plants are all located in regions with similar climates and there is limited variation

in weather across the study period, then utilities may choose to eliminate this step as the
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Figure 5.2: Example of monthly variance in CGHI. Data from [166].

magnitude of adjustment is likely to be small and may not warrant the collection of the

additional weather variables.

Change in the relative position of the sun across the year causes seasonal variation

in the Clearsky Global Horizontal Irradiance (CGHI). Figure 5.2 shows this variation

for Ontario, California across the year 2019. As solar PV generation is dependent upon

irradiance, the historical variation in CGHI can provide an effective means to control

for differences in seasonal peak PV production, enabling comparison of the effects of

wildfire smoke across seasons. A timeseries of typical CGHI (C) for a specific location is

produced by taking the average hourly CGHI across the historical years available. The

seasonal adjusted series is then calculated as in (5.8) and subsequently used to create the

final normalised output (g′′′t ).

st =
Cmax

Ct

δt (5.7)

g′′′t =
st
smax

(5.8)

where st is the seasonal adjustment factor at time t; Ct is the clearsky GHI for a specific

hour and day of the year; and Cmax is the maximum clearsky GHI at that hour of the
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day across all days in the study period. If the time period of analysis is short, there may

be limited relative variation in CGHI across the study period and the effect of seasonal

normalisation may not be significant. In such cases, utilities may select to use either g′t

or g′′t instead to minimize data collection requirements.

5.1.2 Model Fitting

Once normalised the next stage of the methodology is model fitting and evaluation. A

quantile regression (QR) model is proposed to characterise the relationship between AOD

and solar PV generation output. This model is selected due to the robustness to outliers

[167], the ability to predict the derate at different quantiles and the amount of data

available for the case study. The model for linear quantile regression is given as [168]:

y = Xβ(q) + ϵ (5.9)

where y is the vector of responses; X is the matrix of regressors; and β(q) is the vector

of unknown parameters for quantile q [168].

The parameters are estimated by minimizing the loss function for a particular q as in

[168]:

min
β(q)

n∑
i=1

ρq(yi − x⊤
i β) (5.10)

where ρq is the pinball loss function for a quantile q, where ρq(z) = qz if z ≥ 0 and

ρq(z) = (q − 1)z if z < 0 [169]. To compare the result with linear regression or other

deterministic models, the median quantile can be selected.

Other models can also be tested and easily integrated into the methodology shown in

Figure 5.1 as more data becomes available. To evaluate the model performance, k-fold

cross validation is used. As the number of concurrent fires differs over the course of the

wildfire period, the dataset is unbalanced. Therefore, to avoid some folds being dominated

by days without smoke, a stratified approach is used to ensure each fold contains a similar

number of smoky days. To achieve this, the data is split into j folds where each fold
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contains data for a single PV facility. Then the model is iteratively trained on j− 1 folds

and tested on the remaining fold. mean absolute error (MAE) is first computed for each

fold and thenMAEavg computed across all folds to evaluate the error. Figure 5.3 provides

an overview of this process.

Figure 5.3: Evaluation of model performance with k-fold cross validation

5.2 Case Study for Southern California Wildfires

In 2020, California experienced an extreme wildfire season with wildfires burning over

4.2 million acres (≈ 17,000 km2) [170]. These fires affected PV production throughout

the state [19]. Two scenarios with real solar PV generation and AOD data from this fire

season demonstrate the efficacy of the methodology presented in Section 5.1:

• Scenario A covers the two-week period from September 1st to September 14th

including the start of three significant fires: the Creek Fire on September 4th [171],

the El Dorado Fire on September 5th [172] and the Bobcat Fire on September 6th

[173].

• Scenario B covers an extended period from August 1st to September 28th to

evaluate the impact of a longer horizon on model performance.

The accuracy of the proposed QR model is evaluated against linear regression (LR)

and piece-wise linear regression (PLR) models to validate the robustness. The basic

82



formulation for a LR model is given in Equation (2.21). PLR describes a one-dimensional

dependent variable via several discrete linear segments [174]. The PLR is formulated such

that the function is continuous over the domain [174] and is as follows:

y(xp) =



β1 + β2(xp − b1) b1 ≤ xp ≤ b2

β1 + β2(xp − b1) + β3(xp − b2) b2 < xp ≤ b3

...
...β1 + β2(xp − b1) + β3(xp − b2)

+ · · ·+ βcb(xp − bcb−1)

 bc−1 < xp ≤ bcb

(5.11)

where cb is the number of knots in the spline; b0, b1, . . . , bcb are the location of the knots;

and β are the slope coefficients. The resulting equations are solved for the unknown

β that reduce the sum-of-square of the residuals [174]. In the future, with additional

explanatory variables or extensive amounts of historical operating data, machine learning

based models may also be beneficial.

5.2.1 Collection of Historical Data

Historical generation data for ten individual PV generation facilities across four distinct

areas was collected via supervisory control and data acquisition (SCADA) and provided

by a regional utility alongside the generalised location of each of the four geographic areas.

Solar production between 12 pm and 1 pm each day were extracted from the SCADA data

to assess the impact of wildfire smoke on the daily PV facility capacity. Figure 5.4 shows

the location of the geographic areas alongside perimeters for large fires (>30,000 acres)

obtained from [175]. Two GOES-17 satellite data products are used: 1) The ABI-L2-

AODC product [109] for spatiotemporal measurements of AOD at a wavelength of 550 nm

across the study region on a 2km grid [109]; 2) The Cloud and Moisture Imagery Product

[109] for production of Red-Green-Blue (RGB) images. GOES-17 satellite data products

are publicly available from National Oceanic and Atmospheric Administration (NOAA)
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through Amazon Web Services at the following link: https://registry.opendata.aws/

noaa-goes/ [163]. The resulting SCADA PV generation measurements are combined with

the AOD measurements resulting in 114 datapoints for Scenario A and 508 for Scenario B

after accounting for periods with missing AOD measurements and abnormal or erroneous

SCADA measurements.

Figure 5.4: Wildfires >30,000 acres during California’s 2020 wildfire season. Data for fire
perimeters from [175]. Figure reproduced from [P3].

The necessary data for the three stage normalisation process was collected from the

following three sources: 1) MERRA-2 renalysis for historical weather data [176]. 2)

Representative physical parameters of -3.47, -.0594 and 3 from [160] for γ1,γ2 and ∆T

respectively (used due to unavailability of actual site specific information). 3) National

Solar Radiation Database (NSRDB) [166] for a fifteen year period of clear sky global

horizontal irradiance (CGHI) values from 2005-2019 to calculate the mean for each site.

Python is used for the analysis, supported by the following packages: numpy [136]

and pandas [137] for data analysis; geopandas [138] and cartopy [141] for geospatial
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analysis; cartographic boundaries from the US Census Bureau [147]; code from [177] to

support satellite data processing; matplotlib [142] for visualisation; statsmodels [178]

for specification and fitting of the LR and QR models; and pwlf [174] for specification

and fitting of the PLR model. The PLR model requires specification of the number of

line segments and this was selected to be two for this case, in attempt to limit overfitting

while still allowing variation. The pwlf package relies on scipy [144] to calculate the

optimal knot location via differential evolution [174].

5.2.2 Results and Analysis

Comparison of GOES-17 satellite images and solar PV generation during the wildfire

period qualitatively validates the relationship between wildfire smoke and solar PV per-

formance and shown in Figure 5.5 . Prior to modelling, a Spearman rank-order correlation

test is conducted to empirically validate the strength and significance of relationship be-

tween AOD and PV output. The results indicate that AOD and PV are highly correlated

for both Scenario A and B with statistically significant (p<0.001) correlations of -0.76,

and -0.45 respectively. The negative sign for both coefficients indicates that peak solar PV

capacity declines as AOD increases. The change in the magnitude between scenarios may

result from the higher proportion of smoke free days in Scenario B. As the relationship

being modelled is that between smoke and PV production, as more days without smoke

are included, this increases the exposure to other confounding factors such as maintenance

or curtailment which reduce the output but may not be directly related to the wildfire.

The methodology given in Section 5.1 was then applied using the proposed QR model

along with PLR and LR models for comparison. Comparison of the MAE demonstrates

that QR is the most effective model across both scenarios. Figure 5.6 shows each of the

models fit for the entire duration of each scenario. The in-sample MAE for each model

as follows: Scenario A) LR: 5.7%; QR: 5.4%; and PLR: 5.4%; Scenario B) LR: 6.1%;

QR:5.8%; and PLR: 6.1%. The relative positions along the y-axis of some points change

across scenarios due to the differing seasonal normalisation period. The mean reduction
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Figure 5.5: Timeline with PV generation from one region over Scenario A. Satellite im-
agery from [109]. Fire start dates from [171, 172, 173]. Figure reproduced from [P3].

in CGHI over the study period increased nearly three-fold from Scenario A to Scenario B

increasing from 5% to 17%. This demonstrates that seasonal variation in CGHI can play

a significant role in determining the overall PV capacity, and normalisation to account

for this variance is needed when assessing PV performance over longer time periods.

Comparison across scenarios indicated volatility in the PLR model, as well as the

importance of a sufficient training period. The PLR model breakpoints are not stable

across scenarios, or even within scenarios, as multiple runs of PLR model fitting over

Scenario B resulted in different breakpoints. Furthermore, the PLR model predicts that

PV performance will start to increase again at AOD levels above 4; a clear example of
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Figure 5.6: Model results on training data for each Scenario

overfitting. In practice, when the AOD is at a value of 0 indicating a perfectly clear

sky, PV capacity should be at 100% with no derate from wildfire smoke. With only two

weeks of training data, both the PLR and QR model provide unrealistic boundary results

with the QR model predicting 104% and the PLR model predicting 111%. The inclusion

of additional training data at low AOD values in Scenario B improves the ability of the

models to handle the boundary conditions, showing the significance of testing models over

a longer time period.

Ten iterations of model training are performed for each model based on the k-fold

cross validation process described in 5.3, with each iteration using data from nine sites

for training and using the remaining site for testing. The performance for each of the

folds and models can be seen in Figure 5.7. For the cross-validated results, the QR model

exhibited a MAE of 5.45% across the folds in Scenario A, and the highest accuracy across

both Scenarios. One potential explanation for some of the variation in performance across

sites is due to sparsity of the overall AOD data and the generalisation of site locations.

As AOD coverage and resolution improves, the accuracy should improve further. Despite

some variation across folds, the consistency in overall model accuracy across scenarios

highlights the model robustness. The LR model also performs well, and outperforms the

QR model for some folds. Therefore, the LR model may provide value in cases where
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(a) Scenario A [P3] (b) Scenario B

Figure 5.7: Cross validation results across both scenarios indicating model accuracy.

outliers are less of a concern and there is no desire to anticipate the range of potential

performance via quantiles.

The derate factor predicted by each model is calculated by subtracting the anticipated

output at varying aerosol optical depths from the maximum output (100%). The derate

factor at quantiles from 50-99% are shown in Figure 5.8. The quantiles produced by the

proposed method enable individual operators to select a quantile that aligns with their

risk modelling.

Figure 5.8: QR based solar PV capacity derate model trained on 2020 California Wildfires

Findings in [179] looking at 2020 California wildfires indicated that “hour-ahead fore-

casts utilized by CAISO did not include the effects of smoke and therefore overestimated

the expected power production by ∼10%–50%” demonstrating the significance of antici-
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pating PV production impacts from wildfire smoke. Global satellite coverage enables the

methodology to be flexibly applied to ISOs around the world. The methodology provides

grid operators with a means to translate historical AOD and solar PV performance data

into a model to predict the spatiotemporal derate to PV capacity. As the spatial resolu-

tion and accuracy of AOD forecast products improve, grid operators will be able to place

higher confidence in the anticipated reductions in solar PV capacity. Overall, the ability

to quantify the projected reduction in PV output can improve generation forecasts and

enhance security of energy supply to wildfire smoke related shortfalls in reserve.

5.3 Practical Applications via Geospatial Mapping

The use of spatiotemporal data in the proposed methodology also enables production

of geospatial maps for practical utility decision making. One example for the operating

horizon is the creation of geospatial solar PV derate maps for use by Independent System

Operators (ISOs). Maps can be generated by training a model for an ISO’s area using the

approach in Section 5.1 alongside spatial AOD data [163]. Figure 5.9 provides an example

map for three days during the 2020 California Wildfire Season using data from GOES-17

[163]. The sections in grey indicate no AOD values are available for that day. While

Figure 5.9 is generated from historical data, ISOs can use AOD forecasts such as the five

day ahead forecasts provided by [161] to predict the widespread effects of smoke on PV

throughout their entire service area. With the high spatial resolution of AOD forecasts,

an operator can also focus on a critical geographic regions where a significant number of

solar PV facilities are sited.

In the planning horizon, geospatial mapping can be used to inform the siting of new

weather stations or solar PV generation facilities. When siting a new PV generation

facility, one consideration is the anticipated output under “typical” weather conditions

such as the typical meteorological year data provided by the NSRDB [166]. Given the

increasing effect of synchronous fire risk in some regions of the world such as the West-
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Figure 5.9: Example geospatial smoke derate map for operational use over the period
from 12 pm to 1 pm on three separate days with data from GOES-17 [163].[P3]

ern United States [18] economic feasibility studies performed by generation owners may

need to incorporate anticipated reductions due to wildfire smoke. A wildfire derate model

trained for a specific area of interest, could be used to provide additional information

for feasibility studies in high fire risk areas. A California example of such information is

created by taking mean daily AOD from 12pm to 1pm over the period from April 30th

to September 28th, 2020 (obtained from GOES-17 [163]) and is shown in Figure 5.10a.

Generation planners could customise the timeframes and variables included in such a

map and overlay additional spatial variables to meet their specific siting use case. Fur-

thermore, a generation planner may want to exclude regions missing data for a specific

percentage of time over the season (as shown in Figure 5.10b). While a single period is

used for Figure 5.10a, historical duration selected could be further customised based on

specific planning needs. For example, an extreme fire season could be used to provide

a conservative estimate or multiple years of fire history could be used to reflect what a

“typical” annual derate for a region might be.

One limitation to the use of satellite data is that GOES AOD data may not be pro-

duced under some conditions (e.g. snow, clouds, or specific reflectance values) [109] and

means that data in rural or desert areas may be more sparse than data for areas with

high contrast (like cities). Increases in the coverage of historical AOD data as satellite
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(a) Projected seasonal capacity derate [P3] (b) AOD data coverage from GOES-17 [163]

Figure 5.10: Information over the period from April 30th to September 28, 2020 with
data from GOES-17 [163]

measurements improve will serve to address the limitation of incomplete coverage of his-

torical AOD data. Figure 5.10b shows the sparsity of AOD measurements. One method

of addressing this data limitation in the future would be to install ground based stations

or use a technique to fill the AOD gaps via interpolation. In this case study, AOD in-

terpolation was not applied as any additional approximation error from the interpolation

technique could mask the evaluation of model performance.

5.4 Summary

As wildfire smoke can saturate wide areas during a wildfire, anticipation of the impact

to the production of solar PV generation is important to maintain an adequate supply of

energy. This chapter presents a new methodology that enables grid operators to trans-

late wildfire aerosol forecasts into PV capacity reductions, that could potentially enhance

grid operator scheduling decisions and short-term forecast accuracy. The QR model per-

formance demonstrates the robustness of the methodology validated using real solar PV

operating history and data from 2020 California wildfires. Practical geospatial visuali-
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sation via the proposed model, enables operators to quickly assess capacity impacts of

wildfire smoke to solar facilities throughout their territory. In the planning horizon, maps

of anticipated smoke exposure can inform the siting of new solar PV facilities. As forecasts

of AOD are produced at higher resolution and coverage, the proposed methodology will

further enhance the ability to anticipate the attenuation of PV generation during extreme

wildfires.
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Chapter 6

Integration of EV Evacuation in

Wildfire Resilience Assessment

Wildfires have resulted in the evacuation of large groups of people [20] and more home-

owners may be exposed in the future due to growth in the wildland-urban interface [118].

Unanticipated wide-scale EV charging during an extreme event could lead to power short-

ages and cascading blackouts [119]. To provide insight into this problem, this chapter

proposes a methodology to integrate electric vehicle evacuation charging demand in trans-

mission system wildfire resilience assessments. The proposed methodology is provided in

Section 6.1. Data for the case study are given in Section 6.2 with the results and analysis

presented in Section 6.3. Potential means of enhancing resilience are presented in Section

6.4. Finally, conclusions are given in Section 6.5. As a contribution to the state of the

art, the research described in this chapter resulted in the publication of [P2].

6.1 Wildfire Resilience with EV Evacuation

During an emergency, the typical behaviour of a vehicle owner can be substantially al-

tered due to a forced or voluntary evacuation. This section presents the methodology to

anticipate changes in charging demand of electric vehicles during a wildfire evacuation

and identify critical transmission infrastructure affected by altered loading patterns. The
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proposed methodology consists of three major components: 1) novel EV wildfire evacu-

ation model, 2) time step power flow simulation, and 3) critical element identification.

Figure 6.1 shows an overview of the entire methodology.

Figure 6.1: Methodology to integrate EV evacuation charging demand in transmission
system wildfire resilience assessments.
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6.1.1 Spatiotemporal EV Evacuation Charging Demand Model

The model reflects changes to charging demand during an evacuation as customers charge

prior to their journey, once they arrive at their destination, as well as the charging during

the remaining extent of the evacuation period (given in Equations (6.1)-(6.10) below). In

order to identify these changes, the destination and departure time of each vehicle in the

region must be determined. Then the spatiotemporal charging demand can be calculated

to provide grid operators with a more holistic perspective of the potential grid impacts.

An example of the timeline for an event can be seen in Figure 6.2.

Figure 6.2: Example wildfire event timeline. Note that overlap between pre-departure
charging and post-arrival charging will depend on the parameters for a given event.

Choice of Destination and Travel Time

The destination of each vehicle is identified based on three selection criteria: safety,

proximity, and suitability. Some potential destinations may be inaccessible due to blocked

roads or threat from the wildfire, or may be deemed unsafe due to other public health

and emergency guidance. The safety criterion is used as a binary flag by the model to

eliminate destinations considered to be unsafe by evacuees or local authorities.

To account for proximity, the model calculates a weight for each destination based

on the relative distance. The distance based weight (EVD) of each destination j can be

calculated as:
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EVDj =



1

dj∑B
i=1

1

di

if dj ≤ R

0 if dj > R

(6.1)

where R is the evacuation radius, d is the distance; and B is the total safe destinations

within the radius. The radius is used to limit the evacuation to within a fixed region as

wildfire evacuees may prefer proximal locations [20].

Three zones are used to group destinations of similar proximity: Z1: (d ≤ 0.5R), Z2:

(0.5R < d ≤ 0.75R), and Z3: (0.75R < d ≤ R). Suitability is then used to further refine

the weighting factor among destinations within each zone to reflect the availability of food,

lodging, or charging stations at each destination which may impact an evacuees choice

of destination [20]. The model uses load density as a proxy for suitability, to reflect that

more amenities may be found in larger load centres. The suitability adjusted allocation

(EV S) at bus j within each zone is calculated as:

EV Sj =
α∑

m=1

EVDm
Lj∑α
i=1 Li

(6.2)

where α is the number of buses within a particular zone; and L is the load in MW of a

given bus.

The total number of vehicles evacuating (N) to each destination bus (j) is then given

as:

Nj = ρΘEV Sj (6.3)

where ρ is the population of potential evacuating EV; and Θ represents the fraction of

evacuating households.

After calculating the number of vehicles evacuating to each destination, the overall

departure time is modelled via a Rayleigh distribution, as prior studies have identified that

Rayleigh distributions are reflective of the variation in times at which residents evacuate
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[180]. The total number of vehicles which have evacuated can be calculated as:

Nj(τ) = (1− e
−0.5

( τ
β

)2

)Nj (6.4)

where τ is the time after the evacuation notice; and β is the mode of the distribution

function. After this, the time the EVs arrive to their destination and resume charging

is determined by the associated travel time to each destination. Once Nj(τ) has been

calculated as in (6.4) the additional time to reach each destination is calculated as dj/s

where s is the speed of travel.

Charging During the Evacuation Period

Once the destination and departure time of each vehicle is known, the corresponding

impact to grid demand during and after the evacuation is calculated. The duration

needed to fully charge each vehicle (n) at a specific hour in time t prior to departure, can

be reflected as:

DPn(t) =
(1− SOCn(t))Bn

ηCn

(6.5)

where SOC is the state of charge in per unit; B is the battery size in kWh; η reflects

the overall charging efficiency of the charger and battery in per unit; and C is the rate

of charge in kW. Although there is some variation in the charging rate as the battery

nears full SOC, the charging rate remains fairly linear until 95% SOC, and therefore Cn

is modelled as time-invariant for this analysis [181, 182].

However, not all residents may wait until a vehicle is fully charged. Therefore the

power required for each vehicle at each hour fn(t) can be calculated as in (6.6) for the

population of electric vehicles which have yet to evacuate (pop) at a specific point in time.

Then, the total power seen by the grid (GPC) can be calculated as given in (6.7).

fn(t) =


Cn if DPn(t) ≥ 1

CnDPn(t) if DPn(t) < 1

(6.6)
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GPC(t) =

pop∑
n=1

fn(t) (6.7)

Once vehicles arrive at their final destination, the duration of charging needed to

recover the energy from their evacuation journey J can be calculated as in (6.8) with the

corresponding power needed to charge each vehicle at each hour given in (6.9).

Jn =
qnWn

ηCn

(6.8)

hn(t) =


Cn if 1 ≤ Jn − δn

(Jn − δn)Cn if 0 < Jn − δn < 1

0 otherwise

(6.9)

where q is the distance travelled using battery energy (may be less than the total distance

for hybrids); W is the vehicle’s energy consumption per unit of distance; and δ is time

since arrival.

Finally, the total power required from the grid (GAC) due to the initial post-arrival

charging can be calculated as the sum of the individual vehicles as presented in (6.10).

GAC(t) =
evac∑
n=1

hn(t) (6.10)

where evac is the number of electric vehicles which have arrived at time t. Other EV

charging assumptions specific to each case study such as the base EV load shape, load

shape following post-arrival charging and vehicle characteristics are discussed in Section

6.2.

6.1.2 Time Step Power Flow Simulation

The methodology incorporates a four stage power flow simulation to identify the impact

of EV charging on the operating conditions during the wildfire as well as the potential
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risk to the transmission network under subsequent outages.

Step 1: Model the generation dispatch. A rank order approach is used to identify the

generation units online at a given point in time, with units added until a 10% reserve

requirement is satisfied, or all available units are online, with the ranking given in

Appendix A. The approach is flexible such that a variety of dispatch scenarios can

be included to reflect anticipated or conservative dispatch patterns. Other factors

specific to a wildfire such as a reduction in Solar PV generation due to wildfire

smoke as highlighted in Chapter 5 may also be included.

Step 2: Add evacuation demand. The additional load due to evacuating electric vehi-

cles calculated using the steps in Section 6.1.1 is included to reflect the charging

behaviour of electric vehicles at each stage of the evacuation.

Step 3: Conduct AC power flow at each time step. When assessing the resilience, temporal

power flow analyses are necessary to account for the hourly fluctuations in load and

generation in relationship to the hazard.

Step 3a: Check for convergence. If the power flow solution diverges, loads are shed be-

ginning with the bus with the largest power mismatch. This approach is selected as

divergence can often result from voltage collapse and the worst mismatch bus would

then be indicative of the contribution to the solution’s divergence [183].

Step 3b: Identify Violations Upon reaching a converged solution, any additional viola-

tions of bus voltage limits and branch thermal ratings are identified.

Step 3c: Mitigate Violations Mitigation options can include generation re-dispatch, switch-

ing of shunt devices, on-load tap changing of transformers, network re-configuration,

demand response, and load shedding. Specific options considered should be tailored

to the network and regulatory criteria of the area under analysis.

Step 4: Evaluate Subsequent Outages. The likelihood of concurrent wildfires during pe-

riods of high risk is growing for some regions [18]. Furthermore utilities may ex-
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perience normal outages during a wildfire event. Therefore, this step evaluates any

potential cascading or degradation in system performance resulting from the ad-

ditional electric vehicle evacuation load. The specific outages in this list can be

further informed by each local planning area’s internal and external criteria. To

identify the impact, Repeat Steps 3a. - 3c. for the new network with the outage

condition. The impact of evacuation on the system’s ability to withstand further

outages which might occur during the wildfire period is determined to identify the

effect of EV evacuation on the system’s overall resilience.

6.1.3 Critical Element Identification

Risk matrices provide an intuitive means of prioritizing risk, accounting for probability

and impact [184]. After assessing the performance of the transmission system under the

wildfire and subsequent outages, an outage criticality matrix is used to quantify risk for

each contingency and identify the effect of EV evacuation on the overall risk. Outage

criticality is a risk informed metric relating the probability of load shed resulting from an

outage (Γ) and the magnitude of load shed (E).

Ek =
∑
t∈T

LSk(t) (6.11)

Γ =
100%

T

∑
t∈T

[LSk(t) > 0] (6.12)

where t is an hour over the event period T ; and LSk is the amount of load shed for a

contingency k. These two factors are combined as shown in Figure 6.3 to form a qualitative

outage criticality matrix to readily identify the outages which result in the most risk.

Each of the risk zones in the matrix is given a criticality label of ‘Minimal’, ‘Moderate’,

‘Elevated’, or ‘Extreme’. The rationale for labelling each of the risk zones is based on

the concept that elements which have the highest frequency and magnitude of load shed

following a contingency are the most critical. The criticality is skewed to the right as
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Figure 6.3: Example Criticality Matrix.

minimal amounts of load shed even for outages which are more likely to occur may not

represent a substantial concern. To identify the impact of changes in demand from electric

vehicle evacuation, symbols are used to indicate whether the presence of additional electric

vehicle evacuation demand makes that outage worse, better, or is not anticipated to have

an impact. This helps prioritise assessment of charging behaviour to specific locations.

The criticality matrix is transformed to a geospatial map of critical elements, described

in Section 6.3.2 to further aid operational awareness.

6.2 Electric Vehicle and Network Parameters

In order to demonstrate the affects of EV evacuation on the risk and resilience of the grid

during a wildfire, the 2019 update to the IEEE Reliability Test System, RTS-GMLC, is

used [132]. RTS-GMLC includes a modern generation mix and is geolocated to the south-

western United States [132]. Further details surrounding data for the RTS-GMLC are

given in Appendix A. While wildfires can affect many components of the power system,

this case study focuses on concerns at a transmission level, where widespread load transfers

are assessed. At the transmission level, wildfires can result in the failure or de-rate of

transmission lines and for this case study, the assumption is that the 230 kV transmission

line between Bus 313 and Bus 323 which passes directly through the wildfire area, is
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disconnected for the duration of the fire. This is informed by the analysis in Chapter 3,

that demonstrates this line may be subject to frequent wildfire related contingencies. The

fire and associated outage are assumed to occur at 1:00am with the evacuation notice given

at 9:00am. Assumptions for each of the model parameters are found in Table 6.1. The

test system [132] and wildfire [175] are depicted in Figure 6.4 along with the evacuation

proximity zones and destinations.

Evacuation Path Blocked
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305 306

307
308
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311312
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319

320
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Unsafe Destination
Safe Destination
Line
Line Out Due to Fire
Destination Zone 1 - Close
Destination Zone 2 - Medium
Destination Zone 3 - Far
Out of Range of Evacuating Vehicles
Wildfire Perimeter

Figure 6.4: IEEE RTS-GMLC test system [132] fitted into Southern California geography
with wildfire perimeter [175] and evacuation zones for an evacuation of Bus 313.

EV Behavioural Assumptions

Four types of vehicles are modelled: Plug in Hybrid Electric Vehicles with ranges of 20 and

50 miles (PHEV20 and PHEV50) and Battery Electric Vehicles with ranges of 100 and

250 miles (BEV100 and BEV250). Values of W , C, B and η for each vehicle are assumed

consistent with those given in Appendix B, Table B.1. PHEV can travel beyond these

ranges using gasoline, with the range being used to identify the charging requirements.
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EV load shapes can be seen in Figure 6.5 are created using Electric Vehicle Infrastructure

Projection Tool (EVI-Pro) Lite [112]. Further details around the base EV assumptions

and EVI-Pro Lite are given in Appendix B.

Figure 6.5: Base EV charging load shape for the test system (repeated over two weeks for
the case study) created using EVI-Pro Lite [112].

To capture the response of households after receiving the evacuation notice, evacuating

customers are modelled to plug in their vehicles from the point at which the notice is

received until they evacuate. The remaining customers follow the base EV charging

shape. The model reflects customers leaving based on the evacuation distribution, with

some customers leaving before fully charged. It is assumed that sufficient charge is received

to reach their destination or customers are aware of charging on the way. Upon reaching

their destination, customers are modelled to recharge their battery at a public charger

based on the distance they travelled to evacuate. On subsequent days a public Level 2

charging shape derived from the base shapes in Figure 6.5 is modelled. This shape is

selected as these customers may no longer have access to chargers in the evacuation area,

and instead be dependent on charging stations near their destination. Further Wildfire
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and EV characteristics used for the Case Study are given in Table 6.1.

Table 6.1: Case Study Assumptions for Wildfire and Electric Vehicles

Variable Value Rationale

Fire

Duration 2 weeks Typical fire duration (weighted by
fire size) for North America of 13.4
days based on 13.3 million individ-
ual fires from 2003-2016 [133]

Time period Summer peak Worst wildfires in California
recorded history typically occurred
in July-September [185] which
coincides with the periods of peak
load in CAISO [186]

Fire Extent Bobcat Fire 2020 wildfire in the study area [175]
Outages from fire Line 313 to 323 Line passes directly through wildfire
Evacuation Bus 313 Proximity to wildfire
Unsafe Destinations 320, 323, 325 Evacuation path blocked by fire
Residual Load at
Evacuation Bus

20% This captures the 11% of customers
remaining as well as residual load,
and load to serve fire-fighters and
emergency personnel

EV

EV Fleet Size 128,000 20% EV penetration with the num-
ber of vehicles calculated using cen-
sus data as in B.3

Power Factor 0.98 inductive Typical value determined in [187]
Evac. Range (R) 100 mi Surveys indicated wildfire evacuees

preferred to travel shorter distances
[20]. It is assumed that PHEV20
and PHEV40 rely on some gasoline
if evacuating beyond their electric
range.

Evac. Speed (s) 30 mi/hr Typical travel speed in absence of
detailed routing information.

Evacuation distribu-
tion (β)

117 minutes Study for hurricanes in [188]

Share Evacuating
(Θ)

0.89 sample mean of the wildfire evacua-
tion survey conducted in [189].

Outage and Criticality Matrix Assumptions

Following the base case evaluation, under the proposed framework, single and common

corridor branch contingencies on top of the wildfire are considered. Overall the combina-

tion of the transmission line loss due to the wildfire, redistribution of load and subsequent

single and common corridor contingencies, results in evaluation of several distinct N-k
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events. For this case the post contingency operator adjustments consisted of adjustment

of the shunt component, redispatch of online generation, and shedding of load. If post-

convergence load shed is necessary, the amount is identified via AC optimal power flow to

simultaneously evaluate generation re-dispatch and minimise load shed by modelling loads

as generation with negative cost as given in [36] and described in Chapter 2. In assessing

the feasibility of generation redispatch, changes in output were not limited by ramp rate

or any storage use limits. For this analysis the following values of Γ are used: ΓL: 1%,

ΓM : 10%, and ΓH : 100%. The values 10 MW, 100 MW and 1000 MW are used for EL,

EM , and EH respectively. These values follow a logarithmic scale to enable consideration

of an exponential increase in risk rather than a linear relationship, and should reflect the

overall size of the study area.

Tools used for Analysis of the Case Study

To assess the case study, the process described in Section 6.1 is implemented via code

using a combination of the following: MATPOWER [145] to conduct the power flow

and determine the generation dispatch with the optimization solved using MATPOWER

Interior Point Solver [146]; time step analysis scripted in MATLAB ver. R2018b; and

the remainder of the analysis is conducted in python through the following packages:

scipy [144], numpy [136] and pandas [137] packages for the data preparation, geopandas

[138] and cartopy [141] for geospatial analysis and visualization using matplotlib [142].

Cartographic boundaries are obtained from the US Census Bureau [147].

6.3 Case Study

The data presented in Section 6.2 are assessed to provide insight into the significance

of integrating EV evacuation charging demand in wildfire resilience assessments. Prior

to analysis of evacuation, the changes from the wildfire itself are considered. Loss of

transmission infrastructure due to a wildfire can cause significant redistribution of flow
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on the transmission network. In this case study, loss of Line 313-323 was simulated due to

the wildfire. As a result, without consideration of any additional EV evacuation charging

demand, flow on the remaining transmission lines changed by up to 20% over the course

of the case study period. Figure 6.6 shows the range of flow changes on each line.

Figure 6.6: Changes in flow resulting from the wildfire over the course of the event period.
Length of whiskers reflect 1.5 IQR (Inter-Quartile Range).

Such changes can require grid operators to quickly adapt to abnormal flow patterns,

re-dispatch generation, and prepare for any subsequent outages which may occur. EV

evacuation can add further complexity to these decisions by altering the anticipated load-

ing patterns on the transmission network. The impact of these loading patterns is assessed

for the base network as well as subsequent outages as part of the wildfire resilience as-

sessment.

6.3.1 EV Evacuation Charging Demand Impacts

In the period following the evacuation notice, many residents may simultaneously charge

their EV prior to evacuating. This synchronised charging can cause spikes in demand

that may adversely affect transmission infrastructure in the area. For the case study, pre-

departure EV charging demand at Bus 313 spiked to 53 MW. This reflects a near tripling

of the normal diversified peak EV charging demand and is roughly 20% of the substation’s
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peak load. Figure 6.7a depicts the changes in electricity demand at Bus 313 from EV

charging. For this case study, the evacuation occurred prior to the daily peak demand

and prior to the system peak later in the study period. However, if the evacuation was

coincident with the daily or annual system peak, a 20% increase in peak load could further

exacerbate risk of load shed. Therefore, in an electrified future, when issuing evacuation

orders and developing evacuation plans, it is critical to consider temporal charging effects.

EV charging and evacuation further alters loading on the transmission system as

vehicles are dispersed throughout the network. The change in EV charging demand at the

destination substations can be seen in Figure 6.7b. This additional charging demand also

reduced the overall voltage profile of the system. The impacts could be even higher with

higher levels of EV penetration, DC fast charging or less dispersed evacuation. Awareness

of these spatiotemporal changes in transmission loading are important to properly position

the transmission network to maintain safe and reliable operation during a wildfire. This

awareness also enables performance of real time contingency analysis for the conditions

identified to be most adversely affected by evacuation demand. The redistribution of load

due to EV charging during an evacuation can also reduce the flow seen on some corridors,

potentially improving system resilience to subsequent contingencies affecting those lines.

Therefore, it is important to further examine the effect of EV charging on subsequent

outages during a wildfire event.

6.3.2 Resilience to Subsequent Outages

During the wildfire evacuation period, additional outages may occur due to the wildfire,

other wildfires occurring in the region, or other causes. For the case study, evaluation

of the 38 single element and seven common-corridor contingencies beyond the initial loss

of Line 313-323 was conducted. Eight contingencies resulted in load shed for at least

one hour during the event period. The impact to the transmission network from EV

evacuation varies dynamically across contingencies. The case study results reveal that

EV evacuation heightens the risk of cascading outages by increasing line loading and load
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(a) Pre-Departure Charging at Bus 313.

(b) Charging Demand at Destination Substations.

Figure 6.7: EV Evacuation Impact to Charging Demand.

shed exposure. For some contingencies the change in load shedding exposure is minor,

whereas for others EV evacuation increases the frequency and magnitude.

The proposed criticality matrix can identify the most significant contingencies to assess

further and is depicted in Figure 6.8 for the case study. Note that consequential load loss

is not included in the criticality matrix as these contingencies would already be known.

The arrows are used as symbols to indicate whether integration of EV evacuation charging

demand reduces, increases or has inconsequential impact on the load shed for each outage.

Inconsequential for purposes of the case study was determined by a change in load at risk

less than 5 MW over the course of the event period. The resulting matrix indicates that for
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the most significant contingencies, EV evacuation charging demand increases the risk and

should be accounted for when developing mitigation plans. An example of the magnitude

of risk change resulting from the additional EV evacuation charging demand is given for

the loss of line 306-310 where E increases from 711 to 781 MW and Γ increases from 9.2%

to 10.1% (3 additional hours). This also causes the contingency to move from elevated

to extreme risk zone, demonstrating that failure to consider evacuation load can result in

underestimation of risk. While the case study evaluates EV evacuation charging demand

due to wildfires, other events that cause mass movement of electric vehicles outside of

their normal charging locations such as hurricanes or sporting events could result in

similar disruptions to the grid.

Figure 6.8: Outage criticality matrix indicating the impact of EV evacuation on risk.

The criticality matrix can also be transformed into a map to provide geospatial indi-

cation of the criticality of each element and the impact of EV evacuation. This is depicted

in Figure 6.9. The lines which are affected most by electric vehicle evacuation (indicated

by the upwards arrow) are those surrounding Bus 310, as most vehicles evacuate to this

area (as seen in Figure 6.10. Figure 6.9 enables the most critical lines to be quickly iden-

tified along with their location and likelihood of resulting in load shed. Awareness of EV
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evacuation charging location and magnitude can enable utilities to better plan to serve

load during an emergency and proactively prepare the transmission system, improving its

resilience.

Figure 6.9: Identification of Critical Transmission Elements. Worst outage each element
involved in is shown with the number inside the arrow or box representing the % of hours
that load shed will occur after that outage during the wildfire period.

Results using the proposed methodology for this case study demonstrate that evacu-

ation of mobile loads during wildfires can place additional stress on specific transmission

components, increasing risk of load shedding, and adversely effecting overall system re-

silience. This demonstrates the need to provide electric vehicle penetration levels to power

system operators and planners. The demand profiles of the evacuating vehicles based on

the evacuation model can be generated ahead of time for different evacuation scenarios

and could therefore be used to inform online decision making. This information should

be shared with emergency planning agencies to assess whether sufficient charging is avail-

able to support the evacuation and to identify ideal or anticipated locations for primary
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evacuation zones.

6.4 Recommended Means to Enhance Resilience

The results of the proposed approach can enable proactively decision-making to enhance

wildfire resilience by improving operator preparedness and inform the need proactively site

temporary EV charging stations. Once the anticipated EV evacuation charging demand

is obtained, there are two routes to mitigate any adverse effects: The first route is to

eliminate or minimise the additional charging load which will be seen by the grid. This

can be done by deploying temporary charging stations, which are not tied to the main

grid [190]. These charging stations can be sited in high fire risk areas to mitigate the

initial spike in demand from evacuating EV, if an evacuation were to take place or to aid

evacuees in charging along the way. Use of Equation 6.3 also could enable siting of off-grid

charging stations at evacuation destination locations. This could preemptively mitigate

any performance issues identified as a result of the increased charging. An example map

such as the one depicted in Figure 6.10 could be used to inform such efforts.

Figure 6.10: Change in Electric Vehicles at each location as a result of Evacuation.
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The second route for mitigation is to enhance the readiness of the grid to withstand the

additional load. This could be achieved by increasing the real and reactive reserve margin

of the grid to account for the anticipated EV evacuation load. Furthermore, operators

could incorporate the changes in load into their contingency analysis to ensure that any

proposed resiliency mitigation are sufficient to handle evacuation. As electrification grows,

this information will become increasingly important for other types of events beyond

natural disasters that could involve large temporary shifts in population including tourism

and major sporting events. This could be achieved via a screen or indicator as part of the

energy management system which details the anticipated penetration of electric vehicles

at that specific bus.

6.5 Summary

EV evacuation during wildfires can cause dynamic operational stress even at 20% EV

penetration, adding complexity to operator decision-making. The proposed methodology

provides a reproducible means of simulating the effects of EV evacuation on the transmis-

sion network and is extensible to reflect a range of operating conditions, grid topologies

and EV penetration levels. As evacuees synchronously charge, the EV charging demand

can increase to three times the normal diversified charging demand. This additional de-

mand during a wildfire evacuation can contribute to increased line loading and risk of load

shed in some portions of the system, while reducing line loading in others. Therefore, grid

operators should be involved in emergency planning efforts to prepare for the impact of

EV evacuation.

While many potential solutions exist to remediate grid stress resulting from evacua-

tion charging load, awareness of the magnitude of EV charging impacts throughout the

system is a pre-requisite to identification of appropriate mitigation measures. As the

changes in demand introduced by evacuation vary geographically, the critical element

identification method presented in this chapter indicates the impact of EV evacuation
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charging on the most critically affected transmission areas, enabling the establishment of

targeted adaptation and mitigation plans. This research provides a solid foundation for

future researchers to investigate the optimal remediation strategy for extreme wildfires

considering the effects of evacuating vehicles.
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Chapter 7

Conclusion and Future Research

Extreme wildfires can result in damage, failure, or destruction of transmission infrastruc-

ture, posing a significant threat to the safety and resiliency of the electric grid. Failure

to consider the interactions between wildfires and LCT can result in over-forecasting PV

generation output due to wildfire smoke, or under-forecasting the electricity demand due

to EV charging during an evacuation, further compounding the threat. This chapter

presents key findings of the research in this thesis to inform assessments of power system

wildfire resilience in the planning and operating horizon, reflecting the behaviour of LCT,

along with potential future areas of research.

7.1 Conclusions

Predicting adverse effects from wildfires enables proactive development of strategies to

enhance the resilience of the system. However, some wildfire mitigation measures require

significant lead time to implement due to construction time and regulatory requirements.

Chapter 3 presented an advanced methodology to assess power system wildfire resilience

in the planning horizon, enabling risk quantification in advance of a disaster. The method-

ology also quantifies critical transmission assets that require reinforcement and visualises

assets for rapid mitigation development geospatially. The uniqueness of the methodol-

ogy is the integration of satellite-derived empirical wildfire ignitions with grid topology
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to produce data of synthetic wildfire seasons and quantify the risk over an entire year,

rather than focusing on a single event. The viability of the methodology was assessed

using scenarios considering numerous synthetic wildfire seasons in Southern California.

A significant finding from the case study was that for outage magnitude, the CV aR was

double the expected value. Line Outage Days showed even more significant difference

with the CV aR triple the expected value. The use of expected value metrics (tradition-

ally used in reliability studies) mask the risk during extreme wildfires seasons, potentially

leading to insufficient mitigation measures. The proposed methodology addresses this is-

sue through use of robust risk-based metrics. Results also confirm that the outage impact

is not directly correlated with the number of elements offline, requiring analysis of each

outage to identify the severity.

Residential solar PV masks the true load of a distribution feeder, making awareness

of PV installations important for operators during restoration planning efforts. Solar PV

generation also provides a resource for use in resilience mitigation measures such as local

area microgrids. However, utilities may not be aware of the location of all installations,

compromising the integrity of planning efforts. To overcome this limitation, Chapter 4

presented a new agglomerative clustering based approach to automatically identify solar

prosumers. The uniqueness of the approach is that it only requires hourly smart meter

data and is able to reduce the data required for classification to a single data-point through

PAA, significantly reducing the computational burden without compromising accuracy.

The approach is validated using four years of real smart meter data from the United States,

yielding 99.7% classification accuracy. Therefore, hourly smart meter data provides an

accessible source of data to effectively locate solar PV installations. The proposed SPIDCs

quantify the amount of data needed to meet a specific accuracy threshold to provide

confidence in decision-making. A significant finding from the case study is that only one

week of historical data was sufficient to classify solar prosumers with greater than 95%

accuracy. Customer classification should be tracked over time to identify new prosumer

installations, anomalous solar PV performance, or panel removal. The proposed approach
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results in a current snapshot of the location and status of PV installations, supporting

effective wildfire mitigation decision-making.

During a wildfire, smoke inhibits the solar irradiance, adversely impacting solar PV

generation in the affected areas. Knowledge of how this smoke will impact performance is

critical prior to relying on solar PV generation at the system level or as part of a micro-

grid. Chapter 5 presented a methodology incorporating quantile regression to predict the

derate to solar PV capacity during a wildfire. The uniqueness of the methodology comes

from using satellite-derived aerosol optical depth (AOD) measurements to capture the

quantity of particulate in the air during a wildfire over large regions and translate those

measurements into reductions in generation. The efficacy of the proposed approach is val-

idated using real PV operating data from California’s 2020 wildfire season. An important

finding is that days with smoke yielded substantial reductions in PV performance across

vast geographical areas. As a result, even if a wildfire may be far away, assessments of

wildfire resilience in the operating horizon should account for the potential disruption to

capacity across entire planning areas. Another finding is that real-time AOD forecasts are

a key source data in the operation horizon. The geospatial derate maps resulting from

the proposed methodology provide a practical mechanism to translate AOD forecasts

into anticipated PV performance, enhancing generation scheduling and dispatch during a

wildfire.

During a wildfire, EV charging demand can adversely affect grid performance by alter-

ing loading patterns. As entire communities are forced to evacuate their homes and flee

extreme wildfires, evacuees may synchronously charge, resulting in a spike in electricity de-

mand. Chapter 6 presented a novel model to predict the changes to EV charging demand

during an evacuation. The novelty comes from the model’s ability to reflect the geospa-

tial distribution of charging load over the entire event horizon, including charging before,

during and after evacuation. The viability of the methodology was assessed through a

case study reflecting 20% EV penetration and a 2020 wildfire perimeter. Results indicated

that localised EV load seen at the transmission level can triple as customers evacuate, and
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increase exposure to load shed. The proposed model can predict changes in load ahead

of time, enabling operators to re-dispatch the grid to minimise risk of overloads, thereby

enhancing the resilience of the network. As more EVs are equipped with vehicle to grid

capabilities, the proposed model can also support the development of resilience plans to

leverage EVs in restoration efforts.

The investigation in this thesis has made significant contributions to inform assess-

ments of power system wildfire resilience in the planning and operating horizon, reflecting

the behaviour of LCT. First, a methodology to proactively quantify wildfire risk in the

planning horizon is presented. Use of this methodology provides the ability to evaluate

mitigation measures well in advance to increase the time available for implementation.

Second, the ability to effectively identify solar prosumers further enhances mitigation plan-

ning. The proposed approach was robust, efficient, and provides a mechanism to obtain

a current snapshot of PV installations in an area of interest. Third, quantification of the

relationship between wildfire smoke and PV generation capacity is achieved. Real-time

AOD forecasts enable use of this relationship to predict the impact to PV generation over

entire planning areas rather than single locations. Finally, a methodology to integrate EV

evacuation charging demand provides operators with a means to reflect the spatiotem-

poral variance in power system wildfire resilience assessments. Foresight of significant

increases in charging demand provides the opportunity to proactively dispatch generation

and mitigate increased stress to power system infrastructure. For each of these contri-

butions, visualisation varying over space and time is given to provide practical insight to

support decision-making across the planning and operating horizon.

The research presented in this thesis demonstrates that wildfires have wide-reaching

impact to power system infrastructure, causing outages of transmission lines, reduction in

solar PV generation, and altering demand. Although the focus of this thesis has been on

wildfire resilience, the spatiotemporal methods presented in this thesis can be extended

to other natural disasters, leading to more integrated overall resilience plans. Ultimately,

robust assessments that consider grid performance over an entire wildfire season along
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with the effect of growing penetration of LCT are essential to develop a modern power

grid that is resilient to wildfires.

7.2 Future Work

The work in this thesis presents foundational methodology for the analysis of power system

wildfire resilience in the presence of LCT. The following section provides possible avenues

for future research work.

• Post-Wildfire Landslide Resilience. This thesis provided a methodology to

identify the transmission corridors most at risk from wildfires in the planning hori-

zon. After a wildfire burns the foliage in a specific area, even if the transmission

system remains intact, transmission lines may be at risk due to increased risk of

landslide in the period following [191]. Initial work to assess the resilience of power

system equipment during a landslide has been carried out in [192], using regres-

sion to identify the influence of factors such as slope, soil, and geology. Future

researchers could assess the propensity of damage to power system infrastructure to

create composite fragility curves to represent the landslide risk before and after a

wildfire. Use and collection of empirical hazard data in areas prone to both wildfires

and landslides could inform this effort. The resulting fragility curves could be used

to coordinate emergency planning efforts across natural disaster response agencies.

• Integrated Prosumer Evaluation Tool. As more customers adopt electric vehi-

cles, distributed energy storage and heat pumps alongside residential solar PV, new

methods for comprehensive detection of customer LCT adoption of will be needed.

Future research could integrate the method to identify solar PV prosumers presented

in this thesis with other methods for EV, energy storage, and heat pump detection

to develop a tool that comprehensively identifies the technologies customers have

adopted in real-time and predicts their behaviour. Many methods are being devel-

oped to disaggregate solar PV consumption from net load data [193] and provide
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opportunities for application to prosumer detection. This is made more complex

by rising energy storage adoption [194] and understanding the control behaviour,

pricing and operating modes will be important to ensure robust identification. Iden-

tifying data sources that can enable differentiation between prosumer sources of gen-

eration will also be important to support this work. Overall, development of such a

tool could inform real-time restoration and enhance operational resilience during ex-

treme events. Further research could also explore how this tool could be integrated

into existing grid management software to enhance operator LCT visibility.

• Empirical EV Charging Behavioural Assessment during Abnormal Events.

While the behaviour of EV charging under typical conditions is becoming more well

known, EV performance during natural disasters is less understood. The work in

Chapter 6 of this thesis demonstrated via simulated behaviour that EV charging

profiles during a wildfire may differ markedly from those during normal operating

conditions. The emergence of new geo-data sources have enabled researchers to

track human mobility with [195] detailing many sources of data applied to tracking

mobility dynamics during the COVID-19 pandemic. Such sources of mobility data

including empirical EV connectivity data could be used to identify how EV charging

diversity factors differ across extreme events including hurricanes, floods, and earth-

quakes as well as sporting events such as the Commonwealth games. Such analysis

could enable better capacity utilisation of the distribution network and charging

infrastructure development.
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Appendix A

IEEE RTS-GMLC

This section presents the information of Area 3 of the 2019 Update to the IEEE Reliability

Test System from the Grid Modernization Laboratory Consortium (RTS-GMLC) [132]

which was used for demonstrating the case study in Chapters 3 and 6. Data for the RTS-

GMLC is available at https://github.com/GridMod/RTS-GMLC provided by National

Renewable Energy Laboratory (“NREL”), which is operated by Alliance for Sustainable

Energy, LLC (“ALLIANCE”) for the U.S. Department Of Energy (“DOE”) [132]. The

buses, peak load and voltage limits used are presented in Table A.1 with underlying data

from [132]. Authors in [132] note that the system is overbuilt to allow users to consider

a range of generation configurations. The overbuilt nature is exemplified as the original

Region 3 contains only 2850 MW of load but ≈ 6800 MW of Generation capacity of which

≈ 3900 MW is wind and solar. Hence for this analysis, the wind and solar generation

capacity is reduced by 50%. This reduction is also informed by insight from Chapter 5

which indicates that solar PV generation capacity can adversely affect solar PV generation

capacity. The corresponding generation information from [132] with these reductions and

the rank order used for the case study in Chapter 6 added is shown in Tables A.2 and

A.3. Finally, the transmission line information is presented in Table A.4 with underlying

data from [132].
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Table A.1: Bus information used for Case Study
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Table A.2: Generation information used for Case Study (Oil, Natural Gas, Coal, Syn-
chronous Condenser, and Hydro)
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Table A.3: Generation information used for Case Study (Solar, Wind, and Storage)
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Table A.4: Branch information (Lines and Transformers) used for Case Study
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Appendix B

Electric Vehicle Information

Base EV Characteristics

To reflect a realistic vehicle composition, four types of vehicles are modelled: Plug in

Hybrid Electric Vehicles with ranges of 20 and 50 miles (PHEV20 and PHEV50) and

Battery Electric Vehicles with ranges of 100 and 250 miles (BEV100 and BEV250). Val-

ues of Nominal Efficiency W , Maximum AC Charging Power C, and Onboard Charger

Efficiency (η) for each vehicle are assumed consistent with those given in Table B.1. The

nominal range and nominal efficiency are used to calculate the battery size.

Table B.1: EV Characteristics from EVI-Pro-Lite [112]

EV Characteristics Units PHEV20 PHEV50 BEV100 BEV250
Nominal Electric Driving Range mi 20 50 100 250
Sedan Nominal Efficiency (excludes charger effic.) Wh/mi 325 325 325 325
SUV Nominal Efficiency (excludes charger effic.) Wh/mi 450 450 450 450
Onboard Charger Efficiency % 90 90 90 90
Maximum AC Charging Power kW 3.6 3.6 7.2 11.5
Maximum DC Charging Power kW 0 0 50 150

Vehicle State of Charge Prior to Evacuation

The state of charge of electric vehicles can vary substantially and has a direct impact on

the charging demand required prior to evacuation. Authors in [196] indicate that vehicles

should maintain a SOC in the range of 20-80% to minimize losses. However, empirical

SOC data from [187] presented in blocks of 8.3% would indicate that in practice vehicle
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owners may operate outside of these ranges. For this work the empirical data from [187]

for a weekday between the hours of 6am and 10am is used as a foundation, but the share

of vehicles which have a SOC of either 0/12 or 1/12 are removed and the remaining shares

scaled so that the values sum to 100%. The resulting values can be seen in Table B.2.

Table B.2: State of Charge of Electric Vehicles in the Evacuation Area Upon Receiving
Evacuation Notice. Adapted from [187]

SOC % of Vehicles
0.00% 0%
8.33% 0%
16.67% 7%
25.00% 10%
33.33% 10%
41.67% 10%
50.00% 11%
58.33% 12%
66.67% 10%
75.00% 7%
83.33% 8%
91.67% 7%
100% 7%

Base EV Load Shapes

To generate typical load shapes for a particular fleet of residential electric vehicles, phys-

ical characteristics should be combined with be behavioural factors including the typical

vehicle miles travelled and preferences for charging location (i.e. work or home). The

National Renewable Energy Laboratory (NREL) and the California Energy Commission

(CEC) in partnership with the U.S. DOE’s Vehicle Technologies Office have developed the

Electric Vehicle Infrastructure Projection Tool (EVI-Pro) as a bottoms-up tool to gener-

ate electric vehicle load shapes [112]. The U.S. DOE has made an open source simplified

version of this tool EVI-Pro-Lite available to generate load profiles for customised vehicle

fleets and locations [112]. Tools such as EVI-Pro Lite can be used by grid operators and

city planners to identify typical EV charging demand for regions of their service territory.

For creation of the base profiles the NREL EVI-Pro Lite API script was used (avail-
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able at https://github.com/NREL/EVI-Pro-Lite [197]) with the following parameters:

fleet size: 128000; mean dvmt: 35; temp c: 35 with short temp list; pev dist: EQUAL;

class dist: Sedan; home access dist: HA100; home power dist and work power dist: MostL2;

pref dist: Home100; and res charging and work charging: min delay. BEV250 are mod-

elled to have 11.5 kW chargers to enable a full charge. Further description of each of

these variables is given in [112].

EV Population Calculation

California household vehicle ownership statistics from the U.S. Census Bureau for Cal-

ifornia [198] shown in Table B.3 were used, conservatively assuming that no household

has more than 3 vehicles to obtain an average of 1.8 vehicles per household. Assumptions

surrounding the share of residential load and number of households in the test network

are shown in Table B.4. This yields 640,000 vehicles in the entire test system and 128,000

electric vehicles at 20% EV penetration. The number of vehicles at each individual bus is

assumed to be proportional to the overall load of the bus. For example, bus 313 contains

approximately 9% of the system load and is allocated a total of almost 60,000 vehicles

(almost 12,000 of which are electric).

Table B.3: California Household Vehicle Ownership [198]. Table reproduced from [P2]

Category Estimate Margin of Error
No Vehicle 939,034 ±6,018
1 Vehicle 3,993,143 ±12,465
2 Vehicles 4,838,980 ±15,184
3 Vehicles 3,194,278 ±14,420
3+ Vehicles 12,965,435 ±19,785

127

https://github.com/NREL/EVI-Pro-Lite


Table B.4: Calculation of Total Vehicles in Test Network. Adapted from [P2]

Assumption Value
Total Area Peak Load 2,850 MW
Residential Load Share 50%

Individual Household Peak 4 kW
Number of Households 356,250
Number of Vehicles 640,000

Number of Electric Vehicles 128,000
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